code
stringlengths
1
13.8M
otp_traveltime <- function(otpcon = NA, path_data = NULL, fromPlace = NA, toPlace = NA, fromID = NULL, toID = NULL, mode = "CAR", date_time = Sys.time(), arriveBy = FALSE, maxWalkDistance = 1000, numItineraries = 3, routeOptions = NULL, ncores = 1, timezone = otpcon$timezone) { if (is.null(timezone)) { warning("otpcon is missing the timezone variaible, assuming local timezone") timezone <- Sys.timezone() } RcppSimdJsonVersion <- try(utils::packageVersion("RcppSimdJson") >= "0.1.2", silent = TRUE) if (class(RcppSimdJsonVersion) == "try-error") { RcppSimdJsonVersion <- FALSE } if (!RcppSimdJsonVersion) { message("NOTE: You do not have 'RcppSimdJson' >= 0.1.2 installed") stop("This feature is not supported") } checkmate::assert_subset(timezone, choices = OlsonNames(tzdir = NULL)) checkmate::assert_class(otpcon, "otpconnect") mode <- toupper(mode) checkmate::assert_subset(mode, choices = c( "TRANSIT", "WALK", "BICYCLE", "CAR", "BUS", "RAIL", "SUBWAY", "TRAM", "FERRY" ), empty.ok = FALSE ) checkmate::assert_posixct(date_time) date <- format(date_time, "%m-%d-%Y", tz = timezone) time <- tolower(format(date_time, "%I:%M%p", tz = timezone)) checkmate::assert_numeric(maxWalkDistance, lower = 0, len = 1) checkmate::assert_numeric(numItineraries, lower = 1, len = 1) checkmate::assert_character(fromID, null.ok = FALSE) checkmate::assert_character(toID, null.ok = FALSE) checkmate::assert_logical(arriveBy) if (!is.null(routeOptions)) { routeOptions <- otp_validate_routing_options(routeOptions) } fromPlace <- otp_clean_input(fromPlace, "fromPlace") if (!is.null(fromID)) { if (length(fromID) != nrow(fromPlace)) { stop("The length of fromID and fromPlace are not the same") } } if (!is.null(toID)) { if (length(toID) != nrow(toPlace)) { stop("The length of toID and toPlace are not the same") } } toPlace <- sf::st_sf(data.frame(geometry = sf::st_geometry(toPlace))) pointsetname <- paste(sample(LETTERS, 10, TRUE), collapse = "") otp_pointset(toPlace, pointsetname, path_data) fromPlacelst <- split(fromPlace[,2:1], seq_len(nrow(fromPlace))) if(ncores > 1){ cl <- parallel::makeCluster(ncores, outfile = "otp_parallel_log.txt") parallel::clusterExport( cl = cl, varlist = c("otpcon", "pointsetname"), envir = environment() ) parallel::clusterEvalQ(cl, { loadNamespace("opentripplanner") }) pbapply::pboptions(use_lb = TRUE) res <- pbapply::pblapply(fromPlacelst, otp_traveltime_internal, otpcon = otpcon, pointsetname = pointsetname, mode = mode, date_time = date_time, arriveBy = arriveBy, maxWalkDistance = maxWalkDistance, routeOptions = routeOptions, cl = cl) parallel::stopCluster(cl) rm(cl) } else { res <- pbapply::pblapply(fromPlacelst, otp_traveltime_internal, otpcon = otpcon, pointsetname = pointsetname, mode = mode, date_time = date_time, arriveBy = arriveBy, maxWalkDistance = maxWalkDistance, routeOptions = routeOptions) } names(res) <- fromID res <- res[lengths(res) > 0] res <- list2df(res) rownames(res) <- toID return(res) } otp_traveltime_internal <- function(fromPlace, otpcon, pointsetname, mode, date_time, arriveBy, maxWalkDistance, routeOptions){ surface <- try(otp_make_surface(otpcon = otpcon, fromPlace = fromPlace, mode = mode, date_time = date_time, arriveBy = arriveBy, maxWalkDistance = maxWalkDistance, routeOptions = routeOptions), silent = TRUE) if ("try-error" %in% class(surface)) { warning("Failed to create surface for: ",paste(fromPlace, collapse = ", ")) return(NULL) } times <- try(otp_surface(otpcon, surface, pointsetname, get_data = FALSE), silent = TRUE) if ("try-error" %in% class(times)) { warning("Failed to evaluate surface for: ",paste(fromPlace, collapse = ", ")) return(NULL) } return(times$times) }
wbt_accumulation_curvature <- function(dem, output, log=FALSE, zfactor=1.0, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (log) { args <- paste(args, "--log") } if (!is.null(zfactor)) { args <- paste(args, paste0("--zfactor=", zfactor)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "accumulation_curvature" wbt_run_tool(tool_name, args, verbose_mode) } wbt_aspect <- function(dem, output, zfactor=NULL, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (!is.null(zfactor)) { args <- paste(args, paste0("--zfactor=", zfactor)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "aspect" wbt_run_tool(tool_name, args, verbose_mode) } wbt_assess_route <- function(routes, dem, output, length="", dist=20, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--routes=", routes)) args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (!is.null(length)) { args <- paste(args, paste0("--length=", length)) } if (!is.null(dist)) { args <- paste(args, paste0("--dist=", dist)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "assess_route" wbt_run_tool(tool_name, args, verbose_mode) } wbt_average_normal_vector_angular_deviation <- function(dem, output, filter=11, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (!is.null(filter)) { args <- paste(args, paste0("--filter=", filter)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "average_normal_vector_angular_deviation" wbt_run_tool(tool_name, args, verbose_mode) } wbt_circular_variance_of_aspect <- function(dem, output, filter=11, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (!is.null(filter)) { args <- paste(args, paste0("--filter=", filter)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "circular_variance_of_aspect" wbt_run_tool(tool_name, args, verbose_mode) } wbt_contours_from_points <- function(input, output, field=NULL, use_z=FALSE, max_triangle_edge_length=NULL, interval=10.0, base=0.0, smooth=5, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--input=", input)) args <- paste(args, paste0("--output=", output)) if (!is.null(field)) { args <- paste(args, paste0("--field=", field)) } if (use_z) { args <- paste(args, "--use_z") } if (!is.null(max_triangle_edge_length)) { args <- paste(args, paste0("--max_triangle_edge_length=", max_triangle_edge_length)) } if (!is.null(interval)) { args <- paste(args, paste0("--interval=", interval)) } if (!is.null(base)) { args <- paste(args, paste0("--base=", base)) } if (!is.null(smooth)) { args <- paste(args, paste0("--smooth=", smooth)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "contours_from_points" wbt_run_tool(tool_name, args, verbose_mode) } wbt_contours_from_raster <- function(input, output, interval=10.0, base=0.0, smooth=9, tolerance=10.0, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--input=", input)) args <- paste(args, paste0("--output=", output)) if (!is.null(interval)) { args <- paste(args, paste0("--interval=", interval)) } if (!is.null(base)) { args <- paste(args, paste0("--base=", base)) } if (!is.null(smooth)) { args <- paste(args, paste0("--smooth=", smooth)) } if (!is.null(tolerance)) { args <- paste(args, paste0("--tolerance=", tolerance)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "contours_from_raster" wbt_run_tool(tool_name, args, verbose_mode) } wbt_curvedness <- function(dem, output, log=FALSE, zfactor=1.0, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (log) { args <- paste(args, "--log") } if (!is.null(zfactor)) { args <- paste(args, paste0("--zfactor=", zfactor)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "curvedness" wbt_run_tool(tool_name, args, verbose_mode) } wbt_dev_from_mean_elev <- function(dem, output, filterx=11, filtery=11, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (!is.null(filterx)) { args <- paste(args, paste0("--filterx=", filterx)) } if (!is.null(filtery)) { args <- paste(args, paste0("--filtery=", filtery)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "dev_from_mean_elev" wbt_run_tool(tool_name, args, verbose_mode) } wbt_diff_from_mean_elev <- function(dem, output, filterx=11, filtery=11, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (!is.null(filterx)) { args <- paste(args, paste0("--filterx=", filterx)) } if (!is.null(filtery)) { args <- paste(args, paste0("--filtery=", filtery)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "diff_from_mean_elev" wbt_run_tool(tool_name, args, verbose_mode) } wbt_difference_curvature <- function(dem, output, log=FALSE, zfactor=1.0, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (log) { args <- paste(args, "--log") } if (!is.null(zfactor)) { args <- paste(args, paste0("--zfactor=", zfactor)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "difference_curvature" wbt_run_tool(tool_name, args, verbose_mode) } wbt_directional_relief <- function(dem, output, azimuth=0.0, max_dist=NULL, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (!is.null(azimuth)) { args <- paste(args, paste0("--azimuth=", azimuth)) } if (!is.null(max_dist)) { args <- paste(args, paste0("--max_dist=", max_dist)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "directional_relief" wbt_run_tool(tool_name, args, verbose_mode) } wbt_downslope_index <- function(dem, output, drop=2.0, out_type="tangent", wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (!is.null(drop)) { args <- paste(args, paste0("--drop=", drop)) } if (!is.null(out_type)) { args <- paste(args, paste0("--out_type=", out_type)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "downslope_index" wbt_run_tool(tool_name, args, verbose_mode) } wbt_edge_density <- function(dem, output, filter=11, norm_diff=5.0, zfactor=NULL, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (!is.null(filter)) { args <- paste(args, paste0("--filter=", filter)) } if (!is.null(norm_diff)) { args <- paste(args, paste0("--norm_diff=", norm_diff)) } if (!is.null(zfactor)) { args <- paste(args, paste0("--zfactor=", zfactor)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "edge_density" wbt_run_tool(tool_name, args, verbose_mode) } wbt_elev_above_pit <- function(dem, output, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "elev_above_pit" wbt_run_tool(tool_name, args, verbose_mode) } wbt_elev_percentile <- function(dem, output, filterx=11, filtery=11, sig_digits=2, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (!is.null(filterx)) { args <- paste(args, paste0("--filterx=", filterx)) } if (!is.null(filtery)) { args <- paste(args, paste0("--filtery=", filtery)) } if (!is.null(sig_digits)) { args <- paste(args, paste0("--sig_digits=", sig_digits)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "elev_percentile" wbt_run_tool(tool_name, args, verbose_mode) } wbt_elev_relative_to_min_max <- function(dem, output, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "elev_relative_to_min_max" wbt_run_tool(tool_name, args, verbose_mode) } wbt_elev_relative_to_watershed_min_max <- function(dem, watersheds, output, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--watersheds=", watersheds)) args <- paste(args, paste0("--output=", output)) if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "elev_relative_to_watershed_min_max" wbt_run_tool(tool_name, args, verbose_mode) } wbt_embankment_mapping <- function(dem, road_vec, output, search_dist=2.5, min_road_width=6.0, typical_width=30.0, max_height=2.0, max_width=60.0, max_increment=0.05, spillout_slope=4.0, remove_embankments=FALSE, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--road_vec=", road_vec)) args <- paste(args, paste0("--output=", output)) if (!is.null(search_dist)) { args <- paste(args, paste0("--search_dist=", search_dist)) } if (!is.null(min_road_width)) { args <- paste(args, paste0("--min_road_width=", min_road_width)) } if (!is.null(typical_width)) { args <- paste(args, paste0("--typical_width=", typical_width)) } if (!is.null(max_height)) { args <- paste(args, paste0("--max_height=", max_height)) } if (!is.null(max_width)) { args <- paste(args, paste0("--max_width=", max_width)) } if (!is.null(max_increment)) { args <- paste(args, paste0("--max_increment=", max_increment)) } if (!is.null(spillout_slope)) { args <- paste(args, paste0("--spillout_slope=", spillout_slope)) } if (remove_embankments) { args <- paste(args, "--remove_embankments") } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "embankment_mapping" wbt_run_tool(tool_name, args, verbose_mode) } wbt_exposure_towards_wind_flux <- function(dem, output, azimuth="", max_dist="", zfactor="", wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (!is.null(azimuth)) { args <- paste(args, paste0("--azimuth=", azimuth)) } if (!is.null(max_dist)) { args <- paste(args, paste0("--max_dist=", max_dist)) } if (!is.null(zfactor)) { args <- paste(args, paste0("--zfactor=", zfactor)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "exposure_towards_wind_flux" wbt_run_tool(tool_name, args, verbose_mode) } wbt_feature_preserving_smoothing <- function(dem, output, filter=11, norm_diff=15.0, num_iter=3, max_diff=0.5, zfactor=NULL, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (!is.null(filter)) { args <- paste(args, paste0("--filter=", filter)) } if (!is.null(norm_diff)) { args <- paste(args, paste0("--norm_diff=", norm_diff)) } if (!is.null(num_iter)) { args <- paste(args, paste0("--num_iter=", num_iter)) } if (!is.null(max_diff)) { args <- paste(args, paste0("--max_diff=", max_diff)) } if (!is.null(zfactor)) { args <- paste(args, paste0("--zfactor=", zfactor)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "feature_preserving_smoothing" wbt_run_tool(tool_name, args, verbose_mode) } wbt_fetch_analysis <- function(dem, output, azimuth=0.0, hgt_inc=0.05, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (!is.null(azimuth)) { args <- paste(args, paste0("--azimuth=", azimuth)) } if (!is.null(hgt_inc)) { args <- paste(args, paste0("--hgt_inc=", hgt_inc)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "fetch_analysis" wbt_run_tool(tool_name, args, verbose_mode) } wbt_fill_missing_data <- function(input, output, filter=11, weight=2.0, no_edges=TRUE, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--input=", input)) args <- paste(args, paste0("--output=", output)) if (!is.null(filter)) { args <- paste(args, paste0("--filter=", filter)) } if (!is.null(weight)) { args <- paste(args, paste0("--weight=", weight)) } if (no_edges) { args <- paste(args, "--no_edges") } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "fill_missing_data" wbt_run_tool(tool_name, args, verbose_mode) } wbt_find_ridges <- function(dem, output, line_thin=TRUE, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (line_thin) { args <- paste(args, "--line_thin") } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "find_ridges" wbt_run_tool(tool_name, args, verbose_mode) } wbt_gaussian_curvature <- function(dem, output, log=FALSE, zfactor=NULL, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (log) { args <- paste(args, "--log") } if (!is.null(zfactor)) { args <- paste(args, paste0("--zfactor=", zfactor)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "gaussian_curvature" wbt_run_tool(tool_name, args, verbose_mode) } wbt_gaussian_scale_space <- function(dem, output, output_zscore, output_scale, points=NULL, sigma=0.5, step=0.5, num_steps=10, lsp="Slope", z_factor=NULL, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) args <- paste(args, paste0("--output_zscore=", output_zscore)) args <- paste(args, paste0("--output_scale=", output_scale)) if (!is.null(points)) { args <- paste(args, paste0("--points=", points)) } if (!is.null(sigma)) { args <- paste(args, paste0("--sigma=", sigma)) } if (!is.null(step)) { args <- paste(args, paste0("--step=", step)) } if (!is.null(num_steps)) { args <- paste(args, paste0("--num_steps=", num_steps)) } if (!is.null(lsp)) { args <- paste(args, paste0("--lsp=", lsp)) } if (!is.null(z_factor)) { args <- paste(args, paste0("--z_factor=", z_factor)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "gaussian_scale_space" wbt_run_tool(tool_name, args, verbose_mode) } wbt_generating_function <- function(dem, output, log=FALSE, zfactor=1.0, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (log) { args <- paste(args, "--log") } if (!is.null(zfactor)) { args <- paste(args, paste0("--zfactor=", zfactor)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "generating_function" wbt_run_tool(tool_name, args, verbose_mode) } wbt_geomorphons <- function(dem, output, search=50, threshold=0.0, tdist=0, forms=TRUE, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (!is.null(search)) { args <- paste(args, paste0("--search=", search)) } if (!is.null(threshold)) { args <- paste(args, paste0("--threshold=", threshold)) } if (!is.null(tdist)) { args <- paste(args, paste0("--tdist=", tdist)) } if (forms) { args <- paste(args, "--forms") } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "geomorphons" wbt_run_tool(tool_name, args, verbose_mode) } wbt_hillshade <- function(dem, output, azimuth=315.0, altitude=30.0, zfactor=NULL, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (!is.null(azimuth)) { args <- paste(args, paste0("--azimuth=", azimuth)) } if (!is.null(altitude)) { args <- paste(args, paste0("--altitude=", altitude)) } if (!is.null(zfactor)) { args <- paste(args, paste0("--zfactor=", zfactor)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "hillshade" wbt_run_tool(tool_name, args, verbose_mode) } wbt_horizon_angle <- function(dem, output, azimuth=0.0, max_dist=100.0, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (!is.null(azimuth)) { args <- paste(args, paste0("--azimuth=", azimuth)) } if (!is.null(max_dist)) { args <- paste(args, paste0("--max_dist=", max_dist)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "horizon_angle" wbt_run_tool(tool_name, args, verbose_mode) } wbt_horizontal_excess_curvature <- function(dem, output, log=FALSE, zfactor=1.0, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (log) { args <- paste(args, "--log") } if (!is.null(zfactor)) { args <- paste(args, paste0("--zfactor=", zfactor)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "horizontal_excess_curvature" wbt_run_tool(tool_name, args, verbose_mode) } wbt_hypsometric_analysis <- function(inputs, output, watershed=NULL, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--inputs=", inputs)) args <- paste(args, paste0("--output=", output)) if (!is.null(watershed)) { args <- paste(args, paste0("--watershed=", watershed)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "hypsometric_analysis" wbt_run_tool(tool_name, args, verbose_mode) } wbt_hypsometrically_tinted_hillshade <- function(dem, output, altitude=45.0, hs_weight=0.5, brightness=0.5, atmospheric=0.0, palette="atlas", reverse=FALSE, zfactor=NULL, full_mode=FALSE, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (!is.null(altitude)) { args <- paste(args, paste0("--altitude=", altitude)) } if (!is.null(hs_weight)) { args <- paste(args, paste0("--hs_weight=", hs_weight)) } if (!is.null(brightness)) { args <- paste(args, paste0("--brightness=", brightness)) } if (!is.null(atmospheric)) { args <- paste(args, paste0("--atmospheric=", atmospheric)) } if (!is.null(palette)) { args <- paste(args, paste0("--palette=", palette)) } if (reverse) { args <- paste(args, "--reverse") } if (!is.null(zfactor)) { args <- paste(args, paste0("--zfactor=", zfactor)) } if (full_mode) { args <- paste(args, "--full_mode") } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "hypsometrically_tinted_hillshade" wbt_run_tool(tool_name, args, verbose_mode) } wbt_local_hypsometric_analysis <- function(input, out_mag, out_scale, min_scale=4, step=1, num_steps=10, step_nonlinearity=1.0, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--input=", input)) args <- paste(args, paste0("--out_mag=", out_mag)) args <- paste(args, paste0("--out_scale=", out_scale)) if (!is.null(min_scale)) { args <- paste(args, paste0("--min_scale=", min_scale)) } if (!is.null(step)) { args <- paste(args, paste0("--step=", step)) } if (!is.null(num_steps)) { args <- paste(args, paste0("--num_steps=", num_steps)) } if (!is.null(step_nonlinearity)) { args <- paste(args, paste0("--step_nonlinearity=", step_nonlinearity)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "local_hypsometric_analysis" wbt_run_tool(tool_name, args, verbose_mode) } wbt_local_quadratic_regression <- function(dem, output, filter=3, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (!is.null(filter)) { args <- paste(args, paste0("--filter=", filter)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "local_quadratic_regression" wbt_run_tool(tool_name, args, verbose_mode) } wbt_map_off_terrain_objects <- function(dem, output, max_slope=40.0, min_size=1, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (!is.null(max_slope)) { args <- paste(args, paste0("--max_slope=", max_slope)) } if (!is.null(min_size)) { args <- paste(args, paste0("--min_size=", min_size)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "map_off_terrain_objects" wbt_run_tool(tool_name, args, verbose_mode) } wbt_max_anisotropy_dev <- function(dem, out_mag, out_scale, max_scale, min_scale=3, step=2, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--out_mag=", out_mag)) args <- paste(args, paste0("--out_scale=", out_scale)) args <- paste(args, paste0("--max_scale=", max_scale)) if (!is.null(min_scale)) { args <- paste(args, paste0("--min_scale=", min_scale)) } if (!is.null(step)) { args <- paste(args, paste0("--step=", step)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "max_anisotropy_dev" wbt_run_tool(tool_name, args, verbose_mode) } wbt_max_anisotropy_dev_signature <- function(dem, points, output, max_scale, min_scale=1, step=1, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--points=", points)) args <- paste(args, paste0("--output=", output)) args <- paste(args, paste0("--max_scale=", max_scale)) if (!is.null(min_scale)) { args <- paste(args, paste0("--min_scale=", min_scale)) } if (!is.null(step)) { args <- paste(args, paste0("--step=", step)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "max_anisotropy_dev_signature" wbt_run_tool(tool_name, args, verbose_mode) } wbt_max_branch_length <- function(dem, output, log=FALSE, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (log) { args <- paste(args, "--log") } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "max_branch_length" wbt_run_tool(tool_name, args, verbose_mode) } wbt_max_difference_from_mean <- function(dem, out_mag, out_scale, min_scale, max_scale, step=1, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--out_mag=", out_mag)) args <- paste(args, paste0("--out_scale=", out_scale)) args <- paste(args, paste0("--min_scale=", min_scale)) args <- paste(args, paste0("--max_scale=", max_scale)) if (!is.null(step)) { args <- paste(args, paste0("--step=", step)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "max_difference_from_mean" wbt_run_tool(tool_name, args, verbose_mode) } wbt_max_downslope_elev_change <- function(dem, output, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "max_downslope_elev_change" wbt_run_tool(tool_name, args, verbose_mode) } wbt_max_elev_dev_signature <- function(dem, points, output, min_scale, max_scale, step=10, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--points=", points)) args <- paste(args, paste0("--output=", output)) args <- paste(args, paste0("--min_scale=", min_scale)) args <- paste(args, paste0("--max_scale=", max_scale)) if (!is.null(step)) { args <- paste(args, paste0("--step=", step)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "max_elev_dev_signature" wbt_run_tool(tool_name, args, verbose_mode) } wbt_max_elevation_deviation <- function(dem, out_mag, out_scale, min_scale, max_scale, step=1, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--out_mag=", out_mag)) args <- paste(args, paste0("--out_scale=", out_scale)) args <- paste(args, paste0("--min_scale=", min_scale)) args <- paste(args, paste0("--max_scale=", max_scale)) if (!is.null(step)) { args <- paste(args, paste0("--step=", step)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "max_elevation_deviation" wbt_run_tool(tool_name, args, verbose_mode) } wbt_max_upslope_elev_change <- function(dem, output, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "max_upslope_elev_change" wbt_run_tool(tool_name, args, verbose_mode) } wbt_maximal_curvature <- function(dem, output, log=FALSE, zfactor=NULL, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (log) { args <- paste(args, "--log") } if (!is.null(zfactor)) { args <- paste(args, paste0("--zfactor=", zfactor)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "maximal_curvature" wbt_run_tool(tool_name, args, verbose_mode) } wbt_mean_curvature <- function(dem, output, log=FALSE, zfactor=NULL, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (log) { args <- paste(args, "--log") } if (!is.null(zfactor)) { args <- paste(args, paste0("--zfactor=", zfactor)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "mean_curvature" wbt_run_tool(tool_name, args, verbose_mode) } wbt_min_downslope_elev_change <- function(dem, output, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "min_downslope_elev_change" wbt_run_tool(tool_name, args, verbose_mode) } wbt_minimal_curvature <- function(dem, output, log=FALSE, zfactor=NULL, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (log) { args <- paste(args, "--log") } if (!is.null(zfactor)) { args <- paste(args, paste0("--zfactor=", zfactor)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "minimal_curvature" wbt_run_tool(tool_name, args, verbose_mode) } wbt_multidirectional_hillshade <- function(dem, output, altitude=45.0, zfactor=NULL, full_mode=FALSE, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (!is.null(altitude)) { args <- paste(args, paste0("--altitude=", altitude)) } if (!is.null(zfactor)) { args <- paste(args, paste0("--zfactor=", zfactor)) } if (full_mode) { args <- paste(args, "--full_mode") } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "multidirectional_hillshade" wbt_run_tool(tool_name, args, verbose_mode) } wbt_multiscale_elevation_percentile <- function(dem, out_mag, out_scale, sig_digits=3, min_scale=4, step=1, num_steps=10, step_nonlinearity=1.0, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--out_mag=", out_mag)) args <- paste(args, paste0("--out_scale=", out_scale)) if (!is.null(sig_digits)) { args <- paste(args, paste0("--sig_digits=", sig_digits)) } if (!is.null(min_scale)) { args <- paste(args, paste0("--min_scale=", min_scale)) } if (!is.null(step)) { args <- paste(args, paste0("--step=", step)) } if (!is.null(num_steps)) { args <- paste(args, paste0("--num_steps=", num_steps)) } if (!is.null(step_nonlinearity)) { args <- paste(args, paste0("--step_nonlinearity=", step_nonlinearity)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "multiscale_elevation_percentile" wbt_run_tool(tool_name, args, verbose_mode) } wbt_multiscale_roughness <- function(dem, out_mag, out_scale, max_scale, min_scale=1, step=1, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--out_mag=", out_mag)) args <- paste(args, paste0("--out_scale=", out_scale)) args <- paste(args, paste0("--max_scale=", max_scale)) if (!is.null(min_scale)) { args <- paste(args, paste0("--min_scale=", min_scale)) } if (!is.null(step)) { args <- paste(args, paste0("--step=", step)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "multiscale_roughness" wbt_run_tool(tool_name, args, verbose_mode) } wbt_multiscale_roughness_signature <- function(dem, points, output, max_scale, min_scale=1, step=1, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--points=", points)) args <- paste(args, paste0("--output=", output)) args <- paste(args, paste0("--max_scale=", max_scale)) if (!is.null(min_scale)) { args <- paste(args, paste0("--min_scale=", min_scale)) } if (!is.null(step)) { args <- paste(args, paste0("--step=", step)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "multiscale_roughness_signature" wbt_run_tool(tool_name, args, verbose_mode) } wbt_multiscale_std_dev_normals <- function(dem, out_mag, out_scale, min_scale=1, step=1, num_steps=10, step_nonlinearity=1.0, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--out_mag=", out_mag)) args <- paste(args, paste0("--out_scale=", out_scale)) if (!is.null(min_scale)) { args <- paste(args, paste0("--min_scale=", min_scale)) } if (!is.null(step)) { args <- paste(args, paste0("--step=", step)) } if (!is.null(num_steps)) { args <- paste(args, paste0("--num_steps=", num_steps)) } if (!is.null(step_nonlinearity)) { args <- paste(args, paste0("--step_nonlinearity=", step_nonlinearity)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "multiscale_std_dev_normals" wbt_run_tool(tool_name, args, verbose_mode) } wbt_multiscale_std_dev_normals_signature <- function(dem, points, output, min_scale=1, step=1, num_steps=10, step_nonlinearity=1.0, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--points=", points)) args <- paste(args, paste0("--output=", output)) if (!is.null(min_scale)) { args <- paste(args, paste0("--min_scale=", min_scale)) } if (!is.null(step)) { args <- paste(args, paste0("--step=", step)) } if (!is.null(num_steps)) { args <- paste(args, paste0("--num_steps=", num_steps)) } if (!is.null(step_nonlinearity)) { args <- paste(args, paste0("--step_nonlinearity=", step_nonlinearity)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "multiscale_std_dev_normals_signature" wbt_run_tool(tool_name, args, verbose_mode) } wbt_multiscale_topographic_position_image <- function(local, meso, broad, output, lightness=1.2, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--local=", local)) args <- paste(args, paste0("--meso=", meso)) args <- paste(args, paste0("--broad=", broad)) args <- paste(args, paste0("--output=", output)) if (!is.null(lightness)) { args <- paste(args, paste0("--lightness=", lightness)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "multiscale_topographic_position_image" wbt_run_tool(tool_name, args, verbose_mode) } wbt_num_downslope_neighbours <- function(dem, output, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "num_downslope_neighbours" wbt_run_tool(tool_name, args, verbose_mode) } wbt_num_upslope_neighbours <- function(dem, output, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "num_upslope_neighbours" wbt_run_tool(tool_name, args, verbose_mode) } wbt_openness <- function(input, pos_output, neg_output, dist=20, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--input=", input)) args <- paste(args, paste0("--pos_output=", pos_output)) args <- paste(args, paste0("--neg_output=", neg_output)) if (!is.null(dist)) { args <- paste(args, paste0("--dist=", dist)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "openness" wbt_run_tool(tool_name, args, verbose_mode) } wbt_pennock_landform_class <- function(dem, output, slope=3.0, prof=0.1, plan=0.0, zfactor=NULL, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (!is.null(slope)) { args <- paste(args, paste0("--slope=", slope)) } if (!is.null(prof)) { args <- paste(args, paste0("--prof=", prof)) } if (!is.null(plan)) { args <- paste(args, paste0("--plan=", plan)) } if (!is.null(zfactor)) { args <- paste(args, paste0("--zfactor=", zfactor)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "pennock_landform_class" wbt_run_tool(tool_name, args, verbose_mode) } wbt_percent_elev_range <- function(dem, output, filterx=3, filtery=3, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (!is.null(filterx)) { args <- paste(args, paste0("--filterx=", filterx)) } if (!is.null(filtery)) { args <- paste(args, paste0("--filtery=", filtery)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "percent_elev_range" wbt_run_tool(tool_name, args, verbose_mode) } wbt_plan_curvature <- function(dem, output, log=FALSE, zfactor=NULL, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (log) { args <- paste(args, "--log") } if (!is.null(zfactor)) { args <- paste(args, paste0("--zfactor=", zfactor)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "plan_curvature" wbt_run_tool(tool_name, args, verbose_mode) } wbt_profile <- function(lines, surface, output, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--lines=", lines)) args <- paste(args, paste0("--surface=", surface)) args <- paste(args, paste0("--output=", output)) if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "profile" wbt_run_tool(tool_name, args, verbose_mode) } wbt_profile_curvature <- function(dem, output, log=FALSE, zfactor=NULL, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (log) { args <- paste(args, "--log") } if (!is.null(zfactor)) { args <- paste(args, paste0("--zfactor=", zfactor)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "profile_curvature" wbt_run_tool(tool_name, args, verbose_mode) } wbt_relative_aspect <- function(dem, output, azimuth=0.0, zfactor=NULL, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (!is.null(azimuth)) { args <- paste(args, paste0("--azimuth=", azimuth)) } if (!is.null(zfactor)) { args <- paste(args, paste0("--zfactor=", zfactor)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "relative_aspect" wbt_run_tool(tool_name, args, verbose_mode) } wbt_relative_topographic_position <- function(dem, output, filterx=11, filtery=11, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (!is.null(filterx)) { args <- paste(args, paste0("--filterx=", filterx)) } if (!is.null(filtery)) { args <- paste(args, paste0("--filtery=", filtery)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "relative_topographic_position" wbt_run_tool(tool_name, args, verbose_mode) } wbt_remove_off_terrain_objects <- function(dem, output, filter=11, slope=15.0, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (!is.null(filter)) { args <- paste(args, paste0("--filter=", filter)) } if (!is.null(slope)) { args <- paste(args, paste0("--slope=", slope)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "remove_off_terrain_objects" wbt_run_tool(tool_name, args, verbose_mode) } wbt_ring_curvature <- function(dem, output, log=FALSE, zfactor=1.0, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (log) { args <- paste(args, "--log") } if (!is.null(zfactor)) { args <- paste(args, paste0("--zfactor=", zfactor)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "ring_curvature" wbt_run_tool(tool_name, args, verbose_mode) } wbt_rotor <- function(dem, output, log=FALSE, zfactor=1.0, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (log) { args <- paste(args, "--log") } if (!is.null(zfactor)) { args <- paste(args, paste0("--zfactor=", zfactor)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "rotor" wbt_run_tool(tool_name, args, verbose_mode) } wbt_ruggedness_index <- function(dem, output, zfactor=NULL, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (!is.null(zfactor)) { args <- paste(args, paste0("--zfactor=", zfactor)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "ruggedness_index" wbt_run_tool(tool_name, args, verbose_mode) } wbt_sediment_transport_index <- function(sca, slope, output, sca_exponent=0.4, slope_exponent=1.3, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--sca=", sca)) args <- paste(args, paste0("--slope=", slope)) args <- paste(args, paste0("--output=", output)) if (!is.null(sca_exponent)) { args <- paste(args, paste0("--sca_exponent=", sca_exponent)) } if (!is.null(slope_exponent)) { args <- paste(args, paste0("--slope_exponent=", slope_exponent)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "sediment_transport_index" wbt_run_tool(tool_name, args, verbose_mode) } wbt_shadow_animation <- function(input, output, palette="atlas", max_dist="", date="21/06/2021", interval=15, location="43.5448/-80.2482/-4", height=600, delay=250, label="", wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--input=", input)) args <- paste(args, paste0("--output=", output)) if (!is.null(palette)) { args <- paste(args, paste0("--palette=", palette)) } if (!is.null(max_dist)) { args <- paste(args, paste0("--max_dist=", max_dist)) } if (!is.null(date)) { args <- paste(args, paste0("--date=", date)) } if (!is.null(interval)) { args <- paste(args, paste0("--interval=", interval)) } if (!is.null(location)) { args <- paste(args, paste0("--location=", location)) } if (!is.null(height)) { args <- paste(args, paste0("--height=", height)) } if (!is.null(delay)) { args <- paste(args, paste0("--delay=", delay)) } if (!is.null(label)) { args <- paste(args, paste0("--label=", label)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "shadow_animation" wbt_run_tool(tool_name, args, verbose_mode) } wbt_shadow_image <- function(input, output, palette="soft", max_dist="", date="21/06/2021", time="1300", location="43.5448/-80.2482/-4", wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--input=", input)) args <- paste(args, paste0("--output=", output)) if (!is.null(palette)) { args <- paste(args, paste0("--palette=", palette)) } if (!is.null(max_dist)) { args <- paste(args, paste0("--max_dist=", max_dist)) } if (!is.null(date)) { args <- paste(args, paste0("--date=", date)) } if (!is.null(time)) { args <- paste(args, paste0("--time=", time)) } if (!is.null(location)) { args <- paste(args, paste0("--location=", location)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "shadow_image" wbt_run_tool(tool_name, args, verbose_mode) } wbt_shape_index <- function(dem, output, zfactor=1.0, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (!is.null(zfactor)) { args <- paste(args, paste0("--zfactor=", zfactor)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "shape_index" wbt_run_tool(tool_name, args, verbose_mode) } wbt_slope <- function(dem, output, zfactor=NULL, units="degrees", wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (!is.null(zfactor)) { args <- paste(args, paste0("--zfactor=", zfactor)) } if (!is.null(units)) { args <- paste(args, paste0("--units=", units)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "slope" wbt_run_tool(tool_name, args, verbose_mode) } wbt_slope_vs_aspect_plot <- function(input, output, bin_size=2.0, min_slope=0.1, zfactor=1.0, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--input=", input)) args <- paste(args, paste0("--output=", output)) if (!is.null(bin_size)) { args <- paste(args, paste0("--bin_size=", bin_size)) } if (!is.null(min_slope)) { args <- paste(args, paste0("--min_slope=", min_slope)) } if (!is.null(zfactor)) { args <- paste(args, paste0("--zfactor=", zfactor)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "slope_vs_aspect_plot" wbt_run_tool(tool_name, args, verbose_mode) } wbt_slope_vs_elevation_plot <- function(inputs, output, watershed=NULL, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--inputs=", inputs)) args <- paste(args, paste0("--output=", output)) if (!is.null(watershed)) { args <- paste(args, paste0("--watershed=", watershed)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "slope_vs_elevation_plot" wbt_run_tool(tool_name, args, verbose_mode) } wbt_smooth_vegetation_residual <- function(input, output, max_scale=30, dev_threshold=1.0, scale_threshold=5, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--input=", input)) args <- paste(args, paste0("--output=", output)) if (!is.null(max_scale)) { args <- paste(args, paste0("--max_scale=", max_scale)) } if (!is.null(dev_threshold)) { args <- paste(args, paste0("--dev_threshold=", dev_threshold)) } if (!is.null(scale_threshold)) { args <- paste(args, paste0("--scale_threshold=", scale_threshold)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "smooth_vegetation_residual" wbt_run_tool(tool_name, args, verbose_mode) } wbt_spherical_std_dev_of_normals <- function(dem, output, filter=11, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (!is.null(filter)) { args <- paste(args, paste0("--filter=", filter)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "spherical_std_dev_of_normals" wbt_run_tool(tool_name, args, verbose_mode) } wbt_standard_deviation_of_slope <- function(input, output, zfactor=NULL, filterx=11, filtery=11, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--input=", input)) args <- paste(args, paste0("--output=", output)) if (!is.null(zfactor)) { args <- paste(args, paste0("--zfactor=", zfactor)) } if (!is.null(filterx)) { args <- paste(args, paste0("--filterx=", filterx)) } if (!is.null(filtery)) { args <- paste(args, paste0("--filtery=", filtery)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "standard_deviation_of_slope" wbt_run_tool(tool_name, args, verbose_mode) } wbt_stream_power_index <- function(sca, slope, output, exponent=1.0, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--sca=", sca)) args <- paste(args, paste0("--slope=", slope)) args <- paste(args, paste0("--output=", output)) if (!is.null(exponent)) { args <- paste(args, paste0("--exponent=", exponent)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "stream_power_index" wbt_run_tool(tool_name, args, verbose_mode) } wbt_surface_area_ratio <- function(dem, output, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "surface_area_ratio" wbt_run_tool(tool_name, args, verbose_mode) } wbt_tangential_curvature <- function(dem, output, log=FALSE, zfactor=NULL, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (log) { args <- paste(args, "--log") } if (!is.null(zfactor)) { args <- paste(args, paste0("--zfactor=", zfactor)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "tangential_curvature" wbt_run_tool(tool_name, args, verbose_mode) } wbt_time_in_daylight <- function(dem, output, lat, long, az_fraction=10.0, max_dist=100.0, utc_offset="0000", start_day=1, end_day=365, start_time="000000", end_time="235959", wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) args <- paste(args, paste0("--lat=", lat)) args <- paste(args, paste0("--long=", long)) if (!is.null(az_fraction)) { args <- paste(args, paste0("--az_fraction=", az_fraction)) } if (!is.null(max_dist)) { args <- paste(args, paste0("--max_dist=", max_dist)) } if (!is.null(utc_offset)) { args <- paste(args, paste0("--utc_offset=", utc_offset)) } if (!is.null(start_day)) { args <- paste(args, paste0("--start_day=", start_day)) } if (!is.null(end_day)) { args <- paste(args, paste0("--end_day=", end_day)) } if (!is.null(start_time)) { args <- paste(args, paste0("--start_time=", start_time)) } if (!is.null(end_time)) { args <- paste(args, paste0("--end_time=", end_time)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "time_in_daylight" wbt_run_tool(tool_name, args, verbose_mode) } wbt_topographic_position_animation <- function(input, output, palette="bl_yl_rd", min_scale=1, num_steps=100, step_nonlinearity=1.5, height=600, delay=250, label="", dev_max=FALSE, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--input=", input)) args <- paste(args, paste0("--output=", output)) if (!is.null(palette)) { args <- paste(args, paste0("--palette=", palette)) } if (!is.null(min_scale)) { args <- paste(args, paste0("--min_scale=", min_scale)) } if (!is.null(num_steps)) { args <- paste(args, paste0("--num_steps=", num_steps)) } if (!is.null(step_nonlinearity)) { args <- paste(args, paste0("--step_nonlinearity=", step_nonlinearity)) } if (!is.null(height)) { args <- paste(args, paste0("--height=", height)) } if (!is.null(delay)) { args <- paste(args, paste0("--delay=", delay)) } if (!is.null(label)) { args <- paste(args, paste0("--label=", label)) } if (dev_max) { args <- paste(args, "--dev_max") } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "topographic_position_animation" wbt_run_tool(tool_name, args, verbose_mode) } wbt_total_curvature <- function(dem, output, log=FALSE, zfactor=NULL, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (log) { args <- paste(args, "--log") } if (!is.null(zfactor)) { args <- paste(args, paste0("--zfactor=", zfactor)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "total_curvature" wbt_run_tool(tool_name, args, verbose_mode) } wbt_unsphericity <- function(dem, output, log=FALSE, zfactor=1.0, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (log) { args <- paste(args, "--log") } if (!is.null(zfactor)) { args <- paste(args, paste0("--zfactor=", zfactor)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "unsphericity" wbt_run_tool(tool_name, args, verbose_mode) } wbt_vertical_excess_curvature <- function(dem, output, log=FALSE, zfactor=1.0, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (log) { args <- paste(args, "--log") } if (!is.null(zfactor)) { args <- paste(args, paste0("--zfactor=", zfactor)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "vertical_excess_curvature" wbt_run_tool(tool_name, args, verbose_mode) } wbt_viewshed <- function(dem, stations, output, height=2.0, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--stations=", stations)) args <- paste(args, paste0("--output=", output)) if (!is.null(height)) { args <- paste(args, paste0("--height=", height)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "viewshed" wbt_run_tool(tool_name, args, verbose_mode) } wbt_visibility_index <- function(dem, output, height=2.0, res_factor=2, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--dem=", dem)) args <- paste(args, paste0("--output=", output)) if (!is.null(height)) { args <- paste(args, paste0("--height=", height)) } if (!is.null(res_factor)) { args <- paste(args, paste0("--res_factor=", res_factor)) } if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "visibility_index" wbt_run_tool(tool_name, args, verbose_mode) } wbt_wetness_index <- function(sca, slope, output, wd=NULL, verbose_mode=FALSE, compress_rasters=FALSE) { wbt_init() args <- "" args <- paste(args, paste0("--sca=", sca)) args <- paste(args, paste0("--slope=", slope)) args <- paste(args, paste0("--output=", output)) if (!is.null(wd)) { args <- paste(args, paste0("--wd=", wd)) } if (compress_rasters) { args <- paste(args, "--compress_rasters") } tool_name <- "wetness_index" wbt_run_tool(tool_name, args, verbose_mode) }
write4D <- function(scene, outfile, fnames=NULL, captions=NULL, writefiles=TRUE, reprint=TRUE, ...){ nrois <- length(scene) nfiles <- length(fnames) stopifnot(nfiles == nrois) formats <- sapply(strsplit(fnames, split="\\."), function(x) x[length(x)]) formats <- toupper(formats) if (!all(formats %in% c("PLY", "STL", "OBJ"))){ stop("Formats are not PLY,OBJ, or STL!") } roi_names <- names(scene) if (is.null(roi_names)) { tmp <- tolower(fnames) tmp <- gsub(".ply", "", tmp, fixed=TRUE) tmp <- gsub(".stl", "", tmp, fixed=TRUE) tmp <- gsub(".obj", "", tmp, fixed=TRUE) roi_names <- tmp } stopifnot(all(!is.na(roi_names))) if (is.null(captions)) captions <- roi_names lfnames <- opacity <- colors <-NULL iroi <- 1 classes <- sapply(scene, class) outdir <- dirname(outfile) write_output <- function(outdir, fname, fmt, reprint=FALSE, ...){ filename <- file.path(outdir, basename(fname)) fcn <- paste0("write", fmt) if (fmt %in% "STL" & !reprint) fcn <- paste0("writeTriangles", fmt) do.call(fcn, list(con=filename, ...)) } getBase <- function(x, ind=1){ sapply(strsplit(x, split="\\."), function(xx) paste(xx[1:(length(xx)-ind)], collapse=".", sep="")) } for (iroi in 1:nrois) { if (reprint) { pars <- par3d() wrect <- pars$windowRect } else { wrect = c(0L, 44L, 256L, 300L) } irgl <- scene[[iroi]] fname <- fnames[iroi] fmt <- formats[iroi] fname = basename(fname) if (class(irgl) == "Triangles3D"){ lfname <- fname obj.colors <- irgl$color obj.opac <- irgl$alpha if (fmt %in% "STL" & !reprint){ if (!writefiles){ stop("Specified no reprinting but no writing files - not sure what to do") } write_output(outdir, fname, fmt, reprint=reprint, scene=list(irgl)) } else { drawScene.rgl(irgl) if (writefiles) write_output(outdir, fname, fmt, reprint=reprint) } } if (class(irgl) == "list"){ obj.colors <- sapply(irgl, function(x) x$color) obj.opac <- sapply(irgl, function(x) x$alpha) stub <- getBase(fname, 1) nsubrois <- length(irgl) getfmt <- floor(log(nsubrois, 10)) + 1 nums <- sapply(1:nsubrois, sprintf, fmt=paste0("%0", getfmt, ".0f")) lfname <- paste0(stub, "_", nums, ".", tolower(fmt)) for (isroi in 1:nsubrois){ iirgl <- irgl[[isroi]] sfname <- paste0(stub, "_", nums[isroi], ".", tolower(fmt)) if (fmt %in% "STL" & !reprint){ if (!writefiles){ stop("Specified no reprinting but no writing files - not sure what to do") } write_output(outdir, sfname, fmt, reprint=reprint, scene=list(iirgl)) } else { drawScene.rgl(iirgl) if (writefiles) { write_output(outdir, sfname, fmt, reprint=reprint ) } } } } stopifnot(class(irgl) %in% c("list", "Triangles3D")) opacity <- c(opacity, list(obj.opac)) colors <- c(colors, list(obj.colors)) lfnames <- c(lfnames, list(lfname)) } if (class(scene[[1]]) == "Triangles3D") vscale <- max(scene[[1]]$v1) if (class(scene[[1]]) == "list") vscale <- max(scene[[1]][[1]]$v1) fnames <- lfnames write4D.file(outfile=outfile, fnames=lfnames, captions=captions, colors=colors, opacity=opacity, scene=scene, ...) return(invisible(NULL)) }
check_bool <- function(x, name = NULL, general = NULL, specific = NULL, supplement = NULL, ...) { if (is.null(name)) { name <- deparse(substitute(x)) } check_content(x, c(TRUE, FALSE), name, general, specific, supplement, ...) }
fitParabola <-function(x,y=NULL,searchAngle=c(-pi/2, pi/2),... ){ xy <- xy.coords(x,y) xy<-cbind(xy$x,xy$y) bar2 <- optimize(costparabxy, searchAngle,xy=xy) theta <- bar2$minimum finalcost <- costparab(theta,xy) coeffs <-finalcost$coeffs xv <- - coeffs[2]/2/coeffs[3] vertex <- xyrot( xv, coeffs[1]+coeffs[2]*xv+coeffs[3]*xv^2, theta) costhet = cos(theta) sinthet = -sin(theta) parA = coeffs[3]*costhet^2 parA[2] = 2*coeffs[3] * costhet * sinthet parA[3] = coeffs[3] *sinthet^2 parA[4] = sinthet + coeffs[2]*costhet parA[5] = coeffs[2]*sinthet - costhet parA[6] = coeffs[1] return(list(vertex=vertex, theta=theta, parA=parA, parQ = coeffs, cost = finalcost$thecost) ) } costparab <- function(theta,xy){ rxy <-xyrot(xy, theta = -theta) lmout <- lm(rxy[,2] ~ I(rxy[,1]) + I(rxy[,1]^2) ) normres <- norm(as.matrix(lmout$residuals),'F') return(list(thecost=normres, coeffs=lmout$coefficients)) } costparabxy <- function(theta,xy) costparab(theta,xy)$thecost
expected <- eval(parse(text="structure(list(), .Names = character(0), row.names = integer(0), class = \"data.frame\")")); test(id=0, code={ argv <- eval(parse(text="list(structure(list(), .Names = character(0), row.names = integer(0), class = \"data.frame\"))")); do.call(`(`, argv); }, o=expected);
context("range dataset") test_succeeds("range_dataset creates a dataset", { dataset <- range_dataset(from = 1, to = 11) %>% dataset_batch(10) batch <- next_batch(dataset) res <- if (tf$executing_eagerly()) { as.array(batch) } else { with_session(function (sess) { sess$run(batch) }) } expect_equal(res, array(1L:10L)) }) test_succeeds("random_integer_dataset creates a dataset", { ds1 <- random_integer_dataset(seed=4L) %>% dataset_take(10) ds2 <- random_integer_dataset(seed=4L) %>% dataset_take(10) r1 <- reticulate::iterate(ds1, as.numeric) %>% unlist() r2 <- reticulate::iterate(ds2, as.numeric) %>% unlist() expect_equal(r1, r2) })
FmakeDB<-function(LF2, kind =1, Iendian=1, BIGLONG=FALSE) { if(missing(kind)) { kind =1 } if(missing(Iendian)) { Iendian=1 } if(missing(BIGLONG)) { BIGLONG=FALSE } ADB = list(fn="", yr=0, jd=0, hr=0, mi=0, sec=0, dur=0, t1=0, t2=0, sta="", comp="") attr(ADB, "origyr")<- 1972 N = 0 if(length(kind)==1) kind = rep(kind, times=length(LF2) ) if(length(Iendian)==1) Iendian = rep(Iendian, times=length(LF2) ) if(length(BIGLONG)==1) BIGLONG = rep(BIGLONG, times=length(LF2) ) for(i in 1:length(LF2)) { sinfo = GET.seis(LF2[i], kind=kind[i], Iendian=Iendian[i], BIGLONG=BIGLONG[i] , HEADONLY=TRUE , PLOT=-1) for(j in 1:length(sinfo)) { REC = sinfo[[j]] if(is.null(REC$DATTIM[[ 'msec' ]] )) REC$DATTIM$msec=0 if(is.null(REC$DATTIM[['dt']] )) REC$DATTIM$dt=REC$dt N = N + 1 ADB$fn[N] = REC$fn ADB$sta[N] = REC$sta ADB$comp[N] = REC$comp ADB$yr[N] = REC$DATTIM$yr ADB$jd[N] = REC$DATTIM$jd ADB$hr[N] = REC$DATTIM$hr ADB$mi[N] = REC$DATTIM$mi ADB$sec[N] = REC$DATTIM$sec+REC$DATTIM$msec/1000 ADB$dur[N] = REC$DATTIM$dt*REC$N } } origyr = min(ADB$yr, na.rm =TRUE ) if(is.na(origyr) ) { origyr = 2000 } if(is.null(origyr) ) { origyr = 2000 } eday = EPOCHday(ADB$yr, jd = ADB$jd, origyr = origyr) ADB$t1 = eday$jday + ADB$hr/24 + ADB$mi/(24 * 60) + ADB$sec/(24 * 3600) ADB$t2 = ADB$t1 + ADB$dur/(24 * 3600) attr(ADB, "origyr")<- origyr attr(ADB, "kind")=kind attr(ADB, "Iendian")=Iendian attr(ADB, "BIGLONG")=BIGLONG invisible(ADB) }
library(dplyr) library(posterior) data(RankCorr, package = "ggdist") RankCorr_s = as_draws_rvars(RankCorr[[1]][1:10,]) i_labels = c("a", "b", "c") RankCorr_i = recover_types(RankCorr_s, list(i = factor(i_labels))) i_labels = c("a", "b", "c") j_labels = c("A", "B", "C", "D") RankCorr_ij = recover_types(RankCorr_s, list(i = factor(i_labels), j = factor(j_labels))) test_that("spread_rvars correctly rejects missing variables", { data("RankCorr", package = "ggdist") expect_error(spread_rvars(RankCorr, c(a, b)), "The variable .* was not found in the model") expect_error(spread_rvars(RankCorr, a[b]), "The variable .* was not found in the model") expect_error(spread_rvars(RankCorr, c(a, x)[b]), "The variable .* was not found in the model") }) test_that("spread_rvars works on a simple variable with no dimensions", { ref = tibble( typical_r = RankCorr_s$typical_r ) expect_equal(spread_rvars(RankCorr_s, typical_r), ref) set.seed(1234) RankCorr_draws = as_draws(RankCorr_s) RankCorr_subsample = RankCorr_draws %>% weight_draws(rep(1, ndraws(RankCorr_draws))) %>% resample_draws(ndraws = 5) subsample_ref = tibble( typical_r = RankCorr_subsample$typical_r ) expect_equal(spread_rvars(RankCorr_s, typical_r, ndraws = 5, seed = 1234), subsample_ref) }) test_that("spread_rvars works on two variables with no dimensions and multiple chains", { data(line, package = "coda") line = as_draws_rvars(line) ref = tibble( alpha = line$alpha, beta = line$beta ) expect_equal(spread_rvars(line, alpha, beta), ref) expect_equal(spread_rvars(line, c(alpha, beta)), ref) expect_equal(spread_rvars(line, alpha[], beta[]), ref) }) test_that("spread_rvars works on a variable with one unnamed index", { ref = tibble( i = 1:3, tau = RankCorr_s$tau ) expect_equal(spread_rvars(RankCorr_s, tau[i]) %>% arrange(i), ref) }) test_that("spread_rvars works on a variable with one named index", { ref = tibble( i = factor(c("a","b","c")), tau = RankCorr_s$tau ) expect_equal(spread_rvars(RankCorr_i, tau[i]) %>% arrange(i), ref) }) test_that("spread_rvars works on a variable with one index left wide", { ref = tibble( tau = t(RankCorr_s$tau) ) expect_equal(spread_rvars(RankCorr_s, tau[]), ref) }) test_that("spread_rvars works on a variable with one named wide index", { tau = t(RankCorr_s$tau) dimnames(tau) = list(NULL, c("a","b","c")) ref = tibble( tau = tau ) RankCorr_i_abc = RankCorr_i names(RankCorr_i_abc$tau) = c("a","b","c") expect_equal(spread_rvars(RankCorr_i_abc, tau[]), ref) }) test_that("spread_rvars works on a variable with two named dimensions", { i = rep(1:3, 4) j = rep(1:4, each = 3) ref = tibble( i = factor(i_labels[i]), j = factor(j_labels[j]), b = RankCorr_ij$b[cbind(i,j)] ) expect_equal(spread_rvars(RankCorr_ij, b[i, j]) %>% arrange(j, i), ref) }) test_that("spread_rvars works on a variable with one named index and one wide index", { ref = tibble( i = factor(i_labels), b = RankCorr_i$b ) expect_equivalent(spread_rvars(RankCorr_i, b[i, ]) %>% arrange(i), ref) }) test_that("spread_rvars allows extraction of two variables simultaneously with a wide index", { ref = tibble( tau = t(RankCorr_i$tau), u_tau = t(RankCorr_i$u_tau) ) expect_equal(spread_rvars(RankCorr_s, c(tau, u_tau)[]), ref) }) test_that("spread_rvars correctly extracts multiple variables simultaneously", { ref = tibble( i = factor(i_labels), tau = RankCorr_i$tau, u_tau = RankCorr_i$u_tau ) expect_equal(spread_rvars(RankCorr_i, c(tau, u_tau)[i]), ref) expect_equal(spread_rvars(RankCorr_i, cbind(tau, u_tau)[i]), ref) expect_equal(spread_rvars(RankCorr_i, cbind(tau)[i]), ref[-3]) }) test_that("spread_rvars correctly extracts multiple variables simultaneously when those variables have no dimensions", { RankCorr_t = RankCorr_s RankCorr_t$tr2 = RankCorr_t$tau[[1]] ref = tibble( typical_r = RankCorr_t$typical_r, tr2 = RankCorr_t$tr2 ) expect_equal(spread_rvars(RankCorr_t, c(typical_r, tr2)), ref) }) test_that("spread_rvars multispec syntax joins results correctly", { i_int = rep(1:3, each = 4) v = rep(1:4, 3) ref = tibble( typical_r = RankCorr_ij$typical_r, i = factor(i_int, labels = i_labels), tau = RankCorr_ij$tau[i_int], v = v, b = RankCorr_ij$b[cbind(i_int,v)] ) expect_equal(spread_rvars(RankCorr_ij, typical_r, tau[i], b[i, v]) %>% arrange(i,v), ref) })
predict.pcLasso <- function(object, xnew, ...) { if (object$overlap) { beta <- object$origbeta } else { beta <- object$beta } out <- t(object$a0 + t(xnew %*% beta)) if (object$family == "binomial") { out <- 1 / (1 + exp(-out)) } return(out) }
urstab<-function(n,alpha,beta,sigma,mu,param) { stopifnot(0<alpha,alpha<=2,length(alpha)==1,-1<=beta,beta<=1,length(beta)==1,0<=sigma,length(param)==1, param %in% 0:1) theta<-runif(n,-pi/2,pi/2) theta0<-atan(beta*tan(pi*alpha/2))/alpha x<-c() w<-rexp(n,1) if (param==0) { if (alpha==1) { x<-sigma*2/pi*((pi/2+beta*theta)*tan(theta)-beta*log((pi/2*w*cos(theta))/(pi/2+beta*theta)))+2/pi*beta*sigma*log(sigma)+mu } else { x<-sigma*sin(alpha*(theta0+theta))/(cos(alpha*theta0)*cos(theta))^(1/alpha)*(cos(alpha*theta0+(alpha-1)*theta)/w)^((1-alpha)/alpha)+mu } } else { if(alpha!= 1) { x<-x-beta*sigma*tan(pi*alpha/2) } else { x<-x-2/pi*beta*sigma*log(sigma) } } return(x) } urstab.trunc<-function(n,alpha,beta,sigma,mu,a,b,param) { stopifnot(0<alpha,alpha<=2,length(alpha)==1,-1<beta,beta<1,length(beta)==1,0<sigma,length(sigma)==1,a<b) y<-c() if (alpha==1) { if (param==0) { y<-c() for (i in 1:n) { w<-rexp(1) l<-uniroot(function(theta){2/pi*((pi/2+beta*theta)*tan(theta)-beta*log((pi/2*cos(theta))/(pi/2+beta*theta)))-(a-mu)/sigma-2/pi*beta*log(w)},lower=-pi/2,upper=pi/2)$root u<-uniroot(function(theta){2/pi*((pi/2+beta*theta)*tan(theta)-beta*log((pi/2*cos(theta))/(pi/2+beta*theta)))-(b-mu)/sigma-2/pi*beta*log(w)},lower=-pi/2,upper=pi/2)$root tc<-runif(1,l,u) y[i]<-sigma*2/pi*((pi/2+beta*tc)*tan(tc)-beta*log((pi/2*w*cos(tc))/(pi/2+beta*tc)))+mu } } else { for (i in 1:n) { w<-rexp(1) l<-uniroot(function(theta){2/pi*((pi/2+beta*theta)*tan(theta)-beta*log((pi/2*cos(theta))/(pi/2+beta*theta)))-(a-mu-beta*2/pi*sigma*log(sigma))/sigma-2/pi*beta*log(w)},lower=-pi/2,upper=pi/2)$root u<-uniroot(function(theta){2/pi*((pi/2+beta*theta)*tan(theta)-beta*log((pi/2*cos(theta))/(pi/2+beta*theta)))-(b-mu-beta*2/pi*sigma*log(sigma))/sigma-2/pi*beta*log(w)},lower=-pi/2,upper=pi/2)$root tc<-runif(1,l,u) y[i]<-sigma*2/pi*((pi/2+beta*tc)*tan(tc)-beta*log((pi/2*w*cos(tc))/(pi/2+beta*tc)))+mu+beta*2/pi*sigma*log(sigma) } } } else { theta0<-atan(beta*tan(pi*alpha/2))/alpha if (param==1) { for(i in 1:n) { w<-rexp(1) l<-uniroot(function(theta){sin(alpha*(theta0+theta))/(cos(alpha*theta0)*cos(theta))^(1/alpha)*(cos(alpha*theta0+(alpha-1)*theta))^((1-alpha)/alpha)-(a-mu)/(sigma*w^((alpha-1)/alpha))},lower=-pi/2,upper=pi/2)$root u<-uniroot(function(theta){sin(alpha*(theta0+theta))/(cos(alpha*theta0)*cos(theta))^(1/alpha)*(cos(alpha*theta0+(alpha-1)*theta))^((1-alpha)/alpha)-(b-mu)/(sigma*w^((alpha-1)/alpha))},lower=-pi/2,upper=pi/2)$root uu<-runif(1,l,u) y[i]<-sigma*sin(alpha*(theta0+uu))/(cos(alpha*theta0)*cos(uu))^(1/alpha)*(cos(alpha*theta0+(alpha-1)*uu)/w)^((1-alpha)/alpha)+mu } } else { for(i in 1:n) { w<-rexp(1) l<-uniroot(function(theta){sin(alpha*(theta0+theta))/(cos(alpha*theta0)*cos(theta))^(1/alpha)*(cos(alpha*theta0+(alpha-1)*theta))^((1-alpha)/alpha)-(a-mu+sigma*beta*tan(pi*alpha/2))/(sigma*w^((alpha-1)/alpha))},lower=-pi/2,upper=pi/2)$root u<-uniroot(function(theta){sin(alpha*(theta0+theta))/(cos(alpha*theta0)*cos(theta))^(1/alpha)*(cos(alpha*theta0+(alpha-1)*theta))^((1-alpha)/alpha)-(b-mu+sigma*beta*tan(pi*alpha/2))/(sigma*w^((alpha-1)/alpha))},lower=-pi/2,upper=pi/2)$root uu<-runif(1,l,u) y[i]<-sigma*sin(alpha*(theta0+uu))/(cos(alpha*theta0)*cos(uu))^(1/alpha)*(cos(alpha*theta0+(alpha-1)*uu)/w)^((1-alpha)/alpha)+mu-sigma*beta*tan(pi*alpha/2) } } } return(y) } mrstab.elliptical<-function(n,alpha,Sigma,Mu) { stopifnot(0<alpha,alpha<=2,length(alpha)==1,dim(Sigma)[1]==dim(Sigma)[2],length(Mu)==dim(Sigma)[1]) d<-dim(Sigma)[1] x<-matrix(0, nrow=n, ncol=d) for(i in 1:n) { x[i,]<-suppressWarnings(Mu+sqrt(rstable(1,alpha/2,1,cos(pi*alpha/4)^(2/alpha),0,1))*rmvnorm(1,c(rep(0,d)),Sigma)) } return(x) } mrstab<-function(n,m,alpha,Gamma,Mu) { stopifnot(0<alpha,alpha<=2,length(alpha)==1,length(Gamma)==m,length(Mu)==2) x<-matrix(0,nrow=n,ncol=2) S<-L<-matrix(2*m,nrow=2,ncol=m) for (j in 1:m) { S[1,j]<-cos(2*(j-1)*pi/m) S[2,j]<-sin(2*(j-1)*pi/m) } for (i in 1:n) { for (j in 1:m) { L[,j]<-(Gamma[j])^(1/alpha)*(rstable(1,alpha,1,1,0,1)*S[,j]) } x[i,]<-apply(L,1,sum)+Mu } return(x) } udstab<-function(x,alpha,beta,sigma,mu,param) { stopifnot(0<alpha,alpha<=2,length(alpha)==1,-1<=beta,beta<=1,length(beta)==1,0<=sigma,length(param)==1, param %in% 0:1) k<-seq(1,150) xi<--beta*sigma*tan(pi*alpha/2) eta<--beta*tan(pi*alpha/2) r<-(1+eta^2)^(1/(2*alpha)) i<-150 if (x==mu) { pdf<-suppressWarnings(dstable(x,alpha,beta,sigma,mu,param)) } else { if(alpha==1) { pdf<-suppressWarnings(dstable(x,1,beta,sigma,mu,param)) } else { if (param==0) { L1<--sigma*r*(alpha*exp(lgamma(alpha*i+alpha)-lgamma(alpha*i+1)))^(1/alpha)+mu+xi-alpha/2 L2<-sigma*r*(alpha*exp(lgamma(alpha*i+alpha)-lgamma(alpha*i+1)))^(1/alpha)+mu+xi+alpha/2 U1<--sigma*r*alpha*exp(lgamma(i/alpha+1)-lgamma(i/alpha+1/alpha))+mu+xi+2*alpha U2<-sigma*r*alpha*exp(lgamma(i/alpha+1)-lgamma(i/alpha+1/alpha))+mu+xi-2*alpha if(x<L1 || x>L2) { pdf<-1/(pi*abs(x-mu-xi))*sum((-1)^(k-1)*exp(lgamma(alpha*k+1)-lgamma(k+1))*(abs(x-mu-xi)/(sigma*r))^(-alpha*k)*sin(k*pi/2*(alpha+2/pi*atan(beta*tan(pi*alpha/2))*sign(x-mu-xi)))) } else { if(x<U2 && x>U1) { pdf<-1/(pi*abs(x-mu-xi))*sum((-1)^(k-1)*exp(lgamma(k/alpha+1)-lgamma(k+1))*(abs(x-mu-xi)/(sigma*r))^k*sin(k*pi*(alpha+2/pi*atan(beta*tan(pi*alpha/2))*sign(x-mu-xi))/(2*alpha))) } else { pdf<-suppressWarnings(dstable(x,alpha,beta,sigma,mu,0)) } } } else { L1<--sigma*r*(alpha*exp(lgamma(alpha*i+alpha)-lgamma(alpha*i+1)))^(1/alpha)+mu-alpha L2<-sigma*r*(alpha*exp(lgamma(alpha*i+alpha)-lgamma(alpha*i+1)))^(1/alpha)+mu+alpha U1<--sigma*r*alpha*exp(lgamma(i/alpha+1)-lgamma(i/alpha+1/alpha))+mu+2*alpha U2<-sigma*r*alpha*exp(lgamma(i/alpha+1)-lgamma(i/alpha+1/alpha))+mu-2*alpha if(x<L1 || x>L2) { pdf<-1/(pi*abs(x-mu))*sum((-1)^(k-1)*exp(lgamma(alpha*k+1)-lgamma(k+1))*(abs(x-mu)/(sigma*r))^(-alpha*k)*sin(k*pi/2*(alpha+2/pi*atan(beta*tan(pi*alpha/2))*sign(x-mu)))) } else { if(x<U2 && x>U1) { pdf<-1/(pi*abs(x-mu))*sum((-1)^(k-1)*exp(lgamma(k/alpha+1)-lgamma(k+1))*(abs(x-mu)/(sigma*r))^k*sin(k*pi*(alpha+2/pi*atan(beta*tan(pi*alpha/2))*sign(x-mu))/(2*alpha))) } else { pdf<-suppressWarnings(dstable(x,alpha,beta,sigma,mu,1)) } } } } } return(pdf) } mdstab.elliptical<-function(x,alpha,Sigma,Mu) { stopifnot(0<alpha,alpha<=2,length(alpha)==1,length(Mu)==length(x),dim(Sigma)[1]==dim(Sigma)[2],length(Mu)==dim(Sigma)[1]) if(dim(Sigma)[1]!=dim(Sigma)[2]){message("matrix Sigma must be square")} if(length(Mu)!=dim(Sigma)[1]){message("matrix Sigma and Mu must be of the same dimensions")} if(length(Mu)!