code
stringlengths
1
13.8M
get_committee_leadership <- function(cycle=2018, page = 1, myAPI_Key){ API = 'campaign-finance' if(!validate_cycle(cycle)) stop("Incorrect cycle") query <- sprintf("%s/committees/leadership.json", cycle) pp_query(query, API, page = page, myAPI_Key = myAPI_Key) }
mapdeckScatterplotDependency <- function() { list( createHtmlDependency( name = "scatterplot", version = "1.0.0", src = system.file("htmlwidgets/lib/scatterplot", package = "mapdeck"), script = c("scatterplot.js"), all_files = FALSE ) ) } add_scatterplot <- function( map, data = get_map_data(map), lon = NULL, lat = NULL, polyline = NULL, radius = NULL, radius_min_pixels = 1, radius_max_pixels = NULL, fill_colour = NULL, fill_opacity = NULL, stroke_colour = NULL, stroke_width = NULL, stroke_opacity = NULL, tooltip = NULL, auto_highlight = FALSE, highlight_colour = " layer_id = NULL, id = NULL, palette = "viridis", na_colour = " legend = FALSE, legend_options = NULL, legend_format = NULL, digits = 6, update_view = TRUE, focus_layer = FALSE, transitions = NULL, brush_radius = NULL ) { if( !is.null( fill_colour ) ) { fill_colour <- appendAlpha( fill_colour ) } if( !is.null( stroke_colour ) ) { stroke_colour <- appendAlpha( stroke_colour ) } l <- list() l[["lon"]] <- force(lon) l[["lat"]] <- force(lat) l[["polyline"]] <- force(polyline) l[["radius"]] <- force(radius) l[["fill_colour"]] <- force(fill_colour) l[["fill_opacity"]] <- resolve_opacity(fill_opacity) l[["stroke_colour"]] <- force( stroke_colour) l[["stroke_opacity"]] <- force( stroke_opacity ) l[["stroke_width"]] <- force( stroke_width ) l[["tooltip"]] <- force(tooltip) l[["id"]] <- force(id) l[["na_colour"]] <- force(na_colour) l <- resolve_palette( l, palette ) l <- resolve_legend( l, legend ) l <- resolve_legend_options( l, legend_options ) l <- resolve_data( data, l, c( "POINT") ) bbox <- init_bbox() update_view <- force( update_view ) focus_layer <- force( focus_layer ) if ( !is.null(l[["data"]]) ) { data <- l[["data"]] l[["data"]] <- NULL } if( !is.null(l[["bbox"]] ) ) { bbox <- l[["bbox"]] l[["bbox"]] <- NULL } layer_id <- layerId(layer_id, "scatterplot") checkHexAlpha(highlight_colour) map <- addDependency(map, mapdeckScatterplotDependency()) tp <- l[["data_type"]] l[["data_type"]] <- NULL jsfunc <- "add_scatterplot_geo_columnar" map <- addDependency(map, mapdeckScatterplotDependency()) if ( tp == "sf" ) { geometry_column <- list( geometry = c("lon","lat") ) l[["geometry"]] <- NULL shape <- rcpp_point_sf_columnar( data, l, geometry_column, digits, "scatterplot" ) } else if ( tp == "df" ) { geometry_column <- list( geometry = c("lon", "lat") ) shape <- rcpp_point_df_columnar( data, l, geometry_column, digits, "scatterplot" ) } else if ( tp == "sfencoded" ) { geometry_column <- c( "polyline" ) shape <- rcpp_point_polyline( data, l, geometry_column, "scatterplot" ) } js_transitions <- resolve_transitions( transitions, "scatterplot" ) if( inherits( legend, "json" ) ) { shape[["legend"]] <- legend legend_format <- "hex" } else { shape[["legend"]] <- resolve_legend_format( shape[["legend"]], legend_format ) legend_format <- "rgb" } invoke_method( map, jsfunc, map_type( map ), shape[["data"]], nrow(data) , layer_id, auto_highlight, highlight_colour, shape[["legend"]], legend_format, bbox, update_view, focus_layer, js_transitions, radius_min_pixels, radius_max_pixels, brush_radius ) } clear_scatterplot <- function( map, layer_id = NULL, update_view = TRUE ) { layer_id <- layerId(layer_id, "scatterplot") invoke_method(map, "md_layer_clear", map_type( map ), layer_id, "scatterplot", update_view ) }
NULL NULL NULL NULL add_aks_methods <- function() { az_resource_group$set("public", "create_aks", overwrite=TRUE, function(name, location=self$location, dns_prefix=name, kubernetes_version=NULL, login_user="", login_passkey="", enable_rbac=FALSE, agent_pools=agent_pool("pool1", 3), cluster_service_principal=NULL, managed_identity=TRUE, private_cluster=FALSE, properties=list(), ..., wait=TRUE) { if(is_empty(kubernetes_version)) kubernetes_version <- tail(self$list_kubernetes_versions(), 1) if(managed_identity) { identity <- list(type="systemAssigned") sp_profile <- NULL } else { identity <- NULL find_app_creds <- get("find_app_creds", getNamespace("AzureContainers")) cluster_service_principal <- find_app_creds(cluster_service_principal, name, location, self$token) if(is.null(cluster_service_principal[[2]])) stop("Must provide a service principal with a secret password", call.=FALSE) sp_profile <- list( clientId=cluster_service_principal[[1]], secret=cluster_service_principal[[2]] ) } if(inherits(agent_pools, "agent_pool")) agent_pools <- list(unclass(agent_pools)) else if(is.list(agent_pools) && all(sapply(agent_pools, inherits, "agent_pool"))) agent_pools <- lapply(agent_pools, unclass) agent_pools[[1]]$mode <- "System" props <- list( kubernetesVersion=kubernetes_version, dnsPrefix=dns_prefix, agentPoolProfiles=agent_pools, enableRBAC=enable_rbac ) if(private_cluster) { props$apiServerAccessProfile <- list(enablePrivateCluster=private_cluster) props$networkProfile <- list(loadBalancerSku="standard") } if(!is.null(sp_profile)) props$servicePrincipalProfile <- sp_profile if(login_user != "" && login_passkey != "") props$linuxProfile <- list( adminUsername=login_user, ssh=list(publicKeys=list(list(Keydata=login_passkey))) ) props <- utils::modifyList(props, properties) for(i in 1:20) { res <- tryCatch(AzureContainers::aks$new(self$token, self$subscription, self$name, type="Microsoft.ContainerService/managedClusters", name=name, location=location, properties=props, identity=identity, ..., wait=wait), error=function(e) e) if(!(inherits(res, "error") && grepl("Service principal|ServicePrincipal", res$message))) break Sys.sleep(5) } if(inherits(res, "error")) { class(res) <- c("simpleError", "error", "condition") stop(res) } res }) az_resource_group$set("public", "get_aks", overwrite=TRUE, function(name) { AzureContainers::aks$new(self$token, self$subscription, self$name, type="Microsoft.ContainerService/managedClusters", name=name) }) az_resource_group$set("public", "delete_aks", overwrite=TRUE, function(name, confirm=TRUE, wait=FALSE) { self$get_aks(name)$delete(confirm=confirm, wait=wait) }) az_resource_group$set("public", "list_aks", overwrite=TRUE, function() { provider <- "Microsoft.ContainerService" path <- "managedClusters" api_version <- az_subscription$ new(self$token, self$subscription)$ get_provider_api_version(provider, path) op <- file.path("resourceGroups", self$name, "providers", provider, path) cont <- call_azure_rm(self$token, self$subscription, op, api_version=api_version) lst <- lapply(cont$value, function(parms) AzureContainers::aks$new(self$token, self$subscription, deployed_properties=parms)) while(!is_empty(cont$nextLink)) { cont <- call_azure_url(self$token, cont$nextLink) lst <- lapply(cont$value, function(parms) AzureContainers::aks$new(self$token, self$subscription, deployed_properties=parms)) } named_list(lst) }) az_resource_group$set("public", "list_kubernetes_versions", overwrite=TRUE, function() { az_subscription$ new(self$token, self$subscription)$ list_kubernetes_versions(self$location) }) az_subscription$set("public", "list_aks", overwrite=TRUE, function() { provider <- "Microsoft.ContainerService" path <- "managedClusters" api_version <- self$get_provider_api_version(provider, path) op <- file.path("providers", provider, path) cont <- call_azure_rm(self$token, self$id, op, api_version=api_version) lst <- lapply(cont$value, function(parms) AzureContainers::aks$new(self$token, self$id, deployed_properties=parms)) while(!is_empty(cont$nextLink)) { cont <- call_azure_url(self$token, cont$nextLink) lst <- lapply(cont$value, function(parms) AzureContainers::aks$new(self$token, self$id, deployed_properties=parms)) } named_list(lst) }) az_subscription$set("public", "list_kubernetes_versions", overwrite=TRUE, function(location) { api_version <- self$get_provider_api_version("Microsoft.ContainerService", "locations/orchestrators") op <- file.path("providers/Microsoft.ContainerService/locations", location, "orchestrators") res <- call_azure_rm(self$token, self$id, op, options=list(`resource-type`="managedClusters"), api_version=api_version) sapply(res$properties$orchestrators, `[[`, "orchestratorVersion") }) } find_app_creds <- function(credlist, name, location, token) { creds <- if(is.null(credlist)) { gr <- graph_login(token$tenant) message("Creating cluster service principal") appname <- paste("RAKSapp", name, location, sep="-") app <- gr$create_app(appname) message("Waiting for Resource Manager to sync with Graph") list(app$properties$appId, app$password) } else if(inherits(credlist, "az_app")) list(credlist$properties$appId, credlist$password) else if(length(credlist) == 2) list(credlist[[1]], credlist[[2]]) if(is_empty(creds) || length(creds) < 2 || is_empty(creds[[2]])) stop("Invalid service principal credentials: must supply app ID and password") creds }
forecast_with_cpi <- function(model, h) { pr <- forecast(model, h) dframe <- data.frame( "Predicted_ts_value" = as.numeric(pr$mean), "cpi_80_lower" = as.numeric(pr$lower[, 1]), "cpi_80_upper" = as.numeric(pr$upper[, 1]), "cpi_95_lower" = as.numeric(pr$lower[, 2]), "cpi_95_upper" = as.numeric(pr$upper[, 2]) ) return(dframe) } expect_equal_df <- function(z_pred, r_pred) { z_pred <- z_pred[c( "Predicted_ts_value", "cpi_80_lower", "cpi_80_upper", "cpi_95_lower", "cpi_95_upper" )] expect_equal_nn(z_pred, r_pred) } expect_equal_df_2 <- function(z_pred_out, r_pred) { z_pred_out <- z_pred_out[NROW(z_pred_out), ] z_pred_out <- z_pred_out[names(r_pred)] z_pred_transf <- data.frame(matrix(NA, nrow = NCOL(z_pred_out[[1]]), ncol = NCOL(r_pred) ), stringsAsFactors = TRUE ) colnames(z_pred_transf) <- names(r_pred) for (x in names(r_pred)) { z_pred_transf[x] <- as.numeric(t(z_pred_out[[x]])) } expect_equal_nn(z_pred_transf, r_pred) } expect_equal_df_3 <- function(z_pred_out, r_pred) { z_pred_out <- z_pred_out[names(r_pred)] z_order <- order(as.numeric(names(z_pred_out$Predicted_ts_value))) z_pred_transf <- data.frame(matrix(NA, nrow = NCOL(z_pred_out[[1]]), ncol = NCOL(r_pred) ), stringsAsFactors = TRUE ) colnames(z_pred_transf) <- names(r_pred) for (x in names(r_pred)) { z_row <- z_pred_out[[x]] z_row <- z_row[, z_order] z_pred_transf[x] <- as.numeric(t(z_row)) } expect_equal_nn(z_pred_transf, r_pred) } expect_equal_nn <- function(...) { expect_equal(..., check.names = FALSE) } expect_equal_sorted <- function(z_pred_val, r_pred) { z_order <- order(as.numeric(names(z_pred_val))) z_pred_val <- z_pred_val[z_order] expect_equal_nn(as.numeric(z_pred_val), r_pred) } single_col_h_df <- function(h) { dframe <- data.frame("h" = c(1:h), stringsAsFactors = TRUE) return(dframe) } h_20 <- single_col_h_df(20) h_20_one_line <- data.frame("h" = c(20)) test_that("TimeSeriesModel/forecast PMML output matches R for non-seasonal and ts_type='arima'", { skip_on_cran() skip_on_ci() skip_if_not_installed("zementisr") skip_if_not_installed("forecast") library(zementisr) library(forecast) fit <- auto.arima(sunspots) p_fit <- pmml(fit, model_name = "arima_auto_01", ts_type = "arima") r_pred <- forecast_with_cpi(fit, 20) up_stat <- upload_model(p_fit) z_pred <- predict_pmml_batch(h_20, up_stat$model_name) delete_model(up_stat$model_name) expect_equal_df_2(z_pred$outputs, r_pred) fit <- Arima(AirPassengers, order = c(2, 1, 2)) p_fit <- pmml(fit, model_name = "arima_212", ts_type = "arima") r_pred <- forecast_with_cpi(fit, 20) up_stat <- upload_model(p_fit) z_pred <- predict_pmml_batch(h_20, up_stat$model_name) delete_model(up_stat$model_name) expect_equal_df_2(z_pred$outputs, r_pred) fit <- Arima(AirPassengers, order = c(1, 1, 1)) p_fit <- pmml(fit, model_name = "arima_111", ts_type = "arima") r_pred <- forecast_with_cpi(fit, 20) up_stat <- upload_model(p_fit) z_pred <- predict_pmml_batch(h_20, up_stat$model_name) delete_model(up_stat$model_name) expect_equal_df_2(z_pred$outputs, r_pred) fit <- Arima(WWWusage, order = c(2, 0, 2)) p_fit <- pmml(fit, model_name = "arima_202", ts_type = "arima") r_pred <- forecast_with_cpi(fit, 20) up_stat <- upload_model(p_fit) z_pred <- predict_pmml_batch(h_20, up_stat$model_name) delete_model(up_stat$model_name) expect_equal_df_2(z_pred$outputs, r_pred) fit <- Arima(USAccDeaths, order = c(1, 2, 0)) p_fit <- pmml(fit, model_name = "arima_120", ts_type = "arima", model_version = "arima_120_v1" ) r_pred <- forecast_with_cpi(fit, 20) up_stat <- upload_model(p_fit) z_pred <- predict_pmml_batch(h_20, up_stat$model_name) delete_model(up_stat$model_name) expect_equal_df_2(z_pred$outputs, r_pred) fit <- Arima(AirPassengers, order = c(2, 2, 2)) p_fit <- pmml(fit, model_name = "arima_222", ts_type = "arima", model_version = NULL ) r_pred <- forecast_with_cpi(fit, 20) up_stat <- upload_model(p_fit) z_pred <- predict_pmml_batch(h_20, up_stat$model_name) delete_model(up_stat$model_name) expect_failure(expect_equal_df_2(z_pred$outputs, r_pred)) fit <- Arima(USAccDeaths, order = c(1, 2, 3)) p_fit <- pmml(fit, model_name = "arima_123", ts_type = "arima") r_pred <- forecast_with_cpi(fit, 20) up_stat <- upload_model(p_fit) z_pred <- predict_pmml_batch(h_20, up_stat$model_name) delete_model(up_stat$model_name) expect_failure(expect_equal_df_2(z_pred$outputs, r_pred)) }) test_that("TimeSeriesModel/forecast PMML output matches R for seasonal,ts_type='arima'", { skip_on_cran() skip_on_ci() skip_if_not_installed("zementisr") skip_if_not_installed("forecast") library(zementisr) library(forecast) fit <- auto.arima(JohnsonJohnson) p_fit <- pmml(fit, model_name = "arima_auto_02", ts_type = "arima") r_pred <- as.numeric(forecast(fit, h = 20)$mean) up_stat <- upload_model(p_fit) z_pred <- predict_pmml_batch(h_20_one_line, up_stat$model_name) delete_model(up_stat$model_name) expect_equal_sorted(z_pred$outputs$Predicted_ts_value, r_pred) fit <- Arima(JohnsonJohnson, order = c(1, 1, 0), seasonal = c(0, 1, 1)) p_fit <- pmml(fit, model_name = "arima_110011", ts_type = "arima") r_pred <- as.numeric(forecast(fit, h = 20)$mean) up_stat <- upload_model(p_fit) z_pred <- predict_pmml_batch(h_20_one_line, up_stat$model_name) delete_model(up_stat$model_name) expect_equal_sorted(z_pred$outputs$Predicted_ts_value, r_pred) fit <- Arima(JohnsonJohnson, order = c(0, 1, 0), seasonal = c(0, 1, 0)) p_fit <- pmml(fit, model_name = "arima_010010", ts_type = "arima") r_pred <- as.numeric(forecast(fit, h = 20)$mean) up_stat <- upload_model(p_fit) z_pred <- predict_pmml_batch(h_20_one_line, up_stat$model_name) delete_model(up_stat$model_name) expect_equal_sorted(z_pred$outputs$Predicted_ts_value, r_pred) fit <- Arima(JohnsonJohnson, order = c(0, 1, 0), seasonal = c(0, 1, 2)) p_fit <- pmml(fit, model_name = "arima_010012", ts_type = "arima") r_pred <- as.numeric(forecast(fit, h = 20)$mean) up_stat <- upload_model(p_fit) z_pred <- predict_pmml_batch(h_20_one_line, up_stat$model_name) delete_model(up_stat$model_name) expect_equal_sorted(z_pred$outputs$Predicted_ts_value, r_pred) fit <- Arima(AirPassengers, order = c(0, 1, 1), seasonal = c(0, 1, 1)) p_fit <- pmml(fit, model_name = "arima_011011", ts_type = "arima") r_pred <- as.numeric(forecast(fit, h = 20)$mean) up_stat <- upload_model(p_fit) z_pred <- predict_pmml_batch(h_20_one_line, up_stat$model_name) delete_model(up_stat$model_name) expect_equal_sorted(z_pred$outputs$Predicted_ts_value, r_pred) fit <- Arima(JohnsonJohnson, order = c(1, 1, 1), seasonal = c(1, 1, 1)) p_fit <- pmml(fit, model_name = "arima_111111", ts_type = "arima") r_pred <- as.numeric(forecast(fit, h = 20)$mean) up_stat <- upload_model(p_fit) z_pred <- predict_pmml_batch(h_20_one_line, up_stat$model_name) delete_model(up_stat$model_name) expect_equal_sorted(z_pred$outputs$Predicted_ts_value, r_pred) fit <- Arima(JohnsonJohnson, order = c(0, 0, 1), seasonal = c(0, 1, 0)) p_fit <- pmml(fit, model_name = "arima_001010", ts_type = "arima") r_pred <- as.numeric(forecast(fit, h = 20)$mean) up_stat <- upload_model(p_fit) z_pred <- predict_pmml_batch(h_20_one_line, up_stat$model_name) delete_model(up_stat$model_name) expect_equal_sorted(z_pred$outputs$Predicted_ts_value, r_pred) fit <- Arima(sunspots, order = c(1, 0, 0), seasonal = c(1, 0, 0)) p_fit <- pmml(fit, model_name = "arima_100100", ts_type = "arima") r_pred <- as.numeric(forecast(fit, h = 20)$mean) up_stat <- upload_model(p_fit) z_pred <- predict_pmml_batch(h_20_one_line, up_stat$model_name) delete_model(up_stat$model_name) expect_equal_sorted(z_pred$outputs$Predicted_ts_value, r_pred) fit <- Arima(JohnsonJohnson, order = c(1, 1, 0), seasonal = c(0, 0, 1)) p_fit <- pmml(fit, model_name = "arima_110001", ts_type = "arima") r_pred <- as.numeric(forecast(fit, h = 20)$mean) up_stat <- upload_model(p_fit) z_pred <- predict_pmml_batch(h_20_one_line, up_stat$model_name) delete_model(up_stat$model_name) expect_failure(expect_equal_sorted(z_pred$outputs$Predicted_ts_value, r_pred)) }) test_that("TimeSeriesModel/forecast PMML output matches R for statespace representation", { skip_on_cran() skip_on_ci() skip_if_not_installed("zementisr") skip_if_not_installed("forecast") library(zementisr) library(forecast) fit <- auto.arima(JohnsonJohnson) p_fit <- pmml(fit, model_name = "arima_auto_02_ss", ts_type = "statespace") r_pred <- forecast_with_cpi(fit, 20) up_stat <- upload_model(p_fit) z_pred <- predict_pmml_batch(h_20_one_line, up_stat$model_name) delete_model(up_stat$model_name) expect_equal_df_3(z_pred$outputs, r_pred) fit <- Arima(AirPassengers, order = c(2, 1, 2)) p_fit <- pmml(fit, model_name = "arima_212_ss", ts_type = "statespace") r_pred <- forecast_with_cpi(fit, 20) up_stat <- upload_model(p_fit) z_pred <- predict_pmml_batch(h_20_one_line, up_stat$model_name) delete_model(up_stat$model_name) expect_equal_df_3(z_pred$outputs, r_pred) fit <- Arima(WWWusage, order = c(2, 0, 2)) p_fit <- pmml(fit, model_name = "arima_202_ss", ts_type = "statespace") r_pred <- forecast_with_cpi(fit, 20) up_stat <- upload_model(p_fit) z_pred <- predict_pmml_batch(h_20_one_line, up_stat$model_name) delete_model(up_stat$model_name) expect_equal_df_3(z_pred$outputs, r_pred) fit <- Arima(AirPassengers, order = c(2, 2, 2)) p_fit <- pmml(fit, model_name = "arima_222_ss", ts_type = "statespace", model_version = "arima_222_ss_0001" ) r_pred <- forecast_with_cpi(fit, 20) up_stat <- upload_model(p_fit) z_pred <- predict_pmml_batch(h_20_one_line, up_stat$model_name) delete_model(up_stat$model_name) expect_equal_df_3(z_pred$outputs, r_pred) fit <- Arima(USAccDeaths, order = c(1, 2, 3)) p_fit <- pmml(fit, model_name = "arima_123_ss", ts_type = "statespace") r_pred <- forecast_with_cpi(fit, 20) up_stat <- upload_model(p_fit) z_pred <- predict_pmml_batch(h_20_one_line, up_stat$model_name) delete_model(up_stat$model_name) expect_equal_df_3(z_pred$outputs, r_pred) fit <- Arima(JohnsonJohnson, order = c(1, 1, 0), seasonal = c(0, 1, 1)) p_fit <- pmml(fit, model_name = "arima_110011_ss", ts_type = "statespace") r_pred <- forecast_with_cpi(fit, 20) up_stat <- upload_model(p_fit) z_pred <- predict_pmml_batch(h_20_one_line, up_stat$model_name) delete_model(up_stat$model_name) expect_equal_df_3(z_pred$outputs, r_pred) fit <- Arima(AirPassengers, order = c(0, 1, 1), seasonal = c(0, 1, 1)) p_fit <- pmml(fit, model_name = "arima_011011_ss", ts_type = "statespace") r_pred <- forecast_with_cpi(fit, 20) up_stat <- upload_model(p_fit) z_pred <- predict_pmml_batch(h_20_one_line, up_stat$model_name) delete_model(up_stat$model_name) expect_equal_df_3(z_pred$outputs, r_pred) fit <- Arima(JohnsonJohnson, order = c(1, 1, 1), seasonal = c(1, 1, 1)) p_fit <- pmml(fit, model_name = "arima_111111_ss", ts_type = "statespace") r_pred <- forecast_with_cpi(fit, 20) up_stat <- upload_model(p_fit) z_pred <- predict_pmml_batch(h_20_one_line, up_stat$model_name) delete_model(up_stat$model_name) expect_equal_df_3(z_pred$outputs, r_pred) fit <- Arima(JohnsonJohnson, order = c(0, 0, 1), seasonal = c(0, 1, 0)) p_fit <- pmml(fit, model_name = "arima_001010_ss", ts_type = "statespace") r_pred <- forecast_with_cpi(fit, 20) up_stat <- upload_model(p_fit) z_pred <- predict_pmml_batch(h_20_one_line, up_stat$model_name) delete_model(up_stat$model_name) expect_equal_df_3(z_pred$outputs, r_pred) fit <- Arima(sunspots, order = c(1, 0, 0), seasonal = c(1, 0, 0)) p_fit <- pmml(fit, model_name = "arima_100100_ss", ts_type = "statespace") r_pred <- forecast_with_cpi(fit, 20) up_stat <- upload_model(p_fit) z_pred <- predict_pmml_batch(h_20_one_line, up_stat$model_name) delete_model(up_stat$model_name) expect_equal_df_3(z_pred$outputs, r_pred) fit <- Arima(JohnsonJohnson, order = c(1, 1, 0), seasonal = c(0, 0, 1)) p_fit <- pmml(fit, model_name = "arima_110001_ss", ts_type = "statespace") r_pred <- forecast_with_cpi(fit, 20) up_stat <- upload_model(p_fit) z_pred <- predict_pmml_batch(h_20_one_line, up_stat$model_name) delete_model(up_stat$model_name) expect_equal_df_3(z_pred$outputs, r_pred) fit <- Arima(JohnsonJohnson, order = c(1, 1, 0), seasonal = c(0, 0, 1)) p_fit <- pmml(fit, model_name = "arima_110001_ss", ts_type = "statespace") r_pred <- forecast_with_cpi(fit, 20) up_stat <- upload_model(p_fit) z_pred <- predict_pmml_batch(h_20_one_line, up_stat$model_name) delete_model(up_stat$model_name) expect_equal_df_3(z_pred$outputs, r_pred) fit <- Arima(JohnsonJohnson, order = c(4, 1, 4), seasonal = c(1, 1, 1)) p_fit <- pmml(fit, model_name = "arima_414111_ss", ts_type = "statespace") r_pred <- forecast_with_cpi(fit, 20) up_stat <- upload_model(p_fit) z_pred <- predict_pmml_batch(h_20_one_line, up_stat$model_name) delete_model(up_stat$model_name) expect_equal_df_3(z_pred$outputs, r_pred) fit <- Arima(USAccDeaths, order = c(2, 1, 1), seasonal = c(2, 1, 4)) p_fit <- pmml(fit, model_name = "arima_211214_ss", ts_type = "statespace") r_pred <- forecast_with_cpi(fit, 20) up_stat <- upload_model(p_fit) z_pred <- predict_pmml_batch(h_20_one_line, up_stat$model_name) delete_model(up_stat$model_name) expect_equal_df_3(z_pred$outputs, r_pred) fit <- Arima(USAccDeaths, order = c(2, 2, 3), seasonal = c(0, 1, 1)) p_fit <- pmml(fit, model_name = "arima_223011_ss", ts_type = "statespace") r_pred <- forecast_with_cpi(fit, 20) up_stat <- upload_model(p_fit) z_pred <- predict_pmml_batch(h_20_one_line, up_stat$model_name) delete_model(up_stat$model_name) expect_equal_df_3(z_pred$outputs, r_pred) fit <- Arima(USAccDeaths, order = c(2, 0, 0), seasonal = c(2, 0, 0)) p_fit <- pmml(fit, model_name = "arima_200200_ss", ts_type = "statespace") r_pred <- forecast_with_cpi(fit, 20) up_stat <- upload_model(p_fit) z_pred <- predict_pmml_batch(h_20_one_line, up_stat$model_name) delete_model(up_stat$model_name) expect_equal_df_3(z_pred$outputs, r_pred) fit <- Arima(WWWusage, order = c(3, 0, 3), seasonal = c(3, 0, 3)) p_fit <- pmml(fit, model_name = "arima_303303_ss", ts_type = "statespace") r_pred <- forecast_with_cpi(fit, 20) up_stat <- upload_model(p_fit) z_pred <- predict_pmml_batch(h_20_one_line, up_stat$model_name) delete_model(up_stat$model_name) expect_equal_df_3(z_pred$outputs, r_pred) fit <- Arima(JohnsonJohnson, order = c(0, 0, 4), seasonal = c(0, 2, 4)) p_fit <- pmml(fit, model_name = "arima_004024_ss", ts_type = "statespace") r_pred <- forecast_with_cpi(fit, 20) up_stat <- upload_model(p_fit) z_pred <- predict_pmml_batch(h_20_one_line, up_stat$model_name) delete_model(up_stat$model_name) expect_equal_df_3(z_pred$outputs, r_pred) fit <- Arima(JohnsonJohnson, order = c(0, 0, 0), seasonal = c(0, 2, 4)) p_fit <- pmml(fit, model_name = "arima_000024_ss", ts_type = "statespace") r_pred <- forecast_with_cpi(fit, 20) up_stat <- upload_model(p_fit) z_pred <- predict_pmml_batch(h_20_one_line, up_stat$model_name) delete_model(up_stat$model_name) expect_equal_df_3(z_pred$outputs, r_pred) })
NULL .gwindow.guiWidgetsToolkittcltk <- function(toolkit, title, visible=visible, name, width, height, parent, handler, action, ...) { GWindow$new(toolkit, title, visible=visible, name, width, height, parent, handler, action, ...) } GWindow <- setRefClass("GWindow", contains="GContainer", fields=list( frame="ANY", menubar_area="ANY", toolbar_area="ANY", infobar_area="ANY", content_area="ANY", statusbar_area="ANY", statusbar_widget="ANY", modal_flag="ANY" ), methods=list( initialize=function(toolkit=NULL, title="", visible=TRUE, name=NULL, width=NULL, height=NULL, parent=NULL, handler, action, ...) { tclServiceMode(FALSE) block <<- tktoplevel() set_value(title) tkwm.state(block,"withdrawn") frame <<- ttkframe(block) if(is.null(width)) width <- 400L if(is.null(height)) height <- as.integer(0.7 * width) if(!is.null(parent)) { set_location(parent) if(is(parent, "GWindow")) { add_handler_destroy(parent, function(h,...) { dispose_window() }) } } initFields(toolkit=toolkit, menubar_area=ttkframe(block), toolbar_area=ttkframe(block), infobar_area=ttkframe(block), content_area=ttkframe(block, padding=ifelse(is_aqua(), c(0, 6, 14, 4), c(0,6, 0, 4)) ), statusbar_area=ttkframe(block), modal_flag=tclVar(FALSE) ) widget <<- content_area tkconfigure(statusbar_area, borderwidth = 1, relief="sunken") layout_widget() tkbind(block, "<Unmap>", function() tkgrab.release(block)) add_handler_changed(handler, action) set_size(c(width, height)) tclServiceMode(TRUE) set_visible(visible) callSuper(...) }, layout_widget = function() { tkgrid(toolbar_area, row=0, column = 0, sticky = "nswe") tkgrid(menubar_area, row=1, column = 0, sticky = "nswe") tkgrid(infobar_area, row=2, column = 0, sticky = "nswe") tkgrid(content_area, row=3, column = 0, sticky = "nswe") tkgrid(statusbar_area, row=4, column = 0, sticky = "we") tkgrid.columnconfigure(block, 0, weight = 1) tkgrid.rowconfigure(block, 3, weight = 1) tkgrid.propagate(content_area, FALSE) }, is_ttkwidget=function() { FALSE }, set_location=function(location) { "Locate window based on other. If location is a widget, make transient. Else location can be (x,y) pair of pixel counts" if(is(location, "GComponent")) location <- location$get_widget() if(is(location, "tkwin")) { pos <- sapply(c("rootx", "rooty"), function(i) { as.numeric(tkwinfo(i, location)) }) tkwm.geometry(block, sprintf("+%s+%s", pos[1] + 30, pos[2] + 30)) tkwm.transient(block, location) tkbind(location, "<Destroy>",function(...) tkdestroy(block)) tkbind(location, "<Unmap>",function(...) tkdestroy(block)) } else if(is.numeric(location)) { pos <- rep(location, 2) tkwm.geometry(block, sprintf("+%s+%s", pos[1] + 30, pos[2] + 30)) } }, set_modal=function(value) { "Set or release modal" if(value) { tkwm.protocol(block, "WM_DELETE_WINDOW", function() { tkgrab.release(block) dispose_window() }) tkwait.window(block) } else { tkgrab.release(block) } }, get_value = function(...) tclvalue(tktitle(block)), set_value = function(value, ...) { tktitle(block) <<- paste(value, collapse=" ") }, set_focus = function(value) { if(value) tkraise(block) }, set_visible=function(value) { tkwm.state(block, ifelse(value, "normal", "withdrawn")) }, set_size = function(value) { tkwm.minsize(block, value[1], value[2]) }, update_widget=function(...) { tkwm.geometry(block, "") invisible() }, set_icon=function(stock) { icon <- getStockIconByName(stock) if(icon != "") tcl("wm", "iconphoto", block, default=icon) }, add_child=function(child, ...) { if(missing(child) || is.null(child)) return() if(is(child, "GMenuBar")) { add_menubar(child) } else if(is(child, "GToolBar")) { add_toolbar(child) } else if(is(child, "GStatusBar")) { add_statusbar(child) } else { sapply(as.character(tkwinfo("children", content_area)), tkpack.forget) children <<- list() if(is(child, "GComponent")) { tkpack(child$block, expand=TRUE, fill="both") child_bookkeeping(child) } else { tkpack(child, expand=TRUE, fill="both") } update_widget() } }, remove_child=function(child) { if(is(child, "GComponent")) { child$set_parent(NULL) tkpack.forget(child$block) } else { tkpack.forget(child) } }, dispose_window = function() { "close window" tcl("after", 5, function() { tkdestroy(block) }) }, add_menubar=function(child, ...) { XXX("") }, add_toolbar=function(child, ...) { XXX("") }, set_infobar=function(msg, ...) { .Tcl("ttk::style configure InfoBar.TLabel -background red") infobar <- ttkframe(infobar_area, padding=c(0,0,0,0)) label <- ttklabel(infobar, text=paste(msg, collapse=" "), style="InfoBar.TLabel") tkpack(label, side="left", expand=TRUE, fill="x") tkpack(infobar, expand=TRUE, fill="x", side="left") remove_infobar <- function() { tkpack.forget(infobar) tkconfigure(infobar_area, height=1) } tkbind(label, "<Motion>", remove_infobar) timer <- GTimer$new(ms=4*1000, FUN=function(...) { remove_infobar() }, one.shot=TRUE, toolkit=NULL, start=TRUE) }, add_handler_changed=function(handler, action=NULL, ...) { add_handler_destroy(handler, action, ...) }, add_handler_destroy=function(handler, action=NULL, ...) { "window manager delete event" add_handler("<Destroy>", handler, action=action, ...) }, add_handler_unrealize=function(handler, action, ...) { "Intercept window manager delete event" h <- list(obj=.self, action=action) tkwm.protocol(block, "WM_DELETE_WINDOW", function(...) { val <- handler(h,...) if(is.null(val) || (is.logical(val) && !val) ) tkdestroy(block) }) } ))
