code
stringlengths
1
13.8M
context("winver") test_that("winver_ver", { cases <- list( list(c("", "Microsoft Windows [Version 6.3.9600]"), "6.3.9600"), list("Microsoft Windows [version 6.1.7601]", "6.1.7601"), list("Microsoft Windows [vers\u00e3o 10.0.18362.207]", "10.0.18362.207")) source(system.file("tools", "winver.R", package = "ps"), local = TRUE) for (x in cases) expect_identical(winver_ver(x[[1]]), x[[2]]) }) test_that("winver_wmic", { cases <- list( list(c("\r", "\r", "Version=6.3.9600\r", "\r", "\r", "\r"), "6.3.9600"), list(c("\r", "\r", "version=6.3.9600\r", "\r", "\r", "\r"), "6.3.9600"), list(c("\r", "\r", "vers\u00e3o=6.3.9600\r", "\r", "\r", "\r"), "6.3.9600")) source(system.file("tools", "winver.R", package = "ps"), local = TRUE) for (x in cases) expect_identical(winver_wmic(x[[1]]), x[[2]]) })
options(width=80) options(prompt = "R> ", continue = "+ ", digits = 4, useFancyQuotes = FALSE) require(ic.infer, quietly=TRUE) contrasts(grades$HSR) <- "contr.treatment" contrasts(grades$ACTC) <- "contr.treatment" limo.grades <- lm(meanGPA ~ HSR + ACTC, grades, weights = n) summary(limo.grades) limo.bodyfat <- lm(BodyFat ~ ., bodyfat) summary(limo.bodyfat) grades.diff <- grades contrasts(grades.diff$HSR) <- "contr.diff" contrasts(grades.diff$ACTC) <- "contr.diff" contrasts(grades.diff$HSR) limo.grades.diff <- lm(meanGPA ~ HSR + ACTC, grades.diff, weights = n) summary(limo.grades.diff) ui.treat <- make.mon.ui(grades$HSR) ui.treat ui.diff <- make.mon.ui(grades.diff$HSR) ui.diff make.mon.ui(5, type = "mean") options(width=100) HSRmon <- ic.est(coef(limo.grades)[2:9], ui = ui.treat, Sigma = vcov(limo.grades)[2:9, 2:9]) HSRmon HSReq <- ic.est(coef(limo.grades)[2:9], ui = ui.treat, Sigma = vcov(limo.grades)[2:9, 2:9], meq = 3) HSReq summary(HSRmon) summary(ic.test(HSReq), brief = FALSE) summary(ic.test(HSReq, TP = 2)) HSReq.large <- ic.est(coef(limo.grades), ui = ui.treat, Sigma = vcov(limo.grades), index = 2:9, meq = 3) summary(ic.test(HSReq.large, TP = 11, ui0.11 = cbind(rep(0, 16), diag(1, 16)))) summary(ic.test(HSReq, TP = 21, meq.alt = 2)) orlimo.grades <- orlm(limo.grades, ui = ui.treat, index = 2:9) summary(orlimo.grades, brief = TRUE) orlimo.bodyfat <- orlm(limo.bodyfat, ui = diag(1,3), boot = TRUE) summary(orlimo.bodyfat) or.relimp(limo.bodyfat, ui = diag(1, 3)) require(relaimpo, quietly=TRUE) calc.relimp(limo.bodyfat)$lmg
fetch <- function(x, places, urls, verbose = opts_flow$get("verbose")){ if(is.null(verbose)) verbose = FALSE y = sapply(places, list.files, pattern = paste0(x, "$"), full.names = TRUE) y = as.character(unlist(y)) if(verbose > 1) message(y) return(y) } fetch_pipes <- function(x, places, last_only = FALSE, urls = opts_flow$get("flowr_pipe_urls"), silent = FALSE, verbose = opts_flow$get("verbose"), ask = TRUE){ if(missing(places)){ places = c( system.file(package = "flowr", "pipelines"), system.file(package = "flowr", "inst/pipelines"), system.file(package = "ngsflows", "pipelines"), system.file(package = "ngsflows", "inst/pipelines"), strsplit(opts_flow$get("flow_pipe_paths"), ",")[[1]], getwd()) places = places[!places == ""] } if(verbose) message("> searching for pipes in the following places: \n ", paste(na.omit(places), collapse = "\n "), "\n") if(missing(x)){ message("> since no search pattern was supplied, here is the complete list of available pipelines:") x = ".*" } ext = tools::file_ext(x) if(!ext == ""){ x = gsub(paste0(ext, "$"), "", x) warning("> It is best to supply only the name of the pipeline, without the extension. ", "We add a .R extention before searching. Also, this name also corresponds, ", "to the R function.") }else{ ext = ".R" } fl = paste0(x, ext) if(file.exists(fl)) r = file_path_as_absolute(fl) else r = fetch(paste0("^", x, ext, "$"), places = places, urls = urls, verbose = FALSE) if(length(r) == 0){ } r = unique(r) def = gsub("R$", "def", r) def = ifelse(file.exists(def), def, NA) conf = gsub("R$", "conf", r) conf = ifelse(file.exists(conf), conf, NA) pipes = data.frame(name = file_path_sans_ext(basename(r)), def = def, conf = conf, pipe = r, stringsAsFactors = FALSE) pipes = subset(pipes, !is.na(def)) if(nrow(pipes) == 0) stop("> could not find a pipeline called '", x, "'. Run 'flowr fetch_pipes' to see the full list.\n") pipe_print = pipes; pipe_print$def = basename(as.character(pipe_print$def)) pipe_print$conf = basename(as.character(pipe_print$conf)) if(verbose > 0 & !silent) message(paste(kable(pipe_print), collapse = "\n")) if(last_only){ if(nrow(pipes) > 1 & x != ".*") message("> Found multiple pipelines with the same name, will use the last from above list") pipes = tail(pipes, 1) } invisible(pipes) } load_pipe <- function(x){ } fetch_conf <- function(x = "flowr.conf", places, ...){ if(missing(places)){ places = c( system.file(package = "flowr", "conf"), system.file(package = "flowr", "inst/conf"), file.path(path.expand("~"), "flowr/conf/flowr.conf"), opts_flow$get("flow_conf_path"), getwd()) } ext = tools::file_ext(x) if(ext == "") x = paste0(x, ".conf") x = paste0(x, "$") fetch(x, places = places, ...) } search_conf <- function(...){ .Deprecated("fetch_conf") fetch_conf(...) } avail_pipes <- function(){ }
regime <- function(TS, q=c(0.9, 0.1), text="d", by="hdoy", y.lims=NA) { opar <- graphics::par(no.readonly = TRUE) hyrstart <- as.numeric(subset(TS, TS$hmonth==1)$month[1]) if (by=="hdoy") { doy <- as.factor(TS$hdoy) } else { doy <- as.factor(TS$doy) } Qdoy <- array(data=NA, c(max(as.numeric(doy)),6)) colnames(Qdoy)<- c("MaxQ", "MinQ", "MeanQ", "Q90", "Q10", "Median") Qdoy[,1]<-tapply(TS$Flow, doy, max, na.rm=TRUE) Qdoy[,2]<-tapply(TS$Flow, doy, min, na.rm=TRUE) Qdoy[,3]<-tapply(TS$Flow, doy, mean, na.rm=TRUE) Qdoy[,4]<-tapply(TS$Flow, doy, stats::quantile, q[1], na.rm=TRUE) Qdoy[,5]<-tapply(TS$Flow, doy, stats::quantile, q[2], na.rm=TRUE) Qdoy[,6]<-tapply(TS$Flow, doy, stats::median, na.rm=TRUE) mdoy <- as.numeric(unique(doy)) xx <- c(1:max(as.numeric(doy)),max(as.numeric(doy)):1) yy <- c(Qdoy[,4],Qdoy[max(as.numeric(doy)):1,5]) graphics::par(mar=c(4,4,2,2)) if (!is.null(text)) {graphics::par(oma=c(0,0,1,0))} yl1=expression(paste("Discharge (m" ^{3}, "/s)")) if (!is.na(y.lims[1])) { graphics::plot(Qdoy[,1], col=" xlab="", ylab="", xaxt="n", ylim=y.lims) } else { y.lims <- range(pretty(c(0, TS$Flow))) graphics::plot(Qdoy[,1], col=" xlab="", ylab="", xaxt="n", ylim=y.lims) } graphics::title(ylab=yl1, line=2) graphics::points(Qdoy[,2], col=" graphics::polygon(xx, yy, col="gray", border=" graphics::points(Qdoy[,3],col=" graphics::points(Qdoy[,6], col="gray50", type="l", lwd=2) if (by == "hdoy") { axis_doy.internal(hyrstart) } else { axis_doy.internal(1) } SYMnames <- c("maximum", paste(as.character(max(q)), "quantile"), "mean", "median", paste(as.character(min(q)), "quantile"), "minimum") SYMcol <- c(" graphics::legend("topleft", legend = SYMnames, lwd = c(NA, 1, 2, 2, 1, NA), lty = c(NA, 1, 1, 1, 1, NA), pch = c(19, NA, NA, NA, NA, 19), pt.cex = 0.5, col = SYMcol, cex=0.7) if (!is.null(text)) { if (text == "d") { stinfo <- station.info(TS, Plot=F) text <- paste("ID: ", stinfo[1],", NAME: ", stinfo[2], ", PROV/STATE: ", stinfo[3], sep = "") } graphics::mtext(text, side=3, line=0, outer=T, cex=0.7) } on.exit(suppressWarnings(graphics::par(opar))) }
test_that("can generate a basic request", { req <- request_generate( "sheets.spreadsheets.get", list(spreadsheetId = "abc123"), token = NULL ) expect_identical(req$method, "GET") expect_match( req$url, "^https://sheets.googleapis.com/v4/spreadsheets/abc123\\?key=.+" ) expect_null(req$token) })
test_that("str_before_last_dot works", { expect_equal(str_before_last_dot(c("spreadsheet1.csv", "doc2.doc")), c("spreadsheet1", "doc2"), check.attributes = FALSE ) }) test_that("`str_before_nth()` works", { string <- "ab..cd..de..fg..h" expect_equal(str_before_nth(string, "\\.", -3), "ab..cd..de.", check.attributes = FALSE ) expect_equal(str_before_nth(string, ".", -3), "ab..cd..de..fg", check.attributes = FALSE ) expect_equal(str_before_nth(rep(string, 2), fixed("."), -3), rep("ab..cd..de.", 2), check.attributes = FALSE ) expect_equal(str_before_last(rep(string, 2), fixed(".")), rep("ab..cd..de..fg.", 2), check.attributes = FALSE ) expect_equal(str_before_last(character(), 1:3), character()) string <- "abxxcdxxdexxfgxxh" expect_equal(str_before_nth(string, "e", 1:2), c("abxxcdxxd", NA)) })
"example_resource1"
netmeta <- function(TE, seTE, treat1, treat2, studlab, data = NULL, subset = NULL, sm, level = gs("level"), level.ma = gs("level.ma"), fixed = gs("fixed"), random = gs("random") | !is.null(tau.preset), prediction = FALSE, level.predict = gs("level.predict"), reference.group, baseline.reference = TRUE, small.values = "good", all.treatments = NULL, seq = NULL, method.tau = "DL", tau.preset = NULL, tol.multiarm = 0.001, tol.multiarm.se = NULL, details.chkmultiarm = FALSE, sep.trts = ":", nchar.trts = 666, nchar.studlab = 666, func.inverse = invmat, n1 = NULL, n2 = NULL, event1 = NULL, event2 = NULL, incr = NULL, sd1 = NULL, sd2 = NULL, time1 = NULL, time2 = NULL, backtransf = gs("backtransf"), title = "", keepdata = gs("keepdata"), control = NULL, warn = TRUE, warn.deprecated = gs("warn.deprecated"), nchar = nchar.trts, ...) { chklevel(level) chklevel(level.predict) chklogical(prediction) missing.reference.group <- missing(reference.group) chklogical(baseline.reference) small.values <- setchar(small.values, c("good", "bad")) if (!is.null(all.treatments)) chklogical(all.treatments) method.tau <- setchar(method.tau, c("DL", "ML", "REML")) if (!is.null(tau.preset)) chknumeric(tau.preset, min = 0, length = 1) chknumeric(tol.multiarm, min = 0, length = 1) if (!is.null(tol.multiarm.se)) chknumeric(tol.multiarm.se, min = 0, length = 1) chklogical(details.chkmultiarm) missing.sep.trts <- missing(sep.trts) chkchar(sep.trts) chknumeric(nchar.studlab, length = 1) chklogical(backtransf) chkchar(title) chklogical(keepdata) chklogical(warn) chklogical(baseline.reference) args <- list(...) chklogical(warn.deprecated) level.ma <- deprecated(level.ma, missing(level.ma), args, "level.comb", warn.deprecated) chklevel(level.ma) missing.fixed <- missing(fixed) fixed <- deprecated(fixed, missing.fixed, args, "comb.fixed", warn.deprecated) chklogical(fixed) random <- deprecated(random, missing(random), args, "comb.random", warn.deprecated) chklogical(random) nchar.trts <- deprecated2(nchar.trts, missing(nchar.trts), nchar, missing(nchar), warn.deprecated) chknumeric(nchar.trts, min = 1, length = 1) nulldata <- is.null(data) if (nulldata) data <- sys.frame(sys.parent()) mf <- match.call() TE <- eval(mf[[match("TE", names(mf))]], data, enclos = sys.frame(sys.parent())) missing.reference.group.pairwise <- FALSE if (is.data.frame(TE) & !is.null(attr(TE, "pairwise"))) { is.pairwise <- TRUE sm <- attr(TE, "sm") if (missing.reference.group) { missing.reference.group.pairwise <- TRUE reference.group <- attr(TE, "reference.group") if (is.null(reference.group)) reference.group <- "" else missing.reference.group <- FALSE } keep.all.comparisons <- attr(TE, "keep.all.comparisons") if (!is.null(keep.all.comparisons) && !keep.all.comparisons) stop("First argument is a pairwise object created with ", "'keep.all.comparisons = FALSE'.", call. = TRUE) seTE <- TE$seTE treat1 <- TE$treat1 treat2 <- TE$treat2 studlab <- TE$studlab if (!is.null(TE$n1)) n1 <- TE$n1 if (!is.null(TE$n2)) n2 <- TE$n2 if (!is.null(TE$event1)) event1 <- TE$event1 if (!is.null(TE$event2)) event2 <- TE$event2 if (!is.null(TE$incr)) incr <- TE$incr if (!is.null(TE$sd1)) sd1 <- TE$sd1 if (!is.null(TE$sd2)) sd2 <- TE$sd2 if (!is.null(TE$time1)) time1 <- TE$time1 if (!is.null(TE$time2)) time2 <- TE$time2 pairdata <- TE data <- TE TE <- TE$TE } else { is.pairwise <- FALSE if (missing(sm)) if (!is.null(data) && !is.null(attr(data, "sm"))) sm <- attr(data, "sm") else sm <- "" seTE <- eval(mf[[match("seTE", names(mf))]], data, enclos = sys.frame(sys.parent())) treat1 <- eval(mf[[match("treat1", names(mf))]], data, enclos = sys.frame(sys.parent())) treat2 <- eval(mf[[match("treat2", names(mf))]], data, enclos = sys.frame(sys.parent())) studlab <- eval(mf[[match("studlab", names(mf))]], data, enclos = sys.frame(sys.parent())) n1 <- eval(mf[[match("n1", names(mf))]], data, enclos = sys.frame(sys.parent())) n2 <- eval(mf[[match("n2", names(mf))]], data, enclos = sys.frame(sys.parent())) event1 <- eval(mf[[match("event1", names(mf))]], data, enclos = sys.frame(sys.parent())) event2 <- eval(mf[[match("event2", names(mf))]], data, enclos = sys.frame(sys.parent())) incr <- eval(mf[[match("incr", names(mf))]], data, enclos = sys.frame(sys.parent())) sd1 <- eval(mf[[match("sd1", names(mf))]], data, enclos = sys.frame(sys.parent())) sd2 <- eval(mf[[match("sd2", names(mf))]], data, enclos = sys.frame(sys.parent())) time1 <- eval(mf[[match("time1", names(mf))]], data, enclos = sys.frame(sys.parent())) time2 <- eval(mf[[match("time2", names(mf))]], data, enclos = sys.frame(sys.parent())) } chknumeric(TE) chknumeric(seTE) if (!any(!is.na(TE) & !is.na(seTE))) stop("Missing data for estimates (argument 'TE') and ", "standard errors (argument 'seTE') in all studies.\n ", "No network meta-analysis possible.", call. = FALSE) k.Comp <- length(TE) if (is.factor(treat1)) treat1 <- as.character(treat1) if (is.factor(treat2)) treat2 <- as.character(treat2) if (length(studlab) == 0) { if (warn) warning("No information given for argument 'studlab'. ", "Assuming that comparisons are from independent studies.", call. = FALSE) studlab <- seq(along = TE) } studlab <- as.character(studlab) subset <- eval(mf[[match("subset", names(mf))]], data, enclos = sys.frame(sys.parent())) missing.subset <- is.null(subset) if (!is.null(event1) & !is.null(event2)) available.events <- TRUE else available.events <- FALSE if (!is.null(n1) & !is.null(n2)) available.n <- TRUE else available.n <- FALSE if (available.events & is.null(incr)) incr <- rep(0, length(event2)) available.means <- FALSE if (!is.null(sd1) & !is.null(sd2)) available.sds <- TRUE else available.sds <- FALSE if (!is.null(time1) & !is.null(time2)) available.times <- TRUE else available.times <- FALSE if (keepdata) { if (nulldata & !is.pairwise) data <- data.frame(.studlab = studlab, stringsAsFactors = FALSE) else if (nulldata & is.pairwise) { data <- pairdata data$.studlab <- studlab } else data$.studlab <- studlab data$.order <- seq_along(studlab) data$.treat1 <- treat1 data$.treat2 <- treat2 data$.TE <- TE data$.seTE <- seTE data$.event1 <- event1 data$.n1 <- n1 data$.event2 <- event2 data$.n2 <- n2 data$.incr <- incr data$.sd1 <- sd1 data$.sd2 <- sd2 data$.time1 <- time1 data$.time2 <- time2 wo <- data$.treat1 > data$.treat2 if (any(wo)) { data$.TE[wo] <- -data$.TE[wo] ttreat1 <- data$.treat1 data$.treat1[wo] <- data$.treat2[wo] data$.treat2[wo] <- ttreat1[wo] if (isCol(data, ".n1") & isCol(data, ".n2")) { tn1 <- data$.n1 data$.n1[wo] <- data$.n2[wo] data$.n2[wo] <- tn1[wo] } if (isCol(data, ".event1") & isCol(data, ".event2")) { tevent1 <- data$.event1 data$.event1[wo] <- data$.event2[wo] data$.event2[wo] <- tevent1[wo] } if (isCol(data, ".sd1") & isCol(data, ".sd2")) { tsd1 <- data$.sd1 data$.sd1[wo] <- data$.sd2[wo] data$.sd2[wo] <- tsd1[wo] } if (isCol(data, ".time1") & isCol(data, ".time2")) { ttime1 <- data$.time1 data$.time1[wo] <- data$.time2[wo] data$.time2[wo] <- ttime1[wo] } } if (!missing.subset) { if (length(subset) == dim(data)[1]) data$.subset <- subset else { data$.subset <- FALSE data$.subset[subset] <- TRUE } } } if (!missing.subset) { if ((is.logical(subset) & (sum(subset) > k.Comp)) || (length(subset) > k.Comp)) stop("Length of subset is larger than number of studies.", call. = FALSE) TE <- TE[subset] seTE <- seTE[subset] treat1 <- treat1[subset] treat2 <- treat2[subset] studlab <- studlab[subset] if (!is.null(n1)) n1 <- n1[subset] if (!is.null(n2)) n2 <- n2[subset] if (!is.null(event1)) event1 <- event1[subset] if (!is.null(event2)) event2 <- event2[subset] if (!is.null(incr)) incr <- incr[subset] if (!is.null(sd1)) sd1 <- sd1[subset] if (!is.null(sd2)) sd2 <- sd2[subset] if (!is.null(time1)) time1 <- time1[subset] if (!is.null(time2)) time2 <- time2[subset] } labels <- sort(unique(c(treat1, treat2))) if (compmatch(labels, sep.trts)) { if (!missing.sep.trts) warning("Separator '", sep.trts, "' used in at least one treatment label. ", "Try to use predefined separators: ", "':', '-', '_', '/', '+', '.', '|', '*'.", call. = FALSE) if (!compmatch(labels, ":")) sep.trts <- ":" else if (!compmatch(labels, "-")) sep.trts <- "-" else if (!compmatch(labels, "_")) sep.trts <- "_" else if (!compmatch(labels, "/")) sep.trts <- "/" else if (!compmatch(labels, "+")) sep.trts <- "+" else if (!compmatch(labels, ".")) sep.trts <- "-" else if (!compmatch(labels, "|")) sep.trts <- "|" else if (!compmatch(labels, "*")) sep.trts <- "*" else stop("All predefined separators (':', '-', '_', '/', '+', ", "'.', '|', '*') are used in at least one treatment label.", "\n Please specify a different character that should be ", "used as separator (argument 'sep.trts').", call. = FALSE) } if (!is.null(seq)) seq <- setseq(seq, labels) else { seq <- labels if (is.numeric(seq)) seq <- as.character(seq) } if (any(treat1 == treat2)) stop("Treatments must be different (arguments 'treat1' and 'treat2').", call. = FALSE) tabnarms <- table(studlab) sel.narms <- !is.wholenumber((1 + sqrt(8 * tabnarms + 1)) / 2) if (sum(sel.narms) == 1) stop(paste("Study '", names(tabnarms)[sel.narms], "' has a wrong number of comparisons.", "\n Please provide data for all treatment comparisons", " (two-arm: 1; three-arm: 3; four-arm: 6, ...).", sep = ""), call. = FALSE) if (sum(sel.narms) > 1) stop(paste("The following studies have a wrong number of comparisons: ", paste(paste("'", names(tabnarms)[sel.narms], "'", sep = ""), collapse = ", "), "\n Please provide data for all treatment comparisons", " (two-arm: 1; three-arm: 3; four-arm: 6, ...).", sep = ""), call. = FALSE) n.subnets <- netconnection(treat1, treat2, studlab)$n.subnets if (n.subnets > 1) stop(paste("Network consists of ", n.subnets, " separate sub-networks.\n ", "Use R function 'netconnection' to identify sub-networks.", sep = ""), call. = FALSE) excl <- is.na(TE) | is.na(seTE) | seTE <= 0 if (any(excl)) { if (keepdata) data$.excl <- excl dat.NAs <- data.frame(studlab = studlab[excl], treat1 = treat1[excl], treat2 = treat2[excl], TE = format(round(TE[excl], 4)), seTE = format(round(seTE[excl], 4)), stringsAsFactors = FALSE ) if (warn) warning("Comparison", if (sum(excl) > 1) "s", " with missing TE / seTE or zero seTE not considered ", "in network meta-analysis.", call. = FALSE) if (warn) { cat(paste("Comparison", if (sum(excl) > 1) "s", " not considered in network meta-analysis:\n", sep = "")) prmatrix(dat.NAs, quote = FALSE, right = TRUE, rowlab = rep("", sum(excl))) cat("\n") } studlab <- studlab[!(excl)] treat1 <- treat1[!(excl)] treat2 <- treat2[!(excl)] TE <- TE[!(excl)] seTE <- seTE[!(excl)] if (!is.null(n1)) n1 <- n1[!excl] if (!is.null(n2)) n2 <- n2[!excl] if (!is.null(event1)) event1 <- event1[!excl] if (!is.null(event2)) event2 <- event2[!excl] if (!is.null(incr)) incr <- incr[!excl] if (!is.null(sd1)) sd1 <- sd1[!excl] if (!is.null(sd2)) sd2 <- sd2[!excl] if (!is.null(time1)) time1 <- time1[!excl] if (!is.null(time2)) time2 <- time2[!excl] seq <- seq[seq %in% unique(c(treat1, treat2))] labels <- labels[labels %in% unique(c(treat1, treat2))] } tabnarms <- table(studlab) sel.narms <- !is.wholenumber((1 + sqrt(8 * tabnarms + 1)) / 2) if (sum(sel.narms) == 1) stop(paste("After removing comparisons with missing treatment effects", " or standard errors,\n study '", names(tabnarms)[sel.narms], "' has a wrong number of comparisons.", " Please check data and\n consider to remove study", " from network meta-analysis.", sep = ""), call. = FALSE) if (sum(sel.narms) > 1) stop(paste("After removing comparisons with missing treatment effects", " or standard errors,\n the following studies have", " a wrong number of comparisons: ", paste(paste("'", names(tabnarms)[sel.narms], "'", sep = ""), collapse = ", "), "\n Please check data and consider to remove studies", " from network meta-analysis.", sep = ""), call. = FALSE) n.subnets <- netconnection(treat1, treat2, studlab)$n.subnets if (n.subnets > 1) stop(paste("After removing comparisons with missing treatment effects", " or standard errors,\n network consists of ", n.subnets, " separate sub-networks.\n ", "Please check data and consider to remove studies", " from network meta-analysis.", sep = ""), call. = FALSE) wo <- treat1 > treat2 if (any(wo)) { TE[wo] <- -TE[wo] ttreat1 <- treat1 treat1[wo] <- treat2[wo] treat2[wo] <- ttreat1[wo] if (available.n) { tn1 <- n1 n1[wo] <- n2[wo] n2[wo] <- tn1[wo] } if (available.events) { tevent1 <- event1 event1[wo] <- event2[wo] event2[wo] <- tevent1[wo] } if (available.means) { tmean1 <- mean1 mean1[wo] <- mean2[wo] mean2[wo] <- tmean1[wo] } if (available.sds) { tsd1 <- sd1 sd1[wo] <- sd2[wo] sd2[wo] <- tsd1[wo] } if (available.times) { ttime1 <- time1 time1[wo] <- time2[wo] time2[wo] <- ttime1[wo] } } if (missing.reference.group | missing.reference.group.pairwise) { go.on <- TRUE i <- 0 while (go.on) { i <- i + 1 sel.i <- !is.na(TE) & !is.na(seTE) & (treat1 == labels[i] | treat2 == labels[i]) if (sum(sel.i) > 0) { go.on <- FALSE reference.group <- labels[i] } else if (i == length(labels)) { go.on <- FALSE reference.group <- "" } } } if (is.null(all.treatments)) if (reference.group == "") all.treatments <- TRUE else all.treatments <- FALSE if (reference.group != "") reference.group <- setref(reference.group, labels) p0 <- prepare(TE, seTE, treat1, treat2, studlab, func.inverse = func.inverse) chkmultiarm(p0$TE, p0$seTE, p0$treat1, p0$treat2, p0$studlab, tol.multiarm = tol.multiarm, tol.multiarm.se = tol.multiarm.se, details = details.chkmultiarm) tdata <- data.frame(studies = p0$studlab, narms = p0$narms, order = p0$order, stringsAsFactors = FALSE) tdata <- tdata[!duplicated(tdata[, c("studies", "narms")]), , drop = FALSE] studies <- tdata$studies[order(tdata$order)] narms <- tdata$narms[order(tdata$order)] res.f <- nma.ruecker(p0$TE, sqrt(1 / p0$weights), p0$treat1, p0$treat2, p0$treat1.pos, p0$treat2.pos, p0$narms, p0$studlab, sm, level, level.ma, p0$seTE, 0, sep.trts, method.tau, func.inverse) trts <- rownames(res.f$A.matrix) if (is.null(tau.preset)) { if (method.tau %in% c("ML", "REML")) { dat.tau <- data.frame(studlab = studlab, treat1 = treat1, treat2 = treat2, TE = TE, seTE = seTE) if (available.n) { dat.tau$n1 <- n1 dat.tau$n2 <- n2 } if (available.events) { dat.tau$event1 <- event1 dat.tau$event2 <- event2 dat.tau$incr <- incr } if (available.means) { dat.tau$mean1 <- mean1 dat.tau$mean2 <- mean2 } if (available.sds) { dat.tau$sd1 <- sd1 dat.tau$sd2 <- sd2 } if (available.times) { dat.tau$time1 <- time1 dat.tau$time2 <- time2 } keep <- logical(0) wo <- logical(0) for (i in unique(dat.tau$studlab)) { d.i <- dat.tau[dat.tau$studlab == i, , drop = FALSE] trts.i <- unique(sort(c(d.i$treat1, d.i$treat2))) if (reference.group %in% trts.i) ref.i <- reference.group else ref.i <- rev(trts.i)[1] keep.i <- !(d.i$treat1 != ref.i & d.i$treat2 != ref.i) wo.i <- d.i$treat1 == ref.i keep <- c(keep, keep.i) wo <- c(wo, wo.i) } dat.tau <- dat.tau[keep, , drop = FALSE] dat.tau$id <- seq_along(dat.tau$TE) wo <- wo[keep] if (sum(wo) > 0) { dat.tau$TE[wo] <- -dat.tau$TE[wo] t2.i <- dat.tau$treat2 e2.i <- dat.tau$event2 n2.i <- dat.tau$n2 sd2.i <- dat.tau$sd2 time2.i <- dat.tau$time2 dat.tau$treat2[wo] <- dat.tau$treat1[wo] dat.tau$event2[wo] <- dat.tau$event1[wo] dat.tau$n2[wo] <- dat.tau$n1[wo] dat.tau$sd2[wo] <- dat.tau$sd1[wo] dat.tau$time2[wo] <- dat.tau$time2[wo] dat.tau$treat1[wo] <- t2.i[wo] dat.tau$event1[wo] <- e2.i[wo] dat.tau$n1[wo] <- n2.i[wo] dat.tau$sd1[wo] <- sd2.i[wo] dat.tau$time1[wo] <- time2.i[wo] } ncols1 <- ncol(dat.tau) dat.tau <- contrmat(dat.tau, grp1 = "treat1", grp2 = "treat2") ncols2 <- ncol(dat.tau) newnames <- paste0("V", seq_len(ncols2 - ncols1)) names(dat.tau)[(ncols1 + 1):ncols2] <- newnames trts.tau <- newnames[-length(newnames)] formula.trts <- as.formula(paste("~ ", paste(trts.tau, collapse = " + "), " - 1")) if (available.n & (available.events | available.times | (available.sds))) { dat.tau <- dat.tau[order(dat.tau$studlab), ] V <- bldiag(lapply(split(dat.tau, dat.tau$studlab), calcV, sm = sm)) } else V <- dat.tau$seTE^2 dat.tau.TE <- dat.tau$TE rma1 <- runNN(rma.mv, list(yi = dat.tau.TE, V = V, data = dat.tau, mods = formula.trts, random = as.call(~ factor(id) | studlab), rho = 0.5, method = method.tau, control = control)) tau <- sqrt(rma1$tau2) } else tau <- res.f$tau } else tau <- tau.preset p1 <- prepare(TE, seTE, treat1, treat2, studlab, tau, func.inverse) res.r <- nma.ruecker(p1$TE, sqrt(1 / p1$weights), p1$treat1, p1$treat2, p1$treat1.pos, p1$treat2.pos, p1$narms, p1$studlab, sm, level, level.ma, p1$seTE, tau, sep.trts, method.tau, func.inverse) TE.random <- res.r$TE.pooled seTE.random <- res.r$seTE.pooled df.Q <- res.f$df if (df.Q == 0) prediction <- FALSE if (df.Q >= 2) { seTE.predict <- sqrt(seTE.random^2 + tau^2) ci.p <- ci(TE.random, seTE.predict, level.predict, df.Q - 1) p.lower <- ci.p$lower p.upper <- ci.p$upper diag(p.lower) <- 0 diag(p.upper) <- 0 } else { seTE.predict <- p.lower <- p.upper <- seTE.random seTE.predict[!is.na(seTE.predict)] <- NA p.lower[!is.na(p.lower)] <- NA p.upper[!is.na(p.upper)] <- NA } o <- order(p0$order) designs <- designs(res.f$treat1, res.f$treat2, res.f$studlab, sep.trts = sep.trts) res <- list(studlab = res.f$studlab[o], treat1 = res.f$treat1[o], treat2 = res.f$treat2[o], TE = res.f$TE[o], seTE = res.f$seTE.orig[o], seTE.adj = res.f$seTE[o], seTE.adj.fixed = res.f$seTE[o], seTE.adj.random = res.r$seTE[o], design = designs$design[o], event1 = event1, event2 = event2, n1 = n1, n2 = n2, incr = incr, sd1 = sd1, sd2 = sd2, time1 = time1, time2 = time2, k = res.f$k, m = res.f$m, n = res.f$n, d = length(unique(designs$design)), trts = trts, k.trts = rowSums(res.f$A.matrix), n.trts = if (available.n) NA else NULL, events.trts = if (available.events) NA else NULL, n.arms = NA, multiarm = NA, studies = studies, narms = narms, designs = unique(sort(designs$design)), comparisons = "", TE.nma.fixed = res.f$TE.nma[o], seTE.nma.fixed = res.f$seTE.nma[o], lower.nma.fixed = res.f$lower.nma[o], upper.nma.fixed = res.f$upper.nma[o], statistic.nma.fixed = res.f$statistic.nma[o], pval.nma.fixed = res.f$pval.nma[o], leverage.fixed = res.f$leverage[o], w.fixed = res.f$w.pooled[o], Q.fixed = res.f$Q.pooled[o], TE.fixed = res.f$TE.pooled, seTE.fixed = res.f$seTE.pooled, lower.fixed = res.f$lower.pooled, upper.fixed = res.f$upper.pooled, statistic.fixed = res.f$statistic.pooled, pval.fixed = res.f$pval.pooled, TE.nma.random = res.r$TE.nma[o], seTE.nma.random = res.r$seTE.nma[o], lower.nma.random = res.r$lower.nma[o], upper.nma.random = res.r$upper.nma[o], statistic.nma.random = res.r$statistic.nma[o], pval.nma.random = res.r$pval.nma[o], w.random = res.r$w.pooled[o], TE.random = TE.random, seTE.random = seTE.random, lower.random = res.r$lower.pooled, upper.random = res.r$upper.pooled, statistic.random = res.r$statistic.pooled, pval.random = res.r$pval.pooled, seTE.predict = seTE.predict, lower.predict = p.lower, upper.predict = p.upper, prop.direct.fixed = NA, prop.direct.random = NA, TE.direct.fixed = res.f$TE.direct, seTE.direct.fixed = res.f$seTE.direct, lower.direct.fixed = res.f$lower.direct, upper.direct.fixed = res.f$upper.direct, statistic.direct.fixed = res.f$statistic.direct, pval.direct.fixed = res.f$pval.direct, TE.direct.random = res.r$TE.direct, seTE.direct.random = res.r$seTE.direct, lower.direct.random = res.r$lower.direct, upper.direct.random = res.r$upper.direct, statistic.direct.random = res.r$statistic.direct, pval.direct.random = res.r$pval.direct, Q.direct = res.r$Q.direct, tau.direct = sqrt(res.r$tau2.direct), tau2.direct = res.r$tau2.direct, I2.direct = res.r$I2.direct, TE.indirect.fixed = NA, seTE.indirect.fixed = NA, lower.indirect.fixed = NA, upper.indirect.fixed = NA, statistic.indirect.fixed = NA, pval.indirect.fixed = NA, TE.indirect.random = NA, seTE.indirect.random = NA, lower.indirect.random = NA, upper.indirect.random = NA, statistic.indirect.random = NA, pval.indirect.random = NA, Q = res.f$Q, df.Q = df.Q, pval.Q = res.f$pval.Q, I2 = res.f$I2, lower.I2 = res.f$lower.I2, upper.I2 = res.f$upper.I2, tau = tau, tau2 = tau^2, Q.heterogeneity = NA, df.Q.heterogeneity = NA, pval.Q.heterogeneity = NA, Q.inconsistency = NA, df.Q.inconsistency = NA, pval.Q.inconsistency = NA, Q.decomp = res.f$Q.decomp, A.matrix = res.f$A.matrix, X.matrix = res.f$B.matrix[o, ], B.matrix = res.f$B.matrix[o, ], L.matrix.fixed = res.f$L.matrix, Lplus.matrix.fixed = res.f$Lplus.matrix, L.matrix.random = res.r$L.matrix, Lplus.matrix.random = res.r$Lplus.matrix, Q.matrix = res.f$Q.matrix, G.matrix = res.f$G.matrix[o, o, drop = FALSE], H.matrix.fixed = res.f$H.matrix[o, o, drop = FALSE], H.matrix.random = res.r$H.matrix[o, o, drop = FALSE], n.matrix = if (available.n) NA else NULL, events.matrix = if (available.events) NA else NULL, P.fixed = NA, P.random = NA, Cov.fixed = res.f$Cov, Cov.random = res.r$Cov, treat1.pos = res.f$treat1.pos[o], treat2.pos = res.f$treat2.pos[o], sm = sm, method = "Inverse", level = level, level.ma = level.ma, fixed = fixed, random = random, comb.fixed = fixed, comb.random = random, prediction = prediction, level.predict = level.predict, reference.group = reference.group, baseline.reference = baseline.reference, all.treatments = all.treatments, seq = seq, method.tau = method.tau, tau.preset = tau.preset, tol.multiarm = tol.multiarm, tol.multiarm.se = tol.multiarm.se, details.chkmultiarm = details.chkmultiarm, func.inverse = deparse(substitute(func.inverse)), sep.trts = sep.trts, nchar.trts = nchar.trts, nchar.studlab = nchar.studlab, backtransf = backtransf, title = title, warn = warn, call = match.call(), version = packageDescription("netmeta")$Version ) class(res) <- "netmeta" n <- res$n res$prop.direct.fixed <- netmeasures(res, random = FALSE, warn = warn)$proportion res$prop.direct.random <- suppressWarnings(netmeasures(res, random = TRUE, tau.preset = res$tau, warn = FALSE)$proportion) if (is.logical(res$prop.direct.fixed)) res$prop.direct.fixed <- as.numeric(res$prop.direct.fixed) if (is.logical(res$prop.direct.random)) res$prop.direct.random <- as.numeric(res$prop.direct.random) res$comparisons <- names(res$prop.direct.random)[!is.zero(res$prop.direct.random)] P.fixed <- P.random <- matrix(NA, n, n) colnames(P.fixed) <- rownames(P.fixed) <- colnames(P.random) <- rownames(P.random) <- trts if (n == 2) { res$prop.direct.fixed <- 1 res$prop.direct.random <- 1 names(res$prop.direct.fixed) <- names(res$prop.direct.random) <- paste(labels, collapse = sep.trts) sel <- row(P.fixed) != col(P.fixed) P.fixed[sel] <- 1 P.random[sel] <- 1 } else { k <- 0 for (i in 1:(n - 1)) { for (j in (i + 1):n) { k <- k + 1 P.fixed[i, j] <- P.fixed[j, i] <- res$prop.direct.fixed[k] P.random[i, j] <- P.random[j, i] <- res$prop.direct.random[k] } } } TE.direct.fixed <- res$TE.direct.fixed TE.direct.random <- res$TE.direct.random TE.direct.fixed[abs(P.fixed) < .Machine$double.eps^0.5] <- 0 TE.direct.random[abs(P.random) < .Machine$double.eps^0.5] <- 0 res$P.fixed <- P.fixed res$P.random <- P.random P.fixed[abs(P.fixed - 1) < .Machine$double.eps^0.5] <- NA P.fixed[P.fixed > 1] <- NA P.random[abs(P.random - 1) < .Machine$double.eps^0.5] <- NA P.random[P.random > 1] <- NA ci.if <- ci((res$TE.fixed - P.fixed * TE.direct.fixed) / (1 - P.fixed), sqrt(res$seTE.fixed^2 / (1 - P.fixed)), level = level) res$TE.indirect.fixed <- ci.if$TE res$seTE.indirect.fixed <- ci.if$seTE res$lower.indirect.fixed <- ci.if$lower res$upper.indirect.fixed <- ci.if$upper res$statistic.indirect.fixed <- ci.if$statistic res$pval.indirect.fixed <- ci.if$p ci.ir <- ci((res$TE.random - P.random * TE.direct.random) / (1 - P.random), sqrt(res$seTE.random^2 / (1 - P.random)), level = level) res$TE.indirect.random <- ci.ir$TE res$seTE.indirect.random <- ci.ir$seTE res$lower.indirect.random <- ci.ir$lower res$upper.indirect.random <- ci.ir$upper res$statistic.indirect.random <- ci.ir$statistic res$pval.indirect.random <- ci.ir$p res$small.values <- small.values if (any(res$narms > 2)) { tdata1 <- data.frame(studlab = res$studlab, .order = seq(along = res$studlab)) tdata2 <- data.frame(studlab = as.character(res$studies), narms = res$narms) tdata12 <- merge(tdata1, tdata2, by = "studlab", all.x = TRUE, all.y = FALSE, sort = FALSE) tdata12 <- tdata12[order(tdata12$.order), ] res$n.arms <- tdata12$narms res$multiarm <- tdata12$narms > 2 } else { res$n.arms <- rep(2, length(res$studlab)) res$multiarm <- rep(FALSE, length(res$studlab)) } if (any(res$multiarm)) res$leverage.fixed[res$multiarm] <- NA if (res$d > 1) { dd <- decomp.design(res, warn = FALSE) res$Q.heterogeneity <- dd$Q.decomp$Q[2] res$Q.inconsistency <- dd$Q.decomp$Q[3] res$df.Q.heterogeneity <- dd$Q.decomp$df[2] res$df.Q.inconsistency <- dd$Q.decomp$df[3] res$pval.Q.heterogeneity <- dd$Q.decomp$pval[2] res$pval.Q.inconsistency <- dd$Q.decomp$pval[3] } if (keepdata) { data$.design <- designs(data$.treat1, data$.treat2, data$.studlab, sep = sep.trts)$design res$data <- merge(data, data.frame(.studlab = res$studies, .narms = res$narms), by = ".studlab", stringsAsFactors = FALSE) res$data <- res$data[order(res$data$.order), ] res$data$.order <- NULL } if (available.n) { res$n.matrix <- netmatrix(res, n1 + n2, func = "sum") dat.n <- data.frame(studlab = c(studlab, studlab), treat = c(treat1, treat2), n = c(n1, n2)) dat.n <- dat.n[!duplicated(dat.n[, c("studlab", "treat")]), ] dat.n <- by(dat.n$n, dat.n$treat, sum, na.rm = TRUE) res$n.trts <- as.vector(dat.n[trts]) names(res$n.trts) <- trts } if (available.events) { res$events.matrix <- netmatrix(res, event1 + event2, func = "sum") dat.e <- data.frame(studlab = c(studlab, studlab), treat = c(treat1, treat2), n = c(event1, event2)) dat.e <- dat.e[!duplicated(dat.e[, c("studlab", "treat")]), ] dat.e <- by(dat.e$n, dat.e$treat, sum, na.rm = TRUE) res$events.trts <- as.vector(dat.e[trts]) names(res$events.trts) <- trts } if (method.tau %in% c("ML", "REML")) { res$.metafor <- rma1 res$.dat.tau <- dat.tau res$.V <- V res$.formula.trts <- formula.trts res$version.metafor <- packageDescription("metafor")$Version } res }
evaluateLogConDens <- function(xs, res, which = 1:5, gam = NULL, print = FALSE){ x <- res$x w <- res$w phi <- res$phi Fhat <- res$Fhat IsKnot <- res$IsKnot n <- length(x) values.mat <- matrix(NA, ncol = 6, nrow = length(xs)) if (max(which) > 3){ if (is.null(gam) == TRUE){ VarFn <- LocalVariance(x = x, w = w, phi = phi) gam <- sqrt(res$sig ^ 2 - VarFn) } js <- 2:n xj <- x[js - 1] xj1 <- x[js] f <- exp(phi) a <- c(NA, diff(phi) / diff(x))[js] } for (i in 1:length(xs)){ values <- rep(NA, 5) x0 <- xs[i] if (x0 < x[1]){values[1:3] <- c(-Inf, 0, 0)} if (x0 == x[1]){values[1:3] <- c(phi[1], exp(phi[1]), 0)} if (x0 > x[n]){values[1:3] <- c(-Inf, 0, 1)} if (x0 > x[1] && x0 <= x[n]){ x.knot <- res$knots phi.knot <- phi[IsKnot > 0] k <- length(x.knot[x.knot < x0]) if ((1 %in% which) | (2 %in% which)){ phi.x0 <- (1 - (x0 - x.knot[k]) / (x.knot[k + 1] - x.knot[k])) * phi.knot[k] + (x0 - x.knot[k]) / (x.knot[k + 1] - x.knot[k]) * phi.knot[k + 1] f.x0 <- exp(phi.x0) values[1:2] <- c(phi.x0, f.x0) } if (3 %in% which){ j <- length(x[x < x0]) Fhat.x0 <- Fhat[j] + (x[j + 1] - x[j]) * J00(phi[j], phi[j + 1], (x0 - x[j]) / (x[j + 1] - x[j])) values[3] <- Fhat.x0 } } if (max(which) > 3){qs <- Q00(x = x0, a = a, u = xj, v = xj1, gamma = gam, QFhat = (5 %in% which))} if (4 %in% which){values[4] <- sum(f[js - 1] * qs$q)} if (5 %in% which){values[5] <- sum(f[js - 1] * qs$Q)} values.mat[i, ] <- c(x0, values) i10 <- i / length(xs) * 10 if ((round(i10) == i10) & (print == TRUE)){print(paste(i10 * 10, "% of computation of smooth estimates done", sep = ""))} } values.mat[, c(FALSE, (1:5 %in% which) == FALSE)] <- NA colnames(values.mat) <- c("xs", "log-density", "density", "CDF", "smooth.density", "smooth.CDF") return(values.mat) }
knitr::opts_chunk$set( collapse = TRUE, comment = " ) suppressMessages({ library(seecolor) library(ggplot2) library(fansi) library(crayon) }) old.hooks <- fansi::set_knit_hooks(knitr::knit_hooks) options(crayon.enabled=TRUE) print_color(c("red", "navy", "pink", " print_color(c("red", "navy", "pink", " type = "r") print_color(palette(rainbow(6)), blank.len = 1) print_color(palette(rainbow(6)), type = 'r') p1 <- ggplot(mpg) + geom_point(aes(displ, cyl, color = manufacturer)) print_color(p1) print_color(p1, type = 'r')
seq_interpolate <- function(from, to, ...) { value <- seq(from, to, ...) value[-c(1, length(value))] } interpolate_sensor_records <- function(record_set, schema, verbose) { n_to_interpolate <- sum(record_set$Result.interpolate) if (n_to_interpolate == 0) return(record_set) stop(paste( "Interpolation is broken and may not be", "proper or necessary." )) if (verbose) cat( "\r Interpolating values for", n_to_interpolate, "missing SENSOR_DATA samples" ) record_set <- data.frame(record_set, stringsAsFactors = FALSE) record_set$index <- seq(nrow(record_set)) interps <- record_set[ record_set$Result.interpolate != 0, ] new_values <- matrix( NA, nrow = sum(interps$Result.interpolate), ncol = ncol(interps) ) new_values <- stats::setNames( data.frame(new_values), names(interps) ) class(new_values$Timestamp) <- class( interps$Timestamp ) new_values$Type <- interps$Type[1] for (i in seq(nrow(interps))) { new_indices <- sum( interps$Result.interpolate[seq(0, i - 1)] ) + 1 new_indices <- seq( new_indices, new_indices + (interps$Result.interpolate[i] - 1) ) from <- interps$index[i] to <- from + 1 length_out <- 2 + interps$Result.interpolate[i] new_values$Timestamp[new_indices] <- interps$Timestamp[i] cols_to_update <- setdiff( names(new_values), c("Timestamp", "Type") ) for (col_name in cols_to_update) { new_values[new_indices, col_name] <- do.call( c, mapply( seq_interpolate, from = record_set[from, col_name], to = record_set[to, col_name], length.out = length_out, SIMPLIFY = FALSE ) ) } } record_set <- rbind(record_set, new_values) record_set <- record_set[order(record_set$index), ] record_set$Result.interpolate <- NULL record_set$index <- NULL if (verbose) cat(" ............. COMPLETE") return(record_set) }
stresstest_exercise <- function(file, n = 100, verbose = TRUE, seeds = NULL, stop_on_error = length(as.character(unlist(file))) < 2, ...) { file <- as.character(unlist(file)) if(length(file) > 1L) { rval <- list() for(i in seq_along(file)) { attr(n, "stress.list") <- TRUE rval[[file[i]]] <- stresstest_exercise(file[i], n = n, verbose = verbose, seeds = seeds, stop_on_error = stop_on_error, ...) } class(rval) <- c("stress.list", "stress", "list") } else { if (!(tolower(substr(file, nchar(file) - 3L, nchar(file))) %in% c(".rnw", ".rmd"))) file <- paste0(file, ".Rnw") if (!file.exists(file) && !file.exists(file.path(find.package("exams"), "exercises", file))) stop(sprintf("Cannot find file: %s.", file)) stress_env <- .GlobalEnv if(!is.null(seeds)) { if (length(seeds) < n) { n <- length(seeds) } else { seeds <- seeds[1:n] } } else { seeds <- 1:n } sq <- objects <- vector("list", length = n) times <- rep(0, n) if(verbose & !is.null(attr(n, "stress.list"))) cat("---\ntesting file:", file, "\n---\n") for(i in 1:n) { set.seed(seeds[i]) if(verbose) cat(seeds[i]) .global_obj_before <- ls(envir = stress_env) times[i] <- system.time(xtmp <- try(xexams(file, driver = list("sweave" = list("envir" = stress_env)), ...), silent = TRUE))["elapsed"] .global_obj_after <- ls(envir = stress_env) ex_objects <- .global_obj_after[!(.global_obj_after %in% .global_obj_before)] objects[[i]] <- list() for(j in ex_objects) objects[[i]][[j]] <- get(j, envir = stress_env) remove(list = ex_objects, envir = stress_env) if(inherits(xtmp, "try-error")) { cat(xtmp) msg <- paste('an error occured when running file: "', file, '" using seed ', seeds[i], '!', sep = '') if(stop_on_error) { stop(msg) } else { warning(msg) return(list("file" = file, "seed" = seeds[i], "error" = xtmp)) } } sq[[i]] <- list("solution" = xtmp[[1]][[1]]$metainfo$solution, "questionlist" = xtmp[[1]][[1]]$questionlist) if(i < n & verbose) cat("/") } if(verbose) cat("\n") extype <- xtmp[[1]][[1]]$metainfo$type solutions <- lapply(sq, function(x) { x$solution }) questions <- lapply(sq, function(x) { x$questionlist }) objects <- lapply(objects, function(x) { isf <- unlist(sapply(x, is.function)) n <- unlist(sapply(x, length)) if(is.null(isf)) isf <- rep(FALSE, length(x)) x[which((n == 1) & !isf)] }) nobj <- unique(unlist(lapply(objects, names))) objects <- lapply(objects, function(x) { x <- as.data.frame(x[names(x) %in% nobj]) if(!all(ok <- nobj %in% names(x))) { for(j in nobj[!ok]) x[[j]] <- NA } x <- x[, nobj, drop = FALSE] x }) objects <- do.call("rbind", objects) if(any(names(objects) %in% (no <- ls(envir = stress_env)))) rm(list = names(objects)[names(objects) %in% no]) rval <- list("seeds" = seeds, "runtime" = times) if(nrow(objects) > 0) rval$objects <- objects if(extype %in% c("num", "schoice", "mchoice")) { if(extype == "num") { if(length(solutions[[1]]) > 1) solutions <- lapply(solutions, mean) rval$solution <- unlist(solutions) nchoice <- 0 } if(extype == "schoice") { pmat <- do.call("rbind", solutions) pmat <- t(t(pmat) * 1:ncol(pmat)) rval$position <- pmat rank <- do.call("rbind", lapply(questions, function(x) { x <- gsub("$", "", gsub(" ", "", x, fixed = TRUE), fixed = TRUE) if(!all(is.na(suppressWarnings(as.numeric(x))))) x <- as.numeric(x) rank(x, ties.method = "min") })) if(all(!is.na(suppressWarnings(as.numeric(gsub("$", "", questions[[1]], fixed = TRUE)))))) { questions <- lapply(questions, function(x) { as.numeric(gsub("$", "", x, fixed = TRUE)) }) questions <- do.call("rbind", questions) i <- as.integer(rowSums(pmat)) sol_num <- rep(NA, nrow(pmat)) for(j in 1:nrow(pmat)) sol_num[j] <- questions[j, i[j]] rval$solution <- sol_num } rank <- (pmat > 0) * rank rval$rank <- as.factor(as.integer(rowSums(rank))) nchoice <- NCOL(pmat) } if(extype == "mchoice") { ex_mat <- do.call("rbind", solutions) pmat <- t(t(ex_mat) * 1:ncol(ex_mat)) rval$position <- pmat rval$ntrue <- apply(ex_mat, 1, sum) rank <- lapply(questions, function(x) { order(gsub("$", "", gsub(" ", "", x, fixed = TRUE), fixed = TRUE), decreasing = TRUE) }) rank <- do.call("rbind", rank) rval$rank <- rank * do.call("rbind", solutions) nchoice <- NCOL(pmat) } } else { rval$solutions <- solutions nchoice <- 0 } class(rval) <- c("stress", "list") attr(rval, "exinfo") <- c("file" = file, "type" = extype, "nchoice" = nchoice) } return(rval) } as.data.frame.stress <- function(x, ...) { names(x) <- paste(".", names(x), sep = "") do.call("cbind", x) } plot.stress <- function(x, type = c("overview", "solution", "rank", "runtime"), threshold = NULL, variables = NULL, spar = TRUE, ask = TRUE, ...) { op <- par(no.readonly = TRUE) on.exit(par(op)) type <- match.arg(type) rainbow <- function(n) hcl(h = seq(0, 360 * (n - 1)/n, length = n), c = 50, l = 70) if(inherits(x, "stress.list")) { par("ask" = ask) for(i in names(x)) { cat("stresstest plots for file:", i, "\n") plot.stress(x[[i]], type = type, threshold = threshold, variables = variables, spar = spar, ask = ask, ...) } } else { if(type == "overview") { k <- 0 for(j in c("runtime", "solution", "position", "rank", "ntrue")) { if(!is.null(x[[j]]) & !is.list(x[[j]])) k <- k + 1 } if(spar) { if(k < 3) par(mfrow = c(1, k)) else par(mfrow = c(2, 2)) } if(!is.null(x$runtime)) { tr <- range(x$runtime) hist(x$runtime, freq = FALSE, main = paste("Runtimes ", fmt(min(tr), 4), "-", fmt(max(tr), 4), sep = ""), xlab = "Time", col = "lightgray") } if(!is.null(x$solution) & !is.list(x$solution)) { hist(x$solution, freq = FALSE, main = "Histogram of numeric solutions", xlab = "Solutions", col = "lightgray") } nchoice <- as.numeric(attr(x, "exinfo")["nchoice"]) if(!is.null(x$position)) { ptab <- table(factor(x$position, levels = 0:nchoice)) ptab <- ptab[names(ptab) != "0"] barplot(ptab, ylab = "n", main = "Position of correct solution", xlab = "Position", col = rainbow(ncol(x$position))) } if(!is.null(x$rank)) { ptab <- table(factor(x$rank, levels = 0:nchoice)) ptab <- ptab[names(ptab) != "0"] barplot(ptab, ylab = "n", main = "Rank of correct solution", xlab = "Rank", col = rainbow(ncol(x$position))) } if(!is.null(x$ntrue)) { barplot(table(x$ntrue), main = "Number of correct solutions", ylab = "n", col = rainbow(length(unique(x$ntrue)))) } } spineplot2 <- function(x, y, threshold = NULL, ...) { if(is.numeric(x) | is.factor(x)) { if(is.factor(x)) { if(nlevels(x) > 10) return(invisible(NULL)) } if(length(unique(x)) > 1) { breaks <- if(is.numeric(x)) { unique(quantile(x, seq(0, 1, length = min(c(floor(0.5 * length(unique(x))), 10))), na.rm = TRUE)) } else NULL if(length(breaks) < 2) breaks <- NULL if((length(unique(x)) < 10) & !is.factor(x)) spineplot(as.factor(x), y, ...) else spineplot(x, y, breaks = breaks, ...) } } } plot2 <- function(x, y, threshold = NULL, ylab = NULL, ...) { if((is.numeric(x) | is.factor(x)) & (length(unique(x)) > 1)) { if(is.factor(x)) { if(nlevels(x) > 10) return(invisible(NULL)) } if(is.null(threshold)) { plot(x, y, ylab = ylab, ...) } else { breaks <- if(is.numeric(x)) { unique(quantile(x, seq(0, 1, length = min(c(floor(0.5 * length(unique(x))), 10))), na.rm = TRUE)) } else NULL if(length(breaks) < 2) breaks <- NULL ylab <- paste(ylab, "<=", threshold) if((length(unique(x)) < 10) & !is.factor(x)) spineplot(as.factor(x), factor(y <= threshold), breaks = breaks, ylab = ylab, ...) else spineplot(x, factor(y <= threshold), breaks = breaks, ylab = ylab, ...) } } } if(!is.null(x$objects)) { if(is.null(variables)) { variables <- names(x$objects) } else { v2 <- NULL for(j in variables) v2 <- c(v2, grep(j, variables, value = TRUE, fixed = TRUE)) variables <- unique(v2) } par("ask" = ask) if(spar) { if(length(variables) > 2) { if(length(variables) > 3) par(mfrow = c(2, 2)) else par(mfrow = c(1, 3)) } else { par(mfrow = c(1, length(variables))) } } if(type == "runtime") { for(j in variables) { plot2(x$objects[[j]], x$runtime, threshold = threshold, xlab = j, ylab = "Runtime", main = paste("Runtimes vs.", j), ...) } } if((type == "solution") & !is.list(x$solution) & !is.null(x$solution)) { for(j in variables) { plot2(x$objects[[j]], x$solution, threshold = threshold, xlab = j, ylab = "Solution", main = paste("Solutions vs.", j), ...) } } if((type == "rank") & !is.null(x$rank)) { if(is.matrix(x$rank)) x$rank <- as.factor(apply(x$rank, 1, paste, collapse = "|")) for(j in variables) { spineplot2(x$objects[[j]], x$rank, xlab = j, ylab = "Solution rank", main = paste("Solution rank frequencies:", j), ...) } } } } invisible(NULL) }
library("testthat") library("spectrolab") f_svc_added = "data_for_tests/data_svc_added_lines.sig" f_svc_removed = "data_for_tests/data_svc_removed_lines.sig" f_psr_added = "data_for_tests/data_psr_added_lines.sed" f_psr_removed = "data_for_tests/data_psr_removed_lines.sed" context("Parse svc and psr files by finding a data tag") test_that("parser reads longer svc file", { expect_s3_class(read_spectra(f_svc_added, "sig"), class = "spectra" ) }) test_that("parser reads shorter svc file", { expect_s3_class(read_spectra(f_svc_removed, "sig"), class = "spectra" ) }) test_that("parser reads longer psr file", { expect_s3_class(read_spectra(f_psr_added, "sed"), class = "spectra" ) }) test_that("parser reads shorter psr file", { expect_s3_class(read_spectra(f_psr_removed, "sed"), class = "spectra" ) })
dandelion <- function (fact_load, bound = 0.5, mcex = c(1, 1), palet) { if (class(fact_load) != "loadings") { cat(" Example : dandelion(loading object,bound=0)\n") stop("please use a loadings object") } if ((bound < 0) || (bound > 1)) stop("bound must be between 0 and 1") load_grid <- function(fact_load1, fact_load2, x3, y3, x2, y2, tempx, tempy, col1) { coln <- length(col1) col2 <- rev(col1) x4 <- seq(tempx, x3, by = (x3 - tempx) * (1/coln)) y4 <- seq(tempy, y3, by = (y3 - tempy) * (1/coln)) if (fact_load1 > 0 && fact_load2 < 0) { for (k in 2:coln) polygon(c(x4[k], x2, x4[k - 1]), c(y4[k], y2, y4[k - 1]), col = col2[k], border = col2[k]) } else if (fact_load1 < 0 && fact_load2 > 0) { for (k in 2:coln) polygon(c(x4[k], x2, x4[k - 1]), c(y4[k], y2, y4[k - 1]), col = col1[k], border = col1[k]) } else if (fact_load1 < 0 && fact_load2 < 0) polygon(c(x3, x2, tempx), c(y3, y2, tempy), col = col2[1], border = col2[1]) else if (fact_load1 > 0 && fact_load2 > 0) polygon(c(x3, x2, tempx), c(y3, y2, tempy), col = col1[1], border = col1[1]) } old_par <- par(no.readonly = TRUE) factor <- ncol(fact_load) commun_fact <- apply(fact_load, 1, function(x) sum(x^2)) lambda <- apply(fact_load, 2, function(x) sum(x^2)) lambda2 <- sort(lambda, decreasing = TRUE) count <- NULL for (i in lambda2) count <- c(count, which(i == lambda)) count <- unique(count) fact_load <- fact_load[, count] lambda <- lambda2 unique_fact <- 1 - commun_fact aci <- 360 * (lambda/nrow(fact_load)) if ((max(aci)/2) > (360 - sum(aci))) aci <- (aci/360) * (360 - (max(aci)/2)) degreef <- (270 + c(0, cumsum(aci)))%%360 if (aci[1] > 180) aci[1] <- 360 - aci[1] limitt <- sqrt(2 * (1 - cos(aci * pi/180)))/2 limit <- limitt * 0.9 maxcex <- (lambda/max(lambda)) * mcex[1] count <- NULL count2 <- NULL count3 <- NULL for (i in 1:factor) { for (j in 1:nrow(fact_load)) { if (abs(fact_load[j, i]) == max(abs(fact_load[j, ]))) { count <- c(count, j) if (length(count2) == (i - 1)) count2 <- c(count2, j) } } } fact_load <- fact_load[count, ] commun_fact <- commun_fact[count] unique_fact <- 1-commun_fact for (i in 1:factor) { temp <- which(count == count2[i]) if (length(temp) != 0) count3 <- c(count3, which(count == count2[i])) } xlimit <- cos(degreef * pi/180) temp <- c(limitt, 0) limord <- which(xlimit < 0) temp[limord] <- -1 * temp[limord] xlimit <- cos(degreef * pi/180) + temp ylimit <- sin(-degreef * pi/180) temp <- c(limitt, 0) limord <- which(ylimit < 0) temp[limord] <- -1 * temp[limord] ylimit <- sin(-degreef * pi/180) + temp xmax <- max(xlimit) xmin <- min(xlimit) ymax <- max(ylimit) ymin <- min(ylimit) if (max(limitt) > xmax) xmax <- max(limitt) if (max(limitt) > abs(xmin)) xmin <- -1 * max(limitt) if (max(limitt) > ymax) ymax <- max(limitt) if (max(limitt) > abs(ymin)) ymin <- -1 * max(limitt) par(mar = c(0, 0, 0, 0)) layout(matrix(c(1, 1, 1, 1, 2, 3, 4, 5), nrow = 4), widths = c(7, 3), heights = c(0.5, 1, 1, 1)) plot(1, type = "n", axes = FALSE, xlab = "", ylab = "", xlim = c(xmin, xmax), ylim = c(ymin, ymax)) degreev <- (270 + 0:(nrow(fact_load) - 1) * (360/nrow(fact_load)))%%360 x2 = cos(degreef * pi/180) y2 = sin(-degreef * pi/180) srt2 <- 360 - degreev bloc <- which((degreev - 270)%%360 > 180) srt2[bloc] <- srt2[bloc] - 180 for (i in 1:factor) { lines(c(0, x2[i]), c(0, y2[i]), type = "l", col = "black") datanew <- abs(fact_load[, i]) bloc <- which(datanew <= bound) if (length(bloc) > 0) { datanew[bloc] <- rep(0, length(datanew[bloc])) datanew[-bloc] <- (datanew[-bloc] - bound)/(1 - bound) } else datanew <- (datanew - bound)/(1 - bound) xm = x2[i] + limit[i] * cos(degreev * pi/180) ym = y2[i] + limit[i] * sin(-degreev * pi/180) x3 = x2[i] + (limit[i] * datanew) * (cos(degreev * pi/180)) y3 = y2[i] + (limit[i] * datanew) * (sin(-degreev * pi/180)) if (fact_load[1, i] > 0) col2 = palet[1] if (fact_load[1, i] < 0) col2 = palet[length(palet)] polygon(c(x3[1], x2[i]), c(y3[1], y2[i]), col = col2, border = col2) lines(c(x3[1], xm[1]), c(y3[1], ym[1]), type = "l", col = "grey") for (j in 2:(nrow(fact_load) + 1)) { jnew <- ((j - 1)%%(nrow(fact_load))) + 1 load_grid(fact_load[jnew, i], fact_load[j - 1, i], x3[jnew], y3[jnew], x2[i], y2[i], x3[j - 1], y3[j - 1], palet) lines(c(x3[jnew], xm[jnew]), c(y3[jnew], ym[jnew]), type = "l", col = "grey") } if ((length(count3) + 1) > i) { if (length(count3) == i) text_space <- count3[i]:nrow(fact_load) else text_space <- count3[i]:(count3[i + 1] - 1) for (k in text_space) { x4 = x2[i] + limitt[i] * cos(degreev[k] * pi/180) y4 = y2[i] + limitt[i] * sin(-degreev[k] * pi/180) text(x4, y4, paste(abbreviate(rownames(fact_load)[k])), cex = maxcex[i], srt = srt2[k]) } } } x2 = cos(degreef[factor + 1] * pi/180) y2 = sin(-degreef[factor + 1] * pi/180) lines(c(0, x2), c(0, y2), type = "l", col = "black", lty = 2) plot(1:10, type = "n", xlim = c(-1.5, 1.5), ylim = c(-1.5, 1.5), axes = FALSE) legend(0, 0, c("pos. load.", "neg. load."), col = c(palet[1], palet[length(palet)]), text.col = "black", bg = "white", bty="n", xjust = 0.5, yjust = 0.5, pch = c(15, 15), cex = 1.5) par(mar = c(0, 0, 0.9, 0)) plot(1:10, type = "n", xlim = c(-1.5, 1.5), ylim = c(-1.5, 1.5), axes = FALSE) title(main = "uniquenesses", cex.main = mcex[2]) x3 = cos(degreev * pi/180) y3 = sin(-degreev * pi/180) x4 = 1.25 * cos(degreev * pi/180) y4 = 1.25 * sin(-degreev * pi/180) x5 = unique_fact * cos(degreev * pi/180) y5 = unique_fact * sin(-degreev * pi/180) for (i in 1:nrow(fact_load)) { lines(c(0, x3[i]), c(0, y3[i]), type = "l", col = "grey") text(x4[i], y4[i], paste(abbreviate(rownames(fact_load)[i])), cex = mcex[2], srt = srt2[i]) } polygon(x5, y5, col = palet[1], border = palet[1]) plot(1:10, type = "n", xlim = c(-1.5, 1.5), ylim = c(-1.5, 1.5), axes = FALSE) title(main = "communalities", cex.main = mcex[2]) x5 = commun_fact * cos(degreev * pi/180) y5 = commun_fact * sin(-degreev * pi/180) for (i in 1:nrow(fact_load)) { lines(c(0, x3[i]), c(0, y3[i]), type = "l", col = "grey") text(x4[i], y4[i], paste(abbreviate(rownames(fact_load)[i])), cex = mcex[2], srt = srt2[i]) } polygon(x5, y5, col = palet[1], border = palet[1]) par(mar = c(0, 0, 0, 0)) lam <- cbind(round(lambda, digits = 2), round(cumsum(lambda/nrow(fact_load)), digits = 2)) lam <- round(lambda, digits = 2) r.lam <- round(cumsum(lambda/nrow(fact_load)), digits = 2) names(r.lam) <- paste("F", 1:factor, sep = ".") par(mar=c(2, 2, 2, 2)) bar.g <- barplot(r.lam,mgp=c(3,0.5,0),ylim=c(0,1),main="Cum. Ratio") text(bar.g,r.lam,lam,pos=3, offset=.2,font=2) par(old_par) invisible() }
.T1EpSceptical_ <- function(level, c, alternative = c("one.sided", "two.sided", "greater", "less"), type = c("golden", "nominal", "liberal", "controlled")) { stopifnot(is.numeric(level), length(level) == 1, is.finite(level), 0 < level, level < 1, is.numeric(c), length(c) == 1, is.finite(c), 0 <= c, !is.null(alternative)) alternative <- match.arg(alternative) stopifnot(!is.null(type)) type <- match.arg(type) alphas <- levelSceptical(level = level, alternative = alternative, type = type) zas <- p2z(alphas, alternative = alternative) if (alternative == "two.sided") { if (c == 1) { t1err <- 2*(1 - stats::pnorm(q = 2*zas)) return(t1err) } else { intFun <- function(zo) { K <- zo^2/zas^2 zrmin <- zas*sqrt(1 + c/(K - 1)) 2*(1 - stats::pnorm(q = zrmin))*stats::dnorm(x = zo) } } } if (alternative == "one.sided") { if (c == 1) { t1err <- 1 - stats::pnorm(q = 2*zas) return(t1err) } else { intFun <- function(zo) { K <- zo^2/zas^2 zrmin <- zas*sqrt(1 + c/(K - 1)) (1 - stats::pnorm(q = zrmin))*stats::dnorm(x = zo) } } } if (alternative == "greater") { if (c == 1) { t1err <- (1 - stats::pnorm(q = 2*zas))/2 return(t1err) } else { intFun <- function(zo) { K <- zo^2/zas^2 zrmin <- zas*sqrt(1 + c/(K - 1)) (1 - stats::pnorm(q = zrmin))*stats::dnorm(x = zo) } } } if (alternative == "less") { if (c == 1) { t1err <- stats::pnorm(q = 2*zas)/2 return(t1err) } else { intFun <- function(zo) { K <- zo^2/zas^2 zrmax <- zas*sqrt(1 + c/(K - 1)) stats::pnorm(q = zrmax)*stats::dnorm(x = zo) } } } if (alternative %in% c("one.sided", "two.sided")) { t1err <- 2*stats::integrate(f = intFun, lower = zas, upper = Inf)$value return(t1err) } if (alternative == "greater") { t1err <- stats::integrate(f = intFun, lower = zas, upper = Inf)$value return(t1err) } if (alternative == "less") { t1err <- stats::integrate(f = intFun, lower = -Inf, upper = zas)$value return(t1err) } return(t1err) } T1EpSceptical <- Vectorize(.T1EpSceptical_)
context("Deterministic ID") library(rsvd) set.seed(1234) atol_float64 <- 1e-8 m = 50 n = 30 k = 10 testMat <- matrix(runif(m*k), m, k) testMat <- testMat %*% t(testMat) testMat <- testMat[,1:n] id_out <- rid(testMat, rand=FALSE) testMat.re = id_out$C %*% id_out$Z testthat::test_that("Test 1: Interpolative decomposition (column) k=NULL", { testthat::expect_equal(testMat, testMat.re) }) testMat.re = testMat[,id_out$idx] %*% id_out$Z testthat::test_that("Test 2: Interpolative decomposition (column idx) k=NULL", { testthat::expect_equal(testMat, testMat.re) }) id_out <- rid(testMat, mode='row', rand=FALSE) testMat.re = id_out$Z %*% id_out$R testthat::test_that("Test 3: Interpolative decomposition (row) k=NULL", { testthat::expect_equal(testMat, testMat.re) }) testMat.re = id_out$Z %*% testMat[id_out$idx,] testthat::test_that("Test 4: Interpolative decomposition (row idx) k=NULL", { testthat::expect_equal(testMat, testMat.re) }) id_out <- rid(testMat, k=k, rand=FALSE) testMat.re = id_out$C %*% id_out$Z testthat::test_that("Test 5: Interpolative decomposition (column) k=k", { testthat::expect_equal(testMat, testMat.re) }) testMat.re = testMat[,id_out$idx] %*% id_out$Z testthat::test_that("Test 6: Interpolative decomposition (column idx) k=k", { testthat::expect_equal(testMat, testMat.re) }) id_out <- rid(H(testMat), k=k, rand=FALSE) testMat.re = id_out$C %*% id_out$Z testthat::test_that("Test 9: Interpolative decomposition (row) k=k", { testthat::expect_equal(H(testMat), testMat.re) }) id_out <- rid(testMat, mode='row', k=k, rand=FALSE) testMat.re = id_out$Z %*% id_out$R testthat::test_that("Test 7: Interpolative decomposition (row) k=k", { testthat::expect_equal(testMat, testMat.re) }) testMat.re = id_out$Z %*% testMat[id_out$idx,] testthat::test_that("Test 8: Interpolative decomposition (row idx) k=k", { testthat::expect_equal(testMat, testMat.re) }) id_out <- rid(H(testMat), mode='row', k=k, rand=FALSE) testMat.re = id_out$Z %*% id_out$R testthat::test_that("Test 9: Interpolative decomposition (row) k=k", { testthat::expect_equal(H(testMat), testMat.re) }) testMat <- matrix(runif(m*k), m, k) + 1i* matrix(runif(m*k), m, k) testMat <- testMat %*% H(testMat) testMat <- testMat[,1:n] id_out <- rid(testMat, k=k, rand=FALSE) testMat.re = id_out$C %*% id_out$Z testthat::test_that("Test 9: Interpolative decomposition (column) k=k", { testthat::expect_equal(testMat, testMat.re) }) testMat.re = testMat[,id_out$idx] %*% id_out$Z testthat::test_that("Test 10: Interpolative decomposition (column idx) k=k", { testthat::expect_equal(testMat, testMat.re) }) id_out <- rid(testMat, mode='row', k=k, rand=FALSE) testMat.re = id_out$Z %*% id_out$R testthat::test_that("Test 11: Interpolative decomposition (row) k=k", { testthat::expect_equal(testMat, testMat.re) }) testMat.re = id_out$Z %*% testMat[id_out$idx,] testthat::test_that("Test 12: Interpolative decomposition (row idx) k=k", { testthat::expect_equal(testMat, testMat.re) })
export_svg <- function(gv){ if(!requireNamespace("V8")) stop("V8 is required to export.", call. = FALSE) stopifnot(packageVersion("V8") >= "0.10") if(!inherits(gv, "grViz")) "gv must be a grViz htmlwidget." ct <- new_context("window") invisible(ct$source(system.file("htmlwidgets/lib/viz/viz.js", package = "DiagrammeR"))) svg <- ct$call("Viz", gv$x$diagram, "svg", gv$x$config$engine, gv$x$config$options) return(svg) }
print.grotagplus <- function(x,precision=c(est='sig3',stats='dec1',cor='dec2'),...) { is.in <- function(x, y)!is.na(match(x, y)) reduce <- function(comp,prec){ if(substring(prec,1,3)=='sig') signif(comp,as.numeric(substring(prec,4))) else if(substring(prec,1,3)=='dec') round(comp,as.numeric(substring(prec,4))) else stop('Invalid value for precision: "',prec,'"') } conv <- c(parest='est',parfix='est',stats='stats', correlations='cor',Linf.k='est') pr.comp <- c('model','parest',"parfix",'stats','correlations',"Linf.k") pr.comp <- pr.comp[is.in(pr.comp,names(x))] for(nam in pr.comp[-1]) x[[nam]] <- reduce(x[[nam]],precision[conv[nam]]) print.default(x[pr.comp]) }
context("problem (negative data)") test_that("x=Raster, features=RasterStack", { data(sim_pu_raster, sim_features) sim_pu_raster[] <- sim_pu_raster[] * runif(length(sim_pu_raster[]), -1, 1) sim_features[] <- sim_features[] * runif(length(sim_features[]), -1, 1) expect_warning(x <- problem(sim_pu_raster, sim_features)) suppressMessages(print(x)) suppressMessages(x) expect_equal(x$feature_names(), names(sim_features)) expect_equal(x$zone_names(), names(sim_pu_raster)) expect_equal(x$number_of_features(), raster::nlayers(sim_features)) expect_equal(x$number_of_planning_units(), length(raster::Which(!is.na(sim_pu_raster), cells = TRUE))) expect_equal(x$number_of_total_units(), raster::ncell(sim_pu_raster)) expect_equal(x$planning_unit_indices(), raster::Which(!is.na(sim_pu_raster), cells = TRUE)) expect_equivalent(x$planning_unit_costs(), matrix(sim_pu_raster[[1]][!is.na(sim_pu_raster)], ncol = 1)) expect_equal(colnames(x$planning_unit_costs()), names(sim_pu_raster)) expect_equivalent(x$feature_abundances_in_planning_units(), matrix(raster::cellStats(raster::mask(sim_features, sim_pu_raster), "sum"), ncol = 1)) expect_equal(colnames(x$feature_abundances_in_planning_units()), x$zone_names()) expect_equal(rownames(x$feature_abundances_in_planning_units()), x$feature_names()) expect_equivalent(x$feature_abundances_in_total_units(), matrix(raster::cellStats(sim_features, "sum"), ncol = 1)) expect_equal(colnames(x$feature_abundances_in_total_units()), x$zone_names()) expect_equal(rownames(x$feature_abundances_in_total_units()), x$feature_names()) expect_equivalent(x$data$rij_matrix, list(rij_matrix(sim_pu_raster, sim_features))) expect_equal(names(x$data$rij_matrix), x$zone_names()) expect_equal(rownames(x$data$rij_matrix[[1]]), x$feature_names()) expect_error(x$feature_targets()) }) test_that("x=RasterStack, features=ZonesRaster", { data(sim_pu_zones_stack, sim_features_zones) sim_pu_zones_stack[] <- sim_pu_zones_stack[] * runif(length(sim_pu_zones_stack[]), -1, 1) sim_features_zones[[1]][] <- sim_features_zones[[1]][] * runif(length(sim_features_zones[[1]][]), -1, 1) expect_warning(x <- problem(sim_pu_zones_stack, sim_features_zones)) suppressMessages(print(x)) suppressMessages(x) expect_equal(x$feature_names(), feature_names(sim_features_zones)) expect_equal(x$zone_names(), zone_names(sim_features_zones)) expect_equal(x$number_of_features(), number_of_features(sim_features_zones)) expect_equal(x$number_of_zones(), number_of_zones(sim_features_zones)) expect_equal(x$number_of_planning_units(), raster::cellStats(max(!is.na(sim_pu_zones_stack)), "sum")) expect_equal(x$planning_unit_indices(), raster::Which(max(!is.na(sim_pu_zones_stack)) > 0, cells = TRUE)) expect_equal(x$number_of_total_units(), raster::ncell(sim_pu_zones_stack)) expect_equivalent(x$planning_unit_costs(), sim_pu_zones_stack[raster::Which( max(!is.na(sim_pu_zones_stack)) == 1)]) expect_equal(colnames(x$planning_unit_costs()), zone_names(sim_features_zones)) expect_equivalent(x$feature_abundances_in_planning_units(), sapply(seq_len(raster::nlayers(sim_pu_zones_stack)), function(i) { raster::cellStats(raster::mask(sim_features_zones[[i]], sim_pu_zones_stack[[i]]), "sum") })) expect_equal(colnames(x$feature_abundances_in_planning_units()), zone_names(sim_features_zones)) expect_equal(rownames(x$feature_abundances_in_planning_units()), feature_names(sim_features_zones)) expect_equivalent(x$feature_abundances_in_total_units(), sapply(seq_len(raster::nlayers(sim_pu_zones_stack)), function(i) { raster::cellStats(sim_features_zones[[i]], "sum") })) expect_equal(colnames(x$feature_abundances_in_total_units()), zone_names(sim_features_zones)) expect_equal(rownames(x$feature_abundances_in_total_units()), feature_names(sim_features_zones)) expect_equivalent(x$data$rij_matrix, lapply(seq_len(raster::nlayers(sim_pu_zones_stack)), function(i) rij_matrix(sim_pu_zones_stack[[i]], sim_features_zones[[i]]))) expect_equal(names(x$data$rij_matrix), zone_names(sim_features_zones)) expect_equivalent(sapply(x$data$rij_matrix, rownames), matrix(feature_names(sim_features_zones), ncol = number_of_zones(sim_features_zones), nrow = number_of_features(sim_features_zones))) expect_error(x$feature_targets()) }) test_that("x=SpatialPolygonsDataFrame, features=RasterStack", { data(sim_pu_polygons, sim_features) sim_pu_polygons$cost[1:5] <- NA sim_pu_polygons$cost <- sim_pu_polygons$cost * runif(nrow(sim_pu_polygons), -1, 1) sim_features[] <- sim_features[] * runif(length(sim_features[]), -1, 1) expect_warning(x <- problem(sim_pu_polygons, sim_features, "cost")) suppressMessages(print(x)) suppressMessages(x) expect_equal(x$feature_names(), names(sim_features)) expect_equal(x$zone_names(), "cost") expect_equal(x$number_of_features(), raster::nlayers(sim_features)) expect_equal(x$number_of_planning_units(), sum(!is.na(sim_pu_polygons$cost))) expect_equal(x$planning_unit_indices(), which(!is.na(sim_pu_polygons$cost))) expect_equal(x$number_of_total_units(), nrow(sim_pu_polygons)) expect_equivalent(x$planning_unit_costs(), matrix(sim_pu_polygons$cost[!is.na(sim_pu_polygons$cost)], ncol = 1)) expect_equal(colnames(x$planning_unit_costs()), "cost") expect_equivalent(x$feature_abundances_in_planning_units(), Matrix::rowSums(x$data$rij_matrix[[1]])) expect_equal(colnames(x$feature_abundances_in_planning_units()), "cost") expect_equal(rownames(x$feature_abundances_in_planning_units()), names(sim_features)) expect_lte( max(abs(x$feature_abundances_in_total_units() - colSums(exactextractr::exact_extract( sim_features, sf::st_as_sf(sim_pu_polygons), "sum", progress = FALSE)))), 1e-6) expect_equal(colnames(x$feature_abundances_in_total_units()), "cost") expect_equal(rownames(x$feature_abundances_in_total_units()), names(sim_features)) expect_equivalent(x$data$rij_matrix, list(rij_matrix(sim_pu_polygons[ !is.na(sim_pu_polygons[[1]]), ], sim_features))) expect_equal(names(x$data$rij_matrix), "cost") expect_equal(rownames(x$data$rij_matrix[[1]]), names(sim_features)) expect_error(x$feature_targets()) }) test_that("x=SpatialPolygonsDataFrame, features=ZonesRaster", { data(sim_pu_zones_polygons, sim_features_zones) sim_pu_zones_polygons[5, paste0("cost_", 1:3)] <- NA sim_pu_zones_polygons[4, "cost_1"] <- NA sim_pu_zones_polygons$cost_1 <- sim_pu_zones_polygons$cost_1 * runif(nrow(sim_pu_zones_polygons), -1, 1) sim_features_zones[[1]][] <- sim_features_zones[[1]][] * runif(length(sim_features_zones[[1]][]), -1, 1) expect_warning(x <- problem(sim_pu_zones_polygons, sim_features_zones, paste0("cost_", 1:3))) suppressMessages(print(x)) suppressMessages(x) expect_equal(x$feature_names(), feature_names(sim_features_zones)) expect_equal(x$zone_names(), zone_names(sim_features_zones)) expect_equal(x$number_of_features(), raster::nlayers(sim_features_zones[[1]])) expect_equal(x$number_of_planning_units(), nrow(sim_pu_zones_polygons) - 1) expect_equal(x$planning_unit_indices(), c(seq_len(4), seq(6, nrow(sim_pu_zones_polygons)))) expect_equal(x$number_of_total_units(), nrow(sim_pu_polygons)) expect_equivalent(x$planning_unit_costs(), as.matrix( sim_pu_zones_polygons@data[-5, paste0("cost_", 1:3)])) expect_equal(colnames(x$planning_unit_costs()), zone_names(sim_features_zones)) expect_equivalent(x$feature_abundances_in_planning_units(), sapply(seq_along(x$data$rij_matrix), function(i) { pos1 <- x$planning_unit_indices() pos2 <- which(!is.na(sim_pu_zones_polygons@data[[paste0("cost_", i)]])) pos3 <- match(pos2, pos1) Matrix::rowSums(x$data$rij_matrix[[i]][, pos3, drop = FALSE]) })) expect_equal(colnames(x$feature_abundances_in_planning_units()), zone_names(sim_features_zones)) expect_equal(rownames(x$feature_abundances_in_planning_units()), feature_names(sim_features_zones)) expect_equivalent(x$feature_abundances_in_total_units(), sapply(lapply(sim_features_zones, raster::extract, sim_pu_zones_polygons, "sum", na.rm = TRUE), colSums, na.rm = TRUE)) expect_equal(colnames(x$feature_abundances_in_total_units()), zone_names(sim_features_zones)) expect_equal(rownames(x$feature_abundances_in_total_units()), feature_names(sim_features_zones)) expect_equivalent(x$data$rij_matrix, lapply(sim_features_zones, rij_matrix, x = sim_pu_zones_polygons[-5, ])) expect_equal(names(x$data$rij_matrix), zone_names(sim_features_zones)) expect_equivalent(sapply(x$data$rij_matrix, rownames), matrix(feature_names(sim_features_zones), ncol = number_of_zones(sim_features_zones), nrow = number_of_features(sim_features_zones))) expect_error(x$feature_targets()) }) test_that("x=SpatialPolygonsDataFrame, features=character", { data(sim_pu_polygons) sim_pu_polygons$cost[2] <- NA sim_pu_polygons$cost <- sim_pu_polygons$cost * runif(nrow(sim_pu_polygons), -1, 1) sim_pu_polygons$spp1 <- runif(length(sim_pu_polygons), -1, 1) sim_pu_polygons$spp2 <- c(NA, rpois(length(sim_pu_polygons) - 1, 5) - 1) expect_warning(x <- problem(sim_pu_polygons, c("spp1", "spp2"), "cost")) suppressMessages(print(x)) suppressMessages(x) expect_equal(x$feature_names(), c("spp1", "spp2")) expect_equal(x$zone_names(), "cost") expect_equal(x$number_of_features(), 2) expect_equal(x$number_of_zones(), 1) expect_equal(x$number_of_planning_units(), length(sim_pu_polygons) - 1) expect_equal(x$planning_unit_indices(), c(1, seq(3, length(sim_pu_polygons)))) expect_equal(x$number_of_total_units(), length(sim_pu_polygons)) expect_equivalent(x$planning_unit_costs(), matrix(sim_pu_polygons$cost[-2], ncol = 1)) expect_equal(colnames(x$planning_unit_costs()), "cost") expect_equivalent(x$feature_abundances_in_planning_units(), matrix(colSums(sim_pu_polygons@data[-2, c("spp1", "spp2")], na.rm = TRUE), ncol = 1)) expect_equal(colnames(x$feature_abundances_in_planning_units()), "cost") expect_equal(rownames(x$feature_abundances_in_planning_units()), c("spp1", "spp2")) expect_equivalent(x$feature_abundances_in_total_units(), matrix(colSums(sim_pu_polygons@data[, c("spp1", "spp2")], na.rm = TRUE), ncol = 1)) expect_equal(colnames(x$feature_abundances_in_total_units()), "cost") expect_equal(rownames(x$feature_abundances_in_total_units()), c("spp1", "spp2")) rij <- Matrix::sparseMatrix(i = c(rep(1, length(sim_pu_polygons) - 1), rep(2, length(sim_pu_polygons) - 2)), j = c(seq_len(length(sim_pu_polygons) - 1), seq_len(length(sim_pu_polygons) - 1)[-1]), x = c(sim_pu_polygons$spp1[-2], sim_pu_polygons$spp2[c(-1, -2)]), dims = c(2, length(sim_pu_polygons) - 1)) rij <- list(rij) expect_true(all(x$data$rij_matrix[[1]] == rij[[1]])) expect_equal(names(x$data$rij_matrix), "cost") expect_equal(rownames(x$data$rij_matrix[[1]]), c("spp1", "spp2")) expect_error(x$feature_targets()) }) test_that("x=SpatialPolygonsDataFrame, features=ZonesCharacter", { data(sim_pu_zones_polygons) sim_pu_zones_polygons$cost_1[2] <- NA sim_pu_zones_polygons[3, c("cost_1", "cost_2")] <- NA sim_pu_zones_polygons$cost_1 <- sim_pu_zones_polygons$cost_1 * runif(nrow(sim_pu_zones_polygons), -1, 1) sim_pu_zones_polygons$spp1_1 <- runif(length(sim_pu_zones_polygons), -1, 1) sim_pu_zones_polygons$spp2_1 <- c(NA, rpois(length(sim_pu_zones_polygons) - 1, 5)) sim_pu_zones_polygons$spp1_2 <- runif(length(sim_pu_zones_polygons), -1, 1) sim_pu_zones_polygons$spp2_2 <- runif(length(sim_pu_zones_polygons), -1, 1) sim_pu_zones_polygons <- sim_pu_zones_polygons[1:5, ] expect_warning(x <- problem(sim_pu_zones_polygons, zones(c("spp1_1", "spp2_1"), c("spp1_2", "spp2_2"), zone_names = c("z1", "z2"), feature_names = c("spp1", "spp2")), c("cost_1", "cost_2"))) suppressMessages(print(x)) suppressMessages(x) expect_equal(x$feature_names(), c("spp1", "spp2")) expect_equal(x$zone_names(), c("z1", "z2")) expect_equal(x$number_of_features(), 2) expect_equal(x$number_of_zones(), 2) expect_equal(x$number_of_planning_units(), length(sim_pu_zones_polygons) - 1) expect_equal(x$planning_unit_indices(), c(c(1, 2), seq(4, length(sim_pu_zones_polygons)))) expect_equal(x$number_of_total_units(), length(sim_pu_zones_polygons)) expect_equivalent(x$planning_unit_costs(), as.matrix(sim_pu_zones_polygons@data[-3, c("cost_1", "cost_2")])) expect_equal(colnames(x$planning_unit_costs()), c("z1", "z2")) expect_equivalent( x$feature_abundances_in_planning_units(), matrix(c(sum(sim_pu_zones_polygons$spp1_1[ !is.na(sim_pu_zones_polygons$cost_1)], na.rm = TRUE), sum(sim_pu_zones_polygons$spp2_1[ !is.na(sim_pu_zones_polygons$cost_1)], na.rm = TRUE), sum(sim_pu_zones_polygons$spp1_2[ !is.na(sim_pu_zones_polygons$cost_2)], na.rm = TRUE), sum(sim_pu_zones_polygons$spp2_2[ !is.na(sim_pu_zones_polygons$cost_2)], na.rm = TRUE)), ncol = 4)) expect_equal(colnames(x$feature_abundances_in_planning_units()), c("z1", "z2")) expect_equal(rownames(x$feature_abundances_in_planning_units()), c("spp1", "spp2")) expect_equivalent(x$feature_abundances_in_total_units(), matrix(colSums(sim_pu_zones_polygons@data[, c("spp1_1", "spp2_1", "spp1_2", "spp2_2")], na.rm = TRUE), ncol = 2)) expect_equal(colnames(x$feature_abundances_in_total_units()), c("z1", "z2")) expect_equal(rownames(x$feature_abundances_in_total_units()), c("spp1", "spp2")) r1 <- Matrix::sparseMatrix(i = c(rep(1, length(sim_pu_zones_polygons) - 1), rep(2, length(sim_pu_zones_polygons) - 2)), j = c(seq_len(length(sim_pu_zones_polygons) - 1), seq_len(length(sim_pu_zones_polygons) - 1)[-1]), x = c(sim_pu_zones_polygons$spp1_1[-3], sim_pu_zones_polygons$spp2_1[c(-1, -3)]), dims = c(2, length(sim_pu_zones_polygons) - 1)) r2 <- Matrix::sparseMatrix(i = c(rep(1, length(sim_pu_zones_polygons) - 1), rep(2, length(sim_pu_zones_polygons) - 1)), j = c(seq_len(length(sim_pu_zones_polygons) - 1), seq_len(length(sim_pu_zones_polygons) - 1)), x = c(sim_pu_zones_polygons$spp1_2[-3], sim_pu_zones_polygons$spp2_2[-3]), dims = c(2, length(sim_pu_zones_polygons) - 1)) rij <- list(r1, r2) expect_equal(names(x$data$rij_matrix), c("z1", "z2")) expect_true(all(x$data$rij_matrix[[1]] == rij[[1]])) expect_true(all(x$data$rij_matrix[[2]] == rij[[2]])) expect_error(x$feature_targets()) }) test_that("x=data.frame, features=character", { pu <- data.frame(id = seq_len(10), cost = c(runif(1), NA, runif(8, -1, 1)), spp1 = runif(10, -1, 1), spp2 = c(rpois(9, 4), NA)) expect_warning(x <- problem(pu, c("spp1", "spp2"), "cost")) suppressMessages(print(x)) suppressMessages(x) expect_equal(x$feature_names(), c("spp1", "spp2")) expect_equal(x$zone_names(), "cost") expect_equal(x$number_of_features(), 2) expect_equal(x$number_of_zones(), 1) expect_equal(x$number_of_planning_units(), 9) expect_equal(x$planning_unit_indices(), which(!is.na(pu$cost))) expect_equal(x$number_of_total_units(), 10) expect_equivalent(x$planning_unit_costs(), matrix(pu$cost[-2], ncol = 1)) expect_equal(colnames(x$planning_unit_costs()), "cost") expect_equivalent(x$feature_abundances_in_planning_units(), matrix(colSums(pu[-2, c("spp1", "spp2")], na.rm = TRUE), ncol = 1)) expect_equal(rownames(x$feature_abundances_in_planning_units()), c("spp1", "spp2")) expect_equal(colnames(x$feature_abundances_in_planning_units()), c("cost")) expect_equivalent(x$feature_abundances_in_total_units(), matrix(colSums(pu[, c("spp1", "spp2")], na.rm = TRUE), ncol = 1)) expect_equal(rownames(x$feature_abundances_in_total_units()), c("spp1", "spp2")) expect_equal(colnames(x$feature_abundances_in_total_units()), c("cost")) expect_true(all(x$data$rij_matrix[[1]] == Matrix::sparseMatrix(i = c(rep(1, 9), rep(2, 8)), j = c(1:9, 1:8), x = c(pu$spp1[-2], pu$spp2[c(-2, -10)]), dims = c(2, 9)))) expect_equal(names(x$data$rij_matrix), "cost") expect_equal(rownames(x$data$rij_matrix[[1]]), c("spp1", "spp2")) expect_error(x$feature_targets()) }) test_that("x=data.frame, features=ZonesCharacter", { pu <- data.frame(id = seq_len(10), cost_1 = c(NA, NA, runif(8)), cost_2 = c(0.3, NA, runif(8)), spp1_1 = runif(10, -1, 1), spp2_1 = c(rpois(9, 4), NA), spp1_2 = runif(10, -1, 1), spp2_2 = runif(10, -1, 1)) expect_warning(x <- problem(pu, zones(c("spp1_1", "spp2_1"), c("spp1_2", "spp2_2")), c("cost_1", "cost_2"))) suppressMessages(print(x)) suppressMessages(x) expect_equal(x$feature_names(), c("1", "2")) expect_equal(x$zone_names(), c("1", "2")) expect_equal(x$number_of_features(), 2) expect_equal(x$number_of_zones(), 2) expect_equal(x$number_of_planning_units(), 9) expect_equal(x$planning_unit_indices(), c(1, seq(3, nrow(pu)))) expect_equal(x$number_of_total_units(), 10) expect_equivalent(x$planning_unit_costs(), as.matrix(pu[-2, 2:3])) expect_equal(colnames(x$planning_unit_costs()), c("1", "2")) expect_equivalent( x$feature_abundances_in_planning_units(), matrix(c(sum(pu$spp1_1[!is.na(pu$cost_1)], na.rm = TRUE), sum(pu$spp2_1[!is.na(pu$cost_1)], na.rm = TRUE), sum(pu$spp1_2[!is.na(pu$cost_2)], na.rm = TRUE), sum(pu$spp2_2[!is.na(pu$cost_2)], na.rm = TRUE)), ncol = 4)) expect_equal(rownames(x$feature_abundances_in_planning_units()), c("1", "2")) expect_equal(colnames(x$feature_abundances_in_planning_units()), c("1", "2")) expect_equivalent(x$feature_abundances_in_total_units(), matrix(colSums(pu[, 4:7], na.rm = TRUE), ncol = 2)) expect_equal(rownames(x$feature_abundances_in_total_units()), c("1", "2")) expect_equal(colnames(x$feature_abundances_in_total_units()), c("1", "2")) expect_equal(names(x$data$rij_matrix), c("1", "2")) expect_true(all(x$data$rij_matrix[[1]] == Matrix::sparseMatrix(i = c(rep(1, 9), rep(2, 8)), j = c(1:9, 1:8), x = c(pu$spp1_1[-2], pu$spp2_1[c(-2, -10)]), dims = c(2, 9)))) expect_true(all(x$data$rij_matrix[[2]] == Matrix::sparseMatrix(i = c(rep(1, 9), rep(2, 9)), j = c(1:9, 1:9), x = c(pu$spp1_2[-2], pu$spp2_2[-2]), dims = c(2, 9)))) expect_equal(names(x$data$rij_matrix), c("1", "2")) expect_equal(rownames(x$data$rij_matrix[[1]]), c("1", "2")) expect_equal(rownames(x$data$rij_matrix[[2]]), c("1", "2")) expect_error(x$feature_targets()) }) test_that("x=data.frame, features=data.frame (single zone)", { pu <- data.frame(id = seq_len(10), cost = c(0.1, NA, runif(8, -1, 1))) species <- data.frame(id = seq_len(5), name = letters[1:5], targets = 0.5) rij <- expand.grid(pu = seq_len(9), species = seq_len(5)) rij$amount <- runif(nrow(rij), -1, 1) expect_warning(x <- problem(pu, species, rij, "cost")) suppressMessages(print(x)) suppressMessages(x) expect_equal(x$feature_names(), letters[1:5]) expect_equal(x$zone_names(), "cost") expect_equal(x$number_of_features(), 5) expect_equal(x$number_of_zones(), 1) expect_equal(x$number_of_planning_units(), 9) expect_equal(x$planning_unit_indices(), which(!is.na(pu$cost))) expect_equal(x$number_of_total_units(), 10) expect_equivalent(x$planning_unit_costs(), matrix(pu$cost[-2], ncol = 1)) expect_equal(colnames(x$planning_unit_costs()), "cost") rij2 <- rij[rij$pu != 2, ] expect_equivalent(x$feature_abundances_in_planning_units(), Matrix::rowSums(Matrix::sparseMatrix(i = rij2[[2]], j = rij2[[1]], x = rij2[[3]]))) expect_equal(rownames(x$feature_abundances_in_planning_units()), letters[1:5]) expect_equal(colnames(x$feature_abundances_in_planning_units()), "cost") expect_equivalent(x$feature_abundances_in_total_units(), Matrix::rowSums(Matrix::sparseMatrix(i = rij[[2]], j = rij[[1]], x = rij[[3]]))) expect_equal(rownames(x$feature_abundances_in_total_units()), letters[1:5]) expect_equal(colnames(x$feature_abundances_in_total_units()), "cost") rij2 <- rij[rij$pu != 2, ] rij2$pu <- match(rij2$pu, pu$id[-2]) expect_equivalent(x$data$rij_matrix[[1]], Matrix::sparseMatrix(i = rij2[[2]], j = rij2[[1]], x = rij2[[3]], dims = c(5, 9))) expect_equal(names(x$data$rij_matrix), "cost") expect_equal(rownames(x$data$rij_matrix[[1]]), letters[1:5]) expect_error(x$feature_targets()) }) test_that("x=data.frame, features=data.frame (multiple zones)", { pu <- data.frame(id = seq_len(10), cost_1 = c(0.1, NA, runif(8, -1, 1)), cost_2 = c(NA, NA, runif(8, -1, 1))) species <- data.frame(id = seq_len(5), name = letters[1:5], targets = 0.5) rij <- expand.grid(pu = seq_len(9), species = seq_len(5), zone = 1:2) rij$amount <- runif(nrow(rij), -1, 1) z <- data.frame(id = 1:2, name = c("z1", "z2")) expect_warning(x <- problem(pu, species, rij, c("cost_1", "cost_2"), z)) suppressMessages(print(x)) suppressMessages(x) expect_equal(x$feature_names(), letters[1:5]) expect_equal(x$zone_names(), c("z1", "z2")) expect_equal(x$number_of_features(), 5) expect_equal(x$number_of_zones(), 2) expect_equal(x$number_of_planning_units(), 9) expect_equal(x$planning_unit_indices(), c(1, seq(3, nrow(pu)))) expect_equal(x$number_of_total_units(), 10) expect_equivalent(x$planning_unit_costs(), as.matrix(pu[-2, 2:3])) expect_equal(colnames(x$planning_unit_costs()), c("z1", "z2")) rij2 <- rij rij2 <- rij2[!(rij2$pu %in% pu$id[is.na(pu$cost_1)] & rij2$zone == 1), ] rij2 <- rij2[!(rij2$pu %in% pu$id[is.na(pu$cost_2)] & rij2$zone == 2), ] expect_equivalent(x$feature_abundances_in_planning_units(), matrix(aggregate(rij2[[4]], by = list(rij2[[2]], rij2[[3]]), sum)[[3]], ncol = 2)) expect_equal(rownames(x$feature_abundances_in_planning_units()), letters[1:5]) expect_equal(colnames(x$feature_abundances_in_planning_units()), c("z1", "z2")) expect_equivalent(x$feature_abundances_in_total_units(), matrix(aggregate(rij[[4]], by = list(rij[[2]], rij[[3]]), sum)[[3]], ncol = 2)) expect_equal(rownames(x$feature_abundances_in_total_units()), letters[1:5]) expect_equal(colnames(x$feature_abundances_in_total_units()), c("z1", "z2")) rij2 <- rij[rij$pu != 2, ] rij2$pu <- match(rij2$pu, seq_len(9)) expect_equal(names(x$data$rij_matrix), c("z1", "z2")) expect_equivalent(x$data$rij_matrix[[1]], Matrix::sparseMatrix(i = rij2[[2]][rij2[[3]] == 1], j = rij2[[1]][rij2[[3]] == 1], x = rij2[[4]][rij2[[3]] == 1], dims = c(5, 9))) expect_equivalent(x$data$rij_matrix[[2]], Matrix::sparseMatrix(i = rij2[[2]][rij2[[3]] == 2], j = rij2[[1]][rij2[[3]] == 2], x = rij2[[4]][rij2[[3]] == 2], dims = c(5, 9))) expect_equal(rownames(x$data$rij_matrix[[1]]), letters[1:5]) expect_equal(rownames(x$data$rij_matrix[[2]]), letters[1:5]) expect_error(x$feature_targets()) }) test_that("x=numeric, features=data.frame", { pu <- data.frame(id = seq_len(10), cost = c(0.2, NA, runif(8, -1, 1)), spp1 = runif(10, -1, 1), spp2 = c(rpois(9, 4), NA)) expect_warning(x <- problem(pu$cost, data.frame(id = seq_len(2), name = c("spp1", "spp2")), as.matrix(t(pu[, 3:4])))) suppressMessages(print(x)) suppressMessages(x) expect_equal(x$feature_names(), c("spp1", "spp2")) expect_equal(x$zone_names(), "1") expect_equal(x$number_of_features(), 2) expect_equal(x$number_of_zones(), 1) expect_equal(x$number_of_planning_units(), 9) expect_equal(x$planning_unit_indices(), which(!is.na(pu$cost))) expect_equal(x$number_of_total_units(), 10) expect_equivalent(x$planning_unit_costs(), matrix(pu$cost[-2], ncol = 1)) expect_equal(colnames(x$planning_unit_costs()), "1") expect_equivalent(x$feature_abundances_in_planning_units(), rowSums(t(pu[-2, 3:4]), na.rm = TRUE)) expect_equal(rownames(x$feature_abundances_in_planning_units()), c("spp1", "spp2")) expect_equal(colnames(x$feature_abundances_in_planning_units()), "1") expect_equivalent(x$feature_abundances_in_total_units(), rowSums(t(pu[, 3:4]), na.rm = TRUE)) expect_equal(rownames(x$feature_abundances_in_total_units()), c("spp1", "spp2")) expect_equal(colnames(x$feature_abundances_in_total_units()), "1") expect_equal(names(x$data$rij_matrix), "1") expect_equivalent(x$data$rij_matrix[[1]], as(t(pu[-2, 3:4]), "sparseMatrix")) expect_equal(rownames(x$data$rij_matrix[[1]]), c("spp1", "spp2")) expect_error(x$feature_targets()) }) test_that("x=matrix, features=data.frame", { pu <- data.frame(id = seq_len(10), cost_1 = c(NA, NA, runif(8, -1, 1)), cost_2 = c(0.3, NA, runif(8, -1, 1)), spp1_1 = runif(10, -1, 1), spp2_1 = c(rpois(9, 4), NA), spp1_2 = runif(10, -1, 1), spp2_2 = runif(10, -1, 1)) expect_warning(x <- problem(as.matrix(pu[, 2:3]), data.frame(id = seq_len(2), name = c("spp1", "spp2")), list(as.matrix(t(pu[, 4:5])), as.matrix(t(pu[, 6:7]))))) suppressMessages(print(x)) suppressMessages(x) expect_equal(x$feature_names(), c("spp1", "spp2")) expect_equal(x$zone_names(), c("1", "2")) expect_equal(x$number_of_features(), 2) expect_equal(x$number_of_zones(), 2) expect_equal(x$number_of_planning_units(), 9) expect_equal(x$planning_unit_indices(), c(1, seq(3, nrow(pu)))) expect_equal(x$number_of_total_units(), 10) expect_equivalent(x$planning_unit_costs(), as.matrix(pu[-2, 2:3])) expect_equal(colnames(x$planning_unit_costs()), c("1", "2")) expect_equivalent( x$feature_abundances_in_planning_units(), matrix(c(sum(pu$spp1_1[!is.na(pu$cost_1)], na.rm = TRUE), sum(pu$spp2_1[!is.na(pu$cost_1)], na.rm = TRUE), sum(pu$spp1_2[!is.na(pu$cost_2)], na.rm = TRUE), sum(pu$spp2_2[!is.na(pu$cost_2)], na.rm = TRUE)), ncol = 4)) expect_equal(rownames(x$feature_abundances_in_planning_units()), c("spp1", "spp2")) expect_equal(colnames(x$feature_abundances_in_planning_units()), c("1", "2")) expect_equivalent(x$feature_abundances_in_total_units(), matrix(colSums(pu[, 4:7], na.rm = TRUE), ncol = 2)) expect_equal(rownames(x$feature_abundances_in_total_units()), c("spp1", "spp2")) expect_equal(colnames(x$feature_abundances_in_total_units()), c("1", "2")) expect_equal(names(x$data$rij_matrix), c("1", "2")) expect_equivalent(x$data$rij_matrix[[1]], as(t(pu[-2, 4:5]), "sparseMatrix")) expect_equivalent(x$data$rij_matrix[[2]], as(t(pu[-2, 6:7]), "sparseMatrix")) expect_equal(rownames(x$data$rij_matrix[[1]]), c("spp1", "spp2")) expect_equal(rownames(x$data$rij_matrix[[2]]), c("spp1", "spp2")) expect_error(x$feature_targets()) })
Neighboot<- function(RDS.data, quant=c(0.025, 0.975),method=c("percentile","Wald"), B=1000) { p.est<-apply((RDS.data$traits/RDS.data$degree)/sum(1/RDS.data$degree),2,sum,na.rm=TRUE) resamp <- .Nb(RDS.data, B) results <- matrix(NA, dim(RDS.data$traits)[2], (length(quant)+1)) method <- match.arg(method) for(t in 1:dim(RDS.data$traits)[2]) { p.TBS <- sapply(resamp, .propvh, RDS.data$traits[,t], RDS.data$degree) results[t,1] <- sd(p.TBS,na.rm = TRUE) for(q in 2:(length(quant)+1)){ if(method%in%c("percentile")){ results[t,q] <- quantile(p.TBS,quant[q-1],na.rm=TRUE) }else if(method%in%c("studentized")){ results[t,q]<-p.est[t]+qt(quant[q-1],dim(RDS.data$traits)[2]-1)*results[t,1] }else{ stop("The method is invalid.") } } } rownames(results) <- colnames(RDS.data$traits) colnames(results) <- c("SE",quant) return(results) } .propvh<- function(RDS.data, trait, dg) sum(trait[RDS.data]/dg[RDS.data], na.rm=T)/sum((!is.na(trait[RDS.data]))/dg[RDS.data]) .Nb<- function(RDS.data, B) { RDS.gr<-igraph::graph_from_data_frame(RDS.data$edges, directed = F, vertices = cbind(id=1:length(RDS.data$traits[,2]),RDS.data$traits)) e.deg<-igraph::degree(RDS.gr,mode="total") cr<-mean(e.deg) resamp <- list() sz<-round(length(RDS.data$traits[,2])/cr) for(b in 1:B) { xx.s<-sample(1:length(RDS.data$traits[,2]),size=sz,replace=TRUE) x.neig<-as.numeric(unlist(igraph::ego( RDS.gr, order = 1, nodes = xx.s, mode = "all", mindist = 1 ))) resamp[[b]]<-x.neig } return(resamp) }
score.biprobit <- function(x,indiv=FALSE,...) { if (indiv) { s <- x$score; attributes(s)$logLik <- NULL; return(s) } colSums(x$score) }
context("ErrorModule") test_that("ErrorModule works.", { expect_error(ErrorModule("esv", 1, environment()), "Stopping workflow due to error in") expect_false(exists("tmpZoonWorkflow")) })
file.backup <- function(name, fullpath = FALSE, keep.old = FALSE, verbose = FALSE){ if(!file.exists(name)){ MESSG <- paste("file", name, "does not exist. No backup created.") if(verbose) warning(MESSG) return(NULL) } dir.source <- dirname(normalizePath(name)) date_cr <- base::format(base::file.info(name)$mtime, "%Y%m%d-%H%M") ext_name <- tools::file_ext(name) noext_name <- tools::file_path_sans_ext(name) new_name <- paste0(noext_name, "-", date_cr, if(!ext_name == "") {paste0( ".", ext_name)}) if (file.exists(new_name)){ MESSG <- paste("backup file already exists. No new backup created.") if(verbose) warning(MESSG) return(new_name) } ret <- if(keep.old){ file.copy(name, new_name, overwrite = TRUE, copy.mode = TRUE, copy.date = TRUE) }else{ file.rename(name, new_name) } if(!ret) { MESSG <- paste("file.rename(", name, ",", new_name, "failed") stop(MESSG) } if(verbose){ cat("File list of:", dir.source, "\n") print(list.files(dir.source)) cat("End of file list\n") } if(fullpath){ new_name_fullpath <- normalizePath(new_name) return(new_name_fullpath) } new_name }
recover_data = function(object, ...) { for (cl in .chk.cls(object)) { rd <- .get.outside.method("recover_data", cl) if(!is.null(rd)) return(rd(object, ...)) } UseMethod("recover_data") } .chk.cls = function(object) { sacred = c("call", "lm", "glm", "mlm", "aovlist", "lme", "qdrg") setdiff(class(object)[1:2], sacred) } .get.outside.method = function(generic, cls) { mth = utils::getAnywhere(paste(generic, cls, sep = ".")) from = sapply(strsplit(mth[[3]], "[ :]"), function(x) rev(x)[1]) if (length(from) == 0) return (NULL) if(any(outside <- (from != "emmeans"))) mth[which(outside)[1]] else NULL } recover_data.call = function(object, trms, na.action, data = NULL, params = "pi", frame, ...) { fcall = object vars = setdiff(.all.vars(trms), params) if (!missing(frame) && is.null(data) && !.has.fcns(trms)) data = frame tbl = data if (length(vars) == 0 || vars[1] == "1") { tbl = data.frame(c(1,1)) vars = names(tbl) = 1 } if (is.null(tbl)) { possibly.random = FALSE m = match(c("formula", "data", "subset", "weights"), names(fcall), 0L) fcall = fcall[c(1L, m)] mm = match(c("data", "subset"), names(fcall), 0L) if(any(mm > 0)) { fcns = unlist(lapply(fcall[mm], function(x) setdiff(all.names(x), c("::",":::","[[","]]",all.vars(x))))) possibly.random = (max(nchar(c("", fcns))) > 1) } fcall$drop.unused.levels = TRUE fcall[[1L]] = quote(stats::model.frame) fcall$xlev = NULL if(!is.numeric(na.action)) na.action = NULL if (!is.null(na.action)) fcall$na.action = na.pass else fcall$na.action = na.omit form = .reformulate(vars) fcall$formula = update(trms, form) env = environment(trms) if (is.null(env)) env = parent.frame() tbl = try(eval(fcall, env, parent.frame()), silent = TRUE) if(inherits(tbl, "try-error")) return(.rd.error(vars, fcall)) if (possibly.random) { chk = eval(fcall, env, parent.frame()) if (!all(chk == tbl)) stop("Data appear to be randomized -- ", "cannot consistently recover the data\n", "Move the randomization ", "outside of the model-fitting call.") } if (!is.null(na.action)) tbl = tbl[-(na.action), , drop=FALSE] } else { tbl = tbl[, vars, drop = FALSE] tbl = tbl[complete.cases(tbl), , drop=FALSE] } attr(tbl, "call") = object attr(tbl, "terms") = trms attr(tbl, "predictors") = setdiff(.all.vars(delete.response(trms)), params) attr(tbl, "responses") = setdiff(vars, union(attr(tbl, "predictors"), params)) tbl } .rd.error = function(vars, fcall) { if ("pi" %in% vars) return("\nTry re-running with 'params = c\"pi\", ...)'") if (is.list(fcall$data)) fcall$data = "(raw data structure)" dataname = as.character(fcall$data)[1] if ((!is.na(dataname)) && (nchar(dataname) > 50)) dataname = paste(substring(dataname, 1, 50), "...") mesg = "We are unable to reconstruct the data.\n" mesg = paste0(mesg, "The variables needed are:\n\t", paste(vars, collapse = " "), "\n", "Are any of these actually constants? (specify via 'params = ')\n") if (is.na(dataname)) mesg = paste(mesg, "Try re-running with 'data = \"<name of dataset>\"'\n") else mesg = paste0(mesg, "The dataset name is:\n\t", dataname, "\n", "Does the data still exist? Or you can specify a dataset via 'data = '\n") mesg } emm_basis = function(object, trms, xlev, grid, ...) { for (cl in .chk.cls(object)) { emb <- .get.outside.method("emm_basis", cl) if(!is.null(emb)) return(emb(object, trms, xlev, grid, ...)) } UseMethod("emm_basis") } .recover_data = function(object, ...) recover_data(object, ...) .emm_basis = function(object, trms, xlev, grid, ...) emm_basis(object, trms, xlev, grid, ...) recover_data.default = function(object, ...) { paste("Can't handle an object of class ", dQuote(class(object)[1]), "\n", paste(.show_supported(), collapse="")) } emm_basis.default = function(object, trms, xlev, grid, ...) { stop("Can't handle an object of class", dQuote(class(object)[1]), "\n", .show_supported()) } .show_supported = function(ns = "emmeans", meth = "emm_basis") { "Use help(\"models\", package = \"emmeans\") for information on supported models." }
expected <- eval(parse(text="NA_real_")); test(id=0, code={ argv <- eval(parse(text="list(structure(list(Df = 10L, `Sum Sq` = 2.74035772634541, `Mean Sq` = 0.274035772634541, `F value` = NA_real_, `Pr(>F)` = NA_real_), .Names = c(\"Df\", \"Sum Sq\", \"Mean Sq\", \"F value\", \"Pr(>F)\"), row.names = \"Residuals\", class = c(\"anova\", \"data.frame\"), heading = c(\"Analysis of Variance Table\\n\", \"Response: y\")), 5L)")); do.call(`.subset2`, argv); }, o=expected);
