state
stringlengths
0
159k
srcUpToTactic
stringlengths
387
167k
nextTactic
stringlengths
3
9k
declUpToTactic
stringlengths
22
11.5k
declId
stringlengths
38
95
decl
stringlengths
16
1.89k
file_tag
stringlengths
17
73
C : Type u inst✝¹ : Category.{v, u} C inst✝ : FinitaryPreExtensive C X Y : C f : Y ⟶ X S : Presieve X α : Type hα : Fintype α Z : α → C π : (a : α) → Z a ⟶ X hS : S = Presieve.ofArrows Z π h_iso : IsIso (Sigma.desc π) Z' : α → C := fun a => pullback f (π a) ⊢ ∃ T ∈ (fun B => {S | ∃ α x X π, S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π)}) Y, Presieve.FactorsThruAlong T S f
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a)
let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst
/-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a)
Mathlib.CategoryTheory.Sites.RegularExtensive.106_0.rkSRr0zuqme90Yu
/-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B
Mathlib_CategoryTheory_Sites_RegularExtensive
C : Type u inst✝¹ : Category.{v, u} C inst✝ : FinitaryPreExtensive C X Y : C f : Y ⟶ X S : Presieve X α : Type hα : Fintype α Z : α → C π : (a : α) → Z a ⟶ X hS : S = Presieve.ofArrows Z π h_iso : IsIso (Sigma.desc π) Z' : α → C := fun a => pullback f (π a) π' : (a : α) → Z' a ⟶ Y := fun a => pullback.fst ⊢ ∃ T ∈ (fun B => {S | ∃ α x X π, S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π)}) Y, Presieve.FactorsThruAlong T S f
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst
refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩
/-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst
Mathlib.CategoryTheory.Sites.RegularExtensive.106_0.rkSRr0zuqme90Yu
/-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B
Mathlib_CategoryTheory_Sites_RegularExtensive
case refine_1 C : Type u inst✝¹ : Category.{v, u} C inst✝ : FinitaryPreExtensive C X Y : C f : Y ⟶ X S : Presieve X α : Type hα : Fintype α Z : α → C π : (a : α) → Z a ⟶ X hS : S = Presieve.ofArrows Z π h_iso : IsIso (Sigma.desc π) Z' : α → C := fun a => pullback f (π a) π' : (a : α) → Z' a ⟶ Y := fun a => pullback.fst ⊢ Presieve.ofArrows Z' π' ∈ (fun B => {S | ∃ α x X π, S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π)}) Y
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ ·
constructor
/-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ ·
Mathlib.CategoryTheory.Sites.RegularExtensive.106_0.rkSRr0zuqme90Yu
/-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B
Mathlib_CategoryTheory_Sites_RegularExtensive
case refine_1.h C : Type u inst✝¹ : Category.{v, u} C inst✝ : FinitaryPreExtensive C X Y : C f : Y ⟶ X S : Presieve X α : Type hα : Fintype α Z : α → C π : (a : α) → Z a ⟶ X hS : S = Presieve.ofArrows Z π h_iso : IsIso (Sigma.desc π) Z' : α → C := fun a => pullback f (π a) π' : (a : α) → Z' a ⟶ Y := fun a => pullback.fst ⊢ ∃ x X π, Presieve.ofArrows Z' π' = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) case refine_1.w C : Type u inst✝¹ : Category.{v, u} C inst✝ : FinitaryPreExtensive C X Y : C f : Y ⟶ X S : Presieve X α : Type hα : Fintype α Z : α → C π : (a : α) → Z a ⟶ X hS : S = Presieve.ofArrows Z π h_iso : IsIso (Sigma.desc π) Z' : α → C := fun a => pullback f (π a) π' : (a : α) → Z' a ⟶ Y := fun a => pullback.fst ⊢ Type
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor
exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩
/-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor
Mathlib.CategoryTheory.Sites.RegularExtensive.106_0.rkSRr0zuqme90Yu
/-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B
Mathlib_CategoryTheory_Sites_RegularExtensive
C : Type u inst✝¹ : Category.{v, u} C inst✝ : FinitaryPreExtensive C X Y : C f : Y ⟶ X S : Presieve X α : Type hα : Fintype α Z : α → C π : (a : α) → Z a ⟶ X hS : S = Presieve.ofArrows Z π h_iso : IsIso (Sigma.desc π) Z' : α → C := fun a => pullback f (π a) π' : (a : α) → Z' a ⟶ Y := fun a => pullback.fst ⊢ Presieve.ofArrows Z' π' = Presieve.ofArrows Z' π'
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by
simp only
/-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by
Mathlib.CategoryTheory.Sites.RegularExtensive.106_0.rkSRr0zuqme90Yu
/-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B
Mathlib_CategoryTheory_Sites_RegularExtensive
case refine_2 C : Type u inst✝¹ : Category.{v, u} C inst✝ : FinitaryPreExtensive C X Y : C f : Y ⟶ X S : Presieve X α : Type hα : Fintype α Z : α → C π : (a : α) → Z a ⟶ X hS : S = Presieve.ofArrows Z π h_iso : IsIso (Sigma.desc π) Z' : α → C := fun a => pullback f (π a) π' : (a : α) → Z' a ⟶ Y := fun a => pullback.fst ⊢ Presieve.FactorsThruAlong (Presieve.ofArrows Z' π') S f
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ ·
intro W g hg
/-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ ·
Mathlib.CategoryTheory.Sites.RegularExtensive.106_0.rkSRr0zuqme90Yu
/-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B
Mathlib_CategoryTheory_Sites_RegularExtensive
case refine_2 C : Type u inst✝¹ : Category.{v, u} C inst✝ : FinitaryPreExtensive C X Y : C f : Y ⟶ X S : Presieve X α : Type hα : Fintype α Z : α → C π : (a : α) → Z a ⟶ X hS : S = Presieve.ofArrows Z π h_iso : IsIso (Sigma.desc π) Z' : α → C := fun a => pullback f (π a) π' : (a : α) → Z' a ⟶ Y := fun a => pullback.fst W : C g : W ⟶ Y hg : Presieve.ofArrows Z' π' g ⊢ ∃ W_1 i e, S e ∧ i ≫ e = g ≫ f
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg
rcases hg with ⟨a⟩
/-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg
Mathlib.CategoryTheory.Sites.RegularExtensive.106_0.rkSRr0zuqme90Yu
/-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B
Mathlib_CategoryTheory_Sites_RegularExtensive
case refine_2.mk C : Type u inst✝¹ : Category.{v, u} C inst✝ : FinitaryPreExtensive C X Y✝ : C f : Y✝ ⟶ X S : Presieve X α : Type hα : Fintype α Z : α → C π : (a : α) → Z a ⟶ X hS : S = Presieve.ofArrows Z π h_iso : IsIso (Sigma.desc π) Z' : α → C := fun a => pullback f (π a) π' : (a : α) → Z' a ⟶ Y✝ := fun a => pullback.fst Y : C a : α ⊢ ∃ W i e, S e ∧ i ≫ e = π' a ≫ f
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩
refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩
/-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩
Mathlib.CategoryTheory.Sites.RegularExtensive.106_0.rkSRr0zuqme90Yu
/-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B
Mathlib_CategoryTheory_Sites_RegularExtensive
C : Type u inst✝¹ : Category.{v, u} C inst✝ : FinitaryPreExtensive C X Y✝ : C f : Y✝ ⟶ X S : Presieve X α : Type hα : Fintype α Z : α → C π : (a : α) → Z a ⟶ X hS : S = Presieve.ofArrows Z π h_iso : IsIso (Sigma.desc π) Z' : α → C := fun a => pullback f (π a) π' : (a : α) → Z' a ⟶ Y✝ := fun a => pullback.fst Y : C a : α ⊢ pullback.snd ≫ π a = π' a ≫ f
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by
rw [CategoryTheory.Limits.pullback.condition]
/-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by
Mathlib.CategoryTheory.Sites.RegularExtensive.106_0.rkSRr0zuqme90Yu
/-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B
Mathlib_CategoryTheory_Sites_RegularExtensive
case refine_2.mk C : Type u inst✝¹ : Category.{v, u} C inst✝ : FinitaryPreExtensive C X Y✝ : C f : Y✝ ⟶ X S : Presieve X α : Type hα : Fintype α Z : α → C π : (a : α) → Z a ⟶ X hS : S = Presieve.ofArrows Z π h_iso : IsIso (Sigma.desc π) Z' : α → C := fun a => pullback f (π a) π' : (a : α) → Z' a ⟶ Y✝ := fun a => pullback.fst Y : C a : α ⊢ S (π a)
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩
rw [hS]
/-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩
Mathlib.CategoryTheory.Sites.RegularExtensive.106_0.rkSRr0zuqme90Yu
/-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B
Mathlib_CategoryTheory_Sites_RegularExtensive
case refine_2.mk C : Type u inst✝¹ : Category.{v, u} C inst✝ : FinitaryPreExtensive C X Y✝ : C f : Y✝ ⟶ X S : Presieve X α : Type hα : Fintype α Z : α → C π : (a : α) → Z a ⟶ X hS : S = Presieve.ofArrows Z π h_iso : IsIso (Sigma.desc π) Z' : α → C := fun a => pullback f (π a) π' : (a : α) → Z' a ⟶ Y✝ := fun a => pullback.fst Y : C a : α ⊢ Presieve.ofArrows Z π (π a)
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS]
exact Presieve.ofArrows.mk a
/-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS]
Mathlib.CategoryTheory.Sites.RegularExtensive.106_0.rkSRr0zuqme90Yu
/-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B
Mathlib_CategoryTheory_Sites_RegularExtensive
C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C α : Type inst✝ : Fintype α B : C X : α → C π : (a : α) → X a ⟶ B ⊢ EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by
exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩
theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by
Mathlib.CategoryTheory.Sites.RegularExtensive.127_0.rkSRr0zuqme90Yu
theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π
Mathlib_CategoryTheory_Sites_RegularExtensive
C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C inst✝ : Preregular C B₁ B₂ : C f : B₂ ⟶ B₁ α : Type x✝ : Fintype α X₁ : α → C π₁ : (a : α) → X₁ a ⟶ B₁ h : EffectiveEpiFamily X₁ π₁ ⊢ ∃ β x X₂ π₂, EffectiveEpiFamily X₂ π₂ ∧ ∃ i ι, ∀ (b : β), ι b ≫ π₁ (i b) = π₂ b ≫ f
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by
refine ⟨α, inferInstance, ?_⟩
instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by
Mathlib.CategoryTheory.Sites.RegularExtensive.134_0.rkSRr0zuqme90Yu
instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h
Mathlib_CategoryTheory_Sites_RegularExtensive
C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C inst✝ : Preregular C B₁ B₂ : C f : B₂ ⟶ B₁ α : Type x✝ : Fintype α X₁ : α → C π₁ : (a : α) → X₁ a ⟶ B₁ h : EffectiveEpiFamily X₁ π₁ ⊢ ∃ X₂ π₂, EffectiveEpiFamily X₂ π₂ ∧ ∃ i ι, ∀ (b : α), ι b ≫ π₁ (i b) = π₂ b ≫ f
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩
obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁)
instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩
Mathlib.CategoryTheory.Sites.RegularExtensive.134_0.rkSRr0zuqme90Yu
instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h
Mathlib_CategoryTheory_Sites_RegularExtensive