setClass(Class = "TreeType", slots = c("replace" = "logical", "randomSplit" = "numeric", "ERT" = "logical", "uniformSplit" = "logical", "splitRule" = "character", "tieMethod" = "character")) .treeType <- function(ERT, nSamples, uniformSplit, replace, splitRule, tieMethod, randomSplit, criticalValue) { ERT <- .VerifyERT(ERT = ERT) randomSplit <- .VerifyRandomSplit(randomSplit = randomSplit) uniformSplit <- .VerifyUniformSplit(uniformSplit = uniformSplit, ERT = ERT) replace <- .VerifyReplace(replace = replace, ERT = ERT) splitRule <- .VerifySplitRule(splitRule = splitRule, criticalValue = criticalValue) tieMethod <- .VerifyTieMethod(tieMethod = tieMethod) return( new(Class = "TreeType", "replace" = replace, "randomSplit" = randomSplit, "ERT" = ERT, "uniformSplit" = uniformSplit, "splitRule" = splitRule, "tieMethod" = tieMethod) ) }
dBeta_ab <-function(x, shape1=2, shape2=3, a = 0, b=1, params = list(shape1, shape2, a, b),...){ if(!missing(params)){ shape1 <- params$shape1 shape2 <- params$shape2 a <- params$a b <- params$b } out <- (x>=a & x<=b) * dbeta((x-a)/(b-a),shape1,shape2)/(b-a) return(out) } pBeta_ab <- function(q, shape1=2, shape2=3, a = 0, b=1, params = list(shape1=2, shape2 = 5, a = 0, b = 1),...){ if(!missing(params)){ shape1 <- params$shape1 shape2 <- params$shape2 a <- params$a b <- params$b } out <- pbeta((q-a)/(b-a),shape1,shape2) return(out) } qBeta_ab <- function(p, shape1=2, shape2=3, a = 0, b=1, params = list(shape1=2, shape2 = 5, a = 0, b = 1),...){ if(!missing(params)){ shape1 <- params$shape1 shape2 <- params$shape2 a <- params$a b <- params$b } out <- (b-a)*qbeta(p,shape1,shape2) + a return(out) } rBeta_ab <- function(n, shape1=2, shape2=3, a = 0, b = 1, params = list(shape1, shape2, a, b),...){ if(!missing(params)){ shape1 <- params$shape1 shape2 <- params$shape2 a <- params$a b <- params$b } X <- rbeta(n,shape1,shape2) out <- (b-a)*X + a return(out) } eBeta_ab <- function(X,w, method ="numerical.MLE",...){ n <- length(X) if(missing(w)){ w <- rep(1,n) } else { w <- n*w/sum(w) } { if(method != "numerical.MLE") warning(paste("method ", method, " is not avaliable, use numerial.MLE instead.")) method = "numerical.MLE" d <- max(X)-min(X) est.par <- wmle(X=X, w=w, distname = "Beta_ab", initial=list(shape1=3,shape2=3,a=min(X)-0.1*d,b=max(X)+0.1*d), lower=list(shape1=1,shape2=1,a=-Inf,b=max(X)), upper=list(shape1=Inf,shape2=Inf,a=min(X),b=Inf)) est.par.se <- try(sqrt(diag(solve(attributes(est.par)$nll.hessian))),silent=TRUE) if(class(est.par.se) == "try-error") { est.par.se <- rep(NA, length(est.par)) } } attributes(est.par)$ob <- X attributes(est.par)$weights <- w attributes(est.par)$distname <- "Beta_ab" attributes(est.par)$method <- method attributes(est.par)$par.name <- c("shape1","shape2","a","b") attributes(est.par)$par.type <- c("shape","shape","boundary","boundary") attributes(est.par)$par.vals <- c(est.par$shape1, est.par$shape2, est.par$a, est.par$b) attributes(est.par)$par.s.e <- est.par.se class(est.par) <- "eDist" return(est.par) } lBeta_ab <- function(X, w, shape1=2, shape2 =3, a = 0, b = 1, params = list(shape1, shape2, a, b), logL = TRUE,...){ if(!missing(params)){ shape1 <- params$shape1 shape2 <- params$shape2 a <- params$a b <- params$b } n <- length(X) if(missing(w)){ w <- rep(1,n) } else { w <- n*w/sum(w) } ll <- sum(w*log(dBeta_ab(x=X,params = params))) l <- exp(ll) if(logL) {return(ll)} else{return(l)} } sBeta_ab <- function(X, w, shape1=2, shape2 =3, a = 0, b = 1, params = list(shape1, shape2, a, b),...){ if(!missing(params)){ shape1 <- params$shape1 shape2 <- params$shape2 a <- params$a b <- params$b } n <- length(X) if(missing(w)){ w <- rep(1,n) } else { w <- n*w/sum(w) } score1 <- sum(w*(digamma(shape1+shape2)-digamma(shape1)+log(X-a)-log(b-a))) score2 <- sum(w*(digamma(shape1+shape2)-digamma(shape2)+log(b-X)-log(b-a))) score3 <- sum(w*((shape1+shape2-1)/(b-a)-(shape1-1)/(X-a))) score4 <- sum(w*((shape2-1)/(b-X)-(shape1+shape2-1)/(b-a))) score <- c(score1,score2,score3,score4) names(score) <- c("shape1","shape2","a","b") return(score) }
DownloadPrimeCode <- function(project, primeFileId, filepath) { projectId <- ValidateProject(project) routeString <- UrlJoin("projects", projectId, "primeFiles", primeFileId, "download") response <- DataRobotGET(routeString, as = "file", filename = filepath) invisible(NULL) }
qmand <- function (p, N, s, v, lower.tail = TRUE, log.p = FALSE) { if (length(N) > 1) stop("vectorization of N is not implemented") if (N < 1 |!is.wholenumber(N)) return(rep(NaN, length(p))) if (log.p) p <- exp(p) if(!lower.tail) p <- 1 - p p[p==1] <- 1+1e-12 Y <- 1:N X <- pmand(Y, N=N, s=s, v=v) approx(x=X, y=Y, xout=p, method="constant", rule=2)$y }
benchmark(sf = read_sf(f), v = {d <- vapour_read_attributes(f) d$geometry <- st_as_sfc(vapour_read_geometry(f), crs = vapour:::vapour_projection_info_cpp(f)) st_as_sf(as_tibble(d))}, replications = 200) benchmark(sf = read_sf(f)[1:10, ], v = {d <- vapour_read_attributes(f, limit_n = 10) d$geometry <- st_as_sfc(vapour_read_geometry(f, limit_n = 10), crs = vapour:::vapour_projection_info_cpp(f)) st_as_sf(as_tibble(d))}, replications = 200)
library(RMSNumpress) data = c(100, 101, 102, 103) data_long = c(100.0, 200.0, 300.00005, 400.00010, 450.00010, 455.00010, 700.00010) data_slof = c(100.0, 200.0, 300.00005, 400.00010) fp_slof = 10000 linear_result = (as.raw(as.hexmode(c("40", "f8", "6a", "00", "00", "00", "00", "00", "80", "96", "98", "00", "20", "1d", "9a", "00", "88")))) test_that("encodeLinear encodes doubles in data", { expect_equal( encodeLinear(data, 100000.0), linear_result ) expect_equal( length(encodeLinear(data, 100000.0)), 17) expect_equal( encodeLinear(data, 100000.0)[1], as.raw(as.hexmode("40"))) expect_equal( length(encodeLinear(data_long, 5.0)), 22) expect_equal( length(encodeLinear(data_long, 500.0)), 25) expect_equal( length(encodeLinear(data_long, 5e4)), 29) expect_equal( length(encodeLinear(data_long, 5e5)), 30) expect_equal( length(encodeLinear(data_long, 5e6)), 31) result = encodeLinear(data_long, 500.0) decoded = decodeLinear(result) expect_equal(decoded[1], 100, tolerance=3) expect_equal(decoded[2], 200, tolerance=3) expect_equal(decoded[3], 300, tolerance=3) expect_equal(decoded[4], 400.00010, tolerance=3) expect_equal(decoded[5], 450.00010, tolerance=3) expect_equal(decoded[6], 455.00010, tolerance=3) expect_equal(decoded[7], 700.00010, tolerance=3) }) test_that("decodeLinear decode data encoded with encodeLinear", { expect_equal( decodeLinear(as.raw(linear_result)), data ) expect_equal( length(decodeLinear(as.raw(linear_result))), 4 ) expect_equal( decodeLinear(as.raw(linear_result))[1], 100 ) }) test_that("encodePic encodes ion counts", { encode = encodePic(data) expect_equal( length(encode), 6 ) result = decodePic(encode) expect_equal( length(result), 4 ) expect_equal( result[1], 100 ) expect_equal( result, data ) }) test_that("encodeSlof encodes ion counts", { encode = encodeSlof(data_slof, fp_slof) expect_equal( length(encode), 16 ) result = decodeSlof(encode) expect_equal( length(result), 4 ) expect_true( abs(result[1] - 100) < 1) expect_true( abs(result[2] - 200) < 1) expect_true( abs(result[3] - 300) < 1) expect_true( abs(result[4] - 400) < 1) }) test_that("Compute the maximal linear fixed point that prevents integer overflow", { pt = optimalLinearFixedPoint(data) expect_equal(pt, 21262214.0) }) test_that("Compute the maximal slof fixed point that prevents integer overflow", { pt = optimalSlofFixedPoint(data) expect_equal(pt, 14110.0) }) test_that("optimal linear fixed point with a desired m/z accuracy", { pt = optimalLinearFixedPointMass(data, 0.001) expect_equal(pt, 500.0) pt = optimalLinearFixedPointMass(data, 1e-10) expect_equal(pt, -1) })
lambda.interp=function(lambda,s){ if(length(lambda)==1){ nums=length(s) left=rep(1,nums) right=left sfrac=rep(1,nums) } else{ s[s > max(lambda)] = max(lambda) s[s < min(lambda)] = min(lambda) k=length(lambda) sfrac <- (lambda[1]-s)/(lambda[1] - lambda[k]) lambda <- (lambda[1] - lambda)/(lambda[1] - lambda[k]) coord <- approx(lambda, seq(lambda), sfrac)$y left <- floor(coord) right <- ceiling(coord) sfrac=(sfrac-lambda[right])/(lambda[left] - lambda[right]) sfrac[left==right]=1 sfrac[abs(lambda[left]-lambda[right])<.Machine$double.eps]=1 } list(left=left,right=right,frac=sfrac) }
context("Fuzzy") test_fuzzy_add_mf <- function(fuzzy) { fuzzy$add_mf(NewMfTriangular(0, 1, 2)) expect_equal(fuzzy$mf_size(), 1) fuzzy$add_mf(NewMfTrapezoidalInf(0, 1)) expect_equal(fuzzy$mf_size(), 2) fuzzy$add_mf(NewMfTrapezoidalSup(0, 1)) expect_equal(fuzzy$mf_size(), 3) fuzzy$add_mf(NewMfTrapezoidal(0, 1, 2, 3)) expect_equal(fuzzy$mf_size(), 4) } test_that("Fuzzy add mf", { test_fuzzy_add_mf(NewFisIn(0, 0, 3)) test_fuzzy_add_mf(NewFisOutFuzzy(0, 0, 3)) }) test_fuzzy_get_mf <- function(fuzzy) { mf1 <- NewMfTriangular(0, 1, 2) mf2 <- NewMfTrapezoidalInf(0, 1) mf3 <- NewMfTrapezoidalSup(0, 1) mf4 <- NewMfTrapezoidal(0, 1, 2, 3) fuzzy$add_mf(mf1) fuzzy$add_mf(mf2) fuzzy$add_mf(mf3) fuzzy$add_mf(mf4) expect_equal(fuzzy$get_mf(1), mf1) expect_equal(fuzzy$get_mf(2), mf2) expect_equal(fuzzy$get_mf(3), mf3) expect_equal(fuzzy$get_mf(4), mf4) expect_error(fuzzy$get_mf(5)) mfs <- fuzzy$get_mfs() expect_equal(length(mfs), 4) expect_equal(mfs[[1]], mf1) expect_equal(mfs[[2]], mf2) expect_equal(mfs[[3]], mf3) expect_equal(mfs[[4]], mf4) expect_equal(fuzzy$get_mf(1)$label, "") mf1 <- fuzzy$get_mf(1) mf1$label <- "foo" expect_equal(fuzzy$get_mf(1)$label, "foo") } test_that("FisIn get mf", { test_fuzzy_get_mf(NewFisIn(0, 0, 3)) test_fuzzy_get_mf(NewFisOutFuzzy(0, 0, 3)) }) test_fuzzy_standardized_partition <- function(fuzzy) { fuzzy$add_mf(NewMfTrapezoidalInf(0, 1)) fuzzy$add_mf(NewMfTrapezoidal(0, 1, 2, 3)) fuzzy$add_mf(NewMfTriangular(2, 3, 4)) fuzzy$add_mf(NewMfTrapezoidalSup(3, 4)) expect_true(fuzzy$is_standardized()) } test_that("Fuzzy standardized fuzzy partition", { test_fuzzy_standardized_partition(NewFisIn(0, 0, 4)) test_fuzzy_standardized_partition(NewFisOutFuzzy(0, 0, 4)) }) test_fuzzy_not_standardized_partition <- function(fuzzy) { fuzzy$add_mf(NewMfTrapezoidalInf(0, 1)) fuzzy$add_mf(NewMfTrapezoidalSup(1, 2)) expect_false(fuzzy$is_standardized()) } test_that("FisIn not standardized fuzzy partition", { test_fuzzy_not_standardized_partition(NewFisIn(0, 0, 2)) test_fuzzy_not_standardized_partition(NewFisOutFuzzy(0, 0, 2)) }) test_fuzzy_unordered_partition <- function(fuzzy) { fuzzy$add_mf(NewMfTrapezoidalInf(0, 1)) fuzzy$add_mf(NewMfTrapezoidalSup(1, 2)) fuzzy$add_mf(NewMfTriangular(0, 1, 2)) expect_false(fuzzy$is_standardized()) } test_that("FisIn unordered fuzzy partition", { test_fuzzy_unordered_partition(NewFisIn(0, 0, 2)) test_fuzzy_unordered_partition(NewFisOutFuzzy(0, 0, 2)) })
get_platform_info = function() .Platform
update_news_impl <- function(messages) { news <- collect_news(messages) if (fledge_chatty()) { cli_h2("Updating NEWS") cli_alert("Adding new entries to {.file {news_path()}}.") } add_to_news(news) } collect_news <- function(messages) { if (fledge_chatty()) { cli_alert("Scraping {.field {length(messages)}} commit messages.") } messages_lf <- gsub("\r\n", "\n", messages) messages_nonempty <- messages_lf[messages_lf != ""] messages_before_triple_dash <- map_chr(strsplit(messages_nonempty, "\n---", fixed = TRUE), 1) message_lines <- strsplit(messages_before_triple_dash, "\n", fixed = TRUE) message_bullets <- map(message_lines, keep, ~ grepl("^[*-]", .)) message_items <- unlist(message_bullets) if (length(message_items) == 0) { if (length(range) <= 1) { message_items <- "- Same as previous version." } else { message_items <- "- Internal changes only." } } if (fledge_chatty()) { cli_alert_success("Found {.field {length(message_items)}} NEWS-worthy entries.") } paste0(paste(message_items, collapse = "\n"), "\n\n") } news_path <- function() { "NEWS.md" } news_comment <- function() { "<!-- NEWS.md is maintained by https://cynkra.github.io/fledge, do not edit -->" } add_to_news <- function(news) { if (!file.exists(news_path())) { file.create(news_path()) } enc::transform_lines_enc(news_path(), make_prepend(news)) invisible(news_path()) } make_prepend <- function(news) { force(news) function(x) { if (length(x) > 0) { if (x[[1]] == news_comment()) { x <- x[-1] if (x[[1]] == "") { x <- x[-1] } } } c(news_comment(), "", news, x) } } edit_news <- function() { local_options(usethis.quiet = TRUE) edit_file(news_path()) } edit_cran_comments <- function() { local_options(usethis.quiet = TRUE) edit_file("cran-comments.md") }
modify_aprobs <- function(probs, new_probs) { x_attr <- attributes(probs) x_class <- class(probs) attrs <- names(x_attr) attrs <- attrs[!(attrs %in% c("class", "names", "dim", "dimnames", "alleles", "alleleprobs"))] new_probs <- list(new_probs) names(new_probs) <- names(probs)[1] for(obj in attrs) { attr(new_probs, obj) <- x_attr[[obj]] } attr(new_probs, "alleles") <- dimnames(new_probs[[1]])[[2]] attr(new_probs, "alleleprobs") <- TRUE class(new_probs) <- c("calc_genoprob", "list") new_probs }
library(rmarkdown) options(continue=" ") options(width=60) library(knitr) library(geoknife) query <- geoknife::query `values<-` <- geoknife::`values<-` id <- geoknife::id library(geoknife) stencil <- simplegeom(c(-89, 46.23)) stencil <- simplegeom(data.frame( 'point1' = c(-89, 46), 'point2' = c(-88.6, 45.2))) load(system.file('extdata', 'HUC8_stencil.RData', package = 'geoknife')) stencil load(system.file('extdata', 'HUC8_query.RData', package = 'geoknife')) head(HUCs) fabric <- webdata('prism') fabric times(fabric) <- c('2002-01-01','2010-01-01') variables(fabric) <- c('tmx') fabric load(system.file('extdata', 'prism_job.RData', package = 'geoknife')) plot(data[,1:2], ylab = variables(fabric)) stencil <- simplegeom(c(-89, 45.43)) stencil <- simplegeom(data.frame( 'point1' = c(-89, 46), 'point2' = c(-88.6, 45.2))) library(sp) Sr1 = Polygon(cbind(c(2,4,4,1,2),c(2,3,5,4,2))) Sr2 = Polygon(cbind(c(5,4,2,5),c(2,3,2,2))) Sr3 = Polygon(cbind(c(4,4,5,10,4),c(5,3,2,5,5))) Sr4 = Polygon(cbind(c(5,6,6,5,5),c(4,4,3,3,4)), hole = TRUE) Srs1 = Polygons(list(Sr1), "s1") Srs2 = Polygons(list(Sr2), "s2") Srs3 = Polygons(list(Sr3, Sr4), "s3/4") stencil <- simplegeom(Srl = list(Srs1,Srs2,Srs3), proj4string = CRS("+proj=longlat +datum=WGS84")) stencil <- webgeom() stencil fabric <- webdata() fabric times(fabric) url(fabric) <- 'https://cida.usgs.gov/thredds/dodsC/prism' variables(fabric) <- 'tmx' times(fabric)[1] <- as.POSIXct('1990-01-01') load(system.file('extdata', 'webdata_query.RData', package = 'geoknife')) length(webdatasets) webdatasets[61:65] title(webdatasets[87]) abstract(webdatasets[87]) fabric <- webdata(webdatasets[99]) evapotran <- webdata(webdatasets['Monthly Conterminous U.S. actual evapotranspiration data']) times(fabric) <- c('1990-01-01','2005-01-01') fabric = webdata(url='dods://apdrc.soest.hawaii.edu/dods/public_data/satellite_product/AVHRR/avhrr_mon') times(fabric) <- c('1990-01-01','1999-12-31') load(system.file('extdata', 'sst_result.RData', package = 'geoknife')) head(sst) july.idx <- months(sst$DateTime) == 'July' plot(sst$DateTime[july.idx], sst$caspian.sea[july.idx], type='l', lwd=2, col='dodgerblue', ylab='Sea Surface Temperature (degC)',xlab=NA) variables(fabric) <- NA job <- geojob() job <- cancel(job) id(job) cancel()
endofnight <- list( rm.incompleteperiod <- function(data){ cycs <- which(data$CycleStart == "NREMP" | data$CycleStart == "REMP") if (data$CycleStart[cycs[length(cycs)]] == "REMP"){ REMs <- which(data$Descr3 == "REM") stop <- REMs[length(REMs)]+1 end <- which(data$Descr3 == "NREM") end <- end[end>=stop] if(length(end)>10){ data$CycleStart[stop] <- "stop" data$cycles[stop:nrow(data)] <- NA data$REM.NREM[stop:nrow(data)] <- NA }else{ stop <- cycs[length(cycs)] data$CycleStart[cycs[length(cycs)]] <- "stop" data$cycles[stop:nrow(data)] <- NA data$REM.NREM[stop:nrow(data)] <- NA } }else{ NREMs <- which(data$Descr3 == "NREM") stop <- NREMs[length(NREMs)]+1 end <- which(data$Descr3 == "REM") end <- end[end>=stop] if(length(end)>10){ data$CycleStart[stop] <- "stop" data$cycles[stop:nrow(data)] <- NA data$REM.NREM[stop:nrow(data)] <- NA }else{ stop <- cycs[length(cycs)] data$CycleStart[cycs[length(cycs)]] <- "stop" data$cycles[stop:nrow(data)] <- NA data$REM.NREM[stop:nrow(data)] <- NA } } return(data) }, clean_endofnight <- function(data){ cycs <- which(data$CycleStart == "NREMP" | data$CycleStart == "REMP") if (data$CycleStart[cycs[length(cycs)]] == "REMP"){ REMs <- which(data$Descr3 == "REM") if(tail(REMs, n = 1) == nrow(data)){ stop <- tail(REMs, n = 1) data$CycleStart[stop] <- "stop" }else{ stop <- tail(REMs, n = 1)+1 data$CycleStart[stop] <- "stop" data$cycles[stop:nrow(data)] <- NA data$REM.NREM[stop:nrow(data)] <- NA } }else{ lastNREMP <- tail(which(data$CycleStart == "NREMP"),1) Ws <- which(data$Descr3 == "W") Ws <- Ws[Ws > lastNREMP] if (length(Ws) > 2){ Ws_start <- head(Ws,1) for (kk in 2:(length(Ws))){ if (Ws[kk-1] != Ws[kk]-1){ Ws_start <- c(Ws_start, Ws[kk]) } } Ws_start <- tail(Ws_start,1) }else{ Ws_start <- c() } NREMs <- which(data$Descr3 == "NREM") if (length(Ws_start) > 0){ if(Ws_start < tail(NREMs,1)) Ws_start <- c() } if (length(Ws_start) == 0 & data$Descr3[nrow(data)] == "W") Ws_start <- nrow(data) if (length(Ws_start) > 0){ data$CycleStart[data$CycleStart == "stop"] <- NA stop <- Ws_start data$CycleStart[stop] <- "stop" } cycs <- which(data$CycleStart == "NREMP" | data$CycleStart == "REMP") if (data$CycleStart[cycs[length(cycs)]] == "REMP"){ REMs <- which(data$Descr3 == "REM") if(tail(REMs, n = 1) == nrow(data)){ data$CycleStart[data$CycleStart == "stop"] <- NA stop <- tail(REMs, n = 1) data$CycleStart[stop] <- "stop" }else{ data$CycleStart[data$CycleStart == "stop"] <- NA stop <- tail(REMs, n = 1)+1 data$CycleStart[stop] <- "stop" data$cycles[stop:nrow(data)] <- NA data$REM.NREM[stop:nrow(data)] <- NA } } check <- which(data$CycleStart == "stop") if (length(check)>0){ if(stop - tail(which(data$CycleStart == "NREMP"),1)>=30){ data$cycles[stop:nrow(data)] <- NA data$REM.NREM[stop:nrow(data)] <- NA }else{ data$CycleStart[tail(which(data$CycleStart == "NREMP"),1)] <- "stop" data$CycleStart[stop] <- NA data$cycles[tail(which(data$CycleStart == "stop"),1):nrow(data)] <- NA data$REM.NREM[tail(which(data$CycleStart == "stop"),1):nrow(data)] <- NA cycs <- which(data$CycleStart == "NREMP" | data$CycleStart == "REMP") if (data$CycleStart[cycs[length(cycs)]] == "REMP"){ REMs <- which(data$Descr3 == "REM") stop <- REMs[length(REMs)]+1 data$CycleStart[stop] <- "stop" data$cycles[stop:nrow(data)] <- NA data$REM.NREM[stop:nrow(data)] <- NA } } } } return(data) } )
dist.calc <- function (lat1, lon1, lat2, lon2, unit = "km") { lat1_r <- lat1*pi/180 lon1_r <- lon1*pi/180 lat2_r <- lat2*pi/180 lon2_r <- lon2*pi/180 distance <- 6378 * (acos(sin(lat1_r) * sin(lat2_r) + cos(lat1_r) * cos(lat2_r) * cos(lon2_r-lon1_r))) if (unit == "m") distance <- distance*1000 if (unit == "mile") distance <- distance/1.60934 return(distance) }
Bsper<-function(data){ Name<-"Bsper" data<-as.matrix(data) n<-nrow(data) p<-ncol(data) R<-cor(data) Chisq<--((n-1)-(2*p+5)/6)*log(det(R)) df<-(p*(p-1))/2 pval<-pchisq(Chisq, df=df,lower.tail = FALSE) results <- list(Chisq=Chisq,df=df,p.value=pval,R=R,Test=Name) class(results)<-c("MVTests","list") return(results) }
PlotPValueHist <- function(out=NULL, method="BH", xl="ANOVA P-values", yl="Number of metabolites", frac.col=NULL, ...) { FillExpressionVector <- function(x) { ev <- vector("expression", length(x)) for(i in 1:length(ev)) { ev[i] <- substitute(expression(10^e), list(e = x[i]))[2] } return(ev) } stopifnot(all(abs(out-0.5)<=0.5, na.rm=T)) opar <- par(no.readonly = TRUE) on.exit(par(opar)) tmp.plots <- 2*ncol(out) tmp.layout <- rbind(cbind(tmp.plots+1, matrix(1:(tmp.plots), nrow=2, byrow=T)), tmp.plots+2) tmp.layout[nrow(tmp.layout), 1] <- 0 layout(mat=tmp.layout, widths=c(0.025, rep(0.975/ncol(out), ncol(out))), heights=c(rep(0.475, 2), 0.05)) par(...) if (is.null(attr(out,"p.adjust.method"))) { out.adj <- apply(out, 2, p.adjust, method) } else { out.adj <- out method <- attr(out,"p.adjust.method") } tmp.seq <- seq(0, 1, .05) tmp.max <- max(apply(out.adj, 2, function(y) { hist(y, breaks=tmp.seq, plot=F)$counts })) if (is.null(frac.col)) { for (i in 1:ncol(out)) { par(mar=c(1.25,3.5,1.75,0)+.25) hist(out.adj[,i], breaks=tmp.seq, ylim=c(0,tmp.max), main=colnames(out)[i], xlab="", ylab="", las=1) } } else { for (i in 1:ncol(out)) { tmp.mat <- cbind(0, sapply(split(out.adj[,i], factor(frac.col)), function(y) { hist(y, breaks=tmp.seq, plot=F)$counts })) par(mar=c(1.25,3.5,1.75,0)+.25) graphics::plot(x=c(0,1), y=c(0,tmp.max), main=colnames(out)[i], xlab="", ylab="", las=1, type="n") for (j in 2:ncol(tmp.mat)) rect(tmp.seq[-length(tmp.seq)], apply(tmp.mat[,1:(j-1),drop=F],1,sum), tmp.seq[-1], apply(tmp.mat[,1:j],1,sum), col=colnames(tmp.mat)[j]) } } out.adj <- log10(out.adj) if (any(is.infinite(out.adj))) out.adj[is.infinite(out.adj)] <- min(out.adj[is.finite(out.adj)]) tmp.seq <- seq(ifelse(floor(min(out.adj, na.rm=T))<=-1, floor(min(out.adj, na.rm=T)), -1), 0) tmp.max <- max(apply(out.adj, 2, function(y) { hist(y, breaks=tmp.seq, plot=F)$counts })) tmp.min <- 0.9 for (i in 1:ncol(out)) { par(mar=c(3,3.5,0.25,0)+.25) a <- hist(out.adj[,i], breaks=tmp.seq, plot=F)$counts filt <- a != 0 graphics::plot(x=range(tmp.seq), y=c(tmp.min, tmp.max), log="y", type="n", axes=F, ann=F) rect(xleft=tmp.seq[-length(tmp.seq)][filt], ybottom=rep(tmp.min, length(tmp.seq)-1)[filt], xright=tmp.seq[-1][filt], ytop=a[filt]) graphics::axis(1, at=axTicks(1)[seq(1,length(axTicks(1)))], tick=F, labels=FillExpressionVector(axTicks(1)[seq(1,length(axTicks(1)))])) graphics::axis(1, at=axTicks(1), labels=FALSE); graphics::axis(2, las=2) } par(mar=rep(0,4)+.1) graphics::plot(0,0,ann=F,axes=F,type="n"); graphics::text(x=0, y=0, labels=paste(yl, " (n=", sum(is.finite(out.adj[,i])), ")", sep=""), srt=90, cex=4/3) graphics::plot(0,0,ann=F,axes=F,type="n"); graphics::text(x=0, y=0, labels=paste(xl, " (", method, ")", sep=""), cex=4/3) invisible(NULL) }
test_that("classif_plsdaCaret_binary", { skip("until klaR pkg was updated") requirePackagesOrSkip("caret", default.method = "load") parset.list = list( list(), list(ncomp = 4), list(probMethod = "Bayes"), list(method = "oscorespls") ) old.predicts.list = list() old.probs.list = list() for (i in seq_along(parset.list)) { parset = parset.list[[i]] x = binaryclass.train y = x[, binaryclass.class.col] x[, binaryclass.class.col] = NULL pars = list(x = x, y = y) pars = c(pars, parset) m = do.call(caret::plsda, pars) newx = binaryclass.test newx[, binaryclass.class.col] = NULL p = predict(m, newdata = newx, type = "class") p2 = predict(m, newdata = newx, type = "prob")[, 1, 1] old.predicts.list[[i]] = p old.probs.list[[i]] = p2 } testSimpleParsets("classif.plsdaCaret", binaryclass.df, binaryclass.target, binaryclass.train.inds, old.predicts.list, parset.list) testProbParsets("classif.plsdaCaret", binaryclass.df, binaryclass.target, binaryclass.train.inds, old.probs.list, parset.list) }) test_that("classif_plsdaCaret_multiclass", { requirePackagesOrSkip("caret", default.method = "load") parset.list = list( list(), list(ncomp = 4), list(probMethod = "Bayes"), list(method = "oscorespls") ) old.predicts.list = list() old.probs.list = list() for (i in seq_along(parset.list)) { parset = parset.list[[i]] pars = list(x = multiclass.train[, names(multiclass.train) %nin% multiclass.target], y = multiclass.train[, multiclass.target]) pars = c(pars, parset) m = do.call(caret::plsda, pars) newx = multiclass.test newx[, multiclass.class.col] = NULL p = predict(m, newdata = newx, type = "class") p2 = predict(m, newdata = newx, type = "prob")[, , 1] old.predicts.list[[i]] = p old.probs.list[[i]] = p2 } testSimpleParsets("classif.plsdaCaret", multiclass.df, multiclass.target, multiclass.train.inds, old.predicts.list, parset.list) testProbParsets("classif.plsdaCaret", multiclass.df, multiclass.target, multiclass.train.inds, old.probs.list, parset.list) })
Tgrid=function(ne, ssigma_eps, llambda_eps, m){ grid = array(0, dim = ne) ssigma_y = sqrt(ssigma_eps^2/(1-llambda_eps^2)) estep = 2*ssigma_y*m / (ne-1) for(ii in 1:1:ne){ grid[ii] = -m*sqrt((ssigma_eps^2)/(1-llambda_eps^2)) + (ii-1)*estep } return(grid) } Rtauchen=function(ne, ssigma_eps, llambda_eps, m){ grid = Tgrid(ne, ssigma_eps, llambda_eps, m) if(ne > 1){ w = grid[2] - grid[1] P = array(0, dim = c(ne,ne)) for(jj in 1:ne){ for(kk in 1:ne){ if(kk == 1){ P[jj,kk] = pnorm((grid[kk] - llambda_eps*grid[jj]+(w/2))/ssigma_eps) } else if(kk == ne){ P[jj,kk] = 1- pnorm((grid[kk] - llambda_eps*grid[jj]-(w/2))/ssigma_eps) } else{ P[jj,kk] = pnorm((grid[kk] - llambda_eps*grid[jj]+(w/2))/ssigma_eps)-pnorm((grid[kk] - llambda_eps*grid[jj]-(w/2))/ssigma_eps) } } } } else{ P = 1 } return(P) }
