code
stringlengths
1
13.8M
msle = function(truth, response, sample_weights = NULL, na_value = NaN, ...) { assert_regr(truth, response = response, na_value = na_value) if (min(truth, response) <= -1) { return(na_value) } wmean(sle(truth, response), sample_weights) } add_measure(msle, "Mean Squared Log Error", "regr", 0, Inf, TRUE)
df_to_json_list <- function(df) { if (!requireNamespace("jsonlite", quietly = TRUE)) { stop( "Package \"jsonlite\" needed for this function to work. Please install it.", call. = FALSE ) } result <- vector("list", nrow(df)) for (i in seq_len(nrow(df))) { result[[i]] <- jsonlite::toJSON(jsonlite::unbox(df[i, , drop = FALSE])) } result }
grab_reich_lab_deaths <- function(){ library(httr) req <- httr::GET("https://api.github.com/repos/reichlab/covid19-forecast-hub/git/trees/master?recursive=1") httr::stop_for_status(req) filelist<- unlist(lapply(content(req)$tree, "[", "path"), use.names = F) filelist <- grep("data-processed/", filelist, value = TRUE, fixed = TRUE) filelist <- grep(".csv", filelist, value = TRUE, fixed = TRUE) filelist <- lapply(filelist, function(x) paste0("https://raw.githubusercontent.com/reichlab/covid19-forecast-hub/master/",x)) foo <- data.table::rbindlist(lapply(filelist, read_reich)) foo <- foo %>% data.table::dcast.data.table(target_end_date + target + model_team + forecast_date ~ measure,value.var = "value") %>% .[, maxdate :=max(forecast_date), by=.(model_team)] %>% .[forecast_date == maxdate & as.Date(target_end_date) <= Sys.Date() + 30, .(model_team, pointNA, target_end_date)] return(foo) }
library(ggplot2) load('output/result-model11-8.RData') ms <- rstan::extract(fit_vb) probs <- c(0.1, 0.25, 0.5, 0.75, 0.9) idx <- expand.grid(tag=1:K, item=1:I) qua <- apply(idx, 1, function(x) quantile(ms$phi[,x[1],x[2]], probs=probs)) d_est <- data.frame(idx, t(qua), check.names=FALSE) p <- ggplot(data=d_est, aes(x=item, y=`50%`)) + theme_bw(base_size=18) + theme(axis.text.x=element_text(angle=40, vjust=1, hjust=1)) + facet_wrap(~tag, ncol=3) + coord_flip() + scale_x_reverse(breaks=c(1, seq(20, 120, 20))) + geom_bar(stat='identity') + labs(x='ItemID', y='phi[k,y]') ggsave(file='output/fig11-11-left.png', plot=p, dpi=300, w=7, h=5)
`screeplot.epplab` <- function(x,type="lines",which=1:10,main="",ylab="Objective criterion",xlab="Simulation run",...){ which <- which[which<=length(x$PPindexVal)] temp <- x$PPindexVal[which] names(temp) <- colnames(x$PPdir)[which] type<-match.arg(type,c("barplot","lines")) if (type=="barplot") { barplot(temp,ylab=ylab,xlab=xlab,main=main,...) } else{ plot(temp,type="b",ylab=ylab,xlab=xlab,main=main,...) } invisible() }
LRC <- function(X,costs){ if (missingArg(X)) stop("The X argument is missing.") if (missingArg(costs)) stop("The cost vector argument 'costs' is missing.") rate <- TRUE indicator <- LimDist(X,rate)$indicator if(indicator==1){ occup_dist <- LimDist(X,rate)$Lim_dist output <- list("It was possible to calculate the long-run cost rate!", LRCR=occup_dist%*%costs) return(output) } else{return(list(indicator=0,"It was not possible to calculate the long-run cost rate."))} }
simple <- function(src,...){ noquotes <- gsub("([\"'`]).*\\1","",src) print(noquotes) comments <- grep(" pat <- "[^ tags <- gsub(pat,"\\1",comments) docs <- as.list(gsub(pat,"\\2",comments)) names(docs) <- tags docs[tags!=""] } .parsers <- list(simple=inlinedocs::forfun(simple)) testfun <- function(x,y,z){ a <- (x+y)*z a } .result <- list( testfun=list( `item{x}`="the first arg", value="the sum of the first two times the third", description="a useless formula"), simple=list( title="a simple Parser Function", value="all the tags with a single pound sign")) .dontcheck <- TRUE
as_vegaspec.altair.vegalite.v4.api.TopLevelMixin <- function(spec, ...) { spec <- spec$to_json() vegawidget::as_vegaspec(spec, ...) } print.altair.vegalite.v4.api.TopLevelMixin <- function(x, ...) { x <- as_vegaspec(x) print(x, ...) } format.altair.vegalite.v4.api.TopLevelMixin <- function(x, ...) { x <- as_vegaspec(x) format(x, ...) } knit_print.altair.vegalite.v4.api.TopLevelMixin <- function(spec, ..., options = NULL) { spec <- as_vegaspec(spec) knitr::knit_print(spec, ..., options = options) }
determination <- function(xreg, bruteforce=TRUE, ...){ nVariables <- ncol(xreg); nSeries <- nrow(xreg); vectorCorrelationsMultiple <- rep(NA,nVariables); names(vectorCorrelationsMultiple) <- colnames(xreg); if(nSeries<=nVariables & bruteforce){ warning(paste0("The number of variables is larger than the number of observations. ", "Sink regression cannot be constructed. Using stepwise."), call.=FALSE); bruteforce <- FALSE; } if(!bruteforce){ determinationCalculator <- function(residuals, actuals){ return(1 - sum(residuals^2) / sum((actuals-mean(actuals))^2)); } } if(any(class(xreg) %in% c("tbl","tbl_df","data.table"))){ class(xreg) <- "data.frame"; } if(bruteforce & nVariables>1){ if(!is.numeric(xreg) && !all(unlist(lapply(xreg,is.numeric)))){ for(i in 1:nVariables){ vectorCorrelationsMultiple[i] <- suppressWarnings(mcor(xreg[,-i,drop=FALSE],xreg[,i])$value^2); } } else{ corMatrix <- cor(xreg, ...); for(i in 1:nVariables){ vectorCorrelationsMultiple[i] <- tryCatch(corMatrix[i,-i,drop=FALSE] %*% chol2inv(chol(corMatrix[-i,-i,drop=FALSE])) %*% corMatrix[-i,i,drop=FALSE], error=function(e) 1); } } } else if(!bruteforce & nVariables>1){ testXreg <- xreg; colnames(testXreg) <- paste0("x",c(1:nVariables)); testModel <- suppressWarnings(stepwise(testXreg)); vectorCorrelationsMultiple[1] <- determinationCalculator(residuals(testModel), actuals(testModel)); for(i in 2:nVariables){ testXreg[] <- xreg; testXreg[,1] <- xreg[,i]; testXreg[,i] <- xreg[,1]; testModel <- suppressWarnings(stepwise(testXreg)); vectorCorrelationsMultiple[i] <- determinationCalculator(residuals(testModel), actuals(testModel)); } } else{ vectorCorrelationsMultiple <- 0; } return(vectorCorrelationsMultiple); } determ <- function(object, ...) UseMethod("determ") determ.default <- function(object, ...){ return(determination(object, ...)); } determ.lm <- function(object, ...){ return(determination(object$model[,-1], ...)); } determ.alm <- function(object, ...){ return(determination(object$data[,-1], ...)); }
eval_sbo_predictor <- function(model, test, L = attr(model, "L")){ msg <- if (!is.object(model) || class(model)[1] != "sbo_predictor") { "'model' must be a 'sbo_predictor' class object." } else if (!is.character(test)) { "'test' must be a character vector." } else if (length(test) < 1) { "'test' must be of length at least 1." } else if (!is.numeric(L) | length(L) != 1) { "'L' must be a length one integer." } else if (L < 1) { "'L' must be greater than one." } if (!is.null(msg)) rlang::abort(class = "sbo_domain_error", message = msg) test_kgrams <- sample_kgrams(model, test) if (nrow(test_kgrams) == 0) { return(tibble(input = character(), true = character(), preds = matrix(nrow = 0, ncol = 3), correct = logical(0)) ) } test_kgrams %>% group_by(row_number()) %>% mutate(preds = matrix(predict(model, .data$input)[1:L], ncol = L ), correct = .data$true %in% .data$preds) %>% ungroup %>% select(.data$input, .data$true, .data$preds, .data$correct) } sample_kgrams <- function(model, test) { N <- attr(model, "N") wrap <- c(paste0(rep("<BOS>", N - 1), collapse = " "), "<EOS>") EOS <- attr(model, "EOS") test <- attr(model, ".preprocess")(test) lapply(test, function(x) { if (EOS != "") x <- tokenize_sentences(x, EOS = EOS) if (length(x) == 0) return(tibble(input = character(0), true = input)) x <- sample(x, 1) %>% paste(wrap[[1]], ., wrap[[2]], sep = " ") %>% strsplit(" ", fixed = TRUE) %>% unlist %>% .[. != ""] if (length(x) < N + 1) return(tibble(input = character(0), true = input)) i <- sample(1:(length(x) - N + 1), 1) input <- paste0(x[i + seq_len(N - 1) - 1], collapse = " ") tibble(input = input, true = x[i + N - 1]) } ) %>% bind_rows %>% mutate(input = gsub("<BOS>", "", .data$input)) }
aw_get_dimensions <- function(rsid = Sys.getenv("AW_REPORTSUITE_ID"), locale = 'en_US', segmentable = FALSE, reportable = FALSE, classifiable = FALSE, expansion = NA, debug = FALSE, company_id = Sys.getenv("AW_COMPANY_ID") ){ if(is.na(paste(expansion,collapse=","))) { vars <- tibble::tibble(locale, segmentable) } if(!is.na(paste(expansion,collapse=","))) { vars <- tibble::tibble(locale, segmentable, reportable, classifiable, expansion = paste(expansion,collapse=",")) } prequery <- list(vars %>% dplyr::select_if(~ any(!is.na(.)))) query_param <- stringr::str_remove_all(stringr::str_replace_all(stringr::str_remove_all(paste(prequery, collapse = ''), '\\"'), ', ', '&'), 'list\\(| |\\)') urlstructure <- glue::glue('dimensions?rsid={rsid}&{query_param}') res <- aw_call_api(req_path = urlstructure, debug = debug, company_id = company_id) res <- jsonlite::fromJSON(res) res$id <- stringr::str_sub(res$id, 11) res }
add_fpsim <- function(data, keep) { if (length(attributes(data)$ps_data_type) > 0 && attributes(data)$ps_data_type %in% c("dyad_year", "leader_dyad_year")) { if (!all(i <- c("ccode1", "ccode2") %in% colnames(data))) { stop("add_fpsim() merges on two Correlates of War codes (ccode1, ccode2), which your data don't have right now. Make sure to run create_dyadyears() at the top of the pipe. You'll want the default option, which returns Correlates of War codes.") } else { if (!file.exists(system.file("extdata", "dyadic_fp_similarity.rds", package="peacesciencer"))) { stop("Dyadic foreign policy similarity data are stored remotely and must be downloaded separately.\nThis error disappears after successfully running `download_extdata()`. Thereafter, the function works with no problem and the dyadic trade data (`cow_trade_ddy`) can be loaded for additional exploration.") } else { fpsim_data <- readRDS(system.file("extdata", "dyadic_fp_similarity.rds", package="peacesciencer")) if (!missing(keep)) { fpsim_data <- subset(fpsim_data, select = c("year", "ccode1", "ccode2", keep)) } else { fpsim_data <- fpsim_data } fpsim_data %>% left_join(data, .) -> data return(data) } } } else if (length(attributes(data)$ps_data_type) > 0 && attributes(data)$ps_data_type %in% c("state_year", "leader_year")) { stop("add_fpsim() right now only works with dyadic data (either dyad-year or leader-dyad-year).") } else { stop("add_fpsim() requires a data/tibble with attributes$ps_data_type of leader_dyad_year or dyad_year. Try running create_dyadyears() or create_leaderdyadyears() at the start of the pipe.") } return(data) }
pvals.ridgeLogistic <- function(x, ...) { automatic <- x$automatic chosen.nPCs <- x$chosen.nPCs max.nPCs <- x$max.nPCs isScaled <- x$isScaled B <- x$coef Inter <- x$Inter if(Inter) { X <- cbind(1,x$x) } else { X <- x$x } lambda <- x$lambda xb <- apply(B, 2, function(x){X %*% x}) expXB <- exp(xb) p <- expXB / (1 + expXB) W <- vector("list", length = ncol(p)) for(i in seq(ncol(p))) { W[[i]] <- diag(p[,i]*(1-p[,i]),length(p[,i]),length(p[,i])) } KI <- lapply(lambda, function(x){diag(2 * x, dim(X)[2], dim(X)[2])}) if(Inter) { for(i in seq(length(lambda))) { KI[[i]][1,1] <- 0 } } computeV <- function(W, KI) { V <- solve(t(X)%*%W%*%X+KI) %*% (t(X)%*%W%*%X) %*% solve(t(X)%*%W%*%X+KI) return(V) } V <- mapply("computeV", W, KI, SIMPLIFY = FALSE) se <- sapply(V, function(x){sqrt(diag(x))}) tstat <-B/se pval <- 2*(1 - pnorm(abs(tstat))) if(Inter) { B <- B[-1, ] se <- se[-1, ] tstat <- tstat[-1, ] pval <- pval[-1, ] } res <- list(coef = cbind(B), se = cbind(se), tstat = cbind(tstat), pval = cbind(pval), isScaled = isScaled, automatic = automatic, lambda = lambda, chosen.nPCs = chosen.nPCs, max.nPCs = max.nPCs) class(res) <- "pvalsRidgeLogistic" res }
sampleDelta2 <- function(pos, x, q, B, S, sig2, alphad2, betad2){ plus = 0 if(sum(S[pos,]) > 0){ Bi = B[pos, which(S[pos,] == 1)] xi = x[, which(S[pos,] == 1)] plus = Bi %*% t(xi) %*% xi %*% Bi / (2* sig2) } out = rinvgamma(1, shape=sum(S[pos,1:q]) + alphad2, scale=betad2 + plus) return(out) }
teamERAcrossOversAllOppnAllMatches <- function(matches,t1,plot=1) { team=ball=totalRuns=total=ER=type=meanER=str_extract=NULL ggplotly=NULL a <-filter(matches,team==t1) a1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 0.1, 5.9)) a2 <- select(a1,team,date,totalRuns) a3 <- a2 %>% group_by(team,date) %>% summarise(total=sum(totalRuns),count=n()) a3$ER=a3$total/a3$count * 6 a4 = a3 %>% select(team,ER) %>% summarise(meanER=mean(ER)) a4$type="1-Power Play" b1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 6.1, 15.9)) b2 <- select(b1,team,date,totalRuns) b3 <- b2 %>% group_by(team,date) %>% summarise(total=sum(totalRuns),count=n()) b3$ER=b3$total/b3$count * 6 b4 = b3 %>% select(team,ER) %>% summarise(meanER=mean(ER)) b4$type="2-Middle Overs" c1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 16.1, 20.0)) c2 <- select(c1,team,date,totalRuns) c3 <- c2 %>% group_by(team,date) %>% summarise(total=sum(totalRuns),count=n()) c3$ER=c3$total/c3$count * 6 c4 = c3 %>% select(team,ER) %>% summarise(meanER=mean(ER)) c4$type="3-Death Overs" m=rbind(a4,b4,c4) plot.title= paste("Wickets across 20 overs by ",t1,"in all matches against all teams", sep=" ") if(plot ==1){ ggplot(m,aes(x=type, y=meanER, fill=t1)) + geom_bar(stat="identity", position = "dodge") + ggtitle(bquote(atop(.(plot.title), atop(italic("Data source:http://cricsheet.org/"),"")))) }else { g <- ggplot(m,aes(x=type, y=meanER, fill=t1)) + geom_bar(stat="identity", position = "dodge") + ggtitle(plot.title) ggplotly(g) } }
fit2list=function(fit){ data=fit2model(fit) mode=1 if("glm" %in% attr(fit,"class")) { mode=2 family = fit$family$family } xvars = attr(fit$terms, "term.labels") xno = length(xvars) yvar = as.character(attr(fit$terms, "variables"))[2] xvars yvar data fitlist=map(xvars,function(x){ myformula=paste0(yvar,"~",x) if(mode==1){ fit=lm(as.formula(myformula),data=data) } else if(mode==2) { fit=glm(as.formula(myformula),family=family,data=data) } }) class(fitlist)="fitlist" fitlist }
get.range.rLNLN <- function(method,prev.result,dataset,n,TY,fix.mu,fixed.mu) { stochprof.results <- NULL calculate.ci <- NULL rm(stochprof.results) rm(calculate.ci) if (((method=="none") || (nrow(prev.result)==0)) || (is.null(prev.result))) { return(NULL) } m <- (ncol(prev.result)+1)/TY - 2 res <- stochprof.results(prev.result=prev.result,TY=TY,show.plots=F) if (is.null(res)) { return(NULL) } best <- res[1,-ncol(res),drop=F] if (method=="best") { ranges <- cbind(t(best),t(best)) } else if (substr(method,2,3)=="se") { this.se <- apply(X=res[,-ncol(res)],MARGIN=2,FUN=sd) a <- as.double(substr(method,1,1)) ranges <- cbind(t(best)-a*this.se,t(best)+a*this.se) } else if (method=="top20") { toptargets <- res[1:min(20,nrow(res)),1:(ncol(res)-1),drop=F] lower <- apply(X=toptargets,MARGIN=2,FUN=min) upper <- apply(X=toptargets,MARGIN=2,FUN=max) ranges <- cbind(lower,upper) } else if (method=="quant") { lower <- rep(NA,ncol(res)-1) upper <- lower for (i in 1:length(lower)) { this.par <- res[,i] this.par <- this.par[order(this.par)] lower.pos <- min(length(this.par),round(1,0.2 * length(this.par)+1)) upper.pos <- max(1,round(0.8 * length(this.par)-1)) lower[i] <- this.par[lower.pos] upper[i] <- this.par[upper.pos] } ranges <- cbind(lower,upper) } else if (method=="mlci") { ranges <- calculate.ci(alpha=0.05,parameter=best,dataset=dataset,n=n,TY=TY,fix.mu=fix.mu,fixed.mu=fixed.mu) return(ranges) } if (method!="best") { if (TY>1) { ranges[1:(TY-1),1] <- pmax(0,ranges[1:(TY-1),1]) ranges[1:(TY-1),2] <- pmin(1,ranges[1:(TY-1),2]) } ranges[nrow(ranges)-((TY-1):0),1] <- pmax(ranges[nrow(ranges)-((TY-1):0),1],0.01) ranges[nrow(ranges)-((TY-1):0),2] <- pmax(ranges[nrow(ranges)-((TY-1):0),2],ranges[nrow(ranges)-((TY-1):0),1]+0.05) } return(ranges) }
`mstlines` <- function(mst, x, y = NULL, pts.names = NULL, ...) { a <- colnames(mst) if (ncol(as.matrix(x)) >= 2 & nrow(as.matrix(x)) >= 2 & is.null(y) == TRUE) b <- x[,1:2] else b <- cbind(x,y) if (is.null(pts.names) == FALSE) rownames(b) <- pts.names else rownames(b) <- colnames(mst) v <- colnames(mst) for (i in 1:nrow(mst)) { for (j in 1:ncol(mst)) { if (mst[i, j] == 1) { lines(c(b[v[i], 1], b[v[j],1]), c(b[v[i], 2], b[v[j],2]), ...) } } } }
positive_definite <- function(m, c=NULL){ if(!is.null(c) && c<=0) stop("Parameter c must be a nonegative number.") ei <- eigen(m) if(any(ei$values<0)){ cc<-10^{seq(-5,10,by=1)} ord<-min(abs(ei$values))/cc if(is.null(c)) c<-cc[max(which(ord>100))] neigen <- ei$values+abs(min(ei$values))+c m <- ei$vectors%*%diag(neigen,2,2)%*%t(ei$vectors) } return(list(m=m, c=c)) }
fregre.basis.cv.old <- function(fdataobj,y,basis.x=NULL,basis.b=NULL, type.basis=NULL,lambda=0,Lfdobj=vec2Lfd(c(0,0),rtt), type.CV=GCV.S,par.CV=list(trim=0),weights= rep(1,n), verbose=FALSE,...){ call<-match.call() if (!is.fdata(fdataobj)) fdataobj=fdata(fdataobj) tol<-sqrt(.Machine$double.eps) x<-fdataobj[["data"]] tt<-fdataobj[["argvals"]] rtt<-fdataobj[["rangeval"]] n = nrow(x) np <- ncol(x) W<-diag(weights) tol<-sqrt(.Machine$double.eps) if (n != (length(y))) stop("ERROR IN THE DATA DIMENSIONS") if (is.null(rownames(x))) rownames(x) <- 1:n if (is.null(colnames(x))) colnames(x) <- 1:np if (is.matrix(y)) y=as.vector(y) fou<-FALSE if (is.null(basis.x)) { nbasis1=seq(5,max(floor(np/5),11),by=2) lenbasis.x=length(nbasis1) basis.x=list() for (nb.x in 1:lenbasis.x) { if (!is.null(type.basis)) { aa1 <- paste("create.", type.basis[1], ".basis", sep = "") as <- list() as[[1]] <- range(tt) names(as)[[1]] <- "rangeval" as[[2]] <- nbasis1[nb.x] names(as)[[2]] <- "nbasis" if (verbose) basis.x[[nb.x]]=do.call(aa1, as) else basis.x[[nb.x]]=suppressWarnings(do.call(aa1,as)) } else basis.x[[nb.x]]=create.bspline.basis(rangeval=rtt,nbasis=nbasis1[nb.x],...) } } else nbasis1<-basis.x if (is.null(basis.b)) { basis.b<-basis.x nbasis2<-nbasis1 fou<-TRUE } else nbasis2<-basis.b lenlambda=length(lambda) a1=list() ;a2=list() if (!is.null(type.basis)){ if (type.basis=="fourier") fou<-TRUE} if (!is.list(basis.x)) { lenbasis.x=length(basis.x) for (nb.x in 1:lenbasis.x) { if (!is.null(type.basis)) { aa1 <- paste("create.", type.basis[1], ".basis", sep = "") as <- list() as[[1]] <- rtt names(as)[[1]] <- "rangeval" as[[2]] <- basis.x[nb.x] names(as)[[2]] <- "nbasis" if (verbose) a1[[nb.x]]=do.call(aa1, as) else a1[[nb.x]]=suppressWarnings(do.call(aa1, as)) } else a1[[nb.x]]=create.bspline.basis(rangeval=rtt,nbasis=basis.x[[nb.x]]) } basis.x=a1 } else lenbasis.x=length(nbasis1) if (!is.list(basis.b)) { lenbasis.y=length(basis.b) maxbasis.y<-which.max(basis.b) for (nb.y in 1:lenbasis.y) { if (!is.null(type.basis)) { if (length(type.basis)>1) aa1 <- paste("create.", type.basis[2], ".basis", sep = "") else aa1 <- paste("create.", type.basis[1], ".basis", sep = "") as <- list() as[[1]] <- rtt names(as)[[1]] <- "rangeval" as[[2]] <- basis.b[nb.y] names(as)[[2]] <- "nbasis" if (verbose) a2[[nb.y]]=do.call(aa1, as) else a2[[nb.y]]=suppressWarnings(do.call(aa1, as)) } else a2[[nb.y]]=create.bspline.basis(rangeval=rtt,nbasis=basis.b[[nb.y]]) } basis.b=a2 } else { lenbasis.y=length(nbasis2) maxbasis.y<-which.max(nbasis2) } pr=Inf i.lambda.opt=1;i.nb.y.opt=1;i.nb.x.opt=1 xx<-fdata.cen(fdataobj) xmean=xx[[2]] xcen=xx[[1]] ymean=mean(y) ycen=y-ymean if (fou) { basis.x<-basis.b nbasis1<-nbasis2 if (verbose) warning("Same number of basis elements in the basis.x and basis.b") lenbasis.x<-lenbasis.y nbasis12<-rep(NA,lenbasis.x) nbasis22<-rep(NA,lenbasis.y) x.fdfou<-Cfou<-Cmfou<- list() for (nb.x in 1:lenbasis.x) { x.fd=x.fdfou[[nb.x]] =Data2fd(argvals=tt,y=t(xcen$data),basisobj=basis.x[[nb.x]]) Cfou[[nb.x]]=t(x.fdfou[[nb.x]]$coefs) Cmfou[[nb.x]]=matrix(t(mean.fd(x.fdfou[[nb.x]])$coefs)) nbasis12[nb.x]<-basis.x[[nb.x]]$type } } else { nbasis12<-rep(NA,lenbasis.x) nbasis22<-rep(NA,lenbasis.y) x.fdfou<-Cfou<-Cmfou<- list() for (nb.x in 1:lenbasis.x) { x.fd=x.fdfou[[nb.x]] =Data2fd(argvals=tt,y=t(xcen$data),basisobj=basis.x[[nb.x]]) Cfou[[nb.x]]=t(x.fdfou[[nb.x]]$coefs) Cmfou[[nb.x]]=matrix(t(mean.fd(x.fdfou[[nb.x]])$coefs)) nbasis12[nb.x]<-basis.x[[nb.x]]$type } } gcv=array(NA,dim=c(lenbasis.x,lenbasis.y,lenlambda)) for (nb.x in 1:lenbasis.x) { if (fou) {ifou<-nb.x;iifou<-nb.x} else {ifou<-1;iifou<-lenbasis.y } for (nb.y in ifou:iifou) { nbasis22[nb.y]<-basis.b[[nb.y]]$type C<-Cfou[[nb.x]] Cm<-Cmfou[[nb.x]] J<-inprod(basis.x[[nb.x]],basis.b[[nb.y]]) Z=C%*%J Z=cbind(rep(1,len=n),Z) if (min(lambda,na.rm=TRUE)!=0) { R=diag(0,ncol= basis.b[[nb.y]]$nbasis+1,nrow=basis.b[[nb.y]]$nbasis+1) R[-1,-1]<-eval.penalty(basis.b[[nb.y]],Lfdobj) } else R=0 for (k in 1:lenlambda) { Sb=t(Z)%*%W%*%Z+lambda[k]*R Cinv<-Minverse(Sb) Sb2=Cinv%*%t(Z)%*%W par.CV$S <-Z%*%Sb2 par.CV$y<-y gcv[nb.x,nb.y,k]<- do.call(type.CV,par.CV) if ((gcv[nb.x,nb.y,k]+tol)<pr) { pr=gcv[nb.x,nb.y,k] lambda.opt=lambda[k] basis.b.opt=basis.b[[nb.y]] basis.x.opt=basis.x[[nb.x]] Sb.opt=Sb2 Z.opt=Z Cm.opt=Cm J.opt=J Cinv.opt=Cinv } } } } if (all(is.na(gcv))) stop("System is computationally singular. Try to reduce the number of basis elements") l = which.min(gcv)[1] gcv.opt=min(gcv,na.rm=TRUE) S=Z.opt%*%Sb.opt DD<-t(Z.opt)%*%y yp=S%*%y b.est=Sb.opt%*%y bet<-Cinv.opt%*%DD rownames(b.est)<-1:nrow(b.est) rownames(b.est)[1]<- "(Intercept)" beta.est=fd(b.est[-1,1],basis.b.opt) a.est=b.est[1,1] e=drop(y)-drop(yp) names(e)<-rownames(x) df=basis.b.opt$nbasis+1 sr2=sum(e^2)/(n-df) Vp<-sr2*Cinv.opt r2=1-sum(e^2)/sum(ycen^2) object.lm=list() object.lm$coefficients<-drop(b.est) object.lm$residuals<-drop(e) object.lm$fitted.values<-yp object.lm$y<-y object.lm$x<-Z.opt object.lm$rank<-df object.lm$df.residual<-n-df vfunc=call[[2]] colnames(Z.opt)<-1:ncol(Z.opt) colnames(Z.opt)[2:ncol(Z.opt)]= paste(vfunc,".",basis.b.opt$names, sep = "") colnames(Z.opt)[1]="(Intercept)" vcov2=sr2*Cinv.opt std.error=sqrt(diag(vcov2)) t.value=b.est/std.error p.value= 2 * pt(abs(t.value),n-df, lower.tail = FALSE) coefficients<-cbind(b.est,std.error,t.value,p.value) colnames(coefficients) <- c("Estimate", "Std. Error", "t value", "Pr(>|t|)") rownames(coefficients)<-colnames(Z.opt) class(object.lm) <- "lm" b.est=b.est[-1] names(b.est)<-rownames(coefficients)[-1] lambda2<-paste("lambda=",lambda,sep="") if (fou) { nbasis12<-paste(nbasis12,nbasis2,sep="") gcv<-as.matrix(apply(gcv,3,diag)) rownames(gcv)<-nbasis12 colnames(gcv)<-lambda2 } else{ nbasis12<-paste(nbasis12,nbasis1,sep="") nbasis22<-paste(nbasis22,nbasis2,sep="") dimnames(gcv)<-list(nbasis12,nbasis22,lambda2) } x.fd=Data2fd(argvals=tt,y=t(xcen$data),basisobj=basis.x.opt) out<-list("call"=call,"coefficients"=coefficients,"residuals"=e, "fitted.values"=yp,"beta.est"=beta.est,weights= weights, "df"=df,"r2"=r2,"sr2"=sr2,"Vp"=Vp,"H"=S,"y"=y, "fdataobj"=fdataobj,x.fd=x.fd,"gcv"=gcv,"lambda.opt"=lambda.opt, "gcv.opt"=gcv.opt,"b.est"=b.est,"a.est"=a.est, "basis.x.opt"=basis.x.opt,"basis.b.opt"=basis.b.opt, "J"=J.opt,"lm"=object.lm,"mean"=xmean) class(out)="fregre.fd" return(invisible(out)) }
syn_mice_create_design_matrix <- function(x, xp, formula=NULL) { if (is.null(formula)){ formula <- as.formula( paste0("~ ", paste0( colnames(x), collapse="+") ) ) } x <- stats::model.matrix(formula, data=x) xp <- stats::model.matrix(formula, data=xp) if (colnames(x)[1]=="(Intercept)"){ x <- x[,-1] xp <- xp[,-1] } colnames(xp) <- colnames(x) <- paste0("x",1:ncol(x)) res <- list(x=x, xp=xp) return(res) }
plot.sigProb <- function(x, prob, xvar, main="", ylab, xlab, col="blue", pch=16, ...){ object <- x if(missing(prob)){ stop("The y-variable prob must be specified") }else{ prob <- stringr::str_to_lower(prob) } ntheta <- nrow(object$par) ndata <- nrow(object$model) if(ndata <=1 & ntheta <= 1){ stop("Only one row or less found for both model data and parameters. Not enough variation to plot") } if(ndata <= 1 & ntheta > 1){ if(missing(xvar)){ search <- lapply(object$par, unique) search$Row <- NULL xvar <- names(which(sapply(search, function(x){length(x)>1}))) if(length(xvar)>1){ stop("More than one candidate for xvar found, please specify it directly") } xvar <- stringr::str_to_lower(xvar) }else{ xvar <- stringr::str_to_lower(xvar) } object <- lapply(object, function(x){ colnames(x) <- stringr::str_to_lower(colnames(x)); return(x) } ) merged.data <- merge(object$predicted, object$par, by="row") Xdata <- merged.data[,xvar] } if(ndata > 1 & ntheta <= 1){ if(missing(xvar)){ search <- lapply(object$model, unique) search$Row <- NULL xvar <- names(which(sapply(search, function(x){length(x)>1}))) if(length(xvar)>1){ stop("More than one candidate for xvar found, please specify it directly") } xvar <- stringr::str_to_lower(xvar) }else{ xvar <- stringr::str_to_lower(xvar) } object <- lapply(object, function(x){ colnames(x) <- stringr::str_to_lower(colnames(x)); return(x) } ) merged.data <- merge(object$predicted, object$model, by="row") Xdata <- merged.data[,xvar] } Ydata <- merged.data[,prob] if(missing(ylab)){ylab=prob} if(missing(xlab)){xlab=xvar} return( plot(Ydata~Xdata, col=col, main=main, xlab=xlab, ylab=ylab, pch=pch, ...) ) }
bandit4arm_lapse_decay <- hBayesDM_model( task_name = "bandit4arm", model_name = "lapse_decay", model_type = "", data_columns = c("subjID", "choice", "gain", "loss"), parameters = list( "Arew" = c(0, 0.1, 1), "Apun" = c(0, 0.1, 1), "R" = c(0, 1, 30), "P" = c(0, 1, 30), "xi" = c(0, 0.1, 1), "d" = c(0, 0.1, 1) ), regressors = NULL, postpreds = c("y_pred"), preprocess_func = bandit4arm_preprocess_func)
context('test changepoint') test_that('fortify.cpt works for AirPassengers', { skip_on_cran() skip_on_travis() skip_if_not_installed("changepoint") library(changepoint) result <- changepoint::cpt.mean(AirPassengers) p <- ggplot2::autoplot(result) expect_true(is(p, 'ggplot')) fortified <- ggplot2::fortify(result) expect_equal(is.data.frame(fortified), TRUE) expect_equal(names(fortified), c('Index', 'Data', 'mean')) expect_equal(fortified$Index[1], as.Date('1949-01-01')) expect_equal(fortified$Index[nrow(fortified)], as.Date('1960-12-01')) filtered <- dplyr::filter(fortified, !is.na(mean)) expect_equal(filtered$Index[1], as.Date('1955-05-01')) expect_equal(filtered$Index[nrow(filtered)], as.Date('1960-12-01')) fortified <- ggplot2::fortify(changepoint::cpt.var(AirPassengers)) expect_equal(is.data.frame(fortified), TRUE) expect_equal(names(fortified), c('Index', 'Data', 'mean', 'variance')) expect_equal(fortified$Index[1], as.Date('1949-01-01')) expect_equal(fortified$Index[nrow(fortified)], as.Date('1960-12-01')) filtered <- dplyr::filter(fortified, !is.na(variance)) expect_equal(filtered$Index[1], as.Date('1960-12-01')) expect_equal(filtered$Index[nrow(filtered)], as.Date('1960-12-01')) fortified <- ggplot2::fortify(changepoint::cpt.meanvar(AirPassengers)) expect_equal(is.data.frame(fortified), TRUE) expect_equal(names(fortified), c('Index', 'Data', 'mean', 'variance')) expect_equal(fortified$Index[1], as.Date('1949-01-01')) expect_equal(fortified$Index[nrow(fortified)], as.Date('1960-12-01')) filtered <- dplyr::filter(fortified, !is.na(mean) | !is.na(variance)) expect_equal(filtered$Index[1], as.Date('1955-05-01')) expect_equal(filtered$Index[nrow(filtered)], as.Date('1960-12-01')) }) test_that('fortify.breakpoints works for Nile', { skip_on_cran() skip_on_travis() skip_if_not_installed("strucchange") library(strucchange) bp.nile <- strucchange::breakpoints(Nile ~ 1) p <- ggplot2::autoplot(breakpoints(bp.nile, breaks = 2), data = Nile) expect_true(is(p, 'ggplot')) fortified <- ggplot2::fortify(bp.nile, is.date = TRUE) expect_equal(is.data.frame(fortified), TRUE) expect_equal(names(fortified), c('Index', 'Data', 'Breaks')) expect_equal(fortified$Index[1], as.Date('1871-01-01')) expect_equal(fortified$Index[nrow(fortified)], as.Date('1970-01-01')) filtered <- dplyr::filter(fortified, !is.na(Breaks)) expect_equal(filtered$Index[1], as.Date('1898-01-01')) bp.pts <- strucchange::breakpoints(bp.nile, breaks = 2) fortified <- ggplot2::fortify(bp.pts, is.date = TRUE) expect_equal(is.data.frame(fortified), TRUE) expect_equal(names(fortified), c('Index', 'Breaks')) expect_equal(fortified$Index[1], as.Date('1871-01-01')) expect_equal(fortified$Index[nrow(fortified)], as.Date('1970-01-01')) filtered <- dplyr::filter(fortified, !is.na(Breaks)) expect_equal(filtered$Index[1], as.Date('1898-01-01')) expect_equal(filtered$Index[nrow(filtered)], as.Date('1953-01-01')) fortified <- ggplot2::fortify(bp.pts, data = Nile, is.date = TRUE) expect_equal(is.data.frame(fortified), TRUE) expect_equal(names(fortified), c('Index', 'Data', 'Breaks')) expect_equal(fortified$Index[1], as.Date('1871-01-01')) expect_equal(fortified$Index[nrow(fortified)], as.Date('1970-01-01')) })
have_rqdatatable <- FALSE if (requireNamespace("rqdatatable", quietly = TRUE)) { library("rqdatatable") have_rqdatatable <- TRUE } have_db <- FALSE if (requireNamespace("RSQLite", quietly = TRUE) && requireNamespace("DBI", quietly = TRUE)) { have_db <- TRUE } library("rquery") group_nm <- "am" num_nm <- as.name("hp") den_nm <- as.name("cyl") derived_nm <- as.name(paste0(num_nm, "_per_", den_nm)) mean_nm <- as.name(paste0("mean_", derived_nm)) count_nm <- as.name("group_count") mtcars %.>% extend(., .(derived_nm) := .(num_nm)/.(den_nm)) %.>% project(., .(mean_nm) := mean(.(derived_nm)), .(count_nm) := length(.(derived_nm)), groupby = group_nm) %.>% orderby(., group_nm) td <- mk_td("mtcars", as.character(list(group_nm, num_nm, den_nm))) count <- function(v) { length(v) } ops <- td %.>% extend(., .(derived_nm) := .(num_nm)/.(den_nm)) %.>% project(., .(mean_nm) := mean(.(derived_nm)), .(count_nm) := count(.(derived_nm)), groupby = group_nm) %.>% orderby(., group_nm) mtcars %.>% ops cat(format(ops)) raw_connection <- DBI::dbConnect(RSQLite::SQLite(), ":memory:") dbopts <- rq_connection_tests(raw_connection) db <- rquery_db_info(connection = raw_connection, is_dbi = TRUE, connection_options = dbopts) print(db) tr <- rquery::rq_copy_to(db, "mtcars", mtcars, temporary = TRUE, overwrite = TRUE) print(tr) res <- materialize(db, ops) DBI::dbReadTable(raw_connection, res$table_name) execute(db, ops) sql <- to_sql(ops, db) cat(sql) DBI::dbDisconnect(raw_connection) rm(list = c("raw_connection", "db"))
library(DiffusionRjgqd) JGQD.remove() a00 = function(t){0.5*5} a10 = function(t){-0.5} a01 = function(t){-0.1} c10 = function(t){0.4^2} b00 = function(t){0.4*6} b01 = function(t){-0.4} b10 = function(t){-0.1} f01 = function(t){0.3^2} Lam00= function(t){1} Jmu1=function(t){0.75*(1+sin(2*pi*t))} Jmu2=function(t){0.75*(1+sin(2*pi*t))} Jsig11=function(t){0.75^2*(1+0.8*sin(2*pi*t))^2} Jsig22=function(t){0.75^2*(1+0.8*sin(2*pi*t))^2} xx=seq(3,11,1/10) yy=seq(3,11,1/10) res= BiJGQD.density(7,7,xx,yy,0,1,1/100,Dtype='Saddlepoint') mux = function(x,y,t){a00(t)+a10(t)*x+a01(t)*y} sigmax = function(x,y,t){sqrt(c10(t)*x)} muy = function(x,y,t){b00(t)+b10(t)*x+b01(t)*y} sigmay = function(x,y,t){sqrt(f01(t)*y)} lambda1 = function(x,y,t){Lam00(t)} lambda2 = function(x,y,t){rep(0,length(x))} j11 = function(x,y,z){z} j12 = function(x,y,z){z} j21 = function(x,y,z){z} j22 = function(x,y,z){z} simulate=function(x0=7,y0=7,N=10000,TT=5,delta=1/1000,pts,brks=30,plt=FALSE) { library(colorspace) colpal=function(n){rev(sequential_hcl(n,power=0.8,l=c(40,100)))} d=0 tt=seq(0,TT,delta) X=rep(x0,N) Y=rep(y0,N) x.traj = rep(x0,length(tt)) y.traj = rep(y0,length(tt)) x.jump = rep(0,length(tt)) y.jump = rep(0,length(tt)) evts = rep(0,N) for(i in 2:length(tt)) { X=X+mux(X,Y,d)*delta+sigmax(X,Y,d)*rnorm(N,sd=sqrt(delta)) Y=Y+muy(X,Y,d)*delta+sigmay(X,Y,d)*rnorm(N,sd=sqrt(delta)) events1 = (lambda1(X,Y,d)*delta>runif(N)) if(any(events1)) { wh=which(events1) evts[wh]=evts[wh]+1 X[wh]=X[wh]+j11(X[wh],Y[wh],rnorm(length(wh),Jmu1(d),sqrt(Jsig11(d)))) Y[wh]=Y[wh]+j21(X[wh],Y[wh],rnorm(length(wh),Jmu2(d),sqrt(Jsig22(d)))) } events2 = (lambda2(X,Y,d)*delta>runif(N)) d=d+delta if(sum(round(pts,3)==round(d,3))!=0) { if(plt) { expr1 = expression(X_t) expr2 = expression(Y_t) color.palette=colorRampPalette(c('green','blue','red')) filled.contour(res$Xt,res$Yt,res$density[,,i], main=paste0('Transition Density \n (t = ',round(d,2),')'), color.palette=colpal, nlevels=41,xlab=expression(X[t]),ylab=expression(Y[t]),plot.axes= { points(Y~X,pch=c(20,3)[(evts>0)+1],col=c('black','red')[(evts>0)+1],cex=c(0.9,0.6)[(evts>0)+1]) if(any(events2)) { wh=which(events2) segments(xpreee[wh],ypreee[wh],X[wh],Y[wh],col='gray') } axis(1);axis(2); legend('topright',col=c('black','red'),pch=c(20,3), legend=c('Simulated Trajectories','Jumped')) yy=contourLines(res$Xt,res$Yt,res$density[,,i],levels=seq(0.01,0.1,length=10)) if(length(yy)>0) { for(j in 1:length(yy)) { lines(yy[[j]]) } } }) } } } } sim=simulate(7,7,N=200,TT=0.75,delta=1/100,plt=TRUE,pts=c(0.13,0.28,0.38,0.51,0.63,0.75))
.subsetCorpus <- function(save) { if(save) doItAndPrint("origCorpus <- corpus") doItAndPrint("corpus <- corpus[keep]") if(exists("dtm")) { processing <- meta(corpus, type="corpus", tag="processing") lang <- meta(corpus, type="corpus", tag="language") if(save) doItAndPrint("origDtm <- dtm") doItAndPrint('dtmAttr <- attributes(dtm)') doItAndPrint('origDictionary <- attr(dtm, "dictionary")') doItAndPrint("dtm <- dtm[keep,]") .buildDictionary(FALSE, processing["customStemming"], lang) if(processing["stemming"] || processing["customStemming"]) doItAndPrint('dictionary[[2]] <- origDictionary[rownames(dictionary), 2]') .prepareDtm(processing["stopwords"], processing["stemming"] || processing["customStemming"], FALSE, lang) if(processing["customStemming"]) doItAndPrint('dtm <- dtm[, Terms(dtm) != ""]') doItAndPrint('attr(dtm, "language") <- dtmAttr$lang') doItAndPrint('attr(dtm, "processing") <- dtmAttr$processing') doItAndPrint("rm(dtmAttr, origDictionary)") } if(exists("wordsDtm")) { if(save) doItAndPrint("origWordsDtm <- wordsDtm") doItAndPrint("wordsDtm <- wordsDtm[keep,]") doItAndPrint("wordsDtm <- wordsDtm[,col_sums(wordsDtm) > 0]") } doItAndPrint("corpusVars <- corpusVars[keep,, drop=FALSE]") objects <- c("keep", "voc", "termFreqs", "corpusClust", "corpusSubClust", "corpusCa", "plottingCa") doItAndPrint(paste('rm(list=c("', paste(objects[sapply(objects, exists)], collapse='", "'), '"))', sep="")) gc() doItAndPrint("corpus") doItAndPrint("dtm") } subsetCorpusByVarDlg <- function() { nVars <- ncol(meta(corpus)[colnames(meta(corpus)) != "MetaID"]) if(nVars == 0) { .Message(message=.gettext("No corpus variables have been set. Use Text mining->Manage corpus->Set corpus variables to add them."), type="error") return() } initializeDialog(title=.gettext("Subset Corpus by Variable")) vars <- colnames(meta(corpus)) varsFrame <- tkframe(top) varsBox <- tklistbox(varsFrame, height=getRcmdr("variable.list.height"), selectmode="single", export=FALSE) varsScrollbar <- ttkscrollbar(varsFrame, command=function(...) tkyview(varsBox, ...)) tkconfigure(varsBox, yscrollcommand=function(...) tkset(varsScrollbar, ...)) for(var in vars) tkinsert(varsBox, "end", var) tkselection.set(varsBox, 0) levelsFrame <- tkframe(top) levelsBox <- tklistbox(levelsFrame, height=getRcmdr("variable.list.height"), selectmode=getRcmdr("multiple.select.mode"), export=FALSE) levelsScrollbar <- ttkscrollbar(levelsFrame, command=function(...) tkyview(levelsBox, ...)) tkconfigure(levelsBox, yscrollcommand=function(...) tkset(levelsScrollbar, ...)) for(level in unique(meta(corpus, vars[1])[[1]])) tkinsert(levelsBox, "end", level) tkselection.set(levelsBox, 0) onSelect <- function() { var <- vars[as.numeric(tkcurselection(varsBox))+1] tkdelete(levelsBox, "0", "end") levs <- unique(meta(corpus, var)[[1]]) for(level in levs) tkinsert(levelsBox, "end", level) } tkbind(varsBox, "<<ListboxSelect>>", onSelect) tclSave <- tclVar("1") checkSave <- tkcheckbutton(top, text=.gettext("Save original corpus to restore it later"), variable=tclSave) onOK <- function() { var <- vars[as.numeric(tkcurselection(varsBox))+1] levs <- unique(meta(corpus, var)[[1]])[as.numeric(tkcurselection(levelsBox))+1] save <- tclvalue(tclSave) == "1" closeDialog() setBusyCursor() on.exit(setIdleCursor()) doItAndPrint(sprintf('keep <- meta(corpus, "%s")[[1]] %%in%% c("%s")', var, paste(levs, collapse='", "'))) .subsetCorpus(save) activateMenus() tkfocus(CommanderWindow()) } OKCancelHelp(helpSubject="subsetCorpusByVarDlg") tkgrid(labelRcmdr(top, text=.gettext("Select a variable and one or more levels to retain:")), columnspan=2, sticky="w", pady=6) tkgrid(.titleLabel(varsFrame, text=.gettext("Variable:")), sticky="w") tkgrid(varsBox, varsScrollbar, sticky="ewns", pady=6) tkgrid(.titleLabel(levelsFrame, text=.gettext("Levels:")), sticky="w") tkgrid(levelsBox, levelsScrollbar, sticky="ewns", pady=6) tkgrid(varsFrame, levelsFrame, sticky="wns", pady=6) tkgrid(checkSave, sticky="w", pady=6) tkgrid(buttonsFrame, columnspan=2, sticky="ew", pady=6) dialogSuffix(focus=varsBox) } subsetCorpusByTermsDlg <- function() { initializeDialog(title=.gettext("Subset Corpus by Terms")) tclKeep <- tclVar("") entryKeep <- ttkentry(top, width="40", textvariable=tclKeep) tclKeepFreq <- tclVar(1) spinKeep <- tkwidget(top, type="spinbox", from=1, to=.Machine$integer.max, inc=1, textvariable=tclKeepFreq, validate="all", validatecommand=.validate.uint) tclExclude <- tclVar("") entryExclude <- ttkentry(top, width="40", textvariable=tclExclude) tclExcludeFreq <- tclVar(1) spinExclude <- tkwidget(top, type="spinbox", from=1, to=.Machine$integer.max, inc=1, textvariable=tclExcludeFreq, validate="all", validatecommand=.validate.uint) tclSave <- tclVar("1") checkSave <- tkcheckbutton(top, text=.gettext("Save original corpus to restore it later"), variable=tclSave) onOK <- function() { keepList <- strsplit(tclvalue(tclKeep), " ")[[1]] excludeList <- strsplit(tclvalue(tclExclude), " ")[[1]] keepFreq <- as.numeric(tclvalue(tclKeepFreq)) excludeFreq <- as.numeric(tclvalue(tclExcludeFreq)) save <- tclvalue(tclSave) == "1" if(length(keepList) == 0 && length(excludeList) == 0) { .Message(.gettext("Please enter at least one term."), "error", parent=top) return() } else if(!all(c(keepList, excludeList) %in% colnames(dtm))) { wrongTerms <- c(keepList, excludeList)[!c(keepList, excludeList) %in% colnames(dtm)] .Message(sprintf(.ngettext(length(wrongTerms), "Term \'%s\' does not exist in the corpus.", "Terms \'%s\' do not exist in the corpus."), paste(wrongTerms, collapse=.gettext("\', \'"))), "error", parent=top) return() } else if((length(keepList) > 0 && length(excludeList) > 0 && !any(row_sums(dtm[, keepList] >= keepFreq) > 0 & row_sums(dtm[, excludeList] >= excludeFreq) == 0)) || (length(keepList) > 0 && length(excludeList) == 0 && !any(row_sums(dtm[, keepList] >= keepFreq) > 0)) || (length(keepList) == 0 && length(excludeList) > 0 && !any(row_sums(dtm[, excludeList] >= excludeFreq) == 0))) { .Message(.gettext("Specified conditions would exclude all documents from the corpus."), "error", parent=top) return() } closeDialog() if(length(keepList) > 0 && length(excludeList) > 0) doItAndPrint(sprintf('keep <- row_sums(dtm[, c("%s")] >= %i) > 0 & row_sums(dtm[, c("%s")] >= %i) == 0', paste(keepList, collapse='", "'), keepFreq, paste(excludeList, collapse='", "'), excludeFreq)) else if(length(keepList) > 0) doItAndPrint(sprintf('keep <- row_sums(dtm[, c("%s")] >= %i) > 0', paste(keepList, collapse='", "'), keepFreq)) else doItAndPrint(sprintf('keep <- row_sums(dtm[, c("%s")] >= %i) == 0', paste(excludeList, collapse='", "'), excludeFreq)) .subsetCorpus(save) activateMenus() tkfocus(CommanderWindow()) } OKCancelHelp(helpSubject="subsetCorpusByTermsDlg") tkgrid(labelRcmdr(top, text=.gettext("Keep documents containing one of these terms (space-separated):")), sticky="w", columnspan=4) tkgrid(entryKeep, labelRcmdr(top, text=.gettext("at least")), spinKeep, labelRcmdr(top, text=.gettext("time(s)")), sticky="w", pady=c(0, 6)) tkgrid(labelRcmdr(top, text=.gettext("Exclude documents containing one of these terms (space-separated):")), sticky="w", pady=c(6, 0), columnspan=4) tkgrid(entryExclude, labelRcmdr(top, text=.gettext("at least")), spinExclude, labelRcmdr(top, text=.gettext("time(s)")), sticky="w", pady=c(0, 6)) tkgrid(labelRcmdr(top, text=.gettext("(Only documents matching both conditions will be retained in the new corpus.)")), sticky="w", pady=6, columnspan=4) tkgrid(checkSave, sticky="w", pady=c(12, 6), columnspan=4) tkgrid(buttonsFrame, sticky="ew", pady=6, columnspan=4) dialogSuffix(focus=entryKeep) } restoreCorpus <- function() { if(!exists("origCorpus")) .Message(message=.gettext("No saved corpus to restore was found."), type="error") doItAndPrint("corpus <- origCorpus") if(exists("origDtm")) doItAndPrint("dtm <- origDtm") if(exists("origWordsDtm")) doItAndPrint("wordsDtm <- origWordsDtm") objects <- c("keep", "voc", "termFreqs", "absTermFreqs", "varTermFreqs", "corpusClust", "corpusSubClust", "corpusCa", "plottingCa", "origCorpus", "origDtm", "origWordsDtm") doItAndPrint(paste("rm(", paste(objects[sapply(objects, exists)], collapse=", "), ")", sep="")) doItAndPrint("corpus") doItAndPrint("dtm") gc() }