=length(x)){message("vector x and Mu must be of the same dimensions")} if(min(eigen(Sigma)$values)<0){message("matrix Sigma is not positive definite")} d<-length(Mu) dd<-(x-Mu)%*%solve(Sigma)%*%cbind(x-Mu)/2 k<-150 j<-seq(1,150) r<-2*(exp(lgamma(alpha*k/2+alpha/2+1)+lgamma(alpha*k/2+alpha/2+d/2)-lgamma(alpha*k/2+1)-lgamma(alpha*k/2+d/2))/(k+1))^(2/alpha) if (dd>r) { pdf<-.5*suppressWarnings(1/((2*pi)^(d/2)*pi*sqrt(det(Sigma)))*sum(2^(alpha*j/2+d/2)*(-1)^(j-1)*dd^(-alpha*j/2-d/2)*exp(lgamma(alpha*j/2+1)+lgamma(alpha*j/2+d/2)-lgamma(j+1))*sin(j*pi*alpha*.5))) } else { rr<-rstable(5000,alpha/2,1,(cos(pi*alpha/4))^(2/alpha),0,1) pdf<-suppressWarnings(mean(exp(-dd/(4*rr))/((4*pi*rr)^(d/2)*sqrt(det(Sigma))))) } return(pdf) } upstab<-function(x,alpha,beta,sigma,mu,param) { stopifnot(0<alpha,alpha<=2,length(alpha)==1,-1<=beta,beta<=1,length(beta)==1,0<=sigma,length(param)==1, param %in% 0:1) k<-seq(1,150) xi<--beta*sigma*tan(pi*alpha/2) eta<--beta*tan(pi*alpha/2) r<-(1+eta^2)^(1/(2*alpha)) i<-150 if (x==mu) { cdf<-suppressWarnings(pstable(x,alpha,beta,sigma,mu,param)) } else { if(alpha==1) { cdf<-suppressWarnings(pstable(x,1,beta,sigma,mu,param)) } else { if (param==0) { L1<--sigma*r*(alpha*exp(lgamma(alpha*i+alpha)-lgamma(alpha*i+1)))^(1/alpha)+mu+xi-alpha/2 L2<-sigma*r*(alpha*exp(lgamma(alpha*i+alpha)-lgamma(alpha*i+1)))^(1/alpha)+mu+xi+alpha/2 U1<--sigma*r*alpha*exp(lgamma(i/alpha+1)-lgamma(i/alpha+1/alpha))+mu+xi+2*alpha U2<-sigma*r*alpha*exp(lgamma(i/alpha+1)-lgamma(i/alpha+1/alpha))+mu+xi-2*alpha if(x<L1 || x>L2) { cdf<-(1+sign(x-mu-xi))/2+sign(x-mu-xi)/(pi)*sum((-1)^(k)*exp(lgamma(alpha*k+1)-lgamma(k+1))*(abs(x-mu-xi)/(sigma*r))^(-alpha*k)/(alpha*k)*sin(k*pi/2*(alpha+2/pi*atan(beta*tan(pi*alpha/2))*sign(x-mu-xi)))) } else { if(x<U2 && x>U1) { cdf<-(1/2-atan(beta*tan(pi*alpha/2))/(alpha*pi))-sign(x-mu-xi)/pi*sum((-1)^(k)*exp(lgamma(k/alpha+1)-lgamma(k+1))*(abs(x-mu-xi)/(sigma*r))^(k)/(k)*sin(k*pi*(alpha+2/pi*atan(beta*tan(pi*alpha/2))*sign(x-mu-xi))/(2*alpha))) } else { cdf<-suppressWarnings(pstable(x,alpha,beta,sigma,mu,0)) } } } else { L1<--sigma*r*(alpha*exp(lgamma(alpha*i+alpha)-lgamma(alpha*i+1)))^(1/alpha)+mu-alpha L2<-sigma*r*(alpha*exp(lgamma(alpha*i+alpha)-lgamma(alpha*i+1)))^(1/alpha)+mu+alpha U1<--sigma*r*alpha*exp(lgamma(i/alpha+1)-lgamma(i/alpha+1/alpha))+mu+2*alpha U2<-sigma*r*alpha*exp(lgamma(i/alpha+1)-lgamma(i/alpha+1/alpha))+mu-2*alpha if(x<L1 || x>L2) { cdf<-(1+sign(x-mu))/2+sign(x-mu)/(pi)*sum((-1)^(k)*exp(lgamma(alpha*k+1)-lgamma(k+1))*(abs(x-mu)/(sigma*r))^(-alpha*k)/(alpha*k)*sin(k*pi/2*(alpha+2/pi*atan(beta*tan(pi*alpha/2))*sign(x-mu)))) } else { if(x<U2 && x>U1) { cdf<-(1/2-atan(beta*tan(pi*alpha/2))/(alpha*pi))-sign(x-mu)/pi*sum((-1)^(k)*exp(lgamma(k/alpha+1)-lgamma(k+1))*(abs(x-mu)/(sigma*r))^(k)/(k)*sin(k*pi*(alpha+2/pi*atan(beta*tan(pi*alpha/2))*sign(x-mu))/(2*alpha))) } else { cdf<-suppressWarnings(pstable(x,alpha,beta,sigma,mu,1)) } } } } } return(cdf) } mfitstab.ustat<-function(u,m,method=method) { stopifnot(length(u[1,])>1,length(u[,1])>2,m %in% 2:40, method %in% 1:2) S<-matrix(2*m,nrow=2,ncol=m) for (j in 1:m) { S[1,j]<-cos(2*(j-1)*pi/m) S[2,j]<-sin(2*(j-1)*pi/m) } T<-t(S) u<-t(u) n<-length(u[1,]) mass<-W<-V<-c() L<-matrix(m*m,nrow=m,ncol=m) if(method=="1") { s<-0 for (i in 1:(n-1)) { for (j in (i+1):n) { s1<-sqrt(sum(u[,i]^2)) s2<-sqrt(sum(u[,j]^2)) s3<-sqrt(sum((u[,i]+u[,j])^2)) s<-s+(log(s3)-1/2*(log(s1)+log(s2)))/log(2) } } alpha.hat<-n*(n-1)/(2*s) for (i in 1:m) { for (j in 1:m) { q<-T[i,1]*S[1,j]+T[i,2]*S[2,j] L[i,j]<--(abs(q))^(alpha.hat)*(1-sign(q)*tan(pi*alpha.hat/2)) } } for (i in 1:m) { hh<-T[i,1]*u[1,]+T[i,2]*u[2,] V[i]<-complex(real=mean(cos(hh)),imaginary=mean(sin(hh))) W[i]<-Re(log(V[i]))+Im(log(V[i])) } for (i in 1:m) { mass[i]<-((nnls(-L,-W)[1])$x[i]) } } else { d1<-0; d2<-0; for (j2 in 1:n) { d1[j2]<-u[1,j2] d2[j2]<-u[2,j2] } y<-0 j1=1:(n/2) y[j1]<-log(((u[1,2*j1]+u[1,2*j1-1])^2+(u[2,2*j1]+u[2,2*j1-1])^2)^.5) xx<-0 j1=1:n xx[j1]<-log((u[1,j1]^2+u[2,j1]^2)^.5) alpha.hat<-log(2)/(mean(y)-mean(xx)) for (i in 1:m) { for (j in 1:m) { q<-T[i,1]*S[1,j]+T[i,2]*S[2,j] L[i,j]<--(abs(q))^(alpha.hat)*(1-sign(q)*tan(pi*alpha.hat/2)) } } for (i in 1:m) { hh<-T[i,1]*u[1,]+T[i,2]*u[2,] V[i]<-complex(real=mean(cos(hh)),imaginary=mean(sin(hh))) W[i]<-Re(log(V[i]))+Im(log(V[i])) } for (i in 1:m) { mass[i]<-((nnls(-L,-W)[1])$x[i]) } } return(list(alpha=alpha.hat,mass=mass)) } mfitstab.elliptical<-function(yy,alpha0,Sigma0,Mu0){ s0<-Sigma0 a0<-alpha0 m0<-Mu0 b<-1; N<-2000; n<-length(yy[,1]); d<-length(yy[1,]); mm<-150; nn<-120; jj<-1; Sigma.matrix<-array(0,dim=c(d,ncol=d,mm)) mu.matrix<-matrix(0,ncol=d,nrow=mm) alpha.matrix<-c() Sigma.matrix[,,1]<-s0 alpha.matrix[1]<-a0 mu.matrix[1,]<-m0 sm<-c() ww<-matrix(0,ncol=d,nrow=n) for (r in 2:mm) { ee<-sqrt(rexp(n,1)) k<-round(min(160,160/a0)) vv<-0.5+(exp(lgamma(a0*k/2+a0/2+1)+lgamma(a0*k/2+a0/2+d/2+1)-lgamma(a0*k/2+1)-lgamma(a0*k/2+d/2+1))/((k+1)))^(2/a0) for (i in 1:n) { dis<-(yy[i,]-m0)%*%solve(s0)%*%cbind(yy[i,]-m0) if (dis>vv) { s1<-s2<-0; for (j in 1:k) { s1<-s1+(-1)^(j)*dis^(-a0*j/2-d/2-1)*exp(lgamma(a0*j/2+1)+lgamma(a0*j/2+d/2+1)-lgamma(j+1))*sin(j*pi*a0*.75) s2<-s2+(-1)^(j)*dis^(-a0*j/2-d/2)*exp(lgamma(a0*j/2+1)+lgamma(a0*j/2+d/2)-lgamma(j+1))*sin(j*pi*a0*.75) } sm[i]<-s1/s2 } else { rr<-(rstable(N,a0/2,1,(cos(pi*a0/4))^(2/a0),0,1)) ss1<-sum(rr^(-d/2-1)*exp(-.5*dis/rr),na.rm=TRUE) ss2<-sum(rr^(-d/2)*exp(-.5*dis/rr),na.rm=TRUE) sm[i]<-ss1/ss2 } } ee<-sqrt(rexp(n,1)) for (j in 1:d) { mu.matrix[r,j]<-suppressWarnings(sum(yy[,j]*sm,na.rm=TRUE)/sum(sm,na.rm=TRUE)) ww[,j]<-yy[,j]-m0[j] } m0<-mu.matrix[r,] y<-ww/ee Z<-c() for (i in 1:n) { num<-y[i,]%*%solve(s0)%*%y[i,] up<-d^(d/2)*exp(-d/2)/num^(d/2) j<-1 while (j<2) { w<-rweibull(1,a0,1) ex<-exp(-.5*num*w^2) if (runif(1)<w^d*ex/up) { Z[i]<-w j<-j+1 } } } f<-function(p) { sum(-log(p[1])-(p[1]-1)*log(Z)+Z^p[1]) } a0<-suppressWarnings(nlm(f,p<-c(a0),hessian=TRUE)$estimate) sum<-0 for (i in 1:n) { sum<-sum+cbind(y[i,])%*%rbind(y[i,])*Z[i]^2 } s0<-sum/n Sigma.matrix[,,r]<-s0 if (a0>2) { a0<-1.99 } alpha.matrix[r]<-a0 } a1<-matrix(0,nrow=(mm-nn+1),ncol=1) a1<-alpha.matrix[(mm-nn):mm] s1<-matrix(0,nrow=d,ncol=d) for (i in 1:d) { for (j in 1:d) { s1[i,j]<-mean(Sigma.matrix[i,j,(mm-nn):(mm)]) } } Sigma<-s1 alpha=mean(a1) mu=apply(mu.matrix[(mm-nn):mm,],2,mean) suppressWarnings(return(list(alpha=alpha,Sigma=Sigma,Mu=mu))) } ufitstab.sym<-function(yy,alpha0,sigma0,mu0) { n<-length(yy) m<-120 N<-2000 alphahat<-c() sigmahat<-c() muhat<-c() m0<-mu0 a<-matrix(m*3,nrow=m,ncol=3) a[1,1]<-alpha0 a[1,2]<-sigma0 a[1,3]<-m0 a0<-alpha0 s0<-sigma0 ss<-sm<-Z1<-Z<-c() for (r in 1:m-1) { k<-round(min(165,165/a0)) ee<-sqrt(rexp(n,1)) vv<-1+2*s0*(exp(lgamma(a0*k/2+a0/2+1)+lgamma(a0*k/2+a0/2+1/2)-lgamma(a0*k/2+1)-lgamma(a0*k/2+1/2))/((k+1)))^(1/a0) for (i in 1:n) { d<-abs(yy[i]-m0) if (d>vv) { s1<-s2<-0 for (j in 1:k) { s1<-s1+(2*s0)^(a0*j+2)/(abs(d)^(a0*j+3))*(-1)^(j-1)*exp(lgamma(a0*j/2+1)+lgamma(a0*j/2+3/2)-lgamma(j+1))*sin(j*pi*a0*.75)/(pi^1.5) s2<-s2+(2*s0)^(a0*j)/(abs(d)^(a0*j+1))*(-1)^(j-1)*exp(lgamma(a0*j/2+1)+lgamma(a0*j/2+1/2)-lgamma(j+1))*sin(j*pi*a0*.75)/(pi^1.5) } sm[i]<-s1/s2 } else { rr<-rstable(N,a0/2,1,(cos(pi*a0/4))^(2/a0),0,1) sm[i]<-sum(1/(rr^(1.5))*exp(-(d^2/(2*sqrt(rr)*s0)^2)),na.rm=TRUE)/sum(1/(rr^(0.5))*exp(-(d^2/(2*sqrt(rr)*s0)^2)),na.rm=TRUE) } } m0<-sum(yy*sm,na.rm=TRUE)/sum(sm,na.rm=TRUE) y<-(yy-m0)/ee for (i in 1:n) { y0<-y[i] j<-1 while (j<2) { tt<-rweibull(1,a0,1) ra<-exp(-.5)/(sqrt(2*pi)*abs(y0)) u<-runif(1) if (u<dnorm(y0,0,sqrt(2)*s0/tt)/ra) { Z1[j]<-tt j<-j+1 } } Z[i]<-Z1 } f<-function(p){sum(-log(p[1])-(p[1]-1)*log(Z)+Z^p[1])} out<-suppressWarnings(nlm(f, p<-c(a0), hessian=FALSE)) a0<-out$estimate[] s0<-sqrt(sum(y^2*Z^2)/(2*n)) a[r+1,3]<-m0 a[r+1,2]<-s0 if (a0>2){a0<-1.95} a[r+1,1]<-a0 } return((list(alpha=mean(a[(m-30):m,1]),sigma=mean(a[(m-30):m,2]),mu=mean(a[(m-30):m,3])))) } ufitstab.sym.mix<-function(yy,k,omega0,alpha0,sigma0,mu0) { n<-length(yy) m<-150 N<-4000 mu.matrix<-matrix(m*k,ncol=k,nrow=m) sigma.matrix<-matrix(m*k,ncol=k,nrow=m) alpha.matrix<-matrix(m*k,ncol=k,nrow=m) p.matrix<-matrix(m*k,ncol=k,nrow=m) tau.matrix<-matrix(n*k,ncol=k,nrow=n) d<-matrix(n*k,ncol=k,nrow=n) sm<-matrix(n*k,ncol=k,nrow=n) ss<-matrix(n*k,ncol=k,nrow=n) clustering<-rep(0,length(yy)) vv<-c() mu.matrix[1,]<-mu0 p.matrix[1,]<-omega0 alpha.matrix[1,]<-alpha0 sigma.matrix[1,]<-sigma0 p0<-p.matrix[1,] a0<-alpha.matrix[1,] s0<-sigma.matrix[1,] m0<-mu.matrix[1,] a11<-matrix(0,ncol=5,nrow=k) a12<-matrix(0,ncol=5,nrow=k) for (r in 2:m) { for (j in 1:n) { for (ii in 1:k) { kk<-round(min(168,168/a0[ii])) vv[ii]<-2+2*s0[ii]*(exp(lgamma(a0[ii]*kk/2+a0[ii]/2+1)+lgamma(a0[ii]*kk/2+a0[ii]/2+1/2)-lgamma(a0[ii]*kk/2+1)-lgamma(a0[ii]*kk/2+1/2))/((kk+1)))^(1/a0[ii]) d<-abs(yy[j]-m0[ii]) if (d>vv[ii]) { s.1<-s.2<-0 for (jj in 1:kk) { s.1<-s.1+(2*s0[ii])^(a0[ii]*jj+2)/(abs(d)^(a0[ii]*jj+3))*(-1)^(jj-1)*exp(lgamma(a0[ii]*jj/2+1)+lgamma(a0[ii]*jj/2+3/2)-lgamma(jj+1))*sin(jj*pi*a0[ii]*.75)/(pi^1.5) s.2<-s.2+(2*s0[ii])^(a0[ii]*jj+0)/(abs(d)^(a0[ii]*jj+1))*(-1)^(jj-1)*exp(lgamma(a0[ii]*jj/2+1)+lgamma(a0[ii]*jj/2+1/2)-lgamma(jj+1))*sin(jj*pi*a0[ii]*.75)/(pi^1.5) } sm[j,ii]<-s.1/s.2 } else { rr<-rstable(N,a0[ii]/2,1,(cos(pi*a0[ii]/4))^(2/a0[ii]),0,1) ss1<-sum(1/rr^(1.5)*exp(-(yy[j]-m0[ii])^2/(2*sqrt(rr)*s0[ii])^2),na.rm=TRUE) ss2<-sum(1/rr^(0.5)*exp(-(yy[j]-m0[ii])^2/(2*sqrt(rr)*s0[ii])^2),na.rm=TRUE) sm[j,ii]<-ss1/ss2 } s.pdf<-0 for (mm in 1:k) { s.pdf<-s.pdf+p0[mm]*dstable(yy[j],a0[mm],0,s0[mm],m0[mm],1) } tau.matrix[j,ii]<-p0[ii]*dstable(yy[j],a0[ii],0,s0[ii],m0[ii],1)/s.pdf } } for (ii in 1:k) { mu.matrix[r,ii]<-sum(yy*sm[,ii]*tau.matrix[,ii],na.rm=TRUE)/sum(sm[,ii]*tau.matrix[,ii],na.rm=TRUE) m0[ii]<-mu.matrix[r,ii] p0[ii]<-sum(tau.matrix[,ii])/n p.matrix[r,ii]<-p0[ii] } z<-matrix(0,ncol=k,nrow=n) for (j in 1:n) { max<-tau.matrix[j,1] tt<-1 for (ii in 2:k) { if (tau.matrix[j,ii]> max) { max<-tau.matrix[j,ii] tt<-ii } } z[j,tt]<-1 } for (bb in 1:k) { for (rrr in 1:5) { n00<-length(yy[z[,bb]==1]) y00<-(yy[z[,bb]==1]-m0[bb])/sqrt(rexp(n00,1)) Z<-c() for (i in 1:n00) { up<-exp(-.5)/(sqrt(2*pi)*abs(y00[i])) j<-1 while (j<2) { w<-rweibull(1,a0[bb],1) ex<-dnorm(y00[i],0,sqrt(2)*s0[bb]/w) if (runif(1)<ex/up) { Z[i]<-w j<-j+1 } if (ex==0) { Z[i]<-sqrt(2)*s0[bb]/abs(y00[i]) j<-j+1 } } } f<-function(v){sum(-log(v[1])-(v[1]-1)*log(Z)+Z^v[1])} out<-suppressWarnings(nlm(f,v<-c(a0[bb]),hessian=FALSE)) a11[bb,rrr]<-out$estimate[] if (a11[bb,rrr]>2) { a11[bb,rrr]<-1.99 } a12[bb,rrr]<-sqrt(sum(y00^2*Z^2,na.rm=TRUE)/(2*n00)) } alpha.matrix[r,bb]<-mean(a11[bb,]) sigma.matrix[r,bb]<-mean(a12[bb,]) a0[bb]<-alpha.matrix[r,bb] s0[bb]<-sigma.matrix[r,bb] } } for (i in 1:length(yy)){clustering[i]<-which(z[i,]==1)[1]} return(list(omega=apply(p.matrix[(m-50):m,],2,mean),alpha=apply(alpha.matrix[(m-50):m,],2,mean),sigma=apply(sigma.matrix[(m-50):m,],2,mean),mu=apply(mu.matrix[(m-50):m,],2,mean),cluster=clustering)) } ufitstab.cauchy<-function(y,beta0,sigma0,mu0,param) { stopifnot(-1<=beta0,beta0<=1,length(beta0)==1,0<=sigma0,length(mu0)==1,length(param)==1,param %in% 0:1) n<-length(y) ep11<-ep1<-ep2<-ep22<-ep222<-ep11<-ep0<-m<-k<-t1<-t2<-c() t2[1]<-sigma0*beta0 t1[1]<-max(sigma0*(1-abs(beta0)),.001) m[1]<-mu0 nn<-1000;mm<-950 for(j in 1:nn) { for(i in 1:n) { p2<-rstable(3000,1,1,1,0,1) k<-(y[i]-m[j]-t2[j]*p2)/t1[j] tt<-0;r<-0; dy<-2^(tt/2)*gamma(tt/2+1)/(pi*t1[j])*mean(p2^r/(1+k^2)^(tt/2+1)) tt<-2;r<-2; ep22[i]<-2^(tt/2)*gamma(tt/2+1)/(pi*t1[j])*mean(p2^r/(1+k^2)^(tt/2+1))/dy tt<-2;r<-1; ep2[i]<-2^(tt/2)*gamma(tt/2+1)/(pi*t1[j])*mean(p2^r/(1+k^2)^(tt/2+1))/dy tt<-2;r<-0; ep1[i]<-2^(tt/2)*gamma(tt/2+1)/(pi*t1[j])*mean(p2^r/(1+k^2)^(tt/2+1))/dy } m[j]<-(sum(y*ep1,na.rm=TRUE)-t2[j]*sum(ep2,na.rm=TRUE))/sum(ep1,na.rm=TRUE) m[j+1]<-m[j] t1[j]<-sqrt((sum((y-m[j])^2*ep1)+t2[j]^2*sum(ep22)-2*t2[j]*sum((y-m[j])*ep2))/n) t1[j+1]<-t1[j] t2[j]<-sum((y-m[j])*ep2)/sum(ep22) t2[j+1]<-t2[j] } beta.hat<-uniroot(function(p) mean(t2[mm:nn])/mean(t1[mm:nn])-p/(1-abs(p)),c(-.999999,.999999))$root sigma.hat<-min(c(mean(t2[mm:nn])/beta.hat, mean(t1[mm:nn])/(1-abs(beta.hat)))) mu.hat<-mean(m[mm:nn]) if (param==0) { return(list(beta=beta.hat,sigma=sigma.hat,mu=mu.hat)) } else { return(list(beta=beta.hat,sigma=sigma.hat,mu=(mu.hat-2/pi*beta.hat*sigma.hat*log(sigma.hat)))) } } ufitstab.cauchy.mix<-function(y,k,omega0,beta0,sigma0,mu0) { stopifnot(-1<=beta0,beta0<=1,length(beta0)==k,0<=sigma0,length(mu0)==k,length(sigma0)==k,sum(omega0)==1,0<omega0,omega0<1) n <- length(y) MM <- 1300 NN <- 1500 m <- 1500 N <- 2000 estim.matrix <- array(0, dim = c(4, ncol = k, m)) mu.matrix <- matrix(m * k, ncol = k, nrow = m) t1.matrix <- matrix(m * k, ncol = k, nrow = m) t2.matrix <- matrix(m * k, ncol = k, nrow = m) p.matrix <- matrix(m * k, ncol = k, nrow = m) tau.matrix <- matrix(m * k, ncol = k, nrow = n) e1ij <- matrix(m * k, ncol = k, nrow = n) e2ij <- matrix(m * k, ncol = k, nrow = n) e3ij <- matrix(m * k, ncol = k, nrow = n) e4ij <- matrix(m * k, ncol = k, nrow = n) mu.matrix[1, ] <- mu0 p.matrix[1, ] <- omega0 t2.matrix[1, ] <- sigma0 * beta0 t1.matrix[1, ] <- sigma0 * (1 - abs(beta0)) p0 <- p.matrix[1, ] t1 <- t1.matrix[1, ] t2 <- t2.matrix[1, ] m0 <- mu.matrix[1, ] b0 <- s0 <- dy <- c() clustering<-rep(0,n) for (r in 2:m) { for (i in 1:n) { for (bb in 1:k) { p2<-rstable(N,1,1,1,0,1) t1[bb]<-ifelse (abs(t1[bb])< 0.000001,t1[bb]<-.000001,t1[bb]) kk<-(y[i]-m0[bb]-t2[bb]*p2)/t1[bb] tt<-0;rr<-0; dy[bb]<-2^(tt/2)*gamma(tt/2+1)/(pi*t1[bb])*mean(p2^rr/(1+kk^2)^(tt/2+1),na.rm=TRUE) tt<-2;rr<-2; e4ij[i,bb]<-2^(tt/2)*gamma(tt/2+1)/(pi*t1[bb])*mean(p2^rr/(1+kk^2)^(tt/2+1),na.rm=TRUE)/dy[bb] tt<-2;rr<-1; e3ij[i,bb]<-2^(tt/2)*gamma(tt/2+1)/(pi*t1[bb])*mean(p2^rr/(1+kk^2)^(tt/2+1),na.rm=TRUE)/dy[bb] tt<-2;rr<-0; e2ij[i,bb]<-2^(tt/2)*gamma(tt/2+1)/(pi*t1[bb])*mean(p2^rr/(1+kk^2)^(tt/2+1),na.rm=TRUE)/dy[bb] } for (aa in 1:k) { e1ij[i,aa]<-p0[aa]*dy[aa]/sum(p0*dy,na.rm=TRUE) } } for (ii in 1:k) { mu.matrix[r,ii]<-(sum(y*e2ij[,ii]*e1ij[,ii],na.rm=TRUE)-t2[ii]*sum(e3ij[,ii]*e1ij[,ii],na.rm=TRUE))/ sum(e1ij[,ii]*e2ij[,ii],na.rm=TRUE) m0[ii]<-mu.matrix[r,ii] t1.matrix[r,ii]<-sqrt((sum((y-m0[ii])^2*e2ij[,ii]*e1ij[,ii],na.rm=TRUE)-2*t2[ii]* sum((y-m0[ii])*e3ij[,ii]*e1ij[,ii],na.rm=TRUE)+t2[ii]^2*sum(e4ij[,ii]*e1ij[,ii],na.rm=TRUE))/sum(e1ij[,ii],na.rm=TRUE)) t1[ii]<-t1.matrix[r,ii] t2.matrix[r,ii]<-sum((y-m0[ii])*e3ij[,ii]*e1ij[,ii],na.rm=TRUE)/sum(e4ij[,ii]*e1ij[,ii],na.rm=TRUE) t2[ii]<-t2.matrix[r,ii] p.matrix[r,ii]<-sum(e1ij[,ii])/n p0[ii]<-p.matrix[r,ii] } z<-matrix(0,ncol=k,nrow=n) for (j in 1:n) { max<-e1ij[j,1] uu<-1 for (ii in 2:k) { if (e1ij[j,ii]> max) { max<-e1ij[j,ii] uu<-ii } } z[j,uu]<-1 } for (aa in 1:k) { b0[aa]<-suppressWarnings(uniroot(function(p) t2[aa]/t1[aa]-p/(1-abs(p)),c(-.9999999,.9999999))$root) s0[aa]<-t1[aa]/(1-abs(b0[aa])) } estim.matrix[1,,r]<-p0 estim.matrix[2,,r]<-b0 estim.matrix[3,,r]<-s0 estim.matrix[4,,r]<-m0 } estim.matrix[1,,1]<-omega0 estim.matrix[2,,1]<-beta0 estim.matrix[3,,1]<-sigma0 estim.matrix[4,,1]<-mu0 for (i in 1:length(y)){clustering[i]<-which(z[i,]==1)[1]} return(list(omega=apply(estim.matrix[1,,(MM:NN)],1,mean),beta=apply(estim.matrix[2,,(MM:NN)],1,mean),sigma=apply(estim.matrix[3,,(MM:NN)],1,mean),mu=apply(estim.matrix[4,,(MM:NN)],1,mean),cluster=clustering)) } ufitstab.skew<-function(y,alpha0,beta0,sigma0,mu0,param) { stopifnot(length(y)>=4,0<alpha0,alpha0<=2,alpha0!=1,length(alpha0)==1,-1<=beta0,beta0<=1,length(beta0)==1,0<=sigma0,length(sigma0)==1,length(param)==1, param %in% 0:1) n<-length(y) M<-100;N0<-100;N<-120; sss<-m<-s<-a<-b<-ep11<-ep1<-ep2<-ep3<-a.estim<-c() m[1]<-mu0;s[1]<-sigma0;b[1]<-beta0;a[1]<-alpha0 for(j in 1:N) { pi1<-matrix(suppressWarnings(rstable(M^2,a[j]/2,1,(cos(pi*a[j]/4))^(2/a[j]),0,1)),M,M) pi2<-matrix(suppressWarnings(rstable(M^2,a[j],1,1,0,1)),M,M) for(i in 1:n) { ss<-dnorm(y[i],m[j]-s[j]*b[j]*tan(pi*a[j]/2)+sign(b[j])*abs(b[j])^(1/a[j])*s[j]*pi2,sd=sqrt(2*pi1)*s[j]*(1-abs(b[j]))^(1/a[j])) ep11[i]<-mean(ss,na.rm=TRUE) dy<-ep11[i] ep1[i]<-mean(ss/pi1,na.rm=TRUE)/dy ep2[i]<-mean(ss*pi2/pi1,na.rm=TRUE)/dy ep3[i]<-mean((ss*pi2^2/pi1),na.rm=TRUE)/dy } m[j+1]<-(sum((y+s[j]*b[j]*tan(pi*a[j]/2))*ep1,na.rm=TRUE)-s[j]*sign(b[j])*abs(b[j])^(1/a[j])*sum(ep2,na.rm=TRUE))/sum(ep1,na.rm=TRUE) fs<-function(p){.5*sum((y-m[j])^2*ep1)/(abs(p)^3*(1-abs(b[j]))^(2/a[j]))+.5*b[j]*(tan(pi*a[j]/2))*sum((y-m[j])*ep1)/(p^2*(1-abs(b[j]))^(2/a[j]))-.5*sign(b[j])*abs(b[j])^(1/a[j])*sum((y-m[j])*ep2)/(p^2*(1-abs(b[j]))^(2/a[j]))-n/abs(p)} s[j+1]<-suppressWarnings(uniroot(fs,c(0.000000001,10000000))$root) fb<-function(p){.25*sum((y-m[j])^2*ep1)/(s[j]^2*(1-abs(p))^(2/a[j]))+.25*p^2*(tan(pi*a[j]/2))^2*sum(ep1)/((1-abs(p))^(2/a[j]))+.25*abs(p)^(2/a[j])*sum(ep3)/((1-abs(p))^(2/a[j]))+.5*p*(tan(pi*a[j]/2))*sum((y-m[j])*ep1)/(s[j]*(1-abs(p))^(2/a[j]))-.5*abs(p)^(1+1/a[j])*(tan(pi*a[j]/2))*sum(ep2)/((1-abs(p))^(2/a[j]))-.5*sign(p)*abs(p)^(1/a[j])*sum((y-m[j])*ep2)/(s[j]*(1-abs(p))^(2/a[j]))+sum(1/a[j]*(log(1-abs(p))))} b[j+1]<-suppressWarnings(optimize(fb,lower=-.999999,upper=.999999))$minimum[[1]] st<-suppressWarnings(rstable(n,a[j],1,1,0,1)) sss[j]<-s[j]*(1+abs(b[j]))^(1/a[j]) yy<-(y-m[j]-s[j]*sign(b[j])*(abs(b[j]))^(1/a[j])*st)/sss[j] for (ii in 1:20) { nn<-length(yy) Z1<-c() Z<-c() yyy<-(yy)/(sqrt(rexp(nn,1))) for (i in 1:nn) { y0<-yyy[i] jj<-1 while (jj<2) { tt<-rweibull(1,a[j],1) ra<-exp(-.5)/(sqrt(2*pi)*abs(y0)) u<-runif(1) if (u<dnorm(y0,0,sqrt(2)/tt)/ra) { Z1[jj]<-tt jj<-jj+1 } } Z[i]<-Z1 } f<-function(p){sum(-log(p[1])-(p[1]-1)*log(Z)+Z^p[1])} a.hat<-suppressWarnings(nlm(f, p<-c(a[j])))$estimate[] if (a.hat>1.99){a.hat<-1.98} a.estim[ii]<-a.hat } a[j+1]<-mean(a.estim[10:20]) } alpha.hat<-mean(a[N0:N]) mu.hat<-mean(m[N0:N]) sigma.hat<-mean(s[N0:N]) w<-function(p){-sum(log(dstable(y,alpha.hat,p,sigma.hat,mu.hat,0)))} beta.hat<-suppressWarnings(optimize(w,c(-1,1)))$minimum if(param==0) { return(list(alpha=alpha.hat,beta=beta.hat,sigma=sigma.hat,mu=mu.hat)) } else { return(list(alpha=alpha.hat,beta=beta.hat,sigma=sigma.hat,mu=mu.hat-beta.hat*sigma.hat*tan(pi*alpha.hat/2))) } } ufitstab.ustat<-function(x) { n<-length(x) s1<-s2<-0 for (i in 1:(n-1)) { for (j in (i+1):n) { s1<-s1+(log(abs(x[i]+x[j]))-(log(abs(x[i]))+log(abs(x[j])))/2)/log(2) s2<-s2+(1+0.57721566/log(2))*(log(abs(x[i]))+log(abs(x[j])))/2-0.57721566/log(2)*log(abs(x[i]+x[j]))+0.57721566 } } return(list(alpha=n*(n-1)/(2*s1),sigma=exp(2*s2/(n*(n-1))))) }
library(plotly) library(scales) library(dplyr) library(purrr) library(ggplot2) data_f <- function(view_id, date_range = c(Sys.Date() - 365, Sys.Date() - 1), page_filter_regex = ".*", ...) { page_filter_object <- dim_filter("pagePath", operator = "REGEXP", expressions = page_filter_regex) page_filter <- filter_clause_ga4(list(page_filter_object), operator = "AND") google_analytics( viewId = view_id, date_range = date_range, metrics = "uniquePageviews", dimensions = c("date", "pagePath"), dim_filters = page_filter, max = 10000, order = order_type("uniquePageviews", "DESCENDING"), anti_sample = FALSE) } model_f <- function( ga_data, first_day_pageviews_min = 1, total_unique_pageviews_cutoff = 100, days_live_range = 365, ...) { normalize_date_start <- function(page) { ga_data_single_page <- ga_data %>% filter(pagePath == page) first_live_row <- min(which(ga_data_single_page$uniquePageviews > first_day_pageviews_min)) ga_data_single_page <- ga_data_single_page[first_live_row:nrow(ga_data_single_page), ] normalized_results <- data.frame( date = seq.Date(from = min(ga_data_single_page$date), to = max(ga_data_single_page$date), by = "day"), days_live = seq(min(ga_data_single_page$date):max(ga_data_single_page$date)), page = page) %>% left_join(ga_data_single_page, by = "date") %>% mutate(uniquePageviews = ifelse(is.na(uniquePageviews), 0, uniquePageviews)) %>% mutate(cumulative_uniquePageviews = cumsum(uniquePageviews)) %>% dplyr::select(page, days_live, uniquePageviews, cumulative_uniquePageviews) } pages_list <- ga_data %>% group_by(pagePath) %>% summarise(total_traffic = sum(uniquePageviews)) %>% filter(total_traffic > total_unique_pageviews_cutoff) ga_data_normalized <- map_dfr(pages_list$pagePath, normalize_date_start) ga_data_normalized %>% filter(days_live <= days_live_range) } output_f <- function(ga_data_normalized, ...) { gg <- ggplot(ga_data_normalized, mapping = aes(x = days_live, y = cumulative_uniquePageviews, color = page)) + geom_line() + scale_y_continuous(labels = comma) + labs(title = "Unique Pageviews by Day from Launch", x = " theme_light() + theme(panel.grid = element_blank(), panel.border = element_blank(), legend.position = "none", panel.grid.major.y = element_line(color = "gray80"), axis.ticks = element_blank()) ggplotly(gg) }
library(testthat) library(rly) context("Attempt to define a rule named 'error'") Parser <- R6::R6Class("Parser", public = list( tokens = c('NAME','NUMBER', 'PLUS','MINUS','TIMES','DIVIDE','EQUALS', 'LPAREN','RPAREN'), precedence = list(c('left','PLUS','MINUS'), c('left','TIMES','DIVIDE','MINUS'), c('right','UMINUS')), names = new.env(hash=TRUE), p_statement_assign = function(doc='statement : NAME EQUALS expression', p) { self$names[[as.character(p$get(2))]] <- p$get(4) }, p_statement_expr = function(doc='statement : expression', p) { cat(p$get(2)) cat('\n') }, p_expression_binop = function(doc='expression : expression PLUS expression | expression MINUS expression | expression TIMES expression | expression DIVIDE expression', p) { if(p$get(3) == 'PLUS') p$set(1, p$get(2) + p$get(4)) else if(p$get(3) == 'MINUS') p$set(1, p$get(2) - p$get(4)) else if(p$get(3) == 'TIMES') p$set(1, p$get(2) * p$get(4)) else if(p$get(3) == 'DIVIDE') p$set(1, p$get(2) / p$get(4)) }, p_expression_uminus = function(doc='expression : MINUS expression %prec UMINUS', p) { p$set(1, -p$get(3)) }, p_expression_group = function(doc='expression : LPAREN expression RPAREN', p) { p$set(1, p$get(3)) }, p_expression_number = function(doc='expression : NUMBER', p) { p$set(1, p$get(2)) }, p_expression_name = function(doc='expression : NAME', p) { p$set(1, self$names[[as.character(p$get(2))]]) }, p_error_handler = function(doc='error : NAME', p) { }, p_error = function(p) { } ) ) test_that("error", { expect_output(expect_error(rly::yacc(Parser), "\\[YaccError\\]Unable to build parser"), "ERROR .* \\[GrammarError\\]p_error_handler: Illegal rule name error. Already defined as a token") })
knitr::opts_chunk$set( collapse = TRUE, comment = " fig.height = 5, fig_width = 8 ) library(avocado) library(dplyr) library(ggplot2) data('hass_region') dplyr::glimpse(hass_region) hass_region %>% mutate( year = lubridate::year(week_ending) ) %>% filter(year == 2019) %>% group_by(year, region) %>% summarize( total_revenue = sum((avg_price_nonorg)*(plu4046 + plu4225 + plu4770 + small_nonorg_bag + large_nonorg_bag + xlarge_nonorg_bag) + (avg_price_org)*(plu94046 + plu94225 + plu94770 + small_org_bag + large_org_bag + xlarge_org_bag)), .groups = 'drop' ) %>% slice(which.max(total_revenue)) hass_region %>% mutate( year = lubridate::year(week_ending) ) %>% filter(year == 2019) %>% group_by(week_ending, region) %>% summarize( total_revenue = sum((avg_price_nonorg)*(plu4046 + plu4225 + plu4770 + small_nonorg_bag + large_nonorg_bag + xlarge_nonorg_bag) + (avg_price_org)*(plu94046 + plu94225 + plu94770 + small_org_bag + large_org_bag + xlarge_org_bag)), .groups = 'drop' ) %>% ggplot(aes(x = week_ending)) + geom_line(aes(y = total_revenue, color = region)) + labs(x = 'Month/Year', y = 'Revenue (US$)', title = 'Total Revenue for 2019 Across Regions', caption = 'Source: Hass Avocado Board\nNot adjusted for inflation') + scale_color_manual(name = 'Region', values = c('California' = 'orange', 'Great Lakes' = 'blue', 'Midsouth' = 'yellow', 'Northeast' = 'steelblue', 'Plains' = 'darkgreen', 'South Central' = 'red', 'Southeast' = 'magenta', 'West' = 'darkgray')) + theme(plot.background = element_rect(fill = "grey20"), plot.title = element_text(color = " axis.title = element_text(color = " axis.text.x = element_text(color = 'grey50', angle = 45, hjust = 1), axis.text.y = element_text(color = 'grey50'), plot.caption = element_text(color = 'grey75'), panel.background = element_blank(), panel.grid.major = element_line(color = "grey50", size = 0.2), panel.grid.minor = element_line(color = "grey50", size = 0.2), legend.background = element_rect(fill = 'grey20'), legend.key = element_rect(fill = 'grey20'), legend.title = element_text(color = 'grey75'), legend.text = element_text(color = 'grey75') ) hass_region %>% group_by(region) %>% summarize( total_revenue = sum((avg_price_nonorg)*(plu4046 + plu4225 + plu4770 + small_nonorg_bag + large_nonorg_bag + xlarge_nonorg_bag) + (avg_price_org)*(plu94046 + plu94225 + plu94770 + small_org_bag + large_org_bag + xlarge_org_bag)), .groups = 'drop' ) %>% arrange(desc(region)) %>% mutate( prop = round(total_revenue / sum(total_revenue) * 100), ypos = cumsum(prop) - (0.5*prop), txt = paste0(region, ': ', prop,'%') ) %>% ggplot(aes(x = "", y = prop, fill = region)) + geom_bar(stat = 'identity', width = 1, color = 'white') + coord_polar(theta = 'y') + theme_void() + ggrepel::geom_label_repel(aes(y = ypos, label = txt), show.legend = FALSE, color = 'black', size = 3, nudge_x = 1) + labs(title = 'Revenue Proportion by Region', caption = 'Source: Hass Avocado Board') + theme( plot.title = element_text(color = " plot.caption = element_text(color = 'grey75'), panel.background = element_blank(), legend.position = 'none' )
context("parse_text") describe("parse expressions like parse(text = ...)", { it("can parse sinlge expression", { expr <- "1+1" res <- as.character(parse(text = expr)) expect_identical(as.character(parse_text(expr)), res) }) it("can parse multiple expressions", { expr <- "1+1; ls()" res <- as.character(parse(text = expr)) expr <- c("1+1", "ls()") res <- as.character(parse(text = expr)) }) it("produces NA on incomplete expression and try-error on wrong expression", { expr <- "1 +" expect_true(is.na(parse_text(expr))) expr <- "1+)" expect_is(parse_text(expr), "try-error") }) it("captures the error message for a wrong expression", { get_error_msg <- function(text) { res <- try(parse(text = text), silent = TRUE) if (inherits(res, "try-error")) { res <- sub("^.*<text>:", "", as.character(res)) res <- sub("\n$", "", res) return(res) } else return("") } expr <- "1+)" }) })
create.tags <- function(mat){ n <- NROW(mat) k <- NCOL(mat) cnms <- colnames(mat) resind <- matrix(0, nrow=k*(k-1)/2, ncol=2) ind1 <- 1:n j0 <- 1 for(i in 1:(k-1)){ ind2 <- ind1 + n for(j in (i+1):k){ j0 <- j0+1 resind[j0/2, 1] <- i resind[j0/2, 2] <- j j0 <- j0 + 1 ind2 <- ind2 + n } ind1 <- ind1 + n } col.means <- colMeans(mat) col.norms <- sqrt(colSums(mat*mat)) list(tags=resind,col.means=col.means, col.norms=col.norms) }
knitr::opts_chunk$set( collapse = TRUE, comment = " error = TRUE ) library(erify) emphasize <- function(what, n) { for (i in 1:n) { cat(what, "\n") } } emphasize("You're beautiful!", 3) emphasize(c, 3) emphasize <- function(what, n) { check_type(what, "character") for (i in 1:n) { cat(what, "\n") } } emphasize(c, 3) emphasize <- function(what, n) { check_type(what, "character") check_length(what, 1) for (i in 1:n) { cat(what, "\n") } } emphasize(c("apple", "orange"), 3) emphasize <- function(what, n) { check_type(what, "character") check_length(what, c(0, NA)) for (i in 1:n) { cat(what, "\n") } } emphasize(character(0), 3) emphasize("You're beautiful again!", 3) arg <- "I'm invalid." check_content(arg, c("yes", "no")) check_content(arg, c("yes", "no"), general = "You are wrong.") check_content(arg, c("yes", "no"), specific = "You are wrong.") supplement <- c(x = "You're wrong.", i = "But you're beautiful.") check_content(arg, c("yes", "no"), supplement = supplement) general <- "You're beautiful." specifics <- c( i = "Your eyes are big.", i = "Your hair is long.", x = "But you broke my heart." ) throw(general, specifics) throw(general, specifics, as = "message") check_positive <- function(x) { check_type(x, c("integer", "double")) check_length(x, 1) if (is.na(x) || x <= 0) { general <- "`x` must be a positive number." specifics <- "`x` is `{x}`." throw(general, specifics, env = list(x = x)) } } check_positive(-2) x <- c("Pink Floyd", "Pink Freud", "Pink Florida") join(x, "and") cat(back_quote(x)) back_quote(c(1, 2, NA)) arg <- "Pink Florence" check_content(arg, x) is_rmd() where() is_rstudio() is_jupyter()
context("asR test") test_that("test of the asR functions", { skip_on_cran() julia <- julia_setup(installJulia = TRUE) expect_equal(as.double(julia_eval("1//2")), 0.5) expect_equal(as.double(julia_eval("[1//2, 3//4]")), c(0.5, 0.75)) })
context("Testing bootstrap functions") test_that("auc boot functions", { set.seed(123) n <- 100 p <- 1 X <- data.frame(matrix(rnorm(n*p), nrow = n, ncol = p)) Y <- rbinom(n, 1, plogis(0.2 * X[,1])) boot1 <- boot_auc(Y = Y, X = X, B = 10) boot2 <- boot_auc(Y = Y, X = X, B = 10, correct632 = TRUE) lpo <- lpo_auc(Y = Y, X = X, max_pairs = 10) expect_true(is.numeric(boot1$auc)) expect_true(is.numeric(boot2$auc)) expect_true(is.numeric(lpo$auc)) expect_true(boot1$auc >= 0 & boot1$auc <= 1) expect_true(boot2$auc >= 0 & boot2$auc <= 1) expect_true(lpo$auc >= 0 & lpo$auc <= 1) }) test_that("scrnp boot functions", { set.seed(123) n <- 100 p <- 1 X <- data.frame(matrix(rnorm(n*p), nrow = n, ncol = p)) Y <- rbinom(n, 1, plogis(0.2 * X[,1])) boot1 <- boot_scrnp(Y = Y, X = X, B = 10) boot2 <- boot_scrnp(Y = Y, X = X, B = 10, correct632 = TRUE) expect_true(is.numeric(boot1$scrnp)) expect_true(is.numeric(boot2$scrnp)) })
family.hdlm <- function(object, ...) { gaussian() }
weaver <- function() { list(setup = weaverLatexSetup, runcode = weaverRuncode, writedoc = RweaveLatexWritedoc, finish = weaverLatexFinish, checkopts = RweaveLatexOptions) } weaverLatexSetup <- function(file, syntax, output=NULL, quiet=FALSE, debug=FALSE, echo=TRUE, eval=TRUE, keep.source=FALSE, split=FALSE, stylepath=TRUE, pdf=TRUE, eps=TRUE, use.cache=TRUE) { if (!quiet) cat("Working dir:", getwd(), "\n") log_debug(paste("Working dir:", getwd())) res <- RweaveLatexSetup(file, syntax, output=output, quiet=quiet, debug=debug, echo=echo, eval=eval, keep.source=keep.source, split=split, stylepath=stylepath, pdf=pdf, eps=eps) res$options[["use.cache"]] <- use.cache res$options[["cache"]] <- FALSE res$options <- RweaveLatexOptions(res$options) res } resetStorage <- function(fun) { storage <- environment(fun) storage[["hashDeps"]] <- new.env(parent=emptyenv()) storage[["sym2hash"]] <- new.env(parent=emptyenv()) } weaverRemoveOrphans <- function(object, options) { if(!options$use.cache || !options$cache) return(NULL) chunk <- options$label cachedir <- file.path(get_cache_dir(CACHE_DIR), get_chunk_id(chunk, options$chunknr)) curhashes <- sort(ls(environment(cache_expr)$hashDeps)) expPat1 <- paste(".*\\", CACHE_EXT, "$", sep="") expPat2 <- paste("\\", CACHE_EXT, sep="") hashfiles <- list.files(cachedir, pattern=expPat1) hashfiles <- sort(sub(expPat2, "", hashfiles)) orphans <- hashfiles[!hashfiles %in% curhashes] if (length(orphans)) { if (!object$quiet) cat(" Removing orphaned cache files:\n") for (orph in orphans) { if (!object$quiet) cat(paste(" ", orph, ".RData", sep=""), "\n") orph <- paste(cachedir, "/", orph, CACHE_EXT, sep="") tryCatch(file.remove(orph), error=function(e) NULL) } } } weaverLatexFinish <- function(object, error=FALSE) { resetStorage(cache_expr) RweaveLatexFinish(object, error) } weaverRuncode <- makeRweaveLatexCodeRunner(evalFunc=weaverEvalWithOpt) weaverEvalWithOpt <- function (expr, options, quiet=FALSE){ if(options$eval){ label <- options$label chunkNum <- options$chunknr if(options$use.cache && options$cache) { expr <- substitute(cache_expr(e, chunk.name=n, chunk.num=i, quiet=q), list(e=expr, n=label, i=chunkNum, q=quiet)) } res <- try(withVisible(eval(expr, .GlobalEnv)), silent=TRUE) if(inherits(res, "try-error")) return(res) if(options$print | (options$term & res$visible)) print(res$value) } return(res) }
is.dendro <- function(dm.data) { nm <- deparse(substitute(dm.data)) if(!is.data.frame(dm.data)) { warning(paste("'", nm, "' is not a data frame", sep = "")) return(FALSE) } tst.timestamp.data <- try(is(as.POSIXct(rownames(dm.data)),"POSIXct"), silent = TRUE) if(tst.timestamp.data != TRUE){ warning(paste("rownames of '", nm, "' is not a timestamp or contains errors", sep = "")) return(FALSE) } if(length(rownames(dm.data)) != length(unique(rownames(dm.data)))) { warning(paste("the date-time stamp of '", nm, "' contains non-unique values", sep = "")) return(FALSE) } row.nm <- row.names(dm.data) row.diff <- diff(as.POSIXct(row.nm, tz = "GMT")) if(units(row.diff) != "hours") { units(row.diff) <- "hours" } resolution <- unique(row.diff) if(length(resolution) != 1) { warning(paste("the temporal resolution of '", nm, "' is not constant", sep = "")) return(FALSE) } tst.data.numeric <- sapply(dm.data, is.numeric) if(FALSE %in% tst.data.numeric) { warning(paste("the columns of '", nm, "' should contain numeric dendrometer data only", sep = "")) return(FALSE) } return(TRUE) }
filter.conflictive.snps <- function(sum.stat, allele.info, options){ msg <- paste("Removing SNPs with conflictive allele information:", date()) if(options$print) message(msg) sum.info <- sum.stat$stat nstudy <- length(sum.info) foo <- function(x){ paste(sort(x), collapse = '') } ref.allele <- apply(allele.info[, c('RefAllele', 'EffectAllele')], 1, foo) names(ref.allele) <- allele.info$SNP exc.snps <- NULL for(k in 1:nstudy){ ord.allele <- apply(sum.info[[k]][, c('RefAllele', 'EffectAllele')], 1, foo) rs <- names(ord.allele) id <- which(ord.allele != ref.allele[rs]) if(length(id) > 0){ exc.snps <- c(exc.snps, rs[id]) } } exc.snps <- unique(exc.snps) exc.snps }
context("Bootstrapping") library(finalfit) test_that("ff_newdata gives dataframe", { expect_is(ff_newdata(colon_s, explanatory = c("age.factor", "extent.factor"), newdata = list( c("<40 years", "Submucosa"), c("<40 years", "Submucosa"))) -> newdata, "data.frame") }) test_that("ff_newdata gives dataframe", { expect_is(ff_newdata(colon_s, explanatory = c("nodes", "extent.factor", "perfor.factor"), rowwise = FALSE, newdata = list( rep(seq(0, 30), 4), c(rep("Muscle", 62), rep("Adjacent structures", 62)), c(rep("No", 31), rep("Yes", 31), rep("No", 31), rep("Yes", 31)) )) -> newdata, "data.frame") }) test_that("ff_newdata gives dataframe", { expect_is(colon_s %>% glmmulti("mort_5yr", c("age.factor", "extent.factor")) %>% boot_predict(newdata = ff_newdata(colon_s, explanatory = c("age.factor", "extent.factor"), newdata = list( c("<40 years", "Submucosa"), c("<40 years", "Submucosa"))), estimate_name = "Predicted probability of death", compare_name = "Absolute risk difference", R=40, digits = c(2,3)), "data.frame") }) test_that("ff_newdata gives dataframe", { expect_is(colon_s %>% glmmulti("mort_5yr", c("age.factor", "extent.factor")) %>% boot_predict(newdata = ff_newdata(colon_s, explanatory = c("age.factor", "extent.factor"), newdata = list( c("<40 years", "Submucosa"), c("<40 years", "Submucosa"))), condense = FALSE, comparison = "ratio", R=40, digits = c(2,3)), "data.frame") })
.CVXR.options <- list(idCounter = 0L, np = NULL, sp = NULL, mosekglue = NULL) setIdCounter <- function(value = 0L) { .CVXR.options$idCounter <- value assignInMyNamespace(".CVXR.options", .CVXR.options) .CVXR.options } resetOptions <- function() { assignInMyNamespace(".CVXR.options", list(idCounter = 0L, np = NULL, sp = NULL, mosekglue = NULL)) .CVXR.options } get_id <- function() { id <- .CVXR.options$idCounter <- .CVXR.options$idCounter + 1L assignInMyNamespace(".CVXR.options", .CVXR.options) id } get_sp <- function() { sp <- .CVXR.options$sp if (is.null(sp)) { stop("Scipy not available") } sp } get_np <- function() { np <- .CVXR.options$np if (is.null(np)) { stop("Numpy not available") } np } flatten_list <- function(x) { y <- list() rapply(x, function(x) y <<- c(y,x)) y } setClass("Rdict", representation(keys = "list", values = "list"), prototype(keys = list(), values = list()), validity = function(object) { if(length(object@keys) != length(object@values)) return("Number of keys must match number of values") if(!all(unique(object@keys) != object@keys)) return("Keys must be unique") return(TRUE) }) Rdict <- function(keys = list(), values = list()) { new("Rdict", keys = keys, values = values) } setMethod("$", signature(x = "Rdict"), function(x, name) { if(name == "items") { items <- rep(list(list()), length(x)) for(i in 1:length(x)) { tmp <- list(key = x@keys[[i]], value = x@values[[i]]) items[[i]] <- tmp } return(items) } else slot(x, name) }) setMethod("length", signature(x = "Rdict"), function(x) { length(x@keys) }) setMethod("is.element", signature(el = "ANY", set = "Rdict"), function(el, set) { for(k in set@keys) { if(identical(k, el)) return(TRUE) } return(FALSE) }) setMethod("[", signature(x = "Rdict"), function(x, i, j, ..., drop = TRUE) { for(k in 1:length(x@keys)) { if(length(x@keys[[k]]) == length(i) && all(x@keys[[k]] == i)) return(x@values[[k]]) } stop("key ", i, " was not found") }) setMethod("[<-", signature(x = "Rdict"), function(x, i, j, ..., value) { if(is.element(i, x)) x@values[[i]] <- value else { x@keys <- c(x@keys, list(i)) x@values <- c(x@values, list(value)) } return(x) }) setClass("Rdictdefault", representation(default = "function"), contains = "Rdict") Rdictdefault <- function(keys = list(), values = list(), default) { new("Rdictdefault", keys = keys, values = values, default = default) } setMethod("[", signature(x = "Rdictdefault"), function(x, i, j, ..., drop = TRUE) { if(length(x@keys) > 0) { for(k in 1:length(x@keys)) { if(length(x@keys[[k]]) == length(i) && all(x@keys[[k]] == i)) return(x@values[[k]]) } } stop("Unimplemented: For now, user must manually create key and set its value to default(key)") x@keys <- c(x@keys, list(i)) x@values <- c(x@values, list(x@default(i))) return(x@values[[length(x@values)]]) })
expected <- eval(parse(text="FALSE")); test(id=0, code={ argv <- eval(parse(text="list(list(structure(3.14159265358979, class = structure(\"3.14159265358979\", class = \"testit\"))), \"try-error\", FALSE)")); .Internal(inherits(argv[[1]], argv[[2]], argv[[3]])); }, o=expected);
"Certolizumabdat"
