state
stringlengths 0
159k
| srcUpToTactic
stringlengths 387
167k
| nextTactic
stringlengths 3
9k
| declUpToTactic
stringlengths 22
11.5k
| declId
stringlengths 38
95
| decl
stringlengths 16
1.89k
| file_tag
stringlengths 17
73
|
---|---|---|---|---|---|---|
K : Type u_1
g : GeneralizedContinuedFraction K
n : ℕ
inst✝ : DivisionRing K
gp : Pair K
ppredB predB : K
succ_nth_s_eq : Stream'.Seq.get? g.s (n + 1) = some gp
nth_denom_eq : denominators g n = ppredB
succ_nth_denom_eq : denominators g (n + 1) = predB
⊢ denominators g (n + 2) = gp.b * predB + gp.a * ppredB | /-
Copyright (c) 2019 Kevin Kappelmann. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kevin Kappelmann
-/
import Mathlib.Algebra.ContinuedFractions.Translations
#align_import algebra.continued_fractions.continuants_recurrence from "leanprover-community/mathlib"@"5f11361a98ae4acd77f5c1837686f6f0102cdc25"
/-!
# Recurrence Lemmas for the `continuants` Function of Continued Fractions.
## Summary
Given a generalized continued fraction `g`, for all `n ≥ 1`, we prove that the `continuants`
function indeed satisfies the following recurrences:
- `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`, and
- `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`.
-/
namespace GeneralizedContinuedFraction
variable {K : Type*} {g : GeneralizedContinuedFraction K} {n : ℕ} [DivisionRing K]
theorem continuantsAux_recurrence {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp)
(nth_conts_aux_eq : g.continuantsAux n = ppred)
(succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) :
g.continuantsAux (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ :=
by simp [*, continuantsAux, nextContinuants, nextDenominator, nextNumerator]
#align generalized_continued_fraction.continuants_aux_recurrence GeneralizedContinuedFraction.continuantsAux_recurrence
theorem continuants_recurrenceAux {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp)
(nth_conts_aux_eq : g.continuantsAux n = ppred)
(succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) :
g.continuants (n + 1) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by
simp [nth_cont_eq_succ_nth_cont_aux,
continuantsAux_recurrence nth_s_eq nth_conts_aux_eq succ_nth_conts_aux_eq]
#align generalized_continued_fraction.continuants_recurrence_aux GeneralizedContinuedFraction.continuants_recurrenceAux
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂` and `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/
theorem continuants_recurrence {gp ppred pred : Pair K} (succ_nth_s_eq : g.s.get? (n + 1) = some gp)
(nth_conts_eq : g.continuants n = ppred) (succ_nth_conts_eq : g.continuants (n + 1) = pred) :
g.continuants (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by
rw [nth_cont_eq_succ_nth_cont_aux] at nth_conts_eq succ_nth_conts_eq
exact continuants_recurrenceAux succ_nth_s_eq nth_conts_eq succ_nth_conts_eq
#align generalized_continued_fraction.continuants_recurrence GeneralizedContinuedFraction.continuants_recurrence
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`. -/
theorem numerators_recurrence {gp : Pair K} {ppredA predA : K}
(succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_num_eq : g.numerators n = ppredA)
(succ_nth_num_eq : g.numerators (n + 1) = predA) :
g.numerators (n + 2) = gp.b * predA + gp.a * ppredA := by
obtain ⟨ppredConts, nth_conts_eq, ⟨rfl⟩⟩ : ∃ conts, g.continuants n = conts ∧ conts.a = ppredA
exact exists_conts_a_of_num nth_num_eq
obtain ⟨predConts, succ_nth_conts_eq, ⟨rfl⟩⟩ :
∃ conts, g.continuants (n + 1) = conts ∧ conts.a = predA
exact exists_conts_a_of_num succ_nth_num_eq
rw [num_eq_conts_a, continuants_recurrence succ_nth_s_eq nth_conts_eq succ_nth_conts_eq]
#align generalized_continued_fraction.numerators_recurrence GeneralizedContinuedFraction.numerators_recurrence
/-- Shows that `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/
theorem denominators_recurrence {gp : Pair K} {ppredB predB : K}
(succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_denom_eq : g.denominators n = ppredB)
(succ_nth_denom_eq : g.denominators (n + 1) = predB) :
g.denominators (n + 2) = gp.b * predB + gp.a * ppredB := by
| obtain ⟨ppredConts, nth_conts_eq, ⟨rfl⟩⟩ : ∃ conts, g.continuants n = conts ∧ conts.b = ppredB | /-- Shows that `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/
theorem denominators_recurrence {gp : Pair K} {ppredB predB : K}
(succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_denom_eq : g.denominators n = ppredB)
(succ_nth_denom_eq : g.denominators (n + 1) = predB) :
g.denominators (n + 2) = gp.b * predB + gp.a * ppredB := by
| Mathlib.Algebra.ContinuedFractions.ContinuantsRecurrence.62_0.nOytPSFGrohRR6p | /-- Shows that `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/
theorem denominators_recurrence {gp : Pair K} {ppredB predB : K}
(succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_denom_eq : g.denominators n = ppredB)
(succ_nth_denom_eq : g.denominators (n + 1) = predB) :
g.denominators (n + 2) = gp.b * predB + gp.a * ppredB | Mathlib_Algebra_ContinuedFractions_ContinuantsRecurrence |
K : Type u_1
g : GeneralizedContinuedFraction K
n : ℕ
inst✝ : DivisionRing K
gp : Pair K
ppredB predB : K
succ_nth_s_eq : Stream'.Seq.get? g.s (n + 1) = some gp
nth_denom_eq : denominators g n = ppredB
succ_nth_denom_eq : denominators g (n + 1) = predB
⊢ ∃ conts, continuants g n = conts ∧ conts.b = ppredB
case intro.intro.refl
K : Type u_1
g : GeneralizedContinuedFraction K
n : ℕ
inst✝ : DivisionRing K
gp : Pair K
predB : K
succ_nth_s_eq : Stream'.Seq.get? g.s (n + 1) = some gp
succ_nth_denom_eq : denominators g (n + 1) = predB
ppredConts : Pair K
nth_conts_eq : continuants g n = ppredConts
nth_denom_eq : denominators g n = ppredConts.b
⊢ denominators g (n + 2) = gp.b * predB + gp.a * ppredConts.b | /-
Copyright (c) 2019 Kevin Kappelmann. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kevin Kappelmann
-/
import Mathlib.Algebra.ContinuedFractions.Translations
#align_import algebra.continued_fractions.continuants_recurrence from "leanprover-community/mathlib"@"5f11361a98ae4acd77f5c1837686f6f0102cdc25"
/-!
# Recurrence Lemmas for the `continuants` Function of Continued Fractions.
## Summary
Given a generalized continued fraction `g`, for all `n ≥ 1`, we prove that the `continuants`
function indeed satisfies the following recurrences:
- `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`, and
- `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`.
-/
namespace GeneralizedContinuedFraction
variable {K : Type*} {g : GeneralizedContinuedFraction K} {n : ℕ} [DivisionRing K]
theorem continuantsAux_recurrence {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp)
(nth_conts_aux_eq : g.continuantsAux n = ppred)
(succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) :
g.continuantsAux (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ :=
by simp [*, continuantsAux, nextContinuants, nextDenominator, nextNumerator]
#align generalized_continued_fraction.continuants_aux_recurrence GeneralizedContinuedFraction.continuantsAux_recurrence
theorem continuants_recurrenceAux {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp)
(nth_conts_aux_eq : g.continuantsAux n = ppred)
(succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) :
g.continuants (n + 1) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by
simp [nth_cont_eq_succ_nth_cont_aux,
continuantsAux_recurrence nth_s_eq nth_conts_aux_eq succ_nth_conts_aux_eq]
#align generalized_continued_fraction.continuants_recurrence_aux GeneralizedContinuedFraction.continuants_recurrenceAux
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂` and `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/
theorem continuants_recurrence {gp ppred pred : Pair K} (succ_nth_s_eq : g.s.get? (n + 1) = some gp)
(nth_conts_eq : g.continuants n = ppred) (succ_nth_conts_eq : g.continuants (n + 1) = pred) :
g.continuants (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by
rw [nth_cont_eq_succ_nth_cont_aux] at nth_conts_eq succ_nth_conts_eq
exact continuants_recurrenceAux succ_nth_s_eq nth_conts_eq succ_nth_conts_eq
#align generalized_continued_fraction.continuants_recurrence GeneralizedContinuedFraction.continuants_recurrence
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`. -/
theorem numerators_recurrence {gp : Pair K} {ppredA predA : K}
(succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_num_eq : g.numerators n = ppredA)
(succ_nth_num_eq : g.numerators (n + 1) = predA) :
g.numerators (n + 2) = gp.b * predA + gp.a * ppredA := by
obtain ⟨ppredConts, nth_conts_eq, ⟨rfl⟩⟩ : ∃ conts, g.continuants n = conts ∧ conts.a = ppredA
exact exists_conts_a_of_num nth_num_eq
obtain ⟨predConts, succ_nth_conts_eq, ⟨rfl⟩⟩ :
∃ conts, g.continuants (n + 1) = conts ∧ conts.a = predA
exact exists_conts_a_of_num succ_nth_num_eq
rw [num_eq_conts_a, continuants_recurrence succ_nth_s_eq nth_conts_eq succ_nth_conts_eq]
#align generalized_continued_fraction.numerators_recurrence GeneralizedContinuedFraction.numerators_recurrence
/-- Shows that `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/
theorem denominators_recurrence {gp : Pair K} {ppredB predB : K}
(succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_denom_eq : g.denominators n = ppredB)
(succ_nth_denom_eq : g.denominators (n + 1) = predB) :
g.denominators (n + 2) = gp.b * predB + gp.a * ppredB := by
obtain ⟨ppredConts, nth_conts_eq, ⟨rfl⟩⟩ : ∃ conts, g.continuants n = conts ∧ conts.b = ppredB
| exact exists_conts_b_of_denom nth_denom_eq | /-- Shows that `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/
theorem denominators_recurrence {gp : Pair K} {ppredB predB : K}
(succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_denom_eq : g.denominators n = ppredB)
(succ_nth_denom_eq : g.denominators (n + 1) = predB) :
g.denominators (n + 2) = gp.b * predB + gp.a * ppredB := by
obtain ⟨ppredConts, nth_conts_eq, ⟨rfl⟩⟩ : ∃ conts, g.continuants n = conts ∧ conts.b = ppredB
| Mathlib.Algebra.ContinuedFractions.ContinuantsRecurrence.62_0.nOytPSFGrohRR6p | /-- Shows that `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/
theorem denominators_recurrence {gp : Pair K} {ppredB predB : K}
(succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_denom_eq : g.denominators n = ppredB)
(succ_nth_denom_eq : g.denominators (n + 1) = predB) :
g.denominators (n + 2) = gp.b * predB + gp.a * ppredB | Mathlib_Algebra_ContinuedFractions_ContinuantsRecurrence |
case intro.intro.refl
K : Type u_1
g : GeneralizedContinuedFraction K
n : ℕ
inst✝ : DivisionRing K
gp : Pair K
predB : K
succ_nth_s_eq : Stream'.Seq.get? g.s (n + 1) = some gp
succ_nth_denom_eq : denominators g (n + 1) = predB
ppredConts : Pair K
nth_conts_eq : continuants g n = ppredConts
nth_denom_eq : denominators g n = ppredConts.b
⊢ denominators g (n + 2) = gp.b * predB + gp.a * ppredConts.b | /-
Copyright (c) 2019 Kevin Kappelmann. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kevin Kappelmann
-/
import Mathlib.Algebra.ContinuedFractions.Translations
#align_import algebra.continued_fractions.continuants_recurrence from "leanprover-community/mathlib"@"5f11361a98ae4acd77f5c1837686f6f0102cdc25"
/-!
# Recurrence Lemmas for the `continuants` Function of Continued Fractions.
## Summary
Given a generalized continued fraction `g`, for all `n ≥ 1`, we prove that the `continuants`
function indeed satisfies the following recurrences:
- `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`, and
- `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`.
-/
namespace GeneralizedContinuedFraction
variable {K : Type*} {g : GeneralizedContinuedFraction K} {n : ℕ} [DivisionRing K]
theorem continuantsAux_recurrence {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp)
(nth_conts_aux_eq : g.continuantsAux n = ppred)
(succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) :
g.continuantsAux (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ :=
by simp [*, continuantsAux, nextContinuants, nextDenominator, nextNumerator]
#align generalized_continued_fraction.continuants_aux_recurrence GeneralizedContinuedFraction.continuantsAux_recurrence
theorem continuants_recurrenceAux {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp)
(nth_conts_aux_eq : g.continuantsAux n = ppred)
(succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) :
g.continuants (n + 1) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by
simp [nth_cont_eq_succ_nth_cont_aux,
continuantsAux_recurrence nth_s_eq nth_conts_aux_eq succ_nth_conts_aux_eq]
#align generalized_continued_fraction.continuants_recurrence_aux GeneralizedContinuedFraction.continuants_recurrenceAux
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂` and `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/
theorem continuants_recurrence {gp ppred pred : Pair K} (succ_nth_s_eq : g.s.get? (n + 1) = some gp)
(nth_conts_eq : g.continuants n = ppred) (succ_nth_conts_eq : g.continuants (n + 1) = pred) :
g.continuants (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by
rw [nth_cont_eq_succ_nth_cont_aux] at nth_conts_eq succ_nth_conts_eq
exact continuants_recurrenceAux succ_nth_s_eq nth_conts_eq succ_nth_conts_eq
#align generalized_continued_fraction.continuants_recurrence GeneralizedContinuedFraction.continuants_recurrence
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`. -/
theorem numerators_recurrence {gp : Pair K} {ppredA predA : K}
(succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_num_eq : g.numerators n = ppredA)
(succ_nth_num_eq : g.numerators (n + 1) = predA) :
g.numerators (n + 2) = gp.b * predA + gp.a * ppredA := by
obtain ⟨ppredConts, nth_conts_eq, ⟨rfl⟩⟩ : ∃ conts, g.continuants n = conts ∧ conts.a = ppredA
exact exists_conts_a_of_num nth_num_eq
obtain ⟨predConts, succ_nth_conts_eq, ⟨rfl⟩⟩ :
∃ conts, g.continuants (n + 1) = conts ∧ conts.a = predA
exact exists_conts_a_of_num succ_nth_num_eq
rw [num_eq_conts_a, continuants_recurrence succ_nth_s_eq nth_conts_eq succ_nth_conts_eq]
#align generalized_continued_fraction.numerators_recurrence GeneralizedContinuedFraction.numerators_recurrence
/-- Shows that `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/
theorem denominators_recurrence {gp : Pair K} {ppredB predB : K}
(succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_denom_eq : g.denominators n = ppredB)
(succ_nth_denom_eq : g.denominators (n + 1) = predB) :
g.denominators (n + 2) = gp.b * predB + gp.a * ppredB := by
obtain ⟨ppredConts, nth_conts_eq, ⟨rfl⟩⟩ : ∃ conts, g.continuants n = conts ∧ conts.b = ppredB
exact exists_conts_b_of_denom nth_denom_eq
| obtain ⟨predConts, succ_nth_conts_eq, ⟨rfl⟩⟩ :
∃ conts, g.continuants (n + 1) = conts ∧ conts.b = predB | /-- Shows that `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/
theorem denominators_recurrence {gp : Pair K} {ppredB predB : K}
(succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_denom_eq : g.denominators n = ppredB)
(succ_nth_denom_eq : g.denominators (n + 1) = predB) :
g.denominators (n + 2) = gp.b * predB + gp.a * ppredB := by
obtain ⟨ppredConts, nth_conts_eq, ⟨rfl⟩⟩ : ∃ conts, g.continuants n = conts ∧ conts.b = ppredB
exact exists_conts_b_of_denom nth_denom_eq
| Mathlib.Algebra.ContinuedFractions.ContinuantsRecurrence.62_0.nOytPSFGrohRR6p | /-- Shows that `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/
theorem denominators_recurrence {gp : Pair K} {ppredB predB : K}
(succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_denom_eq : g.denominators n = ppredB)
(succ_nth_denom_eq : g.denominators (n + 1) = predB) :
g.denominators (n + 2) = gp.b * predB + gp.a * ppredB | Mathlib_Algebra_ContinuedFractions_ContinuantsRecurrence |
K : Type u_1
g : GeneralizedContinuedFraction K
n : ℕ
inst✝ : DivisionRing K
gp : Pair K
predB : K
succ_nth_s_eq : Stream'.Seq.get? g.s (n + 1) = some gp
succ_nth_denom_eq : denominators g (n + 1) = predB
ppredConts : Pair K
nth_conts_eq : continuants g n = ppredConts
nth_denom_eq : denominators g n = ppredConts.b
⊢ ∃ conts, continuants g (n + 1) = conts ∧ conts.b = predB
case intro.intro.refl.intro.intro.refl
K : Type u_1
g : GeneralizedContinuedFraction K
n : ℕ
inst✝ : DivisionRing K
gp : Pair K
succ_nth_s_eq : Stream'.Seq.get? g.s (n + 1) = some gp
ppredConts : Pair K
nth_conts_eq : continuants g n = ppredConts
nth_denom_eq : denominators g n = ppredConts.b
predConts : Pair K
succ_nth_conts_eq : continuants g (n + 1) = predConts
succ_nth_denom_eq : denominators g (n + 1) = predConts.b
⊢ denominators g (n + 2) = gp.b * predConts.b + gp.a * ppredConts.b | /-
Copyright (c) 2019 Kevin Kappelmann. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kevin Kappelmann
-/
import Mathlib.Algebra.ContinuedFractions.Translations
#align_import algebra.continued_fractions.continuants_recurrence from "leanprover-community/mathlib"@"5f11361a98ae4acd77f5c1837686f6f0102cdc25"
/-!
# Recurrence Lemmas for the `continuants` Function of Continued Fractions.
## Summary
Given a generalized continued fraction `g`, for all `n ≥ 1`, we prove that the `continuants`
function indeed satisfies the following recurrences:
- `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`, and
- `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`.
-/
namespace GeneralizedContinuedFraction
variable {K : Type*} {g : GeneralizedContinuedFraction K} {n : ℕ} [DivisionRing K]
theorem continuantsAux_recurrence {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp)
(nth_conts_aux_eq : g.continuantsAux n = ppred)
(succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) :
g.continuantsAux (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ :=
by simp [*, continuantsAux, nextContinuants, nextDenominator, nextNumerator]
#align generalized_continued_fraction.continuants_aux_recurrence GeneralizedContinuedFraction.continuantsAux_recurrence
theorem continuants_recurrenceAux {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp)
(nth_conts_aux_eq : g.continuantsAux n = ppred)
(succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) :
g.continuants (n + 1) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by
simp [nth_cont_eq_succ_nth_cont_aux,
continuantsAux_recurrence nth_s_eq nth_conts_aux_eq succ_nth_conts_aux_eq]
#align generalized_continued_fraction.continuants_recurrence_aux GeneralizedContinuedFraction.continuants_recurrenceAux
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂` and `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/
theorem continuants_recurrence {gp ppred pred : Pair K} (succ_nth_s_eq : g.s.get? (n + 1) = some gp)
(nth_conts_eq : g.continuants n = ppred) (succ_nth_conts_eq : g.continuants (n + 1) = pred) :
g.continuants (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by
rw [nth_cont_eq_succ_nth_cont_aux] at nth_conts_eq succ_nth_conts_eq
exact continuants_recurrenceAux succ_nth_s_eq nth_conts_eq succ_nth_conts_eq
#align generalized_continued_fraction.continuants_recurrence GeneralizedContinuedFraction.continuants_recurrence
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`. -/
theorem numerators_recurrence {gp : Pair K} {ppredA predA : K}
(succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_num_eq : g.numerators n = ppredA)
(succ_nth_num_eq : g.numerators (n + 1) = predA) :
g.numerators (n + 2) = gp.b * predA + gp.a * ppredA := by
obtain ⟨ppredConts, nth_conts_eq, ⟨rfl⟩⟩ : ∃ conts, g.continuants n = conts ∧ conts.a = ppredA
exact exists_conts_a_of_num nth_num_eq
obtain ⟨predConts, succ_nth_conts_eq, ⟨rfl⟩⟩ :
∃ conts, g.continuants (n + 1) = conts ∧ conts.a = predA
exact exists_conts_a_of_num succ_nth_num_eq
rw [num_eq_conts_a, continuants_recurrence succ_nth_s_eq nth_conts_eq succ_nth_conts_eq]
#align generalized_continued_fraction.numerators_recurrence GeneralizedContinuedFraction.numerators_recurrence
/-- Shows that `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/
theorem denominators_recurrence {gp : Pair K} {ppredB predB : K}
(succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_denom_eq : g.denominators n = ppredB)
(succ_nth_denom_eq : g.denominators (n + 1) = predB) :
g.denominators (n + 2) = gp.b * predB + gp.a * ppredB := by
obtain ⟨ppredConts, nth_conts_eq, ⟨rfl⟩⟩ : ∃ conts, g.continuants n = conts ∧ conts.b = ppredB
exact exists_conts_b_of_denom nth_denom_eq
obtain ⟨predConts, succ_nth_conts_eq, ⟨rfl⟩⟩ :
∃ conts, g.continuants (n + 1) = conts ∧ conts.b = predB
| exact exists_conts_b_of_denom succ_nth_denom_eq | /-- Shows that `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/
theorem denominators_recurrence {gp : Pair K} {ppredB predB : K}
(succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_denom_eq : g.denominators n = ppredB)
(succ_nth_denom_eq : g.denominators (n + 1) = predB) :
g.denominators (n + 2) = gp.b * predB + gp.a * ppredB := by
obtain ⟨ppredConts, nth_conts_eq, ⟨rfl⟩⟩ : ∃ conts, g.continuants n = conts ∧ conts.b = ppredB
exact exists_conts_b_of_denom nth_denom_eq
obtain ⟨predConts, succ_nth_conts_eq, ⟨rfl⟩⟩ :
∃ conts, g.continuants (n + 1) = conts ∧ conts.b = predB
| Mathlib.Algebra.ContinuedFractions.ContinuantsRecurrence.62_0.nOytPSFGrohRR6p | /-- Shows that `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/
theorem denominators_recurrence {gp : Pair K} {ppredB predB : K}
(succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_denom_eq : g.denominators n = ppredB)
(succ_nth_denom_eq : g.denominators (n + 1) = predB) :
g.denominators (n + 2) = gp.b * predB + gp.a * ppredB | Mathlib_Algebra_ContinuedFractions_ContinuantsRecurrence |
case intro.intro.refl.intro.intro.refl
K : Type u_1
g : GeneralizedContinuedFraction K
n : ℕ
inst✝ : DivisionRing K
gp : Pair K
succ_nth_s_eq : Stream'.Seq.get? g.s (n + 1) = some gp
ppredConts : Pair K
nth_conts_eq : continuants g n = ppredConts
nth_denom_eq : denominators g n = ppredConts.b
predConts : Pair K
succ_nth_conts_eq : continuants g (n + 1) = predConts
succ_nth_denom_eq : denominators g (n + 1) = predConts.b
⊢ denominators g (n + 2) = gp.b * predConts.b + gp.a * ppredConts.b | /-
Copyright (c) 2019 Kevin Kappelmann. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kevin Kappelmann
-/
import Mathlib.Algebra.ContinuedFractions.Translations
#align_import algebra.continued_fractions.continuants_recurrence from "leanprover-community/mathlib"@"5f11361a98ae4acd77f5c1837686f6f0102cdc25"
/-!
# Recurrence Lemmas for the `continuants` Function of Continued Fractions.
## Summary
Given a generalized continued fraction `g`, for all `n ≥ 1`, we prove that the `continuants`
function indeed satisfies the following recurrences:
- `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`, and
- `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`.
-/
namespace GeneralizedContinuedFraction
variable {K : Type*} {g : GeneralizedContinuedFraction K} {n : ℕ} [DivisionRing K]
theorem continuantsAux_recurrence {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp)
(nth_conts_aux_eq : g.continuantsAux n = ppred)
(succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) :
g.continuantsAux (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ :=
by simp [*, continuantsAux, nextContinuants, nextDenominator, nextNumerator]
#align generalized_continued_fraction.continuants_aux_recurrence GeneralizedContinuedFraction.continuantsAux_recurrence
theorem continuants_recurrenceAux {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp)
(nth_conts_aux_eq : g.continuantsAux n = ppred)
(succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) :
g.continuants (n + 1) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by
simp [nth_cont_eq_succ_nth_cont_aux,
continuantsAux_recurrence nth_s_eq nth_conts_aux_eq succ_nth_conts_aux_eq]
#align generalized_continued_fraction.continuants_recurrence_aux GeneralizedContinuedFraction.continuants_recurrenceAux
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂` and `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/
theorem continuants_recurrence {gp ppred pred : Pair K} (succ_nth_s_eq : g.s.get? (n + 1) = some gp)
(nth_conts_eq : g.continuants n = ppred) (succ_nth_conts_eq : g.continuants (n + 1) = pred) :
g.continuants (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by
rw [nth_cont_eq_succ_nth_cont_aux] at nth_conts_eq succ_nth_conts_eq
exact continuants_recurrenceAux succ_nth_s_eq nth_conts_eq succ_nth_conts_eq
#align generalized_continued_fraction.continuants_recurrence GeneralizedContinuedFraction.continuants_recurrence
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`. -/
theorem numerators_recurrence {gp : Pair K} {ppredA predA : K}
(succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_num_eq : g.numerators n = ppredA)
(succ_nth_num_eq : g.numerators (n + 1) = predA) :
g.numerators (n + 2) = gp.b * predA + gp.a * ppredA := by
obtain ⟨ppredConts, nth_conts_eq, ⟨rfl⟩⟩ : ∃ conts, g.continuants n = conts ∧ conts.a = ppredA
exact exists_conts_a_of_num nth_num_eq
obtain ⟨predConts, succ_nth_conts_eq, ⟨rfl⟩⟩ :
∃ conts, g.continuants (n + 1) = conts ∧ conts.a = predA
exact exists_conts_a_of_num succ_nth_num_eq
rw [num_eq_conts_a, continuants_recurrence succ_nth_s_eq nth_conts_eq succ_nth_conts_eq]
#align generalized_continued_fraction.numerators_recurrence GeneralizedContinuedFraction.numerators_recurrence
/-- Shows that `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/
theorem denominators_recurrence {gp : Pair K} {ppredB predB : K}
(succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_denom_eq : g.denominators n = ppredB)
(succ_nth_denom_eq : g.denominators (n + 1) = predB) :
g.denominators (n + 2) = gp.b * predB + gp.a * ppredB := by
obtain ⟨ppredConts, nth_conts_eq, ⟨rfl⟩⟩ : ∃ conts, g.continuants n = conts ∧ conts.b = ppredB
exact exists_conts_b_of_denom nth_denom_eq
obtain ⟨predConts, succ_nth_conts_eq, ⟨rfl⟩⟩ :
∃ conts, g.continuants (n + 1) = conts ∧ conts.b = predB
exact exists_conts_b_of_denom succ_nth_denom_eq
| rw [denom_eq_conts_b, continuants_recurrence succ_nth_s_eq nth_conts_eq succ_nth_conts_eq] | /-- Shows that `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/
theorem denominators_recurrence {gp : Pair K} {ppredB predB : K}
(succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_denom_eq : g.denominators n = ppredB)
(succ_nth_denom_eq : g.denominators (n + 1) = predB) :
g.denominators (n + 2) = gp.b * predB + gp.a * ppredB := by
obtain ⟨ppredConts, nth_conts_eq, ⟨rfl⟩⟩ : ∃ conts, g.continuants n = conts ∧ conts.b = ppredB
exact exists_conts_b_of_denom nth_denom_eq
obtain ⟨predConts, succ_nth_conts_eq, ⟨rfl⟩⟩ :
∃ conts, g.continuants (n + 1) = conts ∧ conts.b = predB
exact exists_conts_b_of_denom succ_nth_denom_eq
| Mathlib.Algebra.ContinuedFractions.ContinuantsRecurrence.62_0.nOytPSFGrohRR6p | /-- Shows that `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/
theorem denominators_recurrence {gp : Pair K} {ppredB predB : K}
(succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_denom_eq : g.denominators n = ppredB)
(succ_nth_denom_eq : g.denominators (n + 1) = predB) :
g.denominators (n + 2) = gp.b * predB + gp.a * ppredB | Mathlib_Algebra_ContinuedFractions_ContinuantsRecurrence |
p : ℝ[X]
⊢ Tendsto (fun x => eval x p / rexp x) atTop (𝓝 0) | /-
Copyright (c) 2023 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-/
import Mathlib.Analysis.SpecialFunctions.Exp
import Mathlib.Data.Polynomial.Eval
/-!
# Limits of `P(x) / e ^ x` for a polynomial `P`
In this file we prove that $\lim_{x\to\infty}\frac{P(x)}{e^x}=0$ for any polynomial `P`.
## TODO
Add more similar lemmas: limit at `-∞`, versions with $e^{cx}$ etc.
## Keywords
polynomial, limit, exponential
-/
open Filter Topology Real
namespace Polynomial
theorem tendsto_div_exp_atTop (p : ℝ[X]) : Tendsto (fun x ↦ p.eval x / exp x) atTop (𝓝 0) := by
| induction p using Polynomial.induction_on' with
| h_monomial n c => simpa [exp_neg, div_eq_mul_inv, mul_assoc]
using tendsto_const_nhds.mul (tendsto_pow_mul_exp_neg_atTop_nhds_0 n)
| h_add p q hp hq => simpa [add_div] using hp.add hq | theorem tendsto_div_exp_atTop (p : ℝ[X]) : Tendsto (fun x ↦ p.eval x / exp x) atTop (𝓝 0) := by
| Mathlib.Analysis.SpecialFunctions.PolynomialExp.27_0.0J48LYNgQ4iVYMM | theorem tendsto_div_exp_atTop (p : ℝ[X]) : Tendsto (fun x ↦ p.eval x / exp x) atTop (𝓝 0) | Mathlib_Analysis_SpecialFunctions_PolynomialExp |
p : ℝ[X]
⊢ Tendsto (fun x => eval x p / rexp x) atTop (𝓝 0) | /-
Copyright (c) 2023 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-/
import Mathlib.Analysis.SpecialFunctions.Exp
import Mathlib.Data.Polynomial.Eval
/-!
# Limits of `P(x) / e ^ x` for a polynomial `P`
In this file we prove that $\lim_{x\to\infty}\frac{P(x)}{e^x}=0$ for any polynomial `P`.
## TODO
Add more similar lemmas: limit at `-∞`, versions with $e^{cx}$ etc.
## Keywords
polynomial, limit, exponential
-/
open Filter Topology Real
namespace Polynomial
theorem tendsto_div_exp_atTop (p : ℝ[X]) : Tendsto (fun x ↦ p.eval x / exp x) atTop (𝓝 0) := by
| induction p using Polynomial.induction_on' with
| h_monomial n c => simpa [exp_neg, div_eq_mul_inv, mul_assoc]
using tendsto_const_nhds.mul (tendsto_pow_mul_exp_neg_atTop_nhds_0 n)
| h_add p q hp hq => simpa [add_div] using hp.add hq | theorem tendsto_div_exp_atTop (p : ℝ[X]) : Tendsto (fun x ↦ p.eval x / exp x) atTop (𝓝 0) := by
| Mathlib.Analysis.SpecialFunctions.PolynomialExp.27_0.0J48LYNgQ4iVYMM | theorem tendsto_div_exp_atTop (p : ℝ[X]) : Tendsto (fun x ↦ p.eval x / exp x) atTop (𝓝 0) | Mathlib_Analysis_SpecialFunctions_PolynomialExp |
case h_monomial
n : ℕ
c : ℝ
⊢ Tendsto (fun x => eval x ((monomial n) c) / rexp x) atTop (𝓝 0) | /-
Copyright (c) 2023 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-/
import Mathlib.Analysis.SpecialFunctions.Exp
import Mathlib.Data.Polynomial.Eval
/-!
# Limits of `P(x) / e ^ x` for a polynomial `P`
In this file we prove that $\lim_{x\to\infty}\frac{P(x)}{e^x}=0$ for any polynomial `P`.
## TODO
Add more similar lemmas: limit at `-∞`, versions with $e^{cx}$ etc.
## Keywords
polynomial, limit, exponential
-/
open Filter Topology Real
namespace Polynomial
theorem tendsto_div_exp_atTop (p : ℝ[X]) : Tendsto (fun x ↦ p.eval x / exp x) atTop (𝓝 0) := by
induction p using Polynomial.induction_on' with
| | h_monomial n c => simpa [exp_neg, div_eq_mul_inv, mul_assoc]
using tendsto_const_nhds.mul (tendsto_pow_mul_exp_neg_atTop_nhds_0 n) | theorem tendsto_div_exp_atTop (p : ℝ[X]) : Tendsto (fun x ↦ p.eval x / exp x) atTop (𝓝 0) := by
induction p using Polynomial.induction_on' with
| Mathlib.Analysis.SpecialFunctions.PolynomialExp.27_0.0J48LYNgQ4iVYMM | theorem tendsto_div_exp_atTop (p : ℝ[X]) : Tendsto (fun x ↦ p.eval x / exp x) atTop (𝓝 0) | Mathlib_Analysis_SpecialFunctions_PolynomialExp |
case h_monomial
n : ℕ
c : ℝ
⊢ Tendsto (fun x => eval x ((monomial n) c) / rexp x) atTop (𝓝 0) | /-
Copyright (c) 2023 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-/
import Mathlib.Analysis.SpecialFunctions.Exp
import Mathlib.Data.Polynomial.Eval
/-!
# Limits of `P(x) / e ^ x` for a polynomial `P`
In this file we prove that $\lim_{x\to\infty}\frac{P(x)}{e^x}=0$ for any polynomial `P`.
## TODO
Add more similar lemmas: limit at `-∞`, versions with $e^{cx}$ etc.
## Keywords
polynomial, limit, exponential
-/
open Filter Topology Real
namespace Polynomial
theorem tendsto_div_exp_atTop (p : ℝ[X]) : Tendsto (fun x ↦ p.eval x / exp x) atTop (𝓝 0) := by
induction p using Polynomial.induction_on' with
| h_monomial n c => | simpa [exp_neg, div_eq_mul_inv, mul_assoc]
using tendsto_const_nhds.mul (tendsto_pow_mul_exp_neg_atTop_nhds_0 n) | theorem tendsto_div_exp_atTop (p : ℝ[X]) : Tendsto (fun x ↦ p.eval x / exp x) atTop (𝓝 0) := by
induction p using Polynomial.induction_on' with
| h_monomial n c => | Mathlib.Analysis.SpecialFunctions.PolynomialExp.27_0.0J48LYNgQ4iVYMM | theorem tendsto_div_exp_atTop (p : ℝ[X]) : Tendsto (fun x ↦ p.eval x / exp x) atTop (𝓝 0) | Mathlib_Analysis_SpecialFunctions_PolynomialExp |
case h_add
p q : ℝ[X]
hp : Tendsto (fun x => eval x p / rexp x) atTop (𝓝 0)
hq : Tendsto (fun x => eval x q / rexp x) atTop (𝓝 0)
⊢ Tendsto (fun x => eval x (p + q) / rexp x) atTop (𝓝 0) | /-
Copyright (c) 2023 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-/
import Mathlib.Analysis.SpecialFunctions.Exp
import Mathlib.Data.Polynomial.Eval
/-!
# Limits of `P(x) / e ^ x` for a polynomial `P`
In this file we prove that $\lim_{x\to\infty}\frac{P(x)}{e^x}=0$ for any polynomial `P`.
## TODO
Add more similar lemmas: limit at `-∞`, versions with $e^{cx}$ etc.
## Keywords
polynomial, limit, exponential
-/
open Filter Topology Real
namespace Polynomial
theorem tendsto_div_exp_atTop (p : ℝ[X]) : Tendsto (fun x ↦ p.eval x / exp x) atTop (𝓝 0) := by
induction p using Polynomial.induction_on' with
| h_monomial n c => simpa [exp_neg, div_eq_mul_inv, mul_assoc]
using tendsto_const_nhds.mul (tendsto_pow_mul_exp_neg_atTop_nhds_0 n)
| | h_add p q hp hq => simpa [add_div] using hp.add hq | theorem tendsto_div_exp_atTop (p : ℝ[X]) : Tendsto (fun x ↦ p.eval x / exp x) atTop (𝓝 0) := by
induction p using Polynomial.induction_on' with
| h_monomial n c => simpa [exp_neg, div_eq_mul_inv, mul_assoc]
using tendsto_const_nhds.mul (tendsto_pow_mul_exp_neg_atTop_nhds_0 n)
| Mathlib.Analysis.SpecialFunctions.PolynomialExp.27_0.0J48LYNgQ4iVYMM | theorem tendsto_div_exp_atTop (p : ℝ[X]) : Tendsto (fun x ↦ p.eval x / exp x) atTop (𝓝 0) | Mathlib_Analysis_SpecialFunctions_PolynomialExp |
case h_add
p q : ℝ[X]
hp : Tendsto (fun x => eval x p / rexp x) atTop (𝓝 0)
hq : Tendsto (fun x => eval x q / rexp x) atTop (𝓝 0)
⊢ Tendsto (fun x => eval x (p + q) / rexp x) atTop (𝓝 0) | /-
Copyright (c) 2023 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-/
import Mathlib.Analysis.SpecialFunctions.Exp
import Mathlib.Data.Polynomial.Eval
/-!
# Limits of `P(x) / e ^ x` for a polynomial `P`
In this file we prove that $\lim_{x\to\infty}\frac{P(x)}{e^x}=0$ for any polynomial `P`.
## TODO
Add more similar lemmas: limit at `-∞`, versions with $e^{cx}$ etc.