setClass("Triangle", slots=c( triID="character", type="character", startDate="Date", frequency="character", sim="numeric", percentile="numeric", iRBNER="logical", iROPEN="logical", upper="matrix", upperkeep="matrix", rectangle="matrix" ), prototype=list( triID="XXXXXX", type="reportedCount", startDate=as.Date("2012-01-01"), frequency="yearly", sim=1, percentile=50, iRBNER=TRUE, iROPEN=TRUE, upper=matrix(), upperkeep=matrix(), rectangle=matrix() ) ) setGeneric("setUpperTriangle", function(object,data,...) standardGeneric("setUpperTriangle")) setMethod("setUpperTriangle",signature("Triangle","data.frame"), function(object,data,evaluationDate=as.Date("2016-12-31"),lob="Total",ctype="Total") { tryCatch({ if (lob != "Total") {data <- data[data[,"LoB"]==lob,]} if (ctype != "Total") {data <- data[data[,"Type"]==ctype,]} startYear <- as.numeric(substr(as.character(object@startDate),1,4)) endYear <- as.numeric(substr(as.character(evaluationDate),1,4)) startMonth <- as.numeric(substr(as.character(object@startDate),6,7)) endMonth <- as.numeric(substr(as.character(evaluationDate),6,7)) startQuarter <- ceiling(startMonth/3) endQuarter <- ceiling(endMonth/3) if (object@frequency=="yearly") { ncols <- endYear - startYear + 1 rowname <- c(startYear:endYear) colname <- paste0("M",seq(12,(12*ncols),12)) } else { ncols <- (endYear - startYear)*4 + endQuarter - startQuarter + 1 rowname <- vector() for (i in c(startYear:endYear)){ if (i==startYear){ for (j in c(startQuarter:4)){ rowname <- c(rowname,paste0(j,"Q",i)) } } else if (i == endYear){ for (j in c(1:endQuarter)){ rowname <- c(rowname,paste0(j,"Q",i)) } } else { for (j in c(1:4)){ rowname <- c(rowname,paste0(j,"Q",i)) } } } colname <- paste0("M",seq(3,(3*ncols),3)) } rec <- matrix(0,ncols,ncols,dimnames = list(rowname,colname)) if ("Sim" %in% colnames(data)) { sim <- data$Sim[1] data <- data[data[,"Sim"]==sim,] } data <- data[,colnames(data) %in% c("occurrenceDate","reportDate","settlementDate","incurredLoss","Paid")] accidentYears <- as.numeric(substr(as.character(data$occurrenceDate),1,4)) accidentMonths <- as.numeric(substr(as.character(data$occurrenceDate),6,7)) accidentQuarters <- ceiling(accidentMonths/3) if (object@frequency=="yearly") { data$rowno <- (accidentYears - startYear) + 1 } else { data$rowno <- (accidentYears - startYear) * 4 + (accidentQuarters - startQuarter) + 1 } if (object@type == "reportedCount"){ reportYears <- as.numeric(substr(as.character(data$reportDate),1,4)) reportMonths <- as.numeric(substr(as.character(data$reportDate),6,7)) reportQuarters <- ceiling(reportMonths/3) if (object@frequency=="yearly") { data$colno <- (reportYears - accidentYears) + 1 } else { data$colno <- (reportYears - accidentYears) * 4 + (reportQuarters - accidentQuarters) + 1 } } else if (object@type == "closedCount"){ settleYears <- as.numeric(substr(as.character(data$settlementDate),1,4)) settleYears <- ifelse(is.na(settleYears), endYear+1, settleYears) settleMonths <- as.numeric(substr(as.character(data$settlementDate),6,7)) settleMonths <- ifelse(is.na(settleMonths), endMonth, settleMonths) settleQuarters <- ceiling(settleMonths/3) if (object@frequency=="yearly") { data$colno <- (settleYears - accidentYears) + 1 } else { data$colno <- (settleYears - accidentYears) * 4 + (settleQuarters - accidentQuarters) + 1 } }else { settleYears <- as.numeric(substr(as.character(data$settlementDate),1,4)) settleYears <- ifelse(is.na(settleYears), endYear, settleYears) settleMonths <- as.numeric(substr(as.character(data$settlementDate),6,7)) settleMonths <- ifelse(is.na(settleMonths), endMonth, settleMonths) settleQuarters <- ceiling(settleMonths/3) if (object@frequency=="yearly") { data$colno <- (settleYears - accidentYears) + 1 } else { data$colno <- (settleYears - accidentYears) * 4 + (settleQuarters - accidentQuarters) + 1 } } if (object@type == "reportedCount" | object@type == "closedCount") { agg<-aggregate(occurrenceDate ~ rowno + colno, data = data, length) } else if (object@type == "incurredLoss") { agg<-aggregate(incurredLoss ~ rowno + colno, data = data, sum) } else { agg<-aggregate(Paid ~ rowno + colno, data = data, sum) } for (i in c(1:length(rowname))){ rowsum <- 0 for (j in c(1:(ncols-i+1))){ tmp <- agg[agg$rowno == i & agg$colno == j,][1,3] if (!is.na(tmp)) { rowsum <- rowsum + tmp } rec[i,j] <- rowsum } } object@upper <- rec gc() object }, error = function(err){ message(paste0(">>>Critical Error: ", err)) gc() return(-1) }) }) setGeneric("setUpperKeep", function(object,data,...) standardGeneric("setUpperKeep")) setMethod("setUpperKeep",signature("Triangle","data.frame"), function(object,data,evaluationDate=as.Date("2016-12-31"),lob="Total",ctype="Total") { tryCatch({ if (lob != "Total") {data <- data[data[,"LoB"]==lob,]} if (ctype != "Total") {data <- data[data[,"Type"]==ctype,]} startYear <- as.numeric(substr(as.character(object@startDate),1,4)) endYear <- as.numeric(substr(as.character(evaluationDate),1,4)) startMonth <- as.numeric(substr(as.character(object@startDate),6,7)) endMonth <- as.numeric(substr(as.character(evaluationDate),6,7)) startQuarter <- ceiling(startMonth/3) endQuarter <- ceiling(endMonth/3) if (object@frequency=="yearly") { ncols <- endYear - startYear + 1 rowname <- c(startYear:endYear) colname <- paste0("M",seq(12,(12*ncols),12)) } else { ncols <- (endYear - startYear)*4 + endQuarter - startQuarter + 1 rowname <- vector() for (i in c(startYear:endYear)){ if (i==startYear){ for (j in c(startQuarter:4)){ rowname <- c(rowname,paste0(j,"Q",i)) } } else if (i == endYear){ for (j in c(1:endQuarter)){ rowname <- c(rowname,paste0(j,"Q",i)) } } else { for (j in c(1:4)){ rowname <- c(rowname,paste0(j,"Q",i)) } } } colname <- paste0("M",seq(3,(3*ncols),3)) } rec <- matrix(0,ncols,ncols,dimnames = list(rowname,colname)) if ("Sim" %in% colnames(data)) { sim <- data$Sim[1] data <- data[data[,"Sim"]==sim,] } data <- data[,colnames(data) %in% c("occurrenceDate","reportDate","settlementDate","incurredLoss","Paid")] accidentYears <- as.numeric(substr(as.character(data$occurrenceDate),1,4)) accidentMonths <- as.numeric(substr(as.character(data$occurrenceDate),6,7)) accidentQuarters <- ceiling(accidentMonths/3) if (object@frequency=="yearly") { data$rowno <- (accidentYears - startYear) + 1 } else { data$rowno <- (accidentYears - startYear) * 4 + (accidentQuarters - startQuarter) + 1 } if (object@type == "reportedCount"){ reportYears <- as.numeric(substr(as.character(data$reportDate),1,4)) reportMonths <- as.numeric(substr(as.character(data$reportDate),6,7)) reportQuarters <- ceiling(reportMonths/3) if (object@frequency=="yearly") { data$colno <- (reportYears - accidentYears) + 1 } else { data$colno <- (reportYears - accidentYears) * 4 + (reportQuarters - accidentQuarters) + 1 } } else if (object@type == "closedCount"){ settleYears <- as.numeric(substr(as.character(data$settlementDate),1,4)) settleYears <- ifelse(is.na(settleYears), endYear+1, settleYears) settleMonths <- as.numeric(substr(as.character(data$settlementDate),6,7)) settleMonths <- ifelse(is.na(settleMonths), endMonth, settleMonths) settleQuarters <- ceiling(settleMonths/3) if (object@frequency=="yearly") { data$colno <- (settleYears - accidentYears) + 1 } else { data$colno <- (settleYears - accidentYears) * 4 + (settleQuarters - accidentQuarters) + 1 } } else { settleYears <- as.numeric(substr(as.character(data$settlementDate),1,4)) settleYears <- ifelse(is.na(settleYears), endYear, settleYears) settleMonths <- as.numeric(substr(as.character(data$settlementDate),6,7)) settleMonths <- ifelse(is.na(settleMonths), endMonth, settleMonths) settleQuarters <- ceiling(settleMonths/3) if (object@frequency=="yearly") { data$colno <- (settleYears - accidentYears) + 1 } else { data$colno <- (settleYears - accidentYears) * 4 + (settleQuarters - accidentQuarters) + 1 } } if (object@type == "reportedCount" | object@type == "closedCount") { agg<-aggregate(occurrenceDate ~ rowno + colno, data = data, length) } else if(object@type == "incurredLoss"){ agg<-aggregate(incurredLoss ~ rowno + colno, data = data, sum) } else { agg<-aggregate(Paid ~ rowno + colno, data = data, sum) } for (i in c(1:length(rowname))){ rowsum <- 0 for (j in c(1:(ncols-i+1))){ tmp <- agg[agg$rowno == i & agg$colno == j,][1,3] if (!is.na(tmp)) { rowsum <- rowsum + tmp } rec[i,j] <- rowsum } } object@upperkeep <- rec gc() object }, error = function(err){ message(paste0(">>>Critical Error: ", err)) gc() return(-1) }) }) setGeneric("setRectangle", function(object,data,...) standardGeneric("setRectangle")) setMethod("setRectangle",signature("Triangle","data.frame"), function(object,data,evaluationDate=as.Date("2016-12-31"),futureDate=as.Date("2017-12-31"),lob="Total",ctype="Total") { tryCatch({ if (lob != "Total") {data <- data[data[,"LoB"]==lob,]} if (ctype != "Total") {data <- data[data[,"Type"]==ctype,]} if (!is.nan(object@sim) & object@sim > 0) { data <- data[data[,"Sim"]==object@sim,] } else { ultAgg <- aggregate(ultimateLoss ~ Sim, data = data, sum) ultAgg <- ultAgg[order(ultAgg[,2]),] nsim <- nrow(ultAgg) lsim <- max(1,floor(nsim*object@percentile/100)) usim <- max(1,ceiling(nsim*object@percentile/100)) lambda <- usim - nsim*object@percentile/100 lsim <- ultAgg[lsim,1] usim <- ultAgg[usim,1] } if (nrow(data)<=0){ stop("No data available for rectangle construction.") } else { settleYears <- as.numeric(substr(as.character(data$settlementDate),1,4)) resettleYears <- as.numeric(substr(as.character(data$resettleDate),1,4)) settleMonths <- as.numeric(substr(as.character(data$settlementDate),6,7)) resettleMonths <- as.numeric(substr(as.character(data$resettleDate),6,7)) settleYears <- ifelse(is.na(resettleYears), settleYears, resettleYears) settleMonths <- ifelse(is.na(resettleMonths), settleMonths, resettleMonths) settleQuarters <- ceiling(settleMonths/3) startYear <- as.numeric(substr(as.character(object@startDate),1,4)) endYear <- max(settleYears) evaluationYear <- as.numeric(substr(as.character(evaluationDate),1,4)) futureYear <- as.numeric(substr(as.character(futureDate),1,4)) startMonth <- as.numeric(substr(as.character(object@startDate),6,7)) endMonth <- max(settleMonths) evaluationMonth <- as.numeric(substr(as.character(evaluationDate),6,7)) futureMonth <- as.numeric(substr(as.character(futureDate),6,7)) startQuarter <- ceiling(startMonth/3) endQuarter <- ceiling(endMonth/3) evaluationQuarter <- ceiling(evaluationMonth/3) futureQuarter <- ceiling(futureMonth/3) if (object@frequency=="yearly") { ncols <- endYear - startYear + 1 nevals <- evaluationYear - startYear + 1 nrows <- futureYear - startYear + 1 rowname <- c(startYear:futureYear) colname <- paste0("M",seq(12,(12*ncols),12)) } else { ncols <- (endYear - startYear)*4 + endQuarter - startQuarter + 1 nevals <- (evaluationYear - startYear)*4 + evaluationQuarter - startQuarter + 1 nrows <- (futureYear - startYear)*4 + futureQuarter - startQuarter + 1 rowname <- vector() for (i in c(startYear:futureYear)){ if (i==startYear){ for (j in c(startQuarter:4)){ rowname <- c(rowname,paste0(j,"Q",i)) } } else if (i == futureYear){ for (j in c(1:futureQuarter)){ rowname <- c(rowname,paste0(j,"Q",i)) } } else { for (j in c(1:4)){ rowname <- c(rowname,paste0(j,"Q",i)) } } } colname <- paste0("M",seq(3,(3*ncols),3)) } rec <- matrix(0,nrows,ncols,dimnames = list(rowname,colname)) nsims <- 1 if (!is.nan(object@sim)) { if (object@sim > 0) { data <- data[data[,"Sim"]==object@sim,] nsims <- 1 } else { nsims <- length(unique(data[,"Sim"])) } data <- data[,colnames(data) %in% c("occurrenceDate","reportDate","settlementDate","ultimateLoss","Paid")] accidentYears <- as.numeric(substr(as.character(data$occurrenceDate),1,4)) accidentMonths <- as.numeric(substr(as.character(data$occurrenceDate),6,7)) accidentQuarters <- ceiling(accidentMonths/3) if (object@frequency=="yearly") { data$rowno <- (accidentYears - startYear) + 1 } else { data$rowno <- (accidentYears - startYear) * 4 + (accidentQuarters - startQuarter) + 1 } if (object@type == "reportedCount"){ reportYears <- as.numeric(substr(as.character(data$reportDate),1,4)) reportMonths <- as.numeric(substr(as.character(data$reportDate),6,7)) reportQuarters <- ceiling(reportMonths/3) if (object@frequency=="yearly") { data$colno <- (reportYears - accidentYears) + 1 } else { data$colno <- (reportYears - accidentYears) * 4 + (reportQuarters - accidentQuarters) + 1 } } else { settleYears <- as.numeric(substr(as.character(data$settlementDate),1,4)) settleYears <- ifelse(is.na(settleYears), endYear, settleYears) settleMonths <- as.numeric(substr(as.character(data$settlementDate),6,7)) settleMonths <- ifelse(is.na(settleMonths), endMonth, settleMonths) settleQuarters <- ceiling(settleMonths/3) if (object@frequency=="yearly") { data$colno <- (settleYears - accidentYears) + 1 } else { data$colno <- (settleYears - accidentYears) * 4 + (settleQuarters - accidentQuarters) + 1 } } if (object@type == "reportedCount" | object@type == "closedCount") { agg<-aggregate(occurrenceDate ~ rowno + colno, data = data, length) } else { agg<-aggregate(ultimateLoss ~ rowno + colno, data = data, sum) } for (i in c(1:length(rowname))){ rowsum <- 0 for (j in c(1:length(colname))){ tmp <- agg[agg$rowno == i & agg$colno == j,][1,3] if (!is.na(tmp)) { rowsum <- rowsum + tmp } rec[i,j] <- rowsum } } for (i in c(1:length(rowname))){ for (j in c(1:length(colname))){ rec[i,j] <- rec[i,j]/nsims } } if(any(is.na(object@upperkeep))==FALSE){ for (i in c(1:length(rowname))){ if(i <= nrow(object@upperkeep)){ addtmp <- object@upperkeep[i,ncol(object@upperkeep)-i+1]-rec[i,ncol(object@upperkeep)-i+1] } else { addtmp <- 0 } for (j in c(1:length(colname))){ rec[i,j] <- rec[i,j] + addtmp } } } } else { data <- data[data[,"Sim"]==lsim | data[,"Sim"]==usim,] data <- data[,colnames(data) %in% c("occurrenceDate","reportDate","settlementDate","ultimateLoss","Sim")] accidentYears <- as.numeric(substr(as.character(data$occurrenceDate),1,4)) accidentMonths <- as.numeric(substr(as.character(data$occurrenceDate),6,7)) accidentQuarters <- ceiling(accidentMonths/3) if (object@frequency=="yearly") { data$rowno <- (accidentYears - startYear) + 1 } else { data$rowno <- (accidentYears - startYear) * 4 + (accidentQuarters - startQuarter) + 1 } if (object@type == "reportedCount"){ reportYears <- as.numeric(substr(as.character(data$reportDate),1,4)) reportMonths <- as.numeric(substr(as.character(data$reportDate),6,7)) reportQuarters <- ceiling(reportMonths/3) if (object@frequency=="yearly") { data$colno <- (reportYears - accidentYears) + 1 } else { data$colno <- (reportYears - accidentYears) * 4 + (reportQuarters - accidentQuarters) + 1 } } else { settleYears <- as.numeric(substr(as.character(data$settlementDate),1,4)) settleYears <- ifelse(is.na(settleYears), endYear, settleYears) settleMonths <- as.numeric(substr(as.character(data$settlementDate),6,7)) settleMonths <- ifelse(is.na(settleMonths), endMonth, settleMonths) settleQuarters <- ceiling(settleMonths/3) if (object@frequency=="yearly") { data$colno <- (settleYears - accidentYears) + 1 } else { data$colno <- (settleYears - accidentYears) * 4 + (settleQuarters - accidentQuarters) + 1 } } if (object@type == "reportedCount" | object@type == "closedCount") { lagg<-aggregate(occurrenceDate ~ rowno + colno, data = data[data[,"Sim"]==lsim,], length) uagg<-aggregate(occurrenceDate ~ rowno + colno, data = data[data[,"Sim"]==usim,], length) } else { lagg<-aggregate(ultimateLoss ~ rowno + colno, data = data[data[,"Sim"]==lsim,], sum) uagg<-aggregate(ultimateLoss ~ rowno + colno, data = data[data[,"Sim"]==usim,], sum) } for (i in c(1:length(rowname))){ rowsum <- 0 for (j in c(1:length(colname))){ ltmp <- lagg[lagg$rowno == i & lagg$colno == j,][1,3] utmp <- uagg[uagg$rowno == i & uagg$colno == j,][1,3] tmp <- 0 if(!is.na(ltmp)){tmp<-lambda*ltmp} if(!is.na(utmp)){tmp<-tmp+(1-lambda)*utmp} if (!is.na(tmp)) { rowsum <- rowsum + tmp } rec[i,j] <- rowsum } } if(any(is.na(object@upperkeep))==FALSE){ for (i in c(1:length(rowname))){ if(i <= nrow(object@upperkeep)){ addtmp <- object@upperkeep[i,ncol(object@upperkeep)-i+1]-rec[i,ncol(object@upperkeep)-i+1] } else { addtmp <- 0 } for (j in c(1:length(colname))){ rec[i,j] <- rec[i,j] + addtmp } } } } if(any(is.na(object@upperkeep))==FALSE){ for (i in c(1:min(nrows,nrow(object@upper)))){ for (j in c(1:(min(ncol(object@upper),ncols)-i+1))){ rec[i,j] <- object@upper[i,j] } } } object@rectangle <- rec gc() object } }, error = function(err){ message(paste0(">>>Critical Error: ", err)) gc() return(-1) }) }) setMethod("toString",signature("Triangle"), function(object) { return(object@rectangle) })
Option = setRefClass("Option", fields = list(OptionType = 'character', UnderlyingPrice = 'numeric', StrikePrice = 'numeric', del_type = 'character', maturity = 'numeric', exotic_opt_type = 'character' ), methods = list( CalcMaturity =function() { if(del_type=='Cash') return(maturity) } ))
whittermore.pboot<-function(...) { return( whittermore.stat(...) ) }
hsu.t.test <- function(x, ...){ UseMethod("hsu.t.test") } hsu.t.test.default <- function (x, y, alternative = c("two.sided", "less", "greater"), mu = 0, conf.level = 0.95, ...){ alternative <- match.arg(alternative) if (!missing(mu) && (length(mu) != 1 || is.na(mu))) stop("'mu' must be a single number") if (!missing(conf.level) && (length(conf.level) != 1 || !is.finite(conf.level) || conf.level < 0 || conf.level > 1)) stop("'conf.level' must be a single number between 0 and 1") dname <- paste(deparse(substitute(x)), "and", deparse(substitute(y))) yok <- !is.na(y) xok <- !is.na(x) y <- y[yok] x <- x[xok] nx <- length(x) if(nx < 2) stop("not enough 'x' observations") mx <- mean(x) vx <- var(x) ny <- length(y) if(ny < 2) stop("not enough 'y' observations") my <- mean(y) vy <- var(y) estimate <- c(mx, my, sqrt(vx), sqrt(vy)) names(estimate) <- c("mean of x", "mean of y", "SD of x", "SD of y") if(nx < 6 || ny < 6) warning("For Hsu t-test the sample size per group should be > 5.") s <- sqrt(vx + vy) se <- sqrt(vx/nx + vy/ny) df <- min(nx, ny) - 1 if(se < 10 * .Machine$double.eps * max(abs(mx), abs(my))) stop("data are essentially constant") tstat <- (mx - my - mu)/se if(alternative == "less") { pval <- pt(tstat, df) cint <- c(-Inf, tstat + qt(conf.level, df)) } else if(alternative == "greater") { pval <- pt(tstat, df, lower.tail = FALSE) cint <- c(tstat - qt(conf.level, df), Inf) } else{ pval <- 2 * pt(-abs(tstat), df) alpha <- 1 - conf.level cint <- qt(1 - alpha/2, df) cint <- tstat + c(-cint, cint) } cint <- mu + cint * se names(tstat) <- "t" names(df) <- "df" names(mu) <- "difference in means" attr(cint, "conf.level") <- conf.level rval <- list(statistic = tstat, parameter = df, p.value = pval, conf.int = cint, estimate = estimate, null.value = mu, stderr = se, alternative = alternative, method = "Hsu Two Sample t-test", data.name = dname) class(rval) <- "htest" rval } hsu.t.test.formula <- function (formula, data, subset, na.action, ...) { if (missing(formula) || (length(formula) != 3L) || (length(attr(terms(formula[-2L]), "term.labels")) != 1L)) stop("'formula' missing or incorrect") m <- match.call(expand.dots = FALSE) if (is.matrix(eval(m$data, parent.frame()))) m$data <- as.data.frame(data) m[[1L]] <- quote(stats::model.frame) m$... <- NULL mf <- eval(m, parent.frame()) DNAME <- paste(names(mf), collapse = " by ") names(mf) <- NULL response <- attr(attr(mf, "terms"), "response") g <- factor(mf[[-response]]) if (nlevels(g) != 2L) stop("grouping factor must have exactly 2 levels") DATA <- setNames(split(mf[[response]], g), c("x", "y")) y <- do.call("hsu.t.test", c(DATA, list(...))) y$data.name <- DNAME if (length(y$estimate) == 2L) names(y$estimate) <- paste("mean in group", levels(g)) y }
image_comment <- function(image, comment = NULL){ assert_image(image) comment <- as.character(comment) magick_attr_comment(image, comment) } image_info <- function(image){ assert_image(image) df <- magick_image_info(image) df_to_tibble(df) }
asymmetryCurve <- function(x, y = NULL, alpha = seq(0, 1, 0.01), movingmedian = FALSE, name = "X", name_y = "Y", depth_params = list(method = "Projection")) { x <- na.omit(x) if (nrow(x) < NCOL(x) * 10) { stop("Too small sample!") } if (!is.matrix(x)) { stop("X must be a matrix!") } if (!is.null(y) && !is.matrix(y)) { stop("Y must be a matrix!") } uxname_list <- list(u = x, X = x) depth_est <- do.call(depth, c(uxname_list, depth_params)) if (!movingmedian) { x_est <- asCurve(x, depth_est = depth_est, alpha = alpha, name = name, depth_params = depth_params) } else { x_est <- asCurveMM(x, alpha = alpha, name = name, depth_params = depth_params) } asc <- new("AsymmetryCurve", x_est[, 2], depth = depth_est, alpha = x_est[, 1], name = name) if (!is.null(y)) { name <- name_y asc <- combineDepthCurves( asc, asymmetryCurve(y, y = NULL, alpha = alpha, movingmedian = movingmedian, name = name, name_y = "Y", depth_params = list(method = "Projection")) ) } return(asc) } asCurve <- function(X, depth_est = NULL, alpha = NULL, name = "X", depth_params = list(method = "Projection")) { dim_X <- dim(X)[2] if (is.null(depth_est)) { uxname_list <- list(u = X, X = X, name = name) depth_est <- do.call(depth, c(uxname_list, depth_params)) } median <- depthMedian(X, depth_params) if ((length(median) / dim(X)[2]) != 1) { median <- colMeans(median) } k <- length(alpha) vol <- 1:k alpha_est <- 1:k means <- matrix(nrow = k, ncol = dim_X) alpha_border <- ecdf(depth_est)(depth_est) for (i in 1:k) { tmp_X <- X[alpha_border >= alpha[i], ] np <- dim(unique(as.matrix(tmp_X)))[1] if ((np > ((2 * (dim_X + 2)) ^ 2)) && (np > 100)) { vol[i] <- convhulln(tmp_X, options = "FA")$vol alpha_est[i] <- alpha[i] means[i, ] <- colMeans(tmp_X) } else { vol[i] <- NA alpha_est[i] <- NA } } k <- length(vol) kmedian <- matrix(rep(median, k), byrow = TRUE, ncol = dim_X) n <- (means - kmedian) nn <- 2 * sqrt(rowSums(n ^ 2)) / (vol ^ (1 / dim_X)) matrix(c(rev(1 - alpha_est), rev(nn)), ncol = 2) } asCurveMM <- function(X, depth_est = NULL, alpha = NULL, name = "X", depth_params = list(method = "Projection")) { dim_X <- dim(X)[2] if (is.null(depth_est)) { uxname_list <- list(u = X, X = X) depth_est <- do.call(depth, c(uxname_list, depth_params)) } if (is.null(alpha)) { alpha <- seq(0, 1, 0.01) } k <- length(alpha) vol <- 1:k alpha_est <- 1:k means <- matrix(nrow = k, ncol = dim_X) medians <- matrix(nrow = k, ncol = dim_X) alpha_border <- ecdf(depth_est)(depth_est) for (i in 1:k) { tmp_X <- X[alpha_border >= alpha[i], ] np <- dim(as.matrix(tmp_X))[1] if ((np > ((2 * (dim_X + 2)) ^ 2)) && (np > 100)) { vol[i] <- convhulln(tmp_X, options = "FA")$vol alpha_est[i] <- alpha[i] means[i, ] <- colMeans(tmp_X) uxname_list_temp <- list(u = tmp_X, X = tmp_X) tmp_depth_est <- do.call(depth, c(uxname_list_temp, depth_params)) med <- tmp_X[tmp_depth_est == max(tmp_depth_est), ] if ((length(med) / dim(X)[2]) != 1) { med <- colMeans(med) } medians[i, ] <- med } else { vol[i] <- NA alpha_est[i] <- NA } } vol <- vol[!is.na(vol)] alpha_est <- alpha_est[!is.na(alpha_est)] means <- matrix(means[!is.na(means)], ncol = dim_X) medians <- matrix(medians[!is.na(medians)], ncol = dim_X) k <- length(vol) n <- (means - medians) nn <- 2 * sqrt(rowSums(n ^ 2)) / (vol ^ (1 / dim_X)) matrix(c(rev(1 - alpha_est), rev(nn)), ncol = 2) }
auto_annotate <- function(dna_seg, locus_tag_pattern=NULL, names=dna_seg$gene, keep_genes_only=TRUE, ...){ nr <- nrow(dna_seg) if (is.null(names) || length(names) != nr) stop("names should be of the same length as dna_seg") idx <- rep(TRUE, nr) x1 <- middle(dna_seg) x2 <- rep(NA, nr) last_num <- numeric(nr) last_char_idx <- numeric(nr) prefix <- character(nr) for (i in 1:nr){ if (names[i] == "-" || names[i] == ""){ if (keep_genes_only){ idx[i] <- FALSE } else if (!is.null(locus_tag_pattern) && is.character(locus_tag_pattern)) { names[i] <- gsub(paste("^", locus_tag_pattern, "0+(.*)", sep=""), "\\1", dna_seg$name[i], ignore.case=TRUE) } else { names[i] <- dna_seg$name[i] } } else { type <- NA if (length(grep("[A-Z]$", names[i])) > 0){ last_char_idx[i] <- which(LETTERS == gsub(".*(.$)", "\\1", names[i])) prefix[i] <- gsub("^(.*).$", "\\1", names[i]) } else if (length(grep("\\d+$", names[i])) > 0){ ln <- gsub("^\\D*(\\d+$)", "\\1", names[i]) last_num[i] <- if (ln != names[i]) ln else 0 prefix[i] <- gsub("^(\\D+)\\d+$", "\\1", names[i]) } } } last_num <- as.numeric(last_num) series_idx <- numeric(0) series_dir <- 0 series_type <- "" for (i in 1:(nr+1)){ break_me <- FALSE if (i <= nr && nchar(prefix[i]) > 0 && (last_char_idx[i] > 0 || last_num[i] > 0)){ valid <- TRUE curr_type <- if (last_num[i] > 0) "num" else "char" if (length(series_idx) > 0){ if (prefix[i] == prefix[series_idx[1]] && curr_type == series_type){ if (series_dir != 0){ if ((series_type == "num" && last_num[i-1] + series_dir == last_num[i]) || (series_type == "char" && last_char_idx[i-1] + series_dir == last_char_idx[i])){ } else { break_me <- TRUE } } else { dif <- ifelse(series_type == "num", last_num[i] - last_num[i-1], last_char_idx[i] - last_char_idx[i-1]) if (abs(dif) == 1){ series_dir <- dif } else { break_me <- TRUE } } } else { break_me <- TRUE } } else { series_type <- if (last_num[i] > 0) "num" else "char" } } else { break_me <- TRUE valid <- FALSE } if (break_me || i > nr){ if (length(series_idx) > 1){ idx[series_idx[2:length(series_idx)]] <- FALSE x1[series_idx[1]] <- dna_seg$start[series_idx[1]] x2[series_idx[1]] <- dna_seg$end[series_idx[length(series_idx)]] suffices <- if(series_type == "num") { last_num[series_idx] } else { LETTERS[last_char_idx[series_idx]] } names[series_idx[1]] <- paste(prefix[series_idx[1]], suffices[1], "-", suffices[length(suffices)], sep="") } else { } series_dir <- 0 if (valid){ series_idx <- i series_type <- curr_type } else { series_idx <- numeric(0) series_type <- "" } } else { series_idx <- c(series_idx, i) } } annots <- annotation(x1=x1, x2=x2, text=names, ...) annots[idx,] }
head(england) tail(england) library(tidyverse) df <- england %>% filter(Season>2014) table(df$tier, df$Season) year_links <- c("https://www.11v11.com/competitions/premier-league/2020/", "https://www.11v11.com/competitions/league-championship/2020/", "https://www.11v11.com/competitions/league-one/2020/", "https://www.11v11.com/competitions/league-two/2020/") league_data <- lapply(year_links[4], function(link) { league_season <- as.numeric(gsub(".*\\/", "", gsub("\\/$", "", link))) - 1 if(grepl("premier-league", link)) { division <- 1 } if(grepl("championship", link)) { division <- 2 } if(grepl("league-one", link)) { division <- 3 } if(grepl("league-two", link)) { division <- 4 } match_links <- read_html(paste0(link, "matches/")) %>% html_nodes(".score a") %>% html_attr("href") %>% paste0("https://www.11v11.com", .) %>% unlist() %>% unique() data <- lapply(match_links, get_league_match_data, league_season = league_season, division = division) %>% do.call(rbind, .) }) %>% do.call(rbind, .) head(league_data) str(league_data) i <- sapply(league_data, is.factor) league_data[i] <- lapply(league_data[i], as.character) str(league_data) league_data %>% mutate(home = case_when( grepl("Brighton and Hove", home) ~ "Brighton & Hove Albion", grepl("Cheltenham Town", home) ~ "Cheltenham", grepl("Stevenage", home) ~ "Stevenage Borough", grepl("Macclesfield Town", home) ~ "Macclesfield", grepl("Yeovil", home) ~ "Yeovil", TRUE ~ home )) %>% mutate(visitor = case_when( grepl("Brighton and Hove", visitor) ~ "Brighton & Hove Albion", grepl("Cheltenham Town", visitor) ~ "Cheltenham", grepl("Stevenage", visitor) ~ "Stevenage Borough", grepl("Macclesfield Town", visitor) ~ "Macclesfield", grepl("Yeovil", visitor) ~ "Yeovil", TRUE ~ visitor )) -> league_data head(league_data) tail(league_data) str(england) str(tier1) str(tier2) str(tier3) str(tier4) tier1$Date<-as.character(tier1$Date) tier2$Date<-as.character(tier2$Date) tier3$Date<-as.character(tier3$Date) tier4$Date<-as.character(tier4$Date) tiers <- rbind(tier1,tier2,tier3,tier4) england <- rbind(england,tiers) usethis::use_data(england, overwrite = T) write.csv(england,'data-raw/england.csv',row.names=F) devtools::load_all() get_league_match_data <- function(link, league_season, division) { check <<- link read <- read_html(link) date <- read %>% html_nodes("h1") %>% html_text() %>% gsub(".*, ", "", .) %>% as.Date(., "%d %B %Y") season <- league_season division <- division tier <- division home <- read %>% html_nodes(".home .teamname a") %>% html_text() visitor <- read %>% html_nodes(".away .teamname a") %>% html_text() hgoal <- read %>% html_nodes(".home .score") %>% html_text() %>% gsub(" \\(.*", "", .) %>% as.numeric() vgoal <- read %>% html_nodes(".away .score") %>% html_text() %>% gsub(" \\(.*", "", .) %>% as.numeric() FT <- paste0(hgoal, "-", vgoal) if(hgoal == vgoal) { result = "D" } else { if(hgoal > vgoal) { result = "H" } else { result = "A" } } data <- data.frame(Date = date, Season = season, home = home, visitor = visitor, FT = FT, hgoal = hgoal, vgoal = vgoal, division = division, tier = tier, totgoal = hgoal+vgoal, goaldif = hgoal - vgoal, result = result ) }