CatDynPar <- function(x,method,partial=TRUE) { if(class(x) != "catdyn") {stop("'x' must be an object of class 'catdyn' (created by function CatDynFit)")} sdistr.set <- c("poisson","apnormal","aplnormal") if(x$Data$Properties$Units["Time Step"]=="month") { if(length(x$Data$Properties$Fleets$Fleet)==1) { month.F1 <- x$Model[[method]]$Dates[2:(x$Model[[method]]$Type+1)] years.F1 <- as.numeric(format(as.Date(x$Data$Properties$Dates["StartDate"]),"%Y"))+floor(month.F1/12) month.F1 <- as.integer((month.F1/12-floor(month.F1/12))*12) if(x$Model[[method]]$Distr%in%sdistr.set) { partable <- data.frame(Parameter=c("M.1/month", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("Rec.",x$Data$Properties$Units["NumbersMultiplier"],".",years.F1,sep=""), paste("k.1/",x$Data$Properties$Fleets$Units,sep=""), "alpha","beta"), Timing=c("","",paste(years.F1,month.F1,sep="-"),"","",""), Estimates=unlist(x$Model[[method]]$bt.par), CVpCent=round(100*unlist(x$Model[[method]]$bt.stdev)/unlist(x$Model[[method]]$bt.par),1),row.names=NULL) } if(!x$Model[[method]]$Distr%in%sdistr.set) { partable <- data.frame(Parameter=c("M.1/month", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("Rec.",x$Data$Properties$Units["NumbersMultiplier"],".",years.F1,sep=""), paste("k.1/",x$Data$Properties$Fleets$Units,sep=""), "alpha","beta", paste("psi.",x$Data$Properties$Units["NumbersMultiplier"],".squared",sep="")), Timing=c("","",paste(years.F1,month.F1,sep="-"),"","","",""), Estimates=unlist(x$Model[[method]]$bt.par), CVpCent=round(100*unlist(x$Model[[method]]$bt.stdev)/unlist(x$Model[[method]]$bt.par),1),row.names=NULL) } } if(length(x$Data$Properties$Fleets$Fleet)==2) { month.F1 <- x$Model[[method]]$Dates[2:(x$Model[[method]]$Type[1]+1)] month.F2 <- x$Model[[method]]$Dates[(x$Model[[method]]$Type[1]+2):(x$Model[[method]]$Type[1]+1+x$Model[[method]]$Type[2])] years.F1 <- as.numeric(format(as.Date(x$Data$Properties$Dates["StartDate"]),"%Y"))+floor(month.F1/12) years.F2 <- as.numeric(format(as.Date(x$Data$Properties$Dates["StartDate"]),"%Y"))+floor(month.F2/12) month.F1 <- as.integer((month.F1/12-floor(month.F1/12))*12) month.F2 <- as.integer((month.F2/12-floor(month.F2/12))*12) if(any(month.F1==0)){month.F1[which(month.F1==0)] <- 12} if(any(month.F2==0)){month.F2[which(month.F2==0)] <- 12} if(sum(x$Model[[method]]$Distr%in%sdistr.set)==2) { partable <- data.frame(Parameter=c("M.1/month", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("Rec.",x$Data$Properties$Units["NumbersMultiplier"],".",years.F1,sep=""), paste("k.1/",x$Data$Properties$Fleets$Units[1],sep=""), "alpha","beta"), Timing.F1=c("","",paste(years.F1,month.F1,sep="-"),"","",""), Estimates.F1=unlist(x$Model[[method]]$bt.par[1:(2+length(years.F1)+3)]), CVpCent.F1=round(100*unlist(x$Model[[method]]$bt.stdev[1:(2+length(years.F1)+3)])/ unlist(x$Model[[method]]$bt.par[1:(2+length(years.F1)+3)]),1), Timing.F2=c("","",paste(years.F2,month.F2,sep="-"),"","",""), Estimates.F2=unlist(x$Model[[method]]$bt.par[c(1,2,(2+length(years.F2)+3+1):length(x$Model[[method]]$bt.par))]), CVpCent.F2=round(100*unlist(x$Model[[method]]$bt.stdev[c(1,2,(2+length(years.F2)+4):(length(x$Model[[method]]$bt.stdev)))])/ unlist(x$Model[[method]]$bt.par[(c(1,2,(2+length(years.F2)+4):length(x$Model[[method]]$bt.par)))]),1),row.names=NULL) names(partable)[2:4] <- paste(c("Timing.","Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[1],sep="") names(partable)[5:7] <- paste(c("Timing.","Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[2],sep="") } if(diff(x$Model[[method]]$Distr%in%sdistr.set)==-1) { partable <- data.frame(Parameter=c("M.1/month", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("Rec.",x$Data$Properties$Units["NumbersMultiplier"],".",years.F1,sep=""), paste("k.1/",x$Data$Properties$Fleets$Units[1],sep=""), "alpha","beta", paste("psi.",x$Data$Properties$Units["NumbersMultiplier"],".squared",sep="")), Timing.F1=c("","",paste(years.F1,month.F1,sep="-"),"","","",""), Estimates.F1=c(unlist(x$Model[[method]]$bt.par[c(1:(2+length(years.F1)+3))]),NA), CVpCent.F1=round(c(100*unlist(x$Model[[method]]$bt.stdev[c(1:(2+length(years.F1)+3))])/ unlist(x$Model[[method]]$bt.par[c(1:(2+length(years.F1)+3))]),NA),1), Timing.F2=c("","",paste(years.F2,month.F2,sep="-"),"","","",""), Estimates.F2=unlist(x$Model[[method]]$bt.par[c(1,2,(2+length(years.F2)+3+1):length(x$Model[[method]]$bt.par))]), CVpCent.F2=round(100*unlist(x$Model[[method]]$bt.stdev[c(1,2,(2+length(years.F2)+3+1):length(x$Model[[method]]$bt.stdev))])/ unlist(x$Model[[method]]$bt.par[c(1,2,(2+length(years.F2)+3+1):length(x$Model[[method]]$bt.par))]),1),row.names=NULL) names(partable)[2:4] <- paste(c("Timing.","Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[1],sep="") names(partable)[5:7] <- paste(c("Timing.","Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[2],sep="") } if(diff(x$Model[[method]]$Distr%in%sdistr.set)==1) { partable <- data.frame(Parameter=c("M.1/month", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("Rec.",x$Data$Properties$Units["NumbersMultiplier"],".",years.F1,sep=""), paste("k.1/",x$Data$Properties$Fleets$Units[1],sep=""), "alpha","beta", paste("psi.",x$Data$Properties$Units["NumbersMultiplier"],".squared",sep="")), Timing.F1=c("","",paste(years.F1,month.F1,sep="-"),"","","",""), Estimates.F1=unlist(x$Model[[method]]$bt.par[c(1:(2+length(years.F1)+3),length(unlist(x$Model[[method]]$bt.par)))]), CVpCent.F1=round(100*unlist(x$Model[[method]]$bt.stdev[c(1:(2+length(years.F1)+3),length(unlist(x$Model[[method]]$bt.stdev)))])/ unlist(x$Model[[method]]$bt.par[c(1:(2+length(years.F1)+3),length(unlist(x$Model[[method]]$bt.par)))]),1), Timing.F2=c("","",paste(years.F2,month.F2,sep="-"),"","","",""), Estimates.F2=c(unlist(x$Model[[method]]$bt.par[c(1,2,(2+length(years.F2)+3+1):(length(x$Model[[method]]$bt.par)-1))]),NA), CVpCent.F2=c(round(100*unlist(x$Model[[method]]$bt.stdev[c(1,2,(2+length(years.F2)+3+1):(length(x$Model[[method]]$bt.stdev)-1))])/ unlist(x$Model[[method]]$bt.par[c(1,2,(2+length(years.F2)+3+1):(length(x$Model[[method]]$bt.par)-1))]),1),NA),row.names=NULL) names(partable)[2:4] <- paste(c("Timing.","Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[1],sep="") names(partable)[5:7] <- paste(c("Timing.","Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[2],sep="") } if(sum(x$Model[[method]]$Distr%in%sdistr.set)==0) { partable <- data.frame(Parameter=c("M.1/month", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("Rec.",x$Data$Properties$Units["NumbersMultiplier"],".",years.F1,sep=""), paste("k.1/",x$Data$Properties$Fleets$Units[1],sep=""), "alpha","beta", paste("psi.",x$Data$Properties$Units["NumbersMultiplier"],".squared",sep="")), Timing.F1=c("","",paste(years.F1,month.F1,sep="-"),"","","",""), Estimates.F1=unlist(x$Model[[method]]$bt.par[c(1:(2+length(years.F1)+3),length(unlist(x$Model[[method]]$bt.par))-1)]), CVpCent.F1=round(100*unlist(x$Model[[method]]$bt.stdev[c(1:(2+length(years.F1)+3),length(unlist(x$Model[[method]]$bt.stdev))-1)])/ unlist(x$Model[[method]]$bt.par[c(1:(2+length(years.F1)+3),length(unlist(x$Model[[method]]$bt.par))-1)]),1), Timing.F2=c("","",paste(years.F2,month.F2,sep="-"),"","","",""), Estimates.F2=unlist(x$Model[[method]]$bt.par[c(1,2,(2+length(years.F2)+3+1):(length(x$Model[[method]]$bt.par)-2),(length(x$Model[[method]]$bt.par)))]), CVpCent.F2=round(100*unlist(x$Model[[method]]$bt.stdev[c(1,2,(2+length(years.F2)+3+1):(length(x$Model[[method]]$bt.stdev)-2),(length(x$Model[[method]]$bt.stdev)))])/ unlist(x$Model[[method]]$bt.par[c(1,2,(2+length(years.F2)+3+1):(length(x$Model[[method]]$bt.par)-2),(length(x$Model[[method]]$bt.par)))]),1),row.names=NULL) names(partable)[2:4] <- paste(c("Timing.","Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[1],sep="") names(partable)[5:7] <- paste(c("Timing.","Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[2],sep="") } } } if(x$Data$Properties$Units["Time Step"]=="day" | x$Data$Properties$Units["Time Step"]=="week") { if(length(x$Data$Properties$Fleets$Fleet)==1) { if(x$Model[[method]]$Type==0) { if(x$Model[[method]]$Distr%in%sdistr.set) { if(x$Data$Properties$Units["Time Step"]=="week") { partable <- data.frame(Parameter=c("M.1/week", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("k.1/",x$Data$Properties$Fleets$Units,sep=""), "alpha","beta"), Estimates=unlist(x$Model[[method]]$bt.par), CVpCent=round(100*unlist(x$Model[[method]]$bt.stdev)/unlist(x$Model[[method]]$bt.par),1),row.names=NULL) } if(x$Data$Properties$Units["Time Step"]=="day") { partable <- data.frame(Parameter=c("M.1/day", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("k.1/",x$Data$Properties$Fleets$Units,sep=""), "alpha","beta"), Estimates=unlist(x$Model[[method]]$bt.par), CVpCent=round(100*unlist(x$Model[[method]]$bt.stdev)/unlist(x$Model[[method]]$bt.par),1),row.names=NULL) } } if(!x$Model[[method]]$Distr%in%sdistr.set) { if(x$Data$Properties$Units["Time Step"]=="week") { partable <- data.frame(Parameter=c("M.1/week", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("k.1/",x$Data$Properties$Fleets$Units,sep=""), "alpha","beta", paste("psi.",x$Data$Properties$Units["NumbersMultiplier"],".squared",sep="")), Estimates=unlist(x$Model[[method]]$bt.par), CVpCent=round(100*unlist(x$Model[[method]]$bt.stdev)/unlist(x$Model[[method]]$bt.par),1),row.names=NULL) } if(x$Data$Properties$Units["Time Step"]=="day") { partable <- data.frame(Parameter=c("M.1/day", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("k.1/",x$Data$Properties$Fleets$Units,sep=""), "alpha","beta", paste("psi.",x$Data$Properties$Units["NumbersMultiplier"],".squared",sep="")), Estimates=unlist(x$Model[[method]]$bt.par), CVpCent=round(100*unlist(x$Model[[method]]$bt.stdev)/unlist(x$Model[[method]]$bt.par),1),row.names=NULL) } } } if(x$Model[[method]]$Type!=0) { waves <- abs(x$Model[[method]]$Type) if(x$Model[[method]]$Distr %in% sdistr.set) { if(x$Data$Properties$Units["Time Step"]=="week") { year1 <- as.numeric(format(as.Date(x$Data$Properties$Dates[["StartDate"]]), "%Y")) finalweek.year1 <- as.numeric(format(as.Date(paste(year1,"-12-31",sep="")), "%W")) year2 <- as.numeric(format(as.Date(x$Data$Properties$Dates[["EndDate"]]), "%Y")) days <- as.Date(paste(year1, 1, 1, sep = "-"))+0:365*(year2-year1+1) if(partial & x$Model[[method]]$Type < 0) { dates.ranges <- vector("character",2*waves) if(year2 > year1) { weeks <- x$Model[[method]]$Dates[2:(2*waves+1)] - finalweek.year1 for(w in 1:2*waves) { dates.ranges[w] <- paste(range(days[sprintf("%d %02d", year2, weeks[w]) == format(days, "%Y %U")]),collapse=' ') } } if(year2 == year1) { weeks <- x$Model[[method]]$Dates[2:(2*waves+1)] for(w in 1:(2*waves)) { dates.ranges[w] <- paste(range(days[sprintf("%d %02d", year1, weeks[w]) == format(days, "%Y %U")]),collapse=' ') } } partable <- data.frame(Parameter=c("M.1/week", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("Recruitment.",x$Data$Properties$Units["NumbersMultiplier"],".Wave",1:waves,sep=""), paste("Spawning.",x$Data$Properties$Units["NumbersMultiplier"],".Wave",1:waves,sep=""), paste("k.1/",x$Data$Properties$Fleets$Units,sep=""), "alpha","beta"), Timing=c("","",dates.ranges,"","",""), Estimates=unlist(x$Model[[method]]$bt.par), CVpCent=round(100*unlist(x$Model[[method]]$bt.stdev)/unlist(x$Model[[method]]$bt.par),1),row.names=NULL) } if(partial & x$Model[[method]]$Type > 0) { dates.ranges <- vector("character",waves) if(year2 > year1) { weeks <- x$Model[[method]]$Dates[2:(2*waves+1)] - finalweek.year1 for(w in 1:waves) { dates.ranges[w] <- paste(range(days[sprintf("%d %02d", year2, weeks[w]) == format(days, "%Y %U")]),collapse=' ') } } if(year2 == year1) { weeks <- x$Model[[method]]$Dates[2:(waves+1)] for(w in 1:(waves)) { dates.ranges[w] <- paste(range(days[sprintf("%d %02d", year1, weeks[w]) == format(days, "%Y %U")]),collapse=' ') } } partable <- data.frame(Parameter=c("M.1/week", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("Recruitment.",x$Data$Properties$Units["NumbersMultiplier"],".Wave",1:waves,sep=""), paste("k.1/",x$Data$Properties$Fleets$Units,sep=""), "alpha","beta"), Timing=c("","",dates.ranges,"","",""), Estimates=unlist(x$Model[[method]]$bt.par), CVpCent=round(100*unlist(x$Model[[method]]$bt.stdev)/unlist(x$Model[[method]]$bt.par),1),row.names=NULL) } if(!partial) { weeks <- x$Model[[method]]$Dates[2:(waves+1)] dates.ranges <- vector("character",waves) for(w in 1:waves) { dates.ranges[w] <- paste(range(days[sprintf("%d %02d", year1, weeks[w]) == format(days, "%Y %U")]),collapse=' ') } partable <- data.frame(Parameter=c("M.1/week", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("Rec.",x$Data$Properties$Units["NumbersMultiplier"],".Wave",1:waves,sep=""), paste("k.1/",x$Data$Properties$Fleets$Units,sep=""), "alpha","beta"), Timing=c("","",dates.ranges,"","",""), Estimates=unlist(x$Model[[method]]$bt.par), CVpCent=round(100*unlist(x$Model[[method]]$bt.stdev)/unlist(x$Model[[method]]$bt.par),1),row.names=NULL) } } if(x$Data$Properties$Units["Time Step"]=="day") { if(partial & x$Model[[method]]$Type < 0) { partable <- data.frame(Parameter=c("M.1/day", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("Rec.",x$Data$Properties$Units["NumbersMultiplier"],".Wave",1:waves,sep=""), paste("Spawning.",x$Data$Properties$Units["NumbersMultiplier"],".Wave",1:waves,sep=""), paste("k.1/",x$Data$Properties$Fleets$Units,sep=""), "alpha","beta"), Timing=c("","",as.character(as.Date(x$Data$Properties$Dates[["StartDate"]])+x$Model[[method]]$Dates[2:(waves+2)]), "","",""), Estimates=unlist(x$Model[[method]]$bt.par), CVpCent=round(100*unlist(x$Model[[method]]$bt.stdev)/unlist(x$Model[[method]]$bt.par),1),row.names=NULL) } if(partial & x$Model[[method]]$Type > 0) { partable <- data.frame(Parameter=c("M.1/day", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("Rec.",x$Data$Properties$Units["NumbersMultiplier"],".Wave",1:waves,sep=""), paste("k.1/",x$Data$Properties$Fleets$Units,sep=""), "alpha","beta"), Timing=c("","",as.character(as.Date(x$Data$Properties$Dates[["StartDate"]])+x$Model[[method]]$Dates[2:(waves+1)]), "","",""), Estimates=unlist(x$Model[[method]]$bt.par), CVpCent=round(100*unlist(x$Model[[method]]$bt.stdev)/unlist(x$Model[[method]]$bt.par),1),row.names=NULL) } if(!partial) { partable <- data.frame(Parameter=c("M.1/day", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("Rec.",x$Data$Properties$Units["NumbersMultiplier"],".Wave",1:waves,sep=""), paste("k.1/",x$Data$Properties$Fleets$Units,sep=""), "alpha","beta"), Timing=c("","",as.character(as.Date(x$Data$Properties$Dates[["StartDate"]])+x$Model[[method]]$Dates[2:(waves+1)]),"","",""), Estimates=unlist(x$Model[[method]]$bt.par), CVpCent=round(100*unlist(x$Model[[method]]$bt.stdev)/unlist(x$Model[[method]]$bt.par),1),row.names=NULL) } } } if(!x$Model[[method]]$Distr %in% sdistr.set) { if(x$Data$Properties$Units["Time Step"]=="week") { year1 <- as.numeric(format(as.Date(x$Data$Properties$Dates[["StartDate"]]), "%Y")) finalweek.year1 <- as.numeric(format(as.Date(paste(year1,"-12-31",sep="")), "%W")) year2 <- as.numeric(format(as.Date(x$Data$Properties$Dates[["EndDate"]]), "%Y")) days <- as.Date(paste(year1, 1, 1, sep = "-"))+0:365*(year2-year1+1) if(partial & x$Model[[method]]$Type < 0) { dates.ranges <- vector("character",2*waves) if(year2 > year1) { weeks <- x$Model[[method]]$Dates[2:(2*waves+1)] - finalweek.year1 for(w in 1:2*waves) { dates.ranges[w] <- paste(range(days[sprintf("%d %02d", year2, weeks[w]) == format(days, "%Y %U")]),collapse=' ') } } if(year2 == year1) { weeks <- x$Model[[method]]$Dates[2:(2*waves+1)] for(w in 1:2*waves) { dates.ranges[w] <- paste(range(days[sprintf("%d %02d", year1, weeks[w]) == format(days, "%Y %U")]),collapse=' ') } } partable <- data.frame(Parameter=c("M.1/week", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("Recruitment.",x$Data$Properties$Units["NumbersMultiplier"],".Wave",1:waves,sep=""), paste("Spawning.",x$Data$Properties$Units["NumbersMultiplier"],".Wave",1:waves,sep=""), paste("k.1/",x$Data$Properties$Fleets$Units,sep=""), "alpha","beta", paste("psi.",x$Data$Properties$Units["NumbersMultiplier"],".squared",sep="")), Timing=c("","",dates.ranges,"","","",""), Estimates=unlist(x$Model[[method]]$bt.par), CVpCent=round(100*unlist(x$Model[[method]]$bt.stdev)/unlist(x$Model[[method]]$bt.par),1),row.names=NULL) } if(partial & x$Model[[method]]$Type > 0) { dates.ranges <- vector("character",waves) if(year2 > year1) { weeks <- x$Model[[method]]$Dates[2:(waves+1)] - finalweek.year1 for(w in 1:waves) { dates.ranges[w] <- paste(range(days[sprintf("%d %02d", year2, weeks[w]) == format(days, "%Y %U")]),collapse=' ') } } if(year2 == year1) { weeks <- x$Model[[method]]$Dates[2:(waves+1)] for(w in 1:waves) { dates.ranges[w] <- paste(range(days[sprintf("%d %02d", year1, weeks[w]) == format(days, "%Y %U")]),collapse=' ') } } partable <- data.frame(Parameter=c("M.1/week", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("Recruitment.",x$Data$Properties$Units["NumbersMultiplier"],".Wave",1:waves,sep=""), paste("k.1/",x$Data$Properties$Fleets$Units,sep=""), "alpha","beta", paste("psi.",x$Data$Properties$Units["NumbersMultiplier"],".squared",sep="")), Timing=c("","",dates.ranges,"","","",""), Estimates=unlist(x$Model[[method]]$bt.par), CVpCent=round(100*unlist(x$Model[[method]]$bt.stdev)/unlist(x$Model[[method]]$bt.par),1),row.names=NULL) } if(!partial) { weeks <- x$Model[[method]]$Dates[2:(waves+1)] dates.ranges <- vector("character",waves) for(w in 1:waves) { dates.ranges[w] <- paste(range(days[sprintf("%d %02d", year1, weeks[w]) == format(days, "%Y %U")]),collapse=' ') } partable <- data.frame(Parameter=c("M.1/week", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("Rec.",x$Data$Properties$Units["NumbersMultiplier"],".Wave",1:waves,sep=""), paste("k.1/",x$Data$Properties$Fleets$Units,sep=""), "alpha","beta", paste("psi.",x$Data$Properties$Units["NumbersMultiplier"],".squared",sep="")), Timing=c("","",dates.ranges,"","","",""), Estimates=unlist(x$Model[[method]]$bt.par), CVpCent=round(100*unlist(x$Model[[method]]$bt.stdev)/unlist(x$Model[[method]]$bt.par),1),row.names=NULL) } } if(x$Data$Properties$Units["Time Step"]=="day") { if(partial & x$Model[[method]]$Type < 0) { partable <- data.frame(Parameter=c("M.1/day", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("Rec.",x$Data$Properties$Units["NumbersMultiplier"],".Wave",1:waves,sep=""), paste("Spawning.",x$Data$Properties$Units["NumbersMultiplier"],".Wave",1:waves,sep=""), paste("k.1/",x$Data$Properties$Fleets$Units,sep=""), "alpha","beta", paste("psi.",x$Data$Properties$Units["NumbersMultiplier"],".squared",sep="")), Timing=c("","",as.character(as.Date(x$Data$Properties$Dates[["StartDate"]])+x$Model[[method]]$Dates[2:(waves+2)]), "","","",""), Estimates=unlist(x$Model[[method]]$bt.par), CVpCent=round(100*unlist(x$Model[[method]]$bt.stdev)/unlist(x$Model[[method]]$bt.par),1),row.names=NULL) } if(partial & x$Model[[method]]$Type > 0) { partable <- data.frame(Parameter=c("M.1/day", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("Rec.",x$Data$Properties$Units["NumbersMultiplier"],".Wave",1:waves,sep=""), paste("k.1/",x$Data$Properties$Fleets$Units,sep=""), "alpha","beta", paste("psi.",x$Data$Properties$Units["NumbersMultiplier"],".squared",sep="")), Timing=c("","",as.character(as.Date(x$Data$Properties$Dates[["StartDate"]])+x$Model[[method]]$Dates[2:(waves+1)]), "","","",""), Estimates=unlist(x$Model[[method]]$bt.par), CVpCent=round(100*unlist(x$Model[[method]]$bt.stdev)/unlist(x$Model[[method]]$bt.par),1),row.names=NULL) } if(!partial) { partable <- data.frame(Parameter=c("M.1/day", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("Rec.",x$Data$Properties$Units["NumbersMultiplier"],".Wave",1:waves,sep=""), paste("k.1/",x$Data$Properties$Fleets$Units,sep=""), "alpha","beta", paste("psi.",x$Data$Properties$Units["NumbersMultiplier"],".squared",sep="")), Timing=c("","",as.character(as.Date(x$Data$Properties$Dates[["StartDate"]])+x$Model[[method]]$Dates[2:(waves+1)]),"","","",""), Estimates=unlist(x$Model[[method]]$bt.par), CVpCent=round(100*unlist(x$Model[[method]]$bt.stdev)/unlist(x$Model[[method]]$bt.par),1),row.names=NULL) } } } } } if(length(x$Data$Properties$Fleets$Fleet)==2) { if(sum(x$Model[[method]]$Type)==0) { if(sum(x$Model[[method]]$Distr%in%sdistr.set)==2) { if(x$Data$Properties$Units["Time Step"]=="week") { partable <- data.frame(Parameter=c("M.1/week", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("k.1/",x$Data$Properties$Fleets$Units[1],sep=""), "alpha","beta"), Estimates.F1=unlist(x$Model[[method]]$bt.par[1:5]), CVpCent.F1=round(100*unlist(x$Model[[method]]$bt.stdev[1:5])/ unlist(x$Model[[method]]$bt.par[1:5]),1), Estimates.F2=unlist(x$Model[[method]]$bt.par[c(1,2,6:8)]), CVpCent.F2=round(100*unlist(x$Model[[method]]$bt.stdev[c(1,2,6:8)])/ unlist(x$Model[[method]]$bt.par[c(1,2,6:8)]),1),row.names=NULL) names(partable)[2:3] <- paste(c("Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[1],sep="") names(partable)[4:5] <- paste(c("Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[2],sep="") } if(x$Data$Properties$Units["Time Step"]=="day") { partable <- data.frame(Parameter=c("M.1/day", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("k.1/",x$Data$Properties$Fleets$Units[1],sep=""), "alpha","beta"), Estimates.F1=unlist(x$Model[[method]]$bt.par[1:5]), CVpCent.F1=round(100*unlist(x$Model[[method]]$bt.stdev[1:5])/ unlist(x$Model[[method]]$bt.par[1:5]),1), Estimates.F2=unlist(x$Model[[method]]$bt.par[c(1,2,6:8)]), CVpCent.F2=round(100*unlist(x$Model[[method]]$bt.stdev[c(1,2,6:8)])/ unlist(x$Model[[method]]$bt.par[c(1,2,6:8)]),1),row.names=NULL) names(partable)[2:3] <- paste(c("Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[1],sep="") names(partable)[4:5] <- paste(c("Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[2],sep="") } } if(diff(x$Model[[method]]$Distr%in%sdistr.set)==-1) { if(x$Data$Properties$Units["Time Step"]=="week") { partable <- data.frame(Parameter=c("M.1/week", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("k.1/",x$Data$Properties$Fleets$Units[1],sep=""), "alpha","beta", paste("psi.",x$Data$Properties$Units["NumbersMultiplier"],".squared",sep="")), Estimates.F1=c(unlist(x$Model[[method]]$bt.par[1:5]),NA), CVpCent.F1=round(100*c(unlist(x$Model[[method]]$bt.stdev[1:5]),NA)/ c(unlist(x$Model[[method]]$bt.par[1:5]),NA),1), Estimates.F2=unlist(x$Model[[method]]$bt.par[c(1,2,6:9)]), CVpCent.F2=round(100*unlist(x$Model[[method]]$bt.stdev[c(1,2,6:9)])/ unlist(x$Model[[method]]$bt.par[c(1,2,6:9)]),1),row.names=NULL) names(partable)[2:3] <- paste(c("Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[1],sep="") names(partable)[4:5] <- paste(c("Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[2],sep="") } if(x$Data$Properties$Units["Time Step"]=="day") { partable <- data.frame(Parameter=c("M.1/day", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("k.1/",x$Data$Properties$Fleets$Units[1],sep=""), "alpha","beta", paste("psi.",x$Data$Properties$Units["NumbersMultiplier"],".squared",sep="")), Estimates.F1=c(unlist(x$Model[[method]]$bt.par[1:5]),NA), CVpCent.F1=round(100*c(unlist(x$Model[[method]]$bt.stdev[1:5]),NA)/ c(unlist(x$Model[[method]]$bt.par[1:5]),NA),1), Estimates.F2=unlist(x$Model[[method]]$bt.par[c(1,2,6:9)]), CVpCent.F2=round(100*unlist(x$Model[[method]]$bt.stdev[c(1,2,6:9)])/ unlist(x$Model[[method]]$bt.par[c(1,2,6:9)]),1),row.names=NULL) names(partable)[2:3] <- paste(c("Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[1],sep="") names(partable)[4:5] <- paste(c("Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[2],sep="") } } if(diff(x$Model[[method]]$Distr%in%sdistr.set)==1) { if(x$Data$Properties$Units["Time Step"]=="week") { partable <- data.frame(Parameter=c("M.1/week", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("k.1/",x$Data$Properties$Fleets$Units[1],sep=""), "alpha","beta", paste("psi.",x$Data$Properties$Units["NumbersMultiplier"],".squared",sep="")), Estimates.F1=unlist(x$Model[[method]]$bt.par[c(1:5,9)]), CVpCent.F1=round(100*unlist(x$Model[[method]]$bt.stdev[c(1:5,9)])/ unlist(x$Model[[method]]$bt.par[c(1:5,9)]),1), Estimates.F2=c(unlist(x$Model[[method]]$bt.par[c(1,2,6:8)]),NA), CVpCent.F2=round(100*c(unlist(x$Model[[method]]$bt.stdev[c(1,2,6:8)]),NA)/ c(unlist(x$Model[[method]]$bt.par[c(1,2,6:8)]),NA),1),row.names=NULL) names(partable)[2:3] <- paste(c("Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[1],sep="") names(partable)[4:5] <- paste(c("Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[2],sep="") } if(x$Data$Properties$Units["Time Step"]=="day") { partable <- data.frame(Parameter=c("M.1/day", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("k.1/",x$Data$Properties$Fleets$Units[1],sep=""), "alpha","beta", paste("psi.",x$Data$Properties$Units["NumbersMultiplier"],".squared",sep="")), Estimates.F1=unlist(x$Model[[method]]$bt.par[c(1:5,9)]), CVpCent.F1=round(100*unlist(x$Model[[method]]$bt.stdev[c(1:5,9)])/ unlist(x$Model[[method]]$bt.par[c(1:5,9)]),1), Estimates.F2=c(unlist(x$Model[[method]]$bt.par[c(1,2,6:8)]),NA), CVpCent.F2=round(100*c(unlist(x$Model[[method]]$bt.stdev[c(1,2,6:8)]),NA)/ c(unlist(x$Model[[method]]$bt.par[c(1,2,6:8)]),NA),1),row.names=NULL) names(partable)[2:3] <- paste(c("Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[1],sep="") names(partable)[4:5] <- paste(c("Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[2],sep="") } } if(sum(x$Model[[method]]$Distr%in%sdistr.set)==0) { if(x$Data$Properties$Units["Time Step"]=="week") { partable <- data.frame(Parameter=c("M.1/week", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("k.1/",x$Data$Properties$Fleets$Units[1],sep=""), "alpha","beta", paste("psi.",x$Data$Properties$Units["NumbersMultiplier"],".squared",sep="")), Estimates.F1=unlist(x$Model[[method]]$bt.par[c(1:5,9)]), CVpCent.F1=round(100*unlist(x$Model[[method]]$bt.stdev[c(1:5,9)])/ unlist(x$Model[[method]]$bt.par[c(1:5,9)]),1), Estimates.F2=unlist(x$Model[[method]]$bt.par[c(1,2,6:8,10)]), CVpCent.F2=round(100*unlist(x$Model[[method]]$bt.stdev[c(1,2,6:8,10)])/ unlist(x$Model[[method]]$bt.par[c(1,2,6:8,10)]),1),row.names=NULL) names(partable)[2:3] <- paste(c("Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[1],sep="") names(partable)[4:5] <- paste(c("Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[2],sep="") } if(x$Data$Properties$Units["Time Step"]=="day") { partable <- data.frame(Parameter=c("M.1/day", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("k.1/",x$Data$Properties$Fleets$Units[1],sep=""), "alpha","beta", paste("psi.",x$Data$Properties$Units["NumbersMultiplier"],".squared",sep="")), Estimates.F1=unlist(x$Model[[method]]$bt.par[c(1:5,9)]), CVpCent.F1=round(100*unlist(x$Model[[method]]$bt.stdev[c(1:5,9)])/ unlist(x$Model[[method]]$bt.par[c(1:5,9)]),1), Estimates.F2=unlist(x$Model[[method]]$bt.par[c(1,2,6:8,10)]), CVpCent.F2=round(100*unlist(x$Model[[method]]$bt.stdev[c(1,2,6:8,10)])/ unlist(x$Model[[method]]$bt.par[c(1,2,6:8,10)]),1),row.names=NULL) names(partable)[2:3] <- paste(c("Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[1],sep="") names(partable)[4:5] <- paste(c("Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[2],sep="") } } } if(sum(x$Model[[method]]$Type)!=0) { year <- as.numeric(substring(x$Data$Properties$Dates[["StartDate"]],1,4)) waves.F1 <- x$Model[[method]]$Type[1] waves.F2 <- x$Model[[method]]$Type[2] if(sum(x$Model[[method]]$Distr%in%sdistr.set)==2) { if(waves.F1==0) { year1 <- as.numeric(format(as.Date(x$Data$Properties$Dates[["StartDate"]]), "%Y")) year2 <- as.numeric(format(as.Date(x$Data$Properties$Dates[["EndDate"]]), "%Y")) days <- as.Date(paste(year1, 1, 1, sep = "-"))+0:365*(year2-year1+1) if(x$Data$Properties$Units["Time Step"]=="week") { weeks2 <- x$Model[[method]]$Dates[2:(waves.F2+1)] dates.ranges.F2 <- vector("character",waves.F2) for(w in 1:waves.F2) { if(weeks2[w] <= 53) { dates.ranges.F2[w] <- paste(range(days[sprintf("%d %02d", year1, weeks2[w]) == format(days, "%Y %U")]),collapse=' ') } if(weeks2[w] > 53) { dates.ranges.F2[w] <- paste(range(days[sprintf("%d %02d", year2, weeks2[w]-53) == format(days, "%Y %U")]),collapse=' ') } } partable <- data.frame(Parameter=c("M.1/week", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("Rec.",x$Data$Properties$Units["NumbersMultiplier"],".Wave",1:waves.F2,sep=""), paste("k.1/",x$Data$Properties$Fleets$Units[1],sep=""), "alpha","beta"), Estimates.F1=c(unlist(x$Model[[method]]$bt.par[c(1,2)]),rep(0,waves.F2),unlist(x$Model[[method]]$bt.par[3:5])), CVpCent.F1=round(100*c(unlist(x$Model[[method]]$bt.stdev[c(1,2)]),rep(0,waves.F2),unlist(x$Model[[method]]$bt.stdev[3:5]))/ c(unlist(x$Model[[method]]$bt.par[c(1,2)]),rep(1,waves.F2),unlist(x$Model[[method]]$bt.par[3:5])),1), Timing.F2=c("","",dates.ranges.F2,"","",""), Estimates.F2=unlist(x$Model[[method]]$bt.par[c(1,2,6:(5+waves.F2+3))]), CVpCent.F2=round(100*unlist(x$Model[[method]]$bt.stdev[c(1,2,6:(5+waves.F2+3))])/ unlist(x$Model[[method]]$bt.par[c(1,2,6:(5+waves.F2+3))]),1),row.names=NULL) names(partable)[2:3] <- paste(c("Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[1],sep="") names(partable)[4:6] <- paste(c("Timing.","Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[2],sep="") } if(x$Data$Properties$Units["Time Step"]=="day") { partable <- data.frame(Parameter=c("M.1/day", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("Rec.",x$Data$Properties$Units["NumbersMultiplier"],".Wave",1:waves.F2,sep=""), paste("k.1/",x$Data$Properties$Fleets$Units[1],sep=""), "alpha","beta"), Estimates.F1=c(unlist(x$Model[[method]]$bt.par[c(1,2)]),rep(0,waves.F2),unlist(x$Model[[method]]$bt.par[3:5])), CVpCent.F1=round(100*c(unlist(x$Model[[method]]$bt.stdev[c(1,2)]),rep(0,waves.F2),unlist(x$Model[[method]]$bt.stdev[3:5]))/ c(unlist(x$Model[[method]]$bt.par[c(1,2)]),rep(1,waves.F2),unlist(x$Model[[method]]$bt.par[3:5])),1), Timing.F2=c("","",as.character(as.Date(x$Data$Properties$Dates[["StartDate"]])+x$Model[[method]]$Dates[2:(waves.F2+1)]),"","",""), Estimates.F2=unlist(x$Model[[method]]$bt.par[c(1,2,6:(5+waves.F2+3))]), CVpCent.F2=round(100*unlist(x$Model[[method]]$bt.stdev[c(1,2,6:(5+waves.F2+3))])/ unlist(x$Model[[method]]$bt.par[c(1,2,6:(5+waves.F2+3))]),1),row.names=NULL) names(partable)[2:3] <- paste(c("Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[1],sep="") names(partable)[4:6] <- paste(c("Timing.","Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[2],sep="") } } if(waves.F1!=0 & waves.F2!=0) { year1 <- as.numeric(format(as.Date(x$Data$Properties$Dates[["StartDate"]]), "%Y")) year2 <- as.numeric(format(as.Date(x$Data$Properties$Dates[["EndDate"]]), "%Y")) days <- as.Date(paste(year1, 1, 1, sep = "-"))+0:365*(year2-year1+1) if(x$Data$Properties$Units["Time Step"]=="week") { weeks1 <- x$Model[[method]]$Dates[2:(waves.F1+1)] weeks2 <- x$Model[[method]]$Dates[(waves.F1+2):(waves.F1+waves.F2+1)] dates.ranges.F1 <- vector("character",waves.F1) dates.ranges.F2 <- vector("character",waves.F2) for(w in 1:waves.F1) { if(weeks1[w] <= 53) { dates.ranges.F1[w] <- paste(range(days[sprintf("%d %02d", year1, weeks1[w]) == format(days, "%Y %U")]),collapse=' ') } if(weeks1[w] > 53) { dates.ranges.F1[w] <- paste(range(days[sprintf("%d %02d", year2, weeks1[w]-53) == format(days, "%Y %U")]),collapse=' ') } } for(w in 1:waves.F2) { if(weeks2[w] <= 53) { dates.ranges.F2[w] <- paste(range(days[sprintf("%d %02d", year1, weeks2[w]) == format(days, "%Y %U")]),collapse=' ') } if(weeks2[w] > 53) { dates.ranges.F2[w] <- paste(range(days[sprintf("%d %02d", year2, weeks2[w]-53) == format(days, "%Y %U")]),collapse=' ') } } partable <- data.frame(Parameter=c("M.1/week", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("Rec.",x$Data$Properties$Units["NumbersMultiplier"],".Wave",1:waves.F2,sep=""), paste("k.1/",x$Data$Properties$Fleets$Units[1],sep=""), "alpha","beta"), Timing.F1=c("","",dates.ranges.F1,rep("",3+waves.F2-waves.F1)), Estimates.F1=c(unlist(x$Model[[method]]$bt.par[c(1,2,3:(waves.F1+2))]),rep(0,waves.F2-waves.F1),unlist(x$Model[[method]]$bt.par[(waves.F1+3):(waves.F1+5)])), CVpCent.F1=round(100*c(unlist(x$Model[[method]]$bt.stdev[c(1,2,3:(waves.F1+2))]),rep(0,waves.F2-waves.F1),unlist(x$Model[[method]]$bt.stdev[(waves.F1+3):(waves.F1+5)]))/ c(unlist(x$Model[[method]]$bt.par[c(1,2,3:(waves.F1+2))]),rep(0,waves.F2-waves.F1),unlist(x$Model[[method]]$bt.par[(waves.F1+3):(waves.F1+5)])),1), Timing.F2=c("","",dates.ranges.F2,"","",""), Estimates.F2=unlist(x$Model[[method]]$bt.par[c(1,2,(2+waves.F1+4):(2+waves.F1+3+waves.F2+3))]), CVpCent.F2=round(100*unlist(x$Model[[method]]$bt.stdev[c(1,2,(2+waves.F1+4):(2+waves.F1+3+waves.F2+3))])/ unlist(x$Model[[method]]$bt.par[c(1,2,(2+waves.F1+4):(2+waves.F1+3+waves.F2+3))]),1),row.names=NULL) names(partable)[2:4] <- paste(c("Timing.","Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[1],sep="") names(partable)[5:7] <- paste(c("Timing.","Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[2],sep="") } if(x$Data$Properties$Units["Time Step"]=="day") { partable <- data.frame(Parameter=c("M.1/day", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("Rec.",x$Data$Properties$Units["NumbersMultiplier"],".Wave",1:waves.F2,sep=""), paste("k.1/",x$Data$Properties$Fleets$Units[1],sep=""), "alpha","beta"), Timing.F1=c("","",as.character(as.Date(x$Data$Properties$Dates[["StartDate"]])+x$Model[[method]]$Dates[2:(waves.F1+1)]),rep("",3+waves.F2-waves.F1)), Estimates.F1=c(unlist(x$Model[[method]]$bt.par[c(1,2,3:(waves.F1+2))]),rep(0,waves.F2-waves.F1),unlist(x$Model[[method]]$bt.par[(waves.F1+3):(waves.F1+5)])), CVpCent.F1=round(100*c(unlist(x$Model[[method]]$bt.stdev[c(1,2,3:(waves.F1+2))]),rep(0,waves.F2-waves.F1),unlist(x$Model[[method]]$bt.stdev[(waves.F1+3):(waves.F1+5)]))/ c(unlist(x$Model[[method]]$bt.par[c(1,2,3:(waves.F1+2))]),rep(0,waves.F2-waves.F1),unlist(x$Model[[method]]$bt.par[(waves.F1+3):(waves.F1+5)])),1), Timing.F2=c("","",as.character(as.Date(x$Data$Properties$Dates[["StartDate"]])+x$Model[[method]]$Dates[(waves.F1+2):(waves.F1+1+waves.F2)]),"","",""), Estimates.F2=unlist(x$Model[[method]]$bt.par[c(1,2,6:(5+waves.F2+3))]), CVpCent.F2=round(100*unlist(x$Model[[method]]$bt.stdev[c(1,2,(waves.F1+6):(waves.F1+5+waves.F2+3))])/ unlist(x$Model[[method]]$bt.par[c(1,2,(waves.F1+6):(waves.F1+5+waves.F2+3))]),1),row.names=NULL) names(partable)[2:4] <- paste(c("Timing.","Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[1],sep="") names(partable)[5:7] <- paste(c("Timing.","Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[2],sep="") } } } if(diff(x$Model[[method]]$Distr%in%sdistr.set)==-1) { if(waves.F1==0) { year1 <- as.numeric(format(as.Date(x$Data$Properties$Dates[["StartDate"]]), "%Y")) year2 <- as.numeric(format(as.Date(x$Data$Properties$Dates[["EndDate"]]), "%Y")) days <- as.Date(paste(year1, 1, 1, sep = "-"))+0:365*(year2-year1+1) if(x$Data$Properties$Units["Time Step"]=="week") { weeks2 <- x$Model[[method]]$Dates[2:(waves.F2+1)] dates.ranges.F2 <- vector("character",waves.F2) for(w in 1:waves.F2) { if(weeks2[w] <= 53) { dates.ranges.F2[w] <- paste(range(days[sprintf("%d %02d", year1, weeks2[w]) == format(days, "%Y %U")]),collapse=' ') } if(weeks2[w] > 53) { dates.ranges.F2[w] <- paste(range(days[sprintf("%d %02d", year2, weeks2[w]-53) == format(days, "%Y %U")]),collapse=' ') } } partable <- data.frame(Parameter=c("M.1/week", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("Rec.",x$Data$Properties$Units["NumbersMultiplier"],".Wave",1:waves.F2,sep=""), paste("k.1/",x$Data$Properties$Fleets$Units[1],sep=""), "alpha","beta", paste("psi.",x$Data$Properties$Units["NumbersMultiplier"],".squared",sep="")), Estimates.F1=c(unlist(x$Model[[method]]$bt.par[c(1,2)]),rep(0,waves.F2),unlist(x$Model[[method]]$bt.par[3:5]),NA), CVpCent.F1=round(100*c(unlist(x$Model[[method]]$bt.stdev[c(1,2)]),rep(0,waves.F2),unlist(x$Model[[method]]$bt.stdev[3:5]),NA)/ c(unlist(x$Model[[method]]$bt.par[c(1,2)]),rep(1,waves.F2),unlist(x$Model[[method]]$bt.par[3:5]),NA),1), Timing.F2=c("","",dates.ranges.F2,"","","",""), Estimates.F2=c(unlist(x$Model[[method]]$bt.par[c(1,2,6:(5+waves.F2+3))]),tail(unlist(x$Model[[method]]$bt.par),1)), CVpCent.F2=round(100*c(unlist(x$Model[[method]]$bt.stdev[c(1,2,6:(5+waves.F2+3))]),tail(unlist(x$Model[[method]]$bt.stdev),1))/ c(unlist(x$Model[[method]]$bt.par[c(1,2,6:(5+waves.F2+3))]),tail(unlist(x$Model[[method]]$bt.par),1)),1),row.names=NULL) names(partable)[2:3] <- paste(c("Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[1],sep="") names(partable)[4:6] <- paste(c("Timing.","Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[2],sep="") } if(x$Data$Properties$Units["Time Step"]=="day") { partable <- data.frame(Parameter=c("M.1/day", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("Rec.",x$Data$Properties$Units["NumbersMultiplier"],".Wave",1:waves.F2,sep=""), paste("k.1/",x$Data$Properties$Fleets$Units[1],sep=""), "alpha","beta", paste("psi.",x$Data$Properties$Units["NumbersMultiplier"],".squared",sep="")), Estimates.F1=c(unlist(x$Model[[method]]$bt.par[c(1,2)]),rep(0,waves.F2),unlist(x$Model[[method]]$bt.par[3:5]),NA), CVpCent.F1=round(100*c(unlist(x$Model[[method]]$bt.stdev[c(1,2)]),rep(0,waves.F2),unlist(x$Model[[method]]$bt.stdev[3:5]),NA)/ c(unlist(x$Model[[method]]$bt.par[c(1,2)]),rep(1,waves.F2),unlist(x$Model[[method]]$bt.par[3:5]),NA),1), Timing.F2=c("","",as.character(as.Date(x$Data$Properties$Dates[["StartDate"]])+x$Model[[method]]$Dates[2:(waves.F2+1)]),"","","",""), Estimates.F2=c(unlist(x$Model[[method]]$bt.par[c(1,2,6:(5+waves.F2+3))]),tail(unlist(x$Model[[method]]$bt.par),1)), CVpCent.F2=round(100*c(unlist(x$Model[[method]]$bt.stdev[c(1,2,6:(5+waves.F2+3))]),tail(unlist(x$Model[[method]]$bt.stdev),1))/ c(unlist(x$Model[[method]]$bt.par[c(1,2,6:(5+waves.F2+3))]),tail(unlist(x$Model[[method]]$bt.par),1)),1),row.names=NULL) names(partable)[2:3] <- paste(c("Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[1],sep="") names(partable)[4:6] <- paste(c("Timing.","Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[2],sep="") } } if(waves.F1!=0 & waves.F2!=0) { year1 <- as.numeric(format(as.Date(x$Data$Properties$Dates[["StartDate"]]), "%Y")) year2 <- as.numeric(format(as.Date(x$Data$Properties$Dates[["EndDate"]]), "%Y")) days <- as.Date(paste(year1, 1, 1, sep = "-"))+0:365*(year2-year1+1) if(x$Data$Properties$Units["Time Step"]=="week") { weeks1 <- x$Model[[method]]$Dates[2:(waves.F1+1)] weeks2 <- x$Model[[method]]$Dates[(waves.F1+2):(waves.F1+waves.F2+1)] dates.ranges.F1 <- vector("character",waves.F1) dates.ranges.F2 <- vector("character",waves.F2) for(w in 1:waves.F1) { if(weeks1[w] <= 53) { dates.ranges.F1[w] <- paste(range(days[sprintf("%d %02d", year1, weeks1[w]) == format(days, "%Y %U")]),collapse=' ') } if(weeks1[w] > 53) { dates.ranges.F1[w] <- paste(range(days[sprintf("%d %02d", year2, weeks1[w]-53) == format(days, "%Y %U")]),collapse=' ') } } for(w in 1:waves.F2) { if(weeks2[w] <= 53) { dates.ranges.F2[w] <- paste(range(days[sprintf("%d %02d", year1, weeks2[w]) == format(days, "%Y %U")]),collapse=' ') } if(weeks2[w] > 53) { dates.ranges.F2[w] <- paste(range(days[sprintf("%d %02d", year2, weeks2[w]) == format(days, "%Y %U")]),collapse=' ') } } partable <- data.frame(Parameter=c("M.1/week", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("Rec.",x$Data$Properties$Units["NumbersMultiplier"],".Wave",1:waves.F2,sep=""), paste("k.1/",x$Data$Properties$Fleets$Units[1],sep=""), "alpha","beta", paste("psi.",x$Data$Properties$Units["NumbersMultiplier"],".squared",sep="")), Timing.F1=c("","",dates.ranges.F1,rep("",4+waves.F2-waves.F1)), Estimates.F1=c(unlist(x$Model[[method]]$bt.par[c(1,2,3:(waves.F1+2))]),rep(0,waves.F2-waves.F1),unlist(x$Model[[method]]$bt.par[(waves.F1+3):(waves.F1+5)]),NA), CVpCent.F1=round(100*c(unlist(x$Model[[method]]$bt.stdev[c(1,2,3:(waves.F1+2))]),rep(0,waves.F2-waves.F1),unlist(x$Model[[method]]$bt.stdev[(waves.F1+3):(waves.F1+5)]),NA)/ c(unlist(x$Model[[method]]$bt.par[c(1,2,3:(waves.F1+2))]),rep(0,waves.F2-waves.F1),unlist(x$Model[[method]]$bt.par[(waves.F1+3):(waves.F1+5)]),NA),1), Timing.F2=c("","",dates.ranges.F2,"","","",""), Estimates.F2=unlist(x$Model[[method]]$bt.par[c(1,2,(2+waves.F1+4):(2+waves.F1+3+waves.F2+4))]), CVpCent.F2=round(100*unlist(x$Model[[method]]$bt.stdev[c(1,2,(2+waves.F1+4):(2+waves.F1+3+waves.F2+4))])/ unlist(x$Model[[method]]$bt.par[c(1,2,(2+waves.F1+4):(2+waves.F1+3+waves.F2+4))]),1),row.names=NULL) names(partable)[2:4] <- paste(c("Timing.","Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[1],sep="") names(partable)[5:7] <- paste(c("Timing.","Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[2],sep="") } if(x$Data$Properties$Units["Time Step"]=="day") { partable <- data.frame(Parameter=c("M.1/day", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("Rec.",x$Data$Properties$Units["NumbersMultiplier"],".Wave",1:waves.F2,sep=""), paste("k.1/",x$Data$Properties$Fleets$Units[1],sep=""), "alpha","beta", paste("psi.",x$Data$Properties$Units["NumbersMultiplier"],".squared",sep="")), Timing.F1=c("","",as.character(as.Date(x$Data$Properties$Dates[["StartDate"]])+x$Model[[method]]$Dates[2:(waves.F1+1)]),rep("",4+waves.F2-waves.F1)), Estimates.F1=c(unlist(x$Model[[method]]$bt.par[c(1,2,3:(waves.F1+2))]),rep(0,waves.F2-waves.F1),unlist(x$Model[[method]]$bt.par[(waves.F1+3):(waves.F1+5)]),NA), CVpCent.F1=round(100*c(unlist(x$Model[[method]]$bt.stdev[c(1,2,3:(waves.F1+2))]),rep(0,waves.F2-waves.F1),unlist(x$Model[[method]]$bt.stdev[(waves.F1+3):(waves.F1+5)]),NA)/ c(unlist(x$Model[[method]]$bt.par[c(1,2,3:(waves.F1+2))]),rep(0,waves.F2-waves.F1),unlist(x$Model[[method]]$bt.par[(waves.F1+3):(waves.F1+5)]),NA),1), Timing.F2=c("","",as.character(as.Date(x$Data$Properties$Dates[["StartDate"]])+x$Model[[method]]$Dates[(waves.F1+2):(waves.F1+1+waves.F2)]),"","","",""), Estimates.F2=unlist(x$Model[[method]]$bt.par[c(1,2,(waves.F1+6):((waves.F1+6+waves.F2+3)))]), CVpCent.F2=round(100*unlist(x$Model[[method]]$bt.stdev[c(1,2,(waves.F1+6):((waves.F1+6+waves.F2+3)))])/ unlist(x$Model[[method]]$bt.par[c(1,2,(waves.F1+6):((waves.F1+6+waves.F2+3)))]),1),row.names=NULL) names(partable)[2:4] <- paste(c("Timing.","Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[1],sep="") names(partable)[5:7] <- paste(c("Timing.","Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[2],sep="") } } } if(diff(x$Model[[method]]$Distr%in%sdistr.set)==1) { if(waves.F1==0) { year1 <- as.numeric(format(as.Date(x$Data$Properties$Dates[["StartDate"]]), "%Y")) year2 <- as.numeric(format(as.Date(x$Data$Properties$Dates[["EndDate"]]), "%Y")) days <- as.Date(paste(year1, 1, 1, sep = "-"))+0:365*(year2-year1+1) if(x$Data$Properties$Units["Time Step"]=="week") { weeks2 <- x$Model[[method]]$Dates[2:(waves.F2+1)] dates.ranges.F2 <- vector("character",waves.F2) for(w in 1:waves.F2) { if(weeks2[w] <= 53) { dates.ranges.F2[w] <- paste(range(days[sprintf("%d %02d", year1, weeks2[w]) == format(days, "%Y %U")]),collapse=' ') } if(weeks2[w] > 53) { dates.ranges.F2[w] <- paste(range(days[sprintf("%d %02d", year2, weeks2[w]-53) == format(days, "%Y %U")]),collapse=' ') } } partable <- data.frame(Parameter=c("M.1/week", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("Rec.",x$Data$Properties$Units["NumbersMultiplier"],".Wave",1:waves.F2,sep=""), paste("k.1/",x$Data$Properties$Fleets$Units[1],sep=""), "alpha","beta", paste("psi.",x$Data$Properties$Units["NumbersMultiplier"],".squared",sep="")), Estimates.F1=c(unlist(x$Model[[method]]$bt.par[c(1,2)]),rep(0,waves.F2),unlist(x$Model[[method]]$bt.par[3:5]),tail(unlist(x$Model[[method]]$bt.par),1)), CVpCent.F1=round(100*c(unlist(x$Model[[method]]$bt.stdev[c(1,2)]),rep(0,waves.F2),unlist(x$Model[[method]]$bt.stdev[3:5]),tail(unlist(x$Model[[method]]$bt.stdev),1))/ c(unlist(x$Model[[method]]$bt.par[c(1,2)]),rep(1,waves.F2),unlist(x$Model[[method]]$bt.par[3:5]),tail(unlist(x$Model[[method]]$bt.par),1)),1), Timing.F2=c("","",dates.ranges.F2,"","","",""), Estimates.F2=c(unlist(x$Model[[method]]$bt.par[c(1,2,6:(5+length(waves.F2)+3))]),NA), CVpCent.F2=round(100*c(unlist(x$Model[[method]]$bt.stdev[c(1,2,6:(5+waves.F2+3))]),NA)/ c(unlist(x$Model[[method]]$bt.par[c(1,2,6:(5+waves.F2+3))]),NA),1),row.names=NULL) names(partable)[2:3] <- paste(c("Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[1],sep="") names(partable)[4:6] <- paste(c("Timing.","Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[2],sep="") } if(x$Data$Properties$Units["Time Step"]=="day") { partable <- data.frame(Parameter=c("M.1/day", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("Rec.",x$Data$Properties$Units["NumbersMultiplier"],".Wave",1:waves.F2,sep=""), paste("k.1/",x$Data$Properties$Fleets$Units[1],sep=""), "alpha","beta", paste("psi.",x$Data$Properties$Units["NumbersMultiplier"],".squared",sep="")), Estimates.F1=c(unlist(x$Model[[method]]$bt.par[c(1,2)]),rep(0,waves.F2),unlist(x$Model[[method]]$bt.par[3:5]),tail(unlist(x$Model[[method]]$bt.par),1)), CVpCent.F1=round(100*c(unlist(x$Model[[method]]$bt.stdev[c(1,2)]),rep(0,waves.F2),unlist(x$Model[[method]]$bt.stdev[3:5]),tail(unlist(x$Model[[method]]$bt.stdev),1))/ c(unlist(x$Model[[method]]$bt.par[c(1,2)]),rep(1,waves.F2),unlist(x$Model[[method]]$bt.par[3:5]),tail(unlist(x$Model[[method]]$bt.par),1)),1), Timing.F2=c("","",as.character(as.Date(x$Data$Properties$Dates[["StartDate"]])+x$Model[[method]]$Dates[2:(waves.F2+1)]),"","","",""), Estimates.F2=c(unlist(x$Model[[method]]$bt.par[c(1,2,6:(5+waves.F2+3))]),NA), CVpCent.F2=round(100*c(unlist(x$Model[[method]]$bt.stdev[c(1,2,6:(5+waves.F2+3))]),NA)/ c(unlist(x$Model[[method]]$bt.par[c(1,2,6:(5+waves.F2+3))]),NA),1),row.names=NULL) names(partable)[2:3] <- paste(c("Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[1],sep="") names(partable)[4:6] <- paste(c("Timing.","Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[2],sep="") } } if(waves.F1!=0 & waves.F2!