code
stringlengths
1
13.8M
test_that("Legacy widget html methods work", { res <- widget_html("widgetA", "htmlwidgets", id = "id", style = NULL, class = NULL) expect_identical(res$name, "canvas") }) test_that("Legacy widget html methods are warned on unexpected output type", { expect_warning( res <- widget_html("widgetB", "htmlwidgets", id = "id", style = NULL, class = NULL), "widgetB_html returned an object of class `logical` instead of a `shiny.tag`.", fixed = TRUE ) expect_identical(res, TRUE) }) test_that("New-style widget html method works, and is preferred", { res <- widget_html("widgetC", "htmlwidgets", id = "id", style = NULL, class = NULL) expect_identical( res, widget_html.widgetC("widgetC", "htmlwidgets", id = "id", style = NULL, class = NULL)) }) test_that("New-style widget html methods do not trigger warning on non-tag output", { expect_warning( res <- widget_html("widgetD", "htmlwidgets", id = "id", style = NULL, class = NULL), NA ) expect_identical(res, TRUE) }) test_that("Fallback logic still works", { res <- widget_html("does_not_exist", "htmlwidgets", id = "id", style = NULL, class = NULL) expect_identical(res, tags$div(id = "id")) }) test_that("Legacy methods work with tagList() and HTML()", { expect_warning({ widget_html("widgetE", "htmlwidgets", id = "id", style = NULL, class = NULL) widget_html("widgetF", "htmlwidgets", id = "id", style = NULL, class = NULL) }, NA) })
context("utility functions") a = 1:3 b = letters[2:9] c = 9:20 set.seed(313) expect_equal(length(recycle(a, b, c, prototype = "c")$b), length(c)) expect_equal(length(recycle(a, b, c, prototype = c)$a), length(c)) expect_equal(length(recycle(a, b, c, prototype = 5)$c), 5) expect_equal(length(recycle(a, b, c, prototype = rnorm(100))$c), 100) expect_equal(length(recycle(a, b, c)$c), max(length(a), length(b), length(c))) expect_error(recycle(a, b, c, prototype = function() NULL)) expect_error(recycle(a, b, c, prototype = "haha")) expect_error(recycle(a, b, c, prototype = -1)) x = list(a = 5, b = 0, c = "a", d = NULL) y = list(a = 3, b = 7, f = NA) expect_equal(listmerge(x, y, type = "merge")$b, 7) expect_null(listmerge(x, y, type = "template")$f, NULL) expect_equal(listmerge(x, NULL, type = "merge"), x) expect_equal(listmerge(x, list(h = "b"), type = "merge")$h, "b")
labkey.getModuleProperty <- function(baseUrl=NULL, folderPath, moduleName, propName) { baseUrl=labkey.getBaseUrl(baseUrl) if (missing(folderPath)) stop (paste("A value must be specified for folderPath.")) if (missing(moduleName)) stop (paste("A value must be specified for moduleName.")) if (missing(propName)) stop (paste("A value must be specified for propName.")) folderPath <- encodeFolderPath(folderPath) url <- paste(baseUrl, "project", folderPath, "getContainers.api", sep="") params <- list(moduleProperties=c(moduleName)) response <- labkey.post(url, toJSON(params, auto_unbox=TRUE)) if (exists("response")) { result <- (fromJSON(response)) if (is.null(result$id)) { return ("User does not have permission to perform this operation") } if (is.null(result$moduleProperties)) { return (paste("Module property does not exist for", moduleName, "module in folder", folderPath)) } moduleProperties <- result$moduleProperties for(i in 1:nrow(moduleProperties)) { row <- moduleProperties[i,] if (tolower(row$module) == tolower(moduleName) && row$name == propName) { return (row$effectiveValue) } } return (paste("Module property", propName, "does not exist for", moduleName, "module in folder", folderPath)) } return (paste("Failed to get", moduleName, "module property for folder", folderPath)) } labkey.setModuleProperty <- function(baseUrl=NULL, folderPath, moduleName, propName, propValue) { baseUrl=labkey.getBaseUrl(baseUrl) if (missing(folderPath)) stop (paste("A value must be specified for folderPath.")) if (missing(moduleName)) stop (paste("A value must be specified for moduleName.")) if (missing(propName)) stop (paste("A value must be specified for propName.")) if (missing(propValue)) stop (paste("A value must be specified for propValue.")) folderPath <- encodeFolderPath(folderPath) property <- list() property$moduleName = moduleName property$userId = 0 property$propName = propName property$value = propValue property$currentContainer = TRUE params <- list(properties=list(property)) url <- paste(baseUrl, "core", folderPath, "saveModuleProperties.api", sep="") response <- labkey.post(url, toJSON(params, auto_unbox=TRUE)) return (fromJSON(response, simplifyVector=FALSE, simplifyDataFrame=FALSE)) }
print.grm <- function (x, digits = max(3, getOption("digits") - 4), ...) { if (!inherits(x, "grm")) stop("Use only with 'grm' objects.\n") cat("\nCall:\n", paste(deparse(x$call), sep = "\n", collapse = "\n"), "\n\n", sep = "") coefs <- if (x$IRT.param) IRT.parm(x, digits.abbrv = x$control$digits.abbrv)$parms else x$coef coefs <- lapply(coefs, round, digits = digits) if (all(sapply(coefs, length) == length(coefs[[1]]))) coefs <- do.call(rbind, coefs) cat("Coefficients:\n") print(coefs, print.gap = 2, quote = FALSE) cat("\nLog.Lik:", round(x$log.Lik, digits)) cat("\n\n") invisible(x) }
symNodesI <- function(tree){ if(!inherits(tree,"phylo")) stop("The input tree must be in phylo-format.") if(!is_binary(tree)) stop("The input tree must be binary.") n <- length(tree$tip.label) if(n==1){ warning("The function might not deliver accurate results for n=1.") return(0) } Descs <- getDescMatrix(tree) Ancs <- getAncVec(tree) depthResults <- getNodesOfDepth(mat=Descs, root=n+1, n=n) worklab <- matrix(rep(NA,2*(n+tree$Nnode)), ncol = 2) inum <- rep(NA, n+tree$Nnode) for(d in depthResults$maxdepth:0){ current_Nodes <- stats::na.omit(as.vector(depthResults$nodesOfDepth[d+1,])) for(v in current_Nodes){ if(is.na(Descs[v,1])){ worklab[v,] <- c(0,0) }else{ worklab[v,] <-sort(c(inum[Descs[v,]]),decreasing = FALSE) } } inum[current_Nodes] <- symBucketLexicoSort(worklab[current_Nodes,]) } numb_symNodes <- 0 for(i in (n+1):(n+tree$Nnode)){ if(worklab[i,1]!=0){ if(worklab[i,1]==worklab[i,2]){ numb_symNodes <- numb_symNodes + 1 } } } return(n-1-numb_symNodes) }
coerce_mat <- function(mat,cfun=as.simple_triplet_sym_matrix) if (is.null(dim(mat))) mat else cfun(mat) coerce_blkmat <- function(Aij,cfun=as.simple_triplet_sym_matrix) lapply(Aij,coerce_mat,cfun=cfun) coerce_const <- function(Ai,cfun=as.simple_triplet_sym_matrix) lapply(Ai,coerce_blkmat,cfun=cfun) getdf_mat <- function(x) { if(!is.null(dim(x))) { x <- as.simple_triplet_sym_matrix(x) if (length(x$v) == 0) return(NULL) else return(cbind(x$j,x$i,x$v)) } else { ind <- which(x != 0) if (length(ind) == 0) return(NULL) else return(cbind(ind,ind,x[ind])) } } getdf_blkmat <- function(x) { do.call(rbind,lapply(1:length(x),function(j) {df <- getdf_mat(x[[j]]); if (is.null(df)) return(NULL) else return(cbind(j,df))})) } getdf_const <- function(x) { do.call(rbind,lapply(1:length(x), function(i) {df <- getdf_blkmat(x[[i]]); if (is.null(df)) return(NULL) else return(cbind(i,df))})) } readsdpa <- function(file="",verbose=FALSE) { if (file=="") stop("'file' argument must be a non-empty string") ret <- .Call(C_readsdpa, as.character(file), as.integer(verbose), PACKAGE="Rcsdp") names(ret) <- c("C","A","b","K"); names(ret$K) <- c("type","size"); ret$K$type <- c("s","l")[vector_csdp2R(ret$K$type)]; ret$K$size <- vector_csdp2R(ret$K$size); m <- length(ret$b)-1; prob.info <- get.prob.info(ret$K,m) ret$C <- blkmatrix_csdp2R(ret$C,prob.info); ret$A <- constraints_csdp2R(ret$A,prob.info); ret$b <- vector_csdp2R(ret$b); ret } readsdpa.sol <- function(K,C,m,file="") { if (file=="") stop("'file' argument must be a non-empty string") prob.info <- get.prob.info(K,m); ret <- .Call(C_readsdpa_sol, as.character(file), as.integer(sum(prob.info$block.sizes)), as.integer(m), blkmatrix_R2csdp(C,prob.info), PACKAGE="Rcsdp"); names(ret) <- c("X","y","Z"); ret$X <- blkmatrix_csdp2R(ret$X,prob.info); ret$y <- vector_csdp2R(ret$y); ret$Z <- blkmatrix_csdp2R(ret$Z,prob.info); ret } writesdpa <- function(C,A,b,K,file="") { if (file=="") stop("'file' argument must be a non-empty string") prob.info <- get.prob.info(K,length(b)); validate.data(C,A,b,prob.info) prob.data <- prepare.data(C,A,b,prob.info) .Call(C_writesdpa, as.character(file), as.integer(sum(prob.info$block.sizes)), as.integer(prob.info$nconstraints), as.integer(prob.info$nblocks), as.integer(c(0,prob.info$block.types)), as.integer(c(0,prob.info$block.sizes)), prob.data$C, prob.data$A, prob.data$b, PACKAGE="Rcsdp") } writesdpa.sol <- function(X,Z,y,K,file="") { if (file=="") stop("'file' argument must be a non-empty string") prob.info <- get.prob.info(K,length(y)); .Call(C_writesdpa_sol, as.character(file), as.integer(sum(prob.info$block.sizes)), as.integer(prob.info$nconstraints), blkmatrix_R2csdp(X,prob.info), vector_R2csdp(y), blkmatrix_R2csdp(Z,prob.info), PACKAGE="Rcsdp") }
plot.pmc.ppc <- function(x, Style=NULL, Data=NULL, Rows=NULL, PDF=FALSE, ...) { if(missing(x)) stop("The x argument is required.") if(class(x) != "pmc.ppc") stop("x is not of class pmc.ppc.") if(is.null(Style)) Style <- "Density" if(is.null(Rows)) Rows <- 1:nrow(x[["yhat"]]) if(Style == "Covariates") { if(PDF == TRUE) { pdf("PPC.Plots.Covariates.pdf") par(mfrow=c(3,3))} else par(mfrow=c(3,3), ask=TRUE) if(is.null(Data)) stop("Data is required for Style=Covariates.") if(is.null(Data[["X"]]) & is.null(Data[["x"]])) stop("X or x is required in Data.") if(is.null(Data[["X"]])) co <- matrix(Data[["x"]], length(Data[["x"]]), 1) else if(is.null(Data[["x"]])) co <- Data[["X"]] temp <- summary(x, Quiet=TRUE)$Summary mycol <- rgb(0, 100, 0, 50, maxColorValue=255) for (i in 1:ncol(co)) { plot(co[Rows,i], temp[Rows,5], col=mycol, pch=16, cex=0.75, ylim=c(min(temp[Rows,c(1,4:6)]),max(temp[Rows,c(1,4:6)])), xlab=paste("X[,",i,"]", sep=""), ylab="yhat", sub="Gray lines are yhat at 2.5% and 95%.") panel.smooth(co[Rows,i], temp[Rows,5], col=mycol, pch=16, cex=0.75)}} if(Style == "Covariates, Categorical DV") { if(PDF == TRUE) { pdf("PPC.Plots.Covariates.Cat.pdf") par(mfrow=c(3,3))} else par(mfrow=c(3,3), ask=TRUE) if(is.null(Data)) stop("Data is required for Style=Covariates.") if(is.null(Data[["X"]]) & is.null(Data[["x"]])) stop("X or x is required in Data.") if(is.null(Data[["X"]])) co <- matrix(Data[["x"]], length(Data[["x"]]), 1) else if(is.null(Data[["x"]])) co <- Data[["X"]] temp <- summary(x, Categorical=TRUE, Quiet=TRUE)$Summary ncat <- length(table(temp[,1])) mycol <- rgb(0, 100, 0, 50, maxColorValue=255) for (i in 1:ncol(co)) {for (j in 2:(ncat+1)) { plot(co[Rows,i], temp[Rows,j], col=mycol, pch=16, cex=0.75, xlab=paste("X[,",i,"]", sep=""), ylab=colnames(temp)[j]) panel.smooth(co[Rows,i], temp[Rows,j], col=mycol, pch=16, cex=0.75)}}} if(Style == "Density") { if(PDF == TRUE) { pdf("PPC.Plots.Density.pdf") par(mfrow=c(3,3))} else par(mfrow=c(3,3), ask=TRUE) for (j in 1:length(Rows)) { plot(density(x[["yhat"]][Rows[j],]), main=paste("Post. Pred. Plot of yhat[", Rows[j], ",]", sep=""), xlab="Value", sub="Black=Density, Red=y") polygon(density(x[["yhat"]][Rows[j],]), col="black", border="black") abline(v=x[["y"]][Rows[j]], col="red")}} if(Style == "DW") { if(PDF == TRUE) pdf("PPC.Plots.DW.pdf") par(mfrow=c(1,1)) epsilon.obs <- x[["y"]] - x[["yhat"]] N <- nrow(epsilon.obs) S <- ncol(epsilon.obs) epsilon.rep <- matrix(rnorm(N*S), N, S) d.obs <- d.rep <- rep(0, S) for (s in 1:S) { d.obs[s] <- sum(c(0,diff(epsilon.obs[,s]))^2, na.rm=TRUE) / sum(epsilon.obs[,s]^2, na.rm=TRUE) d.rep[s] <- sum(c(0,diff(epsilon.rep[,s]))^2, na.rm=TRUE) / sum(epsilon.rep[,s]^2, na.rm=TRUE)} result <- "no" if(mean(d.obs > d.rep, na.rm=TRUE) < 0.025) result <- "positive" if(mean(d.obs > d.rep, na.rm=TRUE) > 0.975) result <- "negative" d.d.obs <- density(d.obs, na.rm=TRUE) d.d.rep <- density(d.rep, na.rm=TRUE) plot(d.d.obs, xlim=c(0,4), ylim=c(0, max(d.d.obs$y, d.d.rep$y)), col="white", main="Durbin-Watson test", xlab=paste("d.obs=", round(mean(d.obs, na.rm=TRUE),2), " (", round(as.vector(quantile(d.obs, probs=0.025, na.rm=TRUE)),2), ", ", round(as.vector(quantile(d.obs, probs=0.975, na.rm=TRUE)), 2), "), p(d.obs > d.rep) = ", round(mean(d.obs > d.rep, na.rm=TRUE),3), " = ", result, " autocorrelation", sep="")) polygon(d.d.obs, col=rgb(0,0,0,50,maxColorValue=255), border=NA) polygon(d.d.rep, col=rgb(255,0,0,50,maxColorValue=255), border=NA) abline(v=2, col="red")} if(Style == "DW, Multivariate, C") { if(PDF == TRUE) { pdf("PPC.Plots.DW.M.pdf") par(mfrow=c(1,1))} else par(mfrow=c(1,1), ask=TRUE) if(is.null(Data)) stop("Data is required for Style=Fitted, Multivariate, C.") if(is.null(Data[["Y"]])) stop("Y is required in Data.") M <- nrow(Data[["Y"]]) J <- ncol(Data[["Y"]]) epsilon.obs <- x[["y"]] - x[["yhat"]] N <- nrow(epsilon.obs) S <- ncol(epsilon.obs) epsilon.rep <- matrix(rnorm(N*S), N, S) d.obs <- d.rep <- rep(0, S) for (j in 1:J) { for (s in 1:S) { d.obs[s] <- sum(c(0,diff(epsilon.obs[((j-1)*M+1):(j*M),s]))^2, na.rm=TRUE) / sum(epsilon.obs[((j-1)*M+1):(j*M),s]^2, na.rm=TRUE) d.rep[s] <- sum(c(0,diff(epsilon.rep[((j-1)*M+1):(j*M),s]))^2, na.rm=TRUE) / sum(epsilon.rep[((j-1)*M+1):(j*M),s]^2, na.rm=TRUE)} result <- "no" if(mean(d.obs > d.rep, na.rm=TRUE) < 0.025) result <- "positive" if(mean(d.obs > d.rep, na.rm=TRUE) > 0.975) result <- "negative" d.d.obs <- density(d.obs, na.rm=TRUE) d.d.rep <- density(d.rep, na.rm=TRUE) plot(d.d.obs, xlim=c(0,4), ylim=c(0, max(d.d.obs$y, d.d.rep$y)), col="white", main="Durbin-Watson test", xlab=paste("d.obs=", round(mean(d.obs, na.rm=TRUE),2), " (", round(as.vector(quantile(d.obs, probs=0.025, na.rm=TRUE)),2), ", ", round(as.vector(quantile(d.obs, probs=0.975, na.rm=TRUE)), 2), "), p(d.obs > d.rep) = ", round(mean(d.obs > d.rep, na.rm=TRUE),3), " = ", result, " autocorrelation", sep=""), sub=paste("Y[,",j,"]",sep="")) polygon(d.d.obs, col=rgb(0,0,0,50,maxColorValue=255), border=NA) polygon(d.d.rep, col=rgb(255,0,0,50,maxColorValue=255), border=NA) abline(v=2, col="red")}} if(Style == "ECDF") { if(PDF == TRUE) pdf("PPC.Plots.ECDF.pdf") par(mfrow=c(1,1)) plot(ecdf(x[["y"]][Rows]), verticals=TRUE, do.points=FALSE, main="Cumulative Fit", xlab="y (black) and yhat (red; gray)", ylab="Cumulative Frequency") lines(ecdf(apply(x[["yhat"]][Rows,], 1, quantile, probs=0.975)), verticals=TRUE, do.points=FALSE, col="gray") lines(ecdf(apply(x[["yhat"]][Rows,], 1, quantile, probs=0.025)), verticals=TRUE, do.points=FALSE, col="gray") lines(ecdf(apply(x[["yhat"]][Rows,], 1, quantile, probs=0.500)), verticals=TRUE, do.points=FALSE, col="red")} if(Style == "Fitted") { if(PDF == TRUE) pdf("PPC.Plots.Fitted.pdf") par(mfrow=c(1,1)) temp <- summary(x, Quiet=TRUE)$Summary plot(temp[Rows,1], temp[Rows,5], pch=16, cex=0.75, ylim=c(min(temp[Rows,4], na.rm=TRUE), max(temp[Rows,6], na.rm=TRUE)), xlab="y", ylab="yhat", main="Fitted") for (i in Rows) { lines(c(temp[Rows[i],1], temp[Rows[i],1]), c(temp[Rows[i],4], temp[Rows[i],6]))} panel.smooth(temp[Rows,1], temp[Rows,5], pch=16, cex=0.75)} if(Style == "Fitted, Multivariate, C") { if(PDF == TRUE) { pdf("PPC.Plots.Fitted.M.pdf") par(mfrow=c(1,1))} else par(mfrow=c(1,1), ask=TRUE) if(is.null(Data)) stop("Data is required for Style=Fitted, Multivariate, C.") if(is.null(Data[["Y"]])) stop("Y is required in Data.") temp <- summary(x, Quiet=TRUE)$Summary for (i in 1:ncol(Data[["Y"]])) { temp1 <- as.vector(matrix(temp[,1], nrow(Data[["Y"]]), ncol(Data[["Y"]]))[,i]) temp2 <- as.vector(matrix(temp[,4], nrow(Data[["Y"]]), ncol(Data[["Y"]]))[,i]) temp3 <- as.vector(matrix(temp[,5], nrow(Data[["Y"]]), ncol(Data[["Y"]]))[,i]) temp4 <- as.vector(matrix(temp[,6], nrow(Data[["Y"]]), ncol(Data[["Y"]]))[,i]) plot(temp1, temp3, pch=16, cex=0.75, ylim=c(min(temp2, na.rm=TRUE), max(temp4, na.rm=TRUE)), xlab=paste("Y[,", i, "]", sep=""), ylab="yhat", main="Fitted") for (j in 1:nrow(Data[["Y"]])) { lines(c(temp1[j], temp1[j]), c(temp2[j], temp4[j]))} panel.smooth(temp1, temp3, pch=16, cex=0.75)}} if(Style == "Fitted, Multivariate, R") { if(PDF == TRUE) { pdf("PPC.Plots.Fitted.M.pdf") par(mfrow=c(1,1))} else par(mfrow=c(1,1), ask=TRUE) if(is.null(Data)) stop("Data is required for Style=Fitted, Multivariate, R.") if(is.null(Data[["Y"]])) stop("Y is required in Data.") temp <- summary(x, Quiet=TRUE)$Summary for (i in 1:nrow(Data[["Y"]])) { temp1 <- as.vector(matrix(temp[,1], nrow(Data[["Y"]]), ncol(Data[["Y"]]))[i,]) temp2 <- as.vector(matrix(temp[,4], nrow(Data[["Y"]]), ncol(Data[["Y"]]))[i,]) temp3 <- as.vector(matrix(temp[,5], nrow(Data[["Y"]]), ncol(Data[["Y"]]))[i,]) temp4 <- as.vector(matrix(temp[,6], nrow(Data[["Y"]]), ncol(Data[["Y"]]))[i,]) plot(temp1, temp3, pch=16, cex=0.75, ylim=c(min(temp2, na.rm=TRUE), max(temp4, na.rm=TRUE)), xlab=paste("Y[,", i, "]", sep=""), ylab="yhat", main="Fitted") for (j in 1:ncol(Data[["Y"]])) { lines(c(temp1[j], temp1[j]), c(temp2[j], temp4[j]))} panel.smooth(temp1, temp3, pch=16, cex=0.75)}} if(Style == "Jarque-Bera") { if(PDF == TRUE) pdf("PPC.Plots.Jarque.Bera.pdf") par(mfrow=c(1,1)) epsilon.obs <- epsilon.rep <- x[["y"]][Rows] - x[["yhat"]][Rows,] kurtosis <- function(x) { m4 <- mean((x-mean(x, na.rm=TRUE))^4, na.rm=TRUE) kurt <- m4/(sd(x, na.rm=TRUE)^4)-3 return(kurt)} skewness <- function(x) { m3 <- mean((x-mean(x, na.rm=TRUE))^3, na.rm=TRUE) skew <- m3/(sd(x, na.rm=TRUE)^3) return(skew)} JB.obs <- JB.rep <- rep(0, ncol(epsilon.obs)) N <- nrow(epsilon.obs) for (s in 1:ncol(epsilon.obs)) { epsilon.rep[,s] <- rnorm(N, mean(epsilon.obs[,s], na.rm=TRUE), sd(epsilon.obs[,s], na.rm=TRUE)) K.obs <- kurtosis(epsilon.obs[,s]) S.obs <- skewness(epsilon.obs[,s]) K.rep <- kurtosis(epsilon.rep[,s]) S.rep <- skewness(epsilon.rep[,s]) JB.obs[s] <- (N/6)*(S.obs^2 + ((K.obs-3)^2)/4) JB.rep[s] <- (N/6)*(S.rep^2 + ((K.rep-3)^2)/4)} p <- round(mean(JB.obs > JB.rep, na.rm=TRUE), 3) result <- "Non-Normality" if((p >= 0.025) & (p <= 0.975)) result <- "Normality" d.obs <- density(JB.obs) d.rep <- density(JB.rep) plot(d.obs, xlim=c(min(d.obs$x,d.rep$x), max(d.obs$x,d.rep$x)), ylim=c(0, max(d.obs$y, d.rep$y)), col="white", main="Jarque-Bera Test", xlab="JB", ylab="Density", sub=paste("JB.obs=", round(mean(JB.obs, na.rm=TRUE),2), " (", round(as.vector(quantile(JB.obs, probs=0.025, na.rm=TRUE)),2), ",", round(as.vector(quantile(JB.obs, probs=0.975, na.rm=TRUE)),2), "), p(JB.obs > JB.rep) = ", p, " = ", result, sep="")) polygon(d.obs, col=rgb(0,0,0,50,maxColorValue=255), border=NA) polygon(d.rep, col=rgb(255,0,0,50,maxColorValue=255), border=NA)} if(Style == "Jarque-Bera, Multivariate, C") { if(PDF == TRUE) { pdf("PPC.Plots.Jarque.Bera.pdf") par(mfrow=c(1,1))} else par(mfrow=c(1,1), ask=TRUE) if(is.null(Data)) stop("Data is required for Style=Jarque-Bera, Multivariate, C.") if(is.null(Data[["Y"]])) stop("Y is required in Data.") M <- nrow(Data[["Y"]]) J <- ncol(Data[["Y"]]) epsilon.obs <- epsilon.rep <- x[["y"]] - x[["yhat"]] kurtosis <- function(x) { m4 <- mean((x-mean(x, na.rm=TRUE))^4, na.rm=TRUE) kurt <- m4/(sd(x, na.rm=TRUE)^4)-3 return(kurt)} skewness <- function(x) { m3 <- mean((x-mean(x, na.rm=TRUE))^3, na.rm=TRUE) skew <- m3/(sd(x, na.rm=TRUE)^3) return(skew)} JB.obs <- JB.rep <- rep(0, ncol(epsilon.obs)) N <- nrow(epsilon.obs) for (j in 1:J) { for (s in 1:ncol(epsilon.obs)) { e.obs <- matrix(epsilon.obs[,s], M, J) e.rep <- rnorm(M, mean(e.obs[,j], na.rm=TRUE), sd(e.obs[,j], na.rm=TRUE)) K.obs <- kurtosis(e.obs[,j]) S.obs <- skewness(e.obs[,j]) K.rep <- kurtosis(e.rep) S.rep <- skewness(e.rep) JB.obs[s] <- (N/6)*(S.obs^2 + ((K.obs-3)^2)/4) JB.rep[s] <- (N/6)*(S.rep^2 + ((K.rep-3)^2)/4)} p <- round(mean(JB.obs > JB.rep, na.rm=TRUE), 3) result <- "Non-Normality" if((p >= 0.025) & (p <= 0.975)) result <- "Normality" d.obs <- density(JB.obs) d.rep <- density(JB.rep) plot(d.obs, xlim=c(min(d.obs$x,d.rep$x), max(d.obs$x,d.rep$x)), ylim=c(0, max(d.obs$y, d.rep$y)), col="white", main="Jarque-Bera Test", xlab=paste("JB for Y[,",j,"]", sep=""), ylab="Density", sub=paste("JB.obs=", round(mean(JB.obs, na.rm=TRUE),2), " (", round(as.vector(quantile(JB.obs, probs=0.025, na.rm=TRUE)),2), ",", round(as.vector(quantile(JB.obs, probs=0.975, na.rm=TRUE)),2), "), p(JB.obs > JB.rep) = ", p, " = ", result, sep="")) polygon(d.obs, col=rgb(0,0,0,50,maxColorValue=255), border=NA) polygon(d.rep, col=rgb(255,0,0,50,maxColorValue=255), border=NA)}} if(Style == "Mardia") { if(PDF == TRUE) pdf("PPC.Plots.Mardia.pdf") par(mfrow=c(2,1)) if(is.null(Data)) stop("Data is required for Style=Mardia, C.") if(is.null(Data[["Y"]])) stop("Variable Y is required for Style=Mardia, C.") epsilon.obs <- x[["y"]] - x[["yhat"]] M <- nrow(Data[["Y"]]) J <- ncol(Data[["Y"]]) K3.obs <- K3.rep <- K4.obs <- K4.rep <- rep(0, ncol(epsilon.obs)) for (s in 1:ncol(epsilon.obs)) { e.obs <- matrix(epsilon.obs[,s], M, J) e.obs.mu <- colMeans(e.obs) e.obs.mu.mat <- matrix(e.obs.mu, M, J, byrow=TRUE) e.obs.stand <- e.obs - e.obs.mu.mat S.obs <- var(e.obs) A.obs <- t(chol(S.obs)) A.inv.obs <- solve(A.obs) Z.obs <- t(A.inv.obs %*% t(e.obs.stand)) Dij.obs <- Z.obs %*% t(Z.obs) D2.obs <- diag(Dij.obs) K3.obs[s] <- mean(as.vector(Dij.obs)^3) K4.obs[s] <- mean(D2.obs^2) e.rep <- rmvn(M, e.obs.mu.mat, S.obs) e.rep.mu <- colMeans(e.rep) e.rep.mu.mat <- matrix(e.rep.mu, M, J, byrow=TRUE) e.rep.stand <- e.rep - e.rep.mu.mat S.rep <- var(e.rep) A.rep <- t(chol(S.rep)) A.inv.rep <- solve(A.rep) Z.rep <- t(A.inv.rep %*% t(e.rep.stand)) Dij.rep <- Z.rep %*% t(Z.rep) D2.rep <- diag(Dij.rep) K3.rep[s] <- mean(as.vector(Dij.rep)^3) K4.rep[s] <- mean(D2.rep^2)} p.K3 <- round(mean(K3.obs > K3.rep), 3) p.K4 <- round(mean(K4.obs > K4.rep), 3) K3.result <- K4.result <- "Non-Normality" if((p.K3 >= 0.025) & (p.K3 <= 0.975)) K3.result <- "Normality" if((p.K4 >= 0.025) & (p.K4 <= 0.975)) K4.result <- "Normality" d.K3.obs <- density(K3.obs) d.K3.rep <- density(K3.rep) d.K4.obs <- density(K4.obs) d.K4.rep <- density(K4.rep) plot(d.K3.obs, xlim=c(min(d.K3.obs$x, d.K3.rep$x), max(d.K3.obs$x, d.K3.rep$x)), ylim=c(0, max(d.K3.obs$y, d.K3.rep$y)), col="white", main="Mardia's Test of MVN Skewness", xlab="Skewness Test Statistic (K3)", ylab="Density", sub=paste("K3.obs=", round(mean(K3.obs, na.rm=TRUE), 2), " (", round(quantile(K3.obs, probs=0.025, na.rm=TRUE), 2), ", ", round(quantile(K3.obs, probs=0.975, na.rm=TRUE), 2), "), p(K3.obs > K3.rep) = ", p.K3, " = ", K3.result, sep="")) polygon(d.K3.obs, col=rgb(0,0,0,50,maxColorValue=255), border=NA) polygon(d.K3.rep, col=rgb(255,0,0,50,maxColorValue=255), border=NA) plot(d.K4.obs, xlim=c(min(d.K4.obs$x, d.K4.rep$x), max(d.K4.obs$x, d.K4.rep$x)), ylim=c(0, max(d.K4.obs$y, d.K4.rep$y)), col="white", main="Mardia's Test of MVN Kurtosis", xlab="Kurtosis Test Statistic (K4)", ylab="Density", sub=paste("K4.obs=", round(mean(K4.obs, na.rm=TRUE), 2), " (", round(quantile(K4.obs, probs=0.025, na.rm=TRUE), 2), ", ", round(quantile(K4.obs, probs=0.975, na.rm=TRUE), 2), "), p(K4.obs > K4.rep) = ", p.K4, " = ", K4.result, sep="")) polygon(d.K4.obs, col=rgb(0,0,0,50,maxColorValue=255), border=NA) polygon(d.K4.rep, col=rgb(255,0,0,50,maxColorValue=255), border=NA)} if(Style == "Predictive Quantiles") { if(PDF == TRUE) pdf("PPC.Plots.PQ.pdf") par(mfrow=c(1,1)) temp <- summary(x, Quiet=TRUE)$Summary mycol <- rgb(0, 100, 0, 50, maxColorValue=255) plot(temp[Rows,1], temp[Rows,7], ylim=c(0,1), col=mycol, pch=16, cex=0.75, xlab="y", ylab="PQ", main="Predictive Quantiles") panel.smooth(temp[Rows,1], temp[Rows,7], col=mycol, pch=16, cex=0.75) abline(h=0.025, col="gray") abline(h=0.975, col="gray")} if(Style == "Residual Density") { if(PDF == TRUE) pdf("PPC.Plots.Residual.Density.pdf") par(mfrow=c(1,1)) epsilon <- x[["y"]] - x[["yhat"]] epsilon.summary <- apply(epsilon, 1, quantile, probs=c(0.025,0.500,0.975), na.rm=TRUE) dens <- density(epsilon.summary[2,Rows], na.rm=TRUE) plot(dens, col="black", main="Residual Density", xlab=expression(epsilon), ylab="Density") polygon(dens, col="black", border="black") abline(v=0, col="red")} if(Style == "Residual Density, Multivariate, C") { if(PDF == TRUE) { pdf("PPC.Plots.Residual.Density.pdf") par(mfrow=c(1,1))} else par(mfrow=c(1,1), ask=TRUE) if(is.null(Data)) stop("Data is required for Style=Residual Density, Multivariate, C.") if(is.null(Data[["Y"]])) stop("Variable Y is required for Style=Residual Density, Multivariate, C.") epsilon <- x[["y"]] - x[["yhat"]] epsilon.summary <- apply(epsilon, 1, quantile, probs=c(0.025,0.500,0.975), na.rm=TRUE) epsilon.500 <- matrix(epsilon.summary[2,], nrow(Data[["Y"]]), ncol(Data[["Y"]])) for (i in 1:ncol(Data[["Y"]])) { dens <- density(epsilon.500[,i], na.rm=TRUE) plot(dens, col="black", main="Residual Density", xlab=paste("epsilon[,", i, "]", sep=""), ylab="Density") polygon(dens, col="black", border="black") abline(v=0, col="red")}} if(Style == "Residual Density, Multivariate, R") { if(PDF == TRUE) { pdf("PPC.Plots.Residual.Density.pdf") par(mfrow=c(1,1))} else par(mfrow=c(1,1), ask=TRUE) if(is.null(Data)) stop("Data is required for Style=Residual Density, Multivariate, R.") if(is.null(Data[["Y"]])) stop("Variable Y is required for Style=Residual Density, Multivariate, R.") epsilon <- x[["y"]] - x[["yhat"]] epsilon.summary <- apply(epsilon, 1, quantile, probs=c(0.025,0.500,0.975), na.rm=TRUE) epsilon.500 <- matrix(epsilon.summary[2,], nrow(Data[["Y"]]), ncol(Data[["Y"]])) for (i in 1:nrow(Data[["Y"]])) { dens <- density(epsilon.500[i,], na.rm=TRUE) plot(dens, col="black", main="Residual Density", xlab=paste("epsilon[", i, ",]", sep=""), ylab="Density") polygon(dens, col="black", border="black") abline(v=0, col="red")}} if(Style == "Residuals") { if(PDF == TRUE) pdf("PPC.Plots.Residuals.pdf") par(mfrow=c(1,1)) epsilon <- x[["y"]] - x[["yhat"]] epsilon.summary <- apply(epsilon, 1, quantile, probs=c(0.025,0.500,0.975), na.rm=TRUE) plot(epsilon.summary[2,Rows], pch=16, cex=0.75, ylim=c(min(epsilon.summary[,Rows], na.rm=TRUE), max(epsilon.summary[,Rows], na.rm=TRUE)), xlab="y", ylab=expression(epsilon)) lines(rep(0, ncol(epsilon.summary[,Rows])), col="red") for (i in Rows) { lines(c(i,i), c(epsilon.summary[1,Rows[i]], epsilon.summary[3,Rows[i]]), col="black")}} if(Style == "Residuals, Multivariate, C") { if(PDF == TRUE) { pdf("PPC.Plots.Residuals.pdf") par(mfrow=c(1,1))} else par(mfrow=c(1,1), ask=TRUE) if(is.null(Data)) stop("Data is required for Style=Residuals, Multivariate, C.") if(is.null(Data[["Y"]])) stop("Variable Y is required for Style=Residuals, Multivariate, C.") epsilon <- x[["y"]] - x[["yhat"]] epsilon.summary <- apply(epsilon, 1, quantile, probs=c(0.025,0.500,0.975), na.rm=TRUE) epsilon.025 <- matrix(epsilon.summary[1,], nrow(Data[["Y"]]), ncol(Data[["Y"]])) epsilon.500 <- matrix(epsilon.summary[2,], nrow(Data[["Y"]]), ncol(Data[["Y"]])) epsilon.975 <- matrix(epsilon.summary[3,], nrow(Data[["Y"]]), ncol(Data[["Y"]])) for (i in 1:ncol(Data[["Y"]])) { plot(epsilon.500[,i], pch=16, cex=0.75, ylim=c(min(epsilon.025[,i], na.rm=TRUE), max(epsilon.975[,i], na.rm=TRUE)), xlab=paste("Y[,", i, "]", sep=""), ylab=expression(epsilon)) lines(rep(0, nrow(epsilon.500)), col="red") for (j in 1:nrow(Data[["Y"]])) { lines(c(j,j), c(epsilon.025[j,i], epsilon.975[j,i]), col="black")}}} if(Style == "Residuals, Multivariate, R") { if(PDF == TRUE) { pdf("PPC.Plots.Residuals.pdf") par(mfrow=c(1,1))} else par(mfrow=c(1,1), ask=TRUE) if(is.null(Data)) stop("Data is required for Style=Residuals, Multivariate, C.") if(is.null(Data[["Y"]])) stop("Variable Y is required for Style=Residuals, Multivariate, C.") epsilon <- x[["y"]] - x[["yhat"]] epsilon.summary <- apply(epsilon, 1, quantile, probs=c(0.025,0.500,0.975), na.rm=TRUE) epsilon.025 <- matrix(epsilon.summary[1,], nrow(Data[["Y"]]), ncol(Data[["Y"]])) epsilon.500 <- matrix(epsilon.summary[2,], nrow(Data[["Y"]]), ncol(Data[["Y"]])) epsilon.975 <- matrix(epsilon.summary[3,], nrow(Data[["Y"]]), ncol(Data[["Y"]])) for (i in 1:nrow(Data[["Y"]])) { plot(epsilon.500[i,], pch=16, cex=0.75, ylim=c(min(epsilon.025[i,], na.rm=TRUE), max(epsilon.975[i,], na.rm=TRUE)), xlab=paste("Y[", i, ",]", sep=""), ylab=expression(epsilon)) lines(rep(0, ncol(epsilon.500)), col="red") for (j in 1:ncol(Data[["Y"]])) { lines(c(j,j), c(epsilon.025[i,j], epsilon.975[i,j]), col="black")}}} if(Style == "Space-Time by Space") { if(PDF == TRUE) { pdf("PPC.Plots.SpaceTime.pdf") par(mfrow=c(1,1))} else par(mfrow=c(1,1), ask=TRUE) if(is.null(Data)) stop("Data is required for Style=Space-Time by Space.") if(is.null(Data[["longitude"]])) stop("Variable longitude is required in Data.") if(is.null(Data[["latitude"]])) stop("Variable latitude is required in Data.") if(is.null(Data[["S"]])) stop("Variable S is required in Data.") if(is.null(Data[["T"]])) stop("Variable T is required in Data.") temp <- summary(x, Quiet=TRUE)$Summary for (s in 1:Data[["S"]]) { plot(matrix(temp[,1], Data[["S"]], Data[["T"]])[s,], ylim=c(min(c(matrix(temp[,4], Data[["S"]], Data[["T"]])[s,], matrix(temp[,1], Data[["S"]], Data[["T"]])[s,]), na.rm=TRUE), max(c(matrix(temp[,6], Data[["S"]], Data[["T"]])[s,], matrix(temp[,1], Data[["S"]], Data[["T"]])[s,]), na.rm=TRUE)), type="l", xlab="Time", ylab="y", main=paste("Space-Time at Space s=",s," of ", Data[["S"]], sep=""), sub="Actual=Black, Fit=Red, Interval=Transparent Red") polygon(c(1:Data[["T"]],rev(1:Data[["T"]])), c(matrix(temp[,4], Data[["S"]], Data[["T"]])[s,], rev(matrix(temp[,6], Data[["S"]], Data[["T"]])[s,])), col=rgb(255, 0, 0, 50, maxColorValue=255), border=FALSE) lines(matrix(temp[,5], Data[["S"]], Data[["T"]])[s,], col="red")}} if(Style == "Space-Time by Time") { if(PDF == TRUE) { pdf("PPC.Plots.SpaceTime.pdf") par(mfrow=c(1,1))} else par(mfrow=c(1,1), ask=TRUE) if(is.null(Data)) stop("Data is required for Style=Space-Time by Time.") if(is.null(Data[["longitude"]])) stop("Variable longitude is required in Data.") if(is.null(Data[["latitude"]])) stop("Variable latitude is required in Data.") if(is.null(Data[["S"]])) stop("Variable S is required in Data.") if(is.null(Data[["T"]])) stop("Variable T is required in Data.") Heat <- (1-(x[["y"]]-min(x[["y"]], na.rm=TRUE)) / max(x[["y"]]-min(x[["y"]], na.rm=TRUE), na.rm=TRUE)) * 99 + 1 Heat <- matrix(Heat, Data[["S"]], Data[["T"]]) for (t in 1:Data[["T"]]) { plot(Data[["longitude"]], Data[["latitude"]], col=heat.colors(120)[Heat[,t]], pch=16, cex=0.75, xlab="Longitude", ylab="Latitude", main=paste("Space-Time at t=",t," of ", Data[["T"]], sep=""), sub="Red=High, Yellow=Low")}} if(Style == "Spatial") { if(PDF == TRUE) pdf("PPC.Plots.Spatial.pdf") par(mfrow=c(1,1)) if(is.null(Data)) stop("Data is required for Style=Spatial.") if(is.null(Data[["longitude"]])) stop("Variable longitude is required in Data.") if(is.null(Data[["latitude"]])) stop("Variable latitude is required in Data.") heat <- (1-(x[["y"]][Rows]-min(x[["y"]][Rows], na.rm=TRUE)) / max(x[["y"]][Rows]-min(x[["y"]][Rows], na.rm=TRUE), na.rm=TRUE)) * 99 + 1 plot(Data[["longitude"]][Rows], Data[["latitude"]][Rows], col=heat.colors(120)[heat], pch=16, cex=0.75, xlab="Longitude", ylab="Latitude", main="Spatial Plot", sub="Red=High, Yellow=Low")} if(Style == "Spatial Uncertainty") { if(PDF == TRUE) pdf("PPC.Plots.Spatial.Unc.pdf") par(mfrow=c(1,1)) if(is.null(Data)) stop("Data is required for Style=Spatial Uncertainty.") if(is.null(Data[["longitude"]])) stop("Variable longitude is required in Data.") if(is.null(Data[["latitude"]])) stop("Variable latitude is required in Data.") heat <- apply(x[["yhat"]], 1, quantile, probs=c(0.025,0.975)) heat <- heat[2,] - heat[1,] heat <- (1-(heat[Rows]-min(heat[Rows])) / max(heat[Rows]-min(heat[Rows]))) * 99 + 1 plot(Data[["longitude"]][Rows], Data[["latitude"]][Rows], col=heat.colors(120)[heat], pch=16, cex=0.75, xlab="Longitude", ylab="Latitude", main="Spatial Uncertainty Plot", sub="Red=High, Yellow=Low")} if(Style == "Time-Series") { if(PDF == TRUE) pdf("PPC.Plots.TimeSeries.pdf") par(mfrow=c(1,1)) temp <- summary(x, Quiet=TRUE)$Summary plot(Rows, temp[Rows,1], ylim=c(min(temp[Rows,c(1,4)], na.rm=TRUE), max(temp[Rows,c(1,6)], na.rm=TRUE)), type="l", xlab="Time", ylab="y", main="Plot of Fitted Time-Series", sub="Actual=Black, Fit=Red, Interval=Transparent Red") polygon(c(Rows,rev(Rows)),c(temp[Rows,4],rev(temp[Rows,6])), col=rgb(255, 0, 0, 50, maxColorValue=255), border=FALSE) lines(Rows, temp[Rows,1]) lines(Rows, temp[Rows,5], col="red")} if(Style == "Time-Series, Multivariate, C") { if(PDF == TRUE) { pdf("PPC.Plots.TimeSeries.pdf") par(mfrow=c(1,1))} else par(mfrow=c(1,1), ask=TRUE) if(is.null(Data)) stop("Data is required for Style=Time-Series, Multivariate.") if(is.null(Data[["Y"]])) stop("Variable Y is required in Data.") temp <- summary(x, Quiet=TRUE)$Summary for (i in 1:ncol(Data[["Y"]])) { tempy <- matrix(temp[Rows,1], nrow(Data[["Y"]]), ncol(Data[["Y"]]))[,i] qLB <- matrix(temp[Rows,4], nrow(Data[["Y"]]), ncol(Data[["Y"]]))[,i] qMed <- matrix(temp[Rows,5], nrow(Data[["Y"]]), ncol(Data[["Y"]]))[,i] qUB <- matrix(temp[Rows,6], nrow(Data[["Y"]]), ncol(Data[["Y"]]))[,i] plot(1:length(tempy), tempy, ylim=c(min(Data[["Y"]][,i], matrix(temp[Rows,4], nrow(Data[["Y"]]), ncol(Data[["Y"]]))[,i], na.rm=TRUE), max(Data[["Y"]][,i], matrix(temp[Rows,6], nrow(Data[["Y"]]), ncol(Data[["Y"]]))[,i], na.rm=TRUE)), type="l", xlab="Time", ylab="y", main=paste("Time-Series ", i, " of ", ncol(Data[["Y"]]), sep=""), sub="Actual=Black, Fit=Red, Interval=Transparent Red") polygon(c(1:length(tempy),rev(1:length(tempy))),c(qLB,rev(qUB)), col=rgb(255, 0, 0, 50, maxColorValue=255), border=FALSE) lines(1:length(tempy), tempy) lines(1:length(tempy), qMed, col="red")}} if(Style == "Time-Series, Multivariate, R") { if(PDF == TRUE) { pdf("PPC.Plots.TimeSeries.pdf") par(mfrow=c(1,1))} else par(mfrow=c(1,1), ask=TRUE) if(is.null(Data)) stop("Data is required for Style=Time-Series, Multivariate.") if(is.null(Data[["Y"]])) stop("Variable Y is required in Data.") temp <- summary(x, Quiet=TRUE)$Summary for (i in 1:nrow(Data[["Y"]])) { tempy <- matrix(temp[Rows,1], nrow(Data[["Y"]]), ncol(Data[["Y"]]))[i,] qLB <- matrix(temp[Rows,4], nrow(Data[["Y"]]), ncol(Data[["Y"]]))[i,] qMed <- matrix(temp[Rows,5], nrow(Data[["Y"]]), ncol(Data[["Y"]]))[i,] qUB <- matrix(temp[Rows,6], nrow(Data[["Y"]]), ncol(Data[["Y"]]))[i,] plot(1:length(tempy), tempy, ylim=c(min(Data[["Y"]][i,], matrix(temp[Rows,4], nrow(Data[["Y"]]), ncol(Data[["Y"]]))[i,], na.rm=TRUE), max(Data[["Y"]][i,], matrix(temp[Rows,6], nrow(Data[["Y"]]), ncol(Data[["Y"]]))[i,], na.rm=TRUE)), type="l", xlab="Time", ylab="y", main=paste("Time-Series ", i, " of ", nrow(Data[["Y"]]), sep=""), sub="Actual=Black, Fit=Red, Interval=Transparent Red") polygon(c(1:length(tempy),rev(1:length(tempy))),c(qLB,rev(qUB)), col=rgb(255, 0, 0, 50, maxColorValue=255), border=FALSE) lines(1:length(tempy), tempy) lines(1:length(tempy), qMed, col="red")}} if(PDF == TRUE) dev.off() }
update_record <- function(updates = NULL, dimension, old, values = vector()) { UseMethod("update_record") } update_record.record_update_set <- function(updates = NULL, dimension, old, values = vector()) { stopifnot(!is_role_playing_dimension(dimension)) dim_txt <- dimension dim_txt[, -1] <- prepare_join(dim_txt[, -1]) old_values <- unlist(dim_txt[old,-1]) stopifnot(length(old_values) == length(values)) names(values) <- names(old_values) dru <- new_record_update( dimension = attr(dimension, "name"), old = old_values, new = values ) class <- class(updates) updates <- c(updates, list(dru)) class(updates) <- class updates }
radial <- galbraith <- function(x, ...) UseMethod("radial")
library(vdiffr) df <- data.frame(x = 1:10, y = 21:30, a = rep(c("g1","g2"), 5), b = rep(c("t1","t2"), each = 5)) p <- ggplot(df, aes(x, y)) + geom_point() test_that("base plot did not change",{ expect_doppelganger("base plot", p) }) px <- p + geom_xsidecol() py <- p + geom_ysidecol() test_that("ggside x-axis plotting",{ expect_doppelganger("xside top", px) pxb <- px + ggside(x.pos = "bottom") expect_doppelganger("xside bottom", pxb) expect_doppelganger("xside top-pos-top", px + scale_x_continuous(position = "top")) expect_doppelganger("xside bot-pos-top", pxb + scale_x_continuous(position = "top")) expect_doppelganger("xside top-pos-top-wrap", px + scale_x_continuous(position = "top") + facet_wrap(a~b)) expect_doppelganger("xside bot-pos-top-grid", pxb + scale_x_continuous(position = "top") + facet_grid(vars(a), vars(b))) expect_doppelganger("xside top-noaxis", px + theme(axis.text.x = element_blank())) }) test_that("ggside y-axis plotting",{ expect_doppelganger("yside right", py) pyl <- py + ggside(y.pos = "left") expect_doppelganger("yside left", pyl) expect_doppelganger("yside right-pos-right", py + scale_y_continuous(position = "right")) expect_doppelganger("yside left-pos-right", pyl + scale_y_continuous(position = "right")) expect_doppelganger("yside right-pos-right-wrap", py + scale_y_continuous(position = "right") + facet_wrap(a~b)) expect_doppelganger("yside left-pos-right-grid", pyl + scale_y_continuous(position = "right") + facet_grid(vars(a), vars(b))) expect_doppelganger("yside right-noaxis", py + theme(axis.text.y = element_blank())) }) pxy <- p + geom_xsidecol() + geom_ysidecol() test_that("ggside xy-axis plotting", { expect_doppelganger("xyside", pxy) pxy_l <- pxy + ggside(y.pos = "left") pxy_b <- pxy + ggside(x.pos = "bottom") expect_doppelganger("xyside yl", pxy_l) expect_doppelganger("xyside yl-pos-right", pxy_l + scale_y_continuous(position = "right")) expect_doppelganger("xyside xb", pxy_b) expect_doppelganger("xyside xb-pos-top", pxy_b + scale_x_continuous(position = "top")) pxy_lb <- pxy + ggside(y.pos = "left", x.pos = "bottom") expect_doppelganger("xyside lb", pxy_lb) expect_doppelganger("xyside lb-pos-swap", pxy_lb + scale_x_continuous(position = "top")+scale_y_continuous(position = "right")) expect_doppelganger("xyside no-x-text", pxy + theme(axis.text.x = element_blank())) expect_doppelganger("xyside no-y-text", pxy + theme(axis.text.y = element_blank())) expect_doppelganger("xyside facet-Grid", pxy + facet_grid(vars(a), vars(b))) })
library(shiny) library(shinydashboard) library(mapdeck) library(sf) ui <- dashboardPage( dashboardHeader() , dashboardSidebar() , dashboardBody( mapdeckOutput( outputId = "map" , height = "600" ) , actionButton( inputId = "btn" , label = "button" ) ) ) server <- function( input, output ) { set_token( Sys.getenv("MAPBOX") ) output$map <- renderMapdeck({ mapdeck( style = mapdeck_style("dark"), location = c(145, -37.8), zoom = 12 ) }) observeEvent({input$btn},{ r <- sample(1:nrow(roads), size = nrow(roads)) df <- roads[r, ] df$rand_colour <- rnorm(n = nrow(df)) df$rand_width <- sample(1:2, size = nrow(df), replace = T) mapdeck_update(map_id = "map") %>% add_path( data = df , stroke_colour = "rand_colour" , stroke_width = "rand_width" , transitions = list( path = 2000 , stroke_colour = 1000 , stroke_width = 1000 ) , update_view = FALSE ) }) } shinyApp(ui, server)
FinScan <- function(index_clusters_temp, index, filtering_post, type_minimaxi_post, mini_post, maxi_post, nb_sites, matrix_clusters, radius, areas, centres, pvals, maximize = TRUE){ if(length(index_clusters_temp)>0){ if(maximize == TRUE){ ordre <- order(index[index_clusters_temp], decreasing = TRUE) }else{ ordre <- order(index[index_clusters_temp], decreasing = FALSE) } index_clusters_temp <- index_clusters_temp[ordre] if(filtering_post == TRUE){ if(type_minimaxi_post == "sites/indiv"){ index_clusters <- post_filt_nb_sites(mini_post, maxi_post, nb_sites, index_clusters_temp, matrix_clusters) } if(type_minimaxi_post == "radius"){ index_clusters <- post_filt_radius(mini_post, maxi_post, radius, index_clusters_temp) } if(type_minimaxi_post == "area"){ index_clusters <- post_filt_area(mini_post, maxi_post, areas, index_clusters_temp) } }else{ index_clusters <- index_clusters_temp } }else{ index_clusters <- index_clusters_temp } final_index <- non_overlap(index_clusters, matrix_clusters) pval_clusters <- pvals[final_index] sites_clusters <- lapply(final_index, function(j) which(matrix_clusters[,j]==1)) if(sum(is.na(centres)) == 0){ centres_clusters <- centres[final_index,,drop = FALSE] }else{ centres_clusters <- NA } if(sum(is.na(radius)) == 0){ radius_clusters <- radius[final_index] }else{ radius_clusters <- NA } if(sum(is.na(areas)) == 0){ areas_clusters <- areas[final_index] }else{ areas_clusters <- NA } return(list(pval_clusters = pval_clusters, sites_clusters = sites_clusters, centres_clusters = centres_clusters, radius_clusters = radius_clusters, areas_clusters = areas_clusters)) }
agg2monthly <- function(df, col_name, fun, allow_na = 0){ date_format <- '%Y-%m' date_agg <- format(df[ , 1], format = date_format) date_unique <- unique(date_agg) date_out <- as.Date( paste0(date_unique, '-01'), format = '%Y-%m-%d' ) n_it <- length(date_out) n_col <- length(col_name) mat_in <- as.matrix( df[ , col_name, drop = FALSE] ) mat_out <- matrix(NA_real_, nrow = n_it, ncol = n_col) fun_string <- c('sum', 'max', 'min', 'mean', 'first', 'last') col_group <- match(x = fun, table = fun_string) group_unique <- unique(col_group) n_group <- length(group_unique) for(i in 1:n_it){ row_index <- which(date_agg == date_unique[i]) for(j in 1:n_group){ col_index <- which(fun == fun_string[ group_unique[j] ]) sub_matrix <- mat_in[row_index, col_index, drop = FALSE] mat_out[i, col_index] <- col_stats_cpp(x = sub_matrix, stats = fun_string[ group_unique[j] ], allow_na = allow_na) rm(col_index, sub_matrix, j) } rm(i, row_index) } return( data.frame(Date = date_out, mat_out) ) }
