state
stringlengths
0
159k
srcUpToTactic
stringlengths
387
167k
nextTactic
stringlengths
3
9k
declUpToTactic
stringlengths
22
11.5k
declId
stringlengths
38
95
decl
stringlengths
16
1.89k
file_tag
stringlengths
17
73
case intro.intro.intro C : Type u inst✝² : Category.{v, u} C B : C F : Cᵒᵖ ⥤ Type (max u v) hF : EqualizerCondition F X : C π : X ⟶ B πsurj : EffectiveEpi π inst✝¹ : regular (ofArrows (fun x => X) fun x => π) inst✝ : hasPullbacks (ofArrows (fun x => X) fun x => π) y : Unit → F.obj (op X) h : Arrows.PullbackCompatible F (fun x => π) y ⊢ ∃! t, ∀ (i : Unit), F.map π.op t = y i
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h
have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance
lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h
Mathlib.CategoryTheory.Sites.RegularExtensive.243_0.rkSRr0zuqme90Yu
lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F
Mathlib_CategoryTheory_Sites_RegularExtensive
C : Type u inst✝² : Category.{v, u} C B : C F : Cᵒᵖ ⥤ Type (max u v) hF : EqualizerCondition F X : C π : X ⟶ B πsurj : EffectiveEpi π inst✝¹ : regular (ofArrows (fun x => X) fun x => π) inst✝ : hasPullbacks (ofArrows (fun x => X) fun x => π) y : Unit → F.obj (op X) h : Arrows.PullbackCompatible F (fun x => π) y ⊢ hasPullbacks (Presieve.singleton π)
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by
rw [← ofArrows_pUnit]
lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by
Mathlib.CategoryTheory.Sites.RegularExtensive.243_0.rkSRr0zuqme90Yu
lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F
Mathlib_CategoryTheory_Sites_RegularExtensive
C : Type u inst✝² : Category.{v, u} C B : C F : Cᵒᵖ ⥤ Type (max u v) hF : EqualizerCondition F X : C π : X ⟶ B πsurj : EffectiveEpi π inst✝¹ : regular (ofArrows (fun x => X) fun x => π) inst✝ : hasPullbacks (ofArrows (fun x => X) fun x => π) y : Unit → F.obj (op X) h : Arrows.PullbackCompatible F (fun x => π) y ⊢ hasPullbacks (ofArrows (fun x => X) fun x => π)
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit];
infer_instance
lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit];
Mathlib.CategoryTheory.Sites.RegularExtensive.243_0.rkSRr0zuqme90Yu
lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F
Mathlib_CategoryTheory_Sites_RegularExtensive
case intro.intro.intro C : Type u inst✝² : Category.{v, u} C B : C F : Cᵒᵖ ⥤ Type (max u v) hF : EqualizerCondition F X : C π : X ⟶ B πsurj : EffectiveEpi π inst✝¹ : regular (ofArrows (fun x => X) fun x => π) inst✝ : hasPullbacks (ofArrows (fun x => X) fun x => π) y : Unit → F.obj (op X) h : Arrows.PullbackCompatible F (fun x => π) y this : hasPullbacks (Presieve.singleton π) ⊢ ∃! t, ∀ (i : Unit), F.map π.op t = y i
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance
have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk
lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance
Mathlib.CategoryTheory.Sites.RegularExtensive.243_0.rkSRr0zuqme90Yu
lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F
Mathlib_CategoryTheory_Sites_RegularExtensive
case intro.intro.intro C : Type u inst✝² : Category.{v, u} C B : C F : Cᵒᵖ ⥤ Type (max u v) hF : EqualizerCondition F X : C π : X ⟶ B πsurj : EffectiveEpi π inst✝¹ : regular (ofArrows (fun x => X) fun x => π) inst✝ : hasPullbacks (ofArrows (fun x => X) fun x => π) y : Unit → F.obj (op X) h : Arrows.PullbackCompatible F (fun x => π) y this✝ : hasPullbacks (Presieve.singleton π) this : HasPullback π π ⊢ ∃! t, ∀ (i : Unit), F.map π.op t = y i
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk
specialize hF X B π
lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk
Mathlib.CategoryTheory.Sites.RegularExtensive.243_0.rkSRr0zuqme90Yu
lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F
Mathlib_CategoryTheory_Sites_RegularExtensive
case intro.intro.intro C : Type u inst✝² : Category.{v, u} C B : C F : Cᵒᵖ ⥤ Type (max u v) X : C π : X ⟶ B πsurj : EffectiveEpi π inst✝¹ : regular (ofArrows (fun x => X) fun x => π) inst✝ : hasPullbacks (ofArrows (fun x => X) fun x => π) y : Unit → F.obj (op X) h : Arrows.PullbackCompatible F (fun x => π) y this✝ : hasPullbacks (Presieve.singleton π) this : HasPullback π π hF : Function.Bijective (MapToEqualizer F π pullback.fst pullback.snd (_ : pullback.fst ≫ π = pullback.snd ≫ π)) ⊢ ∃! t, ∀ (i : Unit), F.map π.op t = y i
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π
rw [Function.bijective_iff_existsUnique] at hF
lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π
Mathlib.CategoryTheory.Sites.RegularExtensive.243_0.rkSRr0zuqme90Yu
lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F
Mathlib_CategoryTheory_Sites_RegularExtensive
case intro.intro.intro C : Type u inst✝² : Category.{v, u} C B : C F : Cᵒᵖ ⥤ Type (max u v) X : C π : X ⟶ B πsurj : EffectiveEpi π inst✝¹ : regular (ofArrows (fun x => X) fun x => π) inst✝ : hasPullbacks (ofArrows (fun x => X) fun x => π) y : Unit → F.obj (op X) h : Arrows.PullbackCompatible F (fun x => π) y this✝ : hasPullbacks (Presieve.singleton π) this : HasPullback π π hF : ∀ (b : ↑{x | F.map pullback.fst.op x = F.map pullback.snd.op x}), ∃! a, MapToEqualizer F π pullback.fst pullback.snd (_ : pullback.fst ≫ π = pullback.snd ≫ π) a = b ⊢ ∃! t, ∀ (i : Unit), F.map π.op t = y i
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF
obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩
lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF
Mathlib.CategoryTheory.Sites.RegularExtensive.243_0.rkSRr0zuqme90Yu
lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F
Mathlib_CategoryTheory_Sites_RegularExtensive
case intro.intro.intro.intro.intro C : Type u inst✝² : Category.{v, u} C B : C F : Cᵒᵖ ⥤ Type (max u v) X : C π : X ⟶ B πsurj : EffectiveEpi π inst✝¹ : regular (ofArrows (fun x => X) fun x => π) inst✝ : hasPullbacks (ofArrows (fun x => X) fun x => π) y : Unit → F.obj (op X) h : Arrows.PullbackCompatible F (fun x => π) y this✝ : hasPullbacks (Presieve.singleton π) this : HasPullback π π hF : ∀ (b : ↑{x | F.map pullback.fst.op x = F.map pullback.snd.op x}), ∃! a, MapToEqualizer F π pullback.fst pullback.snd (_ : pullback.fst ≫ π = pullback.snd ≫ π) a = b t : F.obj (op B) ht : MapToEqualizer F π pullback.fst pullback.snd (_ : pullback.fst ≫ π = pullback.snd ≫ π) t = { val := y (), property := (_ : F.map pullback.fst.op (y ()) = F.map pullback.snd.op (y ())) } ht' : ∀ (y_1 : F.obj (op B)), (fun a => MapToEqualizer F π pullback.fst pullback.snd (_ : pullback.fst ≫ π = pullback.snd ≫ π) a = { val := y (), property := (_ : F.map pullback.fst.op (y ()) = F.map pullback.snd.op (y ())) }) y_1 → y_1 = t ⊢ ∃! t, ∀ (i : Unit), F.map π.op t = y i
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩
refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩
lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩
Mathlib.CategoryTheory.Sites.RegularExtensive.243_0.rkSRr0zuqme90Yu
lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F
Mathlib_CategoryTheory_Sites_RegularExtensive
case intro.intro.intro.intro.intro.refine_1 C : Type u inst✝² : Category.{v, u} C B : C F : Cᵒᵖ ⥤ Type (max u v) X : C π : X ⟶ B πsurj : EffectiveEpi π inst✝¹ : regular (ofArrows (fun x => X) fun x => π) inst✝ : hasPullbacks (ofArrows (fun x => X) fun x => π) y : Unit → F.obj (op X) h : Arrows.PullbackCompatible F (fun x => π) y this✝ : hasPullbacks (Presieve.singleton π) this : HasPullback π π hF : ∀ (b : ↑{x | F.map pullback.fst.op x = F.map pullback.snd.op x}), ∃! a, MapToEqualizer F π pullback.fst pullback.snd (_ : pullback.fst ≫ π = pullback.snd ≫ π) a = b t : F.obj (op B) ht : MapToEqualizer F π pullback.fst pullback.snd (_ : pullback.fst ≫ π = pullback.snd ≫ π) t = { val := y (), property := (_ : F.map pullback.fst.op (y ()) = F.map pullback.snd.op (y ())) } ht' : ∀ (y_1 : F.obj (op B)), (fun a => MapToEqualizer F π pullback.fst pullback.snd (_ : pullback.fst ≫ π = pullback.snd ≫ π) a = { val := y (), property := (_ : F.map pullback.fst.op (y ()) = F.map pullback.snd.op (y ())) }) y_1 → y_1 = t x✝ : Unit ⊢ F.map π.op t = y x✝
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ ·
simpa [MapToEqualizer] using ht
lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ ·
Mathlib.CategoryTheory.Sites.RegularExtensive.243_0.rkSRr0zuqme90Yu
lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F
Mathlib_CategoryTheory_Sites_RegularExtensive
case intro.intro.intro.intro.intro.refine_2 C : Type u inst✝² : Category.{v, u} C B : C F : Cᵒᵖ ⥤ Type (max u v) X : C π : X ⟶ B πsurj : EffectiveEpi π inst✝¹ : regular (ofArrows (fun x => X) fun x => π) inst✝ : hasPullbacks (ofArrows (fun x => X) fun x => π) y : Unit → F.obj (op X) h✝ : Arrows.PullbackCompatible F (fun x => π) y this✝ : hasPullbacks (Presieve.singleton π) this : HasPullback π π hF : ∀ (b : ↑{x | F.map pullback.fst.op x = F.map pullback.snd.op x}), ∃! a, MapToEqualizer F π pullback.fst pullback.snd (_ : pullback.fst ≫ π = pullback.snd ≫ π) a = b t : F.obj (op B) ht : MapToEqualizer F π pullback.fst pullback.snd (_ : pullback.fst ≫ π = pullback.snd ≫ π) t = { val := y (), property := (_ : F.map pullback.fst.op (y ()) = F.map pullback.snd.op (y ())) } ht' : ∀ (y_1 : F.obj (op B)), (fun a => MapToEqualizer F π pullback.fst pullback.snd (_ : pullback.fst ≫ π = pullback.snd ≫ π) a = { val := y (), property := (_ : F.map pullback.fst.op (y ()) = F.map pullback.snd.op (y ())) }) y_1 → y_1 = t x : F.obj (op B) h : (fun t => ∀ (i : Unit), F.map π.op t = y i) x ⊢ (fun a => MapToEqualizer F π pullback.fst pullback.snd (_ : pullback.fst ≫ π = pullback.snd ≫ π) a = { val := y (), property := (_ : F.map pullback.fst.op (y ()) = F.map pullback.snd.op (y ())) }) x
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht ·
simpa [MapToEqualizer] using h ()
lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht ·
Mathlib.CategoryTheory.Sites.RegularExtensive.243_0.rkSRr0zuqme90Yu
lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F
Mathlib_CategoryTheory_Sites_RegularExtensive
C : Type u inst✝ : Category.{v, u} C F : Cᵒᵖ ⥤ Type (max u v) hSF : ∀ {B : C} (S : Presieve B) [inst : regular S] [inst : hasPullbacks S], IsSheafFor F S ⊢ EqualizerCondition F
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by
intro X B π _ _
lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by
Mathlib.CategoryTheory.Sites.RegularExtensive.259_0.rkSRr0zuqme90Yu
lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F
Mathlib_CategoryTheory_Sites_RegularExtensive
C : Type u inst✝² : Category.{v, u} C F : Cᵒᵖ ⥤ Type (max u v) hSF : ∀ {B : C} (S : Presieve B) [inst : regular S] [inst : hasPullbacks S], IsSheafFor F S X B : C π : X ⟶ B inst✝¹ : EffectiveEpi π inst✝ : HasPullback π π ⊢ Function.Bijective (MapToEqualizer F π pullback.fst pullback.snd (_ : pullback.fst ≫ π = pullback.snd ≫ π))
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _
have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩
lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _
Mathlib.CategoryTheory.Sites.RegularExtensive.259_0.rkSRr0zuqme90Yu
lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F
Mathlib_CategoryTheory_Sites_RegularExtensive
C : Type u inst✝² : Category.{v, u} C F : Cᵒᵖ ⥤ Type (max u v) hSF : ∀ {B : C} (S : Presieve B) [inst : regular S] [inst : hasPullbacks S], IsSheafFor F S X B : C π : X ⟶ B inst✝¹ : EffectiveEpi π inst✝ : HasPullback π π this : regular (ofArrows (fun x => X) fun x => π) ⊢ Function.Bijective (MapToEqualizer F π pullback.fst pullback.snd (_ : pullback.fst ≫ π = pullback.snd ≫ π))
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩
have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩
lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩
Mathlib.CategoryTheory.Sites.RegularExtensive.259_0.rkSRr0zuqme90Yu
lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F
Mathlib_CategoryTheory_Sites_RegularExtensive
C : Type u inst✝² : Category.{v, u} C F : Cᵒᵖ ⥤ Type (max u v) hSF : ∀ {B : C} (S : Presieve B) [inst : regular S] [inst : hasPullbacks S], IsSheafFor F S X B : C π : X ⟶ B inst✝¹ : EffectiveEpi π inst✝ : HasPullback π π this : regular (ofArrows (fun x => X) fun x => π) Y✝ Z✝ : C f✝ : Y✝ ⟶ B hf : ofArrows (fun x => X) (fun x => π) f✝ x✝ : Z✝ ⟶ B hg : ofArrows (fun x => X) (fun x => π) x✝ ⊢ HasPullback f✝ x✝
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by
cases hf
lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by
Mathlib.CategoryTheory.Sites.RegularExtensive.259_0.rkSRr0zuqme90Yu
lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F
Mathlib_CategoryTheory_Sites_RegularExtensive
case mk C : Type u inst✝² : Category.{v, u} C F : Cᵒᵖ ⥤ Type (max u v) hSF : ∀ {B : C} (S : Presieve B) [inst : regular S] [inst : hasPullbacks S], IsSheafFor F S X B : C π : X ⟶ B inst✝¹ : EffectiveEpi π inst✝ : HasPullback π π this : regular (ofArrows (fun x => X) fun x => π) Z✝ : C x✝ : Z✝ ⟶ B hg : ofArrows (fun x => X) (fun x => π) x✝ i✝ : Unit ⊢ HasPullback π x✝
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf;
cases hg
lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf;
Mathlib.CategoryTheory.Sites.RegularExtensive.259_0.rkSRr0zuqme90Yu
lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F
Mathlib_CategoryTheory_Sites_RegularExtensive
case mk.mk C : Type u inst✝² : Category.{v, u} C F : Cᵒᵖ ⥤ Type (max u v) hSF : ∀ {B : C} (S : Presieve B) [inst : regular S] [inst : hasPullbacks S], IsSheafFor F S X B : C π : X ⟶ B inst✝¹ : EffectiveEpi π inst✝ : HasPullback π π this : regular (ofArrows (fun x => X) fun x => π) i✝¹ i✝ : Unit ⊢ HasPullback π π
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg;
infer_instance
lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg;
Mathlib.CategoryTheory.Sites.RegularExtensive.259_0.rkSRr0zuqme90Yu
lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F
Mathlib_CategoryTheory_Sites_RegularExtensive
C : Type u inst✝² : Category.{v, u} C F : Cᵒᵖ ⥤ Type (max u v) hSF : ∀ {B : C} (S : Presieve B) [inst : regular S] [inst : hasPullbacks S], IsSheafFor F S X B : C π : X ⟶ B inst✝¹ : EffectiveEpi π inst✝ : HasPullback π π this✝ : regular (ofArrows (fun x => X) fun x => π) this : hasPullbacks (ofArrows (fun x => X) fun x => π) ⊢ Function.Bijective (MapToEqualizer F π pullback.fst pullback.snd (_ : pullback.fst ≫ π = pullback.snd ≫ π))
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩
specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π))
lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩
Mathlib.CategoryTheory.Sites.RegularExtensive.259_0.rkSRr0zuqme90Yu
lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F
Mathlib_CategoryTheory_Sites_RegularExtensive
C : Type u inst✝² : Category.{v, u} C F : Cᵒᵖ ⥤ Type (max u v) X B : C π : X ⟶ B inst✝¹ : EffectiveEpi π inst✝ : HasPullback π π this✝ : regular (ofArrows (fun x => X) fun x => π) this : hasPullbacks (ofArrows (fun x => X) fun x => π) hSF : IsSheafFor F (ofArrows (fun x => X) fun x => π) ⊢ Function.Bijective (MapToEqualizer F π pullback.fst pullback.snd (_ : pullback.fst ≫ π = pullback.snd ≫ π))
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π))
rw [isSheafFor_arrows_iff_pullbacks] at hSF
lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π))
Mathlib.CategoryTheory.Sites.RegularExtensive.259_0.rkSRr0zuqme90Yu
lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F
Mathlib_CategoryTheory_Sites_RegularExtensive
C : Type u inst✝² : Category.{v, u} C F : Cᵒᵖ ⥤ Type (max u v) X B : C π : X ⟶ B inst✝¹ : EffectiveEpi π inst✝ : HasPullback π π this✝ : regular (ofArrows (fun x => X) fun x => π) this : hasPullbacks (ofArrows (fun x => X) fun x => π) hSF : ∀ (x : Unit → F.obj (op X)), Arrows.PullbackCompatible F (fun x => π) x → ∃! t, ∀ (i : Unit), F.map π.op t = x i ⊢ Function.Bijective (MapToEqualizer F π pullback.fst pullback.snd (_ : pullback.fst ≫ π = pullback.snd ≫ π))
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF
rw [Function.bijective_iff_existsUnique]
lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF
Mathlib.CategoryTheory.Sites.RegularExtensive.259_0.rkSRr0zuqme90Yu
lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F
Mathlib_CategoryTheory_Sites_RegularExtensive
C : Type u inst✝² : Category.{v, u} C F : Cᵒᵖ ⥤ Type (max u v) X B : C π : X ⟶ B inst✝¹ : EffectiveEpi π inst✝ : HasPullback π π this✝ : regular (ofArrows (fun x => X) fun x => π) this : hasPullbacks (ofArrows (fun x => X) fun x => π) hSF : ∀ (x : Unit → F.obj (op X)), Arrows.PullbackCompatible F (fun x => π) x → ∃! t, ∀ (i : Unit), F.map π.op t = x i ⊢ ∀ (b : ↑{x | F.map pullback.fst.op x = F.map pullback.snd.op x}), ∃! a, MapToEqualizer F π pullback.fst pullback.snd (_ : pullback.fst ≫ π = pullback.snd ≫ π) a = b
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique]
intro ⟨x, hx⟩
lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique]
Mathlib.CategoryTheory.Sites.RegularExtensive.259_0.rkSRr0zuqme90Yu
lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F
Mathlib_CategoryTheory_Sites_RegularExtensive
C : Type u inst✝² : Category.{v, u} C F : Cᵒᵖ ⥤ Type (max u v) X B : C π : X ⟶ B inst✝¹ : EffectiveEpi π inst✝ : HasPullback π π this✝ : regular (ofArrows (fun x => X) fun x => π) this : hasPullbacks (ofArrows (fun x => X) fun x => π) hSF : ∀ (x : Unit → F.obj (op X)), Arrows.PullbackCompatible F (fun x => π) x → ∃! t, ∀ (i : Unit), F.map π.op t = x i x : F.obj (op X) hx : x ∈ {x | F.map pullback.fst.op x = F.map pullback.snd.op x} ⊢ ∃! a, MapToEqualizer F π pullback.fst pullback.snd (_ : pullback.fst ≫ π = pullback.snd ≫ π) a = { val := x, property := hx }
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩
obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx)
lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩
Mathlib.CategoryTheory.Sites.RegularExtensive.259_0.rkSRr0zuqme90Yu
lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F
Mathlib_CategoryTheory_Sites_RegularExtensive
case intro.intro C : Type u inst✝² : Category.{v, u} C F : Cᵒᵖ ⥤ Type (max u v) X B : C π : X ⟶ B inst✝¹ : EffectiveEpi π inst✝ : HasPullback π π this✝ : regular (ofArrows (fun x => X) fun x => π) this : hasPullbacks (ofArrows (fun x => X) fun x => π) hSF : ∀ (x : Unit → F.obj (op X)), Arrows.PullbackCompatible F (fun x => π) x → ∃! t, ∀ (i : Unit), F.map π.op t = x i x : F.obj (op X) hx : x ∈ {x | F.map pullback.fst.op x = F.map pullback.snd.op x} t : F.obj (op B) ht : Unit → F.map π.op t = x ht' : ∀ (y : F.obj (op B)), (fun t => Unit → F.map π.op t = x) y → y = t ⊢ ∃! a, MapToEqualizer F π pullback.fst pullback.snd (_ : pullback.fst ≫ π = pullback.snd ≫ π) a = { val := x, property := hx }
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx)
refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩
lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx)
Mathlib.CategoryTheory.Sites.RegularExtensive.259_0.rkSRr0zuqme90Yu
lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F
Mathlib_CategoryTheory_Sites_RegularExtensive
case intro.intro.refine_1 C : Type u inst✝² : Category.{v, u} C F : Cᵒᵖ ⥤ Type (max u v) X B : C π : X ⟶ B inst✝¹ : EffectiveEpi π inst✝ : HasPullback π π this✝ : regular (ofArrows (fun x => X) fun x => π) this : hasPullbacks (ofArrows (fun x => X) fun x => π) hSF : ∀ (x : Unit → F.obj (op X)), Arrows.PullbackCompatible F (fun x => π) x → ∃! t, ∀ (i : Unit), F.map π.op t = x i x : F.obj (op X) hx : x ∈ {x | F.map pullback.fst.op x = F.map pullback.snd.op x} t : F.obj (op B) ht : Unit → F.map π.op t = x ht' : ∀ (y : F.obj (op B)), (fun t => Unit → F.map π.op t = x) y → y = t ⊢ (fun a => MapToEqualizer F π pullback.fst pullback.snd (_ : pullback.fst ≫ π = pullback.snd ≫ π) a = { val := x, property := hx }) t
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ ·
simpa [MapToEqualizer] using ht ()
lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ ·
Mathlib.CategoryTheory.Sites.RegularExtensive.259_0.rkSRr0zuqme90Yu
lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F
Mathlib_CategoryTheory_Sites_RegularExtensive
case intro.intro.refine_2 C : Type u inst✝² : Category.{v, u} C F : Cᵒᵖ ⥤ Type (max u v) X B : C π : X ⟶ B inst✝¹ : EffectiveEpi π inst✝ : HasPullback π π this✝ : regular (ofArrows (fun x => X) fun x => π) this : hasPullbacks (ofArrows (fun x => X) fun x => π) hSF : ∀ (x : Unit → F.obj (op X)), Arrows.PullbackCompatible F (fun x => π) x → ∃! t, ∀ (i : Unit), F.map π.op t = x i x : F.obj (op X) hx : x ∈ {x | F.map pullback.fst.op x = F.map pullback.snd.op x} t : F.obj (op B) ht : Unit → F.map π.op t = x ht' : ∀ (y : F.obj (op B)), (fun t => Unit → F.map π.op t = x) y → y = t y : F.obj (op B) h : (fun a => MapToEqualizer F π pullback.fst pullback.snd (_ : pullback.fst ≫ π = pullback.snd ≫ π) a = { val := x, property := hx }) y ⊢ (fun t => Unit → F.map π.op t = x) y
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () ·
simpa [MapToEqualizer] using h
lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () ·
Mathlib.CategoryTheory.Sites.RegularExtensive.259_0.rkSRr0zuqme90Yu
lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F
Mathlib_CategoryTheory_Sites_RegularExtensive
C : Type u inst✝² : Category.{v, u} C X : C S : Presieve X inst✝¹ : regular S inst✝ : Projective X F : Cᵒᵖ ⥤ Type (max u v) ⊢ IsSheafFor F S
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by
obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S)
lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by
Mathlib.CategoryTheory.Sites.RegularExtensive.275_0.rkSRr0zuqme90Yu
lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F
Mathlib_CategoryTheory_Sites_RegularExtensive
case intro.intro.intro C : Type u inst✝² : Category.{v, u} C X : C inst✝¹ : Projective X F : Cᵒᵖ ⥤ Type (max u v) Y : C f : Y ⟶ X hf : EffectiveEpi f inst✝ : regular (ofArrows (fun x => Y) fun x => f) ⊢ IsSheafFor F (ofArrows (fun x => Y) fun x => f)
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S)
rw [isSheafFor_arrows_iff]
lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S)
Mathlib.CategoryTheory.Sites.RegularExtensive.275_0.rkSRr0zuqme90Yu
lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F
Mathlib_CategoryTheory_Sites_RegularExtensive
case intro.intro.intro C : Type u inst✝² : Category.{v, u} C X : C inst✝¹ : Projective X F : Cᵒᵖ ⥤ Type (max u v) Y : C f : Y ⟶ X hf : EffectiveEpi f inst✝ : regular (ofArrows (fun x => Y) fun x => f) ⊢ ∀ (x : Unit → F.obj (op Y)), Arrows.Compatible F (fun x => f) x → ∃! t, ∀ (i : Unit), F.map f.op t = x i
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff]
refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩
lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff]
Mathlib.CategoryTheory.Sites.RegularExtensive.275_0.rkSRr0zuqme90Yu
lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F
Mathlib_CategoryTheory_Sites_RegularExtensive
case intro.intro.intro.refine_1 C : Type u inst✝² : Category.{v, u} C X : C inst✝¹ : Projective X F : Cᵒᵖ ⥤ Type (max u v) Y : C f : Y ⟶ X hf : EffectiveEpi f inst✝ : regular (ofArrows (fun x => Y) fun x => f) x : Unit → F.obj (op Y) hx : Arrows.Compatible F (fun x => f) x x✝ : Unit ⊢ F.map f.op (F.map (Projective.factorThru (𝟙 X) f).op (x ())) = x x✝
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ ·
simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm
lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ ·
Mathlib.CategoryTheory.Sites.RegularExtensive.275_0.rkSRr0zuqme90Yu
lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F
Mathlib_CategoryTheory_Sites_RegularExtensive
C : Type u inst✝² : Category.{v, u} C X : C inst✝¹ : Projective X F : Cᵒᵖ ⥤ Type (max u v) Y : C f : Y ⟶ X hf : EffectiveEpi f inst✝ : regular (ofArrows (fun x => Y) fun x => f) x : Unit → F.obj (op Y) hx : Arrows.Compatible F (fun x => f) x x✝ : Unit ⊢ 𝟙 Y ≫ (fun x => f) () = (f ≫ Projective.factorThru (𝟙 X) f) ≫ (fun x => f) ()
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by
simp
lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by
Mathlib.CategoryTheory.Sites.RegularExtensive.275_0.rkSRr0zuqme90Yu
lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F
Mathlib_CategoryTheory_Sites_RegularExtensive
case intro.intro.intro.refine_2 C : Type u inst✝² : Category.{v, u} C X : C inst✝¹ : Projective X F : Cᵒᵖ ⥤ Type (max u v) Y : C f : Y ⟶ X hf : EffectiveEpi f inst✝ : regular (ofArrows (fun x => Y) fun x => f) x : Unit → F.obj (op Y) hx : Arrows.Compatible F (fun x => f) x y : F.obj (op X) h : (fun t => ∀ (i : Unit), F.map f.op t = x i) y ⊢ y = F.map (Projective.factorThru (𝟙 X) f).op (x ())
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm ·
simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply]
lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm ·
Mathlib.CategoryTheory.Sites.RegularExtensive.275_0.rkSRr0zuqme90Yu
lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F
Mathlib_CategoryTheory_Sites_RegularExtensive
C : Type u inst✝² : Category.{v, u} C F : Cᵒᵖ ⥤ Type (max u v) inst✝¹ : ∀ ⦃X Y : C⦄ (π : X ⟶ Y) [inst : EffectiveEpi π], HasPullback π π inst✝ : Preregular C ⊢ IsSheaf (Coverage.toGrothendieck C (regularCoverage C)) F ↔ EqualizerCondition F
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by
rw [Presieve.isSheaf_coverage]
lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by
Mathlib.CategoryTheory.Sites.RegularExtensive.284_0.rkSRr0zuqme90Yu
lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F
Mathlib_CategoryTheory_Sites_RegularExtensive
C : Type u inst✝² : Category.{v, u} C F : Cᵒᵖ ⥤ Type (max u v) inst✝¹ : ∀ ⦃X Y : C⦄ (π : X ⟶ Y) [inst : EffectiveEpi π], HasPullback π π inst✝ : Preregular C ⊢ (∀ {X : C}, ∀ R ∈ Coverage.covering (regularCoverage C) X, IsSheafFor F R) ↔ EqualizerCondition F
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage]
refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩
lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage]
Mathlib.CategoryTheory.Sites.RegularExtensive.284_0.rkSRr0zuqme90Yu
lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F
Mathlib_CategoryTheory_Sites_RegularExtensive
C : Type u inst✝² : Category.{v, u} C F : Cᵒᵖ ⥤ Type (max u v) inst✝¹ : ∀ ⦃X Y : C⦄ (π : X ⟶ Y) [inst : EffectiveEpi π], HasPullback π π inst✝ : Preregular C ⊢ EqualizerCondition F → ∀ {X : C}, ∀ R ∈ Coverage.covering (regularCoverage C) X, IsSheafFor F R
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩
rintro h X S ⟨Y, f, rfl, hf⟩
lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩
Mathlib.CategoryTheory.Sites.RegularExtensive.284_0.rkSRr0zuqme90Yu
lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F
Mathlib_CategoryTheory_Sites_RegularExtensive