## Keywords
polynomial, limit, exponential
-/
open Filter Topology Real
namespace Polynomial
theorem tendsto_div_exp_atTop (p : ℝ[X]) : Tendsto (fun x ↦ p.eval x / exp x) atTop (𝓝 0) := by
induction p using Polynomial.induction_on' with
| h_monomial n c => simpa [exp_neg, div_eq_mul_inv, mul_assoc]
using tendsto_const_nhds.mul (tendsto_pow_mul_exp_neg_atTop_nhds_0 n)
| h_add p q hp hq => | simpa [add_div] using hp.add hq | theorem tendsto_div_exp_atTop (p : ℝ[X]) : Tendsto (fun x ↦ p.eval x / exp x) atTop (𝓝 0) := by
induction p using Polynomial.induction_on' with
| h_monomial n c => simpa [exp_neg, div_eq_mul_inv, mul_assoc]
using tendsto_const_nhds.mul (tendsto_pow_mul_exp_neg_atTop_nhds_0 n)
| h_add p q hp hq => | Mathlib.Analysis.SpecialFunctions.PolynomialExp.27_0.0J48LYNgQ4iVYMM | theorem tendsto_div_exp_atTop (p : ℝ[X]) : Tendsto (fun x ↦ p.eval x / exp x) atTop (𝓝 0) | Mathlib_Analysis_SpecialFunctions_PolynomialExp |
R : Type u
inst✝ : Ring R
M N : ModuleCat R
f : M ⟶ N
hf : Mono f
⊢ (LinearEquiv.toModuleIso'
(LinearEquiv.symm (Submodule.quotEquivOfEqBot (LinearMap.ker f) (_ : LinearMap.ker f = ⊥)) ≪≫ₗ
(LinearMap.quotKerEquivRange f ≪≫ₗ
LinearEquiv.ofEq (LinearMap.range f) (LinearMap.ker (Submodule.mkQ (LinearMap.range f)))
(_ : LinearMap.range f = LinearMap.ker (Submodule.mkQ (LinearMap.range f)))))).hom ≫
Fork.ι (kernelCone (Submodule.mkQ (LinearMap.range f))) =
f | /-
Copyright (c) 2020 Markus Himmel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Markus Himmel
-/
import Mathlib.LinearAlgebra.Isomorphisms
import Mathlib.Algebra.Category.ModuleCat.Kernels
import Mathlib.Algebra.Category.ModuleCat.Limits
import Mathlib.CategoryTheory.Abelian.Exact
#align_import algebra.category.Module.abelian from "leanprover-community/mathlib"@"09f981f72d43749f1fa072deade828d9c1e185bb"
/-!
# The category of left R-modules is abelian.
Additionally, two linear maps are exact in the categorical sense iff `range f = ker g`.
-/
open CategoryTheory
open CategoryTheory.Limits
noncomputable section
universe w v u
namespace ModuleCat
variable {R : Type u} [Ring R] {M N : ModuleCat.{v} R} (f : M ⟶ N)
/-- In the category of modules, every monomorphism is normal. -/
def normalMono (hf : Mono f) : NormalMono f where
Z := of R (N ⧸ LinearMap.range f)
g := f.range.mkQ
w := LinearMap.range_mkQ_comp _
isLimit :=
/- The following [invalid Lean code](https://github.com/leanprover-community/lean/issues/341)
might help you understand what's going on here:
```
calc
M ≃ₗ[R] f.ker.quotient : (submodule.quot_equiv_of_eq_bot _ (ker_eq_bot_of_mono _)).symm
... ≃ₗ[R] f.range : linear_map.quot_ker_equiv_range f
... ≃ₗ[R] r.range.mkq.ker : linear_equiv.of_eq _ _ (submodule.ker_mkq _).symm
```
-/
IsKernel.isoKernel _ _ (kernelIsLimit _)
(LinearEquiv.toModuleIso'
((Submodule.quotEquivOfEqBot _ (ker_eq_bot_of_mono _)).symm ≪≫ₗ
(LinearMap.quotKerEquivRange f ≪≫ₗ
LinearEquiv.ofEq _ _ (Submodule.ker_mkQ _).symm))) <| by | ext | /-- In the category of modules, every monomorphism is normal. -/
def normalMono (hf : Mono f) : NormalMono f where
Z := of R (N ⧸ LinearMap.range f)
g := f.range.mkQ
w := LinearMap.range_mkQ_comp _
isLimit :=
/- The following [invalid Lean code](https://github.com/leanprover-community/lean/issues/341)
might help you understand what's going on here:
```
calc
M ≃ₗ[R] f.ker.quotient : (submodule.quot_equiv_of_eq_bot _ (ker_eq_bot_of_mono _)).symm
... ≃ₗ[R] f.range : linear_map.quot_ker_equiv_range f
... ≃ₗ[R] r.range.mkq.ker : linear_equiv.of_eq _ _ (submodule.ker_mkq _).symm
```
-/
IsKernel.isoKernel _ _ (kernelIsLimit _)
(LinearEquiv.toModuleIso'
((Submodule.quotEquivOfEqBot _ (ker_eq_bot_of_mono _)).symm ≪≫ₗ
(LinearMap.quotKerEquivRange f ≪≫ₗ
LinearEquiv.ofEq _ _ (Submodule.ker_mkQ _).symm))) <| by | Mathlib.Algebra.Category.ModuleCat.Abelian.32_0.YQEqfRpdC3YQKHM | /-- In the category of modules, every monomorphism is normal. -/
def normalMono (hf : Mono f) : NormalMono f where
Z | Mathlib_Algebra_Category_ModuleCat_Abelian |
case h
R : Type u
inst✝ : Ring R
M N : ModuleCat R
f : M ⟶ N
hf : Mono f
x✝ : ↑M
⊢ ((LinearEquiv.toModuleIso'
(LinearEquiv.symm (Submodule.quotEquivOfEqBot (LinearMap.ker f) (_ : LinearMap.ker f = ⊥)) ≪≫ₗ
(LinearMap.quotKerEquivRange f ≪≫ₗ
LinearEquiv.ofEq (LinearMap.range f) (LinearMap.ker (Submodule.mkQ (LinearMap.range f)))
(_ : LinearMap.range f = LinearMap.ker (Submodule.mkQ (LinearMap.range f)))))).hom ≫
Fork.ι (kernelCone (Submodule.mkQ (LinearMap.range f))))
x✝ =
f x✝ | /-
Copyright (c) 2020 Markus Himmel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Markus Himmel
-/
import Mathlib.LinearAlgebra.Isomorphisms
import Mathlib.Algebra.Category.ModuleCat.Kernels
import Mathlib.Algebra.Category.ModuleCat.Limits
import Mathlib.CategoryTheory.Abelian.Exact
#align_import algebra.category.Module.abelian from "leanprover-community/mathlib"@"09f981f72d43749f1fa072deade828d9c1e185bb"
/-!
# The category of left R-modules is abelian.
Additionally, two linear maps are exact in the categorical sense iff `range f = ker g`.
-/
open CategoryTheory
open CategoryTheory.Limits
noncomputable section
universe w v u
namespace ModuleCat
variable {R : Type u} [Ring R] {M N : ModuleCat.{v} R} (f : M ⟶ N)
/-- In the category of modules, every monomorphism is normal. -/
def normalMono (hf : Mono f) : NormalMono f where
Z := of R (N ⧸ LinearMap.range f)
g := f.range.mkQ
w := LinearMap.range_mkQ_comp _
isLimit :=
/- The following [invalid Lean code](https://github.com/leanprover-community/lean/issues/341)
might help you understand what's going on here:
```
calc
M ≃ₗ[R] f.ker.quotient : (submodule.quot_equiv_of_eq_bot _ (ker_eq_bot_of_mono _)).symm
... ≃ₗ[R] f.range : linear_map.quot_ker_equiv_range f
... ≃ₗ[R] r.range.mkq.ker : linear_equiv.of_eq _ _ (submodule.ker_mkq _).symm
```
-/
IsKernel.isoKernel _ _ (kernelIsLimit _)
(LinearEquiv.toModuleIso'
((Submodule.quotEquivOfEqBot _ (ker_eq_bot_of_mono _)).symm ≪≫ₗ
(LinearMap.quotKerEquivRange f ≪≫ₗ
LinearEquiv.ofEq _ _ (Submodule.ker_mkQ _).symm))) <| by ext; | rfl | /-- In the category of modules, every monomorphism is normal. -/
def normalMono (hf : Mono f) : NormalMono f where
Z := of R (N ⧸ LinearMap.range f)
g := f.range.mkQ
w := LinearMap.range_mkQ_comp _
isLimit :=
/- The following [invalid Lean code](https://github.com/leanprover-community/lean/issues/341)
might help you understand what's going on here:
```
calc
M ≃ₗ[R] f.ker.quotient : (submodule.quot_equiv_of_eq_bot _ (ker_eq_bot_of_mono _)).symm
... ≃ₗ[R] f.range : linear_map.quot_ker_equiv_range f
... ≃ₗ[R] r.range.mkq.ker : linear_equiv.of_eq _ _ (submodule.ker_mkq _).symm
```
-/
IsKernel.isoKernel _ _ (kernelIsLimit _)
(LinearEquiv.toModuleIso'
((Submodule.quotEquivOfEqBot _ (ker_eq_bot_of_mono _)).symm ≪≫ₗ
(LinearMap.quotKerEquivRange f ≪≫ₗ
LinearEquiv.ofEq _ _ (Submodule.ker_mkQ _).symm))) <| by ext; | Mathlib.Algebra.Category.ModuleCat.Abelian.32_0.YQEqfRpdC3YQKHM | /-- In the category of modules, every monomorphism is normal. -/
def normalMono (hf : Mono f) : NormalMono f where
Z | Mathlib_Algebra_Category_ModuleCat_Abelian |
R : Type u
inst✝ : Ring R
M N : ModuleCat R
f : M ⟶ N
hf : Epi f
⊢ Cofork.π (cokernelCocone (Submodule.subtype (LinearMap.ker f))) ≫
(LinearEquiv.toModuleIso'
(Submodule.quotEquivOfEq (LinearMap.range (Submodule.subtype (LinearMap.ker f))) (LinearMap.ker f)
(_ : LinearMap.range (Submodule.subtype (LinearMap.ker f)) = LinearMap.ker f) ≪≫ₗ
LinearMap.quotKerEquivRange f ≪≫ₗ
LinearEquiv.ofTop (LinearMap.range f) (_ : LinearMap.range f = ⊤))).hom =
f | /-
Copyright (c) 2020 Markus Himmel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Markus Himmel
-/
import Mathlib.LinearAlgebra.Isomorphisms
import Mathlib.Algebra.Category.ModuleCat.Kernels
import Mathlib.Algebra.Category.ModuleCat.Limits
import Mathlib.CategoryTheory.Abelian.Exact
#align_import algebra.category.Module.abelian from "leanprover-community/mathlib"@"09f981f72d43749f1fa072deade828d9c1e185bb"
/-!
# The category of left R-modules is abelian.
Additionally, two linear maps are exact in the categorical sense iff `range f = ker g`.
-/
open CategoryTheory
open CategoryTheory.Limits
noncomputable section
universe w v u
namespace ModuleCat
variable {R : Type u} [Ring R] {M N : ModuleCat.{v} R} (f : M ⟶ N)
/-- In the category of modules, every monomorphism is normal. -/
def normalMono (hf : Mono f) : NormalMono f where
Z := of R (N ⧸ LinearMap.range f)
g := f.range.mkQ
w := LinearMap.range_mkQ_comp _
isLimit :=
/- The following [invalid Lean code](https://github.com/leanprover-community/lean/issues/341)
might help you understand what's going on here:
```
calc
M ≃ₗ[R] f.ker.quotient : (submodule.quot_equiv_of_eq_bot _ (ker_eq_bot_of_mono _)).symm
... ≃ₗ[R] f.range : linear_map.quot_ker_equiv_range f
... ≃ₗ[R] r.range.mkq.ker : linear_equiv.of_eq _ _ (submodule.ker_mkq _).symm
```
-/
IsKernel.isoKernel _ _ (kernelIsLimit _)
(LinearEquiv.toModuleIso'
((Submodule.quotEquivOfEqBot _ (ker_eq_bot_of_mono _)).symm ≪≫ₗ
(LinearMap.quotKerEquivRange f ≪≫ₗ
LinearEquiv.ofEq _ _ (Submodule.ker_mkQ _).symm))) <| by ext; rfl
set_option linter.uppercaseLean3 false in
#align Module.normal_mono ModuleCat.normalMono
/-- In the category of modules, every epimorphism is normal. -/
def normalEpi (hf : Epi f) : NormalEpi f where
W := of R (LinearMap.ker f)
g := (LinearMap.ker f).subtype
w := LinearMap.comp_ker_subtype _
isColimit :=
/- The following invalid Lean code might help you understand what's going on here:
```
calc f.ker.subtype.range.quotient
≃ₗ[R] f.ker.quotient : submodule.quot_equiv_of_eq _ _ (submodule.range_subtype _)
... ≃ₗ[R] f.range : linear_map.quot_ker_equiv_range f
... ≃ₗ[R] N : linear_equiv.of_top _ (range_eq_top_of_epi _)
```
-/
IsCokernel.cokernelIso _ _ (cokernelIsColimit _)
(LinearEquiv.toModuleIso'
(Submodule.quotEquivOfEq _ _ (Submodule.range_subtype _) ≪≫ₗ
LinearMap.quotKerEquivRange f ≪≫ₗ
LinearEquiv.ofTop _ (range_eq_top_of_epi _))) <| by | ext | /-- In the category of modules, every epimorphism is normal. -/
def normalEpi (hf : Epi f) : NormalEpi f where
W := of R (LinearMap.ker f)
g := (LinearMap.ker f).subtype
w := LinearMap.comp_ker_subtype _
isColimit :=
/- The following invalid Lean code might help you understand what's going on here:
```
calc f.ker.subtype.range.quotient
≃ₗ[R] f.ker.quotient : submodule.quot_equiv_of_eq _ _ (submodule.range_subtype _)
... ≃ₗ[R] f.range : linear_map.quot_ker_equiv_range f
... ≃ₗ[R] N : linear_equiv.of_top _ (range_eq_top_of_epi _)
```
-/
IsCokernel.cokernelIso _ _ (cokernelIsColimit _)
(LinearEquiv.toModuleIso'
(Submodule.quotEquivOfEq _ _ (Submodule.range_subtype _) ≪≫ₗ
LinearMap.quotKerEquivRange f ≪≫ₗ
LinearEquiv.ofTop _ (range_eq_top_of_epi _))) <| by | Mathlib.Algebra.Category.ModuleCat.Abelian.55_0.YQEqfRpdC3YQKHM | /-- In the category of modules, every epimorphism is normal. -/
def normalEpi (hf : Epi f) : NormalEpi f where
W | Mathlib_Algebra_Category_ModuleCat_Abelian |
case h
R : Type u
inst✝ : Ring R
M N : ModuleCat R
f : M ⟶ N
hf : Epi f
x✝ : ↑((parallelPair (Submodule.subtype (LinearMap.ker f)) 0).obj WalkingParallelPair.one)
⊢ (Cofork.π (cokernelCocone (Submodule.subtype (LinearMap.ker f))) ≫
(LinearEquiv.toModuleIso'
(Submodule.quotEquivOfEq (LinearMap.range (Submodule.subtype (LinearMap.ker f))) (LinearMap.ker f)
(_ : LinearMap.range (Submodule.subtype (LinearMap.ker f)) = LinearMap.ker f) ≪≫ₗ
LinearMap.quotKerEquivRange f ≪≫ₗ
LinearEquiv.ofTop (LinearMap.range f) (_ : LinearMap.range f = ⊤))).hom)
x✝ =
f x✝ | /-
Copyright (c) 2020 Markus Himmel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Markus Himmel
-/
import Mathlib.LinearAlgebra.Isomorphisms
import Mathlib.Algebra.Category.ModuleCat.Kernels
import Mathlib.Algebra.Category.ModuleCat.Limits
import Mathlib.CategoryTheory.Abelian.Exact
#align_import algebra.category.Module.abelian from "leanprover-community/mathlib"@"09f981f72d43749f1fa072deade828d9c1e185bb"
/-!
# The category of left R-modules is abelian.
Additionally, two linear maps are exact in the categorical sense iff `range f = ker g`.
-/
open CategoryTheory
open CategoryTheory.Limits
noncomputable section
universe w v u
namespace ModuleCat
variable {R : Type u} [Ring R] {M N : ModuleCat.{v} R} (f : M ⟶ N)
/-- In the category of modules, every monomorphism is normal. -/
def normalMono (hf : Mono f) : NormalMono f where
Z := of R (N ⧸ LinearMap.range f)
g := f.range.mkQ
w := LinearMap.range_mkQ_comp _
isLimit :=
/- The following [invalid Lean code](https://github.com/leanprover-community/lean/issues/341)
might help you understand what's going on here:
```
calc
M ≃ₗ[R] f.ker.quotient : (submodule.quot_equiv_of_eq_bot _ (ker_eq_bot_of_mono _)).symm
... ≃ₗ[R] f.range : linear_map.quot_ker_equiv_range f
... ≃ₗ[R] r.range.mkq.ker : linear_equiv.of_eq _ _ (submodule.ker_mkq _).symm
```
-/
IsKernel.isoKernel _ _ (kernelIsLimit _)
(LinearEquiv.toModuleIso'
((Submodule.quotEquivOfEqBot _ (ker_eq_bot_of_mono _)).symm ≪≫ₗ
(LinearMap.quotKerEquivRange f ≪≫ₗ
LinearEquiv.ofEq _ _ (Submodule.ker_mkQ _).symm))) <| by ext; rfl
set_option linter.uppercaseLean3 false in
#align Module.normal_mono ModuleCat.normalMono
/-- In the category of modules, every epimorphism is normal. -/
def normalEpi (hf : Epi f) : NormalEpi f where
W := of R (LinearMap.ker f)
g := (LinearMap.ker f).subtype
w := LinearMap.comp_ker_subtype _
isColimit :=
/- The following invalid Lean code might help you understand what's going on here:
```
calc f.ker.subtype.range.quotient
≃ₗ[R] f.ker.quotient : submodule.quot_equiv_of_eq _ _ (submodule.range_subtype _)
... ≃ₗ[R] f.range : linear_map.quot_ker_equiv_range f
... ≃ₗ[R] N : linear_equiv.of_top _ (range_eq_top_of_epi _)
```
-/
IsCokernel.cokernelIso _ _ (cokernelIsColimit _)
(LinearEquiv.toModuleIso'
(Submodule.quotEquivOfEq _ _ (Submodule.range_subtype _) ≪≫ₗ
LinearMap.quotKerEquivRange f ≪≫ₗ
LinearEquiv.ofTop _ (range_eq_top_of_epi _))) <| by ext; | rfl | /-- In the category of modules, every epimorphism is normal. -/
def normalEpi (hf : Epi f) : NormalEpi f where
W := of R (LinearMap.ker f)
g := (LinearMap.ker f).subtype
w := LinearMap.comp_ker_subtype _
isColimit :=
/- The following invalid Lean code might help you understand what's going on here:
```
calc f.ker.subtype.range.quotient
≃ₗ[R] f.ker.quotient : submodule.quot_equiv_of_eq _ _ (submodule.range_subtype _)
... ≃ₗ[R] f.range : linear_map.quot_ker_equiv_range f
... ≃ₗ[R] N : linear_equiv.of_top _ (range_eq_top_of_epi _)
```
-/
IsCokernel.cokernelIso _ _ (cokernelIsColimit _)
(LinearEquiv.toModuleIso'
(Submodule.quotEquivOfEq _ _ (Submodule.range_subtype _) ≪≫ₗ
LinearMap.quotKerEquivRange f ≪≫ₗ
LinearEquiv.ofTop _ (range_eq_top_of_epi _))) <| by ext; | Mathlib.Algebra.Category.ModuleCat.Abelian.55_0.YQEqfRpdC3YQKHM | /-- In the category of modules, every epimorphism is normal. -/
def normalEpi (hf : Epi f) : NormalEpi f where
W | Mathlib_Algebra_Category_ModuleCat_Abelian |
R : Type u
inst✝ : Ring R
M N : ModuleCat R
f : M ⟶ N
O : ModuleCat R
g : N ⟶ O
⊢ Exact f g ↔ range f = ker g | /-
Copyright (c) 2020 Markus Himmel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Markus Himmel
-/
import Mathlib.LinearAlgebra.Isomorphisms
import Mathlib.Algebra.Category.ModuleCat.Kernels
import Mathlib.Algebra.Category.ModuleCat.Limits
import Mathlib.CategoryTheory.Abelian.Exact
#align_import algebra.category.Module.abelian from "leanprover-community/mathlib"@"09f981f72d43749f1fa072deade828d9c1e185bb"
/-!
# The category of left R-modules is abelian.
Additionally, two linear maps are exact in the categorical sense iff `range f = ker g`.
-/
open CategoryTheory
open CategoryTheory.Limits
noncomputable section
universe w v u
namespace ModuleCat
variable {R : Type u} [Ring R] {M N : ModuleCat.{v} R} (f : M ⟶ N)
/-- In the category of modules, every monomorphism is normal. -/
def normalMono (hf : Mono f) : NormalMono f where
Z := of R (N ⧸ LinearMap.range f)
g := f.range.mkQ
w := LinearMap.range_mkQ_comp _
isLimit :=
/- The following [invalid Lean code](https://github.com/leanprover-community/lean/issues/341)
might help you understand what's going on here:
```
calc
M ≃ₗ[R] f.ker.quotient : (submodule.quot_equiv_of_eq_bot _ (ker_eq_bot_of_mono _)).symm
... ≃ₗ[R] f.range : linear_map.quot_ker_equiv_range f
... ≃ₗ[R] r.range.mkq.ker : linear_equiv.of_eq _ _ (submodule.ker_mkq _).symm
```
-/
IsKernel.isoKernel _ _ (kernelIsLimit _)
(LinearEquiv.toModuleIso'
((Submodule.quotEquivOfEqBot _ (ker_eq_bot_of_mono _)).symm ≪≫ₗ
(LinearMap.quotKerEquivRange f ≪≫ₗ
LinearEquiv.ofEq _ _ (Submodule.ker_mkQ _).symm))) <| by ext; rfl
set_option linter.uppercaseLean3 false in
#align Module.normal_mono ModuleCat.normalMono
/-- In the category of modules, every epimorphism is normal. -/
def normalEpi (hf : Epi f) : NormalEpi f where
W := of R (LinearMap.ker f)
g := (LinearMap.ker f).subtype
w := LinearMap.comp_ker_subtype _
isColimit :=
/- The following invalid Lean code might help you understand what's going on here:
```
calc f.ker.subtype.range.quotient
≃ₗ[R] f.ker.quotient : submodule.quot_equiv_of_eq _ _ (submodule.range_subtype _)
... ≃ₗ[R] f.range : linear_map.quot_ker_equiv_range f
... ≃ₗ[R] N : linear_equiv.of_top _ (range_eq_top_of_epi _)
```
-/
IsCokernel.cokernelIso _ _ (cokernelIsColimit _)
(LinearEquiv.toModuleIso'
(Submodule.quotEquivOfEq _ _ (Submodule.range_subtype _) ≪≫ₗ
LinearMap.quotKerEquivRange f ≪≫ₗ
LinearEquiv.ofTop _ (range_eq_top_of_epi _))) <| by ext; rfl
set_option linter.uppercaseLean3 false in
#align Module.normal_epi ModuleCat.normalEpi
/-- The category of R-modules is abelian. -/
instance abelian : Abelian (ModuleCat.{v} R) where
has_cokernels := hasCokernels_moduleCat
normalMonoOfMono := normalMono
normalEpiOfEpi := normalEpi
set_option linter.uppercaseLean3 false in
#align Module.abelian ModuleCat.abelian
section ReflectsLimits
-- porting note: added to make the following definitions work
instance : HasLimitsOfSize.{v,v} (ModuleCatMax.{v, w} R) := ModuleCat.hasLimitsOfSize
/- We need to put this in this weird spot because we need to know that the category of modules
is balanced. -/
instance forgetReflectsLimitsOfSize :
ReflectsLimitsOfSize.{v, v} (forget (ModuleCatMax.{v, w} R)) :=
reflectsLimitsOfReflectsIsomorphisms
set_option linter.uppercaseLean3 false in
#align Module.forget_reflects_limits_of_size ModuleCat.forgetReflectsLimitsOfSize
instance forget₂ReflectsLimitsOfSize :
ReflectsLimitsOfSize.{v, v} (forget₂ (ModuleCatMax.{v, w} R) AddCommGroupCat.{max v w}) :=
reflectsLimitsOfReflectsIsomorphisms
set_option linter.uppercaseLean3 false in
#align Module.forget₂_reflects_limits_of_size ModuleCat.forget₂ReflectsLimitsOfSize
instance forgetReflectsLimits : ReflectsLimits (forget (ModuleCat.{v} R)) :=
ModuleCat.forgetReflectsLimitsOfSize.{v, v}
set_option linter.uppercaseLean3 false in
#align Module.forget_reflects_limits ModuleCat.forgetReflectsLimits
instance forget₂ReflectsLimits : ReflectsLimits (forget₂ (ModuleCat.{v} R) AddCommGroupCat.{v}) :=
ModuleCat.forget₂ReflectsLimitsOfSize.{v, v}
set_option linter.uppercaseLean3 false in
#align Module.forget₂_reflects_limits ModuleCat.forget₂ReflectsLimits
end ReflectsLimits
variable {O : ModuleCat.{v} R} (g : N ⟶ O)
open LinearMap
attribute [local instance] Preadditive.hasEqualizers_of_hasKernels
theorem exact_iff : Exact f g ↔ LinearMap.range f = LinearMap.ker g := by
| rw [abelian.exact_iff' f g (kernelIsLimit _) (cokernelIsColimit _)] | theorem exact_iff : Exact f g ↔ LinearMap.range f = LinearMap.ker g := by
| Mathlib.Algebra.Category.ModuleCat.Abelian.122_0.YQEqfRpdC3YQKHM | theorem exact_iff : Exact f g ↔ LinearMap.range f = LinearMap.ker g | Mathlib_Algebra_Category_ModuleCat_Abelian |
R : Type u
inst✝ : Ring R
M N : ModuleCat R
f : M ⟶ N
O : ModuleCat R
g : N ⟶ O
⊢ f ≫ g = 0 ∧ Fork.ι (kernelCone g) ≫ Cofork.π (cokernelCocone f) = 0 ↔ range f = ker g | /-
Copyright (c) 2020 Markus Himmel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Markus Himmel
-/
import Mathlib.LinearAlgebra.Isomorphisms
import Mathlib.Algebra.Category.ModuleCat.Kernels
import Mathlib.Algebra.Category.ModuleCat.Limits
import Mathlib.CategoryTheory.Abelian.Exact
#align_import algebra.category.Module.abelian from "leanprover-community/mathlib"@"09f981f72d43749f1fa072deade828d9c1e185bb"
/-!
# The category of left R-modules is abelian.
Additionally, two linear maps are exact in the categorical sense iff `range f = ker g`.