require('dynr') data("LinearOsc") n = length(unique(LinearOsc$ID)) T = max(table(LinearOsc$ID)) out2 = matrix(LinearOsc$x,ncol=n,byrow=FALSE) theTimes = LinearOsc$theTimes[1:T] norder = 6 roughPenaltyMax = 4 lambdaLow = 1e-10 lambdaHi = 2 lambdaBy = .1 isPlot = 1 matt = plotGCV(theTimes,norder,roughPenaltyMax,out2,lambdaLow, lambdaHi,lambdaBy,isPlot) sp = matt[matt[,"GCV"] == min(matt[,"GCV"]),"lambda"] x = getdx(theTimes,norder,roughPenaltyMax,sp,out2,0)[[1]] dx = getdx(theTimes,norder,roughPenaltyMax,sp,out2,1)[[1]] d2x = getdx(theTimes,norder,roughPenaltyMax,sp,out2,2)[[1]] dxall = data.frame(time = rep(theTimes,n), x = matrix(x,ncol=1,byrow=FALSE), dx = matrix(dx,ncol=1,byrow=FALSE), d2x = matrix(d2x,ncol=1,byrow=FALSE)) g = lm(d2x~x+dx-1,data=dxall) oldpar <- par(mgp=c(2.5,0.5,0)) car::crPlots(g,terms=~x, main=c(""),layout=c(1,1), cex.lab=1.3,cex.axis=1.2, xlab=expression(hat(eta)[i](t)), ylab=expression(paste("Component+Residuals ", " ",d^2,hat(eta)[i](t)/dt^2)) ) par(oldpar) oldpar <- par(mgp=c(2.5,0.5,0)) car::crPlots(g,terms=~dx, main=c(""),layout=c(1,1), cex.lab=1.3,cex.axis=1.2, xlab=expression(paste(d, hat(eta)[i](t)/dt)), ylab=expression(paste("Component+Residuals ", " ",d^2,hat(eta)[i](t)/dt^2)) ) par(oldpar) g2 = lm(d2x~x+dx+x:dx-1,data=dxall) summary(g2) theta_plot(g2, predictor = "x", moderator = "dx", alpha = .05, jn = T, title0=" ", predictorLab = "x", moderatorLab = "dx") Osc <- function(t, y, parameters) { dy <- numeric(2) dy[1] <- y[2] dy[2] <- parameters[1]*y[1]+parameters[2]*dy[1] return(list(dy)) } param <- coef(g) dynr.flowField(Osc, xlim = c(-3, 3), ylim = c(-3, 3), xlab="x", ylab="dx/dt", main=paste0("Oscillator model"), cex.main=2, parameters = param, points = 15, add = FALSE, col="blue", arrow.type="proportional", arrow.head=.05) IC <- matrix(c(-2, -2), ncol = 2, byrow = TRUE) dynr.trajectory(Osc, y0 = IC, parameters = param,tlim=c(0,50))
knitr::opts_chunk$set( collapse = TRUE, comment = " ) knitr::include_graphics('./bloodfeeding.png') knitr::include_graphics('./bloodfeeding_DWD.png')
NULL lgl <- function(...) { .Call(ffi_squash, dots_values(...), "logical", is_spliced_bare, 1L) } int <- function(...) { .Call(ffi_squash, dots_values(...), "integer", is_spliced_bare, 1L) } dbl <- function(...) { .Call(ffi_squash, dots_values(...), "double", is_spliced_bare, 1L) } cpl <- function(...) { .Call(ffi_squash, dots_values(...), "complex", is_spliced_bare, 1L) } chr <- function(...) { .Call(ffi_squash, dots_values(...), "character", is_spliced_bare, 1L) } bytes <- function(...) { dots <- map(dots_values(...), function(dot) { if (is_bare_list(dot) || is_spliced(dot)) { map(dot, cast_raw) } else { cast_raw(dot) } }) .Call(ffi_squash, dots, "raw", is_spliced_bare, 1L) } NULL new_logical <- function(n, names = NULL) { set_names(rep_len(na_lgl, n), names) } new_integer <- function(n, names = NULL) { set_names(rep_len(na_int, n), names) } new_double <- function(n, names = NULL) { set_names(rep_len(na_dbl, n), names) } new_character <- function(n, names = NULL) { set_names(rep_len(na_chr, n), names) } new_complex <- function(n, names = NULL) { set_names(rep_len(na_cpl, n), names) } new_raw <- function(n, names = NULL) { set_names(vector("raw", n), names) } new_list <- function(n, names = NULL) { set_names(vector("list", n), names) } rep_along <- function(along, x) { rep_len(x, length(along)) } rep_named <- function(names, x) { names <- names %||% chr() check_character(names, what = "`NULL` or a character vector") set_names(rep_len(x, length(names)), names) }
scan_project_files <- function(project_dir=".", scan_r_only=FALSE, scan_rnw_with_knitr=TRUE, scan_rprofile=TRUE) { if(!scan_r_only) { res <- try(requireNamespace("knitr", quietly=TRUE)) if(inherits(res, "try-error")) warning("The knitr package must be installed to scan Rmarkdown-based files", call.=FALSE) } r_pat <- if(scan_r_only) "\\.r$" else "\\.(r|rnw|rmd|rpres|rhtml)$" r_files <- dir(project_dir, pattern=r_pat, recursive=TRUE, ignore.case=TRUE, full.names=TRUE) if(scan_rprofile && file.exists("~/.Rprofile")) r_files <- c(r_files, "~/.Rprofile") pkgs <- character(0) errors <- character(0) for(f in r_files) { scan_deps <- switch(tolower(tools::file_ext(f)), "r"=scan_r, "rmd"=, "rpres"=, "rhtml"=scan_rmd, "rnw"=if(scan_rnw_with_knitr) scan_rmd else scan_rnw, scan_r ) res <- try(scan_deps(f), silent=TRUE) if(inherits(res, "try-error")) errors <- c(errors, f) else pkgs <- c(pkgs, res) } if(length(errors) > 0) warning("Following files could not be scanned:\n", paste(errors, collapse="\n"), call.=FALSE) mft <- read_manifest(project_dir) exclude <- c( "checkpoint", "pkgdepends", c("base", "compiler", "datasets", "graphics", "grDevices", "grid", "methods", "parallel", "splines", "stats", "stats4", "tcltk", "tools", "utils") ) any_rmd <- any(grepl("\\.(rmd|rpres|rhtml)$", r_files, ignore.case=TRUE)) pkgs <- setdiff(unique(c(pkgs, mft$refs, if(any_rmd) "rmarkdown")), c(mft$exclude, exclude)) list(pkgs=pkgs, errors=errors) } scan_rmd <- function(filename) { tempfile <- tempfile(fileext=".R") on.exit(unlink(tempfile)) suppressWarnings(knitr::knit(filename, output=tempfile, tangle=TRUE, quiet=TRUE)) scan_r(tempfile) } scan_rnw <- function(filename) { tempfile <- tempfile(fileext=".R") on.exit(unlink(tempfile)) suppressWarnings(utils::Stangle(filename, output=tempfile, quiet=TRUE)) scan_r(tempfile) } scan_r <- function(filename) { exprs <- parse(filename) deps <- character(0) for(e in exprs) { dep_e <- find_dependencies(e) if(length(dep_e) > 0) deps <- c(deps, dep_e) } unique(deps) } find_dependencies <- function(e) { if(is.atomic(e) || is.name(e)) return(character(0)) if(is.call(e)) { fname <- as.character(e[[1]]) if(length(fname) == 1) { if(fname %in% c("library", "require")) { mc <- match.call(get(fname, baseenv()), e) return(as.character(mc$package)) } else return(unique(unlist(lapply(as.list(e[-1]), find_dependencies)))) } else if(fname[1] %in% c("::", ":::")) return(fname[2]) else return(character(0)) } } read_manifest <- function(project_dir) { mft_file <- file.path(project_dir, "checkpoint.yml") if(!file.exists(mft_file)) mft_file <- file.path(project_dir, "checkpoint.yaml") if(!file.exists(mft_file)) return(NULL) mft <- yaml::read_yaml(mft_file) mft[c("refs", "exclude")] }
coef.fuzzylm <- function(object, complete = TRUE, ...){ xvars = colnames(object$x) yvars = colnames(object$y) if(is.null(yvars)) yvars = all.vars(object$call)[1] n = length(xvars) s = object$coef[,1] l = object$coef[,2] r = object$coef[,3] res = matrix(c(s, s - l, s + r), ncol = 3, dimnames = list(xvars, c("central tendency", "lower boundary", "upper boundary")), ...) res }
context("point") test_that("convert point works", { empty <- point("empty") expect_is(empty, "character") expect_equal(empty, "POINT EMPTY") pt_a <- point(-116.4, 45.2) pt_b <- point(0, 1) expect_is(pt_a, "character") expect_is(pt_b, "character") expect_match(pt_a, "POINT") expect_match(pt_b, "POINT") expect_equal(point(-116.4, 45.2), "POINT (-116.4000000000000057 45.2000000000000028)") expect_equal(point(-116.4, 45.2, fmt = 1), "POINT (-116.4 45.2)") df <- data.frame(lon = -116.4, lat = 45.2) df_a <- point(df, fmt = 2) expect_is(df_a, "character") expect_is(df_a[1], "character") expect_equal(df_a[1], "POINT (-116.40 45.20)") df2 <- us_cities[1:5,c('lat','long')] df_b <- point(df2) expect_is(df_b, "character") expect_is(df_b[1], "character") expect_equal(df_b[1], "POINT (32.4500000000000028 -99.7399999999999949)") ussmall <- us_cities[1:5, ] df <- data.frame(long = ussmall$long, lat = ussmall$lat) mat <- matrix(c(df$long, df$lat), ncol = 2) ptmat <- point(mat, fmt = 0) expect_is(ptmat[1], "character") expect_is(ptmat[2], "character") expect_equal(ptmat[1], "POINT (-99.74 32.45)") ls_a <- point(list(c(100.0, 3.1)), fmt = 2) expect_is(ls_a, "character") expect_is(ls_a[1], "character") expect_equal(ls_a[1], "POINT (100.00 3.10)") }) test_that("point fails correctly", { expect_error(point(-116.4), "POINT input should be of length 2") expect_error(point(), "no applicable method") expect_error(point(NA), "no applicable method") expect_error(point("a", "Adf"), "The following strings are not WKT") })
harmony <- function(.data, ugran = "year", lgran = NULL, hierarchy_tbl = NULL, filter_in = NULL, filter_out = NULL, facet_h = NULL, ...) { set1 <- search_gran(.data, lowest_unit = lgran, highest_unit = ugran, hierarchy_tbl, filter_in, filter_out, ...) if (is.null(facet_h)) { facet_h <- 31 } if (length(set1) == 1) { stop("Only one granularity ", set1, " can be formed. Function requires checking compatibility for bivariate granularities") } set1_merge <- merge(set1, set1) %>% tibble::as_tibble(.name_repair = "minimal") %>% dplyr::filter(x != y) %>% purrr::map_dfr(as.character) data_mutate <- .data for (i in seq_along(set1)){ data_mutate <- data_mutate %>% create_gran(set1[i], hierarchy_tbl) } ilevel <- array() for (i in seq_along(set1)) { ilevel[i] <- data_mutate %>% dplyr::distinct(.data[[set1[[i]]]]) %>% nrow() } levels_tbl <- tibble::tibble(set1, ilevel, .name_repair = "minimal") har_data <- array(0, nrow(set1_merge)) for (i in seq_len(nrow(set1_merge))) { har_data[i] <- is_harmony(.data, gran1 = set1_merge$x[i], gran2 = set1_merge$y[i], hierarchy_tbl, facet_h = facet_h) } return_output <- set1_merge %>% dplyr::mutate(harmony = har_data) %>% dplyr::filter(harmony == "TRUE") %>% dplyr::rename(facet_variable = x, x_variable = y) %>% dplyr::left_join(levels_tbl, by = c("facet_variable" = "set1")) %>% dplyr::left_join(levels_tbl, by = c("x_variable" = "set1")) %>% dplyr::rename("facet_levels" = "ilevel.x", "x_levels" = "ilevel.y") %>% dplyr::select(-harmony) return(return_output) }
PKNCAconc <- function(data, ...) UseMethod("PKNCAconc") PKNCAconc.default <- function(data, ...) PKNCAconc.data.frame(as.data.frame(data), ...) PKNCAconc.tbl_df <- function(data, ...) PKNCAconc.data.frame(as.data.frame(data), ...) PKNCAconc.data.frame <- function(data, formula, subject, time.nominal, exclude, duration, volume, exclude_half.life, include_half.life, ...) { if (nrow(data) == 0) { stop("data must have at least one row.") } if (!all(all.vars(formula) %in% names(data))) { stop("All of the variables in the formula must be in the data") } parsedForm <- parseFormula(formula, require.two.sided=TRUE) if (length(all.vars(parsedForm$lhs)) != 1) stop("The left hand side of the formula must have exactly one variable") if (length(all.vars(parsedForm$rhs)) != 1) stop("The right hand side of the formula (excluding groups) must have exactly one variable") check.conc.time( conc=data[[as.character(parsedForm$lhs)]], time=data[[as.character(parsedForm$rhs)]], monotonic.time=FALSE ) key.cols <- c(all.vars(parsedForm$rhs), all.vars(parsedForm$groupFormula)) if (any(mask.dup <- duplicated(data[,key.cols]))) stop("Rows that are not unique per group and time (column names: ", paste(key.cols, collapse=", "), ") found within concentration data. Row numbers: ", paste(seq_along(mask.dup)[mask.dup], collapse=", ")) if (missing(subject)) { tmp.groups <- all.vars(parsedForm$groupFormula) if (length(tmp.groups) == 1) { subject <- tmp.groups } else { subject <- all.vars(findOperator(parsedForm$groupFormula, "/", side="left")) if (length(subject) == 0) { subject <- tmp.groups[length(tmp.groups)] } else if (length(subject) == 1) { } else { stop("Unknown how to handle subject definition from the formula") } } } else { if (!is.character(subject)) stop("subject must be a character string") if (!(length(subject) == 1)) stop("subject must be a scalar") if (!(subject %in% names(data))) stop("The subject parameter must map to a name in the data") } ret <- list(data=data, formula=formula, subject=subject) class(ret) <- c("PKNCAconc", class(ret)) if (missing(exclude)) { ret <- setExcludeColumn(ret) } else { ret <- setExcludeColumn(ret, exclude=exclude) } if (missing(volume)) { ret <- setAttributeColumn(ret, attr_name="volume", default_value=NA_real_) } else { ret <- setAttributeColumn(ret, attr_name="volume", col_or_value=volume) if (!is.numeric(getAttributeColumn(ret, attr_name="volume")[[1]])) { stop("Volume must be numeric") } } if (missing(duration)) { ret <- setDuration.PKNCAconc(ret) } else { ret <- setDuration.PKNCAconc(ret, duration=duration) } if (!missing(time.nominal)) { ret <- setAttributeColumn(object=ret, attr_name="time.nominal", col_name=time.nominal) } if (!missing(exclude_half.life)) { ret <- setAttributeColumn(object=ret, attr_name="exclude_half.life", col_name=exclude_half.life) } if (!missing(include_half.life)) { ret <- setAttributeColumn(object=ret, attr_name="include_half.life", col_name=include_half.life) } ret } formula.PKNCAconc <- function(x, ...) x$formula model.frame.PKNCAconc <- function(formula, ...) formula$data[, all.vars(formula$formula), drop=FALSE] getDepVar.PKNCAconc <- function(x, ...) { x$data[, all.vars(parseFormula(x)$lhs)] } getIndepVar.PKNCAconc <- function(x, ...) { x$data[, all.vars(parseFormula(x)$rhs)] } getGroups.PKNCAconc <- function(object, form=formula(object), level, data=getData(object), sep) { grpnames <- all.vars(parseFormula(form)$groups) if (!missing(level)) if (is.factor(level) | is.character(level)) { level <- as.character(level) if (any(!(level %in% grpnames))) stop("Not all levels are listed in the group names. Missing levels are: ", paste(setdiff(level, grpnames), collapse=", ")) grpnames <- level } else if (is.numeric(level)) { if (length(level) == 1 && level > 0) { grpnames <- grpnames[1:level] } else { grpnames <- grpnames[level] } } data[, grpnames, drop=FALSE] } group_vars.PKNCAconc <- function(x) { all.vars(parseFormula(as.formula(x))$groups) } getData.PKNCAconc <- function(object) object$data getDataName.PKNCAconc <- function(object) "data" setDuration.PKNCAconc <- function(object, duration, ...) { if (missing(duration)) { object <- setAttributeColumn(object=object, attr_name="duration", default_value=0, message_if_default="Assuming point rather than interval concentration measurement") } else { object <- setAttributeColumn(object=object, attr_name="duration", col_or_value=duration) } duration.val <- getAttributeColumn(object=object, attr_name="duration")[[1]] if (is.numeric(duration.val) && !any(is.na(duration.val)) && !any(is.infinite(duration.val)) && all(duration.val >= 0)) { } else { stop("duration must be numeric without missing (NA) or infinite values, and all values must be >= 0") } object } print.PKNCAconc <- function(x, n=6, summarize=FALSE, ...) { cat(sprintf("Formula for concentration:\n ")) print(stats::formula(x), ...) if (is.na(x$subject) || (length(x$subject) == 0)) { cat("As a single-subject dataset.\n") } else { cat(sprintf("With %d subjects defined in the '%s' column.\n", length(unique(x$data[,x$subject])), x$subject)) } if ("time.nominal" %in% names(x)) { cat("Nominal time column is: ", x$time.nominal, "\n", sep="") } else { cat("Nominal time column is not specified.\n") } if (summarize) { cat("\n") grp <- getGroups(x) if (ncol(grp) > 0) { tmp.summary <- data.frame(Group.Name=names(grp), Count=0) for (i in 1:ncol(grp)) tmp.summary$Count[i] <- nrow(unique(grp[,1:i,drop=FALSE])) cat("Group summary:\n") names(tmp.summary) <- gsub("\\.", " ", names(tmp.summary)) print.data.frame(tmp.summary, row.names=FALSE) } else { cat("No groups.\n") } } if (n != 0) { if (n >= nrow(x$data)) { cat("\nData for concentration:\n") } else if (n < 0) { cat(sprintf("\nFirst %d rows of concentration data:\n", nrow(x$data)+n)) } else { cat(sprintf("\nFirst %d rows of concentration data:\n", n)) } print.data.frame(utils::head(x$data, n=n), ..., row.names=FALSE) } } summary.PKNCAconc <- function(object, n=0, summarize=TRUE, ...) { print.PKNCAconc(object, n=n, summarize=summarize) }
setMethodS3("getGenericS3", "default", function(name, envir=parent.frame(), inherits=TRUE, ...) { fcn <- .findFunction(name, envir=envir, inherits=inherits)$fcn if (is.null(fcn)) { stop("No such function found: ", name) } else if (!isGenericS3(fcn)) { stop("The function found is not an S3 generic function: ", name) } fcn })
fake_matched <- function(id_loan = NULL, loan_size_outstanding = NULL, loan_size_outstanding_currency = NULL, loan_size_credit_limit = NULL, loan_size_credit_limit_currency = NULL, id_2dii = NULL, level = NULL, score = NULL, sector = NULL, name_ald = NULL, sector_ald = NULL, ...) { tibble( id_loan = id_loan %||% "L162", loan_size_outstanding = loan_size_outstanding %||% 1, loan_size_outstanding_currency = loan_size_outstanding_currency %||% "EUR", loan_size_credit_limit = loan_size_credit_limit %||% 2, loan_size_credit_limit_currency = loan_size_credit_limit_currency %||% "EUR", id_2dii = id_2dii %||% "UP1", level = level %||% "ultimate_parent", score = score %||% 1, sector = sector %||% "automotive", name_ald = name_ald %||% "shaanxi auto", sector_ald = sector_ald %||% "automotive", ... ) } fake_ald <- function(name_company = NULL, sector = NULL, technology = NULL, year = NULL, production = NULL, emission_factor = NULL, plant_location = NULL, is_ultimate_owner = NULL, ...) { tibble( name_company = name_company %||% "shaanxi auto", sector = sector %||% "automotive", technology = technology %||% "ice", year = year %||% 2025, production = production %||% 1, emission_factor = emission_factor %||% 1, plant_location = plant_location %||% "BF", is_ultimate_owner = is_ultimate_owner %||% TRUE, ... ) } fake_scenario <- function(scenario = NULL, sector = NULL, technology = NULL, region = NULL, year = NULL, tmsr = NULL, smsp = NULL, scenario_source = NULL, ...) { tibble( scenario = scenario %||% "sds", sector = sector %||% "automotive", technology = technology %||% "ice", region = region %||% "global", year = year %||% 2025, tmsr = tmsr %||% 0.5, smsp = smsp %||% -0.08, scenario_source = scenario_source %||% "demo_2020", ... ) } fake_co2_scenario <- function(scenario = NULL, sector = NULL, region = NULL, year = NULL, emission_factor = NULL, emission_factor_unit = NULL, scenario_source = NULL, ...) { tibble( scenario = scenario %||% "b2ds", sector = sector %||% "cement", region = region %||% "global", year = year %||% 2025, emission_factor = emission_factor %||% 0.6, emission_factor_unit = emission_factor_unit %||% "tons of CO2 per ton of cement", scenario_source = scenario_source %||% "demo_2020", ... ) } fake_master <- function(id_loan = NULL, loan_size_outstanding = NULL, loan_size_outstanding_currency = NULL, loan_size_credit_limit = NULL, loan_size_credit_limit_currency = NULL, sector_ald = NULL, name_ald = NULL, technology = NULL, year = NULL, production = NULL, plant_location = NULL, scenario = NULL, region = NULL, tmsr = NULL, smsp = NULL, ...) { tibble( id_loan = id_loan %||% "L162", loan_size_outstanding = loan_size_outstanding %||% 1, loan_size_outstanding_currency = loan_size_outstanding_currency %||% "EUR", loan_size_credit_limit = loan_size_credit_limit %||% 2, loan_size_credit_limit_currency = loan_size_credit_limit_currency %||% "EUR", sector_ald = sector_ald %||% "automotive", name_ald = name_ald %||% "shaanxi auto", technology = technology %||% "ice", year = year %||% 2025, production = production %||% 1, plant_location = plant_location %||% "BF", scenario = scenario %||% "sds", region = region %||% "global", tmsr = tmsr %||% 0.5, smsp = smsp %||% -0.08, ... ) }
NULL cat_sim <- function(true, pool, ...){ if(!is.data.frame(pool)) pool <- as.data.frame(pool, stringsAsFactors=FALSE) if(!all(c("a", "b", "c") %in% colnames(pool))) stop("cannot find a-, b-, or c-parameters in item pool") opts <- list(...) if(is.null(opts$min)) stop("minimum length is missing") if(is.null(opts$max)) stop("maximum length is missing") if(opts$min < 0 || opts$min > opts$max) stop("invalid min/max length values: ", opts$min, " -- ", opts$max) if(nrow(pool) < opts$max) stop("insufficient items in item pool: ", nrow(pool)) theta <- ifelse(is.null(opts$theta), 0, opts$theta) if(is.null(opts$D)) opts$D <- 1.702 if(is.null(opts$select_rule)) select_rule <- cat_select_maxinfo else select_rule <- opts$select_rule if(is.null(opts$estimate_rule)) estimate_rule <- cat_estimate_mle else estimate_rule <- opts$estimate_rule if(is.null(opts$stop_rule)) stop_rule <- cat_stop_default else stop_rule <- opts$stop_rule len <- 0 stats <- matrix(nrow=opts$max, ncol=4, dimnames=list(NULL, c("u", "t", "se", "info"))) admin <- NULL while(len < opts$max){ selection <- select_rule(len, theta, stats, admin, pool, opts) item <- selection$item item <- item[0:min(nrow(item), opts$max - len), ] pool <- selection$pool n <- nrow(item) len <- len + n admin <- rbind(admin, item) p <- model_3pl_prob(true, item$a, item$b, item$c, opts$D)[1, ] u <- as.integer(p > runif(n)) stats[1:n + (len - n), "u"] <- u theta <- estimate_rule(len, theta, stats, admin, pool, opts) info <- sum(model_3pl_info(theta, admin$a, admin$b, admin$c, opts$D)) se <- 1 / sqrt(info) stats[1:n + (len - n), "t"] <- theta stats[1:n + (len - n), "se"] <- se stats[1:n + (len - n), "info"] <- info if(stop_rule(len, theta, stats, admin, pool, opts)) break } admin <- cbind(stats[1:len, ], admin) rs <- list(pool=pool, admin=admin, true=true, theta=theta) class(rs) <- "cat" rs } cat_estimate_mle <- function(len, theta, stats, admin, pool, opts){ u <- stats[1:len, "u"] u <- matrix(rep(u, each=2), nrow=2) if(is.null(opts$map_len)) opts$map_len <- 10 if(is.null(opts$map_prior)) opts$map_prior <- c(0, 1) if (len < opts$map_len) priors <- list(t=opts$map_prior) else priors <- NULL with(admin, model_3pl_estimate_jmle(u=u, a=a[1:len], b=b[1:len], c=c[1:len], D=opts$D, scale=NULL, priors=priors))$t[1] } cat_estimate_eap <- function(len, theta, stats, admin, pool, opts){ eap_mean <- ifelse(is.null(opts$eap_mean), 0, opts$eap_mean) eap_sd <- ifelse(is.null(opts$eap_sd), 1, opts$eap_sd) u <- stats[1:len, "u"] u <- matrix(rep(u, each=2), nrow=2) with(admin, model_3pl_eap_scoring(u=u, a=a[1:len], b=b[1:len], c=c[1:len], D=opts$D))$t[1] } cat_estimate_hybrid <- function(len, theta, stats, admin, pool, opts){ u <- stats[1:len, "u"] if(all(u==0) || all(u==1)){ theta <- cat_estimate_eap(len, theta, stats, admin, pool, opts) } else { theta <- cat_estimate_mle(len, theta, stats, admin, pool, opts) } theta } cat_stop_default <- function(len, theta, stats, admin, pool, opts){ if(len < opts$min) return(FALSE) if(len > opts$max) return(TRUE) if(!is.null(opts$stop_se)){ se <- stats[len, "se"] return(se <= opts$stop_se) } else if(!is.null(opts$stop_mi)){ info <- model_3pl_info(theta, pool$a, pool$b, pool$c, opts$D)[1, ] return(max(info) <= opts$stop_mi) } else if(!is.null(opts$stop_cut)){ se <- stats[len, "se"] ci_width <- ifelse(is.null(opts$ci_width), qnorm(.975), opts$ci_width) lb <- theta - ci_width * se ub <- theta + ci_width * se return(lb > opts$stop_cut || ub < opts$stop_cut) } FALSE } cat_select_maxinfo <- function(len, theta, stats, admin, pool, opts){ if(is.null(opts$group)) group <- 1:nrow(pool) else group <- pool[, opts$group] info <- model_3pl_info(theta, pool$a, pool$b, pool$c, opts$D)[1, ] info <- aggregate(info, by=list(group), mean) colnames(info) <- c("group", "info") random <- min(ifelse(is.null(opts$info_random), 1, opts$info_random), nrow(info)) index <-info$group[order(-info$info)[1:random]] if(length(index) > 1) index <- sample(index, 1) index <- group %in% index list(item=pool[index,], pool=pool[!index,]) } cat_select_ccat <- function(len, theta, stats, admin, pool, opts){ if(is.null(opts$ccat_var)) stop("ccat_var is misisng") if(is.null(opts$ccat_perc)) stop("ccat_perc is missing") initial_random <- ifelse(is.null(opts$ccat_random), 0, opts$ccat_random) info <- data.frame(id=1:nrow(pool), domain=pool[,opts$ccat_var]) info$info <- with(pool, model_3pl_info(theta, a, b, c, opts$D))[1, ] if(len == 0) curr_perc <- rep(0, length(opts$ccat_perc)) else curr_perc <- freq(admin[1:len, opts$ccat_var], names(opts$ccat_perc))$perc if(len < initial_random) domain <- sample(names(opts$ccat_perc), 1) else domain <- names(opts$ccat_perc)[which.max(opts$ccat_perc - curr_perc)] info <- info[info$domain == domain, ] random <- min(nrow(info), ifelse(is.null(opts$info_random), 1, opts$info_random)) index <- info$id[order(-info$info)[1:random]] if(length(index) > 1) index <- sample(index, 1) list(item=pool[index, ], pool=pool[-index, ]) } cat_select_shadow <- function(len, theta, stats, admin, pool, opts){ if(!"shadow_id" %in% colnames(pool)) pool$shadow_id <- 1:nrow(pool) if(is.null(opts$constraints)) stop("constraints is missing in the options") if(!all(colnames(opts$constraints) %in% c("var", "level", "min", "max"))) stop("shadow_constr should be a data.frame with 4 columns: var, level, min, and max") if(is.factor(opts$constraints$var)) opts$constraints$var <- levels(opts$constraints$var)[opts$constraints$var] if(is.factor(opts$constraints$level)) opts$constraints$level <- levels(opts$constraints$level)[opts$constraints$level] x <- ata(pool, 1, len=c(opts$min, opts$max), 1) x <- ata_obj_relative(x, theta, "max") for(i in 1:nrow(opts$constraints)) x <- with(opts$constraints[i,], ata_constraint(x, var, min=min, max=max, level=level)) if(!is.null(admin)) x <- ata_item_fixedvalue(x, match(admin$shadow_id, pool$shadow_id), min=1, forms=1) x <- ata_solve(x, as.list=FALSE, details=F) if(is.null(x$items)) stop("Failed to assemble a shadow test") x$items <- x$items[!x$items$shadow_id %in% admin$shadow_id, ] info <- data.frame(id=x$items$shadow_id, info=with(x$items, model_3pl_info(theta, a, b, c, opts$D))[1,]) random <- min(nrow(info), ifelse(is.null(opts$info_random), 1, opts$info_random)) index <- info$id[order(-info$info)[1:random]] if(length(index) > 1) index <- sample(index, 1) list(item=pool[index, ], pool=pool) } print.cat <- function(x, ...){ if(class(x) != "cat") stop("Not a 'cat' object.") len <- nrow(x$admin) cat("true=", round(x$true, 2), ", est.=", round(x$theta, 2), ", se=", round(x$admin$se[len], 2), ", p=", round(mean(x$admin$u), 2), ", used ", len, " items (", sum(x$admin$u)," correct).\n", sep="") cat("Belows is a history of the CAT:\n") if(len <= 10) { print(x$admin) } else { print(x$admin[1:5, ]) cat("...\n") print(x$admin[1:5 + len - 5, ]) } invisible(x) } plot.cat <- function(x, ...){ if(class(x) != "cat") stop("Not a 'cat' object.") opts <- list(...) if(is.null(opts$ylim)) opts$ylimc <- c(-3, 3) len <- nrow(x$admin) x$admin$lb <- x$admin$t - 1.96 * x$admin$se x$admin$ub <- x$admin$t + 1.96 * x$admin$se x$admin$pos <- 1:len x$admin$Responses <- factor(x$admin$u, levels=c(0, 1), labels=c("Wrong", "Right")) ggplot(data=x$admin, aes_string(x="pos", y="t", color="Responses")) + geom_point(aes_string(size="se")) + geom_linerange(aes_string(ymin="lb", ymax="ub"), linetype=3) + geom_point(aes(x=len, y=x$true), color="coral", pch=4, size=3) + coord_cartesian(ylim=opts$ylim) + scale_size_continuous(range=c(1, 3)) + xlab("Position") + ylab(expression(paste("Est. ", theta))) + guides(size=F, alpha=F) + theme_bw() + theme(legend.key=element_blank()) } cat_stop_projection <- function(len, theta, stats, admin, pool, opts){ if(len < opts$min) return(FALSE) if(len >= opts$max) return(TRUE) method <- match.arg(opts$projection_method, c('info', 'diff')) if(is.null(opts$stop_cut)) stop('stop_cut is missing in the options') if(is.null(opts$constraints)) stop("constraints is missing in the options") if(!all(colnames(opts$constraints) %in% c("var", "level", "min", "max"))) stop("shadow_constr should be a data.frame with 4 columns: var, level, min, and max") if(is.factor(opts$constraints$var)) opts$constraints$var <- levels(opts$constraints$var)[opts$constraints$var] if(is.factor(opts$constraints$level)) opts$constraints$level <- levels(opts$constraints$level)[opts$constraints$level] pool <- unique(rbind(pool, admin)) if(method == 'info'){ x <- ata(pool, 1, len=opts$max, 1) x <- ata_obj_relative(x, theta, "max") for(i in 1:nrow(opts$constraints)) x <- with(opts$constraints, ata_constraint(x, var[i], min=min[i], max=max[i], level=level[i])) x <- ata_item_fixedvalue(x, admin$shadow_id, min=1, forms=1) x <- ata_solve(x, as.list=FALSE, details=F) if(is.null(x$items)) stop("Failed to assemble a projection test") u <- c(stats[1:len, "u"], rep(1, opts$max - len)) u <- matrix(rep(u, each=2), nrow=2) theta_ub <- with(x$items, model_3pl_estimate_jmle(u, a=a, b=b, c=c, D=opts$D, scale=NULL, priors=NULL))$t[1] u <- c(stats[1:len, "u"], rep(0, opts$max - len)) u <- matrix(rep(u, each=2), nrow=2) theta_lb <- with(x$items, model_3pl_estimate_jmle(u, a=a, b=b, c=c, D=opts$D, scale=NULL, priors=NULL))$t[1] } else if(method == 'diff'){ if(is.null(opts$proj_width)) opts$proj_width <- 1.96 x <- ata(pool, 1, len=opts$max, 1) x <- ata_obj_absolute(x, "b", (theta + opts$proj_width * stats[len, "se"]) * opts$max) for(i in 1:nrow(opts$constraints)) x <- with(opts$constraints, ata_constraint(x, var[i], min=min[i], max=max[i], level=level[i])) x <- ata_item_fixedvalue(x, admin$shadow_id, min=1, forms=1) x <- ata_solve(x, as.list=FALSE, details=F) if(is.null(x$items)) stop("Failed to assemble a projection test") u <- c(stats[1:len, "u"], rep(1, opts$max - len)) u <- matrix(rep(u, each=2), nrow=2) theta_ub <- with(x$items, model_3pl_estimate_jmle(u, a=a, b=b, c=c, D=opts$D, scale=NULL, priors=NULL))$t[1] x <- ata(pool, 1, len=opts$max, 1) x <- ata_obj_absolute(x, "b", (theta - opts$proj_width * stats[len, "se"]) * opts$max) for(i in 1:nrow(opts$constraints)) x <- with(opts$constraints, ata_constraint(x, var[i], min=min[i], max=max[i], level=level[i])) x <- ata_item_fixedvalue(x, admin$shadow_id, min=1, forms=1) x <- ata_solve(x, as.list=FALSE, details=F) if(is.null(x$items)) stop("Failed to assemble a projection test") u <- c(stats[1:len, "u"], rep(0, opts$max - len)) u <- matrix(rep(u, each=2), nrow=2) theta_lb <- with(x$items, model_3pl_estimate_jmle(u, a=a, b=b, c=c, D=opts$D, scale=NULL, priors=NULL))$t[1] } (theta_lb > opts$stop_cut || theta_ub < opts$stop_cut) }
if (interactive()) pkgload::load_all(".") test_is_not_false <- function() { f <- function() { a <- FALSE return(is_not_false(a)) } result <- f() expectation <- FALSE RUnit::checkIdentical(result, expectation) a <- NULL result <- is_not_false(a) expectation <- FALSE RUnit::checkIdentical(result, expectation) result <- is_not_false(a, null_is_false = FALSE) expectation <- TRUE if (interactive()) RUnit::checkIdentical(result, expectation) a <- "not_false" f <- function() { return(is_not_false(a)) } result <- f() expectation <- TRUE if (interactive()) RUnit::checkIdentical(result, expectation) f <- function() { return(is_not_false(a, null_is_false = TRUE, inherits = FALSE)) } result <- f() expectation <- FALSE RUnit::checkIdentical(result, expectation) } if (interactive()) { test_is_not_false() } test_is_false <- function() { expectation <- TRUE result <- is_false(FALSE) RUnit::checkIdentical(result, expectation) } if (interactive()) { test_is_false() } test_is_null_or_true <- function() { expectation <- TRUE result <- is_null_or_true(TRUE) result <- is_null_or_true(NULL) RUnit::checkIdentical(result, expectation) expectation <- FALSE result <- is_null_or_true(FALSE) RUnit::checkIdentical(result, expectation) result <- is_null_or_true("not true") RUnit::checkIdentical(result, expectation) } if (interactive()) { test_is_null_or_true() }
LIML = function(ivmodel,beta0=0,alpha=0.05,manyweakSE=FALSE,heteroSE=FALSE,clusterID=NULL) { if(class(ivmodel) != "ivmodel") { print("LIML: You must supply an ivmodel class. See ivmodel function for details") return(NULL) } Yadj = ivmodel$Yadj; Dadj = ivmodel$Dadj; Zadj = ivmodel$Zadj; ZadjQR = ivmodel$ZadjQR LIMLMatrix1 = matrix(0,2,2) LIMLMatrix1[1,1] = sum(Yadj^2) LIMLMatrix1[1,2] = LIMLMatrix1[2,1] = sum(Dadj * Yadj) LIMLMatrix1[2,2] = sum(Dadj^2) LIMLMatrix2 = matrix(0,2,2); projYadj = qr.resid(ZadjQR,Yadj); projDadj = qr.resid(ZadjQR,Dadj) LIMLMatrix2[1,1] = sum(projYadj^2) LIMLMatrix2[1,2] = LIMLMatrix2[2,1] = sum(projDadj * projYadj) LIMLMatrix2[2,2] = sum(projDadj^2) kLIML = eigen(LIMLMatrix1 %*% invTwobyTwoSymMatrix(LIMLMatrix2))$values[2] output = KClass(ivmodel,k=kLIML,beta0=beta0,alpha=alpha,manyweakSE=manyweakSE,heteroSE=heteroSE,clusterID=clusterID) rownames(output$point.est) = rownames(output$std.err) = rownames(output$test.stat) = rownames(output$ci) = rownames(output$p.value) = NULL return(c(output,list(k=kLIML))) }
context("Install from git repo") test_that("install_git with git2r", { skip_on_cran() skip_if_offline() skip_if_not_installed("git2r") Sys.unsetenv("R_TESTS") lib <- tempfile() on.exit(unlink(lib, recursive = TRUE), add = TRUE) dir.create(lib) url <- "https://github.com/gaborcsardi/pkgconfig.git" install_git(url, lib = lib, git = "git2r", quiet = TRUE) expect_silent(packageDescription("pkgconfig", lib.loc = lib)) expect_equal( packageDescription("pkgconfig", lib.loc = lib)$RemoteUrl, url ) remote <- package2remote("pkgconfig", lib = lib) expect_s3_class(remote, "remote") expect_s3_class(remote, "git2r_remote") expect_equal(format(remote), "Git") expect_equal(remote$url, url) expect_equal(remote$ref, NULL) expect_equal(remote_sha(remote), remote$sha) expect_true(!is.na(remote$sha) && nzchar(remote$sha)) }) test_that("install_git with git2r and ref", { skip_on_cran() skip_if_offline() skip_if_over_rate_limit() skip_if_not_installed("git2r") Sys.unsetenv("R_TESTS") lib <- tempfile() on.exit(unlink(lib, recursive = TRUE), add = TRUE) dir.create(lib) url <- "https://github.com/gaborcsardi/pkgconfig.git" install_git(url, lib = lib, ref = "travis", git = "git2r", quiet = TRUE) expect_silent(packageDescription("pkgconfig", lib.loc = lib)) expect_equal( packageDescription("pkgconfig", lib.loc = lib)$RemoteUrl, url ) remote <- package2remote("pkgconfig", lib = lib) expect_s3_class(remote, "remote") expect_s3_class(remote, "git2r_remote") expect_equal(format(remote), "Git") expect_equal(remote$url, url) expect_equal(remote$ref, "travis") expect_equal(remote_sha(remote), remote$sha) expect_true(!is.na(remote$sha) && nzchar(remote$sha)) }) test_that("install_git with command line git", { skip_on_cran() skip_if_offline() if (is.null(git_path())) skip("git is not installed") Sys.unsetenv("R_TESTS") lib <- tempfile() on.exit(unlink(lib, recursive = TRUE), add = TRUE) dir.create(lib) url <- "https://github.com/cran/falsy.git" install_git(url, git = "external", lib = lib, quiet = TRUE) expect_silent(packageDescription("falsy", lib.loc = lib)) expect_equal(packageDescription("falsy", lib.loc = lib)$RemoteUrl, url) remote <- package2remote("falsy", lib = lib) expect_s3_class(remote, "remote") expect_s3_class(remote, "xgit_remote") expect_equal(format(remote), "Git") expect_equal(remote$url, url) expect_equal(remote$ref, NULL) expect_true(!is.na(remote$sha) && nzchar(remote$sha)) }) test_that("install_git with command line git and tag ref", { skip_on_cran() skip_if_offline() if (is.null(git_path())) skip("git is not installed") Sys.unsetenv("R_TESTS") lib <- tempfile() on.exit(unlink(lib, recursive = TRUE), add = TRUE) dir.create(lib) url <- "https://github.com/cran/falsy.git" install_git(url, ref = "1.0", git = "external", lib = lib, quiet = TRUE) expect_silent(packageDescription("falsy", lib.loc = lib)) expect_equal(packageDescription("falsy", lib.loc = lib)$RemoteUrl, url) remote <- package2remote("falsy", lib = lib) expect_s3_class(remote, "remote") expect_s3_class(remote, "xgit_remote") expect_equal(format(remote), "Git") expect_equal(remote$url, url) expect_equal(remote$ref, "1.0") expect_true(!is.na(remote$sha) && nzchar(remote$sha)) }) test_that("install_git with command line git and full SHA ref", { skip_on_cran() skip_if_offline() if (is.null(git_path())) skip("git is not installed") Sys.unsetenv("R_TESTS") lib <- tempfile() on.exit(unlink(lib, recursive = TRUE), add = TRUE) dir.create(lib) url <- "https://github.com/cran/falsy.git" install_git(url, ref = "0f39d9eb735bf16909831c0bb129063dda388375", git = "external", lib = lib, quiet = TRUE) expect_silent(packageDescription("falsy", lib.loc = lib)) expect_equal(packageDescription("falsy", lib.loc = lib)$RemoteUrl, url) remote <- package2remote("falsy", lib = lib) expect_s3_class(remote, "remote") expect_s3_class(remote, "xgit_remote") expect_equal(format(remote), "Git") expect_equal(remote$url, url) expect_equal(remote$ref, "0f39d9eb735bf16909831c0bb129063dda388375") expect_true(!is.na(remote$sha) && nzchar(remote$sha)) }) test_that("git_remote returns the url", { skip_on_cran() url <- "https://github.com/cran/falsy.git" remote <- git_remote(url) expect_equal(remote$url, "https://github.com/cran/falsy.git") url <- "https://github.com/cran/falsy.git@master" remote <- git_remote(url) expect_equal(remote$url, "https://github.com/cran/falsy.git") expect_equal(remote$ref, "master") url <- "[email protected]:cran/falsy.git" remote <- git_remote(url) expect_equal(remote$url, "[email protected]:cran/falsy.git") url <- "[email protected]:cran/falsy.git@master" remote <- git_remote(url) expect_equal(remote$url, "[email protected]:cran/falsy.git") expect_equal(remote$ref, "master") url <- "ssh://[email protected]:7999/proj/name.git" remote <- git_remote(url) expect_equal(remote$url, "ssh://[email protected]:7999/proj/name.git") url <- "ssh://[email protected]:7999/proj/name.git@fixup/issue" remote <- git_remote(url) expect_equal(remote$url, "ssh://[email protected]:7999/proj/name.git") expect_equal(remote$ref, "fixup/issue") url <- "https://[email protected]/someuser/MyProject/_git/MyPackage" remote <- git_remote(url) expect_equal(remote$url, "https://[email protected]/someuser/MyProject/_git/MyPackage") }) test_that("remote_package_name.git2r_remote returns the package name if it exists", { skip_on_cran() skip_if_offline() skip_if_not_installed("git2r") url <- "https://github.com/cran/falsy.git" remote <- git_remote(url, git = "git2r") expect_equal(remote_package_name(remote), "falsy") url <- "https://github.com/igraph/rigraph.git@46bfafd" remote <- git_remote(url, git = "git2r") expect_equal(remote_package_name(remote), "igraph") url <- "https://github.com/igraph/rigraph.git@master" remote <- git_remote(url, git = "git2r") expect_equal(remote_package_name(remote), "igraph") url <- "https://gitlab.com/r-lib-grp/test-pkg.git" remote <- git_remote(url, git = "git2r") expect_equal(remote_package_name(remote), "test123") url <- "https://gitlab.com/r-lib-grp/fake-private-repo.git" remote <- git_remote(url, git = "git2r") err <- tryCatch(remote_sha(remote), error = function(e) e) expect_error( expect_equal(remote_package_name(remote), NA_character_), class = class(err), label = conditionMessage(err) ) }) test_that("remote_package_name.xgit_remote returns the package name if it exists", { skip_on_cran() skip_if_offline() if (is.null(git_path())) skip("git is not installed") url <- "https://github.com/cran/falsy.git" remote <- git_remote(url, git = "external") expect_equal(remote_package_name(remote), "falsy") url <- "https://github.com/igraph/rigraph.git@46bfafd" remote <- git_remote(url, git = "external") expect_equal(remote_package_name(remote), "igraph") url <- "https://github.com/igraph/rigraph.git@master" remote <- git_remote(url, git = "external") expect_equal(remote_package_name(remote), "igraph") }) test_that("remote_sha.xgit remote returns the SHA if it exists", { skip_on_cran() skip_if_offline() if (is.null(git_path())) skip("git is not installed") url <- "https://github.com/cran/falsy.git" remote <- git_remote(url, ref = "1.0", git = "external") expect_equal(remote_sha(remote), "0f39d9eb735bf16909831c0bb129063dda388375") remote <- git_remote(url, ref = "26a36cf957a18569e311ef75b6f61f822de945ef", git = "external") expect_equal(remote_sha(remote), "26a36cf957a18569e311ef75b6f61f822de945ef") }) test_that("remote_metadata.xgit_remote", { r <- remote_metadata.xgit_remote( list(url = "foo", subdir = "foo2", ref = "foo3") ) e <- list( RemoteType = "xgit", RemoteUrl = "foo", RemoteSubdir = "foo2", RemoteRef = "foo3", RemoteSha = NULL, RemoteArgs = NULL ) expect_equal(r, e) }) test_that("remote_metadata.git2r_remote", { r <- remote_metadata.git2r_remote( list(url = "foo", subdir = "foo2", ref = "foo3") ) e <- list( RemoteType = "git2r", RemoteUrl = "foo", RemoteSubdir = "foo2", RemoteRef = "foo3", RemoteSha = NULL ) expect_equal(r, e) })