calculate_player_stats <- function(pbp, weekly = FALSE) { mult_lats <- nflreadr::rds_from_url("https://github.com/mrcaseb/nfl-data/raw/master/data/lateral_yards/multiple_lateral_yards.rds") %>% dplyr::mutate( season = substr(.data$game_id, 1, 4) %>% as.integer(), week = substr(.data$game_id, 6, 7) %>% as.integer() ) %>% dplyr::filter(.data$yards != 0) %>% dplyr::group_by(.data$game_id, .data$play_id) %>% dplyr::slice(seq_len(dplyr::n() - 1)) %>% dplyr::ungroup() %>% dplyr::group_by(.data$season, .data$week, .data$type, .data$gsis_player_id) %>% dplyr::summarise(yards = sum(.data$yards)) %>% dplyr::ungroup() suppressMessages({ data <- pbp %>% dplyr::filter( !is.na(.data$down), .data$play_type %in% c("pass", "qb_kneel", "qb_spike", "run") ) %>% decode_player_ids() if (!"qb_epa" %in% names(data)) data <- add_qb_epa(data) two_points <- pbp %>% dplyr::filter(.data$two_point_conv_result == "success") %>% dplyr::select( "week", "season", "posteam", "pass_attempt", "rush_attempt", "passer_player_name", "passer_player_id", "rusher_player_name", "rusher_player_id", "lateral_rusher_player_name", "lateral_rusher_player_id", "receiver_player_name", "receiver_player_id", "lateral_receiver_player_name", "lateral_receiver_player_id" ) %>% decode_player_ids() }) if (!"special" %in% names(pbp)) { pbp <- pbp %>% dplyr::mutate( special = dplyr::if_else( .data$play_type %in% c("extra_point","field_goal","kickoff","punt"), 1, 0 ) ) } s_type <- pbp %>% dplyr::select(.data$season, .data$season_type, .data$week) %>% dplyr::distinct() racr_ids <- nflreadr::qs_from_url("https://github.com/nflverse/nflfastR-roster/raw/master/data/nflfastR-RB_ids.qs") pass_df <- data %>% dplyr::filter(.data$play_type %in% c("pass", "qb_spike")) %>% dplyr::group_by(.data$passer_player_id, .data$week, .data$season) %>% dplyr::summarize( passing_yards_after_catch = sum((.data$passing_yards - .data$air_yards) * .data$complete_pass, na.rm = TRUE), name_pass = dplyr::first(.data$passer_player_name), team_pass = dplyr::first(.data$posteam), passing_yards = sum(.data$passing_yards, na.rm = TRUE), passing_tds = sum(.data$touchdown == 1 & .data$td_team == .data$posteam & .data$complete_pass == 1), interceptions = sum(.data$interception), attempts = sum(.data$complete_pass == 1 | .data$incomplete_pass == 1 | .data$interception == 1), completions = sum(.data$complete_pass == 1), sack_fumbles = sum(.data$fumble == 1 & .data$fumbled_1_player_id == .data$passer_player_id), sack_fumbles_lost = sum(.data$fumble_lost == 1 & .data$fumbled_1_player_id == .data$passer_player_id), passing_air_yards = sum(.data$air_yards, na.rm = TRUE), sacks = sum(.data$sack), sack_yards = -1*sum(.data$yards_gained * .data$sack), passing_first_downs = sum(.data$first_down_pass), passing_epa = sum(.data$qb_epa, na.rm = TRUE), pacr = .data$passing_yards / .data$passing_air_yards, pacr = dplyr::case_when( is.nan(.data$pacr) ~ NA_real_, .data$passing_air_yards <= 0 ~ 0, TRUE ~ .data$pacr ), ) %>% dplyr::rename(player_id = .data$passer_player_id) %>% dplyr::ungroup() if (isTRUE(weekly)) pass_df <- add_dakota(pass_df, pbp = pbp, weekly = weekly) pass_two_points <- two_points %>% dplyr::filter(.data$pass_attempt == 1) %>% dplyr::group_by(.data$passer_player_id, .data$week, .data$season) %>% dplyr::summarise( name_pass = custom_mode(.data$passer_player_name), team_pass = custom_mode(.data$posteam), passing_2pt_conversions = dplyr::n() ) %>% dplyr::rename(player_id = .data$passer_player_id) %>% dplyr::ungroup() pass_df <- pass_df %>% dplyr::full_join(pass_two_points, by = c("player_id", "week", "season", "name_pass", "team_pass")) %>% dplyr::mutate(passing_2pt_conversions = dplyr::if_else(is.na(.data$passing_2pt_conversions), 0L, .data$passing_2pt_conversions)) %>% dplyr::filter(!is.na(.data$player_id)) pass_df_nas <- is.na(pass_df) epa_index <- which(dimnames(pass_df_nas)[[2]] %in% c("passing_epa", "dakota", "pacr")) pass_df_nas[,epa_index] <- c(FALSE) pass_df[pass_df_nas] <- 0 rushes <- data %>% dplyr::filter(.data$play_type %in% c("run", "qb_kneel")) %>% dplyr::group_by(.data$rusher_player_id, .data$week, .data$season) %>% dplyr::summarize( name_rush = dplyr::first(.data$rusher_player_name), team_rush = dplyr::first(.data$posteam), yards = sum(.data$rushing_yards, na.rm = TRUE), tds = sum(.data$td_player_id == .data$rusher_player_id, na.rm = TRUE), carries = dplyr::n(), rushing_fumbles = sum(.data$fumble == 1 & .data$fumbled_1_player_id == .data$rusher_player_id & is.na(.data$lateral_rusher_player_id)), rushing_fumbles_lost = sum(.data$fumble_lost == 1 & .data$fumbled_1_player_id == .data$rusher_player_id & is.na(.data$lateral_rusher_player_id)), rushing_first_downs = sum(.data$first_down_rush & is.na(.data$lateral_rusher_player_id)), rushing_epa = sum(.data$epa, na.rm = TRUE) ) %>% dplyr::ungroup() laterals <- data %>% dplyr::filter(!is.na(.data$lateral_rusher_player_id)) %>% dplyr::group_by(.data$lateral_rusher_player_id, .data$week, .data$season) %>% dplyr::summarize( lateral_yards = sum(.data$lateral_rushing_yards, na.rm = TRUE), lateral_fds = sum(.data$first_down_rush, na.rm = TRUE), lateral_tds = sum(.data$td_player_id == .data$lateral_rusher_player_id, na.rm = TRUE), lateral_att = dplyr::n(), lateral_fumbles = sum(.data$fumble, na.rm = TRUE), lateral_fumbles_lost = sum(.data$fumble_lost, na.rm = TRUE) ) %>% dplyr::ungroup() %>% dplyr::rename(rusher_player_id = .data$lateral_rusher_player_id) %>% dplyr::bind_rows( mult_lats %>% dplyr::filter( .data$type == "lateral_rushing" & .data$season %in% data$season & .data$week %in% data$week ) %>% dplyr::select("season", "week", "rusher_player_id" = .data$gsis_player_id, "lateral_yards" = .data$yards) %>% dplyr::mutate(lateral_tds = 0L, lateral_att = 1L) ) %>% dplyr::group_by(.data$rusher_player_id, .data$week, .data$season) %>% dplyr::summarise_all(.funs = sum, na.rm = TRUE) %>% dplyr::ungroup() rush_df <- rushes %>% dplyr::left_join(laterals, by = c("rusher_player_id", "week", "season")) %>% dplyr::mutate( lateral_yards = dplyr::if_else(is.na(.data$lateral_yards), 0, .data$lateral_yards), lateral_tds = dplyr::if_else(is.na(.data$lateral_tds), 0L, .data$lateral_tds), lateral_fumbles = dplyr::if_else(is.na(.data$lateral_fumbles), 0, .data$lateral_fumbles), lateral_fumbles_lost = dplyr::if_else(is.na(.data$lateral_fumbles_lost), 0, .data$lateral_fumbles_lost), lateral_fds = dplyr::if_else(is.na(.data$lateral_fds), 0, .data$lateral_fds) ) %>% dplyr::mutate( rushing_yards = .data$yards + .data$lateral_yards, rushing_tds = .data$tds + .data$lateral_tds, rushing_first_downs = .data$rushing_first_downs + .data$lateral_fds, rushing_fumbles = .data$rushing_fumbles + .data$lateral_fumbles, rushing_fumbles_lost = .data$rushing_fumbles_lost + .data$lateral_fumbles_lost ) %>% dplyr::rename(player_id = .data$rusher_player_id) %>% dplyr::select("player_id", "week", "season", "name_rush", "team_rush", "rushing_yards", "carries", "rushing_tds", "rushing_fumbles", "rushing_fumbles_lost", "rushing_first_downs", "rushing_epa") %>% dplyr::ungroup() rush_two_points <- two_points %>% dplyr::filter(.data$rush_attempt == 1) %>% dplyr::group_by(.data$rusher_player_id, .data$week, .data$season) %>% dplyr::summarise( name_rush = custom_mode(.data$rusher_player_name), team_rush = custom_mode(.data$posteam), rushing_2pt_conversions = dplyr::n() ) %>% dplyr::rename(player_id = .data$rusher_player_id) %>% dplyr::ungroup() rush_df <- rush_df %>% dplyr::full_join(rush_two_points, by = c("player_id", "week", "season", "name_rush", "team_rush")) %>% dplyr::mutate(rushing_2pt_conversions = dplyr::if_else(is.na(.data$rushing_2pt_conversions), 0L, .data$rushing_2pt_conversions)) %>% dplyr::filter(!is.na(.data$player_id)) rush_df_nas <- is.na(rush_df) epa_index <- which(dimnames(rush_df_nas)[[2]] == "rushing_epa") rush_df_nas[,epa_index] <- c(FALSE) rush_df[rush_df_nas] <- 0 rec <- data %>% dplyr::filter(!is.na(.data$receiver_player_id)) %>% dplyr::group_by(.data$receiver_player_id, .data$week, .data$season) %>% dplyr::summarize( name_receiver = dplyr::first(.data$receiver_player_name), team_receiver = dplyr::first(.data$posteam), yards = sum(.data$receiving_yards, na.rm = TRUE), receptions = sum(.data$complete_pass == 1), targets = dplyr::n(), tds = sum(.data$td_player_id == .data$receiver_player_id, na.rm = TRUE), receiving_fumbles = sum(.data$fumble == 1 & .data$fumbled_1_player_id == .data$receiver_player_id & is.na(.data$lateral_receiver_player_id)), receiving_fumbles_lost = sum(.data$fumble_lost == 1 & .data$fumbled_1_player_id == .data$receiver_player_id & is.na(.data$lateral_receiver_player_id)), receiving_air_yards = sum(.data$air_yards, na.rm = TRUE), receiving_yards_after_catch = sum(.data$yards_after_catch, na.rm = TRUE), receiving_first_downs = sum(.data$first_down_pass & is.na(.data$lateral_receiver_player_id)), receiving_epa = sum(.data$epa, na.rm = TRUE) ) %>% dplyr::ungroup() laterals <- data %>% dplyr::filter(!is.na(.data$lateral_receiver_player_id)) %>% dplyr::group_by(.data$lateral_receiver_player_id, .data$week, .data$season) %>% dplyr::summarize( lateral_yards = sum(.data$lateral_receiving_yards, na.rm = TRUE), lateral_tds = sum(.data$td_player_id == .data$lateral_receiver_player_id, na.rm = TRUE), lateral_att = dplyr::n(), lateral_fds = sum(.data$first_down_pass, na.rm = T), lateral_fumbles = sum(.data$fumble, na.rm = T), lateral_fumbles_lost = sum(.data$fumble_lost, na.rm = T) ) %>% dplyr::ungroup() %>% dplyr::rename(receiver_player_id = .data$lateral_receiver_player_id) %>% dplyr::bind_rows( mult_lats %>% dplyr::filter( .data$type == "lateral_receiving" & .data$season %in% data$season & .data$week %in% data$week ) %>% dplyr::select("season", "week", "receiver_player_id" = .data$gsis_player_id, "lateral_yards" = .data$yards) %>% dplyr::mutate(lateral_tds = 0L, lateral_att = 1L) ) %>% dplyr::group_by(.data$receiver_player_id, .data$week, .data$season) %>% dplyr::summarise_all(.funs = sum, na.rm = TRUE) %>% dplyr::ungroup() rec_team <- data %>% dplyr::filter(!is.na(.data$receiver_player_id)) %>% dplyr::group_by(.data$posteam, .data$week, .data$season) %>% dplyr::summarize( team_targets = dplyr::n(), team_air_yards = sum(.data$air_yards, na.rm = TRUE), ) %>% dplyr::ungroup() rec_df <- rec %>% dplyr::left_join(laterals, by = c("receiver_player_id", "week", "season")) %>% dplyr::left_join(rec_team, by = c("team_receiver" = "posteam", "week", "season")) %>% dplyr::mutate( lateral_yards = dplyr::if_else(is.na(.data$lateral_yards), 0, .data$lateral_yards), lateral_tds = dplyr::if_else(is.na(.data$lateral_tds), 0L, .data$lateral_tds), lateral_fumbles = dplyr::if_else(is.na(.data$lateral_fumbles), 0, .data$lateral_fumbles), lateral_fumbles_lost = dplyr::if_else(is.na(.data$lateral_fumbles_lost), 0, .data$lateral_fumbles_lost), lateral_fds = dplyr::if_else(is.na(.data$lateral_fds), 0, .data$lateral_fds) ) %>% dplyr::mutate( receiving_yards = .data$yards + .data$lateral_yards, receiving_tds = .data$tds + .data$lateral_tds, receiving_yards_after_catch = .data$receiving_yards_after_catch + .data$lateral_yards, receiving_first_downs = .data$receiving_first_downs + .data$lateral_fds, receiving_fumbles = .data$receiving_fumbles + .data$lateral_fumbles, receiving_fumbles_lost = .data$receiving_fumbles_lost + .data$lateral_fumbles_lost, racr = .data$receiving_yards / .data$receiving_air_yards, racr = dplyr::case_when( is.nan(.data$racr) ~ NA_real_, .data$receiving_air_yards == 0 ~ 0, .data$receiving_air_yards < 0 & !.data$receiver_player_id %in% racr_ids$gsis_id ~ 0, TRUE ~ .data$racr ), target_share = .data$targets / .data$team_targets, air_yards_share = .data$receiving_air_yards / .data$team_air_yards, wopr = 1.5 * .data$target_share + 0.7 * .data$air_yards_share ) %>% dplyr::rename(player_id = .data$receiver_player_id) %>% dplyr::select("player_id", "week", "season", "name_receiver", "team_receiver", "receiving_yards", "receiving_air_yards", "receiving_yards_after_catch", "receptions", "targets", "receiving_tds", "receiving_fumbles", "receiving_fumbles_lost", "receiving_first_downs", "receiving_epa", "racr", "target_share", "air_yards_share", "wopr") rec_two_points <- two_points %>% dplyr::filter(.data$pass_attempt == 1) %>% dplyr::group_by(.data$receiver_player_id, .data$week, .data$season) %>% dplyr::summarise( name_receiver = custom_mode(.data$receiver_player_name), team_receiver = custom_mode(.data$posteam), receiving_2pt_conversions = dplyr::n() ) %>% dplyr::rename(player_id = .data$receiver_player_id) %>% dplyr::ungroup() rec_df <- rec_df %>% dplyr::full_join(rec_two_points, by = c("player_id", "week", "season", "name_receiver", "team_receiver")) %>% dplyr::mutate(receiving_2pt_conversions = dplyr::if_else(is.na(.data$receiving_2pt_conversions), 0L, .data$receiving_2pt_conversions)) %>% dplyr::filter(!is.na(.data$player_id)) rec_df_nas <- is.na(rec_df) epa_index <- which(dimnames(rec_df_nas)[[2]] == c("receiving_epa", "racr", "target_share", "air_yards_share", "wopr")) rec_df_nas[,epa_index] <- c(FALSE) rec_df[rec_df_nas] <- 0 st_tds <- pbp %>% dplyr::filter(.data$special == 1 & !is.na(.data$td_player_id)) %>% dplyr::group_by(.data$td_player_id, .data$week, .data$season) %>% dplyr::summarise( name_st = custom_mode(.data$td_player_name), team_st = custom_mode(.data$td_team), special_teams_tds = sum(.data$touchdown, na.rm = TRUE) ) %>% dplyr::rename(player_id = .data$td_player_id) player_df <- pass_df %>% dplyr::full_join(rush_df, by = c("player_id", "week", "season")) %>% dplyr::full_join(rec_df, by = c("player_id", "week", "season")) %>% dplyr::full_join(st_tds, by = c("player_id", "week", "season")) %>% dplyr::left_join(s_type, by = c("season", "week")) %>% dplyr::mutate( player_name = dplyr::case_when( !is.na(.data$name_pass) ~ .data$name_pass, !is.na(.data$name_rush) ~ .data$name_rush, !is.na(.data$name_receiver) ~ .data$name_receiver, TRUE ~ .data$name_st ), recent_team = dplyr::case_when( !is.na(.data$team_pass) ~ .data$team_pass, !is.na(.data$team_rush) ~ .data$team_rush, !is.na(.data$team_receiver) ~ .data$team_receiver, TRUE ~ .data$team_st ) ) %>% dplyr::select(tidyselect::any_of(c( "player_id", "player_name", "recent_team", "season", "week", "season_type", "completions", "attempts", "passing_yards", "passing_tds", "interceptions", "sacks", "sack_yards", "sack_fumbles", "sack_fumbles_lost", "passing_air_yards", "passing_yards_after_catch", "passing_first_downs", "passing_epa", "passing_2pt_conversions", "pacr", "dakota", "carries", "rushing_yards", "rushing_tds", "rushing_fumbles", "rushing_fumbles_lost", "rushing_first_downs", "rushing_epa", "rushing_2pt_conversions", "receptions", "targets", "receiving_yards", "receiving_tds", "receiving_fumbles", "receiving_fumbles_lost", "receiving_air_yards", "receiving_yards_after_catch", "receiving_first_downs", "receiving_epa", "receiving_2pt_conversions", "racr", "target_share", "air_yards_share", "wopr", "special_teams_tds" ))) %>% dplyr::filter(!is.na(.data$player_id)) player_df_nas <- is.na(player_df) epa_index <- which(dimnames(player_df_nas)[[2]] %in% c("passing_epa", "rushing_epa", "receiving_epa", "dakota", "racr", "target_share", "air_yards_share", "wopr", "pacr")) player_df_nas[,epa_index] <- c(FALSE) player_df[player_df_nas] <- 0 player_df <- player_df %>% dplyr::mutate( fantasy_points = 1 / 25 * .data$passing_yards + 4 * .data$passing_tds + -2 * .data$interceptions + 1 / 10 * (.data$rushing_yards + .data$receiving_yards) + 6 * (.data$rushing_tds + .data$receiving_tds + .data$special_teams_tds) + 2 * (.data$passing_2pt_conversions + .data$rushing_2pt_conversions + .data$receiving_2pt_conversions) + -2 * (.data$sack_fumbles_lost + .data$rushing_fumbles_lost + .data$receiving_fumbles_lost), fantasy_points_ppr = .data$fantasy_points + .data$receptions ) %>% dplyr::arrange(.data$player_id, .data$season, .data$week) if (isFALSE(weekly)) { player_df <- player_df %>% dplyr::group_by(.data$player_id) %>% dplyr::summarise( player_name = custom_mode(.data$player_name), games = dplyr::n(), recent_team = dplyr::last(.data$recent_team), completions = sum(.data$completions), attempts = sum(.data$attempts), passing_yards = sum(.data$passing_yards), passing_tds = sum(.data$passing_tds), interceptions = sum(.data$interceptions), sacks = sum(.data$sacks), sack_yards = sum(.data$sack_yards), sack_fumbles = sum(.data$sack_fumbles), sack_fumbles_lost = sum(.data$sack_fumbles_lost), passing_air_yards = sum(.data$passing_air_yards), passing_yards_after_catch = sum(.data$passing_yards_after_catch), passing_first_downs = sum(.data$passing_first_downs), passing_epa = dplyr::if_else(all(is.na(.data$passing_epa)), NA_real_, sum(.data$passing_epa, na.rm = TRUE)), passing_2pt_conversions = sum(.data$passing_2pt_conversions), pacr = .data$passing_yards / .data$passing_air_yards, carries = sum(.data$carries), rushing_yards = sum(.data$rushing_yards), rushing_tds = sum(.data$rushing_tds), rushing_fumbles = sum(.data$rushing_fumbles), rushing_fumbles_lost = sum(.data$rushing_fumbles_lost), rushing_first_downs = sum(.data$rushing_first_downs), rushing_epa = dplyr::if_else(all(is.na(.data$rushing_epa)), NA_real_, sum(.data$rushing_epa, na.rm = TRUE)), rushing_2pt_conversions = sum(.data$rushing_2pt_conversions), receptions = sum(.data$receptions), targets = sum(.data$targets), receiving_yards = sum(.data$receiving_yards), receiving_tds = sum(.data$receiving_tds), receiving_fumbles = sum(.data$receiving_fumbles), receiving_fumbles_lost = sum(.data$receiving_fumbles_lost), receiving_air_yards = sum(.data$receiving_air_yards), receiving_yards_after_catch = sum(.data$receiving_yards_after_catch), receiving_first_downs = sum(.data$receiving_first_downs), receiving_epa = dplyr::if_else(all(is.na(.data$receiving_epa)), NA_real_, sum(.data$receiving_epa, na.rm = TRUE)), receiving_2pt_conversions = sum(.data$receiving_2pt_conversions), racr = .data$receiving_yards / .data$receiving_air_yards, target_share = dplyr::if_else(all(is.na(.data$target_share)), NA_real_, mean(.data$target_share, na.rm = TRUE)), air_yards_share = dplyr::if_else(all(is.na(.data$air_yards_share)), NA_real_, mean(.data$air_yards_share, na.rm = TRUE)), wopr = 1.5 * .data$target_share + 0.7 * .data$air_yards_share, special_teams_tds = sum(.data$special_teams_tds), fantasy_points = sum(.data$fantasy_points), fantasy_points_ppr = sum(.data$fantasy_points_ppr) ) %>% dplyr::ungroup() %>% dplyr::mutate( racr = dplyr::case_when( is.nan(.data$racr) ~ NA_real_, .data$receiving_air_yards == 0 ~ 0, .data$receiving_air_yards < 0 & !.data$player_id %in% racr_ids$gsis_id ~ 0, TRUE ~ .data$racr ), pacr = dplyr::case_when( is.nan(.data$pacr) ~ NA_real_, .data$passing_air_yards <= 0 ~ 0, TRUE ~ .data$pacr ) ) %>% add_dakota(pbp = pbp, weekly = weekly) %>% dplyr::select( .data$player_id:.data$pacr, .data$dakota, dplyr::everything() ) } return(player_df) } add_dakota <- function(add_to_this, pbp, weekly) { dakota_model <- NULL con <- url("https://github.com/nflverse/nflfastR-data/blob/master/models/dakota_model.Rdata?raw=true") try(load(con), silent = TRUE) close(con) if (is.null(dakota_model)) { user_message("This function needs to download the model data from GitHub. Please check your Internet connection and try again!", "oops") return(add_to_this) } if (!"id" %in% names(pbp)) pbp <- clean_pbp(pbp) if (!"qb_epa" %in% names(pbp)) pbp <- add_qb_epa(pbp) suppressMessages({ df <- pbp %>% dplyr::filter(.data$pass == 1 | .data$rush == 1) %>% dplyr::filter(!is.na(.data$posteam) & !is.na(.data$qb_epa) & !is.na(.data$id) & !is.na(.data$down)) %>% dplyr::mutate(epa = dplyr::if_else(.data$qb_epa < -4.5, -4.5, .data$qb_epa)) %>% decode_player_ids() }) if (isTRUE(weekly)) { relevant_players <- add_to_this %>% dplyr::filter(.data$attempts >= 5) %>% dplyr::mutate(filter_id = paste(.data$player_id, .data$season, .data$week, sep = "_")) %>% dplyr::pull(.data$filter_id) model_data <- df %>% dplyr::group_by(.data$id, .data$week, .data$season) %>% dplyr::summarize( n_plays = n(), epa_per_play = sum(.data$epa) / .data$n_plays, cpoe = mean(.data$cpoe, na.rm = TRUE) ) %>% dplyr::ungroup() %>% dplyr::mutate(cpoe = dplyr::if_else(is.na(.data$cpoe), 0, .data$cpoe)) %>% dplyr::rename(player_id = .data$id) %>% dplyr::mutate(filter_id = paste(.data$player_id, .data$season, .data$week, sep = "_")) %>% dplyr::filter(.data$filter_id %in% relevant_players) model_data$dakota <- mgcv::predict.gam(dakota_model, model_data) %>% as.vector() out <- add_to_this %>% dplyr::left_join( model_data %>% dplyr::select(.data$player_id, .data$week, .data$season, .data$dakota), by = c("player_id", "week", "season") ) } else if (isFALSE(weekly)) { relevant_players <- add_to_this %>% dplyr::filter(.data$attempts >= 5) %>% dplyr::pull(.data$player_id) model_data <- df %>% dplyr::group_by(.data$id) %>% dplyr::summarize( n_plays = n(), epa_per_play = sum(.data$epa) / .data$n_plays, cpoe = mean(.data$cpoe, na.rm = TRUE) ) %>% dplyr::ungroup() %>% dplyr::mutate(cpoe = dplyr::if_else(is.na(.data$cpoe), 0, .data$cpoe)) %>% dplyr::rename(player_id = .data$id) %>% dplyr::filter(.data$player_id %in% relevant_players) model_data$dakota <- mgcv::predict.gam(dakota_model, model_data) %>% as.vector() out <- add_to_this %>% dplyr::left_join( model_data %>% dplyr::select(.data$player_id, .data$dakota), by = "player_id" ) } return(out) }
theme_ipsum_ps <- function( base_family="IBMPlexSans", base_size = 11.5, plot_title_family="IBMPlexSans-Bold", plot_title_size = 18, plot_title_face="plain", plot_title_margin = 10, subtitle_family=if (.Platform$OS.type == "windows") "IBMPlexSans" else "IBMPlexSans-Light", subtitle_size = 13, subtitle_face = "plain", subtitle_margin = 15, strip_text_family = "IBMPlexSans-Medium", strip_text_size = 12, strip_text_face = "plain", caption_family=if (.Platform$OS.type == "windows") "IBMPlexSans" else "IBMPlexSans-Thin", caption_size = 9, caption_face = "plain", caption_margin = 10, axis_text_size = 9, axis_title_family = base_family, axis_title_size = 9, axis_title_face = "plain", axis_title_just = "rt", plot_margin = margin(30, 30, 30, 30), grid_col = " axis_col = " ret <- ggplot2::theme_minimal(base_family=base_family, base_size=base_size) ret <- ret + theme(legend.background=element_blank()) ret <- ret + theme(legend.key=element_blank()) if (inherits(grid, "character") | grid == TRUE) { ret <- ret + theme(panel.grid=element_line(color=grid_col, size=0.2)) ret <- ret + theme(panel.grid.major=element_line(color=grid_col, size=0.2)) ret <- ret + theme(panel.grid.minor=element_line(color=grid_col, size=0.15)) if (inherits(grid, "character")) { if (regexpr("X", grid)[1] < 0) ret <- ret + theme(panel.grid.major.x=element_blank()) if (regexpr("Y", grid)[1] < 0) ret <- ret + theme(panel.grid.major.y=element_blank()) if (regexpr("x", grid)[1] < 0) ret <- ret + theme(panel.grid.minor.x=element_blank()) if (regexpr("y", grid)[1] < 0) ret <- ret + theme(panel.grid.minor.y=element_blank()) } } else { ret <- ret + theme(panel.grid=element_blank()) } if (inherits(axis, "character") | axis == TRUE) { ret <- ret + theme(axis.line=element_line(color=axis_col, size=0.15)) if (inherits(axis, "character")) { axis <- tolower(axis) if (regexpr("x", axis)[1] < 0) { ret <- ret + theme(axis.line.x=element_blank()) } else { ret <- ret + theme(axis.line.x=element_line(color=axis_col, size=0.15)) } if (regexpr("y", axis)[1] < 0) { ret <- ret + theme(axis.line.y=element_blank()) } else { ret <- ret + theme(axis.line.y=element_line(color=axis_col, size=0.15)) } } else { ret <- ret + theme(axis.line.x=element_line(color=axis_col, size=0.15)) ret <- ret + theme(axis.line.y=element_line(color=axis_col, size=0.15)) } } else { ret <- ret + theme(axis.line=element_blank()) } if (!ticks) { ret <- ret + theme(axis.ticks = element_blank()) ret <- ret + theme(axis.ticks.x = element_blank()) ret <- ret + theme(axis.ticks.y = element_blank()) } else { ret <- ret + theme(axis.ticks = element_line(size=0.15)) ret <- ret + theme(axis.ticks.x = element_line(size=0.15)) ret <- ret + theme(axis.ticks.y = element_line(size=0.15)) ret <- ret + theme(axis.ticks.length = grid::unit(5, "pt")) } xj <- switch(tolower(substr(axis_title_just, 1, 1)), b=0, l=0, m=0.5, c=0.5, r=1, t=1) yj <- switch(tolower(substr(axis_title_just, 2, 2)), b=0, l=0, m=0.5, c=0.5, r=1, t=1) ret <- ret + theme(axis.text.x=element_text(size=axis_text_size, margin=margin(t=0))) ret <- ret + theme(axis.text.y=element_text(size=axis_text_size, margin=margin(r=0))) ret <- ret + theme(axis.title=element_text(size=axis_title_size, family=axis_title_family)) ret <- ret + theme(axis.title.x=element_text(hjust=xj, size=axis_title_size, family=axis_title_family, face=axis_title_face)) ret <- ret + theme(axis.title.y=element_text(hjust=yj, size=axis_title_size, family=axis_title_family, face=axis_title_face)) ret <- ret + theme(axis.title.y.right=element_text(hjust=yj, size=axis_title_size, angle=90, family=axis_title_family, face=axis_title_face)) ret <- ret + theme(strip.text=element_text(hjust=0, size=strip_text_size, face=strip_text_face, family=strip_text_family)) ret <- ret + theme(panel.spacing=grid::unit(2, "lines")) ret <- ret + theme(plot.title=element_text(hjust=0, size=plot_title_size, margin=margin(b=plot_title_margin), family=plot_title_family, face=plot_title_face)) ret <- ret + theme(plot.subtitle=element_text(hjust=0, size=subtitle_size, margin=margin(b=subtitle_margin), family=subtitle_family, face=subtitle_face)) ret <- ret + theme(plot.caption=element_text(hjust=1, size=caption_size, margin=margin(t=caption_margin), family=caption_family, face=caption_face)) ret <- ret + theme(plot.margin=plot_margin) ret } import_plex_sans <- function() { ps_font_dir <- system.file("fonts", "plex-sans", package="hrbrthemes") } font_ps <- "IBMPlexSans" font_ps_light <- "IBMPlexSans-Light"
VPA <- function(x = 1, Data, AddInd = "B", expanded = FALSE, SR = c("BH", "Ricker"), vulnerability = c("logistic", "dome", "free"), start = list(), fix_h = TRUE, fix_Fratio = TRUE, fix_Fterm = FALSE, LWT = NULL, shrinkage = list(), n_itF = 5L, min_age = "auto", max_age = "auto", refpt = list(), silent = TRUE, opt_hess = FALSE, n_restart = ifelse(opt_hess, 0, 1), control = list(iter.max = 2e5, eval.max = 4e5), ...) { dependencies <- "Data@Cat, Data@CAA, Data@Ind, Data@Mort, Data@L50, Data@L95, Data@CAA, Data@vbK, Data@vbLinf, Data@vbt0, Data@wla, Data@wlb, Data@MaxAge" dots <- list(...) if(!is.null(dots$nitF)) n_itF <- dots$nitF start <- lapply(start, eval, envir = environment()) vulnerability <- match.arg(vulnerability) SR <- match.arg(SR) if(is.null(refpt$weight)) refpt$weight <- 3L if(is.null(refpt$vul)) refpt$vul <- 3L if(is.null(refpt$R)) refpt$R <- c(0.5, 5) n_age <- Data@MaxAge + 1 M <- rep(Data@Mort[x], n_age) a <- Data@wla[x] b <- Data@wlb[x] Linf <- Data@vbLinf[x] K <- Data@vbK[x] t0 <- Data@vbt0[x] La <- Linf * (1 - exp(-K * (c(0:Data@MaxAge) - t0))) Wa <- a * La ^ b A50 <- min(0.5 * Data@MaxAge, iVB(t0, K, Linf, Data@L50[x])) A95 <- max(A50+0.5, iVB(t0, K, Linf, Data@L95[x])) mat_age <- 1/(1 + exp(-log(19) * (c(0:Data@MaxAge) - A50)/(A95 - A50))) mat_age <- mat_age/max(mat_age) if(any(names(dots) == "yind")) { yind <- eval(dots$yind) } else { yind <- 1:nrow(Data@CAA[x, , ]) } Year <- Data@Year[yind] CAA_hist <- Data@CAA[x, yind, ] if(!expanded) { C_hist <- Data@Cat[x, yind] if(any(is.na(C_hist) | C_hist < 0)) warning("Error. Catch time series is not complete.") expansion_factors <- C_hist/colSums(t(CAA_hist) * Wa) CAA_hist <- CAA_hist * expansion_factors } CAA_hist_VPA <- CAA_hist if(is.character(max_age) && max_age == "auto") { max_age <- n_age - 1 while(any(CAA_hist_VPA[, max_age + 1] <= 0)) { max_age <- max_age - 1 CAA_hist_VPA <- CAA_hist[, 0:max_age + 1] CAA_hist_VPA[, max_age + 1] <- rowSums(CAA_hist[, (max_age+1):ncol(CAA_hist), drop = FALSE]) } } else if(is.numeric(max_age) && length(max_age) == 1) { CAA_hist_VPA <- CAA_hist[, 0:max_age + 1] CAA_hist_VPA[, max_age + 1] <- rowSums(CAA_hist[, (max_age+1):ncol(CAA_hist), drop = FALSE]) } else { stop("max_age must be an integer or \"auto\".") } if(is.character(min_age) && min_age == "auto") { min_age <- 0 while(CAA_hist[nrow(CAA_hist), min_age + 1] <= 0) min_age <- min_age + 1 } if(is.numeric(min_age) && length(min_age) == 1) { if(min_age > 0) { CAA_hist_VPA <- CAA_hist_VPA[, -c(0:min_age + 1), drop = FALSE] CAA_hist_VPA <- CAA_hist[, 0:min_age + 1, drop = FALSE] %>% rowSums() %>% cbind(CAA_hist_VPA) if(ncol(CAA_hist_VPA) == 1) stop("Only one age class left after consolidating plus- and minus- groups to remove zeros.") } } else { stop("min_age must be an integer or \"auto\".") } ages <- min_age:max_age CAA_hist_VPA[is.na(CAA_hist_VPA) | CAA_hist_VPA < 1e-8] <- 1e-8 maxage_ind <- CAA_hist_VPA[, ncol(CAA_hist_VPA) - 1] == 1e-8 CAA_hist_VPA[maxage_ind, ncol(CAA_hist_VPA) - 1] <- CAA_hist_VPA[maxage_ind, ncol(CAA_hist_VPA)] update_age_schedule <- function(x, ages) { xout <- x[ages + 1] xout[length(xout)] <- mean(x[(max(ages)+1):length(x)]) return(xout %>% structure(names = ages)) } LH <- list(LAA = update_age_schedule(La, ages), WAA = update_age_schedule(Wa, ages), Linf = Linf, K = K, t0 = t0, a = a, b = b, A50 = A50, A95 = A95, mat = update_age_schedule(mat_age, ages)) Ind <- lapply(AddInd, Assess_I_hist, Data = Data, x = x, yind = yind) I_hist <- do.call(cbind, lapply(Ind, getElement, "I_hist")) I_sd <- do.call(cbind, lapply(Ind, getElement, "I_sd")) %>% pmax(0.05) I_units <- do.call(c, lapply(Ind, getElement, "I_units")) I_vul <- vapply(AddInd, function(xx) { if(xx == "B") { return(rep(1, length(ages))) } else if(xx == "SSB") { return(LH$mat) } else if(xx == "VB") { return(rep(0, length(ages))) } else { return(Data@AddIndV[x, suppressWarnings(as.numeric(xx)), ages + 1]) } }, numeric(length(ages))) nsurvey <- ncol(I_hist) if(is.null(LWT)) LWT <- rep(1, nsurvey) if(length(LWT) != nsurvey) stop("LWT needs to be a vector of length ", nsurvey) if(is.null(shrinkage$vul)) shrinkage$vul <- c(3, 0.4) if(is.null(shrinkage$R)) { sigmaR <- Data@sigmaR[x] if(is.null(sigmaR)) sigmaR <- 0.6 shrinkage$R <- c(3, sigmaR) } data <- list(model = "VPA", I_hist = I_hist, I_sd = I_sd, I_units = I_units, I_vul = I_vul, abs_I = rep(0, nsurvey), nsurvey = nsurvey, LWT = LWT, CAA_hist = CAA_hist_VPA, n_y = length(Year), n_age = length(ages), M = update_age_schedule(M, ages), weight = LH$WAA, vul_type_term = vulnerability, n_itF = as.integer(n_itF), n_vulpen = shrinkage$vul[1], vulpen = shrinkage$vul[2], n_Rpen = shrinkage$R[1], Rpen = shrinkage$R[2]) params <- list() if(!is.null(start)) { if(!is.null(start$Fterm) && is.numeric(start$Fterm)) params$log_Fterm <- log(start$Fterm) if(!is.null(start$Fratio) && is.numeric(start$Fratio)) params$log_Fratio <- log(start$Fratio) if(!is.null(start$vul_par) && is.numeric(start$vul_par)) { if(vulnerability == "logistic") { if(start$vul_par[1] > 0.75 * max_age) stop("start$vul_par[1] needs to be less than 0.75 * max_age (", max_age, ")") if(length(start$vul_par) < 2) stop("Two parameters needed for start$vul_par with logistic vulnerability (see help).") if(start$vul_par[1] <= start$vul_par[2]) stop("start$vul_par[1] needs to be greater than start$vul_par[2] (see help).") params$vul_par <- c(logit(start$vul_par[1]/max_age/0.75), log(start$vul_par[1] - start$vul_par[2])) } else if(vulnerability == "dome") { if(start$vul_par[1] > 0.75 * max_age) stop("start$vul_par[1] needs to be less than 0.75 * max_age (", max_age, ")") if(length(start$vul_par) < 4) stop("Four parameters needed for start$vul_par with dome vulnerability (see help).") if(start$vul_par[1] <= start$vul_par[2]) stop("start$vul_par[1] needs to be greater than start$vul_par[2] (see help).") if(start$vul_par[3] <= start$vul_par[1] || start$vul_par[3] >= max_age) { stop("start$vul_par[3] needs to be between start$vul_par[1] and max_age (", max_age, ")") } if(start$vul_par[4] <= 0 || start$vul_par[4] >= 1) stop("start$vul_par[4] needs to be between 0-1 (see help).") params$vul_par <- c(logit(start$vul_par[1]/max_age/0.75), log(start$vul_par[1] - start$vul_par[2]), logit(1/(max_age - start$vul_par[1])), logit(start$vul_par[4])) } else if(vulnerability == "free") { if(length(start$vul_par) < length(ages)) stop(paste0("start$vul_par needs to be of length", length(ages), ".")) params$vul_par <- log(start$vul_par[1:length(ages)]) } } } if(is.null(params$log_Fterm)) params$log_Fterm <- log(0.2) if(is.null(params$log_Fratio)) params$log_Fratio <- log(1) if(is.null(params$vul_par)) { CAA_mode <- ages[which.max(colSums(CAA_hist, na.rm = TRUE))] CAA_mode <- ifelse(CAA_mode + 1 > max_age, max_age - 1, CAA_mode) if(vulnerability == "free") { params$vul_par <- ifelse(ages[-length(ages)] < CAA_mode, 0.5, 1) %>% log() } else { if((is.na(Data@LFC[x]) && is.na(Data@LFS[x])) || (Data@LFC[x] > Linf) || (Data@LFS[x] > Linf)) { if(vulnerability == "logistic") params$vul_par <- c(logit(CAA_mode/(max_age - min_age)/0.75), log(1)) if(vulnerability == "dome") { params$vul_par <- c(logit(CAA_mode/(max_age - min_age)/0.75), log(1), logit(1/(max_age - CAA_mode)), logit(0.5)) } } else { A5 <- min(iVB(t0, K, Linf, Data@LFC[x]), CAA_mode-1) Afull <- min(iVB(t0, K, Linf, Data@LFS[x]), 0.5 * max_age) A5 <- min(A5, Afull - 0.5) A50_vul <- mean(c(A5, Afull)) if(vulnerability == "logistic") params$vul_par <- c(logit(Afull/(max_age - min_age)/0.75), log(Afull - A50_vul)) if(vulnerability == "dome") { params$vul_par <- c(logit(Afull/max_age/0.75), log(Afull - A50_vul), logit(1/(max_age - Afull)), logit(0.5)) } } } } info <- list(Year = Year, data = data, params = params, LH = LH, SR = SR, ages = ages, control = control, fix_h = fix_h, refpt = refpt) map <- list() if(vulnerability == "free") { fixed_ind <- round(0.5 * length(ages)) free_vul_par <- rep(log(1), length(ages) - 1) free_vul_par[fixed_ind] <- NA free_vul_par[!is.na(free_vul_par)] <- 1:(length(ages)-2) map$vul_par <- factor(free_vul_par) } else if(vulnerability == "dome") { map$vul_par <- c(1, 2, NA, 3) %>% factor() } if(fix_Fratio) map$log_Fratio <- factor(NA) if(fix_Fterm) map$log_Fterm <- factor(NA) obj <- MakeADFun(data = info$data, parameters = info$params, hessian = TRUE, map = map, DLL = "SAMtool", silent = silent) mod <- optimize_TMB_model(obj, control, opt_hess, n_restart) opt <- mod[[1]] SD <- mod[[2]] report <- obj$report(obj$env$last.par.best) %>% VPA_posthoc(info = info) Yearplusone <- c(Year, max(Year) + 1) Assessment <- new("Assessment", Model = "VPA", Name = Data@Name, conv = SD$pdHess, FMort = structure(report$F, names = Year), B = structure(report$B, names = Yearplusone), SSB = structure(report$E, names = Yearplusone), VB = structure(report$VB, names = Yearplusone), R = structure(report$N[, 1], names = Yearplusone), N = structure(rowSums(report$N), names = Yearplusone), N_at_age = report$N, Selectivity = report$vul, h = NA_real_, Obs_Catch = structure(if(expanded) colSums(t(CAA_hist_VPA) * data$weight) else C_hist, names = Year), Obs_Index = structure(I_hist, dimnames = list(Year, paste0("Index_", 1:nsurvey))), Obs_C_at_age = CAA_hist_VPA, Catch = structure(colSums(t(report$CAApred) * data$weight), names = Year), Index = structure(report$Ipred, dimnames = list(Year, paste0("Index_", 1:nsurvey))), C_at_age = report$CAApred, NLL = structure(c(report$nll, report$nll_comp, report$prior, report$penalty), names = c("Total", paste0("Index_", 1:nsurvey), "Prior", "Penalty")), info = info, obj = obj, opt = opt, SD = SD, TMB_report = report, dependencies = dependencies) if(Assessment@conv) { ref_pt <- ref_pt_VPA(E = report$E[1:(length(report$E)-min_age)], R = report$N[(min_age + 1):length(report$E), 1], weight = info$data$weight, mat = info$LH$mat, M = info$data$M, vul = report$vul_p, SR = SR, fix_h = fix_h, h = ifelse(fix_h, Data@steep[x], NA_real_)) report <- c(report, ref_pt[-17]) Assessment@FMSY <- report$FMSY Assessment@MSY <- report$MSY Assessment@BMSY <- report$BMSY Assessment@SSBMSY <- report$EMSY Assessment@VBMSY <- report$VBMSY Assessment@B0 <- report$B0 Assessment@R0 <- report$R0 Assessment@N0 <- report$N0 Assessment@SSB0 <- report$E0 Assessment@VB0 <- report$VB0 Assessment@h <- report$h Assessment@F_FMSY <- Assessment@FMort/report$FMSY Assessment@B_BMSY <- structure(report$B/report$BMSY, names = Yearplusone) Assessment@B_B0 <- structure(report$B/report$B0, names = Yearplusone) Assessment@SSB_SSBMSY <- structure(report$E/report$EMSY, names = Yearplusone) Assessment@SSB_SSB0 <- structure(report$E/report$E0, names = Yearplusone) Assessment@VB_VBMSY <- structure(report$VB/report$VBMSY, names = Yearplusone) Assessment@VB_VB0 <- structure(report$VB/report$VB0, names = Yearplusone) Assessment@TMB_report <- report catch_eq <- function(Ftarget) { catch_equation(method = "Baranov", sel = report$vul_p, M = info$data$M, wt = info$data$weight, N = report@N[nrow(report$N), ]) } Assessment@forecast <- list(per_recruit = ref_pt[[17]], catch_eq = catch_eq) } return(Assessment) } VPA_posthoc <- function(report, info) { n_age <- info$data$n_age Y <- nrow(report$N) N <- numeric(n_age) M <- info$data$M FF <- report$F_at_age[Y, ] Z <- M + FF refpt <- info$refpt N[2:n_age] <- report$N[Y, 1:(n_age-1)] * exp(-Z[1:(n_age-1)]) N[n_age] <- N[n_age] + report$N[Y, n_age] * exp(-Z[n_age]) N[1] <- quantile(report$N[(Y-refpt$R[2]+1):Y, 1], refpt$R[1]) report$vul_p <- report$vul[(Y-refpt$vul+1):Y, , drop = FALSE] %>% apply(2, mean) report$vul_p <- report$vul_p/max(report$vul_p) report$N <- rbind(report$N, N) report$E <- colSums(t(report$N) * info$LH$mat * info$data$weight) report$VB <- c(report$VB, sum(N * report$vul_p * info$data$weight)) report$B <- c(report$B, sum(N * info$data$weight)) return(report) } ref_pt_VPA <- function(E, R, weight, mat, M, vul, SR, fix_h, h) { NPR0 <- calc_NPR(exp(-M), length(M)) EPR0 <- sum(NPR0 * weight * mat) Rpred <- sigmaR <- NULL solve_SR_par <- function(x, h = NULL) { R0 <- exp(x[1]) E0 <- R0 * EPR0 if(!fix_h) { if(SR == "BH") h <- 0.2 + 0.8 * ilogit(x[2]) if(SR == "Ricker") h <- 0.2 + exp(x[2]) } if(SR == "BH") Rpred <<- (0.8 * R0 * h * E)/(0.2 * EPR0 * R0 *(1-h)+(h-0.2)*E) if(SR == "Ricker") Rpred <<- E/EPR0 * (5*h)^(1.25 * (1 - E/E0)) sigmaR <<- sqrt(sum((log(R/Rpred))^2)/length(Rpred)) nLL <- -sum(dnorm(log(R/Rpred), -0.5 * sigmaR^2, sigmaR, log = TRUE)) return(nLL) } if(fix_h) { opt <- optimize(solve_SR_par, interval = c(-10, 10), h = h)$minimum R0 <- exp(opt) } else { opt <- nlminb(c(10, 10), solve_SR_par) R0 <- exp(opt$par[1]) if(SR == "BH") h <- 0.2 + 0.8 * ilogit(opt$par[2]) if(SR == "Ricker") h <- 0.2 + exp(opt$par[2]) } N0 <- R0 * sum(NPR0) E0 <- R0 * EPR0 VB0 <- R0 * sum(NPR0 * weight * vul) B0 <- R0 * sum(NPR0 * weight) if(SR == "BH") { Arec <- 4*h/(1-h)/EPR0 Brec <- (5*h-1)/(1-h)/E0 } if(SR == "Ricker") { Arec <- 1/EPR0 * (5*h)^1.25 Brec <- 1.25 * log(5*h) / E0 } opt2 <- optimize(yield_fn_SCA, interval = c(1e-4, 4), M = M, mat = mat, weight = weight, vul = vul, SR = SR, Arec = Arec, Brec = Brec) opt3 <- yield_fn_SCA(opt2$minimum, M = M, mat = mat, weight = weight, vul = vul, SR = SR, Arec = Arec, Brec = Brec, opt = FALSE) FMSY <- opt2$minimum MSY <- -1 * opt2$objective VBMSY <- opt3["VB"] RMSY <- opt3["R"] BMSY <- opt3["B"] EMSY <- opt3["E"] Fvec <- seq(0, 2.5 * FMSY, length.out = 100) yield <- lapply(Fvec, yield_fn_SCA, M = M, mat = mat, weight = weight, vul = vul, SR = SR, Arec = Arec, Brec = Brec, opt = FALSE) SPR <- vapply(yield, getElement, numeric(1), "EPR") YPR <- vapply(yield, getElement, numeric(1), "YPR") refpt_unfished <- list(h = h, Arec = Arec, Brec = Brec, E0 = E0, R0 = R0, N0 = N0, VB0 = VB0, B0 = B0, EPR0 = EPR0, NPR0 = NPR0) refpt_MSY <- list(FMSY = FMSY, MSY = MSY, VBMSY = VBMSY, RMSY = RMSY, BMSY = BMSY, EMSY = EMSY, per_recruit = data.frame(FM = Fvec, SPR = SPR/SPR[1], YPR = YPR)) return(c(refpt_unfished, refpt_MSY)) }
minConnectivityID <- function(g, deg=NULL) { if (class(g)[1] != "graphNEL") stop("'g' has to be a 'graphNEL' object") stopifnot(.validateGraph(g)) if (is.null(deg)) deg <- graph::degree(g) .weightedMinPathSum(g, weightfunc=function(i, from, to) (1 / sqrt(deg[[from]] * deg[[to]]))) }
Bream_pop_pre<-function(userpath,forcings){ rm(list=ls()) cat("Data preprocessing") timeT=forcings[[1]] Tint=forcings[[2]] timeG=forcings[[3]] Gint=forcings[[4]] Param_matrix=read.csv(paste0(userpath,"/Bream_population/Inputs/Parameters//Parameters.csv"),sep=",") Food=read.csv(paste0(userpath,"/Bream_population/Inputs/Forcings//Food_characterization.csv"),sep=",",header=FALSE) Param=as.matrix(Param_matrix[1:21,3]) Param=suppressWarnings(as.numeric(Param)) Dates=Param_matrix[22:23,3] CS=as.double(as.matrix(Param_matrix[25,3])) Food=as.double(as.matrix(Food[,1])) t0=min(as.numeric(as.Date(timeT[1], "%d/%m/%Y")), as.numeric(as.Date(timeG[1], "%d/%m/%Y")), as.numeric(as.Date(Dates[1], "%d/%m/%Y"))) timestep=1 ti=as.numeric(as.Date(Dates[1], "%d/%m/%Y"))-t0 tf=as.numeric(as.Date(Dates[2], "%d/%m/%Y"))-t0 times<-cbind(ti, tf, timestep,t0) Pcont=Food[1] Lcont=Food[2] Ccont=Food[3] Pop_matrix=read.csv(paste0(userpath,"/Bream_population/Inputs/Parameters//Population.csv"),sep=",") Management=read.csv(paste0(userpath,"/Bream_population/Inputs/Population_management//Management.csv"),sep=",") meanW=as.double(as.matrix(Pop_matrix[1,3])) deltaW=as.double(as.matrix(Pop_matrix[2,3])) IC=deltaW Wlb=as.double(as.matrix(Pop_matrix[3,3])) meanImax=as.double(as.matrix(Pop_matrix[4,3])) deltaImax=as.double(as.matrix(Pop_matrix[5,3])) Nseed=as.double(as.matrix(Pop_matrix[6,3])) mortmyt=as.double(as.matrix(Pop_matrix[7,3])) nruns=as.double(as.matrix(Pop_matrix[8,3])) manag=as.matrix(matrix(0,nrow=length(Management[,1]),ncol=2)) for (i in 1:length(Management[,1])) { manag[i,1]=as.numeric(as.Date(Management[i,1], "%d/%m/%Y"))-t0 if ((Management[i,2])=="h") { manag[i,2]=-as.numeric(Management[i,3]) } else { manag[i,2]=as.numeric(Management[i,3]) } } N<-Pop_fun(Nseed, mortmyt, manag, times) cat(" \n") cat('The model will be executed with the following parameters:\n'); cat(" \n") for (i in 1:21){ cat(paste0(toString(Param_matrix[i,2]), ": ", toString(Param_matrix[i,3]), " " ,toString(Param_matrix[i,4])),"\n") } cat(" \n") cat("Integration is performed between ", toString(Dates[1]), " and ", toString(Dates[2]),"\n") cat(" \n") cat("The food has the following composition: \n") cat(toString(Pcont*100),"% proteins\n") cat(toString(Lcont*100),"% lipids\n") cat(toString(Ccont*100),"% carbohydrates\n") cat(" \n") cat('Commercial size is ', toString(CS)," g") cat(" \n") cat(" \n") cat('The population is simulated by assuming that initial weight and maximum ingestion rate are normally distributed:\n'); cat(" \n") for (i in 1:5){ cat(paste0(toString(Pop_matrix[i,2]), ": ", toString(Pop_matrix[i,3]), " " ,toString(Pop_matrix[i,4])),"\n") } cat(" \n") cat("The population is initially composed by ", toString(Pop_matrix[6,3]), " Individuals\n") cat(" \n") cat("The mortality rate is:", toString(Pop_matrix[7,3]),'1/d\n' ) cat(" \n") cat('The population is managed according with following list (h:harvesting s:seeding):\n'); cat(" \n") for (i in 1:length(Management[,1])){ cat(paste0(toString(Management[i,1])," ", toString(Management[i,2]), " " ,toString(Management[i,3])),"individuals\n") } cat(" \n") cat("The individual model will be executed ", toString(nruns), " times in order to simulate a population\n") cat(" \n") cat(" \n") cat("Forcings are represented in graphs available at the following folder:\n") cat(paste0(userpath,"/Bream_population/Inputs/In_plots\n")) Tintsave=Tint[(ti+1):tf] currentpath=getwd() filepath=paste0(userpath,"/Bream_population/Inputs/Forcings_plots//Water_temperature.jpeg") jpeg(filepath,800,600) days <- seq(as.Date(Dates[1], format = "%d/%m/%Y"), by = "days", length = tf-ti) plot(days, Tintsave, ylab="Water temperature (Celsius degrees)", xlab="",xaxt = "n",type="l",cex.lab=1.4) labDates <- seq(as.Date(Dates[1], format = "%d/%m/%Y"), tail(days, 1), by = "months") axis.Date(side = 1, days, at = labDates, format = "%d %b %y", las = 2) dev.off() Gintsave=Gint[(ti+1):tf] currentpath=getwd() filepath=paste0(userpath,"/Bream_population/Inputs/Forcings_plots//Feeding.jpeg") jpeg(filepath,800,600) days <- seq(as.Date(Dates[1], format = "%d/%m/%Y"), by = "days", length = tf-ti) plot(days, Gintsave, ylab="Feed (g/d)", xlab="", xaxt = "n",type="l",cex.lab=1.4) labDates <- seq(as.Date(Dates[1], format = "%d/%m/%Y"), tail(days, 1), by = "months") axis.Date(side = 1, days, at = labDates, format = "%d %b %y", las = 2) dev.off() Nsave=N[(ti+1):tf] currentpath=getwd() filepath=paste0(userpath,"/Bream_population/Inputs/Forcings_plots//Population.jpeg") jpeg(filepath,800,600) days <- seq(as.Date(Dates[1], format = "%d/%m/%Y"), by = "days", length = tf-ti) plot(days, Nsave, ylab="Individuals", xlab="", xaxt = "n",type="l",cex.lab=1.4) labDates <- seq(as.Date(Dates[1], format = "%d/%m/%Y"), tail(days, 1), by = "months") axis.Date(side = 1, days, at = labDates, format = "%d %b %y", las = 2) dev.off() output=list(Param, Tint, Gint, Food, IC, times, Dates, N,CS) return(output) }
image_line_segment_detector <- function(x, scale = 0.8, sigma_scale = 0.6, quant = 2.0, ang_th = 22.5, log_eps = 0.0, density_th = 0.7, n_bins = 1024, union = FALSE, union_min_length = 5, union_max_distance = 5, union_ang_th=7, union_use_NFA=FALSE, union_log_eps = 0.0) { stopifnot(is.matrix(x)) linesegments <- detect_line_segments(as.numeric(x), X=nrow(x), Y=ncol(x), scale = as.numeric(scale), sigma_scale = as.numeric(sigma_scale), quant = as.numeric(quant), ang_th = as.numeric(ang_th), log_eps = as.numeric(log_eps), need_to_union = as.logical(union), union_use_NFA = as.logical(union_use_NFA), union_ang_th = as.numeric(union_ang_th), union_log_eps = as.numeric(union_log_eps), length_threshold = as.numeric(union_min_length), dist_threshold = as.numeric(union_max_distance)) names(linesegments) <- c("lines", "pixels") colnames(linesegments$lines) <- c("x1", "y1", "x2", "y2", "width", "p", "-log_nfa") linesegments$n <- nrow(linesegments$lines) class(linesegments) <- "lsd" linesegments } print.lsd <- function(x, ...){ cat("Line Segment Detector", sep = "\n") cat(sprintf(" found %s line segments", x$n), sep = "\n") } plot.lsd <- function(x, ...){ requireNamespace("sp") out <- sp::SpatialLines(lapply(seq_len(x$n), FUN=function(i){ l <- rbind( x$lines[i, c("x1", "y1")], x$lines[i, c("x2", "y2")]) sp::Lines(sp::Line(l), ID = i) })) sp::plot(out, ...) invisible(out) }
read.vgc <- function (file) { tmp <- read.delim(auto.gzfile(file)) vars <- colnames(tmp) if (!("N" %in% vars)) stop("required column 'N' missing from .vgc file ", file) if (!("V" %in% vars)) stop("required column 'V' missing from .vgc file ", file) m <- 1:9 idx <- sapply(m, function (x) if (paste("V", x, sep="") %in% vars) TRUE else FALSE) m.max <- sum(idx) if (m.max > 0) { if (any(m[!idx] <= m.max)) stop("spectrum elements must form uninterrupted sequence 'V1', 'V2', ...") } variances <- ("VV" %in% vars) idx.v <- sapply(m, function (x) if (paste("VV", x, sep="") %in% vars) TRUE else FALSE) m.max.v <- sum(idx.v) if (m.max.v > 0) { if (any(m[!idx.v] <= m.max.v)) stop("spectrum variances must form uninterrupted sequence 'VV1', 'VV2', ...") } if (!variances && m.max.v > 0) stop("column 'VV' must also be given if there are variances 'VV1', etc.") if (variances && (m.max.v != m.max)) stop("variances 'VVm' must be given for exactly the same frequency classes as expectations 'Vm'") Vm.list <- if (m.max > 0) tmp[ paste("V", 1:m.max, sep="") ] else NULL if (variances) { VVm.list <- if (m.max > 0) tmp[ paste("VV", 1:m.max, sep="") ] else NULL vgc(N=tmp$N, V=tmp$V, VV=tmp$VV, Vm=Vm.list, VVm=VVm.list) } else { vgc(N=tmp$N, V=tmp$V, Vm=Vm.list) } }
knitr::opts_chunk$set(collapse = TRUE, comment = " library(alphabetr) strcsv <-'"chain","well","cdr3"\n"alpha","1","CAVTGGDKLIF"\n"alpha","1","CALDGDKIIF"\n"alpha","2","CAVTGGDKLIF"\n"beta","1","CASGLARAEQYF"\n"beta","2","CASSEGDKVIF"\n"beta","2","CSEVHTARTQYF"' con <- textConnection(strcsv) csv3 <- read.csv(con) head(csv3) strcsv <-'"well","cdr3"\n"1","CAVTGGDKLIF"\n"1","CALDGDKIIF"\n"2","CAVTGGDKLIF"' con_alpha <- textConnection(strcsv) csv2_alpha <- read.csv(con_alpha) strcsv <-'"well","cdr3"\n"1","CASGLARAEQYF"\n"2","CASSEGDKVIF"\n"2","CSEVHTARTQYF"' con_beta <- textConnection(strcsv) csv2_beta <- read.csv(con_beta) head(csv2_alpha) head(csv2_beta) strcsv <-'"chain","well","cdr3"\n"alpha","1","CAVTGGDKLIF"\n"alpha","1","CALDGDKIIF"\n"alpha","2","CAVTGGDKLIF"\n"beta","1","CASGLARAEQYF"\n"beta","2","CASSEGDKVIF"\n"beta","2","CSEVHTARTQYF"' con <- textConnection(strcsv) dat <- read_alphabetr(data = con) dat dat$alpha_lib[2] dat$beta_lib[3] set.seed(290) clonal <- create_clones(numb_beta = 1000, dual_beta = 0.05, dual_alpha = .3, alpha_sharing = c(0.80, 0.15, 0.05), beta_sharing = c(0.75, 0.20, 0.05)) ordered_clones <- clonal$ordered random_clones <- clonal$TCR dual_alpha <- clonal$dual_alpha dual_beta <- clonal$dual_beta random_clones[5:7, ] random_clones[49:50, ] random_clones[47:48, ] share_alph <- c(.816, .085, .021, .007, .033, .005, .033) share_beta <- c(.859, .076, .037, .019, .009) set.seed(258) TCR_pairings <- create_clones(numb_beta = 1787, dual_beta = 0.06, dual_alpha = 0.3, alpha_sharing = share_alph, beta_sharing = share_beta) TCR_clones <- TCR_pairings$TCR numb_cells <- matrix(c(50, 480), ncol = 2) numb_cells <- matrix(c(100, 200, 48, 48), ncol = 2) number_plates <- 5 err_drop <- c(0.15, .01) err_seq <- c(0.02, .005) err_mode <- c("constant", "constant") number_skewed <- 25 pct_top <- 0.5 dis_behavior <- "linear" numb_cells <- matrix(c(20, 50, 100, 200, 300, 128, 64, 96, 96, 96), ncol = 2) data_tcr <- create_data(TCR = TCR_clones, plates = number_plates, error_drop = err_drop, error_seq = err_seq, error_mode = err_mode, skewed = number_skewed, prop_top = pct_top, dist = dis_behavior, numb_cells = numb_cells) data_alph <- data_tcr$alpha data_beta <- data_tcr$beta pairs <- bagpipe(alpha = data_alph, beta = data_beta, rep = 5) head(pairs) pairs <- pairs[pairs[, "prop_replicates"] > .3, ] head(pairs) freq_init <- freq_estimate(alpha = data_alph, beta = data_beta, pair = pairs, error = 0.15, numb_cells = numb_cells) head(freq_init) common_dual <- dual_top(alpha = data_alph, beta = data_beta, pair = freq_init, error = err, numb_cells = numb_cells) tail_dual <- dual_tail(alpha = data_alph, beta = data_beta, freq_results = freq_init, numb_cells = numb_cells) clones_dual <- rbind(common_dual, tail_dual) head(clones_dual) freq_dual <- freq_estimate(alpha = data_alph, beta = data_beta, pair = clones_dual, error = 0.15, numb_cells = numb_cells) tcrpairs <- combine_freq_results(freq_init, freq_dual) head(tcrpairs) dual_res <- dual_eval(duals = clones_dual, pair = freq_init, TCR = TCR_pairings$TCR, number_skewed = number_skewed, TCR_dual = TCR_pairings$dual_alpha) dual_res$fdr dual_res$adj_depth_top dual_res$adj_depth_tail freq_res <- freq_eval(freq = tcrpairs, number_skewed = number_skewed, TCR = TCR_pairings$TCR, numb_clones = nrow(TCR_pairings$TCR), prop_top = pct_top) freq_res$cv freq_res$correct
test_that("random_resised_crop", { img <- torch::torch_randn(3, 224, 224) o <- transform_random_resized_crop(img, size = c(32, 32)) expect_tensor_shape(o, c(3, 32,32)) im <- magick::image_read("torch.png") o <- transform_random_resized_crop(im, size = c(32, 32)) expect_tensor_shape(transform_to_tensor(o), c(3, 32, 32)) })
G6FFun<-function(df,model,G6Ftext2){ data<-sapply(df,as.character) dP1<-data[-1,which(data[1,]=="P1")];P1<-as.numeric(dP1[which(is.na(as.numeric(dP1))==FALSE)]);df11<-as.data.frame(P1) dF1<-data[-1,which(data[1,]=="F1")];F1<-as.numeric(dF1[which(is.na(as.numeric(dF1))==FALSE)]);df21<-as.data.frame(F1) dP2<-data[-1,which(data[1,]=="P2")];P2<-as.numeric(dP2[which(is.na(as.numeric(dP2))==FALSE)]);df31<-as.data.frame(P2) dB12<-data[-1,which(data[1,]=="B12")];B12<-as.numeric(dB12[which(is.na(as.numeric(dB12))==FALSE)]);df41<-as.data.frame(B12) dB22<-data[-1,which(data[1,]=="B22")];B22<-as.numeric(dB22[which(is.na(as.numeric(dB22))==FALSE)]);df51<-as.data.frame(B22) dF23<-data[-1,which(data[1,]=="F23")];F23<-as.numeric(dF23[which(is.na(as.numeric(dF23))==FALSE)]);df61<-as.data.frame(F23) G6Fcolname<-c("Model","Log_Max_likelihood_value","AIC","mean[P1]","mean[F1]","mean[P2]","Var(P1 & P2 & F1)","B1:2-mean[1]","B1:2-mean[2]","B1:2-mean[3]","B1:2-mean[4]", "B1:2-Var[1]","B1:2-Var[2]","B1:2-Var[3]","B1:2-Var[4]","B1:2-Proportion[1]","B1:2-Proportion[2]","B1:2-Proportion[3]","B1:2-Proportion[4]", "B2:2-mean[1]","B2:2-mean[2]","B2:2-mean[3]","B2:2-mean[4]","B2:2-Var[1]","B2:2-Var[2]","B2:2-Var[3]","B2:2-Var[4]", "B2:2-Proportion[1]","B2:2-Proportion[2]","B2:2-Proportion[3]","B2:2-Proportion[4]", "F2:3-mean[1]","F2:3-mean[2]","F2:3-mean[3]","F2:3-mean[4]","F2:3-mean[5]","F2:3-mean[6]","F2:3-mean[7]","F2:3-mean[8]","F2:3-mean[9]", "F2:3-Var[1]","F2:3-Var[2]","F2:3-Var[3]","F2:3-Var[4]","F2:3-Var[5]","F2:3-Var[6]","F2:3-Var[7]","F2:3-Var[8]","F2:3-Var[9]", "F2:3-Proportion[1]","F2:3-Proportion[2]","F2:3-Proportion[3]","F2:3-Proportion[4]","F2:3-Proportion[5]","F2:3-Proportion[6]","F2:3-Proportion[7]","F2:3-Proportion[8]","F2:3-Proportion[9]", "m1(m)","m2","m3","m4","m5","m6","da","db","ha","hb","i","jab","jba","l","[d]","[h]", "B1:2-Major-Gene Var","B1:2-Heritability(Major-Gene)(%)","B1:2-Polygenes Var","B1:2-Heritability(Polygenes)(%)", "B2:2-Major-Gene Var","B2:2-Heritability(Major-Gene)(%)","B2:2-Polygenes Var","B2:2-Heritability(Polygenes)(%)", "F2:3-Major-Gene Var","F2:3-Heritability(Major-Gene)(%)","F2:3-Polygenes Var","F2:3-Heritability(Polygenes)(%)", "U1 square(P1)","P(U1 square(P1))","U2 square(P1)","P(U2 square(P1))","U3 square(P1)","P(U3 square(P1))","nW square(P1)","P(nW square(P1))","Dn(P1)","P(Dn(P1))", "U1 square(F1)","P(U1 square(F1))","U2 square(F1)","P(U2 square(F1))","U3 square(F1)","P(U3 square(F1))","nW square(F1)","P(nW square(F1))","Dn(F1)","P(Dn(F1))", "U1 square(P2)","P(U1 square(P2))","U2 square(P2)","P(U2 square(P2))","U3 square(P2)","P(U3 square(P2))","nW square(P2)","P(nW square(P2))","Dn(P2)","P(Dn(P2))", "U1 square(B1:2)","P(U1 square(B1:2))","U2 square(B1:2)","P(U2 square(B1:2))","U3 square(B1:2)","P(U3 square(B1:2))","nW square(B1:2)","P(nW square(B1:2))","Dn(B1:2)","P(Dn(B1:2))", "U1 square(B2:2)","P(U1 square(B2:2))","U2 square(B2:2)","P(U2 square(B2:2))","U3 square(B2:2)","P(U3 square(B2:2))","nW square(B2:2)","P(nW square(B2:2))","Dn(B2:2)","P(Dn(B2:2))", "U1 square(F2:3)","P(U1 square(F2:3))","U2 square(F2:3)","P(U2 square(F2:3))","U3 square(F2:3)","P(U3 square(F2:3))","nW square(F2:3)","P(nW square(F2:3))","Dn(F2:3)","P(Dn(F2:3))") G6FModelFun<-list(NA) G6FModelFun[[1]] <- function(K1,logL,df11,df21,df31,df41,df51,df61,G6Ftext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataF1 <- as.matrix(as.numeric(df21[,1])) dataP2 <- as.matrix(as.numeric(df31[,1]));dataB1 <- as.matrix(as.numeric(df41[,1])) dataB2 <- as.matrix(as.numeric(df51[,1]));dataF2 <- as.matrix(as.numeric(df61[,1])) n_samP1<-dim(dataP1)[1];n_samF1<-dim(dataF1)[1];n_samP2<-dim(dataP2)[1] n_samB1<-dim(dataB1)[1];n_samB2<-dim(dataB2)[1];n_samF2<-dim(dataF2)[1] sumx<-as.matrix(c(sum(dataP1),sum(dataF1),sum(dataP2),sum(dataB1),sum(dataB2),sum(dataF2))) s<-as.matrix(c(sum(dataP1^2),sum(dataF1^2),sum(dataP2^2),sum(dataB1^2),sum(dataB2^2),sum(dataF2^2))) ss<-matrix(0,3,1);ss[1]<-s[1]-sumx[1]^2/n_samP1;ss[2]<-s[2]-sumx[2]^2/n_samF1;ss[3]<-s[3]-sumx[3]^2/n_samP2 mean<-as.matrix(c(mean(dataP1),mean(dataF1),mean(dataP2),mean(dataB1),mean(dataB2),mean(dataF2))) sigma0<-sum(ss)/(n_samP1+n_samF1+n_samP2-3) sigmaB1<-var(dataB1);sigma40<-sigmaB1 sigmaB2<-var(dataB2);sigma50<-sigmaB2 sigmaF2<-var(dataF2);sigma60<-sigmaF2 sigmaP1<-sigmaF1<-sigmaP2<-sigma0 m_esp <- 0.0001;n_fam <- as.numeric(G6Ftext2) mi1<-matrix(0.5,2,1);sigma1<-matrix(0,2,1) mi2<-matrix(0.5,2,1);sigma2<-matrix(0,2,1) mi3<-as.matrix(c(0.25,0.5,0.25));sigma3<-matrix(0,3,1) sigma<-sigma0;sigma1[1]<-sigma a1<-sqrt(sigmaB1/n_samB1) if (mean[1]<mean[3]) a1<--a1 mean1<-as.matrix(c(mean[4]+2*a1,mean[4]-2*a1)) sigma2[2]<-sigma a2<-sqrt(sigmaB2/n_samB2) if (mean[1]<mean[3]) a2<--a2 mean2<-as.matrix(c(mean[5]+2*a2,mean[5]-2*a2)) sigma3[1]<-sigma3[3]<-sigma a3<-sqrt(sigmaF2/n_samF2) if (mean[1]<mean[3]) a3<--a3 mean3<-as.matrix(c(mean[6]+2*a3,mean[6],mean[6]-2*a3)) b1<-0.5*(mean[1]-mean[3]) b2<-(-6*mean[1]+10*mean[2]-6*mean[3]+2*mean1[2])/11 sigma1[2]<-sigma+(0.5*b1^2+0.25*b2^2)/n_fam sigma2[1]<-sigma1[2];sigma3[2]<-sigma1[2] L0<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma0))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma0))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma0))))+sum(log(dmixnorm(dataB1,mean1,sqrt(sigma1),mi1)))+ sum(log(dmixnorm(dataB2,mean2,sqrt(sigma2),mi2)))+sum(log(dmixnorm(dataF2,mean3,sqrt(sigma3),mi3))) iteration <- 0; stopa <- 1000 W1 <- matrix(0,2,n_samB1); swx1 <- matrix(0,2,1) W2 <- matrix(0,2,n_samB2); swx2 <- matrix(0,2,1) W3 <- matrix(0,3,n_samF2); swx3 <- matrix(0,3,1) s0<-matrix(0,6,1); n0<-matrix(0,6,1) while(stopa > m_esp&&iteration<=1000){ iteration <- iteration + 1 for(i in 1:2) { W1[i,] <- mi1[i]*dnorm(dataB1,mean1[i],sqrt(sigma1[i]))/dmixnorm(dataB1,mean1,sqrt(sigma1),mi1) } mix_pi1 <- as.matrix(rowSums(W1)/n_samB1) sumwx1 <- W1%*%dataB1 for(i in 1:2) { W2[i,] <- mi2[i]*dnorm(dataB2,mean2[i],sqrt(sigma2[i]))/dmixnorm(dataB2,mean2,sqrt(sigma2),mi2) } mix_pi2 <- as.matrix(rowSums(W2)/n_samB2) sumwx2 <- W2%*%dataB2 for(i in 1:3) { W3[i,] <- mi3[i]*dnorm(dataF2,mean3[i],sqrt(sigma3[i]))/dmixnorm(dataF2,mean3,sqrt(sigma3),mi3) } mix_pi3 <- as.matrix(rowSums(W3)/n_samF2) sumwx3 <- W3%*%dataF2 aaa0<-0 s0[1]<-sumx[1]+sumwx1[1]+sumwx3[1];s0[2]<-sumx[2] s0[3]<-sumx[3]+sumwx2[2]+sumwx3[3];s0[4]<-sumwx1[2]+sumwx2[1]+sumwx3[2] n0[1]<-n_samP1+mix_pi1[1]*n_samB1+mix_pi3[1]*n_samF2;n0[2]<-n_samF1 n0[3]<-n_samP2+mix_pi2[2]*n_samB2+mix_pi3[3]*n_samF2;n0[4]<-mix_pi1[2]*n_samB1+mix_pi2[1]*n_samB2+mix_pi3[2]*n_samF2 n0[c(1:4)][abs(n0[c(1:4)])<0.00000001]<-0.000001 aa3<-s0[1]/n0[1]+s0[3]/n0[3]+2*s0[2]/n0[2]-4*s0[4]/n0[4];aa4<-sigma*(1/n0[1]+1/n0[3]+4/n0[2]) aa1<-1000;n_iter<-0 while (aa1>0.0001) { n_iter<-n_iter+1 aa1<-0.5*(mean[1]-mean[3]) aa2<-(-6*mean[1]+10*mean[2]-6*mean[3]+2*mean1[2])/11 sigma1[2]<-sigma+(0.5*aa1^2+0.25*aa2^2)/n_fam aa2<-aa4+16*sigma1[2]/n0[4] aaa1<-aa3/aa2 mean[1]<-(s0[1]-aaa1*sigma)/n0[1] mean[2]<-(s0[2]-2*aaa1*sigma)/n0[2] mean[3]<-(s0[3]-aaa1*sigma)/n0[3] mean1[2]<-(s0[4]+4*aaa1*sigma1[2])/n0[4] aa1<-abs(aaa1-aaa0) aaa0<-aaa1 if(n_iter>20)break } mean1[1]<-mean3[1]<-mean[1];mean2[1]<-mean3[2]<-mean1[2];mean2[2]<-mean3[3]<-mean[3] ss1<-sum((dataP1-mean[1])^2);ss3<-sum((dataP2-mean[3])^2);ss2<-sum((dataF1-mean[2])^2) for(i in 1:2) {swx1[i] <- W1[i,]%*%(dataB1-mean1[i])^2 };for(i in 1:2) {swx2[i] <- W2[i,]%*%(dataB2-mean2[i])^2 };for(i in 1:3) {swx3[i] <- W3[i,]%*%(dataF2-mean3[i])^2 } s0[5]<-ss1+ss2+ss3+swx1[1]+swx2[2]+swx3[1]+swx3[3] n0[5]<-n_samP1+n_samF1+n_samP2+mix_pi1[1]*n_samB1+mix_pi2[2]*n_samB2+(mix_pi3[1]+mix_pi3[3])*n_samF2 s0[6]<-swx1[2]+swx2[1]+swx3[2];n0[6]<-mix_pi1[2]*n_samB1+mix_pi2[1]*n_samB2+mix_pi3[2]*n_samF2 aaa0<-sigma a<-0.5*(mean[1]-mean[3]) aa2<-(-6*mean[1]+10*mean[2]-6*mean[3]+2*mean1[2])/11 a<-(0.5*a*a+0.25*aa2*aa2)/n_fam aa3<-1000;n_iter<-0 while (aa3>0.0001) { n_iter<-n_iter+1 aa2<-sigma/(sigma+a) sigma<-(s0[5]+aa2*aa2*s0[6])/(n0[5]+aa2*n0[6]) aa3<-abs(sigma-aaa0) aaa0<-sigma if(n_iter>20)break } sigma1[2]<-sigma+a;sigma2[1]<-sigma1[2];sigma3[2]<-sigma1[2] sigma1[1]<-sigma2[2]<-sigma3[1]<-sigma3[3]<-sigma L1<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma))))+sum(log(dmixnorm(dataB1,mean1,sqrt(sigma1),mix_pi1)))+ sum(log(dmixnorm(dataB2,mean2,sqrt(sigma2),mix_pi2)))+sum(log(dmixnorm(dataF2,mean3,sqrt(sigma3),mix_pi3))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc<-L0 AIC<--2*abc+2*4 meanP1<-mean[1];meanF1<-mean[2];meanP2<-mean[3] sigma0<-sigma dataP1<-sort(dataP1) P1w1<-1/(12*n_samP1) P1bmw <- matrix(0,n_samP1,1) P1gg <- (dataP1 - mean[1])/sqrt(as.vector(sigma)) P1bmw[which(P1gg>=0)] <- pnorm(P1gg[P1gg>=0]) P1bmw[which(P1gg<0)] <- 1 - pnorm(abs(P1gg[P1gg<0])) nn <- dim(as.matrix(unique(P1bmw)))[1] if(nn < n_samP1){P1bmw <- P1bmw+runif(n_samP1)/1e4} P1dd<-c((sum(P1bmw)),(sum(P1bmw^2)),sum((P1bmw-0.5)^2)) P1w<-P1w1+sum((P1bmw - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) P1u<- as.matrix(c(12*n_samP1*((P1dd[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((P1dd[2]/n_samP1-1/3)^2),180*n_samP1*((P1dd[3]/n_samP1-1/12)^2))) P1D<-as.numeric(ks.test(P1bmw,"punif")[[1]][1]) P1tt <- as.matrix(c((1 - pchisq(P1u[1],1)),(1 - pchisq(P1u[2],1)),(1 - pchisq(P1u[3],1)),K1(P1w),(1-pkolm(P1D,n_samP1)))) P1tt[which( P1tt>=10e-4)]<-round(P1tt[which(P1tt>=10e-4)],4);P1tt[which(P1tt<10e-4)]<-format(P1tt[which(P1tt<10e-4)],scientific=TRUE,digit=4) dataF1<-sort(dataF1) F1w1<-1/(12*n_samF1) F1bmw <- matrix(0,n_samF1,1) F1gg <- (dataF1 - mean[2])/sqrt(as.vector(sigma)) F1bmw[which(F1gg>=0)] <- pnorm(F1gg[F1gg>=0]) F1bmw[which(F1gg<0)] <- 1 - pnorm(abs(F1gg[F1gg<0])) nn <- dim(as.matrix(unique(F1bmw)))[1] if(nn < n_samF1){F1bmw <- F1bmw+runif(n_samF1)/1e4} F1dd<-c((sum(F1bmw)),(sum(F1bmw^2)),sum((F1bmw-0.5)^2)) F1w<-F1w1+sum((F1bmw - (as.matrix(c(1:n_samF1)) - 0.5)/n_samF1)^2) F1u<- as.matrix(c(12*n_samF1*((F1dd[1]/n_samF1-0.5)^2),((45*n_samF1)/4)*((F1dd[2]/n_samF1-1/3)^2),180*n_samF1*((F1dd[3]/n_samF1-1/12)^2))) F1D<-as.numeric(ks.test(F1bmw,"punif")[[1]][1]) F1tt <- as.matrix(c((1 - pchisq(F1u[1],1)),(1 - pchisq(F1u[2],1)),(1 - pchisq(F1u[3],1)),K1(F1w),(1-pkolm(F1D,n_samF1)))) F1tt[which(F1tt>=10e-4)]<-round(F1tt[which(F1tt>=10e-4)],4);F1tt[which(F1tt<10e-4)]<-format(F1tt[which(F1tt<10e-4)],scientific=TRUE,digit=4) dataP2<-sort(dataP2) P2w1<-1/(12*n_samP2) P2bmw <- matrix(0,n_samP2,1) P2gg <- (dataP2 - mean[3])/sqrt(as.vector(sigma)) P2bmw[which(P2gg>=0)] <- pnorm(P2gg[P2gg>=0]) P2bmw[which(P2gg<0)] <- 1 - pnorm(abs(P2gg[P2gg<0])) nn <- dim(as.matrix(unique(P2bmw)))[1] if(nn < n_samP2){P2bmw <- P2bmw+runif(n_samP2)/1e4} P2dd<-c((sum(P2bmw)),(sum(P2bmw^2)),sum((P2bmw-0.5)^2)) P2w<-P2w1+sum((P2bmw - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) P2u<- as.matrix(c(12*n_samP2*((P2dd[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((P2dd[2]/n_samP2-1/3)^2),180*n_samP2*((P2dd[3]/n_samP2-1/12)^2))) P2D<-as.numeric(ks.test(P2bmw,"punif")[[1]][1]) P2tt <- as.matrix(c((1 - pchisq(P2u[1],1)),(1 - pchisq(P2u[2],1)),(1 - pchisq(P2u[3],1)),K1(P2w),(1-pkolm(P2D,n_samP2)))) P2tt[which(P2tt>=10e-4)]<-round(P2tt[which(P2tt>=10e-4)],4);P2tt[which(P2tt<10e-4)]<-format(P2tt[which(P2tt<10e-4)],scientific=TRUE,digit=4) dataB1 <- sort(dataB1); B1w1<-1/(12*n_samB1) B1bmw <- matrix(0,n_samB1,1); B1bmwsl <- matrix(0,n_samB1,2) for(i in 1:2){ B1gg <- (dataB1 - mean1[i])/sqrt(sigma1[i]) B1bmw[which(B1gg>=0)] <- pnorm(B1gg[B1gg>=0]) B1bmw[which(B1gg<0)] <- 1 - pnorm(abs(B1gg[B1gg<0])) B1bmwsl[,i] <- B1bmw*mix_pi1[i] } B1P2 <- rowSums(B1bmwsl) nn <- dim(as.matrix(unique(B1P2)))[1] if(nn < n_samB1){B1P2 <- B1P2+runif(n_samB1)/1e4} B1dd <- as.matrix(c(sum(B1P2),sum(B1P2^2),sum((B1P2-0.5)^2))) B1WW2 <- 1/(12*n_samB1) + sum((B1P2 - (as.matrix(c(1:n_samB1)) - 0.5)/n_samB1)^2) B1u <- as.matrix(c(12*n_samB1*((B1dd[1]/n_samB1-0.5)^2),((45*n_samB1)/4)*((B1dd[2]/n_samB1-1/3)^2),180*n_samB1*((B1dd[3]/n_samB1-1/12)^2))) B1D <- as.numeric(ks.test(B1P2,"punif")[[1]][1]) B1tt <- as.matrix(c((1 - pchisq(B1u[1],1)),(1 - pchisq(B1u[2],1)),(1 - pchisq(B1u[3],1)),K1(B1WW2),(1-pkolm(B1D,n_samB1)))) B1tt[which( B1tt>=10e-4)]<-round(B1tt[which(B1tt>=10e-4)],4);B1tt[which(B1tt<10e-4)]<-format(B1tt[which(B1tt<10e-4)],scientific=TRUE,digit=4) dataB2 <- sort(dataB2); B2w1<-1/(12*n_samB2) B2bmw <- matrix(0,n_samB2,1); B2bmwsl <- matrix(0,n_samB2,2) for(i in 1:2){ B2gg <- (dataB2 - mean2[i])/sqrt(sigma2[i]) B2bmw[which(B2gg>=0)] <- pnorm(B2gg[B2gg>=0]) B2bmw[which(B2gg<0)] <- 1 - pnorm(abs(B2gg[B2gg<0])) B2bmwsl[,i] <- B2bmw*mix_pi2[i] } B2P2 <- rowSums(B2bmwsl) nn <- dim(as.matrix(unique(B2P2)))[1] if(nn < n_samB2){B2P2 <- B2P2+runif(n_samB2)/1e4} B2dd <- as.matrix(c(sum(B2P2),sum(B2P2^2),sum((B2P2-0.5)^2))) B2WW2 <- 1/(12*n_samB2) + sum((B2P2 - (as.matrix(c(1:n_samB2)) - 0.5)/n_samB2)^2) B2u <- as.matrix(c(12*n_samB2*((B2dd[1]/n_samB2-0.5)^2),((45*n_samB2)/4)*((B2dd[2]/n_samB2-1/3)^2),180*n_samB2*((B2dd[3]/n_samB2-1/12)^2))) B2D <- as.numeric(ks.test(B2P2,"punif")[[1]][1]) B2tt <- as.matrix(c((1 - pchisq(B2u[1],1)),(1 - pchisq(B2u[2],1)),(1 - pchisq(B2u[3],1)),K1(B2WW2),(1-pkolm(B2D,n_samB2)))) B2tt[which( B2tt>=10e-4)]<-round(B2tt[which(B2tt>=10e-4)],4);B2tt[which(B2tt<10e-4)]<-format(B2tt[which(B2tt<10e-4)],scientific=TRUE,digit=4) dataF2 <- sort(dataF2); F2w1<-1/(12*n_samF2) F2bmw <- matrix(0,n_samF2,1); F2bmwsl <- matrix(0,n_samF2,3) for(i in 1:3){ F2gg <- (dataF2 - mean3[i])/sqrt(sigma3[i]) F2bmw[which(F2gg>=0)] <- pnorm(F2gg[F2gg>=0]) F2bmw[which(F2gg<0)] <- 1 - pnorm(abs(F2gg[F2gg<0])) F2bmwsl[,i] <- F2bmw*mix_pi3[i] } F2P2 <- rowSums(F2bmwsl) nn <- dim(as.matrix(unique(F2P2)))[1] if(nn < n_samF2){F2P2 <- F2P2+runif(n_samF2)/1e4} F2dd <- as.matrix(c(sum(F2P2),sum(F2P2^2),sum((F2P2-0.5)^2))) F2WW2 <- 1/(12*n_samF2) + sum((F2P2 - (as.matrix(c(1:n_samF2)) - 0.5)/n_samF2)^2) F2u <- as.matrix(c(12*n_samF2*((F2dd[1]/n_samF2-0.5)^2),((45*n_samF2)/4)*((F2dd[2]/n_samF2-1/3)^2),180*n_samF2*((F2dd[3]/n_samF2-1/12)^2))) F2D <- as.numeric(ks.test(F2P2,"punif")[[1]][1]) F2tt <- as.matrix(c((1 - pchisq(F2u[1],1)),(1 - pchisq(F2u[2],1)),(1 - pchisq(F2u[3],1)),K1(F2WW2),(1-pkolm(F2D,n_samF2)))) F2tt[which( F2tt>=10e-4)]<-round(F2tt[which(F2tt>=10e-4)],4);F2tt[which(F2tt<10e-4)]<-format(F2tt[which(F2tt<10e-4)],scientific=TRUE,digit=4) aa<-matrix(c(1,1,0,1,0,1,1,-1,0,1,0,0.5),4,3,byrow=T) mm<-as.matrix(c(mean[1],mean[2],mean[3],mean1[2])) B<-solve(crossprod(aa,aa))%*%crossprod(aa,mm) jj1<-sigmaB1-sigma1[1] if (jj1<0 ) {jj1<-0} ll1<-jj1/sigmaB1 jj2<-sigmaB2-sigma2[2] if (jj2<0) {jj2<-0} ll2<-jj2/sigmaB2 jj3<-sigmaF2-sigma3[1] if (jj3<0) {jj3<-0} ll3<-jj3/sigmaF2 output <- data.frame("1MG-AD",round(abc,4),round(AIC,4),round(meanP1,4),round(meanF1,4),round(meanP2,4), round(sigma0,4),round(t(mean1),4)," "," ",round(t(sigma1),4)," "," ", round(t(mix_pi1),4)," "," ",round(t(mean2),4)," "," ",round(t(sigma2),4)," "," ",round(t(mix_pi2),4)," "," ", round(t(mean3),4)," "," "," "," "," "," ",round(t(sigma3),4)," "," "," "," "," "," ",round(t(mix_pi3),4)," "," "," "," "," "," ", round(B[1],4)," "," "," "," "," ",round(B[2],4)," ",round(B[3],4)," "," "," "," "," "," "," ", round(jj1,4),round(ll1*100,4)," "," ",round(jj2,4),round(ll2*100,4)," "," ",round(jj3,4),round(ll3*100,4)," "," ", round(P1u[1],4),P1tt[1],round(P1u[2],4),P1tt[2],round(P1u[3],4),P1tt[3],round(P1w,4),P1tt[4],round(P1D,4),P1tt[5], round(F1u[1],4),F1tt[1],round(F1u[2],4),F1tt[2],round(F1u[3],4),F1tt[3],round(F1w,4),F1tt[4],round(F1D,4),F1tt[5], round(P2u[1],4),P2tt[1],round(P2u[2],4),P2tt[2],round(P2u[3],4),P2tt[3],round(P2w,4),P2tt[4],round(P2D,4),P2tt[5], round(B1u[1],4),B1tt[1],round(B1u[2],4),B1tt[2],round(B1u[3],4),B1tt[3],round(B1WW2,4),B1tt[4],round(B1D,4),B1tt[5], round(B2u[1],4),B2tt[1],round(B2u[2],4),B2tt[2],round(B2u[3],4),B2tt[3],round(B2WW2,4),B2tt[4],round(B2D,4),B2tt[5], round(F2u[1],4),F2tt[1],round(F2u[2],4),F2tt[2],round(F2u[3],4),F2tt[3],round(F2WW2,4),F2tt[4],round(F2D,4),F2tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi1,mi2,mi3) return(OUTPUT) } G6FModelFun[[2]] <- function(K1,logL,df11,df21,df31,df41,df51,df61,G6Ftext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataF1 <- as.matrix(as.numeric(df21[,1])) dataP2 <- as.matrix(as.numeric(df31[,1]));dataB1 <- as.matrix(as.numeric(df41[,1])) dataB2 <- as.matrix(as.numeric(df51[,1]));dataF2 <- as.matrix(as.numeric(df61[,1])) n_samP1<-dim(dataP1)[1];n_samF1<-dim(dataF1)[1];n_samP2<-dim(dataP2)[1] n_samB1<-dim(dataB1)[1];n_samB2<-dim(dataB2)[1];n_samF2<-dim(dataF2)[1] sumx<-as.matrix(c(sum(dataP1),sum(dataF1),sum(dataP2),sum(dataB1),sum(dataB2),sum(dataF2))) s<-as.matrix(c(sum(dataP1^2),sum(dataF1^2),sum(dataP2^2),sum(dataB1^2),sum(dataB2^2),sum(dataF2^2))) ss<-matrix(0,3,1);ss[1]<-s[1]-sumx[1]^2/n_samP1;ss[2]<-s[2]-sumx[2]^2/n_samF1;ss[3]<-s[3]-sumx[3]^2/n_samP2 mean<-as.matrix(c(mean(dataP1),mean(dataF1),mean(dataP2),mean(dataB1),mean(dataB2),mean(dataF2))) sigma0<-sum(ss)/(n_samP1+n_samF1+n_samP2-3) sigmaB1<-var(dataB1);sigma40<-sigmaB1 sigmaB2<-var(dataB2);sigma50<-sigmaB2 sigmaF2<-var(dataF2);sigma60<-sigmaF2 sigmaP1<-sigmaF1<-sigmaP2<-sigma0 m_esp <- 0.0001;n_fam <- as.numeric(G6Ftext2) mi1<-matrix(0.5,2,1);sigma1<-matrix(0,2,1) mi2<-matrix(0.5,2,1);sigma2<-matrix(0,2,1) mi3<-as.matrix(c(0.25,0.5,0.25));sigma3<-matrix(0,3,1) sigma<-sigma0;sigma1[1]<-sigma a1<-sqrt(sigmaB1/n_samB1) if (mean[1]<mean[3]) a1<--a1 mean1<-as.matrix(c(mean[4]+2*a1,mean[4]-2*a1)) sigma2[2]<-sigma a2<-sqrt(sigmaB2/n_samB2) if (mean[1]<mean[3]) a2<--a2 mean2<-as.matrix(c(mean[5]+2*a2,mean[5]-2*a2)) sigma3[1]<-sigma;sigma3[3]<-sigma a3<-sqrt(sigmaF2/n_samF2) if (mean[1]<mean[3]) a3<--a3 mean3<-as.matrix(c(mean[6]+2*a3,mean[6],mean[6]-2*a3)) b1<-0.5*(mean[1]-mean[3]) sigma1[2]<-sigma+(0.5*b1^2)/n_fam;sigma2[1]<-sigma1[2];sigma3[2]<-sigma1[2] L0<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma0))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma0))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma0))))+sum(log(dmixnorm(dataB1,mean1,sqrt(sigma1),mi1)))+ sum(log(dmixnorm(dataB2,mean2,sqrt(sigma2),mi2)))+sum(log(dmixnorm(dataF2,mean3,sqrt(sigma3),mi3))) iteration <- 0; stopa <- 1000 W1 <- matrix(0,2,n_samB1); swx1 <- matrix(0,2,1) W2 <- matrix(0,2,n_samB2); swx2 <- matrix(0,2,1) W3 <- matrix(0,3,n_samF2); swx3 <- matrix(0,3,1) n0<-matrix(0,6,1);s0<-matrix(0,6,1) while(stopa > m_esp&&iteration<=1000){ iteration <- iteration + 1 for(i in 1:2) { W1[i,] <- mi1[i]*dnorm(dataB1,mean1[i],sqrt(sigma1[i]))/dmixnorm(dataB1,mean1,sqrt(sigma1),mi1) } mix_pi1 <- as.matrix(rowSums(W1)/n_samB1) sumwx1 <- W1%*%dataB1 for(i in 1:2) { W2[i,] <- mi2[i]*dnorm(dataB2,mean2[i],sqrt(sigma2[i]))/dmixnorm(dataB2,mean2,sqrt(sigma2),mi2) } mix_pi2 <- as.matrix(rowSums(W2)/n_samB2) sumwx2 <- W2%*%dataB2 for(i in 1:3) { W3[i,] <- mi3[i]*dnorm(dataF2,mean3[i],sqrt(sigma3[i]))/dmixnorm(dataF2,mean3,sqrt(sigma3),mi3) } mix_pi3 <- as.matrix(rowSums(W3)/n_samF2) sumwx3 <- W3%*%dataF2 aaa0<-0 s0[1]<-sumx[1]+sumwx1[1]+sumwx3[1];s0[2]<-sumwx1[2]+sumwx2[1]+sumwx3[2] s0[3]<-sumx[3]+sumwx2[2]+sumwx3[3];n0[1]<-n_samP1+mix_pi1[1]*n_samB1+mix_pi3[1]*n_samF2 n0[2]<-mix_pi1[2]*n_samB1+mix_pi2[1]*n_samB2+mix_pi3[2]*n_samF2;n0[3]<-n_samP2+mix_pi2[2]*n_samB2+mix_pi3[3]*n_samF2 n0[c(1:3)][abs(n0[c(1:3)])<0.00000001]<-0.000001 aa2<-1000;n_iter<-0 while (aa2>0.0001) { n_iter<-n_iter+1 aa1<-0.5*(mean[1]-mean[3]) sigma1[2]<-sigma+0.5*aa1^2/n_fam s0[2]<-sumx[2]+s0[2]*sigma/sigma1[2] n0[2]<-n_samF1+n0[2]*sigma/sigma1[2] aa3<-s0[1]/n0[1]-2*s0[2]/n0[2]+s0[3]/n0[3] aa4<-sigma*(1/n0[1]+4/n0[2]+1/n0[3]) aaa1<-aa3/aa4 mean[1]<-(s0[1]-aaa1*sigma)/n0[1] mean[2]<-(s0[2]+2*aaa1*sigma)/n0[2] mean[3]<-(s0[3]-aaa1*sigma)/n0[3] aa2<-abs(aaa1-aaa0) aaa0<-aaa1 if(n_iter>20)break } mean1[1]<-mean3[1]<-mean[1];mean1[2]<-mean2[1]<-mean3[2]<-mean[2];mean2[2]<-mean3[3]<-mean[3] ss1<-sum((dataP1-mean[1])^2);ss3<-sum((dataP2-mean[3])^2);ss2<-sum((dataF1-mean[2])^2) for(i in 1:2) {swx1[i] <- W1[i,]%*%(dataB1-mean1[i])^2 };for(i in 1:2) {swx2[i] <- W2[i,]%*%(dataB2-mean2[i])^2 };for(i in 1:3) {swx3[i] <- W3[i,]%*%(dataF2-mean3[i])^2 } s0[5]<-ss1+ss2+ss3+swx1[1]+swx2[2]+swx3[1]+swx3[3] n0[5]<-n_samP1+n_samF1+n_samP2+mix_pi1[1]*n_samB1+mix_pi2[2]*n_samB2+(mix_pi3[1]+mix_pi3[3])*n_samF2 s0[6]<-swx1[2]+swx2[1]+swx3[2] n0[6]<-mix_pi1[2]*n_samB1+mix_pi2[1]*n_samB2+mix_pi3[2]*n_samF2 aaa0<-sigma aa1<-0.5*(mean[1]-mean[3]) aa1<-0.5*aa1*aa1/n_fam aa3<-1000;n_iter<-0 while (aa3>0.0001) { n_iter<-n_iter+1 aa2<-sigma/(sigma+aa1) sigma<-(s0[5]+aa2^2*s0[6])/(n0[5]+aa2*n0[6]) aa3<-abs(sigma-aaa0) aaa0<-sigma if(n_iter>20)break } sigma1[2]<-sigma+aa1 sigma2[1]<-sigma3[2]<-sigma1[2] sigma1[1]<-sigma2[2]<-sigma3[1]<-sigma3[3]<-sigma L1<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma))))+sum(log(dmixnorm(dataB1,mean1,sqrt(sigma1),mix_pi1)))+ sum(log(dmixnorm(dataB2,mean2,sqrt(sigma2),mix_pi2)))+sum(log(dmixnorm(dataF2,mean3,sqrt(sigma3),mix_pi3))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc<-L0 AIC<--2*abc+2*3 meanP1<-mean[1];meanF1<-mean[2];meanP2<-mean[3];sigma0<-sigma dataP1<-sort(dataP1) P1w1<-1/(12*n_samP1) P1bmw <- matrix(0,n_samP1,1) P1gg <- (dataP1 - mean[1])/sqrt(as.vector(sigma)) P1bmw[which(P1gg>=0)] <- pnorm(P1gg[P1gg>=0]) P1bmw[which(P1gg<0)] <- 1 - pnorm(abs(P1gg[P1gg<0])) nn <- dim(as.matrix(unique(P1bmw)))[1] if(nn < n_samP1){P1bmw <- P1bmw+runif(n_samP1)/1e4} P1dd<-c((sum(P1bmw)),(sum(P1bmw^2)),sum((P1bmw-0.5)^2)) P1w<-P1w1+sum((P1bmw - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) P1u<- as.matrix(c(12*n_samP1*((P1dd[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((P1dd[2]/n_samP1-1/3)^2),180*n_samP1*((P1dd[3]/n_samP1-1/12)^2))) P1D<-as.numeric(ks.test(P1bmw,"punif")[[1]][1]) P1tt <- as.matrix(c((1 - pchisq(P1u[1],1)),(1 - pchisq(P1u[2],1)),(1 - pchisq(P1u[3],1)),K1(P1w),(1-pkolm(P1D,n_samP1)))) P1tt[which( P1tt>=10e-4)]<-round(P1tt[which(P1tt>=10e-4)],4);P1tt[which(P1tt<10e-4)]<-format(P1tt[which(P1tt<10e-4)],scientific=TRUE,digit=4) dataF1<-sort(dataF1) F1w1<-1/(12*n_samF1) F1bmw <- matrix(0,n_samF1,1) F1gg <- (dataF1 - mean[2])/sqrt(as.vector(sigma)) F1bmw[which(F1gg>=0)] <- pnorm(F1gg[F1gg>=0]) F1bmw[which(F1gg<0)] <- 1 - pnorm(abs(F1gg[F1gg<0])) nn <- dim(as.matrix(unique(F1bmw)))[1] if(nn < n_samF1){F1bmw <- F1bmw+runif(n_samF1)/1e4} F1dd<-c((sum(F1bmw)),(sum(F1bmw^2)),sum((F1bmw-0.5)^2)) F1w<-F1w1+sum((F1bmw - (as.matrix(c(1:n_samF1)) - 0.5)/n_samF1)^2) F1u<- as.matrix(c(12*n_samF1*((F1dd[1]/n_samF1-0.5)^2),((45*n_samF1)/4)*((F1dd[2]/n_samF1-1/3)^2),180*n_samF1*((F1dd[3]/n_samF1-1/12)^2))) F1D<-as.numeric(ks.test(F1bmw,"punif")[[1]][1]) F1tt <- as.matrix(c((1 - pchisq(F1u[1],1)),(1 - pchisq(F1u[2],1)),(1 - pchisq(F1u[3],1)),K1(F1w),(1-pkolm(F1D,n_samF1)))) F1tt[which(F1tt>=10e-4)]<-round(F1tt[which(F1tt>=10e-4)],4);F1tt[which(F1tt<10e-4)]<-format(F1tt[which(F1tt<10e-4)],scientific=TRUE,digit=4) dataP2<-sort(dataP2) P2w1<-1/(12*n_samP2) P2bmw <- matrix(0,n_samP2,1) P2gg <- (dataP2 - mean[3])/sqrt(as.vector(sigma)) P2bmw[which(P2gg>=0)] <- pnorm(P2gg[P2gg>=0]) P2bmw[which(P2gg<0)] <- 1 - pnorm(abs(P2gg[P2gg<0])) nn <- dim(as.matrix(unique(P2bmw)))[1] if(nn < n_samP2){P2bmw <- P2bmw+runif(n_samP2)/1e4} P2dd<-c((sum(P2bmw)),(sum(P2bmw^2)),sum((P2bmw-0.5)^2)) P2w<-P2w1+sum((P2bmw - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) P2u<- as.matrix(c(12*n_samP2*((P2dd[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((P2dd[2]/n_samP2-1/3)^2),180*n_samP2*((P2dd[3]/n_samP2-1/12)^2))) P2D<-as.numeric(ks.test(P2bmw,"punif")[[1]][1]) P2tt <- as.matrix(c((1 - pchisq(P2u[1],1)),(1 - pchisq(P2u[2],1)),(1 - pchisq(P2u[3],1)),K1(P2w),(1-pkolm(P2D,n_samP2)))) P2tt[which(P2tt>=10e-4)]<-round(P2tt[which(P2tt>=10e-4)],4);P2tt[which(P2tt<10e-4)]<-format(P2tt[which(P2tt<10e-4)],scientific=TRUE,digit=4) dataB1 <- sort(dataB1); B1w1<-1/(12*n_samB1) B1bmw <- matrix(0,n_samB1,1); B1bmwsl <- matrix(0,n_samB1,2) for(i in 1:2){ B1gg <- (dataB1 - mean1[i])/sqrt(sigma1[i]) B1bmw[which(B1gg>=0)] <- pnorm(B1gg[B1gg>=0]) B1bmw[which(B1gg<0)] <- 1 - pnorm(abs(B1gg[B1gg<0])) B1bmwsl[,i] <- B1bmw*mix_pi1[i] } B1P2 <- rowSums(B1bmwsl) nn <- dim(as.matrix(unique(B1P2)))[1] if(nn < n_samB1){B1P2 <- B1P2+runif(n_samB1)/1e4} B1dd <- as.matrix(c(sum(B1P2),sum(B1P2^2),sum((B1P2-0.5)^2))) B1WW2 <- 1/(12*n_samB1) + sum((B1P2 - (as.matrix(c(1:n_samB1)) - 0.5)/n_samB1)^2) B1u <- as.matrix(c(12*n_samB1*((B1dd[1]/n_samB1-0.5)^2),((45*n_samB1)/4)*((B1dd[2]/n_samB1-1/3)^2),180*n_samB1*((B1dd[3]/n_samB1-1/12)^2))) B1D <- as.numeric(ks.test(B1P2,"punif")[[1]][1]) B1tt <- as.matrix(c((1 - pchisq(B1u[1],1)),(1 - pchisq(B1u[2],1)),(1 - pchisq(B1u[3],1)),K1(B1WW2),(1-pkolm(B1D,n_samB1)))) B1tt[which( B1tt>=10e-4)]<-round(B1tt[which(B1tt>=10e-4)],4);B1tt[which(B1tt<10e-4)]<-format(B1tt[which(B1tt<10e-4)],scientific=TRUE,digit=4) dataB2 <- sort(dataB2); B2w1<-1/(12*n_samB2) B2bmw <- matrix(0,n_samB2,1); B2bmwsl <- matrix(0,n_samB2,2) for(i in 1:2){ B2gg <- (dataB2 - mean2[i])/sqrt(sigma2[i]) B2bmw[which(B2gg>=0)] <- pnorm(B2gg[B2gg>=0]) B2bmw[which(B2gg<0)] <- 1 - pnorm(abs(B2gg[B2gg<0])) B2bmwsl[,i] <- B2bmw*mix_pi2[i] } B2P2 <- rowSums(B2bmwsl) nn <- dim(as.matrix(unique(B2P2)))[1] if(nn < n_samB2){B2P2 <- B2P2+runif(n_samB2)/1e4} B2dd <- as.matrix(c(sum(B2P2),sum(B2P2^2),sum((B2P2-0.5)^2))) B2WW2 <- 1/(12*n_samB2) + sum((B2P2 - (as.matrix(c(1:n_samB2)) - 0.5)/n_samB2)^2) B2u <- as.matrix(c(12*n_samB2*((B2dd[1]/n_samB2-0.5)^2),((45*n_samB2)/4)*((B2dd[2]/n_samB2-1/3)^2),180*n_samB2*((B2dd[3]/n_samB2-1/12)^2))) B2D <- as.numeric(ks.test(B2P2,"punif")[[1]][1]) B2tt <- as.matrix(c((1 - pchisq(B2u[1],1)),(1 - pchisq(B2u[2],1)),(1 - pchisq(B2u[3],1)),K1(B2WW2),(1-pkolm(B2D,n_samB2)))) B2tt[which( B2tt>=10e-4)]<-round(B2tt[which(B2tt>=10e-4)],4);B2tt[which(B2tt<10e-4)]<-format(B2tt[which(B2tt<10e-4)],scientific=TRUE,digit=4) dataF2 <- sort(dataF2); F2w1<-1/(12*n_samF2) F2bmw <- matrix(0,n_samF2,1); F2bmwsl <- matrix(0,n_samF2,3) for(i in 1:3){ F2gg <- (dataF2 - mean3[i])/sqrt(sigma3[i]) F2bmw[which(F2gg>=0)] <- pnorm(F2gg[F2gg>=0]) F2bmw[which(F2gg<0)] <- 1 - pnorm(abs(F2gg[F2gg<0])) F2bmwsl[,i] <- F2bmw*mix_pi3[i] } F2P2 <- rowSums(F2bmwsl) nn <- dim(as.matrix(unique(F2P2)))[1] if(nn < n_samF2){F2P2 <- F2P2+runif(n_samF2)/1e4} F2dd <- as.matrix(c(sum(F2P2),sum(F2P2^2),sum((F2P2-0.5)^2))) F2WW2 <- 1/(12*n_samF2) + sum((F2P2 - (as.matrix(c(1:n_samF2)) - 0.5)/n_samF2)^2) F2u <- as.matrix(c(12*n_samF2*((F2dd[1]/n_samF2-0.5)^2),((45*n_samF2)/4)*((F2dd[2]/n_samF2-1/3)^2),180*n_samF2*((F2dd[3]/n_samF2-1/12)^2))) F2D <- as.numeric(ks.test(F2P2,"punif")[[1]][1]) F2tt <- as.matrix(c((1 - pchisq(F2u[1],1)),(1 - pchisq(F2u[2],1)),(1 - pchisq(F2u[3],1)),K1(F2WW2),(1-pkolm(F2D,n_samF2)))) F2tt[which( F2tt>=10e-4)]<-round(F2tt[which(F2tt>=10e-4)],4);F2tt[which(F2tt<10e-4)]<-format(F2tt[which(F2tt<10e-4)],scientific=TRUE,digit=4) aa<-matrix(c(1,1,1,0,1,-1),3,2,byrow=T) mm<-mean[c(1:3)] B<-solve(crossprod(aa,aa))%*%crossprod(aa,mm) jj1<-sigmaB1-sigma1[1] if (jj1<0 ) {jj1<-0} ll1<-jj1/sigmaB1 jj2<-sigmaB2-sigma2[2] if (jj2<0) {jj2<-0} ll2<-jj2/sigmaB2 jj3<-sigmaF2-sigma3[1] if (jj3<0) {jj3<-0} ll3<-jj3/sigmaF2 output <- data.frame("1MG-A",round(abc,4),round(AIC,4),round(meanP1,4),round(meanF1,4),round(meanP2,4), round(sigma0,4),round(t(mean1),4)," "," ",round(t(sigma1),4)," "," ", round(t(mix_pi1),4)," "," ",round(t(mean2),4)," "," ",round(t(sigma2),4)," "," ",round(t(mix_pi2),4)," "," ", round(t(mean3),4)," "," "," "," "," "," ",round(t(sigma3),4)," "," "," "," "," "," ",round(t(mix_pi3),4)," "," "," "," "," "," ", round(B[1],4)," "," "," "," "," ",round(B[2],4)," "," "," "," "," "," "," "," "," ", round(jj1,4),round(ll1*100,4)," "," ",round(jj2,4),round(ll2*100,4)," "," ",round(jj3,4),round(ll3*100,4)," "," ", round(P1u[1],4),P1tt[1],round(P1u[2],4),P1tt[2],round(P1u[3],4),P1tt[3],round(P1w,4),P1tt[4],round(P1D,4),P1tt[5], round(F1u[1],4),F1tt[1],round(F1u[2],4),F1tt[2],round(F1u[3],4),F1tt[3],round(F1w,4),F1tt[4],round(F1D,4),F1tt[5], round(P2u[1],4),P2tt[1],round(P2u[2],4),P2tt[2],round(P2u[3],4),P2tt[3],round(P2w,4),P2tt[4],round(P2D,4),P2tt[5], round(B1u[1],4),B1tt[1],round(B1u[2],4),B1tt[2],round(B1u[3],4),B1tt[3],round(B1WW2,4),B1tt[4],round(B1D,4),B1tt[5], round(B2u[1],4),B2tt[1],round(B2u[2],4),B2tt[2],round(B2u[3],4),B2tt[3],round(B2WW2,4),B2tt[4],round(B2D,4),B2tt[5], round(F2u[1],4),F2tt[1],round(F2u[2],4),F2tt[2],round(F2u[3],4),F2tt[3],round(F2WW2,4),F2tt[4],round(F2D,4),F2tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi1,mi2,mi3) return(OUTPUT) } G6FModelFun[[3]] <- function(K1,logL,df11,df21,df31,df41,df51,df61,G6Ftext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataF1 <- as.matrix(as.numeric(df21[,1])) dataP2 <- as.matrix(as.numeric(df31[,1]));dataB1 <- as.matrix(as.numeric(df41[,1])) dataB2 <- as.matrix(as.numeric(df51[,1]));dataF2 <- as.matrix(as.numeric(df61[,1])) n_samP1<-dim(dataP1)[1];n_samF1<-dim(dataF1)[1];n_samP2<-dim(dataP2)[1] n_samB1<-dim(dataB1)[1];n_samB2<-dim(dataB2)[1];n_samF2<-dim(dataF2)[1] sumx<-as.matrix(c(sum(dataP1),sum(dataF1),sum(dataP2),sum(dataB1),sum(dataB2),sum(dataF2))) s<-as.matrix(c(sum(dataP1^2),sum(dataF1^2),sum(dataP2^2),sum(dataB1^2),sum(dataB2^2),sum(dataF2^2))) ss<-matrix(0,3,1);ss[1]<-s[1]-sumx[1]^2/n_samP1;ss[2]<-s[2]-sumx[2]^2/n_samF1;ss[3]<-s[3]-sumx[3]^2/n_samP2 mean<-as.matrix(c(mean(dataP1),mean(dataF1),mean(dataP2),mean(dataB1),mean(dataB2),mean(dataF2))) sigma0<-sum(ss)/(n_samP1+n_samF1+n_samP2-3) sigmaB1<-var(dataB1);sigma40<-sigmaB1 sigmaB2<-var(dataB2);sigma50<-sigmaB2 sigmaF2<-var(dataF2);sigma60<-sigmaF2 sigmaP1<-sigmaF1<-sigmaP2<-sigma0 m_esp <- 0.0001;n_fam <- as.numeric(G6Ftext2) mi1<-matrix(0.5,2,1);sigma1<-matrix(0,2,1) mi2<-matrix(0.5,2,1);sigma2<-matrix(0,2,1) mi3<-as.matrix(c(0.25,0.5,0.25));sigma3<-matrix(0,3,1) sigma<-sigma0;sigma1[1]<-sigma a1<-sqrt(sigmaB1/n_samB1) if (mean[1]<mean[3]) a1<--a1 mean1<-as.matrix(c(mean[4]+2*a1,mean[4]-2*a1)) sigma2[2]<-sigma a2<-sqrt(sigmaB2/n_samB2) if (mean[1]<mean[3]) a2<--a2 mean2<-as.matrix(c(mean[5]+2*a2,mean[5]-2*a2)) sigma3[1]<-sigma3[3]<-sigma a3<-sqrt(sigmaF2/n_samF2) if (mean[1]<mean[3]) a3<--a3 mean3<-as.matrix(c(mean[6]+2*a3,mean[6],mean[6]-2*a3)) a1<-(5*mean[1]-7*mean[3]+2*mean1[2])/13 sigma1[2]<-sigma+(0.75*a1^2)/n_fam sigma2[1]<-sigma3[2]<-sigma1[2] L0<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma0))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma0))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma0))))+sum(log(dmixnorm(dataB1,mean1,sqrt(sigma1),mi1)))+ sum(log(dmixnorm(dataB2,mean2,sqrt(sigma2),mi2)))+sum(log(dmixnorm(dataF2,mean3,sqrt(sigma3),mi3))) iteration <- 0; stopa <- 1000 W1 <- matrix(0,2,n_samB1); swx1 <- matrix(0,2,1) W2 <- matrix(0,2,n_samB2); swx2 <- matrix(0,2,1) W3 <- matrix(0,3,n_samF2); swx3 <- matrix(0,3,1) s0<-matrix(0,5,1);n0<-matrix(0,5,1) while(stopa > m_esp&&iteration<=1000){ iteration <- iteration + 1 for(i in 1:2) { W1[i,] <- mi1[i]*dnorm(dataB1,mean1[i],sqrt(sigma1[i]))/dmixnorm(dataB1,mean1,sqrt(sigma1),mi1) } mix_pi1 <- as.matrix(rowSums(W1)/n_samB1) sumwx1 <- W1%*%dataB1 for(i in 1:2) { W2[i,] <- mi2[i]*dnorm(dataB2,mean2[i],sqrt(sigma2[i]))/dmixnorm(dataB2,mean2,sqrt(sigma2),mi2) } mix_pi2 <- as.matrix(rowSums(W2)/n_samB2) sumwx2 <- W2%*%dataB2 for(i in 1:3) { W3[i,] <- mi3[i]*dnorm(dataF2,mean3[i],sqrt(sigma3[i]))/dmixnorm(dataF2,mean3,sqrt(sigma3),mi3) } mix_pi3 <- as.matrix(rowSums(W3)/n_samF2) sumwx3 <- W3%*%dataF2 aaa0<-0 s0[1]<-sumx[1]+sumx[2]+sumwx1[1]+sumwx3[1];s0[2]<-sumx[3]+sumwx2[2]+sumwx3[3] s0[3]<-sumwx1[2]+sumwx2[1]+sumwx3[2];n0[1]<-n_samP1+n_samF1+mix_pi1[1]*n_samB1+mix_pi3[1]*n_samF2 n0[2]<-n_samP2+mix_pi2[2]*n_samB2+mix_pi3[3]*n_samF2;n0[3]<-mix_pi1[2]*n_samB1+mix_pi2[1]*n_samB2+mix_pi3[2]*n_samF2 n0[c(1:3)][abs(n0[c(1:3)])<0.00000001]<-0.000001 aa2<-3*s0[1]/n0[1]+s0[2]/n0[2]-4*s0[3]/n0[3];aa3<-9*sigma/n0[1]+sigma/n0[2] aa1<-1000;n_iter<-0 while (aa1>0.0001) { n_iter<-n_iter+1 aa1<-(5*mean[1]-7*mean[3]+2*mean1[2])/13 sigma1[2]<-sigma+0.75*aa1^2/n_fam aaa1<-aa2/(aa3+16*sigma1[2]/n0[3]) mean[1]<-(s0[1]-3*aaa1*sigma)/n0[1] mean[3]<-(s0[2]-aaa1*sigma)/n0[2] mean1[2]<-(s0[3]+4*aaa1*sigma1[2])/n0[3] aa1<-abs(aaa1-aaa0) aaa0<-aaa1 if(n_iter>20)break } mean[2]<-mean1[1]<-mean3[1]<-mean[1];mean2[1]<-mean3[2]<-mean1[2];mean2[2]<-mean3[3]<-mean[3] ss1<-sum((dataP1-mean[1])^2);ss3<-sum((dataP2-mean[3])^2);ss2<-sum((dataF1-mean[2])^2) for(i in 1:2) {swx1[i] <- W1[i,]%*%(dataB1-mean1[i])^2 };for(i in 1:2) {swx2[i] <- W2[i,]%*%(dataB2-mean2[i])^2 };for(i in 1:3) {swx3[i] <- W3[i,]%*%(dataF2-mean3[i])^2 } s0[4]<-ss1+ss2+ss3+swx1[1]+swx2[2]+swx3[1]+swx3[3] n0[4]<-n_samP1+n_samF1+n_samP2+mix_pi1[1]*n_samB1+mix_pi2[2]*n_samB2+(mix_pi3[1]+mix_pi3[3])*n_samF2 aaa0<-sigma s0[5]<-swx1[2]+swx2[1]+swx3[2] n0[5]<-mix_pi1[2]*n_samB1+mix_pi2[1]*n_samB2+mix_pi3[2]*n_samF2 aa1<-(5*mean[1]-7*mean[3]+2*mean1[2])/13 aa1<-0.75*aa1^2/n_fam aa3<-1000;n_iter<-0 while (aa3>0.0001) { n_iter<-n_iter+1 aa2<-sigma/(sigma+aa1) sigma<-(s0[4]+aa2^2*s0[5])/(n0[4]+aa2*n0[5]) aa3<-abs(sigma-aaa0) aaa0<-sigma if(n_iter>20)break } sigma1[2]<-sigma+aa1 sigma2[1]<-sigma3[2]<-sigma1[2] sigma1[1]<-sigma2[2]<-sigma3[1]<-sigma3[3]<-sigma L1<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma))))+sum(log(dmixnorm(dataB1,mean1,sqrt(sigma1),mix_pi1)))+ sum(log(dmixnorm(dataB2,mean2,sqrt(sigma2),mix_pi2)))+sum(log(dmixnorm(dataF2,mean3,sqrt(sigma3),mix_pi3))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc<-L0 AIC<--2*abc+2*3 meanP1<-mean[1];meanF1<-mean[2];meanP2<-mean[3] sigma0<-sigma dataP1<-sort(dataP1) P1w1<-1/(12*n_samP1) P1bmw <- matrix(0,n_samP1,1) P1gg <- (dataP1 - mean[1])/sqrt(as.vector(sigma)) P1bmw[which(P1gg>=0)] <- pnorm(P1gg[P1gg>=0]) P1bmw[which(P1gg<0)] <- 1 - pnorm(abs(P1gg[P1gg<0])) nn <- dim(as.matrix(unique(P1bmw)))[1] if(nn < n_samP1){P1bmw <- P1bmw+runif(n_samP1)/1e4} P1dd<-c((sum(P1bmw)),(sum(P1bmw^2)),sum((P1bmw-0.5)^2)) P1w<-P1w1+sum((P1bmw - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) P1u<- as.matrix(c(12*n_samP1*((P1dd[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((P1dd[2]/n_samP1-1/3)^2),180*n_samP1*((P1dd[3]/n_samP1-1/12)^2))) P1D<-as.numeric(ks.test(P1bmw,"punif")[[1]][1]) P1tt <- as.matrix(c((1 - pchisq(P1u[1],1)),(1 - pchisq(P1u[2],1)),(1 - pchisq(P1u[3],1)),K1(P1w),(1-pkolm(P1D,n_samP1)))) P1tt[which( P1tt>=10e-4)]<-round(P1tt[which(P1tt>=10e-4)],4);P1tt[which(P1tt<10e-4)]<-format(P1tt[which(P1tt<10e-4)],scientific=TRUE,digit=4) dataF1<-sort(dataF1) F1w1<-1/(12*n_samF1) F1bmw <- matrix(0,n_samF1,1) F1gg <- (dataF1 - mean[2])/sqrt(as.vector(sigma)) F1bmw[which(F1gg>=0)] <- pnorm(F1gg[F1gg>=0]) F1bmw[which(F1gg<0)] <- 1 - pnorm(abs(F1gg[F1gg<0])) nn <- dim(as.matrix(unique(F1bmw)))[1] if(nn < n_samF1){F1bmw <- F1bmw+runif(n_samF1)/1e4} F1dd<-c((sum(F1bmw)),(sum(F1bmw^2)),sum((F1bmw-0.5)^2)) F1w<-F1w1+sum((F1bmw - (as.matrix(c(1:n_samF1)) - 0.5)/n_samF1)^2) F1u<- as.matrix(c(12*n_samF1*((F1dd[1]/n_samF1-0.5)^2),((45*n_samF1)/4)*((F1dd[2]/n_samF1-1/3)^2),180*n_samF1*((F1dd[3]/n_samF1-1/12)^2))) F1D<-as.numeric(ks.test(F1bmw,"punif")[[1]][1]) F1tt <- as.matrix(c((1 - pchisq(F1u[1],1)),(1 - pchisq(F1u[2],1)),(1 - pchisq(F1u[3],1)),K1(F1w),(1-pkolm(F1D,n_samF1)))) F1tt[which(F1tt>=10e-4)]<-round(F1tt[which(F1tt>=10e-4)],4);F1tt[which(F1tt<10e-4)]<-format(F1tt[which(F1tt<10e-4)],scientific=TRUE,digit=4) dataP2<-sort(dataP2) P2w1<-1/(12*n_samP2) P2bmw <- matrix(0,n_samP2,1) P2gg <- (dataP2 - mean[3])/sqrt(as.vector(sigma)) P2bmw[which(P2gg>=0)] <- pnorm(P2gg[P2gg>=0]) P2bmw[which(P2gg<0)] <- 1 - pnorm(abs(P2gg[P2gg<0])) nn <- dim(as.matrix(unique(P2bmw)))[1] if(nn < n_samP2){P2bmw <- P2bmw+runif(n_samP2)/1e4} P2dd<-c((sum(P2bmw)),(sum(P2bmw^2)),sum((P2bmw-0.5)^2)) P2w<-P2w1+sum((P2bmw - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) P2u<- as.matrix(c(12*n_samP2*((P2dd[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((P2dd[2]/n_samP2-1/3)^2),180*n_samP2*((P2dd[3]/n_samP2-1/12)^2))) P2D<-as.numeric(ks.test(P2bmw,"punif")[[1]][1]) P2tt <- as.matrix(c((1 - pchisq(P2u[1],1)),(1 - pchisq(P2u[2],1)),(1 - pchisq(P2u[3],1)),K1(P2w),(1-pkolm(P2D,n_samP2)))) P2tt[which(P2tt>=10e-4)]<-round(P2tt[which(P2tt>=10e-4)],4);P2tt[which(P2tt<10e-4)]<-format(P2tt[which(P2tt<10e-4)],scientific=TRUE,digit=4) dataB1 <- sort(dataB1); B1w1<-1/(12*n_samB1) B1bmw <- matrix(0,n_samB1,1); B1bmwsl <- matrix(0,n_samB1,2) for(i in 1:2){ B1gg <- (dataB1 - mean1[i])/sqrt(sigma1[i]) B1bmw[which(B1gg>=0)] <- pnorm(B1gg[B1gg>=0]) B1bmw[which(B1gg<0)] <- 1 - pnorm(abs(B1gg[B1gg<0])) B1bmwsl[,i] <- B1bmw*mix_pi1[i] } B1P2 <- rowSums(B1bmwsl) nn <- dim(as.matrix(unique(B1P2)))[1] if(nn < n_samB1){B1P2 <- B1P2+runif(n_samB1)/1e4} B1dd <- as.matrix(c(sum(B1P2),sum(B1P2^2),sum((B1P2-0.5)^2))) B1WW2 <- 1/(12*n_samB1) + sum((B1P2 - (as.matrix(c(1:n_samB1)) - 0.5)/n_samB1)^2) B1u <- as.matrix(c(12*n_samB1*((B1dd[1]/n_samB1-0.5)^2),((45*n_samB1)/4)*((B1dd[2]/n_samB1-1/3)^2),180*n_samB1*((B1dd[3]/n_samB1-1/12)^2))) B1D <- as.numeric(ks.test(B1P2,"punif")[[1]][1]) B1tt <- as.matrix(c((1 - pchisq(B1u[1],1)),(1 - pchisq(B1u[2],1)),(1 - pchisq(B1u[3],1)),K1(B1WW2),(1-pkolm(B1D,n_samB1)))) B1tt[which( B1tt>=10e-4)]<-round(B1tt[which(B1tt>=10e-4)],4);B1tt[which(B1tt<10e-4)]<-format(B1tt[which(B1tt<10e-4)],scientific=TRUE,digit=4) dataB2 <- sort(dataB2); B2w1<-1/(12*n_samB2) B2bmw <- matrix(0,n_samB2,1); B2bmwsl <- matrix(0,n_samB2,2) for(i in 1:2){ B2gg <- (dataB2 - mean2[i])/sqrt(sigma2[i]) B2bmw[which(B2gg>=0)] <- pnorm(B2gg[B2gg>=0]) B2bmw[which(B2gg<0)] <- 1 - pnorm(abs(B2gg[B2gg<0])) B2bmwsl[,i] <- B2bmw*mix_pi2[i] } B2P2 <- rowSums(B2bmwsl) nn <- dim(as.matrix(unique(B2P2)))[1] if(nn < n_samB2){B2P2 <- B2P2+runif(n_samB2)/1e4} B2dd <- as.matrix(c(sum(B2P2),sum(B2P2^2),sum((B2P2-0.5)^2))) B2WW2 <- 1/(12*n_samB2) + sum((B2P2 - (as.matrix(c(1:n_samB2)) - 0.5)/n_samB2)^2) B2u <- as.matrix(c(12*n_samB2*((B2dd[1]/n_samB2-0.5)^2),((45*n_samB2)/4)*((B2dd[2]/n_samB2-1/3)^2),180*n_samB2*((B2dd[3]/n_samB2-1/12)^2))) B2D <- as.numeric(ks.test(B2P2,"punif")[[1]][1]) B2tt <- as.matrix(c((1 - pchisq(B2u[1],1)),(1 - pchisq(B2u[2],1)),(1 - pchisq(B2u[3],1)),K1(B2WW2),(1-pkolm(B2D,n_samB2)))) B2tt[which( B2tt>=10e-4)]<-round(B2tt[which(B2tt>=10e-4)],4);B2tt[which(B2tt<10e-4)]<-format(B2tt[which(B2tt<10e-4)],scientific=TRUE,digit=4) dataF2 <- sort(dataF2); F2w1<-1/(12*n_samF2) F2bmw <- matrix(0,n_samF2,1); F2bmwsl <- matrix(0,n_samF2,3) for(i in 1:3){ F2gg <- (dataF2 - mean3[i])/sqrt(sigma3[i]) F2bmw[which(F2gg>=0)] <- pnorm(F2gg[F2gg>=0]) F2bmw[which(F2gg<0)] <- 1 - pnorm(abs(F2gg[F2gg<0])) F2bmwsl[,i] <- F2bmw*mix_pi3[i] } F2P2 <- rowSums(F2bmwsl) nn <- dim(as.matrix(unique(F2P2)))[1] if(nn < n_samF2){F2P2 <- F2P2+runif(n_samF2)/1e4} F2dd <- as.matrix(c(sum(F2P2),sum(F2P2^2),sum((F2P2-0.5)^2))) F2WW2 <- 1/(12*n_samF2) + sum((F2P2 - (as.matrix(c(1:n_samF2)) - 0.5)/n_samF2)^2) F2u <- as.matrix(c(12*n_samF2*((F2dd[1]/n_samF2-0.5)^2),((45*n_samF2)/4)*((F2dd[2]/n_samF2-1/3)^2),180*n_samF2*((F2dd[3]/n_samF2-1/12)^2))) F2D <- as.numeric(ks.test(F2P2,"punif")[[1]][1]) F2tt <- as.matrix(c((1 - pchisq(F2u[1],1)),(1 - pchisq(F2u[2],1)),(1 - pchisq(F2u[3],1)),K1(F2WW2),(1-pkolm(F2D,n_samF2)))) F2tt[which( F2tt>=10e-4)]<-round(F2tt[which(F2tt>=10e-4)],4);F2tt[which(F2tt<10e-4)]<-format(F2tt[which(F2tt<10e-4)],scientific=TRUE,digit=4) aa<-matrix(c(1,1,1,-1,1,0.5),3,2,byrow=T) mm<-as.matrix(c(mean[1],mean[3],mean1[2])) B<-solve(crossprod(aa,aa))%*%crossprod(aa,mm) jj1<-sigmaB1-sigma1[1] if (jj1<0 ) {jj1<-0} ll1<-jj1/sigmaB1 jj2<-sigmaB2-sigma2[2] if (jj2<0) {jj2<-0} ll2<-jj2/sigmaB2 jj3<-sigmaF2-sigma3[1] if (jj3<0) {jj3<-0} ll3<-jj3/sigmaF2 output <- data.frame("1MG-EAD",round(abc,4),round(AIC,4),round(meanP1,4),round(meanF1,4),round(meanP2,4), round(sigma0,4),round(t(mean1),4)," "," ",round(t(sigma1),4)," "," ", round(t(mix_pi1),4)," "," ",round(t(mean2),4)," "," ",round(t(sigma2),4)," "," ",round(t(mix_pi2),4)," "," ", round(t(mean3),4)," "," "," "," "," "," ",round(t(sigma3),4)," "," "," "," "," "," ",round(t(mix_pi3),4)," "," "," "," "," "," ", round(B[1],4)," "," "," "," "," ",round(B[2],4)," ",round(B[2],4)," "," "," "," "," "," "," ", round(jj1,4),round(ll1*100,4)," "," ",round(jj2,4),round(ll2*100,4)," "," ",round(jj3,4),round(ll3*100,4)," "," ", round(P1u[1],4),P1tt[1],round(P1u[2],4),P1tt[2],round(P1u[3],4),P1tt[3],round(P1w,4),P1tt[4],round(P1D,4),P1tt[5], round(F1u[1],4),F1tt[1],round(F1u[2],4),F1tt[2],round(F1u[3],4),F1tt[3],round(F1w,4),F1tt[4],round(F1D,4),F1tt[5], round(P2u[1],4),P2tt[1],round(P2u[2],4),P2tt[2],round(P2u[3],4),P2tt[3],round(P2w,4),P2tt[4],round(P2D,4),P2tt[5], round(B1u[1],4),B1tt[1],round(B1u[2],4),B1tt[2],round(B1u[3],4),B1tt[3],round(B1WW2,4),B1tt[4],round(B1D,4),B1tt[5], round(B2u[1],4),B2tt[1],round(B2u[2],4),B2tt[2],round(B2u[3],4),B2tt[3],round(B2WW2,4),B2tt[4],round(B2D,4),B2tt[5], round(F2u[1],4),F2tt[1],round(F2u[2],4),F2tt[2],round(F2u[3],4),F2tt[3],round(F2WW2,4),F2tt[4],round(F2D,4),F2tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi1,mi2,mi3) return(OUTPUT) } G6FModelFun[[4]] <- function(K1,logL,df11,df21,df31,df41,df51,df61,G6Ftext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataF1 <- as.matrix(as.numeric(df21[,1])) dataP2 <- as.matrix(as.numeric(df31[,1]));dataB1 <- as.matrix(as.numeric(df41[,1])) dataB2 <- as.matrix(as.numeric(df51[,1]));dataF2 <- as.matrix(as.numeric(df61[,1])) n_samP1<-dim(dataP1)[1];n_samF1<-dim(dataF1)[1];n_samP2<-dim(dataP2)[1] n_samB1<-dim(dataB1)[1];n_samB2<-dim(dataB2)[1];n_samF2<-dim(dataF2)[1] sumx<-as.matrix(c(sum(dataP1),sum(dataF1),sum(dataP2),sum(dataB1),sum(dataB2),sum(dataF2))) s<-as.matrix(c(sum(dataP1^2),sum(dataF1^2),sum(dataP2^2),sum(dataB1^2),sum(dataB2^2),sum(dataF2^2))) ss<-matrix(0,3,1);ss[1]<-s[1]-sumx[1]^2/n_samP1;ss[2]<-s[2]-sumx[2]^2/n_samF1;ss[3]<-s[3]-sumx[3]^2/n_samP2 mean<-as.matrix(c(mean(dataP1),mean(dataF1),mean(dataP2),mean(dataB1),mean(dataB2),mean(dataF2))) sigma0<-sum(ss)/(n_samP1+n_samF1+n_samP2-3) sigmaB1<-var(dataB1);sigma40<-sigmaB1 sigmaB2<-var(dataB2);sigma50<-sigmaB2 sigmaF2<-var(dataF2);sigma60<-sigmaF2 sigmaP1<-sigmaF1<-sigmaP2<-sigma0 m_esp <- 0.0001;n_fam <- as.numeric(G6Ftext2) mi1<-matrix(0.5,2,1);sigma1<-matrix(0,2,1) mi2<-matrix(0.5,2,1);sigma2<-matrix(0,2,1) mi3<-as.matrix(c(0.25,0.5,0.25));sigma3<-matrix(0,3,1) sigma<-sigma0;sigma1[1]<-sigma a1<-sqrt(sigmaB1/n_samB1) if (mean[1]<mean[3]) a1<--a1 mean1<-as.matrix(c(mean[4]+2*a1,mean[4]-2*a1)) sigma2[2]<-sigma a2<-sqrt(sigmaB2/n_samB2) if (mean[1]<mean[3]) a2<--a2 mean2<-as.matrix(c(mean[5]+2*a2,mean[5]-2*a2)) sigma3[1]<-sigma3[3]<-sigma a3<-sqrt(sigmaF2/n_samF2) if (mean[1]<mean[3]) a3<--a3 mean3<-as.matrix(c(mean[6]+2*a3,mean[6],mean[6]-2*a3)) b1<-(7*mean[1]-5*mean[3]-2*mean1[2])/13 sigma1[2]<-sigma+0.75*b1^2/n_fam;sigma2[1]<-sigma3[2]<-sigma1[2] L0<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma0))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma0))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma0))))+sum(log(dmixnorm(dataB1,mean1,sqrt(sigma1),mi1)))+ sum(log(dmixnorm(dataB2,mean2,sqrt(sigma2),mi2)))+sum(log(dmixnorm(dataF2,mean3,sqrt(sigma3),mi3))) iteration <- 0; stopa <- 1000 W1 <- matrix(0,2,n_samB1); swx1 <- matrix(0,2,1) W2 <- matrix(0,2,n_samB2); swx2 <- matrix(0,2,1) W3 <- matrix(0,3,n_samF2); swx3 <- matrix(0,3,1) s0<-matrix(0,5,1);n0<-matrix(0,5,1) while(stopa > m_esp&&iteration<=1000){ iteration <- iteration + 1 for(i in 1:2) { W1[i,] <- mi1[i]*dnorm(dataB1,mean1[i],sqrt(sigma1[i]))/dmixnorm(dataB1,mean1,sqrt(sigma1),mi1) } mix_pi1 <- as.matrix(rowSums(W1)/n_samB1) sumwx1 <- W1%*%dataB1 for(i in 1:2) { W2[i,] <- mi2[i]*dnorm(dataB2,mean2[i],sqrt(sigma2[i]))/dmixnorm(dataB2,mean2,sqrt(sigma2),mi2) } mix_pi2 <- as.matrix(rowSums(W2)/n_samB2) sumwx2 <- W2%*%dataB2 for(i in 1:3) { W3[i,] <- mi3[i]*dnorm(dataF2,mean3[i],sqrt(sigma3[i]))/dmixnorm(dataF2,mean3,sqrt(sigma3),mi3) } mix_pi3 <- as.matrix(rowSums(W3)/n_samF2) sumwx3 <- W3%*%dataF2 aaa0<-0 s0[1]<-sumx[1]+sumwx1[1]+sumwx3[1];s0[2]<-sumx[2]+sumx[3]+sumwx2[2]+sumwx3[3] s0[3]<-sumwx1[2]+sumwx2[1]+sumwx3[2];n0[1]<-n_samP1+mix_pi1[1]*n_samB1+mix_pi3[1]*n_samF2 n0[2]<-n_samF1+n_samP2+mix_pi2[2]*n_samB2+mix_pi3[3]*n_samF2;n0[3]<-mix_pi1[2]*n_samB1+mix_pi2[1]*n_samB2+mix_pi3[2]*n_samF2 n0[c(1:3)][abs(n0[c(1:3)])<0.00000001]<-0.000001 aa2<-s0[1]/n0[1]+3*s0[2]/n0[2]-4*s0[3]/n0[3] aa3<-sigma*(1/n0[1]+9/n0[2]) aa1<-1000;n_iter<-0 while (aa1>0.0001) { n_iter<-n_iter+1 aa1<-(7*mean[1]-5*mean[3]-2*mean1[2])/13 sigma1[2]<-sigma+0.75*aa1^2/n_fam aaa1<-aa2/(aa3+16*sigma1[2]/n0[3]) mean[1]<-(s0[1]-aaa1*sigma)/n0[1] mean[3]<-(s0[2]-3*aaa1*sigma)/n0[2] mean1[2]<-(s0[3]+4*aaa1*sigma1[2])/n0[3] aa1<-abs(aaa1-aaa0) aaa0<-aaa1 if(n_iter>20)break } mean[2]<-mean2[2]<-mean3[3]<-mean[3];mean1[1]<-mean3[1]<-mean[1];mean2[1]<-mean3[2]<-mean1[2] ss1<-sum((dataP1-mean[1])^2);ss3<-sum((dataP2-mean[3])^2);ss2<-sum((dataF1-mean[2])^2) for(i in 1:2) {swx1[i] <- W1[i,]%*%(dataB1-mean1[i])^2 };for(i in 1:2) {swx2[i] <- W2[i,]%*%(dataB2-mean2[i])^2 };for(i in 1:3) {swx3[i] <- W3[i,]%*%(dataF2-mean3[i])^2 } s0[4]<-ss1+ss2+ss3+swx1[1]+swx2[2]+swx3[1]+swx3[3] n0[4]<-n_samP1+n_samF1+n_samP2+mix_pi1[1]*n_samB1+mix_pi2[2]*n_samB2+(mix_pi3[1]+mix_pi3[3])*n_samF2 s0[5]<-swx1[2]+swx2[1]+swx3[2] n0[5]<-mix_pi1[2]*n_samB1+mix_pi2[1]*n_samB2+mix_pi3[2]*n_samF2 aaa0<-sigma aa1<-(7*mean[1]-5*mean[3]-2*mean1[2])/13 aa1<-0.75*aa1^2/n_fam aa3<-1000;n_iter<-0 while (aa3>0.0001) { n_iter<-n_iter+1 aa2<-sigma/(sigma+aa1) sigma<-(s0[4]+aa2^2*s0[5])/(n0[4]+aa2*n0[5]) aa3<-abs(sigma-aaa0) aaa0<-sigma if(n_iter>20)break } sigma1[2]<-sigma+aa1;sigma2[1]<-sigma3[2]<-sigma1[2] sigma1[1]<-sigma2[2]<-sigma3[1]<-sigma3[3]<-sigma L1<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma))))+sum(log(dmixnorm(dataB1,mean1,sqrt(sigma1),mix_pi1)))+ sum(log(dmixnorm(dataB2,mean2,sqrt(sigma2),mix_pi2)))+sum(log(dmixnorm(dataF2,mean3,sqrt(sigma3),mix_pi3))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc<-L0 AIC<--2*abc+2*3 meanP1<-mean[1];meanF1<-mean[2];meanP2<-mean[3] sigma0<-sigma dataP1<-sort(dataP1) P1w1<-1/(12*n_samP1) P1bmw <- matrix(0,n_samP1,1) P1gg <- (dataP1 - mean[1])/sqrt(as.vector(sigma)) P1bmw[which(P1gg>=0)] <- pnorm(P1gg[P1gg>=0]) P1bmw[which(P1gg<0)] <- 1 - pnorm(abs(P1gg[P1gg<0])) nn <- dim(as.matrix(unique(P1bmw)))[1] if(nn < n_samP1){P1bmw <- P1bmw+runif(n_samP1)/1e4} P1dd<-c((sum(P1bmw)),(sum(P1bmw^2)),sum((P1bmw-0.5)^2)) P1w<-P1w1+sum((P1bmw - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) P1u<- as.matrix(c(12*n_samP1*((P1dd[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((P1dd[2]/n_samP1-1/3)^2),180*n_samP1*((P1dd[3]/n_samP1-1/12)^2))) P1D<-as.numeric(ks.test(P1bmw,"punif")[[1]][1]) P1tt <- as.matrix(c((1 - pchisq(P1u[1],1)),(1 - pchisq(P1u[2],1)),(1 - pchisq(P1u[3],1)),K1(P1w),(1-pkolm(P1D,n_samP1)))) P1tt[which( P1tt>=10e-4)]<-round(P1tt[which(P1tt>=10e-4)],4);P1tt[which(P1tt<10e-4)]<-format(P1tt[which(P1tt<10e-4)],scientific=TRUE,digit=4) dataF1<-sort(dataF1) F1w1<-1/(12*n_samF1) F1bmw <- matrix(0,n_samF1,1) F1gg <- (dataF1 - mean[2])/sqrt(as.vector(sigma)) F1bmw[which(F1gg>=0)] <- pnorm(F1gg[F1gg>=0]) F1bmw[which(F1gg<0)] <- 1 - pnorm(abs(F1gg[F1gg<0])) nn <- dim(as.matrix(unique(F1bmw)))[1] if(nn < n_samF1){F1bmw <- F1bmw+runif(n_samF1)/1e4} F1dd<-c((sum(F1bmw)),(sum(F1bmw^2)),sum((F1bmw-0.5)^2)) F1w<-F1w1+sum((F1bmw - (as.matrix(c(1:n_samF1)) - 0.5)/n_samF1)^2) F1u<- as.matrix(c(12*n_samF1*((F1dd[1]/n_samF1-0.5)^2),((45*n_samF1)/4)*((F1dd[2]/n_samF1-1/3)^2),180*n_samF1*((F1dd[3]/n_samF1-1/12)^2))) F1D<-as.numeric(ks.test(F1bmw,"punif")[[1]][1]) F1tt <- as.matrix(c((1 - pchisq(F1u[1],1)),(1 - pchisq(F1u[2],1)),(1 - pchisq(F1u[3],1)),K1(F1w),(1-pkolm(F1D,n_samF1)))) F1tt[which(F1tt>=10e-4)]<-round(F1tt[which(F1tt>=10e-4)],4);F1tt[which(F1tt<10e-4)]<-format(F1tt[which(F1tt<10e-4)],scientific=TRUE,digit=4) dataP2<-sort(dataP2) P2w1<-1/(12*n_samP2) P2bmw <- matrix(0,n_samP2,1) P2gg <- (dataP2 - mean[3])/sqrt(as.vector(sigma)) P2bmw[which(P2gg>=0)] <- pnorm(P2gg[P2gg>=0]) P2bmw[which(P2gg<0)] <- 1 - pnorm(abs(P2gg[P2gg<0])) nn <- dim(as.matrix(unique(P2bmw)))[1] if(nn < n_samP2){P2bmw <- P2bmw+runif(n_samP2)/1e4} P2dd<-c((sum(P2bmw)),(sum(P2bmw^2)),sum((P2bmw-0.5)^2)) P2w<-P2w1+sum((P2bmw - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) P2u<- as.matrix(c(12*n_samP2*((P2dd[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((P2dd[2]/n_samP2-1/3)^2),180*n_samP2*((P2dd[3]/n_samP2-1/12)^2))) P2D<-as.numeric(ks.test(P2bmw,"punif")[[1]][1]) P2tt <- as.matrix(c((1 - pchisq(P2u[1],1)),(1 - pchisq(P2u[2],1)),(1 - pchisq(P2u[3],1)),K1(P2w),(1-pkolm(P2D,n_samP2)))) P2tt[which(P2tt>=10e-4)]<-round(P2tt[which(P2tt>=10e-4)],4);P2tt[which(P2tt<10e-4)]<-format(P2tt[which(P2tt<10e-4)],scientific=TRUE,digit=4) dataB1 <- sort(dataB1); B1w1<-1/(12*n_samB1) B1bmw <- matrix(0,n_samB1,1); B1bmwsl <- matrix(0,n_samB1,2) for(i in 1:2){ B1gg <- (dataB1 - mean1[i])/sqrt(sigma1[i]) B1bmw[which(B1gg>=0)] <- pnorm(B1gg[B1gg>=0]) B1bmw[which(B1gg<0)] <- 1 - pnorm(abs(B1gg[B1gg<0])) B1bmwsl[,i] <- B1bmw*mix_pi1[i] } B1P2 <- rowSums(B1bmwsl) nn <- dim(as.matrix(unique(B1P2)))[1] if(nn < n_samB1){B1P2 <- B1P2+runif(n_samB1)/1e4} B1dd <- as.matrix(c(sum(B1P2),sum(B1P2^2),sum((B1P2-0.5)^2))) B1WW2 <- 1/(12*n_samB1) + sum((B1P2 - (as.matrix(c(1:n_samB1)) - 0.5)/n_samB1)^2) B1u <- as.matrix(c(12*n_samB1*((B1dd[1]/n_samB1-0.5)^2),((45*n_samB1)/4)*((B1dd[2]/n_samB1-1/3)^2),180*n_samB1*((B1dd[3]/n_samB1-1/12)^2))) B1D <- as.numeric(ks.test(B1P2,"punif")[[1]][1]) B1tt <- as.matrix(c((1 - pchisq(B1u[1],1)),(1 - pchisq(B1u[2],1)),(1 - pchisq(B1u[3],1)),K1(B1WW2),(1-pkolm(B1D,n_samB1)))) B1tt[which( B1tt>=10e-4)]<-round(B1tt[which(B1tt>=10e-4)],4);B1tt[which(B1tt<10e-4)]<-format(B1tt[which(B1tt<10e-4)],scientific=TRUE,digit=4) dataB2 <- sort(dataB2); B2w1<-1/(12*n_samB2) B2bmw <- matrix(0,n_samB2,1); B2bmwsl <- matrix(0,n_samB2,2) for(i in 1:2){ B2gg <- (dataB2 - mean2[i])/sqrt(sigma2[i]) B2bmw[which(B2gg>=0)] <- pnorm(B2gg[B2gg>=0]) B2bmw[which(B2gg<0)] <- 1 - pnorm(abs(B2gg[B2gg<0])) B2bmwsl[,i] <- B2bmw*mix_pi2[i] } B2P2 <- rowSums(B2bmwsl) nn <- dim(as.matrix(unique(B2P2)))[1] if(nn < n_samB2){B2P2 <- B2P2+runif(n_samB2)/1e4} B2dd <- as.matrix(c(sum(B2P2),sum(B2P2^2),sum((B2P2-0.5)^2))) B2WW2 <- 1/(12*n_samB2) + sum((B2P2 - (as.matrix(c(1:n_samB2)) - 0.5)/n_samB2)^2) B2u <- as.matrix(c(12*n_samB2*((B2dd[1]/n_samB2-0.5)^2),((45*n_samB2)/4)*((B2dd[2]/n_samB2-1/3)^2),180*n_samB2*((B2dd[3]/n_samB2-1/12)^2))) B2D <- as.numeric(ks.test(B2P2,"punif")[[1]][1]) B2tt <- as.matrix(c((1 - pchisq(B2u[1],1)),(1 - pchisq(B2u[2],1)),(1 - pchisq(B2u[3],1)),K1(B2WW2),(1-pkolm(B2D,n_samB2)))) B2tt[which( B2tt>=10e-4)]<-round(B2tt[which(B2tt>=10e-4)],4);B2tt[which(B2tt<10e-4)]<-format(B2tt[which(B2tt<10e-4)],scientific=TRUE,digit=4) dataF2 <- sort(dataF2); F2w1<-1/(12*n_samF2) F2bmw <- matrix(0,n_samF2,1); F2bmwsl <- matrix(0,n_samF2,3) for(i in 1:3){ F2gg <- (dataF2 - mean3[i])/sqrt(sigma3[i]) F2bmw[which(F2gg>=0)] <- pnorm(F2gg[F2gg>=0]) F2bmw[which(F2gg<0)] <- 1 - pnorm(abs(F2gg[F2gg<0])) F2bmwsl[,i] <- F2bmw*mix_pi3[i] } F2P2 <- rowSums(F2bmwsl) nn <- dim(as.matrix(unique(F2P2)))[1] if(nn < n_samF2){F2P2 <- F2P2+runif(n_samF2)/1e4} F2dd <- as.matrix(c(sum(F2P2),sum(F2P2^2),sum((F2P2-0.5)^2))) F2WW2 <- 1/(12*n_samF2) + sum((F2P2 - (as.matrix(c(1:n_samF2)) - 0.5)/n_samF2)^2) F2u <- as.matrix(c(12*n_samF2*((F2dd[1]/n_samF2-0.5)^2),((45*n_samF2)/4)*((F2dd[2]/n_samF2-1/3)^2),180*n_samF2*((F2dd[3]/n_samF2-1/12)^2))) F2D <- as.numeric(ks.test(F2P2,"punif")[[1]][1]) F2tt <- as.matrix(c((1 - pchisq(F2u[1],1)),(1 - pchisq(F2u[2],1)),(1 - pchisq(F2u[3],1)),K1(F2WW2),(1-pkolm(F2D,n_samF2)))) F2tt[which( F2tt>=10e-4)]<-round(F2tt[which(F2tt>=10e-4)],4);F2tt[which(F2tt<10e-4)]<-format(F2tt[which(F2tt<10e-4)],scientific=TRUE,digit=4) aa<-matrix(c(1,1,1,-1,1,-0.5),3,2,byrow=T) mm<-as.matrix(c(mean[1],mean[3],mean1[2])) B<-solve(crossprod(aa,aa))%*%crossprod(aa,mm) jj1<-sigmaB1-sigma1[1] if (jj1<0 ) {jj1<-0} ll1<-jj1/sigmaB1 jj2<-sigmaB2-sigma2[2] if (jj2<0) {jj2<-0} ll2<-jj2/sigmaB2 jj3<-sigmaF2-sigma3[1] if (jj3<0) {jj3<-0} ll3<-jj3/sigmaF2 output <- data.frame("1MG-NCD",round(abc,4),round(AIC,4),round(meanP1,4),round(meanF1,4),round(meanP2,4), round(sigma0,4),round(t(mean1),4)," "," ",round(t(sigma1),4)," "," ", round(t(mix_pi1),4)," "," ",round(t(mean2),4)," "," ",round(t(sigma2),4)," "," ",round(t(mix_pi2),4)," "," ", round(t(mean3),4)," "," "," "," "," "," ",round(t(sigma3),4)," "," "," "," "," "," ",round(t(mix_pi3),4)," "," "," "," "," "," ", round(B[1],4)," "," "," "," "," ",round(B[2],4)," ",round(-B[2],4)," "," "," "," "," "," "," ", round(jj1,4),round(ll1*100,4)," "," ",round(jj2,4),round(ll2*100,4)," "," ",round(jj3,4),round(ll3*100,4)," "," ", round(P1u[1],4),P1tt[1],round(P1u[2],4),P1tt[2],round(P1u[3],4),P1tt[3],round(P1w,4),P1tt[4],round(P1D,4),P1tt[5], round(F1u[1],4),F1tt[1],round(F1u[2],4),F1tt[2],round(F1u[3],4),F1tt[3],round(F1w,4),F1tt[4],round(F1D,4),F1tt[5], round(P2u[1],4),P2tt[1],round(P2u[2],4),P2tt[2],round(P2u[3],4),P2tt[3],round(P2w,4),P2tt[4],round(P2D,4),P2tt[5], round(B1u[1],4),B1tt[1],round(B1u[2],4),B1tt[2],round(B1u[3],4),B1tt[3],round(B1WW2,4),B1tt[4],round(B1D,4),B1tt[5], round(B2u[1],4),B2tt[1],round(B2u[2],4),B2tt[2],round(B2u[3],4),B2tt[3],round(B2WW2,4),B2tt[4],round(B2D,4),B2tt[5], round(F2u[1],4),F2tt[1],round(F2u[2],4),F2tt[2],round(F2u[3],4),F2tt[3],round(F2WW2,4),F2tt[4],round(F2D,4),F2tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi1,mi2,mi3) return(OUTPUT) } G6FModelFun[[5]] <- function(K1,logL,df11,df21,df31,df41,df51,df61,G6Ftext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataF1 <- as.matrix(as.numeric(df21[,1])) dataP2 <- as.matrix(as.numeric(df31[,1]));dataB1 <- as.matrix(as.numeric(df41[,1])) dataB2 <- as.matrix(as.numeric(df51[,1]));dataF2 <- as.matrix(as.numeric(df61[,1])) n_samP1<-dim(dataP1)[1];n_samF1<-dim(dataF1)[1];n_samP2<-dim(dataP2)[1] n_samB1<-dim(dataB1)[1];n_samB2<-dim(dataB2)[1];n_samF2<-dim(dataF2)[1] sumx<-as.matrix(c(sum(dataP1),sum(dataF1),sum(dataP2),sum(dataB1),sum(dataB2),sum(dataF2))) s<-as.matrix(c(sum(dataP1^2),sum(dataF1^2),sum(dataP2^2),sum(dataB1^2),sum(dataB2^2),sum(dataF2^2))) ss<-matrix(0,3,1);ss[1]<-s[1]-sumx[1]^2/n_samP1;ss[2]<-s[2]-sumx[2]^2/n_samF1;ss[3]<-s[3]-sumx[3]^2/n_samP2 mean<-as.matrix(c(mean(dataP1),mean(dataF1),mean(dataP2),mean(dataB1),mean(dataB2),mean(dataF2))) sigma0<-sum(ss)/(n_samP1+n_samF1+n_samP2-3) sigmaB1<-var(dataB1);sigma40<-sigmaB1 sigmaB2<-var(dataB2);sigma50<-sigmaB2 sigmaF2<-var(dataF2);sigma60<-sigmaF2 sigmaP1<-sigmaF1<-sigmaP2<-sigma0 m_esp <- 0.0001;n_fam <- as.numeric(G6Ftext2) mi1<-matrix(0.25,4,1);sigma1<-matrix(0,4,1) mi2<-matrix(0.25,4,1);sigma2<-matrix(0,4,1) mi3<-as.matrix(c(0.0625,0.125,0.0625,0.125,0.25,0.125,0.0625,0.125,0.0625)) sigma3<-matrix(0,9,1) sigma<-sigma0 a1<-sqrt(sigma/n_samB1) if (mean[1]<mean[3]) a1<--a1 mean1<-as.matrix(c(mean[4]+2.4*a1,mean[4]+0.8*a1,mean[4]-0.8*a1,mean[4]-2.4*a1)) a2<-sqrt(sigmaB2/n_samB2) if (mean[1]<mean[3]) a2<--a2 mean2<-as.matrix(c(mean[5]+2.4*a2,mean[5]+0.8*a2,mean[5]-0.8*a2,mean[5]-2.4*a2)) a3<-sqrt(sigmaF2/n_samF2) if (mean[1]<mean[3]) a3<--a3 mean3<-as.matrix(c(mean[6]+2.4*a3,mean[6]+1.8*a3,mean[6]+1.2*a3,mean[6]+0.6*a3,mean[6],mean[6]-0.6*a3,mean[6]-1.2*a3,mean[6]-1.8*a3,mean[6]-2.4*a3)) gs<-matrix(0,8,1) gs[1]<-0.25*(mean[1]-mean[3]+mean3[3]-mean3[7]) gs[2]<-0.25*(mean[1]-mean[3]-mean3[3]+mean3[7]) gs[3]<-(-8*mean[1]-2*mean[2]-8*mean[3]-2*mean1[2]+15*mean1[3]+8*mean1[4]+15*mean2[2]-2*mean2[3]-8*mean3[3]-8*mean3[7])/17 gs[4]<-(-8*mean[1]-2*mean[2]-8*mean[3]+15*mean1[2]-2*mean1[3]+8*mean1[4]-2*mean2[2]+15*mean2[3]-8*mean3[3]-8*mean3[7])/17 gs[5]<-0.25*(mean[1]+mean[3]-mean3[3]-mean3[7]) gs[6]<--0.5*mean[1]+0.5*mean[3]+mean1[2]-mean2[3]-0.5*mean3[3]+0.5*mean3[7] gs[7]<--0.5*mean[1]+0.5*mean[3]+mean1[3]-mean2[2]+0.5*mean3[3]-0.5*mean3[7] gs[8]<-(12*mean[1]+20*mean[2]+12*mean[3]-14*mean1[2]-14*mean1[3]-12*mean1[4]-14*mean2[2]-14*mean2[3]+12*mean3[3]+12*mean3[7])/17 g_aa1<-(0.5*(gs[2]+gs[5])^2+0.25*(gs[4]+gs[6])^2)/n_fam g_aa2<-(0.5*(gs[1]+gs[5])^2+0.25*(gs[3]+gs[7])^2)/n_fam g_aa3<-(0.5*(gs[1]-gs[5])^2+0.25*(gs[3]-gs[7])^2)/n_fam g_aa4<-(0.5*(gs[2]-gs[5])^2+0.25*(gs[4]-gs[6])^2)/n_fam g_aa5<-0.25*(gs[1]^2+gs[2]^2+gs[5]^2+(gs[1]+gs[6])^2+(gs[2]+gs[7])^2+(gs[3]+gs[8]/2)^2+(gs[4]+gs[8]/2)^2+gs[8]^2/4)/n_fam sigma1[1]<-sigma;sigma1[2]<-sigma+g_aa1;sigma1[3]<-sigma+g_aa2;sigma1[4]<-sigma+g_aa5 sigma2[1]<-sigma1[4];sigma2[2]<-sigma+g_aa3;sigma2[3]<-sigma+g_aa4;sigma2[4]<-sigma sigma3[1]<-sigma3[3]<-sigma3[7]<-sigma3[9]<-sigma sigma3[2]<-sigma1[2];sigma3[4]<-sigma1[3];sigma3[5]<-sigma1[4];sigma3[6]<-sigma2[2];sigma3[8]<-sigma2[3] L0<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma0))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma0))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma0))))+sum(log(dmixnorm(dataB1,mean1,sqrt(sigma1),mi1)))+ sum(log(dmixnorm(dataB2,mean2,sqrt(sigma2),mi2)))+sum(log(dmixnorm(dataF2,mean3,sqrt(sigma3),mi3))) iteration <- 0; stopa <- 1000 W1 <- matrix(0,4,n_samB1); swx1 <- matrix(0,4,1) W2 <- matrix(0,4,n_samB2); swx2 <- matrix(0,4,1) W3 <- matrix(0,9,n_samF2); swx3 <- matrix(0,9,1) s0<-matrix(0,16,1);n0<-matrix(0,16,1) while(stopa > m_esp&&iteration<=1000){ iteration <- iteration + 1 for(i in 1:4) { W1[i,] <- mi1[i]*dnorm(dataB1,mean1[i],sqrt(sigma1[i]))/dmixnorm(dataB1,mean1,sqrt(sigma1),mi1) } mix_pi1 <- as.matrix(rowSums(W1)/n_samB1) sumwx1 <- W1%*%dataB1 for(i in 1:4) { W2[i,] <- mi2[i]*dnorm(dataB2,mean2[i],sqrt(sigma2[i]))/dmixnorm(dataB2,mean2,sqrt(sigma2),mi2) } mix_pi2 <- as.matrix(rowSums(W2)/n_samB2) sumwx2 <- W2%*%dataB2 for(i in 1:9) { W3[i,] <- mi3[i]*dnorm(dataF2,mean3[i],sqrt(sigma3[i]))/dmixnorm(dataF2,mean3,sqrt(sigma3),mi3) } mix_pi3 <- as.matrix(rowSums(W3)/n_samF2) sumwx3 <- W3%*%dataF2 aaa0<-0 