-/
open CategoryTheory
open CategoryTheory.Limits
noncomputable section
universe w v u
namespace ModuleCat
variable {R : Type u} [Ring R] {M N : ModuleCat.{v} R} (f : M ⟶ N)
/-- In the category of modules, every monomorphism is normal. -/
def normalMono (hf : Mono f) : NormalMono f where
Z := of R (N ⧸ LinearMap.range f)
g := f.range.mkQ
w := LinearMap.range_mkQ_comp _
isLimit :=
/- The following [invalid Lean code](https://github.com/leanprover-community/lean/issues/341)
might help you understand what's going on here:
```
calc
M ≃ₗ[R] f.ker.quotient : (submodule.quot_equiv_of_eq_bot _ (ker_eq_bot_of_mono _)).symm
... ≃ₗ[R] f.range : linear_map.quot_ker_equiv_range f
... ≃ₗ[R] r.range.mkq.ker : linear_equiv.of_eq _ _ (submodule.ker_mkq _).symm
```
-/
IsKernel.isoKernel _ _ (kernelIsLimit _)
(LinearEquiv.toModuleIso'
((Submodule.quotEquivOfEqBot _ (ker_eq_bot_of_mono _)).symm ≪≫ₗ
(LinearMap.quotKerEquivRange f ≪≫ₗ
LinearEquiv.ofEq _ _ (Submodule.ker_mkQ _).symm))) <| by ext; rfl
set_option linter.uppercaseLean3 false in
#align Module.normal_mono ModuleCat.normalMono
/-- In the category of modules, every epimorphism is normal. -/
def normalEpi (hf : Epi f) : NormalEpi f where
W := of R (LinearMap.ker f)
g := (LinearMap.ker f).subtype
w := LinearMap.comp_ker_subtype _
isColimit :=
/- The following invalid Lean code might help you understand what's going on here:
```
calc f.ker.subtype.range.quotient
≃ₗ[R] f.ker.quotient : submodule.quot_equiv_of_eq _ _ (submodule.range_subtype _)
... ≃ₗ[R] f.range : linear_map.quot_ker_equiv_range f
... ≃ₗ[R] N : linear_equiv.of_top _ (range_eq_top_of_epi _)
```
-/
IsCokernel.cokernelIso _ _ (cokernelIsColimit _)
(LinearEquiv.toModuleIso'
(Submodule.quotEquivOfEq _ _ (Submodule.range_subtype _) ≪≫ₗ
LinearMap.quotKerEquivRange f ≪≫ₗ
LinearEquiv.ofTop _ (range_eq_top_of_epi _))) <| by ext; rfl
set_option linter.uppercaseLean3 false in
#align Module.normal_epi ModuleCat.normalEpi
/-- The category of R-modules is abelian. -/
instance abelian : Abelian (ModuleCat.{v} R) where
has_cokernels := hasCokernels_moduleCat
normalMonoOfMono := normalMono
normalEpiOfEpi := normalEpi
set_option linter.uppercaseLean3 false in
#align Module.abelian ModuleCat.abelian
section ReflectsLimits
-- porting note: added to make the following definitions work
instance : HasLimitsOfSize.{v,v} (ModuleCatMax.{v, w} R) := ModuleCat.hasLimitsOfSize
/- We need to put this in this weird spot because we need to know that the category of modules
is balanced. -/
instance forgetReflectsLimitsOfSize :
ReflectsLimitsOfSize.{v, v} (forget (ModuleCatMax.{v, w} R)) :=
reflectsLimitsOfReflectsIsomorphisms
set_option linter.uppercaseLean3 false in
#align Module.forget_reflects_limits_of_size ModuleCat.forgetReflectsLimitsOfSize
instance forget₂ReflectsLimitsOfSize :
ReflectsLimitsOfSize.{v, v} (forget₂ (ModuleCatMax.{v, w} R) AddCommGroupCat.{max v w}) :=
reflectsLimitsOfReflectsIsomorphisms
set_option linter.uppercaseLean3 false in
#align Module.forget₂_reflects_limits_of_size ModuleCat.forget₂ReflectsLimitsOfSize
instance forgetReflectsLimits : ReflectsLimits (forget (ModuleCat.{v} R)) :=
ModuleCat.forgetReflectsLimitsOfSize.{v, v}
set_option linter.uppercaseLean3 false in
#align Module.forget_reflects_limits ModuleCat.forgetReflectsLimits
instance forget₂ReflectsLimits : ReflectsLimits (forget₂ (ModuleCat.{v} R) AddCommGroupCat.{v}) :=
ModuleCat.forget₂ReflectsLimitsOfSize.{v, v}
set_option linter.uppercaseLean3 false in
#align Module.forget₂_reflects_limits ModuleCat.forget₂ReflectsLimits
end ReflectsLimits
variable {O : ModuleCat.{v} R} (g : N ⟶ O)
open LinearMap
attribute [local instance] Preadditive.hasEqualizers_of_hasKernels
theorem exact_iff : Exact f g ↔ LinearMap.range f = LinearMap.ker g := by
rw [abelian.exact_iff' f g (kernelIsLimit _) (cokernelIsColimit _)]
| exact
⟨fun h => le_antisymm (range_le_ker_iff.2 h.1) (ker_le_range_iff.2 h.2), fun h =>
⟨range_le_ker_iff.1 <| le_of_eq h, ker_le_range_iff.1 <| le_of_eq h.symm⟩⟩ | theorem exact_iff : Exact f g ↔ LinearMap.range f = LinearMap.ker g := by
rw [abelian.exact_iff' f g (kernelIsLimit _) (cokernelIsColimit _)]
| Mathlib.Algebra.Category.ModuleCat.Abelian.122_0.YQEqfRpdC3YQKHM | theorem exact_iff : Exact f g ↔ LinearMap.range f = LinearMap.ker g | Mathlib_Algebra_Category_ModuleCat_Abelian |
α : Type u_1
inst✝ : DecidableEq α
m : Multiset α
x y : ToType m
⊢ x.fst = y.fst ↔ x.fst = y.fst | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
| cases x | @[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
| Mathlib.Data.Multiset.Fintype.75_0.gXgzg6nY9WO2bG2 | @[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 | Mathlib_Data_Multiset_Fintype |
case mk
α : Type u_1
inst✝ : DecidableEq α
m : Multiset α
y : ToType m
fst✝ : α
snd✝ : Fin (count fst✝ m)
⊢ { fst := fst✝, snd := snd✝ }.fst = y.fst ↔ { fst := fst✝, snd := snd✝ }.fst = y.fst | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
| cases y | @[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
| Mathlib.Data.Multiset.Fintype.75_0.gXgzg6nY9WO2bG2 | @[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 | Mathlib_Data_Multiset_Fintype |
case mk.mk
α : Type u_1
inst✝ : DecidableEq α
m : Multiset α
fst✝¹ : α
snd✝¹ : Fin (count fst✝¹ m)
fst✝ : α
snd✝ : Fin (count fst✝ m)
⊢ { fst := fst✝¹, snd := snd✝¹ }.fst = { fst := fst✝, snd := snd✝ }.fst ↔
{ fst := fst✝¹, snd := snd✝¹ }.fst = { fst := fst✝, snd := snd✝ }.fst | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
| rfl | @[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
| Mathlib.Data.Multiset.Fintype.75_0.gXgzg6nY9WO2bG2 | @[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 | Mathlib_Data_Multiset_Fintype |
α : Type u_1
inst✝ : DecidableEq α
m : Multiset α
⊢ ∀ (x : α × ℕ),
(x ∈
Finset.biUnion (Multiset.toFinset m) fun x =>
Finset.map { toFun := Prod.mk x, inj' := (_ : Function.Injective (Prod.mk x)) }
(Finset.range (Multiset.count x m))) ↔
x ∈ {p | p.2 < Multiset.count p.1 m} | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
| rintro ⟨x, i⟩ | instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
| Mathlib.Data.Multiset.Fintype.104_0.gXgzg6nY9WO2bG2 | instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } | Mathlib_Data_Multiset_Fintype |
case mk
α : Type u_1
inst✝ : DecidableEq α
m : Multiset α
x : α
i : ℕ
⊢ ((x, i) ∈
Finset.biUnion (Multiset.toFinset m) fun x =>
Finset.map { toFun := Prod.mk x, inj' := (_ : Function.Injective (Prod.mk x)) }
(Finset.range (Multiset.count x m))) ↔
(x, i) ∈ {p | p.2 < Multiset.count p.1 m} | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
| simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq] | instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
| Mathlib.Data.Multiset.Fintype.104_0.gXgzg6nY9WO2bG2 | instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } | Mathlib_Data_Multiset_Fintype |
case mk
α : Type u_1
inst✝ : DecidableEq α
m : Multiset α
x : α
i : ℕ
⊢ (∃ a ∈ m, ∃ a_1 < Multiset.count a m, a = x ∧ a_1 = i) ↔ i < Multiset.count x m | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
| simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp] | instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
| Mathlib.Data.Multiset.Fintype.104_0.gXgzg6nY9WO2bG2 | instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } | Mathlib_Data_Multiset_Fintype |
case mk
α : Type u_1
inst✝ : DecidableEq α
m : Multiset α
x : α
i : ℕ
⊢ i < Multiset.count x m → x ∈ m | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
| exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h) | instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
| Mathlib.Data.Multiset.Fintype.104_0.gXgzg6nY9WO2bG2 | instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } | Mathlib_Data_Multiset_Fintype |
α : Type u_1
inst✝ : DecidableEq α
m m₁ m₂ : Multiset α
h : m₁ ≤ m₂
⊢ toEnumFinset m₁ ⊆ toEnumFinset m₂ | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
| intro p | @[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
| Mathlib.Data.Multiset.Fintype.131_0.gXgzg6nY9WO2bG2 | @[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset | Mathlib_Data_Multiset_Fintype |
α : Type u_1
inst✝ : DecidableEq α
m m₁ m₂ : Multiset α
h : m₁ ≤ m₂
p : α × ℕ
⊢ p ∈ toEnumFinset m₁ → p ∈ toEnumFinset m₂ | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
| simp only [Multiset.mem_toEnumFinset] | @[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
| Mathlib.Data.Multiset.Fintype.131_0.gXgzg6nY9WO2bG2 | @[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset | Mathlib_Data_Multiset_Fintype |
α : Type u_1
inst✝ : DecidableEq α
m m₁ m₂ : Multiset α
h : m₁ ≤ m₂
p : α × ℕ
⊢ p.2 < count p.1 m₁ → p.2 < count p.1 m₂ | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
| exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1) | @[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
| Mathlib.Data.Multiset.Fintype.131_0.gXgzg6nY9WO2bG2 | @[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset | Mathlib_Data_Multiset_Fintype |
α : Type u_1
inst✝ : DecidableEq α
m m₁ m₂ : Multiset α
⊢ toEnumFinset m₁ ⊆ toEnumFinset m₂ ↔ m₁ ≤ m₂ | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
| refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩ | @[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
| Mathlib.Data.Multiset.Fintype.139_0.gXgzg6nY9WO2bG2 | @[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ | Mathlib_Data_Multiset_Fintype |
α : Type u_1
inst✝ : DecidableEq α
m m₁ m₂ : Multiset α
h : toEnumFinset m₁ ⊆ toEnumFinset m₂
⊢ m₁ ≤ m₂ | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
| rw [Multiset.le_iff_count] | @[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
| Mathlib.Data.Multiset.Fintype.139_0.gXgzg6nY9WO2bG2 | @[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ | Mathlib_Data_Multiset_Fintype |
α : Type u_1
inst✝ : DecidableEq α
m m₁ m₂ : Multiset α
h : toEnumFinset m₁ ⊆ toEnumFinset m₂
⊢ ∀ (a : α), count a m₁ ≤ count a m₂ | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
| intro x | @[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
| Mathlib.Data.Multiset.Fintype.139_0.gXgzg6nY9WO2bG2 | @[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ | Mathlib_Data_Multiset_Fintype |
α : Type u_1
inst✝ : DecidableEq α
m m₁ m₂ : Multiset α
h : toEnumFinset m₁ ⊆ toEnumFinset m₂
x : α
⊢ count x m₁ ≤ count x m₂ | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
| by_cases hx : x ∈ m₁ | @[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
| Mathlib.Data.Multiset.Fintype.139_0.gXgzg6nY9WO2bG2 | @[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ | Mathlib_Data_Multiset_Fintype |
case pos
α : Type u_1
inst✝ : DecidableEq α
m m₁ m₂ : Multiset α
h : toEnumFinset m₁ ⊆ toEnumFinset m₂
x : α
hx : x ∈ m₁
⊢ count x m₁ ≤ count x m₂ | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· | apply Nat.le_of_pred_lt | @[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· | Mathlib.Data.Multiset.Fintype.139_0.gXgzg6nY9WO2bG2 | @[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ | Mathlib_Data_Multiset_Fintype |
case pos.a
α : Type u_1
inst✝ : DecidableEq α
m m₁ m₂ : Multiset α
h : toEnumFinset m₁ ⊆ toEnumFinset m₂
x : α
hx : x ∈ m₁
⊢ Nat.pred (count x m₁) < count x m₂ | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
| have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx)) | @[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
| Mathlib.Data.Multiset.Fintype.139_0.gXgzg6nY9WO2bG2 | @[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ | Mathlib_Data_Multiset_Fintype |
α : Type u_1
inst✝ : DecidableEq α
m m₁ m₂ : Multiset α
h : toEnumFinset m₁ ⊆ toEnumFinset m₂
x : α
hx : x ∈ m₁
⊢ (x, count x m₁ - 1) ∈ toEnumFinset m₁ | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
| rw [Multiset.mem_toEnumFinset] | @[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
| Mathlib.Data.Multiset.Fintype.139_0.gXgzg6nY9WO2bG2 | @[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ | Mathlib_Data_Multiset_Fintype |
α : Type u_1
inst✝ : DecidableEq α
m m₁ m₂ : Multiset α
h : toEnumFinset m₁ ⊆ toEnumFinset m₂
x : α
hx : x ∈ m₁
⊢ (x, count x m₁ - 1).2 < count (x, count x m₁ - 1).1 m₁ | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
| exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx)) | @[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
| Mathlib.Data.Multiset.Fintype.139_0.gXgzg6nY9WO2bG2 | @[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ | Mathlib_Data_Multiset_Fintype |
case pos.a
α : Type u_1
inst✝ : DecidableEq α
m m₁ m₂ : Multiset α
h : toEnumFinset m₁ ⊆ toEnumFinset m₂
x : α
hx : x ∈ m₁
this : (x, count x m₁ - 1) ∈ toEnumFinset m₁
⊢ Nat.pred (count x m₁) < count x m₂ | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx))
| simpa only [Multiset.mem_toEnumFinset] using h this | @[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx))
| Mathlib.Data.Multiset.Fintype.139_0.gXgzg6nY9WO2bG2 | @[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ | Mathlib_Data_Multiset_Fintype |
case neg
α : Type u_1
inst✝ : DecidableEq α
m m₁ m₂ : Multiset α
h : toEnumFinset m₁ ⊆ toEnumFinset m₂
x : α
hx : x ∉ m₁
⊢ count x m₁ ≤ count x m₂ | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx))
simpa only [Multiset.mem_toEnumFinset] using h this
· | simp [hx] | @[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx))
simpa only [Multiset.mem_toEnumFinset] using h this
· | Mathlib.Data.Multiset.Fintype.139_0.gXgzg6nY9WO2bG2 | @[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ | Mathlib_Data_Multiset_Fintype |
α : Type u_1
inst✝ : DecidableEq α
m✝ m : Multiset α
⊢ Function.Injective fun x => (x.fst, ↑x.snd) | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx))
simpa only [Multiset.mem_toEnumFinset] using h this
· simp [hx]
#align multiset.to_enum_finset_subset_iff Multiset.toEnumFinset_subset_iff
/-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x := (x, x.2)
inj' := by
| intro ⟨x, i, hi⟩ ⟨y, j, hj⟩ | /-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x := (x, x.2)
inj' := by
| Mathlib.Data.Multiset.Fintype.154_0.gXgzg6nY9WO2bG2 | /-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x | Mathlib_Data_Multiset_Fintype |
α : Type u_1
inst✝ : DecidableEq α
m✝ m : Multiset α
x : α
i : ℕ
hi : i < count x m
y : α
j : ℕ
hj : j < count y m
⊢ (fun x => (x.fst, ↑x.snd)) { fst := x, snd := { val := i, isLt := hi } } =
(fun x => (x.fst, ↑x.snd)) { fst := y, snd := { val := j, isLt := hj } } →
{ fst := x, snd := { val := i, isLt := hi } } = { fst := y, snd := { val := j, isLt := hj } } | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx))
simpa only [Multiset.mem_toEnumFinset] using h this
· simp [hx]
#align multiset.to_enum_finset_subset_iff Multiset.toEnumFinset_subset_iff
/-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x := (x, x.2)
inj' := by
intro ⟨x, i, hi⟩ ⟨y, j, hj⟩
| rintro ⟨⟩ | /-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x := (x, x.2)
inj' := by
intro ⟨x, i, hi⟩ ⟨y, j, hj⟩
| Mathlib.Data.Multiset.Fintype.154_0.gXgzg6nY9WO2bG2 | /-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x | Mathlib_Data_Multiset_Fintype |
case refl
α : Type u_1
inst✝ : DecidableEq α
m✝ m : Multiset α
x : α
i : ℕ
hi hj : i < count x m
⊢ { fst := x, snd := { val := i, isLt := hi } } = { fst := x, snd := { val := i, isLt := hj } } | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx))
simpa only [Multiset.mem_toEnumFinset] using h this
· simp [hx]
#align multiset.to_enum_finset_subset_iff Multiset.toEnumFinset_subset_iff
/-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x := (x, x.2)
inj' := by
intro ⟨x, i, hi⟩ ⟨y, j, hj⟩
rintro ⟨⟩
| rfl | /-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x := (x, x.2)
inj' := by
intro ⟨x, i, hi⟩ ⟨y, j, hj⟩
rintro ⟨⟩
| Mathlib.Data.Multiset.Fintype.154_0.gXgzg6nY9WO2bG2 | /-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x | Mathlib_Data_Multiset_Fintype |
α : Type u_1
inst✝ : DecidableEq α
m✝ m : Multiset α
x : ToType m
⊢ (coeEmbedding m) x ∈ toEnumFinset m | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx))
simpa only [Multiset.mem_toEnumFinset] using h this
· simp [hx]
#align multiset.to_enum_finset_subset_iff Multiset.toEnumFinset_subset_iff
/-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x := (x, x.2)
inj' := by
intro ⟨x, i, hi⟩ ⟨y, j, hj⟩
rintro ⟨⟩
rfl
#align multiset.coe_embedding Multiset.coeEmbedding
/-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
| rw [Multiset.mem_toEnumFinset] | /-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
| Mathlib.Data.Multiset.Fintype.166_0.gXgzg6nY9WO2bG2 | /-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x | Mathlib_Data_Multiset_Fintype |
α : Type u_1
inst✝ : DecidableEq α
m✝ m : Multiset α
x : ToType m
⊢ ((coeEmbedding m) x).2 < count ((coeEmbedding m) x).1 m | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx))
simpa only [Multiset.mem_toEnumFinset] using h this
· simp [hx]
#align multiset.to_enum_finset_subset_iff Multiset.toEnumFinset_subset_iff
/-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x := (x, x.2)
inj' := by
intro ⟨x, i, hi⟩ ⟨y, j, hj⟩
rintro ⟨⟩
rfl
#align multiset.coe_embedding Multiset.coeEmbedding
/-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
rw [Multiset.mem_toEnumFinset]
| exact x.2.2 | /-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
rw [Multiset.mem_toEnumFinset]
| Mathlib.Data.Multiset.Fintype.166_0.gXgzg6nY9WO2bG2 | /-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x | Mathlib_Data_Multiset_Fintype |
α : Type u_1
inst✝ : DecidableEq α
m✝ m : Multiset α
x : { x // x ∈ toEnumFinset m }
⊢ (↑x).2 < count (↑x).1 m | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx))
simpa only [Multiset.mem_toEnumFinset] using h this
· simp [hx]
#align multiset.to_enum_finset_subset_iff Multiset.toEnumFinset_subset_iff
/-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x := (x, x.2)
inj' := by
intro ⟨x, i, hi⟩ ⟨y, j, hj⟩
rintro ⟨⟩
rfl
#align multiset.coe_embedding Multiset.coeEmbedding
/-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
rw [Multiset.mem_toEnumFinset]
exact x.2.2⟩
invFun x :=
⟨x.1.1, x.1.2, by
| rw [← Multiset.mem_toEnumFinset] | /-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
rw [Multiset.mem_toEnumFinset]
exact x.2.2⟩
invFun x :=
⟨x.1.1, x.1.2, by
| Mathlib.Data.Multiset.Fintype.166_0.gXgzg6nY9WO2bG2 | /-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x | Mathlib_Data_Multiset_Fintype |
α : Type u_1
inst✝ : DecidableEq α
m✝ m : Multiset α
x : { x // x ∈ toEnumFinset m }
⊢ ↑x ∈ toEnumFinset m | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx))
simpa only [Multiset.mem_toEnumFinset] using h this
· simp [hx]
#align multiset.to_enum_finset_subset_iff Multiset.toEnumFinset_subset_iff
/-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x := (x, x.2)
inj' := by
intro ⟨x, i, hi⟩ ⟨y, j, hj⟩
rintro ⟨⟩
rfl
#align multiset.coe_embedding Multiset.coeEmbedding
/-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
rw [Multiset.mem_toEnumFinset]
exact x.2.2⟩
invFun x :=
⟨x.1.1, x.1.2, by
rw [← Multiset.mem_toEnumFinset]
| exact x.2 | /-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
rw [Multiset.mem_toEnumFinset]
exact x.2.2⟩
invFun x :=
⟨x.1.1, x.1.2, by
rw [← Multiset.mem_toEnumFinset]
| Mathlib.Data.Multiset.Fintype.166_0.gXgzg6nY9WO2bG2 | /-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x | Mathlib_Data_Multiset_Fintype |
α : Type u_1
inst✝ : DecidableEq α
m✝ m : Multiset α
⊢ Function.LeftInverse (fun x => { fst := (↑x).1, snd := { val := (↑x).2, isLt := (_ : (↑x).2 < count (↑x).1 m) } })
fun x => { val := (coeEmbedding m) x, property := (_ : (coeEmbedding m) x ∈ toEnumFinset m) } | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx))
simpa only [Multiset.mem_toEnumFinset] using h this
· simp [hx]
#align multiset.to_enum_finset_subset_iff Multiset.toEnumFinset_subset_iff
/-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x := (x, x.2)
inj' := by
intro ⟨x, i, hi⟩ ⟨y, j, hj⟩
rintro ⟨⟩
rfl
#align multiset.coe_embedding Multiset.coeEmbedding
/-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
rw [Multiset.mem_toEnumFinset]
exact x.2.2⟩
invFun x :=
⟨x.1.1, x.1.2, by
rw [← Multiset.mem_toEnumFinset]
exact x.2⟩
left_inv := by
| rintro ⟨x, i, h⟩ | /-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
rw [Multiset.mem_toEnumFinset]
exact x.2.2⟩
invFun x :=
⟨x.1.1, x.1.2, by
rw [← Multiset.mem_toEnumFinset]
exact x.2⟩
left_inv := by
| Mathlib.Data.Multiset.Fintype.166_0.gXgzg6nY9WO2bG2 | /-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x | Mathlib_Data_Multiset_Fintype |
case mk.mk
α : Type u_1
inst✝ : DecidableEq α
m✝ m : Multiset α
x : α
i : ℕ
h : i < count x m
⊢ (fun x => { fst := (↑x).1, snd := { val := (↑x).2, isLt := (_ : (↑x).2 < count (↑x).1 m) } })
((fun x => { val := (coeEmbedding m) x, property := (_ : (coeEmbedding m) x ∈ toEnumFinset m) })
{ fst := x, snd := { val := i, isLt := h } }) =
{ fst := x, snd := { val := i, isLt := h } } | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx))
simpa only [Multiset.mem_toEnumFinset] using h this
· simp [hx]
#align multiset.to_enum_finset_subset_iff Multiset.toEnumFinset_subset_iff
/-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x := (x, x.2)
inj' := by
intro ⟨x, i, hi⟩ ⟨y, j, hj⟩
rintro ⟨⟩
rfl
#align multiset.coe_embedding Multiset.coeEmbedding
/-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
rw [Multiset.mem_toEnumFinset]
exact x.2.2⟩
invFun x :=
⟨x.1.1, x.1.2, by
rw [← Multiset.mem_toEnumFinset]
exact x.2⟩
left_inv := by
rintro ⟨x, i, h⟩
| rfl | /-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
rw [Multiset.mem_toEnumFinset]
exact x.2.2⟩
invFun x :=
⟨x.1.1, x.1.2, by
rw [← Multiset.mem_toEnumFinset]
exact x.2⟩
left_inv := by
rintro ⟨x, i, h⟩
| Mathlib.Data.Multiset.Fintype.166_0.gXgzg6nY9WO2bG2 | /-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x | Mathlib_Data_Multiset_Fintype |
α : Type u_1
inst✝ : DecidableEq α
m✝ m : Multiset α
⊢ Function.RightInverse (fun x => { fst := (↑x).1, snd := { val := (↑x).2, isLt := (_ : (↑x).2 < count (↑x).1 m) } })
fun x => { val := (coeEmbedding m) x, property := (_ : (coeEmbedding m) x ∈ toEnumFinset m) } | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx))
simpa only [Multiset.mem_toEnumFinset] using h this
· simp [hx]
#align multiset.to_enum_finset_subset_iff Multiset.toEnumFinset_subset_iff
/-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x := (x, x.2)
inj' := by
intro ⟨x, i, hi⟩ ⟨y, j, hj⟩
rintro ⟨⟩
rfl
#align multiset.coe_embedding Multiset.coeEmbedding
/-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
rw [Multiset.mem_toEnumFinset]
exact x.2.2⟩
invFun x :=
⟨x.1.1, x.1.2, by
rw [← Multiset.mem_toEnumFinset]
exact x.2⟩
left_inv := by
rintro ⟨x, i, h⟩
rfl
right_inv := by
| rintro ⟨⟨x, i⟩, h⟩ | /-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
rw [Multiset.mem_toEnumFinset]
exact x.2.2⟩
invFun x :=
⟨x.1.1, x.1.2, by
rw [← Multiset.mem_toEnumFinset]
exact x.2⟩
left_inv := by
rintro ⟨x, i, h⟩
rfl
right_inv := by
| Mathlib.Data.Multiset.Fintype.166_0.gXgzg6nY9WO2bG2 | /-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x | Mathlib_Data_Multiset_Fintype |
case mk.mk
α : Type u_1
inst✝ : DecidableEq α
m✝ m : Multiset α
x : α
i : ℕ
h : (x, i) ∈ toEnumFinset m
⊢ (fun x => { val := (coeEmbedding m) x, property := (_ : (coeEmbedding m) x ∈ toEnumFinset m) })
((fun x => { fst := (↑x).1, snd := { val := (↑x).2, isLt := (_ : (↑x).2 < count (↑x).1 m) } })
{ val := (x, i), property := h }) =
{ val := (x, i), property := h } | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx))
simpa only [Multiset.mem_toEnumFinset] using h this
· simp [hx]
#align multiset.to_enum_finset_subset_iff Multiset.toEnumFinset_subset_iff
/-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x := (x, x.2)
inj' := by
intro ⟨x, i, hi⟩ ⟨y, j, hj⟩
rintro ⟨⟩
rfl
#align multiset.coe_embedding Multiset.coeEmbedding
/-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
rw [Multiset.mem_toEnumFinset]
exact x.2.2⟩
invFun x :=
⟨x.1.1, x.1.2, by
rw [← Multiset.mem_toEnumFinset]
exact x.2⟩
left_inv := by
rintro ⟨x, i, h⟩
rfl
right_inv := by
rintro ⟨⟨x, i⟩, h⟩
| rfl | /-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
rw [Multiset.mem_toEnumFinset]
exact x.2.2⟩
invFun x :=
⟨x.1.1, x.1.2, by
rw [← Multiset.mem_toEnumFinset]
exact x.2⟩
left_inv := by
rintro ⟨x, i, h⟩
rfl
right_inv := by
rintro ⟨⟨x, i⟩, h⟩
| Mathlib.Data.Multiset.Fintype.166_0.gXgzg6nY9WO2bG2 | /-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x | Mathlib_Data_Multiset_Fintype |
α : Type u_1
inst✝ : DecidableEq α
m✝ m : Multiset α
⊢ Function.Embedding.trans (Equiv.toEmbedding (coeEquiv m)) (Function.Embedding.subtype fun x => x ∈ toEnumFinset m) =
coeEmbedding m | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx))
simpa only [Multiset.mem_toEnumFinset] using h this
· simp [hx]
#align multiset.to_enum_finset_subset_iff Multiset.toEnumFinset_subset_iff
/-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x := (x, x.2)
inj' := by
intro ⟨x, i, hi⟩ ⟨y, j, hj⟩
rintro ⟨⟩
rfl
#align multiset.coe_embedding Multiset.coeEmbedding
/-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
rw [Multiset.mem_toEnumFinset]
exact x.2.2⟩
invFun x :=
⟨x.1.1, x.1.2, by
rw [← Multiset.mem_toEnumFinset]
exact x.2⟩
left_inv := by
rintro ⟨x, i, h⟩
rfl
right_inv := by
rintro ⟨⟨x, i⟩, h⟩
rfl
#align multiset.coe_equiv Multiset.coeEquiv
@[simp]
theorem Multiset.toEmbedding_coeEquiv_trans (m : Multiset α) :
m.coeEquiv.toEmbedding.trans (Function.Embedding.subtype _) = m.coeEmbedding := by | ext | @[simp]
theorem Multiset.toEmbedding_coeEquiv_trans (m : Multiset α) :
m.coeEquiv.toEmbedding.trans (Function.Embedding.subtype _) = m.coeEmbedding := by | Mathlib.Data.Multiset.Fintype.187_0.gXgzg6nY9WO2bG2 | @[simp]
theorem Multiset.toEmbedding_coeEquiv_trans (m : Multiset α) :
m.coeEquiv.toEmbedding.trans (Function.Embedding.subtype _) = m.coeEmbedding | Mathlib_Data_Multiset_Fintype |
case h.a
α : Type u_1
inst✝ : DecidableEq α
m✝ m : Multiset α
x✝ : ToType m
⊢ ((Function.Embedding.trans (Equiv.toEmbedding (coeEquiv m)) (Function.Embedding.subtype fun x => x ∈ toEnumFinset m))
x✝).1 =
((coeEmbedding m) x✝).1 | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx))
simpa only [Multiset.mem_toEnumFinset] using h this
· simp [hx]
#align multiset.to_enum_finset_subset_iff Multiset.toEnumFinset_subset_iff
/-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x := (x, x.2)
inj' := by
intro ⟨x, i, hi⟩ ⟨y, j, hj⟩
rintro ⟨⟩
rfl
#align multiset.coe_embedding Multiset.coeEmbedding
/-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
rw [Multiset.mem_toEnumFinset]
exact x.2.2⟩
invFun x :=
⟨x.1.1, x.1.2, by
rw [← Multiset.mem_toEnumFinset]
exact x.2⟩
left_inv := by
rintro ⟨x, i, h⟩
rfl
right_inv := by
rintro ⟨⟨x, i⟩, h⟩
rfl
#align multiset.coe_equiv Multiset.coeEquiv
@[simp]
theorem Multiset.toEmbedding_coeEquiv_trans (m : Multiset α) :
m.coeEquiv.toEmbedding.trans (Function.Embedding.subtype _) = m.coeEmbedding := by ext <;> | rfl | @[simp]
theorem Multiset.toEmbedding_coeEquiv_trans (m : Multiset α) :
m.coeEquiv.toEmbedding.trans (Function.Embedding.subtype _) = m.coeEmbedding := by ext <;> | Mathlib.Data.Multiset.Fintype.187_0.gXgzg6nY9WO2bG2 | @[simp]
theorem Multiset.toEmbedding_coeEquiv_trans (m : Multiset α) :
m.coeEquiv.toEmbedding.trans (Function.Embedding.subtype _) = m.coeEmbedding | Mathlib_Data_Multiset_Fintype |
case h.a
α : Type u_1
inst✝ : DecidableEq α
m✝ m : Multiset α
x✝ : ToType m
⊢ ((Function.Embedding.trans (Equiv.toEmbedding (coeEquiv m)) (Function.Embedding.subtype fun x => x ∈ toEnumFinset m))
x✝).2 =
((coeEmbedding m) x✝).2 | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx))
simpa only [Multiset.mem_toEnumFinset] using h this
· simp [hx]
#align multiset.to_enum_finset_subset_iff Multiset.toEnumFinset_subset_iff
/-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x := (x, x.2)
inj' := by
intro ⟨x, i, hi⟩ ⟨y, j, hj⟩
rintro ⟨⟩
rfl
#align multiset.coe_embedding Multiset.coeEmbedding
/-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
rw [Multiset.mem_toEnumFinset]
exact x.2.2⟩
invFun x :=
⟨x.1.1, x.1.2, by
rw [← Multiset.mem_toEnumFinset]
exact x.2⟩
left_inv := by
rintro ⟨x, i, h⟩
rfl
right_inv := by
rintro ⟨⟨x, i⟩, h⟩
rfl
#align multiset.coe_equiv Multiset.coeEquiv
@[simp]
theorem Multiset.toEmbedding_coeEquiv_trans (m : Multiset α) :
m.coeEquiv.toEmbedding.trans (Function.Embedding.subtype _) = m.coeEmbedding := by ext <;> | rfl | @[simp]
theorem Multiset.toEmbedding_coeEquiv_trans (m : Multiset α) :
m.coeEquiv.toEmbedding.trans (Function.Embedding.subtype _) = m.coeEmbedding := by ext <;> | Mathlib.Data.Multiset.Fintype.187_0.gXgzg6nY9WO2bG2 | @[simp]
theorem Multiset.toEmbedding_coeEquiv_trans (m : Multiset α) :
m.coeEquiv.toEmbedding.trans (Function.Embedding.subtype _) = m.coeEmbedding | Mathlib_Data_Multiset_Fintype |
α : Type u_1
inst✝ : DecidableEq α
m✝ m : Multiset α
⊢ Finset.map (coeEmbedding m) Finset.univ = toEnumFinset m | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx))
simpa only [Multiset.mem_toEnumFinset] using h this
· simp [hx]
#align multiset.to_enum_finset_subset_iff Multiset.toEnumFinset_subset_iff
/-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x := (x, x.2)
inj' := by
intro ⟨x, i, hi⟩ ⟨y, j, hj⟩
rintro ⟨⟩
rfl
#align multiset.coe_embedding Multiset.coeEmbedding
/-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
rw [Multiset.mem_toEnumFinset]
exact x.2.2⟩
invFun x :=
⟨x.1.1, x.1.2, by
rw [← Multiset.mem_toEnumFinset]
exact x.2⟩
left_inv := by
rintro ⟨x, i, h⟩
rfl
right_inv := by
rintro ⟨⟨x, i⟩, h⟩
rfl
#align multiset.coe_equiv Multiset.coeEquiv
@[simp]
theorem Multiset.toEmbedding_coeEquiv_trans (m : Multiset α) :
m.coeEquiv.toEmbedding.trans (Function.Embedding.subtype _) = m.coeEmbedding := by ext <;> rfl
#align multiset.to_embedding_coe_equiv_trans Multiset.toEmbedding_coeEquiv_trans
@[irreducible]
instance Multiset.fintypeCoe : Fintype m :=
Fintype.ofEquiv m.toEnumFinset m.coeEquiv.symm
#align multiset.fintype_coe Multiset.fintypeCoe
theorem Multiset.map_univ_coeEmbedding (m : Multiset α) :
(Finset.univ : Finset m).map m.coeEmbedding = m.toEnumFinset := by
| ext ⟨x, i⟩ | theorem Multiset.map_univ_coeEmbedding (m : Multiset α) :
(Finset.univ : Finset m).map m.coeEmbedding = m.toEnumFinset := by
| Mathlib.Data.Multiset.Fintype.197_0.gXgzg6nY9WO2bG2 | theorem Multiset.map_univ_coeEmbedding (m : Multiset α) :
(Finset.univ : Finset m).map m.coeEmbedding = m.toEnumFinset | Mathlib_Data_Multiset_Fintype |
case a.mk
α : Type u_1
inst✝ : DecidableEq α
m✝ m : Multiset α
x : α
i : ℕ
⊢ (x, i) ∈ Finset.map (coeEmbedding m) Finset.univ ↔ (x, i) ∈ toEnumFinset m | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx))
simpa only [Multiset.mem_toEnumFinset] using h this
· simp [hx]
#align multiset.to_enum_finset_subset_iff Multiset.toEnumFinset_subset_iff
/-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x := (x, x.2)
inj' := by
intro ⟨x, i, hi⟩ ⟨y, j, hj⟩
rintro ⟨⟩
rfl
#align multiset.coe_embedding Multiset.coeEmbedding
/-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
rw [Multiset.mem_toEnumFinset]
exact x.2.2⟩
invFun x :=
⟨x.1.1, x.1.2, by
rw [← Multiset.mem_toEnumFinset]
exact x.2⟩
left_inv := by
rintro ⟨x, i, h⟩
rfl
right_inv := by
rintro ⟨⟨x, i⟩, h⟩
rfl
#align multiset.coe_equiv Multiset.coeEquiv
@[simp]
theorem Multiset.toEmbedding_coeEquiv_trans (m : Multiset α) :
m.coeEquiv.toEmbedding.trans (Function.Embedding.subtype _) = m.coeEmbedding := by ext <;> rfl