=0) { year1 <- as.numeric(format(as.Date(x$Data$Properties$Dates[["StartDate"]]), "%Y")) year2 <- as.numeric(format(as.Date(x$Data$Properties$Dates[["EndDate"]]), "%Y")) days <- as.Date(paste(year1, 1, 1, sep = "-"))+0:365*(year2-year1+1) if(x$Data$Properties$Units["Time Step"]=="week") { weeks1 <- x$Model[[method]]$Dates[2:(waves.F1+1)] weeks2 <- x$Model[[method]]$Dates[(waves.F1+2):(waves.F1+waves.F2+1)] dates.ranges.F1 <- vector("character",waves.F1) dates.ranges.F2 <- vector("character",waves.F2) for(w in 1:waves.F1) { if(weeks1[w] <= 53) { dates.ranges.F1[w] <- paste(range(days[sprintf("%d %02d", year1, weeks1[w]) == format(days, "%Y %U")]),collapse=' ') } if(weeks1[w] > 53) { dates.ranges.F1[w] <- paste(range(days[sprintf("%d %02d", year2, weeks1[w]-53) == format(days, "%Y %U")]),collapse=' ') } } for(w in 1:waves.F2) { if(weeks2[w] <= 53) { dates.ranges.F2[w] <- paste(range(days[sprintf("%d %02d", year1, weeks2[w]) == format(days, "%Y %U")]),collapse=' ') } if(weeks2[w] > 53) { dates.ranges.F2[w] <- paste(range(days[sprintf("%d %02d", year2, weeks2[w]-53) == format(days, "%Y %U")]),collapse=' ') } } partable <- data.frame(Parameter=c("M.1/week", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("Rec.",x$Data$Properties$Units["NumbersMultiplier"],".Wave",1:waves.F2,sep=""), paste("k.1/",x$Data$Properties$Fleets$Units[1],sep=""), "alpha","beta", paste("psi.",x$Data$Properties$Units["NumbersMultiplier"],".squared",sep="")), Timing.F1=c("","",dates.ranges.F1,rep("",4+waves.F2-waves.F1)), Estimates.F1=c(unlist(x$Model[[method]]$bt.par[c(1,2,3:(waves.F1+2))]),rep(0,waves.F2-waves.F1),unlist(x$Model[[method]]$bt.par[(waves.F1+3):(waves.F1+5)]),tail(unlist(x$Model[[method]]$bt.par),1)), CVpCent.F1=round(100*c(unlist(x$Model[[method]]$bt.stdev[c(1,2,3:(waves.F1+2))]),rep(0,waves.F2-waves.F1),unlist(x$Model[[method]]$bt.stdev[(waves.F1+3):(waves.F1+5)]),tail(unlist(x$Model[[method]]$bt.stdev),1))/ c(unlist(x$Model[[method]]$bt.par[c(1,2,3:(waves.F1+2))]),rep(0,waves.F2-waves.F1),unlist(x$Model[[method]]$bt.par[(waves.F1+3):(waves.F1+5)]),tail(unlist(x$Model[[method]]$bt.par),1)),1), Timing.F2=c("","",dates.ranges.F2,"","","",""), Estimates.F2=c(unlist(x$Model[[method]]$bt.par[c(1,2,(2+waves.F1+3+1):(2+waves.F1+3+waves.F2+3))]),NA), CVpCent.F2=round(100*c(unlist(x$Model[[method]]$bt.stdev[c(1,2,(2+waves.F1+3+1):(2+waves.F1+3+waves.F2+3))]),NA)/ c(unlist(x$Model[[method]]$bt.par[c(1,2,(2+waves.F1+3+1):(2+waves.F1+3+waves.F2+3))]),NA),1),row.names=NULL) names(partable)[2:4] <- paste(c("Timing.","Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[1],sep="") names(partable)[5:7] <- paste(c("Timing.","Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[2],sep="") } if(x$Data$Properties$Units["Time Step"]=="day") { partable <- data.frame(Parameter=c("M.1/day", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("Rec.",x$Data$Properties$Units["NumbersMultiplier"],".Wave",1:waves.F2,sep=""), paste("k.1/",x$Data$Properties$Fleets$Units[1],sep=""), "alpha","beta", paste("psi.",x$Data$Properties$Units["NumbersMultiplier"],".squared",sep="")), Timing.F1=c("","",as.character(as.Date(x$Data$Properties$Dates[["StartDate"]])+x$Model[[method]]$Dates[2:(waves.F1+1)]),rep("",4+waves.F2-waves.F1)), Estimates.F1=c(unlist(x$Model[[method]]$bt.par[c(1,2,3:(waves.F1+2))]),rep(0,waves.F2-waves.F1),unlist(x$Model[[method]]$bt.par[(waves.F1+3):(waves.F1+5)]),tail(unlist(x$Model[[method]]$bt.par),1)), CVpCent.F1=round(100*c(unlist(x$Model[[method]]$bt.stdev[c(1,2,3:(waves.F1+2))]),rep(0,waves.F2-waves.F1),unlist(x$Model[[method]]$bt.stdev[(waves.F1+3):(waves.F1+5)]),tail(unlist(x$Model[[method]]$bt.stdev),1))/ c(unlist(x$Model[[method]]$bt.par[c(1,2,3:(waves.F1+2))]),rep(0,waves.F2-waves.F1),unlist(x$Model[[method]]$bt.par[(waves.F1+3):(waves.F1+5)]),tail(unlist(x$Model[[method]]$bt.par),1)),1), Timing.F2=c("","",as.character(as.Date(x$Data$Properties$Dates[["StartDate"]])+x$Model[[method]]$Dates[(waves.F1+2):(waves.F1+1+waves.F2)]),"","","",""), Estimates.F2=c(unlist(x$Model[[method]]$bt.par[c(1,2,(2+waves.F1+3+1):(2+waves.F1+3+waves.F2+3))]),NA), CVpCent.F2=round(100*c(unlist(x$Model[[method]]$bt.stdev[c(1,2,(2+waves.F1+3+1):(2+waves.F1+3+waves.F2+3))]),NA)/ c(unlist(x$Model[[method]]$bt.par[c(1,2,(2+waves.F1+3+1):(2+waves.F1+3+waves.F2+3))]),NA),1),row.names=NULL) names(partable)[2:4] <- paste(c("Timing.","Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[1],sep="") names(partable)[5:7] <- paste(c("Timing.","Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[2],sep="") } } } else if(sum(x$Model[[method]]$Distr%in%sdistr.set)==0) { if(waves.F1==0) { year1 <- as.numeric(format(as.Date(x$Data$Properties$Dates[["StartDate"]]), "%Y")) year2 <- as.numeric(format(as.Date(x$Data$Properties$Dates[["EndDate"]]), "%Y")) days <- as.Date(paste(year1, 1, 1, sep = "-"))+0:365*(year2-year1+1) if(x$Data$Properties$Units["Time Step"]=="week") { weeks2 <- x$Model[[method]]$Dates[2:(waves.F2+1)] dates.ranges.F2 <- vector("character",waves.F2) for(w in 1:waves.F2) { if(weeks2[w] <= 53) { dates.ranges.F2[w] <- paste(range(days[sprintf("%d %02d", year1, weeks2[w]) == format(days, "%Y %U")]),collapse=' ') } if(weeks2[w] > 53) { dates.ranges.F2[w] <- paste(range(days[sprintf("%d %02d", year2, weeks2[w]-53) == format(days, "%Y %U")]),collapse=' ') } } partable <- data.frame(Parameter=c("M.1/week", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("Rec.",x$Data$Properties$Units["NumbersMultiplier"],".Wave",1:waves.F2,sep=""), paste("k.1/",x$Data$Properties$Fleets$Units[1],sep=""), "alpha","beta", paste("psi.",x$Data$Properties$Units["NumbersMultiplier"],".squared",sep="")), Estimates.F1=c(unlist(x$Model[[method]]$bt.par[c(1,2)]),rep(0,waves.F2),unlist(x$Model[[method]]$bt.par[3:5]),tail(unlist(x$Model[[method]]$bt.par),2)[1]), CVpCent.F1=round(100*c(unlist(x$Model[[method]]$bt.stdev[c(1,2)]),rep(0,waves.F2),unlist(x$Model[[method]]$bt.stdev[3:5]),tail(unlist(x$Model[[method]]$bt.stdev),2)[1])/ c(unlist(x$Model[[method]]$bt.par[c(1,2)]),rep(1,waves.F2),unlist(x$Model[[method]]$bt.par[3:5]),tail(unlist(x$Model[[method]]$bt.par),2)[1]),1), Timing.F2=c("","",dates.ranges.F2,"","","",""), Estimates.F2=c(unlist(x$Model[[method]]$bt.par[c(1,2,6:(5+waves.F2+3))]),tail(unlist(x$Model[[method]]$bt.par),1)), CVpCent.F2=round(100*c(unlist(x$Model[[method]]$bt.stdev[c(1,2,6:(5+waves.F2+3))]),tail(unlist(x$Model[[method]]$bt.stdev),1))/ c(unlist(x$Model[[method]]$bt.par[c(1,2,6:(5+waves.F2+3))]),tail(unlist(x$Model[[method]]$bt.par),1)),1),row.names=NULL) names(partable)[2:3] <- paste(c("Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[1],sep="") names(partable)[4:6] <- paste(c("Timing.","Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[2],sep="") } if(x$Data$Properties$Units["Time Step"]=="day") { partable <- data.frame(Parameter=c("M.1/day", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("Rec.",x$Data$Properties$Units["NumbersMultiplier"],".Wave",1:waves.F2,sep=""), paste("k.1/",x$Data$Properties$Fleets$Units[1],sep=""), "alpha","beta", paste("psi.",x$Data$Properties$Units["NumbersMultiplier"],".squared",sep="")), Estimates.F1=c(unlist(x$Model[[method]]$bt.par[c(1,2)]),rep(0,waves.F2),unlist(x$Model[[method]]$bt.par[3:5]),tail(unlist(x$Model[[method]]$bt.par),2)[1]), CVpCent.F1=round(100*c(unlist(x$Model[[method]]$bt.stdev[c(1,2)]),rep(0,waves.F2),unlist(x$Model[[method]]$bt.stdev[3:5]),tail(unlist(x$Model[[method]]$bt.stdev),2)[1])/ c(unlist(x$Model[[method]]$bt.par[c(1,2)]),rep(1,waves.F2),unlist(x$Model[[method]]$bt.par[3:5]),tail(unlist(x$Model[[method]]$bt.par),2)[1]),1), Timing.F2=c("","",as.character(as.Date(x$Data$Properties$Dates[["StartDate"]])+x$Model[[method]]$Dates[2:(waves.F2+1)]),"","","",""), Estimates.F2=c(unlist(x$Model[[method]]$bt.par[c(1,2,6:(5+waves.F2+3))]),tail(unlist(x$Model[[method]]$bt.par),1)), CVpCent.F2=round(100*c(unlist(x$Model[[method]]$bt.stdev[c(1,2,6:(5+waves.F2+3))]),tail(unlist(x$Model[[method]]$bt.stdev),1))/ c(unlist(x$Model[[method]]$bt.par[c(1,2,6:(5+waves.F2+3))]),tail(unlist(x$Model[[method]]$bt.par),1)),1),row.names=NULL) names(partable)[2:3] <- paste(c("Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[1],sep="") names(partable)[4:6] <- paste(c("Timing.","Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[2],sep="") } } else if(waves.F1!=0 & waves.F2!=0) { year1 <- as.numeric(format(as.Date(x$Data$Properties$Dates[["StartDate"]]), "%Y")) year2 <- as.numeric(format(as.Date(x$Data$Properties$Dates[["EndDate"]]), "%Y")) days <- as.Date(paste(year1, 1, 1, sep = "-"))+0:365*(year2-year1+1) if(x$Data$Properties$Units["Time Step"]=="week") { weeks1 <- x$Model[[method]]$Dates[2:(waves.F1+1)] weeks2 <- x$Model[[method]]$Dates[2:(waves.F2+1)] dates.ranges.F1 <- vector("character",waves.F1) dates.ranges.F2 <- vector("character",waves.F2) for(w in 1:waves.F1) { if(weeks1[w] <= 53) { dates.ranges.F1[w] <- paste(range(days[sprintf("%d %02d", year1, weeks1[w]) == format(days, "%Y %U")]),collapse=' ') } if(weeks1[w] > 53) { dates.ranges.F1[w] <- paste(range(days[sprintf("%d %02d", year2, weeks1[w]-53) == format(days, "%Y %U")]),collapse=' ') } } for(w in 1:waves.F2) { if(weeks2[w] <= 53) { dates.ranges.F2[w] <- paste(range(days[sprintf("%d %02d", year1, weeks2[w]) == format(days, "%Y %U")]),collapse=' ') } if(weeks2[w] > 53) { dates.ranges.F2[w] <- paste(range(days[sprintf("%d %02d", year2, weeks2[w]-53) == format(days, "%Y %U")]),collapse=' ') } } partable <- data.frame(Parameter=c("M.1/week", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("Rec.",x$Data$Properties$Units["NumbersMultiplier"],".Wave",1:waves.F2,sep=""), paste("k.1/",x$Data$Properties$Fleets$Units[1],sep=""), "alpha","beta", paste("psi.",x$Data$Properties$Units["NumbersMultiplier"],".squared",sep="")), Timing.F1=c("","",dates.ranges.F1,rep("",4+waves.F2-waves.F1)), Estimates.F1=c(unlist(x$Model[[method]]$bt.par[c(1,2,3:(waves.F1+2))]),rep(0,waves.F2-waves.F1),unlist(x$Model[[method]]$bt.par[(waves.F1+3):(waves.F1+5)]),tail(unlist(x$Model[[method]]$bt.par),2)[1]), CVpCent.F1=round(100*c(unlist(x$Model[[method]]$bt.stdev[c(1,2,3:(waves.F1+2))]),rep(0,waves.F2-waves.F1),unlist(x$Model[[method]]$bt.stdev[(waves.F1+3):(waves.F1+5)]),tail(unlist(x$Model[[method]]$bt.stdev),2)[1])/ c(unlist(x$Model[[method]]$bt.par[c(1,2,3:(waves.F1+2))]),rep(0,waves.F2-waves.F1),unlist(x$Model[[method]]$bt.par[(waves.F1+3):(waves.F1+5)]),tail(unlist(x$Model[[method]]$bt.par),2)[1]),1), Timing.F2=c("","",dates.ranges.F2,"","","",""), Estimates.F2=c(unlist(x$Model[[method]]$bt.par[c(1,2,(2+waves.F1+3+1):(2+waves.F1+3+waves.F2+3))]),tail(unlist(x$Model[[method]]$bt.par),1)), CVpCent.F2=round(100*c(unlist(x$Model[[method]]$bt.stdev[c(1,2,(2+waves.F1+3+1):(2+waves.F1+3+waves.F2+3))]),tail(unlist(x$Model[[method]]$bt.stdev),1))/ c(unlist(x$Model[[method]]$bt.par[c(1,2,(2+waves.F1+3+1):(2+waves.F1+3+waves.F2+3))]),tail(unlist(x$Model[[method]]$bt.par),1)),1),row.names=NULL) names(partable)[2:4] <- paste(c("Timing.","Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[1],sep="") names(partable)[5:7] <- paste(c("Timing.","Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[2],sep="") } if(x$Data$Properties$Units["Time Step"]=="day") { partable <- data.frame(Parameter=c("M.1/day", paste("N0.",x$Data$Properties$Units["NumbersMultiplier"],sep=""), paste("Rec.",x$Data$Properties$Units["NumbersMultiplier"],".Wave",1:waves.F2,sep=""), paste("k.1/",x$Data$Properties$Fleets$Units[1],sep=""), "alpha","beta", paste("psi.",x$Data$Properties$Units["NumbersMultiplier"],".squared",sep="")), Timing.F1=c("","",as.character(as.Date(x$Data$Properties$Dates[["StartDate"]])+x$Model[[method]]$Dates[2:(waves.F1+1)]),rep("",4+waves.F2-waves.F1)), Estimates.F1=c(unlist(x$Model[[method]]$bt.par[c(1,2,3:(waves.F1+2))]),rep(0,waves.F2-waves.F1),unlist(x$Model[[method]]$bt.par[(waves.F1+3):(waves.F1+5)]),tail(unlist(x$Model[[method]]$bt.par),2)[1]), CVpCent.F1=round(100*c(unlist(x$Model[[method]]$bt.stdev[c(1,2,3:(waves.F1+2))]),rep(0,waves.F2-waves.F1),unlist(x$Model[[method]]$bt.stdev[(waves.F1+3):(waves.F1+5)]),tail(unlist(x$Model[[method]]$bt.stdev),2)[1])/ c(unlist(x$Model[[method]]$bt.par[c(1,2,3:(waves.F1+2))]),rep(0,waves.F2-waves.F1),unlist(x$Model[[method]]$bt.par[(waves.F1+3):(waves.F1+5)]),tail(unlist(x$Model[[method]]$bt.par),2)[1]),1), Timing.F2=c("","",as.character(as.Date(x$Data$Properties$Dates[["StartDate"]])+x$Model[[method]]$Dates[(waves.F1+2):(waves.F1+1+waves.F2)]),"","","",""), Estimates.F2=c(unlist(x$Model[[method]]$bt.par[c(1,2,(2+waves.F1+3+1):(2+waves.F1+3+waves.F2+3))]),tail(unlist(x$Model[[method]]$bt.par),1)), CVpCent.F2=round(100*c(unlist(x$Model[[method]]$bt.stdev[c(1,2,(2+waves.F1+3+1):(2+waves.F1+3+waves.F2+3))]),tail(unlist(x$Model[[method]]$bt.stdev),1))/ c(unlist(x$Model[[method]]$bt.par[c(1,2,(2+waves.F1+3+1):(2+waves.F1+3+waves.F2+3))]),tail(unlist(x$Model[[method]]$bt.par),1)),1),row.names=NULL) names(partable)[2:4] <- paste(c("Timing.","Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[1],sep="") names(partable)[5:7] <- paste(c("Timing.","Estimates.","CVpCent."),x$Data$Properties$Fleets$Fleet[2],sep="") } } } } } } return(partable) }
NULL locpolAND_x0<-function(x,y,p1=1,p2=1,h, alpha=0.5,x0,tol=1e-08) { n<-length(y) x<-as.matrix(x) u1<-matrix(0,n,p1) for (j in 1:p1) { for (i in 1:n) { u1[i,j]<-(x[i,1]-x0)^j } } X1<-cbind(1, u1) irls <-function(x,y,p,h, alpha,x0,maxit=25, tol=1e-08) { n<-length(y) x<-as.matrix(x) u<-matrix(0,n,p) for (j in 1:p) { for (i in 1:n) { u[i,j]<-(x[i,1]-x0)^j } } X<-cbind(1, u) z <- x - x0 K_h <- dnorm(z/h) W <-as.vector(array(NA,length(y))) U <-as.vector(array(NA,length(y))) b = rep(0,ncol(X)) for(j in 1:maxit) { mu = X %*% b for (i in 1:length(y)) { if(y[i]-mu[i]>0) W[i]=alpha^2*K_h[i] else W[i]=(1-alpha)^2*K_h[i] } b_old = b b = solve(crossprod(X,W*X), crossprod(X,W*y), tol=2*.Machine$double.eps) if(sqrt(crossprod(b-b_old)) < tol) break } fitted.values = X %*% b for (i in 1:length(y)) { if(y[i]-fitted.values[i]>0) W[i]=alpha^2*K_h[i] else W[i]=(1-alpha)^2*K_h[i] } for (i in 1:length(y)) { if(y[i]-fitted.values[i]>0) U[i]=alpha^2 else U[i]=(1-alpha)^2 } SSE<-crossprod((y-fitted.values)^2,W) phi2<-sum((y-fitted.values)^2*U*K_h)/(sum(K_h)) phi<-sqrt(phi2) list(b1=b,phi=phi,phi2=phi2,iterations=j) } if (p2==0) { b1=irls(x,y,p=p1,h,alpha,x0)$b theta2<-(1/2)*log(irls(x,y,p=p1,h,alpha,x0)$phi2) X2<-rep(1, length(x)) } else if(p2==1){ u2<-matrix(0,n,p2) for (j in 1:p2) { for (i in 1:n) { u2[i,j]<-(x[i,1]-x0)^j } } X2<-cbind(1, u2) z <- x - x0 K_h <- dnorm(z/h) b1=irls(x,y,p=p1,h,alpha,x0)$b theta2_initial=c((1/2)*log(irls(x,y,p=p1,h,alpha,x0)$phi2),rep(0.005,p2)) for(j in 1:100) { W<-ifelse(y>X1%*% as.vector(b1),alpha^2*K_h,(1-alpha)^2*K_h) SqError<-((y-X1%*%as.vector(b1))^2*W) fr<- function(theta2) { theta20 <- theta2[1] theta21 <- theta2[2] sum(theta20+theta21*(x-x0)*K_h)+sum(SqError/(2*exp(2*theta20+2*theta21*(x-x0)))) } gr<- function(theta2) { theta20 <- theta2[1] theta21 <- theta2[2] c(-sum(SqError/exp(2*theta20+2*theta21*(x-x0)))+sum(K_h),sum(SqError*(x-x0)/(exp(2*theta20+2*theta21*(x-x0))))-sum((x-x0)*K_h)) } theta2<-optim(theta2_initial, fr, gr, method = "BFGS")$par W1<-ifelse(y>X1%*% as.vector(b1),alpha^2*K_h/(2*exp(2*X2%*% as.vector(theta2))),(1-alpha)^2*K_h/(2*exp(2*X2%*% as.vector(theta2)))) b1_old = b1 theta2_old = theta2 b1=solve(crossprod(X1,diag(c(W1))%*%X1), crossprod(X1,diag(c(W1))%*%y)) if(sqrt(crossprod(b1-b1_old)+crossprod(theta2-theta2_old)) < tol) break } } else { u2<-matrix(0,n,p2) for (j in 1:p2) { for (i in 1:n) { u2[i,j]<-(x[i,1]-x0)^j } } X2<-cbind(1, u2) theta1_initial=irls(x,y,p=p1,h,alpha,x0)$b theta2_initial=c((1/2)*log(irls(x,y,p=p1,h,alpha,x0)$phi2),rep(0.005,p2)) fn<-function(theta){ mu<- as.matrix(X1)%*%as.vector(theta[1:(p1+1)]) phi<-exp(as.matrix(X2)%*%as.vector(theta[(p1+2):(p1+p2+2)])) LL<-log(dAND(y,mu,phi,alpha)) return(-sum(LL[!is.infinite(LL)]))} theta0<-c(theta1_initial,theta2_initial) Est.par=optim(par=theta0,fn = fn)$par b1<-Est.par[1:(p1+1)] theta2<-Est.par[(p1+2):(p1+p2+2)] } a=2; u_p1_2<-matrix(0,n,p1+a) u_p2_2<-matrix(0,n,p2+a) for (j in 1:(p1+a)) { for (i in 1:n) { u_p1_2[i,j]<-(x[i]-x0)^j } } for (j in 1:(p2+a)) { for (i in 1:n) { u_p2_2[i,j]<-(x[i]-x0)^j } } X1_p1_2<-cbind(1, u_p1_2) X2_p2_2<-cbind(1, u_p2_2) K_h <- dnorm((x-x0)/h) theta1_p1_2=irls(x,y,p=(p1+a),h,alpha,x0)$b theta2_p2_2=c((1/2)*log(irls(x,y,p=p1,h,alpha,x0)$phi2),rep(0.005,(p2+a))) fn<-function(theta){ mu<- as.matrix(X1_p1_2)%*%as.vector(theta[1:(p1+3)]) phi<-exp(as.matrix(X2_p2_2)%*%as.vector(theta[(p1+4):(p1+p2+6)])) LL<-log(dAND(y,mu,phi,alpha)) return(-sum(LL[!is.infinite(LL)]))} theta0_2<-c(theta1_p1_2, theta2_p2_2) Est.par_2=optim(par=theta0_2,fn = fn)$par b1_p1_2<- Est.par_2[1:(p1+a+1)] b2_p2_2<- Est.par_2[(p1+a+2):(p1+p2+2+2*a)] e_1_hat<- X1_p1_2[,(p1+1):(p1+a)]%*% b1_p1_2[(p1+1):(p1+a)] e_2_hat<- X2_p2_2[,(p2+1):(p2+a)]%*% b2_p2_2[(p2+1):(p2+a)] yhat_p1_2<-as.matrix(X1)%*%as.vector(b1)+e_1_hat yhat_p2_2<-as.matrix(X2)%*%as.vector(theta2)+e_2_hat delta_1<-((y-yhat_p1_2)*ifelse((y-yhat_p1_2)>0,alpha^2,(1-alpha)^2))/exp(2*yhat_p2_2) delta_2<--1+((y-yhat_p1_2)^2*ifelse((y-yhat_p1_2)>0,alpha^2,(1-alpha)^2))/exp(2*yhat_p2_2) v11_x0<-sum(((y-X1_p1_2%*% b1_p1_2)*ifelse((y-X1_p1_2%*% b1_p1_2)>0,alpha^2,(1-alpha)^2))^2*K_h/exp(2*X2_p2_2%*% b2_p2_2))/sum(K_h) v22_x0<-sum((-1+(y-X1_p1_2%*% b1_p1_2)^2*ifelse((y-X1_p1_2%*% b1_p1_2)>0,alpha^2,(1-alpha)^2)/exp(2*X2_p2_2%*% b2_p2_2))^2*K_h)/sum(K_h) W<-diag(c(K_h)) S_11<-t(X1)%*%W%*%X1 S_22<-t(X2)%*%W%*%X2 W_K_2<-diag(c(K_h^2)) S_11_bar_n<-t(X1)%*%W_K_2%*%X1 S_22_bar_n<-t(X2)%*%W_K_2%*%X2 Bias_1_x0<-(solve(S_11))%*%(t(X1)%*%W%*%delta_1)/v11_x0 Bias_2_x0<-(solve(S_22))%*%(t(X2)%*%W%*%delta_2)/v22_x0 Var_1_x0<-solve(S_11)%*%S_11_bar_n%*%solve(S_11)/v11_x0 Var_2_x0<-solve(S_22)%*%S_22_bar_n%*%solve(S_22)/v22_x0 list(theta1_x0=b1,theta2_x0=theta2,Bias_1_x0=Bias_1_x0,Bias_2_x0=Bias_2_x0,Var_1_x0=Var_1_x0,Var_2_x0=Var_2_x0) } locpolAND<-function(x, y,p1,p2, h, alpha,m = 101) { xx <- seq(min(x)+.01*h, max(x)-.01*h, length = m) theta_10<-matrix(NA,length(xx),1) theta_20<-matrix(NA,length(xx),1) Bias_10<-matrix(NA,length(xx),1) Bias_20<-matrix(NA,length(xx),1) Var_10<-matrix(NA,length(xx),1) Var_20<-matrix(NA,length(xx),1) for (ii in 1:length(xx)) { fit_x0<-locpolAND_x0(x,y,p1,p2,h,alpha,x0=xx[ii]) theta_10[ii] <- fit_x0$ theta1_x0[[1]] theta_20[ii] <-fit_x0$theta2_x0[[1]] Bias_10[ii]<- fit_x0$Bias_1_x0[1,1] Bias_20[ii]<- fit_x0$Bias_2_x0[1,1] Var_10[ii]<- fit_x0$Var_1_x0[1,1] Var_20[ii]<- fit_x0$Var_2_x0[1,1] } list(x0 = xx, theta_10= theta_10, theta_20= theta_20,Bias_10=Bias_10,Bias_20=Bias_20,Var_10=Var_10,Var_20=Var_20) } SemiQRegAND<-function(beta,x, y, p1=1,p2=1,h,alpha=NULL, m = 101){ if (is.null(alpha)){ alpha_fn<-function(x,y){ Newdata<-data.frame(x,y) fit_mean<-locpol::locpol(y~x, data=Newdata,weig=rep(1,nrow(Newdata)) ,kernel=gaussK,deg=1,xeval=NULL,xevalLen=101) MeanRegResidual<-fit_mean$residuals MeanRegResidual<-sort(MeanRegResidual) alpha<-mleAND(MeanRegResidual)$alpha list(alpha=alpha) } alpha<-alpha_fn(x,y)$alpha} fit_theta <-locpolAND(x, y,p1,p2, h, alpha,m) mu=fit_theta$theta_10 phi=exp(fit_theta$theta_20) quanty<-matrix(NA,length(mu),1); for (i in 1:length(mu)) { if (beta <alpha) { quanty[i]<-mu[i]-sqrt((2*phi[i]^2/(1-alpha)^2)*Igamma.inv(0.5, beta*sqrt(pi)/alpha,lower=FALSE)); } else { quanty[i]<-mu[i]+sqrt((2*phi[i]^2/alpha^2)*Igamma.inv(0.5, sqrt(pi)*(beta-alpha)/(1-alpha))); } } C_alpha_beta<-qAND(beta,mu=0,phi=1,alpha) Bias_q_x0<-fit_theta$Bias_10+C_alpha_beta*fit_theta$Bias_20*exp(fit_theta$theta_20) Var_q_x0<-fit_theta$Var_10+(C_alpha_beta)^2*fit_theta$Var_20*exp(2*fit_theta$theta_20)*exp(fit_theta$Bias_20) list(x0=fit_theta$x0,fit_beta_AND=quanty,Bias_q_x0=Bias_q_x0,Var_q_x0=Var_q_x0,fit_alpha_AND=mu,alpha=alpha,beta=beta) }
plotPriorPost <- function(fittedModel, probitInverse = "mean", M=2e5, ci=.95, nCPU=3,...){ mfrow <- par()$mfrow S <- length(fittedModel$mptInfo$thetaUnique) samples <- sampleHyperprior(fittedModel$mptInfo$hyperprior, M=M, S=S, probitInverse=probitInverse, nCPU=nCPU) for(s in 1:S){ label <- ifelse( S== 1, "", paste0("[",s,"]")) mean.post <- unlist(fittedModel$runjags$mcmc[,paste0("mean", label)]) d.mean <- density(mean.post, from=0, to=1, na.rm = TRUE) prior.mean <- density(samples$mean[,s], from=0,to=1, na.rm = TRUE) ci.mean <- quantile(mean.post, c((1-ci)/2,1-(1-ci)/2)) if(fittedModel$mptInfo$model == "betaMPT"){ sd.post <- unlist(fittedModel$runjags$mcmc[,paste0("sd", label)]) ci.sd <- quantile(sd.post, c((1-ci)/2,1-(1-ci)/2)) d.sd <- density(sd.post, from=0, to=.5, na.rm = TRUE) prior.sd <- density(samples$sd[,s], from=0, to=.5, na.rm = TRUE) xlab.sd = "Group SD (probability)" }else{ sig.post <- unlist(fittedModel$runjags$mcmc[,paste0("sigma", label)]) if(probitInverse == "mean_sd"){ mean_sd <- probitInverse(qnorm(mean.post), sig.post) d.mean <- density(mean_sd[,"mean"], from=0, to=1, na.rm = TRUE) d.sd <- density(mean_sd[,"sd"], from = 0, to = .5, na.rm = TRUE) ci.sd <- quantile(mean_sd[,"sd"], c((1-ci)/2,1-(1-ci)/2)) ci.mean <- quantile(mean_sd[,"mean"], c((1-ci)/2,1-(1-ci)/2)) prior.sd <- density(samples$sd[,s], from=0, to=.5 ,na.rm = TRUE) }else{ prior.sd <- density(samples$sd[,s], from = 0, na.rm = TRUE) d.sd <- density(sig.post, from = 0, na.rm = TRUE) ci.sd <- quantile(sig.post, c((1-ci)/2,1-(1-ci)/2)) if(probitInverse == "none"){ d.mean <- density(qnorm(mean.post), na.rm = TRUE) ci.mean <- quantile(qnorm(mean.post), c((1-ci)/2,1-(1-ci)/2)) prior.mean <- density(samples$mean[,s], na.rm = TRUE) } } xlab.sd = ifelse(probitInverse=="mean_sd", "Group SD (probability scale)", "Group SD (probit scale)") } par(mfrow=1:2) tmp <- readline(prompt = "Press <Enter> to show the next plot.") plot(d.mean, main=paste0( "Group mean of ", fittedModel$mptInfo$thetaUnique[s]), xlab="Group mean", las=1, ...) lines(prior.mean, col="blue", lty="dashed") abline(v= ci.mean, col="red") plot(d.sd, main=paste0("Group SD of ", fittedModel$mptInfo$thetaUnique[s]), xlab=xlab.sd, las=1, ...) lines(prior.sd, col="blue", lty="dashed") abline(v=ci.sd,col="red") } if(fittedModel$mptInfo$model == "traitMPT" & S>1){ cnt <- 0 for(s1 in 1:(S-1)){ for(s2 in (s1+1):S){ d.cor <- density(unlist(fittedModel$runjags$mcmc[,paste0("rho[",s1,",",s2,"]")]), from=-1, to=1) prior.cor <- density(samples$rho[s1,s2,], from=-1, to=1) if(cnt/2 == round(cnt/2)) tmp <- readline(prompt = "Press <Enter> to show the next plot.") cnt <- cnt+1 plot(d.cor, main=paste0( "Correlation between ", fittedModel$mptInfo$thetaUnique[s1], " and ", fittedModel$mptInfo$thetaUnique[s2]), xlab="Correlation (on latent probit scale)", las=1, ...) lines(prior.cor, col="blue", lty="dashed") abline(v= quantile(unlist(fittedModel$runjags$mcmc[,paste0("rho[",s1,",",s2,"]")]), c((1-ci)/2,1-(1-ci)/2)), col="red") } } } par(mfrow=mfrow) }
DfReadCrossedModalities <- function(fileName, sequentialNames = FALSE) { UNINITIALIZED <- RJafrocEnv$UNINITIALIZED wb <- excel_sheets(fileName) sheetNames <- toupper(wb) truthFileIndex <- which(!is.na(match(sheetNames, "TRUTH"))) if (truthFileIndex == 0) stop("TRUTH table cannot be found in the dataset.") truthTable <- data.frame(read_xlsx(fileName, truthFileIndex, range = cell_cols(1:3) ) ) for (i in 1:3){ truthTable[grep("^\\s*$", truthTable[ , i]), i] <- NA } naRows <- colSums(is.na(truthTable)) if (max(naRows) > 0) { if (max(naRows) == min(naRows)) { truthTable <- truthTable[1:(nrow(truthTable) - max(naRows)), ] } } for (i in 1:2) { if (any((as.numeric(as.character(truthTable[, i]))) %% 1 != 0 )) { naLines <- which(!is.integer(as.numeric(as.character(truthTable[, i])))) + 1 errorMsg <- paste0("There are non-integer values(s) for CaseID or LesionID at the line(s) ", paste(naLines, collapse = ", "), " in the TRUTH table.") stop(errorMsg) } } if (any(is.na(as.numeric(as.character(truthTable[, 3]))))) { naLines <- which(is.na(as.numeric(as.character(truthTable[, 3])))) + 1 errorMsg <- paste0("There are non-numeric values(s) for weights at the line(s) ", paste(naLines, collapse = ", "), " in the TRUTH table.") stop(errorMsg) } caseID <- as.integer(truthTable[[1]]) lesionID <- as.integer(truthTable[[2]]) weights <- truthTable[[3]] normalCases <- sort(unique(caseID[lesionID == 0])) abnormalCases <- sort(unique(caseID[lesionID > 0])) allCases <- c(normalCases, abnormalCases) K1 <- length(normalCases) K2 <- length(abnormalCases) K <- (K1 + K2) if (anyDuplicated(cbind(caseID, lesionID))) { naLines <- which(duplicated(cbind(caseID, lesionID))) + 1 errorMsg <- paste0("Line(s) ", paste(naLines, collapse = ", "), " in the TRUTH table are duplicated with previous line(s) .") stop(errorMsg) } nlFileIndex <- which(!is.na(match(sheetNames, c("FP", "NL")))) if (nlFileIndex == 0) stop("FP/NL table cannot be found in the dataset.") NLTable <- data.frame( read_xlsx(fileName, nlFileIndex, range = cell_cols(1:5) ) ) for (i in 1:5){ NLTable[grep("^\\s*$", NLTable[ , i]), i] <- NA } naRows <- colSums(is.na(NLTable)) if (max(naRows) > 0) { if (max(naRows) == min(naRows)) { NLTable <- NLTable[1:(nrow(NLTable) - max(naRows)), ] } } for (i in 4:5) { if (any(is.na(as.numeric(as.character(NLTable[, i]))))) { naLines <- which(is.na(as.numeric(as.character(NLTable[, i])))) + 1 errorMsg <- paste0("There are missing cell(s) at line(s) ", paste(naLines, collapse = ", "), " in the FP table.") stop(errorMsg) } } NLReaderID <- as.character(NLTable[[1]]) NLModalityID1 <- as.character(NLTable[[2]]) NLModalityID2 <- as.character(NLTable[[3]]) NLCaseID <- NLTable[[4]] if (any(!(NLCaseID %in% caseID))) { naCases <- NLCaseID[which(!(NLCaseID %in% caseID))] errorMsg <- paste0("Case(s) ", paste(unique(naCases), collapse = ", "), " in the FP table cannot be found in TRUTH table.") stop(errorMsg) } NLRating <- NLTable[[5]] llFileIndex <- which(!is.na(match(sheetNames, c("TP", "LL")))) if (llFileIndex == 0) stop("TP/LL table cannot be found in the dataset.") LLTable <- data.frame(read_xlsx(fileName, llFileIndex, range = cell_cols(1:6) ) ) for (i in 1:6){ LLTable[grep("^\\s*$", LLTable[ , i]), i] <- NA } naRows <- colSums(is.na(LLTable)) if (max(naRows) > 0) { if (max(naRows) == min(naRows)) { LLTable <- LLTable[1:(nrow(LLTable) - max(naRows)), ] } } for (i in 4:6) { if (any(is.na(as.numeric(as.character(LLTable[, i]))))) { naLines <- which(is.na(as.numeric(as.character(LLTable[, i])))) + 1 errorMsg <- paste0("There are missing cell(s) at line(s) ", paste(naLines, collapse = ", "), " in the TP table.") stop(errorMsg) } } LLReaderID <- as.character(LLTable[[1]]) LLModalityID1 <- as.character(LLTable[[2]]) LLModalityID2 <- as.character(LLTable[[3]]) LLCaseID <- LLTable[[4]] LLLesionID <- LLTable[[5]] for (i in 1:nrow(LLTable)) { lineNum <- which((caseID == LLCaseID[i]) & (lesionID == LLLesionID[i])) if (!length(lineNum)) { errorMsg <- paste0("Modality ", LLTable[i, 1], "and ", LLTable[i, 2], " Reader(s) ", LLTable[i, 1], " Case(s) ", LLTable[i, 4], " Lesion(s) ", LLTable[i, 5], " cannot be found in TRUTH table .") stop(errorMsg) } } LLRating <- LLTable[[6]] if (anyDuplicated(LLTable[, 1:5])) { naLines <- which(duplicated(LLTable[, 1:5])) errorMsg <- paste0("Modality1 ", paste(LLTable[naLines, 2], collapse = ", "), "Modality2 ", paste(LLTable[naLines, 3], collapse = ", "), " Reader(s) ", paste(LLTable[naLines, 1], collapse = ", "), " Case(s) ", paste(LLTable[naLines, 4], collapse = ", "), " Lesion(s) ", paste(LLTable[naLines, 5], collapse = ", "), " have multiple ratings in TP table .") stop(errorMsg) } perCase <- as.vector(table(caseID[caseID %in% abnormalCases])) lesionWeight <- array(dim = c(length(abnormalCases), max(perCase))) lesionIDTable <- array(dim = c(length(abnormalCases), max(perCase))) for (k2 in 1:length(abnormalCases)) { k <- which(caseID == abnormalCases[k2]) lesionIDTable[k2, ] <- c(sort(lesionID[k]), rep(UNINITIALIZED, max(perCase) - length(k))) if (all(weights[k] == 0)) { lesionWeight[k2, 1:length(k)] <- 1/perCase[k2] } else { lesionWeight[k2, ] <- c(weights[k][order(lesionID[k])], rep(UNINITIALIZED, max(perCase) - length(k))) sumWeight <- sum(lesionWeight[k2, lesionWeight[k2, ] != UNINITIALIZED]) if (sumWeight != 1){ if (sumWeight <= 1.01 && sumWeight >= 0.99){ lesionWeight[k2, ] <- lesionWeight[k2, ] / sumWeight }else{ errorMsg <- paste0("The sum of the weights of Case ", k2, " is not 1.") stop(errorMsg) } } } } modalityID1 <- as.character(sort(unique(c(NLModalityID1, LLModalityID1)))) I1 <- length(modalityID1) modalityID2 <- as.character(sort(unique(c(NLModalityID2, LLModalityID2)))) I2 <- length(modalityID2) readerID <- as.character(sort(unique(c(NLReaderID, LLReaderID)))) J <- length(readerID) maxNL <- 0 for (i1 in modalityID1) { for (i2 in modalityID2) { for (j in readerID) { k <- (NLModalityID1 == i1) & (NLModalityID2 == i2) & (NLReaderID == j) if ((sum(k) == 0)) next maxNL <- max(maxNL, max(table(NLCaseID[k]))) } } } NL <- array(dim = c(I1, I2, J, K, maxNL)) for (i1 in 1:I1) { for (i2 in 1:I2) { for (j in 1:J) { k <- (NLModalityID1 == modalityID1[i1]) & (NLModalityID2 == modalityID2[i2]) & (NLReaderID == readerID[j]) if ((sum(k) == 0)) next caseNLTable <- table(NLCaseID[k]) IDs <- as.numeric(unlist(attr(caseNLTable, "dimnames"))) for (k1 in 1:length(IDs)) { for (el in 1:caseNLTable[k1]) { NL[i1, i2, j, which(IDs[k1] == allCases), el] <- NLRating[k][which(NLCaseID[k] == IDs[k1])][el] } } } } } LL <- array(dim = c(I1, I2, J, K2, max(perCase))) for (i1 in 1:I1) { for (i2 in 1:I2) { for (j in 1:J) { k <- (LLModalityID1 == modalityID1[i1]) & (LLModalityID2 == modalityID2[i2]) & (LLReaderID == readerID[j]) if ((sum(k) == 0)) next caseLLTable <- table(LLCaseID[k]) IDs <- as.numeric(unlist(attr(caseLLTable, "dimnames"))) for (k1 in 1:length(IDs)) { for (el in 1:caseLLTable[k1]) { LL[i1, i2, j, which(IDs[k1] == abnormalCases), which(LLLesionID[k][which(LLCaseID[k] == IDs[k1])][el] == lesionIDTable[which(IDs[k1] == abnormalCases), ])] <- LLRating[k][which(LLCaseID[k] == IDs[k1])][el] } } } } } lesionWeight[is.na(lesionWeight)] <- UNINITIALIZED lesionIDTable[is.na(lesionIDTable)] <- UNINITIALIZED NL[is.na(NL)] <- UNINITIALIZED LL[is.na(LL)] <- UNINITIALIZED isROI <- TRUE for (i1 in 1:I1) { for (i2 in 1:I2) { for (j in 1:J) { if (any(NL[i1, i2, j, 1:K1, ] == UNINITIALIZED)) { isROI <- FALSE break } temp <- LL[i1, i2, j, , ] != UNINITIALIZED dim(temp) <- c(K2, max(perCase)) if (!all(perCase == rowSums(temp))) { isROI <- FALSE break } temp <- NL[i1, i2, j, (K1 + 1):K, ] == UNINITIALIZED dim(temp) <- c(K2, maxNL) if (!all(perCase == rowSums(temp))) { isROI <- FALSE break } } } } if ((max(table(caseID)) == 1) && (maxNL == 1) && (all((NL[, , , (K1 + 1):K, ] == UNINITIALIZED))) && (all((NL[, , , 1:K1, ] != UNINITIALIZED)))) { type <- "ROC" } else { if (isROI) { type <- "ROI" } else { type <- "FROC" } } modality1Names <- modalityID1 modality2Names <- modalityID2 readerNames <- readerID if (sequentialNames){ modalityID1 <- 1:I1 modalityID2 <- 1:I2 readerID <- 1:J } names(modalityID1) <- modality1Names names(modalityID2) <- modality2Names names(readerID) <- readerNames fileName <- paste0("DfReadCrossedModalities(", tools::file_path_sans_ext(basename(fileName)), ")") name <- "THOMPSON-X-MOD" design <- "FCTRL-X-MOD" truthTableStr <- NA IDs <- lesionIDTable weights <- lesionWeight return(convert2Xdataset(NL, LL, LL_IL = NA, perCase, IDs, weights, fileName, type, name, truthTableStr, design, modalityID1, modalityID2, readerID)) }
post.column.switch <- function(mcmc) { assertClass(mcmc, classes = "befa") if (attr(mcmc, "post.column.switch")) { warning("column switching already performed, nothing done.") return(mcmc) } if (mean(mcmc$MHacc) < 0.2) { warning(paste("M-H acceptance rate of sampler is low (< 0.20).", "Check convergence and mixing!")) } Kmax <- attr(mcmc, "Kmax") nvar <- ncol(mcmc$dedic) iter <- nrow(mcmc$dedic) R.npar <- Kmax * (Kmax - 1)/2 R.mat <- diag(Kmax) * (R.npar + 1) R.mat[lower.tri(R.mat)] <- 1:R.npar R.mat[upper.tri(R.mat)] <- t(R.mat)[upper.tri(R.mat)] v <- 1:Kmax for (i in 1:iter) { d <- mcmc$dedic[i, ] mcmc$dedic[i, ] <- relabel.dedic(d) u <- unique(d[d != 0]) r <- c(u, v[!v %in% u]) R <- c(mcmc$R[i, ], 1) R <- matrix(R[R.mat], nrow = Kmax) R <- R[r, r] mcmc$R[i, ] <- R[lower.tri(R)] } attr(mcmc, "post.column.switch") <- TRUE return(mcmc) }
compute.rmse<-function(Y,X){ if(length(Y)!=length(X)){stop("Input vectors are of different length !!!")} lengthNAX <- sum(is.na(X)) if(lengthNAX > 0){warning(paste("Vector of true values contains ", lengthNAX, " NA !!! NA excluded", sep = ""))} lengthNAY <- sum(is.na(Y)) if(lengthNAY > 0){warning(paste("Vector of imputed values contains ", lengthNAY, " NA !!! NA excluded", sep = ""))} n <- length(X)-max(lengthNAX, lengthNAY) out=sqrt(sum((Y-X)^2, na.rm = T)/n) return(out) }
data_dir <- file.path("..", "testdata") tempfile_nc <- function() { tempfile_helper("cmsaf.cat_") } file_out <- tempfile_nc() cmsaf.cat("SIS", c(file.path(data_dir, "ex_normal1.nc"), file.path(data_dir, "ex_normal2.nc")), file_out) file <- nc_open(file_out) test_that("data is correct", { actual <- ncvar_get(file) temp <- seq(250, 272) temp2 <- seq(230, 252) expected_data <- c(temp, temp, temp[1:3], temp2, temp2, temp2[1:3]) expected <- array(expected_data, dim = c(7, 7, 2)) expect_equivalent(actual, expected) }) test_that("attributes are correct", { actual <- ncatt_get(file, "lon", "units")$value expect_equal(actual, "degrees_east") actual <- ncatt_get(file, "lon", "long_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "standard_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "axis")$value expect_equal(actual, "X") actual <- ncatt_get(file, "lat", "units")$value expect_equal(actual, "degrees_north") actual <- ncatt_get(file, "lat", "long_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "standard_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "axis")$value expect_equal(actual, "Y") actual <- ncatt_get(file, "time", "units")$value expect_equal(actual, "hours since 1983-01-01 00:00:00") actual <- ncatt_get(file, "time", "long_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "standard_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "calendar")$value expect_equal(actual, "standard") actual <- ncatt_get(file, "SIS", "standard_name")$value expect_equal(actual, "SIS_standard") actual <- ncatt_get(file, "SIS", "long_name")$value expect_equal(actual, "Surface Incoming Shortwave Radiation") actual <- ncatt_get(file, "SIS", "units")$value expect_equal(actual, "W m-2") actual <- ncatt_get(file, "SIS", "_FillValue")$value expect_equal(actual, -999) actual <- ncatt_get(file, "SIS", "cmsaf_info")$value expect_equal(actual, "cmsafops::cmsaf.cat for variable SIS") global_attr <- ncatt_get(file, 0) expect_equal(length(global_attr), 1) actual <- names(global_attr[1]) expect_equal(actual, "Info") actual <- global_attr[[1]] expect_equal(actual, "Created with the CM SAF R Toolbox.") }) test_that("coordinates are correct", { actual <- ncvar_get(file, "lon") expect_identical(actual, array(seq(5, 8, 0.5))) actual <- ncvar_get(file, "lat") expect_identical(actual, array(seq(45, 48, 0.5))) actual <- ncvar_get(file, "time") expect_equal(actual, array(c(149016, 158544))) }) nc_close(file) file_out <- tempfile_nc() cmsaf.cat("SIS", c(file.path(data_dir, "ex_normal1.nc"), file.path(data_dir, "ex_normal2.nc")), file_out, nc34 = 4) file <- nc_open(file_out) test_that("data is correct in version 4", { actual <- ncvar_get(file) temp <- seq(250, 272) temp2 <- seq(230, 252) expected_data <- c(temp, temp, temp[1:3], temp2, temp2, temp2[1:3]) expected <- array(expected_data, dim = c(7, 7, 2)) expect_equivalent(actual, expected) }) test_that("attributes are correct in version 4", { actual <- ncatt_get(file, "lon", "units")$value expect_equal(actual, "degrees_east") actual <- ncatt_get(file, "lon", "long_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "standard_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "axis")$value expect_equal(actual, "X") actual <- ncatt_get(file, "lat", "units")$value expect_equal(actual, "degrees_north") actual <- ncatt_get(file, "lat", "long_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "standard_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "axis")$value expect_equal(actual, "Y") actual <- ncatt_get(file, "time", "units")$value expect_equal(actual, "hours since 1983-01-01 00:00:00") actual <- ncatt_get(file, "time", "long_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "standard_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "calendar")$value expect_equal(actual, "standard") global_attr <- ncatt_get(file, 0) expect_equal(length(global_attr), 1) actual <- names(global_attr[1]) expect_equal(actual, "Info") actual <- global_attr[[1]] expect_equal(actual, "Created with the CM SAF R Toolbox.") }) test_that("coordinates are correct in version 4", { actual <- ncvar_get(file, "lon") expect_identical(actual, array(seq(5, 8, 0.5))) actual <- ncvar_get(file, "lat") expect_identical(actual, array(seq(45, 48, 0.5))) actual <- ncvar_get(file, "time") expect_equal(actual, array(c(149016, 158544))) }) nc_close(file) file_out <- tempfile_nc() test_that("error is thrown if ncdf version is wrong", { expect_error( cmsaf.cat("SIS", c(file.path(data_dir, "ex_normal1.nc"), file.path(data_dir, "ex_normal2.nc")), file_out, nc34 = 7), "nc version must be in c(3, 4), but was 7", fixed = TRUE ) }) file_out <- tempfile_nc() test_that("ncdf version NULL throws an error", { expect_error( cmsaf.cat("SIS", c(file.path(data_dir, "ex_normal1.nc"), file.path(data_dir, "ex_normal2.nc")), file_out, nc34 = NULL), "nc_version must not be NULL" ) }) file_out <- tempfile_nc() test_that("no error is thrown if var does not exist", { expect_warning(cmsaf.cat("lat", c(file.path(data_dir, "ex_normal1.nc"), file.path(data_dir, "ex_normal2.nc")), file_out), "Variable 'lat' not found. Variable 'SIS' will be used instead.") }) file <- nc_open(file_out) test_that("data is correct if non-existing variable is given", { actual <- ncvar_get(file) temp <- seq(250, 272) temp2 <- seq(230, 252) expected_data <- c(temp, temp, temp[1:3], temp2, temp2, temp2[1:3]) expected <- array(expected_data, dim = c(7, 7, 2)) expect_equivalent(actual, expected) }) test_that("attributes are correct if non-existing variable is given", { actual <- ncatt_get(file, "lon", "units")$value expect_equal(actual, "degrees_east") actual <- ncatt_get(file, "lon", "long_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "standard_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "axis")$value expect_equal(actual, "X") actual <- ncatt_get(file, "lat", "units")$value expect_equal(actual, "degrees_north") actual <- ncatt_get(file, "lat", "long_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "standard_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "axis")$value expect_equal(actual, "Y") actual <- ncatt_get(file, "time", "units")$value expect_equal(actual, "hours since 1983-01-01 00:00:00") actual <- ncatt_get(file, "time", "long_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "standard_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "calendar")$value expect_equal(actual, "standard") global_attr <- ncatt_get(file, 0) expect_equal(length(global_attr), 1) actual <- names(global_attr[1]) expect_equal(actual, "Info") actual <- global_attr[[1]] expect_equal(actual, "Created with the CM SAF R Toolbox.") }) test_that("coordinates are correct if non-existing variable is given", { actual <- ncvar_get(file, "lon") expect_identical(actual, array(seq(5, 8, 0.5))) actual <- ncvar_get(file, "lat") expect_identical(actual, array(seq(45, 48, 0.5))) actual <- ncvar_get(file, "time") expect_equal(actual, array(c(149016, 158544))) }) nc_close(file) file_out <- tempfile_nc() test_that("error is thrown if variable is NULL", { expect_error( cmsaf.cat(NULL, c(file.path(data_dir, "ex_normal1.nc"), file.path(data_dir, "ex_normal2.nc")), file_out), "variable must not be NULL" ) }) test_that("no error is thrown if var does not exist", { file_out <- tempfile_nc() expect_warning(cmsaf.cat("", c(file.path(data_dir, "ex_normal1.nc"), file.path(data_dir, "ex_normal2.nc")), file_out), "Variable '' not found. Variable 'SIS' will be used instead.") }) file_out <- tempfile_nc() test_that("error is thrown if input file does not exist", { expect_error(cmsaf.cat("SIS", c(file.path(data_dir, "xemaple1.nc"), file.path(data_dir, "ex_normal2.nc")), file_out), "Input file ../testdata/xemaple1.nc does not exist") }) file_out <- tempfile_nc() test_that("error is thrown if input filename is empty", { expect_error(cmsaf.cat("SIS", c("", file.path(data_dir, "ex_normal2.nc")), file_out), "Input file does not exist") }) file_out <- tempfile_nc() test_that("no error is thrown if input filename is NULL", { expect_error(cmsaf.cat("SIS", c(file.path(data_dir, "ex_normal1.nc"), NULL), file_out), NA) }) file_out <- tempfile_nc() cat("test\n", file = file_out) test_that("no error is thrown if output file already exists", { expect_error(cmsaf.cat("SIS", c(file.path(data_dir, "ex_normal1.nc"), file.path(data_dir, "ex_normal2.nc")), file_out), paste0("File '", file_out, "' already exists. Specify 'overwrite = TRUE' if you want to overwrite it."), fixed = TRUE) }) file_out <- tempfile_nc() cmsaf.cat("SIS", c(file.path(data_dir, "ex_time_dim1.nc"), file.path(data_dir, "ex_time_dim2.nc")), file_out) file <- nc_open(file_out) test_that("data is correct", { actual <- ncvar_get(file) temp <- seq(250, 272) temp2 <- seq(230, 252) expected_data <- c(rep(temp, 4), temp[1:6], rep(temp2, 4), temp2[1:6]) expected <- array(expected_data, dim = c(7, 7, 4)) expect_equivalent(actual, expected) }) test_that("attributes are correct", { actual <- ncatt_get(file, "lon", "units")$value expect_equal(actual, "degrees_east") actual <- ncatt_get(file, "lon", "long_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "standard_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "axis")$value expect_equal(actual, "X") actual <- ncatt_get(file, "lat", "units")$value expect_equal(actual, "degrees_north") actual <- ncatt_get(file, "lat", "long_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "standard_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "axis")$value expect_equal(actual, "Y") actual <- ncatt_get(file, "time", "units")$value expect_equal(actual, "hours since 1983-01-01 00:00:00") actual <- ncatt_get(file, "time", "long_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "standard_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "calendar")$value expect_equal(actual, "standard") global_attr <- ncatt_get(file, 0) expect_equal(length(global_attr), 1) actual <- names(global_attr[1]) expect_equal(actual, "Info") actual <- global_attr[[1]] expect_equal(actual, "Created with the CM SAF R Toolbox.") }) test_that("coordinates are correct", { actual <- ncvar_get(file, "lon") expect_identical(actual, array(seq(5, 8, 0.5))) actual <- ncvar_get(file, "lat") expect_identical(actual, array(seq(45, 48, 0.5))) actual <- ncvar_get(file, "time") expect_equal(actual, array(c(149016, 158544, 167976, 177480))) }) nc_close(file) file_out <- tempfile_nc() cmsaf.cat("SIS", c(file.path(data_dir, "ex_normal1.nc"), file.path(data_dir, "ex_time_dim2.nc")), file_out) file <- nc_open(file_out) test_that("data is correct", { actual <- ncvar_get(file) temp <- seq(250, 272) temp2 <- seq(230, 252) expected_data <- c(temp, temp, temp[1:3], rep(temp2, 5)) expected <- array(expected_data, dim = c(7, 7, 3)) expect_equivalent(actual, expected) }) test_that("attributes are correct", { actual <- ncatt_get(file, "lon", "units")$value