code
stringlengths 1
13.8M
|
---|
do.dspp <- function(X, label, ndim=2, preprocess=c("center","scale","cscale","decorrelate","whiten"),
lambda=1.0, rho=1.0){
aux.typecheck(X)
n = nrow(X)
p = ncol(X)
label = check_label(label, n)
ulabel = unique(label)
for (i in 1:length(ulabel)){
if (sum(label==ulabel[i])==1){
stop("* do.dspp : no degerate class of size 1 is allowed.")
}
}
if (any(is.na(label))||(any(is.infinite(label)))){stop("* Supervised Learning : any element of 'label' as NA or Inf will simply be considered as a class, not missing entries.") }
ndim = as.integer(ndim)
if (!check_ndim(ndim,p)){stop("* do.dspp : 'ndim' is a positive integer in [1,
if (missing(preprocess)){
algpreprocess = "center"
} else {
algpreprocess = match.arg(preprocess)
}
lambda = as.double(lambda)
if (!check_NumMM(lambda, 0, 1e+10, compact=FALSE)){stop("* do.dspp : 'lambda' is a positive real number.")}
rho = as.double(rho)
if (!check_NumMM(rho, 0, 1e+10, compact=TRUE)){stop(" do.dspp : 'rho' is a nonnegative real number.")}
tmplist = aux.preprocess.hidden(X,type=algpreprocess,algtype="linear")
trfinfo = tmplist$info
pX = tmplist$pX
W = array(0,c(n,n))
for (i in 1:n){
xi = matrix(pX[i,],ncol=1)
tgtidx = setdiff(which(label==label[i]),i)
Xi = t(pX[tgtidx,])
W[tgtidx,i] = dspp_compute_wi(xi,Xi,lambda)
}
radius = rep(0,n)
for (i in 1:n){
tgtrow = as.vector(W[i,])
idxmax = which(tgtrow==max(tgtrow))
if (length(idxmax)>1){
idxmax = as.integer(idxmax[1])
}
maxdist = as.vector(pX[i,])-as.vector(pX[idxmax,])
radius[i] = sqrt(sum(maxdist*maxdist))
}
B = array(0,c(n,n))
for (i in 1:n){
veci = as.vector(pX[i,])
for (j in 1:n){
vecj = as.vector(pX[j,])
if (i!=j){
if (dspp_distnorm(veci,vecj)<=radius[i]){
if (label[i]!=label[j]){
B[i,j] = 1
}
}
}
}
}
classmean = array(0,c(length(ulabel), p))
for (i in 1:length(ulabel)){
partidx = which(label==ulabel[i])
classmean[i,] = colMeans(pX[partidx,])
}
Sw = array(0,c(p,p))
for (i in 1:n){
cvec = pX[i,]
clabel = label[i]
tgtmat = pX[-i,]
tgtlabel = label[-i]
Smat = dspp_compute_Sw(cvec,clabel,tgtmat,tgtlabel,ulabel,classmean,as.double(radius[i]))
Sw = Sw+Smat
}
W = (W+t(W))/2
B = (B+t(B))/2
Sw= (Sw+t(Sw))/2
Lw = diag(rowSums(W))-W
Lb = diag(rowSums(B))-B
LHS = ((t(pX)%*%Lw%*%pX) + (rho*Sw))
RHS = (t(pX)%*%Lb%*%pX)
projection = aux.geigen(LHS,RHS,ndim,maximal=FALSE)
result = list()
result$Y = pX%*%projection
result$trfinfo = trfinfo
result$projection = projection
return(result)
}
dspp_compute_wi <- function(xi, Xi, lambda){
n = ncol(Xi)
si = CVXR::Variable(n)
obj = (CVXR::p_norm(xi-(Xi%*%si),p=2) + lambda*CVXR::p_norm(si,p=1))
constr = list(si>=0)
prob = CVXR::Problem(Minimize(obj), constr)
result = solve(prob)
return(as.vector(result$getValue(si)))
}
dspp_distnorm <- function(vec1, vec2){
vecdiff = as.vector(vec1)-as.vector(vec2)
output = as.double(sqrt(sum(vecdiff*vecdiff)))
return(output)
}
dspp_compute_Sw <- function(cvec, clabel, tgtmat, tgtlabel, ulabel, classmean, radius){
p = length(cvec)
Smat = array(0,c(p,p))
ntgt = nrow(tgtmat)
for (i in 1:ntgt){
vecdiff = as.vector(cvec)-as.vector(tgtmat[i,])
if (sqrt(sum(vecdiff*vecdiff))<radius){
if (tgtlabel[i]!=clabel){
tgtvec = (tgtmat[i,])
tgtidx = which(ulabel==clabel)
meanvec = (classmean[tgtidx,])
mvdiff = as.vector(tgtvec)-as.vector(meanvec)
Smat = Smat + outer(mvdiff,mvdiff)
}
}
}
return(Smat)
}
|
options(width = 75, digits = 2, scipen = 5)
set.seed(0)
library(portfolio)
load("tradelist.RData")
p.current <- portfolios[["p.current.abs"]]
p.target <- portfolios[["p.target.abs"]]
data <- data.list[["data.abs"]]
sorts <- list(alpha = 1.5, ret.1.d = 1)
tl <- new("tradelist", orig = p.current, target = p.target, sorts =
sorts, turnover = 2000, chunk.usd = 2000, data = data, to.equity = FALSE)
p.current@shares[, c("shares", "price")]
p.target@shares[, c("shares", "price")]
tl@candidates[, c("side", "shares", "mv")]
tmp <- data.frame(side = tl@candidates[, "side"], alpha = tl@ranks[, "alpha"])
row.names(tmp) <- tl@candidates$id
tmp <- tmp[order(tmp$alpha, decreasing = TRUE),]
tmp
tl@ranks$rank <- rank(-tl@ranks$alpha, na.last = TRUE, ties.method = "random")
alpha <- tl@ranks[,!names(tl@ranks) %in% "ret.1.d"]
alpha$sort <- "alpha"
alpha[order(alpha$rank), c("rank", "side", "alpha", "shares", "mv")]
tmp <- tl@ranks[order(tl@ranks$ret.1.d), c("side","ret.1.d")]
tmp <- cbind(rank = 1:nrow(tmp), tmp)
tmp$ret.1.d <- tmp$ret.1.d[order(tmp$ret.1.d, decreasing = TRUE)]
row.names(tmp) <- tl@candidates$id
tmp.1 <- tl@ranks[order(tl@ranks$alpha, decreasing = TRUE), c("alpha", "ret.1.d")]
tmp.1 <- tmp.1 <- cbind(rank = 1:nrow(tmp.1), tmp.1)
tmp.1
tmp.2 <- tl@ranks[order(tl@ranks$ret.1.d, decreasing = TRUE), c("alpha", "ret.1.d")]
tmp.2 <- cbind(rank = 1:nrow(tmp.2), tmp.2)
tmp.2
tl@ranks$rank <- rank(-tl@ranks$ret.1.d, na.last = TRUE, ties.method = "random")
ret.1.d <- tl@ranks[,!names(tl@ranks) %in% "alpha"]
ret.1.d$sort <- "ret.1.d"
alpha.rank.orig <- alpha$rank
alpha$rank <- alpha$rank
alpha[order(alpha$rank), c("rank", "side", "alpha", "shares", "mv")]
ret.1.d[order(ret.1.d$rank), c("rank", "side", "ret.1.d", "shares", "mv")]
alpha$rank <- alpha.rank.orig
alpha <- alpha[,!names(alpha) %in% "alpha"]
ret.1.d <- ret.1.d[,!names(ret.1.d) %in% "ret.1.d"]
overall.ranks <- rbind(alpha, ret.1.d)
overall.ranks <- overall.ranks[order(overall.ranks$rank), c("id", "sort", "rank", "side", "shares", "mv")]
row.names(overall.ranks) <- paste(overall.ranks$id, overall.ranks$sort, sep = ".")
overall.ranks[, c("rank", "sort", "side", "shares", "mv")]
ranks <- alpha
top.ranks <- aggregate(overall.ranks[c("rank")], by = list(id = overall.ranks$id), min)
ranks$rank <- top.ranks$rank[match(ranks$id, top.ranks$id)]
ranks[order(ranks$rank), c("rank", "shares", "mv")]
alpha$rank <- alpha.rank.orig
alpha$rank <- alpha$rank / 10
overall.ranks <- data.frame()
overall.ranks <- rbind(alpha, ret.1.d)
overall.ranks <- overall.ranks[order(overall.ranks$rank), c("id", "sort", "rank", "side", "shares", "mv")]
row.names(overall.ranks) <- paste(overall.ranks$id, overall.ranks$sort, sep = ".")
overall.ranks[c("rank", "side", "shares", "mv")]
top.ranks <- do.call(rbind, lapply(split(overall.ranks, overall.ranks$id),
function(x) { x[which.min(x$rank),] }))
top.ranks <- top.ranks[order(top.ranks$rank),]
top.ranks[c("rank","sort","shares","mv")]
ranks <- alpha
top.ranks <- aggregate(overall.ranks[c("rank")], by = list(id = overall.ranks$id), min)
ranks$rank <- top.ranks$rank[match(ranks$id, top.ranks$id)]
alpha$rank <- alpha.rank.orig
alpha$rank <- alpha$rank / 1.5
overall.ranks <- data.frame()
overall.ranks <- rbind(alpha, ret.1.d)
overall.ranks <- overall.ranks[order(overall.ranks$rank), c("id", "sort", "rank", "side", "shares", "mv")]
row.names(overall.ranks) <- paste(overall.ranks$id, overall.ranks$sort, sep = ".")
overall.ranks[c("rank", "side", "shares", "mv")]
top.ranks <- do.call(rbind, lapply(split(overall.ranks, overall.ranks$id),
function(x) { x[which.min(x$rank),] }))
top.ranks <- top.ranks[order(top.ranks$rank),]
top.ranks[c("rank","sort","shares","mv")]
ranks <- alpha
top.ranks <- aggregate(overall.ranks[c("rank")], by = list(id = overall.ranks$id), min)
ranks$rank <- top.ranks$rank[match(ranks$id, top.ranks$id)]
tmp <- ranks[order(ranks$rank), c("rank", "sort", "shares", "mv")]
tmp$rank <- rank(tmp$rank, ties.method = "first")
tmp[order(tmp$rank),c("rank","shares","mv")]
r.max <- max(tmp$rank) + 1
r.mult <- 0.15
r.add <- 0.85
tmp$rank.s <- (r.mult * tmp$rank[nrow(tmp):1] / r.max) + r.add
rank.s <- tmp
tmp[c("rank","shares","mv","rank.s")]
tmp$rank.t <- qnorm(tmp$rank.s)
tmp[c("rank", "shares", "mv","rank.s", "rank.t")]
tl@chunks[order(-tl@chunks$rank.t), c("side", "shares", "mv", "alpha", "ret.1.d", "rank.t", "chunk.shares", "chunk.mv")]
trading.volume <- data.frame(rank.t = tl@ranks$rank.t, volume = tl@data$volume[match(tl@ranks$id, tl@data$id)], shares = tl@ranks$shares)
row.names(trading.volume) <- tl@ranks$id
trading.volume[order(-trading.volume$rank.t),]
tl@chunks[order(-tl@chunks$rank.t), c("side", "mv", "alpha", "ret.1.d",
"rank.t", "chunk.shares", "chunk.mv", "tca.rank")]
tl@chunks[order(tl@chunks$tca.rank, decreasing = TRUE), c("side",
"mv", "alpha", "ret.1.d", "rank.t", "chunk.shares",
"chunk.mv", "tca.rank")]
rank.s[c("rank","shares","mv","rank.s")]
rank.t <- rank.s
rank.t$rank.t <- qnorm(rank.t$rank.s)
rank.t[c("rank","shares","mv","rank.s","rank.t")]
misc$rank.s
head(tl@swaps[, c("tca.rank.enter", "tca.rank.exit",
"rank.gain")])
[email protected][, c("tca.rank.enter", "tca.rank.exit",
"rank.gain")]
[email protected][, c("side", "mv", "alpha", "ret.1.d", "rank.t",
"chunk.shares", "chunk.mv", "tca.rank")]
tl@actual[, !names(tl@actual) %in% c("id")]
rm(list = ls())
load("tradelist.RData")
p.current <- portfolios[["p.current.lo"]]
p.target <- portfolios[["p.target.lo"]]
data <- data.list[["data.lo"]]
oe <- portfolio:::mvShort(p.current) + portfolio:::mvLong(p.current)
te <- portfolio:::mvShort(p.target) + portfolio:::mvLong(p.target)
sorts <- list(alpha = 1, ret.1.d = 1.1)
tl <- new("tradelist", orig = p.current, target = p.target, chunk.usd
= 2000, sorts = sorts, turnover = 30250, target.equity = te, data =
data)
nt <- mvCandidates(tl)
p.current.shares <- p.current@shares[, c("shares", "price")]
p.current.shares
p.target.shares <- p.target@shares[, c("shares", "price")]
p.target.shares
sub.candidates <- tl@candidates[,!names(tl@candidates) %in% "id"]
sub.candidates
sorts <- list(alpha = 1, ret.1.d = 1.1)
row.names(data) <- data$id
sub.data <- data[, c("id", "volume", "price.usd", "alpha", "ret.1.d")]
sub.data
tl <- new("tradelist", orig = p.current, target = p.target, chunk.usd
= 2000, sorts = sorts, turnover = 30250, data = data)
tl <- new("tradelist", orig = p.current, target = p.target, chunk.usd
= 2000, sorts = sorts, turnover = 30250, target.equity = 47500, data =
data)
tl@candidates
ranks <- [email protected]$ret.1.d
ranks <- split(ranks, ranks$side)
ranks$B$rank <- 1:nrow(ranks$B)
ranks$S$rank <- 1:nrow(ranks$S)
ranks
tmp <- rbind(ranks$B, ranks$S)[order(rbind(ranks$B, ranks$S)[["rank"]]),]
tmp[,!names(tmp) %in% "id"]
[email protected][["alpha"]][,!names([email protected][["alpha"]]) %in% "id"]
ranks <- [email protected][["ret.1.d"]]
ranks[["rank"]] <- ranks[["rank"]]/sorts[["ret.1.d"]]
ranks
[email protected][["alpha"]]
alpha <- [email protected][["alpha"]]
ret.1.d <- [email protected][["ret.1.d"]]
alpha <- alpha[,!names(alpha) %in% "alpha"]
ret.1.d <- ret.1.d[,!names(ret.1.d) %in% "ret.1.d"]
duplicates <- rbind(alpha, ret.1.d)
duplicates <- duplicates[order(duplicates$id),]
row.names(duplicates) <- 1:nrow(duplicates)
duplicates
tl.ranks <- tl@ranks
top.ranks <- aggregate(duplicates[c("rank")], by = list(id = duplicates$id), min)
tl.ranks$rank <- top.ranks$rank[match(tl.ranks$id, top.ranks$id)]
tl.ranks[order(tl.ranks$rank), !names(tl@ranks) %in% c("id", "alpha", "ret.1.d", "rank.t")]
tl.ranks$rank <- rank(tl.ranks$rank)
tl.ranks <- tl.ranks[, !names(tl.ranks) %in% c("id", "alpha", "ret.1.d")]
tl.ranks[order(tl.ranks$rank), !names(tl@ranks) %in% c("id", "alpha", "ret.1.d", "rank.t")]
misc$scaled.ranks.lo
tl.ranks <- tl@ranks[order(tl@ranks$rank.t),!names(tl.ranks) %in% "id"]
tl.ranks
sub.chunks <- tl@chunks[, c("side", "rank.t", "chunk.shares",
"chunk.mv", "tca.rank")]
sub.chunks
head(sub.chunks[order(sub.chunks[["tca.rank"]]),])
swaps.sub <- tl@swaps[, c("side.enter", "tca.rank.enter", "side.exit", "tca.rank.exit",
"rank.gain")]
swaps.sub
sub.swaps.actual <- [email protected][, c("side.enter", "tca.rank.enter", "side.exit", "tca.rank.exit",
"rank.gain")]
sub.swaps.actual
tl.bak <- tl
tl@turnover <- 30250 - [email protected]
tl <- portfolio:::calcSwapsActual(tl)
sub.swaps.actual <- [email protected][, c("side.enter", "tca.rank.enter", "side.exit", "tca.rank.exit",
"rank.gain")]
sub.swaps.actual
tl <- tl.bak
sub.chunks.actual <- [email protected][,!names([email protected])
%in% c("id", "orig", "target", "shares", "mv")]
sub.chunks.actual
tl.actual <- tl@actual[, !names(tl@actual) %in% c("id")]
tl.actual
rm(list = ls())
load("tradelist.RData")
p.current <- portfolios[["p.current.ls"]]
p.target <- portfolios[["p.target.ls"]]
data <- data.list$data.ls
sorts <- list(alpha = 1, ret.1.d = 1/2)
oe <- portfolio:::mvShort(p.current) + portfolio:::mvLong(p.current)
te <- portfolio:::mvShort(p.target) + portfolio:::mvLong(p.target)
tl <- new("tradelist", orig = p.current, target = p.target, chunk.usd
= 2500, sorts = sorts, turnover = 36825, target.equity = te, data =
data)
nt <- mvCandidates(tl)
p.current.shares <- p.current@shares[, !names(p.current@shares) %in% "id"]
p.current.shares
p.target.shares <- p.target@shares[, !names(p.target@shares) %in% "id"]
p.target.shares
sub.candidates <- tl@candidates[,!names(tl@candidates) %in% "id"]
sub.candidates
row.names(tl@restricted) <- 1:nrow(tl@restricted)
tl@restricted
sorts <- list(alpha = 1, ret.1.d = 1/2)
row.names(data) <- data$id
sub.data <- data[, c("id", "volume", "price.usd", "alpha", "ret.1.d")]
sub.data
tl <- new("tradelist", orig = p.current, target = p.target, chunk.usd
= 2000, sorts = sorts, turnover = 36825, data = data)
tl <- new("tradelist", orig = p.current, target = p.target, chunk.usd
= 2000, sorts = sorts, turnover = 36825, target.equity = te, data =
data)
ranks <- [email protected]$alpha
ranks <- split(ranks, ranks$side)
ranks$B$rank <- 1:nrow(ranks$B)
ranks$S$rank <- 1:nrow(ranks$S)
ranks$X$rank <- 1:nrow(ranks$X)
ranks
tmp <- do.call(rbind, lapply(ranks, function(x) {x}))
tmp <- tmp[order(tmp$rank),]
tmp[,!names(tmp) %in% "id"]
[email protected][["alpha"]][,!names([email protected][["alpha"]]) %in% "id"]
ranks <- [email protected][["alpha"]]
ranks[["rank"]] <- ranks[["rank"]]/sorts[["alpha"]]
ranks
[email protected][["ret.1.d"]]
alpha <- [email protected][["alpha"]]
ret.1.d <- [email protected][["ret.1.d"]]
alpha <- alpha[,!names(alpha) %in% "alpha"]
ret.1.d <- ret.1.d[,!names(ret.1.d) %in% "ret.1.d"]
duplicates <- rbind(alpha, ret.1.d)
duplicates <- duplicates[order(duplicates$id),]
row.names(duplicates) <- 1:nrow(duplicates)
duplicates
tl.ranks <- tl@ranks
top.ranks <- aggregate(duplicates[c("rank")], by = list(id = duplicates$id), min)
tl.ranks$rank <- top.ranks$rank[match(tl.ranks$id, top.ranks$id)]
tl.ranks[order(tl.ranks$rank), !names(tl@ranks) %in% c("id", "alpha", "ret.1.d", "rank.t")]
tl.ranks$rank <- rank(tl.ranks$rank)
tl.ranks <- tl.ranks[, !names(tl.ranks) %in% c("id", "alpha", "ret.1.d")]
tl.ranks[order(tl.ranks$rank), !names(tl.ranks) %in% c("id", "alpha", "ret.1.d", "rank.t")]
misc$scaled.ranks.ls
tl.ranks <- tl@ranks[order(tl@ranks$rank.t),!names(tl.ranks) %in% "id"]
tl.ranks
sub.chunks <- tl@chunks[, c("side", "rank.t", "chunk.shares",
"chunk.mv", "tca.rank")]
sub.chunks
swaps.sub <- tl@swaps[, c("side.enter", "tca.rank.enter", "side.exit",
"tca.rank.exit", "rank.gain")]
swaps.sub
sub.swaps.actual <- [email protected][, c("side.enter", "tca.rank.enter", "side.exit",
"tca.rank.exit", "rank.gain")]
sub.swaps.actual
tl.bak <- tl
tl@turnover <- nt - [email protected]
tl <- portfolio:::calcSwapsActual(tl)
sub.swaps.actual <- [email protected][, c("side.enter", "tca.rank.enter", "side.exit",
"tca.rank.exit", "rank.gain")]
sub.swaps.actual
tl <- tl.bak
sub.chunks.actual <- [email protected][,!names([email protected])
%in% c("id", "orig", "target", "shares", "mv")]
sub.chunks.actual
tl@actual
|
Search3 <- function(MaxPhage,MaxBacteria,new_matrix,phage_names){
PhageSet3=0
BestBacteria3=0
for (i in 1:(MaxPhage-2)){
for(j in (i+1):(MaxPhage-1)){
for(k in (j+1):MaxPhage){
BacteriaSet3=0
for (b in 1:MaxBacteria){
if (new_matrix[b,i] | new_matrix[b,j]| new_matrix[b,k]){
BacteriaSet3=BacteriaSet3+1
}
}
if (BacteriaSet3 > BestBacteria3){
PhageSet3=c(i,j,k)
BestBacteria3=BacteriaSet3
if (BestBacteria3 == MaxBacteria){
return(c(phage_names[PhageSet3],BestBacteria3))
}
}
}
}
}
return(c(phage_names[PhageSet3],BestBacteria3))
}
|
Weibull <- function(alpha,beta=1){
if(length(beta)!=1){stop("beta parameter must be a single value")}
if(length(alpha)!=1){stop("alpha parameter must be a single value")}
new("Curve",type="Weibull",PDF="dweibull",CDF="pweibull",RF="rweibull",inverse="qweibull",paramno=2,pnames=c("scale","shape"),pvalue=list(alpha,beta))
}
Lognormal <- function(mu,sigma=1){
if(length(mu)!=1){stop("mu parameter must be a single value")}
if(length(sigma)!=1){stop("sigma parameter must be a single value")}
new("Curve",type="Lognormal",PDF="dlnorm",CDF="plnorm",RF="rlnorm",inverse="qlnorm",paramno=2,pnames=c("meanlog","sdlog"),pvalue=list(mu,sigma))
}
Exponential <- function(lambda){
if(length(lambda)!=1){stop("lambda parameter must be a single value")}
new("Curve",type="Exponential",PDF="dexp",CDF="pexp",RF="rexp",inverse="qexp",paramno=1,pnames="rate",pvalue=list(lambda))
}
Blank <- function(){
new("Curve",type="Blank",PDF="pmin",CDF="pmin",RF="INF",inverse="INF",paramno=1,pnames="Zero",pvalue=list(0))
}
PieceExponential <- function(start,lambda){
if(length(start)!=length(lambda)){stop("Piecewise exponential curve has mismatched length 'start' and 'lambda' vectors")}
if(start[1]!=0){stop("First element of piecewise exponential curve must start at 0")}
if(is.unsorted(start,strictly=TRUE)){stop("Start times must be in ascending order with no duplicates")}
new("Curve",type="PieceExponential",PDF="dpieceexp",CDF="ppieceexp",RF="rpieceexp",inverse="qpieceexp",paramno=2,pnames=c("start","rate"),pvalue=list(start,lambda))
}
MixExp <- function(props,lambdas){
if(length(props)!=length(lambdas)){stop("Mixture exponential curve has mismatched length 'props' and 'lambdas' vectors")}
if(sum(props)!=1){stop("Proportions must sum to 1!")}
new("Curve",type="MixExp",PDF="dmixexp",CDF="pmixexp",RF="rmixexp",inverse="qmixexp",paramno=2,pnames=c("props","lambdas"),pvalue=list(props,lambdas))
}
MixWei <- function(props,alphas,betas=rep(1,length(props))){
if(length(props)!=length(alphas)){stop("Mixture weibull curve has mismatched length 'props' and 'alphas' vectors")}
if(length(props)!=length(betas)){stop("Mixture weibull curve has mismatched length 'props' and 'betas' vectors")}
if(sum(props)!=1){stop("Proportions must sum to 1!")}
new("Curve",type="MixWei",PDF="dmixwei",CDF="pmixwei",RF="rmixwei",inverse="qmixwei",paramno=3,pnames=c("props","betas","alphas"),pvalue=list(props,betas,alphas))
}
LogLogistic <- function(theta, eta){
new('Curve', type='LogLogistic', PDF='dloglog', CDF='ploglog', RF='rloglog',inverse='qloglog',
paramno=2, pnames=c('scale', 'shape'), pvalue=list(theta, eta))
}
Gompertz <- function(theta, eta){
new('Curve', type='Gompertz', PDF='dgompertz', CDF='pgompertz', RF='rgompertz',inverse='qgompertz',
paramno=2, pnames=c('scale', 'shape'), pvalue=list(theta, eta))
}
GGamma <- function(theta, eta, rho){
new('Curve', type='GGamma', PDF='dggamma', CDF='pggamma', RF='rggamma',inverse="qggamma",
paramno=3, pnames=c('scale', 'shape', 'family'), pvalue=list(theta, eta, rho))
}
LinearR <- function(rlength,Nactive,Ncontrol){
new("RCurve",type="LinearR",PDF="linear_recruitPDF",CDF="linear_recruit",RF="linear_sim",inverse="NULL",paramno=1,pnames="rlength",pvalue=list(rlength),N=Nactive+Ncontrol,Nactive=Nactive,Ncontrol=Ncontrol,Ratio=Nactive/Ncontrol,Length=rlength,maxF=Inf)
}
InstantR <- function(Nactive,Ncontrol){
new("RCurve",type="InstantR",PDF="NULL",CDF="instant_recruit",RF="instant_sim",inverse="NULL",paramno=1,pnames="Dummy",pvalue=list(0),N=Nactive+Ncontrol,Nactive=Nactive,Ncontrol=Ncontrol,Ratio=Nactive/Ncontrol,Length=0,maxF=Inf)
}
PieceR <- function(recruitment,ratio){
lengths <- recruitment[,1]
rates <- recruitment[,2]
N <- sum(rates*lengths)
Nactive <- N*(ratio/(ratio+1))
Ncontrol <- N-Nactive
new("RCurve",type="PieceR",PDF="piece_recruitPDF",CDF="piece_recruit",RF="piece_sim",inverse="NULL",paramno=2,pnames=c("lengths","rates"),pvalue=list(lengths,rates),N=N,Ratio=ratio,Nactive=Nactive,Ncontrol=Ncontrol,Length=sum(lengths),maxF=Inf)
}
PieceRMaxF <- function(recruitment,ratio,maxF){
lengths <- recruitment[,1]
rates <- recruitment[,2]
N <- sum(rates*lengths)
Nactive <- N*(ratio/(ratio+1))
Ncontrol <- N-Nactive
new("RCurve",type="PieceR",PDF="piece_recruitPDFMaxF",CDF="piece_recruitMaxF",RF="piece_simMaxF",inverse="NULL",paramno=3,pnames=c("lengths","rates","maxF"),pvalue=list(lengths,rates,maxF),N=N,Ratio=ratio,Nactive=Nactive,Ncontrol=Ncontrol,Length=sum(lengths),maxF=maxF)
}
|
library(sf)
library(sp)
mtq <- st_read(system.file("gpkg/mtq.gpkg", package="cartography"), quiet = TRUE)
mob <- read.csv(system.file("csv/mob.csv", package="cartography"))
mob_97209 <- mob[mob$i == 97209, ]
mob.sf <- getLinkLayer(x = mtq, df = mob_97209, dfid = c("i", "j"))
expect_equal(nrow(mob.sf), 10 )
expect_silent(getLinkLayer(x = as(mtq, "Spatial"),df = mob_97209, dfid = c("i", "j")))
expect_error(getLinkLayer(spdf = as(mtq, "Spatial")))
expect_error(getLinkLayer(mtq[1:5,], df = mob_97209))
expect_warning(getLinkLayer(mtq[1:20,], df = mob_97209))
|
get_match_list = function(str, pattern, ignore_case=TRUE,
global=TRUE, perl=TRUE, fixed=FALSE) {
match_ind = NULL
starts = NULL
ends = NULL
capture_text = NULL
if (global) {
matches_raw = gregexpr(pattern,
str,
fixed = fixed,
perl = perl & !fixed,
ignore.case = ignore_case & !fixed)[[1]]
if (all(matches_raw == -1)) return(NULL)
matches = regmatches(rep(str, length(matches_raw)),
matches_raw)
} else {
matches_raw = regexpr(pattern,
str,
fixed = fixed,
perl = perl & !fixed,
ignore.case = ignore_case & !fixed)
matches = regmatches(str, matches_raw)[[1]]
}
if (perl & !is.null(attr(matches_raw, "capture.start"))) {
capture_start = attr(matches_raw, "capture.start")
capture_length = attr(matches_raw, "capture.length") - 1
capture_end = capture_start + capture_length
match_df = data.table::data.table(match_ind = c(seq_len(length(matches))),
match = matches,
starts = as.numeric(capture_start),
ends = as.numeric(capture_end))
match_df = match_df[order(match_ind, starts), ]
match_df[, capture_text := stringr::str_sub(str, starts, ends)]
match_list = split(
match_df$capture_text,
paste0(match_df$match_ind, "_", match_df$match)
)
names(match_list) = gsub("^\\d+_", "", names(match_list))
} else {
match_list = lapply(seq_len(length(matches)), function(x) character(0))
names(match_list) = matches
}
return(match_list)
}
|
BootstrapVaR <- function(Ra, number.resamples, cl){
if (nargs() < 3){
stop("Too few arguments")
}
if (nargs() > 3){
stop("Too many arguments")
}
profit.loss.data <- as.vector(Ra)
unsorted.loss.data <- -profit.loss.data
losses.data <- sort(unsorted.loss.data)
n <- length(losses.data)
if (length(cl) != 1) {
stop("Confidence level must be a scalar")
}
if (length(number.resamples) != 1){
stop("Number of resamples must be a scalar");
}
if (cl >= 1){
stop("Confidence level must be less that 1")
}
if (cl <= 0){
stop("Confidence level must be at least 0")
}
if (number.resamples <= 0){
stop("Number of resamples must be at least 0")
}
VaR <- bootstrap(losses.data, number.resamples, HSVaR, cl)$thetastar
y <- mean(VaR)
return (y)
}
|
stream_progress <- function(stream) {
lastProgress <- invoke(stream, "lastProgress")
if (is.null(lastProgress)) {
NULL
}
else {
lastProgress %>%
invoke("toString") %>%
fromJSON()
}
}
stream_view <- function(
stream,
...) {
if (!"shiny" %in% installed.packages()) stop("The 'shiny' package is required for this operation.")
validate <- stream_progress(stream)
interval <- 1000
shinyUI <- get("shinyUI", envir = asNamespace("shiny"))
tags <- get("tags", envir = asNamespace("shiny"))
div <- get("div", envir = asNamespace("shiny"))
HTML <- get("HTML", envir = asNamespace("shiny"))
ui <- shinyUI(
div(
tags$head(
tags$style(HTML("
html, body, body > div {
width: 100%;
height: 100%;
margin: 0px;
}
"))
),
d3Output("plot", width = "100%", height = "100%")
)
)
options <- list(...)
observe <- get("observe", envir = asNamespace("shiny"))
invalidateLater <- get("invalidateLater", envir = asNamespace("shiny"))
server <- function(input, output, session) {
first <- stream_progress(stream)
output$plot <- renderD3(
r2d3(
data = list(
sources = as.list(first$sources$description),
sinks = as.list(first$sink$description)
),
script = system.file("streams/stream.js", package = "sparklyr"),
container = "div",
options = options
)
)
observe({
invalidateLater(interval, session)
data <- stream_progress(stream)
session$sendCustomMessage(type = "sparklyr_stream_view", list(
timestamp = data$timestamp,
rps = list(
"in" = if (is.numeric(data$inputRowsPerSecond)) floor(data$inputRowsPerSecond) else 0,
"out" = if (is.numeric(data$processedRowsPerSecond)) floor(data$processedRowsPerSecond) else 0
)
))
})
}
runGadget <- get("runGadget", envir = asNamespace("shiny"))
runGadget(ui, server)
stream
}
stream_stats <- function(stream, stats = list()) {
data <- stream_progress(stream)
if (is.null(stats$stats)) {
stats$sources <- data$sources$description
stats$sink <- data$sink$description
stats$stats <- list()
}
stats$stats[[length(stats$stats) + 1]] <- list(
timestamp = data$timestamp,
rps = list(
"in" = if (is.numeric(data$inputRowsPerSecond)) floor(data$inputRowsPerSecond) else 0,
"out" = if (is.numeric(data$processedRowsPerSecond)) floor(data$processedRowsPerSecond) else 0
)
)
stats
}
stream_render <- function(
stream = NULL,
collect = 10,
stats = NULL,
...) {
if (is.null(stats)) {
stats <- stream_stats(stream)
for (i in seq_len(collect)) {
Sys.sleep(1)
stats <- stream_stats(stream, stats)
}
}
r2d3(
data = list(
sources = as.list(stats$sources),
sinks = as.list(stats$sink),
stats = stats$stats
),
script = system.file("streams/stream.js", package = "sparklyr"),
container = "div",
options = options
)
}
|
confounders.emm <- function(case,
exposed,
type = c("RR", "OR", "RD"),
bias_parms = NULL,
alpha = 0.05){
if(length(type) > 1)
stop('Choose between RR, OR, or RD implementation.')
if(is.null(bias_parms))
bias_parms <- c(1, 1, 0, 0)
else bias_parms <- bias_parms
if(length(bias_parms) != 4)
stop('The argument bias_parms should be made of the following components: (1) Association between the confounder and the outcome among those who were exposed, (2) Association between the confounder and the outcome among those who were not exposed, (3) Prevalence of the confounder among the exposed, and (4) Prevalence of the confounder among the unexposed.')
if(!all(bias_parms[3:4] >= 0 & bias_parms[3:4] <=1))
stop('Prevalences should be between 0 and 1.')
if(!all(bias_parms[1:2] > 0) & type != "RD")
stop('Association between the confounder and the outcome should be greater than 0.')
if(inherits(case, c("table", "matrix")))
tab <- case
else {
tab.df <- table(case, exposed)
tab <- tab.df[2:1, 2:1]
}
a <- as.numeric(tab[1, 1])
b <- as.numeric(tab[1, 2])
c <- as.numeric(tab[2, 1])
d <- as.numeric(tab[2, 2])
type <- match.arg(type)
if (type == "RR") {
crude.rr <- (a/(a + c)) / (b/(b + d))
se.log.crude.rr <- sqrt((c/a) / (a+c) + (d/b) / (b+d))
lci.crude.rr <- exp(log(crude.rr) - qnorm(1 - alpha/2) * se.log.crude.rr)
uci.crude.rr <- exp(log(crude.rr) + qnorm(1 - alpha/2) * se.log.crude.rr)
M1 <- (a + c) * bias_parms[3]
N1 <- (b + d) * bias_parms[4]
A1 <- (bias_parms[1] * M1 * a) / (bias_parms[1] * M1 + (a + c) - M1)
B1 <- (bias_parms[2] * N1 * b) / (bias_parms[2] * N1 + (b + d) - N1)
C1 <- M1 - A1
D1 <- N1 - B1
M0 <- a + c - M1
N0 <- b + d - N1
A0 <- a - A1
B0 <- b - B1
C0 <- c - C1
D0 <- d - D1
if(A1 < 0 | B1 < 0 | C1 < 0 | D1 < 0 |
A0 < 0 | B0 < 0 | C0 < 0 | D0 < 0)
stop('Parameters chosen lead to negative cell(s) in adjusted 2x2 table(s).')
tab.cfder <- matrix(c(A1, B1, C1, D1), nrow = 2, byrow = TRUE)
tab.nocfder <- matrix(c(A0, B0, C0, D0), nrow = 2, byrow = TRUE)
SMRrr <- a / ((M1 * B1/N1) + (M0 * B0/N0))
MHrr <- (A1 * N1/(M1 + N1) + A0 * N0/(M0 + N0)) /
(B1 * M1/(M1 + N1) + B0 * M0/(M0 + N0))
cfder.rr <- (A1/(A1 + C1)) / (B1/(B1 + D1))
nocfder.rr <- (A0/(A0 + C0)) / (B0/(B0 + D0))
RRadj.smr <- crude.rr / SMRrr
RRadj.mh <- crude.rr / MHrr
if (is.null(rownames(tab)))
rownames(tab) <- paste("Row", 1:2)
if (is.null(colnames(tab)))
colnames(tab) <- paste("Col", 1:2)
if (is.null(rownames(tab))){
rownames(tab.cfder) <- paste("Row", 1:2)
} else {
rownames(tab.cfder) <- row.names(tab)
}
if (is.null(colnames(tab))){
colnames(tab.cfder) <- paste("Col", 1:2)
} else {
colnames(tab.cfder) <- colnames(tab)
}
if (is.null(rownames(tab))){
rownames(tab.nocfder) <- paste("Row", 1:2)
} else {
rownames(tab.nocfder) <- row.names(tab)
}
if (is.null(colnames(tab))){
colnames(tab.nocfder) <- paste("Col", 1:2)
} else {
colnames(tab.nocfder) <- colnames(tab)
}
rmat <- rbind(c(crude.rr, lci.crude.rr, uci.crude.rr))
colnames(rmat) <- c(" ",
paste(100 * (alpha/2), "%", sep = ""),
paste(100 * (1 - alpha/2), "%", sep = ""))
rmatc <- rbind(c(SMRrr, RRadj.smr), c(MHrr, RRadj.mh))
rownames(rmatc) <- c("Standardized Morbidity Ratio:",
" Mantel-Haenszel:")
colnames(rmatc) <- c(" ", "Adjusted RR")
rmat <- rbind(rmat, c(cfder.rr, NA, NA), c(nocfder.rr, NA, NA))
rownames(rmat) <- c(" Crude Relative Risk:",
"Relative Risk, Confounder +:",
"Relative Risk, Confounder -:")
}
if (type == "OR"){
crude.or <- (a/b) / (c/d)
se.log.crude.or <- sqrt(1/a + 1/b + 1/c + 1/d)
lci.crude.or <- exp(log(crude.or) - qnorm(1 - alpha/2) * se.log.crude.or)
uci.crude.or <- exp(log(crude.or) + qnorm(1 - alpha/2) * se.log.crude.or)
C1 <- c * bias_parms[3]
D1 <- d * bias_parms[4]
A1 <- (bias_parms[1] * C1 * a) / (bias_parms[1] * C1 + c - C1)
B1 <- (bias_parms[2] * D1 * b) / (bias_parms[2] * D1 + d - D1)
M1 <- A1 + C1
N1 <- B1 + D1
A0 <- a - A1
B0 <- b - B1
C0 <- c - C1
D0 <- d - D1
M0 <- A0 + C0
N0 <- B0 + C0
if(A1 < 0 | B1 < 0 | C1 < 0 | D1 < 0 |
A0 < 0 | B0 < 0 | C0 < 0 | D0 < 0)
stop('Parameters chosen lead to negative cell(s) in adjusted 2x2 table(s).')
tab.cfder <- matrix(c(A1, B1, C1, D1), nrow = 2, byrow = TRUE)
tab.nocfder <- matrix(c(A0, B0, C0, D0), nrow = 2, byrow = TRUE)
SMRor <- a / ((C1 * B1/D1) + (C0 * B0/D0))
MHor <- (A1 * D1/(M1 + N1) + A0 * D0/(M0 + N0)) /
(B1 * C1/(M1 + N1) + B0 * C0/(M0 + N0))
cfder.or <- (A1 / C1) / (B1 / D1)
nocfder.or <- (A0 / C0) / (B0 / D0)
ORadj.smr <- crude.or / SMRor
ORadj.mh <- crude.or / MHor
if (is.null(rownames(tab)))
rownames(tab) <- paste("Row", 1:2)
if (is.null(colnames(tab)))
colnames(tab) <- paste("Col", 1:2)
if (is.null(rownames(tab))){
rownames(tab.cfder) <- paste("Row", 1:2)
} else {
rownames(tab.cfder) <- row.names(tab)
}
if (is.null(colnames(tab))){
colnames(tab.cfder) <- paste("Col", 1:2)
} else {
colnames(tab.cfder) <- colnames(tab)
}
if (is.null(rownames(tab))){
rownames(tab.nocfder) <- paste("Row", 1:2)
} else {
rownames(tab.nocfder) <- row.names(tab)
}
if (is.null(colnames(tab))){
colnames(tab.nocfder) <- paste("Col", 1:2)
} else {
colnames(tab.nocfder) <- colnames(tab)
}
rmat <- rbind(c(crude.or, lci.crude.or, uci.crude.or))
colnames(rmat) <- c(" ",
paste(100 * (alpha/2), "%", sep = ""),
paste(100 * (1 - alpha/2), "%", sep = ""))
rmatc <- rbind(c(SMRor, ORadj.smr), c(MHor, ORadj.mh))
rownames(rmatc) <- c("Standardized Morbidity Ratio:",
" Mantel-Haenszel:")
colnames(rmatc) <- c(" ", "Adjusted OR")
rmat <- rbind(rmat, c(cfder.or, NA, NA), c(nocfder.or, NA, NA))
rownames(rmat) <- c(" Crude Odds Ratio:",
"Odds Ratio, Confounder +:",
"Odds Ratio, Confounder -:")
}
if (type == "RD"){
crude.rd <- (a / (a + c)) - (b / (b + d))
se.log.crude.rd <- sqrt((a * c) / (a + c)^3 + (b * d) / (b + d)^3)
lci.crude.rd <- crude.rd - qnorm(1 - alpha/2) * se.log.crude.rd
uci.crude.rd <- crude.rd + qnorm(1 - alpha/2) * se.log.crude.rd
M1 <- (a + c) * bias_parms[3]
N1 <- (b + d) * bias_parms[4]
M0 <- (a + c) - M1
N0 <- (b + d) - N1
A1 <- (bias_parms[1] * M1 * M0 + M1 * a) / (a + c)
B1 <- (bias_parms[2] * N1 * N0 + N1 * b) / (b + d)
C1 <- M1 - A1
D1 <- N1 - B1
A0 <- a - A1
B0 <- b - B1
C0 <- c - C1
D0 <- d - D1
if(A1 < 0 | B1 < 0 | C1 < 0 | D1 < 0 |
A0 < 0 | B0 < 0 | C0 < 0 | D0 < 0)
stop('Parameters chosen lead to negative cell(s) in adjusted 2x2 table(s).')
tab.cfder <- matrix(c(A1, B1, C1, D1), nrow = 2, byrow = TRUE)
tab.nocfder <- matrix(c(A0, B0, C0, D0), nrow = 2, byrow = TRUE)
MHrd <- (((A1 * N1 - B1 * M1) / (M1 + N1)) +
((A0 * N0 - B0 * M0) / (M0 + N0))) /
((M1 * N1 / (M1 + N1)) +
(M0 * N0 / (M0 + N0)))
cfder.rd <- (A1 / M1) - (B1 / N1)
nocfder.rd <- (A0 / M0) - (B0 / N0)
RDadj.mh <- crude.rd - MHrd
if (is.null(rownames(tab)))
rownames(tab) <- paste("Row", 1:2)
if (is.null(colnames(tab)))
colnames(tab) <- paste("Col", 1:2)
if (is.null(rownames(tab))){
rownames(tab.cfder) <- paste("Row", 1:2)
} else {
rownames(tab.cfder) <- row.names(tab)
}
if (is.null(colnames(tab))){
colnames(tab.cfder) <- paste("Col", 1:2)
} else {
colnames(tab.cfder) <- colnames(tab)
}
if (is.null(rownames(tab))){
rownames(tab.nocfder) <- paste("Row", 1:2)
} else {
rownames(tab.nocfder) <- row.names(tab)
}
if (is.null(colnames(tab))){
colnames(tab.nocfder) <- paste("Col", 1:2)
} else {
colnames(tab.nocfder) <- colnames(tab)
}
rmat <- rbind(c(crude.rd, lci.crude.rd, uci.crude.rd))
colnames(rmat) <- c(" ",
paste(100 * (alpha/2), "%", sep = ""),
paste(100 * (1 - alpha/2), "%", sep = ""))
rmatc <- rbind(c(MHrd, RDadj.mh))
rownames(rmatc) <- "Mantel-Haenszel:"
colnames(rmatc) <- c(" ", "Adjusted RD")
rmat <- rbind(rmat, c(cfder.rd, NA, NA), c(nocfder.rd, NA, NA))
rownames(rmat) <- c(" Crude Risk Difference:",
"Risk Difference, Confounder +:",
"Risk Difference, Confounder -:")
}
res <- list(obs.data = tab,
cfder.data = tab.cfder,
nocfder.data = tab.nocfder,
obs.measures = rmat,
adj.measures = rmatc,
bias.parms = bias_parms)
class(res) <- c("episensr", "list")
res
}
|
context("getAlgorithmNames")
test_that("getAlgorithmNames", {
s = getAlgorithmNames(testscenario1)
})
|
.prepare_get_data <- function(x, mf, effects = "fixed", verbose = TRUE) {
if (.is_empty_object(mf)) {
if (isTRUE(verbose)) {
warning("Could not get model data.", call. = FALSE)
}
return(NULL)
}
mw <- NULL
offcol <- grep("^(\\(offset\\)|offset\\((.*)\\))", colnames(mf))
if (length(offcol) && .obj_has_name(x, "call") && .obj_has_name(x$call, "offset")) {
colnames(mf)[offcol] <- clean_names(.safe_deparse(x$call$offset))
}
mf <- .backtransform(mf)
mf[] <- lapply(mf, function(.x) {
if (is.matrix(.x) && dim(.x)[2] == 1 && !inherits(.x, c("ns", "bs", "poly", "mSpline"))) {
as.vector(.x)
} else {
.x
}
})
mc <- sapply(mf, is.matrix)
rn <- find_response(x, combine = TRUE)
rn_not_combined <- find_response(x, combine = FALSE)
if (is.null(rn)) rn <- ""
if (is.null(rn_not_combined)) rn_not_combined <- ""
trials.data <- NULL
if (mc[1] && rn == colnames(mf)[1]) {
mc[1] <- FALSE
if (inherits(x, c("coxph", "flexsurvreg", "coxme", "survreg", "survfit", "crq", "psm", "coxr"))) {
n_of_responses <- ncol(mf[[1]])
mf <- cbind(as.data.frame(as.matrix(mf[[1]])), mf)
colnames(mf)[1:n_of_responses] <- rn_not_combined
} else {
tryCatch(
{
trials.data <- as.data.frame(mf[[1]])
colnames(trials.data) <- rn_not_combined
pattern <- sprintf("%s(\\s*)-(\\s*)%s", rn_not_combined[2], rn_not_combined[1])
if (any(grepl(pattern = pattern, x = rn))) {
trials.data[[2]] <- trials.data[[1]] + trials.data[[2]]
}
},
error = function(x) {
NULL
}
)
}
}
if (any(mc)) {
md <- tryCatch(
{
eval(stats::getCall(x)$data, environment(stats::formula(x)))
},
error = function(x) {
NULL
}
)
if (is.null(md)) {
mf_matrix <- mf[, which(mc), drop = FALSE]
mf_nonmatrix <- mf[, -which(mc), drop = FALSE]
if (any(class(mf_matrix[[1]]) == "rms")) {
class(mf_matrix[[1]]) <- "matrix"
}
mf_list <- lapply(mf_matrix, as.data.frame, stringsAsFactors = FALSE)
mf_matrix <- do.call(cbind, mf_list)
mf <- cbind(mf_nonmatrix, mf_matrix)
} else {
if (any(is.na(colnames(md)))) {
colnames(md) <- make.names(colnames(md))
}
mf_matrix <- mf[, -which(mc), drop = FALSE]
spline.term <- clean_names(names(which(mc)))
other.terms <- clean_names(colnames(mf_matrix))[-1]
needed.vars <- c(other.terms, spline.term)
if (is.matrix(mf[[1]])) {
needed.vars <- c(dimnames(mf[[1]])[[2]], needed.vars)
} else {
needed.vars <- c(colnames(mf)[1], needed.vars)
}
if ("(weights)" %in% needed.vars && !.obj_has_name(md, "(weights)")) {
needed.vars <- needed.vars[-which(needed.vars == "(weights)")]
mw <- mf[["(weights)"]]
fw <- find_weights(x)
if (!is.null(fw) && fw %in% colnames(md)) {
needed.vars <- c(needed.vars, fw)
}
}
if (inherits(x, c("coxph", "coxme", "coxr")) || any(grepl("^Surv\\(", spline.term))) {
mf <- md
} else {
needed.vars <- .compact_character(unique(clean_names(needed.vars)))
mf <- md[, needed.vars, drop = FALSE]
value_labels <- lapply(mf, function(.l) attr(.l, "labels", exact = TRUE))
variable_labels <- lapply(mf, function(.l) attr(.l, "label", exact = TRUE))
mf <- stats::na.omit(mf)
mf <- as.data.frame(mapply(function(.d, .l) {
attr(.d, "labels") <- .l
.d
}, mf, value_labels, SIMPLIFY = FALSE), stringsAsFactors = FALSE)
mf <- as.data.frame(mapply(function(.d, .l) {
attr(.d, "label") <- .l
.d
}, mf, variable_labels, SIMPLIFY = FALSE), stringsAsFactors = FALSE)
}
if (!is.null(mw)) mf$`(weights)` <- mw
}
pv <- tryCatch(
{
find_predictors(x, effects = effects, flatten = TRUE, verbose = verbose)
},
error = function(x) {
NULL
}
)
if (!is.null(pv) && !all(pv %in% colnames(mf)) && isTRUE(verbose)) {
warning(format_message("Some model terms could not be found in model data. You probably need to load the data into the environment."), call. = FALSE)
}
}
mos_eisly <- grepl(pattern = "^mo\\(([^,)]*).*", x = colnames(mf))
if (any(mos_eisly)) {
mf <- mf[!mos_eisly]
}
strata_columns <- grepl("^strata\\((.*)\\)", colnames(mf))
if (any(strata_columns)) {
for (sc in colnames(mf)[strata_columns]) {
strata_variable <- gsub("strata\\((.*)\\)", "\\1", sc)
levels(mf[[sc]]) <- gsub(paste0("\\Q", strata_variable, "=", "\\E"), "", levels(mf[[sc]]))
}
}
factors <- colnames(mf)[grepl("^(as\\.factor|factor)\\((.*)\\)", colnames(mf))]
cvn <- .remove_pattern_from_names(colnames(mf), ignore_lag = TRUE)
if (colnames(mf)[1] == rn[1] && grepl("^I\\(", rn[1])) {
md <- tryCatch(
{
tmp <- .recover_data_from_environment(x)[, unique(c(rn_not_combined, cvn)), drop = FALSE]
tmp[, rn_not_combined, drop = FALSE]
},
error = function(x) {
NULL
}
)
if (!is.null(md)) {
mf <- cbind(mf, md)
cvn <- .remove_pattern_from_names(colnames(mf), ignore_lag = TRUE)
cvn[1] <- rn[1]
}
}
dupes <- which(duplicated(cvn))
if (!.is_empty_string(dupes)) cvn[dupes] <- sprintf("%s.%s", cvn[dupes], 1:length(dupes))
colnames(mf) <- cvn
weighting_var <- find_weights(x)
if (!is.null(weighting_var) && !weighting_var %in% colnames(mf) && length(weighting_var) == 1) {
mf <- tryCatch(
{
tmp <- suppressWarnings(cbind(mf, get_weights(x)))
colnames(tmp)[ncol(tmp)] <- weighting_var
tmp
},
error = function(e) {
mf
}
)
}
if (!is.null(trials.data)) {
new.cols <- setdiff(colnames(trials.data), colnames(mf))
if (!.is_empty_string(new.cols)) mf <- cbind(mf, trials.data[, new.cols, drop = FALSE])
}
.add_remaining_missing_variables(x, mf, effects, component = "all", factors = factors)
}
.add_remaining_missing_variables <- function(model, mf, effects, component, factors = NULL) {
model_call <- get_call(model)
if (!is.null(model_call)) {
data_arg <- tryCatch(parse(text = .safe_deparse(model_call))[[1]]$data,
error = function(e) NULL)
} else {
data_arg <- NULL
}
if (is.null(data_arg) && all(grepl("(.*)\\$(.*)", colnames(mf)))) {
colnames(mf) <- gsub("(.*)\\$(.*)", "\\2", colnames(mf))
}
predictors <- find_predictors(
model,
effects = effects,
component = component,
flatten = TRUE,
verbose = FALSE
)
missing_vars <- setdiff(predictors, colnames(mf))
if (!is.null(missing_vars) && length(missing_vars) > 0) {
env_data <- .recover_data_from_environment(model)
if (!is.null(env_data) && all(missing_vars %in% colnames(env_data))) {
shared_columns <- intersect(colnames(env_data), c(missing_vars, colnames(mf)))
env_data <- stats::na.omit(env_data[shared_columns])
if (nrow(env_data) == nrow(mf) && !any(missing_vars %in% colnames(mf))) {
mf <- cbind(mf, env_data[missing_vars])
}
}
}
if (length(factors)) {
factors <- gsub("^(as\\.factor|factor)\\((.*)\\)", "\\2", factors)
for (i in factors) {
if (.is_numeric_character(mf[[i]])) {
mf[[i]] <- .to_numeric(mf[[i]])
attr(mf[[i]], "factor") <- TRUE
}
}
attr(mf, "factors") <- factors
}
mf
}
.return_combined_data <- function(x, mf, effects, component, model.terms, is_mv = FALSE, verbose = TRUE) {
response <- unlist(model.terms$response)
factors <- attr(mf, "factors", exact = TRUE)
if (is_mv) {
fixed.component.data <- switch(component,
all = c(
sapply(model.terms[-1], function(i) i$conditional),
sapply(model.terms[-1], function(i) i$zero_inflated),
sapply(model.terms[-1], function(i) i$dispersion)
),
conditional = sapply(model.terms[-1], function(i) i$conditional),
zi = ,
zero_inflated = sapply(model.terms[-1], function(i) i$zero_inflated),
dispersion = sapply(model.terms[-1], function(i) i$dispersion)
)
random.component.data <- switch(component,
all = c(
sapply(model.terms[-1], function(i) i$random),
sapply(model.terms[-1], function(i) i$zero_inflated_random)
),
conditional = sapply(model.terms[-1], function(i) i$random),
zi = ,
zero_inflated = sapply(model.terms[-1], function(i) i$zero_inflated_random)
)
fixed.component.data <- unlist(fixed.component.data)
random.component.data <- unlist(random.component.data)
} else {
all_elements <- intersect(names(model.terms), .get_elements("fixed", "all"))
fixed.component.data <- switch(component,
all = unlist(model.terms[all_elements]),
conditional = model.terms$conditional,
zi = ,
zero_inflated = model.terms$zero_inflated,
dispersion = model.terms$dispersion
)
random.component.data <- switch(component,
all = c(model.terms$random, model.terms$zero_inflated_random),
conditional = model.terms$random,
zi = ,
zero_inflated = model.terms$zero_inflated_random
)
}
if (!.is_empty_object(fixed.component.data)) {
fixed.component.data <- .remove_values(fixed.component.data, c("1", "0"))
fixed.component.data <- .remove_values(fixed.component.data, c(1, 0))
}
if (!.is_empty_object(random.component.data)) {
random.component.data <- .remove_values(random.component.data, c("1", "0"))
random.component.data <- .remove_values(random.component.data, c(1, 0))
}
weights <- find_weights(x)
vars <- switch(effects,
all = unique(c(response, fixed.component.data, random.component.data, weights)),
fixed = unique(c(response, fixed.component.data, weights)),
random = unique(random.component.data)
)
vars <- c(vars, find_offset(x))
still_missing <- setdiff(vars, colnames(mf))
vars <- intersect(vars, colnames(mf))
dat <- mf[, vars, drop = FALSE]
if (.is_empty_object(dat)) {
if (isTRUE(verbose)) {
warning(format_message(sprintf("Data frame is empty, probably component '%s' does not exist in the %s-part of the model?", component, effects)), call. = FALSE)
}
return(NULL)
}
if (length(still_missing) && isTRUE(verbose)) {
warning(format_message(sprintf("Following potential variables could not be found in the data: %s", paste0(still_missing, collapse = " ,"))), call. = FALSE)
}
if ("(offset)" %in% colnames(mf) && !("(offset)" %in% colnames(dat))) {
dat <- cbind(dat, mf[["(offset"]])
}
attr(dat, "factors") <- factors
dat
}
.add_zeroinf_data <- function(x, mf, tn) {
tryCatch(
{
env_data <- eval(x$call$data, envir = parent.frame())[, tn, drop = FALSE]
if (.obj_has_name(x$call, "subset")) {
env_data <- subset(env_data, subset = eval(x$call$subset))
}
.merge_dataframes(env_data, mf, replace = TRUE)
},
error = function(x) {
mf
}
)
}
.get_zelig_relogit_frame <- function(x) {
vars <- find_variables(x, flatten = TRUE, verbose = FALSE)
x$data[, vars, drop = FALSE]
}
.return_zeroinf_data <- function(x, component, verbose = TRUE) {
model.terms <- find_variables(x, effects = "all", component = "all", flatten = FALSE, verbose = FALSE)
model.terms$offset <- find_offset(x)
mf <- tryCatch(
{
stats::model.frame(x)
},
error = function(x) {
NULL
}
)
mf <- .prepare_get_data(x, mf, verbose = verbose)
mf <- .add_zeroinf_data(x, mf, model.terms$zero_inflated)
fixed.data <- switch(component,
all = c(model.terms$conditional, model.terms$zero_inflated, model.terms$offset),
conditional = c(model.terms$conditional, model.terms$offset),
zi = ,
zero_inflated = model.terms$zero_inflated
)
mf[, unique(c(model.terms$response, fixed.data, find_weights(x))), drop = FALSE]
}
.get_data_from_modelframe <- function(x, dat, effects, verbose = TRUE) {
if (.is_empty_object(dat)) {
warning("Could not get model data.", call. = FALSE)
return(NULL)
}
cn <- clean_names(colnames(dat))
ft <- switch(effects,
fixed = find_variables(x, effects = "fixed", flatten = TRUE),
all = find_variables(x, flatten = TRUE),
random = find_random(x, split_nested = TRUE, flatten = TRUE)
)
remain <- intersect(c(ft, find_weights(x)), cn)
mf <- tryCatch(
{
dat[, remain, drop = FALSE]
},
error = function(x) {
dat
}
)
.prepare_get_data(x, mf, effects, verbose = verbose)
}
.recover_data_from_environment <- function(x) {
model_call <- get_call(x)
dat <- tryCatch(
{
eval(model_call$data, envir = parent.frame())
},
error = function(e) {
NULL
}
)
if (is.null(dat)) {
dat <- tryCatch(
{
eval(model_call$data, envir = globalenv())
},
error = function(e) {
NULL
}
)
}
if (!is.null(dat) && .obj_has_name(model_call, "subset")) {
dat <- subset(dat, subset = eval(model_call$subset))
}
dat
}
.get_S4_data_from_env <- function(x) {
dat <- tryCatch(
{
eval(x@call$data, envir = parent.frame())
},
error = function(e) {
NULL
}
)
if (is.null(dat)) {
dat <- tryCatch(
{
eval(x@call$data, envir = globalenv())
},
error = function(e) {
NULL
}
)
}
if (!is.null(dat) && .obj_has_name(x@call, "subset")) {
dat <- subset(dat, subset = eval(x@call$subset))
}
dat
}
.get_startvector_from_env <- function(x) {
tryCatch(
{
sv <- eval(parse(text = .safe_deparse(x@call))[[1]]$start)
if (is.list(sv)) sv <- sv[["nlpars"]]
names(sv)
},
error = function(e) {
NULL
}
)
}
.backtransform <- function(mf) {
tryCatch(
{
patterns <- c(
"scale\\(log", "exp\\(scale", "log\\(log", "log", "log1p",
"log10", "log2", "sqrt", "exp", "expm1", "scale"
)
for (i in patterns) {
mf <- .backtransform_helper(mf, i)
}
mf
},
error = function(e) {
mf
}
)
}
.backtransform_helper <- function(mf, type) {
cn <- .get_transformed_names(colnames(mf), type)
if (!.is_empty_string(cn)) {
for (i in cn) {
if (type == "scale\\(log") {
mf[[i]] <- exp(.unscale(mf[[i]]))
} else if (type == "exp\\(scale") {
mf[[i]] <- .unscale(log(mf[[i]]))
} else if (type == "log\\(log") {
mf[[i]] <- exp(exp(mf[[i]]))
} else if (type == "log") {
mf[[i]] <- exp(mf[[i]])
} else if (type == "log1p") {
mf[[i]] <- expm1(mf[[i]])
} else if (type == "log10") {
mf[[i]] <- 10^(mf[[i]])
} else if (type == "log2") {
mf[[i]] <- 2^(mf[[i]])
} else if (type == "sqrt") {
mf[[i]] <- (mf[[i]])^2
} else if (type == "exp") {
mf[[i]] <- log(mf[[i]])
} else if (type == "expm1") {
mf[[i]] <- log1p(mf[[i]])
} else if (type == "scale") {
mf[[i]] <- .unscale(mf[[i]])
}
colnames(mf)[colnames(mf) == i] <- .get_transformed_terms(i, type)
}
}
mf
}
.unscale <- function(x) {
m <- attr(x, "scaled:center")
s <- attr(x, "scaled:scale")
if (is.null(m)) m <- 0
if (is.null(s)) s <- 1
s * x + m
}
.get_transformed_terms <- function(model, type = "all") {
if (is.character(model)) {
x <- model
} else {
x <- find_terms(model, flatten = TRUE)
}
pattern <- sprintf("%s\\(([^,\\+)]*).*", type)
.trim(gsub(pattern, "\\1", x[grepl(pattern, x)]))
}
.get_transformed_names <- function(x, type = "all") {
pattern <- sprintf("%s\\(([^,)]*).*", type)
x[grepl(pattern, x)]
}
.retrieve_htest_data <- function(x) {
out <- tryCatch(
{
if (grepl("^svy", x$data.name)) {
if (grepl("pearson's x^2", tolower(x$method), fixed = TRUE)) {
d <- x$observed
} else {
d <- NULL
}
} else {
data_name <- trimws(unlist(strsplit(x$data.name, "(and|by)")))
data_comma <- unlist(strsplit(data_name, "(\\([^)]*\\))"))
if (any(grepl(",", data_comma, fixed = TRUE))) {
data_name <- trimws(unlist(strsplit(data_comma, ", ", fixed = TRUE)))
}
if (grepl("Kruskal-Wallis", x$method, fixed = TRUE) && grepl("^list\\(", data_name)) {
l <- eval(.str2lang(x$data.name))
names(l) <- paste0("x", 1:length(l))
return(l)
}
data_call <- lapply(data_name, .str2lang)
columns <- lapply(data_call, eval)
if (!grepl(" (and|by) ", x$data.name) && (grepl("^McNemar", x$method) || (length(columns) == 1 && is.matrix(columns[[1]])))) {
return(as.table(columns[[1]]))
} else if (grepl("^Kruskal-Wallis", x$method) && length(columns) == 1 && is.list(columns[[1]])) {
l <- columns[[1]]
names(l) <- paste0("x", 1:length(l))
return(l)
} else {
max_len <- max(sapply(columns, length))
for (i in 1:length(columns)) {
if (length(columns[[i]]) < max_len) {
columns[[i]] <- c(columns[[i]], rep(NA, max_len - length(columns[[i]])))
}
}
d <- as.data.frame(columns)
}
if (all(grepl("(.*)\\$(.*)", data_name)) && length(data_name) == length(colnames(d))) {
colnames(d) <- gsub("(.*)\\$(.*)", "\\2", data_name)
} else if (ncol(d) > 2) {
colnames(d) <- paste0("x", 1:ncol(d))
} else if (ncol(d) == 2) {
colnames(d) <- c("x", "y")
} else {
colnames(d) <- "x"
}
}
d
},
error = function(e) {
NULL
}
)
if (is.null(out)) {
for (parent_level in 1:5) {
out <- tryCatch(
{
data_name <- trimws(unlist(strsplit(x$data.name, "(and|,|by)")))
as.table(get(data_name, envir = parent.frame(n = parent_level)))
},
error = function(e) {
NULL
}
)
if (!is.null(out)) break
}
}
out
}
|
m2tk<-function(m0)
{
mo=sort(m0,decreasing=TRUE)
M=sum(mo)/3
Md=mo-M
if(Md[2]>=0) {k=M/(abs(M)-Md[3])}
if(Md[2]<0) {k=M/(abs(M)+Md[1])}
if(Md[2]>0) {T=-2*Md[2]/Md[3]}
if(Md[2]==0) {T=0}
if(Md[2]<0) {T=2*Md[2]/Md[1]}
return(list(k=k,T=T))
}
|
model_parameters.clm2 <- function(model,
ci = .95,
bootstrap = FALSE,
iterations = 1000,
component = c("all", "conditional", "scale"),
standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
verbose = TRUE,
...) {
component <- match.arg(component)
if (component == "all") {
merge_by <- c("Parameter", "Component")
} else {
merge_by <- "Parameter"
}
out <- .model_parameters_generic(
model = model,
ci = ci,
component = component,
bootstrap = bootstrap,
iterations = iterations,
merge_by = c("Parameter", "Component"),
standardize = standardize,
exponentiate = exponentiate,
p_adjust = p_adjust,
...