if(FALSE) { library(fitdistrplus) n <- 100 set.seed(12345) x <- rbeta(n, 3, 3/4) psi <- function(x) digamma(x) grbetalnl <- function(x, a, b) c(log(x)-psi(a)+psi(a+b), log(1-x)-psi(b)+psi(a+b)) grlnL <- function(par, obs, ...) -rowSums(sapply(obs, function(x) grbetalnl(x, a=par[1], b=par[2]))) constrOptim2 <- function(par, fn, gr=NULL, ui, ci, ...) constrOptim(theta=unlist(par), f=fn, grad=gr, ui=ui, ci=ci, ...) ctr <- list(trace=3, REPORT=1, maxit=1000) ctr <- list(trace=0, REPORT=1, maxit=1000) bfgs_gr$time <- system.time(bfgs_gr <- mledist(x, dist="beta", optim.method="BFGS", gr=grlnL, control=ctr))[3] bfgs <- mledist(x, dist="beta", optim.method="BFGS", control=ctr) lbfgs_gr <- mledist(x, dist="beta", optim.method="L-BFGS-B", gr=grlnL, control=ctr, lower=c(0,0)) lbfgs <- mledist(x, dist="beta", optim.method="L-BFGS-B", control=ctr, lower=c(0,0)) cg_gr <- mledist(x, dist="beta", optim.method="CG", gr=grlnL, control=ctr) cg <- mledist(x, dist="beta", optim.method="CG", control=ctr) nm_gr <- mledist(x, dist="beta", optim.method="Nelder", gr=grlnL, control=ctr) nm <- mledist(x, dist="beta", optim.method="Nelder", control=ctr) constr_nm_gr <- mledist(x, dist="beta", custom.optim=constrOptim2, ui = diag(2), ci = c(0, 0), optim.method="Nelder", gr=grlnL, control=ctr) constr_nm <- mledist(x, dist="beta", custom.optim=constrOptim2, ui = diag(2), ci = c(0, 0), optim.method="Nelder", control=ctr) constr_bfgs_gr <- mledist(x, dist="beta", custom.optim=constrOptim2, ui = diag(2), ci = c(0, 0), optim.method="BFGS", gr=grlnL, control=ctr) constr_bfgs <- mledist(x, dist="beta", custom.optim=constrOptim2, ui = diag(2), ci = c(0, 0), optim.method="BFGS", control=ctr) constr_cg_gr <- mledist(x, dist="beta", custom.optim=constrOptim2, ui = diag(2), ci = c(0, 0), optim.method="CG", gr=grlnL, control=ctr) constr_cg <- mledist(x, dist="beta", custom.optim=constrOptim2, ui = diag(2), ci = c(0, 0), optim.method="CG", control=ctr) lnL <- function(par, fix.arg, obs, ddistnam) { fitdistrplus:::loglikelihood(par, fix.arg, obs, ddistnam, weights = rep(1, NROW(obs))) } constrOptim2(c(shape1=1, shape2=1), lnL, obs=x, fix.arg=NULL, ddistnam="dbeta", ui = diag(2), ci = c(0, 0)) dbeta3 <- function(x, shape1, shape2) dbeta(x, shape1, shape2) dbeta2 <- function(x, shape1, shape2, log) dbeta(x, exp(shape1), exp(shape2), log=log) pbeta2 <- function(q, shape1, shape2, log.p) pbeta(q, exp(shape1), exp(shape2), log.p=log.p) bfgs2 <- mledist(x, dist="beta2", optim.method="BFGS", control=ctr, start=list(shape1=0, shape2=0)) bfgs3 <- mledist(x, dist="beta3", optim.method="BFGS", control=ctr, start=list(shape1=1, shape2=1)) getval <- function(x) c(x$estimate, loglik=x$loglik, x$counts) getval2 <- function(x) c(exp(x$estimate), loglik=x$loglik, x$counts) cbind(trueval=c(3, 3/4, lnL(c(3, 3/4), NULL, x, "dbeta"), NA, NA), NM=getval(nm), NMgrad=getval(nm_gr), constr_NM=getval(constr_nm), constr_NMgrad=getval(constr_nm_gr), CG=getval(cg), CGgrad=getval(cg_gr), constr_CG=getval(constr_cg), constr_CGgrad=getval(constr_cg_gr), BFGS=getval(bfgs), BFGSgrad=getval(bfgs_gr), constr_BFGS=getval(constr_bfgs), constr_BFGSgrad=getval(constr_bfgs_gr), BFGS_exp=getval2(bfgs2), BFGS_nolog=getval(bfgs3)) llsurface(min.arg=c(0.1, 0.1), max.arg=c(7, 3), plot.arg=c("shape1", "shape2"), lseq=50, data=x, distr="beta") points(bfgs$estimate[1], bfgs$estimate[2], pch="+", col="red") points(3, 3/4, pch="x", col="green") }
"Marijuana"
ml_g <- function(formula, data) { mf <- model.frame(formula, data) y <- model.response(mf, "numeric") X <- model.matrix(formula, data = data) if (any(is.na(cbind(y, X)))) stop("Some data are missing.") jll.normal <- function(params, X, y) { p <- length(params) beta <- params[-p] sigma <- exp(params[p]) linpred <- X %*% beta sum(dnorm(y, mean = linpred, sd = sigma, log = TRUE)) } ls.reg <- lm(y ~ X - 1) beta.hat.ls <- coef(ls.reg) sigma.hat.ls <- sd(residuals(ls.reg)) start <- c(beta.hat.ls, sigma.hat.ls) fit <- optim(start, jll.normal, X = X, y = y, control = list( fnscale = -1, maxit = 10000), hessian = TRUE ) if (fit$convergence > 0) { print(fit) stop("optim failed to converge!") } beta.hat <- fit$par se.beta.hat <- sqrt(diag(solve(-fit$hessian))) results <- list(fit = fit, X = X, y = y, call = match.call(), beta.hat = beta.hat, se.beta.hat = se.beta.hat, sigma.hat = exp(beta.hat[length(beta.hat)])) class(results) <- c("ml_g_fit","lm") return(results) }
create_arm <- function(size, accr_time, accr_dist = "pieceuni", accr_interval = c(0, accr_time), accr_param = NA, surv_cure = 0, surv_interval = c(0, Inf), surv_shape=1, surv_scale, loss_shape=1, loss_scale, follow_time = Inf, total_time = Inf) { if (! accr_dist %in% c("pieceuni", "truncexp")) { stop("Please specify a valid accrual distribution.", call.=F) } accr_interval = sort(unique(c(0, accr_interval, accr_time))) if (min(accr_interval) < 0 | max(accr_interval) > accr_time) { stop("accr_interval is out of range.", call.=F) } if (accr_dist == "pieceuni") { if (length(accr_param) != length(accr_interval) - 1) { stop("Number of accrual intervals (accr_interval) does not match number of accrual parameters (accr_param).", call.=F) } if (length(accr_interval) > 2 & sum(accr_param) != 1) { stop("accr_param must sum to 1.", call.=F) } } else if (is.na(accr_param) | length(accr_param) > 1) { stop("Truncated exponential is a one-parameter family distribution.", call.=F) } surv_interval = sort(unique(c(0, surv_interval, Inf))) if (min(surv_interval) < 0) { stop("surv_interval is out of range.", call.=F) } if (surv_shape != 1 & length(surv_scale) > 1) { surv_shape = 1 warning("Piecewise Weibull is not supported. surv_shape defaulted to 1.", call.=F) } if (length(surv_scale) != length(surv_interval) - 1) { stop("Number of survival intervals (surv_interval) does not match number of piecewise hazards (surv_scale).", call.=F) } if (length(loss_shape) > 1 | length(loss_scale) > 1) { loss_shape = loss_shape[1] loss_scale = loss_scale[1] warning("Only Weibull loss to follow-up is supported. First number in loss_shape and loss_scale are considered. The rest are ignored.", call.=F) } if (is.infinite(follow_time) & is.infinite(total_time)) { total_time = 1e6 follow_time = total_time - accr_time warning("Neither follow_time nor total_time were defined. Therefore, total_time is defaulted to max value.", call.=F) } else if (!is.infinite(follow_time) & !is.infinite(total_time) & accr_time+follow_time != total_time) { total_time = accr_time + follow_time warning("follow_time and total_time were inconsistently defined. total_time will be ignored.", call.=F) } else if (is.infinite(follow_time)) { follow_time = total_time - accr_time } else { total_time = accr_time + follow_time } arm <- list(size = size, accr_time = accr_time, accr_dist = accr_dist, accr_interval = accr_interval, accr_param = accr_param, surv_cure = surv_cure, surv_interval = surv_interval, surv_shape = surv_shape, surv_scale = surv_scale, loss_shape = loss_shape, loss_scale = loss_scale, follow_time = follow_time, total_time = total_time) if (length(accr_param)==1 & length(surv_interval)==2 & surv_shape==1 & loss_shape==1) { class(arm) <- append(class(arm), "lachin") } class(arm) <- append(class(arm), "arm") return(arm) } create_arm_lachin <- function(size, accr_time, accr_dist = "pieceuni", accr_param = NA, surv_median = NA, surv_exphazard = NA, surv_milestone = NA, loss_median = NA, loss_exphazard = NA, loss_milestone = NA, follow_time = Inf, total_time = Inf) { if (accr_dist == "pieceuni" & !is.na(accr_param)) { accr_param = NA warning("accr_param is ignored.", call.=F) } if (sum(!is.na(c(surv_median, surv_exphazard, surv_milestone[1]))) > 1) { stop("Please specify just one of surv_median, surv_exphazard, or surv_milestone.", call.=F) } else if (!is.na(surv_median)) { surv_scale = per2haz(surv_median) } else if (!is.na(surv_exphazard)) { surv_scale = surv_exphazard } else { surv_scale = per2haz(x=surv_milestone[1], per=1-surv_milestone[2]) } if (sum(!is.na(c(loss_median, loss_exphazard, loss_milestone[1]))) > 1) { stop("Please specify just one of loss_median, loss_exphazard, or loss_milestone.", call.=F) } else if (!is.na(loss_median)) { loss_scale = per2haz(loss_median) } else if (!is.na(loss_exphazard)) { loss_scale = loss_exphazard } else { loss_scale = per2haz(x=loss_milestone[1], per=1-loss_milestone[2]) } arm <- create_arm(size = size, accr_time = accr_time, accr_dist = accr_dist, accr_param = accr_param, surv_scale = surv_scale, loss_scale = loss_scale, follow_time = follow_time, total_time = total_time) return(arm) } per2haz <- function(x, per=0.5) { -log(1-per)/x }
NULL setClass("DiffSummary", slots=c( max.lines="integer", width="integer", etc="Settings", diffs="matrix", all.eq="character", scale.threshold="numeric" ), validity=function(object) { if( !is.integer(object@diffs) && !identical(rownames(object@diffs), c("match", "delete", "add")) ) return("Invalid diffs object") TRUE } ) setMethod("summary", "Diff", function( object, scale.threshold=0.1, max.lines=50L, width=getOption("width"), ... ) { if(!is.int.1L(max.lines) || max.lines < 1L) stop("Argument `max.lines` must be integer(1L) and strictly positive") max.lines <- as.integer(max.lines) if(!is.int.1L(width) || width < 0L) stop("Argument `width` must be integer(1L) and positive") if(width < 10L) width <- 10L if( !is.numeric(scale.threshold) || length(scale.threshold) != 1L || is.na(scale.threshold) || !scale.threshold %bw% c(0, 1) ) stop("Argument `scale.threshold` must be numeric(1L) between 0 and 1") diffs.c <- count_diffs_detail(object@diffs) match.seq <- rle(!!diffs.c["match", ]) match.keep <- unlist( lapply( match.seq$lengths, function(x) if(x == 2L) c(TRUE, FALSE) else TRUE ) ) diffs <- diffs.c[, match.keep, drop=FALSE] all.eq <- all.equal(object@target, object@current) new( "DiffSummary", max.lines=max.lines, width=width, etc=object@etc, diffs=diffs, all.eq=if(isTRUE(all.eq)) character(0L) else all.eq, scale.threshold=scale.threshold ) } ) setMethod("finalizeHtml", c("DiffSummary"), function(x, x.chr, ...) { js <- "" callNextMethod(x, x.chr, js=js, ...) } ) setMethod("as.character", "DiffSummary", function(x, ...) { etc <- x@etc style <- etc@style hunks <- sum(!x@diffs["match", ]) res <- c(apply(x@diffs, 1L, sum)) scale.threshold <- [email protected] res <- if(!hunks || !sum(x@diffs[c("delete", "add"), ])) { style@summary@body( if(length([email protected])) { eq.txt <- paste0("- ", [email protected]) paste0( c( "No visible differences, but objects are not `all.equal`:", eq.txt ), collapse=style@[email protected] ) } else { "Objects are `all.equal`" } ) } else { pad <- 2L width <- x@width - pad head <- paste0( paste0( strwrap( sprintf( "Found differences in %d hunk%s:", hunks, if(hunks != 1L) "s" else "" ), width=width ), collapse=style@[email protected] ), style@summary@detail( paste0( strwrap( sprintf( "%d insertion%s, %d deletion%s, %d match%s (lines)", res[["add"]], if(res[["add"]] == 1L) "" else "s", res[["delete"]], if(res[["delete"]] == 1L) "" else "s", res[["match"]], if(res[["match"]] == 1L) "" else "es" ), width=width ), collapse=style@[email protected] ) ), collapse="" ) max.chars <- [email protected] * width diffs <- x@diffs scale.threshold <- [email protected] scale_err <- function(orig, scaled, threshold, width) { if((width - sum(scaled)) / width > threshold) { TRUE } else { zeroes <- !orig orig.nz <- orig[!zeroes] scaled.nz <- scaled[!zeroes] orig.norm <- orig.nz / max(orig.nz) scaled.norm <- scaled.nz / max(scaled.nz) any(abs(orig.norm - scaled.norm) > threshold) } } diffs.gz <- diffs > 1L diffs.nz <- diffs[diffs.gz] safety <- 10000L tol <- width / 4 diffs.scale <- diffs lo.bound <- lo <- length(diffs.nz) hi.bound <- hi <- sum(diffs.nz) if(sum(diffs.scale) > width) { repeat { mp <- ceiling((hi.bound - lo.bound) / 2) + lo.bound safety <- safety - 1L if(safety < 0L) stop("Logic Error: likely infinite loop; contact maintainer.") diffs.nz.s <- pmax( round(diffs.nz * (mp - lo) / (hi - lo)), 1L ) diffs.scale[diffs.gz] <- diffs.nz.s scale.err <- scale_err(diffs, diffs.scale, scale.threshold, width) break.cond <- floor(mp / width) <= floor(lo.bound / width) || mp >= hi.bound if(scale.err) { lo.bound <- mp } else { if(break.cond) break hi.bound <- mp } } } diffs.fin <- diffs.scale scale.one <- diffs.scale == 1 scale.gt.one <- diffs.scale > 1 s.o.txt <- if(any(scale.one)) { s.o.r <- unique(range(diffs[scale.one])) if(length(s.o.r) == 1L) sprintf("%d:1 for single chars", s.o.r) else sprintf("%d-%d:1 for single chars", s.o.r[1L], s.o.r[2L]) } s.gt.o.txt <- if(any(scale.gt.one)) { s.gt.o.r <- unique( range(round(diffs[scale.gt.one] / diffs.scale[scale.gt.one])) ) if(length(s.gt.o.r) == 1L) sprintf("%d:1 for char seqs", s.gt.o.r) else sprintf("%d-%d:1 for char seqs", s.gt.o.r[1L], s.gt.o.r[2L]) } map.txt <- sprintf( "Diff map (line:char scale is %s%s%s):", if(!is.null(s.o.txt)) s.o.txt else "", if(is.null(s.o.txt) && !is.null(s.gt.o.txt)) "" else ", ", if(!is.null(s.gt.o.txt)) s.gt.o.txt else "" ) body <- if(style@wrap) strwrap(map.txt, width=x@width) else map.txt diffs.txt <- character(length(diffs.fin)) attributes(diffs.txt) <- attributes(diffs.fin) symb <- c(match=".", add="I", delete="D") use.ansi <- FALSE for(i in names(symb)) { test <- diffs.txt[i, ] <- vapply( diffs.fin[i, ], function(x) paste0(rep(symb[[i]], x), collapse=""), character(1L) ) } txt <- do.call(paste0, as.list(c(diffs.txt))) txt <- substr2(txt, 1, max.chars, [email protected]) txt.w <- unlist( if(style@wrap) wrap(txt, width, [email protected]) else txt ) if(is(style, "StyleAnsi")) { old.crayon.opt <- options(crayon.enabled=TRUE) on.exit(options(old.crayon.opt), add=TRUE) } s.f <- style@funs txt.w <- gsub( symb[["add"]], [email protected](symb[["add"]]), gsub( symb[["delete"]], [email protected](symb[["delete"]]), txt.w, fixed=TRUE ), fixed=TRUE ) extra <- if(sum(diffs.fin) > max.chars) { diffs.omitted <- diffs.fin diffs.under <- cumsum(diffs.omitted) <= max.chars diffs.omitted[diffs.under] <- 0L res.om <- apply(diffs.omitted, 1L, sum) sprintf( paste0( "omitting %d deletion%s, %d insertion%s, and %d matche%s; ", "increase `max.lines` to %d to show full map" ), res.om[["delete"]], if(res.om[["delete"]] != 1L) "s" else "", res.om[["add"]], if(res.om[["add"]] != 1L) "s" else "", res.om[["match"]], if(res.om[["match"]] != 1L) "s" else "", ceiling(sum(diffs.scale) / width) ) } else character(0L) map <- txt.w if(length(extra) && style@wrap) extra <- strwrap(extra, width=width) c( style@summary@body( paste0( c(head, body), collapse=style@[email protected] ) ), style@summary@map(c(map, extra)) ) } fin <- style@funs@container(style@summary@container(res)) finalize( fin, x, length(unlist(gregexpr(style@[email protected], fin, fixed=TRUE))) + length(fin) ) } ) setMethod("show", "DiffSummary", function(object) { show_w_pager(as.character(object), object@etc@style@pager) invisible(NULL) } )
.Pars <- c( "xlog", "ylog", "adj", "ann", "ask", "bg", "bty", "cex", "cex.axis", "cex.lab", "cex.main", "cex.sub", "cin", "col", "col.axis", "col.lab", "col.main", "col.sub", "cra", "crt", "csi","cxy", "din", "err", "family", "fg", "fig", "fin", "font", "font.axis", "font.lab", "font.main", "font.sub", "lab", "las", "lend", "lheight", "ljoin", "lmitre", "lty", "lwd", "mai", "mar", "mex", "mfcol", "mfg", "mfrow", "mgp", "mkh", "new", "oma", "omd", "omi", "page", "pch", "pin", "plt", "ps", "pty", "smo", "srt", "tck", "tcl", "usr", "xaxp", "xaxs", "xaxt", "xpd", "yaxp", "yaxs", "yaxt", "ylbias" ) par <- function (..., no.readonly = FALSE) { .Pars.readonly <- c("cin","cra","csi","cxy","din","page") single <- FALSE args <- list(...) if (!length(args)) args <- as.list(if (no.readonly) .Pars[-match(.Pars.readonly, .Pars)] else .Pars) else { if (all(unlist(lapply(args, is.character)))) args <- as.list(unlist(args)) if (length(args) == 1) { if (is.list(args[[1L]]) | is.null(args[[1L]])) args <- args[[1L]] else if(is.null(names(args))) single <- TRUE } } value <- .External2(C_par, args) if(single) value <- value[[1L]] if(!is.null(names(args))) invisible(value) else value } clip <- function(x1, x2, y1, y2) invisible(.External.graphics(C_clip, x1, x2, y1, y2))
sncFun.04110 <- function(p_snc, h){ h <- abs(h) alf <- p_snc[1]; bet <- p_snc[2]; h0 <- tail(p_snc, 1); ah <- alf*h ah0 <- alf*10^h0 gnc <- ifelse(ah >= 1, (bet+log(1/alf))/log(10) - bet/log(10)*ah^(-1/bet) - log10(h) , 0) gnc0 <- ifelse(ah0 >= 1, (bet+log(1/alf))/log(10) - bet/log(10)*ah0^(-1/bet)- h0, 0) snc <- 1 - gnc/gnc0 return(list("snc" = snc)) }
RSKC <- function(d,ncl,alpha,L1=12,nstart=200,silent=TRUE,scaling=FALSE,correlation = FALSE){ if (alpha > 1 | alpha < 0) stop("alpha must be between 0 and 1") if (!is.null(L1)) if (L1<1) stop("L1 value must be greater or equal to 1 or NULL!") if (is.data.frame(d)) d <- as.matrix(d) r.ncl <- round(ncl) if (ncl != r.ncl) ncl <- r.ncl if (ncl <= 1) stop("ncl must be positive integer > 1! but ncl=",ncl) if (scaling) d=scale(d) if (correlation) d = t(scale(t(d))) if (is.null(L1)) sparse<-FALSE else{ sparse<-TRUE} n<-nrow(d);Nout<-floor(n*alpha) f<-ncol(d);g<-f+1 W<-rep(1,f);sumW<-f if( sum(is.na(d))==0 ) { miss<-FALSE if(sparse){ Result<-RSKC.a1.a2.b(d,L1,ncl,nstart,alpha,n,f,g,Nout,silent) }else{ Result<-RSKC.trimkmeans(d,ncl,trim=alpha,runs=nstart,maxit=10000) } }else{ d[is.nan(d) ] <- NA miss<-TRUE if (sparse){ Result<-RSKC.a1.a2.b.missing(d,L1,ncl,nstart,alpha,n,f,g,Nout,silent) }else{ Result<-RSKC.trimkmeans.missing(d=d,ncl=ncl,w=W,trim=alpha,runs=nstart,points=Inf,maxit=10000) } } if(sparse) { Result$oW<-sort(Result$oW) if(Nout==0){ Result$oW<-Result$oE<-"undefined" } }else{ Result<-modified.result.nonsparse(Result,ncl,f) if(Nout==0){ Result<-modified.result.kmean(Result) } } Result$disttom<-Result$ropt<-Result$trim<-Result$scaling<-Result$centers<- Result$criterion<-Result$classification<-Result$means<-Result$ropt<-Result$k<-Result$runs<-NULL if (!is.null(colnames(d))) names(Result$weights) <- colnames(d) Input<-list(N=n,p=f,ncl=ncl,L1=L1,nstart=nstart,alpha=alpha, scaling=scaling,correlation=correlation,missing=miss) r2<-c(Input,Result) class(r2)<-"rskc" return(r2) } modified.result.nonsparse<-function(Result,ncl,f){ Result$centers<-Result$means; Result$oW<-which(Result$classification==ncl+1) Result$oE<-"undefined"; Result$weights<-rep(1,f) return(Result) } modified.result.kmean<-function(Result){ Result$oE<-Result$oW<-"undefined" Result$labels<-Result$classification return(Result) }
vcov.PLADMM <- function(object, ...) { if ("vcov" %in% names(object)) return(object$vcov) alpha <- object$tilde_pi nrankings <- nrow(object$orderings) weights <- object$weights beta <- coef(object)[-1] ncoef <- length(beta) H <- matrix(0, ncoef, ncoef, dimnames = list(names(beta), names(beta))) Xalpha <- object$x[, -1, drop = FALSE] * alpha for (r in seq(nrankings)){ nitems <- sum(object$orderings[r,] != 0) nchoices <- nitems - 1 for (i in seq(nchoices)){ items <- object$orderings[r, i:nitems] a <- sum(alpha[items]) xa <- colSums(Xalpha[items, , drop = FALSE]) H <- H + weights[r] * ( tcrossprod(xa)/a^2 - crossprod(object$x[items, -1, drop = FALSE], Xalpha[items, , drop = FALSE])/a) } } solve(-H) }
source("ESEUR_config.r") library("simex") pal_col=rainbow(3) maint_all=read.csv(paste0(ESEUR_dir, "regression/10-1002_maint-task-data.csv.xz"), as.is=TRUE) maint_all$ins_up=maint_all$INSERT+maint_all$UPDATE maint_all$lins_up=log(maint_all$ins_up) maint=subset(maint_all, EFFORT > 0.1) maint=subset(maint, ins_up > 0.0) plot(maint$ins_up, maint$EFFORT, log="xy", col=pal_col[2], xlab="Lines added+updated", ylab="Effort (days)\n") maint_mod=glm(EFFORT ~ lins_up, data=maint, family=gaussian(link="log"), x=TRUE, y=TRUE) x_vals=exp(seq(1e-2, log(max(maint$ins_up)), length.out=20)) pred=predict(maint_mod, newdata=data.frame(lins_up=log(x_vals)), se.fit=TRUE) lines(x_vals, exp(pred$fit), col=pal_col[1]) y_err=simex(maint_mod, SIMEXvariable="lins_up", measurement.error=maint$lins_up/10, asymptotic=FALSE) pred=predict(y_err, newdata=data.frame(lins_up=log(x_vals)), se.fit=TRUE) lines(x_vals, exp(pred$fit), col=pal_col[3])
setClass("ResidualFitIndices", slots = c(sampleMoments = "list", impliedMoments = "list", RMR = "ResidualFitIndex", SRMR = "ResidualFitIndex", CRMR = "ResidualFitIndex")) setMethod(f = "initialize", signature = "ResidualFitIndices", definition = function(.Object) { .Object@sampleMoments = list(yBar = matrix(NA_real_), S = matrix(NA_real_)) .Object@impliedMoments = list(muHat = matrix(NA_real_), SigmaHat = matrix(NA_real_)) .Object@RMR = new("ResidualFitIndex") .Object@SRMR = new("ResidualFitIndex") .Object@CRMR = new("ResidualFitIndex") return(.Object) } ) setMethod(f = "print", signature = "ResidualFitIndices", definition = function(x, ...) { cat("Residual Fit Indices\n", " RMR: ", round(x@RMR@index$total, 3), "\n", " SRMR: ", round(x@SRMR@index$total, 3), "\n", " CRMR: ", round(x@CRMR@index$total, 3), "\n") }) setMethod(f = "show", signature = "ResidualFitIndices", definition = function(object) { cat("Residual Fit Indices\n", " RMR: ", round(object@RMR@index$total, 3), "\n", " SRMR: ", round(object@SRMR@index$total, 3), "\n", " CRMR: ", round(object@CRMR@index$total, 3), "\n") }) setGeneric(name = "details", def = function(object, comp = c("Total", "Covariance", "Variance", "Mean", "Total")) { standardGeneric("details") } ) setMethod(f = "details", signature = "ResidualFitIndices", function(object, comp = c("Total", "Covariance", "Variance", "Mean", "Total")) { if ("Total" %in% comp) { cat("Total\n") cat(" RMR: ", round(object@RMR@index$total, 3), "\n") cat(" SRMR: ", round(object@SRMR@index$total, 3), "\n") cat(" CRMR: ", round(object@CRMR@index$total, 3), "\n") } if ("Covariance" %in% comp) { cat("Covariance (off-diagonal)\n") cat(" RMR: ", round(object@RMR@index$cov, 3), "\n") cat(" SRMR: ", round(object@SRMR@index$cov, 3), "\n") cat(" CRMR: ", round(object@CRMR@index$cov, 3), "\n") } if ( !("Variance" %in% comp) | all(diag(object@sampleMoments$S) == diag(object@impliedMoments$SigmaHat))) { cat("Variances not included \n\n") } else if("Variance" %in% comp) { cat("Variance\n") cat(" RMR: ", round(object@RMR@index$var, 3), "\n") cat(" SRMR: ", round(object@SRMR@index$var, 3), "\n") } if ("Mean" %in% comp & !is.null(object@sampleMoments$yBar)) { cat("Mean\n") cat(" RMR: ", round(object@RMR@index$mean, 3), "\n") cat(" SRMR: ", round(object@SRMR@index$mean, 3), "\n") cat(" CRMR: ", round(object@CRMR@index$mean, 3), "\n\n") } else if ("Mean" %in% comp & is.null(object@sampleMoments$yBar)) { cat("Means not specified \n\n") } })
GetSpecialOdds <- function(sportid, leagueids = NULL, since = NULL, oddsformat = 'AMERICAN', tableformat = 'clean', force = TRUE){ CheckTermsAndConditions() if(missing(sportid)) { cat('No Sports Selected, choose one:\n') ViewSports() sportid <- readline('Selection (id): ') } message( Sys.time(), '| Pulling Specials Odds for - sportid: ', sportid, if (!is.null(leagueids)) sprintf(' leagueids: %s', paste(leagueids, collapse = ', ')), if (!is.null(since)) sprintf(' since: %s', since), ' oddsformat: ', oddsformat, ' tableformat: ', tableformat ) r <- sprintf('%s/v1/odds/special', .PinnacleAPI$url) %>% modify_url(query = list(sportId = sportid, leagueIds = if(!is.null(leagueids)) paste(leagueids,collapse=',') else NULL, since = since)) %>% httr::GET(add_headers(Authorization= authorization(), "Content-Type" = "application/json")) %>% content(type="text", encoding = "UTF-8") if(identical(r, '')) return(data.frame()) r %>% jsonlite::fromJSON(flatten = TRUE) %>% as.data.table %>% { if(all(sapply(.,is.atomic))) . expandListColumns(.) } %>% { if(tableformat == 'long') SpreadsAndTotalsLong(.) else if(tableformat == 'wide') SpreadsAndTotalsWide(.) else if(tableformat == 'subtables') . else if(tableformat == 'clean') expandListColumns(.) else stop("Undefined value for tableFormat, options are 'mainlines','long','wide', and 'subtables'") } %>% as.data.frame() }
coef.pot <- function(object, ...){ if (!inherits(object, "pot")) stop("Use only with 'pot' objects") return(object$fitted.values) }
plot.TLMoments <- function(x, ...) { if (!inherits(x, "TLMoments")) stop("First argument has to be of class TLMoments. ") if (!all(c(3, 4) %in% attr(x, "order"))) stop("Object must contain T2 and T3. ") UseMethod("plot.TLMoments", x$lambdas) } plot.TLMoments.numeric <- function(x, distr = "all", add_center = FALSE, use_internal = TRUE, ...) { lmrdiagram(x$ratios[3], x$ratios[4], trim = c(attr(x, "leftrim"), attr(x, "rightrim")), distr = distr, add_center = add_center, use_internal = use_internal) } plot.TLMoments.matrix <- function(x, distr = "all", add_center = TRUE, use_internal = TRUE, ...) { lmrdiagram(x$ratios[3, ], x$ratios[4, ], trim = c(attr(x, "leftrim"), attr(x, "rightrim")), distr = distr, add_center = add_center, use_internal = use_internal) } plot.TLMoments.list <- function(x, distr = "all", add_center = TRUE, use_internal = TRUE, ...) { lmrdiagram(vapply(x$ratios, getElement, "T3", FUN.VALUE = numeric(1)), vapply(x$ratios, getElement, "T4", FUN.VALUE = numeric(1)), trim = c(attr(x, "leftrim"), attr(x, "rightrim")), distr = distr, add_center = add_center, use_internal = use_internal) } plot.TLMoments.data.frame <- function(x, distr = "all", add_center = TRUE, use_internal = TRUE, ...) { lmrdiagram(x$ratios$T3, x$ratios$T4, trim = c(attr(x, "leftrim"), attr(x, "rightrim")), distr = distr, add_center = add_center, use_internal = use_internal) } lmrdiagram <- function(t3, t4, trim = c(0, 0), distr = c("all"), add_center = TRUE, use_internal = TRUE) { d_lines <- c("gev", "gpd", "ln3", "pe3", "glo") d_points <- c("gum", "exp", "norm") if (length(distr) == 1 && distr == "all") distr <- c(d_lines, d_points) if (length(distr) == 1 && distr == "only-lines") distr <- d_lines if (length(distr) == 1 && distr == "only-points") distr <- d_points if (use_internal) { tlmr <- tlmomentratios[tlmomentratios$leftrim == trim[1] & tlmomentratios$rightrim == trim[2], ] } if (use_internal && nrow(tlmr) == 0) { warning("No internal data available for this trimming. Using calculated values. ") use_internal <- FALSE } if (!use_internal) { tlmr <- getTLMomsByDistr(distr, trim) } tlmr_points <- tlmr[tlmr$distr %in% intersect(d_points, distr), ] tlmr_lines <- tlmr[tlmr$distr %in% intersect(d_lines, distr), ] lab_pref <- ifelse(all(trim == c(0, 0)), "L", paste0("TL(", paste(trim, collapse = ","), ")")) p <- ggplot2::ggplot( data.frame(T3 = t3, T4 = t4), ggplot2::aes_(~T3, ~T4) ) + ggplot2::labs(x = paste(lab_pref, "skewness"), y = paste(lab_pref, "kurtosis")) + ggplot2::coord_cartesian(xlim = range(t3), ylim = range(t4)) + ggplot2::geom_point() + ggplot2::geom_line(ggplot2::aes_(~T3, ~T4, colour = ~distr, linetype = ~distr), data = tlmr_lines) + ggplot2::geom_point(ggplot2::aes_(~T3, ~T4, shape = ~distr), data = tlmr_points, size = 3) if (add_center) { p + ggplot2::annotate("point", mean(t3), mean(t4), shape = 4) } else { p } }
if (suppressWarnings(require("testthat") && require("ggeffects"))) { data(mtcars) mtcars$cyl2 <- factor(mtcars$cyl) m1 <- lm(mpg ~ hp + factor(cyl) + gear, data = mtcars) m2 <- lm(mpg ~ hp + cyl2 + gear, data = mtcars) pr1 <- ggpredict(m1, "gear") pr2 <- ggpredict(m2, "gear") test_that("ggpredict, lm", { expect_equal(pr1$conf.high, c(24.5107, 25.8074, 28.1194), tolerance = 1e-3) expect_equal(pr2$conf.high, c(24.5107, 25.8074, 28.1194), tolerance = 1e-3) expect_equal(pr1$conf.high, pr2$conf.high, tolerance = 1e-3) }) pr1 <- ggpredict(m1, "gear", vcov.fun = "vcovHC") pr2 <- ggpredict(m2, "gear", vcov.fun = "vcovHC") test_that("ggpredict, lm", { expect_equal(pr1$conf.high, c(24.1337, 25.913, 28.5737), tolerance = 1e-3) expect_equal(pr2$conf.high, c(24.1337, 25.913, 28.5737), tolerance = 1e-3) expect_equal(pr1$conf.high, pr2$conf.high, tolerance = 1e-3) }) }
setOldClass("gam") .predictSmooth <- function(dm, X, beta, pseudotime, gene, nPoints, tidy){ nCurves <- length(grep(x = colnames(dm), pattern = "t[1-9]")) for (jj in seq_len(nCurves)) { df <- .getPredictRangeDf(dm, jj, nPoints = nPoints) Xdf <- predictGAM(lpmatrix = X, df = df, pseudotime = pseudotime) if (jj == 1) Xall <- Xdf if (jj > 1) Xall <- rbind(Xall, Xdf) } if (tidy) out <- list() for (jj in seq_len(nCurves)) { df <- .getPredictRangeDf(dm, jj, nPoints = nPoints) Xdf <- predictGAM(lpmatrix = X, df = df, pseudotime = pseudotime) if (jj == 1) Xall <- Xdf if (jj > 1) Xall <- rbind(Xall, Xdf) if (tidy) out[[jj]] <- data.frame(lineage = jj, time = df[, paste0("t",jj)]) } if (tidy) outAll <- do.call(rbind,out) yhatMat <- matrix(NA, nrow = length(gene), ncol = nCurves * nPoints) rownames(yhatMat) <- gene pointNames <- paste(rep(seq_len(nCurves), each = nPoints), seq_len(nPoints), sep = "_") colnames(yhatMat) <- paste0("lineage", pointNames) for (jj in 1:length(gene)) { yhat <- c(exp(t(Xall %*% t(beta[as.character(gene[jj]), , drop = FALSE])) + df$offset[1])) yhatMat[jj, ] <- yhat } if(!tidy){ return(yhatMat) } else { outList <- list() for(gg in seq_len(length(gene))){ curOut <- outAll curOut$gene <- gene[gg] curOut$yhat <- yhatMat[gg,] outList[[gg]] <- curOut } return(do.call(rbind, outList)) } } .predictSmooth_conditions <- function(dm, X, beta, pseudotime, gene, nPoints, conditions, tidy){ nCurves <- length(grep(x = colnames(dm), pattern = "t[1-9]")) nConditions <- nlevels(conditions) if (tidy) out <- list() for (jj in seq_len(nCurves)) { if (tidy) out_cond <- list() for(kk in seq_len(nConditions)){ df <- .getPredictRangeDf(dm, lineageId = jj, conditionId = kk, nPoints = nPoints) Xdf <- predictGAM(lpmatrix = X, df = df, pseudotime = pseudotime, conditions = conditions) if(kk == 1) XallCond <- Xdf if(kk > 1) XallCond <- rbind(XallCond, Xdf) if (tidy) { out_cond[[kk]] <- data.frame(lineage = jj, time = df[, paste0("t",jj)], condition = levels(conditions)[kk]) } } if (jj == 1) Xall <- XallCond if (jj > 1) Xall <- rbind(Xall, XallCond) if (tidy) out[[jj]] <- do.call(rbind, out_cond) } if (tidy) outAll <- do.call(rbind, out) yhatMat <- matrix(NA, nrow = length(gene), ncol = nCurves * nConditions * nPoints) rownames(yhatMat) <- gene pointNames <- expand.grid(1:nCurves, 1:nConditions) baseNames <- paste0("lineage", pointNames[,1], "_condition", levels(conditions)[pointNames[,2]]) colnames(yhatMat) <- c(sapply(baseNames, paste0, "_point",1:nPoints)) for (jj in 1:length(gene)) { yhat <- c(exp(t(Xall %*% t(beta[as.character(gene[jj]), , drop = FALSE])) + df$offset[1])) yhatMat[jj, ] <- yhat } if (!tidy) { return(yhatMat) } else { outList <- list() for (gg in seq_len(length(gene))){ curOut <- outAll curOut$gene <- gene[gg] curOut$yhat <- yhatMat[gg,] outList[[gg]] <- curOut } return(do.call(rbind, outList)) } } setMethod(f = "predictSmooth", signature = c(models = "SingleCellExperiment"), definition = function(models, gene, nPoints = 100, tidy = TRUE){ if (is(gene, "character")) { if (!all(gene %in% rownames(models))) { stop("Not all gene IDs are present in the models object.") } id <- match(gene, rownames(models)) } else id <- gene dm <- colData(models)$tradeSeq$dm X <- colData(models)$tradeSeq$X slingshotColData <- colData(models)$crv pseudotime <- slingshotColData[,grep(x = colnames(slingshotColData), pattern = "pseudotime")] if (is.null(dim(pseudotime))) pseudotime <- matrix(pseudotime, ncol = 1) betaMat <- rowData(models)$tradeSeq$beta[[1]] beta <- as.matrix(betaMat[id,]) rownames(beta) <- gene condPresent <- suppressWarnings({ !is.null(SummarizedExperiment::colData(models)$tradeSeq$conditions) }) if(!condPresent){ yhatMat <- .predictSmooth(dm = dm, X = X, beta = beta, pseudotime = pseudotime, gene = gene, nPoints = nPoints, tidy = tidy) } else if(condPresent){ conditions <- SummarizedExperiment::colData(models)$tradeSeq$conditions yhatMat <- .predictSmooth_conditions(dm = dm, X = X, beta = beta, pseudotime = pseudotime, gene = gene, nPoints = nPoints, conditions = conditions, tidy = tidy) } return(yhatMat) } ) setMethod(f = "predictSmooth", signature = c(models = "list"), definition = function(models, gene, nPoints = 100 ){ if (is(gene, "character")) { if (!all(gene %in% names(models))) { stop("Not all gene IDs are present in the models object.") } id <- which(names(models) %in% gene) } else id <- gene m <- .getModelReference(models) dm <- m$model[, -1] X <- predict(m, type = "lpmatrix") pseudotime <- dm[, grep(x = colnames(dm), pattern = "t[1-9]")] if (is.null(dim(pseudotime))) pseudotime <- matrix(pseudotime, ncol = 1) nCurves <- length(grep(x = colnames(dm), pattern = "t[1-9]")) for (jj in seq_len(nCurves)) { df <- .getPredictRangeDf(dm, jj, nPoints = nPoints) if (jj == 1) dfall <- df if (jj > 1) dfall <- rbind(dfall, df) } pointNames <- expand.grid(1:nPoints, 1:nCurves)[, 2:1] rownames(dfall) <- paste0("lineage", apply(pointNames, 1, paste, collapse = "_")) yhatMat <- t(sapply(models[id], function(m) { predict(m, newdata = dfall) })) rownames(yhatMat) <- gene return(exp(yhatMat)) } )
get_mapbox_token <- function () { e <- Sys.getenv() e <- e [grep ("mapbox|mapscan", names (e), ignore.case = TRUE)] tok <- unique (as.character (e)) if (all (tok == "")) stop0 () else if (length (tok) > 1) { e <- e [grep ("mapscan", names (e), ignore.case = TRUE)] tok <- unique (as.character (e)) if (length (tok) == 0) stop0 () else if (length (tok) > 1) stop ("Found multiple potential tokens named [", paste0 (names (e), collapse = ","), "];\nplease specify ", "only one environnmental variable which includes the ", "name\n'mapscan', and contains a personal API key for ", "mapbox services.") } return (tok) } stop0 <- function () { stop ("Map generation requires a mapbox API key to be set with ", "Sys.setenv\nor the package's 'set_mapbox_token' function, ", "using a token name that\nincludes either the strings ", "'mapbox' or 'mapscanner'. Tokens can be obtained\nfrom ", "https://docs.mapbox.com/api/overview/", call. = FALSE) } set_mapbox_token <- function (token) { chk <- Sys.setenv ("mapscanner" = token) if (chk) message ("Token successfully set") else warning ("Unable to set token") }