case intro.intro.intro C : Type u inst✝² : Category.{v, u} C F : Cᵒᵖ ⥤ Type (max u v) inst✝¹ : ∀ ⦃X Y : C⦄ (π : X ⟶ Y) [inst : EffectiveEpi π], HasPullback π π inst✝ : Preregular C h : EqualizerCondition F X Y : C f : Y ⟶ X hf : EffectiveEpi f ⊢ IsSheafFor F (ofArrows (fun x => Y) fun x => f)
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩
exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h
lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩
Mathlib.CategoryTheory.Sites.RegularExtensive.284_0.rkSRr0zuqme90Yu
lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F
Mathlib_CategoryTheory_Sites_RegularExtensive
C : Type u inst✝² : Category.{v, u} C F : Cᵒᵖ ⥤ Type (max u v) inst✝¹ : ∀ ⦃X Y : C⦄ (π : X ⟶ Y) [inst : EffectiveEpi π], HasPullback π π inst✝ : Preregular C h✝ : EqualizerCondition F X Y : C f : Y ⟶ X hf : EffectiveEpi f Y✝ Z✝ : C f✝ : Y✝ ⟶ X g : ofArrows (fun x => Y) (fun x => f) f✝ x✝ : Z✝ ⟶ X h : ofArrows (fun x => Y) (fun x => f) x✝ ⊢ HasPullback f✝ x✝
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by
cases g
lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by
Mathlib.CategoryTheory.Sites.RegularExtensive.284_0.rkSRr0zuqme90Yu
lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F
Mathlib_CategoryTheory_Sites_RegularExtensive
case mk C : Type u inst✝² : Category.{v, u} C F : Cᵒᵖ ⥤ Type (max u v) inst✝¹ : ∀ ⦃X Y : C⦄ (π : X ⟶ Y) [inst : EffectiveEpi π], HasPullback π π inst✝ : Preregular C h✝ : EqualizerCondition F X Y : C f : Y ⟶ X hf : EffectiveEpi f Z✝ : C x✝ : Z✝ ⟶ X h : ofArrows (fun x => Y) (fun x => f) x✝ i✝ : Unit ⊢ HasPullback f x✝
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g;
cases h
lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g;
Mathlib.CategoryTheory.Sites.RegularExtensive.284_0.rkSRr0zuqme90Yu
lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F
Mathlib_CategoryTheory_Sites_RegularExtensive
case mk.mk C : Type u inst✝² : Category.{v, u} C F : Cᵒᵖ ⥤ Type (max u v) inst✝¹ : ∀ ⦃X Y : C⦄ (π : X ⟶ Y) [inst : EffectiveEpi π], HasPullback π π inst✝ : Preregular C h : EqualizerCondition F X Y : C f : Y ⟶ X hf : EffectiveEpi f i✝¹ i✝ : Unit ⊢ HasPullback f f
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h;
infer_instance
lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h;
Mathlib.CategoryTheory.Sites.RegularExtensive.284_0.rkSRr0zuqme90Yu
lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F
Mathlib_CategoryTheory_Sites_RegularExtensive
C : Type u inst✝¹ : Category.{v, u} C inst✝ : Preregular C W : C ⊢ IsSheaf (Coverage.toGrothendieck C (regularCoverage C)) (yoneda.obj W)
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by
rw [isSheaf_coverage]
/-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by
Mathlib.CategoryTheory.Sites.RegularExtensive.297_0.rkSRr0zuqme90Yu
/-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W)
Mathlib_CategoryTheory_Sites_RegularExtensive
C : Type u inst✝¹ : Category.{v, u} C inst✝ : Preregular C W : C ⊢ ∀ {X : C}, ∀ R ∈ Coverage.covering (regularCoverage C) X, IsSheafFor (yoneda.obj W) R
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage]
intro X S ⟨_, hS⟩
/-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage]
Mathlib.CategoryTheory.Sites.RegularExtensive.297_0.rkSRr0zuqme90Yu
/-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W)
Mathlib_CategoryTheory_Sites_RegularExtensive
C : Type u inst✝¹ : Category.{v, u} C inst✝ : Preregular C W X : C S : Presieve X w✝ : C hS : ∃ f, (S = ofArrows (fun x => w✝) fun x => f) ∧ EffectiveEpi f ⊢ IsSheafFor (yoneda.obj W) S
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩
have : S.regular := ⟨_, hS⟩
/-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩
Mathlib.CategoryTheory.Sites.RegularExtensive.297_0.rkSRr0zuqme90Yu
/-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W)
Mathlib_CategoryTheory_Sites_RegularExtensive
C : Type u inst✝¹ : Category.{v, u} C inst✝ : Preregular C W X : C S : Presieve X w✝ : C hS : ∃ f, (S = ofArrows (fun x => w✝) fun x => f) ∧ EffectiveEpi f this : regular S ⊢ IsSheafFor (yoneda.obj W) S
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩
obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S)
/-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩
Mathlib.CategoryTheory.Sites.RegularExtensive.297_0.rkSRr0zuqme90Yu
/-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W)
Mathlib_CategoryTheory_Sites_RegularExtensive
case intro.intro.intro C : Type u inst✝¹ : Category.{v, u} C inst✝ : Preregular C W X w✝ Y : C f : Y ⟶ X hf : EffectiveEpi f hS : ∃ f_1, ((ofArrows (fun x => Y) fun x => f) = ofArrows (fun x => w✝) fun x => f_1) ∧ EffectiveEpi f_1 this : regular (ofArrows (fun x => Y) fun x => f) ⊢ IsSheafFor (yoneda.obj W) (ofArrows (fun x => Y) fun x => f)
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S)
have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some
/-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S)
Mathlib.CategoryTheory.Sites.RegularExtensive.297_0.rkSRr0zuqme90Yu
/-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W)
Mathlib_CategoryTheory_Sites_RegularExtensive
case intro.intro.intro C : Type u inst✝¹ : Category.{v, u} C inst✝ : Preregular C W X w✝ Y : C f : Y ⟶ X hf : EffectiveEpi f hS : ∃ f_1, ((ofArrows (fun x => Y) fun x => f) = ofArrows (fun x => w✝) fun x => f_1) ∧ EffectiveEpi f_1 this : regular (ofArrows (fun x => Y) fun x => f) h_colim : IsColimit (cocone (Sieve.generateSingleton f).arrows) ⊢ IsSheafFor (yoneda.obj W) (ofArrows (fun x => Y) fun x => f)
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some
rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim
/-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some
Mathlib.CategoryTheory.Sites.RegularExtensive.297_0.rkSRr0zuqme90Yu
/-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W)
Mathlib_CategoryTheory_Sites_RegularExtensive
case intro.intro.intro C : Type u inst✝¹ : Category.{v, u} C inst✝ : Preregular C W X w✝ Y : C f : Y ⟶ X hf : EffectiveEpi f hS : ∃ f_1, ((ofArrows (fun x => Y) fun x => f) = ofArrows (fun x => w✝) fun x => f_1) ∧ EffectiveEpi f_1 this : regular (ofArrows (fun x => Y) fun x => f) h_colim : IsColimit (cocone (Sieve.generate (ofArrows (fun x => Y) fun x => f)).arrows) ⊢ IsSheafFor (yoneda.obj W) (ofArrows (fun x => Y) fun x => f)
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim
intro x hx
/-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim
Mathlib.CategoryTheory.Sites.RegularExtensive.297_0.rkSRr0zuqme90Yu
/-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W)
Mathlib_CategoryTheory_Sites_RegularExtensive
case intro.intro.intro C : Type u inst✝¹ : Category.{v, u} C inst✝ : Preregular C W X w✝ Y : C f : Y ⟶ X hf : EffectiveEpi f hS : ∃ f_1, ((ofArrows (fun x => Y) fun x => f) = ofArrows (fun x => w✝) fun x => f_1) ∧ EffectiveEpi f_1 this : regular (ofArrows (fun x => Y) fun x => f) h_colim : IsColimit (cocone (Sieve.generate (ofArrows (fun x => Y) fun x => f)).arrows) x : FamilyOfElements (yoneda.obj W) (ofArrows (fun x => Y) fun x => f) hx : FamilyOfElements.Compatible x ⊢ ∃! t, FamilyOfElements.IsAmalgamation x t
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx
let x_ext := Presieve.FamilyOfElements.sieveExtend x
/-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx
Mathlib.CategoryTheory.Sites.RegularExtensive.297_0.rkSRr0zuqme90Yu
/-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W)
Mathlib_CategoryTheory_Sites_RegularExtensive
case intro.intro.intro C : Type u inst✝¹ : Category.{v, u} C inst✝ : Preregular C W X w✝ Y : C f : Y ⟶ X hf : EffectiveEpi f hS : ∃ f_1, ((ofArrows (fun x => Y) fun x => f) = ofArrows (fun x => w✝) fun x => f_1) ∧ EffectiveEpi f_1 this : regular (ofArrows (fun x => Y) fun x => f) h_colim : IsColimit (cocone (Sieve.generate (ofArrows (fun x => Y) fun x => f)).arrows) x : FamilyOfElements (yoneda.obj W) (ofArrows (fun x => Y) fun x => f) hx : FamilyOfElements.Compatible x x_ext : FamilyOfElements (yoneda.obj W) (Sieve.generate (ofArrows (fun x => Y) fun x => f)).arrows := FamilyOfElements.sieveExtend x ⊢ ∃! t, FamilyOfElements.IsAmalgamation x t
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x
have hx_ext := Presieve.FamilyOfElements.Compatible.sieveExtend hx
/-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x
Mathlib.CategoryTheory.Sites.RegularExtensive.297_0.rkSRr0zuqme90Yu
/-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W)
Mathlib_CategoryTheory_Sites_RegularExtensive
case intro.intro.intro C : Type u inst✝¹ : Category.{v, u} C inst✝ : Preregular C W X w✝ Y : C f : Y ⟶ X hf : EffectiveEpi f hS : ∃ f_1, ((ofArrows (fun x => Y) fun x => f) = ofArrows (fun x => w✝) fun x => f_1) ∧ EffectiveEpi f_1 this : regular (ofArrows (fun x => Y) fun x => f) h_colim : IsColimit (cocone (Sieve.generate (ofArrows (fun x => Y) fun x => f)).arrows) x : FamilyOfElements (yoneda.obj W) (ofArrows (fun x => Y) fun x => f) hx : FamilyOfElements.Compatible x x_ext : FamilyOfElements (yoneda.obj W) (Sieve.generate (ofArrows (fun x => Y) fun x => f)).arrows := FamilyOfElements.sieveExtend x hx_ext : FamilyOfElements.Compatible (FamilyOfElements.sieveExtend x) ⊢ ∃! t, FamilyOfElements.IsAmalgamation x t
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x have hx_ext := Presieve.FamilyOfElements.Compatible.sieveExtend hx
let S := Sieve.generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f))
/-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x have hx_ext := Presieve.FamilyOfElements.Compatible.sieveExtend hx
Mathlib.CategoryTheory.Sites.RegularExtensive.297_0.rkSRr0zuqme90Yu
/-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W)
Mathlib_CategoryTheory_Sites_RegularExtensive
case intro.intro.intro C : Type u inst✝¹ : Category.{v, u} C inst✝ : Preregular C W X w✝ Y : C f : Y ⟶ X hf : EffectiveEpi f hS : ∃ f_1, ((ofArrows (fun x => Y) fun x => f) = ofArrows (fun x => w✝) fun x => f_1) ∧ EffectiveEpi f_1 this : regular (ofArrows (fun x => Y) fun x => f) h_colim : IsColimit (cocone (Sieve.generate (ofArrows (fun x => Y) fun x => f)).arrows) x : FamilyOfElements (yoneda.obj W) (ofArrows (fun x => Y) fun x => f) hx : FamilyOfElements.Compatible x x_ext : FamilyOfElements (yoneda.obj W) (Sieve.generate (ofArrows (fun x => Y) fun x => f)).arrows := FamilyOfElements.sieveExtend x hx_ext : FamilyOfElements.Compatible (FamilyOfElements.sieveExtend x) S : Sieve X := Sieve.generate (ofArrows (fun x => Y) fun x => match x with | PUnit.unit => f) ⊢ ∃! t, FamilyOfElements.IsAmalgamation x t
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x have hx_ext := Presieve.FamilyOfElements.Compatible.sieveExtend hx let S := Sieve.generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f))
obtain ⟨t, t_amalg, t_uniq⟩ := (Sieve.forallYonedaIsSheaf_iff_colimit S).mpr ⟨h_colim⟩ W x_ext hx_ext
/-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x have hx_ext := Presieve.FamilyOfElements.Compatible.sieveExtend hx let S := Sieve.generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f))
Mathlib.CategoryTheory.Sites.RegularExtensive.297_0.rkSRr0zuqme90Yu
/-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W)
Mathlib_CategoryTheory_Sites_RegularExtensive
case intro.intro.intro.intro.intro C : Type u inst✝¹ : Category.{v, u} C inst✝ : Preregular C W X w✝ Y : C f : Y ⟶ X hf : EffectiveEpi f hS : ∃ f_1, ((ofArrows (fun x => Y) fun x => f) = ofArrows (fun x => w✝) fun x => f_1) ∧ EffectiveEpi f_1 this : regular (ofArrows (fun x => Y) fun x => f) h_colim : IsColimit (cocone (Sieve.generate (ofArrows (fun x => Y) fun x => f)).arrows) x : FamilyOfElements (yoneda.obj W) (ofArrows (fun x => Y) fun x => f) hx : FamilyOfElements.Compatible x x_ext : FamilyOfElements (yoneda.obj W) (Sieve.generate (ofArrows (fun x => Y) fun x => f)).arrows := FamilyOfElements.sieveExtend x hx_ext : FamilyOfElements.Compatible (FamilyOfElements.sieveExtend x) S : Sieve X := Sieve.generate (ofArrows (fun x => Y) fun x => match x with | PUnit.unit => f) t : (yoneda.obj W).obj (op X) t_amalg : FamilyOfElements.IsAmalgamation x_ext t t_uniq : ∀ (y : (yoneda.obj W).obj (op X)), (fun t => FamilyOfElements.IsAmalgamation x_ext t) y → y = t ⊢ ∃! t, FamilyOfElements.IsAmalgamation x t
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x have hx_ext := Presieve.FamilyOfElements.Compatible.sieveExtend hx let S := Sieve.generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f)) obtain ⟨t, t_amalg, t_uniq⟩ := (Sieve.forallYonedaIsSheaf_iff_colimit S).mpr ⟨h_colim⟩ W x_ext hx_ext
refine ⟨t, ?_, ?_⟩
/-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x have hx_ext := Presieve.FamilyOfElements.Compatible.sieveExtend hx let S := Sieve.generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f)) obtain ⟨t, t_amalg, t_uniq⟩ := (Sieve.forallYonedaIsSheaf_iff_colimit S).mpr ⟨h_colim⟩ W x_ext hx_ext
Mathlib.CategoryTheory.Sites.RegularExtensive.297_0.rkSRr0zuqme90Yu
/-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W)
Mathlib_CategoryTheory_Sites_RegularExtensive
case intro.intro.intro.intro.intro.refine_1 C : Type u inst✝¹ : Category.{v, u} C inst✝ : Preregular C W X w✝ Y : C f : Y ⟶ X hf : EffectiveEpi f hS : ∃ f_1, ((ofArrows (fun x => Y) fun x => f) = ofArrows (fun x => w✝) fun x => f_1) ∧ EffectiveEpi f_1 this : regular (ofArrows (fun x => Y) fun x => f) h_colim : IsColimit (cocone (Sieve.generate (ofArrows (fun x => Y) fun x => f)).arrows) x : FamilyOfElements (yoneda.obj W) (ofArrows (fun x => Y) fun x => f) hx : FamilyOfElements.Compatible x x_ext : FamilyOfElements (yoneda.obj W) (Sieve.generate (ofArrows (fun x => Y) fun x => f)).arrows := FamilyOfElements.sieveExtend x hx_ext : FamilyOfElements.Compatible (FamilyOfElements.sieveExtend x) S : Sieve X := Sieve.generate (ofArrows (fun x => Y) fun x => match x with | PUnit.unit => f) t : (yoneda.obj W).obj (op X) t_amalg : FamilyOfElements.IsAmalgamation x_ext t t_uniq : ∀ (y : (yoneda.obj W).obj (op X)), (fun t => FamilyOfElements.IsAmalgamation x_ext t) y → y = t ⊢ (fun t => FamilyOfElements.IsAmalgamation x t) t
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x have hx_ext := Presieve.FamilyOfElements.Compatible.sieveExtend hx let S := Sieve.generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f)) obtain ⟨t, t_amalg, t_uniq⟩ := (Sieve.forallYonedaIsSheaf_iff_colimit S).mpr ⟨h_colim⟩ W x_ext hx_ext refine ⟨t, ?_, ?_⟩ ·
convert Presieve.isAmalgamation_restrict (Sieve.le_generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f))) _ _ t_amalg
/-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x have hx_ext := Presieve.FamilyOfElements.Compatible.sieveExtend hx let S := Sieve.generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f)) obtain ⟨t, t_amalg, t_uniq⟩ := (Sieve.forallYonedaIsSheaf_iff_colimit S).mpr ⟨h_colim⟩ W x_ext hx_ext refine ⟨t, ?_, ?_⟩ ·
Mathlib.CategoryTheory.Sites.RegularExtensive.297_0.rkSRr0zuqme90Yu
/-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.e.h.e'_6.h.h.h C : Type u inst✝¹ : Category.{v, u} C inst✝ : Preregular C W X w✝ Y : C f : Y ⟶ X hf : EffectiveEpi f hS : ∃ f_1, ((ofArrows (fun x => Y) fun x => f) = ofArrows (fun x => w✝) fun x => f_1) ∧ EffectiveEpi f_1 this : regular (ofArrows (fun x => Y) fun x => f) h_colim : IsColimit (cocone (Sieve.generate (ofArrows (fun x => Y) fun x => f)).arrows) x : FamilyOfElements (yoneda.obj W) (ofArrows (fun x => Y) fun x => f) hx : FamilyOfElements.Compatible x x_ext : FamilyOfElements (yoneda.obj W) (Sieve.generate (ofArrows (fun x => Y) fun x => f)).arrows := FamilyOfElements.sieveExtend x hx_ext : FamilyOfElements.Compatible (FamilyOfElements.sieveExtend x) S : Sieve X := Sieve.generate (ofArrows (fun x => Y) fun x => match x with | PUnit.unit => f) t : (yoneda.obj W).obj (op X) t_amalg : FamilyOfElements.IsAmalgamation x_ext t t_uniq : ∀ (y : (yoneda.obj W).obj (op X)), (fun t => FamilyOfElements.IsAmalgamation x_ext t) y → y = t ⊢ x = FamilyOfElements.restrict (_ : (ofArrows (fun x => Y) fun x => match x with | PUnit.unit => f) ≤ (Sieve.generate (ofArrows (fun x => Y) fun x => match x with | PUnit.unit => f)).arrows) x_ext
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x have hx_ext := Presieve.FamilyOfElements.Compatible.sieveExtend hx let S := Sieve.generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f)) obtain ⟨t, t_amalg, t_uniq⟩ := (Sieve.forallYonedaIsSheaf_iff_colimit S).mpr ⟨h_colim⟩ W x_ext hx_ext refine ⟨t, ?_, ?_⟩ · convert Presieve.isAmalgamation_restrict (Sieve.le_generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f))) _ _ t_amalg
exact (Presieve.restrict_extend hx).symm
/-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x have hx_ext := Presieve.FamilyOfElements.Compatible.sieveExtend hx let S := Sieve.generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f)) obtain ⟨t, t_amalg, t_uniq⟩ := (Sieve.forallYonedaIsSheaf_iff_colimit S).mpr ⟨h_colim⟩ W x_ext hx_ext refine ⟨t, ?_, ?_⟩ · convert Presieve.isAmalgamation_restrict (Sieve.le_generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f))) _ _ t_amalg
Mathlib.CategoryTheory.Sites.RegularExtensive.297_0.rkSRr0zuqme90Yu
/-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W)
Mathlib_CategoryTheory_Sites_RegularExtensive
case intro.intro.intro.intro.intro.refine_2 C : Type u inst✝¹ : Category.{v, u} C inst✝ : Preregular C W X w✝ Y : C f : Y ⟶ X hf : EffectiveEpi f hS : ∃ f_1, ((ofArrows (fun x => Y) fun x => f) = ofArrows (fun x => w✝) fun x => f_1) ∧ EffectiveEpi f_1 this : regular (ofArrows (fun x => Y) fun x => f) h_colim : IsColimit (cocone (Sieve.generate (ofArrows (fun x => Y) fun x => f)).arrows) x : FamilyOfElements (yoneda.obj W) (ofArrows (fun x => Y) fun x => f) hx : FamilyOfElements.Compatible x x_ext : FamilyOfElements (yoneda.obj W) (Sieve.generate (ofArrows (fun x => Y) fun x => f)).arrows := FamilyOfElements.sieveExtend x hx_ext : FamilyOfElements.Compatible (FamilyOfElements.sieveExtend x) S : Sieve X := Sieve.generate (ofArrows (fun x => Y) fun x => match x with | PUnit.unit => f) t : (yoneda.obj W).obj (op X) t_amalg : FamilyOfElements.IsAmalgamation x_ext t t_uniq : ∀ (y : (yoneda.obj W).obj (op X)), (fun t => FamilyOfElements.IsAmalgamation x_ext t) y → y = t ⊢ ∀ (y : (yoneda.obj W).obj (op X)), (fun t => FamilyOfElements.IsAmalgamation x t) y → y = t
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x have hx_ext := Presieve.FamilyOfElements.Compatible.sieveExtend hx let S := Sieve.generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f)) obtain ⟨t, t_amalg, t_uniq⟩ := (Sieve.forallYonedaIsSheaf_iff_colimit S).mpr ⟨h_colim⟩ W x_ext hx_ext refine ⟨t, ?_, ?_⟩ · convert Presieve.isAmalgamation_restrict (Sieve.le_generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f))) _ _ t_amalg exact (Presieve.restrict_extend hx).symm ·
exact fun y hy ↦ t_uniq y <| Presieve.isAmalgamation_sieveExtend x y hy
/-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x have hx_ext := Presieve.FamilyOfElements.Compatible.sieveExtend hx let S := Sieve.generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f)) obtain ⟨t, t_amalg, t_uniq⟩ := (Sieve.forallYonedaIsSheaf_iff_colimit S).mpr ⟨h_colim⟩ W x_ext hx_ext refine ⟨t, ?_, ?_⟩ · convert Presieve.isAmalgamation_restrict (Sieve.le_generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f))) _ _ t_amalg exact (Presieve.restrict_extend hx).symm ·
Mathlib.CategoryTheory.Sites.RegularExtensive.297_0.rkSRr0zuqme90Yu
/-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W)
Mathlib_CategoryTheory_Sites_RegularExtensive
C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C X : C S : Presieve X inst✝ : Presieve.extensive S ⊢ ∀ {Y Z : C} {f : Y ⟶ X}, S f → ∀ {g : Z ⟶ X}, S g → HasPullback f g
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x have hx_ext := Presieve.FamilyOfElements.Compatible.sieveExtend hx let S := Sieve.generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f)) obtain ⟨t, t_amalg, t_uniq⟩ := (Sieve.forallYonedaIsSheaf_iff_colimit S).mpr ⟨h_colim⟩ W x_ext hx_ext refine ⟨t, ?_, ?_⟩ · convert Presieve.isAmalgamation_restrict (Sieve.le_generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f))) _ _ t_amalg exact (Presieve.restrict_extend hx).symm · exact fun y hy ↦ t_uniq y <| Presieve.isAmalgamation_sieveExtend x y hy /-- The regular topology on any preregular category is subcanonical. -/ theorem subcanonical [Preregular C] : Sheaf.Subcanonical (regularCoverage C).toGrothendieck := Sheaf.Subcanonical.of_yoneda_isSheaf _ isSheaf_yoneda_obj end regularCoverage end RegularSheaves section ExtensiveSheaves variable [FinitaryPreExtensive C] {C} /-- A presieve is *extensive* if it is finite and its arrows induce an isomorphism from the coproduct to the target. -/ class Presieve.extensive {X : C} (R : Presieve X) : Prop where /-- `R` consists of a finite collection of arrows that together induce an isomorphism from the coproduct of their sources. -/ arrows_nonempty_isColimit : ∃ (α : Type) (_ : Fintype α) (Z : α → C) (π : (a : α) → (Z a ⟶ X)), R = Presieve.ofArrows Z π ∧ Nonempty (IsColimit (Cofan.mk X π)) instance {X : C} (S : Presieve X) [S.extensive] : S.hasPullbacks where has_pullbacks := by
obtain ⟨_, _, _, _, rfl, ⟨hc⟩⟩ := Presieve.extensive.arrows_nonempty_isColimit (R := S)
instance {X : C} (S : Presieve X) [S.extensive] : S.hasPullbacks where has_pullbacks := by
Mathlib.CategoryTheory.Sites.RegularExtensive.339_0.rkSRr0zuqme90Yu
instance {X : C} (S : Presieve X) [S.extensive] : S.hasPullbacks where has_pullbacks
Mathlib_CategoryTheory_Sites_RegularExtensive
case intro.intro.intro.intro.intro.intro C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C X : C w✝³ : Type w✝² : Fintype w✝³ w✝¹ : w✝³ → C w✝ : (a : w✝³) → w✝¹ a ⟶ X inst✝ : Presieve.extensive (Presieve.ofArrows w✝¹ w✝) hc : IsColimit (Cofan.mk X w✝) ⊢ ∀ {Y Z : C} {f : Y ⟶ X}, Presieve.ofArrows w✝¹ w✝ f → ∀ {g : Z ⟶ X}, Presieve.ofArrows w✝¹ w✝ g → HasPullback f g
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x have hx_ext := Presieve.FamilyOfElements.Compatible.sieveExtend hx let S := Sieve.generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f)) obtain ⟨t, t_amalg, t_uniq⟩ := (Sieve.forallYonedaIsSheaf_iff_colimit S).mpr ⟨h_colim⟩ W x_ext hx_ext refine ⟨t, ?_, ?_⟩ · convert Presieve.isAmalgamation_restrict (Sieve.le_generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f))) _ _ t_amalg exact (Presieve.restrict_extend hx).symm · exact fun y hy ↦ t_uniq y <| Presieve.isAmalgamation_sieveExtend x y hy /-- The regular topology on any preregular category is subcanonical. -/ theorem subcanonical [Preregular C] : Sheaf.Subcanonical (regularCoverage C).toGrothendieck := Sheaf.Subcanonical.of_yoneda_isSheaf _ isSheaf_yoneda_obj end regularCoverage end RegularSheaves section ExtensiveSheaves variable [FinitaryPreExtensive C] {C} /-- A presieve is *extensive* if it is finite and its arrows induce an isomorphism from the coproduct to the target. -/ class Presieve.extensive {X : C} (R : Presieve X) : Prop where /-- `R` consists of a finite collection of arrows that together induce an isomorphism from the coproduct of their sources. -/ arrows_nonempty_isColimit : ∃ (α : Type) (_ : Fintype α) (Z : α → C) (π : (a : α) → (Z a ⟶ X)), R = Presieve.ofArrows Z π ∧ Nonempty (IsColimit (Cofan.mk X π)) instance {X : C} (S : Presieve X) [S.extensive] : S.hasPullbacks where has_pullbacks := by obtain ⟨_, _, _, _, rfl, ⟨hc⟩⟩ := Presieve.extensive.arrows_nonempty_isColimit (R := S)
intro _ _ _ _ _ hg
instance {X : C} (S : Presieve X) [S.extensive] : S.hasPullbacks where has_pullbacks := by obtain ⟨_, _, _, _, rfl, ⟨hc⟩⟩ := Presieve.extensive.arrows_nonempty_isColimit (R := S)
Mathlib.CategoryTheory.Sites.RegularExtensive.339_0.rkSRr0zuqme90Yu
instance {X : C} (S : Presieve X) [S.extensive] : S.hasPullbacks where has_pullbacks
Mathlib_CategoryTheory_Sites_RegularExtensive
case intro.intro.intro.intro.intro.intro C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C X : C w✝³ : Type w✝² : Fintype w✝³ w✝¹ : w✝³ → C w✝ : (a : w✝³) → w✝¹ a ⟶ X inst✝ : Presieve.extensive (Presieve.ofArrows w✝¹ w✝) hc : IsColimit (Cofan.mk X w✝) Y✝ Z✝ : C f✝ : Y✝ ⟶ X x✝ : Presieve.ofArrows w✝¹ w✝ f✝ g✝ : Z✝ ⟶ X hg : Presieve.ofArrows w✝¹ w✝ g✝ ⊢ HasPullback f✝ g✝
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x have hx_ext := Presieve.FamilyOfElements.Compatible.sieveExtend hx let S := Sieve.generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f)) obtain ⟨t, t_amalg, t_uniq⟩ := (Sieve.forallYonedaIsSheaf_iff_colimit S).mpr ⟨h_colim⟩ W x_ext hx_ext refine ⟨t, ?_, ?_⟩ · convert Presieve.isAmalgamation_restrict (Sieve.le_generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f))) _ _ t_amalg exact (Presieve.restrict_extend hx).symm · exact fun y hy ↦ t_uniq y <| Presieve.isAmalgamation_sieveExtend x y hy /-- The regular topology on any preregular category is subcanonical. -/ theorem subcanonical [Preregular C] : Sheaf.Subcanonical (regularCoverage C).toGrothendieck := Sheaf.Subcanonical.of_yoneda_isSheaf _ isSheaf_yoneda_obj end regularCoverage end RegularSheaves section ExtensiveSheaves variable [FinitaryPreExtensive C] {C} /-- A presieve is *extensive* if it is finite and its arrows induce an isomorphism from the coproduct to the target. -/ class Presieve.extensive {X : C} (R : Presieve X) : Prop where /-- `R` consists of a finite collection of arrows that together induce an isomorphism from the coproduct of their sources. -/ arrows_nonempty_isColimit : ∃ (α : Type) (_ : Fintype α) (Z : α → C) (π : (a : α) → (Z a ⟶ X)), R = Presieve.ofArrows Z π ∧ Nonempty (IsColimit (Cofan.mk X π)) instance {X : C} (S : Presieve X) [S.extensive] : S.hasPullbacks where has_pullbacks := by obtain ⟨_, _, _, _, rfl, ⟨hc⟩⟩ := Presieve.extensive.arrows_nonempty_isColimit (R := S) intro _ _ _ _ _ hg
cases hg
instance {X : C} (S : Presieve X) [S.extensive] : S.hasPullbacks where has_pullbacks := by obtain ⟨_, _, _, _, rfl, ⟨hc⟩⟩ := Presieve.extensive.arrows_nonempty_isColimit (R := S) intro _ _ _ _ _ hg
Mathlib.CategoryTheory.Sites.RegularExtensive.339_0.rkSRr0zuqme90Yu
instance {X : C} (S : Presieve X) [S.extensive] : S.hasPullbacks where has_pullbacks
Mathlib_CategoryTheory_Sites_RegularExtensive
case intro.intro.intro.intro.intro.intro.mk C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C X : C w✝³ : Type w✝² : Fintype w✝³ w✝¹ : w✝³ → C w✝ : (a : w✝³) → w✝¹ a ⟶ X inst✝ : Presieve.extensive (Presieve.ofArrows w✝¹ w✝) hc : IsColimit (Cofan.mk X w✝) Y✝ : C f✝ : Y✝ ⟶ X x✝ : Presieve.ofArrows w✝¹ w✝ f✝ i✝ : w✝³ ⊢ HasPullback f✝ (w✝ i✝)