)
attr(out, "object_name") <- deparse(substitute(model), width.cutoff = 500)
out
}
model_parameters.clmm2 <- model_parameters.clm2
model_parameters.clmm <- model_parameters.cpglmm
ci.clm2 <- function(x, ci = .95, component = c("all", "conditional", "scale"), ...) {
component <- match.arg(component)
.ci_generic(model = x, ci = ci, dof = Inf, component = component)
}
ci.clmm2 <- ci.clm2
standard_error.clm2 <- function(model, component = c("all", "conditional", "scale"), ...) {
component <- match.arg(component)
stats <- .get_se_from_summary(model)
parms <- insight::get_parameters(model, component = component)
.data_frame(
Parameter = parms$Parameter,
SE = stats[parms$Parameter],
Component = parms$Component
)
}
standard_error.clmm2 <- standard_error.clm2
p_value.clm2 <- function(model, component = c("all", "conditional", "scale"), ...) {
component <- match.arg(component)
params <- insight::get_parameters(model)
cs <- stats::coef(summary(model))
p <- cs[, 4]
out <- .data_frame(
Parameter = params$Parameter,
Component = params$Component,
p = as.vector(p)
)
if (component != "all") {
out <- out[out$Component == component, ]
}
out
}
p_value.clmm2 <- p_value.clm2
simulate_model.clm2 <- function(model,
iterations = 1000,
component = c("all", "conditional", "scale"),
...) {
component <- match.arg(component)
out <- .simulate_model(model, iterations, component = component)
class(out) <- c("parameters_simulate_model", class(out))
attr(out, "object_name") <- .safe_deparse(substitute(model))
out
}
simulate_model.clmm2 <- simulate_model.clm2
|
lineups_stats_per_possesion <- function(df1,df2,df3,p,m){
minutes <- (df2[1,2]/df2[1,1])/5
minutes <- trunc(minutes)
tm_poss <- df2[1,4] - df2[1,15] / (df2[1,15] + df3[1,16]) * (df2[1,4] - df2[1,3]) * 1.07 + df2[1,21] + 0.4 * df2[1,13]
opp_poss <- df3[1,4] - df3[1,15] / (df3[1,15] + df2[1,16]) * (df3[1,4] - df3[1,3]) * 1.07 + df3[1,21] + 0.4 * df3[1,13]
pace <- m * ((tm_poss + opp_poss) / (2 * (df2[1,2] / 5)))
if(ncol(df1)==29){
lyneup_poss <- (pace/m) * df1[6]
for(i in 7:ncol(df1)){
if(i==9||i==12||i==15||i==18){
df1[i]<- round(df1[i],3)
}
else{
df1[i] <- round((df1[i]/lyneup_poss) * p,2)
}
}
names(df1) = c("PG","SG","SF","PF","C","MP","FG","FGA","FG%","3P","3PA","3P%","2P","2PA","2P%","FT","FTA","FT%",
"ORB","DRB","TRB","AST","STL","BLK","TOV","PF","+","-","+/-")
}else if(ncol(df1)==27){
lyneup_poss <- (pace/m) * df1[4]
for(i in 7:ncol(df1)){
if(i==7||i==10||i==13||i==16){
df1[i]<- round(df1[i],3)
}
else{
df1[i] <- round((df1[i]/lyneup_poss) * p,2)
}
}
names(df1) = c("PG","SG","SF","MP","FG","FGA","FG%","3P","3PA","3P%","2P","2PA","2P%","FT","FTA","FT%",
"ORB","DRB","TRB","AST","STL","BLK","TOV","PF","+","-","+/-")
}else if(ncol(df1)==26){
lyneup_poss <- (pace/m) * df1[3]
for(i in 7:ncol(df1)){
if(i==6||i==9||i==12||i==15){
df1[i]<- round(df1[i],3)
}
else{
df1[i] <- round((df1[i]/lyneup_poss) * p,2)
}
}
names(df1) = c("PF","C","MP","FG","FGA","FG%","3P","3PA","3P%","2P","2PA","2P%","FT","FTA","FT%",
"ORB","DRB","TRB","AST","STL","BLK","TOV","PF","+","-","+/-")
}
else if (ncol(df1)==25){
lyneup_poss <- (pace/m) * df1[2]
for(i in 7:ncol(df1)){
if(i==5||i==8||i==11||i==14){
df1[i]<- round(df1[i],3)
}
else{
df1[i] <- round((df1[i]/lyneup_poss) * p,2)
}
}
}
df1[is.na(df1)] <- 0
return(df1)
}
|
summary.bma <-
function (object, ...)
{
info.bma(object)
}
|
gi_write_gitignore <-
function(fetched_template,
gitignore_file = here::here(".gitignore")) {
stopifnot(basename(gitignore_file) == ".gitignore")
if (!file.exists(gitignore_file)) {
message(
crayon::red(clisymbols::symbol$bullet),
" The .gitignore file could not be found in the project directory",
here::here(),
"Would you like to create it?",
"\n"
)
response <- utils::menu(c("Yes", "No"))
if (response == 1) {
file.create(gitignore_file)
} else {
stop(
"Could not find the file: ",
crayon::red$bold(gitignore_file)
)
}
}
existing_lines <-
readLines(gitignore_file, warn = FALSE, encoding = "UTF-8")
fetched_template_splitted <- unlist(strsplit(fetched_template, "\n"))
new <- setdiff(fetched_template_splitted, existing_lines)
if (length(new) == 0) {
message(
crayon::yellow(clisymbols::symbol$bullet),
" Nothing to be modified in the .gitignore file.\n"
)
return(FALSE)
}
all <- c(existing_lines, new)
xfun::write_utf8(all, gitignore_file)
message(
crayon::green(clisymbols::symbol$bullet),
" .gitignore file successfully modified.\n"
)
invisible(TRUE)
}
|
panel.ci <- function(
x,
y,
lower,
upper,
groups = NULL,
subscripts,
col,
fill = if (is.null(groups)) plot.line$col else superpose.line$col,
alpha = 0.15,
lty = 0,
lwd = if (is.null(groups)) plot.line$lwd else superpose.line$lwd,
grid = FALSE,
...,
col.line = if (is.null(groups)) plot.line$col else superpose.line$col
) {
plot.line <- trellis.par.get("plot.line")
superpose.line <- trellis.par.get("superpose.line")
dots <- list(...)
if (!missing(col)) {
if (missing(col.line))
col.line <- col
}
if (!identical(grid, FALSE)) {
if (!is.list(grid))
grid <- switch(as.character(grid),
"TRUE" = list(h = -1, v = -1, x = x, y = y),
h = list(h = -1, v = 0, y = y),
v = list(h = 0, v = -1, x = x),
list(h = 0, v = 0))
do.call(lattice::panel.grid, grid)
}
nobs <- sum(!is.na(y))
if (!is.null(groups))
do.call(panel.superpose, updateList(list(
x = x,
y = y,
lower = lower,
upper = upper,
groups = groups,
subscripts = subscripts,
panel.groups = panel.ci,
alpha = alpha,
col.line = col.line,
fill = fill,
lty = lty,
lwd = lwd
), dots))
else if (nobs > 0) {
lower <- lower[subscripts]
upper <- upper[subscripts]
ord <- order(x)
x <- sort(x)
do.call(panel.polygon, updateList(list(
x = c(x, rev(x)),
y = c(upper[ord], rev(lower[ord])),
alpha = alpha,
col = fill,
border = "transparent",
lty = 0,
lwd = 0,
identifier = "ci"
), dots))
panel.lines(
x = x,
y = lower[ord],
alpha = alpha,
col = col.line,
lty = lty,
lwd = lwd,
identifier = "ci"
)
panel.lines(
x = x,
y = upper[ord],
alpha = alpha,
col = col.line,
lty = lty,
lwd = lwd,
identifier = "ci"
)
} else {
return()
}
}
prepanel.ci <- function(
x,
y,
lower,
upper,
subscripts,
groups = NULL,
...
) {
if (any(!is.na(x)) && any(!is.na(y))) {
ord <- order(as.numeric(x))
if (!is.null(groups)) {
gg <- groups[subscripts]
dx <- unlist(lapply(split(as.numeric(x)[ord], gg[ord]), diff))
dy <- unlist(lapply(split(as.numeric(y)[ord], gg[ord]), diff))
}
else {
dx <- diff(as.numeric(x[ord]))
dy <- diff(as.numeric(y[ord]))
}
list(xlim = scale.limits(x),
ylim = scale.limits(c(lower, upper)),
dx = dx,
dy = dy,
xat = if (is.factor(x)) sort(unique(as.numeric(x))) else NULL,
yat = if (is.factor(y)) sort(unique(as.numeric(y))) else NULL)
}
else prepanel.null()
}
|
"cortest.normal" <-
function(R1,R2=NULL, n1=NULL,n2=NULL,fisher=TRUE) {
cl <- match.call()
if (dim(R1)[1] != dim(R1)[2]) {n1 <- dim(R1)[1]
message("R1 was not square, finding R from data")
R1 <- cor(R1,use="pairwise")}
if(!is.matrix(R1) ) R1 <- as.matrix(R1)
p <- dim(R1)[2]
if(is.null(n1)) {n1 <- 100
warning("n not specified, 100 used") }
if(is.null(R2)) { if(fisher) {R <- 0.5*log((1+R1)/(1-R1))
R <- R*R} else {R <- R1*R1}
diag(R) <- 0
E <- (sum(R*lower.tri(R)))
chisq <- E *(n1-3)
df <- p*(p-1)/2
p.val <- pchisq(chisq,df,lower.tail=FALSE)
} else {
if (dim(R2)[1] != dim(R2)[2]) {n2 <- dim(R2)[1]
message("R2 was not square, finding R from data")
R2 <- cor(R2,use="pairwise")}
if(!is.matrix(R2) ) R2 <- as.matrix(R2)
if(fisher) {
R1 <- 0.5*log((1+R1)/(1-R1))
R2 <- 0.5*log((1+R2)/(1-R2))
diag(R1) <- 0
diag(R2) <- 0 }
R <- R1 -R2
R <- R*R
if(is.null(n2)) n2 <- n1
n <- (n1*n2)/(n1+n2)
E <- (sum(R*lower.tri(R)))
chisq <- E *(n-3)
df <- p*(p-1)/2
p.val <- pchisq(chisq,df,lower.tail=FALSE)
}
result <- list(chi2=chisq,prob=p.val,df=df,Call=cl)
class(result) <- c("psych", "cortest")
return(result)
}
"cortest.normal1" <-
function(R1,R2=NULL, n1=NULL,n2=NULL,fisher=TRUE) {
cl <- match.call()
if(!is.matrix(R1) ) R1 <- as.matrix(R1)
if(!is.matrix(R2) ) R2 <- as.matrix(R2)
r <- dim(R1)[1]
c <- dim(R1)[2]
R1 <- 0.5*log((1+R1)/(1-R1))
R2 <- 0.5*log((1+R2)/(1-R2))
R <- R1 -R2
R <- R*R
if(is.null(n2)) n2 <- n1
n <- (n1*n2)/(n1+n2)
E <- sum(R)
chisq <- E *(n-3)
df <- r*c
p.val <- pchisq(chisq,df,lower.tail=FALSE)
result <- list(chi2=chisq,prob=p.val,df=df,Call=cl)
class(result) <- c("psych", "cortest")
return(result)
}
test.cortest.normal <- function(n.var=10,n1=100,n2=1000,n.iter=100) {
R <- diag(1,n.var)
summary <- list()
for(i in 1:n.iter) {
x <- sim.correlation(R,n1)
if(n2 >3 ) {
y <- sim.correlation(R,n2)
summary[[i]] <- cortest(x,y,n1=n1,n2=n2)$prob
} else {summary[[i]] <- cortest(x,n1=n1)$prob }
}
result <- unlist(summary)
return(result)
}
|
setMethod("SI", signature(object = "Nri", i = "missing", j = "missing"),
function(object, i, j)
return(.SI(object@SI))
)
setMethod("SI", signature(object = "Nri", i = "ANY", j = "missing"),
function(object, i, j)
return(object@SI[i,])
)
setMethod("SI", signature(object = "Nri", i = "missing", j = "ANY"),
function(object, i, j)
return(object@SI[,j])
)
setMethod("SI", signature(object = "Nri", i = "ANY", j = "ANY"),
function(object, i, j)
return(object@SI[i,j])
)
setReplaceMethod("SI", signature(object = "Nri", value = "matrix"),
function(object, value)
{
object@SI <- new(".SI", value)
return(object)
}
)
setReplaceMethod("SI", signature(object = "Nri", value = "data.frame"),
function(object, value)
{
object@SI <- new(".SI", value)
return(object)
}
)
setReplaceMethod("SI", signature(object = "Nri", value = "ANY"),
function(object, value)
{
object@SI <- new(".SI", value)
return(object)
}
)
|
function.MaxSe <-
function(data, marker, status, tag.healthy = 0, direction = c("<", ">"), control = control.cutpoints(), pop.prev, ci.fit = FALSE, conf.level = 0.95, measures.acc){
direction <- match.arg(direction)
cutpointsSe <- measures.acc$cutoffs[which(round(measures.acc$Se[,1],10) == round(max(measures.acc$Se[,1],na.rm=TRUE),10))]
if (length(cutpointsSe)> 1) {
Spnew <- obtain.optimal.measures(cutpointsSe, measures.acc)$Sp
cMaxSe <- cutpointsSe[which(round(Spnew[,1],10) == round(max(Spnew[,1],na.rm=TRUE),10))]
}
if (length(cutpointsSe)== 1) {
cMaxSe <- cutpointsSe
}
optimal.cutoff <- obtain.optimal.measures(cMaxSe, measures.acc)
res <- list(measures.acc = measures.acc, optimal.cutoff = optimal.cutoff)
res
}
|
vcgCreateKDtree <- function(mesh, nofPointsPerCell=16,maxDepth=64) {
if (is.matrix(mesh)) {
if (ncol(mesh) == 2)
mesh <- cbind(mesh,0)
if (ncol(mesh) == 3) {
mesh <- list(vb=t(mesh))
class(mesh) <- "mesh3d"
} else
stop("if query is a matrix, only 2 or 3 columns are allowed")
}
out <- .Call("createKDtree",mesh,nofPointsPerCell,maxDepth)
class(out) <- "vcgKDtree"
return(out)
}
vcgSearchKDtree <- function(kdtree, query,k ,threads=0) {
if (!inherits(kdtree,"vcgKDtree"))
stop("no valid kdtree")
if (is.matrix(query)) {
if (ncol(query) == 2)
query <- cbind(query,0)
if (ncol(query) == 3) {
query <- list(vb=t(query))
class(query) <- "mesh3d"
} else
stop("if query is a matrix, only 2 or 3 columns are allowed")
} else {
if(!inherits(query,"mesh3d"))
stop("only meshes or matrices allowed")
}
out <- .Call("RsearchKDtree",kdtree$kdtree,kdtree$target,query,k,threads)
out$index <- out$index+1
return(out)
}
vcgCreateKDtreeFromBarycenters <- function(mesh, nofPointsPerCell=16,maxDepth=64) {
mesh <- meshintegrity(mesh,facecheck=TRUE)
barycenters <- vcgBary(mesh)
out <- vcgCreateKDtree(barycenters,nofPointsPerCell,maxDepth)
out$targetptr <- .Call("RmeshXPtr",mesh)
class(out) <- "vcgKDtreeWithBarycenters"
return(out)
}
vcgClostOnKDtreeFromBarycenters <- function(x,query,k=50,sign=TRUE,barycentric=FALSE, borderchk = FALSE, angdev=NULL, weightnorm=FALSE, facenormals=FALSE,threads=1) {
if (! inherits(x,"vcgKDtreeWithBarycenters"))
stop("provide valid object")
if (is.matrix(query) && is.numeric(query)) {
query <- list(vb=t(query))
class(query) <- "mesh3d"
} else if (!inherits(query,"mesh3d")) {
stop("argument 'mesh' needs to be object of class 'mesh3d'")
}
if (is.null(angdev) || is.null(query$it))
angdev <- 0
out <- .Call("RsearchKDtreeForClosestPoints",x$kdtree,x$target,x$targetptr,query,k,sign,borderchk,barycentric,angdev,weightnorm,facenormals,threads)
out$it <- query$it
return(out)
}
|
edg <- function(y, a, b, m=2)
{
r3 <- (a + b*m^3)/(a + b*m*m)^(3/2)
r4 <- (a + b*m^4)/(a + b*m*m)^2
x <- (1 + 1/(24*(a + b*m*m)))*(y + .5 - a - b*m)/sqrt(a + b*m*m)
He2 <- x*x - 1
He3 <- x^3 - 3*x
He5 <- x^5 - 10*x^3 + 15*x
return(pnorm(x) - dnorm(x)*(r3*He2/6 + He3*r4/24 + r3*r3*He5/72))
}
|
ss.calc<-
function(power=0.8, Case.Rate=NULL, k=NULL, MAF=NULL, OR=NULL,
Alpha=0.05, True.Model='All', Test.Model='All')
{
if(is.null(k)==T & is.null(Case.Rate)==T){
stop("k, the number of controls per case, or Case.Rate, the proportion of cases in the study sample, must be specified.")
}
if(is.null(k)==F & is.null(Case.Rate)==F){
stop("Specify one of k, the number of controls per case, or Case.Rate, the proportion of cases in the study sample, not both.")
}
if(is.null(MAF)==T){
stop("MAF (minor allele frequency) must be specified.")
}
if(is.null(OR)==T){
stop("OR (detectable odds ratio) must be specified.")
}
if(sum(Case.Rate>=1)>0 | sum(Case.Rate<=0)>0){
stop("R2 must be greater than 0 and less than 1.")
}
if(sum(MAF>=1)>0 | sum(MAF<=0)>0){
stop("MAF must be greater than 0 and less than 1.")
}
if(sum(power>=1)>0 | sum(power<=0)>0){
stop("Power must be greater than 0 and less than 1.")
}
if(sum(k<=0)>0){
stop("k must be greater than 0.")
}
if(sum(OR<=0)>0){
stop("OR must be greater than 0.")
}
if(sum(Alpha>=1)>0 | sum(Alpha<=0)>0){
stop("Alpha must be greater than 0 and less than 1.")
}
if(sum(!(Test.Model %in% c("Dominant", "Recessive", "Additive", "2df", "All")))>0){
stop(paste("Invalid Test.Model:",
paste(Test.Model[!(Test.Model %in% c("Dominant", "Recessive", "Additive", "2df", "All"))], collapse=', ')))
}
if(sum(!(True.Model %in% c("Dominant", "Recessive", "Additive", "All")))>0){
stop(paste("Invalid True.Model:",
paste(True.Model[!(True.Model %in% c("Dominant", "Recessive", "Additive", "All"))], collapse=', ')))
}
if('All' %in% Test.Model){Test.Model<-c("Dominant", "Recessive", "Additive", "2df")}
if('All' %in% True.Model){True.Model<-c("Dominant", "Recessive", "Additive")}
if(is.null(Case.Rate)==T){Case.Rate = 1/(1+k)}
power.tab <- expand.grid(power, Case.Rate)
colnames(power.tab) <- c('power', 'Case.Rate')
iter <- nrow(power.tab)
final.ss.tab <- NULL
for (zz in 1:iter){
power <- power.tab[zz,"power"]
Case.Rate <- power.tab[zz,'Case.Rate']
o.save.tab <-NULL
for (o in OR){
m.save.tab<-NULL
for (m in MAF){
save.tab <- NULL
P_AA <- (1-m)^2
P_AB <- 2*m*(1-m)
P_BB <- m^2
if('Dominant' %in% True.Model){
a <- (1-o)
b <- (P_AA-Case.Rate+o*(Case.Rate+P_AB+P_BB))
c <- -o*(P_AB+P_BB)*Case.Rate
soln <- quad_roots(a,b,c)[2]
P_AA_case_d <- (Case.Rate-soln)/P_AA
P_AB_case_d <- P_BB_case_d <- soln/(P_AB+P_BB)
prob_AA_case_d <- P_AA_case_d*P_AA
prob_AB_case_d <- P_AB_case_d*P_AB
prob_BB_case_d <- P_BB_case_d*P_BB
prob_AA_control_d <- (1-P_AA_case_d)*P_AA
prob_AB_control_d <- (1-P_AB_case_d)*P_AB
prob_BB_control_d <- (1-P_BB_case_d)*P_BB
dom.tab <- data.frame(model=rep('Dominant',2),table=rbind(c(prob_AA_case_d, prob_AB_case_d, prob_BB_case_d),
c(prob_AA_control_d, prob_AB_control_d,prob_BB_control_d)))
save.tab<-rbind(save.tab, dom.tab)
}
if('Additive' %in% True.Model){
a <- (o-1)
b <- (P_AB+o*P_BB+Case.Rate-Case.Rate*o)
c <- -P_AB*Case.Rate
soln <- quad_roots(a,b,c)[2]
upper.lim<-min(soln, P_AB)
fa.1<-function(x){o-x*(P_AA-Case.Rate+x+((o*x*P_BB)/(P_AB-x+o*x)))/((Case.Rate-x-((o*x*P_BB)/(P_AB-x+o*x)))*(P_AB-x))}
trial<-fa.1(upper.lim)
counter<-0
while(trial>0 & counter<1000){upper.lim<-upper.lim-0.00000000001
trial<-fa.1(upper.lim)
counter<-counter+1
}
add1.root<-uniroot(fa.1,lower = 0, upper = upper.lim)$root
P_AB_case_a1 <- add1.root/P_AB
prob_AB_case_a1 <- P_AB_case_a1*P_AB
prob_AB_control_a1 <- (1-P_AB_case_a1)*P_AB
prob_AA_case_a1 <-P_AA*prob_AB_case_a1/(o*prob_AB_control_a1+prob_AB_case_a1)
prob_AA_control_a1 <- P_AA-prob_AA_case_a1
prob_BB_case_a1 <- (prob_AA_case_a1*P_BB*o^2)/(prob_AA_case_a1*o^2 + prob_AA_control_a1)
prob_BB_control_a1 <- P_BB-prob_BB_case_a1
add.tab1<-data.frame(model=rep('Additive',2),table=rbind(c(prob_AA_case_a1, prob_AB_case_a1, prob_BB_case_a1),
c(prob_AA_control_a1, P_AB-prob_AB_case_a1,prob_BB_control_a1)))
save.tab<-rbind(save.tab, add.tab1)
}
if('Recessive' %in% True.Model){
a <- (1-o)
b <- o*P_BB+(o-1)*Case.Rate+P_AA + P_AB
c <- -o*(P_BB)*Case.Rate
soln <- quad_roots(a,b,c)[2]
P_AB_case_r <- P_AA_case_r <- (Case.Rate-soln)/(P_AB+P_AA)
P_BB_case_r <- soln/P_BB
prob_AA_case_r <- P_AA_case_r*P_AA
prob_AB_case_r <- P_AB_case_r*P_AB
prob_BB_case_r <- P_BB_case_r*P_BB
prob_AA_control_r <- (1-P_AA_case_r)*P_AA
prob_AB_control_r <- (1-P_AB_case_r)*P_AB
prob_BB_control_r <- (1-P_BB_case_r)*P_BB
rec.tab<-data.frame(model=rep('Recessive',2),table=rbind(c(prob_AA_case_r, prob_AB_case_r, prob_BB_case_r),
c(prob_AA_control_r, P_AB-prob_AB_case_r,prob_BB_control_r)))
save.tab<-rbind(save.tab, rec.tab)
}
m.save.tab<-rbind(m.save.tab,
data.frame(True.Model = save.tab[,1], MAF=m, OR = o,
Disease.Status = rep(c('case', "control"),nrow(save.tab)/2),
Geno.AA = save.tab[,2],Geno.AB = save.tab[,3], Geno.BB = save.tab[,4]))
}
o.save.tab<-rbind(o.save.tab, m.save.tab)
}
ss.tab<-NULL
for (mod in Test.Model){
temp<-NULL
for (j in seq(1, nrow(o.save.tab),2)){
t<-o.save.tab[j:(j+1),c("Geno.AA", "Geno.AB", "Geno.BB")]
ll.alt<-calc.like(logistic.mles(t, model = mod), t, model=mod)
ll.null<-null.ll(t)
stat<-2*(as.numeric(ll.alt-ll.null))
ss<-NULL
for (q in 1:length(Alpha)){
if(mod=='2df'){
ss = c(ss, uniroot(function(x) ncp.search(x=x, power=power, Alpha=Alpha[q], df=2),
lower=0, upper=1000, extendInt = 'upX', tol=0.00001)$root/stat)
}else{ss = c(ss, uniroot(function(x) ncp.search(x=x, power=power, Alpha=Alpha[q], df=1),
lower=0, upper=1000, extendInt = 'upX', tol=0.00001)$root/stat)
}
}
temp<-rbind(temp, ss)
}
ss.tab<-rbind(ss.tab,data.frame(Test.Model=mod, o.save.tab[seq(1, nrow(o.save.tab),2),1:3],
Power=power, Case.Rate,temp))
}
colnames(ss.tab)<-c('Test.Model', 'True.Model', 'MAF', 'OR', 'Power','Case.Rate',
paste("N_total_at_Alpha_", Alpha, sep=''))
final.ss.tab<-rbind(final.ss.tab, ss.tab)
}
return(final.ss.tab)
}
|
LaplaceMetropolis_gaussian <- function(theta, data = NULL, data_y, prior_p, prior_st, method = c("likelihood", "L1center", "median"))
{
method = match.arg(method)
theta = as.matrix(theta)
niter = length(theta[,1])
p = length(theta[1,])
if(method == "likelihood")
{
h = NULL
for(t in (1:niter))
{
h = c(h, margin_like_gaussian(theta[t,], data, data_y) + margin_prior_gaussian(theta[t,], data, prior_p = prior_p, prior_st = prior_st))
hmax = max(h)
}
}
if(method == "L1center")
{
L1sum = NULL
oneniter = as.matrix(rep(1,niter))
onep = as.matrix(rep(1,p))
for(t in (1:niter))
{
thetat = theta[t,]
thetatmat = oneniter %*% thetat
L1sum = c(L1sum, sum(abs((theta - oneniter %*% thetat) %*% onep)))
}
argL1center = min((1:niter)[L1sum == min(L1sum)])
thetaL1center = theta[argL1center,]
hmax = margin_like_gaussian(thetaL1center, data, data_y) + margin_prior_gaussian(thetaL1center, data, prior_p = prior_p, prior_st = prior_st)
}
if(method == "median")
{
thetamed = apply(theta, 2, median)
hmax = margin_like_gaussian(thetamed, data, data_y) + margin_prior_gaussian(thetamed, data, prior_p = prior_p, prior_st = prior_st)
}
if(p == 1)
{
logdetV = 2 * log(mad(theta[,1]))
}
else
{
eigenval = eigen(cov.mve(theta)$cov)$values
logdetV = sum(log(eigenval[which(eigenval > 0)]))
}
return(hmax + 0.5 * p * log(2 * pi) + 0.5 * logdetV)
}
|
plot.cROC <-
function(x, ask = TRUE, ...) {
change.ROC.format <- function(p, ROC) {
temp <- reshape(ROC, varying = paste("p", round(p, 3), sep = ""), sep = "",
v.names = "ROC", timevar = "p", times = p, idvar = "comb", direction = "long")
temp[order(temp$comb),]
}
plot.accuracy <- function(ROC, names.cat, n.cat, n.levels, names.cont, exp.cat, dim.exp.cat, range.marker, accuracy, accuracy.main, dots, ask, ci.fit) {
if(ask)
readline("Press return for next page....")
if(ci.fit) {
accuracy.ci <- paste(accuracy,c("ql","qh"),sep="")
}
if (n.cat == 0) {
plot(ROC[ , names.cont], ROC[ , accuracy], xlab = names.cont, ylab = accuracy, xlim = range(ROC[ , names.cont]), ylim = if(accuracy == "TH") range.marker else c(0,1), type = "l", main = accuracy.main)
if(ci.fit) {
lines(ROC[ , names.cont], ROC[ , accuracy.ci[1]], lty=2)
lines(ROC[ , names.cont], ROC[ , accuracy.ci[2]], lty=2)
}
if (accuracy == "AUC") abline(h = 0.5, col = "grey")
} else {
if (n.cat == 1) {
for(i in 1:dim.exp.cat) {
if(ci.fit) {
plot(ROC[ROC[, names.cat] == exp.cat[i, ], names.cont], ROC[ROC[, names.cat] == exp.cat[i, ], accuracy], xlab = names.cont, ylab = accuracy, xlim = range(ROC[ , names.cont]), ylim = if(accuracy == "TH") range.marker else c(0,1), type="l", main = paste0(accuracy.main, " \n ", paste(names.cat, "=", exp.cat[i,,drop = TRUE])))
lines(ROC[ROC[, names.cat] == exp.cat[i, ], names.cont], ROC[ROC[, names.cat] == exp.cat[i, ], accuracy.ci[1]], lty=2)
lines(ROC[ROC[, names.cat] == exp.cat[i, ], names.cont], ROC[ROC[, names.cat] == exp.cat[i, ], accuracy.ci[2]], lty=2)
if (accuracy == "AUC") abline(h = 0.5, col = "grey")
if(ask & i < dim.exp.cat)
readline("Press return for next page....")
} else {
if(i==1)
plot(ROC[ROC[, names.cat] == exp.cat[i, ], names.cont], ROC[ROC[, names.cat] == exp.cat[i, ], accuracy], xlab = names.cont, ylab = accuracy, xlim = range(ROC[ , names.cont]), ylim = if(accuracy == "TH") range.marker else c(0,1), type="l", main = accuracy.main)
else
lines(ROC[ROC[, names.cat] == exp.cat[i, ], names.cont], ROC[ROC[, names.cat] == exp.cat[i, ], accuracy], lty=i)
if (accuracy == "AUC") abline(h = 0.5, col = "grey")
}
}
if(!ci.fit)
legend(if(!is.null(dots$pos.legend)) dots$pos.legend else "bottomright", legend = paste(names.cat, "=", exp.cat[, , drop = TRUE]),
lty=1:dim.exp.cat, cex = if(!is.null(dots$cex.legend)) dots$cex.legend else 1, y.intersp = if(!is.null(dots$y.intersp.legend)) dots$y.intersp.legend else 1)
} else {
for (i in 1:dim.exp.cat) {
ind <- apply(t(apply(ROC[, names.cat], 1, function(x) x == exp.cat[i, ])), 1, all)
if(ci.fit) {
print(paste0(accuracy.main, " \n ", paste(paste(names.cat,"=",as.matrix(exp.cat)[i,]), collapse = ", ")))
plot(ROC[ind, names.cont], ROC[ind, accuracy], xlab = names.cont, ylab = accuracy, xlim = range(ROC[ , names.cont]), ylim = if(accuracy == "TH") range.marker else c(0,1), type="l", main = paste0(accuracy.main, " \n ", paste(paste(names.cat,"=",as.matrix(exp.cat)[i,]), collapse = ", ")))
lines(ROC[ind, names.cont], ROC[ind, accuracy.ci[1]], lty = i)
lines(ROC[ind, names.cont], ROC[ind, accuracy.ci[2]], lty = i)
if (accuracy == "AUC") abline(h = 0.5, col = "grey")
if(ask & i < dim.exp.cat)
readline("Press return for next page....")
} else {
if(i==1)
plot(ROC[ind, names.cont], ROC[ind, accuracy], xlab = names.cont, ylab = accuracy, xlim = range(ROC[ , names.cont]), ylim = if(accuracy == "TH") range.marker else c(0,1), type="l", main = accuracy.main)
else
lines(ROC[ind, names.cont], ROC[ind, accuracy], lty = i)
if (accuracy == "AUC") abline(h = 0.5, col = "grey")
}
}
if(!ci.fit)
legend(if(!is.null(dots$pos.legend)) dots$pos.legend else "bottomright", legend = sapply(1:dim.exp.cat, function(s) paste(paste(names.cat,"=",as.matrix(exp.cat)[s,]), collapse = ", ")),
lty = 1:dim.exp.cat, cex = if(!is.null(dots$cex.legend)) dots$cex.legend else 1, y.intersp = if(!is.null(dots$y.intersp.legend)) dots$y.intersp.legend else 1)
}
}
}
dots <- list(...)
ci.fit <- ifelse(is.null(x$ci.fit),FALSE,x$ci.fit)
p <- x$p
n.p <- length(p)
colnames(x$ROC$est) <- paste("p", round(x$p, 3), sep = "")
ROC <- cbind(x$newdata, x$ROC$est)
set.accuracy <- c("AUC", "pAUC")
if(is.null(x$pAUC)) {
pAUC.legend <- ""
pAUC.main <- ""
} else {
pAUC.legend <- ifelse(attr(x$pAUC, "focus") == "FPF", paste0(" (FPF = ", attr(x$pAUC, "value"), ")"), paste0(" (Se = ", attr(x$pAUC, "value"), ")"))
pAUC.main <- ifelse(attr(x$pAUC, "focus") == "FPF", paste0("Partial area under the conditional ROC curve", pAUC.legend), paste0("Partial area under the specificity conditional ROC curve", pAUC.legend))
}
set.accuracy.legend <- c("AUC", paste0("pAUC", pAUC.legend))
set.accuracy.main <- c("Area under the conditional ROC curve", pAUC.main)
ind.accuracy <- is.element(set.accuracy, set.accuracy[is.element(set.accuracy, names(x))])
if(any(ind.accuracy)) {
accuracy <- set.accuracy[ind.accuracy]
accuracy.main <- set.accuracy.main[ind.accuracy]
accuracy.legend <- set.accuracy.legend[ind.accuracy]
} else {
accuracy <- NULL
}
if(!is.null(accuracy)) {
for (i in 1:length(accuracy)){
aux <- names(ROC)
ROC <- cbind(ROC, x[[accuracy[i]]])
names(ROC) <- c(aux, colnames(x[[accuracy[i]]]))
}
}
range.marker <- range(x$data[, x$marker], na.rm = TRUE)
names.cov <- names(ROC[, 1:(ncol(ROC) - n.p - (2*ci.fit+1)*sum(ind.accuracy)), drop = FALSE])
ind.cat <- unlist(lapply(ROC[ ,names.cov, drop = FALSE], is.factor))
names(ind.cat) <- names.cov
names.cont <- names.cov[!ind.cat]
n.cont <- length(names.cont)
n.cat <- sum(ind.cat)
names.cat <- if(n.cat > 0) names.cov[ind.cat]
delete.obs <- duplicated(x$newdata)
ROC <- ROC[!delete.obs,,drop = FALSE]
if (n.cont > 1) {
ROC[, names.cont] <- apply(round(ROC[ , names.cont, drop = FALSE], 3), 2, factor)
}
if (n.cat > 0) {
exp.cat <- unique(ROC[, names.cat, drop = FALSE])
exp.cat.matrix <- as.matrix(exp.cat)
dim.exp.cat <- nrow(exp.cat)
levels.cat <- if(n.cat > 0) lapply(ROC[, names.cat, drop = FALSE], levels)
n.levels <- as.numeric(unlist(lapply(levels.cat, length)))
if(n.cont == 0) {
ROC.long <- change.ROC.format(p, ROC)
print(xyplot(as.formula(paste("ROC ~ p |", paste(names.cat, collapse = "+"))),
data = ROC.long,
ylim = c(-0.1,1.05),
xlab = "FPF",
ylab = "TPF",
strip = strip.custom(strip.names = TRUE, strip.levels = TRUE, sep = " = ",
par.strip.text = list(cex = if(!is.null(dots$cex.par.strip.text)) dots$cex.par.strip.text else 0.75)),
panel = function(x, y, subscripts) {
panel.xyplot(x, y, type = "l")
for (i in 1:length(set.accuracy))
if(ind.accuracy[i]) {
acc.val <- round(unique(ROC.long[subscripts, set.accuracy[i]]),2)
if(ci.fit) {
acc.val <- paste(acc.val, "(", round(unique(ROC.long[subscripts, paste(set.accuracy[i],"ll",sep="")]),2),", ",round(unique(ROC.long[subscripts, paste(set.accuracy[i],"ul",sep="")]),2),")", sep="")
}
ltext(0.99, 0.01 + (if(!is.null(dots$y.intersp.legend)) dots$y.intersp.legend else 0.14) * (i-1),
labels = paste(accuracy.legend[i],"=",acc.val), adj = c(1,0.5),
cex = if(!is.null(dots$cex.legend)) dots$cex.legend else 0.5)
}
}))
} else {
if(n.cont == 1) {
if (length(names.cat) == 1) {
for(i in 1:dim.exp.cat) {
if(i > 1) {
if(ask)
readline("Press return for next page....")
}
persp(p, ROC[ROC[ , names.cat] == exp.cat[i, ], names.cont],
t(as.matrix(ROC[ROC[ , names.cat] == exp.cat[i, ], -(c(1:(1 + n.cat), if(!is.null(accuracy)) ncol(ROC):(ncol(ROC) + 1 - (2*ci.fit+1)*length(accuracy))))])),
xlab = "FPF", ylab = names.cont, zlab = "TPF",
main = paste0("Conditional ROC surface \n ", exp.cat.matrix[i, ]),
theta = if (!is.null(dots$theta))dots$theta else 20,
phi = if (!is.null(dots$phi))dots$phi else 30,
col = if(!is.null(dots$col))dots$col else "white",
shade = if(!is.null(dots$shade))dots$shade else 0.5, ticktype = "detailed",
cex.axis = dots$cex.axis, cex.lab = dots$cex.lab, cex.main = dots$cex.main, cex = dots$cex)
}
if(any(ind.accuracy))
for(i in (1:length(set.accuracy))[ind.accuracy])
plot.accuracy(ROC, names.cat, n.cat, n.levels, names.cont, exp.cat, dim.exp.cat, range.marker, set.accuracy[i], set.accuracy.main[i], dots, ask, ci.fit)
} else {
oldpar <- par(no.readonly = TRUE)
on.exit(par(oldpar))
par(mfrow = n.levels[1:2])
for (i in 1:(dim.exp.cat/prod(n.levels[1:2]))) {
if(i > 1) {
if(ask)
readline("Press return for next page....")
}
k <- 0
for (j in 1:(n.levels[1]*n.levels[2])) {
ind <- apply(t(apply(ROC[,names.cat], 1, function(x) x == exp.cat[(i-1)*prod(n.levels[1:2]) + j,])), 1, all)
persp(p, ROC[ind, names.cont],
t(as.matrix(ROC[ind, -(c(1:(n.cont + n.cat),if(!is.null(accuracy)) ncol(ROC):(ncol(ROC) + 1 - (2*ci.fit+1)*length(accuracy))))])),
xlab = "FPF", ylab = names.cont, zlab="TPF",
main = paste(paste(names.cat, "=", c(exp.cat.matrix[j,1:2], exp.cat.matrix[1+(i-1)*prod(n.levels[1:2]),-(1:2)])), collapse = ", "),
theta = if (!is.null(dots$theta))dots$theta else 20,
phi = if (!is.null(dots$phi))dots$phi else 30,
col = if(!is.null(dots$col))dots$col else "white",
shade = if(!is.null(dots$shade))dots$shade else 0.5, ticktype = "detailed",
cex.axis = dots$cex.axis, cex.lab = dots$cex.lab, cex.main = dots$cex.main,cex = dots$cex)
}
}
if(any(ind.accuracy))
for(i in (1:length(set.accuracy))[ind.accuracy])
plot.accuracy(ROC, names.cat, n.cat, n.levels, names.cont, exp.cat, dim.exp.cat, range.marker, set.accuracy[i], set.accuracy[i], dots, ask, ci.fit)
}
} else {
cat.cont <- vector("list", dim.exp.cat)
for(i in 1:dim.exp.cat) {
cat.cont[[i]] <- vector("list", n.cont)
for(j in 1:n.cont) {
ind <- t(apply(ROC[ , names.cat, drop = F], 1, function(x) x == exp.cat[i, ]))
if(dim(ind)[1] == 1) ind <- t(ind)
cat.cont[[i]][[j]] <- unique(ROC[apply(ind, 1, all), names.cont[j]])
}
}
n.comb <- c(0, as.numeric(cumsum(unlist(lapply(cat.cont, function(x)cumprod(lapply(x, length))[n.cont]))))*n.p)
ROC.long <- change.ROC.format(p, ROC)
for (i in 1:dim.exp.cat) {
if(i > 1 && ask) {
readline("Press return for next page....")
}
print(xyplot(as.formula(paste("ROC ~ p |", paste(names.cont, collapse = "+"))),
data = ROC.long,
ylim = c(-0.1,1.05),
subset = (1 + n.comb[i]):n.comb[i + 1],
strip = strip.custom(style = 3, strip.names = TRUE, strip.levels = TRUE, sep = " = ",
par.strip.text = list(cex = if(!is.null(dots$par.strip.text)) dots$par.strip.text else 0.75)),
panel = function(x, y, subscripts) {
panel.xyplot(x, y, type = "l")
for (j in 1:length(set.accuracy))
if(ind.accuracy[j]) {
acc.val <- round(unique(ROC.long[subscripts, set.accuracy[j]]),2)
if(ci.fit) {
acc.val <- paste(acc.val, "(", round(unique(ROC.long[subscripts, paste(set.accuracy[j],"ql",sep="")]),2),", ",round(unique(ROC.long[subscripts, paste(set.accuracy[j],"qh",sep="")]),2),")", sep="")
}
ltext(0.99, 0.01 + (if(!is.null(dots$y.intersp.legend)) dots$y.intersp.legend else 0.14) * (j-1),
labels = paste(accuracy.legend[j],"=",acc.val), adj = c(1,0.5),
cex = if(!is.null(dots$cex.legend)) dots$cex.legend else 1)
}
},
main = paste(names.cat, "=", exp.cat.matrix[i, ])))
}
}
}
} else {
if(n.cont == 1) {
persp(p, ROC[ , names.cont], t(as.matrix(ROC[ ,-(c(1:(1 + n.cat), if(!is.null(accuracy)) ncol(ROC):(ncol(ROC) + 1 - (2*ci.fit+1)*length(accuracy))))])),
xlab = "FPF", ylab = names.cont, zlab = "TPF",
main = "Conditional ROC surface",
theta = if (!is.null(dots$theta))dots$theta else 20,
phi = if (!is.null(dots$phi))dots$phi else 30,
col = if(!is.null(dots$col))dots$col else "white",
shade = if(!is.null(dots$shade))dots$shade else 0.5, ticktype = "detailed",
cex.axis = dots$cex.axis, cex.lab = dots$cex.lab, cex.main = dots$cex.main,cex = dots$cex)
if(any(ind.accuracy))
for(i in (1:length(set.accuracy))[ind.accuracy])
plot.accuracy(ROC, names.cat, n.cat, n.levels, names.cont, exp.cat, dim.exp.cat, range.marker, set.accuracy[i], set.accuracy.main[i], dots, ask, ci.fit)
} else {
ROC.long <- change.ROC.format(p, ROC)
print(xyplot(as.formula(paste("ROC ~ p |", paste(names.cont, collapse = "+"))),
data = ROC.long,
ylim = c(-0.1,1.05),
strip = strip.custom(style = 3, strip.names = TRUE, strip.levels = TRUE, sep = " = ",
par.strip.text = list(cex = if(!is.null(dots$par.strip.text)) dots$par.strip.text else 0.75)),
panel = function(x, y, subscripts) {
panel.xyplot(x, y, type = "l")
for (i in 1:length(set.accuracy))
if(ind.accuracy[i]) {
acc.val <- round(unique(ROC.long[subscripts, set.accuracy[i]]),2)
if(ci.fit) {
acc.val <- paste(acc.val, "(", round(unique(ROC.long[subscripts, paste(set.accuracy[i],"ll",sep="")]),2),", ",round(unique(ROC.long[subscripts, paste(set.accuracy[i],"ul",sep="")]),2),")", sep="")
}
ltext(0.99, 0.01 + (if(!is.null(dots$y.intersp.legend)) dots$y.intersp.legend else 0.14) * (i-1),
labels = paste(accuracy.legend[i],"=",acc.val), adj = c(1,0.5),
cex = if(!is.null(dots$cex.legend)) dots$cex.legend else 0.5)
}
}
))
}
}
}
|
NULL
NULL
NULL
NULL
NULL
utils::globalVariables(names=c('beanplot','Change','env','gamlss','hPlot',
'initDate','initEq','melt','mktdata','param.combo',
'Period','plotSimpleGamlss','price','redisClose',
'redisConnect','redisGetContext','timespan'))
|
GetDashboards<- function(dashboard.limit='', dashboard.offset='') {
request.body <- c()
request.body$locale <- unbox(AdobeAnalytics$SC.Credentials$locale)
request.body$elementDataEncoding <- unbox("utf8")
if(dashboard.limit != ''){
request.body$dashboard_limit <- dashboard.limit
}
if(dashboard.offset != ''){
request.body$dashboard_offset <- dashboard.offset
}
response <- ApiRequest(body=toJSON(request.body),func.name="Bookmark.GetDashboards")
if(length(response$dashboards[[1]]) == 0) {
return(print("No Dashboards Defined For This Report Suite"))
}
response_df<- response[[1]]
pages <- response_df$pages
response_df$pages <- NULL
response_df <- cbind(response_df, ldply(pages, quickdf))
bookmarks <- response_df$bookmarks
response_df$bookmarks <- NULL
accumulator<- data.frame()
for(i in 1:nrow(response_df)){
bkmk_parsed <- ldply(bookmarks[[i]],quickdf)
temp <- cbind(response_df[i,], bkmk_parsed, row.names = NULL)
accumulator <- rbind.fill(accumulator, temp)
}
return(accumulator)
}
|
UncInd <- function (Flow = NULL,
Tij = t(Flow),
Import =NULL,
Export =NULL)
{
N <- InternalNetwork (Tij,Import,Export)
ncTij <- ncol(Tij)
nrTij <- nrow(Tij)
ncomp <- ncol(N$Tint)
compNames <- rownames(N$Tint)
Throughput <- sum(Tij)
Ascend <- Ascendfun(Tij,1:nrow(Tij),1:ncol(Tij))
AMI <- Ascend[[1]] / Throughput
Q <- N$FlowFrom/Throughput
Q <- Q[Q>0]
HR <- -sum(Q*log2(Q))
DR <- HR - AMI
RU <- AMI/HR
Hmax <- ncomp*log2(nrTij)
blsum <- 0
for (i in 1:nrTij) {
for (j in N$jN) {
if (Tij[i,j]>0) blsum <- blsum +
(Tij[i,j]/N$FlowFrom[j])*log2(Tij[i,j]/N$FlowFrom[j])
}
}
Hc <- Hmax + blsum
names(Hc)<-NULL
CE <- Hc/Hmax
Hsys <- Hmax - Hc
list(AMI=AMI, HR=HR, DR=DR, RU=RU,Hmax=Hmax,Hc=Hc,
Hsys=Hsys,CE=CE)
}
|
library(checkargs)
context("isNonZeroIntegerOrNaOrNanOrInfVector")
test_that("isNonZeroIntegerOrNaOrNanOrInfVector works for all arguments", {
expect_identical(isNonZeroIntegerOrNaOrNanOrInfVector(NULL, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNonZeroIntegerOrNaOrNanOrInfVector(TRUE, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNonZeroIntegerOrNaOrNanOrInfVector(FALSE, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNonZeroIntegerOrNaOrNanOrInfVector(NA, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroIntegerOrNaOrNanOrInfVector(0, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNonZeroIntegerOrNaOrNanOrInfVector(-1, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroIntegerOrNaOrNanOrInfVector(-0.1, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNonZeroIntegerOrNaOrNanOrInfVector(0.1, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNonZeroIntegerOrNaOrNanOrInfVector(1, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroIntegerOrNaOrNanOrInfVector(NaN, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroIntegerOrNaOrNanOrInfVector(-Inf, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroIntegerOrNaOrNanOrInfVector(Inf, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroIntegerOrNaOrNanOrInfVector("", stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNonZeroIntegerOrNaOrNanOrInfVector("X", stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNonZeroIntegerOrNaOrNanOrInfVector(c(TRUE, FALSE), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNonZeroIntegerOrNaOrNanOrInfVector(c(FALSE, TRUE), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNonZeroIntegerOrNaOrNanOrInfVector(c(NA, NA), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroIntegerOrNaOrNanOrInfVector(c(0, 0), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNonZeroIntegerOrNaOrNanOrInfVector(c(-1, -2), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroIntegerOrNaOrNanOrInfVector(c(-0.1, -0.2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNonZeroIntegerOrNaOrNanOrInfVector(c(0.1, 0.2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNonZeroIntegerOrNaOrNanOrInfVector(c(1, 2), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroIntegerOrNaOrNanOrInfVector(c(NaN, NaN), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroIntegerOrNaOrNanOrInfVector(c(-Inf, -Inf), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroIntegerOrNaOrNanOrInfVector(c(Inf, Inf), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroIntegerOrNaOrNanOrInfVector(c("", "X"), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNonZeroIntegerOrNaOrNanOrInfVector(c("X", "Y"), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_error(isNonZeroIntegerOrNaOrNanOrInfVector(NULL, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNonZeroIntegerOrNaOrNanOrInfVector(TRUE, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNonZeroIntegerOrNaOrNanOrInfVector(FALSE, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_identical(isNonZeroIntegerOrNaOrNanOrInfVector(NA, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_error(isNonZeroIntegerOrNaOrNanOrInfVector(0, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_identical(isNonZeroIntegerOrNaOrNanOrInfVector(-1, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_error(isNonZeroIntegerOrNaOrNanOrInfVector(-0.1, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNonZeroIntegerOrNaOrNanOrInfVector(0.1, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_identical(isNonZeroIntegerOrNaOrNanOrInfVector(1, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroIntegerOrNaOrNanOrInfVector(NaN, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroIntegerOrNaOrNanOrInfVector(-Inf, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroIntegerOrNaOrNanOrInfVector(Inf, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_error(isNonZeroIntegerOrNaOrNanOrInfVector("", stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNonZeroIntegerOrNaOrNanOrInfVector("X", stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNonZeroIntegerOrNaOrNanOrInfVector(c(TRUE, FALSE), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNonZeroIntegerOrNaOrNanOrInfVector(c(FALSE, TRUE), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_identical(isNonZeroIntegerOrNaOrNanOrInfVector(c(NA, NA), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_error(isNonZeroIntegerOrNaOrNanOrInfVector(c(0, 0), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_identical(isNonZeroIntegerOrNaOrNanOrInfVector(c(-1, -2), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_error(isNonZeroIntegerOrNaOrNanOrInfVector(c(-0.1, -0.2), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNonZeroIntegerOrNaOrNanOrInfVector(c(0.1, 0.2), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_identical(isNonZeroIntegerOrNaOrNanOrInfVector(c(1, 2), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroIntegerOrNaOrNanOrInfVector(c(NaN, NaN), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroIntegerOrNaOrNanOrInfVector(c(-Inf, -Inf), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroIntegerOrNaOrNanOrInfVector(c(Inf, Inf), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_error(isNonZeroIntegerOrNaOrNanOrInfVector(c("", "X"), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNonZeroIntegerOrNaOrNanOrInfVector(c("X", "Y"), stopIfNot = TRUE, message = NULL, argumentName = NULL))
})
|
kaplanMeier_at_t0 <- function(time, event, t0){
obj <- survfit(Surv(time, event) ~ 1)
Surv_t <- summary(obj)$surv
t <- summary(obj)$time
n <- summary(obj)$n.risk
res <- rep(NA, length(t0))
for (i in 1:length(t0)){
ti <- t0[i]
if (min(t) > ti){res[i] <- 1}
if (min(t) <= ti){
if (ti %in% t){res[i] <- Surv_t[t == ti]} else {
Surv_ti <- min(Surv_t[t < ti])
res[i] <- Surv_ti
}
}
}
res <- cbind(t0, res)
dimnames(res)[[2]] <- c("t0", "S at t0")
return(res)
}
|
strmeasure=function(P,sorted=FALSE,depths=NULL,alpha=0,method="Mean"){
if(is.data.frame(P)) P=as.matrix(P)
if(is.list(P)){
m=length(P)
n=length(P[[1]])
y=matrix(0,n,m)
for(i in 1:m){
y[,i]=P[[i]]
if(length(P[[i]])!=n){ stop("When using a list, each element must be a vector of the same length.") }
}
P=y
}
match.arg(method,c("Tukey","Mean"))
if(is.vector(P)) p=1
if(is.matrix(P)) p=ncol(P)
if(p<1|p>2) stop("Data must be on the circle or on the sphere.")
if(p==1){
if(max(P)>2*pi | min(P)<0) stop("In 2D, the dataset must be a vector of angles")
if(method=="Mean") return(dirmoytronq(P,sort=sorted,profondeurs=depths,alpha=alpha))
if(method=="Tukey") return(tukmedtronq(P,sort=sorted,profondeurs=depths,alpha=alpha))
}
if(p==2){
if(method=="Mean") return(sdirmoytronq(P,sort=FALSE,profondeurs=depths,alpha=alpha))
if(method=="Tukey") stop("Truncation based on Tukey is available for the circle only.")