setMethodS3("compileRnw", "default", function(filename, path=NULL, ..., type=NULL, verbose=FALSE) { pathname <- if (is.null(path)) filename else file.path(path, filename) if (!isUrl(pathname)) { pathname <- Arguments$getReadablePathname(pathname) } if (!is.null(type)) { type <- Arguments$getCharacter(type) } verbose <- Arguments$getVerbose(verbose) if (verbose) { pushState(verbose) on.exit(popState(verbose)) } verbose && enter(verbose, "Compiling Rnw document") if (isUrl(pathname)) { verbose && enter(verbose, "Downloading URL") url <- pathname verbose && cat(verbose, "URL: ", url) pathname <- downloadFile(url, verbose=less(verbose,50)) verbose && cat(verbose, "Local file: ", pathname) verbose && exit(verbose) } if (is.null(type)) { type <- typeOfRnw(pathname) } verbose && cat(verbose, "Type of Rnw file: ", type) if (type == "application/x-sweave") { pathnameR <- compileSweave(filename, path=path, ..., verbose=verbose) } else if (type == "application/x-knitr") { pathnameR <- compileKnitr(filename, path=path, ..., verbose=verbose) } else if (type == "application/x-asciidoc-noweb") { pathnameR <- compileAsciiDocNoweb(filename, path=path, ..., verbose=verbose) } else { throw("Unknown value of argument 'type': ", type) } verbose && exit(verbose) pathnameR })
source("scripts/update_data_funs.R") convert_official_qc <- function() { dat <- Covid19CanadaData::dl_dataset("3b93b663-4b3f-43b4-a23d-cbf6d149d2c5") dat2 <- Covid19CanadaData::dl_dataset("b78d46c8-9a56-4b75-94c5-4ace36e014f5") dat <- dat %>% filter(Date != "Date inconnue") %>% mutate(Date = as.Date(Date)) %>% rename( date = Date ) dat2 <- dat2[24:nrow(dat2), 1:5] %>% rename( date = 1, hosp = 2, icu = 3, hosp_old = 4, samples_analyzed = 5 ) %>% mutate(date = as.Date(date, "%d/%m/%Y")) %>% mutate(across(c(hosp, icu, hosp_old, samples_analyzed), as.integer)) qc_testing_datasets_prov <- dat %>% filter(Regroupement == "Région" & Nom == "Ensemble du Québec") %>% select(date, psi_cum_tes_n, psi_cum_pos_n, psi_cum_inf_n, psi_quo_pos_n, psi_quo_inf_n, psi_quo_tes_n, psi_quo_pos_t) %>% mutate(province = "Quebec") %>% rename( date = date, cumulative_unique_people_tested = psi_cum_tes_n, cumulative_unique_people_tested_positive = psi_cum_pos_n, cumulative_unique_people_tested_negative = psi_cum_inf_n, unique_people_tested_positive = psi_quo_pos_n, unique_people_tested_negative = psi_quo_inf_n, unique_people_tested = psi_quo_tes_n, unique_people_tested_positivity_percent = psi_quo_pos_t ) %>% full_join( dat2 %>% select(date, samples_analyzed), by = "date" ) %>% replace_na(list( samples_analyzed = 0 )) %>% mutate(unique_people_tested_positivity_percent = as.numeric(ifelse(unique_people_tested_positivity_percent == " . ", 0, unique_people_tested_positivity_percent))) %>% arrange(date) %>% mutate(cumulative_samples_analyzed = cumsum(samples_analyzed)) %>% select( date, province, cumulative_unique_people_tested, cumulative_unique_people_tested_positive, cumulative_unique_people_tested_negative, unique_people_tested, unique_people_tested_positive, unique_people_tested_negative, unique_people_tested_positivity_percent, samples_analyzed, cumulative_samples_analyzed ) convert_dates("qc_testing_datasets_prov", date_format_out = "%d-%m-%Y") write.csv(qc_testing_datasets_prov, "official_datasets/qc/qc_testing_datasets_prov.csv") } convert_phac_testing_prov <- function() { ds <- Covid19CanadaData::dl_dataset("f7db31d0-6504-4a55-86f7-608664517bdb") dat <- Covid19CanadaDataProcess::process_dataset( uuid = "f7db31d0-6504-4a55-86f7-608664517bdb", val = "testing", fmt = "prov_ts", testing_type = "n_tests_completed", ds = ds ) %>% dplyr::select(-.data$name) %>% dplyr::rename(c("n_tests_completed" = "value")) %>% dplyr::group_by(.data$province) %>% dplyr::mutate(n_tests_completed_daily = c(0, diff(.data$n_tests_completed))) write.csv(dat, "official_datasets/can/phac_n_tests_performed_timeseries_prov.csv", row.names = FALSE) } update_nt_subhr <- function(update_date, archive_date = NULL) { if (!is.null(archive_date)) { update_date <- as.Date(as.character(archive_date)) ds <- Covid19CanadaData::dl_archive("9ed0f5cd-2c45-40a1-94c9-25b0c9df8f48", date = as.character(update_date))[[1]] } else { ds <- Covid19CanadaData::dl_dataset("9ed0f5cd-2c45-40a1-94c9-25b0c9df8f48") } nt_cases_subhr <- Covid19CanadaDataProcess::process_dataset( uuid = "9ed0f5cd-2c45-40a1-94c9-25b0c9df8f48", val = "cases", fmt = "subhr_cum_current_residents_nonresidents", ds = ds ) if (identical(nt_cases_subhr, NA)) { Sys.sleep(15) ds <- Covid19CanadaData::dl_dataset("9ed0f5cd-2c45-40a1-94c9-25b0c9df8f48") nt_cases_subhr <- Covid19CanadaDataProcess::process_dataset( uuid = "9ed0f5cd-2c45-40a1-94c9-25b0c9df8f48", val = "cases", fmt = "subhr_cum_current_residents_nonresidents", ds = ds ) } if (!is.null(archive_date)) { nt_cases_subhr$date <- update_date } if (identical(nt_cases_subhr, NA)) { stop("Failed to download ds: 9ed0f5cd-2c45-40a1-94c9-25b0c9df8f48.") } nt_cases_subhr_old <- Covid19CanadaETL::sheets_load( "1RSy3qAqA4jdC4QUVTcSBogIerP7-rNic0H3L5F8_uE0", "cases_timeseries_subhr" ) %>% dplyr::mutate(date = as.Date(date)) nt_cases_subhr_old <- nt_cases_subhr_old %>% dplyr::filter(date == as.Date(update_date) - 1) nt_cases_subhr$value_daily <- nt_cases_subhr$value - as.integer(nt_cases_subhr_old$value) if (sum(is.na(nt_cases_subhr$value)) > 0 | nrow(nt_cases_subhr) == 0) { stop("Failed to process ds: 9ed0f5cd-2c45-40a1-94c9-25b0c9df8f48.") } else { if (update_date %in% nt_cases_subhr_old$date) { nt_cases_subhr_old <- nt_cases_subhr_old %>% dplyr::filter(date != update_date) sheet_write( data = nt_cases_subhr_old, ss = "1RSy3qAqA4jdC4QUVTcSBogIerP7-rNic0H3L5F8_uE0", sheet = "cases_timeseries_subhr") } googlesheets4::sheet_append( "1RSy3qAqA4jdC4QUVTcSBogIerP7-rNic0H3L5F8_uE0", nt_cases_subhr, "cases_timeseries_subhr" ) } nt_active_subhr <- Covid19CanadaDataProcess::process_dataset( uuid = "9ed0f5cd-2c45-40a1-94c9-25b0c9df8f48", val = "active", fmt = "subhr_current", ds = ds ) if (!is.null(archive_date)) { nt_active_subhr$date <- update_date } nt_active_subhr_old <- Covid19CanadaETL::sheets_load( "1RSy3qAqA4jdC4QUVTcSBogIerP7-rNic0H3L5F8_uE0", "active_timeseries_subhr" ) %>% dplyr::mutate(date = as.Date(date)) if (update_date %in% nt_active_subhr_old$date) { nt_active_subhr_old <- nt_active_subhr_old %>% dplyr::filter(date != update_date) sheet_write( data = nt_active_subhr_old, ss = "1RSy3qAqA4jdC4QUVTcSBogIerP7-rNic0H3L5F8_uE0", sheet = "active_timeseries_subhr") } nt_active_subhr_old <- nt_active_subhr_old %>% dplyr::filter(date == as.Date(update_date) - 1) nt_active_subhr$value_daily <- nt_active_subhr$value - as.integer(nt_active_subhr_old$value) googlesheets4::sheet_append( "1RSy3qAqA4jdC4QUVTcSBogIerP7-rNic0H3L5F8_uE0", nt_active_subhr, "active_timeseries_subhr" ) nt_cases_timeseries_subhr <- Covid19CanadaETL::sheets_load( "1RSy3qAqA4jdC4QUVTcSBogIerP7-rNic0H3L5F8_uE0", "cases_timeseries_subhr") nt_active_timeseries_subhr <- Covid19CanadaETL::sheets_load( "1RSy3qAqA4jdC4QUVTcSBogIerP7-rNic0H3L5F8_uE0", "active_timeseries_subhr") write.csv(nt_cases_timeseries_subhr, "official_datasets/nt/nt_cases_timeseries_subhr.csv", row.names = FALSE) write.csv(nt_active_timeseries_subhr, "official_datasets/nt/nt_active_timeseries_subhr.csv", row.names = FALSE) } convert_official_sk_new_hr <- function() { dat <- Covid19CanadaData::dl_dataset("61cfdd06-7749-4ae6-9975-d8b4f10d5651") dat <- dat %>% mutate(Date = as.Date(Date, "%Y/%m/%d")) %>% mutate(province = "Saskatchewan") %>% rename( date = Date, health_region = Region, cases = New.Cases, cumulative_cases = Total.Cases, active_cases = Active.Cases, hosp = Inpatient.Hospitalizations, icu = ICU.Hospitalizations, recovered = Recovered.Cases, cumulative_deaths = Deaths ) %>% group_by(date, province, health_region) %>% summarize( cases = sum(cases, na.rm = TRUE), across(c(cumulative_cases, active_cases, hosp, icu, recovered, cumulative_deaths), function(x) { ifelse( all(is.na(x)), 0, max(x, na.rm = TRUE) ) }), .groups = "drop" ) %>% arrange(province, health_region, date) cases_timeseries_hr <- dat %>% rename(date_report = date) %>% select( province, health_region, date_report, cases, cumulative_cases ) cases_timeseries_prov <- cases_timeseries_hr %>% select(-health_region) %>% group_by(province, date_report) %>% summarize( cases = sum(cases), cumulative_cases = sum(cumulative_cases), .groups = "drop" ) mortality_timeseries_hr <- dat %>% rename(date_death_report = date) %>% group_by(province, health_region) %>% mutate(deaths = c(0, diff(cumulative_deaths))) %>% ungroup %>% select( province, health_region, date_death_report, deaths, cumulative_deaths ) mortality_timeseries_prov <- mortality_timeseries_hr %>% select(-health_region) %>% group_by(province, date_death_report) %>% summarize( deaths = sum(deaths), cumulative_deaths = sum(cumulative_deaths), .groups = "drop" ) convert_dates("cases_timeseries_hr", "cases_timeseries_prov", "mortality_timeseries_hr", "mortality_timeseries_prov", date_format_out = "%d-%m-%Y") write.csv(cases_timeseries_hr, "official_datasets/sk/timeseries_hr/sk_new_cases_timeseries_hr.csv", row.names = FALSE) write.csv(cases_timeseries_prov, "official_datasets/sk/timeseries_prov/sk_new_cases_timeseries_prov.csv", row.names = FALSE) write.csv(mortality_timeseries_hr, "official_datasets/sk/timeseries_hr/sk_new_mortality_timeseries_hr.csv", row.names = FALSE) write.csv(mortality_timeseries_prov, "official_datasets/sk/timeseries_prov/sk_new_mortality_timeseries_prov.csv", row.names = FALSE) } combine_ccodwg_official_sk_new_hr <- function(stat = c("cases", "mortality"), loc = c("prov", "hr")) { match.arg(stat, choices = c("cases", "mortality"), several.ok = FALSE) match.arg(loc, choices = c("prov", "hr"), several.ok = FALSE) switch( paste(stat, loc), "cases prov" = {path_ccodwg <- "timeseries_prov/cases_timeseries_prov.csv"}, "cases hr" = {path_ccodwg <- "timeseries_hr/cases_timeseries_hr.csv"}, "mortality prov" = {path_ccodwg <- "timeseries_prov/mortality_timeseries_prov.csv"}, "mortality hr" = {path_ccodwg <- "timeseries_hr/mortality_timeseries_hr.csv"} ) dat_ccodwg <- read.csv(path_ccodwg, stringsAsFactors = FALSE) switch( paste(stat, loc), "cases prov" = {path_official <- "official_datasets/sk/timeseries_prov/sk_new_cases_timeseries_prov.csv"; var_date <- "date_report"}, "cases hr" = {path_official <- "official_datasets/sk/timeseries_hr/sk_new_cases_timeseries_hr.csv"; var_date <- "date_report"}, "mortality prov" = {path_official <- "official_datasets/sk/timeseries_prov/sk_new_mortality_timeseries_prov.csv"; var_date <- "date_death_report"}, "mortality hr" = {path_official <- "official_datasets/sk/timeseries_hr/sk_new_mortality_timeseries_hr.csv"; var_date <- "date_death_report"} ) dat_official <- read.csv(path_official, stringsAsFactors = FALSE) convert_dates("dat_ccodwg", "dat_official", date_format_out = "%Y-%m-%d") date_official_min <- min(dat_official[, var_date]) dat_combined <- bind_rows( dat_ccodwg %>% filter(province != "Saskatchewan"), dat_official ) %>% filter(!!sym(var_date) >= date_official_min) if (loc == "prov") { dat_combined <- dat_combined %>% arrange(province, !!sym(var_date)) } else if (loc == "hr") { dat_combined <- dat_combined %>% arrange(province, health_region, !!sym(var_date)) } convert_dates("dat_combined", date_format_out = "%d-%m-%Y") out_name <- paste0("timeseries_hr_sk_new/sk_new_", stat, "_timeseries_", loc, "_combined.csv") write.csv(dat_combined, out_name, row.names = FALSE) }
person_formats_female_fr_ch = c( '{{first_names_female}} {{last_names}}', '{{first_names_female}} {{last_names}}', '{{first_names_female}} {{last_names}}', '{{first_names_female}} {{last_names}}', '{{first_names_female}} {{last_names}}', '{{first_names_female}} {{last_names}}', '{{first_names_female}} {{last_names1}}-{{last_names2}}' ) person_formats_male_fr_ch = c( '{{first_names_male}} {{last_names}}', '{{first_names_male}} {{last_names}}', '{{first_names_male}} {{last_names}}', '{{first_names_male}} {{last_names}}', '{{first_names_male}} {{last_names}}', '{{first_names_male}} {{last_names}}', '{{first_names_male}} {{last_names1}}-{{last_names2}}' ) person_formats_fr_ch = c(person_formats_male_fr_ch, person_formats_female_fr_ch) person_first_names_male_fr_ch = c( "Alain", "Albert", "Alexandre", "Andr\u00e9", "Antonio", "Arthur", "Bernard", "Bruno", "Charles", "Christian", "Christophe", "Claude", "Daniel", "David", "Eric", "Ethan", "Florian", "Fran\u00e7ois", "Fr\u00e9d\u00e9ric", "Gabriel", "Georges", "Gilbert", "Guillaume", "G\u00e9rard", "Henri", "Hugo", "Jacques", "Jean", "Jean-Claude", "Jean-Pierre", "Jonathan", "Jos\u00e9", "Julien", "Kevin", "Laurent", "Louis", "Lo\u00efc", "Luca", "Lucas", "L\u00e9o", "Manuel", "Marcel", "Mathieu", "Matteo", "Maurice", "Maxime", "Michael", "Michel", "Nathan", "Nicolas", "Noah", "Nolan", "Olivier", "Pascal", "Patrick", "Paul", "Philippe", "Pierre", "Raymond", "Ren\u00e9", "Robert", "Roger", "Roland", "Romain", "Samuel", "St\u00e9phane", "S\u00e9bastien", "Thierry", "Thomas", "Th\u00e9o", "Vincent" ) person_first_names_female_fr_ch = c( "Alice", "Alicia", "Ana", "Anna", "Anne", "Aur\u00e9lie", "Camille", "Caroline", "Catherine", "Chantal", "Charlotte", "Chlo\u00e9", "Christiane", "Christine", "Clara", "Claudine", "Corinne", "C\u00e9line", "Danielle", "Denise", "Eliane", "Elisa", "Elisabeth", "Elodie", "Emilie", "Emma", "Eva", "Fabienne", "Fran\u00e7oise", "Georgette", "Germaine", "H\u00e9l\u00e8ne", "Isabelle", "Jacqueline", "Jeanne", "Jessica", "Josiane", "Julie", "Laetitia", "Lara", "Laura", "Laurence", "Liliane", "Lisa", "Lucie", "L\u00e9a", "Madeleine", "Manon", "Marcelle", "Marguerite", "Maria", "Marianne", "Marie", "Mathilde", "Monique", "M\u00e9lanie", "Nathalie", "Nelly", "Nicole", "Odette", "Patricia", "Sandra", "Sandrine", "Sara", "Sarah", "Simone", "Sophie", "St\u00e9phanie", "Suzanne", "Sylvie", "Th\u00e9r\u00e8se", "Val\u00e9rie", "Vanessa", "V\u00e9ronique", "Yvette", "Yvonne", "Zo\u00e9" ) person_first_names_fr_ch = c(person_first_names_male_fr_ch, person_first_names_female_fr_ch) person_last_names_fr_ch = c( "Aebi", "Aeby", "Alber", "Babey", "Badan", "Badel", "Bahon", "Balmat", "Barbey", "Barillon", "Barman", "Bavaud", "Beguin", "Berberat", "Bernasconi", "Besan\u00e7on", "Besen\u00e7on", "Besse", "Beuchat", "Beuret", "Beurret", "Blanc", "Bochud", "Boechat", "Boichat", "Boillat", "Bonvin", "Bonvini", "Botteron", "Bourquard", "Bourquin", "Bouvier", "Bovet", "Brahier", "Brandt", "Broquet", "Bugnon", "Bujard", "B\u00e9guelin", "Candaux", "Carraud", "Carraux", "Carron", "Cattin", "Chappuis", "Chapuis", "Charpi\u00e9", "Chatriand", "Chatriant", "Chaudet", "Chenaux", "Chevalley", "Chevrolet", "Chopard", "Coigny", "Comman", "Comment", "Comte", "Conrad", "Corbat", "Corboz", "Cornut", "Cornuz", "Corpataux", "Cosandey", "Cosendey", "Cossy", "Courvoisier", "Cousin", "Cretton", "Crevoisier", "Crivelli", "Curdy", "de Dardel", "Delado\u00eby", "Del\u00e8ze", "Deshusses", "Diesbach", "Droz", "Dubey", "Duroux", "Duvanel", "D\u00e9l\u00e8ze", "Ev\u00e9quoz", "Fonjallaz", "Francillon", "Galland", "Georges", "Gilli\u00e8ron", "Gilli\u00e9ron", "Godet", "Grand", "Grojean", "Grosjean", "Gub\u00e9ran", "Humbert", "Isella", "Jacot-Descombes", "Jacot-Guillarmod", "Joly", "Jomini", "Joye", "Julliard", "Maire", "Marti", "Martin", "Marty", "Masseron", "Matile", "Mayor", "Menthonnex", "Mercier", "Meyer", "Monnard", "Monnet", "Monnet", "Monney", "Montandon", "Morand", "Morard", "Mottet", "Mottiez", "Muriset", "Musy", "M\u00fcller", "Niquille", "Nussl\u00e9", "N\u00fcsslin", "Paccot", "Pachoud", "Paschoud", "Pasquier", "Peitrequin", "Pellet", "Piccand", "Polla", "Privet", "Quartier", "Rapin", "Rappaz", "Rapraz", "Rey", "Robadey", "Robert", "Romanens", "Rosselat", "Rosselet", "Rossellat", "Sandoz", "Sansonnens", "Saudan", "Thorens", "Th\u00e9raulaz", "Tinguely", "Treboux", "Uldry", "Vall\u00e9lian", "Vermeil", "Vienne", "Vonlanthen", "Vuille", "Wicht" ) person_fr_ch <- list( first_names = person_first_names_fr_ch, first_names_male = person_first_names_male_fr_ch, first_names_female = person_first_names_female_fr_ch, last_names = person_last_names_fr_ch )
rm(list=ls()) library(crs) set.seed(42) n <- 1000 x <- runif(n) neval <- 100 c <- 3 z <- as.integer(cut(runif(n),breaks=qunif(seq(0,1,length=c+1))))-1 dgp <- cos(4*pi*x)+z dgp <- dgp/sd(dgp) y <- dgp + rnorm(n,sd=.25) z <- factor(z) model <- crs(y ~ x + z) data.eval <- expand.grid(x = seq(min(x), max(x), length = neval), z = levels(z)) library(ggplot2) data.eval$y <- predict(model, newdata=data.eval) qplot(x, y, colour=z) + geom_line(data=data.eval) data.eval$ucl <- attr(data.eval$y,"upr") data.eval$lcl <- attr(data.eval$y,"lwr") qplot(x, y, colour=z) + geom_smooth(aes(ymin = lcl, ymax = ucl), data=data.eval, stat="identity")
setIs("Exp", "Gammad", coerce = function(obj){new("Gammad", shape = 1, scale = 1/rate(obj))}, replace = function(obj, value) {new("Gammad", shape = value@shape, scale = value@scale)} ) setIs("Exp", "Weibull", coerce = function(obj) {new("Weibull", shape = 1, scale = 1/rate(obj))}, replace = function(obj, value) {new("Weibull", shape = value@shape, scale = value@scale)} ) setIs("Chisq", "Gammad", test = function(obj) isTRUE(all.equal(ncp(obj), 0)), coerce = function(obj) {new("Gammad", shape = df(obj)/2, scale = 2)}, replace = function(obj, value) {new("Gammad", shape = value@shape, scale = value@scale)} ) setIs("Cauchy", "Td", test = function(obj) {isTRUE(all.equal(location(obj),0)) && isTRUE(all.equal(scale(obj),1))}, coerce = function(obj) {new("Td")}, replace = function(obj, value) {new("Td", df = value@df, ncp = value@ncp)} ) setIs("Unif", "Beta", test = function(obj) {isTRUE(all.equal(Min(obj),0)) && isTRUE(all.equal(Max(obj),1))}, coerce = function(obj) {new("Beta", shape1 = 1, shape2 = 1)}, replace = function(obj, value) {new("Beta", shape1 = value@shape1, shape2 = value@shape2, ncp = value@ncp)} ) setAs("DiscreteDistribution", "LatticeDistribution", function(from){ if(!.is.vector.lattice(from@support)) return(from) else{ to <- new("LatticeDistribution") slotNames <- slotNames(from) lst <- sapply(slotNames, function(x) slot(from,x)) names(lst) <- slotNames lst$lattice <- .make.lattice.es.vector(from@support) for (i in 1: length(lst)) slot(to, name = names(lst)[i]) <- lst[[i]] return(to)} }) setAs("AffLinDiscreteDistribution", "LatticeDistribution", function(from){ if(!.is.vector.lattice(from@support)) return(from) else{ to <- new("AffLinLatticeDistribution") slotNames <- slotNames(from) lst <- sapply(slotNames, function(x) slot(from,x)) names(lst) <- slotNames lst$lattice <- .make.lattice.es.vector(from@support) for (i in 1: length(lst)) slot(to, name = names(lst)[i]) <- lst[[i]] return(to)} })
if (electricShine::get_os() != "unix") { context("test-long_running_tests") tmp <- file.path(tempdir(), "space path") dir.create(tmp) tmp <- file.path(tempdir(), "space path", "build_git_install") dir.create(tmp) tmp <- normalizePath(tmp, "/") repo <- system.file("demoApp", package = "electricShine") repos <- "https://cran.r-project.org/" installed_r <- electricShine::install_r(cran_like_url = "https://cran.r-project.org", app_root_path = tmp, mac_url = "https://mac.r-project.org/el-capitan/R-devel/R-devel-el-capitan-sa-x86_64.tar.gz", permission_to_install = TRUE) test_that("install_r works", {+ testthat::skip_on_os("linux") expect_identical(basename(installed_r), "bin") expect_true(any(file.exists(installed_r, pattern = "Rscript"))) }) temp <- file.path(tempdir(), "space path", "deletemetesting") dir.create(temp) temp <- normalizePath(temp, "/") nodejs_version <- "10.16.0" getnode <- electricShine::install_nodejs(node_url = "https://nodejs.org/dist/", nodejs_path = temp, force_install = FALSE, nodejs_version = nodejs_version, permission_to_install = TRUE) test_that(".check_node_works provides message", { testthat::skip_on_os("linux") expect_message(electricShine:::.check_node_works(node_top_dir = getnode, expected_version = nodejs_version)) }) test_that(".check_npm_works provides message", { testthat::skip_on_os("linux") expect_message(electricShine:::.check_npm_works(node_top_dir = getnode)) }) node_exists <- electricShine:::.check_node_works(node_top_dir = tempdir(), expected_version = nodejs_version) npm_exists <- electricShine:::.check_npm_works(node_top_dir = tempdir()) test_that(".check_node_works gives false ", { testthat::skip_on_os("linux") expect_false(node_exists) }) test_that(".check_npm_works gives false", { testthat::skip_on_os("linux") expect_false(npm_exists) }) node_exists <- electricShine:::.check_node_works(node_top_dir = getnode, expected_version = nodejs_version) npm_exists <- electricShine:::.check_npm_works(node_top_dir = getnode) test_that(".check_node_works ", { testthat::skip_on_os("linux") expect_true(file.exists(node_exists)) expect_equal(tools::file_path_sans_ext(basename(node_exists)), "node") }) test_that(".check_npm_works ", { testthat::skip_on_os("linux") expect_true(file.exists(npm_exists)) expect_equal(tools::file_path_sans_ext(basename(npm_exists)), "npm") }) }
knitr::opts_chunk$set( collapse = TRUE, comment = " ) library(tilemaps) library(sf) library(dplyr) library(ggplot2) governors <- governors %>% mutate(tile_map = generate_map(geometry, square = FALSE, flat_topped = TRUE)) ggplot(governors) + geom_sf(aes(geometry = tile_map)) + geom_sf_text(aes(geometry = tile_map, label = abbreviation), fun.geometry = function(x) st_centroid(x)) + theme_void() all_states <- governors %>% add_row(abbreviation = "AK", party = "Republican", tile_map = create_island(governors$tile_map, "lower left")) %>% add_row(abbreviation = "HI", party = "Democrat", tile_map = create_island(governors$tile_map, c(-12050000, 3008338))) ggplot(all_states) + geom_sf(aes(geometry = tile_map)) + geom_sf_text(aes(geometry = tile_map, label = abbreviation), fun.geometry = function(x) st_centroid(x)) + theme_void() all_states <- all_states %>% mutate(party = factor(party, c("Republican", "Democrat"))) ggplot(all_states) + geom_sf(aes(geometry = tile_map, fill = party)) + geom_sf_text(aes(geometry = tile_map, label = abbreviation), fun.geometry = function(x) st_centroid(x)) + scale_fill_brewer(palette = "Set1") + ggtitle("Party Affiliation of United States Governors (2020)") + theme_void() us_maps <- many_maps(governors$geometry, governors$abbreviation, prop = c(0, 0.1), interpolate = c(0.5, 1), smoothness = c(0, 20), shift = list(c(0,0), c(0,0.5))) governors <- governors %>% mutate(square_map = us_maps$map[[1]]) ggplot(governors) + geom_sf(aes(geometry = square_map)) + geom_sf_text(aes(geometry = square_map, label = abbreviation)) + theme_void() neighbors <- st_touches(governors$geometry) crs <- st_crs(governors$geometry) R <- length(governors$geometry) A <- sum(st_area(governors$geometry)) s <- as.numeric(sqrt(A/R)) centroids <- tilemaps:::transform_centroids(governors$geometry, neighbors, crs, s, prop = 0.1) interpolated_centroids <- tilemaps:::interpolate_centroids(centroids$noisy_centroids, centroids$transformed_centroids, crs, interpolate = 0.75) centroids_df <- data.frame(st_coordinates(c(centroids$noisy_centroids, centroids$transformed_centroids, interpolated_centroids))) centroids_df <- centroids_df %>% mutate(centroids = c(rep("noisy", nrow(governors)), rep("fully-transformed", nrow(governors)), rep("interpolated", nrow(governors))), region = rep(governors$abbreviation, 3)) centroids_df$centroids <- factor(centroids_df$centroids, c("noisy", "interpolated", "fully-transformed")) ggplot(governors) + geom_sf(aes(geometry = geometry)) + geom_point(data = centroids_df, aes(X, Y, color = centroids)) + geom_line(data = centroids_df, aes(X,Y, group = region)) + scale_color_brewer(palette = "YlGnBu") + theme_void() transformed_boundary <- tilemaps:::transform_boundary(governors$geometry, centroids$noisy_centroids, interpolated_centroids) smoothed_boundary <- smoothr::smooth(transformed_boundary, method = "ksmooth", smoothness = 20) transformed_coords <- data.frame(st_coordinates(st_boundary(transformed_boundary))) smoothed_coords <- data.frame(st_coordinates(st_boundary(smoothed_boundary))) original_coords <- data.frame(st_coordinates(st_boundary(st_union(governors$geometry)))) legend_order <- c("original", "transformed", "smoothed") ggplot() + geom_path(data = original_coords, aes(X,Y, group = L1, color = "original")) + geom_path(data = transformed_coords, aes(X,Y, group = L1, color = "transformed")) + geom_path(data = smoothed_coords, aes(X,Y, group = L1, color = "smoothed")) + theme_void() + scale_color_discrete(name = "boundary", breaks = legend_order) tiles <- tilemaps:::fit_tiles(smoothed_boundary, nrow(governors), s, shift = c(0.5,0.5)) permutation <- tilemaps:::assign_regions(interpolated_centroids, sf::st_centroid(tiles)) final_map <- tiles[order(permutation)] governors <- governors %>% mutate(map = final_map) ggplot(governors) + geom_sf(aes(geometry = map)) + geom_sf_text(aes(geometry = map, label = abbreviation)) + theme_void()
test_that("works as expected", { expect_equal( ddiff( lubridate::mdy( '1/1/2019' ), lubridate::mdy( '2/1/2019' ) ), 31 ) expect_equal( ddiff( lubridate::mdy( '1/1/2019' ), lubridate::mdy( '2/1/2019' ), unit = 'month' ), 1 ) expect_equal( mdiff( lubridate::mdy( '1/1/2019' ), lubridate::mdy( '2/1/2019' ) ), 1 ) expect_equal( ddiff( lubridate::mdy( '1/1/2019' ), lubridate::mdy( '2/1/2020' ), unit = 'month' ), 13 ) expect_equal( mdiff( lubridate::mdy( '1/1/2019' ), lubridate::mdy( '2/1/2020' ) ), 13 ) expect_equal( ddiff( lubridate::mdy( '1/1/2019' ), lubridate::mdy( '2/1/2020' ), unit = 'year' ), 1 ) expect_equal( ydiff( lubridate::mdy( '1/1/2019' ), lubridate::mdy( '2/1/2020' ) ), 1 ) expect_equal( ddiff( lubridate::mdy( '1/1/2019' ), lubridate::mdy( '2/1/2020' ), unit = 'quarter' ), 4 ) expect_equal( qdiff( lubridate::mdy( '1/1/2019' ), lubridate::mdy( '2/1/2020' ) ), 4 ) })
orwg <- function(object, ...) UseMethod("orwg") orwg.table <- function(object, ...) { stopifnot(length(dim(object)) == 3) z <- apply(object, 3, function(x) c(between= sum(x) - sum(diag(x)), within=sum(diag(x))) ) offdiag <- z[ col(z) != row(z) ] prod(diag(z)) / prod(offdiag) } orwg.igraph <- function(object, vattr, ...) { m <- mixingm(object, rattr=vattr, full=TRUE) orwg(m, ...) } orwg.default <- function(object, ...) { orwg.table( as.table(object), ... ) }
context("AA class behaviour") test_that("Construction of aa vector works", { test <- aa("ACGT", "RWSAG", "QQQ-") expect_s3_class(test, "bioseq_aa") expect_type(test, "character") expect_length(test, 3) }) test_that("Non IUPAC character are changed to X", { test <- suppressWarnings(aa("AcgT", "RWSAG", "QQQ", "K@")) expect_equal(as.character(test[1]), "ACGT") expect_equal(as.character(test[2]), "RWSAG") expect_equal(as.character(test[3]), "QQQ") expect_equal(as.character(test[4]), "KX") }) test_that("Lower case changed to upper case", { test <- aa("AcgT", "RWSAG", "QqQ") expect_equal(as.character(test[1]), "ACGT") expect_equal(as.character(test[2]), "RWSAG") expect_equal(as.character(test[3]), "QQQ") }) test_that("Names are correctly returned", { test <- aa("AcgT", "RWSAG", "QqQ") expect_null(names(test)) test <- aa(A = "AcgT", B = "RWSAG", C = "QqQ") expect_equal(names(test), c("A", "B", "C")) })
test_that('REQUIRE TEST poissonbayes Monte Carlo', { z <- zpoissonbayes$new() test.poissonbayes <- z$mcunit(minx=1, nsim = 2000, ci=0.99, plot = FALSE) expect_true(test.poissonbayes) })
context("monoisotopicPeaks") p <- createMassPeaks(mass=995:1005, intensity=c(100, 10, 30, 10, 40, 550, 330, 110, 10, 5, 15)) m <- createMassPeaks(mass=1000, intensity=550) test_that("monoisotopicPeaks", { expect_equal(monoisotopicPeaks(p), m) }) test_that("detectPeaks works with list of MassPeaks objects", { expect_error(monoisotopicPeaks(list(x=1, y=1)), "no list of MALDIquant::MassPeaks objects") expect_error(monoisotopicPeaks(list(createMassSpectrum(1, 1), createMassSpectrum(1, 1)), "no list of MALDIquant::MassPeaks objects")) expect_equal(monoisotopicPeaks(list(p, p)), list(m, m)) })
"diamonds" "economics" "economics_long" "midwest" "mpg" "msleep" "presidential" "seals" "faithfuld" "luv_colours" "txhousing"
require("emmeans") require("ggplot2") options(show.signif.stars = FALSE) knitr::opts_chunk$set(fig.width = 4.5, class.output = "ro") nutr.lm <- lm(gain ~ (age + group + race)^2, data = nutrition) car::Anova(nutr.lm) emmeans(nutr.lm, ~ group * race, calc = c(n = ".wgt.")) with(nutrition, table(race, age)) summary(emmeans(nutr.lm, pairwise ~ group | race, at = list(age = "3")), by = NULL) framing <- mediation::framing levels(framing$educ) <- c("NA","Ref","< HS", "HS", "> HS","Coll +") framing.glm <- glm(cong_mesg ~ age + income + educ + emo + gender * factor(treat), family = binomial, data = framing) emmip(framing.glm, treat ~ educ | gender, type = "response") emmip(framing.glm, treat ~ educ | gender, type = "response", cov.reduce = emo ~ treat*gender + age + educ + income) sapply(c("equal", "prop", "outer", "cells", "flat"), function(w) predict(emmeans(nutr.lm, ~ race, weights = w))) mtcars.lm <- lm(mpg ~ factor(cyl)*am + disp + hp + drat + log(wt) + vs + factor(gear) + factor(carb), data = mtcars) rg.usual <- ref_grid(mtcars.lm) rg.usual nrow(rg.usual@linfct) rg.nuis = ref_grid(mtcars.lm, non.nuisance = "cyl") rg.nuis nrow(rg.nuis@linfct) emmeans(rg.usual, ~ cyl * am) emmeans(rg.nuis, ~ cyl * am) predict(emmeans(mtcars.lm, ~ cyl * am, non.nuis = c("cyl", "am"), wt.nuis = "prop")) predict(emmeans(mtcars.lm, ~ cyl * am, weights = "outer")) emmeans(mtcars.lm, ~ gear | am, non.nuis = quote(all.vars(specs))) ref_grid(mtcars.lm, rg.limit = 200) summary(emmeans(nutr.lm, pairwise ~ group | race, submodel = ~ age + group*race), by = NULL) emmeans(nutr.lm, ~ group * race, submodel = "minimal") joint_tests(nutr.lm, submodel = "type2") cows <- data.frame ( route = factor(rep(c("injection", "oral"), c(5, 9))), drug = factor(rep(c("Bovineumab", "Charloisazepam", "Angustatin", "Herefordmycin", "Mollycoddle"), c(3,2, 4,2,3))), resp = c(34, 35, 34, 44, 43, 36, 33, 36, 32, 26, 25, 25, 24, 24) ) cows.lm <- lm(resp ~ route + drug, data = cows) cows.rg <- ref_grid(cows.lm) cows.rg route.emm <- emmeans(cows.rg, "route") route.emm drug.emm <- emmeans(cows.rg, "drug") drug.emm pairs(route.emm, reverse = TRUE) pairs(drug.emm, by = "route", reverse = TRUE) emmip(cows.rg, ~ drug | route) require(ggplot2) emmip(cows.rg, ~ drug) + facet_wrap(~ route, scales = "free_x") plot(drug.emm, PIs = TRUE) + facet_wrap(~ route, nrow = 2, scales = "free_y")
gmm_generate <- function(input_model, samples, seed=NA, verbose=FALSE) { IO_RestoreSettings("GMM Sample Generator") IO_SetParamGMMPtr("input_model", input_model) IO_SetParamInt("samples", samples) if (!identical(seed, NA)) { IO_SetParamInt("seed", seed) } if (verbose) { IO_EnableVerbose() } else { IO_DisableVerbose() } IO_SetPassed("output") gmm_generate_mlpackMain() out <- list( "output" = IO_GetParamMat("output") ) IO_ClearSettings() return(out) }
mc.crisk2.bart <- function( x.train = matrix(0,0,0), y.train=NULL, x.train2 = x.train, y.train2=NULL, times=NULL, delta=NULL, K=NULL, x.test = matrix(0,0,0), x.test2 = x.test, sparse=FALSE, theta=0, omega=1, a=0.5, b=1, augment=FALSE, rho=NULL, rho2=NULL, xinfo=matrix(0,0,0), xinfo2=matrix(0,0,0), usequants=FALSE, rm.const=TRUE, type='pbart', ntype=as.integer( factor(type, levels=c('wbart', 'pbart', 'lbart'))), k = 2, power = 2, base = 0.95, offset = NULL, offset2 = NULL, tau.num=c(NA, 3, 6)[ntype], ntree = 50L, numcut = 100L, ndpost = 1000L, nskip = 250L, keepevery = 10L, printevery=100L, id=NULL, seed = 99L, mc.cores = 2L, nice=19L ) { if(.Platform$OS.type!='unix') stop('parallel::mcparallel/mccollect do not exist on windows') RNGkind("L'Ecuyer-CMRG") set.seed(seed) parallel::mc.reset.stream() if(is.na(ntype) || ntype==1) stop("type argument must be set to either 'pbart' or 'lbart'") x.train2 <- bartModelMatrix(x.train2) x.test2 <- bartModelMatrix(x.test2) x.train <- bartModelMatrix(x.train) x.test <- bartModelMatrix(x.test) if(length(y.train)==0) { pre <- surv.pre.bart(times, delta, x.train, x.test, K=K) pre2 <- surv.pre.bart(times, delta, x.train2, x.test2, K=K) y.train <- pre$y.train x.train <- pre$tx.train x.test <- pre$tx.test y.train2 <- 1*(y.train[y.train>0]==1) x.train2 <- cbind(pre2$tx.train[y.train>0, ]) x.test2 <- pre2$tx.test y.train <- 1*(y.train>0) times <- pre$times K <- pre$K } else { if(length(x.train)==0 | length(x.train2)==0) stop('both x.train and x.train2 must be provided') times <- unique(sort(x.train[ , 1])) K <- length(times) } H <- 1 Mx <- 2^31-1 Nx <- 2*max(nrow(x.train), nrow(x.test)) if(Nx>Mx%/%ndpost) { H <- ceiling(ndpost / (Mx %/% Nx)) ndpost <- ndpost %/% H } mc.cores.detected <- detectCores() if(mc.cores>mc.cores.detected) { message('The number of cores requested, ', mc.cores, ',\n exceeds the number of cores detected via detectCores() ', 'reducing to ', mc.cores.detected) mc.cores <- mc.cores.detected } mc.ndpost <- ceiling(ndpost/mc.cores) post.list <- list() for(h in 1:H) { for(i in 1:mc.cores) { parallel::mcparallel({psnice(value=nice); crisk2.bart(x.train=x.train, y.train=y.train, x.train2=x.train2, y.train2=y.train2, x.test=x.test, x.test2=x.test2, sparse=sparse, theta=theta, omega=omega, a=a, b=b, augment=augment, rho=rho, rho2=rho2, xinfo=xinfo, xinfo2=xinfo2, usequants=usequants, rm.const=rm.const, type=type, k=k, power=power, base=base, offset=offset, offset2=offset2, tau.num=tau.num, ntree=ntree, numcut=numcut, ndpost=mc.ndpost, nskip=nskip, keepevery = keepevery, printevery=printevery)}, silent=(i!=1)) } post.list[[h]] <- parallel::mccollect() } if((H==1 & mc.cores==1) | attr(post.list[[1]][[1]], 'class')!='crisk2bart') return(post.list[[1]][[1]]) else { for(h in 1:H) for(i in mc.cores:1) { if(h==1 & i==mc.cores) { post <- post.list[[1]][[mc.cores]] post$ndpost <- H*mc.cores*mc.ndpost p <- ncol(x.train[ , post$rm.const]) old.text <- paste0(as.character(mc.ndpost), ' ', as.character(ntree), ' ', as.character(p)) old.stop <- nchar(old.text) post$treedraws$trees <- sub(old.text, paste0(as.character(post$ndpost), ' ', as.character(ntree), ' ', as.character(p)), post$treedraws$trees) p <- ncol(x.train2[ , post$rm.const2]) old.text <- paste0(as.character(mc.ndpost), ' ', as.character(ntree), ' ', as.character(p)) old.stop2 <- nchar(old.text) post$treedraws2$trees <- sub(old.text, paste0(as.character(post$ndpost), ' ', as.character(ntree), ' ', as.character(p)), post$treedraws2$trees) } else { if(length(x.test)>0) { post$yhat.test <- rbind(post$yhat.test, post.list[[h]][[i]]$yhat.test) post$yhat.test2 <- rbind(post$yhat.test2, post.list[[h]][[i]]$yhat.test2) post$prob.test <- rbind(post$prob.test, post.list[[h]][[i]]$prob.test) post$prob.test2 <- rbind(post$prob.test2, post.list[[h]][[i]]$prob.test2) post$cif.test <- rbind(post$cif.test, post.list[[h]][[i]]$cif.test) post$cif.test2 <- rbind(post$cif.test2, post.list[[h]][[i]]$cif.test2) post$surv.test <- rbind(post$surv.test, post.list[[h]][[i]]$surv.test) } post$varcount <- rbind(post$varcount, post.list[[h]][[i]]$varcount) post$varcount2 <- rbind(post$varcount2, post.list[[h]][[i]]$varcount2) post$varprob <- rbind(post$varprob, post.list[[h]][[i]]$varprob) post$varprob2 <- rbind(post$varprob2, post.list[[h]][[i]]$varprob2) post$treedraws$trees <- paste0(post$treedraws$trees, substr(post.list[[h]][[i]]$treedraws$trees, old.stop+2, nchar(post.list[[h]][[i]]$treedraws$trees))) post$treedraws2$trees <- paste0(post$treedraws2$trees, substr(post.list[[h]][[i]]$treedraws2$trees, old.stop2+2, nchar(post.list[[h]][[i]]$treedraws2$trees))) } post.list[[h]][[i]] <- NULL } if(length(x.test)>0) { post$prob.test.mean <- apply(post$prob.test, 2, mean) post$prob.test2.mean <- apply(post$prob.test2, 2, mean) post$cif.test.mean <- apply(post$cif.test, 2, mean) post$cif.test2.mean <- apply(post$cif.test2, 2, mean) post$surv.test.mean <- apply(post$surv.test, 2, mean) } post$varcount.mean <- apply(post$varcount, 2, mean) post$varcount2.mean <- apply(post$varcount2, 2, mean) post$varprob.mean <- apply(post$varprob, 2, mean) post$varprob2.mean <- apply(post$varprob2, 2, mean) attr(post, 'class') <- 'crisk2bart' return(post) } }