expect_equal(actual, "degrees_east") actual <- ncatt_get(file, "lon", "long_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "standard_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "axis")$value expect_equal(actual, "X") actual <- ncatt_get(file, "lat", "units")$value expect_equal(actual, "degrees_north") actual <- ncatt_get(file, "lat", "long_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "standard_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "axis")$value expect_equal(actual, "Y") actual <- ncatt_get(file, "time", "units")$value expect_equal(actual, "hours since 1983-01-01 00:00:00") actual <- ncatt_get(file, "time", "long_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "standard_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "calendar")$value expect_equal(actual, "standard") global_attr <- ncatt_get(file, 0) expect_equal(length(global_attr), 1) actual <- names(global_attr[1]) expect_equal(actual, "Info") actual <- global_attr[[1]] expect_equal(actual, "Created with the CM SAF R Toolbox.") }) test_that("coordinates are correct", { actual <- ncvar_get(file, "lon") expect_identical(actual, array(seq(5, 8, 0.5))) actual <- ncvar_get(file, "lat") expect_identical(actual, array(seq(45, 48, 0.5))) actual <- ncvar_get(file, "time") expect_equal(actual, array(c(149016, 167976, 177480))) }) nc_close(file) file_out <- tempfile_nc() cmsaf.cat("SIS", c(file.path(data_dir, "ex_time_dim1.nc"), file.path(data_dir, "ex_normal2.nc")), file_out) file <- nc_open(file_out) test_that("data is correct", { actual <- ncvar_get(file) temp1 <- seq(250, 272) temp2 <- seq(230, 252) expected_data <- c(temp2, temp2, temp2[1:3], rep(temp1, 7)) expected <- array(expected_data, dim = c(7, 7, 3)) expect_equivalent(actual, expected) }) test_that("attributes are correct", { actual <- ncatt_get(file, "lon", "units")$value expect_equal(actual, "degrees_east") actual <- ncatt_get(file, "lon", "long_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "standard_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "axis")$value expect_equal(actual, "X") actual <- ncatt_get(file, "lat", "units")$value expect_equal(actual, "degrees_north") actual <- ncatt_get(file, "lat", "long_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "standard_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "axis")$value expect_equal(actual, "Y") actual <- ncatt_get(file, "time", "units")$value expect_equal(actual, "hours since 1983-01-01 00:00:00") actual <- ncatt_get(file, "time", "long_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "standard_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "calendar")$value expect_equal(actual, "standard") global_attr <- ncatt_get(file, 0) expect_equal(length(global_attr), 1) actual <- names(global_attr[1]) expect_equal(actual, "Info") actual <- global_attr[[1]] expect_equal(actual, "Created with the CM SAF R Toolbox.") }) test_that("coordinates are correct", { actual <- ncvar_get(file, "lon") expect_identical(actual, array(seq(5, 8, 0.5))) actual <- ncvar_get(file, "lat") expect_identical(actual, array(seq(45, 48, 0.5))) actual <- ncvar_get(file, "time") expect_equal(actual, array(c(158544, 149016, 158544))) }) nc_close(file) file_out <- tempfile_nc() cmsaf.cat("SIS", c(file.path(data_dir, "ex_time_dim3.nc"), file.path(data_dir, "ex_time_dim2.nc")), file_out) test_that("output file is created because dimensions match", { expect_true(file.exists(file_out)) }) file_out <- tempfile_nc() cmsaf.cat("SIS", c(file.path(data_dir, "ex_additional_attr.nc"), file.path(data_dir, "ex_normal2.nc")), file_out) file <- nc_open(file_out) test_that("data is correct", { actual <- ncvar_get(file) temp <- seq(250, 272) temp2 <- seq(230, 252) expected_data <- c(temp, temp, temp[1:3], temp2, temp2, temp2[1:3]) expected <- array(expected_data, dim = c(7, 7, 2)) expect_equivalent(actual, expected) }) test_that("attributes are correct", { actual <- ncatt_get(file, "lon", "units")$value expect_equal(actual, "degrees_east") actual <- ncatt_get(file, "lon", "long_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "standard_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "axis")$value expect_equal(actual, "X") actual <- ncatt_get(file, "lat", "units")$value expect_equal(actual, "degrees_north") actual <- ncatt_get(file, "lat", "long_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "standard_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "axis")$value expect_equal(actual, "Y") actual <- ncatt_get(file, "time", "units")$value expect_equal(actual, "hours since 1983-01-01 00:00:00") actual <- ncatt_get(file, "time", "long_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "standard_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "calendar")$value expect_equal(actual, "standard") global_attr <- ncatt_get(file, 0) expect_equal(length(global_attr), 2) actual <- names(global_attr[1]) expect_equal(actual, "Info") actual <- global_attr[[1]] expect_equal(actual, "Created with the CM SAF R Toolbox.") actual <- names(global_attr[2]) expect_equal(actual, "institution") actual <- global_attr[[2]] expect_equal(actual, "This is a test attribute.") }) test_that("coordinates are correct", { actual <- ncvar_get(file, "lon") expect_identical(actual, array(seq(5, 8, 0.5))) actual <- ncvar_get(file, "lat") expect_identical(actual, array(seq(45, 48, 0.5))) actual <- ncvar_get(file, "time") expect_equal(actual, array(c(149016, 158544))) }) nc_close(file) file_out <- tempfile_nc() cmsaf.cat("SIS", c(file.path(data_dir, "ex_v4_1.nc"), file.path(data_dir, "ex_v4_2.nc")), file_out) file <- nc_open(file_out) test_that("data is correct", { actual <- ncvar_get(file) temp <- seq(250, 272) temp2 <- seq(230, 252) expected_data <- c(temp, temp, temp[1:3], temp2, temp2, temp2[1:3]) expected <- array(expected_data, dim = c(7, 7, 2)) expect_equivalent(actual, expected) }) test_that("attributes are correct", { actual <- ncatt_get(file, "lon", "units")$value expect_equal(actual, "degrees_east") actual <- ncatt_get(file, "lon", "long_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "standard_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "axis")$value expect_equal(actual, "X") actual <- ncatt_get(file, "lat", "units")$value expect_equal(actual, "degrees_north") actual <- ncatt_get(file, "lat", "long_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "standard_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "axis")$value expect_equal(actual, "Y") actual <- ncatt_get(file, "time", "units")$value expect_equal(actual, "hours since 1983-01-01 00:00:00") actual <- ncatt_get(file, "time", "long_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "standard_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "calendar")$value expect_equal(actual, "standard") global_attr <- ncatt_get(file, 0) expect_equal(length(global_attr), 1) actual <- names(global_attr[1]) expect_equal(actual, "Info") actual <- global_attr[[1]] expect_equal(actual, "Created with the CM SAF R Toolbox.") }) test_that("coordinates are correct", { actual <- ncvar_get(file, "lon") expect_identical(actual, array(seq(5, 8, 0.5))) actual <- ncvar_get(file, "lat") expect_identical(actual, array(seq(45, 48, 0.5))) actual <- ncvar_get(file, "time") expect_equal(actual, array(c(149016, 158544))) }) nc_close(file)
library(gridGraphics) require(grDevices) plot.factor1 <- function() { plot(weight ~ group, data = PlantGrowth) } plot.factor2 <- function() { plot(cut(weight, 2) ~ group, data = PlantGrowth) } plot.factor3 <- function() { plot(cut(weight, 3) ~ group, data = PlantGrowth, col = hcl(c(0, 120, 240), 50, 70)) } plot.factor4 <- function() { plot(PlantGrowth$group, axes = FALSE, main = "no axes") } plotdiff(expression(plot.factor1()), "plot.factor-1") plotdiff(expression(plot.factor2()), "plot.factor-2") plotdiff(expression(plot.factor3()), "plot.factor-3") plotdiff(expression(plot.factor4()), "plot.factor-4") plotdiffResult()
seqadd.confint=function(L, alpha, presample, addsample){ n0=length(presample) s0=sd(presample) z=(L/2)^2/qt(1-alpha/2,n0-1)^2 n=max(n0+1,ceiling(s0^2/z)) a=z*(s0^2) if (n<1/a) n=ceiling(1/a) g=function(x){((n/n0)/(n-n0))*x^2-(2/(n-n0))*x+1/(n-n0)-z*s0^2} b=seq(-1,1,0.05) lb=length(b) k=max(which(g(b)*g(1)<0)) a0=uniroot(g,c(b[k],1))$root a1=(1-a0)/(n-n0) ln=a0*mean(presample)+a1*sum(addsample) list("Significance level"=alpha, "Length of confidence interval"=L, "Length of presample"=n0, "Number of additional observations"=n-n0, "Total number of observations"=n, "confidence interval"=c(ln-L/2,ln+L/2)) }
index.G1d<-function(d,cl) { d<-as.matrix(d) wgss<-0 bgss<-0 for(i in 1:(nrow(d)-1)) for(j in (i+1):nrow(d)){ if(cl[i]==cl[j]){ wgss<-wgss+d[i,j]^2 } else{ bgss<-bgss+d[i,j]^2 } } (bgss/(max(cl)-1))/((sum(d^2)/2-bgss)/(length(cl)-max(cl))) }
ind.plots.cwres.hist <- function(object, wres="cwres", ...) { obj <- ind.plots.wres.hist(object,wres=wres,...) return(obj) }
library(gpuR) context("CPU vclMatrix qr decomposition") current_context <- set_device_context("cpu") set.seed(123) ORDER <- 10 X <- matrix(rnorm(ORDER^2), nrow=ORDER, ncol=ORDER) nsqA <- matrix(rnorm(20), nrow = 4) qrX <- qr(X) Q <- qr.Q(qrX) R <- qr.R(qrX) test_that("CPU vclMatrix Single Precision Matrix QR Decomposition", { has_cpu_skip() fgpuX <- vclMatrix(X, type="float") fgpuA <- vclMatrix(nsqA, type = "float") E <- qr(fgpuX) gpuQ <- qr.Q(E) gpuR <- qr.R(E) expect_is(E, "gpuQR") expect_equal(abs(gpuQ[]), abs(Q), tolerance=1e-05, info="Q matrices not equivalent") expect_equal(abs(gpuR[]), abs(R), tolerance=1e-05, info="R matrices not equivalent") expect_error(qr(fgpuA), "non-square matrix not currently supported for 'qr'", info = "qr shouldn't accept non-square matrices") }) test_that("CPU vclMatrix Double Precision Matrix QR Decomposition", { has_cpu_skip() fgpuX <- vclMatrix(X, type="double") fgpuA <- vclMatrix(nsqA, type = "double") E <- qr(fgpuX) gpuQ <- qr.Q(E) gpuR <- qr.R(E) expect_is(E, "gpuQR") expect_equal(abs(gpuQ[]), abs(Q), tolerance=.Machine$double.eps ^ 0.5, info="Q matrices not equivalent") expect_equal(abs(gpuR[]), abs(R), tolerance=.Machine$double.eps ^ 0.5, info="R matrices not equivalent") expect_error(qr(fgpuA), "non-square matrix not currently supported for 'qr'", info = "qr shouldn't accept non-square matrices") }) setContext(current_context)
asl.optim <- function(x){ init <- asl.optim.init(x) if(init[4] == 0){ warning("Initial values are on the boundary.") } ui <- rbind(c(1, 0, 0), c(-1, 0, 0), c(0, 0, 1)) ci <- c(min(x), -max(x), 0) theta <- init[-3] tmp <- constrOptim(theta, asl.logL, grad = NULL, ui, ci, method = "Nelder-Mead", x = x) theta <- tmp$par[1] mu <- tmp$par[2] sigma <- tmp$par[3] kappa <- (sqrt(2 * sigma^2 + mu^2) - mu) / sqrt(2 * sigma) ret <- c(theta, mu, kappa, sigma) names(ret) <- c("theta", "mu", "kappa", "sigma") ret } asl.logL <- function(theta, x){ -sum(dasl(x, theta = theta[1], mu = theta[2], sigma = theta[3], log = TRUE)) } asl.optim.init <- function(x){ theta <- x all.h <- do.call("c", lapply(theta, h.theta, x)) r <- which.min(all.h) if(r == 1){ ret <- c(x[r], x[r] - mean(x), 0, 0) } else if(r == length(x)){ ret <- c(x[r], mean(x) - x[r], 0, 0) } else{ theta.hat <- x[r] alpha.beta <- asl.alpha.beta(theta.hat, x) sqrt.alpha.beta <- sqrt(alpha.beta) forth.root.alpha.beta <- alpha.beta^{0.25} kappa.hat <- forth.root.alpha.beta[2] / forth.root.alpha.beta[1] sigma.hat <- sqrt(2) * forth.root.alpha.beta[1] * forth.root.alpha.beta[2] * (sqrt.alpha.beta[1] + sqrt.alpha.beta[2]) mu.hat <- sigma.hat / sqrt(2) * (1 / kappa.hat - kappa.hat) ret <- c(theta.hat, mu.hat, kappa.hat, sigma.hat) } names(ret) <- c("theta", "mu", "kappa", "sigma") ret } h.theta <- function(theta, x){ alpha.beta <- asl.alpha.beta(theta, x) sqrt.alpha.beta <- sqrt(alpha.beta) ret <- 2 * log(sqrt.alpha.beta[1] + sqrt.alpha.beta[2]) + sqrt.alpha.beta[1] * sqrt.alpha.beta[2] ret } asl.alpha.beta <- function(theta, x){ tmp <- (x - theta) alpha <- sum(tmp[tmp >= 0]) beta <- -sum(tmp[tmp <= 0]) ret <- c(alpha, beta) / length(tmp) ret }
epmc_search <- function(query = NULL, output = 'parsed', synonym = TRUE, verbose = TRUE, limit = 100, sort = NULL) { stopifnot(is.logical(c(verbose, synonym))) stopifnot(is.numeric(limit)) if (!is.null(sort)) { match.arg(sort, c("date", "cited")) query <- switch( sort, date = paste(query, "sort_date:y"), cited = paste(query, "sort_cited:y") ) } else { query <- query } query <- transform_query(paste0(query, "&synonym=", synonym)) page_token <- "*" if (!output == "raw") results <- tibble::tibble() else results <- NULL out <- epmc_search_( query = query, limit = limit, output = output, verbose = verbose, page_token = page_token, sort = sort ) res_chunks <- chunks(limit = limit) hits <- epmc_hits(query, synonym = synonym) if (hits == 0) { message("There are no results matching your query") md <- NULL } else { limit <- as.integer(limit) limit <- ifelse(hits <= limit, hits, limit) message(paste(hits, "records found, returning", limit)) if (!is.null(out$next_cursor)) { i <- 0 pb <- pb(limit = limit) while (i < res_chunks$page_max) { out <- epmc_search_( query = query, limit = limit, output = output, verbose = verbose, page_token = page_token, sort = sort ) if (is.null(out$next_cursor)) break i <- i + 1 if (verbose == TRUE && hits > 100) pb$tick() page_token <- out$next_cursor if (output == "raw") { results <- c(results, out$results) } else { results <- dplyr::bind_rows(results, out$results) } } if (output == "raw") { md <- results[1:limit] } else { md <- results[1:limit, ] } attr(md, "hit_count") <- hits } else { md <- out$results attr(md, "hit_count") <- hits } } return(md) } epmc_search_ <- function(query = NULL, limit = 100, output = "parsed", page_token = NULL, ...) { limit <- as.integer(limit) page_size <- ifelse(batch_size() <= limit, batch_size(), limit) if (!output %in% c("id_list", "parsed", "raw")) stop("'output' must be one of 'parsed', 'id_list', or 'raw'", call. = FALSE) result_types <- c("id_list" = "idlist", "parsed" = "lite", "raw" = "core") resulttype <- result_types[[output]] args <- list( query = query, format = "json", resulttype = resulttype, pageSize = page_size, cursorMark = page_token ) out <- rebi_GET(path = paste0(rest_path(), "/search"), query = args) if (!resulttype == "core") { md <- out$resultList$result if (length(md) == 0) { md <- tibble::tibble() } else { md <- md %>% dplyr::select_if(Negate(is.list)) %>% tibble::as_tibble() } } else { out <- jsonlite::fromJSON(out, simplifyDataFrame = FALSE) md <- out$resultList$result } list(next_cursor = out$nextCursorMark, results = md) }
tuneLasso <- function (Y, X, normalize=TRUE, method=c("lasso","Glasso"), dmax=NULL, Vfold=TRUE, V=10, LINselect=TRUE, a=0.5, K=1.1, verbose=TRUE, max.steps=NULL ) { calc.proj <- FALSE calc.pen <- FALSE res <- NULL n=nrow(X) p=ncol(X) Xmean <- apply(X,2,mean) mu=mean(Y) if (is.null(max.steps)) max.steps=2*min(p,n) if (p>=n) dmax <- floor(min(c(3*p/4,n-5,dmax))) if (p<n) dmax <- floor(min(c(p,n-5,dmax))) res.lasso <- try(enet(X,Y,lambda=0, intercept=TRUE, normalize=normalize, max.steps=max.steps)) if (inherits(res.lasso, "try-error")) { print("error when calling enet") res <- res.lasso[1] } if (!inherits(res.lasso, "try-error")) { lesBeta <- array(0,c(dim(res.lasso$beta.pure)[1],p)) lesBeta[,res.lasso$allset] <- res.lasso$beta.pure lesDim <- apply(lesBeta!=0,1,sum) if (max(lesDim) <= dmax) Nmod.lasso <- length(lesDim) if (max(lesDim)>dmax) Nmod.lasso<-(1:dim(lesBeta)[1])[(lesDim>=dmax)][1] f.lasso <- matrix(0,nrow=n,ncol=Nmod.lasso) Intercept <- mu-lesBeta[1:Nmod.lasso,]%*%Xmean for (l in 1:Nmod.lasso) { f.lasso[,l] <- rep(Intercept[l],n)+X%*%lesBeta[l,] } if (is.element("lasso",method)) { res<- list(lasso=NULL) if (Vfold) { if (verbose) { print(paste("Tuning Lasso with Vfold CV: V=",V,", dmax=",dmax)) } s <- 1:(Nmod.lasso+1) res.cv.enet=0 while (!is.list(res.cv.enet)) { s <- s[-length(s)] res.cv.enet <- try(cv.enet(X, Y, K = V, lambda=0, s=s, mode="step", normalize=normalize, intercept=TRUE, plot.it=FALSE,se=FALSE),silent=TRUE) } l.lasso <- which.min(res.cv.enet$cv) f.pred <- f.lasso[,l.lasso] coeff <- c(Intercept[l.lasso],lesBeta[l.lasso,][lesBeta[l.lasso,]!=0]) names(coeff) <- c("Intercept",which(lesBeta[l.lasso,]!=0)) res$lasso$CV <- list(support=which(lesBeta[l.lasso,]!=0), coeff=coeff, fitted=f.pred, crit=res.cv.enet$cv, crit.error=res.cv.enet$cv.error, lambda=res.lasso$penalty[s]) } if (LINselect) { calc.proj <- TRUE if (verbose) print(paste("Tuning Lasso with LINselect: K=",K,", a=",a,", dmax=",dmax)) D <- 0:dmax dm <- pmin(D,rep(p/2,dmax+1)) Delta <- lgamma(p+1)-lgamma(dm+1)-lgamma(p-dm+1)+2*log(D+1) pen <- penalty(Delta, n, p, K) calc.pen <- TRUE I.lasso <- list(NULL) ProjMod <- array(0,c(n,n,Nmod.lasso)) A <- array(Inf,c(Nmod.lasso,Nmod.lasso)) B=A SCR <- rep(0,Nmod.lasso) penSCR <- rep(0,Nmod.lasso) sumY2 <- sum((Y-mu)**2) un <- rep(1,n) for (l in 1:Nmod.lasso) { I.lasso[[l]] <- (1:p)[lesBeta[l,]!=0] if (length(I.lasso[[l]])>0) { ProjM <- Proj(cbind(un,X[,I.lasso[[l]]]),length(I.lasso[[l]])+1) ProjMod[,,l] <- ProjM$Proj SCR[l] <- sum((Y-ProjMod[,,l]%*%Y)**2) penSCR[l] <- SCR[l]*pen[ProjM$rg+1]/(n-ProjM$rg) } if (length(I.lasso[[l]])==0) { ProjMod[,,l] <- un%*%t(un)/n ProjM <- list(Proj=ProjMod[,,l],rg=1) SCR[l] <- sumY2 penSCR[l] <- sumY2*pen[ProjM$rg+1]/(n-ProjM$rg) } } Ind <- rep(1:Nmod.lasso,rep(Nmod.lasso,Nmod.lasso)) YY<-Y%*%t(rep(1,Nmod.lasso)) for (m in 1:Nmod.lasso) { Proj.f<-ProjMod[,,m]%*%f.lasso B[m,] <- apply((YY-Proj.f)**2,2,sum)+a*apply((f.lasso-Proj.f)**2,2,sum) A[m,] <- B[m,]+penSCR[m] } l.lasso <- Ind[which.min(A)] f.pred <- f.lasso[, l.lasso] coeff <- c(Intercept[l.lasso],lesBeta[l.lasso,][lesBeta[l.lasso,]!=0]) names(coeff) <- c("Intercept",which(lesBeta[l.lasso,]!=0)) crit <- apply(A,2,min) res$lasso$Ls <- list(support=which(lesBeta[l.lasso,]!=0), coeff=coeff, fitted=f.pred, crit=crit, lambda=res.lasso$penalty[1:Nmod.lasso]) } } if (is.element("Glasso",method)) { if (!is.list(res)) res <- list(Glasso=NULL) if (!calc.pen) { D <- 0:dmax dm <- pmin(D,rep(p/2,dmax+1)) Delta <- lgamma(p+1)-lgamma(dm+1)-lgamma(p-dm+1)+2*log(D+1) pen <- penalty(Delta, n, p, K) } if (!calc.proj) { I.lasso <- list(NULL) SCR <- rep(0,Nmod.lasso) penSCR <- rep(0,Nmod.lasso) sumY2 <- sum((Y-mu)**2) un <- rep(1,n) for (l in 1:Nmod.lasso) { I.lasso[[l]] <- (1:p)[lesBeta[l,]!=0] if (length(I.lasso[[l]])>0) { ProjM <- Proj(cbind(un,X[,I.lasso[[l]]]),length(I.lasso[[l]])+1) SCR[l] <- sum((Y-ProjM$Proj%*%Y)**2) penSCR[l] <- SCR[l]*pen[ProjM$rg+1]/(n-ProjM$rg) } if (length(I.lasso[[l]])==0) { SCR[l] <- sumY2 penSCR[l] <- SCR[l]*pen[2]/(n-1) } } } if (Vfold) { if (verbose) { print(paste("Tuning Gauss Lasso with Vfold CV: V=",V,", dmax=",dmax)) } I.CV <- list(NULL) IM.CV <- list(NULL) for (iv in 1:V) { I.CV[[iv]] <- (floor((iv-1)*n/V)+1):(iv*n/V) IM.CV[[iv]] <- (1:n)[-I.CV[[iv]]] } active_set<-list(NULL) all_lambda<-c(-1) lambda <- list(NULL) for (i in 1:V) { in_s<-enleve_var_0(X,IM.CV[[i]]) res.i<-enet(X[IM.CV[[i]],in_s],Y[IM.CV[[i]]],lambda=0, intercept=TRUE,normalize=normalize,max.steps=max.steps) lesBeta.i <- array(0,c(dim(res.i$beta.pure)[1],length(in_s))) lesBeta.i[,res.i$allset] <- res.i$beta.pure lesDim.i <- apply(lesBeta.i!=0,1,sum) if (max(lesDim.i) <= dmax) Nmod.lasso.i <- length(lesDim.i) if (max(lesDim.i)>dmax) Nmod.lasso.i<-(1:dim(lesBeta.i)[1])[(lesDim.i>=dmax)][1] lambda[[i]]<-res.i$penalty[1:Nmod.lasso.i] active_set[[i]]<-active(res.i,in_s)[1:Nmod.lasso.i] all_lambda<-c(all_lambda,lambda[[i]]) } all_lambda<-all_lambda[2:(length(all_lambda))] L1 <- length(all_lambda) all_lambda<-c(all_lambda,res.lasso$penalty[1:Nmod.lasso]) L<-length(all_lambda) rank.all_lambda<-L-rank(all_lambda)+1 sort.all_lambda<-sort(all_lambda,decreasing=TRUE) erreur<-matrix(0,V,L) for (i in 1:V) { est<-estime2(Y,X,I.CV[[i]],IM.CV[[i]],active_set[[i]]) ind<-1 for (l in 1:L) { if (lambda[[i]][ind]>sort.all_lambda[l]) { if (ind < length(lambda[[i]])) { ind<-ind+1 } } erreur[i,l]<-est[[ind]] } } resultat<-apply(erreur,2,mean) err.resultat<-sqrt(apply(erreur,2,var))/sqrt(V) resultat[resultat<10**(-10)] <- 0 lambda_cv<-sort.all_lambda[which.min(resultat)] ind<-indice(lambda_cv,res.lasso$penalty[1:Nmod.lasso]) rlm <- lm(Y~X[,I.lasso[[ind]]]) beta <- rlm$coef names(beta) <- c("Intercept",I.lasso[[ind]]) resultatF <- c(min(resultat), resultat[rank.all_lambda][(L1+1):L]) err.resultatF <- c(err.resultat[which.min(resultat)], err.resultat[rank.all_lambda][(L1+1):L]) les.lambda <- c(lambda_cv,res.lasso$penalty[1:Nmod.lasso]) crit <- resultatF[order(les.lambda,decreasing=TRUE)] crit.error <- err.resultatF[order(les.lambda,decreasing=TRUE)] res$Glasso$CV <- list(support=I.lasso[[ind]], coeff=beta, fitted=rlm$fitted, crit=crit, crit.error=crit.error, lambda=sort(les.lambda,decreasing=TRUE)) } if (LINselect) { if (verbose) print(paste("Tuning Gauss Lasso with LinSelect: K=",K)) if (!calc.pen) { D <- 0:dmax dm <- pmin(D,rep(p/2,dmax+1)) Delta <- lgamma(p+1)-lgamma(dm+1)-lgamma(p-dm+1)+2*log(D+1) pen <- penalty(Delta, n, p, K) } crit <- SCR + penSCR ind <- which.min(crit) rlm <- lm(Y~X[,I.lasso[[ind]]]) beta <- rlm$coef names(beta) <- c("Intercept",I.lasso[[ind]]) res$Glasso$Ls <- list(support=I.lasso[[ind]], coeff=beta, fitted=rlm$fitted+mu, crit=crit, lambda=res.lasso$penalty[1:Nmod.lasso] ) } } } result <- res return(result) }
header.rest <- function(caption = NULL, caption.level = NULL) { niv <- c("=", "-", "~", "^", "+") ncharcap <- nchar(caption) if (is.null(caption.level)) caption.level <- "" res <- "" if (!is.null(caption)) { if (is.numeric(caption.level) & caption.level > 0) { res <- paste(caption, paste(paste(rep(niv[caption.level], ncharcap), collapse = ""), "\n", sep = ""), sep = "\n") } else if (is.character(caption.level) & caption.level %in% c("s", "e", "m")) { if (caption.level == "s") res <- paste(beauty.rest(caption, "s"), "\n\n", sep = "") else if (caption.level == "e") res <- paste(beauty.rest(caption, "e"), "\n\n", sep = "") else if (caption.level == "m") res <- paste(beauty.rest(caption, "m"), "\n\n", sep = "") } else if (is.character(caption.level) & caption.level != "" & caption.level != "none") { res <- paste(caption, paste(paste(rep(caption.level, ncharcap), collapse = ""), "\n", sep = ""), sep = "\n") } else if (caption.level == "" | caption.level == "none") { res <- paste(caption, "\n\n", sep = "") } } return(res) } beauty.rest <- function(x, beauti = c("e", "m", "s")) { x[is.na(x)] <- "NA" if (beauti == "s") { y <- as.logical((regexpr("^ *$", x)+1)/2) | as.logical((regexpr("\\*\\*.*\\*\\*", x)+1)/2) if (length(x[!y]) != 0) x[!y] <- sub("(^ *)([:alpha]*)", "\\1\\*\\*\\2", sub("([:alpha:]*)( *$)", "\\1\\*\\*\\2", x[!y])) if (length(x[y]) != 0) x[y] <- sub("(^ *$)", "\\1 ", x[y]) } if (beauti == "e") { y <- as.logical((regexpr("^ *$", x)+1)/2) | as.logical((regexpr("\\*.*\\*", x)+1)/2) if (length(x[!y]) != 0) x[!y] <-sub("(^ *)([:alpha]*)", "\\1\\*\\2", sub("([:alpha:]*)( *$)", "\\1\\*\\2", x[!y])) if (length(x[y]) != 0) x[y] <- sub("(^ *$)", "\\1 ", x[y]) } if (beauti == "m") { y <- as.logical((regexpr("^ *$", x)+1)/2) | as.logical((regexpr("``.*``", x)+1)/2) if (length(x[!y]) != 0) x[!y] <-sub("(^ *)([:alpha]*)", "\\1``\\2", sub("([:alpha:]*)( *$)", "\\1``\\2", x[!y])) if (length(x[y]) != 0) x[y] <- sub("(^ *$)", "\\1 ", x[y]) } return(x) } escape.rest <- function(x) { xx <- gsub("\\|", "\\\\|", x) xx } show.rest.table <- function(x, include.rownames = FALSE, include.colnames = FALSE, rownames = NULL, colnames = NULL, format = "f", digits = 2, decimal.mark = ".", na.print = "", caption = NULL, caption.level = NULL, width = 0, frame = NULL, grid = NULL, valign = NULL, header = FALSE, footer = FALSE, align = NULL, col.width = 1, style = NULL, lgroup = NULL, n.lgroup = NULL, lalign = "c", lvalign = "middle", lstyle = "h", rgroup = NULL, n.rgroup = NULL, ralign = "c", rvalign = "middle", rstyle = "h", tgroup = NULL, n.tgroup = NULL, talign = "c", tvalign = "middle", tstyle = "h", bgroup = NULL, n.bgroup = NULL, balign = "c", bvalign = "middle", bstyle = "h", ...) { x <- escape.rest(tocharac(x, include.rownames, include.colnames, rownames, colnames, format, digits, decimal.mark, na.print)) nrowx <- nrow(x) ncolx <- ncol(x) if (!is.null(style)) { style <- expand(style, nrowx, ncolx) style[!(style %in% c("s", "e", "m"))] <- "" style[style == "s"] <- "**" style[style == "e"] <- "*" style[style == "m"] <- "``" } else { style <- "" style <- expand(style, nrowx, ncolx) } if (include.rownames & include.colnames) { style[1, 1] <- "" } x <- paste.matrix(style, x, style, sep = "", transpose.vector = TRUE) if (tstyle == "h") tstyle <- "s" if (bstyle == "h") bstyle <- "s" if (rstyle == "h") rstyle <- "s" if (lstyle == "h") lstyle <- "s" if (!is.null(lgroup)) { if (!is.list(lgroup)) lgroup <- list(lgroup) n.lgroup <- groups(lgroup, n.lgroup, nrowx-include.colnames)[[2]] lgroup <- lapply(lgroup, function(x) beauty.rest(x, lstyle)) } if (!is.null(rgroup)) { if (!is.list(rgroup)) rgroup <- list(rgroup) n.rgroup <- groups(rgroup, n.rgroup, nrowx-include.colnames)[[2]] rgroup <- lapply(rgroup, function(x) beauty.rest(x, rstyle)) } if (!is.null(tgroup)) { if (!is.list(tgroup)) tgroup <- list(tgroup) n.tgroup <- groups(tgroup, n.tgroup, ncolx-include.rownames)[[2]] tgroup <- lapply(tgroup, function(x) beauty.rest(x, tstyle)) } if (!is.null(bgroup)) { if (!is.list(bgroup)) bgroup <- list(bgroup) n.bgroup <- groups(bgroup, n.bgroup, ncolx-include.rownames)[[2]] bgroup <- lapply(bgroup, function(x) beauty.rest(x, bstyle)) } if (!is.null(tgroup)) { tgroup.vsep <- NULL for (i in 1:length(tgroup)) { line.tgroup <- unlist(interleave(as.list(tgroup[[i]]), lapply(n.tgroup[[i]], function(x) rep("", x-1)))) if (include.rownames) { line.tgroup <- c("", line.tgroup) } x <- rbind(line.tgroup, x) tvsep <- c(unlist(interleave(as.list(rep("|", length(tgroup[[i]]))), lapply(n.tgroup[[i]], function(x) rep(" ", x-1)))), "|") tgroup.vsep <- rbind(tvsep, tgroup.vsep) } } if (!is.null(bgroup)) { bgroup.vsep <- NULL for (i in 1:length(bgroup)) { line.bgroup <- unlist(interleave(as.list(bgroup[[i]]), lapply(n.bgroup[[i]], function(x) rep("", x-1)))) if (include.rownames) { line.bgroup <- c("", line.bgroup) } x <- rbind(x, line.bgroup) bvsep <- c(unlist(interleave(as.list(rep("|", length(bgroup[[i]]))), lapply(n.bgroup[[i]], function(x) rep(" ", x-1)))), "|") bgroup.vsep <- rbind(bgroup.vsep, bvsep) } } if (!is.null(lgroup)) { lgroup.hsep <- NULL for (i in 1:length(lgroup)) { line.lgroup <- unlist(interleave(as.list(lgroup[[i]]), lapply(n.lgroup[[i]], function(x) rep("", x-1)))) line.lgroup <- c(rep("", include.colnames + length(tgroup)), line.lgroup) line.lgroup <- c(line.lgroup, rep("", length(bgroup))) x <- cbind(line.lgroup, x) lhsep <- c(unlist(interleave(as.list(rep("-", length(lgroup[[i]]))), lapply(n.lgroup[[i]], function(x) rep(" ", x-1)))), "-") lgroup.hsep <- cbind(lhsep, lgroup.hsep) } } if (!is.null(rgroup)) { rgroup.hsep <- NULL for (i in 1:length(rgroup)) { line.rgroup <- unlist(interleave(as.list(rgroup[[i]]), lapply(n.rgroup[[i]], function(x) rep("", x-1)))) line.rgroup <- c(rep("", include.colnames + length(tgroup)), line.rgroup) line.rgroup <- c(line.rgroup, rep("", length(bgroup))) x <- cbind(x, line.rgroup) rhsep <- c(unlist(interleave(as.list(rep("-", length(rgroup[[i]]))), lapply(n.rgroup[[i]], function(x) rep(" ", x-1)))), "-") rgroup.hsep <- cbind(rgroup.hsep, rhsep) } } vsep <- expand("|", nrowx+length(tgroup)+length(bgroup), ncolx+1+length(lgroup) + length(rgroup)) if (!is.null(tgroup)) { vsep[1:length(tgroup), (length(lgroup)+include.rownames+1):(ncol(vsep)-length(rgroup))] <- tgroup.vsep } if (!is.null(bgroup)) { vsep[(length(tgroup)+nrowx+1):(length(tgroup)+nrowx+length(bgroup)), (length(lgroup)+include.rownames+1):(ncol(vsep)-length(rgroup))] <- bgroup.vsep } if ((length(lgroup)+include.rownames >= 1) & (length(tgroup)+include.colnames >= 1)) { topleft <- matrix(" ", length(tgroup)+include.colnames, length(lgroup)+include.rownames) topleft[, 1] <- "|" vsep[1:nrow(topleft), 1:ncol(topleft)] <- topleft } if ((length(lgroup)+include.rownames >=1) & (length(bgroup) >= 1)) { bottomleft <- matrix(" ", length(bgroup), length(lgroup)+include.rownames) bottomleft[, 1] <- "|" vsep[(nrow(vsep)-length(bgroup)+1):(nrow(vsep)), 1:ncol(bottomleft)] <- bottomleft } if ((length(rgroup) >= 1) & (include.colnames+length(tgroup) >= 1)) { topright <- matrix(" ", length(tgroup)+include.colnames, length(rgroup)) topright[, ncol(topright)] <- "|" vsep[1:nrow(topright), (ncol(vsep)-length(rgroup)+1):ncol(vsep)] <- topright } if ((length(rgroup) >=1 ) & (length(bgroup) >= 1)) { bottomright <- matrix(" ", length(bgroup), length(rgroup)) bottomright[, ncol(bottomright)] <- "|" vsep[(nrow(vsep)-nrow(bottomright)+1):nrow(vsep), (ncol(vsep)-length(rgroup)+1):ncol(vsep)] <- bottomright } hsep <- expand("-", nrowx+1+length(tgroup)+length(bgroup), ncolx+length(lgroup)+length(rgroup)) if (!is.null(lgroup)) { hsep[(length(tgroup)+include.colnames+1):(nrow(hsep)-length(bgroup)), 1:length(lgroup)] <- lgroup.hsep } if (!is.null(rgroup)) { hsep[(length(tgroup)+include.colnames+1):(nrow(hsep)-length(bgroup)), (ncol(hsep)-length(rgroup)+1):(ncol(hsep))] <- rgroup.hsep } if ((length(lgroup)+include.rownames >= 1) & (length(tgroup)+include.colnames >= 1)) { topleft <- matrix(" ", length(tgroup)+include.colnames, length(lgroup)+include.rownames) topleft[1, ] <- "-" hsep[1:nrow(topleft), 1:ncol(topleft)] <- topleft } if ((length(lgroup)+include.rownames >= 1)&(length(bgroup) >= 1)) { bottomleft <- matrix(" ", length(bgroup), length(lgroup)+include.rownames) bottomleft[nrow(bottomleft), ] <- "-" hsep[(nrow(hsep)-length(bgroup)+1):(nrow(hsep)), 1:ncol(bottomleft)] <- bottomleft } if ((length(rgroup) >= 1) & (include.colnames+length(tgroup) >= 1)) { topright <- matrix(" ", length(tgroup)+include.colnames, length(rgroup)) topright[1, ] <- "-" hsep[1:nrow(topright), (ncol(hsep)-length(rgroup)+1):ncol(hsep)] <- topright } if ((length(rgroup) >= 1) & (length(bgroup) >= 1)) { bottomright <- matrix(" ", length(bgroup), length(rgroup)) bottomright[nrow(bottomright), ] <- "-" hsep[(nrow(hsep)-nrow(bottomright)+1):nrow(hsep), (ncol(hsep)-length(rgroup)+1):ncol(hsep)] <- bottomright } csep <- matrix("+", nrowx+1+length(tgroup)+length(bgroup), ncolx+length(lgroup)+length(rgroup)+1) if ((length(lgroup)+include.rownames >= 1) & (length(tgroup)+include.colnames >= 1)) { topleft <- matrix(" ", length(tgroup)+include.colnames, length(lgroup)+include.rownames) topleft[1, ] <- "+" topleft[, 1] <- "+" csep[1:nrow(topleft), 1:ncol(topleft)] <- topleft } if ((length(lgroup)+include.rownames >=1) & (length(bgroup) >= 1)) { bottomleft <- matrix(" ", length(bgroup), length(lgroup)+include.rownames) bottomleft[nrow(bottomleft), ] <- "+" bottomleft[, 1] <- "+" csep[(nrow(csep)-length(bgroup)+1):(nrow(csep)), 1:ncol(bottomleft)] <- bottomleft } if ((length(rgroup) >= 1) & (include.colnames+length(tgroup) >= 1)) { topright <- matrix(" ", length(tgroup)+include.colnames, length(rgroup)) topright[1, ] <- "+" topright[, ncol(topright)] <- "+" csep[1:nrow(topright), (ncol(csep)-length(rgroup)+1):ncol(csep)] <- topright } if ((length(rgroup) >= 1) & (length(bgroup) >= 1)) { bottomright <- matrix(" ", length(bgroup), length(rgroup)) bottomright[nrow(bottomright), ] <- "+" bottomright[, ncol(bottomright)] <- "+" csep[(nrow(hsep)-nrow(bottomright)+1):nrow(csep), (ncol(csep)-length(rgroup)+1):ncol(csep)] <- bottomright } if (header) { header <- min(c(header+length(tgroup), nrowx+length(tgroup)))+1 hsep[header,] <- gsub("-", "=", hsep[header,]) } results <- print.character.matrix(x, vsep = vsep, csep = csep, hsep = hsep, print = FALSE) cat(header.rest(caption = caption, caption.level = caption.level), sep = "\n") cat(results, sep = "\n") } show.rest.list <- function(x, caption = NULL, caption.level = NULL, list.type = "bullet", ...) { if (list.type == "bullet") mark <- rep("*", length(x)) if (list.type == "number") mark <- rep(" if (list.type == "none") mark <- rep("", length(x)) if (list.type == "label") { if (is.null(names(x))) { namesx <- paste("[[", 1:length(x), "]]", sep = "") } else { namesx <- names(x) } mark <- paste(namesx, "\n ", sep = "") } y <- gsub("(^\t*)(.*)", "\\1", x) z <- NULL for (i in 2:length(y)) z <- c(z, ifelse(y[i] != y[i-1], i-1, NA)) cat(header.rest(caption = caption, caption.level = caption.level), sep = "\n") for (i in 1:length(x)) { tmp <- x[[i]] if (list.type == "label") tmp <- sub("^\t*", "", tmp) tmp <- gsub('\t|(*COMMIT)(*FAIL)', " ", tmp, perl = TRUE) tmp <- sub("(^ *)", paste("\\1", mark[i], " ", sep = ""), tmp) cat(tmp, "\n") if (i %in% z) cat("\n") } }
print.summary.spbp.mle <- function(x, digits = max(getOption('digits')-4, 3), signif.stars = getOption("show.signif.stars"), ...) { if (!is.null(x$call)) { cat("Call:\n") dput(x$call) cat("\n") } savedig <- options(digits = digits) on.exit(options(savedig)) cat(" n=", x$n) if (!is.null(x$nevent)) cat(", number of events=", x$nevent, "\n") else cat("\n") if (nrow(x$coef)==0) { cat ("Null model\n") return() } if(!is.null(x$coefficients)) { cat("\n") printCoefmat(x$coefficients, digits = digits, signif.stars = signif.stars, ...) } if(!is.null(x$conf.int)) { cat("\n") print(x$conf.int) } cat("\n") pdig <- max(1, getOption("digits")-4) cat("Likelihood ratio test= ", format(round(x$logtest["test"], 2)), " on ", x$logtest["df"], " df,", " p=", format.pval(x$logtest["pvalue"], digits=pdig), "\n", sep = "") cat("Wald test = ", format(round(x$waldtest["test"], 2)), " on ", x$waldtest["df"], " df,", " p=", format.pval(x$waldtest["pvalue"], digits=pdig), "\n", sep = "") invisible() }
"lichen"
regplot.rma <- function(x, mod, pred=TRUE, ci=TRUE, pi=FALSE, shade=TRUE, xlim, ylim, predlim, olim, xlab, ylab, at, digits=2L, transf, atransf, targs, level=x$level, pch=21, psize, plim=c(0.5,3), col="black", bg="darkgray", grid=FALSE, refline, label=FALSE, offset=c(1,1), labsize=1, lcol, lwd, lty, legend=FALSE, xvals, ...) { mstyle <- .get.mstyle("crayon" %in% .packages()) .chkclass(class(x), must="rma", notav=c("rma.mh","rma.peto")) if (x$int.only) stop(mstyle$stop("Plot not applicable to intercept-only models.")) na.act <- getOption("na.action") on.exit(options(na.action=na.act), add=TRUE) if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) if (missing(transf)) transf <- FALSE if (missing(atransf)) atransf <- FALSE transf.char <- deparse(transf) atransf.char <- deparse(atransf) if (is.function(transf) && is.function(atransf)) stop(mstyle$stop("Use either 'transf' or 'atransf' to specify a transformation (not both).")) if (missing(targs)) targs <- NULL if (missing(ylab)) ylab <- .setlab(x$measure, transf.char, atransf.char, gentype=1, short=FALSE) if (missing(at)) at <- NULL if (missing(psize)) psize <- NULL if (missing(label)) label <- NULL if (is.logical(grid)) gridcol <- "gray" if (is.character(grid)) { gridcol <- grid grid <- TRUE } if (is.logical(shade)) shadecol <- c("gray85", "gray95") if (is.character(shade)) { if (length(shade) == 1L) shade <- c(shade, shade) shadecol <- shade shade <- TRUE } if (inherits(pred, "list.rma")) { addpred <- TRUE if (missing(xvals)) stop(mstyle$stop("Need to specify the 'xvals' argument.")) if (length(xvals) != length(pred$pred)) stop(mstyle$stop(paste0("Length of the 'xvals' argument (", length(xvals), ") does not correspond to the number of predicted values (", length(pred$pred), ")."))) } else { addpred <- pred } if (missing(refline)) refline <- NA if (missing(lcol)) { lcol <- c("black", "black", "black", "gray40") } else { if (length(lcol) == 1L) lcol <- rep(lcol, 4L) if (length(lcol) == 2L) lcol <- c(lcol[c(1,2,2)], "gray40") if (length(lcol) == 3L) lcol <- c(lcol, "gray40") } if (missing(lty)) { lty <- c("solid", "dashed", "dotted", "solid") } else { if (length(lty) == 1L) lty <- rep(lty, 4L) if (length(lty) == 2L) lty <- c(lty[c(1,2,2)], "solid") if (length(lty) == 3L) lty <- c(lty, "solid") } if (missing(lwd)) { lwd <- c(3,1,1,2) } else { if (length(lwd) == 1L) lwd <- rep(lwd, 4L) if (length(lwd) == 2L) lwd <- c(lwd[c(1,2,2)], 2) if (length(lwd) == 3L) lwd <- c(lwd, 2) } level <- .level(level) if (missing(mod)) { if (x$p == 2L && x$int.incl) { mod <- 2 } else { stop(mstyle$stop("Need to specify the 'mod' argument.")) } } if (length(mod) != 1L) stop(mstyle$stop("Can only specify a single variable via argument 'mod'.")) if (!(is.character(mod) || is.numeric(mod))) stop(mstyle$stop("Argument 'mod' must either be a character string or a scalar.")) if (is.character(mod)) { mod.pos <- charmatch(mod, colnames(x$X)) if (is.na(mod.pos)) stop(mstyle$stop("Argument 'mod' must be the name of a moderator variable in the model.")) if (mod.pos == 0L) stop(mstyle$stop("No ambiguous match found for variable name specified via 'mod' argument.")) } else { mod.pos <- round(mod) if (mod.pos < 1 | mod.pos > x$p) stop(mstyle$stop("Specified position of 'mod' variable does not exist in the model.")) } yi <- c(x$yi.f) vi <- x$vi.f X <- x$X.f slab <- x$slab ids <- x$ids options(na.action = "na.pass") weights <- try(weights(x), silent=TRUE) if (inherits(weights, "try-error")) weights <- rep(1, x$k.f) options(na.action = na.act) if (length(pch) == 1L) pch <- rep(pch, x$k.all) if (length(pch) != x$k.all) stop(mstyle$stop(paste0("Length of the 'pch' argument (", length(pch), ") does not correspond to the size of the original dataset (", x$k.all, ")."))) if (!is.null(x$subset)) pch <- pch[x$subset] psize.char <- FALSE if (!is.null(psize)) { if (is.character(psize)) { psize <- match.arg(psize, c("seinv", "vinv")) if (psize == "seinv") { psize <- 1 / sqrt(vi) } else { psize <- 1 / vi } psize.char <- TRUE } else { if (length(psize) == 1L) psize <- rep(psize, x$k.all) if (length(psize) != x$k.all) stop(mstyle$stop(paste0("Length of the 'psize' argument (", length(psize), ") does not correspond to the size of the original dataset (", x$k.all, ")."))) if (!is.null(x$subset)) psize <- psize[x$subset] } } if (length(col) == 1L) col <- rep(col, x$k.all) if (length(col) != x$k.all) stop(mstyle$stop(paste0("Length of the 'col' argument (", length(col), ") does not correspond to the size of the original dataset (", x$k.all, ")."))) if (!is.null(x$subset)) col <- col[x$subset] if (length(bg) == 1L) bg <- rep(bg, x$k.all) if (length(bg) != x$k.all) stop(mstyle$stop(paste0("Length of the 'bg' argument (", length(bg), ") does not correspond to the size of the original dataset (", x$k.all, ")."))) if (!is.null(x$subset)) bg <- bg[x$subset] if (!is.null(label)) { if (is.character(label)) { label <- match.arg(label, c("all", "ciout", "piout")) if (label == "all") { label <- rep(TRUE, x$k.all) if (!is.null(x$subset)) label <- label[x$subset] } } else if (is.logical(label)) { if (!is.logical(label)) stop(mstyle$stop("Argument 'label' must be a logical vector (or a single character string).")) if (length(label) == 1L) label <- rep(label, x$k.all) if (length(label) != x$k.all) stop(mstyle$stop(paste0("Length of the 'label' argument (", length(label), ") does not correspond to the size of the original dataset (", x$k.all, ")."))) if (!is.null(x$subset)) label <- label[x$subset] } else if (is.numeric(label)) { label <- round(label) label <- seq(x$k.all) %in% label } } has.na <- is.na(yi) | is.na(vi) | apply(is.na(X), 1, any) not.na <- !has.na if (any(has.na)) { yi <- yi[not.na] vi <- vi[not.na] X <- X[not.na,,drop=FALSE] slab <- slab[not.na] ids <- ids[not.na] weights <- weights[not.na] pch <- pch[not.na] psize <- psize[not.na] col <- col[not.na] bg <- bg[not.na] if (!is.character(label)) label <- label[not.na] } k <- length(yi) xi <- X[,mod.pos] if (inherits(pred, "list.rma")) { xs <- xvals ci.lb <- pred$ci.lb ci.ub <- pred$ci.ub if (is.null(pred$pi.lb) || anyNA(pred$pi.lb)) { pi.lb <- pred$ci.lb pi.ub <- pred$ci.ub if (pi) warning(mstyle$warning("Object passed to 'pred' argument does not contain prediction interval information."), call.=FALSE) pi <- FALSE } else { pi.lb <- pred$pi.lb pi.ub <- pred$pi.ub } pred <- pred$pred if (!is.null(label) && is.character(label) && label %in% c("ciout", "piout")) { warning(mstyle$stop("Cannot label points based on the confidence/prediction interval when passing an object to 'pred'.")) label <- NULL } yi.pred <- NULL yi.ci.lb <- NULL yi.ci.ub <- NULL yi.pi.lb <- NULL yi.pi.ub <- NULL } else { if (!missing(xvals)) { xs <- xvals len <- length(xs) predlim <- range(xs) } else { len <- 1000 if (missing(predlim)) { range.xi <- max(xi) - min(xi) predlim <- c(min(xi) - .04*range.xi, max(xi) + .04*range.xi) xs <- seq(predlim[1], predlim[2], length=len) } else { if (length(predlim) != 2L) stop(mstyle$stop("Argument 'predlim' must be of length 2.")) xs <- seq(predlim[1], predlim[2], length=len) } } Xnew <- rbind(colMeans(X))[rep(1,len),,drop=FALSE] Xnew[,mod.pos] <- xs if (x$int.incl) Xnew <- Xnew[,-1,drop=FALSE] tmp <- predict(x, newmods=Xnew, level=level) pred <- tmp$pred ci.lb <- tmp$ci.lb ci.ub <- tmp$ci.ub if (is.null(tmp$pi.lb) || anyNA(tmp$pi.lb)) { pi.lb <- ci.lb pi.ub <- ci.ub if (pi) warning(mstyle$warning("Cannot draw prediction interval for the given model."), call.=FALSE) pi <- FALSE } else { pi.lb <- tmp$pi.lb pi.ub <- tmp$pi.ub } Xnew <- rbind(colMeans(X))[rep(1,k),,drop=FALSE] Xnew[,mod.pos] <- xi if (x$int.incl) Xnew <- Xnew[,-1,drop=FALSE] tmp <- predict(x, newmods=Xnew, level=level) yi.pred <- tmp$pred yi.ci.lb <- tmp$ci.lb yi.ci.ub <- tmp$ci.ub if (is.null(tmp$pi.lb) || anyNA(tmp$pi.lb)) { yi.pi.lb <- yi.ci.lb yi.pi.ub <- yi.ci.ub if (!is.null(label) && is.character(label) && label == "piout") { warning(mstyle$warning("Cannot label points based on the prediction interval for the given model."), call.=FALSE) label <- NULL } } else { yi.pi.lb <- tmp$pi.lb yi.pi.ub <- tmp$pi.ub } } if (is.function(transf)) { if (is.null(targs)) { yi <- sapply(yi, transf) pred <- sapply(pred, transf) ci.lb <- sapply(ci.lb, transf) ci.ub <- sapply(ci.ub, transf) pi.lb <- sapply(pi.lb, transf) pi.ub <- sapply(pi.ub, transf) yi.pred <- sapply(yi.pred, transf) yi.ci.lb <- sapply(yi.ci.lb, transf) yi.ci.ub <- sapply(yi.ci.ub, transf) yi.pi.lb <- sapply(yi.pi.lb, transf) yi.pi.ub <- sapply(yi.pi.ub, transf) } else { yi <- sapply(yi, transf, targs) pred <- sapply(pred, transf, targs) ci.lb <- sapply(ci.lb, transf, targs) ci.ub <- sapply(ci.ub, transf, targs) pi.lb <- sapply(pi.lb, transf, targs) pi.ub <- sapply(pi.ub, transf, targs) yi.pred <- sapply(yi.pred, transf, targs) yi.ci.lb <- sapply(yi.ci.lb, transf, targs) yi.ci.ub <- sapply(yi.ci.ub, transf, targs) yi.pi.lb <- sapply(yi.pi.lb, transf, targs) yi.pi.ub <- sapply(yi.pi.ub, transf, targs) } } tmp <- .psort(ci.lb, ci.ub) ci.lb <- tmp[,1] ci.ub <- tmp[,2] tmp <- .psort(pi.lb, pi.ub) pi.lb <- tmp[,1] pi.ub <- tmp[,2] if (!missing(olim)) { if (length(olim) != 2L) stop(mstyle$stop("Argument 'olim' must be of length 2.")) olim <- sort(olim) yi[yi < olim[1]] <- olim[1] yi[yi > olim[2]] <- olim[2] pred[pred < olim[1]] <- olim[1] pred[pred > olim[2]] <- olim[2] ci.lb[ci.lb < olim[1]] <- olim[1] ci.ub[ci.ub > olim[2]] <- olim[2] pi.lb[pi.lb < olim[1]] <- olim[1] pi.ub[pi.ub > olim[2]] <- olim[2] } if (is.null(psize) || psize.char) { if (length(plim) < 2L) stop(mstyle$stop("Argument 'plim' must be of length 2 or 3.")) if (psize.char) { wi <- psize } else { wi <- sqrt(weights) } if (!is.na(plim[1]) && !is.na(plim[2])) { rng <- max(wi, na.rm=TRUE) - min(wi, na.rm=TRUE) if (rng <= .Machine$double.eps^0.5) { psize <- rep(1, k) } else { psize <- (wi - min(wi, na.rm=TRUE)) / rng psize <- (psize * (plim[2] - plim[1])) + plim[1] } } if (is.na(plim[1]) && !is.na(plim[2])) { psize <- wi / max(wi, na.rm=TRUE) * plim[2] if (length(plim) == 3L) psize[psize <= plim[3]] <- plim[3] } if (!is.na(plim[1]) && is.na(plim[2])) { psize <- wi / min(wi, na.rm=TRUE) * plim[1] if (length(plim) == 3L) psize[psize >= plim[3]] <- plim[3] } if (all(is.na(psize))) psize <- rep(1, k) } if (missing(xlab)) xlab <- colnames(X)[mod.pos] if (!is.expression(xlab) && xlab == "") xlab <- "Moderator" if (missing(xlim)) { xlim <- range(xi) } else { if (length(xlim) != 2L) stop(mstyle$stop("Argument 'xlim' must be of length 2.")) } if (missing(ylim)) { if (pi) { ylim <- range(c(yi, pi.lb, pi.ub)) } else if (ci) { ylim <- range(c(yi, ci.lb, ci.ub)) } else { ylim <- range(yi) } } else { if (length(ylim) != 2L) stop(mstyle$stop("Argument 'ylim' must be of length 2.")) } if (!is.null(at)) { ylim[1] <- min(c(ylim[1], at), na.rm=TRUE) ylim[2] <- max(c(ylim[2], at), na.rm=TRUE) } plot(NA, xlab=xlab, ylab=ylab, xlim=xlim, ylim=ylim, yaxt="n", ...) if (is.null(at)) { at <- axTicks(side=2) } else { at <- at[at > par("usr")[3]] at <- at[at < par("usr")[4]] } at.lab <- at if (is.function(atransf)) { if (is.null(targs)) { at.lab <- formatC(sapply(at.lab, atransf), digits=digits[[1]], format="f", drop0trailing=is.integer(digits[[1]])) } else { at.lab <- formatC(sapply(at.lab, atransf, targs), digits=digits[[1]], format="f", drop0trailing=is.integer(digits[[1]])) } } else { at.lab <- formatC(at.lab, digits=digits[[1]], format="f", drop0trailing=is.integer(digits[[1]])) } axis(side=2, at=at, labels=at.lab, ...) if (shade) { if (pi) polygon(c(xs, rev(xs)), c(pi.lb, rev(pi.ub)), border=NA, col=shadecol[2], ...) if (ci) polygon(c(xs, rev(xs)), c(ci.lb, rev(ci.ub)), border=NA, col=shadecol[1], ...) } if (ci) { lines(xs, ci.lb, col=lcol[2], lty=lty[2], lwd=lwd[2], ...) lines(xs, ci.ub, col=lcol[2], lty=lty[2], lwd=lwd[2], ...) } if (pi) { lines(xs, pi.lb, col=lcol[3], lty=lty[3], lwd=lwd[3], ...) lines(xs, pi.ub, col=lcol[3], lty=lty[3], lwd=lwd[3], ...) } if (.isTRUE(grid)) grid(col=gridcol) abline(h=refline, col=lcol[4], lty=lty[4], lwd=lwd[4], ...) if (addpred) lines(xs, pred, col=lcol[1], lty=lty[1], lwd=lwd[1], ...) box(...) order.vec <- order(psize, decreasing=TRUE) xi.o <- xi[order.vec] yi.o <- yi[order.vec] pch.o <- pch[order.vec] psize.o <- psize[order.vec] col.o <- col[order.vec] bg.o <- bg[order.vec] points(x=xi.o, y=yi.o, pch=pch.o, col=col.o, bg=bg.o, cex=psize.o, ...) if (!is.null(label)) { if (!is.null(label) && is.character(label) && label %in% c("ciout", "piout")) { if (label == "ciout") { label <- yi < yi.ci.lb | yi > yi.ci.ub label[xi < predlim[1] | xi > predlim[2]] <- FALSE } else { label <- yi < yi.pi.lb | yi > yi.pi.ub label[xi < predlim[1] | xi > predlim[2]] <- FALSE } } yrange <- ylim[2] - ylim[1] if (length(offset) == 2L) offset <- c(offset[1]/100 * yrange, offset[2]/100 * yrange, 1) if (length(offset) == 1L) offset <- c(0, offset/100 * yrange, 1) for (i in which(label)) { if (isTRUE(yi[i] > yi.pred[i])) { text(xi[i], yi[i] + offset[1] + offset[2]*psize[i]^offset[3], slab[i], cex=labsize, ...) } else { text(xi[i], yi[i] - offset[1] - offset[2]*psize[i]^offset[3], slab[i], cex=labsize, ...) } } } else { label <- rep(FALSE, k) } if (is.logical(legend) && isTRUE(legend)) lpos <- "topright" if (is.character(legend)) { lpos <- legend legend <- TRUE } if (legend) { pch.l <- NULL col.l <- NULL bg.l <- NULL lty.l <- NULL lwd.l <- NULL tcol.l <- NULL ltxt <- NULL if (length(unique(pch)) == 1L && length(unique(col)) == 1L && length(unique(bg)) == 1L) { pch.l <- NA col.l <- NA bg.l <- NA lty.l <- "blank" lwd.l <- NA tcol.l <- "white" ltxt <- "Studies" } if (addpred) { pch.l <- c(pch.l, NA) col.l <- c(col.l, NA) bg.l <- c(bg.l, NA) lty.l <- c(lty.l, NA) lwd.l <- c(lwd.l, NA) tcol.l <- c(tcol.l, "white") ltxt <- c(ltxt, "Regression Line") } if (ci) { pch.l <- c(pch.l, 22) col.l <- c(col.l, lcol[2]) bg.l <- c(bg.l, shadecol[1]) lty.l <- c(lty.l, NA) lwd.l <- c(lwd.l, 1) tcol.l <- c(tcol.l, "white") ltxt <- c(ltxt, paste0(round(100*(1-level), digits[[1]]), "% Confidence Interval")) } if (pi) { pch.l <- c(pch.l, 22) col.l <- c(col.l, lcol[3]) bg.l <- c(bg.l, shadecol[2]) lty.l <- c(lty.l, NA) lwd.l <- c(lwd.l, 1) tcol.l <- c(tcol.l, "white") ltxt <- c(ltxt, paste0(round(100*(1-level), digits[[1]]), "% Prediction Interval")) } if (length(ltxt) >= 1L) legend(lpos, inset=.01, bg="white", pch=pch.l, col=col.l, pt.bg=bg.l, lty=lty.l, lwd=lwd.l, text.col=tcol.l, pt.cex=1.5, seg.len=3, legend=ltxt) pch.l <- NULL col.l <- NULL bg.l <- NULL lty.l <- NULL lwd.l <- NULL tcol.l <- NULL ltxt <- NULL if (length(unique(pch)) == 1L && length(unique(col)) == 1L && length(unique(bg)) == 1L) { pch.l <- pch[1] col.l <- col[1] bg.l <- bg[1] lty.l <- "blank" lwd.l <- 1 tcol.l <- "black" ltxt <- "Studies" } if (addpred) { pch.l <- c(pch.l, NA) col.l <- c(col.l, lcol[1]) bg.l <- c(bg.l, NA) lty.l <- c(lty.l, lty[1]) lwd.l <- c(lwd.l, lwd[1]) tcol.l <- c(tcol.l, "black") ltxt <- c(ltxt, "Regression Line") } if (ci) { pch.l <- c(pch.l, NA) col.l <- c(col.l, lcol[2]) bg.l <- c(bg.l, NA) lty.l <- c(lty.l, lty[2]) lwd.l <- c(lwd.l, lwd[2]) tcol.l <- c(tcol.l, "black") ltxt <- c(ltxt, paste0(round(100*(1-level), digits[[1]]), "% Confidence Interval")) } if (pi) { pch.l <- c(pch.l, NA) col.l <- c(col.l, lcol[3]) bg.l <- c(bg.l, NA) lty.l <- c(lty.l, lty[3]) lwd.l <- c(lwd.l, lwd[3]) tcol.l <- c(tcol.l, "black") ltxt <- c(ltxt, paste0(round(100*(1-level), digits[[1]]), "% Prediction Interval")) } if (length(ltxt) >= 1L) legend(lpos, inset=.01, bg=NA, pch=pch.l, col=col.l, pt.bg=bg.l, lty=lty.l, lwd=lwd.l, text.col=tcol.l, pt.cex=1.5, seg.len=3, legend=ltxt) } sav <- data.frame(slab, ids, xi, yi, pch, psize, col, bg, label, order=order.vec) if (length(yi.pred) != 0L) sav$pred <- yi.pred attr(sav, "offset") <- offset attr(sav, "labsize") <- labsize class(sav) <- "regplot" invisible(sav) }