}
}
dirmoytronq=function(P,sort=FALSE,profondeurs=NULL,alpha=0)
{
n=length(P)
if(length(profondeurs)==0)
{
for(i in 1:n)
{
profondeurs[i]=tukdepthc3(P,P[i])[[2]]
}
}
if(sort==FALSE)
{
perm=order(P)
P=P[perm]
profondeurs=profondeurs[perm]
}
bonpoints=NULL
bonpoints=P[which(profondeurs>=alpha)]
if(length(bonpoints)!=0)
{
dm=mean.circular(circular(bonpoints))[[1]]
if(dm<=0)
{
dm=dm+2*pi
}
}
else
{
dm=NA
}
return(dm)
}
sdirmoytronq=function(P,sort=FALSE,profondeurs=NULL,alpha=0)
{
n=length(P[,1])
if(length(profondeurs)==0)
{
for(i in 1:n)
{
profondeurs[i]=tukdepths2(P,P[i,])
}
}
bonpoints=NULL
bonpoints=P[which(profondeurs>=alpha),]
if(length(bonpoints[,1])!=0)
{
dm=c(mean(bonpoints[,1]),mean(bonpoints[,2]),mean(bonpoints[,3]))
if(sum(dm^2)==0)
{
dm=NA
}
else
{
dm=dm/sqrt(sum(dm^2))
}
}
else
{
dm=NA
}
return(dm)
}
tukmedtronq=function(P,sort=FALSE,profondeurs=NULL,alpha=0)
{
n=length(P)
if(length(profondeurs)==0)
{
for(i in 1:n)
{
profondeurs[i]=tukdepthc3(P,P[i])[[2]]
}
}
if(sort==FALSE)
{
perm=order(P)
P=P[perm]
profondeurs=profondeurs[perm]
}
bonpoints=NULL
v=which(profondeurs>=alpha)
bonpoints=P[v]
if(length(bonpoints)!=0)
{
tmt=tukmedc(bonpoints)
}
else
{
tmt=NA
}
return(tmt)
}
|
summary.findFn <- function(object, minPackages = 12,
minCount=NA, ...) {
Sum <- attr(object, 'PackageSummary')
nrows <- nrow(Sum)
minPackages <- min(nrows, minPackages, na.rm=TRUE)
minCount <- {
if(minPackages<1) 0 else
min(minCount, Sum$Count[minPackages], na.rm=TRUE)
}
sel <- (Sum[, 'Count'] >= minCount)
sumTh <- Sum[sel,, drop=FALSE]
structure(list(PackageSummary = sumTh,
minPackages = minPackages,
minCount = minCount,
matches = attr(object, "matches"),
nrow = nrow(object),
nPackages = length(sel),
string = attr(object, 'string'),
call = attr(object, "call")),
class = c("summary.findFn", "list"))
}
print.summary.findFn <- function(x, ...) {
cat("\nCall:\n")
cat(paste(deparse(x$call), sep = "\n", collapse = "\n"), "\n\n", sep = "")
cat("Total number of matches: ", sum( x$matches) , "\n", sep = "")
cat('Downloaded ', x$nrow, ' links in ', x$nPackages,
" package", c('.', 's.')[1 + (x$nPackages > 1)], "\n\n", sep='')
string <- x$string
cat("Packages with at least ", x$minCount, " match",
if(x$minCount == 1) "" else "es",
" using pattern\n '", string, "'\n", sep = "")
packSum <- x$PackageSummary
packSum$Date <-
substr(packSum$Date, 1, regexpr(" ", packSum$Date) - 1)
row.names(packSum) <- NULL
print(packSum, ...)
invisible()
}
|
str_sub <- function(string, start = 1L, end = -1L) {
if (is.matrix(start)) {
stri_sub(string, from = start)
} else {
stri_sub(string, from = start, to = end)
}
}
"str_sub<-" <- function(string, start = 1L, end = -1L, omit_na = FALSE, value) {
if (is.matrix(start)) {
stri_sub(string, from = start, omit_na = omit_na) <- value
} else {
stri_sub(string, from = start, to = end, omit_na = omit_na) <- value
}
string
}
|
micSim <- function(initPop, immigrPop=NULL, transitionMatrix, absStates=NULL, initStates=c(), initStatesProb=c(),
maxAge=99, simHorizon, fertTr=c(), dateSchoolEnrol='09/01', reportMothers = FALSE) {
if(is.null(initPop))
stop('No starting population has been defined.')
if(!is.null(initPop)){
if(paste(colnames(initPop),collapse='/')!='ID/birthDate/initState')
stop('Matrix specifying the starting population has not been defined properly.')
}
if(!is.null(immigrPop)){
if(paste(colnames(immigrPop),collapse='/')!='ID/immigrDate/birthDate/immigrInitState')
stop('Matrix specifying immigrants has not been defined properly.')
}
if(is.null(transitionMatrix))
stop('Matrix defining transition pattern und functions has not been defined properly.')
if(maxAge<=0)
stop('The maximal age until which individual life courses are simulated should exceed zero.')
if(length(simHorizon)!=2)
stop('The simulation horizon has not been defined properly.')
if(class(simHorizon)[1]!='dates' & class(simHorizon)[2]!='dates')
stop('The simulation horizon has not been defined properly.')
if(is.null(absStates))
absStates <- setdiff(colnames(transitionMatrix),rownames(transitionMatrix))
if(length(fertTr)>0){
if(is.null(initStates) | is.null(initStatesProb))
stop('For children potentially born during simulation no inital state(s) and/or corresponding occurrence probabilities have been defined.')
}
if(length(fertTr)==0 & reportMothers){
warning('No fertility events are specified. Therefore, no offspring are produced during the simulation and linking of maternal IDs to newborn IDs is not possible. Check reportMothers argument or the definition of the fertility matrix fertTr.')
}
if(length(dateSchoolEnrol)==0){
dateSchoolEnrol <- '09/01'
}
queue <- matrix(NA,ncol=6,nrow=0)
colnames(queue) <- c('ID','currTime','currState','currAge','nextState','timeToNextState')
t.clock <- as.numeric(simHorizon[1])
transitions <- matrix(NA,ncol=5,nrow=0)
colnames(transitions) <- c('ID', 'From', 'To', 'transitionTime', 'transitionAge')
if(reportMothers){
mothers <- matrix(NA,ncol=2,nrow=0)
}
isLeapYear <- function(year) {
return(((year %% 4 == 0) & (year %% 100 != 0)) | (year %% 400 == 0))
}
getAgeInYears <- function(days) {
date <- chron(days)
c.y <- as.numeric(as.character(years(date)))
completeYears <- c.y - 1970
daysInCY <- ifelse(isLeapYear(c.y), 366, 365)
fracCY <- as.numeric(date - chron(paste(1,'/',1,'/',c.y), format=c(dates='d/m/y')) + 1)/daysInCY
return(completeYears + fracCY)
}
isBirthEvent <- function(currState, destState){
if(length(fertTr)==0)
return(FALSE)
fert <- matrix(unlist(strsplit(fertTr,split='->')), ncol=2, byrow=TRUE)
cS <- unlist(strsplit(currState,'/'))
if(!("f" %in% cS))
return(FALSE)
dS <- unlist(strsplit(destState,'/'))
for(i in 1:nrow(fert)){
ff <- fert[i,]
oS <- unlist(strsplit(ff[1],'/'))
bS <- unlist(strsplit(ff[2],'/'))
cond1 <- !(F %in% (oS %in% cS)) & !(F %in% (bS %in% dS))
cond2 <- paste((cS[!(cS %in% oS)]),collapse="/") == paste((dS[!(dS %in% bS)]),collapse="/")
if(cond1 & cond2){
return(TRUE)
}
}
return(FALSE)
}
addNewNewborn <- function(birthTime=birthTime, motherID=NULL){
birthState <- sample(apply(initStates,1,paste,collapse='/'),size=1,replace=T,prob=initStatesProb)
if(is.null(immigrPop)){
id <- as.numeric(max(as.numeric(initPop[,'ID'])))+1
} else {
id <- as.numeric(max(c(as.numeric(immigrPop[,'ID']),as.numeric(initPop[,'ID']))))+1
}
birthDate <- dates(chron(birthTime,
format=c(dates='d/m/Y', times='h:m:s'),out.format=c(dates='d/m/year', times='h:m:s')))
newInd <- c(id,as.character(birthDate),birthState)
initPop <<- rbind(initPop,newInd)
if(reportMothers)
mothers <<- rbind(mothers, c(motherID, id))
nE <- getNextStep(c(id,birthState,0,birthTime))
}
isSchoolEnrolment <- function(currState,destState){
enrol <- F
if(T %in% ('no' %in% unlist(strsplit(currState,'/'))) & T %in% ('low' %in% unlist(strsplit(destState,'/'))))
enrol <- T
return(enrol)
}
getNextStep <- function(inp, isIMInitEvent=F){
id <- as.numeric(unlist(inp[1]))
currState <- as.character(unlist(inp[2]))
currAge <- as.numeric(unlist(inp[3]))
calTime <- as.numeric(unlist(inp[4]))
lagToWaitingTime <- ifelse(isIMInitEvent, (as.numeric(calTime) - as.numeric(simHorizon[1]))/365.25,0)
ageInYears <- getAgeInYears(currAge)
possTr <- transitionMatrix[which(rownames(transitionMatrix) %in% currState),]
possTr <- possTr[which(possTr !=0)]
nextEventMatrix <- matrix(0, ncol=2, nrow=length(possTr))
ranMaxAge <- maxAge-ageInYears
ranMaxYear <- (as.numeric(simHorizon[2]) - calTime)/365.25
ran <- min(ranMaxYear,ranMaxAge)
ranAge <- c(ageInYears,ageInYears+ranMaxAge)
ranYear <- chron(c(calTime, as.numeric(calTime)+ran*365.25))
historiesInd <- transitions[as.numeric(transitions[,'ID']) %in% id & as.numeric(transitions[,'transitionTime']) <= calTime,,drop=F]
initPopInd <- initPop[as.numeric(initPop[,'ID']) %in% id,]
birthTime <- initPopInd['birthDate']
initState <- as.character(unlist(initPopInd['initState']))
if(as.numeric(birthTime) < as.numeric(simHorizon[1]) | id %in% as.numeric(immigrPop[,'ID'])) {
dur <- rbind(c(initState,NA),cbind(historiesInd[,'To'], historiesInd[,'transitionTime']))
dur <- cbind(dur,c(diff(as.numeric(dur[,2])),0))
colnames(dur) <- c('TransitionTo','AtTime','durUntil')
dur[which(is.na(dur[,'AtTime'])),'durUntil'] <- NA
} else {
birthTime <- initPop[as.numeric(initPop[,'ID']) %in% id, 'birthDate']
dur <- rbind(c(initState,birthTime),cbind(historiesInd[,'To'], historiesInd[,'transitionTime']))
dur <- cbind(dur,c(diff(as.numeric(dur[,2])),0))
colnames(dur) <- c('TransitionTo','AtTime','durUntil')
}
for(i in 1:length(possTr)){
tr <- possTr[i]
destState <- names(tr)
cS <- unlist(strsplit(currState,'/'))
dS <- unlist(strsplit(destState, '/'))
covToCh <- which((cS==dS)==F)
durSinceLastCovCh <- Inf
if(length(covToCh)==1){
covHist <- do.call(rbind,sapply(dur[,'TransitionTo'],strsplit,split='/'))[,covToCh]
idd <- which(covHist==cS[covToCh])
if(length(idd)>1){
if(F %in% (diff(idd)==1)){
y <- rev(idd)[c(-1,diff(rev(idd)))==-1]
idd <- rev(y)[c(diff(rev(y)),1)==1]
}
}
durSinceLastCovCh <- sum(as.numeric(dur[idd,'durUntil']))
if(is.na(durSinceLastCovCh))
durSinceLastCovCh <- 0
}
if(length(covToCh)>1 & (!destState %in% absStates)){
cat('Recognized a possible transition implying a change of two or more covariates.',
'Concerning the derivation of the time being elapsed since the last transition this feature is not yet implemented.',
'Current State: ',currState,' -> Possible transition to ',destState,'\n')
}
indRateFctDET <- function(x){
res <- eval(do.call(tr,
args=list(age=trunc(ageInYears)+x,calTime=trunc(1970.001+calTime/365.25)+x,duration=trunc(durSinceLastCovCh/365.25)+x)))
return(res)
}
ranAccuracyInDays <- (0:(trunc(ran*365.25)+1))/365.25
detE <- indRateFctDET(ranAccuracyInDays)
daysToTrInYears <- (which(detE == Inf)[1] - 1)/365.25
if (Inf %in% detE) {
timeToNext <- daysToTrInYears
} else {
u <- -log(1-runif(1))
indRateFct <- function(x){
ageIn <- ageInYears+x
calIn <- 1970.001+calTime/365.25+x
durIn <- durSinceLastCovCh/365.25+x
res <- eval(do.call(tr, args=list(age=ageIn,calTime= calIn,duration=durIn)))
if(TRUE %in% (res<0))
stop('I have found negative rate value/s for transition: ',tr,'\n
This is implausible. Please check this. Simulation has been stopped.\n')
return(res)
}
if(sum(indRateFct(0:ran))==0){
intHaz <- 0
} else {
intHaz <- try(integrate(indRateFct, lower=0, upper=ran)$value, silent=TRUE)
if(inherits(intHaz, 'try-error')){
intHaz <- integrate(indRateFct, lower=0, upper=ran, stop.on.error = FALSE, rel.tol = 0.01)$value
}
}
if(u<=intHaz){
invHazFct <- function(x){
try.res <- try(integrate(indRateFct, lower=0, upper=x)$value-u, silent=TRUE)
if(inherits(try.res, 'try-error')){
try.res <- integrate(indRateFct, lower=0, upper=x, stop.on.error = FALSE, rel.tol = 0.01)$value-u
}
return(try.res)
}
timeToNext <- uniroot(invHazFct,interval=c(0,ran))$root
} else {
timeToNext <- Inf
}
}
nextEventMatrix[i,1] <- destState
nextEventMatrix[i,2] <- (timeToNext+lagToWaitingTime)*365.25
}
nE <- nextEventMatrix[which(nextEventMatrix[,2]==min(as.numeric(nextEventMatrix[,2]))),,drop=F]
if(dim(nE)[1]>1)
nE <- nE[1,,drop=F]
if(nE[1,2]!=Inf){
tt <- chron(as.numeric(calTime) + as.numeric(nE[1,2]) - ageInYears%%1, out.format=c(dates='d/m/year', times='h/m/s'))
if(isSchoolEnrolment(currState,nE[1,1])){
enYear <- years(tt)
if(as.numeric(months(tt)) <= 9) {
enDate <- chron(paste(enYear,dateSchoolEnrol,sep='/'), format=c(dates='y/m/d'), out.format=c(dates='d/m/year'))
} else {
enYear <- as.numeric(as.character(enYear))
enDate <- chron(paste(enYear,dateSchoolEnrol,sep='/'), format=c(dates='y/m/d'), out.format=c(dates='d/m/year'))
}
diffToEn <- as.numeric(enDate-tt)
nE[1,2] <- as.numeric(nE[1,2]) + diffToEn
}
queue <<- rbind(queue, c(id, t.clock, currState, currAge - lagToWaitingTime*365.25, nE[1,1], nE[1,2]))
}
return(nE)
}
cat('Initialization ... \n')
IN <- data.frame(ID=initPop[,'ID'],currState=initPop[,'initState'],age=(simHorizon[1]-initPop[,'birthDate']),
calTime=rep(as.numeric(simHorizon[1]),dim(initPop)[1]),stringsAsFactors=FALSE)
init <- apply(IN, 1, getNextStep)
if(!is.null(immigrPop)){
IM <- data.frame(ID=immigrPop[,'ID'], currState=immigrPop[,'immigrInitState'], age=immigrPop[,'immigrDate']-immigrPop[,'birthDate'],
calTime=as.numeric(immigrPop[,'immigrDate']),stringsAsFactors=FALSE)
immigrInitPop <- immigrPop[,c('ID','birthDate','immigrInitState')]
colnames(immigrInitPop)[3] <- 'initState'
initPop <- rbind(initPop, immigrInitPop)
imit <- apply(IM, 1, getNextStep, isIMInitEvent=T)
}
cat('Simulation is running ... \n')
currYear <- as.numeric(as.character(years(simHorizon[1])))
while(dim(queue)[1]>0 & t.clock <= as.numeric(simHorizon[2])){
queue <- queue[order(as.numeric(queue[,'currTime'])+as.numeric(queue[,'timeToNextState'])),,drop=F]
indS <- queue[1,]
queue <- queue[-1,,drop=F]
t.clock <- as.numeric(indS['currTime']) + as.numeric(indS['timeToNextState'])
cY <- as.numeric(as.character(years(t.clock)))
if(t.clock > as.numeric(simHorizon[2]))
break
if(cY>currYear){
cat('Year: ',cY,'\n')
currYear <- cY
}
age <- as.numeric(indS['currAge']) + as.numeric(indS['timeToNextState'])
transitions <- rbind(transitions, c(indS[c('ID','currState','nextState')], t.clock, age))
if(!indS['nextState'] %in% absStates){
if(isBirthEvent(indS['currState'],indS['nextState'])){
if(reportMothers){
addNewNewborn(birthTime=t.clock, motherID=indS['ID'])
} else {
addNewNewborn(birthTime=t.clock)
}
}
res <- getNextStep(c(indS[c('ID','nextState')], age, t.clock))
}
}
transitions <- transitions[order(as.numeric(transitions[,1])),,drop=F]
if (nrow(transitions) == 0){
transitionsOut <- data.frame(ID=initPop[,'ID'], From= rep(NA,nrow(initPop)),
To=rep(NA,nrow(initPop)), transitionTime = rep(NA,nrow(initPop)),
transitionAge = rep(NA,nrow(initPop)), stringsAsFactors = FALSE)
cat('Simulation has finished.\n')
cat('Beware that along the simulation horizon the individual/s considered do/es not experience any transition/s.\n')
cat('------------------\n')
} else {
cat('Simulation has finished.\n------------------\n')
transitionsOut <- data.frame(ID=transitions[,'ID'], From=transitions[,'From'], To=transitions[,'To'],
transitionTime = dates(chron(as.numeric(transitions[,'transitionTime']),
out.format=c(dates='d/m/year', times='h:m:s'))),
transitionAge = round(getAgeInYears(as.numeric(transitions[,'transitionAge'])),2),
stringsAsFactors = FALSE)
}
pop <- merge(initPop, transitionsOut, all=T, by='ID')
pop <- pop[order(as.numeric(pop[,1])),]
if(reportMothers) {
colnames(mothers) <- c("motherID", "ID")
pop <- merge(pop, mothers, by="ID", all.x=TRUE)
pop <- pop[order(as.numeric(pop[,1])),]
}
return(pop)
}
micSimParallel <- function(initPop, immigrPop=NULL, transitionMatrix, absStates=NULL, initStates=c(), initStatesProb=c(),
maxAge=99, simHorizon, fertTr=c(), dateSchoolEnrol='09/01', reportMothers = FALSE, cores=1, seeds=1254){
cat('Starting at ');print(Sys.time())
N <- dim(initPop)[1]
M <- ifelse(is.null(immigrPop),0,dim(immigrPop)[1])
if(is.null(cores) | cores==1 | N+M<=20) {
pop <- micSim(initPop, immigrPop, transitionMatrix, absStates, initStates, initStatesProb,
maxAge, simHorizon, fertTr, dateSchoolEnrol, reportMothers = FALSE)
} else {
widthV <- max(trunc(N/cores), 10)
widthW <- max(trunc(M/cores), 10)
intV <- matrix(NA,ncol=2,nrow=cores)
intW <- matrix(NA,ncol=2,nrow=cores)
nI <- trunc(N/widthV)
nIM <- trunc(M/widthW)
ni <- 1
for(i in 1:(nI-1)){
intV[i,1] <- ni
intV[i,2] <- ni+widthV-1
ni <- ni+widthV
}
intV[nI,1] <- ni
intV[nI,2] <- N
ni <- 1
if(nIM>1){
for(i in 1:(nIM-1)){
intW[i,1] <- ni
intW[i,2] <- ni+widthW-1
ni <- ni+widthW
}
}
intW[nIM,1] <- ni
intW[nIM,2] <- M
initPopList <- list()
immigrPopList <- list()
for(core in 1:cores){
if(!is.na(intV[core,1])){
initPopList[[core]] <- initPop[intV[core,1]:intV[core,2],]
} else {
initPopList[[core]] <- NA
}
if(!is.na(intW[core,1])){
immigrPopList[[core]] <- immigrPop[intW[core,1]:intW[core,2],]
} else {
immigrPopList[[core]] <- NA
}
}
nL <- cores - sum(unlist((lapply(initPopList, is.na))))
mL <- cores - sum(unlist((lapply(immigrPopList, is.na))))
sfInit(parallel=T,cpus=cores,slaveOutfile=NULL)
sfLibrary(chron)
sfExportAll()
sfClusterSetupRNGstream(seed=(rep(seeds,35)[1:length(cores)]))
myPar <- function(itt){
if(itt<=mL){
immigrPopL <- immigrPopList[[itt]]
} else {
immigrPopL <- NULL
}
if (itt<=nL) {
initPopL <- initPopList[[itt]]
} else {
initPopL <- NULL
stop("\nCompared to the number of migrants, the starting population is too small to justify running a distributed simulation on several cores.")
}
popIt <- micSim(initPop=initPopL, immigrPop=immigrPopL, transitionMatrix=transitionMatrix,
absStates=absStates, initStates=initStates, initStatesProb=initStatesProb, maxAge=maxAge,
simHorizon=simHorizon, fertTr=fertTr, dateSchoolEnrol=dateSchoolEnrol, reportMothers = FALSE)
return(popIt)
}
pop <- sfLapply(1:max(nL,mL), myPar)
refID <- 0
replaceID <- function(rr){
pop[[i]][which(as.numeric(pop[[i]][,1])==rr[1]),1] <<- rr[2]
return(NULL)
}
for(i in 1:length(pop)){
if(!is.na(immigrPopList[[i]])[1]){
allIDs <- c(initPopList[[i]]$ID, immigrPopList[[i]]$ID)
} else {
allIDs <- initPopList[[i]]$ID
}
exIDs <- unique(as.numeric(pop[[i]][,1]))
repl <- setdiff(exIDs, allIDs)
if(length(repl)>0) {
newIDs <- cbind(repl,-(refID+(1:length(repl))))
idch <- apply(newIDs,1,replaceID)
refID <- max(abs(newIDs[,2]))
}
}
pop <- do.call(rbind,pop)
pop[as.numeric(pop[,1])<0,1] <- abs(as.numeric(pop[as.numeric(pop[,1])<0,1]))+N+M
pop <- pop[order(as.numeric(pop[,1])),]
sfStop()
}
cat('Stopped at ');print(Sys.time())
return(pop)
}
|
context("ashr with weighted samples")
test_that("optimization with weights matches expectations", {
set.seed(1)
z=rnorm(100,0,2)
z.ash= ash(z[1:50],1,optmethod="mixEM")
z.ash.w = ash(z,1,optmethod="w_mixEM",weights = c(rep(1,50),rep(0,50)),
g=get_fitted_g(z.ash))
expect_equal(get_fitted_g(z.ash.w)$pi, get_fitted_g(z.ash)$pi, tol=0.001)
skip_if_not_installed("mixsqp")
z.ash.w2 = ash(z,1,optmethod="mixSQP",weights = c(rep(1,50),rep(0,50)),
g = get_fitted_g(z.ash))
expect_equal(get_fitted_g(z.ash.w2)$pi, get_fitted_g(z.ash.w)$pi,tol = 1e-4)
skip_if_mixkwdual_doesnt_work()
z.ash.w3 = ash(z,1,optmethod="mixIP",weights = c(rep(1,50),rep(0,50)),
g = get_fitted_g(z.ash))
expect_equal(get_fitted_g(z.ash.w3)$pi, get_fitted_g(z.ash.w)$pi,tol = 1e-4)
})
|
expected <- eval(parse(text="TRUE"));
test(id=0, code={
argv <- eval(parse(text="list(structure(list(a_string = c(\"foo\", \"bar\"), a_bool = FALSE, a_struct = structure(list(a = 1, b = structure(c(1, 3, 2, 4), .Dim = c(2L, 2L)), c = \"foo\"), .Names = c(\"a\", \"b\", \"c\")), a_cell = structure(list(1, \"foo\", structure(c(1, 3, 2, 4), .Dim = c(2L, 2L)), \"bar\"), .Dim = c(2L, 2L)), a_complex_scalar = 0+1i, a_list = list(1, structure(c(1, 3, 2, 4), .Dim = c(2L, 2L)), \"foo\"), a_complex_matrix = structure(c(1+2i, 5+0i, 3-4i, -6+0i), .Dim = c(2L, 2L)), a_range = c(1, 2, 3, 4, 5), a_scalar = 1, a_complex_3_d_array = structure(c(1+1i, 3+1i, 2+1i, 4+1i, 5-1i, 7-1i, 6-1i, 8-1i), .Dim = c(2L, 2L, 2L)), a_3_d_array = structure(c(1, 3, 2, 4, 5, 7, 6, 8), .Dim = c(2L, 2L, 2L)), a_matrix = structure(c(1, 3, 2, 4), .Dim = c(2L, 2L)), a_bool_matrix = structure(c(TRUE, FALSE, FALSE, TRUE), .Dim = c(2L, 2L))), .Names = c(\"a_string\", \"a_bool\", \"a_struct\", \"a_cell\", \"a_complex_scalar\", \"a_list\", \"a_complex_matrix\", \"a_range\", \"a_scalar\", \"a_complex_3_d_array\", \"a_3_d_array\", \"a_matrix\", \"a_bool_matrix\")))"));
do.call(`is.list`, argv);
}, o=expected);
|
averaged.network = function(strength, threshold) {
check.bn.strength(strength, valid = c("bootstrap", "bayes-factor"))
threshold = check.threshold(threshold, strength)
avg = averaged.network.backend(strength = strength, threshold = threshold)
avg$learning$algo = "averaged"
avg$learning$args = list(threshold = threshold)
return(avg)
}
inclusion.threshold = function(strength) {
check.bn.strength(strength, valid = c("bootstrap", "bayes-factor"))
threshold(strength = strength, method = "l1")
}
|
expected <- eval(parse(text="FALSE"));
test(id=0, code={
argv <- eval(parse(text="list(c(0, 0, 0, 0, 0, 1.75368801162502e-134, 0, 0, 0, 2.60477585273833e-251, 1.16485035372295e-260, 0, 1.53160350210786e-322, 0.333331382328728, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3.44161262707711e-123, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.968811545398e-173, 0, 8.2359965384697e-150, 0, 0, 0, 0, 6.51733217171341e-10, 0, 2.36840184577368e-67, 0, 9.4348408357524e-307, 0, 1.59959906013771e-89, 0, 8.73836857865034e-286, 7.09716190970992e-54, 0, 0, 0, 1.530425353017e-274, 8.57590058044551e-14, 0.333333106397154, 0, 0, 1.36895217898448e-199, 2.0226102635783e-177, 5.50445388209462e-42, 0, 0, 0, 0, 1.07846402051283e-44, 1.88605464411243e-186, 1.09156111051203e-26, 0, 3.0702877273237e-124, 0.333333209689785, 0, 0, 0, 0, 0, 0, 3.09816093866831e-94, 0, 0, 4.7522727332095e-272, 0, 0, 2.30093251441394e-06, 0, 0, 1.27082826644707e-274, 0, 0, 0, 0, 0, 0, 0, 4.5662025456054e-65, 0, 2.77995853978268e-149, 0, 0, 0))"));
do.call(`is.function`, argv);
}, o=expected);
|
library(ggplot2)
library(data.table)
a <- 1
b <- c(-1.5, -1, -0.5, 0)
theta <- seq(-4, 4, 0.01)
ccirt <- function(theta, a, b) {
return(1 / (1 + exp(-a * (theta - b))))
}
df1 <- data.frame(sapply(1:length(b), function(i) ccirt(theta, a, b[i])), theta)
df1 <- melt(df1, id.vars = "theta")
ggplot(data = df1, aes(x = theta, y = value, col = variable)) +
geom_line() +
xlab("Ability") +
ylab("Cumulative probability") +
xlim(-4, 4) +
ylim(0, 1) +
theme_bw() +
theme(
text = element_text(size = 14),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank()
) +
ggtitle("Cumulative probabilities") +
scale_color_manual("",
values = c("red", "yellow", "green", "blue"),
labels = paste0("P(Y >= ", 1:4, ")")
)
df2 <- data.frame(1, sapply(
1:length(b),
function(i) ccirt(theta, a, b[i])
))
df2 <- data.frame(sapply(
1:length(b),
function(i) df2[, i] - df2[, i + 1]
), df2[, ncol(df2)], theta)
df2 <- melt(df2, id.vars = "theta")
ggplot(data = df2, aes(x = theta, y = value, col = variable)) +
geom_line() +
xlab("Ability") +
ylab("Category probability") +
xlim(-4, 4) +
ylim(0, 1) +
theme_bw() +
theme(
text = element_text(size = 14),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank()
) +
ggtitle("Category probabilities") +
scale_color_manual("",
values = c("black", "red", "yellow", "green", "blue"),
labels = paste0("P(Y >= ", 0:4, ")")
)
df3 <- data.frame(1, sapply(
1:length(b),
function(i) ccirt(theta, a, b[i])
))
df3 <- data.frame(sapply(
1:length(b),
function(i) df3[, i] - df3[, i + 1]
), df3[, ncol(df3)])
df3 <- data.frame(exp = as.matrix(df3) %*% 0:4, theta)
ggplot(data = df3, aes(x = theta, y = exp)) +
geom_line() +
xlab("Ability") +
ylab("Expected item score") +
xlim(-4, 4) +
ylim(0, 4) +
theme_bw() +
theme(
text = element_text(size = 14),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank()
) +
ggtitle("Expected item score")
|
plotContours<-function(eList, yearStart, yearEnd, qBottom=NA, qTop=NA, whatSurface = 3,
qUnit = 2, contourLevels = NA, span = 60, pval = 0.05,
printTitle = TRUE, vert1 = NA, vert2 = NA, horiz = NA, tcl=0.03,
flowDuration = TRUE, customPar=FALSE, yTicks=NA,tick.lwd=1,usgsStyle = FALSE,
lwd=2,cex.main=1,cex.axis=1,color.palette=colorRampPalette(c("white","gray","blue","red")),...) {
localINFO <- getInfo(eList)
localDaily <- getDaily(eList)
localsurfaces <- getSurfaces(eList)
nVectorYear <- localINFO$nVectorYear
bottomLogQ <- localINFO$bottomLogQ
stepLogQ <- localINFO$stepLogQ
nVectorLogQ <- localINFO$nVectorLogQ
if (is.numeric(qUnit)){
qUnit <- qConst[shortCode=qUnit][[1]]
} else if (is.character(qUnit)){
qUnit <- qConst[qUnit][[1]]
}
if(!customPar){
par(mgp=c(2.5,0.5,0))
}
surfaceName<-c("log of Concentration","Standard Error of log(C)","Concentration")
j<-3
j<-if(whatSurface==1) 1 else j
j<-if(whatSurface==2) 2 else j
surf<-localsurfaces
surfaceMin<-min(surf[,,j])
surfaceMax<-max(surf[,,j])
surfaceSpan<-c(surfaceMin,surfaceMax)
contourLevels<-if(is.na(contourLevels[1])) pretty(surfaceSpan,n=5) else contourLevels
if(all(c("Year","LogQ") %in% names(attributes(localsurfaces)))){
x <- attr(localsurfaces, "Year")
y <- attr(localsurfaces, "LogQ")
} else {
x <- seq(localINFO$bottomYear, by=localINFO$stepYear, length.out=localINFO$nVectorYear)
y <- ((1:nVectorLogQ)*stepLogQ) + (bottomLogQ - stepLogQ)
}
yLQ<-y
qFactor<-qUnit@qUnitFactor
y<-exp(y)*qFactor
numX<-length(x)
numY<-length(y)
qBottomT <- ifelse(is.na(qBottom), quantile(localDaily$Q, probs = 0.05)*qFactor, qBottom)
qTopT <- ifelse(is.na(qTop), quantile(localDaily$Q, probs = 0.95)*qFactor, qTop)
if(any(is.na(yTicks))){
if(is.na(qBottom)){
qBottom <- max(0.9*y[1],qBottomT)
}
if(is.na(qTop)){
qTop <- min(1.1*y[numY],qTopT)
}
yTicks <- logPretty3(qBottom,qTop)
}
if(yearEnd-yearStart >= 4){
xSpan<-c(yearStart,yearEnd)
xTicks<-pretty(xSpan,n=5)
xlabels <- xTicks
} else {
xlabels <- c(as.Date(paste(yearStart,"-01-01",sep="")), as.Date(paste(yearEnd,"-01-01",sep="")))
xlabels <- pretty(xlabels,n=5)
xTicksDates <- as.POSIXlt(xlabels)
years <- xTicksDates$year + 1900
day <- xTicksDates$yday
xTicks <- years + day/365
xlabels <- format(xlabels, "%Y-%b")
}
nYTicks<-length(yTicks)
surfj<-surf[,,j]
surft<-t(surfj)
plotTitle<-if(printTitle) paste(localINFO$shortName," ",localINFO$paramShortName,"\nEstimated",surfaceName[j],"Surface in Color") else NULL
if(flowDuration) {
numDays<-length(localDaily$Day)
freq<-rep(0,nVectorLogQ)
durSurf<-rep(0,length(x)*length(y))
dim(durSurf)<-c(length(x),length(y))
centerDays<-seq(1,365,22.9)
centerDays<-floor(centerDays)
for (ix in 1:16) {
startDay<-centerDays[ix]-span
endDay<-centerDays[ix]+span
goodDays<-seq(startDay,endDay,1)
goodDays<-ifelse(goodDays>0,goodDays,goodDays+365)
goodDays<-ifelse(goodDays<366,goodDays,goodDays-365)
numDays<-length(localDaily$Day)
isGood <- localDaily$Day %in% goodDays
spanDaily<-data.frame(localDaily,isGood)
spanDaily<-subset(spanDaily,isGood)
n<-length(spanDaily$Day)
LogQ<-spanDaily$LogQ
for(jQ in 1:length(y)) {
ind<-ifelse(LogQ < yLQ[jQ],1,0)
freq[jQ]<-sum(ind)/n
}
xInd<-seq(ix,numX,16)
numXind<-length(xInd)
for(ii in 1:numXind) {
iX<-xInd[ii]
durSurf[iX,]<-freq
}
}
plevels<-c(pval,1-pval)
pct1<-format(plevels[1]*100,digits=2)
pct2<-format(plevels[2]*100,digits=2)
plotTitle<- plotTitle<-if(printTitle)paste(localINFO$shortName," ",localINFO$paramShortName,"\nEstimated",surfaceName[j],"Surface in Color\nBlack lines are",pct1,"and",pct2,"flow percentiles")
}
vectorNone<-c(yearStart,log(yTicks[1],10)-1,yearEnd,log(yTicks[1],10)-1)
v1<-if(is.na(vert1)) vectorNone else c(vert1,log(yTicks[1],10),vert1,log(yTicks[nYTicks],10))
v2<-if(is.na(vert2)) vectorNone else c(vert2,log(yTicks[1],10),vert2,log(yTicks[nYTicks],10))
h1<-if(is.na(horiz)) vectorNone else c(yearStart,log(horiz,10),yearEnd,log(horiz,10))
deltaY <- (log(yTicks[length(yTicks)],10)-log(yTicks[1],10))/25
deltaX <- (yearEnd-yearStart)/25
yLab<-ifelse(usgsStyle,qUnit@unitUSGS,qUnit@qUnitExpress)
logY <- log(y,10)
filled.contour(x,log(y,10),surft,levels=contourLevels,xlim=c(yearStart,yearEnd),
ylim=c(log(yTicks[1],10),log(yTicks[nYTicks],10)),
xaxs="i",yaxs="i",
color.palette=color.palette,
plot.axes={
width <- grconvertX(par("usr")[2],from="user",to="inches") - grconvertX(par("usr")[1],from="user",to="inches")
height <- grconvertY(par("usr")[4],from="user",to="inches") - grconvertY(par("usr")[3],from="user",to="inches")
axis(1,tcl=0,at=xTicks,labels=xlabels,cex.axis=cex.axis)
axis(2,tcl=0,las=1,at=log(yTicks,10),labels=yTicks,cex.axis=cex.axis)
axis(3, tcl = 0, at = xTicks, labels =FALSE,cex.axis=cex.axis)
axis(4, tcl = 0, at = log(yTicks, 10), labels=FALSE,cex.axis=cex.axis)
if(flowDuration) contour(x,log(y,10),durSurf,add=TRUE,drawlabels=FALSE,levels=plevels,lwd=lwd)
segments(v1[1],v1[2],v1[3],v1[4])
segments(v2[1],v2[2],v2[3],v2[4])
segments(h1[1],h1[2],h1[3],h1[4])
segments(xTicks, rep(log(yTicks[1],10),length(xTicks)), xTicks, rep(grconvertY(grconvertY(par("usr")[3],from="user",to="inches")+tcl,from="inches",to="user"),length(xTicks)), lwd = tick.lwd)
segments(xTicks, rep(log(yTicks[nYTicks],10),length(xTicks)), xTicks, rep(grconvertY(grconvertY(par("usr")[4],from="user",to="inches")-tcl,from="inches",to="user"),length(xTicks)), lwd = tick.lwd)
segments(rep(yearStart,length(yTicks)), log(yTicks,10), rep(grconvertX(grconvertX(par("usr")[1],from="user",to="inches")+tcl,from="inches",to="user"),length(yTicks)),log(yTicks,10), lwd = tick.lwd)
segments(rep(grconvertX(grconvertX(par("usr")[2],from="user",to="inches")-tcl,from="inches",to="user"),length(yTicks)), log(yTicks,10), rep(yearEnd,length(yTicks)),log(yTicks,10), lwd = tick.lwd)
},
plot.title = {
if(printTitle) {
title(main = plotTitle, ylab = yLab,cex.main = cex.main)
} else {
title(main = NULL, ylab = yLab)
}
}
)
}
|
context("ticket/attachments")
test_that("we can get a list of attachments", {
testthat::skip_on_cran()
skip_unless_integration()
ticket_id <- rt_ticket_create("General", "root@localhost", "Attachment test")
attachments <- rt_ticket_attachments(ticket_id)
testthat::expect_is(attachments, "data.frame")
testthat::expect_length(attachments, 4)
})
test_that("we can get an attachment", {
testthat::skip_on_cran()
skip_unless_integration()
ticket_id <- rt_ticket_create("General", "root@localhost", "Attachment test")
attachments <- rt_ticket_attachments(ticket_id)
attachment <- rt_ticket_attachment(ticket_id, attachments[1,"id"][[1]])
testthat::expect_is(attachment, "rt_api")
testthat::expect_gt(nchar(attachment$body), 0)
})
test_that("we can get an attachment's content", {
testthat::skip_on_cran()
skip_unless_integration()
ticket_id <- rt_ticket_create("General", "root@localhost", "Attachment test")
attachments <- rt_ticket_attachments(ticket_id)
content <- rt_ticket_attachment_content(ticket_id, attachments$id[1])
testthat::expect_is(content, "response")
content <- rt_ticket_attachment_content(ticket_id, attachments$id[3])
testthat::expect_is(content, "response")
})
|
h2Estimate <- function(data, nreps = 1000) {
colnames(data) <- c("trait1", "trait2", "dad")
hm0.real = glm(cbind(trait1, trait2) ~ 1, data = data, family = binomial)
hm1.real = glmer(cbind(trait1, trait2) ~ (1 | dad), data = data,
family = binomial)
Dobs = as.numeric(deviance(hm0.real) - deviance(hm1.real))
if(Dobs < 1e-5){
pval = 1
Dobs = 0
sim = NA
trueTau2 <- 0
h2 <- 0
perm1 = NA
}else{
ncases <- nrow(data)
perm1 = replicate(nreps, {
neworder = sample(1:ncases, ncases)
ptable = data.frame(dad = data$dad, t1 = data$trait1[neworder],
t2 = data$trait2[neworder])
hm0 = glm(cbind(t1, t2) ~ 1, data = ptable, family = binomial)
hm1 = glmer(cbind(t1, t2) ~ (1 | dad), data = ptable,
family = binomial)
D = as.numeric(deviance(hm0) - deviance(hm1))
D
})
pval <- length(which(perm1 > Dobs))/length(perm1)
trueTau2 <- (VarCorr(hm1.real)$dad[1])^2
h2 <- 4 * (trueTau2/(trueTau2 + (pi/sqrt(3))^2))
}
out <- list(h2 = h2, pval = pval, deviance = Dobs, sim = perm1,
trueTau2 = trueTau2, obsMod_glmer = hm1.real, obsMod_glm = hm0.real)
return(out)
}
|
cat("\n\n Basics: vector, matrix, attribute, attr, dim, structure \n\n, t, %*%, outer, crossprod")
x <- c(13, 11, 18, 2, 134, 154, 2, 3, 4, 12)
is.vector(x)
is.matrix(x)
attributes(x)
?attributes
matrix(x, nrow=2)
?matrix
X1m1 <- matrix(x, nrow=2)
class(X1m1)
X1m2 <- matrix(x, ncol=5)
X1m1 == X1m2
identical(X1m1, X1m2)
?identical
attributes(X1m1)
attributes(X1m2)
X1m3 <- x
attr(X1m3, "dim") <- c(2,5)
?attr
X1m3
is.vector(X1m3)
is.matrix(X1m3)
is.data.frame(X1m3)
attributes(X1m3)
identical(X1m1, X1m3)
X1m4 <- x
dim(X1m4) <- c(2,5)
?dim
X1m4
attributes(X1m4)
identical(X1m1, X1m4)
X1m5 <- structure(x, dim=c(2,5))
?structure
X1m5
identical(X1m1, X1m5)
X1m6 <- rbind(x[c(1,3,5,7,9)], x[c(2,4,6,8,10)])
class(x[1:5])
class(X1m6)
identical(X1m1, X1m6)
X1m7 <- cbind(x[1:2], x[3:4], x[5:6], x[7:8],x[9:10])
identical(X1m1, X1m7)
x1m7 <- X1m7
identical(x, x1m7)
dim(x1m7) <- c(1,10)
x1m7
identical(x, x1m7)
x1m7new1 <- drop(x1m7)
?drop
x1m7new1
identical(x, x1m7new1)
x1m7new2 <- as.vector(x1m7)
identical(x, x1m7new2)
?t
tX1m1 <- t(X1m1)
tX1m1
X2m1 <- matrix(x, nrow=5, byrow=TRUE)
X2m1
dim(X2m1)
identical(X2m1, t(X1m1))
X2m2 <- X1m1
X2m2
dim(X2m2)
dim(X2m2) <- c(5,2)
dim(X2m2)
X2m2
identical(X1m1, X2m2)
X2m1 == X2m2
y <- c(12, 12, 41, 22)
x %*% y
y <- rep(c(1,2,3,4,5), 2)
x %*% y
t(x) %*% y
y %*% x
outer(x,y)
outer(x,y, FUN="*")
outer(x,y, FUN="+")
outer(x,y, FUN="/")
outer(x,y, FUN=function(a, b) {b - 2*a})
X3 <- matrix(rnorm(10), nrow=2)
crossprod(X1m1, X3)
t(X1m1) %*% X3
?crossprod
x <- 1:6
X <- data.frame(x1 = x, x2 = x, x3 = x)
Y <- data.frame(z1 = rnorm(6), z2 = rnorm(6), x3 = rnorm(6))
Z <- cbind(X, Y)
colnames(Z)
Z2 <- data.frame(X,Y)
colnames(Z2)
|
epictmcmcsir <- function(object, distancekernel, datatype, blockupdate, nsim, nchains, sus, suspower, trans, transpower, kernel, spark, delta, periodproposal, parallel, n, ni, net, dis, num, nsuspar, ntranspar) {
initial <- list(NULL)
infperiodproposal <- vector(mode="double", length = 2)
delta2prior <- vector(mode="double", length = 2)
delta1 <- vector(mode="double", length = 2)
if (datatype == "known removal") {
anum11 <- 1
if (is.null(delta)) {
stop("Specify the arguments of the parameters of the infectious period distribution: delta", call. =FALSE)
} else {
if (!is.list(delta)) {
stop("The argument \"delta\" must be a list of three:\n1) a fixed shape parameter of the infectious period density.\n2) a vector of initial values of the rate parameter of the infectious period density with size equal to \"nchains\". \n3) a vector of the parameter values of the gamma prior distribution for the rate parameter.", call.= FALSE)
}
if (length(delta) != 3) {
stop("Error in entering the arguments of the delta parameters of the infectious period distribution: delta", call.=FALSE)
}
if ( length(delta[[1]])>1) {
stop("Error in entering the arguments of the fixed shape parameter of the infectious period density: delta", call.=FALSE)
}
initial[[1]] <- matrix(0, ncol = nchains, nrow = 2)
initial[[1]][1,] <- rep(delta[[1]], nchains)
if (is.vector(delta[[2]])) {
if (length(delta[[2]]) == nchains) {
initial[[1]][2,] <- delta[[2]]
} else if (length(delta[[2]]) == 1) {
initial[[1]] <- rep(delta[[2]],nchains)
} else {
stop("Error in entering the initial values of the delta parameter: delta[[2]]", call.= FALSE)
}
} else {
stop("Error in entering the initial values of the delta parameter: delta[[2]]", call.= FALSE)
}
if (length(delta[[3]]) == 2) {
delta2prior <- delta[[3]]
} else {
stop("Error in entering the parameter values of the gamma prior distribution of the delta parameter: delta[[3]]", call.= FALSE)
}
}
if (is.null(periodproposal) ) {
infperiodproposal <- c(0,0)
} else {
if (!is.matrix(periodproposal)) {
periodproposal <- matrix(periodproposal, ncol = 2, nrow = 1)
infperiodproposal <- periodproposal[1, ]
} else if (all(dim(periodproposal)[1]!=1 & dim(periodproposal)[2]!=2) == TRUE) {
stop("Error: the parameters of the gamma proposal distribution for updating the infectious periods and infection times should be entered as a 1 by 2 matrix or as a vector: periodproposal", call.=FALSE)
} else {
infperiodproposal <- periodproposal[1, ]
}
}
if (is.null(blockupdate) ) {
blockupdate <- c(1, 1)
}
} else if (datatype == "known epidemic") {
blockupdate <- vector(mode="integer", length = 2)
if (!is.null(delta)) {
warning("The infectious period rate is not updated as the option of datatype = \"known epidemic\".", call. = TRUE)
}
anum11 <- 2
infperiodproposal <- c(0,0)
delta2prior <- c(0, 0)
initial[[1]] <- matrix(rep(0.0,nchains), ncol = nchains, nrow = 2)
blockupdate <- c(1, 1)
} else {
stop("Specify datatype as \"known removal\" or \"known epidemic\" ", call. = FALSE)
}
anum55 <- kernel[[4]]
kernelparproposalvar <- kernel[[1]]
kernelparprior <- kernel[[3]]
priordistkernelparpar <- kernel[[2]]
initial[[5]] <- kernel[[5]]
initial[[4]] <- spark[[5]]
anum44 <- spark[[4]]
sparkproposalvar <- spark[[1]]
priordistsparkpar <- spark[[2]]
sparkprior <- spark[[3]]
anum22 <- sus[[4]]
initial[[2]] <- sus[[5]]
suscov <- sus[[6]]
susproposalvar <- sus[[1]]
priordistsuspar <- sus[[2]]
priorpar1sus <- sus[[3]][[1]]
priorpar2sus <- sus[[3]][[2]]
anum66 <- suspower[[4]]
initial[[6]] <- suspower[[5]]
powersusproposalvar <- suspower[[1]]
priordistpowersus <- suspower[[2]]
priorpar1powersus <- suspower[[3]][[1]]
priorpar2powersus <- suspower[[3]][[2]]
anum33 <- trans[[4]]
initial[[3]] <- trans[[5]]
transcov <- trans[[6]]
transproposalvar <- trans[[1]]
priordisttranspar <- trans[[2]]
priorpar1trans <- trans[[3]][[1]]
priorpar2trans <- trans[[3]][[2]]
anum77 <- transpower[[4]]
initial[[7]] <- transpower[[5]]
powertransproposalvar <- transpower[[1]]
priordistpowertrans <- transpower[[2]]
priorpar1powertrans <- transpower[[3]][[1]]
priorpar2powertrans <- transpower[[3]][[2]]
anum2 <- c(anum11, anum22, anum33, anum44, anum55, anum66, anum77)
cat("************************************************","\n")
cat("Start performing MCMC for the ", datatype," SIR ILM for","\n")
cat(nsim, "iterations", "\n")
cat("************************************************","\n")
if (nchains > 1L) {
n=as.integer(n);
nsim=as.integer(nsim);
ni=as.integer(ni);
num=as.integer(num);
anum2=as.vector(anum2, mode="integer");
temp = as.integer(0);
nsuspar=as.integer(nsuspar);
ntranspar=as.integer(ntranspar);
net=matrix(as.double(net), ncol=n, nrow=n);
dis=matrix(as.double(dis), ncol=n, nrow=n);
epidat=matrix(as.double(object$epidat), ncol=4, nrow=n);
blockupdate=as.vector(blockupdate, mode="integer");
priordistsuspar=as.vector(priordistsuspar, mode="integer");
priordisttranspar=as.vector(priordisttranspar, mode="integer");
priordistkernelparpar=as.vector(priordistkernelparpar, mode="integer");
priordistsparkpar=as.integer(priordistsparkpar);
priordistpowersus=as.vector(priordistpowersus, mode="integer");
priordistpowertrans=as.vector(priordistpowertrans, mode="integer");
suspar=as.vector(initial[[2]][,1], mode="double");
suscov=matrix(as.double(suscov), ncol=nsuspar, nrow=n);
powersus=as.vector(initial[[6]][,1], mode="double");
transpar=as.vector(initial[[3]][,1], mode="double");
transcov=matrix(as.double(transcov), ncol=ntranspar, nrow=n);
powertrans=as.vector(initial[[7]][,1], mode="double");
kernelpar=as.vector(initial[[5]][,1], mode="double");
spark=initial[[4]][1];
delta1=as.vector(initial[[1]][,1], mode = "double");
kernelparproposalvar=as.vector(kernelparproposalvar, mode="double");
sparkproposalvar=as.double(sparkproposalvar);
susproposalvar=as.vector(susproposalvar, mode="double");
powersusproposalvar=as.vector(powersusproposalvar, mode="double");
transproposalvar=as.vector(transproposalvar, mode="double");
powertransproposalvar=as.vector(powertransproposalvar, mode="double");
infperiodproposal=as.vector(infperiodproposal, mode="double");
priorpar1sus=as.vector(priorpar1sus, mode="double");
priorpar2sus=as.vector(priorpar2sus, mode="double");
priorpar1powersus=as.vector(priorpar1powersus, mode="double");
priorpar2powersus=as.vector(priorpar2powersus, mode="double");
priorpar1trans=as.vector(priorpar1trans, mode="double");
priorpar2trans=as.vector(priorpar2trans, mode="double");
priorpar1powertrans=as.vector(priorpar1powertrans, mode="double");
priorpar2powertrans=as.vector(priorpar2powertrans, mode="double");
kernelparprior=matrix(as.double(kernelparprior), ncol=2, nrow=2);
sparkprior=as.vector(sparkprior, mode="double");
delta2prior=as.vector(delta2prior, mode="double");
susparop= matrix(as.double(0), ncol=nsuspar, nrow=nsim);
powersusparop=matrix(as.double(0), ncol=nsuspar, nrow=nsim);
transparop= matrix(as.double(0), ncol=ntranspar, nrow=nsim);
powertransparop=matrix(as.double(0), ncol=ntranspar, nrow=nsim);
kernelparop=matrix(as.double(0), ncol=2, nrow=nsim);
sparkop=matrix(as.double(0), ncol=1, nrow=nsim);
delta2op=matrix(as.double(0), ncol=1, nrow=nsim);
epidatmctim=matrix(as.double(0), ncol=n, nrow=nsim);
epidatmcrem=matrix(as.double(0), ncol=n, nrow=nsim);
loglik=matrix(as.double(0), ncol=1, nrow=nsim)
sirmcmc <- list(n,nsim,ni,num,anum2,temp,nsuspar,ntranspar,net,dis,epidat,blockupdate,priordistsuspar,
priordisttranspar, priordistkernelparpar, priordistsparkpar, priordistpowersus,
priordistpowertrans,suspar,suscov,powersus,transpar,transcov,powertrans,kernelpar,spark,delta1,
kernelparproposalvar, sparkproposalvar, susproposalvar, powersusproposalvar, transproposalvar,
powertransproposalvar, infperiodproposal, priorpar1sus, priorpar2sus, priorpar1powersus,
priorpar2powersus, priorpar1trans, priorpar2trans, priorpar1powertrans, priorpar2powertrans,
kernelparprior, sparkprior, delta2prior, susparop, powersusparop, transparop, powertransparop,
kernelparop, sparkop, delta2op, epidatmctim, epidatmcrem, loglik)
parallel.function <- function(i) {
.Fortran("mcmcsir_f",
n= sirmcmc[[1]], nsim = sirmcmc[[2]],
ni= sirmcmc[[3]],
num= sirmcmc[[4]], anum2= sirmcmc[[5]],
nsuspar= sirmcmc[[7]], ntranspar= sirmcmc[[8]], net= sirmcmc[[9]],
dis= sirmcmc[[10]], epidat= sirmcmc[[11]], blockupdate= sirmcmc[[12]],
priordistsuspar= sirmcmc[[13]], priordisttranspar= sirmcmc[[14]],
priordistkernelparpar= sirmcmc[[15]], priordistsparkpar= sirmcmc[[16]],
priordistpowersus= sirmcmc[[17]], priordistpowertrans= sirmcmc[[18]],
suspar= as.vector(initial[[2]][,i], mode="double"), suscov= sirmcmc[[20]],
powersus= as.vector(initial[[6]][,i], mode="double"),
transpar= as.vector(initial[[3]][,i], mode="double"),
transcov= sirmcmc[[23]], powertrans= as.vector(initial[[7]][,i], mode="double"),
kernelpar= as.vector(initial[[5]][,i], mode="double"), spark= initial[[4]][i],
delta1=as.vector(initial[[1]][,i], mode = "double"),
kernelparproposalvar= sirmcmc[[28]],
sparkproposalvar= sirmcmc[[29]],
susproposalvar= sirmcmc[[30]],
powersusproposalvar= sirmcmc[[31]],
transproposalvar= sirmcmc[[32]],
powertransproposalvar= sirmcmc[[33]],
infperiodproposal= sirmcmc[[34]],
priorpar1sus= sirmcmc[[35]],
priorpar2sus= sirmcmc[[36]],
priorpar1powersus= sirmcmc[[37]],
priorpar2powersus= sirmcmc[[38]],
priorpar1trans= sirmcmc[[39]],
priorpar2trans= sirmcmc[[40]],
priorpar1powertrans= sirmcmc[[41]],
priorpar2powertrans= sirmcmc[[42]],
kernelparprior= sirmcmc[[43]],