s0[1]<-sumx[1]+sumwx1[1]+sumwx3[1];s0[2]<-sumx[2] s0[3]<-sumx[3]+sumwx2[4]+sumwx3[9];s0[4]<-sumwx1[2]+sumwx3[2] s0[5]<-sumwx1[3]+sumwx3[4];s0[6]<-sumwx1[4]+sumwx2[1]+sumwx3[5] s0[7]<-sumwx2[2]+sumwx3[6];s0[8]<-sumwx2[3]+sumwx3[8] s0[9]<-sumwx3[3];s0[10]<-sumwx3[7] n0[1]<-n_samP1+mix_pi1[1]*n_samB1+mix_pi3[1]*n_samF2;n0[2]<-n_samF1 n0[3]<-n_samP2+mix_pi2[4]*n_samB2+mix_pi3[9]*n_samF2;n0[4]<-mix_pi1[2]*n_samB1+mix_pi3[2]*n_samF2 n0[5]<-mix_pi1[3]*n_samB1+mix_pi3[4]*n_samF2;n0[6]<-mix_pi1[4]*n_samB1+mix_pi2[1]*n_samB2+mix_pi3[5]*n_samF2 n0[7]<-mix_pi2[2]*n_samB2+mix_pi3[6]*n_samF2;n0[8]<-mix_pi2[3]*n_samB2+mix_pi3[8]*n_samF2 n0[9]<-mix_pi3[3]*n_samF2;n0[10]<-mix_pi3[7]*n_samF2 s0[c(1:10)][abs(s0[c(1:10)])<0.000001]<-0.000001 n0[c(1:10)][abs(n0[c(1:10)])<0.000001]<-0.000001 aa3<-s0[1]/n0[1]-4*s0[2]/n0[2]+s0[3]/n0[3]-4*s0[4]/n0[4]-4*s0[5]/n0[5]+16*s0[6]/n0[6]-4*s0[7]/n0[7]-4*s0[8]/n0[8]+s0[9]/n0[9]+s0[10]/n0[10] aa4<-sigma*(1/n0[1]+16/n0[2]+1/n0[3]+1/n0[9]+1/n0[10]) aa1<-1000;n_iter<-0 while (aa1>0.0001) { n_iter<-n_iter+1 gs[1]<-0.25*(mean[1]-mean[3]+mean3[3]-mean3[7]) gs[2]<-0.25*(mean[1]-mean[3]-mean3[3]+mean3[7]) gs[3]<-(-8*mean[1]-2*mean[2]-8*mean[3]-2*mean1[2]+15*mean1[3]+ 8*mean1[4]+15*mean2[2]-2*mean2[3]-8*mean3[3]-8*mean3[7])/17 gs[4]<-(-8*mean[1]-2*mean[2]-8*mean[3]+15*mean1[2]-2*mean1[3]+ 8*mean1[4]-2*mean2[2]+15*mean2[3]-8*mean3[3]-8*mean3[7])/17 gs[5]<-0.25*(mean[1]+mean[3]-mean3[3]-mean3[7]) gs[6]<--0.5*mean[1]+0.5*mean[3]+mean1[2]-mean2[3]-0.5*mean3[3]+0.5*mean3[7] gs[7]<--0.5*mean[1]+0.5*mean[3]+mean1[3]-mean2[2]+0.5*mean3[3]-0.5*mean3[7] gs[8]<-(12*mean[1]+20*mean[2]+12*mean[3]-14*mean1[2]-14*mean1[3]- 12*mean1[4]-14*mean2[2]-14*mean2[3]+12*mean3[3]+12*mean3[7])/17 g_aa1<-(0.5*(gs[2]+gs[5])^2+0.25*(gs[4]+gs[6])^2)/n_fam g_aa2<-(0.5*(gs[1]+gs[5])^2+0.25*(gs[3]+gs[7])^2)/n_fam g_aa3<-(0.5*(gs[1]-gs[5])^2+0.25*(gs[3]-gs[7])^2)/n_fam g_aa4<-(0.5*(gs[2]-gs[5])^2+0.25*(gs[4]-gs[6])^2)/n_fam g_aa5<-0.25*(gs[1]^2+gs[2]^2+gs[5]^2+(gs[1]+gs[6])^2+(gs[2]+gs[7])^2+(gs[3]+gs[8]/2)^2+(gs[4]+gs[8]/2)^2+gs[8]^2/4)/n_fam sigma1[2]<-sigma+g_aa1;sigma1[3]<-sigma+g_aa2;sigma1[4]<-sigma+g_aa5 sigma2[1]<-sigma1[4];sigma2[2]<-sigma+g_aa3;sigma2[3]<-sigma+g_aa4;sigma2[4]<-sigma sigma3[1]<-sigma3[3]<-sigma3[7]<-sigma3[9]<-sigma sigma3[2]<-sigma1[2];sigma3[4]<-sigma1[3];sigma3[5]<-sigma1[4];sigma3[6]<-sigma2[2];sigma3[8]<-sigma2[3] aa2<-aa4+16*sigma1[2]/n0[4]+16*sigma1[3]/n0[5]+256*sigma1[4]/n0[6]+16*sigma2[2]/n0[7]+16*sigma2[3]/n0[8] aaa1<-aa3/aa2 mean[1]<-(s0[1]-aaa1*sigma)/n0[1] mean[2]<-(s0[2]+4*aaa1*sigma)/n0[2] mean[3]<-(s0[3]-aaa1*sigma)/n0[3] mean1[2]<-(s0[4]+4*aaa1*sigma1[2])/n0[4] mean1[3]<-(s0[5]+4*aaa1*sigma1[3])/n0[5] mean1[4]<-(s0[6]-16*aaa1*sigma1[4])/n0[6] mean2[2]<-(s0[7]+4*aaa1*sigma2[2])/n0[7] mean2[3]<-(s0[8]+4*aaa1*sigma2[3])/n0[8] mean3[3]<-(s0[9]-aaa1*sigma)/n0[9] mean3[7]<-(s0[10]-aaa1*sigma)/n0[10] mean1[1]<-mean[1] mean2[1]<-mean1[4];mean2[4]<-mean[3] mean3[1]<-mean[1];mean3[2]<-mean1[2];mean3[4]<-mean1[3] mean3[5]<-mean1[4];mean3[6]<-mean2[2];mean3[8]<-mean2[3];mean3[9]<-mean[3] aa1<-abs(aaa1-aaa0) aaa0<-aaa1 if(n_iter>20)break } ss1<-sum((dataP1-mean[1])^2);ss3<-sum((dataP2-mean[3])^2);ss2<-sum((dataF1-mean[2])^2) for(i in 1:4) {swx1[i] <- W1[i,]%*%(dataB1-mean1[i])^2} ;for(i in 1:4) {swx2[i] <- W2[i,]%*%(dataB2-mean2[i])^2 };for(i in 1:9) {swx3[i] <- W3[i,]%*%(dataF2-mean3[i])^2 } s0[11]<-ss1+ss2+ss3+swx1[1]+swx2[4]+swx3[1]+swx3[3]+swx3[7]+swx3[9] n0[11]<-n_samP1+n_samF1+n_samP2+mix_pi1[1]*n_samB1+mix_pi2[4]*n_samB2+(mix_pi3[1]+mix_pi3[3]+mix_pi3[7]+mix_pi3[9])*n_samF2 s0[12]<-swx1[2]+swx3[2] s0[13]<-swx1[3]+swx3[4] s0[14]<-swx1[4]+swx2[1]+swx3[5] s0[15]<-swx2[2]+swx3[6] s0[16]<-swx2[3]+swx3[8] n0[12]<-mix_pi1[2]*n_samB1+mix_pi3[2]*n_samF2 n0[13]<-mix_pi1[3]*n_samB1+mix_pi3[4]*n_samF2 n0[14]<-mix_pi1[4]*n_samB1+mix_pi2[1]*n_samB2+mix_pi3[5]*n_samF2 n0[15]<-mix_pi2[2]*n_samB2+mix_pi3[6]*n_samF2 n0[16]<-mix_pi2[3]*n_samB2+mix_pi3[8]*n_samF2 gs[1]<-0.25*(mean[1]-mean[3]+mean3[3]-mean3[7]) gs[2]<-0.25*(mean[1]-mean[3]-mean3[3]+mean3[7]) gs[3]<-(-8*mean[1]-2*mean[2]-8*mean[3]-2*mean1[2]+15*mean1[3]+ 8*mean1[4]+15*mean2[2]-2*mean2[3]-8*mean3[3]-8*mean3[7])/17 gs[4]<-(-8*mean[1]-2*mean[2]-8*mean[3]+15*mean1[2]-2*mean1[3]+ 8*mean1[4]-2*mean2[2]+15*mean2[3]-8*mean3[3]-8*mean3[7])/17 gs[5]<-0.25*(mean[1]+mean[3]-mean3[3]-mean3[7]) gs[6]<--0.5*mean[1]+0.5*mean[3]+mean1[2]-mean2[3]-0.5*mean3[3]+0.5*mean3[7] gs[7]<--0.5*mean[1]+0.5*mean[3]+mean1[3]-mean2[2]+0.5*mean3[3]-0.5*mean3[7] gs[8]<-(12*mean[1]+20*mean[2]+12*mean[3]-14*mean1[2]-14*mean1[3]- 12*mean1[4]-14*mean2[2]-14*mean2[3]+12*mean3[3]+12*mean3[7])/17 g_aa1<-(0.5*(gs[2]+gs[5])^2+0.25*(gs[4]+gs[6])^2)/n_fam g_aa2<-(0.5*(gs[1]+gs[5])^2+0.25*(gs[3]+gs[7])^2)/n_fam g_aa3<-(0.5*(gs[1]-gs[5])^2+0.25*(gs[3]-gs[7])^2)/n_fam g_aa4<-(0.5*(gs[2]-gs[5])^2+0.25*(gs[4]-gs[6])^2)/n_fam g_aa5<-0.25*(gs[1]^2+gs[2]^2+gs[5]^2+(gs[1]+gs[6])^2+(gs[2]+gs[7])^2+(gs[3]+gs[8]/2)^2+(gs[4]+gs[8]/2)^2+gs[8]^2/4)/n_fam aaa0<-sigma;aa3<-1000;n_iter<-0 while (aa3>0.0001) { n_iter<-n_iter+1 aa1<-sigma/(sigma+g_aa1);aa2<-sigma/(sigma+g_aa2) aa3<-sigma/(sigma+g_aa5);aa4<-sigma/(sigma+g_aa3) aa5<-sigma/(sigma+g_aa4) sigma<-(s0[11]+aa1^2*s0[12]+aa2^2*s0[13]+aa3^2*s0[14]+aa4^2*s0[15]+aa5^2*s0[16])/(n0[11]+aa1*n0[12]+aa2*n0[13]+aa3*n0[14]+aa4*n0[15]+aa5*n0[16]) aa3<-abs(sigma-aaa0) aaa0<-sigma if(n_iter>20)break } sigma1[1]<-sigma;sigma1[2]<-sigma+g_aa1;sigma1[3]<-sigma+g_aa2;sigma1[4]<-sigma+g_aa5 sigma2[1]<-sigma1[4];sigma2[2]<-sigma+g_aa3;sigma2[3]<-sigma+g_aa4;sigma2[4]<-sigma sigma3[1]<-sigma3[3]<-sigma3[7]<-sigma3[9]<-sigma sigma3[2]<-sigma1[2];sigma3[4]<-sigma1[3];sigma3[5]<-sigma1[4] sigma3[6]<-sigma2[2];sigma3[8]<-sigma2[3] L1<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma))))+sum(log(dmixnorm(dataB1,mean1,sqrt(sigma1),mix_pi1)))+ sum(log(dmixnorm(dataB2,mean2,sqrt(sigma2),mix_pi2)))+sum(log(dmixnorm(dataF2,mean3,sqrt(sigma3),mix_pi3))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc<-L0 AIC<--2*abc+2*10 meanP1<-mean[1];meanF1<-mean[2];meanP2<-mean[3] sigma0<-sigma dataP1<-sort(dataP1) P1w1<-1/(12*n_samP1) P1bmw <- matrix(0,n_samP1,1) P1gg <- (dataP1 - mean[1])/sqrt(as.vector(sigma)) P1bmw[which(P1gg>=0)] <- pnorm(P1gg[P1gg>=0]) P1bmw[which(P1gg<0)] <- 1 - pnorm(abs(P1gg[P1gg<0])) nn <- dim(as.matrix(unique(P1bmw)))[1] if(nn < n_samP1){P1bmw <- P1bmw+runif(n_samP1)/1e4} P1dd<-c((sum(P1bmw)),(sum(P1bmw^2)),sum((P1bmw-0.5)^2)) P1w<-P1w1+sum((P1bmw - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) P1u<- as.matrix(c(12*n_samP1*((P1dd[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((P1dd[2]/n_samP1-1/3)^2),180*n_samP1*((P1dd[3]/n_samP1-1/12)^2))) P1D<-as.numeric(ks.test(P1bmw,"punif")[[1]][1]) P1tt <- as.matrix(c((1 - pchisq(P1u[1],1)),(1 - pchisq(P1u[2],1)),(1 - pchisq(P1u[3],1)),K1(P1w),(1-pkolm(P1D,n_samP1)))) P1tt[which( P1tt>=10e-4)]<-round(P1tt[which(P1tt>=10e-4)],4);P1tt[which(P1tt<10e-4)]<-format(P1tt[which(P1tt<10e-4)],scientific=TRUE,digit=4) dataF1<-sort(dataF1) F1w1<-1/(12*n_samF1) F1bmw <- matrix(0,n_samF1,1) F1gg <- (dataF1 - mean[2])/sqrt(as.vector(sigma)) F1bmw[which(F1gg>=0)] <- pnorm(F1gg[F1gg>=0]) F1bmw[which(F1gg<0)] <- 1 - pnorm(abs(F1gg[F1gg<0])) nn <- dim(as.matrix(unique(F1bmw)))[1] if(nn < n_samF1){F1bmw <- F1bmw+runif(n_samF1)/1e4} F1dd<-c((sum(F1bmw)),(sum(F1bmw^2)),sum((F1bmw-0.5)^2)) F1w<-F1w1+sum((F1bmw - (as.matrix(c(1:n_samF1)) - 0.5)/n_samF1)^2) F1u<- as.matrix(c(12*n_samF1*((F1dd[1]/n_samF1-0.5)^2),((45*n_samF1)/4)*((F1dd[2]/n_samF1-1/3)^2),180*n_samF1*((F1dd[3]/n_samF1-1/12)^2))) F1D<-as.numeric(ks.test(F1bmw,"punif")[[1]][1]) F1tt <- as.matrix(c((1 - pchisq(F1u[1],1)),(1 - pchisq(F1u[2],1)),(1 - pchisq(F1u[3],1)),K1(F1w),(1-pkolm(F1D,n_samF1)))) F1tt[which(F1tt>=10e-4)]<-round(F1tt[which(F1tt>=10e-4)],4);F1tt[which(F1tt<10e-4)]<-format(F1tt[which(F1tt<10e-4)],scientific=TRUE,digit=4) dataP2<-sort(dataP2) P2w1<-1/(12*n_samP2) P2bmw <- matrix(0,n_samP2,1) P2gg <- (dataP2 - mean[3])/sqrt(as.vector(sigma)) P2bmw[which(P2gg>=0)] <- pnorm(P2gg[P2gg>=0]) P2bmw[which(P2gg<0)] <- 1 - pnorm(abs(P2gg[P2gg<0])) nn <- dim(as.matrix(unique(P2bmw)))[1] if(nn < n_samP2){P2bmw <- P2bmw+runif(n_samP2)/1e4} P2dd<-c((sum(P2bmw)),(sum(P2bmw^2)),sum((P2bmw-0.5)^2)) P2w<-P2w1+sum((P2bmw - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) P2u<- as.matrix(c(12*n_samP2*((P2dd[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((P2dd[2]/n_samP2-1/3)^2),180*n_samP2*((P2dd[3]/n_samP2-1/12)^2))) P2D<-as.numeric(ks.test(P2bmw,"punif")[[1]][1]) P2tt <- as.matrix(c((1 - pchisq(P2u[1],1)),(1 - pchisq(P2u[2],1)),(1 - pchisq(P2u[3],1)),K1(P2w),(1-pkolm(P2D,n_samP2)))) P2tt[which(P2tt>=10e-4)]<-round(P2tt[which(P2tt>=10e-4)],4);P2tt[which(P2tt<10e-4)]<-format(P2tt[which(P2tt<10e-4)],scientific=TRUE,digit=4) dataB1 <- sort(dataB1); B1w1<-1/(12*n_samB1) B1bmw <- matrix(0,n_samB1,1); B1bmwsl <- matrix(0,n_samB1,4) for(i in 1:4){ B1gg <- (dataB1 - mean1[i])/sqrt(sigma1[i]) B1bmw[which(B1gg>=0)] <- pnorm(B1gg[B1gg>=0]) B1bmw[which(B1gg<0)] <- 1 - pnorm(abs(B1gg[B1gg<0])) B1bmwsl[,i] <- B1bmw*mix_pi1[i] } B1P2 <- rowSums(B1bmwsl) nn <- dim(as.matrix(unique(B1P2)))[1] if(nn < n_samB1){B1P2 <- B1P2+runif(n_samB1)/1e4} B1dd <- as.matrix(c(sum(B1P2),sum(B1P2^2),sum((B1P2-0.5)^2))) B1WW2 <- 1/(12*n_samB1) + sum((B1P2 - (as.matrix(c(1:n_samB1)) - 0.5)/n_samB1)^2) B1u <- as.matrix(c(12*n_samB1*((B1dd[1]/n_samB1-0.5)^2),((45*n_samB1)/4)*((B1dd[2]/n_samB1-1/3)^2),180*n_samB1*((B1dd[3]/n_samB1-1/12)^2))) B1D <- as.numeric(ks.test(B1P2,"punif")[[1]][1]) B1tt <- as.matrix(c((1 - pchisq(B1u[1],1)),(1 - pchisq(B1u[2],1)),(1 - pchisq(B1u[3],1)),K1(B1WW2),(1-pkolm(B1D,n_samB1)))) B1tt[which( B1tt>=10e-4)]<-round(B1tt[which(B1tt>=10e-4)],4);B1tt[which(B1tt<10e-4)]<-format(B1tt[which(B1tt<10e-4)],scientific=TRUE,digit=4) dataB2 <- sort(dataB2); B2w1<-1/(12*n_samB2) B2bmw <- matrix(0,n_samB2,1); B2bmwsl <- matrix(0,n_samB2,4) for(i in 1:4){ B2gg <- (dataB2 - mean2[i])/sqrt(sigma2[i]) B2bmw[which(B2gg>=0)] <- pnorm(B2gg[B2gg>=0]) B2bmw[which(B2gg<0)] <- 1 - pnorm(abs(B2gg[B2gg<0])) B2bmwsl[,i] <- B2bmw*mix_pi2[i] } B2P2 <- rowSums(B2bmwsl) nn <- dim(as.matrix(unique(B2P2)))[1] if(nn < n_samB2){B2P2 <- B2P2+runif(n_samB2)/1e4} B2dd <- as.matrix(c(sum(B2P2),sum(B2P2^2),sum((B2P2-0.5)^2))) B2WW2 <- 1/(12*n_samB2) + sum((B2P2 - (as.matrix(c(1:n_samB2)) - 0.5)/n_samB2)^2) B2u <- as.matrix(c(12*n_samB2*((B2dd[1]/n_samB2-0.5)^2),((45*n_samB2)/4)*((B2dd[2]/n_samB2-1/3)^2),180*n_samB2*((B2dd[3]/n_samB2-1/12)^2))) B2D <- as.numeric(ks.test(B2P2,"punif")[[1]][1]) B2tt <- as.matrix(c((1 - pchisq(B2u[1],1)),(1 - pchisq(B2u[2],1)),(1 - pchisq(B2u[3],1)),K1(B2WW2),(1-pkolm(B2D,n_samB2)))) B2tt[which( B2tt>=10e-4)]<-round(B2tt[which(B2tt>=10e-4)],4);B2tt[which(B2tt<10e-4)]<-format(B2tt[which(B2tt<10e-4)],scientific=TRUE,digit=4) dataF2 <- sort(dataF2); F2w1<-1/(12*n_samF2) F2bmw <- matrix(0,n_samF2,1); F2bmwsl <- matrix(0,n_samF2,9) for(i in 1:9){ F2gg <- (dataF2 - mean3[i])/sqrt(sigma3[i]) F2bmw[which(F2gg>=0)] <- pnorm(F2gg[F2gg>=0]) F2bmw[which(F2gg<0)] <- 1 - pnorm(abs(F2gg[F2gg<0])) F2bmwsl[,i] <- F2bmw*mix_pi3[i] } F2P2 <- rowSums(F2bmwsl) nn <- dim(as.matrix(unique(F2P2)))[1] if(nn < n_samF2){F2P2 <- F2P2+runif(n_samF2)/1e4} F2dd <- as.matrix(c(sum(F2P2),sum(F2P2^2),sum((F2P2-0.5)^2))) F2WW2 <- 1/(12*n_samF2) + sum((F2P2 - (as.matrix(c(1:n_samF2)) - 0.5)/n_samF2)^2) F2u <- as.matrix(c(12*n_samF2*((F2dd[1]/n_samF2-0.5)^2),((45*n_samF2)/4)*((F2dd[2]/n_samF2-1/3)^2),180*n_samF2*((F2dd[3]/n_samF2-1/12)^2))) F2D <- as.numeric(ks.test(F2P2,"punif")[[1]][1]) F2tt <- as.matrix(c((1 - pchisq(F2u[1],1)),(1 - pchisq(F2u[2],1)),(1 - pchisq(F2u[3],1)),K1(F2WW2),(1-pkolm(F2D,n_samF2)))) F2tt[which( F2tt>=10e-4)]<-round(F2tt[which(F2tt>=10e-4)],4);F2tt[which(F2tt<10e-4)]<-format(F2tt[which(F2tt<10e-4)],scientific=TRUE,digit=4) aa<-matrix(c(1,1,1,0,0,1,0,0,0,1,0,0,1,1,0,0,0,1,1,-1,-1,0,0,1,0,0,0, 1,1,0,0,0.5,0,0.5,0,0,1,0,1,0.5,0,0,0,0.5,0,1,0,0,0.5,0.5,0,0,0,0.25, 1,0,-1,0.5,0,0,0,-0.5,0,1,-1,0,0,0.5,0,-0.5,0,0,1,1,-1,0,0,-1,0,0,0, 1,-1,1,0,0,-1,0,0,0),10,9,byrow=T) mm<-as.matrix(c(mean[1],mean[2],mean[3],mean1[2],mean1[3],mean1[4],mean2[2],mean2[3],mean3[3],mean3[7])) B<-solve(crossprod(aa,aa))%*%crossprod(aa,mm) jj1<-sigmaB1-sigma1[1] if (jj1<0 ) {jj1<-0} ll1<-jj1/sigmaB1 jj2<-sigmaB2-sigma2[4] if (jj2<0) {jj2<-0} ll2<-jj2/sigmaB2 jj3<-sigmaF2-sigma3[1] if (jj3<0) {jj3<-0} ll3<-jj3/sigmaF2 output <- data.frame("2MG-ADI",round(abc,4),round(AIC,4),round(meanP1,4),round(meanF1,4),round(meanP2,4), round(sigma0,4),round(t(mean1),4),round(t(sigma1),4), round(t(mix_pi1),4),round(t(mean2),4),round(t(sigma2),4),round(t(mix_pi2),4), round(t(mean3),4),round(t(sigma3),4),round(t(mix_pi3),4), round(B[1],4)," "," "," "," "," ",round(B[2],4),round(B[3],4),round(B[4],4),round(B[5],4),round(B[6],4),round(B[7],4),round(B[8],4),round(B[9],4)," "," ", round(jj1,4),round(ll1*100,4)," "," ",round(jj2,4),round(ll2*100,4)," "," ",round(jj3,4),round(ll3*100,4)," "," ", round(P1u[1],4),P1tt[1],round(P1u[2],4),P1tt[2],round(P1u[3],4),P1tt[3],round(P1w,4),P1tt[4],round(P1D,4),P1tt[5], round(F1u[1],4),F1tt[1],round(F1u[2],4),F1tt[2],round(F1u[3],4),F1tt[3],round(F1w,4),F1tt[4],round(F1D,4),F1tt[5], round(P2u[1],4),P2tt[1],round(P2u[2],4),P2tt[2],round(P2u[3],4),P2tt[3],round(P2w,4),P2tt[4],round(P2D,4),P2tt[5], round(B1u[1],4),B1tt[1],round(B1u[2],4),B1tt[2],round(B1u[3],4),B1tt[3],round(B1WW2,4),B1tt[4],round(B1D,4),B1tt[5], round(B2u[1],4),B2tt[1],round(B2u[2],4),B2tt[2],round(B2u[3],4),B2tt[3],round(B2WW2,4),B2tt[4],round(B2D,4),B2tt[5], round(F2u[1],4),F2tt[1],round(F2u[2],4),F2tt[2],round(F2u[3],4),F2tt[3],round(F2WW2,4),F2tt[4],round(F2D,4),F2tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi1,mi2,mi3) return(OUTPUT) } G6FModelFun[[6]] <- function(K1,logL,df11,df21,df31,df41,df51,df61,G6Ftext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataF1 <- as.matrix(as.numeric(df21[,1])) dataP2 <- as.matrix(as.numeric(df31[,1]));dataB1 <- as.matrix(as.numeric(df41[,1])) dataB2 <- as.matrix(as.numeric(df51[,1]));dataF2 <- as.matrix(as.numeric(df61[,1])) n_samP1<-dim(dataP1)[1];n_samF1<-dim(dataF1)[1];n_samP2<-dim(dataP2)[1] n_samB1<-dim(dataB1)[1];n_samB2<-dim(dataB2)[1];n_samF2<-dim(dataF2)[1] sumx<-as.matrix(c(sum(dataP1),sum(dataF1),sum(dataP2),sum(dataB1),sum(dataB2),sum(dataF2))) s<-as.matrix(c(sum(dataP1^2),sum(dataF1^2),sum(dataP2^2),sum(dataB1^2),sum(dataB2^2),sum(dataF2^2))) ss<-matrix(0,3,1);ss[1]<-s[1]-sumx[1]^2/n_samP1;ss[2]<-s[2]-sumx[2]^2/n_samF1;ss[3]<-s[3]-sumx[3]^2/n_samP2 mean<-as.matrix(c(mean(dataP1),mean(dataF1),mean(dataP2),mean(dataB1),mean(dataB2),mean(dataF2))) sigma0<-sum(ss)/(n_samP1+n_samF1+n_samP2-3) sigmaB1<-var(dataB1);sigma40<-sigmaB1 sigmaB2<-var(dataB2);sigma50<-sigmaB2 sigmaF2<-var(dataF2);sigma60<-sigmaF2 sigmaP1<-sigmaF1<-sigmaP2<-sigma0 m_esp <- 0.0001;n_fam <- as.numeric(G6Ftext2) mi1<-matrix(0.25,4,1);sigma1<-matrix(0,4,1) mi2<-matrix(0.25,4,1);sigma2<-matrix(0,4,1) mi3<-as.matrix(c(0.0625,0.125,0.0625,0.125,0.25,0.125,0.0625,0.125,0.0625));sigma3<-matrix(0,9,1) sigma<-sigma0 a1<-sqrt(sigmaB1/n_samB1) if (mean[1]<mean[3]) a1<--a1 mean1<-as.matrix(c(mean[4]+2.4*a1,mean[4]+0.8*a1,mean[4]-0.8*a1,mean[4]-2.4*a1)) a2<-sqrt(sigmaB2/n_samB2) if (mean[1]<mean[3]) a2<--a2 mean2<-as.matrix(c(mean[5]+2.4*a2,mean[5]+0.8*a2,mean[5]-0.8*a2,mean[5]-2.4*a2)) a3<-sqrt(sigmaF2/n_samF2) if (mean[1]<mean[3]) a3<--a3 mean3<-as.matrix(c(mean[6]+2.4*a3,mean[6]+1.8*a3,mean[6]+1.2*a3,mean[6]+0.6*a3,mean[6],mean[6]-0.6*a3,mean[6]-1.2*a3,mean[6]-1.8*a3,mean[6]-2.4*a3)) gs<-matrix(0,4,1) gs[1]<-(mean[1]-mean[3]+mean1[2]-mean2[3]+mean3[3]-mean3[7])/6 gs[2]<-(mean[1]-mean[3]+mean1[3]-mean2[2]-mean3[3]+mean3[7])/6 gs[3]<--mean[1]/7+3*mean[2]/7-mean[3]/7-0.5*mean1[2]+0.5*mean1[3]+ mean1[4]/7+0.5*mean2[2]-0.5*mean2[3]-mean3[3]/7-mean3[7]/7 gs[4]<--mean[1]/7+3*mean[2]/7-mean[3]/7+0.5*mean1[2]-0.5*mean1[3]+ mean1[4]/7-0.5*mean2[2]+0.5*mean2[3]-mean3[3]/7-mean3[7]/7 g_aa1<-(0.5*gs[2]^2+0.25*gs[4]^2)/n_fam g_aa2<-(0.5*gs[1]^2+0.25*gs[3]^2)/n_fam g_aa3<-g_aa1+g_aa2 sigma1[1]<-sigma;sigma1[2]<-sigma+g_aa1;sigma1[3]<-sigma+g_aa2;sigma1[4]<-sigma+g_aa3 sigma2[1]<-sigma1[4];sigma2[2]<-sigma1[3];sigma2[3]<-sigma1[2];sigma2[4]<-sigma sigma3[1]<-sigma3[3]<-sigma3[7]<-sigma3[9]<-sigma sigma3[2]<-sigma3[8]<-sigma1[2] sigma3[4]<-sigma3[6]<-sigma1[3] sigma3[5]<-sigma1[4] L0<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma0))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma0))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma0))))+sum(log(dmixnorm(dataB1,mean1,sqrt(sigma1),mi1)))+ sum(log(dmixnorm(dataB2,mean2,sqrt(sigma2),mi2)))+sum(log(dmixnorm(dataF2,mean3,sqrt(sigma3),mi3))) iteration <- 0; stopa <- 1000 W1 <- matrix(0,4,n_samB1); swx1 <- matrix(0,4,1) W2 <- matrix(0,4,n_samB2); swx2 <- matrix(0,4,1) W3 <- matrix(0,9,n_samF2); swx3 <- matrix(0,9,1) s0<-matrix(0,14,1);n0<-matrix(0,14,1) hh<-matrix(0,5,5);b_line<-matrix(0,5,1) while(stopa > m_esp&&iteration<=1000){ iteration <- iteration + 1 for(i in 1:4) { W1[i,] <- mi1[i]*dnorm(dataB1,mean1[i],sqrt(sigma1[i]))/dmixnorm(dataB1,mean1,sqrt(sigma1),mi1) } mix_pi1 <- as.matrix(rowSums(W1)/n_samB1) sumwx1 <- W1%*%dataB1 for(i in 1:4) { W2[i,] <- mi2[i]*dnorm(dataB2,mean2[i],sqrt(sigma2[i]))/dmixnorm(dataB2,mean2,sqrt(sigma2),mi2) } mix_pi2 <- as.matrix(rowSums(W2)/n_samB2) sumwx2 <- W2%*%dataB2 for(i in 1:9) { W3[i,] <- mi3[i]*dnorm(dataF2,mean3[i],sqrt(sigma3[i]))/dmixnorm(dataF2,mean3,sqrt(sigma3),mi3) } mix_pi3 <- as.matrix(rowSums(W3)/n_samF2) sumwx3 <- W3%*%dataF2 aaa0<-0 s0[1]<-sumx[1]+sumwx1[1]+sumwx3[1];s0[2]<-sumx[2] s0[3]<-sumx[3]+sumwx2[4]+sumwx3[9];s0[4]<-sumwx1[2]+sumwx3[2] s0[5]<-sumwx1[3]+sumwx3[4];s0[6]<-sumwx1[4]+sumwx2[1]+sumwx3[5] s0[7]<-sumwx2[2]+sumwx3[6];s0[8]<-sumwx2[3]+sumwx3[8] s0[9]<-sumwx3[3];s0[10]<-sumwx3[7] n0[1]<-n_samP1+mix_pi1[1]*n_samB1+mix_pi3[1]*n_samF2;n0[2]<-n_samF1 n0[3]<-n_samP2+mix_pi2[4]*n_samB2+mix_pi3[9]*n_samF2;n0[4]<-mix_pi1[2]*n_samB1+mix_pi3[2]*n_samF2 n0[5]<-mix_pi1[3]*n_samB1+mix_pi3[4]*n_samF2;n0[6]<-mix_pi1[4]*n_samB1+mix_pi2[1]*n_samB2+mix_pi3[5]*n_samF2 n0[7]<-mix_pi2[2]*n_samB2+mix_pi3[6]*n_samF2;n0[8]<-mix_pi2[3]*n_samB2+mix_pi3[8]*n_samF2 n0[9]<-mix_pi3[3]*n_samF2;n0[10]<-mix_pi3[7]*n_samF2 s0[c(1:10)][abs(s0[c(1:10)])<0.000001]<-0.000001;n0[c(1:10)][abs(n0[c(1:10)])<0.000001]<-0.000001 n_iter<-0;aaa1<-1000;AA<-matrix(0,5,1) while (aaa1>0.0001) { n_iter<-n_iter+1 gs[1]<-(mean[1]-mean[3]+mean1[2]-mean2[3]+mean3[3]-mean3[7])/6 gs[2]<-(mean[1]-mean[3]+mean1[3]-mean2[2]-mean3[3]+mean3[7])/6 gs[3]<--mean[1]/7+3*mean[2]/7-mean[3]/7-0.5*mean1[2]+0.5*mean1[3]+ mean1[4]/7+0.5*mean2[2]-0.5*mean2[3]-mean3[3]/7-mean3[7]/7 gs[4]<--mean[1]/7+3*mean[2]/7-mean[3]/7+0.5*mean1[2]-0.5*mean1[3]+ mean1[4]/7-0.5*mean2[2]+0.5*mean2[3]-mean3[3]/7-mean3[7]/7 g_aa1<-(0.5*gs[2]^2+0.25*gs[4]^2)/n_fam g_aa2<-(0.5*gs[1]^2+0.25*gs[3]^2)/n_fam g_aa3<-g_aa1+g_aa2 sigma1[2]<-sigma+g_aa1;sigma1[3]<-sigma+g_aa2;sigma1[4]<-sigma+g_aa3 sigma2[1]<-sigma1[4];sigma2[2]<-sigma1[3];sigma2[3]<-sigma1[2];sigma2[4]<-sigma sigma3[1]<-sigma3[3]<-sigma3[7]<-sigma3[9]<-sigma sigma3[2]<-sigma3[8]<-sigma1[2] sigma3[4]<-sigma1[3];sigma3[5]<-sigma1[4];sigma3[6]<-sigma1[3] hh[1,1]<-sigma*(1/n0[1]+1/n0[3]+1/n0[9]+1/n0[10]) hh[1,2]<-sigma*(1/n0[1]-1/n0[3]-1/n0[9]+1/n0[10]) hh[1,3]<-sigma*(1/n0[1]-1/n0[3]+1/n0[9]-1/n0[10]) hh[1,4]<-sigma*(5/n0[1]+19/n0[3]) hh[1,5]<-sigma*(1/n0[1]+1/n0[3]) hh[2,2]<-sigma*(1/n0[1]+1/n0[3]+1/n0[9]+1/n0[10])+sigma1[2]*(4/n0[4]+4/n0[8]) hh[2,3]<-sigma*(1/n0[1]+1/n0[3]-1/n0[9]-1/n0[10]) hh[2,4]<-sigma*(5/n0[1]-19/n0[3])-28*sigma1[2]/n0[8] hh[2,5]<-sigma*(1/n0[1]-1/n0[3]) hh[3,3]<-sigma*(1/n0[1]+1/n0[3]+1/n0[9]+1/n0[10])+sigma1[3]*(4/n0[5]+4/n0[7]) hh[3,4]<-sigma*(5/n0[1]-19/n0[3])-28*sigma1[3]/n0[7] hh[3,5]<-sigma*(1/n0[1]-1/n0[3]) hh[4,4]<-sigma*(25/n0[1]+100/n0[2]+361/n0[3])+196*sigma1[3]/n0[7]+196*sigma1[2]/n0[8]+36*sigma1[4]/n0[6] hh[4,5]<-sigma*(5/n0[1]+20/n0[2]+19/n0[3])+24*sigma1[4]/n0[6] hh[5,5]<-sigma*(1/n0[1]+4/n0[2]+1/n0[3])+16*sigma1[4]/n0[6] for(i in 2:5) { for(j in 1:(i-1)) { hh[i,j]<-hh[j,i] } } b_line[1]<-s0[1]/n0[1]+s0[3]/n0[3]-s0[9]/n0[9]-s0[10]/n0[10] b_line[2]<-s0[1]/n0[1]-s0[3]/n0[3]-2*s0[4]/n0[4]+2*s0[8]/n0[8]+s0[9]/n0[9]-s0[10]/n0[10] b_line[3]<-s0[1]/n0[1]-s0[3]/n0[3]-2*s0[5]/n0[5]+2*s0[7]/n0[7]-s0[9]/n0[9]+s0[10]/n0[10] b_line[4]<-5*s0[1]/n0[1]+10*s0[2]/n0[2]+19*s0[3]/n0[3]-14*s0[7]/n0[7]-14*s0[8]/n0[8]-6*s0[6]/n0[6] b_line[5]<-s0[1]/n0[1]+2*s0[2]/n0[2]+s0[3]/n0[3]-4*s0[6]/n0[6] B<-solve(hh,b_line) mean[1]<-(s0[1]-sigma*(B[1]+B[2]+B[3]+5*B[4]+B[5]))/n0[1] mean[2]<-(s0[2]-sigma*(10*B[4]+2*B[5]))/n0[2] mean[3]<-(s0[3]-sigma*(B[1]-B[2]-B[3]+19*B[4]+B[5]))/n0[3] mean1[2]<-(s0[4]+2*B[2]*sigma1[2])/n0[4] mean1[3]<-(s0[5]+2*B[3]*sigma1[3])/n0[5] mean1[4]<-(s0[6]+sigma1[4]*(6*B[4]+4*B[5]))/n0[6] mean2[2]<-(s0[7]-sigma1[3]*(2*B[3]-14*B[4]))/n0[7] mean2[3]<-(s0[8]-sigma1[2]*(2*B[2]-14*B[4]))/n0[8] mean3[3]<-(s0[9]+sigma*(B[1]-B[2]+B[3]))/n0[9] mean3[7]<-(s0[10]+sigma*(B[1]+B[2]-B[3]))/n0[10] mean1[1]<-mean[1];mean2[1]<-mean1[4];mean2[4]<-mean[3] mean3[1]<-mean[1];mean3[2]<-mean1[2];mean3[4]<-mean1[3] mean3[5]<-mean1[4];mean3[6]<-mean2[2];mean3[8]<-mean2[3];mean3[9]<-mean[3] aaa1<-max(abs(B-AA)) AA<-B if(n_iter>20)break } ss1<-sum((dataP1-mean[1])^2);ss3<-sum((dataP2-mean[3])^2);ss2<-sum((dataF1-mean[2])^2) for(i in 1:4) {swx1[i] <- W1[i,]%*%(dataB1-mean1[i])^2 };for(i in 1:4) {swx2[i] <- W2[i,]%*%(dataB2-mean2[i])^2 };for(i in 1:9) {swx3[i] <- W3[i,]%*%(dataF2-mean3[i])^2 } s0[11]<-ss1+ss2+ss3+swx1[1]+swx2[4]+swx3[1]+swx3[3]+swx3[7]+swx3[9] n0[11]<-n_samP1+n_samF1+n_samP2+mix_pi1[1]*n_samB1+mix_pi2[4]*n_samB2+(mix_pi3[1]+mix_pi3[3]+mix_pi3[7]+mix_pi3[9])*n_samF2 s0[12]<-swx1[2]+swx2[3]+swx3[2]+swx3[8];s0[13]<-swx1[3]+swx2[2]+swx3[4]+swx3[6];s0[14]<-swx1[4]+swx2[1]+swx3[5] n0[12]<-mix_pi1[2]*n_samB1+mix_pi2[3]*n_samB2+mix_pi3[2]*n_samF2+mix_pi3[8]*n_samF2 n0[13]<-mix_pi1[3]*n_samB1+mix_pi2[2]*n_samB2+mix_pi3[4]*n_samF2+mix_pi3[6]*n_samF2 n0[14]<-mix_pi1[4]*n_samB1+mix_pi2[1]*n_samB2+mix_pi3[5]*n_samF2 gs[1]<-(mean[1]-mean[3]+mean1[2]-mean2[3]+mean3[3]-mean3[7])/6 gs[2]<-(mean[1]-mean[3]+mean1[3]-mean2[2]-mean3[3]+mean3[7])/6 gs[3]<--mean[1]/7+3*mean[2]/7-mean[3]/7-0.5*mean1[2]+0.5*mean1[3]+ mean1[4]/7+0.5*mean2[2]-0.5*mean2[3]-mean3[3]/7-mean3[7]/7 gs[4]<--mean[1]/7+3*mean[2]/7-mean[3]/7+0.5*mean1[2]-0.5*mean1[3]+ mean1[4]/7-0.5*mean2[2]+0.5*mean2[3]-mean3[3]/7-mean3[7]/7 g_aa1<-(0.5*gs[2]^2+0.25*gs[4]^2)/n_fam g_aa2<-(0.5*gs[1]^2+0.25*gs[3]^2)/n_fam g_aa3<-g_aa1+g_aa2 aaa0<-sigma;aa3<-1000;n_iter<-0 while (aa3>0.0001) { n_iter<-n_iter+1 aa1<-sigma/(sigma+g_aa1) aa2<-sigma/(sigma+g_aa2) aa3<-sigma/(sigma+g_aa3) sigma<-(s0[11]+aa1^2*s0[12]+aa2^2*s0[13]+aa3^2*s0[14])/(n0[11]+aa1*n0[12]+aa2*n0[13]+aa3*n0[14]) aa3<-abs(sigma-aaa0) aaa0<-sigma if(n_iter>20)break } sigma1[1]<-sigma;sigma1[2]<-sigma+g_aa1;sigma1[3]<-sigma+g_aa2;sigma1[4]<-sigma+g_aa3 sigma2[1]<-sigma1[4];sigma2[2]<-sigma1[3];sigma2[3]<-sigma1[2];sigma2[4]<-sigma sigma3[1]<-sigma3[3]<-sigma3[7]<-sigma3[9]<-sigma sigma3[2]<-sigma3[8]<-sigma1[2] sigma3[4]<-sigma3[6]<-sigma1[3] sigma3[5]<-sigma1[4] L1<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma))))+sum(log(dmixnorm(dataB1,mean1,sqrt(sigma1),mix_pi1)))+ sum(log(dmixnorm(dataB2,mean2,sqrt(sigma2),mix_pi2)))+sum(log(dmixnorm(dataF2,mean3,sqrt(sigma3),mix_pi3))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc<-L0 AIC<--2*abc+2*6 meanP1<-mean[1];meanF1<-mean[2];meanP2<-mean[3] sigma0<-sigma dataP1<-sort(dataP1) P1w1<-1/(12*n_samP1) P1bmw <- matrix(0,n_samP1,1) P1gg <- (dataP1 - mean[1])/sqrt(as.vector(sigma)) P1bmw[which(P1gg>=0)] <- pnorm(P1gg[P1gg>=0]) P1bmw[which(P1gg<0)] <- 1 - pnorm(abs(P1gg[P1gg<0])) nn <- dim(as.matrix(unique(P1bmw)))[1] if(nn < n_samP1){P1bmw <- P1bmw+runif(n_samP1)/1e4} P1dd<-c((sum(P1bmw)),(sum(P1bmw^2)),sum((P1bmw-0.5)^2)) P1w<-P1w1+sum((P1bmw - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) P1u<- as.matrix(c(12*n_samP1*((P1dd[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((P1dd[2]/n_samP1-1/3)^2),180*n_samP1*((P1dd[3]/n_samP1-1/12)^2))) P1D<-as.numeric(ks.test(P1bmw,"punif")[[1]][1]) P1tt <- as.matrix(c((1 - pchisq(P1u[1],1)),(1 - pchisq(P1u[2],1)),(1 - pchisq(P1u[3],1)),K1(P1w),(1-pkolm(P1D,n_samP1)))) P1tt[which( P1tt>=10e-4)]<-round(P1tt[which(P1tt>=10e-4)],4);P1tt[which(P1tt<10e-4)]<-format(P1tt[which(P1tt<10e-4)],scientific=TRUE,digit=4) dataF1<-sort(dataF1) F1w1<-1/(12*n_samF1) F1bmw <- matrix(0,n_samF1,1) F1gg <- (dataF1 - mean[2])/sqrt(as.vector(sigma)) F1bmw[which(F1gg>=0)] <- pnorm(F1gg[F1gg>=0]) F1bmw[which(F1gg<0)] <- 1 - pnorm(abs(F1gg[F1gg<0])) nn <- dim(as.matrix(unique(F1bmw)))[1] if(nn < n_samF1){F1bmw <- F1bmw+runif(n_samF1)/1e4} F1dd<-c((sum(F1bmw)),(sum(F1bmw^2)),sum((F1bmw-0.5)^2)) F1w<-F1w1+sum((F1bmw - (as.matrix(c(1:n_samF1)) - 0.5)/n_samF1)^2) F1u<- as.matrix(c(12*n_samF1*((F1dd[1]/n_samF1-0.5)^2),((45*n_samF1)/4)*((F1dd[2]/n_samF1-1/3)^2),180*n_samF1*((F1dd[3]/n_samF1-1/12)^2))) F1D<-as.numeric(ks.test(F1bmw,"punif")[[1]][1]) F1tt <- as.matrix(c((1 - pchisq(F1u[1],1)),(1 - pchisq(F1u[2],1)),(1 - pchisq(F1u[3],1)),K1(F1w),(1-pkolm(F1D,n_samF1)))) F1tt[which(F1tt>=10e-4)]<-round(F1tt[which(F1tt>=10e-4)],4);F1tt[which(F1tt<10e-4)]<-format(F1tt[which(F1tt<10e-4)],scientific=TRUE,digit=4) dataP2<-sort(dataP2) P2w1<-1/(12*n_samP2) P2bmw <- matrix(0,n_samP2,1) P2gg <- (dataP2 - mean[3])/sqrt(as.vector(sigma)) P2bmw[which(P2gg>=0)] <- pnorm(P2gg[P2gg>=0]) P2bmw[which(P2gg<0)] <- 1 - pnorm(abs(P2gg[P2gg<0])) nn <- dim(as.matrix(unique(P2bmw)))[1] if(nn < n_samP2){P2bmw <- P2bmw+runif(n_samP2)/1e4} P2dd<-c((sum(P2bmw)),(sum(P2bmw^2)),sum((P2bmw-0.5)^2)) P2w<-P2w1+sum((P2bmw - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) P2u<- as.matrix(c(12*n_samP2*((P2dd[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((P2dd[2]/n_samP2-1/3)^2),180*n_samP2*((P2dd[3]/n_samP2-1/12)^2))) P2D<-as.numeric(ks.test(P2bmw,"punif")[[1]][1]) P2tt <- as.matrix(c((1 - pchisq(P2u[1],1)),(1 - pchisq(P2u[2],1)),(1 - pchisq(P2u[3],1)),K1(P2w),(1-pkolm(P2D,n_samP2)))) P2tt[which(P2tt>=10e-4)]<-round(P2tt[which(P2tt>=10e-4)],4);P2tt[which(P2tt<10e-4)]<-format(P2tt[which(P2tt<10e-4)],scientific=TRUE,digit=4) dataB1 <- sort(dataB1); B1w1<-1/(12*n_samB1) B1bmw <- matrix(0,n_samB1,1); B1bmwsl <- matrix(0,n_samB1,4) for(i in 1:4){ B1gg <- (dataB1 - mean1[i])/sqrt(sigma1[i]) B1bmw[which(B1gg>=0)] <- pnorm(B1gg[B1gg>=0]) B1bmw[which(B1gg<0)] <- 1 - pnorm(abs(B1gg[B1gg<0])) B1bmwsl[,i] <- B1bmw*mix_pi1[i] } B1P2 <- rowSums(B1bmwsl) nn <- dim(as.matrix(unique(B1P2)))[1] if(nn < n_samB1){B1P2 <- B1P2+runif(n_samB1)/1e4} B1dd <- as.matrix(c(sum(B1P2),sum(B1P2^2),sum((B1P2-0.5)^2))) B1WW2 <- 1/(12*n_samB1) + sum((B1P2 - (as.matrix(c(1:n_samB1)) - 0.5)/n_samB1)^2) B1u <- as.matrix(c(12*n_samB1*((B1dd[1]/n_samB1-0.5)^2),((45*n_samB1)/4)*((B1dd[2]/n_samB1-1/3)^2),180*n_samB1*((B1dd[3]/n_samB1-1/12)^2))) B1D <- as.numeric(ks.test(B1P2,"punif")[[1]][1]) B1tt <- as.matrix(c((1 - pchisq(B1u[1],1)),(1 - pchisq(B1u[2],1)),(1 - pchisq(B1u[3],1)),K1(B1WW2),(1-pkolm(B1D,n_samB1)))) B1tt[which( B1tt>=10e-4)]<-round(B1tt[which(B1tt>=10e-4)],4);B1tt[which(B1tt<10e-4)]<-format(B1tt[which(B1tt<10e-4)],scientific=TRUE,digit=4) dataB2 <- sort(dataB2); B2w1<-1/(12*n_samB2) B2bmw <- matrix(0,n_samB2,1); B2bmwsl <- matrix(0,n_samB2,4) for(i in 1:4){ B2gg <- (dataB2 - mean2[i])/sqrt(sigma2[i]) B2bmw[which(B2gg>=0)] <- pnorm(B2gg[B2gg>=0]) B2bmw[which(B2gg<0)] <- 1 - pnorm(abs(B2gg[B2gg<0])) B2bmwsl[,i] <- B2bmw*mix_pi2[i] } B2P2 <- rowSums(B2bmwsl) nn <- dim(as.matrix(unique(B2P2)))[1] if(nn < n_samB2){B2P2 <- B2P2+runif(n_samB2)/1e4} B2dd <- as.matrix(c(sum(B2P2),sum(B2P2^2),sum((B2P2-0.5)^2))) B2WW2 <- 1/(12*n_samB2) + sum((B2P2 - (as.matrix(c(1:n_samB2)) - 0.5)/n_samB2)^2) B2u <- as.matrix(c(12*n_samB2*((B2dd[1]/n_samB2-0.5)^2),((45*n_samB2)/4)*((B2dd[2]/n_samB2-1/3)^2),180*n_samB2*((B2dd[3]/n_samB2-1/12)^2))) B2D <- as.numeric(ks.test(B2P2,"punif")[[1]][1]) B2tt <- as.matrix(c((1 - pchisq(B2u[1],1)),(1 - pchisq(B2u[2],1)),(1 - pchisq(B2u[3],1)),K1(B2WW2),(1-pkolm(B2D,n_samB2)))) B2tt[which( B2tt>=10e-4)]<-round(B2tt[which(B2tt>=10e-4)],4);B2tt[which(B2tt<10e-4)]<-format(B2tt[which(B2tt<10e-4)],scientific=TRUE,digit=4) dataF2 <- sort(dataF2); F2w1<-1/(12*n_samF2) F2bmw <- matrix(0,n_samF2,1); F2bmwsl <- matrix(0,n_samF2,9) for(i in 1:9){ F2gg <- (dataF2 - mean3[i])/sqrt(sigma3[i]) F2bmw[which(F2gg>=0)] <- pnorm(F2gg[F2gg>=0]) F2bmw[which(F2gg<0)] <- 1 - pnorm(abs(F2gg[F2gg<0])) F2bmwsl[,i] <- F2bmw*mix_pi3[i] } F2P2 <- rowSums(F2bmwsl) nn <- dim(as.matrix(unique(F2P2)))[1] if(nn < n_samF2){F2P2 <- F2P2+runif(n_samF2)/1e4} F2dd <- as.matrix(c(sum(F2P2),sum(F2P2^2),sum((F2P2-0.5)^2))) F2WW2 <- 1/(12*n_samF2) + sum((F2P2 - (as.matrix(c(1:n_samF2)) - 0.5)/n_samF2)^2) F2u <- as.matrix(c(12*n_samF2*((F2dd[1]/n_samF2-0.5)^2),((45*n_samF2)/4)*((F2dd[2]/n_samF2-1/3)^2),180*n_samF2*((F2dd[3]/n_samF2-1/12)^2))) F2D <- as.numeric(ks.test(F2P2,"punif")[[1]][1]) F2tt <- as.matrix(c((1 - pchisq(F2u[1],1)),(1 - pchisq(F2u[2],1)),(1 - pchisq(F2u[3],1)),K1(F2WW2),(1-pkolm(F2D,n_samF2)))) F2tt[which( F2tt>=10e-4)]<-round(F2tt[which(F2tt>=10e-4)],4);F2tt[which(F2tt<10e-4)]<-format(F2tt[which(F2tt<10e-4)],scientific=TRUE,digit=4) aa<-matrix(c(1,1,1,0,0,1,0,0,1,1,1,-1,-1,0,0,1,1,0,0,0.5,1,0,1,0.5,0,1,0,0,0.5,0.5, 1,0,-1,0.5,0,1,-1,0,0,0.5,1,1,-1,0,0,1,-1,1,0,0),10,5,byrow=T) mm<-as.matrix(c(mean[1],mean[2],mean[3],mean1[2],mean1[3],mean1[4],mean2[2],mean2[3],mean3[3],mean3[7])) B1<-solve(crossprod(aa,aa))%*%crossprod(aa,mm) jj1<-sigmaB1-sigma1[1] if (jj1<0 ) {jj1<-0} ll1<-jj1/sigmaB1 jj2<-sigmaB2-sigma2[4] if (jj2<0) {jj2<-0} ll2<-jj2/sigmaB2 jj3<-sigmaF2-sigma3[1] if (jj3<0) {jj3<-0} ll3<-jj3/sigmaF2 output <- data.frame("2MG-AD",round(abc,4),round(AIC,4),round(meanP1,4),round(meanF1,4),round(meanP2,4), round(sigma0,4),round(t(mean1),4),round(t(sigma1),4), round(t(mix_pi1),4),round(t(mean2),4),round(t(sigma2),4),round(t(mix_pi2),4), round(t(mean3),4),round(t(sigma3),4),round(t(mix_pi3),4), round(B1[1],4)," "," "," "," "," ",round(B1[2],4),round(B1[3],4),round(B1[4],4),round(B1[5],4)," "," "," "," "," "," ", round(jj1,4),round(ll1*100,4)," "," ",round(jj2,4),round(ll2*100,4)," "," ",round(jj3,4),round(ll3*100,4)," "," ", round(P1u[1],4),P1tt[1],round(P1u[2],4),P1tt[2],round(P1u[3],4),P1tt[3],round(P1w,4),P1tt[4],round(P1D,4),P1tt[5], round(F1u[1],4),F1tt[1],round(F1u[2],4),F1tt[2],round(F1u[3],4),F1tt[3],round(F1w,4),F1tt[4],round(F1D,4),F1tt[5], round(P2u[1],4),P2tt[1],round(P2u[2],4),P2tt[2],round(P2u[3],4),P2tt[3],round(P2w,4),P2tt[4],round(P2D,4),P2tt[5], round(B1u[1],4),B1tt[1],round(B1u[2],4),B1tt[2],round(B1u[3],4),B1tt[3],round(B1WW2,4),B1tt[4],round(B1D,4),B1tt[5], round(B2u[1],4),B2tt[1],round(B2u[2],4),B2tt[2],round(B2u[3],4),B2tt[3],round(B2WW2,4),B2tt[4],round(B2D,4),B2tt[5], round(F2u[1],4),F2tt[1],round(F2u[2],4),F2tt[2],round(F2u[3],4),F2tt[3],round(F2WW2,4),F2tt[4],round(F2D,4),F2tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi1,mi2,mi3) return(OUTPUT) } G6FModelFun[[7]] <- function(K1,logL,df11,df21,df31,df41,df51,df61,G6Ftext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataF1 <- as.matrix(as.numeric(df21[,1])) dataP2 <- as.matrix(as.numeric(df31[,1]));dataB1 <- as.matrix(as.numeric(df41[,1])) dataB2 <- as.matrix(as.numeric(df51[,1]));dataF2 <- as.matrix(as.numeric(df61[,1])) n_samP1<-dim(dataP1)[1];n_samF1<-dim(dataF1)[1];n_samP2<-dim(dataP2)[1] n_samB1<-dim(dataB1)[1];n_samB2<-dim(dataB2)[1];n_samF2<-dim(dataF2)[1] sumx<-as.matrix(c(sum(dataP1),sum(dataF1),sum(dataP2),sum(dataB1),sum(dataB2),sum(dataF2))) s<-as.matrix(c(sum(dataP1^2),sum(dataF1^2),sum(dataP2^2),sum(dataB1^2),sum(dataB2^2),sum(dataF2^2))) ss<-matrix(0,3,1);ss[1]<-s[1]-sumx[1]^2/n_samP1;ss[2]<-s[2]-sumx[2]^2/n_samF1;ss[3]<-s[3]-sumx[3]^2/n_samP2 mean<-as.matrix(c(mean(dataP1),mean(dataF1),mean(dataP2),mean(dataB1),mean(dataB2),mean(dataF2))) sigma0<-sum(ss)/(n_samP1+n_samF1+n_samP2-3) sigmaB1<-var(dataB1);sigma40<-sigmaB1 sigmaB2<-var(dataB2);sigma50<-sigmaB2 sigmaF2<-var(dataF2);sigma60<-sigmaF2 sigmaP1<-sigmaF1<-sigmaP2<-sigma0 m_esp <- 0.0001;n_fam <- as.numeric(G6Ftext2) mi1<-matrix(0.25,4,1);sigma1<-matrix(0,4,1) mi2<-matrix(0.25,4,1);sigma2<-matrix(0,4,1) mi3<-as.matrix(c(0.0625,0.125,0.0625,0.125,0.25,0.125,0.0625,0.125,0.0625)) sigma3<-matrix(0,9,1) sigma<-sigma0 a1<-sqrt(sigmaB1/n_samB1) if (mean[1]<mean[3]) a1<--a1 mean1<-as.matrix(c(mean[4]+2.4*a1,mean[4]+0.8*a1,mean[4]-0.8*a1,mean[4]-2.4*a1)) a2<-sqrt(sigmaB2/n_samB2) if (mean[1]<mean[3]) a2<--a2 mean2<-as.matrix(c(mean[5]+2.4*a2,mean[5]+0.8*a2,mean[5]-0.8*a2,mean[5]-2.4*a2)) a3<-sqrt(sigmaF2/n_samF2) if (mean[1]<mean[3]) a3<--a3 mean3<-as.matrix(c(mean[6]+2.4*a3,mean[6]+1.8*a3,mean[6]+1.2*a3,mean[6]+0.6*a3,mean[6],mean[6]-0.6*a3,mean[6]-1.2*a3,mean[6]-1.8*a3,mean[6]-2.4*a3)) gs<-matrix(0,2,1) gs[1]<-(mean[1]-mean[3]+mean1[2]-mean2[3]+mean3[3]-mean3[7])/6 gs[2]<-(mean[1]-mean[3]+mean1[3]-mean2[2]-mean3[3]+mean3[7])/6 sigma1[1]<-sigma g_aa1<-0.5*gs[2]^2/n_fam g_aa2<-0.5*gs[1]^2/n_fam g_aa3<-g_aa1+g_aa2 sigma1[2]<-sigma+g_aa1;sigma1[3]<-sigma+g_aa2;sigma1[4]<-sigma+g_aa3 sigma2[1]<-sigma1[4];sigma2[2]<-sigma1[3];sigma2[3]<-sigma1[2];sigma2[4]<-sigma sigma3[1]<-sigma3[3]<-sigma3[7]<-sigma3[9]<-sigma sigma3[2]<-sigma3[8]<-sigma1[2] sigma3[4]<-sigma3[6]<-sigma1[3] sigma3[5]<-sigma1[4] L0<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma0))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma0))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma0))))+sum(log(dmixnorm(dataB1,mean1,sqrt(sigma1),mi1)))+ sum(log(dmixnorm(dataB2,mean2,sqrt(sigma2),mi2)))+sum(log(dmixnorm(dataF2,mean3,sqrt(sigma3),mi3))) iteration <- 0; stopa <- 1000 W1 <- matrix(0,4,n_samB1); swx1 <- matrix(0,4,1) W2 <- matrix(0,4,n_samB2); swx2 <- matrix(0,4,1) W3 <- matrix(0,9,n_samF2); swx3 <- matrix(0,9,1) s0<-matrix(0,14,1);n0<-matrix(0,14,1) hh<-matrix(0,6,6);b_line<-matrix(0,6,1) while(stopa > m_esp&&iteration<=1000){ iteration <- iteration + 1 for(i in 1:4) { W1[i,] <- mi1[i]*dnorm(dataB1,mean1[i],sqrt(sigma1[i]))/dmixnorm(dataB1,mean1,sqrt(sigma1),mi1) } mix_pi1 <- as.matrix(rowSums(W1)/n_samB1) sumwx1 <- W1%*%dataB1 for(i in 1:4) { W2[i,] <- mi2[i]*dnorm(dataB2,mean2[i],sqrt(sigma2[i]))/dmixnorm(dataB2,mean2,sqrt(sigma2),mi2) } mix_pi2 <- as.matrix(rowSums(W2)/n_samB2) sumwx2 <- W2%*%dataB2 for(i in 1:9) { W3[i,] <- mi3[i]*dnorm(dataF2,mean3[i],sqrt(sigma3[i]))/dmixnorm(dataF2,mean3,sqrt(sigma3),mi3) } mix_pi3 <- as.matrix(rowSums(W3)/n_samF2) sumwx3 <- W3%*%dataF2 aaa0<-0 s0[1]<-sumx[1]+sumwx1[1]+sumwx3[1];s0[2]<-sigma1[4]*sumx[2]+sigma*(sumwx1[4]+sumwx2[1]+sumwx3[5]) s0[3]<-sumx[3]+sumwx2[4]+sumwx3[9];s0[4]<-sumwx1[2]+sumwx3[2] s0[5]<-sumwx1[3]+sumwx3[4];s0[7]<-sumwx2[2]+sumwx3[6] s0[8]<-sumwx2[3]+sumwx3[8];s0[9]<-sumwx3[3];s0[10]<-sumwx3[7] n0[1]<-n_samP1+mix_pi1[1]*n_samB1+mix_pi3[1]*n_samF2 n0[2]<-n_samF1*sigma1[4]+sigma*(mix_pi1[4]*n_samB1+mix_pi2[1]*n_samB2+mix_pi3[5]*n_samF2) n0[3]<-n_samP2+mix_pi2[4]*n_samB2+mix_pi3[9]*n_samF2 n0[4]<-mix_pi1[2]*n_samB1+mix_pi3[2]*n_samF2;n0[5]<-mix_pi1[3]*n_samB1+mix_pi3[4]*n_samF2 n0[7]<-mix_pi2[2]*n_samB2+mix_pi3[6]*n_samF2;n0[8]<-mix_pi2[3]*n_samB2+mix_pi3[8]*n_samF2 n0[9]<-mix_pi3[3]*n_samF2;n0[10]<-mix_pi3[7]*n_samF2 s0[c(1:10)][abs(s0[c(1:10)])<0.000001]<-0.000001;n0[c(1:10)][abs(n0[c(1:10)])<0.000001]<-0.000001 AA<-matrix(0,6,1);aaa1<-1000;n_iter<-0 while (aaa1>0.0001) { n_iter<-n_iter+1 gs[1]<-(mean[1]-mean[3]+mean1[2]-mean2[3]+mean3[3]-mean3[7])/6 gs[2]<-(mean[1]-mean[3]+mean1[3]-mean2[2]-mean3[3]+mean3[7])/6 sigma1[1]<-sigma g_aa1<-0.5*gs[2]^2/n_fam g_aa2<-0.5*gs[1]^2/n_fam g_aa3<-g_aa1+g_aa2 sigma1[2]<-sigma+g_aa1;sigma1[3]<-sigma+g_aa2;sigma1[4]<-sigma+g_aa3 sigma2[1]<-sigma1[4];sigma2[2]<-sigma1[3];sigma2[3]<-sigma1[2];sigma2[4]<-sigma sigma3[1]<-sigma3[3]<-sigma3[7]<-sigma3[9]<-sigma sigma3[2]<-sigma3[8]<-sigma1[2] sigma3[4]<-sigma3[6]<-sigma1[3] sigma3[5]<-sigma1[4] hh[1,1]<-sigma*(1/n0[1]+1/n0[3]+1/n0[9]+1/n0[10]) hh[1,2]<-sigma*(1/n0[1]-1/n0[3]-1/n0[9]+1/n0[10]) hh[1,3]<-sigma*(1/n0[1]-1/n0[3]+1/n0[9]-1/n0[10]) hh[1,4]<-0 hh[1,5]<-0 hh[1,6]<-sigma*(1/n0[9]+1/n0[10]) hh[2,2]<-sigma*(1/n0[1]+1/n0[3]+1/n0[9]+1/n0[10])+sigma1[2]*(4/n0[4]+4/n0[8]) hh[2,3]<-sigma*(1/n0[1]+1/n0[3]-1/n0[9]-1/n0[10]) hh[2,4]<-2*sigma1[2]*(1/n0[4]-1/n0[8]) hh[2,5]<-sigma1[2]*(-2/n0[4]+2/n0[8]) hh[2,6]<-sigma*(-1/n0[9]+1/n0[10]) hh[3,3]<-sigma*(1/n0[1]+1/n0[3]+1/n0[9]+1/n0[10])+sigma1[3]*(4/n0[5]+4/n0[7]) hh[3,4]<-2*sigma1[3]*(1/n0[5]-1/n0[7]) hh[3,5]<-2*sigma1[3]*(1/n0[5]-1/n0[7]) hh[3,6]<-sigma*(1/n0[9]-1/n0[10]) hh[4,4]<-16*sigma*sigma1[4]/n0[2]+sigma1[2]/n0[4]+sigma1[3]/n0[5]+sigma1[3]/n0[7]+sigma1[2]/n0[8] hh[4,5]<-sigma1[3]*(1/n0[5]+1/n0[7])-sigma1[2]*(1/n0[4]+1/n0[8]) hh[4,6]<-8*sigma*sigma1[4]/n0[2] hh[5,5]<-sigma1[2]*(1/n0[4]+1/n0[8])+sigma1[3]*(1/n0[5]+1/n0[7]) hh[5,6]<-0 hh[6,6]<-sigma*(4*sigma1[4]/n0[2]+1/n0[9]+1/n0[10]) for(i in 2:6) { for(j in 1:(i-1)) { hh[i,j]<-hh[j,i] } } b_line[1]<-s0[1]/n0[1]+s0[3]/n0[3]-s0[9]/n0[9]-s0[10]/n0[10] b_line[2]<-s0[1]/n0[1]-s0[3]/n0[3]-2*s0[4]/n0[4]+2*s0[8]/n0[8]+s0[9]/n0[9]-s0[10]/n0[10] b_line[3]<-s0[1]/n0[1]-s0[3]/n0[3]-2*s0[5]/n0[5]+2*s0[7]/n0[7]-s0[9]/n0[9]+s0[10]/n0[10] b_line[4]<-4*s0[2]/n0[2]-s0[4]/n0[4]-s0[5]/n0[5]-s0[7]/n0[7]-s0[8]/n0[8] b_line[5]<-s0[4]/n0[4]-s0[5]/n0[5]-s0[7]/n0[7]+s0[8]/n0[8] b_line[6]<-2*s0[2]/n0[2]-s0[9]/n0[9]-s0[10]/n0[10] B<-solve(hh,b_line) mean[1]<-(s0[1]-sigma*(B[1]+B[2]+B[3]))/n0[1] mean[2]<-(s0[2]-sigma*sigma1[4]*(4*B[4]+2*B[6]))/n0[2] mean[3]<-(s0[3]-sigma*(B[1]-B[2]-B[3]))/n0[3] mean1[2]<-(s0[4]+(2*B[2]+B[4]-B[5])*sigma1[2])/n0[4] mean1[3]<-(s0[5]+(2*B[3]+B[4]+B[5])*sigma1[3])/n0[5] mean2[2]<-(s0[7]-sigma1[3]*(2*B[3]-B[4]-B[5]))/n0[7] mean2[3]<-(s0[8]-sigma1[2]*(2*B[2]-B[4]+B[5]))/n0[8] mean3[3]<-(s0[9]+sigma*(B[1]-B[2]+B[3]+B[6]))/n0[9] mean3[7]<-(s0[10]+sigma*(B[1]+B[2]-B[3]+B[6]))/n0[10] mean1[1]<-mean[1];mean1[4]<-mean2[1]<-mean[2] mean2[4]<-mean[3] mean3[1]<-mean[1];mean3[2]<-mean1[2];mean3[4]<-mean1[3];mean3[5]<-mean[2] mean3[6]<-mean2[2];mean3[8]<-mean2[3];mean3[9]<-mean[3] aaa1<-max(abs(B-AA)) AA<-B if(n_iter>20)break } ss1<-sum((dataP1-mean[1])^2);ss3<-sum((dataP2-mean[3])^2);ss2<-sum((dataF1-mean[2])^2) for(i in 1:4) {swx1[i] <- W1[i,]%*%(dataB1-mean1[i])^2 };for(i in 1:4) {swx2[i] <- W2[i,]%*%(dataB2-mean2[i])^2 };for(i in 1:9) {swx3[i] <- W3[i,]%*%(dataF2-mean3[i])^2 } s0[11]<-ss1+ss2+ss3+swx1[1]+swx2[4]+swx3[1]+swx3[3]+swx3[7]+swx3[9] n0[11]<-n_samP1+n_samF1+n_samP2+mix_pi1[1]*n_samB1+mix_pi2[4]*n_samB2+(mix_pi3[1]+mix_pi3[3]+mix_pi3[7]+mix_pi3[9])*n_samF2 s0[12]<-swx1[2]+swx2[3]+swx3[2]+swx3[8] s0[13]<-swx1[3]+swx2[2]+swx3[4]+swx3[6] s0[14]<-swx1[4]+swx2[1]+swx3[5] n0[12]<-mix_pi1[2]*n_samB1+mix_pi2[3]*n_samB2+mix_pi3[2]*n_samF2+mix_pi3[8]*n_samF2 n0[13]<-mix_pi1[3]*n_samB1+mix_pi2[2]*n_samB2+mix_pi3[4]*n_samF2+mix_pi3[6]*n_samF2 n0[14]<-mix_pi1[4]*n_samB1+mix_pi2[1]*n_samB2+mix_pi3[5]*n_samF2 gs[1]<-(mean[1]-mean[3]+mean1[2]-mean2[3]+mean3[3]-mean3[7])/6 gs[2]<-(mean[1]-mean[3]+mean1[3]-mean2[2]-mean3[3]+mean3[7])/6 g_aa1<-0.5*gs[2]^2/n_fam g_aa2<-0.5*gs[1]^2/n_fam g_aa3<-g_aa1+g_aa2 aaa0<-sigma;aa4<-1000;n_iter<-0 while (aa4>0.0001) { n_iter<-n_iter+1 aa1<-sigma/(sigma+g_aa1) aa2<-sigma/(sigma+g_aa2) aa3<-sigma/(sigma+g_aa3) sigma<-(s0[11]+aa1*aa1*s0[12]+aa2*aa2*s0[13]+aa3*aa3*s0[14])/(n0[11]+aa1*n0[12]+aa2*n0[13]+aa3*n0[14]) aa4<-abs(sigma-aaa0) aaa0<-sigma if(n_iter>20)break } sigma1[1]<-sigma;sigma1[2]<-sigma+g_aa1 sigma1[3]<-sigma+g_aa2;sigma1[4]<-sigma+g_aa3 sigma2[1]<-sigma1[4];sigma2[2]<-sigma1[3] sigma2[3]<-sigma1[2];sigma2[4]<-sigma sigma3[1]<-sigma3[3]<-sigma3[7]<-sigma3[9]<-sigma sigma3[2]<-sigma3[8]<-sigma1[2] sigma3[4]<-sigma3[6]<-sigma1[3] sigma3[5]<-sigma1[4] L1<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma))))+sum(log(dmixnorm(dataB1,mean1,sqrt(sigma1),mix_pi1)))+ sum(log(dmixnorm(dataB2,mean2,sqrt(sigma2),mix_pi2)))+sum(log(dmixnorm(dataF2,mean3,sqrt(sigma3),mix_pi3))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc<-L0 AIC<--2*abc+2*4 meanP1<-mean[1];meanF1<-mean[2];meanP2<-mean[3] sigma0<-sigma dataP1<-sort(dataP1) P1w1<-1/(12*n_samP1) P1bmw <- matrix(0,n_samP1,1) P1gg <- (dataP1 - mean[1])/sqrt(as.vector(sigma)) P1bmw[which(P1gg>=0)] <- pnorm(P1gg[P1gg>=0]) P1bmw[which(P1gg<0)] <- 1 - pnorm(abs(P1gg[P1gg<0])) nn <- dim(as.matrix(unique(P1bmw)))[1] if(nn < n_samP1){P1bmw <- P1bmw+runif(n_samP1)/1e4} P1dd<-c((sum(P1bmw)),(sum(P1bmw^2)),sum((P1bmw-0.5)^2)) P1w<-P1w1+sum((P1bmw - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) P1u<- as.matrix(c(12*n_samP1*((P1dd[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((P1dd[2]/n_samP1-1/3)^2),180*n_samP1*((P1dd[3]/n_samP1-1/12)^2))) P1D<-as.numeric(ks.test(P1bmw,"punif")[[1]][1]) P1tt <- as.matrix(c((1 - pchisq(P1u[1],1)),(1 - pchisq(P1u[2],1)),(1 - pchisq(P1u[3],1)),K1(P1w),(1-pkolm(P1D,n_samP1)))) P1tt[which( P1tt>=10e-4)]<-round(P1tt[which(P1tt>=10e-4)],4);P1tt[which(P1tt<10e-4)]<-format(P1tt[which(P1tt<10e-4)],scientific=TRUE,digit=4) dataF1<-sort(dataF1) F1w1<-1/(12*n_samF1) F1bmw <- matrix(0,n_samF1,1) F1gg <- (dataF1 - mean[2])/sqrt(as.vector(sigma)) F1bmw[which(F1gg>=0)] <- pnorm(F1gg[F1gg>=0]) F1bmw[which(F1gg<0)] <- 1 - pnorm(abs(F1gg[F1gg<0])) nn <- dim(as.matrix(unique(F1bmw)))[1] if(nn < n_samF1){F1bmw <- F1bmw+runif(n_samF1)/1e4} F1dd<-c((sum(F1bmw)),(sum(F1bmw^2)),sum((F1bmw-0.5)^2)) F1w<-F1w1+sum((F1bmw - (as.matrix(c(1:n_samF1)) - 0.5)/n_samF1)^2) F1u<- as.matrix(c(12*n_samF1*((F1dd[1]/n_samF1-0.5)^2),((45*n_samF1)/4)*((F1dd[2]/n_samF1-1/3)^2),180*n_samF1*((F1dd[3]/n_samF1-1/12)^2))) F1D<-as.numeric(ks.test(F1bmw,"punif")[[1]][1]) F1tt <- as.matrix(c((1 - pchisq(F1u[1],1)),(1 - pchisq(F1u[2],1)),(1 - pchisq(F1u[3],1)),K1(F1w),(1-pkolm(F1D,n_samF1)))) F1tt[which(F1tt>=10e-4)]<-round(F1tt[which(F1tt>=10e-4)],4);F1tt[which(F1tt<10e-4)]<-format(F1tt[which(F1tt<10e-4)],scientific=TRUE,digit=4) dataP2<-sort(dataP2) P2w1<-1/(12*n_samP2) P2bmw <- matrix(0,n_samP2,1) P2gg <- (dataP2 - mean[3])/sqrt(as.vector(sigma)) P2bmw[which(P2gg>=0)] <- pnorm(P2gg[P2gg>=0]) P2bmw[which(P2gg<0)] <- 1 - pnorm(abs(P2gg[P2gg<0])) nn <- dim(as.matrix(unique(P2bmw)))[1] if(nn < n_samP2){P2bmw <- P2bmw+runif(n_samP2)/1e4} P2dd<-c((sum(P2bmw)),(sum(P2bmw^2)),sum((P2bmw-0.5)^2)) P2w<-P2w1+sum((P2bmw - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) P2u<- as.matrix(c(12*n_samP2*((P2dd[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((P2dd[2]/n_samP2-1/3)^2),180*n_samP2*((P2dd[3]/n_samP2-1/12)^2))) P2D<-as.numeric(ks.test(P2bmw,"punif")[[1]][1]) P2tt <- as.matrix(c((1 - pchisq(P2u[1],1)),(1 - pchisq(P2u[2],1)),(1 - pchisq(P2u[3],1)),K1(P2w),(1-pkolm(P2D,n_samP2)))) P2tt[which(P2tt>=10e-4)]<-round(P2tt[which(P2tt>=10e-4)],4);P2tt[which(P2tt<10e-4)]<-format(P2tt[which(P2tt<10e-4)],scientific=TRUE,digit=4) dataB1 <- sort(dataB1); B1w1<-1/(12*n_samB1) B1bmw <- matrix(0,n_samB1,1); B1bmwsl <- matrix(0,n_samB1,4) for(i in 1:4){ B1gg <- (dataB1 - mean1[i])/sqrt(sigma1[i]) B1bmw[which(B1gg>=0)] <- pnorm(B1gg[B1gg>=0]) B1bmw[which(B1gg<0)] <- 1 - pnorm(abs(B1gg[B1gg<0])) B1bmwsl[,i] <- B1bmw*mix_pi1[i] } B1P2 <- rowSums(B1bmwsl) nn <- dim(as.matrix(unique(B1P2)))[1] if(nn < n_samB1){B1P2 <- B1P2+runif(n_samB1)/1e4} B1dd <- as.matrix(c(sum(B1P2),sum(B1P2^2),sum((B1P2-0.5)^2))) B1WW2 <- 1/(12*n_samB1) + sum((B1P2 - (as.matrix(c(1:n_samB1)) - 0.5)/n_samB1)^2) B1u <- as.matrix(c(12*n_samB1*((B1dd[1]/n_samB1-0.5)^2),((45*n_samB1)/4)*((B1dd[2]/n_samB1-1/3)^2),180*n_samB1*((B1dd[3]/n_samB1-1/12)^2))) B1D <- as.numeric(ks.test(B1P2,"punif")[[1]][1]) B1tt <- as.matrix(c((1 - pchisq(B1u[1],1)),(1 - pchisq(B1u[2],1)),(1 - pchisq(B1u[3],1)),K1(B1WW2),(1-pkolm(B1D,n_samB1)))) B1tt[which( B1tt>=10e-4)]<-round(B1tt[which(B1tt>=10e-4)],4);B1tt[which(B1tt<10e-4)]<-format(B1tt[which(B1tt<10e-4)],scientific=TRUE,digit=4) dataB2 <- sort(dataB2); B2w1<-1/(12*n_samB2) B2bmw <- matrix(0,n_samB2,1); B2bmwsl <- matrix(0,n_samB2,4) for(i in 1:4){ B2gg <- (dataB2 - mean2[i])/sqrt(sigma2[i]) B2bmw[which(B2gg>=0)] <- pnorm(B2gg[B2gg>=0]) B2bmw[which(B2gg<0)] <- 1 - pnorm(abs(B2gg[B2gg<0])) B2bmwsl[,i] <- B2bmw*mix_pi2[i] } B2P2 <- rowSums(B2bmwsl) nn <- dim(as.matrix(unique(B2P2)))[1] if(nn < n_samB2){B2P2 <- B2P2+runif(n_samB2)/1e4} B2dd <- as.matrix(c(sum(B2P2),sum(B2P2^2),sum((B2P2-0.5)^2))) B2WW2 <- 1/(12*n_samB2) + sum((B2P2 - (as.matrix(c(1:n_samB2)) - 0.5)/n_samB2)^2) B2u <- as.matrix(c(12*n_samB2*((B2dd[1]/n_samB2-0.5)^2),((45*n_samB2)/4)*((B2dd[2]/n_samB2-1/3)^2),180*n_samB2*((B2dd[3]/n_samB2-1/12)^2))) B2D <- as.numeric(ks.test(B2P2,"punif")[[1]][1]) B2tt <- as.matrix(c((1 - pchisq(B2u[1],1)),(1 - pchisq(B2u[2],1)),(1 - pchisq(B2u[3],1)),K1(B2WW2),(1-pkolm(B2D,n_samB2)))) B2tt[which( B2tt>=10e-4)]<-round(B2tt[which(B2tt>=10e-4)],4);B2tt[which(B2tt<10e-4)]<-format(B2tt[which(B2tt<10e-4)],scientific=TRUE,digit=4) dataF2 <- sort(dataF2); F2w1<-1/(12*n_samF2) F2bmw <- matrix(0,n_samF2,1); F2bmwsl <- matrix(0,n_samF2,9) for(i in 1:9){ F2gg <- (dataF2 - mean3[i])/sqrt(sigma3[i]) F2bmw[which(F2gg>=0)] <- pnorm(F2gg[F2gg>=0]) F2bmw[which(F2gg<0)] <- 1 - pnorm(abs(F2gg[F2gg<0])) F2bmwsl[,i] <- F2bmw*mix_pi3[i] } F2P2 <- rowSums(F2bmwsl) nn <- dim(as.matrix(unique(F2P2)))[1] if(nn < n_samF2){F2P2 <- F2P2+runif(n_samF2)/1e4} F2dd <- as.matrix(c(sum(F2P2),sum(F2P2^2),sum((F2P2-0.5)^2))) F2WW2 <- 1/(12*n_samF2) + sum((F2P2 - (as.matrix(c(1:n_samF2)) - 0.5)/n_samF2)^2) F2u <- as.matrix(c(12*n_samF2*((F2dd[1]/n_samF2-0.5)^2),((45*n_samF2)/4)*((F2dd[2]/n_samF2-1/3)^2),180*n_samF2*((F2dd[3]/n_samF2-1/12)^2))) F2D <- as.numeric(ks.test(F2P2,"punif")[[1]][1]) F2tt <- as.matrix(c((1 - pchisq(F2u[1],1)),(1 - pchisq(F2u[2],1)),(1 - pchisq(F2u[3],1)),K1(F2WW2),(1-pkolm(F2D,n_samF2)))) F2tt[which( F2tt>=10e-4)]<-round(F2tt[which(F2tt>=10e-4)],4);F2tt[which(F2tt<10e-4)]<-format(F2tt[which(F2tt<10e-4)],scientific=TRUE,digit=4) aa<-matrix(c(1,1,1,1,0,0,1,-1,-1,1,1,0,1,0,1, 1,0,-1,1,-1,0,1,1,-1,1,-1,1),9,3,byrow=T) mm<-as.matrix(c(mean[1],mean[2],mean[3],mean1[2],mean1[3],mean2[2],mean2[3],mean3[3],mean3[7])) B1<-solve(crossprod(aa,aa))%*%crossprod(aa,mm) jj1<-sigmaB1-sigma1[1] if (jj1<0 ) {jj1<-0} ll1<-jj1/sigmaB1 jj2<-sigmaB2-sigma2[4] if (jj2<0) {jj2<-0} ll2<-jj2/sigmaB2 jj3<-sigmaF2-sigma3[1] if (jj3<0) {jj3<-0} ll3<-jj3/sigmaF2 output <- data.frame("2MG-A",round(abc,4),round(AIC,4),round(meanP1,4),round(meanF1,4),round(meanP2,4), round(sigma0,4),round(t(mean1),4),round(t(sigma1),4), round(t(mix_pi1),4),round(t(mean2),4),round(t(sigma2),4),round(t(mix_pi2),4), round(t(mean3),4),round(t(sigma3),4),round(t(mix_pi3),4), round(B1[1],4)," "," "," "," "," ",round(B1[2],4),round(B1[3],4)," "," "," "," "," "," "," "," ", round(jj1,4),round(ll1*100,4)," "," ",round(jj2,4),round(ll2*100,4)," "," ",round(jj3,4),round(ll3*100,4)," "," ", round(P1u[1],4),P1tt[1],round(P1u[2],4),P1tt[2],round(P1u[3],4),P1tt[3],round(P1w,4),P1tt[4],round(P1D,4),P1tt[5], round(F1u[1],4),F1tt[1],round(F1u[2],4),F1tt[2],round(F1u[3],4),F1tt[3],round(F1w,4),F1tt[4],round(F1D,4),F1tt[5], round(P2u[1],4),P2tt[1],round(P2u[2],4),P2tt[2],round(P2u[3],4),P2tt[3],round(P2w,4),P2tt[4],round(P2D,4),P2tt[5], round(B1u[1],4),B1tt[1],round(B1u[2],4),B1tt[2],round(B1u[3],4),B1tt[3],round(B1WW2,4),B1tt[4],round(B1D,4),B1tt[5], round(B2u[1],4),B2tt[1],round(B2u[2],4),B2tt[2],round(B2u[3],4),B2tt[3],round(B2WW2,4),B2tt[4],round(B2D,4),B2tt[5], round(F2u[1],4),F2tt[1],round(F2u[2],4),F2tt[2],round(F2u[3],4),F2tt[3],round(F2WW2,4),F2tt[4],round(F2D,4),F2tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi1,mi2,mi3) return(OUTPUT) } G6FModelFun[[8]] <- function(K1,logL,df11,df21,df31,df41,df51,df61,G6Ftext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataF1 <- as.matrix(as.numeric(df21[,1])) dataP2 <- as.matrix(as.numeric(df31[,1]));dataB1 <- as.matrix(as.numeric(df41[,1])) dataB2 <- as.matrix(as.numeric(df51[,1]));dataF2 <- as.matrix(as.numeric(df61[,1])) n_samP1<-dim(dataP1)[1];n_samF1<-dim(dataF1)[1];n_samP2<-dim(dataP2)[1] n_samB1<-dim(dataB1)[1];n_samB2<-dim(dataB2)[1];n_samF2<-dim(dataF2)[1] sumx<-as.matrix(c(sum(dataP1),sum(dataF1),sum(dataP2),sum(dataB1),sum(dataB2),sum(dataF2))) s<-as.matrix(c(sum(dataP1^2),sum(dataF1^2),sum(dataP2^2),sum(dataB1^2),sum(dataB2^2),sum(dataF2^2))) ss<-matrix(0,3,1);ss[1]<-s[1]-sumx[1]^2/n_samP1;ss[2]<-s[2]-sumx[2]^2/n_samF1;ss[3]<-s[3]-sumx[3]^2/n_samP2 mean<-as.matrix(c(mean(dataP1),mean(dataF1),mean(dataP2),mean(dataB1),mean(dataB2),mean(dataF2))) sigma0<-sum(ss)/(n_samP1+n_samF1+n_samP2-3) sigmaB1<-var(dataB1);sigma40<-sigmaB1 sigmaB2<-var(dataB2);sigma50<-sigmaB2 sigmaF2<-var(dataF2);sigma60<-sigmaF2 sigmaP1<-sigmaF1<-sigmaP2<-sigma0 m_esp <- 0.0001;n_fam <- as.numeric(G6Ftext2) mi1<-as.matrix(c(0.25,0.5,0.25)) mean1<-as.matrix(c(mean[1],mean[4],mean[2])) sigma1<-matrix(0,3,1) mi2<-as.matrix(c(0.25,0.5,0.25)) mean2<-as.matrix(c(mean[2],mean[5],mean[3])) sigma2<-matrix(0,3,1) mi3<-as.matrix(c(0.0625,0.125,0.25,0.25,0.25,0.0625)) mean3<-as.matrix(c(mean[1],mean[2],mean1[2],mean[2],mean2[2],mean[3])) sigma3<-matrix(0,6,1) sigma<-sigma0 b1<-a1<-0.2*mean[1]-0.2*mean[3]+0.1*mean1[2]-0.1*mean2[2] a1<-b1^2/n_fam sigma1[1]<-sigma;sigma1[2]<-sigma+0.5*a1;sigma1[3]<-sigma+a1 sigma2[1]<-sigma1[3];sigma2[2]<-sigma1[2];sigma2[3]<-sigma sigma3[1]<-sigma3[2]<-sigma3[6]<-sigma sigma3[3]<-sigma3[5]<-sigma1[2] sigma3[4]<-sigma1[3] L0<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma0))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma0))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma0))))+sum(log(dmixnorm(dataB1,mean1,sqrt(sigma1),mi1)))+ sum(log(dmixnorm(dataB2,mean2,sqrt(sigma2),mi2)))+sum(log(dmixnorm(dataF2,mean3,sqrt(sigma3),mi3))) iteration <- 0; stopa <- 1000 W1 <- matrix(0,3,n_samB1); swx1 <- matrix(0,3,1) W2 <- matrix(0,3,n_samB2); swx2 <- matrix(0,3,1) W3 <- matrix(0,6,n_samF2); swx3 <- matrix(0,6,1) s0<-matrix(0,8,1);n0<-matrix(0,8,1) hh<-matrix(0,3,3);b_line<-matrix(0,3,1) while(stopa > m_esp&&iteration<=1000){ iteration <- iteration + 1 for(i in 1:3) { W1[i,] <- mi1[i]*dnorm(dataB1,mean1[i],sqrt(sigma1[i]))/dmixnorm(dataB1,mean1,sqrt(sigma1),mi1) } mix_pi1 <- as.matrix(rowSums(W1)/n_samB1) sumwx1 <- W1%*%dataB1 for(i in 1:3) { W2[i,] <- mi2[i]*dnorm(dataB2,mean2[i],sqrt(sigma2[i]))/dmixnorm(dataB2,mean2,sqrt(sigma2),mi2) } mix_pi2 <- as.matrix(rowSums(W2)/n_samB2) sumwx2 <- W2%*%dataB2 for(i in 1:6) { W3[i,] <- mi3[i]*dnorm(dataF2,mean3[i],sqrt(sigma3[i]))/dmixnorm(dataF2,mean3,sqrt(sigma3),mi3) } mix_pi3 <- as.matrix(rowSums(W3)/n_samF2) sumwx3 <- W3%*%dataF2 aaa0<-0 s0[1]<-sumx[1]+sumwx1[1]+sumwx3[1];s0[2]<-(sumx[2]+sumwx3[2])*sigma1[3]+sigma*(sumwx1[3]+sumwx2[1]+sumwx3[4]) s0[3]<-sumx[3]+sumwx2[3]+sumwx3[6];s0[4]<-sumwx1[2]+sumwx3[3] s0[5]<-sumwx2[2]+sumwx3[5] n0[1]<-n_samP1+mix_pi1[1]*n_samB1+mix_pi3[1]*n_samF2 n0[2]<-(n_samF1+mix_pi3[2]*n_samF2)*sigma1[3]+sigma*(mix_pi1[3]*n_samB1+mix_pi2[1]*n_samB2+mix_pi3[4]*n_samF2) n0[3]<-n_samP2+mix_pi2[3]*n_samB2+mix_pi3[6]*n_samF2 n0[4]<-mix_pi1[2]*n_samB1+mix_pi3[3]*n_samF2 n0[5]<-mix_pi2[2]*n_samB2+mix_pi3[5]*n_samF2 n0[c(1:5)][abs(n0[c(1:5)])<0.00000001]<-0.000001 AA<-matrix(0,3,1);aa3<-0;aa4<-0;aaa1<-1000 while(aaa1>0.0001) { aa4<-aa4+1 aa6<-0.2*mean[1]-0.2*mean[3]+0.1*mean1[2]-0.1*mean2[2] aa6<-aa6^2/n_fam sigma1[2]<-sigma+0.5*aa6 sigma1[3]<-sigma+aa6 hh[1,1]<-sigma/n0[1]+4*sigma*sigma1[3]/n0[2]+sigma/n0[3] hh[1,2]<-4*sigma*sigma1[3]/n0[2] hh[1,3]<-sigma/n0[1]+6*sigma*sigma1[3]/n0[2] hh[2,2]<-sigma1[2]/n0[4]+4*sigma*sigma1[3]/n0[2]+sigma1[2]/n0[5] hh[2,3]<-6*sigma*sigma1[3]/n0[2]+2*sigma1[2]/n0[5] hh[3,3]<-sigma/n0[1]+9*sigma*sigma1[3]/n0[2]+4*sigma1[2]/n0[5] for(i in 2:3) { for(j in 1:(i-1)) { hh[i,j]<-hh[j,i] } } b_line[1]<-s0[1]/n0[1]-2*s0[2]/n0[2]+s0[3]/n0[3] b_line[2]<-s0[4]/n0[4]-2*s0[2]/n0[2]+s0[5]/n0[5] b_line[3]<-s0[1]/n0[1]-3*s0[2]/n0[2]+2*s0[5]/n0[5] B<-solve(hh,b_line) mean[1]<-(s0[1]-sigma*(B[1]+B[3]))/n0[1] mean[2]<-(s0[2]+sigma*sigma1[3]*(2*B[1]+2*B[2]+3*B[3]))/n0[2] mean[3]<-(s0[3]-B[1]*sigma)/n0[3] mean1[2]<-(s0[4]-B[2]*sigma1[2])/n0[4] mean2[2]<-(s0[5]-(B[2]+2*B[3])*sigma1[2])/n0[5] aaa1<-max(abs(B-AA)) AA<-B if (aa4>20) break } mean1[1]<-mean[1];mean1[3]<-mean[2] mean2[1]<-mean[2];mean2[3]<-mean[3] mean3[1]<-mean[1] mean3[2]<-mean3[4]<-mean[2] mean3[3]<-mean1[2];mean3[5]<-mean2[2];mean3[6]<-mean[3] ss1<-sum((dataP1-mean[1])^2);ss3<-sum((dataP2-mean[3])^2);ss2<-sum((dataF1-mean[2])^2) for(i in 1:3) {swx1[i] <- W1[i,]%*%(dataB1-mean1[i])^2 };for(i in 1:3) {swx2[i] <- W2[i,]%*%(dataB2-mean2[i])^2 };for(i in 1:6) {swx3[i] <- W3[i,]%*%(dataF2-mean3[i])^2 } s0[6]<-ss1+ss2+ss3+swx1[1]+swx2[3]+swx3[1]+swx3[2]+swx3[6] n0[6]<-n_samP1+n_samF1+n_samP2+mix_pi1[1]*n_samB1+mix_pi2[3]*n_samB2+(mix_pi3[1]+mix_pi3[2]+mix_pi3[6])*n_samF2 s0[7]<-swx1[2]+swx2[2]+swx3[3]+swx3[5] s0[8]<-swx1[3]+swx2[1]+swx3[4] n0[7]<-mix_pi1[2]*n_samB1+mix_pi2[2]*n_samB2+(mix_pi3[3]+mix_pi3[5])*n_samF2 n0[8]<-mix_pi1[3]*n_samB1+mix_pi2[1]*n_samB2+mix_pi3[4]*n_samF2 aa6<-0.2*mean[1]-0.2*mean[3]+0.1*mean1[2]-0.1*mean2[2] aa6<-aa6*aa6/n_fam aaa0<-sigma;aa4<-0;aa3<-1000 while (aa3>0.0001) { aa4<-aa4+1 aa1<-sigma/(sigma+0.5*aa6) aa2<-sigma/(sigma+aa6) sigma<-(s0[6]+aa1^2*s0[7]+aa2^2*s0[8])/(n0[6]+aa1*n0[7]+aa2*n0[8]) aa3<-abs(sigma-aaa0) aaa0<-sigma if (aa4>20) break } sigma1[1]<-sigma;sigma1[2]<-sigma+0.5*aa6;sigma1[3]<-sigma+aa6 sigma2[1]<-sigma1[3];sigma2[2]<-sigma1[2];sigma2[3]<-sigma sigma3[1]<-sigma3[2]<-sigma3[6]<-sigma sigma3[3]<-sigma3[5]<-sigma1[2] sigma3[4]<-sigma1[3] L1<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma))))+sum(log(dmixnorm(dataB1,mean1,sqrt(sigma1),mix_pi1)))+ sum(log(dmixnorm(dataB2,mean2,sqrt(sigma2),mix_pi2)))+sum(log(dmixnorm(dataF2,mean3,sqrt(sigma3),mix_pi3))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc<-L0 AIC<--2*abc+2*3 meanP1<-mean[1];meanF1<-mean[2];meanP2<-mean[3] sigma0<-sigma dataP1<-sort(dataP1) P1w1<-1/(12*n_samP1) P1bmw <- matrix(0,n_samP1,1) P1gg <- (dataP1 - mean[1])/sqrt(as.vector(sigma)) P1bmw[which(P1gg>=0)] <- pnorm(P1gg[P1gg>=0]) P1bmw[which(P1gg<0)] <- 1 - pnorm(abs(P1gg[P1gg<0])) nn <- dim(as.matrix(unique(P1bmw)))[1] if(nn < n_samP1){P1bmw <- P1bmw+runif(n_samP1)/1e4} P1dd<-c((sum(P1bmw)),(sum(P1bmw^2)),sum((P1bmw-0.5)^2)) P1w<-P1w1+sum((P1bmw - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) P1u<- as.matrix(c(12*n_samP1*((P1dd[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((P1dd[2]/n_samP1-1/3)^2),180*n_samP1*((P1dd[3]/n_samP1-1/12)^2))) P1D<-as.numeric(ks.test(P1bmw,"punif")[[1]][1]) P1tt <- as.matrix(c((1 - pchisq(P1u[1],1)),(1 - pchisq(P1u[2],1)),(1 - pchisq(P1u[3],1)),K1(P1w),(1-pkolm(P1D,n_samP1)))) P1tt[which( P1tt>=10e-4)]<-round(P1tt[which(P1tt>=10e-4)],4);P1tt[which(P1tt<10e-4)]<-format(P1tt[which(P1tt<10e-4)],scientific=TRUE,digit=4) dataF1<-sort(dataF1) F1w1<-1/(12*n_samF1) F1bmw <- matrix(0,n_samF1,1) F1gg <- (dataF1 - mean[2])/sqrt(as.vector(sigma)) F1bmw[which(F1gg>=0)] <- pnorm(F1gg[F1gg>=0]) F1bmw[which(F1gg<0)] <- 1 - pnorm(abs(F1gg[F1gg<0])) nn <- dim(as.matrix(unique(F1bmw)))[1] if(nn < n_samF1){F1bmw <- F1bmw+runif(n_samF1)/1e4} F1dd<-c((sum(F1bmw)),(sum(F1bmw^2)),sum((F1bmw-0.5)^2)) F1w<-F1w1+sum((F1bmw - (as.matrix(c(1:n_samF1)) - 0.5)/n_samF1)^2) F1u<- as.matrix(c(12*n_samF1*((F1dd[1]/n_samF1-0.5)^2),((45*n_samF1)/4)*((F1dd[2]/n_samF1-1/3)^2),180*n_samF1*((F1dd[3]/n_samF1-1/12)^2))) F1D<-as.numeric(ks.test(F1bmw,"punif")[[1]][1]) F1tt <- as.matrix(c((1 - pchisq(F1u[1],1)),(1 - pchisq(F1u[2],1)),(1 - pchisq(F1u[3],1)),K1(F1w),(1-pkolm(F1D,n_samF1)))) F1tt[which(F1tt>=10e-4)]<-round(F1tt[which(F1tt>=10e-4)],4);F1tt[which(F1tt<10e-4)]<-format(F1tt[which(F1tt<10e-4)],scientific=TRUE,digit=4) dataP2<-sort(dataP2) P2w1<-1/(12*n_samP2) P2bmw <- matrix(0,n_samP2,1) P2gg <- (dataP2 - mean[3])/sqrt(as.vector(sigma)) P2bmw[which(P2gg>=0)] <- pnorm(P2gg[P2gg>=0]) P2bmw[which(P2gg<0)] <- 1 - pnorm(abs(P2gg[P2gg<0])) nn <- dim(as.matrix(unique(P2bmw)))[1] if(nn < n_samP2){P2bmw <- P2bmw+runif(n_samP2)/1e4} P2dd<-c((sum(P2bmw)),(sum(P2bmw^2)),sum((P2bmw-0.5)^2)) P2w<-P2w1+sum((P2bmw - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) P2u<- as.matrix(c(12*n_samP2*((P2dd[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((P2dd[2]/n_samP2-1/3)^2),180*n_samP2*((P2dd[3]/n_samP2-1/12)^2))) P2D<-as.numeric(ks.test(P2bmw,"punif")[[1]][1]) P2tt <- as.matrix(c((1 - pchisq(P2u[1],1)),(1 - pchisq(P2u[2],1)),(1 - pchisq(P2u[3],1)),K1(P2w),(1-pkolm(P2D,n_samP2)))) P2tt[which(P2tt>=10e-4)]<-round(P2tt[which(P2tt>=10e-4)],4);P2tt[which(P2tt<10e-4)]<-format(P2tt[which(P2tt<10e-4)],scientific=TRUE,digit=4) dataB1 <- sort(dataB1); B1w1<-1/(12*n_samB1) B1bmw <- matrix(0,n_samB1,1); B1bmwsl <- matrix(0,n_samB1,3) for(i in 1:3){ B1gg <- (dataB1 - mean1[i])/sqrt(sigma1[i]) B1bmw[which(B1gg>=0)] <- pnorm(B1gg[B1gg>=0]) B1bmw[which(B1gg<0)] <- 1 - pnorm(abs(B1gg[B1gg<0])) B1bmwsl[,i] <- B1bmw*mix_pi1[i] } B1P2 <- rowSums(B1bmwsl) nn <- dim(as.matrix(unique(B1P2)))[1] if(nn < n_samB1){B1P2 <- B1P2+runif(n_samB1)/1e4} B1dd <- as.matrix(c(sum(B1P2),sum(B1P2^2),sum((B1P2-0.5)^2))) B1WW2 <- 1/(12*n_samB1) + sum((B1P2 - (as.matrix(c(1:n_samB1)) - 0.5)/n_samB1)^2) B1u <- as.matrix(c(12*n_samB1*((B1dd[1]/n_samB1-0.5)^2),((45*n_samB1)/4)*((B1dd[2]/n_samB1-1/3)^2),180*n_samB1*((B1dd[3]/n_samB1-1/12)^2))) B1D <- as.numeric(ks.test(B1P2,"punif")[[1]][1]) B1tt <- as.matrix(c((1 - pchisq(B1u[1],1)),(1 - pchisq(B1u[2],1)),(1 - pchisq(B1u[3],1)),K1(B1WW2),(1-pkolm(B1D,n_samB1)))) B1tt[which( B1tt>=10e-4)]<-round(B1tt[which(B1tt>=10e-4)],4);B1tt[which(B1tt<10e-4)]<-format(B1tt[which(B1tt<10e-4)],scientific=TRUE,digit=4) dataB2 <- sort(dataB2); B2w1<-1/(12*n_samB2) B2bmw <- matrix(0,n_samB2,1); B2bmwsl <- matrix(0,n_samB2,3) for(i in 1:3){ B2gg <- (dataB2 - mean2[i])/sqrt(sigma2[i]) B2bmw[which(B2gg>=0)] <- pnorm(B2gg[B2gg>=0]) B2bmw[which(B2gg<0)] <- 1 - pnorm(abs(B2gg[B2gg<0])) B2bmwsl[,i] <- B2bmw*mix_pi2[i] } B2P2 <- rowSums(B2bmwsl) nn <- dim(as.matrix(unique(B2P2)))[1] if(nn < n_samB2){B2P2 <- B2P2+runif(n_samB2)/1e4} B2dd <- as.matrix(c(sum(B2P2),sum(B2P2^2),sum((B2P2-0.5)^2))) B2WW2 <- 1/(12*n_samB2) + sum((B2P2 - (as.matrix(c(1:n_samB2)) - 0.5)/n_samB2)^2) B2u <- as.matrix(c(12*n_samB2*((B2dd[1]/n_samB2-0.5)^2),((45*n_samB2)/4)*((B2dd[2]/n_samB2-1/3)^2),180*n_samB2*((B2dd[3]/n_samB2-1/12)^2))) B2D <- as.numeric(ks.test(B2P2,"punif")[[1]][1]) B2tt <- as.matrix(c((1 - pchisq(B2u[1],1)),(1 - pchisq(B2u[2],1)),(1 - pchisq(B2u[3],1)),K1(B2WW2),(1-pkolm(B2D,n_samB2)))) B2tt[which( B2tt>=10e-4)]<-round(B2tt[which(B2tt>=10e-4)],4);B2tt[which(B2tt<10e-4)]<-format(B2tt[which(B2tt<10e-4)],scientific=TRUE,digit=4) dataF2 <- sort(dataF2); F2w1<-1/(12*n_samF2) F2bmw <- matrix(0,n_samF2,1); F2bmwsl <- matrix(0,n_samF2,6) for(i in 1:6){ F2gg <- (dataF2 - mean3[i])/sqrt(sigma3[i]) F2bmw[which(F2gg>=0)] <- pnorm(F2gg[F2gg>=0]) F2bmw[which(F2gg<0)] <- 1 - pnorm(abs(F2gg[F2gg<0])) F2bmwsl[,i] <- F2bmw*mix_pi3[i] } F2P2 <- rowSums(F2bmwsl) nn <- dim(as.matrix(unique(F2P2)))[1] if(nn < n_samF2){F2P2 <- F2P2+runif(n_samF2)/1e4} F2dd <- as.matrix(c(sum(F2P2),sum(F2P2^2),sum((F2P2-0.5)^2))) F2WW2 <- 1/(12*n_samF2) + sum((F2P2 - (as.matrix(c(1:n_samF2)) - 0.5)/n_samF2)^2) F2u <- as.matrix(c(12*n_samF2*((F2dd[1]/n_samF2-0.5)^2),((45*n_samF2)/4)*((F2dd[2]/n_samF2-1/3)^2),180*n_samF2*((F2dd[3]/n_samF2-1/12)^2))) F2D <- as.numeric(ks.test(F2P2,"punif")[[1]][1]) F2tt <- as.matrix(c((1 - pchisq(F2u[1],1)),(1 - pchisq(F2u[2],1)),(1 - pchisq(F2u[3],1)),K1(F2WW2),(1-pkolm(F2D,n_samF2)))) F2tt[which( F2tt>=10e-4)]<-round(F2tt[which(F2tt>=10e-4)],4);F2tt[which(F2tt<10e-4)]<-format(F2tt[which(F2tt<10e-4)],scientific=TRUE,digit=4) aa<-matrix(c(1,2,1,0,1,-2,1,1,1,-1),5,2,byrow=T) mm<-as.matrix(c(mean[1],mean[2],mean[3],mean1[2],mean2[2])) B1<-solve(crossprod(aa,aa))%*%crossprod(aa,mm) jj1<-sigmaB1-sigma1[1] if (jj1<0 ) {jj1<-0} ll1<-jj1/sigmaB1 jj2<-sigmaB2-sigma2[3] if (jj2<0) {jj2<-0} ll2<-jj2/sigmaB2 jj3<-sigmaF2-sigma3[1] if (jj3<0) {jj3<-0} ll3<-jj3/sigmaF2 output <- data.frame("2MG-EA",round(abc,4),round(AIC,4),round(meanP1,4),round(meanF1,4),round(meanP2,4), round(sigma0,4),round(t(mean1),4)," ",round(t(sigma1),4)," ", round(t(mix_pi1),4)," ",round(t(mean2),4)," ",round(t(sigma2),4)," ",round(t(mix_pi2),4)," ", round(t(mean3),4)," "," "," ",round(t(sigma3),4)," "," "," ",round(t(mix_pi3),4)," "," "," ", round(B1[1],4)," "," "," "," "," ",round(B1[2],4),round(B1[2],4)," "," "," "," "," "," "," "," ", round(jj1,4),round(ll1*100,4)," "," ",round(jj2,4),round(ll2*100,4)," "," ",round(jj3,4),round(ll3*100,4)," "," ", round(P1u[1],4),P1tt[1],round(P1u[2],4),P1tt[2],round(P1u[3],4),P1tt[3],round(P1w,4),P1tt[4],round(P1D,4),P1tt[5], round(F1u[1],4),F1tt[1],round(F1u[2],4),F1tt[2],round(F1u[3],4),F1tt[3],round(F1w,4),F1tt[4],round(F1D,4),F1tt[5], round(P2u[1],4),P2tt[1],round(P2u[2],4),P2tt[2],round(P2u[3],4),P2tt[3],round(P2w,4),P2tt[4],round(P2D,4),P2tt[5], round(B1u[1],4),B1tt[1],round(B1u[2],4),B1tt[2],round(B1u[3],4),B1tt[3],round(B1WW2,4),B1tt[4],round(B1D,4),B1tt[5], round(B2u[1],4),B2tt[1],round(B2u[2],4),B2tt[2],round(B2u[3],4),B2tt[3],round(B2WW2,4),B2tt[4],round(B2D,4),B2tt[5], round(F2u[1],4),F2tt[1],round(F2u[2],4),F2tt[2],round(F2u[3],4),F2tt[3],round(F2WW2,4),F2tt[4],round(F2D,4),F2tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi1,mi2,mi3) return(OUTPUT) } G6FModelFun[[9]] <- function(K1,logL,df11,df21,df31,df41,df51,df61,G6Ftext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataF1 <- as.matrix(as.numeric(df21[,1])) dataP2 <- as.matrix(as.numeric(df31[,1]));dataB1 <- as.matrix(as.numeric(df41[,1])) dataB2 <- as.matrix(as.numeric(df51[,1]));dataF2 <- as.matrix(as.numeric(df61[,1])) n_samP1<-dim(dataP1)[1];n_samF1<-dim(dataF1)[1];n_samP2<-dim(dataP2)[1] n_samB1<-dim(dataB1)[1];n_samB2<-dim(dataB2)[1];n_samF2<-dim(dataF2)[1] sumx<-as.matrix(c(sum(dataP1),sum(dataF1),sum(dataP2),sum(dataB1),sum(dataB2),sum(dataF2))) s<-as.matrix(c(sum(dataP1^2),sum(dataF1^2),sum(dataP2^2),sum(dataB1^2),sum(dataB2^2),sum(dataF2^2))) ss<-matrix(0,3,1);ss[1]<-s[1]-sumx[1]^2/n_samP1;ss[2]<-s[2]-sumx[2]^2/n_samF1;ss[3]<-s[3]-sumx[3]^2/n_samP2 mean<-as.matrix(c(mean(dataP1),mean(dataF1),mean(dataP2),mean(dataB1),mean(dataB2),mean(dataF2))) sigma0<-sum(ss)/(n_samP1+n_samF1+n_samP2-3) sigmaB1<-var(dataB1);sigma40<-sigmaB1 sigmaB2<-var(dataB2);sigma50<-sigmaB2 sigmaF2<-var(dataF2);sigma60<-sigmaF2 sigmaP1<-sigmaF1<-sigmaP2<-sigma0 m_esp <- 0.0001;n_fam <- as.numeric(G6Ftext2) mi1<-matrix(0.25,4,1);sigma1<-matrix(0,4,1) mi2<-matrix(0.25,4,1);sigma2<-matrix(0,4,1) mi3<-as.matrix(c(0.0625,0.125,0.0625,0.125,0.25,0.125,0.0625,0.125,0.0625)) sigma3<-matrix(0,9,1);sigma<-sigma0 a1<-sqrt(sigmaB1/n_samB1) if (mean[1]<mean[3]) a1<--a1 mean1<-as.matrix(c(mean[1],mean[4]-0.5*a1,mean[4]-1.5*a1,mean[4]-2.5*a1)) a2<-sqrt(sigmaB2/n_samB2) if (mean[1]<mean[3]) a2<--a2 mean2<-as.matrix(c(mean1[4],mean[5]-a2,mean[5]-2*a2,mean[3])) a3<-sqrt(sigmaF2/n_samF2) if (mean[1]<mean[3]) a3<--a3 mean3<-as.matrix(c(mean[1],mean1[2],mean[6],mean1[3],mean1[4],mean2[2],mean[6],mean2[3],mean[3])) gs<-matrix(0,2,1) gs[1]<-(5*mean[1]-7*mean[3]+5*mean1[2]+2*mean1[3]+2*mean1[4]+2*mean2[2]-7*mean2[3]+5*mean3[3]-7*mean3[7])/39 gs[2]<-(5*mean[1]-7*mean[3]+2*mean1[2]+5*mean1[3]+2*mean1[4]-7*mean2[2]+2*mean2[3]-7*mean3[3]+5*mean3[7])/39 g_aa1<-0.75*gs[2]^2/n_fam g_aa2<-0.75*gs[1]^2/n_fam g_aa3<-g_aa1+g_aa2 sigma1[1]<-sigma;sigma1[2]<-sigma+g_aa1;sigma1[3]<-sigma+g_aa2;sigma1[4]<-sigma+g_aa3 sigma2[1]<-sigma1[4];sigma2[2]<-sigma1[3];sigma2[3]<-sigma1[2];sigma2[4]<-sigma sigma3[1]<-sigma3[3]<-sigma3[7]<-sigma3[9]<-sigma sigma3[2]<-sigma3[8]<-sigma1[2] sigma3[4]<-sigma3[6]<-sigma1[3] sigma3[5]<-sigma1[4] L0<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma0))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma0))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma0))))+sum(log(dmixnorm(dataB1,mean1,sqrt(sigma1),mi1)))+ sum(log(dmixnorm(dataB2,mean2,sqrt(sigma2),mi2)))+sum(log(dmixnorm(dataF2,mean3,sqrt(sigma3),mi3))) iteration <- 0; stopa <- 1000 W1 <- matrix(0,4,n_samB1); swx1 <- matrix(0,4,1) W2 <- matrix(0,4,n_samB2); swx2 <- matrix(0,4,1) W3 <- matrix(0,9,n_samF2); swx3 <- matrix(0,9,1) s0<-matrix(0,13,1);n0<-matrix(0,13,1) hh<-matrix(0,6,6);b_line<-matrix(0,6,1) while(stopa > m_esp&&iteration<=1000){ iteration <- iteration + 1 for(i in 1:4) { W1[i,] <- mi1[i]*dnorm(dataB1,mean1[i],sqrt(sigma1[i]))/dmixnorm(dataB1,mean1,sqrt(sigma1),mi1) } mix_pi1 <- as.matrix(rowSums(W1)/n_samB1) sumwx1 <- W1%*%dataB1 for(i in 1:4) { W2[i,] <- mi2[i]*dnorm(dataB2,mean2[i],sqrt(sigma2[i]))/dmixnorm(dataB2,mean2,sqrt(sigma2),mi2) } mix_pi2 <- as.matrix(rowSums(W2)/n_samB2) sumwx2 <- W2%*%dataB2 for(i in 1:9) { W3[i,] <- mi3[i]*dnorm(dataF2,mean3[i],sqrt(sigma3[i]))/dmixnorm(dataF2,mean3,sqrt(sigma3),mi3) } mix_pi3 <- as.matrix(rowSums(W3)/n_samF2) sumwx3 <- W3%*%dataF2 aaa0<-0 s0[1]<-sumx[1]+sumx[2]+sumwx1[1]+sumwx3[1];s0[2]<-sumx[3]+sumwx2[4]+sumwx3[9] s0[3]<-sumwx1[2]+sumwx3[2];s0[4]<-sumwx1[3]+sumwx3[4] s0[5]<-sumwx1[4]+sumwx2[1]+sumwx3[5];s0[6]<-sumwx2[2]+sumwx3[6] s0[7]<-sumwx2[3]+sumwx3[8];s0[8]<-sumwx3[3];s0[9]<-sumwx3[7] n0[1]<-n_samP1+n_samF1+mix_pi1[1]*n_samB1+mix_pi3[1]*n_samF2 n0[2]<-n_samP2+mix_pi2[4]*n_samB2+mix_pi3[9]*n_samF2 n0[3]<-mix_pi1[2]*n_samB1+mix_pi3[2]*n_samF2 n0[4]<-mix_pi1[3]*n_samB1+mix_pi3[4]*n_samF2 n0[5]<-mix_pi1[4]*n_samB1+mix_pi2[1]*n_samB2+mix_pi3[5]*n_samF2 n0[6]<-mix_pi2[2]*n_samB2+mix_pi3[6]*n_samF2 n0[7]<-mix_pi2[3]*n_samB2+mix_pi3[8]*n_samF2 n0[8]<-mix_pi3[3]*n_samF2 n0[9]<-mix_pi3[7]*n_samF2 n0[c(1:9)][abs(n0[c(1:9)])<0.00000001]<-0.000001 AA<-matrix(0,6,1);aa7<-0;aaa1<-1000 while (aaa1>0.0001) { aa7<-aa7+1 gs[1]<-(5*mean[1]-7*mean[3]+5*mean1[2]+2*mean1[3]+2*mean1[4]+2*mean2[2]-7*mean2[3]+5*mean3[3]-7*mean3[7])/39 gs[2]<-(5*mean[1]-7*mean[3]+2*mean1[2]+5*mean1[3]+2*mean1[4]-7*mean2[2]+2*mean2[3]-7*mean3[3]+5*mean3[7])/39 g_aa1<-0.75*gs[2]^2/n_fam g_aa2<-0.75*gs[1]^2/n_fam g_aa3<-g_aa1+g_aa2 sigma1[2]<-sigma+g_aa1;sigma1[3]<-sigma+g_aa2;sigma1[4]<-sigma+g_aa3 sigma2[1]<-sigma1[4];sigma2[2]<-sigma1[3];sigma2[3]<-sigma1[2];sigma2[4]<-sigma sigma3[1]<-sigma3[3]<-sigma3[7]<-sigma3[9]<-sigma sigma3[2]<-sigma3[8]<-sigma1[2] sigma3[4]<-sigma3[6]<-sigma1[3] sigma3[5]<-sigma1[4] hh[1,1]<-sigma*(1/n0[1]+1/n0[2]+1/n0[8]+1/n0[9]) hh[1,2]<-sigma*(1/n0[1]-1/n0[2]-1/n0[8]+1/n0[9]) hh[1,3]<-sigma*(1/n0[1]-1/n0[2]+1/n0[8]-1/n0[9]) hh[1,4]<-sigma*(3/n0[1]+1/n0[2]) hh[1,5]<-sigma/n0[2] hh[1,6]<-0 hh[2,2]<-sigma*(1/n0[1]+1/n0[2]+1/n0[8]+1/n0[9])+sigma1[2]*(4/n0[3]+4/n0[7]) hh[2,3]<-sigma*(1/n0[1]+1/n0[2]-1/n0[8]-1/n0[9]) hh[2,4]<-sigma*(3/n0[1]-1/n0[2]) hh[2,5]<--sigma/n0[2]-2*sigma1[2]/n0[7] hh[2,6]<--6*sigma1[2]/n0[3]+2*sigma1[2]/n0[7] hh[3,3]<-sigma*(1/n0[1]+1/n0[2]+1/n0[8]+1/n0[9])+sigma1[3]*(4/n0[4]+4/n0[6]) hh[3,4]<-sigma*(3/n0[1]-1/n0[2]) hh[3,5]<--sigma/n0[2]-2*sigma1[3]/n0[6] hh[3,6]<-6*sigma1[3]/n0[4]-2*sigma1[3]/n0[6] hh[4,4]<-sigma*(9/n0[1]+1/n0[2])+16*sigma1[4]/n0[5] hh[4,5]<-sigma/n0[2]-4*sigma1[4]/n0[5] hh[4,6]<-0 hh[5,5]<-sigma/n0[2]+sigma1[4]/n0[5]+sigma1[3]/n0[6]+sigma1[2]/n0[7] hh[5,6]<-sigma1[3]/n0[6]-sigma1[2]/n0[7] hh[6,6]<-9*sigma1[2]/n0[3]+9*sigma1[3]/n0[4]+sigma1[3]/n0[6]+sigma1[2]/n0[7] for(i in 2:6) { for(j in 1:(i-1)) { hh[i,j]<-hh[j,i] } } b_line[1]<-s0[1]/n0[1]+s0[2]/n0[2]-s0[8]/n0[8]-s0[9]/n0[9] b_line[2]<-s0[1]/n0[1]-s0[2]/n0[2]-2*s0[3]/n0[3]+2*s0[7]/n0[7]+s0[8]/n0[8]-s0[9]/n0[9] b_line[3]<-s0[1]/n0[1]-s0[2]/n0[2]-2*s0[4]/n0[4]+2*s0[6]/n0[6]-s0[8]/n0[8]+s0[9]/n0[9] b_line[4]<-3*s0[1]/n0[1]+s0[2]/n0[2]-4*s0[5]/n0[5] b_line[5]<-s0[2]/n0[2]+s0[5]/n0[5]-s0[6]/n0[6]-s0[7]/n0[7] b_line[6]<-3*s0[3]/n0[3]-3*s0[4]/n0[4]-s0[6]/n0[6]+s0[7]/n0[7] B<-solve(hh,b_line) mean[1]<-(s0[1]-sigma*(B[1]+B[2]+B[3]+3*B[4]))/n0[1] mean[3]<-(s0[2]-sigma*(B[1]-B[2]-B[3]+B[4]+B[5]))/n0[2] mean1[2]<-(s0[3]+(2*B[2]-3*B[6])*sigma1[2])/n0[3] mean1[3]<-(s0[4]+(2*B[3]+3*B[6])*sigma1[3])/n0[4] mean1[4]<-(s0[5]+sigma1[4]*(4*B[4]-B[5]))/n0[5] mean2[2]<-(s0[6]-sigma1[3]*(2*B[3]-B[5]-B[6]))/n0[6] mean2[3]<-(s0[7]-sigma1[2]*(2*B[2]-B[5]+B[6]))/n0[7] mean3[3]<-(s0[8]+sigma*(B[1]-B[2]+B[3]))/n0[8] mean3[7]<-(s0[9]+sigma*(B[1]+B[2]-B[3]))/n0[9] mean[2]<-mean1[1]<-mean[1] mean2[1]<-mean1[4];mean2[4]<-mean[3] mean3[1]<-mean[1];mean3[2]<-mean1[2];mean3[4]<-mean1[3] mean3[5]<-mean1[4];mean3[6]<-mean2[2];mean3[8]<-mean2[3];mean3[9]<-mean[3] aaa1<-max(abs(B-AA)) AA<-B if (aa7>20) break } ss1<-sum((dataP1-mean[1])^2);ss3<-sum((dataP2-mean[3])^2);ss2<-sum((dataF1-mean[2])^2) for(i in 1:4) {swx1[i] <- W1[i,]%*%(dataB1-mean1[i])^2 };for(i in 1:4) {swx2[i] <- W2[i,]%*%(dataB2-mean2[i])^2 };for(i in 1:9) {swx3[i] <- W3[i,]%*%(dataF2-mean3[i])^2 } s0[10]<-ss1+ss2+ss3+swx1[1]+swx2[4]+swx3[1]+swx3[3]+swx3[7]+swx3[9] n0[10]<-n_samP1+n_samF1+n_samP2+mix_pi1[1]*n_samB1+mix_pi2[4]*n_samB2+(mix_pi3[1]+mix_pi3[3]+mix_pi3[7]+mix_pi3[9])*n_samF2 s0[11]<-swx1[2]+swx2[3]+swx3[2]+swx3[8] s0[12]<-swx1[3]+swx2[2]+swx3[4]+swx3[6] s0[13]<-swx1[4]+swx2[1]+swx3[5] n0[11]<-mix_pi1[2]*n_samB1+mix_pi2[3]*n_samB2+mix_pi3[2]*n_samF2+mix_pi3[8]*n_samF2 n0[12]<-mix_pi1[3]*n_samB1+mix_pi2[2]*n_samB2+mix_pi3[4]*n_samF2+mix_pi3[6]*n_samF2 n0[13]<-mix_pi1[4]*n_samB1+mix_pi2[1]*n_samB2+mix_pi3[5]*n_samF2 gs[1]<-(5*mean[1]-7*mean[3]+5*mean1[2]+2*mean1[3]+2*mean1[4]+2*mean2[2]-7*mean2[3]+5*mean3[3]-7*mean3[7])/39 gs[2]<-(5*mean[1]-7*mean[3]+2*mean1[2]+5*mean1[3]+2*mean1[4]-7*mean2[2]+2*mean2[3]-7*mean3[3]+5*mean3[7])/39 g_aa1<-0.75*gs[2]^2/n_fam g_aa2<-0.75*gs[1]^2/n_fam g_aa3<-g_aa1+g_aa2 aaa0<-sigma;aa7<-0;aa3<-1000 while (aa3>0.0001) { aa7<-aa7+1 aa1<-sigma/(sigma+g_aa1) aa2<-sigma/(sigma+g_aa2) aa3<-sigma/(sigma+g_aa3) sigma<-(s0[10]+aa1^2*s0[11]+aa2^2*s0[12]+aa3^2*s0[13])/(n0[10]+aa1*n0[11]+aa2*n0[12]+aa3*n0[13]) aa3<-abs(sigma-aaa0) aaa0<-sigma if (aa7>20) break } sigma1[1]<-sigma;sigma1[2]<-sigma+g_aa1;sigma1[3]<-sigma+g_aa2;sigma1[4]<-sigma+g_aa3 sigma2[1]<-sigma1[4];sigma2[2]<-sigma1[3];sigma2[3]<-sigma1[2];sigma2[4]<-sigma sigma3[1]<-sigma3[3]<-sigma3[7]<-sigma3[9]<-sigma sigma3[2]<-sigma3[8]<-sigma1[2] sigma3[4]<-sigma3[6]<-sigma1[3] sigma3[5]<-sigma1[4] L1<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma))))+sum(log(dmixnorm(dataB1,mean1,sqrt(sigma1),mix_pi1)))+ sum(log(dmixnorm(dataB2,mean2,sqrt(sigma2),mix_pi2)))+sum(log(dmixnorm(dataF2,mean3,sqrt(sigma3),mix_pi3))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc<-L0 AIC<--2*abc+2*4 meanP1<-mean[1];meanF1<-mean[2];meanP2<-mean[3] sigma0<-sigma dataP1<-sort(dataP1) P1w1<-1/(12*n_samP1) P1bmw <- matrix(0,n_samP1,1) P1gg <- (dataP1 - mean[1])/sqrt(as.vector(sigma)) P1bmw[which(P1gg>=0)] <- pnorm(P1gg[P1gg>=0]) P1bmw[which(P1gg<0)] <- 1 - pnorm(abs(P1gg[P1gg<0])) nn <- dim(as.matrix(unique(P1bmw)))[1] if(nn < n_samP1){P1bmw <- P1bmw+runif(n_samP1)/1e4} P1dd<-c((sum(P1bmw)),(sum(P1bmw^2)),sum((P1bmw-0.5)^2)) P1w<-P1w1+sum((P1bmw - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) P1u<- as.matrix(c(12*n_samP1*((P1dd[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((P1dd[2]/n_samP1-1/3)^2),180*n_samP1*((P1dd[3]/n_samP1-1/12)^2))) P1D<-as.numeric(ks.test(P1bmw,"punif")[[1]][1]) P1tt <- as.matrix(c((1 - pchisq(P1u[1],1)),(1 - pchisq(P1u[2],1)),(1 - pchisq(P1u[3],1)),K1(P1w),(1-pkolm(P1D,n_samP1)))) P1tt[which( P1tt>=10e-4)]<-round(P1tt[which(P1tt>=10e-4)],4);P1tt[which(P1tt<10e-4)]<-format(P1tt[which(P1tt<10e-4)],scientific=TRUE,digit=4) dataF1<-sort(dataF1) F1w1<-1/(12*n_samF1) F1bmw <- matrix(0,n_samF1,1) F1gg <- (dataF1 - mean[2])/sqrt(as.vector(sigma)) F1bmw[which(F1gg>=0)] <- pnorm(F1gg[F1gg>=0]) F1bmw[which(F1gg<0)] <- 1 - pnorm(abs(F1gg[F1gg<0])) nn <- dim(as.matrix(unique(F1bmw)))[1] if(nn < n_samF1){F1bmw <- F1bmw+runif(n_samF1)/1e4} F1dd<-c((sum(F1bmw)),(sum(F1bmw^2)),sum((F1bmw-0.5)^2)) F1w<-F1w1+sum((F1bmw - (as.matrix(c(1:n_samF1)) - 0.5)/n_samF1)^2) F1u<- as.matrix(c(12*n_samF1*((F1dd[1]/n_samF1-0.5)^2),((45*n_samF1)/4)*((F1dd[2]/n_samF1-1/3)^2),180*n_samF1*((F1dd[3]/n_samF1-1/12)^2))) F1D<-as.numeric(ks.test(F1bmw,"punif")[[1]][1]) F1tt <- as.matrix(c((1 - pchisq(F1u[1],1)),(1 - pchisq(F1u[2],1)),(1 - pchisq(F1u[3],1)),K1(F1w),(1-pkolm(F1D,n_samF1)))) F1tt[which(F1tt>=10e-4)]<-round(F1tt[which(F1tt>=10e-4)],4);F1tt[which(F1tt<10e-4)]<-format(F1tt[which(F1tt<10e-4)],scientific=TRUE,digit=4) dataP2<-sort(dataP2) P2w1<-1/(12*n_samP2) P2bmw <- matrix(0,n_samP2,1) P2gg <- (dataP2 - mean[3])/sqrt(as.vector(sigma)) P2bmw[which(P2gg>=0)] <- pnorm(P2gg[P2gg>=0]) P2bmw[which(P2gg<0)] <- 1 - pnorm(abs(P2gg[P2gg<0])) nn <- dim(as.matrix(unique(P2bmw)))[1] if(nn < n_samP2){P2bmw <- P2bmw+runif(n_samP2)/1e4} P2dd<-c((sum(P2bmw)),(sum(P2bmw^2)),sum((P2bmw-0.5)^2)) P2w<-P2w1+sum((P2bmw - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) P2u<- as.matrix(c(12*n_samP2*((P2dd[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((P2dd[2]/n_samP2-1/3)^2),180*n_samP2*((P2dd[3]/n_samP2-1/12)^2))) P2D<-as.numeric(ks.test(P2bmw,"punif")[[1]][1]) P2tt <- as.matrix(c((1 - pchisq(P2u[1],1)),(1 - pchisq(P2u[2],1)),(1 - pchisq(P2u[3],1)),K1(P2w),(1-pkolm(P2D,n_samP2)))) P2tt[which(P2tt>=10e-4)]<-round(P2tt[which(P2tt>=10e-4)],4);P2tt[which(P2tt<10e-4)]<-format(P2tt[which(P2tt<10e-4)],scientific=TRUE,digit=4) dataB1 <- sort(dataB1); B1w1<-1/(12*n_samB1) B1bmw <- matrix(0,n_samB1,1); B1bmwsl <- matrix(0,n_samB1,4) for(i in 1:4){ B1gg <- (dataB1 - mean1[i])/sqrt(sigma1[i]) B1bmw[which(B1gg>=0)] <- pnorm(B1gg[B1gg>=0]) B1bmw[which(B1gg<0)] <- 1 - pnorm(abs(B1gg[B1gg<0])) B1bmwsl[,i] <- B1bmw*mix_pi1[i] } B1P2 <- rowSums(B1bmwsl) nn <- dim(as.matrix(unique(B1P2)))[1] if(nn < n_samB1){B1P2 <- B1P2+runif(n_samB1)/1e4} B1dd <- as.matrix(c(sum(B1P2),sum(B1P2^2),sum((B1P2-0.5)^2))) B1WW2 <- 1/(12*n_samB1) + sum((B1P2 - (as.matrix(c(1:n_samB1)) - 0.5)/n_samB1)^2) B1u <- as.matrix(c(12*n_samB1*((B1dd[1]/n_samB1-0.5)^2),((45*n_samB1)/4)*((B1dd[2]/n_samB1-1/3)^2),180*n_samB1*((B1dd[3]/n_samB1-1/12)^2))) B1D <- as.numeric(ks.test(B1P2,"punif")[[1]][1]) B1tt <- as.matrix(c((1 - pchisq(B1u[1],1)),(1 - pchisq(B1u[2],1)),(1 - pchisq(B1u[3],1)),K1(B1WW2),(1-pkolm(B1D,n_samB1)))) B1tt[which( B1tt>=10e-4)]<-round(B1tt[which(B1tt>=10e-4)],4);B1tt[which(B1tt<10e-4)]<-format(B1tt[which(B1tt<10e-4)],scientific=TRUE,digit=4) dataB2 <- sort(dataB2); B2w1<-1/(12*n_samB2) B2bmw <- matrix(0,n_samB2,1); B2bmwsl <- matrix(0,n_samB2,4) for(i in 1:4){ B2gg <- (dataB2 - mean2[i])/sqrt(sigma2[i]) B2bmw[which(B2gg>=0)] <- pnorm(B2gg[B2gg>=0]) B2bmw[which(B2gg<0)] <- 1 - pnorm(abs(B2gg[B2gg<0])) B2bmwsl[,i] <- B2bmw*mix_pi2[i] } B2P2 <- rowSums(B2bmwsl) nn <- dim(as.matrix(unique(B2P2)))[1] if(nn < n_samB2){B2P2 <- B2P2+runif(n_samB2)/1e4} B2dd <- as.matrix(c(sum(B2P2),sum(B2P2^2),sum((B2P2-0.5)^2))) B2WW2 <- 1/(12*n_samB2) + sum((B2P2 - (as.matrix(c(1:n_samB2)) - 0.5)/n_samB2)^2) B2u <- as.matrix(c(12*n_samB2*((B2dd[1]/n_samB2-0.5)^2),((45*n_samB2)/4)*((B2dd[2]/n_samB2-1/3)^2),180*n_samB2*((B2dd[3]/n_samB2-1/12)^2))) B2D <- as.numeric(ks.test(B2P2,"punif")[[1]][1]) B2tt <- as.matrix(c((1 - pchisq(B2u[1],1)),(1 - pchisq(B2u[2],1)),(1 - pchisq(B2u[3],1)),K1(B2WW2),(1-pkolm(B2D,n_samB2)))) B2tt[which( B2tt>=10e-4)]<-round(B2tt[which(B2tt>=10e-4)],4);B2tt[which(B2tt<10e-4)]<-format(B2tt[which(B2tt<10e-4)],scientific=TRUE,digit=4) dataF2 <- sort(dataF2); F2w1<-1/(12*n_samF2) F2bmw <- matrix(0,n_samF2,1); F2bmwsl <- matrix(0,n_samF2,9) for(i in 1:9){ F2gg <- (dataF2 - mean3[i])/sqrt(sigma3[i]) F2bmw[which(F2gg>=0)] <- pnorm(F2gg[F2gg>=0]) F2bmw[which(F2gg<0)] <- 1 - pnorm(abs(F2gg[F2gg<0])) F2bmwsl[,i] <- F2bmw*mix_pi3[i] } F2P2 <- rowSums(F2bmwsl) nn <- dim(as.matrix(unique(F2P2)))[1] if(nn < n_samF2){F2P2 <- F2P2+runif(n_samF2)/1e4} F2dd <- as.matrix(c(sum(F2P2),sum(F2P2^2),sum((F2P2-0.5)^2))) F2WW2 <- 1/(12*n_samF2) + sum((F2P2 - (as.matrix(c(1:n_samF2)) - 0.5)/n_samF2)^2) F2u <- as.matrix(c(12*n_samF2*((F2dd[1]/n_samF2-0.5)^2),((45*n_samF2)/4)*((F2dd[2]/n_samF2-1/3)^2),180*n_samF2*((F2dd[3]/n_samF2-1/12)^2))) F2D <- as.numeric(ks.test(F2P2,"punif")[[1]][1]) F2tt <- as.matrix(c((1 - pchisq(F2u[1],1)),(1 - pchisq(F2u[2],1)),(1 - pchisq(F2u[3],1)),K1(F2WW2),(1-pkolm(F2D,n_samF2)))) F2tt[which( F2tt>=10e-4)]<-round(F2tt[which(F2tt>=10e-4)],4);F2tt[which(F2tt<10e-4)]<-format(F2tt[which(F2tt<10e-4)],scientific=TRUE,digit=4) aa<-matrix(c(1,1,1,1,-1,-1,1,1,0.5,1,0.5,1,1,0.5,0.5, 1,0.5,-1,1,-1,0.5,1,1,-1,1,-1,1),9,3,byrow=T) mm<-as.matrix(c(mean[1],mean[3],mean1[2],mean1[3],mean1[4],mean2[2],mean2[3],mean3[3],mean3[7])) B1<-solve(crossprod(aa,aa))%*%crossprod(aa,mm) jj1<-sigmaB1-sigma1[1] if (jj1<0 ) {jj1<-0} ll1<-jj1/sigmaB1 jj2<-sigmaB2-sigma2[4] if (jj2<0) {jj2<-0} ll2<-jj2/sigmaB2 jj3<-sigmaF2-sigma3[1] if (jj3<0) {jj3<-0} ll3<-jj3/sigmaF2 output <- data.frame("2MG-CD",round(abc,4),round(AIC,4),round(meanP1,4),round(meanF1,4),round(meanP2,4), round(sigma0,4),round(t(mean1),4),round(t(sigma1),4), round(t(mix_pi1),4),round(t(mean2),4),round(t(sigma2),4),round(t(mix_pi2),4), round(t(mean3),4),round(t(sigma3),4),round(t(mix_pi3),4), round(B1[1],4)," "," "," "," "," ",round(B1[2],4),round(B1[3],4),round(B1[2],4),round(B1[3],4)," "," "," "," "," "," ", round(jj1,4),round(ll1*100,4)," "," ",round(jj2,4),round(ll2*100,4)," "," ",round(jj3,4),round(ll3*100,4)," "," ", round(P1u[1],4),P1tt[1],round(P1u[2],4),P1tt[2],round(P1u[3],4),P1tt[3],round(P1w,4),P1tt[4],round(P1D,4),P1tt[5], round(F1u[1],4),F1tt[1],round(F1u[2],4),F1tt[2],round(F1u[3],4),F1tt[3],round(F1w,4),F1tt[4],round(F1D,4),F1tt[5], round(P2u[1],4),P2tt[1],round(P2u[2],4),P2tt[2],round(P2u[3],4),P2tt[3],round(P2w,4),P2tt[4],round(P2D,4),P2tt[5], round(B1u[1],4),B1tt[1],round(B1u[2],4),B1tt[2],round(B1u[3],4),B1tt[3],round(B1WW2,4),B1tt[4],round(B1D,4),B1tt[5], round(B2u[1],4),B2tt[1],round(B2u[2],4),B2tt[2],round(B2u[3],4),B2tt[3],round(B2WW2,4),B2tt[4],round(B2D,4),B2tt[5], round(F2u[1],4),F2tt[1],round(F2u[2],4),F2tt[2],round(F2u[3],4),F2tt[3],round(F2WW2,4),F2tt[4],round(F2D,4),F2tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi1,mi2,mi3) return(OUTPUT) } G6FModelFun[[10]] <- function(K1,logL,df11,df21,df31,df41,df51,df61,G6Ftext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataF1 <- as.matrix(as.numeric(df21[,1])) dataP2 <- as.matrix(as.numeric(df31[,1]));dataB1 <- as.matrix(as.numeric(df41[,1])) dataB2 <- as.matrix(as.numeric(df51[,1]));dataF2 <- as.matrix(as.numeric(df61[,1])) n_samP1<-dim(dataP1)[1];n_samF1<-dim(dataF1)[1];n_samP2<-dim(dataP2)[1] n_samB1<-dim(dataB1)[1];n_samB2<-dim(dataB2)[1];n_samF2<-dim(dataF2)[1] sumx<-as.matrix(c(sum(dataP1),sum(dataF1),sum(dataP2),sum(dataB1),sum(dataB2),sum(dataF2))) s<-as.matrix(c(sum(dataP1^2),sum(dataF1^2),sum(dataP2^2),sum(dataB1^2),sum(dataB2^2),sum(dataF2^2))) ss<-matrix(0,3,1);ss[1]<-s[1]-sumx[1]^2/n_samP1;ss[2]<-s[2]-sumx[2]^2/n_samF1;ss[3]<-s[3]-sumx[3]^2/n_samP2 mean<-as.matrix(c(mean(dataP1),mean(dataF1),mean(dataP2),mean(dataB1),mean(dataB2),mean(dataF2))) sigma0<-sum(ss)/(n_samP1+n_samF1+n_samP2-3) sigmaB1<-var(dataB1);sigma40<-sigmaB1 sigmaB2<-var(dataB2);sigma50<-sigmaB2 sigmaF2<-var(dataF2);sigma60<-sigmaF2 sigmaP1<-sigmaF1<-sigmaP2<-sigma0 m_esp <- 0.0001;n_fam <- as.numeric(G6Ftext2) mi1<-as.matrix(c(0.25,0.5,0.25));sigma1<-matrix(0,3,1) mi2<-as.matrix(c(0.25,0.5,0.25));sigma2<-matrix(0,3,1) mi3<-as.matrix(c(0.0625,0.125,0.25,0.25,0.25,0.0625)) sigma3<-matrix(0,6,1);sigma<-sigma0 a1<-sqrt(sigma40/(n_samB1-1)) if (mean[1]<mean[3]) {a1<--a1} mean1<-as.matrix(c(mean[1],mean[4]-a1,mean[4])) mean2<-as.matrix(c(mean1[3],mean[5],mean[3])) mean3<-as.matrix(c(mean[1],mean[6],mean1[2],mean1[3],mean2[2],mean[3])) a1<-(10*mean[1]-14*mean[3]+7*mean1[2]+4*mean1[3]-5*mean2[2]-2*mean3[2])/65 a1<-a1^2/n_fam sigma1[1]<-sigma;sigma1[2]<-sigma+0.75*a1;sigma1[3]<-sigma+1.5*a1 sigma2[1]<-sigma1[3];sigma2[2]<-sigma1[2];sigma2[3]<-sigma sigma3[1]<-sigma3[2]<-sigma3[6]<-sigma sigma3[3]<-sigma3[5]<-sigma1[2] sigma3[4]<-sigma1[3] L0<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma0))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma0))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma0))))+sum(log(dmixnorm(dataB1,mean1,sqrt(sigma1),mi1)))+ sum(log(dmixnorm(dataB2,mean2,sqrt(sigma2),mi2)))+sum(log(dmixnorm(dataF2,mean3,sqrt(sigma3),mi3))) iteration <- 0; stopa <- 1000 W1 <- matrix(0,3,n_samB1); swx1 <- matrix(0,3,1) W2 <- matrix(0,3,n_samB2); swx2 <- matrix(0,3,1) W3 <- matrix(0,6,n_samF2); swx3 <- matrix(0,6,1) s0<-matrix(0,9,1);n0<-matrix(0,9,1) hh<-matrix(0,4,4);b_line<-matrix(0,4,1) gs<-matrix(0,1,1) while(stopa > m_esp&&iteration<=1000){ iteration <- iteration + 1 for(i in 1:3) { W1[i,] <- mi1[i]*dnorm(dataB1,mean1[i],sqrt(sigma1[i]))/dmixnorm(dataB1,mean1,sqrt(sigma1),mi1) } mix_pi1 <- as.matrix(rowSums(W1)/n_samB1) sumwx1 <- W1%*%dataB1 for(i in 1:3) { W2[i,] <- mi2[i]*dnorm(dataB2,mean2[i],sqrt(sigma2[i]))/dmixnorm(dataB2,mean2,sqrt(sigma2),mi2) } mix_pi2 <- as.matrix(rowSums(W2)/n_samB2) sumwx2 <- W2%*%dataB2 for(i in 1:6) { W3[i,] <- mi3[i]*dnorm(dataF2,mean3[i],sqrt(sigma3[i]))/dmixnorm(dataF2,mean3,sqrt(sigma3),mi3) } mix_pi3 <- as.matrix(rowSums(W3)/n_samF2) sumwx3 <- W3%*%dataF2 aaa0<-0 s0[1]<-sumx[1]+sumx[2]+sumwx1[1]+sumwx3[1];s0[2]<-sumx[3]+sumwx2[3]+sumwx3[6] s0[3]<-sumwx1[2]+sumwx3[3];s0[4]<-sumwx1[3]+sumwx2[1]+sumwx3[4] s0[5]<-sumwx2[2]+sumwx3[5];s0[6]<-sumwx3[2] n0[1]<-n_samP1+n_samF1+mix_pi1[1]*n_samB1+mix_pi3[1]*n_samF2 n0[2]<-n_samP2+mix_pi2[3]*n_samB2+mix_pi3[6]*n_samF2 n0[3]<-mix_pi1[2]*n_samB1+mix_pi3[3]*n_samF2 n0[4]<-mix_pi1[3]*n_samB1+mix_pi2[1]*n_samB2+mix_pi3[4]*n_samF2 n0[5]<-mix_pi2[2]*n_samB2+mix_pi3[5]*n_samF2 n0[6]<-mix_pi3[2]*n_samF2 n0[c(1:6)][abs(n0[c(1:6)])<0.00000001]<-0.000001 AA<-matrix(0,4,1);ab5<-0;aaa1<-1000 while(aaa1>0.0001) { ab5<-ab5+1 gs[1]<-(10*mean[1]-14*mean[3]+7*mean1[2]+4*mean1[3]-5*mean2[2]-2*mean3[2])/65 g_aa1<-0.75*gs[1]*gs[1]/n_fam g_aa2<-1.5*gs[1]*gs[1]/n_fam sigma1[1]<-sigma;sigma1[2]<-sigma+g_aa1;sigma1[3]<-sigma+g_aa2 sigma2[1]<-sigma1[3];sigma2[2]<-sigma1[2];sigma2[3]<-sigma sigma3[1]<-sigma3[2]<-sigma3[6]<-sigma sigma3[3]<-sigma3[5]<-sigma1[2] sigma3[4]<-sigma1[3] hh[1,1]<-sigma*(1/n0[1]+1/n0[2]+4/n0[6]) hh[1,2]<-sigma*(1/n0[1]-1/n0[2]) hh[1,3]<-sigma*(3/n0[1]+1/n0[2]) hh[1,4]<-sigma/n0[2] hh[2,2]<-sigma*(1/n0[1]+1/n0[2])+sigma1[2]*(4/n0[3]+4/n0[5]) hh[2,3]<-sigma*(3/n0[1]-1/n0[2]) hh[2,4]<--sigma/n0[2]-4*sigma1[2]/n0[5] hh[3,3]<-sigma*(9/n0[1]+1/n0[2])+16*sigma1[3]/n0[4] hh[3,4]<-sigma/n0[2]-4*sigma1[3]/n0[4] hh[4,4]<-sigma/n0[2]+sigma1[3]/n0[4]+4*sigma1[2]/n0[5] for(i in 2:4) { for(j in 1:(i-1)) { hh[i,j]<-hh[j,i] } } b_line[1]<-s0[1]/n0[1]+s0[2]/n0[2]-2*s0[6]/n0[6] b_line[2]<-s0[1]/n0[1]-s0[2]/n0[2]-2*s0[3]/n0[3]+2*s0[5]/n0[5] b_line[3]<-3*s0[1]/n0[1]+s0[2]/n0[2]-4*s0[4]/n0[4] b_line[4]<-s0[2]/n0[2]+s0[4]/n0[4]-2*s0[5]/n0[5] B<-solve(hh,b_line) mean[1]<-(s0[1]-sigma*(B[1]+B[2]+3*B[3]))/n0[1] mean[3]<-(s0[2]-sigma*(B[1]-B[2]+B[3]+B[4]))/n0[2] mean1[2]<-(s0[3]+2*B[2]*sigma1[2])/n0[3] mean1[3]<-(s0[4]+(4*B[3]-B[4])*sigma1[3])/n0[4] mean2[2]<-(s0[5]-sigma1[2]*(2*B[2]-2*B[4]))/n0[5] mean3[2]<-(s0[6]+2*sigma*B[1])/n0[6] mean[2]<-mean1[1]<-mean[1] mean2[1]<-mean1[3];mean2[3]<-mean[3] mean3[1]<-mean[1];mean3[3]<-mean1[2] mean3[4]<-mean1[3];mean3[5]<-mean2[2];mean3[6]<-mean[3] aaa1<-max(abs(B-AA)) AA<-B if (ab5>20) break } ss1<-sum((dataP1-mean[1])^2);ss3<-sum((dataP2-mean[3])^2);ss2<-sum((dataF1-mean[2])^2) for(i in 1:3) {swx1[i] <- W1[i,]%*%(dataB1-mean1[i])^2 };for(i in 1:3) {swx2[i] <- W2[i,]%*%(dataB2-mean2[i])^2 };for(i in 1:6) {swx3[i] <- W3[i,]%*%(dataF2-mean3[i])^2 } s0[7]<-ss1+ss2+ss3+swx1[1]+swx2[3]+swx3[1]+swx3[2]+swx3[6] n0[7]<-n_samP1+n_samF1+n_samP2+mix_pi1[1]*n_samB1+mix_pi2[3]*n_samB2+(mix_pi3[1]+mix_pi3[2]+mix_pi3[6])*n_samF2 s0[8]<-swx1[2]+swx2[2]+swx3[3]+swx3[5] s0[9]<-swx1[3]+swx2[1]+swx3[4] n0[8]<-mix_pi1[2]*n_samB1+mix_pi2[2]*n_samB2+mix_pi3[3]*n_samF2+mix_pi3[5]*n_samF2 n0[9]<-mix_pi1[3]*n_samB1+mix_pi2[1]*n_samB2+mix_pi3[4]*n_samF2 aaa0<-sigma gs[1]<-(10*mean[1]-14*mean[3]+7*mean1[2]+4*mean1[3]-5*mean2[2]-2*mean3[2])/65 g_aa1<-0.75*gs[1]^2/n_fam g_aa2<-1.5*gs[1]^2/n_fam aa4<-1000;ab5<-0 while (aa4>0.0001) { ab5<-ab5+1 aa1<-sigma/(sigma+g_aa1) aa2<-sigma/(sigma+g_aa2) sigma<-(s0[7]+aa1^2*s0[8]+aa2^2*s0[9])/(n0[7]+aa1*n0[8]+aa2*n0[9]) aa4<-abs(sigma-aaa0) aaa0<-sigma if (ab5>20) break } sigma1[1]<-sigma;sigma1[2]<-sigma+g_aa1;sigma1[3]<-sigma+g_aa2 sigma2[1]<-sigma1[3];sigma2[2]<-sigma1[2];sigma2[3]<-sigma sigma3[1]<-sigma3[2]<-sigma3[6]<-sigma sigma3[3]<-sigma3[5]<-sigma1[2] sigma3[4]<-sigma1[3] L1<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma))))+sum(log(dmixnorm(dataB1,mean1,sqrt(sigma1),mix_pi1)))+ sum(log(dmixnorm(dataB2,mean2,sqrt(sigma2),mix_pi2)))+sum(log(dmixnorm(dataF2,mean3,sqrt(sigma3),mix_pi3))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc<-L0 AIC<--2*abc+2*3 meanP1<-mean[1];meanF1<-mean[2];meanP2<-mean[3] sigma0<-sigma dataP1<-sort(dataP1) P1w1<-1/(12*n_samP1) P1bmw <- matrix(0,n_samP1,1) P1gg <- (dataP1 - mean[1])/sqrt(as.vector(sigma)) P1bmw[which(P1gg>=0)] <- pnorm(P1gg[P1gg>=0]) P1bmw[which(P1gg<0)] <- 1 - pnorm(abs(P1gg[P1gg<0])) nn <- dim(as.matrix(unique(P1bmw)))[1] if(nn < n_samP1){P1bmw <- P1bmw+runif(n_samP1)/1e4} P1dd<-c((sum(P1bmw)),(sum(P1bmw^2)),sum((P1bmw-0.5)^2)) P1w<-P1w1+sum((P1bmw - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) P1u<- as.matrix(c(12*n_samP1*((P1dd[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((P1dd[2]/n_samP1-1/3)^2),180*n_samP1*((P1dd[3]/n_samP1-1/12)^2))) P1D<-as.numeric(ks.test(P1bmw,"punif")[[1]][1]) P1tt <- as.matrix(c((1 - pchisq(P1u[1],1)),(1 - pchisq(P1u[2],1)),(1 - pchisq(P1u[3],1)),K1(P1w),(1-pkolm(P1D,n_samP1)))) P1tt[which( P1tt>=10e-4)]<-round(P1tt[which(P1tt>=10e-4)],4);P1tt[which(P1tt<10e-4)]<-format(P1tt[which(P1tt<10e-4)],scientific=TRUE,digit=4) dataF1<-sort(dataF1) F1w1<-1/(12*n_samF1) F1bmw <- matrix(0,n_samF1,1) F1gg <- (dataF1 - mean[2])/sqrt(as.vector(sigma)) F1bmw[which(F1gg>=0)] <- pnorm(F1gg[F1gg>=0]) F1bmw[which(F1gg<0)] <- 1 - pnorm(abs(F1gg[F1gg<0])) nn <- dim(as.matrix(unique(F1bmw)))[1] if(nn < n_samF1){F1bmw <- F1bmw+runif(n_samF1)/1e4} F1dd<-c((sum(F1bmw)),(sum(F1bmw^2)),sum((F1bmw-0.5)^2)) F1w<-F1w1+sum((F1bmw - (as.matrix(c(1:n_samF1)) - 0.5)/n_samF1)^2) F1u<- as.matrix(c(12*n_samF1*((F1dd[1]/n_samF1-0.5)^2),((45*n_samF1)/4)*((F1dd[2]/n_samF1-1/3)^2),180*n_samF1*((F1dd[3]/n_samF1-1/12)^2))) F1D<-as.numeric(ks.test(F1bmw,"punif")[[1]][1]) F1tt <- as.matrix(c((1 - pchisq(F1u[1],1)),(1 - pchisq(F1u[2],1)),(1 - pchisq(F1u[3],1)),K1(F1w),(1-pkolm(F1D,n_samF1)))) F1tt[which(F1tt>=10e-4)]<-round(F1tt[which(F1tt>=10e-4)],4);F1tt[which(F1tt<10e-4)]<-format(F1tt[which(F1tt<10e-4)],scientific=TRUE,digit=4) dataP2<-sort(dataP2) P2w1<-1/(12*n_samP2) P2bmw <- matrix(0,n_samP2,1) P2gg <- (dataP2 - mean[3])/sqrt(as.vector(sigma)) P2bmw[which(P2gg>=0)] <- pnorm(P2gg[P2gg>=0]) P2bmw[which(P2gg<0)] <- 1 - pnorm(abs(P2gg[P2gg<0])) nn <- dim(as.matrix(unique(P2bmw)))[1] if(nn < n_samP2){P2bmw <- P2bmw+runif(n_samP2)/1e4} P2dd<-c((sum(P2bmw)),(sum(P2bmw^2)),sum((P2bmw-0.5)^2)) P2w<-P2w1+sum((P2bmw - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) P2u<- as.matrix(c(12*n_samP2*((P2dd[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((P2dd[2]/n_samP2-1/3)^2),180*n_samP2*((P2dd[3]/n_samP2-1/12)^2))) P2D<-as.numeric(ks.test(P2bmw,"punif")[[1]][1]) P2tt <- as.matrix(c((1 - pchisq(P2u[1],1)),(1 - pchisq(P2u[2],1)),(1 - pchisq(P2u[3],1)),K1(P2w),(1-pkolm(P2D,n_samP2)))) P2tt[which(P2tt>=10e-4)]<-round(P2tt[which(P2tt>=10e-4)],4);P2tt[which(P2tt<10e-4)]<-format(P2tt[which(P2tt<10e-4)],scientific=TRUE,digit=4) dataB1 <- sort(dataB1); B1w1<-1/(12*n_samB1) B1bmw <- matrix(0,n_samB1,1); B1bmwsl <- matrix(0,n_samB1,3) for(i in 1:3){ B1gg <- (dataB1 - mean1[i])/sqrt(sigma1[i]) B1bmw[which(B1gg>=0)] <- pnorm(B1gg[B1gg>=0]) B1bmw[which(B1gg<0)] <- 1 - pnorm(abs(B1gg[B1gg<0])) B1bmwsl[,i] <- B1bmw*mix_pi1[i] } B1P2 <- rowSums(B1bmwsl) nn <- dim(as.matrix(unique(B1P2)))[1] if(nn < n_samB1){B1P2 <- B1P2+runif(n_samB1)/1e4} B1dd <- as.matrix(c(sum(B1P2),sum(B1P2^2),sum((B1P2-0.5)^2))) B1WW2 <- 1/(12*n_samB1) + sum((B1P2 - (as.matrix(c(1:n_samB1)) - 0.5)/n_samB1)^2) B1u <- as.matrix(c(12*n_samB1*((B1dd[1]/n_samB1-0.5)^2),((45*n_samB1)/4)*((B1dd[2]/n_samB1-1/3)^2),180*n_samB1*((B1dd[3]/n_samB1-1/12)^2))) B1D <- as.numeric(ks.test(B1P2,"punif")[[1]][1]) B1tt <- as.matrix(c((1 - pchisq(B1u[1],1)),(1 - pchisq(B1u[2],1)),(1 - pchisq(B1u[3],1)),K1(B1WW2),(1-pkolm(B1D,n_samB1)))) B1tt[which( B1tt>=10e-4)]<-round(B1tt[which(B1tt>=10e-4)],4);B1tt[which(B1tt<10e-4)]<-format(B1tt[which(B1tt<10e-4)],scientific=TRUE,digit=4) dataB2 <- sort(dataB2); B2w1<-1/(12*n_samB2) B2bmw <- matrix(0,n_samB2,1); B2bmwsl <- matrix(0,n_samB2,3) for(i in 1:3){ B2gg <- (dataB2 - mean2[i])/sqrt(sigma2[i]) B2bmw[which(B2gg>=0)] <- pnorm(B2gg[B2gg>=0]) B2bmw[which(B2gg<0)] <- 1 - pnorm(abs(B2gg[B2gg<0])) B2bmwsl[,i] <- B2bmw*mix_pi2[i] } B2P2 <- rowSums(B2bmwsl) nn <- dim(as.matrix(unique(B2P2)))[1] if(nn < n_samB2){B2P2 <- B2P2+runif(n_samB2)/1e4} B2dd <- as.matrix(c(sum(B2P2),sum(B2P2^2),sum((B2P2-0.5)^2))) B2WW2 <- 1/(12*n_samB2) + sum((B2P2 - (as.matrix(c(1:n_samB2)) - 0.5)/n_samB2)^2) B2u <- as.matrix(c(12*n_samB2*((B2dd[1]/n_samB2-0.5)^2),((45*n_samB2)/4)*((B2dd[2]/n_samB2-1/3)^2),180*n_samB2*((B2dd[3]/n_samB2-1/12)^2))) B2D <- as.numeric(ks.test(B2P2,"punif")[[1]][1]) B2tt <- as.matrix(c((1 - pchisq(B2u[1],1)),(1 - pchisq(B2u[2],1)),(1 - pchisq(B2u[3],1)),K1(B2WW2),(1-pkolm(B2D,n_samB2)))) B2tt[which( B2tt>=10e-4)]<-round(B2tt[which(B2tt>=10e-4)],4);B2tt[which(B2tt<10e-4)]<-format(B2tt[which(B2tt<10e-4)],scientific=TRUE,digit=4) dataF2 <- sort(dataF2); F2w1<-1/(12*n_samF2) F2bmw <- matrix(0,n_samF2,1); F2bmwsl <- matrix(0,n_samF2,6) for(i in 1:6){ F2gg <- (dataF2 - mean3[i])/sqrt(sigma3[i]) F2bmw[which(F2gg>=0)] <- pnorm(F2gg[F2gg>=0]) F2bmw[which(F2gg<0)] <- 1 - pnorm(abs(F2gg[F2gg<0])) F2bmwsl[,i] <- F2bmw*mix_pi3[i] } F2P2 <- rowSums(F2bmwsl) nn <- dim(as.matrix(unique(F2P2)))[1] if(nn < n_samF2){F2P2 <- F2P2+runif(n_samF2)/1e4} F2dd <- as.matrix(c(sum(F2P2),sum(F2P2^2),sum((F2P2-0.5)^2))) F2WW2 <- 1/(12*n_samF2) + sum((F2P2 - (as.matrix(c(1:n_samF2)) - 0.5)/n_samF2)^2) F2u <- as.matrix(c(12*n_samF2*((F2dd[1]/n_samF2-0.5)^2),((45*n_samF2)/4)*((F2dd[2]/n_samF2-1/3)^2),180*n_samF2*((F2dd[3]/n_samF2-1/12)^2))) F2D <- as.numeric(ks.test(F2P2,"punif")[[1]][1]) F2tt <- as.matrix(c((1 - pchisq(F2u[1],1)),(1 - pchisq(F2u[2],1)),(1 - pchisq(F2u[3],1)),K1(F2WW2),(1-pkolm(F2D,n_samF2)))) F2tt[which( F2tt>=10e-4)]<-round(F2tt[which(F2tt>=10e-4)],4);F2tt[which(F2tt<10e-4)]<-format(F2tt[which(F2tt<10e-4)],scientific=TRUE,digit=4) aa<-matrix(c(1,2,1,-2,1,0.5,1,1,1,-0.5,1,0),6,2,byrow=T) mm<-as.matrix(c(mean[1],mean[3],mean1[2],mean1[3],mean2[2],mean3[2])) B1<-solve(crossprod(aa,aa))%*%crossprod(aa,mm) jj1<-sigmaB1-sigma1[1] if (jj1<0 ) {jj1<-0} ll1<-jj1/sigmaB1 jj2<-sigmaB2-sigma2[3] if (jj2<0) {jj2<-0} ll2<-jj2/sigmaB2 jj3<-sigmaF2-sigma3[1] if (jj3<0) {jj3<-0} ll3<-jj3/sigmaF2 output <- data.frame("2MG-EAD",round(abc,4),round(AIC,4),round(meanP1,4),round(meanF1,4),round(meanP2,4), round(sigma0,4),round(t(mean1),4)," ",round(t(sigma1),4)," ", round(t(mix_pi1),4)," ",round(t(mean2),4)," ",round(t(sigma2),4)," ",round(t(mix_pi2),4)," ", round(t(mean3),4)," "," "," ",round(t(sigma3),4)," "," "," ",round(t(mix_pi3),4)," "," "," ", round(B1[1],4)," "," "," "," "," ",round(B1[2],4),round(B1[2],4),round(B1[2],4),round(B1[2],4)," "," "," "," "," "," ", round(jj1,4),round(ll1*100,4)," "," ",round(jj2,4),round(ll2*100,4)," "," ",round(jj3,4),round(ll3*100,4)," "," ", round(P1u[1],4),P1tt[1],round(P1u[2],4),P1tt[2],round(P1u[3],4),P1tt[3],round(P1w,4),P1tt[4],round(P1D,4),P1tt[5], round(F1u[1],4),F1tt[1],round(F1u[2],4),F1tt[2],round(F1u[3],4),F1tt[3],round(F1w,4),F1tt[4],round(F1D,4),F1tt[5], round(P2u[1],4),P2tt[1],round(P2u[2],4),P2tt[2],round(P2u[3],4),P2tt[3],round(P2w,4),P2tt[4],round(P2D,4),P2tt[5], round(B1u[1],4),B1tt[1],round(B1u[2],4),B1tt[2],round(B1u[3],4),B1tt[3],round(B1WW2,4),B1tt[4],round(B1D,4),B1tt[5], round(B2u[1],4),B2tt[1],round(B2u[2],4),B2tt[2],round(B2u[3],4),B2tt[3],round(B2WW2,4),B2tt[4],round(B2D,4),B2tt[5], round(F2u[1],4),F2tt[1],round(F2u[2],4),F2tt[2],round(F2u[3],4),F2tt[3],round(F2WW2,4),F2tt[4],round(F2D,4),F2tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi1,mi2,mi3) return(OUTPUT) } G6FModelFun[[11]] <- function(K1,logL,df11,df21,df31,df41,df51,df61,G6Ftext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataF1 <- as.matrix(as.numeric(df21[,1])) dataP2 <- as.matrix(as.numeric(df31[,1]));dataB1 <- as.matrix(as.numeric(df41[,1])) dataB2 <- as.matrix(as.numeric(df51[,1]));dataF2 <- as.matrix(as.numeric(df61[,1])) n_samP1<-dim(dataP1)[1];n_samF1<-dim(dataF1)[1];n_samP2<-dim(dataP2)[1] n_samB1<-dim(dataB1)[1];n_samB2<-dim(dataB2)[1];n_samF2<-dim(dataF2)[1] sumx<-as.matrix(c(sum(dataP1),sum(dataF1),sum(dataP2),sum(dataB1),sum(dataB2),sum(dataF2))) s<-as.matrix(c(sum(dataP1^2),sum(dataF1^2),sum(dataP2^2),sum(dataB1^2),sum(dataB2^2),sum(dataF2^2))) ss<-matrix(0,3,1);ss[1]<-s[1]-sumx[1]^2/n_samP1;ss[2]<-s[2]-sumx[2]^2/n_samF1;ss[3]<-s[3]-sumx[3]^2/n_samP2 mean<-as.matrix(c(mean(dataP1),mean(dataF1),mean(dataP2),mean(dataB1),mean(dataB2),mean(dataF2))) sigma0<-sum(ss)/(n_samP1+n_samF1+n_samP2-3) sigmaB1<-var(dataB1);sigma40<-sigmaB1 sigmaB2<-var(dataB2);sigma50<-sigmaB2 sigmaF2<-var(dataF2);sigma60<-sigmaF2 sigmaP1<-sigmaF1<-sigmaP2<-sigma0 m_esp <- 0.0001;n_fam <- as.numeric(G6Ftext2) sigma<-sigma0 mix_pi1<-matrix(1,1,1);mean1<-matrix(mean[4],1,1);sigma1<-matrix(0,1,1) mix_pi2<-matrix(1,1,1);mean2<-matrix(mean[5],1,1);sigma2<-matrix(0,1,1) mix_pi3<-matrix(1,1,1);mean3<-matrix(mean[6],1,1);sigma3<-matrix(0,1,1) L0<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma0))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma0))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma0))))+sum(log(dnorm(dataB1,mean1[1],sqrt(sigma40))))+ sum(log(dnorm(dataB2,mean2[1],sqrt(sigma50))))+sum(log(dnorm(dataF2,mean3[1],sqrt(sigma60)))) iteration <- 0; stopa <- 1000 while(stopa > m_esp&&iteration<=1000){ iteration <- iteration + 1 ss1<-sum((dataP1-mean[1])^2);ss3<-sum((dataP2-mean[3])^2) ss2<-sum((dataF1-mean[2])^2);ss4<-sigma40*(n_samB1-1) ss5<-sigma50*(n_samB2-1);ss6<-sigma60*(n_samF2-1) abc1<-ss1+ss2+ss3;abc2<-n_samP1+n_samF1+n_samP2 aaa0<-sigma;aa3<-1000;n_iter<-0 while (aa3>0.0001) { n_iter<-n_iter+1 aa1<-sigma/sigma40 aa2<-sigma/sigma50 aa3<-sigma/sigma60 sigma<-(abc1+aa1^2*ss4+aa2^2*ss5+aa3^2*ss6)/(abc2+aa1*n_samB1+aa2*n_samB2+aa3*n_samF2) aa3<-abs(sigma-aaa0) aaa0<-sigma if(n_iter>20)break } sigma_4<-sigma40-sigma; if (sigma_4<0) {sigma_4<-0;sigma40<-sigma} sigma40<-sigma_4+sigma sigma_5<-sigma50-sigma; if (sigma_5<0) {sigma_5<-0;sigma50<-sigma} sigma50<-sigma_5+sigma sigma_6<-sigma60-sigma; if (sigma_6<0) {sigma_6<-0;sigma60<-sigma} sigma60<-sigma_6+sigma L1<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma))))+sum(log(dnorm(dataB1,mean1[1],sqrt(sigma40))))+ sum(log(dnorm(dataB2,mean2[1],sqrt(sigma50))))+sum(log(dnorm(dataF2,mean3[1],sqrt(sigma60)))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc<-L0 AIC<--2*abc+2*10 meanP1<-mean[1];meanF1<-mean[2];meanP2<-mean[3] sigma0<-sigma sigma1[1]<-sigma40;sigma2[1]<-sigma50;sigma3[1]<-sigma60 dataP1<-sort(dataP1) P1w1<-1/(12*n_samP1) P1bmw <- matrix(0,n_samP1,1) P1gg <- (dataP1 - mean[1])/sqrt(as.vector(sigma)) P1bmw[which(P1gg>=0)] <- pnorm(P1gg[P1gg>=0]) P1bmw[which(P1gg<0)] <- 1 - pnorm(abs(P1gg[P1gg<0])) nn <- dim(as.matrix(unique(P1bmw)))[1] if(nn < n_samP1){P1bmw <- P1bmw+runif(n_samP1)/1e4} P1dd<-c((sum(P1bmw)),(sum(P1bmw^2)),sum((P1bmw-0.5)^2)) P1w<-P1w1+sum((P1bmw - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) P1u<- as.matrix(c(12*n_samP1*((P1dd[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((P1dd[2]/n_samP1-1/3)^2),180*n_samP1*((P1dd[3]/n_samP1-1/12)^2))) P1D<-as.numeric(ks.test(P1bmw,"punif")[[1]][1]) P1tt <- as.matrix(c((1 - pchisq(P1u[1],1)),(1 - pchisq(P1u[2],1)),(1 - pchisq(P1u[3],1)),K1(P1w),(1-pkolm(P1D,n_samP1)))) P1tt[which( P1tt>=10e-4)]<-round(P1tt[which(P1tt>=10e-4)],4);P1tt[which(P1tt<10e-4)]<-format(P1tt[which(P1tt<10e-4)],scientific=TRUE,digit=4) dataF1<-sort(dataF1) F1w1<-1/(12*n_samF1) F1bmw <- matrix(0,n_samF1,1) F1gg <- (dataF1 - mean[2])/sqrt(as.vector(sigma)) F1bmw[which(F1gg>=0)] <- pnorm(F1gg[F1gg>=0]) F1bmw[which(F1gg<0)] <- 1 - pnorm(abs(F1gg[F1gg<0])) nn <- dim(as.matrix(unique(F1bmw)))[1] if(nn < n_samF1){F1bmw <- F1bmw+runif(n_samF1)/1e4} F1dd<-c((sum(F1bmw)),(sum(F1bmw^2)),sum((F1bmw-0.5)^2)) F1w<-F1w1+sum((F1bmw - (as.matrix(c(1:n_samF1)) - 0.5)/n_samF1)^2) F1u<- as.matrix(c(12*n_samF1*((F1dd[1]/n_samF1-0.5)^2),((45*n_samF1)/4)*((F1dd[2]/n_samF1-1/3)^2),180*n_samF1*((F1dd[3]/n_samF1-1/12)^2))) F1D<-as.numeric(ks.test(F1bmw,"punif")[[1]][1]) F1tt <- as.matrix(c((1 - pchisq(F1u[1],1)),(1 - pchisq(F1u[2],1)),(1 - pchisq(F1u[3],1)),K1(F1w),(1-pkolm(F1D,n_samF1)))) F1tt[which(F1tt>=10e-4)]<-round(F1tt[which(F1tt>=10e-4)],4);F1tt[which(F1tt<10e-4)]<-format(F1tt[which(F1tt<10e-4)],scientific=TRUE,digit=4) dataP2<-sort(dataP2) P2w1<-1/(12*n_samP2) P2bmw <- matrix(0,n_samP2,1) P2gg <- (dataP2 - mean[3])/sqrt(as.vector(sigma)) P2bmw[which(P2gg>=0)] <- pnorm(P2gg[P2gg>=0]) P2bmw[which(P2gg<0)] <- 1 - pnorm(abs(P2gg[P2gg<0])) nn <- dim(as.matrix(unique(P2bmw)))[1] if(nn < n_samP2){P2bmw <- P2bmw+runif(n_samP2)/1e4} P2dd<-c((sum(P2bmw)),(sum(P2bmw^2)),sum((P2bmw-0.5)^2)) P2w<-P2w1+sum((P2bmw - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) P2u<- as.matrix(c(12*n_samP2*((P2dd[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((P2dd[2]/n_samP2-1/3)^2),180*n_samP2*((P2dd[3]/n_samP2-1/12)^2))) P2D<-as.numeric(ks.test(P2bmw,"punif")[[1]][1]) P2tt <- as.matrix(c((1 - pchisq(P2u[1],1)),(1 - pchisq(P2u[2],1)),(1 - pchisq(P2u[3],1)),K1(P2w),(1-pkolm(P2D,n_samP2)))) P2tt[which(P2tt>=10e-4)]<-round(P2tt[which(P2tt>=10e-4)],4);P2tt[which(P2tt<10e-4)]<-format(P2tt[which(P2tt<10e-4)],scientific=TRUE,digit=4) dataB1 <- sort(dataB1); B1w1<-1/(12*n_samB1) B1bmw <- matrix(0,n_samB1,1); B1bmwsl <- matrix(0,n_samB1,1) for(i in 1:1){ B1gg <- (dataB1 - mean1[i])/sqrt(as.vector(sigma1[i])) B1bmw[which(B1gg>=0)] <- pnorm(B1gg[B1gg>=0]) B1bmw[which(B1gg<0)] <- 1 - pnorm(abs(B1gg[B1gg<0])) B1bmwsl[,i] <- B1bmw*mix_pi1[i] } B1P2 <- rowSums(B1bmwsl) nn <- dim(as.matrix(unique(B1P2)))[1] if(nn < n_samB1){B1P2 <- B1P2+runif(n_samB1)/1e4} B1dd <- as.matrix(c(sum(B1P2),sum(B1P2^2),sum((B1P2-0.5)^2))) B1WW2 <- 1/(12*n_samB1) + sum((B1P2 - (as.matrix(c(1:n_samB1)) - 0.5)/n_samB1)^2) B1u <- as.matrix(c(12*n_samB1*((B1dd[1]/n_samB1-0.5)^2),((45*n_samB1)/4)*((B1dd[2]/n_samB1-1/3)^2),180*n_samB1*((B1dd[3]/n_samB1-1/12)^2))) B1D <- as.numeric(ks.test(B1P2,"punif")[[1]][1]) B1tt <- as.matrix(c((1 - pchisq(B1u[1],1)),(1 - pchisq(B1u[2],1)),(1 - pchisq(B1u[3],1)),K1(B1WW2),(1-pkolm(B1D,n_samB1)))) B1tt[which( B1tt>=10e-4)]<-round(B1tt[which(B1tt>=10e-4)],4);B1tt[which(B1tt<10e-4)]<-format(B1tt[which(B1tt<10e-4)],scientific=TRUE,digit=4) dataB2 <- sort(dataB2); B2w1<-1/(12*n_samB2) B2bmw <- matrix(0,n_samB2,1); B2bmwsl <- matrix(0,n_samB2,1) for(i in 1:1){ B2gg <- (dataB2 - mean2[i])/sqrt(as.vector(sigma2[i])) B2bmw[which(B2gg>=0)] <- pnorm(B2gg[B2gg>=0]) B2bmw[which(B2gg<0)] <- 1 - pnorm(abs(B2gg[B2gg<0])) B2bmwsl[,i] <- B2bmw*mix_pi2[i] } B2P2 <- rowSums(B2bmwsl) nn <- dim(as.matrix(unique(B2P2)))[1] if(nn < n_samB2){B2P2 <- B2P2+runif(n_samB2)/1e4} B2dd <- as.matrix(c(sum(B2P2),sum(B2P2^2),sum((B2P2-0.5)^2))) B2WW2 <- 1/(12*n_samB2) + sum((B2P2 - (as.matrix(c(1:n_samB2)) - 0.5)/n_samB2)^2) B2u <- as.matrix(c(12*n_samB2*((B2dd[1]/n_samB2-0.5)^2),((45*n_samB2)/4)*((B2dd[2]/n_samB2-1/3)^2),180*n_samB2*((B2dd[3]/n_samB2-1/12)^2))) B2D <- as.numeric(ks.test(B2P2,"punif")[[1]][1]) B2tt <- as.matrix(c((1 - pchisq(B2u[1],1)),(1 - pchisq(B2u[2],1)),(1 - pchisq(B2u[3],1)),K1(B2WW2),(1-pkolm(B2D,n_samB2)))) B2tt[which( B2tt>=10e-4)]<-round(B2tt[which(B2tt>=10e-4)],4);B2tt[which(B2tt<10e-4)]<-format(B2tt[which(B2tt<10e-4)],scientific=TRUE,digit=4) dataF2 <- sort(dataF2); F2w1<-1/(12*n_samF2) F2bmw <- matrix(0,n_samF2,1); F2bmwsl <- matrix(0,n_samF2,1) for(i in 1:1){ F2gg <- (dataF2 - mean3[i])/sqrt(as.vector(sigma3[i])) F2bmw[which(F2gg>=0)] <- pnorm(F2gg[F2gg>=0]) F2bmw[which(F2gg<0)] <- 1 - pnorm(abs(F2gg[F2gg<0])) F2bmwsl[,i] <- F2bmw*mix_pi3[i] } F2P2 <- rowSums(F2bmwsl) nn <- dim(as.matrix(unique(F2P2)))[1] if(nn < n_samF2){F2P2 <- F2P2+runif(n_samF2)/1e4} F2dd <- as.matrix(c(sum(F2P2),sum(F2P2^2),sum((F2P2-0.5)^2))) F2WW2 <- 1/(12*n_samF2) + sum((F2P2 - (as.matrix(c(1:n_samF2)) - 0.5)/n_samF2)^2) F2u <- as.matrix(c(12*n_samF2*((F2dd[1]/n_samF2-0.5)^2),((45*n_samF2)/4)*((F2dd[2]/n_samF2-1/3)^2),180*n_samF2*((F2dd[3]/n_samF2-1/12)^2))) F2D <- as.numeric(ks.test(F2P2,"punif")[[1]][1]) F2tt <- as.matrix(c((1 - pchisq(F2u[1],1)),(1 - pchisq(F2u[2],1)),(1 - pchisq(F2u[3],1)),K1(F2WW2),(1-pkolm(F2D,n_samF2)))) F2tt[which( F2tt>=10e-4)]<-round(F2tt[which(F2tt>=10e-4)],4);F2tt[which(F2tt<10e-4)]<-format(F2tt[which(F2tt<10e-4)],scientific=TRUE,digit=4) m1<-meanP1;m2<-meanF1;m3<-meanP2 m4<-mean1[1];m5<-mean2[1];m6<-mean3[1] mm1<-sigma40-sigma if (mm1<0 || mm1>=sigma40) {mm1<-0} nn1<-mm1/sigma40 mm2<-sigma50-sigma if (mm2<0 || mm2>=sigma50) {mm2<-0} nn2<-mm2/sigma50 mm3<-sigma60-sigma if (mm3<0 || mm3>=sigmaF2) {mm3<-0} nn3<-mm3/sigma60 output <- data.frame("PG-ADI",round(abc,4),round(AIC,4),round(meanP1,4),round(meanF1,4),round(meanP2,4),round(sigma0,4),round(t(mean1),4)," "," "," ",round(t(sigma1),4)," "," "," ", round(t(mix_pi1),4)," "," "," ",round(t(mean2),4)," "," "," ",round(t(sigma2),4)," "," "," ",round(t(mix_pi2),4)," "," "," ", round(t(mean3),4)," "," "," "," "," "," "," "," ",round(t(sigma3),4)," "," "," "," "," "," "," "," ",round(t(mix_pi3),4)," "," "," "," "," "," "," "," ", round(m1,4),round(m2,4),round(m3,4),round(m4,4),round(m5,4),round(m6,4)," "," "," "," "," "," "," "," "," "," "," "," ", round(mm1,4),round(nn1*100,4)," "," ",round(mm2,4),round(nn2*100,4)," "," ",round(mm3,4),round(nn3*100,4), round(P1u[1],4),P1tt[1],round(P1u[2],4),P1tt[2],round(P1u[3],4),P1tt[3],round(P1w,4),P1tt[4],round(P1D,4),P1tt[5], round(F1u[1],4),F1tt[1],round(F1u[2],4),F1tt[2],round(F1u[3],4),F1tt[3],round(F1w,4),F1tt[4],round(F1D,4),F1tt[5], round(P2u[1],4),P2tt[1],round(P2u[2],4),P2tt[2],round(P2u[3],4),P2tt[3],round(P2w,4),P2tt[4],round(P2D,4),P2tt[5], round(B1u[1],4),B1tt[1],round(B1u[2],4),B1tt[2],round(B1u[3],4),B1tt[3],round(B1WW2,4),B1tt[4],round(B1D,4),B1tt[5], round(B2u[1],4),B2tt[1],round(B2u[2],4),B2tt[2],round(B2u[3],4),B2tt[3],round(B2WW2,4),B2tt[4],round(B2D,4),B2tt[5], round(F2u[1],4),F2tt[1],round(F2u[2],4),F2tt[2],round(F2u[3],4),F2tt[3],round(F2WW2,4),F2tt[4],round(F2D,4),F2tt[5]) output<-as.matrix(output) OUTPUT<-list(output) return(OUTPUT) } G6FModelFun[[12]] <- function(K1,logL,df11,df21,df31,df41,df51,df61,G6Ftext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataF1 <- as.matrix(as.numeric(df21[,1])) dataP2 <- as.matrix(as.numeric(df31[,1]));dataB1 <- as.matrix(as.numeric(df41[,1])) dataB2 <- as.matrix(as.numeric(df51[,1]));dataF2 <- as.matrix(as.numeric(df61[,1])) n_samP1<-dim(dataP1)[1];n_samF1<-dim(dataF1)[1];n_samP2<-dim(dataP2)[1] n_samB1<-dim(dataB1)[1];n_samB2<-dim(dataB2)[1];n_samF2<-dim(dataF2)[1] sumx<-as.matrix(c(sum(dataP1),sum(dataF1),sum(dataP2),sum(dataB1),sum(dataB2),sum(dataF2))) s<-as.matrix(c(sum(dataP1^2),sum(dataF1^2),sum(dataP2^2),sum(dataB1^2),sum(dataB2^2),sum(dataF2^2))) ss<-matrix(0,3,1);ss[1]<-s[1]-sumx[1]^2/n_samP1;ss[2]<-s[2]-sumx[2]^2/n_samF1;ss[3]<-s[3]-sumx[3]^2/n_samP2 mean<-as.matrix(c(mean(dataP1),mean(dataF1),mean(dataP2),mean(dataB1),mean(dataB2),mean(dataF2))) sigma0<-sum(ss)/(n_samP1+n_samF1+n_samP2-3) sigmaB1<-var(dataB1);sigma40<-sigmaB1 sigmaB2<-var(dataB2);sigma50<-sigmaB2 sigmaF2<-var(dataF2);sigma60<-sigmaF2 sigmaP1<-sigmaF1<-sigmaP2<-sigma0 m_esp <- 0.0001;n_fam <- as.numeric(G6Ftext2) sigma<-sigma0 mix_pi1<-matrix(1,1,1);mean1<-matrix(mean[4],1,1);sigma1<-matrix(0,1,1) mix_pi2<-matrix(1,1,1);mean2<-matrix(mean[5],1,1);sigma2<-matrix(0,1,1) mix_pi3<-matrix(1,1,1);mean3<-matrix(mean[6],1,1);sigma3<-matrix(0,1,1) L0<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma0))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma0))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma0))))+sum(log(dnorm(dataB1,mean1[1],sqrt(sigma40))))+ sum(log(dnorm(dataB2,mean2[1],sqrt(sigma50))))+sum(log(dnorm(dataF2,mean3[1],sqrt(sigma60)))) iteration <- 0; stopa <- 1000 hh<-matrix(0,3,3);b_line<-matrix(0,3,1) while(stopa > m_esp&&iteration<=1000){ iteration <- iteration + 1 aaa0<-0 sigma40<-sum((dataB1-mean[4])^2);sigma40<-sigma40/(n_samB1-1) sigma50<-sum((dataB2-mean[5])^2);sigma50<-sigma50/(n_samB2-1) sigma60<-sum((dataF2-mean[6])^2);sigma60<-sigma60/(n_samF2-1) hh[1,1]<-sigma*(1/n_samP1+1/n_samP2)+4*sigma40/n_samB1+4*sigma50/n_samB2 hh[1,2]<-3*sigma*(1/n_samP1-1/n_samP2) hh[1,3]<--2*sigma40/n_samB1+2*sigma50/n_samB2 hh[2,2]<-sigma*(9/n_samP1+4/n_samF1+9/n_samP2)+64*sigma60/n_samF2 hh[2,3]<-16*sigma60/n_samF2 hh[3,3]<-sigma40/n_samB1+sigma50/n_samB2+4*sigma60/n_samF2 for(i in 2:3) { for(j in 1:(i-1)) { hh[i,j]<-hh[j,i] } } b_line[1]<-sumx[1]/n_samP1-sumx[3]/n_samP2-2*sumx[4]/n_samB1+2*sumx[5]/n_samB2 b_line[2]<-3*sumx[1]/n_samP1+2*sumx[2]/n_samF1+3*sumx[3]/n_samP2-8*sumx[6]/n_samF2 b_line[3]<-sumx[4]/n_samB1+sumx[5]/n_samB2-2*sumx[6]/n_samF2 B<-solve(hh,b_line) mean[1]<-(sumx[1]-sigma*(B[1]+3*B[2]))/n_samP1 mean[2]<-(sumx[2]-2*sigma*B[2])/n_samF1 mean[3]<-(sumx[3]+sigma*(B[1]-3*B[2]))/n_samP2 mean1[1]<-(sumx[4]+sigma40*(2*B[1]-B[3]))/n_samB1 mean2[1]<-(sumx[5]-(2*B[1]+B[3])*sigma50)/n_samB2 mean3[1]<-(sumx[6]+(8*B[2]+2*B[3])*sigma60)/n_samF2 aaa0<-sigma ss1<-sum((dataP1-mean[1])^2);ss3<-sum((dataP2-mean[3])^2);ss2<-sum((dataF1-mean[2])^2) abc1<-ss1+ss2+ss3;abc2<-n_samP1+n_samF1+n_samP2 ss4<-sum((dataB1-mean[4])^2);ss5<-sum((dataB2-mean[5])^2);ss6<-sum((dataF2-mean[6])^2) sigma40<-ss4/(n_samB1-1) sigma_4<-sigma40-sigma;if (sigma_4<0) {sigma_4<-0} sigma40<-sigma_4+sigma;sigma50<-ss5/(n_samB2-1) sigma_5<-sigma50-sigma;if (sigma_5<0) {sigma_5<-0} sigma50<-sigma_5+sigma;sigma60<-ss6/(n_samF2-1) sigma_6<-sigma60-sigma;if (sigma_6<0) {sigma_6<-0} sigma60<-sigma_6+sigma aa3<-1000;n_iter<-0 while (aa3>0.0001) { n_iter<-n_iter+1 aa1<-sigma/sigma40 if (aa1>=1) {aa1<-1} aa2<-sigma/sigma50 if (aa2>=1) {aa2<-1} aa3<-sigma/sigma60 if (aa3>=1) {aa3<-1} aa4<-abc1+aa1^2*ss4+aa2^2*ss5+aa3^2*ss6 aa5<-abc2+aa1*n_samB1+aa2*n_samB2+aa3*n_samF2 sigma<-aa4/aa5 aa3<-abs(sigma-aaa0) aaa0<-sigma if(n_iter>20)break } sigma40<-sigma_4+sigma;sigma50<-sigma_5+sigma;sigma60<-sigma_6+sigma L1<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma))))+sum(log(dnorm(dataB1,mean1[1],sqrt(sigma40))))+ sum(log(dnorm(dataB2,mean2[1],sqrt(sigma50))))+sum(log(dnorm(dataF2,mean3[1],sqrt(sigma60)))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc<-L0 AIC<--2*abc+2*7 meanP1<-mean[1];meanF1<-mean[2];meanP2<-mean[3] sigma0<-sigma sigma1[1]<-sigma40;sigma2[1]<-sigma50;sigma3[1]<-sigma60 dataP1<-sort(dataP1) P1w1<-1/(12*n_samP1) P1bmw <- matrix(0,n_samP1,1) P1gg <- (dataP1 - mean[1])/sqrt(as.vector(sigma)) P1bmw[which(P1gg>=0)] <- pnorm(P1gg[P1gg>=0]) P1bmw[which(P1gg<0)] <- 1 - pnorm(abs(P1gg[P1gg<0])) nn <- dim(as.matrix(unique(P1bmw)))[1] if(nn < n_samP1){P1bmw <- P1bmw+runif(n_samP1)/1e4} P1dd<-c((sum(P1bmw)),(sum(P1bmw^2)),sum((P1bmw-0.5)^2)) P1w<-P1w1+sum((P1bmw - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) P1u<- as.matrix(c(12*n_samP1*((P1dd[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((P1dd[2]/n_samP1-1/3)^2),180*n_samP1*((P1dd[3]/n_samP1-1/12)^2))) P1D<-as.numeric(ks.test(P1bmw,"punif")[[1]][1]) P1tt <- as.matrix(c((1 - pchisq(P1u[1],1)),(1 - pchisq(P1u[2],1)),(1 - pchisq(P1u[3],1)),K1(P1w),(1-pkolm(P1D,n_samP1)))) P1tt[which( P1tt>=10e-4)]<-round(P1tt[which(P1tt>=10e-4)],4);P1tt[which(P1tt<10e-4)]<-format(P1tt[which(P1tt<10e-4)],scientific=TRUE,digit=4) dataF1<-sort(dataF1) F1w1<-1/(12*n_samF1) F1bmw <- matrix(0,n_samF1,1) F1gg <- (dataF1 - mean[2])/sqrt(as.vector(sigma)) F1bmw[which(F1gg>=0)] <- pnorm(F1gg[F1gg>=0]) F1bmw[which(F1gg<0)] <- 1 - pnorm(abs(F1gg[F1gg<0])) nn <- dim(as.matrix(unique(F1bmw)))[1] if(nn < n_samF1){F1bmw <- F1bmw+runif(n_samF1)/1e4} F1dd<-c((sum(F1bmw)),(sum(F1bmw^2)),sum((F1bmw-0.5)^2)) F1w<-F1w1+sum((F1bmw - (as.matrix(c(1:n_samF1)) - 0.5)/n_samF1)^2) F1u<- as.matrix(c(12*n_samF1*((F1dd[1]/n_samF1-0.5)^2),((45*n_samF1)/4)*((F1dd[2]/n_samF1-1/3)^2),180*n_samF1*((F1dd[3]/n_samF1-1/12)^2))) F1D<-as.numeric(ks.test(F1bmw,"punif")[[1]][1]) F1tt <- as.matrix(c((1 - pchisq(F1u[1],1)),(1 - pchisq(F1u[2],1)),(1 - pchisq(F1u[3],1)),K1(F1w),(1-pkolm(F1D,n_samF1)))) F1tt[which(F1tt>=10e-4)]<-round(F1tt[which(F1tt>=10e-4)],4);F1tt[which(F1tt<10e-4)]<-format(F1tt[which(F1tt<10e-4)],scientific=TRUE,digit=4) dataP2<-sort(dataP2) P2w1<-1/(12*n_samP2) P2bmw <- matrix(0,n_samP2,1) P2gg <- (dataP2 - mean[3])/sqrt(as.vector(sigma)) P2bmw[which(P2gg>=0)] <- pnorm(P2gg[P2gg>=0]) P2bmw[which(P2gg<0)] <- 1 - pnorm(abs(P2gg[P2gg<0])) nn <- dim(as.matrix(unique(P2bmw)))[1] if(nn < n_samP2){P2bmw <- P2bmw+runif(n_samP2)/1e4} P2dd<-c((sum(P2bmw)),(sum(P2bmw^2)),sum((P2bmw-0.5)^2)) P2w<-P2w1+sum((P2bmw - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) P2u<- as.matrix(c(12*n_samP2*((P2dd[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((P2dd[2]/n_samP2-1/3)^2),180*n_samP2*((P2dd[3]/n_samP2-1/12)^2))) P2D<-as.numeric(ks.test(P2bmw,"punif")[[1]][1]) P2tt <- as.matrix(c((1 - pchisq(P2u[1],1)),(1 - pchisq(P2u[2],1)),(1 - pchisq(P2u[3],1)),K1(P2w),(1-pkolm(P2D,n_samP2)))) P2tt[which(P2tt>=10e-4)]<-round(P2tt[which(P2tt>=10e-4)],4);P2tt[which(P2tt<10e-4)]<-format(P2tt[which(P2tt<10e-4)],scientific=TRUE,digit=4) dataB1 <- sort(dataB1); B1w1<-1/(12*n_samB1) B1bmw <- matrix(0,n_samB1,1); B1bmwsl <- matrix(0,n_samB1,1) for(i in 1:1){ B1gg <- (dataB1 - mean1[i])/sqrt(as.vector(sigma1[i])) B1bmw[which(B1gg>=0)] <- pnorm(B1gg[B1gg>=0]) B1bmw[which(B1gg<0)] <- 1 - pnorm(abs(B1gg[B1gg<0])) B1bmwsl[,i] <- B1bmw*mix_pi1[i] } B1P2 <- rowSums(B1bmwsl) nn <- dim(as.matrix(unique(B1P2)))[1] if(nn < n_samB1){B1P2 <- B1P2+runif(n_samB1)/1e4} B1dd <- as.matrix(c(sum(B1P2),sum(B1P2^2),sum((B1P2-0.5)^2))) B1WW2 <- 1/(12*n_samB1) + sum((B1P2 - (as.matrix(c(1:n_samB1)) - 0.5)/n_samB1)^2) B1u <- as.matrix(c(12*n_samB1*((B1dd[1]/n_samB1-0.5)^2),((45*n_samB1)/4)*((B1dd[2]/n_samB1-1/3)^2),180*n_samB1*((B1dd[3]/n_samB1-1/12)^2))) B1D <- as.numeric(ks.test(B1P2,"punif")[[1]][1]) B1tt <- as.matrix(c((1 - pchisq(B1u[1],1)),(1 - pchisq(B1u[2],1)),(1 - pchisq(B1u[3],1)),K1(B1WW2),(1-pkolm(B1D,n_samB1)))) B1tt[which( B1tt>=10e-4)]<-round(B1tt[which(B1tt>=10e-4)],4);B1tt[which(B1tt<10e-4)]<-format(B1tt[which(B1tt<10e-4)],scientific=TRUE,digit=4) dataB2 <- sort(dataB2); B2w1<-1/(12*n_samB2) B2bmw <- matrix(0,n_samB2,1); B2bmwsl <- matrix(0,n_samB2,1) for(i in 1:1){ B2gg <- (dataB2 - mean2[i])/sqrt(as.vector(sigma2[i])) B2bmw[which(B2gg>=0)] <- pnorm(B2gg[B2gg>=0]) B2bmw[which(B2gg<0)] <- 1 - pnorm(abs(B2gg[B2gg<0])) B2bmwsl[,i] <- B2bmw*mix_pi2[i] } B2P2 <- rowSums(B2bmwsl) nn <- dim(as.matrix(unique(B2P2)))[1] if(nn < n_samB2){B2P2 <- B2P2+runif(n_samB2)/1e4} B2dd <- as.matrix(c(sum(B2P2),sum(B2P2^2),sum((B2P2-0.5)^2))) B2WW2 <- 1/(12*n_samB2) + sum((B2P2 - (as.matrix(c(1:n_samB2)) - 0.5)/n_samB2)^2) B2u <- as.matrix(c(12*n_samB2*((B2dd[1]/n_samB2-0.5)^2),((45*n_samB2)/4)*((B2dd[2]/n_samB2-1/3)^2),180*n_samB2*((B2dd[3]/n_samB2-1/12)^2))) B2D <- as.numeric(ks.test(B2P2,"punif")[[1]][1]) B2tt <- as.matrix(c((1 - pchisq(B2u[1],1)),(1 - pchisq(B2u[2],1)),(1 - pchisq(B2u[3],1)),K1(B2WW2),(1-pkolm(B2D,n_samB2)))) B2tt[which( B2tt>=10e-4)]<-round(B2tt[which(B2tt>=10e-4)],4);B2tt[which(B2tt<10e-4)]<-format(B2tt[which(B2tt<10e-4)],scientific=TRUE,digit=4) dataF2 <- sort(dataF2); F2w1<-1/(12*n_samF2) F2bmw <- matrix(0,n_samF2,1); F2bmwsl <- matrix(0,n_samF2,1) for(i in 1:1){ F2gg <- (dataF2 - mean3[i])/sqrt(as.vector(sigma3[i])) F2bmw[which(F2gg>=0)] <- pnorm(F2gg[F2gg>=0]) F2bmw[which(F2gg<0)] <- 1 - pnorm(abs(F2gg[F2gg<0])) F2bmwsl[,i] <- F2bmw*mix_pi3[i] } F2P2 <- rowSums(F2bmwsl) nn <- dim(as.matrix(unique(F2P2)))[1] if(nn < n_samF2){F2P2 <- F2P2+runif(n_samF2)/1e4} F2dd <- as.matrix(c(sum(F2P2),sum(F2P2^2),sum((F2P2-0.5)^2))) F2WW2 <- 1/(12*n_samF2) + sum((F2P2 - (as.matrix(c(1:n_samF2)) - 0.5)/n_samF2)^2) F2u <- as.matrix(c(12*n_samF2*((F2dd[1]/n_samF2-0.5)^2),((45*n_samF2)/4)*((F2dd[2]/n_samF2-1/3)^2),180*n_samF2*((F2dd[3]/n_samF2-1/12)^2))) F2D <- as.numeric(ks.test(F2P2,"punif")[[1]][1]) F2tt <- as.matrix(c((1 - pchisq(F2u[1],1)),(1 - pchisq(F2u[2],1)),(1 - pchisq(F2u[3],1)),K1(F2WW2),(1-pkolm(F2D,n_samF2)))) F2tt[which( F2tt>=10e-4)]<-round(F2tt[which(F2tt>=10e-4)],4);F2tt[which(F2tt<10e-4)]<-format(F2tt[which(F2tt<10e-4)],scientific=TRUE,digit=4) aa<-matrix(c(1,1,0,1,0,1,1,-1,0,1,0.5,0.25,1,-0.5,0.25,1,0,0.25),6,3,byrow=T) mm<-as.matrix(c(mean[1],mean[2],mean[3],mean1[1],mean2[1],mean3[1])) B1<-solve(crossprod(aa,aa))%*%crossprod(aa,mm) mm1<-sigma40-sigma if (mm1<0 || mm1>=sigma40) {mm1<-0} nn1<-mm1/sigma40 mm2<-sigma50-sigma if (mm2<0 || mm2>=sigma50) {mm2<-0} nn2<-mm2/sigma50 mm3<-sigma60-sigma if (mm3<0 || mm3>=sigma60) {mm3<-0} nn3<-mm3/sigma60 output <- data.frame("PG-AD",round(abc,4),round(AIC,4),round(meanP1,4),round(meanF1,4),round(meanP2,4), round(sigma0,4),round(t(mean1),4)," "," "," ",round(t(sigma1),4)," "," "," ", round(t(mix_pi1),4)," "," "," ",round(t(mean2),4)," "," "," ",round(t(sigma2),4)," "," "," ",round(t(mix_pi2),4)," "," "," ", round(t(mean3),4)," "," "," "," "," "," "," "," ",round(t(sigma3),4)," "," "," "," "," "," "," "," ",round(t(mix_pi3),4)," "," "," "," "," "," "," "," ", round(B1[1],4)," "," "," "," "," "," "," "," "," "," "," "," "," ",round(B1[2],4),round(B1[3],4)," "," ", round(mm1,4),round(nn1*100,4)," "," ",round(mm2,4),round(nn2*100,4)," "," ",round(mm3,4),round(nn3*100,4), round(P1u[1],4),P1tt[1],round(P1u[2],4),P1tt[2],round(P1u[3],4),P1tt[3],round(P1w,4),P1tt[4],round(P1D,4),P1tt[5], round(F1u[1],4),F1tt[1],round(F1u[2],4),F1tt[2],round(F1u[3],4),F1tt[3],round(F1w,4),F1tt[4],round(F1D,4),F1tt[5], round(P2u[1],4),P2tt[1],round(P2u[2],4),P2tt[2],round(P2u[3],4),P2tt[3],round(P2w,4),P2tt[4],round(P2D,4),P2tt[5], round(B1u[1],4),B1tt[1],round(B1u[2],4),B1tt[2],round(B1u[3],4),B1tt[3],round(B1WW2,4),B1tt[4],round(B1D,4),B1tt[5], round(B2u[1],4),B2tt[1],round(B2u[2],4),B2tt[2],round(B2u[3],4),B2tt[3],round(B2WW2,4),B2tt[4],round(B2D,4),B2tt[5], round(F2u[1],4),F2tt[1],round(F2u[2],4),F2tt[2],round(F2u[3],4),F2tt[3],round(F2WW2,4),F2tt[4],round(F2D,4),F2tt[5]) output<-as.matrix(output) OUTPUT<-list(output) return(OUTPUT) } G6FModelFun[[13]] <- function(K1,logL,df11,df21,df31,df41,df51,df61,G6Ftext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataF1 <- as.matrix(as.numeric(df21[,1])) dataP2 <- as.matrix(as.numeric(df31[,1]));dataB1 <- as.matrix(as.numeric(df41[,1])) dataB2 <- as.matrix(as.numeric(df51[,1]));dataF2 <- as.matrix(as.numeric(df61[,1])) n_samP1<-dim(dataP1)[1];n_samF1<-dim(dataF1)[1];n_samP2<-dim(dataP2)[1] n_samB1<-dim(dataB1)[1];n_samB2<-dim(dataB2)[1];n_samF2<-dim(dataF2)[1] sumx<-as.matrix(c(sum(dataP1),sum(dataF1),sum(dataP2),sum(dataB1),sum(dataB2),sum(dataF2))) s<-as.matrix(c(sum(dataP1^2),sum(dataF1^2),sum(dataP2^2),sum(dataB1^2),sum(dataB2^2),sum(dataF2^2))) ss<-matrix(0,3,1);ss[1]<-s[1]-sumx[1]^2/n_samP1;ss[2]<-s[2]-sumx[2]^2/n_samF1;ss[3]<-s[3]-sumx[3]^2/n_samP2 mean<-as.matrix(c(mean(dataP1),mean(dataF1),mean(dataP2),mean(dataB1),mean(dataB2),mean(dataF2))) sigma0<-sum(ss)/(n_samP1+n_samF1+n_samP2-3) sigmaB1<-var(dataB1);sigma40<-sigmaB1 sigmaB2<-var(dataB2);sigma50<-sigmaB2 sigmaF2<-var(dataF2);sigma60<-sigmaF2 sigmaP1<-sigmaF1<-sigmaP2<-sigma0 m_esp <- 0.0001;n_fam <- as.numeric(G6Ftext2) mi1<-matrix(0.5,2,1);sigma1<-matrix(0,2,1) mi2<-matrix(0.5,2,1);sigma2<-matrix(0,2,1) mi3<-as.matrix(c(0.25,0.5,0.25));sigma3<-matrix(0,3,1) sigma<-sigma0 a1<-sqrt(sigmaB1/n_samB1);if (mean[1]<mean[3]) a1<--a1 mean1<-as.matrix(c(mean[4]+a1,mean[4])) a2<-sqrt(sigmaB2/n_samB2);if (mean[1]<mean[3]) a2<--a2 mean2<-as.matrix(c(mean[5],mean[5]-a2)) a3<-sqrt(sigmaF2/n_samF2);if (mean[1]<mean[3]) a3<--a3 mean3<-as.matrix(c(mean[6]+a3,mean[6],mean[6]-a3)) b1<-(mean1[1]-mean1[2]+mean2[1]-mean2[2]+2*mean3[1]-2*mean3[3])/6 b2<--0.6*mean1[1]+0.6*mean1[2]+0.6*mean2[1]-0.6*mean2[2]-0.4*mean3[1]+0.8*mean3[2]-0.4*mean3[3] b3<-(0.5*b1^2+0.25*b2^2)/n_fam sigma1[1]<-sigmaB1/2;sigma1[2]<-sigma1[1]+b3 sigma2[2]<-sigmaB2/2;sigma2[1]<-sigma2[2]+b3 sigma3[1]<-sigmaF2/2;sigma3[3]<-sigma3[1];sigma3[2]<-sigma3[1]+b3 L0<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma0))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma0))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma0))))+sum(log(dmixnorm(dataB1,mean1,sqrt(sigma1),mi1)))+ sum(log(dmixnorm(dataB2,mean2,sqrt(sigma2),mi2)))+sum(log(dmixnorm(dataF2,mean3,sqrt(sigma3),mi3))) iteration <- 0; stopa <- 1000 W1 <- matrix(0,2,n_samB1); swx1 <- matrix(0,2,1) W2 <- matrix(0,2,n_samB2); swx2 <- matrix(0,2,1) W3 <- matrix(0,3,n_samF2); swx3 <- matrix(0,3,1) n0<-matrix(0,9,1);s0<-matrix(0,9,1); rr<-matrix(0,2,1) while(stopa > m_esp&&iteration<=1000){ iteration <- iteration + 1 for(i in 1:2) { W1[i,] <- mi1[i]*dnorm(dataB1,mean1[i],sqrt(sigma1[i]))/dmixnorm(dataB1,mean1,sqrt(sigma1),mi1) } mix_pi1 <- as.matrix(rowSums(W1)/n_samB1) sumwx1 <- W1%*%dataB1 for(i in 1:2) { W2[i,] <- mi2[i]*dnorm(dataB2,mean2[i],sqrt(sigma2[i]))/dmixnorm(dataB2,mean2,sqrt(sigma2),mi2) } mix_pi2 <- as.matrix(rowSums(W2)/n_samB2) sumwx2 <- W2%*%dataB2 for(i in 1:3) { W3[i,] <- mi3[i]*dnorm(dataF2,mean3[i],sqrt(sigma3[i]))/dmixnorm(dataF2,mean3,sqrt(sigma3),mi3) } mix_pi3 <- as.matrix(rowSums(W3)/n_samF2) sumwx3 <- W3%*%dataF2 n0[1]<-mix_pi1[1]*n_samB1;n0[2]<-mix_pi1[2]*n_samB1 n0[3]<-mix_pi2[1]*n_samB2;n0[4]<-mix_pi2[2]*n_samB2 n0[5]<-mix_pi3[1]*n_samF2;n0[6]<-mix_pi3[2]*n_samF2 n0[7]<-mix_pi3[3]*n_samF2 n0[c(1:7)][abs(n0[c(1:7)])<0.0001]<-0.0001 aaa0<-0 s0[1]<-sumwx1[1]/n0[1]-sumwx1[2]/n0[2]-sumwx3[1]/n0[5]+sumwx3[2]/n0[6] s0[2]<-sumwx2[1]/n0[3]-sumwx2[2]/n0[4]-sumwx3[2]/n0[6]+sumwx3[3]/n0[7] abc5<-0;abc6<-0;n_iter<-0;aaa1<-1000;AA<-matrix(0,2,1) while (aaa1>0.0001) { n_iter<-n_iter+1 aa1<-(mean1[1]-mean1[2]+mean2[1]-mean2[2]+2*mean3[1]-2*mean3[3])/6 aa2<--0.6*mean1[1]+0.6*mean1[2]+0.6*mean2[1]-0.6*mean2[2]-0.4*mean3[1]+0.8*mean3[2]-0.4*mean3[3] aa1<-(0.5*aa1*aa1+0.25*aa2*aa2)/n_fam sigma1[2]<-sigma1[1]+aa1 sigma2[1]<-sigma2[2]+aa1 sigma3[2]<-sigma3[1]+aa1 abc1<-sigma1[1]/n0[1]+sigma1[2]/n0[2]+sigma3[1]/n0[5]+sigma3[2]/n0[6] abc2<--sigma3[2]/n0[6] abc3<-sigma2[1]/n0[3]+sigma2[2]/n0[4]+sigma3[2]/n0[6]+sigma3[3]/n0[7] aa2<-abc1*abc3-abc2^2 aa3<-s0[1]*abc3-s0[2]*abc2 aa4<-s0[2]*abc1-s0[1]*abc2 rr[1]<-aa3/aa2;rr[2]<-aa4/aa2 mean1[1]<-(sumwx1[1]-rr[1]*sigma1[1])/n0[1];mean1[2]<-(sumwx1[2]+rr[1]*sigma1[2])/n0[2] mean2[1]<-(sumwx2[1]-rr[2]*sigma2[1])/n0[3];mean2[2]<-(sumwx2[2]+rr[2]*sigma2[2])/n0[4] mean3[1]<-(sumwx3[1]+rr[1]*sigma3[1])/n0[5];mean3[2]<-(sumwx3[2]+sigma3[2]*(-rr[1]+rr[2]))/n0[6] mean3[3]<-(sumwx3[3]-rr[2]*sigma3[3])/n0[7] aaa1<-max(abs(rr-AA)) AA<-rr if (n_iter>20) break } ss1<-sum((dataP1-mean[1])^2);ss3<-sum((dataP2-mean[3])^2);ss2<-sum((dataF1-mean[2])^2) for(i in 1:2) {swx1[i] <- W1[i,]%*%(dataB1-mean1[i])^2 };for(i in 1:2) {swx2[i] <- W2[i,]%*%(dataB2-mean2[i])^2 };for(i in 1:3) {swx3[i] <- W3[i,]%*%(dataF2-mean3[i])^2 } n0[8]<-mix_pi1[1]*n_samB1;n0[9]<-mix_pi1[2]*n_samB1 aaa0<-sigma1[1];n_iter<-0;aa3<-1000 aa1<-(mean1[1]-mean1[2]+mean2[1]-mean2[2]+2*mean3[1]-2*mean3[3])/6 aa2<--0.6*mean1[1]+0.6*mean1[2]+0.6*mean2[1]-0.6*mean2[2]-0.4*mean3[1]+0.8*mean3[2]-0.4*mean3[3] aa1<-(0.5*aa1^2+0.25*aa2^2)/n_fam while (aa3>0.0001) { n_iter<-n_iter+1 ab2<-sigma1[1]/(sigma1[1]+aa1) sigma1[1]<-(swx1[1]+ab2^2*swx1[2])/(n0[8]+ab2*n0[9]) aa3<-abs(sigma1[1]-aaa0) aaa0<-sigma1[1] if (n_iter>20) break } sigma40<-sigma1[1]-sigma; if (sigma40<0) {sigma40<-0;sigma1[1]<-sigma} sigma1[1]<-sigma40+sigma;sigma1[2]<-sigma1[1]+aa1 n0[8]<-mix_pi2[1]*n_samB2;n0[9]<-mix_pi2[2]*n_samB2 aaa0<-sigma2[2];n_iter<-0;aa3<-1000 while (aa3>0.0001) { n_iter<-n_iter+1 ab3<-sigma2[2]/(sigma2[2]+aa1) sigma2[2]<-(ab3^2*swx2[1]+swx2[2])/(ab3*n0[8]+n0[9]) aa3<-abs(sigma2[2]-aaa0) aaa0<-sigma2[2] if (n_iter>20) break } sigma50<-sigma2[2]-sigma; if (sigma50<0) {sigma50<-0;sigma2[2]<-sigma} sigma2[2]<-sigma50+sigma;sigma2[1]<-sigma2[2]+aa1 n0[8]<-(mix_pi3[3]+mix_pi3[1])*n_samF2;n0[9]<-mix_pi3[2]*n_samF2 aaa0<-sigma3[1];n_iter<-0;aa3<-1000 while (aa3>0.0001) { n_iter<-n_iter+1 ab4<-sigma3[1]/(sigma3[1]+aa1) sigma3[1]<-(swx3[1]+ab4^2*swx3[2]+swx3[3])/(n0[8]+ab4*n0[9]) aa3<-abs(sigma3[1]-aaa0) aaa0<-sigma3[1] if (n_iter>20) break } sigma60<-sigma3[1]-sigma; if (sigma60<0) {sigma60<-0;sigma3[1]<-sigma} sigma3[1]<-sigma60+sigma;sigma3[3]<-sigma3[1];sigma3[2]<-sigma3[1]+aa1 s0[1]<-ss1+ss2+ss3;s0[2]<-n_samP1+n_samF1+n_samP2 aaa0<-0;n_iter<-0;aa3<-1000 while (aa3>0.0001) { n_iter<-n_iter+1 abc1<-sigma/(sigma+sigma40) abc2<-sigma/(sigma+sigma40+aa1) abc3<-sigma/(sigma+sigma50+aa1) abc4<-sigma/(sigma+sigma50) abc5<-sigma/(sigma+sigma60) abc6<-sigma/(sigma+sigma60+aa1) aa4<-s0[1]+abc1^2*swx1[1]+abc2^2*swx1[2]+abc3^2*swx2[1]+abc4^2*swx2[2]+abc5^2*(swx3[1]+swx3[3])+abc6^2*swx3[2] aa5<-s0[2]+abc1*n0[1]+abc2*n0[2]+abc3*n0[3]+abc4*n0[4]+abc5*(n0[5]+n0[7])+abc6*n0[6] sigma<-aa4/aa5 aa3<-abs(sigma-aaa0) aaa0<-sigma if (n_iter>20) break } sigma1[1]<-sigma+sigma40;sigma1[2]<-sigma1[1]+aa1 sigma2[1]<-sigma+sigma50+aa1;sigma2[2]<-sigma+sigma50 sigma3[1]<-sigma+sigma60;sigma3[3]<-sigma3[1];sigma3[2]<-sigma3[1]+aa1 L1<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma))))+sum(log(dmixnorm(dataB1,mean1,sqrt(sigma1),mix_pi1)))+ sum(log(dmixnorm(dataB2,mean2,sqrt(sigma2),mix_pi2)))+sum(log(dmixnorm(dataF2,mean3,sqrt(sigma3),mix_pi3))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc<-L0 AIC<--2*abc+2*12 meanP1<-mean[1];meanF1<-mean[2];meanP2<-mean[3] sigma0<-sigma dataP1<-sort(dataP1) P1w1<-1/(12*n_samP1) P1bmw <- matrix(0,n_samP1,1) P1gg <- (dataP1 - mean[1])/sqrt(as.vector(sigma)) P1bmw[which(P1gg>=0)] <- pnorm(P1gg[P1gg>=0]) P1bmw[which(P1gg<0)] <- 1 - pnorm(abs(P1gg[P1gg<0])) nn <- dim(as.matrix(unique(P1bmw)))[1] if(nn < n_samP1){P1bmw <- P1bmw+runif(n_samP1)/1e4} P1dd<-c((sum(P1bmw)),(sum(P1bmw^2)),sum((P1bmw-0.5)^2)) P1w<-P1w1+sum((P1bmw - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) P1u<- as.matrix(c(12*n_samP1*((P1dd[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((P1dd[2]/n_samP1-1/3)^2),180*n_samP1*((P1dd[3]/n_samP1-1/12)^2))) P1D<-as.numeric(ks.test(P1bmw,"punif")[[1]][1]) P1tt <- as.matrix(c((1 - pchisq(P1u[1],1)),(1 - pchisq(P1u[2],1)),(1 - pchisq(P1u[3],1)),K1(P1w),(1-pkolm(P1D,n_samP1)))) P1tt[which( P1tt>=10e-4)]<-round(P1tt[which(P1tt>=10e-4)],4);P1tt[which(P1tt<10e-4)]<-format(P1tt[which(P1tt<10e-4)],scientific=TRUE,digit=4) dataF1<-sort(dataF1) F1w1<-1/(12*n_samF1) F1bmw <- matrix(0,n_samF1,1) F1gg <- (dataF1 - mean[2])/sqrt(as.vector(sigma)) F1bmw[which(F1gg>=0)] <- pnorm(F1gg[F1gg>=0]) F1bmw[which(F1gg<0)] <- 1 - pnorm(abs(F1gg[F1gg<0])) nn <- dim(as.matrix(unique(F1bmw)))[1] if(nn < n_samF1){F1bmw <- F1bmw+runif(n_samF1)/1e4} F1dd<-c((sum(F1bmw)),(sum(F1bmw^2)),sum((F1bmw-0.5)^2)) F1w<-F1w1+sum((F1bmw - (as.matrix(c(1:n_samF1)) - 0.5)/n_samF1)^2) F1u<- as.matrix(c(12*n_samF1*((F1dd[1]/n_samF1-0.5)^2),((45*n_samF1)/4)*((F1dd[2]/n_samF1-1/3)^2),180*n_samF1*((F1dd[3]/n_samF1-1/12)^2))) F1D<-as.numeric(ks.test(F1bmw,"punif")[[1]][1]) F1tt <- as.matrix(c((1 - pchisq(F1u[1],1)),(1 - pchisq(F1u[2],1)),(1 - pchisq(F1u[3],1)),K1(F1w),(1-pkolm(F1D,n_samF1)))) F1tt[which(F1tt>=10e-4)]<-round(F1tt[which(F1tt>=10e-4)],4);F1tt[which(F1tt<10e-4)]<-format(F1tt[which(F1tt<10e-4)],scientific=TRUE,digit=4) dataP2<-sort(dataP2) P2w1<-1/(12*n_samP2) P2bmw <- matrix(0,n_samP2,1) P2gg <- (dataP2 - mean[3])/sqrt(as.vector(sigma)) P2bmw[which(P2gg>=0)] <- pnorm(P2gg[P2gg>=0]) P2bmw[which(P2gg<0)] <- 1 - pnorm(abs(P2gg[P2gg<0])) nn <- dim(as.matrix(unique(P2bmw)))[1] if(nn < n_samP2){P2bmw <- P2bmw+runif(n_samP2)/1e4} P2dd<-c((sum(P2bmw)),(sum(P2bmw^2)),sum((P2bmw-0.5)^2)) P2w<-P2w1+sum((P2bmw - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) P2u<- as.matrix(c(12*n_samP2*((P2dd[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((P2dd[2]/n_samP2-1/3)^2),180*n_samP2*((P2dd[3]/n_samP2-1/12)^2))) P2D<-as.numeric(ks.test(P2bmw,"punif")[[1]][1]) P2tt <- as.matrix(c((1 - pchisq(P2u[1],1)),(1 - pchisq(P2u[2],1)),(1 - pchisq(P2u[3],1)),K1(P2w),(1-pkolm(P2D,n_samP2)))) P2tt[which(P2tt>=10e-4)]<-round(P2tt[which(P2tt>=10e-4)],4);P2tt[which(P2tt<10e-4)]<-format(P2tt[which(P2tt<10e-4)],scientific=TRUE,digit=4) dataB1 <- sort(dataB1); B1w1<-1/(12*n_samB1) B1bmw <- matrix(0,n_samB1,1); B1bmwsl <- matrix(0,n_samB1,2) for(i in 1:2){ B1gg <- (dataB1 - mean1[i])/sqrt(sigma1[i]) B1bmw[which(B1gg>=0)] <- pnorm(B1gg[B1gg>=0]) B1bmw[which(B1gg<0)] <- 1 - pnorm(abs(B1gg[B1gg<0])) B1bmwsl[,i] <- B1bmw*mix_pi1[i] } B1P2 <- rowSums(B1bmwsl) nn <- dim(as.matrix(unique(B1P2)))[1] if(nn < n_samB1){B1P2 <- B1P2+runif(n_samB1)/1e4} B1dd <- as.matrix(c(sum(B1P2),sum(B1P2^2),sum((B1P2-0.5)^2))) B1WW2 <- 1/(12*n_samB1) + sum((B1P2 - (as.matrix(c(1:n_samB1)) - 0.5)/n_samB1)^2) B1u <- as.matrix(c(12*n_samB1*((B1dd[1]/n_samB1-0.5)^2),((45*n_samB1)/4)*((B1dd[2]/n_samB1-1/3)^2),180*n_samB1*((B1dd[3]/n_samB1-1/12)^2))) B1D <- as.numeric(ks.test(B1P2,"punif")[[1]][1]) B1tt <- as.matrix(c((1 - pchisq(B1u[1],1)),(1 - pchisq(B1u[2],1)),(1 - pchisq(B1u[3],1)),K1(B1WW2),(1-pkolm(B1D,n_samB1)))) B1tt[which( B1tt>=10e-4)]<-round(B1tt[which(B1tt>=10e-4)],4);B1tt[which(B1tt<10e-4)]<-format(B1tt[which(B1tt<10e-4)],scientific=TRUE,digit=4) dataB2 <- sort(dataB2); B2w1<-1/(12*n_samB2) B2bmw <- matrix(0,n_samB2,1); B2bmwsl <- matrix(0,n_samB2,2) for(i in 1:2){ B2gg <- (dataB2 - mean2[i])/sqrt(sigma2[i]) B2bmw[which(B2gg>=0)] <- pnorm(B2gg[B2gg>=0]) B2bmw[which(B2gg<0)] <- 1 - pnorm(abs(B2gg[B2gg<0])) B2bmwsl[,i] <- B2bmw*mix_pi2[i] } B2P2 <- rowSums(B2bmwsl) nn <- dim(as.matrix(unique(B2P2)))[1] if(nn < n_samB2){B2P2 <- B2P2+runif(n_samB2)/1e4} B2dd <- as.matrix(c(sum(B2P2),sum(B2P2^2),sum((B2P2-0.5)^2))) B2WW2 <- 1/(12*n_samB2) + sum((B2P2 - (as.matrix(c(1:n_samB2)) - 0.5)/n_samB2)^2) B2u <- as.matrix(c(12*n_samB2*((B2dd[1]/n_samB2-0.5)^2),((45*n_samB2)/4)*((B2dd[2]/n_samB2-1/3)^2),180*n_samB2*((B2dd[3]/n_samB2-1/12)^2))) B2D <- as.numeric(ks.test(B2P2,"punif")[[1]][1]) B2tt <- as.matrix(c((1 - pchisq(B2u[1],1)),(1 - pchisq(B2u[2],1)),(1 - pchisq(B2u[3],1)),K1(B2WW2),(1-pkolm(B2D,n_samB2)))) B2tt[which( B2tt>=10e-4)]<-round(B2tt[which(B2tt>=10e-4)],4);B2tt[which(B2tt<10e-4)]<-format(B2tt[which(B2tt<10e-4)],scientific=TRUE,digit=4) dataF2 <- sort(dataF2); F2w1<-1/(12*n_samF2) F2bmw <- matrix(0,n_samF2,1); F2bmwsl <- matrix(0,n_samF2,3) for(i in 1:3){ F2gg <- (dataF2 - mean3[i])/sqrt(sigma3[i]) F2bmw[which(F2gg>=0)] <- pnorm(F2gg[F2gg>=0]) F2bmw[which(F2gg<0)] <- 1 - pnorm(abs(F2gg[F2gg<0])) F2bmwsl[,i] <- F2bmw*mix_pi3[i] } F2P2 <- rowSums(F2bmwsl) nn <- dim(as.matrix(unique(F2P2)))[1] if(nn < n_samF2){F2P2 <- F2P2+runif(n_samF2)/1e4} F2dd <- as.matrix(c(sum(F2P2),sum(F2P2^2),sum((F2P2-0.5)^2))) F2WW2 <- 1/(12*n_samF2) + sum((F2P2 - (as.matrix(c(1:n_samF2)) - 0.5)/n_samF2)^2) F2u <- as.matrix(c(12*n_samF2*((F2dd[1]/n_samF2-0.5)^2),((45*n_samF2)/4)*((F2dd[2]/n_samF2-1/3)^2),180*n_samF2*((F2dd[3]/n_samF2-1/12)^2))) F2D <- as.numeric(ks.test(F2P2,"punif")[[1]][1]) F2tt <- as.matrix(c((1 - pchisq(F2u[1],1)),(1 - pchisq(F2u[2],1)),(1 - pchisq(F2u[3],1)),K1(F2WW2),(1-pkolm(F2D,n_samF2)))) F2tt[which( F2tt>=10e-4)]<-round(F2tt[which(F2tt>=10e-4)],4);F2tt[which(F2tt<10e-4)]<-format(F2tt[which(F2tt<10e-4)],scientific=TRUE,digit=4) aa<-matrix(c(1,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,0,1,0,0,0,-1,0,0,0,0,1,0,0,1,0, 0,0,0,1,0,0,0,0.5,0,0,0,0,1,0,0,0.5,0,0,0,0,1,0,-1,0,0,0,0,0,0,1,1,0, 0,0,0,0,0,1,0,0.5,0,0,0,0,0,1,-1,0),10,8,byrow=T) mm<-as.matrix(c(mean[1],mean[2],mean[3],mean1[1],mean1[2],mean2[1],mean2[2],mean3[1],mean3[2],mean3[3])) B<-solve(crossprod(aa,aa))%*%crossprod(aa,mm) jj1<-sigmaB1-sigma1[1] if (jj1<0 || jj1>=sigmaB1) {jj1<-0} ll1<-jj1/sigmaB1 mm1<-sigma1[1]-sigma if (mm1<0 || mm1>=sigmaB1) {mm1<-0} nn1<-mm1/sigmaB1 jj2<-sigmaB2-sigma2[2] if (jj2<0 || jj2>=sigmaB2) {jj2<-0} ll2<-jj2/sigmaB2 mm2<-sigma2[2]-sigma if (mm2<0 || mm2>=sigmaB2) {mm2<-0} nn2<-mm2/sigmaB2 jj3<-sigmaF2-sigma3[1] if (jj3<0 || jj3>=sigmaF2) {jj3<-0} ll3<-jj3/sigmaF2 mm3<-sigma3[1]-sigma if (mm3<0 || mm3>=sigmaF2) {mm3<-0} nn3<-mm3/sigmaF2 output <- data.frame("MX1-AD-ADI",round(abc,4),round(AIC,4),round(meanP1,4),round(meanF1,4),round(meanP2,4), round(sigma0,4),round(t(mean1),4)," "," ",round(t(sigma1),4)," "," ", round(t(mix_pi1),4)," "," ",round(t(mean2),4)," "," ",round(t(sigma2),4)," "," ",round(t(mix_pi2),4)," "," ", round(t(mean3),4)," "," "," "," "," "," ",round(t(sigma3),4)," "," "," "," "," "," ",round(t(mix_pi3),4)," "," "," "," "," "," ", round(B[1],4),round(B[2],4),round(B[3],4),round(B[4],4),round(B[5],4),round(B[6],4),round(B[7],4)," ",round(B[8],4)," "," "," "," "," "," "," ", round(jj1,4),round(ll1*100,4),round(mm1,4),round(nn1*100,4),round(jj2,4),round(ll2*100,4),round(mm2,4),round(nn2*100,4),round(jj3,4),round(ll3*100,4),round(mm3,4),round(nn3*100,4), round(P1u[1],4),P1tt[1],round(P1u[2],4),P1tt[2],round(P1u[3],4),P1tt[3],round(P1w,4),P1tt[4],round(P1D,4),P1tt[5], round(F1u[1],4),F1tt[1],round(F1u[2],4),F1tt[2],round(F1u[3],4),F1tt[3],round(F1w,4),F1tt[4],round(F1D,4),F1tt[5], round(P2u[1],4),P2tt[1],round(P2u[2],4),P2tt[2],round(P2u[3],4),P2tt[3],round(P2w,4),P2tt[4],round(P2D,4),P2tt[5], round(B1u[1],4),B1tt[1],round(B1u[2],4),B1tt[2],round(B1u[3],4),B1tt[3],round(B1WW2,4),B1tt[4],round(B1D,4),B1tt[5], round(B2u[1],4),B2tt[1],round(B2u[2],4),B2tt[2],round(B2u[3],4),B2tt[3],round(B2WW2,4),B2tt[4],round(B2D,4),B2tt[5], round(F2u[1],4),F2tt[1],round(F2u[2],4),F2tt[2],round(F2u[3],4),F2tt[3],round(F2WW2,4),F2tt[4],round(F2D,4),F2tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi1,mi2,mi3) return(OUTPUT) } G6FModelFun[[14]] <- function(K1,logL,df11,df21,df31,df41,df51,df61,G6Ftext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataF1 <- as.matrix(as.numeric(df21[,1])) dataP2 <- as.matrix(as.numeric(df31[,1]));dataB1 <- as.matrix(as.numeric(df41[,1])) dataB2 <- as.matrix(as.numeric(df51[,1]));dataF2 <- as.matrix(as.numeric(df61[,1])) n_samP1<-dim(dataP1)[1];n_samF1<-dim(dataF1)[1];n_samP2<-dim(dataP2)[1] n_samB1<-dim(dataB1)[1];n_samB2<-dim(dataB2)[1];n_samF2<-dim(dataF2)[1] sumx<-as.matrix(c(sum(dataP1),sum(dataF1),sum(dataP2),sum(dataB1),sum(dataB2),sum(dataF2))) s<-as.matrix(c(sum(dataP1^2),sum(dataF1^2),sum(dataP2^2),sum(dataB1^2),sum(dataB2^2),sum(dataF2^2))) ss<-matrix(0,3,1);ss[1]<-s[1]-sumx[1]^2/n_samP1;ss[2]<-s[2]-sumx[2]^2/n_samF1;ss[3]<-s[3]-sumx[3]^2/n_samP2 mean<-as.matrix(c(mean(dataP1),mean(dataF1),mean(dataP2),mean(dataB1),mean(dataB2),mean(dataF2))) sigma0<-sum(ss)/(n_samP1+n_samF1+n_samP2-3) sigmaB1<-var(dataB1);sigma40<-sigmaB1 sigmaB2<-var(dataB2);sigma50<-sigmaB2 sigmaF2<-var(dataF2);sigma60<-sigmaF2 sigmaP1<-sigmaF1<-sigmaP2<-sigma0 m_esp <- 0.0001;n_fam <- as.numeric(G6Ftext2) mi1<-matrix(0.5,2,1);sigma1<-matrix(0,2,1) mi2<-matrix(0.5,2,1);sigma2<-matrix(0,2,1) mi3<-as.matrix(c(0.25,0.5,0.25));sigma3<-matrix(0,3,1) sigma<-sigma0 a1<-sqrt(sigmaB1/n_samB1);if (mean[1]<mean[3]) a1<--a1 mean1<-as.matrix(c(mean[4]+a1,mean[4])) a2<-sqrt(sigmaB2/n_samB2);if (mean[1]<mean[3]) a2<--a2 mean2<-as.matrix(c(mean[5],mean[5]-a2)) a3<-sqrt(sigmaF2/n_samF2);if (mean[1]<mean[3]) a3<--a3 mean3<-as.matrix(c(mean[6]+a3,mean[6],mean[6]-a3)) b1<-(mean1[1]-mean1[2]+mean2[1]-mean2[2]+2*mean3[1]-2*mean3[3])/6 b2<-(3*mean[1]+2*mean[2]+3*mean[3]-24.5*mean1[1]+30*mean1[2]+30* mean2[1]-24.5*mean2[2]-24.5*mean3[1]+30*mean3[2]-24.5*mean3[3])/47 b3<-(0.5*b1^2+0.25*b2^2)/n_fam sigma1[1]<-sigmaB1/2;sigma1[2]<-sigma1[1]+b3 sigma2[2]<-sigmaB2/2;sigma2[1]<-sigma2[2]+b3 sigma3[1]<-sigmaF2/2;sigma3[3]<-sigma3[1];sigma3[2]<-sigma3[1]+b3 L0<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma0))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma0))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma0))))+sum(log(dmixnorm(dataB1,mean1,sqrt(sigma1),mi1)))+ sum(log(dmixnorm(dataB2,mean2,sqrt(sigma2),mi2)))+sum(log(dmixnorm(dataF2,mean3,sqrt(sigma3),mi3))) iteration <- 0; stopa <- 1000 W1 <- matrix(0,2,n_samB1); swx1 <- matrix(0,2,1) W2 <- matrix(0,2,n_samB2); swx2 <- matrix(0,2,1) W3 <- matrix(0,3,n_samF2); swx3 <- matrix(0,3,1) n0<-matrix(0,9,1);s0<-matrix(0,9,1) hh<-matrix(0,5,5);b_line<-matrix(0,5,1) while(stopa > m_esp&&iteration<=1000){ iteration <- iteration + 1 for(i in 1:2) { W1[i,] <- mi1[i]*dnorm(dataB1,mean1[i],sqrt(sigma1[i]))/dmixnorm(dataB1,mean1,sqrt(sigma1),mi1) } mix_pi1 <- as.matrix(rowSums(W1)/n_samB1) sumwx1 <- W1%*%dataB1 for(i in 1:2) { W2[i,] <- mi2[i]*dnorm(dataB2,mean2[i],sqrt(sigma2[i]))/dmixnorm(dataB2,mean2,sqrt(sigma2),mi2) } mix_pi2 <- as.matrix(rowSums(W2)/n_samB2) sumwx2 <- W2%*%dataB2 for(i in 1:3) { W3[i,] <- mi3[i]*dnorm(dataF2,mean3[i],sqrt(sigma3[i]))/dmixnorm(dataF2,mean3,sqrt(sigma3),mi3) } mix_pi3 <- as.matrix(rowSums(W3)/n_samF2) sumwx3 <- W3%*%dataF2 n0[1]<-mix_pi1[1]*n_samB1;n0[2]<-mix_pi1[2]*n_samB1 n0[3]<-mix_pi2[1]*n_samB2;n0[4]<-mix_pi2[2]*n_samB2 n0[5]<-mix_pi3[1]*n_samF2;n0[6]<-mix_pi3[2]*n_samF2 n0[7]<-mix_pi3[3]*n_samF2 n0[c(1:7)][abs(n0[c(1:7)])<0.000001]<-0.000001 AA<-matrix(0,5,1);aaa0<-0;n_iter<-0;aaa1<-1000 while (aaa1>0.0001) { n_iter<-n_iter+1 aa1<-(mean1[1]-mean1[2]+mean2[1]-mean2[2]+2*mean3[1]-2*mean3[3])/6 aa2<-(3.0*mean[1]+2*mean[2]+3*mean[3]-24.5*mean1[1]+30*mean1[2] +30*mean2[1]-24.5*mean2[2]-24.5*mean3[1]+30*mean3[2]-24.5*mean3[3])/47 aa1<-(0.5*aa1*aa1+0.25*aa2*aa2)/n_fam sigma1[2]<-sigma1[1]+aa1 sigma2[1]<-sigma2[2]+aa1 sigma3[2]<-sigma3[1]+aa1 hh[1,1]<-sigma*(9/n_samP1+4/n_samF1+9/n_samP2)+4*sigma3[1]/n0[5]+16*sigma3[2]/n0[6]+4*sigma3[3]/n0[7] hh[1,2]<-3*sigma*(1/n_samP1-1/n_samP2) hh[1,3]<-sigma3[1]*(2/n0[5]-2/n0[7]) hh[1,4]<-sigma3[1]*(2/n0[5]+2/n0[7]) hh[1,5]<-8*sigma3[2]/n0[6] hh[2,2]<-sigma*(1.0/n_samP1+1.0/n_samP2)+sigma1[1]/n0[1]+sigma1[2]/n0[2]+sigma2[1]/n0[3]+sigma2[2]/n0[4] hh[2,3]<--sigma1[1]/n0[1]+sigma1[2]/n0[2]+sigma2[1]/n0[3]-sigma2[2]/n0[4] hh[2,4]<--sigma1[1]/n0[1]+sigma2[2]/n0[4] hh[2,5]<--sigma1[2]/n0[2]+sigma2[1]/n0[3] hh[3,3]<-sigma1[1]/n0[1]+sigma1[2]/n0[2]+sigma2[1]/n0[3]+sigma2[2]/n0[4]+sigma3[1]/n0[5]+sigma3[3]/n0[7] hh[3,4]<-sigma1[1]/n0[1]-sigma2[2]/n0[4]+sigma3[1]/n0[4]-sigma3[3]/n0[7] hh[3,5]<--sigma1[2]/n0[2]+sigma2[1]/n0[3] hh[4,4]<-sigma1[1]/n0[1]+sigma2[2]/n0[4]+sigma3[1]/n0[5]+sigma3[3]/n0[7] hh[4,5]<-0 hh[5,5]<-sigma1[2]/n0[2]+sigma2[1]/n0[3]+4*sigma3[2]/n0[6] for(i in 2:5) { for(j in 1:(i-1)) { hh[i,j]<-hh[j,i] } } b_line[1]<-3*sumx[1]/n_samP1+2*sumx[2]/n_samF1+3*sumx[3]/n_samP2-2*sumwx3[1]/n0[5]-4*sumwx3[2]/n0[6]-2*sumwx3[3]/n0[7] b_line[2]<-sumx[1]/n_samP1-sumx[3]/n_samP2-sumwx1[1]/n0[1]-sumwx1[2]/n0[2]+sumwx2[1]/n0[3]+sumwx2[2]/n0[4] b_line[3]<-sumwx1[1]/n0[1]-sumwx1[2]/n0[2]+sumwx2[1]/n0[3]-sumwx2[2]/n0[4]-sumwx3[1]/n0[5]+sumwx3[3]/n0[7] b_line[4]<-sumwx1[1]/n0[1]+sumwx2[2]/n0[4]-sumwx3[1]/n0[5]-sumwx3[3]/n0[7] b_line[5]<-sumwx1[2]/n0[2]+sumwx2[1]/n0[3]-2*sumwx3[2]/n0[6] B<-solve(hh,b_line) mean[1]<-(sumx[1]-sigma*(3*B[1]+B[2]))/n_samP1 mean[2]<-(sumx[2]-2*sigma*B[1])/n_samF1 mean[3]<-(sumx[3]+sigma*(-3*B[1]+B[2]))/n_samP2 mean1[1]<-(sumwx1[1]+sigma1[1]*(B[2]-B[3]-B[4]))/n0[1] mean1[2]<-(sumwx1[2]+sigma1[2]*(B[2]+B[3]-B[5]))/n0[2] mean2[1]<-(sumwx2[1]-sigma2[1]*(B[2]+B[3]+B[5]))/n0[3] mean2[2]<-(sumwx2[2]+(-B[2]+B[3]-B[4])*sigma2[2])/n0[4] mean3[1]<-(sumwx3[1]+sigma3[1]*(2*B[1]+B[3]+B[4]))/n0[5] mean3[2]<-(sumwx3[2]+sigma3[2]*(4*B[1]+2*B[5]))/n0[6] mean3[3]<-(sumwx3[3]+sigma3[3]*(2*B[1]-B[3]+B[4]))/n0[7] aaa1<-max(abs(B-AA)) AA<-B if (n_iter>20) break } ss1<-sum((dataP1-mean[1])^2);ss3<-sum((dataP2-mean[3])^2);ss2<-sum((dataF1-mean[2])^2) for(i in 1:2) {swx1[i] <- W1[i,]%*%(dataB1-mean1[i])^2 };for(i in 1:2) {swx2[i] <- W2[i,]%*%(dataB2-mean2[i])^2 };for(i in 1:3) {swx3[i] <- W3[i,]%*%(dataF2-mean3[i])^2 } aa1<-(mean1[1]-mean1[2]+mean2[1]-mean2[2]+2*mean3[1]-2*mean3[3])/6 aa2<-(3.0*mean[1]+2*mean[2]+3*mean[3]-24.5*mean1[1]+30*mean1[2]+30*mean2[1]-24.5*mean2[2]-24.5*mean3[1]+30*mean3[2]-24.5*mean3[3])/47 aa1<-(0.5*aa1^2+0.25*aa2^2)/n_fam aaa0<-sigma1[1];n_iter<-0;aa3<-1000 while (aa3>0.0001) { n_iter<-n_iter+1 ab2<-sigma1[1]/(sigma1[1]+aa1) sigma1[1]<-(swx1[1]+ab2^2*swx1[2])/(n0[1]+ab2*n0[2]) aa3<-abs(sigma1[1]-aaa0) aaa0<-sigma1[1] if (n_iter>20) break } sigma40<-sigma1[1]-sigma; if (sigma40<0) {sigma40<-0;sigma1[1]<-sigma} sigma1[1]<-sigma40+sigma;sigma1[2]<-sigma1[1]+aa1 n0[8]<-mix_pi2[1]*n_samB2;n0[9]<-mix_pi2[2]*n_samB2 aaa0<-sigma2[2];n_iter<-0;aa3<-1000 while (aa3>0.0001) { n_iter<-n_iter+1 ab3<-sigma2[2]/(sigma2[2]+aa1) sigma2[2]<-(ab3^2*swx2[1]+swx2[2])/(ab3*n0[8]+n0[9]) aa3<-abs(sigma2[2]-aaa0) aaa0<-sigma2[2] if (n_iter>20) break } sigma50<-sigma2[2]-sigma; if (sigma50<0) {sigma50<-0;sigma2[2]<-sigma} sigma2[2]<-sigma50+sigma;sigma2[1]<-sigma2[2]+aa1 n0[8]<-(mix_pi3[3]+mix_pi3[1])*n_samF2;n0[9]<-mix_pi3[2]*n_samF2 aaa0<-sigma3[1];n_iter<-0;aa3<-1000 while (aa3>0.0001) { n_iter<-n_iter+1 ab4<-sigma3[1]/(sigma3[1]+aa1) sigma3[1]<-(swx3[1]+ab4^2*swx3[2]+swx3[3])/(n0[8]+ab4*n0[9]) aa3<-abs(sigma3[1]-aaa0) aaa0<-sigma3[1] if (n_iter>20) break } sigma60<-sigma3[1]-sigma; if (sigma60<0) {sigma60<-0;sigma3[1]<-sigma} sigma3[1]<-sigma60+sigma;sigma3[2]<-sigma3[1]+aa1 sigma3[3]<-sigma3[1] s0[1]<-ss1+ss2+ss3;s0[2]<-n_samP1+n_samF1+n_samP2 aaa0<-0;n_iter<-0;aa3<-1000 while (aa3>0.0001) { n_iter<-n_iter+1 abc1<-sigma/(sigma+sigma40) abc2<-sigma/(sigma+sigma40+aa1) abc3<-sigma/(sigma+sigma50+aa1) abc4<-sigma/(sigma+sigma50) abc5<-sigma/(sigma+sigma60) abc6<-sigma/(sigma+sigma60+aa1) aa4<-s0[1]+abc1^2*swx1[1]+abc2^2*swx1[2]+abc3^2*swx2[1]+abc4^2*swx2[2]+abc5^2*(swx3[1]+swx3[3])+abc6^2*swx3[2] aa5<-s0[2]+abc1*n0[1]+abc2*n0[2]+abc3*n0[3]+abc4*n0[4]+abc5*(n0[5]+n0[7])+abc6*n0[6] sigma<-aa4/aa5 aa3<-abs(sigma-aaa0) aaa0<-sigma if (n_iter>20) break } sigma1[1]<-sigma+sigma40;sigma1[2]<-sigma1[1]+aa1 sigma2[1]<-sigma+sigma50+aa1;sigma2[2]<-sigma+sigma50 sigma3[1]<-sigma+sigma60;sigma3[3]<-sigma3[1];sigma3[2]<-sigma3[1]+aa1 L1<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma))))+sum(log(dmixnorm(dataB1,mean1,sqrt(sigma1),mix_pi1)))+ sum(log(dmixnorm(dataB2,mean2,sqrt(sigma2),mix_pi2)))+sum(log(dmixnorm(dataF2,mean3,sqrt(sigma3),mix_pi3))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc<-L0 AIC<--2*abc+2*9 meanP1<-mean[1];meanF1<-mean[2];meanP2<-mean[3] sigma0<-sigma dataP1<-sort(dataP1) P1w1<-1/(12*n_samP1) P1bmw <- matrix(0,n_samP1,1) P1gg <- (dataP1 - mean[1])/sqrt(as.vector(sigma)) P1bmw[which(P1gg>=0)] <- pnorm(P1gg[P1gg>=0]) P1bmw[which(P1gg<0)] <- 1 - pnorm(abs(P1gg[P1gg<0])) nn <- dim(as.matrix(unique(P1bmw)))[1] if(nn < n_samP1){P1bmw <- P1bmw+runif(n_samP1)/1e4} P1dd<-c((sum(P1bmw)),(sum(P1bmw^2)),sum((P1bmw-0.5)^2)) P1w<-P1w1+sum((P1bmw - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) P1u<- as.matrix(c(12*n_samP1*((P1dd[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((P1dd[2]/n_samP1-1/3)^2),180*n_samP1*((P1dd[3]/n_samP1-1/12)^2))) P1D<-as.numeric(ks.test(P1bmw,"punif")[[1]][1]) P1tt <- as.matrix(c((1 - pchisq(P1u[1],1)),(1 - pchisq(P1u[2],1)),(1 - pchisq(P1u[3],1)),K1(P1w),(1-pkolm(P1D,n_samP1)))) P1tt[which( P1tt>=10e-4)]<-round(P1tt[which(P1tt>=10e-4)],4);P1tt[which(P1tt<10e-4)]<-format(P1tt[which(P1tt<10e-4)],scientific=TRUE,digit=4) dataF1<-sort(dataF1) F1w1<-1/(12*n_samF1) F1bmw <- matrix(0,n_samF1,1) F1gg <- (dataF1 - mean[2])/sqrt(as.vector(sigma)) F1bmw[which(F1gg>=0)] <- pnorm(F1gg[F1gg>=0]) F1bmw[which(F1gg<0)] <- 1 - pnorm(abs(F1gg[F1gg<0])) nn <- dim(as.matrix(unique(F1bmw)))[1] if(nn < n_samF1){F1bmw <- F1bmw+runif(n_samF1)/1e4} F1dd<-c((sum(F1bmw)),(sum(F1bmw^2)),sum((F1bmw-0.5)^2)) F1w<-F1w1+sum((F1bmw - (as.matrix(c(1:n_samF1)) - 0.5)/n_samF1)^2) F1u<- as.matrix(c(12*n_samF1*((F1dd[1]/n_samF1-0.5)^2),((45*n_samF1)/4)*((F1dd[2]/n_samF1-1/3)^2),180*n_samF1*((F1dd[3]/n_samF1-1/12)^2))) F1D<-as.numeric(ks.test(F1bmw,"punif")[[1]][1]) F1tt <- as.matrix(c((1 - pchisq(F1u[1],1)),(1 - pchisq(F1u[2],1)),(1 - pchisq(F1u[3],1)),K1(F1w),(1-pkolm(F1D,n_samF1)))) F1tt[which(F1tt>=10e-4)]<-round(F1tt[which(F1tt>=10e-4)],4);F1tt[which(F1tt<10e-4)]<-format(F1tt[which(F1tt<10e-4)],scientific=TRUE,digit=4) dataP2<-sort(dataP2) P2w1<-1/(12*n_samP2) P2bmw <- matrix(0,n_samP2,1) P2gg <- (dataP2 - mean[3])/sqrt(as.vector(sigma)) P2bmw[which(P2gg>=0)] <- pnorm(P2gg[P2gg>=0]) P2bmw[which(P2gg<0)] <- 1 - pnorm(abs(P2gg[P2gg<0])) nn <- dim(as.matrix(unique(P2bmw)))[1] if(nn < n_samP2){P2bmw <- P2bmw+runif(n_samP2)/1e4} P2dd<-c((sum(P2bmw)),(sum(P2bmw^2)),sum((P2bmw-0.5)^2)) P2w<-P2w1+sum((P2bmw - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) P2u<- as.matrix(c(12*n_samP2*((P2dd[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((P2dd[2]/n_samP2-1/3)^2),180*n_samP2*((P2dd[3]/n_samP2-1/12)^2))) P2D<-as.numeric(ks.test(P2bmw,"punif")[[1]][1]) P2tt <- as.matrix(c((1 - pchisq(P2u[1],1)),(1 - pchisq(P2u[2],1)),(1 - pchisq(P2u[3],1)),K1(P2w),(1-pkolm(P2D,n_samP2)))) P2tt[which(P2tt>=10e-4)]<-round(P2tt[which(P2tt>=10e-4)],4);P2tt[which(P2tt<10e-4)]<-format(P2tt[which(P2tt<10e-4)],scientific=TRUE,digit=4) dataB1 <- sort(dataB1); B1w1<-1/(12*n_samB1) B1bmw <- matrix(0,n_samB1,1); B1bmwsl <- matrix(0,n_samB1,2) for(i in 1:2){ B1gg <- (dataB1 - mean1[i])/sqrt(sigma1[i]) B1bmw[which(B1gg>=0)] <- pnorm(B1gg[B1gg>=0]) B1bmw[which(B1gg<0)] <- 1 - pnorm(abs(B1gg[B1gg<0])) B1bmwsl[,i] <- B1bmw*mix_pi1[i] } B1P2 <- rowSums(B1bmwsl) nn <- dim(as.matrix(unique(B1P2)))[1] if(nn < n_samB1){B1P2 <- B1P2+runif(n_samB1)/1e4} B1dd <- as.matrix(c(sum(B1P2),sum(B1P2^2),sum((B1P2-0.5)^2))) B1WW2 <- 1/(12*n_samB1) + sum((B1P2 - (as.matrix(c(1:n_samB1)) - 0.5)/n_samB1)^2) B1u <- as.matrix(c(12*n_samB1*((B1dd[1]/n_samB1-0.5)^2),((45*n_samB1)/4)*((B1dd[2]/n_samB1-1/3)^2),180*n_samB1*((B1dd[3]/n_samB1-1/12)^2))) B1D <- as.numeric(ks.test(B1P2,"punif")[[1]][1]) B1tt <- as.matrix(c((1 - pchisq(B1u[1],1)),(1 - pchisq(B1u[2],1)),(1 - pchisq(B1u[3],1)),K1(B1WW2),(1-pkolm(B1D,n_samB1)))) B1tt[which( B1tt>=10e-4)]<-round(B1tt[which(B1tt>=10e-4)],4);B1tt[which(B1tt<10e-4)]<-format(B1tt[which(B1tt<10e-4)],scientific=TRUE,digit=4) dataB2 <- sort(dataB2); B2w1<-1/(12*n_samB2) B2bmw <- matrix(0,n_samB2,1); B2bmwsl <- matrix(0,n_samB2,2) for(i in 1:2){ B2gg <- (dataB2 - mean2[i])/sqrt(sigma2[i]) B2bmw[which(B2gg>=0)] <- pnorm(B2gg[B2gg>=0]) B2bmw[which(B2gg<0)] <- 1 - pnorm(abs(B2gg[B2gg<0])) B2bmwsl[,i] <- B2bmw*mix_pi2[i] } B2P2 <- rowSums(B2bmwsl) nn <- dim(as.matrix(unique(B2P2)))[1] if(nn < n_samB2){B2P2 <- B2P2+runif(n_samB2)/1e4} B2dd <- as.matrix(c(sum(B2P2),sum(B2P2^2),sum((B2P2-0.5)^2))) B2WW2 <- 1/(12*n_samB2) + sum((B2P2 - (as.matrix(c(1:n_samB2)) - 0.5)/n_samB2)^2) B2u <- as.matrix(c(12*n_samB2*((B2dd[1]/n_samB2-0.5)^2),((45*n_samB2)/4)*((B2dd[2]/n_samB2-1/3)^2),180*n_samB2*((B2dd[3]/n_samB2-1/12)^2))) B2D <- as.numeric(ks.test(B2P2,"punif")[[1]][1]) B2tt <- as.matrix(c((1 - pchisq(B2u[1],1)),(1 - pchisq(B2u[2],1)),(1 - pchisq(B2u[3],1)),K1(B2WW2),(1-pkolm(B2D,n_samB2)))) B2tt[which( B2tt>=10e-4)]<-round(B2tt[which(B2tt>=10e-4)],4);B2tt[which(B2tt<10e-4)]<-format(B2tt[which(B2tt<10e-4)],scientific=TRUE,digit=4) dataF2 <- sort(dataF2); F2w1<-1/(12*n_samF2) F2bmw <- matrix(0,n_samF2,1); F2bmwsl <- matrix(0,n_samF2,3) for(i in 1:3){ F2gg <- (dataF2 - mean3[i])/sqrt(sigma3[i]) F2bmw[which(F2gg>=0)] <- pnorm(F2gg[F2gg>=0]) F2bmw[which(F2gg<0)] <- 1 - pnorm(abs(F2gg[F2gg<0])) F2bmwsl[,i] <- F2bmw*mix_pi3[i] } F2P2 <- rowSums(F2bmwsl) nn <- dim(as.matrix(unique(F2P2)))[1] if(nn < n_samF2){F2P2 <- F2P2+runif(n_samF2)/1e4} F2dd <- as.matrix(c(sum(F2P2),sum(F2P2^2),sum((F2P2-0.5)^2))) F2WW2 <- 1/(12*n_samF2) + sum((F2P2 - (as.matrix(c(1:n_samF2)) - 0.5)/n_samF2)^2) F2u <- as.matrix(c(12*n_samF2*((F2dd[1]/n_samF2-0.5)^2),((45*n_samF2)/4)*((F2dd[2]/n_samF2-1/3)^2),180*n_samF2*((F2dd[3]/n_samF2-1/12)^2))) F2D <- as.numeric(ks.test(F2P2,"punif")[[1]][1]) F2tt <- as.matrix(c((1 - pchisq(F2u[1],1)),(1 - pchisq(F2u[2],1)),(1 - pchisq(F2u[3],1)),K1(F2WW2),(1-pkolm(F2D,n_samF2)))) F2tt[which( F2tt>=10e-4)]<-round(F2tt[which(F2tt>=10e-4)],4);F2tt[which(F2tt<10e-4)]<-format(F2tt[which(F2tt<10e-4)],scientific=TRUE,digit=4) aa<-matrix(c(1,1,0,1,0,1,0,1,0,1,1,-1,0,-1,0,1,1,0,0.5,0.25, 1,0,0.5,0.5,0.25,1,0,0.5,-0.5,0.25,1,-1,0,-0.5,0.25, 1,1,0,0,0.25,1,0,0.5,0,0.25,1,-1,0,0,0.25),10,5,byrow=T) mm<-as.matrix(c(mean[1],mean[2],mean[3],mean1[1],mean1[2],mean2[1],mean2[2],mean3[1],mean3[2],mean3[3])) B1<-solve(crossprod(aa,aa))%*%crossprod(aa,mm) jj1<-sigmaB1-sigma1[1] if (jj1<0 || jj1>=sigmaB1) {jj1<-0} ll1<-jj1/sigmaB1 mm1<-sigma1[1]-sigma if (mm1<0 || mm1>=sigmaB1) {mm1<-0} nn1<-mm1/sigmaB1 jj2<-sigmaB2-sigma2[2] if (jj2<0 || jj2>=sigmaB2) {jj2<-0} ll2<-jj2/sigmaB2 mm2<-sigma2[2]-sigma if (mm2<0 || mm2>=sigmaB2) {mm2<-0} nn2<-mm2/sigmaB2 jj3<-sigmaF2-sigma3[1] if (jj3<0 || jj3>=sigmaF2) {jj3<-0} ll3<-jj3/sigmaF2 mm3<-sigma3[1]-sigma if (mm3<0 || mm3>=sigmaF2) {mm3<-0} nn3<-mm3/sigmaF2 output <- data.frame("MX1-AD-AD",round(abc,4),round(AIC,4),round(meanP1,4),round(meanF1,4),round(meanP2,4), round(sigma0,4),round(t(mean1),4)," "," ",round(t(sigma1),4)," "," ", round(t(mix_pi1),4)," "," ",round(t(mean2),4)," "," ",round(t(sigma2),4)," "," ",round(t(mix_pi2),4)," "," ", round(t(mean3),4)," "," "," "," "," "," ",round(t(sigma3),4)," "," "," "," "," "," ",round(t(mix_pi3),4)," "," "," "," "," "," ", round(B1[1],4)," "," "," "," "," ",round(B1[2],4)," ",round(B1[3],4)," "," "," "," "," ",round(B1[4],4),round(B1[5],4), round(jj1,4),round(ll1*100,4),round(mm1,4),round(nn1*100,4),round(jj2,4),round(ll2*100,4),round(mm2,4),round(nn2*100,4),round(jj3,4),round(ll3*100,4),round(mm3,4),round(nn3*100,4), round(P1u[1],4),P1tt[1],round(P1u[2],4),P1tt[2],round(P1u[3],4),P1tt[3],round(P1w,4),P1tt[4],round(P1D,4),P1tt[5], round(F1u[1],4),F1tt[1],round(F1u[2],4),F1tt[2],round(F1u[3],4),F1tt[3],round(F1w,4),F1tt[4],round(F1D,4),F1tt[5], round(P2u[1],4),P2tt[1],round(P2u[2],4),P2tt[2],round(P2u[3],4),P2tt[3],round(P2w,4),P2tt[4],round(P2D,4),P2tt[5], round(B1u[1],4),B1tt[1],round(B1u[2],4),B1tt[2],round(B1u[3],4),B1tt[3],round(B1WW2,4),B1tt[4],round(B1D,4),B1tt[5], round(B2u[1],4),B2tt[1],round(B2u[2],4),B2tt[2],round(B2u[3],4),B2tt[3],round(B2WW2,4),B2tt[4],round(B2D,4),B2tt[5], round(F2u[1],4),F2tt[1],round(F2u[2],4),F2tt[2],round(F2u[3],4),F2tt[3],round(F2WW2,4),F2tt[4],round(F2D,4),F2tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi1,mi2,mi3) return(OUTPUT) } G6FModelFun[[15]] <- function(K1,logL,df11,df21,df31,df41,df51,df61,G6Ftext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataF1 <- as.matrix(as.numeric(df21[,1])) dataP2 <- as.matrix(as.numeric(df31[,1]));dataB1 <- as.matrix(as.numeric(df41[,1])) dataB2 <- as.matrix(as.numeric(df51[,1]));dataF2 <- as.matrix(as.numeric(df61[,1])) n_samP1<-dim(dataP1)[1];n_samF1<-dim(dataF1)[1];n_samP2<-dim(dataP2)[1] n_samB1<-dim(dataB1)[1];n_samB2<-dim(dataB2)[1];n_samF2<-dim(dataF2)[1] sumx<-as.matrix(c(sum(dataP1),sum(dataF1),sum(dataP2),sum(dataB1),sum(dataB2),sum(dataF2))) s<-as.matrix(c(sum(dataP1^2),sum(dataF1^2),sum(dataP2^2),sum(dataB1^2),sum(dataB2^2),sum(dataF2^2))) ss<-matrix(0,3,1);ss[1]<-s[1]-sumx[1]^2/n_samP1;ss[2]<-s[2]-sumx[2]^2/n_samF1;ss[3]<-s[3]-sumx[3]^2/n_samP2 mean<-as.matrix(c(mean(dataP1),mean(dataF1),mean(dataP2),mean(dataB1),mean(dataB2),mean(dataF2))) sigma0<-sum(ss)/(n_samP1+n_samF1+n_samP2-3) sigmaB1<-var(dataB1);sigma40<-sigmaB1 sigmaB2<-var(dataB2);sigma50<-sigmaB2 sigmaF2<-var(dataF2);sigma60<-sigmaF2 sigmaP1<-sigmaF1<-sigmaP2<-sigma0 m_esp <- 0.0001;n_fam <- as.numeric(G6Ftext2) mi1<-matrix(0.5,2,1);sigma1<-matrix(0,2,1) mi2<-matrix(0.5,2,1);sigma2<-matrix(0,2,1) mi3<-as.matrix(c(0.25,0.5,0.25));sigma3<-matrix(0,3,1) sigma<-sigma0 a1<-sqrt(sigmaB1);if (mean[1]<mean[3]) a1<--a1 mean1<-as.matrix(c(mean[4]+a1,mean[4])) a2<-sqrt(sigmaB2);if (mean[1]<mean[3]) a2<--a2 mean2<-as.matrix(c(mean[5],mean[5]-a2)) a3<-sqrt(sigmaF2);if (mean[1]<mean[3]) a3<--a3 mean3<-as.matrix(c(mean[6]+a3,mean[6],mean[6]-a3)) b1<-(mean1[1]-mean1[2]+mean2[1]-mean2[2]+2*mean3[1]-2*mean3[3])/6 b3<-(0.5*b1^2)/n_fam sigma1[1]<-sigmaB1/2;sigma1[2]<-sigma1[1]+b3 sigma2[2]<-sigmaB2/2;sigma2[1]<-sigma2[2]+b3 sigma3[1]<-sigmaF2/2;sigma3[3]<-sigma3[1];sigma3[2]<-sigma3[1]+b3 L0<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma0))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma0))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma0))))+sum(log(dmixnorm(dataB1,mean1,sqrt(sigma1),mi1)))+ sum(log(dmixnorm(dataB2,mean2,sqrt(sigma2),mi2)))+sum(log(dmixnorm(dataF2,mean3,sqrt(sigma3),mi3))) iteration <- 0; stopa <- 1000 W1 <- matrix(0,2,n_samB1); swx1 <- matrix(0,2,1) W2 <- matrix(0,2,n_samB2); swx2 <- matrix(0,2,1) W3 <- matrix(0,3,n_samF2); swx3 <- matrix(0,3,1) hh<-matrix(0,6,6);b_line<-matrix(0,6,1) n0<-matrix(0,9,1);s0<-matrix(0,2,1) while(stopa > m_esp&&iteration<=1000){ iteration <- iteration + 1 for(i in 1:2) { W1[i,] <- mi1[i]*dnorm(dataB1,mean1[i],sqrt(sigma1[i]))/dmixnorm(dataB1,mean1,sqrt(sigma1),mi1) } mix_pi1 <- as.matrix(rowSums(W1)/n_samB1) sumwx1 <- W1%*%dataB1 for(i in 1:2) { W2[i,] <- mi2[i]*dnorm(dataB2,mean2[i],sqrt(sigma2[i]))/dmixnorm(dataB2,mean2,sqrt(sigma2),mi2) } mix_pi2 <- as.matrix(rowSums(W2)/n_samB2) sumwx2 <- W2%*%dataB2 for(i in 1:3) { W3[i,] <- mi3[i]*dnorm(dataF2,mean3[i],sqrt(sigma3[i]))/dmixnorm(dataF2,mean3,sqrt(sigma3),mi3) } mix_pi3 <- as.matrix(rowSums(W3)/n_samF2) sumwx3 <- W3%*%dataF2 n0[1]<-mix_pi1[1]*n_samB1;n0[2]<-mix_pi1[2]*n_samB1 n0[3]<-mix_pi2[1]*n_samB2;n0[4]<-mix_pi2[2]*n_samB2 n0[5]<-mix_pi3[1]*n_samF2;n0[6]<-mix_pi3[2]*n_samF2 n0[7]<-mix_pi3[3]*n_samF2 n0[c(1:7)][abs(n0[c(1:7)])<0.0001]<-0.0001 aaa0<-0 AA<-matrix(0,6,1);n_iter<-0;aaa1<-1000 while (aaa1>0.0001) { n_iter<-n_iter+1 aa1<-(mean1[1]-mean1[2]+mean2[1]-mean2[2]+2*mean3[1]-2*mean3[3])/6 aa1<-0.5*aa1^2/n_fam sigma1[2]<-sigma1[1]+aa1 sigma2[1]<-sigma2[2]+aa1 sigma3[2]<-sigma3[1]+aa1 hh[1,1]<-sigma*(9/n_samP1+4/n_samF1+9/n_samP2)+64*sigma3[2]/n0[6] hh[1,2]<-3*sigma*(1/n_samP1-1/n_samP2) hh[1,3]<-16*sigma3[2]/n0[6] hh[1,4]<-0 hh[1,5]<-16*sigma3[2]/n0[6] hh[1,6]<-16*sigma3[2]/n0[6] hh[2,2]<-sigma*(1/n_samP1+1/n_samP2)+sigma1[1]/n0[1]+sigma1[2]/n0[2]+sigma2[1]/n0[3]+sigma2[2]/n0[4] hh[2,3]<--sigma1[1]/n0[1]+sigma2[2]/n0[4] hh[2,4]<--sigma1[1]/n0[1]+sigma1[2]/n0[2]+sigma2[1]/n0[3]-sigma2[2]/n0[4] hh[2,5]<--sigma1[2]/n0[2]+sigma2[1]/n0[3] hh[2,6]<-0 hh[3,3]<-sigma1[1]/n0[1]+sigma2[2]/n0[4]+4*sigma3[2]/n0[6] hh[3,4]<-sigma1[1]/n0[1]-sigma2[2]/n0[4] hh[3,5]<-4*sigma3[2]/n0[6] hh[3,6]<-4*sigma3[2]/n0[6] hh[4,4]<-sigma1[1]/n0[1]+sigma1[2]/n0[2]+sigma2[1]/n0[3]+sigma2[2]/n0[4]+sigma3[1]/n0[5]+sigma3[3]/n0[7] hh[4,5]<--sigma1[2]/n0[2]+sigma2[1]/n0[3] hh[4,6]<--sigma3[1]/n0[5]+sigma3[3]/n0[7] hh[5,5]<-sigma1[2]/n0[2]+sigma2[1]/n0[3]+4*sigma3[2]/n0[6] hh[5,6]<-4*sigma3[2]/n0[6] hh[6,6]<-sigma3[1]/n0[5]+sigma3[3]/n0[7]+4*sigma3[2]/n0[6] for(i in 2:6) { for(j in 1:(i-1)) { hh[i,j]<-hh[j,i] } } b_line[1]<-3*sumx[1]/n_samP1+2*sumx[2]/n_samF1+3*sumx[3]/n_samP2-8*sumwx3[2]/n0[6] b_line[2]<-sumx[1]/n_samP1-sumx[3]/n_samP2-sumwx1[1]/n0[1]-sumwx1[2]/n0[2]+sumwx2[1]/n0[3]+sumwx2[2]/n0[4] b_line[3]<-sumwx1[1]/n0[1]+sumwx2[2]/n0[4]-2*sumwx3[2]/n0[6] b_line[4]<-sumwx1[1]/n0[1]-sumwx1[2]/n0[2]+sumwx2[1]/n0[3]-sumwx2[2]/n0[4]-sumwx3[1]/n0[5]+sumwx3[3]/n0[7] b_line[5]<-sumwx1[2]/n0[2]+sumwx2[1]/n0[3]-2*sumwx3[2]/n0[6] b_line[6]<-sumwx3[1]/n0[5]+sumwx3[3]/n0[7]-2*sumwx3[2]/n0[6] B<-solve(hh,b_line) mean[1]<-(sumx[1]-sigma*(3*B[1]+B[2]))/n_samP1 mean[2]<-(sumx[2]-2*sigma*B[1])/n_samF1 mean[3]<-(sumx[3]+sigma*(-3*B[1]+B[2]))/n_samP2 mean1[1]<-(sumwx1[1]+sigma1[1]*(B[2]-B[3]-B[4]))/n0[1] mean1[2]<-(sumwx1[2]+sigma1[2]*(B[2]+B[4]-B[5]))/n0[2] mean2[1]<-(sumwx2[1]-sigma2[1]*(B[2]+B[4]+B[5]))/n0[3] mean2[2]<-(sumwx2[2]+(-B[2]-B[3]+B[4])*sigma2[2])/n0[4] mean3[1]<-(sumwx3[1]+sigma3[1]*(B[4]-B[6]))/n0[5] mean3[2]<-(sumwx3[2]+sigma3[2]*(8*B[1]+2*B[3]+2*B[5]+2*B[6]))/n0[6] mean3[3]<-(sumwx3[3]-sigma3[3]*(B[4]+B[6]))/n0[7] aaa1<-max(abs(B-AA)) AA<-B if (n_iter>20) break } ss1<-sum((dataP1-mean[1])^2);ss3<-sum((dataP2-mean[3])^2);ss2<-sum((dataF1-mean[2])^2) for(i in 1:2) {swx1[i] <- W1[i,]%*%(dataB1-mean1[i])^2 };for(i in 1:2) {swx2[i] <- W2[i,]%*%(dataB2-mean2[i])^2 };for(i in 1:3) {swx3[i] <- W3[i,]%*%(dataF2-mean3[i])^2 } aa1<-(mean1[1]-mean1[2]+mean2[1]-mean2[2]+2*mean3[1]-2*mean3[3])/6 aa1<-0.5*aa1*aa1/n_fam aaa0<-sigma1[1];n_iter<-0;aa3<-1000 while (aa3>0.0001) { n_iter<-n_iter+1 ab2<-sigma1[1]/(sigma1[1]+aa1) sigma1[1]<-(swx1[1]+ab2^2*swx1[2])/(n0[1]+ab2*n0[2]) aa3<-abs(sigma1[1]-aaa0) aaa0<-sigma1[1] if (n_iter>20) break } sigma40<-sigma1[1]-sigma; if (sigma40<0) {sigma40<-0;sigma1[1]<-sigma} sigma1[1]<-sigma40+sigma;sigma1[2]<-sigma1[1]+aa1 n0[8]<-mix_pi2[1]*n_samB2;n0[9]<-mix_pi2[2]*n_samB2 aa3<-1000;aaa0<-sigma2[2];n_iter<-0 while (aa3>0.0001) { n_iter<-n_iter+1 ab3<-sigma2[2]/(sigma2[2]+aa1) sigma2[2]<-(ab3^2*swx2[1]+swx2[2])/(ab3*n0[8]+n0[9]) aa3<-abs(sigma2[2]-aaa0) aaa0<-sigma2[2] if (n_iter>20) break } sigma50<-sigma2[2]-sigma; if (sigma50<0) {sigma50<-0;sigma2[2]<-sigma} sigma2[2]<-sigma50+sigma;sigma2[1]<-sigma2[2]+aa1 n0[8]<-(mix_pi3[3]+mix_pi3[1])*n_samF2;n0[9]<-mix_pi3[2]*n_samF2 aaa0<-sigma3[1];n_iter<-0;aa3<-1000 while (aa3>0.0001) { n_iter<-n_iter+1 ab4<-sigma3[1]/(sigma3[1]+aa1) sigma3[1]<-(swx3[1]+ab4^2*swx3[2]+swx3[3])/(n0[8]+ab4*n0[9]) aa3<-abs(sigma3[1]-aaa0) aaa0<-sigma3[1] if (n_iter>20) break } sigma60<-sigma3[1]-sigma; if (sigma60<0) {sigma60<-0;sigma3[1]<-sigma} sigma3[1]<-sigma60+sigma;sigma3[2]<-sigma3[1]+aa1 sigma3[3]<-sigma3[1] s0[1]<-ss1+ss2+ss3;s0[2]<-n_samP1+n_samF1+n_samP2 aaa0<-0;n_iter<-0;aa3<-1000 while (aa3>0.0001) { n_iter<-n_iter+1 abc1<-sigma/(sigma+sigma40) abc2<-sigma/(sigma+sigma40+aa1) abc3<-sigma/(sigma+sigma50+aa1) abc4<-sigma/(sigma+sigma50) abc5<-sigma/(sigma+sigma60) abc6<-sigma/(sigma+sigma60+aa1) aa4<-s0[1]+abc1^2*swx1[1]+abc2^2*swx1[2]+abc3^2* swx2[1]+abc4^2*swx2[2]+abc5^2*(swx3[1]+swx3[3])+abc6^2*swx3[2] aa5<-s0[2]+abc1*n0[1]+abc2*n0[2]+abc3*n0[3]+abc4*n0[4]+abc5*(n0[5]+n0[7])+abc6*n0[6] sigma<-aa4/aa5 aa3<-abs(sigma-aaa0) aaa0<-sigma if (n_iter>20) break } sigma1[1]<-sigma+sigma40;sigma1[2]<-sigma1[1]+aa1 sigma2[1]<-sigma+sigma50+aa1;sigma2[2]<-sigma+sigma50 sigma3[1]<-sigma+sigma60;sigma3[3]<-sigma3[1];sigma3[2]<-sigma3[1]+aa1 L1<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma))))+sum(log(dmixnorm(dataB1,mean1,sqrt(sigma1),mix_pi1)))+ sum(log(dmixnorm(dataB2,mean2,sqrt(sigma2),mix_pi2)))+sum(log(dmixnorm(dataF2,mean3,sqrt(sigma3),mix_pi3))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc<-L0 AIC<--2*abc+2*8 meanP1<-mean[1];meanF1<-mean[2];meanP2<-mean[3] sigma0<-sigma dataP1<-sort(dataP1) P1w1<-1/(12*n_samP1) P1bmw <- matrix(0,n_samP1,1) P1gg <- (dataP1 - mean[1])/sqrt(as.vector(sigma)) P1bmw[which(P1gg>=0)] <- pnorm(P1gg[P1gg>=0]) P1bmw[which(P1gg<0)] <- 1 - pnorm(abs(P1gg[P1gg<0])) nn <- dim(as.matrix(unique(P1bmw)))[1] if(nn < n_samP1){P1bmw <- P1bmw+runif(n_samP1)/1e4} P1dd<-c((sum(P1bmw)),(sum(P1bmw^2)),sum((P1bmw-0.5)^2)) P1w<-P1w1+sum((P1bmw - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) P1u<- as.matrix(c(12*n_samP1*((P1dd[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((P1dd[2]/n_samP1-1/3)^2),180*n_samP1*((P1dd[3]/n_samP1-1/12)^2))) P1D<-as.numeric(ks.test(P1bmw,"punif")[[1]][1]) P1tt <- as.matrix(c((1 - pchisq(P1u[1],1)),(1 - pchisq(P1u[2],1)),(1 - pchisq(P1u[3],1)),K1(P1w),(1-pkolm(P1D,n_samP1)))) P1tt[which( P1tt>=10e-4)]<-round(P1tt[which(P1tt>=10e-4)],4);P1tt[which(P1tt<10e-4)]<-format(P1tt[which(P1tt<10e-4)],scientific=TRUE,digit=4) dataF1<-sort(dataF1) F1w1<-1/(12*n_samF1) F1bmw <- matrix(0,n_samF1,1) F1gg <- (dataF1 - mean[2])/sqrt(as.vector(sigma)) F1bmw[which(F1gg>=0)] <- pnorm(F1gg[F1gg>=0]) F1bmw[which(F1gg<0)] <- 1 - pnorm(abs(F1gg[F1gg<0])) nn <- dim(as.matrix(unique(F1bmw)))[1] if(nn < n_samF1){F1bmw <- F1bmw+runif(n_samF1)/1e4} F1dd<-c((sum(F1bmw)),(sum(F1bmw^2)),sum((F1bmw-0.5)^2)) F1w<-F1w1+sum((F1bmw - (as.matrix(c(1:n_samF1)) - 0.5)/n_samF1)^2) F1u<- as.matrix(c(12*n_samF1*((F1dd[1]/n_samF1-0.5)^2),((45*n_samF1)/4)*((F1dd[2]/n_samF1-1/3)^2),180*n_samF1*((F1dd[3]/n_samF1-1/12)^2))) F1D<-as.numeric(ks.test(F1bmw,"punif")[[1]][1]) F1tt <- as.matrix(c((1 - pchisq(F1u[1],1)),(1 - pchisq(F1u[2],1)),(1 - pchisq(F1u[3],1)),K1(F1w),(1-pkolm(F1D,n_samF1)))) F1tt[which(F1tt>=10e-4)]<-round(F1tt[which(F1tt>=10e-4)],4);F1tt[which(F1tt<10e-4)]<-format(F1tt[which(F1tt<10e-4)],scientific=TRUE,digit=4) dataP2<-sort(dataP2) P2w1<-1/(12*n_samP2) P2bmw <- matrix(0,n_samP2,1) P2gg <- (dataP2 - mean[3])/sqrt(as.vector(sigma)) P2bmw[which(P2gg>=0)] <- pnorm(P2gg[P2gg>=0]) P2bmw[which(P2gg<0)] <- 1 - pnorm(abs(P2gg[P2gg<0])) nn <- dim(as.matrix(unique(P2bmw)))[1] if(nn < n_samP2){P2bmw <- P2bmw+runif(n_samP2)/1e4} P2dd<-c((sum(P2bmw)),(sum(P2bmw^2)),sum((P2bmw-0.5)^2)) P2w<-P2w1+sum((P2bmw - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) P2u<- as.matrix(c(12*n_samP2*((P2dd[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((P2dd[2]/n_samP2-1/3)^2),180*n_samP2*((P2dd[3]/n_samP2-1/12)^2))) P2D<-as.numeric(ks.test(P2bmw,"punif")[[1]][1]) P2tt <- as.matrix(c((1 - pchisq(P2u[1],1)),(1 - pchisq(P2u[2],1)),(1 - pchisq(P2u[3],1)),K1(P2w),(1-pkolm(P2D,n_samP2)))) P2tt[which(P2tt>=10e-4)]<-round(P2tt[which(P2tt>=10e-4)],4);P2tt[which(P2tt<10e-4)]<-format(P2tt[which(P2tt<10e-4)],scientific=TRUE,digit=4) dataB1 <- sort(dataB1); B1w1<-1/(12*n_samB1) B1bmw <- matrix(0,n_samB1,1); B1bmwsl <- matrix(0,n_samB1,2) for(i in 1:2){ B1gg <- (dataB1 - mean1[i])/sqrt(sigma1[i]) B1bmw[which(B1gg>=0)] <- pnorm(B1gg[B1gg>=0]) B1bmw[which(B1gg<0)] <- 1 - pnorm(abs(B1gg[B1gg<0])) B1bmwsl[,i] <- B1bmw*mix_pi1[i] } B1P2 <- rowSums(B1bmwsl) nn <- dim(as.matrix(unique(B1P2)))[1] if(nn < n_samB1){B1P2 <- B1P2+runif(n_samB1)/1e4} B1dd <- as.matrix(c(sum(B1P2),sum(B1P2^2),sum((B1P2-0.5)^2))) B1WW2 <- 1/(12*n_samB1) + sum((B1P2 - (as.matrix(c(1:n_samB1)) - 0.5)/n_samB1)^2) B1u <- as.matrix(c(12*n_samB1*((B1dd[1]/n_samB1-0.5)^2),((45*n_samB1)/4)*((B1dd[2]/n_samB1-1/3)^2),180*n_samB1*((B1dd[3]/n_samB1-1/12)^2))) B1D <- as.numeric(ks.test(B1P2,"punif")[[1]][1]) B1tt <- as.matrix(c((1 - pchisq(B1u[1],1)),(1 - pchisq(B1u[2],1)),(1 - pchisq(B1u[3],1)),K1(B1WW2),(1-pkolm(B1D,n_samB1)))) B1tt[which( B1tt>=10e-4)]<-round(B1tt[which(B1tt>=10e-4)],4);B1tt[which(B1tt<10e-4)]<-format(B1tt[which(B1tt<10e-4)],scientific=TRUE,digit=4) dataB2 <- sort(dataB2); B2w1<-1/(12*n_samB2) B2bmw <- matrix(0,n_samB2,1); B2bmwsl <- matrix(0,n_samB2,2) for(i in 1:2){ B2gg <- (dataB2 - mean2[i])/sqrt(sigma2[i]) B2bmw[which(B2gg>=0)] <- pnorm(B2gg[B2gg>=0]) B2bmw[which(B2gg<0)] <- 1 - pnorm(abs(B2gg[B2gg<0])) B2bmwsl[,i] <- B2bmw*mix_pi2[i] } B2P2 <- rowSums(B2bmwsl) nn <- dim(as.matrix(unique(B2P2)))[1] if(nn < n_samB2){B2P2 <- B2P2+runif(n_samB2)/1e4} B2dd <- as.matrix(c(sum(B2P2),sum(B2P2^2),sum((B2P2-0.5)^2))) B2WW2 <- 1/(12*n_samB2) + sum((B2P2 - (as.matrix(c(1:n_samB2)) - 0.5)/n_samB2)^2) B2u <- as.matrix(c(12*n_samB2*((B2dd[1]/n_samB2-0.5)^2),((45*n_samB2)/4)*((B2dd[2]/n_samB2-1/3)^2),180*n_samB2*((B2dd[3]/n_samB2-1/12)^2))) B2D <- as.numeric(ks.test(B2P2,"punif")[[1]][1]) B2tt <- as.matrix(c((1 - pchisq(B2u[1],1)),(1 - pchisq(B2u[2],1)),(1 - pchisq(B2u[3],1)),K1(B2WW2),(1-pkolm(B2D,n_samB2)))) B2tt[which( B2tt>=10e-4)]<-round(B2tt[which(B2tt>=10e-4)],4);B2tt[which(B2tt<10e-4)]<-format(B2tt[which(B2tt<10e-4)],scientific=TRUE,digit=4) dataF2 <- sort(dataF2); F2w1<-1/(12*n_samF2) F2bmw <- matrix(0,n_samF2,1); F2bmwsl <- matrix(0,n_samF2,3) for(i in 1:3){ F2gg <- (dataF2 - mean3[i])/sqrt(sigma3[i]) F2bmw[which(F2gg>=0)] <- pnorm(F2gg[F2gg>=0]) F2bmw[which(F2gg<0)] <- 1 - pnorm(abs(F2gg[F2gg<0])) F2bmwsl[,i] <- F2bmw*mix_pi3[i] } F2P2 <- rowSums(F2bmwsl) nn <- dim(as.matrix(unique(F2P2)))[1] if(nn < n_samF2){F2P2 <- F2P2+runif(n_samF2)/1e4} F2dd <- as.matrix(c(sum(F2P2),sum(F2P2^2),sum((F2P2-0.5)^2))) F2WW2 <- 1/(12*n_samF2) + sum((F2P2 - (as.matrix(c(1:n_samF2)) - 0.5)/n_samF2)^2) F2u <- as.matrix(c(12*n_samF2*((F2dd[1]/n_samF2-0.5)^2),((45*n_samF2)/4)*((F2dd[2]/n_samF2-1/3)^2),180*n_samF2*((F2dd[3]/n_samF2-1/12)^2))) F2D <- as.numeric(ks.test(F2P2,"punif")[[1]][1]) F2tt <- as.matrix(c((1 - pchisq(F2u[1],1)),(1 - pchisq(F2u[2],1)),(1 - pchisq(F2u[3],1)),K1(F2WW2),(1-pkolm(F2D,n_samF2)))) F2tt[which( F2tt>=10e-4)]<-round(F2tt[which(F2tt>=10e-4)],4);F2tt[which(F2tt<10e-4)]<-format(F2tt[which(F2tt<10e-4)],scientific=TRUE,digit=4) aa<-matrix(c(1,1,1,0,1,0,0,1,1,-1,-1,0,1,1,0.5,0.25,1,0,0.5,0.25, 1,0,-0.5,0.25,1,-1,-0.5,0.25,1,1,0,0.25,1,0,0,0.25, 1,-1,0,0.25),10,4,byrow=T) mm<-as.matrix(c(mean[1],mean[2],mean[3],mean1[1],mean1[2],mean2[1],mean2[2],mean3[1],mean3[2],mean3[3])) B1<-solve(crossprod(aa,aa))%*%crossprod(aa,mm) jj1<-sigmaB1-sigma1[1] if (jj1<0 || jj1>=sigmaB1) {jj1<-0} ll1<-jj1/sigmaB1 mm1<-sigma1[1]-sigma if (mm1<0 || mm1>=sigmaB1) {mm1<-0} nn1<-mm1/sigmaB1 jj2<-sigmaB2-sigma2[2] if (jj2<0 || jj2>=sigmaB2) {jj2<-0} ll2<-jj2/sigmaB2 mm2<-sigma2[2]-sigma if (mm2<0 || mm2>=sigmaB2) {mm2<-0} nn2<-mm2/sigmaB2 jj3<-sigmaF2-sigma3[1] if (jj3<0 || jj3>=sigmaF2) {jj3<-0} ll3<-jj3/sigmaF2 mm3<-sigma3[1]-sigma if (mm3<0 || mm3>=sigmaF2) {mm3<-0} nn3<-mm3/sigmaF2 output <- data.frame("MX1-A-AD",round(abc,4),round(AIC,4),round(meanP1,4),round(meanF1,4),round(meanP2,4), round(sigma0,4),round(t(mean1),4)," "," ",round(t(sigma1),4)," "," ", round(t(mix_pi1),4)," "," ",round(t(mean2),4)," "," ",round(t(sigma2),4)," "," ",round(t(mix_pi2),4)," "," ", round(t(mean3),4)," "," "," "," "," "," ",round(t(sigma3),4)," "," "," "," "," "," ",round(t(mix_pi3),4)," "," "," "," "," "," ", round(B1[1],4)," "," "," "," "," ",round(B1[2],4)," "," "," "," "," "," "," ",round(B1[3],4),round(B1[4],4), round(jj1,4),round(ll1*100,4),round(mm1,4),round(nn1*100,4),round(jj2,4),round(ll2*100,4),round(mm2,4),round(nn2*100,4),round(jj3,4),round(ll3*100,4),round(mm3,4),round(nn3*100,4), round(P1u[1],4),P1tt[1],round(P1u[2],4),P1tt[2],round(P1u[3],4),P1tt[3],round(P1w,4),P1tt[4],round(P1D,4),P1tt[5], round(F1u[1],4),F1tt[1],round(F1u[2],4),F1tt[2],round(F1u[3],4),F1tt[3],round(F1w,4),F1tt[4],round(F1D,4),F1tt[5], round(P2u[1],4),P2tt[1],round(P2u[2],4),P2tt[2],round(P2u[3],4),P2tt[3],round(P2w,4),P2tt[4],round(P2D,4),P2tt[5], round(B1u[1],4),B1tt[1],round(B1u[2],4),B1tt[2],round(B1u[3],4),B1tt[3],round(B1WW2,4),B1tt[4],round(B1D,4),B1tt[5], round(B2u[1],4),B2tt[1],round(B2u[2],4),B2tt[2],round(B2u[3],4),B2tt[3],round(B2WW2,4),B2tt[4],round(B2D,4),B2tt[5], round(F2u[1],4),F2tt[1],round(F2u[2],4),F2tt[2],round(F2u[3],4),F2tt[3],round(F2WW2,4),F2tt[4],round(F2D,4),F2tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi1,mi2,mi3) return(OUTPUT) } G6FModelFun[[16]] <- function(K1,logL,df11,df21,df31,df41,df51,df61,G6Ftext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataF1 <- as.matrix(as.numeric(df21[,1])) dataP2 <- as.matrix(as.numeric(df31[,1]));dataB1 <- as.matrix(as.numeric(df41[,1])) dataB2 <- as.matrix(as.numeric(df51[,1]));dataF2 <- as.matrix(as.numeric(df61[,1])) n_samP1<-dim(dataP1)[1];n_samF1<-dim(dataF1)[1];n_samP2<-dim(dataP2)[1] n_samB1<-dim(dataB1)[1];n_samB2<-dim(dataB2)[1];n_samF2<-dim(dataF2)[1] sumx<-as.matrix(c(sum(dataP1),sum(dataF1),sum(dataP2),sum(dataB1),sum(dataB2),sum(dataF2))) s<-as.matrix(c(sum(dataP1^2),sum(dataF1^2),sum(dataP2^2),sum(dataB1^2),sum(dataB2^2),sum(dataF2^2))) ss<-matrix(0,3,1);ss[1]<-s[1]-sumx[1]^2/n_samP1;ss[2]<-s[2]-sumx[2]^2/n_samF1;ss[3]<-s[3]-sumx[3]^2/n_samP2 mean<-as.matrix(c(mean(dataP1),mean(dataF1),mean(dataP2),mean(dataB1),mean(dataB2),mean(dataF2))) sigma0<-sum(ss)/(n_samP1+n_samF1+n_samP2-3) sigmaB1<-var(dataB1);sigma40<-sigmaB1 sigmaB2<-var(dataB2);sigma50<-sigmaB2 sigmaF2<-var(dataF2);sigma60<-sigmaF2 sigmaP1<-sigmaF1<-sigmaP2<-sigma0 m_esp <- 0.0001;n_fam <- as.numeric(G6Ftext2) mi1<-matrix(0.5,2,1);sigma1<-matrix(0,2,1) mi2<-matrix(0.5,2,1);sigma2<-matrix(0,2,1) mi3<-as.matrix(c(0.25,0.5,0.25));sigma3<-matrix(0,3,1) sigma<-sigma0 a1<-sqrt(sigmaB1/n_samB1);if (mean[1]<mean[3]) a1<--a1 mean1<-as.matrix(c(mean[4]+0.5*a1,0.25*(mean[1]+mean[3])+0.5*mean[2])) a2<-sqrt(sigmaB2/n_samB2);if (mean[1]<mean[3]) a2<--a2 mean2<-as.matrix(c(mean[5],mean[5]-2*a2)) a3<-sqrt(sigmaF2/n_samF2);if (mean[1]<mean[3]) a3<--a3 mean3<-as.matrix(c(mean1[1],mean[6],mean2[2])) b1<-(12*mean[1]+8*mean[2]+12*mean[3]+120*mean1[1]-98*mean1[2]+338*mean2[1]-316*mean2[2]+338*mean3[1]+120*mean3[2]-534*mean3[3])/1496 b3<-0.75*b1^2/n_fam sigma1[1]<-sigmaB1/2;sigma1[2]<-sigma1[1]+2*b3 sigma2[2]<-sigmaB2/2;sigma2[1]<-sigma2[2]+2*b3 sigma3[1]<-sigmaF2/2;sigma3[3]<-sigma3[1];sigma3[2]<-sigma3[1]+2*b3 L0<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma0))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma0))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma0))))+sum(log(dmixnorm(dataB1,mean1,sqrt(sigma1),mi1)))+ sum(log(dmixnorm(dataB2,mean2,sqrt(sigma2),mi2)))+sum(log(dmixnorm(dataF2,mean3,sqrt(sigma3),mi3))) iteration <- 0; stopa <- 1000 W1 <- matrix(0,2,n_samB1); swx1 <- matrix(0,2,1) W2 <- matrix(0,2,n_samB2); swx2 <- matrix(0,2,1) W3 <- matrix(0,3,n_samF2); swx3 <- matrix(0,3,1) hh<-matrix(0,6,6);b_line<-matrix(0,6,1) n0<-matrix(0,9,1);s0<-matrix(0,2,1) while(stopa > m_esp&&iteration<=1000){ iteration <- iteration + 1 for(i in 1:2) { W1[i,] <- mi1[i]*dnorm(dataB1,mean1[i],sqrt(sigma1[i]))/dmixnorm(dataB1,mean1,sqrt(sigma1),mi1) } mix_pi1 <- as.matrix(rowSums(W1)/n_samB1) sumwx1 <- W1%*%dataB1 for(i in 1:2) { W2[i,] <- mi2[i]*dnorm(dataB2,mean2[i],sqrt(sigma2[i]))/dmixnorm(dataB2,mean2,sqrt(sigma2),mi2) } mix_pi2 <- as.matrix(rowSums(W2)/n_samB2) sumwx2 <- W2%*%dataB2 for(i in 1:3) { W3[i,] <- mi3[i]*dnorm(dataF2,mean3[i],sqrt(sigma3[i]))/dmixnorm(dataF2,mean3,sqrt(sigma3),mi3) } mix_pi3 <- as.matrix(rowSums(W3)/n_samF2) sumwx3 <- W3%*%dataF2 n0[1]<-mix_pi1[1]*n_samB1;n0[2]<-mix_pi1[2]*n_samB1 n0[3]<-mix_pi2[1]*n_samB2;n0[4]<-mix_pi2[2]*n_samB2 n0[5]<-mix_pi3[1]*n_samF2;n0[6]<-mix_pi3[2]*n_samF2 n0[7]<-mix_pi3[3]*n_samF2 n0[c(1:7)][abs(n0[c(1:7)])<0.00000001]<-0.000001 aaa0<-0 ;AA<-matrix(0,6,1);aaa1<-1000;n_iter<-0 while(aaa1>0.0001) { n_iter<-n_iter+1 aa1<-(12*mean[1]+8*mean[2]+12*mean[3]+120*mean1[1]-98*mean1[2]+ 338*mean2[1]-316*mean2[2]+338*mean3[1]+120*mean3[2]-534*mean3[3])/1496 aa1<-0.75*aa1^2/n_fam sigma1[2]<-sigma1[1]+aa1 sigma2[1]<-sigma2[2]+aa1 sigma3[2]<-sigma3[1]+aa1 hh[1,1]<-sigma*(9/n_samP1+4/n_samF1+9/n_samP2)+4*sigma3[1]/n0[5]+16*sigma3[2]/n0[6]+4*sigma3[3]/n0[7] hh[1,2]<-sigma*(3/n_samP1-3/n_samP2) hh[1,3]<-sigma3[1]*(2/n0[5]-2/n0[7]) hh[1,4]<-sigma3[1]*(2/n0[5]+2/n0[7]) hh[1,5]<-8*sigma3[2]/n0[6] hh[1,6]<-6*sigma3[1]/n0[5]-16*sigma3[2]/n0[6]+2*sigma3[3]/n0[7] hh[2,2]<-sigma*(1/n_samP1+1/n_samP2)+sigma1[1]/n0[1]+sigma1[2]/n0[2]+sigma2[1]/n0[3]+sigma2[2]/n0[4] hh[2,3]<--sigma1[1]/n0[1]+sigma1[2]/n0[2]+sigma2[1]/n0[3]-sigma2[2]/n0[4] hh[2,4]<--sigma1[1]/n0[1]+sigma2[2]/n0[4] hh[2,5]<--sigma1[2]/n0[2]+sigma2[1]/n0[3] hh[2,6]<-0 hh[3,3]<-sigma1[1]/n0[1]+sigma1[2]/n0[2]+sigma2[1]/n0[3]+sigma2[2]/n0[4]+sigma3[1]/n0[5]+sigma3[3]/n0[7] hh[3,4]<-sigma1[1]/n0[1]-sigma2[2]/n0[4]+sigma3[1]/n0[5]-sigma3[3]/n0[7] hh[3,5]<--sigma1[2]/n0[2]+sigma2[1]/n0[3] hh[3,6]<-sigma3[1]*(3/n0[5]-1/n0[7]) hh[4,4]<-sigma1[1]/n0[1]+sigma2[2]/n0[4]+sigma3[1]/n0[5]+sigma3[3]/n0[7] hh[4,5]<-0 hh[4,6]<-3*sigma3[1]/n0[5]+sigma3[3]/n0[7] hh[5,5]<-sigma1[2]/n0[2]+sigma2[1]/n0[3]+4*sigma3[2]/n0[6] hh[5,6]<--8*sigma3[2]/n0[6] hh[6,6]<-9*sigma3[1]/n0[5]+sigma3[3]/n0[7]+16*sigma3[2]/n0[6] for(i in 2:6) { for(j in 1:(i-1)) { hh[i,j]<-hh[j,i] } } b_line[1]<-3*sumx[1]/n_samP1+2*sumx[2]/n_samF1+3*sumx[3]/n_samP2-2*sumwx3[1]/n0[5]-4*sumwx3[2]/n0[6]-2*sumwx3[3]/n0[7] b_line[2]<-sumx[1]/n_samP1-sumx[3]/n_samP2-sumwx1[1]/n0[1]-sumwx1[2]/n0[2]+sumwx2[1]/n0[3]+sumwx2[2]/n0[4] b_line[3]<-sumwx1[1]/n0[1]-sumwx1[2]/n0[2]+sumwx2[1]/n0[3]-sumwx2[2]/n0[4]-sumwx3[1]/n0[5]+sumwx3[3]/n0[7] b_line[4]<-sumwx1[1]/n0[1]+sumwx2[2]/n0[4]-sumwx3[1]/n0[5]-sumwx3[3]/n0[7] b_line[5]<-sumwx1[2]/n0[2]+sumwx2[1]/n0[3]-2*sumwx3[2]/n0[6] b_line[6]<-4*sumwx3[2]/n0[6]-3*sumwx3[1]/n0[5]-sumwx3[3]/n0[7] B<-solve(hh,b_line) mean[1]<-(sumx[1]-sigma*(3*B[1]+B[2]))/n_samP1 mean[2]<-(sumx[2]-2*sigma*B[1])/n_samF1 mean[3]<-(sumx[3]+sigma*(-3*B[1]+B[2]))/n_samP2 mean1[1]<-(sumwx1[1]+sigma1[1]*(B[2]-B[3]-B[4]))/n0[1] mean1[2]<-(sumwx1[2]+sigma1[2]*(B[2]+B[3]-B[5]))/n0[2] mean2[1]<-(sumwx2[1]-sigma2[1]*(B[2]+B[3]+B[5]))/n0[3] mean2[2]<-(sumwx2[2]+(-B[2]+B[3]-B[4])*sigma2[2])/n0[4] mean3[1]<-(sumwx3[1]+sigma3[1]*(2*B[1]+B[3]+B[4]+3*B[6]))/n0[5] mean3[2]<-(sumwx3[2]+sigma3[2]*(4*B[1]+2*B[5]-4*B[6]))/n0[6] mean3[3]<-(sumwx3[3]+sigma3[1]*(2*B[1]-B[3]+B[4]+B[6]))/n0[7] aaa1<-max(abs(B-AA)) AA<-B if(n_iter>20)break } ss1<-sum((dataP1-mean[1])^2);ss3<-sum((dataP2-mean[3])^2);ss2<-sum((dataF1-mean[2])^2) for(i in 1:2) {swx1[i] <- W1[i,]%*%(dataB1-mean1[i])^2 };for(i in 1:2) {swx2[i] <- W2[i,]%*%(dataB2-mean2[i])^2 };for(i in 1:3) {swx3[i] <- W3[i,]%*%(dataF2-mean3[i])^2 } aa1<-(12*mean[1]+8*mean[2]+12*mean[3]+120*mean1[1]-98*mean1[2]+ 338*mean2[1]-316*mean2[2]+338*mean3[1]+120*mean3[2]-534*mean3[3])/1496 aa1<-0.75*aa1^2/n_fam aaa0<-sigma1[1];aa3<-1000;n_iter<-0 while (aa3>0.0001) { n_iter<-n_iter+1 ab2<-sigma1[1]/(sigma1[1]+aa1) sigma1[1]<-(swx1[1]+ab2^2*swx1[2])/(n0[1]+ab2*n0[2]) aa3<-abs(sigma1[1]-aaa0) aaa0<-sigma1[1] if(n_iter>20)break } sigma40<-sigma1[1]-sigma; if (sigma40<0) {sigma40<-0;sigma1[1]<-sigma} sigma1[1]<-sigma40+sigma;sigma1[2]<-sigma1[1]+aa1 n0[8]<-mix_pi2[1]*n_samB2;n0[9]<-mix_pi2[2]*n_samB2 aaa0<-sigma2[2] aa3<-1000;n_iter<-0 while (aa3>0.0001) { n_iter<-n_iter+1 ab3<-sigma2[2]/(sigma2[2]+aa1) sigma2[2]<-(ab3*ab3*swx2[1]+swx2[2])/(ab3*n0[8]+n0[9]) aa3<-abs(sigma2[2]-aaa0) aaa0<-sigma2[2] if(n_iter>20)break } sigma50<-sigma2[2]-sigma; if (sigma50<0) {sigma50<-0;sigma2[2]<-sigma} sigma2[2]<-sigma50+sigma;sigma2[1]<-sigma2[2]+aa1 n0[8]<-(mix_pi3[3]+mix_pi3[1])*n_samF2;n0[9]<-mix_pi3[2]*n_samF2 aaa0<-sigma3[1];aa3<-1000;n_iter<-0 while (aa3>0.0001) { n_iter<-n_iter+1 ab4<-sigma3[1]/(sigma3[1]+aa1) sigma3[1]<-(swx3[1]+ab4^2*swx3[2]+swx3[3])/(n0[8]+ab4*n0[9]) aa3<-abs(sigma3[1]-aaa0) aaa0<-sigma3[1] if(n_iter>20)break } sigma60<-sigma3[1]-sigma; if (sigma60<0) {sigma60<-0;sigma3[1]<-sigma} sigma3[1]<-sigma60+sigma;sigma3[2]<-sigma3[1]+aa1 sigma3[3]<-sigma3[1] s0[1]<-ss1+ss2+ss3;s0[2]<-n_samP1+n_samF1+n_samP2 aaa0<-0;aa3<-1000;n_iter<-0 while (aa3>0.0001) { n_iter<-n_iter+1 abc1<-sigma/(sigma+sigma40) abc2<-sigma/(sigma+sigma40+aa1) abc3<-sigma/(sigma+sigma50+aa1) abc4<-sigma/(sigma+sigma50) abc5<-sigma/(sigma+sigma60) abc6<-sigma/(sigma+sigma60+aa1) aa4<-s0[1]+abc1^2*swx1[1]+abc2^2*swx1[2]+abc3^2*swx2[1]+abc4^2*swx2[2]+abc5^2*(swx3[1]+swx3[3])+abc6^2*swx3[2] aa5<-s0[2]+abc1*n0[1]+abc2*n0[2]+abc3*n0[3]+abc4*n0[4]+abc5*(n0[5]+n0[7])+abc6*n0[6] sigma<-aa4/aa5 aa3<-abs(sigma-aaa0) aaa0<-sigma if(n_iter>20)break } sigma1[1]<-sigma+sigma40;sigma1[2]<-sigma1[1]+aa1 sigma2[1]<-sigma+sigma50+aa1;sigma2[2]<-sigma+sigma50 sigma3[1]<-sigma+sigma60;sigma3[3]<-sigma3[1];sigma3[2]<-sigma3[1]+aa1 L1<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma))))+sum(log(dmixnorm(dataB1,mean1,sqrt(sigma1),mix_pi1)))+ sum(log(dmixnorm(dataB2,mean2,sqrt(sigma2),mix_pi2)))+sum(log(dmixnorm(dataF2,mean3,sqrt(sigma3),mix_pi3))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc<-L0 AIC<--2*abc+2*8 meanP1<-mean[1];meanF1<-mean[2];meanP2<-mean[3] sigma0<-sigma dataP1<-sort(dataP1) P1w1<-1/(12*n_samP1) P1bmw <- matrix(0,n_samP1,1) P1gg <- (dataP1 - mean[1])/sqrt(as.vector(sigma)) P1bmw[which(P1gg>=0)] <- pnorm(P1gg[P1gg>=0]) P1bmw[which(P1gg<0)] <- 1 - pnorm(abs(P1gg[P1gg<0])) nn <- dim(as.matrix(unique(P1bmw)))[1] if(nn < n_samP1){P1bmw <- P1bmw+runif(n_samP1)/1e4} P1dd<-c((sum(P1bmw)),(sum(P1bmw^2)),sum((P1bmw-0.5)^2)) P1w<-P1w1+sum((P1bmw - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) P1u<- as.matrix(c(12*n_samP1*((P1dd[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((P1dd[2]/n_samP1-1/3)^2),180*n_samP1*((P1dd[3]/n_samP1-1/12)^2))) P1D<-as.numeric(ks.test(P1bmw,"punif")[[1]][1]) P1tt <- as.matrix(c((1 - pchisq(P1u[1],1)),(1 - pchisq(P1u[2],1)),(1 - pchisq(P1u[3],1)),K1(P1w),(1-pkolm(P1D,n_samP1)))) P1tt[which( P1tt>=10e-4)]<-round(P1tt[which(P1tt>=10e-4)],4);P1tt[which(P1tt<10e-4)]<-format(P1tt[which(P1tt<10e-4)],scientific=TRUE,digit=4) dataF1<-sort(dataF1) F1w1<-1/(12*n_samF1) F1bmw <- matrix(0,n_samF1,1) F1gg <- (dataF1 - mean[2])/sqrt(as.vector(sigma)) F1bmw[which(F1gg>=0)] <- pnorm(F1gg[F1gg>=0]) F1bmw[which(F1gg<0)] <- 1 - pnorm(abs(F1gg[F1gg<0])) nn <- dim(as.matrix(unique(F1bmw)))[1] if(nn < n_samF1){F1bmw <- F1bmw+runif(n_samF1)/1e4} F1dd<-c((sum(F1bmw)),(sum(F1bmw^2)),sum((F1bmw-0.5)^2)) F1w<-F1w1+sum((F1bmw - (as.matrix(c(1:n_samF1)) - 0.5)/n_samF1)^2) F1u<- as.matrix(c(12*n_samF1*((F1dd[1]/n_samF1-0.5)^2),((45*n_samF1)/4)*((F1dd[2]/n_samF1-1/3)^2),180*n_samF1*((F1dd[3]/n_samF1-1/12)^2))) F1D<-as.numeric(ks.test(F1bmw,"punif")[[1]][1]) F1tt <- as.matrix(c((1 - pchisq(F1u[1],1)),(1 - pchisq(F1u[2],1)),(1 - pchisq(F1u[3],1)),K1(F1w),(1-pkolm(F1D,n_samF1)))) F1tt[which(F1tt>=10e-4)]<-round(F1tt[which(F1tt>=10e-4)],4);F1tt[which(F1tt<10e-4)]<-format(F1tt[which(F1tt<10e-4)],scientific=TRUE,digit=4) dataP2<-sort(dataP2) P2w1<-1/(12*n_samP2) P2bmw <- matrix(0,n_samP2,1) P2gg <- (dataP2 - mean[3])/sqrt(as.vector(sigma)) P2bmw[which(P2gg>=0)] <- pnorm(P2gg[P2gg>=0]) P2bmw[which(P2gg<0)] <- 1 - pnorm(abs(P2gg[P2gg<0])) nn <- dim(as.matrix(unique(P2bmw)))[1] if(nn < n_samP2){P2bmw <- P2bmw+runif(n_samP2)/1e4} P2dd<-c((sum(P2bmw)),(sum(P2bmw^2)),sum((P2bmw-0.5)^2)) P2w<-P2w1+sum((P2bmw - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) P2u<- as.matrix(c(12*n_samP2*((P2dd[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((P2dd[2]/n_samP2-1/3)^2),180*n_samP2*((P2dd[3]/n_samP2-1/12)^2))) P2D<-as.numeric(ks.test(P2bmw,"punif")[[1]][1]) P2tt <- as.matrix(c((1 - pchisq(P2u[1],1)),(1 - pchisq(P2u[2],1)),(1 - pchisq(P2u[3],1)),K1(P2w),(1-pkolm(P2D,n_samP2)))) P2tt[which(P2tt>=10e-4)]<-round(P2tt[which(P2tt>=10e-4)],4);P2tt[which(P2tt<10e-4)]<-format(P2tt[which(P2tt<10e-4)],scientific=TRUE,digit=4) dataB1 <- sort(dataB1); B1w1<-1/(12*n_samB1) B1bmw <- matrix(0,n_samB1,1); B1bmwsl <- matrix(0,n_samB1,2) for(i in 1:2){ B1gg <- (dataB1 - mean1[i])/sqrt(sigma1[i]) B1bmw[which(B1gg>=0)] <- pnorm(B1gg[B1gg>=0]) B1bmw[which(B1gg<0)] <- 1 - pnorm(abs(B1gg[B1gg<0])) B1bmwsl[,i] <- B1bmw*mix_pi1[i] } B1P2 <- rowSums(B1bmwsl) nn <- dim(as.matrix(unique(B1P2)))[1] if(nn < n_samB1){B1P2 <- B1P2+runif(n_samB1)/1e4} B1dd <- as.matrix(c(sum(B1P2),sum(B1P2^2),sum((B1P2-0.5)^2))) B1WW2 <- 1/(12*n_samB1) + sum((B1P2 - (as.matrix(c(1:n_samB1)) - 0.5)/n_samB1)^2) B1u <- as.matrix(c(12*n_samB1*((B1dd[1]/n_samB1-0.5)^2),((45*n_samB1)/4)*((B1dd[2]/n_samB1-1/3)^2),180*n_samB1*((B1dd[3]/n_samB1-1/12)^2))) B1D <- as.numeric(ks.test(B1P2,"punif")[[1]][1]) B1tt <- as.matrix(c((1 - pchisq(B1u[1],1)),(1 - pchisq(B1u[2],1)),(1 - pchisq(B1u[3],1)),K1(B1WW2),(1-pkolm(B1D,n_samB1)))) B1tt[which( B1tt>=10e-4)]<-round(B1tt[which(B1tt>=10e-4)],4);B1tt[which(B1tt<10e-4)]<-format(B1tt[which(B1tt<10e-4)],scientific=TRUE,digit=4) dataB2 <- sort(dataB2); B2w1<-1/(12*n_samB2) B2bmw <- matrix(0,n_samB2,1); B2bmwsl <- matrix(0,n_samB2,2) for(i in 1:2){ B2gg <- (dataB2 - mean2[i])/sqrt(sigma2[i]) B2bmw[which(B2gg>=0)] <- pnorm(B2gg[B2gg>=0]) B2bmw[which(B2gg<0)] <- 1 - pnorm(abs(B2gg[B2gg<0])) B2bmwsl[,i] <- B2bmw*mix_pi2[i] } B2P2 <- rowSums(B2bmwsl) nn <- dim(as.matrix(unique(B2P2)))[1] if(nn < n_samB2){B2P2 <- B2P2+runif(n_samB2)/1e4} B2dd <- as.matrix(c(sum(B2P2),sum(B2P2^2),sum((B2P2-0.5)^2))) B2WW2 <- 1/(12*n_samB2) + sum((B2P2 - (as.matrix(c(1:n_samB2)) - 0.5)/n_samB2)^2) B2u <- as.matrix(c(12*n_samB2*((B2dd[1]/n_samB2-0.5)^2),((45*n_samB2)/4)*((B2dd[2]/n_samB2-1/3)^2),180*n_samB2*((B2dd[3]/n_samB2-1/12)^2))) B2D <- as.numeric(ks.test(B2P2,"punif")[[1]][1]) B2tt <- as.matrix(c((1 - pchisq(B2u[1],1)),(1 - pchisq(B2u[2],1)),(1 - pchisq(B2u[3],1)),K1(B2WW2),(1-pkolm(B2D,n_samB2)))) B2tt[which( B2tt>=10e-4)]<-round(B2tt[which(B2tt>=10e-4)],4);B2tt[which(B2tt<10e-4)]<-format(B2tt[which(B2tt<10e-4)],scientific=TRUE,digit=4) dataF2 <- sort(dataF2); F2w1<-1/(12*n_samF2) F2bmw <- matrix(0,n_samF2,1); F2bmwsl <- matrix(0,n_samF2,3) for(i in 1:3){ F2gg <- (dataF2 - mean3[i])/sqrt(sigma3[i]) F2bmw[which(F2gg>=0)] <- pnorm(F2gg[F2gg>=0]) F2bmw[which(F2gg<0)] <- 1 - pnorm(abs(F2gg[F2gg<0])) F2bmwsl[,i] <- F2bmw*mix_pi3[i] } F2P2 <- rowSums(F2bmwsl) nn <- dim(as.matrix(unique(F2P2)))[1] if(nn < n_samF2){F2P2 <- F2P2+runif(n_samF2)/1e4} F2dd <- as.matrix(c(sum(F2P2),sum(F2P2^2),sum((F2P2-0.5)^2))) F2WW2 <- 1/(12*n_samF2) + sum((F2P2 - (as.matrix(c(1:n_samF2)) - 0.5)/n_samF2)^2) F2u <- as.matrix(c(12*n_samF2*((F2dd[1]/n_samF2-0.5)^2),((45*n_samF2)/4)*((F2dd[2]/n_samF2-1/3)^2),180*n_samF2*((F2dd[3]/n_samF2-1/12)^2))) F2D <- as.numeric(ks.test(F2P2,"punif")[[1]][1]) F2tt <- as.matrix(c((1 - pchisq(F2u[1],1)),(1 - pchisq(F2u[2],1)),(1 - pchisq(F2u[3],1)),K1(F2WW2),(1-pkolm(F2D,n_samF2)))) F2tt[which( F2tt>=10e-4)]<-round(F2tt[which(F2tt>=10e-4)],4);F2tt[which(F2tt<10e-4)]<-format(F2tt[which(F2tt<10e-4)],scientific=TRUE,digit=4) aa<-matrix(c(1,1,1,0,1,1,0,1,1,-1,-1,0,1,1,0.5,0.25,1,0.5,0.5,0.25, 1,0.5,-0.5,0.25,1,-1,-0.5,0.25,1,1,0,0.25,1,0.5,0,0.25, 1,-1,0,0.25),10,4,byrow=T) mm<-as.matrix(c(mean[1],mean[2],mean[3],mean1[1],mean1[2],mean2[1],mean2[2],mean3[1],mean3[2],mean3[3])) B1<-solve(crossprod(aa,aa))%*%crossprod(aa,mm) jj1<-sigmaB1-sigma1[1] if (jj1<0 || jj1>=sigmaB1) {jj1<-0} ll1<-jj1/sigmaB1 mm1<-sigma1[1]-sigma if (mm1<0 || mm1>=sigmaB1) {mm1<-0} nn1<-mm1/sigmaB1 jj2<-sigmaB2-sigma2[2] if (jj2<0 || jj2>=sigmaB2) {jj2<-0} ll2<-jj2/sigmaB2 mm2<-sigma2[2]-sigma if (mm2<0 || mm2>=sigmaB2) {mm2<-0} nn2<-mm2/sigmaB2 jj3<-sigmaF2-sigma3[1] if (jj3<0 || jj3>=sigmaF2) {jj3<-0} ll3<-jj3/sigmaF2 mm3<-sigma3[1]-sigma if (mm3<0 || mm3>=sigmaF2) {mm3<-0} nn3<-mm3/sigmaF2 output <- data.frame("MX1-EAD-AD",round(abc,4),round(AIC,4),round(meanP1,4),round(meanF1,4),round(meanP2,4), round(sigma0,4),round(t(mean1),4)," "," ",round(t(sigma1),4)," "," ", round(t(mix_pi1),4)," "," ",round(t(mean2),4)," "," ",round(t(sigma2),4)," "," ",round(t(mix_pi2),4)," "," ", round(t(mean3),4)," "," "," "," "," "," ",round(t(sigma3),4)," "," "," "," "," "," ",round(t(mix_pi3),4)," "," "," "," "," "," ", round(B1[1],4)," "," "," "," "," ",round(B1[2],4)," ",round(B1[2],4)," "," "," "," "," ",round(B1[3],4),round(B1[4],4), round(jj1,4),round(ll1*100,4),round(mm1,4),round(nn1*100,4),round(jj2,4),round(ll2*100,4),round(mm2,4),round(nn2*100,4),round(jj3,4),round(ll3*100,4),round(mm3,4),round(nn3*100,4), round(P1u[1],4),P1tt[1],round(P1u[2],4),P1tt[2],round(P1u[3],4),P1tt[3],round(P1w,4),P1tt[4],round(P1D,4),P1tt[5], round(F1u[1],4),F1tt[1],round(F1u[2],4),F1tt[2],round(F1u[3],4),F1tt[3],round(F1w,4),F1tt[4],round(F1D,4),F1tt[5], round(P2u[1],4),P2tt[1],round(P2u[2],4),P2tt[2],round(P2u[3],4),P2tt[3],round(P2w,4),P2tt[4],round(P2D,4),P2tt[5], round(B1u[1],4),B1tt[1],round(B1u[2],4),B1tt[2],round(B1u[3],4),B1tt[3],round(B1WW2,4),B1tt[4],round(B1D,4),B1tt[5], round(B2u[1],4),B2tt[1],round(B2u[2],4),B2tt[2],round(B2u[3],4),B2tt[3],round(B2WW2,4),B2tt[4],round(B2D,4),B2tt[5], round(F2u[1],4),F2tt[1],round(F2u[2],4),F2tt[2],round(F2u[3],4),F2tt[3],round(F2WW2,4),F2tt[4],round(F2D,4),F2tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi1,mi2,mi3) return(OUTPUT) } G6FModelFun[[17]] <- function(K1,logL,df11,df21,df31,df41,df51,df61,G6Ftext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataF1 <- as.matrix(as.numeric(df21[,1])) dataP2 <- as.matrix(as.numeric(df31[,1]));dataB1 <- as.matrix(as.numeric(df41[,1])) dataB2 <- as.matrix(as.numeric(df51[,1]));dataF2 <- as.matrix(as.numeric(df61[,1])) n_samP1<-dim(dataP1)[1];n_samF1<-dim(dataF1)[1];n_samP2<-dim(dataP2)[1] n_samB1<-dim(dataB1)[1];n_samB2<-dim(dataB2)[1];n_samF2<-dim(dataF2)[1] sumx<-as.matrix(c(sum(dataP1),sum(dataF1),sum(dataP2),sum(dataB1),sum(dataB2),sum(dataF2))) s<-as.matrix(c(sum(dataP1^2),sum(dataF1^2),sum(dataP2^2),sum(dataB1^2),sum(dataB2^2),sum(dataF2^2))) ss<-matrix(0,3,1);ss[1]<-s[1]-sumx[1]^2/n_samP1;ss[2]<-s[2]-sumx[2]^2/n_samF1;ss[3]<-s[3]-sumx[3]^2/n_samP2 mean<-as.matrix(c(mean(dataP1),mean(dataF1),mean(dataP2),mean(dataB1),mean(dataB2),mean(dataF2))) sigma0<-sum(ss)/(n_samP1+n_samF1+n_samP2-3) sigmaB1<-var(dataB1);sigma40<-sigmaB1 sigmaB2<-var(dataB2);sigma50<-sigmaB2 sigmaF2<-var(dataF2);sigma60<-sigmaF2 sigmaP1<-sigmaF1<-sigmaP2<-sigma0 m_esp <- 0.0001;n_fam <- as.numeric(G6Ftext2) mi1<-matrix(0.5,2,1);sigma1<-matrix(0,2,1) mi2<-matrix(0.5,2,1);sigma2<-matrix(0,2,1) mi3<-as.matrix(c(0.25,0.5,0.25));sigma3<-matrix(0,3,1) sigma<-sigma0 a1<-sqrt(sigmaB1/n_samB1);if (mean[1]<mean[3]) a1<--a1 mean1<-as.matrix(c(mean[4]+0.5*a1,0.25*(mean[1]+mean[3])+0.5*mean[2])) a2<-sqrt(sigmaB2/n_samB2);if (mean[1]<mean[3]) a2<--a2 mean2<-as.matrix(c(mean[5],mean[5]-2*a2)) a3<-sqrt(sigmaF2/n_samF2);if (mean[1]<mean[3]) a3<--a3 mean3<-as.matrix(c(mean1[1],mean[6],mean2[2])) b1<-(-12*mean[1]-8*mean[2]-12*mean[3]+316*mean1[1]-338*mean1[2]+98*mean2[1]-120*mean2[2]+534*mean3[1]-120*mean3[2]-338*mean3[3])/1496 b3<-0.75*b1^2/n_fam sigma1[1]<-sigmaB1/2;sigma1[2]<-sigma1[1]+2*b3 sigma2[2]<-sigmaB2/2;sigma2[1]<-sigma2[2]+2*b3 sigma3[1]<-sigmaF2/2;sigma3[3]<-sigma3[1];sigma3[2]<-sigma3[1]+2*b3 L0<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma0))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma0))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma0))))+sum(log(dmixnorm(dataB1,mean1,sqrt(sigma1),mi1)))+ sum(log(dmixnorm(dataB2,mean2,sqrt(sigma2),mi2)))+sum(log(dmixnorm(dataF2,mean3,sqrt(sigma3),mi3))) iteration <- 0; stopa <- 1000 W1 <- matrix(0,2,n_samB1); swx1 <- matrix(0,2,1) W2 <- matrix(0,2,n_samB2); swx2 <- matrix(0,2,1) W3 <- matrix(0,3,n_samF2); swx3 <- matrix(0,3,1) hh<-matrix(0,6,6);b_line<-matrix(0,6,1) n0<-matrix(0,9,1);s0<-matrix(0,2,1) while(stopa > m_esp&&iteration<=1000){ iteration <- iteration + 1 for(i in 1:2) { W1[i,] <- mi1[i]*dnorm(dataB1,mean1[i],sqrt(sigma1[i]))/dmixnorm(dataB1,mean1,sqrt(sigma1),mi1) } mix_pi1 <- as.matrix(rowSums(W1)/n_samB1) sumwx1 <- W1%*%dataB1 for(i in 1:2) { W2[i,] <- mi2[i]*dnorm(dataB2,mean2[i],sqrt(sigma2[i]))/dmixnorm(dataB2,mean2,sqrt(sigma2),mi2) } mix_pi2 <- as.matrix(rowSums(W2)/n_samB2) sumwx2 <- W2%*%dataB2 for(i in 1:3) { W3[i,] <- mi3[i]*dnorm(dataF2,mean3[i],sqrt(sigma3[i]))/dmixnorm(dataF2,mean3,sqrt(sigma3),mi3) } mix_pi3 <- as.matrix(rowSums(W3)/n_samF2) sumwx3 <- W3%*%dataF2 n0[1]<-mix_pi1[1]*n_samB1;n0[2]<-mix_pi1[2]*n_samB1 n0[3]<-mix_pi2[1]*n_samB2;n0[4]<-mix_pi2[2]*n_samB2 n0[5]<-mix_pi3[1]*n_samF2;n0[6]<-mix_pi3[2]*n_samF2 n0[7]<-mix_pi3[3]*n_samF2 n0[c(1:7)][abs(n0[c(1:7)])<0.00000001]<-0.000001 aaa0<-0 ;AA<-matrix(0,6,1);aaa1<-1000;n_iter<-0 while(aaa1>0.0001) { n_iter<-n_iter+1 aa1<-(-12*mean[1]-8*mean[2]-12*mean[3]+316*mean1[1]-338*mean1[2]+98*mean2[1]-120*mean2[2]+534*mean3[1]-120*mean3[2]-338*mean3[3])/1496 aa1<-0.75*aa1^2/n_fam sigma1[2]<-sigma1[1]+aa1 sigma2[1]<-sigma2[2]+aa1 sigma3[2]<-sigma3[1]+aa1 hh[1,1]<-sigma*(9/n_samP1+4/n_samF1+9/n_samP2)+4*sigma3[1]/n0[5]+16*sigma3[2]/n0[6]+4*sigma3[3]/n0[7] hh[1,2]<-sigma*(3/n_samP1-3/n_samP2) hh[1,3]<-sigma3[1]*(2/n0[5]-2/n0[7]) hh[1,4]<-sigma3[1]*(2/n0[5]+2/n0[7]) hh[1,5]<-8*sigma3[2]/n0[6] hh[1,6]<-2*sigma3[1]/n0[5]-16*sigma3[2]/n0[6]+6*sigma3[3]/n0[7] hh[2,2]<-sigma*(1/n_samP1+1/n_samP2)+sigma1[1]/n0[1]+sigma1[2]/n0[2]+sigma2[1]/n0[3]+sigma2[2]/n0[4] hh[2,3]<--sigma1[1]/n0[1]+sigma1[2]/n0[2]+sigma2[1]/n0[3]-sigma2[2]/n0[4] hh[2,4]<--sigma1[1]/n0[1]+sigma2[2]/n0[4] hh[2,5]<--sigma1[2]/n0[2]+sigma2[1]/n0[3] hh[2,6]<-0 hh[3,3]<-sigma1[1]/n0[1]+sigma1[2]/n0[2]+sigma2[1]/n0[3]+sigma2[2]/n0[4]+sigma3[1]/n0[5]+sigma3[3]/n0[7] hh[3,4]<-sigma1[1]/n0[1]-sigma2[2]/n0[4]+sigma3[1]/n0[5]-sigma3[3]/n0[7] hh[3,5]<--sigma1[2]/n0[2]+sigma2[1]/n0[3] hh[3,6]<-sigma3[1]*(1/n0[5]-3/n0[7]) hh[4,4]<-sigma1[1]/n0[1]+sigma2[2]/n0[4]+sigma3[1]/n0[5]+sigma3[3]/n0[7] hh[4,5]<-0 hh[4,6]<-sigma3[1]/n0[5]+3*sigma3[3]/n0[7] hh[5,5]<-sigma1[2]/n0[2]+sigma2[1]/n0[3]+4*sigma3[2]/n0[6] hh[5,6]<--8*sigma3[2]/n0[6] hh[6,6]<-sigma3[1]/n0[5]+16*sigma3[2]/n0[6]+9*sigma3[3]/n0[7] for(i in 2:6) { for(j in 1:(i-1)) { hh[i,j]<-hh[j,i] } } b_line[1]<-3*sumx[1]/n_samP1+2*sumx[2]/n_samF1+3*sumx[3]/n_samP2-2*sumwx3[1]/n0[5]-4*sumwx3[2]/n0[6]-2*sumwx3[3]/n0[7] b_line[2]<-sumx[1]/n_samP1-sumx[3]/n_samP2-sumwx1[1]/n0[1]-sumwx1[2]/n0[2]+sumwx2[1]/n0[3]+sumwx2[2]/n0[4] b_line[3]<-sumwx1[1]/n0[1]-sumwx1[2]/n0[2]+sumwx2[1]/n0[3]-sumwx2[2]/n0[4]-sumwx3[1]/n0[5]+sumwx3[3]/n0[7] b_line[4]<-sumwx1[1]/n0[1]+sumwx2[2]/n0[4]-sumwx3[1]/n0[5]-sumwx3[3]/n0[7] b_line[5]<-sumwx1[2]/n0[2]+sumwx2[1]/n0[3]-2*sumwx3[2]/n0[6] b_line[6]<-4*sumwx3[2]/n0[6]-sumwx3[1]/n0[5]-3*sumwx3[3]/n0[7] B<-solve(hh,b_line) mean[1]<-(sumx[1]-sigma*(3*B[1]+B[2]))/n_samP1 mean[2]<-(sumx[2]-2*sigma*B[1])/n_samF1 mean[3]<-(sumx[3]+sigma*(-3*B[1]+B[2]))/n_samP2 mean1[1]<-(sumwx1[1]+sigma1[1]*(B[2]-B[3]-B[4]))/n0[1] mean1[2]<-(sumwx1[2]+sigma1[2]*(B[2]+B[3]-B[5]))/n0[2] mean2[1]<-(sumwx2[1]-sigma2[1]*(B[2]+B[3]+B[5]))/n0[3] mean2[2]<-(sumwx2[2]+(-B[2]+B[3]-B[4])*sigma2[2])/n0[4] mean3[1]<-(sumwx3[1]+sigma3[1]*(2*B[1]+B[3]+B[4]+B[6]))/n0[5] mean3[2]<-(sumwx3[2]+sigma3[2]*(4*B[1]+2*B[5]-4*B[6]))/n0[6] mean3[3]<-(sumwx3[3]+sigma3[3]*(2*B[1]-B[3]+B[4]+3*B[6]))/n0[7] aaa1<-max(abs(B-AA)) AA<-B if(n_iter>20)break } ss1<-sum((dataP1-mean[1])^2);ss3<-sum((dataP2-mean[3])^2);ss2<-sum((dataF1-mean[2])^2) for(i in 1:2) {swx1[i] <- W1[i,]%*%(dataB1-mean1[i])^2 };for(i in 1:2) {swx2[i] <- W2[i,]%*%(dataB2-mean2[i])^2 };for(i in 1:3) {swx3[i] <- W3[i,]%*%(dataF2-mean3[i])^2 } aa1<-(-12*mean[1]-8*mean[2]-12*mean[3]+316*mean1[1]-338*mean1[2]+98*mean2[1]-120*mean2[2]+534*mean3[1]-120*mean3[2]-338*mean3[3])/1496 aa1<-0.75*aa1^2/n_fam aaa0<-sigma1[1];aa3<-1000;n_iter<-0 while (aa3>0.0001) { n_iter<-n_iter+1 ab2<-sigma1[1]/(sigma1[1]+aa1) sigma1[1]<-(swx1[1]+ab2^2*swx1[2])/(n0[1]+ab2*n0[2]) aa3<-abs(sigma1[1]-aaa0) aaa0<-sigma1[1] if(n_iter>20)break } sigma40<-sigma1[1]-sigma; if (sigma40<0) {sigma40<-0;sigma1[1]<-sigma} sigma1[1]<-sigma40+sigma;sigma1[2]<-sigma1[1]+aa1 n0[8]<-mix_pi2[1]*n_samB2;n0[9]<-mix_pi2[2]*n_samB2 aaa0<-sigma2[2];aa3<-1000;n_iter<-0 while (aa3>0.0001) { n_iter<-n_iter+1 ab3<-sigma2[2]/(sigma2[2]+aa1) sigma2[2]<-(ab3^2*swx2[1]+swx2[2])/(ab3*n0[8]+n0[9]) aa3<-abs(sigma2[2]-aaa0) aaa0<-sigma2[2] if(n_iter>20)break } sigma50<-sigma2[2]-sigma; if (sigma50<0) {sigma50<-0;sigma2[2]<-sigma} sigma2[2]<-sigma50+sigma;sigma2[1]<-sigma2[2]+aa1 n0[8]<-(mix_pi3[3]+mix_pi3[1])*n_samF2;n0[9]<-mix_pi3[2]*n_samF2 aaa0<-sigma3[1];aa3<-1000;n_iter<-0 while (aa3>0.0001) { n_iter<-n_iter+1 ab4<-sigma3[1]/(sigma3[1]+aa1) sigma3[1]<-(swx3[1]+ab4^2*swx3[2]+swx3[3])/(n0[8]+ab4*n0[9]) aa3<-abs(sigma3[1]-aaa0) aaa0<-sigma3[1] if(n_iter>20)break } sigma60<-sigma3[1]-sigma; if (sigma60<0) {sigma60<-0;sigma3[1]<-sigma} sigma3[1]<-sigma60+sigma;sigma3[2]<-sigma3[1]+aa1;sigma3[3]<-sigma3[1] s0[1]<-ss1+ss2+ss3;s0[2]<-n_samP1+n_samF1+n_samP2 aaa0<-0;aa3<-1000;n_iter<-0 while (aa3>0.0001) { n_iter<-n_iter+1 abc1<-sigma/(sigma+sigma40) abc2<-sigma/(sigma+sigma40+aa1) abc3<-sigma/(sigma+sigma50+aa1) abc4<-sigma/(sigma+sigma50) abc5<-sigma/(sigma+sigma60) abc6<-sigma/(sigma+sigma60+aa1) aa4<-s0[1]+abc1^2*swx1[1]+abc2^2*swx1[2]+abc3^2*swx2[1]+abc4^2*swx2[2]+abc5^2*(swx3[1]+swx3[3])+abc6^2*swx3[2] aa5<-s0[2]+abc1*n0[1]+abc2*n0[2]+abc3*n0[3]+abc4*n0[4]+abc5*(n0[5]+n0[7])+abc6*n0[6] sigma<-aa4/aa5 aa3<-abs(sigma-aaa0) aaa0<-sigma if(n_iter>20)break } sigma1[1]<-sigma+sigma40;sigma1[2]<-sigma1[1]+aa1 sigma2[1]<-sigma+sigma50+aa1;sigma2[2]<-sigma+sigma50 sigma3[1]<-sigma+sigma60;sigma3[3]<-sigma3[1];sigma3[2]<-sigma3[1]+aa1 L1<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma))))+sum(log(dmixnorm(dataB1,mean1,sqrt(sigma1),mix_pi1)))+ sum(log(dmixnorm(dataB2,mean2,sqrt(sigma2),mix_pi2)))+sum(log(dmixnorm(dataF2,mean3,sqrt(sigma3),mix_pi3))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc<-L0 AIC<--2*abc+2*8 meanP1<-mean[1];meanF1<-mean[2];meanP2<-mean[3] sigma0<-sigma dataP1<-sort(dataP1) P1w1<-1/(12*n_samP1) P1bmw <- matrix(0,n_samP1,1) P1gg <- (dataP1 - mean[1])/sqrt(as.vector(sigma)) P1bmw[which(P1gg>=0)] <- pnorm(P1gg[P1gg>=0]) P1bmw[which(P1gg<0)] <- 1 - pnorm(abs(P1gg[P1gg<0])) nn <- dim(as.matrix(unique(P1bmw)))[1] if(nn < n_samP1){P1bmw <- P1bmw+runif(n_samP1)/1e4} P1dd<-c((sum(P1bmw)),(sum(P1bmw^2)),sum((P1bmw-0.5)^2)) P1w<-P1w1+sum((P1bmw - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) P1u<- as.matrix(c(12*n_samP1*((P1dd[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((P1dd[2]/n_samP1-1/3)^2),180*n_samP1*((P1dd[3]/n_samP1-1/12)^2))) P1D<-as.numeric(ks.test(P1bmw,"punif")[[1]][1]) P1tt <- as.matrix(c((1 - pchisq(P1u[1],1)),(1 - pchisq(P1u[2],1)),(1 - pchisq(P1u[3],1)),K1(P1w),(1-pkolm(P1D,n_samP1)))) P1tt[which( P1tt>=10e-4)]<-round(P1tt[which(P1tt>=10e-4)],4);P1tt[which(P1tt<10e-4)]<-format(P1tt[which(P1tt<10e-4)],scientific=TRUE,digit=4) dataF1<-sort(dataF1) F1w1<-1/(12*n_samF1) F1bmw <- matrix(0,n_samF1,1) F1gg <- (dataF1 - mean[2])/sqrt(as.vector(sigma)) F1bmw[which(F1gg>=0)] <- pnorm(F1gg[F1gg>=0]) F1bmw[which(F1gg<0)] <- 1 - pnorm(abs(F1gg[F1gg<0])) nn <- dim(as.matrix(unique(F1bmw)))[1] if(nn < n_samF1){F1bmw <- F1bmw+runif(n_samF1)/1e4} F1dd<-c((sum(F1bmw)),(sum(F1bmw^2)),sum((F1bmw-0.5)^2)) F1w<-F1w1+sum((F1bmw - (as.matrix(c(1:n_samF1)) - 0.5)/n_samF1)^2) F1u<- as.matrix(c(12*n_samF1*((F1dd[1]/n_samF1-0.5)^2),((45*n_samF1)/4)*((F1dd[2]/n_samF1-1/3)^2),180*n_samF1*((F1dd[3]/n_samF1-1/12)^2))) F1D<-as.numeric(ks.test(F1bmw,"punif")[[1]][1]) F1tt <- as.matrix(c((1 - pchisq(F1u[1],1)),(1 - pchisq(F1u[2],1)),(1 - pchisq(F1u[3],1)),K1(F1w),(1-pkolm(F1D,n_samF1)))) F1tt[which(F1tt>=10e-4)]<-round(F1tt[which(F1tt>=10e-4)],4);F1tt[which(F1tt<10e-4)]<-format(F1tt[which(F1tt<10e-4)],scientific=TRUE,digit=4) dataP2<-sort(dataP2) P2w1<-1/(12*n_samP2) P2bmw <- matrix(0,n_samP2,1) P2gg <- (dataP2 - mean[3])/sqrt(as.vector(sigma)) P2bmw[which(P2gg>=0)] <- pnorm(P2gg[P2gg>=0]) P2bmw[which(P2gg<0)] <- 1 - pnorm(abs(P2gg[P2gg<0])) nn <- dim(as.matrix(unique(P2bmw)))[1] if(nn < n_samP2){P2bmw <- P2bmw+runif(n_samP2)/1e4} P2dd<-c((sum(P2bmw)),(sum(P2bmw^2)),sum((P2bmw-0.5)^2)) P2w<-P2w1+sum((P2bmw - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) P2u<- as.matrix(c(12*n_samP2*((P2dd[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((P2dd[2]/n_samP2-1/3)^2),180*n_samP2*((P2dd[3]/n_samP2-1/12)^2))) P2D<-as.numeric(ks.test(P2bmw,"punif")[[1]][1]) P2tt <- as.matrix(c((1 - pchisq(P2u[1],1)),(1 - pchisq(P2u[2],1)),(1 - pchisq(P2u[3],1)),K1(P2w),(1-pkolm(P2D,n_samP2)))) P2tt[which(P2tt>=10e-4)]<-round(P2tt[which(P2tt>=10e-4)],4);P2tt[which(P2tt<10e-4)]<-format(P2tt[which(P2tt<10e-4)],scientific=TRUE,digit=4) dataB1 <- sort(dataB1); B1w1<-1/(12*n_samB1) B1bmw <- matrix(0,n_samB1,1); B1bmwsl <- matrix(0,n_samB1,2) for(i in 1:2){ B1gg <- (dataB1 - mean1[i])/sqrt(sigma1[i]) B1bmw[which(B1gg>=0)] <- pnorm(B1gg[B1gg>=0]) B1bmw[which(B1gg<0)] <- 1 - pnorm(abs(B1gg[B1gg<0])) B1bmwsl[,i] <- B1bmw*mix_pi1[i] } B1P2 <- rowSums(B1bmwsl) nn <- dim(as.matrix(unique(B1P2)))[1] if(nn < n_samB1){B1P2 <- B1P2+runif(n_samB1)/1e4} B1dd <- as.matrix(c(sum(B1P2),sum(B1P2^2),sum((B1P2-0.5)^2))) B1WW2 <- 1/(12*n_samB1) + sum((B1P2 - (as.matrix(c(1:n_samB1)) - 0.5)/n_samB1)^2) B1u <- as.matrix(c(12*n_samB1*((B1dd[1]/n_samB1-0.5)^2),((45*n_samB1)/4)*((B1dd[2]/n_samB1-1/3)^2),180*n_samB1*((B1dd[3]/n_samB1-1/12)^2))) B1D <- as.numeric(ks.test(B1P2,"punif")[[1]][1]) B1tt <- as.matrix(c((1 - pchisq(B1u[1],1)),(1 - pchisq(B1u[2],1)),(1 - pchisq(B1u[3],1)),K1(B1WW2),(1-pkolm(B1D,n_samB1)))) B1tt[which( B1tt>=10e-4)]<-round(B1tt[which(B1tt>=10e-4)],4);B1tt[which(B1tt<10e-4)]<-format(B1tt[which(B1tt<10e-4)],scientific=TRUE,digit=4) dataB2 <- sort(dataB2); B2w1<-1/(12*n_samB2) B2bmw <- matrix(0,n_samB2,1); B2bmwsl <- matrix(0,n_samB2,2) for(i in 1:2){ B2gg <- (dataB2 - mean2[i])/sqrt(sigma2[i]) B2bmw[which(B2gg>=0)] <- pnorm(B2gg[B2gg>=0]) B2bmw[which(B2gg<0)] <- 1 - pnorm(abs(B2gg[B2gg<0])) B2bmwsl[,i] <- B2bmw*mix_pi2[i] } B2P2 <- rowSums(B2bmwsl) nn <- dim(as.matrix(unique(B2P2)))[1] if(nn < n_samB2){B2P2 <- B2P2+runif(n_samB2)/1e4} B2dd <- as.matrix(c(sum(B2P2),sum(B2P2^2),sum((B2P2-0.5)^2))) B2WW2 <- 1/(12*n_samB2) + sum((B2P2 - (as.matrix(c(1:n_samB2)) - 0.5)/n_samB2)^2) B2u <- as.matrix(c(12*n_samB2*((B2dd[1]/n_samB2-0.5)^2),((45*n_samB2)/4)*((B2dd[2]/n_samB2-1/3)^2),180*n_samB2*((B2dd[3]/n_samB2-1/12)^2))) B2D <- as.numeric(ks.test(B2P2,"punif")[[1]][1]) B2tt <- as.matrix(c((1 - pchisq(B2u[1],1)),(1 - pchisq(B2u[2],1)),(1 - pchisq(B2u[3],1)),K1(B2WW2),(1-pkolm(B2D,n_samB2)))) B2tt[which( B2tt>=10e-4)]<-round(B2tt[which(B2tt>=10e-4)],4);B2tt[which(B2tt<10e-4)]<-format(B2tt[which(B2tt<10e-4)],scientific=TRUE,digit=4) dataF2 <- sort(dataF2); F2w1<-1/(12*n_samF2) F2bmw <- matrix(0,n_samF2,1); F2bmwsl <- matrix(0,n_samF2,3) for(i in 1:3){ F2gg <- (dataF2 - mean3[i])/sqrt(sigma3[i]) F2bmw[which(F2gg>=0)] <- pnorm(F2gg[F2gg>=0]) F2bmw[which(F2gg<0)] <- 1 - pnorm(abs(F2gg[F2gg<0])) F2bmwsl[,i] <- F2bmw*mix_pi3[i] } F2P2 <- rowSums(F2bmwsl) nn <- dim(as.matrix(unique(F2P2)))[1] if(nn < n_samF2){F2P2 <- F2P2+runif(n_samF2)/1e4} F2dd <- as.matrix(c(sum(F2P2),sum(F2P2^2),sum((F2P2-0.5)^2))) F2WW2 <- 1/(12*n_samF2) + sum((F2P2 - (as.matrix(c(1:n_samF2)) - 0.5)/n_samF2)^2) F2u <- as.matrix(c(12*n_samF2*((F2dd[1]/n_samF2-0.5)^2),((45*n_samF2)/4)*((F2dd[2]/n_samF2-1/3)^2),180*n_samF2*((F2dd[3]/n_samF2-1/12)^2))) F2D <- as.numeric(ks.test(F2P2,"punif")[[1]][1]) F2tt <- as.matrix(c((1 - pchisq(F2u[1],1)),(1 - pchisq(F2u[2],1)),(1 - pchisq(F2u[3],1)),K1(F2WW2),(1-pkolm(F2D,n_samF2)))) F2tt[which( F2tt>=10e-4)]<-round(F2tt[which(F2tt>=10e-4)],4);F2tt[which(F2tt<10e-4)]<-format(F2tt[which(F2tt<10e-4)],scientific=TRUE,digit=4) aa<-matrix(c(1,1,1,0,1,-1,0,1,1,-1,-1,0,1,1,0.5,0.25,1,-0.5,0.5,0.25, 1,-0.5,-0.5,0.25,1,-1,-0.5,0.25,1,1,0,0.25,1,-0.5,0,0.25, 1,-1,0,0.25),10,4,byrow=T) mm<-as.matrix(c(mean[1],mean[2],mean[3],mean1[1],mean1[2],mean2[1],mean2[2],mean3[1],mean3[2],mean3[3])) B1<-solve(crossprod(aa,aa))%*%crossprod(aa,mm) jj1<-sigmaB1-sigma1[1] if (jj1<0 || jj1>=sigmaB1) {jj1<-0} ll1<-jj1/sigmaB1 mm1<-sigma1[1]-sigma if (mm1<0 || mm1>=sigmaB1) {mm1<-0} nn1<-mm1/sigmaB1 jj2<-sigmaB2-sigma2[2] if (jj2<0 || jj2>=sigmaB2) {jj2<-0} ll2<-jj2/sigmaB2 mm2<-sigma2[2]-sigma if (mm2<0 || mm2>=sigmaB2) {mm2<-0} nn2<-mm2/sigmaB2 jj3<-sigmaF2-sigma3[1] if (jj3<0 || jj3>=sigmaF2) {jj3<-0} ll3<-jj3/sigmaF2 mm3<-sigma3[1]-sigma if (mm3<0 || mm3>=sigmaF2) {mm3<-0} nn3<-mm3/sigmaF2 output <- data.frame("MX1-NCD-AD",round(abc,4),round(AIC,4),round(meanP1,4),round(meanF1,4),round(meanP2,4), round(sigma0,4),round(t(mean1),4)," "," ",round(t(sigma1),4)," "," ", round(t(mix_pi1),4)," "," ",round(t(mean2),4)," "," ",round(t(sigma2),4)," "," ",round(t(mix_pi2),4)," "," ", round(t(mean3),4)," "," "," "," "," "," ",round(t(sigma3),4)," "," "," "," "," "," ",round(t(mix_pi3),4)," "," "," "," "," "," ", round(B1[1],4)," "," "," "," "," ",round(B1[2],4)," ",round(-B1[2],4)," "," "," "," "," ",round(B1[3],4),round(B1[4],4), round(jj1,4),round(ll1*100,4),round(mm1,4),round(nn1*100,4),round(jj2,4),round(ll2*100,4),round(mm2,4),round(nn2*100,4),round(jj3,4),round(ll3*100,4),round(mm3,4),round(nn3*100,4), round(P1u[1],4),P1tt[1],round(P1u[2],4),P1tt[2],round(P1u[3],4),P1tt[3],round(P1w,4),P1tt[4],round(P1D,4),P1tt[5], round(F1u[1],4),F1tt[1],round(F1u[2],4),F1tt[2],round(F1u[3],4),F1tt[3],round(F1w,4),F1tt[4],round(F1D,4),F1tt[5], round(P2u[1],4),P2tt[1],round(P2u[2],4),P2tt[2],round(P2u[3],4),P2tt[3],round(P2w,4),P2tt[4],round(P2D,4),P2tt[5], round(B1u[1],4),B1tt[1],round(B1u[2],4),B1tt[2],round(B1u[3],4),B1tt[3],round(B1WW2,4),B1tt[4],round(B1D,4),B1tt[5], round(B2u[1],4),B2tt[1],round(B2u[2],4),B2tt[2],round(B2u[3],4),B2tt[3],round(B2WW2,4),B2tt[4],round(B2D,4),B2tt[5], round(F2u[1],4),F2tt[1],round(F2u[2],4),F2tt[2],round(F2u[3],4),F2tt[3],round(F2WW2,4),F2tt[4],round(F2D,4),F2tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi1,mi2,mi3) return(OUTPUT) } G6FModelFun[[18]] <- function(K1,logL,df11,df21,df31,df41,df51,df61,G6Ftext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataF1 <- as.matrix(as.numeric(df21[,1])) dataP2 <- as.matrix(as.numeric(df31[,1]));dataB1 <- as.matrix(as.numeric(df41[,1])) dataB2 <- as.matrix(as.numeric(df51[,1]));dataF2 <- as.matrix(as.numeric(df61[,1])) n_samP1<-dim(dataP1)[1];n_samF1<-dim(dataF1)[1];n_samP2<-dim(dataP2)[1] n_samB1<-dim(dataB1)[1];n_samB2<-dim(dataB2)[1];n_samF2<-dim(dataF2)[1] sumx<-as.matrix(c(sum(dataP1),sum(dataF1),sum(dataP2),sum(dataB1),sum(dataB2),sum(dataF2))) s<-as.matrix(c(sum(dataP1^2),sum(dataF1^2),sum(dataP2^2),sum(dataB1^2),sum(dataB2^2),sum(dataF2^2))) ss<-matrix(0,3,1);ss[1]<-s[1]-sumx[1]^2/n_samP1;ss[2]<-s[2]-sumx[2]^2/n_samF1;ss[3]<-s[3]-sumx[3]^2/n_samP2 mean<-as.matrix(c(mean(dataP1),mean(dataF1),mean(dataP2),mean(dataB1),mean(dataB2),mean(dataF2))) sigma0<-sum(ss)/(n_samP1+n_samF1+n_samP2-3) sigmaB1<-var(dataB1);sigma40<-sigmaB1 sigmaB2<-var(dataB2);sigma50<-sigmaB2 sigmaF2<-var(dataF2);sigma60<-sigmaF2 sigmaP1<-sigmaF1<-sigmaP2<-sigma0 m_esp <- 0.0001;n_fam <- as.numeric(G6Ftext2) mi1<-matrix(0.25,4,1);sigma1<-matrix(0,4,1) mi2<-matrix(0.25,4,1);sigma2<-matrix(0,4,1) mi3<-as.matrix(c(0.0625,0.125,0.0625,0.125,0.25,0.125,0.0625,0.125,0.0625)) sigma3<-matrix(0,9,1) sigma<-sigma0 a1<-sqrt(sigma40/n_samB1);if (mean[1]<mean[3]) a1<--a1 mean1<-as.matrix(c(mean[4]+2*a1,mean[4]+a1,mean[4]-a1,mean[4]-2*a1)) a2<-sqrt(sigma50/n_samB2);if (mean[1]<mean[3]) a2<--a2 mean2<-as.matrix(c(mean[5]+2*a2,mean[5]+a2,mean[5]-a2,mean[5]-2*a2)) a3<-sqrt(sigma60/n_samF2);if (mean[1]<mean[3]) a3<--a3 mean3<-as.matrix(c(mean[6]+2.8*a3,mean[6]+2.1*a3,mean[6]+1.4*a3,mean[6]+0.7*a3,mean[6],mean[6]-0.7*a3,mean[6]-1.4*a3,mean[6]-2.1*a3,mean[6]-2.8*a3)) sigma1[1]<-sigmaB1/2;sigma2[4]<-sigmaB2/2;sigma3[1]<-sigmaF2/2 aa<-matrix(c(1,0,0,0,0,0,1,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,1,0,0,1,0,0,0,-1,-1,0,0, 1,0,0,0,0,0,0,1,0,0,1,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0.5,0,0.5,0,0,0,0,0,1,0,0, 0,1,0.5,0,0,0,0.5,0,0,0,0,1,0,0,0,0,0.5,0.5,0,0,0,0.25,0,0,0,0,1,0,0,0,0.5,0.5,0, 0,0,0.25,0,0,0,0,1,0,0,-1,0.5,0,0,0,-0.5,0,0,0,0,0,1,0,-1,0,0,0.5,0,-0.5,0,0,0,0,0, 0,1,0,-1,-1,0,0,1,0,0,0,0,0,0,0,0,1,1,1,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0.5,0,0.5,0,0, 0,0,0,0,0,1,1,-1,0,0,-1,0,0,0,0,0,0,0,0,1,0,1,0.5,0,0,0,0.5,0,0,0,0,0,0,1,0,0,0.5,0.5, 0,0,0,0.25,0,0,0,0,0,1,0,-1,0.5,0,0,0,-0.5,0,0,0,0,0,0,1,-1,1,0,0,-1,0,0,0,0,0,0,0,0,1, -1,0,0,0.5,0,-0.5,0,0,0,0,0,0,0,1,-1,-1,0,0,1,0,0,0),20,14,byrow=T) mm<-as.matrix(c(mean[1],mean[2],mean[3],mean1[1],mean1[2],mean1[3],mean1[4],mean2[1],mean2[2],mean2[3],mean2[4], mean3[1],mean3[2],mean3[3],mean3[4],mean3[5],mean3[6],mean3[7],mean3[8],mean3[9])) B<-solve(crossprod(aa,aa))%*%crossprod(aa,mm) gs<-matrix(0,8,1) gs[1]<-B[7];gs[2]<-B[8];gs[3]<-B[9];gs[4]<-B[10];gs[5]<-B[11];gs[6]<-B[12];gs[7]<-B[13];gs[8]<-B[14] g_aa1<-(0.5*(gs[2]+gs[5])^2+0.25*(gs[4]+gs[6])^2)/n_fam g_aa2<-(0.5*(gs[1]+gs[5])^2+0.25*(gs[3]+gs[7])^2)/n_fam g_aa3<-(0.5*(gs[1]-gs[5])^2+0.25*(gs[3]-gs[7])^2)/n_fam g_aa4<-(0.5*(gs[2]-gs[5])^2+0.25*(gs[4]-gs[6])^2)/n_fam g_aa5<-0.25*(gs[1]^2+gs[2]^2+gs[5]^2+(gs[1]+gs[6])^2+(gs[2]+gs[7])^2+(gs[3]+gs[8]/2)^2+(gs[4]+gs[8]/2)^2+gs[8]^2/4)/n_fam sigma1[2]<-sigma1[1]+g_aa1;sigma1[3]<-sigma1[1]+g_aa2;sigma1[4]<-sigma1[1]+g_aa5 sigma2[1]<-sigma2[4]+g_aa5;sigma2[2]<-sigma2[4]+g_aa3;sigma2[3]<-sigma2[4]+g_aa4 sigma3[2]<-sigma3[1]+g_aa1;sigma3[3]<-sigma3[1];sigma3[4]<-sigma3[1]+g_aa2 sigma3[5]<-sigma3[1]+g_aa5;sigma3[6]<-sigma3[1]+g_aa3;sigma3[7]<-sigma3[1] sigma3[8]<-sigma3[1]+g_aa4;sigma3[9]<-sigma3[1] L0<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma0))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma0))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma0))))+sum(log(dmixnorm(dataB1,mean1,sqrt(sigma1),mi1)))+ sum(log(dmixnorm(dataB2,mean2,sqrt(sigma2),mi2)))+sum(log(dmixnorm(dataF2,mean3,sqrt(sigma3),mi3))) iteration <- 0; stopa <- 1000 W1 <- matrix(0,4,n_samB1); swx1 <- matrix(0,4,1) W2 <- matrix(0,4,n_samB2); swx2 <- matrix(0,4,1) W3 <- matrix(0,9,n_samF2); swx3 <- matrix(0,9,1) hh<-matrix(0,6,6); b_line1<-matrix(0,20,1);b_line2<-matrix(0,6,1) n0<-matrix(0,18,1);s0<-matrix(0,18,1) while(stopa > m_esp&&iteration<=1000){ iteration <- iteration + 1 for(i in 1:4) { W1[i,] <- mi1[i]*dnorm(dataB1,mean1[i],sqrt(sigma1[i]))/dmixnorm(dataB1,mean1,sqrt(sigma1),mi1) } mix_pi1 <- as.matrix(rowSums(W1)/n_samB1) sumwx1 <- W1%*%dataB1 for(i in 1:4) { W2[i,] <- mi2[i]*dnorm(dataB2,mean2[i],sqrt(sigma2[i]))/dmixnorm(dataB2,mean2,sqrt(sigma2),mi2) } mix_pi2 <- as.matrix(rowSums(W2)/n_samB2) sumwx2 <- W2%*%dataB2 for(i in 1:9) { W3[i,] <- mi3[i]*dnorm(dataF2,mean3[i],sqrt(sigma3[i]))/dmixnorm(dataF2,mean3,sqrt(sigma3),mi3) } mix_pi3 <- as.matrix(rowSums(W3)/n_samF2) sumwx3 <- W3%*%dataF2 n0[1]<-mix_pi1[1]*n_samB1;n0[2]<-mix_pi1[2]*n_samB1;n0[3]<-mix_pi1[3]*n_samB1 n0[4]<-mix_pi1[4]*n_samB1;n0[5]<-mix_pi2[1]*n_samB2;n0[6]<-mix_pi2[2]*n_samB2 n0[7]<-mix_pi2[3]*n_samB2;n0[8]<-mix_pi2[4]*n_samB2 s0[1]<-mix_pi3[1]*n_samF2;s0[2]<-mix_pi3[2]*n_samF2;s0[3]<-mix_pi3[3]*n_samF2 s0[4]<-mix_pi3[4]*n_samF2;s0[5]<-mix_pi3[5]*n_samF2;s0[6]<-mix_pi3[6]*n_samF2 s0[7]<-mix_pi3[7]*n_samF2;s0[8]<-mix_pi3[8]*n_samF2;s0[9]<-mix_pi3[9]*n_samF2 s0[c(1:9)][abs(s0[c(1:9)])<0.00000001]<-0.000001 n0[c(1:8)][abs(n0[c(1:8)])<0.00000001]<-0.000001 n_iter<-0;aaa1<-1000;AA<-matrix(0,6,1) while(aaa1>0.0001) { n_iter<-n_iter+1 aa11<-aa mm11<-as.matrix(c(mean[1],mean[2],mean[3],mean1[1],mean1[2],mean1[3],mean1[4],mean2[1],mean2[2],mean2[3],mean2[4], mean3[1],mean3[2],mean3[3],mean3[4],mean3[5],mean3[6],mean3[7],mean3[8],mean3[9])) B1<-solve(t(aa11)%*%aa11)%*%(t(aa11)%*%mm11) gs[1]<-B1[7];gs[2]<-B1[8];gs[3]<-B1[9];gs[4]<-B1[10];gs[5]<-B1[11];gs[6]<-B1[12];gs[7]<-B1[13];gs[8]<-B1[14]; g_aa1<-(0.5*(gs[2]+gs[5])^2+0.25*(gs[4]+gs[6])^2)/n_fam g_aa2<-(0.5*(gs[1]+gs[5])^2+0.25*(gs[3]+gs[7])^2)/n_fam g_aa3<-(0.5*(gs[1]-gs[5])^2+0.25*(gs[3]-gs[7])^2)/n_fam g_aa4<-(0.5*(gs[2]-gs[5])^2+0.25*(gs[4]-gs[6])^2)/n_fam g_aa5<-0.25*(gs[1]^2+gs[2]^2+gs[5]^2+(gs[1]+gs[6])^2+(gs[2]+gs[7])^2+(gs[3]+gs[8]/2)^2+(gs[4]+gs[8]/2)^2+gs[8]^2/4)/n_fam sigma1[2]<-sigma1[1]+g_aa1;sigma1[3]<-sigma1[1]+g_aa2;sigma1[4]<-sigma1[1]+g_aa5 sigma2[1]<-sigma2[4]+g_aa5;sigma2[2]<-sigma2[4]+g_aa3;sigma2[3]<-sigma2[4]+g_aa4 sigma3[2]<-sigma3[1]+g_aa1;sigma3[3]<-sigma3[7]<-sigma3[9]<-sigma3[1] sigma3[4]<-sigma3[1]+g_aa2;sigma3[5]<-sigma3[1]+g_aa5;sigma3[6]<-sigma3[1]+g_aa3 