case intro.intro.intro.intro C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C inst✝ : Preregular C B₁ B₂ : C f : B₂ ⟶ B₁ α : Type x✝ : Fintype α X₁ : α → C π₁ : (a : α) → X₁ a ⟶ B₁ h : EffectiveEpiFamily X₁ π₁ Y : C g : Y ⟶ B₂ w✝ : EffectiveEpi g g' : Y ⟶ ∐ fun b => X₁ b hg : g' ≫ Sigma.desc π₁ = g ≫ f ⊢ ∃ X₂ π₂, EffectiveEpiFamily X₂ π₂ ∧ ∃ i ι, ∀ (b : α), ι b ≫ π₁ (i b) = π₂ b ≫ f
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁)
let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a)
instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁)
Mathlib.CategoryTheory.Sites.RegularExtensive.134_0.rkSRr0zuqme90Yu
instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h
Mathlib_CategoryTheory_Sites_RegularExtensive
case intro.intro.intro.intro C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C inst✝ : Preregular C B₁ B₂ : C f : B₂ ⟶ B₁ α : Type x✝ : Fintype α X₁ : α → C π₁ : (a : α) → X₁ a ⟶ B₁ h : EffectiveEpiFamily X₁ π₁ Y : C g : Y ⟶ B₂ w✝ : EffectiveEpi g g' : Y ⟶ ∐ fun b => X₁ b hg : g' ≫ Sigma.desc π₁ = g ≫ f X₂ : α → C := fun a => pullback g' (Sigma.ι X₁ a) ⊢ ∃ X₂ π₂, EffectiveEpiFamily X₂ π₂ ∧ ∃ i ι, ∀ (b : α), ι b ≫ π₁ (i b) = π₂ b ≫ f
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a)
let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g
instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a)
Mathlib.CategoryTheory.Sites.RegularExtensive.134_0.rkSRr0zuqme90Yu
instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h
Mathlib_CategoryTheory_Sites_RegularExtensive
case intro.intro.intro.intro C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C inst✝ : Preregular C B₁ B₂ : C f : B₂ ⟶ B₁ α : Type x✝ : Fintype α X₁ : α → C π₁ : (a : α) → X₁ a ⟶ B₁ h : EffectiveEpiFamily X₁ π₁ Y : C g : Y ⟶ B₂ w✝ : EffectiveEpi g g' : Y ⟶ ∐ fun b => X₁ b hg : g' ≫ Sigma.desc π₁ = g ≫ f X₂ : α → C := fun a => pullback g' (Sigma.ι X₁ a) π₂ : (a : α) → pullback g' (Sigma.ι X₁ a) ⟶ B₂ := fun a => pullback.fst ≫ g ⊢ ∃ X₂ π₂, EffectiveEpiFamily X₂ π₂ ∧ ∃ i ι, ∀ (b : α), ι b ≫ π₁ (i b) = π₂ b ≫ f
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g
let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a)
instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g
Mathlib.CategoryTheory.Sites.RegularExtensive.134_0.rkSRr0zuqme90Yu
instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h
Mathlib_CategoryTheory_Sites_RegularExtensive
case intro.intro.intro.intro C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C inst✝ : Preregular C B₁ B₂ : C f : B₂ ⟶ B₁ α : Type x✝ : Fintype α X₁ : α → C π₁ : (a : α) → X₁ a ⟶ B₁ h : EffectiveEpiFamily X₁ π₁ Y : C g : Y ⟶ B₂ w✝ : EffectiveEpi g g' : Y ⟶ ∐ fun b => X₁ b hg : g' ≫ Sigma.desc π₁ = g ≫ f X₂ : α → C := fun a => pullback g' (Sigma.ι X₁ a) π₂ : (a : α) → pullback g' (Sigma.ι X₁ a) ⟶ B₂ := fun a => pullback.fst ≫ g π' : (a : α) → pullback g' (Sigma.ι X₁ a) ⟶ Y := fun a => pullback.fst ⊢ ∃ X₂ π₂, EffectiveEpiFamily X₂ π₂ ∧ ∃ i ι, ∀ (b : α), ι b ≫ π₁ (i b) = π₂ b ≫ f
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a)
have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance
instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a)
Mathlib.CategoryTheory.Sites.RegularExtensive.134_0.rkSRr0zuqme90Yu
instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h
Mathlib_CategoryTheory_Sites_RegularExtensive
case intro.intro.intro.intro C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C inst✝ : Preregular C B₁ B₂ : C f : B₂ ⟶ B₁ α : Type x✝¹ : Fintype α X₁ : α → C π₁ : (a : α) → X₁ a ⟶ B₁ h : EffectiveEpiFamily X₁ π₁ Y : C g : Y ⟶ B₂ w✝ : EffectiveEpi g g' : Y ⟶ ∐ fun b => X₁ b hg : g' ≫ Sigma.desc π₁ = g ≫ f X₂ : α → C := fun a => pullback g' (Sigma.ι X₁ a) π₂ : (a : α) → pullback g' (Sigma.ι X₁ a) ⟶ B₂ := fun a => pullback.fst ≫ g π' : (a : α) → pullback g' (Sigma.ι X₁ a) ⟶ Y := fun a => pullback.fst x✝ : IsIso (Sigma.desc fun x => pullback.fst) ⊢ ∃ X₂ π₂, EffectiveEpiFamily X₂ π₂ ∧ ∃ i ι, ∀ (b : α), ι b ≫ π₁ (i b) = π₂ b ≫ f
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance
refine ⟨X₂, π₂, ?_, ?_⟩
instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance
Mathlib.CategoryTheory.Sites.RegularExtensive.134_0.rkSRr0zuqme90Yu
instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h
Mathlib_CategoryTheory_Sites_RegularExtensive
case intro.intro.intro.intro.refine_1 C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C inst✝ : Preregular C B₁ B₂ : C f : B₂ ⟶ B₁ α : Type x✝¹ : Fintype α X₁ : α → C π₁ : (a : α) → X₁ a ⟶ B₁ h : EffectiveEpiFamily X₁ π₁ Y : C g : Y ⟶ B₂ w✝ : EffectiveEpi g g' : Y ⟶ ∐ fun b => X₁ b hg : g' ≫ Sigma.desc π₁ = g ≫ f X₂ : α → C := fun a => pullback g' (Sigma.ι X₁ a) π₂ : (a : α) → pullback g' (Sigma.ι X₁ a) ⟶ B₂ := fun a => pullback.fst ≫ g π' : (a : α) → pullback g' (Sigma.ι X₁ a) ⟶ Y := fun a => pullback.fst x✝ : IsIso (Sigma.desc fun x => pullback.fst) ⊢ EffectiveEpiFamily X₂ π₂
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ ·
have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp
instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ ·
Mathlib.CategoryTheory.Sites.RegularExtensive.134_0.rkSRr0zuqme90Yu
instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h
Mathlib_CategoryTheory_Sites_RegularExtensive
C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C inst✝ : Preregular C B₁ B₂ : C f : B₂ ⟶ B₁ α : Type x✝¹ : Fintype α X₁ : α → C π₁ : (a : α) → X₁ a ⟶ B₁ h : EffectiveEpiFamily X₁ π₁ Y : C g : Y ⟶ B₂ w✝ : EffectiveEpi g g' : Y ⟶ ∐ fun b => X₁ b hg : g' ≫ Sigma.desc π₁ = g ≫ f X₂ : α → C := fun a => pullback g' (Sigma.ι X₁ a) π₂ : (a : α) → pullback g' (Sigma.ι X₁ a) ⟶ B₂ := fun a => pullback.fst ≫ g π' : (a : α) → pullback g' (Sigma.ι X₁ a) ⟶ Y := fun a => pullback.fst x✝ : IsIso (Sigma.desc fun x => pullback.fst) ⊢ Sigma.desc π' ≫ g = Sigma.desc π₂
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by
ext
instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by
Mathlib.CategoryTheory.Sites.RegularExtensive.134_0.rkSRr0zuqme90Yu
instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h
Mathlib_CategoryTheory_Sites_RegularExtensive
case h C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C inst✝ : Preregular C B₁ B₂ : C f : B₂ ⟶ B₁ α : Type x✝¹ : Fintype α X₁ : α → C π₁ : (a : α) → X₁ a ⟶ B₁ h : EffectiveEpiFamily X₁ π₁ Y : C g : Y ⟶ B₂ w✝ : EffectiveEpi g g' : Y ⟶ ∐ fun b => X₁ b hg : g' ≫ Sigma.desc π₁ = g ≫ f X₂ : α → C := fun a => pullback g' (Sigma.ι X₁ a) π₂ : (a : α) → pullback g' (Sigma.ι X₁ a) ⟶ B₂ := fun a => pullback.fst ≫ g π' : (a : α) → pullback g' (Sigma.ι X₁ a) ⟶ Y := fun a => pullback.fst x✝ : IsIso (Sigma.desc fun x => pullback.fst) b✝ : α ⊢ Sigma.ι (fun b => pullback g' (Sigma.ι X₁ b)) b✝ ≫ Sigma.desc π' ≫ g = Sigma.ι (fun b => pullback g' (Sigma.ι X₁ b)) b✝ ≫ Sigma.desc π₂
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext;
simp
instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext;
Mathlib.CategoryTheory.Sites.RegularExtensive.134_0.rkSRr0zuqme90Yu
instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h
Mathlib_CategoryTheory_Sites_RegularExtensive
case intro.intro.intro.intro.refine_1 C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C inst✝ : Preregular C B₁ B₂ : C f : B₂ ⟶ B₁ α : Type x✝¹ : Fintype α X₁ : α → C π₁ : (a : α) → X₁ a ⟶ B₁ h : EffectiveEpiFamily X₁ π₁ Y : C g : Y ⟶ B₂ w✝ : EffectiveEpi g g' : Y ⟶ ∐ fun b => X₁ b hg : g' ≫ Sigma.desc π₁ = g ≫ f X₂ : α → C := fun a => pullback g' (Sigma.ι X₁ a) π₂ : (a : α) → pullback g' (Sigma.ι X₁ a) ⟶ B₂ := fun a => pullback.fst ≫ g π' : (a : α) → pullback g' (Sigma.ι X₁ a) ⟶ Y := fun a => pullback.fst x✝ : IsIso (Sigma.desc fun x => pullback.fst) this : Sigma.desc π' ≫ g = Sigma.desc π₂ ⊢ EffectiveEpiFamily X₂ π₂
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp
rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this]
instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp
Mathlib.CategoryTheory.Sites.RegularExtensive.134_0.rkSRr0zuqme90Yu
instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h
Mathlib_CategoryTheory_Sites_RegularExtensive
case intro.intro.intro.intro.refine_1 C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C inst✝ : Preregular C B₁ B₂ : C f : B₂ ⟶ B₁ α : Type x✝¹ : Fintype α X₁ : α → C π₁ : (a : α) → X₁ a ⟶ B₁ h : EffectiveEpiFamily X₁ π₁ Y : C g : Y ⟶ B₂ w✝ : EffectiveEpi g g' : Y ⟶ ∐ fun b => X₁ b hg : g' ≫ Sigma.desc π₁ = g ≫ f X₂ : α → C := fun a => pullback g' (Sigma.ι X₁ a) π₂ : (a : α) → pullback g' (Sigma.ι X₁ a) ⟶ B₂ := fun a => pullback.fst ≫ g π' : (a : α) → pullback g' (Sigma.ι X₁ a) ⟶ Y := fun a => pullback.fst x✝ : IsIso (Sigma.desc fun x => pullback.fst) this : Sigma.desc π' ≫ g = Sigma.desc π₂ ⊢ EffectiveEpi (Sigma.desc π' ≫ g)
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this]
infer_instance
instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this]
Mathlib.CategoryTheory.Sites.RegularExtensive.134_0.rkSRr0zuqme90Yu
instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h
Mathlib_CategoryTheory_Sites_RegularExtensive
case intro.intro.intro.intro.refine_2 C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C inst✝ : Preregular C B₁ B₂ : C f : B₂ ⟶ B₁ α : Type x✝¹ : Fintype α X₁ : α → C π₁ : (a : α) → X₁ a ⟶ B₁ h : EffectiveEpiFamily X₁ π₁ Y : C g : Y ⟶ B₂ w✝ : EffectiveEpi g g' : Y ⟶ ∐ fun b => X₁ b hg : g' ≫ Sigma.desc π₁ = g ≫ f X₂ : α → C := fun a => pullback g' (Sigma.ι X₁ a) π₂ : (a : α) → pullback g' (Sigma.ι X₁ a) ⟶ B₂ := fun a => pullback.fst ≫ g π' : (a : α) → pullback g' (Sigma.ι X₁ a) ⟶ Y := fun a => pullback.fst x✝ : IsIso (Sigma.desc fun x => pullback.fst) ⊢ ∃ i ι, ∀ (b : α), ι b ≫ π₁ (i b) = π₂ b ≫ f
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance ·
refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩
instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance ·
Mathlib.CategoryTheory.Sites.RegularExtensive.134_0.rkSRr0zuqme90Yu
instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h
Mathlib_CategoryTheory_Sites_RegularExtensive