LKrigSetupLattice <- function(object, ...){ UseMethod("LKrigSetupLattice") } LKrigSetupLattice.default<- function( object,...){ stop("LKGeometry needs to be specified, e.g. LKRectangle") }
CreateMap <- function(xy1.1,xy2.1, plotgrid = F, costfn = Cost.area, nondecreasingos=F, verbose=F, insertopposites=T) { impliedpoints <- InsertIntersections(xy1.1,xy2.1,insertopposites=insertopposites) xy1 <- impliedpoints[[1]] xy2 <- impliedpoints[[2]] l1 <- nrow(xy1) l2 <- nrow(xy2) l1.b <- 2*l1-1 l2.b <- 2*l2-1 l1keya <-c(rep(1:(l1-1),each=2),l1) l1keyb <-c(1,rep(2:(l1),each=2)) l2keya <-c(rep(1:(l2-1),each=2),l2) l2keyb <-c(1,rep(2:(l2),each=2)) if(verbose) print("Computing matches") matches <- matrix(0,l1.b,l2.b) for(i in 1:l1.b) { if(verbose) print(paste(i,"of", l1.b,l2.b)) for(j in 1:l2.b) { if(odd(i) & even(j)) { intprop <- IntersectPoint(unlist(xy2[l2keya[j],]),unlist(xy2[l2keyb[j],]),unlist(xy1[l1keya[i],])) if(intprop<0) { matches[i,j]<- 0 }else if (intprop>1) { matches[i,j]<-1 } else { matches[i,j]<- intprop } if(i>1 & nondecreasingos) { matches[i,j] <- max(matches[i,j],matches[i-2,j]) } } if(even(i) & odd(j)) { intprop <- IntersectPoint(unlist(xy1[l1keya[i],]),unlist(xy1[l1keyb[i],]),unlist(xy2[l2keya[j],])) if(intprop<0) { matches[i,j]<-0 }else if(intprop>1) { matches[i,j]<- 1 }else{ matches[i,j]<- intprop } if(j>1&nondecreasingos) { matches[i,j] <- max(matches[i,j],matches[i,j-2]) } } } } pathEnvelope <- matrix(F,l1.b,l2.b) pathEnvelope[1,1] <- T if(plotgrid) { par(mfrow=c(1,1)) PlotGrid(l1,l2) } leastcost <-matrix(0,nrow=l1.b,ncol=l2.b) linkcost <- matrix(0,nrow=l1.b,ncol=l2.b) if(verbose)print("Computing linkage costs") for(i in 1:l1.b) { if(verbose)cat(".") for(j in 1:l2.b) { linkcost[i,j] <- LinkCost(xy1,xy2,i,j) } } if(verbose)cat("\n") chain <- matrix(0,nrow=2*(l1+l2)) bestpath <- array(0,c(l1.b,l2.b,2),dimnames=list(NULL,NULL, c("x","y"))) if(verbose) print("Computing paths:") id <- 1 for(i in 1:(l1.b)) { if(verbose)print(paste(i, "of",l1.b)) for(j in 1:(l2.b)) { if(i==1 & j==1) { tmpcosts <- 0 bestpath[i,j,] <- c(1,1) leastcost[i,j]<-min(tmpcosts,na.rm=T) } else if(odd(i) & odd(j)) { pair1 <- c(i,j-1) pair2 <- c(i-1,j) pair3 <- c(i-2,j-2) if(all(pair1>0)) { path1 <- leastcost[pair1[1],pair1[2]] } else { path1 <-Inf } cost1 <- Cost(xy1,xy2,i,j,i,j-1,matches,costfn=costfn) if(all(pair2>0)) { path2 <- leastcost[pair2[1],pair2[2]] }else{ path2 <- Inf } cost2 <- Cost(xy1,xy2,i,j,i-1,j,matches,costfn=costfn) if(all(pair3>0)) { path3 <- leastcost[pair3[1],pair3[2]] }else{ path3 <- Inf } cost3 <- Cost(xy1,xy2,i,j,i-2,j-2,matches,costfn=costfn) cost <- min(path1+cost1,path2+cost2,path3+cost3,na.rm=T) opts <- c(path1+cost1,path2+cost2,path3+cost3) choices <- which((opts-min(opts))<.00001) leastcost[i,j] <- min(opts) if(length(choices)>1) { choice <- which.min(c(1,3,2)[choices]) }else{ choice <- choices } bestpath[i,j,] <-rbind(c(i,j-1),c(i-1,j),c(i-2,j-2))[choice,] if(plotgrid) { points(j-.5,l1.b-i+1,pch=16,col="white",cex=3) text(j-.5,l1.b-i+1,round(cost1,2),cex=.8,col="black") points(j,l1.b-i+1.5,pch=16,col="white",cex=3) text(j,l1.b-i+1.5,round(cost2,2),cex=.8,col="black") points(j-.5,l1.b-i+1.5,pch=16,col="white",cex=3) text( j-.5,l1.b-i+1.5,round(cost3,2),cex=.8,col="black") points(j,l1.b-i+1,pch=16,col="grey",cex=3) text(j,l1.b-i+1,round(leastcost[i,j],2),cex=.8,col="black") } }else if(even(i) & odd(j)) { cost1 <- Cost(xy1,xy2,i,j,i-1,j,matches,costfn=costfn) path1 <- cost1 + leastcost[i-1,j] cost2 <- Cost(xy1,xy2,i,j,i,j-2,matches,costfn=costfn) path2 <- cost2 + leastcost[i,j-2] opts <- c(path1,path2) choices <- which((opts-min(opts))<.00001) if(length(choices)>1) { choice <- which.min(c(1,2)[choices]) } else { choice <- choices } leastcost[i,j] <- min(path1,path2) if(length(choices)>1) { choice <- which.min(c(1,2)) }else{ choice <- choices } bestpath[i,j,] <- rbind(c(i-1,j),c(i,j-2))[choice,] if(plotgrid) { points(j,l1.b-i+1+.5,pch=16,col="white",cex=3) text(j,l1.b-i+1+.5,round(cost1,2),cex=.8,col="black") points(j-.5,l1.b-i+1,pch=16,col="white",cex=3) text( j-.5,l1.b-i+1,round(cost2,2),col="black",cex=.8) points(j,l1.b-i+1,pch=16,col="grey",cex=3) text(j,l1.b-i+1,round(leastcost[i,j],2),cex=.8,col="black") } }else if(odd(i) & even(j)) { cost1 <- Cost(xy1,xy2,i,j,i-2,j,matches,costfn=costfn) prev1 <- ifelse(i<3,0,leastcost[i-2,j]) path1 <- cost1 + prev1 cost2 <- Cost(xy1,xy2,i,j,i,j-1,matches,costfn=costfn) prev2 <- ifelse(j<2,0,leastcost[i,j-1]) path2 <- cost2 + prev2 opts <- c(path2,path1) choices <- which((opts-min(opts))<.00001) if(length(choices)>1) { choice <- which.min(c(1,2)[choices]) } else { choice <- choices } leastcost[i,j] <- min(path1,path2) bestpath[i,j,] <- rbind(c(i,j-1),c(i-2,j))[choice,] if(plotgrid) { points(j-.5,l1.b-i+1,pch=16,col="white",cex=3) text(j-.5, l1.b-i+1,round(cost2,2),col="black",cex=.8) points(j,l1.b-i+1+.5,pch=16,col="white",cex=3) text(j, l1.b-i+1+.5,round(cost1,2),col="black",cex=.8) points(j,l1.b-i+1,pch=16,col="grey",cex=3) text( j,l1.b-i+1,round(leastcost[i,j],2),col="black",cex=.8) } } } } if(plotgrid) { i <- l1.b j <- l2.b path <- c(i,j) previ <- i prevj <- j while(i>1 | j >1) { points(j,l1.b-i+1,cex=3.1,col="red") previ <- i prevj <- j nexti <- bestpath[i,j,1] nextj <- bestpath[i,j,2] i <- nexti j <- nextj } } return (list(path1 = xy1, path2 = xy2, origpath1 = xy1.1, origpath2 = xy2.1, key1 = impliedpoints[[3]], key2 = impliedpoints[[4]], linkcost = linkcost, leastcost = leastcost, bestpath =bestpath, minmap = FALSE, opposite = matches, deviation=leastcost[nrow(leastcost),ncol(leastcost)]) ) }
rpart.rules.table<-function(object) { rules<-rpart.rules(object) ff<-object$frame ff$rules<-unlist(rules[as.numeric(row.names(ff))]) ruleList<-lapply(row.names(ff),function (name) setNames(data.frame(name, (strsplit(ff[name,'rules'],split=',')), ff[name,'var']=="<leaf>" ), c("Rule","Subrule","Leaf"))) combinedRules<-Reduce(rbind,ruleList) return(combinedRules) }
ggsaveKmg2 <- function( filename = default_name(plot), plot = last_plot(), device = default_device(filename), path = NULL, scale = 1, width = par("din")[1], height = par("din")[2], units = c("in", "cm", "mm"), dpi = 300, ...) { if (!inherits(plot, "ggplot") && !inherits(plot, "recordedplot")) stop("plot should be a ggplot2 plot or a recordedplot plot") eps <- ps <- function(..., width, height) grDevices::postscript(..., width = width, height = height, onefile = FALSE, horizontal = FALSE, paper = "special") tex <- function(..., width, height) grDevices::pictex(..., width = width, height = height) pdf <- function(..., version = "1.4") grDevices::pdf(..., version = version) svg <- function(...) grDevices::svg(...) wmf <- function(..., width, height) grDevices::win.metafile(..., width = width, height = height) png <- function(..., width, height) grDevices::png(..., width = width, height = height, res = dpi, units = "in") jpg <- jpeg <- function(..., width, height) grDevices::jpeg(..., width = width, height = height, res = dpi, units = "in") bmp <- function(..., width, height) grDevices::bmp(..., width = width, height = height, res = dpi, units = "in") tiff <- function(..., width, height) grDevices::tiff(..., width = width, height = height, res = dpi, units = "in") default_name <- function(plot) { paste("default_plot.pdf", sep = "") } default_device <- function(filename) { pieces <- strsplit(filename, "\\.")[[1]] ext <- tolower(pieces[length(pieces)]) match.fun(ext) } units <- match.arg(units) convert_to_inches <- function(x, units) { x <- switch(units, `in` = x, cm = x / 2.54, mm = x / 2.54 /10 ) } convert_from_inches <- function(x, units) { x <- switch(units, `in` = x, cm = x * 2.54, mm = x * 2.54 * 10 ) } if (!missing(width)) { width <- convert_to_inches(width, units) } if (!missing(height)) { height <- convert_to_inches(height, units) } if (missing(width) || missing(height)) { message("Saving ", prettyNum(convert_from_inches(width * scale, units), digits = 3), " x ", prettyNum(convert_from_inches(height * scale, units), digits = 3), " ", units, " image") } width <- width * scale height <- height * scale if (!is.null(path)) { filename <- file.path(path, filename) } device(file = filename, width = width, height = height, ...) on.exit(capture.output(dev.off())) print(plot) invisible() }
predict.io.fi <- function(object ,newdata=NULL, compute=FALSE, int.range=NULL, integrate=FALSE, ...){ model <- object width <- model$meta.data$width point <- model$meta.data$point if(is.null(newdata)){ newdata <- model$mr$data }else{ if(!("observer" %in% names(newdata))){ stop("newdata does not contain a column named \"observer\"") } } newdata$offsetvalue <- 0 GAM <- FALSE if("gam" %in% class(model$mr)){ GAM <- TRUE } if(!integrate){ fitted <- predict(model$mr,newdata,type="response") p1 <- fitted[newdata$observer==1] p2 <- fitted[newdata$observer==2] fitted <- p1+p2-p1*p2 names(fitted) <- newdata$object[newdata$observer==1] return(list(fitted = fitted, p1 = p1, p2 = p2)) }else{ left <- model$meta.data$left formula <- paste("~",as.character(model$mr$formula)[3],collapse="") if("gam" %in% class(model$mr)){ integral.numeric <- TRUE }else{ integral.numeric <- is.linear.logistic(newdata,formula, length(coef(model$mr)),width) } models <- list(g0model = formula, scalemodel = NULL, fullscalemodel = NULL) if(is.null(int.range)){ pdot.list <- pdot.dsr.integrate.logistic(width, width, model$mr$coef, newdata, integral.numeric, FALSE, models,GAM, point=point) }else{ pdot.list <- pdot.dsr.integrate.logistic(int.range,width, model$mr$coef, newdata, integral.numeric, FALSE, models,GAM, point=point) } if(left !=0){ pdot.list$pdot <- pdot.list$pdot - pdot.dsr.integrate.logistic(left, width, model$mr$coef, newdata, integral.numeric, FALSE, models, GAM, point=point)$pdot } fitted <- pdot.list$pdot names(fitted) <- newdata$object[newdata$observer==1] return(list(fitted=fitted)) } }
toptfit <- function(Ea, Hd, kopt, Tleaf, Topt) { param = kopt * (Hd * exp((Ea * (Tleaf - Topt) / ((Tleaf + 273.15) * (Topt + 273.15) * 0.008314)))) / (Hd - Ea * (1 - exp((Hd * (Tleaf - Topt) / ((Tleaf + 273.15) * (Topt + 273.15) * 0.008314))))) }
summarize.em <- function(x, thresholds){ if("fastLink.EM" %in% class(x)){ em.out <- x EM <- data.frame(em.out$patterns.w) EM$zeta.j <- em.out$zeta.j EM <- EM[order(EM[, "weights"]), ] n1 <- em.out$nobs.a; n2 <- em.out$nobs.b }else{ em.out <- x$EM EM <- data.frame(em.out$patterns.w) EM$zeta.j <- em.out$zeta.j EM <- EM[order(EM[, "weights"]), ] n1 <- x$nobs.a; n2 <- x$nobs.b } count <- min(n1, n2) tmc <- rep(NA, length(thresholds)) tpc <- rep(NA, length(thresholds)) fpc <- rep(NA, length(thresholds)) fnc <- rep(NA, length(thresholds)) for(i in 1:length(thresholds)){ tmc[i] <- sum(EM$counts[EM$zeta.j >= thresholds[i]] * EM$zeta.j[EM$zeta.j >= thresholds[i]]) tpc[i] <- min(sum(EM$counts[EM$zeta.j >= thresholds[i]]), min(n1, n2)) fpc[i] <- sum(EM$counts[EM$zeta.j >= thresholds[i]] * (1 - EM$zeta.j[EM$zeta.j >= thresholds[i]])) fnc[i] <- sum(EM$counts[EM$zeta.j < thresholds[i]] * (EM$zeta.j[EM$zeta.j < thresholds[i]])) } exp.match <- sum(EM$counts * EM$zeta.j) gamma.ind <- grep("gamma.[[:digit:]]", names(EM)) exact.match.ind <- which(rowSums(EM[,gamma.ind]) == length(gamma.ind)*2) if(length(exact.match.ind) == 0){ exact.matches <- 0 }else{ exact.matches <- EM$counts[exact.match.ind] } out <- data.frame(t(c(count, tmc, tpc, fpc, fnc, exp.match, exact.matches, n1, n2))) names(out) <- c("count", paste0("tmc.", thresholds*100), paste0("tpc.", thresholds*100), paste0("fpc.", thresholds*100), paste0("fnc.", thresholds*100), "exp.match", "exact.matches", "nobs.a", "nobs.b") return(out) } summarize.agg <- function(x, num.comparisons, weighted){ s.calc <- function(y){ matches <- 100 * (y[,grep("tmc.", names(y))]) / min(y$nobs.a, y$nobs.b) matches.E <- 100 * (y$exact.matches) / min(y$nobs.a, y$nobs.b) matches <- cbind(matches, matches.E) colnames(matches) <- c(names(y)[grep("tmc.", names(y))], "matches.E") matchcount <- y[,grep("tpc.", names(y))] matchcount.E <- y$exact.matches matchcount <- cbind(matchcount, matchcount.E) colnames(matchcount) <- c(names(y)[grep("tpc.", names(y))], "matchcount.E") fdr <- 100 * (y[,grep("fpc.", names(y))]) * 1 / (y[,grep("tpc.", names(y))]) names(fdr) <- names(y)[grep("fpc.", names(y))] fnr <- 100 * (y[,grep("fnc.", names(y))]) / y$exp.match names(fnr) <- names(y)[grep("fnc.", names(y))] return(list(fdr = fdr, fnr = fnr, matches = matches, matchcount = matchcount)) } if(class(x) == "data.frame"){ out <- s.calc(x) }else{ out <- list() out[["within"]] <- s.calc(x[["within"]]) out[["across"]] <- s.calc(x[["across"]]) matches <- 100 * (x$within[,grep("tmc.", names(x$within))] + x$across[,grep("tmc.", names(x$across))]) / min(x$within$nobs.a, x$within$nobs.b) matches.E <- 100 * (x$within$exact.matches + x$across$exact.matches) / min(x$within$nobs.a, x$within$nobs.b) matches <- cbind(matches, matches.E) colnames(matches) <- c(names(x$within)[grep("tmc.", names(x$within))], "matches.E") matchcount <- out$within$matchcount + out$across$matchcount fdr <- 100 * (x$within[,grep("fpc.", names(x$across))] + x$across[,grep("fpc.", names(x$across))]) / (x$within[,grep("tpc.", names(x$within))] + x$across[,grep("tpc.", names(x$across))]) names(fdr) <- names(x$within)[grep("fpc.", names(x$within))] fnr <- 100 * (x$within[,grep("fnc.", names(x$across))] + (x$across[,grep("fnc.", names(x$across))] / num.comparisons)) / x$within$exp.match names(fnr) <- names(x$within)[grep("fnc.", names(x$within))] out[["pooled"]] <- list(fdr = fdr, fnr = fnr, matches = matches, matchcount = matchcount) if(weighted){ wm <- 100 * (x$within[,grep("tmc.", names(x$within))]) / min(x$within$nobs.a, x$within$nobs.b) wm.E <- 100 * (x$within$exact.matches) / min(x$within$nobs.a, x$within$nobs.b) out$within$matches <- cbind(wm, wm.E) wm <- 100 * (x$across[,grep("tmc.", names(x$across))]) / min(x$within$nobs.a, x$within$nobs.b) wm.E <- 100 * (x$across$exact.matches) / min(x$within$nobs.a, x$within$nobs.b) out$across$matches <- cbind(wm, wm.E) fdr.a <- 100 * (x$across[, grep("fpc.", names(x$across))]) / (x$across[,grep("tmc.", names(x$across))] + x$within[, grep("tmc.", names(x$within))]) names(fdr.a) <- names(x$across)[grep("fd.", names(x$across))] out$across$fdr <- fdr.a fdr.w <- 100 * (x$within[, grep("fpc.", names(x$within))]) / (x$across[,grep("tpc.", names(x$across))] + x$within[, grep("tpc.", names(x$within))]) names(fdr.w) <- names(x$within)[grep("fd.", names(x$within))] out$within$fdr <- fdr.w fnr.a <- 100 * (x$across[,grep("fnc.", names(x$across))] / num.comparisons) / x$within$exp.match names(fnr.a) <- names(x$across)[grep("fnc.", names(x$across))] out$across$fnr <- fnr.a fnr.w <- 100 * (x$within[,grep("fnc.", names(x$across))]) / x$within$exp.match names(fnr.w) <- names(x$within)[grep("fnc.", names(x$within))] out$within$fnr <- fnr.w } } return(out) } summary.fastLink <- function(object, num.comparisons = 1, thresholds = c(.95, .85, .75), weighted = TRUE, digits = 3, ...){ round.pct <- function(x){ a <- unlist(x) b <- round(a, digits) c <- paste0(b, "%") return(c) } if("fastLink.agg" %in% class(object) & !("across.geo" %in% names(object))){ out <- as.data.frame(do.call(rbind, lapply(object, function(x){summarize.em(x, thresholds = thresholds)}))) out <- data.frame(t(colSums(out))) out.agg <- summarize.agg(out, num.comparisons = num.comparisons, weighted = weighted) }else if("fastLink.agg" %in% class(object) & "across.geo" %in% names(object)){ out.w <- as.data.frame(do.call(rbind, lapply(object[["within.geo"]], function(x){summarize.em(x, thresholds = thresholds)}))) out.a <- as.data.frame(do.call(rbind, lapply(object[["across.geo"]], function(x){summarize.em(x, thresholds = thresholds)}))) out <- list(within = data.frame(t(colSums(out.w))), across = data.frame(t(colSums(out.a)))) out.agg <- summarize.agg(out, num.comparisons = num.comparisons, weighted = weighted) }else if("fastLink" %in% class(object) | "fastLink.EM" %in% class(object)){ out <- summarize.em(object, thresholds = thresholds) out.agg <- summarize.agg(out, num.comparisons = num.comparisons, weighted = weighted) } if("fastLink.agg" %in% class(object) & "across.geo" %in% names(object)){ tab <- as.data.frame( rbind(c(out.agg$pooled$matchcount), c(out.agg$within$matchcount), c(out.agg$across$matchcount), round.pct(out.agg$pooled$matches), round.pct(out.agg$within$matches), round.pct(out.agg$across$matches), c(round.pct(out.agg$pooled$fdr), ""), c(round.pct(out.agg$within$fdr), ""), c(round.pct(out.agg$across$fdr), ""), c(round.pct(out.agg$pooled$fnr), ""), c(round.pct(out.agg$within$fnr), ""), c(round.pct(out.agg$across$fnr), "")) ) tab <- cbind(rep(c("All", "Within-State", "Across-State"), 4), tab) tab <- cbind(c("Match Count", "", "", "Match Rate", "", "", "FDR", "", "", "FNR", "", ""), tab) colnames(tab) <- c("", "", paste0(thresholds * 100, "%"), "Exact") }else{ tab <- as.data.frame( rbind(out.agg$matchcount, round.pct(out.agg$matches), c(round.pct(out.agg$fdr), ""), c(round.pct(out.agg$fnr), "")) ) tab <- cbind(c("Match Count", "Match Rate", "FDR", "FNR"), tab) colnames(tab) <- c("", paste0(thresholds * 100, "%"), "Exact") } return(tab) } aggregateEM <- function(em.list, within.geo = NULL){ if(is.null(within.geo)){ out <- em.list }else{ if(length(within.geo) != length(em.list)){ stop("If provided, within.geo should be the same length as em.list.") } wg <- vector(mode = "list", length = sum(within.geo)) ag <- vector(mode = "list", length = length(within.geo) - sum(within.geo)) ind.within <- which(within.geo == TRUE) ind.across <- which(within.geo == FALSE) for(i in 1:length(ind.within)){ wg[[i]] <- em.list[[ind.within[i]]] } for(i in 1:length(ind.across)){ ag[[i]] <- em.list[[ind.across[i]]] } out <- list(within.geo = wg, across.geo = ag) } class(out) <- c("fastLink", "fastLink.agg") return(out) }
library("mvtnorm") (cor1 <- toeplitz(c(1, 1/4, -1/8))) (up1 <- c(1/4, 7/4, 5/8)) d <- length(up1) pmvt.. <- function(df, algorithm) vapply(df, function(df) pmvt(upper=up1, corr=cor1, df=df, algorithm=algorithm), numeric(1)) dfs <- 1:9 pmvt_TV.7 <- replicate(7, pmvt..(dfs, TVPACK())) stopifnot(pmvt_TV.7 == pmvt_TV.7[,1]) (pmvt.TV. <- pmvt_TV.7[,1]) (pmvt.TV <- pmvt..(dfs, TVPACK(1e-14))) all.equal(max(abs(pmvt.TV - pmvt.TV.)), 0) set.seed(47) pmvt_7 <- replicate(7, vapply(dfs, function(df) pmvt(df=df, upper=up1, corr=cor1), numeric(1))) relE <- 1 - pmvt_7 / pmvt.TV rng.rE <- range(abs(relE)) stopifnot(1e-6 < rng.rE[1], rng.rE[2] < 7e-4) stopifnot(all.equal( colMeans(abs(relE)), c(88, 64, 105, 73, 52, 90, 87)*1e-6, tol= 1e-3)) set.seed(29) corr <- cov2cor(crossprod(matrix(runif(9,-1,1),3,3))+diag(3)) df <- rpois(1,3)+1 ctrl <- GenzBretz(maxpts = 2500000, abseps = 0.000001, releps = 0) upper <- rexp(3,1) pmvt(upper=upper, corr=corr, df = df, algorithm = ctrl) pmvt(upper=upper, corr=corr, df = df, algorithm = TVPACK()) lower <- -rexp(3,1) pmvt(lower=lower, upper=rep(Inf,3), corr=corr, df = df, algorithm = ctrl) pmvt(lower=lower, upper=rep(Inf,3), corr=corr, df = df, algorithm = TVPACK()) delt <- rexp(3,1/10) upper <- delt+runif(3) ctrl <- GenzBretz(maxpts = 2500000, abseps = 0.000001, releps = 0) pmvt(upper=upper, corr=corr, df = df, algorithm = ctrl, delta = delt) tools::assertError(pmvt(upper=upper, corr=corr, df = df, algorithm = TVPACK(), delta = delt)) upper <- rexp(3,1) pmvnorm(upper=upper, corr=corr, algorithm = ctrl) pmvnorm(upper=upper, corr=corr, algorithm = TVPACK()) lower <- rexp(3,5) pmvnorm(lower=lower,upper=rep(Inf, 3), corr=corr, algorithm = ctrl) pmvnorm(lower=lower,upper=rep(Inf, 3), corr=corr, algorithm = TVPACK()) delt <- rexp(3,1/10) upper <- delt+rexp(3,1) pmvnorm(upper=upper, corr=corr, algorithm = ctrl, mean = delt) pmvnorm(upper=upper, corr=corr, algorithm = TVPACK(), mean = delt) corr <- cov2cor(crossprod(matrix(runif(4,-1,1),2,2))+diag(2)) upper <- rexp(2,1) df <- rpois(1, runif(1, 0, 20)) pmvt(upper=upper, corr=corr, df = df, algorithm = ctrl) pmvt(upper=upper, corr=corr, df = df, algorithm = TVPACK()) pmvt(lower=-upper, upper=rep(Inf, 2), corr=corr, df = df, algorithm = ctrl) pmvt(lower=-upper, upper=rep(Inf, 2), corr=corr, df = df, algorithm = TVPACK()) delt <- rexp(2,1/5) upper <- delt+rexp(2,1) pmvnorm(upper=upper, corr=corr, algorithm = ctrl, mean = delt) pmvnorm(upper=upper, corr=corr, algorithm = TVPACK(), mean = delt) corr <- cov2cor(crossprod(matrix(runif(4,-1,1),2,2))+diag(2)) upper <- rexp(2, 1) pmvnorm(upper=upper, corr=corr, algorithm = Miwa(steps=128)) pmvnorm(upper=upper, corr=corr, algorithm = TVPACK()) corr <- cov2cor(crossprod(matrix(runif(9,-1,1),3,3))+diag(3)) upper <- rexp(3, 1) ctrl <- Miwa(steps=128) pmvnorm(upper=upper, corr=corr, algorithm = ctrl) pmvnorm(upper=upper, corr=corr, algorithm = TVPACK()) S <- toeplitz(c(1, 1/2, 1/4)) set.seed(11) P0 <- pmvnorm(lower=c(-Inf, 0, 0), upper=Inf, corr=S) P1 <- pmvnorm(lower=c(-Inf, 0, 0), upper=Inf, corr=S, algorithm = TVPACK()) P2 <- pmvnorm(lower=c(-Inf, 0, 0), upper=Inf, corr=S, algorithm = Miwa()) P2a<- pmvnorm(lower=c(-Inf, 0, 0), upper=Inf, corr=S, algorithm = Miwa(512)) P2.<- pmvnorm(lower=c(-Inf, 0, 0), upper=Inf, corr=S, algorithm = Miwa(2048)) stopifnot(all.equal(1/3, c(P0), tol=1e-14) , all.equal(1/3, c(P1), tol=1e-14) , all.equal(1/3, c(P2), tol=1e-9 ) , all.equal(1/3, c(P2a),tol=4e-12) , all.equal(1/3, c(P2.),tol=2e-12) ) set.seed(11) Ptdef <- replicate(20, c(pmvt(lower=c(-Inf, 1, 2), upper=Inf, df=2, corr=S))) unique(Ptdef) Pt1 <- pmvt(lower=c(-Inf, 1, 2), upper=Inf, df=2, corr=S, algorithm = TVPACK()) P. <- 0.0570404044526986 stopifnot(exprs = { all.equal(P., c(Pt1), tol = 1e-14) abs(P. - Ptdef) < 1e-15 })
Ops.lfactor <- function(e1,e2) { e10 <- e1 if(.Generic %in% c("<", "<=", ">=", ">")) { if(inherits(e1, "lfactor")) { e1 <- as.numeric(e1) } else { if(inherits(e1, "character")) { e2l <- levels(e2) if(e1 %in% e2l) { e1 <- as.numeric(llevels(e2)[e2l==e1]) } else { return(rep(FALSE,length(e2))) } } } if(inherits(e2, "lfactor")) { e2 <- as.numeric(e2) } else { if(inherits(e2, "character")) { e1l <- levels(e10) if(e2 %in% e1l) { e2 <- as.numeric(llevels(e10)[e1l==e2]) } else { return(rep(FALSE,length(e1))) } } } if(inherits(e1, "numeric") & inherits(e2, "numeric")) { return(eval(call(.Generic,e1,e2))) } } if(! .Generic %in% c("==", "!=")) { return(NextMethod(e1,e2)) } e2 <- as.character(e2) lvl <- levels(e1) llvl <- llevels(e1) e1 <- factor(e1) for(oli in 1:length(llvl)) { e2i <- e2 %in% llvl[oli] e2[e2i] <- lvl[oli] } return(NextMethod(e1,e2)) }
ggsom_aes <- function(object_som, class) { assertthat::assert_that(is.kohonen(object_som)) model_som_values <- data.table::data.table(object_som$data[[1]], unit.class = object_som$unit.classif, class, id = (1:nrow(object_som$data[[1]]))) %>% .[,sum:=.(.N), by="unit.class"] model_som_pts <- data.table::data.table(object_som$grid$pts, unit.class = 1:nrow(object_som$grid$pts)) model_som_values <- model_som_pts[model_som_values, on = 'unit.class'] return(model_som_values) }
find_rprofile <- function(all = FALSE) { pathnames <- c(Sys.getenv("R_PROFILE_USER"), "./.Rprofile", "~/.Rprofile") pathnames <- drop_user_files_during_check(pathnames) find_files(pathnames, all = all) } find_renviron <- function(all = FALSE) { pathnames <- c(Sys.getenv("R_ENVIRON_USER"), "./.Renviron", "~/.Renviron") pathnames <- drop_user_files_during_check(pathnames) find_files(pathnames, all = all) } find_rprofile_d <- function(sibling = FALSE, all = FALSE) { if (sibling) { pathnames <- find_rprofile(all = all) } else { pathnames <- c(Sys.getenv("R_PROFILE_USER"), "~/.Rprofile", "./.Rprofile") pathnames <- drop_user_files_during_check(pathnames) } pathnames <- pathnames[nzchar(pathnames)] paths <- sprintf("%s.d", pathnames) paths_d <- find_d_dirs(paths, all = all) if (length(paths_d) == 0) { logf("Found no corresponding startup directory %s.", paste(squote(paths), collapse = ", ")) } else { logf("Found startup directory %s.", paste(squote(paths_d), collapse = ", ")) } paths_d } find_renviron_d <- function(sibling = FALSE, all = FALSE) { if (sibling) { pathnames <- find_renviron(all = all) } else { pathnames <- c(Sys.getenv("R_ENVIRON_USER"), "~/.Renviron", "./.Renviron") pathnames <- drop_user_files_during_check(pathnames) } pathnames <- pathnames[nzchar(pathnames)] paths <- sprintf("%s.d", pathnames) paths_d <- find_d_dirs(paths, all = all) if (length(paths_d) == 0) { logf("Found no corresponding startup directory %s.", paste(squote(paths), collapse = ", ")) } else { logf("Found startup directory %s.", paste(squote(paths_d), collapse = ", ")) } paths_d } find_files <- function(pathnames, all = FALSE) { pathnames <- pathnames[file.exists(pathnames)] pathnames <- pathnames[!file.info(pathnames)$isdir] if (!all) { pathnames <- if (length(pathnames) == 0) character(0L) else pathnames[1] } pathnames } find_d_dirs <- function(paths, all = FALSE) { if (length(paths) == 0) return(character(0)) paths <- paths[file.exists(paths)] paths <- paths[file.info(paths)$isdir] if (!all) { paths <- if (length(paths) == 0) character(0L) else paths[1] } paths } list_d_files <- function(paths, recursive = TRUE, filter = NULL) { ol <- Sys.getlocale("LC_COLLATE") on.exit(Sys.setlocale("LC_COLLATE", ol)) Sys.setlocale("LC_COLLATE", "C") paths <- paths[file.exists(paths)] if (length(paths) == 0) return(character(0L)) files <- NULL for (path in paths) { files <- c(files, dir(path = path, pattern = "[^~]$", recursive = recursive, all.files = TRUE, full.names = TRUE)) } files <- files[!grepl("^ ignores <- c(".Rhistory", ".RData") files <- files[!is.element(basename(files), ignores)] ignores <- c(".DS_Store", ".Spotlight-V100", ".TemporaryItems", ".VolumeIcon.icns", ".apDisk", ".fseventsd") files <- files[!is.element(basename(files), ignores)] files <- grep("[/\\\\](__MACOSX|[.]Trash|[.]Trashes)[/\\\\]", files, value = TRUE, fixed = FALSE, invert = TRUE) hidden <- grep("._", basename(files), fixed = TRUE, value = FALSE) if (length(hidden) > 0) { hidden_files <- files[hidden] hidden_names <- sub("^[.]_", "", basename(hidden_files)) hidden_siblings <- file.path(dirname(hidden_files), hidden_names) hidden_siblings <- normalizePath(hidden_siblings, mustWork = FALSE) files_normalized <- normalizePath(files, mustWork = FALSE) drop <- is.element(hidden_siblings, files_normalized) hidden_files <- hidden_files[drop] files <- setdiff(files, hidden_files) } files <- grep("([.]md|[.]txt|~)$", files, value = TRUE, invert = TRUE) files <- grep("(^|/|\\\\)[.][.]", files, value = TRUE, invert = TRUE) if (length(files) == 0) return(character(0)) files <- files[file.exists(files)] files <- files[!file.info(files)$isdir] if (length(files) == 0) return(character(0)) files_normalized <- normalizePath(files, winslash = "/") files <- files[!duplicated(files_normalized)] if (is.function(filter)) { files <- filter(files) } files } drop_user_files_during_check <- function(pathnames) { if (!nzchar(Sys.getenv("R_CMD"))) return(pathnames) grep("~", pathnames, value = TRUE, invert = TRUE) }
if (httr::status_code( httr::GET("https://clinicaltrials.gov/ct2/search", httr::timeout(5))) != 200L ) exit_file("Reason: CTGOV not working") expect_equal( suppressMessages( ctrLoadQueryIntoDb( queryterm = "2010-024264-18", register = "CTGOV", only.count = TRUE))[["n"]], 1L) expect_message( tmpTest <- suppressWarnings( ctrLoadQueryIntoDb( queryterm = "2010-024264-18", register = "CTGOV", con = dbc)), "Imported or updated 1 trial") expect_equal(tmpTest$n, 1L) expect_equal(tmpTest$success, "NCT01471782") expect_true(length(tmpTest$failed) == 0L) expect_message( suppressWarnings( ctrLoadQueryIntoDb( queryterm = "NCT01471782", register = "CTGOV", con = dbc)), "Imported or updated 1 trial") expect_error( suppressWarnings( suppressMessages( ctrLoadQueryIntoDb( queryterm = paste0( "https://clinicaltrials.gov/ct2/results?cond=Cancer&type=Intr&phase=0", "&strd_s=01%2F02%2F2005&strd_e=12%2F31%2F2017"), con = dbc))), "more than 10,000) trials") expect_message( suppressWarnings( ctrLoadQueryIntoDb( querytoupdate = "last", verbose = TRUE, con = dbc)), "No trials or number of trials could not be determined") expect_error( suppressWarnings( ctrLoadQueryIntoDb( querytoupdate = 999L, con = dbc)), "'querytoupdate': specified number not found") q <- paste0("https://clinicaltrials.gov/ct2/results?", "term=osteosarcoma&type=Intr&phase=0&age=0&lup_e=") expect_message( tmpTest <- suppressWarnings( ctrLoadQueryIntoDb( queryterm = paste0(q, "12%2F31%2F2008"), con = dbc)), "Imported or updated ") hist <- suppressWarnings(dbQueryHistory(con = dbc)) hist[nrow(hist), "query-term"] <- sub("(.*&lup_e=).*", "\\112%2F31%2F2009", hist[nrow(hist), "query-term"]) json <- jsonlite::toJSON(list("queries" = hist)) expect_equal( nodbi::docdb_update( src = dbc, key = dbc$collection, value = as.character(json), query = '{"_id": "meta-info"}'), 1L) expect_message( tmpTest <- suppressWarnings( ctrLoadQueryIntoDb( querytoupdate = "last", con = dbc)), "Imported or updated") expect_true(tmpTest$n > 2L) expect_true(length(tmpTest$success) > 2L) expect_true(length(tmpTest$failed) == 0L) expect_message( suppressWarnings( ctrLoadQueryIntoDb( queryterm = "someQueryForErrorTriggering", register = "CTGOV", verbose = TRUE, only.count = TRUE, con = dbc)), "term=someQueryForErrorTriggering") result <- suppressMessages( suppressWarnings( dbGetFieldsIntoDf( fields = c( "clinical_results.baseline.analyzed_list.analyzed.count_list.count", "clinical_results.baseline.group_list.group", "clinical_results.baseline.analyzed_list.analyzed.units", "clinical_results.outcome_list.outcome", "study_design_info.allocation", "location.facility.name", "location"), con = dbc) )) expect_equal( sapply( result[["location"]], function(x) length(x[["facility"]][["name"]])), c(1, 1, 1, 30)) expect_true("character" == class(result[[ "study_design_info.allocation"]])) expect_true( any(grepl(" / ", result[["location.facility.name"]]))) expect_true( length(unlist(strsplit( result[["location.facility.name"]], " / "))) >= 32L) expect_true("list" == class(result[[ "clinical_results.baseline.group_list.group"]])) expect_true( sum(nchar( suppressWarnings( dfListExtractKey( result, list(c("location", "name")) ))[["value"]]), na.rm = TRUE) > 1000L) df <- suppressMessages( dfTrials2Long( df = result )) expect_identical( names(df), c("_id", "identifier", "name", "value") ) expect_true( nrow(df) > 800L ) df2 <- dfName2Value( df = df, valuename = paste0( "clinical_results.*category_list.category.measurement_list.measurement.value|", "clinical_results.outcome_list.outcome.measure.units" ), wherename = "clinical_results.outcome_list.outcome.measure.title", wherevalue = "duration of response" ) expect_true( any("NCT01471782" %in% df2[["_id"]]) ) expect_true( all(grepl("^0.5", df2[["identifier"]][ df2[["_id"]] == "NCT01471782" ])) ) expect_error( suppressWarnings( suppressMessages( ctrLoadQueryIntoDb( queryterm = "term=ET743OVC3006", register = "CTGOV", annotation.text = "something", annotation.mode = "WRONG", con = dbc))), "'annotation.mode' incorrect")
f.genpar <- function(x,xi,alfa,k) { if ((k > -0.0000001) & (k < 0.0000001)) { y <- (x - xi)/alfa } else { y <- -k^(-1) * log(1 - k*(x - xi)/alfa) } f <- alfa^(-1) * exp(-(1 - k)*y) return(f) } F.genpar <- function(x,xi,alfa,k) { if ((k > -0.0000001) & (k < 0.0000001)) { y <- (x - xi)/alfa } else { y <- -k^(-1) * log(1 - k*(x - xi)/alfa) } F <- 1 - exp(-y) return(F) } invF.genpar <- function(F,xi,alfa,k) { if ((k > -0.0000001) & (k < 0.0000001)) { x <- xi - alfa*log(1 - F) } else { x <- xi + alfa*(1 - (1 - F)^k)/k } return(x) } Lmom.genpar <- function(xi,alfa,k) { quanti <- length(k) lambda1 <- rep(NA,quanti) lambda2 <- rep(NA,quanti) tau3 <- rep(NA,quanti) tau4 <- rep(NA,quanti) for (i in 1:quanti) { if (k[i] <= -1) { stop("L-moments are defined for k>-1") } lambda1[i] <- xi[i] + alfa[i]/(1 + k[i]) lambda2[i] <- alfa[i]/((1 + k[i])*(2 + k[i])) tau3[i] <- (1 - k[i])/(3 + k[i]) tau4[i] <- (1 - k[i])*(2 - k[i])/((3 + k[i])*(4 + k[i])) } output <- list(lambda1=lambda1, lambda2=lambda2, tau3=tau3, tau4=tau4) return(output) } par.genpar <- function(lambda1,lambda2,tau3) { k <- (1 - 3*tau3)/(1 + tau3) alfa <- (1 + k)*(2 + k)*lambda2 xi <- lambda1 - (2 + k)*lambda2 output <- list(xi=xi, alfa=alfa, k=k) return(output) } rand.genpar <- function(numerosita,xi,alfa,k) { F <- runif(numerosita, min=0.0000000001, max=0.9999999999) x <- invF.genpar(F,xi,alfa,k) return(x) }