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x have hx_ext := Presieve.FamilyOfElements.Compatible.sieveExtend hx let S := Sieve.generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f)) obtain ⟨t, t_amalg, t_uniq⟩ := (Sieve.forallYonedaIsSheaf_iff_colimit S).mpr ⟨h_colim⟩ W x_ext hx_ext refine ⟨t, ?_, ?_⟩ · convert Presieve.isAmalgamation_restrict (Sieve.le_generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f))) _ _ t_amalg exact (Presieve.restrict_extend hx).symm · exact fun y hy ↦ t_uniq y <| Presieve.isAmalgamation_sieveExtend x y hy /-- The regular topology on any preregular category is subcanonical. -/ theorem subcanonical [Preregular C] : Sheaf.Subcanonical (regularCoverage C).toGrothendieck := Sheaf.Subcanonical.of_yoneda_isSheaf _ isSheaf_yoneda_obj end regularCoverage end RegularSheaves section ExtensiveSheaves variable [FinitaryPreExtensive C] {C} /-- A presieve is *extensive* if it is finite and its arrows induce an isomorphism from the coproduct to the target. -/ class Presieve.extensive {X : C} (R : Presieve X) : Prop where /-- `R` consists of a finite collection of arrows that together induce an isomorphism from the coproduct of their sources. -/ arrows_nonempty_isColimit : ∃ (α : Type) (_ : Fintype α) (Z : α → C) (π : (a : α) → (Z a ⟶ X)), R = Presieve.ofArrows Z π ∧ Nonempty (IsColimit (Cofan.mk X π)) instance {X : C} (S : Presieve X) [S.extensive] : S.hasPullbacks where has_pullbacks := by obtain ⟨_, _, _, _, rfl, ⟨hc⟩⟩ := Presieve.extensive.arrows_nonempty_isColimit (R := S) intro _ _ _ _ _ hg cases hg
apply FinitaryPreExtensive.hasPullbacks_of_is_coproduct hc
instance {X : C} (S : Presieve X) [S.extensive] : S.hasPullbacks where has_pullbacks := by obtain ⟨_, _, _, _, rfl, ⟨hc⟩⟩ := Presieve.extensive.arrows_nonempty_isColimit (R := S) intro _ _ _ _ _ hg cases hg
Mathlib.CategoryTheory.Sites.RegularExtensive.339_0.rkSRr0zuqme90Yu
instance {X : C} (S : Presieve X) [S.extensive] : S.hasPullbacks where has_pullbacks
Mathlib_CategoryTheory_Sites_RegularExtensive
C : Type u inst✝³ : Category.{v, u} C inst✝² : FinitaryPreExtensive C X : C S : Presieve X inst✝¹ : extensive S F : Cᵒᵖ ⥤ Type (max u v) inst✝ : PreservesFiniteProducts F ⊢ IsSheafFor F S
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x have hx_ext := Presieve.FamilyOfElements.Compatible.sieveExtend hx let S := Sieve.generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f)) obtain ⟨t, t_amalg, t_uniq⟩ := (Sieve.forallYonedaIsSheaf_iff_colimit S).mpr ⟨h_colim⟩ W x_ext hx_ext refine ⟨t, ?_, ?_⟩ · convert Presieve.isAmalgamation_restrict (Sieve.le_generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f))) _ _ t_amalg exact (Presieve.restrict_extend hx).symm · exact fun y hy ↦ t_uniq y <| Presieve.isAmalgamation_sieveExtend x y hy /-- The regular topology on any preregular category is subcanonical. -/ theorem subcanonical [Preregular C] : Sheaf.Subcanonical (regularCoverage C).toGrothendieck := Sheaf.Subcanonical.of_yoneda_isSheaf _ isSheaf_yoneda_obj end regularCoverage end RegularSheaves section ExtensiveSheaves variable [FinitaryPreExtensive C] {C} /-- A presieve is *extensive* if it is finite and its arrows induce an isomorphism from the coproduct to the target. -/ class Presieve.extensive {X : C} (R : Presieve X) : Prop where /-- `R` consists of a finite collection of arrows that together induce an isomorphism from the coproduct of their sources. -/ arrows_nonempty_isColimit : ∃ (α : Type) (_ : Fintype α) (Z : α → C) (π : (a : α) → (Z a ⟶ X)), R = Presieve.ofArrows Z π ∧ Nonempty (IsColimit (Cofan.mk X π)) instance {X : C} (S : Presieve X) [S.extensive] : S.hasPullbacks where has_pullbacks := by obtain ⟨_, _, _, _, rfl, ⟨hc⟩⟩ := Presieve.extensive.arrows_nonempty_isColimit (R := S) intro _ _ _ _ _ hg cases hg apply FinitaryPreExtensive.hasPullbacks_of_is_coproduct hc instance {α : Type} [Fintype α] {Z : α → C} {F : C ⥤ Type w} [PreservesFiniteProducts F] : PreservesLimit (Discrete.functor fun a => (Z a)) F := (PreservesFiniteProducts.preserves α).preservesLimit open Presieve Opposite /-- A finite product preserving presheaf is a sheaf for the extensive topology on a category which is `FinitaryPreExtensive`. -/ theorem isSheafFor_extensive_of_preservesFiniteProducts {X : C} (S : Presieve X) [S.extensive] (F : Cᵒᵖ ⥤ Type max u v) [PreservesFiniteProducts F] : S.IsSheafFor F := by
obtain ⟨_, _, Z, π, rfl, ⟨hc⟩⟩ := extensive.arrows_nonempty_isColimit (R := S)
/-- A finite product preserving presheaf is a sheaf for the extensive topology on a category which is `FinitaryPreExtensive`. -/ theorem isSheafFor_extensive_of_preservesFiniteProducts {X : C} (S : Presieve X) [S.extensive] (F : Cᵒᵖ ⥤ Type max u v) [PreservesFiniteProducts F] : S.IsSheafFor F := by
Mathlib.CategoryTheory.Sites.RegularExtensive.352_0.rkSRr0zuqme90Yu
/-- A finite product preserving presheaf is a sheaf for the extensive topology on a category which is `FinitaryPreExtensive`. -/ theorem isSheafFor_extensive_of_preservesFiniteProducts {X : C} (S : Presieve X) [S.extensive] (F : Cᵒᵖ ⥤ Type max u v) [PreservesFiniteProducts F] : S.IsSheafFor F
Mathlib_CategoryTheory_Sites_RegularExtensive
case intro.intro.intro.intro.intro.intro C : Type u inst✝³ : Category.{v, u} C inst✝² : FinitaryPreExtensive C X : C F : Cᵒᵖ ⥤ Type (max u v) inst✝¹ : PreservesFiniteProducts F w✝¹ : Type w✝ : Fintype w✝¹ Z : w✝¹ → C π : (a : w✝¹) → Z a ⟶ X inst✝ : extensive (ofArrows Z π) hc : IsColimit (Cofan.mk X π) ⊢ IsSheafFor F (ofArrows Z π)
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x have hx_ext := Presieve.FamilyOfElements.Compatible.sieveExtend hx let S := Sieve.generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f)) obtain ⟨t, t_amalg, t_uniq⟩ := (Sieve.forallYonedaIsSheaf_iff_colimit S).mpr ⟨h_colim⟩ W x_ext hx_ext refine ⟨t, ?_, ?_⟩ · convert Presieve.isAmalgamation_restrict (Sieve.le_generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f))) _ _ t_amalg exact (Presieve.restrict_extend hx).symm · exact fun y hy ↦ t_uniq y <| Presieve.isAmalgamation_sieveExtend x y hy /-- The regular topology on any preregular category is subcanonical. -/ theorem subcanonical [Preregular C] : Sheaf.Subcanonical (regularCoverage C).toGrothendieck := Sheaf.Subcanonical.of_yoneda_isSheaf _ isSheaf_yoneda_obj end regularCoverage end RegularSheaves section ExtensiveSheaves variable [FinitaryPreExtensive C] {C} /-- A presieve is *extensive* if it is finite and its arrows induce an isomorphism from the coproduct to the target. -/ class Presieve.extensive {X : C} (R : Presieve X) : Prop where /-- `R` consists of a finite collection of arrows that together induce an isomorphism from the coproduct of their sources. -/ arrows_nonempty_isColimit : ∃ (α : Type) (_ : Fintype α) (Z : α → C) (π : (a : α) → (Z a ⟶ X)), R = Presieve.ofArrows Z π ∧ Nonempty (IsColimit (Cofan.mk X π)) instance {X : C} (S : Presieve X) [S.extensive] : S.hasPullbacks where has_pullbacks := by obtain ⟨_, _, _, _, rfl, ⟨hc⟩⟩ := Presieve.extensive.arrows_nonempty_isColimit (R := S) intro _ _ _ _ _ hg cases hg apply FinitaryPreExtensive.hasPullbacks_of_is_coproduct hc instance {α : Type} [Fintype α] {Z : α → C} {F : C ⥤ Type w} [PreservesFiniteProducts F] : PreservesLimit (Discrete.functor fun a => (Z a)) F := (PreservesFiniteProducts.preserves α).preservesLimit open Presieve Opposite /-- A finite product preserving presheaf is a sheaf for the extensive topology on a category which is `FinitaryPreExtensive`. -/ theorem isSheafFor_extensive_of_preservesFiniteProducts {X : C} (S : Presieve X) [S.extensive] (F : Cᵒᵖ ⥤ Type max u v) [PreservesFiniteProducts F] : S.IsSheafFor F := by obtain ⟨_, _, Z, π, rfl, ⟨hc⟩⟩ := extensive.arrows_nonempty_isColimit (R := S)
have : (ofArrows Z (Cofan.mk X π).inj).hasPullbacks := (inferInstance : (ofArrows Z π).hasPullbacks)
/-- A finite product preserving presheaf is a sheaf for the extensive topology on a category which is `FinitaryPreExtensive`. -/ theorem isSheafFor_extensive_of_preservesFiniteProducts {X : C} (S : Presieve X) [S.extensive] (F : Cᵒᵖ ⥤ Type max u v) [PreservesFiniteProducts F] : S.IsSheafFor F := by obtain ⟨_, _, Z, π, rfl, ⟨hc⟩⟩ := extensive.arrows_nonempty_isColimit (R := S)
Mathlib.CategoryTheory.Sites.RegularExtensive.352_0.rkSRr0zuqme90Yu
/-- A finite product preserving presheaf is a sheaf for the extensive topology on a category which is `FinitaryPreExtensive`. -/ theorem isSheafFor_extensive_of_preservesFiniteProducts {X : C} (S : Presieve X) [S.extensive] (F : Cᵒᵖ ⥤ Type max u v) [PreservesFiniteProducts F] : S.IsSheafFor F
Mathlib_CategoryTheory_Sites_RegularExtensive
case intro.intro.intro.intro.intro.intro C : Type u inst✝³ : Category.{v, u} C inst✝² : FinitaryPreExtensive C X : C F : Cᵒᵖ ⥤ Type (max u v) inst✝¹ : PreservesFiniteProducts F w✝¹ : Type w✝ : Fintype w✝¹ Z : w✝¹ → C π : (a : w✝¹) → Z a ⟶ X inst✝ : extensive (ofArrows Z π) hc : IsColimit (Cofan.mk X π) this : hasPullbacks (ofArrows Z (Cofan.inj (Cofan.mk X π))) ⊢ IsSheafFor F (ofArrows Z π)
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x have hx_ext := Presieve.FamilyOfElements.Compatible.sieveExtend hx let S := Sieve.generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f)) obtain ⟨t, t_amalg, t_uniq⟩ := (Sieve.forallYonedaIsSheaf_iff_colimit S).mpr ⟨h_colim⟩ W x_ext hx_ext refine ⟨t, ?_, ?_⟩ · convert Presieve.isAmalgamation_restrict (Sieve.le_generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f))) _ _ t_amalg exact (Presieve.restrict_extend hx).symm · exact fun y hy ↦ t_uniq y <| Presieve.isAmalgamation_sieveExtend x y hy /-- The regular topology on any preregular category is subcanonical. -/ theorem subcanonical [Preregular C] : Sheaf.Subcanonical (regularCoverage C).toGrothendieck := Sheaf.Subcanonical.of_yoneda_isSheaf _ isSheaf_yoneda_obj end regularCoverage end RegularSheaves section ExtensiveSheaves variable [FinitaryPreExtensive C] {C} /-- A presieve is *extensive* if it is finite and its arrows induce an isomorphism from the coproduct to the target. -/ class Presieve.extensive {X : C} (R : Presieve X) : Prop where /-- `R` consists of a finite collection of arrows that together induce an isomorphism from the coproduct of their sources. -/ arrows_nonempty_isColimit : ∃ (α : Type) (_ : Fintype α) (Z : α → C) (π : (a : α) → (Z a ⟶ X)), R = Presieve.ofArrows Z π ∧ Nonempty (IsColimit (Cofan.mk X π)) instance {X : C} (S : Presieve X) [S.extensive] : S.hasPullbacks where has_pullbacks := by obtain ⟨_, _, _, _, rfl, ⟨hc⟩⟩ := Presieve.extensive.arrows_nonempty_isColimit (R := S) intro _ _ _ _ _ hg cases hg apply FinitaryPreExtensive.hasPullbacks_of_is_coproduct hc instance {α : Type} [Fintype α] {Z : α → C} {F : C ⥤ Type w} [PreservesFiniteProducts F] : PreservesLimit (Discrete.functor fun a => (Z a)) F := (PreservesFiniteProducts.preserves α).preservesLimit open Presieve Opposite /-- A finite product preserving presheaf is a sheaf for the extensive topology on a category which is `FinitaryPreExtensive`. -/ theorem isSheafFor_extensive_of_preservesFiniteProducts {X : C} (S : Presieve X) [S.extensive] (F : Cᵒᵖ ⥤ Type max u v) [PreservesFiniteProducts F] : S.IsSheafFor F := by obtain ⟨_, _, Z, π, rfl, ⟨hc⟩⟩ := extensive.arrows_nonempty_isColimit (R := S) have : (ofArrows Z (Cofan.mk X π).inj).hasPullbacks := (inferInstance : (ofArrows Z π).hasPullbacks)
exact isSheafFor_of_preservesProduct _ _ hc
/-- A finite product preserving presheaf is a sheaf for the extensive topology on a category which is `FinitaryPreExtensive`. -/ theorem isSheafFor_extensive_of_preservesFiniteProducts {X : C} (S : Presieve X) [S.extensive] (F : Cᵒᵖ ⥤ Type max u v) [PreservesFiniteProducts F] : S.IsSheafFor F := by obtain ⟨_, _, Z, π, rfl, ⟨hc⟩⟩ := extensive.arrows_nonempty_isColimit (R := S) have : (ofArrows Z (Cofan.mk X π).inj).hasPullbacks := (inferInstance : (ofArrows Z π).hasPullbacks)
Mathlib.CategoryTheory.Sites.RegularExtensive.352_0.rkSRr0zuqme90Yu
/-- A finite product preserving presheaf is a sheaf for the extensive topology on a category which is `FinitaryPreExtensive`. -/ theorem isSheafFor_extensive_of_preservesFiniteProducts {X : C} (S : Presieve X) [S.extensive] (F : Cᵒᵖ ⥤ Type max u v) [PreservesFiniteProducts F] : S.IsSheafFor F
Mathlib_CategoryTheory_Sites_RegularExtensive
C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C inst✝ : FinitaryExtensive C F : Cᵒᵖ ⥤ Type (max u v) ⊢ IsSheaf (Coverage.toGrothendieck C (extensiveCoverage C)) F ↔ Nonempty (PreservesFiniteProducts F)
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x have hx_ext := Presieve.FamilyOfElements.Compatible.sieveExtend hx let S := Sieve.generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f)) obtain ⟨t, t_amalg, t_uniq⟩ := (Sieve.forallYonedaIsSheaf_iff_colimit S).mpr ⟨h_colim⟩ W x_ext hx_ext refine ⟨t, ?_, ?_⟩ · convert Presieve.isAmalgamation_restrict (Sieve.le_generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f))) _ _ t_amalg exact (Presieve.restrict_extend hx).symm · exact fun y hy ↦ t_uniq y <| Presieve.isAmalgamation_sieveExtend x y hy /-- The regular topology on any preregular category is subcanonical. -/ theorem subcanonical [Preregular C] : Sheaf.Subcanonical (regularCoverage C).toGrothendieck := Sheaf.Subcanonical.of_yoneda_isSheaf _ isSheaf_yoneda_obj end regularCoverage end RegularSheaves section ExtensiveSheaves variable [FinitaryPreExtensive C] {C} /-- A presieve is *extensive* if it is finite and its arrows induce an isomorphism from the coproduct to the target. -/ class Presieve.extensive {X : C} (R : Presieve X) : Prop where /-- `R` consists of a finite collection of arrows that together induce an isomorphism from the coproduct of their sources. -/ arrows_nonempty_isColimit : ∃ (α : Type) (_ : Fintype α) (Z : α → C) (π : (a : α) → (Z a ⟶ X)), R = Presieve.ofArrows Z π ∧ Nonempty (IsColimit (Cofan.mk X π)) instance {X : C} (S : Presieve X) [S.extensive] : S.hasPullbacks where has_pullbacks := by obtain ⟨_, _, _, _, rfl, ⟨hc⟩⟩ := Presieve.extensive.arrows_nonempty_isColimit (R := S) intro _ _ _ _ _ hg cases hg apply FinitaryPreExtensive.hasPullbacks_of_is_coproduct hc instance {α : Type} [Fintype α] {Z : α → C} {F : C ⥤ Type w} [PreservesFiniteProducts F] : PreservesLimit (Discrete.functor fun a => (Z a)) F := (PreservesFiniteProducts.preserves α).preservesLimit open Presieve Opposite /-- A finite product preserving presheaf is a sheaf for the extensive topology on a category which is `FinitaryPreExtensive`. -/ theorem isSheafFor_extensive_of_preservesFiniteProducts {X : C} (S : Presieve X) [S.extensive] (F : Cᵒᵖ ⥤ Type max u v) [PreservesFiniteProducts F] : S.IsSheafFor F := by obtain ⟨_, _, Z, π, rfl, ⟨hc⟩⟩ := extensive.arrows_nonempty_isColimit (R := S) have : (ofArrows Z (Cofan.mk X π).inj).hasPullbacks := (inferInstance : (ofArrows Z π).hasPullbacks) exact isSheafFor_of_preservesProduct _ _ hc instance {α : Type} [Fintype α] (Z : α → C) : (ofArrows Z (fun i ↦ Sigma.ι Z i)).extensive := ⟨⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ⟨coproductIsCoproduct _⟩⟩⟩ /-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by
refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by
Mathlib.CategoryTheory.Sites.RegularExtensive.366_0.rkSRr0zuqme90Yu
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F)
Mathlib_CategoryTheory_Sites_RegularExtensive
case refine_1 C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C inst✝ : FinitaryExtensive C F : Cᵒᵖ ⥤ Type (max u v) hF : IsSheaf (Coverage.toGrothendieck C (extensiveCoverage C)) F α : Type x✝ : Fintype α K : Discrete α ⥤ Cᵒᵖ ⊢ PreservesLimit K F
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x have hx_ext := Presieve.FamilyOfElements.Compatible.sieveExtend hx let S := Sieve.generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f)) obtain ⟨t, t_amalg, t_uniq⟩ := (Sieve.forallYonedaIsSheaf_iff_colimit S).mpr ⟨h_colim⟩ W x_ext hx_ext refine ⟨t, ?_, ?_⟩ · convert Presieve.isAmalgamation_restrict (Sieve.le_generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f))) _ _ t_amalg exact (Presieve.restrict_extend hx).symm · exact fun y hy ↦ t_uniq y <| Presieve.isAmalgamation_sieveExtend x y hy /-- The regular topology on any preregular category is subcanonical. -/ theorem subcanonical [Preregular C] : Sheaf.Subcanonical (regularCoverage C).toGrothendieck := Sheaf.Subcanonical.of_yoneda_isSheaf _ isSheaf_yoneda_obj end regularCoverage end RegularSheaves section ExtensiveSheaves variable [FinitaryPreExtensive C] {C} /-- A presieve is *extensive* if it is finite and its arrows induce an isomorphism from the coproduct to the target. -/ class Presieve.extensive {X : C} (R : Presieve X) : Prop where /-- `R` consists of a finite collection of arrows that together induce an isomorphism from the coproduct of their sources. -/ arrows_nonempty_isColimit : ∃ (α : Type) (_ : Fintype α) (Z : α → C) (π : (a : α) → (Z a ⟶ X)), R = Presieve.ofArrows Z π ∧ Nonempty (IsColimit (Cofan.mk X π)) instance {X : C} (S : Presieve X) [S.extensive] : S.hasPullbacks where has_pullbacks := by obtain ⟨_, _, _, _, rfl, ⟨hc⟩⟩ := Presieve.extensive.arrows_nonempty_isColimit (R := S) intro _ _ _ _ _ hg cases hg apply FinitaryPreExtensive.hasPullbacks_of_is_coproduct hc instance {α : Type} [Fintype α] {Z : α → C} {F : C ⥤ Type w} [PreservesFiniteProducts F] : PreservesLimit (Discrete.functor fun a => (Z a)) F := (PreservesFiniteProducts.preserves α).preservesLimit open Presieve Opposite /-- A finite product preserving presheaf is a sheaf for the extensive topology on a category which is `FinitaryPreExtensive`. -/ theorem isSheafFor_extensive_of_preservesFiniteProducts {X : C} (S : Presieve X) [S.extensive] (F : Cᵒᵖ ⥤ Type max u v) [PreservesFiniteProducts F] : S.IsSheafFor F := by obtain ⟨_, _, Z, π, rfl, ⟨hc⟩⟩ := extensive.arrows_nonempty_isColimit (R := S) have : (ofArrows Z (Cofan.mk X π).inj).hasPullbacks := (inferInstance : (ofArrows Z π).hasPullbacks) exact isSheafFor_of_preservesProduct _ _ hc instance {α : Type} [Fintype α] (Z : α → C) : (ofArrows Z (fun i ↦ Sigma.ι Z i)).extensive := ⟨⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ⟨coproductIsCoproduct _⟩⟩⟩ /-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ ·
rw [Presieve.isSheaf_coverage] at hF
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ ·
Mathlib.CategoryTheory.Sites.RegularExtensive.366_0.rkSRr0zuqme90Yu
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F)
Mathlib_CategoryTheory_Sites_RegularExtensive
case refine_1 C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C inst✝ : FinitaryExtensive C F : Cᵒᵖ ⥤ Type (max u v) hF : ∀ {X : C}, ∀ R ∈ Coverage.covering (extensiveCoverage C) X, IsSheafFor F R α : Type x✝ : Fintype α K : Discrete α ⥤ Cᵒᵖ ⊢ PreservesLimit K F
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x have hx_ext := Presieve.FamilyOfElements.Compatible.sieveExtend hx let S := Sieve.generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f)) obtain ⟨t, t_amalg, t_uniq⟩ := (Sieve.forallYonedaIsSheaf_iff_colimit S).mpr ⟨h_colim⟩ W x_ext hx_ext refine ⟨t, ?_, ?_⟩ · convert Presieve.isAmalgamation_restrict (Sieve.le_generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f))) _ _ t_amalg exact (Presieve.restrict_extend hx).symm · exact fun y hy ↦ t_uniq y <| Presieve.isAmalgamation_sieveExtend x y hy /-- The regular topology on any preregular category is subcanonical. -/ theorem subcanonical [Preregular C] : Sheaf.Subcanonical (regularCoverage C).toGrothendieck := Sheaf.Subcanonical.of_yoneda_isSheaf _ isSheaf_yoneda_obj end regularCoverage end RegularSheaves section ExtensiveSheaves variable [FinitaryPreExtensive C] {C} /-- A presieve is *extensive* if it is finite and its arrows induce an isomorphism from the coproduct to the target. -/ class Presieve.extensive {X : C} (R : Presieve X) : Prop where /-- `R` consists of a finite collection of arrows that together induce an isomorphism from the coproduct of their sources. -/ arrows_nonempty_isColimit : ∃ (α : Type) (_ : Fintype α) (Z : α → C) (π : (a : α) → (Z a ⟶ X)), R = Presieve.ofArrows Z π ∧ Nonempty (IsColimit (Cofan.mk X π)) instance {X : C} (S : Presieve X) [S.extensive] : S.hasPullbacks where has_pullbacks := by obtain ⟨_, _, _, _, rfl, ⟨hc⟩⟩ := Presieve.extensive.arrows_nonempty_isColimit (R := S) intro _ _ _ _ _ hg cases hg apply FinitaryPreExtensive.hasPullbacks_of_is_coproduct hc instance {α : Type} [Fintype α] {Z : α → C} {F : C ⥤ Type w} [PreservesFiniteProducts F] : PreservesLimit (Discrete.functor fun a => (Z a)) F := (PreservesFiniteProducts.preserves α).preservesLimit open Presieve Opposite /-- A finite product preserving presheaf is a sheaf for the extensive topology on a category which is `FinitaryPreExtensive`. -/ theorem isSheafFor_extensive_of_preservesFiniteProducts {X : C} (S : Presieve X) [S.extensive] (F : Cᵒᵖ ⥤ Type max u v) [PreservesFiniteProducts F] : S.IsSheafFor F := by obtain ⟨_, _, Z, π, rfl, ⟨hc⟩⟩ := extensive.arrows_nonempty_isColimit (R := S) have : (ofArrows Z (Cofan.mk X π).inj).hasPullbacks := (inferInstance : (ofArrows Z π).hasPullbacks) exact isSheafFor_of_preservesProduct _ _ hc instance {α : Type} [Fintype α] (Z : α → C) : (ofArrows Z (fun i ↦ Sigma.ι Z i)).extensive := ⟨⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ⟨coproductIsCoproduct _⟩⟩⟩ /-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF
let Z : α → C := fun i ↦ unop (K.obj ⟨i⟩)
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF
Mathlib.CategoryTheory.Sites.RegularExtensive.366_0.rkSRr0zuqme90Yu
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F)
Mathlib_CategoryTheory_Sites_RegularExtensive
case refine_1 C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C inst✝ : FinitaryExtensive C F : Cᵒᵖ ⥤ Type (max u v) hF : ∀ {X : C}, ∀ R ∈ Coverage.covering (extensiveCoverage C) X, IsSheafFor F R α : Type x✝ : Fintype α K : Discrete α ⥤ Cᵒᵖ Z : α → C := fun i => (K.obj { as := i }).unop ⊢ PreservesLimit K F
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x have hx_ext := Presieve.FamilyOfElements.Compatible.sieveExtend hx let S := Sieve.generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f)) obtain ⟨t, t_amalg, t_uniq⟩ := (Sieve.forallYonedaIsSheaf_iff_colimit S).mpr ⟨h_colim⟩ W x_ext hx_ext refine ⟨t, ?_, ?_⟩ · convert Presieve.isAmalgamation_restrict (Sieve.le_generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f))) _ _ t_amalg exact (Presieve.restrict_extend hx).symm · exact fun y hy ↦ t_uniq y <| Presieve.isAmalgamation_sieveExtend x y hy /-- The regular topology on any preregular category is subcanonical. -/ theorem subcanonical [Preregular C] : Sheaf.Subcanonical (regularCoverage C).toGrothendieck := Sheaf.Subcanonical.of_yoneda_isSheaf _ isSheaf_yoneda_obj end regularCoverage end RegularSheaves section ExtensiveSheaves variable [FinitaryPreExtensive C] {C} /-- A presieve is *extensive* if it is finite and its arrows induce an isomorphism from the coproduct to the target. -/ class Presieve.extensive {X : C} (R : Presieve X) : Prop where /-- `R` consists of a finite collection of arrows that together induce an isomorphism from the coproduct of their sources. -/ arrows_nonempty_isColimit : ∃ (α : Type) (_ : Fintype α) (Z : α → C) (π : (a : α) → (Z a ⟶ X)), R = Presieve.ofArrows Z π ∧ Nonempty (IsColimit (Cofan.mk X π)) instance {X : C} (S : Presieve X) [S.extensive] : S.hasPullbacks where has_pullbacks := by obtain ⟨_, _, _, _, rfl, ⟨hc⟩⟩ := Presieve.extensive.arrows_nonempty_isColimit (R := S) intro _ _ _ _ _ hg cases hg apply FinitaryPreExtensive.hasPullbacks_of_is_coproduct hc instance {α : Type} [Fintype α] {Z : α → C} {F : C ⥤ Type w} [PreservesFiniteProducts F] : PreservesLimit (Discrete.functor fun a => (Z a)) F := (PreservesFiniteProducts.preserves α).preservesLimit open Presieve Opposite /-- A finite product preserving presheaf is a sheaf for the extensive topology on a category which is `FinitaryPreExtensive`. -/ theorem isSheafFor_extensive_of_preservesFiniteProducts {X : C} (S : Presieve X) [S.extensive] (F : Cᵒᵖ ⥤ Type max u v) [PreservesFiniteProducts F] : S.IsSheafFor F := by obtain ⟨_, _, Z, π, rfl, ⟨hc⟩⟩ := extensive.arrows_nonempty_isColimit (R := S) have : (ofArrows Z (Cofan.mk X π).inj).hasPullbacks := (inferInstance : (ofArrows Z π).hasPullbacks) exact isSheafFor_of_preservesProduct _ _ hc instance {α : Type} [Fintype α] (Z : α → C) : (ofArrows Z (fun i ↦ Sigma.ι Z i)).extensive := ⟨⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ⟨coproductIsCoproduct _⟩⟩⟩ /-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF let Z : α → C := fun i ↦ unop (K.obj ⟨i⟩)
have : (Presieve.ofArrows Z (Cofan.mk (∐ Z) (Sigma.ι Z)).inj).hasPullbacks := (inferInstance : (Presieve.ofArrows Z (Sigma.ι Z)).hasPullbacks)
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF let Z : α → C := fun i ↦ unop (K.obj ⟨i⟩)
Mathlib.CategoryTheory.Sites.RegularExtensive.366_0.rkSRr0zuqme90Yu
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F)
Mathlib_CategoryTheory_Sites_RegularExtensive
case refine_1 C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C inst✝ : FinitaryExtensive C F : Cᵒᵖ ⥤ Type (max u v) hF : ∀ {X : C}, ∀ R ∈ Coverage.covering (extensiveCoverage C) X, IsSheafFor F R α : Type x✝ : Fintype α K : Discrete α ⥤ Cᵒᵖ Z : α → C := fun i => (K.obj { as := i }).unop this : hasPullbacks (ofArrows Z (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)))) ⊢ PreservesLimit K F