#align multiset.to_embedding_coe_equiv_trans Multiset.toEmbedding_coeEquiv_trans
@[irreducible]
instance Multiset.fintypeCoe : Fintype m :=
Fintype.ofEquiv m.toEnumFinset m.coeEquiv.symm
#align multiset.fintype_coe Multiset.fintypeCoe
theorem Multiset.map_univ_coeEmbedding (m : Multiset α) :
(Finset.univ : Finset m).map m.coeEmbedding = m.toEnumFinset := by
ext ⟨x, i⟩
| simp only [Fin.exists_iff, Finset.mem_map, Finset.mem_univ, Multiset.coeEmbedding_apply,
Prod.mk.inj_iff, exists_true_left, Multiset.exists_coe, Multiset.coe_mk, Fin.val_mk,
exists_prop, exists_eq_right_right, exists_eq_right, Multiset.mem_toEnumFinset, iff_self_iff,
true_and_iff] | theorem Multiset.map_univ_coeEmbedding (m : Multiset α) :
(Finset.univ : Finset m).map m.coeEmbedding = m.toEnumFinset := by
ext ⟨x, i⟩
| Mathlib.Data.Multiset.Fintype.197_0.gXgzg6nY9WO2bG2 | theorem Multiset.map_univ_coeEmbedding (m : Multiset α) :
(Finset.univ : Finset m).map m.coeEmbedding = m.toEnumFinset | Mathlib_Data_Multiset_Fintype |
α : Type u_1
inst✝ : DecidableEq α
m✝ m : Multiset α
x : α
⊢ Finset.filter (fun p => x = p.1) (toEnumFinset m) =
Finset.map { toFun := Prod.mk x, inj' := (_ : Function.Injective (Prod.mk x)) } (Finset.range (count x m)) | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx))
simpa only [Multiset.mem_toEnumFinset] using h this
· simp [hx]
#align multiset.to_enum_finset_subset_iff Multiset.toEnumFinset_subset_iff
/-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x := (x, x.2)
inj' := by
intro ⟨x, i, hi⟩ ⟨y, j, hj⟩
rintro ⟨⟩
rfl
#align multiset.coe_embedding Multiset.coeEmbedding
/-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
rw [Multiset.mem_toEnumFinset]
exact x.2.2⟩
invFun x :=
⟨x.1.1, x.1.2, by
rw [← Multiset.mem_toEnumFinset]
exact x.2⟩
left_inv := by
rintro ⟨x, i, h⟩
rfl
right_inv := by
rintro ⟨⟨x, i⟩, h⟩
rfl
#align multiset.coe_equiv Multiset.coeEquiv
@[simp]
theorem Multiset.toEmbedding_coeEquiv_trans (m : Multiset α) :
m.coeEquiv.toEmbedding.trans (Function.Embedding.subtype _) = m.coeEmbedding := by ext <;> rfl
#align multiset.to_embedding_coe_equiv_trans Multiset.toEmbedding_coeEquiv_trans
@[irreducible]
instance Multiset.fintypeCoe : Fintype m :=
Fintype.ofEquiv m.toEnumFinset m.coeEquiv.symm
#align multiset.fintype_coe Multiset.fintypeCoe
theorem Multiset.map_univ_coeEmbedding (m : Multiset α) :
(Finset.univ : Finset m).map m.coeEmbedding = m.toEnumFinset := by
ext ⟨x, i⟩
simp only [Fin.exists_iff, Finset.mem_map, Finset.mem_univ, Multiset.coeEmbedding_apply,
Prod.mk.inj_iff, exists_true_left, Multiset.exists_coe, Multiset.coe_mk, Fin.val_mk,
exists_prop, exists_eq_right_right, exists_eq_right, Multiset.mem_toEnumFinset, iff_self_iff,
true_and_iff]
#align multiset.map_univ_coe_embedding Multiset.map_univ_coeEmbedding
theorem Multiset.toEnumFinset_filter_eq (m : Multiset α) (x : α) :
(m.toEnumFinset.filter fun p ↦ x = p.1) =
(Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩ := by
| ext ⟨y, i⟩ | theorem Multiset.toEnumFinset_filter_eq (m : Multiset α) (x : α) :
(m.toEnumFinset.filter fun p ↦ x = p.1) =
(Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩ := by
| Mathlib.Data.Multiset.Fintype.206_0.gXgzg6nY9WO2bG2 | theorem Multiset.toEnumFinset_filter_eq (m : Multiset α) (x : α) :
(m.toEnumFinset.filter fun p ↦ x = p.1) =
(Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩ | Mathlib_Data_Multiset_Fintype |
case a.mk
α : Type u_1
inst✝ : DecidableEq α
m✝ m : Multiset α
x y : α
i : ℕ
⊢ (y, i) ∈ Finset.filter (fun p => x = p.1) (toEnumFinset m) ↔
(y, i) ∈ Finset.map { toFun := Prod.mk x, inj' := (_ : Function.Injective (Prod.mk x)) } (Finset.range (count x m)) | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx))
simpa only [Multiset.mem_toEnumFinset] using h this
· simp [hx]
#align multiset.to_enum_finset_subset_iff Multiset.toEnumFinset_subset_iff
/-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x := (x, x.2)
inj' := by
intro ⟨x, i, hi⟩ ⟨y, j, hj⟩
rintro ⟨⟩
rfl
#align multiset.coe_embedding Multiset.coeEmbedding
/-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
rw [Multiset.mem_toEnumFinset]
exact x.2.2⟩
invFun x :=
⟨x.1.1, x.1.2, by
rw [← Multiset.mem_toEnumFinset]
exact x.2⟩
left_inv := by
rintro ⟨x, i, h⟩
rfl
right_inv := by
rintro ⟨⟨x, i⟩, h⟩
rfl
#align multiset.coe_equiv Multiset.coeEquiv
@[simp]
theorem Multiset.toEmbedding_coeEquiv_trans (m : Multiset α) :
m.coeEquiv.toEmbedding.trans (Function.Embedding.subtype _) = m.coeEmbedding := by ext <;> rfl
#align multiset.to_embedding_coe_equiv_trans Multiset.toEmbedding_coeEquiv_trans
@[irreducible]
instance Multiset.fintypeCoe : Fintype m :=
Fintype.ofEquiv m.toEnumFinset m.coeEquiv.symm
#align multiset.fintype_coe Multiset.fintypeCoe
theorem Multiset.map_univ_coeEmbedding (m : Multiset α) :
(Finset.univ : Finset m).map m.coeEmbedding = m.toEnumFinset := by
ext ⟨x, i⟩
simp only [Fin.exists_iff, Finset.mem_map, Finset.mem_univ, Multiset.coeEmbedding_apply,
Prod.mk.inj_iff, exists_true_left, Multiset.exists_coe, Multiset.coe_mk, Fin.val_mk,
exists_prop, exists_eq_right_right, exists_eq_right, Multiset.mem_toEnumFinset, iff_self_iff,
true_and_iff]
#align multiset.map_univ_coe_embedding Multiset.map_univ_coeEmbedding
theorem Multiset.toEnumFinset_filter_eq (m : Multiset α) (x : α) :
(m.toEnumFinset.filter fun p ↦ x = p.1) =
(Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩ := by
ext ⟨y, i⟩
| simp only [eq_comm, Finset.mem_filter, Multiset.mem_toEnumFinset, Finset.mem_map,
Finset.mem_range, Function.Embedding.coeFn_mk, Prod.mk.inj_iff, exists_prop,
exists_eq_right_right', and_congr_left_iff] | theorem Multiset.toEnumFinset_filter_eq (m : Multiset α) (x : α) :
(m.toEnumFinset.filter fun p ↦ x = p.1) =
(Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩ := by
ext ⟨y, i⟩
| Mathlib.Data.Multiset.Fintype.206_0.gXgzg6nY9WO2bG2 | theorem Multiset.toEnumFinset_filter_eq (m : Multiset α) (x : α) :
(m.toEnumFinset.filter fun p ↦ x = p.1) =
(Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩ | Mathlib_Data_Multiset_Fintype |
case a.mk
α : Type u_1
inst✝ : DecidableEq α
m✝ m : Multiset α
x y : α
i : ℕ
⊢ x = y → (i < count y m ↔ i < count x m) | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx))
simpa only [Multiset.mem_toEnumFinset] using h this
· simp [hx]
#align multiset.to_enum_finset_subset_iff Multiset.toEnumFinset_subset_iff
/-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x := (x, x.2)
inj' := by
intro ⟨x, i, hi⟩ ⟨y, j, hj⟩
rintro ⟨⟩
rfl
#align multiset.coe_embedding Multiset.coeEmbedding
/-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
rw [Multiset.mem_toEnumFinset]
exact x.2.2⟩
invFun x :=
⟨x.1.1, x.1.2, by
rw [← Multiset.mem_toEnumFinset]
exact x.2⟩
left_inv := by
rintro ⟨x, i, h⟩
rfl
right_inv := by
rintro ⟨⟨x, i⟩, h⟩
rfl
#align multiset.coe_equiv Multiset.coeEquiv
@[simp]
theorem Multiset.toEmbedding_coeEquiv_trans (m : Multiset α) :
m.coeEquiv.toEmbedding.trans (Function.Embedding.subtype _) = m.coeEmbedding := by ext <;> rfl
#align multiset.to_embedding_coe_equiv_trans Multiset.toEmbedding_coeEquiv_trans
@[irreducible]
instance Multiset.fintypeCoe : Fintype m :=
Fintype.ofEquiv m.toEnumFinset m.coeEquiv.symm
#align multiset.fintype_coe Multiset.fintypeCoe
theorem Multiset.map_univ_coeEmbedding (m : Multiset α) :
(Finset.univ : Finset m).map m.coeEmbedding = m.toEnumFinset := by
ext ⟨x, i⟩
simp only [Fin.exists_iff, Finset.mem_map, Finset.mem_univ, Multiset.coeEmbedding_apply,
Prod.mk.inj_iff, exists_true_left, Multiset.exists_coe, Multiset.coe_mk, Fin.val_mk,
exists_prop, exists_eq_right_right, exists_eq_right, Multiset.mem_toEnumFinset, iff_self_iff,
true_and_iff]
#align multiset.map_univ_coe_embedding Multiset.map_univ_coeEmbedding
theorem Multiset.toEnumFinset_filter_eq (m : Multiset α) (x : α) :
(m.toEnumFinset.filter fun p ↦ x = p.1) =
(Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩ := by
ext ⟨y, i⟩
simp only [eq_comm, Finset.mem_filter, Multiset.mem_toEnumFinset, Finset.mem_map,
Finset.mem_range, Function.Embedding.coeFn_mk, Prod.mk.inj_iff, exists_prop,
exists_eq_right_right', and_congr_left_iff]
| rintro rfl | theorem Multiset.toEnumFinset_filter_eq (m : Multiset α) (x : α) :
(m.toEnumFinset.filter fun p ↦ x = p.1) =
(Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩ := by
ext ⟨y, i⟩
simp only [eq_comm, Finset.mem_filter, Multiset.mem_toEnumFinset, Finset.mem_map,
Finset.mem_range, Function.Embedding.coeFn_mk, Prod.mk.inj_iff, exists_prop,
exists_eq_right_right', and_congr_left_iff]
| Mathlib.Data.Multiset.Fintype.206_0.gXgzg6nY9WO2bG2 | theorem Multiset.toEnumFinset_filter_eq (m : Multiset α) (x : α) :
(m.toEnumFinset.filter fun p ↦ x = p.1) =
(Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩ | Mathlib_Data_Multiset_Fintype |
case a.mk
α : Type u_1
inst✝ : DecidableEq α
m✝ m : Multiset α
x : α
i : ℕ
⊢ i < count x m ↔ i < count x m | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx))
simpa only [Multiset.mem_toEnumFinset] using h this
· simp [hx]
#align multiset.to_enum_finset_subset_iff Multiset.toEnumFinset_subset_iff
/-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x := (x, x.2)
inj' := by
intro ⟨x, i, hi⟩ ⟨y, j, hj⟩
rintro ⟨⟩
rfl
#align multiset.coe_embedding Multiset.coeEmbedding
/-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
rw [Multiset.mem_toEnumFinset]
exact x.2.2⟩
invFun x :=
⟨x.1.1, x.1.2, by
rw [← Multiset.mem_toEnumFinset]
exact x.2⟩
left_inv := by
rintro ⟨x, i, h⟩
rfl
right_inv := by
rintro ⟨⟨x, i⟩, h⟩
rfl
#align multiset.coe_equiv Multiset.coeEquiv
@[simp]
theorem Multiset.toEmbedding_coeEquiv_trans (m : Multiset α) :
m.coeEquiv.toEmbedding.trans (Function.Embedding.subtype _) = m.coeEmbedding := by ext <;> rfl
#align multiset.to_embedding_coe_equiv_trans Multiset.toEmbedding_coeEquiv_trans
@[irreducible]
instance Multiset.fintypeCoe : Fintype m :=
Fintype.ofEquiv m.toEnumFinset m.coeEquiv.symm
#align multiset.fintype_coe Multiset.fintypeCoe
theorem Multiset.map_univ_coeEmbedding (m : Multiset α) :
(Finset.univ : Finset m).map m.coeEmbedding = m.toEnumFinset := by
ext ⟨x, i⟩
simp only [Fin.exists_iff, Finset.mem_map, Finset.mem_univ, Multiset.coeEmbedding_apply,
Prod.mk.inj_iff, exists_true_left, Multiset.exists_coe, Multiset.coe_mk, Fin.val_mk,
exists_prop, exists_eq_right_right, exists_eq_right, Multiset.mem_toEnumFinset, iff_self_iff,
true_and_iff]
#align multiset.map_univ_coe_embedding Multiset.map_univ_coeEmbedding
theorem Multiset.toEnumFinset_filter_eq (m : Multiset α) (x : α) :
(m.toEnumFinset.filter fun p ↦ x = p.1) =
(Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩ := by
ext ⟨y, i⟩
simp only [eq_comm, Finset.mem_filter, Multiset.mem_toEnumFinset, Finset.mem_map,
Finset.mem_range, Function.Embedding.coeFn_mk, Prod.mk.inj_iff, exists_prop,
exists_eq_right_right', and_congr_left_iff]
rintro rfl
| rfl | theorem Multiset.toEnumFinset_filter_eq (m : Multiset α) (x : α) :
(m.toEnumFinset.filter fun p ↦ x = p.1) =
(Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩ := by
ext ⟨y, i⟩
simp only [eq_comm, Finset.mem_filter, Multiset.mem_toEnumFinset, Finset.mem_map,
Finset.mem_range, Function.Embedding.coeFn_mk, Prod.mk.inj_iff, exists_prop,
exists_eq_right_right', and_congr_left_iff]
rintro rfl
| Mathlib.Data.Multiset.Fintype.206_0.gXgzg6nY9WO2bG2 | theorem Multiset.toEnumFinset_filter_eq (m : Multiset α) (x : α) :
(m.toEnumFinset.filter fun p ↦ x = p.1) =
(Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩ | Mathlib_Data_Multiset_Fintype |
α : Type u_1
inst✝ : DecidableEq α
m✝ m : Multiset α
⊢ map Prod.fst (toEnumFinset m).val = m | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx))
simpa only [Multiset.mem_toEnumFinset] using h this
· simp [hx]
#align multiset.to_enum_finset_subset_iff Multiset.toEnumFinset_subset_iff
/-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x := (x, x.2)
inj' := by
intro ⟨x, i, hi⟩ ⟨y, j, hj⟩
rintro ⟨⟩
rfl
#align multiset.coe_embedding Multiset.coeEmbedding
/-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
rw [Multiset.mem_toEnumFinset]
exact x.2.2⟩
invFun x :=
⟨x.1.1, x.1.2, by
rw [← Multiset.mem_toEnumFinset]
exact x.2⟩
left_inv := by
rintro ⟨x, i, h⟩
rfl
right_inv := by
rintro ⟨⟨x, i⟩, h⟩
rfl
#align multiset.coe_equiv Multiset.coeEquiv
@[simp]
theorem Multiset.toEmbedding_coeEquiv_trans (m : Multiset α) :
m.coeEquiv.toEmbedding.trans (Function.Embedding.subtype _) = m.coeEmbedding := by ext <;> rfl
#align multiset.to_embedding_coe_equiv_trans Multiset.toEmbedding_coeEquiv_trans
@[irreducible]
instance Multiset.fintypeCoe : Fintype m :=
Fintype.ofEquiv m.toEnumFinset m.coeEquiv.symm
#align multiset.fintype_coe Multiset.fintypeCoe
theorem Multiset.map_univ_coeEmbedding (m : Multiset α) :
(Finset.univ : Finset m).map m.coeEmbedding = m.toEnumFinset := by
ext ⟨x, i⟩
simp only [Fin.exists_iff, Finset.mem_map, Finset.mem_univ, Multiset.coeEmbedding_apply,
Prod.mk.inj_iff, exists_true_left, Multiset.exists_coe, Multiset.coe_mk, Fin.val_mk,
exists_prop, exists_eq_right_right, exists_eq_right, Multiset.mem_toEnumFinset, iff_self_iff,
true_and_iff]
#align multiset.map_univ_coe_embedding Multiset.map_univ_coeEmbedding
theorem Multiset.toEnumFinset_filter_eq (m : Multiset α) (x : α) :
(m.toEnumFinset.filter fun p ↦ x = p.1) =
(Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩ := by
ext ⟨y, i⟩
simp only [eq_comm, Finset.mem_filter, Multiset.mem_toEnumFinset, Finset.mem_map,
Finset.mem_range, Function.Embedding.coeFn_mk, Prod.mk.inj_iff, exists_prop,
exists_eq_right_right', and_congr_left_iff]
rintro rfl
rfl
#align multiset.to_enum_finset_filter_eq Multiset.toEnumFinset_filter_eq
@[simp]
theorem Multiset.map_toEnumFinset_fst (m : Multiset α) : m.toEnumFinset.val.map Prod.fst = m := by
| ext x | @[simp]
theorem Multiset.map_toEnumFinset_fst (m : Multiset α) : m.toEnumFinset.val.map Prod.fst = m := by
| Mathlib.Data.Multiset.Fintype.217_0.gXgzg6nY9WO2bG2 | @[simp]
theorem Multiset.map_toEnumFinset_fst (m : Multiset α) : m.toEnumFinset.val.map Prod.fst = m | Mathlib_Data_Multiset_Fintype |
case a
α : Type u_1
inst✝ : DecidableEq α
m✝ m : Multiset α
x : α
⊢ count x (map Prod.fst (toEnumFinset m).val) = count x m | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx))
simpa only [Multiset.mem_toEnumFinset] using h this
· simp [hx]
#align multiset.to_enum_finset_subset_iff Multiset.toEnumFinset_subset_iff
/-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x := (x, x.2)
inj' := by
intro ⟨x, i, hi⟩ ⟨y, j, hj⟩
rintro ⟨⟩
rfl
#align multiset.coe_embedding Multiset.coeEmbedding
/-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
rw [Multiset.mem_toEnumFinset]
exact x.2.2⟩
invFun x :=
⟨x.1.1, x.1.2, by
rw [← Multiset.mem_toEnumFinset]
exact x.2⟩
left_inv := by
rintro ⟨x, i, h⟩
rfl
right_inv := by
rintro ⟨⟨x, i⟩, h⟩
rfl
#align multiset.coe_equiv Multiset.coeEquiv
@[simp]
theorem Multiset.toEmbedding_coeEquiv_trans (m : Multiset α) :
m.coeEquiv.toEmbedding.trans (Function.Embedding.subtype _) = m.coeEmbedding := by ext <;> rfl
#align multiset.to_embedding_coe_equiv_trans Multiset.toEmbedding_coeEquiv_trans
@[irreducible]
instance Multiset.fintypeCoe : Fintype m :=
Fintype.ofEquiv m.toEnumFinset m.coeEquiv.symm
#align multiset.fintype_coe Multiset.fintypeCoe
theorem Multiset.map_univ_coeEmbedding (m : Multiset α) :
(Finset.univ : Finset m).map m.coeEmbedding = m.toEnumFinset := by
ext ⟨x, i⟩
simp only [Fin.exists_iff, Finset.mem_map, Finset.mem_univ, Multiset.coeEmbedding_apply,
Prod.mk.inj_iff, exists_true_left, Multiset.exists_coe, Multiset.coe_mk, Fin.val_mk,
exists_prop, exists_eq_right_right, exists_eq_right, Multiset.mem_toEnumFinset, iff_self_iff,
true_and_iff]
#align multiset.map_univ_coe_embedding Multiset.map_univ_coeEmbedding
theorem Multiset.toEnumFinset_filter_eq (m : Multiset α) (x : α) :
(m.toEnumFinset.filter fun p ↦ x = p.1) =
(Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩ := by
ext ⟨y, i⟩
simp only [eq_comm, Finset.mem_filter, Multiset.mem_toEnumFinset, Finset.mem_map,
Finset.mem_range, Function.Embedding.coeFn_mk, Prod.mk.inj_iff, exists_prop,
exists_eq_right_right', and_congr_left_iff]
rintro rfl
rfl
#align multiset.to_enum_finset_filter_eq Multiset.toEnumFinset_filter_eq
@[simp]
theorem Multiset.map_toEnumFinset_fst (m : Multiset α) : m.toEnumFinset.val.map Prod.fst = m := by
ext x
| simp only [Multiset.count_map, ← Finset.filter_val, Multiset.toEnumFinset_filter_eq,
Finset.map_val, Finset.range_val, Multiset.card_map, Multiset.card_range] | @[simp]
theorem Multiset.map_toEnumFinset_fst (m : Multiset α) : m.toEnumFinset.val.map Prod.fst = m := by
ext x
| Mathlib.Data.Multiset.Fintype.217_0.gXgzg6nY9WO2bG2 | @[simp]
theorem Multiset.map_toEnumFinset_fst (m : Multiset α) : m.toEnumFinset.val.map Prod.fst = m | Mathlib_Data_Multiset_Fintype |
α : Type u_1
inst✝ : DecidableEq α
m✝ m : Multiset α
⊢ Finset.image Prod.fst (toEnumFinset m) = toFinset m | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx))
simpa only [Multiset.mem_toEnumFinset] using h this
· simp [hx]
#align multiset.to_enum_finset_subset_iff Multiset.toEnumFinset_subset_iff
/-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x := (x, x.2)
inj' := by
intro ⟨x, i, hi⟩ ⟨y, j, hj⟩
rintro ⟨⟩
rfl
#align multiset.coe_embedding Multiset.coeEmbedding
/-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
rw [Multiset.mem_toEnumFinset]
exact x.2.2⟩
invFun x :=
⟨x.1.1, x.1.2, by
rw [← Multiset.mem_toEnumFinset]
exact x.2⟩
left_inv := by
rintro ⟨x, i, h⟩
rfl
right_inv := by
rintro ⟨⟨x, i⟩, h⟩
rfl
#align multiset.coe_equiv Multiset.coeEquiv
@[simp]
theorem Multiset.toEmbedding_coeEquiv_trans (m : Multiset α) :
m.coeEquiv.toEmbedding.trans (Function.Embedding.subtype _) = m.coeEmbedding := by ext <;> rfl
#align multiset.to_embedding_coe_equiv_trans Multiset.toEmbedding_coeEquiv_trans
@[irreducible]
instance Multiset.fintypeCoe : Fintype m :=
Fintype.ofEquiv m.toEnumFinset m.coeEquiv.symm
#align multiset.fintype_coe Multiset.fintypeCoe
theorem Multiset.map_univ_coeEmbedding (m : Multiset α) :
(Finset.univ : Finset m).map m.coeEmbedding = m.toEnumFinset := by
ext ⟨x, i⟩
simp only [Fin.exists_iff, Finset.mem_map, Finset.mem_univ, Multiset.coeEmbedding_apply,
Prod.mk.inj_iff, exists_true_left, Multiset.exists_coe, Multiset.coe_mk, Fin.val_mk,
exists_prop, exists_eq_right_right, exists_eq_right, Multiset.mem_toEnumFinset, iff_self_iff,
true_and_iff]
#align multiset.map_univ_coe_embedding Multiset.map_univ_coeEmbedding
theorem Multiset.toEnumFinset_filter_eq (m : Multiset α) (x : α) :
(m.toEnumFinset.filter fun p ↦ x = p.1) =
(Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩ := by
ext ⟨y, i⟩
simp only [eq_comm, Finset.mem_filter, Multiset.mem_toEnumFinset, Finset.mem_map,
Finset.mem_range, Function.Embedding.coeFn_mk, Prod.mk.inj_iff, exists_prop,
exists_eq_right_right', and_congr_left_iff]
rintro rfl
rfl
#align multiset.to_enum_finset_filter_eq Multiset.toEnumFinset_filter_eq
@[simp]
theorem Multiset.map_toEnumFinset_fst (m : Multiset α) : m.toEnumFinset.val.map Prod.fst = m := by
ext x
simp only [Multiset.count_map, ← Finset.filter_val, Multiset.toEnumFinset_filter_eq,
Finset.map_val, Finset.range_val, Multiset.card_map, Multiset.card_range]
#align multiset.map_to_enum_finset_fst Multiset.map_toEnumFinset_fst
@[simp]
theorem Multiset.image_toEnumFinset_fst (m : Multiset α) :
m.toEnumFinset.image Prod.fst = m.toFinset := by
| rw [Finset.image, Multiset.map_toEnumFinset_fst] | @[simp]
theorem Multiset.image_toEnumFinset_fst (m : Multiset α) :
m.toEnumFinset.image Prod.fst = m.toFinset := by
| Mathlib.Data.Multiset.Fintype.224_0.gXgzg6nY9WO2bG2 | @[simp]
theorem Multiset.image_toEnumFinset_fst (m : Multiset α) :
m.toEnumFinset.image Prod.fst = m.toFinset | Mathlib_Data_Multiset_Fintype |
α : Type u_1
inst✝ : DecidableEq α
m✝ m : Multiset α
⊢ map (fun x => x.fst) Finset.univ.val = m | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx))
simpa only [Multiset.mem_toEnumFinset] using h this
· simp [hx]
#align multiset.to_enum_finset_subset_iff Multiset.toEnumFinset_subset_iff
/-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x := (x, x.2)
inj' := by
intro ⟨x, i, hi⟩ ⟨y, j, hj⟩
rintro ⟨⟩
rfl
#align multiset.coe_embedding Multiset.coeEmbedding
/-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
rw [Multiset.mem_toEnumFinset]
exact x.2.2⟩
invFun x :=
⟨x.1.1, x.1.2, by
rw [← Multiset.mem_toEnumFinset]
exact x.2⟩
left_inv := by
rintro ⟨x, i, h⟩
rfl
right_inv := by
rintro ⟨⟨x, i⟩, h⟩
rfl
#align multiset.coe_equiv Multiset.coeEquiv
@[simp]
theorem Multiset.toEmbedding_coeEquiv_trans (m : Multiset α) :
m.coeEquiv.toEmbedding.trans (Function.Embedding.subtype _) = m.coeEmbedding := by ext <;> rfl
#align multiset.to_embedding_coe_equiv_trans Multiset.toEmbedding_coeEquiv_trans
@[irreducible]
instance Multiset.fintypeCoe : Fintype m :=
Fintype.ofEquiv m.toEnumFinset m.coeEquiv.symm
#align multiset.fintype_coe Multiset.fintypeCoe
theorem Multiset.map_univ_coeEmbedding (m : Multiset α) :
(Finset.univ : Finset m).map m.coeEmbedding = m.toEnumFinset := by
ext ⟨x, i⟩
simp only [Fin.exists_iff, Finset.mem_map, Finset.mem_univ, Multiset.coeEmbedding_apply,
Prod.mk.inj_iff, exists_true_left, Multiset.exists_coe, Multiset.coe_mk, Fin.val_mk,
exists_prop, exists_eq_right_right, exists_eq_right, Multiset.mem_toEnumFinset, iff_self_iff,
true_and_iff]
#align multiset.map_univ_coe_embedding Multiset.map_univ_coeEmbedding
theorem Multiset.toEnumFinset_filter_eq (m : Multiset α) (x : α) :
(m.toEnumFinset.filter fun p ↦ x = p.1) =
(Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩ := by
ext ⟨y, i⟩
simp only [eq_comm, Finset.mem_filter, Multiset.mem_toEnumFinset, Finset.mem_map,
Finset.mem_range, Function.Embedding.coeFn_mk, Prod.mk.inj_iff, exists_prop,
exists_eq_right_right', and_congr_left_iff]
rintro rfl
rfl
#align multiset.to_enum_finset_filter_eq Multiset.toEnumFinset_filter_eq
@[simp]
theorem Multiset.map_toEnumFinset_fst (m : Multiset α) : m.toEnumFinset.val.map Prod.fst = m := by
ext x
simp only [Multiset.count_map, ← Finset.filter_val, Multiset.toEnumFinset_filter_eq,
Finset.map_val, Finset.range_val, Multiset.card_map, Multiset.card_range]
#align multiset.map_to_enum_finset_fst Multiset.map_toEnumFinset_fst
@[simp]
theorem Multiset.image_toEnumFinset_fst (m : Multiset α) :
m.toEnumFinset.image Prod.fst = m.toFinset := by
rw [Finset.image, Multiset.map_toEnumFinset_fst]
#align multiset.image_to_enum_finset_fst Multiset.image_toEnumFinset_fst
@[simp]
theorem Multiset.map_univ_coe (m : Multiset α) :
(Finset.univ : Finset m).val.map (fun x : m ↦ (x : α)) = m := by
| have := m.map_toEnumFinset_fst | @[simp]
theorem Multiset.map_univ_coe (m : Multiset α) :
(Finset.univ : Finset m).val.map (fun x : m ↦ (x : α)) = m := by
| Mathlib.Data.Multiset.Fintype.230_0.gXgzg6nY9WO2bG2 | @[simp]
theorem Multiset.map_univ_coe (m : Multiset α) :
(Finset.univ : Finset m).val.map (fun x : m ↦ (x : α)) = m | Mathlib_Data_Multiset_Fintype |
α : Type u_1
inst✝ : DecidableEq α
m✝ m : Multiset α
this : map Prod.fst (toEnumFinset m).val = m
⊢ map (fun x => x.fst) Finset.univ.val = m | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx))
simpa only [Multiset.mem_toEnumFinset] using h this
· simp [hx]
#align multiset.to_enum_finset_subset_iff Multiset.toEnumFinset_subset_iff
/-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x := (x, x.2)
inj' := by
intro ⟨x, i, hi⟩ ⟨y, j, hj⟩
rintro ⟨⟩
rfl
#align multiset.coe_embedding Multiset.coeEmbedding
/-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
rw [Multiset.mem_toEnumFinset]
exact x.2.2⟩
invFun x :=
⟨x.1.1, x.1.2, by
rw [← Multiset.mem_toEnumFinset]
exact x.2⟩
left_inv := by
rintro ⟨x, i, h⟩
rfl
right_inv := by
rintro ⟨⟨x, i⟩, h⟩
rfl
#align multiset.coe_equiv Multiset.coeEquiv
@[simp]
theorem Multiset.toEmbedding_coeEquiv_trans (m : Multiset α) :
m.coeEquiv.toEmbedding.trans (Function.Embedding.subtype _) = m.coeEmbedding := by ext <;> rfl
#align multiset.to_embedding_coe_equiv_trans Multiset.toEmbedding_coeEquiv_trans
@[irreducible]
instance Multiset.fintypeCoe : Fintype m :=
Fintype.ofEquiv m.toEnumFinset m.coeEquiv.symm
#align multiset.fintype_coe Multiset.fintypeCoe
theorem Multiset.map_univ_coeEmbedding (m : Multiset α) :
(Finset.univ : Finset m).map m.coeEmbedding = m.toEnumFinset := by
ext ⟨x, i⟩
simp only [Fin.exists_iff, Finset.mem_map, Finset.mem_univ, Multiset.coeEmbedding_apply,
Prod.mk.inj_iff, exists_true_left, Multiset.exists_coe, Multiset.coe_mk, Fin.val_mk,
exists_prop, exists_eq_right_right, exists_eq_right, Multiset.mem_toEnumFinset, iff_self_iff,
true_and_iff]
#align multiset.map_univ_coe_embedding Multiset.map_univ_coeEmbedding
theorem Multiset.toEnumFinset_filter_eq (m : Multiset α) (x : α) :
(m.toEnumFinset.filter fun p ↦ x = p.1) =
(Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩ := by
ext ⟨y, i⟩
simp only [eq_comm, Finset.mem_filter, Multiset.mem_toEnumFinset, Finset.mem_map,
Finset.mem_range, Function.Embedding.coeFn_mk, Prod.mk.inj_iff, exists_prop,
exists_eq_right_right', and_congr_left_iff]
rintro rfl
rfl
#align multiset.to_enum_finset_filter_eq Multiset.toEnumFinset_filter_eq
@[simp]
theorem Multiset.map_toEnumFinset_fst (m : Multiset α) : m.toEnumFinset.val.map Prod.fst = m := by
ext x
simp only [Multiset.count_map, ← Finset.filter_val, Multiset.toEnumFinset_filter_eq,
Finset.map_val, Finset.range_val, Multiset.card_map, Multiset.card_range]
#align multiset.map_to_enum_finset_fst Multiset.map_toEnumFinset_fst
@[simp]
theorem Multiset.image_toEnumFinset_fst (m : Multiset α) :
m.toEnumFinset.image Prod.fst = m.toFinset := by
rw [Finset.image, Multiset.map_toEnumFinset_fst]
#align multiset.image_to_enum_finset_fst Multiset.image_toEnumFinset_fst
@[simp]
theorem Multiset.map_univ_coe (m : Multiset α) :
(Finset.univ : Finset m).val.map (fun x : m ↦ (x : α)) = m := by
have := m.map_toEnumFinset_fst
| rw [← m.map_univ_coeEmbedding] at this | @[simp]
theorem Multiset.map_univ_coe (m : Multiset α) :
(Finset.univ : Finset m).val.map (fun x : m ↦ (x : α)) = m := by
have := m.map_toEnumFinset_fst
| Mathlib.Data.Multiset.Fintype.230_0.gXgzg6nY9WO2bG2 | @[simp]
theorem Multiset.map_univ_coe (m : Multiset α) :
(Finset.univ : Finset m).val.map (fun x : m ↦ (x : α)) = m | Mathlib_Data_Multiset_Fintype |
α : Type u_1
inst✝ : DecidableEq α
m✝ m : Multiset α
this : map Prod.fst (Finset.map (coeEmbedding m) Finset.univ).val = m
⊢ map (fun x => x.fst) Finset.univ.val = m | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx))
simpa only [Multiset.mem_toEnumFinset] using h this
· simp [hx]
#align multiset.to_enum_finset_subset_iff Multiset.toEnumFinset_subset_iff
/-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x := (x, x.2)
inj' := by
intro ⟨x, i, hi⟩ ⟨y, j, hj⟩
rintro ⟨⟩
rfl
#align multiset.coe_embedding Multiset.coeEmbedding
/-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
rw [Multiset.mem_toEnumFinset]
exact x.2.2⟩
invFun x :=
⟨x.1.1, x.1.2, by
rw [← Multiset.mem_toEnumFinset]
exact x.2⟩
left_inv := by
rintro ⟨x, i, h⟩
rfl
right_inv := by
rintro ⟨⟨x, i⟩, h⟩
rfl
#align multiset.coe_equiv Multiset.coeEquiv
@[simp]
theorem Multiset.toEmbedding_coeEquiv_trans (m : Multiset α) :
m.coeEquiv.toEmbedding.trans (Function.Embedding.subtype _) = m.coeEmbedding := by ext <;> rfl
#align multiset.to_embedding_coe_equiv_trans Multiset.toEmbedding_coeEquiv_trans
@[irreducible]
instance Multiset.fintypeCoe : Fintype m :=
Fintype.ofEquiv m.toEnumFinset m.coeEquiv.symm
#align multiset.fintype_coe Multiset.fintypeCoe
theorem Multiset.map_univ_coeEmbedding (m : Multiset α) :
(Finset.univ : Finset m).map m.coeEmbedding = m.toEnumFinset := by
ext ⟨x, i⟩
simp only [Fin.exists_iff, Finset.mem_map, Finset.mem_univ, Multiset.coeEmbedding_apply,
Prod.mk.inj_iff, exists_true_left, Multiset.exists_coe, Multiset.coe_mk, Fin.val_mk,
exists_prop, exists_eq_right_right, exists_eq_right, Multiset.mem_toEnumFinset, iff_self_iff,
true_and_iff]
#align multiset.map_univ_coe_embedding Multiset.map_univ_coeEmbedding
theorem Multiset.toEnumFinset_filter_eq (m : Multiset α) (x : α) :
(m.toEnumFinset.filter fun p ↦ x = p.1) =
(Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩ := by
ext ⟨y, i⟩
simp only [eq_comm, Finset.mem_filter, Multiset.mem_toEnumFinset, Finset.mem_map,
Finset.mem_range, Function.Embedding.coeFn_mk, Prod.mk.inj_iff, exists_prop,
exists_eq_right_right', and_congr_left_iff]
rintro rfl
rfl
#align multiset.to_enum_finset_filter_eq Multiset.toEnumFinset_filter_eq
@[simp]
theorem Multiset.map_toEnumFinset_fst (m : Multiset α) : m.toEnumFinset.val.map Prod.fst = m := by
ext x
simp only [Multiset.count_map, ← Finset.filter_val, Multiset.toEnumFinset_filter_eq,
Finset.map_val, Finset.range_val, Multiset.card_map, Multiset.card_range]
#align multiset.map_to_enum_finset_fst Multiset.map_toEnumFinset_fst
@[simp]
theorem Multiset.image_toEnumFinset_fst (m : Multiset α) :
m.toEnumFinset.image Prod.fst = m.toFinset := by
rw [Finset.image, Multiset.map_toEnumFinset_fst]
#align multiset.image_to_enum_finset_fst Multiset.image_toEnumFinset_fst
@[simp]
theorem Multiset.map_univ_coe (m : Multiset α) :
(Finset.univ : Finset m).val.map (fun x : m ↦ (x : α)) = m := by
have := m.map_toEnumFinset_fst
rw [← m.map_univ_coeEmbedding] at this
| simpa only [Finset.map_val, Multiset.coeEmbedding_apply, Multiset.map_map,
Function.comp_apply] using this | @[simp]
theorem Multiset.map_univ_coe (m : Multiset α) :
(Finset.univ : Finset m).val.map (fun x : m ↦ (x : α)) = m := by
have := m.map_toEnumFinset_fst
rw [← m.map_univ_coeEmbedding] at this
| Mathlib.Data.Multiset.Fintype.230_0.gXgzg6nY9WO2bG2 | @[simp]
theorem Multiset.map_univ_coe (m : Multiset α) :
(Finset.univ : Finset m).val.map (fun x : m ↦ (x : α)) = m | Mathlib_Data_Multiset_Fintype |
α : Type u_1
inst✝ : DecidableEq α
m✝ : Multiset α
β : Type u_2
m : Multiset α
f : α → β
⊢ map (fun x => f x.fst) Finset.univ.val = map f m | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx))
simpa only [Multiset.mem_toEnumFinset] using h this
· simp [hx]
#align multiset.to_enum_finset_subset_iff Multiset.toEnumFinset_subset_iff
/-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x := (x, x.2)
inj' := by
intro ⟨x, i, hi⟩ ⟨y, j, hj⟩
rintro ⟨⟩
rfl
#align multiset.coe_embedding Multiset.coeEmbedding
/-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
rw [Multiset.mem_toEnumFinset]
exact x.2.2⟩
invFun x :=
⟨x.1.1, x.1.2, by
rw [← Multiset.mem_toEnumFinset]
exact x.2⟩
left_inv := by
rintro ⟨x, i, h⟩
rfl
right_inv := by
rintro ⟨⟨x, i⟩, h⟩
rfl
#align multiset.coe_equiv Multiset.coeEquiv
@[simp]
theorem Multiset.toEmbedding_coeEquiv_trans (m : Multiset α) :
m.coeEquiv.toEmbedding.trans (Function.Embedding.subtype _) = m.coeEmbedding := by ext <;> rfl
#align multiset.to_embedding_coe_equiv_trans Multiset.toEmbedding_coeEquiv_trans
@[irreducible]
instance Multiset.fintypeCoe : Fintype m :=
Fintype.ofEquiv m.toEnumFinset m.coeEquiv.symm
#align multiset.fintype_coe Multiset.fintypeCoe
theorem Multiset.map_univ_coeEmbedding (m : Multiset α) :
(Finset.univ : Finset m).map m.coeEmbedding = m.toEnumFinset := by
ext ⟨x, i⟩
simp only [Fin.exists_iff, Finset.mem_map, Finset.mem_univ, Multiset.coeEmbedding_apply,
Prod.mk.inj_iff, exists_true_left, Multiset.exists_coe, Multiset.coe_mk, Fin.val_mk,
exists_prop, exists_eq_right_right, exists_eq_right, Multiset.mem_toEnumFinset, iff_self_iff,
true_and_iff]
#align multiset.map_univ_coe_embedding Multiset.map_univ_coeEmbedding
theorem Multiset.toEnumFinset_filter_eq (m : Multiset α) (x : α) :
(m.toEnumFinset.filter fun p ↦ x = p.1) =
(Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩ := by
ext ⟨y, i⟩
simp only [eq_comm, Finset.mem_filter, Multiset.mem_toEnumFinset, Finset.mem_map,