sparkprior= sirmcmc[[44]],
delta2prior= sirmcmc[[45]],
susparop= sirmcmc[[46]],
powersusparop= sirmcmc[[47]],
transparop= sirmcmc[[48]],
powertransparop= sirmcmc[[49]],
kernelparop= sirmcmc[[50]],
sparkop= sirmcmc[[51]],
delta2op= sirmcmc[[52]],
epidatmctim= sirmcmc[[53]],
epidatmcrem= sirmcmc[[54]],
loglik= sirmcmc[[55]], NAOK = TRUE)
}
if (parallel) {
no_cores <- min(nchains,getOption("cl.cores", detectCores()))
cl <- makeCluster(no_cores)
varlist <- unique(c(ls(), ls(envir=.GlobalEnv), ls(envir=parent.env(environment()))))
clusterExport(cl, varlist=varlist, envir=environment())
wd <- getwd()
clusterExport(cl, varlist="wd", envir=environment())
clusterSetRNGStream(cl = cl)
datmcmc22 <- parLapply(cl=cl, X=1:no_cores, fun=parallel.function)
stopCluster(cl)
} else {
datmcmc22 <- list(NULL)
for (i in seq_len(nchains)) {
datmcmc22[[i]] <- parallel.function(i)
}
}
} else if (nchains == 1L) {
datmcmc22 <- .Fortran("mcmcsir_f",
n=as.integer(n),
nsim=as.integer(nsim),
ni=as.integer(ni),
num=as.integer(num),
anum2=as.vector(anum2, mode="integer"),
nsuspar=as.integer(nsuspar),
ntranspar=as.integer(ntranspar),
net=matrix(as.double(net), ncol=n, nrow=n),
dis=matrix(as.double(dis), ncol=n, nrow=n),
epidat=matrix(as.double(object$epidat), ncol=4, nrow=n),
blockupdate=as.vector(blockupdate, mode="integer"),
priordistsuspar=as.vector(priordistsuspar, mode="integer"),
priordisttranspar=as.vector(priordisttranspar, mode="integer"),
priordistkernelparpar=as.vector(priordistkernelparpar, mode="integer"),
priordistsparkpar=as.integer(priordistsparkpar),
priordistpowersus=as.vector(priordistpowersus, mode="integer"),
priordistpowertrans=as.vector(priordistpowertrans, mode="integer"),
suspar=as.vector(initial[[2]][,1], mode="double"),
suscov=matrix(as.double(suscov), ncol=nsuspar, nrow=n),
powersus=as.vector(initial[[6]][,1], mode="double"),
transpar=as.vector(initial[[3]][,1], mode="double"),
transcov=matrix(as.double(transcov), ncol=ntranspar, nrow=n),
powertrans=as.vector(initial[[7]][,1], mode="double"),
kernelpar=as.vector(initial[[5]][,1], mode="double"),
spark=initial[[4]][1],
delta1=as.vector(initial[[1]][,1], mode = "double"),
kernelparproposalvar=as.vector(kernelparproposalvar, mode="double"),
sparkproposalvar=as.double(sparkproposalvar),
susproposalvar=as.vector(susproposalvar, mode="double"),
powersusproposalvar=as.vector(powersusproposalvar, mode="double"),
transproposalvar=as.vector(transproposalvar, mode="double"),
powertransproposalvar=as.vector(powertransproposalvar, mode="double"),
infperiodproposal=as.vector(infperiodproposal, mode="double"),
priorpar1sus=as.vector(priorpar1sus, mode="double"),
priorpar2sus=as.vector(priorpar2sus, mode="double"),
priorpar1powersus=as.vector(priorpar1powersus, mode="double"),
priorpar2powersus=as.vector(priorpar2powersus, mode="double"),
priorpar1trans=as.vector(priorpar1trans, mode="double"),
priorpar2trans=as.vector(priorpar2trans, mode="double"),
priorpar1powertrans=as.vector(priorpar1powertrans, mode="double"),
priorpar2powertrans=as.vector(priorpar2powertrans, mode="double"),
kernelparprior=matrix(as.double(kernelparprior), ncol=2, nrow=2),
sparkprior=as.vector(sparkprior, mode="double"),
delta2prior=as.vector(delta2prior, mode="double"),
susparop= matrix(as.double(0), ncol=nsuspar, nrow=nsim),
powersusparop=matrix(as.double(0), ncol=nsuspar, nrow=nsim),
transparop= matrix(as.double(0), ncol=ntranspar, nrow=nsim),
powertransparop=matrix(as.double(0), ncol=ntranspar, nrow=nsim),
kernelparop=matrix(as.double(0), ncol=2, nrow=nsim),
sparkop=matrix(as.double(0), ncol=1, nrow=nsim),
delta2op=matrix(as.double(0), ncol=1, nrow=nsim),
epidatmctim=matrix(as.double(0), ncol=n, nrow=nsim),
epidatmcrem=matrix(as.double(0), ncol=n, nrow=nsim),
loglik=matrix(as.double(0), ncol=1, nrow=nsim), NAOK = TRUE)
}
names <- c(paste("Alpha_s[",seq_len(nsuspar),"]", sep = ""))
namet <- c(paste("Alpha_t[",seq_len(ntranspar),"]", sep = ""))
namepowers <- c(paste("Psi_s[",seq_len(nsuspar),"]", sep = ""))
namepowert <- c(paste("Psi_t[",seq_len(ntranspar),"]", sep = ""))
if (nchains > 1L) {
result77 <- list(NULL)
for (i in seq_len(nchains)){
result777 <- NULL
namecols <- NULL
if (anum2[2]==1) {
result777 <- cbind(result777, datmcmc22[[i]]$susparop )
namecols <- c(namecols, names[1:nsuspar])
}
if (anum2[6]==1) {
result777 <- cbind(result777, datmcmc22[[i]]$powersusparop)
namecols <- c(namecols, namepowers[1:nsuspar])
}
if (anum2[3]==1) {
result777 <- cbind(result777, datmcmc22[[i]]$transparop)
namecols <- c(namecols, namet[1:ntranspar])
}
if (anum2[7]==1) {
result777 <- cbind(result777, datmcmc22[[i]]$powertransparop)
namecols <- c(namecols, namepowert[1:ntranspar])
}
if (anum2[4]==1) {
result777 <- cbind(result777, datmcmc22[[i]]$sparkop[, 1])
namecols <- c(namecols, "Spark")
}
if (anum2[5]==1) {
result777 <- cbind(result777, datmcmc22[[i]]$kernelparop[, 1])
namecols <- c(namecols, "Spatial parameter")
} else if (anum2[5]==2) {
result777 <- cbind(result777, datmcmc22[[i]]$kernelparop)
namecols <- c(namecols, c("Spatial parameter", "Network parameter"))
}
if (anum2[1]==1) {
result777 <- cbind(result777, datmcmc22[[i]]$delta2op[, 1])
namecols <- c(namecols, "Infectious period rate")
}
result777 <- cbind(result777, datmcmc22[[i]]$loglik)
namecols <- c(namecols, "Log-likelihood")
result777 <- data.frame(result777)
colnames(result777) <- namecols
if (anum2[1]==2) {
result777 <- list(result777)
} else if (anum2[1]==1) {
result777 <- list(result777, datmcmc22[[i]]$epidatmctim)
}
result77[[i]] <- result777
}
} else {
result77 <- NULL
namecols <- NULL
if (anum2[2]==1) {
result77 <- cbind(result77, datmcmc22$susparop)
namecols <- c(namecols, names[1:nsuspar])
}
if (anum2[6]==1) {
result77 <- cbind(result77, datmcmc22$powersusparop)
namecols <- c(namecols, namepowers[1:nsuspar])
}
if (anum2[3]==1) {
result77 <- cbind(result77, datmcmc22$transparop)
namecols <- c(namecols, namet[1:ntranspar])
}
if (anum2[7]==1) {
result77 <- cbind(result77, datmcmc22$powertransparop)
namecols <- c(namecols, namepowert[1:ntranspar])
}
if (anum2[4]==1) {
result77 <- cbind(result77, datmcmc22$sparkop[, 1])
namecols <- c(namecols, "Spark")
}
if (anum2[5]==1) {
result77 <- cbind(result77, datmcmc22$kernelparop[, 1])
namecols <- c(namecols, "Spatial parameter")
} else if (anum2[5]==2) {
result77 <- cbind(result77, datmcmc22$kernelparop)
namecols <- c(namecols, c("Spatial parameter", "Network parameter"))
}
if (anum2[1]==1) {
result77 <- cbind(result77, datmcmc22$delta2op[, 1])
namecols <- c(namecols, "Infectious period rate")
}
result77 <- cbind(result77, datmcmc22$loglik)
namecols <- c(namecols, "Log-likelihood")
result77 <- data.frame(result77)
colnames(result77) <- namecols
if (anum2[1]==2) {
result77 <- list(result77)
} else if (anum2[1]==1) {
result77 <- list(result77, datmcmc22$epidatmctim)
}
}
if (nchains == 1){
if (length(result77) == 1) {
dim.results <- dim(result77[[1]])
mcmcsamp <- as.mcmc(result77[[1]][,-dim.results[2]])
accpt <- 1-rejectionRate(as.mcmc(mcmcsamp))
num.iter <- niter(as.mcmc(mcmcsamp))
num.par <- nvar(as.mcmc(mcmcsamp))
log.likelihood <- as.mcmc(result77[[1]][,dim.results[2]])
out <- list(compart.framework = object$type, kernel.type = object$kerneltype, data.assumption = datatype,
parameter.samples = mcmcsamp, log.likelihood = log.likelihood,
acceptance.rate = accpt, number.iteration = num.iter,
number.parameter = num.par, number.chains = nchains)
} else {
dim.results <- dim(result77[[1]])
mcmcsamp <- as.mcmc(result77[[1]][,-dim.results[2]])
accpt <- 1-rejectionRate(as.mcmc(mcmcsamp))
num.iter <- niter(as.mcmc(mcmcsamp))
num.par <- nvar(as.mcmc(mcmcsamp))
log.likelihood <- as.mcmc(result77[[1]][,dim.results[2]])
num.inf <- sum(object$epidat[,2]!=Inf)
infection.times.samples <- as.mcmc(result77[[2]][,1:num.inf])
Average.infectious.periods <- as.mcmc(apply(object$epidat[1:num.inf,2]-infection.times.samples,1,mean))
out <- list(compart.framework = object$type, kernel.type = object$kerneltype, data.assumption = datatype,
parameter.samples = mcmcsamp, log.likelihood = log.likelihood,
acceptance.rate = accpt, number.iteration = num.iter,
number.parameter = num.par, number.chains = nchains, infection.times.samples = infection.times.samples,
Average.infectious.periods = Average.infectious.periods)
}
} else {
if (length(result77[[1]]) == 1) {
dim.results <- dim(result77[[1]][[1]])
mcmcsamp <- list(NULL)
log.likelihood <- list(NULL)
accpt <- list(NULL)
for(i in seq_len(nchains)){
mcmcsamp[[i]] <- as.mcmc(result77[[i]][[1]][,-dim.results[2]])
accpt[[i]] <- 1-rejectionRate(as.mcmc(mcmcsamp[[i]]))
log.likelihood[[i]] <- as.mcmc(result77[[i]][[1]][,dim.results[2]])
}
num.iter <- niter(as.mcmc(mcmcsamp[[1]]))
num.par <- nvar(as.mcmc(mcmcsamp[[1]]))
out <- list(compart.framework = object$type, kernel.type = object$kerneltype,
data.assumption = datatype, parameter.samples = mcmcsamp,
log.likelihood = log.likelihood,
acceptance.rate = accpt, number.iteration = num.iter,
number.parameter = num.par, number.chains = nchains)
} else {
dim.results <- dim(result77[[1]][[1]])
mcmcsamp <- list(NULL)
log.likelihood <- list(NULL)
accpt <- list(NULL)
num.inf <- sum(object$epidat[,2]!=Inf)
infection.times.samples <- list(NULL)
Average.infectious.periods <- list(NULL)
for(i in seq_len(nchains)){
mcmcsamp[[i]] <- as.mcmc(result77[[i]][[1]][,-dim.results[2]])
accpt[[i]] <- 1-rejectionRate(as.mcmc(mcmcsamp[[i]]))
log.likelihood[[i]] <- as.mcmc(result77[[i]][[1]][,dim.results[2]])
infection.times.samples[[i]] <- as.mcmc(result77[[i]][[2]][,seq_len(num.inf)])
Average.infectious.periods[[i]] <- as.mcmc(apply(object$epidat[seq_len(num.inf),2]-infection.times.samples[[i]],1,mean))
}
num.iter <- niter(as.mcmc(mcmcsamp[[1]]))
num.par <- nvar(as.mcmc(mcmcsamp[[1]]))
out <- list(compart.framework = object$type, kernel.type = object$kerneltype,
data.assumption = datatype, parameter.samples = mcmcsamp,
log.likelihood = log.likelihood,
acceptance.rate = accpt, number.iteration = num.iter,
number.parameter = num.par, number.chains = nchains, infection.times.samples = infection.times.samples,
Average.infectious.periods = Average.infectious.periods)
}
}
}
|
add_linpred_rvars = function(
newdata, object, ...,
value = ".linpred", ndraws = NULL, seed = NULL, re_formula = NULL, dpar = NULL, columns_to = NULL
) {
linpred_rvars(
object = object, newdata = newdata, ...,
value = value, ndraws = ndraws, seed = seed, re_formula = re_formula, dpar = dpar, columns_to = columns_to
)
}
linpred_rvars = function(
object, newdata, ...,
value = ".linpred", ndraws = NULL, seed = NULL, re_formula = NULL, dpar = NULL, columns_to = NULL
) {
UseMethod("linpred_rvars")
}
linpred_rvars.default = function(
object, newdata, ...,
value = ".linpred", seed = NULL, dpar = NULL, columns_to = NULL
) {
pred_rvars_default_(
.name = "linpred_rvars",
.f = rstantools::posterior_linpred, ...,
object = object, newdata = newdata, output_name = value,
seed = seed, dpar = dpar, columns_to = columns_to
)
}
linpred_rvars.stanreg = function(
object, newdata, ...,
value = ".linpred", ndraws = NULL, seed = NULL, re_formula = NULL, dpar = NULL, columns_to = NULL
) {
stop_on_non_generic_arg_(
names(enquos(...)), "[add_]linpred_rvars", re_formula = "re.form", ndraws = "draws"
)
pred_rvars_(
.f = rstantools::posterior_linpred, ...,
object = object, newdata = newdata, output_name = value,
draws = ndraws, seed = seed, re.form = re_formula,
dpar = NULL,
columns_to = columns_to
)
}
linpred_rvars.brmsfit = function(
object, newdata, ...,
value = ".linpred", ndraws = NULL, seed = NULL, re_formula = NULL, dpar = NULL, columns_to = NULL
) {
pred_rvars_(
.f = rstantools::posterior_linpred, ...,
object = object, newdata = newdata, output_name = value,
ndraws = ndraws, seed = seed, re_formula = re_formula, dpar = dpar, columns_to = columns_to
)
}
|
require("RWeka")
m1 <- J48(Species ~ ., data = iris)
writeLines(rJava::.jstrVal(m1$classifier))
save(m1, file = "m1.rda")
load("m1.rda")
rJava::.jstrVal(m1$classifier)
m1 <- J48(Species ~ ., data = iris)
rJava::.jcache(m1$classifier)
save(m1, file = "m1.rda")
load("m1.rda")
writeLines(rJava::.jstrVal(m1$classifier))
unlink("m1.rda")
graphVisualizer <-
function(file, width = 400, height = 400,
title = substitute(file), ...)
{
visualizer <- .jnew("weka/gui/graphvisualizer/GraphVisualizer")
reader <- .jnew("java/io/FileReader", file)
.jcall(visualizer, "V", "readDOT",
.jcast(reader, "java/io/Reader"))
.jcall(visualizer, "V", "layoutGraph")
frame <- .jnew("javax/swing/JFrame",
paste("graphVisualizer:", title))
container <- .jcall(frame, "Ljava/awt/Container;", "getContentPane")
.jcall(container, "Ljava/awt/Component;", "add",
.jcast(visualizer, "java/awt/Component"))
.jcall(frame, "V", "setSize", as.integer(width), as.integer(height))
.jcall(frame, "V", "setVisible", TRUE)
}
c("-W", "weka.classifiers.trees.J48", "--", "-M", 30)
Weka_control(W = J48, "--", M = 30)
myAB <- make_Weka_classifier("weka/classifiers/meta/AdaBoostM1")
myAB(Species ~ ., data = iris,
control = c("-W", "weka.classifiers.trees.J48", "--", "-M", 30))
myAB(Species ~ ., data = iris,
control = Weka_control(W = J48, "--", M = 30))
AdaBoostM1(Species ~ ., data = iris,
control = Weka_control(W = list(J48, "--", M = 30)))
AdaBoostM1(Species ~ ., data = iris,
control = Weka_control(W = list(J48, M = 30)))
|
mergePosterior <- function(...){
chains <- list(...)
if( inherits(chains[[1]], what = c("ratematrix_multi_chain", "ratematrix_single_chain") ) ){
if( length( chains[[1]] ) == 1 ) stop( "Need two or more posterior distributions to merge." )
} else if( inherits(chains[[1]], what = "list") ){
if( inherits(chains[[1]][[1]], what = c("ratematrix_multi_chain", "ratematrix_single_chain") ) ){
if( length( chains[[1]] ) == 1 ) stop( "Need two or more posterior distributions to merge." )
class.post <- sapply(chains[[1]], function(x) inherits(x, what = c("ratematrix_multi_chain", "ratematrix_single_chain") ))
if( !all( class.post ) ) stop( "All input objects need to be posterior distributions." )
chains <- chains[[1]]
} else{
stop( "All input objects need to be posterior distributions." )
}
} else{
stop( "All input objects need to be posterior distributions." )
}
if( sum( sapply(chains, function(x) inherits(x, what=c("ratematrix_single_chain", "ratematrix_multi_chain")) ) ) == length(chains) ){
if( length( unique( sapply(chains, function(x) class(x)[1] ) ) ) > 1 ) stop("Posterior chains need to belong to the same model. \n")
if( length(chains) == 1 ){
if( inherits(chains[[1]], what=c("ratematrix_single_chain")) ){
p <- 1
} else{
p <- length( chains[[1]]$matrix )
regimes <- names( chains[[1]]$matrix )
}
}
if( length(chains) > 1 ){
if( inherits(chains[[1]], what=c("ratematrix_single_chain")) ){
p <- 1
} else{
p <- length( chains[[1]]$matrix )
regimes <- names( chains[[1]]$matrix )
}
}
} else{
stop("Arguments need to be output of 'readMCMC' function. Of class 'ratematrix_single_chain' or 'ratematrix_multi_chain'. \n")
}
mcmc.join <- list()
mcmc.join$root <- do.call(rbind, lapply(chains, function(x) x$root) )
if( p == 1 ){
mcmc.join$matrix <- do.call(c, lapply(chains, function(x) x$matrix) )
class( mcmc.join ) <- "ratematrix_single_chain"
} else{
mcmc.join$matrix <- lapply(1:p, function(y) do.call(c, lapply(chains, function(x) x$matrix[[y]]) ) )
names( mcmc.join$matrix ) <- regimes
class( mcmc.join ) <- "ratematrix_multi_chain"
}
return( mcmc.join )
}
|
amova.rda <- function(
x, x.data
)
{
message("Calculation of AMOVA for a balanced design")
rda.terms <- attributes(x$terms)$term.labels
if (length(rda.terms) > 2) {stop("Calculations only shown for maximum 2 levels")}
if (length(rda.terms) == 1) {
message("No higher hierarchical level")
anova.result <- vegan::anova.cca(x, by="terms", permutations=0)
print(anova.result)
Df.all <- c(anova.result$Df, sum(anova.result$Df))
Variance.all <- c(anova.result$Variance, sum(anova.result$Variance))
table1 <- data.frame(cbind(Df.all, Variance.all))
names(table1) <- c("Df", "Variance")
rownames(table1) <- c(rda.terms, "within.Samples", "Total")
table1$SumSq <- table1$Variance * (table1[3, "Df"])
table1$MeanSq <- table1$SumSq / table1$Df
message(paste("\n", "Sums-of-Squares are calculated by multiplying variance with (number of individuals - 1)"))
print(table1)
message("Mean population size:")
n1 <- mean(table(x.data[, rda.terms[1]]))
print(n1)
table2 <- table1[, c(1:2)]
names(table2) <- c("Covariance", "Percent")
table2[2, 1] <- table1[2, "MeanSq"]
table2[1, 1] <- (table1[1, "MeanSq"] - table2[2, 1]) / n1
table2[3, 1] <- sum(table2[1:2, 1])
table2[1, 2] <- 100* table2[1, 1] / table2[3, 1]
table2[2, 2] <- 100 * table2[2, 1] / table2[3, 1]
table2[3, 2] <- 100
print(table2)
}
if (length(rda.terms) == 2) {
message("Population level of '", rda.terms[2], "' nested within higher level of '", rda.terms[1], "'")
anova.result <- vegan::anova.cca(x, by="terms", permutations=0)
print(anova.result)
Df.all <- c(anova.result$Df, sum(anova.result$Df))
Variance.all <- c(anova.result$Variance, sum(anova.result$Variance))
table1 <- data.frame(cbind(Df.all, Variance.all))
names(table1) <- c("Df", "Variance")
rownames(table1) <- c(rda.terms, "within.Samples", "Total")
table1$SumSq <- table1$Variance * (table1[4, "Df"])
table1$MeanSq <- table1$SumSq / table1$Df
message(paste("\n", "Sums-of-Squares are calculated by multiplying variance with (number of individuals - 1)"))
message(paste("The (number of individuals - 1) is also the Df for the total Sum-of-Squares."))
print(table1)
message("Mean population size:")
n1 <- mean(table(x.data[, rda.terms[2]]))
print(n1)
message("Mean sizes of higher level:")
n2 <- mean(table(x.data[, rda.terms[1]]))
print(n2)
table2 <- table1[, c(1:2)]
names(table2) <- c("Covariance", "Percent")
table2[3, 1] <- table1[3, "MeanSq"]
table2[2, 1] <- (table1[2, "MeanSq"] - table2[3, 1]) / n1
table2[1, 1] <- (table1[1, "MeanSq"] - table2[3, 1] - n1*table2[2, 1]) / n2
table2[4, 1] <- sum(table2[1:3, 1])
table2[1, 2] <- 100* table2[1, 1] / table2[4, 1]
table2[2, 2] <- 100 * table2[2, 1] / table2[4, 1]
table2[3, 2] <- 100 * table2[3, 1] / table2[4, 1]
table2[4, 2] <- 100
message(paste("\n", "Calculation of covariance"))
print(table2)
PHI <- numeric(length=3)
names(PHI) <- c("Samples-Total",
"Samples-Pop",
"Pop-Total")
PHI[1] <- (table2[1, 1] + table2[2, 1]) / table2[4, 1]
PHI[2] <- table2[2, 1] / (table2[2, 1] + table2[3, 1])
PHI[3] <- table2[1, 1] / (table2[4, 1])
message(paste("\n", "Phi statistics"))
print(PHI)
}
}
|
putPlot <- function(pm, value, i, j){
pos <- get_pos(pm, i, j)
if (is.null(value)) {
pm$plots[[pos]] <- make_ggmatrix_plot_obj(wrap("blank", funcArgName = "ggally_blank"))
} else if (mode(value) == "character") {
if (value == "blank") {
pm$plots[[pos]] <- make_ggmatrix_plot_obj(wrap("blank", funcArgName = "ggally_blank"))
} else {
stop("character values (besides 'blank') are not allowed to be stored as plot values.")
}
} else {
pm$plots[[pos]] <- value
}
pm
}
getPlot <- function(pm, i, j){
if (FALSE) {
cat("i: ", i, " j: ", j, "\n")
}
pos <- get_pos(pm, i, j)
if (pos > length(pm$plots)) {
plotObj <- NULL
} else {
plotObj <- pm$plots[[pos]]
}
if (is.null(plotObj)) {
p <- ggally_blank()
} else {
if (ggplot2::is.ggplot(plotObj)) {
p <- plotObj
} else if (inherits(plotObj, "ggmatrix_plot_obj")) {
fn <- plotObj$fn
p <- fn(pm$data, plotObj$mapping)
} else if (inherits(plotObj, "legend_guide_box")) {
p <- plotObj
} else {
firstNote <- str_c("Position: i = ", i, ", j = ", j, "\nstr(plotObj):\n", sep = "")
strObj <- capture.output({
str(plotObj)
})
stop(str_c("unknown plot object type.\n", firstNote, strObj))
}
p <- add_gg_info(p, pm$gg)
}
p
}
get_pos <- function(pm, i, j) {
if (isTRUE(pm$byrow)) {
pos <- j + (pm$ncol * (i - 1))
} else {
pos <- i + (pm$nrow * (j - 1))
}
pos
}
get_pos_rev <- function(pm, pos) {
if (isTRUE(pm$byrow)) {
i <- ceiling(pos / pm$ncol)
j <- (pos - 1) %% pm$ncol + 1
} else {
i <- (pos - 1) %% pm$nrow + 1
j <- ceiling(pos / pm$nrow)
}
c(i, j)
}
check_i_j <- function(pm, i, j) {
if ( (length(i) > 1) || (mode(i) != "numeric")) {
stop("'i' may only be a single numeric value")
}
if ( (length(j) > 1) || (mode(j) != "numeric")) {
stop("'j' may only be a single numeric value")
}
if (i > pm$nrow || i < 1) {
stop("'i' may only be in the range from 1:", pm$nrow)
}
if (j > pm$ncol || j < 1) {
stop("'j' may only be in the range from 1:", pm$ncol)
}
invisible()
}
`[.ggmatrix` <- function(pm, i, j, ...) {
check_i_j(pm, i, j)
getPlot(pm, i, j)
}
`[<-.ggmatrix` <- function(pm, i, j, ..., value) {
check_i_j(pm, i, j)
putPlot(pm, value, i, j)
}
|
remlri <-
function(yty,Xty,Zty,XtX,ZtZ,XtZ,ndf,tau=1,imx=100,tol=10^-5,alg=c("FS","NR","EM")){
XtXi <- pinvsm(XtX)
XtXiZ <- XtXi%*%XtZ
ZtZX <- (-1)*crossprod(XtZ,XtXiZ)
diag(ZtZX) <- diag(ZtZX) + ZtZ
ZtyX <- Zty-crossprod(XtZ,XtXi)%*%Xty
nz <- length(Zty)
Deig <- eigen(ZtZX,symmetric=TRUE)
nze <- sum(Deig$val>Deig$val[1]*.Machine$double.eps)
Deig$values <- Deig$values[1:nze]
Deig$vectors <- Deig$vectors[,1:nze]
newval <- 1 /(Deig$val+1/tau)
Dmat <- Deig$vec%*%tcrossprod(diag(newval),Deig$vec)
Bmat <- XtXiZ%*%Dmat
alpha <- (XtXi+Bmat%*%t(XtXiZ))%*%Xty - Bmat%*%Zty
beta <- Dmat%*%ZtyX
sig <- (yty-t(c(Xty,Zty))%*%c(alpha,beta))/ndf
if(sig<=0) sig <- 10^-3
n2LLold <- sum(-log(newval)) + sum(log(tau)*nz) + ndf*log(sig)
alg <- alg[1]
vtol <- 1
iter <- 0
ival <- TRUE
if(alg=="FS"){
trval <- sum(newval)
gg <- (crossprod(beta)/((tau^2)*sig)) - ((nz/tau)-(trval/(tau^2)))
hh <- (nz/(tau^2)) - 2*(trval/(tau^3)) + sum(newval^2)/(tau^4)
while(ival) {
tau <- tau + as.numeric(gg/hh)
if(tau<=0) tau <- 10^-3
newval <- 1/(Deig$val+1/tau)
Dmat <- Deig$vec%*%tcrossprod(diag(newval),Deig$vec)
Bmat <- XtXiZ%*%Dmat
alpha <- (XtXi+Bmat%*%t(XtXiZ))%*%Xty - Bmat%*%Zty
beta <- Dmat%*%ZtyX
sig <- (yty-t(c(Xty,Zty))%*%c(alpha,beta))/ndf
if(sig<=0) sig <- 10^-3
n2LLnew <- sum(-log(newval)) + sum(log(tau)*nz) + ndf*log(sig)
vtol <- abs((n2LLold-n2LLnew)/n2LLold)
iter <- iter + 1L
if(vtol>tol && iter<imx){
n2LLold <- n2LLnew
trval <- sum(newval)
gg <- (crossprod(beta)/((tau^2)*sig)) - ((nz/tau)-(trval/(tau^2)))
hh <- (nz/(tau^2)) - 2*(trval/(tau^3)) + sum(newval^2)/(tau^4)
} else {
ival <- FALSE
}
}
} else if(alg=="NR"){
trval <- sum(newval)
gg <- (crossprod(beta)/((tau^2)*sig)) - ((nz/tau)-(trval/(tau^2)))
hh <- 2*(trval/(tau^3)) - (nz/(tau^2)) + sum(newval^2)/(tau^4)
hh <- hh + 2*crossprod(beta)/((tau^3)*sig) - 2*crossprod(beta,Dmat%*%beta)/((tau^4)*sig)
while(ival) {
tau <- tau + as.numeric(gg/hh)
if(tau<=0) tau <- 10^-3
newval <- 1/(Deig$val+1/tau)
Dmat <- Deig$vec%*%tcrossprod(diag(newval),Deig$vec)
Bmat <- XtXiZ%*%Dmat
alpha <- (XtXi+Bmat%*%t(XtXiZ))%*%Xty - Bmat%*%Zty
beta <- Dmat%*%ZtyX
sig <- (yty-t(c(Xty,Zty))%*%c(alpha,beta))/ndf
if(sig<=0) sig <- 10^-3
n2LLnew <- sum(-log(newval)) + sum(log(tau)*nz) + ndf*log(sig)
vtol <- abs((n2LLold-n2LLnew)/n2LLold)
iter <- iter + 1L
if(vtol>tol && iter<imx){
n2LLold <- n2LLnew
trval <- sum(newval)
gg <- (crossprod(beta)/((tau^2)*sig)) - ((nz/tau)-(trval/(tau^2)))
hh <- 2*(trval/(tau^3)) - (nz/(tau^2)) + sum(newval^2)/(tau^4)
hh <- hh + 2*crossprod(beta)/((tau^3)*sig) - 2*crossprod(beta,Dmat%*%beta)/((tau^4)*sig)
} else {
ival <- FALSE
}
}
} else {
while(ival) {
tau <- (mean(beta^2)/sig) + sum(newval)/nz
if(tau<=0) tau <- 10^-3
newval <- 1/(Deig$val+1/tau)
Dmat <- Deig$vec%*%tcrossprod(diag(newval),Deig$vec)
Bmat <- XtXiZ%*%Dmat
alpha <- (XtXi+Bmat%*%t(XtXiZ))%*%Xty - Bmat%*%Zty
beta <- Dmat%*%ZtyX
sig <- (yty-t(c(Xty,Zty))%*%c(alpha,beta))/ndf
if(sig<=0) sig <- 10^-3
n2LLnew <- sum(-log(newval)) + sum(log(tau)*nz) + ndf*log(sig)
vtol <- abs((n2LLold-n2LLnew)/n2LLold)
iter <- iter + 1L
if(vtol>tol && iter<imx){
n2LLold <- n2LLnew
} else {
ival <- FALSE
}
}
}
list(tau=as.numeric(tau),sig=as.numeric(sig),iter=iter,
cnvg=as.logical(ifelse(vtol>tol,FALSE,TRUE)),vtol=as.numeric(vtol),
alpha=alpha,beta=beta,logLik=(-0.5)*n2LLnew)
}
|
context("bulk_postcode_lookup")
test_that("bulk_postcode_lookup works as expected", {
skip_on_cran()
single_postcode <- c("PR3 0SG")
pc_list <- list(postcodes = c("PR3 0SG", "M45 6GN", "EX165BL"))
lookup_results <- bulk_postcode_lookup(pc_list)
expect_error(bulk_postcode_lookup(single_postcode))
expect_error(bulk_postcode_lookup(list()))
pc_list <- list(postcodes = 1:101)
expect_error(bulk_postcode_lookup(pc_list))
pc_list <- list(postcodes = 1:50, o = 1:51)
expect_error(bulk_postcode_lookup(pc_list))
expect_that(lookup_results, is_a("list"))
})
|
dmnorm <- function(x, mean=rep(0,d), varcov, log=FALSE)
{
d <- if(is.matrix(varcov)) ncol(varcov) else 1
if(d==1) return(dnorm(x, mean, sqrt(varcov), log=log))
x <- if (is.vector(x)) t(matrix(x)) else data.matrix(x)
if(ncol(x) != d) stop("mismatch of dimensions of 'x' and 'varcov'")
if(is.matrix(mean)) { if ((nrow(x) != nrow(mean)) || (ncol(mean) != d))
stop("mismatch of dimensions of 'x' and 'mean'") }
if(is.vector(mean)) mean <- outer(rep(1, nrow(x)), as.vector(matrix(mean,d)))
X <- t(x - mean)
conc <- pd.solve(varcov, log.det=TRUE)
Q <- colSums((conc %*% X)* X)
log.det <- attr(conc, "log.det")
logPDF <- as.vector(Q + d*logb(2*pi) + log.det)/(-2)
if(log) logPDF else exp(logPDF)
}
rmnorm <- function(n=1, mean=rep(0,d), varcov, sqrt=NULL)
{
sqrt.varcov <- if(is.null(sqrt)) chol(varcov) else sqrt
d <- if(is.matrix(sqrt.varcov)) ncol(sqrt.varcov) else 1
mean <- outer(rep(1,n), as.vector(matrix(mean,d)))
drop(mean + t(matrix(rnorm(n*d), d, n)) %*% sqrt.varcov)
}
pmnorm <- function(x, mean=rep(0, d), varcov, ...) {
d <- NCOL(varcov)
x <- if (is.vector(x)) matrix(x, 1, d) else data.matrix(x)
n <- nrow(x)
if(is.vector(mean)) mean <- outer(rep(1, n), as.vector(matrix(mean,d)))
if(d == 1) p <- as.vector(pnorm(x, mean, sqrt(varcov))) else {
pv <- numeric(n)
for (j in 1:n) p <- pv[j] <- if(d == 2)
biv.nt.prob(Inf, lower=rep(-Inf, 2), upper=x[j,], mean[j,], varcov)
else if(d == 3)
ptriv.nt(Inf, x=x[j,], mean[j,], varcov)
else
sadmvn(lower=rep(-Inf, d), upper=x[j,], mean[j,], varcov, ...)
if(n > 1) p <- pv
}
return(p)
}
sadmvn <- function(lower, upper, mean, varcov,
maxpts=2000*d, abseps=1e-6, releps=0)
{
if(any(lower > upper)) stop("lower>upper integration limits")
if(any(lower == upper)) return(0)
d <- as.integer(if(is.matrix(varcov)) ncol(varcov) else 1)
varcov <- matrix(varcov, d, d)
sd <- sqrt(diag(varcov))
rho <- cov2cor(varcov)
lower <- as.double((lower-mean)/sd)
upper <- as.double((upper-mean)/sd)
if(d == 1) return(pnorm(upper) - pnorm(lower))
if(d == 2) return(biv.nt.prob(Inf, lower, upper, rep(0,2), rho))
infin <- rep(2,d)
infin <- replace(infin, (upper == Inf) & (lower > -Inf), 1)
infin <- replace(infin, (upper < Inf) & (lower == -Inf), 0)
infin <- replace(infin, (upper == Inf) & (lower == -Inf), -1)
infin <- as.integer(infin)
if(any(infin == -1)) {
if(all(infin == -1)) return(1)
k <- which(infin != -1)
d <- length(k)
lower <- lower[k]
upper <- upper[k]
if(d == 1) return(pnorm(upper) - pnorm(lower))
rho <- rho[k, k]
infin <- infin[k]
if(d == 2) return(biv.nt.prob(Inf, lower, upper, rep(0,2), rho))
}
lower <- replace(lower, lower == -Inf, 0)
upper <- replace(upper, upper == Inf, 0)
correl <- as.double(rho[upper.tri(rho, diag=FALSE)])
maxpts <- as.integer(maxpts)
abseps <- as.double(abseps)
releps <- as.double(releps)
error <- as.double(0)
value <- as.double(0)
inform <- as.integer(0)
result <- .Fortran("sadmvn", d, lower, upper, infin, correl, maxpts,
abseps, releps, error, value, inform, PACKAGE="mnormt")
prob <- result[[10]]
attr(prob,"error") <- result[[9]]
attr(prob,"status") <- switch(1 + result[[11]],
"normal completion", "accuracy non achieved", "oversize")
return(prob)
}
dmt <- function (x, mean=rep(0,d), S, df = Inf, log = FALSE)
{
if (df == Inf) return(dmnorm(x, mean, S, log = log))
d <- if(is.matrix(S)) ncol(S) else 1
if (d==1) {
y <- dt((x-mean)/sqrt(S), df=df, log=log)
if(log) y <- (y - 0.5*logb(S)) else y <- y/sqrt(S)
return(y)
}
x <- if (is.vector(x)) t(matrix(x)) else data.matrix(x)
if (ncol(x) != d) stop("mismatch of dimensions of 'x' and 'varcov'")
if (is.matrix(mean)) {if ((nrow(x) != nrow(mean)) || (ncol(mean) != d))
stop("mismatch of dimensions of 'x' and 'mean'") }
if(is.vector(mean)) mean <- outer(rep(1, nrow(x)), as.vector(matrix(mean,d)))
X <- t(x - mean)
S.inv <- pd.solve(S, log.det=TRUE)
Q <- colSums((S.inv %*% X) * X)
logDet <- attr(S.inv, "log.det")
logPDF <- (lgamma((df + d)/2) - 0.5 * (d * logb(pi * df) + logDet)
- lgamma(df/2) - 0.5 * (df + d) * logb(1 + Q/df))
if(log) logPDF else exp(logPDF)
}
rmt <- function(n=1, mean=rep(0,d), S, df=Inf, sqrt=NULL)
{
sqrt.S <- if(is.null(sqrt)) chol(S) else sqrt
d <- if(is.matrix(sqrt.S)) ncol(sqrt.S) else 1
v <- if(df==Inf) 1 else rchisq(n, df)/df
z <- rmnorm(n, rep(0, d), sqrt=sqrt.S)
mean <- outer(rep(1, n), as.vector(matrix(mean, d)))
drop(mean + z/sqrt(v))
}
pmt <- function(x, mean=rep(0, d), S, df=Inf, ...){
d <- NCOL(S)
x <- if(is.vector(x)) matrix(x, 1, d) else data.matrix(x)
n <- nrow(x)
if(is.vector(mean)) mean <- outer(rep(1, n), as.vector(matrix(mean,d)))
if(d == 1) p <- as.vector(pt((x-mean)/sqrt(S), df=df)) else {
pv <- numeric(n)
for (j in 1:n) p <- pv[j] <- if(d == 2)
biv.nt.prob(df, lower=rep(-Inf, 2), upper=x[j,], mean[j,], S)
else if(d == 3)
ptriv.nt(df, x=x[j,], mean=mean[j,], S)
else
sadmvt(df, lower=rep(-Inf, d), upper=x[j,], mean[j,], S, ...)
if(n > 1) p <- pv
}
return(p)
}
sadmvt <- function(df, lower, upper, mean, S,
maxpts=2000*d, abseps=1e-6, releps=0)
{
if(df == Inf) return(sadmvn(lower, upper, mean, S, maxpts, abseps, releps))
if(any(lower > upper)) stop("lower>upper integration limits")
if(any(lower == upper)) return(0)
if(round(df) != df) warning("non integer df is rounded to integer")
df <- as.integer(round(df))
d <- as.integer(if(is.matrix(S)) ncol(S) else 1)
S <- matrix(S, d, d)
sd <- sqrt(diag(S))
rho <- cov2cor(S)
lower <- as.double((lower-mean)/sd)
upper <- as.double((upper-mean)/sd)
if(d == 1) return(pt(upper, df) - pt(lower, df))
if(d == 2) return(biv.nt.prob(df, lower, upper, rep(0,2), rho))
infin <- rep(2,d)
infin <- replace(infin, (upper == Inf) & (lower > -Inf), 1)
infin <- replace(infin, (upper < Inf) & (lower == -Inf), 0)
infin <- replace(infin, (upper == Inf) & (lower == -Inf), -1)
infin <- as.integer(infin)
if(any(infin == -1)) {
if(all(infin == -1)) return(1)
k <- which(infin != -1)
d <- length(k)
lower <- lower[k]
upper <- upper[k]
if(d == 1) return(pt(upper, df=df) - pt(lower, df=df))
rho <- rho[k, k]
infin <- infin[k]
if(d == 2) return(biv.nt.prob(df, lower, upper, rep(0,2), rho))
}
lower <- replace(lower, lower == -Inf, 0)
upper <- replace(upper, upper == Inf, 0)
correl <- rho[upper.tri(rho, diag=FALSE)]
maxpts <- as.integer(maxpts)
abseps <- as.double(abseps)
releps <- as.double(releps)
error <- as.double(0)
value <- as.double(0)
inform <- as.integer(0)
result <- .Fortran("sadmvt", d, df, lower, upper, infin, correl, maxpts,
abseps, releps, error, value, inform, PACKAGE="mnormt")
prob <- result[[11]]
attr(prob,"error") <- result[[10]]
attr(prob,"status") <- switch(1+result[[12]],
"normal completion", "accuracy non achieved", "oversize")
return(prob)
}
biv.nt.prob <- function(df, lower, upper, mean, S){
if(any(dim(S) != c(2,2))) stop("dimensions mismatch")
if(length(mean) != 2) stop("dimensions mismatch")
if(round(df) != df) warning("non integer df is rounded to integer")
nu <- if(df < Inf) as.integer(round(df)) else 0
sd <- sqrt(diag(S))
rho <- cov2cor(S)[1,2]
lower <- as.double((lower-mean)/sd)
upper <- as.double((upper-mean)/sd)
if(any(lower > upper)) stop("lower>upper integration limits")
if(any(lower == upper)) return(0)
infin <- c(2,2)
infin <- replace(infin, (upper == Inf) & (lower > -Inf), 1)
infin <- replace(infin, (upper < Inf) & (lower == -Inf), 0)
infin <- replace(infin, (upper == Inf) & (lower == -Inf), -1)
infin <- as.integer(infin)
if(any(infin == -1)) {
if(all(infin == -1)) return(1)
k <- which(infin != -1)
return(pt(upper[k], df=df) - pt(lower[k], df=df))
}
lower <- replace(lower, lower == -Inf, 0)
upper <- replace(upper, upper == Inf, 0)
rho <- as.double(rho)
prob <- as.double(0)
a <- .Fortran("smvbvt", prob, nu, lower, upper, infin, rho, PACKAGE="mnormt")
return(a[[1]])
}
ptriv.nt <- function(df, x, mean, S){
if(any(dim(S) != c(3,3))) stop("dimensions mismatch")
if(length(mean) != 3) stop("dimensions mismatch")
if(round(df) != df) warning("non integer df is rounded to integer")
nu <- if(df < Inf) as.integer(round(df)) else 0
if(any(x == -Inf)) return(0)
ok <- !is.infinite(x)
p <- if(sum(ok) == 1)
pt(df, (x[ok]-mean[ok])/sqrt(S[ok,ok]))
else if(sum(ok) == 2)
biv.nt.prob(nu, rep(2 -Inf), x[ok], mean[ok], S[ok,ok])
else {
sd <- sqrt(diag(S))
h <- as.double((x-mean)/sd)
cor <- cov2cor(S)
rho <- as.double(c(cor[2,1], cor[3,1], cor[2,3]))
prob <- as.double(0)
epsi <- as.double(1e-14)
a <- .Fortran("stvtl", prob, nu, h, rho, epsi, PACKAGE="mnormt")
p <- a[[1]]
}
return(p)
}
pd.solve <- function(x, silent=FALSE, log.det=FALSE)
{
if(is.null(x)) return(NULL)
if(any(is.na(x)))
{if(silent) return (NULL) else stop("NA's in x") }
if(length(x) == 1) x <- as.matrix(x)
if(!(inherits(x, "matrix")))
{if(silent) return(NULL) else stop("x is not a matrix")}
if(max(abs(x - t(x))) > .Machine$double.eps)
{if(silent) return (NULL) else stop("x appears to be not symmetric") }
x <- (x + t(x))/2
u <- try(chol(x, pivot = FALSE), silent = silent)
if(inherits(u, "try-error")) {
if(silent) return(NULL) else
stop("x appears to be not positive definite") }
inv <- chol2inv(u)
if(log.det) attr(inv, "log.det") <- 2 * sum(log(diag(u)))
dimnames(inv) <- rev(dimnames(x))
return(inv)
}
.onLoad <- function(library, pkg)
{
library.dynam("mnormt", pkg, library)
invisible()
}
|
rain <- function(n) rainbow(n, v=0.8)
excl <- function(n) c("
predict.LPS <- function(
object,
newdata,
type = c("class", "probability", "score"),
method = c("Wright", "Radmacher", "exact"),
threshold = 0.9,
na.rm = TRUE,
subset = NULL,
col.lines = "
col.classes = c("
plot = FALSE,
side = NULL,
cex.col = NA,
cex.row = NA,
mai.left = NA,
mai.bottom = NA,
mai.right = 1,
mai.top = 0.1,
side.height = 1,
side.col = NULL,
col.heatmap = heat(),
zlim = "0 centered",
norm = c("rows", "columns", "none"),
norm.robust = FALSE,
customLayout = FALSE,
getLayout = FALSE,
...
) {
type <- match.arg(type)
method <- match.arg(method)
norm <- match.arg(norm)
if(isTRUE(plot) && !isTRUE(customLayout)) {
heights <- 3
if(!is.null(side)) heights <- c(lcm(ncol(side)*side.height), heights)
if(type == "class") { heights <- c(lcm(2*side.height), heights)
} else { heights <- c(1, heights)
}
widths <- 1L
if(is.null(side)) { mat <- matrix(c(2,1), ncol=1)
} else { mat <- matrix(c(3,1,2), ncol=1)
}
} else {
mat <- as.integer(NA)
heights <- as.integer(NA)
widths <- as.integer(NA)
}
if(isTRUE(getLayout)) {
return(list(mat=mat, heights=heights, widths=widths))
}
if(is.vector(newdata)) {
score <- newdata
if(!is.null(subset)) score <- score[ subset ]
} else {
expr <- as.matrix(newdata[, names(object$coeff) ])
if(!is.null(subset)) expr <- expr[ subset , , drop=FALSE ]
score <- apply(t(expr) * object$coeff, 2, sum, na.rm=na.rm)
}
if(type == "score") {
out <- score
} else {
if(method == "Radmacher") {
P1 <- as.double(abs(score - object$means[1]) < abs(score - object$means[2]))
P2 <- 1 - P1
} else if(method == "Wright") {
D1 <- dnorm(score, mean=object$means[1], sd=object$sd[1])
D2 <- dnorm(score, mean=object$means[2], sd=object$sd[2])
P1 <- D1 / (D1 + D2)
P2 <- 1 - P1
} else if(method == "exact") {
if(object$means[1] < object$means[2]) { gLow <- 1L; gHigh <- 2L
} else { gLow <- 2L; gHigh <- 1L
}
D <- list(double(length(score)), double(length(score)))
for(i in 1:length(score)) {
D[[ gLow ]][i] <- sum(object$scores[[ gLow ]] >= score[i]) / length(object$scores[[ gLow ]])
D[[ gHigh ]][i] <- sum(object$scores[[ gHigh ]] <= score[i]) / length(object$scores[[ gHigh ]])
}
P1 <- D[[1]] / (D[[1]] + D[[2]])
P2 <- 1 - P1
}
}
if(type == "probability") {
out <- cbind(P1, P2)
colnames(out) <- object$classes
rownames(out) <- names(score)
} else if(type == "class") {
out <- rep(as.character(NA), length(P1))
names(out) <- names(score)
out[ P1 > threshold ] <- object$classes[1]
out[ P2 > threshold ] <- object$classes[2]
out[ P1 > threshold & P2 > threshold ] <- paste(object$classes, collapse=" & ")
}
if(isTRUE(plot)) {
if(!isTRUE(customLayout)) {
layout(mat=mat, heights=heights)
on.exit(layout(1))
}
expr <- expr[ order(score) , order(object$t) ]
out <- c(
list(out),
heat.map(
expr = expr,
customLayout = TRUE,
cex.col = cex.col,
cex.row = cex.row,
mai.left = mai.left,
mai.bottom = mai.bottom,
mai.right = mai.right,
mai.top = 0.1,
side = side,
side.height = side.height,
side.col = side.col,
col.heatmap = col.heatmap,
zlim = zlim,
norm = norm,
norm.robust = norm.robust
)
)
axis(side=4, at=(1:ncol(expr) - 1L) / (ncol(expr) - 1L), labels=sprintf("%+0.3f", object$t[ colnames(expr) ]), las=2, cex.axis=out$cex.row, tick=FALSE)
if(type != "score") {
Y1 <- which(head(P1[ order(score) ] > threshold, -1) != tail(P1[ order(score) ] > threshold, -1))
Y2 <- which(head(P2[ order(score) ] > threshold, -1) != tail(P2[ order(score) ] > threshold, -1))
abline(v=c(Y1-0.5, Y2-0.5)/(nrow(expr) - 1L), lwd=2, col=col.lines)
box()
}
x <- tail(which(sort(object$coeff) <= 0), 1)-0.5
abline(h=x/(ncol(expr) - 1L), lwd=2, col=col.lines)
par(mai=c(0, out$mai.left, mai.top, mai.right))
if(type == "score") {
plot(x=1:nrow(expr), xlim=c(0.5, nrow(expr)+0.5), y=score[ order(score) ], type="o", pch=16, cex=0.5, xaxs="i", yaxs="i", xpd=NA, xaxt="n", yaxt="n", xlab="", ylab="Score")
} else if(type == "probability") {
plot(x=1:nrow(expr), xlim=c(0.5, nrow(expr)+0.5), ylim=0:1, y=P1[ order(score) ], type="o", pch=16, cex=0.5, xaxs="i", yaxs="i", xpd=NA, xaxt="n", xlab="", ylab="Probability", col=col.classes[1])
par(new=TRUE)
plot(x=1:nrow(expr), xlim=c(0.5, nrow(expr)+0.5), ylim=0:1, y=P2[ order(score) ], type="o", pch=16, cex=0.5, xaxs="i", yaxs="i", xpd=NA, xaxt="n", yaxt="n", xlab="", ylab="", bty="n", col=col.classes[2])
abline(h=threshold, lty="dotted")
legend(x="right", inset=0.01, bg="
} else if(type == "class") {
plot(x=NA, y=NA, xlim=c(0.5, nrow(expr)+0.5), ylim=0:1, xaxs="i", yaxs="i", xaxt="n", yaxt="n", xlab="", ylab="Class")
k <- factor(out[[1]][ order(score) ])
levels(k) <- col.classes
rect(xleft=(1:nrow(expr))-0.5, xright=(1:nrow(expr))+0.5, ybottom=0, ytop=1, col=as.character(k))
text(y=0.5, labels=object$classes[ which.min(object$means) ], adj=0, col="white", font=2, x=1)
text(y=0.5, labels=object$classes[ which.max(object$means) ], adj=1, col="white", font=2, x=nrow(expr))
}
}
return(out)
}
|
CMAR_C <- function(train, test, min_confidence=0.5, min_support=0.01,
databaseCoverage=4){
alg <- RKEEL::R6_CMAR_C$new()
alg$setParameters(train, test, min_confidence, min_support, databaseCoverage)
return (alg)
}
R6_CMAR_C <- R6::R6Class("R6_CMAR_C",
inherit = AssociativeClassificationAlgorithm,
public = list(
min_confidence = 0.5,
min_support = 0.01,
databaseCoverage = 4,
setParameters = function(train, test, min_confidence=0.5, min_support=0.01,
databaseCoverage=4){
super$setParameters(train, test)
stopText <- ""
if((hasMissingValues(train)) || (hasMissingValues(test))){
stopText <- paste0(stopText, "Dataset has missing values and the algorithm does not accept it.\n")
}
if((hasContinuousData(train)) || (hasContinuousData(test))){
stopText <- paste0(stopText, "Dataset has continuous data and the algorithm does not accept it.\n")
}
if(stopText != ""){
stop(stopText)
}
self$min_confidence <- min_confidence
self$min_support <- min_support
self$databaseCoverage <- databaseCoverage
}
),
private = list(
jarName = "Clas-CMAR.jar",
algorithmName = "CMAR-C",
algorithmString = "Accurate and Efficient Classification Based on Multiple Class Association Rules (CMAR)",
getParametersText = function(){
text <- ""
text <- paste0(text, "Minimum Confidence = ", self$min_confidence, "\n")
text <- paste0(text, "Minimum Support = ", self$min_support, "\n")
text <- paste0(text, "Database Coverage Threshold (delta) = ", self$databaseCoverage, "\n")
return(text)
}
)
)
|
library(icd)
library(crayon)
if (!exists("e", mode = "environment") ||
length(ls(envir = e)) == 0) {
d2_dir <- "/tmp/d3"
e <- new.env()
nms <- lapply(list.files(d2_dir, full.names = TRUE), load, envir = e)
nms <- unlist(nms)
}
for (n in nms) {
message(blue("Working on "), yellow(n))
xo <- get(x = n, envir = as.environment("package:icd"))
xe <- get(x = n, envir = e)
if (identical(xo, xe)) {
message(green("Identical"))
next
}
print(testthat::compare(xo, xe))
}
|
tam_mml_calc_prob_R <- function(iIndex, A, AXsi, B, xsi, theta,
nnodes, maxK, recalc=TRUE, avoid_outer=FALSE )
{
D <- ncol(theta)
if(recalc){
LI <- length(iIndex)
LXsi <- dim(A)[3]
AXsi.tmp <- array( 0, dim=c( LI, maxK, nnodes ) )
for (kk in 1:maxK){
A_kk <- matrix( A[ iIndex, kk, ], nrow=LI, ncol=LXsi )
AXsi.tmp[, kk, 1:nnodes ] <- A_kk %*% xsi
}
AXsi[iIndex,] <- AXsi.tmp[,,1]
} else {
AXsi.tmp <- array( AXsi[ iIndex, ], dim=c( length(iIndex), maxK, nnodes ) )
}
dim_Btheta <- c(length(iIndex), maxK, nnodes)
Btheta <- array(0, dim=dim_Btheta )
for( dd in 1:D ){
B_dd <- B[iIndex,,dd,drop=FALSE]
theta_dd <- theta[,dd]
if (! avoid_outer){
Btheta_add <- array(B_dd %o% theta_dd, dim=dim(Btheta))
} else {
Btheta_add <- tam_rcpp_tam_mml_calc_prob_R_outer_Btheta( Btheta=Btheta,
B_dd=B_dd, theta_dd=theta_dd, dim_Btheta=dim_Btheta )
Btheta_add <- array(Btheta_add, dim=dim_Btheta)
}
Btheta <- Btheta + Btheta_add
}
rr0 <- Btheta + AXsi.tmp
dim_rr <- dim(rr0)
rr <- tam_rcpp_calc_prob_subtract_max_exp( rr0=rr0, dim_rr=dim_rr )
rprobs <- tam_rcpp_tam_mml_calc_prob_R_normalize_rprobs( rr=rr, dim_rr=dim_rr)
rprobs <- array(rprobs, dim=dim_rr)
res <- list("rprobs"=rprobs, "AXsi"=AXsi)
return(res)
}
|
context("Replicate")
test_that("length of results are correct", {
a <- rlply(4, NULL)
b <- rlply(4, 1)
expect_equal(length(a), 4)
expect_equal(length(b), 4)
})
test_that("name of id column is set", {
df <- rdply(4, function() c(a=1), .id='index')
expect_equal(names(df), c('index', 'a'))
})
|
labels <- function(object, ...) UseMethod("labels")
labels.default <- function(object, ...)