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x have hx_ext := Presieve.FamilyOfElements.Compatible.sieveExtend hx let S := Sieve.generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f)) obtain ⟨t, t_amalg, t_uniq⟩ := (Sieve.forallYonedaIsSheaf_iff_colimit S).mpr ⟨h_colim⟩ W x_ext hx_ext refine ⟨t, ?_, ?_⟩ · convert Presieve.isAmalgamation_restrict (Sieve.le_generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f))) _ _ t_amalg exact (Presieve.restrict_extend hx).symm · exact fun y hy ↦ t_uniq y <| Presieve.isAmalgamation_sieveExtend x y hy /-- The regular topology on any preregular category is subcanonical. -/ theorem subcanonical [Preregular C] : Sheaf.Subcanonical (regularCoverage C).toGrothendieck := Sheaf.Subcanonical.of_yoneda_isSheaf _ isSheaf_yoneda_obj end regularCoverage end RegularSheaves section ExtensiveSheaves variable [FinitaryPreExtensive C] {C} /-- A presieve is *extensive* if it is finite and its arrows induce an isomorphism from the coproduct to the target. -/ class Presieve.extensive {X : C} (R : Presieve X) : Prop where /-- `R` consists of a finite collection of arrows that together induce an isomorphism from the coproduct of their sources. -/ arrows_nonempty_isColimit : ∃ (α : Type) (_ : Fintype α) (Z : α → C) (π : (a : α) → (Z a ⟶ X)), R = Presieve.ofArrows Z π ∧ Nonempty (IsColimit (Cofan.mk X π)) instance {X : C} (S : Presieve X) [S.extensive] : S.hasPullbacks where has_pullbacks := by obtain ⟨_, _, _, _, rfl, ⟨hc⟩⟩ := Presieve.extensive.arrows_nonempty_isColimit (R := S) intro _ _ _ _ _ hg cases hg apply FinitaryPreExtensive.hasPullbacks_of_is_coproduct hc instance {α : Type} [Fintype α] {Z : α → C} {F : C ⥤ Type w} [PreservesFiniteProducts F] : PreservesLimit (Discrete.functor fun a => (Z a)) F := (PreservesFiniteProducts.preserves α).preservesLimit open Presieve Opposite /-- A finite product preserving presheaf is a sheaf for the extensive topology on a category which is `FinitaryPreExtensive`. -/ theorem isSheafFor_extensive_of_preservesFiniteProducts {X : C} (S : Presieve X) [S.extensive] (F : Cᵒᵖ ⥤ Type max u v) [PreservesFiniteProducts F] : S.IsSheafFor F := by obtain ⟨_, _, Z, π, rfl, ⟨hc⟩⟩ := extensive.arrows_nonempty_isColimit (R := S) have : (ofArrows Z (Cofan.mk X π).inj).hasPullbacks := (inferInstance : (ofArrows Z π).hasPullbacks) exact isSheafFor_of_preservesProduct _ _ hc instance {α : Type} [Fintype α] (Z : α → C) : (ofArrows Z (fun i ↦ Sigma.ι Z i)).extensive := ⟨⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ⟨coproductIsCoproduct _⟩⟩⟩ /-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF let Z : α → C := fun i ↦ unop (K.obj ⟨i⟩) have : (Presieve.ofArrows Z (Cofan.mk (∐ Z) (Sigma.ι Z)).inj).hasPullbacks := (inferInstance : (Presieve.ofArrows Z (Sigma.ι Z)).hasPullbacks)
have : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) := (inferInstance : ∀ (i : α), Mono (Sigma.ι Z i))
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF let Z : α → C := fun i ↦ unop (K.obj ⟨i⟩) have : (Presieve.ofArrows Z (Cofan.mk (∐ Z) (Sigma.ι Z)).inj).hasPullbacks := (inferInstance : (Presieve.ofArrows Z (Sigma.ι Z)).hasPullbacks)
Mathlib.CategoryTheory.Sites.RegularExtensive.366_0.rkSRr0zuqme90Yu
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F)
Mathlib_CategoryTheory_Sites_RegularExtensive
case refine_1 C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C inst✝ : FinitaryExtensive C F : Cᵒᵖ ⥤ Type (max u v) hF : ∀ {X : C}, ∀ R ∈ Coverage.covering (extensiveCoverage C) X, IsSheafFor F R α : Type x✝ : Fintype α K : Discrete α ⥤ Cᵒᵖ Z : α → C := fun i => (K.obj { as := i }).unop this✝ : hasPullbacks (ofArrows Z (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)))) this : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) ⊢ PreservesLimit K F
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x have hx_ext := Presieve.FamilyOfElements.Compatible.sieveExtend hx let S := Sieve.generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f)) obtain ⟨t, t_amalg, t_uniq⟩ := (Sieve.forallYonedaIsSheaf_iff_colimit S).mpr ⟨h_colim⟩ W x_ext hx_ext refine ⟨t, ?_, ?_⟩ · convert Presieve.isAmalgamation_restrict (Sieve.le_generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f))) _ _ t_amalg exact (Presieve.restrict_extend hx).symm · exact fun y hy ↦ t_uniq y <| Presieve.isAmalgamation_sieveExtend x y hy /-- The regular topology on any preregular category is subcanonical. -/ theorem subcanonical [Preregular C] : Sheaf.Subcanonical (regularCoverage C).toGrothendieck := Sheaf.Subcanonical.of_yoneda_isSheaf _ isSheaf_yoneda_obj end regularCoverage end RegularSheaves section ExtensiveSheaves variable [FinitaryPreExtensive C] {C} /-- A presieve is *extensive* if it is finite and its arrows induce an isomorphism from the coproduct to the target. -/ class Presieve.extensive {X : C} (R : Presieve X) : Prop where /-- `R` consists of a finite collection of arrows that together induce an isomorphism from the coproduct of their sources. -/ arrows_nonempty_isColimit : ∃ (α : Type) (_ : Fintype α) (Z : α → C) (π : (a : α) → (Z a ⟶ X)), R = Presieve.ofArrows Z π ∧ Nonempty (IsColimit (Cofan.mk X π)) instance {X : C} (S : Presieve X) [S.extensive] : S.hasPullbacks where has_pullbacks := by obtain ⟨_, _, _, _, rfl, ⟨hc⟩⟩ := Presieve.extensive.arrows_nonempty_isColimit (R := S) intro _ _ _ _ _ hg cases hg apply FinitaryPreExtensive.hasPullbacks_of_is_coproduct hc instance {α : Type} [Fintype α] {Z : α → C} {F : C ⥤ Type w} [PreservesFiniteProducts F] : PreservesLimit (Discrete.functor fun a => (Z a)) F := (PreservesFiniteProducts.preserves α).preservesLimit open Presieve Opposite /-- A finite product preserving presheaf is a sheaf for the extensive topology on a category which is `FinitaryPreExtensive`. -/ theorem isSheafFor_extensive_of_preservesFiniteProducts {X : C} (S : Presieve X) [S.extensive] (F : Cᵒᵖ ⥤ Type max u v) [PreservesFiniteProducts F] : S.IsSheafFor F := by obtain ⟨_, _, Z, π, rfl, ⟨hc⟩⟩ := extensive.arrows_nonempty_isColimit (R := S) have : (ofArrows Z (Cofan.mk X π).inj).hasPullbacks := (inferInstance : (ofArrows Z π).hasPullbacks) exact isSheafFor_of_preservesProduct _ _ hc instance {α : Type} [Fintype α] (Z : α → C) : (ofArrows Z (fun i ↦ Sigma.ι Z i)).extensive := ⟨⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ⟨coproductIsCoproduct _⟩⟩⟩ /-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF let Z : α → C := fun i ↦ unop (K.obj ⟨i⟩) have : (Presieve.ofArrows Z (Cofan.mk (∐ Z) (Sigma.ι Z)).inj).hasPullbacks := (inferInstance : (Presieve.ofArrows Z (Sigma.ι Z)).hasPullbacks) have : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) := (inferInstance : ∀ (i : α), Mono (Sigma.ι Z i))
let i : K ≅ Discrete.functor (fun i ↦ op (Z i)) := Discrete.natIsoFunctor
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF let Z : α → C := fun i ↦ unop (K.obj ⟨i⟩) have : (Presieve.ofArrows Z (Cofan.mk (∐ Z) (Sigma.ι Z)).inj).hasPullbacks := (inferInstance : (Presieve.ofArrows Z (Sigma.ι Z)).hasPullbacks) have : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) := (inferInstance : ∀ (i : α), Mono (Sigma.ι Z i))
Mathlib.CategoryTheory.Sites.RegularExtensive.366_0.rkSRr0zuqme90Yu
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F)
Mathlib_CategoryTheory_Sites_RegularExtensive
case refine_1 C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C inst✝ : FinitaryExtensive C F : Cᵒᵖ ⥤ Type (max u v) hF : ∀ {X : C}, ∀ R ∈ Coverage.covering (extensiveCoverage C) X, IsSheafFor F R α : Type x✝ : Fintype α K : Discrete α ⥤ Cᵒᵖ Z : α → C := fun i => (K.obj { as := i }).unop this✝ : hasPullbacks (ofArrows Z (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)))) this : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) i : K ≅ Discrete.functor fun i => op (Z i) := Discrete.natIsoFunctor ⊢ PreservesLimit K F
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x have hx_ext := Presieve.FamilyOfElements.Compatible.sieveExtend hx let S := Sieve.generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f)) obtain ⟨t, t_amalg, t_uniq⟩ := (Sieve.forallYonedaIsSheaf_iff_colimit S).mpr ⟨h_colim⟩ W x_ext hx_ext refine ⟨t, ?_, ?_⟩ · convert Presieve.isAmalgamation_restrict (Sieve.le_generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f))) _ _ t_amalg exact (Presieve.restrict_extend hx).symm · exact fun y hy ↦ t_uniq y <| Presieve.isAmalgamation_sieveExtend x y hy /-- The regular topology on any preregular category is subcanonical. -/ theorem subcanonical [Preregular C] : Sheaf.Subcanonical (regularCoverage C).toGrothendieck := Sheaf.Subcanonical.of_yoneda_isSheaf _ isSheaf_yoneda_obj end regularCoverage end RegularSheaves section ExtensiveSheaves variable [FinitaryPreExtensive C] {C} /-- A presieve is *extensive* if it is finite and its arrows induce an isomorphism from the coproduct to the target. -/ class Presieve.extensive {X : C} (R : Presieve X) : Prop where /-- `R` consists of a finite collection of arrows that together induce an isomorphism from the coproduct of their sources. -/ arrows_nonempty_isColimit : ∃ (α : Type) (_ : Fintype α) (Z : α → C) (π : (a : α) → (Z a ⟶ X)), R = Presieve.ofArrows Z π ∧ Nonempty (IsColimit (Cofan.mk X π)) instance {X : C} (S : Presieve X) [S.extensive] : S.hasPullbacks where has_pullbacks := by obtain ⟨_, _, _, _, rfl, ⟨hc⟩⟩ := Presieve.extensive.arrows_nonempty_isColimit (R := S) intro _ _ _ _ _ hg cases hg apply FinitaryPreExtensive.hasPullbacks_of_is_coproduct hc instance {α : Type} [Fintype α] {Z : α → C} {F : C ⥤ Type w} [PreservesFiniteProducts F] : PreservesLimit (Discrete.functor fun a => (Z a)) F := (PreservesFiniteProducts.preserves α).preservesLimit open Presieve Opposite /-- A finite product preserving presheaf is a sheaf for the extensive topology on a category which is `FinitaryPreExtensive`. -/ theorem isSheafFor_extensive_of_preservesFiniteProducts {X : C} (S : Presieve X) [S.extensive] (F : Cᵒᵖ ⥤ Type max u v) [PreservesFiniteProducts F] : S.IsSheafFor F := by obtain ⟨_, _, Z, π, rfl, ⟨hc⟩⟩ := extensive.arrows_nonempty_isColimit (R := S) have : (ofArrows Z (Cofan.mk X π).inj).hasPullbacks := (inferInstance : (ofArrows Z π).hasPullbacks) exact isSheafFor_of_preservesProduct _ _ hc instance {α : Type} [Fintype α] (Z : α → C) : (ofArrows Z (fun i ↦ Sigma.ι Z i)).extensive := ⟨⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ⟨coproductIsCoproduct _⟩⟩⟩ /-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF let Z : α → C := fun i ↦ unop (K.obj ⟨i⟩) have : (Presieve.ofArrows Z (Cofan.mk (∐ Z) (Sigma.ι Z)).inj).hasPullbacks := (inferInstance : (Presieve.ofArrows Z (Sigma.ι Z)).hasPullbacks) have : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) := (inferInstance : ∀ (i : α), Mono (Sigma.ι Z i)) let i : K ≅ Discrete.functor (fun i ↦ op (Z i)) := Discrete.natIsoFunctor
let _ : PreservesLimit (Discrete.functor (fun i ↦ op (Z i))) F := Presieve.preservesProductOfIsSheafFor F ?_ initialIsInitial _ (coproductIsCoproduct Z) (FinitaryExtensive.isPullback_initial_to_sigma_ι Z) (hF (Presieve.ofArrows Z (fun i ↦ Sigma.ι Z i)) ?_)
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF let Z : α → C := fun i ↦ unop (K.obj ⟨i⟩) have : (Presieve.ofArrows Z (Cofan.mk (∐ Z) (Sigma.ι Z)).inj).hasPullbacks := (inferInstance : (Presieve.ofArrows Z (Sigma.ι Z)).hasPullbacks) have : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) := (inferInstance : ∀ (i : α), Mono (Sigma.ι Z i)) let i : K ≅ Discrete.functor (fun i ↦ op (Z i)) := Discrete.natIsoFunctor
Mathlib.CategoryTheory.Sites.RegularExtensive.366_0.rkSRr0zuqme90Yu
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F)
Mathlib_CategoryTheory_Sites_RegularExtensive
case refine_1.refine_3 C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C inst✝ : FinitaryExtensive C F : Cᵒᵖ ⥤ Type (max u v) hF : ∀ {X : C}, ∀ R ∈ Coverage.covering (extensiveCoverage C) X, IsSheafFor F R α : Type x✝¹ : Fintype α K : Discrete α ⥤ Cᵒᵖ Z : α → C := fun i => (K.obj { as := i }).unop this✝ : hasPullbacks (ofArrows Z (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)))) this : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) i : K ≅ Discrete.functor fun i => op (Z i) := Discrete.natIsoFunctor x✝ : PreservesLimit (Discrete.functor fun i => op (Z i)) F := preservesProductOfIsSheafFor F ?refine_1.refine_1 initialIsInitial (Cofan.mk (∐ Z) (Sigma.ι Z)) (coproductIsCoproduct Z) (_ : ∀ (i j : α), i ≠ j → IsPullback (initial.to (Z i)) (initial.to (Z j)) (Sigma.ι Z i) (Sigma.ι Z j)) (_ : IsSheafFor F (ofArrows Z fun i => Sigma.ι Z i)) ⊢ PreservesLimit K F
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x have hx_ext := Presieve.FamilyOfElements.Compatible.sieveExtend hx let S := Sieve.generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f)) obtain ⟨t, t_amalg, t_uniq⟩ := (Sieve.forallYonedaIsSheaf_iff_colimit S).mpr ⟨h_colim⟩ W x_ext hx_ext refine ⟨t, ?_, ?_⟩ · convert Presieve.isAmalgamation_restrict (Sieve.le_generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f))) _ _ t_amalg exact (Presieve.restrict_extend hx).symm · exact fun y hy ↦ t_uniq y <| Presieve.isAmalgamation_sieveExtend x y hy /-- The regular topology on any preregular category is subcanonical. -/ theorem subcanonical [Preregular C] : Sheaf.Subcanonical (regularCoverage C).toGrothendieck := Sheaf.Subcanonical.of_yoneda_isSheaf _ isSheaf_yoneda_obj end regularCoverage end RegularSheaves section ExtensiveSheaves variable [FinitaryPreExtensive C] {C} /-- A presieve is *extensive* if it is finite and its arrows induce an isomorphism from the coproduct to the target. -/ class Presieve.extensive {X : C} (R : Presieve X) : Prop where /-- `R` consists of a finite collection of arrows that together induce an isomorphism from the coproduct of their sources. -/ arrows_nonempty_isColimit : ∃ (α : Type) (_ : Fintype α) (Z : α → C) (π : (a : α) → (Z a ⟶ X)), R = Presieve.ofArrows Z π ∧ Nonempty (IsColimit (Cofan.mk X π)) instance {X : C} (S : Presieve X) [S.extensive] : S.hasPullbacks where has_pullbacks := by obtain ⟨_, _, _, _, rfl, ⟨hc⟩⟩ := Presieve.extensive.arrows_nonempty_isColimit (R := S) intro _ _ _ _ _ hg cases hg apply FinitaryPreExtensive.hasPullbacks_of_is_coproduct hc instance {α : Type} [Fintype α] {Z : α → C} {F : C ⥤ Type w} [PreservesFiniteProducts F] : PreservesLimit (Discrete.functor fun a => (Z a)) F := (PreservesFiniteProducts.preserves α).preservesLimit open Presieve Opposite /-- A finite product preserving presheaf is a sheaf for the extensive topology on a category which is `FinitaryPreExtensive`. -/ theorem isSheafFor_extensive_of_preservesFiniteProducts {X : C} (S : Presieve X) [S.extensive] (F : Cᵒᵖ ⥤ Type max u v) [PreservesFiniteProducts F] : S.IsSheafFor F := by obtain ⟨_, _, Z, π, rfl, ⟨hc⟩⟩ := extensive.arrows_nonempty_isColimit (R := S) have : (ofArrows Z (Cofan.mk X π).inj).hasPullbacks := (inferInstance : (ofArrows Z π).hasPullbacks) exact isSheafFor_of_preservesProduct _ _ hc instance {α : Type} [Fintype α] (Z : α → C) : (ofArrows Z (fun i ↦ Sigma.ι Z i)).extensive := ⟨⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ⟨coproductIsCoproduct _⟩⟩⟩ /-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF let Z : α → C := fun i ↦ unop (K.obj ⟨i⟩) have : (Presieve.ofArrows Z (Cofan.mk (∐ Z) (Sigma.ι Z)).inj).hasPullbacks := (inferInstance : (Presieve.ofArrows Z (Sigma.ι Z)).hasPullbacks) have : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) := (inferInstance : ∀ (i : α), Mono (Sigma.ι Z i)) let i : K ≅ Discrete.functor (fun i ↦ op (Z i)) := Discrete.natIsoFunctor let _ : PreservesLimit (Discrete.functor (fun i ↦ op (Z i))) F := Presieve.preservesProductOfIsSheafFor F ?_ initialIsInitial _ (coproductIsCoproduct Z) (FinitaryExtensive.isPullback_initial_to_sigma_ι Z) (hF (Presieve.ofArrows Z (fun i ↦ Sigma.ι Z i)) ?_) ·
exact preservesLimitOfIsoDiagram F i.symm
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF let Z : α → C := fun i ↦ unop (K.obj ⟨i⟩) have : (Presieve.ofArrows Z (Cofan.mk (∐ Z) (Sigma.ι Z)).inj).hasPullbacks := (inferInstance : (Presieve.ofArrows Z (Sigma.ι Z)).hasPullbacks) have : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) := (inferInstance : ∀ (i : α), Mono (Sigma.ι Z i)) let i : K ≅ Discrete.functor (fun i ↦ op (Z i)) := Discrete.natIsoFunctor let _ : PreservesLimit (Discrete.functor (fun i ↦ op (Z i))) F := Presieve.preservesProductOfIsSheafFor F ?_ initialIsInitial _ (coproductIsCoproduct Z) (FinitaryExtensive.isPullback_initial_to_sigma_ι Z) (hF (Presieve.ofArrows Z (fun i ↦ Sigma.ι Z i)) ?_) ·
Mathlib.CategoryTheory.Sites.RegularExtensive.366_0.rkSRr0zuqme90Yu
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F)
Mathlib_CategoryTheory_Sites_RegularExtensive
case refine_1.refine_1 C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C inst✝ : FinitaryExtensive C F : Cᵒᵖ ⥤ Type (max u v) hF : ∀ {X : C}, ∀ R ∈ Coverage.covering (extensiveCoverage C) X, IsSheafFor F R α : Type x✝ : Fintype α K : Discrete α ⥤ Cᵒᵖ Z : α → C := fun i => (K.obj { as := i }).unop this✝ : hasPullbacks (ofArrows Z (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)))) this : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) i : K ≅ Discrete.functor fun i => op (Z i) := Discrete.natIsoFunctor ⊢ IsSheafFor F (ofArrows Empty.elim fun a => IsEmpty.elim instIsEmptyEmpty a)
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x have hx_ext := Presieve.FamilyOfElements.Compatible.sieveExtend hx let S := Sieve.generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f)) obtain ⟨t, t_amalg, t_uniq⟩ := (Sieve.forallYonedaIsSheaf_iff_colimit S).mpr ⟨h_colim⟩ W x_ext hx_ext refine ⟨t, ?_, ?_⟩ · convert Presieve.isAmalgamation_restrict (Sieve.le_generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f))) _ _ t_amalg exact (Presieve.restrict_extend hx).symm · exact fun y hy ↦ t_uniq y <| Presieve.isAmalgamation_sieveExtend x y hy /-- The regular topology on any preregular category is subcanonical. -/ theorem subcanonical [Preregular C] : Sheaf.Subcanonical (regularCoverage C).toGrothendieck := Sheaf.Subcanonical.of_yoneda_isSheaf _ isSheaf_yoneda_obj end regularCoverage end RegularSheaves section ExtensiveSheaves variable [FinitaryPreExtensive C] {C} /-- A presieve is *extensive* if it is finite and its arrows induce an isomorphism from the coproduct to the target. -/ class Presieve.extensive {X : C} (R : Presieve X) : Prop where /-- `R` consists of a finite collection of arrows that together induce an isomorphism from the coproduct of their sources. -/ arrows_nonempty_isColimit : ∃ (α : Type) (_ : Fintype α) (Z : α → C) (π : (a : α) → (Z a ⟶ X)), R = Presieve.ofArrows Z π ∧ Nonempty (IsColimit (Cofan.mk X π)) instance {X : C} (S : Presieve X) [S.extensive] : S.hasPullbacks where has_pullbacks := by obtain ⟨_, _, _, _, rfl, ⟨hc⟩⟩ := Presieve.extensive.arrows_nonempty_isColimit (R := S) intro _ _ _ _ _ hg cases hg apply FinitaryPreExtensive.hasPullbacks_of_is_coproduct hc instance {α : Type} [Fintype α] {Z : α → C} {F : C ⥤ Type w} [PreservesFiniteProducts F] : PreservesLimit (Discrete.functor fun a => (Z a)) F := (PreservesFiniteProducts.preserves α).preservesLimit open Presieve Opposite /-- A finite product preserving presheaf is a sheaf for the extensive topology on a category which is `FinitaryPreExtensive`. -/ theorem isSheafFor_extensive_of_preservesFiniteProducts {X : C} (S : Presieve X) [S.extensive] (F : Cᵒᵖ ⥤ Type max u v) [PreservesFiniteProducts F] : S.IsSheafFor F := by obtain ⟨_, _, Z, π, rfl, ⟨hc⟩⟩ := extensive.arrows_nonempty_isColimit (R := S) have : (ofArrows Z (Cofan.mk X π).inj).hasPullbacks := (inferInstance : (ofArrows Z π).hasPullbacks) exact isSheafFor_of_preservesProduct _ _ hc instance {α : Type} [Fintype α] (Z : α → C) : (ofArrows Z (fun i ↦ Sigma.ι Z i)).extensive := ⟨⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ⟨coproductIsCoproduct _⟩⟩⟩ /-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF let Z : α → C := fun i ↦ unop (K.obj ⟨i⟩) have : (Presieve.ofArrows Z (Cofan.mk (∐ Z) (Sigma.ι Z)).inj).hasPullbacks := (inferInstance : (Presieve.ofArrows Z (Sigma.ι Z)).hasPullbacks) have : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) := (inferInstance : ∀ (i : α), Mono (Sigma.ι Z i)) let i : K ≅ Discrete.functor (fun i ↦ op (Z i)) := Discrete.natIsoFunctor let _ : PreservesLimit (Discrete.functor (fun i ↦ op (Z i))) F := Presieve.preservesProductOfIsSheafFor F ?_ initialIsInitial _ (coproductIsCoproduct Z) (FinitaryExtensive.isPullback_initial_to_sigma_ι Z) (hF (Presieve.ofArrows Z (fun i ↦ Sigma.ι Z i)) ?_) · exact preservesLimitOfIsoDiagram F i.symm ·
apply hF
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF let Z : α → C := fun i ↦ unop (K.obj ⟨i⟩) have : (Presieve.ofArrows Z (Cofan.mk (∐ Z) (Sigma.ι Z)).inj).hasPullbacks := (inferInstance : (Presieve.ofArrows Z (Sigma.ι Z)).hasPullbacks) have : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) := (inferInstance : ∀ (i : α), Mono (Sigma.ι Z i)) let i : K ≅ Discrete.functor (fun i ↦ op (Z i)) := Discrete.natIsoFunctor let _ : PreservesLimit (Discrete.functor (fun i ↦ op (Z i))) F := Presieve.preservesProductOfIsSheafFor F ?_ initialIsInitial _ (coproductIsCoproduct Z) (FinitaryExtensive.isPullback_initial_to_sigma_ι Z) (hF (Presieve.ofArrows Z (fun i ↦ Sigma.ι Z i)) ?_) · exact preservesLimitOfIsoDiagram F i.symm ·
Mathlib.CategoryTheory.Sites.RegularExtensive.366_0.rkSRr0zuqme90Yu
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F)
Mathlib_CategoryTheory_Sites_RegularExtensive
case refine_1.refine_1.a C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C inst✝ : FinitaryExtensive C F : Cᵒᵖ ⥤ Type (max u v) hF : ∀ {X : C}, ∀ R ∈ Coverage.covering (extensiveCoverage C) X, IsSheafFor F R α : Type x✝ : Fintype α K : Discrete α ⥤ Cᵒᵖ Z : α → C := fun i => (K.obj { as := i }).unop this✝ : hasPullbacks (ofArrows Z (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)))) this : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) i : K ≅ Discrete.functor fun i => op (Z i) := Discrete.natIsoFunctor ⊢ (ofArrows Empty.elim fun a => IsEmpty.elim instIsEmptyEmpty a) ∈ Coverage.covering (extensiveCoverage C) (⊥_ C)
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x have hx_ext := Presieve.FamilyOfElements.Compatible.sieveExtend hx let S := Sieve.generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f)) obtain ⟨t, t_amalg, t_uniq⟩ := (Sieve.forallYonedaIsSheaf_iff_colimit S).mpr ⟨h_colim⟩ W x_ext hx_ext refine ⟨t, ?_, ?_⟩ · convert Presieve.isAmalgamation_restrict (Sieve.le_generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f))) _ _ t_amalg exact (Presieve.restrict_extend hx).symm · exact fun y hy ↦ t_uniq y <| Presieve.isAmalgamation_sieveExtend x y hy /-- The regular topology on any preregular category is subcanonical. -/ theorem subcanonical [Preregular C] : Sheaf.Subcanonical (regularCoverage C).toGrothendieck := Sheaf.Subcanonical.of_yoneda_isSheaf _ isSheaf_yoneda_obj end regularCoverage end RegularSheaves section ExtensiveSheaves variable [FinitaryPreExtensive C] {C} /-- A presieve is *extensive* if it is finite and its arrows induce an isomorphism from the coproduct to the target. -/ class Presieve.extensive {X : C} (R : Presieve X) : Prop where /-- `R` consists of a finite collection of arrows that together induce an isomorphism from the coproduct of their sources. -/ arrows_nonempty_isColimit : ∃ (α : Type) (_ : Fintype α) (Z : α → C) (π : (a : α) → (Z a ⟶ X)), R = Presieve.ofArrows Z π ∧ Nonempty (IsColimit (Cofan.mk X π)) instance {X : C} (S : Presieve X) [S.extensive] : S.hasPullbacks where has_pullbacks := by obtain ⟨_, _, _, _, rfl, ⟨hc⟩⟩ := Presieve.extensive.arrows_nonempty_isColimit (R := S) intro _ _ _ _ _ hg cases hg apply FinitaryPreExtensive.hasPullbacks_of_is_coproduct hc instance {α : Type} [Fintype α] {Z : α → C} {F : C ⥤ Type w} [PreservesFiniteProducts F] : PreservesLimit (Discrete.functor fun a => (Z a)) F := (PreservesFiniteProducts.preserves α).preservesLimit open Presieve Opposite /-- A finite product preserving presheaf is a sheaf for the extensive topology on a category which is `FinitaryPreExtensive`. -/ theorem isSheafFor_extensive_of_preservesFiniteProducts {X : C} (S : Presieve X) [S.extensive] (F : Cᵒᵖ ⥤ Type max u v) [PreservesFiniteProducts F] : S.IsSheafFor F := by obtain ⟨_, _, Z, π, rfl, ⟨hc⟩⟩ := extensive.arrows_nonempty_isColimit (R := S) have : (ofArrows Z (Cofan.mk X π).inj).hasPullbacks := (inferInstance : (ofArrows Z π).hasPullbacks) exact isSheafFor_of_preservesProduct _ _ hc instance {α : Type} [Fintype α] (Z : α → C) : (ofArrows Z (fun i ↦ Sigma.ι Z i)).extensive := ⟨⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ⟨coproductIsCoproduct _⟩⟩⟩ /-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF let Z : α → C := fun i ↦ unop (K.obj ⟨i⟩) have : (Presieve.ofArrows Z (Cofan.mk (∐ Z) (Sigma.ι Z)).inj).hasPullbacks := (inferInstance : (Presieve.ofArrows Z (Sigma.ι Z)).hasPullbacks) have : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) := (inferInstance : ∀ (i : α), Mono (Sigma.ι Z i)) let i : K ≅ Discrete.functor (fun i ↦ op (Z i)) := Discrete.natIsoFunctor let _ : PreservesLimit (Discrete.functor (fun i ↦ op (Z i))) F := Presieve.preservesProductOfIsSheafFor F ?_ initialIsInitial _ (coproductIsCoproduct Z) (FinitaryExtensive.isPullback_initial_to_sigma_ι Z) (hF (Presieve.ofArrows Z (fun i ↦ Sigma.ι Z i)) ?_) · exact preservesLimitOfIsoDiagram F i.symm · apply hF
refine ⟨Empty, inferInstance, Empty.elim, IsEmpty.elim inferInstance, rfl, ⟨default,?_, ?_⟩⟩
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF let Z : α → C := fun i ↦ unop (K.obj ⟨i⟩) have : (Presieve.ofArrows Z (Cofan.mk (∐ Z) (Sigma.ι Z)).inj).hasPullbacks := (inferInstance : (Presieve.ofArrows Z (Sigma.ι Z)).hasPullbacks) have : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) := (inferInstance : ∀ (i : α), Mono (Sigma.ι Z i)) let i : K ≅ Discrete.functor (fun i ↦ op (Z i)) := Discrete.natIsoFunctor let _ : PreservesLimit (Discrete.functor (fun i ↦ op (Z i))) F := Presieve.preservesProductOfIsSheafFor F ?_ initialIsInitial _ (coproductIsCoproduct Z) (FinitaryExtensive.isPullback_initial_to_sigma_ι Z) (hF (Presieve.ofArrows Z (fun i ↦ Sigma.ι Z i)) ?_) · exact preservesLimitOfIsoDiagram F i.symm · apply hF
Mathlib.CategoryTheory.Sites.RegularExtensive.366_0.rkSRr0zuqme90Yu
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F)
Mathlib_CategoryTheory_Sites_RegularExtensive
case refine_1.refine_1.a.refine_1 C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C inst✝ : FinitaryExtensive C F : Cᵒᵖ ⥤ Type (max u v) hF : ∀ {X : C}, ∀ R ∈ Coverage.covering (extensiveCoverage C) X, IsSheafFor F R α : Type x✝ : Fintype α K : Discrete α ⥤ Cᵒᵖ Z : α → C := fun i => (K.obj { as := i }).unop this✝ : hasPullbacks (ofArrows Z (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)))) this : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) i : K ≅ Discrete.functor fun i => op (Z i) := Discrete.natIsoFunctor ⊢ (Sigma.desc fun a => IsEmpty.elim (_ : IsEmpty Empty) a) ≫ default = 𝟙 (∐ fun b => Empty.elim b)