calc_WodaFuchs2008 <- function( data, breaks = NULL, plot = TRUE, ... ) { if(is(data, "RLum.Results") == FALSE & is(data, "data.frame") == FALSE & is.numeric(data) == FALSE) { warning(paste("[calc_WodaFuchs()] Input data format is neither", "'data.frame', 'RLum.Results' nor 'numeric'.", "No output generated!")) return(NULL) } else { if(is(data, "RLum.Results") == TRUE) { data <- get_RLum(data, "data") } if(length(data) < 2) { data <- cbind(data, rep(x = NA, times = length(data))) } } if("trace" %in% names(list(...))) { trace <- list(...)$trace } else { trace <- FALSE } if(sum(is.na(data[,2]) == nrow(data))) { message("[calc_WodFuchs2008()] No errors provided. Bin width set by 10 percent of input data!") bin_width <- median(data[,1] / 10, na.rm = TRUE) } else { bin_width <- median(data[,2], na.rm = TRUE) } if(is.null(breaks)) { n_breaks <- (max(data[,1], na.rm = TRUE) - min(data[,1], na.rm = TRUE) / bin_width) } else { n_breaks <- breaks } H <- hist(x = data[,1], breaks = n_breaks, plot = FALSE) if(n_breaks <= 3) { warning("[calc_WodaFuchs()] Less than four bins, now set to four!") H <- hist(x = data[,1], breaks = 4, plot = FALSE) } H_c <- H$counts H_m <- H$mids counts_log <- log(H_c) curvature <- (counts_log[1] - counts_log[2]) / (counts_log[1] - counts_log[3]) class_center <- H$mids[H_c == max(H_c)] if(length(class_center) != 1) { warning("[calc_WodaFuchs()] More than one maximum. Fit may be invalid!", call. = FALSE) class_center <- class_center[1] } fit <- nls(H_c ~ (A / sqrt(2 * pi * sigma^2)) * exp(-(H_m - class_center)^2 / (2 * sigma^2)), start = c(A = mean(H_m), sigma = bin_width), control = c(maxiter = 5000), algorithm = "port", trace = trace) A <- coef(fit)["A"] sigma <- coef(fit)["sigma"] D_estimate <- as.numeric(x = class_center - sigma) count_ID <- length(which(H_m <= class_center)) H_m_smaller <- H_m[1:count_ID] s <- round(sqrt(sum((H_m_smaller - D_estimate)^2) / (count_ID - 1)), digits = 2) if(plot) { plot_settings <- list( xlab = expression(paste(D[e], " [s]")), ylab = "Frequency", xlim = range(data[,1], na.rm = TRUE) + c(-10, 20), ylim = NULL, main = expression(paste(D[e]," applying Woda and Fuchs (2008)")), sub = NULL ) plot_settings <- modifyList(x = plot_settings, val = list(...), keep.null = TRUE) plot( x = H, xlab = plot_settings$xlab, ylab = plot_settings$ylab, xlim = plot_settings$xlim, ylim = plot_settings$ylim, main = plot_settings$main, sub = plot_settings$sub ) x <- 0 rm(x) curve((A / sqrt(2 * pi * sigma^2)) * exp(-(x- class_center)^2 / (2 * sigma^2)), add = TRUE, to = class_center, col = "red" ) } return(set_RLum( class = "RLum.Results", data = list( D_estimate = data.frame( DP = D_estimate, DP.ERROR = s, CLASS_CENTER = class_center, BIN_WIDTH = bin_width, SIGMA = sigma, A = A, row.names = NULL ), breaks = H$breaks ), info = list(call = sys.call()) )) }
"who0607"
KernelESBoxKernel <- function(Ra, cl){ PandL <- as.vector(Ra) n <- 1000 delta.cl <- (1 - cl) / n VaR <- double(999) for (i in 1:(n - 1)) { if(i<(n-1)){ VaR[i] <- KernelVaRBoxKernel(PandL, cl + i * delta.cl, FALSE) } else if (i == n-1) { VaR[i] <- KernelVaRBoxKernel(PandL, cl + i * delta.cl, TRUE) } } ES <- mean(VaR) return(ES) }
GiniIndex= function(Data,p){ V= ABCcurve(Data,p) ABCx=V$Curve[,1] ABCy=V$Curve[,2] Gini = Gini4ABC(ABCx,ABCy ) if(missing(p)) p=ABCx return(list(Gini=Gini,p=p,ABC=ABCy,CleanedData=V$CleanedData)) }
context("Population Transformation (function)") test_that("setup function", { simulator <- SimulatorReference$new() transformation_function <- population_transformation(replicates = 4, time_steps = 10, years_per_step = 1, populations = 7, demographic_stochasticity = TRUE, density_stages = c(0, 1, 1), transformation = function(params) 0.33, simulator) expect_is(transformation_function, "function") expect_named(formals(transformation_function), c("r", "tm", "carrying_capacity", "stage_abundance", "occupied_indices")) expect_named(environment(transformation_function)[["params"]], c("replicates", "time_steps", "years_per_step", "populations", "stages", "demographic_stochasticity", "density_stages", "simulator")) expect_equal(environment(transformation_function)[["params"]][c("replicates", "time_steps", "years_per_step", "populations", "stages", "demographic_stochasticity", "density_stages")], list(replicates = 4, time_steps = 10, years_per_step = 1, populations = 7, stages = 3, demographic_stochasticity = TRUE, density_stages = c(0, 1, 1))) transformation_function <- population_transformation(replicates = 4, time_steps = 10, years_per_step = 1, populations = 7, demographic_stochasticity = TRUE, density_stages = c(0, 1, 1), transformation = list(a = 1, function(params) 0.33, b = 2), simulator) expect_is(transformation_function, "function") expect_named(environment(transformation_function)[["params"]], c("replicates", "time_steps", "years_per_step", "populations", "stages", "demographic_stochasticity", "density_stages", "simulator", "a", "b")) expect_equal(environment(transformation_function)[["params"]][c("a", "b")], list(a = 1, b = 2)) }) test_that("user-defined transformation", { simulator <- SimulatorReference$new() test_function_1 <- function(params) { params$simulator$attached$params <- params extra_stage_abundance <- params$stage_abundance extra_stage_abundance[which(params$density_stages > 0), params$occupied_indices] <- extra_stage_abundance[which(params$density_stages > 0), params$occupied_indices] + 1 return(extra_stage_abundance) } transformation_function <- population_transformation(replicates = 4, time_steps = 10, years_per_step = 1, populations = 7, demographic_stochasticity = TRUE, density_stages = c(0, 1, 1), transformation = list(a = 1, test_function_1, b = 2), simulator) carrying_capacity <- rep(10, 7) stage_abundance <- matrix(c(7, 13, 0, 26, 0, 39, 47, 2, 0, 6, 8, 0, 12, 13, 0, 3, 4, 6, 0, 9, 10), nrow = 3, ncol = 7, byrow = TRUE) occupied_indices <- (1:7)[-5] expected_stage_abundance <- stage_abundance expected_stage_abundance[2:3, (1:7)[-5]] <- expected_stage_abundance[2:3, (1:7)[-5]] + 1 expect_equal(transformation_function(r = 2, tm = 6, carrying_capacity, stage_abundance, occupied_indices), list(stage_abundance = expected_stage_abundance)) expect_named(simulator$attached$params, c("replicates", "time_steps", "years_per_step", "populations", "stages", "demographic_stochasticity", "density_stages", "simulator", "a", "b", "r", "tm", "carrying_capacity", "stage_abundance", "occupied_indices")) expect_equal(simulator$attached$params[c("a", "b", "r", "tm", "carrying_capacity", "stage_abundance", "occupied_indices")], list(a = 1, b = 2, r = 2, tm = 6, carrying_capacity = carrying_capacity, stage_abundance = stage_abundance, occupied_indices = occupied_indices)) test_function_2 <- function(params) { extra_stage_abundance <- params$stage_abundance extra_stage_abundance[which(params$density_stages > 0), params$occupied_indices] <- extra_stage_abundance[which(params$density_stages > 0), params$occupied_indices] + 1 return(list(stage_abundance = extra_stage_abundance, carrying_capacity = params$carrying_capacity + 10)) } transformation_function <- population_transformation(replicates = 4, time_steps = 10, years_per_step = 1, populations = 7, demographic_stochasticity = TRUE, density_stages = c(0, 1, 1), transformation = list(a = 1, test_function_2, b = 2), simulator) expect_equal(transformation_function(r = 2, tm = 6, carrying_capacity, stage_abundance, occupied_indices), list(stage_abundance = expected_stage_abundance, carrying_capacity = carrying_capacity + 10)) test_function = function (params) stop("test error") transformation_function <- population_transformation(replicates = 4, time_steps = 10, years_per_step = 1, populations = 7, demographic_stochasticity = TRUE, density_stages = c(0, 1, 1), transformation = list(a = 1, test_function, b = 2), simulator) expect_error(transformation_function(r = 2, tm = 6, carrying_capacity, stage_abundance, occupied_indices), "Error produced within user-defined transformation function") test_function <- function(params) params$stage_abundance transformation_function <- population_transformation(replicates = 4, time_steps = 10, years_per_step = 1, populations = 7, demographic_stochasticity = TRUE, density_stages = c(0, 1, 1), transformation = list(a = 1, test_function, b = 2), simulator, name = "test_transf") stage_abundance[1] <- NA expect_warning(transformation_function(r = 2, tm = 6, carrying_capacity, stage_abundance, occupied_indices), "Non-finite stage abundances returned by user-defined test_transf function") stage_abundance[2] <- -1 expect_warning(transformation_function(r = 2, tm = 6, carrying_capacity, stage_abundance, occupied_indices), "Negative stage abundances returned by user-defined test_transf function") test_function <- function(params) list(stage_abundance = params$stage_abundance, carrying_capacity = params$carrying_capacity) transformation_function <- population_transformation(replicates = 4, time_steps = 10, years_per_step = 1, populations = 7, demographic_stochasticity = TRUE, density_stages = c(0, 1, 1), transformation = list(a = 1, test_function, b = 2), simulator, name = "test_transf") carrying_capacity[1:2] <- c(NA, -10) expect_warning(transformation_function(r = 2, tm = 6, carrying_capacity, stage_abundance, occupied_indices), "Non-finite carrying capacities returned by user-defined test_transf function") expect_warning(transformation_function(r = 2, tm = 6, carrying_capacity, stage_abundance, occupied_indices), "Negative carrying capacities returned by user-defined test_transf function") })
expected <- eval(parse(text="c(0.5, -0.5)")); test(id=0, code={ argv <- eval(parse(text="list(0.5, -0.5)")); do.call(`:`, argv); }, o=expected);
library(otvPlots) context("Run the main function: vlm") drugSASDate <- read.csv("../testthat/drugSASDate.csv") test_that("At most one of sortVars and sortFn is passed in", { expect_error(vlm(dataFl = "../testthat/drugSASDate.csv", dateNm = "date", sortVars = c("age", "residencecity"))) }) test_that("varNms is a subset of sortVars", { expect_error(vlm(dataFl = drugSASDate, dateNm = "date", sortVars = c("age", "residencecity"), varNms = c("age"))) }) test_that("Incorrect file input when prepData is False", { expect_error(vlm(dataFl = "../testthat/drugRDate.csv", dateNm = "date", prepData = FALSE)) }) test_that("selectCols and dropCols together give an error", { expect_error(vlm("../testthat/rawData.csv", dateNm = "date", weightNm = "weight", dateGp = "weeks", dateGpBp = "weeks", dateFt = "%d-%m-%Y", selectCols = c("age", "balance", "date", "weight"), dropCols = c("default"), varNms = c("age"))) expect_error(vlm("../testthat/rawData.rda", dateNm = "date", weightNm = "weight", dateGp = "weeks", dateGpBp = "weeks", dateFt = "%d-%m-%Y", selectCols = c("age", "balance", "date", "weight"), dropCols = c("default"))) })
print.maxlikeFit <- function(x, ...) { converge <- x$optim$converge cat("\nCall:", paste(deparse(x$call)), "\n\n") cat("Coefficients:\n") print(x$Est, ...) cat("\nAIC:", x$AIC, "\n\n") if(converge != 0) warning("Model did not converge") } coef.maxlikeFit <- function(object, ...) object$Est[,"Est"] vcov.maxlikeFit <- function(object, ...) object$vcov summary.maxlikeFit <- function(object, digits=3, ...) { s <- object$Est z <- s[,"Est"] / s[,"SE"] p <- 2*pnorm(abs(z), lower.tail = FALSE) s <- cbind(s, z=z, "P(>|z|)"=p) converge <- object$optim$converge cat("\nCall:", paste(deparse(object$call)), "\n", fill=TRUE) cat("Coefficients:\n") print(s, digits=digits, ...) cat("\noptim convergence code:", converge, "\n") cat("\nAIC:", object$AIC, "\n\n") if(converge != 0) warning("Model did not converge") invisible(s) } logLik.maxlikeFit <- function(object, ...) { -object$optim$value } AIC.maxlikeFit <- function(object, ..., k=2) { 2*object$optim$value + k*length(coef(object)[object$not.fixed]) } predict.maxlikeFit <- function(object, newdata=NULL, ...) { e <- coef(object) if (is.null(newdata) == F) { if ("RasterStack" %in% class(newdata)) { rasters <- newdata cd.names <- names(newdata) npix <- prod(dim(newdata)[1:2]) z <- as.data.frame(matrix(getValues(newdata), npix)) names(z) <- cd.names }else{ z <- newdata } cd.names <- names(z) }else{ rasters <- object$rasters if(is.null(rasters)) { rasters <- try(get(as.character(object$call$rasters))) if(identical(class(rasters)[1], "try-error")) stop("could not find the raster data") warning("raster data were not saved with object, using the data found in the workspace instead.") } cd.names <- names(rasters) npix <- prod(dim(rasters)[1:2]) z <- as.data.frame(matrix(getValues(rasters), npix)) names(z) <- cd.names } formula <- object$call$formula varnames <- all.vars(formula) if(!all(varnames %in% cd.names)) { if (is.null(newdata) == F) { stop("at least 1 covariate in the formula is not in new data") }else{ stop("at least 1 covariate in the formula is not in rasters") } } Z.mf <- model.frame(formula, z, na.action="na.pass") Z.terms <- attr(Z.mf, "terms") Z <- model.matrix(Z.terms, Z.mf) eta <- drop(Z %*% coef(object)) link <- object$link if(identical(link, "logit")) psi.hat <- plogis(eta) else if(identical(link, "cloglog")) psi.hat <- 1-exp(-exp(eta)) else stop("link function should be either 'logit' or 'cloglog'") if (is.null(newdata) == F && ("RasterStack" %in% class(newdata)) == F) { return(psi.hat) }else{ psi.mat <- matrix(psi.hat, dim(rasters)[1], dim(rasters)[2], byrow=TRUE) psi.raster <- raster(psi.mat) extent(psi.raster) <- extent(rasters) return(psi.raster) } }
data_dir <- file.path("..", "testdata") tempfile_nc <- function() { tempfile_helper("selmon_") } file_in <- file.path(data_dir, "ex_normal1.nc") file_out <- tempfile_nc() selmon("SIS", 1, file_in, file_out) file <- nc_open(file_out) test_that("data is correct", { actual <- ncvar_get(file) temp1 <- seq(250, 272) expected_data <- c(temp1, temp1, temp1[1:3]) expected <- array(expected_data, dim = c(7, 7)) expect_equivalent(actual, expected) }) test_that("attributes are correct", { actual <- ncatt_get(file, "lon", "units")$value expect_equal(actual, "degrees_east") actual <- ncatt_get(file, "lon", "long_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "standard_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "axis")$value expect_equal(actual, "X") actual <- ncatt_get(file, "lat", "units")$value expect_equal(actual, "degrees_north") actual <- ncatt_get(file, "lat", "long_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "standard_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "axis")$value expect_equal(actual, "Y") actual <- ncatt_get(file, "time", "units")$value expect_equal(actual, "hours since 1983-01-01 00:00:00") actual <- ncatt_get(file, "time", "long_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "standard_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "calendar")$value expect_equal(actual, "standard") actual <- ncatt_get(file, "SIS", "standard_name")$value expect_equal(actual, "SIS_standard") actual <- ncatt_get(file, "SIS", "long_name")$value expect_equal(actual, "Surface Incoming Shortwave Radiation") actual <- ncatt_get(file, "SIS", "units")$value expect_equal(actual, "W m-2") actual <- ncatt_get(file, "SIS", "_FillValue")$value expect_equal(actual, -999) actual <- ncatt_get(file, "SIS", "cmsaf_info")$value expect_equal(actual, "cmsafops::selmon for variable SIS") global_attr <- ncatt_get(file, 0) expect_equal(length(global_attr), 1) actual <- names(global_attr[1]) expect_equal(actual, "Info") actual <- global_attr[[1]] expect_equal(actual, "Created with the CM SAF R Toolbox.") }) test_that("coordinates are correct", { actual <- ncvar_get(file, "lon") expect_identical(actual, array(seq(5, 8, 0.5))) actual <- ncvar_get(file, "lat") expect_identical(actual, array(seq(45, 48, 0.5))) actual <- ncvar_get(file, "time") cat(actual) expect_equal(actual, array(c(149016))) }) nc_close(file) file_in <- file.path(data_dir, "ex_normal1.nc") file_out <- tempfile_nc() selmon("SIS", 1, file_in, file_out, nc34 = 4) file <- nc_open(file_out) test_that("data is correct in version 4", { actual <- ncvar_get(file) temp1 <- seq(250, 272) expected_data <- c(temp1, temp1, temp1[1:3]) expected <- array(expected_data, dim = c(7, 7)) expect_equivalent(actual, expected) }) test_that("attributes are correct in version 4", { actual <- ncatt_get(file, "lon", "units")$value expect_equal(actual, "degrees_east") actual <- ncatt_get(file, "lon", "long_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "standard_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "axis")$value expect_equal(actual, "X") actual <- ncatt_get(file, "lat", "units")$value expect_equal(actual, "degrees_north") actual <- ncatt_get(file, "lat", "long_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "standard_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "axis")$value expect_equal(actual, "Y") actual <- ncatt_get(file, "time", "units")$value expect_equal(actual, "hours since 1983-01-01 00:00:00") actual <- ncatt_get(file, "time", "long_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "standard_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "calendar")$value expect_equal(actual, "standard") global_attr <- ncatt_get(file, 0) expect_equal(length(global_attr), 1) actual <- names(global_attr[1]) expect_equal(actual, "Info") actual <- global_attr[[1]] expect_equal(actual, "Created with the CM SAF R Toolbox.") }) test_that("coordinates are correct in version 4", { actual <- ncvar_get(file, "lon") expect_identical(actual, array(seq(5, 8, 0.5))) actual <- ncvar_get(file, "lat") expect_identical(actual, array(seq(45, 48, 0.5))) actual <- ncvar_get(file, "time") expect_equal(actual, array(c(149016))) }) nc_close(file) file_in <- file.path(data_dir, "ex_normal1.nc") file_out <- tempfile_nc() test_that("error is thrown if ncdf version is wrong", { expect_error( selmon("SIS", 1, file_in, file_out, nc34 = 7), "nc version must be in c(3, 4), but was 7", fixed = TRUE ) }) file_in <- file.path(data_dir, "ex_normal1.nc") file_out <- tempfile_nc() test_that("ncdf version NULL throws an error", { expect_error( selmon("SIS", 1, file_in, file_out, nc34 = NULL), "nc_version must not be NULL" ) }) file_in <- file.path(data_dir, "ex_normal1.nc") file_out <- tempfile_nc() test_that("warning is shown if var does not exist", { expect_warning( selmon("lat", 1, file_in, file_out), "Variable 'lat' not found. Variable 'SIS' will be used instead." ) }) file <- nc_open(file_out) test_that("data is correct if non-existing variable is given", { actual <- ncvar_get(file) temp1 <- seq(250, 272) expected_data <- c(temp1, temp1, temp1[1:3]) expected <- array(expected_data, dim = c(7, 7)) expect_equivalent(actual, expected) }) test_that("attributes are correct if non-existing variable is given", { actual <- ncatt_get(file, "lon", "units")$value expect_equal(actual, "degrees_east") actual <- ncatt_get(file, "lon", "long_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "standard_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "axis")$value expect_equal(actual, "X") actual <- ncatt_get(file, "lat", "units")$value expect_equal(actual, "degrees_north") actual <- ncatt_get(file, "lat", "long_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "standard_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "axis")$value expect_equal(actual, "Y") actual <- ncatt_get(file, "time", "units")$value expect_equal(actual, "hours since 1983-01-01 00:00:00") actual <- ncatt_get(file, "time", "long_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "standard_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "calendar")$value expect_equal(actual, "standard") global_attr <- ncatt_get(file, 0) expect_equal(length(global_attr), 1) actual <- names(global_attr[1]) expect_equal(actual, "Info") actual <- global_attr[[1]] expect_equal(actual, "Created with the CM SAF R Toolbox.") }) test_that("coordinates are correct if non-existing variable is given", { actual <- ncvar_get(file, "lon") expect_identical(actual, array(seq(5, 8, 0.5))) actual <- ncvar_get(file, "lat") expect_identical(actual, array(seq(45, 48, 0.5))) actual <- ncvar_get(file, "time") expect_equal(actual, array(c(149016))) }) nc_close(file) file_in <- file.path(data_dir, "ex_normal1.nc") file_out <- tempfile_nc() test_that("error is thrown if variable is NULL", { expect_error( selmon(NULL, 1, file_in, file_out), "variable must not be NULL" ) }) file_in <- file.path(data_dir, "ex_normal1.nc") file_out <- tempfile_nc() test_that("warning is shown if var is empty", { expect_warning( selmon("", 1, file_in, file_out), "Variable '' not found. Variable 'SIS' will be used instead." ) }) file <- nc_open(file_out) test_that("data is correct", { actual <- ncvar_get(file) temp1 <- seq(250, 272) expected_data <- c(temp1, temp1, temp1[1:3]) expected <- array(expected_data, dim = c(7, 7)) expect_equivalent(actual, expected) }) test_that("attributes are correct", { actual <- ncatt_get(file, "lon", "units")$value expect_equal(actual, "degrees_east") actual <- ncatt_get(file, "lon", "long_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "standard_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "axis")$value expect_equal(actual, "X") actual <- ncatt_get(file, "lat", "units")$value expect_equal(actual, "degrees_north") actual <- ncatt_get(file, "lat", "long_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "standard_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "axis")$value expect_equal(actual, "Y") actual <- ncatt_get(file, "time", "units")$value expect_equal(actual, "hours since 1983-01-01 00:00:00") actual <- ncatt_get(file, "time", "long_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "standard_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "calendar")$value expect_equal(actual, "standard") global_attr <- ncatt_get(file, 0) expect_equal(length(global_attr), 1) actual <- names(global_attr[1]) expect_equal(actual, "Info") actual <- global_attr[[1]] expect_equal(actual, "Created with the CM SAF R Toolbox.") }) test_that("coordinates are correct", { actual <- ncvar_get(file, "lon") expect_identical(actual, array(seq(5, 8, 0.5))) actual <- ncvar_get(file, "lat") expect_identical(actual, array(seq(45, 48, 0.5))) actual <- ncvar_get(file, "time") expect_equal(actual, array(c(149016))) }) nc_close(file) file_in <- file.path(data_dir, "xex_normal1.nc") file_out <- tempfile_nc() test_that("error is thrown if input file does not exist", { expect_error( selmon("SIS", 1, file_in, file_out), "Input file does not exist") }) file_in <- file.path(data_dir, NULL) file_out <- tempfile_nc() test_that("error is thrown if input filename is NULL", { expect_error( selmon("SIS", 1, file_in, file_out), "Input filepath must be of length one and not NULL" ) }) file_in <- file.path(data_dir, "ex_normal1.nc") file_out <- tempfile_nc() cat("test\n", file = file_out) test_that("error is thrown if output file already exists", { expect_error( selmon("SIS", 1, file_in, file_out), paste0("File '", file_out, "' already exists. Specify 'overwrite = TRUE' if you want to overwrite it."), fixed = TRUE ) expect_equal(readLines(con = file_out), "test") }) file_in <- file.path(data_dir, "ex_normal1.nc") file_out <- tempfile_nc() cat("test\n", file = file_out) test_that("no error is thrown if overwrite = TRUE", { expect_error( selmon("SIS", 1, file_in, file_out, overwrite = TRUE), NA) }) file <- nc_open(file_out) test_that("data is correct", { actual <- ncvar_get(file) temp1 <- seq(250, 272) expected_data <- c(temp1, temp1, temp1[1:3]) expected <- array(expected_data, dim = c(7, 7)) expect_equivalent(actual, expected) }) test_that("attributes are correct", { actual <- ncatt_get(file, "lon", "units")$value expect_equal(actual, "degrees_east") actual <- ncatt_get(file, "lon", "long_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "standard_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "axis")$value expect_equal(actual, "X") actual <- ncatt_get(file, "lat", "units")$value expect_equal(actual, "degrees_north") actual <- ncatt_get(file, "lat", "long_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "standard_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "axis")$value expect_equal(actual, "Y") actual <- ncatt_get(file, "time", "units")$value expect_equal(actual, "hours since 1983-01-01 00:00:00") actual <- ncatt_get(file, "time", "long_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "standard_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "calendar")$value expect_equal(actual, "standard") global_attr <- ncatt_get(file, 0) expect_equal(length(global_attr), 1) actual <- names(global_attr[1]) expect_equal(actual, "Info") actual <- global_attr[[1]] expect_equal(actual, "Created with the CM SAF R Toolbox.") }) test_that("coordinates are correct", { actual <- ncvar_get(file, "lon") expect_identical(actual, array(seq(5, 8, 0.5))) actual <- ncvar_get(file, "lat") expect_identical(actual, array(seq(45, 48, 0.5))) actual <- ncvar_get(file, "time") expect_equal(actual, array(c(149016))) }) nc_close(file) file_in <- file.path(data_dir, "ex_time_dim1.nc") file_out <- tempfile_nc() selmon("SIS", 1, file_in, file_out) file <- nc_open(file_out) test_that("data is correct", { actual <- ncvar_get(file) temp1 <- seq(250, 272) expected_data <- c(temp1, temp1, temp1[1:3]) expected <- array(expected_data, dim = c(7, 7)) expect_equivalent(actual, expected) }) test_that("attributes are correct", { actual <- ncatt_get(file, "lon", "units")$value expect_equal(actual, "degrees_east") actual <- ncatt_get(file, "lon", "long_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "standard_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "axis")$value expect_equal(actual, "X") actual <- ncatt_get(file, "lat", "units")$value expect_equal(actual, "degrees_north") actual <- ncatt_get(file, "lat", "long_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "standard_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "axis")$value expect_equal(actual, "Y") actual <- ncatt_get(file, "time", "units")$value expect_equal(actual, "hours since 1983-01-01 00:00:00") actual <- ncatt_get(file, "time", "long_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "standard_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "calendar")$value expect_equal(actual, "standard") global_attr <- ncatt_get(file, 0) expect_equal(length(global_attr), 1) actual <- names(global_attr[1]) expect_equal(actual, "Info") actual <- global_attr[[1]] expect_equal(actual, "Created with the CM SAF R Toolbox.") }) test_that("coordinates are correct", { actual <- ncvar_get(file, "lon") expect_identical(actual, array(seq(5, 8, 0.5))) actual <- ncvar_get(file, "lat") expect_identical(actual, array(seq(45, 48, 0.5))) actual <- ncvar_get(file, "time") expect_equal(actual, array(c(149016))) }) nc_close(file) file_in <- file.path(data_dir, "ex_time_dim1.nc") file_out <- tempfile_nc() selmon("SIS", 2, file_in, file_out) file <- nc_open(file_out) test_that("data is correct", { actual <- ncvar_get(file) temp1 <- seq(250, 272) expected_data <- c(temp1[4:length(temp1)], temp1, temp1[1:6]) expected <- array(expected_data, dim = c(7, 7)) expect_equivalent(actual, expected) }) test_that("attributes are correct", { actual <- ncatt_get(file, "lon", "units")$value expect_equal(actual, "degrees_east") actual <- ncatt_get(file, "lon", "long_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "standard_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "axis")$value expect_equal(actual, "X") actual <- ncatt_get(file, "lat", "units")$value expect_equal(actual, "degrees_north") actual <- ncatt_get(file, "lat", "long_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "standard_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "axis")$value expect_equal(actual, "Y") actual <- ncatt_get(file, "time", "units")$value expect_equal(actual, "hours since 1983-01-01 00:00:00") actual <- ncatt_get(file, "time", "long_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "standard_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "calendar")$value expect_equal(actual, "standard") global_attr <- ncatt_get(file, 0) expect_equal(length(global_attr), 1) actual <- names(global_attr[1]) expect_equal(actual, "Info") actual <- global_attr[[1]] expect_equal(actual, "Created with the CM SAF R Toolbox.") }) test_that("coordinates are correct", { actual <- ncvar_get(file, "lon") expect_identical(actual, array(seq(5, 8, 0.5))) actual <- ncvar_get(file, "lat") expect_identical(actual, array(seq(45, 48, 0.5))) actual <- ncvar_get(file, "time") expect_equal(actual, array(c(158544))) }) nc_close(file) file_in <- file.path(data_dir, "ex_time_dim1.nc") file_out <- tempfile_nc() selmon("SIS", c(1, 2), file_in, file_out) file <- nc_open(file_out) test_that("data is correct", { actual <- ncvar_get(file) temp1 <- seq(250, 272) expected_data <- c(rep(temp1, 4), temp1[1:6]) expected <- array(expected_data, dim = c(7, 7, 2)) expect_equivalent(actual, expected) }) test_that("attributes are correct", { actual <- ncatt_get(file, "lon", "units")$value expect_equal(actual, "degrees_east") actual <- ncatt_get(file, "lon", "long_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "standard_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "axis")$value expect_equal(actual, "X") actual <- ncatt_get(file, "lat", "units")$value expect_equal(actual, "degrees_north") actual <- ncatt_get(file, "lat", "long_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "standard_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "axis")$value