case intro.intro.intro.intro.refine_2 C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C inst✝ : Preregular C B₁ B₂ : C f : B₂ ⟶ B₁ α : Type x✝¹ : Fintype α X₁ : α → C π₁ : (a : α) → X₁ a ⟶ B₁ h : EffectiveEpiFamily X₁ π₁ Y : C g : Y ⟶ B₂ w✝ : EffectiveEpi g g' : Y ⟶ ∐ fun b => X₁ b hg : g' ≫ Sigma.desc π₁ = g ≫ f X₂ : α → C := fun a => pullback g' (Sigma.ι X₁ a) π₂ : (a : α) → pullback g' (Sigma.ι X₁ a) ⟶ B₂ := fun a => pullback.fst ≫ g π' : (a : α) → pullback g' (Sigma.ι X₁ a) ⟶ Y := fun a => pullback.fst x✝ : IsIso (Sigma.desc fun x => pullback.fst) b : α ⊢ (fun b => pullback.snd) b ≫ π₁ (id b) = π₂ b ≫ f
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩
simp only [id_eq, Category.assoc, ← hg]
instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩
Mathlib.CategoryTheory.Sites.RegularExtensive.134_0.rkSRr0zuqme90Yu
instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h
Mathlib_CategoryTheory_Sites_RegularExtensive
case intro.intro.intro.intro.refine_2 C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C inst✝ : Preregular C B₁ B₂ : C f : B₂ ⟶ B₁ α : Type x✝¹ : Fintype α X₁ : α → C π₁ : (a : α) → X₁ a ⟶ B₁ h : EffectiveEpiFamily X₁ π₁ Y : C g : Y ⟶ B₂ w✝ : EffectiveEpi g g' : Y ⟶ ∐ fun b => X₁ b hg : g' ≫ Sigma.desc π₁ = g ≫ f X₂ : α → C := fun a => pullback g' (Sigma.ι X₁ a) π₂ : (a : α) → pullback g' (Sigma.ι X₁ a) ⟶ B₂ := fun a => pullback.fst ≫ g π' : (a : α) → pullback g' (Sigma.ι X₁ a) ⟶ Y := fun a => pullback.fst x✝ : IsIso (Sigma.desc fun x => pullback.fst) b : α ⊢ pullback.snd ≫ π₁ b = pullback.fst ≫ g' ≫ Sigma.desc π₁
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg]
rw [← Category.assoc, pullback.condition]
instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg]
Mathlib.CategoryTheory.Sites.RegularExtensive.134_0.rkSRr0zuqme90Yu
instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h
Mathlib_CategoryTheory_Sites_RegularExtensive
case intro.intro.intro.intro.refine_2 C : Type u inst✝² : Category.{v, u} C inst✝¹ : FinitaryPreExtensive C inst✝ : Preregular C B₁ B₂ : C f : B₂ ⟶ B₁ α : Type x✝¹ : Fintype α X₁ : α → C π₁ : (a : α) → X₁ a ⟶ B₁ h : EffectiveEpiFamily X₁ π₁ Y : C g : Y ⟶ B₂ w✝ : EffectiveEpi g g' : Y ⟶ ∐ fun b => X₁ b hg : g' ≫ Sigma.desc π₁ = g ≫ f X₂ : α → C := fun a => pullback g' (Sigma.ι X₁ a) π₂ : (a : α) → pullback g' (Sigma.ι X₁ a) ⟶ B₂ := fun a => pullback.fst ≫ g π' : (a : α) → pullback g' (Sigma.ι X₁ a) ⟶ Y := fun a => pullback.fst x✝ : IsIso (Sigma.desc fun x => pullback.fst) b : α ⊢ pullback.snd ≫ π₁ b = (pullback.snd ≫ Sigma.ι X₁ b) ≫ Sigma.desc π₁
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition]
simp
instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition]
Mathlib.CategoryTheory.Sites.RegularExtensive.134_0.rkSRr0zuqme90Yu
instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h
Mathlib_CategoryTheory_Sites_RegularExtensive
C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C ⊢ Coverage.toGrothendieck C (extensiveCoverage C ⊔ regularCoverage C) = coherentTopology C
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by
ext B S
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B ⊢ S ∈ GrothendieckTopology.sieves (Coverage.toGrothendieck C (extensiveCoverage C ⊔ regularCoverage C)) B ↔ S ∈ GrothendieckTopology.sieves (coherentTopology C) B
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S
refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_1 C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B h : S ∈ GrothendieckTopology.sieves (Coverage.toGrothendieck C (extensiveCoverage C ⊔ regularCoverage C)) B ⊢ S ∈ GrothendieckTopology.sieves (coherentTopology C) B
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ ·
induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption]
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ ·
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_1 C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B h : S ∈ GrothendieckTopology.sieves (Coverage.toGrothendieck C (extensiveCoverage C ⊔ regularCoverage C)) B ⊢ S ∈ GrothendieckTopology.sieves (coherentTopology C) B
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ ·
induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption]
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ ·
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_1.of C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y hT : T ∈ Coverage.covering (extensiveCoverage C ⊔ regularCoverage C) Y ⊢ Sieve.generate T ∈ GrothendieckTopology.sieves (coherentTopology C) Y
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with
| of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩)
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_1.of C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y hT : T ∈ Coverage.covering (extensiveCoverage C ⊔ regularCoverage C) Y ⊢ Sieve.generate T ∈ GrothendieckTopology.sieves (coherentTopology C) Y
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT =>
apply Coverage.saturate.of
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT =>
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_1.of.hS C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y hT : T ∈ Coverage.covering (extensiveCoverage C ⊔ regularCoverage C) Y ⊢ T ∈ Coverage.covering (coherentCoverage C) Y
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of
simp only [Coverage.sup_covering, Set.mem_union] at hT
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_1.of.hS C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y hT : T ∈ Coverage.covering (extensiveCoverage C) Y ∨ T ∈ Coverage.covering (regularCoverage C) Y ⊢ T ∈ Coverage.covering (coherentCoverage C) Y
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT
exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩)
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_1.top C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B X✝ : C ⊢ ⊤ ∈ GrothendieckTopology.sieves (coherentTopology C) X✝
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩)
| top => apply Coverage.saturate.top
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩)
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_1.top C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B X✝ : C ⊢ ⊤ ∈ GrothendieckTopology.sieves (coherentTopology C) X✝
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top =>
apply Coverage.saturate.top
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top =>
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_1.transitive C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T S✝ : Sieve Y a✝¹ : Coverage.saturate (extensiveCoverage C ⊔ regularCoverage C) Y T a✝ : ∀ ⦃Y_1 : C⦄ ⦃f : Y_1 ⟶ Y⦄, T.arrows f → Coverage.saturate (extensiveCoverage C ⊔ regularCoverage C) Y_1 (Sieve.pullback f S✝) a_ih✝¹ : T ∈ GrothendieckTopology.sieves (coherentTopology C) Y a_ih✝ : ∀ ⦃Y_1 : C⦄ ⦃f : Y_1 ⟶ Y⦄, T.arrows f → Sieve.pullback f S✝ ∈ GrothendieckTopology.sieves (coherentTopology C) Y_1 ⊢ S✝ ∈ GrothendieckTopology.sieves (coherentTopology C) Y
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top
| transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption]
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_1.transitive C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T S✝ : Sieve Y a✝¹ : Coverage.saturate (extensiveCoverage C ⊔ regularCoverage C) Y T a✝ : ∀ ⦃Y_1 : C⦄ ⦃f : Y_1 ⟶ Y⦄, T.arrows f → Coverage.saturate (extensiveCoverage C ⊔ regularCoverage C) Y_1 (Sieve.pullback f S✝) a_ih✝¹ : T ∈ GrothendieckTopology.sieves (coherentTopology C) Y a_ih✝ : ∀ ⦃Y_1 : C⦄ ⦃f : Y_1 ⟶ Y⦄, T.arrows f → Sieve.pullback f S✝ ∈ GrothendieckTopology.sieves (coherentTopology C) Y_1 ⊢ S✝ ∈ GrothendieckTopology.sieves (coherentTopology C) Y
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T =>
apply Coverage.saturate.transitive Y T<;> [assumption; assumption]
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T =>
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_1.transitive C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T S✝ : Sieve Y a✝¹ : Coverage.saturate (extensiveCoverage C ⊔ regularCoverage C) Y T a✝ : ∀ ⦃Y_1 : C⦄ ⦃f : Y_1 ⟶ Y⦄, T.arrows f → Coverage.saturate (extensiveCoverage C ⊔ regularCoverage C) Y_1 (Sieve.pullback f S✝) a_ih✝¹ : T ∈ GrothendieckTopology.sieves (coherentTopology C) Y a_ih✝ : ∀ ⦃Y_1 : C⦄ ⦃f : Y_1 ⟶ Y⦄, T.arrows f → Sieve.pullback f S✝ ∈ GrothendieckTopology.sieves (coherentTopology C) Y_1 ⊢ S✝ ∈ GrothendieckTopology.sieves (coherentTopology C) Y
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T =>
apply Coverage.saturate.transitive Y T
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T =>
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_1.transitive.a C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T S✝ : Sieve Y a✝¹ : Coverage.saturate (extensiveCoverage C ⊔ regularCoverage C) Y T a✝ : ∀ ⦃Y_1 : C⦄ ⦃f : Y_1 ⟶ Y⦄, T.arrows f → Coverage.saturate (extensiveCoverage C ⊔ regularCoverage C) Y_1 (Sieve.pullback f S✝) a_ih✝¹ : T ∈ GrothendieckTopology.sieves (coherentTopology C) Y a_ih✝ : ∀ ⦃Y_1 : C⦄ ⦃f : Y_1 ⟶ Y⦄, T.arrows f → Sieve.pullback f S✝ ∈ GrothendieckTopology.sieves (coherentTopology C) Y_1 ⊢ Coverage.saturate (coherentCoverage C) Y T
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [
assumption
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_1.transitive.a C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T S✝ : Sieve Y a✝¹ : Coverage.saturate (extensiveCoverage C ⊔ regularCoverage C) Y T a✝ : ∀ ⦃Y_1 : C⦄ ⦃f : Y_1 ⟶ Y⦄, T.arrows f → Coverage.saturate (extensiveCoverage C ⊔ regularCoverage C) Y_1 (Sieve.pullback f S✝) a_ih✝¹ : T ∈ GrothendieckTopology.sieves (coherentTopology C) Y a_ih✝ : ∀ ⦃Y_1 : C⦄ ⦃f : Y_1 ⟶ Y⦄, T.arrows f → Sieve.pullback f S✝ ∈ GrothendieckTopology.sieves (coherentTopology C) Y_1 ⊢ ∀ ⦃Y_1 : C⦄ ⦃f : Y_1 ⟶ Y⦄, T.arrows f → Coverage.saturate (coherentCoverage C) Y_1 (Sieve.pullback f S✝)
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption;
assumption
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption;
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_2 C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B h : S ∈ GrothendieckTopology.sieves (coherentTopology C) B ⊢ S ∈ GrothendieckTopology.sieves (Coverage.toGrothendieck C (extensiveCoverage C ⊔ regularCoverage C)) B
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] ·
induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption]
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] ·
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_2 C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B h : S ∈ GrothendieckTopology.sieves (coherentTopology C) B ⊢ S ∈ GrothendieckTopology.sieves (Coverage.toGrothendieck C (extensiveCoverage C ⊔ regularCoverage C)) B
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] ·
induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption]
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] ·
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_2.of C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y hT : T ∈ Coverage.covering (coherentCoverage C) Y ⊢ Sieve.generate T ∈ GrothendieckTopology.sieves (Coverage.toGrothendieck C (extensiveCoverage C ⊔ regularCoverage C)) Y
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with
| of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc]
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_2.of C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y hT : T ∈ Coverage.covering (coherentCoverage C) Y ⊢ Sieve.generate T ∈ GrothendieckTopology.sieves (Coverage.toGrothendieck C (extensiveCoverage C ⊔ regularCoverage C)) Y
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT =>
obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT =>
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_2.of.intro.intro.intro.intro.intro C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y I : Type hI : Fintype I X : I → C f : (a : I) → X a ⟶ Y h : T = Presieve.ofArrows X f hT : EffectiveEpiFamily X f ⊢ Sieve.generate T ∈ GrothendieckTopology.sieves (Coverage.toGrothendieck C (extensiveCoverage C ⊔ regularCoverage C)) Y
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT
let φ := fun (i : I) ↦ Sigma.ι X i
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_2.of.intro.intro.intro.intro.intro C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y I : Type hI : Fintype I X : I → C f : (a : I) → X a ⟶ Y h : T = Presieve.ofArrows X f hT : EffectiveEpiFamily X f φ : (i : I) → X i ⟶ ∐ X := fun i => Sigma.ι X i ⊢ Sieve.generate T ∈ GrothendieckTopology.sieves (Coverage.toGrothendieck C (extensiveCoverage C ⊔ regularCoverage C)) Y
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i
let F := Sigma.desc f
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_2.of.intro.intro.intro.intro.intro C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y I : Type hI : Fintype I X : I → C f : (a : I) → X a ⟶ Y h : T = Presieve.ofArrows X f hT : EffectiveEpiFamily X f φ : (i : I) → X i ⟶ ∐ X := fun i => Sigma.ι X i F : (∐ fun b => X b) ⟶ Y := Sigma.desc f ⊢ Sieve.generate T ∈ GrothendieckTopology.sieves (Coverage.toGrothendieck C (extensiveCoverage C ⊔ regularCoverage C)) Y
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f
let Z := Sieve.generate T
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_2.of.intro.intro.intro.intro.intro C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y I : Type hI : Fintype I X : I → C f : (a : I) → X a ⟶ Y h : T = Presieve.ofArrows X f hT : EffectiveEpiFamily X f φ : (i : I) → X i ⟶ ∐ X := fun i => Sigma.ι X i F : (∐ fun b => X b) ⟶ Y := Sigma.desc f Z : Sieve Y := Sieve.generate T ⊢ Sieve.generate T ∈ GrothendieckTopology.sieves (Coverage.toGrothendieck C (extensiveCoverage C ⊔ regularCoverage C)) Y
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T
let Xs := (∐ fun (i : I) => X i)
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_2.of.intro.intro.intro.intro.intro C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y I : Type hI : Fintype I X : I → C f : (a : I) → X a ⟶ Y h : T = Presieve.ofArrows X f hT : EffectiveEpiFamily X f φ : (i : I) → X i ⟶ ∐ X := fun i => Sigma.ι X i F : (∐ fun b => X b) ⟶ Y := Sigma.desc f Z : Sieve Y := Sieve.generate T Xs : C := ∐ fun i => X i ⊢ Sieve.generate T ∈ GrothendieckTopology.sieves (Coverage.toGrothendieck C (extensiveCoverage C ⊔ regularCoverage C)) Y
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i)
let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F))
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i)
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_2.of.intro.intro.intro.intro.intro C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y I : Type hI : Fintype I X : I → C f : (a : I) → X a ⟶ Y h : T = Presieve.ofArrows X f hT : EffectiveEpiFamily X f φ : (i : I) → X i ⟶ ∐ X := fun i => Sigma.ι X i F : (∐ fun b => X b) ⟶ Y := Sigma.desc f Z : Sieve Y := Sieve.generate T Xs : C := ∐ fun i => X i Zf : Sieve Y := Sieve.generate (Presieve.ofArrows (fun x => Xs) fun x => F) ⊢ Sieve.generate T ∈ GrothendieckTopology.sieves (Coverage.toGrothendieck C (extensiveCoverage C ⊔ regularCoverage C)) Y
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F))
apply Coverage.saturate.transitive Y Zf
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F))
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_2.of.intro.intro.intro.intro.intro.a C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y I : Type hI : Fintype I X : I → C f : (a : I) → X a ⟶ Y h : T = Presieve.ofArrows X f hT : EffectiveEpiFamily X f φ : (i : I) → X i ⟶ ∐ X := fun i => Sigma.ι X i F : (∐ fun b => X b) ⟶ Y := Sigma.desc f Z : Sieve Y := Sieve.generate T Xs : C := ∐ fun i => X i Zf : Sieve Y := Sieve.generate (Presieve.ofArrows (fun x => Xs) fun x => F) ⊢ Coverage.saturate (extensiveCoverage C ⊔ regularCoverage C) Y Zf
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf ·
apply Coverage.saturate.of
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf ·
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_2.of.intro.intro.intro.intro.intro.a.hS C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y I : Type hI : Fintype I X : I → C f : (a : I) → X a ⟶ Y h : T = Presieve.ofArrows X f hT : EffectiveEpiFamily X f φ : (i : I) → X i ⟶ ∐ X := fun i => Sigma.ι X i F : (∐ fun b => X b) ⟶ Y := Sigma.desc f Z : Sieve Y := Sieve.generate T Xs : C := ∐ fun i => X i Zf : Sieve Y := Sieve.generate (Presieve.ofArrows (fun x => Xs) fun x => F) ⊢ (Presieve.ofArrows (fun x => Xs) fun x => F) ∈ Coverage.covering (extensiveCoverage C ⊔ regularCoverage C) Y
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of
simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq]
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_2.of.intro.intro.intro.intro.intro.a.hS C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y I : Type hI : Fintype I X : I → C f : (a : I) → X a ⟶ Y h : T = Presieve.ofArrows X f hT : EffectiveEpiFamily X f φ : (i : I) → X i ⟶ ∐ X := fun i => Sigma.ι X i F : (∐ fun b => X b) ⟶ Y := Sigma.desc f Z : Sieve Y := Sieve.generate T Xs : C := ∐ fun i => X i Zf : Sieve Y := Sieve.generate (Presieve.ofArrows (fun x => Xs) fun x => F) ⊢ (∃ α x X_1 π, (Presieve.ofArrows (fun x => ∐ fun i => X i) fun x => Sigma.desc f) = Presieve.ofArrows X_1 π ∧ IsIso (Sigma.desc π)) ∨ ∃ X_1 f_1, ((Presieve.ofArrows (fun x => ∐ fun i => X i) fun x => Sigma.desc f) = Presieve.ofArrows (fun x => X_1) fun x => f_1) ∧ EffectiveEpi f_1
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq]
exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq]
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_2.of.intro.intro.intro.intro.intro.a C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y I : Type hI : Fintype I X : I → C f : (a : I) → X a ⟶ Y h : T = Presieve.ofArrows X f hT : EffectiveEpiFamily X f φ : (i : I) → X i ⟶ ∐ X := fun i => Sigma.ι X i F : (∐ fun b => X b) ⟶ Y := Sigma.desc f Z : Sieve Y := Sieve.generate T Xs : C := ∐ fun i => X i Zf : Sieve Y := Sieve.generate (Presieve.ofArrows (fun x => Xs) fun x => F) ⊢ ∀ ⦃Y_1 : C⦄ ⦃f : Y_1 ⟶ Y⦄, Zf.arrows f → Coverage.saturate (extensiveCoverage C ⊔ regularCoverage C) Y_1 (Sieve.pullback f (Sieve.generate T))
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ ·
intro R g hZfg
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ ·
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_2.of.intro.intro.intro.intro.intro.a C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y I : Type hI : Fintype I X : I → C f : (a : I) → X a ⟶ Y h : T = Presieve.ofArrows X f hT : EffectiveEpiFamily X f φ : (i : I) → X i ⟶ ∐ X := fun i => Sigma.ι X i F : (∐ fun b => X b) ⟶ Y := Sigma.desc f Z : Sieve Y := Sieve.generate T Xs : C := ∐ fun i => X i Zf : Sieve Y := Sieve.generate (Presieve.ofArrows (fun x => Xs) fun x => F) R : C g : R ⟶ Y hZfg : Zf.arrows g ⊢ Coverage.saturate (extensiveCoverage C ⊔ regularCoverage C) R (Sieve.pullback g (Sieve.generate T))
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg
dsimp at hZfg
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_2.of.intro.intro.intro.intro.intro.a C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y I : Type hI : Fintype I X : I → C f : (a : I) → X a ⟶ Y h : T = Presieve.ofArrows X f hT : EffectiveEpiFamily X f φ : (i : I) → X i ⟶ ∐ X := fun i => Sigma.ι X i F : (∐ fun b => X b) ⟶ Y := Sigma.desc f Z : Sieve Y := Sieve.generate T Xs : C := ∐ fun i => X i Zf : Sieve Y := Sieve.generate (Presieve.ofArrows (fun x => Xs) fun x => F) R : C g : R ⟶ Y hZfg : ∃ Y_1 h g_1, Presieve.ofArrows (fun x => ∐ fun i => X i) (fun x => Sigma.desc f) g_1 ∧ h ≫ g_1 = g ⊢ Coverage.saturate (extensiveCoverage C ⊔ regularCoverage C) R (Sieve.pullback g (Sieve.generate T))
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg
rw [Presieve.ofArrows_pUnit] at hZfg
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_2.of.intro.intro.intro.intro.intro.a C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y I : Type hI : Fintype I X : I → C f : (a : I) → X a ⟶ Y h : T = Presieve.ofArrows X f hT : EffectiveEpiFamily X f φ : (i : I) → X i ⟶ ∐ X := fun i => Sigma.ι X i F : (∐ fun b => X b) ⟶ Y := Sigma.desc f Z : Sieve Y := Sieve.generate T Xs : C := ∐ fun i => X i Zf : Sieve Y := Sieve.generate (Presieve.ofArrows (fun x => Xs) fun x => F) R : C g : R ⟶ Y hZfg : ∃ Y_1 h g_1, Presieve.singleton (Sigma.desc f) g_1 ∧ h ≫ g_1 = g ⊢ Coverage.saturate (extensiveCoverage C ⊔ regularCoverage C) R (Sieve.pullback g (Sieve.generate T))