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x have hx_ext := Presieve.FamilyOfElements.Compatible.sieveExtend hx let S := Sieve.generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f)) obtain ⟨t, t_amalg, t_uniq⟩ := (Sieve.forallYonedaIsSheaf_iff_colimit S).mpr ⟨h_colim⟩ W x_ext hx_ext refine ⟨t, ?_, ?_⟩ · convert Presieve.isAmalgamation_restrict (Sieve.le_generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f))) _ _ t_amalg exact (Presieve.restrict_extend hx).symm · exact fun y hy ↦ t_uniq y <| Presieve.isAmalgamation_sieveExtend x y hy /-- The regular topology on any preregular category is subcanonical. -/ theorem subcanonical [Preregular C] : Sheaf.Subcanonical (regularCoverage C).toGrothendieck := Sheaf.Subcanonical.of_yoneda_isSheaf _ isSheaf_yoneda_obj end regularCoverage end RegularSheaves section ExtensiveSheaves variable [FinitaryPreExtensive C] {C} /-- A presieve is *extensive* if it is finite and its arrows induce an isomorphism from the coproduct to the target. -/ class Presieve.extensive {X : C} (R : Presieve X) : Prop where /-- `R` consists of a finite collection of arrows that together induce an isomorphism from the coproduct of their sources. -/ arrows_nonempty_isColimit : ∃ (α : Type) (_ : Fintype α) (Z : α → C) (π : (a : α) → (Z a ⟶ X)), R = Presieve.ofArrows Z π ∧ Nonempty (IsColimit (Cofan.mk X π)) instance {X : C} (S : Presieve X) [S.extensive] : S.hasPullbacks where has_pullbacks := by obtain ⟨_, _, _, _, rfl, ⟨hc⟩⟩ := Presieve.extensive.arrows_nonempty_isColimit (R := S) intro _ _ _ _ _ hg cases hg apply FinitaryPreExtensive.hasPullbacks_of_is_coproduct hc instance {α : Type} [Fintype α] {Z : α → C} {F : C ⥤ Type w} [PreservesFiniteProducts F] : PreservesLimit (Discrete.functor fun a => (Z a)) F := (PreservesFiniteProducts.preserves α).preservesLimit open Presieve Opposite /-- A finite product preserving presheaf is a sheaf for the extensive topology on a category which is `FinitaryPreExtensive`. -/ theorem isSheafFor_extensive_of_preservesFiniteProducts {X : C} (S : Presieve X) [S.extensive] (F : Cᵒᵖ ⥤ Type max u v) [PreservesFiniteProducts F] : S.IsSheafFor F := by obtain ⟨_, _, Z, π, rfl, ⟨hc⟩⟩ := extensive.arrows_nonempty_isColimit (R := S) have : (ofArrows Z (Cofan.mk X π).inj).hasPullbacks := (inferInstance : (ofArrows Z π).hasPullbacks) exact isSheafFor_of_preservesProduct _ _ hc instance {α : Type} [Fintype α] (Z : α → C) : (ofArrows Z (fun i ↦ Sigma.ι Z i)).extensive := ⟨⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ⟨coproductIsCoproduct _⟩⟩⟩ /-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF let Z : α → C := fun i ↦ unop (K.obj ⟨i⟩) have : (Presieve.ofArrows Z (Cofan.mk (∐ Z) (Sigma.ι Z)).inj).hasPullbacks := (inferInstance : (Presieve.ofArrows Z (Sigma.ι Z)).hasPullbacks) have : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) := (inferInstance : ∀ (i : α), Mono (Sigma.ι Z i)) let i : K ≅ Discrete.functor (fun i ↦ op (Z i)) := Discrete.natIsoFunctor let _ : PreservesLimit (Discrete.functor (fun i ↦ op (Z i))) F := Presieve.preservesProductOfIsSheafFor F ?_ initialIsInitial _ (coproductIsCoproduct Z) (FinitaryExtensive.isPullback_initial_to_sigma_ι Z) (hF (Presieve.ofArrows Z (fun i ↦ Sigma.ι Z i)) ?_) · exact preservesLimitOfIsoDiagram F i.symm · apply hF refine ⟨Empty, inferInstance, Empty.elim, IsEmpty.elim inferInstance, rfl, ⟨default,?_, ?_⟩⟩ ·
ext b
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF let Z : α → C := fun i ↦ unop (K.obj ⟨i⟩) have : (Presieve.ofArrows Z (Cofan.mk (∐ Z) (Sigma.ι Z)).inj).hasPullbacks := (inferInstance : (Presieve.ofArrows Z (Sigma.ι Z)).hasPullbacks) have : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) := (inferInstance : ∀ (i : α), Mono (Sigma.ι Z i)) let i : K ≅ Discrete.functor (fun i ↦ op (Z i)) := Discrete.natIsoFunctor let _ : PreservesLimit (Discrete.functor (fun i ↦ op (Z i))) F := Presieve.preservesProductOfIsSheafFor F ?_ initialIsInitial _ (coproductIsCoproduct Z) (FinitaryExtensive.isPullback_initial_to_sigma_ι Z) (hF (Presieve.ofArrows Z (fun i ↦ Sigma.ι Z i)) ?_) · exact preservesLimitOfIsoDiagram F i.symm · apply hF refine ⟨Empty, inferInstance, Empty.elim, IsEmpty.elim inferInstance, rfl, ⟨default,?_, ?_⟩⟩ ·
Mathlib.CategoryTheory.Sites.RegularExtensive.366_0.rkSRr0zuqme90Yu
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F)
Mathlib_CategoryTheory_Sites_RegularExtensive
case refine_1.refine_1.a.refine_1.h C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C inst✝ : FinitaryExtensive C F : Cᵒᵖ ⥤ Type (max u v) hF : ∀ {X : C}, ∀ R ∈ Coverage.covering (extensiveCoverage C) X, IsSheafFor F R α : Type x✝ : Fintype α K : Discrete α ⥤ Cᵒᵖ Z : α → C := fun i => (K.obj { as := i }).unop this✝ : hasPullbacks (ofArrows Z (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)))) this : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) i : K ≅ Discrete.functor fun i => op (Z i) := Discrete.natIsoFunctor b : Empty ⊢ Sigma.ι (fun b => Empty.elim b) b ≫ (Sigma.desc fun a => IsEmpty.elim (_ : IsEmpty Empty) a) ≫ default = Sigma.ι (fun b => Empty.elim b) b ≫ 𝟙 (∐ fun b => Empty.elim b)
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x have hx_ext := Presieve.FamilyOfElements.Compatible.sieveExtend hx let S := Sieve.generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f)) obtain ⟨t, t_amalg, t_uniq⟩ := (Sieve.forallYonedaIsSheaf_iff_colimit S).mpr ⟨h_colim⟩ W x_ext hx_ext refine ⟨t, ?_, ?_⟩ · convert Presieve.isAmalgamation_restrict (Sieve.le_generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f))) _ _ t_amalg exact (Presieve.restrict_extend hx).symm · exact fun y hy ↦ t_uniq y <| Presieve.isAmalgamation_sieveExtend x y hy /-- The regular topology on any preregular category is subcanonical. -/ theorem subcanonical [Preregular C] : Sheaf.Subcanonical (regularCoverage C).toGrothendieck := Sheaf.Subcanonical.of_yoneda_isSheaf _ isSheaf_yoneda_obj end regularCoverage end RegularSheaves section ExtensiveSheaves variable [FinitaryPreExtensive C] {C} /-- A presieve is *extensive* if it is finite and its arrows induce an isomorphism from the coproduct to the target. -/ class Presieve.extensive {X : C} (R : Presieve X) : Prop where /-- `R` consists of a finite collection of arrows that together induce an isomorphism from the coproduct of their sources. -/ arrows_nonempty_isColimit : ∃ (α : Type) (_ : Fintype α) (Z : α → C) (π : (a : α) → (Z a ⟶ X)), R = Presieve.ofArrows Z π ∧ Nonempty (IsColimit (Cofan.mk X π)) instance {X : C} (S : Presieve X) [S.extensive] : S.hasPullbacks where has_pullbacks := by obtain ⟨_, _, _, _, rfl, ⟨hc⟩⟩ := Presieve.extensive.arrows_nonempty_isColimit (R := S) intro _ _ _ _ _ hg cases hg apply FinitaryPreExtensive.hasPullbacks_of_is_coproduct hc instance {α : Type} [Fintype α] {Z : α → C} {F : C ⥤ Type w} [PreservesFiniteProducts F] : PreservesLimit (Discrete.functor fun a => (Z a)) F := (PreservesFiniteProducts.preserves α).preservesLimit open Presieve Opposite /-- A finite product preserving presheaf is a sheaf for the extensive topology on a category which is `FinitaryPreExtensive`. -/ theorem isSheafFor_extensive_of_preservesFiniteProducts {X : C} (S : Presieve X) [S.extensive] (F : Cᵒᵖ ⥤ Type max u v) [PreservesFiniteProducts F] : S.IsSheafFor F := by obtain ⟨_, _, Z, π, rfl, ⟨hc⟩⟩ := extensive.arrows_nonempty_isColimit (R := S) have : (ofArrows Z (Cofan.mk X π).inj).hasPullbacks := (inferInstance : (ofArrows Z π).hasPullbacks) exact isSheafFor_of_preservesProduct _ _ hc instance {α : Type} [Fintype α] (Z : α → C) : (ofArrows Z (fun i ↦ Sigma.ι Z i)).extensive := ⟨⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ⟨coproductIsCoproduct _⟩⟩⟩ /-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF let Z : α → C := fun i ↦ unop (K.obj ⟨i⟩) have : (Presieve.ofArrows Z (Cofan.mk (∐ Z) (Sigma.ι Z)).inj).hasPullbacks := (inferInstance : (Presieve.ofArrows Z (Sigma.ι Z)).hasPullbacks) have : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) := (inferInstance : ∀ (i : α), Mono (Sigma.ι Z i)) let i : K ≅ Discrete.functor (fun i ↦ op (Z i)) := Discrete.natIsoFunctor let _ : PreservesLimit (Discrete.functor (fun i ↦ op (Z i))) F := Presieve.preservesProductOfIsSheafFor F ?_ initialIsInitial _ (coproductIsCoproduct Z) (FinitaryExtensive.isPullback_initial_to_sigma_ι Z) (hF (Presieve.ofArrows Z (fun i ↦ Sigma.ι Z i)) ?_) · exact preservesLimitOfIsoDiagram F i.symm · apply hF refine ⟨Empty, inferInstance, Empty.elim, IsEmpty.elim inferInstance, rfl, ⟨default,?_, ?_⟩⟩ · ext b
cases b
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF let Z : α → C := fun i ↦ unop (K.obj ⟨i⟩) have : (Presieve.ofArrows Z (Cofan.mk (∐ Z) (Sigma.ι Z)).inj).hasPullbacks := (inferInstance : (Presieve.ofArrows Z (Sigma.ι Z)).hasPullbacks) have : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) := (inferInstance : ∀ (i : α), Mono (Sigma.ι Z i)) let i : K ≅ Discrete.functor (fun i ↦ op (Z i)) := Discrete.natIsoFunctor let _ : PreservesLimit (Discrete.functor (fun i ↦ op (Z i))) F := Presieve.preservesProductOfIsSheafFor F ?_ initialIsInitial _ (coproductIsCoproduct Z) (FinitaryExtensive.isPullback_initial_to_sigma_ι Z) (hF (Presieve.ofArrows Z (fun i ↦ Sigma.ι Z i)) ?_) · exact preservesLimitOfIsoDiagram F i.symm · apply hF refine ⟨Empty, inferInstance, Empty.elim, IsEmpty.elim inferInstance, rfl, ⟨default,?_, ?_⟩⟩ · ext b
Mathlib.CategoryTheory.Sites.RegularExtensive.366_0.rkSRr0zuqme90Yu
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F)
Mathlib_CategoryTheory_Sites_RegularExtensive
case refine_1.refine_1.a.refine_2 C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C inst✝ : FinitaryExtensive C F : Cᵒᵖ ⥤ Type (max u v) hF : ∀ {X : C}, ∀ R ∈ Coverage.covering (extensiveCoverage C) X, IsSheafFor F R α : Type x✝ : Fintype α K : Discrete α ⥤ Cᵒᵖ Z : α → C := fun i => (K.obj { as := i }).unop this✝ : hasPullbacks (ofArrows Z (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)))) this : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) i : K ≅ Discrete.functor fun i => op (Z i) := Discrete.natIsoFunctor ⊢ (default ≫ Sigma.desc fun a => IsEmpty.elim (_ : IsEmpty Empty) a) = 𝟙 (⊥_ C)
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x have hx_ext := Presieve.FamilyOfElements.Compatible.sieveExtend hx let S := Sieve.generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f)) obtain ⟨t, t_amalg, t_uniq⟩ := (Sieve.forallYonedaIsSheaf_iff_colimit S).mpr ⟨h_colim⟩ W x_ext hx_ext refine ⟨t, ?_, ?_⟩ · convert Presieve.isAmalgamation_restrict (Sieve.le_generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f))) _ _ t_amalg exact (Presieve.restrict_extend hx).symm · exact fun y hy ↦ t_uniq y <| Presieve.isAmalgamation_sieveExtend x y hy /-- The regular topology on any preregular category is subcanonical. -/ theorem subcanonical [Preregular C] : Sheaf.Subcanonical (regularCoverage C).toGrothendieck := Sheaf.Subcanonical.of_yoneda_isSheaf _ isSheaf_yoneda_obj end regularCoverage end RegularSheaves section ExtensiveSheaves variable [FinitaryPreExtensive C] {C} /-- A presieve is *extensive* if it is finite and its arrows induce an isomorphism from the coproduct to the target. -/ class Presieve.extensive {X : C} (R : Presieve X) : Prop where /-- `R` consists of a finite collection of arrows that together induce an isomorphism from the coproduct of their sources. -/ arrows_nonempty_isColimit : ∃ (α : Type) (_ : Fintype α) (Z : α → C) (π : (a : α) → (Z a ⟶ X)), R = Presieve.ofArrows Z π ∧ Nonempty (IsColimit (Cofan.mk X π)) instance {X : C} (S : Presieve X) [S.extensive] : S.hasPullbacks where has_pullbacks := by obtain ⟨_, _, _, _, rfl, ⟨hc⟩⟩ := Presieve.extensive.arrows_nonempty_isColimit (R := S) intro _ _ _ _ _ hg cases hg apply FinitaryPreExtensive.hasPullbacks_of_is_coproduct hc instance {α : Type} [Fintype α] {Z : α → C} {F : C ⥤ Type w} [PreservesFiniteProducts F] : PreservesLimit (Discrete.functor fun a => (Z a)) F := (PreservesFiniteProducts.preserves α).preservesLimit open Presieve Opposite /-- A finite product preserving presheaf is a sheaf for the extensive topology on a category which is `FinitaryPreExtensive`. -/ theorem isSheafFor_extensive_of_preservesFiniteProducts {X : C} (S : Presieve X) [S.extensive] (F : Cᵒᵖ ⥤ Type max u v) [PreservesFiniteProducts F] : S.IsSheafFor F := by obtain ⟨_, _, Z, π, rfl, ⟨hc⟩⟩ := extensive.arrows_nonempty_isColimit (R := S) have : (ofArrows Z (Cofan.mk X π).inj).hasPullbacks := (inferInstance : (ofArrows Z π).hasPullbacks) exact isSheafFor_of_preservesProduct _ _ hc instance {α : Type} [Fintype α] (Z : α → C) : (ofArrows Z (fun i ↦ Sigma.ι Z i)).extensive := ⟨⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ⟨coproductIsCoproduct _⟩⟩⟩ /-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF let Z : α → C := fun i ↦ unop (K.obj ⟨i⟩) have : (Presieve.ofArrows Z (Cofan.mk (∐ Z) (Sigma.ι Z)).inj).hasPullbacks := (inferInstance : (Presieve.ofArrows Z (Sigma.ι Z)).hasPullbacks) have : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) := (inferInstance : ∀ (i : α), Mono (Sigma.ι Z i)) let i : K ≅ Discrete.functor (fun i ↦ op (Z i)) := Discrete.natIsoFunctor let _ : PreservesLimit (Discrete.functor (fun i ↦ op (Z i))) F := Presieve.preservesProductOfIsSheafFor F ?_ initialIsInitial _ (coproductIsCoproduct Z) (FinitaryExtensive.isPullback_initial_to_sigma_ι Z) (hF (Presieve.ofArrows Z (fun i ↦ Sigma.ι Z i)) ?_) · exact preservesLimitOfIsoDiagram F i.symm · apply hF refine ⟨Empty, inferInstance, Empty.elim, IsEmpty.elim inferInstance, rfl, ⟨default,?_, ?_⟩⟩ · ext b cases b ·
simp only [eq_iff_true_of_subsingleton]
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF let Z : α → C := fun i ↦ unop (K.obj ⟨i⟩) have : (Presieve.ofArrows Z (Cofan.mk (∐ Z) (Sigma.ι Z)).inj).hasPullbacks := (inferInstance : (Presieve.ofArrows Z (Sigma.ι Z)).hasPullbacks) have : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) := (inferInstance : ∀ (i : α), Mono (Sigma.ι Z i)) let i : K ≅ Discrete.functor (fun i ↦ op (Z i)) := Discrete.natIsoFunctor let _ : PreservesLimit (Discrete.functor (fun i ↦ op (Z i))) F := Presieve.preservesProductOfIsSheafFor F ?_ initialIsInitial _ (coproductIsCoproduct Z) (FinitaryExtensive.isPullback_initial_to_sigma_ι Z) (hF (Presieve.ofArrows Z (fun i ↦ Sigma.ι Z i)) ?_) · exact preservesLimitOfIsoDiagram F i.symm · apply hF refine ⟨Empty, inferInstance, Empty.elim, IsEmpty.elim inferInstance, rfl, ⟨default,?_, ?_⟩⟩ · ext b cases b ·
Mathlib.CategoryTheory.Sites.RegularExtensive.366_0.rkSRr0zuqme90Yu
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F)
Mathlib_CategoryTheory_Sites_RegularExtensive
case refine_1.refine_2 C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C inst✝ : FinitaryExtensive C F : Cᵒᵖ ⥤ Type (max u v) hF : ∀ {X : C}, ∀ R ∈ Coverage.covering (extensiveCoverage C) X, IsSheafFor F R α : Type x✝ : Fintype α K : Discrete α ⥤ Cᵒᵖ Z : α → C := fun i => (K.obj { as := i }).unop this✝ : hasPullbacks (ofArrows Z (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)))) this : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) i : K ≅ Discrete.functor fun i => op (Z i) := Discrete.natIsoFunctor ⊢ (ofArrows Z fun i => Sigma.ι Z i) ∈ Coverage.covering (extensiveCoverage C) (∐ Z)
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x have hx_ext := Presieve.FamilyOfElements.Compatible.sieveExtend hx let S := Sieve.generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f)) obtain ⟨t, t_amalg, t_uniq⟩ := (Sieve.forallYonedaIsSheaf_iff_colimit S).mpr ⟨h_colim⟩ W x_ext hx_ext refine ⟨t, ?_, ?_⟩ · convert Presieve.isAmalgamation_restrict (Sieve.le_generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f))) _ _ t_amalg exact (Presieve.restrict_extend hx).symm · exact fun y hy ↦ t_uniq y <| Presieve.isAmalgamation_sieveExtend x y hy /-- The regular topology on any preregular category is subcanonical. -/ theorem subcanonical [Preregular C] : Sheaf.Subcanonical (regularCoverage C).toGrothendieck := Sheaf.Subcanonical.of_yoneda_isSheaf _ isSheaf_yoneda_obj end regularCoverage end RegularSheaves section ExtensiveSheaves variable [FinitaryPreExtensive C] {C} /-- A presieve is *extensive* if it is finite and its arrows induce an isomorphism from the coproduct to the target. -/ class Presieve.extensive {X : C} (R : Presieve X) : Prop where /-- `R` consists of a finite collection of arrows that together induce an isomorphism from the coproduct of their sources. -/ arrows_nonempty_isColimit : ∃ (α : Type) (_ : Fintype α) (Z : α → C) (π : (a : α) → (Z a ⟶ X)), R = Presieve.ofArrows Z π ∧ Nonempty (IsColimit (Cofan.mk X π)) instance {X : C} (S : Presieve X) [S.extensive] : S.hasPullbacks where has_pullbacks := by obtain ⟨_, _, _, _, rfl, ⟨hc⟩⟩ := Presieve.extensive.arrows_nonempty_isColimit (R := S) intro _ _ _ _ _ hg cases hg apply FinitaryPreExtensive.hasPullbacks_of_is_coproduct hc instance {α : Type} [Fintype α] {Z : α → C} {F : C ⥤ Type w} [PreservesFiniteProducts F] : PreservesLimit (Discrete.functor fun a => (Z a)) F := (PreservesFiniteProducts.preserves α).preservesLimit open Presieve Opposite /-- A finite product preserving presheaf is a sheaf for the extensive topology on a category which is `FinitaryPreExtensive`. -/ theorem isSheafFor_extensive_of_preservesFiniteProducts {X : C} (S : Presieve X) [S.extensive] (F : Cᵒᵖ ⥤ Type max u v) [PreservesFiniteProducts F] : S.IsSheafFor F := by obtain ⟨_, _, Z, π, rfl, ⟨hc⟩⟩ := extensive.arrows_nonempty_isColimit (R := S) have : (ofArrows Z (Cofan.mk X π).inj).hasPullbacks := (inferInstance : (ofArrows Z π).hasPullbacks) exact isSheafFor_of_preservesProduct _ _ hc instance {α : Type} [Fintype α] (Z : α → C) : (ofArrows Z (fun i ↦ Sigma.ι Z i)).extensive := ⟨⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ⟨coproductIsCoproduct _⟩⟩⟩ /-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF let Z : α → C := fun i ↦ unop (K.obj ⟨i⟩) have : (Presieve.ofArrows Z (Cofan.mk (∐ Z) (Sigma.ι Z)).inj).hasPullbacks := (inferInstance : (Presieve.ofArrows Z (Sigma.ι Z)).hasPullbacks) have : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) := (inferInstance : ∀ (i : α), Mono (Sigma.ι Z i)) let i : K ≅ Discrete.functor (fun i ↦ op (Z i)) := Discrete.natIsoFunctor let _ : PreservesLimit (Discrete.functor (fun i ↦ op (Z i))) F := Presieve.preservesProductOfIsSheafFor F ?_ initialIsInitial _ (coproductIsCoproduct Z) (FinitaryExtensive.isPullback_initial_to_sigma_ι Z) (hF (Presieve.ofArrows Z (fun i ↦ Sigma.ι Z i)) ?_) · exact preservesLimitOfIsoDiagram F i.symm · apply hF refine ⟨Empty, inferInstance, Empty.elim, IsEmpty.elim inferInstance, rfl, ⟨default,?_, ?_⟩⟩ · ext b cases b · simp only [eq_iff_true_of_subsingleton] ·
refine ⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ?_⟩
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF let Z : α → C := fun i ↦ unop (K.obj ⟨i⟩) have : (Presieve.ofArrows Z (Cofan.mk (∐ Z) (Sigma.ι Z)).inj).hasPullbacks := (inferInstance : (Presieve.ofArrows Z (Sigma.ι Z)).hasPullbacks) have : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) := (inferInstance : ∀ (i : α), Mono (Sigma.ι Z i)) let i : K ≅ Discrete.functor (fun i ↦ op (Z i)) := Discrete.natIsoFunctor let _ : PreservesLimit (Discrete.functor (fun i ↦ op (Z i))) F := Presieve.preservesProductOfIsSheafFor F ?_ initialIsInitial _ (coproductIsCoproduct Z) (FinitaryExtensive.isPullback_initial_to_sigma_ι Z) (hF (Presieve.ofArrows Z (fun i ↦ Sigma.ι Z i)) ?_) · exact preservesLimitOfIsoDiagram F i.symm · apply hF refine ⟨Empty, inferInstance, Empty.elim, IsEmpty.elim inferInstance, rfl, ⟨default,?_, ?_⟩⟩ · ext b cases b · simp only [eq_iff_true_of_subsingleton] ·
Mathlib.CategoryTheory.Sites.RegularExtensive.366_0.rkSRr0zuqme90Yu
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F)
Mathlib_CategoryTheory_Sites_RegularExtensive
case refine_1.refine_2 C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C inst✝ : FinitaryExtensive C F : Cᵒᵖ ⥤ Type (max u v) hF : ∀ {X : C}, ∀ R ∈ Coverage.covering (extensiveCoverage C) X, IsSheafFor F R α : Type x✝ : Fintype α K : Discrete α ⥤ Cᵒᵖ Z : α → C := fun i => (K.obj { as := i }).unop this✝ : hasPullbacks (ofArrows Z (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)))) this : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) i : K ≅ Discrete.functor fun i => op (Z i) := Discrete.natIsoFunctor ⊢ IsIso (Sigma.desc fun i => Sigma.ι Z i)
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x have hx_ext := Presieve.FamilyOfElements.Compatible.sieveExtend hx let S := Sieve.generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f)) obtain ⟨t, t_amalg, t_uniq⟩ := (Sieve.forallYonedaIsSheaf_iff_colimit S).mpr ⟨h_colim⟩ W x_ext hx_ext refine ⟨t, ?_, ?_⟩ · convert Presieve.isAmalgamation_restrict (Sieve.le_generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f))) _ _ t_amalg exact (Presieve.restrict_extend hx).symm · exact fun y hy ↦ t_uniq y <| Presieve.isAmalgamation_sieveExtend x y hy /-- The regular topology on any preregular category is subcanonical. -/ theorem subcanonical [Preregular C] : Sheaf.Subcanonical (regularCoverage C).toGrothendieck := Sheaf.Subcanonical.of_yoneda_isSheaf _ isSheaf_yoneda_obj end regularCoverage end RegularSheaves section ExtensiveSheaves variable [FinitaryPreExtensive C] {C} /-- A presieve is *extensive* if it is finite and its arrows induce an isomorphism from the coproduct to the target. -/ class Presieve.extensive {X : C} (R : Presieve X) : Prop where /-- `R` consists of a finite collection of arrows that together induce an isomorphism from the coproduct of their sources. -/ arrows_nonempty_isColimit : ∃ (α : Type) (_ : Fintype α) (Z : α → C) (π : (a : α) → (Z a ⟶ X)), R = Presieve.ofArrows Z π ∧ Nonempty (IsColimit (Cofan.mk X π)) instance {X : C} (S : Presieve X) [S.extensive] : S.hasPullbacks where has_pullbacks := by obtain ⟨_, _, _, _, rfl, ⟨hc⟩⟩ := Presieve.extensive.arrows_nonempty_isColimit (R := S) intro _ _ _ _ _ hg cases hg apply FinitaryPreExtensive.hasPullbacks_of_is_coproduct hc instance {α : Type} [Fintype α] {Z : α → C} {F : C ⥤ Type w} [PreservesFiniteProducts F] : PreservesLimit (Discrete.functor fun a => (Z a)) F := (PreservesFiniteProducts.preserves α).preservesLimit open Presieve Opposite /-- A finite product preserving presheaf is a sheaf for the extensive topology on a category which is `FinitaryPreExtensive`. -/ theorem isSheafFor_extensive_of_preservesFiniteProducts {X : C} (S : Presieve X) [S.extensive] (F : Cᵒᵖ ⥤ Type max u v) [PreservesFiniteProducts F] : S.IsSheafFor F := by obtain ⟨_, _, Z, π, rfl, ⟨hc⟩⟩ := extensive.arrows_nonempty_isColimit (R := S) have : (ofArrows Z (Cofan.mk X π).inj).hasPullbacks := (inferInstance : (ofArrows Z π).hasPullbacks) exact isSheafFor_of_preservesProduct _ _ hc instance {α : Type} [Fintype α] (Z : α → C) : (ofArrows Z (fun i ↦ Sigma.ι Z i)).extensive := ⟨⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ⟨coproductIsCoproduct _⟩⟩⟩ /-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF let Z : α → C := fun i ↦ unop (K.obj ⟨i⟩) have : (Presieve.ofArrows Z (Cofan.mk (∐ Z) (Sigma.ι Z)).inj).hasPullbacks := (inferInstance : (Presieve.ofArrows Z (Sigma.ι Z)).hasPullbacks) have : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) := (inferInstance : ∀ (i : α), Mono (Sigma.ι Z i)) let i : K ≅ Discrete.functor (fun i ↦ op (Z i)) := Discrete.natIsoFunctor let _ : PreservesLimit (Discrete.functor (fun i ↦ op (Z i))) F := Presieve.preservesProductOfIsSheafFor F ?_ initialIsInitial _ (coproductIsCoproduct Z) (FinitaryExtensive.isPullback_initial_to_sigma_ι Z) (hF (Presieve.ofArrows Z (fun i ↦ Sigma.ι Z i)) ?_) · exact preservesLimitOfIsoDiagram F i.symm · apply hF refine ⟨Empty, inferInstance, Empty.elim, IsEmpty.elim inferInstance, rfl, ⟨default,?_, ?_⟩⟩ · ext b cases b · simp only [eq_iff_true_of_subsingleton] · refine ⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ?_⟩
suffices Sigma.desc (fun i ↦ Sigma.ι Z i) = 𝟙 _ by rw [this]; infer_instance
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF let Z : α → C := fun i ↦ unop (K.obj ⟨i⟩) have : (Presieve.ofArrows Z (Cofan.mk (∐ Z) (Sigma.ι Z)).inj).hasPullbacks := (inferInstance : (Presieve.ofArrows Z (Sigma.ι Z)).hasPullbacks) have : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) := (inferInstance : ∀ (i : α), Mono (Sigma.ι Z i)) let i : K ≅ Discrete.functor (fun i ↦ op (Z i)) := Discrete.natIsoFunctor let _ : PreservesLimit (Discrete.functor (fun i ↦ op (Z i))) F := Presieve.preservesProductOfIsSheafFor F ?_ initialIsInitial _ (coproductIsCoproduct Z) (FinitaryExtensive.isPullback_initial_to_sigma_ι Z) (hF (Presieve.ofArrows Z (fun i ↦ Sigma.ι Z i)) ?_) · exact preservesLimitOfIsoDiagram F i.symm · apply hF refine ⟨Empty, inferInstance, Empty.elim, IsEmpty.elim inferInstance, rfl, ⟨default,?_, ?_⟩⟩ · ext b cases b · simp only [eq_iff_true_of_subsingleton] · refine ⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ?_⟩
Mathlib.CategoryTheory.Sites.RegularExtensive.366_0.rkSRr0zuqme90Yu
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F)
Mathlib_CategoryTheory_Sites_RegularExtensive
C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C inst✝ : FinitaryExtensive C F : Cᵒᵖ ⥤ Type (max u v) hF : ∀ {X : C}, ∀ R ∈ Coverage.covering (extensiveCoverage C) X, IsSheafFor F R α : Type x✝ : Fintype α K : Discrete α ⥤ Cᵒᵖ Z : α → C := fun i => (K.obj { as := i }).unop this✝¹ : hasPullbacks (ofArrows Z (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)))) this✝ : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) i : K ≅ Discrete.functor fun i => op (Z i) := Discrete.natIsoFunctor this : (Sigma.desc fun i => Sigma.ι Z i) = 𝟙 (∐ fun i => Z i) ⊢ IsIso (Sigma.desc fun i => Sigma.ι Z i)
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x have hx_ext := Presieve.FamilyOfElements.Compatible.sieveExtend hx let S := Sieve.generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f)) obtain ⟨t, t_amalg, t_uniq⟩ := (Sieve.forallYonedaIsSheaf_iff_colimit S).mpr ⟨h_colim⟩ W x_ext hx_ext refine ⟨t, ?_, ?_⟩ · convert Presieve.isAmalgamation_restrict (Sieve.le_generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f))) _ _ t_amalg exact (Presieve.restrict_extend hx).symm · exact fun y hy ↦ t_uniq y <| Presieve.isAmalgamation_sieveExtend x y hy /-- The regular topology on any preregular category is subcanonical. -/ theorem subcanonical [Preregular C] : Sheaf.Subcanonical (regularCoverage C).toGrothendieck := Sheaf.Subcanonical.of_yoneda_isSheaf _ isSheaf_yoneda_obj end regularCoverage end RegularSheaves section ExtensiveSheaves variable [FinitaryPreExtensive C] {C} /-- A presieve is *extensive* if it is finite and its arrows induce an isomorphism from the coproduct to the target. -/ class Presieve.extensive {X : C} (R : Presieve X) : Prop where /-- `R` consists of a finite collection of arrows that together induce an isomorphism from the coproduct of their sources. -/ arrows_nonempty_isColimit : ∃ (α : Type) (_ : Fintype α) (Z : α → C) (π : (a : α) → (Z a ⟶ X)), R = Presieve.ofArrows Z π ∧ Nonempty (IsColimit (Cofan.mk X π)) instance {X : C} (S : Presieve X) [S.extensive] : S.hasPullbacks where has_pullbacks := by obtain ⟨_, _, _, _, rfl, ⟨hc⟩⟩ := Presieve.extensive.arrows_nonempty_isColimit (R := S) intro _ _ _ _ _ hg cases hg apply FinitaryPreExtensive.hasPullbacks_of_is_coproduct hc instance {α : Type} [Fintype α] {Z : α → C} {F : C ⥤ Type w} [PreservesFiniteProducts F] : PreservesLimit (Discrete.functor fun a => (Z a)) F := (PreservesFiniteProducts.preserves α).preservesLimit open Presieve Opposite /-- A finite product preserving presheaf is a sheaf for the extensive topology on a category which is `FinitaryPreExtensive`. -/ theorem isSheafFor_extensive_of_preservesFiniteProducts {X : C} (S : Presieve X) [S.extensive] (F : Cᵒᵖ ⥤ Type max u v) [PreservesFiniteProducts F] : S.IsSheafFor F := by obtain ⟨_, _, Z, π, rfl, ⟨hc⟩⟩ := extensive.arrows_nonempty_isColimit (R := S) have : (ofArrows Z (Cofan.mk X π).inj).hasPullbacks := (inferInstance : (ofArrows Z π).hasPullbacks) exact isSheafFor_of_preservesProduct _ _ hc instance {α : Type} [Fintype α] (Z : α → C) : (ofArrows Z (fun i ↦ Sigma.ι Z i)).extensive := ⟨⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ⟨coproductIsCoproduct _⟩⟩⟩ /-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF let Z : α → C := fun i ↦ unop (K.obj ⟨i⟩) have : (Presieve.ofArrows Z (Cofan.mk (∐ Z) (Sigma.ι Z)).inj).hasPullbacks := (inferInstance : (Presieve.ofArrows Z (Sigma.ι Z)).hasPullbacks) have : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) := (inferInstance : ∀ (i : α), Mono (Sigma.ι Z i)) let i : K ≅ Discrete.functor (fun i ↦ op (Z i)) := Discrete.natIsoFunctor let _ : PreservesLimit (Discrete.functor (fun i ↦ op (Z i))) F := Presieve.preservesProductOfIsSheafFor F ?_ initialIsInitial _ (coproductIsCoproduct Z) (FinitaryExtensive.isPullback_initial_to_sigma_ι Z) (hF (Presieve.ofArrows Z (fun i ↦ Sigma.ι Z i)) ?_) · exact preservesLimitOfIsoDiagram F i.symm · apply hF refine ⟨Empty, inferInstance, Empty.elim, IsEmpty.elim inferInstance, rfl, ⟨default,?_, ?_⟩⟩ · ext b cases b · simp only [eq_iff_true_of_subsingleton] · refine ⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ?_⟩ suffices Sigma.desc (fun i ↦ Sigma.ι Z i) = 𝟙 _ by