expect_equal(actual, "Y") actual <- ncatt_get(file, "time", "units")$value expect_equal(actual, "hours since 1983-01-01 00:00:00") actual <- ncatt_get(file, "time", "long_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "standard_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "calendar")$value expect_equal(actual, "standard") global_attr <- ncatt_get(file, 0) expect_equal(length(global_attr), 1) actual <- names(global_attr[1]) expect_equal(actual, "Info") actual <- global_attr[[1]] expect_equal(actual, "Created with the CM SAF R Toolbox.") }) test_that("coordinates are correct", { actual <- ncvar_get(file, "lon") expect_identical(actual, array(seq(5, 8, 0.5))) actual <- ncvar_get(file, "lat") expect_identical(actual, array(seq(45, 48, 0.5))) actual <- ncvar_get(file, "time") expect_equal(actual, array(c(149016, 158544))) }) nc_close(file) file_in <- file.path(data_dir, "ex_time_dim1.nc") file_out <- tempfile_nc() test_that("no error is thrown if output file already exists", { expect_error( selmon("SIS", 3, file_in, file_out), "No match. Months are: 1") }) file_in <- file.path(data_dir, "ex_additional_attr.nc") file_out <- tempfile_nc() selmon("SIS", 1, file_in, file_out) file <- nc_open(file_out) test_that("data is correct", { actual <- ncvar_get(file) temp1 <- seq(250, 272) temp2 <- seq(230, 252) expected_data <- c(temp1, temp1, temp1[1:3]) expected <- array(expected_data, dim = c(7, 7)) expect_equivalent(actual, expected) }) test_that("attributes are correct", { actual <- ncatt_get(file, "lon", "units")$value expect_equal(actual, "degrees_east") actual <- ncatt_get(file, "lon", "long_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "standard_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "axis")$value expect_equal(actual, "X") actual <- ncatt_get(file, "lat", "units")$value expect_equal(actual, "degrees_north") actual <- ncatt_get(file, "lat", "long_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "standard_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "axis")$value expect_equal(actual, "Y") actual <- ncatt_get(file, "time", "units")$value expect_equal(actual, "hours since 1983-01-01 00:00:00") actual <- ncatt_get(file, "time", "long_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "standard_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "calendar")$value expect_equal(actual, "standard") global_attr <- ncatt_get(file, 0) expect_equal(length(global_attr), 2) actual <- names(global_attr[1]) expect_equal(actual, "Info") actual <- global_attr[[1]] expect_equal(actual, "Created with the CM SAF R Toolbox.") actual <- names(global_attr[2]) expect_equal(actual, "institution") actual <- global_attr[[2]] expect_equal(actual, "This is a test attribute.") }) test_that("coordinates are correct", { actual <- ncvar_get(file, "lon") expect_identical(actual, array(seq(5, 8, 0.5))) actual <- ncvar_get(file, "lat") expect_identical(actual, array(seq(45, 48, 0.5))) actual <- ncvar_get(file, "time") expect_equal(actual, array(c(149016))) }) nc_close(file) file_in <- file.path(data_dir, "ex_v4_1.nc") file_out <- tempfile_nc() selmon("SIS", 1, file_in, file_out) file <- nc_open(file_out) test_that("data is correct", { actual <- ncvar_get(file) temp1 <- seq(250, 272) temp2 <- seq(230, 252) expected_data <- c(temp1, temp1, temp1[1:3]) expected <- array(expected_data, dim = c(7, 7)) expect_equivalent(actual, expected) }) test_that("attributes are correct", { actual <- ncatt_get(file, "lon", "units")$value expect_equal(actual, "degrees_east") actual <- ncatt_get(file, "lon", "long_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "standard_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "axis")$value expect_equal(actual, "X") actual <- ncatt_get(file, "lat", "units")$value expect_equal(actual, "degrees_north") actual <- ncatt_get(file, "lat", "long_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "standard_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "axis")$value expect_equal(actual, "Y") actual <- ncatt_get(file, "time", "units")$value expect_equal(actual, "hours since 1983-01-01 00:00:00") actual <- ncatt_get(file, "time", "long_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "standard_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "calendar")$value expect_equal(actual, "standard") global_attr <- ncatt_get(file, 0) expect_equal(length(global_attr), 1) actual <- names(global_attr[1]) expect_equal(actual, "Info") actual <- global_attr[[1]] expect_equal(actual, "Created with the CM SAF R Toolbox.") }) test_that("coordinates are correct", { actual <- ncvar_get(file, "lon") expect_identical(actual, array(seq(5, 8, 0.5))) actual <- ncvar_get(file, "lat") expect_identical(actual, array(seq(45, 48, 0.5))) actual <- ncvar_get(file, "time") expect_equal(actual, array(c(149016))) }) nc_close(file) file_in <- file.path(data_dir, "ex_normal1.nc") file_out <- tempfile_nc() test_that("no error is thrown if output file already exists", { expect_error( selmon("SIS", 2, file_in, file_out), "No match. Months are: 1") }) file_in <- file.path(data_dir, "ex_normal1.nc") file_out <- tempfile_nc() test_that("no error is thrown if output file already exists", { expect_error( selmon("SIS", NULL, file_in, file_out), "No match. Months are: 1") })
Sys.unsetenv("CONTENTID_HOME") Sys.unsetenv("CONTENTID_REGISTRIES")
gx.ks.test <- function (xx1, xx2, xlab = " ", x1lab = deparse(substitute(xx1)), x2lab = deparse(substitute(xx2)), ylab = "Empirical Cumulative Distribution Function", log = FALSE, main = "", pch1 = 3, col1 = 2, pch2 = 4, col2 = 4, ifresult = TRUE, cex = 0.8, cexp = 0.9, ...) { temp.x <- remove.na(xx1) x1 <- sort(temp.x$x[1:temp.x$n]) nx1 <- temp.x$n y1 <- ((1:nx1) - 0.5)/nx1 temp.x <- remove.na(xx2) x2 <- sort(temp.x$x[1:temp.x$n]) nx2 <- temp.x$n y2 <- ((1:nx2) - 0.5)/nx2 xlim <- range(c(x1, x2)) if (log) { logx <- "x" if (xlim[1] <= 0) stop("\n Values cannot be .le. zero for a log plot\n") } else logx <- "" plot(x1, y1, log = logx, xlim = xlim, xlab = xlab, ylab = ylab, main = main, type = "n", ...) points(x1, y1, pch = pch1, col = col1, cex = cexp) points(x2, y2, pch = pch2, col = col2, cex = cexp) temp <- ks.test(x1, x2) print(temp) if (ifresult) { H0 <- "accept" if (temp$p.value < 0.05) H0 <- "reject" text(locator(1), adj = c(0, 1), paste("Two-Sample Kolmogorov-Smirnov Test", "\nH0: The two data sets are drawn\nfrom the same population\n", "\np-value = ", signif(temp$p.value, 4), "\n", H0, " H0 at 0.05 level", sep = ""), cex = cex) } label1 <- paste(x1lab, ", N = ", nx1, sep = "") label2 <- paste(x2lab, ", N = ", nx2, sep = "") legend(locator(1), c(label1, label2), pch = c(pch1, pch2), col = c(col1, col2), bty = "n", cex = cex) invisible() }
"REcoData_Panel_UR"
log_Vnk_PY <- function(n, k, Alpha, Gama) { if (k == 1) { lognum <- 0 } else { lognum <- sum(log(Alpha + Gama * 1:(k - 1))) } return(lognum - sum(log(Alpha + 1 + 0:(n - 2)))) } Cnk <- function(n, k, Gama) { factor_k <- gmp::factorialZ(k) sum((-1)^(1:k) * gmp::chooseZ(n = k, k = 1:k) * Rmpfr::pochMpfr(-(1:k) * Gama, n) / factor_k) } log_Cnk <- function(n, k, Gama) { log(Cnk(n, k, Gama)) } Pkn_PY <- function(k, n, Alpha, Gama, silence = TRUE) { if (!silence) print(k) exp(log_Vnk_PY(n = n, k = k, Alpha = Alpha, Gama = Gama) - k * log(Gama)) * Cnk(n = n, k = k, Gama = Gama) } Pkn_Dirichlet <- function(k, n, Alpha) { exp(k * log(Alpha) + log(abs(gmp::Stirling1(n, k))) - sum(log(Alpha + 0:(n - 1)))) } expected_number_of_components_PY <- function(n, Alpha, Gama, ntrunc = NULL, silence = TRUE) { if (is.null(ntrunc)) { ntrunc <- n } else if (ntrunc > n) ntrunc <- n res <- 0 for (k in 1:ntrunc) { if (!silence) print(k) res <- res + k * Pkn_PY(k, n, Alpha, Gama) } return(res) } expected_number_of_components_Dirichlet <- function(n, Alpha, ntrunc = NULL, silence = TRUE) { if (is.null(ntrunc)) { ntrunc <- n } else if (ntrunc > n) ntrunc <- n res <- 0 for (k in 1:ntrunc) { if (!silence) print(k) res <- res + k * Pkn_Dirichlet(k, n, Alpha) } return(res) } expected_number_of_components_stable <- function(n, Gama, ntrunc = NULL) { if (!requireNamespace("Rmpfr", quietly = TRUE) && !requireNamespace("gmp", quietly = TRUE)) { stop("Packages Rmpfr and gmp are needed for this function to work. Please install them.", call. = FALSE ) } expected_number_of_components_PY(n, 0, Gama, ntrunc = ntrunc) } plot_prior_number_of_components <- function(n, Gama, Alpha = 1, grid = NULL, silence = TRUE) { if (!requireNamespace("Rmpfr", quietly = TRUE) && !requireNamespace("gmp", quietly = TRUE)) { stop("Packages Rmpfr and gmp are needed for this function to work. Please install them.", call. = FALSE ) } if (is.null(grid)) grid <- 1:n grid <- unique(round(grid)) writeLines("Computing the prior probability on the number of clusters for the Dirichlet process") Pk_Dirichlet <- data.frame(K = grid, Pk = Vectorize(Pkn_Dirichlet, vectorize.args = "k")(grid, n, Alpha), Process = "Dirichlet") writeLines("Computing the prior probability on the number of clusters for the Stable process") Pk_Stable <- data.frame(K = grid, Pk = unlist(lapply(Vectorize(Pkn_PY, vectorize.args = "k")(grid, n, 0, Gama, silence), asNumeric_no_warning)), Process = "Stable") Pk_Stable$Pk <- convert_nan_to_0(Pk_Stable$Pk) to_plot <- rbind( Pk_Dirichlet, Pk_Stable ) ggplot(data = to_plot, aes_string(x = "K", y = "Pk", colour = "factor(Process)", group = "Process")) + geom_point() + geom_line() + theme_classic() + viridis::scale_colour_viridis(discrete = T, name = "Process") + ylab(expression(P[K])) } asNumeric_no_warning <- function(x) { tryCatch( { Rmpfr::asNumeric(x) }, warning = function(w) { if (grepl(pattern = "inefficient", x = as.character(w))) { suppressWarnings(Rmpfr::asNumeric(x)) } else { w } }, error = function(e) { print(paste("error:", e)) } ) }
"UPrandomsystematic" <- function(pik,eps=1e-6) { if(any(is.na(pik))) stop("there are missing values in the pik vector") N=length(pik) v=sample.int(N,N) s=numeric(N) s[v]=UPsystematic(pik[v],eps) s }
calf_internal <- function(data, nMarkers, randomize = FALSE, proportion = NULL, times, targetVector = "binary", optimize = "pval", verbose = FALSE){ x = NULL y = NULL refx = NULL refy = NULL if (targetVector == "nonbinary") optimize <- NULL if (any(apply(data, 2, is.numeric) == FALSE)) { stop("CALF ERROR: Data are not numeric. Please check that data were read in correctly.") } nVars <- ncol(data) - 1 dNeg <- data[ ,2:ncol(data)] dNeg <- dNeg * - 1 data <- data.frame(data, dNeg, check.names = FALSE) if (nMarkers > nVars){ stop(paste0("CALF ERROR: Requested number of markers is larger than the number of markers in data set. ", "Please revise this value or make sure your data were read in properly.")) } if (randomize == TRUE) data[ ,1] <- sample(data[ ,1]) if (!is.null(proportion)) { if (targetVector == "binary") { ctrlRows <- which(data[ ,1] == 0) caseRows <- which(data[ ,1] == 1) if(length(proportion) == 2) { nCtrlKeep <- round(length(ctrlRows)*proportion[1], digits = 0) nCaseKeep <- round(length(caseRows)*proportion[2], digits = 0) } else { nCtrlKeep <- round(length(ctrlRows)*proportion, digits = 0) nCaseKeep <- round(length(caseRows)*proportion, digits = 0) } keepRows <- c(sample(ctrlRows)[1:nCtrlKeep], sample(caseRows)[1:nCaseKeep]) data <- data[keepRows, ] } else { nDataKeep <- round(nrow(data)*proportion, digits = 0) keepRows <- sample(1:nrow(data))[1:nDataKeep] data <- data[keepRows, ] } } real <- data[ ,1] realMarkers <- data[ , 2:ncol(data)] ctrl <- data[data[ ,1] == 0, 2:ncol(data)] case <- data[data[ ,1] == 1, 2:ncol(data)] indexNegPos <- rep(0, (nVars*2)) allCrit <- numeric() for (i in 1:(nVars*2)){ if (targetVector == "binary"){ caseVar <- case[ ,i] ctrlVar <- ctrl[ ,i] if (optimize == "pval"){ crit <- t.test(caseVar, ctrlVar, var.equal = FALSE)$p.value } else if (optimize == "auc"){ crit <- compute.auc(caseVar, ctrlVar) crit <- 1/crit } } else { realVar <- realMarkers[ ,i] crit <- suppressWarnings(cor(real, realVar, use = "complete.obs")) crit <- 1/crit } allCrit[i] <- crit } allCrit[allCrit < 0] <- NA keepMarkers <- names(realMarkers)[which.min(allCrit)] bestCrit <- min(allCrit, na.rm = TRUE) keepIndex <- which.min(allCrit) if (verbose == TRUE) { if(targetVector == "binary") { if (optimize == "pval"){ cat("Selected:", keepMarkers, paste0("p value = ", round(bestCrit, digits = 15), "\n")) } else if (optimize == "auc"){ cat("Selected:", keepMarkers, paste0("AUC = ", round((1/bestCrit), digits = 15), "\n")) } } else if (targetVector == "nonbinary") { cat("Selected:", keepMarkers, paste0("Correlation = ", round((1/bestCrit), digits = 15), "\n")) } } if (nMarkers != 1){ allCrit <- numeric() realPrev <- realMarkers[ ,keepIndex] casePrev <- case[ ,keepIndex] ctrlPrev <- ctrl[ ,keepIndex] for (i in 1:(nVars*2)){ if (i != keepIndex){ caseVar <- casePrev + case[ ,i] ctrlVar <- ctrlPrev + ctrl[ ,i] realVar <- realPrev + realMarkers[ ,i] if (targetVector == "binary"){ if (optimize == "pval"){ crit <- t.test(caseVar, ctrlVar, var.equal = FALSE)$p.value } else if (optimize == "auc"){ crit <- compute.auc(caseVar, ctrlVar) crit <- 1/crit } } else { crit <- suppressWarnings(cor(real, realVar, use = "complete.obs")) crit <- 1/crit } } else { crit <- NA } allCrit[i] <- crit } allCrit[allCrit < 0] <- NA continue <- ifelse(bestCrit[length(bestCrit)] > min(allCrit, na.rm = TRUE), TRUE, FALSE) if (continue == TRUE){ keepMarkers <- append(keepMarkers, names(realMarkers)[which.min(allCrit)]) bestCrit <- append(bestCrit, min(allCrit, na.rm = TRUE)) keepIndex <- append(keepIndex, which.min(allCrit)) if (length(keepMarkers) == nMarkers) continue <- FALSE } if (verbose == TRUE) { if(targetVector == "binary") { if (optimize == "pval"){ cat("Selected:", keepMarkers[length(keepMarkers)], paste0("p value = ", round(bestCrit[length(bestCrit)], digits = 15), "\n")) } else if (optimize == "auc"){ cat("Selected:", keepMarkers[length(keepMarkers)], paste0("AUC = ", round((1/bestCrit[length(bestCrit)]), digits = 15), "\n")) } } else if (targetVector == "nonbinary") { cat("Selected:", keepMarkers[length(keepMarkers)], paste0("Correlation = ", round((1/bestCrit[length(bestCrit)]), digits = 15), "\n")) } } while (continue == TRUE){ allCrit <- numeric() casePrev <- rowSums(case[ ,keepIndex], na.rm = TRUE) ctrlPrev <- rowSums(ctrl[ ,keepIndex], na.rm = TRUE) realPrev <- rowSums(realMarkers[ ,keepIndex], na.rm = TRUE) for (i in 1:(nVars*2)){ if (!(i %in% keepIndex)){ caseVar <- casePrev + case[ ,i] ctrlVar <- ctrlPrev + ctrl[ ,i] realVar <- realPrev + realMarkers[ ,i] if (targetVector == "binary"){ if (optimize == "pval"){ crit <- t.test(caseVar, ctrlVar, var.equal = FALSE)$p.value } else if (optimize == "auc"){ crit <- compute.auc(caseVar, ctrlVar) crit <- 1/crit } } else { crit <- suppressWarnings(cor(real, realVar, use = "complete.obs")) crit <- 1/crit } } else { crit <- NA } allCrit[i] <- crit } allCrit[allCrit < 0] <- NA continue <- ifelse(bestCrit[length(bestCrit)] > min(allCrit, na.rm = TRUE), TRUE, FALSE) if (continue == TRUE){ keepMarkers <- append(keepMarkers, names(realMarkers)[which.min(allCrit)]) bestCrit <- append(bestCrit, min(allCrit, na.rm = TRUE)) keepIndex <- append(keepIndex, which.min(allCrit)) continue <- bestCrit[length(bestCrit)] < bestCrit[length(bestCrit)-1] if (verbose == TRUE) { if(targetVector == "binary") { if (optimize == "pval"){ cat("Selected:", keepMarkers[length(keepMarkers)], paste0("p value = ", round(bestCrit[length(bestCrit)], digits = 15), "\n")) } else if (optimize == "auc"){ cat("Selected:", keepMarkers[length(keepMarkers)], paste0("AUC = ", round((1/bestCrit[length(bestCrit)]), digits = 15), "\n")) } } else if (targetVector == "nonbinary") { cat("Selected:", keepMarkers[length(keepMarkers)], paste0("Correlation = ", round((1/bestCrit[length(bestCrit)]), digits = 15), "\n")) } } } if (length(keepMarkers) == nMarkers) continue <- FALSE } } if (verbose == TRUE) cat("\n") indexNegPos[keepIndex] <- ifelse(keepIndex > nVars, -1, 1) finalIndex <- ifelse(keepIndex <= nVars, keepIndex, keepIndex - nVars) finalMarkers <- data.frame(names(case)[finalIndex], indexNegPos[keepIndex], check.names = FALSE) names(finalMarkers) <- c("Marker","Weight") if (targetVector == "nonbinary" || optimize == "auc") { finalBestCrit <- 1 / bestCrit[length(bestCrit)] } else { finalBestCrit <- bestCrit[length(bestCrit)] } if (targetVector == "binary"){ if (nMarkers != 1 & length(keepIndex) != 1){ funcValue <- c(rowSums(case[,c(keepIndex)]), rowSums(ctrl[,c(keepIndex)])) } else { funcValue <- c(case[,c(keepIndex)], ctrl[,c(keepIndex)]) } funcValue <- round(funcValue, digits = 8) ranks <- rank(funcValue, ties.method = "average") seqCaseCtrl <- c(rep(1, nrow(case)), rep(0, nrow(ctrl))) all <- data.frame(funcValue, seqCaseCtrl, ranks) all <- all[order(all$ranks),] all$refx <- seq(0,1,1/(nrow(all)-1)) all$refy <- seq(0,1,1/(nrow(all)-1)) initVal <- all$seqCaseCtrl[1] moveRight <- ifelse(initVal == 0, nrow(case), nrow(ctrl)) moveUp <- ifelse(initVal == 0, nrow(ctrl), nrow(case)) for (i in 2:nrow(all)){ all$x[1] <- 0 all$y[1] <- 0 if (all$seqCaseCtrl[i] == initVal){ all$x[i] = all$x[i-1] all$y[i] = all$y[i-1] + 1/(moveUp-1) } else { all$x[i] = all$x[i-1] + 1/(moveRight) all$y[i] = all$y[i-1] } } n <- round(length(all$refy)/2, digits = 0) if (all$refy[n] > all$y[n]){ all$a <- all$x all$b <- all$y all$x <- all$b all$y <- all$a } rocPlot <- ggplot(all, aes(x = x, y = y)) + geom_line(size = 1) + geom_line(aes(x = refx, y = refy, colour = "red"), size = 1.5) + scale_x_continuous(limits = c(0,1)) + theme_bw() + theme(legend.position = "none") + ylab("True Positive Rate (Sensitivity)") + xlab("False Positive Rate (1 - Specificity)") caseFunc <- sum(ranks[1:nrow(case)]) - nrow(case)*(nrow(case)+1)/2 ctrlFunc <- sum(ranks[(nrow(case)+1):length(ranks)]) - nrow(ctrl)*(nrow(ctrl)+1)/2 auc <- round(max(ctrlFunc, caseFunc)/(caseFunc + ctrlFunc), digits = 4) } else { auc <- NULL rocPlot <- NULL } est <- list(selection = finalMarkers, auc = auc, randomize = randomize, proportion = proportion, targetVec = targetVector, rocPlot = rocPlot, finalBest = finalBestCrit, optimize = optimize) class(est) <- "calf" return(est) } compute.auc <- function(caseVar, ctrlVar){ funcValue <- c(caseVar, ctrlVar) funcValue <- round(funcValue, digits = 8) ranks <- rank(funcValue, ties.method = "average") caseFunc <- sum(ranks[1:length(caseVar)]) - length(caseVar)*(length(caseVar)+1)/2 ctrlFunc <- sum(ranks[(length(caseVar)+1):length(ranks)]) - length(ctrlVar)*(length(ctrlVar)+1)/2 auc <- round(max(ctrlFunc, caseFunc)/(caseFunc + ctrlFunc), digits = 4) return(auc) }
lambda1_calculator <- function(dat_l, dim, nclust, nboot = 1000, alpha1 = 0.5, delta =0.0000001){ temp_mat <- matrix(unlist(dat_l), nrow=nrow(dat_l[[1]])) l1_vec <- rep(0, nboot) n_d <- ncol(temp_mat) for( i in 1:nboot){ t_clus <- sample(nclust, ncol(temp_mat), replace=TRUE) clus_vals <- unique(t_clus) l1_vec_boot <- matrix(0, ncol = max(t_clus), nrow=nrow(temp_mat)) for (k in clus_vals){ n_k <- sum(t_clus == k) m_vals <- (rowMeans(temp_mat[,which(t_clus == k), drop=FALSE]) * ((n_k)/ (n_k + delta))) l1_vec_boot[,k] <- abs(m_vals) } l1_vec[i] <- max(l1_vec_boot, na.rm =TRUE) } l1 <- unname(stats::quantile(l1_vec, alpha1)) return(rep(l1, dim)) }
test_that("test.is_batch_mode.any_mode.returns_true_if_called_from_batch_mode", { expected <- !is.na(Sys.getenv("R_BATCH", NA)) actual <- is_batch_mode() expect_equal(strip_attributes(actual), expected) if (!actual) { expect_equal(cause(actual), noquote("R is not running in batch mode.")) } }) test_that("test.is_interactive.any_mode.returns_true_if_r_runs_interactively", { expected <- interactive() actual <- is_interactive() expect_equal(strip_attributes(actual), expected) if (!actual) { expect_equal(cause(actual), noquote("R is not running interactively.")) } }) test_that("test.is_r.r_or_s.returns_true_if_is_r", { expected <- exists("is.R") && is.function(is.R) && is.R() actual <- is_r() expect_equal(strip_attributes(actual), expected) if (!actual) { expect_equal(cause(actual), noquote("You are not running R.")) } }) test_that("test.is_r_slave.any_os.returns_true_if_slave_in_command_args", { expected <- "--slave" %in% commandArgs() actual <- is_r_slave() expect_equal(strip_attributes(actual), expected) if (!actual) { expect_equal( cause(actual), noquote("You are not running a slave instance of R.") ) } })
rugarch.test12a = function(cluster=NULL) { tic = Sys.time() data(sp500ret) spec = ugarchspec(variance.model=list(model="csGARCH"), distribution="std") fit = ugarchfit(spec, sp500ret, out.sample=500) bootp = ugarchboot(fit, method = c("Partial", "Full")[1], n.ahead = 500, n.bootpred = 500, cluster = cluster, verbose = TRUE) options(width=120) zz <- file("test12a-1.txt", open="wt") sink(zz) show(bootp) sink(type="message") sink() close(zz) options(width=120) zz <- file("test12a-2.txt", open="wt") sink(zz) cat("\nSeries Forecasts:\n") print(head(ser<-as.data.frame(bootp, which = "series", type = "raw"))) cat("\nSeries Summary:\n") print(as.data.frame(bootp, which = "series", type = "summary")) cat("\nQuantile Summary:\n") print(as.data.frame(bootp, which = "series", type = "q", qtile= c(0.25, 0.75))) sink(type="message") sink() close(zz) options(width=120) zz <- file("test12a-3.txt", open="wt") sink(zz) cat("\nSigma Forecasts:\n") print(head(sig<-as.data.frame(bootp, which = "sigma", type = "raw"))) cat("\nSigma Summary:\n") print(as.data.frame(bootp, which = "sigma", type = "summary")) sink(type="message") sink() close(zz) postscript("test12a-1.eps") plot(bootp, which = "all") dev.off() toc = Sys.time()-tic cat("Elapsed:", toc, "\n") return(toc) } rugarch.test12b = function(cluster=NULL) { tic = Sys.time() data(sp500ret) spec = ugarchspec(variance.model=list(model="csGARCH"), distribution="std") fit = ugarchfit(spec, sp500ret, out.sample=10) bootp = ugarchboot(fit, method = c("Partial", "Full")[2], n.ahead = 10, n.bootpred = 500, n.bootfit = 100, cluster = cluster) options(width=120) zz <- file("test12b-1.txt", open="wt") sink(zz) show(bootp) sink(type="message") sink() close(zz) options(width=120) zz <- file("test12b-2.txt", open="wt") sink(zz) cat("\nSeries Forecasts:\n") print(head(ser<-as.data.frame(bootp, which = "series", type = "raw"))) cat("\nSeries Summary:\n") print(as.data.frame(bootp, which = "series", type = "summary")) cat("\nQuantile Summary:\n") print(as.data.frame(bootp, which = "series", type = "q", qtile= c(0.25, 0.75))) sink(type="message") sink() close(zz) options(width=120) zz <- file("test12b-3.txt", open="wt") sink(zz) cat("\nSigma Forecasts:\n") print(head(sig<-as.data.frame(bootp, which = "sigma", type = "raw"))) cat("\nSigma Summary:\n") print(as.data.frame(bootp, which = "sigma", type = "summary")) sink(type="message") sink() close(zz) postscript("test12b-1.eps") plot(bootp, which = "all") dev.off() toc = Sys.time()-tic cat("Elapsed:", toc, "\n") return(toc) } rugarch.test12c = function(cluster=NULL) { tic = Sys.time() data(sp500ret) library(spd) spec = ugarchspec(variance.model=list(model="csGARCH"), distribution="std") fit = ugarchfit(spec, sp500ret, out.sample=125) bootp = ugarchboot(fit, method = c("Partial", "Full")[1], sampling = "spd", n.ahead = 125, n.bootpred = 500, cluster = cluster) options(width=120) zz <- file("test12c-1.txt", open="wt") sink(zz) show(bootp) sink(type="message") sink() close(zz) options(width=120) zz <- file("test12c-2.txt", open="wt") sink(zz) cat("\nSeries Forecasts:\n") print(head(ser<-as.data.frame(bootp, which = "series", type = "raw"))) cat("\nSeries Summary:\n") print(as.data.frame(bootp, which = "series", type = "summary")) cat("\nQuantile Summary:\n") print(as.data.frame(bootp, which = "series", type = "q", qtile= c(0.25, 0.75))) sink(type="message") sink() close(zz) options(width=120) zz <- file("test12c-3.txt", open="wt") sink(zz) cat("\nSigma Forecasts:\n") print(head(sig<-as.data.frame(bootp, which = "sigma", type = "raw"))) cat("\nSigma Summary:\n") print(as.data.frame(bootp, which = "sigma", type = "summary")) sink(type="message") sink() close(zz) postscript("test12c-1.eps") plot(bootp, which = "all") dev.off() toc = Sys.time()-tic cat("Elapsed:", toc, "\n") return(toc) } rugarch.test12d = function(cluster=NULL) { tic = Sys.time() data(sp500ret) library(ks) spec = ugarchspec(variance.model=list(model="csGARCH"), distribution="std") fit = ugarchfit(spec, sp500ret, out.sample=125) bootp = ugarchboot(fit, method = c("Partial", "Full")[1], sampling = "kernel", n.ahead = 125, n.bootpred = 500, cluster = cluster) options(width=120) zz <- file("test12d-1.txt", open="wt") sink(zz) show(bootp) sink(type="message") sink() close(zz) options(width=120) zz <- file("test12d-2.txt", open="wt") sink(zz) cat("\nSeries Forecasts:\n") print(head(ser<-as.data.frame(bootp, which = "series", type = "raw"))) cat("\nSeries Summary:\n") print(as.data.frame(bootp, which = "series", type = "summary")) cat("\nQuantile Summary:\n") print(as.data.frame(bootp, which = "series", type = "q", qtile= c(0.25, 0.75))) sink(type="message") sink() close(zz) options(width=120) zz <- file("test12d-3.txt", open="wt") sink(zz) cat("\nSigma Forecasts:\n") print(head(sig<-as.data.frame(bootp, which = "sigma", type = "raw"))) cat("\nSigma Summary:\n") print(as.data.frame(bootp, which = "sigma", type = "summary")) sink(type="message") sink() close(zz) postscript("test12d-1.eps") plot(bootp, which = "all") dev.off() toc = Sys.time()-tic cat("Elapsed:", toc, "\n") return(toc) }
"schoolfriends_vertices"
context("Test that data for standata parses correctly") df <- data.frame(group = c(rep(1,5), rep(2, 7), rep(3, 12))) df[1:5, "date"] <- as.Date("2020-05-01") + 0:4 df[6:12, "date"] <- as.Date("2020-05-02") + 0:6 df[13:24, "date"] <- as.Date("2020-05-03") + 0:11 df[1:5, "A"] <- 5 df[6:12, "A"] <- 12 df[13:24, "A"] <- 17 df$B <- df$A df$B[1:5] <- df$B[1:5] - 1:5 df$B[6:12] <- df$B[6:12] - 1:7 df$B[13:24] <- df$B[13:24] - 1:12 df$group <- as.factor(df$group) df <- dplyr::tibble(df) %>% dplyr::group_by(group) test_that("data is as expected", { inf <- epiinf(gen=1) sdat <- standata_data(df, inf) expect_equal(sdat$groups, c("1", "2", "3")) expect_equal(sdat$M, 3) expect_equal(sdat$NC, array(c(5,7,12))) expect_equal(sdat$NS, 12) expect_equal(sdat$N2, 14) expect_equal(sdat$starts, array(c(1,2,3))) expect_equal(sdat$begin, as.Date("2020-05-01")) expect_equal(sdat$vacc, matrix(0, 14, 3)) }) test_that("pops populated correctly", { sdat <- standata_data(df, epiinf(gen=1)) expect_equal(sdat$pops, array(numeric(3))) sdat <- standata_data(df, epiinf(gen=1, pops=A)) expect_equal(sdat$pops, array(numeric(3))) sdat <- standata_data(df, epiinf(gen=1, pop_adjust=T, pops=A)) expect_equal(sdat$pops, array(c(5,12,17))) }) test_that("rm populated correctly", { nrow <- as.numeric(max(df$date) - min(df$date) + 1) sdat <- standata_data(df, epiinf(gen=1)) expect_equal(sdat$vacc, matrix(0, 14, 3)) sdat <- standata_data(df, epiinf(gen=1, rm=A)) expect_equal(sdat$vacc, matrix(0, 14, 3)) sdat <- standata_data(df, epiinf(gen=1, pop_adjust=T, pops=A)) expect_equal(sdat$vacc, matrix(0, 14, 3)) sdat <- standata_data(df, epiinf(gen=1, pop_adjust=T, pops=A, rm=A)) expect_equal(sum(sdat$vacc[,1] == 5), 5) expect_equal(sum(sdat$vacc[,2] == 12), 7) expect_equal(sum(sdat$vacc[,3] == 17), 12) expect_equal(which(sdat$vacc[,1] != 0)[1], 1) expect_equal(which(sdat$vacc[,2] != 0)[1], 2) expect_equal(which(sdat$vacc[,3] != 0)[1], 3) })