aaStruct <- function (x,y, sigWeight = TRUE){ Peps <- as.character(x[,1]) Peps <- strsplit(Peps,"") Peps <- do.call(rbind,Peps) A <- Peps == "A" R <- Peps == "R" N <- Peps == "N" D <- Peps == "D" Q <- Peps == "Q" E <- Peps == "E" G <- Peps == "G" H <- Peps == "H" L <- Peps == "L" K <- Peps == "K" Ef <- Peps == "F" P <- Peps == "P" S <- Peps == "S" W <- Peps == "W" Y <- Peps == "Y" V <- Peps == "V" C <- Peps == "C" I <- Peps == "I" M <- Peps == "M" Tee <- Peps == "T" ProbTot <- length(x[,1]) if (sigWeight == FALSE){ cat("sigWeight = FALSE \n") A2 <- (colSums(A)/ProbTot) R2 <- (colSums(R)/ProbTot) N2 <- (colSums(N)/ProbTot) D2 <- (colSums(D)/ProbTot) Q2 <- (colSums(Q)/ProbTot) E2 <- (colSums(E)/ProbTot) G2 <- (colSums(G)/ProbTot) H2 <- (colSums(H)/ProbTot) L2 <- (colSums(L)/ProbTot) K2 <- (colSums(K)/ProbTot) Ef2 <- (colSums(Ef)/ProbTot) P2 <- (colSums(P)/ProbTot) S2 <- (colSums(S)/ProbTot) W2 <- (colSums(W)/ProbTot) Y2 <- (colSums(Y)/ProbTot) V2 <- (colSums(V)/ProbTot) C2 <- (colSums(C)/ProbTot) I2 <- (colSums(I)/ProbTot) M2 <- (colSums(M)/ProbTot) Tee2 <- (colSums(Tee)/ProbTot) CPeps <- rbind(A2,R2,N2,D2,Q2,E2,G2,H2,L2,K2,Ef2,P2,S2,W2,Y2,V2,C2,I2,M2,Tee2) return(CPeps) } else if (sigWeight == TRUE){ cat("sigWeight default = TRUE \n") RawFile <- matrix(0,nrow(Peps),ncol(Peps)) Sigs <- y for (i in 1:ncol(RawFile)){ RawFile[,i] = y } A1 <- A*RawFile R1 <- R*RawFile N1 <- N*RawFile D1 <- D*RawFile Q1 <- Q*RawFile E1 <- E*RawFile G1 <- G*RawFile H1 <- H*RawFile L1 <- L*RawFile K1 <- K*RawFile Ef1 <- Ef*RawFile P1 <- P*RawFile S1 <- S*RawFile W1 <- W*RawFile Y1 <- Y*RawFile V1 <- V*RawFile C1 <- C*RawFile I1 <- I*RawFile M1 <- M*RawFile Tee1 <- Tee*RawFile A2 <- (colSums(A)/ProbTot)*colSums(A1)/colSums(A) R2 <- (colSums(R)/ProbTot)*colSums(R1)/colSums(R) N2 <- (colSums(N)/ProbTot)*colSums(N1)/colSums(N) D2 <- (colSums(D)/ProbTot)*colSums(D1)/colSums(D) Q2 <- (colSums(Q)/ProbTot)*colSums(Q1)/colSums(Q) E2 <- (colSums(E)/ProbTot)*colSums(E1)/colSums(E) G2 <- (colSums(G)/ProbTot)*colSums(G1)/colSums(G) H2 <- (colSums(H)/ProbTot)*colSums(H1)/colSums(H) L2 <- (colSums(L)/ProbTot)*colSums(L1)/colSums(L) K2 <- (colSums(K)/ProbTot)*colSums(K1)/colSums(K) Ef2 <- (colSums(Ef)/ProbTot)*colSums(Ef1)/colSums(Ef) P2 <- (colSums(P)/ProbTot)*colSums(P1)/colSums(P) S2 <- (colSums(S)/ProbTot)*colSums(S1)/colSums(S) W2 <- (colSums(W)/ProbTot)*colSums(W1)/colSums(W) Y2 <- (colSums(Y)/ProbTot)*colSums(Y1)/colSums(Y) V2 <- (colSums(V)/ProbTot)*colSums(V1)/colSums(V) C2 <- (colSums(C)/ProbTot)*colSums(C1)/colSums(C) I2 <- (colSums(I)/ProbTot)*colSums(I1)/colSums(I) M2 <- (colSums(M)/ProbTot)*colSums(M1)/colSums(M) Tee2 <- (colSums(Tee)/ProbTot)*colSums(Tee1)/colSums(Tee) CPeps <- rbind(A2,R2,N2,D2,Q2,E2,G2,H2,L2,K2,Ef2,P2,S2,W2,Y2,V2,C2,I2,M2,Tee2) CPepsNorm <- CPeps/(mean(y)) return(CPepsNorm) } else { cat("Error in sigWeight, select either TRUE or FALSE") } } vMotif.lc <- function(Prot,ProtG,Length,Charge,SigCol,Kd = FALSE) { Peps <- vSep(Prot,Length,Charge) if (Kd == TRUE){ a <- aaStruct(Peps,1/Peps[,SigCol]) }else if (Kd == FALSE){ a <- aaStruct(Peps,Peps[,SigCol]) } Peps <- vSep(ProtG,Length,Charge) if (Kd == TRUE){ b <- aaStruct(Peps,1/Peps[,SigCol]) }else if (Kd == FALSE){ b <- aaStruct(Peps,Peps[,SigCol]) } Finalstruct <- (a/b) Final <- data.frame(Finalstruct, row.names = c("A","R","N","D","Q","E","G","H","L","K", "F","P","S","W","Y","V","C","I","M","T")) colnames(Final) <- Length:1 aaMap <- melt(as.matrix(Final)) colnames(aaMap) <- c("AA","Position","Weight") aaPlot <- ggplot(data = aaMap) + geom_raster(aes(x = aaMap[,2], y = aaMap[,1], fill = aaMap[,3], alpha = ifelse(is.nan(aaMap[,3]) == TRUE, 0, 1)))+ scale_fill_distiller(palette = "Spectral")+ geom_tile(size = 0.5, fill = NA, colour = "black", aes(x = aaMap[,2], y = aaMap[,1]))+ scale_x_continuous(breaks = min(aaMap[,2]):max(aaMap[,2]))+ theme(panel.grid.major.x = element_blank(), panel.grid.major.y = element_blank(), panel.background = element_rect(fill = "white"), axis.text = element_text(size=12), axis.title = element_text(size = 14), plot.title = element_text(size = 17, face = "bold"))+ labs(title = paste("vMotif.lc Analysis Length",Length, "Charge",Charge), x = "Position", y = "AA", fill = "Weight")+ guides(alpha = FALSE) print(aaPlot) return(Final) } vMotif.l <- function(Prot,ProtG,Length,SigCol,Kd = FALSE) { Peps <- vSep(Prot,Length) if (Kd == TRUE){ a <- aaStruct(Peps,1/Peps[,SigCol]) }else if (Kd == FALSE){ a <- aaStruct(Peps,Peps[,SigCol]) } Peps <- vSep(ProtG,Length) if (Kd == TRUE){ b <- aaStruct(Peps,1/Peps[,SigCol]) }else if (Kd == FALSE){ b <- aaStruct(Peps,Peps[,SigCol]) } Finalstruct <- (a/b) Final <- data.frame(Finalstruct, row.names = c("A","R","N","D","Q","E","G","H","L","K", "F","P","S","W","Y","V","C","I","M","T")) colnames(Final) <- Length:1 aaMap <- melt(as.matrix(Final)) colnames(aaMap) <- c("AA","Position","Weight") aaPlot <- ggplot(data = aaMap) + geom_raster(aes(x = aaMap[,2], y = aaMap[,1], fill = aaMap[,3], alpha = ifelse(is.nan(aaMap[,3]) == TRUE, 0, 1)))+ scale_fill_distiller(palette = "Spectral")+ geom_tile(size = 0.5, fill = NA, colour = "black", aes(x = aaMap[,2], y = aaMap[,1]))+ scale_x_continuous(breaks = min(aaMap[,2]):max(aaMap[,2]))+ theme(panel.grid.major.x = element_blank(), panel.grid.major.y = element_blank(), panel.background = element_rect(fill = "white"), axis.text = element_text(size = 12), axis.title = element_text(size = 14), plot.title = element_text(size = 17, face = "bold"))+ labs(title = paste("vMotif.l Analysis Length", Length), x = "Position", y = "AA", fill = "Weight")+ guides(alpha = FALSE) print(aaPlot) return(Final) } vComp.l <- function(Prot,ProtG,Length) { Peps <- vSep(Prot,Length) a <- aaStruct(Peps,sigWeight = FALSE) Peps <- vSep(ProtG,Length) b <- aaStruct(Peps,sigWeight = FALSE) Finalstruct <- (a/b) Final <- data.frame(Finalstruct, row.names = c("A","R","N","D","Q","E","G","H","L","K", "F","P","S","W","Y","V","C","I","M","T")) colnames(Final) <- Length:1 aaMap <- melt(as.matrix(Final)) colnames(aaMap) <- c("AA","Position","Weight") aaPlot <- ggplot(data = aaMap) + geom_raster(aes(x = aaMap[,2], y = aaMap[,1], fill = aaMap[,3], alpha = ifelse(is.nan(aaMap[,3]) == TRUE, 0, 1)))+ scale_fill_distiller(palette = "Spectral")+ geom_tile(size = 0.5, fill = NA, colour = "black", aes(x = aaMap[,2], y = aaMap[,1]))+ scale_x_continuous(breaks = min(aaMap[,2]):max(aaMap[,2]))+ theme(panel.grid.major.x = element_blank(), panel.grid.major.y = element_blank(), panel.background = element_rect(fill = "white"), axis.text = element_text(size=12), axis.title = element_text(size=14), plot.title = element_text(size = 17, face = "bold"))+ labs(title = paste("vComp.l Analysis Length", Length), x = "Position", y = "AA", fill = "Weight")+ guides(alpha = FALSE) print(aaPlot) return(Final) } vComp.lc <- function(Prot,ProtG,Length,Charge) { Peps <- vSep(Prot,Length,Charge) a <- aaStruct(Peps,sigWeight = FALSE) Peps <- vSep(ProtG,Length,Charge) b <- aaStruct(Peps,sigWeight = FALSE) Finalstruct <- (a/b) Final <- data.frame(Finalstruct, row.names = c("A","R","N","D","Q","E","G","H","L","K", "F","P","S","W","Y","V","C","I","M","T")) colnames(Final) <- Length:1 aaMap <- melt(as.matrix(Final)) colnames(aaMap) <- c("AA","Position","Weight") aaPlot <- ggplot(data = aaMap) + geom_raster(aes(x = aaMap[,2], y = aaMap[,1], fill = aaMap[,3], alpha = ifelse(is.nan(aaMap[,3]) == TRUE, 0, 1)))+ scale_fill_distiller(palette = "Spectral")+ geom_tile(size = 0.5, fill = NA, colour = "black", aes(x = aaMap[,2], y = aaMap[,1]))+ scale_x_continuous(breaks = min(aaMap[,2]):max(aaMap[,2]))+ theme(panel.grid.major.x = element_blank(), panel.grid.major.y = element_blank(), panel.background = element_rect(fill = "white"), axis.text = element_text(size=12), axis.title = element_text(size=14), plot.title = element_text(size = 17, face = "bold"))+ labs(title =paste("vComp.lc Analysis Length", Length,"Charge", Charge), x = "Position", y = "AA", fill = "Weight")+ guides(alpha = FALSE) print(aaPlot) return(Final) }
zadr <- function(y, x, xnew = NULL, tol = 1e-05) { dm <- dim(y) D <- dm[2] ; d <- D - 1 n <- dm[1] x <- model.matrix(~., as.data.frame(x) ) runtime <- proc.time() a1 <- which( Rfast::rowsums( y > 0 ) == D ) a2 <- which( Rfast::rowsums( y > 0 ) != D ) n1 <- length(a1) n2 <- n - n1 za <- y[a2, , drop = FALSE] za[za == 0] <- 1 za[ za < 1 ] <- 0 theta <- table( apply(za, 1, paste, collapse = ",") ) theta <- as.vector(theta) con <- n1 * log(n1/n) + sum( theta * log(theta/n) ) y1 <- y[a1, , drop = FALSE] ly1 <- log( y1 ) x1 <- x[a1, , drop = FALSE] ly2 <- log( y[a2, , drop = FALSE] ) x2 <- x[a2, , drop = FALSE] n1 <- nrow(y1) ; n2 <- n - n1 beta.ini <- .lm.fit(x1, ly1[, -1] - ly1[, 1])$coefficients ini.phi <- sum( Compositional::diri.nr(y1, type = 2)$param ) ini.par <- c( log(ini.phi), as.vector( t( beta.ini) ) ) z <- list(ly1 = ly1, ly2 = ly2, x1 = x1, x2 = x2, a1 = a1, a2 = a2) oop <- options(warn = -1) on.exit( options(oop) ) qa <- nlm( mixreg, ini.par, z = z ) el1 <- -qa$minimum qa <- nlm( mixreg, qa$estimate, z = z ) el2 <- - qa$minimum while ( el2 - el1 > tol ) { el1 <- el2 qa <- nlm( mixreg, qa$estimate, z = z ) el2 <- -qa$minimum } qa <- optim( qa$estimate, mixreg, z = z, hessian = TRUE, control = list(maxiters = 10000) ) sigma <- try( solve( qa$hessian ), silent = TRUE ) if ( !identical( class(sigma), "try-error") ) { seb <- sqrt( diag(sigma) ) seb <- matrix(seb[-1], ncol = d) colnames(seb) <- colnames( y[, -1] ) rownames(seb) <- colnames(x) } else { sigma <- NULL seb <- NULL } phi <- exp( qa$par[1] ) be <- matrix( qa$par[-1], ncol = d ) colnames(be) <- colnames( y[, -1] ) rownames(be) <- colnames(x) est <- NULL if ( !is.null(xnew) ) { xnew <- model.matrix(~., as.data.frame(xnew) ) ma <- cbind(1, exp( xnew %*% be ) ) est <- ma / Rfast::rowsums(ma) colnames(est) <- colnames(y) } runtime <- proc.time() - runtime list(runtime = runtime, loglik = -qa$value + con, phi = phi, be = be, seb = seb, sigma = sigma, est = est ) }
restoreLibs <- function( md5hash, session_info = NULL, lib.loc = NULL) { stopifnot( !is.null( md5hash ) | !is.null( session_info ) ) if (!requireNamespace("devtools", quietly = TRUE)) { stop("devtools package required for restoreLibs function") } if (is.null(session_info)) { session_info <- asession(md5hash) } if (!is.null(lib.loc)) { oldPaths <- .libPaths() .libPaths(c(lib.loc, .libPaths())) on.exit(.libPaths(oldPaths)) } pkgs <- session_info$packages installed_pkgs <- installed.packages()[,c("Package", "Version")] for (i in seq_along(pkgs$package)) { is_allready_installed <- paste0(pkgs[i,"package"], pkgs[i,"version"]) %in% apply(installed_pkgs, 1, paste0, collapse="") if (pkgs[i,"package"] != "archivist" & !is_allready_installed) { if (pkgs[i,"*"] == "*") { cat("Package", pkgs[i,"package"], "was installed from local file and will not be reinstalled.\n\n") } else { if (grepl(pkgs[i,"source"], pattern = "^CRAN")) { try(devtools::install_version(pkgs[i,"package"], version = pkgs[i,"version"], type="source", dependencies = FALSE, reload = FALSE), silent=TRUE) } else { pkg <- gsub(gsub(pkgs[i,"source"], pattern=".*\\(", replacement=""), pattern="\\)", replacement="") try(devtools::install_github(pkg, dependencies = FALSE, reload = FALSE), silent=TRUE) } } } } }
"nwts2ph"
NULL budgets_create_budget <- function(AccountId, Budget, NotificationsWithSubscribers = NULL) { op <- new_operation( name = "CreateBudget", http_method = "POST", http_path = "/", paginator = list() ) input <- .budgets$create_budget_input(AccountId = AccountId, Budget = Budget, NotificationsWithSubscribers = NotificationsWithSubscribers) output <- .budgets$create_budget_output() config <- get_config() svc <- .budgets$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .budgets$operations$create_budget <- budgets_create_budget budgets_create_budget_action <- function(AccountId, BudgetName, NotificationType, ActionType, ActionThreshold, Definition, ExecutionRoleArn, ApprovalModel, Subscribers) { op <- new_operation( name = "CreateBudgetAction", http_method = "POST", http_path = "/", paginator = list() ) input <- .budgets$create_budget_action_input(AccountId = AccountId, BudgetName = BudgetName, NotificationType = NotificationType, ActionType = ActionType, ActionThreshold = ActionThreshold, Definition = Definition, ExecutionRoleArn = ExecutionRoleArn, ApprovalModel = ApprovalModel, Subscribers = Subscribers) output <- .budgets$create_budget_action_output() config <- get_config() svc <- .budgets$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .budgets$operations$create_budget_action <- budgets_create_budget_action budgets_create_notification <- function(AccountId, BudgetName, Notification, Subscribers) { op <- new_operation( name = "CreateNotification", http_method = "POST", http_path = "/", paginator = list() ) input <- .budgets$create_notification_input(AccountId = AccountId, BudgetName = BudgetName, Notification = Notification, Subscribers = Subscribers) output <- .budgets$create_notification_output() config <- get_config() svc <- .budgets$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .budgets$operations$create_notification <- budgets_create_notification budgets_create_subscriber <- function(AccountId, BudgetName, Notification, Subscriber) { op <- new_operation( name = "CreateSubscriber", http_method = "POST", http_path = "/", paginator = list() ) input <- .budgets$create_subscriber_input(AccountId = AccountId, BudgetName = BudgetName, Notification = Notification, Subscriber = Subscriber) output <- .budgets$create_subscriber_output() config <- get_config() svc <- .budgets$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .budgets$operations$create_subscriber <- budgets_create_subscriber budgets_delete_budget <- function(AccountId, BudgetName) { op <- new_operation( name = "DeleteBudget", http_method = "POST", http_path = "/", paginator = list() ) input <- .budgets$delete_budget_input(AccountId = AccountId, BudgetName = BudgetName) output <- .budgets$delete_budget_output() config <- get_config() svc <- .budgets$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .budgets$operations$delete_budget <- budgets_delete_budget budgets_delete_budget_action <- function(AccountId, BudgetName, ActionId) { op <- new_operation( name = "DeleteBudgetAction", http_method = "POST", http_path = "/", paginator = list() ) input <- .budgets$delete_budget_action_input(AccountId = AccountId, BudgetName = BudgetName, ActionId = ActionId) output <- .budgets$delete_budget_action_output() config <- get_config() svc <- .budgets$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .budgets$operations$delete_budget_action <- budgets_delete_budget_action budgets_delete_notification <- function(AccountId, BudgetName, Notification) { op <- new_operation( name = "DeleteNotification", http_method = "POST", http_path = "/", paginator = list() ) input <- .budgets$delete_notification_input(AccountId = AccountId, BudgetName = BudgetName, Notification = Notification) output <- .budgets$delete_notification_output() config <- get_config() svc <- .budgets$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .budgets$operations$delete_notification <- budgets_delete_notification budgets_delete_subscriber <- function(AccountId, BudgetName, Notification, Subscriber) { op <- new_operation( name = "DeleteSubscriber", http_method = "POST", http_path = "/", paginator = list() ) input <- .budgets$delete_subscriber_input(AccountId = AccountId, BudgetName = BudgetName, Notification = Notification, Subscriber = Subscriber) output <- .budgets$delete_subscriber_output() config <- get_config() svc <- .budgets$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .budgets$operations$delete_subscriber <- budgets_delete_subscriber budgets_describe_budget <- function(AccountId, BudgetName) { op <- new_operation( name = "DescribeBudget", http_method = "POST", http_path = "/", paginator = list() ) input <- .budgets$describe_budget_input(AccountId = AccountId, BudgetName = BudgetName) output <- .budgets$describe_budget_output() config <- get_config() svc <- .budgets$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .budgets$operations$describe_budget <- budgets_describe_budget budgets_describe_budget_action <- function(AccountId, BudgetName, ActionId) { op <- new_operation( name = "DescribeBudgetAction", http_method = "POST", http_path = "/", paginator = list() ) input <- .budgets$describe_budget_action_input(AccountId = AccountId, BudgetName = BudgetName, ActionId = ActionId) output <- .budgets$describe_budget_action_output() config <- get_config() svc <- .budgets$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .budgets$operations$describe_budget_action <- budgets_describe_budget_action budgets_describe_budget_action_histories <- function(AccountId, BudgetName, ActionId, TimePeriod = NULL, MaxResults = NULL, NextToken = NULL) { op <- new_operation( name = "DescribeBudgetActionHistories", http_method = "POST", http_path = "/", paginator = list() ) input <- .budgets$describe_budget_action_histories_input(AccountId = AccountId, BudgetName = BudgetName, ActionId = ActionId, TimePeriod = TimePeriod, MaxResults = MaxResults, NextToken = NextToken) output <- .budgets$describe_budget_action_histories_output() config <- get_config() svc <- .budgets$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .budgets$operations$describe_budget_action_histories <- budgets_describe_budget_action_histories budgets_describe_budget_actions_for_account <- function(AccountId, MaxResults = NULL, NextToken = NULL) { op <- new_operation( name = "DescribeBudgetActionsForAccount", http_method = "POST", http_path = "/", paginator = list() ) input <- .budgets$describe_budget_actions_for_account_input(AccountId = AccountId, MaxResults = MaxResults, NextToken = NextToken) output <- .budgets$describe_budget_actions_for_account_output() config <- get_config() svc <- .budgets$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .budgets$operations$describe_budget_actions_for_account <- budgets_describe_budget_actions_for_account budgets_describe_budget_actions_for_budget <- function(AccountId, BudgetName, MaxResults = NULL, NextToken = NULL) { op <- new_operation( name = "DescribeBudgetActionsForBudget", http_method = "POST", http_path = "/", paginator = list() ) input <- .budgets$describe_budget_actions_for_budget_input(AccountId = AccountId, BudgetName = BudgetName, MaxResults = MaxResults, NextToken = NextToken) output <- .budgets$describe_budget_actions_for_budget_output() config <- get_config() svc <- .budgets$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .budgets$operations$describe_budget_actions_for_budget <- budgets_describe_budget_actions_for_budget budgets_describe_budget_performance_history <- function(AccountId, BudgetName, TimePeriod = NULL, MaxResults = NULL, NextToken = NULL) { op <- new_operation( name = "DescribeBudgetPerformanceHistory", http_method = "POST", http_path = "/", paginator = list() ) input <- .budgets$describe_budget_performance_history_input(AccountId = AccountId, BudgetName = BudgetName, TimePeriod = TimePeriod, MaxResults = MaxResults, NextToken = NextToken) output <- .budgets$describe_budget_performance_history_output() config <- get_config() svc <- .budgets$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .budgets$operations$describe_budget_performance_history <- budgets_describe_budget_performance_history budgets_describe_budgets <- function(AccountId, MaxResults = NULL, NextToken = NULL) { op <- new_operation( name = "DescribeBudgets", http_method = "POST", http_path = "/", paginator = list() ) input <- .budgets$describe_budgets_input(AccountId = AccountId, MaxResults = MaxResults, NextToken = NextToken) output <- .budgets$describe_budgets_output() config <- get_config() svc <- .budgets$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .budgets$operations$describe_budgets <- budgets_describe_budgets budgets_describe_notifications_for_budget <- function(AccountId, BudgetName, MaxResults = NULL, NextToken = NULL) { op <- new_operation( name = "DescribeNotificationsForBudget", http_method = "POST", http_path = "/", paginator = list() ) input <- .budgets$describe_notifications_for_budget_input(AccountId = AccountId, BudgetName = BudgetName, MaxResults = MaxResults, NextToken = NextToken) output <- .budgets$describe_notifications_for_budget_output() config <- get_config() svc <- .budgets$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .budgets$operations$describe_notifications_for_budget <- budgets_describe_notifications_for_budget budgets_describe_subscribers_for_notification <- function(AccountId, BudgetName, Notification, MaxResults = NULL, NextToken = NULL) { op <- new_operation( name = "DescribeSubscribersForNotification", http_method = "POST", http_path = "/", paginator = list() ) input <- .budgets$describe_subscribers_for_notification_input(AccountId = AccountId, BudgetName = BudgetName, Notification = Notification, MaxResults = MaxResults, NextToken = NextToken) output <- .budgets$describe_subscribers_for_notification_output() config <- get_config() svc <- .budgets$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .budgets$operations$describe_subscribers_for_notification <- budgets_describe_subscribers_for_notification budgets_execute_budget_action <- function(AccountId, BudgetName, ActionId, ExecutionType) { op <- new_operation( name = "ExecuteBudgetAction", http_method = "POST", http_path = "/", paginator = list() ) input <- .budgets$execute_budget_action_input(AccountId = AccountId, BudgetName = BudgetName, ActionId = ActionId, ExecutionType = ExecutionType) output <- .budgets$execute_budget_action_output() config <- get_config() svc <- .budgets$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .budgets$operations$execute_budget_action <- budgets_execute_budget_action budgets_update_budget <- function(AccountId, NewBudget) { op <- new_operation( name = "UpdateBudget", http_method = "POST", http_path = "/", paginator = list() ) input <- .budgets$update_budget_input(AccountId = AccountId, NewBudget = NewBudget) output <- .budgets$update_budget_output() config <- get_config() svc <- .budgets$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .budgets$operations$update_budget <- budgets_update_budget budgets_update_budget_action <- function(AccountId, BudgetName, ActionId, NotificationType = NULL, ActionThreshold = NULL, Definition = NULL, ExecutionRoleArn = NULL, ApprovalModel = NULL, Subscribers = NULL) { op <- new_operation( name = "UpdateBudgetAction", http_method = "POST", http_path = "/", paginator = list() ) input <- .budgets$update_budget_action_input(AccountId = AccountId, BudgetName = BudgetName, ActionId = ActionId, NotificationType = NotificationType, ActionThreshold = ActionThreshold, Definition = Definition, ExecutionRoleArn = ExecutionRoleArn, ApprovalModel = ApprovalModel, Subscribers = Subscribers) output <- .budgets$update_budget_action_output() config <- get_config() svc <- .budgets$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .budgets$operations$update_budget_action <- budgets_update_budget_action budgets_update_notification <- function(AccountId, BudgetName, OldNotification, NewNotification) { op <- new_operation( name = "UpdateNotification", http_method = "POST", http_path = "/", paginator = list() ) input <- .budgets$update_notification_input(AccountId = AccountId, BudgetName = BudgetName, OldNotification = OldNotification, NewNotification = NewNotification) output <- .budgets$update_notification_output() config <- get_config() svc <- .budgets$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .budgets$operations$update_notification <- budgets_update_notification budgets_update_subscriber <- function(AccountId, BudgetName, Notification, OldSubscriber, NewSubscriber) { op <- new_operation( name = "UpdateSubscriber", http_method = "POST", http_path = "/", paginator = list() ) input <- .budgets$update_subscriber_input(AccountId = AccountId, BudgetName = BudgetName, Notification = Notification, OldSubscriber = OldSubscriber, NewSubscriber = NewSubscriber) output <- .budgets$update_subscriber_output() config <- get_config() svc <- .budgets$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .budgets$operations$update_subscriber <- budgets_update_subscriber
NULL cloudwatch <- function(config = list()) { svc <- .cloudwatch$operations svc <- set_config(svc, config) return(svc) } .cloudwatch <- list() .cloudwatch$operations <- list() .cloudwatch$metadata <- list( service_name = "monitoring", endpoints = list("*" = list(endpoint = "monitoring.{region}.amazonaws.com", global = FALSE), "cn-*" = list(endpoint = "monitoring.{region}.amazonaws.com.cn", global = FALSE), "us-iso-*" = list(endpoint = "monitoring.{region}.c2s.ic.gov", global = FALSE), "us-isob-*" = list(endpoint = "monitoring.{region}.sc2s.sgov.gov", global = FALSE)), service_id = "CloudWatch", api_version = "2010-08-01", signing_name = "monitoring", json_version = "", target_prefix = "" ) .cloudwatch$service <- function(config = list()) { handlers <- new_handlers("query", "v4") new_service(.cloudwatch$metadata, handlers, config) }
context("Overdispersion") data("biomass") biomass$olre <- 1:nrow(biomass) biomass$YearC <- biomass$Year - mean(biomass$Year) biomass$TemperatureS <- scale(biomass$Temperature) biomass$PrecipitationS <- scale(biomass$Precipitation) biomass$SpeciesDiversityC <- biomass$SpeciesDiversity - mean(biomass$SpeciesDiversity) fit1 <- lme4::glmer(Extinction ~ YearC + TemperatureS + PrecipitationS + SpeciesDiversityC + (1 | Population), data = biomass, family = "poisson" ) fit2 <- lme4::glmer(Extinction ~ YearC + TemperatureS + PrecipitationS + SpeciesDiversityC + (1 | Population) + (1 | olre), data = biomass, family = "poisson" ) test_that("overdispersion is added", { fit_olre <- model_overdisp(fit1, biomass, olre = TRUE) expect_equal(fit_olre$mod@frame$overdisp, factor(1:nrow(biomass))) expect_equal(fit_olre$dat$overdisp, factor(1:nrow(biomass))) fit_noolre <- model_overdisp(fit1, biomass, olre = FALSE) expect_equal(fit_noolre$mod@frame$overdisp, NULL) }) test_that("overdispersion is not added when present", { fit_olre <- model_overdisp(fit2, biomass, olre = TRUE) expect_equal(fit_olre$mod@frame$overdisp, NULL) })
iris2 <- iris %>% mutate_all(as.character) test_that("All columns must be character", { expect_snapshot_error(add_column_headers(iris, "header_text")) }) test_that("Nested headers are not allowed", { header_string = "TEXT | TEXT {TEXT {TEXT} TEXT } | TEXT" expect_snapshot_error(add_column_headers(iris2, header_string)) }) test_that("Header strings must have the same number of columns as the data frame", { good_no_spanner <- "Sepal Length | Sepal Width | Petal Length | Petal Width | Species" less_no_spanner <- "Sepal Length | Sepal Width | Petal Length | Petal Width" more_no_spanner <- "Sepal Length | Sepal Width | Petal Length | Petal Width | Species | More" good_spanner <- "Sepal {Length | Width} | Petal {Length | Width} | Species" less_spanner <- "Sepal {Length | Width} | Petal {Length | Width}" more_spanner <- "Sepal {Length | Width} | Petal {Length | Width} | Species | More" nested_less <- "Sepal {Length | Width} | Petal {Length} | Species" nested_more <- "Sepal {Length | Width} | Petal {Length | Width | More} | Species" expect_silent(add_column_headers(iris2, good_no_spanner)) expect_silent(add_column_headers(iris2, good_spanner)) expect_snapshot_error(add_column_headers(iris2, less_no_spanner)) expect_snapshot_error(add_column_headers(iris2, more_no_spanner)) expect_snapshot_error(add_column_headers(iris2, less_spanner)) expect_snapshot_error(add_column_headers(iris2, more_spanner)) expect_snapshot_error(add_column_headers(iris2, nested_less)) expect_snapshot_error(add_column_headers(iris2, nested_more)) }) test_that("Unmatched spanner brackers", { header_string = "TEXT | TEXT {TEXT {TEXT} TEXT | TEXT" expect_snapshot_error(add_column_headers(iris2, header_string)) }) test_that("Spanning headers produce correctly", { header_text_no_spanner <- "Sepal Length | Sepal Width | Petal Length | Petal Width | Species" header_df_no_spanner <- data.frame( Sepal.Length = c("Sepal Length"), Sepal.Width = c("Sepal Width"), Petal.Length = c("Petal Length"), Petal.Width = c("Petal Width"), Species = c("Species"), stringsAsFactors = FALSE) header_text_with_spanner <- "Sepal {Length | Width} | Petal {Length | Width} | Species" header_df_with_spanner <- data.frame( Sepal.Length = c("Sepal", "Length"), Sepal.Width = c("", "Width"), Petal.Length = c("Petal", "Length"), Petal.Width = c("", "Width"), Species = c("", "Species"), stringsAsFactors = FALSE) expect_true(all(add_column_headers(iris2, header_text_no_spanner) == bind_rows(header_df_no_spanner, iris2))) expect_true(all(add_column_headers(iris2, header_text_with_spanner) == bind_rows(header_df_with_spanner, iris2))) }) test_that("add_column_headers throws an error when you use a token and don't pass header_n", { expect_snapshot_error({ mtcars2 <- mtcars %>% mutate_all(as.character) t <- tplyr_table(mtcars2, am) %>% add_layer( group_count(cyl) ) b_t <- build(t) %>% mutate_all(as.character) count_string <- "Rows | am0 **0** | am1 **1**" add_column_headers(b_t, count_string) }) }) test_that("add_column_headers returns the expected result when tokens are passed", { mtcars2 <- mtcars %>% mutate_all(as.character) t <- tplyr_table(mtcars2, vs, cols = am) %>% add_layer( group_count(cyl) ) b_t <- build(t) %>% select(starts_with("row_label1") | starts_with("var1_")) count_string <- "Rows | V N=**0** {auto N=**0_0** | man N=**0_1**} | S N=**1** {auto N=**1_0** | man N=**1_1**}" tab <- add_column_headers(b_t, count_string, header_n(t)) expect_equal(tab, structure(list(row_label1 = c("", "Rows", "4", "6", "8"), var1_0_0 = c("V N=18", "auto N=12", " 0 ( 0.0%)", " 0 ( 0.0%)", "12 (100.0%)"), var1_0_1 = c("", "man N=6", " 1 ( 16.7%)", " 3 ( 50.0%)", " 2 ( 33.3%)"), var1_1_0 = c("S N=14", "auto N=7", " 3 ( 42.9%)", " 4 ( 57.1%)", " 0 ( 0.0%)"), var1_1_1 = c("", "man N=7", " 7 (100.0%)", " 0 ( 0.0%)", " 0 ( 0.0%)")), row.names = c(NA, -5L), class = c("tbl_df", "tbl", "data.frame"))) })
"CredIntRho" <- function(x, aprox=FALSE, level=.95) { r <- rhoCA(x) if (!aprox) { vr <- varRCA(x)} else { vr <- varRCA(x,T)} zs <- - qnorm((1-level)/2) sdr <- sqrt(vr) lcl <- r - zs * sdr ucl <- r + zs * sdr return(list(lcl,ucl)) }
.prepareP <- function(o, unconditional, residuals, resDen, se, se.mult, n, n2, xlab, ylab, main, ylim, xlim, too.far, seWithMean, nsim = 0, ...) { Q <- .initialize(o = o, unconditional = unconditional, residuals = residuals, se.mult = se.mult, resDen = resDen, se = se) if( !is.null(Q$Vmat) ) { o$gObj$Vp <- Q$Vmat } P <- .createP(sm = o$gObj$smooth[[ o$ism ]], x = o$gObj, partial.resids = Q$partial.resids, se = Q$se, n = n, n2 = n2, xlab = xlab, ylab = ylab, main = main, ylim = ylim, xlim = xlim, too.far = too.far, se1.mult = Q$se.mult, se2.mult = Q$se.mult, seWithMean = seWithMean, fitSmooth = Q$fv.terms, w.resid = Q$w.resid, resDen = resDen, nsim = nsim, ...) P$doPlotResid <- Q$partial.resids return( P ) }
get_graphab <- function(res = TRUE, return = FALSE){ if(Sys.which("java") == ""){ warning("Please install java if you want to use Graphab") } data_dir <- rappdirs::user_data_dir() if(!("graphab-2.6.jar" %in% list.files(paste0(data_dir, "/graph4lg_jar")))){ if(!dir.exists(paths = paste0(data_dir, "/graph4lg_jar"))){ dir.create(path = paste0(data_dir, "/graph4lg_jar")) } url <- "https://thema.univ-fcomte.fr/productions/download.php?name=graphab&version=2.6&username=Graph4lg&institution=R" destfile <- "/graph4lg_jar/graphab-2.6.jar" utils::download.file(url, paste0(data_dir, "/", destfile), method = "auto", mode = "wb") graphab <- 1 if(res){ message("Graphab has been downloaded") } } else { graphab <- 0 if(res){ message("Graphab is already on your machine") } } if(return){ return(graphab) } }
plot.le <- function(x, ylim = NULL, xlim = NULL, ci = T, col = 1, ylab = NULL, xlab = "Time", add = F, ...){ object <- x att <- attributes(object) if(is.null(ylab)){ ylab <- switch(att$type, ll = "Loss of lifetime", mrl = "Mean residual lifetime") } ci <- ci & att$var.type == "ci" if(length(col) == 1){ col <- rep(col, length(object)) } if(is.null(ylim)){ if(ci){ ylim <- range(unlist(lapply(object, function(x) x[, c("lower.ci", "upper.ci")]))) }else{ ylim <- range(unlist(lapply(object, function(x) x[, "Estimate"]))) } } for(i in 1:length(object)){ if(i == 1 & !add){ plot(Estimate ~ att$time, data = object[[i]], ylim = ylim, xlim = xlim, type = "l", col = col[i], xlab = xlab, ylab = ylab, ...) }else{ lines(Estimate ~ att$time, data = object[[i]], col = col[i], ...) } if(ci){ lines(lower.ci ~ att$time, data = object[[i]], lty = 2, col = col[i], ...) lines(upper.ci ~ att$time, data = object[[i]], lty = 2, col = col[i], ...) } } }
library(plm) data("Grunfeld", package = "plm") g_re <- plm(inv ~ value + capital, data = Grunfeld, model = "random") g_fe <- plm(inv ~ value + capital, data = Grunfeld, model = "within") g_pool <- plm(inv ~ value + capital, data = Grunfeld, model = "pooling") g_pool_lm <- lm(inv ~ value + capital, data = Grunfeld) g_fe_lm <- lm(inv ~ factor(firm) + value + capital, data = Grunfeld) plm::pbgtest(inv ~ value + capital, order=1, data=Grunfeld) plm::pbgtest(inv ~ value + capital, order=1, data=Grunfeld, model="pooling") plm::pbgtest(g_pool, order=1) plm::pbgtest(inv ~ value + capital, order=1, model="within", data=Grunfeld) plm::pbgtest(g_fe, order=1) plm::pbgtest(inv ~ value + capital, order=1, model="random", data=Grunfeld) plm::pbgtest(g_re, order=1) plm::pbgtest(g_pool, order = 1) lmtest::bgtest(g_pool) lmtest::bgtest(g_pool_lm) plm::pbgtest(g_pool, order = 1, type="F") lmtest::bgtest(g_pool, type="F") lmtest::bgtest(g_pool_lm, type="F") plm:::pbgtest( inv ~ value + capital, data = Grunfeld, order=1) lmtest::bgtest(inv ~ value + capital, data = Grunfeld, order=1) plm::pbgtest( inv ~ value + capital, data = Grunfeld, order=1, type="F") lmtest::bgtest(inv ~ value + capital, data = Grunfeld, order=1, type="F") plm::pbgtest(g_pool, order = 1, order.by=g_pool$model$capital) lmtest::bgtest(g_pool, order = 1, order.by=g_pool$model$capital) lmtest::bgtest(g_pool_lm, order = 1, order.by=g_pool_lm$model$capital) plm::pbgtest( inv ~ value + capital, data=Grunfeld, order = 1, order.by=g_pool$model$capital) lmtest::bgtest(inv ~ value + capital, data=Grunfeld, order = 1, order.by=g_pool$model$capital) lmtest::bgtest(inv ~ value + capital, data=Grunfeld, order = 1, order.by=g_pool_lm$model$capital) plm::pbgtest(g_pool, order = 1, order.by=g_pool$model$capital, type="F") lmtest::bgtest(g_pool, order = 1, order.by=g_pool$model$capital, type="F") lmtest::bgtest(g_pool_lm, order = 1, order.by=g_pool_lm$model$capital, type="F") plm::pbgtest( inv ~ value + capital, data=Grunfeld, order = 1, order.by=g_pool$model$capital, type="F") lmtest::bgtest(inv ~ value + capital, data=Grunfeld, order = 1, order.by=g_pool$model$capital, type="F") lmtest::bgtest(inv ~ value + capital, data=Grunfeld, order = 1, order.by=g_pool_lm$model$capital, type="F") plm::pbgtest(g_pool, order.by=~capital, order = 1, data=Grunfeld) lmtest::bgtest(g_pool, order.by=~capital, data=Grunfeld) lmtest::bgtest(g_pool_lm, order.by=~capital, data=Grunfeld) plm::pbgtest( inv ~ value + capital, order.by=~capital, order = 1, data=Grunfeld, model="pooling") plm::pbgtest( inv ~ value + capital, order.by=~capital, order = 1, data=Grunfeld) lmtest::bgtest(inv ~ value + capital, order.by=~capital, data=Grunfeld) lmtest::bgtest(inv ~ value + capital, order.by=~capital, data=Grunfeld) plm::pbgtest(g_pool, order.by=~capital, order = 1, data=Grunfeld, type="F") lmtest::bgtest(g_pool, order.by=~capital, data=Grunfeld, type="F") lmtest::bgtest(g_pool_lm, order.by=~capital, data=Grunfeld, type="F") plm::pbgtest( inv ~ value + capital, order.by=~capital, order = 1, data=Grunfeld, type="F", model="pooling") plm::pbgtest( inv ~ value + capital, order.by=~capital, order = 1, data=Grunfeld, type="F") lmtest::bgtest(inv ~ value + capital, order.by=~capital, data=Grunfeld, type="F") lmtest::bgtest(inv ~ value + capital, order.by=~capital, data=Grunfeld, type="F") plm::pbgtest(inv ~ value + capital, order=1, model="within", data=Grunfeld, order.by=~capital) plm::pbgtest(g_fe, order=1, data=Grunfeld, order.by=~capital) plm::pbgtest(inv ~ value + capital, order=1, model="within", data=Grunfeld, order.by=~g_fe$model$capital) plm::pbgtest(g_fe, order=1, data=Grunfeld, order.by=~g_fe$model$capital) plm::pbgtest(inv ~ value + capital, order=1, model="random", data=Grunfeld, order.by=~capital) plm::pbgtest(g_re, order=1, data=Grunfeld, order.by=~capital) plm::pbgtest(inv ~ value + capital, order=1, model="random", data=Grunfeld, order.by=g_re$model$capital) plm::pbgtest(g_re, order=1, data=Grunfeld, order.by=g_re$model$capital) g_re <- plm(inv ~ value, model = "random", data = Grunfeld) g_re <- plm(inv ~ value + capital, model = "random", data = Grunfeld) X <- model.matrix(g_re) y <- pmodel.response(g_re) df <- as.data.frame(cbind(y, X[,-1])) lm.mod <- lm(y ~ X - 1) lm.mod2 <- lm(df) all.equal(lm.mod$residuals, g_re$residuals) all.equal(lm.mod2$residuals, g_re$residuals) lmtest::bgtest(lm.mod) lmtest::bgtest(lm.mod2) pbgtest(g_re, order = 1)
SinglefReject <- function(nsim,bvec,lambdamu,lambdasd,nvec){ k <- length(bvec) if (length(nvec) != k*(k + 1)/2) { stop("length mismatch between bvec and nvec") } MLEres <- HWEmodelsMLE(nvec) maxLL <- MLEres$fmaxloglik psamp <- fsamp <- vector("list", nsim) niter <- naccept <- count <- PrnH1 <- varterm1 <- 0 Lnorm <- lfactorial(sum(nvec)) - sum(lfactorial(nvec)) while (naccept < nsim){ M <- nsim - naccept count <- count + M samples <- SinglefPrior(nsim=M,alpha=bvec,lambdamu=lambdamu, lambdasd=lambdasd) LL <- if(M==1) { MultLogLikP(samples$p, samples$f, nvec) } else { apply(cbind(samples$f, samples$p), 1, function(x) MultLogLikP(x[-1], x[1], nvec)) } likterm <- LL + Lnorm expterm <- exp(likterm) PrnH1 <- PrnH1 + sum(expterm) varterm1 <- varterm1 + sum(expterm^2) if (any(LL > maxLL)) cat("Maximization is messed up\n") accept <- log(runif(M)) < LL - maxLL if (any(accept)) { niter <- niter + 1 naccept <- naccept + sum(accept) psamp[[niter]] <- samples$p[accept,,drop=FALSE] fsamp[[niter]] <- samples$f[accept] } } psamp <- do.call(rbind,psamp) fsamp <- unlist(fsamp) PrnH1 <- PrnH1/count varest <- (varterm1/count - PrnH1^2)/count cat("nsim norm constant (se) 95% interval: \n") cat(nsim,PrnH1,"(",sqrt(varest),")",PrnH1-1.96*sqrt(varest),PrnH1+1.96*sqrt(varest),"\n") accrate <- nsim/count list(psamp=psamp,fsamp=fsamp,accrate=accrate,PrnH1=PrnH1,varest=varest) }