read_lcm_raw <- function(fname, ft, fs, ref, extra) { in_nmid <- FALSE con <- file(fname, "rb") while (length(line <- readLines(con, n = 1, warn = FALSE)) > 0) { if (endsWith(line, "$NMID")) { in_nmid <- TRUE } else if (endsWith(line, "$END") && in_nmid) { fp <- seek(con, origin='current') l1 <- readLines(con, n=1, warn=FALSE); fpn <- seek(con, origin='start', where=fp); tokens <- strsplit(trimws(l1),"[[:space:]]+")[[1]]; cols <- length(tokens); width <- ceiling(nchar(l1)/cols); fmt <- sprintf("%dF%d.0", cols, width); x <- utils::read.fortran(con, fmt); break } } close(con) data <- as.vector(t(as.matrix(x))) N <- length(data)/2 data <- data[seq(1, 2 * N, 2)] + 1i * data[seq(2, 2 * N, 2)] dim(data) <- c(1, 1, 1, 1, 1, 1, N) res <- c(NA, NA, NA, NA, 1, NA, 1 / fs) freq_domain <- rep(FALSE, 7) nuc <- def_nuc() mrs_data <- mrs_data(data = data, ft = ft, resolution = res, ref = ref, nuc = nuc, freq_domain = freq_domain, affine = NULL, meta = NULL, extra = extra) return(mrs_data) }
mrf_nnetar_forecast = function(UnivariateData, Horizon, Aggregation, Threshold="hard", Lambda = 0.05){ if(!is.vector(UnivariateData)){ message("Data must be of type vector") return() } if(!is.vector(Aggregation)){ message("agg_per_lvl must be of type vector") return() } dec_res <- wavelet_decomposition(UnivariateData, Aggregation,Threshold,Lambda) if (!requireNamespace('nnfor', quietly = TRUE)) { message( "Package nnfor is missing in function mrf_xlm_one_step_forecast No computations are performed. Please install the packages which are defined in 'Suggests'" ) return() }else{ Cut = mrf_requirement(UnivariateData=UnivariateData, CoefficientCombination = rep(0,length(Aggregation)+1), Aggregation = Aggregation) Cut = Cut$StartTraining LenData = length(UnivariateData) NumLevels = length(Aggregation)+1 Forecast = rbind() for(i in 1:NumLevels){ currForecast = 0 if(i < NumLevels){ model = forecast::nnetar(y = stats::as.ts(dec_res$WaveletCoefficients[i,])) tmpForecast = forecast::forecast(model,h=Horizon) currForecast = as.vector(tmpForecast$mean) }else{ model = forecast::nnetar(y = as.ts(dec_res$SmoothCoefficients[i-1,])) tmpForecast = forecast::forecast(model,h=Horizon) currForecast = as.vector(tmpForecast$mean) } Forecast = rbind(Forecast, currForecast) } FinalForecast = colSums(Forecast) return(FinalForecast) } }
library("tmle.npvi") rootPath <- "geneData" rootPath <- Arguments$getReadablePath(rootPath) dataSet <- "tcga2012brca" path <- file.path(rootPath, dataSet) path <- Arguments$getReadablePath(path) files <- list.files(path, pattern=".*chr17,.*.xdr") idxs <- 1:150 if (FALSE) { files <- list.files(path, pattern=".*chr21,.*.xdr") idxs <- seq(along=files) } filenames <- files[idxs] pathnames <- file.path(path, filenames) obsList <- lapply(pathnames, loadObject) snames <- gsub("\\.xdr", "", filenames) names(obsList) <- snames str(obsList) tcga2012brca <- obsList save(tcga2012brca, file="tcga2012brca.rda") if (FALSE) { opath <- "data" opath <- Arguments$getWritablePath(opath) for (ff in seq(along=idxs)) { filename <- files[ff] pathname <- file.path(path, filename) obs <- loadObject(pathname) sname <- gsub("\\.xdr", "", filename) ofilename <- sprintf("%s,%s.txt", dataSet, sname) opathname <- file.path(opath, ofilename) write.table(obs, opathname, quote=FALSE, row.names=FALSE) } }
plot.var <- function(x, ...) { obs <- NULL V1 <- NULL lower <- NULL type <- NULL upper <- NULL if (any(class(x) == 'bekkFit')) { if(is.null(x$portfolio_weights)) { if (inherits(x$bekk$data, "ts")) { autoplot(x$VaR) + theme_bw() + ylab('VaR') } else { x$VaR$obs <- 1:nrow(x$VaR) VaR <- melt(x$VaR, id = 'obs') ggplot(VaR) + geom_line(aes(x = obs, y = value)) + theme_bw() + xlab('') + ylab('VaR') + facet_wrap(~variable, scales = 'free_y', ncol = 1) } } else { if (inherits(x$bekk$data, "ts")) { autoplot(x$VaR) + theme_bw() + ylab('VaR') + ggtitle('Portfolio VaR') } else { ggplot(x$VaR) + geom_line(aes(x = 1:nrow(x$VaR), y = V1)) + theme_bw() + xlab('') + ylab('VaR') + ggtitle('Portfolio VaR') } } } else if (any(class(x) == 'bekkForecast')) { if(is.null(x$portfolio_weights)) { sample <- x$VaR[1:(nrow(x$VaR)-x$n.ahead),] forc <- x$VaR[(nrow(x$VaR)-x$n.ahead+1):nrow(x$VaR),] cb_lower <- x$VaR_lower[(nrow(x$VaR)-x$n.ahead+1):nrow(x$VaR),] cb_upper <- x$VaR_upper[(nrow(x$VaR)-x$n.ahead+1):nrow(x$VaR),] sample$obs <- as.character(1:nrow(sample)) forc$obs <- as.character((nrow(sample)+1):(nrow(sample)+x$n.ahead)) cb_lower$obs <- as.character((nrow(sample)+1):(nrow(sample)+x$n.ahead)) cb_upper$obs <- as.character((nrow(sample)+1):(nrow(sample)+x$n.ahead)) sample <- sample[(nrow(sample)-4*x$n.ahead):nrow(sample),] sample$type <- as.factor('Sample') forc$type <- as.factor('Forecast') cb_lower$type <- as.factor('Forecast') cb_upper$type <- as.factor('Forecast') cb_l <- melt(cb_lower, id = c('obs', 'type')) cb_u <- melt(cb_upper, id = c('obs', 'type')) cb <- cbind(cb_l, cb_u$value) colnames(cb)[4:5] <- c('lower', 'upper') total <- rbind(sample, forc) VaR <- melt(total, id = c('obs', 'type')) cc <- merge(VaR, cb, all.x = TRUE, all.y = TRUE) if (x$n.ahead > 1) { ggplot(cc, aes(x = obs, y = value)) + geom_line(aes(y = lower, group = type, color = type, linetype = type), na.rm = TRUE, color = 'red') + geom_line(aes(y = upper, group = type, color = type, linetype = type), na.rm = TRUE, color = 'red') + geom_line(aes(group = type, color = type)) + geom_point(aes(shape = type)) + theme_bw() + xlab('') + ylab('VaR') + scale_color_manual(values = c('black', 'blue')) + facet_wrap(~variable, scales = 'free_y', ncol = 1) + theme(legend.position="bottom", legend.title = element_blank()) } else { ggplot(cc, aes(x = obs, y = value)) + geom_line(data = cc[cc$type == 'Sample',], aes(x = obs, y = value, group = type)) + geom_errorbar( aes(ymin=lower, ymax=upper), width=.2, color = 'red') + geom_point(aes(x = obs, y = value, shape = type), size = 2.5) + theme_bw() + xlab('') + ylab('VaR') + scale_color_manual(values = c('black', 'blue')) + facet_wrap(~variable, scales = 'free_y', ncol = 1) + theme(legend.position="bottom", legend.title = element_blank()) } } else { sample <- as.data.frame(x$VaR[1:(nrow(x$VaR)-x$n.ahead),]) forc <- as.data.frame(x$VaR[(nrow(x$VaR)-x$n.ahead+1):nrow(x$VaR),]) cb_lower <- as.data.frame(x$VaR_lower[(nrow(x$VaR)-x$n.ahead+1):nrow(x$VaR),]) cb_upper <- as.data.frame(x$VaR_upper[(nrow(x$VaR)-x$n.ahead+1):nrow(x$VaR),]) sample$obs <- as.character(1:nrow(sample)) forc$obs <- as.character((nrow(sample)+1):(nrow(sample)+x$n.ahead)) cb_lower$obs <- as.character((nrow(sample)+1):(nrow(sample)+x$n.ahead)) cb_upper$obs <- as.character((nrow(sample)+1):(nrow(sample)+x$n.ahead)) sample <- sample[(nrow(sample)-4*x$n.ahead):nrow(sample),] sample$type <- as.factor('Sample') forc$type <- as.factor('Forecast') colnames(sample)[1] <- colnames(forc)[1] <- colnames(cb_lower)[1] <- colnames(cb_upper)[1] <- 'V1' cb_lower$type <- as.factor('Forecast') cb_upper$type <- as.factor('Forecast') cb_l <- melt(cb_lower, id = c('obs', 'type')) cb_u <- melt(cb_upper, id = c('obs', 'type')) cb <- cbind(cb_l, cb_u$value) colnames(cb)[4:5] <- c('lower', 'upper') total <- rbind(sample, forc) VaR <- melt(total, id = c('obs', 'type')) cc <- merge(VaR, cb, all.x = TRUE, all.y = TRUE) if (x$n.ahead > 1) { ggplot(cc, aes(x = obs, y = value)) + geom_line(aes(y = lower, group = type, linetype = type), color = 'red', na.rm = TRUE) + geom_line(aes(y = upper, group = type, linetype = type), color = 'red', na.rm = TRUE) + geom_line(aes(group = type, color = type)) + geom_point(aes(shape = type)) + theme_bw() + xlab('') + ylab('VaR') + scale_color_manual(values = c('black', 'blue')) + theme(legend.position="bottom", legend.title = element_blank()) + ggtitle('Portfolio VaR') } else { ggplot(cc, aes(x = obs, y = value)) + geom_line(data = cc[cc$type == 'Sample',], aes(x = obs, y = value, group = type)) + geom_errorbar( aes(ymin=lower, ymax=upper), width=.2, color = 'red') + geom_point(aes(x = obs, y = value, shape = type), size = 2.5) + theme_bw() + xlab('') + ylab('VaR') + scale_color_manual(values = c('black', 'blue')) + theme(legend.position="bottom", legend.title = element_blank()) + ggtitle('Portfolio VaR') } } } }
mass_gis <- function(layer = "contours250k") { dir <- tempdir() url <- paste0("http://download.massgis.digital.mass.gov/shapefiles/state/", layer, ".zip") lcl_zip <- file.path(dir, basename(url)) utils::download.file(url, destfile = lcl_zip) lcl_shp <- file.path(dir, layer) utils::unzip(lcl_zip, exdir = lcl_shp) sf::st_read(lcl_shp) %>% sf::st_transform(4326) } macleish_intersect <- function(x) { sf::st_intersection(macleish::macleish_layers[["boundary"]], x) }
k.points.max.cpe <- function(formula, cat.var, data, range, k, l.s.points = 100 , min.p.cat=1) { point=NULL mat=matrix(ncol=2,nrow=k) colnames(mat)<- c("point","cpe") for (i in 1:k){ cpes <- select.cutpoint.cpe(formula = formula, cat.var = cat.var, data = data, range = range, point = point, l.s.points = l.s.points, min.p.cat = min.p.cat) pos <- which(cpes[,2]==max(cpes[,2],na.rm=TRUE)) if(length(pos)> 1 & i > 1) { if (cpes[pos[1],1] <= mat[i-1,1]) { pos <- max(pos) } else { pos = min(pos) } } else { pos = pos[1] } mat[i,1] <- cpes[pos,1] mat[i,2] <- cpes[pos,2] point <- c(point,mat[i,1]) } mat }
expect_equal(ore_subst("\\d+","no","2 dogs"), "no dogs") expect_equal(ore_subst("\\d+","no","2 dogs",start=3L), "2 dogs") expect_equal(ore_subst("(\\d+)","\\1\\1","2 dogs"), "22 dogs") expect_equal(ore_subst("\\d+",function(i) as.numeric(i)^2,"2 dogs"), "4 dogs") expect_equal(ore_subst("\\d+",function(i) max(as.numeric(i)), "2, 4, 6 or 8 dogs?", all=TRUE), "8, 8, 8 or 8 dogs?") expect_equal(ore_repl("\\d+",function(i) max(as.numeric(i)), "2, 4, 6 or 8 dogs?", all=TRUE), "2, 4, 6 or 8 dogs?") expect_equal(ore_subst("(?<numbers>\\d+)","\\k<numbers>+\\k<numbers>","2 dogs"), "2+2 dogs") expect_equal(ore_subst("\\d+",function(i) c("no","all the"),c("2 dogs","some dogs")), c("no dogs","some dogs")) expect_equal(ore_repl("\\d+",function(i) c("no","all the"),c("2 dogs","some dogs")), list(c("no dogs","all the dogs"), "some dogs")) expect_equal(ore_subst("\\d+",c("no","some"),c("2 dogs","3 cats")), c("no dogs","no cats")) expect_equal(ore_repl("\\d+",c("no","some"),c("2 dogs","3 cats")), list(c("no dogs","some dogs"), c("no cats","some cats"))) expect_equal(ore_subst("\\d+",c("no","some"),"2 dogs and 3 cats",all=TRUE), "some dogs and some cats") expect_equal(ore_repl("\\d+",c("no","some"),"2 dogs and 3 cats",all=TRUE), c("no dogs and no cats","some dogs and some cats")) text <- readLines("drink.txt", encoding="UTF-8") switched <- ore_subst("(\\w)(\\w)", "\\2\\1", text, all=TRUE) expect_equal(Encoding(switched), "UTF-8") expect_error(ore_subst("\\d+",character(0),"2 dogs"), "No replacement") expect_error(ore_subst("\\d+","\\k<name>","2 dogs")) expect_error(ore_subst("\\d+","\\1","2 dogs")) expect_equal(ore_subst("\\d+",function(i) NULL,"2 dogs"), " dogs") expect_equal(ore_split("[\\s\\-()]+","(801) 234-5678"), c("","801","234","5678"))
rp.plots2pdf <- function(rp.object, file="rp_plots.pdf", groups=NULL, page.breaks=NULL, bw=FALSE ) { if(!methods::is(rp.object,"ResponsePatterns")) stop("The object is not of class ResponsePatterns") grDevices::pdf(file=file) for(i in 1:[email protected]) rp.plot(rp.object, obs=i, plot=TRUE, text.output=FALSE, groups=groups, page.breaks=page.breaks, bw=bw) grDevices::dev.off() message("Plots saved to ",file) }
commonArgs <- function(par, fn, ctrl, rho) { rho$n <- n <- length(rho$par <- as.double(par)) stopifnot(all(is.finite(par)), is.function(fn), length(formals(fn)) >= 1) rho$.feval. <- integer(1) cc <- do.call(function(npt = min(n+2L, 2L * n), rhobeg = NA, rhoend = NA, iprint = 0L, maxfun=10000L, obstop=TRUE, force.start=FALSE,...) { if (length(list(...))>0) warning("unused control arguments ignored") list(npt = npt, rhobeg = rhobeg, rhoend = rhoend, iprint = iprint, maxfun = maxfun, obstop = obstop, force.start = force.start) }, ctrl) ctrl <- new.env(parent = emptyenv()) lapply(names(cc), function(nm) assign(nm, cc[[nm]], envir = ctrl)) ctrl$npt <- as.integer(max(n + 2L, min(ctrl$npt, ((n+1L)*(n+2L)) %/% 2L))) if (ctrl$npt > (2 * n + 1)) warning("Setting npt > 2 * length(par) + 1 is not recommended.") if (is.na(ctrl$rhobeg)) ctrl$rhobeg <- min(0.95, 0.2 * max(abs(par))) if (is.na(ctrl$rhoend)) ctrl$rhoend <- 1.0e-6 * ctrl$rhobeg stopifnot(0 < ctrl$rhoend, ctrl$rhoend <= ctrl$rhobeg) if (ctrl$maxfun < 10 * n^2) warning("maxfun < 10 * length(par)^2 is not recommended.") ctrl } bobyqa <- function(par, fn, lower = -Inf, upper = Inf, control = list(), ...) { nn <- names(par) ctrl <- commonArgs(par, fn, control, environment()) n <- length(par) fn1 <- function(x) { names(x) <- nn fn(x, ...) } checkObj <- fn1(par) if(length(checkObj) > 1 || !is.numeric(checkObj)) stop("Objective function must return a single numeric value.") lower <- as.double(lower); upper <- as.double(upper) if (length(lower) == 1) lower <- rep(lower, n) if (length(upper) == 1) upper <- rep(upper, n) stopifnot(length(lower) == n, length(upper) == n, all(lower < upper)) if (any(par < lower | par > upper)) { if (ctrl$obstop) stop("Starting values violate bounds") else { par <- pmax(lower, pmax(par, upper)) warning("Some parameters adjusted to nearest bound") } } rng <- upper - lower if (any(rng < 2 * ctrl$rhobeg)) { warning("All upper - lower must be >= 2*rhobeg. Changing rhobeg") ctrl$rhobeg <- 0.2 * min(rng) } verb <- 1 < (ctrl$iprint <- as.integer(ctrl$iprint)) if (all(is.finite(upper)) && all(is.finite(lower)) && all(par >= lower) && all(par <= upper) ) { if (verb) cat("ctrl$force.start = ", ctrl$force.start,"\n") if (!ctrl$force.start) { i <- rng < ctrl$rhobeg if (any(i)) { par[i] <- lower[i] + ctrl$rhobeg warning("Some parameters adjusted away from lower bound") } i <- rng < ctrl$rhobeg if (any(i)) { par[i] <- upper[i] - ctrl$rhobeg warning("Some parameters adjusted away from upper bound") } } } if (verb) { cat("npt =", ctrl$npt, ", n = ",n,"\n") cat("rhobeg = ", ctrl$rhobeg,", rhoend = ", ctrl$rhoend, "\n") } if(ctrl$iprint > 0) cat("start par. = ", par, "fn = ", checkObj, "\n") retlst<- .Call(bobyqa_cpp, par, lower, upper, ctrl, fn1) if (retlst$ierr > 0){ if (retlst$ierr == 10) { retlst$ierr<-2 retlst$msg<-"bobyqa -- NPT is not in the required interval" } else if (retlst$ierr == 320) { retlst$ierr<-5 retlst$msg<-"bobyqa detected too much cancellation in denominator" } else if (retlst$ierr == 390) { retlst$ierr<-1 retlst$msg<-"bobyqa -- maximum number of function evaluations exceeded" } else if (retlst$ierr == 430) { retlst$ierr<-3 retlst$msg<-"bobyqa -- a trust region step failed to reduce q" } else if (retlst$ierr == 20) { retlst$ierr<-4 retlst$msg<-"bobyqa -- one of the box constraint ranges is too small (< 2*RHOBEG)" } } else { retlst$msg<-"Normal exit from bobyqa" } retlst } newuoa <- function(par, fn, control = list(), ...) { nn <- names(par) ctrl <- commonArgs(par + 0, fn, control, environment()) n <- length(par) fn1 <- function(x) { names(x) <- nn fn(x, ...) } checkObj <- fn1(par) if(length(checkObj) > 1 || !is.numeric(checkObj)) stop("Objective function must return a single numeric value.") verb <- 1 < (ctrl$iprint <- as.integer(ctrl$iprint)) if (verb) { cat("npt =", ctrl$npt, ", n = ",n,"\n") cat("rhobeg = ", ctrl$rhobeg,", rhoend = ", ctrl$rhoend, "\n") } if(ctrl$iprint > 0) cat("start par. = ", par, "fn = ", checkObj, "\n") retlst<-.Call(newuoa_cpp, par, ctrl, fn1) if (retlst$ierr > 0){ if (retlst$ierr == 10) { retlst$ierr<-2 retlst$msg<-"newuoa -- NPT is not in the required interval" } else if (retlst$ierr == 320) { retlst$ierr<-5 retlst$msg<-"newuoa detected too much cancellation in denominator" } else if (retlst$ierr == 390) { retlst$ierr<-1 retlst$msg<-"newuoa -- maximum number of function evaluations exceeded" } else if (retlst$ierr == 3701) { retlst$ierr<-3 retlst$msg<-"newuoa -- a trust region step failed to reduce q" } } else { retlst$msg<-"Normal exit from newuoa" } retlst } uobyqa <- function(par, fn, control = list(), ...) { nn <- names(par) ctrl <- commonArgs(par + 0, fn, control, environment()) n <- length(par) fn1 <- function(x) { names(x) <- nn fn(x, ...) } checkObj <- fn1(par) if(length(checkObj) > 1 || !is.numeric(checkObj)) stop("Objective function must return a single numeric value.") verb <- 1 < (ctrl$iprint <- as.integer(ctrl$iprint)) if (verb) { cat("npt =", ctrl$npt, ", n = ",n,"\n") cat("rhobeg = ", ctrl$rhobeg,", rhoend = ", ctrl$rhoend, "\n") } if(ctrl$iprint > 0) cat("start par. = ", par, "fn = ", checkObj, "\n") retlst<-.Call(uobyqa_cpp, par, ctrl, fn1) if (retlst$ierr > 0){ if (retlst$ierr == 390) { retlst$ierr<-1 retlst$msg<-"uobyqa -- maximum number of function evaluations exceeded" } else if (retlst$ierr == 2101) { retlst$ierr<-3 retlst$msg<-"uobyqa -- a trust region step failed to reduce q" } } else { retlst$msg<-"Normal exit from uobyqa" } retlst } print.minqa <- function(x, digits = max(3, getOption("digits") - 3), ...) { cat("parameter estimates:", toString(x$par), "\n") cat("objective:", toString(x$fval), "\n") cat("number of function evaluations:", toString(x$feval), "\n") invisible(x) }
context("ft_search") test_that("ft_search returns...", { skip_on_cran() vcr::use_cassette("ft_search", { aa <- ft_search(query = 'ecology', from = 'plos') flds <- c('id','author','eissn','journal','counter_total_all','alm_twitterCount') bb <- ft_search(query = 'climate change', from = 'plos', plosopts = list(fl = flds)) Sys.sleep(1) cc <- ft_search(query = 'ecology', from = 'crossref') dd <- ft_search(query = 'owls', from = 'biorxiv') }, preserve_exact_body_bytes = TRUE) expect_is(aa, "ft") expect_is(bb, "ft") expect_is(cc, "ft") expect_is(dd, "ft") expect_is(aa$plos, "ft_ind") expect_is(aa$bmc, "ft_ind") expect_is(bb$plos, "ft_ind") expect_is(cc$crossref, "ft_ind") expect_is(dd$biorxiv, "ft_ind") expect_is(aa$plos$found, "integer") expect_is(aa$plos$license, "list") expect_is(aa$plos$opts, "list") expect_is(aa$plos$data, "data.frame") expect_is(aa$plos$data$id, "character") expect_equal( sort(names(bb$plos$data)), sort(c("id", "alm_twitterCount", "counter_total_all", "journal", "eissn", "author"))) expect_is(cc$crossref$data, "data.frame") expect_true(cc$crossref$opts$filter[[1]]) expect_is(dd$biorxiv$data, "data.frame") expect_match(dd$biorxiv$data$url[1], "http") }) test_that("ft_search works with scopus", { skip_on_cran() vcr::use_cassette("ft_search_scopus", { aa <- ft_search(query = 'ecology', from = 'scopus') }) expect_is(aa, "ft") expect_is(aa$scopus, "ft_ind") expect_is(aa$scopus$opts, "list") expect_equal(aa$scopus$source, "scopus") expect_type(aa$scopus$found, "double") expect_is(aa$scopus$data, "data.frame") res <- ft_search(query = '[TITLE-ABS-KEY (("Chen caeculescens atlantica") AND (demograph* OR model OR population) AND (climate OR "climatic factor" OR "climatic driver" OR precipitation OR rain OR temperature))]', from = 'scopus') expect_is(res, "ft") expect_equal(NROW(res$scopus$data), 0) }) test_that("ft_search works for larger requests", { skip_on_cran() skip_on_ci() vcr::use_cassette("ft_search_entrez", { res_entrez <- ft_search(query = 'ecology', from = 'entrez', limit = 200) }) expect_is(res_entrez, "ft") expect_is(res_entrez$entrez, "ft_ind") expect_equal(NROW(res_entrez$entrez$data), 200) vcr::use_cassette("ft_search_plos", { res_plos <- ft_search(query = 'ecology', from = 'plos', limit = 200) }) expect_is(res_plos, "ft") expect_is(res_plos$plos, "ft_ind") expect_equal(NROW(res_plos$plos$data), 200) vcr::use_cassette("ft_search_crossref", { res_cr <- ft_search(query = 'ecology', from = 'crossref', limit = 200) }) expect_is(res_cr, "ft") expect_is(res_cr$crossref, "ft_ind") expect_equal(NROW(res_cr$crossref$data), 200) }) test_that("ft_search fails well", { skip_on_cran() vcr::use_cassette("ft_search_fails_well_entrez_limit2large", { expect_error(ft_search(query = 'ecology', from = 'entrez', limit = 2000)) }) expect_error(ft_search(query = 'ecology', from = 'crossref', limit = 2000), "limit parameter must be 1000 or less") expect_error(ft_search(from = 'plos'), "argument \"query\" is missing") expect_error(ft_search("foobar", from = 'stuff'), "'arg' should be one of") vcr::use_cassette("ft_search_fails_well_plos_no_results", { plos_no_data <- ft_search(5, from = 'plos') }) expect_equal(NROW(plos_no_data$plos$data), 0) expect_equal(plos_no_data$plos$found, 0) vcr::use_cassette("ft_search_fails_well_biorxiv_no_results", { expect_error(biorxiv_search("asdfasdfasdfasfasfd"), "no results found in Biorxiv") }) }) test_that("ft_search curl options work", { skip_on_cran() expect_error( ft_search(query='ecology', from='plos', timeout_ms = 1), "[Tt]ime") expect_error( ft_search(query='ecology', from='bmc', timeout_ms = 1), "[Tt]ime") expect_error( ft_search(query='ecology', from='crossref', timeout_ms = 1), "[Tt]ime") expect_error( ft_search(query='ecology', from='biorxiv', timeout_ms = 1), "[Tt]ime") expect_error( ft_search(query='ecology', from='europmc', timeout_ms = 1), "[Tt]ime") expect_error( ft_search(query='ecology', from='scopus', timeout_ms = 1), "[Tt]ime") expect_error( ft_search("Y='19'...", from='microsoft', maopts = list(key = Sys.getenv("MICROSOFT_ACADEMIC_KEY")), timeout_ms = 1), "[Tt]ime") })
chk_lt <- function(x, value = 0, x_name = NULL) { if (vld_lt(x, value)) { return(invisible(x)) } if (is.null(x_name)) x_name <- deparse_backtick_chk(substitute(x)) if (length(x) == 1L) { abort_chk(x_name, " must be less than ", cc(value), ", not ", cc(x), x = x, value = value) } abort_chk(x_name, " must have values less than ", cc(value), x = x, value = value) } vld_lt <- function(x, value = 0) all(x[!is.na(x)] < value)
library(readr) suppressPackageStartupMessages(library(dplyr)) library(tidyr) library(ggplot2) gap_dat_orig <- read_tsv("04_gap-merged.tsv") (china <- gap_dat_orig %>% filter(country == "China")) china <- china %>% filter(year %% 5 == 2) china_tidy <- china %>% gather(key = "variable", value = "value", pop, lifeExp, gdpPercap) ggplot(china_tidy, aes(x = year, y = value)) + facet_wrap(~ variable, scales="free_y") + geom_point() + geom_line() + scale_x_continuous(breaks = seq(1950, 2011, 15)) china_gdp_fit <- lm(gdpPercap ~ year, china, subset = year <= 1982) summary(china_gdp_fit) (china_gdp_1952 <- china_gdp_fit %>% predict(data.frame(year = 1952)) %>% round(6)) china_pop_fit <- lm(pop ~ year, china) summary(china_pop_fit) (china_pop_1952 <- china_pop_fit %>% predict(data.frame(year = 1952)) %>% as.integer()) china_lifeExp_1952 <- 44 gap_dat_new <- rbind(gap_dat_orig, data.frame(country = 'China', year = 1952, pop = china_pop_1952, continent = 'Asia', lifeExp = china_lifeExp_1952, gdpPercap = china_gdp_1952)) gap_dat_new <- gap_dat_new %>% arrange(country, year) china_tidy <- gap_dat_new %>% filter(country == "China") %>% gather(key = "variable", value = "value", pop, lifeExp, gdpPercap) ggplot(china_tidy, aes(x = year, y = value)) + facet_wrap(~ variable, scales="free_y") + geom_point() + geom_line() + scale_x_continuous(breaks = seq(1950, 2011, 15)) write_tsv(gap_dat_new, "05_gap-merged-with-china-1952.tsv") devtools::session_info()
pi0est <- function(p, lambda = seq(0.05, 0.95, by = 0.01), dof = 3) { p <- sort(p) len <- length(lambda) prob <- numeric(len) for (i in 1:len) prob[i] <- mean( p > lambda[i] ) / (1 - lambda[i]) spi0 <- smooth.spline(lambda, prob, df = dof) min( predict(spi0, x = lambda[len])$y, 1 ) }
beval <- function(dset, blist, outdim="std", w = .5, dpparam=c(.05,2,2,0), bpparam=c(.01,1,1.5,0), justparams=FALSE){ if(justparams){return(list(weta = w,dimpparams = dpparam, boxpparams = bpparam))} penal <- function(n,hdisp=2,expo=2,vdisp=0){ return(pmax(0, (n-hdisp)^expo - vdisp)) } if (outdim=="std"){ outdim <- ncol(dset) } tpts <- nrow(dset) this <- sum(dset[,outdim]) dpscaler <- dpparam[1] bpscalar <- bpparam[1] B <- length(blist) bdims <- rep(0,B) for (i in 1:B){ bdims[i] <- length(blist[[i]][[1]]) } bincvecs <- matrix(TRUE,nrow=tpts,ncol=B) dnet <- c() for (b in 1:B){ dimvect <- blist[[b]][[1]] dnet <- c(dnet,dimvect) bmat <- blist[[b]][[2]] incvecs <- !logical(length=tpts) for (i in 1:length(dimvect)){ di <- dimvect[i] incvecs <- incvecs & (dset[,di] >= bmat[i,1]) incvecs <- incvecs & (dset[,di] < bmat[i,2]) } bincvecs[,b] <- incvecs } masvecs <- logical(length=nrow(dset)) for (b in 1:B){ masvecs <- masvecs | bincvecs[,b] } dleft <- dset[masvecs,] hisinset <- sum(dleft[,outdim]) tinset <- nrow(dleft) dens <- hisinset/tinset cov <- hisinset/this dimpenal <- dpscaler*sum(penal(bdims,dpparam[2],dpparam[3],dpparam[4])) bpenal <- bpscalar*penal(length(blist),bpparam[2],bpparam[3],bpparam[4]) dct <- (dens)^w*(cov)^(1-w) obj <- dimpenal + bpenal - dct bindim <- rep("-",outdim-1) bindim[unique(dnet)] <- "X" return(c(dens,cov,dct,obj,length(blist),min(bdims),max(bdims),sum(bdims),length(unique(dnet)),bindim)) }
context("TEST MODELTIME WORKFLOW VS MODELS") m750 <- m4_monthly %>% filter(id == "M750") splits <- initial_time_split(m750, prop = 0.9) model_fit_no_boost <- arima_reg() %>% set_engine(engine = "auto_arima") %>% fit(log(value) ~ date, data = training(splits)) test_that("Auto ARIMA (Parsnip)", { model_table <- modeltime_table(model_fit_no_boost) expect_s3_class(model_table, "mdl_time_tbl") expect_true(all(c(".model_id", ".model", ".model_desc") %in% names(model_table))) calibrated_tbl <- model_table %>% modeltime_calibrate(testing(splits)) expect_s3_class(calibrated_tbl, "mdl_time_tbl") expect_equal(nrow(calibrated_tbl), 1) expect_true(".calibration_data" %in% names(calibrated_tbl)) expect_message({ calibrated_tbl %>% modeltime_forecast() }) forecast_tbl <- calibrated_tbl %>% modeltime_forecast(testing(splits)) expect_equal(nrow(forecast_tbl), nrow(testing(splits))) accuracy_tbl <- calibrated_tbl %>% modeltime_accuracy(metric_set = metric_set(rsq, yardstick::mae)) expect_equal(nrow(accuracy_tbl), 1) expect_true(all(c("rsq", "mae") %in% names(accuracy_tbl))) expect_false(any(c("mape", "mase", "smape", "rmse") %in% names(accuracy_tbl))) future_forecast_tbl <- calibrated_tbl %>% modeltime_refit(data = m750) %>% modeltime_forecast(h = "3 years") expect_equal(future_forecast_tbl$.index[1], ymd("2015-07-01")) }) wflw_fit_arima <- workflow() %>% add_model( spec = arima_reg() %>% set_engine("auto_arima") ) %>% add_recipe( recipe = recipe(value ~ date, data = training(splits)) %>% step_date(date, features = "month") %>% step_log(value) ) %>% fit(training(splits)) test_that("Auto ARIMA (Workflow)", { model_table <- modeltime_table(wflw_fit_arima) expect_s3_class(model_table, "mdl_time_tbl") expect_true(all(c(".model_id", ".model", ".model_desc") %in% names(model_table))) calibrated_tbl <- model_table %>% modeltime_calibrate(testing(splits)) expect_s3_class(calibrated_tbl, "mdl_time_tbl") expect_equal(nrow(calibrated_tbl), 1) expect_true(".calibration_data" %in% names(calibrated_tbl)) forecast_tbl <- calibrated_tbl %>% modeltime_forecast(testing(splits)) expect_equal(nrow(forecast_tbl), nrow(testing(splits))) accuracy_tbl <- calibrated_tbl %>% modeltime_accuracy(metric_set = metric_set(rsq, yardstick::mae)) expect_equal(nrow(accuracy_tbl), 1) expect_true(all(c("rsq", "mae") %in% names(accuracy_tbl))) expect_false(any(c("mape", "mase", "smape", "rmse") %in% names(accuracy_tbl))) future_forecast_tbl <- calibrated_tbl %>% modeltime_refit(data = m750) %>% modeltime_forecast(h = "3 years") expect_equal(future_forecast_tbl$.index[1], ymd("2015-07-01")) }) test_that("Models for Mega Test", { skip_on_cran() model_fit_boosted <- arima_boost( non_seasonal_ar = 0, non_seasonal_differences = 1, non_seasonal_ma = 1, seasonal_ar = 1, seasonal_differences = 1, seasonal_ma = 1 ) %>% set_engine(engine = "arima_xgboost") %>% fit(log(value) ~ date + as.numeric(date) + month(date, label = TRUE), data = training(splits)) model_fit_ets <- exp_smoothing() %>% set_engine("ets") %>% fit(log(value) ~ date + as.numeric(date) + month(date, label = TRUE), data = training(splits)) model_spec <- exp_smoothing( error = "multiplicative", trend = "additive", season = "multiplicative") %>% set_engine("ets") recipe_spec <- recipe(value ~ date, data = training(splits)) %>% step_log(value) wflw_fit_ets <- workflow() %>% add_recipe(recipe_spec) %>% add_model(model_spec) %>% fit(training(splits)) model_fit_lm <- linear_reg() %>% set_engine("lm") %>% fit(log(value) ~ as.numeric(date) + month(date, label = TRUE), data = training(splits)) model_spec <- linear_reg() %>% set_engine("lm") recipe_spec <- recipe(value ~ date, data = training(splits)) %>% step_date(date, features = "month") %>% step_log(value) wflw_fit_lm <- workflow() %>% add_recipe(recipe_spec) %>% add_model(model_spec) %>% fit(training(splits)) model_fit_mars <- mars(mode = "regression") %>% set_engine("earth") %>% fit(log(value) ~ as.numeric(date) + month(date, label = TRUE), data = training(splits)) model_spec <- mars(mode = "regression") %>% set_engine("earth") recipe_spec <- recipe(value ~ date, data = training(splits)) %>% step_date(date, features = "month", ordinal = FALSE) %>% step_mutate(date_num = as.numeric(date)) %>% step_normalize(date_num) %>% step_rm(date) %>% step_log(value) wflw_fit_mars <- workflow() %>% add_recipe(recipe_spec) %>% add_model(model_spec) %>% fit(training(splits)) model_fit_svm <- svm_rbf(mode = "regression") %>% set_engine("kernlab") %>% fit(log(value) ~ as.numeric(date) + month(date, label = TRUE), data = training(splits)) model_spec <- svm_rbf(mode = "regression") %>% set_engine("kernlab") recipe_spec <- recipe(value ~ date, data = training(splits)) %>% step_date(date, features = "month") %>% step_rm(date) %>% step_dummy(all_nominal()) %>% step_log(value) wflw_fit_svm <- workflow() %>% add_recipe(recipe_spec) %>% add_model(model_spec) %>% fit(training(splits)) model_fit_randomForest <- rand_forest(mode = "regression") %>% set_engine("randomForest") %>% fit(log(value) ~ as.numeric(date) + month(date, label = TRUE), data = training(splits)) model_spec <- rand_forest() %>% set_engine("randomForest") recipe_spec <- recipe(value ~ date, data = training(splits)) %>% step_date(date, features = "month") %>% step_mutate(date_num = as.numeric(date)) %>% step_rm(date) %>% step_dummy(all_nominal()) %>% step_log(value) wflw_fit_randomForest <- workflow() %>% add_recipe(recipe_spec) %>% add_model(model_spec) %>% fit(training(splits)) model_fit_xgboost <- boost_tree(mode = "regression") %>% set_engine("xgboost", objective = "reg:squarederror") %>% fit(log(value) ~ as.numeric(date) + month(date, label = TRUE), data = training(splits)) model_spec <- boost_tree() %>% set_engine("xgboost", objective = "reg:squarederror") recipe_spec <- recipe(value ~ date, data = training(splits)) %>% step_date(date, features = "month") %>% step_mutate(date_num = as.numeric(date)) %>% step_rm(date) %>% step_dummy(all_nominal()) %>% step_log(value) wflw_fit_xgboost <- workflow() %>% add_recipe(recipe_spec) %>% add_model(model_spec) %>% fit(training(splits)) model_table <- modeltime_table( model_fit_no_boost, wflw_fit_arima, model_fit_boosted, model_fit_ets, wflw_fit_ets, model_fit_lm, wflw_fit_lm, model_fit_mars, wflw_fit_mars, model_fit_svm, wflw_fit_svm, model_fit_randomForest, wflw_fit_randomForest, model_fit_xgboost, wflw_fit_xgboost ) expect_error(modeltime_table("a")) expect_s3_class(model_table, "mdl_time_tbl") expect_equal(ncol(model_table), 3) expect_error(modeltime_accuracy(1)) accuracy_tbl <- model_table %>% modeltime_calibrate(testing(splits)) %>% modeltime_accuracy() expect_s3_class(accuracy_tbl, "tbl_df") expect_true(all(!is.na(accuracy_tbl$mae))) expect_error(modeltime_forecast(1)) forecast_tbl <- model_table %>% modeltime_calibrate(testing(splits)) %>% modeltime_forecast( new_data = testing(splits), actual_data = bind_rows(training(splits), testing(splits)) ) expect_s3_class(forecast_tbl, "tbl_df") expect_equal( nrow(forecast_tbl), nrow(model_table) * nrow(testing(splits)) + nrow(bind_rows(training(splits), testing(splits))) ) model_table_refit <- model_table %>% modeltime_calibrate(testing(splits)) %>% modeltime_refit(data = m750) expect_s3_class(model_table_refit, "mdl_time_tbl") forecast_tbl <- model_table_refit %>% filter(!.model_id %in% c(8)) %>% modeltime_forecast( new_data = future_frame(m750, .length_out = "3 years"), actual_data = m750 ) expect_s3_class(forecast_tbl, "tbl_df") actual_tbl <- forecast_tbl %>% filter(.model_desc == "ACTUAL") future_predictions_tbl <- forecast_tbl %>% filter(.model_desc != "ACTUAL") expect_true(all(tail(actual_tbl$.index, 1) < future_predictions_tbl$.index)) })