filename = btcore_file("ExcelSamples.xlsx") expected_names = c("patient_id", "group", "minute", "pdr") test_that("Several Excel formats are consistent after passing cleanup_data" , { library(readxl) sheets = excel_sheets(filename) for (sheet in sheets[1:4]) { data = read_breathtest_excel(filename, sheet = sheet) cleanup_data(data) bt = cleanup_data(read_breathtest_excel(filename, sheet = sheet)) expect_false(all(stringr::str_detect(bt$group, " "))) expect_equal(names(bt), expected_names, info = paste0("in sheet ", sheet, " of ", basename(filename))) } sheet = 5 bt = read_breathtest_excel(filename, sheet = sheet) expect_equal(names(bt[[1]]), expected_names[-2], info = paste0("in sheet ", sheet, " of ", basename(filename))) bt_c = cleanup_data(bt) expect_equal(names(bt_c), expected_names, info = paste0("in sheet ", sheet, " of ", basename(filename))) sheet = 6 bt = read_breathtest_excel(filename, sheet = sheet) expect_equal(names(bt[[1]]), expected_names[-(1:2)], info = paste0("in sheet ", sheet, " of ", basename(filename))) bt_c = cleanup_data(bt) expect_equal(names(bt_c), expected_names, info = paste0("in sheet ", sheet, " of ", basename(filename))) }) test_that("Invalid sheets rise error",{ sheet = "bad_header" expect_error(read_breathtest_excel(filename, sheet = sheet), "column names should be") sheet = "bad_order" expect_error(read_breathtest_excel(filename, sheet = sheet), "column names should be") sheet = "bad_columns" expect_error(read_breathtest_excel(filename, sheet = sheet), "has 1 column") })
context("StockEvent setters (class unions)") testthat::test_that("setStockGraph", { testthat::expect_error(setStockGraph(.Object = stockEvent())) testthat::expect_error(setStockGraph(.Object = stockEvent(), stockGraph = stockGraph_obj)) })
while(from!=0) { Sys.sleep(1) from <- from - 1 print(from) }
mice_multilevel_draw_binomial <- function( probs ){ N <- length(probs) rn <- stats::runif(N, 0, 1) res <- 1*(rn < probs) return(res) }
generate_id <- function() { paste0(sample(letters, 26), collapse = "") } prep_element <- function (el) { if (!grepl("(?:^\\.)|(?:^\\ } `%||%` <- function(x, y) { if (is.null(x)) y else x }
library(grid) pushViewport(viewport(h = 0.8, w = 0.8, angle = 15)) grid.multipanel(newpage = FALSE)
get_omdb_item_actors<-function(omdb_id, API_KEY = Sys.getenv('API_KEY')){ info<-get_omdb_item(omdb_id, API_KEY = API_KEY)[[1]] %>% .$actors actors<-str_split(info, pattern = ',') %>% flatten_chr() %>% str_trim(side = 'both') return(actors) }
Position <- ggproto("Position", required_aes = character(), setup_params = function(self, data) { list() }, setup_data = function(self, data, params) { check_required_aesthetics(self$required_aes, names(data), snake_class(self)) data }, compute_layer = function(self, data, params, layout) { dapply(data, "PANEL", function(data) { if (empty(data)) return(new_data_frame()) scales <- layout$get_scales(data$PANEL[1]) self$compute_panel(data = data, params = params, scales = scales) }) }, compute_panel = function(self, data, params, scales) { abort("Not implemented") } ) transform_position <- function(df, trans_x = NULL, trans_y = NULL, ...) { oldclass <- class(df) df <- unclass(df) scales <- aes_to_scale(names(df)) if (!is.null(trans_x)) { df[scales == "x"] <- lapply(df[scales == "x"], trans_x, ...) } if (!is.null(trans_y)) { df[scales == "y"] <- lapply(df[scales == "y"], trans_y, ...) } class(df) <- oldclass df }
utils::globalVariables(c("parameters","initials","components")) auto.vets <- function(data, model="PPP", lags=c(frequency(data)), loss=c("likelihood","diagonal","trace"), ic=c("AICc","AIC","BIC","BICc"), h=10, holdout=FALSE, occurrence=c("none","fixed","logistic"), bounds=c("admissible","usual","none"), silent=TRUE, parallel=FALSE, ...){ startTime <- Sys.time(); ic <- match.arg(ic); loss <- match.arg(loss); architectorAutoVETS <- function(model){ if(nchar(model)==4){ Etype <- substring(model,1,1); Ttype <- substring(model,2,2); Stype <- substring(model,4,4); damped <- TRUE; if(substring(model,3,3)!="d"){ warning(paste0("You have defined a strange model: ",model)); sowhat(model); model <- paste0(Etype,Ttype,"d",Stype); } } else if(nchar(model)==3){ Etype <- substring(model,1,1); Ttype <- substring(model,2,2); Stype <- substring(model,3,3); damped <- FALSE; } else{ warning(paste0("You have defined a strange model: ",model)); sowhat(model); warning("Switching to 'PPP'"); model <- "PPP"; Etype <- "P"; Ttype <- "P"; Stype <- "P"; damped <- TRUE; } modelIsTrendy <- Ttype!="N"; modelIsSeasonal <- Stype!="N"; parametersToCheck <- c("l","t"[modelIsTrendy],"s"[modelIsSeasonal],"d"[modelIsTrendy]); initialsToCheck <- c("l","t"[modelIsTrendy],"s"[modelIsSeasonal]); componentsToCheck <- c("l","t"[modelIsTrendy],"s"[modelIsSeasonal]); return(list(modelIsTrendy=modelIsTrendy,modelIsSeasonal=modelIsSeasonal, parameters=parametersToCheck,initials=initialsToCheck,components=componentsToCheck)) } vetsCall <- list(...); vetsCall$data <- data; vetsCall$model <- model; vetsCall$lags <- lags; vetsCall$ic <- ic; vetsCall$h <- h; vetsCall$holdout <- holdout; vetsCall$occurrence <- occurrence; vetsCall$bounds <- bounds vetsCall$silent <- TRUE; vetsCall$parameters <- "none"; vetsCall$initials <- "none"; vetsCall$components <- "none"; vetsCall$loss <- loss; if(loss=="likelihood"){ vetsCall$loss <- "diagonal"; } if(!silent){ cat("Selecting the best unrestricted model... \n"); } initialModel <- do.call("vets",vetsCall); vetsCall$model[] <- modelType(initialModel); vetsCall$loss[] <- loss; list2env(architectorAutoVETS(vetsCall$model),environment()); parametersCombinations <- choose(length(parameters),c(1:length(parameters))); parametersCombinationNumber <- sum(parametersCombinations); parametersToCheck <- vector("list",parametersCombinationNumber); for(i in 1:length(parametersCombinations)){ if(i==1){ parametersToCheck[1:parametersCombinations[1]] <- as.list(as.data.frame(combn(parameters,i),stringsAsFactors=F)); } else{ parametersToCheck[sum(parametersCombinations[1:(i-1)])+1:parametersCombinations[i]] <- as.list(as.data.frame(combn(parameters,i),stringsAsFactors=F)); } } initialsCombinations <- choose(length(initials),c(1:length(initials))); initialsCombinationNumber <- sum(initialsCombinations); initialsToCheck <- vector("list",initialsCombinationNumber); for(i in 1:length(initialsCombinations)){ if(i==1){ initialsToCheck[1:initialsCombinations[1]] <- as.list(as.data.frame(combn(initials,i),stringsAsFactors=F)); } else{ initialsToCheck[sum(initialsCombinations[1:(i-1)])+1:initialsCombinations[i]] <- as.list(as.data.frame(combn(initials,i),stringsAsFactors=F)); } } componentsCombinations <- choose(length(components),c(1:length(components))); componentsCombinationNumber <- sum(componentsCombinations); componentsToCheck <- vector("list",componentsCombinationNumber); for(i in 1:length(componentsCombinations)){ if(i==1){ componentsToCheck[1:componentsCombinations[1]] <- as.list(as.data.frame(combn(components,i),stringsAsFactors=F)); } else{ componentsToCheck[sum(componentsCombinations[1:(i-1)])+1:componentsCombinations[i]] <- as.list(as.data.frame(combn(components,i),stringsAsFactors=F)); } } if(modelIsTrendy){ componentsToCheck[componentsToCheck %in% "l"][[1]] <- c("l","t"); if(modelIsSeasonal){ componentsToCheck[componentsToCheck %in% c("l","s")][[1]] <- c("l","t","s"); } componentsToCheck <- unique(componentsToCheck); componentsCombinationNumber <- length(componentsToCheck); } if(is.numeric(parallel)){ nCores <- parallel; parallel <- TRUE } else{ if(parallel){ nCores <- min(parallel::detectCores() - 1, parametersCombinationNumber, initialsCombinationNumber, componentsCombinationNumber); } } if(parallel){ if(!requireNamespace("foreach", quietly = TRUE)){ stop("In order to run the function in parallel, 'foreach' package must be installed.", call. = FALSE); } if(!requireNamespace("parallel", quietly = TRUE)){ stop("In order to run the function in parallel, 'parallel' package must be installed.", call. = FALSE); } if(Sys.info()['sysname']=="Windows"){ if(requireNamespace("doParallel", quietly = TRUE)){ cat("Setting up", nCores, "clusters using 'doParallel'...\n"); cluster <- parallel::makeCluster(nCores); doParallel::registerDoParallel(cluster); } else{ stop("Sorry, but in order to run the function in parallel, you need 'doParallel' package.", call. = FALSE); } } else{ if(requireNamespace("doMC", quietly = TRUE)){ doMC::registerDoMC(nCores); cluster <- NULL; } else if(requireNamespace("doParallel", quietly = TRUE)){ cat("Setting up", nCores, "clusters using 'doParallel'...\n"); cluster <- parallel::makeCluster(nCores); doParallel::registerDoParallel(cluster); } else{ stop(paste0("Sorry, but in order to run the function in parallel, you need either ", "'doMC' (prefered) or 'doParallel' package."), call. = FALSE); } } } else{ cluster <- NULL; } nToCheck <- length(parametersToCheck)+length(initialsToCheck)+length(componentsToCheck); vetsModels <- vector("list",nToCheck+1); vetsModels[[1]] <- initialModel; rm(initialModel); if(!silent){ cat(paste0("Initial model is VETS(",modelType(vetsModels[[1]]),"), ",ic," is: ", round(vetsModels[[1]]$ICs[ic],3),"\n")); } if(!silent){ cat("Testing initials restrictions... "); } if(!parallel){ j <- 2; for(i in 1:initialsCombinationNumber){ if(!silent){ if(i>1){ cat(paste0(rep("\b",nchar(round((i-1)/initialsCombinationNumber,2)*100)+1),collapse="")); } cat(round(i/initialsCombinationNumber,2)*100,"\b%"); } vetsCall$initials <- initialsToCheck[[i]]; vetsModels[[j]] <- do.call("vets",vetsCall); j[] <- j+1; } } else{ vetsModels[1+1:initialsCombinationNumber] <- foreach::`%dopar%`(foreach::foreach(i=1:initialsCombinationNumber),{ vetsCall$initials <- initialsToCheck[[i]]; return(do.call("vets",vetsCall)); }) } vetsICsInitials <- sapply(vetsModels[1+0:initialsCombinationNumber],"[[","ICs")[ic,]; jBest <- which.min(vetsICsInitials); ICBest <- vetsICsInitials[jBest]; if(jBest==1){ vetsCall$initials <- "none"; } else{ vetsCall$initials <- initialsToCheck[[jBest-1]]; } if(!silent){ cat(paste0("\nInitials restrictions model is (",paste0(vetsCall$initials,collapse=","), "), ",ic," is: ", round(ICBest,3),"\n")); } if(!silent){ cat("Testing parameters restrictions... "); } if(!parallel){ for(i in 1:parametersCombinationNumber){ if(!silent){ if(i>1){ cat(paste0(rep("\b",nchar(round((i-1)/parametersCombinationNumber,2)*100)+1),collapse="")); } cat(round(i/parametersCombinationNumber,2)*100,"\b%"); } vetsCall$parameters <- parametersToCheck[[i]]; vetsModels[[j]] <- do.call("vets",vetsCall); j[] <- j+1; } } else{ vetsModels[1+initialsCombinationNumber+1:parametersCombinationNumber] <- foreach::`%dopar%`(foreach::foreach(i=1:parametersCombinationNumber),{ vetsCall$parameters <- parametersToCheck[[i]]; return(do.call("vets",vetsCall)); }) } vetsICsParameters <- sapply(vetsModels[1+initialsCombinationNumber+1:parametersCombinationNumber],"[[","ICs")[ic,]; jBestParameters <- which.min(vetsICsParameters); if(vetsICsParameters[jBestParameters]<ICBest){ jBest <- jBestParameters+initialsCombinationNumber+1; ICBest <- vetsICsParameters[jBestParameters]; vetsCall$parameters <- parametersToCheck[[jBestParameters]]; } else{ vetsCall$parameters <- "none"; } if(!silent){ cat(paste0("\nParameters restrictions model is (",paste0(vetsCall$parameters,collapse=","), "), ",ic," is: ", round(ICBest,3),"\n")); } if(!silent){ cat("Testing components restrictions... "); } if(!parallel){ for(i in 1:componentsCombinationNumber){ if(!silent){ if(i>1){ cat(paste0(rep("\b",nchar(round((i-1)/componentsCombinationNumber,2)*100)+1),collapse="")); } cat(round(i/componentsCombinationNumber,2)*100,"\b%"); } vetsCall$components <- componentsToCheck[[i]]; vetsModels[[j]] <- do.call("vets",vetsCall); j[] <- j+1; } } else{ vetsModels[1+initialsCombinationNumber+parametersCombinationNumber+1:componentsCombinationNumber] <- foreach::`%dopar%`(foreach::foreach(i=1:componentsCombinationNumber),{ vetsCall$components <- componentsToCheck[[i]]; return(do.call("vets",vetsCall)); }) } vetsICsComponents <- sapply(vetsModels[1+initialsCombinationNumber+parametersCombinationNumber+ 1:componentsCombinationNumber],"[[","ICs")[ic,]; jBestComponents <- which.min(vetsICsComponents); if(vetsICsComponents[jBestComponents]<ICBest){ jBest <- jBestComponents+1+initialsCombinationNumber+parametersCombinationNumber; ICBest <- vetsICsComponents[jBestComponents]; vetsCall$components <- componentsToCheck[[jBestComponents]]; } else{ vetsCall$components <- "none"; } if(!silent){ cat(paste0("\nComponents restrictions model is (",paste0(vetsCall$components,collapse=","), "), ",ic," is: ", round(ICBest,3),"\n")); } if(!is.null(cluster)){ parallel::stopCluster(cluster); } vetsModels[[jBest]]$timeElapsed <- Sys.time()-startTime; return(vetsModels[[jBest]]); }
NULL setnew <- function(..., .ordered = FALSE) { if (.ordered) OrderedSet$new(...)$clone(deep = TRUE) else Set$new(...)$clone(deep = TRUE) } as.set <- function(x) { if (length(x) == 0) return(setnew()) do.call(setnew, args = as.list(x)) } as.orderedset <- function(x) { newset = function(...) setnew(..., .ordered = TRUE) if (length(x) == 0) return(newset()) do.call(newset, args = as.list(x)) } methods::setOldClass("Set") methods::setAs("list", "Set", function(from) as.set(from)) is.set <- function(x) inherits(x, "Set") is.orderedset <- function(x) inherits(x, "OrderedSet") c.Set <- function(..., recursive = FALSE, use.names = TRUE) { concat = c.Container(..., recursive = recursive, use.names = use.names) if (recursive) concat else as.set(concat) } c.OrderedSet <- function(..., recursive = FALSE, use.names = TRUE) { concat = c.Container(..., recursive = recursive, use.names = use.names) if (recursive) concat else { as.orderedset(concat) } }
PresentationModel.Table = function(table, ...) { presentationmodel = PresentationModel() presentationmodel = presentationmodel + table args = list(...) if (length(args)>0) { for (i in 1:length(args)){ presentationmodel = presentationmodel + args[[i]] } } return(presentationmodel) }
library(testthat) source("utils.R") invoke_test <- function(expected_res, ...) { res <- seqR::count_kmers(hash_dim = 2, verbose=FALSE, ...) expect_matrices_equal(as.matrix(res), expected_res) } test_that("(string vector) count 3-mers for sequences A+", { sq <- c("AAAAA", "AA", "AAAAAAA") expected_res <- matrix(c( 3, 0, 5 ), nrow=3) colnames(expected_res) <- c("A.A.A_0.0") invoke_test(expected_res=expected_res, kmer_alphabet=c("A"), sequences=sq, k=3, positional=FALSE, with_kmer_counts=TRUE) }) test_that("(string vector) count 3-mers for sequences A+ longer", { sq <- c(strrep("A", 1000000), strrep("A", 1000), strrep("A", 100)) expected_res <- matrix(c( 999998, 998, 98 ), nrow=3) colnames(expected_res) <- c("A.A.A_0.0") invoke_test(expected_res=expected_res, kmer_alphabet=c("A"), sequences=sq, k=3, positional=FALSE, with_kmer_counts=TRUE) }) test_that("(string vector) count non positional 10-mers sequences A+ longer", { sq <- c(strrep("A", 1000000), strrep("A", 100)) expected_res <- matrix(c( 999991, 91 ), nrow=2) colnames(expected_res) <- paste0( paste0(rep("A", 10), collapse="."), "_", paste0(rep("0", 9), collapse="."), collapse="") invoke_test(expected_res=expected_res, kmer_alphabet=c("A"), sequences=sq, k=10, positional=FALSE, with_kmer_counts=TRUE) }) test_that("(string vector) find 3-mers for sequences A+ (without k-mer counts)", { sq <- c("AAAAA", "AA", "AAAAAAA") expected_res <- matrix(c( 1, 0, 1 ), nrow=3) colnames(expected_res) <- c("A.A.A_0.0") invoke_test(expected_res=expected_res, kmer_alphabet=c("A"), sequences=sq, k=3, positional=FALSE, with_kmer_counts=FALSE) }) test_that("(string vector) find 15-mers for sequences (AC){1000000}", { sq <- sapply(1:5, function(i) strrep("AC", 1000000)) expected_res <- matrix(c( 999993, 999993, 999993, 999993, 999993, 999993, 999993, 999993, 999993, 999993 ), byrow=TRUE, nrow=5) colnames(expected_res) <- c("A.C.A.C.A.C.A.C.A.C.A.C.A.C.A_0.0.0.0.0.0.0.0.0.0.0.0.0.0", "C.A.C.A.C.A.C.A.C.A.C.A.C.A.C_0.0.0.0.0.0.0.0.0.0.0.0.0.0") invoke_test(expected_res=expected_res, kmer_alphabet=c("A", "C"), sequences=sq, k=15, positional=FALSE, with_kmer_counts=TRUE) })
gigCheckPars <- function(param, ...) { param <- as.numeric(param) chi <- param[1] psi <- param[2] lambda <- param[3] case <- "normal" errMessage <- "" if (length(param) != 3) { case <- "error" errMessage <- "param vector must contain 3 values" } else { if (chi < 0) { case <- "error" errMessage <- "chi must be non-negative" } else if (psi < 0) { case <- "error" errMessage <- "psi must be non-negative" } else if (isTRUE(all.equal(0, chi, ...))) { if (lambda <= 0) { case <- "error" errMessage <- "lambda must be positive when chi = 0" } else if (isTRUE(all.equal(0, psi, ...))) { case <- "error" errMessage <- "psi and chi cannot both be 0" } else { case <- "gamma" } } else if (isTRUE(all.equal(0, psi, ...))) { if (lambda >= 0) { case <- "error" errMessage <- "lambda must be negative when psi = 0" } else if (isTRUE(all.equal(0, chi, ...))) { case <- "error" errMessage <- "psi and chi cannot both be 0" } else { case <- "invgamma" } } } result <- list(case = case, errMessage = errMessage) return(result) }
print.infection.count <- function( x, ... ){ summary(x, ...) }
survey <- function(participants, contacts, reference=NULL) { new_obj <- structure(list(participants=data.table(participants), contacts=data.table(contacts), reference=reference), class="survey") return(new_obj) }
observeEvent(input$reactive, { updateButton(session, "submit", disabled = input$reactive) if (input$reactive) { output$plot <- renderPlot({ buildPlot() }, height=700) output$displayTable <- DT::renderDataTable({ DT::datatable(manAggDataset(), filter='top', options = list(sDom = '<"top">lrt<"bottom">ip')) }) } else { output$plot <- renderPlot({ input$submit isolate(buildPlot()) }, height=700) output$displayTable <- DT::renderDataTable({ input$submit isolate(DT::datatable(manAggDataset(), filter='top', options = list(sDom = '<"top">lrt<"bottom">ip'))) }) } }) observe({ nInp <- input$itersToDrawInp isolate({ n <- reactVals$itersToDraw if (notNulls(nInp, n) && n != 0) reactVals$itersToDraw <- n - 1 }) }) observe({ pTypes <- plotTypes() isolate({ if (is.null(dataset())) return() allDefTypes <- unlist(getStructListNames(curDatasetPlotInputs())) needOneGroupOpts <- length(pTypes) == 1 && length(plotTypesOpts()) == length(allDefTypes) if (is.null(pTypes) || needOneGroupOpts) { reactVals$plotTypeOptsTrigger <- Sys.time() } }) }) observeEvent(input$reset_input, { updateCheckboxInput(session, "reactive", value = FALSE) Sys.sleep(0.5) for (id in setdiff(names(input), 'datasetName')) { reset(id) } Sys.sleep(0.5) updateCheckboxInput(session, "reactive", value = TRUE) }) observeEvent(buildPlot(), { if (!isFacetSelected()) { enable('facetRow') enable('facetCol') enable('facetWrap') } else if (facetGridSelected()) { enable('facetRow') enable('facetCol') disable('facetWrap') } else if (facetWrapSelected()) { disable('facetRow') disable('facetCol') enable('facetWrap') } }) observeEvent(buildPlot(), ({ if (length(reactVals$log) == 1) { updateCollapse(session, "extraPlotBlocks", close = input$extraPlotBlocks) } })) observeEvent(input$displayTable_search_columns, { if (tolower(plotAggMeth()) != 'none') reset('plotAggMeth') })
context("Loading US map data") states_map <- us_map(regions = "states") counties_map <- us_map(regions = "counties") test_that("structure of states df is correct", { expect_equal(length(unique(states_map$fips)), 51) }) test_that("correct states are included", { include_abbr <- c("AK", "AL", "AZ") map_abbr <- us_map(regions = "states", include = include_abbr) include_full <- c("Alaska", "Alabama", "Arizona") map_full <- us_map(regions = "states", include = include_full) include_fips <- c("02", "01", "04") map_fips <- us_map(regions = "states", include = include_fips) expect_equal(length(unique(map_abbr$fips)), length(include_abbr)) expect_equal(length(unique(map_full$fips)), length(include_full)) expect_equal(length(unique(map_fips$fips)), length(include_fips)) }) test_that("correct states are excluded", { full_map <- us_map(regions = "states") exclude_abbr <- c("AK", "AL", "AZ") map_abbr <- us_map(regions = "states", exclude = exclude_abbr) exclude_full <- c("Alaska", "Alabama", "Arizona") map_full <- us_map(regions = "states", exclude = exclude_full) exclude_fips <- c("02", "01", "04") map_fips <- us_map(regions = "states", exclude = exclude_fips) expect_equal(length(unique(full_map$fips)) - length(unique(map_abbr$fips)), length(exclude_abbr)) expect_equal(length(unique(full_map$fips)) - length(unique(map_full$fips)), length(exclude_full)) expect_equal(length(unique(full_map$fips)) - length(unique(map_fips$fips)), length(exclude_fips)) }) test_that("structure of counties df is correct", { expect_equal(length(unique(counties_map$fips)), 3142) }) test_that("correct counties are included", { include_fips <- c("34021", "34023", "34025") map_fips <- us_map(regions = "counties", include = include_fips) expect_equal(length(unique(map_fips$fips)), length(include_fips)) }) test_that("correct counties are excluded", { exclude_fips <- c("34021", "34023", "34025") map_fips <- us_map(regions = "counties", include = "NJ", exclude = exclude_fips) map_nj <- us_map(regions = "counties", include = "NJ") expect_equal(length(unique(map_nj$fips)) - length(unique(map_fips$fips)), (length(exclude_fips))) }) test_that("singular regions value returns same data frames as plural", { state_map <- us_map(regions = "state") county_map <- us_map(regions = "county") expect_identical(states_map, state_map) expect_identical(counties_map, county_map) }) test_that("error occurs for invalid region", { expect_error(us_map(regions = "cities")) })
library(hamcrest) test.namespaceLoads <- function() { library(utils) } test.globalVariables <- function() { assertThat(utils::globalVariables(c(".obj1", ".obj2")), instanceOf("character")) } test.suppressForeignCheck <- function() { assertThat(utils::suppressForeignCheck(c(".obj1", ".obj2")), instanceOf("character")) }
library(mistat) data(YARNSTRG) data(CYCLT) install.packages("mistat", dependencies=TRUE) library(mistat) data(CYCLT) help(CYCLT) CYCLT set.seed(123) X <- rbinom(n = 50, size = 1, prob = 0.5) X ls() rm(X) data(STEELROD) plot(STEELROD, ylab = "Steel rod Length", xlab = "Index") data(STEELROD) plot(STEELROD, ylab = "Steel rod Length", xlab = "Index") X <- STEELROD X[26:length(X)] <- X[26:length(X)] - 3 plot(X, ylab = "Length of steel rod", xlab = "Index" ) lines(x = c(1, 25), y = rep(mean(X[1:25]), 2)) lines(x = c(26, 50), y = rep(mean(X[26:50]), 2)) rm(X) set.seed(123) X <- seq(from=1, to=50, by=1) X <- sin( X*(2*pi)/50) X <- X + rnorm(n=length(X), mean=0, sd=0.05) plot(X, ylab="Values") abline(h=0, lty="dashed", col="lightgray") set.seed(123) X <- seq(from=1, to=50, by=1) X <- sin( X*(2*pi)/50) X <- X + rnorm(n=length(X), mean=0, sd=0.05) plot(X, ylab="Values") abline(h=0, lty="dashed", col="lightgray") rm(X) set.seed(123) X <- rep(c(5, 2, 5), each=10) X <- X + c(rnorm(10, sd=0.5), rnorm(10, sd=0.2), rnorm(10, sd=0.1)) plot(X, ylim=c(0,8), ylab="Weight") lines(c(1,10), c(5,5)) lines(c(11,20), c(2,2)) lines(c(21,30), c(5,5)) text(5.5, 7, "A") text(15.5, 4, "B") text(25.5, 7, "C") rm(X) X <- matrix(c(5, 13, 45, 25, 12), nrow=1) barplot(X, width=1, space=4, col="grey50", names.arg=c(10, 20, 30, 40, 50), ylab="Frequency") plot(c(10, 20, 30, 40, 50), cumsum(X), type="s", xlab="", ylab="Cumulative Frequency", ylim=c(0,100)) rm(X) data(BLEMISHES) BLEMISHES[1:3, ] head(BLEMISHES, n=3) X <- factor(BLEMISHES$count, levels=0:5) X <- table(X ) X <- prop.table(X) barplot(X, width=1, space=4, col="grey50", ylab="Proportional Frequency") X <- factor(BLEMISHES$count, levels=0:5) X <- table(X ) X <- prop.table(X) barplot(X, width=1, space=4, col="grey50", ylab="Proportional Frequency") plot(names(X), cumsum(X), type="s", xlab="", ylab="Cumulative Frequency") rm(X) hist(YARNSTRG, breaks=6, main="", xlab = "Log yarn strength") plot.ecdf(YARNSTRG, pch=NA, main="", xlab="Log Yarn Strength") data(YARNSTRG) hist(YARNSTRG) hist(YARNSTRG, breaks=6, main="", xlab = "Log yarn strength") plot.ecdf(YARNSTRG, pch=NA, main="", xlab="Log Yarn Strength") plot.ecdf(YARNSTRG, main="") abline(h=c(0.25,0.5,0.75), lty=2, col="gray70") arrows(sort(YARNSTRG)[25], 0.25, sort(YARNSTRG)[25], 0) arrows(sort(YARNSTRG)[50], 0.50, sort(YARNSTRG)[50], 0) arrows(sort(YARNSTRG)[75], 0.75, sort(YARNSTRG)[75], 0) text(sort(YARNSTRG)[25] + 0.2, 0.09, "Q1") text(sort(YARNSTRG)[50] + 0.2, 0.09, "Q2") text(sort(YARNSTRG)[75] + 0.2, 0.09, "Q3") quantile(CYCLT, probs = seq(from=0, to=1, by=0.25), type=6 ) mean(CYCLT, trim=0.0, na.rm=TRUE ) library(e1071) skewness(BLEMISHES$count) kurtosis(BLEMISHES$count) X <- seq(0, 1, length.out=200) plot(X, dbeta(X, shape1=2, shape2=8), type="l", xlab=expression(x), ylab=expression(y), ylim=c(0, 4.5)) lines(X, dbeta(X, shape1=10, shape2=10)) lines(X, dbeta(X, shape1=8, shape2=2)) text(0.1, 4.2, labels="Positive \nSkewness") text(0.5, 4.2, labels="Symmetric") text(0.9, 4.2, labels="Negative \nSkewness") X <- seq(0, 1, length.out=200) plot(X*6-3, dbeta(X, shape1=8, shape2=8)/6, type="l", xlab=expression(x), ylab=expression(y), ylim=c(0, 0.55)) lines(X*6-3, dbeta(X, shape1=2.5, shape2=2.5)/6, lty="dotdash") X <- seq(-3, 3, length.out=200) lines(X, dnorm(X), lty="dashed") text(1.0, 0.52, labels="Steep") text(1.5, 0.40, labels="Normal") text(2.5, 0.28, labels="Flat") rm(X) boxplot(YARNSTRG, ylab="Log Yarn Strength") boxplot(YARNSTRG, ylab="Log Yarn Strength") qqplot(qunif(seq(0,1,length.out=100)), YARNSTRG, xlab="Fraction of Sample", ylab="Sample Quantiles") File <- paste( path.package("mistat"), "/csvFiles/OELECT.csv", sep = "") Oelect <- read.csv(file=File) rm(File) mySummary <- function( x, trim=0, type=6 ) { qq <-quantile(x, type=type) qq <- c(qq[1L:3L], mean(x, trim=trim), qq[4L:5L]) names(qq) <- c("Min.", "1st Qu.", "Median", "Mean", "3rd Qu.", "Max.") qq <- signif(qq) return(qq) } mySummary(Oelect$OELECT) mySummary(Oelect$OELECT, trim=0.05) sd(Oelect$OELECT) OutVolt <- sort(Oelect$OELECT) OutVolt[99] <- 2289.86 mySummary(OutVolt) mySummary(OutVolt, trim=0.05) sd(OutVolt) IQR(OutVolt)/1.349 rm(Oelect, OutVolt, mySummary) detach(package:mistat)
load_pop <- function(icountry,input_poptables){ file_local <- input_poptables[[icountry]] df <- utils::read.csv(file_local, stringsAsFactors=FALSE, header = FALSE) colnames(df) <- c("ADMINID", "ADMINPOP") return(df) } get_pop_census_all <- function(x) { c <- names(x) census_data <- load_pop(c[[1]], x) for ( i in 1:length(c) ) { if (i==1) next() census_data <- rbind(census_data, load_pop(c[[i]], x)) } return(census_data) }
ts_compound <- function(x, denominator = 100) { not_in_data <- NULL value <- NULL denominator <- as.numeric(denominator) stopifnot(denominator > 0) stopifnot(length(denominator) == 1L) z <- ts_dts(x) d <- dts_default(z) z <- d$x z <- ts_regular(ts_na_omit(z)) z[, value := value / denominator + 1] z <- ts_bind(ts_lag(z, -1), -99999) .by <- by_expr(dts_cname(z)$id) z[ , value := c(1, cumprod(value[-length(value)])), by = eval(.by) ] z <- dts_restore(z, d) ts_na_omit(copy_class(z, x)) } ts_index <- function(x, base = NULL) { not_in_data <- NULL value <- NULL base_value <- NULL .SD <- NULL . <- NULL z <- ts_dts(x) if (nrow(z) == 0L) return(x) d <- dts_default(z) z <- d$x cid <- dts_cname(z)$id .by <- by_expr(cid) if (all(is.na(d$x$value))) return(x) if (is.null(base)) { dt_min_time <- z[ !is.na(value), list(min.time = min(time)), by = eval(.by) ] base <- max(dt_min_time$min.time) z.base <- z[is_near(time, base), .(base_value = mean(value)), by = eval(.by)] } else if (length(base) == 1L) { base <- range(ts_span(z, start = base)$time)[1] z.base <- z[is_near(time, base), .(base_value = mean(value)), by = eval(.by)] } else if (length(base) == 2L) { base <- range(ts_span(z, start = base[1], end = base[2])$time) z.base <- z[ time >= base[1] & time <= base[2], .(base_value = mean(value)), by = eval(.by) ] } else { stop0("'base' must be of length 1 or 2, or NULL.") } if (length(cid) > 0) { z <- merge(z, z.base, by = cid, sort = FALSE) } else { z$base_value <- z.base$base_value } z[, value := value / base_value][, base_value := NULL] z <- dts_restore(z, d) copy_class(z, x) }
context("test pairwise Schur product") test_that("computations", { expect_equal(pairwise_Schur_product(cbind(rep(1, 4), 1:4, 4:1)), matrix(c(1:4,4:1, 4,6,6,4), ncol=3)) expect_equal(pairwise_Schur_product(cbind(rep(1, 4), 1:4, 4:1), self=TRUE), matrix(c(1, 1, 1, 1, 1:4,4:1, 1, 4, 9, 16, 4,6,6,4, 16, 9, 4, 1), ncol=6)) } ) test_that("input and output is the right type and dimension", { expect_error(pairwise_Schur_product(data.frame(rep(1, 4), 1:4, 4:1))) expect_error(pairwise_Schur_product(1:4)) expect_is(pairwise_Schur_product(cbind(rep(1, 4), 1:4, 4:1)), "matrix") expect_is(pairwise_Schur_product(cbind(rep(1, 4), 1:4, 4:1), self=TRUE), "matrix") expect_equal(dim(pairwise_Schur_product(cbind(rep(1, 4), 1:4, 4:1))), c(4,3)) expect_equal(dim(pairwise_Schur_product(cbind(rep(1, 4), 1:4, 4:1), self=TRUE)), c(4,6)) } )