rw [this]
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF let Z : α → C := fun i ↦ unop (K.obj ⟨i⟩) have : (Presieve.ofArrows Z (Cofan.mk (∐ Z) (Sigma.ι Z)).inj).hasPullbacks := (inferInstance : (Presieve.ofArrows Z (Sigma.ι Z)).hasPullbacks) have : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) := (inferInstance : ∀ (i : α), Mono (Sigma.ι Z i)) let i : K ≅ Discrete.functor (fun i ↦ op (Z i)) := Discrete.natIsoFunctor let _ : PreservesLimit (Discrete.functor (fun i ↦ op (Z i))) F := Presieve.preservesProductOfIsSheafFor F ?_ initialIsInitial _ (coproductIsCoproduct Z) (FinitaryExtensive.isPullback_initial_to_sigma_ι Z) (hF (Presieve.ofArrows Z (fun i ↦ Sigma.ι Z i)) ?_) · exact preservesLimitOfIsoDiagram F i.symm · apply hF refine ⟨Empty, inferInstance, Empty.elim, IsEmpty.elim inferInstance, rfl, ⟨default,?_, ?_⟩⟩ · ext b cases b · simp only [eq_iff_true_of_subsingleton] · refine ⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ?_⟩ suffices Sigma.desc (fun i ↦ Sigma.ι Z i) = 𝟙 _ by
Mathlib.CategoryTheory.Sites.RegularExtensive.366_0.rkSRr0zuqme90Yu
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F)
Mathlib_CategoryTheory_Sites_RegularExtensive
C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C inst✝ : FinitaryExtensive C F : Cᵒᵖ ⥤ Type (max u v) hF : ∀ {X : C}, ∀ R ∈ Coverage.covering (extensiveCoverage C) X, IsSheafFor F R α : Type x✝ : Fintype α K : Discrete α ⥤ Cᵒᵖ Z : α → C := fun i => (K.obj { as := i }).unop this✝¹ : hasPullbacks (ofArrows Z (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)))) this✝ : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) i : K ≅ Discrete.functor fun i => op (Z i) := Discrete.natIsoFunctor this : (Sigma.desc fun i => Sigma.ι Z i) = 𝟙 (∐ fun i => Z i) ⊢ IsIso (𝟙 (∐ fun i => Z i))
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x have hx_ext := Presieve.FamilyOfElements.Compatible.sieveExtend hx let S := Sieve.generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f)) obtain ⟨t, t_amalg, t_uniq⟩ := (Sieve.forallYonedaIsSheaf_iff_colimit S).mpr ⟨h_colim⟩ W x_ext hx_ext refine ⟨t, ?_, ?_⟩ · convert Presieve.isAmalgamation_restrict (Sieve.le_generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f))) _ _ t_amalg exact (Presieve.restrict_extend hx).symm · exact fun y hy ↦ t_uniq y <| Presieve.isAmalgamation_sieveExtend x y hy /-- The regular topology on any preregular category is subcanonical. -/ theorem subcanonical [Preregular C] : Sheaf.Subcanonical (regularCoverage C).toGrothendieck := Sheaf.Subcanonical.of_yoneda_isSheaf _ isSheaf_yoneda_obj end regularCoverage end RegularSheaves section ExtensiveSheaves variable [FinitaryPreExtensive C] {C} /-- A presieve is *extensive* if it is finite and its arrows induce an isomorphism from the coproduct to the target. -/ class Presieve.extensive {X : C} (R : Presieve X) : Prop where /-- `R` consists of a finite collection of arrows that together induce an isomorphism from the coproduct of their sources. -/ arrows_nonempty_isColimit : ∃ (α : Type) (_ : Fintype α) (Z : α → C) (π : (a : α) → (Z a ⟶ X)), R = Presieve.ofArrows Z π ∧ Nonempty (IsColimit (Cofan.mk X π)) instance {X : C} (S : Presieve X) [S.extensive] : S.hasPullbacks where has_pullbacks := by obtain ⟨_, _, _, _, rfl, ⟨hc⟩⟩ := Presieve.extensive.arrows_nonempty_isColimit (R := S) intro _ _ _ _ _ hg cases hg apply FinitaryPreExtensive.hasPullbacks_of_is_coproduct hc instance {α : Type} [Fintype α] {Z : α → C} {F : C ⥤ Type w} [PreservesFiniteProducts F] : PreservesLimit (Discrete.functor fun a => (Z a)) F := (PreservesFiniteProducts.preserves α).preservesLimit open Presieve Opposite /-- A finite product preserving presheaf is a sheaf for the extensive topology on a category which is `FinitaryPreExtensive`. -/ theorem isSheafFor_extensive_of_preservesFiniteProducts {X : C} (S : Presieve X) [S.extensive] (F : Cᵒᵖ ⥤ Type max u v) [PreservesFiniteProducts F] : S.IsSheafFor F := by obtain ⟨_, _, Z, π, rfl, ⟨hc⟩⟩ := extensive.arrows_nonempty_isColimit (R := S) have : (ofArrows Z (Cofan.mk X π).inj).hasPullbacks := (inferInstance : (ofArrows Z π).hasPullbacks) exact isSheafFor_of_preservesProduct _ _ hc instance {α : Type} [Fintype α] (Z : α → C) : (ofArrows Z (fun i ↦ Sigma.ι Z i)).extensive := ⟨⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ⟨coproductIsCoproduct _⟩⟩⟩ /-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF let Z : α → C := fun i ↦ unop (K.obj ⟨i⟩) have : (Presieve.ofArrows Z (Cofan.mk (∐ Z) (Sigma.ι Z)).inj).hasPullbacks := (inferInstance : (Presieve.ofArrows Z (Sigma.ι Z)).hasPullbacks) have : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) := (inferInstance : ∀ (i : α), Mono (Sigma.ι Z i)) let i : K ≅ Discrete.functor (fun i ↦ op (Z i)) := Discrete.natIsoFunctor let _ : PreservesLimit (Discrete.functor (fun i ↦ op (Z i))) F := Presieve.preservesProductOfIsSheafFor F ?_ initialIsInitial _ (coproductIsCoproduct Z) (FinitaryExtensive.isPullback_initial_to_sigma_ι Z) (hF (Presieve.ofArrows Z (fun i ↦ Sigma.ι Z i)) ?_) · exact preservesLimitOfIsoDiagram F i.symm · apply hF refine ⟨Empty, inferInstance, Empty.elim, IsEmpty.elim inferInstance, rfl, ⟨default,?_, ?_⟩⟩ · ext b cases b · simp only [eq_iff_true_of_subsingleton] · refine ⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ?_⟩ suffices Sigma.desc (fun i ↦ Sigma.ι Z i) = 𝟙 _ by rw [this];
infer_instance
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF let Z : α → C := fun i ↦ unop (K.obj ⟨i⟩) have : (Presieve.ofArrows Z (Cofan.mk (∐ Z) (Sigma.ι Z)).inj).hasPullbacks := (inferInstance : (Presieve.ofArrows Z (Sigma.ι Z)).hasPullbacks) have : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) := (inferInstance : ∀ (i : α), Mono (Sigma.ι Z i)) let i : K ≅ Discrete.functor (fun i ↦ op (Z i)) := Discrete.natIsoFunctor let _ : PreservesLimit (Discrete.functor (fun i ↦ op (Z i))) F := Presieve.preservesProductOfIsSheafFor F ?_ initialIsInitial _ (coproductIsCoproduct Z) (FinitaryExtensive.isPullback_initial_to_sigma_ι Z) (hF (Presieve.ofArrows Z (fun i ↦ Sigma.ι Z i)) ?_) · exact preservesLimitOfIsoDiagram F i.symm · apply hF refine ⟨Empty, inferInstance, Empty.elim, IsEmpty.elim inferInstance, rfl, ⟨default,?_, ?_⟩⟩ · ext b cases b · simp only [eq_iff_true_of_subsingleton] · refine ⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ?_⟩ suffices Sigma.desc (fun i ↦ Sigma.ι Z i) = 𝟙 _ by rw [this];
Mathlib.CategoryTheory.Sites.RegularExtensive.366_0.rkSRr0zuqme90Yu
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F)
Mathlib_CategoryTheory_Sites_RegularExtensive
case refine_1.refine_2 C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C inst✝ : FinitaryExtensive C F : Cᵒᵖ ⥤ Type (max u v) hF : ∀ {X : C}, ∀ R ∈ Coverage.covering (extensiveCoverage C) X, IsSheafFor F R α : Type x✝ : Fintype α K : Discrete α ⥤ Cᵒᵖ Z : α → C := fun i => (K.obj { as := i }).unop this✝ : hasPullbacks (ofArrows Z (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)))) this : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) i : K ≅ Discrete.functor fun i => op (Z i) := Discrete.natIsoFunctor ⊢ (Sigma.desc fun i => Sigma.ι Z i) = 𝟙 (∐ fun i => Z i)
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x have hx_ext := Presieve.FamilyOfElements.Compatible.sieveExtend hx let S := Sieve.generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f)) obtain ⟨t, t_amalg, t_uniq⟩ := (Sieve.forallYonedaIsSheaf_iff_colimit S).mpr ⟨h_colim⟩ W x_ext hx_ext refine ⟨t, ?_, ?_⟩ · convert Presieve.isAmalgamation_restrict (Sieve.le_generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f))) _ _ t_amalg exact (Presieve.restrict_extend hx).symm · exact fun y hy ↦ t_uniq y <| Presieve.isAmalgamation_sieveExtend x y hy /-- The regular topology on any preregular category is subcanonical. -/ theorem subcanonical [Preregular C] : Sheaf.Subcanonical (regularCoverage C).toGrothendieck := Sheaf.Subcanonical.of_yoneda_isSheaf _ isSheaf_yoneda_obj end regularCoverage end RegularSheaves section ExtensiveSheaves variable [FinitaryPreExtensive C] {C} /-- A presieve is *extensive* if it is finite and its arrows induce an isomorphism from the coproduct to the target. -/ class Presieve.extensive {X : C} (R : Presieve X) : Prop where /-- `R` consists of a finite collection of arrows that together induce an isomorphism from the coproduct of their sources. -/ arrows_nonempty_isColimit : ∃ (α : Type) (_ : Fintype α) (Z : α → C) (π : (a : α) → (Z a ⟶ X)), R = Presieve.ofArrows Z π ∧ Nonempty (IsColimit (Cofan.mk X π)) instance {X : C} (S : Presieve X) [S.extensive] : S.hasPullbacks where has_pullbacks := by obtain ⟨_, _, _, _, rfl, ⟨hc⟩⟩ := Presieve.extensive.arrows_nonempty_isColimit (R := S) intro _ _ _ _ _ hg cases hg apply FinitaryPreExtensive.hasPullbacks_of_is_coproduct hc instance {α : Type} [Fintype α] {Z : α → C} {F : C ⥤ Type w} [PreservesFiniteProducts F] : PreservesLimit (Discrete.functor fun a => (Z a)) F := (PreservesFiniteProducts.preserves α).preservesLimit open Presieve Opposite /-- A finite product preserving presheaf is a sheaf for the extensive topology on a category which is `FinitaryPreExtensive`. -/ theorem isSheafFor_extensive_of_preservesFiniteProducts {X : C} (S : Presieve X) [S.extensive] (F : Cᵒᵖ ⥤ Type max u v) [PreservesFiniteProducts F] : S.IsSheafFor F := by obtain ⟨_, _, Z, π, rfl, ⟨hc⟩⟩ := extensive.arrows_nonempty_isColimit (R := S) have : (ofArrows Z (Cofan.mk X π).inj).hasPullbacks := (inferInstance : (ofArrows Z π).hasPullbacks) exact isSheafFor_of_preservesProduct _ _ hc instance {α : Type} [Fintype α] (Z : α → C) : (ofArrows Z (fun i ↦ Sigma.ι Z i)).extensive := ⟨⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ⟨coproductIsCoproduct _⟩⟩⟩ /-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF let Z : α → C := fun i ↦ unop (K.obj ⟨i⟩) have : (Presieve.ofArrows Z (Cofan.mk (∐ Z) (Sigma.ι Z)).inj).hasPullbacks := (inferInstance : (Presieve.ofArrows Z (Sigma.ι Z)).hasPullbacks) have : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) := (inferInstance : ∀ (i : α), Mono (Sigma.ι Z i)) let i : K ≅ Discrete.functor (fun i ↦ op (Z i)) := Discrete.natIsoFunctor let _ : PreservesLimit (Discrete.functor (fun i ↦ op (Z i))) F := Presieve.preservesProductOfIsSheafFor F ?_ initialIsInitial _ (coproductIsCoproduct Z) (FinitaryExtensive.isPullback_initial_to_sigma_ι Z) (hF (Presieve.ofArrows Z (fun i ↦ Sigma.ι Z i)) ?_) · exact preservesLimitOfIsoDiagram F i.symm · apply hF refine ⟨Empty, inferInstance, Empty.elim, IsEmpty.elim inferInstance, rfl, ⟨default,?_, ?_⟩⟩ · ext b cases b · simp only [eq_iff_true_of_subsingleton] · refine ⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ?_⟩ suffices Sigma.desc (fun i ↦ Sigma.ι Z i) = 𝟙 _ by rw [this]; infer_instance
ext
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF let Z : α → C := fun i ↦ unop (K.obj ⟨i⟩) have : (Presieve.ofArrows Z (Cofan.mk (∐ Z) (Sigma.ι Z)).inj).hasPullbacks := (inferInstance : (Presieve.ofArrows Z (Sigma.ι Z)).hasPullbacks) have : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) := (inferInstance : ∀ (i : α), Mono (Sigma.ι Z i)) let i : K ≅ Discrete.functor (fun i ↦ op (Z i)) := Discrete.natIsoFunctor let _ : PreservesLimit (Discrete.functor (fun i ↦ op (Z i))) F := Presieve.preservesProductOfIsSheafFor F ?_ initialIsInitial _ (coproductIsCoproduct Z) (FinitaryExtensive.isPullback_initial_to_sigma_ι Z) (hF (Presieve.ofArrows Z (fun i ↦ Sigma.ι Z i)) ?_) · exact preservesLimitOfIsoDiagram F i.symm · apply hF refine ⟨Empty, inferInstance, Empty.elim, IsEmpty.elim inferInstance, rfl, ⟨default,?_, ?_⟩⟩ · ext b cases b · simp only [eq_iff_true_of_subsingleton] · refine ⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ?_⟩ suffices Sigma.desc (fun i ↦ Sigma.ι Z i) = 𝟙 _ by rw [this]; infer_instance
Mathlib.CategoryTheory.Sites.RegularExtensive.366_0.rkSRr0zuqme90Yu
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F)
Mathlib_CategoryTheory_Sites_RegularExtensive
case refine_1.refine_2.h C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C inst✝ : FinitaryExtensive C F : Cᵒᵖ ⥤ Type (max u v) hF : ∀ {X : C}, ∀ R ∈ Coverage.covering (extensiveCoverage C) X, IsSheafFor F R α : Type x✝ : Fintype α K : Discrete α ⥤ Cᵒᵖ Z : α → C := fun i => (K.obj { as := i }).unop this✝ : hasPullbacks (ofArrows Z (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)))) this : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) i : K ≅ Discrete.functor fun i => op (Z i) := Discrete.natIsoFunctor b✝ : α ⊢ (Sigma.ι (fun i => Z i) b✝ ≫ Sigma.desc fun i => Sigma.ι Z i) = Sigma.ι (fun i => Z i) b✝ ≫ 𝟙 (∐ fun i => Z i)
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x have hx_ext := Presieve.FamilyOfElements.Compatible.sieveExtend hx let S := Sieve.generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f)) obtain ⟨t, t_amalg, t_uniq⟩ := (Sieve.forallYonedaIsSheaf_iff_colimit S).mpr ⟨h_colim⟩ W x_ext hx_ext refine ⟨t, ?_, ?_⟩ · convert Presieve.isAmalgamation_restrict (Sieve.le_generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f))) _ _ t_amalg exact (Presieve.restrict_extend hx).symm · exact fun y hy ↦ t_uniq y <| Presieve.isAmalgamation_sieveExtend x y hy /-- The regular topology on any preregular category is subcanonical. -/ theorem subcanonical [Preregular C] : Sheaf.Subcanonical (regularCoverage C).toGrothendieck := Sheaf.Subcanonical.of_yoneda_isSheaf _ isSheaf_yoneda_obj end regularCoverage end RegularSheaves section ExtensiveSheaves variable [FinitaryPreExtensive C] {C} /-- A presieve is *extensive* if it is finite and its arrows induce an isomorphism from the coproduct to the target. -/ class Presieve.extensive {X : C} (R : Presieve X) : Prop where /-- `R` consists of a finite collection of arrows that together induce an isomorphism from the coproduct of their sources. -/ arrows_nonempty_isColimit : ∃ (α : Type) (_ : Fintype α) (Z : α → C) (π : (a : α) → (Z a ⟶ X)), R = Presieve.ofArrows Z π ∧ Nonempty (IsColimit (Cofan.mk X π)) instance {X : C} (S : Presieve X) [S.extensive] : S.hasPullbacks where has_pullbacks := by obtain ⟨_, _, _, _, rfl, ⟨hc⟩⟩ := Presieve.extensive.arrows_nonempty_isColimit (R := S) intro _ _ _ _ _ hg cases hg apply FinitaryPreExtensive.hasPullbacks_of_is_coproduct hc instance {α : Type} [Fintype α] {Z : α → C} {F : C ⥤ Type w} [PreservesFiniteProducts F] : PreservesLimit (Discrete.functor fun a => (Z a)) F := (PreservesFiniteProducts.preserves α).preservesLimit open Presieve Opposite /-- A finite product preserving presheaf is a sheaf for the extensive topology on a category which is `FinitaryPreExtensive`. -/ theorem isSheafFor_extensive_of_preservesFiniteProducts {X : C} (S : Presieve X) [S.extensive] (F : Cᵒᵖ ⥤ Type max u v) [PreservesFiniteProducts F] : S.IsSheafFor F := by obtain ⟨_, _, Z, π, rfl, ⟨hc⟩⟩ := extensive.arrows_nonempty_isColimit (R := S) have : (ofArrows Z (Cofan.mk X π).inj).hasPullbacks := (inferInstance : (ofArrows Z π).hasPullbacks) exact isSheafFor_of_preservesProduct _ _ hc instance {α : Type} [Fintype α] (Z : α → C) : (ofArrows Z (fun i ↦ Sigma.ι Z i)).extensive := ⟨⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ⟨coproductIsCoproduct _⟩⟩⟩ /-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF let Z : α → C := fun i ↦ unop (K.obj ⟨i⟩) have : (Presieve.ofArrows Z (Cofan.mk (∐ Z) (Sigma.ι Z)).inj).hasPullbacks := (inferInstance : (Presieve.ofArrows Z (Sigma.ι Z)).hasPullbacks) have : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) := (inferInstance : ∀ (i : α), Mono (Sigma.ι Z i)) let i : K ≅ Discrete.functor (fun i ↦ op (Z i)) := Discrete.natIsoFunctor let _ : PreservesLimit (Discrete.functor (fun i ↦ op (Z i))) F := Presieve.preservesProductOfIsSheafFor F ?_ initialIsInitial _ (coproductIsCoproduct Z) (FinitaryExtensive.isPullback_initial_to_sigma_ι Z) (hF (Presieve.ofArrows Z (fun i ↦ Sigma.ι Z i)) ?_) · exact preservesLimitOfIsoDiagram F i.symm · apply hF refine ⟨Empty, inferInstance, Empty.elim, IsEmpty.elim inferInstance, rfl, ⟨default,?_, ?_⟩⟩ · ext b cases b · simp only [eq_iff_true_of_subsingleton] · refine ⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ?_⟩ suffices Sigma.desc (fun i ↦ Sigma.ι Z i) = 𝟙 _ by rw [this]; infer_instance ext
simp
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF let Z : α → C := fun i ↦ unop (K.obj ⟨i⟩) have : (Presieve.ofArrows Z (Cofan.mk (∐ Z) (Sigma.ι Z)).inj).hasPullbacks := (inferInstance : (Presieve.ofArrows Z (Sigma.ι Z)).hasPullbacks) have : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) := (inferInstance : ∀ (i : α), Mono (Sigma.ι Z i)) let i : K ≅ Discrete.functor (fun i ↦ op (Z i)) := Discrete.natIsoFunctor let _ : PreservesLimit (Discrete.functor (fun i ↦ op (Z i))) F := Presieve.preservesProductOfIsSheafFor F ?_ initialIsInitial _ (coproductIsCoproduct Z) (FinitaryExtensive.isPullback_initial_to_sigma_ι Z) (hF (Presieve.ofArrows Z (fun i ↦ Sigma.ι Z i)) ?_) · exact preservesLimitOfIsoDiagram F i.symm · apply hF refine ⟨Empty, inferInstance, Empty.elim, IsEmpty.elim inferInstance, rfl, ⟨default,?_, ?_⟩⟩ · ext b cases b · simp only [eq_iff_true_of_subsingleton] · refine ⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ?_⟩ suffices Sigma.desc (fun i ↦ Sigma.ι Z i) = 𝟙 _ by rw [this]; infer_instance ext
Mathlib.CategoryTheory.Sites.RegularExtensive.366_0.rkSRr0zuqme90Yu
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F)
Mathlib_CategoryTheory_Sites_RegularExtensive
case refine_2 C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C inst✝ : FinitaryExtensive C F : Cᵒᵖ ⥤ Type (max u v) hF : Nonempty (PreservesFiniteProducts F) ⊢ IsSheaf (Coverage.toGrothendieck C (extensiveCoverage C)) F
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x have hx_ext := Presieve.FamilyOfElements.Compatible.sieveExtend hx let S := Sieve.generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f)) obtain ⟨t, t_amalg, t_uniq⟩ := (Sieve.forallYonedaIsSheaf_iff_colimit S).mpr ⟨h_colim⟩ W x_ext hx_ext refine ⟨t, ?_, ?_⟩ · convert Presieve.isAmalgamation_restrict (Sieve.le_generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f))) _ _ t_amalg exact (Presieve.restrict_extend hx).symm · exact fun y hy ↦ t_uniq y <| Presieve.isAmalgamation_sieveExtend x y hy /-- The regular topology on any preregular category is subcanonical. -/ theorem subcanonical [Preregular C] : Sheaf.Subcanonical (regularCoverage C).toGrothendieck := Sheaf.Subcanonical.of_yoneda_isSheaf _ isSheaf_yoneda_obj end regularCoverage end RegularSheaves section ExtensiveSheaves variable [FinitaryPreExtensive C] {C} /-- A presieve is *extensive* if it is finite and its arrows induce an isomorphism from the coproduct to the target. -/ class Presieve.extensive {X : C} (R : Presieve X) : Prop where /-- `R` consists of a finite collection of arrows that together induce an isomorphism from the coproduct of their sources. -/ arrows_nonempty_isColimit : ∃ (α : Type) (_ : Fintype α) (Z : α → C) (π : (a : α) → (Z a ⟶ X)), R = Presieve.ofArrows Z π ∧ Nonempty (IsColimit (Cofan.mk X π)) instance {X : C} (S : Presieve X) [S.extensive] : S.hasPullbacks where has_pullbacks := by obtain ⟨_, _, _, _, rfl, ⟨hc⟩⟩ := Presieve.extensive.arrows_nonempty_isColimit (R := S) intro _ _ _ _ _ hg cases hg apply FinitaryPreExtensive.hasPullbacks_of_is_coproduct hc instance {α : Type} [Fintype α] {Z : α → C} {F : C ⥤ Type w} [PreservesFiniteProducts F] : PreservesLimit (Discrete.functor fun a => (Z a)) F := (PreservesFiniteProducts.preserves α).preservesLimit open Presieve Opposite /-- A finite product preserving presheaf is a sheaf for the extensive topology on a category which is `FinitaryPreExtensive`. -/ theorem isSheafFor_extensive_of_preservesFiniteProducts {X : C} (S : Presieve X) [S.extensive] (F : Cᵒᵖ ⥤ Type max u v) [PreservesFiniteProducts F] : S.IsSheafFor F := by obtain ⟨_, _, Z, π, rfl, ⟨hc⟩⟩ := extensive.arrows_nonempty_isColimit (R := S) have : (ofArrows Z (Cofan.mk X π).inj).hasPullbacks := (inferInstance : (ofArrows Z π).hasPullbacks) exact isSheafFor_of_preservesProduct _ _ hc instance {α : Type} [Fintype α] (Z : α → C) : (ofArrows Z (fun i ↦ Sigma.ι Z i)).extensive := ⟨⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ⟨coproductIsCoproduct _⟩⟩⟩ /-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF let Z : α → C := fun i ↦ unop (K.obj ⟨i⟩) have : (Presieve.ofArrows Z (Cofan.mk (∐ Z) (Sigma.ι Z)).inj).hasPullbacks := (inferInstance : (Presieve.ofArrows Z (Sigma.ι Z)).hasPullbacks) have : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) := (inferInstance : ∀ (i : α), Mono (Sigma.ι Z i)) let i : K ≅ Discrete.functor (fun i ↦ op (Z i)) := Discrete.natIsoFunctor let _ : PreservesLimit (Discrete.functor (fun i ↦ op (Z i))) F := Presieve.preservesProductOfIsSheafFor F ?_ initialIsInitial _ (coproductIsCoproduct Z) (FinitaryExtensive.isPullback_initial_to_sigma_ι Z) (hF (Presieve.ofArrows Z (fun i ↦ Sigma.ι Z i)) ?_) · exact preservesLimitOfIsoDiagram F i.symm · apply hF refine ⟨Empty, inferInstance, Empty.elim, IsEmpty.elim inferInstance, rfl, ⟨default,?_, ?_⟩⟩ · ext b cases b · simp only [eq_iff_true_of_subsingleton] · refine ⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ?_⟩ suffices Sigma.desc (fun i ↦ Sigma.ι Z i) = 𝟙 _ by rw [this]; infer_instance ext simp ·
let _ := hF.some
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF let Z : α → C := fun i ↦ unop (K.obj ⟨i⟩) have : (Presieve.ofArrows Z (Cofan.mk (∐ Z) (Sigma.ι Z)).inj).hasPullbacks := (inferInstance : (Presieve.ofArrows Z (Sigma.ι Z)).hasPullbacks) have : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) := (inferInstance : ∀ (i : α), Mono (Sigma.ι Z i)) let i : K ≅ Discrete.functor (fun i ↦ op (Z i)) := Discrete.natIsoFunctor let _ : PreservesLimit (Discrete.functor (fun i ↦ op (Z i))) F := Presieve.preservesProductOfIsSheafFor F ?_ initialIsInitial _ (coproductIsCoproduct Z) (FinitaryExtensive.isPullback_initial_to_sigma_ι Z) (hF (Presieve.ofArrows Z (fun i ↦ Sigma.ι Z i)) ?_) · exact preservesLimitOfIsoDiagram F i.symm · apply hF refine ⟨Empty, inferInstance, Empty.elim, IsEmpty.elim inferInstance, rfl, ⟨default,?_, ?_⟩⟩ · ext b cases b · simp only [eq_iff_true_of_subsingleton] · refine ⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ?_⟩ suffices Sigma.desc (fun i ↦ Sigma.ι Z i) = 𝟙 _ by rw [this]; infer_instance ext simp ·
Mathlib.CategoryTheory.Sites.RegularExtensive.366_0.rkSRr0zuqme90Yu
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F)
Mathlib_CategoryTheory_Sites_RegularExtensive
case refine_2 C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C inst✝ : FinitaryExtensive C F : Cᵒᵖ ⥤ Type (max u v) hF : Nonempty (PreservesFiniteProducts F) x✝ : PreservesFiniteProducts F := Nonempty.some hF ⊢ IsSheaf (Coverage.toGrothendieck C (extensiveCoverage C)) F
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x have hx_ext := Presieve.FamilyOfElements.Compatible.sieveExtend hx let S := Sieve.generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f)) obtain ⟨t, t_amalg, t_uniq⟩ := (Sieve.forallYonedaIsSheaf_iff_colimit S).mpr ⟨h_colim⟩ W x_ext hx_ext refine ⟨t, ?_, ?_⟩ · convert Presieve.isAmalgamation_restrict (Sieve.le_generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f))) _ _ t_amalg exact (Presieve.restrict_extend hx).symm · exact fun y hy ↦ t_uniq y <| Presieve.isAmalgamation_sieveExtend x y hy /-- The regular topology on any preregular category is subcanonical. -/ theorem subcanonical [Preregular C] : Sheaf.Subcanonical (regularCoverage C).toGrothendieck := Sheaf.Subcanonical.of_yoneda_isSheaf _ isSheaf_yoneda_obj end regularCoverage end RegularSheaves section ExtensiveSheaves variable [FinitaryPreExtensive C] {C} /-- A presieve is *extensive* if it is finite and its arrows induce an isomorphism from the coproduct to the target. -/ class Presieve.extensive {X : C} (R : Presieve X) : Prop where /-- `R` consists of a finite collection of arrows that together induce an isomorphism from the coproduct of their sources. -/ arrows_nonempty_isColimit : ∃ (α : Type) (_ : Fintype α) (Z : α → C) (π : (a : α) → (Z a ⟶ X)), R = Presieve.ofArrows Z π ∧ Nonempty (IsColimit (Cofan.mk X π)) instance {X : C} (S : Presieve X) [S.extensive] : S.hasPullbacks where has_pullbacks := by obtain ⟨_, _, _, _, rfl, ⟨hc⟩⟩ := Presieve.extensive.arrows_nonempty_isColimit (R := S) intro _ _ _ _ _ hg cases hg apply FinitaryPreExtensive.hasPullbacks_of_is_coproduct hc instance {α : Type} [Fintype α] {Z : α → C} {F : C ⥤ Type w} [PreservesFiniteProducts F] : PreservesLimit (Discrete.functor fun a => (Z a)) F := (PreservesFiniteProducts.preserves α).preservesLimit open Presieve Opposite /-- A finite product preserving presheaf is a sheaf for the extensive topology on a category which is `FinitaryPreExtensive`. -/ theorem isSheafFor_extensive_of_preservesFiniteProducts {X : C} (S : Presieve X) [S.extensive] (F : Cᵒᵖ ⥤ Type max u v) [PreservesFiniteProducts F] : S.IsSheafFor F := by obtain ⟨_, _, Z, π, rfl, ⟨hc⟩⟩ := extensive.arrows_nonempty_isColimit (R := S) have : (ofArrows Z (Cofan.mk X π).inj).hasPullbacks := (inferInstance : (ofArrows Z π).hasPullbacks) exact isSheafFor_of_preservesProduct _ _ hc instance {α : Type} [Fintype α] (Z : α → C) : (ofArrows Z (fun i ↦ Sigma.ι Z i)).extensive := ⟨⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ⟨coproductIsCoproduct _⟩⟩⟩ /-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF let Z : α → C := fun i ↦ unop (K.obj ⟨i⟩) have : (Presieve.ofArrows Z (Cofan.mk (∐ Z) (Sigma.ι Z)).inj).hasPullbacks := (inferInstance : (Presieve.ofArrows Z (Sigma.ι Z)).hasPullbacks) have : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) := (inferInstance : ∀ (i : α), Mono (Sigma.ι Z i)) let i : K ≅ Discrete.functor (fun i ↦ op (Z i)) := Discrete.natIsoFunctor let _ : PreservesLimit (Discrete.functor (fun i ↦ op (Z i))) F := Presieve.preservesProductOfIsSheafFor F ?_ initialIsInitial _ (coproductIsCoproduct Z) (FinitaryExtensive.isPullback_initial_to_sigma_ι Z) (hF (Presieve.ofArrows Z (fun i ↦ Sigma.ι Z i)) ?_) · exact preservesLimitOfIsoDiagram F i.symm · apply hF refine ⟨Empty, inferInstance, Empty.elim, IsEmpty.elim inferInstance, rfl, ⟨default,?_, ?_⟩⟩ · ext b cases b · simp only [eq_iff_true_of_subsingleton] · refine ⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ?_⟩ suffices Sigma.desc (fun i ↦ Sigma.ι Z i) = 𝟙 _ by rw [this]; infer_instance ext simp · let _ := hF.some