.Tcl <- function(...) structure(.External(.C_dotTcl, ...), class = "tclObj") .Tcl.objv <- function(objv) structure(.External(.C_dotTclObjv, objv), class = "tclObj") .Tcl.callback <- function(...) .External(.C_dotTclcallback, ...) .Tcl.args <- function(...) { pframe <- parent.frame(3) name2opt <- function(x) if ( x != "") paste0("-", x) else "" isCallback <- function(x) is.function(x) || is.call(x) || is.expression(x) makeAtomicCallback <- function(x, e) { if (is.name(x)) x <- eval(x, e) if (is.call(x)){ if(identical(x[[1L]], as.name("break"))) return("break") if(identical(x[[1L]], as.name("function"))) x <- eval(x, e) } .Tcl.callback(x, e) } makeCallback <- function(x, e) { if (is.expression(x)) paste(lapply(x, makeAtomicCallback, e), collapse = ";") else makeAtomicCallback(x, e) } val2string <- function(x) { if (is.null(x)) return("") if (is.tkwin(x)){ current.win <<- x ; return (.Tk.ID(x)) } if (inherits(x,"tclVar")) return(names(unclass(x)$env)) if (isCallback(x)){ ref <- local({value <- x; envir <- pframe; environment()}) callback <- makeCallback(get("value", envir = ref), get("envir", envir = ref)) callback <- paste("{", callback, "}") assign(callback, ref, envir = current.win$env) return(callback) } x <- gsub("\\", "\\\\", as.character(x), fixed=TRUE) x <- gsub("\"", "\\\"", x, fixed=TRUE) x <- gsub("[", "\\[", x, fixed=TRUE) x <- gsub("$", "\\$", x, fixed=TRUE) paste0("\"", x, "\"", collapse = " ") } val <- list(...) nm <- names(val) if (!length(val)) return("") nm <- if (is.null(nm)) rep("", length(val)) else sapply(nm, name2opt) current.win <- if (exists("win", envir = parent.frame())) get("win", envir = parent.frame()) else .TkRoot val <- sapply(val, val2string) paste(as.vector(rbind(nm, val)), collapse = " ") } .Tcl.args.objv <- function(...) { pframe <- parent.frame(3) isCallback <- function(x) is.function(x) || is.call(x) || is.expression(x) makeAtomicCallback <- function(x, e) { if (is.name(x)) x <- eval(x, e) if (is.call(x)){ if(identical(x[[1L]], as.name("break"))) return("break") if(identical(x[[1L]], as.name("function"))) x <- eval(x, e) } .Tcl.callback(x, e) } makeCallback <- function(x, e) { if (is.expression(x)) paste(lapply(x, makeAtomicCallback, e), collapse = ";") else makeAtomicCallback(x, e) } val2obj <- function(x) { if (is.null(x)) return(NULL) if (is.tkwin(x)){current.win <<- x ; return(as.tclObj(.Tk.ID(x)))} if (inherits(x,"tclVar")) return(as.tclObj(names(unclass(x)$env))) if (isCallback(x)){ ref <- local({value <- x; envir <- pframe; environment()}) callback <- makeCallback(get("value", envir = ref), get("envir", envir = ref)) assign(callback, ref, envir = current.win$env) return(as.tclObj(callback, drop = TRUE)) } as.tclObj(x, drop = TRUE) } val <- list(...) current.win <- .TkRoot lapply(val, val2obj) } .Tk.ID <- function(win) win$ID .Tk.newwin <- function(ID) { win <- list(ID = ID, env = new.env(parent = emptyenv())) win$env$num.subwin <- 0 class(win) <- "tkwin" win } .Tk.subwin <- function(parent) { ID <- paste(parent$ID, parent$env$num.subwin <- parent$env$num.subwin + 1, sep = ".") win <- .Tk.newwin(ID) assign(ID, win, envir = parent$env) assign("parent", parent, envir = win$env) win } tkdestroy <- function(win) { tcl("destroy", win) ID <- .Tk.ID(win) env <- get("parent", envir = win$env)$env if (exists(ID, envir = env, inherits = FALSE)) rm(list = ID, envir = env) } is.tkwin <- function(x) inherits(x, "tkwin") tclVar <- function(init = "") { n <- .TkRoot$env$TclVarCount <- .TkRoot$env$TclVarCount + 1L name <- paste0("::RTcl", n) l <- list(env = new.env()) assign(name, NULL, envir = l$env) reg.finalizer(l$env, function(env) tcl("unset", names(env))) class(l) <- "tclVar" tclvalue(l) <- init l } tclObj <- function(x) UseMethod("tclObj") "tclObj<-" <- function(x, value) UseMethod("tclObj<-") tclObj.tclVar <- function(x){ z <- .External(.C_RTcl_ObjFromVar, names(x$env)) class(z) <- "tclObj" z } "tclObj<-.tclVar" <- function(x, value){ value <- as.tclObj(value) .External(.C_RTcl_AssignObjToVar, names(x$env), value) x } tclvalue <- function(x) UseMethod("tclvalue") "tclvalue<-" <- function(x, value) UseMethod("tclvalue<-") tclvalue.tclVar <- function(x) tclvalue(tclObj(x)) tclvalue.tclObj <- function(x) .External(.C_RTcl_StringFromObj, x) print.tclObj <- function(x,...) { z <- tclvalue(x) if (length(z)) cat("<Tcl>", z, "\n") invisible(x) } "tclvalue<-.tclVar" <- function(x, value) { name <- names(unclass(x)$env) tcl("set", name, value) x } tclvalue.default <- function(x) tclvalue(tcl("set", as.character(x))) "tclvalue<-.default" <- function(x, value) { name <- as.character(x) tcl("set", name, value) x } as.character.tclVar <- function(x, ...) names(unclass(x)$env) as.character.tclObj <- function(x, ...) .External(.C_RTcl_ObjAsCharVector, x) as.double.tclObj <- function(x, ...) .External(.C_RTcl_ObjAsDoubleVector, x) as.integer.tclObj <- function(x, ...) .External(.C_RTcl_ObjAsIntVector, x) as.logical.tclObj <- function(x, ...) as.logical(.External(.C_RTcl_ObjAsIntVector, x)) as.raw.tclObj <- function(x, ...) .External(.C_RTcl_ObjAsRawVector, x) is.tclObj <- function(x) inherits(x, "tclObj") as.tclObj <- function(x, drop = FALSE) { if (is.tclObj(x)) return(x) z <- switch(storage.mode(x), character = .External(.C_RTcl_ObjFromCharVector, x, drop), double = .External(.C_RTcl_ObjFromDoubleVector, x,drop), integer = .External(.C_RTcl_ObjFromIntVector, x, drop), logical = .External(.C_RTcl_ObjFromIntVector, as.integer(x), drop), raw = .External(.C_RTcl_ObjFromRawVector, x), stop(gettextf("cannot handle object of mode '%s'", storage.mode(x)), domain = NA) ) class(z) <- "tclObj" z } tclServiceMode <- function(on = NULL) .External(.C_RTcl_ServiceMode, as.logical(on)) .TkRoot <- .Tk.newwin("") tclvar <- structure(list(), class = "tclvar") .TkRoot$env$TclVarCount <- 0 tkwidget <- function (parent, type, ...) { win <- .Tk.subwin(parent) tcl(type, win, ...) win } tkbutton <- function(parent, ...) tkwidget(parent, "button", ...) tkcanvas <- function(parent, ...) tkwidget(parent, "canvas", ...) tkcheckbutton <- function(parent, ...) tkwidget(parent, "checkbutton", ...) tkentry <- function(parent, ...) tkwidget(parent, "entry", ...) tkframe <- function(parent, ...) tkwidget(parent, "frame", ...) tklabel <- function(parent, ...) tkwidget(parent, "label", ...) tklistbox <- function(parent, ...) tkwidget(parent, "listbox", ...) tkmenu <- function(parent, ...) tkwidget(parent, "menu", ...) tkmenubutton <- function(parent, ...) tkwidget(parent, "menubutton", ...) tkmessage <- function(parent, ...) tkwidget(parent, "message", ...) tkradiobutton <- function(parent, ...) tkwidget(parent, "radiobutton", ...) tkscale <- function(parent, ...) tkwidget(parent, "scale", ...) tkscrollbar <- function(parent, ...) tkwidget(parent, "scrollbar", ...) tktext <- function(parent, ...) tkwidget(parent, "text", ...) ttkbutton <- function(parent, ...) tkwidget(parent, "ttk::button", ...) ttkcheckbutton <- function(parent, ...) tkwidget(parent, "ttk::checkbutton", ...) ttkcombobox <- function(parent, ...) tkwidget(parent, "ttk::combobox", ...) ttkentry <- function(parent, ...) tkwidget(parent, "ttk::entry", ...) ttkframe <- function(parent, ...) tkwidget(parent, "ttk::frame", ...) ttklabel <- function(parent, ...) tkwidget(parent, "ttk::label", ...) ttklabelframe <- function(parent, ...) tkwidget(parent, "ttk::labelframe", ...) ttkmenubutton <- function(parent, ...) tkwidget(parent, "ttk::menubutton", ...) ttknotebook <- function(parent, ...) tkwidget(parent, "ttk::notebook", ...) ttkpanedwindow <- function(parent, ...) tkwidget(parent, "ttk::panedwindow", ...) ttkprogressbar <- function(parent, ...) tkwidget(parent, "ttk::progressbar", ...) ttkradiobutton <- function(parent, ...) tkwidget(parent, "ttk::radiobutton", ...) ttkscale <- function(parent, ...) tkwidget(parent, "ttk::scale", ...) ttkscrollbar <- function(parent, ...) tkwidget(parent, "ttk::scrollbar", ...) ttkseparator <- function(parent, ...) tkwidget(parent, "ttk::separator", ...) ttksizegrip <- function(parent, ...) tkwidget(parent, "ttk::sizegrip", ...) ttkspinbox <- function(parent, ...) tkwidget(parent, "ttk::spinbox", ...) ttktreeview <- function(parent, ...) tkwidget(parent, "ttk::treeview", ...) tktoplevel <- function(parent = .TkRoot,...) { w <- tkwidget(parent,"toplevel",...) ID <- .Tk.ID(w) tkbind(w, "<Destroy>", function() { if (exists(ID, envir = parent$env, inherits = FALSE)) rm(list = ID, envir = parent$env) tkbind(w, "<Destroy>","") }) utils::process.events() w } tcl <- function(...) .Tcl.objv(.Tcl.args.objv(...)) tktitle <- function(x) tcl("wm", "title", x) "tktitle<-" <- function(x, value) { tcl("wm", "title", x, value) x } tkbell <- function(...) tcl("bell", ...) tkbind <- function(...) tcl("bind", ...) tkbindtags <- function(...) tcl("bindtags", ...) tkfocus <- function(...) tcl("focus", ...) tklower <- function(...) tcl("lower", ...) tkraise <- function(...) tcl("raise", ...) tkclipboard.append <- function(...) tcl("clipboard", "append", ...) tkclipboard.clear <- function(...) tcl("clipboard", "clear", ...) tkevent.add <- function(...) tcl("event", "add", ...) tkevent.delete <- function(...) tcl("event", "delete", ...) tkevent.generate <- function(...) tcl("event", "generate", ...) tkevent.info <- function(...) tcl("event", "info", ...) tkfont.actual <- function(...) tcl("font", "actual", ...) tkfont.configure <- function(...) tcl("font", "configure", ...) tkfont.create <- function(...) tcl("font", "create", ...) tkfont.delete <- function(...) tcl("font", "delete", ...) tkfont.families <- function(...) tcl("font", "families", ...) tkfont.measure <- function(...) tcl("font", "measure", ...) tkfont.metrics <- function(...) tcl("font", "metrics", ...) tkfont.names <- function(...) tcl("font", "names", ...) tkgrab <- function(...) tcl("grab", ...) tkgrab.current <- function(...) tcl("grab", "current", ...) tkgrab.release <- function(...) tcl("grab", "release", ...) tkgrab.set <- function(...) tcl("grab", "set", ...) tkgrab.status <- function(...) tcl("grab", "status", ...) tkimage.create <- function(...) tcl("image", "create", ...) tkimage.delete <- function(...) tcl("image", "delete", ...) tkimage.height <- function(...) tcl("image", "height", ...) tkimage.inuse <- function(...) tcl("image", "inuse", ...) tkimage.names <- function(...) tcl("image", "names", ...) tkimage.type <- function(...) tcl("image", "type", ...) tkimage.types <- function(...) tcl("image", "types", ...) tkimage.width <- function(...) tcl("image", "width", ...) tkXselection.clear <- function(...) tcl("selection", "clear", ...) tkXselection.get <- function(...) tcl("selection", "get", ...) tkXselection.handle <- function(...) tcl("selection", "handle", ...) tkXselection.own <- function(...) tcl("selection", "own", ...) tkwait.variable <- function(...) tcl("tkwait", "variable", ...) tkwait.visibility <- function(...) tcl("tkwait", "visibility", ...) tkwait.window <- function(...) tcl("tkwait", "window", ...) tkgetOpenFile <- function(...) tcl("tk_getOpenFile", ...) tkgetSaveFile <- function(...) tcl("tk_getSaveFile", ...) tkchooseDirectory <- function(...) tcl("tk_chooseDirectory", ...) tkmessageBox <- function(...) tcl("tk_messageBox", ...) tkdialog <- function(...) tcl("tk_dialog", ...) tkpopup <- function(...) tcl("tk_popup", ...) tclfile.tail <- function(...) tcl("file", "tail", ...) tclfile.dir <- function(...) tcl("file", "dir", ...) tclopen <- function(...) tcl("open", ...) tclclose <- function(...) tcl("close", ...) tclputs <- function(...) tcl("puts", ...) tclread <- function(...) tcl("read", ...) tkwinfo <- function(...) tcl("winfo", ...) tkwm.aspect <- function(...) tcl("wm", "aspect", ...) tkwm.client <- function(...) tcl("wm", "client", ...) tkwm.colormapwindows <- function(...) tcl("wm", "colormapwindows", ...) tkwm.command <- function(...) tcl("wm", "command", ...) tkwm.deiconify <- function(...) tcl("wm", "deiconify", ...) tkwm.focusmodel <- function(...) tcl("wm", "focusmodel", ...) tkwm.frame <- function(...) tcl("wm", "frame", ...) tkwm.geometry <- function(...) tcl("wm", "geometry", ...) tkwm.grid <- function(...) tcl("wm", "grid", ...) tkwm.group <- function(...) tcl("wm", "group", ...) tkwm.iconbitmap <- function(...) tcl("wm", "iconbitmap", ...) tkwm.iconify <- function(...) tcl("wm", "iconify", ...) tkwm.iconmask <- function(...) tcl("wm", "iconmask", ...) tkwm.iconname <- function(...) tcl("wm", "iconname ", ...) tkwm.iconposition <- function(...) tcl("wm", "iconposition", ...) tkwm.iconwindow <- function(...) tcl("wm", "iconwindow ", ...) tkwm.maxsize <- function(...) tcl("wm", "maxsize", ...) tkwm.minsize <- function(...) tcl("wm", "minsize", ...) tkwm.overrideredirect <- function(...) tcl("wm", "overrideredirect", ...) tkwm.positionfrom <- function(...) tcl("wm", "positionfrom", ...) tkwm.protocol <- function(...) tcl("wm", "protocol", ...) tkwm.resizable <- function(...) tcl("wm", "resizable", ...) tkwm.sizefrom <- function(...) tcl("wm", "sizefrom", ...) tkwm.state <- function(...) tcl("wm", "state", ...) tkwm.title <- function(...) tcl("wm", "title", ...) tkwm.transient <- function(...) tcl("wm", "transient", ...) tkwm.withdraw <- function(...) tcl("wm", "withdraw", ...) tkgrid <- function(...) tcl("grid", ...) tkgrid.bbox <- function(...) tcl("grid", "bbox", ...) tkgrid.columnconfigure <- function(...) tcl("grid", "columnconfigure", ...) tkgrid.configure <- function(...) tcl("grid", "configure", ...) tkgrid.forget <- function(...) tcl("grid", "forget", ...) tkgrid.info <- function(...) tcl("grid", "info", ...) tkgrid.location <- function(...) tcl("grid", "location", ...) tkgrid.propagate <- function(...) tcl("grid", "propagate", ...) tkgrid.rowconfigure <- function(...) tcl("grid", "rowconfigure", ...) tkgrid.remove <- function(...) tcl("grid", "remove", ...) tkgrid.size <- function(...) tcl("grid", "size", ...) tkgrid.slaves <- function(...) tcl("grid", "slaves", ...) tkpack <- function(...) tcl("pack", ...) tkpack.configure <- function(...) tcl("pack", "configure", ...) tkpack.forget <- function(...) tcl("pack", "forget", ...) tkpack.info <- function(...) tcl("pack", "info", ...) tkpack.propagate <- function(...) tcl("pack", "propagate", ...) tkpack.slaves <- function(...) tcl("pack", "slaves", ...) tkplace <- function(...) tcl("place", ...) tkplace.configure <- function(...) tcl("place", "configure", ...) tkplace.forget <- function(...) tcl("place", "forget", ...) tkplace.info <- function(...) tcl("place", "info", ...) tkplace.slaves <- function(...) tcl("place", "slaves", ...) tkactivate <- function(widget, ...) tcl(widget, "activate", ...) tkadd <- function(widget, ...) tcl(widget, "add", ...) tkaddtag <- function(widget, ...) tcl(widget, "addtag", ...) tkbbox <- function(widget, ...) tcl(widget, "bbox", ...) tkcanvasx <- function(widget, ...) tcl(widget, "canvasx", ...) tkcanvasy <- function(widget, ...) tcl(widget, "canvasy", ...) tkcget <- function(widget, ...) tcl(widget, "cget", ...) tkcompare <- function(widget, ...) tcl(widget, "compare", ...) tkconfigure <- function(widget, ...) tcl(widget, "configure", ...) tkcoords <- function(widget, ...) tcl(widget, "coords", ...) tkcreate <- function(widget, ...) tcl(widget, "create", ...) tkcurselection <- function(widget, ...) tcl(widget, "curselection", ...) tkdchars <- function(widget, ...) tcl(widget, "dchars", ...) tkdebug <- function(widget, ...) tcl(widget, "debug", ...) tkdelete <- function(widget, ...) tcl(widget, "delete", ...) tkdelta <- function(widget, ...) tcl(widget, "delta", ...) tkdeselect <- function(widget, ...) tcl(widget, "deselect", ...) tkdlineinfo <- function(widget, ...) tcl(widget, "dlineinfo", ...) tkdtag <- function(widget, ...) tcl(widget, "dtag", ...) tkdump <- function(widget, ...) tcl(widget, "dump", ...) tkentrycget <- function(widget, ...) tcl(widget, "entrycget", ...) tkentryconfigure <- function(widget, ...) tcl(widget, "entryconfigure", ...) tkfind <- function(widget, ...) tcl(widget, "find", ...) tkflash <- function(widget, ...) tcl(widget, "flash", ...) tkfraction <- function(widget, ...) tcl(widget, "fraction", ...) tkget <- function(widget, ...) tcl(widget, "get", ...) tkgettags <- function(widget, ...) tcl(widget, "gettags", ...) tkicursor <- function(widget, ...) tcl(widget, "icursor", ...) tkidentify <- function(widget, ...) tcl(widget, "identify", ...) tkindex <- function(widget, ...) tcl(widget, "index", ...) tkinsert <- function(widget, ...) tcl(widget, "insert", ...) tkinvoke <- function(widget, ...) tcl(widget, "invoke", ...) tkitembind <- function(widget, ...) tcl(widget, "bind", ...) tkitemcget <- function(widget, ...) tcl(widget, "itemcget", ...) tkitemconfigure <- function(widget, ...) tcl(widget, "itemconfigure", ...) tkitemfocus <- function(widget, ...) tcl(widget, "focus", ...) tkitemlower <- function(widget, ...) tcl(widget, "lower", ...) tkitemraise <- function(widget, ...) tcl(widget, "raise", ...) tkitemscale <- function(widget, ...) tcl(widget, "scale", ...) tkmark.gravity <- function(widget, ...) tcl(widget, "mark", "gravity", ...) tkmark.names <- function(widget, ...) tcl(widget, "mark", "names", ...) tkmark.next <- function(widget, ...) tcl(widget, "mark", "next", ...) tkmark.previous <- function(widget, ...) tcl(widget, "mark", "previous", ...) tkmark.set <- function(widget, ...) tcl(widget, "mark", "set", ...) tkmark.unset <- function(widget, ...) tcl(widget, "mark", "unset", ...) tkmove <- function(widget, ...) tcl(widget, "move", ...) tknearest <- function(widget, ...) tcl(widget, "nearest", ...) tkpost <- function(widget, ...) tcl(widget, "post", ...) tkpostcascade <- function(widget, ...) tcl(widget, "postcascade", ...) tkpostscript <- function(widget, ...) tcl(widget, "postscript", ...) tkscan.dragto <- function(widget, ...) tcl(widget, "scan", "dragto", ...) tkscan.mark <- function(widget, ...) tcl(widget, "scan", "mark", ...) tksearch <- function(widget, ...) tcl(widget, "search", ...) tksee <- function(widget, ...) tcl(widget, "see", ...) tkselect <- function(widget, ...) tcl(widget, "select", ...) tkselection.adjust <- function(widget, ...) tcl(widget, "selection", "adjust", ...) tkselection.anchor <- function(widget, ...) tcl(widget, "selection", "anchor", ...) tkselection.clear <- function(widget, ...) tcl(widget, "selection", "clear", ...) tkselection.from <- function(widget, ...) tcl(widget, "selection", "from", ...) tkselection.includes <- function(widget, ...) tcl(widget, "selection", "includes", ...) tkselection.present <- function(widget, ...) tcl(widget, "selection", "present", ...) tkselection.range <- function(widget, ...) tcl(widget, "selection", "range", ...) tkselection.set <- function(widget, ...) tcl(widget, "selection", "set", ...) tkselection.to <- function(widget,...) tcl(widget, "selection", "to", ...) tkset <- function(widget, ...) tcl(widget, "set", ...) tksize <- function(widget, ...) tcl(widget, "size", ...) tktoggle <- function(widget, ...) tcl(widget, "toggle", ...) tktag.add <- function(widget, ...) tcl(widget, "tag", "add", ...) tktag.bind <- function(widget, ...) tcl(widget, "tag", "bind", ...) tktag.cget <- function(widget, ...) tcl(widget, "tag", "cget", ...) tktag.configure <- function(widget, ...) tcl(widget, "tag", "configure", ...) tktag.delete <- function(widget, ...) tcl(widget, "tag", "delete", ...) tktag.lower <- function(widget, ...) tcl(widget, "tag", "lower", ...) tktag.names <- function(widget, ...) tcl(widget, "tag", "names", ...) tktag.nextrange <- function(widget, ...) tcl(widget, "tag", "nextrange", ...) tktag.prevrange <- function(widget, ...) tcl(widget, "tag", "prevrange", ...) tktag.raise <- function(widget, ...) tcl(widget, "tag", "raise", ...) tktag.ranges <- function(widget, ...) tcl(widget, "tag", "ranges", ...) tktag.remove <- function(widget, ...) tcl(widget, "tag", "remove", ...) tktype <- function(widget, ...) tcl(widget, "type", ...) tkunpost <- function(widget, ...) tcl(widget, "unpost", ...) tkwindow.cget <- function(widget, ...) tcl(widget, "window", "cget", ...) tkwindow.configure <- function(widget, ...) tcl(widget,"window","configure",...) tkwindow.create <- function(widget, ...) tcl(widget, "window", "create", ...) tkwindow.names <- function(widget, ...) tcl(widget, "window", "names", ...) tkxview <- function(widget, ...) tcl(widget, "xview", ...) tkxview.moveto <- function(widget, ...) tcl(widget, "xview", "moveto", ...) tkxview.scroll <- function(widget, ...) tcl(widget, "xview", "scroll", ...) tkyposition <- function(widget, ...) tcl(widget, "ypositions", ...) tkyview <- function(widget, ...) tcl(widget, "yview", ...) tkyview.moveto <- function(widget, ...) tcl(widget, "yview", "moveto", ...) tkyview.scroll <- function(widget, ...) tcl(widget, "yview", "scroll", ...) tkpager <- function(file, header, title, delete.file) { title <- paste(title, header) for ( i in seq_along(file) ) { zfile <- file[[i]] tt <- tktoplevel() tkwm.title(tt, if (length(title)) title[(i-1L) %% length(title)+1L] else "") txt <- tktext(tt, bg = "grey90") scr <- tkscrollbar(tt, repeatinterval = 5, command = function(...) tkyview(txt,...)) tkconfigure(txt, yscrollcommand = function(...) tkset(scr,...)) tkpack(txt, side = "left", fill = "both", expand = TRUE) tkpack(scr, side = "right", fill = "y") chn <- tcl("open", zfile) tkinsert(txt, "end", gsub("_\b","",tclvalue(tcl("read", chn)))) tcl("close", chn) tkconfigure(txt, state = "disabled") tkmark.set(txt, "insert", "0.0") tkfocus(txt) if (delete.file) tcl("file", "delete", zfile) } }
PLIsuperquantile_multivar = function(order,x,y,inputs,deltasvector,InputDistributions,samedelta=TRUE,percentage=TRUE,nboot=0,conf=0.95,bootsample=TRUE,bias=TRUE){ nmbredevariables=dim(x)[2] nmbredepoints=dim(x)[1] nmbrededeltas=length(deltasvector) I <- J <- ICIinf <- ICIsup <- JCIinf <- JCIsup <- matrix(0,ncol=nmbrededeltas,nrow=nmbrededeltas) simpson_v2 <- function(fun, a, b, n=100) { if (a == -Inf & b == Inf) { f <- function(t) (fun((1-t)/t) + fun((t-1)/t))/t^2 s <- simpson_v2(f, 0, 1, n) } else if (a == -Inf & b != Inf) { f <- function(t) fun(b-(1-t)/t)/t^2 s <- simpson_v2(f, 0, 1, n) } else if (a != -Inf & b == Inf) { f <- function(t) fun(a+(1-t)/t)/t^2 s <- simpson_v2(f, 0, 1, n) } else { h <- (b-a)/n x <- seq(a, b, by=h) y <- fun(x) y[is.nan(y)]=0 s <- y[1] + y[n+1] + 2*sum(y[seq(2,n,by=2)]) + 4 *sum(y[seq(3,n-1, by=2)]) s <- s*h/3 } return(s) } transinverse <- function(a,b,c) { if (a > c) ans <- a / b - 1 else ans <- 1 - b / a return(ans) } quantilehat <- quantile(y,order) sqhat <- mean( y[y >= quantilehat] ) ys = sort(y,index.return=T) xs = x[ys$ix,] lqid=matrix(0,nrow=nmbrededeltas,ncol=nmbrededeltas) i = inputs[1] if (nboot > 0){ lqidb=array(0,dim=c(nmbrededeltas,nmbrededeltas,nboot)) sqhatb=NULL } Loi.Entree=InputDistributions[[i]] if(!samedelta){ moy=Loi.Entree[[3]][1] sigma=Loi.Entree[[3]][2] vdd1=moy+deltasvector*sigma } else { vdd1=deltasvector } if ( Loi.Entree[[1]] =="norm"||Loi.Entree[[1]] =="lnorm"){ mu1=Loi.Entree[[2]][1] sigma1=Loi.Entree[[2]][2] phi1=function(tau){mu1*tau+(sigma1^2*tau^2)/2} vlambda1=(vdd1-mu1)/sigma1^2 } if ( Loi.Entree[[1]] =="unif"){ a1=Loi.Entree[[2]][1] b1=Loi.Entree[[2]][2] mu1=(a1+b1)/2 Mx1=function(tau){ if (tau==0){ 1 } else {(exp(tau*b1)-exp(tau*a1) )/ ( tau * (b1-a1))} } phi1=function(tau){ if(tau==0){0} else { log ( Mx1(tau))} } phit=function(tau){ if (tau==0){0} else {log(expm1(tau*(b1-a1)) / (tau*(b1-a1)))} } gt=function(tau,delta){ phit(tau) -(delta-a1)*tau } vlambda1=c(); for (l in 1:nmbrededeltas){ tm=nlm(gt,0,vdd1[l])$estimate vlambda1[l]=tm } } if ( Loi.Entree[[1]] =="triangle"){ a1=Loi.Entree[[2]][1] b1=Loi.Entree[[2]][2] c1=Loi.Entree[[2]][3] mu1=(a1+b1+c1)/3 Mx1=function(tau){ if (tau !=0){ dessus=(b1-c1)*exp(a1*tau)-(b1-a1)*exp(c1*tau)+(c1-a1)*exp(b1*tau) dessous=(b1-c1)*(b1-a1)*(c1-a1)*tau^2 return ( 2*dessus/dessous) } else { return (1) } } phi1=function(tau){return (log (Mx1(tau)))} phit=function(tau){ if(tau!=0){ dessus=(a1-b1)*expm1((c1-a1)*tau)+(c1-a1)*expm1((b1-a1)*tau) dessous=(b1-c1)*(b1-a1)*(c1-a1)*tau^2 return( log (2*dessus/dessous) ) } else { return (0)} } gt=function(tau,delta){ phit(tau)-(delta-a1)*tau } vlambda1=c(); for (l in 1:nmbrededeltas){ tm=nlm(gt,0,vdd1[l])$estimate vlambda1[l]=tm } } if ( Loi.Entree[[1]] =="tnorm"){ mu1=Loi.Entree[[2]][1] sigma1=Loi.Entree[[2]][2] min1=Loi.Entree[[2]][3] phi1=function(tau){ mpls2=mu1+tau*sigma1^2 Fa1=pnorm(min1,mu1,sigma1) Fia1=pnorm(min1,mpls2,sigma1) lMx=mu1*tau+1/2*sigma1^2*tau^2 - (1-Fa1) + (1-Fia1) return(lMx) } g=function(tau,delta){ if (tau == 0 ){ return(0) } else { return(phi1(tau) -delta*tau)} } vlambda1=c(); for (l in 1:nmbrededeltas){ tm=nlm(g,0,vdd1[l])$estimate vlambda1[l]=tm } } i = inputs[2] Loi.Entree=InputDistributions[[i]] if(!samedelta){ moy=Loi.Entree[[3]][1] sigma=Loi.Entree[[3]][2] vdd2=moy+deltasvector*sigma } else { vdd2=deltasvector } if ( Loi.Entree[[1]] =="norm"||Loi.Entree[[1]] =="lnorm"){ mu2=Loi.Entree[[2]][1] sigma2=Loi.Entree[[2]][2] phi2=function(tau){mu2*tau+(sigma2^2*tau^2)/2} vlambda2=(vdd2-mu2)/sigma2^2 } if ( Loi.Entree[[1]] =="unif"){ a2=Loi.Entree[[2]][1] b2=Loi.Entree[[2]][2] mu2=(a2+b2)/2 Mx2=function(tau){ if (tau==0){ 1 } else {(exp(tau*b2)-exp(tau*a2) )/ ( tau * (b2-a2))} } phi2=function(tau){ if(tau==0){0} else { log ( Mx2(tau))} } phit=function(tau){ if (tau==0){0} else {log(expm1(tau*(b2-a2)) / (tau*(b2-a2)))} } gt=function(tau,delta){ phit(tau) -(delta-a2)*tau } vlambda2=c(); for (l in 1:nmbrededeltas){ tm=nlm(gt,0,vdd2[l])$estimate vlambda2[l]=tm } } if ( Loi.Entree[[1]] =="triangle"){ a2=Loi.Entree[[2]][1] b2=Loi.Entree[[2]][2] c2=Loi.Entree[[2]][3] mu2=(a2+b2+c2)/3 Mx2=function(tau){ if (tau !=0){ dessus=(b2-c2)*exp(a2*tau)-(b2-a2)*exp(c*tau)+(c2-a2)*exp(b2*tau) dessous=(b2-c2)*(b2-a2)*(c2-a2)*tau^2 return ( 2*dessus/dessous) } else { return (1) } } phi2=function(tau){return (log (Mx2(tau)))} phit=function(tau){ if(tau!=0){ dessus=(a2-b2)*expm1((c2-a2)*tau)+(c2-a2)*expm1((b2-a2)*tau) dessous=(b2-c2)*(b2-a2)*(c2-a2)*tau^2 return( log (2*dessus/dessous) ) } else { return (0)} } gt=function(tau,delta){ phit(tau)-(delta-a2)*tau } vlambda2=c(); for (l in 1:nmbrededeltas){ tm=nlm(gt,0,vdd2[l])$estimate vlambda2[l]=tm } } if ( Loi.Entree[[1]] =="tnorm"){ mu2=Loi.Entree[[2]][1] sigma2=Loi.Entree[[2]][2] min2=Loi.Entree[[2]][3] phi2=function(tau){ mpls2=mu2+tau*sigma2^2 Fa2=pnorm(min2,mu2,sigma2) Fia2=pnorm(min2,mpls2,sigma2) lMx=mu2*tau+1/2*sigma2^2*tau^2 - (1-Fa2) + (1-Fia2) return(lMx) } g=function(tau,delta){ if (tau == 0 ){ return(0) } else { return(phi2(tau) -delta*tau)} } vlambda2=c(); for (l in 1:nmbrededeltas){ tm=nlm(g,0,vdd2[l])$estimate vlambda2[l]=tm } } pti1=rep(0,nmbrededeltas) pti2=rep(0,nmbrededeltas) for (K1 in 1:nmbrededeltas){ for (K2 in 1:nmbrededeltas){ if ((vdd1[K1]!=mu1) | (vdd2[K2]!=mu2)){ res=NULL ; respts=NULL pti1[K1]=phi1(vlambda1[K1]) pti2[K2]=phi2(vlambda2[K2]) for (j in 1:nmbredepoints){ res[j]=exp(vlambda1[K1]*xs[j,inputs[1]]-pti1[K1] + vlambda2[K2]*xs[j,inputs[2]]-pti2[K2]) respts[j]=exp(vlambda1[K1]*x[j,inputs[1]]-pti1[K1] + vlambda2[K2]*x[j,inputs[2]]-pti2[K2]) } sum_res = sum(res) kid = 1 res1 = res[1] res2 = res1/sum_res while (res2 < order){ kid = kid + 1 res1 = res1 + res[kid] res2 = res1/sum_res } if (bias){ lqid[K1,K2] = mean(y[y >= ys$x[kid]]) } else lqid[K1,K2] = mean(y * respts * ( y >= ys$x[kid] ) / (1-order)) } else lqid[K1,K2] = sqhat } } if (nboot >0){ for (b in 1:nboot){ ib <- sample(1:length(y),replace=TRUE) xb <- x[ib,] yb <- y[ib] quantilehatb <- quantile(yb,order) sqhatb <- c(sqhatb, mean( yb * (yb >= quantilehatb) / ( 1 - order ))) ysb = sort(yb,index.return=T) xsb = xb[ysb$ix,] for (K1 in 1:nmbrededeltas){ for (K2 in 1:nmbrededeltas){ if ((vdd1[K1]!=mu1) | (vdd2[K2]!=mu2)){ res=NULL ; respts=NULL for (j in 1:nmbredepoints){ res[j]=exp(vlambda1[K1]*xsb[j,inputs[1]]-pti1[K1] + vlambda2[K2]*xsb[j,inputs[2]]-pti2[K2]) respts[j]=exp(vlambda1[K1]*xb[j,inputs[1]]-pti1[K1] + vlambda2[K2]*xb[j,inputs[2]]-pti2[K2]) } sum_res = sum(res) kid = 1 res1 = res[1] res2 = res1/sum_res while (res2 < order){ kid = kid + 1 res1 = res1 + res[kid] res2 = res1/sum_res } if (bias){ lqidb[K1,K2,b] = mean(yb[yb >= ysb$x[kid]]) } else lqidb[K1,K2,b] = mean(yb * respts * (yb >= ysb$x[kid] ) / (1-order)) } else lqidb[K1,K2,b] = sqhatb[b] } } } } for (i in 1:nmbrededeltas){ for (j in 1:nmbrededeltas){ J[i,j]=lqid[i,j] if (percentage==FALSE) I[i,j]=transinverse(lqid[i,j],sqhat,sqhat) else I[i,j]=lqid[i,j]/sqhat-1 if (nboot > 0){ sqinf <- quantile(lqidb[i,j,],(1-conf)/2) sqsup <- quantile(lqidb[i,j,],(1+conf)/2) JCIinf[i,j]=sqinf JCIsup[i,j]=sqsup sqb <- mean(sqhatb) if (percentage==FALSE){ if (bootsample){ ICIinf[i,j]=transinverse(sqinf,sqb,sqb) ICIsup[i,j]=transinverse(sqsup,sqb,sqhat) } else{ ICIinf[i,j]=quantile(transinverse(lqidb[i,j,],sqhatb,sqhatb),(1-conf)/2) ICIsup[i,j]=quantile(transinverse(lqidb[i,j,],sqhatb,sqhatb),(1+conf)/2) } } else { if (bootsample){ ICIinf[i,j]=sqinf/sqb-1 ICIsup[i,j]=sqsup/sqb-1 } else{ ICIinf[i,j]=quantile((lqidb[i,j,]/sqhatb-1),(1-conf)/2) ICIsup[i,j]=quantile((lqidb[i,j,]/sqhatb-1),(1+conf)/2) } } } } } res <- list(PLI = I, PLICIinf = ICIinf, PLICIsup = ICIsup, quantile = J, quantileCIinf = JCIinf, quantileCIsup = JCIsup) return(res) }
context("Assemble dashboard") test_that("Assembling dashboard is correct",{ temp <- tempfile(fileext = ".Rmd") i2dashboard(datadir = "input-data") %>% assemble(file = temp) -> dashboard expect_s4_class(dashboard, "i2dashboard") rmd <- readLines(temp) new_rmd <- rmd[-31] writeLines(new_rmd, temp) ref_hash <- digest::digest(file = temp, serialize = FALSE, seed = 100) expect_true(stringi::stri_detect_regex(ref_hash, "(1055ed29147446902eb224e7c17c52af|442bef06307bb6dea490435230f7e22e|11a5a0938212656d1fbb02496fb7cfa0|48152155fd455e7642da35e03f404dd5)")) expect_warning(assemble(dashboard, file = temp, pages = "page1"), "i2dashboard dashboard does not contain a page named 'page1'") })
summary.kppm <- function(object, ..., quick=FALSE) { nama <- names(object) result <- unclass(object)[!(nama %in% c("X", "po", "call", "callframe"))] if(is.null(result$isPCP)) result$isPCP <- TRUE Fit <- object$Fit opt <- switch(Fit$method, mincon = Fit$mcfit$opt, clik =, clik2 = Fit$clfit, palm = Fit$clfit, adapcl = Fit$cladapfit, warning(paste("Unrecognised fitting method", sQuote(Fit$method))) ) if(Fit$method != "adapcl") { result$optim.converged <- optimConverged(opt) result$optim.status <- optimStatus(opt) result$optim.nsteps <- optimNsteps(opt) } result$trend <- summary(as.ppm(object), ..., quick=quick) if(isFALSE(quick)) { theta <- coef(object) if(length(theta) > 0) { vc <- vcov(object, matrix.action="warn") if(!is.null(vc)) { se <- if(is.matrix(vc)) sqrt(diag(vc)) else if(length(vc) == 1) sqrt(vc) else NULL } if(!is.null(se)) { two <- qnorm(0.975) lo <- theta - two * se hi <- theta + two * se zval <- theta/se pval <- 2 * pnorm(abs(zval), lower.tail=FALSE) psig <- cut(pval, c(0,0.001, 0.01, 0.05, 1), labels=c("***", "**", "*", " "), include.lowest=TRUE) result$coefs.SE.CI <- data.frame(Estimate=theta, S.E.=se, CI95.lo=lo, CI95.hi=hi, Ztest=psig, Zval=zval) } } } if(object$isPCP) result$psib <- mean(psib(object)) win <- as.owin(object, from="points") vac <- varcount(object, B=win) Lam <- integral(predict(object, window=win)) result$odi <- vac/Lam class(result) <- "summary.kppm" return(result) } coef.summary.kppm <- function(object, ...) { return(object$coefs.SE.CI) } print.summary.kppm <- function(x, ...) { terselevel <- spatstat.options('terse') digits <- getOption('digits') isPCP <- x$isPCP splat(if(x$stationary) "Stationary" else "Inhomogeneous", if(isPCP) "cluster" else "Cox", "point process model") if(waxlyrical('extras', terselevel) && nchar(x$Xname) < 20) splat("Fitted to point pattern dataset", sQuote(x$Xname)) Fit <- x$Fit if(waxlyrical('gory', terselevel)) { switch(Fit$method, mincon = { splat("Fitted by minimum contrast") splat("\tSummary statistic:", Fit$StatName) print(Fit$mcfit) }, clik =, clik2 = { splat("Fitted by maximum second order composite likelihood") splat("\trmax =", Fit$rmax) if(!is.null(wtf <- Fit$weightfun)) { a <- attr(wtf, "selfprint") %orifnull% pasteFormula(wtf) splat("\tweight function:", a) } printStatus(x$optim.status) }, adapcl = { splat("Fitted by adaptive second order composite likelihood") splat("\tepsilon =", x$Fit$epsilon) if(!is.null(wtf <- x$Fit$weightfun)) { a <- attr(wtf, "selfprint") %orifnull% pasteFormula(wtf) splat("\tweight function:", a) } }, palm = { splat("Fitted by maximum Palm likelihood") splat("\trmax =", Fit$rmax) if(!is.null(wtf <- Fit$weightfun)) { a <- attr(wtf, "selfprint") %orifnull% pasteFormula(wtf) splat("\tweight function:", a) } printStatus(x$optim.status) }, warning(paste("Unrecognised fitting method", sQuote(Fit$method))) ) } parbreak() splat("----------- TREND MODEL -----") print(x$trend, ...) tableentry <- spatstatClusterModelInfo(x$clusters) parbreak() splat("-----------", if(isPCP) "CLUSTER" else "COX", "MODEL", "-----------") splat("Model:", tableentry$printmodelname(x)) parbreak() cm <- x$covmodel if(!isPCP) { splat("\tCovariance model:", cm$model) margs <- cm$margs if(!is.null(margs)) { nama <- names(margs) tags <- ifelse(nzchar(nama), paste(nama, "="), "") tagvalue <- paste(tags, margs) splat("\tCovariance parameters:", paste(tagvalue, collapse=", ")) } } pa <- x$clustpar if (!is.null(pa)) { splat("Fitted", if(isPCP) "cluster" else "covariance", "parameters:") print(pa, digits=digits) } if(!is.null(mu <- x$mu)) { if(isPCP) { splat("Mean cluster size: ", if(!is.im(mu)) paste(signif(mu, digits), "points") else "[pixel image]") } else { splat("Fitted mean of log of random intensity:", if(!is.im(mu)) signif(mu, digits) else "[pixel image]") } } if(!is.null(cose <- x$coefs.SE.CI)) { parbreak() splat("Final standard error and CI") splat("(allowing for correlation of", if(isPCP) "cluster" else "Cox", "process):") print(cose) } psi <- x$psib odi <- x$odi if(!is.null(psi) || !is.null(odi)) { parbreak() splat("----------- cluster strength indices ---------- ") if(!is.null(psi)) { psi <- signif(psi, digits) if(isTRUE(x$stationary)) { splat("Sibling probability", psi) } else splat("Mean sibling probability", psi) } if(!is.null(odi)) splat("Count overdispersion index (on original window):", signif(odi, digits)) } invisible(NULL) }
varcovgecub<-function(ordinal,Y,W,X,bet,gama,omega,shelter){ Y<-as.matrix(Y);W<-as.matrix(W); X<-as.matrix(X); if (ncol(W)==1){ W<-as.numeric(W) } if (ncol(Y)==1){ Y<-as.numeric(Y) } if (ncol(X)==1){ X<-as.numeric(X) } probi<-probgecub(ordinal,Y,W,X,bet,gama,omega,shelter); vvi<-1/probi; dicotom<-ifelse(ordinal==shelter,1,0) paii<-logis(Y,bet); csii<-logis(W,gama); deltai<-logis(X,omega); m<-length(levels(factor(ordinal,ordered=TRUE))) bierrei<-bitgama(m,ordinal,W,gama); YY<-cbind(1,Y); WW<-cbind(1,W); XX<-cbind(1,X); np<-NCOL(YY)+NCOL(WW)+NCOL(XX); mconi<-m-ordinal-(m-1)*csii; vettAA<-paii*(1-paii)*(1-deltai)*(bierrei-1/m)*vvi AA <- Hadprod(YY,vettAA) vettBB<-paii*(1-deltai)*mconi*bierrei*vvi; BB <- Hadprod(WW,vettBB) vettCC<-deltai*(dicotom-probi)*vvi CC <- Hadprod(XX,vettCC); dconi<- paii*(1-paii)*(1-2*paii)*(1-deltai)*(bierrei-1/m)*vvi; gconi<- paii*(1-deltai)*bierrei*(mconi^2-(m-1)*csii)*(1-csii)*vvi; lconi <- deltai*(1-2*deltai)*(dicotom-probi)*vvi; econi <- paii*(1-paii)*(1-deltai)*(bierrei)*mconi*vvi; fconi<- (-paii)*(1-paii)*deltai*(1-deltai)*(bierrei-1/m)*vvi; hconi<-(-paii)*deltai*(1-deltai)*bierrei*mconi*vvi; inf11<-t(AA)%*%AA-t(YY)%*%Hadprod(YY,dconi); inf22<-t(BB)%*%BB-t(WW)%*%Hadprod(WW,gconi); inf33<-t(CC)%*%CC-t(XX)%*%Hadprod(XX,lconi); inf21<-t(BB)%*%AA-t(WW)%*%Hadprod(YY,econi); inf31<-t(CC)%*%AA-t(XX)%*%Hadprod(YY,fconi); inf32<-t(CC)%*%BB-t(XX)%*%Hadprod(WW,hconi); inf12<-t(inf21); inf13<-t(inf31); inf23<-t(inf32); matinf<-rbind(cbind(inf11,inf12,inf13),cbind(inf21,inf22,inf23),cbind(inf31,inf32,inf33)); if(any(is.na(matinf))==TRUE){ warning("ATTENTION: NAs produced") varmat<-matrix(NA,nrow=np,ncol=np) } else { if(det(matinf)<=0){ warning("ATTENTION: Variance-covariance matrix NOT positive definite") varmat<-matrix(NA,nrow=np,ncol=np) } else { varmat<-solve(matinf) } } return(varmat) }
miss_ind <- function(data, prefix = "miss_") { indicators <- sapply(data, FUN = function(col) as.numeric(is.na(col))) colnames(indicators) <- paste0(prefix, colnames(data)) indicators <- indicators[, !colMeans(indicators) %in% c(0, 1)] out <- cbind(data, indicators) return(out) }
pb.trimfill <- function (x, side, estimator = "L0", maxiter = 100, verbose = FALSE, ...){ if (!is.element("rma.uni", class(x))) stop("Argument 'x' must be an object of class \"rma.uni\".") if (!x$int.only) stop("Trim-and-fill method only applicable for models without moderators.") if (missing(side)) side <- NULL estimator <- match.arg(estimator, c("L0", "R0", "Q0")) if (x$k == 1) stop("Stopped because k = 1.") yi <- x$yi vi <- x$vi weights <- x$weights ni <- x$ni if (is.null(side)) { res <- rma(yi, vi, weights = weights, mods = sqrt(vi), intercept = TRUE, method = x$method, weighted = x$weighted, ...) if (is.na(res$b[2])) res$b[2] <- 0 if (res$b[2] < 0) { side <- "right" } else { side <- "left" } } else { side <- match.arg(side, c("left", "right")) } if (side == "right") { yi <- -1 * yi } idix <- sort(yi, index.return = TRUE)$ix yi <- yi[idix] vi <- vi[idix] weights <- weights[idix] ni <- ni[idix] k <- length(yi) k0.sav <- -1 k0 <- 0 iter <- 0 while (abs(k0 - k0.sav) > 0 & iter <= maxiter) { k0.sav <- k0 iter <- iter + 1 yi.t <- yi[1:(k - k0)] vi.t <- vi[1:(k - k0)] weights.t <- weights[1:(k - k0)] res <- rma(yi.t, vi.t, weights = weights.t, intercept = TRUE, method = x$method, weighted = x$weighted, ...) b <- c(res$b) yi.c <- yi - b yi.c.r <- rank(abs(yi.c), ties.method = "first") yi.c.r.s <- sign(yi.c) * yi.c.r if (estimator == "R0") { k0 <- (k - max(-1 * yi.c.r.s[yi.c.r.s < 0])) - 1 se.k0 <- sqrt(2 * max(0, k0) + 2) } if (estimator == "L0") { Sr <- sum(yi.c.r.s[yi.c.r.s > 0]) k0 <- (4 * Sr - k * (k + 1))/(2 * k - 1) varSr <- 1/24 * (k * (k + 1) * (2 * k + 1) + 10 * k0^3 + 27 * k0^2 + 17 * k0 - 18 * k * k0^2 - 18 * k * k0 + 6 * k^2 * k0) se.k0 <- 4 * sqrt(varSr)/(2 * k - 1) } if (estimator == "Q0") { Sr <- sum(yi.c.r.s[yi.c.r.s > 0]) k0 <- k - 1/2 - sqrt(2 * k^2 - 4 * Sr + 1/4) varSr <- 1/24 * (k * (k + 1) * (2 * k + 1) + 10 * k0^3 + 27 * k0^2 + 17 * k0 - 18 * k * k0^2 - 18 * k * k0 + 6 * k^2 * k0) se.k0 <- 2 * sqrt(varSr)/sqrt((k - 1/2)^2 - k0 * (2 * k - k0 - 1)) } k0 <- max(0, k0) k0 <- round(k0) se.k0 <- max(0, se.k0) if (verbose) cat("Iteration:", iter, "\tmissing =", k0, "\t b =", ifelse(side == "right", -1 * b, b), "\n") } if (k0 > 0) { if (side == "right") { yi.c <- -1 * (yi.c - b) } else { yi.c <- yi.c - b } yi.fill <- c(x$yi.f, -1 * yi.c[(k - k0 + 1):k]) vi.fill <- c(x$vi.f, vi[(k - k0 + 1):k]) weights.fill <- c(x$weights.f, weights[(k - k0 + 1):k]) ni.fill <- c(x$ni.f, ni[(k - k0 + 1):k]) attr(yi.fill, "measure") <- x$measure res <- rma(yi.fill, vi.fill, weights = weights.fill, ni = ni.fill, intercept = TRUE, method = x$method, weighted = x$weighted, ...) res$fill <- c(rep(FALSE, k), rep(TRUE, k0)) res$ids <- c(x$ids, (x$k.f + 1):(x$k.f + k0)) if (x$slab.null) { res$slab <- c(paste("Study", x$ids), paste("Filled", seq_len(k0))) } else { res$slab <- c(x$slab, paste("Filled", seq_len(k0))) } res$slab.null <- FALSE } else { res <- x res$fill <- rep(FALSE, k) } res$k0 <- k0 res$se.k0 <- se.k0 res$side <- side res$k0.est <- estimator if (estimator == "R0") { m <- -1:(k0 - 1) res$pval <- 1 - sum(choose(0 + m + 1, m + 1) * 0.5^(0 + m + 2)) } else { res$pval <- NA } class(res) <- c("rma.uni.trimfill", class(res)) return(res) }
expected <- eval(parse(text="TRUE")); test(id=0, code={ argv <- eval(parse(text="list(structure(c(TRUE, TRUE, TRUE, TRUE, TRUE), .Names = c(\"1\", \"2\", \"3\", \"4\", \"5\"), .Dim = 5L, .Dimnames = list(c(\"1\", \"2\", \"3\", \"4\", \"5\"))))")); do.call(`any`, argv); }, o=expected);
rt_ticket_attachments <- function(ticket_id, ...) { url <- rt_url("ticket", ticket_id, "attachments") out <- rt_GET(url, ...) stopforstatus(out) location <- stringr::str_locate(out$body, "Attachments: ") if (all(dim(location) != c(1, 2))) { stop("Error while processing response from RT.") } rest <- stringr::str_sub(out$body, location[1, 2] + 1, nchar(out$body)) attachments <- parse_rt_properties(rest) result <- lapply(attachments, function(attachment) { props <- as.list( stringr::str_match( attachment, "\\(?(.+)\\) \\((.+) \\/ (.+)\\)")[1, (2:4)] ) names(props) <- c("Name", "Type", "Size") props }) if (length(result) == 0) { return(try_tibble(data.frame())) } try_tibble( cbind(data.frame(id = names(result), stringsAsFactors = FALSE), do.call(rbind, lapply(result, function(x) { data.frame(x, stringsAsFactors = FALSE) })) ) ) }
SpatialPointsTopography<-function(points, elevation, slope = NULL, aspect = NULL, proj4string = CRS(as.character(NA))) { if(!(inherits(points,"SpatialPoints")|| inherits(points,"matrix"))) stop("'points' has to be of class 'matrix' or 'SpatialPoints'.") if(inherits(points,"SpatialPoints")) { npoints = nrow(points@coords) proj4string =points@proj4string coords = points@coords bbox = points@bbox } else { coords = as.matrix(points) npoints = nrow(coords) bbox = bbox(SpatialPoints(coords)) } if(length(elevation)!=npoints) stop("'elevation' has to be of length equal to the number of points") if(is.null(slope)) slope = as.numeric(rep(NA, length(elevation))) else if(length(slope)!=npoints) stop("'slope' has to be of length equal to the number of points") if(is.null(aspect)) aspect = as.numeric(rep(NA, length(elevation))) else if(length(aspect)!=npoints) stop("'aspect' has to be of length equal to the number of points") data = data.frame(elevation = elevation, slope = slope, aspect = aspect, row.names = row.names(coords)) lt = new("SpatialPointsTopography", coords = coords, bbox = bbox, proj4string = proj4string, data = data) return(lt) } setMethod("[", signature("SpatialPointsTopography"),definition = function (x, i, j, ..., drop = TRUE) { missing.i = missing(i) if (!missing(j)) warning("j index ignored") if (missing.i) i = TRUE if (is.matrix(i)) stop("matrix argument not supported in SpatialPointsTopography selection") if (is(i, "Spatial")) i = !is.na(over(x, geometry(i))) if (is.character(i)) i <- match(i, row.names(x)) if (any(is.na(i))) stop("NAs not permitted in row index") sp = as(x,"SpatialPoints")[i, , drop=drop] x@coords = sp@coords x@bbox = sp@bbox x@data = x@data[i, , ..., drop = FALSE] x } ) print.SpatialPointsTopography = function(x, ..., digits = getOption("digits")) { cat("Object of class SpatialPointsTopography\n") cc = substring(paste(as.data.frame( t(signif(coordinates(x), digits)))),2,999) df = data.frame("coordinates" = cc, x@data) row.names(df) = row.names(x@data) print(df, ..., digits = digits) } setMethod("print", "SpatialPointsTopography", function(x, ..., digits = getOption("digits")) print.SpatialPointsTopography(x, ..., digits)) setMethod("show", "SpatialPointsTopography", function(object) print.SpatialPointsTopography(object)) head.SpatialPointsTopography <- function(x, n=6L, ...) { n <- min(n, length(x)) ix <- sign(n)*seq(abs(n)) x[ ix , , drop=FALSE] } setMethod("head", "SpatialPointsTopography", function(x, n=6L, ...) head.SpatialPointsTopography(x,n,...)) tail.SpatialPointsTopography <- function(x, n=6L, ...) { n <- min(n, length(x)) ix <- sign(n)*rev(seq(nrow(x), by=-1L, len=abs(n))) x[ ix , , drop=FALSE] } setMethod("tail", "SpatialPointsTopography", function(x, n=6L, ...) tail.SpatialPointsTopography(x,n,...)) setMethod("spTransform", signature("SpatialPointsTopography", "CRS"), function(x, CRSobj, ...) { sp = spTransform(as(x,"SpatialPoints"), CRSobj) new("SpatialPointsTopography", coords = sp@coords, bbox = sp@bbox, proj4string = sp@proj4string, data = x@data) } ) as.SpPtsTop.SpPixTop = function(from) { spdf = as(from, "SpatialPixelsDataFrame") new("SpatialPixelsTopography", coords = spdf@coords, coords.nrs = [email protected], bbox = spdf@bbox, grid = spdf@grid, grid.index = [email protected], proj4string = spdf@proj4string, data = spdf@data) } setAs("SpatialPointsTopography", "SpatialPixelsTopography", as.SpPtsTop.SpPixTop) as.SpPtsTop.SpGrdTop = function(from) { as.SpPixTop.SpGrdTop(as.SpPtsTop.SpPixTop(from)) } setAs("SpatialPointsTopography", "SpatialGridTopography", as.SpPtsTop.SpGrdTop)