minimizePI<-function(prime.out){ mat<-prime.out$mat.primes vec.primes<-NULL repeat{ ids.row<-which(rowSums(mat)==1) if(length(ids.row)>0){ tmp<-matrix(mat[ids.row,],nrow=length(ids.row)) ids.prime<-which(diag(t(tmp)%*%tmp)!=0) tmp<-mat[,ids.prime]%*%t(mat[,ids.prime]) ids.stay<-rowSums(tmp)==0 mat<-mat[ids.stay,,drop=FALSE] vec.primes<-c(vec.primes,colnames(mat)[ids.prime]) if(nrow(mat)==0) break mat<-mat[,-ids.prime,drop=FALSE] if(ncol(mat)==0) break } dim.mat<-dim(mat) mat<-rm.dom(mat) mat<-rm.dom(mat,col=TRUE,dom=FALSE) if(all(dim(mat)==dim.mat)){ vec.primes<-cyclic.covering(mat,vec.primes) break } } class(vec.primes)<-"minDNF" vec.primes }
"variable_label" <- function(x, ...){ UseMethod("variable_label") } variable_label.default <- function(x, ...){ attr(x, "label", exact = TRUE) } variable_label.data.frame <- function(x, ...){ mapply(FUN = variable_label, x, SIMPLIFY = FALSE, USE.NAMES = TRUE) } `variable_label<-` <- function(x, value){ UseMethod("variable_label<-") } `variable_label<-.default` <- function(x, value){ assign_label.default(x, value) } `variable_label<-.data.frame` <- function(x, value){ assign_label.data.frame(x, value) } label_variable <- function(x, ...){ assign_label(x, value = list(...)) } "variable_labels" <- variable_label `variable_labels<-` <- `variable_label<-` "label_variables" <- label_variable
library(tidyverse) library(readxl) cat_height_raw <- read_excel("data-raw/caterpillars_raw.xlsx", sheet = "HEIGHT") cat_spines_raw <- read_excel("data-raw/caterpillars_raw.xlsx", sheet = "SPINES") cat_time_raw <- read_excel("data-raw/caterpillars_raw.xlsx", sheet = "TIME") cat_height <- cat_height_raw %>% tidyr::pivot_longer( tidyselect::everything(), values_to = "height", names_to = "progeny" ) %>% tidyr::drop_na(height) %>% dplyr::mutate( progeny = stringr::str_remove(progeny, " height"), progeny = case_when( progeny == "inbred" ~ "self", TRUE ~ "hybrid" ), height = case_when( height < 25 ~ "short", height > 30 ~ "tall", TRUE ~ "medium" ) ) cat_spines <- cat_spines_raw %>% tidyr::pivot_longer( tidyselect::everything(), values_to = "spines", names_to = "progeny" ) %>% tidyr::drop_na(spines) %>% dplyr::mutate( progeny = stringr::str_remove(progeny, " spines"), progeny = case_when( progeny == "inbred" ~ "self", TRUE ~ "hybrid" ) ) cat_time <- cat_time_raw %>% tidyr::pivot_longer( tidyselect::everything(), values_to = "time", names_to = "progeny" ) %>% tidyr::drop_na(time) %>% dplyr::mutate( progeny = stringr::str_remove(progeny, " time"), progeny = case_when( progeny == "inbred" ~ "self", TRUE ~ "hybrid" ) ) caterpillars <- bind_cols(cat_height, spines = cat_spines$spines, time = cat_time$time)
context("formatting properties") test_that("text properties", { skip_if_not(check_valid_java_version()) tp <- textProperties(color="red", font.weight = "bold", font.style = "italic", underlined = TRUE ) tp_ <- chprop(tp, font.weight = "normal") expect_equal(tp_$font.weight, "normal" ) }) test_that("par properties", { skip_if_not(check_valid_java_version()) pp <- parRight( ) expect_equal(pp$text.align, "right" ) pp <- parLeft( ) expect_equal(pp$text.align, "left" ) pp_ <- chprop(pp, text.align = "center") expect_equal(pp_$text.align, "center" ) })
ARI <- function(x, y) { if (is.matrix(x)) x <- apply(x,2,which.max) if (is.matrix(y)) y <- apply(y,2,which.max) ctab <- table(x,y) cellsum <- sum(ctab*(ctab-1)/2) totsum <- sum(ctab)*(sum(ctab)-1)/2 rows <- ctab %*% rep(1,ncol(ctab)) rowsum <- sum(rows*(rows-1)/2) cols <- rep(1,nrow(ctab)) %*% ctab colsum <- sum(cols*(cols-1)/2) adj.rand <- (cellsum - (rowsum*colsum/totsum))/(.5*(rowsum +colsum)-(rowsum*colsum/totsum)) return(adj.rand) }
a = data({ n = 100 x = rnorm(n) e = rnorm(n) abc = 1 }) b = data({ y = 3 + 10*x + e }) sim = simulation({ a = 1:3 b = sum(a) k = rpois(3, b) }) graphics = plot(model({ fit = lm(y ~ x) plot(fit) })) foo({ source("foo.R") })
fbGetCampaigns <- function(accounts_id = getOption("rfacebookstat.accounts_id"), api_version = getOption("rfacebookstat.api_version"), username = getOption("rfacebookstat.username"), token_path = fbTokenPath(), access_token = getOption("rfacebookstat.access_token")){ if ( is.null(access_token) ) { if ( Sys.getenv("RFB_API_TOKEN") != "" ) { access_token <- Sys.getenv("RFB_API_TOKEN") } else { access_token <- fbAuth(username = username, token_path = token_path)$access_token } } if ( class(access_token) == "fb_access_token" ) { access_token <- access_token$access_token } if ( is.null(accounts_id) ) { message("...Loading your account list.") accounts_id <- suppressMessages(fbGetAdAccounts()$id) message("...Loading campaigns from ", length(accounts_id), " account", ifelse( length(accounts_id) > 1, "s", "" )) } accounts_id <- ifelse(grepl("^act_", accounts_id), accounts_id, paste0("act_",accounts_id)) rq_ids <- list() out_headers <- list() result <- list() if ( length(accounts_id) > 1 ) { pgbar <- TRUE pb_step <- 1 pb <- txtProgressBar(pb_step, length(accounts_id), style = 3, title = "Loading:", label = "load" ) } else { pgbar <- FALSE } for( account_id in accounts_id ) { QueryString <- paste0("https://graph.facebook.com/",api_version,"/",account_id,"/campaigns?fields=id,name,created_time,bid_strategy,daily_budget,budget_remaining,spend_cap,buying_type,status,configured_status,account_id,recommendations,source_campaign_id,start_time,stop_time&limit=1000", "&filtering=[{'field':'campaign.delivery_info','operator':'NOT_IN','value':['stupid_filter']}]", "&access_token=",access_token) api_answer <- GET(QueryString) rq_ids <- append(rq_ids, setNames(list(status_code(api_answer)), api_answer$headers$`x-fb-trace-id`)) out_headers <- append(out_headers, setNames(list(headers(api_answer)), api_answer$headers$`x-fb-trace-id`)) pars_answer <- content(api_answer, as = "parsed") if(!is.null(pars_answer$error)) { error <- pars_answer$error stop(pars_answer$error) } result <- c(result, pars_answer$data) while (!is.null(pars_answer$paging$`next`)) { api_answer <- GET(pars_answer$paging$`next`) rq_ids <- append(rq_ids, setNames(list(status_code(api_answer)), api_answer$headers$`x-fb-trace-id`)) out_headers <- append(out_headers, setNames(list(headers(api_answer)), api_answer$headers$`x-fb-trace-id`)) pars_answer <- content(api_answer, as = "parsed") result <- c(result, pars_answer$data) } if( pgbar ) { pb_step <- pb_step + 1 setTxtProgressBar(pb, pb_step) } } result <- bind_rows(result) attr(result, "request_ids") <- rq_ids attr(result, "headers") <- out_headers if( pgbar ) close(pb) return(result) }
test_that("rba_value_to_num() works", { test_vec <- c( "1.0", "-2", "1½", "1½–2½", "1¾-2¾", "1¼-2½", "-3½--2¾", "-1½–-2½", "1½–3½", "-52", "5-6", "-2--3", "17 to 17.5", "100", paste0("\u2013", 5), paste0(intToUtf8(8722), 5), paste0(3, intToUtf8(8722), 5) ) fixed_vec <- rba_value_to_num(test_vec) manually_fixed_vec <- c( 1, -2, 1.5, 2, 2.25, 1.875, -3.125, -2, 2.5, -52, 5.5, -2.5, 17.25, 100, -5, -5, 4 ) expect_length(fixed_vec, length(test_vec)) expect_identical(fixed_vec, manually_fixed_vec) expect_identical( rba_value_to_num(c("17.00 to 17.50", "16.50 to 17.00")), c(17.25, 16.75) ) expect_identical( rba_value_to_num(c(1, 1, "17 to 17.5", 5, 5, "20 to 25", "1½")), c(1, 1, 17.25, 5, 5, 22.5, 1.5) ) expect_error(rba_value_to_num(1)) })
CHI2 <- function(seqdata, breaks=NULL, step=1, with.missing=FALSE, norm=TRUE, weighted=TRUE, overlap=FALSE, notC=FALSE, euclid=FALSE, global.pdotj=NULL, refseq=NULL){ if(euclid){ weighted <- FALSE } if(is.null(breaks)){ breaks <- list() if(step==1){ for(i in 1:ncol(seqdata)){ breaks[[i]] <- c(i, i) } }else if (step==ncol(seqdata)){ breaks[[1]] <- c(1, ncol(seqdata)) }else{ bb <- seq(from=1, to=ncol(seqdata), by=step) if(bb[length(bb)]!=(1+ncol(seqdata)-step)){ msg.warn("With step=",step," last episode is shorter than the others") } bb <- c(bb, ncol(seqdata)+1) bi <- 1 if(overlap){ breaks[[bi]] <- c(1, 1+step/2) bi <- 2 } for(i in 2:length(bb)){ breaks[[bi]] <- c(bb[(i-1)], bb[i]-1) bi <- bi +1 if(overlap){ breaks[[bi]] <- pmin(breaks[[bi-1]]+step/2, ncol(seqdata)) bi <- bi +1 } } } } if(!is.list(breaks)){ msg.stop("breaks should be a list of couples: breaks=list(c(start1, end1), c(start2, end2), ...))") } labels <- attr(seqdata, "labels") cpal <- cpal(seqdata) alph <- alphabet(seqdata) if(with.missing){ labels <- c(labels, "missing") cpal <- c(cpal, attr(seqdata, "missing.color")) alph <- c(alph, attr(seqdata, "nr")) } nalph <- length(alph) if (!is.null(global.pdotj)){ if(length(global.pdotj)==1) { if (global.pdotj[1] != "obs"){ msg.stop("global.pdotj shlould be either 'obs' or a vector of proportions summing up to 1") }else { global.pdotj <- seqmeant(seqdata, weighted=weighted, with.missing=with.missing, prop=TRUE) } } else { if (!is.numeric(global.pdotj) || any(global.pdotj<0) || sum(global.pdotj) == 0) msg.stop("When a vector, global.pdotj should be non negative with at least one strictly positive element.") global.pdotj <- global.pdotj/sum(global.pdotj) if (length(global.pdotj) != nalph) msg.stop("When a vector, global.pdotj should conform the size of the alphabet including the missing state when applicable") } } weights <- attr(seqdata, "weights") if(is.null(weights)|| !weighted){ weights <- rep(1, nrow(seqdata)) } seqdata <- as.matrix(seqdata) dummies <- function(b){ lastbi <- breaks[[b]][1] bi <- breaks[[b]][2] bindice <- lastbi:bi mat <- matrix(0, nrow=nrow(seqdata), ncol=nalph) ndot <- vector("numeric", length=nalph) bseq <- seqdata[, bindice] myrowSums <- function(x){ if(!is.null(ncol(x))){ return(rowSums(x, na.rm=TRUE)) }else{ return(x) } } for(i in 1:nalph){ mat[, i] <- myrowSums(bseq==alph[i]) } ndot <- colSums(weights*mat, na.rm=TRUE) mat <- rbind(mat,ndot) non0rsum <- rowSums(mat, na.rm=TRUE) > 0 mat[non0rsum,] <- mat[non0rsum,]/rowSums(mat[non0rsum,], na.rm=TRUE) if (euclid) { maxd <- ifelse(norm, 2, 1) mat[nrow(mat),] <- rep(maxd, length(ndot)) mat[nrow(mat),ndot==0] <- 0 } else { if(!is.null(global.pdotj)){ mat[nrow(mat),] <- global.pdotj mat[nrow(mat),ndot==0] <- 0 } pdot <- mat[nrow(mat),ndot!=0] if(length(pdot)>1){ cmin <- c(min(pdot),min(pdot[-which.min(pdot)])) maxd <- ifelse(norm, 1/cmin[1] + 1/cmin[2], 1) mat[nrow(mat),] <- mat[nrow(mat),] * maxd } } return(mat) } allmat <- list() for(b in 1:length(breaks)){ allmat[[b]] <- dummies(b) } allmat <- do.call(cbind, allmat) pdotj <- allmat[nrow(allmat),] allmat <- allmat[-nrow(allmat),] ndotj <- colSums(allmat) cond <- pdotj>0 allmat <- allmat[, cond] pdotj <- pdotj[cond] n <- nrow(seqdata) sets <- FALSE if (inherits(refseq, "list")) { allmat.r <- rbind(allmat[refseq[[1]],],allmat[refseq[[2]],]) n1 <- length(refseq[[1]]) n2 <- length(refseq[[2]]) refseq.id <- c(n1, n1 + n2) allmat <- allmat[c(refseq[[1]],refseq[[2]]),] sets <- TRUE } else if (!is.null(refseq)) { refseq.id <- c(refseq,refseq) sets <- FALSE } if (is.null(refseq)) { dd <- .Call(C_tmrChisq, as.double(allmat), as.integer(dim(allmat)), as.double(pdotj)) } else{ dd <- .Call(C_tmrChisqRef, as.double(allmat), as.integer(dim(allmat)), as.double(pdotj), as.integer(refseq.id)) } if (norm) dd <- dd/sqrt(length(breaks)) if (sets) { dd <- matrix(dd, nrow=n1, ncol=n2, byrow=FALSE, dimnames=list(rownames(seqdata)[refseq[[1]]],rownames(seqdata)[refseq[[2]]])) } else if (is.null(refseq)) { attributes(dd) <- list(Size = n, Labels = rownames(seqdata), Diag = FALSE, Upper = FALSE, method = "Chi square sequence", call = match.call(), class = "dist") } else { names(dd) <- rownames(seqdata) } return(dd) }
flip.matrix <- function(x) { mirror.matrix(rotate180.matrix(x)) }
dmbc_fit <- function(D, p, G, family, control, prior, start) { S <- length(D) n <- attr(D[[1]], "Size") m <- n*(n - 1)/2 totiter <- control[["burnin"]] + control[["nsim"]] p <- as.integer(p) G <- as.integer(G) z.chain <- z.chain.p <- array(NA, dim = c(totiter, n, p, G)) eta.chain <- alpha.chain <- sigma2.chain <- lambda.chain <- array(NA, dim = c(totiter, G)) x.chain <- array(NA, dim = c(totiter, S)) prob.chain <- x.ind.chain <- array(0, dim = c(totiter, S, G)) loglik <- logprior <- logpost <- numeric(totiter) hyper.eta.a <- prior[["eta"]][["a"]] hyper.eta.b <- prior[["eta"]][["b"]] hyper.sigma2.a <- prior[["sigma2"]][["a"]] hyper.sigma2.b <- prior[["sigma2"]][["b"]] hyper.lambda <- prior[["lambda"]] if (control[["verbose"]]) message("Running the MCMC simulation...") res.mcmc <- .Call('dmbc_mcmc', PACKAGE = 'dmbc', raiD = as.integer(unlist(D)), raix = as.integer(start$x), raing = as.integer(start$ng), radalpha = as.double(start$alpha), rn = as.integer(n), rp = as.integer(p), rG = as.integer(G), rS = as.integer(S), rtotiter = as.integer(totiter), radZ = as.double(start$z), rgamma_z = as.double(control[["z.prop"]]), reta = as.double(start$eta), rgamma_alpha = as.double(control[["alpha.prop"]]), rsigma2 = as.double(start$sigma2), rlambda = as.double(start$lambda), rhyper_eta_a = as.double(hyper.eta.a), rhyper_eta_b = as.double(hyper.eta.b), rhyper_sigma2_a = as.double(hyper.sigma2.a), rhyper_sigma2_b = as.double(hyper.sigma2.b), rhyper_lambda = as.double(hyper.lambda), rfamily = as.character(family), rverbose = as.integer(control[["verbose"]]) ) z.chain <- z.chain.p <- array(res.mcmc[[1]], c(totiter, n, p, G)) alpha.chain <- array(res.mcmc[[2]], c(totiter, G)) eta.chain <- array(res.mcmc[[3]], c(totiter, G)) sigma2.chain <- array(res.mcmc[[4]], c(totiter, G)) lambda.chain <- array(res.mcmc[[5]], c(totiter, G)) prob.chain <- array(res.mcmc[[6]], c(totiter, S, G)) x.chain <- array(res.mcmc[[7]], c(totiter, S)) x.ind.chain <- array(res.mcmc[[8]], c(totiter, S, G)) accept <- t(array(res.mcmc[[9]], c(G, 2))) loglik <- as.numeric(res.mcmc[[10]]) logprior <- as.numeric(res.mcmc[[11]]) logpost <- as.numeric(res.mcmc[[12]]) if (control[["procrustes"]] | control[["relabel"]]) { if (control[["verbose"]]) message("Post-processing the chain:") if (control[["procrustes"]]) { if (control[["verbose"]]) message(" - applying Procrustes transformation...") if (control[["verbose"]]) { pb <- dmbc_pb(min = 0, max = (totiter*G - 1), width = 49) } no <- 0 for (niter in 1:totiter) { for (g in 1:G) { if (control[["verbose"]]) dmbc_setpb(pb, no) if (p == 1) { z.chain.p[niter, , , g] <- as.numeric(MCMCpack::procrustes(as.matrix(z.chain[niter, , , g]), as.matrix(z.chain[totiter, , , g]), translation = TRUE, dilation = FALSE)$X.new) } else { z.chain.p[niter, , , g] <- MCMCpack::procrustes(z.chain[niter, , , g], z.chain[totiter, , , g], translation = TRUE, dilation = FALSE)$X.new } no <- no + 1 } } if (control[["verbose"]]) { close(pb) } } if (control[["relabel"]]) { if (G > 1) { if (totiter > 10) { if (control[["verbose"]]) message(" - relabeling the parameter chain...") init <- ifelse(totiter <= 100, 5, 100) theta <- .Call('dmbc_pack_par', PACKAGE = 'dmbc', radz = as.double(z.chain.p), radalpha = as.double(alpha.chain), radlambda = as.double(lambda.chain), rn = as.integer(n), rp = as.integer(p), rM = as.integer(totiter), rG = as.integer(G) ) theta.relab <- .Call('dmbc_relabel', PACKAGE = 'dmbc', radtheta = as.double(theta), radz = as.double(z.chain.p), radalpha = as.double(alpha.chain), radeta = as.double(eta.chain), radsigma2 = as.double(sigma2.chain), radlambda = as.double(lambda.chain), radprob = as.double(prob.chain), raix_ind = as.integer(x.ind.chain), rinit = as.integer(init), rn = as.integer(n), rp = as.integer(p), rS = as.integer(S), rM = as.integer(totiter), rR = as.integer(m + 1), rG = as.integer(G), rverbose = as.integer(control[["verbose"]]) ) theta <- array(theta.relab[[1]], c(totiter, (m + 1), G)) z.chain.p <- array(theta.relab[[2]], c(totiter, n, p, G)) alpha.chain <- array(theta.relab[[3]], c(totiter, G)) eta.chain <- array(theta.relab[[4]], c(totiter, G)) sigma2.chain <- array(theta.relab[[5]], c(totiter, G)) lambda.chain <- array(theta.relab[[6]], c(totiter, G)) prob.chain <- array(theta.relab[[7]], c(totiter, S, G)) x.ind.chain <- array(theta.relab[[8]], c(totiter, S, G)) x.chain <- t(apply(x.ind.chain, 1, function(x) as.integer(x %*% 1:G))) } else { warning("the number of iterations is too small for relabeling; relabeling skipped.", call. = FALSE, immediate. = TRUE) } } } } if (control[["thin"]] > 1) { if (control[["store.burnin"]]) { tokeep <- seq(1, totiter, by = control[["thin"]]) } else { tokeep <- seq(control[["burnin"]] + 1, totiter, by = control[["thin"]]) } } else { if (control[["store.burnin"]]) { tokeep <- seq(1, totiter, by = 1) } else { tokeep <- seq(control[["burnin"]] + 1, totiter, by = 1) } } z.chain <- z.chain[tokeep, , , , drop = FALSE] z.chain.p <- z.chain.p[tokeep, , , , drop = FALSE] alpha.chain <- alpha.chain[tokeep, , drop = FALSE] eta.chain <- eta.chain[tokeep, , drop = FALSE] sigma2.chain <- sigma2.chain[tokeep, , drop = FALSE] lambda.chain <- lambda.chain[tokeep, , drop = FALSE] prob.chain <- prob.chain[tokeep, , , drop = FALSE] x.ind.chain <- x.ind.chain[tokeep, , , drop = FALSE] x.chain <- x.chain[tokeep, , drop = FALSE] loglik <- loglik[tokeep] logprior <- logprior[tokeep] logpost <- logpost[tokeep] out <- new("dmbc_fit", z.chain = z.chain, z.chain.p = z.chain.p, alpha.chain = alpha.chain, eta.chain = eta.chain, sigma2.chain = sigma2.chain, lambda.chain = lambda.chain, prob.chain = prob.chain, x.ind.chain = x.ind.chain, x.chain = x.chain, accept = accept, diss = D, dens = list(loglik = loglik, logprior = logprior, logpost = logpost), control = control, prior = prior, dim = list(n = n, p = p, G = G, S = S), model = new("dmbc_model", p = p, G = G, family = family) ) return(out) } dmbc_logLik_rbmds <- function(D, Z, alpha) { S <- length(D) diss <- list.sum(D) delta <- dist(Z) pi <- expit(alpha + delta) out <- sum(log((pi^diss)*((1 - pi)^(S - diss)))) return(out) } dmbc_logLik <- function(D, Z, alpha, lambda, x) { G <- length(alpha) ng <- as.numeric(table(factor(x, levels = 1:G))) logfg <- numeric(G) ll <- 0 for (g in 1:G) { if (ng[g] > 0) { xg <- which(x == g) logfg[g] <- dmbc_logLik_rbmds(D[xg], Z[, , g], alpha[g]) ll <- ll + ng[g]*log(lambda[g]) + logfg[g] } } return(ll) }
funcc_biclust<-function(fun_mat,delta,theta=1,template.type='mean',number=100,alpha=0,beta=0,const_alpha=FALSE,const_beta=FALSE,shift.alignement=FALSE,shift.max = 0.1, max.iter.align=100){ if(length(dim(fun_mat))!=3){ stop('Error: fun_mat should be an array of three dimensions') } if(template.type=='medoid' & (alpha!=0 | beta!=0)){ stop('Error: Medoid template is defined only for alpha and beta equal to 0') } if(shift.max>1 | shift.max<0){ stop('Error: shift.max must be in [0,1]') } if(!(alpha %in% c(0,1)) | !(beta %in% c(0,1))){ stop('Error: alpha and beta must be 0 or 1') } if(!(template.type %in% c('mean','medoid'))){ stop(paste0('Error: template.type ',template.type,' is not defined')) } if(number<=0 | number%%1!=0){ stop('Error: number must be an integer greater than 0') } if(!(shift.alignement %in% c(TRUE,FALSE))){ stop(paste0('Error: shift.alignement should be a logicol variable')) } if(max.iter.align<=0 | max.iter.align%%1!=0){ stop('Error: max.iter.align must be an integer greater than 0') } if(base::length(dim(fun_mat))!=3){ stop('Error: fun_mat must an array of three dimensions') } if(!(const_alpha %in% c(FALSE,TRUE)) | !(const_beta %in% c(FALSE,TRUE))){ stop('Error: const_alpha and const_beta must TRUE or FALSE') } if(delta<0 | !is.numeric(delta)){ stop('Error: delta must be a number greater than 1') } count_null <- apply(fun_mat, c(1,2), function(x) sum(is.na(x))) not_null <- count_null < dim(fun_mat)[3] parameter_input <- data.frame(delta=delta,theta=theta,template.type=template.type,alpha=alpha,beta=beta,const_alpha=const_alpha,const_beta=const_beta,shift.alignement=shift.alignement,shift.max=shift.max,max.iter.align=max.iter.align) only.one <- ifelse(alpha==0 & beta==0,'True', ifelse(alpha==0 & beta!=0, 'True_beta', ifelse(alpha!=0 & beta==0,'True_alpha', ifelse(alpha!=0 & beta!=0,'False',NA)))) n=dim(fun_mat)[1] m=dim(fun_mat)[2] p=dim(fun_mat)[3] MYCALL <- match.call() ma=c() mi=c() for(tt in 1:p){ ma<-c(ma,max(fun_mat[,,tt])) mi<-c(mi,min(fun_mat[,,tt])) } x<-matrix(FALSE,nrow=n,ncol=number) y<-matrix(FALSE,nrow=number,ncol=m) xy <- matrix(FALSE,nrow=nrow(fun_mat),ncol=ncol(fun_mat)) logr<-rep(TRUE,nrow(fun_mat)) logc<-rep(TRUE,ncol(fun_mat)) Stop <- FALSE n_clust <- 2 k <- 0 for(i in 1:number) { logr[logr==TRUE] <- ifelse(rowSums(matrix(is.na(matrix(fun_mat[logr,logc,1],nrow=sum(logr),ncol=sum(logc))),nrow=sum(logr),ncol=sum(logc)))==sum(logc),FALSE,TRUE) if(only.one=='False' & (sum(1-xy)<2 | sum(logr)<=1 | sum(logc)<=1)) { Stop <- TRUE break } if(only.one=='True' & (sum(1-xy)<2 | sum(logr)<1 | sum(logc)<1)) { Stop <- TRUE break } if(only.one=='True_alpha' & (sum(1-xy)<2 | sum(logr)<1 | sum(logc)<=1)) { Stop <- TRUE break } if(only.one=='True_beta' & (sum(1-xy)<2 | sum(logr)<=1 | sum(logc)<1)) { Stop <- TRUE break } logc[logc==TRUE] <- ifelse(colSums(matrix(is.na(matrix(fun_mat[logr,logc,1],nrow=sum(logr),ncol=sum(logc))),nrow=sum(logr),ncol=sum(logc)))==sum(logr),FALSE,TRUE) if(only.one=='False' & (sum(1-xy)<2 | sum(logr)<=1 | sum(logc)<=1)) { Stop <- TRUE break } if(only.one=='True' & (sum(1-xy)<2 | sum(logr)<1 | sum(logc)<1)) { Stop <- TRUE break } if(only.one=='True_alpha' & (sum(1-xy)<2 | sum(logr)<1 | sum(logc)<=1)) { Stop <- TRUE break } if(only.one=='True_beta' & (sum(1-xy)<2 | sum(logr)<=1 | sum(logc)<1)) { Stop <- TRUE break } fun_mat_temp <- fun_mat fun_mat_temp <- array(fun_mat_temp[logr,logc,],dim = c(sum(logr),sum(logc),dim(fun_mat)[3])) erg<-bigcc_fun(fun_mat_temp,delta,theta,template.type,alpha,beta,const_alpha,const_beta,shift.alignement,shift.max, max.iter.align,only.one) n_clust <- n_clust-1 if(sum(erg[[1]])==0 & n_clust==0 | sum(erg[[1]])==0 & i==1) { Stop <- TRUE break } else if (sum(erg[[1]])==0 & n_clust>=1){ cl <- cl+1 logr <- rep(F,nrow(xy)) logr[clus_row[,cl]] <- T logc <- rep(F,ncol(xy)) logc[clus_col[cl,]] <- T } else { k = k+1 x[logr,k]<-erg[[1]] y[k,logc]<-erg[[2]] xy <- xy + t(matrix(base::rep(x[,k],each=ncol(y)),nrow=ncol(y)))* matrix(base::rep(y[k,],each=nrow(x)),nrow=nrow(x)) if(only.one=='False'){ res <- biclust::biclust(1-xy, method=biclust::BCBimax(), minr=2, minc=2, number=100)} if(only.one=='True'){res <- biclust::biclust(1-xy, method=biclust::BCBimax(), minr=1, minc=1, number=100)} if(only.one=='True_alpha'){res <- biclust::biclust(1-xy, method=biclust::BCBimax(), minr=1, minc=2, number=100)} if(only.one=='True_beta'){res <- biclust::biclust(1-xy, method=biclust::BCBimax(), minr=2, minc=1, number=100)} n_clust <- res@Number cl <- 1 if(n_clust==0){ Stop <- TRUE break} clus_row <- res@RowxNumber clus_col <- res@NumberxCol dimensioni <- colSums(clus_row) * rowSums(clus_col) if_oneone <- which(dimensioni>1) if(length(if_oneone)==0) {Stop <- TRUE break} if(length(if_oneone)!=n_clust){ n_clust <- length(if_oneone) clus_row <- matrix(clus_row[,if_oneone],nrow=nrow(clus_row),ncol=n_clust) clus_col <- matrix(clus_col[if_oneone,],nrow=n_clust,ncol=ncol(clus_col)) } if(n_clust==0){ Stop <- TRUE break} if(n_clust>1){ dim <- colSums(clus_row) * rowSums(clus_col) clus_row <- clus_row[,order(dim,decreasing=TRUE)] clus_col <- clus_col[order(dim,decreasing=TRUE),] } logr <- rep(F,nrow(xy)) logr[clus_row[,1]] <- T logc <- rep(F,ncol(xy)) logc[clus_col[1,]] <- T } } if(Stop) { clus_row <- x[,1:k] clus_col <- y[1:k,] if(k>1){ dim <- colSums(clus_row) * rowSums(clus_col) clus_row <- clus_row[,order(dim,decreasing=TRUE)] clus_col <- clus_col[order(dim,decreasing=TRUE),] } return(list(biclust::BiclustResult(as.list(MYCALL),as.matrix(clus_row),as.matrix(clus_col),(k),list(0)),parameter=parameter_input)) } else { clus_row <- x[,1:k] clus_col <- y[1:k,] if(k>1){ dim <- colSums(clus_row) * rowSums(clus_col) clus_row <- clus_row[,order(dim,decreasing=TRUE)] clus_col <- clus_col[order(dim,decreasing=TRUE),] } return(list(biclust::BiclustResult(as.list(MYCALL),as.matrix(clus_row),as.matrix(clus_col),k,list(0)),parameter=parameter_input)) } }
test_that("coordinates can be used as features", { task = test_make_twoclass_task(coords_as_features = TRUE) expect_names(c("x", "y"), subset.of = task$feature_names) }) test_that("printing works", { task = test_make_twoclass_task() expect_output(print(task)) expect_data_table(task$coordinates()) expect_output(print(task$truth())) }) test_that("Supplying a non-spatio temporal task gives descriptive error message", { expect_error( rsmp("spcv_coords")$instantiate(tsk("boston_housing")), "Assertion on 'task' failed: Must inherit from class 'TaskClassifST'/'TaskRegrST'") }) test_that("coordinates can be used as features", { task = test_make_twoclass_task(coords_as_features = TRUE) expect_names(c("x", "y"), subset.of = task$feature_names) }) test_that("sf objects can be used for task creation", { task = test_make_sf_twoclass_task() expect_output(print(task)) expect_data_table(task$coordinates()) expect_output(print(task$truth())) }) test_that("sf objects can be used for task creation", { task = test_make_sf_regr_task() expect_output(print(task)) expect_data_table(task$coordinates()) expect_output(print(task$truth())) }) test_that("tasks created from sf objects do not duplicate rows", { data = test_make_sf_twoclass_df() task = TaskClassifST$new( id = "sp_regression", backend = data, target = "response", extra_args = list( coordinate_names = c("x", "y"), crs = "+proj=utm +zone=33 +datum=WGS84 +units=m +no_defs", coords_as_features = FALSE) ) expect_equal(nrow(task$data()), nrow(data)) })