Q1 <- c(-0.1677489, -0.7369231, -0.3682588, 0.5414703) Q2 <- c(-0.8735598, 0.1145235, -0.2093062, 0.4242270) Q3 <- c(0.426681700, -0.20287610, 0.43515810, -0.76643420) Q4 <- matrix(c(-0.1677489, -0.7369231, -0.3682588, 0.5414703, -0.8735598, 0.1145235, -0.2093062, 0.4242270, 0.426681700, -0.20287610, 0.43515810, -0.76643420),3,4,byrow=TRUE) EV1 <- c(-0.1995301, -0.8765382, -0.4380279, 114.4324) EV2 <- c(-9.646669e-001, 1.264676e-001, -2.311356e-001, 1.297965e+002) EV3 <- c(6.642793e-001, -3.158476e-001, 6.774757e-001, 2.800695e+002) EV4 <- matrix(c(-1.995301e-001, -8.765382e-001, -4.380280e-001, 1.144324e+002, -9.646669e-001, 1.264676e-001, -2.311356e-001, 1.297965e+002, 6.642793e-001, -3.158476e-001, 6.774757e-001, 2.800695e+002),3,4,byrow=TRUE) DCM1 <- matrix(c(-0.3573404, -0.1515663, 0.9215940, 0.6460385, 0.6724915, 0.3610947, -0.6744939, 0.7244189, -0.1423907),3,3,byrow=TRUE) DCM2 <- matrix(c(0.88615060, -0.3776729, 0.2685150,-0.02249957, -0.6138316, -0.7891163,0.46285090, 0.6932344, -0.5524447),3,3,byrow=TRUE) DCM3 <- matrix(c(0.5389574, -0.8401672, 0.06036564,0.4939131, 0.2571603, -0.83061330,0.6823304, 0.4774806, 0.55356800),3,3,byrow=TRUE) DCM4 <- array(c(-0.35734040, 0.64603850, -0.67449390, -0.15156630, 0.67249150, 0.72441890, 0.92159400, 0.36109470, -0.14239070, 0.88615060, -0.02249957, 0.46285090, -0.37767290, -0.61383160, 0.69323440, 0.26851500, -0.78911630, -0.55244470, 0.53895740, 0.49391310, 0.68233040, -0.84016720, 0.25716030, 0.47748060, 0.06036564, -0.83061330, 0.55356800),dim=c(3,3,3)) EAxyx <- matrix(c(0.3734309, 1.427920, 2.3205212,-1.2428130, 0.985502, 0.9821003,-1.4982479, 2.157439, 0.6105777),3,3,byrow=TRUE) EAxyz <- matrix(c( 2.07603606, -0.7402790, -1.376712,-0.02538478, 0.4812086, -0.897943, 0.74181498, 0.7509456, -2.429857),3,3,byrow=TRUE) EAxzy <- matrix(c( -2.9199163, -0.8101911, -1.3627437,-0.5515727, -0.7659671, 0.6973821,-1.8678238, -0.4977850, 2.2523838),3,3,byrow=TRUE) EAyzx <- matrix(c( 1.4175036, 0.3694416, 2.3762543,0.4524244, -0.9093689, -0.0366379,3.0329736, -0.9802081, 2.0508342),3,3,byrow=TRUE) EAyxz <- matrix(c( -2.0579912, 0.70238301, 2.6488233, 0.4813408, -0.02250147, -0.9096943, 0.9022582, 0.51658433, -1.8710396),3,3,byrow=TRUE) EAzxy <- matrix(c( -2.3190385, -0.1521527, 1.9406908,-0.8460724, -0.3872818, 0.2942186,-2.0648275, -0.9975913, 0.1115396),3,3,byrow=TRUE) EAzyx <- matrix(c( 1.1951869, 1.17216717, -2.7404413,-0.9600165, 0.27185113, -0.4028824,-2.1586537, 0.06040236, -1.0004280),3,3,byrow=TRUE) EAxzx <- matrix(c( -1.197365, 1.427920, -2.391868,-2.813609, 0.985502, 2.552897,-3.069044, 2.157439, 2.181374),3,3,byrow=TRUE) EAyxy <- matrix(c( 1.777046, 2.3083664, 0.5096786,2.069637, 0.9098912, -1.5993010,2.624796, 1.8308788, -1.0343298),3,3,byrow=TRUE) EAyzy <- matrix(c( -2.935343, 2.3083664, -1.061118,-2.642752, 0.9098912, 3.113088,-2.087593, 1.8308788, -2.605126),3,3,byrow=TRUE) EAzxz <- matrix(c( -0.8069433, 1.9362151, -1.733798, 1.6193689, 0.4818253, -2.523541, 0.9442344, 1.0015975, -3.069866),3,3,byrow=TRUE) EAzyz <- matrix(c( -2.3777396, 1.9362151, -0.1630019, 0.0485726, 0.4818253, -0.9527442,-0.6265619, 1.0015975, -1.4990700),3,3,byrow=TRUE) EAall <- rbind(EAxyx,EAxyz,EAxzy,EAyzx,EAyxz,EAzxy,EAzyx,EAxzx,EAyxy,EAyzy,EAzxz,EAzyz) EAvct <- c('xyx','xyz','xzy','yzx','yxz','zxy','zyx','xzx','yxy','yzy','zxz','zyz') print('Qnorm and Qnormalize') Qnormalize(Q1) Qnormalize(Q4) Qnorm(Q1) Qnorm(Q4) print('Q2EV') Q2EV(Q1) Q2EV(Q2) Q2EV(Q3) Q2EV(Q4) print('EV2Q') EV2Q(EV1,1e-7) EV2Q(EV2,1e-7) EV2Q(EV3,1e-7) EV2Q(EV4,1e-7) print('DCM2Q') DCM2Q(DCM1) DCM2Q(DCM2) DCM2Q(DCM3) DCM2Q(DCM4) print('Q2DCM') Q2DCM(Q1) Q2DCM(Q2) Q2DCM(Q3) Q2DCM(Q4) print('Q2EA') for (EAv in EAvct) { print (Q2EA(Q1,EAv));print (Q2EA(Q2,EAv));print (Q2EA(Q3,EAv)) } for (EAv in EAvct) print (Q2EA(Q4,EAv)) print('EA2Q') n <- 1;for (EAv in rep(EAvct,each=3)) { print (EA2Q(EAall[n,],EAv));n <- n+1 } n <- 1;for (EAv in EAvct) { print (EA2Q(EAall[n:(n+2),],EAv));n <- n+3 } print('DCM2EV') DCM2EV(DCM1) DCM2EV(DCM2) DCM2EV(DCM3) DCM2EV(DCM4) print('EV2DCM') EV2DCM(EV1,1e-7) EV2DCM(EV2,1e-7) EV2DCM(EV3,1e-7) EV2DCM(EV4,1e-7) print('DCM2EA') for (EAv in EAvct) { print (DCM2EA(DCM1,EAv));print (DCM2EA(DCM2,EAv));print (DCM2EA(DCM3,EAv)) } for (EAv in EAvct) print (DCM2EA(DCM4,EAv)) print('EA2DCM') print(EA2DCM(EAxyx,'xyx',1e-7)) print(EA2DCM(EAxyz,'xyz',1e-7)) print(EA2DCM(EAxzy,'xzy',1e-7)) print(EA2DCM(EAyzx,'yzx',1e-7)) print(EA2DCM(EAyxz,'yxz',1e-7)) print(EA2DCM(EAzxy,'zxy',1e-7)) print(EA2DCM(EAzyx,'zyx',1e-7)) print(EA2DCM(EAxzx,'xzx',1e-7)) print(EA2DCM(EAyxy,'yxy',1e-7)) print(EA2DCM(EAyzy,'yzy',1e-7)) print(EA2DCM(EAzxz,'zxz',1e-7)) print(EA2DCM(EAzyz,'zyz',1e-7)) print('EA2EV') print(EA2EV(EAxyx,'xyx',1e-7)) print(EA2EV(EAxyz,'xyz',1e-7)) print(EA2EV(EAxzy,'xzy',1e-7)) print(EA2EV(EAyzx,'yzx',1e-7)) print(EA2EV(EAyxz,'yxz',1e-7)) print(EA2EV(EAzxy,'zxy',1e-7)) print(EA2EV(EAzyx,'zyx',1e-7)) print(EA2EV(EAxzx,'xzx',1e-7)) print(EA2EV(EAyxy,'yxy',1e-7)) print(EA2EV(EAyzy,'yzy',1e-7)) print(EA2EV(EAzxz,'zxz',1e-7)) print(EA2EV(EAzyz,'zyz',1e-7)) print('EV2EA') for (EAv in EAvct) { print (EV2EA(EV1,EAv,1e-7));print (EV2EA(EV2,EAv,1e-7));print (EV2EA(EV3,EAv,1e-7)) } for (EAv in EAvct) print (EV2EA(EV4,EAv,1e-7)) print('Q2GL') Q2GL(Q1) Q2GL(Q2) Q2GL(Q3) Q2GL(Q4) print('EA2EA') EA2EA(EAxyx,'xyx','xyz') EAxyz EA2EA(EAxyx,'xyx','xzy') EAxzy EA2EA(EAxyx,'xyx','yzx') EAyzx EA2EA(EAxyx,'xyx','yxz') EAyxz EA2EA(EAxyx,'xyx','zxy') EAzxy EA2EA(EAxyx,'xyx','zyx') EAzyx EA2EA(EAxyx,'xyx','xzx') EAxzx EA2EA(EAxyx,'xyx','yxy') EAyxy EA2EA(EAxyx,'xyx','yzy') EAyzy EA2EA(EAxyx,'xyx','zxz') EAzxz EA2EA(EAxyx,'xyx','zyz') EAzyz
test_that("scan_data works with dittodb-mocked Postgres database connection", { skip_on_cran() skip_on_ci() dittodb::with_mock_db({ con <- DBI::dbConnect( drv = RPostgres::Postgres(), dbname = "trade_statistics", user = "guest", password = "", host = "tradestatistics.io", port = 5432 ) yrpc <- DBI::dbGetQuery(con, "SELECT * FROM hs07_yrpc LIMIT 100") scan_results <- expect_warning(scan_data(yrpc)) DBI::dbDisconnect(con) expect_is(scan_results, "examination_page") expect_is(scan_results, "shiny.tag.list") expect_is(scan_results, "list") }) })
blr_multi_model_fit_stats <- function(model, ...) UseMethod("blr_multi_model_fit_stats") blr_multi_model_fit_stats.default <- function(model, ...) { blr_check_model(model) k <- list(model, ...) j <- lapply(k, blr_model_fit_stats) n <- length(j) names(j) <- seq_len(n) for (i in seq_len(n)) { class(j[[i]]) <- "list" } output <- setDF(rbindlist(j)) result <- list(mfit = output) class(result) <- "blr_multi_model_fit_stats" return(result) } print.blr_multi_model_fit_stats <- function(x, ...) { df <- x$mfit[c(-7, -13)] measures <- c( "Log-Lik Intercept Only", "Log-Lik Full Model", "Deviance", "LR", "Prob > LR", "MCFadden's R2", "McFadden's Adj R2", "ML (Cox-Snell) R2", "Cragg-Uhler(Nagelkerke) R2", "McKelvey & Zavoina's R2", "Efron's R2", "Count R2", "Adj Count R2", "AIC", "BIC" ) model_id <- seq_len(nrow(x$mfit)) col_names <- c(paste("Model", model_id)) print(multi_fit_stats_table(df, measures, col_names)) } multi_fit_stats_table <- function(df, measures, col_names) { y <- round(t(df), 3) colnames(y) <- col_names cbind(data.frame(Measures = measures), y) }
chk_not_subset <- function(x, values, x_name = NULL) { if (vld_not_subset(x, values)) { return(invisible(x)) } values <- sort(unique(values), na.last = TRUE) if (is.null(x_name)) x_name <- deparse_backtick_chk(substitute(x)) if (length(x) == 1L) { abort_chk(x_name, " must not match ", cc(unique(c(x, values)), " or "), x = x, values = values) } abort_chk(x_name, " must not have any values matching ", cc(values, " or "), x = x, values = values) } vld_not_subset <- function(x, values) !any(x %in% values) || !length(x)
.checkModel <- function(fileName){ filename <- .check_file(fileName) covsection <- .getModelSection(filename, section = "COVARIATE", block = "DEFINITION") if (!is.null(covsection)) { if (any(grepl("distribution", covsection))) { stop( "Invalid model file. Definition of distributions for covariates in the [COVARIATE] block is not supported anymore. \n", "Instead, generate the covariates in your R script and pass them as a data.frame to the 'parameter' argument of simulx. \n", "See 'http://simulx.lixoft.com/definition/model/' for model definition.", call. = F ) } if (any(grepl("P\\(([a-zA-Z0-9]|\\s|=)*\\)", covsection))) { stop( "Invalid model file. Definition of distributions for covariates in the [COVARIATE] block is not supported anymore. \n", "Instead, generate the covariates in your R script and pass them as a data.frame to the 'parameter' argument of simulx. \n", "See 'http://simulx.lixoft.com/definition/model/' for model definition.", call. = F ) } } popsection <- .getModelSection(filename, section = "POPULATION", block = "DEFINITION") if (!is.null(popsection)) { if (any(grepl("distribution", popsection))) { stop( "Definition of distributions for population parameters in the [POPULATION] block is not supported anymore. \n", "Instead, generate the population parameters in your R script and pass them as a data.frame to the 'parameter' argument of simulx. \n", "See 'http://simulx.lixoft.com/definition/model/' for model definition.", call. = F ) } if (any(grepl("P\\(([a-zA-Z0-9]|\\s|=)*\\)", popsection))) { stop( "Definition of distributions for population parameters in the [POPULATION] block is not supported anymore. \n", "Instead, generate the population parameters in your R script and pass them as a data.frame to the 'parameter' argument of simulx. \n", "See 'http://simulx.lixoft.com/definition/model/' for model definition.", call. = F ) } } return(invisible(TRUE)) } .checkModelOutputSection <- function(fileName){ lines <- suppressWarnings(readLines(con = fileName, n = -1)) bIsOUT = F for(index in 1: length(lines)){ bIsOUT <- bIsOUT|grepl(x =lines[index], pattern = 'OUTPUT:') } return(bIsOUT) } .checkParameter <- function(parameter){ if(!is.null(parameter)){ if(!(is.vector(parameter)||(is.data.frame(parameter)))) stop("Invalid paramerer. It must be a vector or a data.frame.", call. = F) } return(parameter) } .checkMissingParameters <- function(parameter, expectedParameters, frommlx = FALSE) { diff <- setdiff(expectedParameters, parameter) ismissing <- FALSE if (length(diff)) { ismissing <- TRUE if (length(diff) == 1) { message <- paste0(" '", diff, "' has not been specified. It ") } else { message <- paste0(" '", paste(diff, collapse = "', '"), "' have not been specified. They ") } if (frommlx) { message <- paste0(message, "will be set to the value estimated by Monolix.") } else { message <- paste0(message, "will be set to 1.") } warning(message, call. = F) } return(ismissing) } .checkExtraParameters <- function(parameter, expectedParameters) { diff <- setdiff(parameter, expectedParameters) isextra <- FALSE if (length(diff)) { isextra <- TRUE if (length(diff) == 1) { warning("Found extra parameters. '", diff, "' is not in the model.", call. = F) } else { warning("Found extra parameters. '", paste(diff, collapse = "', '"), "' are not in the model.", call. = F) } } return(isextra) } .checkUnitaryList <- function(inputList, mandatoryNames, defaultNames, listName){ if (is.null(inputList)) { return(inputList) } if (!(is.data.frame(inputList) | is.vector(inputList))) { stop("Invalid ", listName, ". It must be a vector with at least the following fields: ", paste(mandatoryNames, collapse = ', '), ".", call. = F) } namesList <- names(inputList) for (indexName in seq_along(namesList)) { if (! (is.list(inputList[[indexName]]) || is.vector(inputList[[indexName]]) || is.factor(inputList[[indexName]]))) { stop("Invalid field ", namesList[indexName], " in '", listName, "'. It must be a vector.", call. = F) } } if (!is.null(mandatoryNames)) { missingName <- setdiff(mandatoryNames, namesList) if (length(missingName) > 0) { message <- paste0("Mandatory fields are missing in '", listName, "', ") if (length(missingName) == 1) { message <- paste0(message, "'", missingName,"' is not defined. \n") }else{ message <- paste0(message, "('", paste(missingName, collapse = "', '"), "') are not defined. \n") } message <- paste0(message, "Skip '", listName, "'. ") if (grepl("output", listName) & any(missingName %in% c("name", "time"))) { message <- paste0(message, "If it is a parameter, note that simulx function now returns all parameters by default.") } warning(message, call. = F) inputList <- NULL } } extraName <- setdiff(namesList, union(mandatoryNames,defaultNames)) if (length(extraName) > 0) { message <- paste0("Invalid fields will be ignored in '", listName, "'.") if( length(extraName) == 1){ message <- paste0(message, " ", extraName," will be ignored.") }else{ message <- paste0(message, " (", paste(extraName, collapse = ','),") will be ignored.") } warning(message, call. = F) inputList <- inputList[! namesList %in% extraName] } return(inputList) } .checkUnitaryTreatment<- function(treatment, listName = "treatment"){ mandatoryNames <- c("time", "amount") defaultNames <- c("tinf", "rate", "type") if (is.data.frame(treatment)) { indexID <- which(names(treatment) == 'id') if (length(indexID)) mandatoryNames <- c(mandatoryNames, names(treatment)[indexID]) } names(treatment)[names(treatment) == "adm"] <- "type" names(treatment)[names(treatment) == "amt"] <- "amount" if (is.element("target", names(treatment))) { stop("Invalid field 'target' for 'treatment' argument. You must use 'adm=' instead.", call. = FALSE) } treatment <- .checkUnitaryList( treatment, mandatoryNames = mandatoryNames, defaultNames = defaultNames, listName = listName ) if (!is.null(treatment)) { if (is.element("type", names(treatment))) { .check_strict_pos_integer(treatment$type, "treatment type") } else{ treatment$type = 1 } .check_vector_of_double(treatment$time, "treatment times") nbTimePoint = length(treatment$time) .check_vector_of_double(treatment$amount, "treatment amount") if (length(treatment$amount) > 1) { .check_vectors_length(treatment$amount, treatment$time, "treatment amount", "treatment times") } else { treatment$amount <- rep(treatment$amount, nbTimePoint) } if (length(treatment$type) > 1) { .check_vectors_length(treatment$type, treatment$time, "treatment type", "treatment times") } if (is.element("rate", names(treatment))) { .check_vector_of_pos_double(treatment$rate, "treatment rate") if (length(treatment$rate) > 1) { .check_vectors_length(treatment$rate, treatment$time, "treatment rate", "treatment times") } else { treatment$rate <- rep(treatment$rate, nbTimePoint) } } if (is.element("tinf", names(treatment))) { .check_vector_of_pos_double(treatment$tinf, "treatment infusion duration") if (length(treatment$tinf) > 1) { .check_vectors_length(treatment$tinf, treatment$time, "treatment infusion duration", "treatment times") } else{ treatment$tinf <- rep(treatment$tinf, nbTimePoint) } } } else { treatment <- as.list(treatment) } return(treatment) } .checkTreatment <- function(treatment){ if (is.element("time", names(treatment))) { treatment <- list(treatment) } for (itreat in seq_along(treatment)) { treatementValue <- treatment[[itreat]] if (length(treatment) > 1) { listName <- paste0("treatment ", itreat) } else { listName <- "treatment" } treatment[[itreat]] <- .checkUnitaryTreatment(treatementValue, listName = listName) } treatment <- treatment[sapply(treatment, function(e) length(e) > 0)] return(treatment) } .checkUnitaryOutput<- function(output, listName = "output"){ mandatoryNames <- c("name", "time") defaultNames <- c("lloq", "uloq", "limit") if (!is.null(output)) { if (is.data.frame(output)) { indexID <- which(names(output) == 'id') if (length(indexID)) defaultNames <- c(defaultNames, names(output)[indexID], names(output)) } output <- .checkUnitaryList( output, mandatoryNames = mandatoryNames, defaultNames = defaultNames, listName = listName ) if (is.element("name", names(output))) .check_vector_of_char(output$name, "output name") if (is.element("time", names(output))) { if (is.data.frame(output$time)) { if (! is.element("time", names(output$time))) { stop("When output time is a dataframe, it must contains at least a time column.", call. = FALSE) } } else { if (length(output$time) > 1) { .check_vector_of_double(output$time, "output time") } else { if (output$time != "none") .check_vector_of_double(output$time, "output time") } } } } if (is.null(output)) { output <- as.list(output) } return(output) } .checkOutput <- function(output){ if (is.data.frame(output) | is.element("name", names(output))) { output <- list(output) } for (iout in seq_along(output)) { outputValue <- output[[iout]] if (length(output) > 1) { listName <- paste0("output ", iout) } else { listName <- "output" } output[[iout]] <- .checkUnitaryOutput(outputValue, listName = listName) } output <- output[sapply(output, function(e) length(e) > 0)] if (!length(output)) output <- NULL return(output) } .checkOutputDirectory <- function(directory) { if(!is.null(directory)){ if(!dir.exists(directory)) stop("Directory '", directory, "' does not exist.", call. = FALSE) } return(invisible(TRUE)) } .checkDelimiter <- function(delimiter, argname) { if (is.null(delimiter)) return(invisible(TRUE)) if (! is.element(delimiter, c("\t", " ", ";", ","))) stop("'", argname, "' must be one of: {\"", paste(c("\\t", " ", ";", ","), collapse="\", \""), "\"}.", call. = FALSE) return(invisible(TRUE)) } .checkExtension <- function(ext, argname) { if (is.null(ext)) return(invisible(TRUE)) if (! is.element(ext, c("csv", "txt"))) stop("'", argname, "' must be one of: {\"", paste(c("csv", "txt"), collapse="\", \""), "\"}.", call. = FALSE) return(invisible(TRUE)) } .checkUnitaryRegressor<- function(regressor, listName = "regressor") { mandatoryNames <- c('name', 'time', 'value') defaultNames <- NULL if (is.data.frame(regressor)) { indexID <- which(names(regressor) == 'id') mandatoryNames <- c("time") if (length(indexID)) defaultNames <- c(names(regressor)[indexID], names(regressor)) } regressor <- .checkUnitaryList( regressor, mandatoryNames = mandatoryNames, defaultNames = defaultNames, listName = listName ) if (is.element("name", names(regressor))) { if (length(regressor$name) > 1) stop("The regressor name must have only one value.", call. = F) .check_char(regressor$name, "regressor name") } if(is.element("value", names(regressor))) { .check_vector_of_double(regressor$value, "regressor value") } if (is.element("time", names(regressor))) { .check_vector_of_double(regressor$time, "regressor time") } if (is.null(regressor)) regressor <- as.list(regressor) return(regressor) } .checkRegressor <- function(regressor){ if (is.data.frame(regressor) | is.element("name", names(regressor))) { regressor <- list(regressor) } for (ireg in seq_along(regressor)) { regValue <- regressor[[ireg]] if (length(regressor) > 1) { listName <- paste0("regressor ", ireg) } else { listName <- "regressor" } regressor[[ireg]] <- .checkUnitaryRegressor(regValue, listName = listName) } regressor <- regressor[sapply(regressor, function(e) length(e) > 0)] return(regressor) } .checkUnitaryGroup<- function(group, listName){ if (is.element("size", names(group))) { if (length(group$size) > 1) { stop("group size must a strictly positive integer of size 1", call. = F) } .check_strict_pos_integer(group$size, "treatment size") } else { } if (is.element("parameter", names(group))) { group$parameter <- .transformParameter(parameter=group$parameter) group$parameter <- .checkParameter(parameter=group$parameter) } if (is.element("output", names(group))) { group$output <- .checkOutput(output = group$output) } if (is.element("treatment", names(group))) { group$treatment <- .checkTreatment(treatment = group$treatment) group$treatment <- .splitTreatment(group$treatment) } if (is.element("regressor", names(group))) { group$regressor <- .checkRegressor(regressor = group$regressor) group$regressor <- .transformRegressor(group$regressor) } return(group) } .checkGroup <- function(group){ allowedNames <- c("size", "parameter", "output", "treatment", "regressor", "level") if (any(is.element(allowedNames, names(group))) | !all(sapply(group, .is_list_or_named_vector))) { group <- list(group) } for (igroup in seq_along(group)) { gValue <- group[[igroup]] if (length(group) > 1) { listName <- paste0("group ", igroup) } else { listName <- "group" } group[[igroup]] <- .checkUnitaryGroup(gValue, listName = listName) } return(group) } .checkSimpopParameter <- function(parameter) { if (is.null(parameter)) return(parameter) if (!is.data.frame(parameter)) stop("parameter must be a dataframe object.", call. = FALSE) .check_in_vector(names(parameter), "'parameter names'", c("pop.param", "sd", "trans", "lim.a", "lim.b")) if (! all(is.element(c("pop.param", "sd"), names(parameter)))) stop("You must specified at least 'pop.param' and 'sd' in 'parameter' argument") paramName <- row.names(parameter) if (is.null(parameter$trans)) { parameter$trans <- "N" i.omega <- c(grep("^omega_", paramName), grep("^omega2_", paramName)) i.corr <- unique(c(grep("^r_", paramName), grep("^corr_", paramName))) parameter$trans[i.omega] <- "L" parameter$trans[i.corr] <- "R" } .check_in_vector(parameter$trans, "'parameter trans'", c("N", "L", "G", "P", "R")) if (is.null(parameter$lim.a)) { parameter$lim.a <- NA parameter$lim.a[parameter$trans == "G"] <- 0 } if (is.null(parameter$lim.b)) { parameter$lim.b <- NA parameter$lim.b[parameter$trans == "G"] <- 1 } if (! all(is.na(parameter[parameter$trans != "G", c("lim.a", "lim.b")]))) stop("lim.a and lim.b must be specified for logit transformations only (trans = G). For other transformations, set lim.a and lim.b to NaN.", call. = FALSE) lima <- parameter[parameter$trans == "G",]$lim.a limb <- parameter[parameter$trans == "G",]$lim.b if (!all(lima < limb)) stop("lim.a must be strictly inferior to lim.b.", call. = FALSE) parameter$lim.a[parameter$trans == "N"] <- - Inf parameter$lim.b[parameter$trans == "N"] <- Inf .check_in_range(parameter$pop.param[parameter$trans == "L"], "pop.param of lognormal distribution", lowerbound = 0, includeBound = FALSE) parameter$lim.a[parameter$trans == "L"] <- 0 parameter$lim.b[parameter$trans == "L"] <- Inf .check_in_range(parameter$pop.param[parameter$trans == "G"], "pop.param of logit distribution", lowerbound = parameter$lim.a[parameter$trans == "G"], upperbound = parameter$lim.b[parameter$trans == "G"], includeBound = FALSE) .check_in_range(parameter$pop.param[parameter$trans == "R"], "pop.param of r distribution", lowerbound = -1, upperbound = 1, includeBound = TRUE) parameter$lim.a[parameter$trans == "R"] <- -1 parameter$lim.b[parameter$trans == "R"] <- 1 .check_in_range(parameter$pop.param[parameter$trans == "P"], "pop.param of probit normal distribution", lowerbound = 0, upperbound = 1, includeBound = TRUE) parameter$lim.a[parameter$trans == "P"] <- 0 parameter$lim.b[parameter$trans == "P"] <- 1 return(parameter) } .checkSimpopCorr <- function(corr, nbParams) { if (nrow(corr) != nbParams | ncol(corr) != nbParams) stop("'corr' must be a matrix of shape (", nbParams, " x ", nbParams, ").", call. = FALSE) .check_in_range(corr[! is.na(corr)], "corr elements", lowerbound = -1 - 1e-4, upperbound = 1 + 1e-4, includeBound = TRUE) return(corr) } .check_file <- function(filename, fileType = "File") { if (!file.exists(filename)) stop(fileType, " ", filename, " does not exist.", call. = FALSE) filename <- normalizePath(filename) return(filename) } .check_integer <- function(int, argname = NULL) { if(!(is.double(int)||is.integer(int))) stop("Invalid ", argname, ". It must be an integer.", call. = F) if (!all(as.integer(int) == int)) stop("Invalid ", argname, ". It must be an integer.", call. = F) return(int) } .check_strict_pos_integer <- function(int, argname) { if(!(is.double(int)||is.integer(int))) stop("Invalid ", argname, ". It must be a strictly positive integer.", call. = F) if ((int <= 0) || (!as.integer(int) == int)) stop("Invalid ", argname, ". It must be a strictly positive integer.", call. = F) return(int) } .check_pos_integer <- function(int, argname) { if(!(is.double(int)||is.integer(int))) stop("Invalid ", argname, ". It must be a positive integer.", call. = F) if ((int < 0) || (!as.integer(int) == int)) stop("Invalid ", argname, ". It must be a positive integer.", call. = F) return(int) } .check_double <- function(d, argname) { if(!(is.double(d)||is.integer(d))) stop("Invalid ", argname, ". It must be a double.", call. = F) return(d) } .check_vector_of_double <- function(v, argname) { if(!(is.double(v)||is.integer(v))) stop("Invalid ", argname, ". It must be a vector of doubles.", call. = F) return(v) } .check_pos_double <- function(d, argname) { if(!(is.double(d)||is.integer(d)) || (d < 0)) stop("Invalid ", argname, ". It must be a positive double.", call. = F) return(d) } .check_vector_of_pos_double <- function(v, argname) { if(!(is.double(v)||is.integer(v)) || (v < 0)) stop("Invalid ", argname, ". It must be a vector of positive doubles.", call. = F) return(v) } .check_strict_pos_double <- function(d, argname) { if(!(is.double(d)||is.integer(d)) || (d <= 0)) stop("Invalid ", argname, ". It must be a strictly positive double.", call. = F) return(d) } .check_vector_of_strict_pos_double <- function(v, argname) { if(!(is.double(v)||is.integer(v)) || (v <= 0)) stop("Invalid ", argname, ". It must be a vector of strictly positive doubles.", call. = F) return(v) } .check_char <- function(str, argname = NULL) { if (!is.character(str)) { stop("Invalid ", argname, ". It must be a string", call. = F) } return(str) } .check_vector_of_char <- function(v, argname) { if (!is.character(v)) { stop("Invalid ", argname, ". It must be a vector of strings", call. = F) } return(v) } .check_bool <- function(bool, argname) { if (!is.logical(bool)) stop("Invalid ", argname, ". It must be logical", call. = F) return(bool) } .check_vectors_length <- function(v1, v2, argname1, argname2) { if (length(v1) != length(v2)) stop(argname1, " vector and ", argname2, " vector must have the same length.", call. = F) return(invisible(TRUE)) } .check_in_vector <- function(arg, argname, vector) { if (is.null(arg)) return(invisible(TRUE)) if (! all(is.element(arg, vector))) { stop(argname, " must be in {'", paste(vector, collapse="', '"), "'}.", call. = F) } return(invisible(TRUE)) } .check_in_range <- function(arg, argname, lowerbound = -Inf, upperbound = Inf, includeBound = TRUE) { if (includeBound) { if (! all(arg >= lowerbound) | ! all(arg <= upperbound)) { stop(argname, " must be in [", lowerbound, ", ", upperbound, "].", call. = F) } } else { if (! all(arg > lowerbound) | ! all(arg < upperbound)) { stop(argname, " must be in ]", lowerbound, ", ", upperbound, "[.", call. = F) } } return(invisible(TRUE)) } is.string <- function(str) { isStr <- TRUE if (!is.null(names(str))) { isStr <- FALSE } else if (length(str) > 1) { isStr <- FALSE } else if (! is.character(str)) { isStr <- FALSE } return(isStr) }
context("Burr functions") test_that("Density, distribution function, quantile function, raw moments and random generation for the Burr distribution work correctly", { expect_equal(2, qburr(pburr(2, log.p = TRUE), log.p = TRUE)) expect_equal(pburr(2), mburr(truncation = 2)) x <- rburr(1e5, shape2 = 3) expect_equal(mean(x), mburr(r = 1, shape2 = 3, lower.tail = FALSE), tolerance = 1e-1) expect_equal(sum(x[x > quantile(x, 0.1)]) / length(x), mburr(r = 1, shape2 = 3, truncation = as.numeric(quantile(x, 0.1)), lower.tail = FALSE), tolerance = 1e-1) }) test_that("Comparing probabilites of power-transformed variables", { coeff <- burr_plt(shape1 = 2, shape2 = 3, scale = 1, a = 5, b = 7)$coefficients expect_equal(pburr(3, shape1 = 2, shape2 = 3, scale = 1), pburr(5 * 3^7, shape1 = coeff[["shape1"]], shape2 = coeff[["shape2"]], scale = coeff[["scale"]])) coeff <- burr_plt(shape1 = 2, shape2 = 3, scale = 1, a = 5, b = 7, inv = TRUE)$coefficients expect_equal(pburr(0.9, shape1 = coeff[["shape1"]], shape2 = coeff[["shape2"]], scale = coeff[["scale"]]), pburr(5 * 0.9^7, shape1 = 2, shape2 = 3, scale = 1)) x <- rburr(1e5, shape1 = 2, shape2 = 3, scale = 1) coeff <- burr_plt(shape1 = 2, shape2 = 3, scale = 1, a = 2, b = 0.5)$coefficients y <- rburr(1e5, shape1 = coeff[["shape1"]], shape2 = coeff[["shape2"]], scale = coeff[["scale"]]) expect_equal(mean(2 * x^0.5), mean(y), tolerance = 1e-1) expect_equal(mean(2 * x^0.5), mburr(r = 1, shape1 = coeff[["shape1"]], shape2 = coeff[["shape2"]], scale = coeff[["scale"]], lower.tail = FALSE), tolerance = 1e-1) expect_equal(mean(y), mburr(r = 1, shape1 = coeff[["shape1"]], shape2 = coeff[["shape2"]], scale = coeff[["scale"]], lower.tail = FALSE), tolerance = 1e-1) })
predict.lvm.mixture <- function(object,p=coef(object,full=TRUE),model="normal",predict.fun=NULL,...) { p0 <- coef(object,full=FALSE) pp <- p[seq_along(p0)] pr <- p[length(p0)+seq(length(p)-length(p0))]; if (length(pr)<object$k) pr <- c(pr,1-sum(pr)) myp <- modelPar(object$multigroup,p=pp)$p logff <- sapply(seq(object$k), function(j) (logLik(object$multigroup$lvm[[j]],p=myp[[j]],data=object$data,indiv=TRUE,model=model))) logplogff <- t(apply(logff,1, function(y) y+log(pr))) zmax <- apply(logplogff,1,max) logsumpff <- log(rowSums(exp(logplogff-zmax)))+zmax gamma <- exp(apply(logplogff,2,function(y) y - logsumpff)) M <- 0; V <- 0 x <- lava::vars(object$model) for (i in seq(object$k)) { m <- Model(object$multigroup)[[i]] P <- predict(m,data=object$data,p=myp[[i]],x=x) if (!is.null(predict.fun)) { M <- M+gamma[,i]*predict.fun(P,as.vector(attributes(P)$cond.var), ...) } else { M <- M+gamma[,i]*P V <- V+gamma[,i]*as.vector(attributes(P)$cond.var) + gamma[,i]*P^2 } } V <- V-M^2 return(M) }
.survival.default <- function(x, alpha, beta){ num <- beta * (.zeta_x(alpha, x + 1)) den <- (VGAM::zeta(alpha) - (1 - beta)*(.zeta_x(alpha, x + 1))) return(num/den) } smoezipf <- function(x, alpha, beta, show.plot=F){ values <- sapply(x, .survival.default, alpha = alpha, beta = beta, simplify = T) if(show.plot){ graphics::barplot(values) } return(values) }
geometricboot <- function(j=NULL,wr1,wr2,x.pred,y.pred,n,cbb,joint){ if (is.numeric(cbb)==TRUE) { xresid2 <- c(wr1,wr1) yresid2 <- c(wr2,wr2) k <- n/cbb xblocks <- sample(1:n,k,replace=TRUE) if (joint==FALSE) yblocks <- sample(1:n,k,replace=TRUE) else yblocks <- xblocks xressamp <- c(t(outer(xblocks,0:(cbb-1),FUN="+"))) yressamp <- c(t(outer(yblocks,0:(cbb-1),FUN="+"))) y.boot<-yresid2[yressamp]+y.pred x.boot<-xresid2[xressamp]+x.pred } else { if (joint==FALSE) { rx <- sample(wr1,n,replace=TRUE) ry <- sample(wr2,n,replace=TRUE) } else { resid.sampler <- sample(1:n,n,replace=TRUE) rx <- wr1[resid.sampler] ry <- wr2[resid.sampler] } x.boot<-rx + x.pred y.boot<-ry + y.pred } x <- x.boot y <- y.boot start <- direct(x,y) ti<-n for (i in 1:length(x)) { x0<-x[i] y0<-y[i] zmin1<-optimize(ellipsespot,c(0,pi),"x0"=x0,"y0"=y0,"cx"=start$vals["cx"],"cy"=start$vals["cy"],"semi.major"=start$vals["semi.major"],"semi.minor"=start$vals["semi.minor"],"rote.rad"=start$vals["theta"]) zmin2<-optimize(ellipsespot,c(pi,2*pi),"x0"=x0,"y0"=y0,"cx"=start$vals["cx"],"cy"=start$vals["cy"],"semi.major"=start$vals["semi.major"],"semi.minor"=start$vals["semi.minor"],"rote.rad"=start$vals["theta"]) ti[i]<-ifelse(zmin1$objective < zmin2$objective, zmin1, zmin2)[[1]] } pred.x<-start$vals["cx"] +start$vals["semi.major"]*cos(start$vals["theta"])*cos(ti)-start$vals["semi.minor"]*sin(start$vals["theta"])*sin(ti) pred.y<-start$vals["cy"] +start$vals["semi.major"]*sin(start$vals["theta"])*cos(ti)+start$vals["semi.minor"]*cos(start$vals["theta"])*sin(ti) model <- list("period.time"=ti,"values"=c("cx"=as.vector(start$vals["cx"]),"cy"=as.vector(start$vals["cy"]), "semi.major"=as.vector(start$vals["semi.major"]),"semi.minor"=as.vector(start$vals["semi.minor"]), "rote.rad"=as.vector(start$vals["theta"])),"x"=x,"y"=y) results <- geom_ellipse(model,1.001) cx <- as.vector(results$values[4]); cy <- as.vector(results$values[5]); theta <- as.vector(results$values[1]); semi.major <- as.vector(results$values[2]); semi.minor <- as.vector(results$values[3]); z <- c("cx"=cx,"cy"=cy,"theta"=theta,"semi.major"=semi.major,"semi.minor"=semi.minor,"theta.deg"=theta*180/pi,"phase.angle"=ti[1]) z }
teamBowlingScorecardAllOppnAllMatches <- function(matches,theTeam){ noBalls=wides=team=runs=bowler=wicketKind=wicketPlayerOut=NULL team=bowler=ball=wides=noballs=runsConceded=overs=NULL over=wickets=maidens=NULL a <-filter(matches,team==theTeam) a1 <- unlist(strsplit(a$ball[1],"\\.")) a2 <- paste(a1[1],"\\.",sep="") b <- a %>% select(bowler,ball,noballs,wides,runs,wicketKind,wicketPlayerOut) %>% mutate(over=gsub(a2,"",ball)) %>% mutate(over=gsub("\\.\\d+","",over)) c <- summarise(group_by(b,bowler,over),sum(runs,wides,noballs)) names(c) <- c("bowler","over","runsConceded") d <-summarize(group_by(c,bowler),maidens=sum(runsConceded==0)) e <- summarize(group_by(c,bowler),runs=sum(runsConceded)) f <- select(c,bowler,over) g <- summarise(group_by(f,bowler),overs=length(unique(over))) h <- b %>% select(bowler,wicketKind,wicketPlayerOut) %>% filter(wicketPlayerOut != "nobody") i <- summarise(group_by(h,bowler),wickets=length(wicketPlayerOut)) j <- full_join(g,d,by="bowler") k <- full_join(j,e,by="bowler") l <- full_join(k,i,by="bowler") if(sum(is.na(l$wickets)) != 0){ l[is.na(l$wickets),]$wickets=0 } l <-arrange(l,desc(wickets),desc(runs),maidens) l }
parseMiniSEED <- function(buffer) { result <- .Call("parseMiniSEED",buffer) return(result) }
orderm <- function(base = NULL, frontier = NULL, noutput = 1, orientation=1, M = 25, B = 500) { require(lpSolve) if(is.null(frontier)) frontier <- base if(!is.null(base) & !is.null(frontier)){ base <- as.matrix(base) frontier <- as.matrix(frontier) } if(ncol(base) != ncol(frontier)) stop("Number of columns in base matrix and frontier matrix should be the same!") s <- noutput m <- ncol(base) - s n <- nrow(base) nf <- nrow(frontier) front.Y <- t(frontier[, 1:s]) front.X <- t(frontier[, (s+1):(s+m)]) base.Y <- t(base[, 1:s]) base.X <- t(base[, (s+1):(s+m)]) re <- data.frame(matrix(0, nrow = n, ncol = 1)) names(re) <- c("eff") for(i in 1:n){ if(orientation == 1){ eff <- list() x0 <- base.X[,i] y0 <- base.Y[,i] for(b in 1:B){ front.idx.y <- apply(front.Y >= y0, 2, prod) == 1 front.idx <- which(front.idx.y == 1) front.idx.m <- sample(front.idx, M, replace = TRUE) mat <- matrix(front.X[,front.idx.m]/x0, nrow = m, ncol = length(front.idx.m)) eff[[b]] <- min(apply(mat, 2, max)) } } if(orientation == 2){ eff <- list() x0 <- base.X[,i] y0 <- base.Y[,i] for(b in 1:B){ front.idx.x <- apply(front.X <= x0, 2, prod) == 1 front.idx <- which(front.idx.x == 1) front.idx.m <- sample(front.idx, M, replace = TRUE) mat <- matrix(front.Y[,front.idx.m]/y0, nrow = s, ncol = length(front.idx.m)) eff[[b]] <- max(apply(mat, 2, min)) } } re[i,1] <- mean(do.call(c, eff)) } return(re) }