call.spread = function(k1, k2, c1, c2, llimit = 20, ulimit = 20){ if(k1<k2){ print('This is a Bull Call Spread because excercise price of long call (k1) is less than excercise price of short call (k2)') }else{'This is a Bear Call Spread because excercise price of long call (k1) is greater than excercise price of short call (k2)'} stock_price_at_expiration = round((k1 - llimit)):round((ulimit + k1)) long_call = (map_dbl(round((k1 - llimit)):round((ulimit + k1)), .f = ~max(.x - k1,0))) - c1 short_call = (-1* map_dbl(round((k1 - llimit)):round((ulimit + k1)), .f = ~max(.x - k2,0))) + c2 profit_loss = long_call + short_call df = data.frame(stock_price_at_expiration, long_call, short_call, profit_loss) p1 = ggplot(data = df) + geom_line(aes(x = stock_price_at_expiration, y = long_call, colour = 'long_call')) + geom_line(aes(x = stock_price_at_expiration, y = short_call, colour = 'short_call')) + geom_line(aes(x = stock_price_at_expiration, y = profit_loss, colour = 'profit_loss')) + labs(x = 'stock price at expiration', y = 'profit/loss', title = 'Bull/Bear Call Spread Plot', color = 'Option contract') + scale_colour_manual('', breaks = c('long_call', 'short_call', 'profit_loss'), values = c('blue', 'red', 'black')) print(df) print(ggplotly(p1)) }
X <- c(1L, 3L, 5L, 7L, 9L, 15.3) mean_X <- mean(X)
write_output_yml <- function(path) { output_yml <- ymlthis::yml_output( .yml = ymlthis::yml_empty(), bookdown::gitbook( lib_dir = "assets", split_by = "chapter", config = list(download = "pdf") ), bookdown::pdf_book( keep_tex = TRUE, includes = ymlthis::includes2(in_header = "preamble.tex") ) ) options(ymlthis.remove_blank_line = TRUE) ymlthis::use_output_yml(.yml = output_yml, path = path, quiet = TRUE) options(ymlthis.remove_blank_line = FALSE) }
get_trinoploid_1n_est <- function(.filt_peak_sizes){ trinploids <- .filt_peak_sizes$minor_variant_cov_rounded == 0.33 if(any(trinploids)){ triplod_1n_guess <- min(.filt_peak_sizes$pair_cov[trinploids]) / 3 genome_counts_by_trip_1n_est <- round(.filt_peak_sizes$pair_cov / triplod_1n_guess) if(sum(genome_counts_by_trip_1n_est == 3) == 1){ return(triplod_1n_guess) } } return(NA) }
XZ_BSPLINE.f <- function(x, knt, ord, ...){ BS <- BSplines(knots = knt, ord = ord, der = 0, x = x) BS <- BS[, -ncol(BS), drop=F] return(BS) }
plot_histograms <- function(.minor_variant_rel_cov, .total_pair_cov, .ymax, .smudge_summary, .nbins, .fig_title = NA, .cex = 1.4, .col = NA){ to_filter <- .total_pair_cov < .ymax - (.ymax / .nbins) .total_pair_cov <- .total_pair_cov[to_filter] .minor_variant_rel_cov <- .minor_variant_rel_cov[to_filter] h1 <- hist(.minor_variant_rel_cov, breaks = 100, plot = F) h2 <- hist(.total_pair_cov, breaks = 100, plot = F) top <- max(h1$counts, h2$counts) if( is.na(.col) ){ .col <- rgb(0.8352, 0.2431, 0.3098) } par(mar=c(0,3.8,1,0)) barplot(h1$counts, axes=F, ylim=c(0, top), space=0, col = .col) if(!(is.na(.fig_title))){ mtext(bquote(italic(.(.fig_title))), side=3, adj=0, line=-3, cex = .cex + 0.2) } if ( .smudge_summary$genome_ploidy < 9){ ploidytext <- switch(.smudge_summary$genome_ploidy - 1, p2 = 'diploid', p3 = 'triploid', p4 = 'tetraploid', p5 = 'pentaploid', p6 = 'hexaploid', p7 = 'heptaploid', p8 = 'octoploid') } else { ploidytext <- paste0(.smudge_summary$genome_ploidy, '-ploid') } if(!(is.na(.smudge_summary$genome_ploidy))){ mtext(paste('proposed', ploidytext), side=3, adj=0.05, line=-5, cex = .cex - 0.2) } par(mar=c(3.8,0,0.5,1)) barplot(h2$counts, axes=F, xlim=c(0, top), space=0, col = .col, horiz = T) legend('bottomright', bty = 'n', paste('1n = ', round(.smudge_summary$n)), cex = .cex - 0.1) .peak_sizes <- .smudge_summary$peak_sizes[,c(11,3)] colnames(.peak_sizes) <- c('peak', 'size') to_remove <- sapply(.peak_sizes[,1], nchar) > 6 .peak_sizes <- .peak_sizes[!to_remove, ] if( any(to_remove) ){ .peak_sizes <- rbind(.peak_sizes, data.frame(peak = 'others', 'size' = 1 - sum(.peak_sizes[,2])) ) } if(! any(is.na(.peak_sizes))){ legend('topleft', bty = 'n', .peak_sizes[,1], cex = .cex - 0.2) legend('topright', bty = 'n', legend = round(.peak_sizes[,2], 2), cex = .cex - 0.2) } }
highlight_html_cells <- function(input, output, tags, update_css = TRUE, browse = TRUE, print = FALSE) { CSSid <- gsub("\\{.+", "", tags) CSSid <- gsub("^[\\s+]|\\s+$", "", CSSid) CSSidPaste <- gsub(" CSSid2 <- paste(" ", CSSid, sep = "") ids <- paste("<td id='", CSSidPaste, "'", sep = "") for(i in seq_along(CSSid)){ locations <- grep(CSSid[i], input) input[locations] <- gsub("<td", ids[i], input[locations]) input[locations] <- gsub(CSSid2[i], "", input[locations], fixed = TRUE) } if(update_css){ input <- update_css(input, tags) } if(print) { input } else { write(input, file = output) if(browse) { browseURL(output) } } } highlight_html_text <- function(input, output, tags, update_css = TRUE, browse = TRUE, print = FALSE){ CSSid <- gsub("\\{.+", "", tags) CSSid <- gsub("^[\\s+]|\\s+$", "", CSSid) CSSidPaste <- gsub(" CSSid2 <- paste(" ", CSSid, sep = "") ids <- paste("<span id='", CSSidPaste, "'>", sep = "") for(i in seq_along(CSSid)){ locations <- grep(CSSid[i], input) input[locations] <- gsub(paste("\\{", CSSid[i], sep = ''), ids[i], input[locations]) input[locations] <- gsub("\\}", "</span>", input[locations]) } if(update_css){ input <- update_css(input, tags) } if(print) { input } else { write(input, file = output) if(browse) { browseURL(output) } } }
context("cf_query") test_that("cf_query", { skip_on_cran() tt = cf_query(cf_user("public"), cf_datatype(5, 2, 1), cf_station(), "2012-01-01 00", "2012-01-02 00") expect_is(tt, "cfSunshine") expect_is(tt$Station, "factor") expect_is(tt$`Date(local)`, "POSIXct") expect_is(tt$`Amount(MJ/m2)`, "numeric") expect_is(tt$`Period(Hrs)`, "integer") expect_is(tt$Type, "character") expect_is(tt$Freq, "character") })
library(testthat) library(cellassign) test_check("cellassign")
context("upload sheets") activate_test_token() test_that("Nonexistent or wrong-extension files throw error", { expect_error(gs_upload("I dont exist.csv"), "does not exist") expect_error(gs_upload("test-gs-upload.R"), "Cannot convert file with this extension") }) test_that("Different file formats can be uploaded", { files_to_upload <- paste("mini-gap", c("xlsx", "tsv", "csv", "txt", "ods"), sep = ".") upload_titles <- p_(files_to_upload) tmp <- mapply(gs_upload, file = system.file("mini-gap", files_to_upload, package = "googlesheets"), sheet_title = upload_titles, SIMPLIFY = FALSE) Sys.sleep(1) expect_true(all(vapply(tmp, class, character(2))[1, ] == "googlesheet")) expect_equivalent(vapply(tmp, function(x) x$n_ws,integer(1)), c(5, 1, 1, 1, 5)) Sys.sleep(1) ss_df <- gs_ls() expect_true(all(upload_titles %in% ss_df$sheet_title)) }) test_that("Overwrite actually overwrites an existing file", { before <- dplyr::data_frame(x = "before") after <- dplyr::data_frame(x = "after") on.exit(file.remove(c("before.csv", "after.csv"))) readr::write_csv(before, "before.csv") readr::write_csv(after, "after.csv") target_sheet <- p_("overwrite_test_sheet") ss <- gs_upload("before.csv", target_sheet) Sys.sleep(1) res <- gs_read(ss) expect_identical(res$x[1], "before") ss <- gs_upload("after.csv", target_sheet, overwrite = TRUE) Sys.sleep(1) res <- gs_read(ss) expect_identical(res$x[1], "after") }) gs_grepdel(TEST, verbose = FALSE) gs_deauth(verbose = FALSE)
context("test-leafgl-popup") library(leaflet) library(jsonify) library(sf) test_that("popup-points-character", { m <- leaflet() %>% addTiles() %>% addGlPoints(data = breweries91, popup = "state", group = "grp") expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) expect_identical(from_json(m$x$calls[[2]]$args[[3]]), breweries91$state) rm(m) sfpoints <- sf::st_as_sf(breweries91) m <- leaflet() %>% addGlPoints(data = st_sfc(st_geometry(sfpoints)), popup = sfpoints$state, group = "grp") expect_is(m, "leaflet") expect_is(m$x$calls[[1]]$args[[2]], "json") expect_true(validate_json(m$x$calls[[1]]$args[[2]])) rm(m) m <- leaflet() %>% addTiles() %>% addGlPoints(data = breweries91, popup = breweries91$state, group = "grp") expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) expect_identical(from_json(m$x$calls[[2]]$args[[3]]), breweries91$state) rm(m) m <- leaflet() %>% addTiles() %>% addGlPoints(data = breweries91, popup = c("state", "address"), group = "grp") expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) rm(m) m <- expect_warning(leaflet() %>% addTiles() %>% addGlPoints(data = breweries91, popup = "Text 1", group = "grp")) expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) expect_identical(from_json(m$x$calls[[2]]$args[[3]]), rep("Text 1", nrow(breweries91))) rm(m) m <- expect_warning(leaflet() %>% addTiles() %>% addGlPoints(data = breweries91, popup = c("Text 1", "Text 2"), group = "grp")) expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) expect_identical(from_json(m$x$calls[[2]]$args[[3]]), rep(c("Text 1","Text 2"), nrow(breweries91))[1:nrow(breweries91)]) rm(m) m <- leaflet() %>% addTiles() %>% addGlPoints(data = breweries91, popup = rep("Text 1", nrow(breweries91)), group = "grp") expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) expect_identical(from_json(m$x$calls[[2]]$args[[3]]), rep("Text 1", nrow(breweries91))) }) test_that("popup-points-table", { m <- leaflet() %>% addTiles() %>% addGlPoints(data = breweries91, popup = as.data.frame(breweries91), group = "grp") expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) m <- leaflet() %>% addTiles() %>% addGlPoints(data = breweries91, popup = as.data.frame(breweries91), group = "grp", src = TRUE) expect_is(m, "leaflet") m <- expect_warning(leaflet() %>% addTiles() %>% addGlPoints(data = breweries91, popup = as.data.frame(breweries91)[1:4,], group = "grp")) expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) m <- leaflet() %>% addTiles() %>% addGlPoints(data = breweries91, popup = as.matrix(as.data.frame(breweries91)), group = "grp") expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) }) test_that("popup-points-spatial", { m <- leaflet() %>% addTiles() %>% addGlPoints(data = breweries91, popup = breweries91, group = "grp") expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) m <- leaflet() %>% addTiles() %>% addGlPoints(data = breweries91, popup = breweries91, group = "grp", src = TRUE) expect_is(m, "leaflet") library(sf) m <- leaflet() %>% addTiles() %>% addGlPoints(data = breweries91, popup = st_as_sf(breweries91), group = "grp") expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) }) test_that("popup-points-formula", { m <- leaflet() %>% addTiles() %>% addGlPoints(data = breweries91, popup = ~sprintf("<b>State</b>: %s<br> <b>Address</b>: %s<br> <b>Brauerei</b>: %s,", state, address, brewery), group = "grp") expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) m <- leaflet() %>% addTiles() %>% addGlPoints(data = breweries91, popup = ~sprintf("<b>State</b>: %s<br> <b>Address</b>: %s<br> <b>Brauerei</b>: %s,", state, address, brewery), group = "grp", src = TRUE) expect_is(m, "leaflet") }) test_that("popup-points-list", { m <- expect_warning(leaflet() %>% addTiles() %>% addGlPoints(data = breweries91, popup = as.list(data.frame(city="Berlin", district=5029, stringsAsFactors = F)), group = "grp")) expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) m <- expect_warning(leaflet() %>% addTiles() %>% addGlPoints(data = breweries91, popup=as.list(data.frame(city=c("Vienna","Berlin"), district=c(1010,40302), stringsAsFactors = F)), group = "grp")) expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) m <- leaflet() %>% addTiles() %>% addGlPoints(data = breweries91, popup = as.list(as.data.frame(breweries91)), group = "grp") expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) }) test_that("popup-points-json", { m <- leaflet() %>% addTiles() %>% addGlPoints(data = breweries91, popup = jsonify::to_json(as.list(as.data.frame(breweries91[,1]))), group = "grp") expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) m <- leaflet() %>% addTiles() %>% addGlPoints(data = breweries91, popup = jsonify::to_json(as.data.frame(breweries91[,1])), group = "grp") expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) m <- leaflet() %>% addTiles() %>% addGlPoints(data = breweries91, popup = jsonify::to_json(as.list(as.data.frame(breweries91[,1:5]))), group = "grp") expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) m <- expect_warning(leaflet() %>% addTiles() %>% addGlPoints(data = breweries91, popup = jsonify::to_json(as.data.frame(breweries91[1,])), group = "grp")) expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) m <- leaflet() %>% addTiles() %>% addGlPoints(data = breweries91, popup = jsonify::to_json(as.list(as.data.frame(breweries91))), group = "grp") expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) }) test_that("popup-points-logical", { m <- leaflet() %>% addTiles() %>% addGlPoints(data = breweries91, popup = TRUE, group = "grp") expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) m <- leaflet() %>% addTiles() %>% addGlPoints(data = breweries91, popup = TRUE, group = "grp", src = TRUE) expect_is(m, "leaflet") m <- leaflet() %>% addTiles() %>% addGlPoints(data = breweries91, popup = FALSE, group = "grp") expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) expect_true(m$x$calls[[2]]$args[[3]] == "{}") m <- leaflet() %>% addTiles() %>% addGlPoints(data = breweries91, popup = NULL, group = "grp") expect_is(m, "leaflet") expect_true(is.null(m$x$calls[[2]]$args[[3]])) }) test_that("popup-points-shiny.tag", { library(shiny) m <- expect_warning(leaflet() %>% addTiles() %>% addGlPoints(data = breweries91, popup = shiny::icon("car"), group = "grp")) expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) m <- expect_warning(leaflet() %>% addTiles() %>% addGlPoints(data = breweries91, popup = shiny::icon("car"), group = "grp", src = TRUE)) expect_is(m, "leaflet") }) test_that("popup-points-default", { m <- expect_warning(leaflet() %>% addTiles() %>% addGlPoints(data = breweries91, popup = Sys.time(), group = "grp")) expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) m <- leaflet() %>% addTiles() %>% addGlPoints(data = breweries91, popup = seq.POSIXt(Sys.time(), Sys.time()+1000, length.out = nrow(breweries91)), group = "grp") expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) m <- expect_warning(leaflet() %>% addTiles() %>% addGlPoints(data = breweries91, popup = Sys.Date(), group = "grp")) expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) }) storms = suppressWarnings(st_cast(st_as_sf(atlStorms2005), "LINESTRING")) storms = st_transform(storms, 4326) test_that("popup-lines-character", { m <- leaflet() %>% addTiles() %>% addGlPolylines(data = storms, popup = "Name", opacity = 1) expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) expect_identical(from_json(m$x$calls[[2]]$args[[3]]), as.character(storms$Name)) rm(m) m <- leaflet() %>% addTiles() %>% addGlPolylines(data = storms, popup = storms$Name, opacity = 1) expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) expect_identical(from_json(m$x$calls[[2]]$args[[3]]), as.character(storms$Name)) rm(m) m <- leaflet() %>% addTiles() %>% addGlPolylines(data = storms, popup = c("Name", "MaxWind"), opacity = 1) expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) rm(m) m <- expect_warning(leaflet() %>% addTiles() %>% addGlPolylines(data = storms, popup = "Text 1", opacity = 1)) expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) expect_identical(from_json(m$x$calls[[2]]$args[[3]]), rep("Text 1", nrow(storms))) rm(m) m <- expect_warning(leaflet() %>% addTiles() %>% addGlPolylines(data = storms, popup = c("Text 1", "Text 2"), opacity = 1)) expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) expect_identical(from_json(m$x$calls[[2]]$args[[3]]), rep(c("Text 1","Text 2"), nrow(storms))[1:nrow(storms)]) rm(m) m <- leaflet() %>% addTiles() %>% addGlPolylines(data = storms, popup = rep("Text 1", nrow(storms)), opacity = 1) expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) expect_identical(from_json(m$x$calls[[2]]$args[[3]]), rep("Text 1", nrow(storms))) }) test_that("popup-lines-table", { m <- leaflet() %>% addTiles() %>% addGlPolylines(data = storms, popup = as.data.frame(storms), opacity = 1) expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) m <- expect_warning(leaflet() %>% addTiles() %>% addGlPolylines(data = storms, popup = as.data.frame(storms)[1:4,], opacity = 1)) expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) m <- leaflet() %>% addTiles() %>% addGlPolylines(data = storms, popup = as.matrix(as.data.frame(storms)), opacity = 1) expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) }) test_that("popup-lines-spatial", { popups <- suppressWarnings(sf::as_Spatial(storms)) m <- leaflet() %>% addTiles() %>% addGlPolylines(data = storms, popup = popups, opacity = 1) expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) library(sf) m <- leaflet() %>% addTiles() %>% addGlPolylines(data = storms, popup = storms, opacity = 1) expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) }) test_that("popup-lines-formula", { m <- leaflet() %>% addTiles() %>% addGlPolylines(data = storms, popup = ~sprintf("<b>State</b>: %s<br> <b>Address</b>: %s<br> <b>Brauerei</b>: %s,", MinPress, MaxWind, Name), opacity = 1) expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) }) test_that("popup-lines-logical", { m <- leaflet() %>% addTiles() %>% addGlPolylines(data = storms, popup = TRUE, opacity = 1) expect_is(m, "leaflet") expect_true(m$x$calls[[2]]$args[[3]]) m <- leaflet() %>% addTiles() %>% addGlPolylines(data = storms, popup = FALSE, opacity = 1) expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) expect_true(m$x$calls[[2]]$args[[3]] == "{}") m <- leaflet() %>% addTiles() %>% addGlPolylines(data = storms, popup = NULL, opacity = 1) expect_is(m, "leaflet") expect_true(is.null(m$x$calls[[2]]$args[[3]])) }) gadm = suppressWarnings(st_cast(st_as_sf(gadmCHE), "POLYGON")) test_that("popup-polygon-character", { m <- leaflet() %>% addTiles() %>% addGlPolygons(data = gadm, popup = "HASC_1", opacity = 1) expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) expect_identical(from_json(m$x$calls[[2]]$args[[3]]), gadm$HASC_1) rm(m) m <- leaflet() %>% addTiles() %>% addGlPolygons(data = gadm, popup = gadm$HASC_1, opacity = 1) expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) expect_identical(from_json(m$x$calls[[2]]$args[[3]]), gadm$HASC_1) rm(m) m <- leaflet() %>% addTiles() %>% addGlPolygons(data = gadm, popup = c("HASC_1", "NAME_0"), opacity = 1) expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) rm(m) m <- expect_warning(leaflet() %>% addTiles() %>% addGlPolygons(data = gadm, popup = "Text 1", opacity = 1)) expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) expect_identical(from_json(m$x$calls[[2]]$args[[3]]), rep("Text 1", nrow(gadm))) rm(m) m <- expect_warning(leaflet() %>% addTiles() %>% addGlPolygons(data = gadm, popup = c("Text 1", "Text 2"), opacity = 1)) expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) expect_identical(from_json(m$x$calls[[2]]$args[[3]]), rep(c("Text 1","Text 2"), nrow(gadm))[1:nrow(gadm)]) rm(m) m <- leaflet() %>% addTiles() %>% addGlPolygons(data = gadm, popup = rep("Text 1", nrow(gadm)), opacity = 1) expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) expect_identical(from_json(m$x$calls[[2]]$args[[3]]), rep("Text 1", nrow(gadm))) }) test_that("popup-polygon-table", { m <- leaflet() %>% addTiles() %>% addGlPolygons(data = gadm, popup = as.data.frame(gadm), opacity = 1) expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) m <- expect_warning(leaflet() %>% addTiles() %>% addGlPolygons(data = gadm, popup = as.data.frame(gadm)[1:4,], opacity = 1)) expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) m <- leaflet() %>% addTiles() %>% addGlPolygons(data = gadm, popup = as.matrix(as.data.frame(gadm)), opacity = 1) expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) }) test_that("popup-polygon-spatial", { popups <- suppressWarnings(sf::as_Spatial(gadm)) m <- leaflet() %>% addTiles() %>% addGlPolygons(data = gadm, popup = popups, opacity = 1) expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) library(sf) m <- leaflet() %>% addTiles() %>% addGlPolygons(data = gadm, popup = gadm, opacity = 1) expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) }) test_that("popup-polygon-formula", { m <- leaflet() %>% addTiles() %>% addGlPolygons(data = gadm, popup = ~sprintf("<b>State</b>: %s<br> <b>Address</b>: %s<br> <b>Brauerei</b>: %s,", NAME_0, NAME_1, HASC_1), opacity = 1) expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) }) test_that("popup-polygon-logical", { m <- leaflet() %>% addTiles() %>% addGlPolygons(data = gadm, popup = TRUE, opacity = 1) expect_is(m, "leaflet") expect_true(m$x$calls[[2]]$args[[3]]) m <- leaflet() %>% addTiles() %>% addGlPolygons(data = gadm, popup = FALSE, opacity = 1) expect_is(m, "leaflet") expect_true(jsonify::validate_json(m$x$calls[[2]]$args[[3]])) expect_true(m$x$calls[[2]]$args[[3]] == "{}") m <- leaflet() %>% addTiles() %>% addGlPolygons(data = gadm, popup = NULL, opacity = 1) expect_is(m, "leaflet") expect_true(is.null(m$x$calls[[2]]$args[[3]])) })
register_class("data.frame") ts_data.frame_dts <- function(x) { as.data.frame(ts_data.table(x)) } ts_dts.data.frame <- function(x) { ts_dts(as.data.table(x)) } ts_data.frame <- function(x) { stopifnot(ts_boxable(x)) if (relevant_class(x) == "data.frame") { return(x) } ts_data.frame_dts(ts_dts(x)) } ts_df <- function(x) { ts_data.frame(x) }
fptpdf <- function(z,x0max,chi,v,sdv) { if (x0max==0) return( (chi/z^2)*dnorm(chi/z,mean=v,sd=sdv)) zs=z*sdv ; zu=z*v ; chiminuszu=chi-zu chizu=chiminuszu/zs ; chizumax=(chiminuszu-x0max)/zs (v*(pnorm(chizu)-pnorm(chizumax)) + sdv*(dnorm(chizumax)-dnorm(chizu)))/x0max } fptcdf <- function(z,x0max,chi,v,sdv) { if (x0max==0) return(pnorm(chi/z,mean=v,sd=sdv,lower.tail=F)) zs=z*sdv ; zu=z*v ; chiminuszu=chi-zu ; xx=chiminuszu-x0max chizu=chiminuszu/zs ; chizumax=xx/zs tmp1=zs*(dnorm(chizumax)-dnorm(chizu)) tmp2=xx*pnorm(chizumax)-chiminuszu*pnorm(chizu) 1+(tmp1+tmp2)/x0max } mean_v <- 2.4 A <- 1.2 b <- 2.7 t0 <- .2 sd_v <- 1 st0 <- 0 posdrift <- TRUE pnorm(mean_v/sd_v) res0 <- ggdmc252:::fptpdf(.3, A, b, mean_v, sd_v, t0, posdrift) res1 <- ggdmc:::fptpdf(.3, A, b, mean_v, sd_v, t0, posdrift) res2 <- rtdists:::dlba_norm_core(.3, A, b, t0, mean_v, sd_v) res3 <- fun(.3, A, b, t0, mean_v, sd_v) res0 res1 res2 res3 res0[,1]==res1[,1] A <- .02 b <- .01 mean_v <- c(2.4, 2.2, 1.5) sd_v <- c(1, 1, 1.5) t0 <- .01 res0 <- ggdmc252:::fptpdf(0, A, b, mean_v[1], sd_v[1], t0, posdrift) res1 <- ggdmc:::fptpdf(0, A, b, mean_v[1], sd_v[1], t0, posdrift) res2 <- fptpdf(0-t0, x0max=A, chi=b, v=mean_v[1], sdv=sd_v[1]) res3 <- rtdists:::dlba_norm_core(0, A, b, t0, mean_v[1], sd_v[1]) res0[,1] res1[,1] res2 res3 res0 <- ggdmc252:::fptcdf(0, A, b, mean_v[1], sd_v[1], t0, posdrift) res1 <- ggdmc:::fptcdf(0, A, b, mean_v[1], sd_v[1], t0, posdrift) res2 <- fptcdf(0-t0, x0max=A, chi=b, v=mean_v[1], sdv=sd_v[1]) res3 <- rtdists:::plba_norm_core(0, A, b, t0, mean_v[1], sd_v[1]) res0[,1] res1[,1] res2 res3 rt <- seq(0, 10, .01) res0 <- ggdmc252:::fptpdf(rt, A, b, mean_v[1], sd_v[1], t0, posdrift) res1 <- ggdmc:::fptpdf(rt, A, b, mean_v[1], sd_v[1], t0, posdrift) res2 <- fptpdf(rt-t0, x0max=A, chi=b, v=mean_v[1], sdv=sd_v[1]) all(res0[,1]==res1[,1]) all(res1[,1]==res2) all.equal(res0[,1], res1[,1]) all.equal(res1[,1], res2) head(cbind(res0, res1, res2, rt)) tail(cbind(res0, res1, res2, rt)) rt <- seq(.1, 5, .01) mean_v <- seq(0, 5, .1) A <- seq(0, 5, .1) b <- 2.7 t0 <- .1 sd_v <- 1 for(i in 1:length(mean_v)) { for(j in 1:length(A)) { res0 <- ggdmc252:::fptpdf(rt, A[j], b, mean_v[i], sd_v, t0, posdrift) res1 <- ggdmc:::fptpdf(rt, A[j], b, mean_v[i], sd_v, t0, posdrift) test <- all(res0[,1]==res1[,1]) if(!test) cat("[", mean_v[i], " ", A[j], " ", b, " ", t0, " ", sd_v, "]", " results in a different likelihood\n") } } mean_v <- 2.4 A <- 1.2 b <- 2.7 t0 <- .2 sd_v <- 1 st0 <- 0 posdrift <- FALSE res0 <- ggdmc252:::fptcdf(.6, A, b, mean_v, sd_v, t0, posdrift) res1 <- ggdmc:::fptcdf(.6, A, b, mean_v, sd_v, t0, posdrift) res2 <- fptcdf(z=.6-t0, x0max=A, chi=b, v=mean_v, sdv=sd_v) res0[,1]==res1[,1] all.equal(res1[,1], res2) cbind(res1[,1], res2) rt <- seq(0, 10, .01) res0 <- ggdmc252:::fptcdf(rt, A, b, mean_v, sd_v, t0, posdrift) res1 <- ggdmc:::fptcdf(rt, A, b, mean_v, sd_v, t0, posdrift) res2 <- fptcdf(rt-t0, x0max=A, chi=b, v=mean_v, sdv=sd_v) all(res0[,1]==res1[,1]) all(res1[,1]==res2) all.equal(res1[,1], res2) head(cbind(res0, res1, res2, rt), 22) tail(cbind(res0, res1, res2, rt)) head(cbind(res0, res1, res2, rt)) tail(cbind(res0, res1, res2, rt)) all.equal(res0[,1], res1[,1]) all.equal(res0[,1], res2) rt <- seq(.2, .6, .01) mean_v <- seq(1.2, 5, .01) for(j in 1:length(mean_v)) { res0 <- ggdmc252:::fptcdf(rt, A, b, mean_v[j], sd_v, t0, posdrift) res1 <- ggdmc:::fptcdf(rt, A, b, mean_v[j], sd_v, t0, posdrift) if( !all.equal(res0[,1], res1[,1]) ) { cat("Not the same \n") } }
context("PCC.elimination") test_that("yields correct output on simple object", { x = list( edgelist = structure(c("VL1", "VL1", "VL2", "VL4"), .Dim = c(2L, 2L)), conflictsTotal = structure(c(2, 1, 0, 1, 2, 1, 0, 1), .Dim = c(4L, 2L), .Dimnames = list(c("VL1", "VL2","VL3", "VL4"), c("Number of conflicts", "Centrality index"))), database = matrix( data = c( 1,1,1,1, 1,2,0,2, 2,1,1,1, 2,2,0,2, 2,3,0,NA ), ncol = 5, nrow = 4, dimnames = list( c("VL1","VL2","VL3","VL4"), c("A","B","C","D","E") ) ), vertexAttributes = structure( c("overconflicting", "sober", "sober", "red", "green", "green"), .Dim = c(3L, 2L), .Dimnames = list(c("VL1", "VL2","VL4"), c("label", "color"))) ) class(x) = "pccOverconflicting" results = matrix( data = c( 1,1,1, 2,0,2, 1,1,1, 2,0,2, 3,0,NA ), ncol = 5, nrow = 3, dimnames = list( c("VL2","VL3","VL4"), c("A","B","C","D","E") )) expect_equal(PCC.elimination(x), results) })
"ciliarybeat"
is_converged <- function(fitted_model, threshold = 1.05, parameters = c("sigma", "x", "Z")) { Rhats <- fitted_model$monitor[which(grepl( paste(parameters, collapse = "|"), rownames(fitted_model$monitor) ) == TRUE), "Rhat"] max(Rhats, na.rm = TRUE) < threshold }
library(sp) library(gstat) data(meuse) coordinates(meuse) = ~x+y data(meuse.grid) gridded(meuse.grid) = ~x+y mg = meuse.grid gridded(mg) = FALSE mg= mg[1500,] krige(log(zinc)~1,meuse,mg,vgm(1, "Exp", 300, anis=c(0,0.01)), vdist=FALSE, maxdist=1000,nmax=10) krige(log(zinc)~1,meuse,mg,vgm(1, "Exp", 300, anis=c(0,0.01)), vdist=TRUE, maxdist=1000,nmax=10)
GuFit <- function (ts, uncert=FALSE, nrep=100, ncores='all', sf=quantile(ts, probs=c(0.05, 0.95), na.rm=TRUE)) { if (class(index(ts))[1]=='POSIXct') { doy.vector <- as.numeric(format(index(ts), '%j')) index(ts) <- doy.vector } fit <- FitDoubleLogGu(ts, sf=sf) residuals <- ts - as.vector(fit$predicted) sd.res <- sd(residuals, na.rm=TRUE) res2 <- abs(residuals) res3 <- res2/max(res2) sign.res <- sign(residuals) if (uncert) { if (ncores=='all') cores <- detectCores() else cores <- ncores cl <- makeCluster(cores) registerDoParallel(cl) coefs <- c(5.246, 0.00441, -0.731) .pred.fun <- function(coefs, cores, nrep) { expected.time <- coefs[1] + coefs[2]*nrep + coefs[3]*log(cores) names(expected.time) <- NULL return(round(exp(expected.time)/60)) } min.exp.time <- .pred.fun(coefs, cores, nrep) print(paste0('estimated computation time (',cores,' cores): ', min.exp.time, ' mins')) output <- foreach(a=1:nrep, .packages=c('phenopix'), .combine=c) %dopar% { noise <- runif(length(ts), -sd.res, sd.res) sign.noise <- sign(noise) pos.no <- which(sign.res!=sign.noise) if (length(pos.no)!=0) noise[pos.no] <- -noise[pos.no] noised <- ts + noise fit.tmp <- try(FitDoubleLogGu(noised, sf=sf)) if (class(fit.tmp)=='try-error') out.single <- list(predicted=rep(NA, length(ts)), params=rep(NA,9)) else { out.single <- list(predicted=fit.tmp$predicted, params=fit.tmp$params) } } stopCluster(cl) pred.pos <- which(names(output)=='predicted') par.pos <- which(names(output)=='params') predicted.df <- as.data.frame(output[pred.pos]) names(predicted.df) <- paste0('X',1:length(predicted.df)) predicted.df <- zoo(predicted.df, order.by=index(ts)) params.df <- as.data.frame(output[par.pos]) names(params.df) <- names(predicted.df) uncertainty.list <- list(predicted=predicted.df, params=params.df) returned <- list(fit=fit, uncertainty=uncertainty.list) return(returned) } else { returned <- list(fit=fit, uncertainty=NULL) (return(returned)) } }
ggvis <- function(data = NULL, ..., env = parent.frame()) { vis <- structure( list( marks = list(), data = list(), props = list(), reactives = list(), scales = list(), axes = list(), legends = list(), controls = list(), connectors = list(), handlers = list(), options = list(), cur_data = NULL, cur_props = NULL, cur_vis = NULL ), class = "ggvis" ) vis <- add_data(vis, data, deparse2(substitute(data))) vis <- add_props(vis, ..., env = env) vis } add_props <- function(vis, ..., .props = NULL, inherit = NULL, env = parent.frame()) { if (!is.null(.props)) inherit <- attr(.props, "inherit", TRUE) inherit <- inherit %||% TRUE new_props <- props(..., .props = .props, inherit = inherit, env = env) both_props <- merge_props(cur_props(vis), new_props) vis$props[[length(vis$props) + 1]] <- both_props vis$cur_props <- both_props vis <- register_reactives(vis, extract_reactives(both_props)) vis } add_data <- function(vis, data, name = deparse2(substitute(data)), add_suffix = TRUE) { if (is.null(data)) return(vis) if (!shiny::is.reactive(data)) { static_data <- data data <- function() static_data } if (add_suffix) name <- paste0(name, length(vis$data)) data_id(data) <- name vis$data[[name]] <- data vis$cur_data <- data vis } is.ggvis <- function(x) inherits(x, "ggvis") add_mark <- function(vis, type = NULL, props = NULL, data = NULL, data_name = "unnamed_data") { old_data <- vis$cur_data old_props <- vis$cur_props if (!is.null(vis$cur_vis)) { suffix <- paste0(vis$cur_vis, collapse = "-") props <- lapply(props, function(x) { if (identical(x$scale, FALSE)) return(x) x$scale <- paste0(x$scale, suffix) x }) } vis <- add_data(vis, data, data_name) vis <- add_props(vis, .props = props) vis <- register_scales_from_props(vis, cur_props(vis)) new_mark <- mark(type, props = cur_props(vis), data = vis$cur_data) vis <- append_ggvis(vis, "marks", new_mark) vis$cur_data <- old_data vis$cur_props <- old_props vis } add_scale <- function(vis, scale, data_domain = TRUE) { if (data_domain && shiny::is.reactive(scale$domain)) { vis <- register_reactive(vis, scale$domain) } vis <- append_ggvis(vis, "scales", scale) vis } add_options <- function(vis, options, replace = TRUE) { if (replace) { vis$options <- merge_vectors(vis$options, options) } else { vis$options <- merge_vectors(options, vis$options) } vis } register_computation <- function(vis, args, name, transform = NULL) { vis <- register_reactives(vis, args) if (is.null(transform)) return(vis) parent_data <- vis$cur_data id <- paste0(data_id(parent_data), "/", name, length(vis$data)) if (shiny::is.reactive(parent_data) || any_apply(args, shiny::is.reactive)) { empty <- NULL new_data <- reactive({ if (is.null(empty)) { out <- transform(parent_data(), values(args)) empty <<- out[0, , drop = FALSE] out } else { tryCatch( transform(parent_data(), values(args)), error = function(e) { message("Error: ", e$message) data.frame } ) } }) } else { cache <- transform(parent_data(), args) new_data <- function() cache } data_id(new_data) <- id vis$data[[id]] <- new_data vis$cur_data <- new_data vis } register_reactives <- function(vis, reactives = NULL) { reactives <- reactives[vapply(reactives, shiny::is.reactive, logical(1))] for (reactive in reactives) { vis <- register_reactive(vis, reactive) } vis } register_reactive <- function(vis, reactive) { if (identical(attr(reactive, "register"), FALSE)) return(vis) if (is.null(reactive_id(reactive))) { reactive_id(reactive) <- rand_id("reactive_") } label <- reactive_id(reactive) if (label %in% names(vis$reactives)) return(vis) vis$reactives[[label]] <- reactive if (is.broker(reactive)) { broker <- attr(reactive, "broker", TRUE) vis <- register_controls(vis, broker$controls) vis <- register_connector(vis, broker$connect) vis <- register_handler(vis, broker$spec) } vis } register_scales_from_props <- function(vis, props) { names(props) <- trim_prop_event(names(props)) data <- vis$cur_data add_scale_from_prop <- function(vis, prop) { label <- prop_label(prop) if (label == "" || grepl("_$", label)) { label <- NULL } if (is.prop_band(prop)) { vis <- add_scale( vis, ggvis_scale(property = propname_to_scale(prop$property), name = prop$scale, points = FALSE, label = label) ) return(vis) } if (is.null(prop$value) || !prop_is_scaled(prop) || is.null(data)) { return(vis) } type <- vector_type(shiny::isolate(prop_value(prop, data()))) domain <- reactive({ data_range(prop_value(prop, data())) }) attr(domain, "register") <- FALSE scale_fun <- match.fun(paste0("scale_", type)) vis <- scale_fun(vis, property = prop$property, name = prop$scale, label = label, domain = domain, override = FALSE) vis } for (i in seq_along(props)) { vis <- add_scale_from_prop(vis, props[[i]]) } vis } register_controls <- function(vis, controls) { if (empty(controls)) return(vis) if (inherits(controls, "shiny.tag")) { controls <- list(controls) } vis$controls <- c(vis$controls, controls) vis } register_connector <- function(vis, connector) { vis$connectors <- c(vis$connectors, connector) vis } register_handler <- function(vis, handler) { if(empty(handler)) return(vis) vis$handlers <- c(vis$handlers, list(handler)) vis } show_spec <- function(vis, pieces = NULL) { out <- as.vega(vis, dynamic = FALSE) if (!is.null(pieces)) { out <- out[pieces] } json <- jsonlite::toJSON(out, pretty = TRUE, auto_unbox = TRUE, force = TRUE, null = "null") cat(gsub("\t", " ", json), "\n", sep = "") invisible(vis) } save_spec <- function(x, path, ...) { assert_that(is.ggvis(x), is.string(path)) json <- jsonlite::toJSON(as.vega(x, ...), pretty = TRUE, auto_unbox = TRUE, force = TRUE, null = "null") writeLines(json, path) } view_spec <- function(path, ...) { contents <- paste0(readLines(path), collapse = "\n") spec <- jsonlite::fromJSON(contents) view_static(spec) } append_ggvis <- function(vis, field, x) { i <- vis$cur_vis if (length(i) == 0) { vis[[field]] <- c(vis[[field]], list(x)) } else if (length(i) == 1) { vis$marks[[i]][[field]] <- c(vis$marks[[i]][[field]], list(x)) } else if (length(i) == 2) { vis$marks[[i[1]]]$marks[[i[2]]][[field]] <- c(vis$marks[[i[1]]]$marks[[i[2]]][[field]], list(x)) } else { stop(">3 levels deep? You must be crazy!", call. = FALSE) } vis }
library(copula) library(mev) d. <- c(2, 3) d <- sum(d.) stopifnot(d >= 3) n <- 1000 rV012 <- function(n, family, tau) { stopifnot(n >= 1, is.character(family), length(tau) == 3, tau > 0) cop <- getAcop(family) th <- iTau(cop, tau = tau) V0 <- cop@V0(n, theta = th[1]) V01 <- cop@V01(V0, theta0 = th[1], theta1 = th[2]) V02 <- cop@V01(V0, theta0 = th[1], theta1 = th[3]) cbind(V0 = V0, V01 = V01, V02 = V02) } mypairs <- function(x, pch = ".", file = NULL, width = 6, height = 6, ...) { opar <- par(pty = "s") on.exit(par(opar)) doPDF <- !is.null(file) if(doPDF) { pdf(file = file, width = width, height = height) stopifnot(require(crop)) } pairs2(x, pch = pch, ...) if(doPDF) dev.off.crop(file) } tau <- 0.4 family <- "Clayton" cop <- getAcop(family) th <- iTau(cop, tau = tau) set.seed(271) V <- cop@V0(n, theta = th) E <- matrix(rexp(n * d), ncol = d) U.AC <- cop@psi(E/V, theta = th) mypairs(U.AC) tau.EVC <- 0.5 family.EVC <- "Gumbel" th.EVC <- iTau(getAcop(family.EVC), tau = tau.EVC) cop.EVC <- onacopulaL(family.EVC, list(th.EVC, 1:d)) set.seed(271) U.EVC <- rCopula(n, copula = cop.EVC) E.EVC <- -log(U.EVC) U.AXC <- cop@psi(E.EVC/V, theta = th) mypairs(U.AXC) tau.N <- c(0.2, 0.4, 0.6) family.N <- "Clayton" cop.N <- getAcop(family.N) th.N <- iTau(cop.N, tau = tau.N) set.seed(271) V.N <- rV012(n, family = family.N, tau = tau.N) V0 <- V.N[,"V0"] V01 <- V.N[,"V01"] V02 <- V.N[,"V02"] U.NAC <- cbind(cop.N@psi(E[,1:d.[1]]/V01, theta = th.N[2]), cop.N@psi(E[,(d.[1]+1):d]/V02, theta = th.N[3])) mypairs(U.NAC) U.HAXC <- cbind(cop.N@psi(E.EVC[,1:d.[1]]/V01, theta = th.N[2]), cop.N@psi(E.EVC[,(d.[1]+1):d]/V02, theta = th.N[3])) mypairs(U.HAXC) tau.HEVC <- c(0.2, 0.5, 0.7) family.HEVC <- "Gumbel" cop.HEVC <- getAcop(family.HEVC) th.HEVC <- iTau(cop.HEVC, tau = tau.HEVC) cop.HEVC <- onacopulaL(family.HEVC, list(th.HEVC[1], NULL, list(list(th.HEVC[2], 1:d.[1]), list(th.HEVC[3], (d.[1]+1):d)))) set.seed(271) U.HEVC <- rCopula(n, copula = cop.HEVC) E.HEVC <- -log(U.HEVC) U.HAXC.HEVC.same <- cbind(cop.N@psi(E.HEVC[,1:d.[1]]/V01, theta = th.N[2]), cop.N@psi(E.HEVC[,(d.[1]+1):d]/V02, theta = th.N[3])) mypairs(U.HAXC.HEVC.same) d.. <- rev(d.) U.HAXC.HEVC.dffr <- cbind(cop.N@psi(E.HEVC[,1:d..[1]]/V01, theta = th.N[2]), cop.N@psi(E.HEVC[,(d..[1]+1):d]/V02, theta = th.N[3])) mypairs(U.HAXC.HEVC.dffr) P <- matrix(0.7, ncol = d, nrow = d) diag(P) <- 1 nu <- 3.5 set.seed(271) U.EVC <- exp(-1/rmev(n, d = d, param = nu, sigma = P, model = "xstud")) mypairs(U.EVC) P.h <- matrix(0.2, ncol = d, nrow = d) P.h[1:d.[1], 1:d.[1]] <- 0.5 P.h[(d-d.[2]+1):d, (d-d.[2]+1):d] <- 0.7 diag(P.h) <- 1 X.et <- rmev(n, d = d, param = nu, sigma = P.h, model = "xstud") U.HEVC <- exp(-1/X.et) mypairs(U.HEVC) E.HEVC <- -log(U.HEVC) U.AXC.HEVC <- cop@psi(E.HEVC/V, theta = th) mypairs(U.AXC.HEVC) E.EVC <- -log(U.EVC) U.HAXC.EVC <- cbind(cop.N@psi(E.EVC[,1:d.[1]]/V01, theta = th.N[2]), cop.N@psi(E.EVC[,(d.[1]+1):d]/V02, theta = th.N[3])) mypairs(U.HAXC.EVC) U.NAXC.HEVC.same <- cbind(cop.N@psi(E.HEVC[,1:d.[1]]/V01, theta = th.N[2]), cop.N@psi(E.HEVC[,(d.[1]+1):d]/V02, theta = th.N[3])) mypairs(U.HAXC.HEVC.same) U.NAXC.HEVC.dffr <- cbind(cop.N@psi(E.HEVC[,1:d..[1]]/V01, theta = th.N[2]), cop.N@psi(E.HEVC[,(d..[1]+1):d]/V02, theta = th.N[3])) mypairs(U.HAXC.HEVC.dffr)