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg
obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_2.of.intro.intro.intro.intro.intro.a.intro.intro.intro.intro C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y I : Type hI : Fintype I X : I → C f : (a : I) → X a ⟶ Y h : T = Presieve.ofArrows X f hT : EffectiveEpiFamily X f φ : (i : I) → X i ⟶ ∐ X := fun i => Sigma.ι X i F : (∐ fun b => X b) ⟶ Y := Sigma.desc f Z : Sieve Y := Sieve.generate T Xs : C := ∐ fun i => X i Zf : Sieve Y := Sieve.generate (Presieve.ofArrows (fun x => Xs) fun x => F) R : C g : R ⟶ Y W : C ψ : R ⟶ W σ : W ⟶ Y hW : Presieve.singleton (Sigma.desc f) σ hW' : ψ ≫ σ = g ⊢ Coverage.saturate (extensiveCoverage C ⊔ regularCoverage C) R (Sieve.pullback g (Sieve.generate T))
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg
induction hW
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_2.of.intro.intro.intro.intro.intro.a.intro.intro.intro.intro.mk C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y I : Type hI : Fintype I X : I → C f : (a : I) → X a ⟶ Y h : T = Presieve.ofArrows X f hT : EffectiveEpiFamily X f φ : (i : I) → X i ⟶ ∐ X := fun i => Sigma.ι X i F : (∐ fun b => X b) ⟶ Y := Sigma.desc f Z : Sieve Y := Sieve.generate T Xs : C := ∐ fun i => X i Zf : Sieve Y := Sieve.generate (Presieve.ofArrows (fun x => Xs) fun x => F) R : C g : R ⟶ Y W : C σ : W ⟶ Y ψ : R ⟶ ∐ fun i => X i hW' : ψ ≫ Sigma.desc f = g ⊢ Coverage.saturate (extensiveCoverage C ⊔ regularCoverage C) R (Sieve.pullback g (Sieve.generate T))
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW
rw [← hW', Sieve.pullback_comp Z]
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_2.of.intro.intro.intro.intro.intro.a.intro.intro.intro.intro.mk C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y I : Type hI : Fintype I X : I → C f : (a : I) → X a ⟶ Y h : T = Presieve.ofArrows X f hT : EffectiveEpiFamily X f φ : (i : I) → X i ⟶ ∐ X := fun i => Sigma.ι X i F : (∐ fun b => X b) ⟶ Y := Sigma.desc f Z : Sieve Y := Sieve.generate T Xs : C := ∐ fun i => X i Zf : Sieve Y := Sieve.generate (Presieve.ofArrows (fun x => Xs) fun x => F) R : C g : R ⟶ Y W : C σ : W ⟶ Y ψ : R ⟶ ∐ fun i => X i hW' : ψ ≫ Sigma.desc f = g ⊢ Coverage.saturate (extensiveCoverage C ⊔ regularCoverage C) R (Sieve.pullback ψ (Sieve.pullback (Sigma.desc f) Z))
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z]
suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z]
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y I : Type hI : Fintype I X : I → C f : (a : I) → X a ⟶ Y h : T = Presieve.ofArrows X f hT : EffectiveEpiFamily X f φ : (i : I) → X i ⟶ ∐ X := fun i => Sigma.ι X i F : (∐ fun b => X b) ⟶ Y := Sigma.desc f Z : Sieve Y := Sieve.generate T Xs : C := ∐ fun i => X i Zf : Sieve Y := Sieve.generate (Presieve.ofArrows (fun x => Xs) fun x => F) R : C g : R ⟶ Y W : C σ : W ⟶ Y ψ : R ⟶ ∐ fun i => X i hW' : ψ ≫ Sigma.desc f = g this : Sieve.pullback ψ (Sieve.pullback F Z) ∈ GrothendieckTopology.sieves (Coverage.toGrothendieck C (extensiveCoverage C ⊔ regularCoverage C)) R ⊢ Coverage.saturate (extensiveCoverage C ⊔ regularCoverage C) R (Sieve.pullback ψ (Sieve.pullback (Sigma.desc f) Z))
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by
assumption
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_2.of.intro.intro.intro.intro.intro.a.intro.intro.intro.intro.mk C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y I : Type hI : Fintype I X : I → C f : (a : I) → X a ⟶ Y h : T = Presieve.ofArrows X f hT : EffectiveEpiFamily X f φ : (i : I) → X i ⟶ ∐ X := fun i => Sigma.ι X i F : (∐ fun b => X b) ⟶ Y := Sigma.desc f Z : Sieve Y := Sieve.generate T Xs : C := ∐ fun i => X i Zf : Sieve Y := Sieve.generate (Presieve.ofArrows (fun x => Xs) fun x => F) R : C g : R ⟶ Y W : C σ : W ⟶ Y ψ : R ⟶ ∐ fun i => X i hW' : ψ ≫ Sigma.desc f = g ⊢ Sieve.pullback ψ (Sieve.pullback F Z) ∈ GrothendieckTopology.sieves (Coverage.toGrothendieck C (extensiveCoverage C ⊔ regularCoverage C)) R
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption
apply GrothendieckTopology.pullback_stable'
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_2.of.intro.intro.intro.intro.intro.a.intro.intro.intro.intro.mk.a C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y I : Type hI : Fintype I X : I → C f : (a : I) → X a ⟶ Y h : T = Presieve.ofArrows X f hT : EffectiveEpiFamily X f φ : (i : I) → X i ⟶ ∐ X := fun i => Sigma.ι X i F : (∐ fun b => X b) ⟶ Y := Sigma.desc f Z : Sieve Y := Sieve.generate T Xs : C := ∐ fun i => X i Zf : Sieve Y := Sieve.generate (Presieve.ofArrows (fun x => Xs) fun x => F) R : C g : R ⟶ Y W : C σ : W ⟶ Y ψ : R ⟶ ∐ fun i => X i hW' : ψ ≫ Sigma.desc f = g ⊢ Sieve.pullback F Z ∈ GrothendieckTopology.sieves (Coverage.toGrothendieck C (extensiveCoverage C ⊔ regularCoverage C)) (∐ fun i => X i)
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable'
suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable'
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y I : Type hI : Fintype I X : I → C f : (a : I) → X a ⟶ Y h : T = Presieve.ofArrows X f hT : EffectiveEpiFamily X f φ : (i : I) → X i ⟶ ∐ X := fun i => Sigma.ι X i F : (∐ fun b => X b) ⟶ Y := Sigma.desc f Z : Sieve Y := Sieve.generate T Xs : C := ∐ fun i => X i Zf : Sieve Y := Sieve.generate (Presieve.ofArrows (fun x => Xs) fun x => F) R : C g : R ⟶ Y W : C σ : W ⟶ Y ψ : R ⟶ ∐ fun i => X i hW' : ψ ≫ Sigma.desc f = g this : Coverage.saturate (extensiveCoverage C ⊔ regularCoverage C) Xs (Sieve.pullback F Z) ⊢ Sieve.pullback F Z ∈ GrothendieckTopology.sieves (Coverage.toGrothendieck C (extensiveCoverage C ⊔ regularCoverage C)) (∐ fun i => X i)
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by
assumption
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_2.of.intro.intro.intro.intro.intro.a.intro.intro.intro.intro.mk.a C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y I : Type hI : Fintype I X : I → C f : (a : I) → X a ⟶ Y h : T = Presieve.ofArrows X f hT : EffectiveEpiFamily X f φ : (i : I) → X i ⟶ ∐ X := fun i => Sigma.ι X i F : (∐ fun b => X b) ⟶ Y := Sigma.desc f Z : Sieve Y := Sieve.generate T Xs : C := ∐ fun i => X i Zf : Sieve Y := Sieve.generate (Presieve.ofArrows (fun x => Xs) fun x => F) R : C g : R ⟶ Y W : C σ : W ⟶ Y ψ : R ⟶ ∐ fun i => X i hW' : ψ ≫ Sigma.desc f = g ⊢ Coverage.saturate (extensiveCoverage C ⊔ regularCoverage C) Xs (Sieve.pullback F Z)
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption
suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_2.of.intro.intro.intro.intro.intro.a.intro.intro.intro.intro.mk.a C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y I : Type hI : Fintype I X : I → C f : (a : I) → X a ⟶ Y h : T = Presieve.ofArrows X f hT : EffectiveEpiFamily X f φ : (i : I) → X i ⟶ ∐ X := fun i => Sigma.ι X i F : (∐ fun b => X b) ⟶ Y := Sigma.desc f Z : Sieve Y := Sieve.generate T Xs : C := ∐ fun i => X i Zf : Sieve Y := Sieve.generate (Presieve.ofArrows (fun x => Xs) fun x => F) R : C g : R ⟶ Y W : C σ : W ⟶ Y ψ : R ⟶ ∐ fun i => X i hW' : ψ ≫ Sigma.desc f = g this : Sieve.generate (Presieve.ofArrows X φ) ≤ Sieve.pullback F Z ⊢ Coverage.saturate (extensiveCoverage C ⊔ regularCoverage C) Xs (Sieve.pullback F Z)
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F ·
apply Coverage.saturate_of_superset _ this
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F ·
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_2.of.intro.intro.intro.intro.intro.a.intro.intro.intro.intro.mk.a C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y I : Type hI : Fintype I X : I → C f : (a : I) → X a ⟶ Y h : T = Presieve.ofArrows X f hT : EffectiveEpiFamily X f φ : (i : I) → X i ⟶ ∐ X := fun i => Sigma.ι X i F : (∐ fun b => X b) ⟶ Y := Sigma.desc f Z : Sieve Y := Sieve.generate T Xs : C := ∐ fun i => X i Zf : Sieve Y := Sieve.generate (Presieve.ofArrows (fun x => Xs) fun x => F) R : C g : R ⟶ Y W : C σ : W ⟶ Y ψ : R ⟶ ∐ fun i => X i hW' : ψ ≫ Sigma.desc f = g this : Sieve.generate (Presieve.ofArrows X φ) ≤ Sieve.pullback F Z ⊢ Coverage.saturate (extensiveCoverage C ⊔ regularCoverage C) (∐ X) (Sieve.generate (Presieve.ofArrows X φ))
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this
apply Coverage.saturate.of
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_2.of.intro.intro.intro.intro.intro.a.intro.intro.intro.intro.mk.a.hS C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y I : Type hI : Fintype I X : I → C f : (a : I) → X a ⟶ Y h : T = Presieve.ofArrows X f hT : EffectiveEpiFamily X f φ : (i : I) → X i ⟶ ∐ X := fun i => Sigma.ι X i F : (∐ fun b => X b) ⟶ Y := Sigma.desc f Z : Sieve Y := Sieve.generate T Xs : C := ∐ fun i => X i Zf : Sieve Y := Sieve.generate (Presieve.ofArrows (fun x => Xs) fun x => F) R : C g : R ⟶ Y W : C σ : W ⟶ Y ψ : R ⟶ ∐ fun i => X i hW' : ψ ≫ Sigma.desc f = g this : Sieve.generate (Presieve.ofArrows X φ) ≤ Sieve.pullback F Z ⊢ Presieve.ofArrows X φ ∈ Coverage.covering (extensiveCoverage C ⊔ regularCoverage C) (∐ X)
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of
simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq]
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_2.of.intro.intro.intro.intro.intro.a.intro.intro.intro.intro.mk.a.hS C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y I : Type hI : Fintype I X : I → C f : (a : I) → X a ⟶ Y h : T = Presieve.ofArrows X f hT : EffectiveEpiFamily X f φ : (i : I) → X i ⟶ ∐ X := fun i => Sigma.ι X i F : (∐ fun b => X b) ⟶ Y := Sigma.desc f Z : Sieve Y := Sieve.generate T Xs : C := ∐ fun i => X i Zf : Sieve Y := Sieve.generate (Presieve.ofArrows (fun x => Xs) fun x => F) R : C g : R ⟶ Y W : C σ : W ⟶ Y ψ : R ⟶ ∐ fun i => X i hW' : ψ ≫ Sigma.desc f = g this : Sieve.generate (Presieve.ofArrows X φ) ≤ Sieve.pullback F Z ⊢ (∃ α x X_1 π, (Presieve.ofArrows X fun i => Sigma.ι X i) = Presieve.ofArrows X_1 π ∧ IsIso (Sigma.desc π)) ∨ ∃ X_1 f, ((Presieve.ofArrows X fun i => Sigma.ι X i) = Presieve.ofArrows (fun x => X_1) fun x => f) ∧ EffectiveEpi f
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq]
refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq]
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_2.of.intro.intro.intro.intro.intro.a.intro.intro.intro.intro.mk.a.hS C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y I : Type hI : Fintype I X : I → C f : (a : I) → X a ⟶ Y h : T = Presieve.ofArrows X f hT : EffectiveEpiFamily X f φ : (i : I) → X i ⟶ ∐ X := fun i => Sigma.ι X i F : (∐ fun b => X b) ⟶ Y := Sigma.desc f Z : Sieve Y := Sieve.generate T Xs : C := ∐ fun i => X i Zf : Sieve Y := Sieve.generate (Presieve.ofArrows (fun x => Xs) fun x => F) R : C g : R ⟶ Y W : C σ : W ⟶ Y ψ : R ⟶ ∐ fun i => X i hW' : ψ ≫ Sigma.desc f = g this : Sieve.generate (Presieve.ofArrows X φ) ≤ Sieve.pullback F Z ⊢ IsIso (Sigma.desc φ)
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩
suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y I : Type hI : Fintype I X : I → C f : (a : I) → X a ⟶ Y h : T = Presieve.ofArrows X f hT : EffectiveEpiFamily X f φ : (i : I) → X i ⟶ ∐ X := fun i => Sigma.ι X i F : (∐ fun b => X b) ⟶ Y := Sigma.desc f Z : Sieve Y := Sieve.generate T Xs : C := ∐ fun i => X i Zf : Sieve Y := Sieve.generate (Presieve.ofArrows (fun x => Xs) fun x => F) R : C g : R ⟶ Y W : C σ : W ⟶ Y ψ : R ⟶ ∐ fun i => X i hW' : ψ ≫ Sigma.desc f = g this✝ : Sieve.generate (Presieve.ofArrows X φ) ≤ Sieve.pullback F Z this : Sigma.desc φ = 𝟙 (∐ fun b => X b) ⊢ IsIso (Sigma.desc φ)
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by
rw [this]
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y I : Type hI : Fintype I X : I → C f : (a : I) → X a ⟶ Y h : T = Presieve.ofArrows X f hT : EffectiveEpiFamily X f φ : (i : I) → X i ⟶ ∐ X := fun i => Sigma.ι X i F : (∐ fun b => X b) ⟶ Y := Sigma.desc f Z : Sieve Y := Sieve.generate T Xs : C := ∐ fun i => X i Zf : Sieve Y := Sieve.generate (Presieve.ofArrows (fun x => Xs) fun x => F) R : C g : R ⟶ Y W : C σ : W ⟶ Y ψ : R ⟶ ∐ fun i => X i hW' : ψ ≫ Sigma.desc f = g this✝ : Sieve.generate (Presieve.ofArrows X φ) ≤ Sieve.pullback F Z this : Sigma.desc φ = 𝟙 (∐ fun b => X b) ⊢ IsIso (𝟙 (∐ fun b => X b))
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this];
infer_instance
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this];
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_2.of.intro.intro.intro.intro.intro.a.intro.intro.intro.intro.mk.a.hS C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y I : Type hI : Fintype I X : I → C f : (a : I) → X a ⟶ Y h : T = Presieve.ofArrows X f hT : EffectiveEpiFamily X f φ : (i : I) → X i ⟶ ∐ X := fun i => Sigma.ι X i F : (∐ fun b => X b) ⟶ Y := Sigma.desc f Z : Sieve Y := Sieve.generate T Xs : C := ∐ fun i => X i Zf : Sieve Y := Sieve.generate (Presieve.ofArrows (fun x => Xs) fun x => F) R : C g : R ⟶ Y W : C σ : W ⟶ Y ψ : R ⟶ ∐ fun i => X i hW' : ψ ≫ Sigma.desc f = g this : Sieve.generate (Presieve.ofArrows X φ) ≤ Sieve.pullback F Z ⊢ Sigma.desc φ = 𝟙 (∐ fun b => X b)
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance
ext
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_2.of.intro.intro.intro.intro.intro.a.intro.intro.intro.intro.mk.a.hS.h C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y I : Type hI : Fintype I X : I → C f : (a : I) → X a ⟶ Y h : T = Presieve.ofArrows X f hT : EffectiveEpiFamily X f φ : (i : I) → X i ⟶ ∐ X := fun i => Sigma.ι X i F : (∐ fun b => X b) ⟶ Y := Sigma.desc f Z : Sieve Y := Sieve.generate T Xs : C := ∐ fun i => X i Zf : Sieve Y := Sieve.generate (Presieve.ofArrows (fun x => Xs) fun x => F) R : C g : R ⟶ Y W : C σ : W ⟶ Y ψ : R ⟶ ∐ fun i => X i hW' : ψ ≫ Sigma.desc f = g this : Sieve.generate (Presieve.ofArrows X φ) ≤ Sieve.pullback F Z b✝ : I ⊢ Sigma.ι (fun b => X b) b✝ ≫ Sigma.desc φ = Sigma.ι (fun b => X b) b✝ ≫ 𝟙 (∐ fun b => X b)
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext
simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id]
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case this C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y I : Type hI : Fintype I X : I → C f : (a : I) → X a ⟶ Y h : T = Presieve.ofArrows X f hT : EffectiveEpiFamily X f φ : (i : I) → X i ⟶ ∐ X := fun i => Sigma.ι X i F : (∐ fun b => X b) ⟶ Y := Sigma.desc f Z : Sieve Y := Sieve.generate T Xs : C := ∐ fun i => X i Zf : Sieve Y := Sieve.generate (Presieve.ofArrows (fun x => Xs) fun x => F) R : C g : R ⟶ Y W : C σ : W ⟶ Y ψ : R ⟶ ∐ fun i => X i hW' : ψ ≫ Sigma.desc f = g ⊢ Sieve.generate (Presieve.ofArrows X φ) ≤ Sieve.pullback F Z
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id]
intro Q q hq
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id]
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case this C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y I : Type hI : Fintype I X : I → C f : (a : I) → X a ⟶ Y h : T = Presieve.ofArrows X f hT : EffectiveEpiFamily X f φ : (i : I) → X i ⟶ ∐ X := fun i => Sigma.ι X i F : (∐ fun b => X b) ⟶ Y := Sigma.desc f Z : Sieve Y := Sieve.generate T Xs : C := ∐ fun i => X i Zf : Sieve Y := Sieve.generate (Presieve.ofArrows (fun x => Xs) fun x => F) R : C g : R ⟶ Y W : C σ : W ⟶ Y ψ : R ⟶ ∐ fun i => X i hW' : ψ ≫ Sigma.desc f = g Q : C q : Q ⟶ ∐ X hq : (Sieve.generate (Presieve.ofArrows X φ)).arrows q ⊢ (Sieve.pullback F Z).arrows q
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq
simp only [Sieve.pullback_apply, Sieve.generate_apply]
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case this C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y I : Type hI : Fintype I X : I → C f : (a : I) → X a ⟶ Y h : T = Presieve.ofArrows X f hT : EffectiveEpiFamily X f φ : (i : I) → X i ⟶ ∐ X := fun i => Sigma.ι X i F : (∐ fun b => X b) ⟶ Y := Sigma.desc f Z : Sieve Y := Sieve.generate T Xs : C := ∐ fun i => X i Zf : Sieve Y := Sieve.generate (Presieve.ofArrows (fun x => Xs) fun x => F) R : C g : R ⟶ Y W : C σ : W ⟶ Y ψ : R ⟶ ∐ fun i => X i hW' : ψ ≫ Sigma.desc f = g Q : C q : Q ⟶ ∐ X hq : (Sieve.generate (Presieve.ofArrows X φ)).arrows q ⊢ ∃ Y_1 h g, T g ∧ h ≫ g = q ≫ Sigma.desc f
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply]
simp only [Sieve.generate_apply] at hq
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply]
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case this C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y I : Type hI : Fintype I X : I → C f : (a : I) → X a ⟶ Y h : T = Presieve.ofArrows X f hT : EffectiveEpiFamily X f φ : (i : I) → X i ⟶ ∐ X := fun i => Sigma.ι X i F : (∐ fun b => X b) ⟶ Y := Sigma.desc f Z : Sieve Y := Sieve.generate T Xs : C := ∐ fun i => X i Zf : Sieve Y := Sieve.generate (Presieve.ofArrows (fun x => Xs) fun x => F) R : C g : R ⟶ Y W : C σ : W ⟶ Y ψ : R ⟶ ∐ fun i => X i hW' : ψ ≫ Sigma.desc f = g Q : C q : Q ⟶ ∐ X hq : ∃ Y h g, Presieve.ofArrows X (fun i => Sigma.ι X i) g ∧ h ≫ g = q ⊢ ∃ Y_1 h g, T g ∧ h ≫ g = q ≫ Sigma.desc f
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq
obtain ⟨E, e, r, hq⟩ := hq
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case this.intro.intro.intro C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y I : Type hI : Fintype I X : I → C f : (a : I) → X a ⟶ Y h : T = Presieve.ofArrows X f hT : EffectiveEpiFamily X f φ : (i : I) → X i ⟶ ∐ X := fun i => Sigma.ι X i F : (∐ fun b => X b) ⟶ Y := Sigma.desc f Z : Sieve Y := Sieve.generate T Xs : C := ∐ fun i => X i Zf : Sieve Y := Sieve.generate (Presieve.ofArrows (fun x => Xs) fun x => F) R : C g : R ⟶ Y W : C σ : W ⟶ Y ψ : R ⟶ ∐ fun i => X i hW' : ψ ≫ Sigma.desc f = g Q : C q : Q ⟶ ∐ X E : C e : Q ⟶ E r : E ⟶ ∐ X hq : Presieve.ofArrows X (fun i => Sigma.ι X i) r ∧ e ≫ r = q ⊢ ∃ Y_1 h g, T g ∧ h ≫ g = q ≫ Sigma.desc f
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq
refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case this.intro.intro.intro.refine'_1 C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y I : Type hI : Fintype I X : I → C f : (a : I) → X a ⟶ Y h : T = Presieve.ofArrows X f hT : EffectiveEpiFamily X f φ : (i : I) → X i ⟶ ∐ X := fun i => Sigma.ι X i F : (∐ fun b => X b) ⟶ Y := Sigma.desc f Z : Sieve Y := Sieve.generate T Xs : C := ∐ fun i => X i Zf : Sieve Y := Sieve.generate (Presieve.ofArrows (fun x => Xs) fun x => F) R : C g : R ⟶ Y W : C σ : W ⟶ Y ψ : R ⟶ ∐ fun i => X i hW' : ψ ≫ Sigma.desc f = g Q : C q : Q ⟶ ∐ X E : C e : Q ⟶ E r : E ⟶ ∐ X hq : Presieve.ofArrows X (fun i => Sigma.ι X i) r ∧ e ≫ r = q ⊢ T (r ≫ F)
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ ·
rw [h]
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ ·
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case this.intro.intro.intro.refine'_1 C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y I : Type hI : Fintype I X : I → C f : (a : I) → X a ⟶ Y h : T = Presieve.ofArrows X f hT : EffectiveEpiFamily X f φ : (i : I) → X i ⟶ ∐ X := fun i => Sigma.ι X i F : (∐ fun b => X b) ⟶ Y := Sigma.desc f Z : Sieve Y := Sieve.generate T Xs : C := ∐ fun i => X i Zf : Sieve Y := Sieve.generate (Presieve.ofArrows (fun x => Xs) fun x => F) R : C g : R ⟶ Y W : C σ : W ⟶ Y ψ : R ⟶ ∐ fun i => X i hW' : ψ ≫ Sigma.desc f = g Q : C q : Q ⟶ ∐ X E : C e : Q ⟶ E r : E ⟶ ∐ X hq : Presieve.ofArrows X (fun i => Sigma.ι X i) r ∧ e ≫ r = q ⊢ Presieve.ofArrows X f (r ≫ F)
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h]
induction hq.1
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h]
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case this.intro.intro.intro.refine'_1.mk C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y I : Type hI : Fintype I X : I → C f : (a : I) → X a ⟶ Y h : T = Presieve.ofArrows X f hT : EffectiveEpiFamily X f φ : (i : I) → X i ⟶ ∐ X := fun i => Sigma.ι X i F : (∐ fun b => X b) ⟶ Y := Sigma.desc f Z : Sieve Y := Sieve.generate T Xs : C := ∐ fun i => X i Zf : Sieve Y := Sieve.generate (Presieve.ofArrows (fun x => Xs) fun x => F) R : C g : R ⟶ Y W : C σ : W ⟶ Y ψ : R ⟶ ∐ fun i => X i hW' : ψ ≫ Sigma.desc f = g Q : C q : Q ⟶ ∐ X E : C r : E ⟶ ∐ X i✝ : I e : Q ⟶ X i✝ hq : Presieve.ofArrows X (fun i => Sigma.ι X i) (Sigma.ι X i✝) ∧ e ≫ Sigma.ι X i✝ = q ⊢ Presieve.ofArrows X f (Sigma.ι X i✝ ≫ F)
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1
simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app]
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case this.intro.intro.intro.refine'_1.mk C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y I : Type hI : Fintype I X : I → C f : (a : I) → X a ⟶ Y h : T = Presieve.ofArrows X f hT : EffectiveEpiFamily X f φ : (i : I) → X i ⟶ ∐ X := fun i => Sigma.ι X i F : (∐ fun b => X b) ⟶ Y := Sigma.desc f Z : Sieve Y := Sieve.generate T Xs : C := ∐ fun i => X i Zf : Sieve Y := Sieve.generate (Presieve.ofArrows (fun x => Xs) fun x => F) R : C g : R ⟶ Y W : C σ : W ⟶ Y ψ : R ⟶ ∐ fun i => X i hW' : ψ ≫ Sigma.desc f = g Q : C q : Q ⟶ ∐ X E : C r : E ⟶ ∐ X i✝ : I e : Q ⟶ X i✝ hq : Presieve.ofArrows X (fun i => Sigma.ι X i) (Sigma.ι X i✝) ∧ e ≫ Sigma.ι X i✝ = q ⊢ Presieve.ofArrows X f (f i✝)
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app]
exact Presieve.ofArrows.mk _
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app]
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case this.intro.intro.intro.refine'_2 C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y I : Type hI : Fintype I X : I → C f : (a : I) → X a ⟶ Y h : T = Presieve.ofArrows X f hT : EffectiveEpiFamily X f φ : (i : I) → X i ⟶ ∐ X := fun i => Sigma.ι X i F : (∐ fun b => X b) ⟶ Y := Sigma.desc f Z : Sieve Y := Sieve.generate T Xs : C := ∐ fun i => X i Zf : Sieve Y := Sieve.generate (Presieve.ofArrows (fun x => Xs) fun x => F) R : C g : R ⟶ Y W : C σ : W ⟶ Y ψ : R ⟶ ∐ fun i => X i hW' : ψ ≫ Sigma.desc f = g Q : C q : Q ⟶ ∐ X E : C e : Q ⟶ E r : E ⟶ ∐ X hq : Presieve.ofArrows X (fun i => Sigma.ι X i) r ∧ e ≫ r = q ⊢ e ≫ r ≫ F = q ≫ Sigma.desc f
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ ·
rw [← hq.2]
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ ·
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case this.intro.intro.intro.refine'_2 C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T : Presieve Y I : Type hI : Fintype I X : I → C f : (a : I) → X a ⟶ Y h : T = Presieve.ofArrows X f hT : EffectiveEpiFamily X f φ : (i : I) → X i ⟶ ∐ X := fun i => Sigma.ι X i F : (∐ fun b => X b) ⟶ Y := Sigma.desc f Z : Sieve Y := Sieve.generate T Xs : C := ∐ fun i => X i Zf : Sieve Y := Sieve.generate (Presieve.ofArrows (fun x => Xs) fun x => F) R : C g : R ⟶ Y W : C σ : W ⟶ Y ψ : R ⟶ ∐ fun i => X i hW' : ψ ≫ Sigma.desc f = g Q : C q : Q ⟶ ∐ X E : C e : Q ⟶ E r : E ⟶ ∐ X hq : Presieve.ofArrows X (fun i => Sigma.ι X i) r ∧ e ≫ r = q ⊢ e ≫ r ≫ F = (e ≫ r) ≫ Sigma.desc f
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2]
simp only [Category.assoc]
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2]
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_2.top C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B X✝ : C ⊢ ⊤ ∈ GrothendieckTopology.sieves (Coverage.toGrothendieck C (extensiveCoverage C ⊔ regularCoverage C)) X✝
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc]
| top => apply Coverage.saturate.top
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc]
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_2.top C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B X✝ : C ⊢ ⊤ ∈ GrothendieckTopology.sieves (Coverage.toGrothendieck C (extensiveCoverage C ⊔ regularCoverage C)) X✝
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top =>
apply Coverage.saturate.top
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top =>
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_2.transitive C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T S✝ : Sieve Y a✝¹ : Coverage.saturate (coherentCoverage C) Y T a✝ : ∀ ⦃Y_1 : C⦄ ⦃f : Y_1 ⟶ Y⦄, T.arrows f → Coverage.saturate (coherentCoverage C) Y_1 (Sieve.pullback f S✝) a_ih✝¹ : T ∈ GrothendieckTopology.sieves (Coverage.toGrothendieck C (extensiveCoverage C ⊔ regularCoverage C)) Y a_ih✝ : ∀ ⦃Y_1 : C⦄ ⦃f : Y_1 ⟶ Y⦄, T.arrows f → Sieve.pullback f S✝ ∈ GrothendieckTopology.sieves (Coverage.toGrothendieck C (extensiveCoverage C ⊔ regularCoverage C)) Y_1 ⊢ S✝ ∈ GrothendieckTopology.sieves (Coverage.toGrothendieck C (extensiveCoverage C ⊔ regularCoverage C)) Y
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top
| transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption]
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_2.transitive C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T S✝ : Sieve Y a✝¹ : Coverage.saturate (coherentCoverage C) Y T a✝ : ∀ ⦃Y_1 : C⦄ ⦃f : Y_1 ⟶ Y⦄, T.arrows f → Coverage.saturate (coherentCoverage C) Y_1 (Sieve.pullback f S✝) a_ih✝¹ : T ∈ GrothendieckTopology.sieves (Coverage.toGrothendieck C (extensiveCoverage C ⊔ regularCoverage C)) Y a_ih✝ : ∀ ⦃Y_1 : C⦄ ⦃f : Y_1 ⟶ Y⦄, T.arrows f → Sieve.pullback f S✝ ∈ GrothendieckTopology.sieves (Coverage.toGrothendieck C (extensiveCoverage C ⊔ regularCoverage C)) Y_1 ⊢ S✝ ∈ GrothendieckTopology.sieves (Coverage.toGrothendieck C (extensiveCoverage C ⊔ regularCoverage C)) Y
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T =>
apply Coverage.saturate.transitive Y T<;> [assumption; assumption]
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T =>
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_2.transitive C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T S✝ : Sieve Y a✝¹ : Coverage.saturate (coherentCoverage C) Y T a✝ : ∀ ⦃Y_1 : C⦄ ⦃f : Y_1 ⟶ Y⦄, T.arrows f → Coverage.saturate (coherentCoverage C) Y_1 (Sieve.pullback f S✝) a_ih✝¹ : T ∈ GrothendieckTopology.sieves (Coverage.toGrothendieck C (extensiveCoverage C ⊔ regularCoverage C)) Y a_ih✝ : ∀ ⦃Y_1 : C⦄ ⦃f : Y_1 ⟶ Y⦄, T.arrows f → Sieve.pullback f S✝ ∈ GrothendieckTopology.sieves (Coverage.toGrothendieck C (extensiveCoverage C ⊔ regularCoverage C)) Y_1 ⊢ S✝ ∈ GrothendieckTopology.sieves (Coverage.toGrothendieck C (extensiveCoverage C ⊔ regularCoverage C)) Y
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T =>
apply Coverage.saturate.transitive Y T
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T =>
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_2.transitive.a C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T S✝ : Sieve Y a✝¹ : Coverage.saturate (coherentCoverage C) Y T a✝ : ∀ ⦃Y_1 : C⦄ ⦃f : Y_1 ⟶ Y⦄, T.arrows f → Coverage.saturate (coherentCoverage C) Y_1 (Sieve.pullback f S✝) a_ih✝¹ : T ∈ GrothendieckTopology.sieves (Coverage.toGrothendieck C (extensiveCoverage C ⊔ regularCoverage C)) Y a_ih✝ : ∀ ⦃Y_1 : C⦄ ⦃f : Y_1 ⟶ Y⦄, T.arrows f → Sieve.pullback f S✝ ∈ GrothendieckTopology.sieves (Coverage.toGrothendieck C (extensiveCoverage C ⊔ regularCoverage C)) Y_1 ⊢ Coverage.saturate (extensiveCoverage C ⊔ regularCoverage C) Y T
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [
assumption
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
case h.h.h.refine_2.transitive.a C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preregular C inst✝ : FinitaryPreExtensive C B : C S : Sieve B Y : C T S✝ : Sieve Y a✝¹ : Coverage.saturate (coherentCoverage C) Y T a✝ : ∀ ⦃Y_1 : C⦄ ⦃f : Y_1 ⟶ Y⦄, T.arrows f → Coverage.saturate (coherentCoverage C) Y_1 (Sieve.pullback f S✝) a_ih✝¹ : T ∈ GrothendieckTopology.sieves (Coverage.toGrothendieck C (extensiveCoverage C ⊔ regularCoverage C)) Y a_ih✝ : ∀ ⦃Y_1 : C⦄ ⦃f : Y_1 ⟶ Y⦄, T.arrows f → Sieve.pullback f S✝ ∈ GrothendieckTopology.sieves (Coverage.toGrothendieck C (extensiveCoverage C ⊔ regularCoverage C)) Y_1 ⊢ ∀ ⦃Y_1 : C⦄ ⦃f : Y_1 ⟶ Y⦄, T.arrows f → Coverage.saturate (extensiveCoverage C ⊔ regularCoverage C) Y_1 (Sieve.pullback f S✝)
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption;
assumption
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption;
Mathlib.CategoryTheory.Sites.RegularExtensive.151_0.rkSRr0zuqme90Yu
/-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C)
Mathlib_CategoryTheory_Sites_RegularExtensive
C : Type u inst✝ : Category.{v, u} C P : Cᵒᵖ ⥤ Type (max u v) W X B : C f : X ⟶ B g₁ g₂ : W ⟶ X w : g₁ ≫ f = g₂ ≫ f t : P.obj (op B) ⊢ P.map f.op t ∈ {x | P.map g₁.op x = P.map g₂.op x}
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by
simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]
/-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by
Mathlib.CategoryTheory.Sites.RegularExtensive.227_0.rkSRr0zuqme90Yu
/-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x }
Mathlib_CategoryTheory_Sites_RegularExtensive
C : Type u inst✝² : Category.{v, u} C B : C S : Presieve B inst✝¹ : regular S inst✝ : hasPullbacks S F : Cᵒᵖ ⥤ Type (max u v) hF : EqualizerCondition F ⊢ IsSheafFor F S
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by
obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S)
lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by
Mathlib.CategoryTheory.Sites.RegularExtensive.243_0.rkSRr0zuqme90Yu
lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F
Mathlib_CategoryTheory_Sites_RegularExtensive
case intro.intro.intro C : Type u inst✝² : Category.{v, u} C B : C S : Presieve B inst✝¹ : regular S inst✝ : hasPullbacks S F : Cᵒᵖ ⥤ Type (max u v) hF : EqualizerCondition F X : C π : X ⟶ B hS : S = ofArrows (fun x => X) fun x => π πsurj : EffectiveEpi π ⊢ IsSheafFor F S
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S)
subst hS
lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S)
Mathlib.CategoryTheory.Sites.RegularExtensive.243_0.rkSRr0zuqme90Yu
lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F
Mathlib_CategoryTheory_Sites_RegularExtensive
case intro.intro.intro C : Type u inst✝² : Category.{v, u} C B : C F : Cᵒᵖ ⥤ Type (max u v) hF : EqualizerCondition F X : C π : X ⟶ B πsurj : EffectiveEpi π inst✝¹ : regular (ofArrows (fun x => X) fun x => π) inst✝ : hasPullbacks (ofArrows (fun x => X) fun x => π) ⊢ IsSheafFor F (ofArrows (fun x => X) fun x => π)
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS
rw [isSheafFor_arrows_iff_pullbacks]
lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS
Mathlib.CategoryTheory.Sites.RegularExtensive.243_0.rkSRr0zuqme90Yu
lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F
Mathlib_CategoryTheory_Sites_RegularExtensive