rw [Presieve.isSheaf_coverage]
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF let Z : α → C := fun i ↦ unop (K.obj ⟨i⟩) have : (Presieve.ofArrows Z (Cofan.mk (∐ Z) (Sigma.ι Z)).inj).hasPullbacks := (inferInstance : (Presieve.ofArrows Z (Sigma.ι Z)).hasPullbacks) have : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) := (inferInstance : ∀ (i : α), Mono (Sigma.ι Z i)) let i : K ≅ Discrete.functor (fun i ↦ op (Z i)) := Discrete.natIsoFunctor let _ : PreservesLimit (Discrete.functor (fun i ↦ op (Z i))) F := Presieve.preservesProductOfIsSheafFor F ?_ initialIsInitial _ (coproductIsCoproduct Z) (FinitaryExtensive.isPullback_initial_to_sigma_ι Z) (hF (Presieve.ofArrows Z (fun i ↦ Sigma.ι Z i)) ?_) · exact preservesLimitOfIsoDiagram F i.symm · apply hF refine ⟨Empty, inferInstance, Empty.elim, IsEmpty.elim inferInstance, rfl, ⟨default,?_, ?_⟩⟩ · ext b cases b · simp only [eq_iff_true_of_subsingleton] · refine ⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ?_⟩ suffices Sigma.desc (fun i ↦ Sigma.ι Z i) = 𝟙 _ by rw [this]; infer_instance ext simp · let _ := hF.some
Mathlib.CategoryTheory.Sites.RegularExtensive.366_0.rkSRr0zuqme90Yu
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F)
Mathlib_CategoryTheory_Sites_RegularExtensive
case refine_2 C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C inst✝ : FinitaryExtensive C F : Cᵒᵖ ⥤ Type (max u v) hF : Nonempty (PreservesFiniteProducts F) x✝ : PreservesFiniteProducts F := Nonempty.some hF ⊢ ∀ {X : C}, ∀ R ∈ Coverage.covering (extensiveCoverage C) X, IsSheafFor F R
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x have hx_ext := Presieve.FamilyOfElements.Compatible.sieveExtend hx let S := Sieve.generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f)) obtain ⟨t, t_amalg, t_uniq⟩ := (Sieve.forallYonedaIsSheaf_iff_colimit S).mpr ⟨h_colim⟩ W x_ext hx_ext refine ⟨t, ?_, ?_⟩ · convert Presieve.isAmalgamation_restrict (Sieve.le_generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f))) _ _ t_amalg exact (Presieve.restrict_extend hx).symm · exact fun y hy ↦ t_uniq y <| Presieve.isAmalgamation_sieveExtend x y hy /-- The regular topology on any preregular category is subcanonical. -/ theorem subcanonical [Preregular C] : Sheaf.Subcanonical (regularCoverage C).toGrothendieck := Sheaf.Subcanonical.of_yoneda_isSheaf _ isSheaf_yoneda_obj end regularCoverage end RegularSheaves section ExtensiveSheaves variable [FinitaryPreExtensive C] {C} /-- A presieve is *extensive* if it is finite and its arrows induce an isomorphism from the coproduct to the target. -/ class Presieve.extensive {X : C} (R : Presieve X) : Prop where /-- `R` consists of a finite collection of arrows that together induce an isomorphism from the coproduct of their sources. -/ arrows_nonempty_isColimit : ∃ (α : Type) (_ : Fintype α) (Z : α → C) (π : (a : α) → (Z a ⟶ X)), R = Presieve.ofArrows Z π ∧ Nonempty (IsColimit (Cofan.mk X π)) instance {X : C} (S : Presieve X) [S.extensive] : S.hasPullbacks where has_pullbacks := by obtain ⟨_, _, _, _, rfl, ⟨hc⟩⟩ := Presieve.extensive.arrows_nonempty_isColimit (R := S) intro _ _ _ _ _ hg cases hg apply FinitaryPreExtensive.hasPullbacks_of_is_coproduct hc instance {α : Type} [Fintype α] {Z : α → C} {F : C ⥤ Type w} [PreservesFiniteProducts F] : PreservesLimit (Discrete.functor fun a => (Z a)) F := (PreservesFiniteProducts.preserves α).preservesLimit open Presieve Opposite /-- A finite product preserving presheaf is a sheaf for the extensive topology on a category which is `FinitaryPreExtensive`. -/ theorem isSheafFor_extensive_of_preservesFiniteProducts {X : C} (S : Presieve X) [S.extensive] (F : Cᵒᵖ ⥤ Type max u v) [PreservesFiniteProducts F] : S.IsSheafFor F := by obtain ⟨_, _, Z, π, rfl, ⟨hc⟩⟩ := extensive.arrows_nonempty_isColimit (R := S) have : (ofArrows Z (Cofan.mk X π).inj).hasPullbacks := (inferInstance : (ofArrows Z π).hasPullbacks) exact isSheafFor_of_preservesProduct _ _ hc instance {α : Type} [Fintype α] (Z : α → C) : (ofArrows Z (fun i ↦ Sigma.ι Z i)).extensive := ⟨⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ⟨coproductIsCoproduct _⟩⟩⟩ /-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF let Z : α → C := fun i ↦ unop (K.obj ⟨i⟩) have : (Presieve.ofArrows Z (Cofan.mk (∐ Z) (Sigma.ι Z)).inj).hasPullbacks := (inferInstance : (Presieve.ofArrows Z (Sigma.ι Z)).hasPullbacks) have : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) := (inferInstance : ∀ (i : α), Mono (Sigma.ι Z i)) let i : K ≅ Discrete.functor (fun i ↦ op (Z i)) := Discrete.natIsoFunctor let _ : PreservesLimit (Discrete.functor (fun i ↦ op (Z i))) F := Presieve.preservesProductOfIsSheafFor F ?_ initialIsInitial _ (coproductIsCoproduct Z) (FinitaryExtensive.isPullback_initial_to_sigma_ι Z) (hF (Presieve.ofArrows Z (fun i ↦ Sigma.ι Z i)) ?_) · exact preservesLimitOfIsoDiagram F i.symm · apply hF refine ⟨Empty, inferInstance, Empty.elim, IsEmpty.elim inferInstance, rfl, ⟨default,?_, ?_⟩⟩ · ext b cases b · simp only [eq_iff_true_of_subsingleton] · refine ⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ?_⟩ suffices Sigma.desc (fun i ↦ Sigma.ι Z i) = 𝟙 _ by rw [this]; infer_instance ext simp · let _ := hF.some rw [Presieve.isSheaf_coverage]
intro X R ⟨Y, α, Z, π, hR, hi⟩
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF let Z : α → C := fun i ↦ unop (K.obj ⟨i⟩) have : (Presieve.ofArrows Z (Cofan.mk (∐ Z) (Sigma.ι Z)).inj).hasPullbacks := (inferInstance : (Presieve.ofArrows Z (Sigma.ι Z)).hasPullbacks) have : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) := (inferInstance : ∀ (i : α), Mono (Sigma.ι Z i)) let i : K ≅ Discrete.functor (fun i ↦ op (Z i)) := Discrete.natIsoFunctor let _ : PreservesLimit (Discrete.functor (fun i ↦ op (Z i))) F := Presieve.preservesProductOfIsSheafFor F ?_ initialIsInitial _ (coproductIsCoproduct Z) (FinitaryExtensive.isPullback_initial_to_sigma_ι Z) (hF (Presieve.ofArrows Z (fun i ↦ Sigma.ι Z i)) ?_) · exact preservesLimitOfIsoDiagram F i.symm · apply hF refine ⟨Empty, inferInstance, Empty.elim, IsEmpty.elim inferInstance, rfl, ⟨default,?_, ?_⟩⟩ · ext b cases b · simp only [eq_iff_true_of_subsingleton] · refine ⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ?_⟩ suffices Sigma.desc (fun i ↦ Sigma.ι Z i) = 𝟙 _ by rw [this]; infer_instance ext simp · let _ := hF.some rw [Presieve.isSheaf_coverage]
Mathlib.CategoryTheory.Sites.RegularExtensive.366_0.rkSRr0zuqme90Yu
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F)
Mathlib_CategoryTheory_Sites_RegularExtensive
case refine_2 C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C inst✝ : FinitaryExtensive C F : Cᵒᵖ ⥤ Type (max u v) hF : Nonempty (PreservesFiniteProducts F) x✝ : PreservesFiniteProducts F := Nonempty.some hF X : C R : Presieve X Y : Type α : Fintype Y Z : Y → C π : (a : Y) → Z a ⟶ X hR : R = ofArrows Z π hi : IsIso (Sigma.desc π) ⊢ IsSheafFor F R
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x have hx_ext := Presieve.FamilyOfElements.Compatible.sieveExtend hx let S := Sieve.generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f)) obtain ⟨t, t_amalg, t_uniq⟩ := (Sieve.forallYonedaIsSheaf_iff_colimit S).mpr ⟨h_colim⟩ W x_ext hx_ext refine ⟨t, ?_, ?_⟩ · convert Presieve.isAmalgamation_restrict (Sieve.le_generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f))) _ _ t_amalg exact (Presieve.restrict_extend hx).symm · exact fun y hy ↦ t_uniq y <| Presieve.isAmalgamation_sieveExtend x y hy /-- The regular topology on any preregular category is subcanonical. -/ theorem subcanonical [Preregular C] : Sheaf.Subcanonical (regularCoverage C).toGrothendieck := Sheaf.Subcanonical.of_yoneda_isSheaf _ isSheaf_yoneda_obj end regularCoverage end RegularSheaves section ExtensiveSheaves variable [FinitaryPreExtensive C] {C} /-- A presieve is *extensive* if it is finite and its arrows induce an isomorphism from the coproduct to the target. -/ class Presieve.extensive {X : C} (R : Presieve X) : Prop where /-- `R` consists of a finite collection of arrows that together induce an isomorphism from the coproduct of their sources. -/ arrows_nonempty_isColimit : ∃ (α : Type) (_ : Fintype α) (Z : α → C) (π : (a : α) → (Z a ⟶ X)), R = Presieve.ofArrows Z π ∧ Nonempty (IsColimit (Cofan.mk X π)) instance {X : C} (S : Presieve X) [S.extensive] : S.hasPullbacks where has_pullbacks := by obtain ⟨_, _, _, _, rfl, ⟨hc⟩⟩ := Presieve.extensive.arrows_nonempty_isColimit (R := S) intro _ _ _ _ _ hg cases hg apply FinitaryPreExtensive.hasPullbacks_of_is_coproduct hc instance {α : Type} [Fintype α] {Z : α → C} {F : C ⥤ Type w} [PreservesFiniteProducts F] : PreservesLimit (Discrete.functor fun a => (Z a)) F := (PreservesFiniteProducts.preserves α).preservesLimit open Presieve Opposite /-- A finite product preserving presheaf is a sheaf for the extensive topology on a category which is `FinitaryPreExtensive`. -/ theorem isSheafFor_extensive_of_preservesFiniteProducts {X : C} (S : Presieve X) [S.extensive] (F : Cᵒᵖ ⥤ Type max u v) [PreservesFiniteProducts F] : S.IsSheafFor F := by obtain ⟨_, _, Z, π, rfl, ⟨hc⟩⟩ := extensive.arrows_nonempty_isColimit (R := S) have : (ofArrows Z (Cofan.mk X π).inj).hasPullbacks := (inferInstance : (ofArrows Z π).hasPullbacks) exact isSheafFor_of_preservesProduct _ _ hc instance {α : Type} [Fintype α] (Z : α → C) : (ofArrows Z (fun i ↦ Sigma.ι Z i)).extensive := ⟨⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ⟨coproductIsCoproduct _⟩⟩⟩ /-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF let Z : α → C := fun i ↦ unop (K.obj ⟨i⟩) have : (Presieve.ofArrows Z (Cofan.mk (∐ Z) (Sigma.ι Z)).inj).hasPullbacks := (inferInstance : (Presieve.ofArrows Z (Sigma.ι Z)).hasPullbacks) have : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) := (inferInstance : ∀ (i : α), Mono (Sigma.ι Z i)) let i : K ≅ Discrete.functor (fun i ↦ op (Z i)) := Discrete.natIsoFunctor let _ : PreservesLimit (Discrete.functor (fun i ↦ op (Z i))) F := Presieve.preservesProductOfIsSheafFor F ?_ initialIsInitial _ (coproductIsCoproduct Z) (FinitaryExtensive.isPullback_initial_to_sigma_ι Z) (hF (Presieve.ofArrows Z (fun i ↦ Sigma.ι Z i)) ?_) · exact preservesLimitOfIsoDiagram F i.symm · apply hF refine ⟨Empty, inferInstance, Empty.elim, IsEmpty.elim inferInstance, rfl, ⟨default,?_, ?_⟩⟩ · ext b cases b · simp only [eq_iff_true_of_subsingleton] · refine ⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ?_⟩ suffices Sigma.desc (fun i ↦ Sigma.ι Z i) = 𝟙 _ by rw [this]; infer_instance ext simp · let _ := hF.some rw [Presieve.isSheaf_coverage] intro X R ⟨Y, α, Z, π, hR, hi⟩
have : IsIso (Sigma.desc (Cofan.inj (Cofan.mk X π))) := hi
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF let Z : α → C := fun i ↦ unop (K.obj ⟨i⟩) have : (Presieve.ofArrows Z (Cofan.mk (∐ Z) (Sigma.ι Z)).inj).hasPullbacks := (inferInstance : (Presieve.ofArrows Z (Sigma.ι Z)).hasPullbacks) have : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) := (inferInstance : ∀ (i : α), Mono (Sigma.ι Z i)) let i : K ≅ Discrete.functor (fun i ↦ op (Z i)) := Discrete.natIsoFunctor let _ : PreservesLimit (Discrete.functor (fun i ↦ op (Z i))) F := Presieve.preservesProductOfIsSheafFor F ?_ initialIsInitial _ (coproductIsCoproduct Z) (FinitaryExtensive.isPullback_initial_to_sigma_ι Z) (hF (Presieve.ofArrows Z (fun i ↦ Sigma.ι Z i)) ?_) · exact preservesLimitOfIsoDiagram F i.symm · apply hF refine ⟨Empty, inferInstance, Empty.elim, IsEmpty.elim inferInstance, rfl, ⟨default,?_, ?_⟩⟩ · ext b cases b · simp only [eq_iff_true_of_subsingleton] · refine ⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ?_⟩ suffices Sigma.desc (fun i ↦ Sigma.ι Z i) = 𝟙 _ by rw [this]; infer_instance ext simp · let _ := hF.some rw [Presieve.isSheaf_coverage] intro X R ⟨Y, α, Z, π, hR, hi⟩
Mathlib.CategoryTheory.Sites.RegularExtensive.366_0.rkSRr0zuqme90Yu
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F)
Mathlib_CategoryTheory_Sites_RegularExtensive
case refine_2 C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C inst✝ : FinitaryExtensive C F : Cᵒᵖ ⥤ Type (max u v) hF : Nonempty (PreservesFiniteProducts F) x✝ : PreservesFiniteProducts F := Nonempty.some hF X : C R : Presieve X Y : Type α : Fintype Y Z : Y → C π : (a : Y) → Z a ⟶ X hR : R = ofArrows Z π hi : IsIso (Sigma.desc π) this : IsIso (Sigma.desc (Cofan.inj (Cofan.mk X π))) ⊢ IsSheafFor F R
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x have hx_ext := Presieve.FamilyOfElements.Compatible.sieveExtend hx let S := Sieve.generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f)) obtain ⟨t, t_amalg, t_uniq⟩ := (Sieve.forallYonedaIsSheaf_iff_colimit S).mpr ⟨h_colim⟩ W x_ext hx_ext refine ⟨t, ?_, ?_⟩ · convert Presieve.isAmalgamation_restrict (Sieve.le_generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f))) _ _ t_amalg exact (Presieve.restrict_extend hx).symm · exact fun y hy ↦ t_uniq y <| Presieve.isAmalgamation_sieveExtend x y hy /-- The regular topology on any preregular category is subcanonical. -/ theorem subcanonical [Preregular C] : Sheaf.Subcanonical (regularCoverage C).toGrothendieck := Sheaf.Subcanonical.of_yoneda_isSheaf _ isSheaf_yoneda_obj end regularCoverage end RegularSheaves section ExtensiveSheaves variable [FinitaryPreExtensive C] {C} /-- A presieve is *extensive* if it is finite and its arrows induce an isomorphism from the coproduct to the target. -/ class Presieve.extensive {X : C} (R : Presieve X) : Prop where /-- `R` consists of a finite collection of arrows that together induce an isomorphism from the coproduct of their sources. -/ arrows_nonempty_isColimit : ∃ (α : Type) (_ : Fintype α) (Z : α → C) (π : (a : α) → (Z a ⟶ X)), R = Presieve.ofArrows Z π ∧ Nonempty (IsColimit (Cofan.mk X π)) instance {X : C} (S : Presieve X) [S.extensive] : S.hasPullbacks where has_pullbacks := by obtain ⟨_, _, _, _, rfl, ⟨hc⟩⟩ := Presieve.extensive.arrows_nonempty_isColimit (R := S) intro _ _ _ _ _ hg cases hg apply FinitaryPreExtensive.hasPullbacks_of_is_coproduct hc instance {α : Type} [Fintype α] {Z : α → C} {F : C ⥤ Type w} [PreservesFiniteProducts F] : PreservesLimit (Discrete.functor fun a => (Z a)) F := (PreservesFiniteProducts.preserves α).preservesLimit open Presieve Opposite /-- A finite product preserving presheaf is a sheaf for the extensive topology on a category which is `FinitaryPreExtensive`. -/ theorem isSheafFor_extensive_of_preservesFiniteProducts {X : C} (S : Presieve X) [S.extensive] (F : Cᵒᵖ ⥤ Type max u v) [PreservesFiniteProducts F] : S.IsSheafFor F := by obtain ⟨_, _, Z, π, rfl, ⟨hc⟩⟩ := extensive.arrows_nonempty_isColimit (R := S) have : (ofArrows Z (Cofan.mk X π).inj).hasPullbacks := (inferInstance : (ofArrows Z π).hasPullbacks) exact isSheafFor_of_preservesProduct _ _ hc instance {α : Type} [Fintype α] (Z : α → C) : (ofArrows Z (fun i ↦ Sigma.ι Z i)).extensive := ⟨⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ⟨coproductIsCoproduct _⟩⟩⟩ /-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF let Z : α → C := fun i ↦ unop (K.obj ⟨i⟩) have : (Presieve.ofArrows Z (Cofan.mk (∐ Z) (Sigma.ι Z)).inj).hasPullbacks := (inferInstance : (Presieve.ofArrows Z (Sigma.ι Z)).hasPullbacks) have : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) := (inferInstance : ∀ (i : α), Mono (Sigma.ι Z i)) let i : K ≅ Discrete.functor (fun i ↦ op (Z i)) := Discrete.natIsoFunctor let _ : PreservesLimit (Discrete.functor (fun i ↦ op (Z i))) F := Presieve.preservesProductOfIsSheafFor F ?_ initialIsInitial _ (coproductIsCoproduct Z) (FinitaryExtensive.isPullback_initial_to_sigma_ι Z) (hF (Presieve.ofArrows Z (fun i ↦ Sigma.ι Z i)) ?_) · exact preservesLimitOfIsoDiagram F i.symm · apply hF refine ⟨Empty, inferInstance, Empty.elim, IsEmpty.elim inferInstance, rfl, ⟨default,?_, ?_⟩⟩ · ext b cases b · simp only [eq_iff_true_of_subsingleton] · refine ⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ?_⟩ suffices Sigma.desc (fun i ↦ Sigma.ι Z i) = 𝟙 _ by rw [this]; infer_instance ext simp · let _ := hF.some rw [Presieve.isSheaf_coverage] intro X R ⟨Y, α, Z, π, hR, hi⟩ have : IsIso (Sigma.desc (Cofan.inj (Cofan.mk X π))) := hi
have : R.extensive := ⟨Y, α, Z, π, hR, ⟨Cofan.isColimitOfIsIsoSigmaDesc (Cofan.mk X π)⟩⟩
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF let Z : α → C := fun i ↦ unop (K.obj ⟨i⟩) have : (Presieve.ofArrows Z (Cofan.mk (∐ Z) (Sigma.ι Z)).inj).hasPullbacks := (inferInstance : (Presieve.ofArrows Z (Sigma.ι Z)).hasPullbacks) have : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) := (inferInstance : ∀ (i : α), Mono (Sigma.ι Z i)) let i : K ≅ Discrete.functor (fun i ↦ op (Z i)) := Discrete.natIsoFunctor let _ : PreservesLimit (Discrete.functor (fun i ↦ op (Z i))) F := Presieve.preservesProductOfIsSheafFor F ?_ initialIsInitial _ (coproductIsCoproduct Z) (FinitaryExtensive.isPullback_initial_to_sigma_ι Z) (hF (Presieve.ofArrows Z (fun i ↦ Sigma.ι Z i)) ?_) · exact preservesLimitOfIsoDiagram F i.symm · apply hF refine ⟨Empty, inferInstance, Empty.elim, IsEmpty.elim inferInstance, rfl, ⟨default,?_, ?_⟩⟩ · ext b cases b · simp only [eq_iff_true_of_subsingleton] · refine ⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ?_⟩ suffices Sigma.desc (fun i ↦ Sigma.ι Z i) = 𝟙 _ by rw [this]; infer_instance ext simp · let _ := hF.some rw [Presieve.isSheaf_coverage] intro X R ⟨Y, α, Z, π, hR, hi⟩ have : IsIso (Sigma.desc (Cofan.inj (Cofan.mk X π))) := hi
Mathlib.CategoryTheory.Sites.RegularExtensive.366_0.rkSRr0zuqme90Yu
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F)
Mathlib_CategoryTheory_Sites_RegularExtensive
case refine_2 C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C inst✝ : FinitaryExtensive C F : Cᵒᵖ ⥤ Type (max u v) hF : Nonempty (PreservesFiniteProducts F) x✝ : PreservesFiniteProducts F := Nonempty.some hF X : C R : Presieve X Y : Type α : Fintype Y Z : Y → C π : (a : Y) → Z a ⟶ X hR : R = ofArrows Z π hi : IsIso (Sigma.desc π) this✝ : IsIso (Sigma.desc (Cofan.inj (Cofan.mk X π))) this : extensive R ⊢ IsSheafFor F R
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks] intro y h have : (Presieve.singleton π).hasPullbacks := by rw [← ofArrows_pUnit]; infer_instance have : HasPullback π π := hasPullbacks.has_pullbacks Presieve.singleton.mk Presieve.singleton.mk specialize hF X B π rw [Function.bijective_iff_existsUnique] at hF obtain ⟨t, ht, ht'⟩ := hF ⟨y (), h () ()⟩ refine ⟨t, fun _ ↦ ?_, fun x h ↦ ht' x ?_⟩ · simpa [MapToEqualizer] using ht · simpa [MapToEqualizer] using h () lemma equalizerCondition_of_regular {F : Cᵒᵖ ⥤ Type (max u v)} (hSF : ∀ {B : C} (S : Presieve B) [S.regular] [S.hasPullbacks], S.IsSheafFor F) : EqualizerCondition F := by intro X B π _ _ have : (ofArrows (fun _ ↦ X) (fun _ ↦ π)).regular := ⟨X, π, rfl, inferInstance⟩ have : (ofArrows (fun () ↦ X) (fun _ ↦ π)).hasPullbacks := ⟨ fun hf _ hg ↦ (by cases hf; cases hg; infer_instance)⟩ specialize hSF (ofArrows (fun () ↦ X) (fun _ ↦ π)) rw [isSheafFor_arrows_iff_pullbacks] at hSF rw [Function.bijective_iff_existsUnique] intro ⟨x, hx⟩ obtain ⟨t, ht, ht'⟩ := hSF (fun _ ↦ x) (fun _ _ ↦ hx) refine ⟨t, ?_, fun y h ↦ ht' y ?_⟩ · simpa [MapToEqualizer] using ht () · simpa [MapToEqualizer] using h lemma isSheafFor_regular_of_projective {X : C} (S : Presieve X) [S.regular] [Projective X] (F : Cᵒᵖ ⥤ Type (max u v)) : S.IsSheafFor F := by obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) rw [isSheafFor_arrows_iff] refine fun x hx ↦ ⟨F.map (Projective.factorThru (𝟙 _) f).op <| x (), fun _ ↦ ?_, fun y h ↦ ?_⟩ · simpa using (hx () () Y (𝟙 Y) (f ≫ (Projective.factorThru (𝟙 _) f)) (by simp)).symm · simp only [← h (), ← FunctorToTypes.map_comp_apply, ← op_comp, Projective.factorThru_comp, op_id, FunctorToTypes.map_id_apply] lemma EqualizerCondition.isSheaf_iff (F : Cᵒᵖ ⥤ Type (max u v)) [∀ ⦃X Y : C⦄ (π : X ⟶ Y) [EffectiveEpi π], HasPullback π π] [Preregular C] : Presieve.IsSheaf (regularCoverage C).toGrothendieck F ↔ EqualizerCondition F := by rw [Presieve.isSheaf_coverage] refine ⟨fun h ↦ equalizerCondition_of_regular fun S ⟨Y, f, hh⟩ _ ↦ h S ⟨Y, f, hh⟩, ?_⟩ rintro h X S ⟨Y, f, rfl, hf⟩ exact @isSheafFor _ _ _ _ ⟨Y, f, rfl, hf⟩ ⟨fun g _ h ↦ by cases g; cases h; infer_instance⟩ _ h lemma isSheaf_of_projective (F : Cᵒᵖ ⥤ Type (max u v)) [Preregular C] [∀ (X : C), Projective X] : IsSheaf (regularCoverage C).toGrothendieck F := (isSheaf_coverage _ _).mpr fun S ⟨_, h⟩ ↦ have : S.regular := ⟨_, h⟩ isSheafFor_regular_of_projective _ _ /-- Every Yoneda-presheaf is a sheaf for the regular topology. -/ theorem isSheaf_yoneda_obj [Preregular C] (W : C) : Presieve.IsSheaf (regularCoverage C).toGrothendieck (yoneda.obj W) := by rw [isSheaf_coverage] intro X S ⟨_, hS⟩ have : S.regular := ⟨_, hS⟩ obtain ⟨Y, f, rfl, hf⟩ := Presieve.regular.single_epi (R := S) have h_colim := isColimitOfEffectiveEpiStruct f hf.effectiveEpi.some rw [← Sieve.generateSingleton_eq, ← Presieve.ofArrows_pUnit] at h_colim intro x hx let x_ext := Presieve.FamilyOfElements.sieveExtend x have hx_ext := Presieve.FamilyOfElements.Compatible.sieveExtend hx let S := Sieve.generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f)) obtain ⟨t, t_amalg, t_uniq⟩ := (Sieve.forallYonedaIsSheaf_iff_colimit S).mpr ⟨h_colim⟩ W x_ext hx_ext refine ⟨t, ?_, ?_⟩ · convert Presieve.isAmalgamation_restrict (Sieve.le_generate (Presieve.ofArrows (fun () ↦ Y) (fun () ↦ f))) _ _ t_amalg exact (Presieve.restrict_extend hx).symm · exact fun y hy ↦ t_uniq y <| Presieve.isAmalgamation_sieveExtend x y hy /-- The regular topology on any preregular category is subcanonical. -/ theorem subcanonical [Preregular C] : Sheaf.Subcanonical (regularCoverage C).toGrothendieck := Sheaf.Subcanonical.of_yoneda_isSheaf _ isSheaf_yoneda_obj end regularCoverage end RegularSheaves section ExtensiveSheaves variable [FinitaryPreExtensive C] {C} /-- A presieve is *extensive* if it is finite and its arrows induce an isomorphism from the coproduct to the target. -/ class Presieve.extensive {X : C} (R : Presieve X) : Prop where /-- `R` consists of a finite collection of arrows that together induce an isomorphism from the coproduct of their sources. -/ arrows_nonempty_isColimit : ∃ (α : Type) (_ : Fintype α) (Z : α → C) (π : (a : α) → (Z a ⟶ X)), R = Presieve.ofArrows Z π ∧ Nonempty (IsColimit (Cofan.mk X π)) instance {X : C} (S : Presieve X) [S.extensive] : S.hasPullbacks where has_pullbacks := by obtain ⟨_, _, _, _, rfl, ⟨hc⟩⟩ := Presieve.extensive.arrows_nonempty_isColimit (R := S) intro _ _ _ _ _ hg cases hg apply FinitaryPreExtensive.hasPullbacks_of_is_coproduct hc instance {α : Type} [Fintype α] {Z : α → C} {F : C ⥤ Type w} [PreservesFiniteProducts F] : PreservesLimit (Discrete.functor fun a => (Z a)) F := (PreservesFiniteProducts.preserves α).preservesLimit open Presieve Opposite /-- A finite product preserving presheaf is a sheaf for the extensive topology on a category which is `FinitaryPreExtensive`. -/ theorem isSheafFor_extensive_of_preservesFiniteProducts {X : C} (S : Presieve X) [S.extensive] (F : Cᵒᵖ ⥤ Type max u v) [PreservesFiniteProducts F] : S.IsSheafFor F := by obtain ⟨_, _, Z, π, rfl, ⟨hc⟩⟩ := extensive.arrows_nonempty_isColimit (R := S) have : (ofArrows Z (Cofan.mk X π).inj).hasPullbacks := (inferInstance : (ofArrows Z π).hasPullbacks) exact isSheafFor_of_preservesProduct _ _ hc instance {α : Type} [Fintype α] (Z : α → C) : (ofArrows Z (fun i ↦ Sigma.ι Z i)).extensive := ⟨⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ⟨coproductIsCoproduct _⟩⟩⟩ /-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF let Z : α → C := fun i ↦ unop (K.obj ⟨i⟩) have : (Presieve.ofArrows Z (Cofan.mk (∐ Z) (Sigma.ι Z)).inj).hasPullbacks := (inferInstance : (Presieve.ofArrows Z (Sigma.ι Z)).hasPullbacks) have : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) := (inferInstance : ∀ (i : α), Mono (Sigma.ι Z i)) let i : K ≅ Discrete.functor (fun i ↦ op (Z i)) := Discrete.natIsoFunctor let _ : PreservesLimit (Discrete.functor (fun i ↦ op (Z i))) F := Presieve.preservesProductOfIsSheafFor F ?_ initialIsInitial _ (coproductIsCoproduct Z) (FinitaryExtensive.isPullback_initial_to_sigma_ι Z) (hF (Presieve.ofArrows Z (fun i ↦ Sigma.ι Z i)) ?_) · exact preservesLimitOfIsoDiagram F i.symm · apply hF refine ⟨Empty, inferInstance, Empty.elim, IsEmpty.elim inferInstance, rfl, ⟨default,?_, ?_⟩⟩ · ext b cases b · simp only [eq_iff_true_of_subsingleton] · refine ⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ?_⟩ suffices Sigma.desc (fun i ↦ Sigma.ι Z i) = 𝟙 _ by rw [this]; infer_instance ext simp · let _ := hF.some rw [Presieve.isSheaf_coverage] intro X R ⟨Y, α, Z, π, hR, hi⟩ have : IsIso (Sigma.desc (Cofan.inj (Cofan.mk X π))) := hi have : R.extensive := ⟨Y, α, Z, π, hR, ⟨Cofan.isColimitOfIsIsoSigmaDesc (Cofan.mk X π)⟩⟩
exact isSheafFor_extensive_of_preservesFiniteProducts R F