knitr::opts_chunk$set(echo = TRUE) library(Ryacas) library(Matrix) N <- 3 L1chr <- diag("1", 1 + N) L1chr[cbind(1+(1:N), 1:N)] <- "-a" L1s <- ysym(L1chr) L1s K1s <- L1s %*% t(L1s) V1s <- solve(K1s) cat( "\\begin{align} K_1 &= ", tex(K1s), " \\\\ V_1 &= ", tex(V1s), " \\end{align}", sep = "") N <- 3 L2chr <- diag("1", 1 + 2*N) L2chr[cbind(1+(1:N), 1:N)] <- "-a" L2chr[cbind(1 + N + (1:N), 1 + 1:N)] <- "-b" L2s <- ysym(L2chr) L2s K2s <- L2s %*% t(L2s) V2s <- solve(K2s) try(V2s <- simplify(V2s), silent = TRUE) cat( "\\begin{align} K_2 &= ", tex(K2s), " \\\\ V_2 &= ", tex(V2s), " \\end{align}", sep = "") sparsify <- function(x) { if (requireNamespace("Matrix", quietly = TRUE)) { library(Matrix) return(Matrix::Matrix(x, sparse = TRUE)) } return(x) } alpha <- 0.5 beta <- -0.3 N <- 3 L1 <- diag(1, 1 + N) L1[cbind(1+(1:N), 1:N)] <- -alpha K1 <- L1 %*% t(L1) V1 <- solve(K1) sparsify(K1) sparsify(V1) N <- 3 L2 <- diag(1, 1 + 2*N) L2[cbind(1+(1:N), 1:N)] <- -alpha L2[cbind(1 + N + (1:N), 1 + 1:N)] <- -beta K2 <- L2 %*% t(L2) V2 <- solve(K2) sparsify(K2) sparsify(V2) V1s_eval <- eval(yac_expr(V1s), list(a = alpha)) V2s_eval <- eval(yac_expr(V2s), list(a = alpha, b = beta)) all.equal(V1, V1s_eval) all.equal(V2, V2s_eval)
test_that("unquote", { f <- lintr:::unquote expect_equal(f(character()), character()) expect_equal(f("foo"), "foo") expect_equal( f(c("'f", "\"f'", "\"f\""), q = "\""), c("'f", "\"f'", "f")) expect_equal( f(c("\"f\"", "'f'", "`f`", "`'f'`"), q = "'"), c("\"f\"", "f", "`f`", "`'f'`")) expect_equal(f("`a\\`b`", q = c("`")), "a`b") x <- c("\"x\"", "\"\\n\"", "\"\\\\\"", "\"\\\\y\"", "\"\\ny\"", "\"\\\\ny\"", "\"\\\\\\ny\"", "\"\\\\\\\\ny\"", "\"'\"", "\"\\\"\"", "\"`\"") y <- c("x", "\n", "\\", "\\y", "\ny", "\\ny", "\\\ny", "\\\\ny", "'", "\"", "`") expect_equal(f(x, q = "\""), y) }) test_that("unescape", { f <- lintr:::unescape expect_equal(f(character()), character()) expect_equal(f("n"), "n") x <- c("x", "x\\n", "x\\\\", "x\\\\y", "x\\ny", "x\\\\ny", "x\\\\\\ny", "x\\\\\\\\ny") y <- c("x", "x\n", "x\\", "x\\y", "x\ny", "x\\ny", "x\\\ny", "x\\\\ny") expect_equal(f(x), y) }) test_that("is_root_path", { f <- lintr:::is_root_path x <- character() y <- logical() expect_equal(f(x), y) x <- c("", "foo", "http://rseek.org/", "./", " /", "/foo", "'/'") y <- c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE) expect_equal(f(x), y) x <- c("/", "//") y <- c(TRUE, FALSE) expect_equal(f(x), y) x <- c("~", "~/", "~//", "~bob2", "~foo_bar/") y <- c(TRUE, TRUE, TRUE, TRUE, TRUE) expect_equal(f(x), y) x <- c("c:", "C:\\", "D:/", "C:\\\\", "D://") y <- c(TRUE, TRUE, TRUE, FALSE, FALSE) expect_equal(f(x), y) x <- c("\\\\", "\\\\localhost", "\\\\localhost\\") y <- c(TRUE, TRUE, TRUE) expect_equal(f(x), y) }) test_that("is_absolute_path", { f <- lintr:::is_absolute_path x <- character() y <- logical() expect_equal(f(x), y) x <- c("/", "//", "/foo", "/foo/") y <- c(TRUE, FALSE, TRUE, TRUE) expect_equal(f(x), y) x <- c("~", "~/foo", "~/foo/", "~'") y <- c(TRUE, TRUE, TRUE, FALSE) expect_equal(f(x), y) x <- c("c:", "C:\\foo\\", "C:/foo/") y <- c(TRUE, TRUE, TRUE) expect_equal(f(x), y) x <- c("\\\\", "\\\\localhost", "\\\\localhost\\c$", "\\\\localhost\\c$\\foo") y <- c(TRUE, TRUE, TRUE, TRUE) expect_equal(f(x), y) }) test_that("is_relative_path", { f <- lintr:::is_relative_path x <- character() y <- logical() expect_equal(f(x), y) x <- c("/", "c:\\", "~/", "foo", "http://rseek.org/", "'./'") y <- c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE) expect_equal(f(x), y) x <- c("/foo", "foo/", "foo/bar", "foo//bar", "./foo", "../foo") y <- c(FALSE, TRUE, TRUE, TRUE, TRUE, TRUE) expect_equal(f(x), y) x <- c("\\\\", "\\foo", "foo\\", "foo\\bar", ".\\foo", "..\\foo", ".", "..", "../") y <- c(FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE) expect_equal(f(x), y) }) test_that("is_path", { f <- lintr:::is_path x <- character() y <- logical() expect_equal(f(x), y) x <- c("", "foo", "http://rseek.org/", "foo\nbar", "'foo/bar'", "'/'") y <- c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE) expect_equal(f(x), y) x <- c("c:", "..", "foo/bar", "foo\\bar", "~", "\\\\localhost") y <- c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE) expect_equal(f(x), y) }) test_that("is_valid_path", { f <- lintr:::is_valid_path x <- character() y <- logical() expect_equal(f(x), y) x <- c("C:/asdf", "C:/asd*f", "a\\s:df", "a\\\nsdf") y <- c(TRUE, FALSE, FALSE, FALSE) expect_equal(f(x), y) x <- c("C:/asdf", "C:/asd*f", "a\\s:df", "a\\\nsdf") y <- c(TRUE, FALSE, FALSE, FALSE) expect_equal(f(x, lax = TRUE), y) x <- c("/asdf", "/asd*f", "/as:df", "/a\nsdf") y <- c(TRUE, TRUE, TRUE, TRUE) expect_equal(f(x), y) x <- c("/asdf", "/asd*f", "/as:df", "/a\nsdf") y <- c(TRUE, FALSE, FALSE, FALSE) expect_equal(f(x, lax = TRUE), y) }) test_that("is_long_path", { f <- lintr:::is_long_path x <- character() y <- logical() expect_equal(f(x), y) x <- c("foo/", "/foo", "n/a", "Z:\\foo", "foo/bar", "~/foo", "../foo") y <- c(FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE) expect_equal(f(x), y) }) test_that("returns the correct linting", { msg <- rex::escape("Do not use absolute paths.") linter <- absolute_path_linter(lax = FALSE) non_absolute_path_strings <- c( "..", "./blah", encodeString("blah\\file.txt") ) for (path in non_absolute_path_strings) { expect_lint(single_quote(path), NULL, linter) expect_lint(double_quote(path), NULL, linter) } expect_lint("\"'/'\"", NULL, linter) absolute_path_strings <- c( "/", "/blah/file.txt", encodeString("d:\\"), "E:/blah/file.txt", encodeString("\\\\"), encodeString("\\\\server\\path"), "~", "~james.hester/blah/file.txt", encodeString("/a\nsdf"), "/as:df" ) for (path in absolute_path_strings) { expect_lint(single_quote(path), msg, linter) expect_lint(double_quote(path), msg, linter) } linter <- absolute_path_linter(lax = TRUE) unlikely_path_strings <- c( "/", encodeString("/a\nsdf/bar"), "/as:df/bar" ) for (path in unlikely_path_strings) { expect_lint(single_quote(path), NULL, linter) expect_lint(double_quote(path), NULL, linter) } })
context("fundamental cycles") testthat::skip_on_cran () test_that("dodgr_fundamental_cycles", { net <- weight_streetnet (hampi) graph <- dodgr_contract_graph (net) expect_error (x <- dodgr_fundamental_cycles (), "graph must be provided") expect_error (x <- dodgr_fundamental_cycles (graph = "a"), "graph must be a data.frame object") expect_silent (x <- dodgr_fundamental_cycles (graph)) expect_is (x, "list") expect_true (length (x) > 1) }) test_that("cycles_with_max_graph_size", { net <- weight_streetnet (hampi) expect_message ( x <- dodgr_fundamental_cycles (graph = net, graph_max_size = 1000), "Now computing fundamental cycles") expect_is (x, "list") expect_length (x, 62) expect_silent ( xf <- dodgr_full_cycles (graph = net, graph_max_size = 1000)) expect_true (length (x) > 1) }) test_that("sflines_to_poly", { expect_error (p <- dodgr_sflines_to_poly (list (hampi)), "lines must be an object of class 'sf' or 'sfc'") h <- hampi class (h$geometry) <- "list" expect_error (p <- dodgr_sflines_to_poly (h), "lines must be an 'sfc_LINESTRING' object") expect_silent (p <- dodgr_sflines_to_poly (hampi)) expect_is (hampi$geometry, "sfc_LINESTRING") expect_is (p, "sfc_POLYGON") expect_equal (length (p), 62) net <- weight_streetnet (hampi, wt_profile = 1) net1 <- net [net$component == 1, ] net1$edge_id <- seq (nrow (net1)) p1 <- dodgr_full_cycles (net1) net2 <- net [net$component == 2, ] net2$edge_id <- seq (nrow (net2)) p2 <- dodgr_full_cycles (net2) expect_equal (length (p1) + length (p2), length (p)) })
get_statistic <- function(x, ...) { UseMethod("get_statistic") } get_statistic.default <- function(x, column_index = 3, verbose = TRUE, ...) { cs <- stats::coef(summary(x)) if (column_index > ncol(cs)) { if (isTRUE(verbose)) { warning("Could not access test statistic of model parameters.", call. = FALSE) } return(NULL) } params <- rownames(cs) if (is.null(params)) { params <- paste(1:nrow(cs)) } out <- data.frame( Parameter = params, Statistic = as.vector(cs[, column_index]), stringsAsFactors = FALSE, row.names = NULL ) out <- .remove_backticks_from_parameter_names(out) attr(out, "statistic") <- find_statistic(x) out } get_statistic.summary.lm <- function(x, ...) { cs <- stats::coef(x) out <- data.frame( Parameter = rownames(cs), Statistic = as.vector(cs[, 3]), stringsAsFactors = FALSE, row.names = NULL ) out <- .remove_backticks_from_parameter_names(out) attr(out, "statistic") <- find_statistic(x) out } get_statistic.mlm <- function(x, ...) { cs <- stats::coef(summary(x)) out <- lapply(names(cs), function(i) { params <- cs[[i]] data.frame( Parameter = rownames(params), Statistic = as.vector(params[, 3]), Response = gsub("^Response (.*)", "\\1", i), stringsAsFactors = FALSE, row.names = NULL ) }) out <- .remove_backticks_from_parameter_names(do.call(rbind, out)) attr(out, "statistic") <- find_statistic(x) out } get_statistic.lme <- function(x, ...) { get_statistic.default(x, column_index = 4) } get_statistic.lmerModLmerTest <- get_statistic.lme get_statistic.merModList <- function(x, ...) { s <- suppressWarnings(summary(x)) out <- data.frame( Parameter = s$fe$term, Statistic = s$fe$statistic, stringsAsFactors = FALSE ) out <- .remove_backticks_from_parameter_names(out) attr(out, "statistic") <- find_statistic(x) out } get_statistic.afex_aov <- function(x, ...) { out <- data.frame( Parameter = rownames(x$anova_table), Statistic = x$anova_table$"F", stringsAsFactors = FALSE, row.names = NULL ) out <- .remove_backticks_from_parameter_names(out) attr(out, "statistic") <- find_statistic(x) out } get_statistic.plm <- get_statistic.default get_statistic.maxLik <- get_statistic.default get_statistic.glmmadmb <- get_statistic.default get_statistic.lm_robust <- get_statistic.default get_statistic.geeglm <- get_statistic.default get_statistic.truncreg <- get_statistic.default get_statistic.tobit <- get_statistic.default get_statistic.censReg <- get_statistic.default get_statistic.negbin <- get_statistic.default get_statistic.feis <- get_statistic.default get_statistic.mhurdle <- function(x, component = c("all", "conditional", "zi", "zero_inflated", "infrequent_purchase", "ip", "auxiliary"), ...) { component <- match.arg(component) s <- summary(x) params <- get_parameters(x, component = "all") stats <- data.frame( Parameter = rownames(s$coefficients), Statistic = as.vector(s$coefficients[, 3]), Component = NA, stringsAsFactors = FALSE ) cond_pars <- which(grepl("^h2\\.", rownames(s$coefficients))) zi_pars <- which(grepl("^h1\\.", rownames(s$coefficients))) ip_pars <- which(grepl("^h3\\.", rownames(s$coefficients))) aux_pars <- (1:length(rownames(s$coefficients)))[-c(cond_pars, zi_pars, ip_pars)] stats$Component[cond_pars] <- "conditional" stats$Component[zi_pars] <- "zero_inflated" stats$Component[ip_pars] <- "infrequent_purchase" stats$Component[aux_pars] <- "auxiliary" params <- merge(params, stats, sort = FALSE) params <- .filter_component(params, component)[intersect(c("Parameter", "Statistic", "Component"), colnames(params))] params <- .remove_backticks_from_parameter_names(params) attr(params, "statistic") <- find_statistic(x) params } get_statistic.glmmTMB <- function(x, component = c("all", "conditional", "zi", "zero_inflated", "dispersion"), ...) { component <- match.arg(component) cs <- .compact_list(stats::coef(summary(x))) out <- lapply(names(cs), function(i) { data.frame( Parameter = find_parameters(x, effects = "fixed", component = i, flatten = TRUE), Statistic = as.vector(cs[[i]][, 3]), Component = i, stringsAsFactors = FALSE, row.names = NULL ) }) stat <- do.call(rbind, out) stat$Component <- .rename_values(stat$Component, "cond", "conditional") stat$Component <- .rename_values(stat$Component, "zi", "zero_inflated") stat$Component <- .rename_values(stat$Component, "disp", "dispersion") stat <- .filter_component(stat, component) stat <- .remove_backticks_from_parameter_names(stat) attr(stat, "statistic") <- find_statistic(x) stat } get_statistic.zeroinfl <- function(x, component = c("all", "conditional", "zi", "zero_inflated"), ...) { component <- match.arg(component) cs <- .compact_list(stats::coef(summary(x))) out <- lapply(names(cs), function(i) { comp <- ifelse(i == "count", "conditional", "zi") stats <- cs[[i]] theta <- grepl("Log(theta)", rownames(stats), fixed = TRUE) if (any(theta)) { stats <- stats[!theta, ] } data.frame( Parameter = find_parameters(x, effects = "fixed", component = comp, flatten = TRUE ), Statistic = as.vector(stats[, 3]), Component = comp, stringsAsFactors = FALSE, row.names = NULL ) }) stat <- do.call(rbind, out) stat$Component <- .rename_values(stat$Component, "cond", "conditional") stat$Component <- .rename_values(stat$Component, "zi", "zero_inflated") stat <- .filter_component(stat, component) stat <- .remove_backticks_from_parameter_names(stat) attr(stat, "statistic") <- find_statistic(x) stat } get_statistic.hurdle <- get_statistic.zeroinfl get_statistic.zerocount <- get_statistic.zeroinfl get_statistic.MixMod <- function(x, component = c("all", "conditional", "zi", "zero_inflated"), ...) { component <- match.arg(component) s <- summary(x) cs <- list(s$coef_table, s$coef_table_zi) names(cs) <- c("conditional", "zero_inflated") cs <- .compact_list(cs) out <- lapply(names(cs), function(i) { data.frame( Parameter = find_parameters(x, effects = "fixed", component = i, flatten = TRUE ), Statistic = as.vector(cs[[i]][, 3]), Component = i, stringsAsFactors = FALSE, row.names = NULL ) }) stat <- .filter_component(do.call(rbind, out), component) stat <- .remove_backticks_from_parameter_names(stat) attr(stat, "statistic") <- find_statistic(x) stat } get_statistic.Gam <- function(x, ...) { p.aov <- stats::na.omit(summary(x)$parametric.anova) out <- data.frame( Parameter = rownames(p.aov), Statistic = as.vector(p.aov[, 4]), stringsAsFactors = FALSE, row.names = NULL ) out <- .remove_backticks_from_parameter_names(out) attr(out, "statistic") <- find_statistic(x) out } get_statistic.gam <- function(x, ...) { cs <- summary(x)$p.table cs.smooth <- summary(x)$s.table out <- data.frame( Parameter = c(rownames(cs), rownames(cs.smooth)), Statistic = c(as.vector(cs[, 3]), as.vector(cs.smooth[, 3])), Component = c(rep("conditional", nrow(cs)), rep("smooth_terms", nrow(cs.smooth))), stringsAsFactors = FALSE, row.names = NULL ) out <- .remove_backticks_from_parameter_names(out) attr(out, "statistic") <- find_statistic(x) out } get_statistic.scam <- get_statistic.gam get_statistic.SemiParBIV <- function(x, ...) { s <- summary(x) s <- .compact_list(s[grepl("^tableP", names(s))]) params <- do.call(rbind, lapply(1:length(s), function(i) { out <- as.data.frame(s[[i]]) out$Parameter <- rownames(out) out$Component <- paste0("Equation", i) out })) colnames(params)[3] <- "Statistic" rownames(params) <- NULL out <- .remove_backticks_from_parameter_names(params[c("Parameter", "Statistic", "Component")]) attr(out, "statistic") <- find_statistic(x) out } get_statistic.gamm <- function(x, ...) { x <- x$gam class(x) <- c("gam", "lm", "glm") get_statistic.gam(x, ...) } get_statistic.list <- function(x, ...) { if ("gam" %in% names(x)) { x <- x$gam class(x) <- c("gam", "lm", "glm") get_statistic.gam(x, ...) } } get_statistic.gamlss <- function(x, ...) { parms <- get_parameters(x) utils::capture.output(cs <- summary(x)) out <- data.frame( Parameter = parms$Parameter, Statistic = as.vector(cs[, 3]), Component = parms$Component, stringsAsFactors = FALSE, row.names = NULL ) attr(out, "statistic") <- find_statistic(x) out } get_statistic.vglm <- function(x, ...) { if (!requireNamespace("VGAM", quietly = TRUE)) { stop("Package 'VGAM' needed for this function to work. Please install it.") } cs <- VGAM::coef(VGAM::summary(x)) out <- data.frame( Parameter = rownames(cs), Statistic = as.vector(cs[, 3]), stringsAsFactors = FALSE, row.names = NULL ) out <- .remove_backticks_from_parameter_names(out) attr(out, "statistic") <- find_statistic(x) out } get_statistic.vgam <- function(x, ...) { params <- get_parameters(x) out <- data.frame( Parameter = names([email protected]), Statistic = [email protected], stringsAsFactors = FALSE, row.names = NULL ) out <- merge(params, out, all.x = TRUE) out <- out[order(out$Parameter, params$Parameter), ] out <- .remove_backticks_from_parameter_names(out[c("Parameter", "Statistic", "Component")]) attr(out, "statistic") <- find_statistic(x) out } get_statistic.cgam <- function(x, component = c("all", "conditional", "smooth_terms"), ...) { component <- match.arg(component) sc <- summary(x) stat <- as.vector(sc$coefficients[, 3]) if (!is.null(sc$coefficients2)) stat <- c(stat, rep(NA, nrow(sc$coefficients2))) params <- get_parameters(x, component = "all") out <- data.frame( Parameter = params$Parameter, Statistic = stat, Component = params$Component, stringsAsFactors = FALSE, row.names = NULL ) if (component != "all") { out <- out[out$Component == component, , drop = FALSE] } attr(out, "statistic") <- find_statistic(x) out } get_statistic.coxph <- function(x, ...) { get_statistic.default(x, column_index = 4) } get_statistic.svy_vglm <- function(x, verbose = TRUE, ...) { cs <- summary(x)$coeftable out <- data.frame( Parameter = find_parameters(x, flatten = TRUE), Statistic = as.vector(cs[, 3]), stringsAsFactors = FALSE, row.names = NULL ) attr(out, "statistic") <- find_statistic(x) out } get_statistic.coxr <- function(x, ...) { parms <- get_parameters(x) vc <- get_varcov(x) se <- sqrt(diag(vc)) out <- data.frame( Parameter = parms$Parameter, Statistic = parms$Estimate / se, stringsAsFactors = FALSE, row.names = NULL ) attr(out, "statistic") <- find_statistic(x) out } get_statistic.crr <- get_statistic.coxr get_statistic.coxme <- function(x, ...) { beta <- x$coefficients out <- NULL if (length(beta) > 0) { out <- data.frame( Parameter = names(beta), Statistic = as.vector(beta / sqrt(diag(stats::vcov(x)))), stringsAsFactors = FALSE, row.names = NULL ) out <- .remove_backticks_from_parameter_names(out) attr(out, "statistic") <- find_statistic(x) } out } get_statistic.riskRegression <- function(x, ...) { junk <- utils::capture.output(cs <- stats::coef(x)) out <- data.frame( Parameter = as.vector(cs[, 1]), Statistic = as.numeric(cs[, "z"]), stringsAsFactors = FALSE, row.names = NULL ) out <- .remove_backticks_from_parameter_names(out) attr(out, "statistic") <- find_statistic(x) out } get_statistic.survreg <- function(x, ...) { parms <- get_parameters(x) s <- summary(x) out <- data.frame( Parameter = parms$Parameter, Statistic = s$table[, 3], stringsAsFactors = FALSE, row.names = NULL ) attr(out, "statistic") <- find_statistic(x) out } get_statistic.BBmm <- function(x, ...) { parms <- get_parameters(x) s <- summary(x) out <- data.frame( Parameter = parms$Parameter, Statistic = s$fixed.coefficients[, 3], stringsAsFactors = FALSE, row.names = NULL ) attr(out, "statistic") <- find_statistic(x) out } get_statistic.flexsurvreg <- function(x, ...) { parms <- get_parameters(x) se <- x$res[, "se"] out <- data.frame( Parameter = parms$Parameter, Statistic = parms$Estimate / se, stringsAsFactors = FALSE, row.names = NULL ) attr(out, "statistic") <- find_statistic(x) out } get_statistic.aareg <- function(x, ...) { sc <- summary(x) parms <- get_parameters(x) out <- data.frame( Parameter = parms$Parameter, Statistic = unname(sc$test.statistic), stringsAsFactors = FALSE, row.names = NULL ) attr(out, "statistic") <- find_statistic(x) out } get_statistic.clm2 <- function(x, component = c("all", "conditional", "scale"), ...) { component <- match.arg(component) stats <- stats::coef(summary(x)) n_intercepts <- length(x$xi) n_location <- length(x$beta) n_scale <- length(x$zeta) out <- data.frame( Parameter = rownames(stats), Statistic = unname(stats[, "z value"]), Component = c(rep("conditional", times = n_intercepts + n_location), rep("scale", times = n_scale)), stringsAsFactors = FALSE, row.names = NULL ) if (component != "all") { out <- out[out$Component == component, , drop = FALSE] } attr(out, "statistic") <- find_statistic(x) out } get_statistic.clmm2 <- get_statistic.clm2 get_statistic.mvord <- function(x, component = c("all", "conditional", "thresholds", "correlation"), ...) { component <- match.arg(component) junk <- utils::capture.output(s <- summary(x)) thresholds <- as.data.frame(s$thresholds) thresholds$Parameter <- rownames(thresholds) thresholds$Response <- gsub("(.*)\\s(.*)", "\\1", thresholds$Parameter) coefficients <- as.data.frame(s$coefficients) coefficients$Parameter <- rownames(coefficients) coefficients$Response <- gsub("(.*)\\s(.*)", "\\2", coefficients$Parameter) if (!all(coefficients$Response %in% thresholds$Response)) { resp <- unique(thresholds$Response) for (i in coefficients$Response) { coefficients$Response[coefficients$Response == i] <- resp[grepl(paste0(i, "$"), resp)] } } params <- data.frame( Parameter = c(thresholds$Parameter, coefficients$Parameter), Statistic = c(unname(thresholds[, "z value"]), unname(coefficients[, "z value"])), Component = c(rep("thresholds", nrow(thresholds)), rep("conditional", nrow(coefficients))), Response = c(thresholds$Response, coefficients$Response), stringsAsFactors = FALSE, row.names = NULL ) params_error <- data.frame( Parameter = rownames(s$error.structure), Statistic = unname(s$error.structure[, "z value"]), Component = "correlation", Response = NA, stringsAsFactors = FALSE, row.names = NULL ) params <- rbind(params, params_error) if (.n_unique(params$Response) == 1) { params$Response <- NULL } if (component != "all") { params <- params[params$Component == component, , drop = FALSE] } attr(params, "statistic") <- find_statistic(x) .remove_backticks_from_parameter_names(params) } get_statistic.glmm <- function(x, effects = c("all", "fixed", "random"), ...) { effects <- match.arg(effects) s <- summary(x) out <- get_parameters(x, effects = "all") out$Statistic <- c(s$coefmat[, 3], s$nucoefmat[, 3]) out <- out[, c("Parameter", "Statistic", "Effects")] if (effects != "all") { out <- out[out$Effects == effects, , drop = FALSE] out$Effects <- NULL } attr(out, "statistic") <- find_statistic(x) out } get_statistic.mixor <- function(x, effects = c("all", "fixed", "random"), ...) { stats <- x$Model[, "z value"] effects <- match.arg(effects) parms <- get_parameters(x, effects = effects) out <- data.frame( Parameter = parms$Parameter, Statistic = stats[parms$Parameter], Effects = parms$Effects, stringsAsFactors = FALSE, row.names = NULL ) attr(out, "statistic") <- find_statistic(x) out } get_statistic.multinom <- function(x, ...) { parms <- get_parameters(x) stderr <- summary(x)$standard.errors if (is.matrix(stderr)) { se <- c() for (i in 1:nrow(stderr)) { se <- c(se, as.vector(stderr[i, ])) } } else { se <- as.vector(stderr) } out <- data.frame( Parameter = parms$Parameter, Statistic = parms$Estimate / se, stringsAsFactors = FALSE, row.names = NULL ) if ("Response" %in% colnames(parms)) { out$Response <- parms$Response } attr(out, "statistic") <- find_statistic(x) out } get_statistic.brmultinom <- get_statistic.multinom get_statistic.bracl <- function(x, ...) { parms <- get_parameters(x) out <- data.frame( Parameter = parms$Parameter, Statistic = stats::coef(summary(x))[, "z value"], Response = parms$Response, stringsAsFactors = FALSE, row.names = NULL ) attr(out, "statistic") <- find_statistic(x) out } get_statistic.mlogit <- function(x, ...) { if (requireNamespace("mlogit", quietly = TRUE)) { cs <- stats::coef(summary(x)) out <- data.frame( Parameter = rownames(cs), Statistic = as.vector(cs[, 3]), stringsAsFactors = FALSE, row.names = NULL ) out <- .remove_backticks_from_parameter_names(out) attr(out, "statistic") <- find_statistic(x) out } else { NULL } } get_statistic.betamfx <- function(x, component = c("all", "conditional", "precision", "marginal"), ...) { component <- match.arg(component) parms <- get_parameters(x, component = "all", ...) cs <- do.call(rbind, stats::coef(summary(x$fit))) stat <- c(as.vector(x$mfxest[, 3]), as.vector(cs[, 3])) out <- data.frame( Parameter = parms$Parameter, Statistic = stat, Component = parms$Component, stringsAsFactors = FALSE, row.names = NULL ) if (component != "all") { out <- out[out$Component == component, , drop = FALSE] } attr(out, "statistic") <- find_statistic(x) out } get_statistic.betaor <- function(x, component = c("all", "conditional", "precision"), ...) { component <- match.arg(component) parms <- get_parameters(x, component = "all", ...) cs <- do.call(rbind, stats::coef(summary(x$fit))) out <- data.frame( Parameter = parms$Parameter, Statistic = as.vector(cs[, 3]), Component = parms$Component, stringsAsFactors = FALSE, row.names = NULL ) if (component != "all") { out <- out[out$Component == component, , drop = FALSE] } attr(out, "statistic") <- find_statistic(x) out } get_statistic.logitmfx <- function(x, component = c("all", "conditional", "marginal"), ...) { parms <- get_parameters(x, component = "all", ...) cs <- stats::coef(summary(x$fit)) stat <- c(as.vector(x$mfxest[, 3]), as.vector(cs[, 3])) out <- data.frame( Parameter = parms$Parameter, Statistic = stat, Component = parms$Component, stringsAsFactors = FALSE, row.names = NULL ) if (component != "all") { out <- out[out$Component == component, , drop = FALSE] } attr(out, "statistic") <- find_statistic(x) out } get_statistic.poissonmfx <- get_statistic.logitmfx get_statistic.negbinmfx <- get_statistic.logitmfx get_statistic.probitmfx <- get_statistic.logitmfx get_statistic.logitor <- function(x, ...) { get_statistic.default(x$fit) } get_statistic.poissonirr <- get_statistic.logitor get_statistic.negbinirr <- get_statistic.logitor get_statistic.pgmm <- function(x, component = c("conditional", "all"), verbose = TRUE, ...) { component <- match.arg(component) cs <- stats::coef(summary(x, time.dummies = TRUE, robust = FALSE)) out <- data.frame( Parameter = row.names(cs), Statistic = as.vector(cs[, 3]), Component = "conditional", stringsAsFactors = FALSE, row.names = NULL ) out$Component[out$Parameter %in% x$args$namest] <- "time_dummies" if (component == "conditional") { out <- out[out$Component == "conditional", ] out <- .remove_column(out, "Component") } out <- .remove_backticks_from_parameter_names(out) attr(out, "statistic") <- find_statistic(x) out } get_statistic.selection <- function(x, component = c("all", "selection", "outcome", "auxiliary"), ...) { component <- match.arg(component) s <- summary(x) rn <- row.names(s$estimate) estimates <- as.data.frame(s$estimate, row.names = FALSE) params <- data.frame( Parameter = rn, Statistic = estimates[[3]], Component = "auxiliary", stringsAsFactors = FALSE, row.names = NULL ) params$Component[s$param$index$betaS] <- "selection" params$Component[s$param$index$betaO] <- "outcome" if (component != "all") { params <- params[params$Component == component, , drop = FALSE] } params <- .remove_backticks_from_parameter_names(params) attr(params, "statistic") <- find_statistic(x) params } get_statistic.lavaan <- function(x, ...) { check_if_installed("lavaan") params <- lavaan::parameterEstimates(x) params$parameter <- paste0(params$lhs, params$op, params$rhs) params$comp <- NA params$comp[params$op == "~"] <- "regression" params$comp[params$op == "=~"] <- "latent" params$comp[params$op == "~~"] <- "residual" params$comp[params$op == "~1"] <- "intercept" params <- data.frame( Parameter = params$parameter, Statistic = params$z, Component = params$comp, stringsAsFactors = FALSE ) params <- .remove_backticks_from_parameter_names(params) attr(params, "statistic") <- find_statistic(x) params } get_statistic.model_fit <- function(x, ...) { get_statistic(x$fit, ...) } get_statistic.Sarlm <- function(x, ...) { s <- summary(x) if (!is.null(s$rho)) { rho <- as.numeric(s$rho) / as.numeric(s$rho.se) } else { rho <- NULL } stat <- data.frame( Parameter = find_parameters(x, flatten = TRUE), Statistic = c(rho, as.vector(s$Coef[, 3])), stringsAsFactors = FALSE, row.names = NULL ) stat <- .remove_backticks_from_parameter_names(stat) attr(stat, "statistic") <- find_statistic(x) stat } get_statistic.mjoint <- function(x, component = c("all", "conditional", "survival"), ...) { component <- match.arg(component) s <- summary(x) params <- rbind( data.frame( Parameter = rownames(s$coefs.long), Statistic = unname(s$coefs.long[, 3]), Component = "conditional", stringsAsFactors = FALSE, row.names = NULL ), data.frame( Parameter = rownames(s$coefs.surv), Statistic = unname(s$coefs.surv[, 3]), Component = "survival", stringsAsFactors = FALSE, row.names = NULL ) ) if (component != "all") { params <- params[params$Component == component, , drop = FALSE] } attr(params, "statistic") <- find_statistic(x) params } get_statistic.Rchoice <- function(x, verbose = TRUE, ...) { cs <- summary(x)$CoefTable out <- data.frame( Parameter = find_parameters(x, flatten = TRUE), Statistic = as.vector(cs[, 3]), stringsAsFactors = FALSE, row.names = NULL ) attr(out, "statistic") <- find_statistic(x) out } get_statistic.garch <- function(x, verbose = TRUE, ...) { cs <- summary(x)$coef out <- data.frame( Parameter = find_parameters(x, flatten = TRUE), Statistic = as.vector(cs[, 3]), stringsAsFactors = FALSE, row.names = NULL ) attr(out, "statistic") <- find_statistic(x) out } get_statistic.ergm <- function(x, verbose = TRUE, ...) { get_statistic.default(x = x, column_index = 4, verbose = verbose, ...) } get_statistic.btergm <- function(x, verbose = TRUE, ...) { params <- x@coef bootstraps <- x@boot$t sdev <- sapply(1:ncol(bootstraps), function(i) { cur <- (bootstraps[, i] - params[i])^2 sqrt(sum(cur) / length(cur)) }) stat <- (0 - colMeans(bootstraps)) / sdev out <- data.frame( Parameter = names(stat), Statistic = stat, stringsAsFactors = FALSE, row.names = NULL ) attr(out, "statistic") <- find_statistic(x) out } get_statistic.ridgelm <- function(x, ...) { NULL } get_statistic.lmodel2 <- function(x, ...) { NULL } get_statistic.ivFixed <- get_statistic.coxr get_statistic.ivprobit <- function(x, ...) { out <- data.frame( Parameter = x$names, Statistic = as.vector(x$tval), stringsAsFactors = FALSE ) out <- .remove_backticks_from_parameter_names(out) attr(out, "statistic") <- find_statistic(x) out } get_statistic.HLfit <- function(x, ...) { utils::capture.output(s <- summary(x)) out <- data.frame( Parameter = rownames(s$beta_table), Statistic = as.vector(s$beta_table[, "t-value"]), stringsAsFactors = FALSE ) out <- .remove_backticks_from_parameter_names(out) attr(out, "statistic") <- find_statistic(x) out } get_statistic.margins <- function(x, ...) { out <- data.frame( Parameter = get_parameters(x)$Parameter, Statistic = as.vector(summary(x)$z), stringsAsFactors = FALSE ) out <- .remove_backticks_from_parameter_names(out) attr(out, "statistic") <- find_statistic(x) out } get_statistic.lqmm <- function(x, ...) { cs <- summary(x, ...) params <- get_parameters(x) if (is.list(cs$tTable)) { stats <- do.call(rbind, cs$tTable) params$Statistic <- params$Estimate / stats[, 2] params <- params[c("Parameter", "Statistic", "Component")] } else { params$Statistic <- params$Estimate / cs$tTable[, 2] params <- params[c("Parameter", "Statistic")] } out <- .remove_backticks_from_parameter_names(params) attr(out, "statistic") <- find_statistic(x) out } get_statistic.lqm <- get_statistic.lqmm get_statistic.mipo <- function(x, ...) { params <- data.frame( Parameter = as.vector(summary(x)$term), Statistic = as.vector(summary(x)$statistic), stringsAsFactors = FALSE ) out <- .remove_backticks_from_parameter_names(params) attr(out, "statistic") <- find_statistic(x) out } get_statistic.mira <- function(x, ...) { get_statistic(x$analyses[[1]], ...) } get_statistic.mle2 <- function(x, ...) { if (!requireNamespace("bbmle", quietly = TRUE)) { stop("Package `bbmle` needs to be installed to extract test statistic.", call. = FALSE) } s <- bbmle::summary(x) params <- data.frame( Parameter = names(s@coef[, 3]), Statistic = unname(s@coef[, 3]), stringsAsFactors = FALSE, row.names = NULL ) out <- .remove_backticks_from_parameter_names(params) attr(out, "statistic") <- find_statistic(x) out } get_statistic.mle <- get_statistic.mle2 get_statistic.glht <- function(x, ...) { s <- summary(x) alt <- switch(x$alternative, two.sided = "==", less = ">=", greater = "<=" ) out <- data.frame( Parameter = paste(names(s$test$coefficients), alt, x$rhs), Statistic = unname(s$test$tstat), stringsAsFactors = FALSE ) out <- .remove_backticks_from_parameter_names(out) attr(out, "statistic") <- find_statistic(x) out } get_statistic.emmGrid <- function(x, ci = .95, adjust = "none", merge_parameters = FALSE, ...) { s <- summary(x, level = ci, adjust = adjust, infer = TRUE) stat <- s[["t.ratio"]] if (.is_empty_object(stat)) { stat <- s[["z.ratio"]] } if (.is_empty_object(stat)) { return(NULL) } estimate_pos <- which(colnames(s) == attr(s, "estName")) if (isTRUE(merge_parameters)) { params <- get_parameters(x, merge_parameters = TRUE)["Parameter"] } else { params <- s[, seq_len(estimate_pos - 1), drop = FALSE] } out <- data.frame( params, Statistic = as.vector(stat), stringsAsFactors = FALSE, row.names = NULL ) out <- .remove_backticks_from_parameter_names(out) attr(out, "statistic") <- find_statistic(x) out } get_statistic.emm_list <- function(x, ci = .95, adjust = "none", ...) { params <- get_parameters(x) s <- summary(x, level = ci, adjust = adjust, infer = TRUE) stat <- lapply(s, "[[", "t.ratio") if (.is_empty_object(stat)) { stat <- lapply(s, "[[", "z.ratio") } if (.is_empty_object(stat)) { return(NULL) } stat <- unlist(stat) out <- data.frame( Parameter = params$Parameter, Statistic = as.vector(stat), Component = params$Component, stringsAsFactors = FALSE, row.names = NULL ) out <- .remove_backticks_from_parameter_names(out) attr(out, "statistic") <- find_statistic(x) out } get_statistic.robmixglm <- function(x, ...) { cs <- stats::coef(summary(x)) out <- data.frame( Parameter = rownames(cs), Statistic = as.vector(cs[, 3]), stringsAsFactors = FALSE, row.names = NULL ) out <- out[!is.na(out$Statistic), ] out <- .remove_backticks_from_parameter_names(out) attr(out, "statistic") <- find_statistic(x) out } get_statistic.averaging <- function(x, component = c("conditional", "full"), ...) { component <- match.arg(component) params <- get_parameters(x, component = component) if (component == "full") { s <- summary(x)$coefmat.full } else { s <- summary(x)$coefmat.subset } out <- data.frame( Parameter = params$Parameter, Statistic = s[, 4], stringsAsFactors = FALSE, row.names = NULL ) out <- .remove_backticks_from_parameter_names(out) attr(out, "statistic") <- find_statistic(x) out } get_statistic.bayesx <- function(x, ...) { out <- data.frame( Parameter = find_parameters(x, component = "conditional", flatten = TRUE), Statistic = x$fixed.effects[, 3], stringsAsFactors = FALSE ) out <- .remove_backticks_from_parameter_names(out) attr(out, "statistic") <- find_statistic(x) out } get_statistic.Arima <- function(x, ...) { params <- get_parameters(x) out <- data.frame( Parameter = params$Parameter, Statistic = as.vector(params$Estimate / sqrt(diag(get_varcov(x)))), stringsAsFactors = FALSE, row.names = NULL ) out <- .remove_backticks_from_parameter_names(out) attr(out, "statistic") <- find_statistic(x) out } get_statistic.wbm <- function(x, ...) { s <- summary(x) statistic_column <- if ("t val." %in% c( colnames(s$within_table), colnames(s$between_table), colnames(s$ints_table) )) { "t val." } else { "z val." } stat <- c( s$within_table[, statistic_column], s$between_table[, statistic_column], s$ints_table[, statistic_column] ) params <- get_parameters(x) out <- data.frame( Parameter = params$Parameter, Statistic = as.vector(stat), Component = params$Component, stringsAsFactors = FALSE, row.names = NULL ) attr(out, "statistic") <- find_statistic(x) out } get_statistic.wbgee <- get_statistic.wbm get_statistic.cpglmm <- function(x, ...) { check_if_installed("cplm") stats <- cplm::summary(x)$coefs params <- get_parameters(x) out <- data.frame( Parameter = params$Parameter, Statistic = as.vector(stats[, "t value"]), stringsAsFactors = FALSE, row.names = NULL ) attr(out, "statistic") <- find_statistic(x) out } get_statistic.sem <- function(x, ...) { if (!.is_semLme(x)) { return(NULL) } params <- get_parameters(x, effects = "fixed") if (is.null(x$se)) { warning(format_message("Model has no standard errors. Please fit model again with bootstrapped standard errors."), call. = FALSE) return(NULL) } out <- data.frame( Parameter = params$Parameter, Statistic = as.vector(x$coef / x$se), stringsAsFactors = FALSE, row.names = NULL ) attr(out, "statistic") <- find_statistic(x) out } get_statistic.cpglm <- function(x, ...) { check_if_installed("cplm") junk <- utils::capture.output(stats <- cplm::summary(x)$coefficients) params <- get_parameters(x) out <- data.frame( Parameter = params$Parameter, Statistic = as.vector(stats[, "t value"]), stringsAsFactors = FALSE, row.names = NULL ) attr(out, "statistic") <- find_statistic(x) out } get_statistic.zcpglm <- function(x, component = c("all", "conditional", "zi", "zero_inflated"), ...) { check_if_installed("cplm") component <- match.arg(component) junk <- utils::capture.output(stats <- cplm::summary(x)$coefficients) params <- get_parameters(x) tweedie <- data.frame( Parameter = params$Parameter[params$Component == "conditional"], Statistic = as.vector(stats$tweedie[, "z value"]), Component = "conditional", stringsAsFactors = FALSE, row.names = NULL ) zero <- data.frame( Parameter = params$Parameter[params$Component == "zero_inflated"], Statistic = as.vector(stats$zero[, "z value"]), Component = "zero_inflated", stringsAsFactors = FALSE, row.names = NULL ) out <- .filter_component(rbind(tweedie, zero), component) out <- .remove_backticks_from_parameter_names(out) attr(out, "statistic") <- find_statistic(x) out } get_statistic.manova <- function(x, ...) { stats <- as.data.frame(summary(x)$stats) out <- data.frame( Parameter = rownames(stats), Statistic = as.vector(stats[["approx F"]]), stringsAsFactors = FALSE, row.names = NULL ) attr(out, "statistic") <- find_statistic(x) out } get_statistic.maov <- function(x, ...) { s <- summary(x) out <- do.call(rbind, lapply(names(s), function(i) { stats <- s[[i]] missing <- is.na(stats[["F value"]]) data.frame( Parameter = rownames(stats)[!missing], Statistic = as.vector(stats[["F value"]][!missing]), Response = gsub("\\s*Response ", "", i), stringsAsFactors = FALSE, row.names = NULL ) })) attr(out, "statistic") <- find_statistic(x) out } get_statistic.MANOVA <- function(x, ...) { stats <- as.data.frame(x$WTS) out <- data.frame( Parameter = rownames(stats), Statistic = as.vector(stats[[1]]), stringsAsFactors = FALSE, row.names = NULL ) attr(out, "statistic") <- find_statistic(x) out } get_statistic.RM <- get_statistic.MANOVA get_statistic.rq <- function(x, ...) { stat <- tryCatch( { cs <- stats::coef(summary(x)) cs[, "t value"] }, error = function(e) { cs <- stats::coef(summary(x, covariance = TRUE)) cs[, "t value"] } ) params <- get_parameters(x) out <- data.frame( Parameter = params$Parameter, Statistic = stat, stringsAsFactors = FALSE, row.names = NULL ) attr(out, "statistic") <- find_statistic(x) out } get_statistic.rqs <- function(x, ...) { stat <- tryCatch( { s <- suppressWarnings(summary(x, covariance = TRUE)) cs <- do.call(rbind, lapply(s, stats::coef)) cs[, "t value"] }, error = function(e) { NULL } ) params <- get_parameters(x) out <- data.frame( Parameter = params$Parameter, Statistic = stat, Component = params$Component, stringsAsFactors = FALSE, row.names = NULL ) attr(out, "statistic") <- find_statistic(x) out } get_statistic.crq <- function(x, ...) { sc <- summary(x) params <- get_parameters(x) if (all(unlist(lapply(sc, is.list)))) { list_sc <- lapply(sc, function(i) { .x <- as.data.frame(i) .x$Parameter <- rownames(.x) .x }) out <- do.call(rbind, list_sc) out <- data.frame( Parameter = params$Parameter, Statistic = out$coefficients.T.Value, Component = params$Component, stringsAsFactors = FALSE, row.names = NULL ) } else { out <- data.frame( Parameter = params$Parameter, Statistic = unname(sc$coefficients[, 5]), stringsAsFactors = FALSE, row.names = NULL ) } attr(out, "statistic") <- find_statistic(x) out } get_statistic.crqs <- get_statistic.crq get_statistic.nlrq <- get_statistic.rq get_statistic.rqss <- function(x, component = c("all", "conditional", "smooth_terms"), ...) { component <- match.arg(component) cs <- summary(x) stat <- c(as.vector(cs$coef[, "t value"]), as.vector(cs$qsstab[, "F value"])) params <- get_parameters(x) out <- data.frame( Parameter = params$Parameter, Statistic = unname(stat), Component = params$Component, stringsAsFactors = FALSE, row.names = NULL ) if (component != "all") { out <- out[out$Component == component, , drop = FALSE] } attr(out, "statistic") <- find_statistic(x) out } get_statistic.systemfit <- function(x, ...) { cf <- stats::coef(summary(x)) f <- find_formula(x) system_names <- names(f) parameter_names <- row.names(cf) out <- lapply(system_names, function(i) { pattern <- paste0("^", i, "_(.*)") params <- grepl(pattern, parameter_names) data.frame( Parameter = gsub(pattern, "\\1", parameter_names[params]), Statistic = as.vector(cf[params, 3]), Component = i, stringsAsFactors = FALSE ) }) out <- do.call(rbind, out) attr(out, "statistic") <- find_statistic(x) out } get_statistic.bigglm <- function(x, ...) { parms <- get_parameters(x) cs <- summary(x)$mat se <- as.vector(cs[, 4]) out <- data.frame( Parameter = parms$Parameter, Statistic = parms$Estimate / se, stringsAsFactors = FALSE, row.names = NULL ) attr(out, "statistic") <- find_statistic(x) out } get_statistic.biglm <- function(x, ...) { parms <- get_parameters(x) cs <- summary(x)$mat se <- as.vector(cs[, 4]) out <- data.frame( Parameter = parms$Parameter, Statistic = parms$Estimate / se, stringsAsFactors = FALSE, row.names = NULL ) attr(out, "statistic") <- find_statistic(x) out } get_statistic.LORgee <- function(x, ...) { out <- get_statistic.default(x) attr(out, "statistic") <- find_statistic(x) out } get_statistic.crch <- function(x, ...) { cs <- do.call(rbind, stats::coef(summary(x), model = "full")) params <- get_parameters(x) out <- data.frame( Parameter = params$Parameter, Statistic = as.vector(cs[, 3]), stringsAsFactors = FALSE, row.names = NULL ) attr(out, "statistic") <- find_statistic(x) out } get_statistic.fixest <- function(x, ...) { cs <- summary(x)$coeftable params <- get_parameters(x) out <- data.frame( Parameter = params$Parameter, Statistic = as.vector(cs[, 3]), stringsAsFactors = FALSE, row.names = NULL ) attr(out, "statistic") <- find_statistic(x) out } get_statistic.glmx <- function(x, component = c("all", "conditional", "extra"), ...) { component <- match.arg(component) cf <- stats::coef(summary(x)) parms <- get_parameters(x) out <- rbind( data.frame( Parameter = parms$Parameter[parms$Component == "conditional"], Statistic = unname(cf$glm[, 3]), Component = "conditional", stringsAsFactors = FALSE, row.names = NULL ), data.frame( Parameter = parms$Parameter[parms$Component == "extra"], Statistic = cf$extra[, 3], Component = "extra", stringsAsFactors = FALSE, row.names = NULL ) ) if (component != "all") { out <- out[out$Component == component, , drop = FALSE] } attr(out, "statistic") <- find_statistic(x) out } get_statistic.gee <- function(x, robust = FALSE, ...) { parms <- get_parameters(x) cs <- stats::coef(summary(x)) if (isTRUE(robust)) { stats <- as.vector(cs[, "Robust z"]) } else { stats <- as.vector(cs[, "Naive z"]) } out <- data.frame( Parameter = parms$Parameter, Statistic = stats, stringsAsFactors = FALSE, row.names = NULL ) attr(out, "statistic") <- find_statistic(x) out } get_statistic.complmrob <- function(x, ...) { parms <- get_parameters(x) stat <- summary(x)$stats out <- data.frame( Parameter = parms$Parameter, Statistic = as.vector(stat[, "t value"]), stringsAsFactors = FALSE, row.names = NULL ) attr(out, "statistic") <- find_statistic(x) out } get_statistic.logistf <- function(x, ...) { parms <- get_parameters(x) utils::capture.output(s <- summary(x)) out <- data.frame( Parameter = parms$Parameter, Statistic = as.vector(stats::qchisq(1 - s$prob, df = 1)), stringsAsFactors = FALSE, row.names = NULL ) attr(out, "statistic") <- find_statistic(x) out } get_statistic.epi.2by2 <- function(x, ...) { stat <- x$massoc.detail$chi2.strata.uncor out <- data.frame( Parameter = "Chi2", Statistic = stat$test.statistic, stringsAsFactors = FALSE, row.names = NULL ) attr(out, "statistic") <- find_statistic(x) out } get_statistic.svyglm.nb <- function(x, ...) { if (!isNamespaceLoaded("survey")) { requireNamespace("survey", quietly = TRUE) } parms <- get_parameters(x) se <- sqrt(diag(stats::vcov(x, stderr = "robust"))) out <- data.frame( Parameter = parms$Parameter, Statistic = parms$Estimate / se, stringsAsFactors = FALSE, row.names = NULL ) attr(out, "statistic") <- find_statistic(x) out } get_statistic.svyglm.zip <- get_statistic.svyglm.nb get_statistic.svyglm <- function(x, ...) { parms <- get_parameters(x) vc <- get_varcov(x) se <- sqrt(diag(vc)) out <- data.frame( Parameter = parms$Parameter, Statistic = parms$Estimate / se, stringsAsFactors = FALSE, row.names = NULL ) attr(out, "statistic") <- find_statistic(x) out } get_statistic.svyolr <- get_statistic.svyglm get_statistic.betareg <- function(x, component = c("all", "conditional", "precision"), ...) { component <- match.arg(component) parms <- get_parameters(x) cs <- do.call(rbind, stats::coef(summary(x))) se <- as.vector(cs[, 2]) out <- data.frame( Parameter = parms$Parameter, Statistic = parms$Estimate / se, Component = parms$Component, stringsAsFactors = FALSE, row.names = NULL ) if (component != "all") { out <- out[out$Component == component, , drop = FALSE] } attr(out, "statistic") <- find_statistic(x) out } get_statistic.DirichletRegModel <- function(x, component = c("all", "conditional", "precision"), ...) { component <- match.arg(component) parms <- get_parameters(x) junk <- utils::capture.output(cs <- summary(x)$coef.mat) out <- data.frame( Parameter = parms$Parameter, Statistic = unname(cs[, "z value"]), Response = parms$Response, stringsAsFactors = FALSE, row.names = NULL ) if (!is.null(parms$Component)) { out$Component <- parms$Component } else { component <- "all" } if (component != "all") { out <- out[out$Component == component, , drop = FALSE] } attr(out, "statistic") <- find_statistic(x) out } get_statistic.glimML <- function(x, ...) { check_if_installed("aod") parms <- get_parameters(x) s <- methods::slot(aod::summary(x), "Coef") out <- data.frame( Parameter = parms$Parameter, Statistic = s[, 3], stringsAsFactors = FALSE, row.names = NULL ) attr(out, "statistic") <- find_statistic(x) out } get_statistic.lrm <- function(x, ...) { parms <- get_parameters(x) stat <- stats::coef(x) / sqrt(diag(stats::vcov(x))) out <- data.frame( Parameter = parms$Parameter, Statistic = as.vector(stat), stringsAsFactors = FALSE, row.names = NULL ) attr(out, "statistic") <- find_statistic(x) out } get_statistic.ols <- get_statistic.lrm get_statistic.rms <- get_statistic.lrm get_statistic.psm <- get_statistic.lrm get_statistic.orm <- function(x, ...) { parms <- get_parameters(x) vc <- stats::vcov(x) parms <- parms[parms$Parameter %in% dimnames(vc)[[1]], ] stat <- parms$Estimate / sqrt(diag(vc)) out <- data.frame( Parameter = parms$Parameter, Statistic = as.vector(stat), stringsAsFactors = FALSE, row.names = NULL ) attr(out, "statistic") <- find_statistic(x) out } get_statistic.rma <- function(x, ...) { parms <- get_parameters(x) stat <- x$zval out <- data.frame( Parameter = parms$Parameter, Statistic = as.vector(stat), stringsAsFactors = FALSE, row.names = NULL ) attr(out, "statistic") <- find_statistic(x) out } get_statistic.metaplus <- function(x, ...) { params <- get_parameters(x) ci_low <- as.vector(x$results[, "95% ci.lb"]) ci_high <- as.vector(x$results[, "95% ci.ub"]) cis <- apply(cbind(ci_low, ci_high), MARGIN = 1, diff) se <- cis / (2 * stats::qnorm(.975)) out <- data.frame( Parameter = params$Parameter, Statistic = as.vector(params$Estimate / se), stringsAsFactors = FALSE, row.names = NULL ) attr(out, "statistic") <- find_statistic(x) out } get_statistic.bife <- function(x, ...) { parms <- get_parameters(x) cs <- summary(x) out <- data.frame( Parameter = parms$Parameter, Statistic = as.vector(cs$cm[, 3]), stringsAsFactors = FALSE, row.names = NULL ) attr(out, "statistic") <- find_statistic(x) out } get_statistic.mediate <- function(x, ...) { NULL } get_statistic.coeftest <- function(x, ...) { out <- data.frame( Parameter = row.names(x), Statistic = x[, 3], stringsAsFactors = FALSE, row.names = NULL ) attr(out, "statistic") <- find_statistic(x) out } get_statistic.bfsl <- function(x, ...) { cs <- stats::coef(x) out <- data.frame( Parameter = rownames(cs), Statistic = as.vector(cs[, "Estimate"] / cs[, "Std. Error"]), stringsAsFactors = FALSE, row.names = NULL ) out <- .remove_backticks_from_parameter_names(out) attr(out, "statistic") <- find_statistic(x) out }