sEddyProc <- setRefClass('sEddyProc', fields = list( sID = 'character' , sDATA = 'data.frame' , sINFO = 'list' , sLOCATION = 'list' , sTEMP = 'data.frame' , sUSTAR_DETAILS = 'list' , sUSTAR = 'data.frame' , sUSTAR_SCEN = 'data.frame' )) sEddyProc_initialize <- function( ID = ID.s , Data = Data.F , ColNames = c('NEE','Rg','Tair','VPD', 'Ustar') , ColPOSIXTime = 'DateTime' , DTS = if (!missing(DTS.n)) DTS.n else 48 , ColNamesNonNumeric = character(0) , LatDeg = NA_real_ , LongDeg = if (!missing(Long_deg.n)) Long_deg.n else NA_real_ , TimeZoneHour = if (!missing(TimeZone_h.n)) TimeZone_h.n else NA_integer_ , ID.s , Data.F , ColNames.V.s , ColPOSIXTime.s , DTS.n , ColNamesNonNumeric.V.s , Lat_deg.n , Long_deg.n , TimeZone_h.n , ... ) { if (!missing(ColNames.V.s)) ColNames <- ColNames.V.s if (!missing(ColNamesNonNumeric.V.s)) ColNamesNonNumeric <- ColNamesNonNumeric.V.s if (!missing(ColPOSIXTime.s)) ColPOSIXTime <- ColPOSIXTime.s if (!missing(Lat_deg.n)) LatDet <- Lat_deg.n varNamesDepr <- c( "ID.s","Data.F","ColNames.V.s","ColPOSIXTime.s","DTS.n" ,"ColNamesNonNumeric.V.s","Lat_deg.n","Long_deg.n","TimeZone_h.n") varNamesNew <- c( "ID","Data","ColNames","ColPOSIXTime","DTS" ,"ColNamesNonNumeric","LatDeg","LongDeg","TimeZoneHour") iDepr = which(!c( missing(ID.s),missing(Data.F),missing(ColNames.V.s),missing(ColPOSIXTime.s) ,missing(DTS.n),missing(ColNamesNonNumeric.V.s),missing(Lat_deg.n) ,missing(Long_deg.n),missing(TimeZone_h.n))) if (length(iDepr)) warning( "Argument names ",varNamesDepr[iDepr]," have been deprecated." ," Please, use instead ", varNamesNew[iDepr]) if (!fCheckValString(ID) || is.na(ID) ) stop('For ID, a character string must be provided!') fCheckColNames(Data, c(ColPOSIXTime, ColNames), 'fNewSData') fCheckHHTimeSeries(Data[[ColPOSIXTime]], DTS = DTS, 'sEddyProc.initialize') Time.V.p <- Data[[ColPOSIXTime]] - (0.5 * 24 / DTS * 60 * 60) fCheckColNum( Data, setdiff(ColNames, union(ColPOSIXTime,ColNamesNonNumeric)), 'sEddyProc.initialize') fCheckColPlausibility(Data, ColNames, 'sEddyProc.initialize') sID <<- ID sDATA <<- cbind(sDateTime = Time.V.p, as.data.frame(Data[, ColNames, drop = FALSE])) sTEMP <<- data.frame(sDateTime = Time.V.p) YStart.n <- as.numeric(format(sDATA$sDateTime[1], '%Y')) YEnd.n <- as.numeric(format(sDATA$sDateTime[length(sDATA$sDateTime)], '%Y')) YNums.n <- (YEnd.n - YStart.n + 1) if (YNums.n > 1) { YName.s <- paste(substr(YStart.n, 3, 4), '-', substr(YEnd.n, 3, 4), sep = '') } else { YName.s <- as.character(YStart.n) } sINFO <<- list( DIMS = length(sDATA$sDateTime) , DTS = DTS , Y.START = YStart.n , Y.END = YEnd.n , Y.NUMS = YNums.n , Y.NAME = YName.s ) sUSTAR_SCEN <<- data.frame() .self$sSetLocationInfo( LatDeg , LongDeg , TimeZoneHour) message('New sEddyProc class for site \'', ID, '\'') callSuper(...) } sEddyProc$methods( initialize = sEddyProc_initialize) sEddyProc_sSetLocationInfo <- function( LatDeg = if (!missing(Lat_deg.n)) Lat_deg.n else NA_real_ , LongDeg = if (!missing(Long_deg.n)) Long_deg.n else NA_real_ , TimeZoneHour = if (!missing(TimeZone_h.n)) TimeZone_h.n else NA_integer_ , Lat_deg.n , Long_deg.n , TimeZone_h.n ) { varNamesDepr <- c("Lat_deg.n","Long_deg.n","TimeZone_h.n") varNamesNew <- c("LatDeg","LongDeg","TimeZoneHour") iDepr = which(!c(missing(Lat_deg.n),missing(Long_deg.n),missing(TimeZone_h.n))) if (length(iDepr)) warning( "Argument names ",varNamesDepr[iDepr]," have been deprecated." ," Please, use instead ", paste(varNamesNew[iDepr], collapse = ",")) if (!is.na(LatDeg) & (LatDeg < -90 | LatDeg > 90)) stop( "Latitude must be in interval -90 to + 90") if (!is.na(LongDeg) & (LongDeg < -180 | LongDeg > 180)) stop( "Longitude must be in interval -180 to + 180") if (!is.na(TimeZoneHour) & (TimeZoneHour < -12 | TimeZoneHour > +12 | TimeZoneHour != as.integer(TimeZoneHour))) stop( "Timezone must be an integer in interval -12 to 12") sLOCATION <<- list( LatDeg = LatDeg , LongDeg = LongDeg , TimeZoneHour = TimeZoneHour ) } sEddyProc$methods(sSetLocationInfo = sEddyProc_sSetLocationInfo) sEddyProc_sSetUstarScenarios <- function( uStarTh , uStarSuffixes = colnames(uStarTh)[-1] ) { if (!("season" %in% colnames(sTEMP)) ) stop( "Seasons not defined yet. Add column 'season' to dataset with entries" , " matching column season in UstarThres.df, e.g. by calling" , " yourEddyProcClass$sSetUStarSeasons(...)") if (!all(is.finite(as.matrix(uStarTh[, -1])))) warning( "Provided non-finite uStarThreshold for some periods." ," All values in corresponding period will be marked as gap.") if (nrow(uStarTh) == 1L) { uStarTh <- cbind(data.frame( season = levels(.self$sTEMP$season)), uStarTh[, -1], row.names = NULL) } iMissing <- which( !(levels(.self$sTEMP$season) %in% uStarTh[[1]])) if (length(iMissing)) stop( "Need to provide uStar threshold for all seasons, but was missing for seasons" , paste(levels(.self$sTEMP$season)[iMissing], collapse = ",")) nEstimates <- ncol(uStarTh) - 1L uStarSuffixes <- unique(uStarSuffixes) if (length(uStarSuffixes) != nEstimates) stop( "umber of unique suffixes must correspond to number of uStar-thresholds" ,", i.e. number of columns in uStarTh - 1.") sUSTAR_SCEN <<- uStarTh colnames(sUSTAR_SCEN)[-1] <<- uStarSuffixes } sEddyProc$methods(sSetUstarScenarios = sEddyProc_sSetUstarScenarios) sEddyProc_useSeaonsalUStarThresholds <- function( ) { uStarThAgg <- .self$sGetEstimatedUstarThresholdDistribution() uStarMap <- usGetSeasonalSeasonUStarMap(uStarThAgg) .self$sSetUstarScenarios(uStarMap) } sEddyProc$methods(useSeaonsalUStarThresholds = sEddyProc_useSeaonsalUStarThresholds) sEddyProc_useAnnualUStarThresholds <- function( ) { uStarThAgg <- .self$sGetEstimatedUstarThresholdDistribution() uStarMap <- usGetAnnualSeasonUStarMap(uStarThAgg) .self$sSetUstarScenarios(uStarMap) } sEddyProc$methods(useAnnualUStarThresholds = sEddyProc_useAnnualUStarThresholds) sEddyProc_sGetUstarScenarios <- function( ) { if (!nrow(.self$sUSTAR_SCEN)) { warning("uStar scenarios not set yet. Setting to annual mapping.") .self$useAnnualUStarThresholds() } .self$sUSTAR_SCEN } sEddyProc$methods(sGetUstarScenarios = sEddyProc_sGetUstarScenarios) sEddyProc_sGetUstarSuffixes <- function( ){ if (nrow(.self$sUSTAR_SCEN) == 0) return(character(0)) names(.self$sGetUstarScenarios())[-1L] } sEddyProc$methods(sGetUstarSuffixes = sEddyProc_sGetUstarSuffixes) sEddyProc_sGetData <- function( ) { 'Get class internal sDATA data frame' sDATA } sEddyProc$methods( sGetData = sEddyProc_sGetData) sEddyProc_update_ustarthreshold_columns <- function(){ uStarScen <- .self$sGetUstarScenarios() prefix <- "Ustar_Thresh_" names(uStarScen)[-1] <- paste0(prefix, names(uStarScen)[-1]) .self$sTEMP <- .self$sTEMP %>% select(-grep(paste0("^",prefix), names(.self$sTEMP))) .self$sTEMP <- left_join(.self$sTEMP, uStarScen, by = "season") invisible(.self) } sEddyProc$methods(update_ustarthreshold_columns = sEddyProc_update_ustarthreshold_columns) sEddyProc_sExportData <- function() { lDATA <- sDATA lDATA$sDateTime <- lDATA$sDateTime + (15L * 60L) colnames(lDATA) <- c('DateTime', colnames(lDATA)[-1]) lDATA } sEddyProc$methods( sExportData = sEddyProc_sExportData) sEddyProc_sExportResults <- function( isListColumnsExported = FALSE ) { 'Export class internal sTEMP data frame with result columns' iListColumns <- which(sapply(sTEMP, is.list) ) iOmit <- if (isListColumnsExported) c(1L) else c(1L, iListColumns) sTEMP[, -iOmit] } sEddyProc$methods(sExportResults = sEddyProc_sExportResults) sEddyProc_sPrintFrames <- function( nRows = if (!missing(NumRows.i)) NumRows.i else 100 , NumRows.i = 100 ) { 'Print class internal sDATA data frame' nRows <- min(nrow(sDATA), nrow(sTEMP), nRows) print(cbind(sDATA, sTEMP[, -1])[1:nRows, ]) } sEddyProc$methods(sPrintFrames = sEddyProc_sPrintFrames)
biclustextraplots_WINDOW <- function(methodname){ new.frames <- .initialize.new.frames() grid.config <- .initialize.grid.config() grid.rows <- .initialize.grid.rows() make.extra.results <- TRUE list.methods.noextra <- c("Rqubic") if(methodname %in% list.methods.noextra){make.extra.results <- FALSE} toolname <- "Extra Plots from `biclust'" toolhelp <- "bubbleplot" input <- "plotdiagTab" type <- "buttons" frame.name <- "barchartbuttonframe" button.name <- "Draw Plot" button.function <- "biclustbarchart" button.data <- "x" button.biclust <- "Bicres" save <- FALSE arg.frames <- c() new.frames <- .add.frame(input=input,save=save,frame.name=frame.name,type=type,button.name=button.name,button.function=button.function,button.data=button.data,button.biclust=button.biclust,arg.frames=arg.frames,new.frames=new.frames) type <- "radiobuttons" frame.name <- "bubbleplotprojframe" argument.names <- c("Mean","Iso Mds","Cmd Scale") arguments <- c("projection") argument.values <- c("mean","isomds","cmdscale") argument.types <- "char" initial.values <- "mean" title <- "Projection:" border <- FALSE new.frames <- .add.frame(input=input,type=type,frame.name=frame.name,argument.names=argument.names,arguments=arguments,argument.values=argument.values,initial.values=initial.values,title=title,border=border,new.frames=new.frames,argument.types=argument.types) type <- "checkboxes" frame.name <- "bubbleplotlabelframe" argument.names <- c("Show Labels?") arguments <- c("showLabels") initial.values <- c(0) title <- "" border <- FALSE new.frames <- .add.frame(input=input,type=type,frame.name=frame.name,argument.names=argument.names,arguments=arguments,initial.values=initial.values,title=title,border=border,new.frames=new.frames) type <- "entryfields" frame.name <- "bubbleplotentryframe" argument.names <- c("bicResult2","bicResult3") argument.types <- c("num","num") arguments <- c("bicResult2","bicResult3") initial.values <- c("NULL","NULL") title <- "Extra Bicluster Results?" border <- FALSE entry.width <- c("8","8") new.frames <- .add.frame(input=input,type=type,frame.name=frame.name,argument.names=argument.names,arguments=arguments,initial.values=initial.values,title=title,border=border,entry.width=entry.width,argument.types=argument.types ,new.frames=new.frames) type <- "buttons" frame.name <- "bubbleplotbuttonframe" button.name <- "Draw Plot" button.function <- "bubbleplot" button.data <- "x" button.biclust <- "bicResult1" arg.frames <- c("bubbleplotentryframe","bubbleplotprojframe","bubbleplotlabelframe") new.frames <- .add.frame(input=input,frame.name=frame.name,type=type,button.name=button.name,button.function=button.function,button.data=button.data,button.biclust=button.biclust,arg.frames=arg.frames,new.frames=new.frames) type <- "entryfields" frame.name <- "plotclustentryframe" argument.names <- c("Total Number of Biclusters") argument.types <- c("num") arguments <- c("noC") initial.values <- c("6") title <- "" border <- FALSE entry.width <- c("4") new.frames <- .add.frame(input=input,type=type,frame.name=frame.name,argument.names=argument.names,arguments=arguments,initial.values=initial.values,title=title,border=border,entry.width=entry.width,argument.types=argument.types ,new.frames=new.frames) type <- "checkboxes" frame.name <- "plotclustcheckframe" argument.names <- c("Legend?") arguments <- c("legende") initial.values <- c(0) title <- "" border <- FALSE new.frames <- .add.frame(input=input,type=type,frame.name=frame.name,argument.names=argument.names,arguments=arguments,initial.values=initial.values,title=title,border=border,new.frames=new.frames) type <- "buttons" frame.name <- "plotclustbuttonframe" button.name <- "Draw Plot" button.function <- "plotclust" button.data <- "x" button.biclust <- "res" save <- FALSE arg.frames <- c("plotclustcheckframe","plotclustentryframe") new.frames <- .add.frame(input=input,save=save,frame.name=frame.name,type=type,button.name=button.name,button.function=button.function,button.data=button.data,button.biclust=button.biclust,arg.frames=arg.frames,new.frames=new.frames) if(make.extra.results==TRUE){ grid.config <- .grid.matrix(input=input,c("bubbleplotprojframe","bubbleplotentryframe","bubbleplotbuttonframe","bubbleplotlabelframe",NA,NA,"plotclustentryframe","plotclustcheckframe","plotclustbuttonframe" ,"barchartbuttonframe",NA,NA) ,byrow=TRUE,nrow=4,ncol=3,grid.config=grid.config) } else{ grid.config <- .grid.matrix(input=input,c("bubbleplotprojframe",NA,"bubbleplotbuttonframe","bubbleplotlabelframe",NA,NA,"plotclustentryframe","plotclustcheckframe","plotclustbuttonframe" ,"barchartbuttonframe",NA,NA) ,byrow=TRUE,nrow=4,ncol=3,grid.config=grid.config) } grid.rows <- .combine.rows(input=input,rows=c(1,2),title="Biclust Bubble Plot",border=TRUE,grid.rows=grid.rows,grid.config=grid.config) grid.rows <- .combine.rows(input=input,rows=c(3),title="Barplot of Bicluster",border=TRUE,grid.rows=grid.rows,grid.config=grid.config) grid.rows <- .combine.rows(input=input,rows=c(4),title="Bar Chart Plot",border=TRUE,grid.rows=grid.rows,grid.config=grid.config) newtool_template(toolname=toolname,methodname=methodname,toolhelp=toolhelp,grid.config=grid.config,grid.rows=grid.rows,new.frames=new.frames) }
knitr::opts_chunk$set( collapse = TRUE, comment = " ) options(useFancyQuotes=FALSE, width=100) library(hot.deck) data(isq99) out <- hot.deck(isq99, sdCutoff=3, IDvars = c("IDORIGIN", "YEAR")) numdonors <- sapply(out$donors, length) numdonors <- sapply(out$donors, length) numdonors <- ifelse(numdonors > 5, 6, numdonors) numdonors <- factor(numdonors, levels=1:6, labels=c(1:5, ">5")) table(numdonors) tscslag <- function(dat, x, id, time){ obs <- apply(dat[, c(id, time)], 1, paste, collapse=".") tm1 <- dat[[time]] - 1 lagobs <- apply(cbind(dat[[id]], tm1), 1, paste, collapse=".") lagx <- dat[match(lagobs, obs), x] } for(i in 1:length(out$data)){ out$data[[i]]$lagAI <- tscslag(out$data[[i]], "AI", "IDORIGIN", "YEAR") out$data[[i]]$lagPCGNP <- tscslag(out$data[[i]], "PCGNP", "IDORIGIN", "YEAR") out$data[[i]]$lagLPOP <- tscslag(out$data[[i]], "LPOP", "IDORIGIN", "YEAR") } for(i in 1:length(out$data)){ out$data[[i]]$pctchgPCGNP <- with(out$data[[i]], c(PCGNP-lagPCGNP)/lagPCGNP) out$data[[i]]$pctchgLPOP <- with(out$data[[i]], c(LPOP-lagLPOP)/lagLPOP) } out <- hd2amelia(out) results <- list() for(i in 1:length(out$imputations)){ results[[i]] <- lm(AI ~ lagAI + pctchgPCGNP + PCGNP + pctchgLPOP + LPOP + MIL2 + LEFT + BRIT + POLRT + CWARCOW + IWARCOW2, data=out$imputations[[i]]) } summary(mitools::MIcombine(results)) out.mids <- miceadds::datalist2mids(out$imputations) s <- summary(mice::pool(mice::lm.mids(AI ~ lagAI + pctchgPCGNP + PCGNP + pctchgLPOP + LPOP + MIL2 + LEFT + BRIT + POLRT + CWARCOW + IWARCOW2, data=out.mids))) print(s, digits=4)
SolarConstant <- 1366.1
plotly_POST <- function(x = last_plot(), filename = NULL, fileopt = "overwrite", sharing = c("public", "private", "secret"), ...) { .Deprecated("api_create") api_create(x, filename = filename, sharing = sharing, fileopt = fileopt, ...) } get_figure <- function(username, id) { .Deprecated("api_download_plot") api_download_plot(id, username) } plotly <- function(username, key) { if (!missing(username)) { message("Storing 'username' as the environment variable 'plotly_username'") Sys.setenv("plotly_username" = username) } else { usr <- verify("username") } if (!missing(key)) { message("Storing 'key' as the environment variable 'plotly_api_key'") Sys.setenv("plotly_api_key" = key) } else { key <- verify("api_key") } .Deprecated("ggplotly") .Deprecated("plot_ly") invisible(NULL) } offline <- function(p, height, width, out_dir, open_browser) { .Deprecated("plot_ly") p } as.widget <- function(x, ...) { .Deprecated("as_widget") x } toWidget <- as.widget
compute.beta.hat <- function(x, M){ l <- lm(x ~ M - 1) return(as.numeric(l$coef)) } compute.z <- function(x, M, beta=NULL){ if (!is.null(beta)) { z <- x - M %*% beta } else { Q <- qr.Q(qr(M)) H <- Q %*% t(Q) z <- x - H %*% x } return(as.numeric(z)) } compute.sigma2.hat <- function(z){ drop(crossprod(z)/length(z)) } computeAuxVariables <- function(model) { aux <- covMatrix(model@covariance, X=model@X, [email protected]) C <- aux[[1]] T <- chol(C) x <- backsolve(t(T), model@y, upper.tri = FALSE) M <- backsolve(t(T), model@F, upper.tri = FALSE) model@T <- T model@M <- M if (length([email protected])>0){ z <- backsolve(t(T), model@y-model@F%*%as.matrix([email protected]), upper.tri=FALSE) model@z <- as.numeric(z) } else { model@z <- numeric(0) } return(model) }
getPrisma <- function(studyStatus =NULL, prismaFormat = NULL){ if(is.null(prismaFormat)){ reqNames <- c("Source", "Filter") missNames <- setdiff(reqNames, names(studyStatus)) if(length(missNames) != 0 ) stop(sprintf("%s not in studyStatus argument.", paste(missNames, collapse = " and "))) warning("prismaFormat is null so attempting to make automatic one from studyStatus") prismaFormat <- getPrismaFormat(studyStatus) } reqNames <- c("Source", "Node","Filter", "End") if(!all(prismaFormat$nodeType %in% reqNames) ) stop("Check nodeType some of these not allowed") createPrisma(prismaFormat) }
new.circle <- function(radius) structure(radius, class = "circle") new.square <- function(width) structure(width, class = "square") as.character.circle <- function(radius) sprintf("circle of radius %d", radius) as.character.square <- function(width) sprintf("%dx%d square", width, width) area <- function(animal) UseMethod("area") area.circle <- function(radius) radius*radius*pi area.square <- function(width) width*width `%/%.circle` <- function(e1, e2) { if(e1 == 1) { return(e1+e2) } if(e1 == 2) { return(42) } if(e1 == 3) { return(43) } if(e1 == 4) { return(44) } if(e1 == 3) { return(43) } if(e1 == 4) { return(44) } if(e1 == 3) { return(43) } if(e1 == 4) { return(44) } }
get_feature_snp <- function(snp_tbl, feature_tbl, extend=0.005) { feature_tbl <- dplyr::filter(feature_tbl, .data$type %in% c("exon","gene","pseudogene","pseudogenic_exon")) if(!nrow(feature_tbl)) return(NULL) genes <- dplyr::mutate( dplyr::ungroup( dplyr::summarize( dplyr::group_by(feature_tbl, .data$Dbxref), min_bp = min(.data$start) - extend, max_bp = max(.data$stop) + extend)), Dbxref = ifelse(is.na(.data$Dbxref), "NA", .data$Dbxref)) if(!nrow(genes)) return(NULL) tmpfn <- function(x,snp_tbl) { keep <- (x[1] <= snp_tbl$pos) & (x[2] >= snp_tbl$pos) snp_tbl[keep,] } tmp <- apply(as.matrix(genes[,2:3]), 1, tmpfn, snp_tbl) names(tmp) <- genes$Dbxref tmp <- dplyr::bind_rows(tmp, .id = "Dbxref") out <- dplyr::arrange( dplyr::select( dplyr::mutate( dplyr::inner_join( dplyr::distinct( feature_tbl, .data$start, .data$stop, .data$strand, .data$type, .keep_all=TRUE), tmp, by = "Dbxref"), SNP = .data$snp_id), -.data$snp_id), .data$Name, .data$type) if(!nrow(out)) return(NULL) class(out) <- c("feature_snp", class(out)) out } summary.feature_snp <- function(object, ...) { dplyr::ungroup( dplyr::summarize( dplyr::group_by(object, .data$type), count = dplyr::n(), minbp = min(.data$start), maxbp = max(.data$stop))) }
network.amendment <- function(x, membership, minus.log=TRUE){ oops <- requireNamespace("igraph", quietly = TRUE) if (!oops) { stop("igraph package missing: Please install, see: ?install.packages") } if(!inherits(x, "cna")){ stop("Input x must be a 'cna' class object as obtained from cna()") } if(!is.numeric(membership)){ stop("Input membership must be a numeric vector") } if(length(membership) != length(x$communities$membership)){ stop("Input membership and x$community$membership must be of the same length") } contract.matrix <- function(cij.network, membership, collapse.method="max", minus.log=TRUE){ if(minus.log){ cij.network[cij.network>0] <- exp(-cij.network[cij.network>0]) } collapse.options=c("max", "median", "mean", "trimmed") collapse.method <- match.arg(tolower(collapse.method), collapse.options) node.num <- max(x$communities$membership) if(node.num > 1){ collapse.cij <- matrix(0, nrow=node.num, ncol=node.num) inds <- pairwise(node.num) for(i in 1:nrow(inds)) { comms.1.inds <- which(membership==inds[i,1]) comms.2.inds <- which(membership==inds[i,2]) submatrix <- cij.network[comms.1.inds, comms.2.inds] collapse.cij[ inds[i,1], inds[i,2] ] = switch(collapse.method, max = max(submatrix), median = median(submatrix), mean = mean(submatrix), trimmed = mean(submatrix, trim = 0.1)) } if(minus.log){ collapse.cij[collapse.cij>0] <- -log(collapse.cij[collapse.cij>0]) } collapse.cij[ inds[,c(2,1)] ] = collapse.cij[ inds ] colnames(collapse.cij) <- 1:ncol(collapse.cij) } else{ warning("There is only one community in the $communities object. $community.cij object will be set to 0 in the contract.matrix() function.") collapse.cij <- 0 } class(collapse.cij) <- c("dccm", "matrix") return(collapse.cij) } x$communities$membership <- membership x$community.cij <- contract.matrix(x$cij, membership, minus.log=minus.log) cols=vmd_colors() x$community.network <- igraph::graph.adjacency(x$community.cij, mode="undirected", weighted=TRUE, diag=FALSE) if(max(x$communities$membership) > length(unique(cols)) ) { warning("The number of communities is larger than the number of unique 'colors' provided as input. Colors will be recycled") } igraph::V(x$network)$color <- cols[x$communities$membership] igraph::V(x$community.network)$color <- cols[ 1:max(x$communities$membership)] igraph::V(x$network)$size <- 1 igraph::V(x$community.network)$size <- table(x$communities$membership) return(x) }
context("rptBinary") data(BeetlesMale) suppressWarnings(RNGversion("3.5.0")) set.seed(23) R_est_1 <- rptBinary(Colour ~ (1|Population), grname=c("Population"), data=BeetlesMale, nboot=0, npermut=0) test_that("rpt estimation works for one random effect, no boot, no permut, no parallelisation, logit link", { expect_that(is.numeric(unlist(R_est_1$R)), is_true()) expect_equal(R_est_1$R["R_org", "Population"], 0.1853978, tolerance = 0.001) expect_equal(R_est_1$R["R_link", "Population"], 0.1879297, tolerance = 0.001) }) test_that("LRT works", { expect_that(is.numeric(unlist(R_est_1$R)), is_true()) expect_equal(R_est_1$P$LRT_P, 8.656602e-15, tolerance = 0.001) }) R_est_2 <- rptBinary(Colour ~ (1|Population), grname=c("Population"), data=BeetlesMale, nboot=2, npermut=0) test_that("rpt estimation works for one random effect, boot, no permut, no parallelisation, logit link", { expect_that(is.numeric(unlist(R_est_2$R)), is_true()) expect_equal(R_est_2$R["R_org", "Population"], 0.1853978, tolerance = 0.001) expect_equal(R_est_2$R["R_link", "Population"], 0.1879296, tolerance = 0.001) expect_equal(as.numeric(R_est_2$CI_emp$CI_org["Population", "2.5%"]), 0.1448806, tolerance = 0.001) expect_equal(as.numeric(R_est_2$CI_emp$CI_org["Population", "97.5%"]), 0.1660169, tolerance = 0.001) expect_equal(as.numeric(R_est_2$CI_emp$CI_link["Population", "2.5%"]), 0.1458783, tolerance = 0.001) expect_equal(as.numeric(R_est_2$CI_emp$CI_link["Population", "97.5%"]), 0.1654149, tolerance = 0.001) }) R_est_3 <- rptBinary(Colour ~ (1|Population), grname=c("Population"), data=BeetlesMale, nboot=0, npermut=2) test_that("rpt estimation works for one random effect, no boot, permut, no parallelisation, logit link", { expect_that(is.numeric(unlist(R_est_3$R)), is_true()) expect_equal(R_est_3$R["R_org", "Population"], 0.1853978, tolerance = 0.001) expect_equal(R_est_3$R["R_link", "Population"], 0.1879296, tolerance = 0.001) expect_equal(R_est_3$P$P_permut_org, 0.5, tolerance = 0.001) expect_equal(R_est_3$P$P_permut_link, 0.5, tolerance = 0.001) }) R_est_4 <- rptBinary(Colour ~ (1|Container) + (1|Population), grname=c("Container", "Population", "Residual"), data=BeetlesMale, nboot=0, npermut=0) test_that("rpt estimation works for two random effects plus residual, no boot, no permut, no parallelisation, logit link", { expect_that(is.numeric(unlist(R_est_4$R)), is_true()) expect_equal(R_est_4$R["R_org", "Container"], 0, tolerance = 0.001) expect_equal(R_est_4$R["R_link", "Container"], 0, tolerance = 0.001) expect_equal(R_est_4$R["R_org", "Population"], 0.1854004, tolerance = 0.001) expect_equal(R_est_4$R["R_link", "Population"], 0.1879323, tolerance = 0.001) expect_equal(R_est_4$R["R_link", "Residual"], 0.8120677, tolerance = 0.001) }) test_that("LRTs works", { expect_that(is.numeric(unlist(R_est_4$R)), is_true()) expect_equal(R_est_4$P[1, "LRT_P"], 1, tolerance = 0.001) expect_equal(R_est_4$P[2, "LRT_P"], 5.80928e-09, tolerance = 0.001) }) test_that("random effect components sum to up to one", { expect_equal(sum(R_est_4$R["R_link", ]), 1) }) R_est_5 <- rptBinary(Colour ~ (1|Container) + (1|Population), grname=c("Residual", "Container", "Population"), data=BeetlesMale, nboot=2, npermut=0) test_that("rpt estimation is independent of the order in grname", { expect_equal(R_est_4$R["R_org", "Container"], R_est_5$R["R_org", "Container"], tolerance = 0.001) expect_equal(R_est_4$R["R_link", "Container"], R_est_5$R["R_link", "Container"], tolerance = 0.001) expect_equal(R_est_4$R["R_org", "Population"], R_est_5$R["R_org", "Population"], tolerance = 0.001) expect_equal(R_est_4$R["R_link", "Population"], R_est_5$R["R_link", "Population"], tolerance = 0.001) expect_equal(R_est_4$R["R_org", "Residual"], R_est_5$R["R_org", "Residual"], tolerance = 0.001) expect_equal(R_est_4$R["R_link", "Residual"], R_est_5$R["R_link", "Residual"], tolerance = 0.001) }) test_that("rpt estimation works for two random effect, boot, no permut, no parallelisation, logit link", { expect_equal(as.numeric(R_est_5$CI_emp$CI_org["Container", "2.5%"]), 0.000214565 , tolerance = 0.001) expect_equal(as.numeric(R_est_5$CI_emp$CI_org["Container", "97.5%"]),0.008368035, tolerance = 0.001) expect_equal(as.numeric(R_est_5$CI_emp$CI_org["Population", "2.5%"]), 0.091740174, tolerance = 0.001) expect_equal(as.numeric(R_est_5$CI_emp$CI_org["Population", "97.5%"]), 0.206301801, tolerance = 0.001) expect_equal(as.numeric(R_est_5$CI_emp$CI_link["Container", "2.5%"]), 0.000215459, tolerance = 0.001) expect_equal(as.numeric(R_est_5$CI_emp$CI_link["Container", "97.5%"]), 0.0084029, tolerance = 0.001) expect_equal(as.numeric(R_est_5$CI_emp$CI_link["Population", "2.5%"]), 0.092182856, tolerance = 0.001) expect_equal(as.numeric(R_est_5$CI_emp$CI_link["Population", "97.5%"]), 0.2095188, tolerance = 0.001) expect_equal(as.numeric(R_est_5$CI_emp$CI_link["Residual", "2.5%"]), 0.790265699, tolerance = 0.001) expect_equal(as.numeric(R_est_5$CI_emp$CI_link["Residual", "97.5%"]), 0.8994142, tolerance = 0.001) }) R_est_6 <- rptBinary(Colour ~ (1|Container) + (1|Population), grname=c("Container", "Population"), data=BeetlesMale, nboot=0, npermut=2) test_that("rpt estimation is independent of the presence of Residual in grname", { expect_equal(R_est_4$R["R_org", "Container"], R_est_6$R["R_org", "Container"], tolerance = 0.001) expect_equal(R_est_4$R["R_link", "Container"], R_est_6$R["R_link", "Container"], tolerance = 0.001) expect_equal(R_est_4$R["R_org", "Population"], R_est_6$R["R_org", "Population"], tolerance = 0.001) expect_equal(R_est_4$R["R_link", "Population"], R_est_6$R["R_link", "Population"], tolerance = 0.001) }) test_that("rpt estimation works for two random effect, no boot, permut, no parallelisation, logit link", { expect_equal(R_est_6$P["Container", "P_permut_org"], 1, tolerance = 0.001) expect_equal(R_est_6$P["Population", "P_permut_org"], 0.5, tolerance = 0.001) expect_equal(R_est_6$P["Container", "P_permut_link"], 1, tolerance = 0.001) expect_equal(R_est_6$P["Population", "P_permut_link"], 0.5, tolerance = 0.001) }) R_est_7 <- rptBinary(Colour ~ Treatment + (1|Container) + (1|Population), grname=c("Fixed", "Container", "Population", "Residual"), data=BeetlesMale, nboot=2, npermut=2, ratio = FALSE) test_that("Variance estimation works for two random effects, boot, permut, Residual and Fixed", { expect_equal(R_est_7$R["R_link", "Container"], 7.902152e-10, tolerance = 0.001) expect_equal(R_est_7$R["R_link", "Population"], 1.054672 , tolerance = 0.001) expect_equal(R_est_7$R["R_link", "Residual"], 4.086918, tolerance = 0.001) expect_equal(R_est_7$R["R_link", "Fixed"], 0.2438065, tolerance = 0.001) }) R_est_8 <- rptBinary(Colour ~ (1|Container) + (1|Population), grname=c("Container", "Population", "Residual", "Fixed"), data=BeetlesMale, nboot=0, npermut=0, ratio = TRUE, adjusted=FALSE) R_est_9 <- rptBinary(Colour ~ (1|Container) + (1|Population), grname=c("Fixed", "Container"), data=BeetlesMale, nboot=0, npermut=0, ratio = TRUE, adjusted=FALSE) test_that("Repeatabilities are equal for grouping factors independent of residual specification", { expect_false(any(R_est_8$R[,"Fixed"] == R_est_9$R[,"Fixed"]) == FALSE) }) R_est_10 <- rptBinary(Colour ~ (1|Container) + (1|Population), grname=c("Population", "Container"), data=BeetlesMale, nboot=0, npermut=0, ratio = TRUE, adjusted=FALSE) test_that("Repeatabilities are equal for different order in grname argument", { expect_equal(R_est_10$R[,"Container"], R_est_6$R[,"Container"]) expect_equal(R_est_10$R[,"Population"], R_est_6$R[,"Population"]) }) test_that("LRTs are equal for different order in grname argument", { expect_equal(R_est_10$P["Container", "LRT_P"], R_est_6$P["Container", "LRT_P"]) expect_equal(R_est_10$P["Population", "LRT_P"], R_est_6$P["Population", "LRT_P"]) }) R_est_11 <- rptBinary(Colour ~ (1|Population) + (1|Container), grname=c("Container", "Population"), data=BeetlesMale, nboot=0, npermut=0, ratio = TRUE) test_that("Repeatabilities are equal for different order in formula argument", { expect_equal(R_est_10$R[,"Container"], R_est_11$R[,"Container"]) expect_equal(R_est_10$R[,"Population"], R_est_11$R[,"Population"]) }) test_that("LRTs are equal for different order in formula argument", { expect_equal(R_est_10$P["Container", "LRT_P"], R_est_11$P["Container", "LRT_P"]) expect_equal(R_est_10$P["Population", "LRT_P"], R_est_11$P["Population", "LRT_P"]) })
context("test-rx_not") test_that("not rule works", { expect_equal(rx_not(value = "") %>% as.character(), "(?!)") expect_false(grepl(rx_find(value = "q") %>% rx_not("u"), "qu", perl = TRUE)) expect_true(grepl(rx_find(value = "q") %>% rx_not("u"), "qa", perl = TRUE)) })
bounds_hy <- function(es, ext) { yi <- es$yi vi <- es$vi ub <- max(yi + 1) if(ext == FALSE) { lb <- max(yi - 38*sqrt(vi)) } else { lb <- -600 } return(c(lb, ub)) }
cr_symb <- function(k = k, m = m) { p_symb <- gtools::permutations(k, m, repeats.allowed = TRUE) rownames(p_symb) <- paste("Perm", 1:nrow(p_symb), sep="") c_symb0 <- gtools::combinations(k, m, repeats.allowed = TRUE) rownames(c_symb0) <- paste("Comb", 1:nrow(c_symb0), sep="") c_symb <- matrix(rep(0, nrow(c_symb0) * k), ncol = k) colnames(c_symb) <- paste("level",1:ncol(c_symb), sep="") for (i in 1:nrow(c_symb0)) { for (j in 1:k) { c_symb[i, j] = sum(c_symb0[i, ] == j) } } symb <- list(p_symb, c_symb, c_symb0) names(symb)[1] <- "p_symb" names(symb)[2] <- "c_symb" names(symb)[3] <- "c_symb0" return(symb) }