{
if(length(d <- dim(object))) {
nt <- dimnames(object)
if(is.null(nt)) nt <- vector("list", length(d))
for(i in seq_along(d))
if(!length(nt[[i]])) nt[[i]] <- as.character(seq_len(d[i]))
} else {
nt <- names(object)
if(!length(nt)) nt <- as.character(seq_along(object))
}
nt
}
|
test_that("checkData", {
expect_error(
makeClassifTask(data = binaryclass.df, target = "foo"),
"doesn't contain target var: foo"
)
df = multiclass.df
df[1, multiclass.target] = NA
expect_error(makeClassifTask(data = df, target = multiclass.target), "missing values")
df = regr.df
df[1, regr.target] = NaN
expect_error(makeRegrTask(data = df, target = regr.target), "missing values")
df = regr.df
df[1, regr.target] = Inf
expect_error(makeRegrTask(data = df, target = regr.target), "be finite")
df = regr.df
df[1, getTaskFeatureNames(regr.task)[1]] = Inf
expect_error(makeRegrTask(data = df, target = regr.target), "infinite")
df = regr.df
df[1, getTaskFeatureNames(regr.task)[1]] = NaN
expect_error(makeRegrTask(data = df, target = regr.target), "contains NaN")
df = binaryclass.df
df[, binaryclass.target] = as.character(df[, binaryclass.target])
task = makeClassifTask(data = df, target = binaryclass.target)
expect_true(is.factor(getTaskTargets(task)))
df = binaryclass.df
df[, binaryclass.target] = as.logical(as.integer(binaryclass.df[, binaryclass.target]) - 1)
task = makeClassifTask(data = df, target = binaryclass.target)
expect_true(is.factor(getTaskTargets(task)))
df = regr.df
df[, regr.target] = as.integer(regr.df[, regr.target])
task = makeRegrTask(data = df, target = regr.target)
expect_true(is.numeric(getTaskTargets(task)))
df = multiclass.df
df[, 1] = as.logical(df[, 1])
colnames(df)[1] = "aaa"
expect_error(makeClassifTask(data = df, target = multiclass.target), "Unsupported feature type")
expect_equal(nrow(getTaskData(costiris.task)), nrow(getTaskCosts(costiris.task)))
})
test_that("changeData . getTaskData is a noop on builtin tasks", {
pkgdata = data(package = "mlr")$results[, "Item"]
tasknames = grep("\\.task$", pkgdata, value = TRUE)
for (task in tasknames) {
taskdata = get(task)
changeddata = changeData(taskdata, getTaskData(taskdata, functionals.as = "matrix"))
taskdata$env = NULL
changeddata$env = NULL
expect_equal(taskdata, changeddata)
}
})
|
plot.MFAmix <- function(x, axes = c(1, 2), choice = "ind", label=TRUE, coloring.var = "not", coloring.ind=NULL, nb.partial.axes=3,
col.ind=NULL, col.groups=NULL, partial = NULL, lim.cos2.plot = 0, lim.contrib.plot=0, xlim = NULL, ylim = NULL,
cex = 1, main = NULL, leg=TRUE,posleg="topleft",cex.leg=0.8,
col.groups.sup=NULL,posleg.sup="topright",nb.paxes.sup=3,...)
{
cl<-match.call()
if (!inherits(x, "MFAmix"))
stop("use only with \"MFAmix\" objects")
n <- nrow(x$ind$coord)
if (is.null(x$sqload.sup)) sup <- FALSE else sup <- TRUE
if (!(choice %in% c("ind", "sqload", "levels", "cor", "axes", "groups")))
stop("\"choice\" must be either \"ind\",\"sqload\",\"cor\", \"levels\",\"axes\" or \"groups\"",call.=FALSE)
if ((choice=="levels") & is.null(x$levels) & is.null(x$levels.sup))
stop("\"choice=levels\" is not possible with pure quantitative data",call. = FALSE)
if ((choice=="cor") & is.null(x$quanti) & is.null(x$quanti.sup))
stop("\"choice=cor\" is not possible with pure qualitative data",call. = FALSE)
if (!is.logical(leg))
stop("argument \"leg\" must be TRUE or FALSE",call. = FALSE)
if (lim.cos2.plot != 0 & lim.contrib.plot!=0)
stop("use either \"lim.cos2.plot\" OR \"lim.contrib.plot\"",call. = FALSE)
if (!is.null(partial))
if (!is.character(partial) | length(which(rownames(x$ind$coord) %in% partial))==0)
stop("invalid values in \"partial\"",call. = FALSE)
if (!is.null(coloring.ind))
{
if (choice!="ind")
warning("use \"coloring.ind\" only if choice=\"ind\"")
if (!is.null(partial))
warning("use \"coloring.ind\" only if partial=NULL")
}
if (!is.null(coloring.ind))
{
if (!is.factor(coloring.ind) | length(coloring.ind)!=n)
{
warning("\"coloring.ind\" must be either NULL or a qualitative variable of class factor. Its length must be equal to the number of individuals")
coloring.ind=NULL
}
}
if (coloring.var!="groups" & coloring.var!="type" & coloring.var!="not")
stop("'coloring.var' must be one of the following: 'not', 'type', 'groups'",call. = FALSE)
if (coloring.var=="type")
if (choice=="ind" | choice=="cor" | choice=="levels"| choice=="axes")
{
warning("coloring.var=\"type\" is not used if choice=\"ind\", \"cor\",\"levels\" or \"axes\"",call. = FALSE)
coloring.var <- "not"
}
if (coloring.var=="groups")
if (choice=="ind") {
warning("\"coloring.var\" is not used if choice=\"ind\"")
coloring.var <- "not"
}
eig.axes <- x$eig[axes,1]
dim1 <- axes[1]
dim2 <- axes[2]
lab.x <- paste("Dim ", dim1, " (", signif(x$eig[axes[1],2], 4), " %)", sep = "")
lab.y <- paste("Dim ",dim2, " (", signif(x$eig[axes[2],2], 4), " %)", sep = "")
ngroup <- nrow(x$groups$contrib)
name.groups <- names(x$partial.axes)
name.groups.sup <- names(x$partial.axes.sup)
if (sup) ngroupsup <- nrow(x$group.sup)
if (is.null(col.groups))
col.groups <- 2:(ngroup+1) else
if (length(col.groups)!=ngroup)
{
warning("invalid length of \"col.groups\"")
col.groups <- 2:(ngroup+1)
}
if (sup)
if (is.null(col.groups.sup))
col.groups.sup <- (ngroup+2):(ngroup+ngroupsup+1) else
if (length(col.groups.sup)!=ngroupsup)
{
warning("invalid length of \"col.groups.sup\"")
col.groups.sup <- (ngroup+2):(ngroup+ngroupsup+1)
}
p1 <- x$global.pca$rec$p1
p <- x$global.pca$rec$p
p2<-x$global.pca$rec$p2
m <- ncol(x$global.pca$rec$W)-p1
if (sup)
{
p.sup <- x$rec.sup$p
p1.sup <- x$rec.sup$p1
p2.sup <- x$rec.sup$p2
}
if (choice == "axes")
{
if (is.null(main)) main <- "Partial axes"
if (is.null(xlim)) xlim <- c(-1.1, 1.1)
if (is.null(ylim)) ylim <- c(-1.1, 1.1)
graphics::plot(0, 0, xlab = lab.x, ylab = lab.y, xlim = xlim, ylim = ylim, col = "white", asp = 1,
cex = cex, main = main,...)
x.cercle <- seq(-1, 1, by = 0.01)
y.cercle <- sqrt(1 - x.cercle^2)
graphics::lines(x.cercle, y = y.cercle)
graphics::lines(x.cercle, y = -y.cercle)
graphics::abline(v = 0, lty = 2, cex = cex)
graphics::abline(h = 0, lty = 2, cex = cex)
coord.paxes <- NULL
col.paxes <- NULL
for (i in 1:ngroup)
{
nmax <- min(nrow(x$partial.axes[[i]]),nb.partial.axes)
coord.paxes <- rbind(coord.paxes, x$partial.axes[[i]][1:nmax,c(dim1,dim2)])
col.paxes <- c(col.paxes,rep(col.groups[i],nmax))
}
if (coloring.var != "groups") col.paxes <- rep("black",nrow(coord.paxes))
for (v in 1:nrow(coord.paxes))
{
graphics::arrows(0, 0, coord.paxes[v, 1], coord.paxes[v, 2], length = 0.1, angle = 15, code = 2, col = col.paxes[v], cex = cex)
if (abs(coord.paxes[v, 1]) > abs(coord.paxes[v, 2])) {
if (coord.paxes[v, 1] >= 0)
pos <- 4
else pos <- 2
}
else {
if (coord.paxes[v, 2] >= 0)
pos <- 3
else pos <- 1
}
graphics::text(coord.paxes[v, 1], y = coord.paxes[v, 2], labels = rownames(coord.paxes)[v],
pos = pos, col = col.paxes[v], cex = cex,...)
}
if ((coloring.var == "groups") & (leg==TRUE))
graphics::legend((posleg), legend = name.groups, text.col = col.groups, cex = cex.leg)
if (sup)
{
coord.paxes <- NULL
col.paxes <- NULL
for (i in 1:ngroupsup)
{
nmax <- min(nrow(x$partial.axes.sup[[i]]),nb.paxes.sup)
coord.paxes <- rbind(coord.paxes, x$partial.axes.sup[[i]][1:nmax,c(dim1,dim2)])
col.paxes <- c(col.paxes,rep(col.groups.sup[i],nmax))
}
if (coloring.var != "groups") col.paxes <- rep("black",nrow(coord.paxes))
for (v in 1:nrow(coord.paxes))
{
graphics::arrows(0, 0, coord.paxes[v, 1], coord.paxes[v, 2], length = 0.1, angle = 15, lty=5, code = 2, col = col.paxes[v], cex = cex)
if (abs(coord.paxes[v, 1]) > abs(coord.paxes[v, 2])) {
if (coord.paxes[v, 1] >= 0)
pos <- 4
else pos <- 2
}
else {
if (coord.paxes[v, 2] >= 0)
pos <- 3
else pos <- 1
}
graphics::text(coord.paxes[v, 1], y = coord.paxes[v, 2], labels = rownames(coord.paxes)[v],
pos = pos, col = col.paxes[v], cex = cex,...)
}
if ((coloring.var == "groups") & (leg==TRUE))
graphics::legend((posleg.sup), legend = name.groups.sup, text.col = col.groups.sup, cex = cex.leg)
}
}
if (choice == "groups")
{
if (is.null(main)) main <- "Groups contributions"
coord.groups <- x$groups$contrib[, axes, drop = FALSE]
xmax <- max(coord.groups[,1],x$groups.sup[,dim1], xlim)
xlim <- c(0, xmax * 1.2)
ymax <- max(coord.groups[,2],x$groups.sup[,dim1],ylim)
ylim <- c(0, ymax * 1.2)
if (coloring.var != "groups")
{
col.groups = rep("darkred", nrow(coord.groups))
if (sup) col.groups.sup <- rep("blue", ngroupsup)
}
graphics::plot(coord.groups, xlab = lab.x, ylab = lab.y, xlim = xlim, ylim = ylim, pch = 17, col = col.groups,
cex = cex, main = main, cex.main = cex * 1.2, asp = 1,...)
graphics::abline(v = 0, lty = 2,cex=cex)
graphics::abline(h = 0, lty = 2,cex=cex)
if (label)
graphics::text(coord.groups[, 1], y = coord.groups[, 2], labels = rownames(coord.groups),
pos = 3, col = col.groups, cex = cex)
if (sup)
{
graphics::points(x$group.sup[,axes,drop=FALSE], xlab = lab.x, ylab = lab.y, xlim = xlim, ylim = ylim, pch = 2, col = col.groups.sup,
cex = cex, main= main, cex.main = cex * 1.2, asp = 1,...)
if (label)
graphics::text(x=x$group.sup[,dim1], y=x$group.sup[,dim2], labels = rownames(x$group.sup),
pos = 3, col = col.groups.sup, cex = cex,...)
}
}
if (choice=="sqload")
{
if (is.null(main)) main <- "Squared loadings"
xmax <- max(x$sqload[, dim1],x$sqload.sup[, dim1],xlim)
xlim <- c(-0.1, xmax * 1.2)
ymax <- max(x$sqload[, dim2],x$sqload.sup[, dim2],ylim)
ylim <- c(-0.1, ymax * 1.2)
graphics::plot(0, 0, type="n",xlab = lab.x, ylab = lab.y, xlim = xlim, ylim = ylim,cex=cex,main=main,...)
graphics::abline(v = 0, lty = 2,cex=cex)
graphics::abline(h = 0, lty = 2,cex=cex)
col.var <- rep(1,p)
if (coloring.var == "groups")
{
for (i in 1:ngroup)
col.var[which(x$index.group==i)] <- col.groups[i]
}
if (coloring.var=="type")
{
if (p1 >0) col.var[1:p1] <- "blue"
if (p2 >0) col.var[(p1+1):p] <- "red"
}
for (j in 1:p)
{
graphics::arrows(0,0,x$sqload[j,dim1],x$sqload[j,dim2],
length = 0.1, angle = 15, code = 2,cex=cex,col=col.var[j])
if (label)
{
if (x$sqload[j,dim1] > x$sqload[j,dim1])
{
pos <- 4
}
else pos <- 3
graphics::text(x$sqload[j,dim1],x$sqload[j,dim2],
labels = rownames(x$sqload)[j], pos = pos,cex=cex,col=col.var[j],...)
}
}
if ((coloring.var == "groups") & (leg==TRUE))
graphics::legend((posleg), legend = name.groups, text.col = col.groups, cex = cex.leg)
if (coloring.var=="type" & (leg==TRUE))
graphics::legend(posleg, legend = c("numerical","categorical"), text.col = c("blue","red"), cex=cex.leg)
if (sup)
{
col.var.sup <- rep(4,)
if (coloring.var == "groups")
for (i in 1:ngroupsup)
col.var.sup[which(x$index.groupsup==i)] <- col.groups.sup[i]
if (coloring.var=="type")
{
if (p1.sup >0) col.var.sup[1:p1.sup] <- "blue"
if (p2.sup >0) col.var.sup[(p1.sup+1):p.sup] <- "red"
}
for (j in 1:nrow(x$sqload.sup))
{
graphics::arrows(0, 0, x$sqload.sup[j, dim1], x$sqload.sup[j, dim2],
length = 0.1, angle = 15, code = 2, lty=5, col=col.var.sup[j],cex = cex,...)
if (label)
{
if (x$sqload.sup[j, dim1] > x$sqload.sup[j, dim2])
{
pos <- 4
} else pos <- 3
graphics::text(x$sqload.sup[j, dim1], x$sqload.sup[j, dim2], labels = rownames(x$sqload.sup)[j],
pos = pos, cex = cex,col=col.var.sup[j],...)
}
}
if ((coloring.var == "groups") & (leg==TRUE))
graphics::legend((posleg.sup), legend = name.groups.sup, text.col = col.groups.sup, cex = cex.leg)
}
}
if (choice == "cor")
{
if (is.null(main)) main <- "Correlation circle"
if (is.null(xlim)) xlim = c(-1.1, 1.1)
if (is.null(ylim)) ylim = c(-1.1, 1.1)
graphics::plot(0, 0, main = main, xlab = lab.x, ylab = lab.y,
xlim = xlim, ylim = ylim, col = "white",
asp = 1, cex = cex,...)
x.cercle <- seq(-1, 1, by = 0.01)
y.cercle <- sqrt(1 - x.cercle^2)
graphics::lines(x.cercle, y = y.cercle)
graphics::lines(x.cercle, y = -y.cercle)
graphics::abline(v = 0, lty = 2, cex = cex)
graphics::abline(h = 0, lty = 2, cex = cex)
if (!is.null(x$quanti))
{
if (lim.cos2.plot == 0 & lim.contrib.plot==0)
{
lim.plot<-0
base.lim<-x$quanti$cos2[,axes]
}
if (lim.cos2.plot != 0)
{
lim.plot<-lim.cos2.plot
base.lim<-x$quanti$cos2[,axes]
}
if(lim.contrib.plot!=0)
{
lim.plot<-lim.contrib.plot
base.lim<-x$quanti$contrib[,axes]
base.lim<-100*(base.lim/sum(eig.axes))
}
}
coord.var <- x$quanti$coord[, axes, drop = FALSE]
col.var <- rep(1,p)
if (coloring.var == "groups")
{
for (i in 1:ngroup)
col.var[which(x$index.group==i)] <- col.groups[i]
}
col.var <- col.var[1:p1]
test.empty.plot<-c()
for (v in 1:nrow(coord.var))
{
if (sum(base.lim[v, ] , na.rm = TRUE) >= lim.plot && !is.na(sum(base.lim[v, ], na.rm = TRUE)))
{
test.empty.plot<-c(test.empty.plot,1)
graphics::arrows(0, 0, coord.var[v, 1], coord.var[v,2], length = 0.1, angle = 15, code = 2,cex = cex,col=col.var[v])
if (label)
{
if (abs(coord.var[v, 1]) > abs(coord.var[v, 2]))
{
if (coord.var[v, 1] >= 0)
pos <- 4
else pos <- 2
}
else {
if (coord.var[v, 2] >= 0)
pos <- 3
else pos <- 1
}
graphics::text(coord.var[v, 1], y = coord.var[v, 2],
labels = rownames(coord.var)[v], pos = pos, cex = cex,col=col.var[v])
}
}
}
if(is.null(test.empty.plot))
warning("\"lim.cos.plot\" (or \"lim.contrib.plot\") is too large. No variable can be plotted")
if ((coloring.var == "groups") & (leg==TRUE))
graphics::legend(posleg, legend = name.groups[unique(x$index.group[1:p1])], text.col = unique(col.var), cex = cex.leg)
if (!is.null(x$quanti.sup))
{
coord.var.sup <- x$quanti.sup$coord[, axes, drop = FALSE]
col.var.sup <- rep(1,p1.sup)
if (coloring.var == "groups")
{
for (i in 1:ngroupsup)
col.var.sup[which(x$index.groupsup==i)] <- col.groups.sup[i]
}
col.var.sup <- col.var.sup[1:p1.sup]
for (v in 1:nrow(coord.var.sup))
{
graphics::arrows(0, 0, coord.var.sup[v, 1], coord.var.sup[v,2], length = 0.1,
angle = 15, code = 2,cex = cex,col= col.var.sup[v],lty=5)
if (label)
{
if (abs(coord.var.sup[v, 1]) > abs(coord.var.sup[v,2]))
{
if (coord.var.sup[v, 1] >= 0)
pos <- 4
else pos <- 2
}
else {
if (coord.var.sup[v, 2] >= 0)
pos <- 3
else pos <- 1
}
graphics::text(coord.var.sup[v, 1], y = coord.var.sup[v, 2],
labels = rownames(coord.var.sup)[v], pos = pos, cex = cex,col=col.var.sup[v])
}
}
if ((coloring.var == "groups") & (leg==TRUE))
graphics::legend(posleg.sup, legend = name.groups.sup[unique(x$index.groupsup[1:p1.sup])],
text.col = unique(col.var.sup), cex = cex.leg)
}
}
if (choice == "ind")
{
if (is.null(main))
main <- "Individuals component map"
coord.ind <- x$ind$coord
if (lim.cos2.plot == 0 & lim.contrib.plot==0)
{
lim.plot<-0
select.ind <- 1:nrow(coord.ind)
}
if (lim.cos2.plot != 0 & lim.contrib.plot==0)
{
lim.plot <- lim.cos2.plot
base.lim <- x$ind$cos2[,axes]
select.ind <- which(apply(base.lim[,],1,sum)>=lim.plot)
}
if (lim.cos2.plot == 0 & lim.contrib.plot!=0)
{
lim.plot <- lim.contrib.plot
base.lim <- x$ind$contrib[,axes]
base.lim <- 100*(base.lim/sum(eig.axes))
select.ind <- which(apply(base.lim[,],1,sum)>=lim.plot)
}
if (is.null(partial))
{
if (length(select.ind)==0)
stop("\"lim.cos.plot\" (or \"lim.contrib.plot\") is too large. No individuals can be plotted",call. = FALSE)
coord.ind <- coord.ind[select.ind, , drop=FALSE]
xmin <- min(xlim,coord.ind[, dim1])
xmax <- max(xlim,coord.ind[, dim1])
xlim <- c(xmin, xmax) * 1.2
ymin <- min(ylim,coord.ind[, dim2])
ymax <- max(ylim,coord.ind[, dim2])
ylim <- c(ymin, ymax) * 1.2
if (is.null(col.ind) | is.null(coloring.ind))
{
col.plot.ind <- rep("black",nrow(coord.ind))
}
if (is.factor(coloring.ind))
{
quali<-coloring.ind
if (!is.null(col.ind))
{
levels(quali) <- col.ind
col.plot.ind <- quali
}
if (is.null(col.ind))
col.plot.ind <- as.numeric(quali)
}
col.plot.ind.total<-col.plot.ind
col.plot.ind <- col.plot.ind[select.ind]
graphics::plot(coord.ind[, axes,drop=FALSE], xlim = xlim, ylim = ylim, xlab = lab.x,
ylab = lab.y, pch = 20, col = as.character(col.plot.ind),
cex = cex, main=main,...)
graphics::abline(h = 0, lty = 2, cex = cex)
graphics::abline(v = 0, lty = 2, cex = cex)
if (leg==TRUE & is.factor(coloring.ind))
graphics::legend(posleg, legend =paste(cl["coloring.ind"],levels(coloring.ind),sep="="), text.col = levels(as.factor(col.plot.ind.total)),
cex =cex.leg)
if (label)
graphics::text(coord.ind[, axes], labels = rownames(coord.ind),
pos = 3, col = as.character(col.plot.ind), cex = cex,...)
}
if (!is.null(partial))
{
select.partial <- which(rownames(coord.ind[select.ind,,drop=FALSE]) %in% partial)
if (length(select.partial)==0)
stop("\"lim.cos.plot\" (or \"lim.contrib.plot\") is too large. No partial individuals can be plotted",call. = FALSE)
coord.ind.part <- coord.ind[select.partial, , drop=FALSE]
xmin <- min(xlim,coord.ind[, dim1])
xmax <- max(xlim,coord.ind[, dim1])
ymin <- min(ylim,coord.ind[, dim2])
ymax <- max(ylim,coord.ind[, dim2])
for (i in 1:ngroup)
{
t <- x$ind.partial[[i]][select.partial,axes,drop=FALSE]
xmin <- min(xmin, t[,1])
xmax <- max(xmax, t[,1])
ymin <- min(ymin,t[,2])
ymax <- max(ymax, t[,2])
}
xlim <- c(xmin, xmax) * 1.2
ylim <- c(ymin, ymax) * 1.2
col.plot.ind <- rep("black",nrow(coord.ind))
graphics::plot(as.matrix(coord.ind[,axes]), xlim = xlim, ylim = ylim, xlab = lab.x,
ylab = lab.y, pch = 20, cex = cex,main=main,...)
graphics::abline(h = 0, lty = 2, cex = cex)
graphics::abline(v = 0, lty = 2, cex = cex)
if (label)
graphics::text(coord.ind.part[, axes,drop=FALSE], labels = rownames(coord.ind.part),
pos = 3, col = as.character(col.plot.ind), cex = cex)
for (i in 1:ngroup)
{
t <- x$ind.partial[[i]][select.partial,axes,drop=FALSE]
graphics::points(t,col=col.groups[i],pch=20,...)
for (j in 1:length(select.partial))
{
m <- list(x=c(coord.ind.part[j,dim1],t[j,1]), y=c(coord.ind.part[j,dim2],t[j,2]))
graphics::lines(m,col=col.groups[i])
}
}
if(leg==TRUE)
graphics::legend(posleg, legend = name.groups, text.col = col.groups, cex = cex.leg)
}
}
if (choice == "levels")
{
if (is.null(main)) main <- "Levels component map"
xmin <- min(xlim,x$levels$coord[, dim1],x$levels.sup$coord[, dim1])
xmax <- max(xlim,x$levels$coord[, dim1],x$levels.sup$coord[, dim1])
xlim <- c(xmin, xmax) * 1.2
ymin <- min(ylim,x$levels$coord[, dim2],x$levels.sup$coord[, dim2])
ymax <- max(ylim,x$levels$coord[, dim2],x$levels.sup$coord[, dim2])
ylim <- c(ymin, ymax) * 1.2
graphics::plot(0,0, xlim = xlim, ylim = ylim,
xlab = lab.x, ylab = lab.y, type="n", cex = cex,main=main, ...)
graphics::abline(h = 0, lty = 2, cex = cex)
graphics::abline(v = 0, lty = 2, cex = cex)
if (!is.null(x$levels))
{
if (lim.cos2.plot == 0 & lim.contrib.plot==0)
{
lim.plot<-0
base.lim<-x$levels$cos2[,axes]
}
if (lim.cos2.plot != 0)
{
lim.plot<-lim.cos2.plot
base.lim<-x$levels$cos2[,axes]
}
if (lim.contrib.plot!=0)
{
lim.plot<-lim.contrib.plot
base.lim<-x$levels$contrib[,axes]
base.lim<-100*(base.lim/sum(eig.axes))
}
coord.lev <- x$levels$coord[, axes, drop = FALSE]
col.lev <- rep(1,p1+m)
if (coloring.var == "groups")
{
for (i in 1:ngroup)
col.lev[which(x$index.group2==i)] <- col.groups[i]
}
col.lev <- col.lev[(p1+1):(p1+m)]
test.empty.plot<-c()
for (v in 1:nrow(coord.lev))
{
if (sum(base.lim[v, ], na.rm = TRUE) >= lim.plot && !is.na(sum(base.lim[v, ], na.rm = TRUE))) {
test.empty.plot<-c(test.empty.plot,1)
graphics::points(coord.lev[v, 1], coord.lev[v,2], col=col.lev[v], pch=20,cex = cex,...)
if (label)
{
if (abs(coord.lev[v, 1]) > abs(coord.lev[v,2]))
{
if (coord.lev[v, 1] >= 0)
pos <- 4
else pos <- 2
}
else {
if (coord.lev[v, 2] >= 0)
pos <- 3
else pos <- 1
}
graphics::text(coord.lev[v, 1], y = coord.lev[v, 2], col=col.lev[v],
labels = rownames(coord.lev)[v], pos = pos, cex = cex)
}
}
}
if (is.null(test.empty.plot))
warning("\"lim.cos.plot\" (or \"lim.contrib.plot\") is too large. No level can be plotted")
if ((coloring.var == "groups") & (leg==TRUE))
graphics::legend(posleg, legend = name.groups[unique(x$index.group2[(p1+1):(p1+m)])],
text.col = unique(col.lev), cex = cex.leg)
}
if (!is.null(x$levels.sup))
{
coord.lev.sup <- x$levels.sup$coord[, axes, drop = FALSE]
m.sup <- nrow(coord.lev.sup)
col.lev.sup <- rep(4,p1.sup+m.sup)
if (coloring.var == "groups")
{
for (i in 1:ngroupsup)
col.lev.sup[which(x$index.groupsup2==i)] <- col.groups.sup[i]
}
col.lev.sup <- col.lev.sup[(p1.sup+1):(p1.sup+m.sup)]
for (v in 1:nrow(coord.lev.sup))
{
graphics::points(coord.lev.sup[v, 1], coord.lev.sup[v,2], pch=1,cex = cex,
col=col.lev.sup[v],...)
if (label)
{
if (abs(coord.lev.sup[v, 1]) > abs(coord.lev.sup[v,2]))
{
if (coord.lev.sup[v, 1] >= 0)
pos <- 4
else pos <- 2
}
else {
if (coord.lev.sup[v, 2] >= 0)
pos <- 3
else pos <- 1
}
graphics::text(coord.lev.sup[v, 1], y = coord.lev.sup[v, 2],
labels = rownames(coord.lev.sup)[v], pos = pos,
col=col.lev.sup[v], cex = cex)
}
}
if ((coloring.var == "groups") & (leg==TRUE))
graphics::legend(posleg.sup, legend = name.groups[unique(x$index.groupsup2[(p1+1):(p1+m)])],
text.col = unique(col.lev.sup), cex = cex.leg)
}
}
}
|
gd_url = function() {
return("http://api.glassdoor.com/api/api.htm")
}
|
context("knitr")
test_that("include_graphics() can create HTML tag for file it can't find", {
expect_silent(
result <- knitr::include_graphics("docs/assets/external.png", error = FALSE)
)
expect_identical(as.character(result), "docs/assets/external.png")
})
|
heckit5fit <- function(selection, outcome1, outcome2,
data=sys.frame(sys.parent()),
ys=FALSE, yo=FALSE,
xs=FALSE, xo=FALSE,
mfs=FALSE, mfo=FALSE,
printLevel=print.level, print.level=0,
maxMethod="Newton-Raphson", ... )
{
checkIMRcollinearity <- function(X, tol=1e6) {
X <- X[!apply(X, 1, function(row) any(is.na(row))),]
if(kappa(X) < tol)
return(FALSE)
if(kappa(X[,-ncol(X)]) > tol)
return(FALSE)
return(TRUE)
}
if( class( selection ) != "formula" ) {
stop( "argument 'selection' must be a formula" )
}
if( length( selection ) != 3 ) {
stop( "argument 'selection' must be a 2-sided formula" )
}
thisCall <- match.call()
mf <- match.call(expand.dots = FALSE)
m <- match(c("selection", "data", "subset"), names(mf), 0)
mfS <- mf[c(1, m)]
mfS$drop.unused.levels <- TRUE
mfS$na.action <- na.pass
mfS[[1]] <- as.name("model.frame")
names(mfS)[2] <- "formula"
mfS <- eval(mfS, parent.frame())
mtS <- attr(mfS, "terms")
XS <- model.matrix(mtS, mfS)
YS <- model.response( mfS )
YSLevels <- levels( as.factor( YS ) )
if( length( YSLevels ) != 2 ) {
stop( "the dependent variable of 'selection' has to contain",
" exactly two levels (e.g. FALSE and TRUE)" )
}
ysNames <- names( YS )
YS <- as.integer(YS == YSLevels[ 2 ])
names( YS ) <- ysNames
badRow <- is.na(YS)
badRow <- badRow | apply(XS, 1, function(v) any(is.na(v)))
if("formula" %in% class( outcome1 )) {
if( length( outcome1 ) != 3 ) {
stop( "argument 'outcome1' must be a 2-sided formula" )
}
m <- match(c("outcome1", "data", "subset"), names(mf), 0)
mf1 <- mf[c(1, m)]
mf1$drop.unused.levels <- TRUE
mf1$na.action <- na.pass
mf1[[1]] <- as.name("model.frame")
names(mf1)[2] <- "formula"
mf1 <- eval(mf1, parent.frame())
mt1 <- attr(mf1, "terms")
XO1 <- model.matrix(mt1, mf1)
YO1 <- model.response(mf1, "numeric")
badRow <- badRow | (is.na(YO1) & (!is.na(YS) & YS == 0))
badRow <- badRow | (apply(XO1, 1, function(v) any(is.na(v))) & (!is.na(YS) & YS == 0))
if("formula" %in% class( outcome2 )) {
if( length( outcome2 ) != 3 ) {
stop( "argument 'outcome2' must be a 2-sided formula" )
}
m <- match(c("outcome2", "data", "subset"), names(mf), 0)
mf2 <- mf[c(1, m)]
mf2$drop.unused.levels <- TRUE
mf2$na.action <- na.pass
mf2[[1]] <- as.name("model.frame")
names(mf2)[2] <- "formula"
mf2 <- eval(mf2, parent.frame())
mt2 <- attr(mf2, "terms")
XO2 <- model.matrix(mt2, mf2)
YO2 <- model.response(mf2, "numeric")
badRow <- badRow | (is.na(YO2) & (!is.na(YS) & YS == 1))
badRow <- badRow | (apply(XO2, 1, function(v) any(is.na(v))) & (!is.na(YS) & YS == 1))
}
else
stop("argument 'outcome2' must be a formula")
}
else if("list" %in% class(outcome1)) {
if(length(outcome1) != 2) {
stop("argument 'outcome1' must be either a formula or a list of two formulas")
}
if("formula" %in% class(outcome1[[1]])) {
if( length( outcome1[[1]] ) != 3 ) {
stop( "argument 'outcome1[[1]]' must be a 2-sided formula" )
}
}
else
stop( "argument 'outcome1[[1]]' must be a formula" )
if("formula" %in% class(outcome1[[2]])) {
if( length( outcome1[[2]] ) != 3 ) {
stop( "argument 'outcome[[2]]' must be a 2-sided formula" )
}
formula1 <- outcome1[[1]]
formula2 <- outcome1[[2]]
m <- match(c("outcome1", "data", "subset",
"offset"), names(mf), 0)
oArg <- match("outcome1", names(mf), 0)
mf[[oArg]] <- formula1
mf1 <- mf[c(1, m)]
mf1$drop.unused.levels <- TRUE
mf1$na.action = na.pass
mf1[[1]] <- as.name("model.frame")
names(mf1)[2] <- "formula"
mf1 <- eval(mf1, parent.frame())
mt1 <- attr(mf1, "terms")
XO1 <- model.matrix(mt1, mf1)
YO1 <- model.response(mf1, "numeric")
badRow <- badRow | (is.na(YO1) & (!is.na(YS) & YS == 0))
badRow <- badRow | (apply(XO1, 1, function(v) any(is.na(v))) & (!is.na(YS) & YS == 0))
mf[[oArg]] <- formula2
mf2 <- mf[c(1, m)]
mf2$drop.unused.levels <- TRUE
mf2$na.action <- na.pass
mf2[[1]] <- as.name("model.frame")
names(mf2)[2] <- "formula"
mf2 <- eval(mf2, parent.frame())
mt2 <- attr(mf2, "terms")
XO2 <- model.matrix(mt2, mf2)
YO2 <- model.response(mf2, "numeric")
badRow <- badRow | (is.na(YO2) & (!is.na(YS) & YS == 1))
badRow <- badRow | (apply(XO2, 1, function(v) any(is.na(v))) & (!is.na(YS) & YS == 1))
}
else
stop( "argument 'outcome[[2]]' must be a formula" )
}
else
stop("argument 'outcome1' must be a formula or a list of two formulas")
NXS <- ncol(XS)
NXO1 <- ncol(XO1)
NXO2 <- ncol(XO2)
XS <- XS[!badRow,,drop=FALSE]
YS <- YS[!badRow]
XO1 <- XO1[!badRow,,drop=FALSE]
YO1 <- YO1[!badRow]
XO2 <- XO2[!badRow,,drop=FALSE]
YO2 <- YO2[!badRow]
nObs <- length(YS)
i1 <- YS == 0
i2 <- YS == 1
XS1 <- XS[i1,,drop=FALSE]
XS2 <- XS[i2,,drop=FALSE]
XO1 <- XO1[i1,,drop=FALSE]
XO2 <- XO2[i2,,drop=FALSE]
YO1 <- YO1[i1]
YO2 <- YO2[i2]
N1 <- length(YO1)
N2 <- length(YO2)
probitResult <- probit(YS ~ XS - 1, maxMethod = maxMethod )
if( print.level > 0) {
cat("The probit part of the model:\n")
print(summary(probitResult))
}
gamma <- coef(probitResult)
invMillsRatio1 <- dnorm( -XS1%*%gamma)/pnorm( -XS1%*%gamma)
invMillsRatio2 <- dnorm( XS2%*%gamma)/pnorm( XS2%*%gamma)
colnames(invMillsRatio1) <- colnames(invMillsRatio2) <- "invMillsRatio"
XO1 <- cbind(XO1, invMillsRatio1)
XO2 <- cbind(XO2, invMillsRatio2)
if(checkIMRcollinearity(XO1)) {
warning("Inverse Mills Ratio is virtually multicollinear to the rest of explanatory variables in the outcome equation 1")
}
if(checkIMRcollinearity(XO2)) {
warning("Inverse Mills Ratio is virtually multicollinear to the rest of explanatory variables in the outcome equation 2")
}
lm1 <- lm(YO1 ~ -1 + XO1)
lm2 <- lm(YO2 ~ -1 + XO2)
intercept1 <- any(apply(model.matrix(lm1), 2,
function(v) (v[1] > 0) & (all(v == v[1]))))
intercept2 <- any(apply(model.matrix(lm2), 2,
function(v) (v[1] > 0) & (all(v == v[1]))))
se1 <- summary(lm1)$sigma
se2 <- summary(lm2)$sigma
delta1 <- mean( invMillsRatio1^2 - XS1%*%gamma *invMillsRatio1)
delta2 <- mean( invMillsRatio2^2 + XS2%*%gamma *invMillsRatio2)
betaL1 <- coef(lm1)["XO1invMillsRatio"]
betaL2 <- coef(lm2)["XO2invMillsRatio"]
sigma1 <- sqrt( se1^2 + ( betaL1*delta1)^2)
sigma2 <- sqrt( se2^2 + ( betaL2*delta2)^2)
rho1 <- -betaL1/sigma1
rho2 <- betaL2/sigma2
if( rho1 <= -1) rho1 <- -0.99
if( rho2 <= -1) rho2 <- -0.99
if( rho1 >= 1) rho1 <- 0.99
if( rho2 >= 1) rho2 <- 0.99
iBetaS <- 1:NXS
iBetaO1 <- seq(tail(iBetaS, 1)+1, length=NXO1)
iMills1 <- tail(iBetaO1, 1) + 1
iSigma1 <- iMills1 + 1
iRho1 <- tail(iSigma1, 1) + 1
iBetaO2 <- seq(tail(iRho1, 1) + 1, length=NXO2)
iMills2 <- tail(iBetaO2, 1) + 1
iSigma2 <- iMills2 + 1
iRho2 <- tail(iSigma2, 1) + 1
nParam <- iRho2
coefficients <- numeric(nParam)
coefficients[iBetaS] <- coef(probitResult)
names(coefficients)[iBetaS] <- gsub("^XS", "", names(coef(probitResult)))
coefficients[iBetaO1] <- coef(lm1)[names(coef(lm1)) != "XO1invMillsRatio"]
names(coefficients)[iBetaO1] <- gsub("^XO1", "",
names(coef(lm1))[names(coef(lm1)) != "XO1invMillsRatio"])
coefficients[iBetaO2] <- coef(lm2)[names(coef(lm2)) != "XO2invMillsRatio"]
names(coefficients)[iBetaO2] <- gsub("^XO2", "",
names(coef(lm2))[names(coef(lm2)) != "XO2invMillsRatio"])
coefficients[c(iMills1, iSigma1, iRho1, iMills2, iSigma2, iRho2)] <-
c(coef(lm1)["XO1invMillsRatio"], sigma1, rho1,
coef(lm2)["XO2invMillsRatio"], sigma2, rho2)
names(coefficients)[c(iMills1, iSigma1, iRho1, iMills2, iSigma2, iRho2)] <-
c("invMillsRatio1", "sigma1", "rho1", "invMillsRatio2", "sigma2", "rho2")
vc <- matrix(0, nParam, nParam)
colnames(vc) <- row.names(vc) <- names(coefficients)
vc[] <- NA
if(!is.null(vcov(probitResult)))
vc[iBetaS,iBetaS] <- vcov(probitResult)
param <- list(index=list(betaS=iBetaS,
betaO1=iBetaO1, betaO2=iBetaO2,
Mills1=iMills1, sigma1=iSigma1, rho1=iRho1,
Mills2=iMills2, sigma2=iSigma2, rho2=iRho2,
errTerms = c( iMills1, iMills2, iSigma1, iSigma2, iRho1, iRho2 ),
outcome = c( iBetaO1, iMills1, iBetaO2, iMills2 ) ),
oIntercept1=intercept1, oIntercept2=intercept2,
nObs=nObs, nParam=nParam, df=nObs-nParam + 2,
NXS=NXS, NXO1=NXO1, NXO2=NXO2, N1=N1, N2=N2,
levels=YSLevels
)
result <- list(probit=probitResult,
lm1=lm1,
rho1=rho1,
sigma1=sigma1,
lm2=lm2,
rho2=rho2,
sigma2=sigma2,
call = thisCall,
termsS=mtS,
termsO=list(mt1, mt2),
ys=switch(as.character(ys), "TRUE"=YS, "FALSE"=NULL),
xs=switch(as.character(xs), "TRUE"=XS, "FALSE"=NULL),
yo=switch(as.character(yo), "TRUE"=list(YO1, YO2), "FALSE"=NULL),
xo=switch(as.character(xo), "TRUE"=list(XO1, XO2), "FALSE"=NULL),
mfs=switch(as.character(mfs), "TRUE"=list(mfS), "FALSE"=NULL),
mfo=switch(as.character(mfs), "TRUE"=list(mf1, mf2), "FALSE"=NULL),
param=param,
coefficients=coefficients,
vcov=vc
)
result$tobitType <- 5
result$method <- "2step"
class( result ) <- c( "selection", class(result))
return( result )
}
|
setGeneric("plot")
|
plotresprm <-
function (prmdcvobj, optcomp, y, X, ...)
{
prm.cv <- prm_cv(X,y, a = optcomp, plot.opt=FALSE, ...)
par(mfrow = c(1, 2))
predcv <- prm.cv$predicted[, optcomp]
preddcvall <- prmdcvobj$pred[,optcomp, ]
preddcv <- apply(preddcvall, 1, mean)
ylimits <- max(abs(preddcvall - drop(y)))
ylimits <- sort(c(-ylimits, ylimits))
plot(predcv, predcv - y, xlab = "Predicted y", ylab = "Residuals",
cex.lab = 1.2, cex = 0.7, pch = 3, col = 1, ylim = ylimits, ...)
title("Results from CV")
abline(h = 0, lty = 1)
plot(preddcv, preddcv - y, xlab = "Predicted y", ylab = "Residuals",
cex.lab = 1.2, cex = 0.7, pch = 3, col = gray(0.6), type = "n",
ylim = ylimits, ...)
for (i in 1:ncol(preddcvall)) {
points(preddcv, preddcvall[, i] - y, cex = 0.7, pch = 3,
col = gray(0.6))
}
points(preddcv, preddcv - y, cex = 0.7, pch = 3, col = 1)
title("Results from Repeated Double-CV")
abline(h = 0, lty = 1)
invisible()
}
|
library(tourr)
library(plotly)
mat <- rescale(as.matrix(flea[1:6]))
tour <- new_tour(mat, grand_tour(), NULL)
tour_dat <- function(step_size) {
step <- tour(step_size)
proj <- center(mat %*% step$proj)
data.frame(x = proj[,1], y = proj[,2],
species = flea$species)
}
proj_dat <- function(step_size) {
step <- tour(step_size)
data.frame(
x = step$proj[,1], y = step$proj[,2], measure = colnames(mat)
)
}
steps <- c(0, rep(1/15, 50))
stepz <- cumsum(steps)
tour_dats <- lapply(steps, tour_dat)
tour_datz <- Map(function(x, y) cbind(x, step = y), tour_dats, stepz)
tour_dat <- dplyr::bind_rows(tour_datz)
proj_dats <- lapply(steps, proj_dat)
proj_datz <- Map(function(x, y) cbind(x, step = y), proj_dats, stepz)
proj_dat <- dplyr::bind_rows(proj_datz)
ax <- list(
title = "",
range = c(-1, 1),
zeroline = FALSE
)
options(digits = 2)
proj_dat %>%
plot_ly(x = ~x, y = ~y, frame = ~step, color = I("gray80")) %>%
add_segments(xend = 0, yend = 0) %>%
add_text(text = ~measure) %>%
add_markers(color = ~species, data = tour_dat) %>%
hide_legend() %>%
layout(xaxis = ax, yaxis = ax) %>%
animation_opts(33, redraw = FALSE)
|
logLik.srm <- function (object, ...)
{
out <- object$loglike
attr(out, "df") <- length(object$coef)
attr(out, "nobs") <- NA
class(out) <- "logLik"
return(out)
}
|
if(exists("mission_time")) rm(mission_time)
rv_test<-c(3,3,3,2,1,2,1)
pi_test<-c(3,1,1/12,1/12,1/12,1/52,1/52)
walkby<-c(3,1/12,1/52,1/52,1/52,1/52,1/52)
cases<-cbind(rv_test,pi_test,walkby)
mttf<-NULL
CFRat14<-NULL
for(case in 1:dim(cases)[1]) {
rv_test<-cases[case,1]
pi_test<-cases[case,2]
walkby<-cases[case,3]
hf<-ftree.make(type="or", name="HF Vaporizer", name2="Rupture")
hf<-addLogic(hf, at=1, type="inhibit", name="Overpressure", name2="Unrelieved")
hf<-addDemand(hf, at=1, mttf=1e6, name= "Vaporizer Rupture", name2="Due to Stress/Fatigue")
hf<-addLogic(hf, at=2, type="or", name="Pressure Relief System", name2="in Failed State")
hf<-addLogic(hf, at=2, type="or", name="Overpressure", name2="Occurs")
hf<-addLogic(hf, at=4, type="or", name="Pressure Relief", name2="Isolated")
hf<-addLatent(hf, at=6, mttf=10, inspect=walkby,
name="Valve 20", name2="Left Closed")
hf<-addLatent(hf, at=6, mttf=10, inspect=walkby, display_under=7,
name="Valve 21", name2="Left Closed")
hf<-addLogic(hf, at=4, type="or", name="Rupture Disk Fails", name2="to Open at Design Pt.")
hf<-addLogic(hf, at=9, type="or", name="Installation/Mfr", name2="Errors")
hf<-addProbability(hf, at=10, prob=.001, name="Rupture Disk", name2="Installed Upside Down")
hf<-addProbability(hf, at=10, prob=.001, display_under=11,
name="Wrong Rupture Disk", name2="Installed")
hf<-addProbability(hf, at=10, prob=.001, display_under=12,
name="Rupture Disk", name2="Manuf. Error")
hf<-addLogic(hf, at=9, type="or", name="Pressure Between Disk", name2="and Relief Valve")
hf<-addLogic(hf, at=14, type="inhibit", name="Pressure NOT" , name2="Detectable by PI")
hf<-addLatent(hf, at=15, mttf=10, inspect=pi_test,
name="Pressure Gage", name2="Failed Low Position")
hf<-addLatent(hf, at=15, mttf=10, inspect=pi_test,
name="Rupture Disk Leak", name2="Undetected")
hf<-addLogic(hf, at=14, type="inhibit", name="Pressure" , name2="Detectable by PI")
hf<-addProbability(hf, at=18, prob=(1-hf$PBF[16]),
name="Pressure Gage", name2="Detects Pressure")
hf<-addLatent(hf, at=18, mttf=10, inspect=walkby,
name="Rupture Disk Leak", name2="Detectable")
hf<-addLogic(hf, at=4, type="or",
name="Pressure Relief Fails", name2=" to Open at Design Pt")
hf<-addLatent(hf, at=21, mttf=300, inspect=rv_test,
name="Pressure Relief", name2="set too high")
hf<-addLatent(hf, at=21, mttf=300, inspect=rv_test,
name="Pressure Relief Unable", name2="to Open at Design Pt")
hf<-addDemand(hf, at=5, mttf=10, name= "High Pressure", name2="Feed to Vaporizer")
hf<-addDemand(hf, at=5, mttf=10, name= "Vaporizer Heating", name2="Runaway")
hf<-ftree.calc(hf)
mttf<-c(mttf,1/ hf$CFR[1])
CFRat14<-c(CFRat14, hf$CFR[14])
}
cases<-cbind(cases, mttf, CFRat14)
print(cases)
|
add_CPUE <- function(ctl.in, ctl.out = NULL, overwrite = FALSE,
q = data.frame(
"fleet" = 3, "link" = 1, "link_info" = 0, "extra_se" = 0, "biasadj" = 0, "float" = 0,
"LO" = -20, "HI" = 20, "INIT" = 0, "PRIOR" = 0, "PR_SD" = 99,
"PR_type" = 0, "PHASE" = 1, "env_var" = 0, "use_dev" = 0,
"dev_mnyr" = 0, "dev_mxyr" = 0, "dev_PH" = 0,
"Block" = 0, "Blk_Fxn" = 0, "name" = NULL)) {
ctl <- readLines(ctl.in)
startline <- findspot("Q_setup", ctl, gopast = "
if (is.null(q[, "name"])) q[, "name"] <- paste0("
if (substr(trimws(q[, "name"]), 1, 1) != "
Q_setup <- apply(q[, c("fleet", "link", "link_info", "extra_se", "biasadj", "float", "name")],
1, paste, collapse = " ")
ctl <- append(x = ctl,
values = Q_setup,
after = startline)
endline <- findspot("Q_parms", ctl, goto = "
Q_parms <- apply(q[, c("LO", "HI", "INIT", "PRIOR", "PR_SD",
"PR_type", "PHASE", "env_var", "use_dev", "dev_mnyr",
"dev_mxyr", "dev_PH", "Block", "Blk_Fxn", "name")],
1, paste, collapse = " ")
ctl <- append(x = ctl,
values = Q_parms,
after = endline - 1)
if (!is.null(ctl.out)) {
write <- TRUE
if (file.exists(ctl.out) & !overwrite) write <- FALSE
if (write) writeLines(text = ctl, con = ctl.out)
}
invisible(ctl)
}
findspot <- function(string, lines, gopast = NULL, goto = NULL) {
searchfor <- NULL
if (!is.null(gopast)) searchfor <- gopast
if (!is.null(goto)) {
searchfor <- paste(sapply(strsplit(goto, "")[[1]],
function(x) paste0("[^", x, "]")), collapse = "")
}
if (is.null(searchfor)) stop("gopast or goto must be specified.")
loc <- grep(string, lines)
while(grepl(searchfor,
substring(trimws(lines[loc]), 1, nchar(searchfor)))) {
loc <- loc + 1
}
if (!is.null(goto)) loc <- loc - 1
return(loc)
}
remove_CPUE <- function(string,
ctl.in, ctl.out,
dat.in, dat.out,
overwrite = FALSE) {
ctl <- readLines(ctl.in)
line <- findspot("Q_setup", ctl, gopast = "
while(!grepl(string, ctl[line])) line <- line + 1
ctl <- ctl[-line]
line <- findspot("Q_parms", ctl, gopast = "
while(!grepl(string, ctl[line])) line <- line + 1
ctl <- ctl[-line]
if (!is.null(ctl.out)) {
write <- TRUE
if (file.exists(ctl.out) & !overwrite) write <- FALSE
if (write) writeLines(text = ctl, con = ctl.out)
}
dat <- r4ss::SS_readdat(dat.in, verbose = FALSE)
fleetnum <- grep(string, dat$fleetnames)
dat$CPUE <- dat$CPUE[dat$CPUE$index != fleetnum, ]
SS_writedat(dat, dat.out,
verbose = FALSE, overwrite = overwrite)
}
remove_q_ctl <- function(string,
ctl.in, filename = TRUE, ctl.out,
overwrite = FALSE) {
if(filename == TRUE) {
ctl <- readLines(ctl.in)
} else {
ctl <- ctl.in
}
line <- findspot("Q_setup", ctl, gopast = "
while(!grepl(string, ctl[line])) line <- line + 1
ctl <- ctl[-line]
line <- findspot("Q_parms", ctl, gopast = "
while(!grepl(string, ctl[line])) line <- line + 1
ctl <- ctl[-line]
if (!is.null(ctl.out)) {
write <- TRUE
if (file.exists(ctl.out) & !overwrite) write <- FALSE
if (write) writeLines(text = ctl, con = ctl.out)
}
invisible(ctl)
}
|
label <- function(x, default=NULL, ...) UseMethod("label")
label.default <- function(x, default=NULL, units=plot, plot=FALSE,
grid=FALSE, html=FALSE, ...)
{
if(length(default) > 1)
stop("the default string cannot be of length greater then one")
at <- attributes(x)
lab <- at[['label']]
if(length(default) && (!length(lab) || lab==''))
lab <- default
un <- at$units
labelPlotmath(lab,
if(units) un else NULL,
plotmath=plot, grid=grid, html=html)
}
label.Surv <- function(x, default=NULL, units=plot,
plot=FALSE, grid=FALSE, html=FALSE,
type=c('any', 'time', 'event'), ...)