sigma3[8]<-sigma3[1]+g_aa4 hh[1,1]<-sigma1[1]/n0[1]+sigma1[2]/n0[2]+sigma3[1]/s0[1]+sigma3[2]/s0[2] hh[1,2]<-0 hh[1,3]<-sigma1[1]/n0[1]+sigma3[1]/s0[1] hh[1,4]<-0 hh[1,5]<-0 hh[1,6]<-0 hh[2,2]<-sigma1[3]/n0[3]+sigma1[4]/n0[4]+sigma3[4]/s0[4]+sigma3[5]/s0[5] hh[2,3]<-sigma1[4]/n0[4]+sigma3[5]/s0[5] hh[2,4]<--sigma3[5]/s0[5] hh[2,5]<-0 hh[2,6]<--sigma3[5]/s0[5] hh[3,3]<-sigma1[1]/n0[1]+sigma1[4]/n0[4]+sigma3[1]/s0[1]+sigma3[5]/s0[5] hh[3,4]<--sigma3[5]/s0[5] hh[3,5]<-0 hh[3,6]<--sigma3[5]/s0[5] hh[4,4]<-sigma2[1]/n0[5]+sigma2[2]/n0[6]+sigma3[5]/s0[5]+sigma3[6]/s0[6] hh[4,5]<-0 hh[4,6]<-sigma2[1]/n0[5]+sigma3[5]/s0[5] hh[5,5]<-sigma2[3]/n0[7]+sigma2[4]/n0[8]+sigma3[8]/s0[8]+sigma3[9]/s0[9] hh[5,6]<-sigma2[4]/n0[8]+sigma3[9]/s0[9] hh[6,6]<-sigma2[1]/n0[5]+sigma2[4]/n0[8]+sigma3[1]/s0[1]+sigma3[9]/s0[9] for(i in 2:6) { for(j in 1:(i-1)) { hh[i,j]<-hh[j,i] } } b_line2[1]<-sumwx1[1]/n0[1]-sumwx1[2]/n0[2]-sumwx3[1]/s0[1]+sumwx3[2]/s0[2] b_line2[2]<-sumwx1[3]/n0[3]-sumwx1[4]/n0[4]-sumwx3[4]/s0[4]+sumwx3[5]/s0[5] b_line2[3]<-sumwx1[1]/n0[1]-sumwx1[4]/n0[4]-sumwx3[1]/s0[1]+sumwx3[5]/s0[5] b_line2[4]<-sumwx2[1]/n0[5]-sumwx2[2]/n0[6]-sumwx3[5]/s0[5]+sumwx3[6]/s0[6] b_line2[5]<-sumwx2[3]/n0[7]-sumwx2[4]/n0[8]-sumwx3[8]/s0[8]+sumwx3[9]/s0[9] b_line2[6]<-sumwx2[1]/n0[5]-sumwx2[4]/n0[8]-sumwx3[5]/s0[5]+sumwx3[9]/s0[9] B2<-solve(hh,b_line2) mean[1]<-sumx[1]/n_samP1;mean[2]<-sumx[2]/n_samF1;mean[3]<-sumx[3]/n_samP2 mean1[1]<-(sumwx1[1]-sigma1[1]*(B2[1]+B2[3]))/n0[1] mean1[2]<-(sumwx1[2]+sigma1[2]*B2[1])/n0[2] mean1[3]<-(sumwx1[3]-sigma1[3]*B2[2])/n0[3] mean1[4]<-(sumwx1[4]+sigma1[4]*(B2[2]+B2[3]))/n0[4] mean2[1]<-(sumwx2[1]-sigma2[1]*(B2[4]+B2[6]))/n0[5] mean2[2]<-(sumwx2[2]+sigma2[2]*B2[4])/n0[6] mean2[3]<-(sumwx2[3]-sigma2[3]*B2[5])/n0[7] mean2[4]<-(sumwx2[4]+sigma2[4]*(B2[5]+B2[6]))/n0[8] mean3[1]<-(sumwx3[1]+sigma3[1]*(B2[1]+B2[3]))/s0[1] mean3[2]<-(sumwx3[2]-sigma3[2]*B2[1])/s0[2] mean3[3]<-sumwx3[3]/s0[3] mean3[7]<-sumwx3[7]/s0[7] mean3[4]<-(sumwx3[4]+sigma3[4]*B2[2])/s0[4] mean3[5]<-(sumwx3[5]+sigma3[5]*(-B2[2]-B2[3]+B2[4]+B2[6]))/s0[5] mean3[6]<-(sumwx3[6]-sigma3[6]*B2[4])/s0[6] mean3[8]<-(sumwx3[8]+sigma3[8]*B2[5])/s0[8] mean3[9]<-(sumwx3[9]-sigma3[9]*(B2[5]+B2[6]))/s0[9] aaa1<-max(abs(B2-AA)) AA<-B2 if (n_iter>20) break } ss1<-sum((dataP1-mean[1])^2);ss3<-sum((dataP2-mean[3])^2);ss2<-sum((dataF1-mean[2])^2) for(i in 1:4) {swx1[i] <- W1[i,]%*%(dataB1-mean1[i])^2 };for(i in 1:4) {swx2[i] <- W2[i,]%*%(dataB2-mean2[i])^2 };for(i in 1:9) {swx3[i] <- W3[i,]%*%(dataF2-mean3[i])^2 } aaa0<-sigma1[1];n_iter<-0;aaa1<-1000 while (aaa1>0.0001) { n_iter<-n_iter+1 aa2<-sigma1[1]/(sigma1[1]+g_aa1) aa3<-sigma1[1]/(sigma1[1]+g_aa2) aa4<-sigma1[1]/(sigma1[1]+g_aa5) as1<-swx1[1]+swx1[2]*aa2^2+swx1[3]*aa3^2+swx1[4]*aa4^2 as2<-n0[1]+aa2*n0[2]+aa3*n0[3]+aa4*n0[4] sigma1[1]<-as1/as2 aaa1<-abs(sigma1[1]-aaa0) aaa0<-sigma1[1] if (n_iter>20) break } sigma40<-sigma1[1]-sigma; if (sigma40<0) {sigma40<-0;sigma1[1]<-sigma} sigma1[1]<-sigma40+sigma;sigma1[2]<-sigma1[1]+g_aa1 sigma1[3]<-sigma1[1]+g_aa2;sigma1[4]<-sigma1[1]+g_aa5 aaa0<-sigma2[4];n_iter<-0;aaa1<-1000 while (aaa1>0.0001) { n_iter<-n_iter+1 aa1<-sigma2[4]/(sigma2[4]+g_aa5) aa2<-sigma2[4]/(sigma2[4]+g_aa3) aa3<-sigma2[4]/(sigma2[4]+g_aa4) as3<-swx2[1]*aa1^2+swx2[2]*aa2^2+swx2[3]*aa3^2+swx2[4] as4<-aa1*n0[5]+aa2*n0[6]+aa3*n0[7]+n0[8] sigma2[4]<-as3/as4 aaa1<-abs(sigma2[4]-aaa0) aaa0<-sigma2[4] if (n_iter>20) break } sigma50<-sigma2[4]-sigma; if (sigma50<0) {sigma50<-0;sigma2[4]<-sigma} sigma2[4]<-sigma50+sigma;sigma2[1]<-sigma2[4]+g_aa5 sigma2[2]<-sigma2[4]+g_aa3;sigma2[3]<-sigma2[4]+g_aa4 aaa0<-sigma3[1];aa6<-swx3[1]+swx3[3]+swx3[7]+swx3[9] aa7<-s0[1]+s0[3]+s0[7]+s0[9] n_iter<-0;aaa1<-1000 while (aaa1>0.0001) { n_iter<-n_iter+1 aa1<-sigma3[1]/(sigma3[1]+g_aa1) aa2<-sigma3[1]/(sigma3[1]+g_aa2) aa3<-sigma3[1]/(sigma3[1]+g_aa3) aa4<-sigma3[1]/(sigma3[1]+g_aa4) aa5<-sigma3[1]/(sigma3[1]+g_aa5) as5<-aa6+swx3[2]*aa1^2+swx3[4]*aa2^2+swx3[5]*aa5^2+swx3[6]*aa3^2+swx3[8]*aa4^2 as6<-aa7+aa1*s0[2]+aa2*s0[4]+aa5*s0[5]+aa3*s0[6]+aa4*s0[8] sigma3[1]<-as5/as6 aaa1<-abs(sigma3[1]-aaa0) aaa0<-sigma3[1] if (n_iter>20) break } sigma60<-sigma3[1]-sigma; if (sigma60<0) {sigma60<-0;sigma3[1]<-sigma} sigma3[1]<-sigma60+sigma;sigma3[2]<-sigma3[1]+g_aa1 sigma3[3]<-sigma3[7]<-sigma3[9]<-sigma3[1] sigma3[4]<-sigma3[1]+g_aa2;sigma3[5]<-sigma3[1]+g_aa5 sigma3[6]<-sigma3[1]+g_aa3;sigma3[8]<-sigma3[1]+g_aa4 ab1<-ss1+ss2+ss3;ab2<-n_samP1+n_samF1+n_samP2 n_iter<-0;aaa0<-sigma;aaa1<-1000 while (aaa1>0.0001) { n_iter<-n_iter+1 n0[11]<-sigma/(sigma+sigma40) n0[12]<-sigma/(sigma+sigma40+g_aa1) n0[13]<-sigma/(sigma+sigma40+g_aa2) n0[14]<-sigma/(sigma+sigma40+g_aa5) s0[11]<-sigma/(sigma+sigma50+g_aa5) s0[12]<-sigma/(sigma+sigma50+g_aa3) s0[13]<-sigma/(sigma+sigma50+g_aa4) s0[14]<-sigma/(sigma+sigma50) ab3<-sum(swx1[c(1:4)]*n0[c(11:14)]^2+swx2[c(1:4)]*s0[c(11:14)]^2) ab4<-sum(n0[c(1:4)]*n0[c(11:14)]+n0[c(5:8)]*s0[c(11:14)]) n0[11]<-sigma/(sigma+sigma60);n0[13]<-n0[17]<-n0[19]<-n0[11] n0[12]<-sigma/(sigma+sigma60+g_aa1);n0[14]<-sigma/(sigma+sigma60+g_aa2) n0[15]<-sigma/(sigma+sigma60+g_aa5);n0[16]<-sigma/(sigma+sigma60+g_aa3) n0[18]<-sigma/(sigma+sigma60+g_aa4) ab3<-ab3+sum(swx3[c(1:9)]*n0[c(11:19)]^2) ab4<-ab4+sum(s0[c(1:9)]*n0[11:19]) sigma<-(ab1+ab3)/(ab2+ab4) aaa1<-abs(sigma-aaa0) aaa0<-sigma if (n_iter>20) break } sigma1[1]<-sigma+sigma40;sigma1[2]<-sigma1[1]+g_aa1 sigma1[3]<-sigma1[1]+g_aa2;sigma1[4]<-sigma1[1]+g_aa5 sigma2[4]<-sigma+sigma50;sigma2[1]<-sigma2[4]+g_aa5 sigma2[2]<-sigma2[4]+g_aa3;sigma2[3]<-sigma2[4]+g_aa4 sigma3[1]<-sigma+sigma60 sigma3[3]<-sigma3[7]<-sigma3[9]<-sigma3[1] sigma3[2]<-sigma3[1]+g_aa1;sigma3[4]<-sigma3[1]+g_aa2 sigma3[5]<-sigma3[1]+g_aa5;sigma3[6]<-sigma3[1]+g_aa3 sigma3[8]<-sigma3[1]+g_aa4 L1<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma))))+sum(log(dmixnorm(dataB1,mean1,sqrt(sigma1),mix_pi1)))+ sum(log(dmixnorm(dataB2,mean2,sqrt(sigma2),mix_pi2)))+sum(log(dmixnorm(dataF2,mean3,sqrt(sigma3),mix_pi3))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc<-L0 AIC<--2*abc+2*18 meanP1<-mean[1];meanF1<-mean[2];meanP2<-mean[3] sigma0<-sigma dataP1<-sort(dataP1) P1w1<-1/(12*n_samP1) P1bmw <- matrix(0,n_samP1,1) P1gg <- (dataP1 - mean[1])/sqrt(as.vector(sigma)) P1bmw[which(P1gg>=0)] <- pnorm(P1gg[P1gg>=0]) P1bmw[which(P1gg<0)] <- 1 - pnorm(abs(P1gg[P1gg<0])) nn <- dim(as.matrix(unique(P1bmw)))[1] if(nn < n_samP1){P1bmw <- P1bmw+runif(n_samP1)/1e4} P1dd<-c((sum(P1bmw)),(sum(P1bmw^2)),sum((P1bmw-0.5)^2)) P1w<-P1w1+sum((P1bmw - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) P1u<- as.matrix(c(12*n_samP1*((P1dd[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((P1dd[2]/n_samP1-1/3)^2),180*n_samP1*((P1dd[3]/n_samP1-1/12)^2))) P1D<-as.numeric(ks.test(P1bmw,"punif")[[1]][1]) P1tt <- as.matrix(c((1 - pchisq(P1u[1],1)),(1 - pchisq(P1u[2],1)),(1 - pchisq(P1u[3],1)),K1(P1w),(1-pkolm(P1D,n_samP1)))) P1tt[which( P1tt>=10e-4)]<-round(P1tt[which(P1tt>=10e-4)],4);P1tt[which(P1tt<10e-4)]<-format(P1tt[which(P1tt<10e-4)],scientific=TRUE,digit=4) dataF1<-sort(dataF1) F1w1<-1/(12*n_samF1) F1bmw <- matrix(0,n_samF1,1) F1gg <- (dataF1 - mean[2])/sqrt(as.vector(sigma)) F1bmw[which(F1gg>=0)] <- pnorm(F1gg[F1gg>=0]) F1bmw[which(F1gg<0)] <- 1 - pnorm(abs(F1gg[F1gg<0])) nn <- dim(as.matrix(unique(F1bmw)))[1] if(nn < n_samF1){F1bmw <- F1bmw+runif(n_samF1)/1e4} F1dd<-c((sum(F1bmw)),(sum(F1bmw^2)),sum((F1bmw-0.5)^2)) F1w<-F1w1+sum((F1bmw - (as.matrix(c(1:n_samF1)) - 0.5)/n_samF1)^2) F1u<- as.matrix(c(12*n_samF1*((F1dd[1]/n_samF1-0.5)^2),((45*n_samF1)/4)*((F1dd[2]/n_samF1-1/3)^2),180*n_samF1*((F1dd[3]/n_samF1-1/12)^2))) F1D<-as.numeric(ks.test(F1bmw,"punif")[[1]][1]) F1tt <- as.matrix(c((1 - pchisq(F1u[1],1)),(1 - pchisq(F1u[2],1)),(1 - pchisq(F1u[3],1)),K1(F1w),(1-pkolm(F1D,n_samF1)))) F1tt[which(F1tt>=10e-4)]<-round(F1tt[which(F1tt>=10e-4)],4);F1tt[which(F1tt<10e-4)]<-format(F1tt[which(F1tt<10e-4)],scientific=TRUE,digit=4) dataP2<-sort(dataP2) P2w1<-1/(12*n_samP2) P2bmw <- matrix(0,n_samP2,1) P2gg <- (dataP2 - mean[3])/sqrt(as.vector(sigma)) P2bmw[which(P2gg>=0)] <- pnorm(P2gg[P2gg>=0]) P2bmw[which(P2gg<0)] <- 1 - pnorm(abs(P2gg[P2gg<0])) nn <- dim(as.matrix(unique(P2bmw)))[1] if(nn < n_samP2){P2bmw <- P2bmw+runif(n_samP2)/1e4} P2dd<-c((sum(P2bmw)),(sum(P2bmw^2)),sum((P2bmw-0.5)^2)) P2w<-P2w1+sum((P2bmw - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) P2u<- as.matrix(c(12*n_samP2*((P2dd[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((P2dd[2]/n_samP2-1/3)^2),180*n_samP2*((P2dd[3]/n_samP2-1/12)^2))) P2D<-as.numeric(ks.test(P2bmw,"punif")[[1]][1]) P2tt <- as.matrix(c((1 - pchisq(P2u[1],1)),(1 - pchisq(P2u[2],1)),(1 - pchisq(P2u[3],1)),K1(P2w),(1-pkolm(P2D,n_samP2)))) P2tt[which(P2tt>=10e-4)]<-round(P2tt[which(P2tt>=10e-4)],4);P2tt[which(P2tt<10e-4)]<-format(P2tt[which(P2tt<10e-4)],scientific=TRUE,digit=4) dataB1 <- sort(dataB1); B1w1<-1/(12*n_samB1) B1bmw <- matrix(0,n_samB1,1); B1bmwsl <- matrix(0,n_samB1,4) for(i in 1:4){ B1gg <- (dataB1 - mean1[i])/sqrt(sigma1[i]) B1bmw[which(B1gg>=0)] <- pnorm(B1gg[B1gg>=0]) B1bmw[which(B1gg<0)] <- 1 - pnorm(abs(B1gg[B1gg<0])) B1bmwsl[,i] <- B1bmw*mix_pi1[i] } B1P2 <- rowSums(B1bmwsl) nn <- dim(as.matrix(unique(B1P2)))[1] if(nn < n_samB1){B1P2 <- B1P2+runif(n_samB1)/1e4} B1dd <- as.matrix(c(sum(B1P2),sum(B1P2^2),sum((B1P2-0.5)^2))) B1WW2 <- 1/(12*n_samB1) + sum((B1P2 - (as.matrix(c(1:n_samB1)) - 0.5)/n_samB1)^2) B1u <- as.matrix(c(12*n_samB1*((B1dd[1]/n_samB1-0.5)^2),((45*n_samB1)/4)*((B1dd[2]/n_samB1-1/3)^2),180*n_samB1*((B1dd[3]/n_samB1-1/12)^2))) B1D <- as.numeric(ks.test(B1P2,"punif")[[1]][1]) B1tt <- as.matrix(c((1 - pchisq(B1u[1],1)),(1 - pchisq(B1u[2],1)),(1 - pchisq(B1u[3],1)),K1(B1WW2),(1-pkolm(B1D,n_samB1)))) B1tt[which( B1tt>=10e-4)]<-round(B1tt[which(B1tt>=10e-4)],4);B1tt[which(B1tt<10e-4)]<-format(B1tt[which(B1tt<10e-4)],scientific=TRUE,digit=4) dataB2 <- sort(dataB2); B2w1<-1/(12*n_samB2) B2bmw <- matrix(0,n_samB2,1); B2bmwsl <- matrix(0,n_samB2,4) for(i in 1:4){ B2gg <- (dataB2 - mean2[i])/sqrt(sigma2[i]) B2bmw[which(B2gg>=0)] <- pnorm(B2gg[B2gg>=0]) B2bmw[which(B2gg<0)] <- 1 - pnorm(abs(B2gg[B2gg<0])) B2bmwsl[,i] <- B2bmw*mix_pi2[i] } B2P2 <- rowSums(B2bmwsl) nn <- dim(as.matrix(unique(B2P2)))[1] if(nn < n_samB2){B2P2 <- B2P2+runif(n_samB2)/1e4} B2dd <- as.matrix(c(sum(B2P2),sum(B2P2^2),sum((B2P2-0.5)^2))) B2WW2 <- 1/(12*n_samB2) + sum((B2P2 - (as.matrix(c(1:n_samB2)) - 0.5)/n_samB2)^2) B2u <- as.matrix(c(12*n_samB2*((B2dd[1]/n_samB2-0.5)^2),((45*n_samB2)/4)*((B2dd[2]/n_samB2-1/3)^2),180*n_samB2*((B2dd[3]/n_samB2-1/12)^2))) B2D <- as.numeric(ks.test(B2P2,"punif")[[1]][1]) B2tt <- as.matrix(c((1 - pchisq(B2u[1],1)),(1 - pchisq(B2u[2],1)),(1 - pchisq(B2u[3],1)),K1(B2WW2),(1-pkolm(B2D,n_samB2)))) B2tt[which( B2tt>=10e-4)]<-round(B2tt[which(B2tt>=10e-4)],4);B2tt[which(B2tt<10e-4)]<-format(B2tt[which(B2tt<10e-4)],scientific=TRUE,digit=4) dataF2 <- sort(dataF2); F2w1<-1/(12*n_samF2) F2bmw <- matrix(0,n_samF2,1); F2bmwsl <- matrix(0,n_samF2,9) for(i in 1:9){ F2gg <- (dataF2 - mean3[i])/sqrt(sigma3[i]) F2bmw[which(F2gg>=0)] <- pnorm(F2gg[F2gg>=0]) F2bmw[which(F2gg<0)] <- 1 - pnorm(abs(F2gg[F2gg<0])) F2bmwsl[,i] <- F2bmw*mix_pi3[i] } F2P2 <- rowSums(F2bmwsl) nn <- dim(as.matrix(unique(F2P2)))[1] if(nn < n_samF2){F2P2 <- F2P2+runif(n_samF2)/1e4} F2dd <- as.matrix(c(sum(F2P2),sum(F2P2^2),sum((F2P2-0.5)^2))) F2WW2 <- 1/(12*n_samF2) + sum((F2P2 - (as.matrix(c(1:n_samF2)) - 0.5)/n_samF2)^2) F2u <- as.matrix(c(12*n_samF2*((F2dd[1]/n_samF2-0.5)^2),((45*n_samF2)/4)*((F2dd[2]/n_samF2-1/3)^2),180*n_samF2*((F2dd[3]/n_samF2-1/12)^2))) F2D <- as.numeric(ks.test(F2P2,"punif")[[1]][1]) F2tt <- as.matrix(c((1 - pchisq(F2u[1],1)),(1 - pchisq(F2u[2],1)),(1 - pchisq(F2u[3],1)),K1(F2WW2),(1-pkolm(F2D,n_samF2)))) F2tt[which( F2tt>=10e-4)]<-round(F2tt[which(F2tt>=10e-4)],4);F2tt[which(F2tt<10e-4)]<-format(F2tt[which(F2tt<10e-4)],scientific=TRUE,digit=4) aa3<-aa b_line3<-as.matrix(c(mean[1],mean[2],mean[3],mean1[1],mean1[2],mean1[3],mean1[4],mean2[1],mean2[2],mean2[3],mean2[4], mean3[1],mean3[2],mean3[3],mean3[4],mean3[5],mean3[6],mean3[7],mean3[8],mean3[9])) B3<-solve(crossprod(aa3,aa3))%*%crossprod(aa3,b_line3) jj1<-sigmaB1-sigma1[1] if (jj1<0 || jj1>=sigmaB1) {jj1<-0} ll1<-jj1/sigmaB1 mm1<-sigma1[1]-sigma if (mm1<0 || mm1>=sigmaB1) {mm1<-0} nn1<-mm1/sigmaB1 jj2<-sigmaB2-sigma2[4] if (jj2<0 || jj2>=sigmaB2) {jj2<-0} ll2<-jj2/sigmaB2 mm2<-sigma2[4]-sigma if (mm2<0 || mm2>=sigmaB2) {mm2<-0} nn2<-mm2/sigmaB2 jj3<-sigmaF2-sigma3[1] if (jj3<0 || jj3>=sigmaF2) {jj3<-0} ll3<-jj3/sigmaF2 mm3<-sigma3[1]-sigma if (mm3<0 || mm3>=sigmaF2) {mm3<-0} nn3<-mm3/sigmaF2 output <- data.frame("MX2-ADI-ADI",round(abc,4),round(AIC,4),round(meanP1,4),round(meanF1,4),round(meanP2,4), round(sigma0,4),round(t(mean1),4),round(t(sigma1),4), round(t(mix_pi1),4),round(t(mean2),4),round(t(sigma2),4),round(t(mix_pi2),4), round(t(mean3),4),round(t(sigma3),4),round(t(mix_pi3),4), round(B3[1],4),round(B3[2],4),round(B3[3],4),round(B3[4],4),round(B3[5],4),round(B3[6],4),round(B3[7],4),round(B3[8],4),round(B3[9],4),round(B3[10],4),round(B3[11],4),round(B3[12],4),round(B3[13],4),round(B3[14],4)," "," ", round(jj1,4),round(ll1*100,4),round(mm1,4),round(nn1*100,4),round(jj2,4),round(ll2*100,4),round(mm2,4),round(nn2*100,4),round(jj3,4),round(ll3*100,4),round(mm3,4),round(nn3*100,4), round(P1u[1],4),P1tt[1],round(P1u[2],4),P1tt[2],round(P1u[3],4),P1tt[3],round(P1w,4),P1tt[4],round(P1D,4),P1tt[5], round(F1u[1],4),F1tt[1],round(F1u[2],4),F1tt[2],round(F1u[3],4),F1tt[3],round(F1w,4),F1tt[4],round(F1D,4),F1tt[5], round(P2u[1],4),P2tt[1],round(P2u[2],4),P2tt[2],round(P2u[3],4),P2tt[3],round(P2w,4),P2tt[4],round(P2D,4),P2tt[5], round(B1u[1],4),B1tt[1],round(B1u[2],4),B1tt[2],round(B1u[3],4),B1tt[3],round(B1WW2,4),B1tt[4],round(B1D,4),B1tt[5], round(B2u[1],4),B2tt[1],round(B2u[2],4),B2tt[2],round(B2u[3],4),B2tt[3],round(B2WW2,4),B2tt[4],round(B2D,4),B2tt[5], round(F2u[1],4),F2tt[1],round(F2u[2],4),F2tt[2],round(F2u[3],4),F2tt[3],round(F2WW2,4),F2tt[4],round(F2D,4),F2tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi1,mi2,mi3) return(OUTPUT) } G6FModelFun[[19]] <- function(K1,logL,df11,df21,df31,df41,df51,df61,G6Ftext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataF1 <- as.matrix(as.numeric(df21[,1])) dataP2 <- as.matrix(as.numeric(df31[,1]));dataB1 <- as.matrix(as.numeric(df41[,1])) dataB2 <- as.matrix(as.numeric(df51[,1]));dataF2 <- as.matrix(as.numeric(df61[,1])) n_samP1<-dim(dataP1)[1];n_samF1<-dim(dataF1)[1];n_samP2<-dim(dataP2)[1] n_samB1<-dim(dataB1)[1];n_samB2<-dim(dataB2)[1];n_samF2<-dim(dataF2)[1] sumx<-as.matrix(c(sum(dataP1),sum(dataF1),sum(dataP2),sum(dataB1),sum(dataB2),sum(dataF2))) s<-as.matrix(c(sum(dataP1^2),sum(dataF1^2),sum(dataP2^2),sum(dataB1^2),sum(dataB2^2),sum(dataF2^2))) ss<-matrix(0,3,1);ss[1]<-s[1]-sumx[1]^2/n_samP1;ss[2]<-s[2]-sumx[2]^2/n_samF1;ss[3]<-s[3]-sumx[3]^2/n_samP2 mean<-as.matrix(c(mean(dataP1),mean(dataF1),mean(dataP2),mean(dataB1),mean(dataB2),mean(dataF2))) sigma0<-sum(ss)/(n_samP1+n_samF1+n_samP2-3) sigmaB1<-var(dataB1);sigma40<-sigmaB1 sigmaB2<-var(dataB2);sigma50<-sigmaB2 sigmaF2<-var(dataF2);sigma60<-sigmaF2 sigmaP1<-sigmaF1<-sigmaP2<-sigma0 m_esp <- 0.0001;n_fam <- as.numeric(G6Ftext2) mi1<-matrix(0.25,4,1);sigma1<-matrix(0,4,1) mi2<-matrix(0.25,4,1);sigma2<-matrix(0,4,1) mi3<-as.matrix(c(0.0625,0.125,0.0625,0.125,0.25,0.125,0.0625,0.125,0.0625)) sigma3<-matrix(0,9,1) sigma<-sigma0 a1<-sqrt(sigma40/n_samB1);if (mean[1]<mean[3]) a1<--a1 mean1<-as.matrix(c(mean[4]+2.5*a1,mean[4]+0.5*a1,mean[4]-0.5*a1,mean[4]-2.5*a1)) a2<-sqrt(sigma50/n_samB2);if (mean[1]<mean[3]) a2<--a2 mean2<-as.matrix(c(mean[5]+2.5*a2,mean[5]+0.5*a2,mean[5]-0.5*a2,mean[5]-2.5*a2)) a3<-sqrt(sigma60/n_samF2);if (mean[1]<mean[3]) a3<--a3 mean3<-as.matrix(c(mean[6]+3*a3,mean[6]+2.1*a3,mean[6]+1.4*a3,mean[6]+0.7*a3,mean[6],mean[6]-0.7*a3,mean[6]-1.4*a3,mean[6]-2.1*a3,mean[6]-3*a3)) sigma1[1]<-sigmaB1/2;sigma2[4]<-sigmaB2/2;sigma3[1]<-sigmaF2/2 gs<-matrix(0,8,1) gs[1]<-0.01844*mean[1]-0.0013*mean[2]-0.02236*mean[3]+0.08161*mean1[1]- 0.02293*mean1[2]-0.03212*mean1[3]-0.06119*mean1[4]+0.06467*mean2[1]+ 0.03081*mean2[2]+0.03655*mean2[3]-0.08506*mean2[4]+0.14454*mean3[1]+ 0.03309*mean3[2]+0.24459*mean3[3]+0.03081*mean3[4]+0.00174*mean3[5]- 0.03212*mean3[6]-0.25541*mean3[7]-0.02639*mean3[8]-0.14799*mean3[9] gs[2]<-0.01844*mean[1]-0.0013*mean[2]-0.02236*mean[3]+0.08161*mean1[1]- 0.02293*mean1[2]-0.03212*mean1[3]-0.06119*mean1[4]+0.06467*mean2[1]+ 0.03081*mean2[2]+0.03655*mean2[3]-0.08506*mean2[4]+0.14454*mean3[1]+ 0.03309*mean3[2]-0.25541*mean3[3]+0.03081*mean3[4]+0.00174*mean3[5]- 0.03212*mean3[6]+0.24459*mean3[7]-0.02639*mean3[8]-0.14799*mean3[9] gs[3]<--0.19992*mean[1]-0.12552*mean[2]-0.17662*mean[3]-0.13771*mean1[1]+ 0.0197*mean1[2]+0.43142*mean1[3]+0.1557*mean1[4]+0.179*mean2[1]+ 0.44307*mean2[2]-0.06186*mean2[3]-0.13771*mean2[4]-0.12606*mean3[1]- 0.15507*mean3[2]-0.4637*mean3[3]+0.44307*mean3[4]+0.16735*mean3[5]+ 0.43142*mean3[6]-0.4637*mean3[7]-0.07351*mean3[8]-0.14936*mean3[9] gs[4]<--0.15292*mean[1]-0.08351*mean[2]-0.09759*mean[3]-0.11036*mean1[1]+ 0.53258*mean1[2]-0.05558*mean1[3]+0.08368*mean1[4]+0.139*mean2[1]- 0.02792*mean2[2]+0.33893*mean2[3]-0.11036*mean2[4]-0.0827*mean3[1]+ 0.11763*mean3[2]-0.34598*mean3[3]-0.02792*mean3[4]+0.11134*mean3[5]- 0.05558*mean3[6]-0.34598*mean3[7]+0.31127*mean3[8]-0.13802*mean3[9] gs[5]<-0.03146*mean[1]+0.02343*mean[2]+0.03883*mean[3]+0.10843*mean1[1]+ 0.03146*mean1[2]+0.00987*mean1[3]-0.03492*mean1[4]-0.02756*mean2[1]+ 0.01356*mean2[2]+0.00569*mean2[3]+0.10843*mean2[4]+0.11211*mean3[1]- 0.02376*mean3[2]-0.24799*mean3[3]+0.01356*mean3[4]-0.03124*mean3[5]+ 0.00987*mean3[6]-0.24799*mean3[7]+0.00201*mean3[8]+0.10475*mean3[9] gs[6]<--0.12844*mean[1]+0.02088*mean[2]+0.19107*mean[3]-0.13908*mean1[1]+ 0.36686*mean1[2]+0.0139*mean1[3]-0.02092*mean1[4]-0.03475*mean2[1]+ 0.00698*mean2[2]-0.58473*mean2[3]+0.19426*mean2[4]-0.14599*mean3[1]+ 0.47059*mean3[2]-0.41351*mean3[3]+0.00698*mean3[4]-0.02784*mean3[5]+ 0.0139*mean3[6]+0.58649*mean3[7]-0.57782*mean3[8]+0.20117*mean3[9] gs[7]<-(-mean[1]+mean[3]-mean1[1]+3*mean1[3]-3*mean2[2]+mean2[4]- mean3[1]+3*mean3[3]+3*mean3[4]-3*mean3[6]-3*mean3[7]+ mean3[9])/6.0 gs[8]<-1.01848*mean[1]+0.65486*mean[2]+0.9461*mean[3]-0.1674*mean1[1]- 0.7552*mean1[2]-0.65447*mean1[3]+0.49638*mean1[4]+0.424*mean2[1]- 0.69066*mean2[2]-0.50187*mean2[3]-0.1674*mean2[4]-0.20359*mean3[1]- 0.21234*mean3[2]+0.64749*mean3[3]-0.69066*mean3[4]+0.46019*mean3[5]- 0.65447*mean3[6]+0.64749*mean3[7]-0.46567*mean3[8]-0.13121*mean3[9] g_aa1<-(0.5*(gs[2]+gs[5])^2+0.25*(gs[4]+gs[6])^2)/n_fam g_aa2<-(0.5*(gs[1]+gs[5])^2+0.25*(gs[3]+gs[7])^2)/n_fam g_aa3<-(0.5*(gs[1]-gs[5])^2+0.25*(gs[3]-gs[7])^2)/n_fam g_aa4<-(0.5*(gs[2]-gs[5])^2+0.25*(gs[4]-gs[6])^2)/n_fam g_aa5<-0.25*(gs[1]^2+gs[2]^2+gs[5]^2+(gs[1]+gs[6])^2+(gs[2]+gs[7])^2+(gs[3]+gs[8]/2)^2+(gs[4]+gs[8]/2)^2+gs[8]^2/4)/n_fam sigma1[2]<-sigma1[1]+g_aa1;sigma1[3]<-sigma1[1]+g_aa2;sigma1[4]<-sigma1[1]+g_aa5 sigma2[1]<-sigma2[4]+g_aa5;sigma2[2]<-sigma2[4]+g_aa3;sigma2[3]<-sigma2[4]+g_aa4 sigma3[2]<-sigma3[1]+g_aa1 sigma3[3]<-sigma3[7]<-sigma3[9]<-sigma3[1] sigma3[4]<-sigma3[1]+g_aa2;sigma3[5]<-sigma3[1]+g_aa5;sigma3[6]<-sigma3[1]+g_aa3;sigma3[8]<-sigma3[1]+g_aa4 L0<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma0))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma0))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma0))))+sum(log(dmixnorm(dataB1,mean1,sqrt(sigma1),mi1)))+ sum(log(dmixnorm(dataB2,mean2,sqrt(sigma2),mi2)))+sum(log(dmixnorm(dataF2,mean3,sqrt(sigma3),mi3))) iteration <- 0; stopa <- 1000 W1 <- matrix(0,4,n_samB1); swx1 <- matrix(0,4,1) W2 <- matrix(0,4,n_samB2); swx2 <- matrix(0,4,1) W3 <- matrix(0,9,n_samF2); swx3 <- matrix(0,9,1) hh<-matrix(0,9,9);b_line<-matrix(0,9,1) n0<-matrix(0,18,1);s0<-matrix(0,18,1) while(stopa > m_esp&&iteration<=1000){ iteration <- iteration + 1 for(i in 1:4) { W1[i,] <- mi1[i]*dnorm(dataB1,mean1[i],sqrt(sigma1[i]))/dmixnorm(dataB1,mean1,sqrt(sigma1),mi1) } mix_pi1 <- as.matrix(rowSums(W1)/n_samB1) sumwx1 <- W1%*%dataB1 for(i in 1:4) { W2[i,] <- mi2[i]*dnorm(dataB2,mean2[i],sqrt(sigma2[i]))/dmixnorm(dataB2,mean2,sqrt(sigma2),mi2) } mix_pi2 <- as.matrix(rowSums(W2)/n_samB2) sumwx2 <- W2%*%dataB2 for(i in 1:9) { W3[i,] <- mi3[i]*dnorm(dataF2,mean3[i],sqrt(sigma3[i]))/dmixnorm(dataF2,mean3,sqrt(sigma3),mi3) } mix_pi3 <- as.matrix(rowSums(W3)/n_samF2) sumwx3 <- W3%*%dataF2 n0[c(1:4)]<-mix_pi1[c(1:4)]*n_samB1;n0[c(5:8)]<-mix_pi2[c(1:4)]*n_samB2 s0[c(1:9)]<-mix_pi3[c(1:9)]*n_samF2 s0[c(1:9)][abs(s0[c(1:9)])<0.00000001]<-0.000001 n0[c(1:8)][abs(n0[c(1:8)])<0.00000001]<-0.000001 aaa0<-0;AA<-matrix(0,9,1);n_iter<-0;aaa1<-1000 while (aaa1>0.0001) { n_iter<-n_iter+1 gs[1]<-0.01844*mean[1]-0.0013*mean[2]-0.02236*mean[3]+0.08161*mean1[1]- 0.02293*mean1[2]-0.03212*mean1[3]-0.06119*mean1[4]+0.06467*mean2[1]+ 0.03081*mean2[2]+0.03655*mean2[3]-0.08506*mean2[4]+0.14454*mean3[1]+ 0.03309*mean3[2]+0.24459*mean3[3]+0.03081*mean3[4]+0.00174*mean3[5]- 0.03212*mean3[6]-0.25541*mean3[7]-0.02639*mean3[8]-0.14799*mean3[9] gs[2]<-0.01844*mean[1]-0.0013*mean[2]-0.02236*mean[3]+0.08161*mean1[1]- 0.02293*mean1[2]-0.03212*mean1[3]-0.06119*mean1[4]+0.06467*mean2[1]+ 0.03081*mean2[2]+0.03655*mean2[3]-0.08506*mean2[4]+0.14454*mean3[1]+ 0.03309*mean3[2]-0.25541*mean3[3]+0.03081*mean3[4]+0.00174*mean3[5]- 0.03212*mean3[6]+0.24459*mean3[7]-0.02639*mean3[8]-0.14799*mean3[9] gs[3]<--0.19992*mean[1]-0.12552*mean[2]-0.17662*mean[3]-0.13771*mean1[1]+ 0.0197*mean1[2]+0.43142*mean1[3]+0.1557*mean1[4]+0.179*mean2[1]+ 0.44307*mean2[2]-0.06186*mean2[3]-0.13771*mean2[4]-0.12606*mean3[1]- 0.15507*mean3[2]-0.4637*mean3[3]+0.44307*mean3[4]+0.16735*mean3[5]+ 0.43142*mean3[6]-0.4637*mean3[7]-0.07351*mean3[8]-0.14936*mean3[9] gs[4]<--0.15292*mean[1]-0.08351*mean[2]-0.09759*mean[3]-0.11036*mean1[1]+ 0.53258*mean1[2]-0.05558*mean1[3]+0.08368*mean1[4]+0.139*mean2[1]- 0.02792*mean2[2]+0.33893*mean2[3]-0.11036*mean2[4]-0.0827*mean3[1]+ 0.11763*mean3[2]-0.34598*mean3[3]-0.02792*mean3[4]+0.11134*mean3[5]- 0.05558*mean3[6]-0.34598*mean3[7]+0.31127*mean3[8]-0.13802*mean3[9] gs[5]<-0.03146*mean[1]+0.02343*mean[2]+0.03883*mean[3]+0.10843*mean1[1]+ 0.03146*mean1[2]+0.00987*mean1[3]-0.03492*mean1[4]-0.02756*mean2[1]+ 0.01356*mean2[2]+0.00569*mean2[3]+0.10843*mean2[4]+0.11211*mean3[1]- 0.02376*mean3[2]-0.24799*mean3[3]+0.01356*mean3[4]-0.03124*mean3[5]+ 0.00987*mean3[6]-0.24799*mean3[7]+0.00201*mean3[8]+0.10475*mean3[9] gs[6]<--0.12844*mean[1]+0.02088*mean[2]+0.19107*mean[3]-0.13908*mean1[1]+ 0.36686*mean1[2]+0.0139*mean1[3]-0.02092*mean1[4]-0.03475*mean2[1]+ 0.00698*mean2[2]-0.58473*mean2[3]+0.19426*mean2[4]-0.14599*mean3[1]+ 0.47059*mean3[2]-0.41351*mean3[3]+0.00698*mean3[4]-0.02784*mean3[5]+ 0.0139*mean3[6]+0.58649*mean3[7]-0.57782*mean3[8]+0.20117*mean3[9] gs[7]<-(-mean[1]+mean[3]-mean1[1]+3*mean1[3]-3*mean2[2]+mean2[4]- mean3[1]+3*mean3[3]+3*mean3[4]-3*mean3[6]-3*mean3[7]+ mean3[9])/6 gs[8]<-1.01848*mean[1]+0.65486*mean[2]+0.9461*mean[3]-0.1674*mean1[1]- 0.7552*mean1[2]-0.65447*mean1[3]+0.49638*mean1[4]+0.424*mean2[1]- 0.69066*mean2[2]-0.50187*mean2[3]-0.1674*mean2[4]-0.20359*mean3[1]- 0.21234*mean3[2]+0.64749*mean3[3]-0.69066*mean3[4]+0.46019*mean3[5]- 0.65447*mean3[6]+0.64749*mean3[7]-0.46567*mean3[8]-0.13121*mean3[9] g_aa1<-(0.5*(gs[2]+gs[5])^2+0.25*(gs[4]+gs[6])^2)/n_fam g_aa2<-(0.5*(gs[1]+gs[5])^2+0.25*(gs[3]+gs[7])^2)/n_fam g_aa3<-(0.5*(gs[1]-gs[5])^2+0.25*(gs[3]-gs[7])^2)/n_fam g_aa4<-(0.5*(gs[2]-gs[5])^2+0.25*(gs[4]-gs[6])^2)/n_fam g_aa5<-0.25*(gs[1]^2+gs[2]^2+gs[5]^2+(gs[1]+gs[6])^2+(gs[2]+gs[7])^2+(gs[3]+gs[8]/2)^2+(gs[4]+gs[8]/2)^2+gs[8]^2/4)/n_fam hh[1,1]<-sigma1[1]/n0[1]+sigma1[2]/n0[2]+sigma3[1]/s0[1]+sigma3[2]/s0[2] hh[1,2]<-0 hh[1,3]<-sigma1[1]/n0[1]+sigma3[1]/s0[1] hh[1,4]<-0 hh[1,5]<-0 hh[1,6]<-0 hh[1,7]<--sigma1[1]/n0[1] hh[1,8]<-0 hh[1,9]<-7*sigma3[1]/s0[1]+4*sigma3[2]/s0[2] hh[2,2]<-sigma1[3]/n0[3]+sigma1[4]/n0[4]+sigma3[4]/s0[4]+sigma3[5]/s0[5] hh[2,3]<-sigma1[4]/n0[4]+sigma3[5]/s0[5] hh[2,4]<--sigma3[5]/s0[5] hh[2,5]<-0 hh[2,6]<--sigma3[5]/s0[5] hh[2,7]<-sigma1[4]/n0[4] hh[2,8]<--sigma1[4]/n0[4]-2*sigma3[5]/s0[5] hh[2,9]<--4*sigma3[4]/s0[4]-16*sigma3[5]/s0[5] hh[3,3]<-sigma1[1]/n0[1]+sigma1[4]/n0[4]+sigma3[1]/s0[1]+sigma3[5]/s0[5] hh[3,4]<--sigma3[5]/s0[5] hh[3,5]<-0 hh[3,6]<--sigma3[5]/s0[5] hh[3,7]<--sigma1[1]/n0[1]+sigma1[4]/n0[4] hh[3,8]<--sigma1[4]/n0[4]-2*sigma3[5]/s0[5] hh[3,9]<-7*sigma3[1]/s0[1]-16*sigma3[5]/s0[5] hh[4,4]<-sigma2[1]/n0[5]+sigma2[2]/n0[6]+sigma3[5]/s0[5]+sigma3[6]/s0[6] hh[4,5]<-0 hh[4,6]<-sigma2[1]/n0[5]+sigma3[5]/s0[5] hh[4,7]<-sigma2[1]/n0[5] hh[4,8]<-sigma2[1]/n0[5]+2*sigma3[5]/s0[5] hh[4,9]<-16*sigma3[5]/s0[5]+4*sigma3[6]/s0[6] hh[5,5]<-sigma2[3]/n0[7]+sigma2[4]/n0[8]+sigma3[8]/s0[8]+sigma3[9]/s0[9] hh[5,6]<-sigma2[4]/n0[8]+sigma3[9]/s0[9] hh[5,7]<--sigma2[4]/n0[8] hh[5,8]<-0 hh[5,9]<--4*sigma3[8]/s0[8]-7*sigma3[9]/s0[9] hh[6,6]<-sigma2[1]/n0[5]+sigma2[4]/n0[8]+sigma3[5]/s0[5]+sigma3[9]/s0[9] hh[6,7]<-sigma2[1]/n0[5]-sigma2[4]/n0[8] hh[6,8]<-sigma2[1]/n0[5]+2*sigma3[5]/s0[5] hh[6,9]<-16*sigma3[5]/s0[5]-7*sigma3[9]/s0[9] hh[7,7]<-sigma*(1/n_samP1+1/n_samP2)+sigma1[1]/n0[1]+sigma1[4]/n0[4]+sigma2[1]/n0[5]+sigma2[4]/n0[8] hh[7,8]<--sigma1[4]/n0[4]+sigma2[1]/n0[5] hh[7,9]<-6*(sigma/n_samP1-sigma/n_samP2) hh[8,8]<-sigma1[4]/n0[4]+sigma2[1]/n0[5]+4*sigma3[5]/s0[5] hh[8,9]<-32*sigma3[5]/s0[5] hh[9,9]<-sigma*(36/n_samP1+16/n_samF1+36/n_samP2)+49*sigma3[1]/s0[1]+16* sigma3[2]/s0[2]+sigma3[3]/s0[3]+16*sigma3[4]/s0[4]+256*sigma3[5]/s0[5]+16*sigma3[6]/s0[6]+sigma3[7]/s0[7]+16*sigma3[8]/s0[8]+49*sigma3[9]/s0[9] for(i in 2:9) { for(j in 1:(i-1)) { hh[i,j]<-hh[j,i] } } b_line[1]<-sumwx1[1]/n0[1]-sumwx1[2]/n0[2]-sumwx3[1]/s0[1]+sumwx3[2]/s0[2] b_line[2]<-sumwx1[3]/n0[3]-sumwx1[4]/n0[4]-sumwx3[4]/s0[4]+sumwx3[5]/s0[5] b_line[3]<-sumwx1[1]/n0[1]-sumwx1[4]/n0[4]-sumwx3[1]/s0[1]+sumwx3[5]/s0[5] b_line[4]<-sumwx2[1]/n0[5]-sumwx2[2]/n0[6]-sumwx3[5]/s0[5]+sumwx3[6]/s0[6] b_line[5]<-sumwx2[3]/n0[7]-sumwx2[4]/n0[8]-sumwx3[8]/s0[8]+sumwx3[9]/s0[9] b_line[6]<-sumwx2[1]/n0[5]-sumwx2[4]/n0[8]-sumwx3[5]/s0[5]+sumwx3[9]/s0[9] b_line[7]<-sumx[1]/n_samP1-sumx[3]/n_samP2-sumwx1[1]/n0[1]-sumwx1[4]/n0[4]+sumwx2[1]/n0[5]+sumwx2[4]/n0[8] b_line[8]<-sumwx1[4]/n0[4]+sumwx2[1]/n0[5]-2*sumwx3[5]/s0[5] b_line[9]<-6*sumx[1]/n_samP1+4*sumx[2]/n_samF1+6*sumx[3]/n_samP2-7*sumwx3[1]/s0[1]+4*sumwx3[2]/s0[2]-sumwx3[3]/s0[3]+4*sumwx3[4]/s0[4]-16* sumwx3[5]/s0[5]+4*sumwx3[6]/s0[6]-sumwx3[7]/s0[7]+4*sumwx3[8]/s0[8]-7*sumwx3[9]/s0[9] B<-solve(hh,b_line) mean[1]<-(sumx[1]-sigma*(B[7]+6*B[9]))/n_samP1 mean[2]<-(sumx[2]-sigma*4*B[9])/n_samF1 mean[3]<-(sumx[3]+sigma*(B[7]-6*B[9]))/n_samP2 mean1[1]<-(sumwx1[1]+sigma1[1]*(-B[1]-B[3]+B[7]))/n0[1] mean1[2]<-(sumwx1[2]+sigma1[2]*B[1])/n0[2] mean1[3]<-(sumwx1[3]-sigma1[3]*B[2])/n0[3] mean1[4]<-(sumwx1[4]+sigma1[4]*(B[2]+B[3]+B[7]-B[8]))/n0[4] mean2[1]<-(sumwx2[1]-sigma2[1]*(B[4]+B[6]+B[7]+B[8]))/n0[5] mean2[2]<-(sumwx2[2]+sigma2[2]*B[4])/n0[6] mean2[3]<-(sumwx2[3]-sigma2[3]*B[5])/n0[7] mean2[4]<-(sumwx2[4]+sigma2[4]*(B[5]+B[6]-B[7]))/n0[8] mean3[1]<-(sumwx3[1]+sigma3[1]*(B[1]+B[3]+7*B[9]))/s0[1] mean3[2]<-(sumwx3[2]-sigma3[2]*(B[1]+4*B[9]))/s0[2] mean3[3]<-(sumwx3[3]+sigma3[3]*B[9])/s0[3] mean3[7]<-(sumwx3[7]+sigma3[7]*B[9])/s0[7] mean3[4]<-(sumwx3[4]+sigma3[4]*(B[2]-4*B[9]))/s0[4] mean3[5]<-(sumwx3[5]+sigma3[5]*(-B[2]-B[3]+B[4]+B[6]+2*B[8]+16*B[9]))/s0[5] mean3[6]<-(sumwx3[6]-sigma3[6]*(B[4]+4*B[9]))/s0[6] mean3[8]<-(sumwx3[8]+sigma3[8]*(B[5]-4*B[9]))/s0[8] mean3[9]<-(sumwx3[9]+sigma3[9]*(-B[5]-B[6]+7*B[9]))/s0[9] aaa1<-max(abs(B-AA)) AA<-B if (n_iter>20) break } ss1<-sum((dataP1-mean[1])^2);ss3<-sum((dataP2-mean[3])^2);ss2<-sum((dataF1-mean[2])^2) for(i in 1:4) {swx1[i] <- W1[i,]%*%(dataB1-mean1[i])^2 };for(i in 1:4) {swx2[i] <- W2[i,]%*%(dataB2-mean2[i])^2 };for(i in 1:9) {swx3[i] <- W3[i,]%*%(dataF2-mean3[i])^2 } aaa0<-sigma1[1];n_iter<-0;aaa1<-1000 while (aaa1>0.0001) { n_iter<-n_iter+1 aa2<-sigma1[1]/(sigma1[1]+g_aa1) aa3<-sigma1[1]/(sigma1[1]+g_aa2) aa4<-sigma1[1]/(sigma1[1]+g_aa5) as1<-swx1[1]+swx1[2]*aa2^2+swx1[3]*aa3^2+swx1[4]*aa4^2 as2<-n0[1]+aa2*n0[2]+aa3*n0[3]+aa4*n0[4] sigma1[1]<-as1/as2 aaa1<-abs(sigma1[1]-aaa0) aaa0<-sigma1[1] if (n_iter>20) break } sigma40<-sigma1[1]-sigma; if (sigma40<0) {sigma40<-0;sigma1[1]<-sigma} sigma1[1]<-sigma40+sigma;sigma1[2]<-sigma1[1]+g_aa1 sigma1[3]<-sigma1[1]+g_aa2;sigma1[4]<-sigma1[1]+g_aa5 aaa0<-sigma2[4];n_iter<-0;aaa1<-1000 while (aaa1>0.0001) { n_iter<-n_iter+1 aa1<-sigma2[4]/(sigma2[4]+g_aa5) aa2<-sigma2[4]/(sigma2[4]+g_aa3) aa3<-sigma2[4]/(sigma2[4]+g_aa4) as3<-swx2[1]*aa1^2+swx2[2]*aa2^2+swx2[3]*aa3^2+swx2[4] as4<-aa1*n0[5]+aa2*n0[6]+aa3*n0[7]+n0[8] sigma2[4]<-as3/as4 aaa1<-abs(sigma2[4]-aaa0) aaa0<-sigma2[4] if (n_iter>20) break } sigma50<-sigma2[4]-sigma; if (sigma50<0) {sigma50<-0;sigma2[4]<-sigma} sigma2[4]<-sigma50+sigma;sigma2[1]<-sigma2[4]+g_aa5 sigma2[2]<-sigma2[4]+g_aa3;sigma2[3]<-sigma2[4]+g_aa4 aaa0<-sigma3[1];aa6<-swx3[1]+swx3[3]+swx3[7]+swx3[9] aa7<-s0[1]+s0[3]+s0[7]+s0[9] n_iter<-0;aaa1<-1000 while (aaa1>0.0001) { n_iter<-n_iter+1 aa1<-sigma3[1]/(sigma3[1]+g_aa1) aa2<-sigma3[1]/(sigma3[1]+g_aa2) aa3<-sigma3[1]/(sigma3[1]+g_aa3) aa4<-sigma3[1]/(sigma3[1]+g_aa4) aa5<-sigma3[1]/(sigma3[1]+g_aa5) as5<-aa6+swx3[2]*aa1^2+swx3[4]*aa2^2+swx3[5]*aa5^2+swx3[6]*aa3^2+swx3[8]*aa4^2 as6<-aa7+aa1*s0[2]+aa2*s0[4]+aa5*s0[5]+aa3*s0[6]+aa4*s0[8] sigma3[1]<-as5/as6 aaa1<-abs(sigma3[1]-aaa0) aaa0<-sigma3[1] if (n_iter>20) break } sigma60<-sigma3[1]-sigma; if (sigma60<0) {sigma60<-0;sigma3[1]<-sigma} sigma3[1]<-sigma60+sigma;sigma3[2]<-sigma3[1]+g_aa1 sigma3[3]<-sigma3[7]<-sigma3[9]<-sigma3[1] sigma3[4]<-sigma3[1]+g_aa2;sigma3[5]<-sigma3[1]+g_aa5 sigma3[6]<-sigma3[1]+g_aa3;sigma3[8]<-sigma3[1]+g_aa4 ab1<-ss1+ss2+ss3;ab2<-n_samP1+n_samF1+n_samP2 n_iter<-0;aaa0<-sigma;aaa1<-1000 while (aaa1>0.0001) { n_iter<-n_iter+1 n0[11]<-sigma/(sigma+sigma40) n0[12]<-sigma/(sigma+sigma40+g_aa1) n0[13]<-sigma/(sigma+sigma40+g_aa2) n0[14]<-sigma/(sigma+sigma40+g_aa5) s0[11]<-sigma/(sigma+sigma50+g_aa5) s0[12]<-sigma/(sigma+sigma50+g_aa3) s0[13]<-sigma/(sigma+sigma50+g_aa4) s0[14]<-sigma/(sigma+sigma50) ab3<-sum(swx1[c(1:4)]*n0[c(11:14)]^2+swx2[c(1:4)]*s0[c(11:14)]^2) ab4<-sum(n0[c(1:4)]*n0[c(11:14)]+n0[c(5:8)]*s0[c(11:14)]) n0[11]<-sigma/(sigma+sigma60);n0[13]<-n0[17]<-n0[19]<-n0[11] n0[12]<-sigma/(sigma+sigma60+g_aa1);n0[14]<-sigma/(sigma+sigma60+g_aa2) n0[15]<-sigma/(sigma+sigma60+g_aa5);n0[16]<-sigma/(sigma+sigma60+g_aa3) n0[18]<-sigma/(sigma+sigma60+g_aa4) ab3<-ab3+sum(swx3[c(1:9)]*n0[c(11:19)]^2) ab4<-ab4+sum(s0[c(1:9)]*n0[11:19]) sigma<-(ab1+ab3)/(ab2+ab4) aaa1<-abs(sigma-aaa0) aaa0<-sigma if (n_iter>20) break } sigma1[1]<-sigma+sigma40;sigma1[2]<-sigma1[1]+g_aa1 sigma1[3]<-sigma1[1]+g_aa2;sigma1[4]<-sigma1[1]+g_aa5 sigma2[4]<-sigma+sigma50;sigma2[1]<-sigma2[4]+g_aa5 sigma2[2]<-sigma2[4]+g_aa3;sigma2[3]<-sigma2[4]+g_aa4 sigma3[1]<-sigma+sigma60;sigma3[3]<-sigma3[7]<-sigma3[9]<-sigma3[1] sigma3[2]<-sigma3[1]+g_aa1;sigma3[4]<-sigma3[1]+g_aa2 sigma3[5]<-sigma3[1]+g_aa5;sigma3[6]<-sigma3[1]+g_aa3 sigma3[8]<-sigma3[1]+g_aa4 L1<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma))))+sum(log(dmixnorm(dataB1,mean1,sqrt(sigma1),mix_pi1)))+ sum(log(dmixnorm(dataB2,mean2,sqrt(sigma2),mix_pi2)))+sum(log(dmixnorm(dataF2,mean3,sqrt(sigma3),mix_pi3))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc<-L0 AIC<--2*abc+2*15 meanP1<-mean[1];meanF1<-mean[2];meanP2<-mean[3] sigma0<-sigma dataP1<-sort(dataP1) P1w1<-1/(12*n_samP1) P1bmw <- matrix(0,n_samP1,1) P1gg <- (dataP1 - mean[1])/sqrt(as.vector(sigma)) P1bmw[which(P1gg>=0)] <- pnorm(P1gg[P1gg>=0]) P1bmw[which(P1gg<0)] <- 1 - pnorm(abs(P1gg[P1gg<0])) nn <- dim(as.matrix(unique(P1bmw)))[1] if(nn < n_samP1){P1bmw <- P1bmw+runif(n_samP1)/1e4} P1dd<-c((sum(P1bmw)),(sum(P1bmw^2)),sum((P1bmw-0.5)^2)) P1w<-P1w1+sum((P1bmw - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) P1u<- as.matrix(c(12*n_samP1*((P1dd[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((P1dd[2]/n_samP1-1/3)^2),180*n_samP1*((P1dd[3]/n_samP1-1/12)^2))) P1D<-as.numeric(ks.test(P1bmw,"punif")[[1]][1]) P1tt <- as.matrix(c((1 - pchisq(P1u[1],1)),(1 - pchisq(P1u[2],1)),(1 - pchisq(P1u[3],1)),K1(P1w),(1-pkolm(P1D,n_samP1)))) P1tt[which( P1tt>=10e-4)]<-round(P1tt[which(P1tt>=10e-4)],4);P1tt[which(P1tt<10e-4)]<-format(P1tt[which(P1tt<10e-4)],scientific=TRUE,digit=4) dataF1<-sort(dataF1) F1w1<-1/(12*n_samF1) F1bmw <- matrix(0,n_samF1,1) F1gg <- (dataF1 - mean[2])/sqrt(as.vector(sigma)) F1bmw[which(F1gg>=0)] <- pnorm(F1gg[F1gg>=0]) F1bmw[which(F1gg<0)] <- 1 - pnorm(abs(F1gg[F1gg<0])) nn <- dim(as.matrix(unique(F1bmw)))[1] if(nn < n_samF1){F1bmw <- F1bmw+runif(n_samF1)/1e4} F1dd<-c((sum(F1bmw)),(sum(F1bmw^2)),sum((F1bmw-0.5)^2)) F1w<-F1w1+sum((F1bmw - (as.matrix(c(1:n_samF1)) - 0.5)/n_samF1)^2) F1u<- as.matrix(c(12*n_samF1*((F1dd[1]/n_samF1-0.5)^2),((45*n_samF1)/4)*((F1dd[2]/n_samF1-1/3)^2),180*n_samF1*((F1dd[3]/n_samF1-1/12)^2))) F1D<-as.numeric(ks.test(F1bmw,"punif")[[1]][1]) F1tt <- as.matrix(c((1 - pchisq(F1u[1],1)),(1 - pchisq(F1u[2],1)),(1 - pchisq(F1u[3],1)),K1(F1w),(1-pkolm(F1D,n_samF1)))) F1tt[which(F1tt>=10e-4)]<-round(F1tt[which(F1tt>=10e-4)],4);F1tt[which(F1tt<10e-4)]<-format(F1tt[which(F1tt<10e-4)],scientific=TRUE,digit=4) dataP2<-sort(dataP2) P2w1<-1/(12*n_samP2) P2bmw <- matrix(0,n_samP2,1) P2gg <- (dataP2 - mean[3])/sqrt(as.vector(sigma)) P2bmw[which(P2gg>=0)] <- pnorm(P2gg[P2gg>=0]) P2bmw[which(P2gg<0)] <- 1 - pnorm(abs(P2gg[P2gg<0])) nn <- dim(as.matrix(unique(P2bmw)))[1] if(nn < n_samP2){P2bmw <- P2bmw+runif(n_samP2)/1e4} P2dd<-c((sum(P2bmw)),(sum(P2bmw^2)),sum((P2bmw-0.5)^2)) P2w<-P2w1+sum((P2bmw - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) P2u<- as.matrix(c(12*n_samP2*((P2dd[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((P2dd[2]/n_samP2-1/3)^2),180*n_samP2*((P2dd[3]/n_samP2-1/12)^2))) P2D<-as.numeric(ks.test(P2bmw,"punif")[[1]][1]) P2tt <- as.matrix(c((1 - pchisq(P2u[1],1)),(1 - pchisq(P2u[2],1)),(1 - pchisq(P2u[3],1)),K1(P2w),(1-pkolm(P2D,n_samP2)))) P2tt[which(P2tt>=10e-4)]<-round(P2tt[which(P2tt>=10e-4)],4);P2tt[which(P2tt<10e-4)]<-format(P2tt[which(P2tt<10e-4)],scientific=TRUE,digit=4) dataB1 <- sort(dataB1); B1w1<-1/(12*n_samB1) B1bmw <- matrix(0,n_samB1,1); B1bmwsl <- matrix(0,n_samB1,4) for(i in 1:4){ B1gg <- (dataB1 - mean1[i])/sqrt(sigma1[i]) B1bmw[which(B1gg>=0)] <- pnorm(B1gg[B1gg>=0]) B1bmw[which(B1gg<0)] <- 1 - pnorm(abs(B1gg[B1gg<0])) B1bmwsl[,i] <- B1bmw*mix_pi1[i] } B1P2 <- rowSums(B1bmwsl) nn <- dim(as.matrix(unique(B1P2)))[1] if(nn < n_samB1){B1P2 <- B1P2+runif(n_samB1)/1e4} B1dd <- as.matrix(c(sum(B1P2),sum(B1P2^2),sum((B1P2-0.5)^2))) B1WW2 <- 1/(12*n_samB1) + sum((B1P2 - (as.matrix(c(1:n_samB1)) - 0.5)/n_samB1)^2) B1u <- as.matrix(c(12*n_samB1*((B1dd[1]/n_samB1-0.5)^2),((45*n_samB1)/4)*((B1dd[2]/n_samB1-1/3)^2),180*n_samB1*((B1dd[3]/n_samB1-1/12)^2))) B1D <- as.numeric(ks.test(B1P2,"punif")[[1]][1]) B1tt <- as.matrix(c((1 - pchisq(B1u[1],1)),(1 - pchisq(B1u[2],1)),(1 - pchisq(B1u[3],1)),K1(B1WW2),(1-pkolm(B1D,n_samB1)))) B1tt[which( B1tt>=10e-4)]<-round(B1tt[which(B1tt>=10e-4)],4);B1tt[which(B1tt<10e-4)]<-format(B1tt[which(B1tt<10e-4)],scientific=TRUE,digit=4) dataB2 <- sort(dataB2); B2w1<-1/(12*n_samB2) B2bmw <- matrix(0,n_samB2,1); B2bmwsl <- matrix(0,n_samB2,4) for(i in 1:4){ B2gg <- (dataB2 - mean2[i])/sqrt(sigma2[i]) B2bmw[which(B2gg>=0)] <- pnorm(B2gg[B2gg>=0]) B2bmw[which(B2gg<0)] <- 1 - pnorm(abs(B2gg[B2gg<0])) B2bmwsl[,i] <- B2bmw*mix_pi2[i] } B2P2 <- rowSums(B2bmwsl) nn <- dim(as.matrix(unique(B2P2)))[1] if(nn < n_samB2){B2P2 <- B2P2+runif(n_samB2)/1e4} B2dd <- as.matrix(c(sum(B2P2),sum(B2P2^2),sum((B2P2-0.5)^2))) B2WW2 <- 1/(12*n_samB2) + sum((B2P2 - (as.matrix(c(1:n_samB2)) - 0.5)/n_samB2)^2) B2u <- as.matrix(c(12*n_samB2*((B2dd[1]/n_samB2-0.5)^2),((45*n_samB2)/4)*((B2dd[2]/n_samB2-1/3)^2),180*n_samB2*((B2dd[3]/n_samB2-1/12)^2))) B2D <- as.numeric(ks.test(B2P2,"punif")[[1]][1]) B2tt <- as.matrix(c((1 - pchisq(B2u[1],1)),(1 - pchisq(B2u[2],1)),(1 - pchisq(B2u[3],1)),K1(B2WW2),(1-pkolm(B2D,n_samB2)))) B2tt[which( B2tt>=10e-4)]<-round(B2tt[which(B2tt>=10e-4)],4);B2tt[which(B2tt<10e-4)]<-format(B2tt[which(B2tt<10e-4)],scientific=TRUE,digit=4) dataF2 <- sort(dataF2); F2w1<-1/(12*n_samF2) F2bmw <- matrix(0,n_samF2,1); F2bmwsl <- matrix(0,n_samF2,9) for(i in 1:9){ F2gg <- (dataF2 - mean3[i])/sqrt(sigma3[i]) F2bmw[which(F2gg>=0)] <- pnorm(F2gg[F2gg>=0]) F2bmw[which(F2gg<0)] <- 1 - pnorm(abs(F2gg[F2gg<0])) F2bmwsl[,i] <- F2bmw*mix_pi3[i] } F2P2 <- rowSums(F2bmwsl) nn <- dim(as.matrix(unique(F2P2)))[1] if(nn < n_samF2){F2P2 <- F2P2+runif(n_samF2)/1e4} F2dd <- as.matrix(c(sum(F2P2),sum(F2P2^2),sum((F2P2-0.5)^2))) F2WW2 <- 1/(12*n_samF2) + sum((F2P2 - (as.matrix(c(1:n_samF2)) - 0.5)/n_samF2)^2) F2u <- as.matrix(c(12*n_samF2*((F2dd[1]/n_samF2-0.5)^2),((45*n_samF2)/4)*((F2dd[2]/n_samF2-1/3)^2),180*n_samF2*((F2dd[3]/n_samF2-1/12)^2))) F2D <- as.numeric(ks.test(F2P2,"punif")[[1]][1]) F2tt <- as.matrix(c((1 - pchisq(F2u[1],1)),(1 - pchisq(F2u[2],1)),(1 - pchisq(F2u[3],1)),K1(F2WW2),(1-pkolm(F2D,n_samF2)))) F2tt[which( F2tt>=10e-4)]<-round(F2tt[which(F2tt>=10e-4)],4);F2tt[which(F2tt<10e-4)]<-format(F2tt[which(F2tt<10e-4)],scientific=TRUE,digit=4) aa<-matrix(c(1,1,1,0,0,1,0,0,0,1,0,1,0,0,1,1,0,0,0,1,0,1,1,-1,-1,0,0,1,0,0, 0,-1,0,1,1,1,0,0,1,0,0,0,0.5,0.25,1,1,0,0,0.5,0,0.5,0,0,0.5,0.25, 1,0,1,0.5,0,0,0,0.5,0,0.5,0.25,1,0,0,0.5,0.5,0,0,0,0.25,0.5,0.25, 1,0,0,0.5,0.5,0,0,0,0.25,-0.5,0.25,1,0,-1,0.5,0,0,0,-0.5,0,-0.5,0.25, 1,-1,0,0,0.5,0,-0.5,0,0,-0.5,0.25,1,-1,-1,0,0,1,0,0,0,-0.5,0.25,1,1,1, 0,0,1,0,0,0,0,0.25,1,1,0,0,0.5,0,0.5,0,0,0,0.25,1,1,-1,0,0,-1,0,0,0,0, 0.25,1,0,1,0.5,0,0,0,0.5,0,0,0.25,1,0,0,0.5,0.5,0,0,0,0.25,0,0.25,1,0,-1, 0.5,0,0,0,-0.5,0,0,0.25,1,-1,1,0,0,-1,0,0,0,0,0.25,1,-1,0,0,0.5,0,-0.5,0, 0,0,0.25,1,-1,-1,0,0,1,0,0,0,0,0.25),20,11,byrow=T) b_line1<-as.matrix(c(mean[1],mean[2],mean[3],mean1[1],mean1[2],mean1[3],mean1[4],mean2[1],mean2[2],mean2[3],mean2[4], mean3[1],mean3[2],mean3[3],mean3[4],mean3[5],mean3[6],mean3[7],mean3[8],mean3[9])) B1<-solve(crossprod(aa,aa))%*%crossprod(aa,b_line1) jj1<-sigmaB1-sigma1[1] if (jj1<0 || jj1>=sigmaB1) {jj1<-0} ll1<-jj1/sigmaB1 mm1<-sigma1[1]-sigma if (mm1<0 || mm1>=sigmaB1) {mm1<-0} nn1<-mm1/sigmaB1 jj2<-sigmaB2-sigma2[4] if (jj2<0 || jj2>=sigmaB2) {jj2<-0} ll2<-jj2/sigmaB2 mm2<-sigma2[4]-sigma if (mm2<0 || mm2>=sigmaB2) {mm2<-0} nn2<-mm2/sigmaB2 jj3<-sigmaF2-sigma3[1] if (jj3<0 || jj3>=sigmaF2) {jj3<-0} ll3<-jj3/sigmaF2 mm3<-sigma3[1]-sigma if (mm3<0 || mm3>=sigmaF2) {mm3<-0} nn3<-mm3/sigmaF2 output <- data.frame("MX2-ADI-AD",round(abc,4),round(AIC,4),round(meanP1,4),round(meanF1,4),round(meanP2,4), round(sigma0,4),round(t(mean1),4),round(t(sigma1),4), round(t(mix_pi1),4),round(t(mean2),4),round(t(sigma2),4),round(t(mix_pi2),4), round(t(mean3),4),round(t(sigma3),4),round(t(mix_pi3),4), round(B1[1],4)," "," "," "," "," ",round(B1[2],4),round(B1[3],4),round(B1[4],4),round(B1[5],4),round(B1[6],4),round(B1[7],4),round(B1[8],4),round(B1[9],4),round(B1[10],4),round(B1[11],4), round(jj1,4),round(ll1*100,4),round(mm1,4),round(nn1*100,4),round(jj2,4),round(ll2*100,4),round(mm2,4),round(nn2*100,4),round(jj3,4),round(ll3*100,4),round(mm3,4),round(nn3*100,4), round(P1u[1],4),P1tt[1],round(P1u[2],4),P1tt[2],round(P1u[3],4),P1tt[3],round(P1w,4),P1tt[4],round(P1D,4),P1tt[5], round(F1u[1],4),F1tt[1],round(F1u[2],4),F1tt[2],round(F1u[3],4),F1tt[3],round(F1w,4),F1tt[4],round(F1D,4),F1tt[5], round(P2u[1],4),P2tt[1],round(P2u[2],4),P2tt[2],round(P2u[3],4),P2tt[3],round(P2w,4),P2tt[4],round(P2D,4),P2tt[5], round(B1u[1],4),B1tt[1],round(B1u[2],4),B1tt[2],round(B1u[3],4),B1tt[3],round(B1WW2,4),B1tt[4],round(B1D,4),B1tt[5], round(B2u[1],4),B2tt[1],round(B2u[2],4),B2tt[2],round(B2u[3],4),B2tt[3],round(B2WW2,4),B2tt[4],round(B2D,4),B2tt[5], round(F2u[1],4),F2tt[1],round(F2u[2],4),F2tt[2],round(F2u[3],4),F2tt[3],round(F2WW2,4),F2tt[4],round(F2D,4),F2tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi1,mi2,mi3) return(OUTPUT) } G6FModelFun[[20]] <- function(K1,logL,df11,df21,df31,df41,df51,df61,G6Ftext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataF1 <- as.matrix(as.numeric(df21[,1])) dataP2 <- as.matrix(as.numeric(df31[,1]));dataB1 <- as.matrix(as.numeric(df41[,1])) dataB2 <- as.matrix(as.numeric(df51[,1]));dataF2 <- as.matrix(as.numeric(df61[,1])) n_samP1<-dim(dataP1)[1];n_samF1<-dim(dataF1)[1];n_samP2<-dim(dataP2)[1] n_samB1<-dim(dataB1)[1];n_samB2<-dim(dataB2)[1];n_samF2<-dim(dataF2)[1] sumx<-as.matrix(c(sum(dataP1),sum(dataF1),sum(dataP2),sum(dataB1),sum(dataB2),sum(dataF2))) s<-as.matrix(c(sum(dataP1^2),sum(dataF1^2),sum(dataP2^2),sum(dataB1^2),sum(dataB2^2),sum(dataF2^2))) ss<-matrix(0,3,1);ss[1]<-s[1]-sumx[1]^2/n_samP1;ss[2]<-s[2]-sumx[2]^2/n_samF1;ss[3]<-s[3]-sumx[3]^2/n_samP2 mean<-as.matrix(c(mean(dataP1),mean(dataF1),mean(dataP2),mean(dataB1),mean(dataB2),mean(dataF2))) sigma0<-sum(ss)/(n_samP1+n_samF1+n_samP2-3) sigmaB1<-var(dataB1);sigma40<-sigmaB1 sigmaB2<-var(dataB2);sigma50<-sigmaB2 sigmaF2<-var(dataF2);sigma60<-sigmaF2 sigmaP1<-sigmaF1<-sigmaP2<-sigma0 m_esp <- 0.0001;n_fam <- as.numeric(G6Ftext2) mi1<-matrix(0.25,4,1);sigma1<-matrix(0,4,1) mi2<-matrix(0.25,4,1);sigma2<-matrix(0,4,1) mi3<-as.matrix(c(0.0625,0.125,0.0625,0.125,0.25,0.125,0.0625,0.125,0.0625)) sigma3<-matrix(0,9,1) sigma<-sigma0 a1<-sqrt(sigmaB1/n_samB1);if (mean[1]<mean[3]) a1<--a1 mean1<-as.matrix(c(mean[1],mean[4]-0.5*a1,mean[4]-a1,mean[4]-1.5*a1)) a2<-sqrt(sigmaB2/n_samB2);if (mean[1]<mean[3]) a2<--a2 mean2<-as.matrix(c(mean[5]+2*a2,mean[5],mean[5]-a2,mean[5]-2*a2)) a3<-sqrt(sigmaF2/n_samF2);if (mean[1]<mean[3]) a3<--a3 mean3<-matrix(0,9,1) mean3[1]<-mean[1];mean3[2]<-mean[1]-0.5*a3;mean3[3]<-(mean[1]+mean[3])/2 mean3[4]<-mean[6]+0.6*a3;mean3[5]<-mean[6];mean3[6]<-mean3[4] mean3[7]<-mean3[3];mean3[8]<-mean[6]-a3;mean3[9]<-mean[3] sigma1[1]<-sigmaB1/2;sigma2[4]<-sigmaB2/2;sigma3[1]<-sigmaF2/2 gs<-matrix(0,4,1) gs[1]<-(mean1[1]+mean1[2]-mean1[3]-mean1[4]+mean2[1]+mean2[2]- mean2[3]-mean2[4]+2*mean3[1]+2*mean3[2]+2*mean3[3]-2*mean3[7] -2*mean3[8]-2*mean3[9])/16 gs[2]<-(mean1[1]-mean1[2]+mean1[3]-mean1[4]+mean2[1]-mean2[2]+ mean2[3]-mean2[4]+2*mean3[1]-2*mean3[3]+2*mean3[4]-2* mean3[6]+2*mean3[7]-2*mean3[9])/16 gs[3]<-0.03846*mean[1]+0.02564*mean[2]+0.03846*mean[3]-0.19872* mean1[1]-0.21474*mean1[2]+0.28526*mean1[3]+0.26923*mean1[4]+ 0.26923*mean2[1]+0.28526*mean2[2]-0.21474*mean2[3]-0.19872* mean2[4]-0.19872*mean3[1]-0.21474*mean3[2]-0.19872*mean3[3]+ 0.28526*mean3[4]+0.26923*mean3[5]+0.28526*mean3[6]-0.19872* mean3[7]-0.21474*mean3[8]-0.19872*mean3[9] gs[4]<-0.03846*mean[1]+0.02564*mean[2]+0.03846*mean[3]-0.19872* mean1[1]+0.28526*mean1[2]-0.21474*mean1[3]+0.26923*mean1[4]+ 0.26923*mean2[1]-0.21474*mean2[2]+0.28526*mean2[3]-0.19872* mean2[4]-0.19872*mean3[1]+0.28526*mean3[2]-0.19872*mean3[3]- 0.21474*mean3[4]+0.26923*mean3[5]-0.21474*mean3[6]-0.19872* mean3[7]+0.28526*mean3[8]-0.19872*mean3[9] g_aa1<-(0.5*gs[2]^2+0.25*gs[4]^2)/n_fam g_aa2<-(0.5*gs[1]^2+0.25*gs[3]^2)/n_fam g_aa3<-g_aa1+g_aa2 sigma1[2]<-sigma1[1]+g_aa1;sigma1[3]<-sigma1[1]+g_aa2 sigma1[4]<-sigma1[1]+g_aa3;sigma2[1]<-sigma2[4]+g_aa3 sigma2[2]<-sigma2[4]+g_aa2;sigma2[3]<-sigma2[4]+g_aa1 sigma3[2]<-sigma3[1]+g_aa1;sigma3[3]<-sigma3[7]<-sigma3[9]<-sigma3[1] sigma3[4]<-sigma3[1]+g_aa2;sigma3[5]<-sigma3[1]+g_aa3 sigma3[6]<-sigma3[1]+g_aa2;sigma3[8]<-sigma3[1]+g_aa1 L0<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma0))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma0))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma0))))+sum(log(dmixnorm(dataB1,mean1,sqrt(sigma1),mi1)))+ sum(log(dmixnorm(dataB2,mean2,sqrt(sigma2),mi2)))+sum(log(dmixnorm(dataF2,mean3,sqrt(sigma3),mi3))) iteration <- 0; stopa <- 1000 W1 <- matrix(0,4,n_samB1); swx1 <- matrix(0,4,1) W2 <- matrix(0,4,n_samB2); swx2 <- matrix(0,4,1) W3 <- matrix(0,9,n_samF2); swx3 <- matrix(0,9,1) hh<-matrix(0,13,13);b_line<-matrix(0,13,1) n0<-matrix(0,18,1);s0<-matrix(0,18,1) while(stopa > m_esp&&iteration<=1000){ iteration <- iteration + 1 for(i in 1:4) { W1[i,] <- mi1[i]*dnorm(dataB1,mean1[i],sqrt(sigma1[i]))/dmixnorm(dataB1,mean1,sqrt(sigma1),mi1) } mix_pi1 <- as.matrix(rowSums(W1)/n_samB1) sumwx1 <- W1%*%dataB1 for(i in 1:4) { W2[i,] <- mi2[i]*dnorm(dataB2,mean2[i],sqrt(sigma2[i]))/dmixnorm(dataB2,mean2,sqrt(sigma2),mi2) } mix_pi2 <- as.matrix(rowSums(W2)/n_samB2) sumwx2 <- W2%*%dataB2 for(i in 1:9) { W3[i,] <- mi3[i]*dnorm(dataF2,mean3[i],sqrt(sigma3[i]))/dmixnorm(dataF2,mean3,sqrt(sigma3),mi3) } mix_pi3 <- as.matrix(rowSums(W3)/n_samF2) sumwx3 <- W3%*%dataF2 n0[c(1:4)]<-mix_pi1[c(1:4)]*n_samB1;n0[c(5:8)]<-mix_pi2[c(1:4)]*n_samB2 s0[c(1:9)]<-mix_pi3[c(1:9)]*n_samF2 s0[c(1:9)][abs(s0[c(1:9)])<0.00000001]<-0.000001 n0[c(1:8)][abs(n0[c(1:8)])<0.00000001]<-0.000001 aaa0<-0;AA<-matrix(0,13,1);n_iter<-0;aaa1<-1000 while (aaa1>0.001) { n_iter<-n_iter+1 gs[1]<-(mean1[1]+mean1[2]-mean1[3]-mean1[4]+mean2[1]+mean2[2]- mean2[3]-mean2[4]+2*mean3[1]+2*mean3[2]+2*mean3[3]-2*mean3[7]- 2*mean3[8]-2*mean3[9])/16 gs[2]<-(mean1[1]-mean1[2]+mean1[3]-mean1[4]+mean2[1]-mean2[2]+ mean2[3]-mean2[4]+2*mean3[1]-2*mean3[3]+2*mean3[4]-2* mean3[6]+2*mean3[7]-2*mean3[9])/16 gs[3]<-0.03846*mean[1]+0.02564*mean[2]+0.03846*mean[3]-0.19872* mean1[1]-0.21474*mean1[2]+0.28526*mean1[3]+0.26923*mean1[4]+ 0.26923*mean2[1]+0.28526*mean2[2]-0.21474*mean2[3]-0.19872* mean2[4]-0.19872*mean3[1]-0.21474*mean3[2]-0.19872*mean3[3]+ 0.28526*mean3[4]+0.26923*mean3[5]+0.28526*mean3[6]-0.19872* mean3[7]-0.21474*mean3[8]-0.19872*mean3[9] gs[4]<-0.03846*mean[1]+0.02564*mean[2]+0.03846*mean[3]-0.19872* mean1[1]+0.28526*mean1[2]-0.21474*mean1[3]+0.26923*mean1[4]+ 0.26923*mean2[1]-0.21474*mean2[2]+0.28526*mean2[3]-0.19872* mean2[4]-0.19872*mean3[1]+0.28526*mean3[2]-0.19872*mean3[3]- 0.21474*mean3[4]+0.26923*mean3[5]-0.21474*mean3[6]-0.19872* mean3[7]+0.28526*mean3[8]-0.19872*mean3[9] g_aa1<-(0.5*gs[2]*gs[1]+0.25*gs[4]*gs[4])/n_fam g_aa2<-(0.5*gs[1]*gs[1]+0.25*gs[3]*gs[3])/n_fam g_aa3<-g_aa1+g_aa2 sigma1[2]<-sigma1[1]+g_aa1;sigma1[3]<-sigma1[1]+g_aa2 sigma1[4]<-sigma1[1]+g_aa3;sigma2[1]<-sigma2[4]+g_aa3 sigma2[2]<-sigma2[4]+g_aa2;sigma2[3]<-sigma2[4]+g_aa1 sigma3[2]<-sigma3[1]+g_aa1;sigma3[3]<-sigma3[7]<-sigma3[9]<-sigma3[1] sigma3[4]<-sigma3[1]+g_aa2;sigma3[5]<-sigma3[1]+g_aa3 sigma3[6]<-sigma3[1]+g_aa2;sigma3[8]<-sigma3[1]+g_aa1 hh[1,1]<-sigma1[1]/n0[1]+sigma1[2]/n0[2]+sigma3[1]/s0[1]+sigma3[2]/s0[2] hh[1,2]<-0 hh[1,3]<-sigma1[1]/n0[1]+sigma3[1]/s0[1] hh[1,4]<-0 hh[1,5]<-0 hh[1,6]<-0 hh[1,7]<--sigma1[1]/n0[1] hh[1,8]<-0 hh[1,9]<-2*sigma3[2]/s0[2] hh[1,10]<--sigma3[1]/s0[1] hh[1,11]<-0 hh[1,12]<--sigma1[1]/n0[1]+sigma1[2]/n0[2] hh[1,13]<--sigma3[1]/s0[1]-sigma3[2]/s0[2] hh[2,2]<-sigma1[3]/n0[3]+sigma1[4]/n0[4]+sigma3[4]/s0[4]+sigma3[5]/s0[5] hh[2,3]<-sigma1[4]/n0[4]+sigma3[5]/s0[5] hh[2,4]<--sigma3[5]/s0[5] hh[2,5]<-0 hh[2,6]<-hh[2,4] hh[2,7]<-sigma1[4]/n0[4] hh[2,8]<--sigma1[4]/n0[4]-2*sigma3[5]/s0[5] hh[2,9]<--2*sigma3[4]/s0[4]-8*sigma3[5]/s0[5] hh[2,10]<-0 hh[2,11]<--2*sigma1[3]/n0[3]+4*sigma3[4]/s0[4] hh[2,12]<--sigma1[3]/n0[3]+sigma1[4]/n0[4] hh[2,13]<-sigma3[4]/s0[4] hh[3,3]<-sigma1[1]/n0[1]+sigma1[4]/n0[4]+sigma3[1]/s0[1]+sigma3[5]/s0[5] hh[3,4]<--sigma3[5]/s0[5] hh[3,5]<-0 hh[3,6]<-hh[3,4] hh[3,7]<--sigma1[1]/n0[1]+sigma1[4]/n0[4] hh[3,8]<--sigma1[4]/n0[4]-2*sigma3[5]/s0[5] hh[3,9]<--8*sigma3[5]/s0[5] hh[3,10]<--sigma3[1]/s0[1] hh[3,11]<-0 hh[3,12]<--sigma1[1]/n0[1]+sigma1[4]/n0[4] hh[3,13]<--sigma3[1]/s0[1] hh[4,4]<-sigma2[1]/n0[5]+sigma2[2]/n0[6]+sigma3[5]/s0[5]+sigma3[6]/s0[6] hh[4,5]<-0 hh[4,6]<-sigma2[1]/n0[5]+sigma3[5]/s0[5] hh[4,7]<-sigma2[1]/n0[5] hh[4,8]<-sigma2[1]/n0[5]+2*sigma3[5]/s0[5] hh[4,9]<-8*sigma3[5]/s0[5]+2*sigma3[6]/s0[6] hh[4,10]<-0 hh[4,11]<--2*sigma2[2]/n0[6]+4*sigma3[6]/s0[6] hh[4,12]<--sigma2[1]/n0[5]+sigma2[2]/n0[6] hh[4,13]<-sigma3[6]/s0[6] hh[5,5]<-sigma2[3]/n0[7]+sigma2[4]/n0[8]+sigma3[8]/s0[8]+sigma3[9]/s0[9] hh[5,6]<-sigma2[4]/n0[8]+sigma3[9]/s0[9] hh[5,7]<--sigma2[4]/n0[8] hh[5,8]<-0 hh[5,9]<--2*sigma3[8]/s0[8] hh[5,10]<-sigma3[9]/s0[9] hh[5,11]<--4*sigma3[9]/s0[9] hh[5,12]<--sigma2[3]/n0[7]+sigma2[4]/n0[8] hh[5,13]<--sigma3[8]/s0[8]-sigma3[9]/s0[9] hh[6,6]<-sigma2[1]/n0[5]+sigma2[4]/n0[8]+sigma3[5]/s0[5]+sigma3[9]/s0[9] hh[6,7]<-sigma2[1]/n0[5]-sigma2[4]/n0[8] hh[6,8]<-sigma2[1]/n0[5]+2*sigma3[5]/s0[5] hh[6,9]<-8*sigma3[5]/s0[5] hh[6,10]<-sigma3[9]/s0[9] hh[6,11]<--4*sigma3[9]/s0[9] hh[6,12]<--sigma2[1]/n0[5]+sigma2[4]/n0[8] hh[6,13]<--sigma3[9]/s0[9] hh[7,7]<-sigma*(1/n_samP1+1/n_samP2)+sigma1[1]/n0[1]+sigma1[4]/n0[4]+sigma2[1]/n0[5]+sigma2[4]/n0[8] hh[7,8]<--sigma1[4]/n0[4]+sigma2[1]/n0[5] hh[7,9]<-sigma*(3/n_samP1-3/n_samP2) hh[7,10]<-0 hh[7,11]<-sigma*(1/n_samP1+1/n_samP2) hh[7,12]<-sigma*(3/n_samP1-3/n_samP2)+sigma1[1]/n0[1]+sigma1[4]/n0[4]-sigma2[1]/n0[5]-sigma2[4]/n0[8] hh[7,13]<-0 hh[8,8]<-sigma1[4]/n0[4]+sigma2[1]/n0[5]+4*sigma3[5]/s0[5] hh[8,9]<-16*sigma3[5]/s0[5] hh[8,10]<-0 hh[8,11]<-0 hh[8,12]<--sigma1[4]/n0[4]-sigma2[1]/n0[5] hh[8,13]<-0 hh[9,9]<-sigma*(9/n_samP1+4/n_samF1+9/n_samP2)+4*sigma3[2]/s0[2]+16*sigma3[3]/s0[3]+4*sigma3[4]/s0[4]+64*sigma3[5]/s0[5]+4*sigma3[6]/s0[6]+16*sigma3[7]/s0[7]+4*sigma3[8]/s0[8] hh[9,10]<-4*sigma3[3]/s0[3]+4*sigma3[7]/s0[7] hh[9,11]<-sigma*(3/n_samP1-3/n_samP2)+4*sigma3[3]/s0[3]-8*sigma3[4]/s0[4]+8*sigma3[6]/s0[6]-20*sigma3[7]/s0[7] hh[9,12]<-sigma*(9/n_samP1+4/n_samF1+9/n_samP2) hh[9,13]<--2*sigma3[2]/s0[2]-2*sigma3[4]/s0[4]+2*sigma3[6]/s0[6]+2*sigma3[8]/s0[8] hh[10,10]<-sigma3[1]/s0[1]+sigma3[3]/s0[3]+sigma3[7]/s0[7]+sigma3[9]/s0[9] hh[10,11]<-sigma3[3]/s0[3]-5*sigma3[7]/s0[7]-4*sigma3[9]/s0[9] hh[10,12]<-0 hh[10,13]<-sigma3[1]/s0[1]-sigma3[9]/s0[9] hh[11,11]<-sigma*(1/n_samP1+1/n_samP2)+4*sigma1[3]/n0[3]+4*sigma2[2]/n0[6]+sigma3[3]/s0[3]+16*sigma3[4]/s0[4]+16*sigma3[6]/s0[6]+25*sigma3[7]/s0[7]+16*sigma3[9]/s0[9] hh[11,12]<-sigma*(3/n_samP1-3/n_samP2)+2*sigma1[3]/n0[3]-2*sigma2[2]/n0[6] hh[11,13]<-4*(sigma3[4]/s0[4]+sigma3[6]/s0[6]+sigma3[9]/s0[9]) hh[12,12]<-sigma*(9/n_samP1+4/n_samF1+9/n_samP2)+sigma1[1]/n0[1]+sigma1[2]/n0[2]+sigma1[3]/n0[3]+sigma1[4]/n0[4]+sigma2[1]/n0[5]+sigma2[2]/n0[6]+sigma2[3]/n0[7]+sigma2[4]/n0[8] hh[12,13]<-0 hh[13,13]<-sigma3[1]/s0[1]+sigma3[2]/s0[2]+sigma3[4]/s0[4]+sigma3[6]/s0[6]+sigma3[8]/s0[8]+sigma3[9]/s0[9] for(i in 2:13) { for(j in 1:(i-1)) { hh[i,j]<-hh[j,i] } } b_line[1]<-sumwx1[1]/n0[1]-sumwx1[2]/n0[2]-sumwx3[1]/s0[1]+sumwx3[2]/s0[2] b_line[2]<-sumwx1[3]/n0[3]-sumwx1[4]/n0[4]-sumwx3[4]/s0[4]+sumwx3[5]/s0[5] b_line[3]<-sumwx1[1]/n0[1]-sumwx1[4]/n0[4]-sumwx3[1]/s0[1]+sumwx3[5]/s0[5] b_line[4]<-sumwx2[1]/n0[5]-sumwx2[2]/n0[6]-sumwx3[5]/s0[5]+sumwx3[6]/s0[6] b_line[5]<-sumwx2[3]/n0[7]-sumwx2[4]/n0[8]-sumwx3[8]/s0[8]+sumwx3[9]/s0[9] b_line[6]<-sumwx2[1]/n0[5]-sumwx2[4]/n0[8]-sumwx3[5]/s0[5]+sumwx3[9]/s0[9] b_line[7]<-sumx[1]/n_samP1-sumx[3]/n_samP2-sumwx1[1]/n0[1]-sumwx1[4]/n0[4]+sumwx2[1]/n0[5]+sumwx2[4]/n0[8] b_line[8]<-sumwx1[4]/n0[4]+sumwx2[1]/n0[5]-2*sumwx3[5]/s0[5] b_line[9]<-3*sumx[1]/n_samP1+2*sumx[2]/n_samF1+3*sumx[3]/n_samP2+2*sumwx3[2]/s0[2]-4*sumwx3[3]/s0[3]+2*sumwx3[4]/s0[4]+2*sumwx3[6]/s0[6]-4*sumwx3[7]/s0[7]+2*sumwx3[8]/s0[8]-8*sumwx3[5]/s0[5] b_line[10]<-sumwx3[1]/s0[1]-sumwx3[3]/s0[3]-sumwx3[7]/s0[7]+sumwx3[9]/s0[9] b_line[11]<-sumx[1]/n_samP1-sumx[3]/n_samP2-2*sumwx1[3]/n0[3]+2*sumwx2[2]/n0[6]-sumwx3[3]/s0[3]-4*sumwx3[4]/s0[4]+4*sumwx3[6]/s0[6]+5*sumwx3[7]/s0[7]-4*sumwx3[9]/s0[9] b_line[12]<-3*sumx[1]/n_samP1+2*sumx[2]/n_samF1+3*sumx[3]/n_samP2-sumwx1[1]/n0[1]-sumwx1[2]/n0[2]-sumwx1[3]/n0[3]-sumwx1[4]/n0[4]-sumwx2[1]/n0[5]-sumwx2[2]/n0[6]-sumwx2[3]/n0[7]-sumwx2[4]/n0[8] b_line[13]<-sumwx3[1]/s0[1]-sumwx3[2]/s0[2]-sumwx3[4]/s0[4]+sumwx3[6]/s0[6]+sumwx3[8]/s0[8]-sumwx3[9]/s0[9] B<-solve(hh,b_line) mean[1]<-(sumx[1]+sigma*(-B[7]-3*B[9]-B[11]-3*B[12]))/n_samP1 mean[2]<-(sumx[2]+sigma*(-2*B[9]-2*B[12]))/n_samF1 mean[3]<-(sumx[3]+sigma*(B[7]-3*B[9]+B[11]-3*B[12]))/n_samP2 mean1[1]<-(sumwx1[1]+sigma1[1]*(-B[1]-B[3]+B[7]+B[12]))/n0[1] mean1[2]<-(sumwx1[2]+sigma1[2]*(B[1]+B[12]))/n0[2] mean1[3]<-(sumwx1[3]+sigma1[3]*(-B[2]+2*B[11]+B[12]))/n0[3] mean1[4]<-(sumwx1[4]+sigma1[4]*(B[2]+B[3]+B[7]-B[8]+B[12]))/n0[4] mean2[1]<-(sumwx2[1]+sigma2[1]*(-B[4]-B[6]-B[7]-B[8]+B[12]))/n0[5] mean2[2]<-(sumwx2[2]+sigma2[2]*(B[4]-2*B[11]+B[12]))/n0[6] mean2[3]<-(sumwx2[3]+sigma2[3]*(-B[5]+B[12]))/n0[7] mean2[4]<-(sumwx2[4]+sigma2[4]*(B[5]+B[6]-B[7]+B[12]))/n0[8] mean3[1]<-(sumwx3[1]+sigma3[1]*(B[1]+B[3]-B[10]-B[13]))/s0[1] mean3[2]<-(sumwx3[2]+sigma3[2]*(-B[1]-2*B[9]+B[13]))/s0[2] mean3[3]<-(sumwx3[3]+sigma3[3]*(4*B[9]+B[10]+B[11]))/s0[3] mean3[7]<-(sumwx3[7]+sigma3[7]*(4*B[9]+B[10]-5*B[11]))/s0[7] mean3[4]<-(sumwx3[4]+sigma3[4]*(B[2]-2*B[9]+4*B[11]+B[13]))/s0[4] mean3[5]<-(sumwx3[5]+sigma3[5]*(-B[2]-B[3]+B[4]+B[6]+2*B[8]+8*B[9]))/s0[5] mean3[6]<-(sumwx3[6]+sigma3[6]*(-B[4]-2*B[9]-4*B[11]-B[13]))/s0[6] mean3[8]<-(sumwx3[8]+sigma3[8]*(B[5]-2*B[9]-B[13]))/s0[8] mean3[9]<-(sumwx3[9]+sigma3[9]*(-B[5]-B[6]-B[10]+4*B[11]+B[13]))/s0[9] aaa1<-max(abs(B-AA)) AA<-B if (n_iter>20) break } ss1<-sum((dataP1-mean[1])^2);ss3<-sum((dataP2-mean[3])^2);ss2<-sum((dataF1-mean[2])^2) for(i in 1:4) {swx1[i] <- W1[i,]%*%(dataB1-mean1[i])^2 };for(i in 1:4) {swx2[i] <- W2[i,]%*%(dataB2-mean2[i])^2 };for(i in 1:9) {swx3[i] <- W3[i,]%*%(dataF2-mean3[i])^2 } aaa0<-sigma1[1];n_iter<-0;aaa1<-1000 while (aaa1>0.0001) { n_iter<-n_iter+1 aa2<-sigma1[1]/(sigma1[1]+g_aa1) aa3<-sigma1[1]/(sigma1[1]+g_aa2) aa4<-sigma1[1]/(sigma1[1]+g_aa3) as1<-swx1[1]+swx1[2]*aa2^2+swx1[3]*aa3^2+swx1[4]*aa4^2 as2<-n0[1]+aa2*n0[2]+aa3*n0[3]+aa4*n0[4] sigma1[1]<-as1/as2 aaa1<-abs(sigma1[1]-aaa0) aaa0<-sigma1[1] if (n_iter>20) break } sigma40<-sigma1[1]-sigma; if (sigma40<0) {sigma40<-0;sigma1[1]<-sigma} sigma1[1]<-sigma40+sigma;sigma1[2]<-sigma1[1]+g_aa1 sigma1[3]<-sigma1[1]+g_aa2;sigma1[4]<-sigma1[1]+g_aa3 aaa0<-sigma2[4];n_iter<-0;aaa1<-1000 while (aaa1>0.001) { n_iter<-n_iter+1 aa1<-sigma2[4]/(sigma2[4]+g_aa3) aa2<-sigma2[4]/(sigma2[4]+g_aa2) aa3<-sigma2[4]/(sigma2[4]+g_aa1) as3<-swx2[1]*aa1^2+swx2[2]*aa2^2+swx2[3]*aa3^2+swx2[4] as4<-aa1*n0[5]+aa2*n0[6]+aa3*n0[7]+n0[8] sigma2[4]<-as3/as4 aaa1<-abs(sigma2[4]-aaa0) aaa0<-sigma2[4] if (n_iter>20) break } sigma50<-sigma2[4]-sigma; if (sigma50<0) {sigma50<-0;sigma2[4]<-sigma} sigma2[4]<-sigma50+sigma;sigma2[1]<-sigma2[4]+g_aa3 sigma2[2]<-sigma2[4]+g_aa2;sigma2[3]<-sigma2[4]+g_aa1 aaa0<-sigma3[1];aa6<-swx3[1]+swx3[3]+swx3[7]+swx3[9] aa7<-s0[1]+s0[3]+s0[7]+s0[9] n_iter<-0;aaa1<-1000 while (aaa1>0.001) { n_iter<-n_iter+1 aa1<-sigma3[1]/(sigma3[1]+g_aa1) aa2<-sigma3[1]/(sigma3[1]+g_aa2) aa3<-sigma3[1]/(sigma3[1]+g_aa3) as5<-aa6+(swx3[2]+swx3[8])*aa1^2+(swx3[4]+swx3[6])*aa2^2+swx3[5]*aa3^2 as6<-aa7+aa1*(s0[2]+s0[8])+aa2*(s0[4]+s0[6])+aa3*s0[5] sigma3[1]<-as5/as6 aaa1<-abs(sigma3[1]-aaa0) aaa0<-sigma3[1] if (n_iter>20) break } sigma60<-sigma3[1]-sigma; if (sigma60<0) {sigma60<-0;sigma3[1]<-sigma} sigma3[1]<-sigma60+sigma;sigma3[2]<-sigma3[1]+g_aa1 sigma3[3]<-sigma3[7]<-sigma3[9]<-sigma3[1];sigma3[4]<-sigma3[1]+g_aa2 sigma3[5]<-sigma3[1]+g_aa3;sigma3[6]<-sigma3[1]+g_aa2;sigma3[8]<-sigma3[1]+g_aa1 ab1<-ss1+ss2+ss3;ab2<-n_samP1+n_samF1+n_samP2 n_iter<-0;aaa0<-sigma;aaa1<-1000 while (aaa1>0.001) { n_iter<-n_iter+1 n0[11]<-sigma/(sigma+sigma40) n0[12]<-sigma/(sigma+sigma40+g_aa1) n0[13]<-sigma/(sigma+sigma40+g_aa2) n0[14]<-sigma/(sigma+sigma40+g_aa3) s0[11]<-sigma/(sigma+sigma50+g_aa3) s0[12]<-sigma/(sigma+sigma50+g_aa2) s0[13]<-sigma/(sigma+sigma50+g_aa1) s0[14]<-sigma/(sigma+sigma50) ab3<-sum(swx1[c(1:4)]*n0[c(11:14)]^2+swx2[c(1:4)]*s0[c(11:14)]^2) ab4<-sum(n0[c(1:4)]*n0[c(11:14)]+n0[c(5:8)]*s0[c(11:14)]) n0[11]<-sigma/(sigma+sigma60);n0[13]<-n0[17]<-n0[19]<-n0[11] n0[12]<-sigma/(sigma+sigma60+g_aa1);n0[14]<-sigma/(sigma+sigma60+g_aa2) n0[15]<-sigma/(sigma+sigma60+g_aa3);n0[16]<-sigma/(sigma+sigma60+g_aa2) n0[18]<-sigma/(sigma+sigma60+g_aa1) ab3<-ab3+sum(swx3[c(1:9)]*n0[c(11:19)]^2) ab4<-ab4+sum(s0[c(1:9)]*n0[11:19]) sigma<-(ab1+ab3)/(ab2+ab4) aaa1<-abs(sigma-aaa0) aaa0<-sigma if (n_iter>20) break } sigma1[1]<-sigma+sigma40;sigma1[2]<-sigma1[1]+g_aa1 sigma1[3]<-sigma1[1]+g_aa2;sigma1[4]<-sigma1[1]+g_aa3 sigma2[4]<-sigma+sigma50;sigma2[1]<-sigma2[4]+g_aa3 sigma2[2]<-sigma2[4]+g_aa2;sigma2[3]<-sigma2[4]+g_aa1 sigma3[1]<-sigma+sigma60;sigma3[3]<-sigma3[7]<-sigma3[9]<-sigma3[1] sigma3[2]<-sigma3[1]+g_aa1;sigma3[4]<-sigma3[1]+g_aa2 sigma3[5]<-sigma3[1]+g_aa3;sigma3[6]<-sigma3[1]+g_aa2 sigma3[8]<-sigma3[1]+g_aa1 L1<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma))))+sum(log(dmixnorm(dataB1,mean1,sqrt(sigma1),mix_pi1)))+ sum(log(dmixnorm(dataB2,mean2,sqrt(sigma2),mix_pi2)))+sum(log(dmixnorm(dataF2,mean3,sqrt(sigma3),mix_pi3))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc<-L0 AIC<--2*abc+2*11 meanP1<-mean[1];meanF1<-mean[2];meanP2<-mean[3] sigma0<-sigma dataP1<-sort(dataP1) P1w1<-1/(12*n_samP1) P1bmw <- matrix(0,n_samP1,1) P1gg <- (dataP1 - mean[1])/sqrt(as.vector(sigma)) P1bmw[which(P1gg>=0)] <- pnorm(P1gg[P1gg>=0]) P1bmw[which(P1gg<0)] <- 1 - pnorm(abs(P1gg[P1gg<0])) nn <- dim(as.matrix(unique(P1bmw)))[1] if(nn < n_samP1){P1bmw <- P1bmw+runif(n_samP1)/1e4} P1dd<-c((sum(P1bmw)),(sum(P1bmw^2)),sum((P1bmw-0.5)^2)) P1w<-P1w1+sum((P1bmw - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) P1u<- as.matrix(c(12*n_samP1*((P1dd[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((P1dd[2]/n_samP1-1/3)^2),180*n_samP1*((P1dd[3]/n_samP1-1/12)^2))) P1D<-as.numeric(ks.test(P1bmw,"punif")[[1]][1]) P1tt <- as.matrix(c((1 - pchisq(P1u[1],1)),(1 - pchisq(P1u[2],1)),(1 - pchisq(P1u[3],1)),K1(P1w),(1-pkolm(P1D,n_samP1)))) P1tt[which( P1tt>=10e-4)]<-round(P1tt[which(P1tt>=10e-4)],4);P1tt[which(P1tt<10e-4)]<-format(P1tt[which(P1tt<10e-4)],scientific=TRUE,digit=4) dataF1<-sort(dataF1) F1w1<-1/(12*n_samF1) F1bmw <- matrix(0,n_samF1,1) F1gg <- (dataF1 - mean[2])/sqrt(as.vector(sigma)) F1bmw[which(F1gg>=0)] <- pnorm(F1gg[F1gg>=0]) F1bmw[which(F1gg<0)] <- 1 - pnorm(abs(F1gg[F1gg<0])) nn <- dim(as.matrix(unique(F1bmw)))[1] if(nn < n_samF1){F1bmw <- F1bmw+runif(n_samF1)/1e4} F1dd<-c((sum(F1bmw)),(sum(F1bmw^2)),sum((F1bmw-0.5)^2)) F1w<-F1w1+sum((F1bmw - (as.matrix(c(1:n_samF1)) - 0.5)/n_samF1)^2) F1u<- as.matrix(c(12*n_samF1*((F1dd[1]/n_samF1-0.5)^2),((45*n_samF1)/4)*((F1dd[2]/n_samF1-1/3)^2),180*n_samF1*((F1dd[3]/n_samF1-1/12)^2))) F1D<-as.numeric(ks.test(F1bmw,"punif")[[1]][1]) F1tt <- as.matrix(c((1 - pchisq(F1u[1],1)),(1 - pchisq(F1u[2],1)),(1 - pchisq(F1u[3],1)),K1(F1w),(1-pkolm(F1D,n_samF1)))) F1tt[which(F1tt>=10e-4)]<-round(F1tt[which(F1tt>=10e-4)],4);F1tt[which(F1tt<10e-4)]<-format(F1tt[which(F1tt<10e-4)],scientific=TRUE,digit=4) dataP2<-sort(dataP2) P2w1<-1/(12*n_samP2) P2bmw <- matrix(0,n_samP2,1) P2gg <- (dataP2 - mean[3])/sqrt(as.vector(sigma)) P2bmw[which(P2gg>=0)] <- pnorm(P2gg[P2gg>=0]) P2bmw[which(P2gg<0)] <- 1 - pnorm(abs(P2gg[P2gg<0])) nn <- dim(as.matrix(unique(P2bmw)))[1] if(nn < n_samP2){P2bmw <- P2bmw+runif(n_samP2)/1e4} P2dd<-c((sum(P2bmw)),(sum(P2bmw^2)),sum((P2bmw-0.5)^2)) P2w<-P2w1+sum((P2bmw - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) P2u<- as.matrix(c(12*n_samP2*((P2dd[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((P2dd[2]/n_samP2-1/3)^2),180*n_samP2*((P2dd[3]/n_samP2-1/12)^2))) P2D<-as.numeric(ks.test(P2bmw,"punif")[[1]][1]) P2tt <- as.matrix(c((1 - pchisq(P2u[1],1)),(1 - pchisq(P2u[2],1)),(1 - pchisq(P2u[3],1)),K1(P2w),(1-pkolm(P2D,n_samP2)))) P2tt[which(P2tt>=10e-4)]<-round(P2tt[which(P2tt>=10e-4)],4);P2tt[which(P2tt<10e-4)]<-format(P2tt[which(P2tt<10e-4)],scientific=TRUE,digit=4) dataB1 <- sort(dataB1); B1w1<-1/(12*n_samB1) B1bmw <- matrix(0,n_samB1,1); B1bmwsl <- matrix(0,n_samB1,4) for(i in 1:4){ B1gg <- (dataB1 - mean1[i])/sqrt(sigma1[i]) B1bmw[which(B1gg>=0)] <- pnorm(B1gg[B1gg>=0]) B1bmw[which(B1gg<0)] <- 1 - pnorm(abs(B1gg[B1gg<0])) B1bmwsl[,i] <- B1bmw*mix_pi1[i] } B1P2 <- rowSums(B1bmwsl) nn <- dim(as.matrix(unique(B1P2)))[1] if(nn < n_samB1){B1P2 <- B1P2+runif(n_samB1)/1e4} B1dd <- as.matrix(c(sum(B1P2),sum(B1P2^2),sum((B1P2-0.5)^2))) B1WW2 <- 1/(12*n_samB1) + sum((B1P2 - (as.matrix(c(1:n_samB1)) - 0.5)/n_samB1)^2) B1u <- as.matrix(c(12*n_samB1*((B1dd[1]/n_samB1-0.5)^2),((45*n_samB1)/4)*((B1dd[2]/n_samB1-1/3)^2),180*n_samB1*((B1dd[3]/n_samB1-1/12)^2))) B1D <- as.numeric(ks.test(B1P2,"punif")[[1]][1]) B1tt <- as.matrix(c((1 - pchisq(B1u[1],1)),(1 - pchisq(B1u[2],1)),(1 - pchisq(B1u[3],1)),K1(B1WW2),(1-pkolm(B1D,n_samB1)))) B1tt[which( B1tt>=10e-4)]<-round(B1tt[which(B1tt>=10e-4)],4);B1tt[which(B1tt<10e-4)]<-format(B1tt[which(B1tt<10e-4)],scientific=TRUE,digit=4) dataB2 <- sort(dataB2); B2w1<-1/(12*n_samB2) B2bmw <- matrix(0,n_samB2,1); B2bmwsl <- matrix(0,n_samB2,4) for(i in 1:4){ B2gg <- (dataB2 - mean2[i])/sqrt(sigma2[i]) B2bmw[which(B2gg>=0)] <- pnorm(B2gg[B2gg>=0]) B2bmw[which(B2gg<0)] <- 1 - pnorm(abs(B2gg[B2gg<0])) B2bmwsl[,i] <- B2bmw*mix_pi2[i] } B2P2 <- rowSums(B2bmwsl) nn <- dim(as.matrix(unique(B2P2)))[1] if(nn < n_samB2){B2P2 <- B2P2+runif(n_samB2)/1e4} B2dd <- as.matrix(c(sum(B2P2),sum(B2P2^2),sum((B2P2-0.5)^2))) B2WW2 <- 1/(12*n_samB2) + sum((B2P2 - (as.matrix(c(1:n_samB2)) - 0.5)/n_samB2)^2) B2u <- as.matrix(c(12*n_samB2*((B2dd[1]/n_samB2-0.5)^2),((45*n_samB2)/4)*((B2dd[2]/n_samB2-1/3)^2),180*n_samB2*((B2dd[3]/n_samB2-1/12)^2))) B2D <- as.numeric(ks.test(B2P2,"punif")[[1]][1]) B2tt <- as.matrix(c((1 - pchisq(B2u[1],1)),(1 - pchisq(B2u[2],1)),(1 - pchisq(B2u[3],1)),K1(B2WW2),(1-pkolm(B2D,n_samB2)))) B2tt[which( B2tt>=10e-4)]<-round(B2tt[which(B2tt>=10e-4)],4);B2tt[which(B2tt<10e-4)]<-format(B2tt[which(B2tt<10e-4)],scientific=TRUE,digit=4) dataF2 <- sort(dataF2); F2w1<-1/(12*n_samF2) F2bmw <- matrix(0,n_samF2,1); F2bmwsl <- matrix(0,n_samF2,9) for(i in 1:9){ F2gg <- (dataF2 - mean3[i])/sqrt(sigma3[i]) F2bmw[which(F2gg>=0)] <- pnorm(F2gg[F2gg>=0]) F2bmw[which(F2gg<0)] <- 1 - pnorm(abs(F2gg[F2gg<0])) F2bmwsl[,i] <- F2bmw*mix_pi3[i] } F2P2 <- rowSums(F2bmwsl) nn <- dim(as.matrix(unique(F2P2)))[1] if(nn < n_samF2){F2P2 <- F2P2+runif(n_samF2)/1e4} F2dd <- as.matrix(c(sum(F2P2),sum(F2P2^2),sum((F2P2-0.5)^2))) F2WW2 <- 1/(12*n_samF2) + sum((F2P2 - (as.matrix(c(1:n_samF2)) - 0.5)/n_samF2)^2) F2u <- as.matrix(c(12*n_samF2*((F2dd[1]/n_samF2-0.5)^2),((45*n_samF2)/4)*((F2dd[2]/n_samF2-1/3)^2),180*n_samF2*((F2dd[3]/n_samF2-1/12)^2))) F2D <- as.numeric(ks.test(F2P2,"punif")[[1]][1]) F2tt <- as.matrix(c((1 - pchisq(F2u[1],1)),(1 - pchisq(F2u[2],1)),(1 - pchisq(F2u[3],1)),K1(F2WW2),(1-pkolm(F2D,n_samF2)))) F2tt[which( F2tt>=10e-4)]<-round(F2tt[which(F2tt>=10e-4)],4);F2tt[which(F2tt<10e-4)]<-format(F2tt[which(F2tt<10e-4)],scientific=TRUE,digit=4) aa<-matrix(c(1,1,1,0,0,1,0,1,0,0,1,1,0,1,1,-1,-1,0,0,-1,0,1,1,1,0,0,0.5,0.25,1,1,0,0,0.5,0.5,0.25,1,0,1,0.5,0,0.5,0.25, 1,0,0,0.5,0.5,0.5,0.25,1,0,0,0.5,0.5,-0.5,0.25,1,0,-1,0.5,0,-0.5,0.25,1,-1,0,0,0.5,-0.5,0.25,1,-1,-1,0,0,-0.5, 0.25,1,1,1,0,0,0,0.25,1,1,0,0,0.5,0,0.25,1,1,-1,0,0,0,0.25,1,0,1,0.5,0,0,0.25,1,0,0,0.5,0.5,0,0.25,1,0,-1,0.5, 0,0,0.25,1,-1,1,0,0,0,0.25,1,-1,0,0,0.5,0,0.25,1,-1,-1,0,0,0,0.25),20,7,byrow=T) b_line1<-as.matrix(c(mean[1],mean[2],mean[3],mean1[1],mean1[2],mean1[3],mean1[4],mean2[1],mean2[2],mean2[3],mean2[4], mean3[1],mean3[2],mean3[3],mean3[4],mean3[5],mean3[6],mean3[7],mean3[8],mean3[9])) B1<-solve(crossprod(aa,aa))%*%crossprod(aa,b_line1) jj1<-sigmaB1-sigma1[1] if (jj1<0 || jj1>=sigmaB1) {jj1<-0} ll1<-jj1/sigmaB1 mm1<-sigma1[1]-sigma if (mm1<0 || mm1>=sigmaB1) {mm1<-0} nn1<-mm1/sigmaB1 jj2<-sigmaB2-sigma2[4] if (jj2<0 || jj2>=sigmaB2) {jj2<-0} ll2<-jj2/sigmaB2 mm2<-sigma2[4]-sigma if (mm2<0 || mm2>=sigmaB2) {mm2<-0} nn2<-mm2/sigmaB2 jj3<-sigmaF2-sigma3[1] if (jj3<0 || jj3>=sigmaF2) {jj3<-0} ll3<-jj3/sigmaF2 mm3<-sigma3[1]-sigma if (mm3<0 || mm3>=sigmaF2) {mm3<-0} nn3<-mm3/sigmaF2 output <- data.frame("MX2-AD-AD",round(abc,4),round(AIC,4),round(meanP1,4),round(meanF1,4),round(meanP2,4), round(sigma0,4),round(t(mean1),4),round(t(sigma1),4), round(t(mix_pi1),4),round(t(mean2),4),round(t(sigma2),4),round(t(mix_pi2),4), round(t(mean3),4),round(t(sigma3),4),round(t(mix_pi3),4), round(B1[1],4)," "," "," "," "," ",round(B1[2],4),round(B1[3],4),round(B1[4],4),round(B1[5],4)," "," "," "," ",round(B1[6],4),round(B1[7],4), round(jj1,4),round(ll1*100,4),round(mm1,4),round(nn1*100,4),round(jj2,4),round(ll2*100,4),round(mm2,4),round(nn2*100,4),round(jj3,4),round(ll3*100,4),round(mm3,4),round(nn3*100,4), round(P1u[1],4),P1tt[1],round(P1u[2],4),P1tt[2],round(P1u[3],4),P1tt[3],round(P1w,4),P1tt[4],round(P1D,4),P1tt[5], round(F1u[1],4),F1tt[1],round(F1u[2],4),F1tt[2],round(F1u[3],4),F1tt[3],round(F1w,4),F1tt[4],round(F1D,4),F1tt[5], round(P2u[1],4),P2tt[1],round(P2u[2],4),P2tt[2],round(P2u[3],4),P2tt[3],round(P2w,4),P2tt[4],round(P2D,4),P2tt[5], round(B1u[1],4),B1tt[1],round(B1u[2],4),B1tt[2],round(B1u[3],4),B1tt[3],round(B1WW2,4),B1tt[4],round(B1D,4),B1tt[5], round(B2u[1],4),B2tt[1],round(B2u[2],4),B2tt[2],round(B2u[3],4),B2tt[3],round(B2WW2,4),B2tt[4],round(B2D,4),B2tt[5], round(F2u[1],4),F2tt[1],round(F2u[2],4),F2tt[2],round(F2u[3],4),F2tt[3],round(F2WW2,4),F2tt[4],round(F2D,4),F2tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi1,mi2,mi3) return(OUTPUT) } G6FModelFun[[21]] <- function(K1,logL,df11,df21,df31,df41,df51,df61,G6Ftext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataF1 <- as.matrix(as.numeric(df21[,1])) dataP2 <- as.matrix(as.numeric(df31[,1]));dataB1 <- as.matrix(as.numeric(df41[,1])) dataB2 <- as.matrix(as.numeric(df51[,1]));dataF2 <- as.matrix(as.numeric(df61[,1])) n_samP1<-dim(dataP1)[1];n_samF1<-dim(dataF1)[1];n_samP2<-dim(dataP2)[1] n_samB1<-dim(dataB1)[1];n_samB2<-dim(dataB2)[1];n_samF2<-dim(dataF2)[1] sumx<-as.matrix(c(sum(dataP1),sum(dataF1),sum(dataP2),sum(dataB1),sum(dataB2),sum(dataF2))) s<-as.matrix(c(sum(dataP1^2),sum(dataF1^2),sum(dataP2^2),sum(dataB1^2),sum(dataB2^2),sum(dataF2^2))) ss<-matrix(0,3,1);ss[1]<-s[1]-sumx[1]^2/n_samP1;ss[2]<-s[2]-sumx[2]^2/n_samF1;ss[3]<-s[3]-sumx[3]^2/n_samP2 mean<-as.matrix(c(mean(dataP1),mean(dataF1),mean(dataP2),mean(dataB1),mean(dataB2),mean(dataF2))) sigma0<-sum(ss)/(n_samP1+n_samF1+n_samP2-3) sigmaB1<-var(dataB1);sigma40<-sigmaB1 sigmaB2<-var(dataB2);sigma50<-sigmaB2 sigmaF2<-var(dataF2);sigma60<-sigmaF2 sigmaP1<-sigmaF1<-sigmaP2<-sigma0 m_esp <- 0.0001;n_fam <- as.numeric(G6Ftext2) mi1<-matrix(0.25,4,1);sigma1<-matrix(0,4,1) mi2<-matrix(0.25,4,1);sigma2<-matrix(0,4,1) mi3<-as.matrix(c(0.0625,0.125,0.0625,0.125,0.25,0.125,0.0625,0.125,0.0625)) sigma3<-matrix(0,9,1) sigma<-sigma0 a1<-sqrt(sigma40/n_samB1);if (mean[1]<mean[3]) a1<--a1 mean1<-as.matrix(c(mean[1],mean[4]-0.5*a1,mean[4]-0.8*a1,mean[2])) a2<-sqrt(sigma50/n_samB2);if (mean[1]<mean[3]) a2<--a2 mean2<-as.matrix(c(mean[2],mean[5]-0.5*a2,mean[5]-a2,mean[3])) a3<-sqrt(sigma60/n_samF2);if (mean[1]<mean[3]) a3<--a3 mean3<-matrix(0,9,1) mean3[1]<-mean3[2]<-mean[1];mean3[3]<-(mean[1]+mean[3])/2 mean3[4]<-mean[6]+0.6*a3;mean3[5]<-mean[6] mean3[6]<-mean3[4];mean3[7]<-mean3[3] mean3[8]<-mean[6]-a3;mean3[9]<-mean[3] sigma1[1]<-sigmaB1/2;sigma2[4]<-sigmaB2/2;sigma3[1]<-sigmaF2/2 gs<-matrix(0,2,1) gs[1]<-(mean1[1]+mean1[2]-mean1[3]-mean1[4]+mean2[1]+mean2[2]- mean2[3]-mean2[4]+2*mean3[1]+2*mean3[2]+2*mean3[3]-2*mean3[7]- 2*mean3[8]-2*mean3[9])/16 gs[2]<-(mean1[1]-mean1[2]+mean1[3]-mean1[4]+mean2[1]-mean2[2]+ mean2[3]-mean2[4]+2*mean3[1]-2*mean3[3]+2*mean3[4]-2* mean3[6]+2*mean3[7]-2*mean3[9])/16 g_aa1<-0.5*gs[2]*gs[2]/n_fam g_aa2<-0.5*gs[1]*gs[1]/n_fam g_aa3<-g_aa1+g_aa2 sigma1[2]<-sigma1[1]+g_aa1;sigma1[3]<-sigma1[1]+g_aa2 sigma1[4]<-sigma1[1]+g_aa3;sigma2[1]<-sigma2[4]+g_aa3 sigma2[2]<-sigma2[4]+g_aa2;sigma2[3]<-sigma2[4]+g_aa1 sigma3[2]<-sigma3[1]+g_aa1;sigma3[3]<-sigma3[7]<-sigma3[9]<-sigma3[1] sigma3[4]<-sigma3[1]+g_aa2;sigma3[5]<-sigma3[1]+g_aa3 sigma3[6]<-sigma3[1]+g_aa2;sigma3[8]<-sigma3[1]+g_aa1 L0<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma0))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma0))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma0))))+sum(log(dmixnorm(dataB1,mean1,sqrt(sigma1),mi1)))+ sum(log(dmixnorm(dataB2,mean2,sqrt(sigma2),mi2)))+sum(log(dmixnorm(dataF2,mean3,sqrt(sigma3),mi3))) iteration <- 0; stopa <- 1000 W1 <- matrix(0,4,n_samB1); swx1 <- matrix(0,4,1) W2 <- matrix(0,4,n_samB2); swx2 <- matrix(0,4,1) W3 <- matrix(0,9,n_samF2); swx3 <- matrix(0,9,1) hh<-matrix(0,15,15);b_line<-matrix(0,15,1) n0<-matrix(0,18,1);s0<-matrix(0,18,1) while(stopa > m_esp&&iteration<=1000){ iteration <- iteration + 1 for(i in 1:4) { W1[i,] <- mi1[i]*dnorm(dataB1,mean1[i],sqrt(sigma1[i]))/dmixnorm(dataB1,mean1,sqrt(sigma1),mi1) } mix_pi1 <- as.matrix(rowSums(W1)/n_samB1) sumwx1 <- W1%*%dataB1 for(i in 1:4) { W2[i,] <- mi2[i]*dnorm(dataB2,mean2[i],sqrt(sigma2[i]))/dmixnorm(dataB2,mean2,sqrt(sigma2),mi2) } mix_pi2 <- as.matrix(rowSums(W2)/n_samB2) sumwx2 <- W2%*%dataB2 for(i in 1:9) { W3[i,] <- mi3[i]*dnorm(dataF2,mean3[i],sqrt(sigma3[i]))/dmixnorm(dataF2,mean3,sqrt(sigma3),mi3) } mix_pi3 <- as.matrix(rowSums(W3)/n_samF2) sumwx3 <- W3%*%dataF2 n0[c(1:4)]<-mix_pi1[c(1:4)]*n_samB1;n0[c(5:8)]<-mix_pi2[c(1:4)]*n_samB2 s0[c(1:9)]<-mix_pi3[c(1:9)]*n_samF2 s0[c(1:9)][abs(s0[c(1:9)])<0.00000001]<-0.000001 n0[c(1:8)][abs(n0[c(1:8)])<0.00000001]<-0.000001 aaa0<-0 ;AA<-matrix(0,15,1);n_iter<-0;aaa1<-1000 while(aaa1>0.001) { n_iter<-n_iter+1 gs[1]<-(mean1[1]+mean1[2]-mean1[3]-mean1[4]+mean2[1]+mean2[2]- mean2[3]-mean2[4]+2*mean3[1]+2*mean3[2]+2*mean3[3]-2*mean3[7]- 2*mean3[8]-2*mean3[9])/16 gs[2]<-(mean1[1]-mean1[2]+mean1[3]-mean1[4]+mean2[1]-mean2[2]+ mean2[3]-mean2[4]+2*mean3[1]-2*mean3[3]+2*mean3[4]-2* mean3[6]+2*mean3[7]-2*mean3[9])/16 g_aa1<-0.5*gs[2]*gs[2]/n_fam g_aa2<-0.5*gs[1]*gs[1]/n_fam g_aa3<-g_aa1+g_aa2 sigma1[2]<-sigma1[1]+g_aa1;sigma1[3]<-sigma1[1]+g_aa2 sigma1[4]<-sigma1[1]+g_aa3;sigma2[1]<-sigma2[4]+g_aa3 sigma2[2]<-sigma2[4]+g_aa2;sigma2[3]<-sigma2[4]+g_aa1 sigma3[2]<-sigma3[1]+g_aa1;sigma3[3]<-sigma3[7]<-sigma3[9]<-sigma3[1] sigma3[4]<-sigma3[1]+g_aa2;sigma3[5]<-sigma3[1]+g_aa3 sigma3[6]<-sigma3[1]+g_aa2;sigma3[8]<-sigma3[1]+g_aa1 hh[1,1]<-sigma*(9/n_samP1+4/n_samF1+9/n_samP2)+64*sigma3[5]/s0[5] hh[1,2]<-0 hh[1,3]<--8*sigma3[5]/s0[5] hh[1,4]<-hh[1,3] hh[1,5]<--hh[1,3] hh[1,6]<-0 hh[1,7]<-hh[1,5] hh[1,8]<-sigma*(3/n_samP1-3/n_samP2) hh[1,9]<-16*sigma3[5]/s0[5] hh[1,10]<-0 hh[1,11]<-0 hh[1,12]<-0 hh[1,13]<-0 hh[1,14]<-48*sigma3[5]/s0[5] hh[1,15]<-0 hh[2,2]<-sigma1[1]/n0[1]+sigma1[2]/n0[2]+sigma3[1]/s0[1]+sigma3[2]/s0[2] hh[2,3]<-0 hh[2,4]<-sigma1[1]/n0[1]+sigma3[1]/s0[1] hh[2,5]<-0 hh[2,6]<-0 hh[2,7]<-hh[2,6] hh[2,8]<--sigma1[1]/n0[1] hh[2,9]<-0 hh[2,10]<-sigma3[2]/s0[2] hh[2,11]<--sigma3[1]/s0[1] hh[2,12]<-0 hh[2,13]<-hh[2,11] hh[2,14]<-sigma1[1]/n0[1]-2*sigma1[2]/n0[2] hh[2,15]<--sigma1[2]/n0[2] hh[3,3]<-sigma1[3]/n0[3]+sigma1[4]/n0[4]+sigma3[4]/s0[4]+sigma3[5]/s0[5] hh[3,4]<-sigma1[4]/n0[4]+sigma3[5]/s0[5] hh[3,5]<--sigma3[5]/s0[5] hh[3,6]<-0 hh[3,7]<--sigma3[5]/s0[5] hh[3,8]<-sigma1[4]/n0[4] hh[3,9]<--sigma1[4]/n0[4]-2*sigma3[5]/s0[5] hh[3,10]<-0 hh[3,11]<-0 hh[3,12]<--sigma3[4]/s0[4] hh[3,13]<-2*sigma3[4]/s0[4] hh[3,14]<--6*sigma3[5]/s0[5] hh[3,15]<--sigma1[3]/n0[3] hh[4,4]<-sigma1[1]/n0[1]+sigma1[4]/n0[4]+sigma3[1]/s0[1]+sigma3[5]/s0[5] hh[4,5]<--sigma3[5]/s0[5] hh[4,6]<-0 hh[4,7]<-hh[4,5] hh[4,8]<--sigma1[1]/n0[1]+sigma1[4]/n0[4] hh[4,9]<--sigma1[4]/n0[4]-2*sigma3[5]/s0[5] hh[4,10]<-0 hh[4,11]<--sigma3[1]/s0[1] hh[4,12]<-0 hh[4,13]<--sigma3[1]/s0[1] hh[4,14]<-sigma1[1]/n0[1]-6*sigma3[5]/s0[5] hh[4,15]<-0 hh[5,5]<-sigma2[1]/n0[5]+sigma2[2]/n0[6]+sigma3[5]/s0[5]+sigma3[6]/s0[6] hh[5,6]<-0 hh[5,7]<-sigma2[1]/n0[5]+sigma3[5]/s0[5] hh[5,8]<-sigma2[1]/n0[5] hh[5,9]<-sigma2[1]/n0[5]+2*sigma3[5]/s0[5] hh[5,10]<-0 hh[5,11]<-0 hh[5,12]<--sigma3[6]/s0[6] hh[5,13]<-0 hh[5,14]<-6*sigma3[5]/s0[5] hh[5,15]<-sigma2[2]/n0[6] hh[6,6]<-sigma2[3]/n0[7]+sigma2[4]/n0[8]+sigma3[8]/s0[8]+sigma3[9]/s0[9] hh[6,7]<-sigma2[4]/n0[8]+sigma3[9]/s0[9] hh[6,8]<--sigma2[4]/n0[8] hh[6,9]<-0 hh[6,10]<--sigma3[8]/s0[8] hh[6,11]<-sigma3[9]/s0[9] hh[6,12]<-hh[6,11] hh[6,13]<--2*sigma3[8]/s0[8]-sigma3[9]/s0[9] hh[6,14]<-2*sigma2[3]/n0[7]-sigma2[4]/n0[8] hh[6,15]<-sigma2[3]/n0[7] hh[7,7]<-sigma2[1]/n0[5]+sigma2[4]/n0[8]+sigma3[5]/s0[5]+sigma3[9]/s0[9] hh[7,8]<-sigma2[1]/n0[5]-sigma2[4]/n0[8] hh[7,9]<-sigma2[1]/n0[5]+2*sigma3[5]/s0[5] hh[7,10]<-0 hh[7,11]<-sigma3[9]/s0[9] hh[7,12]<-hh[7,11] hh[7,13]<--hh[7,11] hh[7,14]<--sigma2[4]/n0[8]+6*sigma3[5]/s0[5] hh[7,15]<-0 hh[8,8]<-sigma*(1/n_samP1+1/n_samP2)+sigma1[1]/n0[1]+sigma1[4]/n0[4]+sigma2[1]/n0[5]+sigma2[4]/n0[8] hh[8,9]<--sigma1[4]/n0[4]+sigma2[1]/n0[5] hh[8,10]<-0 hh[8,11]<-hh[8,10] hh[8,12]<-hh[8,10] hh[8,13]<-hh[8,10] hh[8,14]<--sigma1[1]/n0[1]+sigma2[4]/n0[8] hh[8,15]<-0 hh[9,9]<-sigma1[4]/n0[4]+sigma2[1]/n0[5]+4*sigma3[5]/s0[5] hh[9,10]<-0 hh[9,11]<-0 hh[9,12]<-0 hh[9,13]<-0 hh[9,14]<-12*sigma3[5]/s0[5] hh[9,15]<-0 hh[10,10]<-sigma3[2]/s0[2]+sigma3[3]/s0[3]+sigma3[7]/s0[7]+sigma3[8]/s0[8] hh[10,11]<-sigma3[3]/s0[3]+sigma3[7]/s0[7] hh[10,12]<-sigma3[7]/s0[7] hh[10,13]<-2*sigma3[8]/s0[8] hh[10,14]<-0 hh[10,15]<-0 hh[11,11]<-sigma3[1]/s0[1]+sigma3[3]/s0[3]+sigma3[7]/s0[7]+sigma3[9]/s0[9] hh[11,12]<-sigma3[7]/s0[7]+sigma3[9]/s0[9] hh[11,13]<-sigma3[1]/s0[1]-sigma3[9]/s0[9] hh[11,14]<-0 hh[11,15]<-0 hh[12,12]<-sigma3[4]/s0[4]+sigma3[6]/s0[6]+sigma3[7]/s0[7]+sigma3[9]/s0[9] hh[12,13]<--2*sigma3[4]/s0[4]-sigma3[9]/s0[9] hh[12,14]<-0 hh[12,15]<-0 hh[13,13]<-sigma3[1]/s0[1]+4*sigma3[4]/s0[4]+4*sigma3[8]/s0[8]+sigma3[9]/s0[9] hh[13,14]<-0 hh[13,15]<-0 hh[14,14]<-sigma1[1]/n0[1]+4*sigma1[2]/n0[2]+4*sigma2[3]/n0[7]+sigma2[4]/n0[8]+36*sigma3[5]/s0[5] hh[14,15]<-2*sigma1[2]/n0[2]+2*sigma2[3]/n0[7] hh[15,15]<-sigma1[2]/n0[2]+sigma1[3]/n0[3]+sigma2[2]/n0[6]+sigma2[3]/n0[7] for(i in 2:15) { for(j in 1:(i-1)) { hh[i,j]<-hh[j,i] } } b_line[1]<-3*sumx[1]/n_samP1+2*sumx[2]/n_samF1+3*sumx[3]/n_samP2-8*sumwx3[5]/s0[5] b_line[2]<-sumwx1[1]/n0[1]-sumwx1[2]/n0[2]-sumwx3[1]/s0[1]+sumwx3[2]/s0[2] b_line[3]<-sumwx1[3]/n0[3]-sumwx1[4]/n0[4]-sumwx3[4]/s0[4]+sumwx3[5]/s0[5] b_line[4]<-sumwx1[1]/n0[1]-sumwx1[4]/n0[4]-sumwx3[1]/s0[1]+sumwx3[5]/s0[5] b_line[5]<-sumwx2[1]/n0[5]-sumwx2[2]/n0[6]-sumwx3[5]/s0[5]+sumwx3[6]/s0[6] b_line[6]<-sumwx2[3]/n0[7]-sumwx2[4]/n0[8]-sumwx3[8]/s0[8]+sumwx3[9]/s0[9] b_line[7]<-sumwx2[1]/n0[5]-sumwx2[4]/n0[8]-sumwx3[5]/s0[5]+sumwx3[9]/s0[9] b_line[8]<-sumx[1]/n_samP1-sumx[3]/n_samP2-sumwx1[1]/n0[1]-sumwx1[4]/n0[4]+sumwx2[1]/n0[5]+sumwx2[4]/n0[8] b_line[9]<-sumwx1[4]/n0[4]+sumwx2[1]/n0[5]-2*sumwx3[5]/s0[5] b_line[10]<-sumwx3[2]/s0[2]-sumwx3[3]/s0[3]-sumwx3[7]/s0[7]+sumwx3[8]/s0[8] b_line[11]<-sumwx3[1]/s0[1]-sumwx3[3]/s0[3]-sumwx3[7]/s0[7]+sumwx3[9]/s0[9] b_line[12]<-sumwx3[4]/s0[4]-sumwx3[6]/s0[6]-sumwx3[7]/s0[7]+sumwx3[9]/s0[9] b_line[13]<-sumwx3[1]/s0[1]-2*sumwx3[4]/s0[4]+2*sumwx3[8]/s0[8]-sumwx3[9]/s0[9] b_line[14]<-sumwx1[1]/n0[1]+2*sumwx1[2]/n0[2]+2*sumwx2[3]/n0[7]+sumwx2[4]/n0[8]-6*sumwx3[5]/s0[5] b_line[15]<-sumwx1[2]/n0[2]-sumwx1[3]/n0[3]-sumwx2[2]/n0[6]+sumwx2[3]/n0[7] B<-solve(hh,b_line) mean[1]<-(sumx[1]+sigma*(-3*B[1]-B[8]))/n_samP1 mean[2]<-(sumx[2]+sigma*(-2*B[1]))/n_samF1 mean[3]<-(sumx[3]+sigma*(-3*B[1]+B[8]))/n_samP2 mean1[1]<-(sumwx1[1]+sigma1[1]*(-B[2]-B[4]+B[8]-B[14]))/n0[1] mean1[2]<-(sumwx1[2]+sigma1[2]*(B[2]-2*B[14]-B[15]))/n0[2] mean1[3]<-(sumwx1[3]+sigma1[3]*(-B[3]+B[15]))/n0[3] mean1[4]<-(sumwx1[4]+sigma1[4]*(B[3]+B[4]+B[8]-B[9]))/n0[4] mean2[1]<-(sumwx2[1]+sigma2[1]*(-B[5]-B[7]-B[8]-B[9]))/n0[5] mean2[2]<-(sumwx2[2]+sigma2[2]*(B[5]+B[15]))/n0[6] mean2[3]<-(sumwx2[3]+sigma2[3]*(-B[6]-2*B[14]-B[15]))/n0[7] mean2[4]<-(sumwx2[4]+sigma2[4]*(B[6]+B[7]-B[8]-B[14]))/n0[8] mean3[1]<-(sumwx3[1]+sigma3[1]*(B[2]+B[4]-B[11]-B[13]))/s0[1] mean3[2]<-(sumwx3[2]+sigma3[2]*(-B[2]-B[10]))/s0[2] mean3[3]<-(sumwx3[3]+sigma3[3]*(B[10]+B[11]))/s0[3] mean3[7]<-(sumwx3[7]+sigma3[7]*(B[10]+B[11]+B[12]))/s0[7] mean3[4]<-(sumwx3[4]+sigma3[4]*(B[3]-B[12]+2*B[13]))/s0[4] mean3[5]<-(sumwx3[5]+sigma3[5]*(8*B[1]-B[3]-B[4]+B[5]+B[7]+2*B[9]+6*B[14]))/s0[5] mean3[6]<-(sumwx3[6]+sigma3[6]*(-B[5]+B[12]))/s0[6] mean3[8]<-(sumwx3[8]+sigma3[8]*(B[6]-B[10]-2*B[13]))/s0[8] mean3[9]<-(sumwx3[9]+sigma3[9]*(-B[6]-B[7]-B[11]-B[12]+B[13]))/s0[9] aaa1<-max(abs(B-AA)) AA<-B if (n_iter>20) break } ss1<-sum((dataP1-mean[1])^2);ss3<-sum((dataP2-mean[3])^2);ss2<-sum((dataF1-mean[2])^2) for(i in 1:4) {swx1[i] <- W1[i,]%*%(dataB1-mean1[i])^2 };for(i in 1:4) {swx2[i] <- W2[i,]%*%(dataB2-mean2[i])^2 };for(i in 1:9) {swx3[i] <- W3[i,]%*%(dataF2-mean3[i])^2 } aaa0<-sigma1[1];n_iter<-0;aaa1<-1000 while (aaa1>0.0001) { n_iter<-n_iter+1 aa2<-sigma1[1]/(sigma1[1]+g_aa1) aa3<-sigma1[1]/(sigma1[1]+g_aa2) aa4<-sigma1[1]/(sigma1[1]+g_aa3) as1<-swx1[1]+swx1[2]*aa2^2+swx1[3]*aa3^2+swx1[4]*aa4^2 as2<-n0[1]+aa2*n0[2]+aa3*n0[3]+aa4*n0[4] sigma1[1]<-as1/as2 aaa1<-abs(sigma1[1]-aaa0) aaa0<-sigma1[1] if (n_iter>20) break } sigma40<-sigma1[1]-sigma; if (sigma40<0) {sigma40<-0;sigma1[1]<-sigma} sigma1[1]<-sigma40+sigma;sigma1[2]<-sigma1[1]+g_aa1 sigma1[3]<-sigma1[1]+g_aa2;sigma1[4]<-sigma1[1]+g_aa3 aaa0<-sigma2[4];n_iter<-0;aaa1<-1000 while (aaa1>0.001) { n_iter<-n_iter+1 aa1<-sigma2[4]/(sigma2[4]+g_aa3) aa2<-sigma2[4]/(sigma2[4]+g_aa2) aa3<-sigma2[4]/(sigma2[4]+g_aa1) as3<-swx2[1]*aa1^2+swx2[2]*aa2^2+swx2[3]*aa3^2+swx2[4] as4<-aa1*n0[5]+aa2*n0[6]+aa3*n0[7]+n0[8] sigma2[4]<-as3/as4 aaa1<-abs(sigma2[4]-aaa0) aaa0<-sigma2[4] if (n_iter>20) break } sigma50<-sigma2[4]-sigma; if (sigma50<0) {sigma50<-0;sigma2[4]<-sigma} sigma2[4]<-sigma50+sigma;sigma2[1]<-sigma2[4]+g_aa3 sigma2[2]<-sigma2[4]+g_aa2;sigma2[3]<-sigma2[4]+g_aa1 aaa0<-sigma3[1];aa6<-swx3[1]+swx3[3]+swx3[7]+swx3[9] aa7<-s0[1]+s0[3]+s0[7]+s0[9] n_iter<-0;aaa1<-1000 while (aaa1>0.001) { n_iter<-n_iter+1 aa1<-sigma3[1]/(sigma3[1]+g_aa1) aa2<-sigma3[1]/(sigma3[1]+g_aa2) aa3<-sigma3[1]/(sigma3[1]+g_aa3) as5<-aa6+(swx3[2]+swx3[8])*aa1^2+(swx3[4]+swx3[6])*aa2^2+swx3[5]*aa3^2 as6<-aa7+aa1*(s0[2]+s0[8])+aa2*(s0[4]+s0[6])+aa3*s0[5] sigma3[1]<-as5/as6 aaa1<-abs(sigma3[1]-aaa0) aaa0<-sigma3[1] if (n_iter>20) break } sigma60<-sigma3[1]-sigma; if (sigma60<0) {sigma60<-0;sigma3[1]<-sigma} sigma3[1]<-sigma60+sigma;sigma3[2]<-sigma3[1]+g_aa1 sigma3[3]<-sigma3[7]<-sigma3[9]<-sigma3[1];sigma3[4]<-sigma3[1]+g_aa2 sigma3[5]<-sigma3[1]+g_aa3;sigma3[6]<-sigma3[1]+g_aa2;sigma3[8]<-sigma3[1]+g_aa1 ab1<-ss1+ss2+ss3;ab2<-n_samP1+n_samF1+n_samP2 n_iter<-0;aaa0<-sigma;aaa1<-1000 while (aaa1>0.001) { n_iter<-n_iter+1 n0[11]<-sigma/(sigma+sigma40) n0[12]<-sigma/(sigma+sigma40+g_aa1) n0[13]<-sigma/(sigma+sigma40+g_aa2) n0[14]<-sigma/(sigma+sigma40+g_aa3) s0[11]<-sigma/(sigma+sigma50+g_aa3) s0[12]<-sigma/(sigma+sigma50+g_aa2) s0[13]<-sigma/(sigma+sigma50+g_aa1) s0[14]<-sigma/(sigma+sigma50) ab3<-sum(swx1[c(1:4)]*n0[c(11:14)]^2+swx2[c(1:4)]*s0[c(11:14)]^2) ab4<-sum(n0[c(1:4)]*n0[c(11:14)]+n0[c(5:8)]*s0[c(11:14)]) n0[11]<-sigma/(sigma+sigma60);n0[13]<-n0[17]<-n0[19]<-n0[11] n0[12]<-sigma/(sigma+sigma60+g_aa1);n0[14]<-sigma/(sigma+sigma60+g_aa2) n0[15]<-sigma/(sigma+sigma60+g_aa3);n0[16]<-sigma/(sigma+sigma60+g_aa2) n0[18]<-sigma/(sigma+sigma60+g_aa1) ab3<-ab3+sum(swx3[c(1:9)]*n0[c(11:19)]^2) ab4<-ab4+sum(s0[c(1:9)]*n0[11:19]) sigma<-(ab1+ab3)/(ab2+ab4) aaa1<-abs(sigma-aaa0) aaa0<-sigma if (n_iter>20) break } sigma1[1]<-sigma+sigma40;sigma1[2]<-sigma1[1]+g_aa1 sigma1[3]<-sigma1[1]+g_aa2;sigma1[4]<-sigma1[1]+g_aa3 sigma2[4]<-sigma+sigma50;sigma2[1]<-sigma2[4]+g_aa3 sigma2[2]<-sigma2[4]+g_aa2;sigma2[3]<-sigma2[4]+g_aa1 sigma3[1]<-sigma+sigma60;sigma3[3]<-sigma3[7]<-sigma3[9]<-sigma3[1] sigma3[2]<-sigma3[1]+g_aa1;sigma3[4]<-sigma3[1]+g_aa2 sigma3[5]<-sigma3[1]+g_aa3;sigma3[6]<-sigma3[1]+g_aa2;sigma3[8]<-sigma3[1]+g_aa1 L1<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma))))+sum(log(dmixnorm(dataB1,mean1,sqrt(sigma1),mix_pi1)))+ sum(log(dmixnorm(dataB2,mean2,sqrt(sigma2),mix_pi2)))+sum(log(dmixnorm(dataF2,mean3,sqrt(sigma3),mix_pi3))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc<-L0 AIC<--2*abc+2*9 meanP1<-mean[1];meanF1<-mean[2];meanP2<-mean[3] sigma0<-sigma dataP1<-sort(dataP1) P1w1<-1/(12*n_samP1) P1bmw <- matrix(0,n_samP1,1) P1gg <- (dataP1 - mean[1])/sqrt(as.vector(sigma)) P1bmw[which(P1gg>=0)] <- pnorm(P1gg[P1gg>=0]) P1bmw[which(P1gg<0)] <- 1 - pnorm(abs(P1gg[P1gg<0])) nn <- dim(as.matrix(unique(P1bmw)))[1] if(nn < n_samP1){P1bmw <- P1bmw+runif(n_samP1)/1e4} P1dd<-c((sum(P1bmw)),(sum(P1bmw^2)),sum((P1bmw-0.5)^2)) P1w<-P1w1+sum((P1bmw - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) P1u<- as.matrix(c(12*n_samP1*((P1dd[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((P1dd[2]/n_samP1-1/3)^2),180*n_samP1*((P1dd[3]/n_samP1-1/12)^2))) P1D<-as.numeric(ks.test(P1bmw,"punif")[[1]][1]) P1tt <- as.matrix(c((1 - pchisq(P1u[1],1)),(1 - pchisq(P1u[2],1)),(1 - pchisq(P1u[3],1)),K1(P1w),(1-pkolm(P1D,n_samP1)))) P1tt[which( P1tt>=10e-4)]<-round(P1tt[which(P1tt>=10e-4)],4);P1tt[which(P1tt<10e-4)]<-format(P1tt[which(P1tt<10e-4)],scientific=TRUE,digit=4) dataF1<-sort(dataF1) F1w1<-1/(12*n_samF1) F1bmw <- matrix(0,n_samF1,1) F1gg <- (dataF1 - mean[2])/sqrt(as.vector(sigma)) F1bmw[which(F1gg>=0)] <- pnorm(F1gg[F1gg>=0]) F1bmw[which(F1gg<0)] <- 1 - pnorm(abs(F1gg[F1gg<0])) nn <- dim(as.matrix(unique(F1bmw)))[1] if(nn < n_samF1){F1bmw <- F1bmw+runif(n_samF1)/1e4} F1dd<-c((sum(F1bmw)),(sum(F1bmw^2)),sum((F1bmw-0.5)^2)) F1w<-F1w1+sum((F1bmw - (as.matrix(c(1:n_samF1)) - 0.5)/n_samF1)^2) F1u<- as.matrix(c(12*n_samF1*((F1dd[1]/n_samF1-0.5)^2),((45*n_samF1)/4)*((F1dd[2]/n_samF1-1/3)^2),180*n_samF1*((F1dd[3]/n_samF1-1/12)^2))) F1D<-as.numeric(ks.test(F1bmw,"punif")[[1]][1]) F1tt <- as.matrix(c((1 - pchisq(F1u[1],1)),(1 - pchisq(F1u[2],1)),(1 - pchisq(F1u[3],1)),K1(F1w),(1-pkolm(F1D,n_samF1)))) F1tt[which(F1tt>=10e-4)]<-round(F1tt[which(F1tt>=10e-4)],4);F1tt[which(F1tt<10e-4)]<-format(F1tt[which(F1tt<10e-4)],scientific=TRUE,digit=4) dataP2<-sort(dataP2) P2w1<-1/(12*n_samP2) P2bmw <- matrix(0,n_samP2,1) P2gg <- (dataP2 - mean[3])/sqrt(as.vector(sigma)) P2bmw[which(P2gg>=0)] <- pnorm(P2gg[P2gg>=0]) P2bmw[which(P2gg<0)] <- 1 - pnorm(abs(P2gg[P2gg<0])) nn <- dim(as.matrix(unique(P2bmw)))[1] if(nn < n_samP2){P2bmw <- P2bmw+runif(n_samP2)/1e4} P2dd<-c((sum(P2bmw)),(sum(P2bmw^2)),sum((P2bmw-0.5)^2)) P2w<-P2w1+sum((P2bmw - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) P2u<- as.matrix(c(12*n_samP2*((P2dd[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((P2dd[2]/n_samP2-1/3)^2),180*n_samP2*((P2dd[3]/n_samP2-1/12)^2))) P2D<-as.numeric(ks.test(P2bmw,"punif")[[1]][1]) P2tt <- as.matrix(c((1 - pchisq(P2u[1],1)),(1 - pchisq(P2u[2],1)),(1 - pchisq(P2u[3],1)),K1(P2w),(1-pkolm(P2D,n_samP2)))) P2tt[which(P2tt>=10e-4)]<-round(P2tt[which(P2tt>=10e-4)],4);P2tt[which(P2tt<10e-4)]<-format(P2tt[which(P2tt<10e-4)],scientific=TRUE,digit=4) dataB1 <- sort(dataB1); B1w1<-1/(12*n_samB1) B1bmw <- matrix(0,n_samB1,1); B1bmwsl <- matrix(0,n_samB1,4) for(i in 1:4){ B1gg <- (dataB1 - mean1[i])/sqrt(sigma1[i]) B1bmw[which(B1gg>=0)] <- pnorm(B1gg[B1gg>=0]) B1bmw[which(B1gg<0)] <- 1 - pnorm(abs(B1gg[B1gg<0])) B1bmwsl[,i] <- B1bmw*mix_pi1[i] } B1P2 <- rowSums(B1bmwsl) nn <- dim(as.matrix(unique(B1P2)))[1] if(nn < n_samB1){B1P2 <- B1P2+runif(n_samB1)/1e4} B1dd <- as.matrix(c(sum(B1P2),sum(B1P2^2),sum((B1P2-0.5)^2))) B1WW2 <- 1/(12*n_samB1) + sum((B1P2 - (as.matrix(c(1:n_samB1)) - 0.5)/n_samB1)^2) B1u <- as.matrix(c(12*n_samB1*((B1dd[1]/n_samB1-0.5)^2),((45*n_samB1)/4)*((B1dd[2]/n_samB1-1/3)^2),180*n_samB1*((B1dd[3]/n_samB1-1/12)^2))) B1D <- as.numeric(ks.test(B1P2,"punif")[[1]][1]) B1tt <- as.matrix(c((1 - pchisq(B1u[1],1)),(1 - pchisq(B1u[2],1)),(1 - pchisq(B1u[3],1)),K1(B1WW2),(1-pkolm(B1D,n_samB1)))) B1tt[which( B1tt>=10e-4)]<-round(B1tt[which(B1tt>=10e-4)],4);B1tt[which(B1tt<10e-4)]<-format(B1tt[which(B1tt<10e-4)],scientific=TRUE,digit=4) dataB2 <- sort(dataB2); B2w1<-1/(12*n_samB2) B2bmw <- matrix(0,n_samB2,1); B2bmwsl <- matrix(0,n_samB2,4) for(i in 1:4){ B2gg <- (dataB2 - mean2[i])/sqrt(sigma2[i]) B2bmw[which(B2gg>=0)] <- pnorm(B2gg[B2gg>=0]) B2bmw[which(B2gg<0)] <- 1 - pnorm(abs(B2gg[B2gg<0])) B2bmwsl[,i] <- B2bmw*mix_pi2[i] } B2P2 <- rowSums(B2bmwsl) nn <- dim(as.matrix(unique(B2P2)))[1] if(nn < n_samB2){B2P2 <- B2P2+runif(n_samB2)/1e4} B2dd <- as.matrix(c(sum(B2P2),sum(B2P2^2),sum((B2P2-0.5)^2))) B2WW2 <- 1/(12*n_samB2) + sum((B2P2 - (as.matrix(c(1:n_samB2)) - 0.5)/n_samB2)^2) B2u <- as.matrix(c(12*n_samB2*((B2dd[1]/n_samB2-0.5)^2),((45*n_samB2)/4)*((B2dd[2]/n_samB2-1/3)^2),180*n_samB2*((B2dd[3]/n_samB2-1/12)^2))) B2D <- as.numeric(ks.test(B2P2,"punif")[[1]][1]) B2tt <- as.matrix(c((1 - pchisq(B2u[1],1)),(1 - pchisq(B2u[2],1)),(1 - pchisq(B2u[3],1)),K1(B2WW2),(1-pkolm(B2D,n_samB2)))) B2tt[which( B2tt>=10e-4)]<-round(B2tt[which(B2tt>=10e-4)],4);B2tt[which(B2tt<10e-4)]<-format(B2tt[which(B2tt<10e-4)],scientific=TRUE,digit=4) dataF2 <- sort(dataF2); F2w1<-1/(12*n_samF2) F2bmw <- matrix(0,n_samF2,1); F2bmwsl <- matrix(0,n_samF2,9) for(i in 1:9){ F2gg <- (dataF2 - mean3[i])/sqrt(sigma3[i]) F2bmw[which(F2gg>=0)] <- pnorm(F2gg[F2gg>=0]) F2bmw[which(F2gg<0)] <- 1 - pnorm(abs(F2gg[F2gg<0])) F2bmwsl[,i] <- F2bmw*mix_pi3[i] } F2P2 <- rowSums(F2bmwsl) nn <- dim(as.matrix(unique(F2P2)))[1] if(nn < n_samF2){F2P2 <- F2P2+runif(n_samF2)/1e4} F2dd <- as.matrix(c(sum(F2P2),sum(F2P2^2),sum((F2P2-0.5)^2))) F2WW2 <- 1/(12*n_samF2) + sum((F2P2 - (as.matrix(c(1:n_samF2)) - 0.5)/n_samF2)^2) F2u <- as.matrix(c(12*n_samF2*((F2dd[1]/n_samF2-0.5)^2),((45*n_samF2)/4)*((F2dd[2]/n_samF2-1/3)^2),180*n_samF2*((F2dd[3]/n_samF2-1/12)^2))) F2D <- as.numeric(ks.test(F2P2,"punif")[[1]][1]) F2tt <- as.matrix(c((1 - pchisq(F2u[1],1)),(1 - pchisq(F2u[2],1)),(1 - pchisq(F2u[3],1)),K1(F2WW2),(1-pkolm(F2D,n_samF2)))) F2tt[which( F2tt>=10e-4)]<-round(F2tt[which(F2tt>=10e-4)],4);F2tt[which(F2tt<10e-4)]<-format(F2tt[which(F2tt<10e-4)],scientific=TRUE,digit=4) aa<-matrix(c(1,1,1,1,0,1,0,0,0,1,1,-1,-1,-1,0,1,1,1,0.5,0.25,1,1,0,0.5,0.25,1,0,1,0.5,0.25, 1,0,0,0.5,0.25,1,0,0,-0.5,0.25,1,0,-1,-0.5,0.25,1,-1,0,-0.5,0.25,1,-1,-1,-0.5, 0.25,1,1,1,0,0.25,1,1,0,0,0.25,1,1,-1,0,0.25,1,0,1,0,0.25,1,0,0,0,0.25,1,0,-1,0, 0.25,1,-1,1,0,0.25,1,-1,0,0,0.25,1,-1,-1,0,0.25),20,5,byrow=T) b_line1<-as.matrix(c(mean[1],mean[2],mean[3],mean1[1],mean1[2],mean1[3],mean1[4],mean2[1],mean2[2],mean2[3],mean2[4], mean3[1],mean3[2],mean3[3],mean3[4],mean3[5],mean3[6],mean3[7],mean3[8],mean3[9])) B1<-solve(crossprod(aa,aa))%*%crossprod(aa,b_line1) jj1<-sigmaB1-sigma1[1] if (jj1<0 || jj1>=sigmaB1) {jj1<-0} ll1<-jj1/sigmaB1 mm1<-sigma1[1]-sigma if (mm1<0 || mm1>=sigmaB1) {mm1<-0} nn1<-mm1/sigmaB1 jj2<-sigmaB2-sigma2[4] if (jj2<0 || jj2>=sigmaB2) {jj2<-0} ll2<-jj2/sigmaB2 mm2<-sigma2[4]-sigma if (mm2<0 || mm2>=sigmaB2) {mm2<-0} nn2<-mm2/sigmaB2 jj3<-sigmaF2-sigma3[1] if (jj3<0 || jj3>=sigmaF2) {jj3<-0} ll3<-jj3/sigmaF2 mm3<-sigma3[1]-sigma if (mm3<0 || mm3>=sigmaF2) {mm3<-0} nn3<-mm3/sigmaF2 output <- data.frame("MX2-A-AD",round(abc,4),round(AIC,4),round(meanP1,4),round(meanF1,4),round(meanP2,4), round(sigma0,4),round(t(mean1),4),round(t(sigma1),4), round(t(mix_pi1),4),round(t(mean2),4),round(t(sigma2),4),round(t(mix_pi2),4), round(t(mean3),4),round(t(sigma3),4),round(t(mix_pi3),4), round(B1[1],4)," "," "," "," "," ",round(B1[2],4),round(B1[3],4)," "," "," "," "," "," ",round(B1[4],4),round(B1[5],4), round(jj1,4),round(ll1*100,4),round(mm1,4),round(nn1*100,4),round(jj2,4),round(ll2*100,4),round(mm2,4),round(nn2*100,4),round(jj3,4),round(ll3*100,4),round(mm3,4),round(nn3*100,4), round(P1u[1],4),P1tt[1],round(P1u[2],4),P1tt[2],round(P1u[3],4),P1tt[3],round(P1w,4),P1tt[4],round(P1D,4),P1tt[5], round(F1u[1],4),F1tt[1],round(F1u[2],4),F1tt[2],round(F1u[3],4),F1tt[3],round(F1w,4),F1tt[4],round(F1D,4),F1tt[5], round(P2u[1],4),P2tt[1],round(P2u[2],4),P2tt[2],round(P2u[3],4),P2tt[3],round(P2w,4),P2tt[4],round(P2D,4),P2tt[5], round(B1u[1],4),B1tt[1],round(B1u[2],4),B1tt[2],round(B1u[3],4),B1tt[3],round(B1WW2,4),B1tt[4],round(B1D,4),B1tt[5], round(B2u[1],4),B2tt[1],round(B2u[2],4),B2tt[2],round(B2u[3],4),B2tt[3],round(B2WW2,4),B2tt[4],round(B2D,4),B2tt[5], round(F2u[1],4),F2tt[1],round(F2u[2],4),F2tt[2],round(F2u[3],4),F2tt[3],round(F2WW2,4),F2tt[4],round(F2D,4),F2tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi1,mi2,mi3) return(OUTPUT) } G6FModelFun[[22]] <- function(K1,logL,df11,df21,df31,df41,df51,df61,G6Ftext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataF1 <- as.matrix(as.numeric(df21[,1])) dataP2 <- as.matrix(as.numeric(df31[,1]));dataB1 <- as.matrix(as.numeric(df41[,1])) dataB2 <- as.matrix(as.numeric(df51[,1]));dataF2 <- as.matrix(as.numeric(df61[,1])) n_samP1<-dim(dataP1)[1];n_samF1<-dim(dataF1)[1];n_samP2<-dim(dataP2)[1] n_samB1<-dim(dataB1)[1];n_samB2<-dim(dataB2)[1];n_samF2<-dim(dataF2)[1] sumx<-as.matrix(c(sum(dataP1),sum(dataF1),sum(dataP2),sum(dataB1),sum(dataB2),sum(dataF2))) s<-as.matrix(c(sum(dataP1^2),sum(dataF1^2),sum(dataP2^2),sum(dataB1^2),sum(dataB2^2),sum(dataF2^2))) ss<-matrix(0,3,1);ss[1]<-s[1]-sumx[1]^2/n_samP1;ss[2]<-s[2]-sumx[2]^2/n_samF1;ss[3]<-s[3]-sumx[3]^2/n_samP2 mean<-as.matrix(c(mean(dataP1),mean(dataF1),mean(dataP2),mean(dataB1),mean(dataB2),mean(dataF2))) sigma0<-sum(ss)/(n_samP1+n_samF1+n_samP2-3) sigmaB1<-var(dataB1);sigma40<-sigmaB1 sigmaB2<-var(dataB2);sigma50<-sigmaB2 sigmaF2<-var(dataF2);sigma60<-sigmaF2 sigmaP1<-sigmaF1<-sigmaP2<-sigma0 m_esp <- 0.0001;n_fam <- as.numeric(G6Ftext2) mi1<-as.matrix(c(0.25,0.5,0.25));sigma1<-matrix(0,3,1) mi2<-as.matrix(c(0.25,0.5,0.25));sigma2<-matrix(0,3,1) mi3<-as.matrix(c(0.0625,0.25,0.125,0.25,0.25,0.0625)) sigma3<-matrix(0,6,1) sigma<-sigma0 a1<-sqrt(sigmaB1/n_samB1);if (mean[1]<mean[3]) {a1<--a1} mean1<-as.matrix(c(mean[1],mean[4],mean[4]-1.2*a1)) a2<-sqrt(sigmaB2/n_samB2);if (mean[1]<mean[3]) {a2<--a2} mean2<-as.matrix(c(mean[2]+0.5*a1,mean[5],mean[5]-1.2*a2)) a3<-sqrt(sigmaF2/n_samF2);if (mean[1]<mean[3]){a3<--a3} mean3<-as.matrix(c(mean[1],mean[4],mean[2],mean[2],mean[5],mean[2])) sigma1[1]<-sigmaB1/2;sigma2[3]<-sigmaB2/2;sigma3[1]<-sigmaF2/2 gs<-matrix(0,1,1) gs[1]<-(mean1[1]-mean1[3]+mean2[1]-mean2[3]+2*mean3[1]+mean3[2]-mean3[5]-2*mean3[6])/14 g_aa1<-0.5*gs[1]^2/n_fam g_aa2<-gs[1]^2/n_fam sigma1[2]<-sigma1[1]+g_aa1;sigma1[3]<-sigma1[1]+g_aa2 sigma2[1]<-sigma2[3]+g_aa2;sigma2[2]<-sigma2[3]+g_aa1 sigma3[2]<-sigma3[1]+g_aa1;sigma3[3]<-sigma3[6]<-sigma3[1] sigma3[4]<-sigma3[1]+g_aa2;sigma3[5]<-sigma3[1]+g_aa1 L0<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma0))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma0))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma0))))+sum(log(dmixnorm(dataB1,mean1,sqrt(sigma1),mi1)))+ sum(log(dmixnorm(dataB2,mean2,sqrt(sigma2),mi2)))+sum(log(dmixnorm(dataF2,mean3,sqrt(sigma3),mi3))) iteration <- 0; stopa <- 1000 W1 <- matrix(0,3,n_samB1); swx1 <- matrix(0,3,1) W2 <- matrix(0,3,n_samB2); swx2 <- matrix(0,3,1) W3 <- matrix(0,6,n_samF2); swx3 <- matrix(0,6,1) hh<-matrix(0,10,10);b_line<-matrix(0,10,1) n0<-matrix(0,15,1);s0<-matrix(0,15,1) while(stopa > m_esp&&iteration<=1000){ iteration <- iteration + 1 for(i in 1:3) { W1[i,] <- mi1[i]*dnorm(dataB1,mean1[i],sqrt(sigma1[i]))/dmixnorm(dataB1,mean1,sqrt(sigma1),mi1) } mix_pi1 <- as.matrix(rowSums(W1)/n_samB1) sumwx1 <- W1%*%dataB1 for(i in 1:3) { W2[i,] <- mi2[i]*dnorm(dataB2,mean2[i],sqrt(sigma2[i]))/dmixnorm(dataB2,mean2,sqrt(sigma2),mi2) } mix_pi2 <- as.matrix(rowSums(W2)/n_samB2) sumwx2 <- W2%*%dataB2 for(i in 1:6) { W3[i,] <- mi3[i]*dnorm(dataF2,mean3[i],sqrt(sigma3[i]))/dmixnorm(dataF2,mean3,sqrt(sigma3),mi3) } mix_pi3 <- as.matrix(rowSums(W3)/n_samF2) sumwx3 <- W3%*%dataF2 n0[c(1:3)]<-mix_pi1[c(1:3)]*n_samB1;n0[c(4:6)]<-mix_pi2[c(1:3)]*n_samB2 s0[c(1:6)]<-mix_pi3[c(1:6)]*n_samF2 s0[c(1:6)][abs(s0[c(1:6)])<0.00000001]<-0.000001 n0[c(1:6)][abs(n0[c(1:6)])<0.00000001]<-0.000001 aaa0<-0;AA<-matrix(0,10,1);n_iter<-0 aaa1<-1000 while(aaa1>0.001) { n_iter<-n_iter+1; gs[1]<-(mean1[1]-mean1[3]+mean2[1]-mean2[3]+2*mean3[1]+mean3[2]-mean3[5]-2*mean3[6])/14 g_aa1<-0.5*gs[1]^2/n_fam g_aa2<-gs[1]^2/n_fam sigma1[2]<-sigma1[1]+g_aa1;sigma1[3]<-sigma1[1]+g_aa2 sigma2[1]<-sigma2[3]+g_aa2;sigma2[2]<-sigma2[3]+g_aa1 sigma3[2]<-sigma3[1]+g_aa1;sigma3[3]<-sigma3[6]<-sigma3[1] sigma3[4]<-sigma3[1]+g_aa2;sigma3[5]<-sigma3[1]+g_aa1 aa11<-sigma3[4]*sumwx3[3]+sigma3[3]*sumwx3[4] aa12<-sigma3[4]*s0[3]+sigma3[3]*s0[4] aa13<-sigma3[3]*sigma3[4] hh[1,1]<-sigma*(9/n_samP1+4/n_samF1+9/n_samP2)+64*aa13/aa12 hh[1,2]<-sigma*(3/n_samP1-3/n_samP2) hh[1,3]<-hh[1,2] hh[1,4]<-hh[1,2] hh[1,5]<--8*aa13/aa12 hh[1,6]<-0 hh[1,7]<-16*aa13/aa12 hh[1,8]<-hh[1,7] hh[1,9]<-0.5*hh[1,7] hh[1,10]<-hh[1,7] hh[2,2]<-sigma*(1/n_samP1+1/n_samP2)+4*sigma1[1]/n0[1]+36*sigma1[2]/n0[2]+36*sigma3[5]/s0[5]+4*sigma3[6]/s0[6] hh[2,3]<-sigma*(1/n_samP1+1/n_samP2)-2*sigma1[1]/n0[1] hh[2,4]<-sigma*(1/n_samP1+1/n_samP2)+12*sigma1[2]/n0[2] hh[2,5]<-2*sigma1[1]/n0[1] hh[2,6]<-2*sigma1[1]/n0[1]+6*sigma1[2]/n0[2] hh[2,7]<--6*sigma1[2]/n0[2] hh[2,8]<-0 hh[2,9]<-6*sigma3[5]/s0[5] hh[2,10]<--2*sigma3[6]/s0[6] hh[3,3]<-sigma*(1/n_samP1+1/n_samP2)+sigma1[1]/n0[1]+sigma1[3]/n0[3]+sigma2[1]/n0[4]+sigma2[3]/n0[6] hh[3,4]<-sigma*(1/n_samP1+1/n_samP2) hh[3,5]<--sigma1[1]/n0[1]+sigma1[3]/n0[3] hh[3,6]<--sigma1[1]/n0[1] hh[3,7]<-0 hh[3,8]<--sigma1[3]/n0[3]+sigma2[1]/n0[4] hh[3,9]<-sigma2[1]/n0[4] hh[3,10]<-0 hh[4,4]<-sigma*(1/n_samP1+1/n_samP2)+4*sigma1[2]/n0[2]+4*sigma2[2]/n0[5] hh[4,5]<-0 hh[4,6]<-2*sigma1[2]/n0[2] hh[4,7]<--2*sigma1[2]/n0[2]+2*sigma2[2]/n0[5] hh[4,8]<-0 hh[4,9]<--2*sigma2[2]/n0[5] hh[4,10]<-0 hh[5,5]<-sigma1[1]/n0[1]+sigma1[3]/n0[3]+sigma3[1]/s0[1]+aa13/aa12 hh[5,6]<-sigma1[1]/n0[1]+sigma3[1]/s0[1] hh[5,7]<--2*aa13/aa12 hh[5,8]<--sigma1[3]/n0[3]-2*aa13/aa12 hh[5,9]<--aa13/aa12 hh[5,10]<--sigma3[1]/s0[1]-2*aa13/aa12 hh[6,6]<-sigma1[1]/n0[1]+sigma1[2]/n0[2]+sigma3[1]/s0[1]+sigma3[2]/s0[2] hh[6,7]<--sigma1[2]/n0[2] hh[6,8]<-0 hh[6,9]<-0 hh[6,10]<--sigma3[1]/s0[1] hh[7,7]<-sigma1[2]/n0[2]+sigma2[2]/n0[5]+4*aa13/aa12 hh[7,8]<-4*aa13/aa12 hh[7,9]<--sigma2[2]/n0[5]+2*aa13/aa12 hh[7,10]<-4*aa13/aa12 hh[8,8]<-sigma1[3]/n0[3]+sigma2[1]/n0[4]+4*aa13/aa12 hh[8,9]<-sigma2[1]/n0[4]+2*aa13/aa12 hh[8,10]<-4*aa13/aa12 hh[9,9]<-sigma2[1]/n0[4]+sigma2[2]/n0[5]+aa13/aa12+sigma3[5]/s0[5] hh[9,10]<-2*aa13/aa12 hh[10,10]<-sigma3[1]/s0[1]+sigma3[6]/s0[6]+4*aa13/aa12 for(i in 2:10) { for(j in 1:(i-1)) { hh[i,j]<-hh[j,i] } } b_line[1]<-3*sumx[1]/n_samP1+2*sumx[2]/n_samF1+3*sumx[3]/n_samP2-8*aa11/aa12; b_line[2]<-sumx[1]/n_samP1-sumx[3]/n_samP2+2*sumwx1[1]/n0[1]-6*sumwx1[2]/n0[2]+6*sumwx3[5]/s0[5]-2*sumwx3[6]/s0[6]; b_line[3]<-sumx[1]/n_samP1-sumx[3]/n_samP2-sumwx1[1]/n0[1]-sumwx1[3]/n0[3]+sumwx2[1]/n0[4]+sumwx2[3]/n0[6]; b_line[4]<-sumx[1]/n_samP1-sumx[3]/n_samP2-2*sumwx1[2]/n0[2]+2*sumwx2[2]/n0[5]; b_line[5]<-sumwx1[1]/n0[1]-sumwx1[3]/n0[3]-sumwx3[1]/s0[1]+aa11/aa12; b_line[6]<-sumwx1[1]/n0[1]-sumwx1[2]/n0[2]-sumwx3[1]/s0[1]+sumwx3[2]/s0[2]; b_line[7]<-sumwx1[2]/n0[2]+sumwx2[2]/n0[5]-2*aa11/aa12; b_line[8]<-sumwx1[3]/n0[3]+sumwx2[1]/n0[4]-2*aa11/aa12; b_line[9]<-sumwx2[1]/n0[4]-sumwx2[2]/n0[5]-aa11/aa12+sumwx3[5]/s0[5]; b_line[10]<-sumwx3[1]/s0[1]-2*aa11/aa12+sumwx3[6]/s0[6]; B<-solve(hh,b_line) mean[1]<-(sumx[1]+sigma*(-3*B[1]-B[2]-B[3]-B[4]))/n_samP1 mean[2]<-(sumx[2]-sigma*2*B[1])/n_samF1 mean[3]<-(sumx[3]+sigma*(-3*B[1]+B[2]+B[3]+B[4]))/n_samP2 mean1[1]<-(sumwx1[1]+sigma1[1]*(-2*B[2]+B[3]-B[5]-B[6]))/n0[1] mean1[2]<-(sumwx1[2]+sigma1[2]*(6*B[2]+2*B[4]+B[6]-B[7]))/n0[2] mean1[3]<-(sumwx1[3]+sigma1[3]*(B[3]+B[5]-B[8]))/n0[3] mean2[1]<-(sumwx2[1]+sigma2[1]*(-B[3]-B[8]-B[9]))/n0[4] mean2[2]<-(sumwx2[2]+sigma2[2]*(-2*B[4]-B[7]+B[9]))/n0[5] mean2[3]<-(sumwx2[3]-sigma2[3]*B[3])/n0[6] mean3[1]<-(sumwx3[1]+sigma3[1]*(B[5]+B[6]-B[10]))/s0[1] mean3[2]<-(sumwx3[2]+sigma3[2]*(-B[6]))/s0[2] mean3[3]<-(sigma3[4]*sumwx3[3]+sigma3[3]*sumwx3[4]+sigma3[3]*sigma3[4]*(8*B[1]-B[5]+2*B[7]+2*B[8]+B[9]+2*B[10]))/(sigma3[4]*s0[3]+sigma3[3]*s0[4]) mean3[4]<-mean3[3] mean3[5]<-(sumwx3[5]+sigma3[5]*(-6*B[2]-B[9]))/s0[5] mean3[6]<-(sumwx3[6]+sigma3[6]*(2*B[2]-B[10]))/s0[6] aaa1<-max(abs(B-AA)) AA<-B if (n_iter>20) break } ss1<-sum((dataP1-mean[1])^2);ss3<-sum((dataP2-mean[3])^2);ss2<-sum((dataF1-mean[2])^2) for(i in 1:3) {swx1[i] <- W1[i,]%*%(dataB1-mean1[i])^2 };for(i in 1:3) {swx2[i] <- W2[i,]%*%(dataB2-mean2[i])^2 };for(i in 1:6) {swx3[i] <- W3[i,]%*%(dataF2-mean3[i])^2 } aaa0<-sigma1[1];n_iter<-0;aaa1<-1000 while (aaa1>0.0001) { n_iter<-n_iter+1 aa2<-sigma1[1]/(sigma1[1]+g_aa1) aa3<-sigma1[1]/(sigma1[1]+g_aa2) as1<-swx1[1]+swx1[2]*aa2^2+swx1[3]*aa3^2 as2<-n0[1]+aa2*n0[2]+aa3*n0[3] sigma1[1]<-as1/as2 aaa1<-abs(sigma1[1]-aaa0) aaa0<-sigma1[1] if (n_iter>20) break } sigma40<-sigma1[1]-sigma; if (sigma40<0) {sigma40<-0;sigma1[1]<-sigma} sigma1[1]<-sigma+sigma40;sigma1[2]<-sigma1[1]+g_aa1;sigma1[3]<-sigma1[1]+g_aa2 aaa0<-sigma2[3];n_iter<-0;aaa1<-1000 while (aaa1>0.001) { n_iter<-n_iter+1 aa1<-sigma2[3]/(sigma2[3]+g_aa2) aa2<-sigma2[3]/(sigma2[3]+g_aa1) as3<-swx2[1]*aa1^2+swx2[2]*aa2^2+swx2[3] as4<-aa1*n0[4]+aa2*n0[5]+n0[6] sigma2[3]<-as3/as4 aaa1<-abs(sigma2[3]-aaa0) aaa0<-sigma2[3] if (n_iter>20) break } sigma50<-sigma2[3]-sigma; if (sigma50<0) {sigma50<-0;sigma2[3]<-sigma} sigma2[3]<-sigma+sigma50;sigma2[1]<-sigma2[3]+g_aa2;sigma2[2]<-sigma2[3]+g_aa1 aaa0<-sigma3[1];aa6<-swx3[1]+swx3[3]+swx3[6];aa7<-s0[1]+s0[3]+s0[6] n_iter<-0;aaa1<-1000 while (aaa1>0.001) { n_iter<-n_iter+1 aa1<-sigma3[1]/(sigma3[1]+g_aa1) aa2<-sigma3[1]/(sigma3[1]+g_aa2) as5<-aa6+(swx3[2]+swx3[5])*aa1^2+swx3[4]*aa2^2 as6<-aa7+aa1*(s0[2]+s0[5])+aa2*s0[4] sigma3[1]<-as5/as6 aaa1<-abs(sigma3[1]-aaa0) aaa0<-sigma3[1] if (n_iter>20) break } sigma60<-sigma3[1]-sigma; if (sigma60<0) {sigma60<-0;sigma3[1]<-sigma} sigma3[1]<-sigma+sigma60;sigma3[2]<-sigma3[1]+g_aa1 sigma3[3]<-sigma3[6]<-sigma3[1];sigma3[4]<-sigma3[1]+g_aa2;sigma3[5]<-sigma3[1]+g_aa1 ab1<-ss1+ss2+ss3;ab2<-n_samP1+n_samF1+n_samP2 n_iter<-0;aaa0<-sigma;aaa1<-1000 while (aaa1>0.001) { n_iter<-n_iter+1 n0[11]<-sigma/(sigma+sigma40) n0[12]<-sigma/(sigma+sigma40+g_aa1) n0[13]<-sigma/(sigma+sigma40+g_aa2) s0[11]<-sigma/(sigma+sigma50+g_aa2) s0[12]<-sigma/(sigma+sigma50+g_aa1) s0[13]<-sigma/(sigma+sigma50) ab3<-sum(swx1[c(1:3)]*n0[c(11:13)]^2+swx2[c(1:3)]*s0[c(11:13)]^2) ab4<-sum(n0[c(1:3)]*n0[c(11:13)]+n0[c(4:6)]*s0[c(11:13)]) n0[11]<-sigma/(sigma+sigma60);n0[13]<-n0[16]<-n0[11] n0[12]<-sigma/(sigma+sigma60+g_aa1) n0[14]<-sigma/(sigma+sigma60+g_aa2) n0[15]<-sigma/(sigma+sigma60+g_aa1) ab3<-ab3+sum(swx3[c(1:6)]*n0[c(11:16)]^2) ab4<-ab4+sum(s0[c(1:6)]*n0[11:16]) sigma<-(ab1+ab3)/(ab2+ab4) aaa1<-abs(sigma-aaa0) aaa0<-sigma if (n_iter>20) break } sigma1[1]<-sigma+sigma40;sigma1[2]<-sigma1[1]+g_aa1 sigma1[3]<-sigma1[1]+g_aa2;sigma2[3]<-sigma+sigma50 sigma2[1]<-sigma2[3]+g_aa2;sigma2[2]<-sigma2[3]+g_aa1 sigma3[1]<-sigma+sigma60;sigma3[2]<-sigma3[1]+g_aa1 sigma3[3]<-sigma3[6]<-sigma3[1];sigma3[4]<-sigma3[1]+g_aa2 sigma3[5]<-sigma3[1]+g_aa1 L1<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma))))+sum(log(dmixnorm(dataB1,mean1,sqrt(sigma1),mix_pi1)))+ sum(log(dmixnorm(dataB2,mean2,sqrt(sigma2),mix_pi2)))+sum(log(dmixnorm(dataF2,mean3,sqrt(sigma3),mix_pi3))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc<-L0 AIC<--2*abc+2*8 meanP1<-mean[1];meanF1<-mean[2];meanP2<-mean[3] sigma0<-sigma dataP1<-sort(dataP1) P1w1<-1/(12*n_samP1) P1bmw <- matrix(0,n_samP1,1) P1gg <- (dataP1 - mean[1])/sqrt(as.vector(sigma)) P1bmw[which(P1gg>=0)] <- pnorm(P1gg[P1gg>=0]) P1bmw[which(P1gg<0)] <- 1 - pnorm(abs(P1gg[P1gg<0])) nn <- dim(as.matrix(unique(P1bmw)))[1] if(nn < n_samP1){P1bmw <- P1bmw+runif(n_samP1)/1e4} P1dd<-c((sum(P1bmw)),(sum(P1bmw^2)),sum((P1bmw-0.5)^2)) P1w<-P1w1+sum((P1bmw - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) P1u<- as.matrix(c(12*n_samP1*((P1dd[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((P1dd[2]/n_samP1-1/3)^2),180*n_samP1*((P1dd[3]/n_samP1-1/12)^2))) P1D<-as.numeric(ks.test(P1bmw,"punif")[[1]][1]) P1tt <- as.matrix(c((1 - pchisq(P1u[1],1)),(1 - pchisq(P1u[2],1)),(1 - pchisq(P1u[3],1)),K1(P1w),(1-pkolm(P1D,n_samP1)))) P1tt[which( P1tt>=10e-4)]<-round(P1tt[which(P1tt>=10e-4)],4);P1tt[which(P1tt<10e-4)]<-format(P1tt[which(P1tt<10e-4)],scientific=TRUE,digit=4) dataF1<-sort(dataF1) F1w1<-1/(12*n_samF1) F1bmw <- matrix(0,n_samF1,1) F1gg <- (dataF1 - mean[2])/sqrt(as.vector(sigma)) F1bmw[which(F1gg>=0)] <- pnorm(F1gg[F1gg>=0]) F1bmw[which(F1gg<0)] <- 1 - pnorm(abs(F1gg[F1gg<0])) nn <- dim(as.matrix(unique(F1bmw)))[1] if(nn < n_samF1){F1bmw <- F1bmw+runif(n_samF1)/1e4} F1dd<-c((sum(F1bmw)),(sum(F1bmw^2)),sum((F1bmw-0.5)^2)) F1w<-F1w1+sum((F1bmw - (as.matrix(c(1:n_samF1)) - 0.5)/n_samF1)^2) F1u<- as.matrix(c(12*n_samF1*((F1dd[1]/n_samF1-0.5)^2),((45*n_samF1)/4)*((F1dd[2]/n_samF1-1/3)^2),180*n_samF1*((F1dd[3]/n_samF1-1/12)^2))) F1D<-as.numeric(ks.test(F1bmw,"punif")[[1]][1]) F1tt <- as.matrix(c((1 - pchisq(F1u[1],1)),(1 - pchisq(F1u[2],1)),(1 - pchisq(F1u[3],1)),K1(F1w),(1-pkolm(F1D,n_samF1)))) F1tt[which(F1tt>=10e-4)]<-round(F1tt[which(F1tt>=10e-4)],4);F1tt[which(F1tt<10e-4)]<-format(F1tt[which(F1tt<10e-4)],scientific=TRUE,digit=4) dataP2<-sort(dataP2) P2w1<-1/(12*n_samP2) P2bmw <- matrix(0,n_samP2,1) P2gg <- (dataP2 - mean[3])/sqrt(as.vector(sigma)) P2bmw[which(P2gg>=0)] <- pnorm(P2gg[P2gg>=0]) P2bmw[which(P2gg<0)] <- 1 - pnorm(abs(P2gg[P2gg<0])) nn <- dim(as.matrix(unique(P2bmw)))[1] if(nn < n_samP2){P2bmw <- P2bmw+runif(n_samP2)/1e4} P2dd<-c((sum(P2bmw)),(sum(P2bmw^2)),sum((P2bmw-0.5)^2)) P2w<-P2w1+sum((P2bmw - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) P2u<- as.matrix(c(12*n_samP2*((P2dd[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((P2dd[2]/n_samP2-1/3)^2),180*n_samP2*((P2dd[3]/n_samP2-1/12)^2))) P2D<-as.numeric(ks.test(P2bmw,"punif")[[1]][1]) P2tt <- as.matrix(c((1 - pchisq(P2u[1],1)),(1 - pchisq(P2u[2],1)),(1 - pchisq(P2u[3],1)),K1(P2w),(1-pkolm(P2D,n_samP2)))) P2tt[which(P2tt>=10e-4)]<-round(P2tt[which(P2tt>=10e-4)],4);P2tt[which(P2tt<10e-4)]<-format(P2tt[which(P2tt<10e-4)],scientific=TRUE,digit=4) dataB1 <- sort(dataB1); B1w1<-1/(12*n_samB1) B1bmw <- matrix(0,n_samB1,1); B1bmwsl <- matrix(0,n_samB1,3) for(i in 1:3){ B1gg <- (dataB1 - mean1[i])/sqrt(sigma1[i]) B1bmw[which(B1gg>=0)] <- pnorm(B1gg[B1gg>=0]) B1bmw[which(B1gg<0)] <- 1 - pnorm(abs(B1gg[B1gg<0])) B1bmwsl[,i] <- B1bmw*mix_pi1[i] } B1P2 <- rowSums(B1bmwsl) nn <- dim(as.matrix(unique(B1P2)))[1] if(nn < n_samB1){B1P2 <- B1P2+runif(n_samB1)/1e4} B1dd <- as.matrix(c(sum(B1P2),sum(B1P2^2),sum((B1P2-0.5)^2))) B1WW2 <- 1/(12*n_samB1) + sum((B1P2 - (as.matrix(c(1:n_samB1)) - 0.5)/n_samB1)^2) B1u <- as.matrix(c(12*n_samB1*((B1dd[1]/n_samB1-0.5)^2),((45*n_samB1)/4)*((B1dd[2]/n_samB1-1/3)^2),180*n_samB1*((B1dd[3]/n_samB1-1/12)^2))) B1D <- as.numeric(ks.test(B1P2,"punif")[[1]][1]) B1tt <- as.matrix(c((1 - pchisq(B1u[1],1)),(1 - pchisq(B1u[2],1)),(1 - pchisq(B1u[3],1)),K1(B1WW2),(1-pkolm(B1D,n_samB1)))) B1tt[which( B1tt>=10e-4)]<-round(B1tt[which(B1tt>=10e-4)],4);B1tt[which(B1tt<10e-4)]<-format(B1tt[which(B1tt<10e-4)],scientific=TRUE,digit=4) dataB2 <- sort(dataB2); B2w1<-1/(12*n_samB2) B2bmw <- matrix(0,n_samB2,1); B2bmwsl <- matrix(0,n_samB2,3) for(i in 1:3){ B2gg <- (dataB2 - mean2[i])/sqrt(sigma2[i]) B2bmw[which(B2gg>=0)] <- pnorm(B2gg[B2gg>=0]) B2bmw[which(B2gg<0)] <- 1 - pnorm(abs(B2gg[B2gg<0])) B2bmwsl[,i] <- B2bmw*mix_pi2[i] } B2P2 <- rowSums(B2bmwsl) nn <- dim(as.matrix(unique(B2P2)))[1] if(nn < n_samB2){B2P2 <- B2P2+runif(n_samB2)/1e4} B2dd <- as.matrix(c(sum(B2P2),sum(B2P2^2),sum((B2P2-0.5)^2))) B2WW2 <- 1/(12*n_samB2) + sum((B2P2 - (as.matrix(c(1:n_samB2)) - 0.5)/n_samB2)^2) B2u <- as.matrix(c(12*n_samB2*((B2dd[1]/n_samB2-0.5)^2),((45*n_samB2)/4)*((B2dd[2]/n_samB2-1/3)^2),180*n_samB2*((B2dd[3]/n_samB2-1/12)^2))) B2D <- as.numeric(ks.test(B2P2,"punif")[[1]][1]) B2tt <- as.matrix(c((1 - pchisq(B2u[1],1)),(1 - pchisq(B2u[2],1)),(1 - pchisq(B2u[3],1)),K1(B2WW2),(1-pkolm(B2D,n_samB2)))) B2tt[which( B2tt>=10e-4)]<-round(B2tt[which(B2tt>=10e-4)],4);B2tt[which(B2tt<10e-4)]<-format(B2tt[which(B2tt<10e-4)],scientific=TRUE,digit=4) dataF2 <- sort(dataF2); F2w1<-1/(12*n_samF2) F2bmw <- matrix(0,n_samF2,1); F2bmwsl <- matrix(0,n_samF2,6) for(i in 1:6){ F2gg <- (dataF2 - mean3[i])/sqrt(sigma3[i]) F2bmw[which(F2gg>=0)] <- pnorm(F2gg[F2gg>=0]) F2bmw[which(F2gg<0)] <- 1 - pnorm(abs(F2gg[F2gg<0])) F2bmwsl[,i] <- F2bmw*mix_pi3[i] } F2P2 <- rowSums(F2bmwsl) nn <- dim(as.matrix(unique(F2P2)))[1] if(nn < n_samF2){F2P2 <- F2P2+runif(n_samF2)/1e4} F2dd <- as.matrix(c(sum(F2P2),sum(F2P2^2),sum((F2P2-0.5)^2))) F2WW2 <- 1/(12*n_samF2) + sum((F2P2 - (as.matrix(c(1:n_samF2)) - 0.5)/n_samF2)^2) F2u <- as.matrix(c(12*n_samF2*((F2dd[1]/n_samF2-0.5)^2),((45*n_samF2)/4)*((F2dd[2]/n_samF2-1/3)^2),180*n_samF2*((F2dd[3]/n_samF2-1/12)^2))) F2D <- as.numeric(ks.test(F2P2,"punif")[[1]][1]) F2tt <- as.matrix(c((1 - pchisq(F2u[1],1)),(1 - pchisq(F2u[2],1)),(1 - pchisq(F2u[3],1)),K1(F2WW2),(1-pkolm(F2D,n_samF2)))) F2tt[which( F2tt>=10e-4)]<-round(F2tt[which(F2tt>=10e-4)],4);F2tt[which(F2tt<10e-4)]<-format(F2tt[which(F2tt<10e-4)],scientific=TRUE,digit=4) aa<-matrix(c(1,2,1,0,1,0,0,1,1,-2,-1,0,1,2,0.5,0.25,1,1,0.5,0.25, 1,0,0.5,0.25,1,0,-0.5,0.25,1,-1,-0.5,0.25,1,-2,-0.5,0.25, 1,2,0,0.25,1,1,0,0.25,1,0,0,0.25,1,-1,0,0.25,1,-2,0,0.25),14,4,byrow=T) b_line1<-as.matrix(c(mean[1],mean[2],mean[3],mean1[1],mean1[2],mean1[3],mean2[1],mean2[2],mean2[3],mean3[1],mean3[2],mean3[3],mean3[5],mean3[6])) B1<-solve(crossprod(aa,aa))%*%crossprod(aa,b_line1) jj1<-sigmaB1-sigma1[1] if (jj1<0 || jj1>=sigmaB1) {jj1<-0} ll1<-jj1/sigmaB1 mm1<-sigma1[1]-sigma if (mm1<0 || mm1>=sigmaB1) {mm1<-0} nn1<-mm1/sigmaB1 jj2<-sigmaB2-sigma2[3] if (jj2<0 || jj2>=sigmaB2) {jj2<-0} ll2<-jj2/sigmaB2 mm2<-sigma2[3]-sigma if (mm2<0 || mm2>=sigmaB2) {mm2<-0} nn2<-mm2/sigmaB2 jj3<-sigmaF2-sigma3[1] if (jj3<0 || jj3>=sigmaF2) {jj3<-0} ll3<-jj3/sigmaF2 mm3<-sigma3[1]-sigma if (mm3<0 || mm3>=sigmaF2) {mm3<-0} nn3<-mm3/sigmaF2 output <- data.frame("MX2-EA-AD",round(abc,4),round(AIC,4),round(meanP1,4),round(meanF1,4),round(meanP2,4), round(sigma0,4),round(t(mean1),4)," ",round(t(sigma1),4)," ", round(t(mix_pi1),4)," ",round(t(mean2),4)," ",round(t(sigma2),4)," ",round(t(mix_pi2),4)," ", round(t(mean3),4)," "," "," ",round(t(sigma3),4)," "," "," ",round(t(mix_pi3),4)," "," "," ", round(B1[1],4)," "," "," "," "," ",round(B1[2],4),round(B1[2],4)," "," "," "," "," "," ",round(B1[3],4),round(B1[4],4), round(jj1,4),round(ll1*100,4),round(mm1,4),round(nn1*100,4),round(jj2,4),round(ll2*100,4),round(mm2,4),round(nn2*100,4),round(jj3,4),round(ll3*100,4),round(mm3,4),round(nn3*100,4), round(P1u[1],4),P1tt[1],round(P1u[2],4),P1tt[2],round(P1u[3],4),P1tt[3],round(P1w,4),P1tt[4],round(P1D,4),P1tt[5], round(F1u[1],4),F1tt[1],round(F1u[2],4),F1tt[2],round(F1u[3],4),F1tt[3],round(F1w,4),F1tt[4],round(F1D,4),F1tt[5], round(P2u[1],4),P2tt[1],round(P2u[2],4),P2tt[2],round(P2u[3],4),P2tt[3],round(P2w,4),P2tt[4],round(P2D,4),P2tt[5], round(B1u[1],4),B1tt[1],round(B1u[2],4),B1tt[2],round(B1u[3],4),B1tt[3],round(B1WW2,4),B1tt[4],round(B1D,4),B1tt[5], round(B2u[1],4),B2tt[1],round(B2u[2],4),B2tt[2],round(B2u[3],4),B2tt[3],round(B2WW2,4),B2tt[4],round(B2D,4),B2tt[5], round(F2u[1],4),F2tt[1],round(F2u[2],4),F2tt[2],round(F2u[3],4),F2tt[3],round(F2WW2,4),F2tt[4],round(F2D,4),F2tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi1,mi2,mi3) return(OUTPUT) } G6FModelFun[[23]] <- function(K1,logL,df11,df21,df31,df41,df51,df61,G6Ftext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataF1 <- as.matrix(as.numeric(df21[,1])) dataP2 <- as.matrix(as.numeric(df31[,1]));dataB1 <- as.matrix(as.numeric(df41[,1])) dataB2 <- as.matrix(as.numeric(df51[,1]));dataF2 <- as.matrix(as.numeric(df61[,1])) n_samP1<-dim(dataP1)[1];n_samF1<-dim(dataF1)[1];n_samP2<-dim(dataP2)[1] n_samB1<-dim(dataB1)[1];n_samB2<-dim(dataB2)[1];n_samF2<-dim(dataF2)[1] sumx<-as.matrix(c(sum(dataP1),sum(dataF1),sum(dataP2),sum(dataB1),sum(dataB2),sum(dataF2))) s<-as.matrix(c(sum(dataP1^2),sum(dataF1^2),sum(dataP2^2),sum(dataB1^2),sum(dataB2^2),sum(dataF2^2))) ss<-matrix(0,3,1);ss[1]<-s[1]-sumx[1]^2/n_samP1;ss[2]<-s[2]-sumx[2]^2/n_samF1;ss[3]<-s[3]-sumx[3]^2/n_samP2 mean<-as.matrix(c(mean(dataP1),mean(dataF1),mean(dataP2),mean(dataB1),mean(dataB2),mean(dataF2))) sigma0<-sum(ss)/(n_samP1+n_samF1+n_samP2-3) sigmaB1<-var(dataB1);sigma40<-sigmaB1 sigmaB2<-var(dataB2);sigma50<-sigmaB2 sigmaF2<-var(dataF2);sigma60<-sigmaF2 sigmaP1<-sigmaF1<-sigmaP2<-sigma0 m_esp <- 0.0001;n_fam <- as.numeric(G6Ftext2) mi1<-matrix(0.25,4,1);sigma1<-matrix(0,4,1) mi2<-matrix(0.25,4,1);sigma2<-matrix(0,4,1) mi3<-as.matrix(c(0.0625,0.125,0.0625,0.125,0.25,0.125,0.0625,0.125,0.0625)) sigma3<-matrix(0,9,1);sigma<-sigma0 a1<-sqrt(sigmaB1/n_samB1);if (mean[1]<mean[3]) a1<--a1 mean1<-as.matrix(c(mean[1],mean[4]-0.5*a1,mean[4]-a1,mean[4]-1.5*a1)) a2<-sqrt(sigma50/n_samB2);if (mean[1]<mean[3]) a2<--a2 mean2<-as.matrix(c(mean[5]+a2,mean[5],mean[5]-a2,mean[5]-2*a2)) a3<-sqrt(sigma60/n_samF2);if (mean[1]<mean[3]) a3<--a3 mean3<-matrix(0,9,1) mean3[1]<-mean[1];mean3[2]<-mean[1]-0.5*a3 mean3[3]<-(mean[1]+mean[3])/2;mean3[4]<-mean[6]+0.6*a3 mean3[5]<-mean[6];mean3[6]<-mean3[4]-0.6*a3 mean3[7]<-mean3[3];mean3[8]<-mean[6]-a3;mean3[9]<-mean[3] sigma1[1]<-sigmaB1/2;sigma2[4]<-sigmaB2/2;sigma3[1]<-sigmaF2/2 gs<-matrix(0,2,1) gs[1]<-0.00453*mean[1]+0.00302*mean[2]+0.00453*mean[3]+0.03172* mean1[1]+0.03193*mean1[2]-0.02362*mean1[3]-0.02341*mean1[4]+ 0.08686*mean2[1]+0.08749*mean2[2]-0.07918*mean2[3]-0.07855* mean2[4]+0.08686*mean3[1]+0.08707*mean3[2]+0.0877*mean3[3]+ 0.03151*mean3[4]+0.03172*mean3[5]+0.03235*mean3[6]-0.13453* mean3[7]-0.13432*mean3[8]-0.13369*mean3[9]; gs[2]<-0.00453*mean[1]+0.00302*mean[2]+0.00453*mean[3]+0.03172* mean1[1]-0.02362*mean1[2]+0.03193*mean1[3]-0.02341*mean1[4]+ 0.08686*mean2[1]-0.07918*mean2[2]+0.08749*mean2[3]-0.07855* mean2[4]+0.08686*mean3[1]+0.03151*mean3[2]-0.13453*mean3[3]+ 0.08707*mean3[4]+0.03172*mean3[5]-0.13432*mean3[6]+0.0877* mean3[7]+0.03235*mean3[8]-0.13369*mean3[9]; g_aa1<-0.75*gs[2]^2/n_fam g_aa2<-0.75*gs[1]^2/n_fam g_aa3<-0.75*(gs[1]^2+gs[2]^2)/n_fam sigma1[2]<-sigma1[1]+g_aa1;sigma1[3]<-sigma1[1]+g_aa2 sigma1[4]<-sigma1[1]+g_aa3;sigma2[1]<-sigma2[4]+g_aa3 sigma2[2]<-sigma2[4]+g_aa2;sigma2[3]<-sigma2[4]+g_aa1 sigma3[2]<-sigma3[1]+g_aa1;sigma3[3]<-sigma3[7]<-sigma3[9]<-sigma3[1] sigma3[4]<-sigma3[1]+g_aa2;sigma3[5]<-sigma3[1]+g_aa3 sigma3[6]<-sigma3[4];sigma3[8]<-sigma3[2] L0<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma0))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma0))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma0))))+sum(log(dmixnorm(dataB1,mean1,sqrt(sigma1),mi1)))+ sum(log(dmixnorm(dataB2,mean2,sqrt(sigma2),mi2)))+sum(log(dmixnorm(dataF2,mean3,sqrt(sigma3),mi3))) iteration <- 0; stopa <- 1000 W1 <- matrix(0,4,n_samB1); swx1 <- matrix(0,4,1) W2 <- matrix(0,4,n_samB2); swx2 <- matrix(0,4,1) W3 <- matrix(0,9,n_samF2); swx3 <- matrix(0,9,1) hh<-matrix(0,15,15);b_line<-matrix(0,15,1) n0<-matrix(0,18,1);s0<-matrix(0,18,1) while(stopa > m_esp&&iteration<=1000){ iteration <- iteration + 1 for(i in 1:4) { W1[i,] <- mi1[i]*dnorm(dataB1,mean1[i],sqrt(sigma1[i]))/dmixnorm(dataB1,mean1,sqrt(sigma1),mi1) } mix_pi1 <- as.matrix(rowSums(W1)/n_samB1) sumwx1 <- W1%*%dataB1 for(i in 1:4) { W2[i,] <- mi2[i]*dnorm(dataB2,mean2[i],sqrt(sigma2[i]))/dmixnorm(dataB2,mean2,sqrt(sigma2),mi2) } mix_pi2 <- as.matrix(rowSums(W2)/n_samB2) sumwx2 <- W2%*%dataB2 for(i in 1:9) { W3[i,] <- mi3[i]*dnorm(dataF2,mean3[i],sqrt(sigma3[i]))/dmixnorm(dataF2,mean3,sqrt(sigma3),mi3) } mix_pi3 <- as.matrix(rowSums(W3)/n_samF2) sumwx3 <- W3%*%dataF2 n0[c(1:4)]<-mix_pi1[c(1:4)]*n_samB1;n0[c(5:8)]<-mix_pi2[c(1:4)]*n_samB2 s0[c(1:9)]<-mix_pi3[c(1:9)]*n_samF2 s0[c(1:9)][abs(s0[c(1:9)])<0.00000001]<-0.000001 n0[c(1:8)][abs(n0[c(1:8)])<0.00000001]<-0.000001 aaa0<-0;AA<-matrix(0,15,1);n_iter<-0;aaa1<-1000 while(aaa1>0.001) { n_iter<-n_iter+1 gs[1]<-0.00453*mean[1]+0.00302*mean[2]+0.00453*mean[3]+0.03172* mean1[1]+0.03193*mean1[2]-0.02362*mean1[3]-0.02341*mean1[4]+ 0.08686*mean2[1]+0.08749*mean2[2]-0.07918*mean2[3]-0.07855* mean2[4]+0.08686*mean3[1]+0.08707*mean3[2]+0.0877*mean3[3]+ 0.03151*mean3[4]+0.03172*mean3[5]+0.03235*mean3[6]-0.13453* mean3[7]-0.13432*mean3[8]-0.13369*mean3[9]; gs[2]<-0.00453*mean[1]+0.00302*mean[2]+0.00453*mean[3]+0.03172* mean1[1]-0.02362*mean1[2]+0.03193*mean1[3]-0.02341*mean1[4]+ 0.08686*mean2[1]-0.07918*mean2[2]+0.08749*mean2[3]-0.07855* mean2[4]+0.08686*mean3[1]+0.03151*mean3[2]-0.13453*mean3[3]+ 0.08707*mean3[4]+0.03172*mean3[5]-0.13432*mean3[6]+0.0877* mean3[7]+0.03235*mean3[8]-0.13369*mean3[9]; g_aa1<-0.75*gs[2]^2/n_fam g_aa2<-0.75*gs[1]^2/n_fam g_aa3<-0.75*(gs[1]^2+gs[2]^2)/n_fam sigma1[2]<-sigma1[1]+g_aa1;sigma1[3]<-sigma1[1]+g_aa2 sigma1[4]<-sigma1[1]+g_aa3;sigma2[1]<-sigma2[4]+g_aa3 sigma2[2]<-sigma2[4]+g_aa2;sigma2[3]<-sigma2[4]+g_aa1 sigma3[2]<-sigma3[1]+g_aa1;sigma3[3]<-sigma3[7]<-sigma3[9]<-sigma3[1] sigma3[4]<-sigma3[1]+g_aa2;sigma3[5]<-sigma3[1]+g_aa3 sigma3[6]<-sigma3[4];sigma3[8]<-sigma3[2] hh[1,1]<-sigma1[1]/n0[1]+sigma1[2]/n0[2]+sigma3[1]/s0[1]+sigma3[2]/s0[2] hh[1,2]<-0 hh[1,3]<-sigma1[1]/n0[1]+sigma3[1]/s0[1] hh[1,4]<-0 hh[1,5]<-0 hh[1,6]<-0 hh[1,7]<--sigma1[1]/n0[1] hh[1,8]<-0 hh[1,9]<-0 hh[1,10]<--sigma3[1]/s0[1] hh[1,11]<-0 hh[1,12]<--sigma1[1]/n0[1]+sigma1[2]/n0[2] hh[1,13]<--sigma3[1]/s0[1]-sigma3[2]/s0[2] hh[1,14]<--5*sigma1[2]/n0[2] hh[1,15]<-4*sigma3[1]/s0[1] hh[2,2]<-sigma1[3]/n0[3]+sigma1[4]/n0[4]+sigma3[4]/s0[4]+sigma3[5]/s0[5] hh[2,3]<-sigma1[4]/n0[4]+sigma3[5]/s0[5] hh[2,4]<--sigma3[5]/s0[5] hh[2,5]<-0 hh[2,6]<-hh[2,4] hh[2,7]<-sigma1[4]/n0[4] hh[2,8]<--sigma1[4]/n0[4]-2*sigma3[5]/s0[5] hh[2,9]<--4*sigma3[5]/s0[5] hh[2,10]<-0 hh[2,11]<--2*sigma1[3]/n0[3] hh[2,12]<--sigma1[3]/n0[3]+sigma1[4]/n0[4] hh[2,13]<-sigma3[4]/s0[4] hh[2,14]<--5*sigma1[3]/n0[3] hh[2,15]<-2*sigma1[4]/n0[4]+4*sigma3[5]/s0[5] hh[3,3]<-sigma1[1]/n0[1]+sigma1[4]/n0[4]+sigma3[1]/s0[1]+sigma3[5]/s0[5] hh[3,4]<--sigma3[5]/s0[5] hh[3,5]<-0 hh[3,6]<-hh[3,4] hh[3,7]<--sigma1[1]/n0[1]+sigma1[4]/n0[4] hh[3,8]<--sigma1[4]/n0[4]-2*sigma3[5]/s0[5] hh[3,9]<--4*sigma3[5]/s0[5] hh[3,10]<--sigma3[1]/s0[1] hh[3,11]<-0 hh[3,12]<--sigma1[1]/n0[1]+sigma1[4]/n0[4] hh[3,13]<--sigma3[1]/s0[1] hh[3,14]<-0 hh[3,15]<-2*sigma1[4]/n0[4]+4*sigma3[1]/s0[1]+4*sigma3[5]/s0[5] hh[4,4]<-sigma2[1]/n0[5]+sigma2[2]/n0[6]+sigma3[5]/s0[5]+sigma3[6]/s0[6] hh[4,5]<-0 hh[4,6]<-sigma2[1]/n0[5]+sigma3[5]/s0[5] hh[4,7]<-sigma2[1]/n0[5] hh[4,8]<-sigma2[1]/n0[5]+2*sigma3[5]/s0[5] hh[4,9]<-4*sigma3[5]/s0[5] hh[4,10]<-0 hh[4,11]<--2*sigma2[2]/n0[6] hh[4,12]<--sigma2[1]/n0[5]+sigma2[2]/n0[6] hh[4,13]<-sigma3[6]/s0[6] hh[4,14]<-3*sigma2[2]/n0[6] hh[4,15]<-2*sigma2[1]/n0[5]-4*sigma3[5]/s0[5] hh[5,5]<-sigma2[3]/n0[7]+sigma2[4]/n0[8]+sigma3[8]/s0[8]+sigma3[9]/s0[9] hh[5,6]<-sigma2[4]/n0[8]+sigma3[9]/s0[9] hh[5,7]<--sigma2[4]/n0[8] hh[5,8]<-0 hh[5,9]<-0 hh[5,10]<-sigma3[9]/s0[9] hh[5,11]<-0 hh[5,12]<--sigma2[3]/n0[7]+sigma2[4]/n0[8] hh[5,13]<--sigma3[8]/s0[8]-sigma3[9]/s0[9] hh[5,14]<-3*sigma2[3]/n0[7] hh[5,15]<-0 hh[6,6]<-sigma2[1]/n0[5]+sigma2[4]/n0[8]+sigma3[5]/s0[5]+sigma3[9]/s0[9] hh[6,7]<-sigma2[1]/n0[5]-sigma2[4]/n0[8] hh[6,8]<-sigma2[1]/n0[5]+2*sigma3[5]/s0[5] hh[6,9]<-4*sigma3[5]/s0[5] hh[6,10]<-sigma3[9]/s0[9] hh[6,11]<-0 hh[6,12]<--sigma2[1]/n0[5]+sigma2[4]/n0[8] hh[6,13]<--sigma3[9]/s0[9] hh[6,14]<-0 hh[6,15]<-2*sigma2[1]/n0[5]-4*sigma3[5]/s0[5] hh[7,7]<-sigma*(1/n_samP1+1/n_samP2)+sigma1[1]/n0[1]+sigma1[4]/n0[4]+sigma2[1]/n0[5]+sigma2[4]/n0[8] hh[7,8]<--sigma1[4]/n0[4]+sigma2[1]/n0[5] hh[7,9]<-sigma*(3/n_samP1-3/n_samP2) hh[7,10]<-0 hh[7,11]<-sigma*(1/n_samP1+1/n_samP2) hh[7,12]<-sigma*(3/n_samP1-3/n_samP2)+sigma1[1]/n0[1]+sigma1[4]/n0[4]-sigma2[1]/n0[5]-sigma2[4]/n0[8] hh[7,13]<-0 hh[7,14]<-0 hh[7,15]<-sigma*(1/n_samP1+1/n_samP2)+2*sigma1[4]/n0[4]+2*sigma2[1]/n0[5] hh[8,8]<-sigma1[4]/n0[4]+sigma2[1]/n0[5]+4*sigma3[5]/s0[5] hh[8,9]<-8*sigma3[5]/s0[5] hh[8,10]<-0 hh[8,11]<-0 hh[8,12]<--sigma1[4]/n0[4]-sigma2[1]/n0[5] hh[8,13]<-0 hh[8,14]<-0 hh[8,15]<--2*sigma1[4]/n0[4]+2*sigma2[1]/n0[5]-8*sigma3[5]/s0[5] hh[9,9]<-sigma*(9/n_samP1+4/n_samF1+9/n_samP2)+4*sigma3[3]/s0[3]+16*sigma3[5]/s0[5]+4*sigma3[7]/s0[7] hh[9,10]<-2*sigma3[3]/s0[3]+2*sigma3[7]/s0[7] hh[9,11]<-sigma*(3/n_samP1-3/n_samP2)+2*sigma3[3]/s0[3]-2*sigma3[7]/s0[7] hh[9,12]<-sigma*(9/n_samP1+4/n_samF1+9/n_samP2) hh[9,13]<-0 hh[9,14]<--2*sigma3[3]/s0[3]+2*sigma3[7]/s0[7] hh[9,15]<-sigma*(3/n_samP1-3/n_samP2)-16*sigma3[5]/s0[5] hh[10,10]<-sigma3[1]/s0[1]+sigma3[3]/s0[3]+sigma3[7]/s0[7]+sigma3[9]/s0[9] hh[10,11]<-sigma3[3]/s0[3]-sigma3[7]/s0[7] hh[10,12]<-0 hh[10,13]<-sigma3[1]/s0[1]-sigma3[9]/s0[9] hh[10,14]<--sigma3[3]/s0[3]+sigma3[7]/s0[7] hh[10,15]<--4*sigma3[1]/s0[1] hh[11,11]<-sigma*(1/n_samP1+1/n_samP2)+4*sigma1[3]/n0[3]+4*sigma2[2]/n0[6]+sigma3[3]/s0[3]+sigma3[7]/s0[7] hh[11,12]<-sigma*(3/n_samP1-3/n_samP2)+2*sigma1[3]/n0[3]-2*sigma2[2]/n0[6] hh[11,13]<-0 hh[11,14]<-10*sigma1[3]/n0[3]-6*sigma2[2]/n0[6]-sigma3[3]/s0[3]-sigma3[7]/s0[7] hh[11,15]<-sigma*(1/n_samP1+1/n_samP2) hh[12,12]<-sigma*(9/n_samP1+4/n_samF1+9/n_samP2)+sigma1[1]/n0[1]+sigma1[2]/n0[2]+sigma1[3]/n0[3]+sigma1[4]/n0[4]+sigma2[1]/n0[5]+sigma2[2]/n0[6]+sigma2[3]/n0[7]+sigma2[4]/n0[8] hh[12,13]<-0 hh[12,14]<--5*sigma1[2]/n0[2]+5*sigma1[3]/n0[3]+3*sigma2[2]/n0[6]-3*sigma2[3]/n0[7] hh[12,15]<-sigma*(3/n_samP1-3/n_samP2)+2*sigma1[4]/n0[4]-2*sigma2[1]/n0[5] hh[13,13]<-sigma3[1]/s0[1]+sigma3[2]/s0[2]+sigma3[4]/s0[4]+sigma3[6]/s0[6]+sigma3[8]/s0[8]+sigma3[9]/s0[9] hh[13,14]<-0 hh[13,15]<--4*sigma3[1]/s0[1] hh[14,14]<-25*sigma1[2]/n0[2]+25*sigma1[3]/n0[3]+9*sigma2[2]/n0[6]+9*sigma2[3]/n0[7]+sigma3[3]/s0[3]+sigma3[7]/s0[7] hh[14,15]<-0 hh[15,15]<-sigma*(1/n_samP1+1/n_samP2)+4*sigma1[4]/n0[4]+4*sigma2[1]/n0[5]+ 16*sigma3[1]/s0[1]+16*sigma3[5]/s0[5] for(i in 2:15) { for(j in 1:(i-1)) { hh[i,j]<-hh[j,i] } } b_line[1]<-sumwx1[1]/n0[1]-sumwx1[2]/n0[2]-sumwx3[1]/s0[1]+sumwx3[2]/s0[2] b_line[2]<-sumwx1[3]/n0[3]-sumwx1[4]/n0[4]-sumwx3[4]/s0[4]+sumwx3[5]/s0[5] b_line[3]<-sumwx1[1]/n0[1]-sumwx1[4]/n0[4]-sumwx3[1]/s0[1]+sumwx3[5]/s0[5] b_line[4]<-sumwx2[1]/n0[5]-sumwx2[2]/n0[6]-sumwx3[5]/s0[5]+sumwx3[6]/s0[6] b_line[5]<-sumwx2[3]/n0[7]-sumwx2[4]/n0[8]-sumwx3[8]/s0[8]+sumwx3[9]/s0[9] b_line[6]<-sumwx2[1]/n0[5]-sumwx2[4]/n0[8]-sumwx3[5]/s0[5]+sumwx3[9]/s0[9] b_line[7]<-sumx[1]/n_samP1-sumx[3]/n_samP2-sumwx1[1]/n0[1]-sumwx1[4]/n0[4]+sumwx2[1]/n0[5]+sumwx2[4]/n0[8] b_line[8]<-sumwx1[4]/n0[4]+sumwx2[1]/n0[5]-2*sumwx3[5]/s0[5] b_line[9]<-3*sumx[1]/n_samP1+2*sumx[2]/n_samF1+3*sumx[3]/n_samP2-2*sumwx3[3]/s0[3]-4*sumwx3[5]/s0[5]-2*sumwx3[7]/s0[7] b_line[10]<-sumwx3[1]/s0[1]-sumwx3[3]/s0[3]-sumwx3[7]/s0[7]+sumwx3[9]/s0[9] b_line[11]<-sumx[1]/n_samP1-sumx[3]/n_samP2-2*sumwx1[3]/n0[3]+2*sumwx2[2]/n0[6]-sumwx3[3]/s0[3]+sumwx3[7]/s0[7] b_line[12]<-3*sumx[1]/n_samP1+2*sumx[2]/n_samF1+3*sumx[3]/n_samP2-sumwx1[1]/n0[1]-sumwx1[2]/n0[2]-sumwx1[3]/n0[3]-sumwx1[4]/n0[4]-sumwx2[1]/n0[5]-sumwx2[2]/n0[6]-sumwx2[3]/n0[7]-sumwx2[4]/n0[8] b_line[13]<-sumwx3[1]/s0[1]-sumwx3[2]/s0[2]-sumwx3[4]/s0[4]+sumwx3[6]/s0[6]+sumwx3[8]/s0[8]-sumwx3[9]/s0[9] b_line[14]<-5*sumwx1[2]/n0[2]-5*sumwx1[3]/n0[3]-3*sumwx2[2]/n0[6]+3*sumwx2[3]/n0[7]+sumwx3[3]/s0[3]-sumwx3[7]/s0[7] b_line[15]<-sumx[1]/n_samP1-sumx[3]/n_samP2-2*sumwx1[4]/n0[4]+2*sumwx2[1]/n0[5]-4*sumwx3[1]/s0[1]+4*sumwx3[5]/s0[5] B<-solve(hh,b_line) mean[1]<-(sumx[1]+sigma*(-B[7]-3*B[9]-B[11]-3*B[12]-B[15]))/n_samP1 mean[2]<-(sumx[2]+sigma*(-2*B[9]-2*B[12]))/n_samF1 mean[3]<-(sumx[3]+sigma*(B[7]-3*B[9]+B[11]-3*B[12]+B[15]))/n_samP2 mean1[1]<-(sumwx1[1]+sigma1[1]*(-B[1]-B[3]+B[7]+B[12]))/n0[1] mean1[2]<-(sumwx1[2]+sigma1[2]*(B[1]+B[12]-5*B[14]))/n0[2] mean1[3]<-(sumwx1[3]+sigma1[3]*(-B[2]+2*B[11]+B[12]+5*B[14]))/n0[3] mean1[4]<-(sumwx1[4]+sigma1[4]*(B[2]+B[3]+B[7]-B[8]+B[12]+2*B[15]))/n0[4] mean2[1]<-(sumwx2[1]+sigma2[1]*(-B[4]-B[6]-B[7]-B[8]+B[12]-2*B[15]))/n0[5] mean2[2]<-(sumwx2[2]+sigma2[2]*(B[4]-2*B[11]+B[12]+3*B[14]))/n0[6] mean2[3]<-(sumwx2[3]+sigma2[3]*(-B[5]+B[12]-3*B[14]))/n0[7] mean2[4]<-(sumwx2[4]+sigma2[4]*(B[5]+B[6]-B[7]+B[12]))/n0[8] mean3[1]<-(sumwx3[1]+sigma3[1]*(B[1]+B[3]-B[10]-B[13]+4*B[15]))/s0[1] mean3[2]<-(sumwx3[2]+sigma3[2]*(-B[1]+B[13]))/s0[2] mean3[3]<-(sumwx3[3]+sigma3[3]*(2*B[9]+B[10]+B[11]-B[14]))/s0[3] mean3[7]<-(sumwx3[7]+sigma3[7]*(2*B[9]+B[10]-B[11]+B[14]))/s0[7] mean3[4]<-(sumwx3[4]+sigma3[4]*(B[2]+B[13]))/s0[4] mean3[5]<-(sumwx3[5]+sigma3[5]*(-B[2]-B[3]+B[4]+B[6]+2*B[8]+4*B[9]-4*B[15]))/s0[5] mean3[6]<-(sumwx3[6]+sigma3[6]*(-B[4]-B[13]))/s0[6] mean3[8]<-(sumwx3[8]+sigma3[8]*(B[5]-B[13]))/s0[8] mean3[9]<-(sumwx3[9]+sigma3[9]*(-B[5]-B[6]-B[10]+B[13]))/s0[9] aaa1<-max(abs(B-AA)) AA<-B if (n_iter>20) break } ss1<-sum((dataP1-mean[1])^2);ss3<-sum((dataP2-mean[3])^2);ss2<-sum((dataF1-mean[2])^2) for(i in 1:4) {swx1[i] <- W1[i,]%*%(dataB1-mean1[i])^2 };for(i in 1:4) {swx2[i] <- W2[i,]%*%(dataB2-mean2[i])^2 }; for(i in 1:9) {swx3[i] <- W3[i,]%*%(dataF2-mean3[i])^2 } aaa0<-sigma1[1];n_iter<-0;aaa1<-1000 while (aaa1>0.0001) { n_iter<-n_iter+1 aa2<-sigma1[1]/(sigma1[1]+g_aa1) aa3<-sigma1[1]/(sigma1[1]+g_aa2) aa4<-sigma1[1]/(sigma1[1]+g_aa3) as1<-swx1[1]+swx1[2]*aa2^2+swx1[3]*aa3^2+swx1[4]*aa4^2 as2<-n0[1]+aa2*n0[2]+aa3*n0[3]+aa4*n0[4] sigma1[1]<-as1/as2 aaa1<-abs(sigma1[1]-aaa0) aaa0<-sigma1[1] if (n_iter>20) break } sigma40<-sigma1[1]-sigma; if (sigma40<0) {sigma40<-0;sigma1[1]<-sigma} sigma1[1]<-sigma40+sigma;sigma1[2]<-sigma1[1]+g_aa1 sigma1[3]<-sigma1[1]+g_aa2;sigma1[4]<-sigma1[1]+g_aa3 aaa0<-sigma2[4];n_iter<-0;aaa1<-1000 while (aaa1>0.0001) { n_iter<-n_iter+1 aa1<-sigma2[4]/(sigma2[4]+g_aa3) aa2<-sigma2[4]/(sigma2[4]+g_aa2) aa3<-sigma2[4]/(sigma2[4]+g_aa1) as3<-swx2[1]*aa1^2+swx2[2]*aa2^2+swx2[3]*aa3^2+swx2[4] as4<-aa1*n0[5]+aa2*n0[6]+aa3*n0[7]+n0[8] sigma2[4]<-as3/as4 aaa1<-abs(sigma2[4]-aaa0) aaa0<-sigma2[4] if (n_iter>20) break } sigma50<-sigma2[4]-sigma; if (sigma50<0) {sigma50<-0;sigma2[4]<-sigma} sigma2[4]<-sigma50+sigma;sigma2[1]<-sigma2[4]+g_aa3 sigma2[2]<-sigma2[4]+g_aa2;sigma2[3]<-sigma2[4]+g_aa1 aaa0<-sigma3[1] aa6<-swx3[1]+swx3[3]+swx3[7]+swx3[9];aa7<-s0[1]+s0[3]+s0[7]+s0[9] n_iter<-0 aaa1<-1000 while (aaa1>0.0001) { n_iter<-n_iter+1 aa1<-sigma3[1]/(sigma3[1]+g_aa1) aa2<-sigma3[1]/(sigma3[1]+g_aa2) aa3<-sigma3[1]/(sigma3[1]+g_aa3) as5<-aa6+(swx3[2]+swx3[8])*aa1^2+(swx3[4]+swx3[6])*aa2^2+swx3[5]*aa3^2 as6<-aa7+aa1*(s0[2]+s0[8])+aa2*(s0[4]+s0[6])+aa3*s0[5] sigma3[1]<-as5/as6 aaa1<-abs(sigma3[1]-aaa0) aaa0<-sigma3[1] if (n_iter>20) break } sigma60<-sigma3[1]-sigma; if (sigma60<0) {sigma60<-0;sigma3[1]<-sigma} sigma3[1]<-sigma60+sigma;sigma3[2]<-sigma3[1]+g_aa1 sigma3[3]<-sigma3[7]<-sigma3[9]<-sigma3[1] sigma3[4]<-sigma3[1]+g_aa2;sigma3[5]<-sigma3[1]+g_aa3 sigma3[6]<-sigma3[4];sigma3[8]<-sigma3[2] ab1<-ss1+ss2+ss3;ab2<-n_samP1+n_samF1+n_samP2 n_iter<-0;aaa0<-sigma;aaa1<-1000 while (aaa1>0.0001) { n_iter<-n_iter+1 n0[11]<-sigma/(sigma+sigma40) n0[12]<-sigma/(sigma+sigma40+g_aa1) n0[13]<-sigma/(sigma+sigma40+g_aa2) n0[14]<-sigma/(sigma+sigma40+g_aa3) s0[11]<-sigma/(sigma+sigma50+g_aa3) s0[12]<-sigma/(sigma+sigma50+g_aa2) s0[13]<-sigma/(sigma+sigma50+g_aa1) s0[14]<-sigma/(sigma+sigma50) ab3<-sum(swx1[c(1:4)]*n0[c(11:14)]^2+swx2[c(1:4)]*s0[c(11:14)]^2) ab4<-sum(n0[c(1:4)]*n0[c(11:14)]+n0[c(5:8)]*s0[c(11:14)]) n0[11]<-sigma/(sigma+sigma60);n0[13]<-n0[17]<-n0[19]<-n0[11] n0[12]<-sigma/(sigma+sigma60+g_aa1);n0[18]<-n0[12] n0[14]<-sigma/(sigma+sigma60+g_aa2);n0[16]<-n0[14] n0[15]<-sigma/(sigma+sigma60+g_aa3) ab3<-ab3+sum(swx3[c(1:9)]*n0[c(11:19)]^2) ab4<-ab4+sum(s0[c(1:9)]*n0[11:19]) sigma<-(ab1+ab3)/(ab2+ab4);aaa1<-abs(sigma-aaa0);aaa0<-sigma if (n_iter>20) break } sigma1[1]<-sigma+sigma40;sigma1[2]<-sigma1[1]+g_aa1 sigma1[3]<-sigma1[1]+g_aa2;sigma1[4]<-sigma1[1]+g_aa3 sigma2[4]<-sigma+sigma50;sigma2[1]<-sigma2[4]+g_aa3 sigma2[2]<-sigma2[4]+g_aa2;sigma2[3]<-sigma2[4]+g_aa1 sigma3[1]<-sigma+sigma60;sigma3[3]<-sigma3[7]<-sigma3[9]<-sigma3[1] sigma3[2]<-sigma3[1]+g_aa1;sigma3[8]<-sigma3[2] sigma3[4]<-sigma3[1]+g_aa2;sigma3[6]<-sigma3[4] sigma3[5]<-sigma3[1]+g_aa3 L1<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma))))+sum(log(dmixnorm(dataB1,mean1,sqrt(sigma1),mix_pi1)))+ sum(log(dmixnorm(dataB2,mean2,sqrt(sigma2),mix_pi2)))+sum(log(dmixnorm(dataF2,mean3,sqrt(sigma3),mix_pi3))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc<-L0 AIC<--2*abc+2*9 meanP1<-mean[1];meanF1<-mean[2];meanP2<-mean[3] sigma0<-sigma dataP1<-sort(dataP1) P1w1<-1/(12*n_samP1) P1bmw <- matrix(0,n_samP1,1) P1gg <- (dataP1 - mean[1])/sqrt(as.vector(sigma)) P1bmw[which(P1gg>=0)] <- pnorm(P1gg[P1gg>=0]) P1bmw[which(P1gg<0)] <- 1 - pnorm(abs(P1gg[P1gg<0])) nn <- dim(as.matrix(unique(P1bmw)))[1] if(nn < n_samP1){P1bmw <- P1bmw+runif(n_samP1)/1e4} P1dd<-c((sum(P1bmw)),(sum(P1bmw^2)),sum((P1bmw-0.5)^2)) P1w<-P1w1+sum((P1bmw - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) P1u<- as.matrix(c(12*n_samP1*((P1dd[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((P1dd[2]/n_samP1-1/3)^2),180*n_samP1*((P1dd[3]/n_samP1-1/12)^2))) P1D<-as.numeric(ks.test(P1bmw,"punif")[[1]][1]) P1tt <- as.matrix(c((1 - pchisq(P1u[1],1)),(1 - pchisq(P1u[2],1)),(1 - pchisq(P1u[3],1)),K1(P1w),(1-pkolm(P1D,n_samP1)))) P1tt[which( P1tt>=10e-4)]<-round(P1tt[which(P1tt>=10e-4)],4);P1tt[which(P1tt<10e-4)]<-format(P1tt[which(P1tt<10e-4)],scientific=TRUE,digit=4) dataF1<-sort(dataF1) F1w1<-1/(12*n_samF1) F1bmw <- matrix(0,n_samF1,1) F1gg <- (dataF1 - mean[2])/sqrt(as.vector(sigma)) F1bmw[which(F1gg>=0)] <- pnorm(F1gg[F1gg>=0]) F1bmw[which(F1gg<0)] <- 1 - pnorm(abs(F1gg[F1gg<0])) nn <- dim(as.matrix(unique(F1bmw)))[1] if(nn < n_samF1){F1bmw <- F1bmw+runif(n_samF1)/1e4} F1dd<-c((sum(F1bmw)),(sum(F1bmw^2)),sum((F1bmw-0.5)^2)) F1w<-F1w1+sum((F1bmw - (as.matrix(c(1:n_samF1)) - 0.5)/n_samF1)^2) F1u<- as.matrix(c(12*n_samF1*((F1dd[1]/n_samF1-0.5)^2),((45*n_samF1)/4)*((F1dd[2]/n_samF1-1/3)^2),180*n_samF1*((F1dd[3]/n_samF1-1/12)^2))) F1D<-as.numeric(ks.test(F1bmw,"punif")[[1]][1]) F1tt <- as.matrix(c((1 - pchisq(F1u[1],1)),(1 - pchisq(F1u[2],1)),(1 - pchisq(F1u[3],1)),K1(F1w),(1-pkolm(F1D,n_samF1)))) F1tt[which(F1tt>=10e-4)]<-round(F1tt[which(F1tt>=10e-4)],4);F1tt[which(F1tt<10e-4)]<-format(F1tt[which(F1tt<10e-4)],scientific=TRUE,digit=4) dataP2<-sort(dataP2) P2w1<-1/(12*n_samP2) P2bmw <- matrix(0,n_samP2,1) P2gg <- (dataP2 - mean[3])/sqrt(as.vector(sigma)) P2bmw[which(P2gg>=0)] <- pnorm(P2gg[P2gg>=0]) P2bmw[which(P2gg<0)] <- 1 - pnorm(abs(P2gg[P2gg<0])) nn <- dim(as.matrix(unique(P2bmw)))[1] if(nn < n_samP2){P2bmw <- P2bmw+runif(n_samP2)/1e4} P2dd<-c((sum(P2bmw)),(sum(P2bmw^2)),sum((P2bmw-0.5)^2)) P2w<-P2w1+sum((P2bmw - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) P2u<- as.matrix(c(12*n_samP2*((P2dd[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((P2dd[2]/n_samP2-1/3)^2),180*n_samP2*((P2dd[3]/n_samP2-1/12)^2))) P2D<-as.numeric(ks.test(P2bmw,"punif")[[1]][1]) P2tt <- as.matrix(c((1 - pchisq(P2u[1],1)),(1 - pchisq(P2u[2],1)),(1 - pchisq(P2u[3],1)),K1(P2w),(1-pkolm(P2D,n_samP2)))) P2tt[which(P2tt>=10e-4)]<-round(P2tt[which(P2tt>=10e-4)],4);P2tt[which(P2tt<10e-4)]<-format(P2tt[which(P2tt<10e-4)],scientific=TRUE,digit=4) dataB1 <- sort(dataB1); B1w1<-1/(12*n_samB1) B1bmw <- matrix(0,n_samB1,1); B1bmwsl <- matrix(0,n_samB1,4) for(i in 1:4){ B1gg <- (dataB1 - mean1[i])/sqrt(sigma1[i]) B1bmw[which(B1gg>=0)] <- pnorm(B1gg[B1gg>=0]) B1bmw[which(B1gg<0)] <- 1 - pnorm(abs(B1gg[B1gg<0])) B1bmwsl[,i] <- B1bmw*mix_pi1[i] } B1P2 <- rowSums(B1bmwsl) nn <- dim(as.matrix(unique(B1P2)))[1] if(nn < n_samB1){B1P2 <- B1P2+runif(n_samB1)/1e4} B1dd <- as.matrix(c(sum(B1P2),sum(B1P2^2),sum((B1P2-0.5)^2))) B1WW2 <- 1/(12*n_samB1) + sum((B1P2 - (as.matrix(c(1:n_samB1)) - 0.5)/n_samB1)^2) B1u <- as.matrix(c(12*n_samB1*((B1dd[1]/n_samB1-0.5)^2),((45*n_samB1)/4)*((B1dd[2]/n_samB1-1/3)^2),180*n_samB1*((B1dd[3]/n_samB1-1/12)^2))) B1D <- as.numeric(ks.test(B1P2,"punif")[[1]][1]) B1tt <- as.matrix(c((1 - pchisq(B1u[1],1)),(1 - pchisq(B1u[2],1)),(1 - pchisq(B1u[3],1)),K1(B1WW2),(1-pkolm(B1D,n_samB1)))) B1tt[which( B1tt>=10e-4)]<-round(B1tt[which(B1tt>=10e-4)],4);B1tt[which(B1tt<10e-4)]<-format(B1tt[which(B1tt<10e-4)],scientific=TRUE,digit=4) dataB2 <- sort(dataB2); B2w1<-1/(12*n_samB2) B2bmw <- matrix(0,n_samB2,1); B2bmwsl <- matrix(0,n_samB2,4) for(i in 1:4){ B2gg <- (dataB2 - mean2[i])/sqrt(sigma2[i]) B2bmw[which(B2gg>=0)] <- pnorm(B2gg[B2gg>=0]) B2bmw[which(B2gg<0)] <- 1 - pnorm(abs(B2gg[B2gg<0])) B2bmwsl[,i] <- B2bmw*mix_pi2[i] } B2P2 <- rowSums(B2bmwsl) nn <- dim(as.matrix(unique(B2P2)))[1] if(nn < n_samB2){B2P2 <- B2P2+runif(n_samB2)/1e4} B2dd <- as.matrix(c(sum(B2P2),sum(B2P2^2),sum((B2P2-0.5)^2))) B2WW2 <- 1/(12*n_samB2) + sum((B2P2 - (as.matrix(c(1:n_samB2)) - 0.5)/n_samB2)^2) B2u <- as.matrix(c(12*n_samB2*((B2dd[1]/n_samB2-0.5)^2),((45*n_samB2)/4)*((B2dd[2]/n_samB2-1/3)^2),180*n_samB2*((B2dd[3]/n_samB2-1/12)^2))) B2D <- as.numeric(ks.test(B2P2,"punif")[[1]][1]) B2tt <- as.matrix(c((1 - pchisq(B2u[1],1)),(1 - pchisq(B2u[2],1)),(1 - pchisq(B2u[3],1)),K1(B2WW2),(1-pkolm(B2D,n_samB2)))) B2tt[which( B2tt>=10e-4)]<-round(B2tt[which(B2tt>=10e-4)],4);B2tt[which(B2tt<10e-4)]<-format(B2tt[which(B2tt<10e-4)],scientific=TRUE,digit=4) dataF2 <- sort(dataF2); F2w1<-1/(12*n_samF2) F2bmw <- matrix(0,n_samF2,1); F2bmwsl <- matrix(0,n_samF2,9) for(i in 1:9){ F2gg <- (dataF2 - mean3[i])/sqrt(sigma3[i]) F2bmw[which(F2gg>=0)] <- pnorm(F2gg[F2gg>=0]) F2bmw[which(F2gg<0)] <- 1 - pnorm(abs(F2gg[F2gg<0])) F2bmwsl[,i] <- F2bmw*mix_pi3[i] } F2P2 <- rowSums(F2bmwsl) nn <- dim(as.matrix(unique(F2P2)))[1] if(nn < n_samF2){F2P2 <- F2P2+runif(n_samF2)/1e4} F2dd <- as.matrix(c(sum(F2P2),sum(F2P2^2),sum((F2P2-0.5)^2))) F2WW2 <- 1/(12*n_samF2) + sum((F2P2 - (as.matrix(c(1:n_samF2)) - 0.5)/n_samF2)^2) F2u <- as.matrix(c(12*n_samF2*((F2dd[1]/n_samF2-0.5)^2),((45*n_samF2)/4)*((F2dd[2]/n_samF2-1/3)^2),180*n_samF2*((F2dd[3]/n_samF2-1/12)^2))) F2D <- as.numeric(ks.test(F2P2,"punif")[[1]][1]) F2tt <- as.matrix(c((1 - pchisq(F2u[1],1)),(1 - pchisq(F2u[2],1)),(1 - pchisq(F2u[3],1)),K1(F2WW2),(1-pkolm(F2D,n_samF2)))) F2tt[which( F2tt>=10e-4)]<-round(F2tt[which(F2tt>=10e-4)],4);F2tt[which(F2tt<10e-4)]<-format(F2tt[which(F2tt<10e-4)],scientific=TRUE,digit=4) aa<-matrix(c(1,1,1,1,0,1,1,1,0,1,1,-1,-1,-1,0,1,1,1,0.5,0.25,1,1,0.5,0.5,0.25,1,0.5,1,0.5, 0.25,1,0.5,0.5,0.5,0.25,1,0.5,0.5,-0.5,0.25,1,0.5,-1,-0.5,0.25,1,-1,0.5,-0.5, 0.25,1,-1,-1,-0.5,0.25,1,1,1,0,0.25,1,1,0.5,0,0.25,1,1,-1,0,0.25,1,0.5,1,0,0.25, 1,0.5,0.5,0,0.25,1,0.5,-1,0,0.25,1,-1,1,0,0.25,1,-1,0.5,0,0.25,1,-1,-1,0,0.25),20,5,byrow=T) b_line1<-as.matrix(c(mean[1],mean[2],mean[3],mean1[1],mean1[2],mean1[3],mean1[4],mean2[1],mean2[2],mean2[3],mean2[4], mean3[1],mean3[2],mean3[3],mean3[4],mean3[5],mean3[6],mean3[7],mean3[8],mean3[9])) B1<-solve(crossprod(aa,aa))%*%crossprod(aa,b_line1) jj1<-sigmaB1-sigma1[1] if (jj1<0 || jj1>=sigmaB1) {jj1<-0} ll1<-jj1/sigmaB1 mm1<-sigma1[1]-sigma if (mm1<0 || mm1>=sigmaB1) {mm1<-0} nn1<-mm1/sigmaB1 jj2<-sigmaB2-sigma2[4] if (jj2<0 || jj2>=sigmaB2) {jj2<-0} ll2<-jj2/sigmaB2 mm2<-sigma2[4]-sigma if (mm2<0 || mm2>=sigmaB2) {mm2<-0} nn2<-mm2/sigmaB2 jj3<-sigmaF2-sigma3[1] if (jj3<0 || jj3>=sigmaF2) {jj3<-0} ll3<-jj3/sigmaF2 mm3<-sigma3[1]-sigma if (mm3<0 || mm3>=sigmaF2) {mm3<-0} nn3<-mm3/sigmaF2 output <- data.frame("MX2-CD-AD",round(abc,4),round(AIC,4),round(meanP1,4),round(meanF1,4),round(meanP2,4), round(sigma0,4),round(t(mean1),4),round(t(sigma1),4), round(t(mix_pi1),4),round(t(mean2),4),round(t(sigma2),4),round(t(mix_pi2),4), round(t(mean3),4),round(t(sigma3),4),round(t(mix_pi3),4), round(B1[1],4)," "," "," "," "," ",round(B1[2],4),round(B1[3],4),round(B1[2],4),round(B1[3],4)," "," "," "," ",round(B1[4],4),round(B1[5],4), round(jj1,4),round(ll1*100,4),round(mm1,4),round(nn1*100,4),round(jj2,4),round(ll2*100,4),round(mm2,4),round(nn2*100,4),round(jj3,4),round(ll3*100,4),round(mm3,4),round(nn3*100,4), round(P1u[1],4),P1tt[1],round(P1u[2],4),P1tt[2],round(P1u[3],4),P1tt[3],round(P1w,4),P1tt[4],round(P1D,4),P1tt[5], round(F1u[1],4),F1tt[1],round(F1u[2],4),F1tt[2],round(F1u[3],4),F1tt[3],round(F1w,4),F1tt[4],round(F1D,4),F1tt[5], round(P2u[1],4),P2tt[1],round(P2u[2],4),P2tt[2],round(P2u[3],4),P2tt[3],round(P2w,4),P2tt[4],round(P2D,4),P2tt[5], round(B1u[1],4),B1tt[1],round(B1u[2],4),B1tt[2],round(B1u[3],4),B1tt[3],round(B1WW2,4),B1tt[4],round(B1D,4),B1tt[5], round(B2u[1],4),B2tt[1],round(B2u[2],4),B2tt[2],round(B2u[3],4),B2tt[3],round(B2WW2,4),B2tt[4],round(B2D,4),B2tt[5], round(F2u[1],4),F2tt[1],round(F2u[2],4),F2tt[2],round(F2u[3],4),F2tt[3],round(F2WW2,4),F2tt[4],round(F2D,4),F2tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi1,mi2,mi3) return(OUTPUT) } G6FModelFun[[24]] <- function(K1,logL,df11,df21,df31,df41,df51,df61,G6Ftext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataF1 <- as.matrix(as.numeric(df21[,1])) dataP2 <- as.matrix(as.numeric(df31[,1]));dataB1 <- as.matrix(as.numeric(df41[,1])) dataB2 <- as.matrix(as.numeric(df51[,1]));dataF2 <- as.matrix(as.numeric(df61[,1])) n_samP1<-dim(dataP1)[1];n_samF1<-dim(dataF1)[1];n_samP2<-dim(dataP2)[1] n_samB1<-dim(dataB1)[1];n_samB2<-dim(dataB2)[1];n_samF2<-dim(dataF2)[1] sumx<-as.matrix(c(sum(dataP1),sum(dataF1),sum(dataP2),sum(dataB1),sum(dataB2),sum(dataF2))) s<-as.matrix(c(sum(dataP1^2),sum(dataF1^2),sum(dataP2^2),sum(dataB1^2),sum(dataB2^2),sum(dataF2^2))) ss<-matrix(0,3,1);ss[1]<-s[1]-sumx[1]^2/n_samP1;ss[2]<-s[2]-sumx[2]^2/n_samF1;ss[3]<-s[3]-sumx[3]^2/n_samP2 mean<-as.matrix(c(mean(dataP1),mean(dataF1),mean(dataP2),mean(dataB1),mean(dataB2),mean(dataF2))) sigma0<-sum(ss)/(n_samP1+n_samF1+n_samP2-3) sigmaB1<-var(dataB1);sigma40<-sigmaB1 sigmaB2<-var(dataB2);sigma50<-sigmaB2 sigmaF2<-var(dataF2);sigma60<-sigmaF2 sigmaP1<-sigmaF1<-sigmaP2<-sigma0 m_esp <- 0.0001;n_fam <- as.numeric(G6Ftext2) mi1<-as.matrix(c(0.25,0.5,0.25));sigma1<-matrix(0,3,1) mi2<-as.matrix(c(0.25,0.5,0.25));sigma2<-matrix(0,3,1) mi3<-as.matrix(c(0.0625,0.25,0.125,0.25,0.25,0.0625)) sigma3<-matrix(0,6,1);sigma<-sigma0 a1<-sqrt(sigmaB1/n_samB1);if (mean[1]<mean[3]) {a1<--a1} mean1<-as.matrix(c(mean[1],mean[4],mean[4]-a1)) a2<-sqrt(sigmaB2/n_samB2);if (mean[1]<mean[3]) {a2<--a2} mean2<-as.matrix(c(mean1[3],mean[5],mean[5]-a2)) a3<-sqrt(sigmaF2/n_samF2);if (mean[1]<mean[3]){a3<--a3} mean3<-as.matrix(c(mean[6]+2.5*a3,mean[6]+1.5*a3,mean[6]+0.2*a3,mean[6]+a3,mean[6]-0.5*a3,mean[6]-2.5*a3)) sigma1[1]<-sigmaB1/2;sigma2[3]<-sigmaB2/2;sigma3[1]<-sigmaF2/2 gs<-matrix(0,1,1) gs[1]<-0.00459*mean[1]+0.00306*mean[2]+0.00459*mean[3]+0.03559*mean1[1]+ 0.00421*mean1[2]-0.02717*mean1[3]+0.09835*mean2[1]+0.00421*mean2[2]- 0.08993*mean2[3]+0.09835*mean3[1]+0.06697*mean3[2]-0.02717*mean3[3]+ 0.03559*mean3[4]-0.05855*mean3[5]-0.15270*mean3[6] g_aa1<-0.75*gs[1]^2/n_fam g_aa2<-1.5*gs[1]^2/n_fam sigma1[2]<-sigma1[1]+g_aa1;sigma1[3]<-sigma1[1]+g_aa2 sigma2[1]<-sigma2[3]+g_aa2;sigma2[2]<-sigma2[3]+g_aa1 sigma3[2]<-sigma3[1]+g_aa1;sigma3[3]<-sigma3[6]<-sigma3[1] sigma3[4]<-sigma3[1]+g_aa2;sigma3[5]<-sigma3[1]+g_aa1 L0<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma0))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma0))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma0))))+sum(log(dmixnorm(dataB1,mean1,sqrt(sigma1),mi1)))+ sum(log(dmixnorm(dataB2,mean2,sqrt(sigma2),mi2)))+sum(log(dmixnorm(dataF2,mean3,sqrt(sigma3),mi3))) iteration <- 0; stopa <- 1000 W1 <- matrix(0,3,n_samB1); swx1 <- matrix(0,3,1) W2 <- matrix(0,3,n_samB2); swx2 <- matrix(0,3,1) W3 <- matrix(0,6,n_samF2); swx3 <- matrix(0,6,1) hh<-matrix(0,11,11);b_line<-matrix(0,11,1) n0<-matrix(0,15,1);s0<-matrix(0,15,1) while(stopa > m_esp&&iteration<=1000){ iteration <- iteration + 1 for(i in 1:3) { W1[i,] <- mi1[i]*dnorm(dataB1,mean1[i],sqrt(sigma1[i]))/dmixnorm(dataB1,mean1,sqrt(sigma1),mi1) } mix_pi1 <- as.matrix(rowSums(W1)/n_samB1) sumwx1 <- W1%*%dataB1 for(i in 1:3) { W2[i,] <- mi2[i]*dnorm(dataB2,mean2[i],sqrt(sigma2[i]))/dmixnorm(dataB2,mean2,sqrt(sigma2),mi2) } mix_pi2 <- as.matrix(rowSums(W2)/n_samB2) sumwx2 <- W2%*%dataB2 for(i in 1:6) { W3[i,] <- mi3[i]*dnorm(dataF2,mean3[i],sqrt(sigma3[i]))/dmixnorm(dataF2,mean3,sqrt(sigma3),mi3) } mix_pi3 <- as.matrix(rowSums(W3)/n_samF2) sumwx3 <- W3%*%dataF2 n0[c(1:3)]<-mix_pi1[c(1:3)]*n_samB1;n0[c(4:6)]<-mix_pi2[c(1:3)]*n_samB2 s0[c(1:6)]<-mix_pi3[c(1:6)]*n_samF2 s0[c(1:6)][abs(s0[c(1:6)])<0.00000001]<-0.000001 n0[c(1:6)][abs(n0[c(1:6)])<0.00000001]<-0.000001 aaa0<-0;AA<-matrix(0,11,1);n_iter<-0;aaa1<-1000 while(aaa1>0.001) { n_iter<-n_iter+1; gs[1]<-0.00459*mean[1]+0.00306*mean[2]+0.00459*mean[3]+0.03559*mean1[1]+ 0.00421*mean1[2]-0.02717*mean1[3]+0.09835*mean2[1]+0.00421*mean2[2]- 0.08993*mean2[3]+0.09835*mean3[1]+0.06697*mean3[2]-0.02717*mean3[3]+ 0.03559*mean3[4]-0.05855*mean3[5]-0.15270*mean3[6] g_aa1<-0.75*gs[1]*gs[1]/n_fam g_aa2<-1.5*gs[1]*gs[1]/n_fam sigma1[2]<-sigma1[1]+g_aa1;sigma1[3]<-sigma1[1]+g_aa2 sigma2[1]<-sigma2[3]+g_aa2;sigma2[2]<-sigma2[3]+g_aa1 sigma3[2]<-sigma3[1]+g_aa1;sigma3[3]<-sigma3[6]<-sigma3[1] sigma3[4]<-sigma3[1]+g_aa2;sigma3[5]<-sigma3[1]+g_aa1 hh[1,1]<-sigma*(1/n_samP1+1/n_samF1+4/n_samP2)+sigma1[3]/n0[3]+sigma2[1]/n0[4]+4*sigma3[1]/s0[1]+4*sigma3[6]/s0[6] hh[1,2]<-sigma*(3/n_samP1+2/n_samF1+6/n_samP2) hh[1,3]<-sigma*(1/n_samP1-2/n_samP2)+4*sigma3[6]/s0[6] hh[1,4]<-sigma*(1/n_samP1-2/n_samP2)-sigma1[3]/n0[3]-sigma2[1]/n0[4] hh[1,5]<-sigma1[3]/n0[3] hh[1,6]<--6*sigma3[1]/s0[1] hh[1,7]<-2*sigma3[1]/s0[1]+2*sigma3[6]/s0[6] hh[1,8]<-0 hh[1,9]<-sigma1[3]/n0[3]-sigma2[1]/n0[4] hh[1,10]<-0 hh[1,11]<--2*sigma3[6]/s0[6] hh[2,2]<-sigma*(9/n_samP1+4/n_samF1+9/n_samP2)+4*sigma1[1]/n0[1]+4*sigma2[3]/n0[6]+16*sigma3[4]/s0[4] hh[2,3]<-sigma*(3/n_samP1-3/n_samP2)-4*sigma1[1]/n0[1] hh[2,4]<-sigma*(3/n_samP1-3/n_samP2)+2*sigma1[1]/n0[1]-2*sigma2[3]/n0[6] hh[2,5]<--2*sigma1[1]/n0[1] hh[2,6]<-4*sigma3[4]/s0[4] hh[2,7]<--2*sigma1[1]/n0[1]-2*sigma2[3]/n0[6] hh[2,8]<-0 hh[2,9]<-8*sigma3[4]/s0[4] hh[2,10]<-4*sigma3[4]/s0[4] hh[2,11]<--4*sigma3[4]/s0[4] hh[3,3]<-sigma*(1/n_samP1+1/n_samP2)+4*sigma1[1]/n0[1]+4*sigma3[6]/s0[6]+36*sigma3[5]/s0[5]+36*sigma1[2]/n0[2] hh[3,4]<-sigma*(1/n_samP1-1/n_samP2)-2*sigma1[1]/n0[1] hh[3,5]<-2*sigma1[1]/n0[1]+12*sigma1[2]/n0[2] hh[3,6]<-6*sigma3[5]/s0[5] hh[3,7]<-2*sigma1[1]/n0[1]+2*sigma3[6]/s0[6] hh[3,8]<--6*sigma1[2]/n0[2]-6*sigma3[5]/s0[5] hh[3,9]<-0 hh[3,10]<-6*sigma3[5]/s0[5] hh[3,11]<--2*sigma3[6]/s0[6]-12*sigma3[5]/s0[5] hh[4,4]<-sigma*(1/n_samP1+1/n_samP2)+sigma1[1]/n0[1]+sigma1[3]/n0[3]+sigma2[1]/n0[4]+sigma2[3]/n0[6] hh[4,5]<--sigma1[1]/n0[1]-sigma1[3]/n0[3] hh[4,6]<-0 hh[4,7]<--sigma1[1]/n0[1]+sigma2[3]/n0[6] hh[4,8]<-0 hh[4,9]<--sigma1[3]/n0[3]+sigma2[1]/n0[4] hh[4,10]<-0 hh[4,11]<-0 hh[5,5]<-sigma1[1]/n0[1]+4*sigma1[2]/n0[2]+sigma1[3]/n0[3] hh[5,6]<-0 hh[5,7]<-sigma1[1]/n0[1] hh[5,8]<--2*sigma1[2]/n0[2] hh[5,9]<-sigma1[3]/n0[3] hh[5,10]<-0 hh[5,11]<-0 hh[6,6]<-9*sigma3[1]/s0[1]+9*sigma3[2]/s0[2]+sigma3[4]/s0[4]+sigma3[5]/s0[5] hh[6,7]<--3*sigma3[1]/s0[1] hh[6,8]<-3*sigma3[2]/s0[2]-sigma3[5]/s0[5] hh[6,9]<-2*sigma3[4]/s0[4] hh[6,10]<--3*sigma3[2]/s0[2]+sigma3[4]/s0[4]+sigma3[5]/s0[5] hh[6,11]<--sigma3[4]/s0[4]-2*sigma3[5]/s0[5] hh[7,7]<-sigma1[1]/n0[1]+sigma2[3]/n0[6]+sigma3[1]/s0[1]+sigma3[6]/s0[6] hh[7,8]<-0 hh[7,9]<-0 hh[7,10]<-0 hh[7,11]<--sigma3[6]/s0[6] hh[8,8]<-sigma1[2]/n0[2]+sigma2[2]/n0[5]+sigma3[2]/s0[2]+sigma3[5]/s0[5] hh[8,9]<-0 hh[8,10]<--sigma3[2]/s0[2]-sigma3[5]/s0[5] hh[8,11]<-2*sigma3[5]/s0[5] hh[9,9]<-sigma1[3]/n0[3]+sigma2[1]/n0[4]+4*sigma3[4]/s0[4] hh[9,10]<-2*sigma3[4]/s0[4] hh[9,11]<--2*sigma3[4]/s0[4] hh[10,10]<-sigma3[2]/s0[2]+sigma3[3]/s0[3]+sigma3[4]/s0[4]+sigma3[5]/s0[5] hh[10,11]<--sigma3[4]/s0[4]-2*sigma3[5]/s0[5] hh[11,11]<-sigma3[4]/s0[4]+sigma3[6]/s0[6]+4*sigma3[5]/s0[5] for(i in 2:11) { for(j in 1:(i-1)) { hh[i,j]<-hh[j,i] } } b_line[1]<-sumx[1]/n_samP1+sumx[2]/n_samF1+2*sumx[3]/n_samP2+sumwx1[3]/n0[3]-sumwx2[1]/n0[4]-2*sumwx3[1]/s0[1]-2*sumwx3[6]/s0[6] b_line[2]<-3*sumx[1]/n_samP1+2*sumx[2]/n_samF1+3*sumx[3]/n_samP2-2*sumwx1[1]/n0[1]-2*sumwx2[3]/n0[6]-4*sumwx3[4]/s0[4] b_line[3]<-sumx[1]/n_samP1-sumx[3]/n_samP2+2*sumwx1[1]/n0[1]-2*sumwx3[6]/s0[6]+6*sumwx3[5]/s0[5]-6*sumwx1[2]/n0[2] b_line[4]<-sumx[1]/n_samP1-sumx[3]/n_samP2-sumwx1[1]/n0[1]-sumwx1[3]/n0[3]+sumwx2[1]/n0[4]+sumwx2[3]/n0[6] b_line[5]<-sumwx1[1]/n0[1]-2*sumwx1[2]/n0[2]+sumwx1[3]/n0[3] b_line[6]<-3*sumwx3[1]/s0[1]-3*sumwx3[2]/s0[2]-sumwx3[4]/s0[4]+sumwx3[5]/s0[5] b_line[7]<-sumwx1[1]/n0[1]+sumwx2[3]/n0[6]-sumwx3[1]/s0[1]-sumwx3[6]/s0[6] b_line[8]<-sumwx1[2]/n0[2]+sumwx2[2]/n0[5]-sumwx3[2]/s0[2]-sumwx3[5]/s0[5] b_line[9]<-sumwx1[3]/n0[3]+sumwx2[1]/n0[4]-2*sumwx3[4]/s0[4] b_line[10]<-sumwx3[2]/s0[2]-sumwx3[3]/s0[3]-sumwx3[4]/s0[4]+sumwx3[5]/s0[5] b_line[11]<-sumwx3[4]/s0[4]-2*sumwx3[5]/s0[5]+sumwx3[6]/s0[6] B<-solve(hh,b_line) mean[1]<-(sumx[1]-sigma*(B[1]+3*B[2]+B[3]+B[4]))/n_samP1 mean[2]<-(sumx[2]-sigma*(B[1]+2*B[2]))/n_samF1 mean[3]<-(sumx[3]-sigma*(2*B[1]+3*B[2]-B[3]-B[4]))/n_samP2 mean1[1]<-(sumwx1[1]+sigma1[1]*(2*B[2]-2*B[3]+B[4]-B[5]-B[7]))/n0[1] mean1[2]<-(sumwx1[2]+sigma1[2]*(6*B[3]+2*B[5]-B[8]))/n0[2] mean1[3]<-(sumwx1[3]+sigma1[3]*(-B[1]+B[4]-B[5]-B[9]))/n0[3] mean2[1]<-(sumwx2[1]+sigma2[1]*(B[1]-B[4]-B[9]))/n0[4] mean2[2]<-(sumwx2[2]+sigma2[2]*(-B[8]))/n0[5] mean2[3]<-(sumwx2[3]+sigma2[3]*(2*B[2]-B[4]-B[7]))/n0[6] mean3[1]<-(sumwx3[1]+sigma3[1]*(2*B[1]-3*B[6]+B[7]))/s0[1] mean3[2]<-(sumwx3[2]+sigma3[2]*(3*B[6]+B[8]-B[10]))/s0[2] mean3[3]<-(sumwx3[3]+sigma3[3]*B[10])/s0[3] mean3[4]<-(sumwx3[4]+sigma3[4]*(4*B[2]+B[6]+2*B[9]+B[10]-B[11]))/s0[4] mean3[5]<-(sumwx3[5]+sigma3[5]*(-6*B[3]-B[6]+B[8]-B[10]+2*B[11]))/s0[5] mean3[6]<-(sumwx3[6]+sigma3[6]*(2*B[1]+2*B[3]+B[7]-B[11]))/s0[6] aaa1<-max(abs(B-AA)) AA<-B if (n_iter>20) break } ss1<-sum((dataP1-mean[1])^2);ss3<-sum((dataP2-mean[3])^2);ss2<-sum((dataF1-mean[2])^2) for(i in 1:3) {swx1[i] <- W1[i,]%*%(dataB1-mean1[i])^2 };for(i in 1:3) {swx2[i] <- W2[i,]%*%(dataB2-mean2[i])^2 };for(i in 1:6) {swx3[i] <- W3[i,]%*%(dataF2-mean3[i])^2 } aaa0<-sigma1[1];n_iter<-0;aaa1<-1000 while (aaa1>0.0001) { n_iter<-n_iter+1 aa2<-sigma1[1]/(sigma1[1]+g_aa1) aa3<-sigma1[1]/(sigma1[1]+g_aa2) as1<-swx1[1]+swx1[2]*aa2^2+swx1[3]*aa3^2 as2<-n0[1]+aa2*n0[2]+aa3*n0[3] sigma1[1]<-as1/as2 aaa1<-abs(sigma1[1]-aaa0) aaa0<-sigma1[1] if (n_iter>20) break } sigma40<-sigma1[1]-sigma; if (sigma40<0) {sigma40<-0;sigma1[1]<-sigma} sigma1[1]<-sigma40+sigma;sigma1[2]<-sigma1[1]+g_aa1;sigma1[3]<-sigma1[1]+g_aa2 aaa0<-sigma2[3];n_iter<-0;aaa1<-1000 while (aaa1>0.0001) { n_iter<-n_iter+1 aa1<-sigma2[3]/(sigma2[3]+g_aa2) aa2<-sigma2[3]/(sigma2[3]+g_aa1) as3<-swx2[1]*aa1^2+swx2[2]*aa2^2+swx2[3] as4<-aa1*n0[4]+aa2*n0[5]+n0[6] sigma2[3]<-as3/as4 aaa1<-abs(sigma2[3]-aaa0) aaa0<-sigma2[3] if (n_iter>20) break } sigma50<-sigma2[3]-sigma; if (sigma50<0) {sigma50<-0;sigma2[3]<-sigma} sigma2[3]<-sigma+sigma50;sigma2[1]<-sigma2[3]+g_aa2;sigma2[2]<-sigma2[3]+g_aa1 aaa0<-sigma3[1];aa6<-swx3[1]+swx3[3]+swx3[6];aa7<-s0[1]+s0[3]+s0[6] n_iter<-0;aaa1<-1000 while (aaa1>0.0001) { n_iter<-n_iter+1 aa1<-sigma3[1]/(sigma3[1]+g_aa1) aa2<-sigma3[1]/(sigma3[1]+g_aa2) as5<-aa6+(swx3[2]+swx3[5])*aa1^2+swx3[4]*aa2^2 as6<-aa7+aa1*(s0[2]+s0[5])+aa2*s0[4] sigma3[1]<-as5/as6 aaa1<-abs(sigma3[1]-aaa0) aaa0<-sigma3[1] if (n_iter>20) break } sigma60<-sigma3[1]-sigma; if (sigma60<0) {sigma60<-0;sigma3[1]<-sigma} sigma3[1]<-sigma+sigma60;sigma3[2]<-sigma3[1]+g_aa1 sigma3[3]<-sigma3[6]<-sigma3[1] sigma3[4]<-sigma3[1]+g_aa2 sigma3[5]<-sigma3[2] ab1<-ss1+ss2+ss3;ab2<-n_samP1+n_samF1+n_samP2 n_iter<-0;aaa0<-sigma;aaa1<-1000 while (aaa1>0.0001) { n_iter<-n_iter+1 n0[11]<-sigma/(sigma+sigma40) n0[12]<-sigma/(sigma+sigma40+g_aa1) n0[13]<-sigma/(sigma+sigma40+g_aa2) s0[11]<-sigma/(sigma+sigma50+g_aa2) s0[12]<-sigma/(sigma+sigma50+g_aa1) s0[13]<-sigma/(sigma+sigma50) ab3<-sum(swx1[c(1:3)]*n0[c(11:13)]^2+swx2[c(1:3)]*s0[c(11:13)]^2) ab4<-sum(n0[c(1:3)]*n0[c(11:13)]+n0[c(4:6)]*s0[c(11:13)]) n0[11]<-sigma/(sigma+sigma60) n0[13]<-n0[16]<-n0[11] n0[12]<-sigma/(sigma+sigma60+g_aa1) n0[14]<-sigma/(sigma+sigma60+g_aa2) n0[15]<-n0[12] ab3<-ab3+sum(swx3[c(1:6)]*n0[c(11:16)]^2) ab4<-ab4+sum(s0[c(1:6)]*n0[11:16]) sigma<-(ab1+ab3)/(ab2+ab4) aaa1<-abs(sigma-aaa0) aaa0<-sigma if (n_iter>20) break } sigma1[1]<-sigma+sigma40;sigma1[2]<-sigma1[1]+g_aa1;sigma1[3]<-sigma1[1]+g_aa2 sigma2[3]<-sigma+sigma50;sigma2[1]<-sigma2[3]+g_aa2;sigma2[2]<-sigma2[3]+g_aa1 sigma3[1]<-sigma+sigma60;sigma3[3]<-sigma3[6]<-sigma3[1];sigma3[2]<-sigma3[1]+g_aa1 sigma3[5]<-sigma3[2];sigma3[4]<-sigma3[1]+g_aa2 L1<-sum(log(dnorm(dataP1,mean[1],sqrt(sigma))))+sum(log(dnorm(dataF1,mean[2],sqrt(sigma))))+ sum(log(dnorm(dataP2,mean[3],sqrt(sigma))))+sum(log(dmixnorm(dataB1,mean1,sqrt(sigma1),mix_pi1)))+ sum(log(dmixnorm(dataB2,mean2,sqrt(sigma2),mix_pi2)))+sum(log(dmixnorm(dataF2,mean3,sqrt(sigma3),mix_pi3))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc<-L0 AIC<--2*abc+2*8 meanP1<-mean[1];meanF1<-mean[2];meanP2<-mean[3] sigma0<-sigma dataP1<-sort(dataP1) P1w1<-1/(12*n_samP1) P1bmw <- matrix(0,n_samP1,1) P1gg <- (dataP1 - mean[1])/sqrt(as.vector(sigma)) P1bmw[which(P1gg>=0)] <- pnorm(P1gg[P1gg>=0]) P1bmw[which(P1gg<0)] <- 1 - pnorm(abs(P1gg[P1gg<0])) nn <- dim(as.matrix(unique(P1bmw)))[1] if(nn < n_samP1){P1bmw <- P1bmw+runif(n_samP1)/1e4} P1dd<-c((sum(P1bmw)),(sum(P1bmw^2)),sum((P1bmw-0.5)^2)) P1w<-P1w1+sum((P1bmw - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) P1u<- as.matrix(c(12*n_samP1*((P1dd[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((P1dd[2]/n_samP1-1/3)^2),180*n_samP1*((P1dd[3]/n_samP1-1/12)^2))) P1D<-as.numeric(ks.test(P1bmw,"punif")[[1]][1]) P1tt <- as.matrix(c((1 - pchisq(P1u[1],1)),(1 - pchisq(P1u[2],1)),(1 - pchisq(P1u[3],1)),K1(P1w),(1-pkolm(P1D,n_samP1)))) P1tt[which( P1tt>=10e-4)]<-round(P1tt[which(P1tt>=10e-4)],4);P1tt[which(P1tt<10e-4)]<-format(P1tt[which(P1tt<10e-4)],scientific=TRUE,digit=4) dataF1<-sort(dataF1) F1w1<-1/(12*n_samF1) F1bmw <- matrix(0,n_samF1,1) F1gg <- (dataF1 - mean[2])/sqrt(as.vector(sigma)) F1bmw[which(F1gg>=0)] <- pnorm(F1gg[F1gg>=0]) F1bmw[which(F1gg<0)] <- 1 - pnorm(abs(F1gg[F1gg<0])) nn <- dim(as.matrix(unique(F1bmw)))[1] if(nn < n_samF1){F1bmw <- F1bmw+runif(n_samF1)/1e4} F1dd<-c((sum(F1bmw)),(sum(F1bmw^2)),sum((F1bmw-0.5)^2)) F1w<-F1w1+sum((F1bmw - (as.matrix(c(1:n_samF1)) - 0.5)/n_samF1)^2) F1u<- as.matrix(c(12*n_samF1*((F1dd[1]/n_samF1-0.5)^2),((45*n_samF1)/4)*((F1dd[2]/n_samF1-1/3)^2),180*n_samF1*((F1dd[3]/n_samF1-1/12)^2))) F1D<-as.numeric(ks.test(F1bmw,"punif")[[1]][1]) F1tt <- as.matrix(c((1 - pchisq(F1u[1],1)),(1 - pchisq(F1u[2],1)),(1 - pchisq(F1u[3],1)),K1(F1w),(1-pkolm(F1D,n_samF1)))) F1tt[which(F1tt>=10e-4)]<-round(F1tt[which(F1tt>=10e-4)],4);F1tt[which(F1tt<10e-4)]<-format(F1tt[which(F1tt<10e-4)],scientific=TRUE,digit=4) dataP2<-sort(dataP2) P2w1<-1/(12*n_samP2) P2bmw <- matrix(0,n_samP2,1) P2gg <- (dataP2 - mean[3])/sqrt(as.vector(sigma)) P2bmw[which(P2gg>=0)] <- pnorm(P2gg[P2gg>=0]) P2bmw[which(P2gg<0)] <- 1 - pnorm(abs(P2gg[P2gg<0])) nn <- dim(as.matrix(unique(P2bmw)))[1] if(nn < n_samP2){P2bmw <- P2bmw+runif(n_samP2)/1e4} P2dd<-c((sum(P2bmw)),(sum(P2bmw^2)),sum((P2bmw-0.5)^2)) P2w<-P2w1+sum((P2bmw - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) P2u<- as.matrix(c(12*n_samP2*((P2dd[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((P2dd[2]/n_samP2-1/3)^2),180*n_samP2*((P2dd[3]/n_samP2-1/12)^2))) P2D<-as.numeric(ks.test(P2bmw,"punif")[[1]][1]) P2tt <- as.matrix(c((1 - pchisq(P2u[1],1)),(1 - pchisq(P2u[2],1)),(1 - pchisq(P2u[3],1)),K1(P2w),(1-pkolm(P2D,n_samP2)))) P2tt[which(P2tt>=10e-4)]<-round(P2tt[which(P2tt>=10e-4)],4);P2tt[which(P2tt<10e-4)]<-format(P2tt[which(P2tt<10e-4)],scientific=TRUE,digit=4) dataB1 <- sort(dataB1); B1w1<-1/(12*n_samB1) B1bmw <- matrix(0,n_samB1,1); B1bmwsl <- matrix(0,n_samB1,3) for(i in 1:3){ B1gg <- (dataB1 - mean1[i])/sqrt(sigma1[i]) B1bmw[which(B1gg>=0)] <- pnorm(B1gg[B1gg>=0]) B1bmw[which(B1gg<0)] <- 1 - pnorm(abs(B1gg[B1gg<0])) B1bmwsl[,i] <- B1bmw*mix_pi1[i] } B1P2 <- rowSums(B1bmwsl) nn <- dim(as.matrix(unique(B1P2)))[1] if(nn < n_samB1){B1P2 <- B1P2+runif(n_samB1)/1e4} B1dd <- as.matrix(c(sum(B1P2),sum(B1P2^2),sum((B1P2-0.5)^2))) B1WW2 <- 1/(12*n_samB1) + sum((B1P2 - (as.matrix(c(1:n_samB1)) - 0.5)/n_samB1)^2) B1u <- as.matrix(c(12*n_samB1*((B1dd[1]/n_samB1-0.5)^2),((45*n_samB1)/4)*((B1dd[2]/n_samB1-1/3)^2),180*n_samB1*((B1dd[3]/n_samB1-1/12)^2))) B1D <- as.numeric(ks.test(B1P2,"punif")[[1]][1]) B1tt <- as.matrix(c((1 - pchisq(B1u[1],1)),(1 - pchisq(B1u[2],1)),(1 - pchisq(B1u[3],1)),K1(B1WW2),(1-pkolm(B1D,n_samB1)))) B1tt[which( B1tt>=10e-4)]<-round(B1tt[which(B1tt>=10e-4)],4);B1tt[which(B1tt<10e-4)]<-format(B1tt[which(B1tt<10e-4)],scientific=TRUE,digit=4) dataB2 <- sort(dataB2); B2w1<-1/(12*n_samB2) B2bmw <- matrix(0,n_samB2,1); B2bmwsl <- matrix(0,n_samB2,3) for(i in 1:3){ B2gg <- (dataB2 - mean2[i])/sqrt(sigma2[i]) B2bmw[which(B2gg>=0)] <- pnorm(B2gg[B2gg>=0]) B2bmw[which(B2gg<0)] <- 1 - pnorm(abs(B2gg[B2gg<0])) B2bmwsl[,i] <- B2bmw*mix_pi2[i] } B2P2 <- rowSums(B2bmwsl) nn <- dim(as.matrix(unique(B2P2)))[1] if(nn < n_samB2){B2P2 <- B2P2+runif(n_samB2)/1e4} B2dd <- as.matrix(c(sum(B2P2),sum(B2P2^2),sum((B2P2-0.5)^2))) B2WW2 <- 1/(12*n_samB2) + sum((B2P2 - (as.matrix(c(1:n_samB2)) - 0.5)/n_samB2)^2) B2u <- as.matrix(c(12*n_samB2*((B2dd[1]/n_samB2-0.5)^2),((45*n_samB2)/4)*((B2dd[2]/n_samB2-1/3)^2),180*n_samB2*((B2dd[3]/n_samB2-1/12)^2))) B2D <- as.numeric(ks.test(B2P2,"punif")[[1]][1]) B2tt <- as.matrix(c((1 - pchisq(B2u[1],1)),(1 - pchisq(B2u[2],1)),(1 - pchisq(B2u[3],1)),K1(B2WW2),(1-pkolm(B2D,n_samB2)))) B2tt[which( B2tt>=10e-4)]<-round(B2tt[which(B2tt>=10e-4)],4);B2tt[which(B2tt<10e-4)]<-format(B2tt[which(B2tt<10e-4)],scientific=TRUE,digit=4) dataF2 <- sort(dataF2); F2w1<-1/(12*n_samF2) F2bmw <- matrix(0,n_samF2,1); F2bmwsl <- matrix(0,n_samF2,6) for(i in 1:6){ F2gg <- (dataF2 - mean3[i])/sqrt(sigma3[i]) F2bmw[which(F2gg>=0)] <- pnorm(F2gg[F2gg>=0]) F2bmw[which(F2gg<0)] <- 1 - pnorm(abs(F2gg[F2gg<0])) F2bmwsl[,i] <- F2bmw*mix_pi3[i] } F2P2 <- rowSums(F2bmwsl) nn <- dim(as.matrix(unique(F2P2)))[1] if(nn < n_samF2){F2P2 <- F2P2+runif(n_samF2)/1e4} F2dd <- as.matrix(c(sum(F2P2),sum(F2P2^2),sum((F2P2-0.5)^2))) F2WW2 <- 1/(12*n_samF2) + sum((F2P2 - (as.matrix(c(1:n_samF2)) - 0.5)/n_samF2)^2) F2u <- as.matrix(c(12*n_samF2*((F2dd[1]/n_samF2-0.5)^2),((45*n_samF2)/4)*((F2dd[2]/n_samF2-1/3)^2),180*n_samF2*((F2dd[3]/n_samF2-1/12)^2))) F2D <- as.numeric(ks.test(F2P2,"punif")[[1]][1]) F2tt <- as.matrix(c((1 - pchisq(F2u[1],1)),(1 - pchisq(F2u[2],1)),(1 - pchisq(F2u[3],1)),K1(F2WW2),(1-pkolm(F2D,n_samF2)))) F2tt[which( F2tt>=10e-4)]<-round(F2tt[which(F2tt>=10e-4)],4);F2tt[which(F2tt<10e-4)]<-format(F2tt[which(F2tt<10e-4)],scientific=TRUE,digit=4) aa<-matrix(c(1,2,1,0,1,0,0,1,1,-2,-1,0,1,2,0.5,0.25,1,1.5,0.5,0.25,1,1,0.5,0.25,1,1, -0.5,0.25,1,-0.5,-0.5,0.25,1,-2,-0.5,0.25,1,2,0,0.25,1,1.5,0,0.25,1,0,0, 0.25,1,1,0,0.25,1,-0.5,0,0.25,1,-2,0,0.25),15,4,byrow=T) b_line1<-as.matrix(c(mean[1],mean[2],mean[3],mean1[1],mean1[2],mean1[3],mean2[1],mean2[2],mean2[3],mean3[1],mean3[2],mean3[3],mean3[4],mean3[5],mean3[6])) B1<-solve(crossprod(aa,aa))%*%crossprod(aa,b_line1) jj1<-sigmaB1-sigma1[1] if (jj1<0 || jj1>=sigmaB1) {jj1<-0} ll1<-jj1/sigmaB1 mm1<-sigma1[1]-sigma if (mm1<0 || mm1>=sigmaB1) {mm1<-0} nn1<-mm1/sigmaB1 jj2<-sigmaB2-sigma2[3] if (jj2<0 || jj2>=sigmaB2) {jj2<-0} ll2<-jj2/sigmaB2 mm2<-sigma2[3]-sigma if (mm2<0 || mm2>=sigmaB2) {mm2<-0} nn2<-mm2/sigmaB2 jj3<-sigmaF2-sigma3[1] if (jj3<0 || jj3>=sigmaF2) {jj3<-0} ll3<-jj3/sigmaF2 mm3<-sigma3[1]-sigma if (mm3<0 || mm3>=sigmaF2) {mm3<-0} nn3<-mm3/sigmaF2 output <- data.frame("MX2-EAD-AD",round(abc,4),round(AIC,4),round(meanP1,4),round(meanF1,4),round(meanP2,4), round(sigma0,4),round(t(mean1),4)," ",round(t(sigma1),4)," ", round(t(mix_pi1),4)," ",round(t(mean2),4)," ",round(t(sigma2),4)," ",round(t(mix_pi2),4)," ", round(t(mean3),4)," "," "," ",round(t(sigma3),4)," "," "," ",round(t(mix_pi3),4)," "," "," ", round(B1[1],4)," "," "," "," "," ",round(B1[2],4),round(B1[2],4),round(B1[2],4),round(B1[2],4)," "," "," "," ",round(B1[3],4),round(B1[4],4), round(jj1,4),round(ll1*100,4),round(mm1,4),round(nn1*100,4),round(jj2,4),round(ll2*100,4),round(mm2,4),round(nn2*100,4),round(jj3,4),round(ll3*100,4),round(mm3,4),round(nn3*100,4), round(P1u[1],4),P1tt[1],round(P1u[2],4),P1tt[2],round(P1u[3],4),P1tt[3],round(P1w,4),P1tt[4],round(P1D,4),P1tt[5], round(F1u[1],4),F1tt[1],round(F1u[2],4),F1tt[2],round(F1u[3],4),F1tt[3],round(F1w,4),F1tt[4],round(F1D,4),F1tt[5], round(P2u[1],4),P2tt[1],round(P2u[2],4),P2tt[2],round(P2u[3],4),P2tt[3],round(P2w,4),P2tt[4],round(P2D,4),P2tt[5], round(B1u[1],4),B1tt[1],round(B1u[2],4),B1tt[2],round(B1u[3],4),B1tt[3],round(B1WW2,4),B1tt[4],round(B1D,4),B1tt[5], round(B2u[1],4),B2tt[1],round(B2u[2],4),B2tt[2],round(B2u[3],4),B2tt[3],round(B2WW2,4),B2tt[4],round(B2D,4),B2tt[5], round(F2u[1],4),F2tt[1],round(F2u[2],4),F2tt[2],round(F2u[3],4),F2tt[3],round(F2WW2,4),F2tt[4],round(F2D,4),F2tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi1,mi2,mi3) return(OUTPUT) } K1G6F <- function(x){ V0 <- 0 for(j in 0:2) {I1 <- 0;I2 <- 0 for(k in 0:8) {I1 <- I1 + (((4*j+1)^2/(32*x))^(-0.25+2*k))/(gamma(k+1)*gamma(0.75+k)) I2 <- I2 + ((4*j+1)^2/(32*x))^(0.25+2*k)/(gamma(k+1)*gamma(1.25+k))} V0 <- V0 + (gamma(j+0.5)*sqrt(4*j+1)/(gamma(0.5)*gamma(j+1)))*exp(-(4*j+1)^2/(16*x))*(I1-I2)} V <- (1/sqrt(2*x))*V0 return (1-V) } logLG6F <- function(nm,nng,mi,mn,s,d1) { sum2 <- sum(log(dmixnorm(d1,mn,sqrt(s),mi)));return (sum2) } if(model=="All models"){ cl.cores <- detectCores() if(cl.cores<=2){ cl.cores<-1 }else if(cl.cores>2){ if(cl.cores>10){ cl.cores<-10 }else { cl.cores <- detectCores()-1 } } cl <- makeCluster(cl.cores) registerDoParallel(cl) i<-NULL allresult=foreach(i=1:24,.combine = 'rbind')%dopar%{ requireNamespace("KScorrect") requireNamespace("kolmim") G6FModelFun[[i]](K1G6F,logLG6F,df11,df21,df31,df41,df51,df61,G6Ftext2)[[1]] } stopCluster(cl) mi1<-NULL;mi2<-NULL;mi3<-NULL }else{ allresultq=switch(model,"1MG-AD" = G6FModelFun[[1]](K1G6F,logLG6F,df11,df21,df31,df41,df51,df61,G6Ftext2),"1MG-A"=G6FModelFun[[2]](K1G6F,logLG6F,df11,df21,df31,df41,df51,df61,G6Ftext2),"1MG-EAD"=G6FModelFun[[3]](K1G6F,logLG6F,df11,df21,df31,df41,df51,df61,G6Ftext2),"1MG-NCD"=G6FModelFun[[4]](K1G6F,logLG6F,df11,df21,df31,df41,df51,df61,G6Ftext2),"2MG-ADI"=G6FModelFun[[5]](K1G6F,logLG6F,df11,df21,df31,df41,df51,df61,G6Ftext2), "2MG-AD"=G6FModelFun[[6]](K1G6F,logLG6F,df11,df21,df31,df41,df51,df61,G6Ftext2),"2MG-A"=G6FModelFun[[7]](K1G6F,logLG6F,df11,df21,df31,df41,df51,df61,G6Ftext2),"2MG-EA"=G6FModelFun[[8]](K1G6F,logLG6F,df11,df21,df31,df41,df51,df61,G6Ftext2),"2MG-CD"=G6FModelFun[[9]](K1G6F,logLG6F,df11,df21,df31,df41,df51,df61,G6Ftext2),"2MG-EAD"=G6FModelFun[[10]](K1G6F,logLG6F,df11,df21,df31,df41,df51,df61,G6Ftext2), "PG-ADI"=G6FModelFun[[11]](K1G6F,logLG6F,df11,df21,df31,df41,df51,df61,G6Ftext2),"PG-AD"=G6FModelFun[[12]](K1G6F,logLG6F,df11,df21,df31,df41,df51,df61,G6Ftext2),"MX1-AD-ADI"=G6FModelFun[[13]](K1G6F,logLG6F,df11,df21,df31,df41,df51,df61,G6Ftext2),"MX1-AD-AD"=G6FModelFun[[14]](K1G6F,logLG6F,df11,df21,df31,df41,df51,df61,G6Ftext2),"MX1-A-AD"=G6FModelFun[[15]](K1G6F,logLG6F,df11,df21,df31,df41,df51,df61,G6Ftext2), "MX1-EAD-AD"=G6FModelFun[[16]](K1G6F,logLG6F,df11,df21,df31,df41,df51,df61,G6Ftext2),"MX1-NCD-AD"=G6FModelFun[[17]](K1G6F,logLG6F,df11,df21,df31,df41,df51,df61,G6Ftext2),"MX2-ADI-ADI"=G6FModelFun[[18]](K1G6F,logLG6F,df11,df21,df31,df41,df51,df61,G6Ftext2),"MX2-ADI-AD"=G6FModelFun[[19]](K1G6F,logLG6F,df11,df21,df31,df41,df51,df61,G6Ftext2),"MX2-AD-AD"=G6FModelFun[[20]](K1G6F,logLG6F,df11,df21,df31,df41,df51,df61,G6Ftext2), "MX2-A-AD"=G6FModelFun[[21]](K1G6F,logLG6F,df11,df21,df31,df41,df51,df61,G6Ftext2),"MX2-EA-AD"=G6FModelFun[[22]](K1G6F,logLG6F,df11,df21,df31,df41,df51,df61,G6Ftext2),"MX2-CD-AD"=G6FModelFun[[23]](K1G6F,logLG6F,df11,df21,df31,df41,df51,df61,G6Ftext2),"MX2-EAD-AD"=G6FModelFun[[24]](K1G6F,logLG6F,df11,df21,df31,df41,df51,df61,G6Ftext2)) allresult<-allresultq[[1]] if(model=="PG-AD"||model=="PG-ADI"){ mi1<-NULL;mi2<-NULL;mi3<-NULL }else{ mi1<-allresultq[[2]];mi2<-allresultq[[3]];mi3<-allresultq[[4]] } } colnames(allresult) <- G6Fcolname out<-list(allresult,mi1,mi2,mi3) return(out) }
kcde <- function(x, H, h, gridsize, gridtype, xmin, xmax, supp=3.7, eval.points, binned, bgridsize, positive=FALSE, adj.positive, w, verbose=FALSE, tail.flag="lower.tail") { ksd <- ks.defaults(x=x, w=w, binned=binned, bgridsize=bgridsize, gridsize=gridsize) d <- ksd$d; n <- ksd$n; w <- ksd$w binned <- ksd$binned gridsize <- ksd$gridsize bgridsize <- ksd$bgridsize tail.flag1 <- match.arg(tail.flag, c("lower.tail", "upper.tail")) if (d==1) { if (missing(h) & !positive) h <- hpi.kcde(x=x, binned=default.bflag(d=d, n=n)) Fhat <- kde(x=x, h=h, gridsize=gridsize, gridtype=gridtype, xmin=xmin, xmax=xmax, supp=supp, binned=binned, bgridsize=bgridsize, positive=positive, adj.positive=adj.positive, w=w) diffe <- abs(diff(Fhat$eval.points)) if (tail.flag1=="lower.tail") Fhat$estimate <- c(0, diffe) * cumsum(Fhat$estimate) else Fhat$estimate <- c(diffe[1], diffe) * (sum(Fhat$estimate) - cumsum(Fhat$estimate)) } else if (d==2) { if (missing(H) & !positive) H <- Hpi.kcde(x=x, binned=default.bflag(d=d, n=n), bgridsize=bgridsize, verbose=FALSE) Fhat <- kde(x=x, H=H, gridsize=gridsize, gridtype=gridtype, xmin=xmin, xmax=xmax, supp=supp, binned=binned, bgridsize=bgridsize, w=w, verbose=verbose) diffe1 <- abs(diff(Fhat$eval.points[[1]])) diffe2 <- abs(diff(Fhat$eval.points[[2]])) if (tail.flag1=="lower.tail") { Fhat$estimate <- apply(Fhat$estimate, 1, cumsum)*c(0,diffe1) Fhat$estimate <- apply(t(Fhat$estimate), 2, cumsum)*c(0,diffe2) } else { Fhatsum <- matrix(apply(Fhat$estimate, 1, sum), ncol=ncol(Fhat$estimate), nrow=nrow(Fhat$estimate), byrow=TRUE) Fhat$estimate <- (Fhatsum-apply(Fhat$estimate, 1, cumsum))*c(diffe1[1], diffe1) Fhatsum <- matrix(apply(Fhat$estimate, 1, sum), ncol=ncol(Fhat$estimate), nrow=nrow(Fhat$estimate), byrow=TRUE) Fhat$estimate <- (Fhatsum-apply(t(Fhat$estimate), 2, cumsum))*c(diffe2[1], diffe2) } } else if (d==3) { if (missing(H) & !positive) H <- Hpi.kcde(x=x, binned=default.bflag(d=d, n=n), bgridsize=bgridsize, verbose=FALSE) Fhat <- kde(x=x, H=H, gridsize=gridsize, gridtype=gridtype, xmin=xmin, xmax=xmax, supp=supp, binned=binned, bgridsize=bgridsize, w=w, verbose=verbose) Fhat.temp <- Fhat$estimate diffe1 <- abs(diff(Fhat$eval.points[[1]])) diffe2 <- abs(diff(Fhat$eval.points[[2]])) diffe3 <- abs(diff(Fhat$eval.points[[3]])) if (tail.flag1=="lower.tail") { for (i in 1:dim(Fhat$estimate)[3]) { Fhat.temp[,,i] <- apply(Fhat.temp[,,i], 1, cumsum)*c(0,diffe1) Fhat.temp[,,i] <- apply(t(Fhat.temp[,,i]), 2, cumsum)*c(0,diffe2) } for (i in 1:dim(Fhat$estimate)[1]) for (j in 1:dim(Fhat$estimate)[2]) Fhat.temp[i,j,] <- cumsum(Fhat.temp[i,j,])*c(0,diffe3) Fhat$estimate <- Fhat.temp } else { for (i in 1:dim(Fhat$estimate)[3]) { Fhatsum <- matrix(apply(Fhat.temp[,,i], 1, sum), ncol=ncol(Fhat.temp), nrow=nrow(Fhat.temp), byrow=TRUE) Fhat.temp[,,i] <- (Fhatsum-apply(Fhat.temp[,,i], 1, cumsum))*c(diffe1[1], diffe1) Fhatsum <- matrix(apply(Fhat.temp[,,i], 1, sum), ncol=ncol(Fhat.temp), nrow=nrow(Fhat.temp), byrow=TRUE) Fhat.temp[,,i] <- (Fhatsum-apply(t(Fhat.temp[,,i]), 2, cumsum))*c(diffe2[1],diffe2) } for (i in 1:dim(Fhat$estimate)[1]) for (j in 1:dim(Fhat$estimate)[2]) { Fhatsum <- sum(Fhat.temp[i,j,]) Fhat.temp[i,j,] <- (Fhatsum-cumsum(Fhat.temp[i,j,]))*c(diffe3[1],diffe3) } Fhat$estimate <- Fhat.temp } } Fhat$estimate <- Fhat$estimate/max(Fhat$estimate) if (!missing(eval.points)) { if (d<=3) { Fhat$estimate <- predict(Fhat, x=eval.points) Fhat$eval.points <- eval.points } else { Fhat <- kcde.points(x=x, H=H, eval.points=eval.points, w=w, verbose=verbose, tail.flag=tail.flag1) } } Fhat$tail <- tail.flag1 Fhat$type <- "kcde" class(Fhat) <- "kcde" return(Fhat) } kcde.points <- function(x, H, eval.points, w, verbose=FALSE, tail.flag="lower.tail") { n <- nrow(x) if (verbose) pb <- txtProgressBar() Fhat <- rep(0, nrow(eval.points)) pmvnorm.temp <- function(x, ...) { return(pmvnorm(mean=x, ...)) } for (i in 1:nrow(eval.points)) { if (verbose) setTxtProgressBar(pb, i/(nrow(eval.points)-1)) if (tail.flag=="lower.tail") Fhat[i] <- sum(apply(x, 1, pmvnorm.temp, upper=eval.points[i,], sigma=H)) else Fhat[i] <- sum(apply(x, 1, pmvnorm.temp, lower=eval.points[i,], sigma=H)) } Fhat <- Fhat/n if (verbose) close(pb) return(list(x=x, eval.points=eval.points, estimate=Fhat, H=H, gridded=FALSE, binned=FALSE, names=NULL, w=w)) } plot.kcde <- function(x, ...) { Fhat <- x if (is.vector(Fhat$x)) plotkcde.1d(Fhat, ...) else { d <- ncol(Fhat$x) if (d==2) { opr <- options()$preferRaster; if (!is.null(opr)) if (!opr) options("preferRaster"=TRUE) plotret <- plotkcde.2d(Fhat, ...) if (!is.null(opr)) options("preferRaster"=opr) invisible(plotret) } else if (d==3) { plotkcde.3d(Fhat, ...) invisible() } else stop ("kde.plot function only available for 1, 2 or 3-d data") } } plotkcde.1d <- function(Fhat, xlab, ylab="Distribution function", add=FALSE, drawpoints=FALSE, col=1, col.pt=4, jitter=FALSE, alpha=1, ...) { if (missing(xlab)) xlab <- Fhat$names if (Fhat$tail=="upper.tail") zlab <- "Survival function" col <- transparency.col(col, alpha=alpha) if (add) lines(Fhat$eval.points, Fhat$estimate, xlab=xlab, ylab=ylab, col=col, ...) else plot(Fhat$eval.points, Fhat$estimate, type="l", xlab=xlab, ylab=ylab, col=col, ...) if (drawpoints) if (jitter) rug(jitter(Fhat$x), col=col.pt) else rug(Fhat$x, col=col.pt) } plotkcde.2d <- function(Fhat, display="persp", cont=seq(10,90, by=10), abs.cont, xlab, ylab, zlab="Distribution function", cex=1, pch=1, add=FALSE, drawpoints=FALSE, drawlabels=TRUE, theta=-30, phi=40, d=4, col.pt=4, col, col.fun, alpha=1, lwd=1, border=NA, thin=3, labcex=1, ticktype="detailed", ...) { disp1 <- match.arg(display, c("slice", "persp", "image", "filled.contour", "filled.contour2")) if (disp1=="filled.contour2") disp1 <- "filled.contour" if (!is.list(Fhat$eval.points)) stop("Needs a grid of density estimates") if (missing(xlab)) xlab <- Fhat$names[1] if (missing(ylab)) ylab <- Fhat$names[2] if (Fhat$tail=="upper.tail") zlab <- "Survival function" if (missing(col.fun)) col.fun <- function(n) {hcl.colors(n, palette="viridis", alpha=alpha)} if (disp1=="persp") { hts <- seq(0, 1.1*max(Fhat$estimate), length=500) if (missing(col)) col <- col.fun(n=length(hts)+1) if (length(col)<(length(hts)+1)) col <- rep(col, length=length(hts)+1) col <- transparency.col(col, alpha=alpha) plot.ind <- list(seq(1, length(Fhat$eval.points[[1]]), by=thin), seq(1, length(Fhat$eval.points[[2]]), by=thin)) z <- Fhat$estimate[plot.ind[[1]], plot.ind[[2]]] nrz <- nrow(z) ncz <- ncol(z) zfacet <- z[-1, -1] + z[-1, -ncz] + z[-nrz, -1] + z[-nrz, -ncz] facetcol <- cut(zfacet, length(hts)+1, labels=FALSE) plotret <- persp(Fhat$eval.points[[1]][plot.ind[[1]]], Fhat$eval.points[[2]][plot.ind[[2]]], z, theta=theta, phi=phi, d=d, xlab=xlab, ylab=ylab, zlab=zlab, col=col[facetcol], border=border, ticktype=ticktype, ...) } else if (disp1=="slice") { if (!add) plot(Fhat$x[,1], Fhat$x[,2], type="n", xlab=xlab, ylab=ylab, ...) if (missing(abs.cont)) hts <- cont/100 else hts <- abs.cont if (missing(col)) col <- col.fun(n=length(hts)) if (length(col)<length(hts)) col <- rep(col, times=length(hts)) col <- transparency.col(col, alpha=alpha) for (i in 1:length(hts)) { if (missing(abs.cont)) scale <- cont[i]/hts[i] else scale <- 1 if (hts[i]>0) contour(Fhat$eval.points[[1]], Fhat$eval.points[[2]], Fhat$estimate*scale, level=hts[i]*scale, add=TRUE, drawlabels=drawlabels, col=col[i], lwd=lwd, labcex=labcex, ...) } if (drawpoints) points(Fhat$x[,1], Fhat$x[,2], col=col.pt, cex=cex, pch=pch) } else if (disp1=="image") { if (missing(col)) col <- col.fun(100) col <- transparency.col(col, alpha=alpha) image(Fhat$eval.points[[1]], Fhat$eval.points[[2]], Fhat$estimate, xlab=xlab, ylab=ylab, add=add, col=col, ...) box() } else if (disp1=="filled.contour") { hts <- cont/100 clev <- c(-0.01*max(abs(Fhat$estimate)), hts, max(c(Fhat$estimate, hts)) + 0.01*max(abs(Fhat$estimate))) if (missing(col)) col <- col.fun(length(hts)) col <- transparency.col(col, alpha=alpha) if (!add) plot(Fhat$eval.points[[1]], Fhat$eval.points[[2]], type="n", xlab=xlab, ylab=ylab, ...) if (tail(hts, n=1) < max(Fhat$estimate)) hts2 <- c(hts, max(Fhat$estimate)) .filled.contour(Fhat$eval.points[[1]], Fhat$eval.points[[2]], Fhat$estimate, levels=hts2, col=col) if (!missing(lwd)) { for (i in 1:length(hts)) { if (missing(abs.cont)) scale <- (100-cont[i])/hts[i] else scale <- 1 if (lwd >=1) contour(Fhat$eval.points[[1]], Fhat$eval.points[[2]], Fhat$estimate*scale, level=hts[i]*scale, add=TRUE, drawlabels=drawlabels, col=1, lwd=lwd, labcex=labcex, ...) } } } if (disp1=="persp") invisible(plotret) else invisible() } plotkcde.3d <- function(Fhat, display="plot3D", cont=c(25,50,75), colors, col, alphavec, size=3, cex=1, pch=1, theta=-30, phi=40, d=4, ticktype="detailed", bty="f", col.pt=4, add=FALSE, xlab, ylab, zlab, drawpoints=FALSE, alpha, box=TRUE, axes=TRUE, ...) { disp1 <- match.arg(display, c("plot3D", "rgl")) hts <- sort(cont/100) nc <- length(hts) if (missing(col)) { col.fun <- function(n) {hcl.colors(n, palette="viridis")} col <- col.fun(n=length(hts)) } colors <- col if (missing(xlab)) xlab <- Fhat$names[1] if (missing(ylab)) ylab <- Fhat$names[2] if (missing(zlab)) zlab <- Fhat$names[3] if (missing(alphavec)) alphavec <- seq(0.5,0.1,length=nc) if (missing(alpha)) alpha <- 0.5 if (!missing(alpha)) {alphavec <- rep(alpha,nc)} disp1 <- match.arg(display, c("plot3D", "rgl")) if (disp1 %in% "plot3D") { for (i in 1:nc) if (hts[nc-i+1] < max(Fhat$estimate)) plot3D::isosurf3D(x=Fhat$eval.points[[1]], y=Fhat$eval.points[[2]], z=Fhat$eval.points[[3]], colvar=Fhat$estimate, level=hts[nc-i+1], add=add | (i>1), col=colors[nc-i+1], alpha=alphavec[i], phi=phi, theta=theta, xlab=xlab, ylab=ylab, zlab=zlab, d=d, ticktype=ticktype, bty=bty, ...) if (drawpoints) plot3D::points3D(x=Fhat$x[,1], y=Fhat$x[,2], z=Fhat$x[,3], cex=cex, col=col.pt, add=TRUE, pch=pch, d=d) } else if (disp1 %in% "rgl") { if (!requireNamespace("rgl", quietly=TRUE)) stop("Install the rgl package as it is required.", call.=FALSE) if (!requireNamespace("misc3d", quietly=TRUE)) stop("Install the misc3d package as it is required.", call.=FALSE) if (drawpoints) rgl::plot3d(Fhat$x[,1],Fhat$x[,2],Fhat$x[,3], size=size, col=col.pt, alpha=alpha, xlab=xlab, ylab=ylab, zlab=zlab, add=add, box=FALSE, axes=FALSE, ...) else rgl::plot3d(Fhat$x[,1],Fhat$x[,2],Fhat$x[,3], type="n", xlab=xlab, ylab=ylab, zlab=zlab, add=add, box=FALSE, axes=FALSE, ...) rgl::bg3d(col="white") for (i in 1:nc) if (hts[nc-i+1] < max(Fhat$estimate)) misc3d::contour3d(Fhat$estimate, level=hts[nc-i+1], x=Fhat$eval.points[[1]], y=Fhat$eval.points[[2]], z=Fhat$eval.points[[3]], add=TRUE, color=colors[nc-i+1], alpha=alphavec[i], box=FALSE, axes=FALSE, ...) if (box) rgl::box3d() if (axes) rgl::axes3d(c("x","y","z")) } } hns.kcde <- function(x) { d <- 1 n <- length(x) sigma <- sd(x) hns <- 4^(1/3)*sigma*n^(-1/3) return(hns) } Hns.kcde <- function(x) { if (is.vector(x)) {return(hns.kcde(x)^2)} d <- ncol(x) n <- nrow(x) m1 <- (4*pi)^(-1/2) Jd <- matrix(1, ncol=d, nrow=d) Sigma <- var(x) Hns <- (4*det(Sigma)^(1/2)*tr(matrix.sqrt(Sigma))/tr(Sigma))^(2/3)*Sigma*n^(-2/3) return(Hns) } hpi.kcde <- function(x, nstage=2, binned, amise=FALSE) { n <- length(x) d <- 1 if (missing(binned)) binned <- default.bflag(d,n) K2 <- dnorm.deriv(x=0, mu=0, sigma=1, deriv.order=2) K4 <- dnorm.deriv(x=0, mu=0, sigma=1, deriv.order=4) m2 <- 1 m1 <- (4*pi)^(-1/2) if (nstage==2) { psi6.hat <- psins.1d(r=6, sigma=sd(x)) gamse4 <- (2*K4/(-m2*psi6.hat*n))^(1/(4+3)) psi4.hat <- kfe.1d(x=x, g=gamse4, deriv.order=4, inc=1, binned=binned) gamse2 <- (2*K2/(-m2*psi4.hat*n))^(1/(2+3)) psi2.hat <- kfe.1d(x=x, g=gamse2, deriv.order=2, inc=1, binned=binned) } else { psi4.hat <- psins.1d(r=4, sigma=sd(x)) gamse2 <- (2*K2/(-m2*psi4.hat*n))^(1/(2+3)) psi2.hat <- kfe.1d(x=x, g=gamse2, deriv.order=2, inc=1, binned=binned) } h <- (2*m1/(-m2^2*psi2.hat*n))^(1/3) if (amise) PI <- -2*n^(-1)*m1*h - 1/4*psi2.hat*h^4 if (!amise) return(h) else return(list(h=h, PI=PI)) } Hpi.kcde <- function(x, nstage=2, pilot, Hstart, binned, bgridsize, amise=FALSE, verbose=FALSE, optim.fun="optim", pre=TRUE) { n <- nrow(x) d <- ncol(x) m1 <- (4*pi)^(-1/2) Jd <- matrix(1, ncol=d, nrow=d) if (missing(binned)) binned <- default.bflag(d,n) if(!is.matrix(x)) x <- as.matrix(x) if (missing(pilot)) pilot <- "dunconstr" pilot1 <- match.arg(pilot, c("dunconstr", "dscalar")) if (pre) { S12 <- diag(sqrt(diag(var(x)))); x <- pre.scale(x) } D2K0 <- t(dmvnorm.deriv(x=rep(0,d), mu=rep(0,d), Sigma=diag(d), deriv.order=2)) if (nstage==2) { psi4.ns <- psins(r=4, Sigma=var(x), deriv.vec=TRUE) amse2.temp <- function(vechH) { H <- invvech(vechH) %*% invvech(vechH) Hinv <- chol2inv(chol(H)) Hinv12 <- matrix.sqrt(Hinv) amse2.val <- 1/(det(H)^(1/2)*n)*((Hinv12 %x% Hinv12) %*% D2K0) + 1/2* t(vec(H) %x% diag(d^2)) %*% psi4.ns return(sum(amse2.val^2)) } Hstart2 <- matrix.sqrt(Gns(r=2, n=n, Sigma=var(x))) optim.fun1 <- match.arg(optim.fun, c("nlm", "optim")) if (optim.fun1=="nlm") { result <- nlm(p=vech(Hstart2), f=amse2.temp, print.level=2*as.numeric(verbose)) H2 <- invvech(result$estimate) %*% invvech(result$estimate) } else { result <- optim(vech(Hstart2), amse2.temp, method="BFGS", control=list(trace=as.numeric(verbose), REPORT=1)) H2 <- invvech(result$par) %*% invvech(result$par) } psi2.hat <- kfe(x=x, G=H2, deriv.order=2, add.index=FALSE, binned=binned, bgridsize=bgridsize, verbose=verbose) } else { psi2.hat <- psins(r=2, Sigma=var(x), deriv.vec=TRUE) H2 <- Gns(r=2, n=n, Sigma=var(x)) } if (missing(Hstart)) Hstart <- Hns.kcde(x=x) amise.temp <- function(vechH) { H <- invvech(vechH) %*% invvech(vechH) H12 <- matrix.sqrt(H) amise.val <- -2*n^(-1)*m1*tr(H12) - 1/4*t(vec(H %*% H)) %*% psi2.hat return(drop(amise.val)) } Hstart <- matrix.sqrt(Hstart) optim.fun1 <- match.arg(optim.fun, c("optim", "nlm")) if (optim.fun1=="nlm") { result <- nlm(p=vech(Hstart), f=amise.temp, print.level=2*as.numeric(verbose)) H <- invvech(result$estimate) %*% invvech(result$estimate) amise.star <- result$minimum } else { result <- optim(vech(Hstart), amise.temp, method="BFGS", control=list(trace=as.numeric(verbose), REPORT=1)) H <- invvech(result$par) %*% invvech(result$par) amise.star <- result$value } if (pre) H <- S12 %*% H %*% S12 if (!amise) return(H) else return(list(H=H, PI=amise.star)) } Hpi.diag.kcde <- function(x, nstage=2, pilot, Hstart, binned=FALSE, bgridsize, amise=FALSE, verbose=FALSE, optim.fun="optim", pre=TRUE) { n <- nrow(x) d <- ncol(x) m1 <- (4*pi)^(-1/2) Jd <- matrix(1, ncol=d, nrow=d) if (missing(binned)) binned <- default.bflag(d,n) if(!is.matrix(x)) x <- as.matrix(x) if (missing(pilot)) pilot <- "dscalar" pilot1 <- match.arg(pilot, c("dunconstr", "dscalar")) if (pre) { S12 <- diag(sqrt(diag(var(x)))); x <- pre.scale(x) } D2K0 <- t(dmvnorm.deriv(x=rep(0,d), mu=rep(0,d), Sigma=diag(d), deriv.order=2)) if (nstage==2) { psi4.ns <- psins(r=4, Sigma=var(x), deriv.vec=TRUE) amse2.temp <- function(diagH) { H <- diag(diagH) %*% diag(diagH) Hinv <- chol2inv(chol(H)) Hinv12 <- matrix.sqrt(Hinv) amse2.val <- 1/(det(H)^(1/2)*n)*((Hinv12 %x% Hinv12) %*% D2K0) + 1/2* t(vec(H) %x% diag(d^2)) %*% psi4.ns return(sum(amse2.val^2)) } Hstart2 <- matrix.sqrt(Gns(r=2, n=n, Sigma=var(x))) optim.fun1 <- match.arg(optim.fun, c("optim", "nlm")) if (optim.fun1=="nlm") { result <- nlm(p=diag(Hstart2), f=amse2.temp, print.level=2*as.numeric(verbose)) H2 <- diag(result$estimate) %*% diag(result$estimate) } else { result <- optim(diag(Hstart2), amse2.temp, method="BFGS", control=list(trace=as.numeric(verbose), REPORT=1)) H2 <- diag(result$par) %*% diag(result$par) } psi2.hat <- kfe(x=x, G=H2, deriv.order=2, add.index=FALSE, binned=binned, bgridsize=bgridsize, verbose=verbose) } else psi2.hat <- psins(r=2, Sigma=var(x), deriv.vec=TRUE) if (missing(Hstart)) Hstart <- Hns.kcde(x=x) amise.temp <- function(diagH) { H <- diag(diagH) %*% diag(diagH) H12 <- matrix.sqrt(H) amise.val <- -2*n^(-1)*m1*tr(H12) - 1/4*t(vec(H %*% H)) %*% psi2.hat return(drop(amise.val)) } Hstart <- matrix.sqrt(Hstart) optim.fun1 <- match.arg(optim.fun, c("optim", "nlm")) if (optim.fun1=="nlm") { result <- nlm(p=diag(Hstart), f=amise.temp, print.level=2*as.numeric(verbose)) H <- diag(result$estimate) %*% diag(result$estimate) amise.star <- result$minimum } else { result <- optim(diag(Hstart), amise.temp, method="BFGS", control=list(trace=as.numeric(verbose), REPORT=1)) H <- diag(result$par) %*% diag(result$par) amise.star <- result$value } if (pre) H <- S12 %*% H %*% S12 if (!amise) return(H) else return(list(H=H, PI=amise.star)) } kroc <- function(x1, x2, H1, h1, hy, gridsize, gridtype, xmin, xmax, supp=3.7, eval.points, binned, bgridsize, positive=FALSE, adj.positive, w, verbose=FALSE) { if (is.vector(x1)) {d <- 1; n1 <- length(x1)} else {d <- ncol(x1); n1 <- nrow(x1); x1 <- as.matrix(x1); x2 <- as.matrix(x2)} if (!missing(eval.points)) stop("eval.points in kroc not yet implemented") if (d==1) { if (missing(h1)) h1 <- hpi.kcde(x=x1, binned=default.bflag(d=d, n=n1)) Fhatx1 <- kcde(x=x1, h=h1, gridsize=gridsize, gridtype=gridtype, xmin=xmin, xmax=xmax, supp=supp, binned=binned, bgridsize=bgridsize, positive=positive, adj.positive=adj.positive, w=w, tail.flag="upper.tail") } else { if (missing(H1)) H1 <- Hpi.kcde(x=x1, binned=default.bflag(d=d, n=n1), verbose=verbose) Fhatx1 <- kcde(x=x1, H=H1, gridsize=gridsize, gridtype=gridtype, xmin=xmin, xmax=xmax, supp=supp, binned=binned, bgridsize=bgridsize, w=w, tail.flag="upper.tail", verbose=verbose) } y1 <- predict(Fhatx1, x=x1) y2 <- predict(Fhatx1, x=x2) y1 <- qnorm(y1[y1>0]) y2 <- qnorm(y2[y2>0]) if (missing(hy)) hy <- hpi.kcde(y2, binned=default.bflag(d=1, n=n1)) Fhaty2 <- kcde(x=y2, h=hy, binned=TRUE, xmin=min(y1,y2)-3.7*hy, xmax=max(y1,y2)+3.7*hy) Fhaty1 <- kcde(x=y1, h=hy, binned=TRUE, xmin=min(y1,y2)-3.7*hy, xmax=max(y1,y2)+3.7*hy) Fhaty1$eval.points <- pnorm(Fhaty1$eval.points) Fhaty2$eval.points <- pnorm(Fhaty2$eval.points) Rhat <- Fhaty1 Rhat$eval.points <- Fhaty1$estimate Rhat$estimate <- Fhaty2$estimate if (d==1) {Rhat$h1 <- h1; Rhat$H1 <- h1^2; Rhat$hy <- hy} else {Rhat$H1 <- H1; Rhat$hy <- hy} Rhat.smoothed <- smooth.spline(Rhat$eval.points, Rhat$estimate, spar=0.5) Rhat.smoothed <- predict(Rhat.smoothed, x=seq(0,1,length=length(Rhat$eval.points))) Rhat$eval.points <- Rhat.smoothed$x Rhat$estimate <- Rhat.smoothed$y if (head(Rhat$eval.points, n=1)!=0) Rhat$eval.points[1] <- 0 if (head(Rhat$estimate, n=1)!=0) Rhat$estimate[1] <- 0 if (tail(Rhat$eval.points, n=1)!=1) Rhat$eval.points[length(Rhat$eval.points)] <- 1 if (tail(Rhat$estimate, n=1)!=1) Rhat$estimate[length(Rhat$estimate)] <- 1 Rhat$estimate[Rhat$estimate>1] <- 1 Rhat$estimate[Rhat$estimate<0] <- 0 Rhat$indices <- indices.kroc(Rhat) Rhat <- Rhat[-c(4,5)] Rhat$type <- "kroc" class(Rhat) <- "kroc" return(Rhat) } indices.kroc <- function(Rhat) { auc <- sum(abs((head(Rhat$estimate, n=-1) - tail(Rhat$estimate, n=-1)))*abs(diff(Rhat$eval.points))/2 + head(Rhat$estimate, n=-1)*abs(diff(Rhat$eval.points))) youden.val <- Rhat$estimate - Rhat$eval.points if (max(youden.val)>0.001) { youden.ind <- which.max(youden.val) youden <- youden.val[youden.ind] LR <- list(minus=(1-Rhat$estimate[youden.ind])/(1-Rhat$eval.points[youden.ind]), plus=Rhat$estimate[youden.ind]/Rhat$eval.points[youden.ind]) } else LR <- list(minus=1, plus=1) return(list(auc=auc, youden=max(youden.val), LR=LR)) } plot.kroc <- function(x, add=FALSE, add.roc.ref=FALSE, xlab, ylab, alpha=1, col=1, ...) { Rhat <- x col <- transparency.col(col, alpha=alpha) if (missing(ylab)) ylab <- "True positive rate (sensitivity)" if (missing(xlab)) xlab <- expression("False positive rate"~~group("(", list(bar(specificity)), ")")) if (add) lines(Rhat$eval.points, Rhat$estimate, ...) else plot(Rhat$eval.points, Rhat$estimate, type="l", ylab=ylab, xlab=xlab, col=col, ...) if (is.vector(Rhat$x[[1]])) d <- 1 else d <- ncol(Rhat$x[[1]]) if (add.roc.ref) { z <- seq(0,1, length=401) kind <- 0:(d-1) roc.indep <- 0 for (k in kind) roc.indep <- roc.indep + z*(-log(z))^k/factorial(k) lines(z, roc.indep, lty=2, col="grey") } } summary.kroc <- function(object, ...) { cat("Summary measures for ROC curve\nAUC =", signif(object$indices$auc, ...), "\n") cat("Youden index =", signif(object$indices$youden, ...), "\n") cat(paste("(LR-, LR+) = (", signif(object$indices$LR$minus, ...), ", ", signif(object$indices$LR$plus, ...),")\n\n",sep="")) } predict.kcde <- function(object, ..., x) { return(predict.kde(object=object, ..., x=x, zero.flag=FALSE)) } predict.kroc <- function(object, ..., x) { return(predict.kde(object=object, ..., x=x, zero.flag=FALSE)) } contourLevels.kcde <- function(x, prob, cont, nlevels=5, ...) { fhat <- x if (missing(prob) & missing(cont)) hts <- pretty(fhat$estimate, n=nlevels) if (!missing(prob) & missing(cont)) { hts <- prob/100; names(hts) <- paste0(prob, "%") } if (missing(prob) & !missing(cont)) { prob <- 100-cont; hts <- prob/100; names(hts) <- paste0(prob, "%") } return(hts) }
context("Checking r_data_frame") test_that("r_data_frame ...",{ })
context("Missing data imputation - data imputation") library(missCompare) data("clindata_miss") small <- clindata_miss[1:60, 1:4] small$string <- "string" test_that("string errors in impute_data", { expect_error(impute_data(small)) }) small <- clindata_miss[1:60, 1:4] test_that("factors error when methods dont support it", { expect_error(impute_data(small, scale = T, sel_method = c(2:10,13))) }) small <- clindata_miss[1:40, 1:4] test_that("factors OK scaling runs OK", { expect_error(impute_data(small, n.iter = 1, scale = T, sel_method = c(1,11,12,14:16)), NA) }) small <- clindata_miss[1:40, 1:4] test_that("factors OK no scaling runs OK", { expect_error(impute_data(small, n.iter = 1, scale = F, sel_method = c(1,11,12,14:16)), NA) }) small <- clindata_miss[1:40, 3:7] test_that("runs OK when all numeric and with scaling", { expect_error(impute_data(small, n.iter = 1, scale = T, sel_method = c(1:16)), NA) }) small <- clindata_miss[1:40, 3:7] test_that("runs OK when all numeric and without scaling", { expect_error(suppressWarnings(impute_data(small, n.iter = 1, scale = F, sel_method = c(1:16))), NA) }) small <- clindata_miss[1:40, 3:7] imputed <- impute_data(small, scale = T, n.iter = 2, sel_method = c(2:5, 7:9, 16)) test_that("median imputation error", { expect_error(imputed$median_imputation[[2]]) }) test_that("mean imputation error", { expect_error(imputed$mean_imputation[[2]]) }) test_that("missMDA EM imputation error", { expect_error(imputed$missMDA_EM_imputation[[2]]) }) test_that("missMDA reg imputation error", { expect_error(imputed$missMDA_reg_imputation[[2]]) }) test_that("pcaMethods svd imputation error", { expect_error(imputed$pcaMethods_svdImpute_imputation[[2]]) }) test_that("pcaMethods BPCA imputation error", { expect_error(imputed$pcaMethods_BPCA_imputation[[2]]) }) test_that("pcaMethods Nipals imputation error", { expect_error(imputed$pcaMethods_Nipals_imputation[[2]]) }) test_that("VIM kNN imputation error", { expect_error(imputed$VIM_kNN_imputation[[2]]) }) df_imp <- imputed$VIM_kNN_imputation[[1]] test_that("scaling on, post imp diag no error", { expect_error(suppressWarnings(post_imp_diag(small, df_imp, scale = T, n.boot = 2)), NA) }) test_that("post imp diag dim error", { expect_error(post_imp_diag(small[,1:4], df_imp, scale = T, n.boot = 2)) }) imp_res <- suppressWarnings(post_imp_diag(small, df_imp, scale = T, n.boot = 2)) test_that("barcharts not present", { expect_true(length(imp_res$Barcharts)==0) }) small <- clindata_miss[1:100, 1:4] imputed <- impute_data(small, scale = F, n.iter = 1, sel_method = c(1)) df_imp <- imputed$random_replacement[[1]] imp_res <- suppressWarnings(post_imp_diag(small, df_imp, scale = F, n.boot = 3)) test_that("barchart is present", { expect_false(length(imp_res$Barcharts)==0) }) rm(list=ls())
gxeMegaEnv <- function(TD, trials = names(TD), trait, method = c("max", "min"), byYear = FALSE) { if (missing(TD) || !inherits(TD, "TD")) { stop("TD should be a valid object of class TD.\n") } trials <- chkTrials(trials, TD) TDTot <- Reduce(f = rbind, x = TD[trials]) chkCol(trait, TDTot) chkCol("trial", TDTot) chkCol("genotype", TDTot) if (byYear) { chkCol("year", TDTot) } method <- match.arg(method) if (hasName(x = TDTot, name = "megaEnv")) { warning("TD already contains a column megaEnv. This column will", "be overwritten.\n", call. = FALSE) } allNA <- by(TDTot, TDTot[["genotype"]], FUN = function(x) { all(is.na(x[trait])) }) TDTot <- TDTot[!TDTot[["genotype"]] %in% names(allNA[allNA]), ] rmYear <- FALSE if (!byYear) { TDTot[["year"]] <- 0 rmYear <- TRUE } envLevels <- levels(TDTot[["trial"]])[levels(TDTot[["trial"]]) %in% trials] TDTot[["trial"]] <- droplevels(TDTot[["trial"]]) AMMI <- gxeAmmi(TD = createTD(TDTot), trait = trait, nPC = 2, byYear = byYear) winGeno <- by(data = AMMI$fitted, INDICES = AMMI$fitted[["trial"]], FUN = function(trial) { selGeno <- do.call(paste0("which.", method), args = list(trial[["fittedValue"]])) as.character(trial[["genotype"]])[selGeno] }) winGenoVal <- by(data = AMMI$fitted, INDICES = AMMI$fitted[["trial"]], FUN = function(trial) { do.call(method, args = list(trial[["fittedValue"]])) }) megaFactor <- factor(winGeno, labels = paste0("megaEnv_", seq_along(unique(winGeno)))) TDTot[["megaEnv"]] <- TDTot[["trial"]] levels(TDTot[["megaEnv"]]) <- as.character(megaFactor) levels(TDTot[["trial"]]) <- envLevels if (isTRUE(rmYear)) { TDTot <- TDTot[-which(colnames(TDTot) == "year")] } TDTot[["megaEnv"]] <- factor(as.character(TDTot[["megaEnv"]])) TDOut <- createTD(TDTot) summTab <- data.frame("Mega_factor" = megaFactor, Trial = names(winGeno), "Winning_genotype" = as.character(winGeno), "AMMI_estimates" = as.numeric(winGenoVal)) summTab <- summTab[order(megaFactor), ] return(createMegaEnv(TD = TDOut, summTab = summTab, trait = trait)) }
if(getRversion() >= "2.15.1") utils::globalVariables(c("gpr","dS","alpha","epsilon", "stabilize","type","lambda","x"))
expected <- eval(parse(text="structure(list(raster = structure(\" test(id=0, code={ argv <- eval(parse(text="list(structure(list(raster = structure(\" do.call(`invisible`, argv); }, o=expected);
sim.pdata <- function(N=1000, sigma=1, B=3, keep.all=FALSE, show.plot=TRUE) { if(FALSE) x <- NULL N <- round(N[1]) stopifNegative(sigma, allowZero=FALSE) stopifNegative(B, allowZero=FALSE) u1 <-runif(N, 0, 2*B) u2 <- runif(N, 0, 2*B) d <- sqrt((u1 - B)^2 + (u2 - B)^2) N.real <- sum(d<= B) p <- ifelse(d < B, 1, 0) * exp(-d*d/(2*(sigma^2))) y <- rbinom(N, 1, p) if(show.plot) { op <- par(mfrow = c(1,2)) ; on.exit(par(op)) tryPlot <- try( { curve(exp(-x^2/(2*sigma^2)), 0, B, xlab="Distance (x)", ylab="Detection prob.", lwd = 2, main = "Detection function", ylim = c(0,1)) text(0.8*B, 0.9, paste("sigma:", sigma)) plot(u1, u2, asp = 1, pch = 1, main = "Point transect") points(u1[d <= B], u2[d <= B], pch = 16, col = "black") points(u1[y==1], u2[y==1], pch = 16, col = "blue") points(B, B, pch = "+", cex = 3, col = "red") plotrix::draw.circle(B, B, B) }, silent = TRUE) if(inherits(tryPlot, "try-error")) tryPlotError(tryPlot) } if(!keep.all){ u1 <- u1[y==1] u2 <- u2[y==1] d <- d[y==1] } return(list(N=N, sigma=sigma, B=B, u1=u1, u2=u2, d=d, y=y, N.real=N.real)) }
rcmvtruncnorm <- function( n, mean, sigma, lower, upper, dependent.ind, given.ind, X.given, init = rep(0, length(mean)), burn = 10L, thin = 1 ) { check_constants(n) if (n == 0) {stop("Error: The number of random samples must be positive integer.")} check_constants(burn) check_constants(thin) params <- condtMVN( mean = mean, sigma = sigma, lower = lower, upper = upper, dependent.ind = dependent.ind, given.ind = given.ind, X.given = X.given, init = init ) if (length(dependent.ind) == 1) { val <- truncnorm::rtruncnorm( n = n, mean = params$condMean, sd = params$condVar, a = params$condLower, b = params$condUpper ) } else { val <- tmvmixnorm::rtmvn( n = n, Mean = params$condMean, Sigma = params$condVar, lower = params$condLower, upper = params$condUpper, int = params$condInit, burn = burn, thin = thin ) } return(val) } check_constants <- function(K) { if (is.null(K)) stop(sprintf(" must be non-null."), call. = TRUE) if (!is.numeric(K) | length(K) != 1) stop(sprintf(" must be numeric of length 1"), call. = TRUE) if (!is.wholenumber(K)) { stop(sprintf(" must be a non-negative integer"), call. = TRUE) } return(K) } is.integer <- function(x, tol = .Machine$double.eps^0.5) { abs(x - round(x)) < tol } is.wholenumber <- function(x, tol = .Machine$double.eps^0.5) { x > -1 && is.integer(x, tol) } is.naturalnumber <- function(x, tol = .Machine$double.eps^0.5) { x > 0 && is.integer(x, tol) }
require(distrMod) options("newDevice"=TRUE) x <- rnorm(30) NF <- NormLocationScaleFamily() system.time(print(MDEstimator(x,NF,CvMDist))) system.time(print(MDEstimator(x,NF,CvMDist,useApply=TRUE))) MDEstimator(rnorm(30),NF,CvMDist) MDEstimator(rnorm(30),NF,CvMDist) MDEstimator(rnorm(300),NF,CvMDist) MDEstimator(rnorm(300,mean=2,sd=2),NF,CvMDist) MDEstimator(rnorm(300,mean=2,sd=2),NF,CvMDist)
knitr::opts_chunk$set( collapse = TRUE, comment = " ) knitr::include_graphics("type-hierarchy.png", dpi = 300) as.integer(1.5) as.integer(1e10) library(bignum) as_biginteger(1.5) as.double(biginteger(10)^16L) as.double(bigfloat(1) / 3) as_biginteger(bigfloat(1.5)) as_bigfloat(biginteger(10)^51L + 1L)
data("Titanic", package = "datasets") ttnc <- as.data.frame(Titanic) ttnc <- ttnc[rep(1:nrow(ttnc), ttnc$Freq), 1:4] names(ttnc)[2] <- "Gender" data("CPS1985", package = "AER") library("partykit") ct_ttnc <- ctree(Survived ~ Gender + Age + Class, data = ttnc, alpha = 0.01) plot(ct_ttnc) ct_cps <- ctree(log(wage) ~ education + experience + age + ethnicity + gender + union, data = CPS1985, alpha = 0.01) plot(ct_cps) mob_cps <- lmtree(log(wage) ~ education | experience + age + ethnicity + gender + union, data = CPS1985) plot(mob_cps) plot(Survived ~ Gender, data = ttnc) tab <- xtabs(~ Survived + Gender, data = ttnc) chisq.test(tab) plot(Survived ~ Age, data = ttnc) tab <- xtabs(~ Survived + Age, data = ttnc) chisq.test(tab) plot(Survived ~ Class, data = ttnc) tab <- xtabs(~ Survived + Class, data = ttnc) chisq.test(tab) plot(log(wage) ~ education, data = CPS1985) cor.test(~ log(wage) + education, data = CPS1985) plot(log(wage) ~ gender, data = CPS1985) t.test(log(wage) ~ gender, data = CPS1985) library("partykit") ct_ttnc <- ctree(Survived ~ Gender + Age + Class, data = ttnc) plot(ct_ttnc) print(ct_ttnc) ndm <- data.frame(Gender = "Male", Age = "Adult", Class = c("1st", "2nd", "3rd")) predict(ct_ttnc, newdata = ndm, type = "node") predict(ct_ttnc, newdata = ndm, type = "response") predict(ct_ttnc, newdata = ndm, type = "prob") ndf <- data.frame(Gender = "Female", Age = "Adult", Class = c("1st", "2nd", "3rd")) ndc <- data.frame(Gender = "Male", Age = "Child", Class = c("1st", "2nd", "3rd")) cbind( Male = predict(ct_ttnc, newdata = ndm, type = "prob")[, 2], Female = predict(ct_ttnc, newdata = ndf, type = "prob")[, 2], Child = predict(ct_ttnc, newdata = ndc, type = "prob")[, 2] ) ct_ttnc2 <- ctree(Survived ~ Gender + Age + Class, data = ttnc, alpha = 0.01, minbucket = 5, minsplit = 15, maxdepth = 4) plot(ct_ttnc2) predict(ct_ttnc2, newdata = ndc, type = "prob") ttnc$Fit <- predict(ct_ttnc2, type = "response") ttnc$Group <- factor(predict(ct_ttnc2, type = "node")) xtabs(~ Fit + Survived, data = ttnc) tab <- xtabs(~ Group + Survived, data = ttnc) prop.table(tab, 1) library("ROCR") pred <- prediction(predict(ct_ttnc, type = "prob")[, 2], ttnc$Survived) plot(performance(pred, "acc")) plot(performance(pred, "tpr", "fpr")) abline(0, 1, lty = 2) library("rpart") rp_ttnc <- rpart(Survived ~ Gender + Age + Class, data = ttnc) plot(rp_ttnc) text(rp_ttnc) print(rp_ttnc) py_ttnc <- as.party(rp_ttnc) plot(py_ttnc) print(py_ttnc) rp_ttnc$cptable prune(rp_ttnc, cp = 0.1) ttnc <- transform(ttnc, Treatment = factor(Gender == "Female" | Age == "Child", levels = c(FALSE, TRUE), labels = c("Male&Adult", "Female|Child") ) ) mob_ttnc <- glmtree(Survived ~ Treatment | Class + Gender + Age, data = ttnc, family = binomial, alpha = 0.01) plot(mob_ttnc) print(mob_ttnc) library("evtree") set.seed(1) ev_ttnc <- evtree(Survived ~ Gender + Age + Class, data = ttnc) plot(ev_ttnc) ev_ttnc library("ggparty") theme_set(theme_minimal()) autoplot(ct_ttnc2) autoplot(ct_cps) autoplot(py_ttnc) autoplot(ev_ttnc)
predict.fbRanks=function(object, ..., newdata=list(home.team="foo", away.team="bar"), max.date="2100-6-1", min.date="1900-5-1", rnd=TRUE, silent=FALSE, show.matches=TRUE, verbose=FALSE, remove.outliers=TRUE, n=100000){ x=object the.fits=x$fit clusters=x$graph team.data=x$teams cc = tolower(names(team.data))=="name" all.team.names=team.data[,cc] nteams = length(all.team.names) if(missing(max.date)) max.date=as.Date(max.date) else max.date=as.Date(max.date, x$date.format) if(is.na(max.date)) stop(paste("max.date must be entered in the following format:",format(Sys.Date(),x$date.format),"\n")) if(missing(min.date)) min.date=as.Date(min.date) else min.date=as.Date(min.date, x$date.format) if(is.na(min.date)) stop(paste("min.date must be entered in the following format:",format(Sys.Date(),x$date.format),"\n")) if(!missing(newdata)){ scores=create.newdata.dataframe(x, newdata, min.date, max.date, ...) }else{ scores = x$scores include.scores=team.and.score.filters(list(scores=scores, teams=x$teams),...)$include.scores scores=scores[include.scores,,drop=FALSE] scores = scores[scores$date>=min.date,,drop=FALSE] scores = scores[scores$date<=max.date,,drop=FALSE] } if(dim(scores)[1]==0) stop("No matches to predict. Either you didn't specify home and away teams or the scores database \n in your fbRanks object has no matches for your specified dates and filter values.") el=cbind(as.character(scores$home.team),as.character(scores$away.team)) tmp.fun = function(x,y){ any(x %in% y) } if(!silent){ cat("Predicted Match Results for ") cat(format(min.date,x$date.format)); cat(" to "); cat(format(max.date,x$date.format)); cat("\n") cat("Model based on data from ") cat(format(x$min.date,x$date.format)); cat(" to "); cat(format(x$max.date,x$date.format)); cat("\n---------------------------------------------\n") } coef.list = coef(object)$coef.list for(clus in 1:length(the.fits)){ fit=the.fits[[clus]] names.in.clus = clusters$names[clusters$membership == clus] rows.clus = apply(el,1,tmp.fun,names.in.clus) if(!any(rows.clus)) next scores.clus = scores[rows.clus,,drop=FALSE] pred.name=attr(fit$terms, "term.labels")[!(attr(fit$terms, "term.labels") %in% c("attack","defend"))] s.pred.name=home.away.predictors=both.predictors=character(0) if(length(pred.name)!=0){ s.pred.name=pred.name s.pred.name[str_sub(pred.name,-2)==".f"]=str_sub(pred.name[str_sub(pred.name,-2)==".f"],end=-3) scores.predictor.names=names(scores.clus)[!(names(scores.clus) %in% c("date","home.team","home.score","away.team","away.score"))] home.away.predictors = scores.predictor.names[str_sub(scores.predictor.names,1,5)=="home." | str_sub(scores.predictor.names,1,5)=="away."] both.predictors = scores.predictor.names[!(scores.predictor.names %in% home.away.predictors)] home.away.predictors = unique(str_sub(home.away.predictors,6)) bad.pred.name = s.pred.name[!(s.pred.name %in% both.predictors | s.pred.name %in% home.away.predictors)] if(length(bad.pred.name)!=0){ stop(paste("The predictor",paste(bad.pred.name,collapse=", "),"is missing from newdata argument.\n It needs to be specified because it is used in the model.\n")) } for(ha.pred in s.pred.name[s.pred.name %in% home.away.predictors]){ tmp.name = paste("home.",ha.pred,sep="") if(!(tmp.name %in% names(scores.clus))) stop(paste(tmp.name,"if missing from the newdata argument and it is required since it is in the model"),call.=FALSE) tmp.name = paste("away.",ha.pred,sep="") if(!(tmp.name %in% names(scores.clus))) stop(paste(tmp.name,"if missing from the newdata argument and it is required since it is in the model"),call.=FALSE) } } newdata1= data.frame(attack=factor(scores.clus$home.team,levels=fit$xlevels$attack), defend=factor(scores.clus$away.team,levels=fit$xlevels$defend)) for(ii in s.pred.name){ i = which(ii == s.pred.name) if(s.pred.name[i] %in% home.away.predictors) s.name = paste("home.",s.pred.name[i],sep="") else s.name = s.pred.name[i] if(pred.name[i] %in% names(fit$xlevels)){ newdata1=cbind(newdata1,factor(scores.clus[[s.name]],levels=fit$xlevels[[pred.name[i]]])) }else{ newdata1=cbind(newdata1,scores.clus[[s.name]]) } colnames(newdata1)[dim(newdata1)[2]]=pred.name[i] } newdata2= data.frame(defend=factor(scores.clus$home.team,levels=fit$xlevels$defend), attack=factor(scores.clus$away.team,levels=fit$xlevels$attack)) for(ii in s.pred.name){ i = which(ii == s.pred.name) if(s.pred.name[i] %in% home.away.predictors) s.name = paste("away.",s.pred.name[i],sep="") else s.name = s.pred.name[i] if(pred.name[i] %in% names(fit$xlevels)){ newdata2=cbind(newdata2,factor(scores.clus[[s.name]],levels=fit$xlevels[[pred.name[i]]])) }else{ newdata2=cbind(newdata2,scores.clus[[s.name]]) } colnames(newdata2)[dim(newdata2)[2]]=pred.name[i] } attack.scores=coef.list[[clus]]$attack defend.scores=coef.list[[clus]]$defend bad.attack=fit$xlevels$attack[!detect.normality.outliers(attack.scores)] bad.defend=fit$xlevels$defend[!detect.normality.outliers(defend.scores)] if(remove.outliers){ newdata1$attack[newdata1$attack %in% bad.attack]=NA newdata1$defend[newdata1$defend %in% bad.defend]=NA newdata2$attack[newdata2$attack %in% bad.attack]=NA newdata2$defend[newdata2$defend %in% bad.defend]=NA } prate=0 for(i in attr(terms(fit),"term.labels")){ prate=prate+coef(object)$coef.list[[clus]][[i]][newdata1[[i]]] } home.score=exp(prate) home.goals = matrix(rpois(n*dim(newdata1)[1],exp(prate)),dim(newdata1)[1],n,byrow=FALSE) rownames(home.goals)=newdata1$attack prate=0 for(i in attr(terms(fit),"term.labels")){ prate=prate+coef(object)$coef.list[[clus]][[i]][newdata2[[i]]] } away.score=exp(prate) away.goals = matrix(rpois(n*dim(newdata2)[1],exp(prate)),dim(newdata2)[1],n,byrow=FALSE) rownames(away.goals)=newdata2$attack home.attack=attack.scores[match(newdata1$attack,fit$xlevels$attack)] home.defend=defend.scores[match(newdata2$defend,fit$xlevels$attack)] away.attack=attack.scores[match(newdata2$attack,fit$xlevels$attack)] away.defend=defend.scores[match(newdata1$defend,fit$xlevels$attack)] scores$pred.home.score[rows.clus]=home.score scores$pred.away.score[rows.clus]=away.score scores$home.residuals[rows.clus]=scores$home.score[rows.clus]-home.score scores$away.residuals[rows.clus]=scores$away.score[rows.clus]-away.score scores$home.attack[rows.clus]=home.attack scores$home.defend[rows.clus]=home.defend scores$away.attack[rows.clus]=away.attack scores$away.defend[rows.clus]=away.defend home.win=100*apply(home.goals>away.goals,1,sum)/n away.win=100*apply(away.goals>home.goals,1,sum)/n tie=100-home.win-away.win home.shutout=100*apply(home.goals==0,1,sum)/n away.shutout=100*apply(away.goals==0,1,sum)/n scores$home.win[rows.clus]=home.win scores$away.win[rows.clus]=away.win scores$tie[rows.clus]=tie scores$home.shutout[rows.clus]=home.shutout scores$away.shutout[rows.clus]=away.shutout } home.goals.sum = c(sum(scores$pred.home.score[!is.na(scores$home.score)],na.rm=TRUE),sum(scores$home.score[!is.na(scores$pred.home.score)],na.rm=TRUE)) away.goals.sum = c(sum(scores$pred.away.score[!is.na(scores$away.score)],na.rm=TRUE),sum(scores$away.score[!is.na(scores$pred.away.score)],na.rm=TRUE)) if(!silent){ exclude.game=is.na(scores$pred.home.score)|is.na(scores$pred.away.score)|is.na(scores$home.score)|is.na(scores$away.score) n.games=sum(!exclude.game) pred.home=scores$pred.home.score[!exclude.game] pred.away=scores$pred.away.score[!exclude.game] pred.home.wins=pred.home>pred.away home.wins=scores$home.score[!exclude.game]>scores$away.score[!exclude.game] pred.away.wins=pred.home<pred.away away.wins=scores$home.score[!exclude.game]<scores$away.score[!exclude.game] pred.ties=abs(pred.home-pred.away)<.5 pred.home.wins[pred.ties]=FALSE pred.away.wins[pred.ties]=FALSE ties=scores$home.score[!exclude.game]==scores$away.score[!exclude.game] shutout=as.numeric(scores$home.score[!exclude.game]==0) + as.numeric(scores$away.score[!exclude.game]==0) if(verbose){ cat("home goals predicted vs actual: ");cat(round(home.goals.sum,digits=1));cat("\n") cat("away goals predicted vs actual: ");cat(round(away.goals.sum,digits=1));cat("\n") cat("home wins (predicted vs actual): ");cat(c(round(sum(scores$home.win[!exclude.game])/100,digits=1),sum(home.wins)));cat("\n") cat("pred ties (predicted vs actual): ");cat(c(round(sum(scores$tie[!exclude.game])/100,digits=1),sum(ties)));cat("\n") cat("away wins (predicted vs actual): ");cat(c(round(sum(scores$away.win[!exclude.game])/100,digits=1),sum(away.wins)));cat("\n") cat("pred shutouts (predicted vs actual): ");cat(c(round(sum(scores$home.shutout[!exclude.game])/100,digits=1)+round(sum(scores$away.shutout[!exclude.game])/100,digits=1),sum(shutout)));cat("\n") cat("correct predictions: "); cat(sum(pred.home.wins+home.wins==2 | pred.ties+ties==2 | pred.away.wins+away.wins==2)/ sum(!exclude.game));cat("\n") cat("correct home wins: "); cat("fraction: ");cat(sum(pred.home.wins+home.wins==2)/ sum(pred.home.wins));cat(" "); cat("number: "); cat(sum(pred.home.wins+home.wins==2)/ sum(home.wins)); cat("\n") cat("correct away wins: "); cat(sum(pred.away.wins+away.wins==2)/ sum(pred.away.wins));cat(" "); cat(sum(pred.away.wins+away.wins==2)/ sum(away.wins));cat("\n") cat("correct ties: "); cat(sum(pred.ties+ties==2)/ sum(pred.ties));cat(" "); cat(sum(pred.ties+ties==2)/ sum(ties));cat("\n") } } if(!silent & show.matches){ for(i in 1:dim(scores)[1]){ if(rnd){ if(!is.na(scores$date[i])) cat(format(scores$date[i],x$date.format));cat(" ") cat(as.character(scores$home.team[i])); cat(" vs "); cat(as.character(scores$away.team[i])); cat(", HW ");cat(round(scores$home.win[i]));cat("%, AW ") cat(round(scores$away.win[i]));cat("%, T "); cat(round(scores$tie[i])); cat("%, pred score ") cat(round(scores$pred.home.score[i],digits=1)); cat("-");cat(round(scores$pred.away.score[i],digits=1)); cat(""); if(!is.nan(scores$home.score[i]) & !is.nan(scores$away.score[i])){ cat(" actual: ") if(scores$home.score[i]>scores$away.score[i]) cat("HW") if(scores$home.score[i]<scores$away.score[i]) cat("AW") if(scores$home.score[i]==scores$away.score[i]) cat("T") cat(" ("); cat(scores$home.score[i]) cat("-");cat(scores$away.score[i]); cat(")") } cat("\n") }else{ cat(as.character(scores.clus$home.team[i]));cat(" ");cat(format(home.score[i],digits=2)) cat(" - ");cat(format(away.score[i],digits=2)); cat(" "); cat(as.character(scores.clus$away.team[i])); cat("\n") } } } invisible(list(scores=scores, home.score=home.score, away.score=away.score, home.goals.sum=home.goals.sum, home.goals=home.goals, away.goals.sum=away.goals.sum, away.goals=away.goals)) }
pgamma3 <- function(q,shape=1,scale=1,thres=0,lower.tail=TRUE,log.p=FALSE) { Fx <- pgamma(q-thres,shape,1/scale) if(!lower.tail) Fx <- 1 - Fx if(log.p) Fx <- log(Fx) return(Fx) }