"discrimin" <- function (dudi, fac, scannf = TRUE, nf = 2) { if (!inherits(dudi, "dudi")) stop("Object of class dudi expected") if (!is.factor(fac)) stop("factor expected") lig <- nrow(dudi$tab) if (length(fac) != lig) stop("Non convenient dimension") rank <- dudi$rank dudi <- redo.dudi(dudi, rank) deminorm <- as.matrix(dudi$c1) * dudi$cw deminorm <- t(t(deminorm)/sqrt(dudi$eig)) cla.w <- tapply(dudi$lw, fac, sum) mean.w <- function(x) { z <- x * dudi$lw z <- tapply(z, fac, sum)/cla.w return(z) } tabmoy <- apply(dudi$l1, 2, mean.w) tabmoy <- data.frame(tabmoy) row.names(tabmoy) <- levels(fac) cla.w <- cla.w/sum(cla.w) X <- as.dudi(tabmoy, rep(1, rank), as.vector(cla.w), scannf = scannf, nf = nf, call = match.call(), type = "dis") res <- list() res$eig <- X$eig res$nf <- X$nf res$fa <- deminorm %*% as.matrix(X$c1) res$li <- as.matrix(dudi$tab) %*% res$fa w <- scalewt(dudi$tab, dudi$lw) res$va <- t(as.matrix(w)) %*% (res$li * dudi$lw) res$cp <- t(as.matrix(dudi$l1)) %*% (dudi$lw * res$li) res$fa <- data.frame(res$fa) row.names(res$fa) <- names(dudi$tab) names(res$fa) <- paste("DS", 1:X$nf, sep = "") res$li <- data.frame(res$li) row.names(res$li) <- row.names(dudi$tab) names(res$li) <- names(res$fa) w <- apply(res$li, 2, mean.w) res$gc <- data.frame(w) row.names(res$gc) <- as.character(levels(fac)) names(res$gc) <- names(res$fa) res$cp <- data.frame(res$cp) row.names(res$cp) <- names(dudi$l1) names(res$cp) <- names(res$fa) res$call <- match.call() class(res) <- "discrimin" return(res) } "plot.discrimin" <- function (x, xax = 1, yax = 2, ...) { if (!inherits(x, "discrimin")) stop("Use only with 'discrimin' objects") if ((x$nf == 1) || (xax == yax)) { if (inherits(x, "coadisc")) { appel <- as.list(x$call) df <- eval.parent(appel$df) fac <- eval.parent(appel$fac) lig <- nrow(df) if (length(fac) != lig) stop("Non convenient dimension") lig.w <- apply(df, 1, sum) lig.w <- lig.w/sum(lig.w) cla.w <- as.vector(tapply(lig.w, fac, sum)) mean.w <- function(x) { z <- x * lig.w z <- tapply(z, fac, sum)/cla.w return(z) } w <- apply(df, 2, mean.w) w <- data.frame(t(w)) sco.distri(x$fa[, xax], w, clabel = 1, xlim = NULL, grid = TRUE, cgrid = 1, include.origin = TRUE, origin = 0, sub = NULL, csub = 1) return(invisible()) } appel <- as.list(x$call) dudi <- eval.parent(appel$dudi) fac <- eval.parent(appel$fac) lig <- nrow(dudi$tab) if (length(fac) != lig) stop("Non convenient dimension") sco.quant(x$li[, 1], dudi$tab, fac = fac) return(invisible()) } if (xax > x$nf) stop("Non convenient xax") if (yax > x$nf) stop("Non convenient yax") fac <- eval.parent(as.list(x$call)$fac) def.par <- par(no.readonly = TRUE) on.exit(par(def.par)) layout(matrix(c(1, 2, 3, 4, 4, 5, 4, 4, 6), 3, 3), respect = TRUE) par(mar = c(0.2, 0.2, 0.2, 0.2)) s.arrow(x$fa, xax = xax, yax = yax, sub = "Canonical weights", csub = 2, clabel = 1.25) s.corcircle(x$va, xax = xax, yax = yax, sub = "Cos(variates,canonical variates)", csub = 2, cgrid = 0, clabel = 1.25) scatterutil.eigen(x$eig, wsel = c(xax, yax)) s.class(x$li, fac, xax = xax, yax = yax, sub = "Scores and classes", csub = 2, clabel = 1.5) s.corcircle(x$cp, xax = xax, yax = yax, sub = "Cos(components,canonical variates)", csub = 2, cgrid = 0, clabel = 1.25) s.label(x$gc, xax = xax, yax = yax, sub = "Class scores", csub = 2, clabel = 1.25) } "print.discrimin" <- function (x, ...) { if (!inherits(x, "discrimin")) stop("to be used with 'discrimin' object") cat("Discriminant analysis\n") cat("call: ") print(x$call) cat("class: ") cat(class(x), "\n") cat("\n$nf (axis saved) :", x$nf) cat("\n\neigen values: ") l0 <- length(x$eig) cat(signif(x$eig, 4)[1:(min(5, l0))]) if (l0 > 5) cat(" ...\n\n") else cat("\n\n") sumry <- array("", c(5, 4), list(1:5, c("data.frame", "nrow", "ncol", "content"))) sumry[1, ] <- c("$fa", nrow(x$fa), ncol(x$fa), "loadings / canonical weights") sumry[2, ] <- c("$li", nrow(x$li), ncol(x$li), "canonical scores") sumry[3, ] <- c("$va", nrow(x$va), ncol(x$va), "cos(variables, canonical scores)") sumry[4, ] <- c("$cp", nrow(x$cp), ncol(x$cp), "cos(components, canonical scores)") sumry[5, ] <- c("$gc", nrow(x$gc), ncol(x$gc), "class scores") print(sumry, quote = FALSE) cat("\n") }
write.code <- function (x, file = stdout(), evaluated = FALSE, simplify = !evaluated, deparseCtrl = c("keepInteger", "showAttributes", "useSource", "keepNA", "digits17")) { if (!evaluated) x <- substitute(x) x <- if (simplify && is.call(x) && is.symbol(x[[1]]) && x[[1]] == quote(`{`)) vapply(as.list(x[-1]), deparse1, collapse = "\n", width.cutoff = 60L, backtick = TRUE, control = deparseCtrl, FUN.VALUE = "") else deparse1(x, collapse = "\n", width.cutoff = 60L, backtick = TRUE, control = deparseCtrl) if (is.null(file)) x else { writeLines(x, file, useBytes = TRUE) invisible(x) } }
my.objectivePhiOne.nlogL.rocnsef <- function(phi, fitlist, reu13.list.g, y.g, n.g){ ret <- 0 for(i.aa in 1:length(reu13.list.g)){ for(i.scodon in 1:length(reu13.list.g[[i.aa]])){ Pos <- reu13.list.g[[i.aa]][[i.scodon]] if(length(Pos) > 0){ xm <- matrix(cbind(1, phi, phi * Pos), ncol = 3) exponent <- xm %*% fitlist[[i.aa]]$coef.mat id.infinite <- rowSums(!is.finite(exponent)) > 0 if(any(id.infinite)){ xm.tmp <- matrix(cbind(1, Pos[id.infinite]), ncol = 2) coef.tmp <- matrix(fitlist[[i.aa]]$coef.mat[-1,], nrow = 2) exponent[id.infinite,] <- xm.tmp %*% coef.tmp } lp.vec <- my.inverse.mlogit(exponent, log = TRUE) ret <- ret + sum(lp.vec[, i.scodon]) } } } -ret } my.objectivePhiOne.nlogL.roc <- function(phi, fitlist, reu13.list.g, y.g, n.g){ ret <- 0 for(i.aa in 1:length(y.g)){ if(n.g[[i.aa]] > 0){ xm <- matrix(cbind(1, phi), ncol = 2) exponent <- xm %*% fitlist[[i.aa]]$coef.mat id.infinite <- rowSums(!is.finite(exponent)) > 0 if(any(id.infinite)){ xm.tmp <- matrix(1, nrow = sum(id.infinite), ncol = 1) coef.tmp <- matrix(fitlist[[i.aa]]$coef.mat[-1,], nrow = 1) exponent[id.infinite,] <- xm.tmp %*% coef.tmp } lp.vec <- my.inverse.mlogit(exponent, log = TRUE) ret <- ret + sum((y.g[[i.aa]] * lp.vec)[y.g[[i.aa]] != 0]) } } -ret } my.objectivePhiOne.nlogL.nsef <- function(phi, fitlist, reu13.list.g, y.g, n.g){ ret <- 0 for(i.aa in 1:length(reu13.list.g)){ for(i.scodon in 1:length(reu13.list.g[[i.aa]])){ Pos <- reu13.list.g[[i.aa]][[i.scodon]] if(length(Pos) > 0){ xm <- matrix(cbind(1, phi * Pos), ncol = 2) exponent <- xm %*% fitlist[[i.aa]]$coef.mat id.infinite <- rowSums(!is.finite(exponent)) > 0 if(any(id.infinite)){ xm.tmp <- matrix(Pos[id.infinite], ncol = 1) coef.tmp <- matrix(fitlist[[i.aa]]$coef.mat[-1,], nrow = 1) exponent[id.infinite,] <- xm.tmp %*% coef.tmp } lp.vec <- my.inverse.mlogit(exponent, log = TRUE) ret <- ret + sum(lp.vec[, i.scodon]) } } } -ret }
pip_version <- function(python) { if (!file.exists(python)) return(numeric_version("0.0")) command <- "import sys; import pip; sys.stdout.write(pip.__version__)" version <- system2(python, c("-c", shQuote(command)), stdout = TRUE, stderr = TRUE) idx <- regexpr("[[:alpha:]]", version) if (idx != -1) version <- substring(version, 1, idx - 1) numeric_version(version) } pip_install <- function(python, packages, pip_options = character(), ignore_installed = FALSE, conda = "auto", envname = NULL) { args <- c("-m", "pip", "install", "--upgrade") if (ignore_installed) args <- c(args, "--ignore-installed") args <- c(args, pip_options) packages <- shQuote(gsub("[\"']", "", packages)) args <- c(args, packages) if (conda == "auto") { info <- python_info(python) if (info$type != "conda" || numeric_conda_version(info$conda) < "4.9") conda <- NULL } result <- if (is.null(conda) || identical(conda, FALSE)) system2t(python, args) else conda_run2(python, args, conda = conda, envname = envname) if (result != 0L) { pkglist <- paste(shQuote(packages), collapse = ", ") msg <- paste("Error installing package(s):", pkglist) stop(msg, call. = FALSE) } invisible(packages) } pip_uninstall <- function(python, packages) { args <- c("-m", "pip", "uninstall", "--yes", packages) result <- system2t(python, args) if (result != 0L) { pkglist <- paste(shQuote(packages), collapse = ", ") msg <- paste("Error removing package(s):", pkglist) stop(msg, call. = FALSE) } packages } pip_freeze <- function(python) { args <- c("-m", "pip", "freeze") output <- system2(python, args, stdout = TRUE) matches <- strsplit(output, "(==|@)") matches <- .mapply(c, list(matches, output), MoreArgs = NULL) n <- vapply(matches, length, FUN.VALUE = numeric(1)) matches <- matches[n == 3] packages <- vapply(matches, `[[`, 1L, FUN.VALUE = character(1)) versions <- vapply(matches, `[[`, 2L, FUN.VALUE = character(1)) requirement <- vapply(matches, `[[`, 3L, FUN.VALUE = character(1)) data.frame( package = packages, version = versions, requirement = requirement, stringsAsFactors = FALSE ) }
`plot.crn` <- function(x, ...){ crn.plot(crn=x, ...) } `crn.plot` <- function(crn, add.spline=FALSE, nyrs=NULL, f=0.5, crn.line.col='grey50', spline.line.col='red', samp.depth.col='grey90', samp.depth.border.col='grey80', crn.lwd=1, spline.lwd=1.5, abline.pos=1, abline.col='black', abline.lty=1, abline.lwd=1, xlab="Time",ylab="RWI", ...) { if(!("crn" %in% class(crn))) stop("'crn' must be class crn") op <- par(no.readonly=TRUE) on.exit(par(op)) par(mar=c(3, 3, 3, 3), mgp=c(1.1, 0.1, 0), tcl=0.5, xaxs='i') yr.vec <- as.numeric(row.names(crn)) crn.names <- names(crn) nCrn <- ncol(crn) sd.exist <- crn.names[nCrn] == "samp.depth" args0 <- list(...) args1 <- args0 args1[["ylim2"]] <- NULL args1[c("x", "y", "type", "axes", "xlab", "ylab")] <- list(yr.vec, as.name("spl"), "n", FALSE, xlab, ylab) args2 <- args1 args2[c("main", "sub", "xlab", "ylab")] <- list("", "", "", "") if(sd.exist) { samp.depth <- crn[[nCrn]] nCrn <- nCrn-1 text.samp <- gettext("Sample Depth", domain="R-dplR") sdargs <- args2 sdargs[["ylim"]] <- args0[["ylim2"]] sdargs[["y"]] <- samp.depth } if(nCrn > 1) layout(matrix(seq_len(nCrn), nrow=nCrn, ncol=1)) nyrs2 <- nyrs for(i in seq_len(nCrn)){ spl <- crn[[i]] do.call("plot", args1) if(sd.exist) { par(new=TRUE) do.call("plot", sdargs) xx <- c(yr.vec,max(yr.vec,na.rm=TRUE),min(yr.vec,na.rm=TRUE)) yy <- c(samp.depth, 0, 0) polygon(xx,yy,col=samp.depth.col,border=samp.depth.border.col) axis(4, at=pretty(samp.depth)) mtext(text.samp, side=4, line=1.25) } par(new=TRUE) do.call("plot", args2) abline(h=abline.pos,lwd=abline.lwd, lty=abline.lty,col=abline.col) lines(yr.vec, spl, col=crn.line.col,lwd=crn.lwd) tmp <- na.omit(spl) if(add.spline) { if(is.null(nyrs2)) nyrs2 <- length(tmp)*0.33 spl[!is.na(spl)] <- ffcsaps(y=tmp, x=seq_along(tmp), nyrs=nyrs2, f=f) lines(yr.vec, spl, col=spline.line.col, lwd=spline.lwd) } axis(1) axis(2) axis(3) if(!sd.exist) axis(4) box() } }
nuclear <- function(B) { sum(abs(svd(B)$d)) }
.FilterEnsembleRegister = new.env() makeFilterEnsemble = function(name, base.methods, desc, fun) { assertString(name) assertString(desc) assertFunction(fun, c("task", "base.methods")) obj = makeS3Obj("FilterEnsemble", name = name, desc = desc, fun = fun ) .FilterEnsembleRegister[[name]] = obj obj } listFilterEnsembleMethods = function(desc = TRUE) { tag2df = function(tags, prefix = "") { unique.tags = sort(unique(unlist(tags))) res = asMatrixRows(lapply(tags, "%in%", x = unique.tags)) colnames(res) = stri_paste(prefix, unique.tags) rownames(res) = NULL as.data.frame(res) } assertFlag(desc) filters = as.list(.FilterEnsembleRegister) df = data.frame( id = names(filters) ) description = extractSubList(filters, "desc") if (desc) { df$desc = description } res = setRowNames(sortByCol(df, "id"), NULL) addClasses(res, "FilterMethodsList") return(res) } print.FilterEnsembleMethodsList = function(x, len = 40, ...) { if (!is.null(x$desc)) { x$desc = clipString(x$desc, len = len) } NextMethod() } print.FilterEnsemble = function(x, ...) { catf("Filter: '%s'", x$name) } makeFilterEnsemble( name = "E-min", desc = "Minimum ensemble filter. Takes the best minimum value across all base filter methods for each feature.", base.methods = NULL, fun = function(task, base.methods, nselect, more.args) { fval.all.ranked = rankBaseFilters(task = task, method = base.methods, nselect = nselect, more.args = more.args) fval.ens = aggregate(fval.all.ranked$rank, by = list(fval.all.ranked$name), FUN = min) colnames(fval.ens) = c("name", "value") fval.ens$type = fval.all.ranked$type[1:length(unique(fval.all.ranked$name))] fval.ens$filter = "E-min" fval.ens = mergeFilters(fval.all.ranked, fval.ens) return(fval.ens) } ) makeFilterEnsemble( name = "E-mean", desc = "Mean ensemble filter. Takes the mean across all base filter methods for each feature.", base.methods = NULL, fun = function(task, base.methods, nselect, more.args) { fval.all.ranked = rankBaseFilters(task = task, method = base.methods, nselect = nselect, more.args = more.args) fval.ens = aggregate(fval.all.ranked$rank, by = list(fval.all.ranked$name), FUN = mean) colnames(fval.ens) = c("name", "value") fval.ens$type = fval.all.ranked$type[1:length(unique(fval.all.ranked$name))] fval.ens$filter = "E-mean" fval.ens = mergeFilters(fval.all.ranked, fval.ens) return(fval.ens) } ) makeFilterEnsemble( name = "E-max", desc = "Maximum ensemble filter. Takes the best maximum value across all base filter methods for each feature.", base.methods = NULL, fun = function(task, base.methods, nselect, more.args) { fval.all.ranked = rankBaseFilters(task = task, method = base.methods, nselect = nselect, more.args = more.args) fval.ens = aggregate(fval.all.ranked$rank, by = list(fval.all.ranked$name), FUN = max) colnames(fval.ens) = c("name", "value") fval.ens$type = fval.all.ranked$type[1:length(unique(fval.all.ranked$name))] fval.ens$filter = "E-max" fval.ens = mergeFilters(fval.all.ranked, fval.ens) return(fval.ens) } ) makeFilterEnsemble( name = "E-median", desc = "Median ensemble filter. Takes the median across all base filter methods for each feature.", base.methods = NULL, fun = function(task, base.methods, nselect, more.args) { fval.all.ranked = rankBaseFilters(task = task, method = base.methods, nselect = nselect, more.args = more.args) fval.ens = aggregate(fval.all.ranked$rank, by = list(fval.all.ranked$name), FUN = median) colnames(fval.ens) = c("name", "value") fval.ens$type = fval.all.ranked$type[1:length(unique(fval.all.ranked$name))] fval.ens$filter = "E-median" fval.ens = mergeFilters(fval.all.ranked, fval.ens) return(fval.ens) } ) makeFilterEnsemble( name = "E-Borda", desc = "Borda ensemble filter. Takes the sum across all base filter methods for each feature.", base.methods = NULL, fun = function(task, base.methods, nselect, more.args) { if (length(unique(base.methods)) == 1L) { stopf("Sampling without replacement is currently not supported for simple filter methods. Please use `makeDiscreteParam()` instead of `makeDiscreteVectorParam()`.") } fval.all.ranked = rankBaseFilters(task = task, method = base.methods, nselect = nselect, more.args = more.args) fval.ens = aggregate(fval.all.ranked$rank, by = list(fval.all.ranked$name), FUN = sum) colnames(fval.ens) = c("name", "value") fval.ens$type = fval.all.ranked$type[1:length(unique(fval.all.ranked$name))] fval.ens$filter = "E-Borda" fval.ens = mergeFilters(fval.all.ranked, fval.ens) return(fval.ens) } ) rankBaseFilters = function(task, method = method, nselect = nselect, more.args = more.args) { fval.calc = generateFilterValuesData(task, method = method, nselect = nselect, more.args = more.args) value = NULL fval.all.ranked = fval.calc$data[, rank := frank(value, ties.method = "first"), by = filter] setorderv(fval.all.ranked, c("filter", "rank")) return(fval.all.ranked) } mergeFilters = function(simple_filters, ensemble_filters) { simple_filters$rank = NULL all.filters = rbind(simple_filters, ensemble_filters) return(all.filters) }
Even <- function(x){ result <- vector() if(!is.numeric(x)){ cat("Even only works on numbers") stop() } for(i in 1:length(x)){ if(x[i]/2 == round(x[i]/2)){ result[i] <- T }else{ result[i] <- F } } return(result) }
rbweibull <- function(n, prob, scale, shape) { if(max(length(prob), length(scale), length(shape)) > 1) stop("parameters must be of length 1") p <- runif(n) q <- rep(0, length(p)) cases <- p > (1-prob) q[cases] <- rweibull(sum(cases), scale=scale, shape=shape) q }
context("kgaps_imt") u <- stats::quantile(newlyn, probs = c(0.85, 0.90, 0.95)) k_vals <- 1:4 all_res <- kgaps_imt(newlyn, u, k_vals) all_IMT <- all_res$imt all_p <- all_res$p all_theta <- all_res$theta ind_IMT <- ind_p <- ind_theta <- all_IMT for (i in 1:length(u)) { for (j in 1:length(k_vals)) { temp <- kgaps_imt(newlyn, u = u[i], k = k_vals[j]) ind_IMT[i, j] <- temp$imt ind_p[i, j] <- temp$p ind_theta[i, j] <- temp$theta } } my_tol <- 1e-5 test_that("IMT values agree", { testthat::expect_equal(all_IMT, ind_IMT, tolerance = my_tol) }) test_that("p-values agree", { testthat::expect_equal(all_p, ind_p, tolerance = my_tol) }) test_that("MLEs of theta values agree", { testthat::expect_equal(all_theta, ind_theta, tolerance = my_tol) })
.optimalDCAGE <- function(..., dB, yFinest, ySource, finestOnSource, sourceAreas, finestAreas, gL, gU, cMethod, alpha, localCluster) { message("determining clustering that minimizes CAGE/DCAGE") centroids <- tryCatch(expr = sp::coordinates(obj = rgeos::gCentroid(spgeom = dB, byid = TRUE)), error = function(e) { stop("unable to identify centroids of finest ", "resolution spatial data\n", e$message, call. = FALSE) }) if (cMethod == 'kmeans') { minResult <- .minCAGE(centroids = centroids, yFinest = yFinest, ySource = ySource, finestOnSource = finestOnSource, sourceAreas = sourceAreas, finestAreas = finestAreas, gL = gL, gU = gU, localCluster = localCluster) } else { minResult <- .minCAGESH(dB = dB, centroids = centroids, yFinest = yFinest, ySource = ySource, finestOnSource = finestOnSource, sourceAreas = sourceAreas, finestAreas = finestAreas, gL = gL, gU = gU, alpha = alpha, localCluster = localCluster) } YOpt <- .yOpt(idxit = minResult$cluster$cluster, y = yFinest, areas = finestAreas) minResult[[ "yOpt" ]] <- YOpt return( minResult ) }
merge_data_table_list <- function( dt_list = NULL, id = NULL, silent = TRUE ) { output <- Reduce(function(x, y) { merge_data_tables(x, y, id = id, silent = silent)}, dt_list) return(output) }
source("ESEUR_config.r") estimate=read.csv(paste0(ESEUR_dir, "developers/anchor-estimate.csv.xz"), as.is=TRUE) brew_col=rainbow(3) min_est=subset(estimate, QuestID == "MIN") ml_est=subset(estimate, QuestID == "ML") max_est=subset(estimate, QuestID == "MAX") ml_ord=order(ml_est$Answer) anc_mod=glm(Answer ~ Group, data=ml_est) summary(anc_mod) plot(max_est$Answer[ml_ord], col=brew_col[1]) points(min_est$Answer[ml_ord], col=brew_col[3]) points(ml_est$Answer[ml_ord], col=brew_col[2])
setMethod("initialize", "Zproject", function(.Object, root, debug=FALSE) { if (!file.exists(root)) { stop(paste0("Root folder ", root, " not found")) } else { .Object@root <- root } assign("debug", debug, envir = .options) variants <- list() bat.files <- list.files(root, ".bat$", full.names = TRUE, recursive = TRUE) for (bat.file in bat.files) { variant <- new("Zvariant", bat.file = bat.file) suppressWarnings(variants[variant@name] <- variant) } .Object@variants <- variants return(.Object) }) setMethod("initialize", "Zresults", function(.Object, root) { if (!file.exists(root)) { warning("Results root path ", root, " does not exist") return(.Object) } .Object@root = root get_file <- function(output.folder, x) { target <- list.files(output.folder, pattern = x, full.names = TRUE) if (length(target) == 0) { return(NA) } else if (length(target) == 1) { return(target) } else { warning(paste("More matches than 1 found for", x, "using only the first")) return(target[1]) } } run.info.file <- get_file(root, "\\.run_info\\.txt") if (!is.na(run.info.file)) { [email protected] <- run.info.file content <- readLines(run.info.file) match_content <- content[grepl("^Finished at", content)] if (length(match_content) == 1) { date_string <- regmatches(match_content, gregexpr("(?<=\\().*?(?=\\))", match_content, perl = T))[[1]] .Object@modified <- as.POSIXct(date_string) if (.options$debug) { message("Found run info file modified on: ", .Object@modified) } } } else { .Object@modified <- Sys.time() if (.options$debug) { message("Did not find run info file") } } features.info.file <- get_file(root, "\\.features_info\\.txt$") if (!is.na(features.info.file)) { if (.options$debug) { message("Reading in features info file ", features.info.file) } [email protected] <- read_features_info(features.info.file) } curve.file <- get_file(root, "\\.curves\\.txt") if (!is.na(curve.file)) { if (.options$debug) { message("Reading in curve file ", curve.file) } .Object@curves <- read_curves(curve.file) } grp.curve.file <- get_file(root, "\\.grp_curves\\.txt") if (!is.na(grp.curve.file)) { if (.options$debug) { message("Reading in groups curve file ", grp.curve.file) } [email protected] <- read_grp_curves(grp.curve.file) } rank.raster.file <- get_file(root, "\\.rank\\..+[(img)|(tif)|(asc)]$") if (!is.na(rank.raster.file)) { if (.options$debug) { message("Reading in rank raster file ", rank.raster.file) } .Object@rank <- raster::raster(rank.raster.file) } wrscr.raster.file <- get_file(root, "\\.wrscr\\.") if (!is.na(wrscr.raster.file)) { if (.options$debug) { message("Reading in wrscr raster file ", wrscr.raster.file) } .Object@wrscr <- raster(wrscr.raster.file) } prop.raster.file <- get_file(root, "\\.prop\\.") if (!is.na(prop.raster.file)) { if (.options$debug) { message("Reading in prop raster file ", prop.raster.file) } .Object@prop <- raster(prop.raster.file) } ppa.lsm.file <- get_file(root, ".*nwout\\.1.*") if (!is.na(ppa.lsm.file)) { if (.options$debug) { message("Reading in ppa lsm file ", ppa.lsm.file) } ppa.lsm.data <- read_ppa_lsm(ppa.lsm.file) ppa.lsm.data <- merge(ppa.lsm.data[[1]], ppa.lsm.data[[3]], by.x = "Unit", by.y = "Unit_number") [email protected] <- ppa.lsm.data[, !(names(ppa.lsm.data) %in% c("Area_cells"))] } invisible(validObject(.Object)) return(.Object) }) setMethod("initialize", "Zvariant", function(.Object, name=NULL, bat.file) { if (!file.exists(bat.file)) { stop(paste0("Variant .bat-file does not exist: ", bat.file)) } if (is.null(name)) { .Object@name <- strsplit(basename(bat.file), "\\.")[[1]][1] } else { .Object@name <- name } [email protected] <- bat.file if (.options$debug) { message("Reading in bat file ", bat.file) } call.params <- read_bat(bat.file) [email protected] <- call.params invisible(validObject(.Object)) if (.options$debug) { message("Reading in dat file ", call.params$dat.file) } [email protected] <- read_dat(call.params$dat.file) if (.options$debug) { message("Reading in spp file ", call.params$spp.file) } spp.data <- read_spp(call.params$spp.file) spp.data$name <- basename(zonator::file_path_sans_ext(spp.data$filepath)) [email protected] <- spp.data [email protected] <- call.params$output.folder use_groups <- get_dat_param(.Object, "use groups", warn_missing = FALSE) if (!is.na(use_groups) & use_groups == 1) { groups_file <- get_dat_param(.Object, "groups file", warn_missing = FALSE) groups_file <- check_path(groups_file, dirname(bat.file), require.file = TRUE) if (.options$debug) { message("Reading in groups file ", groups_file) } .Object@groups <- read_groups(groups_file) group.ids <- unique(.Object@groups$output.group) group.names <- paste0("group", group.ids) names(group.names) <- group.ids groupnames(.Object) <- group.names } use_condition_layer <- get_dat_param(.Object, "use condition layer", warn_missing = FALSE) if (!is.na(use_condition_layer) & use_condition_layer == 1) { condition_file <- get_dat_param(.Object, "condition file", warn_missing = FALSE) condition_file <- check_path(condition_file, dirname(bat.file), require.file = TRUE) if (.options$debug) { message("Reading in condition file ", condition_file) } [email protected] <- read.table(condition_file, col.names = c("group", "raster")) } .Object@results <- new("Zresults", root = [email protected]$output.folder) if (use_groups == "1" & has_results(.Object)$grp.curves) { .Object@[email protected] <- regroup_curves(curves(.Object), sppweights(.Object), groups(.Object)) } featurenames(.Object) <- spp.data$name .Object@results_dirty <- FALSE return(.Object) })
createPlotAndBoundsSimonReview <- function(des, xmax=NULL, ymax=NULL){ m <- Sm <- decision <- analysis <- NULL des <- as.data.frame(t(des)) coords <- expand.grid(0:des$n, 1:des$n) diag.df <- data.frame(Sm=as.numeric(coords[,1]), m=as.numeric(coords[,2]), decision=rep("Continue", nrow(coords))) diag.df$decision <- as.character(diag.df$decision) diag.df$decision[coords[,1]>coords[,2]] <- NA fails.sm <- c(0:des$r1, (des$r1+1):des$r) fails.m <- c(rep(des$n1, length(0:des$r1)), rep(des$n, length((des$r1+1):des$r)) ) tp.fail <- data.frame(Sm=fails.sm, m=fails.m) tp.success <- data.frame(Sm=(des$r+1):des$n, m=rep(des$n, length((des$r+1):des$n)) ) if("e1" %in% names(des)){ tp.success.s1 <- data.frame(Sm=(des$e1+1):des$n1, m=rep(des$n1, length((des$e1+1):des$n1)) ) tp.success <- rbind(tp.success, tp.success.s1) } success.index <- apply(diag.df, 1, function(y) any(as.numeric(y[1])==tp.success$Sm & as.numeric(y[2])==tp.success$m)) diag.df$decision[success.index] <- "Go decision" fail.index <- apply(diag.df, 1, function(y) any(as.numeric(y[1])==tp.fail$Sm & as.numeric(y[2])==tp.fail$m)) diag.df$decision[fail.index] <- "No go decision" for(i in 1:nrow(tp.fail)){ not.poss.fail.index <- diag.df$Sm==tp.fail$Sm[i] & diag.df$m>tp.fail$m[i] diag.df$decision[not.poss.fail.index] <- NA } for(i in 1:nrow(tp.success)){ not.poss.pass.index <- diag.df$m-diag.df$Sm==tp.success$m[i]-tp.success$Sm[i] & diag.df$m>tp.success$m[i] diag.df$decision[not.poss.pass.index] <- NA } diag.df.subset <- diag.df[!is.na(diag.df$decision),] diag.df.subset$analysis <- "No" diag.df.subset$analysis[diag.df.subset$m %in% tp.fail$m] <- "Yes" diagram <- pkgcond::suppress_warnings(ggplot2::ggplot(data=diag.df.subset, mapping = aes(x=m, y=Sm, fill=decision, alpha=analysis))+ scale_alpha_discrete(range=c(0.5, 1)), "Using alpha for a discrete variable is not advised") diagram <- diagram + geom_tile(color="white")+ labs(fill="Decision", alpha="Analysis", x="Number of participants", y="Number of responses" )+ coord_cartesian(expand = 0)+ theme_minimal() xbreaks <- c(des$n1, des$n) if(!is.null(xmax)){ diagram <- diagram + expand_limits(x=xmax) xbreaks <- c(xbreaks, xmax) } if(!is.null(ymax)){ diagram <- diagram + expand_limits(y=ymax) } diagram <- diagram + scale_x_continuous(breaks=xbreaks)+ scale_y_continuous(breaks = function(x) unique(floor(pretty(seq(0, (max(x) + 1) * 1.1))))) print(diagram) stop.bounds <- data.frame(m=c(des$n1, des$n), success=c(Inf, des$r+1), fail=c(des$r1, des$r)) return(list(diagram=diagram, bounds.mat=stop.bounds)) }
library("withr") remove_gitconfig <- function(suffix) { user_home <- workflowr:::get_home() config_original <- file.path(user_home, ".gitconfig") config_tmp <- paste0(config_original, suffix) if (fs::file_exists(config_original)) { file.rename(from = config_original, to = config_tmp) } return(config_tmp) } restore_gitconfig <- function(config_tmp) { user_home <- workflowr:::get_home() config_original <- file.path(user_home, ".gitconfig") if (fs::file_exists(config_tmp)) { file.rename(from = config_tmp, to = config_original) } else if (fs::file_exists(config_original)) { fs::file_delete(config_original) } } local_no_gitconfig <- withr::local_(set = remove_gitconfig, reset = restore_gitconfig)
test_that("cleanDataset makes no noise for empties", { expect_warning(cleanDataset(SummarizedExperiment()), NA) expect_warning(cleanDataset(SingleCellExperiment()), NA) }) test_that("cleanDataset works on row names", { se <- SummarizedExperiment(list(counts=cbind(A=1:10, B=2:11))) expect_warning(out <- cleanDataset(se), "rownames") expect_identical(rownames(out), as.character(1:10)) rownames(se) <- rep("A", nrow(se)) expect_warning(out <- cleanDataset(se), "rownames") expect_true(anyDuplicated(rownames(out))==0L) rownames(se) <- LETTERS[1:10] expect_warning(cleanDataset(se), NA) out <- cleanDataset(SummarizedExperiment()) expect_identical(rownames(out), character(0)) }) test_that("cleanDataset works on column names", { se <- SummarizedExperiment(list(counts=rbind(A=1:10, B=2:11))) expect_warning(out <- cleanDataset(se), "colnames") expect_identical(colnames(out), as.character(1:10)) colnames(se) <- rep("A", ncol(se)) expect_warning(out <- cleanDataset(se), "colnames") expect_true(anyDuplicated(colnames(out))==0L) colnames(se) <- LETTERS[1:10] expect_warning(cleanDataset(se), NA) out <- cleanDataset(SummarizedExperiment()) expect_identical(colnames(out), character(0)) }) test_that("cleanDataset works on colData names", { se <- SummarizedExperiment(colData=DataFrame(A=1:2, A=3:4, row.names=LETTERS[1:2], check.names=FALSE)) expect_warning(out <- cleanDataset(se), "colnames(colData", fixed=TRUE) expect_true(anyDuplicated(colnames(colData(out)))==0L) colnames(colData(se)) <- letters[1:2] expect_warning(cleanDataset(se), NA) }) test_that("cleanDataset works on rowData names", { se <- SummarizedExperiment(rowData=DataFrame(A=1:2, A=3:4, row.names=LETTERS[1:2], check.names=FALSE)) expect_warning(out <- cleanDataset(se), "colnames(rowData", fixed=TRUE) expect_true(anyDuplicated(colnames(rowData(out)))==0L) colnames(rowData(se)) <- letters[1:2] expect_warning(cleanDataset(se), NA) }) test_that("cleanDataset works on assay names", { se <- SummarizedExperiment(list(cbind(A=1:10, B=2:11))) rownames(se) <- letters[1:10] expect_warning(out <- cleanDataset(se), "assayNames") expect_identical(assayNames(out), "unnamed") assays(se) <- list(assay(se), assay(se)) expect_warning(out <- cleanDataset(se), "assayNames") expect_identical(assayNames(out), c("unnamed", "unnamed.1")) assays(se) <- list(counts=assay(se), assay(se)) expect_warning(out <- cleanDataset(se), "assayNames") expect_identical(assayNames(out), c("counts", "unnamed")) assays(se) <- list(counts=assay(se), counts=assay(se)) expect_warning(out <- cleanDataset(se), "assayNames") expect_identical(assayNames(out), c("counts", "counts.1")) assays(se) <- list(counts=assay(se), logcounts=assay(se)) expect_warning(out <- cleanDataset(se), NA) }) test_that("cleanDataset works on reducedDimNames", { skip("waiting for a fix to the SCE itself") reducedDims(sce) <- list(PCA=matrix(0,0,5), PCA=matrix(0,0,2)) expect_warning(out <- cleanDataset(sce), "reducedDimNames") expect_identical(reducedDimNames(out), c("PCA", "PCA.1")) reducedDims(sce) <- list(PCA=matrix(0,0,5), TSNE=matrix(0,0,2)) expect_warning(out <- cleanDataset(sce), NA) })
noaa.datums <- function(station = 8467150) { page <- XML::htmlParse(readLines(paste("https://tidesandcurrents.noaa.gov/datums.html?id=", station, sep = ""), warn=FALSE), useInternalNodes = TRUE) nodes <- XML::getNodeSet(page, "//td") nodes.text <- XML::xmlSApply(nodes, XML::xmlValue) datum <- as.factor(nodes.text[c(seq(from = 1, to = 46, by = 3), 52, 58, 64)]) description <- as.character(nodes.text[c(seq(from = 3, to = 48, by = 3), 54, 60, 66)]) m.STND <- as.numeric(nodes.text[c(2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 53, 59, 65)]) datetime <- as.POSIXct(rep(NA, times= 19), format = "%m/%d/%Y %H:%M") datetime[16:19] <- as.POSIXct(nodes.text[c(50, 56, 62, 68)], format = "%m/%d/%Y %H:%M") output.tmp <- data.frame(datum, description, m.STND, datetime) names(output.tmp)[1] <- "datum" names(output.tmp)[3] <- paste("m.STND", station, sep = "") names(output.tmp)[4] <- paste("time.", station, sep = "") invisible(output.tmp) }
concordia.intersection.ludwig <- function(x,wetherill=TRUE,exterr=FALSE, alpha=0.05,model=1,anchor=0){ fit <- ludwig(x,exterr=exterr,model=model,anchor=anchor) out <- fit out$format <- x$format if (wetherill & !measured.disequilibrium(x$d)){ wfit <- twfit2wfit(fit,x) out$par <- wfit$par out$cov <- wfit$cov names(out$par) <- c('t[l]','t[u]') } else { out$par <- fit$par out$cov <- fit$cov } np <- length(out$par) out$alpha <- alpha if (inflate(out)){ out$err <- matrix(NA,3,np) rownames(out$err) <- c('s','ci','disp') out$err['disp',] <- ntfact(alpha,fit)*sqrt(diag(out$cov)) } else { out$err <- matrix(NA,2,np) rownames(out$err) <- c('s','ci') } out$err['s',] <- sqrt(diag(out$cov)) out$err['ci',] <- ntfact(alpha)*out$err['s',] colnames(out$err) <- names(out$par) out } concordia.intersection.ab <- function(a,b,covmat=matrix(0,2,2), exterr=FALSE,wetherill=FALSE,d=diseq()){ l8 <- lambda('U238')[1] ta <- get.Pb207Pb206.age(a,d=d)[1] out <- c(1,a) if (wetherill) names(out) <- c('t[l]','t[u]') else names(out) <- c('t[l]','a0') if (b<0) { tb <- get.Pb206U238.age(-b/a,d=d)[1] tlu <- recursive.search(tm=tb,tM=ta,a=a,b=b,d=d) out['t[l]'] <- tlu[1] if (wetherill) out['t[u]'] <- tlu[2] } else { search.range <- c(ta,2/l8) out['t[l]'] <- stats::uniroot(intersection.misfit.york, interval=search.range,a=a,b=b,d=d)$root } out } recursive.search <- function(tm,tM,a,b,d=diseq(),depth=1){ out <- c(NA,NA) if (depth<3){ mid <- (tm+tM)/2 mfmin <- intersection.misfit.york(tm,a=a,b=b,d=d) mfmid <- intersection.misfit.york(mid,a=a,b=b,d=d) mfmax <- intersection.misfit.york(tM,a=a,b=b,d=d) if (mfmin*mfmid<0){ out[1] <- stats::uniroot(intersection.misfit.york, interval=c(tm,mid),a=a,b=b,d=d)$root } else { out <- recursive.search(tm=tm,tM=mid,a=a,b=b,d=d,depth=depth+1) } if (mfmax*mfmid<0){ out[2] <- stats::uniroot(intersection.misfit.york, interval=c(mid,tM),a=a,b=b,d=d)$root } else { tlu <- recursive.search(tm=mid,tM=tM,a=a,b=b,d=d,depth=depth+1) if (is.na(out[1])) out[1] <- tlu[1] if (is.na(out[2])) out[2] <- tlu[2] } if (all(is.na(out))){ tlu <- stats::optimise(intersection.misfit.york, interval=c(tm,tM),a=a,b=b,d=d)$minimum out <- rep(tlu,2) } } out } twfit2wfit <- function(fit,x){ tt <- fit$par['t'] buffer <- 1 l5 <- lambda('U235')[1] l8 <- lambda('U238')[1] U <- iratio('U238U235')[1] E <- matrix(0,3,3) J <- matrix(0,2,3) if (x$format %in% c(1,2,3)){ a0 <- 1 b0 <- fit$par['a0'] E[c(1,3),c(1,3)] <- fit$cov[1:2,1:2] } else { a0 <- fit$par['a0'] b0 <- fit$par['b0'] E <- fit$cov[1:3,1:3] } md <- mediand(x$d) D <- mclean(tt,d=md) disc.slope <- a0/(b0*U) conc.slope <- D$dPb206U238dt/D$dPb207U235dt if (disc.slope < conc.slope){ search.range <- c(tt,get.Pb207Pb206.age(b0/a0,d=md)[1])+buffer tl <- tt tu <- stats::uniroot(intersection.misfit.ludwig,interval=search.range, t2=tt,a0=a0,b0=b0,d=md)$root } else { search.range <- c(0,tt-buffer) if (check.equilibrium(d=md)) search.range[1] <- -1000 tl <- tryCatch( stats::uniroot(intersection.misfit.ludwig, interval=search.range, t2=tt,a0=a0,b0=b0,d=md)$root , error=function(e){ stop("Can't find the lower intercept.", "Try fitting the data in Tera-Wasserburg space.") }) tu <- tt } du <- mclean(tt=tu,d=md) dl <- mclean(tt=tl,d=md) XX <- du$Pb207U235 - dl$Pb207U235 YY <- du$Pb206U238 - dl$Pb206U238 BB <- a0/(b0*U) D <- (YY-BB*XX)^2 dXX.dtu <- du$dPb207U235dt dXX.dtl <- -dl$dPb207U235dt dYY.dtu <- du$dPb206U238dt dYY.dtl <- -dl$dPb206U238dt dBB.da0 <- 1/(b0*U) dBB.db0 <- -BB/b0 dD.dtl <- 2*(YY-BB*XX)*(dYY.dtl-BB*dXX.dtl) dD.dtu <- 2*(YY-BB*XX)*(dYY.dtu-BB*dXX.dtu) dD.da0 <- 2*(YY-BB*XX)*(-dBB.da0*XX) dD.db0 <- 2*(YY-BB*XX)*(-dBB.db0*XX) if (conc.slope > disc.slope){ J[1,1] <- 1 J[2,1] <- -dD.dtl/dD.dtu J[2,2] <- -dD.da0/dD.dtu J[2,3] <- -dD.db0/dD.dtu } else { J[1,1] <- -dD.dtu/dD.dtl J[1,2] <- -dD.da0/dD.dtl J[1,3] <- -dD.db0/dD.dtl J[2,1] <- 1 } out <- list() out$par <- c(tl,tu) out$cov <- J %*% E %*% t(J) out } intersection.misfit.ludwig <- function(t1,t2,a0,b0,d=diseq()){ tl <- min(t1,t2) tu <- max(t1,t2) l5 <- lambda('U235')[1] l8 <- lambda('U238')[1] U <- iratio('U238U235')[1] du <- mclean(tt=tu,d=d) dl <- mclean(tt=tl,d=d) XX <- du$Pb207U235 - dl$Pb207U235 YY <- du$Pb206U238 - dl$Pb206U238 BB <- a0/(b0*U) YY - BB*XX } intersection.misfit.york <- function(tt,a,b,d=diseq()){ D <- mclean(tt=tt,d=d) (D$Pb207Pb206-a)*D$Pb206U238 - b } discordia.line <- function(fit,wetherill,d=diseq()){ X <- c(0,0) Y <- c(0,0) l5 <- lambda('U235')[1] l8 <- lambda('U238')[1] J <- matrix(0,1,2) usr <- graphics::par('usr') if (wetherill){ if (measured.disequilibrium(d)){ U85 <- iratio('U238U235')[1] fit2d <- tw3d2d(fit) xy1 <- age_to_wetherill_ratios(fit$par[1],d=d) x1 <- xy1$x[1] x2 <- usr[2] y1 <- xy1$x[2] dydx <- 1/(U85*fit$par[2]) y2 <- y1 + (x2-x1)*dydx X <- c(x1,x2) Y <- c(y1,y2) cix <- NA ciy <- NA } else { tl <- fit$par[1] tu <- fit$par[2] X <- age_to_Pb207U235_ratio(fit$par,d=d)[,'75'] Y <- age_to_Pb206U238_ratio(fit$par,d=d)[,'68'] x <- seq(from=max(0,usr[1],X[1]),to=min(usr[2],X[2]),length.out=50) du <- mclean(tt=tu,d=d) dl <- mclean(tt=tl,d=d) aa <- du$Pb206U238 - dl$Pb206U238 bb <- x - dl$Pb207U235 cc <- du$Pb207U235 - dl$Pb207U235 dd <- dl$Pb206U238 y <- aa*bb/cc + dd dadtl <- -dl$dPb206U238dt dbdtl <- -dl$dPb207U235dt dcdtl <- -dl$dPb207U235dt dddtl <- dl$dPb206U238dt dadtu <- du$dPb206U238dt dbdtu <- 0 dcdtu <- du$dPb207U235dt dddtu <- 0 J1 <- dadtl*bb/cc + dbdtl*aa/cc - dcdtl*aa*bb/cc^2 + dddtl J2 <- dadtu*bb/cc + dbdtu*aa/cc - dcdtu*aa*bb/cc^2 + dddtu E11 <- fit$cov[1,1] E12 <- fit$cov[1,2] E22 <- fit$cov[2,2] sy <- errorprop1x2(J1,J2,fit$cov[1,1],fit$cov[2,2],fit$cov[1,2]) ul <- y + ntfact(fit$alpha)*sy ll <- y - ntfact(fit$alpha)*sy t75 <- get.Pb207U235.age(x,d=d)[,'t75'] yconc <- age_to_Pb206U238_ratio(t75,d=d)[,'68'] overshot <- ul>yconc ul[overshot] <- yconc[overshot] cix <- c(x,rev(x)) ciy <- c(ll,rev(ul)) } } else { fit2d <- tw3d2d(fit) X[1] <- age_to_U238Pb206_ratio(fit2d$par['t'],d=d)[,'86'] Y[1] <- age_to_Pb207Pb206_ratio(fit2d$par['t'],d=d)[,'76'] r75 <- age_to_Pb207U235_ratio(fit2d$par['t'],d=d)[,'75'] r68 <- 1/X[1] Y[2] <- fit2d$par['a0'] xl <- X[1] yl <- Y[1] y0 <- Y[2] tl <- check.zero.UPb(fit2d$par['t']) U <- settings('iratio','U238U235')[1] nsteps <- 100 x <- seq(from=max(.Machine$double.xmin,usr[1]),to=usr[2],length.out=nsteps) y <- yl + (y0-yl)*(1-x*r68) D <- mclean(tt=tl,d=d) d75dtl <- D$dPb207U235dt d68dtl <- D$dPb206U238dt dyldtl <- (d75dtl*r68 - r75*d68dtl)/(U*r68^2) J1 <- dyldtl*x*r68 + yl*x*d68dtl - y0*x*d68dtl J2 <- 1 - x*r68 sy <- errorprop1x2(J1,J2,fit2d$cov[1,1],fit2d$cov[2,2],fit2d$cov[1,2]) ul <- y + ntfact(fit2d$alpha)*sy ll <- y - ntfact(fit2d$alpha)*sy yconc <- rep(0,nsteps) t68 <- get.Pb206U238.age(1/x,d=d)[,'t68'] yconc <- age_to_Pb207Pb206_ratio(t68,d=d)[,'76'] if (y0>yl){ overshot <- (ll<yconc & ll<y0/2) ll[overshot] <- yconc[overshot] overshot <- (ul<yconc & ul<y0/2) ul[overshot] <- yconc[overshot] } else { overshot <- ul>yconc ul[overshot] <- yconc[overshot] overshot <- ll>yconc ll[overshot] <- yconc[overshot] } cix <- c(x,rev(x)) ciy <- c(ll,rev(ul)) } graphics::polygon(cix,ciy,col='gray80',border=NA) graphics::lines(X,Y) } tw3d2d <- function(fit){ out <- list(par=fit$par,cov=fit$cov,alpha=fit$alpha) if (fit$format > 3){ labels <- c('t','a0') out$par <- c(fit$par['t'],fit$par[3]/fit$par[2]) J <- matrix(0,2,3) J[1,1] <- 1 J[2,2] <- -fit$par[3]/fit$par[2]^2 J[2,3] <- 1/fit$par[2] out$cov <- J %*% fit$cov[1:3,1:3] %*% t(J) names(out$par) <- labels colnames(out$cov) <- labels } out } discordia.title <- function(fit,wetherill,sigdig=2,...){ lower.age <- roundit(fit$par[1],fit$err[,1],sigdig=sigdig,text=TRUE) if (inflate(fit)){ args1 <- quote(a%+-%b~'|'~c~'|'~d~u~'(n='*n*')') args2 <- quote(a%+-%b~'|'~c~'|'~d~u) } else { args1 <- quote(a%+-%b~'|'~c~u~'(n='*n*')') args2 <- quote(a%+-%b~'|'~c~u) } list1 <- list(a=lower.age[1],b=lower.age[2], c=lower.age[3],u='Ma',n=fit$n) if (wetherill){ upper.age <- roundit(fit$par[2],fit$err[,2],sigdig=sigdig,text=TRUE) expr1 <- quote('lower intercept =') expr2 <- quote('upper intercept =') list2 <- list(a=upper.age[1],b=upper.age[2],c=upper.age[3],u='Ma') if (inflate(fit)){ list1$d <- lower.age[4] list2$d <- upper.age[4] } } else if (fit$format%in%c(1,2,3)){ i76 <- roundit(fit$par['a0'],fit$err[,'a0'],sigdig=sigdig,text=TRUE) expr1 <- quote('age =') expr2 <- quote('('^207*'Pb/'^206*'Pb)'[o]*'=') list2 <- list(a=i76[1],b=i76[2],c=i76[3],u='') if (inflate(fit)){ list1$d <- lower.age[4] list2$d <- i76[4] } } else if (fit$format%in%c(4,5,6)){ i64 <- roundit(fit$par['a0'],fit$err[,'a0'],sigdig=sigdig,text=TRUE) i74 <- roundit(fit$par['b0'],fit$err[,'b0'],sigdig=sigdig,text=TRUE) expr1 <- quote('age =') expr2 <- quote('('^206*'Pb/'^204*'Pb)'[o]*'=') expr3 <- quote('('^207*'Pb/'^204*'Pb)'[o]*'=') list2 <- list(a=i64[1],b=i64[2],c=i64[3],u='') list3 <- list(a=i74[1],b=i74[2],c=i74[3],u='') if (inflate(fit)){ list1$d <- lower.age[4] list2$d <- i64[4] list3$d <- i74[4] } call3 <- substitute(e~a,list(e=expr3,a=args2)) line3 <- do.call('substitute',list(call3,list3)) } else if (fit$format%in%c(7,8)){ i86 <- 1/fit$par['a0'] i87 <- 1/fit$par['b0'] i86err <- i86*fit$err[,'a0']/fit$par['a0'] i87err <- i87*fit$err[,'b0']/fit$par['b0'] ri86 <- roundit(i86,i86err,sigdig=sigdig,text=TRUE) ri87 <- roundit(i87,i87err,sigdig=sigdig,text=TRUE) expr1 <- quote('age =') expr2 <- quote('('^208*'Pb/'^206*'Pb)'[o]*'=') expr3 <- quote('('^208*'Pb/'^207*'Pb)'[o]*'=') list2 <- list(a=ri86[1],b=ri86[2],c=ri86[3],u='') list3 <- list(a=ri87[1],b=ri87[2],c=ri87[3],u='') if (inflate(fit)){ list1$d <- lower.age[4] list2$d <- ri86[4] list3$d <- ri87[4] } call3 <- substitute(e~a,list(e=expr3,a=args2)) line3 <- do.call('substitute',list(call3,list3)) } call1 <- substitute(e~a,list(e=expr1,a=args1)) call2 <- substitute(e~a,list(e=expr2,a=args2)) line1 <- do.call('substitute',list(call1,list1)) line2 <- do.call('substitute',list(call2,list2)) if (fit$model==1){ line4 <- substitute('MSWD ='~a*', p('*chi^2*') ='~b, list(a=signif(fit$mswd,sigdig), b=signif(fit$p.value,sigdig))) } else if (fit$model==3){ ci <- ci_log2lin_lud(fit=fit) rounded.disp <- roundit(ci[1],ci[2:3],sigdig=sigdig,text=TRUE) line4 <- substitute('overdispersion ='~a+b/-c~'Ma', list(a=rounded.disp[1],b=rounded.disp[3], c=rounded.disp[2])) } extrarow <- fit$format>3 & !wetherill if (fit$model==1 & extrarow){ mymtext(line1,line=3,...) mymtext(line2,line=2,...) mymtext(line3,line=1,...) mymtext(line4,line=0,...) } else if (fit$model==2 & extrarow){ mymtext(line1,line=2,...) mymtext(line2,line=1,...) mymtext(line3,line=0,...) } else if (fit$model==3 & extrarow){ mymtext(line1,line=3,...) mymtext(line2,line=2,...) mymtext(line3,line=1,...) mymtext(line4,line=0,...) } else if (fit$model==1){ mymtext(line1,line=2,...) mymtext(line2,line=1,...) mymtext(line4,line=0,...) } else if (fit$model==2){ mymtext(line1,line=1,...) mymtext(line2,line=0,...) } else if (fit$model==3){ mymtext(line1,line=2,...) mymtext(line2,line=1,...) mymtext(line4,line=0,...) } }