t_test <- function(x, formula, response = NULL, explanatory = NULL, order = NULL, alternative = "two-sided", mu = 0, conf_int = TRUE, conf_level = 0.95, ...) { check_conf_level(conf_level) x <- tibble::as_tibble(x) %>% mutate_if(is.character, as.factor) %>% mutate_if(is.logical, as.factor) response <- enquo(response) explanatory <- enquo(explanatory) x <- parse_variables(x = x, formula = formula, response = response, explanatory = explanatory) if (alternative %in% c("two-sided", "two_sided", "two sided", "two.sided")) { alternative <- "two.sided" } if (has_explanatory(x)) { order <- check_order(x, order, in_calculate = FALSE, stat = NULL) x <- reorder_explanatory(x, order) prelim <- stats::t.test(formula = as.formula(paste0(response_name(x), " ~ ", explanatory_name(x))), data = x, alternative = alternative, mu = mu, conf.level = conf_level, ...) %>% broom::glance() } else { prelim <- stats::t.test(response_variable(x), alternative = alternative, mu = mu, conf.level = conf_level) %>% broom::glance() } if (conf_int) { results <- prelim %>% dplyr::select( statistic, t_df = parameter, p_value = p.value, alternative, estimate, lower_ci = conf.low, upper_ci = conf.high ) } else { results <- prelim %>% dplyr::select( statistic, t_df = parameter, p_value = p.value, alternative, estimate ) } results } t_stat <- function(x, formula, response = NULL, explanatory = NULL, order = NULL, alternative = "two-sided", mu = 0, conf_int = FALSE, conf_level = 0.95, ...) { .Deprecated( new = "observe", msg = c("The t_stat() wrapper has been deprecated in favor of the more " , "general observe(). Please use that function instead.") ) check_conf_level(conf_level) x <- tibble::as_tibble(x) %>% mutate_if(is.character, as.factor) %>% mutate_if(is.logical, as.factor) response <- enquo(response) explanatory <- enquo(explanatory) x <- parse_variables(x = x, formula = formula, response = response, explanatory = explanatory) if (alternative %in% c("two-sided", "two_sided", "two sided", "two.sided")) { alternative <- "two.sided" } if (has_explanatory(x)) { order <- check_order(x, order, in_calculate = FALSE, stat = NULL) x <- reorder_explanatory(x, order) prelim <- stats::t.test(formula = as.formula(paste0(response_name(x), " ~ ", explanatory_name(x))), data = x, alternative = alternative, mu = mu, conf.level = conf_level, ...) %>% broom::glance() } else { prelim <- stats::t.test(response_variable(x), alternative = alternative, mu = mu, conf.level = conf_level) %>% broom::glance() } results <- prelim %>% dplyr::select(statistic) %>% pull() results } chisq_test <- function(x, formula, response = NULL, explanatory = NULL, ...) { response <- enquo(response) explanatory <- enquo(explanatory) x <- parse_variables(x = x, formula = formula, response = response, explanatory = explanatory) if (!(class(response_variable(x)) %in% c("logical", "character", "factor"))) { stop_glue( 'The response variable of `{response_name(x)}` is not appropriate ', "since the response variable is expected to be categorical." ) } if (has_explanatory(x) && !(class(explanatory_variable(x)) %in% c("logical", "character", "factor"))) { stop_glue( 'The explanatory variable of `{explanatory_name(x)}` is not appropriate ', "since the explanatory variable is expected to be categorical." ) } x <- x %>% select(any_of(c(response_name(x), explanatory_name(x)))) %>% mutate_if(is.character, as.factor) %>% mutate_if(is.logical, as.factor) stats::chisq.test(table(x), ...) %>% broom::glance() %>% dplyr::select(statistic, chisq_df = parameter, p_value = p.value) } chisq_stat <- function(x, formula, response = NULL, explanatory = NULL, ...) { .Deprecated( new = "observe", msg = c("The chisq_stat() wrapper has been deprecated in favor of the ", "more general observe(). Please use that function instead.") ) response <- enquo(response) explanatory <- enquo(explanatory) x <- parse_variables(x = x, formula = formula, response = response, explanatory = explanatory) if (!(class(response_variable(x)) %in% c("logical", "character", "factor"))) { stop_glue( 'The response variable of `{response_name(x)}` is not appropriate ', "since the response variable is expected to be categorical." ) } if (has_explanatory(x) && !(class(explanatory_variable(x)) %in% c("logical", "character", "factor"))) { stop_glue( 'The explanatory variable of `{explanatory_name(x)}` is not appropriate ', "since the response variable is expected to be categorical." ) } x <- x %>% select(any_of(c(response_name(x), explanatory_name(x)))) %>% mutate_if(is.character, as.factor) %>% mutate_if(is.logical, as.factor) suppressWarnings(stats::chisq.test(table(x), ...)) %>% broom::glance() %>% dplyr::select(statistic) %>% pull() } check_conf_level <- function(conf_level) { if ( (class(conf_level) != "numeric") | (conf_level < 0) | (conf_level > 1) ) { stop_glue("The `conf_level` argument must be a number between 0 and 1.") } } prop_test <- function(x, formula, response = NULL, explanatory = NULL, p = NULL, order = NULL, alternative = "two-sided", conf_int = TRUE, conf_level = 0.95, success = NULL, correct = NULL, z = FALSE, ...) { response <- enquo(response) explanatory <- enquo(explanatory) x <- parse_variables(x = x, formula = formula, response = response, explanatory = explanatory) correct <- if (z) {FALSE} else if (is.null(correct)) {TRUE} else {correct} if (!(class(response_variable(x)) %in% c("logical", "character", "factor"))) { stop_glue( 'The response variable of `{response_name(x)}` is not appropriate\n', "since the response variable is expected to be categorical." ) } if (has_explanatory(x) && !(class(explanatory_variable(x)) %in% c("logical", "character", "factor"))) { stop_glue( 'The explanatory variable of `{explanatory_name(x)}` is not appropriate ', "since the explanatory variable is expected to be categorical." ) } if (alternative %in% c("two-sided", "two_sided", "two sided", "two.sided")) { alternative <- "two.sided" } lvls <- levels(factor(response_variable(x))) if (!is.null(success)) { check_type(success, rlang::is_string) if (!(success %in% lvls)) { stop_glue('{success} is not a valid level of {response_name(x)}.') } lvls <- c(success, lvls[lvls != success]) } else { success <- lvls[1] } if (has_explanatory(x)) { order <- check_order(x, order, in_calculate = FALSE, stat = NULL) sum_table <- x %>% select(response_name(x), explanatory_name(x)) %>% mutate_if(is.character, as.factor) %>% mutate_if(is.logical, as.factor) %>% table() sum_table <- sum_table[lvls, order] prelim <- stats::prop.test(x = sum_table, alternative = alternative, conf.level = conf_level, p = p, correct = correct, ...) } else { response_tbl <- response_variable(x) %>% factor() %>% stats::relevel(success) %>% table() if (is.null(p)) { message_glue( "No `p` argument was hypothesized, so the test will ", "assume a null hypothesis `p = .5`." ) } prelim <- stats::prop.test(x = response_tbl, alternative = alternative, conf.level = conf_level, p = p, correct = correct, ...) } if (length(prelim$estimate) <= 2) { if (conf_int & is.null(p)) { results <- prelim %>% broom::glance() %>% dplyr::select(statistic, chisq_df = parameter, p_value = p.value, alternative, lower_ci = conf.low, upper_ci = conf.high) } else { results <- prelim %>% broom::glance() %>% dplyr::select(statistic, chisq_df = parameter, p_value = p.value, alternative) } } else { results <- prelim %>% broom::glance() %>% dplyr::select(statistic, chisq_df = parameter, p_value = p.value) } if (z) { results <- calculate_z(x, results, success, p, order) } results } calculate_z <- function(x, results, success, p, order) { exp <- if (has_explanatory(x)) {explanatory_name(x)} else {"NULL"} form <- as.formula(paste0(response_name(x), " ~ ", exp)) stat <- x %>% specify(formula = form, success = success) %>% hypothesize( null = if (has_explanatory(x)) {"independence"} else {"point"}, p = if (is.null(p) && !has_explanatory(x)) {.5} else {p} ) %>% calculate( stat = "z", order = if (has_explanatory(x)) {order} else {NULL} ) %>% dplyr::pull() results$statistic <- stat results$chisq_df <- NULL results }
sirt_import_lavaan_standardizedSolution <- function(...) { TAM::require_namespace_msg("lavaan") res <- lavaan::standardizedSolution(...) return(res) }
library(shiny) library(testthat) test_that("testServer works with dir app", { testServer(test_path("..", "test-modules", "06_tabsets"), { session$setInputs(dist="norm", n=5) expect_length(d(), 5) session$setInputs(dist="unif", n=6) expect_length(d(), 6) }) testServer(test_path("..", "test-modules", "server_r"), { session$setInputs(dist="norm", n=5) expect_length(d(), 5) session$setInputs(dist="unif", n=6) expect_length(d(), 6) }) }) test_that("testServer works when referencing external globals", { testServer(test_path("..", "test-modules", "06_tabsets"), { expect_equal(get("global", session$env), 123) }) }) test_that("testServer defaults to the app at .", { curwd <- getwd() on.exit(setwd(curwd)) setwd(test_path("..", "test-modules", "06_tabsets")) testServer(expr = { expect_equal(get("global", session$env), 123) }) }) test_that("runTests works with a dir app that calls modules and uses testServer", { app <- test_path("..", "test-modules", "12_counter") run <- testthat::expect_output( print(runTests(app)), "Shiny App Test Results\\n\\* Success\\n - 12_counter/tests/testthat\\.R" ) expect_true(all(run$pass)) }) test_that("runTests works with a dir app that calls modules that return reactives and use brushing", { app <- test_path("..", "test-modules", "107_scatterplot") run <- testthat::expect_output( print(runTests(app)), "Shiny App Test Results\\n\\* Success\\n - 107_scatterplot/tests/testthat\\.R" ) expect_true(all(run$pass)) }) test_that("a Shiny app object with a module inside can be tested", { counterUI <- function(id, label = "Counter") { ns <- NS(id) tagList( actionButton(ns("button"), label = label), verbatimTextOutput(ns("out")) ) } counterServer <- function(id) { moduleServer( id, function(input, output, session) { count <- reactiveVal(0) observeEvent(input$button, { count(count() + 1) }) output$out <- renderText({ count() }) count } ) } ui <- fluidPage( textInput("number", "A number"), textOutput("numberDoubled"), counterUI("counter1", "Counter counterUI("counter2", "Counter ) server <- function(input, output, session) { counterServer("counter1") counterServer("counter2") doubled <- reactive( { as.integer(input$number) * 2 }) output$numberDoubled <- renderText({ doubled() }) } app <- shinyApp(ui, server) testServer(app, { session$setInputs(number = "42") expect_equal(doubled(), 84) }) }) test_that("It's an error to pass arguments to a server", { expect_error(testServer(test_path("..", "test-modules", "06_tabsets"), {}, args = list(an_arg = 123))) })
`scores.pcnm` <- function(x, choices, ...) { if (missing(choices)) x$vectors else x$vectors[, choices] }
tri2nb <- function(coords, row.names = NULL) { if (inherits(coords, "SpatialPoints")) { if (!is.na(is.projected(coords)) && !is.projected(coords)) { warning("tri2nb: coordinates should be planar") } coords <- coordinates(coords) } else if (inherits(coords, "sfc")) { if (!inherits(coords, "sfc_POINT")) stop("Point geometries required") if (attr(coords, "n_empty") > 0L) stop("Empty geometries found") if (!is.na(sf::st_is_longlat(coords)) && sf::st_is_longlat(coords)) warning("tri2nb: coordinates should be planar") coords <- sf::st_coordinates(coords) } n <- nrow(coords) if (n < 3) stop("too few coordinates") if (!is.null(row.names)) { if(length(row.names) != n) stop("row.names wrong length") if (length(unique(row.names)) != length(row.names)) stop("non-unique row.names given") } if (is.null(row.names)) row.names <- as.character(1:n) stopifnot(!anyDuplicated(coords)) tri <- deldir::deldir(x=coords[,1], y=coords[,2]) from <- c(tri$delsgs[,5], tri$delsgs[,6]) to <- c(tri$delsgs[,6], tri$delsgs[,5]) df <- data.frame(from=as.integer(from), to=as.integer(to), weight=1) attr(df, "n") <- tri$n.data class(df) <- c(class(df), "spatial.neighbour") df1 <- df[order(df$from),] nb <- sn2listw(df1)$neighbours attr(nb, "region.id") <- row.names class(nb) <- "nb" attr(nb, "tri") <- TRUE attr(nb, "call") <- match.call() nb <- sym.attr.nb(nb) nb }
get_random_color <- function() { r_val <- runif(1, 0, 1) g_val <- runif(1, 0, 1) b_val <- runif(1, 0, 1) alpha_val <- runif(1, 0, 1) hex_val <- rgb(r_val, g_val, b_val, alpha_val) return(hex_val) } test_that( "A participant with no graphemes is classified as invalid by check_valid_get_twcv.", { p <- Participant$new() res <- p$check_valid_get_twcv() expect_false(res$valid) expect_equal(res$reason_invalid, "no_color_responses") expect_equal(res$twcv, NA) }) test_that( "A participant with just one grapheme is classified as invalid by check_valid_get_twcv.", { p <- Participant$new() g1 <- Grapheme$new(symbol='a') g1$set_colors(c(" p$add_grapheme(g1) res <- p$check_valid_get_twcv() expect_false(res$valid) expect_equal(res$reason_invalid, "too_few_graphemes_with_complete_responses") expect_equal(res$twcv, NA) }) test_that( "A participant with two graphemes, of which one includes an NA response color, is classified as invalid by check_valid_get_twcv even when min_complete_graphemes is set to 1 and complete_graphemes_only = FALSE.", { p <- Participant$new() g1 <- Grapheme$new(symbol='a') g1$set_colors(c(" g2 <- Grapheme$new(symbol='b') g2$set_colors(c(" p$add_graphemes(list(g1, g2)) res <- p$check_valid_get_twcv( min_complete_graphemes = 1, complete_graphemes_only = FALSE ) expect_false(res$valid) expect_equal(res$reason_invalid, "hi_prop_tight_cluster") expect_equal(res$twcv, 0) }) test_that( "A participant with 20 graphemes of same color is classified as invalid by check_valid_get_twcv.", { p <- Participant$new() for (l in LETTERS[1:20]) { g <- Grapheme$new(symbol=l) g$set_colors(c(" p$add_grapheme(g) } res <- p$check_valid_get_twcv() expect_false(res$valid) expect_equal(res$reason_invalid, "few_clusters_low_twcv") expect_equal(res$twcv, 0) } ) test_that( "A participant with 20 graphemes, with 3 responses each, of wildly varying (randomly generated) colors is classified as valid." , { p <- Participant$new() for (l in LETTERS[1:20]) { g <- Grapheme$new(symbol=l) g$set_colors(c(get_random_color(), get_random_color(), get_random_color()), "Luv") p$add_grapheme(g) } res <- p$check_valid_get_twcv() expect_true(res$valid) expect_equal(res$reason_invalid, "") expect_gt(res$twcv, 500) } ) test_that( "check_valid_get_twcv: A participant with: 15 graphemes, with 2 responses each of wildly varying (randomly generated) colors, and 8 graphemes of the same color is classified as invalid when 'complete_graphemes_only = TRUE' (default)." , { p <- Participant$new() for (l in LETTERS[1:15]) { g <- Grapheme$new(symbol=l) g$set_colors(c(get_random_color(), get_random_color(), NA), "Luv") p$add_grapheme(g) } for (l in LETTERS[16:23]) { g <- Grapheme$new(symbol=l) g$set_colors(c(" p$add_grapheme(g) } res <- p$check_valid_get_twcv() expect_false(res$valid) expect_equal(res$reason_invalid, "hi_prop_tight_cluster") expect_lt(res$twcv, 50) expect_equal(res$num_clusters, 1) } ) test_that( "check_valid_get_twcv: A participant with: 15 graphemes, with 2 responses each of wildly varying (randomly generated) colors, and 8 graphemes of the same color is classified as valid when 'complete_graphemes_only = FALSE'." , { p <- Participant$new() for (l in LETTERS[1:15]) { g <- Grapheme$new(symbol=l) g$set_colors(c(get_random_color(), get_random_color(), NA), "Luv") p$add_grapheme(g) } for (l in LETTERS[16:23]) { g <- Grapheme$new(symbol=l) g$set_colors(c(" p$add_grapheme(g) } res <- p$check_valid_get_twcv(complete_graphemes_only = FALSE) expect_true(res$valid) expect_equal(res$reason_invalid, "") expect_gt(res$twcv, 200) expect_gt(res$num_clusters, 1) } )
save_models <- function(x, filename = "models.RDS", sanitize_phi = TRUE) { if (sanitize_phi) { attr(x, "recipe")$template <- NULL attr(x, "recipe")$orig_data <- NULL } else { message("The model object being saved contains training data, minus ", "ignored ID columns.\nIf there was PHI in training data, normal ", "PHI protocols apply to the RDS file.") } saveRDS(x, filename) return(invisible(NULL)) } load_models <- function(filename) { if (missing(filename)) { filename <- file.choose() mes <- paste0('Loading models. You could automate this with `load_models("', filename, '")`') message(mes) } x <- readRDS(filename) attr(x, "loaded_from_rds") <- filename if (!is.null(attr(x, "recipe")$template) | !is.null(attr(x, "recipe")$orig_data)) message("*** If there was PHI in training data, normal PHI protocols apply", " to this model object. ***") return(x) }
expected <- eval(parse(text="NA_complex_")); test(id=0, code={ argv <- eval(parse(text="list(structure(list(c0 = structure(integer(0), .Label = character(0), class = \"factor\")), .Names = \"c0\", row.names = character(0), class = \"data.frame\"), structure(list(c0 = structure(integer(0), .Label = character(0), class = \"factor\")), .Names = \"c0\", row.names = character(0), class = \"data.frame\"))")); do.call(`as.complex`, argv); }, o=expected);
rm(list=ls()) setwd("C:/Users/Tom/Documents/Kaggle/Santander/Data") library(data.table) library(bit64) smallFraction <- 0.1 set.seed(14) train <- fread("train_ver2.csv") test <- fread("test_ver2.csv") sampleSubmission <- fread("sample_submission.csv") setkey(train, ncodpers) setkey(test, ncodpers) setkey(sampleSubmission, ncodpers) table(train[[11]]) table(train[[12]]) table(train[[16]]) table(test[[11]]) table(test[[12]]) table(test[[16]]) numIdsTrain <- !train[[12]] %in% c("", "P") train[[12]][numIdsTrain] <- as.numeric(train[[12]][numIdsTrain]) table(train[[12]]) test[[12]] <- as.character(test[[12]]) train$fecha_dato <- as.Date(train$fecha_dato, format="%Y-%m-%d") test$fecha_dato <- as.Date(test$fecha_dato, format="%m/%d/%Y") train$fecha_alta <- as.Date(train$fecha_alta, format="%Y-%m-%d") test$fecha_alta <- as.Date(test$fecha_alta, format="%m/%d/%Y") train$ult_fec_cli_1t <- as.Date(train$ult_fec_cli_1t, format="%Y-%m-%d") test$ult_fec_cli_1t <- as.Date(test$ult_fec_cli_1t, format="%m/%d/%Y") table(train$canal_entrada) train$canal_entrada[!is.na(as.numeric(train$canal_entrada))] <- suppressWarnings( as.numeric(train$canal_entrada[!is.na(as.numeric(train$canal_entrada))]) ) table(train$canal_entrada) nbTestCol <- ncol(test) sameTrainTestClass <- sapply(test, class) == sapply(train[, 1:nbTestCol, with=FALSE], class) table(sameTrainTestClass) if(any(!sameTrainTestClass)) browser() uniqueCustomers <- sort(unique(train$ncodpers)) randomCustomers <- sample(uniqueCustomers, round(length(uniqueCustomers)*smallFraction)) trainSmallRandom <- train[ncodpers %in% randomCustomers,] testSmallRandom <- test[ncodpers %in% randomCustomers,] cutoffNcodpers <- uniqueCustomers[round(length(uniqueCustomers)*smallFraction)] trainSmallOrdered <- train[ncodpers <= cutoffNcodpers,] testSmallOrdered <- test[ncodpers <= cutoffNcodpers,] saveRDS(train, file.path(getwd(), "train.rds")) saveRDS(test, file.path(getwd(), "test.rds")) saveRDS(trainSmallRandom, file.path(getwd(), "trainSmallRandom.rds")) saveRDS(testSmallRandom, file.path(getwd(), "testSmallRandom.rds")) saveRDS(trainSmallOrdered, file.path(getwd(), "trainSmallOrdered.rds")) saveRDS(testSmallOrdered, file.path(getwd(), "testSmallOrdered.rds"))
ptree_y <- function(newtree, node_id) { p <- predict_party(newtree, node_id)[[1]] return(p) }
renderWebGL <- function(expr, width="auto", height="auto", env = parent.frame(), quoted = FALSE){ func <- exprToFunction(expr, env, quoted) return(function(shinysession, name, ...) { open3d(useNULL = TRUE) func() prefix <- "gl_output_" if (width == "auto") width <- shinysession$clientData[[paste(prefix, name, "_width", sep = "")]] if (height == "auto") height <- shinysession$clientData[[paste(prefix, name, "_height", sep = "")]] if (is.null(width) || is.null(height) || width <= 0 || height <= 0) return(NULL) if (is.null(width) || !is.numeric(width)){ stop("Can't support non-numeric width parameter. 'width' must be in px.") } if (is.null(height) || !is.numeric(height)){ stop("Can't support non-numeric height parameter. 'height' must be in px.") } zoom <- isolate(shinysession$clientData[[paste(prefix, name, "_zoom", sep="")]]) fov <- isolate(shinysession$clientData[[paste(prefix, name, "_fov", sep="")]]) pan <- isolate(shinysession$clientData[[paste(prefix, name, "_pan", sep="")]]) if (!is.null(zoom)){ par3d(zoom = zoom) } if (!is.null(fov)){ par3d(FOV=fov) } if (!is.null(pan)){ mat <- matrix(pan, ncol=4) par3d(userMatrix=mat) } id <- paste(sample(c(letters, LETTERS), 10), collapse="") tempDir <- paste(tempdir(), "/", id, "/", sep="") tempFile <- file(file.path(tempdir(), paste(id,".html", sep="")), "w"); writeLines(paste("%", id, "WebGL%", sep=""), tempFile) close(tempFile) writeWebGL(dir=tempDir, snapshot= FALSE, template=file.path(tempdir(),paste(id,'.html', sep="")), height=height, width=width, prefix=id) lines <- readLines(paste(tempDir, "/index.html", sep="")) lines <- lines[-1] unlink(tempDir, recursive=TRUE) unlink(paste(tempdir(), id,".html", sep="")) rgl.close() toRet <- paste(lines, collapse="\n") return(list(prefix=id,html=HTML(toRet))) }) }
iedb_arb_mhcii_nmer <- function(clas) { i1=1 i2=length(dir(pattern=".Rdata")) for(i in i1:i2) { load(dir(pattern=".Rdata")[i]) temp=ls(pattern=clas) temp2=lapply(temp,function(x) {tempm=get(x); lapply(tempm,function(x) {x@Core_Sequence} ) } ) org=NULL;for(j in 1:length(temp)){org=append(org,strsplit(temp[j],split="_",fixed=T)[[1]][1])} rv=which(org=="mtbh37rv") temp4=NULL; for(k in 1:length(temp2[[rv]])){for(l in 1:length(temp2)){temp4=c(temp4, length(intersect(temp2[[l]],temp2[[rv]][k])))}} temp5=matrix(temp4, nrow=length(temp2[[rv]]), ncol=length(temp), byrow=T) check1 = strsplit(temp,"_", fixed = TRUE);check2 = unlist(lapply(check1, function(x){return(x[1])})); colnames(temp5)= check2 epitope_seq= as.matrix(temp2[[rv]],ncol=1,byrow=T) gi_number=as.matrix(strsplit(temp[rv],split="epitopes",fixed=T)[[1]][2],ncol=1,byrow=T) orthologs=as.matrix(length(temp)-1,ncol=1,byrow=T) epitope_length=NULL;for(i in 1:length(get(temp[rv]))) {epitope_length=append(epitope_length,get(temp[rv])[[i]]@epitope_length)} class=as.matrix("iedb_arb_mhcii",ncol=1,byrow=T); allele=unlist(lapply(get(temp[rv]),function(x){x@Allele})) conservation_ratio=NULL;for(m in 1:nrow(temp5)) {conservation_ratio=append(conservation_ratio,sum(temp5[m,1:ncol(temp5)])-1)} checka=unlist(lapply(get(temp[rv]),function(x){x@IC50})) temp6=as.data.frame(temp5) temp6=cbind(gi_number,checka,allele,orthologs,epitope_length,epitope_seq,conservation_ratio,class,temp6) colnames(temp6)[1:8]=c("ginumber","score","Allele","Number_of_Orthologs","Epitope_Length","Epitope_Sequence","Epitope_Conservation_Ratio","class") temp7=temp6[1:nrow(temp6),1:8] out <- data.frame(lapply(temp7, function(x) factor(unlist(x)))) metadata=cbind(as.character(out$ginumber),as.character(out$Allele),as.character(out$score),as.character(out$Epitope_Sequence),as.character(out$class),temp5) colnames(metadata)[1:5]=c("ginumber","Allele","score","Epitope_Sequence","class") write.table(out,file=paste("iedb_arb_mhcii_",strsplit(temp[rv],split="epitopes",fixed=T)[[1]][2],".txt",sep=""),sep="\t",row.names=F) write.table(metadata,file=paste("iedb_arb_mhcii_",strsplit(temp[rv],split="epitopes",fixed=T)[[1]][2],"_metadata.txt",sep=""),sep="\t",row.names=F) rm(list= ls()[!(ls() %in% c('clas'))]) } }
sigma2j_cumh <- function(arm, teval) { if (teval < 0 | teval >= arm$total_time) { stop(paste("Time of evaluation must be in the interval [0, ", arm$total_time, ").", sep="")) } stats::integrate(function(x) hsurv(x, arm) / prob_risk(arm, x), lower=0, upper=teval)$value } sigma2j_surv <- function(arm, teval) { psurv(teval, arm, lower.tail=F)^2 * sigma2j_cumh(arm, teval) } sigma2j_perc <- function(arm, perc) { teval <- qsurv(perc, arm) sigma2j_cumh(arm, teval) / hsurv(teval, arm)^2 } deltaj_rmst <- function(x, arm) { stats::integrate(function(y) psurv(y, arm, lower.tail=F), lower=0, upper=x)$value } sigma2j_rmst <- function(arm, teval) { inner <- function(x) { sapply(x, function(x1) stats::integrate(function(x2) psurv(x2, arm, lower.tail=F), lower=x1, upper=teval)$value ) } stats::integrate(function(x) inner(x)^2 * hsurv(x, arm) / prob_risk(arm, x), lower=0, upper=teval)$value } weight_wlr <- function(x, arm0, arm1, weight="1") { n <- arm0$size + arm1$size p1 <- arm1$size / n p0 <- 1 - p1 if (weight=="1") { 1 } else if (weight=="n") { n * (p0 * prob_risk(arm0, x) + p1 * prob_risk(arm1, x)) } else if (weight=="sqrtN") { sqrt( n * (p0 * prob_risk(arm0, x) + p1 * prob_risk(arm1, x)) ) } else if (grepl("FH", weight)) { weight <- strsplit(weight, "_")[[1]] p <- as.numeric(substring(weight[2], 2)) q <- as.numeric(substring(weight[3], 2)) esurv <- p0 * psurv(x, arm0) + p1 * psurv(x, arm1) esurv^p * (1-esurv)^q } else { stop("Please specify valid weight function.") } } delta_wlr <- function(arm0, arm1, weight="1", approx="asymptotic") { p1 <- arm1$size / (arm0$size + arm1$size) p0 <- 1 - p1 if (approx == "event driven") { if (sum(arm0$surv_shape != arm1$surv_shape) > 0 | length( unique(arm1$surv_scale / arm0$surv_scale) ) > 1) { stop("Hazard is not proportional over time.", call.=F) } else if (weight != "1") { stop("Weight must equal `1`.", call.=F) } theta <- c(arm0$surv_shape * log( arm1$surv_scale / arm0$surv_scale ))[1] nu <- p0 * prob_event(arm0) + p1 * prob_event(arm1) delta <- theta * p0 * p1 * nu } else if (approx == "asymptotic") { delta <- stats::integrate(function(x) weight_wlr(x, arm0, arm1, weight) * (1 / p0 / prob_risk(arm0, x) + 1 / p1 / prob_risk(arm1, x)) ^ (-1) * ( hsurv(x, arm1) - hsurv(x, arm0) ), lower=0, upper=arm0$total_time)$value } else if (approx == "generalized schoenfeld") { delta <- stats::integrate(function(x) weight_wlr(x, arm0, arm1, weight) * log( hsurv(x, arm1) / hsurv(x, arm0) ) * p0 * prob_risk(arm0, x) * p1 * prob_risk(arm1, x) / ( p0 * prob_risk(arm0, x) + p1 * prob_risk(arm1, x) )^2 * ( p0 * dens_event(arm0, x) + p1 * dens_event(arm1, x)), lower=0, upper=arm0$total_time)$value } else { stop("Please specify a valid approximation for the mean.", call.=F) } return(delta) } deltaj_wlr <- function(j, arm0, arm1, weight="1") { p1 <- arm1$size / (arm0$size + arm1$size) p0 <- 1 - p1 if (j==0) { arm <- arm0 } else { arm <- arm1 } stats::integrate(function(x) weight_wlr(x, arm0, arm1, weight) * (j - p1 * prob_risk(arm1, x) / ( p0 * prob_risk(arm0, x) + p1 * prob_risk(arm1, x) )) * (dens_event(arm, x) - prob_risk(arm, x) * ( p0 * dens_event(arm0, x) + p1 * dens_event(arm1, x) ) / ( p0 * prob_risk(arm0, x) + p1 * prob_risk(arm1, x) )), lower=0, upper=arm0$total_time)$value } sigma2_wlr <- function(arm0, arm1, weight="1", approx="asymptotic") { p1 <- arm1$size / (arm0$size + arm1$size) p0 <- 1 - p1 if (approx == "event driven") { nu <- p0 * prob_event(arm0) + p1 * prob_event(arm1) sigma2 <- p0 * p1 * nu } else if (approx %in% c("asymptotic", "generalized schoenfeld")) { sigma2 <- stats::integrate(function(x) weight_wlr(x, arm0, arm1, weight)^2 * p0 * prob_risk(arm0, x) * p1 * prob_risk(arm1, x) / ( p0 * prob_risk(arm0, x) + p1 * prob_risk(arm1, x) )^2 * ( p0 * dens_event(arm0, x) + p1 * dens_event(arm1, x)), lower=0, upper=arm0$total_time)$value } else { stop("Please specify a valid approximation for the mean.", call.=F) } return(sigma2) } sigma2j_wlr <- function(j, arm0, arm1, weight="1") { p1 <- arm1$size / (arm0$size + arm1$size) p0 <- 1 - p1 if (j==0) { arm <- arm0 } else { arm <- arm1 } inner <- function(x) { sapply(x, function(x1) stats::integrate(function(x2) weight_wlr(x2, arm0, arm1, weight) * (j - p1 * prob_risk(arm1, x2) / ( p0 * prob_risk(arm0, x2) + p1 * prob_risk(arm1, x2) )) * ( p0 * dens_event(arm0, x2) + p1 * dens_event(arm1, x2) ) / ( p0 * prob_risk(arm0, x2) + p1 * prob_risk(arm1, x2) ), lower=0, upper=x1)$value ) } sigma2jA <- stats::integrate(function(x) weight_wlr(x, arm0, arm1, weight)^2 * (j - p1 * prob_risk(arm1, x) / ( p0 * prob_risk(arm0, x) + p1 * prob_risk(arm1, x) ))^2 * dens_event(arm, x), lower=0, upper=arm0$total_time)$value sigma2jB <- -1 * deltaj_wlr(j, arm0, arm1, weight)^2 sigma2jC <- 2 * stats::integrate(function(x) inner(x) * weight_wlr(x, arm0, arm1, weight) * (j - p1 * prob_risk(arm1, x) / ( p0 * prob_risk(arm0, x) + p1 * prob_risk(arm1, x) )) * (( p0 * dens_event(arm0, x) + p1 * dens_event(arm1, x) ) / ( p0 * prob_risk(arm0, x) + p1 * prob_risk(arm1, x) ) * prob_risk(arm, x) - dens_event(arm, x)), lower=0, upper=arm0$total_time)$value sigma2jA + sigma2jB + sigma2jC } tsigma2_wlr <- function(arm0, arm1, weight="1", approx="block") { p1 <- arm1$size / (arm0$size + arm1$size) p0 <- 1 - p1 if (approx %in% c("block", "simple")) { tsigma2 <- p0 * sigma2j_wlr(0, arm0, arm1, weight) + p1 * sigma2j_wlr(1, arm0, arm1, weight) if (approx == "simple") { tsigma2 <- p0 * p1 * (deltaj_wlr(0, arm0, arm1, weight) - deltaj_wlr(1, arm0, arm1, weight))^2 + tsigma2 } } else { stop("Please specify a valid approximation for the variance.", call.=F) } return(tsigma2) } sigma2_clhr <- function(arm0, arm1) { if (sum(arm0$surv_shape!=arm1$surv_shape)>0 | length(unique(arm1$surv_scale/arm0$surv_scale))>1) { warning("Hazard is not proportional over time.") } p1 <- arm1$size / (arm0$size + arm1$size) 1 / stats::integrate(function(x) ( 1 / (1 - p1) / dens_event(arm0, x) + 1/ p1 / dens_event(arm1, x) ) ^ (-1), lower=0, upper=arm0$total_time)$value }
qlomax <- function (p, scale, shape) { .Deprecated("VGAM::qlomax", package = "surveillance") scale * ((1-p)^(-1/shape) - 1) }
ht_single_prop_theo <- function(y, success, null, alternative, y_name, show_var_types, show_summ_stats, show_res, show_eda_plot, show_inf_plot){ n <- length(y) p_hat <- sum(y == success) / n se <- sqrt(p_hat * (1 - p_hat) / n) z <- (p_hat - null) / se if(alternative == "greater"){ x_min = p_hat; x_max = Inf } if(alternative == "less"){ x_min = -Inf; x_max = p_hat } if(alternative == "twosided"){ if(p_hat >= null){ x_min = c(null - (p_hat - null), p_hat) x_max = c(-Inf, Inf) } if(p_hat <= null){ x_min = c(p_hat, null + (null - p_hat)) x_max = c(-Inf, Inf) } } if(alternative == "greater"){ p_value <- pnorm(z, lower.tail = FALSE) } if(alternative == "less"){ p_value <- pnorm(z, lower.tail = TRUE) } if(alternative == "twosided"){ p_value <- 2 * pnorm(abs(z), lower.tail = FALSE) } if(show_var_types == TRUE){ cat(paste0("Single categorical variable, success: ", success,"\n")) } if(show_summ_stats == TRUE){ cat(paste0("n = ", n, ", p-hat = ", round(p_hat, 4), "\n")) } if(show_res == TRUE){ if(alternative == "greater"){ alt_sign <- ">" } else if(alternative == "less"){ alt_sign <- "<" } else { alt_sign <- "!=" } cat(paste0("H0: p = ", null, "\n")) cat(paste0("HA: p ", alt_sign, " ", null, "\n")) p_val_to_print <- ifelse(round(p_value, 4) == 0, "< 0.0001", round(p_value, 4)) cat(paste0("z = ", round(z, 4), "\n")) cat(paste0("p_value = ", p_val_to_print)) } d_eda <- data.frame(y = y) eda_plot <- ggplot2::ggplot(data = d_eda, ggplot2::aes(x = y), environment = environment()) + ggplot2::geom_bar(fill = " ggplot2::xlab(y_name) + ggplot2::ylab("") + ggplot2::ggtitle("Sample Distribution") d_for_plot <- data.frame(x = c(null - 4*se, null + 4*se)) inf_plot <- ggplot2::ggplot(d_for_plot, ggplot2::aes_string(x = 'x')) + ggplot2::stat_function(fun = dnorm, args = list(mean = null, sd = se), color = " ggplot2::annotate("rect", xmin = x_min, xmax = x_max, ymin = 0, ymax = Inf, alpha = 0.3, fill = " ggplot2::ggtitle("Null Distribution") + ggplot2::xlab("") + ggplot2::ylab("") + ggplot2::geom_vline(xintercept = p_hat, color = " if(show_eda_plot & !show_inf_plot){ print(eda_plot) } if(!show_eda_plot & show_inf_plot){ print(inf_plot) } if(show_eda_plot & show_inf_plot){ gridExtra::grid.arrange(eda_plot, inf_plot, ncol = 2) } return(list(SE = se, z = z, p_value = p_value)) }
summary.stratEst.data <- function( object , ...){ c("stratEst.data", NextMethod()) }
FitFile <- function(conn) { header <- NA bytes_left <- NA update_bytes_left <- function(.bytes_read) { bytes_left <<- bytes_left + .bytes_read } def_mesgs <- list(mesgs = NULL, nums = NULL) def_mesg_counter <- 1 append_def_mesg <- function(def_mesg) { def_mesgs$mesgs[[def_mesg_counter]] <<- def_mesg def_mesgs$nums[[def_mesg_counter]] <<- def_mesg$local_mesg_num def_mesg_counter <<- def_mesg_counter + 1 def_mesg } fetch_def_mesg <- function(num) { def_mesgs$mesgs[[ match(num, def_mesgs$nums, nomatch = NA_integer_)]] } data_mesgs <- list() data_mesg_counter <- 1 append_data_mesg <- function(data_mesg) { data_mesgs[[data_mesg_counter]] <<- data_mesg data_mesg_counter <<- data_mesg_counter + 1 data_mesg } environment() }
accrual.T.hedging <- function(n,T,m,tm,np){ S=1000 Pgrid=seq(1:S)/S logPlike=(n*Pgrid)*log(T*Pgrid)+lgamma(n*Pgrid+m)-(n*Pgrid+m)*log(T*Pgrid+tm)-lgamma(n*Pgrid) Pdensity=exp(logPlike+100)/sum(exp(logPlike+100)) Ppost=sample(Pgrid,10000,prob=Pdensity,replace=TRUE) theta=1/rgamma(S,shape=n*Ppost+m,rate=T*Ppost+tm) simulated.duration=rep(NA,S) for (i in 1:S) { wait=rexp(np-m,1/theta[i]) simulated.duration[i]=tm+sum(wait) } P.hedging=quantile(Ppost,prob=c(0.025,0.5,0.975)) TOT.hedging=quantile(simulated.duration, prob=c(0.025, 0.5,0.975)) return(list(TOT.hedging,P.hedging,simulated.duration)) }
group.mean <- function(var, grp) { grp <- as.factor(grp) grp <- as.numeric(grp) var <- as.numeric(var) return(tapply(var, grp, mean, na.rm = TRUE)[grp]) }
context("PipeOpTargetMutate") test_that("PipeOpTargetMutate - basic properties", { expect_pipeop_class(PipeOpTargetMutate, list(id = "po")) po = PipeOpTargetMutate$new("po") expect_pipeop(po) g = Graph$new() g$add_pipeop(PipeOpTargetMutate$new()) g$add_pipeop(LearnerRegrRpart$new()) g$add_pipeop(PipeOpTargetInvert$new()) g$add_edge(src_id = "targetmutate", dst_id = "targetinvert", src_channel = 1L, dst_channel = 1L) g$add_edge(src_id = "targetmutate", dst_id = "regr.rpart", src_channel = 2L, dst_channel = 1L) g$add_edge(src_id = "regr.rpart", dst_id = "targetinvert", src_channel = 1L, dst_channel = 2L) expect_graph(g) task = mlr_tasks$get("boston_housing") task_copy = task$clone(deep = TRUE) address_in = address(task) train_out = g$train(task) expect_null(train_out[[1L]]) expect_length(g$state[[1L]], 0L) expect_length(g$state[[3L]], 0L) predict_out = g$predict(task) expect_equal(task, task_copy) expect_equal(address_in, address(task)) learner = LearnerRegrRpart$new() learner$train(task) expect_equal(learner$predict(task), predict_out[[1L]]) }) test_that("PipeOpTargetMutate - log base 2 trafo", { g = Graph$new() g$add_pipeop(PipeOpTargetMutate$new("logtrafo", param_vals = list( trafo = function(x) log(x, base = 2), inverter = function(x) list(response = 2 ^ x$response)) ) ) g$add_pipeop(LearnerRegrRpart$new()) g$add_pipeop(PipeOpTargetInvert$new()) g$add_edge(src_id = "logtrafo", dst_id = "targetinvert", src_channel = 1L, dst_channel = 1L) g$add_edge(src_id = "logtrafo", dst_id = "regr.rpart", src_channel = 2L, dst_channel = 1L) g$add_edge(src_id = "regr.rpart", dst_id = "targetinvert", src_channel = 1L, dst_channel = 2L) task = mlr_tasks$get("boston_housing") train_out = g$train(task) predict_out = g$predict(task) dat = task$data() dat$medv = log(dat$medv, base = 2) task_log = TaskRegr$new("boston_housing_log", backend = dat, target = "medv") learner = LearnerRegrRpart$new() learner$train(task_log) learner_predict_out = learner$predict(task_log) expect_equal(2 ^ learner_predict_out$truth, predict_out[[1L]]$truth) expect_equal(2 ^ learner_predict_out$response, predict_out[[1L]]$response) })