setClass("tidem", contains="oce") setMethod(f="initialize", signature="tidem", definition=function(.Object, ...) { .Object <- callNextMethod(.Object, ...) .Object@metadata$version <- "" .Object@processingLog$time <- presentTime() .Object@processingLog$value <- "create 'tidem' object" return(.Object) }) NULL NULL setMethod(f="summary", signature="tidem", definition=function(object, p, constituent, ...) { debug <- if ("debug" %in% names(list(...))) list(...)$debug else 0 version <- object@metadata$version if (missing(p)) p <- 1 ok <- object@data$p <= p | version == 3 haveP <- any(!is.na(object@data$p)) if (missing(constituent)) { fit <- data.frame(Const=object@data$const[ok], Name=object@data$name[ok], Freq=object@data$freq[ok], Amplitude=object@data$amplitude[ok], Phase=object@data$phase[ok], p=object@data$p[ok]) if (debug) { cat("For missing(constituent) case, fit is:\n") print(fit) } } else { i <- NULL bad <- NULL for (iconst in seq_along(constituent)) { w <- which(object@data$name==constituent[iconst]) if (length(w) == 1) { i <- c(i, w) } else { bad <- c(bad, iconst) } } if (length(bad)) { warning("the following constituents are not handled: '", paste(constituent[bad], collapse="', '"), "'\n", sep="") } if (length(i) == 0) stop("In summary,tidem-method() : no known constituents were provided", call.=FALSE) i <- unique(i) fit <- data.frame(Const=object@data$const[i], Name=object@data$name[i], Freq=object@data$freq[i], Amplitude=object@data$amplitude[i], Phase=object@data$phase[i], p=object@data$p[i]) if (debug) { cat("For !missing(constituent) case, fit is:\n") print(fit) } } cat("tidem summary\n-------------\n") if (version != "3") { cat("\nCall:\n") cat(paste(deparse(object[["call"]]), sep="\n", collapse="\n"), "\n", sep="") cat("RMS misfit to data: ", sqrt(var(object[["model"]]$residuals)), '\n') cat("\nFitted Model:\n") f <- fit[3:6] if (debug > 0) { cat("fit:\n");print(fit) cat("f:\n");print(f) } rownames(f) <- as.character(fit[, 2]) if (haveP) { printCoefmat(f, digits=3, signif.stars=getOption("show.signif.stars"), signif.legend=TRUE, P.values=TRUE, has.Pvalue=TRUE, ...) } else { printCoefmat(f[, -4], digits=3) } } else { cat("\nSupplied Model:\n") f <- fit[3:5] rownames(f) <- as.character(fit[, 2]) printCoefmat(f, digits=3) } processingLogShow(object) invisible(NULL) }) setMethod(f="[[", signature(x="tidem", i="ANY", j="ANY"), definition=function(x, i, j, ...) { if (i == "?") return(list(metadata=sort(names(x@metadata)), metadataDerived=NULL, data=sort(names(x@data)), dataDerived="frequency")) if (i == "frequency") return(x@data$freq) callNextMethod() }) setMethod(f="[[<-", signature(x="tidem", i="ANY", j="ANY"), definition=function(x, i, j, ..., value) { callNextMethod(x=x, i=i, j=j, ...=..., value=value) }) setMethod(f="plot", signature=signature("tidem"), definition=function(x, which=1, constituents=c("SA", "O1", "K1", "M2", "S2", "M4"), sides=NULL, col="blue", log="", mgp=getOption("oceMgp"), mar=c(mgp[1]+1, mgp[1]+1, mgp[2]+0.25, mgp[2]+1), ...) { data("tidedata", package="oce", envir=environment()) tidedata <- get("tidedata") drawConstituent<-function(name="M2", side=3, col="blue", adj=NULL) { w <- which(tidedata$const$name == name) if (!length(w)) { warning("constituent '", name, "' is unknown") return() } frequency <- tidedata$const$freq[w] abline(v=frequency, col=col, lty="dotted") if (par('usr')[1] < frequency && frequency <= par('usr')[2]) { if (is.null(adj)) mtext(name, side=side, at=frequency, col=col, cex=0.8) else mtext(name, side=side, at=frequency, col=col, cex=0.8, adj=adj) } } opar <- par(no.readonly = TRUE) lw <- length(which) if (lw > 1) on.exit(par(opar)) par(mgp=mgp, mar=mar) frequency <- x@data$freq[-1] amplitude <- x@data$amplitude[-1] name <- x@data$name[-1] if (!is.null(constituents)) { sides <- if (is.null(sides)) rep(3, length(constituents)) else rep(sides, length.out=length(constituents)) col <- rep(col, length.out=length(constituents)) } sides[sides!=1&sides!=3] <- 3 for (w in 1:lw) { if (which[w] == 2) { plot(frequency, amplitude, col="white", xlab="Frequency [ cph ]", ylab="Amplitude [ m ]", log=log) segments(frequency, 0, frequency, amplitude) for (i in seq_along(constituents)) drawConstituent(constituents[i], side=sides[i], col=col[i]) } else if (which[w] == 1) { plot(frequency, cumsum(amplitude), xlab="Frequency [ cph ]", ylab="Amplitude [ m ]", log=log, type='s') for (i in seq_along(constituents)) drawConstituent(constituents[i], side=sides[i], col=col[i]) } else { stop("unknown value of which ", which, "; should be 1 or 2") } } if (!all(is.na(pmatch(names(list(...)), "main")))) title(...) }) as.tidem <- function(tRef, latitude, name, amplitude, phase, debug=getOption("oceDebug")) { oceDebug(debug, "as.tidem() {\n", sep="", unindent=1) if (missing(tRef)) stop("tRef must be given") if (missing(latitude)) stop("latitude must be given") if (missing(name)) stop("name must be given") if (missing(amplitude)) stop("amplitude must be given") if (missing(phase)) stop("phase must be given") nname <- length(name) if (nname != length(amplitude)) stop("lengths of name and amplitude must be equal but they are ", nname, " and ", length(amplitude)) if (nname != length(phase)) stop("lengths of name and phase must be equal but they are ", nname, " and ", length(phase)) data("tidedata", package="oce", envir=environment()) tidedata <- get("tidedata") tRef <- numberAsPOSIXct(3600 * round(as.numeric(tRef, tz="UTC") / 3600), tz="UTC") oceDebug(debug, "input head(name): ", paste(head(name), collapse=" "), "\n") oceDebug(debug, "input head(phase): ", paste(head(phase), collapse=" "), "\n") oceDebug(debug, "input head(amplitude): ", paste(head(amplitude), collapse=" "), "\n") freq <- rep(NA, nname) indices <- rep(NA, nname) ibad <- NULL for (i in seq_along(name)) { oceDebug(debug, "adjusting amplitude and phase for constituent '", name[i], "'\n", sep="") j <- which(tidedata$const$name==name[i]) oceDebug(debug, " inferred j=", j, " from constituent name\n", sep="") if (length(j)) { vuf <- tidemVuf(tRef, j=j, latitude=latitude) oceDebug(debug, " inferred vuf=", deparse(vuf), "\n") indices[i] <- j amplitude[i] <- amplitude[i] * vuf$f phase[i] <- phase[i] - (vuf$v+vuf$u)*360 freq[i] <- tidedata$const$freq[j] } else { ibad <- c(ibad, i) } } if (length(ibad)) { warning("the following constituents are not handled: '", paste(name[ibad], collapse="', '"), "'\n", sep="") indices <- indices[-ibad] name <- name[-ibad] amplitude <- amplitude[-ibad] phase <- phase[-ibad] freq <- freq[-ibad] } oceDebug(debug, "after vuf correction, head(name): ", paste(head(name), collapse=" "), "\n") oceDebug(debug, "after vuf correction, head(phase): ", paste(head(phase), collapse=" "), "\n") oceDebug(debug, "after vuf correction, head(amplitude): ", paste(head(amplitude), collapse=" "), "\n") oceDebug(debug, "} phase <- phase %% 360 res <- new('tidem') res@data <- list(tRef=tRef, const=indices, name=name, freq=freq, amplitude=amplitude, phase=phase, p=rep(NA, length(name))) res@metadata$version <- 3 res@processingLog <- processingLogAppend(res@processingLog, paste(deparse(match.call()), sep="", collapse="")) oceDebug(debug, "} res } tidemVuf <- function(t, j, latitude=NULL) { debug <- 0 if (length(t) > 1) stop("t must be a single POSIXct item") data("tidedata", package="oce", envir=environment()) tidedata <- get("tidedata") a <- tidemAstron(t) if (debug > 0) print(a) doodson <- cbind(tidedata$const$d1, tidedata$const$d2, tidedata$const$d3, tidedata$const$d4, tidedata$const$d5, tidedata$const$d6) oceDebug(debug, "doodson[1,]=", doodson[1, ], "\n", "doodson[2,]=", doodson[2, ], "\n", "doodson[3,]=", doodson[3, ], "\n") v <- doodson %*% a$astro + tidedata$const$semi oceDebug(debug, "tidedata$const$semi[", j, "]=", tidedata$const$semi[j], "\n") v <- v - trunc(v) oceDebug(debug, "v[1:3]=", v[1:3], "\n") if (!is.null(latitude) && !is.na(latitude)) { if (abs(latitude) < 5) latitude <- sign(latitude) * 5 slat <- sin(pi * latitude / 180) k <- which(tidedata$sat$ilatfac == 1) rr <- tidedata$sat$amprat rr[k] <- rr[k] * 0.36309 * (1.0 - 5.0 * slat * slat) / slat k <- which(tidedata$sat$ilatfac == 2) rr[k] <- rr[k] * 2.59808 * slat uu <- tidedata$sat$deldood %*% a$astro[4:6] + tidedata$sat$phcorr uu <- uu - trunc(uu) oceDebug(debug, "uu[1:3]=", uu[1:3], "\n") nsat <- length(tidedata$sat$iconst) oceDebug(debug, "tidedata$sat$iconst=", tidedata$sat$iconst, "\n", "length(sat$iconst)=", length(tidedata$sat$iconst), "\n") fsum.vec <- vector("numeric", nsat) u.vec <- vector("numeric", nsat) for (isat in 1:nsat) { oceDebug(debug, "isat=", isat, "\n") use <- tidedata$sat$iconst == isat fsum.vec[isat] <- 1 + sum(rr[use] * exp(1i * 2 * pi * uu[use])) u.vec[isat] <- Arg(fsum.vec[isat]) / 2 / pi if (isat==8 && debug > 0) { cat("TEST at isat=8:\n") cat("fsum.vec[", isat, "]=", fsum.vec[isat], " (EXPECT 1.18531604917590 - 0.08028013402313i)\n") cat("u.vec[ ", isat, "]=", u.vec[isat], " (EXPECT -0.01076294959868)\n") } } oceDebug(debug, "uvec[", j, "]=", u.vec[j], "\n", "fsum.vec[", j, "]=", fsum.vec[j], "\n") f <- abs(fsum.vec) u <- Arg(fsum.vec)/2/pi oceDebug(debug, "f=", f, "\n") oceDebug(debug, "u=", u, "\n") for (k in which(!is.na(tidedata$const$ishallow))) { ik <- tidedata$const$ishallow[k] + 0:(tidedata$const$nshallow[k] - 1) f[k] <- prod(f[tidedata$shallow$iname[ik]]^abs(tidedata$shallow$coef[ik])) u[k] <- sum(u[tidedata$shallow$iname[ik]]*tidedata$shallow$coef[ik]) v[k] <- sum(v[tidedata$shallow$iname[ik]]*tidedata$shallow$coef[ik]) if (debug>0 && k < 28) cat("k=", k, "f[k]=", f[k], " u[k]=", u[k], "v[k]=", v[k], "\n") } u <- u[j] v <- v[j] f <- f[j] } else { v <- v[j] u <- rep(0, length(j)) f <- rep(1, length(j)) } if (length(v) < length(u)) { warning("trimming u and f to get same length as v -- this is a bug") u <- u[seq_along(v)] f <- f[seq_along(v)] } list(v=v, u=u, f=f) } tidemAstron <- function(t) { if (length(t) > 1) stop("t must be a single POSIXct item") debug <- FALSE if (is.numeric(t)) t <- numberAsPOSIXct(t, tz="UTC") d <- as.numeric(difftime(t, ISOdatetime(1899, 12, 31, 12, 0, 0, tz="UTC"), units="days")) D <- d / 10000 a <- matrix(c(1.0, d, D^2, D^3), ncol=1) oceDebug(debug, "d=", formatC(d, digits=10), "D=", D, "a=", a, "\n") scHcPcNpPp <- matrix(c(270.434164, 13.1763965268, -0.0000850, 0.000000039, 279.696678, 0.9856473354, 0.00002267, 0.000000000, 334.329556, 0.1114040803, -0.0007739, -0.00000026, -259.183275, 0.0529539222, -0.0001557, -0.000000050, 281.220844, 0.0000470684, 0.0000339, 0.000000070), nrow=5, ncol=4, byrow=TRUE) astro <- ( (scHcPcNpPp %*% a) / 360 ) %% 1 oceDebug(debug, "astro=", astro, "\n") rem <- as.numeric(difftime(t, trunc.POSIXt(t, units="days"), tz="UTC", units="days")) oceDebug(debug, "rem2=", rem, "\n") tau <- rem + astro[2, 1] - astro[1, 1] astro <- c(tau, astro) da <- matrix(c(0.0, 1.0, 2e-4*D, 3e-4*D^2), nrow=4, ncol=1) ader <- (scHcPcNpPp %*% da) / 360 dtau <- 1 + ader[2, 1] - ader[1, 1] ader <- c(dtau, ader) list(astro=astro, ader=ader) } tidemConstituentNameFix <- function(names, debug=1) { if ("MS" %in% names) { if (debug) warning("constituent name switched from T-TIDE 'MS' to Foreman (1978) 'M8'") names[names == "MS"] <- "M8" } if ("-MS" %in% names) { if (debug) warning("removed-constituent name switched from T-TIDE 'MS' to Foreman (1978) 'M8'") names[names == "-MS"] <- "-M8" } if ("UPSI" %in% names) { if (debug) warning("constituent name switched from T-TIDE 'UPSI' to Foreman (1978) 'UPS1'") names[names == "UPSI"] <- "UPS1" } if ("-UPSI" %in% names) { if (debug) warning("removed-constituent name switched from T-TIDE 'UPSI' to Foreman (1978) 'UPS1'") names[names == "-UPSI"] <- "-UPS1" } names } tidem <- function(t, x, constituents, infer=NULL, latitude=NULL, rc=1, regress=lm, debug=getOption("oceDebug")) { oceDebug(debug, "tidem(t, x,\n", sep="", unindent=1) oceDebug(debug, " constituents=", if (missing(constituents)) "(missing)" else paste("c('", paste(constituents, collapse="', '"), "')", sep=""), ",\n", sep="", unindent=1) oceDebug(debug, " latitude=", if (is.null(latitude)) "NULL" else latitude, ",\n", sep="", unindent=1) oceDebug(debug, " rc=", rc, ",\n", sep="", unindent=1) oceDebug(debug, " debug=", debug, ") {\n", sep="", unindent=1) cl <- match.call() if (missing(t)) stop("must supply 't', either a vector of times or a sealevel object") if (inherits(t, "sealevel")) { sl <- t t <- sl[["time"]] x <- sl[["elevation"]] if (is.null(latitude)) latitude <- sl[["latitude"]] } else { if (missing(x)) stop("must supply 'x', since the first argument is not a sealevel object") if (inherits(x, "POSIXt")) { warning("tidem() switching first 2 args to permit old-style usage") tmp <- x x <- t t <- tmp } if (length(x) != length(t)) stop("lengths of 'x' and 't' must match, but they are ", length(x), " and ", length(t), " respectively") if (inherits(t, "POSIXt")) { t <- as.POSIXct(t) } else { stop("t must be a vector of POSIXt times") } sl <- as.sealevel(x, t) } data("tidedata", package="oce", envir=environment()) tidedata <- get("tidedata") tc <- tidedata$const ntc <- length(tc$name) if (!is.null(infer)) { if (!is.list(infer)) stop("infer must be a list") if (length(infer) != 4) stop("infer must hold 4 elements") if (!all.equal(sort(names(infer)), c("amp", "from", "name", "phase"))) stop("infer must contain 'name', 'from', 'amp', and 'phase', and nothing else") if (!is.character(infer$name)) stop("infer$name must be a vector of character strings") infer$name <- tidemConstituentNameFix(infer$name) if (!is.character(infer$from)) stop("infer$from must be a vector of character strings") infer$from <- tidemConstituentNameFix(infer$from) if (length(infer$name) != length(infer$from)) stop("lengths of infer$name and infer$from must be equal") if (length(infer$name) != length(infer$amp)) stop("lengths of infer$name and infer$amp must be equal") if (length(infer$name) != length(infer$phase)) stop("lengths of infer$name and infer$phase must be equal") for (n in infer$name) { if (!(n %in% tc$name)) stop("infer$name value '", n, "' is not a known tidal constituent; see const$name in ?tidedata") } for (n in infer$from) { if (!(n %in% tc$name)) stop("infer$from value '", n, "' is not a known tidal constituent; see const$name in ?tidedata") } } startTime <- t[1] endTime <- tail(t, 1) years <- as.numeric(difftime(endTime, startTime, units="secs")) / 86400 / 365.25 if (years > 18.6) warning("Time series spans 18.6 years, but tidem() is ignoring this important fact") standard <- tc$ikmpr > 0 addedConstituents <- NULL if (missing(constituents)) { name <- tc$name[standard] freq <- tc$freq[standard] kmpr <- tc$kmpr[standard] indices <- seq(1:ntc)[standard] oceDebug(debug, "starting with ", length(name), " default constituents: ", paste(name, collapse=" "), sep="", "\n") } else { name <- NULL for (i in seq_along(constituents)) { if (constituents[i] == "standard") { if (i != 1) stop("\"standard\" must occur first in constituents list") name <- tc$name[standard] } else { constituents <- tidemConstituentNameFix(constituents) if (substr(constituents[i], 1, 1) == "-") { nameRemove <- substr(constituents[i], 2, nchar(constituents[i])) if (1 != sum(tc$name == nameRemove)) stop("'", nameRemove, "' is not a known tidal constituent; try one of: ", paste(tc$name, collapse=" ")) remove <- which(name == nameRemove) oceDebug(debug > 1, "removed '", nameRemove, "'\n", sep="") if (0 == length(remove)) warning("'", nameRemove, "' is not in the list of constituents currently under study", sep="") else name <- name[-remove] } else { add <- which(tc$name == constituents[i]) if (1 != length(add)) stop("'", constituents[i], "' is not a known tidal constituent (line 1093)") if (!(constituents[i] %in% name)) { name <- c(name, tc$name[add]) addedConstituents <- c(addedConstituents, add) } } } } } oceDebug(debug, "will fit for ", length(name), " constituents: ", paste(name, collapse=" "), "\n", sep="") fitForZ0 <- "Z0" %in% name oceDebug(debug, "fitForZ0=", fitForZ0, "\n") if (any(!(name %in% tc$name))) { bad <- NULL for (n in name) if (!(n %in% tc$name)) bad <- c(bad, n) stop("unknown constituent names: ", paste(bad, collapse=" "), " (please report this error to developer)") } indices <- sort(unlist(lapply(name,function(name) which(tc$name==name)))) name <- tc$name[indices] freq <- tc$freq[indices] kmpr <- tc$kmpr[indices] nc <- length(name) interval <- diff(range(as.numeric(sl@data$time), na.rm=TRUE)) / 3600 oceDebug(debug, "interval=", interval, " hours\n") dropTerm <- NULL for (i in 1:nc) { cc <- which(tc$name == kmpr[i]) if (length(cc)) { cannotFit <- (interval * abs(freq[i]-tc$freq[cc])) < rc oceDebug(debug, "i=", i, ", name=", name[i], ", kmpr[", i, "]=", kmpr[i],", cannotFit=", cannotFit,"\n", sep="") if (cannotFit) { dropTerm <- c(dropTerm, i) } } } oceDebug(debug, "before trimming constituents for Rayleigh condition, name[1:", length(name), "]=", paste(name, collapse=" "), sep="", "\n") if (length(dropTerm) > 0) { cat("Note: the tidal record is too short to fit for constituents: ", paste(name[dropTerm], collapse=" "), "\n") indices <- indices[-dropTerm] name <- name[-dropTerm] freq <- freq[-dropTerm] kmpr <- kmpr[-dropTerm] } oceDebug(debug, "after trimming constituents for Rayleight condition, name[1:", length(name), "]=", paste(name, collapse=" "), sep="", "\n") if (length(addedConstituents)) { oceDebug(debug, "addedConstituents=", paste(addedConstituents, collapse=" "), "\n") for (a in addedConstituents) { if (!(tc$name[a] %in% name)) { message("ADDING:") message(" tc$name[a=", a, "]='", tc$name[a], "'", sep="") message(" tc$freq[a=", a, "]='", tc$freq[a], "'", sep="") message(" tc$kmpr[a=", a, "]='", tc$kmpr[a], "'", sep="") indices <- c(indices, which(tc$name==name[a])) name <- c(name, tc$name[a]) freq <- c(freq, tc$freq[a]) kmpr <- c(kmpr, tc$kmpr[a]) } } } oceDebug(debug, "after adding new constituents, name[1:", length(name), "]=", paste(name, collapse=" "), sep="", "\n") if (!is.null(infer)) { for (n in c(infer$from)) { if (!(n %in% name)) { a <- which(tc$name == n) indices <- c(indices, a) name <- c(name, tc$name[a]) freq <- c(freq, tc$freq[a]) kmpr <- c(kmpr, tc$kmpr[a]) message("fitting for infer$from=", n, ", even though the Rayleigh Criterion would exclude it") } } } oindices <- order(indices) indices <- indices[oindices] name <- name[oindices] freq <- freq[oindices] kmpr <- kmpr[oindices] nc <- length(name) oceDebug(debug, "name[1:", length(name), "]: ", paste(name, collapse=" "), "\n", sep="") rm(oindices) if (0 == nc) stop("cannot fit for any constituents") elevation <- sl[["elevation"]] time <- sl[["time"]] nt <- length(elevation) x <- array(dim=c(nt, 2 * nc)) oceDebug(debug, vectorShow(nc)) oceDebug(debug, vectorShow(dim(x))) x[, 1] <- rep(1, nt) pi <- 4 * atan2(1, 1) rpd <- atan2(1, 1) / 45 tRef <- numberAsPOSIXct(3600 * round(mean(as.numeric(time, tz="UTC")) / 3600), tz="UTC") hour2pi <- 2 * pi * (as.numeric(time) - as.numeric(tRef)) / 3600 oceDebug(debug, "tRef=", tRef, ", nc=", nc, ", length(name)=", length(name), "\n") for (i in 1:nc) { oceDebug(debug, "setting ", i, "-th coefficient (name=", name[i], " freq=", freq[i], " cph)", "\n", sep="") ft <- freq[i] * hour2pi x[, 1 + 2*(i-1)] <- cos(ft) x[, 2 + 2*(i-1)] <- sin(ft) } name2 <- matrix(rbind(paste(name, "_C", sep=""), paste(name, "_S", sep="")), nrow=length(name), ncol=2) dim(name2) <- c(2 * length(name), 1) colnames(x) <- name2 oceDebug(debug, "about to do regression\n") if ("Z0_S" %in% colnames(x)) { x <- x[, -which("Z0_S" == colnames(x))] oceDebug(debug, "model has Z0, so trimming the sin(freq*time) column\n") } if (debug) { cat("x[,1]:\n");print(x[,1]) cat("x[,2]:\n");print(x[,2]) } model <- regress(elevation ~ x - 1, na.action=na.exclude) if (debug > 0) { cat("regression worked OK; the results are as follows:\n") print(summary(model)) } coef <- model$coefficients p.all <- if (4 == dim(summary(model)$coefficients)[2]) summary(model)$coefficients[, 4] else rep(NA, length=1+nc) amplitude <- phase <- p <- vector("numeric", length=nc) oceDebug(debug, vectorShow(nc)) oceDebug(debug, vectorShow(phase)) oceDebug(debug, vectorShow(name)) ic <- 1 for (i in seq_len(nc)) { if (name[i] == "Z0") { if (i != 1) stop("Z0 should be at the start of the regression coefficients. Please report this to developer.") j <- which(tidedata$const$name==name[i]) vuf <- tidemVuf(tRef, j=j, latitude=latitude) amplitude[i] <- coef[ic] phase[i] <- 0 p[i] <- p.all[ic] oceDebug(debug, "processed coefs at i=", i, ", ic=", ic, ", name=", name[i], ", f=", vuf$f, ", angle adj=", (vuf$u+vuf$v)*360, ", amplitude=", amplitude[i], ", phase=", phase[i], ", p=", p[i], "\n", sep="") ic <- ic + 1 } else { C <- coef[ic] S <- coef[ic+1] amplitude[i] <- sqrt(S^2 + C^2) phase[i] <- atan2(S, C) j <- which(tidedata$const$name==name[i]) vuf <- tidemVuf(tRef, j=j, latitude=latitude) amplitude[i] <- amplitude[i] / vuf$f p[i] <- 0.5 * (p.all[ic+1] + p.all[ic]) oceDebug(debug, "processed coefs at i=", i, ", ic=", ic, ", name=", name[i], ", S=", S, ", C=", C, ", f=", vuf$f, ", angle adj=", (vuf$u+vuf$v)*360, ", amplitude=", amplitude[i], ", phase=", phase[i], ", p=", p[i], "\n", sep="") ic <- ic + 2 } } oceDebug(debug, vectorShow(phase)) phase <- phase * 180 / pi phase <- ifelse(phase < -360, 720 + phase, phase) phase <- ifelse(phase < 0, 360 + phase, phase) C <- unlist(lapply(name, function(n) which(n == tidedata$const$name))) vuf <- tidemVuf(tRef, j=C, latitude=latitude) oceDebug(debug, vectorShow(freq)) oceDebug(debug, vectorShow(phase)) oceDebug(debug, vectorShow(vuf$u)) oceDebug(debug, vectorShow(vuf$v)) phase <- phase + (vuf$v+vuf$u)*360 phase <- ifelse(phase < 0, phase+360, phase) phase <- ifelse(phase > 360, phase-360, phase) if (!is.null(infer)) { if (debug > 0) { cat("BEFORE inference:\n") print(data.frame(name=name, freq=round(freq,6), amplitude=round(amplitude,4))) } for (n in seq_along(infer$name)) { oceDebug(debug, "n=", n, "; handling inferred constituent ", infer$name[n], "\n") iname <- which(tc$name == infer$name[n])[1] oceDebug(debug, "infer$name[", n, "]='", infer$name[n], "' yields iname=", iname, "\n", sep="") oceDebug(debug, "iname=", iname, "\n") if (infer$from[n] %in% name) { ifrom <- which(name == infer$from[n])[1] if (infer$name[n] %in% name) { iname <- which(name == infer$name[n])[1] amplitude[iname] <- infer$amp[n] * amplitude[ifrom] phase[iname] <- phase[ifrom] - infer$phase[n] p[iname] <- p[ifrom] oceDebug(debug, "replace existing ", name[iname], " based on ", name[ifrom], " (", freq[ifrom], " cph)\n", sep="") warning("inferring '", infer$name[n], "' which is already included in the regression. Foreman says to skip it; unsure on what T_TIDE does\n") } else { i1 <- which(tc$name==infer$from[n])[1] i2 <- which(tc$name==infer$name[n])[1] oceDebug(1+debug, "tRef=", format(tRef, "%Y-%m-%d %H:%M:%S"), ", i1=", i1, ", i2=", i2, ", lat=", latitude, "\n") vuf12 <- tidemVuf(tRef, c(i1, i2), latitude=latitude) f1 <- vuf12$f[1] f2 <- vuf12$f[2] oceDebug(1+debug, "f1=", f1, ", f2=", f2, "\n") vu1 <- (vuf12$v[1] + vuf12$u[1]) * 360 vu2 <- (vuf12$v[2] + vuf12$u[2]) * 360 oceDebug(debug, "vu1=", vu1, ", vu2=", vu2, "\n") sigma1 <- tc$freq[i1] sigma2 <- tc$freq[i2] oceDebug(debug, "sigma1=", sigma1, ", sigma2=", sigma2, "\n") tmp <- pi * interval * (sigma2 - sigma1) r12 <- infer$amp[n] zeta <- infer$phase[n] S <- r12 * (f2/f1) * sin(tmp) * sin(rpd*(vu2-vu1+zeta)) / tmp C <- 1 + r12 * (f2/f1) * sin(tmp) * cos(rpd*(vu2-vu1+zeta)) / tmp oceDebug(debug, "tmp=", tmp, ", S=", S, ", C=", C, ", sqrt(S^2+C^2)=", sqrt(S^2+C^2), "\n") oceDebug(1+debug, infer$from[n], "amplitude, old=", amplitude[ifrom], ", new=", amplitude[ifrom]/sqrt(S^2+C^2), "\n") amplitude[ifrom] <- amplitude[ifrom] / sqrt(S^2+C^2) oceDebug(1+debug, infer$from[n], "phase, old=", phase[ifrom], ", new=", phase[ifrom]+atan2(S, C) / rpd, "\n") phase[ifrom] <- phase[ifrom] + atan2(S, C) / rpd iname <- which(tc$name == infer$name[n])[1] oceDebug(1+debug, "Below is inference for ", infer$name[n], " (index=", iname, ")\n") indices <- c(indices, iname) name <- c(name, infer$name[n]) freq <- c(freq, tc$freq[iname]) amplitudeInferred <- infer$amp[n] * amplitude[ifrom] phaseInferred <- phase[ifrom] - infer$phase[n] oceDebug(1+debug, " ", infer$name[n], "inferred amplitude=", amplitudeInferred, "\n") oceDebug(1+debug, " ", infer$name[n], "inferred phase=", phaseInferred, "\n") amplitude <- c(amplitude, amplitudeInferred) phase <- c(phase, phaseInferred) p <- c(p, p[ifrom]) oceDebug(1+debug, " create ", infer$name[n], " (index=", iname, ", ", tc$freq[iname], " cph) based on ", name[ifrom], " (index ", ifrom, ", ", freq[ifrom], " cph)\n", sep="") } } else { stop("Internal error (please report): cannot infer ", infer$name[n], " from ", infer$from[n], " because the latter was not computed") } } o <- order(indices) indices <- indices[o] stopifnot(length(o)==length(name)) stopifnot(length(o)==length(freq)) stopifnot(length(o)==length(amplitude)) stopifnot(length(o)==length(phase)) stopifnot(length(o)==length(p)) name <- name[o] freq <- freq[o] amplitude <- amplitude[o] phase <- phase[o] p <- p[o] rm(o) if (debug > 0) { cat("AFTER inference\n") print(data.frame(name=name, freq=round(freq,5), amplitude=round(amplitude,4))) } } phase <- phase %% 360 res <- new('tidem') res@data <- list(model=model, call=cl, tRef=tRef, const=indices, name=name, freq=freq, amplitude=amplitude, phase=phase, p=p) res@metadata$rc <- rc res@metadata$version <- 2 res@processingLog <- processingLogAppend(res@processingLog, paste(deparse(match.call()), sep="", collapse="")) oceDebug(debug, "} res } predict.tidem <- function(object, newdata, ...) { dots <- list(...) debug <- if ("debug" %in% names(dots)) dots$debug else 0 oceDebug(debug, "predict.tidem() {\n", sep="", unindent=1) if (!missing(newdata) && !inherits(newdata, "POSIXt")) stop("newdata must be of class POSIXt") version <- object@metadata$version if (!is.null(version) && version == 3) { oceDebug(debug, "object@metadata$version is 3, so assuming the object was created by as.tidem()\n") if (missing(newdata)) stop("must supply newdata because object was created with as.tidem()") hour2pi <- 2 * pi * (as.numeric(newdata) - as.numeric(object[["tRef"]])) / 3600 oceDebug(debug, vectorShow(hour2pi)) nc <- length(object@data$name) res <- rep(0, length(hour2pi)) for (i in seq_len(nc)) { oceDebug(debug, "accounting for constituent[", i, "] = ", object@data$name[i], "\n", sep="") omega.t <- object@data$freq[i] * hour2pi a <- object@data$amplitude[i] * sin(2 * pi * object@data$phase[i] / 360) b <- object@data$amplitude[i] * cos(2 * pi * object@data$phase[i] / 360) res <- res + a*sin(omega.t) + b*cos(omega.t) } } else if (!is.null(version) && version == 2) { oceDebug(debug, "object@metadata$version is 2, so assuming the object was created by tidem()\n") if (!missing(newdata) && !is.null(newdata)) { oceDebug(debug, "newdata was provided\n") freq <- object@data$freq name <- object@data$name nc <- length(freq) tt <- as.numeric(as.POSIXct(newdata, tz="UTC")) nt <- length(tt) x <- array(dim=c(nt, 2 * nc)) x[, 1] <- rep(1, nt) hour2pi <- 2 * pi * (as.numeric(tt) - as.numeric(object[["tRef"]])) / 3600 for (i in 1:nc) { omega.t <- freq[i] * hour2pi x[, 2*i-1] <- cos(omega.t) x[, 2*i ] <- sin(omega.t) } colnames(x) <- matrix(rbind(paste(name, "_C", sep=""), paste(name, "_S", sep="")), nrow=length(name), ncol=2) if ("Z0_S" %in% colnames(x)) { x <- x[, -which("Z0_S" == colnames(x))] oceDebug(debug, "model has Z0, so trimming the sin(freq*time) column\n") } res <- as.numeric(predict(object@data$model, newdata=list(x=x), ...)) } else { oceDebug(debug, "newdata was not provided\n") res <- as.numeric(predict(object@data$model, ...)) } } else { if (!("version" %in% names(object@metadata))) warning("prediction is being made based on an old object; it may be wrong\n") res <- as.numeric(predict(object@data$model, ...)) } oceDebug(debug, "} res } webtide <- function(action=c("map", "predict"), longitude, latitude, node, time, basedir=getOption("webtide"), region="nwatl", plot=TRUE, tformat, debug=getOption("oceDebug"), ...) { debug <- max(0, min(floor(debug), 2)) oceDebug(debug, "webtide(action=\"", action, "\", ...)\n", sep="", unindent=1, style="bold") rpd <- atan2(1, 1) / 45 action <- match.arg(action) nodeGiven <- !missing(node) longitudeGiven <- !missing(longitude) latitudeGiven <- !missing(latitude) path <- paste(basedir, "/data/", region, sep="") suffices <- c(".nod", "ll.nod", "_ll.nod") nodFiles <- paste(region, suffices, sep="") triangles <- NULL for (nodFile in nodFiles) { if (1 == length(list.files(path=path, pattern=nodFile))) { triangles <- read.table(paste(path, nodFile, sep="/"), col.names=c("triangle", "longitude", "latitude")) oceDebug(debug, "found webtide information in '", nodFile, "'\n", sep="") break } else { oceDebug(debug, "looked for webtide information in '", nodFile, "' but this file does not exist\n", sep="") } } if (is.null(triangles)) stop("cannot find WebTide data file; rerun with debug=1 to see the searched list") if (action == "map") { if (plot) { asp <- 1 / cos(rpd*mean(range(triangles$latitude, na.rm=TRUE))) par(mfrow=c(1, 1), mar=c(3, 3, 2, 1), mgp=c(2, 0.7, 0)) plot(triangles$longitude, triangles$latitude, pch=2, cex=1/4, lwd=1/8, asp=asp, xlab="", ylab="", ...) usr <- par("usr") bestcoastline <- coastlineBest(lonRange=usr[1:2], latRange=usr[3:4], debug=debug-1) oceDebug(debug, "coastlineBest() suggests using", bestcoastline, "as the coastline\n") if (bestcoastline == "coastlineWorld") { data(list=bestcoastline, package="oce", envir=environment()) coastlineWorld <- get("coastlineWorld") } else { if (requireNamespace("ocedata", quietly=TRUE)) { data(list=bestcoastline, package="ocedata", envir=environment()) oceDebug(debug, "Using", bestcoastline, "from the ocedata package.\n") coastlineWorld <- get(bestcoastline) } else { data(list="coastlineWorld", package="oce", envir=environment()) oceDebug(debug, "The ocedata package is not available, so using", bestcoastline, "from oce\n") coastlineWorld <- get("coastlineWorld") } } polygon(coastlineWorld[['longitude']], coastlineWorld[['latitude']], col="tan") if (!nodeGiven && longitudeGiven && latitudeGiven) { closest <- which.min(geodDist(triangles$longitude, triangles$latitude, longitude, latitude)) node <- triangles$triangle[closest] } if (nodeGiven && node < 0 && interactive()) { point <- locator(1) node <- which.min(geodDist(triangles$longitude, triangles$latitude, point$x, point$y)) } if (missing(node)) { node <- triangles$number longitude <- triangles$longitude latitude <- triangles$latitude } else { if (is.finite(node)) { node <- triangles$triangle[node] longitude <- triangles$longitude[node] latitude <- triangles$latitude[node] points(longitude, latitude, pch=20, cex=2, col='blue') legend("topleft", pch=20, pt.cex=2, cex=3/4, col='blue', bg='white', legend=sprintf("node %.0f %.3fN %.3fE", node, latitude, longitude)) } } oceDebug(debug, "} return(invisible(list(node=node, latitude=latitude, longitude=longitude))) } else { node <- triangles$triangle longitude <- triangles$longitude latitude <- triangles$latitude oceDebug(debug, "} return(list(node=node, latitude=latitude, longitude=longitude)) } } else if (action == "predict") { if (missing(time)) time <- seq.POSIXt(from=presentTime(), by="15 min", length.out=7*4*24) if (missing(node)) { if (missing(longitude) || missing(latitude)) stop("'longitude' and 'latitude' must be given unless 'node' is given") node <- which.min(geodDist(triangles$longitude, triangles$latitude, longitude, latitude)) } else { latitude <- triangles$latitude[node] longitude <- triangles$longitude[node] } oceDebug(debug, latitude, "N ", longitude, "E -- use node ", node, " at ", triangles$latitude[node], "N ", triangles$longitude[node], "E\n", sep="") constituentse <- dir(path=path, pattern="*.s2c") constituentsuv <- dir(path=path, pattern="*.v2c") nconstituents <- length(constituentse) period <- ampe <- phasee <- ampu <- phaseu <- ampv <- phasev <- vector("numeric", length(nconstituents)) data("tidedata", package="oce", envir=environment()) tidedata <- get("tidedata") for (i in 1:nconstituents) { twoLetter <- substr(constituentse[i], 1, 2) C <- which(twoLetter == tidedata$const$name) period[i] <- 1 / tidedata$const$freq[C] coneFile <- paste(path, constituentse[i], sep="/") cone <- read.table(coneFile, skip=3)[node, ] ampe[i] <- cone[[2]] phasee[i] <- cone[[3]] conuvFile <- paste(path, constituentsuv[i], sep="/") conuv <- read.table(conuvFile, skip=3)[node, ] ampu[i] <- conuv[[2]] phaseu[i] <- conuv[[3]] ampv[i] <- conuv[[4]] phasev[i] <- conuv[[5]] oceDebug(debug, coneFile, sprintf("%s ", twoLetter), sprintf("%4.2fh", period[i]), sprintf(" (node %d) ", node), sprintf("%4.4fm ", ampe[i]), sprintf("%3.3fdeg", phasee[i]), "\n", sep="") } elevation <- u <- v <- rep(0, length(time)) tRef <- ISOdate(1899, 12, 31, 12, 0, 0, tz="UTC") h <- (as.numeric(time) - as.numeric(tRef)) / 3600 tRef <- 3600 * round(mean(as.numeric(time)) / 3600) for (i in 1:nconstituents) { twoLetter <- substr(constituentse[i], 1, 2) C <- which(twoLetter == tidedata$const$name) vuf <- tidemVuf(tRef, j=C, latitude=latitude) phaseOffset <- (vuf$u + vuf$v) * 360 elevation <- elevation + ampe[i] * cos( (360 * h / period[i] - phasee[i] + phaseOffset) * rpd) u <- u + ampu[i] * cos( (360 * h / period[i] - phaseu[i] + phaseOffset) * rpd) v <- v + ampv[i] * cos( (360 * h / period[i] - phasev[i] + phaseOffset) * rpd) oceDebug(debug, sprintf("%s ", twoLetter), sprintf("%4.2fh ", period[i]), sprintf("%4.4fm ", ampe[i]), sprintf("%3.3fdeg", phasee[i]), "\n", sep="") } if (plot) { par(mfrow=c(3, 1)) oce.plot.ts(time, elevation, type='l', xlab="", ylab=resizableLabel("elevation"), main=sprintf("node %.0f %.3fN %.3fE", node, latitude, longitude), tformat=tformat) abline(h=0, lty='dotted', col='gray') oce.plot.ts(time, u, type='l', xlab="", ylab=resizableLabel("u"), drawTimeRange=FALSE, tformat=tformat) abline(h=0, lty='dotted', col='gray') oce.plot.ts(time, v, type='l', xlab="", ylab=resizableLabel("v"), drawTimeRange=FALSE, tformat=tformat) abline(h=0, lty='dotted', col='gray') oceDebug(debug, "} return(invisible(list(time=time, elevation=elevation, u=u, v=v, node=node, basedir=basedir, region=region))) } else { oceDebug(debug, "} return(list(time=time, elevation=elevation, u=u, v=v, node=node, basedir=basedir, region=region)) } } }
cophylo<-function(tr1,tr2,assoc=NULL,rotate=TRUE,...){ if(!inherits(tr1,"phylo")||!inherits(tr2,"phylo")) stop("tr1 & tr2 should be objects of class \"phylo\".") if(hasArg(methods)) methods<-list(...)$methods else methods<-"pre" if("exhaustive"%in%methods) methods<-"exhaustive" tr1<-untangle(tr1,"read.tree") tr2<-untangle(tr2,"read.tree") if(is.null(assoc)){ assoc<-intersect(tr1$tip.label,tr2$tip.label) assoc<-if(length(assoc)>0) cbind(assoc,assoc) else NULL if(is.null(assoc)){ cat("No associations provided or found.\n") rotate<-FALSE } } ii<-sapply(assoc[,1],"%in%",tr1$tip.label) if(any(!ii)){ assoc<-assoc[ii,] cat("Some species in assoc[,1] not in tr1. Removing species & links.\n") } ii<-sapply(assoc[,2],"%in%",tr2$tip.label) if(any(!ii)){ assoc<-assoc[ii,] cat("Some species in assoc[,2] not in tr2. Removing species & links.\n") } if(rotate){ cat("Rotating nodes to optimize matching...\n") flush.console() if("exhaustive"%in%methods){ tt1<-allRotations(tr1) tt2<-allRotations(tr2) M1<-M2<-matrix(NA,length(tt1),length(tt2)) for(i in 1:length(tt1)){ for(j in 1:length(tt2)){ x<-setNames(sapply(assoc[,2],match,table=tt2[[j]]$tip.label),assoc[,1]) y<-setNames(sapply(assoc[,1],match,table=tt1[[i]]$tip.label),assoc[,2]) M1[i,j]<-attr(tipRotate(tt1[[i]],x*Ntip(tr1)/Ntip(tr2),methods="just.compute"),"minRotate") M2[i,j]<-attr(tipRotate(tt2[[j]],y*Ntip(tr2)/Ntip(tr1),methods="just.compute"),"minRotate") } } MM<-M1+M2 ij<-which(MM==min(MM),arr.ind=TRUE) obj<-list() for(i in 1:nrow(ij)){ tr1<-tt1[[ij[i,1]]] attr(tr1,"minRotate")<-M1[ij[i,1],ij[i,2]] tr2<-tt2[[ij[i,2]]] attr(tr2,"minRotate")<-M2[ij[i,1],ij[i,2]] tt<-list(tr1,tr2) class(tt)<-"multiPhylo" obj[[i]]<-list(trees=tt,assoc=assoc) class(obj[[i]])<-"cophylo" } if(length(obj)>1) class(obj)<-"multiCophylo" else obj<-obj[[1]] } else if ("all"%in%methods){ tt1<-allRotations(tr1) tt2<-allRotations(tr2) obj<-vector(mode="list",length=length(tt1)*length(tt2)) ij<-1 for(i in 1:length(tt1)){ for(j in 1:length(tt2)){ x<-setNames(sapply(assoc[,2],match,table=tt2[[j]]$tip.label),assoc[,1]) y<-setNames(sapply(assoc[,1],match,table=tt1[[i]]$tip.label),assoc[,2]) obj[[ij]]<-list(trees=c( tipRotate(tt1[[i]],x*Ntip(tr1)/Ntip(tr2),methods="just.compute"), tipRotate(tt2[[j]],y*Ntip(tr2)/Ntip(tr1),methods="just.compute")), assoc=assoc) class(obj[[ij]])<-"cophylo" ij<-ij+1 } } class(obj)<-"multiCophylo" } else { x<-setNames(sapply(assoc[,2],match,table=tr2$tip.label),assoc[,1]) tr1<-tipRotate(tr1,x*Ntip(tr1)/Ntip(tr2),right=tr2,assoc=assoc,...) best.tr1<-Inf x<-setNames(sapply(assoc[,1],match,table=tr1$tip.label),assoc[,2]) tr2<-tipRotate(tr2,x*Ntip(tr2)/Ntip(tr1),left=tr1,assoc=assoc,...) best.tr2<-Inf while((best.tr2-attr(tr2,"minRotate"))>0||(best.tr1-attr(tr1,"minRotate"))>0){ best.tr1<-attr(tr1,"minRotate") best.tr2<-attr(tr2,"minRotate") x<-setNames(sapply(assoc[,2],match,table=tr2$tip.label),assoc[,1]) tr1<-tipRotate(tr1,x*Ntip(tr1)/Ntip(tr2),right=tr2,assoc=assoc,...) x<-setNames(sapply(assoc[,1],match,table=tr1$tip.label),assoc[,2]) tr2<-tipRotate(tr2,x*Ntip(tr2)/Ntip(tr1),left=tr1,assoc=assoc,...) } tt<-list(tr1,tr2) class(tt)<-"multiPhylo" obj<-list(trees=tt,assoc=assoc) class(obj)<-"cophylo" } cat("Done.\n") } else { tt<-list(tr1,tr2) class(tt)<-"multiPhylo" obj<-list(trees=tt,assoc=assoc) class(obj)<-"cophylo" } obj } phylogram<-function(tree,part=1,direction="rightwards",fsize=1,ftype="i",lwd=1,...){ if(hasArg(pts)) pts<-list(...)$pts else pts<-TRUE if(hasArg(edge.col)) edge.col<-list(...)$edge.col else edge.col<-rep("black",nrow(tree$edge)) if(hasArg(tip.lwd)) tip.lwd<-list(...)$tip.lwd else tip.lwd<-1 if(hasArg(tip.lty)) tip.lty<-list(...)$tip.lty else tip.lty<-"dotted" if(hasArg(tip.len)) tip.len<-list(...)$tip.len else tip.len<-0.1 if(pts==TRUE&&tip.len==0) tip.len<-0.1 d<-if(direction=="rightwards") 1 else -1 tree$tip.label<-gsub("_"," ",tree$tip.label) if(is.null(tree$edge.length)) tree<-compute.brlen(tree) if(ftype=="off") fsize<-0 n<-Ntip(tree) sh<-fsize*strwidth(tree$tip.label) H<-nodeHeights(tree) th<-sapply(1:n,function(i,x,e) x[which(e==i)],x=H[,2], e=tree$edge[,2])+tip.len*max(H) tree$edge.length<-tree$edge.length/max(th/(part-sh)) cw<-reorder(tree,"cladewise") y<-vector(length=n+cw$Nnode) y[cw$edge[cw$edge[,2]<=n,2]]<-0:(n-1)/(n-1) pw<-reorder(tree,"pruningwise") nn<-unique(pw$edge[,1]) for(i in 1:length(nn)){ yy<-y[pw$edge[which(pw$edge[,1]==nn[i]),2]] y[nn[i]]<-mean(range(yy)) } X<-nodeHeights(cw)-0.5 for(i in 1:nrow(X)) lines(d*X[i,],rep(y[cw$edge[i,2]],2),lwd=lwd,lend=2, col=edge.col[i]) for(i in 1:tree$Nnode+n){ ee<-which(cw$edge[,1]==i) p<-if(i%in%cw$edge[,2]) which(cw$edge[,2]==i) else NULL if(!is.null(p)){ xx<-c(X[ee,1],X[p,2]) yy<-sort(c(y[cw$edge[ee,2]],y[cw$edge[p,2]])) } else { xx<-c(X[ee,1],X[ee[1],1]) yy<-sort(c(y[cw$edge[ee,2]],mean(y[cw$edge[ee,2]]))) } segments(x0=d*xx[1:(length(xx)-1)],y0=yy[1:(length(yy)-1)], x1=d*xx[2:length(xx)],y1=yy[2:length(yy)],lwd=lwd,lend=2,col=edge.col[ee]) } h<-part-0.5-tip.len*(max(X)-min(X))-fsize*strwidth(tree$tip.label) for(i in 1:n){ lines(d*c(X[which(cw$edge[,2]==i),2],h[i]+tip.len*(max(X)-min(X))),rep(y[i],2), lwd=tip.lwd,lty=tip.lty) if(pts) points(d*X[which(cw$edge[,2]==i),2],y[i],pch=16,cex=pts*0.7*sqrt(lwd)) } font<-which(c("off","reg","b","i","bi")==ftype)-1 if(font>0){ for(i in 1:n) TEXTBOX(d*(h[i]+fsize*strwidth(tree$tip.label[i])+ tip.len*(max(X)-min(X))),y[i], tree$tip.label[i], pos=if(d<0) 4 else 2,offset=0, cex=fsize,font=font) } PP<-list(type="phylogram",use.edge.length=TRUE,node.pos=1, show.tip.label=if(ftype!="off") TRUE else FALSE,show.node.label=FALSE, font=ftype,cex=fsize,adj=0,srt=0,no.margin=FALSE,label.offset=0, x.lim=par()$usr[1:2],y.lim=par()$usr[3:4], direction=direction,tip.color="black",Ntip=Ntip(cw),Nnode=cw$Nnode, edge=cw$edge,xx=d*sapply(1:(Ntip(cw)+cw$Nnode), function(x,y,z) y[match(x,z)],y=X,z=cw$edge),yy=y) assign("last_plot.phylo",PP,envir=.PlotPhyloEnv) invisible(d*max(h+fsize*strwidth(tree$tip.label)+tip.len*(max(X)-min(X)))) } cladogram<-function(tree,part=1,direction="rightwards",fsize=1,ftype="i",lwd=1,...){ if(hasArg(pts)) pts<-list(...)$pts else pts<-TRUE if(hasArg(edge.col)) edge.col<-list(...)$edge.col else edge.col<-rep("black",nrow(tree$edge)) if(hasArg(tip.lwd)) tip.lwd<-list(...)$tip.lwd else tip.lwd<-1 if(hasArg(tip.lty)) tip.lty<-list(...)$tip.lty else tip.lty<-"dotted" if(hasArg(tip.len)) tip.len<-list(...)$tip.len else tip.len<-0.1 if(pts==TRUE&&tip.len==0) tip.len<-0.1 d<-if(direction=="rightwards") 1 else -1 tree$tip.label<-gsub("_"," ",tree$tip.label) if(is.null(tree$edge.length)) tree<-compute.brlen(tree) if(ftype=="off") fsize<-0 n<-Ntip(tree) sh<-fsize*strwidth(tree$tip.label) H<-nodeHeights(tree) th<-sapply(1:n,function(i,x,e) x[which(e==i)],x=H[,2], e=tree$edge[,2])+tip.len*max(H) tree$edge.length<-tree$edge.length/max(th/(part-sh)) cw<-reorder(tree,"cladewise") y<-vector(length=n+cw$Nnode) y[cw$edge[cw$edge[,2]<=n,2]]<-0:(n-1)/(n-1) pw<-reorder(tree,"pruningwise") nn<-unique(pw$edge[,1]) for(i in 1:length(nn)){ desc<-pw$edge[which(pw$edge[,1]==nn[i]),2] n1<-desc[which(y[desc]==min(y[desc]))] n2<-desc[which(y[desc]==max(y[desc]))] v1<-pw$edge.length[which(pw$edge[,2]==n1)] v2<-pw$edge.length[which(pw$edge[,2]==n2)] y[nn[i]]<-((1/v1)*y[n1]+(1/v2)*y[n2])/(1/v1+1/v2) } X<-nodeHeights(cw)-0.5 for(i in 1:nrow(X)) lines(d*X[i,],y[cw$edge[i,]],lwd=lwd,lend=2, col=edge.col[i]) h<-part-0.5-tip.len*(max(X)-min(X))-fsize*strwidth(tree$tip.label) for(i in 1:n){ lines(d*c(X[which(cw$edge[,2]==i),2],h[i]+tip.len*(max(X)-min(X))),rep(y[i],2), lwd=tip.lwd,lty=tip.lty) if(pts) points(d*X[which(cw$edge[,2]==i),2],y[i],pch=16,cex=pts*0.7*sqrt(lwd)) } font<-which(c("off","reg","b","i","bi")==ftype)-1 if(font>0){ for(i in 1:n) TEXTBOX(d*(h[i]+fsize*strwidth(tree$tip.label[i])+ tip.len*(max(X)-min(X))),y[i], tree$tip.label[i], pos=if(d<0) 4 else 2,offset=0, cex=fsize,font=font) } PP<-list(type="cladogram",use.edge.length=TRUE,node.pos=1, show.tip.label=if(ftype!="off") TRUE else FALSE,show.node.label=FALSE, font=ftype,cex=fsize,adj=0,srt=0,no.margin=FALSE,label.offset=0, x.lim=par()$usr[1:2],y.lim=par()$usr[3:4], direction=direction,tip.color="black",Ntip=Ntip(cw),Nnode=cw$Nnode, edge=cw$edge,xx=d*sapply(1:(Ntip(cw)+cw$Nnode), function(x,y,z) y[match(x,z)],y=X,z=cw$edge),yy=y) assign("last_plot.phylo",PP,envir=.PlotPhyloEnv) invisible(d*max(h+fsize*strwidth(tree$tip.label)+tip.len*(max(X)-min(X)))) } TEXTBOX<-function(x,y,label,pos,offset,cex,font){ rect(x,y-0.5*strheight(label,cex=cex,font=font),x+if(pos==4) strwidth(label, cex=cex,font=font) else -strwidth(label,cex=cex,font=font), y+0.5*strheight(label,cex=cex,font=font),border=FALSE, col=if(par()$bg%in%c("white","transparent")) "white" else par()$bg) text(x=x,y=y,label=label,pos=pos,offset=offset,cex=cex,font=font) } makelinks<-function(obj,x,link.type="curved",link.lwd=1,link.col="black", link.lty="dashed"){ if(length(link.lwd)==1) link.lwd<-rep(link.lwd,nrow(obj$assoc)) if(length(link.col)==1) link.col<-rep(link.col,nrow(obj$assoc)) if(length(link.lty)==1) link.lty<-rep(link.lty,nrow(obj$assoc)) for(i in 1:nrow(obj$assoc)){ ii<-which(obj$trees[[1]]$tip.label==obj$assoc[i,1]) jj<-which(obj$trees[[2]]$tip.label==obj$assoc[i,2]) for(j in 1:length(ii)) for(k in 1:length(jj)){ y<-c((ii[j]-1)/(Ntip(obj$trees[[1]])-1), (jj[k]-1)/(Ntip(obj$trees[[2]])-1)) if(link.type=="straight") lines(x,y,lty=link.lty[i], lwd=link.lwd[i],col=link.col[i]) else if(link.type=="curved") drawCurve(x,y,lty=link.lty[i], lwd=link.lwd[i],col=link.col[i]) } } } plot.multiCophylo<-function(x,...){ par(ask=TRUE) for(i in 1:length(x)) plot.cophylo(x[[i]],...) } plot.cophylo<-function(x,...){ plot.new() if(hasArg(type)) type<-list(...)$type else type<-"phylogram" if(hasArg(mar)) mar<-list(...)$mar else mar<-c(0.1,0.1,0.1,0.1) if(hasArg(xlim)) xlim<-list(...)$xlim else xlim<-c(-0.5,0.5) if(hasArg(scale.bar)) scale.bar<-list(...)$scale.bar else scale.bar<-rep(0,2) if(hasArg(ylim)) ylim<-list(...)$ylim else ylim<-if(any(scale.bar>0)) c(-0.1,1) else c(0,1) if(hasArg(link.type)) link.type<-list(...)$link.type else link.type<-"straight" if(hasArg(link.lwd)) link.lwd<-list(...)$link.lwd else link.lwd<-1 if(hasArg(link.col)) link.col<-list(...)$link.col else link.col<-"black" if(hasArg(link.lty)) link.lty<-list(...)$link.lty else link.lty<-"dashed" if(hasArg(edge.col)) edge.col<-list(...)$edge.col else edge.col<-list( left=rep("black",nrow(x$trees[[1]]$edge)), right=rep("black",nrow(x$trees[[2]]$edge))) obj<-list(...) if(is.null(obj$part)) obj$part<-0.4 par(mar=mar) plot.window(xlim=xlim,ylim=ylim) leftArgs<-rightArgs<-obj leftArgs$edge.col<-edge.col$left rightArgs$edge.col<-edge.col$right if(!is.null(obj$fsize)){ if(length(obj$fsize)>1){ leftArgs$fsize<-obj$fsize[1] rightArgs$fsize<-obj$fsize[2] sb.fsize<- if(length(obj$fsize)>2) obj$fsize[3] else 1 } else sb.fsize<-1 } else sb.fsize<-1 plotter<-if(type=="cladogram") "cladogram" else "phylogram" x1<-do.call(plotter,c(list(tree=x$trees[[1]]),leftArgs)) left<-get("last_plot.phylo",envir=.PlotPhyloEnv) x2<-do.call(plotter,c(list(tree=x$trees[[2]],direction="leftwards"), rightArgs)) right<-get("last_plot.phylo",envir=.PlotPhyloEnv) if(!is.null(x$assoc)) makelinks(x,c(x1,x2),link.type,link.lwd,link.col, link.lty) else cat("No associations provided.\n") if(any(scale.bar>0)) add.scalebar(x,scale.bar,sb.fsize) assign("last_plot.cophylo",list(left=left,right=right),envir=.PlotPhyloEnv) } add.scalebar<-function(obj,scale.bar,fsize){ if(scale.bar[1]>0){ s1<-(0.4-max(fsize*strwidth(obj$trees[[1]]$tip.label)))/max(nodeHeights(obj$trees[[1]])) lines(c(-0.5,-0.5+scale.bar[1]*s1),rep(-0.05,2)) lines(rep(-0.5,2),c(-0.05,-0.06)) lines(rep(-0.5+scale.bar[1]*s1,2),c(-0.05,-0.06)) text(mean(c(-0.5,-0.5+scale.bar[1]*s1)),rep(-0.05,2),scale.bar[1],pos=1) } if(scale.bar[2]>0){ s2<-(0.4-max(fsize*strwidth(obj$trees[[2]]$tip.label)))/max(nodeHeights(obj$trees[[2]])) lines(c(0.5-scale.bar[2]*s2,0.5),rep(-0.05,2)) lines(rep(0.5-scale.bar[2]*s2,2),c(-0.05,-0.06)) lines(rep(0.5,2),c(-0.05,-0.06)) text(mean(c(0.5-scale.bar[2]*s2,0.5)),rep(-0.05,2),scale.bar[2],pos=1) } } print.cophylo<-function(x, ...){ cat("Object of class \"cophylo\" containing:\n\n") cat("(1) 2 (possibly rotated) phylogenetic trees in an object of class \"multiPhylo\".\n\n") cat("(2) A table of associations between the tips of both trees.\n\n") } print.multiCophylo<-function(x, ...) cat("Object of class \"multiCophylo\" containg",length(x),"objects of class \"cophylo\".\n\n") tipRotate<-function(tree,x,...){ if(hasArg(fn)) fn<-list(...)$fn else fn<-function(x) x^2 if(hasArg(methods)) methods<-list(...)$methods else methods<-"pre" if("exhaustive"%in%methods) methods<-"exhaustive" if(hasArg(print)) print<-list(...)$print else print<-FALSE if(hasArg(max.exhaustive)) max.exhaustive<-list(...)$max.exhaustive else max.exhaustive<-20 if(hasArg(rotate.multi)) rotate.multi<-list(...)$rotate.multi else rotate.multi<-FALSE if(rotate.multi) rotate.multi<-!is.binary(tree) if(hasArg(anim.cophylo)) anim.cophylo<-list(...)$anim.cophylo else anim.cophylo<-FALSE if(anim.cophylo){ if(hasArg(left)) left<-list(...)$left else left<-NULL if(hasArg(right)) right<-list(...)$right else right<-NULL if(hasArg(assoc)) assoc<-list(...)$assoc else assoc<-NULL if(is.null(left)&&is.null(right)) anim.cophylo<-FALSE if(hasArg(only.accepted)) only.accepted<-list(...)$only.accepted else only.accepted<-TRUE } tree<-reorder(tree) nn<-1:tree$Nnode+length(tree$tip.label) if("just.compute"%in%methods){ foo<-function(phy,x) sum(fn(x-setNames(1:length(phy$tip.label),phy$tip.label)[names(x)])) oo<-pp<-foo(tree,x) } if("exhaustive"%in%methods){ if(Ntip(tree)>max.exhaustive){ cat(paste("\nmethods=\"exhaustive\" not permitted for more than", max.exhaustive,"tips.\n", "If you are sure you want to run an exhaustive search for a tree of this size\n", "increasing argument max.exhaustive & re-run.\n", "Setting methods to \"pre\".\n\n")) methods<-"pre" } else { cat("Running exhaustive search. May be slow!\n") oo<-Inf tt<-allRotations(tree) foo<-function(phy,x) sum(fn(x-setNames(1:length(phy$tip.label),phy$tip.label)[names(x)])) pp<-sapply(tt,foo,x=x) ii<-which(pp==min(pp)) ii<-if(length(ii)>1) sample(ii,1) else ii tt<-tt[[ii]] pp<-pp[ii] } if(print) message(paste("objective:",pp)) tree<-tt } ANIM.COPHYLO<-function(tree){ dev.hold() if(is.null(left)) plot(cophylo(tree,right,assoc=assoc,rotate=FALSE),...) else if(is.null(right)) plot(cophylo(left,tree,assoc=assoc,rotate=FALSE),...) nodelabels.cophylo(node=i+Ntip(tree),pie=1,col="red",cex=0.4, which=if(is.null(left)) "left" else "right") dev.flush() } if("pre"%in%methods){ for(i in 1:tree$Nnode){ if(anim.cophylo) ANIM.COPHYLO(tree) tt<-if(rotate.multi) rotate.multi(tree,nn[i]) else untangle(rotate(tree,nn[i]),"read.tree") oo<-sum(fn(x-setNames(1:length(tree$tip.label),tree$tip.label)[names(x)])) if(inherits(tt,"phylo")) pp<-sum(fn(x-setNames(1:length(tt$tip.label),tt$tip.label)[names(x)])) if(anim.cophylo&&!only.accepted) ANIM.COPHYLO(tt) else if(inherits(tt,"multiPhylo")){ foo<-function(phy,x) sum(fn(x-setNames(1:length(phy$tip.label),phy$tip.label)[names(x)])) pp<-sapply(tt,foo,x=x) if(anim.cophylo&&!only.accepted) nulo<-lapply(tt,ANIM.COPHYLO) ii<-which(pp==min(pp)) ii<-if(length(ii)>1) sample(ii,1) else ii tt<-tt[[ii]] pp<-pp[ii] } if(oo>pp) tree<-tt if(print) message(paste("objective:",min(oo,pp))) } } if("post"%in%methods){ for(i in tree$Nnode:1){ if(anim.cophylo) ANIM.COPHYLO(tree) tt<-if(rotate.multi) rotate.multi(tree,nn[i]) else untangle(rotate(tree,nn[i]),"read.tree") oo<-sum(fn(x-setNames(1:length(tree$tip.label),tree$tip.label)[names(x)])) if(inherits(tt,"phylo")) pp<-sum(fn(x-setNames(1:length(tt$tip.label),tt$tip.label)[names(x)])) if(anim.cophylo&&!only.accepted) ANIM.COPHYLO(tt) else if(inherits(tt,"multiPhylo")){ foo<-function(phy,x) sum(fn(x-setNames(1:length(phy$tip.label),phy$tip.label)[names(x)])) pp<-sapply(tt,foo,x=x) if(anim.cophylo&&!only.accepted) nulo<-lapply(tt,ANIM.COPHYLO) ii<-which(pp==min(pp)) ii<-if(length(ii)>1) sample(ii,1) else ii tt<-tt[[ii]] pp<-pp[ii] } if(oo>pp) tree<-tt if(print) message(paste("objective:",min(oo,pp))) } } attr(tree,"minRotate")<-min(oo,pp) if(anim.cophylo) ANIM.COPHYLO(tree) tree } MULTI2DI<-function(x,...){ obj<-lapply(x,multi2di,...) class(obj)<-"multiPhylo" obj } nodelabels.cophylo<-function(...,which=c("left","right")){ obj<-get("last_plot.cophylo",envir=.PlotPhyloEnv) if(which[1]=="left") assign("last_plot.phylo",obj[[1]],envir=.PlotPhyloEnv) else if(which[1]=="right") assign("last_plot.phylo",obj[[2]],envir=.PlotPhyloEnv) nodelabels(...) } edgelabels.cophylo<-function(...,which=c("left","right")){ obj<-get("last_plot.cophylo",envir=.PlotPhyloEnv) if(which[1]=="left") assign("last_plot.phylo",obj[[1]],envir=.PlotPhyloEnv) else if(which[1]=="right") assign("last_plot.phylo",obj[[2]],envir=.PlotPhyloEnv) edgelabels(...) } tiplabels.cophylo<-function(...,which=c("left","right")){ obj<-get("last_plot.cophylo",envir=.PlotPhyloEnv) if(which[1]=="left") assign("last_plot.phylo",obj[[1]],envir=.PlotPhyloEnv) else if(which[1]=="right") assign("last_plot.phylo",obj[[2]],envir=.PlotPhyloEnv) tiplabels(...) } drawCurve<-function(x,y,scale=0.01,...){ x1<-x[1] x2<-x[2] y1<-y[1] y2<-y[2] curve(plogis(x,scale=scale,location=(x1+x2)/2)*(y2-y1)+y1, x1,x2,add=TRUE,...) } summary.cophylo<-function(object,...){ cat("\nCo-phylogenetic (\"cophylo\") object:",deparse(substitute(object)), "\n\n") cat(paste("Tree 1 (left tree) is an object of class \"phylo\" containing", Ntip(object$trees[[1]]),"species.\n\n")) cat(paste("Tree 2 (right tree) is an object of class \"phylo\" containing", Ntip(object$trees[[2]]),"species.\n\n")) cat("Association (assoc) table as follows:\n\n") maxl<-max(sapply(strsplit(object$assoc[,1],""),length)) cat(paste("\tleft:",paste(rep(" ",max(0,maxl-5)),collapse=""), "\t----\tright:\n",sep="")) nulo<-apply(object$assoc,1,function(x,maxl) cat(paste("\t",x[1], paste(rep(" ",maxl-length(strsplit(x[1],split="")[[1]])), collapse=""),"\t----\t",x[2],"\n",sep="")),maxl=maxl) cat("\n") }
is_colour <- function(x) UseMethod('is_colour', x) is_colour.character <- function(x) grepl(' is_colour.numeric <- function(x) x %in% seq_along(grDevices::palette()) is_colour.logical <- function(x) is.na(x) is_colour.factor <- function(x) is_colour.character(as.character(x))
library(knitr) knitr::opts_chunk$set(echo = TRUE) library(swmmr) library(purrr) library(dplyr) library(sf) inp_file <- system.file("extdata", "Example1.inp", package = "swmmr", mustWork = TRUE) out_dir <- tempdir() Example1 <- read_inp(x = inp_file) summary(Example1) inp_to_files(x = Example1, name = "Example1", path_out = out_dir) list.files(out_dir) c("shp", "txt", "dat") %>% map( ~ file.path(out_dir, .)) %>% map(list.files) Example1_con <- shp_to_inp( path_options = file.path(out_dir,"txt/Example1_options.txt"), path_timeseries = file.path(out_dir,"dat/Example1_timeseries_TS1.dat"), path_polygon = file.path(out_dir,"shp/Example1_polygon.shp"), path_line = file.path(out_dir,"shp/Example1_link.shp"), path_point = file.path(out_dir,"shp/Example1_point.shp"), path_outfall = file.path(out_dir,"shp/Example1_outfall.shp") ) summary(Example1_con) dir.create(file.path(out_dir, "inp_new")) write_inp(Example1_con, file.path(out_dir, "inp_new", "Example1_con.inp")) infiltration <- tibble( Soil = c("A", "B"), MaxRate = c(76.2, 127), MinRate = c(3.81, 7.62), Decay = c(0.069, 0.069), DryTime = c(1,1), MaxInf = c(0,0) ) subcatchment_typologies <- tibble( Type = c("Street", "Park"), Perc_Imperv = c(100, 10), Width = c(9, 30), Slope = c(0.57, 1), CurbLen = 0, Snowpack = ' ', Rain_Gage = "Test_rain", N_Imperv = c(0.01, 0.025), N_Perv = c(0.01, 0.2), S_Imperv = c(1.5, 0.58), S_Perv = c(1.5, 0.58), Pct_Zero = 0, PctRouted = 100 ) conduit_material <- tibble( Material = "B", Roughness = 0.018 ) junction_parameters <- tibble( Y = 0, Ysur = 1, Apond = 1 )
logpb <- function(b, theta, data) { r <- data$r q <- data$q K <- data$K nk <- data$nk y <- data$y X <- data$X Z <- data$Z v <- data$v Z.fail <- data$Z.fail IW.fail <- data$IW.fail tj.ind <- data$tj.ind beta <- theta$beta gamma <- theta$gamma sigma2 <- theta$sigma2 haz <- theta$haz D <- theta$D if (sum(r) == 1) { D <- as.matrix(D) } if (length(b) != sum(r)) { stop("Incorrect length of b") } if (q > 0) { gamma.scale <- diag(rep(gamma[-(1:q)], r), ncol = sum(r)) } else { gamma.scale <- diag(rep(gamma, r), ncol = sum(r)) } pb <- mvtnorm::dmvnorm(b, mean = rep(0, sum(r)), sigma = D, log = TRUE) XbetaZb <- as.vector((X %*% beta) + (Z %*% b)) Sigma <- diag(x = rep(sigma2, nk), ncol = sum(nk)) py.b <- mvtnorm::dmvnorm(y, mean = XbetaZb, sigma = Sigma, log = TRUE) IZ <- t(IW.fail %*% Z.fail) W2 <- t(b) %*% gamma.scale %*% IZ if (q > 0) { W2 <- W2 + as.numeric(t(v) %*% gamma[1:q]) } W2 <- as.vector(W2) if (tj.ind > 0) { pt.b <- -sum(haz[1:tj.ind] * exp(W2)) } else { pt.b <- 0 } out <- pt.b + py.b + pb return(out) } b_mode <- function(theta, data) { out <- optim(par = rep(0, sum(data$r)), fn = logpb, theta = theta, data = data, control = list(fnscale = -1), method = "BFGS", hessian = TRUE) return(out) } b_metropolis <- function(theta.samp, delta.prop, sigma.prop, b.curr, data.t) { accept <- 0 b.prop <- mvtnorm::rmvt(n = 1, delta = delta.prop, sigma = sigma.prop, df = 4) b.prop <- as.vector(b.prop) log.a1 <- logpb(b.prop, theta.samp, data.t) - logpb(b.curr, theta.samp, data.t) dens.curr <- mvtnorm::dmvt(x = b.curr, delta = delta.prop, sigma = sigma.prop, df = 4, log = TRUE) dens.prop <- mvtnorm::dmvt(x = b.prop, delta = delta.prop, sigma = sigma.prop, df = 4, log = TRUE) log.a2 <- dens.curr - dens.prop a <- min(exp(log.a1 - log.a2), 1) randu <- runif(1) if (randu <= a) { b.curr <- b.prop accept <- 1 } out <- list("b.curr" = b.curr, "accept" = accept) return(out) }
coef.svmpath<-function(object,lambda,...){ if(missing(lambda)){ alpha<-object$alpha lambda<-object$lambda alpha0<-object$alpha0 } else{ alphs<-predict(object,lambda=lambda,type="alpha") alpha<-alphs$alpha alpha0<-alphs$alpha0 } alpha<-alpha*object$y beta<-scale(t(object$x)%*%alpha,FALSE,lambda) beta0<-alpha0/lambda list(beta=beta,beta0=beta0,lambda=lambda) }
context(".compOpts") test_that(".compOpts", { expect_true(.compOpts("", "cp")$ncharts == 2) expect_true(.compOpts("", NULL)$ncharts == 1) expect_true(.compOpts(list(), NULL)$ncharts == 1) }) if(.requireRhdf5_Antares(stopP = FALSE)){ context(".dateRangeJoin") test_that(".dateRangeJoin", { dt <- list() dt$x <- list(list(dateRange = as.Date(c("2010-01-01", "2010-01-10"))), list(dateRange = as.Date(c("2010-01-02", "2010-01-09")))) expect_true(.dateRangeJoin(dt, "union", "min") == as.Date("2010-01-01")) expect_true(.dateRangeJoin(dt, "union", "max") == as.Date("2010-01-10")) expect_true(.dateRangeJoin(dt, "intersect", "max") == as.Date("2010-01-09")) expect_true(.dateRangeJoin(dt, "intersect", "min") == as.Date("2010-01-02")) dt2 <- list() dt2$x <- list(list(ar = list(dateRange = as.Date(c("2010-01-01", "2010-01-10")))), list(ar = list(dateRange = as.Date(c("2010-01-02", "2010-01-09"))))) expect_true(.dateRangeJoin(dt2, "union", "min", "ar") == as.Date("2010-01-01")) expect_true(.dateRangeJoin(dt2, "union", "max", "ar") == as.Date("2010-01-10")) expect_true(.dateRangeJoin(dt2, "intersect", "max", "ar") == as.Date("2010-01-09")) expect_true(.dateRangeJoin(dt2, "intersect", "min", "ar") == as.Date("2010-01-02")) }) context(".loadH5Data") test_that(".loadH5Data", { opts <- setSimulationPath(studyPath) sharerequest <- list() sharerequest$mcYearh_l <- "all" sharerequest$tables_l <- c("areas", "links", "clusters", "districts") sharerequest$timeSteph5_l <- "hourly" expect_true("antaresDataList" %in% class(.loadH5Data(sharerequest, opts))) }) }
local_edition(3) test_that("Correct anchor_sections style is used", { deps <- html_dependency_anchor_sections expect_s3_class(deps(), "html_dependency") expect_error(deps("dummy"), "should be one of") expect_match(deps()$stylesheet[[2]], "anchor-sections-hash.css") expect_null(deps()$script[[1]]) expect_equal(deps(section_divs = TRUE)$script[[1]], "anchor-sections.js") }) test_that("dependency merge is correct", { prepare_list <- function(lst) { names(lst) <- NULL lapply(lst, function(item) { item[!sapply(item, is.null)] }) } test_dep_merge <- function(input, output, doeswarn = FALSE) { deps <- flatten_html_dependencies(input) expect_warning( result <- html_dependency_resolver(deps), if (doeswarn) NULL else NA ) result <- prepare_list(result) output <- prepare_list(output) expect_identical(result, output) } test_dep_merge( list( htmlDependency( name = "foo", version = "1.1.0", src = pkg_file("rmd/h"), script = "foo.js")), list( htmlDependency( name = "foo", version = "1.1.0", src = pkg_file("rmd/h"), script = "foo.js"))) test_dep_merge( list( htmlDependency( name = "foo", version = "1.2.0", src = pkg_file("rmd/h"), script = "foo.js"), htmlDependency( name = "foo", version = "1.1.0", src = pkg_file("rmd/h"), script = "foo.js")), list( htmlDependency( name = "foo", version = "1.2.0", src = pkg_file("rmd/h"), script = "foo.js"))) test_dep_merge( list( htmlDependency( name = "foo", version = "1.1.0", src = pkg_file("rmd/h"), script = "foo.js"), htmlDependency( name = "bar", version = "1.1.0", src = pkg_file("rmd/h"), script = "foo.js"), htmlDependency( name = "baz", version = "1.1.0", src = pkg_file("rmd/h"), script = "baz.js"), htmlDependency( name = "bar", version = "1.2.0", src = pkg_file("rmd/h"), script = "foo.js")), list( htmlDependency( name = "foo", version = "1.1.0", src = pkg_file("rmd/h"), script = "foo.js"), htmlDependency( name = "bar", version = "1.2.0", src = pkg_file("rmd/h"), script = "foo.js"), htmlDependency( name = "baz", version = "1.1.0", src = pkg_file("rmd/h"), script = "baz.js"))) test_dep_merge( list( htmlDependency( name = "bar", version = "1.1.0", src = pkg_file("rmd/h"), script = "foo.js"), list( htmlDependency( name = "baz", version = "1.1.0", src = pkg_file("rmd/h"), script = "baz.js"), htmlDependency( name = "bar", version = "1.2.0", src = pkg_file("rmd/h"), script = "foo.js"))), list( htmlDependency( name = "bar", version = "1.2.0", src = pkg_file("rmd/h"), script = "foo.js"), htmlDependency( name = "baz", version = "1.1.0", src = pkg_file("rmd/h"), script = "baz.js"))) test_dep_merge( list( structure(list(foo = "irrelevant"), class = "irrelevant"), list( htmlDependency( name = "baz", version = "1.1.0", src = pkg_file("rmd/h"), script = "baz.js"))), list( htmlDependency( name = "baz", version = "1.1.0", src = pkg_file("rmd/h"), script = "baz.js"))) }) test_that("Dependencies are correctly validated", { expect_error(validate_html_dependency(list(a = 1)), "is not of class html_dependency", fixed = TRUE) skip_if_not_installed("htmltools") dep <- htmlDependency(name = "foo", version = "1.1.0", src = pkg_file("rmd/h"), script = "foo.js") expect_identical(validate_html_dependency(dep), dep) dep <- htmlDependency(name = "foo", version = "1.1.0", src = c(href = "https://example.org"), script = "foo.js") expect_identical(validate_html_dependency(dep), dep) dep2 <- dep; dep2$name <- NULL expect_error(validate_html_dependency(dep2), "name .* not provided") dep2 <- dep; dep2$version <- NULL expect_error(validate_html_dependency(dep2), "version .* not provided") dep2 <- dep; dep2$src <- NULL expect_error(validate_html_dependency(dep2), "src .* not provided") dep2 <- dep; dep2$src <- list(file = tempfile("donotexist")) expect_error(validate_html_dependency(dep2), "path for html_dependency not found:", fixed = TRUE) }) test_that("html_dependencies_as_string tranforms correctly", { deps <- list( htmlDependency(name = "bar", version = "1.2.0", src = pkg_file("rmd/h"), script = "foo.js"), htmlDependency(name = "bar", version = "1.2.0", src = c(href = "https://example.org/"), script = "foo.js"), htmlDependency(name = "baz", version = "1.1.0", src = pkg_file("rmd/h"), script = "baz.js") ) odir <- withr::local_tempdir() dir.create(ldir <- file.path(odir, "lib")) expect_snapshot(html_dependencies_as_string(deps, ldir, odir)) }) test_that("html_dependencies_fonts loads the correct fonts dep", { fa <- html_dependency_font_awesome() io <- html_dependency_ionicons() expect_identical(html_dependencies_fonts(TRUE, FALSE), list(fa)) expect_identical(html_dependencies_fonts(FALSE, TRUE), list(io)) expect_identical(html_dependencies_fonts(TRUE, TRUE), list(fa, io)) }) test_that("header-attr can be opt-out", { withr::local_options(list(rmarkdown.html_dependency.header_attr = FALSE)) expect_null(html_dependency_header_attrs()) })
"lesmis"
fill_na <- function(Y) { apply(Y, 2, function(x) { n_x <- length(x) if (any(is.na(x))) { x <- x[1:max(which(is.na(x) == FALSE))] for (i in which(is.na(x))) { x1 <- NA counter <- 1 while (is.na(x1) == TRUE) { x1 <- x[i + counter] counter <- counter + 1 } x[i] <- x1 } trimmed_length <- length(x) if (trimmed_length < n_x) { x <- c(x, rep(NA, n_x - trimmed_length)) for (i in trimmed_length:n_x) { x[i] <- x[trimmed_length] } } } x}) }
sparsematrix_from_edgelist <- function( data, sender_name = NULL, receiver_name = NULL, weight_name = NULL, duplicates = c("add", "remove"), is_bipartite = T ){ base_weight <- NULL w <- NULL . <- NULL edges <- data.table(data) if(is.null(sender_name) | is.null(receiver_name)){ id1 = 1 id2 = 2 }else{ id1 = match(sender_name, names(edges)) id2 = match(receiver_name, names(edges)) } if(is.null(weight_name)){ edges[, base_weight := 1] weight = match("base_weight", names(edges)) } else{ weight = match(weight_name, names(edges)) } edges <- edges[, c(id1, id2, weight), with = F] names(edges) <- c("id1", "id2", "w") edges[, ':='( id1 = as.character(id1), id2 = as.character(id2), w = as.numeric(as.character(w)) )] if(duplicates[1] == "add"){ edges <- edges[, .(w = sum(w)), by = list(id1, id2)] }else( edges <- edges[!duplicated(paste(id1,id2)), ] ) if(!is_bipartite){ unique_id1 <- unique(edges$id1) unique_id2 <- unique(edges$id2) unique_ids <- unique(c(unique_id1, unique_id2)) if(!(all(unique_id1 %in% unique_id2) & all(unique_id2 %in% unique_id1))){ edges <- rbind(edges, data.table(id1 = unique_ids, id2 = unique_ids, w = 0)) } } if(is_bipartite){ edges[, ':='( id1 = as.numeric(factor(id1, levels = unique(as.character(id1)))), id2 = as.numeric(factor(id2, levels = unique(as.character(id2)))) )] }else{ edges[, ':='( id1 = as.numeric(factor(id1, levels = unique_ids)), id2 = as.numeric(factor(id2, levels = unique_ids)) )] } adj_mat <- sparseMatrix(i = edges$id1, j = edges$id2, x = edges$w) adj_mat <- drop0(adj_mat) return(adj_mat) }
SaturationFilter_F <- function(train, test, seed=-1){ alg <- RKEEL::R6_SaturationFilter_F$new() alg$setParameters(train, test, seed) return (alg) } R6_SaturationFilter_F <- R6::R6Class("R6_SaturationFilter_F", inherit = PreprocessAlgorithm, public = list( seed = -1, setParameters = function(train, test, seed=-1){ super$setParameters(train, test) if(seed == -1) { self$seed <- sample(1:1000000, 1) } else { self$seed <- seed } } ), private = list( jarName = "Filter-SaturationFilter.jar", algorithmName = "SaturationFilter-F", algorithmString = "SaturationFilter", getParametersText = function(){ text <- "" text <- paste0(text, "seed = ", self$seed, "\n") text <- paste0(text, "noiseSensitivity = 0.75", "\n") return(text) } ) )
plotWB_lines <- function(WB, cols = c(" interpolator <- match.arg(interpolator) spline.method <- match.arg(spline.method) col.ppt <- cols[1] col.pet <- cols[2] col.utilization <- cols[3] if(interpolator == 'linear') { ppt.interp <- approxfun(WB$month, WB$PPT) pet.interp <- approxfun(WB$month, WB$PET) aet.interp <- approxfun(WB$month, WB$ET) def.interp <- approxfun(WB$month, -WB$D) } if(interpolator == 'spline') { ppt.interp <- splinefun(WB$month, WB$PPT, method = spline.method) pet.interp <- splinefun(WB$month, WB$PET, method = spline.method) aet.interp <- splinefun(WB$month, WB$ET, method = spline.method) def.interp <- splinefun(WB$month, -WB$D, method = spline.method) } y.range <- range(c(WB$PET, WB$PPT)) month.start <- WB$month[1] month.end <- WB$month[12] month.seq <- seq(from=month.start, to=month.end, by=0.1) ppt.seq <- pmax(ppt.interp(month.seq), 0) pet.seq <- pmax(pet.interp(month.seq), 0) aet.seq <- pmin(pmax(aet.interp(month.seq), 0), pmax(pet.interp(month.seq), 0)) def.seq <- pmax(def.interp(month.seq), 0) plot(0, 0, type='n', xlim=c(1, 12), ylim=c(y.range), ylab='Water (mm)', xlab='', las = 1, axes = FALSE) p.1.x <- month.seq p.1.y <- rep(0, length(month.seq)) p.2.x <- rev(p.1.x) p.2.y <- pmax(ppt.interp(p.2.x), 0) polygon(c(p.1.x, p.2.x), c(p.1.y, p.2.y), col=col.ppt, border=NA) p.1.x <- month.seq p.1.y <- rep(0, length(month.seq)) p.2.x <- rev(p.1.x) p.2.y <- pmax(pet.interp(p.2.x), 0) polygon(c(p.1.x, p.2.x), c(p.1.y, p.2.y), col=col.pet, border=NA) p.1.x <- month.seq p.1.y <- rep(0, length(month.seq)) p.2.x <- rev(p.1.x) p.2.y <- pmin(pmax(aet.interp(p.2.x), 0), pmax(pet.interp(p.2.x), 0)) polygon(c(p.1.x, p.2.x), c(p.1.y, p.2.y), col = col.utilization, border = NA) lines(ppt.seq ~ month.seq, type='l', lwd=2, lty = line.lty[1], col = line.col) lines(pet.seq ~ month.seq, type='l', lwd=2, lty = line.lty[2], col = line.col) lines(aet.seq ~ month.seq, type='l', lwd=2, lty = line.lty[3], col = line.col) axis(side = 1, at = month.start:month.end, labels = WB$mo, line = 0, tick = TRUE, font = 2, cex = month.cex, col = NA, col.ticks = par('fg')) axis(side = 2, at = pretty(y.range, n = 8), las = 1) grid() legend(x = 0, y = y.range[2], legend=c('Surplus / Recharge', 'Utilization', 'Deficit'), col=c(col.ppt, col.utilization, col.pet), pch=c(15, 15, 15), pt.cex=2, bty='n', horiz = TRUE, xpd = NA, xjust = 0, yjust = -0.25) legend(x = 12, y = y.range[2], legend = c('PPT', 'PET', 'AET'), col = line.col, lwd = 2, lty = line.lty, bty='n', horiz = TRUE, xpd = NA, xjust = 1, yjust = -0.25) AWC <- attr(WB, 'AWC') mtext(sprintf("AWC: %s mm", AWC), side = 1, at = 1, cex = 0.85, adj = 0, line = 2.5) sumD <- bquote(sum(Deficit) == .(round(sum(WB$D)))~mm) mtext(sumD, side = 1, at = 12, cex = 0.85, adj = 1, line = 2.5) }
bincont <- function (cov) { ifelse(length(unique(cov)) == 2, "binary", "continuous") } weighted_sd <- function (cov, weights) { weighted.mean <- sum(cov * weights) / sum(weights) sqrt(1 / (sum(weights) - 1) * sum(weights * (cov - weighted.mean)^2)) } plot_balance <- function (result, standardize = TRUE, absolute = TRUE, threshold = 0, sort = TRUE) { if (standardize == TRUE) { std <- "Standardized" } else { std <- "Unstandardized" } diff <- paste(std, "Mean Differences") result$covariates <- factor(result$covariates, levels = result$covariates[nrow(result):1]) result$type <- ((result$type == "binary") * 3 + 21) result <- result[nrow(result):1, ] if (absolute == TRUE) { result$diff.adj <- abs(result$diff.adj) result$diff.un <- abs(result$diff.un) diff <- paste("Absolute", std, "Mean Differences") } else { threshold <- c(-threshold, threshold) } if (sort == TRUE) { order.un <- order(result$diff.un) if (absolute == FALSE) { order.un <- order(result$diff.un, decreasing = TRUE) } result$covariates <- factor(result$covariates, levels = result$covariates[order.un]) result <- result[order.un, ] } mindiff <- min(c(0, min(c(result$diff.un, result$diff.adj)))) maxdiff <- max(c(result$diff.un, result$diff.adj)) if (absolute == TRUE) { legendx <- (maxdiff * 5 / 8) } else { legendx <- mindiff * 1.1 } cols0 <- c(grDevices::rgb(0 / 255, 184 / 255, 148 / 255), grDevices::rgb(225 / 255, 112 / 255, 85 / 255)) cols <- rep(cols0, each = 2) pchs <- rep(c(21, 24), 2) oldpar <- graphics::par(no.readonly = TRUE) on.exit(graphics::par(oldpar), add = TRUE) graphics::plot(x = result$diff.un, y = result$covariates, pch = result$type, col = cols0[1], cex = 1.7, lwd = 2.2, xlim = c(mindiff, maxdiff), xlab = "", ylab = "", axes = FALSE) graphics::par(new = TRUE) graphics::plot(x = result$diff.adj, y = result$covariates, pch = result$type, col = cols0[2], cex = 1.7, lwd = 2.2, xlim = c(mindiff, maxdiff), xlab = diff, ylab = "", yaxt = "n", main = "Covariate balance") graphics::abline(v = 0, col = "grey10", lty = "solid") graphics::abline(v = threshold, col = "grey50", lty = "dashed", lwd = 1.2) graphics::axis(2, at = c(1:nrow(result)), labels = result$covariates, las = 1) graphics::par(xpd = TRUE) if (sort == FALSE) { legendx <- graphics::par()$usr[2] } graphics::legend(x = legendx, y = 1, legend = c("Adjusted: continuous", "Adjusted: binary", "Unadjusted: continuous", "Unadjusted: binary"), col = cols[4:1], pch = pchs, pt.cex = 1.5, pt.lwd = 2, yjust = 0, x.intersp = 0.7, y.intersp = 0.9, bty = "n", bg = "transparent") }
index.H<-function(x,clall,d=NULL,centrotypes="centroids") { wgss<-function(x,cl,d,centroids) { n <- length(cl) k <- max(cl) if(is.null(dim(x))){ dim(x)<-c(length(x),1) } centers<-matrix(nrow=k,ncol=ncol(x)) for(i in 1:k){ if(centrotypes=="centroids"){ if(ncol(x)==1){ centers[i,]<-mean(x[cl==i,]) } else{ if(is.null(dim(x[cl==i,]))){ centers[i,]<-x[cl==i] } else{ centers[i,]<-apply(x[cl==i,],2,mean) } } } else{ centers[i,]<-.medoid(x[cl==i,],d[cl==i,cl==i]) } } withins <- rep(0, k) x <- (x - centers[cl,])^2 for(i in 1:k){ withins[i] <- sum(x[cl==i,]) } sum(withins) } if(sum(c("centroids","medoids")==centrotypes)==0) stop("Wrong centrotypes argument") if("medoids"==centrotypes && is.null(d)) stop("For argument centrotypes = 'medoids' d cannot be null") if(!is.null(d)){ if(!is.matrix(d)){ d<-as.matrix(d) } row.names(d)<-row.names(x) } if(is.null(dim(x))){ dim(x)<-c(length(x),1) } n <- nrow(x) g <- max(clall[,1]) (wgss(x,clall[,1],d,centrotypes)/wgss(x,clall[,2],d,centrotypes)-1)*(n-g+1) }
tNSS.JD <- function(x, K = 12, n.cuts = NULL, eps = 1e-06, maxiter = 100, ...) { dim_x <- dim(x) r <- length(dim_x) - 1 n <- dim_x[r + 1] if(length(dim_x) == 2){ Xmu <- rowMeans(x) returnlist <- NSS.JD(t(x), K = K, n.cuts = n.cuts, eps = eps, maxiter = maxiter, ...) returnlist$S <- t(returnlist$S) returnlist2 <- list(S = returnlist$S, W = returnlist$W, K = returnlist$K, n.cuts = returnlist$n.cut, Xmu = Xmu, datatype = "ts") class(returnlist2) <- c("tbss", "bss") return(returnlist2) } if(is.null(n.cuts)) { if(K == 1) { slices <- rep(1, n) n.cuts <- c(0, n) } else { slices <- as.numeric(cut(1:n, breaks = K, labels = 1:K)) n.cuts <- c(0, which(slices[-n] - slices[-1] == -1), n) } } else { K <- length(n.cuts) - 1 slices <- as.numeric(cut(1:n, breaks = n.cuts, labels = 1:K)) } xmu <- apply(x, 1:r, mean) res_stand <- tensorStandardize(x) x_stand <- res_stand$x U_list <- vector("list", r) for(m in 1:r) { current_dim <- dim_x[m] matrix_array <- array(0, dim=c(current_dim, current_dim, K)) for(h in 1:K) { x_slice <- arraySelectLast(x_stand, (slices == h)) mMAC <- mModeCovariance(x_slice, m, center = TRUE) matrix_array[, , h] <- 0.5*(mMAC + t(mMAC)) } U_list[[m]] <- frjd(matrix_array, eps = eps, maxiter = maxiter, ...)$V } S <- x_stand for(m in 1:r) { S <- tensorTransform(S, t(U_list[[m]]), m) } W <- vector("list", r) for(m in 1:r) { W[[m]] <- crossprod(U_list[[m]], res_stand$S[[m]]) } returnlist <- list(S = S, W = W, K = K, n.cuts = n.cuts, Xmu = xmu, datatype = "ts") class(returnlist) <- c("tbss", "bss") return(returnlist) }
createDSR <- function(areasAndDSRParam = NULL, spinning = 2, overwrite = FALSE, opts = antaresRead::simOptions() ){ oldOps <- opts areasAndDSRParam <- .checkDataForAddDSR(areasAndDSRParam, spinning, overwrite, oldOps) newOpts <- .addDSRArea(areasAndDSRParam, overwrite, opts = oldOps) newOpts <- .addLinksBetweenDSRAndAreas(areasAndDSRParam = areasAndDSRParam, overwrite = overwrite, opts = newOpts) newOpts <- .addBindingConstraintToDSR(areasAndDSRParam = areasAndDSRParam, overwrite = overwrite, opts = newOpts) newOpts <- .AddClusterToDST(areasAndDSRParam = areasAndDSRParam, spinning = spinning, overwrite = overwrite, opts = newOpts) suppressWarnings({ res <- antaresRead::setSimulationPath(path = opts$studyPath, simulation = "input") }) invisible(res) } .checkDataForAddDSR <- function(areasAndDSRParam = NULL, spinning = NULL, overwrite = NULL, opts = NULL){ if (!is.data.frame(areasAndDSRParam)){ stop("areasAndDSRParam must be a data.frame", call. = FALSE) } if (is.null(areasAndDSRParam$area) | is.null(areasAndDSRParam$unit) | is.null(areasAndDSRParam$nominalCapacity) | is.null(areasAndDSRParam$marginalCost) | is.null(areasAndDSRParam$hour)){ stop("areasAndDSRParam must be a data.frame with a column area, unit, nominalCapacity, marginalCost and hour", call. = FALSE) } for ( i in c("marginalCost", "hour", "unit")){ if (!is.numeric(areasAndDSRParam[i][1, ])){ stop(paste0(i, " is not numeric."), call. = FALSE) } } sapply(areasAndDSRParam$area, function(x){ if (!(x %in% antaresRead::getAreas())){ stop(paste0(x, " is not a valid area."), call. = FALSE) } }) if (length(antaresRead::getAreas()) == 0 | identical(antaresRead::getAreas(), "")){ stop("There is no area in your study.", call. = FALSE) } if (is.null(spinning)){ stop("spinning is set to NULL", call. = FALSE) } if (!is.double(spinning)){ stop("spinning is not a double.", call. = FALSE) } return(areasAndDSRParam) } .getNameDsr <- function(area=NULL, hour=NULL){ nameDsr <- paste0(area, "_dsr_", hour, "h") nameDsr } .addDSRArea <- function(areasAndDSRParam = NULL, overwrite = NULL, opts = NULL){ area <- NULL y <- NULL invisible(apply(areasAndDSRParam, 1, function(x){ areaName <- x["area"] numberHour <- x["hour"] nameDsr <- .getNameDsr(areaName, numberHour) if (!(casefold(nameDsr, upper = FALSE) %in% antaresRead::getAreas()) | overwrite){ if (overwrite & (casefold(nameDsr, upper = FALSE) %in% antaresRead::getAreas())){ removeArea(name = nameDsr) } xyLayout <- antaresRead::readLayout() LocX <- xyLayout$areas[area == areaName, x] - 20 LocY <- xyLayout$areas[area == areaName, y] - 20 createArea(nameDsr, color = grDevices::rgb(150, 150, 150, max = 255), localization = c(LocX, LocY), overwrite = overwrite ) }else{ warning(paste0(nameDsr, " already exists, use argument overwrite if you want to edit this area. All previous links will be lost."), call. = FALSE) } })) suppressWarnings({ res <- antaresRead::setSimulationPath(path = opts$studyPath, simulation = "input") }) invisible(res) } .addLinksBetweenDSRAndAreas <- function(areasAndDSRParam = NULL, overwrite = NULL, opts = NULL){ invisible(apply(areasAndDSRParam, 1, function(x){ areaName <- x["area"] numberHour <- x["hour"] installedCapacityLink <- as.double(x["unit"]) * as.double(x["nominalCapacity"]) nameDsr <- .getNameDsr(areaName, numberHour) conditionToCreateALink <- paste0(areaName, " - ", nameDsr) %in% antaresRead::getLinks() | paste0(nameDsr, " - ", areaName) %in% antaresRead::getLinks() if (!conditionToCreateALink | overwrite){ if (is_antares_v7(opts)) { dataLinkVirtual <- matrix(data = c(rep(0, 8760), rep(installedCapacityLink, 8760), rep(0, 8760*6)), ncol = 8) } else { dataLinkVirtual <- matrix(data = c(rep(0, 8760), rep(installedCapacityLink, 8760), rep(0, 8760*3)), ncol = 5) } dataLinkProperties <- propertiesLinkOptions() dataLinkProperties$`hurdles-cost` <- FALSE createLink(from = areaName, to = nameDsr, dataLink = dataLinkVirtual, propertiesLink = dataLinkProperties, opts = opts, overwrite = overwrite) }else{ stop(paste0("The link ", areaName, " - ", nameDsr, " already exist, use overwrite."), call. = FALSE) } })) suppressWarnings({ res <- antaresRead::setSimulationPath(path = opts$studyPath, simulation = "input") }) invisible(res) } .addBindingConstraintToDSR <- function(areasAndDSRParam = NULL, overwrite = NULL, opts = NULL){ invisible(apply(areasAndDSRParam, 1, function(x){ areaName <- x["area"] numberHour <- x["hour"] installedCapacityLink <- as.double(x["unit"]) * as.double(x["nominalCapacity"]) nameDsr <- .getNameDsr(areaName, numberHour) nameBindDSR <- nameDsr coefficientsDSR <- .getCoefDsr(areaName, nameDsr) createBindingConstraint(nameBindDSR, values = matrix(data = c(rep(installedCapacityLink * as.double(numberHour), 365), rep(0, 365 * 2)), ncol = 3), enabled = TRUE, timeStep = "daily", operator = c("less"), coefficients = coefficientsDSR, overwrite = overwrite) })) suppressWarnings({ res <- antaresRead::setSimulationPath(path = opts$studyPath, simulation = "input") }) invisible(res) } .getCoefDsr <- function(areaName = NULL, dsrName = NULL){ if (areaName < dsrName){ nameCoefDSR <- tolower(paste0(areaName, "%", dsrName)) coeffDsr <- (-1) }else { nameCoefDSR <- tolower(paste0(dsrName, "%", areaName)) coeffDsr <- (1) } coefficientsDSR <- c( coeffDsr ) names(coefficientsDSR)[1] <- nameCoefDSR return(coefficientsDSR) } .AddClusterToDST <- function(areasAndDSRParam = NULL, spinning = NULL, overwrite = NULL, opts = NULL){ invisible(apply(areasAndDSRParam, 1, function(x){ areaName <- x["area"] numberHour <- x["hour"] unitDSR <- x["unit"] marginalCost <- x["marginalCost"] nominalCapacity <- x["nominalCapacity"] nameDsr <- .getNameDsr(areaName, numberHour) createCluster(nameDsr, cluster_name = paste0(nameDsr, "_cluster"), group = "Other", unitcount = as.integer(unitDSR), `marginal-cost` = marginalCost, enabled = TRUE, spinning = spinning, nominalcapacity = nominalCapacity, overwrite = overwrite, add_prefix = FALSE) })) suppressWarnings({ res <- antaresRead::setSimulationPath(path = opts$studyPath, simulation = "input") }) invisible(res) } getCapacityDSR <- function(area = NULL, opts = antaresRead::simOptions()){ check_area_name(area, opts = opts) nameDsr <- .getTheDsrName(area) clusterList <- antaresRead::readClusterDesc(opts = opts) unit <- as.double(clusterList[area == nameDsr]$unitcount) nominalcapacity <- as.double(clusterList[area == nameDsr]$nominalcapacity) return(unit * nominalcapacity) } .getTheDsrName <- function(area = NULL){ if (TRUE %in% grepl(paste0(area, "_dsr"), antaresRead::getAreas() )){ nameDsr <- grep(paste0(area, "_dsr"), antaresRead::getAreas(), value = TRUE ) }else { stop("There is no DSR for this area") } return(nameDsr) } editDSR <- function(area = NULL, unit = NULL, nominalCapacity = NULL, marginalCost = NULL, spinning = NULL, opts = antaresRead::simOptions()){ check_area_name(area, opts = opts) .checkDataEditDSR(area, unit, nominalCapacity, marginalCost, spinning) bindingList <- antaresRead::readBindingConstraints(opts = opts) clusterList <- antaresRead::readClusterDesc(opts = opts) previousNameDsr <- .getTheDsrName(area) previousUnitCount <- as.double(clusterList[area == previousNameDsr]$unitcount) previousNominalCapacity <- as.double(clusterList[area == previousNameDsr]$nominalcapacity) capaBinding <- unique(bindingList[previousNameDsr][[1]]$values$less[1]) previousNumberHour <- round(as.double(capaBinding / (previousNominalCapacity * previousUnitCount))) if (is.null(unit) & is.null(nominalCapacity)){ newCapacityLink <- previousUnitCount * previousNominalCapacity } else{ newCapacityLink <- unit * nominalCapacity } createCluster(previousNameDsr, cluster_name = paste0(previousNameDsr, "_cluster"), group = "Other", unitcount = as.integer(unit), `marginal-cost` = marginalCost, enabled = TRUE, spinning = spinning, nominalcapacity = nominalCapacity, overwrite = TRUE, add_prefix = FALSE, opts = opts) coefficientsDSR <- .getCoefDsr(area, previousNameDsr) createBindingConstraint(previousNameDsr, values = matrix(data = c(rep(newCapacityLink * as.double(previousNumberHour), 365), rep(0, 365 * 2)), ncol = 3), enabled = TRUE, timeStep = "daily", operator = c("less"), coefficients = coefficientsDSR, overwrite = TRUE, opts = opts) if (is_antares_v7(opts)) { dataLinkVirtual <- matrix(data = c(rep(0, 8760), rep(newCapacityLink, 8760), rep(0, 8760*6)), ncol = 8) } else { dataLinkVirtual <- matrix(data = c(rep(0, 8760), rep(newCapacityLink, 8760), rep(0, 8760*3)), ncol = 5) } dataLinkProperties <- propertiesLinkOptions() dataLinkProperties$`hurdles-cost` <- FALSE createLink(from = area, to = previousNameDsr, dataLink = dataLinkVirtual, propertiesLink = dataLinkProperties, opts = opts, overwrite = TRUE) suppressWarnings({ res <- antaresRead::setSimulationPath(path = opts$studyPath, simulation = "input") }) invisible(res) } .checkDataEditDSR <- function(area = NULL, unit = NULL, nominalCapacity = NULL, marginalCost = NULL, spinning = NULL){ for ( i in c(unit, nominalCapacity, marginalCost, spinning)){ if (!is.numeric(i)){ stop(paste0(i, " is not numeric."), call. = FALSE) } } if ( (is.null(unit) & !is.null(nominalCapacity)) | (!is.null(unit) & is.null(nominalCapacity))){ stop(paste0("unit or nominalCapacity is set to NULL"), call. = FALSE) } }
computeSigmaHat <- function(lavmodel = NULL, GLIST = NULL, extra = FALSE, delta = TRUE, debug = FALSE) { if(is.null(GLIST)) GLIST <- lavmodel@GLIST nmat <- lavmodel@nmat nvar <- lavmodel@nvar nblocks <- lavmodel@nblocks representation <- lavmodel@representation Sigma.hat <- vector("list", length=nblocks) for(g in 1:nblocks) { mm.in.group <- 1:nmat[g] + cumsum(c(0,nmat))[g] MLIST <- GLIST[mm.in.group] if(representation == "LISREL") { Sigma.hat[[g]] <- computeSigmaHat.LISREL(MLIST = MLIST, delta = delta) } else if(representation == "RAM") { Sigma.hat[[g]] <- lav_ram_sigmahat(MLIST = MLIST, delta = delta) } else { stop("only LISREL and RAM representation has been implemented for now") } if(debug) print(Sigma.hat[[g]]) if(extra) { ev <- eigen(Sigma.hat[[g]], symmetric=TRUE, only.values=TRUE)$values if(any(ev < sqrt(.Machine$double.eps)) || sum(ev) == 0) { Sigma.hat.inv <- MASS::ginv(Sigma.hat[[g]]) Sigma.hat.log.det <- log(.Machine$double.eps) attr(Sigma.hat[[g]], "po") <- FALSE attr(Sigma.hat[[g]], "inv") <- Sigma.hat.inv attr(Sigma.hat[[g]], "log.det") <- Sigma.hat.log.det } else { Sigma.hat.inv <- inv.chol(Sigma.hat[[g]], logdet = TRUE) Sigma.hat.log.det <- attr(Sigma.hat.inv, "logdet") attr(Sigma.hat[[g]], "po") <- TRUE attr(Sigma.hat[[g]], "inv") <- Sigma.hat.inv attr(Sigma.hat[[g]], "log.det") <- Sigma.hat.log.det } } } Sigma.hat } computeSigmaHatJoint <- function(lavmodel = NULL, GLIST = NULL, extra = FALSE, delta = TRUE, debug = FALSE) { stopifnot([email protected]) if(is.null(GLIST)) GLIST <- lavmodel@GLIST nmat <- lavmodel@nmat nvar <- lavmodel@nvar nblocks <- lavmodel@nblocks representation <- lavmodel@representation Sigma.hat <- vector("list", length=nblocks) for(g in 1:nblocks) { mm.in.group <- 1:nmat[g] + cumsum(c(0,nmat))[g] MLIST <- GLIST[mm.in.group] if(representation == "LISREL") { res.Sigma <- computeSigmaHat.LISREL(MLIST = MLIST, delta = delta) res.int <- computeMuHat.LISREL(MLIST = MLIST) res.slopes <- computePI.LISREL(MLIST = MLIST) S.xx <- MLIST$cov.x S.yy <- res.Sigma + res.slopes %*% S.xx %*% t(res.slopes) S.yx <- res.slopes %*% S.xx S.xy <- S.xx %*% t(res.slopes) Sigma.hat[[g]] <- rbind( cbind(S.yy, S.yx), cbind(S.xy, S.xx) ) } else { stop("only representation LISREL has been implemented for now") } if(debug) print(Sigma.hat[[g]]) if(extra) { ev <- eigen(Sigma.hat[[g]], symmetric=TRUE, only.values=TRUE)$values if(any(ev < .Machine$double.eps) || sum(ev) == 0) { Sigma.hat.inv <- MASS::ginv(Sigma.hat[[g]]) Sigma.hat.log.det <- log(.Machine$double.eps) attr(Sigma.hat[[g]], "po") <- FALSE attr(Sigma.hat[[g]], "inv") <- Sigma.hat.inv attr(Sigma.hat[[g]], "log.det") <- Sigma.hat.log.det } else { Sigma.hat.inv <- inv.chol(Sigma.hat[[g]], logdet=TRUE) Sigma.hat.log.det <- attr(Sigma.hat.inv, "logdet") attr(Sigma.hat[[g]], "po") <- TRUE attr(Sigma.hat[[g]], "inv") <- Sigma.hat.inv attr(Sigma.hat[[g]], "log.det") <- Sigma.hat.log.det } } } Sigma.hat } computeMuHat <- function(lavmodel = NULL, GLIST = NULL) { if(is.null(GLIST)) GLIST <- lavmodel@GLIST nmat <- lavmodel@nmat nblocks <- lavmodel@nblocks representation <- lavmodel@representation meanstructure <- lavmodel@meanstructure Mu.hat <- vector("list", length=nblocks) for(g in 1:nblocks) { mm.in.group <- 1:nmat[g] + cumsum(c(0,nmat))[g] MLIST <- GLIST[mm.in.group] if(!meanstructure) { Mu.hat[[g]] <- numeric( lavmodel@nvar[g] ) } else if(representation == "LISREL") { Mu.hat[[g]] <- computeMuHat.LISREL(MLIST = MLIST) } else if(representation == "RAM") { Mu.hat[[g]] <- lav_ram_muhat(MLIST = MLIST) } else { stop("only RAM and LISREL representation has been implemented for now") } } Mu.hat } computeMuHatJoint <- function(lavmodel = NULL, GLIST = NULL) { if(is.null(GLIST)) GLIST <- lavmodel@GLIST nmat <- lavmodel@nmat nblocks <- lavmodel@nblocks representation <- lavmodel@representation meanstructure <- lavmodel@meanstructure Mu.hat <- vector("list", length=nblocks) for(g in 1:nblocks) { mm.in.group <- 1:nmat[g] + cumsum(c(0,nmat))[g] if(!meanstructure) { Mu.hat[[g]] <- numeric( lavmodel@nvar[g] ) } else if(representation == "LISREL") { MLIST <- GLIST[ mm.in.group ] res.int <- computeMuHat.LISREL(MLIST = MLIST) res.slopes <- computePI.LISREL(MLIST = MLIST) M.x <- MLIST$mean.x Mu.y <- res.int + res.slopes %*% M.x Mu.x <- M.x Mu.hat[[g]] <- c(Mu.y, Mu.x) } else { stop("only representation LISREL has been implemented for now") } } Mu.hat } computeTH <- function(lavmodel = NULL, GLIST = NULL) { if(is.null(GLIST)) GLIST <- lavmodel@GLIST nblocks <- lavmodel@nblocks nmat <- lavmodel@nmat representation <- lavmodel@representation th.idx <- [email protected] TH <- vector("list", length=nblocks) for(g in 1:nblocks) { if(length(th.idx[[g]]) == 0) { TH[[g]] <- numeric(0L) next } mm.in.group <- 1:nmat[g] + cumsum(c(0,nmat))[g] if(representation == "LISREL") { TH[[g]] <- computeTH.LISREL(MLIST = GLIST[ mm.in.group ], th.idx=th.idx[[g]]) } else { stop("only representation LISREL has been implemented for now") } } TH } computePI <- function(lavmodel = NULL, GLIST = NULL) { if(is.null(GLIST)) GLIST <- lavmodel@GLIST nblocks <- lavmodel@nblocks nmat <- lavmodel@nmat representation <- lavmodel@representation conditional.x <- [email protected] PI <- vector("list", length=nblocks) for(g in 1:nblocks) { mm.in.group <- 1:nmat[g] + cumsum(c(0,nmat))[g] MLIST <- GLIST[ mm.in.group ] if(!conditional.x) { PI.g <- numeric( lavmodel@nvar[g] ) } else if(representation == "LISREL") { PI.g <- computePI.LISREL(MLIST = MLIST) } else { stop("only representation LISREL has been implemented for now") } PI[[g]] <- PI.g } PI } computeGW <- function(lavmodel = NULL, GLIST=NULL) { if(is.null(GLIST)) GLIST <- lavmodel@GLIST nblocks <- lavmodel@nblocks nmat <- lavmodel@nmat representation <- lavmodel@representation group.w.free <- [email protected] GW <- vector("list", length=nblocks) for(g in 1:nblocks) { mm.in.group <- 1:nmat[g] + cumsum(c(0,nmat))[g] MLIST <- GLIST[ mm.in.group ] if(!group.w.free) { GW.g <- 0.0 } else if(representation == "LISREL") { GW.g <- as.numeric(MLIST$gw[1,1]) } else { stop("only representation LISREL has been implemented for now") } GW[[g]] <- GW.g } GW } computeVY <- function(lavmodel = NULL, GLIST = NULL, diagonal.only = FALSE) { if(is.null(GLIST)) GLIST <- lavmodel@GLIST nblocks <- lavmodel@nblocks nmat <- lavmodel@nmat representation <- lavmodel@representation VY <- vector("list", length=nblocks) for(g in 1:nblocks) { mm.in.group <- 1:nmat[g] + cumsum(c(0,nmat))[g] MLIST <- GLIST[ mm.in.group ] if(representation == "LISREL") { VY.g <- computeVY.LISREL(MLIST = MLIST) } else { stop("only representation LISREL has been implemented for now") } if(diagonal.only) { VY[[g]] <- diag(VY.g) } else { VY[[g]] <- VY.g } } VY } computeVETA <- function(lavmodel = NULL, GLIST = NULL, remove.dummy.lv = FALSE) { if(is.null(GLIST)) GLIST <- lavmodel@GLIST nblocks <- lavmodel@nblocks nmat <- lavmodel@nmat representation <- lavmodel@representation VETA <- vector("list", length=nblocks) for(g in 1:nblocks) { mm.in.group <- 1:nmat[g] + cumsum(c(0,nmat))[g] MLIST <- GLIST[ mm.in.group ] if(representation == "LISREL") { VETA.g <- computeVETA.LISREL(MLIST = MLIST) if(remove.dummy.lv) { lv.idx <- c([email protected][[g]], [email protected][[g]]) if(!is.null(lv.idx)) { VETA.g <- VETA.g[-lv.idx, -lv.idx, drop=FALSE] } } } else if(representation == "RAM") { VETA.g <- lav_ram_veta(MLIST = MLIST) } else { stop("only LISREL and RAM representation has been implemented for now") } VETA[[g]] <- VETA.g } VETA } computeVETAx <- function(lavmodel = NULL, GLIST = NULL) { if(is.null(GLIST)) GLIST <- lavmodel@GLIST nblocks <- lavmodel@nblocks nmat <- lavmodel@nmat representation <- lavmodel@representation ETA <- vector("list", length=nblocks) for(g in 1:nblocks) { mm.in.group <- 1:nmat[g] + cumsum(c(0,nmat))[g] MLIST <- GLIST[ mm.in.group ] if(representation == "LISREL") { lv.idx <- c([email protected][[g]], [email protected][[g]]) ETA.g <- computeVETAx.LISREL(MLIST = MLIST, lv.dummy.idx = lv.idx) } else { stop("only representation LISREL has been implemented for now") } ETA[[g]] <- ETA.g } ETA } computeCOV <- function(lavmodel = NULL, GLIST = NULL, remove.dummy.lv = FALSE) { if(is.null(GLIST)) GLIST <- lavmodel@GLIST nblocks <- lavmodel@nblocks nmat <- lavmodel@nmat representation <- lavmodel@representation COV <- vector("list", length=nblocks) for(g in 1:nblocks) { mm.in.group <- 1:nmat[g] + cumsum(c(0,nmat))[g] MLIST <- GLIST[ mm.in.group ] if(representation == "LISREL") { COV.g <- computeCOV.LISREL(MLIST = MLIST) if(remove.dummy.lv) { lv.idx <- c([email protected][[g]], [email protected][[g]]) if(!is.null(lv.idx)) { lambda.names <- lavmodel@dimNames[[which(names(GLIST) == "lambda")[g]]][[1L]] lv.idx <- lv.idx + length(lambda.names) COV.g <- COV.g[-lv.idx, -lv.idx, drop=FALSE] } } } else { stop("only representation LISREL has been implemented for now") } COV[[g]] <- COV.g } COV } computeEETA <- function(lavmodel = NULL, GLIST = NULL, lavsamplestats = NULL, remove.dummy.lv = FALSE) { if(is.null(GLIST)) GLIST <- lavmodel@GLIST nblocks <- lavmodel@nblocks nmat <- lavmodel@nmat representation <- lavmodel@representation EETA <- vector("list", length=nblocks) for(g in 1:nblocks) { mm.in.group <- 1:nmat[g] + cumsum(c(0,nmat))[g] MLIST <- GLIST[ mm.in.group ] if(representation == "LISREL") { EETA.g <- computeEETA.LISREL(MLIST, [email protected][[g]], sample.mean=lavsamplestats@mean[[g]], [email protected][[g]], [email protected][[g]], [email protected][[g]], [email protected][[g]]) if(remove.dummy.lv) { lv.dummy.idx <- c([email protected][[g]], [email protected][[g]]) if(length(lv.dummy.idx) > 0L) { EETA.g <- EETA.g[-lv.dummy.idx] } } } else { stop("only representation LISREL has been implemented for now") } EETA[[g]] <- EETA.g } EETA } computeEETAx <- function(lavmodel = NULL, GLIST = NULL, lavsamplestats = NULL, eXo = NULL, nobs = NULL, remove.dummy.lv = FALSE) { if(is.null(GLIST)) GLIST <- lavmodel@GLIST nblocks <- lavmodel@nblocks nmat <- lavmodel@nmat representation <- lavmodel@representation EETAx <- vector("list", length=nblocks) for(g in 1:nblocks) { mm.in.group <- 1:nmat[g] + cumsum(c(0,nmat))[g] MLIST <- GLIST[ mm.in.group ] EXO <- eXo[[g]] if(is.null(EXO)) { EXO <- matrix(0, nobs[[g]], 0L) } if(representation == "LISREL") { EETAx.g <- computeEETAx.LISREL(MLIST, eXo=EXO, N=nobs[[g]], sample.mean=lavsamplestats@mean[[g]], [email protected][[g]], [email protected][[g]], [email protected][[g]], [email protected][[g]]) if(remove.dummy.lv) { lv.dummy.idx <- c([email protected][[g]], [email protected][[g]]) if(length(lv.dummy.idx) > 0L) { EETAx.g <- EETAx.g[ ,-lv.dummy.idx, drop=FALSE] } } } else { stop("only representation LISREL has been implemented for now") } EETAx[[g]] <- EETAx.g } EETAx } computeLAMBDA <- function(lavmodel = NULL, GLIST = NULL, handle.dummy.lv = TRUE, remove.dummy.lv = FALSE) { if(is.null(GLIST)) GLIST <- lavmodel@GLIST nblocks <- lavmodel@nblocks nmat <- lavmodel@nmat representation <- lavmodel@representation LAMBDA <- vector("list", length=nblocks) for(g in 1:nblocks) { mm.in.group <- 1:nmat[g] + cumsum(c(0,nmat))[g] MLIST <- GLIST[ mm.in.group ] if(representation == "LISREL") { if(handle.dummy.lv) { ov.y.dummy.ov.idx = [email protected][[g]] ov.x.dummy.ov.idx = [email protected][[g]] ov.y.dummy.lv.idx = [email protected][[g]] ov.x.dummy.lv.idx = [email protected][[g]] } else { ov.y.dummy.ov.idx = NULL ov.x.dummy.ov.idx = NULL ov.y.dummy.lv.idx = NULL ov.x.dummy.lv.idx = NULL } LAMBDA.g <- computeLAMBDA.LISREL(MLIST = MLIST, ov.y.dummy.ov.idx = ov.y.dummy.ov.idx, ov.x.dummy.ov.idx = ov.x.dummy.ov.idx, ov.y.dummy.lv.idx = ov.y.dummy.lv.idx, ov.x.dummy.lv.idx = ov.x.dummy.lv.idx, remove.dummy.lv = remove.dummy.lv) } else { stop("only representation LISREL has been implemented for now") } LAMBDA[[g]] <- LAMBDA.g } LAMBDA } computeTHETA <- function(lavmodel = NULL, GLIST = NULL, fix = TRUE) { if(is.null(GLIST)) GLIST <- lavmodel@GLIST nblocks <- lavmodel@nblocks nmat <- lavmodel@nmat representation <- lavmodel@representation THETA <- vector("list", length=nblocks) for(g in 1:nblocks) { mm.in.group <- 1:nmat[g] + cumsum(c(0,nmat))[g] MLIST <- GLIST[ mm.in.group ] if(representation == "LISREL") { if(fix) { THETA.g <- computeTHETA.LISREL(MLIST = MLIST, ov.y.dummy.ov.idx = [email protected][[g]], ov.x.dummy.ov.idx = [email protected][[g]], ov.y.dummy.lv.idx = [email protected][[g]], ov.x.dummy.lv.idx = [email protected][[g]]) } else { THETA.g <- computeTHETA.LISREL(MLIST = MLIST) } } else if(representation == "RAM") { ov.idx <- as.integer(MLIST$ov.idx[1,]) THETA.g <- MLIST$S[ov.idx, ov.idx, drop = FALSE] } else { stop("only LISREL and RAM representation has been implemented for now") } THETA[[g]] <- THETA.g } THETA } computeNU <- function(lavmodel = NULL, GLIST = NULL, lavsamplestats = NULL) { if(is.null(GLIST)) GLIST <- lavmodel@GLIST nblocks <- lavmodel@nblocks nmat <- lavmodel@nmat representation <- lavmodel@representation NU <- vector("list", length=nblocks) for(g in 1:nblocks) { mm.in.group <- 1:nmat[g] + cumsum(c(0,nmat))[g] MLIST <- GLIST[ mm.in.group ] if(representation == "LISREL") { NU.g <- computeNU.LISREL(MLIST = MLIST, sample.mean = lavsamplestats@mean[[g]], ov.y.dummy.ov.idx = [email protected][[g]], ov.x.dummy.ov.idx = [email protected][[g]], ov.y.dummy.lv.idx = [email protected][[g]], ov.x.dummy.lv.idx = [email protected][[g]]) } else { stop("only representation LISREL has been implemented for now") } NU[[g]] <- NU.g } NU } computeEY <- function(lavmodel = NULL, GLIST = NULL, lavsamplestats = NULL) { if(is.null(GLIST)) GLIST <- lavmodel@GLIST nblocks <- lavmodel@nblocks nmat <- lavmodel@nmat representation <- lavmodel@representation EY <- vector("list", length=nblocks) for(g in 1:nblocks) { mm.in.group <- 1:nmat[g] + cumsum(c(0,nmat))[g] MLIST <- GLIST[ mm.in.group ] if(representation == "LISREL") { EY.g <- computeEY.LISREL(MLIST = MLIST, [email protected][[g]], sample.mean=lavsamplestats@mean[[g]], [email protected][[g]], [email protected][[g]], [email protected][[g]], [email protected][[g]]) } else { stop("only representation LISREL has been implemented for now") } EY[[g]] <- EY.g } EY } computeYHAT <- function(lavmodel = NULL, GLIST = NULL, lavsamplestats = NULL, eXo = NULL, nobs = NULL, ETA = NULL, duplicate = FALSE) { if(is.null(GLIST)) GLIST <- lavmodel@GLIST ngroups <- lavsamplestats@ngroups YHAT <- vector("list", length=ngroups) for(g in seq_len(ngroups)) { mm.in.group <- 1:lavmodel@nmat[g] + cumsum(c(0L,lavmodel@nmat))[g] MLIST <- GLIST[ mm.in.group ] if(is.null(eXo[[g]]) && duplicate) { Nobs <- nobs[[g]] } else { Nobs <- 1L } if(lavmodel@representation == "LISREL") { if([email protected]) { YHAT[[g]] <- computeEYetax.LISREL(MLIST = MLIST, eXo = eXo[[g]], ETA = ETA[[g]], N = Nobs, sample.mean = lavsamplestats@mean[[g]], ov.y.dummy.ov.idx = [email protected][[g]], ov.x.dummy.ov.idx = [email protected][[g]], ov.y.dummy.lv.idx = [email protected][[g]], ov.x.dummy.lv.idx = [email protected][[g]]) } else { YHAT[[g]] <- computeEYetax3.LISREL(MLIST = MLIST, ETA = ETA[[g]], sample.mean = lavsamplestats@mean[[g]], mean.x = [email protected][[g]], ov.y.dummy.ov.idx = [email protected][[g]], ov.x.dummy.ov.idx = [email protected][[g]], ov.y.dummy.lv.idx = [email protected][[g]], ov.x.dummy.lv.idx = [email protected][[g]]) } } else { stop("lavaan ERROR: representation ", lavmodel@representation, " not supported yet.") } } YHAT }
block.check <- function (k, blocks, nfactors, factor.names=Letters[1:nfactors]) { if (is.list(blocks)){ if (any(sapply(blocks, function(obj) any(obj < 1 | obj > nfactors | !floor(obj) == obj)))) stop(paste("All block generators must contain integer numbers from 1 to", nfactors, "\n or letters from", Letters[1], "to", Letters[nfactors], "only."))} else { if (is.numeric(blocks) & length(blocks)==1) { if (!(2^round(log2(blocks)))==blocks) stop ("The number of blocks must be an integer power of 2.") return(blocks) } if (!(is.numeric(blocks) | is.character(blocks))) stop("blocks must be the number of blocks, a list of generator vectors, a character vector of block generators, a numeric vector of column numbers of the Yates matrix, or a character vector of factor names.") if (is.numeric(blocks)) { if (any(!blocks == floor(blocks))) stop("All entries in blocks must be integer numbers.") if (min(blocks) < 1 | max(blocks) > 2^k - 1) stop("Column numbers in blocks must be in the range of 1 to 2^k-1.") blocks <- Yates[blocks] } if (is.character(blocks)) { hilf <- factor.names if (is.list(hilf)) hilf <- names(hilf) if (all(blocks %in% hilf)) blocks <- as.list(which(hilf %in% blocks)) else blocks <- lapply(strsplit(blocks, ""), function(obj) which(Letters %in% obj)) } } blocks } blockfull <- function(block.gen, k, des.gen=NULL){ if (is.list(block.gen) && is.null(des.gen)) stop("for list-valued block.gen, ", "des.gen is needed (vector of Yates column numbers)") k.block <- length(block.gen) if (is.character(block.gen)) block.gen <- sapply(block.gen, function(obj) which(names(Yates) == obj)) if (is.list(block.gen)) block.gen <- sapply(block.gen, function(obj) as.intBase(paste(rowSums(do.call(cbind, lapply(obj, function(obj2) digitsBase(des.gen[obj2],2,k))))%%2, collapse=""))) aus <- block.gen if (k.block > 1) for (i in 2:k.block){ sel <- DoE.base:::nchoosek(k.block, i) aus <- c(aus, sapply(1:ncol(sel), function(obj) as.intBase( paste( rowSums( do.call(cbind, lapply(sel[,obj], function(obj2) digitsBase(block.gen[obj2],2,k) )) )%%2, collapse="") ) )) } aus }
resid_fit <- function(S = NULL, Sigma = NULL, ybar = NULL, mu = NULL, lavaan_object = NULL, exo = TRUE) { if (!is.null(lavaan_object)) { moment_list <- get_moments(lavaan_object, exo) S <- moment_list[["S"]] Sigma <- moment_list[["Sigma"]] ybar <- moment_list[["ybar"]] mu <- moment_list[["mu"]] } if (nrow(Sigma) != ncol(Sigma)) stop("Sigma is not a square matrix") if (nrow(S) != ncol(S)) stop("S is not a square matrix") if (sum(dim(S)) != sum(dim(Sigma))) stop("S and Sigma are not the same size") if (!is.null(ybar) & !is.null(mu)) { if (length(ybar) != length(mu)) stop("ybar and mu are not the same size") if (length(ybar) != nrow(S)) stop("ybar/mu are not of the same dimension") if (length(mu) != nrow(Sigma)) stop("S/Sigma are not of the same dimension") } D <- diag(sqrt(diag(S))) invD <- solve(D) if (is.null(ybar)) { P_mean <- NULL raw_dev_mean <- std_dev_mean <- dev_std_mean <- NULL ss_raw_dev_mean <- ss_std_dev_mean <- ss_dev_std_mean <- NULL rmr_mean <- srmr_mean <- crmr_mean <- NULL } else { P_mean <- length(ybar) raw_dev_mean <- ybar - mu ss_raw_dev_mean <- sum(raw_dev_mean^2) rmr_mean <- resid_index(ssr = ss_raw_dev_mean, P = P_mean) std_dev_mean <- invD %*% raw_dev_mean ss_std_dev_mean <- sum(std_dev_mean^2) srmr_mean <- resid_index(ssr = ss_std_dev_mean, P = P_mean) std_samp_mean <- ybar / sqrt(diag(S)) std_impld_mean <- mu / sqrt(diag(Sigma)) dev_std_mean <- std_samp_mean - std_impld_mean ss_dev_std_mean <- sum(dev_std_mean^2) crmr_mean <- resid_index(ssr = ss_dev_std_mean, P = P_mean) } P_lt <- (nrow(S) * (nrow(S) - 1)) / 2 raw_dev_vcov <- S - Sigma ss_raw_dev_lt <- sum_sq_lt(raw_dev_vcov) rmr_cov <- resid_index(ssr = ss_raw_dev_lt, P = P_lt) std_dev_vcov <- invD %*% raw_dev_vcov %*% invD ss_std_dev_lt <- sum_sq_lt(std_dev_vcov) srmr_cov <- resid_index(ssr = ss_std_dev_lt, P = P_lt) Rho <- stats::cov2cor(Sigma) R <- stats::cov2cor(S) dev_std_vcov <- R - Rho ss_dev_std_lt <- sum_sq_lt(dev_std_vcov) crmr_cov <- resid_index(ssr = ss_dev_std_lt, P = P_lt) if(all(diag(S) == diag(Sigma))) { P_var <- NULL } else { P_var <- nrow(S) ss_raw_dev_var <- sum(diag(raw_dev_vcov)^2) rmr_var <- resid_index(ssr = ss_raw_dev_var, P = P_var) ss_std_dev_var <- sum(diag(std_dev_vcov)^2) srmr_var <- resid_index(ssr = ss_std_dev_var, P = P_var) } P <- sum(P_mean, P_var, P_lt) ss_raw_dev_total <- sum(ss_raw_dev_lt, ss_raw_dev_var, ss_raw_dev_mean) rmr_total <- resid_index(ssr = ss_raw_dev_total, P = P) ss_std_dev_total <- sum(ss_std_dev_lt, ss_std_dev_var, ss_std_dev_mean) srmr_total <- resid_index(ssr = ss_std_dev_total, P = P) ss_dev_std_total <- sum(ss_dev_std_lt, ss_dev_std_mean) crmr_total <- resid_index(ssr = ss_dev_std_total, P = sum(c(P_mean, P_lt))) rmr_obj <- methods::new("ResidualFitIndex") rmr_obj@type <- "RMR" rmr_obj@resid <- list(mean = raw_dev_mean, vcov = raw_dev_vcov) rmr_obj@ssr <- list(total = ss_raw_dev_total, mean = ss_raw_dev_mean, var = ss_raw_dev_var, cov = ss_raw_dev_lt) rmr_obj@size <- list(total = P, mean = P_mean, var = P_var, cov = P_lt) rmr_obj@index <- list(total = rmr_total, mean = rmr_mean, var = rmr_var, cov = rmr_cov) srmr_obj <- methods::new("ResidualFitIndex") srmr_obj@type <- "SRMR" srmr_obj@resid <- list(mean = std_dev_mean, vcov = std_dev_vcov) srmr_obj@ssr <- list(total = ss_std_dev_total, mean = ss_std_dev_mean, var = ss_std_dev_var, cov = ss_std_dev_lt) srmr_obj@size <- list(total = P, mean = P_mean, var = P_var, cov = P_lt) srmr_obj@index <- list(total = srmr_total, mean = srmr_mean, var = srmr_var, cov = srmr_cov) crmr_obj <- methods::new("ResidualFitIndex") crmr_obj@type <- "CRMR" crmr_obj@resid <- list(mean = dev_std_mean, vcov = dev_std_vcov) crmr_obj@ssr <- list(total = ss_dev_std_total, mean = ss_dev_std_mean, cov = ss_dev_std_lt) crmr_obj@size <- list(total = P, mean = P_mean, cov = P_lt) crmr_obj@index <- list(total = crmr_total, mean = crmr_mean, cov = crmr_cov) resid_fit_obj <- methods::new("ResidualFitIndices") resid_fit_obj@sampleMoments <- list(yBar = ybar, S = S, dim = length(ybar)) resid_fit_obj@impliedMoments <- list(muHat = mu, SigmaHat = Sigma, dim = length(mu)) resid_fit_obj@RMR = rmr_obj resid_fit_obj@SRMR = srmr_obj resid_fit_obj@CRMR = crmr_obj return(resid_fit_obj) }