{
type <- match.arg(type)
if(length(default) > 1)
stop("the default string cannot be of length greater then one")
at <- attributes(x)
lab <- at[['label']]
ia <- at$inputAttributes
if((! length(lab) || lab == '') && length(ia)) {
poss <- switch(type,
any = c(ia$event$label, ia$time2$label, ia$time$label),
time = c( ia$time2$label, ia$time$label),
event = ia$event$label )
for(lb in poss)
if(! length(lab) && lb != '') lab <- lb
}
if(length(default) && (!length(lab) || lab=='')) lab <- default
un <- NULL
if(units) {
un <- at$units
if(! length(un) && length(ia)) {
un <- ia$time2$units
if(! length(un)) un <- ia$time$units
}
}
labelPlotmath(lab, un,
plotmath=plot, grid=grid, html=html)
}
label.data.frame <- function(x, default=NULL, self=FALSE, ...) {
if(self) {
label.default(x)
} else {
if(length(default) > 0 && length(default) != length(x)) {
stop('length of default must same as x')
} else if(length(default) == 0) {
default <- list(default)
}
labels <- mapply(FUN=label, x=x, default=default,
MoreArgs=list(self=TRUE), USE.NAMES=FALSE)
names(labels) <- names(x)
return(labels)
}
}
labelPlotmath <- function(label, units=NULL, plotmath=TRUE, html=FALSE,
grid=FALSE, chexpr=FALSE)
{
if(! length(label)) label <- ''
if(! length(units) || (length(units) == 1 && is.na(units))) units <- ''
if(html) return(markupSpecs$html$varlabel (label, units))
if(! plotmath) return(markupSpecs$plain$varlabel(label, units))
g <-
function(x, y=NULL, xstyle=NULL, ystyle=NULL)
{
h <- function(w, style=NULL)
if(length(style)) sprintf('%s(%s)', style, w) else w
tryparse <- function(z, original, chexpr) {
p <- try(parse(text=z), silent=TRUE)
if(is.character(p)) original else
if(chexpr) sprintf('expression(%s)', z) else p
}
if(! length(y))
return(tryparse(h(plotmathTranslate(x), xstyle), x, chexpr))
w <- paste('list(',h(plotmathTranslate(x), xstyle), ',',
h(plotmathTranslate(y), ystyle), ')', sep='')
tryparse(w, paste(x, y), chexpr)
}
if(units=='') g(label)
else
if(label=='') g(units)
else g(label, units, ystyle='scriptstyle')
}
plotmathTranslate <- function(x)
{
if(length(grep('paste', x))) return(x)
specials <- c(' ','%','_')
spec <- FALSE
for(s in specials)
if(length(grep(s,x)))
spec <- TRUE
if(! spec && is.character(try(parse(text=x), silent=TRUE)))
spec <- TRUE
if(spec) x <- paste('paste("',x,'")',sep='')
else if(substring(x,1,1)=='/') x <- paste('phantom()', x, sep='')
x
}
labelLatex <- function(x=NULL, label='', units='', size='smaller[2]',
hfill=FALSE, bold=FALSE, default='', double=FALSE) {
if(length(x)) {
if(label == '') label <- label(x)
if(units == '') units <- units(x)
}
if(default == '' && length(x)) default <- deparse(substitute(x))
if(label == '') return(default)
label <- latexTranslate(label)
bs <- if(double) '\\\\' else '\\'
if(bold) label <- paste('{', bs, 'textbf ', label, '}', sep='')
if(units != '') {
units <- latexTranslate(units)
if(length(size) && size != '')
units <- paste('{', bs, size, ' ', units, '}', sep='')
if(hfill) units <- paste(bs, 'hfill ', units, sep='')
else
units <- paste(' ', units, sep='')
label <- paste(label, units, sep='')
}
label
}
"label<-" <- function(x, ..., value) UseMethod("label<-")
"label<-.default" <- function(x, ..., value)
{
if(is.list(value)) {
stop("cannot assign a list to be a object label")
}
if(length(value) != 1L) {
stop("value must be character vector of length 1")
}
attr(x, 'label') <- value
if('labelled' %nin% class(x)) {
class(x) <- c('labelled', class(x))
}
return(x)
}
"label<-.data.frame" <- function(x, self=TRUE, ..., value) {
if(!is.data.frame(x)) {
stop("x must be a data.frame")
}
if(missing(self) && is.list(value)) {
self <- FALSE
}
if(self) {
xc <- class(x)
xx <- unclass(x)
label(xx) <- value
class(xx) <- xc
return(xx)
} else {
if(length(value) != length(x)) {
stop("value must have the same length as x")
}
for (i in seq(along.with=x)) {
label(x[[i]]) <- value[[i]]
}
}
return(x)
}
"[.labelled"<- function(x, ...) {
tags <- valueTags(x)
x <- NextMethod("[")
valueTags(x) <- tags
x
}
"print.labelled"<- function(x, ...) {
x.orig <- x
u <- attr(x, 'units', exact=TRUE)
if(length(u))
attr(x,'units') <- NULL
cat(attr(x, "label", exact=TRUE),
if(length(u))
paste('[', u, ']', sep=''),
"\n")
attr(x, "label") <- NULL
class(x) <-
if(length(class(x))==1 && class(x)=='labelled')
NULL
else
class(x)[class(x) != 'labelled']
if(!length(attr(x,'class')))
attr(x,'class') <- NULL
NextMethod("print")
invisible(x.orig)
}
as.data.frame.labelled <- as.data.frame.vector
Label <- function(object, ...) UseMethod("Label")
Label.data.frame <- function(object, file='', append=FALSE, ...)
{
nn <- names(object)
for(i in 1:length(nn)) {
lab <- attr(object[[nn[i]]], 'label', exact=TRUE)
lab <- if(length(lab)==0) '' else lab
cat("label(",nn[i],")\t<- '",lab,"'\n",
append=if(i==1)
append
else
TRUE,
file=file, sep='')
}
invisible()
}
relevel.labelled <- function(x, ...) {
lab <- label(x)
x <- NextMethod(x)
label(x) <- lab
x
}
reLabelled <- function(object)
{
for(i in 1:length(object))
{
x <- object[[i]]
lab <- attr(x, 'label', exact=TRUE)
cl <- class(x)
if(length(lab) && !any(cl=='labelled')) {
class(x) <- c('labelled',cl)
object[[i]] <- x
}
}
object
}
llist <- function(..., labels=TRUE)
{
dotlist <- list(...)
lname <- names(dotlist)
name <- vname <- as.character(sys.call())[-1]
for(i in 1:length(dotlist))
{
vname[i] <-
if(length(lname) && lname[i]!='')
lname[i]
else
name[i]
lab <- vname[i]
if(labels)
{
lab <- attr(dotlist[[i]],'label', exact=TRUE)
if(length(lab) == 0)
lab <- vname[i]
}
label(dotlist[[i]]) <- lab
}
names(dotlist) <- vname[1:length(dotlist)]
dotlist
}
prList <- function(x, lcap=NULL, htmlfig=0, after=FALSE) {
if(! length(names(x))) stop('x must have names')
if(length(lcap) && (length(lcap) != length(x)))
stop('if given, lcap must have same length as x')
mu <- markupSpecs$html
g <- if(htmlfig == 0) function(x, X=NULL) paste(x, X)
else
if(htmlfig == 1) function(x, X=NULL) paste(mu$cap(x), mu$lcap(X))
else
function(x, X=NULL)
paste0('\n
if(length(X) && X != '') paste0('\n', mu$lcap(X)))
i <- 0
for(n in names(x)) {
i <- i + 1
y <- x[[n]]
if(length(names(y)) && length(class(y)) == 1 &&
class(y) == 'list' && length(y) > 1) {
for(m in names(y)) {
if(! after)
cat('\n', g(paste0(n, ': ', m)), '\n', sep='')
suppressWarnings(print(y[[m]]))
if(after) cat('\n', g(paste0(n, ': ', m)), '\n', sep='')
}
if(length(lcap) && lcap[i] != '') cat(mu$lcap(lcap[i]))
}
else {
if(! after)
cat('\n', g(n, if(length(lcap)) lcap[i]), '\n', sep='')
suppressWarnings(print(x[[n]]))
if(after) cat('\n', g(n, if(length(lcap)) lcap[i]), '\n', sep='')
}
}
invisible()
}
putHfig <- function(x, ..., scap=NULL, extra=NULL, subsub=TRUE, hr=TRUE,
table=FALSE, file='', append=FALSE, expcoll=NULL) {
ec <- length(expcoll) > 0
if(ec && ! table)
stop('expcoll can only be specified for tables, not figures')
mu <- markupSpecs$html
lcap <- unlist(list(...))
if(length(lcap)) lcap <- paste(lcap, collapse=' ')
if(ec && length(lcap))
stop('does not work when lcap is specified because of interaction with markdown sub-subheadings')
if(! length(lcap) && ! length(scap)) {
if(ec) {
if(hr) x <- c(mu$hrule, x)
x <- mu$expcoll(paste(expcoll, collapse=' '),
paste(x, collapse='\n'))
cat(x, file=file, append=append, sep='\n')
return(invisible())
}
if(hr) cat(mu$hrule, '\n', sep='', file=file, append=append)
if(table) cat(x, file=file, append=append || hr, sep='\n')
else suppressWarnings(print(x))
return(invisible())
}
if(! length(scap)) {
scap <- lcap
lcap <- NULL
}
scap <- if(table) mu$tcap(scap) else mu$cap(scap)
if(subsub) scap <- paste0('\n
if(hr && ! ec) cat(mu$hrule, '\n', sep='', file=file, append=append)
if(! ec) cat(scap, '\n', sep='', file=file, append=append | hr)
if(length(lcap)) {
lcap <- if(table) mu$ltcap(lcap) else mu$lcap(lcap)
if(length(extra))
lcap <- paste0(
'<TABLE width="100%" BORDER="0" CELLPADDING="3" CELLSPACING="3">',
'<TR><TD>', lcap, '</TD>',
paste(paste0('<TD style="text-align:right;padding: 0 1ex 0 1ex;">',
extra, '</TD>'), collapse=''),
'</TR></TABLE>')
if(ec) x <- c(lcap, x)
else
cat(lcap, '\n', sep='', file=file, append=TRUE)
}
if(ec)
x <- mu$expcoll(paste(expcoll, collapse=' '),
paste(c(if(hr) mu$hrule, scap, x), collapse='\n'))
if(table) cat(x, sep='\n', file=file, append=TRUE)
else
suppressWarnings(print(x))
invisible()
}
putHcap <- function(..., scap=NULL, extra=NULL, subsub=TRUE, hr=TRUE,
table=FALSE, file='', append=FALSE) {
mu <- markupSpecs$html
fcap <- if(table) mu$tcap else mu$cap
flcap <- if(table) mu$ltcap else mu$lcap
output <- function(r)
if(is.logical(file)) return(r)
else {
cat(r, sep='\n', file=file, append=append)
return(invisible())
}
lcap <- unlist(list(...))
if(length(lcap)) lcap <- paste(lcap, collapse=' ')
r <- NULL
if(! length(lcap) && ! length(scap)) return('')
if(! length(scap)) {
scap <- lcap
lcap <- NULL
}
scap <- fcap(scap)
if(subsub) scap <- paste0('\n
if(hr) r <- c(r, mu$hrule)
r <- c(r, scap)
if(length(lcap)) {
lcap <- flcap(lcap)
if(length(extra))
lcap <- paste0(
'<TABLE width="100%" BORDER="0" CELLPADDING="3" CELLSPACING="3">',
'<TR><TD>', lcap, '</TD>',
paste(paste0('<TD style="text-align:right;padding: 0 1ex 0 1ex;">',
extra, '</TD>'), collapse=''),
'</TR></TABLE>')
r <- c(r, lcap)
}
output(r)
}
combineLabels <- function(...)
{
w <- list(...)
labs <- sapply(w[[1]], label)
lw <- length(w)
if(lw > 1) for(j in 2:lw)
{
lab <- sapply(w[[j]], label)
lab <- lab[lab != '']
if(length(lab)) labs[names(lab)] <- lab
}
labs[labs != '']
}
|
require(geometa, quietly = TRUE)
require(testthat)
require(XML)
context("GMLTimePeriod")
test_that("encoding - with dates",{
testthat::skip_on_cran()
start <- ISOdate(2000, 1, 12, 12, 59, 45)
end <- ISOdate(2010, 8, 22, 13, 12, 43)
expect_error(ISOTimePeriod$new(beginPosition = start, endPosition = end))
expect_error(GMLTimePeriod$new(beginPosition = end, endPosition = start))
md <- GMLTimePeriod$new(beginPosition = start, endPosition = end)
xml <- md$encode()
expect_is(xml, "XMLInternalNode")
md2 <- GMLTimePeriod$new(xml = xml)
xml2 <- md2$encode()
expect_true(ISOAbstractObject$compare(md, md2))
})
test_that("encoding - with year+month",{
testthat::skip_on_cran()
md <- GMLTimePeriod$new(beginPosition = "2000-01", endPosition = "2015-02")
xml <- md$encode()
expect_is(xml, "XMLInternalNode")
md2 <- GMLTimePeriod$new(xml = xml)
xml2 <- md2$encode()
expect_true(ISOAbstractObject$compare(md, md2))
})
test_that("encoding - with years",{
testthat::skip_on_cran()
md <- GMLTimePeriod$new(beginPosition = 2000, endPosition = 2010)
xml <- md$encode()
expect_is(xml, "XMLInternalNode")
md2 <- GMLTimePeriod$new(xml = xml)
xml2 <- md2$encode()
expect_true(ISOAbstractObject$compare(md, md2))
})
|
context("map_data")
test_that("lon & lat columns are found", {
df <- mapdeck::capitals
expect_true( mapdeck:::find_lon_column(names(df)) == "lon" )
expect_true( mapdeck:::find_lat_column(names(df)) == "lat" )
l <- mapdeck:::resolve_data( df, list(), "POINT" )
expect_true( l[["lon"]] == "lon" )
expect_true( l[["lat"]] == "lat" )
})
|
rm(list = ls())
if(FALSE){
library(testthat)
library(lavaSearch2)
}
library(nlme)
lava.options(symbols = c("~","~~"))
context("Utils-nlme")
n <- 5e1
mSim <- lvm(c(Y1~1*eta,Y2~1*eta,Y3~1*eta,Y4~1*eta,eta~G+Gender))
latent(mSim) <- ~eta
categorical(mSim, labels = c("M","F")) <- ~Gender
transform(mSim,Id~Y1) <- function(x){1:NROW(x)}
set.seed(10)
dW <- lava::sim(mSim,n,latent = FALSE)
dW <- dW[order(dW$Id),,drop=FALSE]
dL <- reshape2::melt(dW,id.vars = c("G","Id","Gender"), variable.name = "time")
dL <- dL[order(dL$Id),,drop=FALSE]
dL$time.num <- as.numeric(dL$time)
test_that("invariant to the order in the dataset", {
e1.gls <- gls(Y1 ~ Gender, data = dW[order(dW$Id),],
weights = varIdent(form = ~1|Gender),
method = "ML")
out1 <- getVarCov2(e1.gls, cluster = dW$Id)
index.cluster <- as.numeric(names(out1$index.Omega))
expect_true(all(diff(index.cluster)>0))
e2.gls <- gls(Y1 ~ Gender, data = dW[order(dW$Gender),],
weights = varIdent(form = ~1|Gender),
method = "ML")
out2 <- getVarCov2(e2.gls, cluster = dW$Id)
index.cluster <- as.numeric(names(out2$index.Omega))
expect_true(all(diff(index.cluster)>0))
})
e.gls <- nlme::gls(value ~ time + G + Gender,
weights = varIdent(form =~ 1|time),
data = dL, method = "ML")
test_that("Heteroschedasticity", {
vec.sigma <- c(1,coef(e.gls$modelStruct$varStruct, unconstrained = FALSE))
expect_equal(diag(vec.sigma^2 * sigma(e.gls)^2),
unname(getVarCov2(e.gls, cluster = "Id")$Omega))
})
e.lme <- nlme::lme(value ~ time + G + Gender,
random = ~ 1|Id,
data = dL,
method = "ML")
e.lme.bis <- nlme::lme(value ~ time + G + Gender,
random = ~ 1|Id,
correlation = corCompSymm(),
data = dL,
method = "ML")
e.gls <- nlme::gls(value ~ time + G + Gender,
correlation = corCompSymm(form=~ 1|Id),
data = dL, method = "ML")
test_that("Compound symmetry", {
expect_equal(unclass(getVarCov(e.gls)),
unname(getVarCov2(e.gls)$Omega))
expect_equal(unname(getVarCov(e.lme, type = "marginal", individuals = 1)[[1]]),
unname(getVarCov2(e.lme)$Omega))
expect_equal(unname(getVarCov(e.lme.bis, type = "marginal", individuals = 1)[[1]]),
unname(getVarCov2(e.lme.bis)$Omega))
})
e.lme <- nlme::lme(value ~ time + G + Gender,
random = ~ 1|Id,
correlation = corSymm(form =~ time.num|Id),
data = dL,
method = "ML")
e.gls <- nlme::gls(value ~ time + G + Gender,
correlation = corSymm(form=~ time.num|Id),
data = dL, method = "ML")
test_that("Unstructured ", {
expect_equal(unclass(getVarCov(e.gls)),
unname(getVarCov2(e.gls)$Omega))
expect_equal(unname(getVarCov(e.lme, type = "marginal", individuals = 1)[[1]]),
unname(getVarCov2(e.lme)$Omega))
})
e.lme <- nlme::lme(value ~ time + G + Gender,
random = ~ 1|Id,
correlation = corSymm(form =~ time.num|Id),
weight = varIdent(form = ~ 1|time),
data = dL,
method = "ML")
e.gls <- nlme::gls(value ~ time + G + Gender,
correlation = corSymm(form =~ time.num|Id),
weight = varIdent(form = ~ 1|time),
data = dL, method = "ML")
test_that("Unstructured with weights", {
expect_equal(unclass(getVarCov(e.gls)),
unname(getVarCov2(e.gls)$Omega))
expect_equal(unname(getVarCov(e.lme, type = "marginal", individuals = 1)[[1]]),
unname(getVarCov2(e.lme)$Omega))
})
dfW <- data.frame("id" = c("1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30"),
"group" = c("AC", "AB", "AB", "BC", "BC", "AC", "AB", "AC", "BC", "AC", "BC", "AB", "AB", "BC", "AB", "AC", "BC", "AC", "AC", "AC", "BC", "AB", "AB", "BC", "AB", "AB", "BC", "AC", "BC", "AC"),
"vasaucA" = c( 51.0, 42.0, 54.0, NA, NA, 16.5, 58.5, 129.0, NA, 52.5, NA, 23.5, 98.0, NA, 177.0, 67.0, NA, 55.0, 79.5, 3.5, NA, 33.0, 9.5, NA, 47.5, 66.5, NA, 85.5, NA, 143.5),
"vasaucB" = c(NA, 35.0, 62.0, 64.0, 80.5, NA, 33.5, NA, 59.0, NA, 32.5, 13.0, 120.0, 102.0, 166.5, NA, 138.0, NA, NA, NA, 161.5, 53.5, 13.5, 116.5, 68.0, 104.5, 103.0, NA, 36.0, NA),
"vasaucC" = c( 48.5, NA, NA, 65.0, 94.5, 19.5, NA, 102.0, 56.5, 78.5, 18.0, NA, NA, 14.0, NA, 51.0, 168.5, 10.0, 28.0, 3.5, 127.0, NA, NA, 36.5, NA, NA, 33.5, 45.0, 7.5, 132.0))
level.Id <- sort(as.numeric(as.character(dfW$id)))
dfW$id <- factor(dfW$id, levels = level.Id)
dfW$group <- as.factor(dfW$group)
dfL <- reshape2::melt(dfW, id.vars = c("id","group"),
measure.vars = c("vasaucA","vasaucB","vasaucC"),
value.name = "vasauc",
variable.name = "treatment")
dfL <- dfL[order(dfL$id, dfL$treatment),]
dfL$treatment <- gsub("vasauc","",dfL$treatment)
dfL$treatment <- as.factor(dfL$treatment)
dfL$treatment.num <- as.numeric(dfL$treatment)
dfL2 <- dfL
dfL2$id <- as.character(dfL2$id)
dfL2[dfL2$id == "2","id"] <- "0"
dfL2[dfL2$id == "1","id"] <- "2"
dfL2[dfL2$id == "0","id"] <- "1"
dfL2$id <- factor(dfL2$id, levels = level.Id)
dfL2 <- dfL2[order(dfL2$id,dfL2$treatment),]
e.gls <- gls(vasauc ~ treatment,
correlation = corSymm(form =~ treatment.num | id),
weights = varIdent(form =~ 1|treatment),
na.action = na.omit,
data = dfL)
logLik(e.gls)
e.gls2 <- gls(vasauc ~ treatment,
correlation = corSymm(form =~ treatment.num | id),
weights = varIdent(form =~ 1|treatment),
na.action = na.omit,
data = dfL2)
logLik(e.gls2)
Sigma <- unname(getVarCov2(e.gls)$Omega)
Sigma2 <- unname(getVarCov2(e.gls2)$Omega)
expect_equal(Sigma, Sigma2, tol = 1e-5)
expect_equal(Sigma[c(1,2),c(1,2)],
unclass(nlme::getVarCov(e.gls2, individual = 1)),
tol = 1e-5)
expect_equal(Sigma[c(1,2),c(1,2)],
unclass(nlme::getVarCov(e.gls, individual = 2)),
tol = 1e-5)
expect_equal(Sigma[c(1,3),c(1,3)],
unclass(nlme::getVarCov(e.gls2, individual = 2)),
tol = 1e-5)
expect_equal(Sigma[c(1,3),c(1,3)],
unclass(nlme::getVarCov(e.gls, individual = 1)),
tol = 1e-5)
expect_equal(Sigma[c(2,3),c(2,3)],
unclass(nlme::getVarCov(e.gls2, individual = 4)),
tol = 1e-5)
expect_equal(Sigma[c(2,3),c(2,3)],
unclass(nlme::getVarCov(e.gls, individual = 4)),
tol = 1e-5)
e.lme <- nlme::lme(value ~ time + G + Gender,
random=~1|Id/Gender,
data = dL,
method = "ML")
expect_error(getVarCov2(e.lme))
df.PET <- data.frame("ID" = c( 925, 2020, 2059, 2051, 2072, 2156, 2159, 2072, 2020, 2051, 2231,
2738, 2231, 2777, 939, 539, 2738, 2777, 925, 2156, 2159, 2059),
"session" = c("V", "V", "V", "V", "V", "V", "V", "C", "C", "C", "C",
"C", "V", "C", "C", "V", "V", "V", "C", "C", "C", "C"),
"PET" = c(-2.53, -6.74, -8.17, -2.44, -3.54, -1.27, -0.55, -0.73, -1.42, 3.35,
-2.11, 2.60, -4.52, 0.99, -1.02, -1.78, -5.86, 1.20, NA, NA, NA, NA)
)
df.PET$session.index <- as.numeric(as.factor(df.PET$session))
e.lme <- lme(PET ~ session,
random = ~ 1 | ID,
weights = varIdent(form=~session.index|session),
na.action = "na.omit",
data = df.PET)
test_that("getVarCov2 - NA", {
expect_equal(matrix(c( 7.893839, 1.583932, 1.583932, 4.436933), 2, 2),
unname(getVarCov2(e.lme)$Omega), tol = 1e-6, scale = 1)
})
|
context("dnf")
test_that("dnf", {
expr <- quote(if (x > 1) y > 3)
clause <- as_dnf(expr)
expect_equal(length(clause), 2)
})
test_that("rewritten if", {
expr <- quote(!(gender %in% "male" & y > 3) | x > 6)
clause <- as_dnf(expr)
expect_equal(as.character(clause), '!(gender %in% "male") | y <= 3 | x > 6')
})
test_that("clause as.character", {
expr <- quote(if (x > 1) y > 3)
clause <- as_dnf(expr)
expect_equal(as.character(clause), "x <= 1 | y > 3")
})
test_that("clause as if", {
expr <- quote(if (x > 1) y > 3)
clause <- as_dnf(expr)
expect_equal(as.character(clause, as_if = TRUE), "if (x > 1) y > 3")
expr <- quote(if (x > 1) (y > 3))
clause <- as_dnf(expr)
expect_equal(as.character(clause, as_if = TRUE), "if (x > 1) y > 3")
expr <- quote(!(x > 1)|(y > 3))
clause <- as_dnf(expr)
expect_equal(as.character(clause, as_if = TRUE), "if (x > 1) y > 3")
expr <- quote(!(x > 1) | y > 3)
clause <- as_dnf(expr)
expect_equal(as.character(clause, as_if = TRUE), "if (x > 1) y > 3")
expr <- quote(!(x > 1 & z > 2) | y > 3)
clause <- as_dnf(expr)
expect_equal(as.character(clause), "x <= 1 | z <= 2 | y > 3")
expect_equal(as.character(clause, as_if=TRUE), "if (x > 1 & z > 2) y > 3")
})
test_that("simple clause works",{
expr <- quote(x > 1)
clause <- as_dnf(expr)
expect_equal(as.character(clause), "x > 1")
expr <- quote((x > 1))
clause <- as_dnf(expr)
expect_equal(as.character(clause), "x > 1")
expr <- quote(!(x > 1))
clause <- as_dnf(expr)
expect_equal(as.character(clause), "x <= 1")
})
test_that("low level stuff works", {
expect_equal(op(quote(1)), 1)
expr <- quote( x > 1 || y > 2)
dnf <- as_dnf(expr)
expect_equal(as.character(dnf), "x > 1 | y > 2")
expect_output(print(dnf), as.character(dnf))
expr <- quote(while(true){})
expect_error(as_dnf(expr), "Invalid expression")
})
test_that("long statement works", {
long_sum <- paste0("x", 1:100, collapse = " + ")
text <- paste0(long_sum, " == 0")
expr <- parse(text = text)[[1]]
dnf <- as_dnf(expr)
s <- as.character(dnf)
expect_equal(s, text)
})
describe("as_dnf", {
it("works with simple expressions", {
dnf <- as_dnf(quote(x > 1))
expect_equal(dnf[[1]], quote(x > 1))
expect_equal(length(dnf), 1)
dnf <- as_dnf(quote(x == 1))
expect_equal(dnf[[1]], quote(x == 1))
expect_equal(length(dnf), 1)
dnf <- as_dnf(quote(A == "a"))
expect_equal(dnf[[1]], quote(A == "a"))
expect_equal(length(dnf), 1)
})
it("works with if statements", {
dnf <- as_dnf(quote(if (x > 1) y < 0))
expect_equivalent(dnf, expression(x <=1, y < 0))
dnf <- as_dnf(quote(if (A == "a") y < 0))
expect_equivalent(dnf, expression(A != "a", y < 0))
dnf <- as_dnf(quote(if (A != "a") y < 0))
expect_equivalent(dnf, expression(A == "a", y < 0))
dnf <- as_dnf(quote(if (A %in% "a") y < 0))
expect_equivalent(dnf, expression(!(A %in% "a"), y < 0))
})
it("works with complex if statements", {
dnf <- as_dnf(quote(if (x > 1 & z > 1) y < 0))
expect_equal(dnf[[1]], quote(x <= 1))
expect_equal(dnf[[2]], quote(z <= 1))
expect_equal(dnf[[3]], quote(y < 0))
expect_equal(length(dnf), 3)
dnf <- as_dnf(quote(if (x > 1 & z > 1 & w > 1) y < 0))
expect_equivalent(dnf, expression(x <= 1, z <= 1, w <= 1, y < 0))
})
})
|
data("dataMultilevelIV")
all.L3.models <- c("REF", "FE_L2", "FE_L3", "GMM_L2", "GMM_L3")
all.L2.models <- c("REF", "FE_L2", "GMM_L2")
context("Correctness - multilevelIV - Formula transformations")
test_that("Transformations are correct for L2", {
skip_on_cran()
expect_silent(correct.res <- multilevelIV(formula = y ~ X11 + X12 + X13 + X14 + X15 + X21 + X22 + X23 + X24 +
X31 + X32 + X33 + (1+X11 | SID) | endo(X15, X21),
data = dataMultilevelIV, verbose = FALSE))
data.altered <- dataMultilevelIV
data.altered$y <- exp(data.altered$y)
expect_silent(res.trans.lhs <- multilevelIV(formula = log(y) ~ X11 + X12 + X13 + X14 + X15 + X21 + X22 + X23 + X24 +
X31 + X32 + X33 + (1+X11 | SID) | endo(X15, X21),
data = data.altered, verbose = FALSE))
expect_equal(coef(res.trans.lhs), coef(correct.res))
for(m in all.L2.models)
expect_equal(coef(summary(res.trans.lhs, model = m)), coef(summary(correct.res, model = m)))
data.altered <- dataMultilevelIV
data.altered$X23 <- exp(data.altered$X23)
expect_silent(res.trans.exo <- multilevelIV(formula = y ~ X11 + X12 + X13 + X14 + X15 + X21 + X22 + log(X23) + X24 +
X31 + X32 + X33 + (1+X11 | SID) | endo(X15, X21),
data = data.altered, verbose = FALSE))
expect_equal(coef(res.trans.exo), coef(correct.res), check.attributes = FALSE)
for(m in all.L2.models)
expect_equal(coef(summary(res.trans.exo, model = m)), coef(summary(correct.res, model = m)), check.attributes = FALSE)
data.altered <- dataMultilevelIV
data.altered$X15 <- exp(data.altered$X15)
expect_silent(res.trans.endo <- multilevelIV(formula = y ~ X11 + X12 + X13 + X14 + log(X15) + X21 + X22 + X23 + X24 +
X31 + X32 + X33 + (1+X11 | SID) | endo(log(X15), X21),
data = data.altered, verbose = FALSE))
expect_equal(coef(res.trans.endo), coef(correct.res), check.attributes = FALSE)
for(m in all.L2.models)
expect_equal(coef(summary(res.trans.endo, model = m)), coef(summary(correct.res, model = m)), check.attributes = FALSE)
data.altered <- dataMultilevelIV
data.altered$X11 <- exp(data.altered$X11)
expect_silent(res.trans.slope <- multilevelIV(formula = y ~ log(X11) + X12 + X13 + X14 + X15 + X21 + X22 + X23 + X24 +
X31 + X32 + X33 + (1+log(X11) | SID) | endo(X15, X21),
data = data.altered, verbose = FALSE))
expect_equal(coef(res.trans.slope), coef(correct.res), check.attributes = FALSE)
for(m in all.L2.models)
expect_equal(coef(summary(res.trans.slope, model = m)), coef(summary(correct.res, model = m)), check.attributes = FALSE)
})
test_that("Transformations are correct for L3", {
skip_on_cran()
expect_message(correct.res <- multilevelIV(formula = y ~ X11 + X12 + X13 + X14 + X15 + X21 + X22 + X23 + X24 +
X31 + X32 + X33 + (1+X11 | CID) + (1 | SID) | endo(X15, X21),
data = dataMultilevelIV, verbose = FALSE), regexp = "singular")
data.altered <- dataMultilevelIV
data.altered$y <- exp(data.altered$y)
expect_message(res.trans.lhs <- multilevelIV(formula = log(y) ~ X11 + X12 + X13 + X14 + X15 + X21 + X22 + X23 + X24 +
X31 + X32 + X33 + (1+X11 | CID) + (1 | SID) | endo(X15, X21),
data = data.altered, verbose = FALSE), regexp = "singular")
expect_equal(coef(res.trans.lhs), coef(correct.res), check.attributes = FALSE)
for(m in all.L3.models)
expect_equal(coef(summary(res.trans.lhs, model = m)), coef(summary(correct.res, model = m)), check.attributes = FALSE)
data.altered <- dataMultilevelIV
data.altered$X23 <- exp(data.altered$X23)
expect_message(res.trans.exo <- multilevelIV(formula = y ~ X11 + X12 + X13 + X14 + X15 + X21 + X22 + log(X23) + X24 +
X31 + X32 + X33 + (1+X11 | CID) + (1 | SID) | endo(X15, X21),
data = data.altered, verbose = FALSE), regexp = "singular")
expect_equal(coef(res.trans.exo), coef(correct.res), check.attributes = FALSE)
for(m in all.L3.models)
expect_equal(coef(summary(res.trans.exo, model = m)), coef(summary(correct.res, model = m)), check.attributes = FALSE)
data.altered <- dataMultilevelIV
data.altered$X15 <- exp(data.altered$X15)
expect_message(res.trans.endo <- multilevelIV(formula = y ~ X11 + X12 + X13 + X14 + log(X15) + X21 + X22 + X23 + X24 +
X31 + X32 + X33 + (1+X11 | CID) + (1 | SID) | endo(log(X15), X21),
data = data.altered, verbose = FALSE), regexp = "singular")
expect_equal(coef(res.trans.endo), coef(correct.res), check.attributes = FALSE)
for(m in all.L3.models)
expect_equal(coef(summary(res.trans.endo, model = m)), coef(summary(correct.res, model = m)), check.attributes = FALSE)
data.altered <- dataMultilevelIV
data.altered$X11 <- exp(data.altered$X11)
expect_message(res.trans.slope <- multilevelIV(formula = y ~ log(X11) + X12 + X13 + X14 + X15 + X21 + X22 + X23 + X24 +
X31 + X32 + X33 + (1+log(X11) | CID) + (1 | SID) | endo(X15, X21),
data = data.altered, verbose = FALSE), regexp = "singular")
expect_equal(coef(res.trans.slope), coef(correct.res), check.attributes = FALSE)
for(m in all.L3.models)
expect_equal(coef(summary(res.trans.slope, model = m)), coef(summary(correct.res, model = m)), check.attributes = FALSE)
})
context("Correctness - multilevelIV - Data sorting")
test_that("Unsorted data is correct L2", {
skip_on_cran()
rownames(dataMultilevelIV) <- as.character(seq(from=nrow(dataMultilevelIV)+100000, to=1+100000))
expect_silent(res.sorted <- multilevelIV(formula = y ~ X11 + X12 + X13 + X14 + X15 + X21 + X22 + X23 + X24 +
X31 + X32 + X33 + (1+X11 | SID) | endo(X15, X21),
data = dataMultilevelIV, verbose = FALSE))
data.altered <- dataMultilevelIV
data.altered <- data.altered[sample(x=nrow(dataMultilevelIV), size = nrow(dataMultilevelIV), replace = FALSE), ]
expect_silent(res.unsorted <- multilevelIV(formula = y ~ X11 + X12 + X13 + X14 + X15 + X21 + X22 + X23 + X24 +
X31 + X32 + X33 + (1+X11 | SID) | endo(X15, X21),
data = data.altered, verbose = FALSE))
expect_equal(coef(res.unsorted), coef(res.sorted))
for(m in all.L2.models){
expect_equal(coef(summary(res.unsorted, model = m)), coef(summary(res.sorted, model = m)))
expect_equal(names(fitted(res.sorted, model = m)), rownames(dataMultilevelIV))
expect_equal(names(resid(res.sorted, model = m)), rownames(dataMultilevelIV))
expect_equal(names(fitted(res.unsorted, model = m)), rownames(data.altered))
expect_equal(names(resid(res.unsorted, model = m)), rownames(data.altered))
}
})
test_that("Unsorted data is correct L3", {
skip_on_cran()
rownames(dataMultilevelIV) <- as.character(seq(from=nrow(dataMultilevelIV)+100000, to=1+100000))
expect_silent(res.sorted <- multilevelIV(formula = y ~ X11 + X12 + X13 + X14 + X15 + X21 + X22 + X23 + X24 +
X31 + X32 + X33 + (1+X12|CID)+(1+X11 | SID) | endo(X15, X21),
data = dataMultilevelIV, verbose = FALSE))
data.altered <- dataMultilevelIV
data.altered <- data.altered[sample.int(n=nrow(dataMultilevelIV), replace = FALSE), ]
expect_silent(res.unsorted <- multilevelIV(formula = y ~ X11 + X12 + X13 + X14 + X15 + X21 + X22 + X23 + X24 +
X31 + X32 + X33 + (1+X12|CID)+(1+X11 | SID) | endo(X15, X21),
data = data.altered, verbose = FALSE))
expect_equal(coef(res.unsorted), coef(res.sorted))
for(m in all.L3.models){
expect_equal(coef(summary(res.unsorted, model = m)), coef(summary(res.sorted, model = m)))
expect_equal(names(fitted(res.sorted, model = m)), rownames(dataMultilevelIV))
expect_equal(names(resid(res.sorted, model = m)), rownames(dataMultilevelIV))
expect_equal(names(fitted(res.unsorted, model = m)), rownames(data.altered))
expect_equal(names(resid(res.unsorted, model = m)), rownames(data.altered))
}
})
context("Correctness - multilevelIV - Reproduce results")
test_that("REF is same as lmer()", {
skip_on_cran()
expect_silent(res.ml2 <- multilevelIV(formula = y ~ X11 + X12 + X13 + X14 + X15 + X21 + X22 + X23 + X24 +
X31 + X32 + X33 + (1+X11 | SID) | endo(X15, X21),
data = dataMultilevelIV, verbose = FALSE))
expect_silent(res.lmer2 <- lmer(formula = y ~ X11 + X12 + X13 + X14 + X15 + X21 + X22 + X23 + X24 +
X31 + X32 + X33 + (1+X11 | SID),
data = dataMultilevelIV,
control = lmerControl(optimizer = "Nelder_Mead",
optCtrl = list(maxfun=100000))))
expect_equal(coef(res.ml2)[, "REF"], coef(summary(res.lmer2))[, "Estimate"])
expect_silent(res.ml3 <- multilevelIV(formula = y ~ X11 + X12 + X13 + X14 + X15 + X21 + X22 + X23 + X24 +
X31 + X32 + X33 + (1|CID)+(1+X11 | SID) | endo(X15, X21),
data = dataMultilevelIV, verbose = FALSE))
expect_silent(res.lmer3 <- lmer(formula = y ~ X11 + X12 + X13 + X14 + X15 + X21 + X22 + X23 + X24 +
X31 + X32 + X33 +(1|CID)+ (1+X11 | SID),
data = dataMultilevelIV,
control = lmerControl(optimizer = "Nelder_Mead",
optCtrl = list(maxfun=100000))))
expect_equal(coef(res.ml3)[, "REF"], coef(summary(res.lmer3))[, "Estimate"])
})
test_that("Retrieve generated data params", {
skip_on_cran()
expect_silent(res.ml3 <- multilevelIV(formula = y ~ X11 + X12 + X13 + X14 + X15 + X21 + X22 + X23 + X24 +
X31 + X32 + X33 + (1|CID)+(1| SID) | endo(X15),
data = dataMultilevelIV, verbose = FALSE))
correct.coefs <- c("(Intercept)"=64,
X11 = 3, X12=9, X13=-2, X14 = 2,
X15 = -1,
X21 = -1.5, X22 = -4, X23 = -3, X24 = 6,
X31 = 0.5, X32 = 0.1, X33 = -0.5)
expect_equal(coef(res.ml3)[, "REF"], correct.coefs, tolerance = 0.1)
})
test_that("Reproduce results by Kim and Frees 2007", {
skip_on_cran()
kf.formula <- TLI ~ GRADE_3 + RETAINED + SWITCHSC + S_FREELU +
FEMALE + BLACK + HISPANIC + OTHER+ C_COHORT+
T_EXPERI + CLASS_SI+ P_MINORI + (1 + GRADE_3|NEWCHILD) | endo(CLASS_SI)
df.data.kf <- read.csv("dallas2485.csv", header=TRUE)
expect_silent(res.kf <- multilevelIV(formula = kf.formula, data = df.data.kf, verbose = FALSE))
correct.coefs <- cbind(REF = c("(Intercept)"=69.78, GRADE_3=3.375, RETAINED=9.205, SWITCHSC=-0.365, S_FREELU=-0.227, FEMALE=-1.234, BLACK=-4.745,
HISPANIC=-3.608, OTHER=6.526, C_COHORT=1.497, T_EXPERI=-0.116, CLASS_SI=0.157, P_MINORI=0.069))
expect_equal(coef(res.kf)[, "REF"], correct.coefs[, "REF"], tolerance=0.1)
})
context("Correctness - multilevelIV - Predict")
expect_silent(res.m2 <- multilevelIV(y ~ X11 + X12 + X13 + X14 + X15 + X21 + X22 + X23 + X24 + X31 +
X32 + X33 + (1|SID) | endo(X15),
data = dataMultilevelIV, verbose = FALSE))
expect_silent(res.m3 <- multilevelIV(y ~ X11 + X12 + X13 + X14 + X15 + X21 + X22 + X23 + X24 + X31 +
X32 + X33 + (1| CID) + (1|SID) | endo(X15),
data = dataMultilevelIV, verbose = FALSE))
test_that("No newdata results in fitted values", {
for(m in all.L2.models)
expect_equal(predict(res.m2, model=m), fitted(res.m2, model=m))
for(m in all.L3.models)
expect_equal(predict(res.m3, model=m), fitted(res.m3, model=m))
})
test_that("Same prediction data as for fitting results in fitted values", {
for(m in all.L2.models)
expect_equal(predict(res.m2, newdata=dataMultilevelIV,model=m), fitted(res.m2, model=m))
for(m in all.L3.models)
expect_equal(predict(res.m3, newdata=dataMultilevelIV, model=m), fitted(res.m3, model=m))
})
test_that("Correct structure of predictions", {
for(m in all.L2.models){
expect_silent(pred.2 <- predict(res.m2, newdata=dataMultilevelIV, model=m))
expect_true(is.numeric(pred.2))
expect_true(length(pred.2) == nrow(dataMultilevelIV))
expect_true(all(names(pred.2) == names(fitted(res.m2, model=m))))
expect_true(all(names(pred.2) == rownames(dataMultilevelIV)))
}
for(m in all.L3.models){
expect_silent(pred.3 <- predict(res.m3, newdata=dataMultilevelIV, model=m))
expect_true(is.numeric(pred.3))
expect_true(length(pred.3) == nrow(dataMultilevelIV))
expect_true(all(names(pred.3) == names(fitted(res.m3, model=m))))
expect_true(all(names(pred.3) == rownames(dataMultilevelIV)))
}
})
test_that("Correct when using transformations in the formula", {
skip_on_cran()
expect_silent(res.m2 <- multilevelIV(y ~ X11 + X12 + X13 + X14 + I((X15+14)/4) + X21 + X22 + X23 +
X24 + log(X31) + X32 + X33 + (1|SID) | endo(I((X15+14)/4)),
data = dataMultilevelIV, verbose = FALSE))
for(m in all.L2.models)
expect_equal(predict(res.m2, newdata=dataMultilevelIV,model=m), fitted(res.m2, model=m))
expect_silent(res.m3 <- multilevelIV(y ~ X11 + X12 + X13 + X14 + I((X15+14)/4) + X21 + X22 + X23 +
X24 + log(X31) + X32 + X33 + (1| CID) + (1|SID) | endo(I((X15+14)/4)),
data = dataMultilevelIV, verbose = FALSE))
for(m in all.L3.models)
expect_equal(predict(res.m3, newdata=dataMultilevelIV, model=m), fitted(res.m3, model=m))
})
|
wald.ci <-
function (x, n = 100, conf.level = 0.95)
{
alpha = 1 - conf.level
p = x/n
zstar <- -qnorm(alpha/2)
interval <- p + c(-1, 1) * zstar * sqrt(p * (1 - p)/n)
attr(interval, "conf.level") <- conf.level
return(interval)
}
|
library(keras)
input1 <- layer_input(name = "input1", dtype = "float32", shape = c(1))
input2 <- layer_input(name = "input2", dtype = "float32", shape = c(1))
output1 <- layer_add(name = "output1", inputs = c(input1, input2))
output2 <- layer_add(name = "output2", inputs = c(input2, input1))
model <- keras_model(
inputs = c(input1, input2),
outputs = c(output1, output2)
)
export_savedmodel(model, "keras-multiple", as_text = TRUE)
|
holdout <- function(data, prop = .5, grouping = NULL, seed = NULL) {
if (!is.null(seed)) {
old.seed <- .Random.seed
old.kind <- RNGkind()[1]
set.seed(seed)
}
if (!is.null(grouping)) {
if (length(prop) > 1 & length(prop) != nrow(unique(data[grouping]))) {
prop <- prop[1]
warning('The length of prop and the number of groups do not match. Only the first proportion is used.')
}
if (any(is.na(data[grouping]))) {
data <- data[!is.na(data[grouping]), ]
warning('Data contains observations with missing values on the grouping variables. These were excluded.')
}
n_cali <- ceiling(table(data[grouping]) * prop)
filter <- NULL
for (i in as.character(unlist(unique(data[grouping])))) {
tmp <- which(data[grouping] == i)
tmp_filter <- sample(tmp, n_cali[i])
filter <- c(filter, tmp_filter)
}
} else {
n_cali <- ceiling(nrow(data)*prop)
filter <- sort(sample(nrow(data), n_cali))
}
output <- list(calibrate = data[filter, ], validate = data[-filter, ])
class(output) <- 'stuartHoldout'
if (!is.null(seed)) {
RNGkind(old.kind)
.Random.seed <<- old.seed
}
return(output)
}
|
rm(list = ls())
library(data.table)
library(foreign)
library(pdynmc)
setwd(dir = "D:/Work/20_Projekte/50_Linear-Dynamic-Panel-Models/50_Drafts/20_Paper/50_Revisiting-habits-and-heterogeneity-in-demands")
dat <- read.dta(file = "bc2.dta", convert.dates = TRUE, convert.factors = TRUE,
missing.type = FALSE,
convert.underscore = FALSE, warn.missing.labels = TRUE)
dat$yearquarter <- as.character(dat$yearquarter)
dat$yearquarterA <- as.character(dat$yearquarterA)
sink(file="HNRandAS_log.txt")
m1 <- pdynmc(dat = dat, varname.i = "i", varname.t = "t",
use.mc.diff = TRUE, use.mc.lev = FALSE, use.mc.nonlin = TRUE,
include.y = FALSE, varname.y = "foodin", lagTerms.y = 1,
include.x = TRUE, varname.reg.end = "lrxtot", lagTerms.reg.end = 0, maxLags.reg.end = 5,
varname.reg.ex = "lrhearn", lagTerms.reg.ex = 0, maxLags.reg.ex = 5,
include.x.instr = TRUE, varname.reg.instr = "lrhearn", include.x.toInstr = FALSE,
fur.con = FALSE, fur.con.diff = NULL, fur.con.lev = NULL,
varname.reg.fur = NULL, lagTerms.reg.fur = NULL,
include.dum = TRUE, dum.diff = TRUE, dum.lev = TRUE, varname.dum = c("week", "yearquarter"),
w.mat = "iid.err", std.err = "corrected", estimation = "onestep",
opt.meth = "BFGS")
summary(m1)
m2 <- pdynmc(dat = dat, varname.i = "i", varname.t = "t",
use.mc.diff = TRUE, use.mc.lev = FALSE, use.mc.nonlin = TRUE,
include.y = FALSE, varname.y = "foodin", lagTerms.y = 1,
include.x = TRUE, varname.reg.end = "lrxtot", lagTerms.reg.end = 0, maxLags.reg.end = 5,
varname.reg.ex = "lrhearn", lagTerms.reg.ex = 0, maxLags.reg.ex = 5,
include.x.instr = TRUE, varname.reg.instr = "lrhearn", include.x.toInstr = FALSE,
fur.con = FALSE, fur.con.diff = NULL, fur.con.lev = NULL,
varname.reg.fur = NULL, lagTerms.reg.fur = NULL,
include.dum = TRUE, dum.diff = TRUE, dum.lev = FALSE, varname.dum = c("week", "yearquarter"),
w.mat = "iid.err", std.err = "corrected", estimation = "onestep",
opt.meth = "BFGS")
summary(m2)
m3 <- pdynmc(dat = dat, varname.i = "i", varname.t = "t",
use.mc.diff = TRUE, use.mc.lev = FALSE, use.mc.nonlin = TRUE,
include.y = FALSE, varname.y = "foodin", lagTerms.y = 1,
include.x = TRUE, varname.reg.end = "lrxtot", lagTerms.reg.end = 0, maxLags.reg.end = 5,
varname.reg.ex = "lrhearn", lagTerms.reg.ex = 0, maxLags.reg.ex = 5,
include.x.instr = TRUE, varname.reg.instr = "lrhearn", include.x.toInstr = FALSE,
fur.con = FALSE, fur.con.diff = NULL, fur.con.lev = NULL,
varname.reg.fur = NULL, lagTerms.reg.fur = NULL,
include.dum = TRUE, dum.diff = FALSE, dum.lev = TRUE, varname.dum = c("week", "yearquarter"),
w.mat = "iid.err", std.err = "corrected", estimation = "onestep",
opt.meth = "BFGS")
summary(m3)
m4 <- pdynmc(dat = dat, varname.i = "i", varname.t = "t",
use.mc.diff = TRUE, use.mc.lev = FALSE, use.mc.nonlin = TRUE,
include.y = FALSE, varname.y = "foodin", lagTerms.y = 1,
include.x = TRUE, varname.reg.end = "lrxtot", lagTerms.reg.end = 0, maxLags.reg.end = 5,
varname.reg.ex = "lrhearn", lagTerms.reg.ex = 0, maxLags.reg.ex = 5,
include.x.instr = TRUE, varname.reg.instr = "lrhearn", include.x.toInstr = FALSE,
fur.con = FALSE, fur.con.diff = NULL, fur.con.lev = NULL,
varname.reg.fur = NULL, lagTerms.reg.fur = NULL,
include.dum = FALSE, dum.diff = NULL, dum.lev = NULL, varname.dum = NULL,
w.mat = "iid.err", std.err = "corrected", estimation = "onestep",
opt.meth = "BFGS")
summary(m4)
m5 <- pdynmc(dat = dat, varname.i = "i", varname.t = "t",
use.mc.diff = TRUE, use.mc.lev = FALSE, use.mc.nonlin = TRUE,
include.y = FALSE, varname.y = "foodin", lagTerms.y = 1,
include.x = TRUE, varname.reg.end = "lrxtot", lagTerms.reg.end = 0, maxLags.reg.end = 5,
varname.reg.ex = "lrhearn", lagTerms.reg.ex = 0, maxLags.reg.ex = 5,
include.x.instr = TRUE, varname.reg.instr = "lrhearn", include.x.toInstr = FALSE,
fur.con = TRUE, fur.con.diff = TRUE, fur.con.lev = TRUE,
varname.reg.fur = c("nch","nad","hage","hage2"), lagTerms.reg.fur = c(0,0,0,0),
include.dum = TRUE, dum.diff = TRUE, dum.lev = TRUE, varname.dum = c("week", "yearquarter"),
w.mat = "iid.err", std.err = "corrected", estimation = "onestep",
opt.meth = "BFGS")
summary(m5)
m6 <- pdynmc(dat = dat, varname.i = "i", varname.t = "t",
use.mc.diff = TRUE, use.mc.lev = FALSE, use.mc.nonlin = TRUE,
include.y = FALSE, varname.y = "foodin", lagTerms.y = 1,
include.x = TRUE, varname.reg.end = "lrxtot", lagTerms.reg.end = 0, maxLags.reg.end = 5,
varname.reg.ex = "lrhearn", lagTerms.reg.ex = 0, maxLags.reg.ex = 5,
include.x.instr = TRUE, varname.reg.instr = "lrhearn", include.x.toInstr = FALSE,
fur.con = TRUE, fur.con.diff = TRUE, fur.con.lev = TRUE,
varname.reg.fur = c("nch","nad","hage","hage2"), lagTerms.reg.fur = c(0,0,0,0),
include.dum = TRUE, dum.diff = TRUE, dum.lev = FALSE, varname.dum = c("week", "yearquarter"),
w.mat = "iid.err", std.err = "corrected", estimation = "onestep",
opt.meth = "BFGS")
summary(m6)
m7 <- pdynmc(dat = dat, varname.i = "i", varname.t = "t",
use.mc.diff = TRUE, use.mc.lev = FALSE, use.mc.nonlin = TRUE,
include.y = FALSE, varname.y = "foodin", lagTerms.y = 1,
include.x = TRUE, varname.reg.end = "lrxtot", lagTerms.reg.end = 0, maxLags.reg.end = 5,
varname.reg.ex = "lrhearn", lagTerms.reg.ex = 0, maxLags.reg.ex = 5,
include.x.instr = TRUE, varname.reg.instr = "lrhearn", include.x.toInstr = FALSE,
fur.con = TRUE, fur.con.diff = TRUE, fur.con.lev = TRUE,
varname.reg.fur = c("nch","nad","hage","hage2"), lagTerms.reg.fur = c(0,0,0,0),
include.dum = TRUE, dum.diff = FALSE, dum.lev = TRUE, varname.dum = c("week", "yearquarter"),
w.mat = "iid.err", std.err = "corrected", estimation = "onestep",
opt.meth = "BFGS")
summary(m7)
m8 <- pdynmc(dat = dat, varname.i = "i", varname.t = "t",
use.mc.diff = TRUE, use.mc.lev = FALSE, use.mc.nonlin = TRUE,
include.y = FALSE, varname.y = "foodin", lagTerms.y = 1,
include.x = TRUE, varname.reg.end = "lrxtot", lagTerms.reg.end = 0, maxLags.reg.end = 5,
varname.reg.ex = "lrhearn", lagTerms.reg.ex = 0, maxLags.reg.ex = 5,
include.x.instr = TRUE, varname.reg.instr = "lrhearn", include.x.toInstr = FALSE,
fur.con = TRUE, fur.con.diff = TRUE, fur.con.lev = TRUE,
varname.reg.fur = c("nch","nad","hage","hage2"), lagTerms.reg.fur = c(0,0,0,0),
include.dum = FALSE, dum.diff = NULL, dum.lev = NULL, varname.dum = NULL,
w.mat = "iid.err", std.err = "corrected", estimation = "onestep",
opt.meth = "BFGS")
summary(m8)
m9 <- pdynmc(dat = dat, varname.i = "i", varname.t = "t",
use.mc.diff = TRUE, use.mc.lev = FALSE, use.mc.nonlin = TRUE,
include.y = FALSE, varname.y = "foodin", lagTerms.y = 1,
include.x = TRUE, varname.reg.end = "lrxtot", lagTerms.reg.end = 0, maxLags.reg.end = 5,
varname.reg.ex = "lrhearn", lagTerms.reg.ex = 0, maxLags.reg.ex = 5,
include.x.instr = TRUE, varname.reg.instr = "lrhearn", include.x.toInstr = FALSE,
fur.con = TRUE, fur.con.diff = TRUE, fur.con.lev = FALSE,
varname.reg.fur = c("nch","nad","hage","hage2"), lagTerms.reg.fur = c(0,0,0,0),
include.dum = TRUE, dum.diff = TRUE, dum.lev = TRUE, varname.dum = c("week", "yearquarter"),
w.mat = "iid.err", std.err = "corrected", estimation = "onestep",
opt.meth = "BFGS")
summary(m9)
m10 <- pdynmc(dat = dat, varname.i = "i", varname.t = "t",
use.mc.diff = TRUE, use.mc.lev = FALSE, use.mc.nonlin = TRUE,
include.y = FALSE, varname.y = "foodin", lagTerms.y = 1,
include.x = TRUE, varname.reg.end = "lrxtot", lagTerms.reg.end = 0, maxLags.reg.end = 5,
varname.reg.ex = "lrhearn", lagTerms.reg.ex = 0, maxLags.reg.ex = 5,
include.x.instr = TRUE, varname.reg.instr = "lrhearn", include.x.toInstr = FALSE,
fur.con = TRUE, fur.con.diff = TRUE, fur.con.lev = FALSE,
varname.reg.fur = c("nch","nad","hage","hage2"), lagTerms.reg.fur = c(0,0,0,0),
include.dum = TRUE, dum.diff = TRUE, dum.lev = FALSE, varname.dum = c("week", "yearquarter"),
w.mat = "iid.err", std.err = "corrected", estimation = "onestep",
opt.meth = "BFGS")
summary(m10)
m11 <- pdynmc(dat = dat, varname.i = "i", varname.t = "t",
use.mc.diff = TRUE, use.mc.lev = FALSE, use.mc.nonlin = TRUE,
include.y = FALSE, varname.y = "foodin", lagTerms.y = 1,
include.x = TRUE, varname.reg.end = "lrxtot", lagTerms.reg.end = 0, maxLags.reg.end = 5,
varname.reg.ex = "lrhearn", lagTerms.reg.ex = 0, maxLags.reg.ex = 5,
include.x.instr = TRUE, varname.reg.instr = "lrhearn", include.x.toInstr = FALSE,
fur.con = TRUE, fur.con.diff = TRUE, fur.con.lev = FALSE,
varname.reg.fur = c("nch","nad","hage","hage2"), lagTerms.reg.fur = c(0,0,0,0),
include.dum = TRUE, dum.diff = FALSE, dum.lev = TRUE, varname.dum = c("week", "yearquarter"),
w.mat = "iid.err", std.err = "corrected", estimation = "onestep",
opt.meth = "BFGS")
summary(m11)
m12 <- pdynmc(dat = dat, varname.i = "i", varname.t = "t",
use.mc.diff = TRUE, use.mc.lev = FALSE, use.mc.nonlin = TRUE,
include.y = FALSE, varname.y = "foodin", lagTerms.y = 1,
include.x = TRUE, varname.reg.end = "lrxtot", lagTerms.reg.end = 0, maxLags.reg.end = 5,
varname.reg.ex = "lrhearn", lagTerms.reg.ex = 0, maxLags.reg.ex = 5,
include.x.instr = TRUE, varname.reg.instr = "lrhearn", include.x.toInstr = FALSE,
fur.con = TRUE, fur.con.diff = TRUE, fur.con.lev = FALSE,
varname.reg.fur = c("nch","nad","hage","hage2"), lagTerms.reg.fur = c(0,0,0,0),
include.dum = FALSE, dum.diff = NULL, dum.lev = NULL, varname.dum = NULL,
w.mat = "iid.err", std.err = "corrected", estimation = "onestep",
opt.meth = "BFGS")
summary(m12)
m13 <- pdynmc(dat = dat, varname.i = "i", varname.t = "t",
use.mc.diff = TRUE, use.mc.lev = FALSE, use.mc.nonlin = TRUE,
include.y = FALSE, varname.y = "foodin", lagTerms.y = 1,
include.x = TRUE, varname.reg.end = "lrxtot", lagTerms.reg.end = 0, maxLags.reg.end = 5,
varname.reg.ex = "lrhearn", lagTerms.reg.ex = 0, maxLags.reg.ex = 5,
include.x.instr = TRUE, varname.reg.instr = "lrhearn", include.x.toInstr = FALSE,
fur.con = TRUE, fur.con.diff = FALSE, fur.con.lev = TRUE,
varname.reg.fur = c("nch","nad","hage","hage2"), lagTerms.reg.fur = c(0,0,0,0),
include.dum = TRUE, dum.diff = TRUE, dum.lev = TRUE, varname.dum = c("week", "yearquarter"),
w.mat = "iid.err", std.err = "corrected", estimation = "onestep",
opt.meth = "BFGS")
summary(m13)
m14 <- pdynmc(dat = dat, varname.i = "i", varname.t = "t",
use.mc.diff = TRUE, use.mc.lev = FALSE, use.mc.nonlin = TRUE,
include.y = FALSE, varname.y = "foodin", lagTerms.y = 1,
include.x = TRUE, varname.reg.end = "lrxtot", lagTerms.reg.end = 0, maxLags.reg.end = 5,
varname.reg.ex = "lrhearn", lagTerms.reg.ex = 0, maxLags.reg.ex = 5,
include.x.instr = TRUE, varname.reg.instr = "lrhearn", include.x.toInstr = FALSE,
fur.con = TRUE, fur.con.diff = FALSE, fur.con.lev = TRUE,
varname.reg.fur = c("nch","nad","hage","hage2"), lagTerms.reg.fur = c(0,0,0,0),
include.dum = TRUE, dum.diff = TRUE, dum.lev = FALSE, varname.dum = c("week", "yearquarter"),
w.mat = "iid.err", std.err = "corrected", estimation = "onestep",
opt.meth = "BFGS")
summary(m14)
m15 <- pdynmc(dat = dat, varname.i = "i", varname.t = "t",
use.mc.diff = TRUE, use.mc.lev = FALSE, use.mc.nonlin = TRUE,
include.y = FALSE, varname.y = "foodin", lagTerms.y = 1,
include.x = TRUE, varname.reg.end = "lrxtot", lagTerms.reg.end = 0, maxLags.reg.end = 5,
varname.reg.ex = "lrhearn", lagTerms.reg.ex = 0, maxLags.reg.ex = 5,
include.x.instr = TRUE, varname.reg.instr = "lrhearn", include.x.toInstr = FALSE,
fur.con = TRUE, fur.con.diff = FALSE, fur.con.lev = TRUE,
varname.reg.fur = c("nch","nad","hage","hage2"), lagTerms.reg.fur = c(0,0,0,0),
include.dum = TRUE, dum.diff = FALSE, dum.lev = TRUE, varname.dum = c("week", "yearquarter"),
w.mat = "iid.err", std.err = "corrected", estimation = "onestep",
opt.meth = "BFGS")
summary(m15)
m16 <- pdynmc(dat = dat, varname.i = "i", varname.t = "t",
use.mc.diff = TRUE, use.mc.lev = FALSE, use.mc.nonlin = TRUE,
include.y = FALSE, varname.y = "foodin", lagTerms.y = 1,
include.x = TRUE, varname.reg.end = "lrxtot", lagTerms.reg.end = 0, maxLags.reg.end = 5,
varname.reg.ex = "lrhearn", lagTerms.reg.ex = 0, maxLags.reg.ex = 5,
include.x.instr = TRUE, varname.reg.instr = "lrhearn", include.x.toInstr = FALSE,
fur.con = TRUE, fur.con.diff = FALSE, fur.con.lev = TRUE,
varname.reg.fur = c("nch","nad","hage","hage2"), lagTerms.reg.fur = c(0,0,0,0),
include.dum = FALSE, dum.diff = NULL, dum.lev = NULL, varname.dum = NULL,
w.mat = "iid.err", std.err = "corrected", estimation = "onestep",
opt.meth = "BFGS")
summary(m16)
ls()[grepl(ls(), pattern = "m")]
length(ls()[grepl(ls(), pattern = "m")])
|
multilevelIV <- function(formula, data, lmer.control=lmerControl(optimizer = "Nelder_Mead", optCtrl=list(maxfun=100000)), verbose=TRUE){
.SD <- NULL
cl <- match.call()
check_err_msg(checkinput_multilevel_formula(formula=formula))
check_err_msg(checkinput_multilevel_data(data=data))
check_err_msg(checkinput_multilevel_dataVSformula(formula=formula, data=data))
check_err_msg(checkinput_multilevel_lmercontrol(lmer.control=lmer.control))
check_err_msg(checkinput_multilevel_verbose(verbose = verbose))
F.formula <- Formula::as.Formula(formula)
f.lmer <- formula(F.formula, lhs = 1, rhs = 1)
names.endo <- formula_readout_special(F.formula = F.formula, name.special = "endo",
from.rhs = 2, params.as.chars.only = TRUE)
l4.form <- lme4::lFormula(formula = f.lmer, data=data)
num.levels <- lme4formula_get_numberoflevels(l4.form)
dt.response <- as.data.table(l4.form$fr[, 1, drop = FALSE], keep.rownames = "rownames")
name.y <- colnames(l4.form$fr)[1]
dt.FE <- as.data.table(l4.form$X)
names.X <- colnames(dt.FE)
names.X1 <- setdiff(names.X, names.endo)
dt.slp <- as.data.table(l4.form$X[, unique(unlist(l4.form$reTrms$cnms)), drop=FALSE])
dt.groudids <- as.data.table(l4.form$fr[, unique(unlist(names(l4.form$reTrms$cnms))), drop=FALSE])
names.min.req.cols <- unique(c(colnames(dt.response), colnames(dt.FE),
colnames(dt.slp), colnames(dt.groudids)))
dt.model.data <- cbind(dt.response, dt.FE, dt.slp, dt.groudids)[, .SD, .SDcols = names.min.req.cols]
rm(dt.response, dt.FE, dt.slp, dt.groudids)
if(verbose)
message("Fitting linear mixed-effects model ",format(f.lmer),".")