Finset.mem_range, Function.Embedding.coeFn_mk, Prod.mk.inj_iff, exists_prop,
exists_eq_right_right', and_congr_left_iff]
rintro rfl
rfl
#align multiset.to_enum_finset_filter_eq Multiset.toEnumFinset_filter_eq
@[simp]
theorem Multiset.map_toEnumFinset_fst (m : Multiset α) : m.toEnumFinset.val.map Prod.fst = m := by
ext x
simp only [Multiset.count_map, ← Finset.filter_val, Multiset.toEnumFinset_filter_eq,
Finset.map_val, Finset.range_val, Multiset.card_map, Multiset.card_range]
#align multiset.map_to_enum_finset_fst Multiset.map_toEnumFinset_fst
@[simp]
theorem Multiset.image_toEnumFinset_fst (m : Multiset α) :
m.toEnumFinset.image Prod.fst = m.toFinset := by
rw [Finset.image, Multiset.map_toEnumFinset_fst]
#align multiset.image_to_enum_finset_fst Multiset.image_toEnumFinset_fst
@[simp]
theorem Multiset.map_univ_coe (m : Multiset α) :
(Finset.univ : Finset m).val.map (fun x : m ↦ (x : α)) = m := by
have := m.map_toEnumFinset_fst
rw [← m.map_univ_coeEmbedding] at this
simpa only [Finset.map_val, Multiset.coeEmbedding_apply, Multiset.map_map,
Function.comp_apply] using this
#align multiset.map_univ_coe Multiset.map_univ_coe
@[simp]
theorem Multiset.map_univ {β : Type*} (m : Multiset α) (f : α → β) :
((Finset.univ : Finset m).val.map fun (x : m) ↦ f (x : α)) = m.map f := by
| erw [← Multiset.map_map] | @[simp]
theorem Multiset.map_univ {β : Type*} (m : Multiset α) (f : α → β) :
((Finset.univ : Finset m).val.map fun (x : m) ↦ f (x : α)) = m.map f := by
| Mathlib.Data.Multiset.Fintype.239_0.gXgzg6nY9WO2bG2 | @[simp]
theorem Multiset.map_univ {β : Type*} (m : Multiset α) (f : α → β) :
((Finset.univ : Finset m).val.map fun (x : m) ↦ f (x : α)) = m.map f | Mathlib_Data_Multiset_Fintype |
α : Type u_1
inst✝ : DecidableEq α
m✝ : Multiset α
β : Type u_2
m : Multiset α
f : α → β
⊢ map f (map (fun x => x.fst) Finset.univ.val) = map f m | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx))
simpa only [Multiset.mem_toEnumFinset] using h this
· simp [hx]
#align multiset.to_enum_finset_subset_iff Multiset.toEnumFinset_subset_iff
/-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x := (x, x.2)
inj' := by
intro ⟨x, i, hi⟩ ⟨y, j, hj⟩
rintro ⟨⟩
rfl
#align multiset.coe_embedding Multiset.coeEmbedding
/-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
rw [Multiset.mem_toEnumFinset]
exact x.2.2⟩
invFun x :=
⟨x.1.1, x.1.2, by
rw [← Multiset.mem_toEnumFinset]
exact x.2⟩
left_inv := by
rintro ⟨x, i, h⟩
rfl
right_inv := by
rintro ⟨⟨x, i⟩, h⟩
rfl
#align multiset.coe_equiv Multiset.coeEquiv
@[simp]
theorem Multiset.toEmbedding_coeEquiv_trans (m : Multiset α) :
m.coeEquiv.toEmbedding.trans (Function.Embedding.subtype _) = m.coeEmbedding := by ext <;> rfl
#align multiset.to_embedding_coe_equiv_trans Multiset.toEmbedding_coeEquiv_trans
@[irreducible]
instance Multiset.fintypeCoe : Fintype m :=
Fintype.ofEquiv m.toEnumFinset m.coeEquiv.symm
#align multiset.fintype_coe Multiset.fintypeCoe
theorem Multiset.map_univ_coeEmbedding (m : Multiset α) :
(Finset.univ : Finset m).map m.coeEmbedding = m.toEnumFinset := by
ext ⟨x, i⟩
simp only [Fin.exists_iff, Finset.mem_map, Finset.mem_univ, Multiset.coeEmbedding_apply,
Prod.mk.inj_iff, exists_true_left, Multiset.exists_coe, Multiset.coe_mk, Fin.val_mk,
exists_prop, exists_eq_right_right, exists_eq_right, Multiset.mem_toEnumFinset, iff_self_iff,
true_and_iff]
#align multiset.map_univ_coe_embedding Multiset.map_univ_coeEmbedding
theorem Multiset.toEnumFinset_filter_eq (m : Multiset α) (x : α) :
(m.toEnumFinset.filter fun p ↦ x = p.1) =
(Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩ := by
ext ⟨y, i⟩
simp only [eq_comm, Finset.mem_filter, Multiset.mem_toEnumFinset, Finset.mem_map,
Finset.mem_range, Function.Embedding.coeFn_mk, Prod.mk.inj_iff, exists_prop,
exists_eq_right_right', and_congr_left_iff]
rintro rfl
rfl
#align multiset.to_enum_finset_filter_eq Multiset.toEnumFinset_filter_eq
@[simp]
theorem Multiset.map_toEnumFinset_fst (m : Multiset α) : m.toEnumFinset.val.map Prod.fst = m := by
ext x
simp only [Multiset.count_map, ← Finset.filter_val, Multiset.toEnumFinset_filter_eq,
Finset.map_val, Finset.range_val, Multiset.card_map, Multiset.card_range]
#align multiset.map_to_enum_finset_fst Multiset.map_toEnumFinset_fst
@[simp]
theorem Multiset.image_toEnumFinset_fst (m : Multiset α) :
m.toEnumFinset.image Prod.fst = m.toFinset := by
rw [Finset.image, Multiset.map_toEnumFinset_fst]
#align multiset.image_to_enum_finset_fst Multiset.image_toEnumFinset_fst
@[simp]
theorem Multiset.map_univ_coe (m : Multiset α) :
(Finset.univ : Finset m).val.map (fun x : m ↦ (x : α)) = m := by
have := m.map_toEnumFinset_fst
rw [← m.map_univ_coeEmbedding] at this
simpa only [Finset.map_val, Multiset.coeEmbedding_apply, Multiset.map_map,
Function.comp_apply] using this
#align multiset.map_univ_coe Multiset.map_univ_coe
@[simp]
theorem Multiset.map_univ {β : Type*} (m : Multiset α) (f : α → β) :
((Finset.univ : Finset m).val.map fun (x : m) ↦ f (x : α)) = m.map f := by
erw [← Multiset.map_map]
| rw [Multiset.map_univ_coe] | @[simp]
theorem Multiset.map_univ {β : Type*} (m : Multiset α) (f : α → β) :
((Finset.univ : Finset m).val.map fun (x : m) ↦ f (x : α)) = m.map f := by
erw [← Multiset.map_map]
| Mathlib.Data.Multiset.Fintype.239_0.gXgzg6nY9WO2bG2 | @[simp]
theorem Multiset.map_univ {β : Type*} (m : Multiset α) (f : α → β) :
((Finset.univ : Finset m).val.map fun (x : m) ↦ f (x : α)) = m.map f | Mathlib_Data_Multiset_Fintype |
α : Type u_1
inst✝ : DecidableEq α
m✝ m : Multiset α
⊢ Finset.card (toEnumFinset m) = card m | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx))
simpa only [Multiset.mem_toEnumFinset] using h this
· simp [hx]
#align multiset.to_enum_finset_subset_iff Multiset.toEnumFinset_subset_iff
/-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x := (x, x.2)
inj' := by
intro ⟨x, i, hi⟩ ⟨y, j, hj⟩
rintro ⟨⟩
rfl
#align multiset.coe_embedding Multiset.coeEmbedding
/-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
rw [Multiset.mem_toEnumFinset]
exact x.2.2⟩
invFun x :=
⟨x.1.1, x.1.2, by
rw [← Multiset.mem_toEnumFinset]
exact x.2⟩
left_inv := by
rintro ⟨x, i, h⟩
rfl
right_inv := by
rintro ⟨⟨x, i⟩, h⟩
rfl
#align multiset.coe_equiv Multiset.coeEquiv
@[simp]
theorem Multiset.toEmbedding_coeEquiv_trans (m : Multiset α) :
m.coeEquiv.toEmbedding.trans (Function.Embedding.subtype _) = m.coeEmbedding := by ext <;> rfl
#align multiset.to_embedding_coe_equiv_trans Multiset.toEmbedding_coeEquiv_trans
@[irreducible]
instance Multiset.fintypeCoe : Fintype m :=
Fintype.ofEquiv m.toEnumFinset m.coeEquiv.symm
#align multiset.fintype_coe Multiset.fintypeCoe
theorem Multiset.map_univ_coeEmbedding (m : Multiset α) :
(Finset.univ : Finset m).map m.coeEmbedding = m.toEnumFinset := by
ext ⟨x, i⟩
simp only [Fin.exists_iff, Finset.mem_map, Finset.mem_univ, Multiset.coeEmbedding_apply,
Prod.mk.inj_iff, exists_true_left, Multiset.exists_coe, Multiset.coe_mk, Fin.val_mk,
exists_prop, exists_eq_right_right, exists_eq_right, Multiset.mem_toEnumFinset, iff_self_iff,
true_and_iff]
#align multiset.map_univ_coe_embedding Multiset.map_univ_coeEmbedding
theorem Multiset.toEnumFinset_filter_eq (m : Multiset α) (x : α) :
(m.toEnumFinset.filter fun p ↦ x = p.1) =
(Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩ := by
ext ⟨y, i⟩
simp only [eq_comm, Finset.mem_filter, Multiset.mem_toEnumFinset, Finset.mem_map,
Finset.mem_range, Function.Embedding.coeFn_mk, Prod.mk.inj_iff, exists_prop,
exists_eq_right_right', and_congr_left_iff]
rintro rfl
rfl
#align multiset.to_enum_finset_filter_eq Multiset.toEnumFinset_filter_eq
@[simp]
theorem Multiset.map_toEnumFinset_fst (m : Multiset α) : m.toEnumFinset.val.map Prod.fst = m := by
ext x
simp only [Multiset.count_map, ← Finset.filter_val, Multiset.toEnumFinset_filter_eq,
Finset.map_val, Finset.range_val, Multiset.card_map, Multiset.card_range]
#align multiset.map_to_enum_finset_fst Multiset.map_toEnumFinset_fst
@[simp]
theorem Multiset.image_toEnumFinset_fst (m : Multiset α) :
m.toEnumFinset.image Prod.fst = m.toFinset := by
rw [Finset.image, Multiset.map_toEnumFinset_fst]
#align multiset.image_to_enum_finset_fst Multiset.image_toEnumFinset_fst
@[simp]
theorem Multiset.map_univ_coe (m : Multiset α) :
(Finset.univ : Finset m).val.map (fun x : m ↦ (x : α)) = m := by
have := m.map_toEnumFinset_fst
rw [← m.map_univ_coeEmbedding] at this
simpa only [Finset.map_val, Multiset.coeEmbedding_apply, Multiset.map_map,
Function.comp_apply] using this
#align multiset.map_univ_coe Multiset.map_univ_coe
@[simp]
theorem Multiset.map_univ {β : Type*} (m : Multiset α) (f : α → β) :
((Finset.univ : Finset m).val.map fun (x : m) ↦ f (x : α)) = m.map f := by
erw [← Multiset.map_map]
rw [Multiset.map_univ_coe]
#align multiset.map_univ Multiset.map_univ
@[simp]
theorem Multiset.card_toEnumFinset (m : Multiset α) : m.toEnumFinset.card = Multiset.card m := by
| rw [Finset.card, ← Multiset.card_map Prod.fst m.toEnumFinset.val] | @[simp]
theorem Multiset.card_toEnumFinset (m : Multiset α) : m.toEnumFinset.card = Multiset.card m := by
| Mathlib.Data.Multiset.Fintype.246_0.gXgzg6nY9WO2bG2 | @[simp]
theorem Multiset.card_toEnumFinset (m : Multiset α) : m.toEnumFinset.card = Multiset.card m | Mathlib_Data_Multiset_Fintype |
α : Type u_1
inst✝ : DecidableEq α
m✝ m : Multiset α
⊢ card (map Prod.fst (toEnumFinset m).val) = card m | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx))
simpa only [Multiset.mem_toEnumFinset] using h this
· simp [hx]
#align multiset.to_enum_finset_subset_iff Multiset.toEnumFinset_subset_iff
/-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x := (x, x.2)
inj' := by
intro ⟨x, i, hi⟩ ⟨y, j, hj⟩
rintro ⟨⟩
rfl
#align multiset.coe_embedding Multiset.coeEmbedding
/-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
rw [Multiset.mem_toEnumFinset]
exact x.2.2⟩
invFun x :=
⟨x.1.1, x.1.2, by
rw [← Multiset.mem_toEnumFinset]
exact x.2⟩
left_inv := by
rintro ⟨x, i, h⟩
rfl
right_inv := by
rintro ⟨⟨x, i⟩, h⟩
rfl
#align multiset.coe_equiv Multiset.coeEquiv
@[simp]
theorem Multiset.toEmbedding_coeEquiv_trans (m : Multiset α) :
m.coeEquiv.toEmbedding.trans (Function.Embedding.subtype _) = m.coeEmbedding := by ext <;> rfl
#align multiset.to_embedding_coe_equiv_trans Multiset.toEmbedding_coeEquiv_trans
@[irreducible]
instance Multiset.fintypeCoe : Fintype m :=
Fintype.ofEquiv m.toEnumFinset m.coeEquiv.symm
#align multiset.fintype_coe Multiset.fintypeCoe
theorem Multiset.map_univ_coeEmbedding (m : Multiset α) :
(Finset.univ : Finset m).map m.coeEmbedding = m.toEnumFinset := by
ext ⟨x, i⟩
simp only [Fin.exists_iff, Finset.mem_map, Finset.mem_univ, Multiset.coeEmbedding_apply,
Prod.mk.inj_iff, exists_true_left, Multiset.exists_coe, Multiset.coe_mk, Fin.val_mk,
exists_prop, exists_eq_right_right, exists_eq_right, Multiset.mem_toEnumFinset, iff_self_iff,
true_and_iff]
#align multiset.map_univ_coe_embedding Multiset.map_univ_coeEmbedding
theorem Multiset.toEnumFinset_filter_eq (m : Multiset α) (x : α) :
(m.toEnumFinset.filter fun p ↦ x = p.1) =
(Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩ := by
ext ⟨y, i⟩
simp only [eq_comm, Finset.mem_filter, Multiset.mem_toEnumFinset, Finset.mem_map,
Finset.mem_range, Function.Embedding.coeFn_mk, Prod.mk.inj_iff, exists_prop,
exists_eq_right_right', and_congr_left_iff]
rintro rfl
rfl
#align multiset.to_enum_finset_filter_eq Multiset.toEnumFinset_filter_eq
@[simp]
theorem Multiset.map_toEnumFinset_fst (m : Multiset α) : m.toEnumFinset.val.map Prod.fst = m := by
ext x
simp only [Multiset.count_map, ← Finset.filter_val, Multiset.toEnumFinset_filter_eq,
Finset.map_val, Finset.range_val, Multiset.card_map, Multiset.card_range]
#align multiset.map_to_enum_finset_fst Multiset.map_toEnumFinset_fst
@[simp]
theorem Multiset.image_toEnumFinset_fst (m : Multiset α) :
m.toEnumFinset.image Prod.fst = m.toFinset := by
rw [Finset.image, Multiset.map_toEnumFinset_fst]
#align multiset.image_to_enum_finset_fst Multiset.image_toEnumFinset_fst
@[simp]
theorem Multiset.map_univ_coe (m : Multiset α) :
(Finset.univ : Finset m).val.map (fun x : m ↦ (x : α)) = m := by
have := m.map_toEnumFinset_fst
rw [← m.map_univ_coeEmbedding] at this
simpa only [Finset.map_val, Multiset.coeEmbedding_apply, Multiset.map_map,
Function.comp_apply] using this
#align multiset.map_univ_coe Multiset.map_univ_coe
@[simp]
theorem Multiset.map_univ {β : Type*} (m : Multiset α) (f : α → β) :
((Finset.univ : Finset m).val.map fun (x : m) ↦ f (x : α)) = m.map f := by
erw [← Multiset.map_map]
rw [Multiset.map_univ_coe]
#align multiset.map_univ Multiset.map_univ
@[simp]
theorem Multiset.card_toEnumFinset (m : Multiset α) : m.toEnumFinset.card = Multiset.card m := by
rw [Finset.card, ← Multiset.card_map Prod.fst m.toEnumFinset.val]
| congr | @[simp]
theorem Multiset.card_toEnumFinset (m : Multiset α) : m.toEnumFinset.card = Multiset.card m := by
rw [Finset.card, ← Multiset.card_map Prod.fst m.toEnumFinset.val]
| Mathlib.Data.Multiset.Fintype.246_0.gXgzg6nY9WO2bG2 | @[simp]
theorem Multiset.card_toEnumFinset (m : Multiset α) : m.toEnumFinset.card = Multiset.card m | Mathlib_Data_Multiset_Fintype |
case h.e_6.h
α : Type u_1
inst✝ : DecidableEq α
m✝ m : Multiset α
⊢ map Prod.fst (toEnumFinset m).val = m | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx))
simpa only [Multiset.mem_toEnumFinset] using h this
· simp [hx]
#align multiset.to_enum_finset_subset_iff Multiset.toEnumFinset_subset_iff
/-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x := (x, x.2)
inj' := by
intro ⟨x, i, hi⟩ ⟨y, j, hj⟩
rintro ⟨⟩
rfl
#align multiset.coe_embedding Multiset.coeEmbedding
/-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
rw [Multiset.mem_toEnumFinset]
exact x.2.2⟩
invFun x :=
⟨x.1.1, x.1.2, by
rw [← Multiset.mem_toEnumFinset]
exact x.2⟩
left_inv := by
rintro ⟨x, i, h⟩
rfl
right_inv := by
rintro ⟨⟨x, i⟩, h⟩
rfl
#align multiset.coe_equiv Multiset.coeEquiv
@[simp]
theorem Multiset.toEmbedding_coeEquiv_trans (m : Multiset α) :
m.coeEquiv.toEmbedding.trans (Function.Embedding.subtype _) = m.coeEmbedding := by ext <;> rfl
#align multiset.to_embedding_coe_equiv_trans Multiset.toEmbedding_coeEquiv_trans
@[irreducible]
instance Multiset.fintypeCoe : Fintype m :=
Fintype.ofEquiv m.toEnumFinset m.coeEquiv.symm
#align multiset.fintype_coe Multiset.fintypeCoe
theorem Multiset.map_univ_coeEmbedding (m : Multiset α) :
(Finset.univ : Finset m).map m.coeEmbedding = m.toEnumFinset := by
ext ⟨x, i⟩
simp only [Fin.exists_iff, Finset.mem_map, Finset.mem_univ, Multiset.coeEmbedding_apply,
Prod.mk.inj_iff, exists_true_left, Multiset.exists_coe, Multiset.coe_mk, Fin.val_mk,
exists_prop, exists_eq_right_right, exists_eq_right, Multiset.mem_toEnumFinset, iff_self_iff,
true_and_iff]
#align multiset.map_univ_coe_embedding Multiset.map_univ_coeEmbedding
theorem Multiset.toEnumFinset_filter_eq (m : Multiset α) (x : α) :
(m.toEnumFinset.filter fun p ↦ x = p.1) =
(Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩ := by
ext ⟨y, i⟩
simp only [eq_comm, Finset.mem_filter, Multiset.mem_toEnumFinset, Finset.mem_map,
Finset.mem_range, Function.Embedding.coeFn_mk, Prod.mk.inj_iff, exists_prop,
exists_eq_right_right', and_congr_left_iff]
rintro rfl
rfl
#align multiset.to_enum_finset_filter_eq Multiset.toEnumFinset_filter_eq
@[simp]
theorem Multiset.map_toEnumFinset_fst (m : Multiset α) : m.toEnumFinset.val.map Prod.fst = m := by
ext x
simp only [Multiset.count_map, ← Finset.filter_val, Multiset.toEnumFinset_filter_eq,
Finset.map_val, Finset.range_val, Multiset.card_map, Multiset.card_range]
#align multiset.map_to_enum_finset_fst Multiset.map_toEnumFinset_fst
@[simp]
theorem Multiset.image_toEnumFinset_fst (m : Multiset α) :
m.toEnumFinset.image Prod.fst = m.toFinset := by
rw [Finset.image, Multiset.map_toEnumFinset_fst]
#align multiset.image_to_enum_finset_fst Multiset.image_toEnumFinset_fst
@[simp]
theorem Multiset.map_univ_coe (m : Multiset α) :
(Finset.univ : Finset m).val.map (fun x : m ↦ (x : α)) = m := by
have := m.map_toEnumFinset_fst
rw [← m.map_univ_coeEmbedding] at this
simpa only [Finset.map_val, Multiset.coeEmbedding_apply, Multiset.map_map,
Function.comp_apply] using this
#align multiset.map_univ_coe Multiset.map_univ_coe
@[simp]
theorem Multiset.map_univ {β : Type*} (m : Multiset α) (f : α → β) :
((Finset.univ : Finset m).val.map fun (x : m) ↦ f (x : α)) = m.map f := by
erw [← Multiset.map_map]
rw [Multiset.map_univ_coe]
#align multiset.map_univ Multiset.map_univ
@[simp]
theorem Multiset.card_toEnumFinset (m : Multiset α) : m.toEnumFinset.card = Multiset.card m := by
rw [Finset.card, ← Multiset.card_map Prod.fst m.toEnumFinset.val]
congr
| exact m.map_toEnumFinset_fst | @[simp]
theorem Multiset.card_toEnumFinset (m : Multiset α) : m.toEnumFinset.card = Multiset.card m := by
rw [Finset.card, ← Multiset.card_map Prod.fst m.toEnumFinset.val]
congr
| Mathlib.Data.Multiset.Fintype.246_0.gXgzg6nY9WO2bG2 | @[simp]
theorem Multiset.card_toEnumFinset (m : Multiset α) : m.toEnumFinset.card = Multiset.card m | Mathlib_Data_Multiset_Fintype |
α : Type u_1
inst✝ : DecidableEq α
m✝ m : Multiset α
⊢ Fintype.card (ToType m) = card m | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx))
simpa only [Multiset.mem_toEnumFinset] using h this
· simp [hx]
#align multiset.to_enum_finset_subset_iff Multiset.toEnumFinset_subset_iff
/-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x := (x, x.2)
inj' := by
intro ⟨x, i, hi⟩ ⟨y, j, hj⟩
rintro ⟨⟩
rfl
#align multiset.coe_embedding Multiset.coeEmbedding
/-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
rw [Multiset.mem_toEnumFinset]
exact x.2.2⟩
invFun x :=
⟨x.1.1, x.1.2, by
rw [← Multiset.mem_toEnumFinset]
exact x.2⟩
left_inv := by
rintro ⟨x, i, h⟩
rfl
right_inv := by
rintro ⟨⟨x, i⟩, h⟩
rfl
#align multiset.coe_equiv Multiset.coeEquiv
@[simp]
theorem Multiset.toEmbedding_coeEquiv_trans (m : Multiset α) :
m.coeEquiv.toEmbedding.trans (Function.Embedding.subtype _) = m.coeEmbedding := by ext <;> rfl
#align multiset.to_embedding_coe_equiv_trans Multiset.toEmbedding_coeEquiv_trans
@[irreducible]
instance Multiset.fintypeCoe : Fintype m :=
Fintype.ofEquiv m.toEnumFinset m.coeEquiv.symm
#align multiset.fintype_coe Multiset.fintypeCoe
theorem Multiset.map_univ_coeEmbedding (m : Multiset α) :
(Finset.univ : Finset m).map m.coeEmbedding = m.toEnumFinset := by
ext ⟨x, i⟩
simp only [Fin.exists_iff, Finset.mem_map, Finset.mem_univ, Multiset.coeEmbedding_apply,
Prod.mk.inj_iff, exists_true_left, Multiset.exists_coe, Multiset.coe_mk, Fin.val_mk,
exists_prop, exists_eq_right_right, exists_eq_right, Multiset.mem_toEnumFinset, iff_self_iff,
true_and_iff]
#align multiset.map_univ_coe_embedding Multiset.map_univ_coeEmbedding
theorem Multiset.toEnumFinset_filter_eq (m : Multiset α) (x : α) :
(m.toEnumFinset.filter fun p ↦ x = p.1) =
(Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩ := by
ext ⟨y, i⟩
simp only [eq_comm, Finset.mem_filter, Multiset.mem_toEnumFinset, Finset.mem_map,
Finset.mem_range, Function.Embedding.coeFn_mk, Prod.mk.inj_iff, exists_prop,
exists_eq_right_right', and_congr_left_iff]
rintro rfl
rfl
#align multiset.to_enum_finset_filter_eq Multiset.toEnumFinset_filter_eq
@[simp]
theorem Multiset.map_toEnumFinset_fst (m : Multiset α) : m.toEnumFinset.val.map Prod.fst = m := by
ext x
simp only [Multiset.count_map, ← Finset.filter_val, Multiset.toEnumFinset_filter_eq,
Finset.map_val, Finset.range_val, Multiset.card_map, Multiset.card_range]
#align multiset.map_to_enum_finset_fst Multiset.map_toEnumFinset_fst
@[simp]
theorem Multiset.image_toEnumFinset_fst (m : Multiset α) :
m.toEnumFinset.image Prod.fst = m.toFinset := by
rw [Finset.image, Multiset.map_toEnumFinset_fst]
#align multiset.image_to_enum_finset_fst Multiset.image_toEnumFinset_fst
@[simp]
theorem Multiset.map_univ_coe (m : Multiset α) :
(Finset.univ : Finset m).val.map (fun x : m ↦ (x : α)) = m := by
have := m.map_toEnumFinset_fst
rw [← m.map_univ_coeEmbedding] at this
simpa only [Finset.map_val, Multiset.coeEmbedding_apply, Multiset.map_map,
Function.comp_apply] using this
#align multiset.map_univ_coe Multiset.map_univ_coe
@[simp]
theorem Multiset.map_univ {β : Type*} (m : Multiset α) (f : α → β) :
((Finset.univ : Finset m).val.map fun (x : m) ↦ f (x : α)) = m.map f := by
erw [← Multiset.map_map]
rw [Multiset.map_univ_coe]
#align multiset.map_univ Multiset.map_univ
@[simp]
theorem Multiset.card_toEnumFinset (m : Multiset α) : m.toEnumFinset.card = Multiset.card m := by
rw [Finset.card, ← Multiset.card_map Prod.fst m.toEnumFinset.val]
congr
exact m.map_toEnumFinset_fst
#align multiset.card_to_enum_finset Multiset.card_toEnumFinset
@[simp]
theorem Multiset.card_coe (m : Multiset α) : Fintype.card m = Multiset.card m := by
| rw [Fintype.card_congr m.coeEquiv] | @[simp]
theorem Multiset.card_coe (m : Multiset α) : Fintype.card m = Multiset.card m := by
| Mathlib.Data.Multiset.Fintype.253_0.gXgzg6nY9WO2bG2 | @[simp]
theorem Multiset.card_coe (m : Multiset α) : Fintype.card m = Multiset.card m | Mathlib_Data_Multiset_Fintype |
α : Type u_1
inst✝ : DecidableEq α
m✝ m : Multiset α
⊢ Fintype.card { x // x ∈ toEnumFinset m } = card m | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx))
simpa only [Multiset.mem_toEnumFinset] using h this
· simp [hx]
#align multiset.to_enum_finset_subset_iff Multiset.toEnumFinset_subset_iff
/-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x := (x, x.2)
inj' := by
intro ⟨x, i, hi⟩ ⟨y, j, hj⟩
rintro ⟨⟩
rfl
#align multiset.coe_embedding Multiset.coeEmbedding
/-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
rw [Multiset.mem_toEnumFinset]
exact x.2.2⟩
invFun x :=
⟨x.1.1, x.1.2, by
rw [← Multiset.mem_toEnumFinset]
exact x.2⟩
left_inv := by
rintro ⟨x, i, h⟩
rfl
right_inv := by
rintro ⟨⟨x, i⟩, h⟩
rfl
#align multiset.coe_equiv Multiset.coeEquiv
@[simp]
theorem Multiset.toEmbedding_coeEquiv_trans (m : Multiset α) :
m.coeEquiv.toEmbedding.trans (Function.Embedding.subtype _) = m.coeEmbedding := by ext <;> rfl
#align multiset.to_embedding_coe_equiv_trans Multiset.toEmbedding_coeEquiv_trans
@[irreducible]
instance Multiset.fintypeCoe : Fintype m :=
Fintype.ofEquiv m.toEnumFinset m.coeEquiv.symm
#align multiset.fintype_coe Multiset.fintypeCoe
theorem Multiset.map_univ_coeEmbedding (m : Multiset α) :
(Finset.univ : Finset m).map m.coeEmbedding = m.toEnumFinset := by
ext ⟨x, i⟩
simp only [Fin.exists_iff, Finset.mem_map, Finset.mem_univ, Multiset.coeEmbedding_apply,
Prod.mk.inj_iff, exists_true_left, Multiset.exists_coe, Multiset.coe_mk, Fin.val_mk,
exists_prop, exists_eq_right_right, exists_eq_right, Multiset.mem_toEnumFinset, iff_self_iff,
true_and_iff]
#align multiset.map_univ_coe_embedding Multiset.map_univ_coeEmbedding
theorem Multiset.toEnumFinset_filter_eq (m : Multiset α) (x : α) :
(m.toEnumFinset.filter fun p ↦ x = p.1) =
(Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩ := by
ext ⟨y, i⟩
simp only [eq_comm, Finset.mem_filter, Multiset.mem_toEnumFinset, Finset.mem_map,
Finset.mem_range, Function.Embedding.coeFn_mk, Prod.mk.inj_iff, exists_prop,
exists_eq_right_right', and_congr_left_iff]
rintro rfl
rfl
#align multiset.to_enum_finset_filter_eq Multiset.toEnumFinset_filter_eq
@[simp]
theorem Multiset.map_toEnumFinset_fst (m : Multiset α) : m.toEnumFinset.val.map Prod.fst = m := by
ext x
simp only [Multiset.count_map, ← Finset.filter_val, Multiset.toEnumFinset_filter_eq,
Finset.map_val, Finset.range_val, Multiset.card_map, Multiset.card_range]
#align multiset.map_to_enum_finset_fst Multiset.map_toEnumFinset_fst
@[simp]
theorem Multiset.image_toEnumFinset_fst (m : Multiset α) :
m.toEnumFinset.image Prod.fst = m.toFinset := by
rw [Finset.image, Multiset.map_toEnumFinset_fst]
#align multiset.image_to_enum_finset_fst Multiset.image_toEnumFinset_fst
@[simp]
theorem Multiset.map_univ_coe (m : Multiset α) :
(Finset.univ : Finset m).val.map (fun x : m ↦ (x : α)) = m := by
have := m.map_toEnumFinset_fst
rw [← m.map_univ_coeEmbedding] at this
simpa only [Finset.map_val, Multiset.coeEmbedding_apply, Multiset.map_map,
Function.comp_apply] using this
#align multiset.map_univ_coe Multiset.map_univ_coe
@[simp]
theorem Multiset.map_univ {β : Type*} (m : Multiset α) (f : α → β) :
((Finset.univ : Finset m).val.map fun (x : m) ↦ f (x : α)) = m.map f := by
erw [← Multiset.map_map]
rw [Multiset.map_univ_coe]
#align multiset.map_univ Multiset.map_univ
@[simp]
theorem Multiset.card_toEnumFinset (m : Multiset α) : m.toEnumFinset.card = Multiset.card m := by
rw [Finset.card, ← Multiset.card_map Prod.fst m.toEnumFinset.val]
congr
exact m.map_toEnumFinset_fst
#align multiset.card_to_enum_finset Multiset.card_toEnumFinset
@[simp]
theorem Multiset.card_coe (m : Multiset α) : Fintype.card m = Multiset.card m := by
rw [Fintype.card_congr m.coeEquiv]
| simp only [Fintype.card_coe, card_toEnumFinset] | @[simp]
theorem Multiset.card_coe (m : Multiset α) : Fintype.card m = Multiset.card m := by
rw [Fintype.card_congr m.coeEquiv]
| Mathlib.Data.Multiset.Fintype.253_0.gXgzg6nY9WO2bG2 | @[simp]
theorem Multiset.card_coe (m : Multiset α) : Fintype.card m = Multiset.card m | Mathlib_Data_Multiset_Fintype |
α : Type u_1
inst✝¹ : DecidableEq α
m✝ : Multiset α
inst✝ : CommMonoid α
m : Multiset α
⊢ prod m = ∏ x : ToType m, x.fst | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx))
simpa only [Multiset.mem_toEnumFinset] using h this
· simp [hx]
#align multiset.to_enum_finset_subset_iff Multiset.toEnumFinset_subset_iff
/-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x := (x, x.2)
inj' := by
intro ⟨x, i, hi⟩ ⟨y, j, hj⟩
rintro ⟨⟩
rfl
#align multiset.coe_embedding Multiset.coeEmbedding
/-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
rw [Multiset.mem_toEnumFinset]
exact x.2.2⟩
invFun x :=
⟨x.1.1, x.1.2, by
rw [← Multiset.mem_toEnumFinset]
exact x.2⟩
left_inv := by
rintro ⟨x, i, h⟩
rfl
right_inv := by
rintro ⟨⟨x, i⟩, h⟩
rfl
#align multiset.coe_equiv Multiset.coeEquiv
@[simp]
theorem Multiset.toEmbedding_coeEquiv_trans (m : Multiset α) :
m.coeEquiv.toEmbedding.trans (Function.Embedding.subtype _) = m.coeEmbedding := by ext <;> rfl
#align multiset.to_embedding_coe_equiv_trans Multiset.toEmbedding_coeEquiv_trans
@[irreducible]
instance Multiset.fintypeCoe : Fintype m :=
Fintype.ofEquiv m.toEnumFinset m.coeEquiv.symm
#align multiset.fintype_coe Multiset.fintypeCoe
theorem Multiset.map_univ_coeEmbedding (m : Multiset α) :
(Finset.univ : Finset m).map m.coeEmbedding = m.toEnumFinset := by
ext ⟨x, i⟩
simp only [Fin.exists_iff, Finset.mem_map, Finset.mem_univ, Multiset.coeEmbedding_apply,
Prod.mk.inj_iff, exists_true_left, Multiset.exists_coe, Multiset.coe_mk, Fin.val_mk,
exists_prop, exists_eq_right_right, exists_eq_right, Multiset.mem_toEnumFinset, iff_self_iff,
true_and_iff]
#align multiset.map_univ_coe_embedding Multiset.map_univ_coeEmbedding
theorem Multiset.toEnumFinset_filter_eq (m : Multiset α) (x : α) :
(m.toEnumFinset.filter fun p ↦ x = p.1) =
(Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩ := by
ext ⟨y, i⟩
simp only [eq_comm, Finset.mem_filter, Multiset.mem_toEnumFinset, Finset.mem_map,
Finset.mem_range, Function.Embedding.coeFn_mk, Prod.mk.inj_iff, exists_prop,
exists_eq_right_right', and_congr_left_iff]
rintro rfl
rfl
#align multiset.to_enum_finset_filter_eq Multiset.toEnumFinset_filter_eq
@[simp]
theorem Multiset.map_toEnumFinset_fst (m : Multiset α) : m.toEnumFinset.val.map Prod.fst = m := by
ext x
simp only [Multiset.count_map, ← Finset.filter_val, Multiset.toEnumFinset_filter_eq,
Finset.map_val, Finset.range_val, Multiset.card_map, Multiset.card_range]
#align multiset.map_to_enum_finset_fst Multiset.map_toEnumFinset_fst
@[simp]
theorem Multiset.image_toEnumFinset_fst (m : Multiset α) :
m.toEnumFinset.image Prod.fst = m.toFinset := by
rw [Finset.image, Multiset.map_toEnumFinset_fst]
#align multiset.image_to_enum_finset_fst Multiset.image_toEnumFinset_fst
@[simp]
theorem Multiset.map_univ_coe (m : Multiset α) :
(Finset.univ : Finset m).val.map (fun x : m ↦ (x : α)) = m := by
have := m.map_toEnumFinset_fst
rw [← m.map_univ_coeEmbedding] at this
simpa only [Finset.map_val, Multiset.coeEmbedding_apply, Multiset.map_map,
Function.comp_apply] using this
#align multiset.map_univ_coe Multiset.map_univ_coe
@[simp]
theorem Multiset.map_univ {β : Type*} (m : Multiset α) (f : α → β) :
((Finset.univ : Finset m).val.map fun (x : m) ↦ f (x : α)) = m.map f := by
erw [← Multiset.map_map]
rw [Multiset.map_univ_coe]
#align multiset.map_univ Multiset.map_univ
@[simp]
theorem Multiset.card_toEnumFinset (m : Multiset α) : m.toEnumFinset.card = Multiset.card m := by
rw [Finset.card, ← Multiset.card_map Prod.fst m.toEnumFinset.val]
congr
exact m.map_toEnumFinset_fst
#align multiset.card_to_enum_finset Multiset.card_toEnumFinset
@[simp]
theorem Multiset.card_coe (m : Multiset α) : Fintype.card m = Multiset.card m := by
rw [Fintype.card_congr m.coeEquiv]
simp only [Fintype.card_coe, card_toEnumFinset]
#align multiset.card_coe Multiset.card_coe
@[to_additive]
theorem Multiset.prod_eq_prod_coe [CommMonoid α] (m : Multiset α) : m.prod = ∏ x : m, (x : α) := by
| congr | @[to_additive]
theorem Multiset.prod_eq_prod_coe [CommMonoid α] (m : Multiset α) : m.prod = ∏ x : m, (x : α) := by
| Mathlib.Data.Multiset.Fintype.259_0.gXgzg6nY9WO2bG2 | @[to_additive]
theorem Multiset.prod_eq_prod_coe [CommMonoid α] (m : Multiset α) : m.prod = ∏ x : m, (x : α) | Mathlib_Data_Multiset_Fintype |
case e_a
α : Type u_1
inst✝¹ : DecidableEq α
m✝ : Multiset α
inst✝ : CommMonoid α
m : Multiset α
⊢ m = map (fun x => x.fst) Finset.univ.val | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx))
simpa only [Multiset.mem_toEnumFinset] using h this
· simp [hx]
#align multiset.to_enum_finset_subset_iff Multiset.toEnumFinset_subset_iff
/-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x := (x, x.2)
inj' := by
intro ⟨x, i, hi⟩ ⟨y, j, hj⟩
rintro ⟨⟩
rfl
#align multiset.coe_embedding Multiset.coeEmbedding
/-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
rw [Multiset.mem_toEnumFinset]
exact x.2.2⟩
invFun x :=
⟨x.1.1, x.1.2, by
rw [← Multiset.mem_toEnumFinset]
exact x.2⟩
left_inv := by
rintro ⟨x, i, h⟩
rfl
right_inv := by
rintro ⟨⟨x, i⟩, h⟩
rfl
#align multiset.coe_equiv Multiset.coeEquiv
@[simp]
theorem Multiset.toEmbedding_coeEquiv_trans (m : Multiset α) :
m.coeEquiv.toEmbedding.trans (Function.Embedding.subtype _) = m.coeEmbedding := by ext <;> rfl
#align multiset.to_embedding_coe_equiv_trans Multiset.toEmbedding_coeEquiv_trans
@[irreducible]
instance Multiset.fintypeCoe : Fintype m :=
Fintype.ofEquiv m.toEnumFinset m.coeEquiv.symm
#align multiset.fintype_coe Multiset.fintypeCoe
theorem Multiset.map_univ_coeEmbedding (m : Multiset α) :
(Finset.univ : Finset m).map m.coeEmbedding = m.toEnumFinset := by
ext ⟨x, i⟩
simp only [Fin.exists_iff, Finset.mem_map, Finset.mem_univ, Multiset.coeEmbedding_apply,
Prod.mk.inj_iff, exists_true_left, Multiset.exists_coe, Multiset.coe_mk, Fin.val_mk,
exists_prop, exists_eq_right_right, exists_eq_right, Multiset.mem_toEnumFinset, iff_self_iff,
true_and_iff]
#align multiset.map_univ_coe_embedding Multiset.map_univ_coeEmbedding
theorem Multiset.toEnumFinset_filter_eq (m : Multiset α) (x : α) :
(m.toEnumFinset.filter fun p ↦ x = p.1) =
(Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩ := by
ext ⟨y, i⟩
simp only [eq_comm, Finset.mem_filter, Multiset.mem_toEnumFinset, Finset.mem_map,
Finset.mem_range, Function.Embedding.coeFn_mk, Prod.mk.inj_iff, exists_prop,
exists_eq_right_right', and_congr_left_iff]
rintro rfl
rfl
#align multiset.to_enum_finset_filter_eq Multiset.toEnumFinset_filter_eq
@[simp]
theorem Multiset.map_toEnumFinset_fst (m : Multiset α) : m.toEnumFinset.val.map Prod.fst = m := by