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F) := by refine ⟨fun hF ↦ ⟨⟨fun α _ ↦ ⟨fun {K} ↦ ?_⟩⟩⟩, fun hF ↦ ?_⟩ · rw [Presieve.isSheaf_coverage] at hF let Z : α → C := fun i ↦ unop (K.obj ⟨i⟩) have : (Presieve.ofArrows Z (Cofan.mk (∐ Z) (Sigma.ι Z)).inj).hasPullbacks := (inferInstance : (Presieve.ofArrows Z (Sigma.ι Z)).hasPullbacks) have : ∀ (i : α), Mono (Cofan.inj (Cofan.mk (∐ Z) (Sigma.ι Z)) i) := (inferInstance : ∀ (i : α), Mono (Sigma.ι Z i)) let i : K ≅ Discrete.functor (fun i ↦ op (Z i)) := Discrete.natIsoFunctor let _ : PreservesLimit (Discrete.functor (fun i ↦ op (Z i))) F := Presieve.preservesProductOfIsSheafFor F ?_ initialIsInitial _ (coproductIsCoproduct Z) (FinitaryExtensive.isPullback_initial_to_sigma_ι Z) (hF (Presieve.ofArrows Z (fun i ↦ Sigma.ι Z i)) ?_) · exact preservesLimitOfIsoDiagram F i.symm · apply hF refine ⟨Empty, inferInstance, Empty.elim, IsEmpty.elim inferInstance, rfl, ⟨default,?_, ?_⟩⟩ · ext b cases b · simp only [eq_iff_true_of_subsingleton] · refine ⟨α, inferInstance, Z, (fun i ↦ Sigma.ι Z i), rfl, ?_⟩ suffices Sigma.desc (fun i ↦ Sigma.ι Z i) = 𝟙 _ by rw [this]; infer_instance ext simp · let _ := hF.some rw [Presieve.isSheaf_coverage] intro X R ⟨Y, α, Z, π, hR, hi⟩ have : IsIso (Sigma.desc (Cofan.inj (Cofan.mk X π))) := hi have : R.extensive := ⟨Y, α, Z, π, hR, ⟨Cofan.isColimitOfIsIsoSigmaDesc (Cofan.mk X π)⟩⟩
Mathlib.CategoryTheory.Sites.RegularExtensive.366_0.rkSRr0zuqme90Yu
/-- A presheaf on a category which is `FinitaryExtensive` is a sheaf iff it preserves finite products. -/ theorem isSheaf_iff_preservesFiniteProducts [FinitaryExtensive C] (F : Cᵒᵖ ⥤ Type max u v) : Presieve.IsSheaf (extensiveCoverage C).toGrothendieck F ↔ Nonempty (PreservesFiniteProducts F)
Mathlib_CategoryTheory_Sites_RegularExtensive
R : Type u_1 inst✝² : CommRing R S : Submonoid R P : Type u_2 inst✝¹ : CommRing P inst✝ : Algebra R P loc : IsLocalization S P p : FractionalIdeal S P s : Set P hs : s = ↑p ⊢ IsFractional S (Submodule.copy (↑p) s hs)
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R → FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I ⊆ R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (⊔)` and `⊥ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑⊥ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I ⊆ R` for some `a ≠ 0`. -/ def IsFractional (I : Submodule R P) := ∃ a ∈ S, ∀ b ∈ I, IsInteger R (a • b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I ⊆ P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I ⊆ R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `∃ a, a I ⊆ R`. This implements the coercion `FractionalIdeal S P → Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `∃ a, a I ⊆ R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R → Submodule R P` (which we use to define `coe : Ideal R → FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (∀ x, x ∈ I ↔ x ∈ J) → I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by
convert p.isFractional
/-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by
Mathlib.RingTheory.FractionalIdeal.153_0.90B1BH8AtSmfl9S
/-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P
Mathlib_RingTheory_FractionalIdeal
case h.e'_7 R : Type u_1 inst✝² : CommRing R S : Submonoid R P : Type u_2 inst✝¹ : CommRing P inst✝ : Algebra R P loc : IsLocalization S P p : FractionalIdeal S P s : Set P hs : s = ↑p ⊢ Submodule.copy (↑p) s hs = ↑p
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R → FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I ⊆ R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (⊔)` and `⊥ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑⊥ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I ⊆ R` for some `a ≠ 0`. -/ def IsFractional (I : Submodule R P) := ∃ a ∈ S, ∀ b ∈ I, IsInteger R (a • b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I ⊆ P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I ⊆ R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `∃ a, a I ⊆ R`. This implements the coercion `FractionalIdeal S P → Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `∃ a, a I ⊆ R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R → Submodule R P` (which we use to define `coe : Ideal R → FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (∀ x, x ∈ I ↔ x ∈ J) → I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional
ext
/-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional
Mathlib.RingTheory.FractionalIdeal.153_0.90B1BH8AtSmfl9S
/-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P
Mathlib_RingTheory_FractionalIdeal
case h.e'_7.h R : Type u_1 inst✝² : CommRing R S : Submonoid R P : Type u_2 inst✝¹ : CommRing P inst✝ : Algebra R P loc : IsLocalization S P p : FractionalIdeal S P s : Set P hs : s = ↑p x✝ : P ⊢ x✝ ∈ Submodule.copy (↑p) s hs ↔ x✝ ∈ ↑p
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R → FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I ⊆ R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (⊔)` and `⊥ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑⊥ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I ⊆ R` for some `a ≠ 0`. -/ def IsFractional (I : Submodule R P) := ∃ a ∈ S, ∀ b ∈ I, IsInteger R (a • b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I ⊆ P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I ⊆ R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `∃ a, a I ⊆ R`. This implements the coercion `FractionalIdeal S P → Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `∃ a, a I ⊆ R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R → Submodule R P` (which we use to define `coe : Ideal R → FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (∀ x, x ∈ I ↔ x ∈ J) → I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext
simp only [hs]
/-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext
Mathlib.RingTheory.FractionalIdeal.153_0.90B1BH8AtSmfl9S
/-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P
Mathlib_RingTheory_FractionalIdeal
case h.e'_7.h R : Type u_1 inst✝² : CommRing R S : Submonoid R P : Type u_2 inst✝¹ : CommRing P inst✝ : Algebra R P loc : IsLocalization S P p : FractionalIdeal S P s : Set P hs : s = ↑p x✝ : P ⊢ x✝ ∈ Submodule.copy ↑p ↑p (_ : ↑p = ↑↑p) ↔ x✝ ∈ ↑p
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R → FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I ⊆ R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (⊔)` and `⊥ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑⊥ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I ⊆ R` for some `a ≠ 0`. -/ def IsFractional (I : Submodule R P) := ∃ a ∈ S, ∀ b ∈ I, IsInteger R (a • b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I ⊆ P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I ⊆ R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `∃ a, a I ⊆ R`. This implements the coercion `FractionalIdeal S P → Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `∃ a, a I ⊆ R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R → Submodule R P` (which we use to define `coe : Ideal R → FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (∀ x, x ∈ I ↔ x ∈ J) → I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs]
rfl
/-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs]
Mathlib.RingTheory.FractionalIdeal.153_0.90B1BH8AtSmfl9S
/-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P
Mathlib_RingTheory_FractionalIdeal
R : Type u_1 inst✝² : CommRing R S : Submonoid R P : Type u_2 inst✝¹ : CommRing P inst✝ : Algebra R P loc : IsLocalization S P I : Submodule R P h : I ≤ 1 ⊢ IsFractional S I
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R → FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I ⊆ R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (⊔)` and `⊥ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑⊥ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I ⊆ R` for some `a ≠ 0`. -/ def IsFractional (I : Submodule R P) := ∃ a ∈ S, ∀ b ∈ I, IsInteger R (a • b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I ⊆ P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I ⊆ R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `∃ a, a I ⊆ R`. This implements the coercion `FractionalIdeal S P → Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `∃ a, a I ⊆ R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R → Submodule R P` (which we use to define `coe : Ideal R → FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (∀ x, x ∈ I ↔ x ∈ J) → I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≤ 1) : IsFractional S I := by
use 1, S.one_mem
theorem isFractional_of_le_one (I : Submodule R P) (h : I ≤ 1) : IsFractional S I := by
Mathlib.RingTheory.FractionalIdeal.206_0.90B1BH8AtSmfl9S
theorem isFractional_of_le_one (I : Submodule R P) (h : I ≤ 1) : IsFractional S I
Mathlib_RingTheory_FractionalIdeal
case right R : Type u_1 inst✝² : CommRing R S : Submonoid R P : Type u_2 inst✝¹ : CommRing P inst✝ : Algebra R P loc : IsLocalization S P I : Submodule R P h : I ≤ 1 ⊢ ∀ b ∈ I, IsInteger R (1 • b)
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R → FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I ⊆ R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (⊔)` and `⊥ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑⊥ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I ⊆ R` for some `a ≠ 0`. -/ def IsFractional (I : Submodule R P) := ∃ a ∈ S, ∀ b ∈ I, IsInteger R (a • b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I ⊆ P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I ⊆ R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `∃ a, a I ⊆ R`. This implements the coercion `FractionalIdeal S P → Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `∃ a, a I ⊆ R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R → Submodule R P` (which we use to define `coe : Ideal R → FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (∀ x, x ∈ I ↔ x ∈ J) → I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≤ 1) : IsFractional S I := by use 1, S.one_mem
intro b hb
theorem isFractional_of_le_one (I : Submodule R P) (h : I ≤ 1) : IsFractional S I := by use 1, S.one_mem
Mathlib.RingTheory.FractionalIdeal.206_0.90B1BH8AtSmfl9S
theorem isFractional_of_le_one (I : Submodule R P) (h : I ≤ 1) : IsFractional S I
Mathlib_RingTheory_FractionalIdeal
case right R : Type u_1 inst✝² : CommRing R S : Submonoid R P : Type u_2 inst✝¹ : CommRing P inst✝ : Algebra R P loc : IsLocalization S P I : Submodule R P h : I ≤ 1 b : P hb : b ∈ I ⊢ IsInteger R (1 • b)
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R → FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I ⊆ R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (⊔)` and `⊥ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑⊥ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I ⊆ R` for some `a ≠ 0`. -/ def IsFractional (I : Submodule R P) := ∃ a ∈ S, ∀ b ∈ I, IsInteger R (a • b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I ⊆ P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I ⊆ R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `∃ a, a I ⊆ R`. This implements the coercion `FractionalIdeal S P → Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `∃ a, a I ⊆ R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R → Submodule R P` (which we use to define `coe : Ideal R → FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (∀ x, x ∈ I ↔ x ∈ J) → I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≤ 1) : IsFractional S I := by use 1, S.one_mem intro b hb
rw [one_smul]
theorem isFractional_of_le_one (I : Submodule R P) (h : I ≤ 1) : IsFractional S I := by use 1, S.one_mem intro b hb
Mathlib.RingTheory.FractionalIdeal.206_0.90B1BH8AtSmfl9S
theorem isFractional_of_le_one (I : Submodule R P) (h : I ≤ 1) : IsFractional S I
Mathlib_RingTheory_FractionalIdeal
case right R : Type u_1 inst✝² : CommRing R S : Submonoid R P : Type u_2 inst✝¹ : CommRing P inst✝ : Algebra R P loc : IsLocalization S P I : Submodule R P h : I ≤ 1 b : P hb : b ∈ I ⊢ IsInteger R b
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R → FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I ⊆ R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (⊔)` and `⊥ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑⊥ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I ⊆ R` for some `a ≠ 0`. -/ def IsFractional (I : Submodule R P) := ∃ a ∈ S, ∀ b ∈ I, IsInteger R (a • b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I ⊆ P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I ⊆ R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `∃ a, a I ⊆ R`. This implements the coercion `FractionalIdeal S P → Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `∃ a, a I ⊆ R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R → Submodule R P` (which we use to define `coe : Ideal R → FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (∀ x, x ∈ I ↔ x ∈ J) → I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≤ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul]
obtain ⟨b', b'_mem, rfl⟩ := h hb
theorem isFractional_of_le_one (I : Submodule R P) (h : I ≤ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul]
Mathlib.RingTheory.FractionalIdeal.206_0.90B1BH8AtSmfl9S
theorem isFractional_of_le_one (I : Submodule R P) (h : I ≤ 1) : IsFractional S I
Mathlib_RingTheory_FractionalIdeal
case right.intro.refl R : Type u_1 inst✝² : CommRing R S : Submonoid R P : Type u_2 inst✝¹ : CommRing P inst✝ : Algebra R P loc : IsLocalization S P I : Submodule R P h : I ≤ 1 b' : R hb : (Algebra.linearMap R P) b' ∈ I ⊢ IsInteger R ((Algebra.linearMap R P) b')
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R → FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I ⊆ R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (⊔)` and `⊥ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑⊥ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I ⊆ R` for some `a ≠ 0`. -/ def IsFractional (I : Submodule R P) := ∃ a ∈ S, ∀ b ∈ I, IsInteger R (a • b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I ⊆ P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I ⊆ R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `∃ a, a I ⊆ R`. This implements the coercion `FractionalIdeal S P → Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `∃ a, a I ⊆ R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R → Submodule R P` (which we use to define `coe : Ideal R → FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (∀ x, x ∈ I ↔ x ∈ J) → I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≤ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb
exact Set.mem_range_self b'
theorem isFractional_of_le_one (I : Submodule R P) (h : I ≤ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb
Mathlib.RingTheory.FractionalIdeal.206_0.90B1BH8AtSmfl9S
theorem isFractional_of_le_one (I : Submodule R P) (h : I ≤ 1) : IsFractional S I
Mathlib_RingTheory_FractionalIdeal
R : Type u_1 inst✝² : CommRing R S : Submonoid R P : Type u_2 inst✝¹ : CommRing P inst✝ : Algebra R P loc : IsLocalization S P I : Submodule R P J : FractionalIdeal S P hIJ : I ≤ ↑J ⊢ IsFractional S I
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R → FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I ⊆ R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (⊔)` and `⊥ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑⊥ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I ⊆ R` for some `a ≠ 0`. -/ def IsFractional (I : Submodule R P) := ∃ a ∈ S, ∀ b ∈ I, IsInteger R (a • b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I ⊆ P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I ⊆ R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `∃ a, a I ⊆ R`. This implements the coercion `FractionalIdeal S P → Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `∃ a, a I ⊆ R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R → Submodule R P` (which we use to define `coe : Ideal R → FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (∀ x, x ∈ I ↔ x ∈ J) → I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≤ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≤ J) : IsFractional S I := by
obtain ⟨a, a_mem, ha⟩ := J.isFractional
theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≤ J) : IsFractional S I := by
Mathlib.RingTheory.FractionalIdeal.214_0.90B1BH8AtSmfl9S
theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≤ J) : IsFractional S I
Mathlib_RingTheory_FractionalIdeal
case intro.intro R : Type u_1 inst✝² : CommRing R S : Submonoid R P : Type u_2 inst✝¹ : CommRing P inst✝ : Algebra R P loc : IsLocalization S P I : Submodule R P J : FractionalIdeal S P hIJ : I ≤ ↑J a : R a_mem : a ∈ S ha : ∀ b ∈ ↑J, IsInteger R (a • b) ⊢ IsFractional S I
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R → FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I ⊆ R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (⊔)` and `⊥ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑⊥ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I ⊆ R` for some `a ≠ 0`. -/ def IsFractional (I : Submodule R P) := ∃ a ∈ S, ∀ b ∈ I, IsInteger R (a • b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I ⊆ P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I ⊆ R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `∃ a, a I ⊆ R`. This implements the coercion `FractionalIdeal S P → Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `∃ a, a I ⊆ R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R → Submodule R P` (which we use to define `coe : Ideal R → FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (∀ x, x ∈ I ↔ x ∈ J) → I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≤ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≤ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional
use a, a_mem
theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≤ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional
Mathlib.RingTheory.FractionalIdeal.214_0.90B1BH8AtSmfl9S
theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≤ J) : IsFractional S I
Mathlib_RingTheory_FractionalIdeal
case right R : Type u_1 inst✝² : CommRing R S : Submonoid R P : Type u_2 inst✝¹ : CommRing P inst✝ : Algebra R P loc : IsLocalization S P I : Submodule R P J : FractionalIdeal S P hIJ : I ≤ ↑J a : R a_mem : a ∈ S ha : ∀ b ∈ ↑J, IsInteger R (a • b) ⊢ ∀ b ∈ I, IsInteger R (a • b)
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R → FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I ⊆ R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (⊔)` and `⊥ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑⊥ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I ⊆ R` for some `a ≠ 0`. -/ def IsFractional (I : Submodule R P) := ∃ a ∈ S, ∀ b ∈ I, IsInteger R (a • b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I ⊆ P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I ⊆ R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `∃ a, a I ⊆ R`. This implements the coercion `FractionalIdeal S P → Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `∃ a, a I ⊆ R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R → Submodule R P` (which we use to define `coe : Ideal R → FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (∀ x, x ∈ I ↔ x ∈ J) → I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≤ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≤ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem
intro b b_mem
theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≤ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem
Mathlib.RingTheory.FractionalIdeal.214_0.90B1BH8AtSmfl9S
theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≤ J) : IsFractional S I
Mathlib_RingTheory_FractionalIdeal
case right R : Type u_1 inst✝² : CommRing R S : Submonoid R P : Type u_2 inst✝¹ : CommRing P inst✝ : Algebra R P loc : IsLocalization S P I : Submodule R P J : FractionalIdeal S P hIJ : I ≤ ↑J a : R a_mem : a ∈ S ha : ∀ b ∈ ↑J, IsInteger R (a • b) b : P b_mem : b ∈ I ⊢ IsInteger R (a • b)
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R → FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I ⊆ R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (⊔)` and `⊥ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑⊥ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I ⊆ R` for some `a ≠ 0`. -/ def IsFractional (I : Submodule R P) := ∃ a ∈ S, ∀ b ∈ I, IsInteger R (a • b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I ⊆ P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I ⊆ R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `∃ a, a I ⊆ R`. This implements the coercion `FractionalIdeal S P → Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `∃ a, a I ⊆ R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R → Submodule R P` (which we use to define `coe : Ideal R → FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (∀ x, x ∈ I ↔ x ∈ J) → I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≤ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≤ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem
exact ha b (hIJ b_mem)
theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≤ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem
Mathlib.RingTheory.FractionalIdeal.214_0.90B1BH8AtSmfl9S
theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≤ J) : IsFractional S I
Mathlib_RingTheory_FractionalIdeal
R : Type u_1 inst✝² : CommRing R S : Submonoid R P : Type u_2 inst✝¹ : CommRing P inst✝ : Algebra R P loc : IsLocalization S P I : Ideal R ⊢ coeSubmodule P I ≤ 1
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R → FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I ⊆ R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (⊔)` and `⊥ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑⊥ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I ⊆ R` for some `a ≠ 0`. -/ def IsFractional (I : Submodule R P) := ∃ a ∈ S, ∀ b ∈ I, IsInteger R (a • b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I ⊆ P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I ⊆ R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `∃ a, a I ⊆ R`. This implements the coercion `FractionalIdeal S P → Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `∃ a, a I ⊆ R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R → Submodule R P` (which we use to define `coe : Ideal R → FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (∀ x, x ∈ I ↔ x ∈ J) → I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≤ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≤ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R → FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by
simpa using coeSubmodule_mono P (le_top : I ≤ ⊤)
/-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R → FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by
Mathlib.RingTheory.FractionalIdeal.222_0.90B1BH8AtSmfl9S
/-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R → FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P
Mathlib_RingTheory_FractionalIdeal
R : Type u_1 inst✝² : CommRing R S : Submonoid R P : Type u_2 inst✝¹ : CommRing P inst✝ : Algebra R P loc : IsLocalization S P x : P x✝ : x ∈ 0 x' : R x'_mem_zero : x' ∈ ↑0 x'_eq_x : (Algebra.linearMap R P) x' = x ⊢ x = 0
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R → FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I ⊆ R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (⊔)` and `⊥ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑⊥ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I ⊆ R` for some `a ≠ 0`. -/ def IsFractional (I : Submodule R P) := ∃ a ∈ S, ∀ b ∈ I, IsInteger R (a • b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I ⊆ P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I ⊆ R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `∃ a, a I ⊆ R`. This implements the coercion `FractionalIdeal S P → Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `∃ a, a I ⊆ R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R → Submodule R P` (which we use to define `coe : Ideal R → FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (∀ x, x ∈ I ↔ x ∈ J) → I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≤ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≤ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R → FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≤ ⊤)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R → Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P → Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ ∃ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≤ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≤ J ↔ I ≤ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≤ J ↔ I ≤ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by
have x'_eq_zero : x' = 0 := x'_mem_zero
@[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by
Mathlib.RingTheory.FractionalIdeal.275_0.90B1BH8AtSmfl9S
@[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0
Mathlib_RingTheory_FractionalIdeal
R : Type u_1 inst✝² : CommRing R S : Submonoid R P : Type u_2 inst✝¹ : CommRing P inst✝ : Algebra R P loc : IsLocalization S P x : P x✝ : x ∈ 0 x' : R x'_mem_zero : x' ∈ ↑0 x'_eq_x : (Algebra.linearMap R P) x' = x x'_eq_zero : x' = 0 ⊢ x = 0
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R → FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I ⊆ R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (⊔)` and `⊥ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑⊥ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I ⊆ R` for some `a ≠ 0`. -/ def IsFractional (I : Submodule R P) := ∃ a ∈ S, ∀ b ∈ I, IsInteger R (a • b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I ⊆ P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I ⊆ R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `∃ a, a I ⊆ R`. This implements the coercion `FractionalIdeal S P → Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `∃ a, a I ⊆ R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R → Submodule R P` (which we use to define `coe : Ideal R → FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (∀ x, x ∈ I ↔ x ∈ J) → I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≤ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≤ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R → FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≤ ⊤)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R → Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P → Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ ∃ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≤ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≤ J ↔ I ≤ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≤ J ↔ I ≤ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero
simp [x'_eq_x.symm, x'_eq_zero]
@[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero
Mathlib.RingTheory.FractionalIdeal.275_0.90B1BH8AtSmfl9S
@[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0
Mathlib_RingTheory_FractionalIdeal