anova.eRm <- function(object, ...){ models <- c(list(object), list(...)) if(any(unlist(lapply(models, function(m){ "llra" %in% class(m) })))) stop("At least one model is an LLRA; comparison to other models not possible.") for(i in seq_along(models)[-1L]){ if(!identical(unname(models[[1L]][["X"]]), unname(models[[i]][["X"]]))) stop("Models are not nested.") } models <- models[order(unlist(lapply(models, function(m){ m[["npar"]] })), decreasing = TRUE)] calls <- unlist(lapply(models, function(m){ deparse(m[["call"]]) })) LLs <- unlist(lapply(models, function(m){ m[["loglik"]] })) npar <- unlist(lapply(models, function(m){ m[["npar"]] })) dev <- -2*LLs LR <- abs(c(NA, LLs[1L] - LLs[-1L])) df <- c(NA, npar[1L] - npar[-1L]) p <- pchisq(LR, df, lower.tail = FALSE) return( structure( list( calls = calls, statistics = data.frame(LLs=LLs, dev=dev, npar=npar, LR=LR, df=df, p=p) ), class="eRm_anova") ) } print.eRm_anova <- function(x, ...){ if(interactive()) writeLines("") writeLines("Analysis of Deviances Table\n") for(i in seq_along(x[[1L]])){ writeLines(strwrap(paste0("Model ", i, ": ", x[[1L]][[i]]), width = getOption("width"), exdent = 4L)) } writeLines("") x_print <- as.matrix(x[[2L]]) rownames(x_print) <- paste0("Model ", seq_along(x[[1L]])) colnames(x_print) <- c("cond. LL", "Deviance", "npar", "LR", "df", "p-value") printCoefmat(as.matrix(x_print), cs.ind=c(1,2), tst.ind=4, has.Pvalue=TRUE, na.print = "") writeLines("") message("Note: The models appear to be nested, please check this assumption.") if(interactive()) writeLines("") invisible(x) }
rowdiff<-function (df, direction = "forward",exclude=NULL,na.rm=FALSE,na_action=NULL,...){ UseMethod("rowdiff") } rowdiff.data.frame<-function(df, direction = "forward", exclude=NULL, na.rm=FALSE,na_action=NULL,...){ if(!is.null(exclude)){ df<-Filter(function(x) ! class(x) %in% exclude, df) } stopifnot("Only forward and reverse are supported"= direction %in% c("forward","reverse")) if(direction=="forward"){ res<-as.data.frame(sapply(df,function(x) x-dplyr::lead(x,1))) } if(direction=="reverse"){ res<-as.data.frame(sapply(df, function(x) x-dplyr::lag(x,1))) } if(na.rm){ res<-na_replace(res,how=na_action,...) } res }
convert_bin <- function(m1, n1, m2, n2, type = c("logOR", "logRR", "RD")) { lstt <- c("logOR", "logRR", "RD") type <- match.arg(type) util_check_nonneg(m1) util_check_nonneg(n1) util_check_nonneg(m2) util_check_nonneg(n2) if (length(m1) != length(n1) || length(n1) != length(m2) || length(m2) != length(n2)) { stop("'m1', 'n1', 'm2', and 'n2' should have the same length.") } else if (!is.element(type, lstt)) { stop("Unknown 'type' specified.") } res <- NULL if (type == "logOR") { res$y <- log((m1 + 0.5)*(n2 - m2 + 0.5)/(n1 - m1 + 0.5)/(m2 + 0.5)) res$v <- 1.0/(m1 + 0.5) + 1.0/(n1 - m1 + 0.5) + 1.0/(m2 + 0.5) + 1.0/(n2 - m2 + 0.5) } else if (type == "logRR") { res$y <- log((m1 + 0.5)*(n2 + 0.5)/(n1 + 0.5)/(m2 + 0.5)) res$v <- 1.0/(m1 + 0.5) - 1.0/(n1 + 0.5) + 1.0/(m2 + 0.5) - 1.0/(n2 + 0.5) } else if (type == "RD") { res$y <- m1/n1 - m2/n2 res$v <- ((m1 + 0.0625)/(n1 + 0.125))*((n1 - m1 + 0.0625)/(n1 + 0.125))/n1 + ((m2 + 0.0625)/(n2 + 0.125))*((n2 - m2 + 0.0625)/(n2 + 0.125))/n2 } res <- data.frame(res) return(res) }
ncdc_units_normal_mly <- list( "MLY-CLDD-BASE45" = list(name = "MLY-CLDD-BASE45", units = "", description = "Long-term averages of monthly cooling degree days with base 45F"), "MLY-CLDD-BASE50" = list(name = "MLY-CLDD-BASE50", units = "", description = "Long-term averages of monthly cooling degree days with base 50F"), "MLY-CLDD-BASE55" = list(name = "MLY-CLDD-BASE55", units = "", description = "Long-term averages of monthly cooling degree days with base 55F"), "MLY-CLDD-BASE57" = list(name = "MLY-CLDD-BASE57", units = "", description = "Long-term averages of monthly cooling degree days with base 57F"), "MLY-CLDD-BASE60" = list(name = "MLY-CLDD-BASE60", units = "", description = "Long-term averages of monthly cooling degree days with base 60F"), "MLY-CLDD-BASE70" = list(name = "MLY-CLDD-BASE70", units = "", description = "Long-term averages of monthly cooling degree days with base 70F"), "MLY-CLDD-BASE72" = list(name = "MLY-CLDD-BASE72", units = "", description = "Long-term averages of monthly cooling degree days with base 72F"), "MLY-CLDD-NORMAL" = list(name = "MLY-CLDD-NORMAL", units = "", description = "Long-term averages of monthly cooling degree days with base 65F"), "MLY-DUTR-NORMAL" = list(name = "MLY-DUTR-NORMAL", units = "", description = "Long-term averages of monthly diurnal temperature range"), "MLY-DUTR-STDDEV" = list(name = "MLY-DUTR-STDDEV", units = "", description = "Long-term standard deviations of monthly diurnal temperature range"), "MLY-GRDD-BASE40" = list(name = "MLY-GRDD-BASE40", units = "", description = "Long-term averages of monthly growing degree days with base 40F"), "MLY-GRDD-BASE45" = list(name = "MLY-GRDD-BASE45", units = "", description = "Long-term averages of monthly growing degree days with base 45F"), "MLY-GRDD-BASE50" = list(name = "MLY-GRDD-BASE50", units = "", description = "Long-term averages of monthly growing degree days with base 50F"), "MLY-GRDD-BASE55" = list(name = "MLY-GRDD-BASE55", units = "", description = "Long-term averages of monthly growing degree days with base 55F"), "MLY-GRDD-BASE57" = list(name = "MLY-GRDD-BASE57", units = "", description = "Long-term averages of monthly growing degree days with base 57F"), "MLY-GRDD-BASE60" = list(name = "MLY-GRDD-BASE60", units = "", description = "Long-term averages of monthly growing degree days with base 60F"), "MLY-GRDD-BASE65" = list(name = "MLY-GRDD-BASE65", units = "", description = "Long-term averages of monthly growing degree days with base 65F"), "MLY-GRDD-BASE70" = list(name = "MLY-GRDD-BASE70", units = "", description = "Long-term averages of monthly growing degree days with base 70F"), "MLY-GRDD-BASE72" = list(name = "MLY-GRDD-BASE72", units = "", description = "Long-term averages of monthly growing degree days with base 72F"), "MLY-GRDD-TB4886" = list(name = "MLY-GRDD-TB4886", units = "", description = "Long-term averages of monthly growing degree days with truncated bases 48F and 86F"), "MLY-GRDD-TB5086" = list(name = "MLY-GRDD-TB5086", units = "", description = "Long-term averages of monthly growing degree days with truncated bases 50F and 86F"), "MLY-HTDD-BASE40" = list(name = "MLY-HTDD-BASE40", units = "", description = "Long-term averages of monthly heating degree days with base 40F"), "MLY-HTDD-BASE45" = list(name = "MLY-HTDD-BASE45", units = "", description = "Long-term averages of monthly heating degree days with base 45F"), "MLY-HTDD-BASE50" = list(name = "MLY-HTDD-BASE50", units = "", description = "Long-term averages of monthly heating degree days with base 50F"), "MLY-HTDD-BASE55" = list(name = "MLY-HTDD-BASE55", units = "", description = "Long-term averages of monthly heating degree days with base 55F"), "MLY-HTDD-BASE57" = list(name = "MLY-HTDD-BASE57", units = "", description = "Long-term averages of monthly heating degree days with base 57F"), "MLY-HTDD-BASE60" = list(name = "MLY-HTDD-BASE60", units = "", description = "Long-term averages of monthly heating degree days with base 60F"), "MLY-HTDD-NORMAL" = list(name = "MLY-HTDD-NORMAL", units = "", description = "Long-term averages of monthly heating degree days with base 65F"), "MLY-PRCP-25PCTL" = list(name = "MLY-PRCP-25PCTL", units = "", description = "25th percentiles of monthly precipitation totals"), "MLY-PRCP-50PCTL" = list(name = "MLY-PRCP-50PCTL", units = "", description = "50th percentiles of monthly precipitation totals"), "MLY-PRCP-75PCTL" = list(name = "MLY-PRCP-75PCTL", units = "", description = "75th percentiles of monthly precipitation totals"), "MLY-PRCP-AVGNDS-GE001HI" = list(name = "MLY-PRCP-AVGNDS-GE001HI", units = "", description = "Long-term averages of number of days per month with precipitation >= 0.01 inches"), "MLY-PRCP-AVGNDS-GE010HI" = list(name = "MLY-PRCP-AVGNDS-GE010HI", units = "", description = "Long-term averages of number of days per month with precipitation >= 0.10 inches"), "MLY-PRCP-AVGNDS-GE050HI" = list(name = "MLY-PRCP-AVGNDS-GE050HI", units = "", description = "Long-term averages of number of days per month with precipitation >= 0.50 inches"), "MLY-PRCP-AVGNDS-GE100HI" = list(name = "MLY-PRCP-AVGNDS-GE100HI", units = "", description = "Long-term averages of number of days per month with precipitation >= 1.00 inches"), "MLY-PRCP-NORMAL" = list(name = "MLY-PRCP-NORMAL", units = "", description = "Long-term averages of monthly precipitation totals"), "MLY-SNOW-25PCTL" = list(name = "MLY-SNOW-25PCTL", units = "", description = "25th percentiles of monthly snowfall totals"), "MLY-SNOW-50PCTL" = list(name = "MLY-SNOW-50PCTL", units = "", description = "50th percentiles of monthly snowfall totals"), "MLY-SNOW-75PCTL" = list(name = "MLY-SNOW-75PCTL", units = "", description = "75th percentiles of monthly snowfall totals"), "MLY-SNOW-AVGNDS-GE001TI" = list(name = "MLY-SNOW-AVGNDS-GE001TI", units = "", description = "Long-term averages of number of days per month with Snowfall >= 0.1 inches"), "MLY-SNOW-AVGNDS-GE010TI" = list(name = "MLY-SNOW-AVGNDS-GE010TI", units = "", description = "Long-term averages of number of days per month with Snowfall >= 1.0 inches"), "MLY-SNOW-AVGNDS-GE030TI" = list(name = "MLY-SNOW-AVGNDS-GE030TI", units = "", description = "Long-term averages of number of days per month with Snowfall >= 3.0 inches"), "MLY-SNOW-AVGNDS-GE050TI" = list(name = "MLY-SNOW-AVGNDS-GE050TI", units = "", description = "Long-term averages of number of days per month with Snowfall >= 5.0 inches"), "MLY-SNOW-AVGNDS-GE100TI" = list(name = "MLY-SNOW-AVGNDS-GE100TI", units = "", description = "Long-term averages of number of days per month with Snowfall >= 10.0 inches"), "MLY-SNOW-NORMAL" = list(name = "MLY-SNOW-NORMAL", units = "", description = "Long-term averages of monthly snowfall totals"), "MLY-SNWD-AVGNDS-GE001WI" = list(name = "MLY-SNWD-AVGNDS-GE001WI", units = "", description = "Long-term averages of number of days per month with snow depth >= 1 inch"), "MLY-SNWD-AVGNDS-GE003WI" = list(name = "MLY-SNWD-AVGNDS-GE003WI", units = "", description = "Long-term averages of number of days per month with snow depth >= 3 inches"), "MLY-SNWD-AVGNDS-GE005WI" = list(name = "MLY-SNWD-AVGNDS-GE005WI", units = "", description = "Long-term averages of number of days per month with snow depth >= 5 inches"), "MLY-SNWD-AVGNDS-GE010WI" = list(name = "MLY-SNWD-AVGNDS-GE010WI", units = "", description = "Long-term averages of number of days per month with snow depth >= 10 inches"), "MLY-TAVG-NORMAL" = list(name = "MLY-TAVG-NORMAL", units = "", description = "Long-term averages of monthly average temperature"), "MLY-TAVG-STDDEV" = list(name = "MLY-TAVG-STDDEV", units = "", description = "Long-term standard deviations of monthly average temperature"), "MLY-TMAX-AVGNDS-GRTH040" = list(name = "MLY-TMAX-AVGNDS-GRTH040", units = "", description = "Long-term average number of days per month where tmax is greater than or equal to 40F"), "MLY-TMAX-AVGNDS-GRTH050" = list(name = "MLY-TMAX-AVGNDS-GRTH050", units = "", description = "Long-term average number of days per month where tmax is greater than or equal to 50F"), "MLY-TMAX-AVGNDS-GRTH060" = list(name = "MLY-TMAX-AVGNDS-GRTH060", units = "", description = "Long-term average number of days per month where tmax is greater than or equal to 60F"), "MLY-TMAX-AVGNDS-GRTH070" = list(name = "MLY-TMAX-AVGNDS-GRTH070", units = "", description = "Long-term average number of days per month where tmax is greater than or equal to 70F"), "MLY-TMAX-AVGNDS-GRTH080" = list(name = "MLY-TMAX-AVGNDS-GRTH080", units = "", description = "Long-term average number of days per month where tmax is greater than or equal to 80F"), "MLY-TMAX-AVGNDS-GRTH090" = list(name = "MLY-TMAX-AVGNDS-GRTH090", units = "", description = "Long-term average number of days per month where tmax is greater than or equal to 90F"), "MLY-TMAX-AVGNDS-GRTH100" = list(name = "MLY-TMAX-AVGNDS-GRTH100", units = "", description = "Long-term average number of days per month where tmax is greater than or equal to 100F"), "MLY-TMAX-AVGNDS-LSTH032" = list(name = "MLY-TMAX-AVGNDS-LSTH032", units = "", description = "Long-term average number of days per month where tmax is less than or equal to 32F"), "MLY-TMAX-NORMAL" = list(name = "MLY-TMAX-NORMAL", units = "", description = "Long-term averages of monthly maximum temperature"), "MLY-TMAX-STDDEV" = list(name = "MLY-TMAX-STDDEV", units = "", description = "Long-term standard deviations of monthly maximum temperature"), "MLY-TMIN-AVGNDS-LSTH000" = list(name = "MLY-TMIN-AVGNDS-LSTH000", units = "", description = "Long-term average number of days per month where tmin is less than or equal to 0F"), "MLY-TMIN-AVGNDS-LSTH010" = list(name = "MLY-TMIN-AVGNDS-LSTH010", units = "", description = "Long-term average number of days per month where tmin is less than or equal to 10F"), "MLY-TMIN-AVGNDS-LSTH020" = list(name = "MLY-TMIN-AVGNDS-LSTH020", units = "", description = "Long-term average number of days per month where tmin is less than or equal to 20F"), "MLY-TMIN-AVGNDS-LSTH032" = list(name = "MLY-TMIN-AVGNDS-LSTH032", units = "", description = "Long-term average number of days per month where tmin is less than or equal to 32F"), "MLY-TMIN-AVGNDS-LSTH040" = list(name = "MLY-TMIN-AVGNDS-LSTH040", units = "", description = "Long-term average number of days per month where tmin is less than or equal to 40F"), "MLY-TMIN-AVGNDS-LSTH050" = list(name = "MLY-TMIN-AVGNDS-LSTH050", units = "", description = "Long-term average number of days per month where tmin is less than or equal to 50F"), "MLY-TMIN-AVGNDS-LSTH060" = list(name = "MLY-TMIN-AVGNDS-LSTH060", units = "", description = "Long-term average number of days per month where tmin is less than or equal to 60F"), "MLY-TMIN-AVGNDS-LSTH070" = list(name = "MLY-TMIN-AVGNDS-LSTH070", units = "", description = "Long-term average number of days per month where tmin is less than or equal to 70F"), "MLY-TMIN-NORMAL" = list(name = "MLY-TMIN-NORMAL", units = "", description = "Long-term averages of monthly minimum temperature"), "MLY-TMIN-PRBOCC-LSTH016" = list(name = "MLY-TMIN-PRBOCC-LSTH016", units = "", description = "probability of 16F or below at least once in the month"), "MLY-TMIN-PRBOCC-LSTH020" = list(name = "MLY-TMIN-PRBOCC-LSTH020", units = "", description = "probability of 20F or below at least once in the month"), "MLY-TMIN-PRBOCC-LSTH024" = list(name = "MLY-TMIN-PRBOCC-LSTH024", units = "", description = "probability of 24F or below at least once in the month"), "MLY-TMIN-PRBOCC-LSTH028" = list(name = "MLY-TMIN-PRBOCC-LSTH028", units = "", description = "probability of 28F or below at least once in the month"), "MLY-TMIN-PRBOCC-LSTH032" = list(name = "MLY-TMIN-PRBOCC-LSTH032", units = "", description = "probability of 32F or below at least once in the month"), "MLY-TMIN-PRBOCC-LSTH036" = list(name = "MLY-TMIN-PRBOCC-LSTH036", units = "", description = "probability of 36F or below at least once in the month"), "MLY-TMIN-STDDEV" = list(name = "MLY-TMIN-STDDEV", units = "", description = "Long-term standard deviations of monthly minimum temperature") )
library(LakeMetabolizer) data.path = system.file('extdata', package="LakeMetabolizer") sp.data = load.all.data('sparkling', data.path) ts.data = sp.data$data u10 = wind.scale(ts.data) ts.data = rmv.vars(ts.data, 'wnd', ignore.offset=TRUE) ts.data = merge(ts.data, u10) k600_cole = k.cole(ts.data) k600_crusius = k.crusius(ts.data) ha2m2 <- 10000 kd = sp.data$metadata$averagekd wnd.z = 10 atm.press = 1018 lat = sp.data$metadata$latitude lake.area = sp.data$metadata$lakearea*ha2m2 lwnet = calc.lw.net(ts.data, lat, atm.press) ts.data = merge(ts.data, lwnet) k600_read = k.read(ts.data, wnd.z=wnd.z, Kd=kd, atm.press=atm.press, lat=lat, lake.area=lake.area) k600_soloviev = k.read.soloviev(ts.data, wnd.z=wnd.z, Kd=kd, atm.press=atm.press, lat=lat, lake.area=lake.area) k600_macIntyre = k.macIntyre(ts.data, wnd.z=wnd.z, Kd=kd, atm.press=atm.press) k600_heiskanen = k.heiskanen(ts.data, wnd.z, kd, atm.press) k600_vachon = k.vachon(ts.data, lake.area) cols <- c(" models <- list( list('name'="MacIntyre", data = k600_macIntyre, col = cols[1], lty = 6, lwd = 1.7), list('name'="Cole", data = k600_cole, col = cols[2], lty = 1, lwd = 1.2), list('name'="Vachon", data = k600_vachon, col = cols[3], lty = 1, lwd = 1.1), list('name'="Read", data = k600_read, col = cols[4], lty = 1, lwd = 1.2), list('name'="Soloviev", data = k600_soloviev, col = cols[5], lty = 6, lwd = 1.7), list('name'="Heiskanen", data = k600_heiskanen, col = cols[6], lty = 1, lwd = 1.2), list('name'="Crusius", data = k600_crusius, col = cols[7], lty = 1, lwd = 1.2)) add_axes <- function(xlim, ylim, ylabel = pretty(ylim,10), panel.txt){ prc_x = 0.1 prc_y = 0.07 tick_len <- 0.15 ext_x <- c(xlim[1]-86400, pretty(xlim,3), xlim[2]+86400) ext_y <- c(ylim[1]-10, pretty(ylim,10), ylim[2]+10) ylab <- c("",ylabel,"") if (is.na(ylabel[1])) ylab = NA axis(side = 1, at = ext_x , labels = strftime(ext_x,'%H:%M'), tcl = tick_len) axis(side = 2, at = ext_y, labels = ylab, tcl = tick_len) axis(side = 3, at = ext_x, labels = NA, tcl = tick_len) axis(side = 4, at = ext_y, labels = NA, tcl = tick_len) x_txt <- (xlim[2] - xlim[1])*prc_x+xlim[1] y_txt <- ylim[2]-(ylim[2] - ylim[1])*prc_y text(x = x_txt, y_txt,labels = panel.txt) } add_night <- function(xlim, ylim){ rise.set = sun.rise.set(xlim[1]+43200, lat) polygon(x = c(xlim[1], rise.set[1], rise.set[1], xlim[1]), y = c(ylim[1],ylim[1],ylim[2],ylim[2]), col = night_col,border = NA) polygon(x = c(xlim[2], rise.set[2], rise.set[2], xlim[2]), y = c(ylim[1],ylim[1],ylim[2],ylim[2]), col = night_col,border = NA) } moving_ave <- function(df, window = 18){ out <- df[,2]*NA l_win <- floor(window/2) r_win <- window-l_win end_win <- nrow(df)-r_win for (i in l_win:end_win){ strt <- i-l_win+1 out[i] <- mean(df[strt:(strt+r_win), 2]) } df[,2] <- out return(df) } add_models <- function(models){ .empty = sapply(X = models, FUN = function(x) { lines(moving_ave(x$data), col=x$col, lty = x$lty, lwd = x$lwd) }) } add_legend <- function(models, xlim, ylim, prc_x = 0.26, prc_y = 0.06){ y_strt <- ylim[2]-(ylim[2] - ylim[1])*prc_y y_spc <- (ylim[2] - ylim[1])*0.05 x_len <- (xlim[2] - xlim[1])*0.16 x <- c((xlim[2] - xlim[1])*prc_x+xlim[1], (xlim[2] - xlim[1])*prc_x+xlim[1] + x_len) for (i in 1:length(models)){ y = y_strt-(i-1)*y_spc lines(x, c(y,y), col =models[[i]]$col, lty = models[[i]]$lty, lwd = models[[i]]$lwd) text(x[2],y, models[[i]]$name, pos = 4, cex = 0.65) } } width = 3.37 night_col = 'grey90' height = 1.9 l_mar = 0.35 b_mar = 0.3 t_mar = 0.05 r_mar= 0.05 gapper = 0.15 ylim = c(0,7.55) xlim = as.POSIXct(c('2009-07-02 22:00', '2009-07-04 02:00', '2009-07-08 22:00', '2009-07-10 02:00')) png('~/k600_figure.png', res=300, width=width, height=height, units = 'in') layout(matrix(c(rep(1,10),rep(2,9)),nrow=1)) par(mai=c(b_mar,l_mar,t_mar,0), omi = c(0,0,0,r_mar),xpd=FALSE, mgp = c(1.15,.05,0)) plot(c(0,NA),c(0,NA), type='l', axes = FALSE, xaxs = 'i', yaxs = 'i', ylim=ylim, ylab=expression(k[600]~(m~day^-1)), xlab=strftime(mean(xlim[1:2]), '%Y-%m-%d'), xlim=xlim[1:2]) add_night(xlim[1:2], ylim) add_models(models) add_legend(models, xlim, ylim) add_axes(xlim[1:2], ylim, panel.txt = 'a)') par(mai=c(b_mar,gapper,t_mar,0)) plot(c(0,NA),c(0,NA), type='l', axes = FALSE, xaxs = 'i', yaxs = 'i', ylim=ylim, ylab=NA, xlab=strftime(mean(xlim[3:4]), '%Y-%m-%d'), xlim=xlim[3:4]) add_night(xlim[3:4], ylim) add_models(models) add_axes(xlim[3:4], ylim, ylabel = NA, panel.txt = 'b)') dev.off() cat('Cole:', mean(k600_cole[,2]), '\n') cat('Crusius:', mean(k600_crusius[,2]), '\n') cat('MacIntyre:', mean(k600_macIntyre[,2]), '\n') cat('Read:', mean(k600_read[,2]), '\n') cat('Read_soloviev:', mean(k600_soloviev[,2]), '\n') cat('heiskanen:', mean(k600_heiskanen[,2]), '\n') cat('vachon:', mean(k600_vachon[,2]), '\n')
scale_ratio <- function(...) { .Defunct(msg = "Abandoned since 1.5 to avoid possible confusion. Previous manifestoR versions contained ambiguous information on what it would actually calculate. Now split into `scale_ratio_1` (Kim/Fording, Laver/Garry) and `scale_ratio_2` implementing two different approaches that both could be somewhat considered 'ratio' scales") }
split_multi_to_biallelic_snps <- function(mat, ar_results, o_ref, o_alt, snpeff){ check_is_this_class(mat, "matrix") check_is_this_class(ar_results, "data.frame") if (length(o_ref) != length(o_alt)) { stop("o_ref and o_alt need to have same length") } if (length(o_ref) != nrow(mat)) { stop("o_ref & o_alt need to have an entry for every mat row") } if (!is.null(snpeff)) { check_is_this_class(snpeff, "list") check_is_this_class(snpeff[[1]], "character") if (length(snpeff) != length(o_ref)) { stop("If not null snpeff needs to have an entry for every row in mat") } } num_alleles <- apply(mat, 1, function(row) { length(unique(row)) }) row_indices <- 1:nrow(mat) split_rows_flag <- rep(row_indices, (num_alleles - 1)) mat_split <- mat[split_rows_flag, ] ar_results_split <- ar_results[split_rows_flag, , drop = FALSE] rownames(mat_split) <- rownames(ar_results_split) o_ref_split <- o_ref[split_rows_flag] o_alt_split <- unlist(sapply(unique(split_rows_flag), function(i) { alleles = rep(o_alt[i], sum(split_rows_flag == i)) sapply(1:length(alleles), function(j) { unlist(strsplit(alleles[j], ","))[j] }) })) snpeff_split <- snpeff[split_rows_flag] return(list(mat_split = mat_split, ar_results_split = ar_results_split, o_ref_split = o_ref_split, o_alt_split = o_alt_split, snpeff_split = snpeff_split, split_rows_flag = split_rows_flag)) }
fastcov2 <- function(x, y = NULL, col1, col2, df){ if(!is.matrix(x)){ x <- as.matrix(x) } if(is.null(y)){ y <- x } else { if(!is.matrix(x)){ y <- as.matrix(y) } } stopifnot(nrow(x) == nrow(y)) if(missing(col1)){ col1 <- seq_len(ncol(x)) } else { stopifnot(all(col1 >= 1 & col1 <= ncol(x))) } if(missing(col2)){ col2 <- seq_len(ncol(y)) } else { stopifnot(all(col2 >= 1 & col2 <= ncol(y))) } if(!length(col1) || !length(col2)){ return(matrix(NA, nrow = length(col1), ncol = length(col2))) } cm1 <- colMeans(x[, col1, drop = FALSE]) cm2 <- colMeans(y[, col2, drop = FALSE]) nobs <- nrow(x) if(missing(df)){ df <- nobs - 1 } fastcov(x, y, nobs, col1, col2, cm1, cm2, df) }
vec2symMat <- function (x, diag=TRUE, byrow=FALSE) { m <- length(x) d <- if (diag) 1 else -1 n <- floor((sqrt(1 + 8*m) - d)/2) if (m != n*(n + d)/2) stop("Cannot make a square matrix as the length of \"x\" is incorrect.") mat <- Diag(n) if (byrow) { mat[upper.tri(mat, diag=diag)] <- x index <- lower.tri(mat) mat[index] <- t(mat)[index] } else { mat[lower.tri(mat, diag=diag)] <- x index <- upper.tri(mat) mat[index] <- t(mat)[index] } mat }
Oyster_subincr_shell_height <- function(subincr_matrix, IncG, Xstep=0.1){ print("Calculating subincremental shell height") p1x<-subincr_matrix[,2] p2x<-subincr_matrix[,3] firstl<-round(p1x/Xstep+0.5,0)+1 lastl<-round(p2x/Xstep-0.5,0)+1 p1y<-0 p2y<-0 shell_height<-0 for(t in 1:(length(IncG[1,])-1)){ p1y<-append(p1y,IncG[firstl[t],t]) p2y<-append(p2y,IncG[lastl[t],t]) L<-sqrt((p2x[t]-p1x[t])^2+(p2y[t]-p1y[t])^2) if(L<shell_height[length(shell_height)]){ L<-shell_height[length(shell_height)] } shell_height<-append(shell_height,L) } subincr_matrix<-cbind(subincr_matrix,p1y,p2y,shell_height,firstl,lastl) dev.new(); plot(subincr_matrix[,c(1,8)], type = "l") return(subincr_matrix) }
pnw_palettes <- list( Starfish = rbind(c(' Shuksan = rbind(c(' Bay = rbind(c(' Winter = rbind(c(' Lake = rbind(c(' Sunset = rbind(c(' Shuksan2 = rbind(c(' Cascades = rbind(c(" Sailboat = rbind(c(' Moth = rbind(c(' Spring = rbind(c(' Mushroom = rbind(c(' Sunset2 = rbind(c(' Anemone = rbind(c(" ) pnw_palette <- function(name, n, type = c("discrete", "continuous")) { pal <- pnw_palettes[[name]] if (is.null(pal)){ stop("Palette not found.") } if (missing(n)) { n <- length(pal[1,]) } if (missing(type)) { if(n > length(pal[1,])){type <- "continuous"} else{ type <- "discrete"} } type <- match.arg(type) if (type == "discrete" && n > length(pal[1,])) { stop("Number of requested colors greater than what discrete palette can offer, \n use as continuous instead.") } out <- switch(type, continuous = grDevices::colorRampPalette(pal[1,])(n), discrete = pal[1,][pal[2,] %in% c(1:n)], ) structure(out, class = "PNWpalette", name = name) } print.PNWpalette <- function(x, ...) { pallength <- length(x) PNWpar <- par(mar=c(0.25,0.25,0.25,0.25)) on.exit(par(PNWpar)) image(1:pallength, 1, as.matrix(1:pallength), col = x, axes=FALSE) text(median(1:pallength), 1, labels = paste0(attr(x,"name"),", n=",pallength), cex = 3, family = "sans") }
Oyster_subincr_av_thickness_X <- function(IncG,subincr_matrix){ print("Calculating subincremental shell thickness") IncT<-abs(IncG-IncG[,1]) IncT[IncT==0]<-NA av_thickness<-colMeans(IncT,na.rm=TRUE) av_thickness[is.na(av_thickness)]<-0 subincr_matrix<-cbind(subincr_matrix, av_thickness) dev.new(); plot(subincr_matrix[,c(1,11)], type = "l") return(subincr_matrix) }
NULL "conversion_table"
test.chngptm.logistic <- function() { library("chngpt") library("RUnit") library("splines") library("kyotil") suppressWarnings(RNGversion("3.5.0")) RNGkind("Mersenne-Twister", "Inversion") tolerance=1e-1 if((file.exists("D:/gDrive/3software/_checkReproducibility") | file.exists("~/_checkReproducibility")) & R.Version()$system %in% c("x86_64, mingw32","x86_64, linux-gnu")) tolerance=1e-6 print(tolerance) verbose = FALSE fit=chngptm(formula.1=y~birth, formula.2= ~ NAb_SF162LS, dat.mtct, type="segmented", family="binomial", var.type="none") checkEqualsNumeric(c(coef(fit),fit$chngpt), c(-3.1442857, 0.2040075, 0.5371311, -0.9231887, 6.0890449), tolerance=tolerance) dat=sim.twophase.ran.inte(threshold.type="segmented", n=50, seed=1) dat$y=ifelse(dat$y>10,1,0) fit = chngptm (formula.1=y~z+(1|id), formula.2=~x, family="gaussian", dat, type="segmented", est.method="grid", var.type="bootstrap", ci.bootstrap.size=1) fit <- chngptm(formula.1 = y ~ 1 + (1|id), formula.2 = ~ x, dat, type = "hinge", family = "binomial", var.type="none", est.method="grid") n=1e3 set.seed(1) X=data.frame(matrix(rnorm(3*n),ncol=3)) f=~I(X1>0)+X2*I(X1>0)+X3*I(X1>0) lincomb=c(model.matrix(f, X) %*% c(0,1,0,0,1,1)) y=rbern(n,expit(lincomb)) dat=data.frame(y,X) fit=chngptm(formula.1=y~X2+X3, formula.2=~X2*X1+X3*X1, dat, type="step", family="binomial", grid.search.max=5, var.type="none", verbose=2) checkEqualsNumeric(c(coef(fit),fit$chngpt), c(0.18205886,-0.02300560,-0.11624135,0.64995016,0.95123073,1.22953518,-0.03592242), tolerance=tolerance) data=sim.chngpt("thresholded", threshold.type="hinge", n=250, seed=1, beta=log(0.4), x.distr="norm", e.=4.1, b.transition=Inf, family="binomial") data$xx=data$x; data$zz=data$z; data$yy=data$y fit.0=glm(yy~zz+ns(xx,df=3), data, family="binomial") fit = chngptm (formula.1=yy~zz, formula.2=~xx, family="binomial", data, type="hinge", est.method="smoothapprox", var.type="all", verbose=verbose, aux.fit=fit.0, lb.quantile=0.1, ub.quantile=0.9, tol=1e-4, maxit=1e3) checkEqualsNumeric(sum(diag(fit$vcov[["model"]])), 0.614832, tolerance=tolerance) checkEqualsNumeric(sum(diag(fit$vcov[["robust"]])), 2.311749, tolerance=tolerance) fit = chngptm (formula.1=yy~zz, formula.2=~xx, family="binomial", data[1:120,], type="hinge", est.method="smoothapprox", var.type="bootstrap", verbose=verbose, lb.quantile=0.1, ub.quantile=0.9, tol=1e-4, maxit=1e3, ci.bootstrap.size=10, boot.test.inv.ci=TRUE) checkEqualsNumeric(fit$vcov$symm[1,], c(-0.4888763,0.6802883,-6.0128577,4.4632592), tolerance=tolerance) checkEqualsNumeric(fit$vcov$testinv[,4], c(1.043623,6.013954), tolerance=tolerance) dat=sim.chngpt (mean.model="thresholded", threshold.type="upperhinge", family="binomial", sd=0.3, mu.z=0, alpha=0, coef.z=log(1.4), beta=-1, n=100, seed=1) fit.0 = chngptm (formula.1=y~z, formula.2=~x, family="binomial", dat, type="upperhinge", est.method="smoothapprox", var.type="model", save.boot=T, ci.bootstrap.size=1, verbose=verbose) fit.1 = chngptm (formula.1=y~z, formula.2=~x, family="binomial", dat, type="upperhinge", est.method="smoothapprox", var.type="robust", save.boot=T, ci.bootstrap.size=1, verbose=verbose, aux.fit=glm(y~z+ns(x,2), family="binomial", dat)) checkEqualsNumeric(fit.0$coef, c(0.2278046, 0.2595208, -0.8485878, 5.4202994), tolerance=tolerance) checkEqualsNumeric(diag(fit.0$vcov), c(0.11440831,0.06818376,0.15998558,0.56502668), tolerance=tolerance) checkEqualsNumeric(diag(fit.1$vcov), c(0.16060624,0.05749946,0.24441672,1.06928181), tolerance=tolerance) data=sim.chngpt("quadratic", n=60, seed=1, beta=log(0.4), x.distr="norm", e.=4.1, b.transition=Inf, family="binomial") fit.d = chngptm (formula.1=y~z, formula.2=~x, family="binomial", data, type="segmented", est.method="grid", var.type="none", weights=rep(1:2,each=30), verbose=verbose) fit.e = chngptm (formula.1=y~z, formula.2=~x, family="binomial", data, type="segmented", est.method="smoothapprox", var.type="none", weights=rep(1:2,each=30), verbose=verbose) checkEqualsNumeric(coef(fit.d), c(-8.4120932,0.8365985,1.9086715,135.5846880), tolerance=tolerance) checkEqualsNumeric(coef(fit.e), c(-8.5621192,0.8431925,1.9465604,1713.3986973), tolerance=tolerance) dat.2=sim.chngpt("thresholded", "step", n=200, seed=1, beta=1, alpha=-1, x.distr="norm", e.=4, family="binomial") set.seed(1) dat.2$success=rbinom(nrow(dat.2), 10, 1/(1 + exp(-dat.2$eta))) dat.2$failure=10-dat.2$success fit.2a=chngptm(formula.1=cbind(success,failure)~z, formula.2=~x, family="binomial", dat.2, type="step", est.method="grid", verbose=verbose, var.type="none") fit.2b=chngptm(formula.1=cbind(success,failure)~z, formula.2=~x, family="binomial", dat.2, type="step", est.method="smoothapprox", var.type="none", verbose=verbose) checkEqualsNumeric(fit.2a$coefficients, c(-0.8634819,0.3477191,0.9316376,3.9907330), tolerance=tolerance) checkEqualsNumeric(fit.2b$coefficients, c(-0.8634819,0.3477191,0.9316376,3.9907330), tolerance=tolerance) checkEqualsNumeric(diag(vcov(fit.2a$best.fit)), c(0.008068637,0.002473882,0.011023127), tolerance=tolerance) checkEqualsNumeric(diag(vcov(fit.2b$best.fit)), c(0.008068637,0.002473882,0.011023127), tolerance=tolerance) n <- dat.2$success + dat.2$failure dat.2$y.2 <- ifelse(n == 0, 0, dat.2$success/n) dat.2$weights <- n fit.2a1=chngptm(formula.1=y.2~z, formula.2=~x, family="binomial", dat.2, type="step", est.method="grid", weights=dat.2$weights, var.type="none") fit.2b1=chngptm(formula.1=y.2~z, formula.2=~x, family="binomial", dat.2, type="step", est.method="smoothapprox", weights=dat.2$weights, var.type="none") checkEqualsNumeric(fit.2a1$coefficients, c(-0.8634819,0.3477191,0.9316376,3.9907330), tolerance=tolerance) checkEqualsNumeric(fit.2b1$coefficients, c(-0.8634819,0.3477191,0.9316376,3.9907330), tolerance=tolerance) checkEqualsNumeric(diag(vcov(fit.2a1$best.fit)), c(0.008068637,0.002473882,0.011023127), tolerance=tolerance) checkEqualsNumeric(diag(vcov(fit.2b1$best.fit)), c(0.008068637,0.002473882,0.011023127), tolerance=tolerance) data=sim.chngpt("thresholded", threshold.type="segmented", n=250, seed=1, beta=log(0.4), x.distr="norm", e.=4.1, b.transition=Inf, family="binomial") data$xx=data$x data$zz=data$z data$yy=data$y fit.0=glm(yy~zz+xx+I(xx^2), data, family="binomial") fit.0$coefficients=c(alpha=-1, z=log(1.4), x=-1 , x.quad=0.3) fit = chngptm (formula.1=yy~zz, formula.2=~xx, family="binomial", data, type="segmented", est.method="smoothapprox", var.type="all", verbose=verbose, aux.fit=fit.0, lb.quantile=0.1, ub.quantile=0.9, tol=1e-4, maxit=1e3) checkEqualsNumeric(sum(diag(fit$vcov[["model"]])), 1.479249, tolerance=tolerance) checkEqualsNumeric(sum(diag(fit$vcov[["robust"]])), 0.8593607, tolerance=tolerance) data=sim.chngpt("thresholdedItxn", threshold.type="step", family="binomial", n=250, seed=1, beta=-log(.67), beta.itxn=0, x.distr="norm", e.=3.4, b.transition=Inf, verbose=verbose) fit = chngptm (y~z, ~x*z, family="binomial", data, tol=1e-4, maxit=1e3, type="step", lb.quantile=0.1, ub.quantile=0.9, est.method="smoothapprox") checkEqualsNumeric(fit$coefficients, c(-0.5252114,0.2145485,0.3734826,0.5539497,6.1272134), tolerance=tolerance) fit = chngptm (y~z, ~x*z, family="binomial", data, tol=1e-4, maxit=1e3, type="step", lb.quantile=0.1, ub.quantile=0.9, est.method="grid", verbose=verbose) checkEqualsNumeric(fit$coefficients, c(-0.5448914,0.1977217,0.4542935,0.6316745,5.9852531), tolerance=tolerance) fit = chngptm (y~z, ~x*z, family="binomial", data, tol=1e-4, maxit=1e3, type="hinge", lb.quantile=0.1, ub.quantile=0.9, est.method="grid") checkEqualsNumeric(fit$coefficients, c(-0.5368853,0.2618009,0.2526734,0.1231553,5.3939234), tolerance=tolerance) fit = chngptm (y~z, ~x*z, family="binomial", data, tol=1e-4, maxit=1e3, type="segmented", lb.quantile=0.1, ub.quantile=0.9, est.method="grid", verbose=verbose) checkEqualsNumeric(fit$coefficients, c(-1.27487926,2.11715992,0.20647617,-0.07942202,-0.74984522,0.81418233,2.65745247), tolerance=tolerance) fit = chngptm (y~z, ~x*z, family="binomial", data, tol=1e-4, maxit=1e3, type="stegmented", lb.quantile=0.1, ub.quantile=0.9, est.method="grid", verbose=verbose) checkEqualsNumeric(fit$coefficients, c(-0.77952531,0.89672361,0.05137674,0.41337727,-0.09905192,1.47335019,-0.30845593,-0.17022170,5.98525315), tolerance=tolerance) }
seqdistmc <- function(channels, method=NULL, norm="none", indel="auto", sm=NULL, with.missing=FALSE, full.matrix=TRUE, link="sum", cval=2, miss.cost=2, cweight=NULL, what="diss", ch.sep = "@@@@TraMineRSep@@@@") { whatlist <- c("diss","sm","seqmc") if (!(what %in% whatlist)){ msg.stop("what should be one of ",paste0("'",whatlist,"'", collapse=",")) } if (what=="diss" & is.null(method)) msg.stop("method cannot be NULL when what = 'diss'") if (what=="sm" & is.null(sm)) msg.stop("sm cannot be NULL when what = 'sm'") if (any(length(dim(sm[[1]]))==3) && !all(length(dim(sm[[1]]))==3)) msg.stop("One sm is 3-dimensional and some are not!") timeVarying <- length(dim(sm[[1]])) == 3 if(length(indel) > 1 & any(indel=="auto")) stop(" [!] 'auto' not allowed in vector or list indel") if(is.list(indel) & length(indel)==1) stop(" [!] When a list, indel must be of length equal to number of channels") nchannels <- length(channels) if (nchannels < 2) { stop("[!] please specify at least two channels") } if (is.null(cweight)) { cweight <- rep(1, nchannels) } for (i in 1:nchannels){ if (length(grep(ch.sep, alphabet(channels[[i]], with.missing=TRUE), fixed=TRUE))>0) stop(" [!] ch.sep symbol (",ch.sep,") occurs in alphabet of at least one channel") } if (is.list(indel) & length(indel) != nchannels) stop("[!] when a list, indel must be of length equal to number of channels") if (length(with.missing) > 1 & length(with.missing) != nchannels ) stop("[!] when a vector, with.missing must be of length equal to number of channels") numseq <- sapply(channels,nrow) if(any(numseq!=numseq[1])) { stop(" [!] sequence objects have different numbers of rows") } numseq <- numseq[1] message(" [>] ", nchannels, " channels with ", numseq, " sequences") if (what=="diss") { metlist <- c("OM", "LCS", "DHD", "HAM") if (!method %in% metlist) { stop(" [!] method must be one of: ", paste(metlist, collapse=" "), call.=FALSE) } if (method=="LCS") { method <- "OM" sm <- "CONSTANT" indel <- 1 cval <- 2 miss.cost <- 2 } timeVarying <- method %in% c("DHD") if (is.null(sm)) { costmethod <- "CONSTANT" if (method == "DHD") { costmethod <- "TRATE" } sm <- rep(costmethod, nchannels) } } if (length(sm)==1 && sm %in% c("CONSTANT", "TRATE", "INDELS", "INDELSLOG")){ sm <- rep(sm, nchannels) } if (length(indel)==1) { indel <- rep(indel, nchannels) } if (length(with.missing)==1) { with.missing <- rep(with.missing, nchannels) } if (what != "seqmc") { if ((length(indel)!= nchannels) || (length(sm)!= nchannels) || (length(cweight)!= nchannels)) { stop(" [!] you should supply one weight, one substitution matrix and one indel per channel") } } if (is.list(indel)) indel_list <- list() else indel_list <- numeric(length=nchannels) if (any(indel == "auto") & any(sm %in% c("INDELSLOG","INDELS"))) indel_list <- list() substmat_list <- list() alphabet_list <- list() alphsize_list <-list() maxlength_list <- numeric(length=nchannels) for (i in 1:nchannels) maxlength_list[i] <- ncol(channels[[i]]) md.cnames <- colnames(channels[[which.max(maxlength_list)]]) slength1 <- seqlength(channels[[1]]) for (i in 2:nchannels) { if (sum(slength1 != seqlength(channels[[i]]))>0) { warning(" [!] Some individuals have channels of different length. Shorter sequences will be filled with missing values and corresponding channel with.missing set as TRUE") break } } message(" [>] building combined sequences...", appendLF=F) sep <- ch.sep maxlength=max(maxlength_list) newseqdata <- matrix("", nrow=numseq, ncol=maxlength) rownames(newseqdata) <- rownames(channels[[1]]) newseqdataNA <- matrix(TRUE, nrow=numseq, ncol=maxlength) for (i in 1:nchannels) { seqchan <- channels[[i]] void <- attr(seqchan, "void") nr <- attr(seqchan, "nr") for (j in 1:maxlength) { if (j > maxlength_list[i]) { newCol <- as.character(rep(void, numseq)) } else { newCol <- as.character(seqchan[,j]) } newseqdataNA[,j] <- newseqdataNA[,j] & newCol == void if (any(newCol==void)) with.missing[i] <- TRUE newCol[newCol == void] <- nr if (i > 1) { newseqdata[,j] <- paste(newseqdata[,j], newCol, sep = sep) } else { newseqdata[,j] <- newCol } } } newseqdata[newseqdataNA] <- NA suppressMessages(newseqdata <- seqdef(newseqdata, cnames=md.cnames)) message(" OK") if (what == "seqmc") { return(newseqdata) } else { for (i in 1:nchannels) { if (!inherits(channels[[i]],"stslist")) { stop(" [!] channel ", i, " is not a state sequence object, use 'seqdef' function to create one", call.=FALSE) } alphabet_list[[i]] <- attr(channels[[i]],"alphabet") if (with.missing[i]) { alphabet_list[[i]] <- c(alphabet_list[[i]],attr(channels[[i]],"nr")) message(" [>] including missing value as an additional state" ) } else { if (any(channels[[i]]==attr(channels[[i]],"nr"))) { stop(" [!] found missing values in channel ", i, ", set with.missing as TRUE for that channel") } } alphsize_list[[i]] <- length(alphabet_list[[i]]) if(is.list(indel)){ if (length(indel[[i]])==1) indel[[i]] <- rep(indel[[i]],alphsize_list[[i]]) if (length(indel[[i]]) != alphsize_list[[i]]){ cat("i = ",i,", indel length = ", length(indel[[i]]), ", alphabet size = ", alphsize_list[[i]], "\n alphabet = ", alphabet_list[[i]],"\n" ) stop(" [!] indel length does not much size of alphabet for at least one channel") } } else if (!any(indel=="auto") & !is.list(indel_list)) { indel_list[i] <- indel[i] } if (is.character(sm[[i]])) { message(" [>] computing substitution cost matrix for channel ", i) costs <- seqcost(channels[[i]], sm[[i]], with.missing=with.missing[i], time.varying=timeVarying, cval=cval, miss.cost=miss.cost) substmat_list[[i]] <- costs$sm if (any(indel=="auto")) { if (is.list(indel_list)){ if (length(costs$indel)==1) costs$indel <- rep(costs$indel,alphsize_list[[i]]) indel_list[[i]] <- costs$indel } else indel_list[i] <- costs$indel } } else { if (any(indel[i] == "auto") & !is.list(indel_list)) indel_list[i] <- max(sm[[i]])/2 else indel_list[i] <- indel[i] checkcost(sm[[i]], channels[[i]], with.missing = with.missing[i], indel = indel_list[[i]]) substmat_list[[i]] <- sm[[i]] } substmat_list[[i]] <- cweight[i]* substmat_list[[i]] } if (any(indel=="auto")) indel <- indel_list message(" [>] computing combined substitution and indel costs...", appendLF=FALSE) alphabet <- attr(newseqdata,"alphabet") alphabet_size <- length(alphabet) newindel <- NULL if (!timeVarying) { newsm <- matrix(0, nrow=alphabet_size, ncol=alphabet_size) if (is.list(indel)){ newindel <- rep(0,alphabet_size) statelisti <- strsplit(alphabet[alphabet_size], sep, fixed=TRUE)[[1]] for (chan in 1:nchannels){ ipos <- match(statelisti[chan], alphabet_list[[chan]]) newindel[alphabet_size] <- newindel[alphabet_size] + indel[[chan]][ipos]*cweight[chan] } } for (i in 1:(alphabet_size-1)) { statelisti <- strsplit(alphabet[i], sep, fixed=TRUE)[[1]] if (is.list(indel)){ for (chan in 1:nchannels){ ipos <- match(statelisti[chan], alphabet_list[[chan]]) newindel[i] <- newindel[i] + indel[[chan]][ipos]*cweight[chan] } } for (j in (i+1):alphabet_size) { cost <- 0 statelistj <- strsplit(alphabet[j], sep, fixed=TRUE)[[1]] for (chan in 1:nchannels) { ipos <- match(statelisti[chan], alphabet_list[[chan]]) jpos <- match(statelistj[chan], alphabet_list[[chan]]) cost <- cost + substmat_list[[chan]][ipos, jpos] } newsm[i, j] <- cost newsm[j, i] <- cost } } } else { newsm <- array(0, dim=c(alphabet_size, alphabet_size, maxlength)) for (t in 1:maxlength) { for (i in 1:(alphabet_size-1)) { statelisti <- strsplit(alphabet[i], sep, fixed=TRUE)[[1]] for (j in (i+1):alphabet_size) { cost <- 0 statelistj <- strsplit(alphabet[j], sep, fixed=TRUE)[[1]] for (chan in 1:nchannels) { ipos <- match(statelisti[chan], alphabet_list[[chan]]) jpos <- match(statelistj[chan], alphabet_list[[chan]]) cost <- cost + substmat_list[[chan]][ipos, jpos, t] } newsm[i, j, t] <- cost newsm[j, i, t] <- cost } } } } rownames(newsm) <- colnames(newsm) <- alphabet message(" OK") if (is.null(newindel) & !is.list(indel_list)) { newindel <- sum(indel*cweight) } if (link=="mean") { newindel <- newindel / sum(cweight) newsm <- newsm / sum(cweight) } if (what == "sm") { attr(newsm,"indel") <- newindel attr(newsm,"alphabet") <- alphabet attr(newsm,"cweight") <- cweight return(newsm) } } if (what == "diss") { message(" [>] computing distances ...") return(seqdist(newseqdata, method=method, norm=norm, indel=newindel, sm=newsm, with.missing=FALSE, full.matrix=full.matrix)) } }