ext x
simp only [Multiset.count_map, ← Finset.filter_val, Multiset.toEnumFinset_filter_eq,
Finset.map_val, Finset.range_val, Multiset.card_map, Multiset.card_range]
#align multiset.map_to_enum_finset_fst Multiset.map_toEnumFinset_fst
@[simp]
theorem Multiset.image_toEnumFinset_fst (m : Multiset α) :
m.toEnumFinset.image Prod.fst = m.toFinset := by
rw [Finset.image, Multiset.map_toEnumFinset_fst]
#align multiset.image_to_enum_finset_fst Multiset.image_toEnumFinset_fst
@[simp]
theorem Multiset.map_univ_coe (m : Multiset α) :
(Finset.univ : Finset m).val.map (fun x : m ↦ (x : α)) = m := by
have := m.map_toEnumFinset_fst
rw [← m.map_univ_coeEmbedding] at this
simpa only [Finset.map_val, Multiset.coeEmbedding_apply, Multiset.map_map,
Function.comp_apply] using this
#align multiset.map_univ_coe Multiset.map_univ_coe
@[simp]
theorem Multiset.map_univ {β : Type*} (m : Multiset α) (f : α → β) :
((Finset.univ : Finset m).val.map fun (x : m) ↦ f (x : α)) = m.map f := by
erw [← Multiset.map_map]
rw [Multiset.map_univ_coe]
#align multiset.map_univ Multiset.map_univ
@[simp]
theorem Multiset.card_toEnumFinset (m : Multiset α) : m.toEnumFinset.card = Multiset.card m := by
rw [Finset.card, ← Multiset.card_map Prod.fst m.toEnumFinset.val]
congr
exact m.map_toEnumFinset_fst
#align multiset.card_to_enum_finset Multiset.card_toEnumFinset
@[simp]
theorem Multiset.card_coe (m : Multiset α) : Fintype.card m = Multiset.card m := by
rw [Fintype.card_congr m.coeEquiv]
simp only [Fintype.card_coe, card_toEnumFinset]
#align multiset.card_coe Multiset.card_coe
@[to_additive]
theorem Multiset.prod_eq_prod_coe [CommMonoid α] (m : Multiset α) : m.prod = ∏ x : m, (x : α) := by
congr
-- Porting note: `simp` fails with "maximum recursion depth has been reached"
| erw [map_univ_coe] | @[to_additive]
theorem Multiset.prod_eq_prod_coe [CommMonoid α] (m : Multiset α) : m.prod = ∏ x : m, (x : α) := by
congr
-- Porting note: `simp` fails with "maximum recursion depth has been reached"
| Mathlib.Data.Multiset.Fintype.259_0.gXgzg6nY9WO2bG2 | @[to_additive]
theorem Multiset.prod_eq_prod_coe [CommMonoid α] (m : Multiset α) : m.prod = ∏ x : m, (x : α) | Mathlib_Data_Multiset_Fintype |
α : Type u_1
inst✝¹ : DecidableEq α
m✝ : Multiset α
inst✝ : CommMonoid α
m : Multiset α
⊢ prod m = ∏ x in toEnumFinset m, x.1 | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx))
simpa only [Multiset.mem_toEnumFinset] using h this
· simp [hx]
#align multiset.to_enum_finset_subset_iff Multiset.toEnumFinset_subset_iff
/-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x := (x, x.2)
inj' := by
intro ⟨x, i, hi⟩ ⟨y, j, hj⟩
rintro ⟨⟩
rfl
#align multiset.coe_embedding Multiset.coeEmbedding
/-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
rw [Multiset.mem_toEnumFinset]
exact x.2.2⟩
invFun x :=
⟨x.1.1, x.1.2, by
rw [← Multiset.mem_toEnumFinset]
exact x.2⟩
left_inv := by
rintro ⟨x, i, h⟩
rfl
right_inv := by
rintro ⟨⟨x, i⟩, h⟩
rfl
#align multiset.coe_equiv Multiset.coeEquiv
@[simp]
theorem Multiset.toEmbedding_coeEquiv_trans (m : Multiset α) :
m.coeEquiv.toEmbedding.trans (Function.Embedding.subtype _) = m.coeEmbedding := by ext <;> rfl
#align multiset.to_embedding_coe_equiv_trans Multiset.toEmbedding_coeEquiv_trans
@[irreducible]
instance Multiset.fintypeCoe : Fintype m :=
Fintype.ofEquiv m.toEnumFinset m.coeEquiv.symm
#align multiset.fintype_coe Multiset.fintypeCoe
theorem Multiset.map_univ_coeEmbedding (m : Multiset α) :
(Finset.univ : Finset m).map m.coeEmbedding = m.toEnumFinset := by
ext ⟨x, i⟩
simp only [Fin.exists_iff, Finset.mem_map, Finset.mem_univ, Multiset.coeEmbedding_apply,
Prod.mk.inj_iff, exists_true_left, Multiset.exists_coe, Multiset.coe_mk, Fin.val_mk,
exists_prop, exists_eq_right_right, exists_eq_right, Multiset.mem_toEnumFinset, iff_self_iff,
true_and_iff]
#align multiset.map_univ_coe_embedding Multiset.map_univ_coeEmbedding
theorem Multiset.toEnumFinset_filter_eq (m : Multiset α) (x : α) :
(m.toEnumFinset.filter fun p ↦ x = p.1) =
(Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩ := by
ext ⟨y, i⟩
simp only [eq_comm, Finset.mem_filter, Multiset.mem_toEnumFinset, Finset.mem_map,
Finset.mem_range, Function.Embedding.coeFn_mk, Prod.mk.inj_iff, exists_prop,
exists_eq_right_right', and_congr_left_iff]
rintro rfl
rfl
#align multiset.to_enum_finset_filter_eq Multiset.toEnumFinset_filter_eq
@[simp]
theorem Multiset.map_toEnumFinset_fst (m : Multiset α) : m.toEnumFinset.val.map Prod.fst = m := by
ext x
simp only [Multiset.count_map, ← Finset.filter_val, Multiset.toEnumFinset_filter_eq,
Finset.map_val, Finset.range_val, Multiset.card_map, Multiset.card_range]
#align multiset.map_to_enum_finset_fst Multiset.map_toEnumFinset_fst
@[simp]
theorem Multiset.image_toEnumFinset_fst (m : Multiset α) :
m.toEnumFinset.image Prod.fst = m.toFinset := by
rw [Finset.image, Multiset.map_toEnumFinset_fst]
#align multiset.image_to_enum_finset_fst Multiset.image_toEnumFinset_fst
@[simp]
theorem Multiset.map_univ_coe (m : Multiset α) :
(Finset.univ : Finset m).val.map (fun x : m ↦ (x : α)) = m := by
have := m.map_toEnumFinset_fst
rw [← m.map_univ_coeEmbedding] at this
simpa only [Finset.map_val, Multiset.coeEmbedding_apply, Multiset.map_map,
Function.comp_apply] using this
#align multiset.map_univ_coe Multiset.map_univ_coe
@[simp]
theorem Multiset.map_univ {β : Type*} (m : Multiset α) (f : α → β) :
((Finset.univ : Finset m).val.map fun (x : m) ↦ f (x : α)) = m.map f := by
erw [← Multiset.map_map]
rw [Multiset.map_univ_coe]
#align multiset.map_univ Multiset.map_univ
@[simp]
theorem Multiset.card_toEnumFinset (m : Multiset α) : m.toEnumFinset.card = Multiset.card m := by
rw [Finset.card, ← Multiset.card_map Prod.fst m.toEnumFinset.val]
congr
exact m.map_toEnumFinset_fst
#align multiset.card_to_enum_finset Multiset.card_toEnumFinset
@[simp]
theorem Multiset.card_coe (m : Multiset α) : Fintype.card m = Multiset.card m := by
rw [Fintype.card_congr m.coeEquiv]
simp only [Fintype.card_coe, card_toEnumFinset]
#align multiset.card_coe Multiset.card_coe
@[to_additive]
theorem Multiset.prod_eq_prod_coe [CommMonoid α] (m : Multiset α) : m.prod = ∏ x : m, (x : α) := by
congr
-- Porting note: `simp` fails with "maximum recursion depth has been reached"
erw [map_univ_coe]
#align multiset.prod_eq_prod_coe Multiset.prod_eq_prod_coe
#align multiset.sum_eq_sum_coe Multiset.sum_eq_sum_coe
@[to_additive]
theorem Multiset.prod_eq_prod_toEnumFinset [CommMonoid α] (m : Multiset α) :
m.prod = ∏ x in m.toEnumFinset, x.1 := by
| congr | @[to_additive]
theorem Multiset.prod_eq_prod_toEnumFinset [CommMonoid α] (m : Multiset α) :
m.prod = ∏ x in m.toEnumFinset, x.1 := by
| Mathlib.Data.Multiset.Fintype.267_0.gXgzg6nY9WO2bG2 | @[to_additive]
theorem Multiset.prod_eq_prod_toEnumFinset [CommMonoid α] (m : Multiset α) :
m.prod = ∏ x in m.toEnumFinset, x.1 | Mathlib_Data_Multiset_Fintype |
case e_a
α : Type u_1
inst✝¹ : DecidableEq α
m✝ : Multiset α
inst✝ : CommMonoid α
m : Multiset α
⊢ m = map (fun x => x.1) (toEnumFinset m).val | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx))
simpa only [Multiset.mem_toEnumFinset] using h this
· simp [hx]
#align multiset.to_enum_finset_subset_iff Multiset.toEnumFinset_subset_iff
/-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x := (x, x.2)
inj' := by
intro ⟨x, i, hi⟩ ⟨y, j, hj⟩
rintro ⟨⟩
rfl
#align multiset.coe_embedding Multiset.coeEmbedding
/-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
rw [Multiset.mem_toEnumFinset]
exact x.2.2⟩
invFun x :=
⟨x.1.1, x.1.2, by
rw [← Multiset.mem_toEnumFinset]
exact x.2⟩
left_inv := by
rintro ⟨x, i, h⟩
rfl
right_inv := by
rintro ⟨⟨x, i⟩, h⟩
rfl
#align multiset.coe_equiv Multiset.coeEquiv
@[simp]
theorem Multiset.toEmbedding_coeEquiv_trans (m : Multiset α) :
m.coeEquiv.toEmbedding.trans (Function.Embedding.subtype _) = m.coeEmbedding := by ext <;> rfl
#align multiset.to_embedding_coe_equiv_trans Multiset.toEmbedding_coeEquiv_trans
@[irreducible]
instance Multiset.fintypeCoe : Fintype m :=
Fintype.ofEquiv m.toEnumFinset m.coeEquiv.symm
#align multiset.fintype_coe Multiset.fintypeCoe
theorem Multiset.map_univ_coeEmbedding (m : Multiset α) :
(Finset.univ : Finset m).map m.coeEmbedding = m.toEnumFinset := by
ext ⟨x, i⟩
simp only [Fin.exists_iff, Finset.mem_map, Finset.mem_univ, Multiset.coeEmbedding_apply,
Prod.mk.inj_iff, exists_true_left, Multiset.exists_coe, Multiset.coe_mk, Fin.val_mk,
exists_prop, exists_eq_right_right, exists_eq_right, Multiset.mem_toEnumFinset, iff_self_iff,
true_and_iff]
#align multiset.map_univ_coe_embedding Multiset.map_univ_coeEmbedding
theorem Multiset.toEnumFinset_filter_eq (m : Multiset α) (x : α) :
(m.toEnumFinset.filter fun p ↦ x = p.1) =
(Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩ := by
ext ⟨y, i⟩
simp only [eq_comm, Finset.mem_filter, Multiset.mem_toEnumFinset, Finset.mem_map,
Finset.mem_range, Function.Embedding.coeFn_mk, Prod.mk.inj_iff, exists_prop,
exists_eq_right_right', and_congr_left_iff]
rintro rfl
rfl
#align multiset.to_enum_finset_filter_eq Multiset.toEnumFinset_filter_eq
@[simp]
theorem Multiset.map_toEnumFinset_fst (m : Multiset α) : m.toEnumFinset.val.map Prod.fst = m := by
ext x
simp only [Multiset.count_map, ← Finset.filter_val, Multiset.toEnumFinset_filter_eq,
Finset.map_val, Finset.range_val, Multiset.card_map, Multiset.card_range]
#align multiset.map_to_enum_finset_fst Multiset.map_toEnumFinset_fst
@[simp]
theorem Multiset.image_toEnumFinset_fst (m : Multiset α) :
m.toEnumFinset.image Prod.fst = m.toFinset := by
rw [Finset.image, Multiset.map_toEnumFinset_fst]
#align multiset.image_to_enum_finset_fst Multiset.image_toEnumFinset_fst
@[simp]
theorem Multiset.map_univ_coe (m : Multiset α) :
(Finset.univ : Finset m).val.map (fun x : m ↦ (x : α)) = m := by
have := m.map_toEnumFinset_fst
rw [← m.map_univ_coeEmbedding] at this
simpa only [Finset.map_val, Multiset.coeEmbedding_apply, Multiset.map_map,
Function.comp_apply] using this
#align multiset.map_univ_coe Multiset.map_univ_coe
@[simp]
theorem Multiset.map_univ {β : Type*} (m : Multiset α) (f : α → β) :
((Finset.univ : Finset m).val.map fun (x : m) ↦ f (x : α)) = m.map f := by
erw [← Multiset.map_map]
rw [Multiset.map_univ_coe]
#align multiset.map_univ Multiset.map_univ
@[simp]
theorem Multiset.card_toEnumFinset (m : Multiset α) : m.toEnumFinset.card = Multiset.card m := by
rw [Finset.card, ← Multiset.card_map Prod.fst m.toEnumFinset.val]
congr
exact m.map_toEnumFinset_fst
#align multiset.card_to_enum_finset Multiset.card_toEnumFinset
@[simp]
theorem Multiset.card_coe (m : Multiset α) : Fintype.card m = Multiset.card m := by
rw [Fintype.card_congr m.coeEquiv]
simp only [Fintype.card_coe, card_toEnumFinset]
#align multiset.card_coe Multiset.card_coe
@[to_additive]
theorem Multiset.prod_eq_prod_coe [CommMonoid α] (m : Multiset α) : m.prod = ∏ x : m, (x : α) := by
congr
-- Porting note: `simp` fails with "maximum recursion depth has been reached"
erw [map_univ_coe]
#align multiset.prod_eq_prod_coe Multiset.prod_eq_prod_coe
#align multiset.sum_eq_sum_coe Multiset.sum_eq_sum_coe
@[to_additive]
theorem Multiset.prod_eq_prod_toEnumFinset [CommMonoid α] (m : Multiset α) :
m.prod = ∏ x in m.toEnumFinset, x.1 := by
congr
| simp | @[to_additive]
theorem Multiset.prod_eq_prod_toEnumFinset [CommMonoid α] (m : Multiset α) :
m.prod = ∏ x in m.toEnumFinset, x.1 := by
congr
| Mathlib.Data.Multiset.Fintype.267_0.gXgzg6nY9WO2bG2 | @[to_additive]
theorem Multiset.prod_eq_prod_toEnumFinset [CommMonoid α] (m : Multiset α) :
m.prod = ∏ x in m.toEnumFinset, x.1 | Mathlib_Data_Multiset_Fintype |
α : Type u_1
inst✝¹ : DecidableEq α
m✝ : Multiset α
β : Type u_2
inst✝ : CommMonoid β
m : Multiset α
f : α → ℕ → β
⊢ ∏ x in toEnumFinset m, f x.1 x.2 = ∏ x : ToType m, f x.fst ↑x.snd | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx))
simpa only [Multiset.mem_toEnumFinset] using h this
· simp [hx]
#align multiset.to_enum_finset_subset_iff Multiset.toEnumFinset_subset_iff
/-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x := (x, x.2)
inj' := by
intro ⟨x, i, hi⟩ ⟨y, j, hj⟩
rintro ⟨⟩
rfl
#align multiset.coe_embedding Multiset.coeEmbedding
/-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
rw [Multiset.mem_toEnumFinset]
exact x.2.2⟩
invFun x :=
⟨x.1.1, x.1.2, by
rw [← Multiset.mem_toEnumFinset]
exact x.2⟩
left_inv := by
rintro ⟨x, i, h⟩
rfl
right_inv := by
rintro ⟨⟨x, i⟩, h⟩
rfl
#align multiset.coe_equiv Multiset.coeEquiv
@[simp]
theorem Multiset.toEmbedding_coeEquiv_trans (m : Multiset α) :
m.coeEquiv.toEmbedding.trans (Function.Embedding.subtype _) = m.coeEmbedding := by ext <;> rfl
#align multiset.to_embedding_coe_equiv_trans Multiset.toEmbedding_coeEquiv_trans
@[irreducible]
instance Multiset.fintypeCoe : Fintype m :=
Fintype.ofEquiv m.toEnumFinset m.coeEquiv.symm
#align multiset.fintype_coe Multiset.fintypeCoe
theorem Multiset.map_univ_coeEmbedding (m : Multiset α) :
(Finset.univ : Finset m).map m.coeEmbedding = m.toEnumFinset := by
ext ⟨x, i⟩
simp only [Fin.exists_iff, Finset.mem_map, Finset.mem_univ, Multiset.coeEmbedding_apply,
Prod.mk.inj_iff, exists_true_left, Multiset.exists_coe, Multiset.coe_mk, Fin.val_mk,
exists_prop, exists_eq_right_right, exists_eq_right, Multiset.mem_toEnumFinset, iff_self_iff,
true_and_iff]
#align multiset.map_univ_coe_embedding Multiset.map_univ_coeEmbedding
theorem Multiset.toEnumFinset_filter_eq (m : Multiset α) (x : α) :
(m.toEnumFinset.filter fun p ↦ x = p.1) =
(Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩ := by
ext ⟨y, i⟩
simp only [eq_comm, Finset.mem_filter, Multiset.mem_toEnumFinset, Finset.mem_map,
Finset.mem_range, Function.Embedding.coeFn_mk, Prod.mk.inj_iff, exists_prop,
exists_eq_right_right', and_congr_left_iff]
rintro rfl
rfl
#align multiset.to_enum_finset_filter_eq Multiset.toEnumFinset_filter_eq
@[simp]
theorem Multiset.map_toEnumFinset_fst (m : Multiset α) : m.toEnumFinset.val.map Prod.fst = m := by
ext x
simp only [Multiset.count_map, ← Finset.filter_val, Multiset.toEnumFinset_filter_eq,
Finset.map_val, Finset.range_val, Multiset.card_map, Multiset.card_range]
#align multiset.map_to_enum_finset_fst Multiset.map_toEnumFinset_fst
@[simp]
theorem Multiset.image_toEnumFinset_fst (m : Multiset α) :
m.toEnumFinset.image Prod.fst = m.toFinset := by
rw [Finset.image, Multiset.map_toEnumFinset_fst]
#align multiset.image_to_enum_finset_fst Multiset.image_toEnumFinset_fst
@[simp]
theorem Multiset.map_univ_coe (m : Multiset α) :
(Finset.univ : Finset m).val.map (fun x : m ↦ (x : α)) = m := by
have := m.map_toEnumFinset_fst
rw [← m.map_univ_coeEmbedding] at this
simpa only [Finset.map_val, Multiset.coeEmbedding_apply, Multiset.map_map,
Function.comp_apply] using this
#align multiset.map_univ_coe Multiset.map_univ_coe
@[simp]
theorem Multiset.map_univ {β : Type*} (m : Multiset α) (f : α → β) :
((Finset.univ : Finset m).val.map fun (x : m) ↦ f (x : α)) = m.map f := by
erw [← Multiset.map_map]
rw [Multiset.map_univ_coe]
#align multiset.map_univ Multiset.map_univ
@[simp]
theorem Multiset.card_toEnumFinset (m : Multiset α) : m.toEnumFinset.card = Multiset.card m := by
rw [Finset.card, ← Multiset.card_map Prod.fst m.toEnumFinset.val]
congr
exact m.map_toEnumFinset_fst
#align multiset.card_to_enum_finset Multiset.card_toEnumFinset
@[simp]
theorem Multiset.card_coe (m : Multiset α) : Fintype.card m = Multiset.card m := by
rw [Fintype.card_congr m.coeEquiv]
simp only [Fintype.card_coe, card_toEnumFinset]
#align multiset.card_coe Multiset.card_coe
@[to_additive]
theorem Multiset.prod_eq_prod_coe [CommMonoid α] (m : Multiset α) : m.prod = ∏ x : m, (x : α) := by
congr
-- Porting note: `simp` fails with "maximum recursion depth has been reached"
erw [map_univ_coe]
#align multiset.prod_eq_prod_coe Multiset.prod_eq_prod_coe
#align multiset.sum_eq_sum_coe Multiset.sum_eq_sum_coe
@[to_additive]
theorem Multiset.prod_eq_prod_toEnumFinset [CommMonoid α] (m : Multiset α) :
m.prod = ∏ x in m.toEnumFinset, x.1 := by
congr
simp
#align multiset.prod_eq_prod_to_enum_finset Multiset.prod_eq_prod_toEnumFinset
#align multiset.sum_eq_sum_to_enum_finset Multiset.sum_eq_sum_toEnumFinset
@[to_additive]
theorem Multiset.prod_toEnumFinset {β : Type*} [CommMonoid β] (m : Multiset α) (f : α → ℕ → β) :
∏ x in m.toEnumFinset, f x.1 x.2 = ∏ x : m, f x x.2 := by
| rw [Fintype.prod_equiv m.coeEquiv (fun x ↦ f x x.2) fun x ↦ f x.1.1 x.1.2] | @[to_additive]
theorem Multiset.prod_toEnumFinset {β : Type*} [CommMonoid β] (m : Multiset α) (f : α → ℕ → β) :
∏ x in m.toEnumFinset, f x.1 x.2 = ∏ x : m, f x x.2 := by
| Mathlib.Data.Multiset.Fintype.275_0.gXgzg6nY9WO2bG2 | @[to_additive]
theorem Multiset.prod_toEnumFinset {β : Type*} [CommMonoid β] (m : Multiset α) (f : α → ℕ → β) :
∏ x in m.toEnumFinset, f x.1 x.2 = ∏ x : m, f x x.2 | Mathlib_Data_Multiset_Fintype |
α : Type u_1
inst✝¹ : DecidableEq α
m✝ : Multiset α
β : Type u_2
inst✝ : CommMonoid β
m : Multiset α
f : α → ℕ → β
⊢ ∏ x in toEnumFinset m, f x.1 x.2 = ∏ x : { x // x ∈ toEnumFinset m }, f (↑x).1 (↑x).2 | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx))
simpa only [Multiset.mem_toEnumFinset] using h this
· simp [hx]
#align multiset.to_enum_finset_subset_iff Multiset.toEnumFinset_subset_iff
/-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x := (x, x.2)
inj' := by
intro ⟨x, i, hi⟩ ⟨y, j, hj⟩
rintro ⟨⟩
rfl
#align multiset.coe_embedding Multiset.coeEmbedding
/-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
rw [Multiset.mem_toEnumFinset]
exact x.2.2⟩
invFun x :=
⟨x.1.1, x.1.2, by
rw [← Multiset.mem_toEnumFinset]
exact x.2⟩
left_inv := by
rintro ⟨x, i, h⟩
rfl
right_inv := by
rintro ⟨⟨x, i⟩, h⟩
rfl
#align multiset.coe_equiv Multiset.coeEquiv
@[simp]
theorem Multiset.toEmbedding_coeEquiv_trans (m : Multiset α) :
m.coeEquiv.toEmbedding.trans (Function.Embedding.subtype _) = m.coeEmbedding := by ext <;> rfl
#align multiset.to_embedding_coe_equiv_trans Multiset.toEmbedding_coeEquiv_trans
@[irreducible]
instance Multiset.fintypeCoe : Fintype m :=
Fintype.ofEquiv m.toEnumFinset m.coeEquiv.symm
#align multiset.fintype_coe Multiset.fintypeCoe
theorem Multiset.map_univ_coeEmbedding (m : Multiset α) :
(Finset.univ : Finset m).map m.coeEmbedding = m.toEnumFinset := by
ext ⟨x, i⟩
simp only [Fin.exists_iff, Finset.mem_map, Finset.mem_univ, Multiset.coeEmbedding_apply,
Prod.mk.inj_iff, exists_true_left, Multiset.exists_coe, Multiset.coe_mk, Fin.val_mk,
exists_prop, exists_eq_right_right, exists_eq_right, Multiset.mem_toEnumFinset, iff_self_iff,
true_and_iff]
#align multiset.map_univ_coe_embedding Multiset.map_univ_coeEmbedding
theorem Multiset.toEnumFinset_filter_eq (m : Multiset α) (x : α) :
(m.toEnumFinset.filter fun p ↦ x = p.1) =
(Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩ := by
ext ⟨y, i⟩
simp only [eq_comm, Finset.mem_filter, Multiset.mem_toEnumFinset, Finset.mem_map,
Finset.mem_range, Function.Embedding.coeFn_mk, Prod.mk.inj_iff, exists_prop,
exists_eq_right_right', and_congr_left_iff]
rintro rfl
rfl
#align multiset.to_enum_finset_filter_eq Multiset.toEnumFinset_filter_eq
@[simp]
theorem Multiset.map_toEnumFinset_fst (m : Multiset α) : m.toEnumFinset.val.map Prod.fst = m := by
ext x
simp only [Multiset.count_map, ← Finset.filter_val, Multiset.toEnumFinset_filter_eq,
Finset.map_val, Finset.range_val, Multiset.card_map, Multiset.card_range]
#align multiset.map_to_enum_finset_fst Multiset.map_toEnumFinset_fst
@[simp]
theorem Multiset.image_toEnumFinset_fst (m : Multiset α) :
m.toEnumFinset.image Prod.fst = m.toFinset := by
rw [Finset.image, Multiset.map_toEnumFinset_fst]
#align multiset.image_to_enum_finset_fst Multiset.image_toEnumFinset_fst
@[simp]
theorem Multiset.map_univ_coe (m : Multiset α) :
(Finset.univ : Finset m).val.map (fun x : m ↦ (x : α)) = m := by
have := m.map_toEnumFinset_fst
rw [← m.map_univ_coeEmbedding] at this
simpa only [Finset.map_val, Multiset.coeEmbedding_apply, Multiset.map_map,
Function.comp_apply] using this
#align multiset.map_univ_coe Multiset.map_univ_coe
@[simp]
theorem Multiset.map_univ {β : Type*} (m : Multiset α) (f : α → β) :
((Finset.univ : Finset m).val.map fun (x : m) ↦ f (x : α)) = m.map f := by
erw [← Multiset.map_map]
rw [Multiset.map_univ_coe]
#align multiset.map_univ Multiset.map_univ
@[simp]
theorem Multiset.card_toEnumFinset (m : Multiset α) : m.toEnumFinset.card = Multiset.card m := by
rw [Finset.card, ← Multiset.card_map Prod.fst m.toEnumFinset.val]
congr
exact m.map_toEnumFinset_fst
#align multiset.card_to_enum_finset Multiset.card_toEnumFinset
@[simp]
theorem Multiset.card_coe (m : Multiset α) : Fintype.card m = Multiset.card m := by
rw [Fintype.card_congr m.coeEquiv]
simp only [Fintype.card_coe, card_toEnumFinset]
#align multiset.card_coe Multiset.card_coe
@[to_additive]
theorem Multiset.prod_eq_prod_coe [CommMonoid α] (m : Multiset α) : m.prod = ∏ x : m, (x : α) := by
congr
-- Porting note: `simp` fails with "maximum recursion depth has been reached"
erw [map_univ_coe]
#align multiset.prod_eq_prod_coe Multiset.prod_eq_prod_coe
#align multiset.sum_eq_sum_coe Multiset.sum_eq_sum_coe
@[to_additive]
theorem Multiset.prod_eq_prod_toEnumFinset [CommMonoid α] (m : Multiset α) :
m.prod = ∏ x in m.toEnumFinset, x.1 := by
congr
simp
#align multiset.prod_eq_prod_to_enum_finset Multiset.prod_eq_prod_toEnumFinset
#align multiset.sum_eq_sum_to_enum_finset Multiset.sum_eq_sum_toEnumFinset
@[to_additive]
theorem Multiset.prod_toEnumFinset {β : Type*} [CommMonoid β] (m : Multiset α) (f : α → ℕ → β) :
∏ x in m.toEnumFinset, f x.1 x.2 = ∏ x : m, f x x.2 := by
rw [Fintype.prod_equiv m.coeEquiv (fun x ↦ f x x.2) fun x ↦ f x.1.1 x.1.2]
· | rw [← m.toEnumFinset.prod_coe_sort fun x ↦ f x.1 x.2] | @[to_additive]
theorem Multiset.prod_toEnumFinset {β : Type*} [CommMonoid β] (m : Multiset α) (f : α → ℕ → β) :
∏ x in m.toEnumFinset, f x.1 x.2 = ∏ x : m, f x x.2 := by
rw [Fintype.prod_equiv m.coeEquiv (fun x ↦ f x x.2) fun x ↦ f x.1.1 x.1.2]
· | Mathlib.Data.Multiset.Fintype.275_0.gXgzg6nY9WO2bG2 | @[to_additive]
theorem Multiset.prod_toEnumFinset {β : Type*} [CommMonoid β] (m : Multiset α) (f : α → ℕ → β) :
∏ x in m.toEnumFinset, f x.1 x.2 = ∏ x : m, f x x.2 | Mathlib_Data_Multiset_Fintype |
α : Type u_1
inst✝¹ : DecidableEq α
m✝ : Multiset α
β : Type u_2
inst✝ : CommMonoid β
m : Multiset α
f : α → ℕ → β
⊢ ∀ (x : ToType m), f x.fst ↑x.snd = f (↑((coeEquiv m) x)).1 (↑((coeEquiv m) x)).2 | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx))
simpa only [Multiset.mem_toEnumFinset] using h this
· simp [hx]
#align multiset.to_enum_finset_subset_iff Multiset.toEnumFinset_subset_iff
/-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x := (x, x.2)
inj' := by
intro ⟨x, i, hi⟩ ⟨y, j, hj⟩
rintro ⟨⟩
rfl
#align multiset.coe_embedding Multiset.coeEmbedding
/-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
rw [Multiset.mem_toEnumFinset]
exact x.2.2⟩
invFun x :=
⟨x.1.1, x.1.2, by
rw [← Multiset.mem_toEnumFinset]
exact x.2⟩
left_inv := by
rintro ⟨x, i, h⟩
rfl
right_inv := by
rintro ⟨⟨x, i⟩, h⟩
rfl
#align multiset.coe_equiv Multiset.coeEquiv
@[simp]
theorem Multiset.toEmbedding_coeEquiv_trans (m : Multiset α) :
m.coeEquiv.toEmbedding.trans (Function.Embedding.subtype _) = m.coeEmbedding := by ext <;> rfl
#align multiset.to_embedding_coe_equiv_trans Multiset.toEmbedding_coeEquiv_trans
@[irreducible]
instance Multiset.fintypeCoe : Fintype m :=
Fintype.ofEquiv m.toEnumFinset m.coeEquiv.symm
#align multiset.fintype_coe Multiset.fintypeCoe
theorem Multiset.map_univ_coeEmbedding (m : Multiset α) :
(Finset.univ : Finset m).map m.coeEmbedding = m.toEnumFinset := by
ext ⟨x, i⟩
simp only [Fin.exists_iff, Finset.mem_map, Finset.mem_univ, Multiset.coeEmbedding_apply,
Prod.mk.inj_iff, exists_true_left, Multiset.exists_coe, Multiset.coe_mk, Fin.val_mk,
exists_prop, exists_eq_right_right, exists_eq_right, Multiset.mem_toEnumFinset, iff_self_iff,
true_and_iff]
#align multiset.map_univ_coe_embedding Multiset.map_univ_coeEmbedding
theorem Multiset.toEnumFinset_filter_eq (m : Multiset α) (x : α) :
(m.toEnumFinset.filter fun p ↦ x = p.1) =
(Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩ := by
ext ⟨y, i⟩
simp only [eq_comm, Finset.mem_filter, Multiset.mem_toEnumFinset, Finset.mem_map,
Finset.mem_range, Function.Embedding.coeFn_mk, Prod.mk.inj_iff, exists_prop,
exists_eq_right_right', and_congr_left_iff]
rintro rfl
rfl
#align multiset.to_enum_finset_filter_eq Multiset.toEnumFinset_filter_eq
@[simp]
theorem Multiset.map_toEnumFinset_fst (m : Multiset α) : m.toEnumFinset.val.map Prod.fst = m := by
ext x
simp only [Multiset.count_map, ← Finset.filter_val, Multiset.toEnumFinset_filter_eq,
Finset.map_val, Finset.range_val, Multiset.card_map, Multiset.card_range]
#align multiset.map_to_enum_finset_fst Multiset.map_toEnumFinset_fst
@[simp]
theorem Multiset.image_toEnumFinset_fst (m : Multiset α) :
m.toEnumFinset.image Prod.fst = m.toFinset := by
rw [Finset.image, Multiset.map_toEnumFinset_fst]
#align multiset.image_to_enum_finset_fst Multiset.image_toEnumFinset_fst
@[simp]
theorem Multiset.map_univ_coe (m : Multiset α) :
(Finset.univ : Finset m).val.map (fun x : m ↦ (x : α)) = m := by
have := m.map_toEnumFinset_fst
rw [← m.map_univ_coeEmbedding] at this
simpa only [Finset.map_val, Multiset.coeEmbedding_apply, Multiset.map_map,
Function.comp_apply] using this
#align multiset.map_univ_coe Multiset.map_univ_coe
@[simp]
theorem Multiset.map_univ {β : Type*} (m : Multiset α) (f : α → β) :
((Finset.univ : Finset m).val.map fun (x : m) ↦ f (x : α)) = m.map f := by
erw [← Multiset.map_map]
rw [Multiset.map_univ_coe]
#align multiset.map_univ Multiset.map_univ
@[simp]
theorem Multiset.card_toEnumFinset (m : Multiset α) : m.toEnumFinset.card = Multiset.card m := by
rw [Finset.card, ← Multiset.card_map Prod.fst m.toEnumFinset.val]
congr
exact m.map_toEnumFinset_fst
#align multiset.card_to_enum_finset Multiset.card_toEnumFinset
@[simp]
theorem Multiset.card_coe (m : Multiset α) : Fintype.card m = Multiset.card m := by
rw [Fintype.card_congr m.coeEquiv]
simp only [Fintype.card_coe, card_toEnumFinset]
#align multiset.card_coe Multiset.card_coe
@[to_additive]
theorem Multiset.prod_eq_prod_coe [CommMonoid α] (m : Multiset α) : m.prod = ∏ x : m, (x : α) := by
congr
-- Porting note: `simp` fails with "maximum recursion depth has been reached"
erw [map_univ_coe]
#align multiset.prod_eq_prod_coe Multiset.prod_eq_prod_coe
#align multiset.sum_eq_sum_coe Multiset.sum_eq_sum_coe
@[to_additive]
theorem Multiset.prod_eq_prod_toEnumFinset [CommMonoid α] (m : Multiset α) :
m.prod = ∏ x in m.toEnumFinset, x.1 := by
congr
simp
#align multiset.prod_eq_prod_to_enum_finset Multiset.prod_eq_prod_toEnumFinset
#align multiset.sum_eq_sum_to_enum_finset Multiset.sum_eq_sum_toEnumFinset
@[to_additive]
theorem Multiset.prod_toEnumFinset {β : Type*} [CommMonoid β] (m : Multiset α) (f : α → ℕ → β) :
∏ x in m.toEnumFinset, f x.1 x.2 = ∏ x : m, f x x.2 := by
rw [Fintype.prod_equiv m.coeEquiv (fun x ↦ f x x.2) fun x ↦ f x.1.1 x.1.2]
· rw [← m.toEnumFinset.prod_coe_sort fun x ↦ f x.1 x.2]
· | intro x | @[to_additive]
theorem Multiset.prod_toEnumFinset {β : Type*} [CommMonoid β] (m : Multiset α) (f : α → ℕ → β) :
∏ x in m.toEnumFinset, f x.1 x.2 = ∏ x : m, f x x.2 := by
rw [Fintype.prod_equiv m.coeEquiv (fun x ↦ f x x.2) fun x ↦ f x.1.1 x.1.2]
· rw [← m.toEnumFinset.prod_coe_sort fun x ↦ f x.1 x.2]
· | Mathlib.Data.Multiset.Fintype.275_0.gXgzg6nY9WO2bG2 | @[to_additive]
theorem Multiset.prod_toEnumFinset {β : Type*} [CommMonoid β] (m : Multiset α) (f : α → ℕ → β) :
∏ x in m.toEnumFinset, f x.1 x.2 = ∏ x : m, f x x.2 | Mathlib_Data_Multiset_Fintype |
α : Type u_1
inst✝¹ : DecidableEq α
m✝ : Multiset α
β : Type u_2
inst✝ : CommMonoid β
m : Multiset α
f : α → ℕ → β
x : ToType m
⊢ f x.fst ↑x.snd = f (↑((coeEquiv m) x)).1 (↑((coeEquiv m) x)).2 | /-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Prod.Lex
#align_import data.multiset.fintype from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
/-!
# Multiset coercion to type
This module defines a `hasCoeToSort` instance for multisets and gives it a `Fintype` instance.
It also defines `Multiset.toEnumFinset`, which is another way to enumerate the elements of
a multiset. These coercions and definitions make it easier to sum over multisets using existing
`Finset` theory.
## Main definitions
* A coercion from `m : Multiset α` to a `Type*`. For `x : m`, then there is a coercion `↑x : α`,
and `x.2` is a term of `Fin (m.count x)`. The second component is what ensures each term appears
with the correct multiplicity. Note that this coercion requires `decidableEq α` due to
`Multiset.count`.
* `Multiset.toEnumFinset` is a `Finset` version of this.
* `Multiset.coeEmbedding` is the embedding `m ↪ α × ℕ`, whose first component is the coercion
and whose second component enumerates elements with multiplicity.
* `Multiset.coeEquiv` is the equivalence `m ≃ m.toEnumFinset`.
## Tags
multiset enumeration
-/
open BigOperators
variable {α : Type*} [DecidableEq α] {m : Multiset α}
/-- Auxiliary definition for the `hasCoeToSort` instance. This prevents the `hasCoe m α`
instance from inadvertently applying to other sigma types. One should not use this definition
directly. -/
-- Porting note: @[nolint has_nonempty_instance]
def Multiset.ToType (m : Multiset α) : Type _ :=
Σx : α, Fin (m.count x)
#align multiset.to_type Multiset.ToType
/-- Create a type that has the same number of elements as the multiset.
Terms of this type are triples `⟨x, ⟨i, h⟩⟩` where `x : α`, `i : ℕ`, and `h : i < m.count x`.
This way repeated elements of a multiset appear multiple times with different values of `i`. -/
instance : CoeSort (Multiset α) (Type _) :=
⟨Multiset.ToType⟩
-- Porting note: syntactic equality
#noalign multiset.coe_sort_eq
/-- Constructor for terms of the coercion of `m` to a type.
This helps Lean pick up the correct instances. -/
@[reducible, match_pattern]
def Multiset.mkToType (m : Multiset α) (x : α) (i : Fin (m.count x)) : m :=
⟨x, i⟩
#align multiset.mk_to_type Multiset.mkToType
/-- As a convenience, there is a coercion from `m : Type*` to `α` by projecting onto the first
component. -/
-- Porting note: was `Coe m α`
instance instCoeSortMultisetType.instCoeOutToType : CoeOut m α :=
⟨fun x ↦ x.1⟩
#align multiset.has_coe_to_sort.has_coe instCoeSortMultisetType.instCoeOutToTypeₓ
-- Porting note: syntactic equality
#noalign multiset.fst_coe_eq_coe
@[simp]
theorem Multiset.coe_eq {x y : m} : (x : α) = (y : α) ↔ x.1 = y.1 := by
cases x
cases y
rfl
#align multiset.coe_eq Multiset.coe_eq
-- @[simp] -- Porting note: dsimp can prove this
theorem Multiset.coe_mk {x : α} {i : Fin (m.count x)} : ↑(m.mkToType x i) = x :=
rfl
#align multiset.coe_mk Multiset.coe_mk
@[simp]
theorem Multiset.coe_mem {x : m} : ↑x ∈ m :=
Multiset.count_pos.mp (pos_of_gt x.2.2)
#align multiset.coe_mem Multiset.coe_mem
@[simp]
protected theorem Multiset.forall_coe (p : m → Prop) :
(∀ x : m, p x) ↔ ∀ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.forall
#align multiset.forall_coe Multiset.forall_coe
@[simp]
protected theorem Multiset.exists_coe (p : m → Prop) :
(∃ x : m, p x) ↔ ∃ (x : α) (i : Fin (m.count x)), p ⟨x, i⟩ :=
Sigma.exists
#align multiset.exists_coe Multiset.exists_coe
instance : Fintype { p : α × ℕ | p.2 < m.count p.1 } :=
Fintype.ofFinset
(m.toFinset.biUnion fun x ↦ (Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩)
(by
rintro ⟨x, i⟩
simp only [Finset.mem_biUnion, Multiset.mem_toFinset, Finset.mem_map, Finset.mem_range,
Function.Embedding.coeFn_mk, Prod.mk.inj_iff, Set.mem_setOf_eq]
simp only [← and_assoc, exists_eq_right, and_iff_right_iff_imp]
exact fun h ↦ Multiset.count_pos.mp (pos_of_gt h))
/-- Construct a finset whose elements enumerate the elements of the multiset `m`.