res.lmer <- tryCatch(lme4::lmer(formula = f.lmer, data=data, REML = TRUE,
control = lmer.control),
error = function(e)return(e))
if(is(res.lmer, "error"))
stop("lme4::lmer() could not be fitted with error: ",
sQuote(res.lmer$message), "\nPlease revise your data and formula.", call. = FALSE)
res.VC <- tryCatch(lme4::VarCorr(res.lmer),
error = function(e)return(e))
if(is(res.VC, "error"))
stop("lme4::VarCorr() could not be fitted with error: ",
sQuote(res.VC$message), "\nPlease revise your data and formula.", call. = FALSE)
if(num.levels == 2){
name.groupid.L2 <- names(l4.form$reTrms$cnms)[[1]]
names.Z2 <- l4.form$reTrms$cnms[[name.groupid.L2]]
res <- multilevel_2levels(cl = cl, f.orig = formula, dt.model.data = dt.model.data, res.VC = res.VC,
name.group.L2 = name.groupid.L2, name.y = name.y, names.X = names.X,
names.X1 = names.X1, names.Z2 = names.Z2,
verbose = verbose)
} else{
name.groupid.L2 <- names(l4.form$reTrms$cnms)[[1]]
name.groupid.L3 <- names(l4.form$reTrms$cnms)[[2]]
names.Z2 <- l4.form$reTrms$cnms[[name.groupid.L2]]
names.Z3 <- l4.form$reTrms$cnms[[name.groupid.L3]]
res <- multilevel_3levels(cl = cl, f.orig = formula, dt.model.data = dt.model.data, res.VC = res.VC,
name.group.L2 = name.groupid.L2, name.group.L3 = name.groupid.L3,
name.y = name.y, names.X = names.X, names.X1 = names.X1,
names.Z2 = names.Z2, names.Z3 = names.Z3,
verbose = verbose)
}
res$l.fitted <- lapply(res$l.fitted, function(fit){fit[rownames(data)]})
res$l.residuals <- lapply(res$l.residuals, function(resid){resid[rownames(data)]})
return(res)
}
|
.dt_footnotes_key <- "_footnotes"
dt_footnotes_get <- function(data) {
dt__get(data, .dt_footnotes_key)
}
dt_footnotes_set <- function(data, footnotes) {
dt__set(data, .dt_footnotes_key, footnotes)
}
dt_footnotes_init <- function(data) {
dplyr::tibble(
locname = character(0),
grpname = character(0),
colname = character(0),
locnum = numeric(0),
rownum = integer(0),
colnum = integer(0),
footnotes = list(character(0))
) %>%
dt_footnotes_set(footnotes = ., data = data)
}
dt_footnotes_add <- function(data,
locname,
grpname,
colname,
locnum,
rownum,
footnotes) {
data %>%
dt_footnotes_get() %>%
dplyr::bind_rows(
dplyr::tibble(
locname = locname,
grpname = grpname,
colname = colname,
locnum = locnum,
rownum = rownum,
colnum = NA_integer_,
footnotes = list(footnotes)
)
) %>%
dt_footnotes_set(footnotes = ., data = data)
}
|
colours <- colors <- function(distinct = FALSE)
{
c <- .Call(C_colors)
if(distinct) c[!duplicated(t(col2rgb(c)))] else c
}
col2rgb <- function(col, alpha = FALSE)
{
if(any(as.character(col) %in% "0"))
stop("numerical color values must be positive", domain = NA)
if (is.factor(col)) col <- as.character(col)
.Call(C_col2rgb, col, alpha)
}
gray <- function(level, alpha = NULL) .Call(C_gray, level, alpha)
grey <- gray
rgb <- function(red, green, blue, alpha, names = NULL, maxColorValue = 1)
{
if(missing(green) && missing(blue)) {
if(is.matrix(red) || is.data.frame(red)) {
red <- data.matrix(red)
if(ncol(red) < 3L) stop("at least 3 columns needed")
green <- red[,2L]; blue <- red[,3L]; red <- red[,1L]
}
}
.Call(C_rgb, red, green, blue, if (missing(alpha)) NULL else alpha,
maxColorValue, names)
}
hsv <- function(h = 1, s = 1, v = 1, alpha = 1)
.Call(C_hsv, h, s, v, if(missing(alpha)) NULL else alpha)
hcl <- function (h = 0, c = 35, l = 85, alpha = 1, fixup = TRUE)
.Call(C_hcl, h, c, l, if(missing(alpha)) NULL else alpha, fixup)
rgb2hsv <- function(r, g = NULL, b = NULL, maxColorValue = 255)
{
rgb <- if(is.null(g) && is.null(b)) as.matrix(r) else rbind(r, g, b)
if(!is.numeric(rgb)) stop("rgb matrix must be numeric")
d <- dim(rgb)
if(d[1L] != 3L) stop("rgb matrix must have 3 rows")
n <- d[2L]
if(n == 0L) return(cbind(c(h = 1, s = 1, v = 1))[, 0L])
rgb <- rgb/maxColorValue
if(any(0 > rgb) || any(rgb > 1))
stop("rgb values must be in [0, maxColorValue]")
.Call(C_RGB2hsv, rgb)
}
palette <- function(value)
{
if(missing(value)) .Call(C_palette, character())
else invisible(.Call.graphics(C_palette, value))
}
recordPalette <- function()
.Call.graphics(C_palette2, .Call(C_palette2, NULL))
rainbow <-
function (n, s = 1, v = 1, start = 0, end = max(1,n - 1)/n, alpha = 1)
{
if ((n <- as.integer(n[1L])) > 0) {
if(start == end || any(c(start,end) < 0)|| any(c(start,end) > 1))
stop("'start' and 'end' must be distinct and in [0, 1].")
hsv(h = seq.int(start, ifelse(start > end, 1, 0) + end,
length.out = n) %% 1, s, v, alpha)
} else character()
}
topo.colors <- function (n, alpha = 1)
{
if ((n <- as.integer(n[1L])) > 0) {
j <- n %/% 3
k <- n %/% 3
i <- n - j - k
c(if(i > 0) hsv(h = seq.int(from = 43/60, to = 31/60, length.out = i), alpha = alpha),
if(j > 0) hsv(h = seq.int(from = 23/60, to = 11/60, length.out = j), alpha = alpha),
if(k > 0) hsv(h = seq.int(from = 10/60, to = 6/60, length.out = k), alpha = alpha,
s = seq.int(from = 1, to = 0.3, length.out = k), v = 1))
} else character()
}
terrain.colors <- function (n, alpha = 1)
{
if ((n <- as.integer(n[1L])) > 0) {
k <- n%/%2
h <- c(4/12, 2/12, 0/12)
s <- c(1, 1, 0)
v <- c(0.65, 0.9, 0.95)
c(hsv(h = seq.int(h[1L], h[2L], length.out = k),
s = seq.int(s[1L], s[2L], length.out = k),
v = seq.int(v[1L], v[2L], length.out = k), alpha = alpha),
hsv(h = seq.int(h[2L], h[3L], length.out = n - k + 1)[-1L],
s = seq.int(s[2L], s[3L], length.out = n - k + 1)[-1L],
v = seq.int(v[2L], v[3L], length.out = n - k + 1)[-1L], alpha = alpha))
} else character()
}
heat.colors <- function (n, alpha = 1)
{
if ((n <- as.integer(n[1L])) > 0) {
j <- n %/% 4
i <- n - j
c(rainbow(i, start = 0, end = 1/6, alpha = alpha),
if (j > 0)
hsv(h = 1/6,
s = seq.int(from = 1-1/(2*j), to = 1/(2*j), length.out = j),
v = 1, alpha = alpha))
} else character()
}
cm.colors <- function (n, alpha = 1)
{
if ((n <- as.integer(n[1L])) > 0L) {
even.n <- n %% 2L == 0L
k <- n %/% 2L
l1 <- k + 1L - even.n
l2 <- n - k + even.n
c(if(l1 > 0L)
hsv(h = 6/12, s = seq.int(.5, ifelse(even.n,.5/k,0), length.out = l1),
v = 1, alpha = alpha),
if(l2 > 1)
hsv(h = 10/12, s = seq.int(0, 0.5, length.out = l2)[-1L],
v = 1, alpha = alpha))
} else character()
}
gray.colors <- function(n, start = 0.3, end = 0.9, gamma = 2.2, alpha = NULL)
gray(seq.int(from = start^gamma, to = end^gamma, length.out = n)^(1/gamma),
alpha)
grey.colors <- gray.colors
|
context("test-simtrait-BEDMatrix")
if (suppressMessages(suppressWarnings(require(BEDMatrix)))) {
X <- suppressMessages(suppressWarnings(BEDMatrix('dummy-33-101-0.1')))
X_R <- t( X[] )
n <- nrow(X)
m <- ncol(X)
test_that("allele_freqs works with BEDMatrix", {
p_anc_hat <- allele_freqs(X_R)
expect_equal(
p_anc_hat,
allele_freqs(X)
)
expect_equal(
p_anc_hat,
allele_freqs( X, m_chunk_max = 11 )
)
p_anc_hat <- allele_freqs( X_R, fold = TRUE )
expect_equal(
p_anc_hat,
allele_freqs( X, fold = TRUE )
)
expect_equal(
p_anc_hat,
allele_freqs( X, fold = TRUE, m_chunk_max = 11 )
)
})
test_that("sim_trait works with BEDMatrix", {
m_causal <- 5
herit <- 0.8
kinship <- diag(n) / 2
p_anc <- allele_freqs(X)
obj <- sim_trait(X = X, m_causal = m_causal, herit = herit, p_anc = p_anc)
trait <- obj$trait
causal_indexes <- obj$causal_indexes
causal_coeffs <- obj$causal_coeffs
expect_equal( length(trait), n)
expect_equal( length(causal_indexes), m_causal )
expect_true( all(causal_indexes <= m) )
expect_true( all(causal_indexes >= 1) )
expect_equal( length(causal_coeffs), m_causal)
obj <- sim_trait(X = X, m_causal = m_causal, herit = herit, kinship = kinship)
trait <- obj$trait
causal_indexes <- obj$causal_indexes
causal_coeffs <- obj$causal_coeffs
expect_equal( length(trait), n)
expect_equal( length(causal_indexes), m_causal )
expect_true( all(causal_indexes <= m) )
expect_true( all(causal_indexes >= 1) )
expect_equal( length(causal_coeffs), m_causal)
})
}
|
"GreHSize"
"segdata"
|
library(sf)
library(terra)
library(bcmaps)
library(rasterbc)
datadir_bc('C:/rasterbc_data', quiet=TRUE)
example.name = 'Regional District of Central Okanagan'
bc.bound.sf = bc_bound()
districts.sf = regional_districts()
example.sf = districts.sf[districts.sf$ADMIN_AREA_NAME==example.name, ]
example.pestcode = 'IBM'
df.fids.all = listdata_bc('fids')
df.mpb = df.fids.all[grepl(example.pestcode, rownames(df.fids.all)), ]
print(df.mpb)
yr.example = 2008
dmg.levels = c('trace', 'light', 'moderate', 'severe', 'verysevere')
hybrid.level = 'mid'
vnames = paste(example.pestcode, dmg.levels, sep='_')
eg.rasterlist = sapply(vnames, \(v) opendata_bc(geo=example.sf, 'fids', v, yr.example, quiet=TRUE))
cpoint = st_geometry(example.sf) |> st_centroid() |> st_transform(crs(eg.rasterlist[[1]])) |> st_coordinates()
par(mfrow=c(1,5))
mapply(\(r, label) {
plot(r, mar=c(0,0,0,0), legend=FALSE, axes=FALSE, reset=FALSE)
graphics::text(x=cpoint[[1]], y=cpoint[[2]], label)
}, r=eg.rasterlist, label=dmg.levels)
dev.off()
hybrid.vname = paste(example.pestcode, hybrid.level, sep='_')
hybrid.raster = opendata_bc(geo=example.sf, 'fids', hybrid.vname, yr.example, quiet=TRUE)
plot(hybrid.raster, main='estimated damage levels (% susceptible killed) - surveyed in 2008')
yrs.all = 2004:2013
mpb.rasterlist = sapply(yrs.all, \(yr) opendata_bc(geo=example.sf, 'fids', hybrid.vname, yr, quiet=TRUE))
par(mfrow=c(2,5))
mapply(\(r, label) {
plot(r, mar=c(0,0,0,0), legend=FALSE, axes=FALSE, reset=FALSE)
graphics::text(x=cpoint[[1]], y=cpoint[[2]], label)
}, r=mpb.rasterlist, label=yrs.all)
sum()
vname.example = c('')
yr = 2008
eg.raster = opendata_bc(geo=example.sf, collection='fids', varname='IBM_mid', year=yr)
plot(eg.raster)
plot(bgcz.raster, col=rainbow(5), main='Biogeoclimatic zones')
plot(st_geometry(example.sf), add=TRUE)
|
context("Testing reproducibility of results with examples")
suppressWarnings(RNGversion("3.5.0"))
set.seed(1)
simUVgauss<-simGaussMiss<- c(rnorm(n=20, mean=30), rnorm(n=20, mean=25),
rnorm(n=300, mean=40), rnorm(n=300, mean=43),
rnorm(n=300, mean=43, sd = 10))
set.seed(1)
simUVpoiss<- c(rpois(n=20, lambda = 30), rpois(n=20, lambda = 300),
rpois(n=300, lambda = 200), rpois(n=300, lambda = 250),
rpois(n=300, lambda = 230))
sim3Vgauss<- cbind(simUVgauss+10, simUVgauss, simUVgauss+90)
sim3Vpoiss<- cbind(simUVpoiss+10, simUVpoiss, simUVpoiss+90)
sim3Vmix <- cbind(sim3Vpoiss, sim3Vgauss)
numremoved<- 0.1*length(simUVgauss)
set.seed(1)
removeIndices<- sample.int(length(simUVgauss), round(numremoved))
simGaussMiss[removeIndices]<-NA
trueCPs<- c(1, 21, 41, 341, 641)
ocpd1<- onlineCPD(simUVgauss, hazard_func=function(x, lambda){const_hazard(x, lambda=100)},
probModel=list("g"), init_params=list(list(m=0, k=0.01, a=0.01, b=0.0001)),
multivariate=FALSE, cpthreshold = 0.5,
truncRlim =10^(-4), minRlength= 1, maxRlength= 10^4,
minsep=1, maxsep=10^4)
test_that("Univariate gaussian example, maxCPs: ", {
expect_identical(ocpd1$changepoint_lists$maxCPs[[1]], trueCPs)
})
test_that("Univariate gaussian example, colmaxes: ", {
expect_identical(ocpd1$changepoint_lists$colmaxes[[1]], trueCPs)
})
test_that("Univariate gaussian example, threscps: ", {
expect_identical(ocpd1$changepoint_lists$threshcps[[1]], trueCPs)
})
ocpd2<- onlineCPD(simUVpoiss, hazard_func=function(x, lambda){const_hazard(x, lambda=100)},
probModel=list("p"), init_params=list(list(a=1, b=1)),
multivariate=FALSE, cpthreshold = 0.5,
truncRlim =10^(-4), minRlength= 1, maxRlength= 10^4,
minsep=1, maxsep=10^4)
test_that("Univariate poisson example, maxCPs: ", {
expect_identical(ocpd2$changepoint_lists$maxCPs[[1]], c(1,21,41,341))
})
test_that("Univariate poisson example, colmaxes: ", {
expect_identical(ocpd2$changepoint_lists$colmaxes[[1]], c(1,21,41,341))
})
test_that("Univariate poisson example, threscps: ", {
expect_identical(ocpd2$changepoint_lists$threshcps[[1]], c(1,21,41,341))
})
ocpd3<- onlineCPD(sim3Vgauss, hazard_func=function(x, lambda){const_hazard(x, lambda=100)},
probModel=list("g"), init_params=list(list(m=0, k=0.01, a=0.01, b=0.0001)),
multivariate=TRUE, cpthreshold = 0.5,
truncRlim =10^(-4), minRlength= 1, maxRlength= 10^4,
minsep=1, maxsep=10^4)
test_that("Multivariate gaussian example, maxCPs: ", {
expect_identical(ocpd3$changepoint_lists$maxCPs[[1]], trueCPs)
})
test_that("Multivariate gaussian example, colmaxes: ", {
expect_identical(ocpd3$changepoint_lists$colmaxes[[1]], trueCPs)
})
test_that("Multivariate gaussian example, threscps: ", {
expect_identical(ocpd3$changepoint_lists$threshcps[[1]], trueCPs)
})
ocpd4<- onlineCPD(sim3Vpoiss, hazard_func=function(x, lambda){const_hazard(x, lambda=100)},
probModel=list("p"), init_params=list(list(a=1, b=1)),
multivariate=TRUE, cpthreshold = 0.5,
truncRlim =10^(-4), minRlength= 1, maxRlength= 10^4,
minsep=1, maxsep=10^4)
test_that("Multivariate poisson example, maxCPs: ", {
expect_identical(ocpd4$changepoint_lists$maxCPs[[1]], c(1,21,41,340))
})
test_that("Multivariate poisson example, colmaxes: ", {
expect_identical(ocpd4$changepoint_lists$colmaxes[[1]], c(1,21,38,41,340))
})
test_that("Multivariate poisson example, threscps: ", {
expect_identical(ocpd4$changepoint_lists$threshcps[[1]], c(1,21,38, 41,340))
})
ocpd5<- onlineCPD(sim3Vmix, hazard_func=function(x, lambda){const_hazard(x, lambda=100)},
probModel=list("p"),
init_params=c(rep(list(list(a=1, b=1)),3), rep(list(list(m=0, k=0.01, a=0.01, b=0.0001)), 3)),
multivariate=TRUE, cpthreshold = 0.5,
truncRlim =10^(-4), minRlength= 1, maxRlength= 10^4,
minsep=1, maxsep=10^4)
test_that("mixed gauss and poiss example, maxCPs: ", {
expect_identical(ocpd5$changepoint_lists$maxCPs[[1]], c(1,21,39,340))
})
test_that("mixed gauss and poisson example, colmaxes: ", {
expect_identical(ocpd5$changepoint_lists$colmaxes[[1]], c(1,21,38,39,340))
})
test_that("mixed gauss and poisson example, threscps: ", {
expect_identical(ocpd5$changepoint_lists$threshcps[[1]], c(1,21,38,39,340))
})
ocpd6<- onlineCPD(simGaussMiss, hazard_func=function(x, lambda){const_hazard(x, lambda=100)},
probModel=list("g"), init_params=list(list(m=0, k=0.01, a=0.01, b=0.0001)),
multivariate=FALSE, cpthreshold = 0.5, missPts = "mean",
truncRlim =10^(-4), minRlength= 1, maxRlength= 10^4,
minsep=1, maxsep=10^4)
test_that("Univariate gaussian with missing points example, maxCPs: ", {
expect_identical(ocpd6$changepoint_lists$maxCPs[[1]], c( 1, 22, 41, 341, 641))
})
test_that("Univariate gaussian with missing points example, colmaxes: ", {
expect_identical(ocpd6$changepoint_lists$colmaxes[[1]], c( 1, 22, 41, 341, 641))
})
test_that("Univariate gaussian with missing points example, threscps: ", {
expect_identical(ocpd6$changepoint_lists$threshcps[[1]], c( 1, 22, 41, 341, 641))
})
|
NULL
setGeneric('settings', function(x, ...) standardGeneric('settings'))
setMethod('settings', 'AcousticEvent', function(x, ...) x@settings)
setGeneric('settings<-', function(x, value) standardGeneric('settings<-'))
setMethod('settings<-', 'AcousticEvent', function(x, value) {
x@settings <- value
validObject(x)
x
})
setGeneric('localizations', function(x, ...) standardGeneric('localizations'))
setMethod('localizations', 'AcousticEvent', function(x, ...) x@localizations)
setGeneric('localizations<-', function(x, value) standardGeneric('localizations<-'))
setMethod('localizations<-', 'AcousticEvent', function(x, value) {
x@localizations <- value
validObject(x)
x
})
setGeneric('id', function(x, ...) standardGeneric('id'))
setMethod('id', 'AcousticEvent', function(x, ...) x@id)
setGeneric('id<-', function(x, value) standardGeneric('id<-'))
setMethod('id<-', 'AcousticEvent', function(x, value) {
x@id <- value
validObject(x)
x
})
setGeneric('detectors', function(x, ...) standardGeneric('detectors'))
setMethod('detectors', 'AcousticEvent', function(x, ...) x@detectors)
setGeneric('detectors<-', function(x, value) standardGeneric('detectors<-'))
setMethod('detectors<-', 'AcousticEvent', function(x, value) {
x@detectors <- value
validObject(x)
x
})
setGeneric('species', function(x, ...) standardGeneric('species'))
setMethod('species', 'AcousticEvent', function(x, ...) x@species)
setMethod('species', 'AcousticStudy', function(x, type='id',...) {
sapply(events(x), function(e) species(e)[[type]])
})
setGeneric('species<-', function(x, value) standardGeneric('species<-'))
setMethod('species<-', 'AcousticEvent', function(x, value) {
x@species <- value
validObject(x)
x
})
setGeneric('files', function(x, ...) standardGeneric('files'))
setMethod('files', 'AcousticEvent', function(x, ...) x@files)
setGeneric('files<-', function(x, value) standardGeneric('files<-'))
setMethod('files<-', 'AcousticEvent', function(x, value) {
x@files <- value
validObject(x)
x
})
setGeneric('ancillary', function(x, ...) standardGeneric('ancillary'))
setMethod('ancillary', 'AcousticEvent', function(x, ...) x@ancillary)
setGeneric('ancillary<-', function(x, value) standardGeneric('ancillary<-'))
setMethod('ancillary<-', 'AcousticEvent', function(x, value) {
x@ancillary <- safeListAdd(x@ancillary, value)
validObject(x)
x
})
setMethod('[', 'AcousticEvent', function(x, i) {
x@detectors[i]
})
setMethod('[<-', 'AcousticEvent', function(x, i, value) {
x@detectors[i] <- value
validObject(x)
x
})
setMethod('$', 'AcousticEvent', function(x, name) {
'[['(x@detectors, name)
})
setMethod('$<-', 'AcousticEvent', function(x, name, value) {
x@detectors[[name]] <- value
validObject(x)
x
})
setMethod('[[', 'AcousticEvent', function(x, i) {
'[['(x@detectors, i)
})
setMethod('[[<-', 'AcousticEvent', function(x, i, value) {
x@detectors[[i]] <- value
validObject(x)
x
})
.DollarNames.AcousticEvent <- function(x, pattern='') {
grep(pattern, names(detectors(x)), value=TRUE)
}
setMethod('id', 'AcousticStudy', function(x, ...) x@id)
setMethod('id<-', 'AcousticStudy', function(x, value) {
x@id <- value
validObject(x)
x
})
setMethod('files', 'AcousticStudy', function(x, ...) x@files)
setMethod('files<-', 'AcousticStudy', function(x, value) {
x@files <- value
validObject(x)
x
})
setGeneric('gps', function(x, ...) standardGeneric('gps'))
setMethod('gps', 'AcousticStudy', function(x, ...) x@gps)
setGeneric('gps<-', function(x, value) standardGeneric('gps<-'))
setMethod('gps<-', 'AcousticStudy', function(x, value) {
x@gps <- value
validObject(x)
x
})
setMethod('detectors', 'AcousticStudy', function(x, ...) {
getDetectorData(x)
})
setGeneric('events', function(x, ...) standardGeneric('events'))
setMethod('events', 'AcousticStudy', function(x, ...) x@events)
setGeneric('events<-', function(x, value) standardGeneric('events<-'))
setMethod('events<-', 'AcousticStudy', function(x, value) {
x@events <- value
validObject(x)
x
})
setMethod('settings', 'AcousticStudy', function(x, ...) x@settings)
setMethod('settings<-', 'AcousticStudy', function(x, value) {
x@settings <- value
validObject(x)
x
})
setGeneric('effort', function(x, ...) standardGeneric('effort'))
setMethod('effort', 'AcousticStudy', function(x, ...) x@effort)
setGeneric('effort<-', function(x, value) standardGeneric('effort<-'))
setMethod('effort<-', 'AcousticStudy', function(x, value) {
x@effort <- value
validObject(x)
x
})
setGeneric('pps', function(x, ...) standardGeneric('pps'))
setMethod('pps', 'AcousticStudy', function(x, ...) x@pps)
setGeneric('pps<-', function(x, value) standardGeneric('pps<-'))
setMethod('pps<-', 'AcousticStudy', function(x, value) {
x@pps <- value
validObject(x)
x
})
setMethod('ancillary', 'AcousticStudy', function(x, ...) x@ancillary)
setMethod('ancillary<-', 'AcousticStudy', function(x, value) {
x@ancillary <- safeListAdd(x@ancillary, value)
validObject(x)
x
})
setGeneric('models', function(x, ...) standardGeneric('models'))
setMethod('models', 'AcousticStudy', function(x, ...) x@models)
setGeneric('models<-', function(x, value) standardGeneric('models<-'))
setMethod('models<-', 'AcousticStudy', function(x, value) {
x@models <- value
validObject(x)
x
})
setMethod('[', 'AcousticStudy', function(x, i) {
x@events <- x@events[i]
x@events <- x@events[sapply(x@events, function(e) {
!is.null(e)
})]
x
})
setMethod('[<-', 'AcousticStudy', function(x, i, value) {
x@events[i] <- value
validObject(x)
x
})
setMethod('$', 'AcousticStudy', function(x, name) {
'[['(x@events, name)
})
setMethod('$<-', 'AcousticStudy', function(x, name, value) {
x@events[[name]] <- value
validObject(x)
x
})
setMethod('[[', 'AcousticStudy', function(x, i) {
'[['(x@events, i)
})
setMethod('[[<-', 'AcousticStudy', function(x, i, value) {
x@events[[i]] <- value
validObject(x)
x
})
.DollarNames.AcousticStudy <- function(x, pattern='') {
grep(pattern, names(events(x)), value=TRUE)
}
|
test_that("incorrect source and target are rejected", {
n1 <- Node$new()
expect_error(e <- Arrow$new(42, n1), class="non-Node_endpoint")
expect_error(e <- Arrow$new(n1, 42), class="non-Node_endpoint")
})
test_that("incorrect labels are rejected", {
n1 <- Node$new()
n2 <- Node$new()
expect_error(a <- Arrow$new(n1, n2, TRUE), class="non-string_label")
})
test_that("arrow is defined correctly", {
n1 <- Node$new()
n2 <- Node$new()
expect_silent(a <- Arrow$new(n1, n2, "a1"))
expect_identical(n1, a$source())
expect_identical(n2, a$target())
expect_equal(a$label(), "a1")
})
test_that("base edge object is defined correctly", {
n1 <- Node$new()
n2 <- Node$new()
expect_silent(a <- Arrow$new(n1, n2, "a1"))
V <- a$endpoints()
expect_identical(n1, V[[1]])
expect_identical(n2, V[[2]])
})
|
setConstructorS3("GenericReporter", function(tags="*", ...) {
if (!is.null(tags)) {
tags <- Arguments$getTags(tags, collapse=NULL)
}
extend(Object(), "GenericReporter",
.alias = NULL,
.tags = tags
)
})
setMethodS3("as.character", "GenericReporter", function(x, ...) {
this <- x
s <- sprintf("%s:", class(this)[1])
s <- c(s, paste("Name:", getName(this)))
s <- c(s, paste("Tags:", paste(getTags(this), collapse=",")))
s <- c(s, sprintf("Path: %s", getPath(this)))
GenericSummary(s)
}, protected=TRUE)
setMethodS3("getAlias", "GenericReporter", function(this, ...) {
this$.alias
}, protected=TRUE)
setMethodS3("setAlias", "GenericReporter", function(this, alias=NULL, ...) {
if (!is.null(alias)) {
alias <- Arguments$getFilename(alias);
if (regexpr("[,]", alias) != -1) {
throw("Aliases (names) must not contain commas: ", alias)
}
}
this$.alias <- alias
}, protected=TRUE)
setMethodS3("getName", "GenericReporter", function(this, ...) {
name <- getAlias(this)
if (is.null(name)) {
name <- getInputName(this)
}
name
})
setMethodS3("getTags", "GenericReporter", function(this, collapse=NULL, ...) {
tags <- getInputTags(this)
tags <- c(tags, this$.tags)
tags <- Arguments$getTags(tags, collapse=NULL)
tags <- locallyUnique(tags)
tags[tags == "*"] <- getAsteriskTags(this, collapse=",")
tags <- tags[nzchar(tags)]
tags <- locallyUnique(tags)
if (!is.null(collapse)) {
tags <- paste(tags, collapse=collapse)
} else {
if (length(tags) > 0)
tags <- unlist(strsplit(tags, split=","))
}
if (length(tags) == 0)
tags <- NULL
tags
})
setMethodS3("getInputName", "GenericReporter", abstract=TRUE, protected=TRUE)
setMethodS3("getInputTags", "GenericReporter", abstract=TRUE, protected=TRUE)
setMethodS3("getAsteriskTags", "GenericReporter", function(this, ...) {
""
}, protected=TRUE)
setMethodS3("getFullName", "GenericReporter", function(this, ...) {
name <- getName(this)
tags <- getTags(this)
fullname <- paste(c(name, tags), collapse=",")
fullname <- gsub("[,]$", "", fullname)
fullname
})
setMethodS3("getReportSet", "GenericReporter", abstract=TRUE, protected=TRUE)
setMethodS3("getRootPath", "GenericReporter", function(this, ...) {
"reports"
}, protected=TRUE)
setMethodS3("getMainPath", "GenericReporter", function(this, ...) {
rootPath <- getRootPath(this)
name <- getName(this)
tags <- getTags(this, collapse=",")
if (length(tags) == 0 || !nzchar(tags)) {
tags <- "raw";
}
path <- filePath(rootPath, name, tags)
path <- Arguments$getWritablePath(path)
path
}, protected=TRUE)
setMethodS3("getPath", "GenericReporter", abstract=TRUE)
setMethodS3("setup", "GenericReporter", abstract=TRUE)
setMethodS3("process", "GenericReporter", abstract=TRUE)
|
miniusloglik.lev.wts <-
function(dat, pars)
{
n=nrow(dat)
index=match("time", colnames(dat), 0)
if(index==1){
dat=as.data.frame(cbind(start=rep(0, n), stop=dat[,1], status=dat[,2], dat[,-c(1,2)]))
}
tt=dat[,"stop"]
delta=dat[,"status"]
wts=dat[,"wts"]
cov=as.matrix(dat[,-c(1:4)])
m=length(pars)
sigma=exp(pars[m])
beta=as.matrix(pars[-m])
zz=(log(tt)-cov%*%beta)/sigma
ff=dlev(zz)/(sigma*tt)
FF=plev(zz)
tt0=dat[,"start"]
FF0=rep(0, n)
idx=(tt0==0)
if(sum(idx)>0){
tt0.trun=tt0[!idx]
zz0=(log(tt0.trun)-cov[!idx,]%*%beta)/sigma
FF0[!idx]=plev(zz0)
}
ll=delta*log(ff/(1-FF0))+(1-delta)*log((1-FF)/(1-FF0))
res=(-1)*sum(wts*ll)
return(res)
}
|
yuenContrast <- function(IV, ...) UseMethod("yuenContrast")
|
testData = createData(sampleSize = 200, overdispersion = 0.0, randomEffectVariance = 0)
fittedModel <- glm(observedResponse ~ Environment1, family = "poisson", data = testData)
simulationOutput <- simulateResiduals(fittedModel = fittedModel)
x = testQuantiles(simulationOutput)
x
\dontrun{
x$pvals
x$qgamFits
summary(x$qgamFits[[1]])
testQuantiles(simulationOutput, quantiles = c(0.7))
fittedModel <- glm(observedResponse ~ 1 , family = "poisson", data = testData)
simulationOutput <- simulateResiduals(fittedModel = fittedModel)
testQuantiles(simulationOutput, predictor = testData$Environment1)
plot(simulationOutput)
plotResiduals(simulationOutput)
}
|
find_thread_urls <- function(keywords=NA, sort_by="top", subreddit=NA, period="month") ifelse(
is.na(keywords),
build_homepage_url(sort_by, subreddit, period),
build_keywords_url(keywords, sort_by, subreddit, period)
) |>
parse_request_url(data_builder = build_thread_df) |>
rbind_list() |>
dedup_df()
build_thread_df <- function(json) {
data.frame(
date_utc = extract_json_attribute(json, "created_utc") |> timestamp_to_date(),
title = extract_json_attribute(json, "title"),
text = extract_json_attribute(json, "selftext"),
subreddit = extract_json_attribute(json, "subreddit"),
comments = extract_json_attribute(json, "num_comments"),
url = REDDIT_URL %+% extract_json_attribute(json, "permalink"),
stringsAsFactors = FALSE
)
}
build_keywords_url <- function(keywords, sort_by, subreddit, period) {
validate_one_of(sort_by, SORT_KEYWORD_OPTIONS)
build_base_request_url(subreddit) %+%
"search.json?" %+%
ifelse(is.na(subreddit), "", "restrict_sr=on&") %+%
"q=" %+% space2plus(keywords) %+%
"&sort=" %+% sort_by %+%
"&" %+% create_url_limits(period)
}
build_homepage_url <- function(sort_by, subreddit, period) {
validate_one_of(sort_by, SORT_HOMEPAGE_OPTIONS)
build_base_request_url(subreddit) %+%
sort_by %+% ".json?" %+%
create_url_limits(period)
}
build_base_request_url <- function(subreddit) REDDIT_URL %+%
ifelse(is.na(subreddit), "/", "/r/" %+% space2plus(subreddit) %+% "/")
create_url_limits <- function(period) {
validate_one_of(period, PERIOD_OPTIONS)
"t=" %+% period %+% "&limit=100"
}
|
library("vcr")
invisible(vcr::vcr_configure(dir = "../fixtures", write_disk_path = "../files"))
vcr::check_cassette_names()
ogpath <- rdryad_cache$cache_path_get()
testthat::setup({
rdryad_cache$cache_path_set(full_path="tests/files")
})
testthat::teardown({
rdryad_cache$cache_path_set(full_path=ogpath)
})
|
shQuote <- function(string, type = c("sh", "csh", "cmd", "cmd2"))
{
if(missing(type) && .Platform$OS.type == "windows") type <- "cmd"
type <- match.arg(type)
if(type == "cmd") {
string <- gsub("(\\\\*)\"", "\\1\\1\\\\\"", string)
string <- sub("(\\\\+)$", "\\1\\1", string)
paste0("\"", string, "\"", recycle0 = TRUE)
} else if (type == "cmd2")
gsub('([()%!^"<>&|])', "^\\1", string)
else if(!any(grepl("'", string)))
paste0("'", string, "'", recycle0 = TRUE)
else if(type == "sh")
paste0('"', gsub('(["$`\\])', "\\\\\\1", string), '"')
else if(!any(grepl("([$`])", string)))
paste0('"', gsub('(["!\\])' , "\\\\\\1", string), '"')
else
paste0("'", gsub("'", "'\"'\"'", string, fixed = TRUE), "'")
}
.standard_regexps <-
function()
{
list(valid_package_name = "[[:alpha:]][[:alnum:].]*[[:alnum:]]",
valid_package_version = "([[:digit:]]+[.-]){1,}[[:digit:]]+",
valid_R_system_version =
"[[:digit:]]+\\.[[:digit:]]+\\.[[:digit:]]+",
valid_numeric_version = "([[:digit:]]+[.-])*[[:digit:]]+")
}
|
library(shiny)
server <- function(input, output, session) {
shinyjs::onclick("nowcast_img", updateTabsetPanel(session, inputId="navbar", selected= "Nowcasts"))
shinyjs::onclick("forecast_img", updateTabsetPanel(session, inputId="navbar", selected= "Forecasts"))
shinyjs::onclick("epimodel_img", updateTabsetPanel(session, inputId="navbar", selected= "Scenarios"))
rt.ts <- reactive({
icl_rt_f <- icl %>% select(date, constant_mobility_mean_time_varying_reproduction_number_R.t.) %>% rename(mean_rt = constant_mobility_mean_time_varying_reproduction_number_R.t.)
icl_rt <- icl_model %>% select(date, mean_time_varying_reproduction_number_R.t.) %>% rename(mean_rt = mean_time_varying_reproduction_number_R.t.)
icl_rt <- rbind(icl_rt, icl_rt_f)
fu <- filter(gu, !is.na(r_values_mean))
rt.rt.xts <- xts(rt_live[,4], rt_live$date)
can.rt.xts <- xts(can.state.observed[,8],can.state.observed$date)
epifc.rt.xts <- xts(epi_forecast[which(epi_forecast$type == "nowcast"),4],
epi_forecast[which(epi_forecast$type == "nowcast"),]$date)
gu.xts <- xts(fu[,19],fu$date)
ucla.rt.xts <- xts(ucla_state[,2],ucla_state$date)
ucla.rt.xts <- ucla.rt.xts[paste0("/",Sys.Date()-1)]
if ( exists("icl") & exists('icl_model') ) {
icl_rt <- icl_model %>% select(date, mean_time_varying_reproduction_number_R.t.) %>% rename(mean_rt = mean_time_varying_reproduction_number_R.t.)
icl.rt.xts <- xts(icl_rt[,2], icl_rt$date)
}
df <- merge(rt.rt.xts, can.rt.xts,epifc.rt.xts, gu.xts, ucla.rt.xts, icl.rt.xts)
df$mean.rt <- rowMeans(df[,c(1:4,6)], na.rm = TRUE)
df[is.nan(as.numeric(df))] <- NA_character_
df <- as.data.table(df) %>% as.data.frame()
df[,2:8] <- sapply(df[,2:8], function(x) as.numeric(as.character(x)) )
return(df)
})
output$mean.rt.box <- renderValueBox({
cdt <- Sys.Date()-1
current.rt <- round(rt.ts()[which(rt.ts()$index == cdt),8], digits = 2)
valueBox(current.rt, subtitle = paste0(ifelse(current.rt >= 1.4,
"Spread of COVID-19 is very likely increasing",
ifelse(current.rt < 1.4 & current.rt >= 1.1,
"Spread of COVID-19 may be increasing",
ifelse(current.rt < 1.1 & current.rt >= 0.9,
"Spread of COVID-19 is likely stable",
"Spread of COVID-19 is likely decreasing"
)
)
)
),
color = "blue"
)
})
observeEvent(input$Rt_explain, {
sendSweetAlert(
session = session,
title = "What does a Reff of this size mean?",
text = HTML("<p>If the R effective is greater than 1, COVID-19 will spread <b>exponentially</b>. If R effective is less than 1, COVID-19
will spread more slowly and cases will decline. The higher the value of R effective, the faster an epidemic will progress.
The following graph illustrates the change in growth as R effective increases.</p>
<img src='reff_cuml_infection.png' alt='Infections increase faster with larger values of R effective' width='400' height='400'/>
<p><a href='https://www.cebm.net/covid-19/when-will-it-be-over-an-introduction-to-viral-reproduction-numbers-r0-and-re/' target='_blank'>Source: CEBM</a></p>"
),
html = TRUE,
type = NULL
)
})
output$hilo_rt.box <- renderUI({
df <- rt.ts()
df <- df %>% filter(index < Sys.Date()) %>% slice(n())
rt.min <- as.numeric( apply(df[,c(2:5,7)], 1, function(i) min(i, na.rm = TRUE)) )
rt.max <- as.numeric( apply(df[,c(2:5,7)], 1, function(i) max(i, na.rm = TRUE)) )
name.min <- switch(as.character(colnames(df)[match(apply(df[,c(2:5,7)], 1, function(i) min(i, na.rm = TRUE)),df)]),
"rt.rt.xts" = "rt.live",
"can.rt.xts" = "COVIDActNow",
"epifc.rt.xts" = "EpiForecasts",
"gu.xts" = "covid19-projections.com",
"ucla.rt.xts" = "UCLA",
"icl.rt.xts" = "ICL")
name.max<- switch(as.character(colnames(df)[match(apply(df[,c(2:5,7)], 1, function(i) max(i, na.rm = TRUE)),df)]),
"rt.rt.xts" = "rt.live",
"can.rt.xts" = "COVIDActNow",
"epifc.rt.xts" = "EpiForecasts",
"gu.xts" = "covid19-projections.com",
"ucla.rt.xts" = "UCLA",
"icl.rt.xts" = "ICL")
tagList(valueBox( paste0( round(rt.min,digits = 2)," - ", round(rt.max,digits = 2)) , paste0(name.min," - ",name.max), color = "navy", width = 12) )
})
output$rt.plot <- renderPlotly({
df <- rt.ts() %>% filter(index < Sys.Date() & index > Sys.Date() -80)
p <- plot_ly(df,
hoverinfo = 'text') %>%
add_trace(x = df[[1]],
y = df[[2]],
name = "rt.live",
type = 'scatter',
mode = "lines",
line = list(color="orange", dash = 'dot', opacity = 0.5),
text = paste0(df[[1]],
"<br>",
"rt.live estimated Reff: ", round(df[[2]], digits=2)
)
) %>%
add_trace(x = df[[1]],
y = df[[3]],
name = "COVIDActNow",
type = 'scatter',
mode = "lines",
line = list(color="blue", dash = 'dot', opacity = 0.5),
hoverinfo = 'text',
text = paste0(df[[1]],
"<br>",
"COVIDActNow estimated Reff: ", round(df[[3]], digits=2) )
) %>%
add_trace(x = df[[1]],
y = df[[4]],
name = "EpiForecasts",
type = 'scatter',
mode = "lines",
line = list(color="purple", dash = 'dot', opacity = 0.5),
hoverinfo = 'text',
text = paste0(df[[1]],
"<br>",
"EpiForecasts estimated Reff: ", round(df[[4]], digits=2) )
) %>%
add_trace(x = df[[1]],
y = df[[5]],
name = "covid19-projections.com",
type = 'scatter',
mode = "lines",
line = list(color="red", dash = 'dot', opacity = 0.5),
hoverinfo = 'text',
text = paste0(df[[1]],
"<br>",
"covid19-projections.com estimated Reff: ", round(df[[5]], digits=2) )
) %>%
add_trace(x = df[[1]],
y = df[[7]],
name = "ICL",
type = 'scatter',
mode = "lines",
line = list(color="grey", dash = 'dot', opacity = 0.5),
hoverinfo = 'text',
text = paste0(df[[1]],
"<br>",
"Imperial College London estimated Reff: ", round(df[[7]], digits=2) )
) %>%
add_trace(x = df[[1]],
y = df[[8]],
name = "Mean Reff",
type = 'scatter',
mode = "lines",
hoverinfo = 'text',
line = list(color = '
text = paste0(df[[1]],
"<br>",
"Mean estimated Reff: ", round(df[[8]], digits=2),
"<br>",
ifelse(round(df[[8]], digits=2) >= 1.4,
"Spread of COVID-19 is very likely increasing",
ifelse(round(df[[8]], digits=2) < 1.4 & round(df[[8]], digits=2) >= 1.1,
"Spread of COVID-19 may be increasing",
ifelse(round(df[[8]], digits=2) < 1.1 & round(df[[8]], digits=2) >= 0.9,
"Spread of COVID-19 is likely stable",
"Spread of COVID-19 is likely decreasing"
)
)
)
)
) %>%
layout(
title = NULL,
xaxis = list(title = NULL, showgrid = FALSE, zeroline = FALSE ),
yaxis = list(title = "R-Eff", showline = TRUE, showgrid = FALSE, zeroline = FALSE ),
margin = list(l = 100),
showlegend = TRUE,
shapes = list(
type = "line",
x0 = 0,
x1 = 1,
xref = "paper",
y0 = 1,
y1 = 1,
yref = "y",
line = list(color = "gray50", dash= "dash", opacity = 0.3))
)
return(p)
})
output$dlRt <- downloadHandler(
filename = function() { paste("R_eff_Nowcasts_",Sys.Date(),'.csv', sep='') },
content = function(file) {
t <- c(paste("R-Effective Model and Ensemble Time Series", sep = ""),"","","","","","")
tt <- c(paste("COVID Assessment Tool - Downloaded on",Sys.Date(), sep = " "),"","","","","","")
l <- c("Date","rt.live","COVIDActNow","EpiForecasts","covid19-projections.com","ICL","Mean Reff")
df <- rt.ts()[,c(1:5,7,8)] %>% filter(index < Sys.Date() & index > Sys.Date() -80)
df[,2:7] <- lapply(df[,2:7],function(x) round(x,2))
df[] <- lapply(df, as.character)
s <- c("Please see the Technical Notes tab of the application for data sources.","","","","","","")
p <- c(paste0("Prepared by: ",state_name," Department of Public Health"),"","","","","","")
dlm <- rbind(t, tt, l, df, s, p)
write.table(dlm, file, row.names = F, col.names = F, quote = F, na= "NA", sep = ",")
})
county.rt <- reactive({
progress <- Progress$new()
on.exit(progress$close())
progress$set(message = "Gathering R Effective Nowcasts", value = 0)
c <- names(canfipslist[match(input$select.county.rt,canfipslist)])
cnty <- input$select.county.rt
progress$inc(3/4)
out <- filter(can.county.observed, fips == cnty)
cnty.rt <- out %>% select(date,RtIndicator) %>% as.data.frame()
cnty.rt$date <- as.Date(cnty.rt$date)
progress$inc(1/4)
df <- xts(cnty.rt[,-1],cnty.rt$date)
if( c %in% unique(gu.cnty$subregion)) {
cnty.gu <- gu.cnty %>% filter(subregion == c) %>% select(date, r_values_mean)
gu.xts <- xts(cnty.gu[,-1],cnty.gu$date)
df <- merge(df,gu.xts)
}
if (ncol(df) > 1) {df$mean.proj <- rowMeans(df[,1:ncol(df)], na.rm = TRUE)}
df <- as.data.table(df) %>% as.data.frame() %>% filter(index < Sys.Date())
return(df)
})
output$county.rt.plot <- renderPlotly({
df <- county.rt()
c <- names(canfipslist[match(input$select.county.rt,canfipslist)])
p <- plot_ly(df,
x = df[[1]],
y = df[[2]],
name = "COVIDActNow",
type = 'scatter',
mode = "lines",
line = list(color="blue", dash = 'dot', opacity = 0.5),
hoverinfo = 'text',
text = paste0(df[[1]],
"<br>",
"COVIDActNow estimated Reff: ", round(df[[2]], digits=2) )
)
if (c %in% unique(gu.cnty$subregion) ) {p <- p %>% add_trace(x = df[[1]],
y = df[["gu.xts"]],
name = "covid19-projections.com",
type = 'scatter',
mode = "lines",
line = list(color="red", dash = 'dot', opacity = 0.5),
hoverinfo = 'text',
text = paste0(df[[1]],
"<br>",
"covid19-projections.com estimated Reff: ", round(df[["gu.xts"]], digits=2) )
)
}
if (ncol(df) > 2) {p <- p %>% add_trace(x = df[[1]],
y = df[["mean.proj"]],
name = "Mean Reff",
type = 'scatter',
mode = "lines",
hoverinfo = 'text',
text = paste0(df[[1]],
"<br>",
"Mean estimated Reff: ", round(df[["mean.proj"]], digits=2),
"<br>",
ifelse(round(df[["mean.proj"]], digits=2) >= 1.4,
"Spread of COVID-19 is very likely increasing",
ifelse(round(df[["mean.proj"]], digits=2) < 1.4 & round(df[["mean.proj"]], digits=2) >= 1.1,
"Spread of COVID-19 may be increasing",
ifelse(round(df[["mean.proj"]], digits=2) < 1.1 & round(df[["mean.proj"]], digits=2) >= 0.9,
"Spread of COVID-19 is likely stable",
"Spread of COVID-19 is likely decreasing"
)
)
)
),
inherit = FALSE,
line = list(color = '
linetype = "solid"
)
}
p <- p %>% layout( legend = list(orientation = 'h'),
title = as.character(counties[match(input$select.county.rt, counties$fips),"county"]),
xaxis = list(title = NULL, showgrid = FALSE, zeroline = FALSE ),
yaxis = list(title = "R-Eff", showline = TRUE, showgrid = FALSE, zeroline = FALSE ),
margin = list(l = 100),
showlegend = TRUE,
shapes = list(
type = "line",
x0 = 0,
x1 = 1,
xref = "paper",
y0 = 1,
y1 = 1,
yref = "y",
line = list(color = "gray50", dash= "dash", opacity = 0.3)
)
)
return(p)
})
output$dlRt.indv.cnty <- downloadHandler(
filename = function() { paste("Rt_Nowcasts_",names(canfipslist[match(input$select.county.rt,canfipslist)]),"_",Sys.Date(),'.csv', sep='') },
content = function(file) {
c <- names(canfipslist[match(input$select.county.rt,canfipslist)])
t <- c(paste("R-Effective County Model Time Series for ",c, sep = ""),"","","","")
tt <- c(paste("COVID Assessment Tool - Downloaded on",Sys.Date(), sep = " "),"","","","")
df <- county.rt() %>% as.data.frame()
if ( ncol(df) > 2 ) { df[,2:ncol(df)] <- lapply(df[,2:ncol(df)],function(x) round(x,2)) } else { df[,2] <- round(df[,2],2) }
df[is.na(df)] <- 0
df[] <- lapply(df, as.character)
l <- c("Date","COVIDActNow")
if ( c %in% unique(gu.cnty$subregion) ) { l <- c(l, c("covid19-projections.com")) }
if ( c %in% unique(ucla_cnty_rt$county) ) { l <- c(l, c("UCLA")) }
if ( length(l) > 2 ) { l <- c(l, c("Mean Reff") ) }
s <- c("Please see the Technical Notes tab of the application for data sources.","","","","")
p <- c(paste0("Prepared by: ",state_name," Department of Public Health"),"","","","")
dlm <- rbind(t, tt, l, df, s, p)
write.table(dlm, file, row.names = F, col.names = F, quote = F, na= "NA", sep = ",")
})
cnty.7.day.rt <- data.table(can.county.observed) %>%
.[, max_date := max(date, na.rm = T), by = .(county)] %>%
.[date > Sys.Date()-7, .(Rt.m = mean(RtIndicator, na.rm = T),
ll = mean(RtIndicator - RtIndicatorCI90, na.rm=T),
ul = mean(RtIndicator + RtIndicatorCI90, na.rm=T)), by = .(county)] %>% na.omit()
output$rt.dot.plot <- renderPlotly({
df <- cnty.7.day.rt
p <- plot_ly(df,
x = ~ reorder(df$county, desc(df$Rt.m)),
y = ~ df$Rt.m,
name = "R effective",
type = 'scatter',
mode = "markers",
marker = list(color = '
hoverinfo = 'text',
text = ~paste0(df$county, " County<br>","7-day Average Reff: ", round(df$Rt.m, digits=2),
"<br>",
ifelse(df$Rt.m >= 1.4,
"Spread of COVID-19 is very likely increasing",
ifelse(df$Rt.m < 1.4 & df$Rt.m >= 1.1,
"Spread of COVID-19 may be increasing",
ifelse(df$Rt.m < 1.1 & df$Rt.m >= 0.9,
"Spread of COVID-19 is likely stable",
"Spread of COVID-19 is likely decreasing"
)
)
)
)
) %>%
add_segments(x =~ reorder(df$county, df$Rt.m),
xend = ~ reorder(df$county, df$Rt.m),
y = df$ll,
yend = df$ul,
type = "scatter",
mode = "lines",
opacity = .5,
line = list(color='
showlegend = FALSE
) %>%
layout(
xaxis = list(title = "", tickangle = -30, showgrid = FALSE, zeroline = FALSE ),
yaxis = list(title = "R-Eff", showline = TRUE, showgrid = FALSE, zeroline = FALSE ),
margin = list(l = 100),
showlegend = FALSE,
shapes = list(
type = "line",
x0 = 0,
x1 = 1,
xref = "paper",
y0 = 1,
y1 = 1,
yref = "y",
line = list(color = "gray50", dash= "dash", opacity = 0.3)
)
)
return(p)
})
output$dlRt.cnty <- downloadHandler(
filename = function() { paste("Rt_Nowcasts_7DayAvg_Counties",Sys.Date(),'.csv', sep='') },
content = function(file) {
t <- c(paste("R-Effective 7 Day Averages for Counties", sep = ""),"","","","")
tt <- c(paste("COVID Assessment Tool - Downloaded on",Sys.Date(), sep = " "),"","","","")
df <- cnty.7.day.rt %>% as.data.frame()
if ( ncol(df) > 2 ) { df[,2:ncol(df)] <- lapply(df[,2:ncol(df)],function(x) round(x,2)) } else { df[,2] <- round(df[,2],2) }
df[is.na(df)] <- 0
df[] <- lapply(df, as.character)
l <- c("County","COVIDActNow - 7 Day Avg", "LL", "UL")
s <- c("Please see the Technical Notes tab of the application.","","","","")
p <- c(paste0("Prepared by: ",state_name," Department of Public Health"),"","","","")
u <- c("Source: COVIDActNow - https://blog.covidactnow.org/modeling-metrics-critical-to-reopen-safely/","","","","")
dlm <- rbind(t, tt, l, df, s, p, u)
write.table(dlm, file, row.names = F, col.names = F, quote = F, na= "NA", sep = ",")
})
hosp.proj.ts <- reactive({
min_hosp <- min(covid$Most.Recent.Date)
hosp <- covid %>% select(Most.Recent.Date,COVID.19.Positive.Patients) %>% filter(covid$County.Name == state_name) %>% as.data.frame()
can.hosp.proj <- can.state.observed %>% select(date, hospitalBedsRequired) %>% filter(min_hosp <= date & date <= Sys.Date() + 30)
IHME.hosp.proj <- IHME %>% select(date, allbed_mean) %>% filter(min_hosp <= date & date <= Sys.Date() + 30)
mobs.hosp.proj <- mobs %>% select(2,8) %>% filter(min_hosp <= date & date <= Sys.Date() + 30)
mit.hosp.proj <- mit %>% select(11,7) %>% filter(min_hosp <= date & date <= Sys.Date() + 30)
covid.xts <- xts(hosp[,-1],hosp$Most.Recent.Date)
can.proj.xts <- xts(can.hosp.proj[,-1],can.hosp.proj$date)
ihme.proj.xts <- xts(IHME.hosp.proj[,-1],IHME.hosp.proj$date)
mobs.proj.xts <- xts(mobs.hosp.proj[,-1],mobs.hosp.proj$date)
mit.proj.xts <- xts(mit.hosp.proj[,-1],mit.hosp.proj$date)
df <- merge(covid.xts,can.proj.xts,ihme.proj.xts,mobs.proj.xts,mit.proj.xts)
df$mean.proj <- rowMeans(df[,2:5], na.rm = TRUE)
df$mean.proj <- ifelse(!is.na(df$covid.xts), NA, df$mean.proj)
df <- as.data.table(df) %>% as.data.frame()
df$period <- ifelse(!is.na(df$covid.xts), "solid", "dot")
df$type <- ifelse(!is.na(df$covid.xts), "Est.", "Proj.")