test_that("nuclearPed() direct labelling works", { expect_identical(nuclearPed(1), nuclearPed(children='3')) expect_identical(nuclearPed(1, sex=2), nuclearPed(children='3', sex=2)) expect_identical(relabel(nuclearPed(1), letters[3:1]), nuclearPed(fa='c', mo='b', children='a')) expect_identical(relabel(nuclearPed(1), old=3, new="foo"), nuclearPed(children="foo")) }) test_that("nuclearPed() catches errors", { expect_error(nuclearPed(0), '`nch` must be a positive integer: 0') expect_error(nuclearPed(nch = 1:2), "`nch` must be a positive integer") expect_error(nuclearPed(fa = 1:2), "`father` must have length 1") expect_error(nuclearPed(mo = 1:2), "`mother` must have length 1") expect_error(nuclearPed(sex='a'), "Illegal sex: a") expect_error(nuclearPed(sex=1:2), "`sex` is longer than the number of individuals") expect_error(nuclearPed(sex=integer(0)), "`sex` cannot be empty") expect_error(nuclearPed(fa = 'a', child = 'a'), "Duplicated ID label: a") expect_error(nuclearPed(child = c("b", "b")), "Duplicated ID label: b") expect_error(nuclearPed(child = 1), "please specify a different label for the father") expect_error(nuclearPed(mo = 1), "please specify a different label for the father") expect_error(nuclearPed(child = 2), "please specify a different label for the mother") expect_error(nuclearPed(fa = 2), "please specify a different label for the mother") }) test_that("halfSibPed() has expected ordering", { expect_equal(labels(halfSibPed()), as.character(1:5)) }) test_that("halfSibPed() recycles sex1 and sex2", { expect_equal(halfSibPed(2,3,sex1=0,sex2=2:1), halfSibPed(2,3,sex1=c(0,0), sex2=c(2,1,2))) }) test_that("halfSibPed() catches errors", { expect_error(halfSibPed(-1), "`nch1` must be a positive integer") expect_error(halfSibPed(0), "`nch1` must be a positive integer") expect_error(halfSibPed(1, 0), "`nch2` must be a positive integer") expect_error(halfSibPed(sex1 = 'a'), "Illegal sex: a") expect_error(halfSibPed(sex1 = 1:2), "`sex1` is longer than the number of individuals") expect_error(halfSibPed(sex1 = integer(0)), "`sex1` cannot be empty") })
legendBreaks = function(pos, breaks, col, legend, rev=TRUE, outer=TRUE, pch=15, bg='white', cex=par('cex'), pt.cex=2.5*cex, text.col=par('fg'), title=NULL, inset=0.05, title.col=text.col, adj=0, width=Inf, lines=Inf, y.intersp, ...){ if(!missing(breaks)){ if(is.factor(breaks)){ if(length(grep("^Raster",class(breaks)))){ breaks = levels(breaks)[[1]] } else { breaks=list(legend=levels(breaks)) } } } if( missing(legend) & missing(breaks)) warning("legend or breaks must be supplied") if(missing(legend)&!missing(breaks)) { if(is.list(breaks)){ legendCol = intersect( c('legend','label','level','breaks','ID'), names(breaks) ) if(!length(legendCol)){ warning("can't find legend in breaks") } legend = breaks[[ legendCol[1] ]] } else { legend=breaks } } if(missing(col)){ col='black' if(!missing(breaks)) { if(is.list(breaks)) { if(any(names(breaks)=='col')) col = breaks[['col']] } } } if(rev){ col=rev(col) legend=rev(legend) } diffYmult = 0 if(length(col) == (length(legend)-1)) { col = c(NA, col) pch = c(NA, pch[round(seq(1, length(pch), len=length(legend)-1))] ) diffyMult=1 theTextCol = ' } else { theTextCol = text.col theNA = is.na(col) if(any(theNA)){ col = col[!theNA] legend = legend[!theNA] } } if(any(nchar(as.character(legend)) > width)) { legend = trimws( gsub( paste('(.{1,', width, '})(\\s|/|$)' ,sep=''), '\\1\n ', as.character(legend) ) ) } theNewLines = gregexpr('\n', as.character(legend)) toCrop = which(unlist(lapply(theNewLines, length)) >= lines) if(length(toCrop)) { cropPos = unlist(lapply(theNewLines[toCrop], function(qq) qq[lines])) legend = as.character(legend) legend[toCrop] = trimws(substr(legend[toCrop], 1, cropPos)) } shiftLegendText = rep(0, length(legend)) if(missing(y.intersp)){ if(is.character(legend)) { theNewLines = gregexpr('\n', as.character(legend)) y.intersp=max( c(1.25, 0.5+unlist( lapply(theNewLines, function(qq) sum(qq>0)) ) ) ) - 0.25 } else { y.intersp = 1 if(is.numeric(legend)) { legend = as.character(legend) widthHere = strwidth(legend, cex=cex) maxWidth = max(widthHere) withMinus = grep("^[[:space:]]*[-]", legend) toAddForMinus = rep(0, length(legend)) toAddForMinus[-withMinus] = pmin( maxWidth - widthHere[-withMinus], strwidth("-", cex=cex) ) charNoDec = strwidth(gsub("(e|[.])[[:digit:]]*$", "", legend), cex=cex) maxCharNoDec = max(charNoDec) toAddLeft = pmin( maxCharNoDec - charNoDec, maxWidth - widthHere) Ndec = strwidth( gsub("^[[:space:]]*[[:punct:]]*([[:digit:]]|e[+])+ *", "", legend), cex=cex) maxDec = max(Ndec) toAddRight = pmin( maxDec - Ndec, maxWidth - widthHere) idealWidth = widthHere + toAddRight + toAddLeft tooWide = idealWidth - maxWidth shiftLegendText = pmin( toAddForMinus + toAddLeft - 0.4*tooWide, maxWidth - widthHere ) } } } if(all(is.na(y.intersp))){ y.intersp=1 } adj = rep_len(adj, 2) adj[2] = adj[2] + y.intersp/4 withTrans = grep("^ col[withTrans] = gsub("[[:xdigit:]]{2}$", "", col[withTrans]) if(outer){ oldxpd = par("xpd") par(xpd=NA) fromEdge = matrix(par("plt"), 2, 2, dimnames=list(c("min","max"), c("x","y"))) propIn = apply(fromEdge, 2, diff) if(is.character(pos)) { forInset = c(0,0) if(length(grep("left$", pos))){ forInset[1] = -fromEdge["min","x"] } else if(length(grep("right$", pos))){ forInset[1] = fromEdge["max","x"]-1 } if(length(grep("^top", pos))){ forInset[2] = -fromEdge["min","y"] } else if(length(grep("^bottom", pos))){ forInset[2] = fromEdge["max","y"]-1 } inset = forInset/propIn + inset } } result=legend( pos, legend=legend, bg=bg, col=col, pch=pch, pt.cex=pt.cex, inset=inset, cex=cex, text.col=theTextCol, title.col=title.col, title=title, y.intersp=y.intersp, adj=adj, ... ) if(text.col != theTextCol) { diffy = diff(result$text$y)/2 diffy = c( diffy,diffy[length(diffy)] )*diffyMult result$text$y = result$text$y + diffy result$text$xOrig = result$text$x result$text$x = result$text$x + shiftLegendText/2 + max(strwidth(legend, cex=cex))/2 if(par("xlog")) result$text$x = 10^result$text$x if(par("ylog")) result$text$y = 10^result$text$y text( result$text$x, result$text$y, legend, col=text.col, adj=0.5, cex=cex) } if(outer){ par(xpd=oldxpd) } result$legend = legend return(invisible(result)) }
.onAttach <- function(...) { diveRpkgs <- diveRcore() needed <- diveRpkgs[!is_attached(diveRpkgs)] if (length(needed) == 0) return() diveR_attach() } is_attached <- function(x) { paste0("package:", x) %in% search() }
model_prediction <- function(poped.db=NULL, design=list( xt=poped.db$design[["xt"]], groupsize=poped.db$design$groupsize, m=poped.db$design[["m"]], x=poped.db$design[["x"]], a=poped.db$design[["a"]], ni=poped.db$design$ni, model_switch=poped.db$design$model_switch), model = list( fg_pointer=poped.db$model$fg_pointer, ff_pointer=poped.db$model$ff_pointer, ferror_pointer= poped.db$model$ferror_pointer), parameters=list( docc=poped.db$parameters$docc, d = poped.db$parameters$d, bpop = poped.db$parameters$bpop, covd = poped.db$parameters$covd, covdocc = poped.db$parameters$covdocc, sigma = poped.db$parameters$sigma), IPRED=FALSE, DV=FALSE, dosing=NULL, predictions=NULL, filename=NULL, models_to_use="all", model_num_points=NULL, model_minxt=NULL, model_maxxt=NULL, include_sample_times=T, groups_to_use="all", include_a = TRUE, include_x = TRUE, manipulation=NULL, PI = FALSE, PI_conf_level = 0.95) { if(is.null(predictions)){ predictions=FALSE if(!is.null(poped.db) || (!is.null(unlist(parameters))) && !is.null(unlist(model)) && !is.null(unlist(design))) predictions=TRUE } if(is.null(poped.db) && is.null(unlist(design))) stop("Either 'poped.db' or 'design' need to be defined") design <- do.call(create_design,design) NumOcc=poped.db$parameters$NumOcc if(DV) IPRED=T with(design,{ maxxt=poped.choose(poped.db$design_space$maxxt,xt) minxt=poped.choose(poped.db$design_space$minxt,xt) if(!is.null(dosing)){ if(!length(dosing)==m){ if(length(dosing) == 1) { dosing <- rep(dosing,m) } else { stop("dosing argument does not have the right dimensions. Must be 1 list or a list of lists the size of the number of groups") } } } if(predictions){ docc_size = 0 if((!isempty(parameters$docc[,2]))){ docc_size = size(parameters$docc[,2,drop=F],1) } d_size = 0 if((!isempty(parameters$d[,2]))){ d_size = size(parameters$d[,2,drop=F],1) } } used_times <- zeros(size(xt)) for(i in 1:size(xt,1)) used_times[i,1:ni[i]] <- 1 if(all(groups_to_use=="all")){ groups_to_use = 1:size(xt,1) } if(all(models_to_use=="all")){ models_to_use = unique(as.vector(model_switch[used_times==1])) } df <- data.frame() id_num_start <- 1 for(i in 1:length(groups_to_use)){ if(!exists("a")){ a_i = zeros(0,1) } else if((isempty(a))){ a_i = zeros(0,1) } else { a_i = a[groups_to_use[i],,drop=F] } if(!exists("x")){ x_i = zeros(0,1) } else if((isempty(x))){ x_i = zeros(0,1) } else { x_i = x[groups_to_use[i],,drop=F] } num_ids = groupsize[groups_to_use[i]] if(all(is.null(model_num_points))){ xt_i = xt[groups_to_use[i],1:ni[groups_to_use[i]]] model_switch_i = model_switch[groups_to_use[i],1:ni[groups_to_use[i]]] if(!all(models_to_use == unique(as.vector(model_switch[used_times==1])))){ xt_i = xt_i[model_switch_i %in% models_to_use] model_switch_i = model_switch_i[model_switch_i %in% models_to_use] } } else { xt_i <- c() model_switch_i <- c() if(length(models_to_use)>1 && length(model_num_points)==1) model_num_points <- rep(model_num_points,length(models_to_use)) for(j in models_to_use){ if(is.null(model_minxt)){ minv <- min(as.vector(minxt[model_switch==j]),na.rm = TRUE) } else { if(length(models_to_use)>1 && length(model_minxt)==1) model_minxt <- rep(model_minxt,length(models_to_use)) minv = model_minxt[j] } if(is.null(model_maxxt)){ maxv <- max(as.vector(maxxt[model_switch==j]),na.rm = TRUE) } else { if(length(models_to_use)>1 && length(model_maxxt)==1) model_maxxt <- rep(model_maxxt,length(models_to_use)) maxv = model_maxxt[j] } tmp_num_pts <- model_num_points[j] if(length(model_num_points)<j) tmp_num_pts <- model_num_points[1] xt_i= c(xt_i,seq(minv,maxv,length.out=tmp_num_pts)) model_switch_i = c(model_switch_i,j*matrix(1,1,tmp_num_pts)) } if(include_sample_times){ xt_i_extra = xt[groups_to_use[i],1:ni[groups_to_use[i]]] model_switch_i_extra = model_switch[groups_to_use[i],1:ni[groups_to_use[i]]] if(!all(models_to_use == unique(as.vector(model_switch[used_times==1])))){ xt_i_extra = xt_i_extra[model_switch_i_extra %in% models_to_use] model_switch_i_extra = model_switch_i_extra[model_switch_i_extra %in% models_to_use] } tmp.include <- !(xt_i_extra %in% xt_i) xt_i <- c(xt_i,xt_i_extra[tmp.include]) model_switch_i <- c(model_switch_i,model_switch_i_extra[tmp.include]) tmp.order <- order(xt_i) xt_i <- xt_i[tmp.order] model_switch_i <- model_switch_i[tmp.order] } } pred <- NA group.df <- data.frame(Time=xt_i,PRED=pred,Group=groups_to_use[i],Model=model_switch_i) if(predictions){ bpop_val <- parameters$bpop[,2,drop=F] b_ind = zeros(1,d_size) bocc_ind = zeros(docc_size,NumOcc) g0 = feval(model$fg_pointer,x_i,a_i,bpop_val,b_ind,bocc_ind) pred_list <- feval(model$ff_pointer,model_switch_i,xt_i,g0,poped.db) pred_list$poped.db <- NULL pred <- drop(pred_list[[1]]) group.df["PRED"] <- pred if(length(pred_list)>1){ extra_df <- data.frame(pred_list[-1]) group.df <- cbind(group.df,extra_df) } if(PI){ sigma_full = parameters$sigma d_full = getfulld(parameters$d[,2],parameters$covd) docc_full = getfulld(parameters$docc[,2,drop=F],parameters$covdocc) cov <- v(as.matrix(model_switch_i),as.matrix(xt_i), t(x_i),t(a_i),bpop_val,t(b_ind),bocc_ind,d_full, sigma_full,docc_full,poped.db)[[1]] PI_alpha <- 1-PI_conf_level z_val <- qnorm(1-PI_alpha/2) se_val <- sqrt(diag(cov)) PI_u <- pred + z_val*se_val PI_l <- pred - z_val*se_val group.df <- data.frame(group.df,PI_l=PI_l,PI_u=PI_u) } } if(include_a && !isempty(a_i)){ rownames(a_i) <- NULL group.df <- data.frame(group.df,a_i) } if(include_x && !isempty(x_i)){ rownames(x_i) <- NULL group.df <- data.frame(group.df,x_i) } if(IPRED){ group.df.ipred <- data.frame() bocc_start= 1 id_num_end <- id_num_start + num_ids - 1 id_vals <- id_num_start:id_num_end if(predictions){ fulld = getfulld(parameters$d[,2],parameters$covd) fulldocc = getfulld(parameters$docc[,2,drop=F],parameters$covdocc) if(any(size(fulld)==0)){ b_sim_matrix = zeros(num_ids,0) } else { b_sim_matrix = mvtnorm::rmvnorm(num_ids,sigma=fulld) } bocc_sim_matrix = zeros(num_ids*NumOcc,length(parameters$docc[,2,drop=F])) if(nrow(fulldocc)!=0) bocc_sim_matrix = mvtnorm::rmvnorm(num_ids*NumOcc,sigma=fulldocc) } for(j in 1:num_ids){ tmp.df <- group.df if(predictions){ bocc_stop=bocc_start + NumOcc - 1 if(nrow(fulldocc)==0){ bocc_start=0 bocc_stop=0 } fg_sim = feval(model$fg_pointer,x_i,a_i,parameters$bpop[,2,drop=F],b_sim_matrix[j,],t(bocc_sim_matrix[bocc_start:bocc_stop,])) bocc_start = bocc_stop + 1 ipred <- feval(model$ff_pointer,model_switch_i,xt_i,fg_sim,poped.db) ipred <- drop(ipred[[1]]) } else { ipred <- xt_i*NA } ID <- id_vals[j] tmp.df["ID"] <- ID tmp.df["IPRED"] <- ipred if(DV){ if(predictions){ eps_sim = mvtnorm::rmvnorm(length(xt_i),sigma=parameters$sigma) dv <- feval(model$ferror_pointer,model_switch_i,xt_i,fg_sim,eps_sim,poped.db) dv <- drop(dv[[1]]) } else { dv <- xt_i*NA } tmp.df["DV"] <- dv } if(!is.null(dosing)){ dose.df <- data.frame(dosing[groups_to_use[i]]) for(nam in names(tmp.df[!(names(tmp.df) %in% c("IPRED","PRED","DV","Time"))])){ if(length(unique(tmp.df[nam]))==1) dose.df[nam] <- tmp.df[1,nam] } dose.df$dose_record_tmp <- 1 tmp.df <- dplyr::bind_rows(dose.df,tmp.df) tmp.df <- tmp.df[order(tmp.df$Time,tmp.df$dose_record_tmp),] tmp.df$dose_record_tmp <- NULL } group.df.ipred <- rbind(group.df.ipred,tmp.df) } id_num_start <- id_num_end + 1 group.df <- group.df.ipred } df <- rbind(df,group.df) } first_names <- c("ID","Time","DV","IPRED","PRED") first_names <- first_names[first_names %in% names(df)] other_names <- names(df[!(names(df) %in% first_names)]) df <- df[c(first_names,other_names)] df$Group <- as.factor(df$Group) df$Model <- as.factor(df$Model) if(IPRED) df$ID <- as.factor(df$ID) row.names(df) <- NULL if(!is.null(manipulation)){ for(i in 1:length(manipulation)){ df <- within(df,{ eval(manipulation[[i]]) }) } } if(!is.null(filename)) write.table(x=df, filename, row.names=FALSE, quote=FALSE, na=".",sep=",") return( df ) }) }
compmatch <- function(x, split) { if (split %in% .special.characters) split <- paste("\\", split, sep = "") res <- any(grepl(split, x)) res }
context("importBrukerFlex") test_that("importBrukerFlex", { expect_error(MALDIquantForeign:::.importBrukerFlex("tmp.tmp")) path <- system.file( file.path("exampledata", "brukerflex", "0_A1", "1", "1SLin", "fid"), package="MALDIquantForeign") s <- MALDIquantForeign:::.importBrukerFlex(path, verbose=FALSE) expect_equal(s, import(path, verbose=FALSE)) expect_equal(s, importBrukerFlex(path, verbose=FALSE)) expect_equal(s, import(path, type="fid", verbose=FALSE)) expect_equal(trunc(mass(s[[1]])), 226:230) expect_equal(intensity(s[[1]]), 1:5) expect_equal(basename(metaData(s[[1]])$file), "fid") expect_equal(metaData(s[[1]])$laserShots, 100) expect_equal(metaData(s[[1]])$comments, paste0("TESTSAMPLE", 1:4)) })
knitr::opts_chunk$set( collapse = TRUE, comment = " ) options(width = 90) options(pillar.min_title_chars = 10) options(tibble.print_max = 25) library(msigdbr) all_gene_sets = msigdbr(species = "Mus musculus") head(all_gene_sets) msigdbr_species() h_gene_sets = msigdbr(species = "mouse", category = "H") head(h_gene_sets) cgp_gene_sets = msigdbr(species = "mouse", category = "C2", subcategory = "CGP") head(cgp_gene_sets) msigdbr_collections() all_gene_sets %>% dplyr::filter(gs_cat == "H") %>% head()
combinefm <- function(fcasts, smat, weights, alg) { totalts <- nrow(smat) if (!is.matrix(fcasts)) { fcasts <- t(fcasts) } if (ncol(fcasts) != totalts) { stop("Argument fcasts requires all the forecasts.") } fcasts <- t(fcasts) if (alg == "chol") { if (!is.null(weights)) { weights <- methods::as(1/weights, "matrix.diag.csr") } allf <- CHOL(fcasts = fcasts, S = smat, weights = weights, allow.changes = TRUE) } else { if (!is.null(weights)) { seqts <- 1:totalts weights <- sparseMatrix(i = seqts, j = seqts, x = 1/weights) } if (alg == "lu") { allf <- LU(fcasts = fcasts, S = smat, weights = weights, allow.changes = TRUE) } else if (alg == "cg") { allf <- CG(fcasts = fcasts, S = smat, weights = weights, allow.changes = TRUE) } } return(allf) }
intersectAll <- function(...) { x <- list(...) ans <- x[[1]] for (i in 1:length(x)) ans <- intersect(ans, x[[i]]) return(ans) }
plot.PredictFindIt <- function(x,main,xlab, ylab, interactive=FALSE, ...){ labels <- "index" if(missing(xlab)){ xlab <- "index of observation" } if(missing(ylab)){ ylab <- "Treatment Effect" } object <- x treat.type <- object$treat.type if(treat.type=="single"){ pred.data <- object$data ATE <- object$ATE pred.data.out.p <- pred.data[order(pred.data$Treatment.effect, decreasing=FALSE),] xp <- seq(1:nrow(pred.data.out.p)) zero.1 <- min(which(min(abs(pred.data.out.p$Treatment.effect))== abs(pred.data.out.p$Treatment.effect))) zero <- xp[zero.1] low <- min(pred.data.out.p$Treatment.effect) if(missing(main)){ main <- "Causal Moderation: Heterogeneous Treatment Effect " } plot(xp,pred.data.out.p$Treatment.effect,type="l",col="red", main = main, ylab= ylab,xlab=xlab) text(zero,low, labels=as.character(zero)) abline(h=0,lty="dotdash") abline(h=ATE, col="blue") abline(v=zero, col="grey") if(interactive ==TRUE){ if(labels=="index"){ p <- try(identify(xp,pred.data.out.p$Treatment.effect, labels=rownames(pred.data.out.p) ),silent=TRUE) } else{ p <- try(identify(xp,pred.data.out.p$Treatment.effect, labels=pred.data.out.p[,labels] ),silent=TRUE) } } } if(treat.type=="multiple"){ pred.data <- object$data ATE <- object$ATE pred.data.out.p <- pred.data[order(pred.data$Treatment.effect, decreasing=FALSE),] xp <- seq(1:nrow(pred.data.out.p)) zero.1 <- min(which(min(abs(pred.data.out.p$Treatment.effect))== abs(pred.data.out.p$Treatment.effect))) zero <- xp[zero.1] low <- min(pred.data.out.p$Treatment.effect) if(missing(main)){ main <- "Causal Interaction: Heterogeneous Treatment Effect" } plot(xp,pred.data.out.p$Treatment.effect,col="red", main = main, ylab= ylab,xlab=xlab) text(zero,low, labels=as.character(zero)) abline(h=0,lty="dotdash") abline(h=ATE, col="blue") abline(v=zero, col="grey") if(interactive ==TRUE){ if(labels=="index"){ p <- try(identify(xp,pred.data.out.p$Treatment.effect, labels=rownames(pred.data.out.p) ),silent=TRUE) } else{ p <- try(identify(xp,pred.data.out.p$Treatment.effect, labels=pred.data.out.p[,labels] ),silent=TRUE) } } } }
bq_table_download <- function(x, n_max = Inf, page_size = NULL, start_index = 0L, max_connections = 6L, quiet = NA, bigint = c("integer", "integer64", "numeric", "character"), max_results = deprecated()) { x <- as_bq_table(x) bigint <- match.arg(bigint) if (lifecycle::is_present(max_results)) { lifecycle::deprecate_warn( "1.4.0", "bq_table_download(max_results)", "bq_table_download(n_max)" ) n_max <- max_results } params <- set_row_params( nrow = bq_table_nrow(x), n_max = n_max, start_index = start_index ) n_max <- params$n_max start_index <- params$start_index schema_path <- bq_download_schema(x, tempfile()) withr::defer(file.remove(schema_path)) if (n_max == 0) { table_data <- bq_parse_files( schema_path, file_paths = character(), n = 0, quiet = bq_quiet(quiet) ) return(table_data) } pool <- curl::new_pool() if (!bq_quiet(quiet)) { message("Downloading first chunk of data.") } if (is.null(page_size)) { chunk_size_from_user <- FALSE } else { assert_that( is.numeric(page_size), length(page_size) == 1, page_size > 0 ) chunk_size_from_user <- TRUE } chunk_size <- page_size chunk_plan <- bq_download_plan( n_max, chunk_size = chunk_size, n_chunks = 1, start_index = start_index ) handle <- bq_download_chunk_handle( x, begin = chunk_plan$dat$chunk_begin[1], max_results = chunk_plan$dat$chunk_rows[1] ) curl::multi_add( handle, done = bq_download_callback(chunk_plan$dat$path[1]), pool = pool ) curl::multi_run(pool = pool) path_first_chunk <- chunk_plan$dat$path[1] withr::defer(file.remove(path_first_chunk)) chunk_data <- bq_parse_file(schema_path, path_first_chunk) n_got <- nrow(chunk_data) if (n_got >= n_max) { if (!bq_quiet(quiet)) { message("First chunk includes all requested rows.") } return(convert_bigint(chunk_data, bigint)) } if (chunk_size_from_user && n_got < chunk_size) { rlang::abort(c( "First chunk is incomplete:", x = glue("{big_mark(chunk_size)} rows were requested, but only \\ {big_mark(n_got)} rows were received."), i = "Leave `page_size` unspecified or use an even smaller value." )) } if (!chunk_size_from_user) { if (!bq_quiet(quiet)) { message(glue("Received {big_mark(n_got)} rows in the first chunk.")) } chunk_size <- trunc(0.75 * n_got) } n_max_new <- n_max - n_got start_index_new <- n_got chunk_plan <- bq_download_plan( n_max_new, chunk_size = chunk_size, start_index = start_index_new ) progress <- bq_progress( "Downloading data [:bar] :percent ETA: :eta", total = chunk_plan$n_chunks, quiet = quiet ) if (!bq_quiet(quiet)) { message(glue_data( chunk_plan, "Downloading the remaining {big_mark(n_max)} rows in {n_chunks} \\ chunks of (up to) {big_mark(chunk_size)} rows." )) } for (i in seq_len(chunk_plan$n_chunks)) { handle <- bq_download_chunk_handle( x, begin = chunk_plan$dat$chunk_begin[i], max_results = chunk_plan$dat$chunk_rows[i] ) curl::multi_add( handle, done = bq_download_callback(chunk_plan$dat$path[i], progress), pool = pool ) } curl::multi_run(pool = pool) withr::defer(file.remove(chunk_plan$dat$path)) table_data <- bq_parse_files( schema_path, c(path_first_chunk, chunk_plan$dat$path), n = n_max, quiet = bq_quiet(quiet) ) convert_bigint(table_data, bigint) } convert_bigint <- function(df, bigint) { if (bigint == "integer64") { return(df) } as_bigint <- switch(bigint, integer = as.integer, numeric = as.numeric, character = as.character ) rapply_int64(df, f = as_bigint) } rapply_int64 <- function(x, f) { if (is.list(x)) { x[] <- lapply(x, rapply_int64, f = f) x } else if (bit64::is.integer64(x)) { f(x) } else { x } } set_row_params <- function(nrow, n_max = Inf, start_index = 0L) { assert_that(is.numeric(n_max), length(n_max) == 1, n_max >= 0) assert_that(is.numeric(start_index), length(start_index) == 1, start_index >= 0) n_max <- max(min(n_max, nrow - start_index), 0) list(n_max = n_max, start_index = start_index) } bq_download_plan <- function(n_max, chunk_size = NULL, n_chunks = NULL, start_index = 0) { params <- set_chunk_params(n_max, chunk_size, n_chunks) list( n_max = n_max, chunk_size = params$chunk_size, n_chunks = params$n_chunks, dat = set_chunk_plan( n_max, params$chunk_size, params$n_chunks, start_index ) ) } set_chunk_params <- function(n_max, chunk_size = NULL, n_chunks = NULL) { if (is.null(chunk_size) && is.null(n_chunks)) { n_chunks <- 1 } n_chunks <- n_chunks %||% Inf chunk_size <- pmin(chunk_size %||% ceiling(n_max / n_chunks), n_max) n_chunks <- pmin(n_chunks, ceiling(n_max / chunk_size)) list(chunk_size = chunk_size, n_chunks = n_chunks) } set_chunk_plan <- function(n_max, chunk_size, n_chunks, start_index = 0) { chunk_begin <- start_index + (seq_len(n_chunks) - 1) * chunk_size chunk_end <- pmin(chunk_begin + chunk_size, start_index + n_max) chunk_rows <- chunk_end - chunk_begin tibble::tibble( chunk_begin, chunk_rows, path = sort( tempfile(rep_len("bq-download-", length.out = n_chunks), fileext = ".json") ) ) } bq_download_chunk_handle <- function(x, begin = 0L, max_results = 1e4) { x <- as_bq_table(x) assert_that(is.numeric(begin), length(begin) == 1) assert_that(is.numeric(max_results), length(max_results) == 1) query <- list( startIndex = format(begin, scientific = FALSE), maxResults = format(max_results, scientific = FALSE) ) url <- paste0(base_url, bq_path(x$project, dataset = x$dataset, table = x$table, data = "")) url <- httr::modify_url(url, query = prepare_bq_query(query)) if (bq_has_token()) { token <- .auth$get_cred() signed <- token$sign("GET", url) url <- signed$url headers <- signed$headers } else { headers <- list() } h <- curl::new_handle(url = url) curl::handle_setopt(h, useragent = bq_ua()) curl::handle_setheaders(h, .list = headers) h } bq_download_callback <- function(path, progress = NULL) { force(path) function(result) { if (!is.null(progress)) progress$tick() bq_check_response( result$status_code, curl::parse_headers_list(result$headers)[["content-type"]], result$content ) con <- file(path, open = "wb") withr::defer(close(con)) writeBin(result$content, con) } } bq_parse_file <- function(fields, data) { fields <- brio::read_file(fields) data <- brio::read_file(data) bq_parse(fields, data) } bq_download_schema <- function(x, path) { x <- as_bq_table(x) url <- bq_path(x$project, x$dataset, x$table) query <- list(fields = "schema") json <- bq_get(url, query = query, raw = TRUE) writeBin(json, path) path }
mlgraph <- function (net, layout = c("circ", "force", "stress", "rand", "conc", "bip"), main = NULL, seed = NULL, maxiter = 100, directed = TRUE, alpha = c(1, 1, 1), scope, collRecip, undRecip, showLbs, showAtts, cex.main, coord, clu, cex, lwd, pch, lty, bwd, bwd2, att, bg, mar, pos, asp, ecol, vcol, vcol0, col, lbat, swp, loops, swp2, mirrorX, mirrorY, mirrorD, mirrorL, lbs, mirrorV, mirrorH, rot, hds, scl, vedist, ffamily, fstyle, fsize, fcol, valued, modes, elv, lng, ...) { mlv <- net if (isTRUE("Multilevel" %in% attr(net, "class")) == TRUE) { if ("bpn" %in% attr(mlv, "class") || "cn2" %in% attr(mlv, "class")) { net <- mlv$mlnet[, , which(mlv$modes == "1M")] met <- mlv$mlnet[, , which(mlv$modes == "2M")] } else if ("cn" %in% attr(mlv, "class")) { met <- multiplex::dichot(mlv$mlnet, c = max(mlv$mlnet) + 1L) net <- mlv$mlnet } else { vcn <- vector() for (i in seq_len(length(mlv$mlnet))) { vcn <- append(vcn, dimnames(mlv$mlnet[[i]])[[1]]) vcn <- append(vcn, dimnames(mlv$mlnet[[i]])[[2]]) } rm(i) bmlbs <- unique(vcn) bmat <- multiplex::transf(mlv$mlnet[[1]], type = "toarray2", lbs = bmlbs) for (k in seq(from = 2, to = length(mlv$mlnet))) { bmat <- multiplex::zbnd(bmat, multiplex::transf(mlv$mlnet[[k]], type = "toarray2", lbs = bmlbs)) } rm(k) dimnames(bmat)[[1]] <- dimnames(bmat)[[2]] <- bmlbs dimnames(bmat)[[3]] <- attr(mlv$mlnet, "names") for (i in which(mlv$modes == "2M")) { bmat[, , i] <- bmat[, , i] + t(bmat[, , i]) } rm(i) net <- bmat[, , which(mlv$modes == "1M")] met <- bmat[, , which(mlv$modes == "2M")] } } else { if ((missing(modes) == FALSE && is.vector(modes) == TRUE) && (missing(clu) == FALSE && is.vector(clu) == TRUE)) { ifelse(is.numeric(modes) == TRUE, modes <- paste(modes, "M", sep = ""), NA) mlv <- list(mlnet = net, lbs = list(dm = dimnames(net)[[1]][which(clu == 1)], cdm = dimnames(net)[[1]][which(clu == 2)]), modes = modes) net <- mlv$mlnet[, , which(mlv$modes == "1M")] met <- mlv$mlnet[, , which(mlv$modes == "2M")] } else { stop("\"net\" should be of a \"Multilevel\" class object or at least a 3D array with clustering info.") } } ifelse(isTRUE(dim(net)[3] == 1) == TRUE, net <- net[, , 1], NA) ifelse(missing(valued) == FALSE && isTRUE(valued == TRUE) == TRUE, valued <- TRUE, valued <- FALSE) ifelse(missing(loops) == FALSE && isTRUE(loops == FALSE) == TRUE, loops <- FALSE, loops <- TRUE) ifelse(missing(collRecip) == FALSE && isTRUE(collRecip == FALSE) == TRUE, collRecip <- FALSE, collRecip <- TRUE) ifelse(missing(undRecip) == FALSE && isTRUE(undRecip == FALSE) == TRUE, undRecip <- FALSE, undRecip <- TRUE) ifelse(missing(mirrorH) == FALSE && isTRUE(mirrorH == TRUE) == TRUE, mirrorY <- TRUE, NA) ifelse(missing(mirrorV) == FALSE && isTRUE(mirrorV == TRUE) == TRUE, mirrorX <- TRUE, NA) if (missing(showLbs) == FALSE && isTRUE(showLbs == TRUE) == TRUE) { showLbs <- TRUE } else if (missing(showLbs) == FALSE && isTRUE(showLbs == FALSE) == TRUE) { showLbs <- FALSE } else { ifelse(is.null(dimnames(net)[[1]]) == FALSE, showLbs <- TRUE, showLbs <- FALSE) } ifelse(missing(showAtts) == FALSE && isTRUE(showAtts == FALSE) == TRUE, showAtts <- FALSE, showAtts <- TRUE) ifelse(missing(swp) == FALSE && isTRUE(swp == TRUE) == TRUE, swp <- TRUE, swp <- FALSE) ifelse(missing(swp2) == FALSE && isTRUE(swp2 == TRUE) == TRUE, swp2 <- TRUE, swp2 <- FALSE) ifelse(isTRUE(directed == FALSE) == TRUE, directed <- FALSE, NA) if (missing(scope) == FALSE) { if (isTRUE(is.list(scope) == TRUE) == FALSE) stop("\"scope\" should be a list or a vector of lists.") scope <- list(scope) ifelse(is.null(scope[[1]]) == TRUE, scope <- scope[2:length(scope)], NA) if (isTRUE(length(scope) > 1L) == TRUE && isTRUE(names(scope[1]) == "coord") == TRUE) { scope <- scope[rev(seq_len(length(scope)))] flgrev <- TRUE } else { flgrev <- FALSE } tmp <- scope[[1]] if (isTRUE(length(scope) > 1L) == TRUE && isTRUE(length(scope[[1]]) > 1L) == TRUE) { for (k in 2:length(scope)) { tmp[length(tmp) + 1L] <- as.list(scope[k]) names(tmp)[length(tmp)] <- attr(scope[k], "names") } rm(k) } else if (isTRUE(length(scope) > 1L) == TRUE) { names(tmp) <- attr(scope[1], "names") for (k in 2:length(scope)) { if (is.list(scope[[k]]) == TRUE && is.data.frame(scope[[k]]) == FALSE) { for (j in seq_len(length(scope[[k]]))) { tmp[length(tmp) + 1L] <- as.list(scope[[k]][j]) names(tmp)[length(tmp)] <- attr(scope[[k]][j], "names") } rm(j) } else if (is.data.frame(scope[[k]]) == FALSE) { tmp[length(tmp) + 1L] <- as.list(scope[k]) names(tmp)[length(tmp)] <- attr(scope[k], "names") } else if (is.data.frame(scope[[k]]) == TRUE) { tmp[length(tmp) + 1L] <- as.vector(scope[k]) names(tmp)[length(tmp)] <- attr(scope[k], "names") } else { NA } } rm(k) } else { tmp <- scope[[1]] } ifelse(isTRUE(flgrev == TRUE) == TRUE, scope <- tmp[rev(seq_len(length(tmp)))], scope <- tmp) for (i in seq_len(length(scope))) { if (isTRUE(names(scope)[i] %in% c("seed", "main")) == TRUE) { tmpi <- as.vector(scope[[i]]) assign(names(scope)[i], get("tmpi")) } else { if (is.null((scope[[i]])) == FALSE) { tmpi <- as.vector(scope[[i]]) ifelse(isTRUE(names(scope)[i] != "") == TRUE, assign(names(scope)[i], get("tmpi")), NA) } } } rm(i) } else { NA } ifelse(missing(lng) == TRUE, lng <- 50, NA) ifelse(isTRUE(lng <= 2) == TRUE, lng <- 3L, NA) if (missing(lwd) == TRUE) { flglwd <- FALSE lwd <- 1 } else { flglwd <- TRUE } ifelse(missing(fcol) == TRUE, fcol <- 1, NA) if (missing(pch) == TRUE) { pch <- c(rep(21, length(mlv$lbs$dm)), rep(22, length(mlv$lbs$cdm))) ifelse(missing(vcol) == TRUE, vcol <- c(" NA) ifelse(missing(vcol0) == TRUE, vcol0 <- c(" " } else { ifelse(isTRUE(length(pch) == 2) == TRUE, pch <- c(rep(pch[1], length(mlv$lbs$dm)), rep(pch[2], length(mlv$lbs$cdm))), pch <- pch[seq_len(length(mlv$lbs$dm) + length(mlv$lbs$cdm))]) } ifelse(missing(bwd) == TRUE, bwd <- 1, NA) ifelse(isTRUE(bwd < 0L) == TRUE, bwd <- 0L, NA) ifelse(missing(bg) == TRUE, bg <- graphics::par()$bg, NA) ifelse(missing(cex.main) == TRUE, cex.main <- graphics::par()$cex.main, NA) ifelse(missing(rot) == TRUE, NA, rot <- rot[1] * -1) if (isTRUE(length(alpha) < 2) == TRUE) { alfa <- 1 alpha <- rep(alpha, 3) } else { alfa <- alpha[2] } if (isTRUE(length(alpha) < 3) == TRUE) alpha <- append(alpha, 0.1) if (!(missing(hds)) && missing(scl) == TRUE) { if (isTRUE(hds > 1L) == TRUE) { hds <- (hds/1.5) } else if (isTRUE(hds < 1L) == TRUE) { hds <- (hds/(hds + 0.15)) } else if (isTRUE(hds == 0L) == TRUE) { hds <- 0.01 } else { NA } } else { ifelse(missing(scl) == TRUE, hds <- 1L, hds <- 1L * scl) } ifelse(isTRUE(dim(net)[1] > 8) == TRUE || isTRUE(valued == TRUE) == TRUE || isTRUE(min(lwd) >= 4) == TRUE, hds <- hds * 0.75, NA) ifelse(missing(scl) == TRUE, scl <- rep(1, 2), NA) ifelse(isTRUE(length(scl) == 1) == TRUE, scl <- rep(scl, 2), scl <- scl[1:2]) ifelse(missing(vedist) == TRUE, vedist <- 0, NA) ifelse(isTRUE(vedist > 1L) == TRUE, vedist <- 1L, NA) n <- dim(net)[1] ifelse(isTRUE(is.na(dim(net)[3]) == TRUE) == TRUE, z <- 1L, z <- dim(net)[3]) if (missing(lbs) == TRUE) { ifelse(is.null(dimnames(net)[[1]]) == TRUE, lbs <- as.character(seq_len(dim(net)[1])), lbs <- dimnames(net)[[1]]) } else { NA } ifelse(isTRUE(swp == TRUE) == TRUE && isTRUE(z > 1L) == TRUE, net <- net[, , rev(seq_len(z))], NA) if (missing(att) == FALSE && is.array(att) == TRUE) { if (isTRUE(n != dim(att)[1]) == TRUE) { warning("Dimensions in \"net\" and \"att\" differ. No attributes are shown.") showAtts <- FALSE } } netd <- multiplex::dichot(net, c = 1L) if (isTRUE(collRecip == TRUE) == TRUE && isTRUE(valued == TRUE) == FALSE) { if (isTRUE(z == 1L) == TRUE) { nt <- netd + t(netd) rcp <- multiplex::dichot(nt, c = 2L) rcp[lower.tri(rcp, diag = TRUE)] <- 0L } else { nt <- array(0L, dim = c(n, n, z)) dimnames(nt)[[1]] <- dimnames(nt)[[2]] <- lbs dimnames(nt)[[3]] <- dimnames(net)[[3]] for (i in seq_len(z)) { nt[, , i] <- netd[, , i] + t(netd[, , i]) } rm(i) rcp <- multiplex::dichot(nt, c = 2L) for (i in seq_len(z)) { rcp[, , i][lower.tri(rcp[, , i], diag = TRUE)] <- 0L } rm(i) } } else { NA } bd <- multiplex::bundles(netd, loops = loops, lb2lb = FALSE, collapse = FALSE) ifelse(isTRUE(z == 1L) == TRUE, r <- 1L, r <- length(bd[[1]])) ifelse(isTRUE(sum(net) == 0) == TRUE && isTRUE(loops == TRUE) == TRUE, bd$loop <- character(0), NA) bds <- multiplex::summaryBundles(bd, byties = TRUE) m <- dim(met)[1] ifelse(isTRUE(is.na(dim(met)[3]) == TRUE) == TRUE, zz <- 1L, zz <- dim(met)[3]) if (isTRUE(zz == 1L) == TRUE) { mt <- met + t(met) rcpm <- multiplex::dichot(mt, c = 2L) rcpm[lower.tri(rcpm, diag = TRUE)] <- 0L } else { mt <- array(0L, dim = c(m, m, zz)) dimnames(mt)[[1]] <- dimnames(mt)[[2]] <- lbs dimnames(mt)[[3]] <- dimnames(met)[[3]] for (i in seq_len(zz)) { mt[, , i] <- met[, , i] + t(met[, , i]) } rm(i) rcpm <- multiplex::dichot(mt, c = 2L) for (i in seq_len(zz)) { rcpm[, , i][lower.tri(rcpm[, , i], diag = TRUE)] <- 0L } rm(i) } bdm <- multiplex::bundles(met, loops = FALSE, lb2lb = FALSE, collapse = FALSE) bdsm <- multiplex::summaryBundles(bdm, byties = TRUE) ifelse(isTRUE(zz == 1L) == TRUE, rr <- 1L, rr <- length(bdm[[1]])) ifelse(missing(ecol) == TRUE, ecol <- grDevices::gray.colors(r, start = 0.1, end = 0.5), NA) ifelse(missing(ecol) == FALSE && isTRUE(length(ecol) == 2) == TRUE, ecol <- c(rep(ecol[1], length(which(mlv$modes == "1M"))), rep(ecol[2], length(which(mlv$modes == "2M")))), NA) ifelse(isTRUE(ecol == 0) == TRUE, ecol <- " if (isTRUE(valued == TRUE) == TRUE) { ifelse(missing(lty) == TRUE, lty <- rep(1, r + rr), NA) } else { ifelse(missing(lty) == TRUE, lty <- seq_len(r + rr), NA) } if (isTRUE((z + zz) == 1L) == TRUE) { Lt <- lty[1] vecol <- ecol[1] } else { ifelse(isTRUE(length(ecol) == 1L) == TRUE, vecol <- rep(ecol, z + zz), vecol <- rep(ecol, z + zz)[seq_len(z + zz)]) ifelse(isTRUE(length(lty) == 1L) == TRUE, Lt <- seq_len(r + rr), Lt <- rep(lty, r + rr)[seq_len(r + rr)]) if (isTRUE(length(lty) == length(Lt)) == FALSE) { Ltc <- seq_along(vecol) } else { if (isTRUE(seq(lty) == lty) == TRUE) { Ltc <- Lt } else { ifelse(isTRUE(swp == TRUE) == TRUE && isTRUE(valued == TRUE) == FALSE, Ltc <- rev(seq_len(r + rr)), Ltc <- seq_len(r + rr)) } } } vltz <- Lt if (missing(clu) == FALSE) { if ("cn2" %in% attr(mlv, "class")) { clu <- clu[[1]] } else { NA } if (is.list(clu) == TRUE) { ifelse(is.factor(clu[[1]]) == TRUE, uact <- levels(clu[[1]]), uact <- unique(clu[[1]])) ifelse(is.factor(clu[[2]]) == TRUE, uevt <- levels(clu[[2]]), uevt <- unique(clu[[2]])) clutmp <- clu if (is.character(uact) == TRUE) { tmpa <- as.vector(clu[[1]]) for (i in seq_len(length(uact))) { tmpa[which(tmpa == uact[i])] <- i } rm(i) clu[[1]] <- as.numeric(tmpa) rm(tmpa) } if (is.character(uevt) == TRUE) { tmpe <- as.vector(clu[[2]]) for (i in seq_len(length(uevt))) { tmpe[which(tmpe == uevt[i])] <- i } rm(i) clu[[2]] <- as.numeric(tmpe) rm(tmpe) } if (any(clutmp[[2]] %in% clutmp[[1]]) == TRUE) { k <- 0L tmp2 <- clutmp[[2]] while (any(tmp2 %in% clutmp[[1]]) == TRUE) { tmp2 <- replace(tmp2, which(tmp2 == min(tmp2)), (max(clutmp[[1]]) + k)) k <- k + 1L } clutmp[[2]] <- tmp2 rm(tmp2) clu <- as.vector(unlist(clutmp)) } else if (any(clu[[2]] %in% clu[[1]]) == TRUE) { k <- 0L tmp2 <- clu[[2]] while (any(tmp2 %in% clu[[1]]) == TRUE) { tmp2 <- replace(tmp2, which(tmp2 == min(tmp2)), (max(clu[[1]]) + k)) k <- k + 1L } clu[[2]] <- tmp2 rm(tmp2) clu <- as.vector(unlist(clu)) } } else { NA } nclu <- nlevels(factor(clu)) } else { nclu <- 1L } flgcx <- FALSE if (missing(cex) == TRUE && isTRUE(loops == FALSE) == TRUE) { if (isTRUE(length(bds) == 0) == TRUE) { cex <- 1L } else { cex <- length(bds[[1]])/2L if (isTRUE(length(bds) > 1L) == TRUE) { for (i in 2:length(bds)) ifelse(isTRUE(cex < (length(bds[[i]])/2L)) == TRUE, cex <- (length(bds[[i]])/2L), NA) } cex <- ceiling(cex) } } else if (missing(cex) == TRUE) { cex <- 1L } if (isTRUE(length(cex) == 1L) == TRUE) { cex <- rep(cex, n) } else { if (is.vector(cex) == FALSE) stop("'cex' must be a vector") cex[which(is.na(cex))] <- 0 cex <- cex[seq_len(n)] flgcx <- TRUE } if (isTRUE(flgcx == TRUE) == TRUE && isTRUE(max(cex) > 10L) == TRUE) { if (isTRUE(mean(cex) > 20L) == TRUE) { cex <- (((cex - min(cex))/(max(cex) - min(cex))) * 10L) } else { cex <- (cex/(norm(as.matrix(cex), type = "M"))) * 10L } ifelse(isTRUE(min(cex) == 0) == TRUE, cex <- cex + 1L + (2L/n), NA) } else if (isTRUE(flgcx == FALSE) == TRUE && isTRUE(valued == TRUE) == TRUE) { ifelse(isTRUE(max(cex) >= 21L) == TRUE, cex <- 20L, NA) } else { NA } if (missing(fsize) == TRUE) { ifelse(isTRUE(max(cex) < 2) == TRUE, fsize <- cex * 0.66, fsize <- cex * 0.33) } else { fsize <- fsize/10 } ifelse(isTRUE(valued == FALSE) == TRUE && isTRUE(bwd > 1L) == TRUE, bwd <- 1L, NA) ifelse(isTRUE(max(cex) < 2) == TRUE, NA, bwd <- bwd * 0.75) if (isTRUE(length(pch) == 1L) == TRUE) { pch <- rep(pch, n) } else if (isTRUE(length(pch) == nclu) == TRUE) { if (identical(pch, clu) == FALSE) { tmppch <- rep(0, n) for (i in seq_len(nclu)) { tmppch[which(clu == (levels(factor(clu))[i]))] <- pch[i] } rm(i) pch <- tmppch rm(tmppch) } } else if (isTRUE(length(pch) != n) == TRUE) { pch <- rep(pch[1], n) } if (missing(vcol) == TRUE) { vcol <- grDevices::gray.colors(nclu) ifelse(missing(col) == TRUE, NA, vcol <- col) } else { if (isTRUE(length(vcol) == 1L) == TRUE) { vcol <- rep(vcol, n) } else if (isTRUE(length(vcol) == nclu) == TRUE) { if (identical(vcol, clu) == FALSE) { tmpvcol <- rep(0, n) for (i in seq_len(nclu)) { tmpvcol[which(clu == (levels(factor(clu))[i]))] <- vcol[i] } rm(i) vcol <- tmpvcol rm(tmpvcol) } } else if (isTRUE(length(vcol) != n) == TRUE & isTRUE(nclu == 1) == TRUE) { vcol <- rep(vcol[1], n) } vcol[which(is.na(vcol))] <- graphics::par()$bg vcol[which(vcol == 0)] <- graphics::par()$bg } if (isTRUE(any(pch %in% 21:25)) == TRUE) { if (missing(vcol0) == TRUE) { vcol0 <- vcol } else { ifelse(missing(vcol0) == TRUE, NA, vcol0[which(is.na(vcol0))] <- 1) } if (isTRUE(length(vcol0) == 1L) == TRUE) { vcol0 <- rep(vcol0, n) } else if (isTRUE(length(vcol0) == nclu) == TRUE) { if (identical(vcol0, clu) == FALSE) { tmpvcol0 <- rep(0, n) for (i in seq_len(nclu)) { tmpvcol0[which(clu == (levels(factor(clu))[i]))] <- vcol0[i] } rm(i) vcol0 <- tmpvcol0 rm(tmpvcol0) } } else if (isTRUE(length(vcol0) != n) == TRUE | isTRUE(nclu == 1) == TRUE) { vcol0 <- rep(vcol0[1], n) } } else { vcol0 <- vcol } ifelse(isTRUE(n > 20) == TRUE, ffds <- 0.2, ffds <- 0) fds <- 180L - (n * ffds) if (isTRUE(flgcx == TRUE) == TRUE) { fds <- fds - 10L } else if (isTRUE(flgcx == FALSE) == TRUE) { NA } if (isTRUE(max(scl) < 1) == TRUE) { fds <- fds - (1/(mean(scl)/30L)) } else if (isTRUE(max(scl) > 1) == TRUE) { fds <- fds + (mean(scl) * 20L) } else { NA } if (missing(coord) == FALSE) { if (isTRUE(nrow(coord) == n) == FALSE) stop("Length of 'coord' does not match network order.") flgcrd <- TRUE crd <- coord } else if (missing(coord) == TRUE) { flgcrd <- FALSE switch(match.arg(layout), force = { crd <- frcd(zbnd(netd, met), seed = seed, maxiter = maxiter) }, circ = { crd <- data.frame(X = sin(2L * pi * ((0:(n - 1L))/n)), Y = cos(2L * pi * ((0:(n - 1L))/n))) }, stress = { crd <- stsm(zbnd(netd, met), seed = seed, maxiter = maxiter, ...) }, rand = { set.seed(seed) crd <- data.frame(X = round(stats::runif(n) * 1L, 5), Y = round(stats::runif(n) * 1L, 5)) }, conc = { crd <- conc(netd, ...) }, bip = { act <- nrm(rng(length(mlv$lbs$dm))) evt <- nrm(rng(length(mlv$lbs$cdm))) Act <- cbind(rep(0, length(mlv$lbs$dm)), act) Evt <- cbind(rep(1, length(mlv$lbs$cdm)), evt) crd <- rbind(Act, Evt) crd[which(is.nan(crd))] <- 0.5 crd[, 2] <- crd[, 2] * cos(pi) - crd[, 1] * sin(pi) rownames(crd) <- lbs fds <- fds - 30L }) } if (match.arg(layout) == "bip") { ifelse(missing(asp) == TRUE, asp <- 2L, asp <- asp[1] * 2L) } else { ifelse(missing(asp) == TRUE, asp <- 1, NA) } if (missing(rot) == FALSE) { crd[, 1:2] <- xyrt(crd[, 1:2], as.numeric(rot)) crd[, 1:2] <- crd[, 1:2] - min(crd[, 1:2]) cnt <- 1L ifelse(isTRUE(n == 2) == TRUE && isTRUE(rot == -90) == TRUE, rot <- -89.9, NA) } else { cnt <- 0 } if (isTRUE(flgcrd == FALSE) == TRUE) { if (match.arg(layout) == "circ" && missing(pos) == TRUE) { angl <- vector() length(angl) <- n for (i in seq_len(n)) { ifelse((atan2((crd[i, 2] - cnt), (crd[i, 1] - cnt)) * (180L/pi)) >= 0, angl[i] <- atan2((crd[i, 2] - cnt), (crd[i, 1] - cnt)) * (180L/pi), angl[i] <- ((atan2((crd[i, 2] - cnt), (crd[i, 1] - cnt)) * (180L/pi))%%180L) + 180L) } rm(i) pos <- vector() for (i in seq_len(length(angl))) { if (isTRUE(65 < angl[i]) == TRUE && isTRUE(115 > angl[i]) == TRUE) { pos <- append(pos, 3) } else if (isTRUE(115 <= angl[i]) == TRUE && isTRUE(245 >= angl[i]) == TRUE) { pos <- append(pos, 2) } else if (isTRUE(245 < angl[i]) == TRUE && isTRUE(295 > angl[i]) == TRUE) { pos <- append(pos, 1) } else { pos <- append(pos, 4) } } rm(i) } } if (missing(pos) == TRUE) { pos <- 4 } else { if (isTRUE(pos < 0L) == TRUE | isTRUE(pos > 4L) == TRUE) stop("Invalid \"pos\" value.") } ifelse(missing(mirrorX) == FALSE && isTRUE(mirrorX == TRUE) == TRUE || missing(mirrorV) == FALSE && isTRUE(mirrorV == TRUE) == TRUE, crd[, 1] <- crd[, 1] * cos(pi) - crd[, 2] * sin(pi), mirrorX <- FALSE) ifelse(missing(mirrorY) == FALSE && isTRUE(mirrorY == TRUE) == TRUE || missing(mirrorH) == FALSE && isTRUE(mirrorH == TRUE) == TRUE, crd[, 2] <- crd[, 2] * cos(pi) - crd[, 1] * sin(pi), mirrorY <- FALSE) if (match.arg(layout) == "circ" && isTRUE(flgcrd == FALSE) == TRUE) { if (isTRUE(mirrorX == TRUE) == TRUE && isTRUE(length(pos) == n) == TRUE) { pos[which(pos == 2)] <- 0 pos[which(pos == 4)] <- 2 pos[which(pos == 0)] <- 4 } else if (isTRUE(mirrorY == TRUE) == TRUE && isTRUE(length(pos) == n) == TRUE) { pos[which(pos == 1)] <- 0 pos[which(pos == 3)] <- 1 pos[which(pos == 0)] <- 3 } else { NA } } if (missing(mirrorL) == FALSE && isTRUE(mirrorL == TRUE) == TRUE) { crd[, 1:2] <- xyrt(crd[, 1:2], as.numeric(45)) crd[, 1:2] <- crd[, 1:2] - min(crd[, 1:2]) crd[, 2] <- crd[, 2] * cos(pi) - crd[, 1] * sin(pi) crd[, 1:2] <- xyrt(crd[, 1:2], as.numeric(-45)) crd[, 1:2] <- crd[, 1:2] - min(crd[, 1:2]) } else if (missing(mirrorD) == FALSE && isTRUE(mirrorD == TRUE) == TRUE) { crd[, 1:2] <- xyrt(crd[, 1:2], as.numeric(-45)) crd[, 1:2] <- crd[, 1:2] - min(crd[, 1:2]) crd[, 2] <- crd[, 2] * cos(pi) - crd[, 1] * sin(pi) crd[, 1:2] <- xyrt(crd[, 1:2], as.numeric(45)) crd[, 1:2] <- crd[, 1:2] - min(crd[, 1:2]) } else { NA } if (isTRUE(n > 1) == TRUE) { rat <- (max(crd[, 1]) - min(crd[, 1]))/(max(crd[, 2]) - min(crd[, 2])) crd[, 1] <- (crd[, 1] - min(crd[, 1]))/(max(crd[, 1]) - min(crd[, 1])) ifelse(isTRUE(rat > 0) == TRUE, crd[, 2] <- ((crd[, 2] - min(crd[, 2]))/(max(crd[, 2]) - min(crd[, 2]))) * (1L/rat), crd[, 2] <- ((crd[, 2] - min(crd[, 2]))/(max(crd[, 2]) - min(crd[, 2]))) * (rat)) } else { NA } fds <- fds + (vedist * -10) if (isTRUE(flgcrd == TRUE) == TRUE && isTRUE(ncol(crd) > 2) == TRUE) { lbgml <- tolower(as.vector(crd[, 3])) lbnet <- tolower(as.vector(lbs)) lbp <- vector() for (i in seq_len(nrow(crd))) { lbp <- append(lbp, which(lbnet[i] == lbgml)) } rm(i) if (isTRUE(ncol(crd) > 3) == TRUE) { atgml <- as.vector(crd[, 4]) atgml[which(is.na(atgml))] <- "" atts <- atgml[lbp] } nds <- data.frame(X = as.numeric(as.vector(crd[lbp, 1])), Y = as.numeric(as.vector(crd[lbp, 2]))) } else { nds <- data.frame(X = as.numeric(as.vector(crd[, 1])), Y = as.numeric(as.vector(crd[, 2]))) } nds <- ((2L/max(nds * (0.75))) * (nds * 0.75)) * (0.5) mscl <- mean(scl) cex <- cex * mscl fsize <- fsize * mscl omr <- graphics::par()$mar omi <- graphics::par()$mai if (missing(mar) == TRUE) { mar <- c(0, 0, 0, 0) } else { mar <- omr } ifelse(is.null(main) == TRUE, graphics::par(mar = mar), graphics::par(mar = mar + c(0, 0, cex.main, 0))) obg <- graphics::par()$bg graphics::par(bg = grDevices::adjustcolor(bg, alpha = alpha[3])) if (isTRUE(loops == TRUE) == TRUE) { ylim <- c(min(nds[, 2]) - ((cex[1])/200L), max(nds[, 2]) + ((cex[1])/200L)) xlim <- c(min(nds[, 1]) - ((cex[1])/200L), max(nds[, 1]) + ((cex[1])/200L)) } else if (isTRUE(flgcx == TRUE) == TRUE) { ylim <- c(min(nds[, 2]) - (max(cex)/500L), max(nds[, 2]) + (max(cex)/500L)) xlim <- c(min(nds[, 1]) - (max(cex)/500L), max(nds[, 1]) + (max(cex)/500L)) } else { ylim <- c(min(nds[, 2]) - ((cex[1])/200L), max(nds[, 2]) + ((cex[1])/200L)) xlim <- c(min(nds[, 1]) - ((cex[1])/200L), max(nds[, 1]) + ((cex[1])/200L)) } suppressWarnings(graphics::plot(nds, type = "n", axes = FALSE, xlab = "", ylab = "", ylim = ylim, xlim = xlim, asp = asp, main = main, cex.main = cex.main, ...)) tlbs <- vector() if (isTRUE(length(bds) > 0) == TRUE) { for (i in seq_len(length(attr(bds, "names")))) { ifelse(isTRUE(length(multiplex::dhc(attr(bds, "names")[i], sep = "")) > 4L) == TRUE, tlbs <- append(tlbs, tolower(paste(multiplex::dhc(attr(bds, "names")[i], sep = "")[1:4], collapse = ""))), tlbs <- append(tlbs, tolower(attr(bds, "names"))[i])) } rm(i) } tlbsm <- vector() if (isTRUE(length(bdsm) > 0) == TRUE) { for (i in seq_len(length(attr(bdsm, "names")))) { ifelse(isTRUE(length(multiplex::dhc(attr(bdsm, "names")[i], sep = "")) > 4L) == TRUE, tlbsm <- append(tlbsm, tolower(paste(multiplex::dhc(attr(bdsm, "names")[i], sep = "")[1:4], collapse = ""))), tlbsm <- append(tlbsm, tolower(attr(bdsm, "names"))[i])) } rm(i) } trcpm <- multiplex::transf(rcpm, type = "tolist") netdrp <- net ifelse(isTRUE(valued == TRUE) == TRUE && isTRUE(max(net) > 10L) == TRUE, fnnetdrp <- (norm(as.matrix(netdrp), type = "F")), NA) cx <- cex if (isTRUE(swp == TRUE) == TRUE) { Lt <- Lt[rev(seq_len(length(Lt)))] lwd <- lwd[length(lwd):1] ifelse(isTRUE(valued == TRUE) == TRUE, vecol <- vecol[rev(seq_len(length(vecol[seq_len(z)])))], NA) alfa <- alfa[rev(seq_len(length(alfa)))] } if (isTRUE(loops == TRUE) == TRUE && isTRUE(valued == TRUE) == TRUE && isTRUE(max(netdrp) > 10L) == TRUE) { if (isTRUE(z == 1L) == TRUE) { diag(netdrp) <- (diag(netdrp)/fnnetdrp) * (15L) } else { for (i in seq_len(z)) { diag(netdrp[, , i]) <- as.vector((diag(netdrp[, , i])/fnnetdrp) * (15L)) } } } else { NA } if (isTRUE(loops == TRUE) == TRUE) { tlbslp <- tlbs tlbs <- tlbs[which(tlbs != "loop")] } else { NA } if ((isTRUE(collRecip == TRUE) == TRUE && isTRUE(c("recp") %in% attr(bds, "names")) == TRUE) && isTRUE(valued == TRUE) == FALSE) { trcp <- multiplex::transf(rcp, type = "tolist") } else { NA } if (isTRUE(length(c(tlbs, tlbsm)) > 0) == TRUE) { for (k in seq_len(length(tlbsm))) { prs <- as.numeric(multiplex::dhc(bdsm[[k]])) pars <- as.matrix(nds[as.numeric(levels(factor(multiplex::dhc(bdsm[[k]])))), ]) rbdsm <- length(bdsm[[k]]) if (isTRUE(rbdsm > 0L) == TRUE) { qn <- which(tlbsm[k] == attr(bdm, "names")) if (isTRUE(zz == 1L) == TRUE) { ifelse(isTRUE(length(lty) == 1) == TRUE, vlt <- rep(lty, rbdsm), vlt <- rep(Lt[zz + 1], rbdsm)) ifelse(isTRUE(length(ecol) == 1L) == TRUE, vecolm <- rep(ecol[1], rbdsm), vecolm <- rep(ecol[z + 1], rbdsm)) tbnd <- as.vector(unlist(bdm[qn])) if (isTRUE(length(tbnd) > 0L) == TRUE) { ifelse(isTRUE(any(tbnd %in% bdsm[[k]])) == TRUE, vlt <- append(vlt, rep(Lt, qn)), NA) ifelse(isTRUE(any(tbnd %in% bdsm[[k]])) == TRUE, vltz <- append(vltz, rep(Lt, qn)), NA) } vltc <- vlt[1] } else if (isTRUE(zz > 1L) == TRUE) { vlt <- vector() for (i in seq_along(Lt)) { tbnd <- as.vector(unlist(bdm[[qn]][i])) if (isTRUE(length(tbnd) > 0L) == TRUE) { ifelse(isTRUE(any(tbnd %in% bdsm[[k]])) == TRUE, vlt <- append(vlt, rep(Lt[(z + 1):length(Lt)][i], length(which(tbnd %in% bdsm[[k]])))), NA) ifelse(isTRUE(any(tbnd %in% bdsm[[k]])) == TRUE, vltz <- append(vltz, rep(Lt[(z + 1):length(Lt)][i], length(which(tbnd %in% bdsm[[k]])))), NA) } } rm(i) if (isTRUE(length(lty) == 1L) == TRUE) { vlt1 <- rep(lty, length(vlt)) vltc <- vlt } else { vltc <- vector() if (isTRUE(Lt == Ltc) == FALSE) { for (i in seq_along(Ltc)) { tbnd <- as.vector(unlist(bdm[[qn]][i])) if (isTRUE(length(tbnd) > 0L) == TRUE) { ifelse(isTRUE(any(tbnd %in% bdsm[[k]])) == TRUE, vltc <- append(vltc, rep(Ltc[(z + 1):length(Ltc)][i], length(which(tbnd %in% bdsm[[k]])))), NA) } } rm(i) } else { if (isTRUE(seq(lty) == lty) == TRUE) { vltc <- vlt } else { for (i in seq_along(lty)) { vltc <- append(vltc, replace(vlt[which(vlt == lty[i])], vlt[which(vlt == lty[i])] != i, i)) } rm(i) } } } } ifelse(isTRUE(swp2 == TRUE) == TRUE && isTRUE(tlbsm[k] %in% c("recp")) == TRUE, bdsm[[k]] <- multiplex::swp(bdsm[[k]]), NA) if (isTRUE(valued == TRUE) == TRUE) { Lw <- vector() i <- 1 for (j in seq_len(length(bdsm[[k]]))) { qn <- c(prs[i], prs[(i + 1)]) ifelse(isTRUE(z == 1L) == TRUE, Lw <- append(Lw, met[qn[1], qn[2]]), Lw <- append(Lw, met[qn[1], qn[2]] + t(met[qn[1], qn[2]]))) i <- i + 2L } rm(j) rm(i) if (isTRUE(max(met) > 10L) == TRUE) { lw <- (Lw/fnnetdrp) * (10L * 5L) } else { lw <- Lw } } else if (isTRUE(valued == TRUE) == FALSE) { ifelse(isTRUE(length(bdsm) == 0) == TRUE, NA, lw <- rep(lwd[1], rbdsm)) } lwdfct <- (lw + (1L/lw)) * mscl if (isTRUE(collRecip == TRUE) == TRUE && isTRUE(tlbsm[k] %in% c("recp")) == TRUE) { bw <- 0L hd <- 0L ifelse(isTRUE(valued == TRUE) == TRUE, lw <- lwdfct * 1L, lw <- lwdfct * 2L) } else if (isTRUE(collRecip == TRUE) == FALSE && isTRUE(tlbsm[k] %in% c("recp")) == TRUE) { bw <- bwd hd <- hds } else { bw <- bwd hd <- 0 lw <- lwdfct } ifelse(isTRUE(directed == FALSE) == TRUE, hd <- 0L, NA) ifelse(isTRUE(flglwd == TRUE) == TRUE, lw <- rep(lwd[1], rbdsm), NA) if (isTRUE(collRecip == TRUE) == TRUE && isTRUE(tlbsm[k] %in% c("recp")) == FALSE) { flgcr <- numeric() sbdsm <- multiplex::swp(bdsm[[k]]) if (any(sbdsm %in% unlist(trcpm)) == TRUE) { for (i in seq_len(zz)) { ifelse(any(sbdsm %in% trcpm[[i]]) == TRUE, flgcr <- append(flgcr, as.numeric(i)), NA) } rm(i) } } else { flgcr <- rep(0L, zz) } pars[, 1] <- pars[, 1] * scl[1] pars[, 2] <- pars[, 2] * scl[2] if (isTRUE(zz == 1L) == TRUE) { ccbnd(pars, rbdsm, bdsm[[k]], vlt, cx * mscl, lw, vecolm, bw, alfa, fds, flgcx, flgcr, hd, m) } else { ifelse(isTRUE(length(lty) == 1L) == TRUE, ccbnd(pars, rbdsm, bdsm[[k]], vlt1, cx * mscl, lw, vecol[vltc], bw, alfa, fds, flgcx, flgcr, hd, m), ccbnd(pars, rbdsm, bdsm[[k]], vlt, cx * mscl, lw, vecol[vltc], bw, alfa, fds, flgcx, flgcr, hd, m)) } } else { NA } } rm(k) for (k in seq_len(length(tlbs))) { prs <- as.numeric(multiplex::dhc(bds[[k]])) pars <- as.matrix(nds[as.numeric(levels(factor(multiplex::dhc(bds[[k]])))), ]) rbds <- length(bds[[k]]) if (isTRUE(rbds > 0L) == TRUE) { qn <- which(tlbs[k] == attr(bd, "names")) if (isTRUE(z == 1L) == TRUE) { vlt <- rep(Lt, rbds) vecol <- rep(ecol[1], rbds) tbnd <- as.vector(unlist(bd[qn])) if (isTRUE(length(tbnd) > 0L) == TRUE) { ifelse(isTRUE(any(tbnd %in% bds[[k]])) == TRUE, vlt <- append(vlt, rep(Lt, qn)), NA) ifelse(isTRUE(any(tbnd %in% bds[[k]])) == TRUE, vltz <- append(vltz, rep(Lt, qn)), NA) } vltc <- vlt[1] } else if (isTRUE(z > 1L) == TRUE) { vlt <- vector() for (i in seq_along(Lt)) { tbnd <- as.vector(unlist(bd[[qn]][i])) if (isTRUE(length(tbnd) > 0L) == TRUE) { ifelse(isTRUE(any(tbnd %in% bds[[k]])) == TRUE, vlt <- append(vlt, rep(Lt[i], length(which(tbnd %in% bds[[k]])))), NA) ifelse(isTRUE(any(tbnd %in% bds[[k]])) == TRUE, vltz <- append(vltz, rep(Lt[i], length(which(tbnd %in% bds[[k]])))), NA) } } rm(i) if (isTRUE(length(lty) == 1L) == TRUE) { vlt1 <- rep(lty, length(vlt)) vltc <- vlt } else { vltc <- vector() if (isTRUE(Lt == Ltc) == FALSE) { for (i in seq_along(Ltc)) { tbnd <- as.vector(unlist(bd[[qn]][i])) if (isTRUE(length(tbnd) > 0L) == TRUE) { ifelse(isTRUE(any(tbnd %in% bds[[k]])) == TRUE, vltc <- append(vltc, rep(Ltc[i], length(which(tbnd %in% bds[[k]])))), NA) } } rm(i) } else { if (isTRUE(seq(lty) == lty) == TRUE) { vltc <- vlt } else { for (i in seq_along(lty)) { vltc <- append(vltc, replace(vlt[which(vlt == lty[i])], vlt[which(vlt == lty[i])] != i, i)) } rm(i) } } } } if (isTRUE(flgcx == TRUE) == FALSE) { cx <- rep(cex[1], 2) } if (isTRUE(valued == TRUE) == TRUE) { Lw <- vector() i <- 1 for (j in seq_len(length(bds[[k]]))) { qn <- c(prs[i], prs[(i + 1)]) if (isTRUE(collRecip == TRUE) == TRUE) { ifelse(isTRUE(z == 1L) == TRUE, Lw <- append(Lw, netdrp[qn[1], qn[2]]), Lw <- append(Lw, netdrp[qn[1], qn[2], vltc[j]] + t(netdrp[qn[1], qn[2], vltc[j]]))) } else if (isTRUE(collRecip == FALSE) == TRUE) { ifelse(isTRUE(z == 1L) == TRUE, Lw <- append(Lw, netdrp[qn[1], qn[2]]), Lw <- append(Lw, netdrp[qn[1], qn[2], vltc[j]])) } i <- i + 2L } if (isTRUE(max(netdrp) > 10L) == TRUE) { lw <- (Lw/fnnetdrp) * (10L * 3L) } else { lw <- Lw } } else if (isTRUE(valued == TRUE) == FALSE) { ifelse(isTRUE(length(bds) == 0) == TRUE, NA, lw <- rep(lwd[1], rbds)) } ifelse(isTRUE(swp2 == TRUE) == TRUE && isTRUE(tlbs[k] %in% c("recp")) == TRUE, bds[[k]] <- multiplex::swp(bds[[k]]), NA) ifelse(isTRUE(flglwd == TRUE) == TRUE, lw <- rep(lwd[1], rbds), NA) if (isTRUE(collRecip == TRUE) == TRUE && isTRUE(tlbs[k] %in% c("recp")) == TRUE) { bw <- 0L hd <- hds lw <- lw * mscl } else if (isTRUE(collRecip == TRUE) == FALSE && isTRUE(tlbs[k] %in% c("recp")) == TRUE) { hd <- hds } else { bw <- bwd hd <- hds lw <- lw * mscl } ifelse("cn" %in% attr(mlv, "class") && isTRUE(undRecip == TRUE) == TRUE, hd <- 0L, NA) ifelse(isTRUE(directed == FALSE) == TRUE, hd <- 0L, NA) if (isTRUE(collRecip == TRUE) == TRUE && isTRUE(tlbs[k] %in% c("recp")) == FALSE && isTRUE(valued == TRUE) == FALSE && isTRUE(c("recp") %in% attr(bds, "names")) == TRUE) { flgcr <- numeric() sbds <- multiplex::swp(bds[[k]]) if (any(sbds %in% unlist(trcp)) == TRUE) { for (i in seq_len(z)) { ifelse(any(sbds %in% trcp[[i]]) == TRUE, flgcr <- append(flgcr, as.numeric(i)), NA) } rm(i) } } else { flgcr <- rep(0L, z) } pars[, 1] <- pars[, 1] * scl[1] pars[, 2] <- pars[, 2] * scl[2] if (match.arg(layout) == "bip") { if (missing(elv) == TRUE) { elv <- 0.25 } else { ifelse(isTRUE(elv > 1L) == TRUE, elv <- 1L, NA) } bzrc((pars), cex = cx, lty = vlt, col = vecol[vltc], lwd = lw, elv = elv, ...) } else { if (isTRUE(z == 1L) == TRUE) { ccbnd(pars, rbds, bds[[k]], vlt, cx * mscl, lw, vecol, bw, alfa, fds, flgcx, flgcr, hd, n) } else { ifelse(isTRUE(length(lty) == 1L) == TRUE, ccbnd(pars, rbds, bds[[k]], vlt1, cx * mscl, lw, vecol[vltc], bw, alfa, fds, flgcx, flgcr, hd, n), ccbnd(pars, rbds, bds[[k]], vlt, cx * mscl, lw, vecol[vltc], bw, alfa, fds, flgcx, flgcr, hd, n)) } } } else { NA } } rm(k) } else { NA } if (isTRUE(loops == TRUE) == TRUE) { if (isTRUE(swp == TRUE) == TRUE) { bdlp <- bd$loop[rev(seq_len(length(bd$loop)))] if (isTRUE(valued == TRUE) == FALSE) { NA } else { vecol <- vecol[rev(seq_len(length(vecol)))] netdrpl <- netdrp[, , rev(seq_len(dim(netdrp)[3]))] } } else { bdlp <- bd$loop ifelse(isTRUE(valued == TRUE) == TRUE, netdrpl <- netdrp, NA) } dz <- (rng(z) + abs(min(rng(z))))/(10L) ndss <- nds ndss[, 1] <- ndss[, 1] * scl[1] ndss[, 2] <- ndss[, 2] * scl[2] if (isTRUE(z == 1L) == TRUE) { lp <- as.vector(which(diag(net) > 0)) if (isTRUE(length(lp) > 0) == TRUE) { for (i in seq_len(length(lp))) { if (isTRUE(n < 3) == TRUE) { dcx <- (cex[lp[i]] * 0.0075) lpsz <- (cex[lp[i]] * 0.005) - (dz) } else { dcx <- (cex[lp[i]] * 0.01) lpsz <- (cex[lp[i]] * 0.0075) - (dz) } hc(ndss[lp[i], 1], ndss[lp[i], 2] + (dcx), lpsz, col = vecol, lty = Lt, lwd = lwd) } rm(i) } else { NA } } else if (isTRUE(z > 1) == TRUE) { ifelse(missing(bwd2) == TRUE, bwd2 <- 1L, NA) ifelse(missing(bwd2) == FALSE && (isTRUE(bwd2 < 1L) == TRUE && isTRUE(bwd2 == 0) == FALSE), bwd2 <- 1L, NA) ifelse(missing(bwd2) == FALSE && isTRUE(bwd2 > 2L) == TRUE, bwd2 <- 2L, NA) if (missing(bwd2) == FALSE && isTRUE(bwd2 == 0) == TRUE) { dz <- rep(0, z) } else { if (isTRUE(valued == TRUE) == TRUE) { dz <- (bwd2 * 1L) * (rng(z) + abs(min(rng(z))))/(5L) } else { dz <- (bwd2 * 1L) * (rng(z) + abs(min(rng(z))))/(10L) } } ifelse(isTRUE(length(lwd) == 1) == TRUE, lwd <- rep(lwd, z), NA) for (k in seq_len(length(bdlp))) { lp <- as.numeric(unique(multiplex::dhc(bdlp)[k][[1]])) if (isTRUE(length(lp) > 0) == TRUE) { for (i in seq_len(length(lp))) { ifelse(isTRUE(cex[lp[i]] <= 3L) == TRUE | isTRUE(n < 3) == TRUE, dz <- dz * 0.75, NA) if (isTRUE(n < 3) == TRUE) { dcx <- cex[lp[i]]/110L lpsz <- abs((cex[lp[i]] * 0.007) - dz[k]) } else { dcx <- cex[lp[i]]/100L lpsz <- abs((cex[lp[i]] * 0.0075) - dz[k]) } ifelse(isTRUE(length(lty) == 1) == TRUE, Ltl <- rep(lty, length(bdlp)), Ltl <- Lt) ifelse(isTRUE(valued == TRUE) == TRUE, hc(ndss[lp[i], 1], ndss[lp[i], 2] + (dcx), lpsz, col = grDevices::adjustcolor(vecol[k], alpha = alfa), lty = Ltl[k], lwd = netdrpl[i, i, k]), hc(ndss[lp[i], 1], ndss[lp[i], 2] + (dcx), lpsz, col = grDevices::adjustcolor(vecol[k], alpha = alfa), lty = Ltl[k], lwd = lwd[k])) hc(ndss[lp[i], 1], ndss[lp[i], 2] + (dcx), lpsz, col = grDevices::adjustcolor(vecol[k], alpha = alfa), lty = Lt[k], lwd = lwd[k]) } rm(i) } else { dz <- append(0, dz) } } rm(k) } } else { NA } if (all(pch %in% 21:25) == TRUE) { graphics::points(nds[, 1] * scl[1], nds[, 2] * scl[2], pch = pch, cex = cex, col = grDevices::adjustcolor(vcol0, alpha = alpha[1]), bg = grDevices::adjustcolor(vcol, alpha = alpha[1])) } else { graphics::points(nds[, 1] * scl[1], nds[, 2] * scl[2], pch = pch, cex = cex, col = grDevices::adjustcolor(vcol, alpha = alpha[1]), bg = grDevices::adjustcolor(vcol, alpha = alpha[1])) } if (isTRUE(showLbs == TRUE) == TRUE) { ndss <- nds ndss[, 1] <- ndss[, 1] * scl[1] ndss[, 2] <- ndss[, 2] * scl[2] ifelse(missing(ffamily) == FALSE && isTRUE(ffamily %in% names(grDevices::postscriptFonts())) == TRUE, graphics::par(family = ffamily), NA) if (isTRUE(length(pos) == 1) == TRUE) { if (isTRUE(pos == 0) == TRUE) { if (missing(fstyle) == TRUE || (missing(fstyle) == FALSE && isTRUE(fstyle %in% c("italic", "bold", "bolditalic") == FALSE))) { graphics::text(ndss, labels = lbs, cex = fsize, adj = 0.5, col = fcol) } else if (missing(fstyle) == FALSE) { if (isTRUE(fstyle == "italic") == TRUE) { graphics::text(ndss, labels = as.expression(lapply(lbs, function(x) bquote(italic(.(x))))), cex = fsize, adj = 0.5, col = fcol) } else if (isTRUE(fstyle == "bold") == TRUE) { graphics::text(ndss, labels = as.expression(lapply(lbs, function(x) bquote(bold(.(x))))), cex = fsize, adj = 0.5, col = fcol) } else if (isTRUE(fstyle == "bolditalic") == TRUE) { graphics::text(ndss, labels = as.expression(lapply(lbs, function(x) bquote(bolditalic(.(x))))), cex = fsize, adj = 0.5, col = fcol) } } } else { if (missing(fstyle) == TRUE || (missing(fstyle) == FALSE && isTRUE(fstyle %in% c("italic", "bold", "bolditalic") == FALSE))) { graphics::text(ndss, lbs, cex = fsize, pos = pos, col = fcol, offset = (cex/4L), adj = c(0.5, 1)) } else if (missing(fstyle) == FALSE) { if (isTRUE(fstyle == "italic") == TRUE) { graphics::text(ndss, as.expression(lapply(lbs, function(x) bquote(italic(.(x))))), cex = fsize, pos = pos, col = fcol, offset = (cex/4L), adj = c(0.5, 1)) } else if (isTRUE(fstyle == "bold") == TRUE) { graphics::text(ndss, as.expression(lapply(lbs, function(x) bquote(bold(.(x))))), cex = fsize, pos = pos, col = fcol, offset = (cex/4L), adj = c(0.5, 1)) } else if (isTRUE(fstyle == "bolditalic") == TRUE) { graphics::text(ndss, as.expression(lapply(lbs, function(x) bquote(bolditalic(.(x))))), cex = fsize, pos = pos, col = fcol, offset = (cex/4L), adj = c(0.5, 1)) } } } } else if (isTRUE(length(pos) == n) == TRUE) { if (missing(fstyle) == TRUE || (missing(fstyle) == FALSE && isTRUE(fstyle %in% c("italic", "bold", "bolditalic") == FALSE))) { graphics::text(ndss, lbs, cex = fsize, pos = pos, col = fcol[1], offset = (cex/4L), adj = c(0.5, 1)) } else if (missing(fstyle) == FALSE) { if (isTRUE(fstyle == "italic") == TRUE) { graphics::text(ndss, as.expression(lapply(lbs, function(x) bquote(italic(.(x))))), cex = fsize, pos = pos, col = fcol[1], offset = (cex/4L), adj = c(0.5, 1)) } else if (isTRUE(fstyle == "bold") == TRUE) { graphics::text(ndss, as.expression(lapply(lbs, function(x) bquote(bold(.(x))))), cex = fsize, pos = pos, col = fcol[1], offset = (cex/4L), adj = c(0.5, 1)) } else if (isTRUE(fstyle == "bolditalic") == TRUE) { graphics::text(ndss, as.expression(lapply(lbs, function(x) bquote(bolditalic(.(x))))), cex = fsize, pos = pos, col = fcol[1], offset = (cex/4L), adj = c(0.5, 1)) } } } else { if (isTRUE(pos[1] == 0) == TRUE) { if (missing(fstyle) == TRUE || (missing(fstyle) == FALSE && isTRUE(fstyle %in% c("italic", "bold", "bolditalic") == FALSE))) { graphics::text(ndss, labels = lbs, cex = fsize, adj = 0.5, col = fcol) } else if (missing(fstyle) == FALSE) { if (isTRUE(fstyle == "italic") == TRUE) { graphics::text(ndss, labels = as.expression(lapply(lbs, function(x) bquote(italic(.(x))))), cex = fsize, adj = 0.5, col = fcol) } else if (isTRUE(fstyle == "bold") == TRUE) { graphics::text(ndss, labels = as.expression(lapply(lbs, function(x) bquote(bold(.(x))))), cex = fsize, adj = 0.5, col = fcol) } else if (isTRUE(fstyle == "bolditalic") == TRUE) { graphics::text(ndss, labels = as.expression(lapply(lbs, function(x) bquote(bolditalic(.(x))))), cex = fsize, adj = 0.5, col = fcol) } } } else { if (missing(fstyle) == TRUE || (missing(fstyle) == FALSE && isTRUE(fstyle %in% c("italic", "bold", "bolditalic") == FALSE))) { graphics::text(ndss, lbs, cex = fsize, pos = pos[1], col = fcol, offset = (cex/4L), adj = c(0.5, 1)) } else if (missing(fstyle) == FALSE) { if (isTRUE(fstyle == "italic") == TRUE) { graphics::text(ndss, as.expression(lapply(lbs, function(x) bquote(italic(.(x))))), cex = fsize, pos = pos[1], col = fcol, offset = (cex/4L), adj = c(0.5, 1)) } else if (isTRUE(fstyle == "bold") == TRUE) { graphics::text(ndss, as.expression(lapply(lbs, function(x) bquote(bold(.(x))))), cex = fsize, pos = pos[1], col = fcol, offset = (cex/4L), adj = c(0.5, 1)) } else if (isTRUE(fstyle == "bolditalic") == TRUE) { graphics::text(ndss, as.expression(lapply(lbs, function(x) bquote(bolditalic(.(x))))), cex = fsize, pos = pos[1], col = fcol, offset = (cex/4L), adj = c(0.5, 1)) } } } } } if (isTRUE(showAtts == TRUE) == TRUE) { ndss <- nds ndss[, 1] <- ndss[, 1] * scl[1] ndss[, 2] <- ndss[, 2] * scl[2] if (isTRUE(flgcrd == TRUE) == TRUE && isTRUE(ncol(coord) > 3L) == TRUE) { NA } else { atts <- rep("", nrow(nds)) if (missing(att) == FALSE) { if (is.array(att) == TRUE) { if (is.na(dim(att)[3]) == TRUE | isTRUE(dim(att)[3] == 1) == TRUE) { ifelse(missing(lbat) == FALSE, atts[which((att) != 0)] <- lbat, atts[which((att) != 0)] <- "1") } else { if (missing(lbat) == FALSE) { atts[which(diag(multiplex::mnplx(netd, diag.incl = TRUE)) != 0)] <- lbat } else { dimnames(netd)[[3]] <- NULL neta <- multiplex::zbind(netd, att) clss <- multiplex::expos(multiplex::rel.sys(neta, att = (z + 1L):dim(neta)[3]), classes = TRUE)$Classes attr(clss, "names")[which(attr(clss, "names") == "ALL")] <- multiplex::jnt(dimnames(att)[[3]], sep = "") for (i in 2:length(clss)) { atts[which(lbs %in% clss[[i]])] <- attr(clss, "names")[i] } rm(i) } } } else if (is.vector(att) == TRUE | is.factor(att) == TRUE) { ifelse(isTRUE(length(att) == n) == TRUE, atts <- as.vector(att), atts <- rep("", length(lbs))) } else { atts <- rep("", length(lbs)) } } else { NA } } if (isTRUE(flgcx == FALSE) == TRUE) { graphics::text(ndss, labels = atts, cex = fsize, pos = pos%%4 + 1L, col = fcol, offset = (cex/4L), adj = c(0.5, 1)) } else if (isTRUE(flgcx == TRUE) == TRUE) { graphics::text(ndss, labels = atts, cex = fsize, pos = pos%%4 + 1L, col = fcol, offset = (min(cex)/4L), adj = c(0.5, 1)) } } graphics::par(mar = omr) graphics::par(bg = obg) graphics::par(lend = 0) graphics::par(mai = omi) }
store_finam_data = function( from = NULL, to = format( Sys.Date() ), verbose = TRUE ) { save_dir = .settings$finam_storage symbols = .settings$finam_symbols if( save_dir == '' ) stop( 'please set storage path via QuantTools_settings( \'finam_storage\', \'/storage/path/\' ) ' ) if( is.null( symbols ) ) stop( 'please set symbols vector via QuantTools_settings( \'finam_symbols\', c( \'symbol_1\', ...,\'symbol_n\' ) ) ' ) from_is_null = is.null( from ) for( symbol in symbols ) { if( verbose ) message( symbol ) if( from_is_null ) from = NULL if( verbose ) message( 'ticks:' ) dates_available = gsub( '.rds', '', list.files( paste( save_dir, symbol, sep = '/' ), pattern = '\\d{4}-\\d{2}-\\d{2}.rds' ) ) if( is.null( from ) && length( dates_available ) == 0 ) { from = .settings$finam_storage_from if( from == '' ) stop( 'please set Finam storage start date via QuantTools_settings( \'finam_storage_from\', \'YYYYMMDD\' )' ) message( 'not found in storage, \ntrying to download since storage start date' ) } if( is.null( from ) && to >= max( dates_available ) ) { from = max( dates_available ) message( paste( 'dates to be added:', from, '-', to ) ) } from = as.Date( from ) to = as.Date( to ) dates = format( seq( from, to, 1 ) ) for( date in dates ) { ticks = get_finam_data( symbol, date, period = 'tick' ) if( is.null( ticks ) ) next dir.create( paste0( save_dir, '/' , symbol ), recursive = TRUE, showWarnings = FALSE ) saveRDS( ticks, file = paste0( save_dir, '/' , symbol, '/', date, '.rds' ) ) if( verbose ) message( paste( date, 'saved' ) ) } if( verbose ) message( 'minutes:' ) if( from_is_null ) from = NULL dates_available = gsub( '.rds', '-01', list.files( paste( save_dir, symbol, sep = '/' ), pattern = '\\d{4}-\\d{2}.rds' ) ) if( is.null( from ) && length( dates_available ) == 0 ) { from = .settings$finam_storage_from if( from == '' ) stop( 'please set Finam storage start date via QuantTools_settings( \'finam_storage_from\', \'YYYYMMDD\' )' ) message( 'not found in storage, \ntrying to download since storage start date' ) } if( is.null( from ) && to >= max( dates_available ) ) { from = max( dates_available ) message( paste( 'dates to be added:', from, '-', to ) ) } from = as.Date( from ) to = as.Date( to ) data.table( from = as.Date( unique( format( seq( from, to, 1 ), '%Y-%m-01' ) ) ) )[, to := shift( from - 1, type = 'lead', fill = to ) ][, { month = format( from, '%Y-%m' ) mins = get_finam_data( symbol, from, to, period = '1min' ) if( !is.null( mins ) ) { dir.create( paste0( save_dir, '/' , symbol ), recursive = TRUE, showWarnings = FALSE ) saveRDS( mins, file = paste0( save_dir, '/' , symbol, '/', month, '.rds' ) ) if( verbose ) message( paste( month, 'saved' ) ) } else { if( verbose ) message( paste( month, 'not available' ) ) } }, by = from ] } } store_iqfeed_data = function( from = NULL, to = format( Sys.Date() ), verbose = TRUE ) { .store_iqfeed_data_mins ( from, to, verbose ) .store_iqfeed_data_ticks( from, to, verbose ) } .store_iqfeed_data_ticks = function( from = NULL, to = format( Sys.Date() ), verbose = TRUE ) { save_dir = .settings$iqfeed_storage symbols = .settings$iqfeed_symbols if( save_dir == '' ) stop( 'please set storage path via QuantTools_settings( \'iqfeed_storage\', \'/storage/path/\' ) ' ) if( is.null( symbols ) ) stop( 'please set symbols vector via QuantTools_settings( \'iqfeed_symbols\', c( \'symbol_1\', ...,\'symbol_n\' ) ) ' ) from_is_null = is.null( from ) for( symbol in symbols ) { if( verbose ) message( symbol ) if( from_is_null ) from = NULL dates_available = gsub( '.rds', '', list.files( paste( save_dir, symbol, sep = '/' ), pattern = '\\d{4}-\\d{2}-\\d{2}.rds' ) ) if( is.null( from ) && length( dates_available ) == 0 ) { from = .settings$iqfeed_storage_from if( from == '' ) stop( 'please set iqfeed storage start date via QuantTools_settings( \'iqfeed_storage_from\', \'YYYYMMDD\' )' ) message( 'not found in storage, \ntrying to download since storage start date' ) } if( is.null( from ) && to >= max( dates_available ) ) { from = max( dates_available ) message( paste( 'dates to be added:', from, '-', to ) ) } curr_time = Sys.time() attr( curr_time, 'tzone' ) = 'America/New_York' if( format( curr_time, '%H:%M' ) %bw% c( '09:30', '16:00' ) && diff( as.Date( c( from, to ) ) ) > as.difftime( 3, units = 'days' ) ) { message = 'please download data outside trading hours [ 9:30 - 16:30 America/New York ]' if( length( dates_available ) == 0 ) { message( message ) next } else { stop( message ) } } ticks = get_iqfeed_data( symbol, from, to, period = 'tick' ) if( !is.null( ticks ) ) { dir.create( paste0( save_dir, '/' , symbol ), recursive = TRUE, showWarnings = FALSE ) time = NULL ticks[, date := format( time, '%Y-%m-%d' ) ] ticks[ , { saveRDS( .SD, file = paste0( save_dir, '/' , symbol, '/', date, '.rds' ) ) if( verbose ) message( paste( date, 'saved' ) ) }, by = date ] } } } .store_iqfeed_data_mins = function( from = NULL, to = format( Sys.Date() ), verbose = TRUE ) { save_dir = .settings$iqfeed_storage symbols = .settings$iqfeed_symbols if( save_dir == '' ) stop( 'please set storage path via QuantTools_settings( \'iqfeed_storage\', \'/storage/path/\' ) ' ) if( is.null( symbols ) ) stop( 'please set symbols vector via QuantTools_settings( \'iqfeed_symbols\', c( \'symbol_1\', ...,\'symbol_n\' ) ) ' ) from_is_null = is.null( from ) for( symbol in symbols ) { if( verbose ) message( symbol ) if( from_is_null ) from = NULL months_available = gsub( '.rds', '', list.files( paste( save_dir, symbol, sep = '/' ), pattern = '\\d{4}-\\d{2}.rds' ) ) if( is.null( from ) && length( months_available ) == 0 ) { from = .settings$iqfeed_storage_from if( from == '' ) stop( 'please set iqfeed storage start date via QuantTools_settings( \'iqfeed_storage_from\', \'YYYYMMDD\' )' ) message( 'not found in storage, \ntrying to download since storage start date' ) } if( is.null( from ) && substr( to, 1, 7 ) >= max( months_available ) ) { from = max( months_available ) message( paste( 'months to be added:', from, '-', substr( to, 1, 7 ) ) ) } mins = get_iqfeed_data( symbol, paste0( substr( from, 1, 7 ), '-01' ), format( as.Date( to ) + 31 ), period = '1min' ) if( !is.null( mins ) && nrow( mins ) != 0 ) { dir.create( paste0( save_dir, '/' , symbol ), recursive = TRUE, showWarnings = FALSE ) time = NULL mins[, month := format( time, '%Y-%m' ) ] mins[ , { saveRDS( .SD, file = paste0( save_dir, '/' , symbol, '/', month, '.rds' ) ) if( verbose ) message( paste( month, 'saved' ) ) }, by = month ] } } } .get_local_data = function( symbol, from, to, source, period ) { data_dir = switch( source, finam = .settings$finam_storage, iqfeed = .settings$iqfeed_storage ) if( data_dir == '' ) stop( paste0('please set storage path via QuantTools_settings( \'', source, '_storage\', \'/storage/path/\' ) use store_', source, '_data to add some data into the storage' ) ) if( period == 'tick' ) { dates_available = gsub( '.rds', '', list.files( paste( data_dir, symbol, sep = '/' ), pattern = '\\d{4}-\\d{2}-\\d{2}.rds' ) ) dates_to_load = sort( dates_available[ dates_available %bw% substr( c( from, to ), 1, 10 ) ] ) data = vector( length( dates_to_load ), mode = 'list' ) names( data ) = dates_to_load for( date in dates_to_load ) data[[ date ]] = readRDS( file = paste0( data_dir, '/' , symbol, '/', date, '.rds' ) ) data = rbindlist( data ) time_range = as.POSIXct( format( as.Date( c( from, to ) ) + c( 0, 1 ) ), 'UTC' ) time = NULL if( !is.null( data ) ) data = data[ time > time_range[1] & time < time_range[2] ] return( data ) } if( period == '1min' ) { months_available = gsub( '.rds', '', list.files( paste( data_dir, symbol, sep = '/' ), pattern = '\\d{4}-\\d{2}.rds' ) ) months_to_load = sort( months_available[ months_available %bw% substr( c( from, to ), 1, 7 ) ] ) if( length( months_to_load ) == 0 ) return( NULL ) data = vector( length( months_to_load ), mode = 'list' ) names( data ) = months_to_load for( month in months_to_load ) data[[ month ]] = readRDS( file = paste0( data_dir, '/' , symbol, '/', month, '.rds' ) ) data = rbindlist( data ) time_range = as.POSIXct( format( as.Date( c( from, to ) ) + c( 0, 1 ) ), 'UTC' ) time = NULL if( !is.null( data ) ) data = data[ time > time_range[1] & time < time_range[2] ] return( data ) } } store_moex_data = function( from = NULL, to = format( Sys.Date() ), verbose = TRUE ) { save_dir = .settings$moex_storage if( save_dir == '' ) stop( 'please set storage path via QuantTools_settings( \'moex_storage\', \'/storage/path/\' ) ' ) temp_dir = .settings$temp_directory if( temp_dir == '' ) stop( 'please set temp directory path via QuantTools_settings( \'temp_directory_\', \'/temp/directory/path/\' ) ' ) from_is_null = is.null( from ) if( from_is_null ) from = NULL dates_available = gsub( '.rds', '', list.files( paste0( save_dir, '/futures/' ), pattern = '.rds' ) ) if( is.null( from ) && length( dates_available ) == 0 ) { from = .settings$moex_storage_from if( from == '' ) stop( 'please set moex storage start date via QuantTools_settings( \'moex_storage_from\', \'YYYYMMDD\' )' ) message( 'no data found in storage, \ntrying to download since storage start date' ) } if( is.null( from ) && to >= max( dates_available ) ) { from = max( dates_available ) message( paste( 'dates to be added:', from, '-', to ) ) } for( date in as.Date( from ):as.Date( to ) ) { date = as.Date( date, origin = '1970-01-01' ) dir_fut = paste0( save_dir, '/futures' ) dir_opt = paste0( save_dir, '/options' ) dir.create( dir_fut, recursive = T, showWarnings = F ) dir.create( dir_opt, recursive = T, showWarnings = F ) file_fut = paste0( dir_fut, '/', format( date ), '.rds' ) file_opt = paste0( dir_opt, '/', format( date ), '.rds' ) year = format( date, '%Y' ) yymmdd = format( date, '%y%m%d') data_url = .settings$moex_data_url if( !RCurl::url.exists( data_url ) ) stop( 'please set MOEX data url via QuantTools_settings( \'moex_data_url\', \'/moe/data/url/\' )' ) url = paste0( data_url, '/', year, '/FT', yymmdd, '.ZIP') if( !RCurl::url.exists( url ) ) next file_zip = paste0( temp_dir, '/', yymmdd, '.zip' ) unlink( list.files( temp_dir, full.names = T ), force = T, recursive = T ) dir.create( temp_dir, recursive = T, showWarnings = F ) download.file( url, destfile = file_zip, mode = 'wb', quiet = T ) unzip( file_zip, exdir = temp_dir ) files = list.files( temp_dir, pattern = 'ft|ot|FT|OT', recursive = T, full.names = T ) ft = files[ grepl( 'ft', tolower( files ) ) ] ot = files[ grepl( 'ot', tolower( files ) ) ] is_xls = grepl( '.xls', tolower( ft ) ) format_trades = function( trades ) { code = contract = dat_time = NULL trades[, code := as.factor( code ) ] trades[, contract := as.factor( contract ) ] trades[, dat_time := fasttime::fastPOSIXct( dat_time, 'UTC' ) ] } if( is_xls ) { . = capture.output( { sheets = readxl::excel_sheets( ft ) } ) fut_sheet = sheets[ grepl( 'fut.*trade', sheets ) ] opt_sheet = sheets[ grepl( 'opt.*trade', sheets ) ] if( is.na( fut_sheet ) ) { message( 'no futures trades sheet available' ) } else { . = capture.output( { trades = setDT( readxl::read_excel( ft, sheet = fut_sheet ) ) } ) format_trades( trades ) saveRDS( trades, file_fut ) } if( is.na( opt_sheet ) ) { message( 'no options trades sheet available' ) } else { . = capture.output( { trades = setDT( readxl::read_excel( ft, sheet = opt_sheet ) ) } ) format_trades( trades ) saveRDS( trades, file_opt ) } if( verbose ) message( date, ' saved' ) } else { if( is.null( ft ) ) { message( 'no futures trades file available' ) } else { trades = fread( ft ) format_trades( trades ) saveRDS( trades, file_fut ) } if( is.null( ot ) ) { message( 'no options trades file available' ) } else { if( date == as.Date( '2008-09-15' ) ) next trades = fread( ot ) format_trades( trades ) saveRDS( trades, file = file_opt ) } if( verbose ) message( date, ' saved' ) } } }
calculatePeaks <- function(data, bins = c(0, 2, 3), labels = NULL, ol.rm = FALSE, by.marker = FALSE, debug = FALSE) { if (debug) { print(paste("IN:", match.call()[[1]])) print("data:") print(str(data)) print("bins:") print(bins) print("labels:") print(labels) print("ol.rm:") print(ol.rm) print("by.marker:") print(by.marker) } if (length(bins) != length(labels) - 1) { stop("'bins' must be a vector of length 1 less than 'labels'!") } if (!is.logical(ol.rm)) { stop("'ol.rm' must be logical!") } if (!is.logical(by.marker)) { stop("'by.marker' must be logical!") } if (!"Sample.Name" %in% names(data)) { stop("'data' must contain a column 'Sample.Name'.") } if (!"Height" %in% names(data)) { stop("'data' must contain a column 'Height'.") } if (by.marker) { if (!"Marker" %in% names(data)) { stop("'data' must contain a column 'Marker'.") } } if (!is.vector(labels)) { stop("'labels' must be a character vector.") } if (!is.vector(bins)) { stop("'bins' must be a numeric vector.") } if (ol.rm) { data <- data[data$Allele != "OL" | is.na(data$Allele), ] } if (!is.numeric(bins)) { message("'bins' not numeric. Converting to numeric.") bins <- as.numeric(bins) } if (!is.character(labels)) { message("'labels' not character. Converting to character.") labels <- as.character(labels) } if (!is.numeric(data$Height)) { message("'Height' not numeric. Converting to numeric.") data$Height <- as.numeric(data$Height) } if ("Peaks" %in% names(data)) { message("A column 'Peaks' already exist. It will be overwritten.") data$Peaks <- NULL } if ("Group" %in% names(data)) { message("A column 'Group' already exist. It will be overwritten.") data$Group <- NULL } if ("Id" %in% names(data)) { message("A column 'Id' already exist. It will be overwritten.") data$Id <- NULL } data$Peaks <- as.integer(NA) data$Group <- as.character(NA) data$Id <- paste(data$Sample.Name, data$File.Name, sep = "_") DT <- data.table::data.table(data) if (by.marker) { message("Counting number of peaks by marker...") DT[, Peaks := sum(!is.na(Height), na.rm = TRUE), by = list(Id, Marker)] } else { message("Counting number of peaks by sample...") DT[, Peaks := sum(!is.na(Height), na.rm = TRUE), by = list(Id)] } DT$Group <- as.character(NA) if (length(labels) >= 1) { message("Adding first group label...") DT[Peaks <= bins[1]]$Group <- labels[1] } if (length(labels) >= 2) { message("Adding last group label...") DT[Peaks >= bins[length(bins)]]$Group <- labels[length(labels)] } if (length(labels) > 2) { message("Adding other group labels...") for (g in seq(from = 2, to = length(bins))) { DT[Peaks > bins[g - 1] & Peaks <= bins[g]]$Group <- labels[g] } } data <- as.data.frame((DT)) data$Group <- factor(data$Group, levels = labels) data <- auditTrail(obj = data, f.call = match.call(), package = "strvalidator") if (debug) { print("data:") print(str(data)) print(paste("EXIT:", match.call()[[1]])) } return(data) }
test_that("retrofit_files() works", { local_reprex_loud() expect_equal( retrofit_files(infile = NULL, wd = NULL, outfile = "DEPRECATED"), list(infile = NULL, wd = NULL) ) expect_equal( retrofit_files(infile = "foo.R", wd = "whatever", outfile = "DEPRECATED"), list(infile = "foo.R", wd = "whatever") ) expect_snapshot( retrofit_files(wd = "this", outfile = "that") ) expect_snapshot( retrofit_files(outfile = NA), ) expect_snapshot( retrofit_files(outfile = "some/path/blah") ) expect_snapshot( retrofit_files(infile = "a/path/foo.R", outfile = NA) ) expect_snapshot( retrofit_files(infile = "a/path/foo.R", outfile = "other/path/blah") ) }) test_that("we don't add a suffix more than once", { x <- "blah_r.R" expect_equal(x, add_suffix(x, suffix = "r")) })