The `ℕ` component is used to differentiate between equal elements: if `x` appears `n` times
then `(x, 0)`, ..., and `(x, n-1)` appear in the `Finset`. -/
def Multiset.toEnumFinset (m : Multiset α) : Finset (α × ℕ) :=
{ p : α × ℕ | p.2 < m.count p.1 }.toFinset
#align multiset.to_enum_finset Multiset.toEnumFinset
@[simp]
theorem Multiset.mem_toEnumFinset (m : Multiset α) (p : α × ℕ) :
p ∈ m.toEnumFinset ↔ p.2 < m.count p.1 :=
Set.mem_toFinset
#align multiset.mem_to_enum_finset Multiset.mem_toEnumFinset
theorem Multiset.mem_of_mem_toEnumFinset {p : α × ℕ} (h : p ∈ m.toEnumFinset) : p.1 ∈ m :=
Multiset.count_pos.mp <| pos_of_gt <| (m.mem_toEnumFinset p).mp h
#align multiset.mem_of_mem_to_enum_finset Multiset.mem_of_mem_toEnumFinset
@[mono]
theorem Multiset.toEnumFinset_mono {m₁ m₂ : Multiset α} (h : m₁ ≤ m₂) :
m₁.toEnumFinset ⊆ m₂.toEnumFinset := by
intro p
simp only [Multiset.mem_toEnumFinset]
exact gt_of_ge_of_gt (Multiset.le_iff_count.mp h p.1)
#align multiset.to_enum_finset_mono Multiset.toEnumFinset_mono
@[simp]
theorem Multiset.toEnumFinset_subset_iff {m₁ m₂ : Multiset α} :
m₁.toEnumFinset ⊆ m₂.toEnumFinset ↔ m₁ ≤ m₂ := by
refine' ⟨fun h ↦ _, Multiset.toEnumFinset_mono⟩
rw [Multiset.le_iff_count]
intro x
by_cases hx : x ∈ m₁
· apply Nat.le_of_pred_lt
have : (x, m₁.count x - 1) ∈ m₁.toEnumFinset := by
rw [Multiset.mem_toEnumFinset]
exact Nat.pred_lt (ne_of_gt (Multiset.count_pos.mpr hx))
simpa only [Multiset.mem_toEnumFinset] using h this
· simp [hx]
#align multiset.to_enum_finset_subset_iff Multiset.toEnumFinset_subset_iff
/-- The embedding from a multiset into `α × ℕ` where the second coordinate enumerates repeats.
If you are looking for the function `m → α`, that would be plain `(↑)`. -/
@[simps]
def Multiset.coeEmbedding (m : Multiset α) : m ↪ α × ℕ
where
toFun x := (x, x.2)
inj' := by
intro ⟨x, i, hi⟩ ⟨y, j, hj⟩
rintro ⟨⟩
rfl
#align multiset.coe_embedding Multiset.coeEmbedding
/-- Another way to coerce a `Multiset` to a type is to go through `m.toEnumFinset` and coerce
that `Finset` to a type. -/
@[simps]
def Multiset.coeEquiv (m : Multiset α) : m ≃ m.toEnumFinset
where
toFun x :=
⟨m.coeEmbedding x, by
rw [Multiset.mem_toEnumFinset]
exact x.2.2⟩
invFun x :=
⟨x.1.1, x.1.2, by
rw [← Multiset.mem_toEnumFinset]
exact x.2⟩
left_inv := by
rintro ⟨x, i, h⟩
rfl
right_inv := by
rintro ⟨⟨x, i⟩, h⟩
rfl
#align multiset.coe_equiv Multiset.coeEquiv
@[simp]
theorem Multiset.toEmbedding_coeEquiv_trans (m : Multiset α) :
m.coeEquiv.toEmbedding.trans (Function.Embedding.subtype _) = m.coeEmbedding := by ext <;> rfl
#align multiset.to_embedding_coe_equiv_trans Multiset.toEmbedding_coeEquiv_trans
@[irreducible]
instance Multiset.fintypeCoe : Fintype m :=
Fintype.ofEquiv m.toEnumFinset m.coeEquiv.symm
#align multiset.fintype_coe Multiset.fintypeCoe
theorem Multiset.map_univ_coeEmbedding (m : Multiset α) :
(Finset.univ : Finset m).map m.coeEmbedding = m.toEnumFinset := by
ext ⟨x, i⟩
simp only [Fin.exists_iff, Finset.mem_map, Finset.mem_univ, Multiset.coeEmbedding_apply,
Prod.mk.inj_iff, exists_true_left, Multiset.exists_coe, Multiset.coe_mk, Fin.val_mk,
exists_prop, exists_eq_right_right, exists_eq_right, Multiset.mem_toEnumFinset, iff_self_iff,
true_and_iff]
#align multiset.map_univ_coe_embedding Multiset.map_univ_coeEmbedding
theorem Multiset.toEnumFinset_filter_eq (m : Multiset α) (x : α) :
(m.toEnumFinset.filter fun p ↦ x = p.1) =
(Finset.range (m.count x)).map ⟨Prod.mk x, Prod.mk.inj_left x⟩ := by
ext ⟨y, i⟩
simp only [eq_comm, Finset.mem_filter, Multiset.mem_toEnumFinset, Finset.mem_map,
Finset.mem_range, Function.Embedding.coeFn_mk, Prod.mk.inj_iff, exists_prop,
exists_eq_right_right', and_congr_left_iff]
rintro rfl
rfl
#align multiset.to_enum_finset_filter_eq Multiset.toEnumFinset_filter_eq
@[simp]
theorem Multiset.map_toEnumFinset_fst (m : Multiset α) : m.toEnumFinset.val.map Prod.fst = m := by
ext x
simp only [Multiset.count_map, ← Finset.filter_val, Multiset.toEnumFinset_filter_eq,
Finset.map_val, Finset.range_val, Multiset.card_map, Multiset.card_range]
#align multiset.map_to_enum_finset_fst Multiset.map_toEnumFinset_fst
@[simp]
theorem Multiset.image_toEnumFinset_fst (m : Multiset α) :
m.toEnumFinset.image Prod.fst = m.toFinset := by
rw [Finset.image, Multiset.map_toEnumFinset_fst]
#align multiset.image_to_enum_finset_fst Multiset.image_toEnumFinset_fst
@[simp]
theorem Multiset.map_univ_coe (m : Multiset α) :
(Finset.univ : Finset m).val.map (fun x : m ↦ (x : α)) = m := by
have := m.map_toEnumFinset_fst
rw [← m.map_univ_coeEmbedding] at this
simpa only [Finset.map_val, Multiset.coeEmbedding_apply, Multiset.map_map,
Function.comp_apply] using this
#align multiset.map_univ_coe Multiset.map_univ_coe
@[simp]
theorem Multiset.map_univ {β : Type*} (m : Multiset α) (f : α → β) :
((Finset.univ : Finset m).val.map fun (x : m) ↦ f (x : α)) = m.map f := by
erw [← Multiset.map_map]
rw [Multiset.map_univ_coe]
#align multiset.map_univ Multiset.map_univ
@[simp]
theorem Multiset.card_toEnumFinset (m : Multiset α) : m.toEnumFinset.card = Multiset.card m := by
rw [Finset.card, ← Multiset.card_map Prod.fst m.toEnumFinset.val]
congr
exact m.map_toEnumFinset_fst
#align multiset.card_to_enum_finset Multiset.card_toEnumFinset
@[simp]
theorem Multiset.card_coe (m : Multiset α) : Fintype.card m = Multiset.card m := by
rw [Fintype.card_congr m.coeEquiv]
simp only [Fintype.card_coe, card_toEnumFinset]
#align multiset.card_coe Multiset.card_coe
@[to_additive]
theorem Multiset.prod_eq_prod_coe [CommMonoid α] (m : Multiset α) : m.prod = ∏ x : m, (x : α) := by
congr
-- Porting note: `simp` fails with "maximum recursion depth has been reached"
erw [map_univ_coe]
#align multiset.prod_eq_prod_coe Multiset.prod_eq_prod_coe
#align multiset.sum_eq_sum_coe Multiset.sum_eq_sum_coe
@[to_additive]
theorem Multiset.prod_eq_prod_toEnumFinset [CommMonoid α] (m : Multiset α) :
m.prod = ∏ x in m.toEnumFinset, x.1 := by
congr
simp
#align multiset.prod_eq_prod_to_enum_finset Multiset.prod_eq_prod_toEnumFinset
#align multiset.sum_eq_sum_to_enum_finset Multiset.sum_eq_sum_toEnumFinset
@[to_additive]
theorem Multiset.prod_toEnumFinset {β : Type*} [CommMonoid β] (m : Multiset α) (f : α → ℕ → β) :
∏ x in m.toEnumFinset, f x.1 x.2 = ∏ x : m, f x x.2 := by
rw [Fintype.prod_equiv m.coeEquiv (fun x ↦ f x x.2) fun x ↦ f x.1.1 x.1.2]
· rw [← m.toEnumFinset.prod_coe_sort fun x ↦ f x.1 x.2]
· intro x
| rfl | @[to_additive]
theorem Multiset.prod_toEnumFinset {β : Type*} [CommMonoid β] (m : Multiset α) (f : α → ℕ → β) :
∏ x in m.toEnumFinset, f x.1 x.2 = ∏ x : m, f x x.2 := by
rw [Fintype.prod_equiv m.coeEquiv (fun x ↦ f x x.2) fun x ↦ f x.1.1 x.1.2]
· rw [← m.toEnumFinset.prod_coe_sort fun x ↦ f x.1 x.2]
· intro x
| Mathlib.Data.Multiset.Fintype.275_0.gXgzg6nY9WO2bG2 | @[to_additive]
theorem Multiset.prod_toEnumFinset {β : Type*} [CommMonoid β] (m : Multiset α) (f : α → ℕ → β) :
∏ x in m.toEnumFinset, f x.1 x.2 = ∏ x : m, f x x.2 | Mathlib_Data_Multiset_Fintype |
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : Precoherent C
inst✝ : HasFiniteCoproducts C
X Y Z : C
f : X ⟶ Y
g : Z ⟶ Y
x✝ : EffectiveEpi g
⊢ ∃ W h, ∃ (_ : EffectiveEpi h), ∃ i, i ≫ g = h ≫ f | /-
Copyright (c) 2023 Dagur Asgeirsson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca
-/
import Mathlib.CategoryTheory.Extensive
import Mathlib.CategoryTheory.Preadditive.Projective
import Mathlib.CategoryTheory.Sites.Coherent
import Mathlib.CategoryTheory.Sites.Preserves
/-!
# The Regular and Extensive Coverages
This file defines two coverages on a category `C`.
The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy
a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The
covering sieves of this coverage are generated by presieves consisting of a single effective
epimorphism.
The second one is called the *extensive* coverage and for that to exist, the category `C` must
satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that
those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves
consisting finitely many arrows that together induce an isomorphism from the coproduct to the
target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are
disjoint.
## Main results
* `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`.
* `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages
generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular.
* `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the
regular topology are precisely the presheaves satisfying an equaliser condition with respect to
effective epimorphisms.
* `isSheaf_of_projective`: In a preregular category in which every object is projective, every
presheaf is a sheaf for the regular topology.
* `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the
extensive topology are precisely those preserving finite products.
-/
universe v u w
namespace CategoryTheory
open Limits
variable (C : Type u) [Category.{v} C]
/--
The condition `Preregular C` is property that effective epis can be "pulled back" along any
morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective
epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective
(like `Stonean`).
-/
class Preregular : Prop where
/--
For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists
an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram
commute.
```
W --i-→ Z
| |
h g
↓ ↓
X --f-→ Y
```
-/
exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g],
(∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f)
instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where
exists_fac {X Y Z} f g _ := by
| have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) | instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where
exists_fac {X Y Z} f g _ := by
| Mathlib.CategoryTheory.Sites.RegularExtensive.77_0.rkSRr0zuqme90Yu | instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where
exists_fac {X Y Z} f g _ | Mathlib_CategoryTheory_Sites_RegularExtensive |
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : Precoherent C
inst✝ : HasFiniteCoproducts C
X Y Z : C
f : X ⟶ Y
g : Z ⟶ Y
x✝ : EffectiveEpi g
hp :
(EffectiveEpiFamily (fun x => Z) fun x =>
match x with
| PUnit.unit => g) →
∃ β x X₂ π₂,
EffectiveEpiFamily X₂ π₂ ∧
∃ i ι,
∀ (b : β),
(ι b ≫
match i b with
| PUnit.unit => g) =
π₂ b ≫ f
⊢ ∃ W h, ∃ (_ : EffectiveEpi h), ∃ i, i ≫ g = h ≫ f | /-
Copyright (c) 2023 Dagur Asgeirsson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca
-/
import Mathlib.CategoryTheory.Extensive
import Mathlib.CategoryTheory.Preadditive.Projective
import Mathlib.CategoryTheory.Sites.Coherent
import Mathlib.CategoryTheory.Sites.Preserves
/-!
# The Regular and Extensive Coverages
This file defines two coverages on a category `C`.
The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy
a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The
covering sieves of this coverage are generated by presieves consisting of a single effective
epimorphism.
The second one is called the *extensive* coverage and for that to exist, the category `C` must
satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that
those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves
consisting finitely many arrows that together induce an isomorphism from the coproduct to the
target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are
disjoint.
## Main results
* `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`.
* `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages
generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular.
* `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the
regular topology are precisely the presheaves satisfying an equaliser condition with respect to
effective epimorphisms.
* `isSheaf_of_projective`: In a preregular category in which every object is projective, every
presheaf is a sheaf for the regular topology.
* `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the
extensive topology are precisely those preserving finite products.
-/
universe v u w
namespace CategoryTheory
open Limits
variable (C : Type u) [Category.{v} C]
/--
The condition `Preregular C` is property that effective epis can be "pulled back" along any
morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective
epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective
(like `Stonean`).
-/
class Preregular : Prop where
/--
For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists
an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram
commute.
```
W --i-→ Z
| |
h g
↓ ↓
X --f-→ Y
```
-/
exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g],
(∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f)
instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where
exists_fac {X Y Z} f g _ := by
have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g)
| simp only [exists_const] at hp | instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where
exists_fac {X Y Z} f g _ := by
have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g)
| Mathlib.CategoryTheory.Sites.RegularExtensive.77_0.rkSRr0zuqme90Yu | instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where
exists_fac {X Y Z} f g _ | Mathlib_CategoryTheory_Sites_RegularExtensive |
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : Precoherent C
inst✝ : HasFiniteCoproducts C
X Y Z : C
f : X ⟶ Y
g : Z ⟶ Y
x✝ : EffectiveEpi g
hp :
(EffectiveEpiFamily (fun x => Z) fun x => g) →
∃ β x X₂ π₂, EffectiveEpiFamily X₂ π₂ ∧ ∃ ι, ∀ (b : β), ι b ≫ g = π₂ b ≫ f
⊢ ∃ W h, ∃ (_ : EffectiveEpi h), ∃ i, i ≫ g = h ≫ f | /-
Copyright (c) 2023 Dagur Asgeirsson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca
-/
import Mathlib.CategoryTheory.Extensive
import Mathlib.CategoryTheory.Preadditive.Projective
import Mathlib.CategoryTheory.Sites.Coherent
import Mathlib.CategoryTheory.Sites.Preserves
/-!
# The Regular and Extensive Coverages
This file defines two coverages on a category `C`.
The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy
a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The
covering sieves of this coverage are generated by presieves consisting of a single effective
epimorphism.
The second one is called the *extensive* coverage and for that to exist, the category `C` must
satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that
those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves
consisting finitely many arrows that together induce an isomorphism from the coproduct to the
target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are
disjoint.
## Main results
* `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`.
* `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages
generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular.
* `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the
regular topology are precisely the presheaves satisfying an equaliser condition with respect to
effective epimorphisms.
* `isSheaf_of_projective`: In a preregular category in which every object is projective, every
presheaf is a sheaf for the regular topology.
* `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the
extensive topology are precisely those preserving finite products.
-/
universe v u w
namespace CategoryTheory
open Limits
variable (C : Type u) [Category.{v} C]
/--
The condition `Preregular C` is property that effective epis can be "pulled back" along any
morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective
epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective
(like `Stonean`).
-/
class Preregular : Prop where
/--
For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists
an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram
commute.
```
W --i-→ Z
| |
h g
↓ ↓
X --f-→ Y
```
-/
exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g],
(∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f)
instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where
exists_fac {X Y Z} f g _ := by
have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g)
simp only [exists_const] at hp
| rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp | instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where
exists_fac {X Y Z} f g _ := by
have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g)
simp only [exists_const] at hp
| Mathlib.CategoryTheory.Sites.RegularExtensive.77_0.rkSRr0zuqme90Yu | instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where
exists_fac {X Y Z} f g _ | Mathlib_CategoryTheory_Sites_RegularExtensive |
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : Precoherent C
inst✝ : HasFiniteCoproducts C
X Y Z : C
f : X ⟶ Y
g : Z ⟶ Y
x✝ : EffectiveEpi g
hp : EffectiveEpi g → ∃ β x X₂ π₂, EffectiveEpiFamily X₂ π₂ ∧ ∃ ι, ∀ (b : β), ι b ≫ g = π₂ b ≫ f
⊢ ∃ W h, ∃ (_ : EffectiveEpi h), ∃ i, i ≫ g = h ≫ f | /-
Copyright (c) 2023 Dagur Asgeirsson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca
-/
import Mathlib.CategoryTheory.Extensive
import Mathlib.CategoryTheory.Preadditive.Projective
import Mathlib.CategoryTheory.Sites.Coherent
import Mathlib.CategoryTheory.Sites.Preserves
/-!
# The Regular and Extensive Coverages
This file defines two coverages on a category `C`.
The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy
a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The
covering sieves of this coverage are generated by presieves consisting of a single effective
epimorphism.
The second one is called the *extensive* coverage and for that to exist, the category `C` must
satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that
those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves
consisting finitely many arrows that together induce an isomorphism from the coproduct to the
target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are
disjoint.
## Main results
* `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`.
* `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages
generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular.
* `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the
regular topology are precisely the presheaves satisfying an equaliser condition with respect to
effective epimorphisms.
* `isSheaf_of_projective`: In a preregular category in which every object is projective, every
presheaf is a sheaf for the regular topology.
* `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the
extensive topology are precisely those preserving finite products.
-/
universe v u w
namespace CategoryTheory
open Limits
variable (C : Type u) [Category.{v} C]
/--
The condition `Preregular C` is property that effective epis can be "pulled back" along any
morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective
epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective
(like `Stonean`).
-/
class Preregular : Prop where
/--
For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists
an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram
commute.
```
W --i-→ Z
| |
h g
↓ ↓
X --f-→ Y
```
-/
exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g],
(∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f)
instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where
exists_fac {X Y Z} f g _ := by
have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g)
simp only [exists_const] at hp
rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp
| obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance | instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where
exists_fac {X Y Z} f g _ := by
have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g)
simp only [exists_const] at hp
rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp
| Mathlib.CategoryTheory.Sites.RegularExtensive.77_0.rkSRr0zuqme90Yu | instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where
exists_fac {X Y Z} f g _ | Mathlib_CategoryTheory_Sites_RegularExtensive |
case intro.intro.intro.intro.intro.intro
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : Precoherent C
inst✝ : HasFiniteCoproducts C
X Y Z : C
f : X ⟶ Y
g : Z ⟶ Y
x✝ : EffectiveEpi g
hp : EffectiveEpi g → ∃ β x X₂ π₂, EffectiveEpiFamily X₂ π₂ ∧ ∃ ι, ∀ (b : β), ι b ≫ g = π₂ b ≫ f
β : Type
w✝ : Fintype β
X₂ : β → C
π₂ : (b : β) → X₂ b ⟶ X
h : EffectiveEpiFamily X₂ π₂
ι : (b : β) → X₂ b ⟶ Z
hι : ∀ (b : β), ι b ≫ g = π₂ b ≫ f
⊢ ∃ W h, ∃ (_ : EffectiveEpi h), ∃ i, i ≫ g = h ≫ f | /-
Copyright (c) 2023 Dagur Asgeirsson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca
-/
import Mathlib.CategoryTheory.Extensive
import Mathlib.CategoryTheory.Preadditive.Projective
import Mathlib.CategoryTheory.Sites.Coherent
import Mathlib.CategoryTheory.Sites.Preserves
/-!
# The Regular and Extensive Coverages
This file defines two coverages on a category `C`.
The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy
a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The
covering sieves of this coverage are generated by presieves consisting of a single effective
epimorphism.
The second one is called the *extensive* coverage and for that to exist, the category `C` must
satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that
those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves
consisting finitely many arrows that together induce an isomorphism from the coproduct to the
target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are
disjoint.
## Main results
* `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`.
* `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages
generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular.
* `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the
regular topology are precisely the presheaves satisfying an equaliser condition with respect to
effective epimorphisms.
* `isSheaf_of_projective`: In a preregular category in which every object is projective, every
presheaf is a sheaf for the regular topology.
* `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the
extensive topology are precisely those preserving finite products.
-/
universe v u w
namespace CategoryTheory
open Limits
variable (C : Type u) [Category.{v} C]
/--
The condition `Preregular C` is property that effective epis can be "pulled back" along any
morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective
epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective
(like `Stonean`).
-/
class Preregular : Prop where
/--
For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists
an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram
commute.
```
W --i-→ Z
| |
h g
↓ ↓
X --f-→ Y
```
-/
exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g],
(∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f)
instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where
exists_fac {X Y Z} f g _ := by
have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g)
simp only [exists_const] at hp
rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp
obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance
| refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ | instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where
exists_fac {X Y Z} f g _ := by
have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g)
simp only [exists_const] at hp
rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp
obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance
| Mathlib.CategoryTheory.Sites.RegularExtensive.77_0.rkSRr0zuqme90Yu | instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where
exists_fac {X Y Z} f g _ | Mathlib_CategoryTheory_Sites_RegularExtensive |
case intro.intro.intro.intro.intro.intro
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : Precoherent C
inst✝ : HasFiniteCoproducts C
X Y Z : C
f : X ⟶ Y
g : Z ⟶ Y
x✝ : EffectiveEpi g
hp : EffectiveEpi g → ∃ β x X₂ π₂, EffectiveEpiFamily X₂ π₂ ∧ ∃ ι, ∀ (b : β), ι b ≫ g = π₂ b ≫ f
β : Type
w✝ : Fintype β
X₂ : β → C
π₂ : (b : β) → X₂ b ⟶ X
h : EffectiveEpiFamily X₂ π₂
ι : (b : β) → X₂ b ⟶ Z
hι : ∀ (b : β), ι b ≫ g = π₂ b ≫ f
⊢ Sigma.desc ι ≫ g = Sigma.desc π₂ ≫ f | /-
Copyright (c) 2023 Dagur Asgeirsson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca
-/
import Mathlib.CategoryTheory.Extensive
import Mathlib.CategoryTheory.Preadditive.Projective
import Mathlib.CategoryTheory.Sites.Coherent
import Mathlib.CategoryTheory.Sites.Preserves
/-!
# The Regular and Extensive Coverages
This file defines two coverages on a category `C`.
The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy
a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The
covering sieves of this coverage are generated by presieves consisting of a single effective
epimorphism.
The second one is called the *extensive* coverage and for that to exist, the category `C` must
satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that
those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves
consisting finitely many arrows that together induce an isomorphism from the coproduct to the
target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are
disjoint.
## Main results
* `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`.
* `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages
generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular.
* `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the
regular topology are precisely the presheaves satisfying an equaliser condition with respect to
effective epimorphisms.
* `isSheaf_of_projective`: In a preregular category in which every object is projective, every
presheaf is a sheaf for the regular topology.
* `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the
extensive topology are precisely those preserving finite products.
-/
universe v u w
namespace CategoryTheory
open Limits
variable (C : Type u) [Category.{v} C]
/--
The condition `Preregular C` is property that effective epis can be "pulled back" along any
morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective
epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective
(like `Stonean`).
-/
class Preregular : Prop where
/--
For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists
an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram
commute.
```
W --i-→ Z
| |
h g
↓ ↓
X --f-→ Y
```
-/
exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g],
(∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f)
instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where
exists_fac {X Y Z} f g _ := by
have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g)
simp only [exists_const] at hp
rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp
obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance
refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩
| ext b | instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where
exists_fac {X Y Z} f g _ := by
have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g)
simp only [exists_const] at hp
rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp
obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance
refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩
| Mathlib.CategoryTheory.Sites.RegularExtensive.77_0.rkSRr0zuqme90Yu | instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where
exists_fac {X Y Z} f g _ | Mathlib_CategoryTheory_Sites_RegularExtensive |
case intro.intro.intro.intro.intro.intro.h
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : Precoherent C
inst✝ : HasFiniteCoproducts C
X Y Z : C
f : X ⟶ Y
g : Z ⟶ Y
x✝ : EffectiveEpi g
hp : EffectiveEpi g → ∃ β x X₂ π₂, EffectiveEpiFamily X₂ π₂ ∧ ∃ ι, ∀ (b : β), ι b ≫ g = π₂ b ≫ f
β : Type
w✝ : Fintype β
X₂ : β → C
π₂ : (b : β) → X₂ b ⟶ X
h : EffectiveEpiFamily X₂ π₂
ι : (b : β) → X₂ b ⟶ Z
hι : ∀ (b : β), ι b ≫ g = π₂ b ≫ f
b : β
⊢ Sigma.ι X₂ b ≫ Sigma.desc ι ≫ g = Sigma.ι X₂ b ≫ Sigma.desc π₂ ≫ f | /-
Copyright (c) 2023 Dagur Asgeirsson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca
-/
import Mathlib.CategoryTheory.Extensive
import Mathlib.CategoryTheory.Preadditive.Projective
import Mathlib.CategoryTheory.Sites.Coherent
import Mathlib.CategoryTheory.Sites.Preserves
/-!
# The Regular and Extensive Coverages
This file defines two coverages on a category `C`.
The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy
a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The
covering sieves of this coverage are generated by presieves consisting of a single effective
epimorphism.
The second one is called the *extensive* coverage and for that to exist, the category `C` must
satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that
those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves
consisting finitely many arrows that together induce an isomorphism from the coproduct to the
target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are
disjoint.
## Main results
* `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`.
* `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages
generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular.
* `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the
regular topology are precisely the presheaves satisfying an equaliser condition with respect to
effective epimorphisms.
* `isSheaf_of_projective`: In a preregular category in which every object is projective, every
presheaf is a sheaf for the regular topology.
* `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the
extensive topology are precisely those preserving finite products.
-/
universe v u w
namespace CategoryTheory
open Limits
variable (C : Type u) [Category.{v} C]
/--
The condition `Preregular C` is property that effective epis can be "pulled back" along any
morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective
epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective
(like `Stonean`).
-/
class Preregular : Prop where
/--
For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists
an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram
commute.
```
W --i-→ Z
| |
h g
↓ ↓
X --f-→ Y
```
-/
exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g],
(∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f)
instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where
exists_fac {X Y Z} f g _ := by
have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g)
simp only [exists_const] at hp
rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp
obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance
refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩
ext b
| simpa using hι b | instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where
exists_fac {X Y Z} f g _ := by
have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g)
simp only [exists_const] at hp
rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp
obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance
refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩
ext b
| Mathlib.CategoryTheory.Sites.RegularExtensive.77_0.rkSRr0zuqme90Yu | instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where
exists_fac {X Y Z} f g _ | Mathlib_CategoryTheory_Sites_RegularExtensive |
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : Preregular C
⊢ ∀ ⦃X Y : C⦄ (f : Y ⟶ X),
∀ S ∈ (fun B => {S | ∃ X f, (S = Presieve.ofArrows (fun x => X) fun x => f) ∧ EffectiveEpi f}) X,
∃ T ∈ (fun B => {S | ∃ X f, (S = Presieve.ofArrows (fun x => X) fun x => f) ∧ EffectiveEpi f}) Y,
Presieve.FactorsThruAlong T S f | /-
Copyright (c) 2023 Dagur Asgeirsson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca
-/
import Mathlib.CategoryTheory.Extensive
import Mathlib.CategoryTheory.Preadditive.Projective
import Mathlib.CategoryTheory.Sites.Coherent
import Mathlib.CategoryTheory.Sites.Preserves
/-!
# The Regular and Extensive Coverages
This file defines two coverages on a category `C`.
The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy
a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The
covering sieves of this coverage are generated by presieves consisting of a single effective
epimorphism.
The second one is called the *extensive* coverage and for that to exist, the category `C` must
satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that
those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves
consisting finitely many arrows that together induce an isomorphism from the coproduct to the
target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are
disjoint.
## Main results
* `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`.
* `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages
generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular.
* `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the
regular topology are precisely the presheaves satisfying an equaliser condition with respect to
effective epimorphisms.
* `isSheaf_of_projective`: In a preregular category in which every object is projective, every
presheaf is a sheaf for the regular topology.
* `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the
extensive topology are precisely those preserving finite products.
-/
universe v u w
namespace CategoryTheory
open Limits
variable (C : Type u) [Category.{v} C]
/--
The condition `Preregular C` is property that effective epis can be "pulled back" along any
morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective
epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective
(like `Stonean`).
-/
class Preregular : Prop where
/--
For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists
an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram
commute.
```
W --i-→ Z
| |
h g
↓ ↓
X --f-→ Y
```
-/
exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g],
(∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f)
instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where
exists_fac {X Y Z} f g _ := by
have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g)
simp only [exists_const] at hp
rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp
obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance
refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩
ext b
simpa using hι b
/--
The regular coverage on a regular category `C`.
-/
def regularCoverage [Preregular C] : Coverage C where
covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X)
(fun (_ : Unit) ↦ f) ∧ EffectiveEpi f }
pullback := by
| intro X Y f S ⟨Z, π, hπ, h_epi⟩ | /--
The regular coverage on a regular category `C`.
-/
def regularCoverage [Preregular C] : Coverage C where
covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X)
(fun (_ : Unit) ↦ f) ∧ EffectiveEpi f }
pullback := by
| Mathlib.CategoryTheory.Sites.RegularExtensive.87_0.rkSRr0zuqme90Yu | /--
The regular coverage on a regular category `C`.
-/
def regularCoverage [Preregular C] : Coverage C where
covering B | Mathlib_CategoryTheory_Sites_RegularExtensive |
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : Preregular C
X Y : C
f : Y ⟶ X
S : Presieve X
Z : C
π : Z ⟶ X
hπ : S = Presieve.ofArrows (fun x => Z) fun x => π
h_epi : EffectiveEpi π
⊢ ∃ T ∈ (fun B => {S | ∃ X f, (S = Presieve.ofArrows (fun x => X) fun x => f) ∧ EffectiveEpi f}) Y,
Presieve.FactorsThruAlong T S f | /-
Copyright (c) 2023 Dagur Asgeirsson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca
-/
import Mathlib.CategoryTheory.Extensive
import Mathlib.CategoryTheory.Preadditive.Projective
import Mathlib.CategoryTheory.Sites.Coherent
import Mathlib.CategoryTheory.Sites.Preserves
/-!
# The Regular and Extensive Coverages
This file defines two coverages on a category `C`.
The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy
a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The
covering sieves of this coverage are generated by presieves consisting of a single effective
epimorphism.
The second one is called the *extensive* coverage and for that to exist, the category `C` must
satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that
those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves
consisting finitely many arrows that together induce an isomorphism from the coproduct to the
target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are
disjoint.
## Main results
* `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`.
* `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages
generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular.
* `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the
regular topology are precisely the presheaves satisfying an equaliser condition with respect to
effective epimorphisms.
* `isSheaf_of_projective`: In a preregular category in which every object is projective, every
presheaf is a sheaf for the regular topology.
* `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the
extensive topology are precisely those preserving finite products.
-/
universe v u w
namespace CategoryTheory
open Limits
variable (C : Type u) [Category.{v} C]
/--
The condition `Preregular C` is property that effective epis can be "pulled back" along any
morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective
epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective
(like `Stonean`).
-/
class Preregular : Prop where
/--
For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists
an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram
commute.
```
W --i-→ Z
| |
h g
↓ ↓
X --f-→ Y
```
-/
exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g],
(∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f)
instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where
exists_fac {X Y Z} f g _ := by
have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g)
simp only [exists_const] at hp
rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp
obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance
refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩
ext b
simpa using hι b
/--
The regular coverage on a regular category `C`.
-/
def regularCoverage [Preregular C] : Coverage C where
covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X)
(fun (_ : Unit) ↦ f) ∧ EffectiveEpi f }
pullback := by
intro X Y f S ⟨Z, π, hπ, h_epi⟩
| have := Preregular.exists_fac f π | /--
The regular coverage on a regular category `C`.
-/
def regularCoverage [Preregular C] : Coverage C where
covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X)
(fun (_ : Unit) ↦ f) ∧ EffectiveEpi f }
pullback := by
intro X Y f S ⟨Z, π, hπ, h_epi⟩
| Mathlib.CategoryTheory.Sites.RegularExtensive.87_0.rkSRr0zuqme90Yu | /--
The regular coverage on a regular category `C`.
-/
def regularCoverage [Preregular C] : Coverage C where
covering B | Mathlib_CategoryTheory_Sites_RegularExtensive |
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : Preregular C
X Y : C
f : Y ⟶ X
S : Presieve X
Z : C
π : Z ⟶ X
hπ : S = Presieve.ofArrows (fun x => Z) fun x => π
h_epi : EffectiveEpi π
this : ∃ W h, ∃ (_ : EffectiveEpi h), ∃ i, i ≫ π = h ≫ f
⊢ ∃ T ∈ (fun B => {S | ∃ X f, (S = Presieve.ofArrows (fun x => X) fun x => f) ∧ EffectiveEpi f}) Y,
Presieve.FactorsThruAlong T S f | /-
Copyright (c) 2023 Dagur Asgeirsson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca
-/
import Mathlib.CategoryTheory.Extensive
import Mathlib.CategoryTheory.Preadditive.Projective
import Mathlib.CategoryTheory.Sites.Coherent
import Mathlib.CategoryTheory.Sites.Preserves
/-!
# The Regular and Extensive Coverages
This file defines two coverages on a category `C`.
The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy
a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The
covering sieves of this coverage are generated by presieves consisting of a single effective
epimorphism.
The second one is called the *extensive* coverage and for that to exist, the category `C` must
satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that
those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves
consisting finitely many arrows that together induce an isomorphism from the coproduct to the
target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are
disjoint.
## Main results
* `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`.
* `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages
generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular.
* `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the
regular topology are precisely the presheaves satisfying an equaliser condition with respect to
effective epimorphisms.
* `isSheaf_of_projective`: In a preregular category in which every object is projective, every
presheaf is a sheaf for the regular topology.
* `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the
extensive topology are precisely those preserving finite products.
-/
universe v u w
namespace CategoryTheory
open Limits
variable (C : Type u) [Category.{v} C]
/--
The condition `Preregular C` is property that effective epis can be "pulled back" along any
morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective
epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective
(like `Stonean`).
-/
class Preregular : Prop where
/--
For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists
an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram
commute.
```
W --i-→ Z
| |
h g
↓ ↓
X --f-→ Y
```
-/
exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g],
(∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f)
instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where
exists_fac {X Y Z} f g _ := by
have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g)
simp only [exists_const] at hp
rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp
obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance
refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩
ext b
simpa using hι b
/--
The regular coverage on a regular category `C`.
-/
def regularCoverage [Preregular C] : Coverage C where
covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X)
(fun (_ : Unit) ↦ f) ∧ EffectiveEpi f }
pullback := by
intro X Y f S ⟨Z, π, hπ, h_epi⟩
have := Preregular.exists_fac f π
| obtain ⟨W, h, _, i, this⟩ := this | /--
The regular coverage on a regular category `C`.
-/
def regularCoverage [Preregular C] : Coverage C where
covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X)
(fun (_ : Unit) ↦ f) ∧ EffectiveEpi f }
pullback := by
intro X Y f S ⟨Z, π, hπ, h_epi⟩
have := Preregular.exists_fac f π
| Mathlib.CategoryTheory.Sites.RegularExtensive.87_0.rkSRr0zuqme90Yu | /--
The regular coverage on a regular category `C`.
-/
def regularCoverage [Preregular C] : Coverage C where
covering B | Mathlib_CategoryTheory_Sites_RegularExtensive |
case intro.intro.intro.intro
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : Preregular C
X Y : C
f : Y ⟶ X
S : Presieve X
Z : C
π : Z ⟶ X
hπ : S = Presieve.ofArrows (fun x => Z) fun x => π
h_epi : EffectiveEpi π
W : C
h : W ⟶ Y
w✝ : EffectiveEpi h
i : W ⟶ Z
this : i ≫ π = h ≫ f
⊢ ∃ T ∈ (fun B => {S | ∃ X f, (S = Presieve.ofArrows (fun x => X) fun x => f) ∧ EffectiveEpi f}) Y,
Presieve.FactorsThruAlong T S f | /-
Copyright (c) 2023 Dagur Asgeirsson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca
-/
import Mathlib.CategoryTheory.Extensive
import Mathlib.CategoryTheory.Preadditive.Projective
import Mathlib.CategoryTheory.Sites.Coherent
import Mathlib.CategoryTheory.Sites.Preserves
/-!
# The Regular and Extensive Coverages
This file defines two coverages on a category `C`.
The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy
a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The
covering sieves of this coverage are generated by presieves consisting of a single effective
epimorphism.
The second one is called the *extensive* coverage and for that to exist, the category `C` must
satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that
those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves
consisting finitely many arrows that together induce an isomorphism from the coproduct to the
target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are
disjoint.
## Main results
* `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`.
* `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages
generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular.
* `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the
regular topology are precisely the presheaves satisfying an equaliser condition with respect to
effective epimorphisms.
* `isSheaf_of_projective`: In a preregular category in which every object is projective, every
presheaf is a sheaf for the regular topology.
* `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the
extensive topology are precisely those preserving finite products.
-/
universe v u w
namespace CategoryTheory
open Limits
variable (C : Type u) [Category.{v} C]
/--
The condition `Preregular C` is property that effective epis can be "pulled back" along any
morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective
epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective
(like `Stonean`).