return(df)
})
output$actual.hosp.box <- renderValueBox({
cdt <- max(covid$Most.Recent.Date)
current.hosp <- as.character(covid[which(covid$Most.Recent.Date == cdt & covid$County.Name == state_name),"COVID.19.Positive.Patients"])
valueBox( "Actuals Go Here",
paste0("Actuals: ",cdt), color = "black")
})
output$mean.proj.hosp.box <- renderUI({
cdt.ihme <- max( IHME[which(IHME$date <= Sys.Date() + 30),]$date )
mean.proj <- hosp.proj.ts() %>% slice(n()) %>% select(7)
valueBox( format(round(mean.proj, digits = 0), big.mark = ","), paste0("Mean 30-Day Forecast through ", cdt.ihme), color = "blue", width = 12)
})
output$hosp.proj.plot <- renderPlotly({
df <- hosp.proj.ts()
cdt <- max(df[which(!is.na(df$covid.xts)),1])
p <- plot_ly(df,
hoverinfo = 'text') %>%
add_trace(x = df[[1]],
y = df[[2]],
name = "Actuals",
type = 'scatter',
mode = "lines+markers",
hoverinfo = 'text',
text = paste0(df[[1]],
"<br>",
"Actual Hospitalization (PLACEHOLDER DATA - PLEASE REPLACE!!): ", format(round(df[[2]],0), big.mark = ",") ),
line = list(color = "black"),
marker = list(color = "black", symbol= "circle")
) %>%
add_trace(x = df[[1]],
y = df[[3]],
name = ~I(paste0("COVIDActNow - ",df$type)),
type = 'scatter',
mode = "lines",
inherit = TRUE,
line = list(color="orange"),
linetype = ~I(period),
hoverinfo = 'text',
text = paste0(df[[1]],
"<br>",
"COVIDActNow Estimate: ", format(round(df[[3]],0), big.mark = ",") )
) %>%
add_trace(x = df[[1]],
y = df[[4]],
name = ~I(paste0("IHME - ",df$type)),
type = 'scatter',
mode = "lines",
inherit = TRUE,
line = list(color="navy"),
linetype = ~I(period),
hoverinfo = 'text',
text = paste0(df[[1]],
"<br>",
"IHME Estimate: ", format(round(df[[4]],0), big.mark = ",") )
) %>%
add_trace(x = df[[1]],
y = df[[5]],
name = ~I(paste0("MOBS - ",df$type)),
type = 'scatter',
mode = "lines",
inherit = TRUE,
line = list(color="red"),
linetype = ~I(period),
hoverinfo = 'text',
text = paste0(df[[1]],
"<br>",
"MOBS Estimate: ", format(round(df[[5]],0), big.mark = ",") )
) %>%
add_trace(x = df[[1]],
y = df[[6]],
name = ~I(paste0("MIT - ",df$type)),
type = 'scatter',
mode = "lines",
inherit = TRUE,
line = list(color="green"),
linetype = ~I(period),
hoverinfo = 'text',
text = paste0(df[[1]],
"<br>",
"MIT Estimate: ", format(round(df[[6]],0), big.mark = ",") )
) %>%
add_trace(x = df[[1]],
y = df[[7]],
name = "Mean Proj.",
type = 'scatter',
mode = "lines",
hoverinfo = 'text',
text = paste0(df[[1]],
"<br>",
"Mean Projection: ", format(round(df[[7]],0), big.mark = ",") ),
line = list(color = '
) %>%
layout(
title = NULL,
xaxis = list(title = NULL, showline = TRUE, showgrid = FALSE, zeroline = FALSE ),
yaxis = list(title = "Hospitalizations", showline = TRUE, showgrid = FALSE, zeroline = FALSE ),
margin = list(l = 100),
showlegend = TRUE,
shapes = list(type = "line",
y0 = 0,
y1 = 1,
yref = "paper",
x0 = cdt,
x1 = cdt,
line = list(color = "black", dash = 'dash')
)
)
return(p)
})
output$dlhosp <- downloadHandler(
filename = function() { paste("Hospital_Forecasts_",Sys.Date(),'.csv', sep='') },
content = function(file) {
t <- c(paste("Statewide Hospitalization Forecasts", sep = ""),"","","","","","")
tt <- c(paste("COVID Assessment Tool - Downloaded on",Sys.Date(), sep = " "),"","","","","","")
l <- c("Date","Actuals", "COVIDActNow","IHME","MOBS","MIT","Mean")
df <- hosp.proj.ts()[,1:7] %>% as.data.frame()
df[,2:7] <- lapply(df[,2:7],function(x) round(x,2))
df[is.na(df)] <- 0
df[] <- lapply(df, as.character)
s <- c("Please see the Technical Notes tab of the application for data sources.","","","","","","")
p <- c("Prepared by: California Department of Public Health - COVID Modeling Team","","","","","","")
dlm <- rbind(t, tt, l, df, s, p)
write.table(dlm, file, row.names = F, col.names = F, quote = F, na= "NA", sep = ",")
})
county.hosp <- reactive({
progress <- Progress$new()
on.exit(progress$close())
progress$set(message = "Gathering Hospitalization Forecasts", value = 0)
cnty <- input$select.county.hosp
progress$inc(3/4)
out <- filter(can.county.observed, fips == cnty)
cnty.hosp <- out %>% select(date,hospitalBedsRequired) %>% as.data.frame()
progress$inc(1/4)
return(cnty.hosp)
})
hosp.proj.cnty.ts <- reactive({
c <- names(canfipslist[match(input$select.county.hosp,canfipslist)])
min_hosp <- min(covid$Most.Recent.Date)
hosp <- covid %>% select(Most.Recent.Date,COVID.19.Positive.Patients) %>% filter(covid$County.Name == c) %>% as.data.frame()
can.hosp.proj <- county.hosp() %>% select(date, hospitalBedsRequired) %>% filter(min_hosp <= date & date <= Sys.Date() + 30)
covid.xts <- xts(hosp[,-1],hosp$Most.Recent.Date)
can.proj.xts <- xts(can.hosp.proj[,-1],can.hosp.proj$date)
df <- merge(covid.xts,can.proj.xts)
df <- as.data.table(df) %>% as.data.frame()
df$period <- ifelse(!is.na(df$covid.xts), "solid", "dot")
return(df)
})
output$actual.cnty.hosp.box <- renderValueBox({
c <- names(canfipslist[match(input$select.county.hosp,canfipslist)])
cdt <- max(covid$Most.Recent.Date)
current.hosp <- as.character(covid[which(covid$Most.Recent.Date == cdt & covid$County.Name == c),"COVID.19.Positive.Patients"])
valueBox( "Counts/Beds Here",
paste0("Actuals / Total Beds: ",cdt),
color = "black")
})
output$mean.cnty.proj.hosp.box <- renderValueBox({
cdt.ihme <- max( IHME[which(IHME$date <= Sys.Date() + 30),]$date )
mean.proj <- hosp.proj.cnty.ts() %>% slice(n()) %>% select(3)
valueBox( format(round(mean.proj, digits = 0), big.mark = ","),
paste0("30-Day Forecast through ", cdt.ihme), color = "blue")
})
output$county.hosp.plot <- renderPlotly({
df <- hosp.proj.cnty.ts()
cdt <- max(df[which(!is.na(df$covid.xts)),1])
today <- list(type = "line",
y0 = 0,
y1 = 1,
yref = "paper",
x0 = cdt,
x1 = cdt,
line = list(color = "black", dash = 'dash') )
p <- plot_ly(df,
hoverinfo = 'text') %>%
add_trace(x = df[[1]],
y = df[[2]],
name = "Actuals",
type = 'scatter',
mode = "lines+markers",
hoverinfo = 'text',
text = paste0(df[[1]],
"<br>",
"Actual Hospitalization (PLACEHOLDER DATA - PLEASE REPLACE!!): ", format(df[[2]], big.mark = ",") ),
line = list(color = "black"),
marker = list(color = "black", symbol= "circle")
) %>%
add_trace(x = df[[1]],
y = df[[3]],
name = "COVIDActNow - Proj.",
type = 'scatter',
mode = "lines",
inherit = TRUE,
line = list(color="orange"),
linetype = ~I(period),
hoverinfo = 'text',
text = paste0(df[[1]],
"<br>",
"COVIDActNow Estimate: ", format(df[[3]], big.mark = ",") )
) %>%
layout(
title = as.character(counties[match(input$select.county.hosp, counties$fips),"county"]),
xaxis = list(title = NULL, showline = TRUE, showgrid = FALSE, zeroline = FALSE ),
yaxis = list(title = "Hospitalziations", showline = TRUE, showgrid = FALSE, zeroline = FALSE),
margin = list(l = 100),
showlegend = TRUE,
shapes = list(today)
)
return(p)
})
output$dlhosp.cnty <- downloadHandler(
filename = function() { paste("Hospital_Forecasts_for_",names(canfipslist[match(input$select.county.hosp,canfipslist)]),Sys.Date(),'.csv', sep='') },
content = function(file) {
c <- names(canfipslist[match(input$select.county.hosp,canfipslist)])
t <- c(paste("Hospitalization Forecasts for ",c, sep = ""),"","","","","","")
tt <- c(paste("COVID Assessment Tool - Downloaded on",Sys.Date(), sep = " "),"","","","","","")
l <- c("Date","Actuals", "COVIDActNow")
df <- hosp.proj.cnty.ts()[,1:3] %>% as.data.frame()
df[,2:3] <- lapply(df[,2:3],function(x) round(x,2))
df[is.na(df)] <- 0
df[] <- lapply(df, as.character)
s <- c("Please see the Technical Notes tab of the application for data sources.","","","","","","")
p <- c(paste0("Prepared by: ",state_name," Department of Public Health"),"","","","","","")
dlm <- rbind(t, tt, l, df, s, p)
write.table(dlm, file, row.names = F, col.names = F, quote = F, na= "NA", sep = ",")
})
cdeath.ca <- reactive({
reich_test <- reich_lab %>% unique() %>% as.data.frame()
cdeaths_test <- covid %>% select(Most.Recent.Date,Total.Count.Deaths) %>%
filter(covid$County.Name == state_name) %>%
mutate(model_team = 'Actuals') %>%
rename(model_team = model_team,
target_end_date = Most.Recent.Date,
pointNA = Total.Count.Deaths
) %>%
select(model_team, pointNA, target_end_date) %>%
as.data.frame()
reich_test <- rbind(reich_test,cdeaths_test)
reich_test <- reich_test %>% distinct(model_team, target_end_date, .keep_all = TRUE) %>% spread(model_team, pointNA)
})
output$actual.cdeath.box <- renderValueBox({
cdt <- max(covid$Most.Recent.Date)
current.deaths <- as.character(covid[which(covid$Most.Recent.Date == cdt & covid$County.Name == state_name),4])
valueBox( format(as.numeric(current.deaths), big.mark = ","), paste0("Actuals (NYTIMES DATA): ",cdt), color = "black")
})
output$mean.proj.cdeaths.box <- renderUI({
ensemble <- cdeath.ca() %>% select(target_end_date,COVIDhub.ensemble) %>% filter(!is.na(COVIDhub.ensemble))
cdt.ens <- max(ensemble$target_end_date)
mean.proj <- ensemble %>% slice(n()) %>% select(2)
valueBox( format(round(mean.proj, digits = 0), big.mark = ","), paste0("COVIDhub Ensemble Forecast through ", cdt.ens), color = "blue", width = 12)
})
output$cdeath.proj.plot <- renderPlotly({
df <- cdeath.ca()
models <- names(df)
models <- setdiff(models, c("target_end_date", "CU.nointerv", "CU.60contact","CU.70contact",
"CU.80contact","CU.80contact1x10p","CU.80contact1x5p","CU.80contactw10p",
"CU.80contactw5p","COVIDhub.ensemble", "Actuals" ) )
models <- models %>% c("Actuals","COVIDhub.ensemble")
p <- plot_ly(data=df, type = "scatter", mode = "lines")
for(trace in models){
if (trace == "Actuals") {
p <- p %>% plotly::add_trace(x = ~target_end_date,
y = as.formula(paste0("~`", trace, "`")),
name = trace,
type = 'scatter',
mode = "lines+markers",
line = list(color ="black"),
marker = list(color = "black", symbol= "circle"),
hoverinfo = 'text',
text = paste0(df[[1]],
"<br>",
"Actual Total Deaths (NYTIMES DATA): ", format(df$Actuals, big.mark = ","))
)
} else {
if (trace == "COVIDhub.ensemble") {
p <- p %>% add_trace(x = ~target_end_date,
y = as.formula(paste0("~`", trace, "`")),
inherit = FALSE,
name = trace,
line = list(shape = "spline", color = '
marker = list(color = '
hoverinfo = 'text',
text = paste0(df[[1]],
"<br>",
"COVIDhub Ensemble Forecast: ", format(df$COVIDhub.ensemble, big.mark = ","))
)
} else {
p <- p %>% plotly::add_trace(x = ~target_end_date,
y = as.formula(paste0("~`", trace, "`")),
name = trace,
type = 'scatter',
mode = "lines",
line = list(color ="lightgray"),
hoverinfo = 'text+y',
text = paste0(df[[1]],
"<br>",
trace," Forecast")
)
}
}
}
p %>%
layout(title = NULL,
xaxis = list(title = " ", showline = TRUE, showgrid = FALSE, zeroline = FALSE ),
yaxis = list(title = "Total Deaths", showline = TRUE, showgrid = FALSE, zeroline = FALSE, hoverformat = ',.2r' ),
margin = list(l = 100),
legend = list(traceorder = "reversed"),
showlegend = TRUE)
})
output$dlDeath <- downloadHandler(
filename = function() { paste("Cumulative_Deaths_Forecasts_",Sys.Date(),'.csv', sep='') },
content = function(file) {
t <- c(paste("Statewide Cumulative Deaths Forecasts", sep = ""),rep("",ncol(cdeath.ca())-1) )
tt <- c(paste("COVID Assessment Tool - Downloaded on",Sys.Date(), sep = " "),rep("",ncol(cdeath.ca())-1))
l <- names(cdeath.ca())
df <- cdeath.ca() %>% as.data.frame()
df[is.na(df)] <- 0
df[] <- lapply(df, as.character)
s <- c("Please see the Technical Notes tab of the application for data sources.",rep("",ncol(cdeath.ca())-1))
p <- c(paste0("Prepared by: ",state_name," Department of Public Health"),rep("",ncol(cdeath.ca())-1))
dlm <- rbind(t, tt, l, df, s, p)
write.table(dlm, file, row.names = F, col.names = F, quote = F, na= "NA", sep = ",")
})
county.deaths <- reactive({
progress <- Progress$new()
on.exit(progress$close())
progress$set(message = "Gathering Death Forecast Data", value = 0)
fips <- input$select.county.death
cnty <- names(canfipslist[match(fips,canfipslist)])
death <- covid %>% select(Most.Recent.Date,Total.Count.Deaths) %>% filter(covid$County.Name == cnty) %>% as.data.frame()
min_death <- min(death$Most.Recent.Date)
progress$inc(3/4)
out <- filter(can.county.observed, county == cnty)
can.death <- out %>% select(date,cumulativeDeaths) %>%
filter(min_death <= date & date <= Sys.Date() + 30) %>%
rename(CovidActNow = cumulativeDeaths) %>% as.data.frame()
yu.death <- filter( yu, CountyName==cnty) %>% select(date,predicted_deaths) %>%
filter(min_death <= date & date <= Sys.Date() + 30) %>%
rename(YuGroup = predicted_deaths) %>% as.data.frame()
progress$inc(1/4)
covid.xts <- xts(death[,-1],death$Most.Recent.Date)
can.proj.xts <- xts(can.death[,-1],can.death$date)
yu.proj.xts <- xts(yu.death[,-1],yu.death$date)
df <- merge(covid.xts,can.proj.xts,yu.proj.xts)
df$mean.proj <- rowMeans(df[,2:3], na.rm = TRUE)
df$mean.proj <- ifelse(!is.na(df$covid.xts), NA, df$mean.proj)
df <- as.data.table(df) %>% as.data.frame()
df$period <- ifelse(!is.na(df$covid.xts), "solid", "dot")
df$type <- ifelse(!is.na(df$covid.xts), "Est.", "Proj.")
return(df)
})
output$actual.cnty.death.box <- renderValueBox({
c <- names(canfipslist[match(input$select.county.death,canfipslist)])
cdt <- max(covid$Most.Recent.Date)
current.deaths <- as.character(covid[which(covid$Most.Recent.Date == cdt & covid$County.Name == c),"Total.Count.Deaths"])
valueBox( paste0(format(as.numeric(current.deaths), big.mark = ",") ),
paste0("Actual Deaths (NYTIMES DATA): ",cdt),
color = "black")
})
output$mean.cnty.proj.death.box <- renderValueBox({
df <- county.deaths()
cdt <- max( df$index )
mean.proj <- df %>% slice(n()) %>% select(mean.proj)
valueBox( format(round(mean.proj, digits = 0), big.mark = ","),
paste0("30-Day Forecast through ", cdt), color = "blue")
})
output$county.death.plot <- renderPlotly({
df <- county.deaths()
cdt <- max(df[which(!is.na(df$covid.xts)),1])
today <- list(type = "line",
y0 = 0,
y1 = 1,
yref = "paper",
x0 = cdt,
x1 = cdt,
line = list(color = "black", dash = 'dash') )
p <- plot_ly(df,
hoverinfo = 'text') %>%
add_trace(x = df[[1]],
y = df[[2]],
name = "Actuals",
type = 'scatter',
mode = "lines+markers",
hoverinfo = 'text',
text = paste0(df[[1]],
"<br>",
"Actual Deaths (NYTIMES DATA): ", format(df[[2]], big.mark = ",") ),
line = list(color = "black"),
marker = list(color = "black", symbol= "circle")
) %>%
add_trace(x = df[[1]],
y = df[[3]],
name = ~I(paste0("COVIDActNow - ",df$type)),
type = 'scatter',
mode = "lines",
inherit = TRUE,
line = list(color="orange"),
linetype = ~I(period),
hoverinfo = 'text',
text = paste0(df[[1]],
"<br>",
"COVIDActNow Estimate: ", format(df[[3]], big.mark = ",") )
) %>%
add_trace(x = df[[1]],
y = df[[4]],
name = ~I(paste0("Berkeley Yu - ",df$type)),
type = 'scatter',
mode = "lines",
inherit = TRUE,
line = list(color="blue"),
linetype = ~I(period),
hoverinfo = 'text',
text = paste0(df[[1]],
"<br>",
"Berkeley Estimate: ", format(df[[4]], big.mark = ",") )
) %>%
add_trace(x = df[[1]],
y = df[[5]],
name = "Mean Proj.",
type = 'scatter',
mode = "lines",
hoverinfo = 'text',
text = paste0(df[[1]],
"<br>",
"Mean Projection: ", format(round(df[[4]],0), big.mark = ",") ),
line = list(color = '
) %>%
layout(
title = as.character(counties[match(input$select.county.death, counties$fips),"county"]),
xaxis = list(title = NULL, showline = TRUE, showgrid = FALSE, zeroline = FALSE ),
yaxis = list(title = "Total Deaths", showline = TRUE, showgrid = FALSE, zeroline = FALSE),
margin = list(l = 100),
showlegend = TRUE,
shapes = list(today)
)
return(p)
})
output$dlDeath.cnty <- downloadHandler(
filename = function() { paste("Cumulative_Death_Forecasts_for_",names(canfipslist[match(input$select.county.death,canfipslist)]),Sys.Date(),'.csv', sep='') },
content = function(file) {
c <- names(canfipslist[match(input$select.county.death,canfipslist)])
t <- c(paste("Cumulative Death Forecasts for ",c, sep = ""),rep("",ncol(county.deaths())-1))
tt <- c(paste("COVID Assessment Tool - Downloaded on",Sys.Date(), sep = " "),rep("",ncol(county.deaths())-1))
df <- county.deaths() %>% select(-c(period, type)) %>% rename(date = index) %>% as.data.frame()
df[is.na(df)] <- 0
df[] <- lapply(df, as.character)
l <- c("Date","Total Deaths")
if ( "can.proj.xts" %in% names(county.deaths()) ) { l <- c(l, c("COVIDActNow")) }
if ( "yu.proj.xts" %in% names(county.deaths()) ) { l <- c(l, c("Berkeley")) }
if ( length(l) > 2 ) { l <- c(l, c("Mean") ) }
s <- c("Please see the Technical Notes tab of the application for data sources.",rep("",ncol(county.deaths())-1))
p <- c(paste0("Prepared by: ",state_name," Department of Public Health"),rep("",ncol(county.deaths())-1))
dlm <- rbind(t, tt, l, df, s, p)
write.table(dlm, file, row.names = F, col.names = F, quote = F, na= "NA", sep = ",")
})
output$model.descrip.ts <- renderUI({
UKKC <- as.character(input$include_JHU_UKKC)
model_descrip_list <- lapply(UKKC, function(i) { HTML(paste("<p>",as.character(scenarios[match(i, scenarios$colvar),2]),": ",
as.character(scenarios[match(i, scenarios$colvar),4]),"</p>")) })
do.call(tagList, model_descrip_list)
})
output$physical.select <- renderUI({
s <- as.character(state_name == input$county_ts)
choice.list <- switch(s,
"TRUE" = list (
"4/11/2020" = otherlist[1:2],
"4/07/2020" = otherlist[3] ),
list (
"4/11/2020" = otherlist[1:2] )
)
pickerInput(
inputId = "include_JHU_UKKC", "Select Scenario",
choices = choice.list,
selected = c("strictDistancingNow",
"weakDistancingNow"),
options = list(`actions-box` = TRUE, noneSelectedText = "Select Scenario"),
multiple = TRUE,
choicesOpt = list( style = rep(("color: black; background: white; font-weight: bold;"),13))
)
})
output$epi_covid_select <- renderUI({
selectInput("select_COVID",
"Select Actuals (THIS IS PLACEHOLDER DATA):",
COVIDvar,
selected = switch(input$selected_crosswalk,
"1" = "COVID.19.Positive.Patients",
"2" = "ICU.COVID.19.Positive.Patients",
"3" = "Total.Count.Deaths")
)
})
state.model.xts <- reactive({
c <- input$county_ts
IHME_sts <- to_xts_IHME(IHME,state_name,
switch(input$selected_crosswalk,
"1" = "allbed_mean",
"2" = "ICUbed_mean",
"3" = "totdea_mean"
))
IHME_sts.L <- to_xts_IHME(IHME,state_name,
switch(input$selected_crosswalk,
"1" = "allbed_lower",
"2" = "ICUbed_lower",
"3" = "totdea_lower"
))
IHME_sts.H <- to_xts_IHME(IHME,state_name,
switch(input$selected_crosswalk,
"1" = "allbed_upper",
"2" = "ICUbed_upper",
"3" = "totdea_upper"
))
CAN_sts <- to_xts_CAN(CAN_aws, c,
switch(input$selected_crosswalk,
"1" = "hospitalizations",
"2" = "beds",
"3" = "deaths"
))
COVID_sts <- to_xts_COVID(covid, c)
if (c != state_name) {
all_ts <- suppressWarnings( merge.xts(
CAN_sts,
COVID_sts, fill = NA) )
} else {
all_ts <- suppressWarnings( merge.xts(
IHME_sts,
IHME_sts.L,
IHME_sts.H,
CAN_sts,
COVID_sts,
fill = NA
) )
}
all_ts <- all_ts["20200301/20201231"]
return(all_ts)
})
total.cnty.beds <- reactive({
c <- input$county_ts
beds <- 100
})
jhu.no <- "UK.\\w+.\\d+_\\d+|.\\w+_\\w{4,}"
jhu.M <- "UK.\\w+.\\d+_\\d+.M|.\\w+_\\w{4,}.M"
jhu.lh <- "UK.\\w+.\\d[w].\\w+.[LH]|.\\w+_\\w{4,}.[LH]"
jhu.lh.b <- "UK.\\w+.\\d+_\\d+.[LH]|.\\w+_\\w{4,}.[LH]"
output$physical.graph <- renderDygraph({
df <- state.model.xts()
dtrange <- paste(as.character(input$dateRange_ts), collapse = "/")
chbx <- c()
if ( input$actuals == TRUE) {chbx <- c(chbx,c(input$select_COVID)) }
UKKC <- as.character(input$include_JHU_UKKC)
if ( TRUE %in% grepl(jhu.no, UKKC) & input$physical.mmd == "M" ) {
JHU_list <- UKKC[grep(jhu.no,UKKC)]
chbx <- c(chbx, c(JHU_list) )
} else {
JHU_list <- UKKC[grep(jhu.no,UKKC)]
chbx <- c(chbx, c( as.character(lapply(seq_along(JHU_list), function(i) { paste0(as.character( JHU_list[[i]] ),".M" ) } ) ) ) )
}
if (TRUE %in% grepl(jhu.no, UKKC) & input$physical.iqr == TRUE) {
JHU_list <- UKKC[grep(jhu.no,UKKC)]
chbx <- c(chbx, c( as.character(lapply(seq_along(JHU_list), function(i) {paste0(as.character( JHU_list[[i]] ),".L" ) } )) ),
c( as.character(lapply(seq_along(JHU_list), function(i) {paste0(as.character( JHU_list[[i]] ),".H" ) } )) ) )
}
if ( TRUE %in% grepl("IHME_sts", UKKC ) & input$county_ts == state_name ) {
chbx <- chbx %>% c("IHME_sts")
}
if ( TRUE %in% grepl("IHME_sts", UKKC ) & input$IHME.iqr == TRUE & input$county_ts == state_name) {
IHME <- "IHME_sts"
chbx <- c(chbx, c( as.character(lapply(seq_along(IHME), function(i) {paste0(as.character( IHME[[i]] ),".L") } )) ),
c( as.character(lapply(seq_along(IHME), function(i) {paste0(as.character( IHME[[i]] ),".H") } )) )
)
}
if ( TRUE %in% grepl("weakDistancingNow|strictDistancingNow",UKKC) &
input$county_ts %in% can_counties == TRUE ) {
can <- UKKC[grep("weakDistancingNow|strictDistancingNow",UKKC)]
chbx <- chbx %>% c(can)
}
df <- df[,c(chbx)]
FUNC_JSFormatNumber <- "function(x) {return x.toString().replace(/(\\d)(?=(\\d{3})+(?!\\d))/g, '$1,')}"
d <- dygraph(df, main = switch(input$selected_crosswalk,
"1" = paste0(input$county_ts," COVID Hospitalizations"),
"2" = paste0(input$county_ts," COVID ICU Patients"),
"3" = paste0(input$county_ts," COVID Cumulative Deaths")
))
if ( TRUE %in% grepl(jhu.lh, chbx) | TRUE %in% grepl(jhu.lh.b, chbx) ) {
if ( input$physical.mmd == "M") {
chbx.M <- chbx[grep(jhu.no,chbx)]
chbx.M <- unique(str_remove(chbx.M, "\\.[LH]"))
for (scenario in chbx.M) {
d <- d %>% dySeries(c( paste0(scenario,".L"),paste0(scenario),paste0(scenario,".H")), label = names(modellist[match(scenario,modellist)]), fillGraph = FALSE)
}
} else {
chbx.M <- chbx[grep(jhu.M,chbx)]
chbx.M <- str_remove(chbx.M, ".M")
for (scenario in chbx.M) {
d <- d %>% dySeries(c( paste0(scenario,".L"),paste0(scenario,".M"),paste0(scenario,".H")), label = names(modellist[match(scenario,modellist)]), fillGraph = FALSE)
}
}
} else {
if ( input$physical.mmd == "M") {
chbx.M <- chbx[grep(jhu.no,chbx)]
for (scenario in chbx.M) {
d <- d %>% dySeries(paste0(scenario), label = names(modellist[match(scenario,modellist)]), fillGraph = FALSE)
}
} else {
chbx.M <- chbx[grep(jhu.M,chbx)]
chbx.M <- str_remove(chbx.M, ".M")
for (scenario in chbx.M) {
d <- d %>% dySeries(paste0(scenario,".M"), label = names(modellist[match(scenario,modellist)]), fillGraph = FALSE)
}
}
}
if ( TRUE %in% grepl("IHME_sts.[LH]", chbx) ){
if ( "IHME_sts.L" %in% c(chbx) ) {d <- d %>% dySeries(c("IHME_sts.L","IHME_sts","IHME_sts.H"), label = 'IHME Model', fillGraph = FALSE) }
} else {
if ( "IHME_sts" %in% c(chbx) ) {d <- d %>% dySeries("IHME_sts", label = 'IHME Model', fillGraph = FALSE) }
}
if ( "weakDistancingNow" %in% c(chbx) ) {d <- d %>% dySeries("weakDistancingNow", label = 'CAN: Delay/Distancing', fillGraph = FALSE) }
if ( "strictDistancingNow" %in% c(chbx) ) {d <- d %>% dySeries("strictDistancingNow", label = 'CAN: Shelter in Place', fillGraph = FALSE) }
if ( "Total.Count.Deaths" %in% c(chbx) ) {d <- d %>% dySeries("Total.Count.Deaths", label = "Total Deaths", fillGraph= FALSE, drawPoints = TRUE, pointSize = 5, pointShape = "square", color = "black") }
if ( "COVID.19.Positive.Patients" %in% c(chbx) ) {d <- d %>% dySeries("COVID.19.Positive.Patients", label = "Patients Positive for COVID-19", fillGraph= FALSE, drawPoints = TRUE, pointSize = 5, pointShape = "diamond", color = "black") }
if ( "ICU.COVID.19.Positive.Patients" %in% c(chbx) ) {d <- d %>% dySeries("ICU.COVID.19.Positive.Patients", label = "ICU Patients Positive for COVID-19", fillGraph= FALSE, drawPoints = TRUE, pointSize = 5, pointShape = "hexagon", color = "black") }
if ( input$selected_crosswalk == "1" & input$county_ts == state_name) {
d <- d %>% dyLimit(50000, label = "Phase 1 Surge Capacity", labelLoc = c("left"), color = "black", strokePattern = "dashed")
} else {
if ( input$selected_crosswalk == "1" & !is.na(total.cnty.beds()) == TRUE ) { d <- d %>% dyLimit(total.cnty.beds(), label = "Total Licensed Beds", labelLoc = c("left"), color = "black", strokePattern = "dashed") }
}
d <- d %>% dyOptions(digitsAfterDecimal=0, strokeWidth = 3, connectSeparatedPoints = TRUE, drawGrid = FALSE) %>%
dyAxis("y", axisLabelFormatter=htmlwidgets::JS(FUNC_JSFormatNumber), valueFormatter=htmlwidgets::JS(FUNC_JSFormatNumber)) %>%
dyHighlight(highlightSeriesOpts = list(strokeWidth = 4)) %>%
dyEvent(Sys.Date(), "Today", labelLoc = "top") %>%
dyLegend(show = "always",
labelsDiv = "legendDivID2",
hideOnMouseOut = TRUE) %>%
dyRangeSelector(height = 30, dateWindow = c((Sys.Date() - 30), as.Date("2020-12-31")) )
})
output$physical.graph.static <- renderPlot({
df <- state.model.xts()[ paste0( as.Date(input$physical.graph_date_window[[1]]),"/",as.Date(input$physical.graph_date_window[[2]]) ) ]
chbx <- c()
if ( input$actuals == TRUE) {chbx <- c(chbx,c(input$select_COVID)) }
UKKC <- as.character(input$include_JHU_UKKC)
if ( TRUE %in% grepl(jhu.no, UKKC) & input$physical.mmd == "M" ) {
JHU_list <- UKKC[grep(jhu.no,UKKC)]
chbx <- c(chbx, c(JHU_list) )
} else {
JHU_list <- UKKC[grep(jhu.no,UKKC)]
chbx <- c(chbx, c( as.character(lapply(seq_along(JHU_list), function(i) { paste0(as.character( JHU_list[[i]] ),".M" ) } ) ) ) )
}
if (TRUE %in% grepl(jhu.no, UKKC) & input$physical.iqr == TRUE) {
JHU_list <- UKKC[grep(jhu.no,UKKC)]
chbx <- c(chbx, c( as.character(lapply(seq_along(JHU_list), function(i) {paste0(as.character( JHU_list[[i]] ),".L" ) } )) ),
c( as.character(lapply(seq_along(JHU_list), function(i) {paste0(as.character( JHU_list[[i]] ),".H" ) } )) ) )
}
if ( TRUE %in% grepl("IHME_sts", UKKC ) & input$county_ts == state_name ) {
chbx <- chbx %>% c("IHME_sts")
}
if ( TRUE %in% grepl("IHME_sts", UKKC ) & input$IHME.iqr == TRUE & input$county_ts == state_name) {
IHME <- "IHME_sts"
chbx <- c(chbx, c( as.character(lapply(seq_along(IHME), function(i) {paste0(as.character( IHME[[i]] ),".L") } )) ),
c( as.character(lapply(seq_along(IHME), function(i) {paste0(as.character( IHME[[i]] ),".H") } )) )
)
}
if ( TRUE %in% grepl("weakDistancingNow|strictDistancingNow",UKKC) &
input$county_ts %in% can_counties == TRUE ) {
can <- UKKC[grep("weakDistancingNow|strictDistancingNow",UKKC)]
chbx <- chbx %>% c(can)
}
df <- df[,c(chbx)]
colors <- c("No Intervention"= "black",
"IHME Model" = "
"CAN: Shelter in Place" = "
"CAN: Delay/Distancing" = "
'JHU: NPIs 30-40% Effective' = "
'JHU: NPIs 40-50% Effective' = "
'JHU: NPIs 50-60% Effective' = "
'JHU: NPIs 60-70% Effective' = "
"JHU: Continuing Lockdown" = "
'JHU: Slow-paced Reopening' = "
'JHU: Moderate-paced Reopening' = "
'JHU: Fast-paced Reopening' = "
"Total Deaths" = "black",
"Patients Positive for COVID-19" = "black",
"ICU Patients Positive for COVID-19" = "black"
)
p <- ggplot()
if (input$selected_crosswalk == "1" & input$drop_hline == TRUE & input$county_ts == state_name) {
p <- p + geom_line(df, mapping = aes(x= Index, y = 50000), color = "black", linetype = "dashed") +
geom_text(aes(x = as.Date(input$physical.graph_date_window[[1]]), y= 50000,
label = "Phase 1 Surge Capacity"),
hjust = -0.1,
vjust = -0.3)
} else {
if ( input$selected_crosswalk == "1" & !is.na(total.cnty.beds()) == TRUE ) {
p <- p + geom_line(df, mapping = aes(x= Index, y = total.cnty.beds()), color = "black", linetype = "dashed") +
geom_text(aes(x = as.Date(input$physical.graph_date_window[[1]]), y= total.cnty.beds(),
label = "Total Licensed Beds"),
hjust = -0.1,
vjust = -0.3)
}
}
if ( TRUE %in% grepl(jhu.no, chbx)) {
chbx.M <- chbx[grep(jhu.no,chbx)]
chbx.M <- unique(str_remove(chbx.M, "\\.[MLH]"))
for (scenario in chbx.M) {
c <- as.character(colors[match(names(modellist[match(scenario,modellist)]),names(colors))])
if ( scenario %in% c(chbx) ) { p <- p + geom_line(df, mapping = aes_string(x="Index", y=scenario, color = shQuote(names(modellist[match(scenario,modellist)])) ), size = 1.5, linetype = "solid") }
if ( paste0(scenario,".M") %in% c(chbx) ) { p <- p + geom_line(df, mapping = aes_string(x="Index", y=paste0(scenario,".M"), color = shQuote(names(modellist[match(scenario,modellist)])) ), size = 1.5, linetype = "solid") }
if ( paste0(scenario,".L") %in% c(chbx) ) { p <- p + geom_ribbon(df, mapping = aes_string(x ="Index", ymin = paste0(scenario,".L"), ymax = paste0(scenario,".H") ), fill=c, color = c, alpha = 0.2) }
}
}
if ( "IHME_sts" %in% c(chbx) ) { p <- p + geom_line(df, mapping = aes(x=Index, y=IHME_sts, color = "IHME Model"), size = 1.5, linetype = "solid") }
if ( "IHME_sts.L" %in% c(chbx) ) { p <- p + geom_ribbon(df, mapping = aes(x = Index, ymin = IHME_sts.L, ymax = IHME_sts.H), fill="
if ( "strictDistancingNow" %in% c(chbx) ) { p <- p + geom_point(df, mapping = aes(x=Index, y=strictDistancingNow, color = "CAN: Shelter in Place") ) }
if ( "weakDistancingNow" %in% c(chbx) ) { p <- p + geom_point(df, mapping = aes(x=Index, y=weakDistancingNow, color = "CAN: Delay/Distancing") ) }
if ( "Total.Count.Deaths" %in% c(chbx) ) {p <- p + geom_point(df, mapping = aes(x = Index, y = Total.Count.Deaths, color = "Total Deaths"), shape = 15, fill = "black", size = 3 ) }
if ( "COVID.19.Positive.Patients" %in% c(chbx) ) {p <- p + geom_point(df, mapping = aes(x = Index, y = COVID.19.Positive.Patients, color = "Patients Positive for COVID-19"), shape = 23, fill = "black", size = 3 ) }
if ( "ICU.COVID.19.Positive.Patients" %in% c(chbx) ) {p <- p + geom_point(df, mapping = aes(x = Index, y = ICU.COVID.19.Positive.Patients, color = "ICU Patients Positive for COVID-19"), shape = 19, fill = "black", size = 3 ) }
p <- p + scale_y_continuous(labels = scales::comma)
p <- p + labs(x = "Date",
y = switch(input$selected_crosswalk,
"1" = "Hospital Bed Occupancy",
"2" = "ICU Bed Occupancy",
"3" = "Cumulative Deaths"),
color = "Legend") + scale_color_manual(values = colors) +
ggtitle(switch(input$selected_crosswalk,
"1" = paste0(input$county_ts," COVID Hospitalizations"),
"2" = paste0(input$county_ts," COVID ICU Patients"),
"3" = paste0(input$county_ts," COVID Cumulative Deaths")
)) +
theme(plot.title = element_text(size = 18, face = "bold"),
axis.title = element_text(face = "bold", size = 18, colour = "black"),
axis.text.x = element_text(face = "bold", color = "black", size = 18),
axis.text.y = element_text(face = "bold", color = "black", size = 18),
axis.line = element_line(color = "black", size = 1, linetype = "solid"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_blank(),
panel.background = element_blank(),
legend.text=element_text(size=14),
legend.position = "bottom"
)
return(p)
})
static.plot.data <- reactive({
df <- state.model.xts()[ paste0( as.Date(input$physical.graph_date_window[[1]]),"/",as.Date(input$physical.graph_date_window[[2]]) ) ]
chbx <- c()
if ( input$actuals == TRUE) {chbx <- c(chbx,c(input$select_COVID)) }
UKKC <- as.character(input$include_JHU_UKKC)
if ( TRUE %in% grepl("UK.\\w+.\\d+_\\d+|.\\w+_\\w{4,}", UKKC) & input$physical.mmd == "M" ) {
JHU_list <- UKKC[grep("UK.\\w+.\\d+_\\d+|.\\w+_\\w{4,}",UKKC)]
chbx <- c(chbx, c(JHU_list) )
} else {
JHU_list <- UKKC[grep("UK.\\w+.\\d+_\\d+|.\\w+_\\w{4,}",UKKC)]
chbx <- c(chbx, c( as.character(lapply(seq_along(JHU_list), function(i) { paste0(as.character( JHU_list[[i]] ),".M" ) } ) ) ) )
}
if (TRUE %in% grepl("UK.\\w+.\\d+_\\d+|.\\w+_\\w{4,}", UKKC) & input$physical.iqr == TRUE) {
JHU_list <- UKKC[grep("UK.\\w+.\\d+_\\d+|.\\w+_\\w{4,}",UKKC)]
chbx <- c(chbx, c( as.character(lapply(seq_along(JHU_list), function(i) {paste0(as.character( JHU_list[[i]] ),".L" ) } )) ),
c( as.character(lapply(seq_along(JHU_list), function(i) {paste0(as.character( JHU_list[[i]] ),".H" ) } )) ) )
}
if ( TRUE %in% grepl("IHME_sts", UKKC ) & input$county_ts == state_name ) {
chbx <- chbx %>% c("IHME_sts")
}
if ( TRUE %in% grepl("IHME_sts", UKKC ) & input$IHME.iqr == TRUE & input$county_ts == state_name) {
IHME <- "IHME_sts"
chbx <- c(chbx, c( as.character(lapply(seq_along(IHME), function(i) {paste0(as.character( IHME[[i]] ),".L") } )) ),
c( as.character(lapply(seq_along(IHME), function(i) {paste0(as.character( IHME[[i]] ),".H") } )) )
)
}
if ( TRUE %in% grepl("weakDistancingNow|strictDistancingNow",UKKC) & input$selected_crosswalk != "2") {
can <- UKKC[grep("weakDistancingNow|strictDistancingNow",UKKC)]
chbx <- chbx %>% c(can)
}
df <- df[,c(chbx)] %>% data.frame() %>% mutate(Date = seq(as.Date(input$physical.graph_date_window[[1]]),as.Date(input$physical.graph_date_window[[2]]), by = "day"))
df
})
output$dlScenario <- downloadHandler(
filename = function () {
paste0("COVID_Scenarios_",input$county_ts,".csv")
},
content = function(file) {
t <- c(paste("Long-term COVID Scenarios for ",input$county_ts, sep = ""),rep("",ncol(static.plot.data())-1))
tt <- c(paste("COVID Assessment Tool - Downloaded on",Sys.Date(), sep = " "),rep("",ncol(static.plot.data())-1))
l <- names(static.plot.data())
df <- static.plot.data()
df[is.na(df)] <- 0
df[] <- lapply(df, as.character)
s <- c("Please see the Technical Notes tab of the application for data sources.",rep("",ncol(static.plot.data())-1))
p <- c(paste0("Prepared by: ",state_name," Department of Public Health"), rep("",ncol(static.plot.data())-1))
dlm <- rbind(t, tt, l, df, s, p)
write.table(dlm, file, row.names = F, col.names = F, quote = F, na= "NA", sep = ",")
}
)
}
|
loadDataADaMSDTM <- function(files,
convertToDate = FALSE, dateVars = "DTC$",
verbose = TRUE,
encoding = "UTF-8",
...){
names(files) <- toupper(file_path_sans_ext(basename(files)))
idxDuplFiles <- duplicated(names(files))
if(any(idxDuplFiles))
warning(sum(idxDuplFiles), " duplicated file name. These files will have the same name in the 'dataset' column.")
readFct <- function(file, ...)
switch(file_ext(file),
'sas7bdat' = read_sas(file, encoding = encoding, ...),
'xpt' = read_xpt(file, ...),
stop(paste("File with extension:", file_ext(file), "currently not supported."))
)
dataList <- sapply(names(files), function(name){
if(verbose)
message("Import ", name, " dataset.")
data <- as.data.frame(readFct(files[name], ...))
if(nrow(data) > 0){
data <- cbind(data, DATASET = name)
if(convertToDate){
colsDate <- grep(dateVars, colnames(data), value = TRUE)
data[, colsDate] <- lapply(colsDate, function(col){
convertToDateTime(data[, col], colName = col)
})
}
colnames(data) <- toupper(colnames(data))
}else if(verbose) warning("Dataset ", name, " is empty.")
data
}, simplify = FALSE)
dataList <- dataList[!sapply(dataList, is.null)]
labelVars <- c(getLabelVars(dataList), 'DATASET' = "Dataset Name")
attr(dataList, "labelVars") <- labelVars
return(dataList)
}
convertToDateTime <- function(x, format = c("%Y-%m-%dT%H:%M", "%Y-%m-%d"),
colName = NULL, verbose = TRUE){
if(is.character(x)){
isEmpty <- function(x) is.na(x) | x == ""
}else{
isEmpty <- function(x) is.na(x)
}
newTime <- .POSIXct(rep(NA_real_, length(x)))
for(formatI in format){
idxMissingRecords <- which(is.na(newTime) & !isEmpty(x))
newTime[idxMissingRecords] <- as.POSIXct(x[idxMissingRecords], format = formatI)
if(all(!is.na(newTime[!isEmpty(x)])))
break
}
if(any(is.na(newTime[!isEmpty(x)]))){
warning(
"Vector", if(!is.null(colName)) paste0(": ", colName),
" not of specified calendar date format, so is not converted to date/time format.",
immediate. = TRUE, call. = FALSE
)
newTime <- x
}else if(verbose) message("Convert vector", if(!is.null(colName)) paste0(": ", colName),
" to calendar date/time format.")
return(newTime)
}
getLabelVar <- function(var, data = NULL, labelVars = NULL, label = NULL){
res <- if(!is.null(var)){
if(is.null(data) & is.null(labelVars) & is.null(label)){
res <- var
names(res) <- var
res
}else{
var <- unname(var)
res <- sapply(var, function(x){
attrX <- if(!is.null(label)){
if(!is.null(names(label)) && x %in% names(label)){
label[x]
}else if(is.null(names(label)) && length(label) == 1 && length(var) == 1){
label
}
}
if((is.null(attrX) || is.na(attrX)) && !is.null(labelVars)){
attrX <- labelVars[x]
}
if(is.null(attrX) || is.na(attrX))
attrX <- attributes(data[[x]])$label
attrX <- unname(attrX)
ifelse(is.null(attrX) || is.na(attrX), x, attrX)
})
}
}
return(res)
}
getLabelVars <- function(data, labelVars = NULL) {
if(!missing(data)){
if(!is.data.frame(data)){
labelVarsFromDataList <- lapply(data, getLabelVars)
labelVarsFromData <- unlist(labelVarsFromDataList)
names(labelVarsFromData) <- unlist(lapply(labelVarsFromDataList, names))
labelVars <- c(labelVars, labelVarsFromData)
labelVars <- labelVars[!duplicated(names(labelVars))]
return(labelVars)
}
labelVarsFromData <- unlist(
sapply(colnames(data), function(col)
attributes(data[[col]])$label,
simplify = FALSE
)
)
labelVars <- c(labelVars, labelVarsFromData)
labelVars <- labelVars[!duplicated(names(labelVars))]
}
return(labelVars)
}
getLabelParamcd <- function(paramcd, data, paramcdVar = "PARAMCD", paramVar = "PARAM"){
vars <- c(paramcdVar, paramVar)
varsNotInData <- vars[which(!vars %in% colnames(data))]
if(length(varsNotInData) > 0)
stop(paste("Parameters:", toString(sQuote(varsNotInData)),
"not available in 'data', you may need to adapt the",
"parameters: 'paramVar'/'paramcdVar'."))
label <- data[match(paramcd, data[, paramcdVar]), paramVar]
names(label) <- paramcd
res <- sapply(names(label), function(xName){
x <- as.character(label[xName])
ifelse(is.null(x) || is.na(x), xName, x)
})
return(res)
}
|
prop.cint <- function(k, n, method=c("binomial", "z.score"), correct=TRUE,
conf.level=0.95, alternative=c("two.sided", "less", "greater")) {
method <- match.arg(method)
alternative <- match.arg(alternative)
if (any(k < 0) || any(k > n) || any(n < 1)) stop("arguments must be integer vectors with 0 <= k <= n")
if (any(conf.level <= 0) || any(conf.level > 1)) stop("conf.level must be in range [0,1]")
l <- max(length(k), length(n), length(conf.level))
if (length(k) < l) k <- rep(k, length.out=l)
if (length(n) < l) n <- rep(n, length.out=l)
if (length(conf.level) < l) conf.level <- rep(conf.level, length.out=l)
if (method == "binomial") {
alpha <- if (alternative == "two.sided") (1 - conf.level) / 2 else (1 - conf.level)
lower <- safe.qbeta(alpha, k, n - k + 1)
upper <- safe.qbeta(alpha, k + 1, n - k, lower.tail=FALSE)
cint <- switch(alternative,
two.sided = data.frame(lower = lower, upper = upper),
less = data.frame(lower = 0, upper = upper),
greater = data.frame(lower = lower, upper = 1))
} else {
alpha <- if (alternative == "two.sided") (1 - conf.level) / 2 else (1 - conf.level)
z <- qnorm(alpha, lower.tail=FALSE)
yates <- if (correct) 0.5 else 0.0
k.star <- k - yates
k.star <- pmax(0, k.star)
A <- n + z^2
B <- -2 * k.star - z^2
C <- k.star^2 / n
lower <- solve.quadratic(A, B, C, nan.lower=0)$lower
k.star <- k + yates
k.star <- pmin(n, k.star)
A <- n + z^2
B <- -2 * k.star - z^2
C <- k.star^2 / n
upper <- solve.quadratic(A, B, C, nan.upper=1)$upper
cint <- switch(alternative,
two.sided = data.frame(lower = lower, upper = upper),
less = data.frame(lower = rep(0,l), upper = upper),
greater = data.frame(lower = lower, upper = rep(1,l)))
}
cint
}
safe.qbeta <- function (p, shape1, shape2, lower.tail=TRUE) {
stopifnot(length(p) == length(shape1) && length(p) == length(shape2))
is.0 <- shape1 <= 0
is.1 <- shape2 <= 0
ok <- !(is.0 | is.1)
x <- rep_len(NA, length(p))
x[ok] <- qbeta(p[ok], shape1[ok], shape2[ok], lower.tail=lower.tail)
x[is.0 & !is.1] <- 0
x[is.1 & !is.0] <- 1
x
}
|
`ordivector` <-
function(ordiplot,spec,lty=2,...) {
speciescoord <- scores(ordiplot, display="species")
speciesselect <- speciescoord[rownames(speciescoord)==spec]
sitescoord <- scores(ordiplot, display="sites")
b1 <- speciesselect[2]/speciesselect[1]
b2 <- -1/b1
calc <- array(dim=c(nrow(sitescoord),3))
calc[,3] <- sitescoord[,2]-b2*sitescoord[,1]
calc[,1] <- calc[,3]/(b1-b2)
calc[,2] <- b1*calc[,1]
for (i in 1:nrow(sitescoord)) {
graphics::segments(sitescoord[,1], sitescoord[,2], calc[,1], calc[,2], lty=lty)
}
graphics::abline(0, b1, lty=lty)
graphics::arrows(0, 0, speciesselect[1], speciesselect[2],lty=1,...)
}
|
na.omit.ltraj <- function(object, ...)
{
if (!inherits(object, "ltraj"))
stop("ltraj should be of class ltraj")
p4s <- .checkp4(object)
info <- infolocs(object)
for (i in 1:length(object)) {
x <- object[[i]]
if (!is.null(info))
info[[i]] <- info[[i]][(!is.na(x[,1]))&(!is.na(x[,2])),,drop=FALSE]
object[[i]] <- x[(!is.na(x[,1]))&(!is.na(x[,2])),]
}
if (!is.null(info))
infolocs(object) <- info
res <- rec(object)
attr(res, "proj4string") <- p4s
return(res)
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.