knitr::opts_chunk$set( collapse = TRUE, comment = " ) library(PupillometryR) data("pupil_data") pupil_data$ID <- as.character(pupil_data$ID) pupil_data <- subset(pupil_data, ID != 8) pupil_data$LPupil[pupil_data$LPupil == -1] <- NA pupil_data$RPupil[pupil_data$RPupil == -1] <- NA library(ggplot2) theme_set(theme_classic(base_size = 12)) Sdata <- make_pupillometryr_data(data = pupil_data, subject = ID, trial = Trial, time = Time, condition = Type) new_data <- replace_missing_data(data = Sdata) head(new_data) plot(new_data, pupil = LPupil, group = 'condition') plot(new_data, pupil = LPupil, group = 'subject') regressed_data <- regress_data(data = new_data, pupil1 = RPupil, pupil2 = LPupil) mean_data <- calculate_mean_pupil_size(data = regressed_data, pupil1 = RPupil, pupil2 = LPupil) plot(mean_data, pupil = mean_pupil, group = 'subject') mean_data <- downsample_time_data(data = mean_data, pupil = mean_pupil, timebin_size = 50, option = 'median') missing <- calculate_missing_data(mean_data, mean_pupil) head(missing) mean_data2 <- clean_missing_data(mean_data, pupil = mean_pupil, trial_threshold = .75, subject_trial_threshold = .75) filtered_data <- filter_data(data = mean_data2, pupil = mean_pupil, filter = 'median', degree = 11) plot(filtered_data, pupil = mean_pupil, group = 'subject') int_data <- interpolate_data(data = filtered_data, pupil = mean_pupil, type = 'linear') plot(int_data, pupil = mean_pupil, group = 'subject') base_data <- baseline_data(data = int_data, pupil = mean_pupil, start = 0, stop = 100) plot(base_data, pupil = mean_pupil, group = 'subject') window <- create_window_data(data = base_data, pupil = mean_pupil) plot(window, pupil = mean_pupil, windows = F, geom = 'boxplot') head(window) t.test(mean_pupil ~ Type, paired = T, data = window) timeslots <- create_time_windows(data = base_data, pupil = mean_pupil, breaks = c(0, 2000, 4000, 6000, 8000, 10000)) plot(timeslots, pupil = mean_pupil, windows = T, geom = 'raincloud') head(timeslots) lm(mean_pupil ~ Window * Type, data = timeslots) library(mgcv) base_data$IDn <- as.numeric(base_data$ID) base_data$Typen <- ifelse(base_data$Type == 'Easy', .5, -.5) base_data$Trialn <- as.numeric(substr(base_data$Trial, 5, 5)) base_data$Trialn <- ifelse(base_data$Typen == .5, base_data$Trialn, base_data$Trialn + 3) base_data$ID <- as.factor(base_data$ID) base_data$Trial <- as.factor(base_data$Trial) m1 <- bam(mean_pupil ~ s(Time) + s(Time, by = Typen), data = base_data, family = gaussian) summary(m1) plot(base_data, pupil = mean_pupil, group = 'condition', model = m1) qqnorm(resid(m1)) itsadug::acf_resid(m1) base_data$Event <- interaction(base_data$ID, base_data$Trial, drop = T) model_data <- base_data model_data <- itsadug::start_event(model_data, column = 'Time', event = 'Event') model_data <- droplevels(model_data[order(model_data$ID, model_data$Trial, model_data$Time),]) m2 <- bam(mean_pupil ~ Typen + s(Time, by = Typen) + s(Time, Event, bs = 'fs', m = 1), data = base_data, family = gaussian, discrete = T, AR.start = model_data$start.event, rho = .6) summary(m2) qqnorm(resid(m2)) itsadug::acf_resid(m2) plot(base_data, pupil = mean_pupil, group = 'condition', model = m2) differences <- create_difference_data(data = base_data, pupil = mean_pupil) plot(differences, pupil = mean_pupil, geom = 'line') spline_data <- create_functional_data(data = differences, pupil = mean_pupil, basis = 10, order = 4) plot(spline_data, pupil = mean_pupil, geom = 'line', colour = 'blue') ft_data <- run_functional_t_test(data = spline_data, pupil = mean_pupil, alpha = 0.05) plot(ft_data, show_divergence = T, colour = 'red', fill = 'orange')
rocsvm.solve <- function(K, lambda, rho = 1, eps = 1.0e-8) { N <- dim(K)[1] obj <- solve.QP(Dmat = (K + diag(rep(eps, N)))/lambda, dvec = rep(rho, N), Amat = cbind(diag(N), -diag(N)), bvec = c(rep(0, N), rep(-1, N))) value <- list(alpha = obj$solution, value = obj$value) return(value) }
calcOrigin <- function(x1, y1, x2, y2, origin, hand) { xm <- (x1 + x2)/2 ym <- (y1 + y2)/2 dx <- x2 - x1 dy <- y2 - y1 slope <- dy/dx oslope <- -1/slope tmpox <- ifelse(!is.finite(slope), xm, ifelse(!is.finite(oslope), xm + origin*(x2 - x1)/2, xm + origin*(x2 - x1)/2)) tmpoy <- ifelse(!is.finite(slope), ym + origin*(y2 - y1)/2, ifelse(!is.finite(oslope), ym, ym + origin*(y2 - y1)/2)) sintheta <- -1 ox <- xm - (tmpoy - ym)*sintheta oy <- ym + (tmpox - xm)*sintheta list(x=ox, y=oy) } interleave <- function(ncp, ncurve, val, sval, eval, e) { sval <- rep(sval, length.out=ncurve) eval <- rep(eval, length.out=ncurve) result <- matrix(NA, ncol=ncurve, nrow=ncp+1) m <- matrix(val, ncol=ncurve) for (i in 1L:ncurve) { if (e[i]) result[,i] <- c(m[,i], eval[i]) else result[,i] <- c(sval[i], m[,i]) } as.numeric(result) } calcSquareControlPoints <- function(x1, y1, x2, y2, curvature, angle, ncp, debug=FALSE) { dx <- x2 - x1 dy <- y2 - y1 slope <- dy/dx end <- (slope > 1 | (slope < 0 & slope > -1)) if (curvature < 0) end <- !end startx <- ifelse(end, x1, ifelse(abs(slope) > 1, x2 - dx, x2 - sign(slope)*dy)) starty <- ifelse(end, y1, ifelse(abs(slope) > 1, y2 - sign(slope)*dx, y2 - dy)) endx <- ifelse(end, ifelse(abs(slope) > 1, x1 + dx, x1 + sign(slope)*dy), x2) endy <- ifelse(end, ifelse(abs(slope) > 1, y1 + sign(slope)*dx, y1 + dy), y2) cps <- calcControlPoints(startx, starty, endx, endy, curvature, angle, ncp, debug) ncurve <- length(x1) cps$x <- interleave(ncp, ncurve, cps$x, startx, endx, end) cps$y <- interleave(ncp, ncurve, cps$y, starty, endy, end) list(x=cps$x, y=cps$y, end=end) } calcControlPoints <- function(x1, y1, x2, y2, curvature, angle, ncp, debug=FALSE) { xm <- (x1 + x2)/2 ym <- (y1 + y2)/2 dx <- x2 - x1 dy <- y2 - y1 slope <- dy/dx if (is.null(angle)) { angle <- ifelse(slope < 0, 2*atan(abs(slope)), 2*atan(1/slope)) } else { angle <- angle/180*pi } sina <- sin(angle) cosa <- cos(angle) cornerx <- xm + (x1 - xm)*cosa - (y1 - ym)*sina cornery <- ym + (y1 - ym)*cosa + (x1 - xm)*sina if (debug) { grid.points(cornerx, cornery, default.units="inches", pch=16, size=unit(3, "mm"), gp=gpar(col="grey")) } beta <- -atan((cornery - y1)/(cornerx - x1)) sinb <- sin(beta) cosb <- cos(beta) newx2 <- x1 + dx*cosb - dy*sinb newy2 <- y1 + dy*cosb + dx*sinb scalex <- (newy2 - y1)/(newx2 - x1) newx1 <- x1*scalex newx2 <- newx2*scalex ratio <- 2*(sin(atan(curvature))^2) origin <- curvature - curvature/ratio if (curvature > 0) hand <- "right" else hand <- "left" oxy <- calcOrigin(newx1, y1, newx2, newy2, origin, hand) ox <- oxy$x oy <- oxy$y dir <- switch(hand, left=-1, right=1) maxtheta <- pi + sign(origin*dir)*2*atan(abs(origin)) theta <- seq(0, dir*maxtheta, dir*maxtheta/(ncp + 1))[c(-1, -(ncp + 2))] costheta <- cos(theta) sintheta <- sin(theta) cpx <- ox + ((newx1 - ox) %*% t(costheta)) - ((y1 - oy) %*% t(sintheta)) cpy <- oy + ((y1 - oy) %*% t(costheta)) + ((newx1 - ox) %*% t(sintheta)) cpx <- cpx/scalex sinnb <- sin(-beta) cosnb <- cos(-beta) finalcpx <- x1 + (cpx - x1)*cosnb - (cpy - y1)*sinnb finalcpy <- y1 + (cpy - y1)*cosnb + (cpx - x1)*sinnb if (debug) { ox <- ox/scalex fox <- x1 + (ox - x1)*cosnb - (oy - y1)*sinnb foy <- y1 + (oy - y1)*cosnb + (ox - x1)*sinnb grid.points(fox, foy, default.units="inches", pch=16, size=unit(1, "mm"), gp=gpar(col="grey")) grid.circle(fox, foy, sqrt((ox - x1)^2 + (oy - y1)^2), default.units="inches", gp=gpar(col="grey")) } list(x=as.numeric(t(finalcpx)), y=as.numeric(t(finalcpy))) } cbDiagram <- function(x1, y1, x2, y2, cps) { grid.segments(x1, y1, x2, y2, gp=gpar(col="grey"), default.units="inches") grid.points(x1, y1, pch=16, size=unit(1, "mm"), gp=gpar(col="green"), default.units="inches") grid.points(x2, y2, pch=16, size=unit(1, "mm"), gp=gpar(col="red"), default.units="inches") grid.points(cps$x, cps$y, pch=16, size=unit(1, "mm"), default.units="inches", gp=gpar(col="blue")) } straightCurve <- function(x1, y1, x2, y2, arrow, debug) { if (debug) { xm <- (x1 + x2)/2 ym <- (y1 + y2)/2 cbDiagram(x1, y1, x2, y2, list(x=xm, y=ym)) } segmentsGrob(x1, y1, x2, y2, default.units="inches", arrow=arrow, name="segment") } calcCurveGrob <- function(x, debug) { x1 <- x$x1 x2 <- x$x2 y1 <- x$y1 y2 <- x$y2 curvature <- x$curvature angle <- x$angle ncp <- x$ncp shape <- x$shape square <- x$square squareShape <- x$squareShape inflect <- x$inflect arrow <- x$arrow open <- x$open x1 <- convertX(x1, "inches", valueOnly=TRUE) y1 <- convertY(y1, "inches", valueOnly=TRUE) x2 <- convertX(x2, "inches", valueOnly=TRUE) y2 <- convertY(y2, "inches", valueOnly=TRUE) if (any(x1 == x2 & y1 == y2)) stop("end points must not be identical") maxn <- max(length(x1), length(y1), length(x2), length(y2)) x1 <- rep(x1, length.out=maxn) y1 <- rep(y1, length.out=maxn) x2 <- rep(x2, length.out=maxn) y2 <- rep(y2, length.out=maxn) if (!is.null(arrow)) arrow <- rep(arrow, length.out=maxn) if (curvature == 0) { children <- gList(straightCurve(x1, y1, x2, y2, arrow, debug)) } else { if (angle < 1 || angle > 179) { children <- gList(straightCurve(x1, y1, x2, y2, arrow, debug)) } else { if (square && any(x1 == x2 | y1 == y2)) { subset <- x1 == x2 | y1 == y2 straightGrob <- straightCurve(x1[subset], y1[subset], x2[subset], y2[subset], arrow, debug) x1 <- x1[!subset] x2 <- x2[!subset] y1 <- y1[!subset] y2 <- y2[!subset] if (!is.null(arrow)) arrow <- arrow[!subset] } else { straightGrob <- NULL } ncurve <- length(x1) if (ncurve == 0) { children <- gList(straightGrob) } else { if (inflect) { xm <- (x1 + x2)/2 ym <- (y1 + y2)/2 shape1 <- rep(rep(shape, length.out=ncp), ncurve) shape2 <- rev(shape1) if (square) { cps1 <- calcSquareControlPoints(x1, y1, xm, ym, curvature, angle, ncp, debug=debug) cps2 <- calcSquareControlPoints(xm, ym, x2, y2, -curvature, angle, ncp, debug=debug) shape1 <- interleave(ncp, ncurve, shape1, squareShape, squareShape, cps1$end) shape2 <- interleave(ncp, ncurve, shape2, squareShape, squareShape, cps2$end) ncp <- ncp + 1 } else { cps1 <- calcControlPoints(x1, y1, xm, ym, curvature, angle, ncp, debug=debug) cps2 <- calcControlPoints(xm, ym, x2, y2, -curvature, angle, ncp, debug=debug) } if (debug) { cbDiagram(x1, y1, xm, ym, cps1) cbDiagram(xm, ym, x2, y2, cps2) } idset <- 1L:ncurve splineGrob <- xsplineGrob(c(x1, cps1$x, xm, cps2$x, x2), c(y1, cps1$y, ym, cps2$y, y2), id=c(idset, rep(idset, each=ncp), idset, rep(idset, each=ncp), idset), default.units="inches", shape=c(rep(0, ncurve), shape1, rep(0, ncurve), shape2, rep(0, ncurve)), arrow=arrow, open=open, name="xspline") if (is.null(straightGrob)) { children <- gList(splineGrob) } else { children <- gList(straightGrob, splineGrob) } } else { shape <- rep(rep(shape, length.out=ncp), ncurve) if (square) { cps <- calcSquareControlPoints(x1, y1, x2, y2, curvature, angle, ncp, debug=debug) shape <- interleave(ncp, ncurve, shape, squareShape, squareShape, cps$end) ncp <- ncp + 1 } else { cps <- calcControlPoints(x1, y1, x2, y2, curvature, angle, ncp, debug=debug) } if (debug) { cbDiagram(x1, y1, x2, y2, cps) } idset <- 1L:ncurve splineGrob <- xsplineGrob(c(x1, cps$x, x2), c(y1, cps$y, y2), id=c(idset, rep(idset, each=ncp), idset), default.units="inches", shape=c(rep(0, ncurve), shape, rep(0, ncurve)), arrow=arrow, open=open, name="xspline") if (is.null(straightGrob)) { children <- gList(splineGrob) } else { children <- gList(straightGrob, splineGrob) } } } } } gTree(children=children, name=x$name, gp=x$gp, vp=x$vp) } validDetails.curve <- function(x) { if ((!is.unit(x$x1) || !is.unit(x$y1)) || (!is.unit(x$x2) || !is.unit(x$y2))) stop("'x1', 'y1', 'x2', and 'y2' must be units") x$curvature <- as.numeric(x$curvature) x$angle <- x$angle %% 180 x$ncp <- as.integer(x$ncp) if (x$shape < -1 || x$shape > 1) stop("'shape' must be between -1 and 1") x$square <- as.logical(x$square) if (x$squareShape < -1 || x$squareShape > 1) stop("'squareShape' must be between -1 and 1") x$inflect <- as.logical(x$inflect) if (!is.null(x$arrow) && !inherits(x$arrow, "arrow")) stop("'arrow' must be an arrow object or NULL") x$open <- as.logical(x$open) x } makeContent.curve <- function(x) { calcCurveGrob(x, x$debug) } xDetails.curve <- function(x, theta) { cg <- calcCurveGrob(x, FALSE) if (length(cg$children) == 1) xDetails(cg$children[[1]], theta) else xDetails(cg, theta) } yDetails.curve <- function(x, theta) { cg <- calcCurveGrob(x, FALSE) if (length(cg$children) == 1) yDetails(cg$children[[1]], theta) else yDetails(cg, theta) } widthDetails.curve <- function(x) { cg <- calcCurveGrob(x, FALSE) if (length(cg$children) == 1) widthDetails(cg$children[[1]]) else widthDetails(cg) } heightDetails.curve <- function(x) { cg <- calcCurveGrob(x, FALSE) if (length(cg$children) == 1) heightDetails(cg$children[[1]]) else heightDetails(cg) } curveGrob <- function(x1, y1, x2, y2, default.units="npc", curvature=1, angle=90, ncp=1, shape=0.5, square=TRUE, squareShape=1, inflect=FALSE, arrow=NULL, open=TRUE, debug=FALSE, name=NULL, gp=gpar(), vp=NULL) { if (!is.unit(x1)) x1 <- unit(x1, default.units) if (!is.unit(y1)) y1 <- unit(y1, default.units) if (!is.unit(x2)) x2 <- unit(x2, default.units) if (!is.unit(y2)) y2 <- unit(y2, default.units) gTree(x1=x1, y1=y1, x2=x2, y2=y2, curvature=curvature, angle=angle, ncp=ncp, shape=shape, square=square, squareShape=squareShape, inflect=inflect, arrow=arrow, open=open, debug=debug, name=name, gp=gp, vp=vp, cl="curve") } grid.curve <- function(...) { grid.draw(curveGrob(...)) } arcCurvature <- function(theta) { if (theta < 1 || theta > 359) return(0) angle <- 0.5*theta/180*pi 1/sin(angle) - 1/tan(angle) }
.abs<-function(x){ return (abs(x[!is.na(x)])) } data.Normalization<-function (x, type = "n0", normalization = "column", ...) { bycolumn = T if (normalization == "row") bycolumn = F if (is.vector(x) && !is.list(x)) { if (is.numeric(resul <- x)) { resul <- switch(type, n0 = x, n1 = (x - mean(x, ...))/sd(x, ...), n2 = (x - median(x, ...))/mad(x, ...), n3 = (x - mean(x, ...))/(max(x, ...) - min(x, ...)), n3a = (x - median(x, ...))/(max(x, ...) - min(x, ...)), n4 = (x - min(x, ...))/(max(x, ...) - min(x, ...)), n5 = (x - mean(x, ...))/(max(.abs((x) - mean(x, ...)))), n5a = (x - median(x, ...))/(max(.abs((x) - median(x, ...)))), n6 = x/sd(x, ...), n6a = x/mad(x, ...), n7 = x/(max(x, ...) - min(x, ...)), n8 = x/max(x, ...), n9 = x/mean(x, ...), n9a = x/median(x, ...), n10 = x/sum(x, ...), n11 = x/(sum(x^2, ...)^0.5), n12 = (x - mean(x, ...))/(sum((x - mean(x, ...))^2, ...)^0.5), n12a = (x - median(x, ...))/(sum((x - median(x, ...))^2, ...)^0.5), n13 = (x - ((max(x, ...) + min(x, ...))/2))/((max(x, ...) - min(x, ...))/2)) params <- switch(type, n0 = c(0, 1), n1 = c(mean(x, ...), sd(x, ...)), n2 = c(median(x, ...), mad(x, ...)), n3 = c(mean(x, ...), max(x, ...) - min(x, ...)), n3a = c(median(x, ...), max(x, ...) - min(x, ...)), n4 = c(min(x, ...), max(x, ...) - min(x, ...)), n5 = c(mean(x, ...), max(.abs((x) - mean(x, ...)))), n5a = c((median(x, ...)), (max(.abs((x) - median(x, ...))))), n6 = c(0, sd(x, ...)), n6a = c(0, mad(x, ...)), n7 = c(0, (max(x, ...) - min(x, ...))), n8 = c(0, max(x, ...)), n9 = c(0/mean(x, ...)), n9a = c(0/median(x, ...)), n10 = c(0/sum(x, ...)), n11 = c(0, (sum(x^2, ...)^0.5)), n12 = c((mean(x, ...)), (sum((x - mean(x, ...))^2, ...)^0.5)), n12a = c((median(x, ...)), (sum((x - median(x, ...))^2, ...)^0.5)), n13 = c((((max(x, ...) + min(x, ...))/2)), ((max(x, ...) - min(x, ...))/2))) center <- params[1] scale <- params[2] } else warning("Data not numeric, normalization not applicable") names(resul) <- names(x) } else if (is.data.frame(x)) { resul <- NULL params <- NULL if (bycolumn) { for (nn in names(x)) { if (is.numeric(x[, nn])) { resul <- switch(type, n0 = cbind(resul, (x[, nn])), n1 = cbind(resul, (x[, nn] - mean(x[, nn], ...))/(sd(x[, nn], ...))), n2 = cbind(resul, (x[, nn] - median(x[, nn], ...))/(mad(x[, nn], ...))), n3 = cbind(resul, (x[, nn] - mean(x[, nn], ...))/(max(x[, nn], ...) - min(x[, nn], ...))), n3a = cbind(resul, (x[, nn] - median(x[, nn], ...))/(max(x[, nn], ...) - min(x[, nn], ...))), n4 = cbind(resul, (x[, nn] - min(x[, nn], ...))/(max(x[, nn], ...) - min(x[, nn], ...))), n5 = cbind(resul, (x[, nn] - mean(x[, nn], ...))/(max(.abs(x[, nn] - mean(x[, nn], ...))))), n5a = cbind(resul, (x[, nn] - median(x[, nn], ...))/(max(.abs(x[, nn] - median(x[, nn], ...))))), n6 = cbind(resul, (x[, nn])/sd(x[, nn], ...)), n6a = cbind(resul, (x[, nn])/mad(x[, nn], ...)), n7 = cbind(resul, (x[, nn])/(max(x[, nn], ...) - min(x[, nn], ...))), n8 = cbind(resul, (x[, nn])/(max(x[, nn], ...))), n9 = cbind(resul, (x[, nn])/(mean(x[, nn], ...))), n9a = cbind(resul, (x[, nn])/(median(x[, nn], ...))), n10 = cbind(resul, (x[, nn])/(sum(x[, nn], ...))), n11 = cbind(resul, (x[, nn])/(sum(x[, nn]^2, ...)^0.5)), n12 = cbind(resul, (x[, nn] - mean(x[, nn], ...))/(sum((x[, nn] - mean(x[, nn], ...))^2, ...)^0.5)), n12a = cbind(resul, (x[, nn] - median(x[, nn], ...))/(sum((x[, nn] - median(x[, nn], ...))^2, ...)^0.5)), n13 = cbind(resul, (x[, nn] - ((max(x[, nn], ...) + min(x[, nn], ...))/2))/((max(x[, nn], ...) - min(x[, nn], ...))/2))) p <- switch(type, n0 = c(0, 1), n1 = c((mean(x[, nn], ...)), (sd(x[, nn], ...))), n2 = c(median(x[, nn], ...), (mad(x[, nn], ...))), n3 = c((mean(x[, nn], ...)), (max(x[, nn], ...) - min(x[, nn], ...))), n3a = c(median(x[, nn], ...), (max(x[, nn], ...) - min(x[, nn], ...))), n4 = c((min(x[, nn], ...)), (max(x[, nn], ...) - min(x[, nn], ...))), n5 = c((mean(x[, nn], ...)), (max(.abs(mean(x[, nn], ...))))), n5a = c((x[, nn] - median(x[, nn], ...)), (max(.abs(median(x[, nn], ...))))), n6 = c(0, sd(x[, nn], ...)), n6a = c((0), mad(x[, nn], ...)), n7 = c(0, max(x[, nn], ...) - min(x[, nn], ...)), n8 = c(0, (max(x[, nn], ...))), n9 = c(0, mean(x[, nn], ...)), n9a = c(0, median(x[, nn], ...)), n10 = c(0, sum(x[, nn], ...)), n11 = c(0, (sum(x[, nn]^2, ...)^0.5)), n12 = c((mean(x[, nn], ...)), (sum((mean(x[, nn], ...))^2, ...)^0.5)), n12a = c(median(x[, nn], ...), (sum((x[, nn] - median(x[, nn], ...))^2, ...)^0.5)), n13 = c(((max(x[, nn], ...) + min(x[, nn], ...))/2), ((max(x[, nn], ...) - min(x[, nn], ...))/2))) params <- cbind(params, p) } else { resul <- cbind(resul, x[, nn], ...) params <- cbind(params, c(NA, NA)) warning("Data not numeric, normalization not applicable") } } center <- params[1, ] scale <- params[2, ] } else { for (nn in 1:nrow(x)) { if (sum(is.na(as.numeric((x[nn, ])))) == 0) { resul <- switch(type, n0 = rbind(resul, (x[nn, ])), n1 = rbind(resul, (x[nn, ] - mean(as.numeric(x[nn, ], ...)))/(sd(as.numeric(x[nn, ], ...)))), n2 = rbind(resul, (x[nn, ] - median(as.numeric(x[nn, ], ...)))/(mad(as.numeric(x[nn, ], ...)))), n3 = rbind(resul, (x[nn, ] - mean(as.numeric(x[nn, ], ...)))/(max(as.numeric(x[nn, ], ...)) - min(as.numeric(x[nn, ], ...)))), n3a = rbind(resul, (x[nn, ] - median(as.numeric(x[nn, ], ...)))/(max(as.numeric(x[nn, ], ...)) - min(as.numeric(x[nn, ], ...)))), n4 = rbind(resul, (x[nn, ] - min(as.numeric(x[nn, ], ...)))/(max(as.numeric(x[nn, ], ...)) - min(as.numeric(x[nn, ], ...)))), n5 = rbind(resul, (x[nn, ] - mean(as.numeric(x[nn, ], ...)))/(max(.abs(as.numeric(x[nn, ], ...) - mean(as.numeric(x[nn, ], ...)))))), n5a = rbind(resul, (x[nn, ] - median(as.numeric(x[nn, ], ...)))/(max(.abs(as.numeric(x[nn, ], ...) - median(as.numeric(x[nn, ], ...)))))), n6 = rbind(resul, (x[nn, ])/sd(as.numeric(x[nn, ], ...))), n6a = rbind(resul, (x[nn, ])/mad(as.numeric(x[nn, ], ...))), n7 = rbind(resul, (x[nn, ])/(max(as.numeric(x[nn, ], ...)) - min(as.numeric(x[nn, ], ...)))), n8 = rbind(resul, (x[nn, ])/(max(as.numeric(x[nn, ], ...)))), n9 = rbind(resul, (x[nn, ])/(mean(as.numeric(x[nn, ], ...)))), n9a = rbind(resul, (x[nn, ])/(median(as.numeric(x[nn, ], ...)))), n10 = rbind(resul, (x[nn, ])/(sum(as.numeric(x[nn, ], ...)))), n11 = rbind(resul, (x[nn, ])/(sum(as.numeric(x[nn, ])^2, ...)^0.5)), n12 = rbind(resul, (x[nn, ] - mean(as.numeric(x[nn, ], ...)))/(sum((as.numeric(x[nn, ], ...) - mean(as.numeric(x[nn, ], ...)))^2, ...)^0.5)), n12a = rbind(resul, (x[nn, ] - median(as.numeric(x[nn, ], ...)))/(sum((as.numeric(x[nn, ]) - median(as.numeric(x[nn, ], ...)))^2, ...)^0.5)), n13 = rbind(resul, (x[nn, ] - ((max(as.numeric(x[nn, ], ...)) + min(as.numeric(x[nn, ], ...)))/2))/((max(as.numeric(x[nn, ], ...)) - min(as.numeric(x[nn, ], ...)))/2))) p <- switch(type, n0 = c(0, 1), n1 = c(mean(x[nn, ], ...), (sd(x[nn, ], ...))), n2 = c(median(x[nn, ], ...), (mad(x[nn, ], ...))), n3 = c((mean(x[nn, ], ...)), (max(x[nn, ], ...) - min(x[nn, ], ...))), n3a = c(median(x[nn, ], ...), (max(x[nn, ], ...) - min(x[nn, ], ...))), n4 = c((min(x[nn, ], ...)), (max(x[nn, ], ...) - min(x[nn, ], ...))), n5 = c((mean(x[nn, ], ...)), (max(.abs(mean(x[nn, ], ...))))), n5a = c((x[nn, ] - median(x[nn, ], ...)), (max(.abs(median(x[nn, ], ...))))), n6 = c(0, sd(x[nn, ], ...)), n6a = c((0), mad(x[nn, ], ...)), n7 = c(0, max(x[nn, ], ...) - min(x[nn, ], ...)), n8 = c(0, max(x[nn, ], ...)), n9 = c(0, mean(x[nn, ], ...)), n9a = c(0, median(x[nn, ], ...)), n10 = c(0, sum(x[nn, ], ...)), n11 = c(0, (sum(x[nn, ]^2, ...)^0.5)), n12 = c((mean(x[nn, ], ...)), (sum((mean(x[nn, ], ...))^2, ...)^0.5)), n12a = c(median(x[nn, ], ...), (sum((x[nn, ] - median(x[nn, ], ...))^2, ...)^0.5)), n13 = c(((max(x[nn, ], ...) + min(x[nn, ], ...))/2), ((max(x[nn, ], ...) - min(x[nn, ], ...))/2))) params <- cbind(params, p) } else { resul <- rbind(resul, x[nn, ]) params <- cbind(params, c(NA, NA)) warning("Data not numeric, normalization not applicable") } } } resul <- data.frame(resul) center <- params[1, ] scale <- params[2, ] names(resul) <- names(x) row.names(resul) <- row.names(x) if (bycolumn) { if (!is.null(dimnames(x)[[2]])) { names(center) <- dimnames(x)[[2]] names(scale) <- dimnames(x)[[2]] } else { names(center) <- 1:ncol(x) names(scale) <- 1:ncol(x) } } else { if (!is.null(dimnames(x)[[1]])) { names(center) <- dimnames(x)[[1]] names(scale) <- dimnames(x)[[1]] } else { names(center) <- 1:nrow(x) names(scale) <- 1:nrow(x) } } } else if (is.matrix(x)) { if (is.numeric(resul <- x)) { params <- NULL resul <- NULL if (bycolumn) { for (i in 1:ncol(x)) { resul <- switch(type, n0 = cbind(resul, (x[, i])), n1 = cbind(resul, (x[, i] - mean(x[, i], ...))/(sd(x[, i], ...))), n2 = cbind(resul, (x[, i] - median(x[, i], ...))/(mad(x[, i], ...))), n3 = cbind(resul, (x[, i] - mean(x[, i], ...))/(max(x[, i], ...) - min(x[, i], ...))), n3a = cbind(resul, (x[, i] - median(x[, i], ...))/(max(x[, i], ...) - min(x[, i], ...))), n4 = cbind(resul, (x[, i] - min(x[, i], ...))/(max(x[, i], ...) - min(x[, i], ...))), n5 = cbind(resul, (x[, i] - mean(x[, i], ...))/(max(.abs(x[, i] - mean(x[, i], ...))))), n5a = cbind(resul, (x[, i] - median(x[, i], ...))/(max(.abs(x[, i] - median(x[, i], ...))))), n6 = cbind(resul, (x[, i])/sd(x[, i], ...)), n6a = cbind(resul, (x[, i])/mad(x[, i], ...)), n7 = cbind(resul, (x[, i])/(max(x[, i], ...) - min(x[, i], ...))), n8 = cbind(resul, (x[, i])/(max(x[, i], ...))), n9 = cbind(resul, (x[, i])/(mean(x[, i], ...))), n9a = cbind(resul, (x[, i])/(median(x[, i], ...))), n10 = cbind(resul, (x[, i])/(sum(x[, i], ...))), n11 = cbind(resul, (x[, i])/(sum(x[, i]^2, ...)^0.5)), n12 = cbind(resul, (x[, i] - mean(x[, i], ...))/(sum((x[, i] - mean(x[, i], ...))^2, ...)^0.5)), n12a = cbind(resul, (x[, i] - median(x[, i], ...))/(sum((x[, i] - median(x[, i], ...))^2, ...)^0.5)), n13 = cbind(resul, (x[, i] - ((max(x[, i], ...) + min(x[, i], ...))/2))/((max(x[, i], ...) - min(x[, i], ...))/2))) p <- switch(type, n0 = c(0, 1), n1 = c((mean(x[, i], ...)), (sd(x[, i], ...))), n2 = c(median(x[, i], ...), (mad(x[, i], ...))), n3 = c((mean(x[, i], ...)), (max(x[, i], ...) - min(x[, i], ...))), n3a = c(median(x[, i], ...), (max(x[, i], ...) - min(x[, i], ...))), n4 = c((min(x[, i], ...)), (max(x[, i], ...) - min(x[, i], ...))), n5 = c((mean(x[, i], ...)), (max(.abs(mean(x[, i], ...))))), n5a = c((x[, i] - median(x[, i], ...)), (max(.abs(median(x[, i], ...))))), n6 = c(0, sd(x[, i], ...)), n6a = c((0), mad(x[, i], ...)), n7 = c(0, max(x[, i], ...) - min(x[, i], ...)), n8 = c(0, max(x[, i], ...)), n9 = c(0, mean(x[, i], ...)), n9a = c(0, median(x[, i], ...)), n10 = c(0, sum(x[, i], ...)), n11 = c(0, (sum(x[, i]^2, ...)^0.5)), n12 = c((mean(x[, i], ...)), (sum((mean(x[, i], ...))^2, ...)^0.5)), n12a = c(median(x[, i], ...), (sum((x[, i] - median(x[, i], ...))^2, ...)^0.5)), n13 = c(((max(x[, i], ...) + min(x[, i], ...))/2), ((max(x[, i], ...) - min(x[, i], ...))/2))) params <- cbind(params, p) } } else { for (i in 1:nrow(x)) { resul <- switch(type, n0 = rbind(resul, (x[i, ])), n1 = rbind(resul, (x[i, ] - mean(x[i, ], ...))/(sd(x[i, ], ...))), n2 = rbind(resul, (x[i, ] - median(x[i, ], ...))/(mad(x[i, ], ...))), n3 = rbind(resul, (x[i, ] - mean(x[i, ], ...))/(max(x[i, ], ...) - min(x[i, ], ...))), n3a = rbind(resul, (x[i, ] - median(x[i, ], ...))/(max(x[i, ], ...) - min(x[i, ], ...))), n4 = rbind(resul, (x[i, ] - min(x[i, ], ...))/(max(x[i, ], ...) - min(x[i, ], ...))), n5 = rbind(resul, (x[i, ] - mean(x[i, ], ...))/(max(.abs(x[i, ] - mean(x[i, ], ...))))), n5a = rbind(resul, (x[i, ] - median(x[i, ], ...))/(max(.abs(x[i, ] - median(x[i, ], ...))))), n6 = rbind(resul, (x[i, ])/sd(x[i, ], ...)), n6a = rbind(resul, (x[i, ])/mad(x[i, ], ...)), n7 = rbind(resul, (x[i, ])/(max(x[i, ], ...) - min(x[i, ], ...))), n8 = rbind(resul, (x[i, ])/(max(x[i, ], ...))), n9 = rbind(resul, (x[i, ])/(mean(x[i, ], ...))), n9a = rbind(resul, (x[i, ])/(median(x[i, ], ...))), n10 = rbind(resul, (x[i, ])/(sum(x[i, ], ...))), n11 = rbind(resul, (x[i, ])/(sum(x[i, ]^2, ...)^0.5)), n12 = rbind(resul, (x[i, ] - mean(x[i, ], ...))/(sum((x[i, ] - mean(x[i, ], ...))^2, ...)^0.5)), n12a = rbind(resul, (x[i, ] - median(x[i, ], ...))/(sum((x[i, ] - median(x[i, ], ...))^2, ...)^0.5)), n13 = rbind(resul, (x[i, ] - ((max(x[i, ], ...) + min(x[i, ], ...))/2))/((max(x[i, ], ...) - min(x[i, ], ...))/2))) p <- switch(type, n0 = c(0, 1), n1 = c(mean(x[i], ...), sd(x[i, ], ...)), n2 = c(median(x[i, ], ...), (mad(x[i, ], ...))), n3 = c((mean(x[i, ], ...)), (max(x[i, ], ...) - min(x[i, ], ...))), n3a = c(median(x[i, ], ...), (max(x[i, ], ...) - min(x[i, ], ...))), n4 = c((min(x[i, ], ...)), (max(x[i, ], ...) - min(x[i, ], ...))), n5 = c((mean(x[i, ], ...)), (max(.abs(mean(x[i, ], ...))))), n5a = c((x[i, ] - median(x[i, ], ...)), (max(.abs(median(x[i, ], ...))))), n6 = c(0, sd(x[i, ], ...)), n6a = c((0), mad(x[i, ], ...)), n7 = c(0, max(x[i, ], ...) - min(x[i, ], ...)), n8 = c(0, max(x[i, ], ...)), n9 = c(0, mean(x[i, ], ...)), n9a = c(0, median(x[i, ], ...)), n10 = c(0, sum(x[i, ], ...)), n11 = c(0, (sum(x[i, ]^2, ...)^0.5)), n12 = c((mean(x[i, ], ...)), (sum((mean(x[i, ], ...))^2, ...)^0.5)), n12a = c(median(x[i, ], ...), (sum((x[i, ] - median(x[i, ], ...))^2, ...)^0.5)), n13 = c(((max(x[i, ], ...) + min(x[i, ], ...))/2), ((max(x[i, ], ...) - min(x[i, ], ...))/2))) params <- cbind(params, p) } } center <- params[1, ] scale <- params[2, ] if (bycolumn) { if (!is.null(dimnames(x)[[2]])) { names(center) <- dimnames(x)[[2]] names(scale) <- dimnames(x)[[2]] } else { names(center) <- 1:ncol(x) names(scale) <- 1:ncol(x) } } else { if (!is.null(dimnames(x)[[1]])) { names(center) <- dimnames(x)[[1]] names(scale) <- dimnames(x)[[1]] } else { names(center) <- 1:nrow(x) names(scale) <- 1:nrow(x) } } } else { warning("Data not numeric, normalization not applicable") center <- NA scale <- NA } dimnames(resul) <- dimnames(x) } else if (is.list(x)) { resul <- list(length(x)) center <- list(length(x)) scale <- list(length(x)) xx <- as.numeric(x) center <- switch(type, n0 = 0, n1 = mean(xx, ...), n2 = (median(xx, ...)), n3 = (mean(xx, ...)), n3a = (median(xx, ...)), n4 = (min(xx, ...)), n5 = (mean(xx, ...)), n5a = (median(xx, ...)), n6 = 0, n6a = 0, n7 = 0, n8 = 0, n9 = 0, n9a = 0, n10 = 0, n11 = 0, n12 = (mean(xx, ...)), n12a = (median(xx, ...)), n13 = (((max(xx, ...) + min(xx, ...))/2))) scale <- switch(type, n0 = 1, n1 = sd(xx), n2 = mad(xx, ...), n3 = (max(xx, ...) - min(xx, ...)), n3a = (max(xx, ...) - min(xx, ...)), n4 = (max(xx, ...) - min(xx, ...)), n5 = (max(.abs((xx) - mean(xx, ...)))), n5a = (max(.abs((xx) - median(xx, ...)))), n6 = sd(xx), n6a = mad(xx, ...), n7 = (max(xx, ...) - min(xx, ...)), n8 = (max(xx, ...)), n9 = (mean(xx, ...)), n9a = (median(xx, ...)), n10 = (sum(xx, ...)), n11 = (sum(xx^2, ...)^0.5), n12 = (sum((xx - mean(xx, ...))^2, ...)^0.5), n12a = (sum((xx - median(xx, ...))^2, ...)^0.5), n13 = ((max(xx, ...) - min(xx, ...))/2)) for (i in 1:length(x)) if (is.numeric(resul[[i]] <- x[[i]])) { resul[[i]] <- switch(type, n0 = x[[i]], n1 = (x[[i]] - mean(xx, ...))/sd(xx), n2 = (x[[i]] - median(xx, ...))/mad(xx, ...), n3 = (x[[i]] - mean(xx, ...))/(max(xx, ...) - min(xx, ...)), n3a = (x[[i]] - median(xx, ...))/(max(xx, ...) - min(xx, ...)), n4 = (x[[i]] - min(xx, ...))/(max(xx, ...) - min(xx, ...)), n5 = (x[[i]] - mean(xx, ...))/(max(.abs((xx) - mean(xx, ...)))), n5a = (x[[i]] - median(xx, ...))/(max(.abs((xx) - median(xx, ...)))), n6 = x[[i]]/sd(xx), n6a = x[[i]]/mad(xx, ...), n7 = x[[i]]/(max(xx, ...) - min(xx, ...)), n8 = x[[i]]/(max(xx, ...)), n9 = x[[i]]/(mean(xx, ...)), n9a = x[[i]]/(median(xx, ...)), n10 = x[[i]]/(sum(xx, ...)), n11 = x[[i]]/(sum(xx^2, ...)^0.5), n12 = (x[[i]] - mean(xx, ...))/(sum((xx - mean(xx, ...))^2, ...)^0.5), n12a = (x[[i]] - median(xx, ...))/(sum((xx - median(xx, ...))^2, ...)^0.5), n13 = (x[[i]] - ((max(xx, ...) + min(xx, ...))/2))/((max(xx, ...) - min(xx, ...))/2)) } else { warning("Data not numeric, normalization not applicable") } } else if (!is.numeric(resul <- x)) { warning("Data not numeric, normalization not applicable") center <- NA scale <- NA } else stop("unknown input type") if (is.numeric(t <- x)) { if (sum(as.numeric(x) <= 0) > 0) { if (type == "n6" || type == "n6a" || type == "n7" || type == "n8" || type == "n9" || type == "n9a" || type == "n10" || type == "n11") { warning("Data for this kind of normalization should be positive") } } } attr(resul, "normalized:shift") <- center attr(resul, "normalized:scale") <- scale resul }
\dontrun{ current.mode <- tmap_mode("view") data(World, metro) tm_basemap(leaflet::providers$Stamen.Watercolor) + tm_shape(metro, bbox = "India") + tm_dots(col = "red", group = "Metropolitan areas") + tm_tiles(paste0("http://services.arcgisonline.com/arcgis/rest/services/Canvas/", "World_Light_Gray_Reference/MapServer/tile/{z}/{y}/{x}"), group = "Labels") opts <- tmap_options(basemaps = c(Canvas = "Esri.WorldGrayCanvas", Imagery = "Esri.WorldImagery"), overlays = c(Labels = paste0("http://services.arcgisonline.com/arcgis/rest/services/Canvas/", "World_Light_Gray_Reference/MapServer/tile/{z}/{y}/{x}"))) qtm(World, fill = "HPI", fill.palette = "RdYlGn") tmap_options(opts) tmap_mode(current.mode) }
datagrid_proxy <- function(shinyId, session = shiny::getDefaultReactiveDomain()) { if (is.null(session)) { stop("grid_proxy must be called from the server function of a Shiny app") } if (!is.null(session$ns) && nzchar(session$ns(NULL)) && substring(shinyId, 1, nchar(session$ns(""))) != session$ns("")) { shinyId <- session$ns(shinyId) } structure( list( session = session, id = shinyId, x = list() ), class = c("datagrid_proxy", "htmlwidgetProxy") ) } grid_proxy_add_row <- function(proxy, data) { data <- as.data.frame(data) if (is.character(proxy)) { proxy <- datagrid_proxy(proxy) } .call_proxy( proxy = proxy, name = "grid-add-rows", nrow = nrow(data), ncol = ncol(data), data = unname(data), colnames = names(data) ) } grid_proxy_delete_row <- function(proxy, index) { if (is.character(proxy)) { proxy <- datagrid_proxy(proxy) } .call_proxy( proxy = proxy, name = "grid-delete-rows", index = list1(as.numeric(index) - 1) ) }
library(tidyquant) get <- "economic.data" context(paste0("Testing tq_get(get = '", get, "')")) test1 <- tq_get("CPIAUCSL", get = get, from = "2016-01-01", to = "2016-06-01", adjust = TRUE, type = "splits") test2 <- tq_get("CPIAUCSL", get = get, from = "2016-01-01", to = "2016-06-01", adjust = FALSE, type = "price") test_that("Test returns tibble with correct rows and columns.", { expect_is(test1, "tbl") expect_is(test2, "tbl") expect_identical(test1, test2) expect_equal(nrow(test1), 6) expect_equal(ncol(test1), 3) }) test_that("Test prints warning message on invalid x input.", { expect_warning(tq_get("XYZ", get = get)) }) test_that("Test returns NA on invalid x input.", { expect_equal(suppressWarnings(tq_get("XYZ", get = get)), NA) })
skip_on_cran() skip_on_os(os = "windows") local_edition(3) work_path <- "./generated_r_files" if (fs::dir_exists(path = work_path)) { fs::dir_delete(path = work_path) } fs::dir_create(path = work_path) write_draft_snapshot_test <- function(dataset, file_name, tbl_name = NULL, path = work_path, lang = NULL, output_type = "R", add_comments = TRUE) { tbl <- dataset suppressMessages( expect_true( draft_validation( tbl = tbl, tbl_name = tbl_name, file_name = file_name, path = work_path, lang = lang, output_type = output_type, add_comments = add_comments, overwrite = TRUE ) ) ) path <- list.files(path = work_path, pattern = file_name, full.names = TRUE) expect_snapshot(readLines(con = path) %>% paste0(collapse = "\n")) } test_that("draft validations for data tables can be generated", { write_draft_snapshot_test(dataset = gt::countrypops, file_name = "countrypops") write_draft_snapshot_test(dataset = gt::sza, file_name = "sza") write_draft_snapshot_test(dataset = gt::gtcars, file_name = "gtcars") write_draft_snapshot_test(dataset = gt::sp500, file_name = "sp500") write_draft_snapshot_test(dataset = gt::pizzaplace, file_name = "pizzaplace") write_draft_snapshot_test(dataset = gt::exibble, file_name = "exibble") write_draft_snapshot_test(dataset = ggplot2::diamonds, file_name = "diamonds") write_draft_snapshot_test(dataset = ggplot2::economics_long, file_name = "economics_long") write_draft_snapshot_test(dataset = ggplot2::faithfuld, file_name = "faithfuld") write_draft_snapshot_test(dataset = ggplot2::luv_colours, file_name = "luv_colours") write_draft_snapshot_test(dataset = ggplot2::midwest, file_name = "midwest") write_draft_snapshot_test(dataset = ggplot2::mpg, file_name = "mpg") write_draft_snapshot_test(dataset = ggplot2::msleep, file_name = "msleep") write_draft_snapshot_test(dataset = ggplot2::presidential, file_name = "presidential") write_draft_snapshot_test(dataset = ggplot2::seals, file_name = "seals") write_draft_snapshot_test(dataset = ggplot2::txhousing, file_name = "txhousing") write_draft_snapshot_test(dataset = dplyr::band_instruments, file_name = "band_instruments") write_draft_snapshot_test(dataset = dplyr::band_members, file_name = "band_members") write_draft_snapshot_test(dataset = dplyr::starwars, file_name = "starwars") write_draft_snapshot_test(dataset = dplyr::storms, file_name = "storms") write_draft_snapshot_test(dataset = tidyr::billboard, file_name = "billboard") write_draft_snapshot_test(dataset = tidyr::construction, file_name = "construction") write_draft_snapshot_test(dataset = tidyr::fish_encounters, file_name = "fish_encounters") write_draft_snapshot_test(dataset = tidyr::population, file_name = "population") write_draft_snapshot_test(dataset = tidyr::relig_income, file_name = "relig_income") write_draft_snapshot_test(dataset = tidyr::smiths, file_name = "smiths") write_draft_snapshot_test(dataset = tidyr::us_rent_income, file_name = "us_rent_income") write_draft_snapshot_test(dataset = tidyr::who, file_name = "who") write_draft_snapshot_test(dataset = tidyr::world_bank_pop, file_name = "world_bank_pop") write_draft_snapshot_test(dataset = lubridate::lakers, file_name = "lakers") write_draft_snapshot_test(dataset = datasets::airquality, file_name = "airquality") write_draft_snapshot_test(dataset = datasets::chickwts, file_name = "chickwts") write_draft_snapshot_test(dataset = datasets::iris, file_name = "iris") write_draft_snapshot_test(dataset = datasets::LifeCycleSavings, file_name = "LifeCycleSavings") write_draft_snapshot_test(dataset = datasets::longley, file_name = "longley") write_draft_snapshot_test(dataset = datasets::morley, file_name = "morley") write_draft_snapshot_test(dataset = datasets::mtcars, file_name = "mtcars") write_draft_snapshot_test(dataset = datasets::Orange, file_name = "Orange") write_draft_snapshot_test(dataset = datasets::pressure, file_name = "pressure") write_draft_snapshot_test(dataset = datasets::quakes, file_name = "quakes") write_draft_snapshot_test(dataset = datasets::rock, file_name = "rock") write_draft_snapshot_test(dataset = datasets::swiss, file_name = "swiss") write_draft_snapshot_test(dataset = datasets::USJudgeRatings, file_name = "USJudgeRatings") }) test_that("draft validations for data tables can be generated in different languages", { write_draft_snapshot_test(dataset = pointblank::small_table, file_name = "st_en", lang = "en") write_draft_snapshot_test(dataset = pointblank::small_table, file_name = "st_fr", lang = "fr") write_draft_snapshot_test(dataset = pointblank::small_table, file_name = "st_de", lang = "de") write_draft_snapshot_test(dataset = pointblank::small_table, file_name = "st_it", lang = "it") write_draft_snapshot_test(dataset = pointblank::small_table, file_name = "st_es", lang = "es") write_draft_snapshot_test(dataset = pointblank::small_table, file_name = "st_pt", lang = "pt") write_draft_snapshot_test(dataset = pointblank::small_table, file_name = "st_tr", lang = "tr") write_draft_snapshot_test(dataset = pointblank::small_table, file_name = "st_zh", lang = "zh") write_draft_snapshot_test(dataset = pointblank::small_table, file_name = "st_ru", lang = "ru") write_draft_snapshot_test(dataset = pointblank::small_table, file_name = "st_pl", lang = "pl") write_draft_snapshot_test(dataset = pointblank::small_table, file_name = "st_da", lang = "da") write_draft_snapshot_test(dataset = pointblank::small_table, file_name = "st_sv", lang = "sv") write_draft_snapshot_test(dataset = pointblank::small_table, file_name = "st_nl", lang = "nl") }) test_that("draft validations for data tables can be generated in .Rmd format", { write_draft_snapshot_test(dataset = gt::countrypops, file_name = "countrypops_rmd", output_type = "Rmd") write_draft_snapshot_test(dataset = gt::sza, file_name = "sza_rmd", output_type = "Rmd") write_draft_snapshot_test(dataset = gt::gtcars, file_name = "gtcars_rmd", output_type = "Rmd") write_draft_snapshot_test(dataset = gt::sp500, file_name = "sp500_rmd", output_type = "Rmd") write_draft_snapshot_test(dataset = gt::pizzaplace, file_name = "pizzaplace_rmd", output_type = "Rmd") write_draft_snapshot_test(dataset = gt::exibble, file_name = "exibble_rmd", output_type = "Rmd") }) test_that("draft validations for data tables can be generated without comments", { write_draft_snapshot_test(dataset = gt::countrypops, file_name = "countrypops_no_comments", add_comments = FALSE) }) test_that("an invalid path used in `draft_validation()` will result in an error", { expect_error(draft_validation(tbl = gt::countrypops, file_name = "countrypops", path = "invalid/path")) }) test_that("a file created with `draft_validation()` cannot be overwritten by default", { suppressMessages( draft_validation(tbl = gt::countrypops, file_name = "countrypops_new", path = work_path) ) expect_error( suppressMessages( draft_validation(tbl = gt::countrypops, file_name = "countrypops_new", path = work_path) ) ) expect_error( regexp = NA, suppressMessages( draft_validation(tbl = gt::countrypops, file_name = "countrypops_new", path = work_path, overwrite = TRUE) ) ) }) test_that("messages emitted by `draft_validation()` can be quieted", { expect_message( draft_validation(tbl = gt::countrypops, file_name = "countrypops", path = work_path, overwrite = TRUE) ) expect_message( regexp = NA, draft_validation(tbl = gt::countrypops, file_name = "countrypops", path = work_path, overwrite = TRUE, quiet = TRUE) ) }) if (fs::dir_exists(path = work_path)) { fs::dir_delete(path = work_path) }
init.nii <- function(new.nii, ref.nii=NULL, dims, pixdim=NULL, orient=NULL, datatype=16, init.value=NA) { fid <- file(new.nii, "w+b") if (!is.null(ref.nii)) { dims <- info.nii(ref.nii, "xyz") pixdim <- info.nii(ref.nii, "pixdim") orient <- info.nii(ref.nii, "orient") datatype <- info.nii(ref.nii, "datatype") } else { if (is.null(pixdim)) { pixdim <- c(-1,2,2,2,1,0,0,0) } if (is.null(orient)) { orient$qform_code <- 2 orient$sform_code <- 2 orient$quatern_b <- 0 orient$quatern_c <- 1 orient$quatern_d <- 0 orient$qoffset_x <- 90 orient$qoffset_y <- -126 orient$qoffset_z <- -72 orient$srow_x <- c(-2,0,0,90) orient$srow_y <- c(0,2,0,-126) orient$srow_z <- c(0,0,2,-72) } } datatype.lut <- c(2L, 4L, 8L, 16L, 32L, 64L, 128L, 256L, 512L, 768L, 1024L, 1280L) bitpix.lut <- c(8L, 16L, 32L, 32L, 64L, 64L, 24L, 8L, 16L, 32L, 64L, 64L) idx <- which(datatype.lut == datatype) if (length(idx)==0) { stop(sprintf("Datatype %s is not supported.", datatype)) } datatype <- as.integer(datatype) bitpix <- bitpix.lut[idx] writeBin(348L, fid, size = 4) suppressWarnings(writeChar("", fid, nchars = 10, eos = NULL)) suppressWarnings(writeChar("", fid, nchars = 18, eos = NULL)) writeBin(0L, fid, size = 4) writeBin(0L, fid, size = 2) writeChar("r", fid, nchars = 1, eos = NULL) writeBin(0L, fid, size = 1) img.dims <- rep(1,8) img.dims[1] <- length(dims) img.dims[2:(1+length(dims))] <- dims writeBin(as.integer(img.dims), fid, size = 2) writeBin(as.double(0), fid, size = 4) writeBin(as.double(0), fid, size = 4) writeBin(as.double(0), fid, size = 4) writeBin(0L, fid, size = 2) writeBin(datatype, fid, size = 2) writeBin(bitpix, fid, size = 2) writeBin(1L, fid, size = 2) writeBin(as.double(pixdim), fid, size = 4) writeBin(as.double(352), fid, size = 4) writeBin(as.double(1), fid, size = 4) writeBin(as.double(0), fid, size = 4) writeBin(0L, fid, size = 2) writeBin(0L, fid, size = 1) writeBin(2L, fid, size = 1) writeBin(as.double(0), fid, size = 4) writeBin(as.double(0), fid, size = 4) writeBin(as.double(0), fid, size = 4) writeBin(as.double(0), fid, size = 4) writeBin(0L, fid, size = 4) writeBin(0L, fid, size = 4) suppressWarnings(writeChar("R_nifti_io", fid, nchars = 80, eos = NULL)) suppressWarnings(writeChar("", fid, nchars = 24, eos = NULL)) writeBin(as.integer(orient$qform_code), fid, size = 2) writeBin(as.integer(orient$sform_code), fid, size = 2) writeBin(as.double(orient$quatern_b), fid, size = 4) writeBin(as.double(orient$quatern_c), fid, size = 4) writeBin(as.double(orient$quatern_d), fid, size = 4) writeBin(as.double(orient$qoffset_x), fid, size = 4) writeBin(as.double(orient$qoffset_y), fid, size = 4) writeBin(as.double(orient$qoffset_z), fid, size = 4) writeBin(as.double(orient$srow_x), fid, size = 4) writeBin(as.double(orient$srow_y), fid, size = 4) writeBin(as.double(orient$srow_z), fid, size = 4) suppressWarnings(writeChar("0", fid, nchars = 16, eos = NULL)) suppressWarnings(writeChar("n+1", fid, nchars = 4, eos = NULL)) writeBin(c(0L,0L,0L,0L), fid, size = 1) data <- array(init.value, dim=dims[1:3]) if (length(dims==3)) { dims <- c(dims, 1) } for (i in 1:dims[4]) { switch(as.character(datatype), `2` = writeBin(as.integer(data), fid, size = bitpix/8), `4` = writeBin(as.integer(data), fid, size = bitpix/8), `8` = writeBin(as.integer(data), fid, size = bitpix/8), `16` = writeBin(as.double(data), fid, size = bitpix/8), `32` = writeBin(as.double(data), fid, size = bitpix/8), `64` = writeBin(as.double(data), fid, size = bitpix/8), `128` = writeBin(as.integer(data), fid, size = bitpix/8), `256` = writeBin(as.integer(data), fid, size = bitpix/8), `512` = writeBin(as.integer(data), fid, size = bitpix/8), `768` = writeBin(as.integer(data), fid, size = bitpix/8), `1024` = writeBin(as.integer(data), fid, size = bitpix/8), `1280` = writeBin(as.integer(data), fid, size = bitpix/8)) } close(fid) }
D_regularized <- function(data, mv.vars, group.var, group.values, alpha = 0.5, nfolds = 10, s = "lambda.min", type.measure = "deviance", rename.output = TRUE, out = FALSE, size = NULL, fold = FALSE, fold.var = NULL, pcc = FALSE, auc = FALSE, pred.prob = FALSE, prob.cutoffs = seq(0, 1, 0.20)) { if (out & fold) { D_regularized_fold_out( data = data, mv.vars = mv.vars, group.var = group.var, group.values = group.values, alpha = alpha, s = s, type.measure = type.measure, rename.output = rename.output, size = size, fold.var = fold.var, pcc = pcc, auc = auc, pred.prob = pred.prob, prob.cutoffs = prob.cutoffs ) } else if (out & !fold) { D_regularized_out( data = data, mv.vars = mv.vars, group.var = group.var, group.values = group.values, alpha = alpha, size = size, s = s, type.measure = type.measure, rename.output = rename.output, pcc = pcc, auc = auc, pred.prob = pred.prob, prob.cutoffs = prob.cutoffs ) } else if (!out & fold) { D_regularized_fold( data = data, mv.vars = mv.vars, group.var = group.var, group.values = group.values, alpha = alpha, s = s, type.measure = type.measure, rename.output = rename.output, fold.var = fold.var ) } else { D_regularized_vanilla( data = data, mv.vars = mv.vars, group.var = group.var, group.values = group.values, alpha = alpha, s = s, type.measure = type.measure, rename.output = rename.output ) } }