case intro.intro.intro C : Type u inst✝² : Category.{v, u} C B : C F : Cᵒᵖ ⥤ Type (max u v) hF : EqualizerCondition F X : C π : X ⟶ B πsurj : EffectiveEpi π inst✝¹ : regular (ofArrows (fun x => X) fun x => π) inst✝ : hasPullbacks (ofArrows (fun x => X) fun x => π) ⊢ ∀ (x : Unit → F.obj (op X)), Arrows.PullbackCompatible F (fun x => π) x → ∃! t, ∀ (i : Unit), F.map π.op t = x i
/- Copyright (c) 2023 Dagur Asgeirsson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dagur Asgeirsson, Filippo A. E. Nuccio, Riccardo Brasca -/ import Mathlib.CategoryTheory.Extensive import Mathlib.CategoryTheory.Preadditive.Projective import Mathlib.CategoryTheory.Sites.Coherent import Mathlib.CategoryTheory.Sites.Preserves /-! # The Regular and Extensive Coverages This file defines two coverages on a category `C`. The first one is called the *regular* coverage and for that to exist, the category `C` must satisfy a condition called `Preregular C`. This means that effective epimorphisms can be "pulled back". The covering sieves of this coverage are generated by presieves consisting of a single effective epimorphism. The second one is called the *extensive* coverage and for that to exist, the category `C` must satisfy a condition called `FinitaryPreExtensive C`. This means `C` has finite coproducts and that those are preserved by pullbacks. The covering sieves of this coverage are generated by presieves consisting finitely many arrows that together induce an isomorphism from the coproduct to the target. This condition is weaker than `FinitaryExtensive`, where in addition finite coproducts are disjoint. ## Main results * `instance : Precoherent C` given `Preregular C` and `FinitaryPreExtensive C`. * `extensive_union_regular_generates_coherent`: the union of the regular and extensive coverages generates the coherent topology on `C` if `C` is precoherent, preextensive and preregular. * `isSheaf_iff_equalizerCondition`: In a preregular category with pullbacks, the sheaves for the regular topology are precisely the presheaves satisfying an equaliser condition with respect to effective epimorphisms. * `isSheaf_of_projective`: In a preregular category in which every object is projective, every presheaf is a sheaf for the regular topology. * `isSheaf_iff_preservesFiniteProducts`: In a finitary extensive category, the sheaves for the extensive topology are precisely those preserving finite products. -/ universe v u w namespace CategoryTheory open Limits variable (C : Type u) [Category.{v} C] /-- The condition `Preregular C` is property that effective epis can be "pulled back" along any morphism. This is satisfied e.g. by categories that have pullbacks that preserve effective epimorphisms (like `Profinite` and `CompHaus`), and categories where every object is projective (like `Stonean`). -/ class Preregular : Prop where /-- For `X`, `Y`, `Z`, `f`, `g` like in the diagram, where `g` is an effective epi, there exists an object `W`, an effective epi `h : W ⟶ X` and a morphism `i : W ⟶ Z` making the diagram commute. ``` W --i-→ Z | | h g ↓ ↓ X --f-→ Y ``` -/ exists_fac : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ Y) [EffectiveEpi g], (∃ (W : C) (h : W ⟶ X) (_ : EffectiveEpi h) (i : W ⟶ Z), i ≫ g = h ≫ f) instance [Precoherent C] [HasFiniteCoproducts C] : Preregular C where exists_fac {X Y Z} f g _ := by have hp := Precoherent.pullback f PUnit (fun () ↦ Z) (fun () ↦ g) simp only [exists_const] at hp rw [← effectiveEpi_iff_effectiveEpiFamily g] at hp obtain ⟨β, _, X₂, π₂, h, ι, hι⟩ := hp inferInstance refine ⟨∐ X₂, Sigma.desc π₂, inferInstance, Sigma.desc ι, ?_⟩ ext b simpa using hι b /-- The regular coverage on a regular category `C`. -/ def regularCoverage [Preregular C] : Coverage C where covering B := { S | ∃ (X : C) (f : X ⟶ B), S = Presieve.ofArrows (fun (_ : Unit) ↦ X) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f } pullback := by intro X Y f S ⟨Z, π, hπ, h_epi⟩ have := Preregular.exists_fac f π obtain ⟨W, h, _, i, this⟩ := this refine ⟨Presieve.singleton h, ⟨?_, ?_⟩⟩ · exact ⟨W, h, by {rw [Presieve.ofArrows_pUnit h]}, inferInstance⟩ · intro W g hg cases hg refine ⟨Z, i, π, ⟨?_, this⟩⟩ cases hπ rw [Presieve.ofArrows_pUnit] exact Presieve.singleton.mk /-- The extensive coverage on an extensive category `C` TODO: use general colimit API instead of `IsIso (Sigma.desc π)` -/ def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where covering B := { S | ∃ (α : Type) (_ : Fintype α) (X : α → C) (π : (a : α) → (X a ⟶ B)), S = Presieve.ofArrows X π ∧ IsIso (Sigma.desc π) } pullback := by intro X Y f S ⟨α, hα, Z, π, hS, h_iso⟩ let Z' : α → C := fun a ↦ pullback f (π a) let π' : (a : α) → Z' a ⟶ Y := fun a ↦ pullback.fst refine ⟨@Presieve.ofArrows C _ _ α Z' π', ⟨?_, ?_⟩⟩ · constructor exact ⟨hα, Z', π', ⟨by simp only, FinitaryPreExtensive.sigma_desc_iso (fun x => π x) f h_iso⟩⟩ · intro W g hg rcases hg with ⟨a⟩ refine ⟨Z a, pullback.snd, π a, ?_, by rw [CategoryTheory.Limits.pullback.condition]⟩ rw [hS] exact Presieve.ofArrows.mk a theorem effectiveEpi_desc_iff_effectiveEpiFamily [FinitaryPreExtensive C] {α : Type} [Fintype α] {B : C} (X : α → C) (π : (a : α) → X a ⟶ B) : EffectiveEpi (Sigma.desc π) ↔ EffectiveEpiFamily X π := by exact ⟨fun h ↦ ⟨⟨@effectiveEpiFamilyStructOfEffectiveEpiDesc _ _ _ _ X π _ h _ _ (fun g ↦ (FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X a) g inferInstance).epi_of_iso)⟩⟩, fun _ ↦ inferInstance⟩ instance [FinitaryPreExtensive C] [Preregular C] : Precoherent C where pullback {B₁ B₂} f α _ X₁ π₁ h := by refine ⟨α, inferInstance, ?_⟩ obtain ⟨Y, g, _, g', hg⟩ := Preregular.exists_fac f (Sigma.desc π₁) let X₂ := fun a ↦ pullback g' (Sigma.ι X₁ a) let π₂ := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) ≫ g let π' := fun a ↦ pullback.fst (f := g') (g := Sigma.ι X₁ a) have _ := FinitaryPreExtensive.sigma_desc_iso (fun a ↦ Sigma.ι X₁ a) g' inferInstance refine ⟨X₂, π₂, ?_, ?_⟩ · have : (Sigma.desc π' ≫ g) = Sigma.desc π₂ := by ext; simp rw [← effectiveEpi_desc_iff_effectiveEpiFamily, ← this] infer_instance · refine ⟨id, fun b ↦ pullback.snd, fun b ↦ ?_⟩ simp only [id_eq, Category.assoc, ← hg] rw [← Category.assoc, pullback.condition] simp /-- The union of the extensive and regular coverages generates the coherent topology on `C`. -/ lemma extensive_regular_generate_coherent [Preregular C] [FinitaryPreExtensive C] : ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck = (coherentTopology C) := by ext B S refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · induction h with | of Y T hT => apply Coverage.saturate.of simp only [Coverage.sup_covering, Set.mem_union] at hT exact Or.elim hT (fun ⟨α, x, X, π, ⟨h, _⟩⟩ ↦ ⟨α, x, X, π, ⟨h, inferInstance⟩⟩) (fun ⟨Z, f, ⟨h, _⟩⟩ ↦ ⟨Unit, inferInstance, fun _ ↦ Z, fun _ ↦ f, ⟨h, inferInstance⟩⟩) | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] · induction h with | of Y T hT => obtain ⟨I, hI, X, f, ⟨h, hT⟩⟩ := hT let φ := fun (i : I) ↦ Sigma.ι X i let F := Sigma.desc f let Z := Sieve.generate T let Xs := (∐ fun (i : I) => X i) let Zf := Sieve.generate (Presieve.ofArrows (fun (_ : Unit) ↦ Xs) (fun (_ : Unit) ↦ F)) apply Coverage.saturate.transitive Y Zf · apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] exact Or.inr ⟨Xs, F, ⟨rfl, inferInstance⟩⟩ · intro R g hZfg dsimp at hZfg rw [Presieve.ofArrows_pUnit] at hZfg obtain ⟨W, ψ, σ, ⟨hW, hW'⟩⟩ := hZfg induction hW rw [← hW', Sieve.pullback_comp Z] suffices Sieve.pullback ψ ((Sieve.pullback F) Z) ∈ GrothendieckTopology.sieves ((extensiveCoverage C) ⊔ (regularCoverage C)).toGrothendieck R by assumption apply GrothendieckTopology.pullback_stable' suffices Coverage.saturate ((extensiveCoverage C) ⊔ (regularCoverage C)) Xs (Z.pullback F) by assumption suffices : Sieve.generate (Presieve.ofArrows X φ) ≤ Z.pullback F · apply Coverage.saturate_of_superset _ this apply Coverage.saturate.of simp only [Coverage.sup_covering, extensiveCoverage, regularCoverage, Set.mem_union, Set.mem_setOf_eq] refine Or.inl ⟨I, hI, X, φ, ⟨rfl, ?_⟩⟩ suffices Sigma.desc φ = 𝟙 _ by rw [this]; infer_instance ext simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, Category.comp_id] intro Q q hq simp only [Sieve.pullback_apply, Sieve.generate_apply] simp only [Sieve.generate_apply] at hq obtain ⟨E, e, r, hq⟩ := hq refine' ⟨E, e, r ≫ F, ⟨_, _⟩⟩ · rw [h] induction hq.1 simp only [colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app] exact Presieve.ofArrows.mk _ · rw [← hq.2] simp only [Category.assoc] | top => apply Coverage.saturate.top | transitive Y T => apply Coverage.saturate.transitive Y T<;> [assumption; assumption] section RegularSheaves variable {C} open Opposite Presieve /-- A presieve is *regular* if it consists of a single effective epimorphism. -/ class Presieve.regular {X : C} (R : Presieve X) : Prop where /-- `R` consists of a single epimorphism. -/ single_epi : ∃ (Y : C) (f : Y ⟶ X), R = Presieve.ofArrows (fun (_ : Unit) ↦ Y) (fun (_ : Unit) ↦ f) ∧ EffectiveEpi f namespace regularCoverage /-- The map to the explicit equalizer used in the sheaf condition. -/ def MapToEqualizer (P : Cᵒᵖ ⥤ Type (max u v)) {W X B : C} (f : X ⟶ B) (g₁ g₂ : W ⟶ X) (w : g₁ ≫ f = g₂ ≫ f) : P.obj (op B) → { x : P.obj (op X) | P.map g₁.op x = P.map g₂.op x } := fun t ↦ ⟨P.map f.op t, by simp only [Set.mem_setOf_eq, ← FunctorToTypes.map_comp_apply, ← op_comp, w]⟩ /-- The sheaf condition with respect to regular presieves, given the existence of the relavant pullback. -/ def EqualizerCondition (P : Cᵒᵖ ⥤ Type (max u v)) : Prop := ∀ (X B : C) (π : X ⟶ B) [EffectiveEpi π] [HasPullback π π], Function.Bijective (MapToEqualizer P π (pullback.fst (f := π) (g := π)) (pullback.snd (f := π) (g := π)) pullback.condition) lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks]
intro y h
lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F := by obtain ⟨X, π, hS, πsurj⟩ := Presieve.regular.single_epi (R := S) subst hS rw [isSheafFor_arrows_iff_pullbacks]
Mathlib.CategoryTheory.Sites.RegularExtensive.243_0.rkSRr0zuqme90Yu
lemma EqualizerCondition.isSheafFor {B : C} {S : Presieve B} [S.regular] [S.hasPullbacks] {F : Cᵒᵖ ⥤ Type (max u v)} (hF : EqualizerCondition F) : S.IsSheafFor F
Mathlib_CategoryTheory_Sites_RegularExtensive