-/
class Preregular : Prop where
/--
For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists
an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram
commute.
```
W --i-→ Z
| |
h g
↓ ↓
X --f-→ Y
```
-/
exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g],
(∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f)
instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where
exists_fac {X Y Z} f g _ := by
have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g)
simp only [exists_const] at hp
rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp
obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance
refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩
ext b
simpa using hι b
/--
The regular coverage on a regular category `C`.
-/
def regularCoverage [Preregular C] : Coverage C where
covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X)
(fun (_ : Unit) ↦ f) ∧ EffectiveEpi f }
pullback := by
intro X Y f S ⟨Z, π, hπ, h_epi⟩
have := Preregular.exists_fac f π
obtain ⟨W, h, _, i, this⟩ := this
| refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ | /--
The regular coverage on a regular category `C`.
-/
def regularCoverage [Preregular C] : Coverage C where
covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X)
(fun (_ : Unit) ↦ f) ∧ EffectiveEpi f }
pullback := by
intro X Y f S ⟨Z, π, hπ, h_epi⟩
have := Preregular.exists_fac f π
obtain ⟨W, h, _, i, this⟩ := this
| Mathlib.CategoryTheory.Sites.RegularExtensive.87_0.rkSRr0zuqme90Yu | /--
The regular coverage on a regular category `C`.
-/
def regularCoverage [Preregular C] : Coverage C where
covering B | Mathlib_CategoryTheory_Sites_RegularExtensive |
case intro.intro.intro.intro.refine_1
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : Preregular C
X Y : C
f : Y ⟶ X
S : Presieve X
Z : C
π : Z ⟶ X
hπ : S = Presieve.ofArrows (fun x => Z) fun x => π
h_epi : EffectiveEpi π
W : C
h : W ⟶ Y
w✝ : EffectiveEpi h
i : W ⟶ Z
this : i ≫ π = h ≫ f
⊢ Presieve.singleton h ∈ (fun B => {S | ∃ X f, (S = Presieve.ofArrows (fun x => X) fun x => f) ∧ EffectiveEpi f}) Y | /-
Copyright (c) 2023 Dagur Asgeirsson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca
-/
import Mathlib.CategoryTheory.Extensive
import Mathlib.CategoryTheory.Preadditive.Projective
import Mathlib.CategoryTheory.Sites.Coherent
import Mathlib.CategoryTheory.Sites.Preserves
/-!
# The Regular and Extensive Coverages
This file defines two coverages on a category `C`.
The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy
a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The
covering sieves of this coverage are generated by presieves consisting of a single effective
epimorphism.
The second one is called the *extensive* coverage and for that to exist, the category `C` must
satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that
those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves
consisting finitely many arrows that together induce an isomorphism from the coproduct to the
target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are
disjoint.
## Main results
* `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`.
* `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages
generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular.
* `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the
regular topology are precisely the presheaves satisfying an equaliser condition with respect to
effective epimorphisms.
* `isSheaf_of_projective`: In a preregular category in which every object is projective, every
presheaf is a sheaf for the regular topology.
* `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the
extensive topology are precisely those preserving finite products.
-/
universe v u w
namespace CategoryTheory
open Limits
variable (C : Type u) [Category.{v} C]
/--
The condition `Preregular C` is property that effective epis can be "pulled back" along any
morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective
epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective
(like `Stonean`).
-/
class Preregular : Prop where
/--
For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists
an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram
commute.
```
W --i-→ Z
| |
h g
↓ ↓
X --f-→ Y
```
-/
exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g],
(∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f)
instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where
exists_fac {X Y Z} f g _ := by
have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g)
simp only [exists_const] at hp
rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp
obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance
refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩
ext b
simpa using hι b
/--
The regular coverage on a regular category `C`.
-/
def regularCoverage [Preregular C] : Coverage C where
covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X)
(fun (_ : Unit) ↦ f) ∧ EffectiveEpi f }
pullback := by
intro X Y f S ⟨Z, π, hπ, h_epi⟩
have := Preregular.exists_fac f π
obtain ⟨W, h, _, i, this⟩ := this
refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩
· | exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ | /--
The regular coverage on a regular category `C`.
-/
def regularCoverage [Preregular C] : Coverage C where
covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X)
(fun (_ : Unit) ↦ f) ∧ EffectiveEpi f }
pullback := by
intro X Y f S ⟨Z, π, hπ, h_epi⟩
have := Preregular.exists_fac f π
obtain ⟨W, h, _, i, this⟩ := this
refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩
· | Mathlib.CategoryTheory.Sites.RegularExtensive.87_0.rkSRr0zuqme90Yu | /--
The regular coverage on a regular category `C`.
-/
def regularCoverage [Preregular C] : Coverage C where
covering B | Mathlib_CategoryTheory_Sites_RegularExtensive |
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : Preregular C
X Y : C
f : Y ⟶ X
S : Presieve X
Z : C
π : Z ⟶ X
hπ : S = Presieve.ofArrows (fun x => Z) fun x => π
h_epi : EffectiveEpi π
W : C
h : W ⟶ Y
w✝ : EffectiveEpi h
i : W ⟶ Z
this : i ≫ π = h ≫ f
⊢ Presieve.singleton h = Presieve.ofArrows (fun x => W) fun x => h | /-
Copyright (c) 2023 Dagur Asgeirsson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca
-/
import Mathlib.CategoryTheory.Extensive
import Mathlib.CategoryTheory.Preadditive.Projective
import Mathlib.CategoryTheory.Sites.Coherent
import Mathlib.CategoryTheory.Sites.Preserves
/-!
# The Regular and Extensive Coverages
This file defines two coverages on a category `C`.
The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy
a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The
covering sieves of this coverage are generated by presieves consisting of a single effective
epimorphism.
The second one is called the *extensive* coverage and for that to exist, the category `C` must
satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that
those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves
consisting finitely many arrows that together induce an isomorphism from the coproduct to the
target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are
disjoint.
## Main results
* `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`.
* `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages
generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular.
* `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the
regular topology are precisely the presheaves satisfying an equaliser condition with respect to
effective epimorphisms.
* `isSheaf_of_projective`: In a preregular category in which every object is projective, every
presheaf is a sheaf for the regular topology.
* `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the
extensive topology are precisely those preserving finite products.
-/
universe v u w
namespace CategoryTheory
open Limits
variable (C : Type u) [Category.{v} C]
/--
The condition `Preregular C` is property that effective epis can be "pulled back" along any
morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective
epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective
(like `Stonean`).
-/
class Preregular : Prop where
/--
For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists
an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram
commute.
```
W --i-→ Z
| |
h g
↓ ↓
X --f-→ Y
```
-/
exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g],
(∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f)
instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where
exists_fac {X Y Z} f g _ := by
have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g)
simp only [exists_const] at hp
rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp
obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance
refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩
ext b
simpa using hι b
/--
The regular coverage on a regular category `C`.
-/
def regularCoverage [Preregular C] : Coverage C where
covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X)
(fun (_ : Unit) ↦ f) ∧ EffectiveEpi f }
pullback := by
intro X Y f S ⟨Z, π, hπ, h_epi⟩
have := Preregular.exists_fac f π
obtain ⟨W, h, _, i, this⟩ := this
refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩
· exact ⟨W, h, by | {rw [Presieve.ofArrows_pUnit h]} | /--
The regular coverage on a regular category `C`.
-/
def regularCoverage [Preregular C] : Coverage C where
covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X)
(fun (_ : Unit) ↦ f) ∧ EffectiveEpi f }
pullback := by
intro X Y f S ⟨Z, π, hπ, h_epi⟩
have := Preregular.exists_fac f π
obtain ⟨W, h, _, i, this⟩ := this
refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩
· exact ⟨W, h, by | Mathlib.CategoryTheory.Sites.RegularExtensive.87_0.rkSRr0zuqme90Yu | /--
The regular coverage on a regular category `C`.
-/
def regularCoverage [Preregular C] : Coverage C where
covering B | Mathlib_CategoryTheory_Sites_RegularExtensive |
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : Preregular C
X Y : C
f : Y ⟶ X
S : Presieve X
Z : C
π : Z ⟶ X
hπ : S = Presieve.ofArrows (fun x => Z) fun x => π
h_epi : EffectiveEpi π
W : C
h : W ⟶ Y
w✝ : EffectiveEpi h
i : W ⟶ Z
this : i ≫ π = h ≫ f
⊢ Presieve.singleton h = Presieve.ofArrows (fun x => W) fun x => h | /-
Copyright (c) 2023 Dagur Asgeirsson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca
-/
import Mathlib.CategoryTheory.Extensive
import Mathlib.CategoryTheory.Preadditive.Projective
import Mathlib.CategoryTheory.Sites.Coherent
import Mathlib.CategoryTheory.Sites.Preserves
/-!
# The Regular and Extensive Coverages
This file defines two coverages on a category `C`.
The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy
a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The
covering sieves of this coverage are generated by presieves consisting of a single effective
epimorphism.
The second one is called the *extensive* coverage and for that to exist, the category `C` must
satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that
those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves
consisting finitely many arrows that together induce an isomorphism from the coproduct to the
target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are
disjoint.
## Main results
* `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`.
* `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages
generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular.
* `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the
regular topology are precisely the presheaves satisfying an equaliser condition with respect to
effective epimorphisms.
* `isSheaf_of_projective`: In a preregular category in which every object is projective, every
presheaf is a sheaf for the regular topology.
* `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the
extensive topology are precisely those preserving finite products.
-/
universe v u w
namespace CategoryTheory
open Limits
variable (C : Type u) [Category.{v} C]
/--
The condition `Preregular C` is property that effective epis can be "pulled back" along any
morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective
epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective
(like `Stonean`).
-/
class Preregular : Prop where
/--
For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists
an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram
commute.
```
W --i-→ Z
| |
h g
↓ ↓
X --f-→ Y
```
-/
exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g],
(∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f)
instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where
exists_fac {X Y Z} f g _ := by
have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g)
simp only [exists_const] at hp
rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp
obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance
refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩
ext b
simpa using hι b
/--
The regular coverage on a regular category `C`.
-/
def regularCoverage [Preregular C] : Coverage C where
covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X)
(fun (_ : Unit) ↦ f) ∧ EffectiveEpi f }
pullback := by
intro X Y f S ⟨Z, π, hπ, h_epi⟩
have := Preregular.exists_fac f π
obtain ⟨W, h, _, i, this⟩ := this
refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩
· exact ⟨W, h, by { | rw [Presieve.ofArrows_pUnit h] | /--
The regular coverage on a regular category `C`.
-/
def regularCoverage [Preregular C] : Coverage C where
covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X)
(fun (_ : Unit) ↦ f) ∧ EffectiveEpi f }
pullback := by
intro X Y f S ⟨Z, π, hπ, h_epi⟩
have := Preregular.exists_fac f π
obtain ⟨W, h, _, i, this⟩ := this
refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩
· exact ⟨W, h, by { | Mathlib.CategoryTheory.Sites.RegularExtensive.87_0.rkSRr0zuqme90Yu | /--
The regular coverage on a regular category `C`.
-/
def regularCoverage [Preregular C] : Coverage C where
covering B | Mathlib_CategoryTheory_Sites_RegularExtensive |
case intro.intro.intro.intro.refine_2
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : Preregular C
X Y : C
f : Y ⟶ X
S : Presieve X
Z : C
π : Z ⟶ X
hπ : S = Presieve.ofArrows (fun x => Z) fun x => π
h_epi : EffectiveEpi π
W : C
h : W ⟶ Y
w✝ : EffectiveEpi h
i : W ⟶ Z
this : i ≫ π = h ≫ f
⊢ Presieve.FactorsThruAlong (Presieve.singleton h) S f | /-
Copyright (c) 2023 Dagur Asgeirsson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca
-/
import Mathlib.CategoryTheory.Extensive
import Mathlib.CategoryTheory.Preadditive.Projective
import Mathlib.CategoryTheory.Sites.Coherent
import Mathlib.CategoryTheory.Sites.Preserves
/-!
# The Regular and Extensive Coverages
This file defines two coverages on a category `C`.
The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy
a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The
covering sieves of this coverage are generated by presieves consisting of a single effective
epimorphism.
The second one is called the *extensive* coverage and for that to exist, the category `C` must
satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that
those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves
consisting finitely many arrows that together induce an isomorphism from the coproduct to the
target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are
disjoint.
## Main results
* `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`.
* `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages
generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular.
* `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the
regular topology are precisely the presheaves satisfying an equaliser condition with respect to
effective epimorphisms.
* `isSheaf_of_projective`: In a preregular category in which every object is projective, every
presheaf is a sheaf for the regular topology.
* `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the
extensive topology are precisely those preserving finite products.
-/
universe v u w
namespace CategoryTheory
open Limits
variable (C : Type u) [Category.{v} C]
/--
The condition `Preregular C` is property that effective epis can be "pulled back" along any
morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective
epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective
(like `Stonean`).
-/
class Preregular : Prop where
/--
For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists
an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram
commute.
```
W --i-→ Z
| |
h g
↓ ↓
X --f-→ Y
```
-/
exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g],
(∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f)
instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where
exists_fac {X Y Z} f g _ := by
have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g)
simp only [exists_const] at hp
rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp
obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance
refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩
ext b
simpa using hι b
/--
The regular coverage on a regular category `C`.
-/
def regularCoverage [Preregular C] : Coverage C where
covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X)
(fun (_ : Unit) ↦ f) ∧ EffectiveEpi f }
pullback := by
intro X Y f S ⟨Z, π, hπ, h_epi⟩
have := Preregular.exists_fac f π
obtain ⟨W, h, _, i, this⟩ := this
refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩
· exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩
· | intro W g hg | /--
The regular coverage on a regular category `C`.
-/
def regularCoverage [Preregular C] : Coverage C where
covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X)
(fun (_ : Unit) ↦ f) ∧ EffectiveEpi f }
pullback := by
intro X Y f S ⟨Z, π, hπ, h_epi⟩
have := Preregular.exists_fac f π
obtain ⟨W, h, _, i, this⟩ := this
refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩
· exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩
· | Mathlib.CategoryTheory.Sites.RegularExtensive.87_0.rkSRr0zuqme90Yu | /--
The regular coverage on a regular category `C`.
-/
def regularCoverage [Preregular C] : Coverage C where
covering B | Mathlib_CategoryTheory_Sites_RegularExtensive |
case intro.intro.intro.intro.refine_2
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : Preregular C
X Y : C
f : Y ⟶ X
S : Presieve X
Z : C
π : Z ⟶ X
hπ : S = Presieve.ofArrows (fun x => Z) fun x => π
h_epi : EffectiveEpi π
W✝ : C
h : W✝ ⟶ Y
w✝ : EffectiveEpi h
i : W✝ ⟶ Z
this : i ≫ π = h ≫ f
W : C
g : W ⟶ Y
hg : Presieve.singleton h g
⊢ ∃ W_1 i e, S e ∧ i ≫ e = g ≫ f | /-
Copyright (c) 2023 Dagur Asgeirsson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca
-/
import Mathlib.CategoryTheory.Extensive
import Mathlib.CategoryTheory.Preadditive.Projective
import Mathlib.CategoryTheory.Sites.Coherent
import Mathlib.CategoryTheory.Sites.Preserves
/-!
# The Regular and Extensive Coverages
This file defines two coverages on a category `C`.
The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy
a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The
covering sieves of this coverage are generated by presieves consisting of a single effective
epimorphism.
The second one is called the *extensive* coverage and for that to exist, the category `C` must
satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that
those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves
consisting finitely many arrows that together induce an isomorphism from the coproduct to the
target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are
disjoint.
## Main results
* `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`.
* `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages
generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular.
* `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the
regular topology are precisely the presheaves satisfying an equaliser condition with respect to
effective epimorphisms.
* `isSheaf_of_projective`: In a preregular category in which every object is projective, every
presheaf is a sheaf for the regular topology.
* `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the
extensive topology are precisely those preserving finite products.
-/
universe v u w
namespace CategoryTheory
open Limits
variable (C : Type u) [Category.{v} C]
/--
The condition `Preregular C` is property that effective epis can be "pulled back" along any
morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective
epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective
(like `Stonean`).
-/
class Preregular : Prop where
/--
For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists
an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram
commute.
```
W --i-→ Z
| |
h g
↓ ↓
X --f-→ Y
```
-/
exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g],
(∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f)
instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where
exists_fac {X Y Z} f g _ := by
have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g)
simp only [exists_const] at hp
rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp
obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance
refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩
ext b
simpa using hι b
/--
The regular coverage on a regular category `C`.
-/
def regularCoverage [Preregular C] : Coverage C where
covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X)
(fun (_ : Unit) ↦ f) ∧ EffectiveEpi f }
pullback := by
intro X Y f S ⟨Z, π, hπ, h_epi⟩
have := Preregular.exists_fac f π
obtain ⟨W, h, _, i, this⟩ := this
refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩
· exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩
· intro W g hg
| cases hg | /--
The regular coverage on a regular category `C`.
-/
def regularCoverage [Preregular C] : Coverage C where
covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X)
(fun (_ : Unit) ↦ f) ∧ EffectiveEpi f }
pullback := by
intro X Y f S ⟨Z, π, hπ, h_epi⟩
have := Preregular.exists_fac f π
obtain ⟨W, h, _, i, this⟩ := this
refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩
· exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩
· intro W g hg
| Mathlib.CategoryTheory.Sites.RegularExtensive.87_0.rkSRr0zuqme90Yu | /--
The regular coverage on a regular category `C`.
-/
def regularCoverage [Preregular C] : Coverage C where
covering B | Mathlib_CategoryTheory_Sites_RegularExtensive |
case intro.intro.intro.intro.refine_2.mk
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : Preregular C
X Y : C
f : Y ⟶ X
S : Presieve X
Z : C
π : Z ⟶ X
hπ : S = Presieve.ofArrows (fun x => Z) fun x => π
h_epi : EffectiveEpi π
W : C
h : W ⟶ Y
w✝ : EffectiveEpi h
i : W ⟶ Z
this : i ≫ π = h ≫ f
⊢ ∃ W_1 i e, S e ∧ i ≫ e = h ≫ f | /-
Copyright (c) 2023 Dagur Asgeirsson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca
-/
import Mathlib.CategoryTheory.Extensive
import Mathlib.CategoryTheory.Preadditive.Projective
import Mathlib.CategoryTheory.Sites.Coherent
import Mathlib.CategoryTheory.Sites.Preserves
/-!
# The Regular and Extensive Coverages
This file defines two coverages on a category `C`.
The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy
a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The
covering sieves of this coverage are generated by presieves consisting of a single effective
epimorphism.
The second one is called the *extensive* coverage and for that to exist, the category `C` must
satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that
those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves
consisting finitely many arrows that together induce an isomorphism from the coproduct to the
target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are
disjoint.
## Main results
* `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`.
* `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages
generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular.
* `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the
regular topology are precisely the presheaves satisfying an equaliser condition with respect to
effective epimorphisms.
* `isSheaf_of_projective`: In a preregular category in which every object is projective, every
presheaf is a sheaf for the regular topology.
* `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the
extensive topology are precisely those preserving finite products.
-/
universe v u w
namespace CategoryTheory
open Limits
variable (C : Type u) [Category.{v} C]
/--
The condition `Preregular C` is property that effective epis can be "pulled back" along any
morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective
epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective
(like `Stonean`).
-/
class Preregular : Prop where
/--
For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists
an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram
commute.
```
W --i-→ Z
| |
h g
↓ ↓
X --f-→ Y
```
-/
exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g],
(∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f)
instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where
exists_fac {X Y Z} f g _ := by
have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g)
simp only [exists_const] at hp
rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp
obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance
refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩
ext b
simpa using hι b
/--
The regular coverage on a regular category `C`.
-/
def regularCoverage [Preregular C] : Coverage C where
covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X)
(fun (_ : Unit) ↦ f) ∧ EffectiveEpi f }
pullback := by
intro X Y f S ⟨Z, π, hπ, h_epi⟩
have := Preregular.exists_fac f π
obtain ⟨W, h, _, i, this⟩ := this
refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩
· exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩
· intro W g hg
cases hg
| refine ⟨Z, i, π, ⟨?_, this⟩⟩ | /--
The regular coverage on a regular category `C`.
-/
def regularCoverage [Preregular C] : Coverage C where
covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X)
(fun (_ : Unit) ↦ f) ∧ EffectiveEpi f }
pullback := by
intro X Y f S ⟨Z, π, hπ, h_epi⟩
have := Preregular.exists_fac f π
obtain ⟨W, h, _, i, this⟩ := this
refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩
· exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩
· intro W g hg
cases hg
| Mathlib.CategoryTheory.Sites.RegularExtensive.87_0.rkSRr0zuqme90Yu | /--
The regular coverage on a regular category `C`.
-/
def regularCoverage [Preregular C] : Coverage C where
covering B | Mathlib_CategoryTheory_Sites_RegularExtensive |
case intro.intro.intro.intro.refine_2.mk
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : Preregular C
X Y : C
f : Y ⟶ X
S : Presieve X
Z : C
π : Z ⟶ X
hπ : S = Presieve.ofArrows (fun x => Z) fun x => π
h_epi : EffectiveEpi π
W : C
h : W ⟶ Y
w✝ : EffectiveEpi h
i : W ⟶ Z
this : i ≫ π = h ≫ f
⊢ S π | /-
Copyright (c) 2023 Dagur Asgeirsson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca
-/
import Mathlib.CategoryTheory.Extensive
import Mathlib.CategoryTheory.Preadditive.Projective
import Mathlib.CategoryTheory.Sites.Coherent
import Mathlib.CategoryTheory.Sites.Preserves
/-!
# The Regular and Extensive Coverages
This file defines two coverages on a category `C`.
The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy
a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The
covering sieves of this coverage are generated by presieves consisting of a single effective
epimorphism.
The second one is called the *extensive* coverage and for that to exist, the category `C` must
satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that
those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves
consisting finitely many arrows that together induce an isomorphism from the coproduct to the
target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are
disjoint.
## Main results
* `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`.
* `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages
generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular.
* `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the
regular topology are precisely the presheaves satisfying an equaliser condition with respect to
effective epimorphisms.
* `isSheaf_of_projective`: In a preregular category in which every object is projective, every
presheaf is a sheaf for the regular topology.
* `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the
extensive topology are precisely those preserving finite products.
-/
universe v u w
namespace CategoryTheory
open Limits
variable (C : Type u) [Category.{v} C]
/--
The condition `Preregular C` is property that effective epis can be "pulled back" along any
morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective
epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective
(like `Stonean`).
-/
class Preregular : Prop where
/--
For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists
an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram
commute.
```
W --i-→ Z
| |
h g
↓ ↓
X --f-→ Y
```
-/
exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g],
(∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f)
instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where
exists_fac {X Y Z} f g _ := by
have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g)
simp only [exists_const] at hp
rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp
obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance
refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩
ext b
simpa using hι b
/--
The regular coverage on a regular category `C`.
-/
def regularCoverage [Preregular C] : Coverage C where
covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X)
(fun (_ : Unit) ↦ f) ∧ EffectiveEpi f }
pullback := by
intro X Y f S ⟨Z, π, hπ, h_epi⟩
have := Preregular.exists_fac f π
obtain ⟨W, h, _, i, this⟩ := this
refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩
· exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩
· intro W g hg
cases hg
refine ⟨Z, i, π, ⟨?_, this⟩⟩
| cases hπ | /--
The regular coverage on a regular category `C`.
-/
def regularCoverage [Preregular C] : Coverage C where
covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X)
(fun (_ : Unit) ↦ f) ∧ EffectiveEpi f }
pullback := by
intro X Y f S ⟨Z, π, hπ, h_epi⟩
have := Preregular.exists_fac f π
obtain ⟨W, h, _, i, this⟩ := this
refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩
· exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩
· intro W g hg
cases hg
refine ⟨Z, i, π, ⟨?_, this⟩⟩
| Mathlib.CategoryTheory.Sites.RegularExtensive.87_0.rkSRr0zuqme90Yu | /--
The regular coverage on a regular category `C`.
-/
def regularCoverage [Preregular C] : Coverage C where
covering B | Mathlib_CategoryTheory_Sites_RegularExtensive |
case intro.intro.intro.intro.refine_2.mk.refl
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : Preregular C
X Y : C
f : Y ⟶ X
Z : C
π : Z ⟶ X
h_epi : EffectiveEpi π
W : C
h : W ⟶ Y
w✝ : EffectiveEpi h
i : W ⟶ Z
this : i ≫ π = h ≫ f
⊢ Presieve.ofArrows (fun x => Z) (fun x => π) π | /-
Copyright (c) 2023 Dagur Asgeirsson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca
-/
import Mathlib.CategoryTheory.Extensive
import Mathlib.CategoryTheory.Preadditive.Projective
import Mathlib.CategoryTheory.Sites.Coherent
import Mathlib.CategoryTheory.Sites.Preserves
/-!
# The Regular and Extensive Coverages
This file defines two coverages on a category `C`.
The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy
a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The
covering sieves of this coverage are generated by presieves consisting of a single effective
epimorphism.
The second one is called the *extensive* coverage and for that to exist, the category `C` must
satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that
those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves
consisting finitely many arrows that together induce an isomorphism from the coproduct to the
target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are
disjoint.
## Main results
* `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`.
* `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages
generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular.
* `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the
regular topology are precisely the presheaves satisfying an equaliser condition with respect to
effective epimorphisms.
* `isSheaf_of_projective`: In a preregular category in which every object is projective, every
presheaf is a sheaf for the regular topology.
* `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the
extensive topology are precisely those preserving finite products.
-/
universe v u w
namespace CategoryTheory
open Limits
variable (C : Type u) [Category.{v} C]
/--
The condition `Preregular C` is property that effective epis can be "pulled back" along any
morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective
epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective
(like `Stonean`).
-/
class Preregular : Prop where
/--
For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists
an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram
commute.
```
W --i-→ Z
| |
h g
↓ ↓
X --f-→ Y
```
-/
exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g],
(∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f)
instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where
exists_fac {X Y Z} f g _ := by
have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g)
simp only [exists_const] at hp
rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp
obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance
refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩
ext b
simpa using hι b
/--
The regular coverage on a regular category `C`.
-/
def regularCoverage [Preregular C] : Coverage C where
covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X)
(fun (_ : Unit) ↦ f) ∧ EffectiveEpi f }
pullback := by
intro X Y f S ⟨Z, π, hπ, h_epi⟩
have := Preregular.exists_fac f π
obtain ⟨W, h, _, i, this⟩ := this
refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩
· exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩
· intro W g hg
cases hg
refine ⟨Z, i, π, ⟨?_, this⟩⟩
cases hπ
| rw [Presieve.ofArrows_pUnit] | /--
The regular coverage on a regular category `C`.
-/
def regularCoverage [Preregular C] : Coverage C where
covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X)
(fun (_ : Unit) ↦ f) ∧ EffectiveEpi f }
pullback := by
intro X Y f S ⟨Z, π, hπ, h_epi⟩
have := Preregular.exists_fac f π
obtain ⟨W, h, _, i, this⟩ := this
refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩
· exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩
· intro W g hg
cases hg
refine ⟨Z, i, π, ⟨?_, this⟩⟩
cases hπ
| Mathlib.CategoryTheory.Sites.RegularExtensive.87_0.rkSRr0zuqme90Yu | /--
The regular coverage on a regular category `C`.
-/
def regularCoverage [Preregular C] : Coverage C where
covering B | Mathlib_CategoryTheory_Sites_RegularExtensive |
case intro.intro.intro.intro.refine_2.mk.refl
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : Preregular C
X Y : C
f : Y ⟶ X
Z : C
π : Z ⟶ X
h_epi : EffectiveEpi π
W : C
h : W ⟶ Y
w✝ : EffectiveEpi h
i : W ⟶ Z
this : i ≫ π = h ≫ f
⊢ Presieve.singleton π π | /-
Copyright (c) 2023 Dagur Asgeirsson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca
-/
import Mathlib.CategoryTheory.Extensive
import Mathlib.CategoryTheory.Preadditive.Projective
import Mathlib.CategoryTheory.Sites.Coherent
import Mathlib.CategoryTheory.Sites.Preserves
/-!
# The Regular and Extensive Coverages
This file defines two coverages on a category `C`.
The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy
a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The
covering sieves of this coverage are generated by presieves consisting of a single effective
epimorphism.
The second one is called the *extensive* coverage and for that to exist, the category `C` must
satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that
those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves
consisting finitely many arrows that together induce an isomorphism from the coproduct to the
target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are
disjoint.
## Main results
* `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`.
* `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages
generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular.
* `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the
regular topology are precisely the presheaves satisfying an equaliser condition with respect to
effective epimorphisms.
* `isSheaf_of_projective`: In a preregular category in which every object is projective, every
presheaf is a sheaf for the regular topology.
* `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the
extensive topology are precisely those preserving finite products.
-/
universe v u w
namespace CategoryTheory
open Limits
variable (C : Type u) [Category.{v} C]
/--
The condition `Preregular C` is property that effective epis can be "pulled back" along any
morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective
epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective
(like `Stonean`).
-/
class Preregular : Prop where
/--
For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists
an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram
commute.
```
W --i-→ Z
| |
h g
↓ ↓
X --f-→ Y
```
-/
exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g],
(∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f)
instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where
exists_fac {X Y Z} f g _ := by
have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g)
simp only [exists_const] at hp
rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp
obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance
refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩
ext b
simpa using hι b
/--
The regular coverage on a regular category `C`.
-/
def regularCoverage [Preregular C] : Coverage C where
covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X)
(fun (_ : Unit) ↦ f) ∧ EffectiveEpi f }
pullback := by
intro X Y f S ⟨Z, π, hπ, h_epi⟩
have := Preregular.exists_fac f π
obtain ⟨W, h, _, i, this⟩ := this
refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩
· exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩
· intro W g hg
cases hg
refine ⟨Z, i, π, ⟨?_, this⟩⟩
cases hπ
rw [Presieve.ofArrows_pUnit]
| exact Presieve.singleton.mk | /--
The regular coverage on a regular category `C`.
-/
def regularCoverage [Preregular C] : Coverage C where
covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X)
(fun (_ : Unit) ↦ f) ∧ EffectiveEpi f }
pullback := by
intro X Y f S ⟨Z, π, hπ, h_epi⟩
have := Preregular.exists_fac f π
obtain ⟨W, h, _, i, this⟩ := this
refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩
· exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩
· intro W g hg
cases hg
refine ⟨Z, i, π, ⟨?_, this⟩⟩
cases hπ
rw [Presieve.ofArrows_pUnit]
| Mathlib.CategoryTheory.Sites.RegularExtensive.87_0.rkSRr0zuqme90Yu | /--
The regular coverage on a regular category `C`.
-/
def regularCoverage [Preregular C] : Coverage C where
covering B | Mathlib_CategoryTheory_Sites_RegularExtensive |
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : FinitaryPreExtensive C
⊢ ∀ ⦃X Y : C⦄ (f : Y ⟶ X),
∀ S ∈ (fun B => {S | ∃ α x X π, S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π)}) X,
∃ T ∈ (fun B => {S | ∃ α x X π, S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π)}) Y,
Presieve.FactorsThruAlong T S f | /-
Copyright (c) 2023 Dagur Asgeirsson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca
-/
import Mathlib.CategoryTheory.Extensive
import Mathlib.CategoryTheory.Preadditive.Projective
import Mathlib.CategoryTheory.Sites.Coherent
import Mathlib.CategoryTheory.Sites.Preserves
/-!
# The Regular and Extensive Coverages
This file defines two coverages on a category `C`.
The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy
a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The
covering sieves of this coverage are generated by presieves consisting of a single effective
epimorphism.
The second one is called the *extensive* coverage and for that to exist, the category `C` must
satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that
those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves
consisting finitely many arrows that together induce an isomorphism from the coproduct to the
target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are
disjoint.
## Main results
* `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`.
* `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages
generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular.
* `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the
regular topology are precisely the presheaves satisfying an equaliser condition with respect to
effective epimorphisms.
* `isSheaf_of_projective`: In a preregular category in which every object is projective, every
presheaf is a sheaf for the regular topology.
* `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the
extensive topology are precisely those preserving finite products.
-/
universe v u w
namespace CategoryTheory
open Limits
variable (C : Type u) [Category.{v} C]
/--
The condition `Preregular C` is property that effective epis can be "pulled back" along any
morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective
epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective
(like `Stonean`).
-/
class Preregular : Prop where
/--
For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists
an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram
commute.
```
W --i-→ Z
| |
h g
↓ ↓
X --f-→ Y
```
-/
exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g],
(∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f)
instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where
exists_fac {X Y Z} f g _ := by
have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g)
simp only [exists_const] at hp
rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp
obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance
refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩
ext b
simpa using hι b
/--
The regular coverage on a regular category `C`.
-/
def regularCoverage [Preregular C] : Coverage C where
covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X)
(fun (_ : Unit) ↦ f) ∧ EffectiveEpi f }
pullback := by
intro X Y f S ⟨Z, π, hπ, h_epi⟩
have := Preregular.exists_fac f π
obtain ⟨W, h, _, i, this⟩ := this
refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩
· exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩
· intro W g hg
cases hg
refine ⟨Z, i, π, ⟨?_, this⟩⟩
cases hπ
rw [Presieve.ofArrows_pUnit]
exact Presieve.singleton.mk
/--
The extensive coverage on an extensive category `C`
TODO: use general colimit API instead of `IsIso (Sigma.desc π)`
-/
def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where
covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)),
S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) }
pullback := by
| intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ | /--
The extensive coverage on an extensive category `C`
TODO: use general colimit API instead of `IsIso (Sigma.desc π)`
-/
def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where
covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)),
S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) }
pullback := by
| Mathlib.CategoryTheory.Sites.RegularExtensive.106_0.rkSRr0zuqme90Yu | /--
The extensive coverage on an extensive category `C`
TODO: use general colimit API instead of `IsIso (Sigma.desc π)`
-/
def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where
covering B | Mathlib_CategoryTheory_Sites_RegularExtensive |
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : FinitaryPreExtensive C
X Y : C
f : Y ⟶ X
S : Presieve X
α : Type
hα : Fintype α
Z : α → C
π : (a : α) → Z a ⟶ X
hS : S = Presieve.ofArrows Z π
h_iso : IsIso (Sigma.desc π)
⊢ ∃ T ∈ (fun B => {S | ∃ α x X π, S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π)}) Y, Presieve.FactorsThruAlong T S f | /-
Copyright (c) 2023 Dagur Asgeirsson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca
-/
import Mathlib.CategoryTheory.Extensive
import Mathlib.CategoryTheory.Preadditive.Projective
import Mathlib.CategoryTheory.Sites.Coherent
import Mathlib.CategoryTheory.Sites.Preserves
/-!
# The Regular and Extensive Coverages
This file defines two coverages on a category `C`.
The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy
a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The
covering sieves of this coverage are generated by presieves consisting of a single effective
epimorphism.
The second one is called the *extensive* coverage and for that to exist, the category `C` must
satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that
those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves
consisting finitely many arrows that together induce an isomorphism from the coproduct to the
target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are
disjoint.
## Main results
* `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`.
* `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages
generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular.
* `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the
regular topology are precisely the presheaves satisfying an equaliser condition with respect to
effective epimorphisms.
* `isSheaf_of_projective`: In a preregular category in which every object is projective, every
presheaf is a sheaf for the regular topology.
* `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the
extensive topology are precisely those preserving finite products.
-/
universe v u w
namespace CategoryTheory
open Limits
variable (C : Type u) [Category.{v} C]
/--
The condition `Preregular C` is property that effective epis can be "pulled back" along any
morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective
epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective
(like `Stonean`).
-/
class Preregular : Prop where
/--
For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists
an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram
commute.
```
W --i-→ Z
| |
h g
↓ ↓
X --f-→ Y
```
-/
exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g],
(∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f)
instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where
exists_fac {X Y Z} f g _ := by
have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g)
simp only [exists_const] at hp
rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp
obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance
refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩
ext b
simpa using hι b
/--
The regular coverage on a regular category `C`.
-/
def regularCoverage [Preregular C] : Coverage C where
covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X)
(fun (_ : Unit) ↦ f) ∧ EffectiveEpi f }
pullback := by
intro X Y f S ⟨Z, π, hπ, h_epi⟩
have := Preregular.exists_fac f π
obtain ⟨W, h, _, i, this⟩ := this
refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩
· exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩
· intro W g hg
cases hg
refine ⟨Z, i, π, ⟨?_, this⟩⟩
cases hπ
rw [Presieve.ofArrows_pUnit]
exact Presieve.singleton.mk
/--
The extensive coverage on an extensive category `C`
TODO: use general colimit API instead of `IsIso (Sigma.desc π)`
-/
def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where
covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)),
S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) }
pullback := by
intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩
| let Z' : α → C := fun a ↦ pullback f (π a) | /--
The extensive coverage on an extensive category `C`
TODO: use general colimit API instead of `IsIso (Sigma.desc π)`
-/
def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where
covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)),
S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) }
pullback := by
intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩
| Mathlib.CategoryTheory.Sites.RegularExtensive.106_0.rkSRr0zuqme90Yu | /--
The extensive coverage on an extensive category `C`
TODO: use general colimit API instead of `IsIso (Sigma.desc π)`
-/
def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where
covering B | Mathlib_CategoryTheory_Sites_RegularExtensive |
Subsets and Splits