HitMiss_Curve = function(ddF, miss_ind, p){ ddF_temp = ddF %>% mutate(miss = miss_ind) %>% mutate(hit = ifelse(miss_ind == TRUE, FALSE, TRUE)) %>% select(AE_NAME, OR, hit, miss) %>% distinct() position = sapply(unique(ddF_temp$OR), function(x) tail(which(ddF_temp$OR == x), n = 1), simplify = T) n_pos = length(position) N_R = ddF_temp %>% filter(hit == TRUE) %>% mutate(OR_p = abs(OR)^p) %>% summarize(Nr = sum(OR_p)) %>% as.numeric() N_miss = ddF_temp %>% summarize(N_M = sum(miss_ind)) %>% as.numeric() if (N_R == 0){ hit_value = rep(0, n_pos) }else{ if(p == 0){ hit_value = cumsum(ddF_temp$hit / N_R) hit_value = hit_value[position] } else{ OR_hit = ddF_temp %>% mutate(OR_p = abs(OR)^p * hit) hit_value = cumsum(OR_hit$OR_p / N_R) hit_value = hit_value[position] } } miss_value = cumsum(ddF_temp$miss / N_miss) miss_value = miss_value[position] return(list(hit = hit_value, miss = miss_value, pos = position)) }
context("Test Graphics") library(mpcmp) data("attendance") M.attendance <- glm.cmp(daysabs~ gender+math+prog, data=attendance) test_that("Test gg_plot", { expect_length(gg_plot(M.attendance, which = 1:8), 8) expect_output(gg_plot(M.attendance, which=9), NULL) })
context("Network extended models") test_that("edges models", { skip_on_cran() nw <- network_initialize(n = 100) est <- netest(nw, formation = ~edges, target.stats = 25, coef.diss = dissolution_coefs(~offset(edges), 10, 0), verbose = FALSE) expect_is(est, "netest") param <- param.net(inf.prob = 0.5) init <- init.net(i.num = 1) control <- control.net(type = "SI", nsims = 1, nsteps = 25, verbose = FALSE) x <- netsim(est, param, init, control) expect_is(x, "netsim") expect_is(as.data.frame(x), "data.frame") expect_true(max(x$epi$i.num) >= 1) expect_true(max(x$epi$i.num) <= 100) expect_output(summary(x, at = 25), "EpiModel Summary") plot(x) plot(x, y = "si.flow", mean.smooth = TRUE) plot(x, type = "formation") plot(x, type = "network") plot(x, type = "network", sims = "mean", col.status = TRUE) test_net(x) rm(x) param <- param.net(inf.prob = 0) init <- init.net(i.num = 1) control <- control.net(type = "SI", nsims = 1, nsteps = 25, verbose = FALSE) x <- netsim(est, param, init, control) expect_is(x, "netsim") expect_is(as.data.frame(x), "data.frame") expect_true(max(x$epi$i.num) == 1) expect_true(max(x$epi$si.flow, na.rm = TRUE) == 0) expect_output(summary(x, at = 25), "EpiModel Summary") plot(x) plot(x, y = "si.flow", mean.smooth = TRUE) plot(x, type = "formation") plot(x, type = "network") plot(x, type = "network", sims = "mean", col.status = TRUE) test_net(x) rm(x) param <- param.net(inf.prob = 0.5) init <- init.net(i.num = 1) control <- control.net(type = "SI", nsims = 2, nsteps = 25, verbose = FALSE, nwstats.formula = ~edges + meandeg + concurrent) x <- netsim(est, param, init, control) expect_is(x, "netsim") expect_is(as.data.frame(x), "data.frame") expect_true(max(x$epi$i.num) >= 1) expect_true(max(x$epi$i.num) <= 100) expect_output(summary(x, at = 25), "EpiModel Summary") plot(x) plot(x, y = "si.flow", mean.smooth = TRUE) plot(x, type = "formation") plot(x, type = "formation", plots.joined = FALSE) plot(x, type = "formation", stats = "edges") plot(x, type = "formation", stats = c("edges", "meandeg")) plot(x, type = "formation", sim.lines = TRUE, qnts.smooth = FALSE) plot(x, type = "network") plot(x, type = "network", sims = "mean", col.status = TRUE) test_net(x) rm(x) param <- param.net(inf.prob = 1) init <- init.net(i.num = 1) control <- control.net(type = "SI", nsims = 2, nsteps = 25, verbose = FALSE) x <- netsim(est, param, init, control) expect_is(x, "netsim") expect_is(as.data.frame(x), "data.frame") expect_true(max(x$epi$i.num) >= 1) expect_true(max(x$epi$i.num) <= 100) expect_true(sum(get.vertex.attribute.active(x$network[[1]][[1]], prefix = "testatus", at = 1) == "i") >= 0) expect_output(summary(x, at = 25), "EpiModel Summary") plot(x) plot(x, y = "si.flow", mean.smooth = TRUE) plot(x, type = "formation") plot(x, type = "network") plot(x, type = "network", sims = "mean", col.status = TRUE) test_net(x) rm(x) param <- param.net(inf.prob = 0.5) init <- init.net(status.vector = c(rep("i", 10), rep("s", 90))) control <- control.net(type = "SI", nsims = 2, nsteps = 25, verbose = FALSE) x <- netsim(est, param, init, control) expect_is(x, "netsim") expect_is(as.data.frame(x), "data.frame") expect_true(all(x$epi$i.num[1, ] == 10)) expect_true(max(x$epi$i.num) <= 100) expect_output(summary(x, at = 25), "EpiModel Summary") plot(x) plot(x, y = "si.flow", mean.smooth = TRUE) plot(x, type = "formation") plot(x, type = "network", col.status = TRUE) test_net(x) rm(x) param <- param.net(inf.prob = 0.5, rec.rate = 0.01) init <- init.net(i.num = 10, r.num = 0) control <- control.net(type = "SIR", nsims = 1, nsteps = 25, verbose = FALSE) x <- netsim(est, param, init, control) expect_is(x, "netsim") expect_is(as.data.frame(x), "data.frame") expect_true(max(x$epi$i.num) >= 1) expect_true(max(x$epi$i.num) <= 100) expect_output(summary(x, at = 25), "EpiModel Summary") plot(x) plot(x, y = "si.flow", mean.smooth = TRUE) plot(x, type = "formation") plot(x, type = "network") plot(x, type = "network", sims = "mean", col.status = TRUE) test_net(x) rm(x) param <- param.net(inf.prob = 0, rec.rate = 0.01) init <- init.net(i.num = 10, r.num = 0) control <- control.net(type = "SIR", nsims = 1, nsteps = 25, verbose = FALSE) x <- netsim(est, param, init, control) expect_is(x, "netsim") expect_is(as.data.frame(x), "data.frame") expect_true(max(x$epi$i.num) == 10) expect_true(max(x$epi$si.flow, na.rm = TRUE) == 0) expect_output(summary(x, at = 25), "EpiModel Summary") plot(x) plot(x, y = "si.flow", mean.smooth = TRUE) plot(x, type = "formation") plot(x, type = "network") plot(x, type = "network", sims = "mean", col.status = TRUE) test_net(x) rm(x) param <- param.net(inf.prob = 0.5, rec.rate = 0.1) init <- init.net(i.num = 1, r.num = 0) control <- control.net(type = "SIR", nsims = 2, nsteps = 25, verbose = FALSE) x <- netsim(est, param, init, control) expect_is(x, "netsim") expect_is(as.data.frame(x), "data.frame") expect_true(max(x$epi$i.num) >= 1) expect_true(max(x$epi$i.num) <= 100) expect_output(summary(x, at = 25), "EpiModel Summary") plot(x) plot(x, y = "si.flow", mean.smooth = TRUE) plot(x, type = "formation") plot(x, type = "network") plot(x, type = "network", sims = "mean", col.status = TRUE) test_net(x) rm(x) param <- param.net(inf.prob = 0.5, rec.rate = 0.1) init <- init.net(status.vector = rep(c("s", "i"), each = 50)) control <- control.net(type = "SIR", nsims = 2, nsteps = 25, verbose = FALSE) x <- netsim(est, param, init, control) expect_is(x, "netsim") expect_is(as.data.frame(x), "data.frame") expect_true(all(x$epi$i.num[1, ] == 50)) expect_true(max(x$epi$i.num) <= 100) expect_output(summary(x, at = 25), "EpiModel Summary") plot(x) plot(x, y = "si.flow", mean.smooth = TRUE) plot(x, type = "formation") plot(x, type = "network") plot(x, type = "network", sims = "mean", col.status = TRUE) test_net(x) rm(x) param <- param.net(inf.prob = 0.9, rec.rate = 0.01) init <- init.net(i.num = 1) control <- control.net(type = "SIS", nsims = 1, nsteps = 25, verbose = FALSE) x <- netsim(est, param, init, control) expect_is(x, "netsim") expect_is(as.data.frame(x), "data.frame") expect_true(max(x$epi$i.num) >= 1) expect_true(max(x$epi$i.num) <= 100) expect_output(summary(x, at = 25), "EpiModel Summary") plot(x) plot(x, y = "si.flow", mean.smooth = TRUE) plot(x, type = "formation") plot(x, type = "network") plot(x, type = "network", sims = "mean", col.status = TRUE) test_net(x) rm(x) param <- param.net(inf.prob = 0, rec.rate = 0.01) init <- init.net(i.num = 1) control <- control.net(type = "SIS", nsims = 1, nsteps = 25, verbose = FALSE) x <- netsim(est, param, init, control) expect_is(x, "netsim") expect_is(as.data.frame(x), "data.frame") expect_true(max(x$epi$i.num) == 1) expect_true(max(x$epi$si.flow, na.rm = TRUE) == 0) expect_output(summary(x, at = 25), "EpiModel Summary") plot(x) plot(x, y = "si.flow", mean.smooth = TRUE) plot(x, type = "formation") plot(x, type = "network") plot(x, type = "network", sims = "mean", col.status = TRUE) test_net(x) rm(x) param <- param.net(inf.prob = 0.5, rec.rate = 0.01) init <- init.net(i.num = 1) control <- control.net(type = "SIS", nsims = 2, nsteps = 25, verbose = FALSE) x <- netsim(est, param, init, control) expect_is(x, "netsim") expect_is(as.data.frame(x), "data.frame") expect_true(max(x$epi$i.num) >= 1) expect_true(max(x$epi$i.num) <= 100) expect_output(summary(x, at = 25), "EpiModel Summary") plot(x) plot(x, y = "si.flow", mean.smooth = TRUE) plot(x, type = "formation") test_net(x) rm(x) param <- param.net(inf.prob = 1, rec.rate = 0.01) init <- init.net(i.num = 1) control <- control.net(type = "SIS", nsims = 2, nsteps = 25, verbose = FALSE) x <- netsim(est, param, init, control) expect_is(x, "netsim") expect_is(as.data.frame(x), "data.frame") expect_true(max(x$epi$i.num) <= 100) expect_true(sum(get.vertex.attribute.active(x$network[[1]][[1]], prefix = "testatus", at = 1) == "i") >= 0) expect_output(summary(x, at = 25), "EpiModel Summary") plot(x) plot(x, y = "si.flow", mean.smooth = TRUE) plot(x, type = "formation") plot(x, type = "network") plot(x, type = "network", sims = "mean", col.status = TRUE) test_net(x) rm(x) param <- param.net(inf.prob = 0.5, rec.rate = 0.01) init <- init.net(status.vector = c(rep("i", 10), rep("s", 90))) control <- control.net(type = "SIS", nsims = 2, nsteps = 25, verbose = FALSE) x <- netsim(est, param, init, control) expect_is(x, "netsim") expect_is(as.data.frame(x), "data.frame") expect_true(all(x$epi$i.num[1, ] == 10)) expect_true(max(x$epi$i.num) <= 100) expect_output(summary(x, at = 25), "EpiModel Summary") plot(x) plot(x, y = "si.flow", mean.smooth = TRUE) plot(x, type = "formation") plot(x, type = "network") plot(x, type = "network", sims = "mean", col.status = TRUE) test_net(x) }) test_that("High departure rate models", { skip_on_cran() nw <- network_initialize(n = 25) est <- netest(nw, formation = ~edges, target.stats = 12, coef.diss = dissolution_coefs(~offset(edges), 10, 0.01), edapprox = TRUE, verbose = FALSE) param <- param.net(inf.prob = 0.5, act.rate = 2, a.rate = 0.01, ds.rate = 0.25, di.rate = 0.1) init <- init.net(i.num = 10) control <- control.net(type = "SI", nsteps = 25, nsims = 1, resimulate.network = TRUE, verbose = FALSE) x <- netsim(est, param, init, control) expect_equal(unique(sapply(x$epi, nrow)), 25) summary(x, at = 25) expect_output(summary(x, at = 25), "EpiModel Summary") get_nwstats(x) plot(x) plot(x, y = "si.flow", mean.smooth = TRUE) plot(x, type = "formation") test_net(x) rm(x) param <- param.net(inf.prob = 0.1, act.rate = 2, a.rate = 0.01, ds.rate = 0.01, di.rate = 0.25) init <- init.net(i.num = 10) control <- control.net(type = "SI", nsteps = 25, nsims = 1, resimulate.network = TRUE, verbose = FALSE) x <- netsim(est, param, init, control) expect_equal(unique(sapply(x$epi, nrow)), 25) expect_output(summary(x, at = 25), "EpiModel Summary") plot(x) plot(x, y = "si.flow", mean.smooth = TRUE) plot(x, type = "formation") test_net(x) }) test_that("erroneous two-group models", { nw <- network_initialize(n = 100) nw <- set_vertex_attribute(nw, "group", rep(0:1, each = 50)) est <- netest(nw, formation = ~edges, target.stats = 25, coef.diss = dissolution_coefs(~offset(edges), 10, 0), edapprox = TRUE, verbose = FALSE) param <- param.net(inf.prob = 0.5, inf.prob.g2 = 0.1) init <- init.net(i.num = 10, i.num.g2 = 0) control <- control.net(type = "SI", nsims = 2, nsteps = 25, verbose = FALSE) expect_error(netsim(est, param, init, control)) }) test_that("edges two-group models", { skip_on_cran() nw <- network_initialize(n = 100) nw <- set_vertex_attribute(nw, "group", rep(1:2, each = 50)) est5 <- netest(nw, formation = ~edges, target.stats = 25, coef.diss = dissolution_coefs(~offset(edges), 10, 0), edapprox = TRUE, verbose = FALSE) expect_is(est5, "netest") param <- param.net(inf.prob = 0.5, inf.prob.g2 = 0.1) init <- init.net(i.num = 10, i.num.g2 = 0) control <- control.net(type = "SI", nsims = 2, nsteps = 25, verbose = FALSE) x <- netsim(est5, param, init, control) expect_is(x, "netsim") expect_is(as.data.frame(x), "data.frame") expect_equal(x$param$groups, 2) expect_output(summary(x, at = 25), "EpiModel Summary") plot(x) plot(x, y = "si.flow", mean.smooth = TRUE) plot(x, type = "formation") plot(x, type = "network") plot(x, type = "network", shp.g2 = "triangle") expect_error(plot(x, type = "network", shp.g2 = TRUE)) test_net(x) rm(x) param <- param.net(inf.prob = 0.5, inf.prob.g2 = 0.1, rec.rate = 0.1, rec.rate.g2 = 0.1) init <- init.net(i.num = 10, i.num.g2 = 10, r.num = 0, r.num.g2 = 0) control <- control.net(type = "SIR", nsims = 2, nsteps = 25, verbose = FALSE) x <- netsim(est5, param, init, control) expect_is(x, "netsim") expect_is(as.data.frame(x), "data.frame") expect_equal(x$param$groups, 2) expect_output(summary(x, at = 25), "EpiModel Summary") plot(x) plot(x, y = "si.flow", mean.smooth = TRUE) plot(x, type = "formation") test_net(x) rm(x) param <- param.net(inf.prob = 0.5, inf.prob.g2 = 0.25, rec.rate = 0, rec.rate.g2 = 0, act.rate = 2) init <- init.net(i.num = 10, i.num.g2 = 10, r.num = 0, r.num.g2 = 0) control <- control.net(type = "SIR", nsteps = 10, nsims = 2, verbose = FALSE) x <- netsim(est5, param, init, control) expect_equal(max(x$epi$ir.flow, na.rm = TRUE), 0) expect_equal(max(x$epi$ir.flow.g2, na.rm = TRUE), 0) expect_output(summary(x, at = 10), "EpiModel Summary") plot(x) plot(x, y = "si.flow", mean.smooth = TRUE) plot(x, type = "formation") test_net(x) rm(x) param <- param.net(inf.prob = 0.5, inf.prob.g2 = 0.25, rec.rate = 0.01, rec.rate.g2 = 0.01) init <- init.net(i.num = 10, i.num.g2 = 10) control <- control.net(type = "SIS", nsims = 2, nsteps = 25, verbose = FALSE) x <- netsim(est5, param, init, control) expect_is(x, "netsim") expect_is(as.data.frame(x), "data.frame") expect_equal(x$param$groups, 2) expect_output(summary(x, at = 25), "EpiModel Summary") plot(x) plot(x, y = "si.flow", mean.smooth = TRUE) plot(x, type = "formation") test_net(x) rm(x) param <- param.net(inf.prob = 0.5, inf.prob.g2 = 0.25, rec.rate = 0, rec.rate.g2 = 0, act.rate = 2) init <- init.net(i.num = 10, i.num.g2 = 10) control <- control.net(type = "SIS", nsteps = 10, nsims = 2, verbose = FALSE) x <- netsim(est5, param, init, control) expect_equal(max(x$epi$is.flow, na.rm = TRUE), 0) expect_equal(max(x$epi$is.flow.g2, na.rm = TRUE), 0) expect_output(summary(x, at = 10), "EpiModel Summary") plot(x) plot(x, y = "si.flow", mean.smooth = TRUE) plot(x, type = "formation") test_net(x) rm(x) }) test_that("Open population 1 group models", { skip_on_cran() nw <- network_initialize(n = 100) est.vit <- netest(nw, formation = ~edges, target.stats = 25, coef.diss = dissolution_coefs(~offset(edges), 10, 0.01), verbose = FALSE) param <- param.net(inf.prob = 0.5, act.rate = 2, a.rate = 0.01, ds.rate = 0.01, di.rate = 0.01) init <- init.net(i.num = 10) control <- control.net(type = "SI", nsteps = 10, nsims = 1, resimulate.network = TRUE, verbose = FALSE) x <- netsim(est.vit, param, init, control) expect_is(x, "netsim") expect_is(as.data.frame(x), "data.frame") expect_equal(x$param$vital, TRUE) expect_output(summary(x, at = 10), "EpiModel Summary") plot(x) plot(x, y = "si.flow", mean.smooth = TRUE) plot(x, type = "formation") test_net(x) rm(x) param <- param.net(inf.prob = 0.5, act.rate = 2, a.rate = 0.01, ds.rate = 0.01, di.rate = 0.01) init <- init.net(i.num = 10) control <- control.net(type = "SI", nsteps = 10, nsims = 2, resimulate.network = TRUE, verbose = FALSE) x <- netsim(est.vit, param, init, control) expect_is(x, "netsim") expect_is(as.data.frame(x), "data.frame") expect_equal(x$param$vital, TRUE) expect_output(summary(x, at = 10), "EpiModel Summary") plot(x) plot(x, y = "si.flow", mean.smooth = TRUE) plot(x, type = "formation") test_net(x) rm(x) param <- param.net(inf.prob = 0.5, rec.rate = 0.1, act.rate = 2, a.rate = 0.01, ds.rate = 0.01, di.rate = 0.01, dr.rate = 0.01) init <- init.net(i.num = 10, r.num = 0) control <- control.net(type = "SIR", nsteps = 10, nsims = 1, resimulate.network = TRUE, verbose = FALSE) x <- netsim(est.vit, param, init, control) expect_is(x, "netsim") expect_is(as.data.frame(x), "data.frame") expect_equal(x$param$vital, TRUE) expect_output(summary(x, at = 10), "EpiModel Summary") plot(x) plot(x, y = "si.flow", mean.smooth = TRUE) plot(x, type = "formation") test_net(x) rm(x) param <- param.net(inf.prob = 0.5, rec.rate = 0.1, act.rate = 2, a.rate = 0.01, ds.rate = 0.01, di.rate = 0.01, dr.rate = 0.01) init <- init.net(i.num = 10, r.num = 0) control <- control.net(type = "SIR", nsteps = 10, nsims = 2, resimulate.network = TRUE, verbose = FALSE) x <- netsim(est.vit, param, init, control) expect_is(x, "netsim") expect_is(as.data.frame(x), "data.frame") expect_equal(x$param$vital, TRUE) expect_output(summary(x, at = 10), "EpiModel Summary") plot(x) plot(x, y = "si.flow", mean.smooth = TRUE) plot(x, type = "formation") test_net(x) rm(x) param <- param.net(inf.prob = 0.5, rec.rate = 0.01, act.rate = 2, a.rate = 0.01, ds.rate = 0.01, di.rate = 0.01) init <- init.net(i.num = 10) control <- control.net(type = "SIS", nsteps = 10, nsims = 1, resimulate.network = TRUE, verbose = FALSE) x <- netsim(est.vit, param, init, control) expect_is(x, "netsim") expect_is(as.data.frame(x), "data.frame") expect_equal(x$param$vital, TRUE) expect_output(summary(x, at = 10), "EpiModel Summary") plot(x) plot(x, y = "si.flow", mean.smooth = TRUE) plot(x, type = "formation") test_net(x) rm(x) control <- control.net(type = "SIS", nsteps = 10, nsims = 2, resimulate.network = TRUE, verbose = FALSE) x <- netsim(est.vit, param, init, control) expect_is(x, "netsim") expect_is(as.data.frame(x), "data.frame") expect_equal(x$param$vital, TRUE) expect_output(summary(x, at = 10), "EpiModel Summary") plot(x) plot(x, y = "si.flow", mean.smooth = TRUE) plot(x, type = "formation") test_net(x) rm(x) }) test_that("Open-population two-group models", { skip_on_cran() nw <- network_initialize(n = 100, directed = FALSE) nw <- set_vertex_attribute(nw, "group", rep(1:2, each = 50)) est5.vit <- netest(nw, formation = ~edges + nodematch("group"), target.stats = c(25, 0), coef.diss = dissolution_coefs(~offset(edges), 10, 0.01), edapprox = TRUE, verbose = FALSE) param <- param.net(inf.prob = 0.5, inf.prob.g2 = 0.1, act.rate = 2, a.rate = 0.01, ds.rate = 0.01, di.rate = 0.01, a.rate.g2 = 0.01, ds.rate.g2 = 0.01, di.rate.g2 = 0.01) init <- init.net(i.num = 10, i.num.g2 = 10) control <- control.net(type = "SI", nsteps = 10, nsims = 1, resimulate.network = TRUE, verbose = FALSE) x <- netsim(est5.vit, param, init, control) expect_is(x, "netsim") expect_is(as.data.frame(x), "data.frame") expect_equal(x$param$vital, TRUE) expect_output(summary(x, at = 10), "EpiModel Summary") plot(x) plot(x, y = "si.flow", mean.smooth = TRUE) plot(x, type = "formation") test_net(x) rm(x) param <- param.net(inf.prob = 0.5, inf.prob.g2 = 0.1, act.rate = 2, a.rate = 0.01, ds.rate = 0.01, di.rate = 0.01, a.rate.g2 = 0.01, ds.rate.g2 = 0.01, di.rate.g2 = 0.01) init <- init.net(i.num = 10, i.num.g2 = 10) control <- control.net(type = "SI", nsteps = 10, nsims = 2, resimulate.network = TRUE, verbose = FALSE) x <- netsim(est5.vit, param, init, control) expect_is(x, "netsim") expect_is(as.data.frame(x), "data.frame") expect_equal(x$param$vital, TRUE) expect_output(summary(x, at = 10), "EpiModel Summary") plot(x) plot(x, y = "si.flow", mean.smooth = TRUE) plot(x, type = "formation") test_net(x) rm(x) param <- param.net(inf.prob = 0.5, inf.prob.g2 = 0.1, rec.rate = 0.1, rec.rate.g2 = 0.1, act.rate = 2, a.rate = 0.01, a.rate.g2 = NA, ds.rate = 0.01, ds.rate.g2 = 0.01, di.rate = 0.01, di.rate.g2 = 0.01, dr.rate = 0.01, dr.rate.g2 = 0.01) init <- init.net(i.num = 10, i.num.g2 = 0, r.num = 0, r.num.g2 = 10) control <- control.net(type = "SIR", nsteps = 10, nsims = 1, resimulate.network = TRUE, verbose = FALSE) x <- netsim(est5.vit, param, init, control) expect_is(x, "netsim") expect_is(as.data.frame(x), "data.frame") expect_equal(x$param$vital, TRUE) expect_output(summary(x, at = 10), "EpiModel Summary") plot(x) plot(x, y = "si.flow", mean.smooth = TRUE) plot(x, type = "formation") test_net(x) rm(x) control <- control.net(type = "SIR", nsteps = 10, nsims = 2, resimulate.network = TRUE, verbose = FALSE) x <- netsim(est5.vit, param, init, control) expect_is(x, "netsim") expect_is(as.data.frame(x), "data.frame") expect_equal(x$param$vital, TRUE) expect_output(summary(x, at = 10), "EpiModel Summary") plot(x) plot(x, y = "si.flow", mean.smooth = TRUE) plot(x, type = "formation") test_net(x) rm(x) }) test_that("Extinction open-population models", { skip_on_cran() nw <- network_initialize(n = 25) nw <- set_vertex_attribute(nw, "group", rep(1:2, c(15, 10))) est <- netest(nw, formation = ~edges + nodematch("group"), target.stats = c(15, 0), coef.diss = dissolution_coefs(~offset(edges), 10, 0.01), edapprox = TRUE, verbose = FALSE) param <- param.net(inf.prob = 0.1, inf.prob.g2 = 0.1, act.rate = 2, a.rate = 0.01, ds.rate = 0.5, di.rate = 0.5, a.rate.g2 = 0.01, ds.rate.g2 = 0.01, di.rate.g2 = 0.01) init <- init.net(i.num = 5, i.num.g2 = 0) control <- control.net(type = "SI", nsteps = 30, nsims = 1, resimulate.network = TRUE, verbose = FALSE) x <- netsim(est, param, init, control) expect_output(summary(x, at = 10), "EpiModel Summary") plot(x) plot(x, y = "si.flow", mean.smooth = TRUE) plot(x, type = "formation") test_net(x) rm(x) param <- param.net(inf.prob = 0.1, inf.prob.g2 = 0.1, act.rate = 2, a.rate = 0.01, ds.rate = 0.01, di.rate = 0.01, a.rate.g2 = 0.01, ds.rate.g2 = 0.5, di.rate.g2 = 0.5) init <- init.net(i.num = 5, i.num.g2 = 0) control <- control.net(type = "SI", nsteps = 30, nsims = 1, resimulate.network = TRUE, verbose = FALSE) x <- netsim(est, param, init, control) expect_output(summary(x, at = 10), "EpiModel Summary") plot(x) plot(x, y = "si.flow", mean.smooth = TRUE) plot(x, type = "formation") test_net(x) rm(x) }) test_that("Extended post-simulation diagnosntic tests", { skip_on_cran() nw <- network_initialize(n = 100) nw <- set_vertex_attribute(nw, "risk", rep(1:5, each = 20)) est <- netest(nw, formation = ~edges + nodefactor("risk"), target.stats = c(50, 20, 20, 20, 20), coef.diss = dissolution_coefs(~offset(edges), 25)) dx <- netdx(est, nsims = 2, nsteps = 10) plot(dx) param <- param.net(inf.prob = 0.5) init <- init.net(i.num = 10) control <- control.net(type = "SI", nsteps = 10, nsims = 2) sim <- netsim(est, param, init, control) plot(sim, type = "formation") control <- control.net(type = "SI", nsteps = 10, nsims = 1) sim <- netsim(est, param, init, control) plot(sim, type = "formation") est <- netest(nw, formation = ~edges + concurrent, target.stats = c(50, 20), coef.diss = dissolution_coefs(~offset(edges), 25)) dx <- netdx(est, nsims = 5, nsteps = 100) plot(dx) param <- param.net(inf.prob = 0.5) init <- init.net(i.num = 10) control <- control.net(type = "SI", nsteps = 10, nsims = 2) sim <- netsim(est, param, init, control) plot(sim, type = "formation") control <- control.net(type = "SI", nsteps = 10, nsims = 1) sim <- netsim(est, param, init, control) plot(sim, type = "formation") }) test_that("status.vector and infTime.vector", { n <- 100 nw <- network_initialize(n = n) formation <- ~edges target.stats <- 50 coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 20) est1 <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE) param <- param.net(inf.prob = 0.3, rec.rate = 0.01) status <- sample(c("s", "i"), size = n, replace = TRUE, prob = c(0.8, 0.2)) infTime <- rep(NA, n) infTime[which(status == "i")] <- -rgeom(sum(status == "i"), prob = 0.01) + 2 init <- init.net(status.vector = status, infTime.vector = infTime) control <- control.net(type = "SIS", nsteps = 100, nsims = 5, verbose.int = 0) mod1 <- netsim(est1, param, init, control) expect_is(mod1, "netsim") control <- control.net(type = "SIR", nsteps = 100, nsims = 5, verbose.int = 0) mod2 <- netsim(est1, param, init, control) expect_is(mod2, "netsim") })
frm_fb_mh_refresh_imputed_values <- function( imputations_mcmc, acc_bounds, ind0 ) { impute_vars <- imputations_mcmc$impute_vars NV <- imputations_mcmc$NV mh_imputations_values <- imputations_mcmc$mh_imputations_values if (NV > 0){ for (vv in 1:NV){ var_vv <- impute_vars[vv] ind0_vv <- ind0[[ var_vv ]] mh_imp_vv <- mh_imputations_values[[ var_vv ]] mh_adapt <- ( ! is.null(mh_imp_vv) ) & ( ind0_vv$model %in% c("linreg") ) if ( mh_adapt ){ acc_pars <- list( mh_imp_vv[,1], mh_imp_vv[,2] ) res0 <- frm_proposal_refresh_helper( acceptance_parameters=acc_pars, proposal_sd=mh_imp_vv[,3], acceptance_bounds=acc_bounds) mh_imp_vv$sd_proposal <- res0$proposal_sd mh_imp_vv[,1:2] <- 0 * mh_imp_vv[,1:2] mh_imputations_values[[ var_vv ]] <- mh_imp_vv } } } imputations_mcmc$mh_imputations_values <- mh_imputations_values return(imputations_mcmc) }
mergeformulas<-function(formula1,formula2){ termsFM1<-terms(formula1) termsFM2<-terms(formula2) rhsvarsFM1<-attr(termsFM1,"term.labels") rhsvarsFM2<-attr(termsFM2,"term.labels") newterms<-rhsvarsFM2[!(rhsvarsFM2 %in% rhsvarsFM1)] if (length(newterms)>1){ if (attr(termsFM1,"intercept")==0 & attr(termsFM2,"intercept")==1){ updateform<-as.formula(paste("~.+1+",paste(newterms,collapse = "+"))) } else { updateform<-as.formula(paste("~.+",paste(newterms,collapse = "+"))) } finalformula<-update(formula1,updateform) return(finalformula) } else { return(formula1) } } .checkbinary<-function(x){ if (sum(x==0)+sum(x==1)==length(x) & sum(x==0)>0 & sum(x==1)>0){ return(TRUE) } else { return(FALSE) } } formula.oglmx<-function(x, ...){ if (is.null(x$formula[[2]])){ value<-x$formula[[1]] } else { termsFM1<-terms(x$formula[[1]]) termsFM2<-terms(x$formula[[2]]) rhsvarsFM2<-attr(termsFM2,"term.labels") updateform<-as.formula(paste("~.|",paste(rhsvarsFM2,collapse="+"))) value<-update.formula(x$formula[[1]],updateform) } return(value) } calcstartvalues<-function(whichparameter,gfunc,threshvec){ meanstart<-numeric(sum(whichparameter[[1]])) varstart<-numeric(sum(whichparameter[[2]])) threshstart<-numeric(sum(whichparameter[[3]])) if (length(varstart)>0){ calcstartdelta<-function(x){eval({z<-x;gfunc})-0.5} varstart[1]<-uniroot(calcstartdelta,c(-10,10),extendInt="yes")$root } if (length(threshstart)>0){ nthresh<-length(threshvec) if (all(is.na(threshvec))){ threshstart<-seq(from=-0.6*(nthresh/2),to=0.6*(nthresh/2),length.out=nthresh) } else { if (sum(!is.na(threshvec))==1){ threshstart<-threshvec[!is.na(threshvec)]+0.5*((nthresh+2)/(nthresh))*(c(1:nthresh)-c(1:nthresh)[!is.na(threshvec)])[is.na(threshvec)] } else { tempthreshvec<-threshvec restrictabove<-c(sapply(c(1:(nthresh-1)),function(x){!all(is.na(threshvec[(x+1):nthresh]))}),FALSE) restrictbelow<-c(FALSE,sapply(c(2:nthresh),function(x){!all(is.na(threshvec[1:x-1]))})) tointerpol<-restrictabove & restrictbelow & is.na(threshvec) if (sum(tointerpol)>0){ ranges<-sapply(c(1:nthresh)[tointerpol],function(x){c(max(threshvec[1:(x-1)],na.rm = TRUE),min(threshvec[(x+1):nthresh],na.rm=TRUE))}) if (sum(tointerpol)==1){ interpoints<-ranges } else {interpoints<-unique(t(ranges))} counts<-apply(interpoints,2,function(x){sum(apply(ranges,2,function(y){all(y==x)}))}) values<-do.call(c,lapply(c(1:ncol(interpoints)),function(x){seq(from=interpoints[1,x],to=interpoints[2,x],length.out = counts[x]+2)[c(-1,-(counts[x]+2))]})) tempthreshvec[tointerpol]<-values } else {values<-numeric()} toextrapbelow<-!restrictbelow & is.na(threshvec) bpoints<-sum(toextrapbelow) if (bpoints>0){ bvalues<-tempthreshvec[bpoints+1]-sapply(c(bpoints:1),function(x){x*(tempthreshvec[bpoints+2]-tempthreshvec[bpoints+1])}) } else {bvalues<-numeric()} toextrapabove<-!restrictabove & is.na(threshvec) apoints<-sum(toextrapabove) if (apoints>0){ avalues<-tempthreshvec[nthresh-apoints]+sapply(c(1:apoints),function(x){x*(tempthreshvec[nthresh-apoints]-tempthreshvec[nthresh-1-apoints])}) } else {avalues<-numeric()} threshstart<-c(bvalues,values,avalues) } } } return(c(meanstart,varstart,threshstart)) } calcBHHHmatrix<-function(Env){ with(Env,{ BHHHmatrix<-crossprod(scorevecs) return(BHHHmatrix) }) }
aggSentiment = function(inputData, meetingId=NULL, speakerId=NULL, sentMethod) { aws_sentClass <- sd <- NULL sentDt = data.table::data.table(inputData) if(sentMethod == "aws") { aws_sentClasses = c("POSITIVE", "NEGATIVE", "MIXED", "NEUTRAL") awsContVars = paste0("aws_", tolower(aws_sentClasses)) awsClassVars = paste0(awsContVars, "_class") if(sum(awsContVars %in% names(inputData)) == 0) { stop("You have requested aws sentiment metrics, but your input data does not include aws output. Either change sentMethod to 'none' or first run textSentiment on your input data and provide the correct output data frame.") } sentDt[, (awsClassVars) := lapply(aws_sentClasses, function(x) aws_sentClass == x)] if(!is.null(meetingId) && !is.null(speakerId)) { agg1 = data.frame(sentDt[, as.list(unlist(lapply(.SD, function(x) list(mean = mean(x, na.rm=T), sd=sd(x, na.rm=T), sum=sum(x, na.rm=T), pct=sum(x, na.rm=T)/.N)))), by=list(get(meetingId), get(speakerId)), .SDcols=c(awsContVars, awsClassVars)]) names(agg1)[1:2]= c(meetingId, speakerId) agg1 = agg1[, c(meetingId, speakerId, paste0(awsContVars, ".mean"), paste0(awsContVars, ".sd"), paste0(awsClassVars, ".sum"), paste0(awsClassVars, ".pct"))] } else if(!is.null(meetingId)) { agg1 = data.frame(sentDt[, as.list(unlist(lapply(.SD, function(x) list(mean = mean(x, na.rm=T), sd=sd(x, na.rm=T), sum=sum(x, na.rm=T), pct=sum(x, na.rm=T)/.N)))), by=list(get(meetingId)), .SDcols=c(awsContVars, awsClassVars)]) names(agg1)[1]= c(meetingId) agg1 = agg1[, c(meetingId, paste0(awsContVars, ".mean"), paste0(awsContVars, ".sd"), paste0(awsClassVars, ".sum"), paste0(awsClassVars, ".pct"))] } else if(!is.null(speakerId)) { agg1 = data.frame(sentDt[, as.list(unlist(lapply(.SD, function(x) list(mean = mean(x, na.rm=T), sd=sd(x, na.rm=T), sum=sum(x, na.rm=T), pct=sum(x, na.rm=T)/.N)))), by=list(get(speakerId)), .SDcols=c(awsContVars, awsClassVars)]) names(agg1)[1]= c(speakerId) agg1 = agg1[, c(speakerId, paste0(awsContVars, ".mean"), paste0(awsContVars, ".sd"), paste0(awsClassVars, ".sum"), paste0(awsClassVars, ".pct"))] } else { stop("You did not enter either a meetingId or an speakerId") } sentOut = agg1 } if(sentMethod == "syuzhet") { syuVars = paste0("syu_",c("anger", "anticipation", "disgust", "fear", "joy", "sadness", "surprise", "trust", "negative", "positive")) if(sum(syuVars %in% names(inputData)) == 0) { stop("You have requested syuzhet sentiment metrics, but your input data does not include syuzhet output. Either change sentMethod to 'none' or first run textSentiment on your input data and provide the correct output data frame.") } if(!is.null(meetingId) && !is.null(speakerId)) { agg1 = data.frame(sentDt[, as.list(unlist(lapply(.SD, function(x) list(sum=sum(x, na.rm=T), pct=sum(x, na.rm=T)/.N)))), by=list(get(meetingId), get(speakerId)), .SDcols=syuVars]) names(agg1)[1:2]= c(meetingId, speakerId) agg1 = agg1[, c(meetingId, speakerId, paste0(syuVars, ".sum"), paste0(syuVars, ".pct"))] } else if(!is.null(meetingId)) { agg1 = data.frame(sentDt[, as.list(unlist(lapply(.SD, function(x) list(sum=sum(x, na.rm=T), pct=sum(x, na.rm=T)/.N)))), by=list(get(meetingId)), .SDcols=syuVars]) names(agg1)[1]= c(meetingId) agg1 = agg1[, c(meetingId, paste0(syuVars, ".sum"), paste0(syuVars, ".pct"))] } else if(!is.null(speakerId)) { agg1 = data.frame(sentDt[, as.list(unlist(lapply(.SD, function(x) list(sum=sum(x, na.rm=T), pct=sum(x, na.rm=T)/.N)))), by=list(get(speakerId)), .SDcols=syuVars]) names(agg1)[1]= c(speakerId) agg1 = agg1[, c(speakerId, paste0(syuVars, ".sum"), paste0(syuVars, ".pct"))] } else { stop("You did not enter either a meetingId or an speakerId") } sentOut = agg1 } return(sentOut) }
NULL .isLambdaBasedSimulationEnabled <- function(pwsTimeObject) { if (!pwsTimeObject$.isLambdaBased()) { return(FALSE) } if (pwsTimeObject$delayedResponseEnabled) { return(TRUE) } if (pwsTimeObject$piecewiseSurvivalEnabled) { return(TRUE) } if (pwsTimeObject$kappa != 1) { if (length(pwsTimeObject$lambda1) != 1) { stop( C_EXCEPTION_TYPE_ILLEGAL_ARGUMENT, "if 'kappa' != 1 then 'lambda1' (", .arrayToString(pwsTimeObject$lambda1), ") must be a single numeric value" ) } if (length(pwsTimeObject$lambda2) != 1) { stop( C_EXCEPTION_TYPE_ILLEGAL_ARGUMENT, "if 'kappa' != 1 then 'lambda2' (", .arrayToString(pwsTimeObject$lambda2), ") must be a single numeric value" ) } return(TRUE) } if (pwsTimeObject$.getParameterType("hazardRatio") == C_PARAM_USER_DEFINED && !all(is.na(pwsTimeObject$hazardRatio))) { if (pwsTimeObject$.getParameterType("lambda1") == C_PARAM_USER_DEFINED && length(pwsTimeObject$lambda1) == length(pwsTimeObject$hazardRatio) && !all(is.na(pwsTimeObject$lambda1))) { return(TRUE) } if (pwsTimeObject$.getParameterType("lambda2") == C_PARAM_USER_DEFINED && length(pwsTimeObject$lambda2) == length(pwsTimeObject$hazardRatio) && !all(is.na(pwsTimeObject$lambda2))) { return(TRUE) } } return(FALSE) } getSimulationSurvival <- function(design = NULL, ..., thetaH0 = 1, directionUpper = TRUE, pi1 = NA_real_, pi2 = NA_real_, lambda1 = NA_real_, lambda2 = NA_real_, median1 = NA_real_, median2 = NA_real_, hazardRatio = NA_real_, kappa = 1, piecewiseSurvivalTime = NA_real_, allocation1 = 1, allocation2 = 1, eventTime = 12L, accrualTime = c(0L, 12L), accrualIntensity = 0.1, accrualIntensityType = c("auto", "absolute", "relative"), dropoutRate1 = 0, dropoutRate2 = 0, dropoutTime = 12L, maxNumberOfSubjects = NA_real_, plannedEvents = NA_real_, minNumberOfEventsPerStage = NA_real_, maxNumberOfEventsPerStage = NA_real_, conditionalPower = NA_real_, thetaH1 = NA_real_, maxNumberOfIterations = 1000L, maxNumberOfRawDatasetsPerStage = 0, longTimeSimulationAllowed = FALSE, seed = NA_real_, showStatistics = FALSE) { .assertRcppIsInstalled() if (is.null(design)) { design <- .getDefaultDesign(..., type = "simulation") .warnInCaseOfUnknownArguments( functionName = "getSimulationSurvival", ignore = c(.getDesignArgumentsToIgnoreAtUnknownArgumentCheck( design, powerCalculationEnabled = TRUE ), "showStatistics"), ... ) } else { .assertIsTrialDesign(design) .warnInCaseOfUnknownArguments( functionName = "getSimulationSurvival", ignore = "showStatistics", ... ) .warnInCaseOfTwoSidedPowerArgument(...) } .assertIsSingleLogical(directionUpper, "directionUpper") .assertIsSingleNumber(thetaH0, "thetaH0") .assertIsInOpenInterval(thetaH0, "thetaH0", 0, NULL, naAllowed = TRUE) .assertIsNumericVector(minNumberOfEventsPerStage, "minNumberOfEventsPerStage", naAllowed = TRUE) .assertIsNumericVector(maxNumberOfEventsPerStage, "maxNumberOfEventsPerStage", naAllowed = TRUE) .assertIsSingleNumber(conditionalPower, "conditionalPower", naAllowed = TRUE) .assertIsInOpenInterval(conditionalPower, "conditionalPower", 0, 1, naAllowed = TRUE) .assertIsSingleNumber(thetaH1, "thetaH1", naAllowed = TRUE) .assertIsInOpenInterval(thetaH1, "thetaH1", 0, NULL, naAllowed = TRUE) .assertIsSinglePositiveInteger(maxNumberOfIterations, "maxNumberOfIterations", validateType = FALSE) .assertIsSingleNumber(seed, "seed", naAllowed = TRUE) .assertIsNumericVector(lambda1, "lambda1", naAllowed = TRUE) .assertIsNumericVector(lambda2, "lambda2", naAllowed = TRUE) .assertIsSinglePositiveInteger(maxNumberOfSubjects, "maxNumberOfSubjects", validateType = FALSE, naAllowed = TRUE ) .assertIsSinglePositiveInteger(allocation1, "allocation1", validateType = FALSE) .assertIsSinglePositiveInteger(allocation2, "allocation2", validateType = FALSE) .assertIsSingleLogical(longTimeSimulationAllowed, "longTimeSimulationAllowed") .assertIsSingleLogical(showStatistics, "showStatistics", naAllowed = FALSE) if (design$sided == 2) { stop( C_EXCEPTION_TYPE_ILLEGAL_ARGUMENT, "Only one-sided case is implemented for the survival simulation design" ) } if (!all(is.na(lambda2)) && !all(is.na(lambda1)) && length(lambda2) != length(lambda1) && length(lambda2) > 1) { stop( C_EXCEPTION_TYPE_ILLEGAL_ARGUMENT, "length of 'lambda2' (", length(lambda2), ") must be equal to length of 'lambda1' (", length(lambda1), ")" ) } if (all(is.na(lambda2)) && !all(is.na(lambda1))) { warning("'lambda1' (", .arrayToString(lambda1), ") will be ignored ", "because 'lambda2' (", .arrayToString(lambda2), ") is undefined", call. = FALSE ) lambda1 <- NA_real_ } if (!all(is.na(lambda2)) && is.list(piecewiseSurvivalTime)) { stop( C_EXCEPTION_TYPE_ILLEGAL_ARGUMENT, "'piecewiseSurvivalTime' needs to be a numeric vector and not a list ", "because 'lambda2' (", .arrayToString(lambda2), ") is defined separately" ) } thetaH1 <- .ignoreParameterIfNotUsed( "thetaH1", thetaH1, design$kMax > 1, "design is fixed ('kMax' = 1)", "Assumed effect" ) if (is.na(conditionalPower) && !is.na(thetaH1)) { warning("'thetaH1' will be ignored because 'conditionalPower' is not defined", call. = FALSE) } conditionalPower <- .ignoreParameterIfNotUsed( "conditionalPower", conditionalPower, design$kMax > 1, "design is fixed ('kMax' = 1)" ) minNumberOfEventsPerStage <- .ignoreParameterIfNotUsed( "minNumberOfEventsPerStage", minNumberOfEventsPerStage, design$kMax > 1, "design is fixed ('kMax' = 1)" ) maxNumberOfEventsPerStage <- .ignoreParameterIfNotUsed( "maxNumberOfEventsPerStage", maxNumberOfEventsPerStage, design$kMax > 1, "design is fixed ('kMax' = 1)" ) minNumberOfEventsPerStage <- .assertIsValidNumberOfSubjectsPerStage(minNumberOfEventsPerStage, "minNumberOfEventsPerStage", plannedEvents, conditionalPower, NULL, design$kMax, endpoint = "survival", calcSubjectsFunctionEnabled = FALSE ) maxNumberOfEventsPerStage <- .assertIsValidNumberOfSubjectsPerStage(maxNumberOfEventsPerStage, "maxNumberOfEventsPerStage", plannedEvents, conditionalPower, NULL, design$kMax, endpoint = "survival", calcSubjectsFunctionEnabled = FALSE ) simulationResults <- SimulationResultsSurvival(design, showStatistics = showStatistics) if (!is.na(conditionalPower)) { if (design$kMax > 1) { if (any(maxNumberOfEventsPerStage - minNumberOfEventsPerStage < 0) && !all(is.na(maxNumberOfEventsPerStage - minNumberOfEventsPerStage))) { stop( C_EXCEPTION_TYPE_ILLEGAL_ARGUMENT, "'maxNumberOfEventsPerStage' (", .arrayToString(maxNumberOfEventsPerStage), ") must be not smaller than minNumberOfEventsPerStage' (", .arrayToString(minNumberOfEventsPerStage), ")" ) } .setValueAndParameterType( simulationResults, "minNumberOfEventsPerStage", minNumberOfEventsPerStage, NA_real_ ) .setValueAndParameterType( simulationResults, "maxNumberOfEventsPerStage", maxNumberOfEventsPerStage, NA_real_ ) } else { warning("'conditionalPower' will be ignored for fixed sample design", call. = FALSE) } } else { simulationResults$minNumberOfEventsPerStage <- NA_real_ simulationResults$maxNumberOfEventsPerStage <- NA_real_ simulationResults$.setParameterType("minNumberOfEventsPerStage", C_PARAM_NOT_APPLICABLE) simulationResults$.setParameterType("maxNumberOfEventsPerStage", C_PARAM_NOT_APPLICABLE) simulationResults$.setParameterType("conditionalPower", C_PARAM_NOT_APPLICABLE) } if (!is.na(conditionalPower) && (design$kMax == 1)) { warning("'conditionalPower' will be ignored for fixed sample design", call. = FALSE) } accrualSetup <- getAccrualTime( accrualTime = accrualTime, accrualIntensity = accrualIntensity, accrualIntensityType = accrualIntensityType, maxNumberOfSubjects = maxNumberOfSubjects ) if (is.na(accrualSetup$maxNumberOfSubjects)) { if (identical(accrualIntensity, 1L)) { stop( C_EXCEPTION_TYPE_ILLEGAL_ARGUMENT, "choose a 'accrualIntensity' > 1 or define 'maxNumberOfSubjects'" ) } stop( C_EXCEPTION_TYPE_ILLEGAL_ARGUMENT, "'maxNumberOfSubjects' must be defined" ) } simulationResults$.setParameterType("seed", ifelse(is.na(seed), C_PARAM_DEFAULT_VALUE, C_PARAM_USER_DEFINED )) simulationResults$seed <- .setSeed(seed) simulationResults$.accrualTime <- accrualSetup accrualTime <- accrualSetup$.getAccrualTimeWithoutLeadingZero() simulationResults$maxNumberOfSubjects <- accrualSetup$maxNumberOfSubjects simulationResults$.setParameterType( "maxNumberOfSubjects", accrualSetup$.getParameterType("maxNumberOfSubjects") ) simulationResults$accrualTime <- accrualSetup$.getAccrualTimeWithoutLeadingZero() simulationResults$.setParameterType("accrualTime", accrualSetup$.getParameterType("accrualTime")) simulationResults$accrualIntensity <- accrualSetup$accrualIntensity simulationResults$.setParameterType( "accrualIntensity", accrualSetup$.getParameterType("accrualIntensity") ) .assertIsIntegerVector(plannedEvents, "plannedEvents", validateType = FALSE) if (length(plannedEvents) != design$kMax) { stop( C_EXCEPTION_TYPE_ILLEGAL_ARGUMENT, "'plannedEvents' (", .arrayToString(plannedEvents), ") must have length ", design$kMax ) } .assertIsInClosedInterval(plannedEvents, "plannedEvents", lower = 1, upper = NULL) .assertValuesAreStrictlyIncreasing(plannedEvents, "plannedEvents") simulationResults$plannedEvents <- plannedEvents simulationResults$.setParameterType("plannedEvents", C_PARAM_USER_DEFINED) pwsTimeObject <- getPiecewiseSurvivalTime( piecewiseSurvivalTime = piecewiseSurvivalTime, lambda2 = lambda2, lambda1 = lambda1, median1 = median1, median2 = median2, hazardRatio = hazardRatio, pi1 = pi1, pi2 = pi2, eventTime = eventTime, kappa = kappa, delayedResponseAllowed = TRUE, .pi1Default = C_PI_1_DEFAULT ) simulationResults$.piecewiseSurvivalTime <- pwsTimeObject simulationResults$hazardRatio <- pwsTimeObject$hazardRatio simulationResults$.setParameterType("hazardRatio", pwsTimeObject$.getParameterType("hazardRatio")) simulationResults$.setParameterType("eventTime", pwsTimeObject$.getParameterType("eventTime")) simulationResults$eventTime <- pwsTimeObject$eventTime if (.isLambdaBasedSimulationEnabled(pwsTimeObject)) { simulationResults$piecewiseSurvivalTime <- pwsTimeObject$piecewiseSurvivalTime simulationResults$.setParameterType("piecewiseSurvivalTime", C_PARAM_USER_DEFINED) simulationResults$lambda2 <- pwsTimeObject$lambda2 simulationResults$.setParameterType("lambda2", pwsTimeObject$.getParameterType("lambda2")) lambdaVec2 <- simulationResults$lambda2 simulationResults$lambda1 <- pwsTimeObject$lambda1 simulationResults$.setParameterType("lambda1", pwsTimeObject$.getParameterType("lambda1")) if (any(is.na(pwsTimeObject$lambda1))) { .assertIsValidHazardRatioVector(pwsTimeObject$hazardRatio) .setValueAndParameterType( simulationResults, "hazardRatio", pwsTimeObject$hazardRatio, NA_real_ ) numberOfResults <- length(simulationResults$hazardRatio) lambdaVec1 <- simulationResults$lambda2 * pwsTimeObject$hazardRatio } else { numberOfResults <- 1 lambdaVec1 <- pwsTimeObject$lambda1 } .warnInCaseOfDefinedPiValue(simulationResults, "pi1") .warnInCaseOfDefinedPiValue(simulationResults, "pi2") simulationResults$pi1 <- pwsTimeObject$pi1 simulationResults$pi2 <- pwsTimeObject$pi2 simulationResults$.setParameterType("pi1", pwsTimeObject$.getParameterType("pi1")) simulationResults$.setParameterType("pi2", pwsTimeObject$.getParameterType("pi2")) simulationResults$median1 <- pwsTimeObject$median1 simulationResults$median2 <- pwsTimeObject$median2 simulationResults$.setParameterType("median1", pwsTimeObject$.getParameterType("median1")) simulationResults$.setParameterType("median2", pwsTimeObject$.getParameterType("median2")) cdfValues1 <- .getPiecewiseExponentialDistribution( pwsTimeObject$piecewiseSurvivalTime, lambdaVec1, pwsTimeObject$piecewiseSurvivalTime, kappa = kappa ) cdfValues2 <- .getPiecewiseExponentialDistribution( pwsTimeObject$piecewiseSurvivalTime, lambdaVec2, pwsTimeObject$piecewiseSurvivalTime, kappa = kappa ) if (length(cdfValues1) == 1) { cdfValues1 <- NA_real_ cdfValues2 <- NA_real_ } else { cdfValues1 <- cdfValues1[2:length(cdfValues1)] cdfValues2 <- cdfValues2[2:length(cdfValues2)] } pi1 <- NA_real_ pi2 <- NA_real_ } else { numberOfResults <- .initDesignPlanSurvivalByPiecewiseSurvivalTimeObject( simulationResults, pwsTimeObject ) pi1 <- simulationResults$pi1 if (all(is.na(pi1))) { pi1 <- getPiByLambda(simulationResults$lambda1, eventTime = eventTime, kappa = kappa) simulationResults$pi1 <- pi1 simulationResults$.setParameterType("pi1", C_PARAM_GENERATED) } pi2 <- simulationResults$pi2 if (all(is.na(pi2))) { pi2 <- getPiByLambda(simulationResults$lambda2, eventTime = eventTime, kappa = kappa) simulationResults$pi2 <- pi2 simulationResults$.setParameterType("pi2", C_PARAM_GENERATED) } simulationResults$piecewiseSurvivalTime <- NA_real_ lambdaVec1 <- NA_real_ lambdaVec2 <- NA_real_ cdfValues1 <- NA_real_ cdfValues2 <- NA_real_ } numberOfSimStepsTotal <- numberOfResults * maxNumberOfIterations * accrualSetup$maxNumberOfSubjects maxNumberOfSimStepsTotal <- 10 * 100000 * 100 if (numberOfSimStepsTotal > maxNumberOfSimStepsTotal) { if (!longTimeSimulationAllowed) { stop( "Simulation stopped because long time simulation is disabled ", "and the defined number of single simulation steps (", numberOfSimStepsTotal, ") is larger than the threshold ", maxNumberOfSimStepsTotal, ". ", "Set 'longTimeSimulationAllowed = TRUE' to enable simulations ", "that take a long time (> 30 sec)" ) } message( "Note that the simulation may take a long time because ", sprintf("%.0f", numberOfSimStepsTotal), " single simulation steps must be calculated" ) } .setValueAndParameterType(simulationResults, "directionUpper", directionUpper, C_DIRECTION_UPPER_DEFAULT) .setValueAndParameterType(simulationResults, "dropoutRate1", dropoutRate1, C_DROP_OUT_RATE_1_DEFAULT) .setValueAndParameterType(simulationResults, "dropoutRate2", dropoutRate2, C_DROP_OUT_RATE_2_DEFAULT) .setValueAndParameterType(simulationResults, "dropoutTime", dropoutTime, C_DROP_OUT_TIME_DEFAULT) .setValueAndParameterType(simulationResults, "thetaH0", thetaH0, C_THETA_H0_SURVIVAL_DEFAULT) .setValueAndParameterType(simulationResults, "allocation1", allocation1, C_ALLOCATION_1_DEFAULT) .setValueAndParameterType(simulationResults, "allocation2", allocation2, C_ALLOCATION_2_DEFAULT) allocationRatioPlanned <- allocation1 / allocation2 .setValueAndParameterType( simulationResults, "allocationRatioPlanned", allocationRatioPlanned, C_ALLOCATION_RATIO_DEFAULT ) .setValueAndParameterType(simulationResults, "conditionalPower", conditionalPower, NA_real_) if (!is.na(thetaH0) && !is.na(thetaH1) && thetaH0 != 1) { thetaH1 <- thetaH1 / thetaH0 .setValueAndParameterType(simulationResults, "thetaH1", thetaH1, NA_real_) simulationResults$.setParameterType("thetaH1", C_PARAM_GENERATED) } else { .setValueAndParameterType(simulationResults, "thetaH1", thetaH1, NA_real_) } if (is.na(conditionalPower)) { simulationResults$.setParameterType("thetaH1", C_PARAM_NOT_APPLICABLE) } .setValueAndParameterType(simulationResults, "kappa", kappa, 1) .setValueAndParameterType( simulationResults, "maxNumberOfIterations", as.integer(maxNumberOfIterations), C_MAX_SIMULATION_ITERATIONS_DEFAULT ) phi <- -c(log(1 - dropoutRate1), log(1 - dropoutRate2)) / dropoutTime densityIntervals <- accrualTime if (length(accrualTime) > 1) { densityIntervals[2:length(accrualTime)] <- accrualTime[2:length(accrualTime)] - accrualTime[1:(length(accrualTime) - 1)] } densityVector <- accrualSetup$accrualIntensity / sum(densityIntervals * accrualSetup$accrualIntensity) intensityReplications <- round(densityVector * densityIntervals * accrualSetup$maxNumberOfSubjects) if (all(intensityReplications > 0)) { accrualTimeValue <- cumsum(rep( 1 / (densityVector * accrualSetup$maxNumberOfSubjects), intensityReplications )) } else { accrualTimeValue <- cumsum(rep( 1 / (densityVector[1] * accrualSetup$maxNumberOfSubjects), intensityReplications[1] )) if (length(accrualIntensity) > 1) { for (i in 2:length(accrualIntensity)) { if (intensityReplications[i] > 0) { accrualTimeValue <- c(accrualTimeValue, accrualTime[i - 1] + cumsum(rep( 1 / (densityVector[i] * accrualSetup$maxNumberOfSubjects), intensityReplications[i] ))) } } } } accrualTimeValue <- accrualTimeValue[1:accrualSetup$maxNumberOfSubjects] i <- accrualSetup$maxNumberOfSubjects while (is.na(accrualTimeValue[i])) { accrualTimeValue[i] <- accrualTime[length(accrualTime)] i <- i - 1 } treatmentGroup <- rep( c(rep(1, allocation1), rep(2, allocation2)), ceiling(accrualSetup$maxNumberOfSubjects / (allocation1 + allocation2)) )[1:accrualSetup$maxNumberOfSubjects] if (.isTrialDesignFisher(design)) { alpha0Vec <- design$alpha0Vec futilityBounds <- rep(NA_real_, design$kMax - 1) } else { alpha0Vec <- rep(NA_real_, design$kMax - 1) futilityBounds <- design$futilityBounds } if (.isTrialDesignGroupSequential(design)) { designNumber <- 1L } else if (.isTrialDesignInverseNormal(design)) { designNumber <- 2L } else if (.isTrialDesignFisher(design)) { designNumber <- 3L } resultData <- getSimulationSurvivalCpp( designNumber = designNumber, kMax = design$kMax, sided = design$sided, criticalValues = design$criticalValues, informationRates = design$informationRates, conditionalPower = conditionalPower, plannedEvents = plannedEvents, thetaH1 = thetaH1, minNumberOfEventsPerStage = minNumberOfEventsPerStage, maxNumberOfEventsPerStage = maxNumberOfEventsPerStage, directionUpper = directionUpper, allocation1 = allocation1, allocation2 = allocation2, accrualTime = accrualTimeValue, treatmentGroup = treatmentGroup, thetaH0 = thetaH0, futilityBounds = futilityBounds, alpha0Vec = alpha0Vec, pi1Vec = pi1, pi2 = pi2, eventTime = eventTime, piecewiseSurvivalTime = .getPiecewiseExpStartTimesWithoutLeadingZero(pwsTimeObject$piecewiseSurvivalTime), cdfValues1 = cdfValues1, cdfValues2 = cdfValues2, lambdaVec1 = lambdaVec1, lambdaVec2 = lambdaVec2, phi = phi, maxNumberOfSubjects = accrualSetup$maxNumberOfSubjects, maxNumberOfIterations = maxNumberOfIterations, maxNumberOfRawDatasetsPerStage = maxNumberOfRawDatasetsPerStage, kappa = kappa ) overview <- resultData$overview if (length(overview) == 0 || nrow(overview) == 0) { stop(C_EXCEPTION_TYPE_RUNTIME_ISSUE, "no simulation results calculated") } n <- nrow(overview) overview <- cbind( design = rep(sub("^TrialDesign", "", class(design)), n), overview ) if (pwsTimeObject$.isPiBased() && pwsTimeObject$.getParameterType("hazardRatio") != C_PARAM_USER_DEFINED) { simulationResults$hazardRatio <- matrix(overview$hazardRatio, nrow = design$kMax)[1, ] } simulationResults$iterations <- matrix(as.integer(overview$iterations), nrow = design$kMax) if (!is.null(overview$eventsPerStage)) { simulationResults$eventsPerStage <- matrix(overview$eventsPerStage, nrow = design$kMax) } simulationResults$eventsNotAchieved <- matrix(overview$eventsNotAchieved, nrow = design$kMax) if (any(simulationResults$eventsNotAchieved > 0)) { warning("Presumably due to drop-outs, required number of events ", "were not achieved for at least one situation. ", "Increase the maximum number of subjects (", accrualSetup$maxNumberOfSubjects, ") ", "to avoid this situation", call. = FALSE ) } simulationResults$numberOfSubjects <- matrix(overview$numberOfSubjects, nrow = design$kMax) simulationResults$numberOfSubjects1 <- .getNumberOfSubjects1(simulationResults$numberOfSubjects, allocationRatioPlanned) simulationResults$numberOfSubjects2 <- .getNumberOfSubjects2(simulationResults$numberOfSubjects, allocationRatioPlanned) if (allocationRatioPlanned != 1) { simulationResults$.setParameterType("numberOfSubjects1", C_PARAM_GENERATED) simulationResults$.setParameterType("numberOfSubjects2", C_PARAM_GENERATED) } simulationResults$overallReject <- matrix(overview$overallReject, nrow = design$kMax)[1, ] if (design$kMax > 1) { simulationResults$rejectPerStage <- matrix(overview$rejectPerStage, nrow = design$kMax) } else { simulationResults$rejectPerStage <- matrix(simulationResults$overallReject, nrow = 1) } if (!all(is.na(overview$conditionalPowerAchieved))) { simulationResults$conditionalPowerAchieved <- matrix( overview$conditionalPowerAchieved, nrow = design$kMax ) simulationResults$.setParameterType("conditionalPowerAchieved", C_PARAM_GENERATED) } if (design$kMax == 1) { simulationResults$.setParameterType("numberOfSubjects", C_PARAM_NOT_APPLICABLE) simulationResults$.setParameterType("eventsPerStage", C_PARAM_NOT_APPLICABLE) } if (design$kMax > 1) { if (numberOfResults == 1) { simulationResults$futilityPerStage <- matrix( overview$futilityPerStage[1:(design$kMax - 1)], nrow = design$kMax - 1 ) } else { simulationResults$futilityPerStage <- matrix(matrix( overview$futilityPerStage, nrow = design$kMax )[1:(design$kMax - 1), ], nrow = design$kMax - 1 ) } } if (design$kMax > 1) { simulationResults$futilityStop <- matrix(overview$futilityStop, nrow = design$kMax)[1, ] simulationResults$earlyStop <- simulationResults$futilityStop + simulationResults$overallReject - simulationResults$rejectPerStage[design$kMax, ] } else { simulationResults$futilityStop <- rep(0, numberOfResults) simulationResults$earlyStop <- rep(0, numberOfResults) } simulationResults$analysisTime <- matrix(overview$analysisTime, nrow = design$kMax) simulationResults$studyDuration <- matrix(overview$studyDuration, nrow = design$kMax)[1, ] if (design$kMax > 1) { subData <- simulationResults$rejectPerStage[1:(design$kMax - 1), ] + simulationResults$futilityPerStage pStop <- rbind(subData, 1 - colSums(subData)) numberOfSubjects <- simulationResults$numberOfSubjects numberOfSubjects[is.na(numberOfSubjects)] <- 0 simulationResults$expectedNumberOfSubjects <- diag(t(numberOfSubjects) %*% pStop) if (!is.null(simulationResults$eventsPerStage) && nrow(simulationResults$eventsPerStage) > 0 && ncol(simulationResults$eventsPerStage) > 0) { simulationResults$eventsPerStage <- .convertStageWiseToOverallValues( simulationResults$eventsPerStage ) simulationResults$expectedNumberOfEvents <- diag(t(simulationResults$eventsPerStage) %*% pStop) } } else { simulationResults$expectedNumberOfSubjects <- as.numeric(simulationResults$numberOfSubjects) if (!is.null(simulationResults$eventsPerStage) && nrow(simulationResults$eventsPerStage) > 0 && ncol(simulationResults$eventsPerStage) > 0) { simulationResults$expectedNumberOfEvents <- as.numeric(simulationResults$eventsPerStage) } } if (is.null(simulationResults$expectedNumberOfEvents) || length(simulationResults$expectedNumberOfEvents) == 0) { warning("Failed to calculate expected number of events", call. = FALSE) } data <- resultData$data[!is.na(resultData$data$iterationNumber), ] data$trialStop <- (data$rejectPerStage == 1 | data$futilityPerStage == 1 | data$stageNumber == design$kMax) if (!is.null(data$eventsPerStage) && !any(is.nan(data$eventsPerStage))) { if (directionUpper) { data$hazardRatioEstimateLR <- exp(data$logRankStatistic * (1 + allocation1 / allocation2) / sqrt(allocation1 / allocation2 * data$eventsPerStage)) } else { data$hazardRatioEstimateLR <- exp(-data$logRankStatistic * (1 + allocation1 / allocation2) / sqrt(allocation1 / allocation2 * data$eventsPerStage)) } } simulationResults$.data <- data stages <- 1:design$kMax rawData <- resultData$rawData if (!is.null(rawData) && nrow(rawData) > 0 && ncol(rawData) > 0) { rawData <- rawData[!is.na(rawData$iterationNumber), ] } if (!is.null(rawData) && nrow(rawData) > 0 && ncol(rawData) > 0) { stopStageNumbers <- rawData$stopStage missingStageNumbers <- c() if (length(stopStageNumbers) > 0) { stopStageNumbers <- order(unique(stopStageNumbers)) missingStageNumbers <- stages[!which(stages %in% stopStageNumbers)] } else { missingStageNumbers <- stages } if (length(missingStageNumbers) > 0) { warning("Could not get rawData (individual results) for stages ", .arrayToString(missingStageNumbers), call. = FALSE ) } } else { rawData <- data.frame( iterationNumber = numeric(0), stopStage = numeric(0), pi1 = numeric(0), pi2 = numeric(0), subjectId = numeric(0), accrualTime = numeric(0), treatmentGroup = numeric(0), survivalTime = numeric(0), dropoutTime = numeric(0), observationTime = numeric(0), timeUnderObservation = numeric(0), event = logical(0), dropoutEvent = logical(0), censorIndicator = numeric(0) ) if (maxNumberOfRawDatasetsPerStage > 0) { warning("Could not get rawData (individual results) for stages ", .arrayToString(stages), call. = FALSE ) } } if (pwsTimeObject$.isLambdaBased() || length(pi1) < 2) { rawData <- rawData[, !(colnames(rawData) %in% c("pi1", "pi2"))] } rawData <- rawData[, colnames(rawData) != "censorIndicator"] simulationResults$.rawData <- rawData return(simulationResults) }
salbm <- function( data, Narm = length(data), K, ntree, seeds = 1:length(data), seeds2 = -1 - 1:length(data), alphas, NBootstraps = 0, bBS = 1, returnJP = TRUE, returnSamples = FALSE) { ns <- length(seeds) ns2 <- length(seeds2) if ( ns < Narm ) seeds <- c( seeds, seeds [ns ] + 1:(Narm-ns )) if ( ns2 < Narm ) seeds2 <- c( seeds2, seeds2[ns2] - 1:(Narm-ns2)) eBS <- bBS + NBootstraps - 1 for ( trt in 1:Narm ) { tdat <- data[[trt]] tdat[ is.na(tdat) ] <- 2 data[[trt]] <- tdat } Ret <- list( data = data, Narm = Narm, K = K, ntree = ntree, seeds = seeds, seeds2 = seeds2, alphas = alphas, bBS = bBS, eBS = eBS, NBootstraps = NBootstraps) Ret[["mna" ]] <- min(alphas) Ret[["mxa" ]] <- max(alphas) for ( trt in 1:Narm ) { sd <- seeds2[trt] tdat <- data[[trt]] nr <- nrow(tdat) wts <- wtsDat( tdat, sub = 0, trt = trt) tdat[] <- lapply(tdat, function(x) factor(x, levels=c("0","1","2"))) jp <- rfjp( data = tdat, ntree = ntree, seed = sd, nodesize = 1 ) tiltRes <- lapply( alphas, function(x) tilt(x, jp) ) trtR <- do.call(rbind,tiltRes) trtR <- as.data.frame(trtR) names(trtR) <- c("alpha", paste( "E", 1:K, sep=""), paste( "Esum", 1:K, sep="")) trtRL <- mkRLong( trtR, K, trt=trt ) nms <- c( paste0("Main",trt,"R"), paste0("Main",trt,"RL"), paste0("Main",trt,"wts") ) Ret[[nms[1]]] <- trtR Ret[[nms[2]]] <- trtRL Ret[[nms[3]]] <- wts if ( returnJP ) { Ret[[ paste0("JP",trt) ]] <- jp } if ( NBootstraps > 0 ) { set.seed( seeds[trt] ) llout <- lapply( bBS:eBS, oneSamp, jps=jp, nsamp = nr, K = K, sd = sd, ntree = ntree, alphas = alphas, trt = trt, returnSamples = returnSamples) SampR <- lapply(llout,function(x) { return(x$SampR ) } ) SampRL <- lapply(llout,function(x) { return(x$SampRL ) } ) Sampwts <- lapply(llout,function(x) { return(x$wtsSamp ) } ) SampR <- do.call(rbind,SampR) SampRL <- do.call(rbind,SampRL) Sampwts <- do.call(rbind,Sampwts) nms <- c( paste0("Samp",trt,"R"), paste0("Samp",trt,"RL"), paste0("Samp",trt,"wts"), paste0("Samp",trt)) Ret[[nms[1]]] <- SampR Ret[[nms[2]]] <- SampRL Ret[[nms[3]]] <- Sampwts if ( returnSamples ) { Samp <- lapply(llout,function(x) { return(x$Samp ) } ) Samp <- do.call(rbind,Samp) Ret[[nms[4]]] <- Samp } } } class(Ret) <- c("salbm") return(Ret) }
rmtruncnorm <- function(n, mean, varcov, lower, upper) { d <- if(is.matrix(varcov)) ncol(varcov) else 1 if(missing(lower)) lower <- rep(-Inf, d) if(missing(upper)) upper <- rep(Inf, d) tmvnsim(n, d, lower, upper, rep(FALSE, d), mean, varcov)$samp } dmtruncnorm <- function(x, mean, varcov, lower, upper, log= FALSE, ...) { d <- if(is.matrix(varcov)) ncol(varcov) else 1 if(d > 20) stop("the maximal dimension is 20") x <- if (is.vector(x)) t(matrix(x)) else data.matrix(x) if(ncol(x) != d) stop("mismatch of the dimensions of 'x' and 'varcov'") if(is.matrix(mean)) { if((nrow(x) != nrow(mean)) || (ncol(mean) != d)) stop("mismatch of dimensions of 'x' and 'mean'")} if(missing(lower)) lower <- rep(-Inf,d) if(missing(upper)) upper <- rep(Inf,d) if(length(lower) != d | length(upper) != d) stop("dimension mismatch") if(!all(lower < upper)) stop("lower<upper componentwise is required") ok <- apply((t(x)-lower)>0 & (upper-t(x))>0, 2, all) pdf <- rep(0, NROW(x)) if(sum(ok) > 0) { prob <- sadmvn(lower, upper, mean, varcov, ...) tmp <- dmnorm(x[ok,], mean, varcov, log=log) pdf[ok] <- if(log) tmp - log(prob) else tmp/prob } return(pdf) } pmtruncnorm <- function(x, mean, varcov, lower, upper, ...) { d <- if(is.matrix(varcov)) ncol(varcov) else 1 if(d > 20) stop("the maximal dimension is 20") x <- if (is.vector(x)) t(matrix(x)) else data.matrix(x) if (ncol(x) != d) stop("mismatch of dimensions of 'x' and 'varcov'") if (is.matrix(mean)) { if ((nrow(x) != nrow(mean)) || (ncol(mean) != d)) stop("mismatch of dimensions of 'x' and 'mean'") } if(missing(lower)) lower <- rep(-Inf,d) if(missing(upper)) upper <- rep(Inf,d) if(length(lower) != d | length(upper) != d) stop("dimension mismatch") if(!all(lower < upper)) stop("lower<upper componentwise is required") n <- NROW(x) p <- numeric(n) for(i in 1:n) p[i] <- if(any(x[i,] < lower)) 0 else sadmvn(lower, pmin(x[i,], upper), mean, varcov) return(p/sadmvn(lower, upper, mean, varcov, ...)) } mom.mtruncnorm <- function(powers=4, mean, varcov, lower, upper, cum=TRUE, ...) { d <- if(is.matrix(varcov)) ncol(varcov) else 1 if(d > 20) stop("maximal dimension is 20") if(any(powers < 0) | any(powers != round(powers))) stop("'powers' must be non-negative integers") if(length(powers) == 1) powers <- rep(powers, d) if(missing(lower)) lower <- rep(-Inf,d) if(missing(upper)) upper <- rep(Inf,d) if(!all(lower < upper)) stop("lower<upper is required") if(!all(c(length(powers) == d, length(lower) == d, length(upper) == d, length(mean) == d, dim(varcov) == c(d,d)))) stop("dimension mismatch") if(any(lower >= upper)) stop("non-admissible bounds") M <- recintab(kappa=powers, a=lower, b=upper, mean, varcov, ...) mom <- M/M[1] out <- list(mom=mom) cum <- if(cum) mom2cum(mom) else NULL return(c(out, cum)) } mom2cum <- function(mom) { get.entry <- function(array, subs, val) { x <- get(array) ind <- rep(1, length(dim(x))) ind[subs] <- val + 1 subs.char <- paste(as.character(ind), collapse=",") eval(str2expression(paste(array, "[", subs.char, "]", sep=""))) } if(is.na(mom[1])) return(list(cum=NA, message="mom[1] must be 1")) if(mom[1] != 1) return(list(cum=NA, message="mom[1] must be 1")) if(is.vector(mom)) { m <- mom[-1] powers <- length(m) cum <- cmom <- g1 <- g2 <- NULL if(powers >= 1) { cum <- m[1] cmom <- 0 } if(powers >= 2) { cum <- c(cum, m[2] - m[1]^2) if(cum[2] <= 0 ) warning("cum[2] <= 0") cmom <- c(cmom, cum[2]) } if(powers >= 3) { cum <- c(cum, m[3] -3*m[1]*m[2] + 2*m[1]^3) cmom <- c(cmom, cum[3]) g1 <- cum[3]/cum[2]^1.5 } if(powers >= 4) { cum <- c(cum, m[4] -3*m[2]^2 - 4*m[1]*m[3] + 12*m[1]^2*m[2] -6*m[1]^4) cmom <- c(cmom, cum[4] + 3*cum[2]^2) g2 <- cum[4]/cum[2]^2 } out <- list(cum=cum, centr.mom=cmom, std.cum=c(gamma1=g1, gamma2=g2)) return(out) } powers <- dim(mom) - 1 d <- length(powers) out <- list() if(all(powers >= 1)) { m1 <- numeric(d) for(i in 1:d) m1[i] <- get.entry("mom", i, 1) out$cum1 <- m1 } if(all(powers >= 2)) { m2 <- matrix(0, d, d) for(i in 1:d) for(j in 1:d) m2[i,j] <- if(i == j) get.entry("mom", i, 2) else get.entry("mom", c(i, j), c(1,1)) vcov <- cum2 <- (m2 - m1 %*% t(m1)) if(any(eigen(cum2, symmetric=TRUE, only.values=TRUE)$values <= 0)) warning("matrix 'cum2' not positive-definite") conc <- pd.solve(vcov, silent=TRUE, log.det=TRUE) log.det <- attr(conc, "log.det") attr(conc, 'log.det') <- NULL out$order2 <- list(m2=m2, cum2=vcov, conc.matrix=conc, log.det.cum2=log.det) if(is.null(conc)) { out$message <- "Warning: input array 'mom' appears problematic" return(out) } } if(all(powers >= 3)) { mom2 <- m2[cbind(1:d,1:d)] cmom2 <- vcov[cbind(1:d,1:d)] cmom3 <- mom3 <- numeric(d) m3 <- array(NA, rep(d,3)) for(i in 1:d) for (j in 1:d) for(k in 1:d) { if(i==j & j==k) { subs <- i val <- 3 mom3[i] <- get.entry("mom", subs, val) cmom3[i] <- mom3[i] - 3*m1[i]*mom2[i] + 2*m1[i]^3 } else { if (i==j | i==k | j==k) { val <- c(2,1) if(i==j) subs <- c(i,k) if(i==k) subs <- c(i,j) if(j==k) subs <- c(j,i) } else { subs <- c(i,j,k) val <- c(1,1,1) } } m3[i,j,k] <- get.entry("mom", subs, val) } cum3 <- array(NA, rep(d, 3)) for(i in 1:d) for (j in 1:d) for(k in 1:d) cum3[i,j,k] <- (m3[i,j,k] - (m1[i]*m2[j,k] + m1[j]*m2[i,k] + m1[k]*m2[i,j]) + 2 * m1[i]*m1[j]*m1[k]) g1 <- 0 for(i in 1:d) for (j in 1:d) for(k in 1:d) for(l in 1:d) for (m in 1:d) for(n in 1:d) g1 <- g1 + cum3[i,j,k]*cum3[l,m,n]*conc[i,l]*conc[j,m]*conc[k,n] out$order3 <- list(m3=m3, cum3=cum3, m3.marginal=mom3, centr.mom3.marginal=cmom3, gamma1.marginal=cmom3/cmom2^(3/2), gamma1.Mardia=g1, beta1.Mardia=g1) } if(all(powers >= 4)) { cmom4 <- mom4 <- numeric(d) m4 <- array(NA, rep(d,4)) for(i in 1:d) for (j in 1:d) for(k in 1:d) for(l in 1:d) { if(i==j & j==k & k == l) { val <- 4 subs <- i mom4[i] <- get.entry("mom", subs, val) cmom4[i] <- mom4[i] - 4*m1[i]*mom3[i] + 6*m1[i]^2*mom2[i] - 3*m1[i]^4 } else { if(i==j & j==k | i==k & k==l | i==j & j==l | j==k & k==l) { val <- c(3, 1) if(i==j & j==k) subs <- c(i,l) if(i==k & k==l) subs <- c(i,j) if(i==j & j==l) subs <- c(i,k) if(j==k & k==l) subs <- c(j,i) } else { if(i==j & k==l | i==k & j==l | i==l & j==k) { val <- c(2, 2) if(i==j & k==l) subs <- c(i,k) if(i==k & j==l) subs <- c(i,j) if(i==l & j==k) subs <- c(i,j) } else { if(i==j | i==k | i==l | j==k | j==l | k==l) { val <- c(2, 1, 1) if(i==j) subs <- c(i,k,l) if(i==k) subs <- c(i,j,l) if(i==l) subs <- c(i,j,k) if(j==k) subs <- c(j,i,l) if(j==l) subs <- c(j,i,k) if(k==l) subs <- c(k,i,j) } else { val <- c(1,1,1,1) subs <- c(i,j,k,l) }}}} m4[i,j,k,l] <- get.entry("mom", subs, val) } cum4 <- array(NA, rep(d, 4)) for(i in 1:d) for (j in 1:d) for(k in 1:d) for(l in 1:d) cum4[i,j,k,l] <- ( m4[i,j,k,l] -(m1[i]*m3[j,k,l] + m1[j]*m3[i,k,l] + m1[k]*m3[i,j,l] + m1[l]*m3[i,j,k]) -(m2[i,j]*m2[k,l] + m2[i,k]*m2[j,l] + m2[i,l]*m2[j,k]) +2 * (m1[i]*m1[j]*m2[k,l] + m1[i]*m1[k]*m2[j,l] + m1[i]*m1[l]*m2[j,k] + m1[j]*m1[k]*m2[i,l] + m1[j]*m1[l]*m2[i,k] + m1[k]*m1[l]*m2[i,j]) -6 * m1[i]*m1[j]*m1[k]*m1[l] ) g2 <- 0 for(i in 1:d) for (j in 1:d) g2 <- g2 + cum4[i,j,,] * conc * conc[i,j] g2 <- sum(g2) b2 <- g2 + d*(d+2) out$order4 <- list(m4=m4, cum4=cum4, m4.marginal=mom4, centr.mom4.marginal=cmom4, gamma2.marginal=(cmom4/cmom2^2 - 3), gamma2.Mardia=g2, beta2.Mardia=b2) } return(out) } recintab <- function(kappa, a, b, mu, S, ...) { if(!all(a < b)) stop("a<b is required") d <- n <- length(kappa); if (n == 1) { M <- rep(0, kappa+1) s1 <- sqrt(S); aa <- (a - mu)/s1; bb <- (b - mu)/s1; M[1] <- pnorm(bb) - pnorm(aa); if (kappa > 0) { pdfa <- s1*dnorm(aa); pdfb <- s1*dnorm(bb); M[2] <- mu*M[1] + pdfa - pdfb; if(is.infinite(a)) a <- 0; if(is.infinite(b)) b <- 0; if(kappa > 1) for(i in 2:kappa) { pdfa <- pdfa*a; pdfb <- pdfb*b; M[i+1] <- mu*M[i] + (i-1)*S*M[i-1] + pdfa - pdfb; }}} else { M <- array(0, dim=kappa+1); pk <- prod(kappa+1); nn <- round(pk/(kappa+1)); begind <- cumsum(c(0, nn)); pk1 <- begind[n+1]; cp <- matrix(0, n, n); for(i in 1:n) { kk <- kappa; kk[i] <- 0; cp[i,] <- c(1, cumprod(kk[1:(n-1)] + 1)); } G <- rep(0, pk1); H <- rep(0, pk1); s <- sqrt(diag(S)); pdfa <- dnorm(a, mu, s) pdfb <- dnorm(b, mu, s) for(i in 1:n) { ind2 <- (1:n)[-i]; kappai <- kappa[ind2]; ai <- a[ind2]; bi <- b[ind2]; mui <- mu[ind2]; Si <- S[ind2,i]; SSi <- S[ind2,ind2] - Si %*% t(Si)/S[i,i]; ind <- (begind[i]+1):begind[i+1]; if(a[i] > -Inf) { mai <- mui + Si/S[i,i] * (a[i]-mu[i]); G[ind] <- pdfa[i] * recintab(kappai, ai, bi, mai, SSi); } if(b[i] < Inf ) { mbi <- mui + Si/S[i,i] * (b[i]-mu[i]); H[ind] <- pdfb[i] * recintab(kappai, ai, bi, mbi, SSi); } } M[1] <- sadmvn(a, b, mu, S, ...) a[is.infinite(a)] <- 0; b[is.infinite(b)] <- 0; cp1 <- t(cp[n,,drop=FALSE]); for(i in 2:pk) { kk <- arrayInd(i, kappa+1) ii <- (kk-1) %*% cp1 + 1; i1 <- min(which(kk>1)); kk1 <- kk; kk1[i1] <- kk1[i1] - 1; ind3 <- ii - cp1[i1]; M[ii] <- mu[i1] %*% M[ind3]; for(j in 1:n) { kk2 <- kk1[j] - 1; if(kk2 > 0) M[ii] <- M[ii] + S[i1,j] %*% kk2 %*% M[ind3-cp1[j]]; ind4 <- begind[j] + cp[j,] %*% t(kk1-1) - cp[j,j]*kk2 + 1; M[ii] <- M[ii] + S[i1,j] %*% (a[j]^kk2*G[ind4] -b[j]^kk2*H[ind4]); } } } return(M) } dmtrunct <- function(x, mean, S, df, lower, upper, log= FALSE, ...) { if(df == Inf) return(dmtruncnorm(x, mean, S, log = log)) d <- if(is.matrix(S)) ncol(S) else 1 x <- if (is.vector(x)) t(matrix(x)) else data.matrix(x) if(ncol(x) != d) stop("mismatch of dimensions of 'x' and 'S'") if(is.matrix(mean)) { if((nrow(x) != nrow(mean)) || (ncol(mean) != d)) stop("mismatch of dimensions of 'x' and 'mean'")} if(missing(lower)) lower <- rep(-Inf,d) if(missing(upper)) upper <- rep(Inf,d) if(length(lower) != d | length(upper) != d) stop("dimension mismatch") if(!all(lower < upper)) stop("lower<upper is required") ok <- apply((t(x)-lower)>0 & (upper-t(x))>0, 2, all) pdf <- rep(0, NROW(x)) if(sum(ok) > 0) { prob <- sadmvt(df, lower, upper, mean, S, ...) tmp <- dmt(x[ok,], mean, S, df, log=log) pdf[ok] <- if(log) tmp - log(prob) else tmp/prob } return(pdf) } pmtrunct <- function(x, mean, S, df, lower, upper, ...) { if(df == Inf) return(pmtruncnorm(x, mean, S, log = log)) d <- if(is.matrix(S)) ncol(S) else 1 if(d > 20) stop("maximal dimension is 20") x <- if (is.vector(x)) t(matrix(x)) else data.matrix(x) if (ncol(x) != d) stop("mismatch of dimensions of 'x' and 'S'") if (is.matrix(mean)) { if ((nrow(x) != nrow(mean)) || (ncol(mean) != d)) stop("mismatch of dimensions of 'x' and 'mean'") } if(missing(lower)) lower <- rep(-Inf,d) if(missing(upper)) upper <- rep(Inf,d) if(length(lower) != d | length(upper) != d) stop("dimension mismatch") if(!all(lower < upper)) stop("lower<upper is required") n <- NROW(x) p <- numeric(n) for(i in 1:n) p[i] <- if(any(x[i,] < lower)) 0 else sadmvt(df, lower, pmin(x[i,], upper), mean, S, ...) return(p/sadmvt(df,lower, upper, mean, S, ...)) }
draw.bg = function( start, end, ylab = "", ysub = as.character(NA), mar = c(0.2, 5, 0.2, 1), xaxt = "s", yaxt = "n", yaxs = "r", ylim = c(0, 1), cex.lab = 1, cex.axis = 1, mgp = c(3, 1, 0), tck = NA, tcl = -0.5, xaxp = as.numeric(NA), yaxp = as.numeric(NA), bty = "o", las = 0, xgrid = TRUE, new = FALSE, ... ) { if(is.numeric(start)) start <- as.integer(start) if(is.numeric(end)) end <- as.integer(end) if(!is.integer(start)) stop("'start' must be integer or numeric") if(!is.integer(end)) stop("'end' must be integer or numeric") if(start == -1) start <- 0L if(any(is.na(xaxp))) xaxp <- NULL if(any(is.na(yaxp))) yaxp <- NULL graphics::par(cex=1, mar=mar, new=new) graphics::plot( x=NA, y=NA, xlim = c(start, end), ylim = ylim, xlab = "", xaxt = "n", xaxs = "i", ylab = ylab, yaxt = yaxt, yaxs = yaxs, yaxp = yaxp, bty = "n", las = las, cex.lab = cex.lab, cex.axis = cex.axis, mgp = mgp, tck = tck, tcl = tcl ) if(yaxt == "n" && !is.na(ysub)) { graphics::mtext( side = 2, text = ysub, line = 1, adj = 0.5, cex = cex.lab ) } if(length(xaxp) != 3L) { at <- pretty(c(start, end), n=12) } else { at <- pretty(c(xaxp[1], xaxp[2]), n=xaxp[3]) } if(xaxt != "n") { if(isTRUE(xgrid)) { graphics::axis(side=1, at=at, las=las, tck=1, col=" } else { graphics::axis(side=1, at=at, las=las, cex.axis=cex.axis, labels=at/1e6, padj=-1) } } else { if(isTRUE(xgrid)) { graphics::axis(side=1, at=at, las=las, tck=1, col=" } } graphics::box( which = "plot", col = " bty = bty ) }
library(tidyverse) library(dbplyr) library(dm) set.seed(20200314) library(DBI) mydb <- dbConnect( RMariaDB::MariaDB(), username = "guest", password = "relational", dbname = "Financial_ijs", host = "relational.fit.cvut.cz" ) mydm <- dm_from_src(mydb, learn_keys = FALSE) financial_dm <- function(mydb) { mydm %>% dm_add_pk(districts, id) %>% dm_add_pk(accounts, id) %>% dm_add_pk(clients, id) %>% dm_add_pk(loans, id) %>% dm_add_pk(orders, id) %>% dm_add_pk(trans, id) %>% dm_add_pk(disps, id) %>% dm_add_pk(cards, id) %>% dm_add_fk( loans, account_id, accounts ) %>% dm_add_fk( orders, account_id, accounts ) %>% dm_add_fk( trans, account_id, accounts ) %>% dm_add_fk( disps, account_id, accounts ) %>% dm_add_fk( disps, client_id, clients ) %>% dm_add_fk( accounts, district_id, districts ) %>% dm_add_fk( clients, district_id, districts ) %>% dm_add_fk( cards, disp_id, disps ) %>% dm_rm_tbl(tkeys) %>% dm_set_colors(orange = accounts) } my_dm <- financial_dm() dm_draw(my_dm) dm_squash_to_tbl(my_dm, loans) my_dm %>% dm_set_colors(darkblue = loans, darkgreen = c(accounts, districts)) %>% dm_draw() library(nycflights13) flights_dm <- dm(flights, planes) %>% dm_add_pk(planes, tailnum) %>% dm_add_fk(flights, tailnum, planes) dm_draw(flights_dm) sqlite <- dbConnect(RSQLite::SQLite(), dbname = ":memory:") flights_dm_production <- copy_dm_to(sqlite, flights_dm) flights_dm_production
test_that("basic run", { testthat::skip_on_cran() local_edition(3) expect_error(run_MC_TL_DELOC(method = "error"), "Allowed keywords for 'method' are either 'par' or 'seq'!") expect_error(run_MC_TL_DELOC(output = "error"), "Allowed keywords for 'output' are either 'signal' or 'remaining_e'!") results_seq <- expect_silent(run_MC_TL_DELOC( E = 0.5, s = 1e8, times = 0:100, clusters = 1e1, n_filled = 1, R = 1e-7, method = "seq" )) results_par <- expect_silent(run_MC_TL_DELOC( E = 0.5, s = 1e8, times = 0:100, clusters = 1e1, n_filled = 1, R = 1e-7, method = "par" )) expect_silent(run_MC_TL_DELOC( E = 0.5, s = 1e8, times = 0:100, clusters = create_ClusterSystem(10), n_filled = 100, R = 1e-7, method = "seq" )) expect_s3_class(results_par, class = "RLumCarlo_Model_Output") expect_length(results_par, 2) expect_s3_class(results_seq, class = "RLumCarlo_Model_Output") expect_length(results_seq, 2) })
survexp.fit <- function(group, x, y, times, death, ratetable) { if (!is.matrix(x)) stop("x must be a matrix") if (ncol(x) != length(dim(ratetable))) stop("x matrix does not match the rate table") atts <- attributes(ratetable) ngrp <- max(group) times <- sort(unique(times)) if (any(times <0)) stop("Negative time point requested") if (missing(y)) y <- rep(max(times), nrow(x)) ntime <- length(times) if (!is.logical(death)) stop("Invalid value for death indicator") datecheck <- function(x) inherits(x, c("Date", "POSIXt", "date", "chron")) cuts <- lapply(attr(ratetable, "cutpoints"), function(x) if (!is.null(x) & datecheck(x)) ratetableDate(x) else x) if (is.null(atts$type)) { rfac <- atts$factor us.special <- (rfac >1) } else { rfac <- 1*(atts$type ==1) us.special <- (atts$type==4) } if (any(us.special)) { if (is.null(atts$dimid)) dimid <- names(atts$dimnames) else dimid <- atts$dimid cols <- match(c("age", "year"), dimid) if (any(is.na(cols))) stop("ratetable does not have expected shape") bdate <- as.Date("1970-01-01") + (x[,cols[2]] - x[,cols[1]]) byear <- format(bdate, "%Y") offset <- as.numeric(bdate - as.Date(paste0(byear, "-01-01"))) x[,cols[2]] <- x[,cols[2]] - offset if (any(rfac >1)) { temp <- which(us.special) nyear <- length(cuts[[temp]]) nint <- rfac[temp] cuts[[temp]] <- round(approx(nint*(1:nyear), cuts[[temp]], nint:(nint*nyear))$y - .0001) } } storage.mode(x) <- storage.mode(y) <- "double" storage.mode(times) <- "double" temp <- .Call(Cpyears3b, as.integer(death), as.integer(rfac), as.integer(atts$dim), as.double(unlist(cuts)), ratetable, as.integer(group), x, y, times, as.integer(ngrp)) if (ntime==1) list(surv=temp$surv, n=temp$n) else if (ngrp >1) list(surv=apply(matrix(temp$surv, ntime, ngrp),2,cumprod), n= matrix(temp$n, ntime, ngrp)) else list(surv=cumprod(temp$surv), n=temp$n) }
tmap.pal.info <- local({ br <- RColorBrewer::brewer.pal.info[, 1:2] br$origin <- factor("brewer", levels = c("brewer", "viridis")) vr <- data.frame(maxcolors = rep.int(0, 5), category = factor("seq", levels = c("div", "qual", "seq")), origin = factor("viridis", levels = c("brewer", "viridis")), row.names = c("viridis", "magma", "plasma", "inferno", "cividis")) rbind(br, vr) }) get_default_contrast <- function(type, m) { if (type=="seq") { default_contrast_seq(m) } else { default_contrast_div(m) } } plot_tmap_pals <- function(type, origin, m, contrast=NULL, stretch=NULL, cex =.9, cex_line = .8, print.hex = FALSE, col.blind="normal") { pal_info <- tmap.pal.info pal_nm <- row.names(pal_info)[pal_info$category==type & pal_info$origin == origin] pal_labels <- pal_nm n <- length(pal_nm) if (col.blind!="normal") { cb <- pal_info[pal_nm, ]$colorblind pal_labels[pal_labels %in% c("Dark2", "Paired", "Set2")] <- c("Dark2 (3)", "Paired (4)", "Set2 (3)") } else { cb <- rep(TRUE, n) } grid.newpage() label_width <- convertWidth(stringWidth("Acbdefghijk"), "in", valueOnly = TRUE) * cex lH <- convertHeight(unit(1, "lines"), "in", valueOnly=TRUE) * cex_line vp <- viewport(layout = grid.layout(nrow = 2*n + 1, ncol=m+2, widths = unit(c(label_width, rep(1, m), label_width/4), c("in", rep("null", m), "in")), heights = unit(c(lH, rep(c(lH, .33*lH), length.out=2*n+1), 1), c(rep("in", 2*n), "null")))) pushViewport(vp) lapply(1L:m, function(j) { pushViewport(viewport(layout.pos.row = 1, layout.pos.col = 1+j)) grid.text(j, gp=gpar(cex=cex)) popViewport() }) lapply(1L:n, function(i) { pushViewport(viewport(layout.pos.row = i*2, layout.pos.col = 1)) grid.text(pal_labels[i], x = .1, just = "left", gp=gpar(cex=cex, col=ifelse(cb[i], " popViewport() if (origin == "brewer") { if (type=="qual") { pal <- get_brewer_pal(pal_nm[i], n=m, stretch=stretch, plot=FALSE) ids <- which(pal==pal[1])[-1] } else { pal <- get_brewer_pal(pal_nm[i], n=m, contrast=contrast, plot=FALSE) ids <- numeric(0) } } else { pal <- viridis(m, option = pal_nm[i], begin = contrast[1], end = contrast[2]) ids <- numeric(0) } if (col.blind != "normal") pal <- dichromat(pal, type=col.blind) fontcol <- ifelse(is_light(pal), "black", "white") fontwidth <- convertWidth(stringWidth(" fontsize <- min(cex, (1/fontwidth) / m) lapply(1L:m, function(j) { pushViewport(viewport(layout.pos.row = i*2, layout.pos.col = 1+j)) grid.rect(gp=gpar(fill=pal[j])) if (print.hex) grid.text(pal[j], gp=gpar(cex=fontsize, col=fontcol[j])) if (j %in% ids) { grid.circle(x=0, y=.5, r=.25, gp=gpar(fill="white", lwd=1)) } popViewport() }) }) popViewport() } is_light <- function(col) { colrgb <- col2rgb(col) apply(colrgb * c(.299, .587, .114), MARGIN=2, sum) >= 128 } palette_explorer <- function() { if (!requireNamespace("shiny")) stop("shiny package needed for this function to work. Please install it.", call. = FALSE) if (!requireNamespace("shinyjs")) stop("shinyjs package needed for this function to work. Please install it.", call. = FALSE) shiny::shinyApp(ui = shiny::fluidPage( shinyjs::useShinyjs(), shiny::div( style = "font-size:75%;line-height:20px", shiny::fluidRow( shiny::column(3, shiny::br(), shiny::br(), shiny::br(), shiny::h4("Brewer"), shiny::sliderInput("m_seq", "Number of colors", min = 3, max = 20, value = 7)), shiny::column(3, shiny::br(), shiny::br(), shiny::br(), shiny::h4("Sequential"), shiny::strong("Contrast range"), shiny::checkboxInput("auto_seq", label = "Automatic", value = TRUE), shiny::uiOutput("contrast_seq_slider")), shiny::column(6, shiny::plotOutput("plot_seq", height = "285px"), shiny::uiOutput("code_seq")) ), shiny::fluidRow( shiny::column(3, shiny::h4("Brewer"), shiny::sliderInput("m_cat", "Number of colors", min = 3, max = 20, value = 8) ), shiny::column(3, shiny::h4("Categorical"), shiny::checkboxInput("stretch", "Stretch", value=TRUE) ), shiny::column(6, shiny::plotOutput("plot_cat", height = "131px"), shiny::uiOutput("code_cat") ) ), shiny::fluidRow( shiny::column(3, shiny::h4("Brewer"), shiny::sliderInput("m_div", "Number of colors", min = 3, max = 20, value = 9) ), shiny::column(3, shiny::h4("Diverging"), shiny::strong("Contrast range"), shiny::checkboxInput("auto_div", label = "Automatic", value = TRUE), shiny::uiOutput("contrast_div_slider") ), shiny::column(6, shiny::plotOutput("plot_div", height = "147px"), shiny::uiOutput("code_div") ) ), shiny::fluidRow( shiny::column(3, shiny::h4("Viridis"), shiny::sliderInput("m_vir", "Number of colors", min = 3, max = 20, value = 20)), shiny::column(3, shiny::h4("Sequential"), shiny::sliderInput("contrast_vir", "Contrast range", min = 0, max = 1, value = c(0, 1), step = .01)), shiny::column(6, shiny::h4(), shiny::plotOutput("plot_vir", height = "85px"), shiny::uiOutput("code_vir")) ), shiny::wellPanel( shiny::fluidRow( shiny::column(4, shiny::h4("Options"), shiny::checkboxInput("hex", "Print color values", value = FALSE) ), shiny::column(4, shiny::radioButtons("direct_tmap", "Code generator", choices = c("Direct code", "tmap layer function code"), selected = "Direct code", inline = FALSE) ), shiny::column(4, shiny::radioButtons("col_blind", "Color blindness simulator", choices = c("Normal" ="normal", "Deuteranopia" = "deutan", "Protanopia" = "protan", "Tritanopia" = "tritan"), selected = "normal", inline = FALSE) ) )) )), server = function(input, output) { output$contrast_seq_slider <- shiny::renderUI({ rng <- get_default_contrast("seq", input$m_seq) if (is.null(input$auto_seq) || input$auto_seq) { shiny::isolate({ shiny::div( style = "font-size:0;margin-top:-20px", shiny::sliderInput("contrast_seq", "", min = 0, max = 1, value = c(rng[1], rng[2]), step = .01) ) }) } else { shiny::isolate({ crng <- input$contrast_seq shiny::div( style = "font-size:0;margin-top:-20px", shiny::sliderInput("contrast_seq", "", min = 0, max = 1, value = c(crng[1], crng[2]), step = .01) ) }) } }) output$contrast_div_slider <- shiny::renderUI({ rng <- get_default_contrast("div", input$m_div) if (is.null(input$auto_div) || input$auto_div) { shiny::isolate({ shiny::div( style = "font-size:0;margin-top:-20px", shiny::sliderInput("contrast_div", "", min = 0, max = 1, value = c(rng[1], rng[2]), step = .01) ) }) } else { shiny::isolate({ crng <- input$contrast_div shiny::div( style = "font-size:0;margin-top:-20px", shiny::sliderInput("contrast_div", "", min = 0, max = 1, value = c(crng[1], crng[2]), step = .01) ) }) } }) shiny::observe({ input$m_seq if (input$auto_seq) { shinyjs::delay(0, { shinyjs::toggleState("contrast_seq", !input$auto_seq) }) } }) shiny::observe({ input$m_div if (input$auto_div) { shinyjs::delay(0, { shinyjs::toggleState("contrast_div", !input$auto_div) }) } }) output$plot_seq <- shiny::renderPlot({ if (is.null(input$m_seq) || is.null(input$contrast_seq)) return(NULL) plot_tmap_pals(type="seq", origin = "brewer", m = input$m_seq, contrast = input$contrast_seq, print.hex = input$hex, col.blind = input$col_blind) }) output$plot_cat <- shiny::renderPlot({ if (is.null(input$m_cat) || is.null(input$stretch)) return(NULL) plot_tmap_pals(type="qual", origin = "brewer", m = input$m_cat, stretch = input$stretch, print.hex = input$hex, col.blind = input$col_blind) }) output$plot_div <- shiny::renderPlot({ if (is.null(input$m_div) || is.null(input$contrast_div)) return(NULL) plot_tmap_pals(type="div", origin = "brewer", m = input$m_div, contrast = input$contrast_div, print.hex = input$hex, col.blind = input$col_blind) }) output$plot_vir <- shiny::renderPlot({ if (is.null(input$m_vir) || is.null(input$contrast_vir)) return(NULL) plot_tmap_pals(type="seq", origin = "viridis", m = input$m_vir, contrast = input$contrast_vir, print.hex = input$hex, col.blind = input$col_blind) }) output$code_seq <- shiny::renderUI({ text <- get_palette_code(type="seq", origin = "brewer", m=input$m_seq, contrast=input$contrast_seq, auto=input$auto_seq, tmap=(input$direct_tmap == "tmap layer function code")) shiny::div( style = "font-family: Lucida Console,Lucida Sans Typewriter,monaco,Bitstream Vera Sans Mono,monospace;text-align:right;", shiny::p(text) ) }) output$code_div <- shiny::renderUI({ text <- get_palette_code(type="div", origin = "brewer", m=input$m_div, contrast=input$contrast_div, auto=input$auto_div, tmap=(input$direct_tmap == "tmap layer function code")) shiny::div( style = "font-family: Lucida Console,Lucida Sans Typewriter,monaco,Bitstream Vera Sans Mono,monospace;text-align:right;", shiny::p(text) ) }) output$code_cat <- shiny::renderUI({ text <- get_palette_code(type="cat", origin = "brewer", m=input$m_cat, auto=input$stretch, tmap= (input$direct_tmap == "tmap layer function code")) shiny::div( style = "font-family: Lucida Console,Lucida Sans Typewriter,monaco,Bitstream Vera Sans Mono,monospace;text-align:right;", shiny::p(text) ) }) output$code_vir <- shiny::renderUI({ text <- get_palette_code(type="seq", origin = "viridis", m=input$m_vir, contrast=input$contrast_vir, tmap= (input$direct_tmap == "tmap layer function code")) shiny::div( style = "font-family: Lucida Console,Lucida Sans Typewriter,monaco,Bitstream Vera Sans Mono,monospace;text-align:right;", shiny::p(text) ) }) } ) } tmap.pal.info <- local({ br <- RColorBrewer::brewer.pal.info br$origin <- factor("brewer", levels = c("brewer", "viridis")) vr <- data.frame(maxcolors = rep.int(Inf, 5), category = factor("seq", levels = c("div", "qual", "seq")), origin = factor("viridis", levels = c("brewer", "viridis")), colorblind = c(FALSE, FALSE, FALSE, FALSE, TRUE), row.names = c("viridis", "magma", "plasma", "inferno", "cividis")) rbind(br, vr) }) get_palette_code <- function(type, origin, m, contrast=NULL, auto=FALSE, tmap=FALSE) { if (origin == "brewer") { header <- ifelse(tmap, "tm_polygons(..., palette = ", "get_brewer_pal(") pal <- ifelse(type=="seq", "\"Blues\"", ifelse(type=="cat", "\"Accent\"", "\"BrBG\"")) mtext <- paste(", n = ", m, sep="") cntr <- ifelse(auto || is.null(contrast), "", paste(", contrast = c(", contrast[1], ", ", contrast[2], ")", sep = "")) apm <- ifelse(type!="cat" || auto, "", ifelse(tmap, ", stretch.palette = FALSE", ", stretch = FALSE")) tailer <- ifelse(tmap, ", ...)", ")") paste(header, pal, mtext, cntr, apm, tailer, sep="") } else { header <- ifelse(tmap, "tm_polygons(..., palette = \"viridis\"", "viridisLite::viridis(") mtext <- ifelse(tmap, paste(", n =", m), m) cntr <- ifelse(is.null(contrast) || (contrast[1] == 0 && contrast[2] == 1), "", ifelse(tmap, paste(", contrast = c(", contrast[1], ", ", contrast[2], ")", sep = ""), paste0(", begin = ", contrast[1], ", end = ", contrast[2]))) tailer <- ifelse(tmap, ", ...)", ")") paste(header, mtext, cntr, tailer, sep="") } }
test_that("simpleTimeReport() works", { expect_error( expect_warning( simpleTimeReport("title goes here", { 1 + 2 foo_warn <- function() warning("this is a warning") foo_msg <- function() message("this is a message") foo_warn() foo_msg() cat("this is a cat\n") data.frame(a = 1, b = 2) }) ), NA) })
getUSCounty <- function( longitude = NULL, latitude = NULL, dataset = 'USCensusCounties', stateCodes = NULL, allData = FALSE, useBuffering = FALSE ) { MazamaCoreUtils::stopIfNull(longitude) MazamaCoreUtils::stopIfNull(latitude) MazamaCoreUtils::stopIfNull(dataset) MazamaCoreUtils::stopIfNull(allData) MazamaCoreUtils::stopIfNull(useBuffering) if ( !exists(dataset) ) { stop("Missing dataset. Please loadSpatialData(\"", dataset, "\")", call. = FALSE) } if ( min(longitude, na.rm = TRUE) < -180 || max(longitude, na.rm = TRUE) > 180) { stop("'longitude' must be specified in the range -180:180.") } if ( min(latitude, na.rm = TRUE) < -90 || max(latitude, na.rm = TRUE) > 90 ) { stop("'latitude' must be specified in the range -90:90.") } SPDF <- get(dataset) if (!is.null(stateCodes)) SPDF <- SPDF[SPDF$stateCode %in% stateCodes,] locationsDF <- getSpatialData(longitude, latitude, SPDF, useBuffering = useBuffering) if (allData) { return(locationsDF) } else { name <- locationsDF$countyName return(name) } }
require(bigmemory) a <- big.matrix(4, 4) a[] <- 1:16 a[,] b <- sub.big.matrix(a, firstCol = 2) b[,] c <- sub.big.matrix(b, firstRow = 2) c[,] d <- sub.big.matrix(c, lastCol = 1) d[,]
ModelRecipe <- function(object, ...) { UseMethod("ModelRecipe") } ModelRecipe.ModelRecipe <- function(object, ...) { object } ModelRecipe.recipe <- function(object, ...) { if (any(map("logi", function(step) isTRUE(step$trained), object$steps))) { throw(Error("Recipe must be untrained.")) } cases_name <- "(names)" cases_fo <- ~ -`(names)` reserved <- intersect( c("(groups)", "(names)", "(strata)"), summary(object)$variable ) if (length(reserved)) { throw(Error(note_items( "Supplied recipe contains reserved variable{?s}: ", reserved, "." ))) } cases_info <- data.frame( variable = cases_name, type = "nominal", role = "case_name", source = "original" ) object$var_info <- rbind(object$var_info, cases_info) object$term_info <- rbind(object$term_info, cases_info) object$template[[cases_name]] <- rownames(object$template) for (i in seq_along(object$steps)) { step_terms <- object$steps[[i]]$terms environment(cases_fo) <- environment(step_terms[[1]]) new_term <- rlang::as_quosure(cases_fo) object$steps[[i]]$terms <- c(step_terms, new_term) } new("ModelRecipe", object) } bake.ModelRecipe <- function(object, new_data, ...) { new_data <- if (is.null(new_data)) { object$template } else if (is(new_data, "ModelRecipe")) { new_data$template } else { prep_recipe_data(new_data) } bake(as(object, "recipe"), new_data) } bake.SelectedInput <- function(object, ...) { throw(Error("Cannot create a design matrix from a ", class(object), ".")) } bake.TunedInput <- function(object, ...) { throw(Error("Cannot create a design matrix from a ", class(object), ".")) } prep.ModelFrame <- function(x, ...) x prep.ModelRecipe <- function(x, ...) { if (!is_trained(x)) { template <- x$template x <- new(class(x), prep(as(x, "recipe"), retain = FALSE)) x$template <- template x$orig_lvls[["(names)"]] <- list(values = NA, ordered = NA) x$levels[["(names)"]] <- x$orig_lvls[["(names)"]] } x } prep.SelectedInput <- function(x, ...) { throw(Error("Cannot train a ", class(x), ".")) } prep.TunedInput <- function(x, ...) { throw(Error("Cannot train a ", class(x), ".")) } prep_recipe_data <- function(x) { if (is.null(x[["(names)"]])) x[["(names)"]] <- rownames(x) x[c("(groups)", "(strata)")] <- NULL x } recipe.ModelRecipe <- function(x, data, ...) { stopifnot(is(data, "data.frame")) x$template <- as_tibble(prep_recipe_data(data)) x } update.ModelRecipe <- function(object, params = list(), new_id = FALSE, ...) { for (i in seq_along(object$steps)) { step <- object$steps[[i]] step_params <- params[[step$id]] if (length(step_params)) { object$steps[[i]] <- do.call(update, c(list(step), step_params)) } } if (new_id) object@id <- make_id() object }
AutoScore_rank <- function(train_set, ntree = 100) { train_set$label <- as.factor(train_set$label) model <- randomForest::randomForest(label ~ ., data = train_set, ntree = ntree, preProcess = "scale") importance <- randomForest::importance(model, scale = F) names(importance) <- rownames(importance) importance <- sort(importance, decreasing = T) cat("The ranking based on variable importance was shown below for each variable: \n") print(importance) return(importance) } AutoScore_parsimony <- function(train_set, validation_set, rank, max_score = 100, n_min = 1, n_max = 20, cross_validation = FALSE, fold = 10, categorize = "quantile", quantiles = c(0, 0.05, 0.2, 0.8, 0.95, 1), max_cluster = 5, do_trace = FALSE) { if (n_max > length(rank)) { warning( "WARNING: the n_max (", n_max, ") is larger the number of all variables (", length(rank), "). We Automatically revise the n_max to ", length(rank) ) n_max <- length(rank) } if (cross_validation == TRUE) { index <- list() all <- 1:length(train_set[, 1]) for (i in 1:(fold - 1)) { a <- sample(all, trunc(length(train_set[, 1]) / fold)) index <- append(index, list(a)) all <- all[!(all %in% a)] } index <- c(index, list(all)) auc_set <- data.frame(rep(0, n_max - n_min + 1)) for (j in 1:fold) { validation_set_temp <- train_set[index[[j]],] train_set_tmp <- train_set[-index[[j]],] AUC <- c() for (i in n_min:n_max) { variable_list <- names(rank)[1:i] train_set_1 <- train_set_tmp[, c(variable_list, "label")] validation_set_1 <- validation_set_temp[, c(variable_list, "label")] model_roc <- compute_auc_val( train_set_1, validation_set_1, variable_list, categorize, quantiles, max_cluster, max_score ) AUC <- c(AUC, auc(model_roc)) } names(AUC) <- n_min:n_max if (do_trace) { print(paste("list of AUC values for fold", j)) print(data.frame(AUC)) plot( AUC, main = paste("Parsimony plot (cross validation) for fold", j), xlab = "Number of Variables", ylab = "Area Under the Curve", col = " lwd = 2, type = "o" ) } auc_set <- cbind(auc_set, data.frame(AUC)) } auc_set$rep.0..n_max...n_min...1. <- NULL auc_set$sum <- rowSums(auc_set) / fold cat("***list of final mean AUC values through cross-validation are shown below \n") print(data.frame(auc_set$sum)) plot( auc_set$sum, main = paste( "Final Parsimony Plot based on ", fold, "-fold Cross Validation", sep = "" ), xlab = "Number of Variables", ylab = "Area Under the Curve", col = " lwd = 2, type = "o" ) return(auc_set) } else{ AUC <- c() for (i in n_min:n_max) { cat(paste("Select", i, "Variable(s): ")) variable_list <- names(rank)[1:i] train_set_1 <- train_set[, c(variable_list, "label")] validation_set_1 <- validation_set[, c(variable_list, "label")] model_roc <- compute_auc_val( train_set_1, validation_set_1, variable_list, categorize, quantiles, max_cluster, max_score ) print(auc(model_roc)) AUC <- c(AUC, auc(model_roc)) } names(AUC) <- n_min:n_max plot( AUC, main = "Parsimony Plot on the Validation Set", xlab = "Number of Variables", ylab = "Area Under the Curve", col = " lwd = 2, type = "o" ) return(AUC) } } AutoScore_weighting <- function(train_set, validation_set, final_variables, max_score = 100, categorize = "quantile", max_cluster = 5, quantiles = c(0, 0.05, 0.2, 0.8, 0.95, 1)) { cat("****Included Variables: \n") print(data.frame(variable_name = final_variables)) train_set_1 <- train_set[, c(final_variables, "label")] validation_set_1 <- validation_set[, c(final_variables, "label")] cut_vec <- get_cut_vec( train_set_1, categorize = categorize, quantiles = quantiles, max_cluster = max_cluster ) train_set_2 <- transform_df_fixed(train_set_1, cut_vec) validation_set_2 <- transform_df_fixed(validation_set_1, cut_vec) score_table <- compute_score_table(train_set_2, max_score, final_variables) cat("****Initial Scores: \n") print_scoring_table(scoring_table = score_table, final_variable = final_variables) validation_set_3 <- assign_score(validation_set_2, score_table) validation_set_3$total_score <- rowSums(subset(validation_set_3, select = names(validation_set_3)[names(validation_set_3) != "label"])) y_validation <- validation_set_3$label plot_roc_curve(validation_set_3$total_score, as.numeric(y_validation) - 1) cat("***Performance (based on validation set):\n") print_roc_performance(y_validation, validation_set_3$total_score, threshold = "best") cat( "***The cutoffs of each variable generated by the AutoScore are saved in cut_vec. You can decide whether to revise or fine-tune them \n" ) return(cut_vec) } AutoScore_fine_tuning <- function(train_set, validation_set, final_variables, cut_vec, max_score = 100) { train_set_1 <- train_set[, c(final_variables, "label")] validation_set_1 <- validation_set[, c(final_variables, "label")] train_set_2 <- transform_df_fixed(train_set_1, cut_vec = cut_vec) validation_set_2 <- transform_df_fixed(validation_set_1, cut_vec = cut_vec) score_table <- compute_score_table(train_set_2, max_score, final_variables) cat("***Fine-tuned Scores: \n") print_scoring_table(scoring_table = score_table, final_variable = final_variables) validation_set_3 <- assign_score(validation_set_2, score_table) validation_set_3$total_score <- rowSums(subset(validation_set_3, select = names(validation_set_3)[names(validation_set_3) != "label"])) y_validation <- validation_set_3$label plot_roc_curve(validation_set_3$total_score, as.numeric(y_validation) - 1) cat("***Performance (based on validation set, after fine-tuning):\n") print_roc_performance(y_validation, validation_set_3$total_score, threshold = "best") return(score_table) } AutoScore_testing <- function(test_set, final_variables, cut_vec, scoring_table, threshold = "best", with_label = TRUE) { if (with_label) { test_set_1 <- test_set[, c(final_variables, "label")] test_set_2 <- transform_df_fixed(test_set_1, cut_vec = cut_vec) test_set_3 <- assign_score(test_set_2, scoring_table) test_set_3$total_score <- rowSums(subset(test_set_3, select = names(test_set_3)[names(test_set_3) != "label"])) test_set_3$total_score[which(is.na(test_set_3$total_score))] <- 0 y_test <- test_set_3$label plot_roc_curve(test_set_3$total_score, as.numeric(y_test) - 1) cat("***Performance using AutoScore (based on unseen test Set):\n") model_roc <- roc(y_test, test_set_3$total_score, quiet = T) print_roc_performance(y_test, test_set_3$total_score, threshold = threshold) pred_score <- data.frame(pred_score = test_set_3$total_score, Label = y_test) return(pred_score) } else { test_set_1 <- test_set[, c(final_variables)] test_set_2 <- transform_df_fixed(test_set_1, cut_vec = cut_vec) test_set_3 <- assign_score(test_set_2, scoring_table) test_set_3$total_score <- rowSums(subset(test_set_3, select = names(test_set_3)[names(test_set_3) != "label"])) test_set_3$total_score[which(is.na(test_set_3$total_score))] <- 0 pred_score <- data.frame(pred_score = test_set_3$total_score, Label = NA) return(pred_score) } } check_data <- function(data) { if (is.null(data$label)) stop( "ERROR: for this dataset: These is no dependent variable 'lable' to indicate the outcome. Please add one first\n" ) if (length(levels(factor(data$label))) != 2) warning("Please keep outcome lable variable binary\n") non_num_fac <- c() fac_large <- c() special_case <- c() for (i in names(data)) { if ((class(data[[i]]) != "factor") && (class(data[[i]]) != "numeric")) non_num_fac <- c(non_num_fac, i) if ((length(levels(data[[i]])) > 10) && (class(data[[i]]) == "factor")) fac_large <- c(fac_large, i) if (grepl(",", i)) warning( paste0( "WARNING: the dataset has variable names '", i, "' with character ','. Please change it. Consider using '_' to replace\n" ) ) if (grepl(")", i)) warning( paste0( "WARNING: the dataset has variable names '", i, "' with character ')'. Please change it. Consider using '_' to replace\n" ) ) if (grepl("]", i)) warning( paste0( "WARNING: the dataset has variable names '", i, "' with character ']'. Please change it. Consider using '_' to replace\n" ) ) if (class(data[[i]]) == "factor") { if (sum(grepl(",", levels(data[[i]]))) > 0) warning( paste0( "WARNING: the dataset has categorical variable '", i, "', where their levels contain ','. Please use 'levels(*your_variable*)' to change the name of the levels before using the AutoScore. Consider replacing ',' with '_'. Thanks! \n " ) ) } if (sum(grepl(i, names(data))) > 1) { a <- names(data)[grepl(i, names(data))] a <- a[a != i] warning( paste0( "WARNING: the dataset has variable name '", i, "', which is entirely included by other variable names:\n", paste(paste0("'", a, "'"), collapse = " "), "\nPlease use 'names(*your_df*)' to change the name of variable '", i, "' before using the AutoScore. Consider adding '_1', '_2',..., '_x, or other similar stuff at end of that name, such as '", paste0(i, "_1") , "', to make them totally different and not contain each other. Thanks!\n " ) ) } } if (!is.null(non_num_fac)) warning( paste( "\nWARNING: the dataset has variable of character and user should transform them to factor before using AutoScore:\n", non_num_fac ) ) if (!is.null(fac_large)) warning( paste( "\nWARNING: The number of categories for some variables is too many :larger than: ", fac_large ) ) missing_rate <- colSums(is.na(data)) if (sum(missing_rate)) { warning( "\n WARNING: Your dataset contains NA. Please handle them before AutoScore. The variables with missing values are shown below:" ) print(missing_rate[missing_rate != 0]) } else message("\n missing value check passed.\n") } split_data <- function(data, ratio, cross_validation = FALSE) { if (cross_validation == FALSE) { n <- length(data[, 1]) test_ratio <- ratio[3] / sum(ratio) validation_ratio <- ratio[2] / sum(ratio) test_index <- sample((1:n), test_ratio * n) validate_index <- sample((1:n)[!(1:n) %in% test_index], validation_ratio * n) train_set <- data[-c(validate_index, test_index), ] test_set <- data[test_index, ] validation_set <- data[validate_index, ] return(list( train_set = train_set, validation_set = validation_set, test_set = test_set )) } else{ n <- length(data[, 1]) test_ratio <- ratio[3] / sum(ratio) validation_ratio <- ratio[2] / sum(ratio) test_index <- sample((1:n), test_ratio * n) validate_index <- sample((1:n)[!(1:n) %in% test_index], validation_ratio * n) train_set <- data[-c(test_index),] test_set <- data[test_index,] validation_set <- train_set return(list( train_set = train_set, validation_set = validation_set, test_set = test_set )) } } compute_descriptive_table <- function(df) { descriptive_table <- CreateTableOne(vars = names(df), strata = "label", data = df) descriptive_table_overall <- CreateTableOne(vars = names(df), data = df) print(descriptive_table) print(descriptive_table_overall) } compute_uni_variable_table <- function(df) { uni_table <- data.frame() for (i in names(df)[names(df) != "label"]) { model <- glm( as.formula("label ~ ."), data = subset(df, select = c("label", i)), family = binomial, na.action = na.omit ) a <- cbind(exp(cbind(OR = coef(model), confint.default(model))), summary(model)$coef[, "Pr(>|z|)"]) uni_table <- rbind(uni_table, a) } uni_table <- uni_table[!grepl("Intercept", row.names(uni_table), ignore.case = T), ] uni_table <- round(uni_table, digits = 3) uni_table$V4[uni_table$V4 < 0.001] <- "<0.001" uni_table$OR <- paste(uni_table$OR, "(", uni_table$`2.5 %`, "-", uni_table$`97.5 %`, ")", sep = "") uni_table$`2.5 %` <- NULL uni_table$`97.5 %` <- NULL names(uni_table)[names(uni_table) == "V4"] <- "p value" return(uni_table) } compute_multi_variable_table <- function(df) { model <- glm(label ~ ., data = df, family = binomial, na.action = na.omit) multi_table <- cbind(exp(cbind( adjusted_OR = coef(model), confint.default(model) )), summary(model)$coef[, "Pr(>|z|)"]) multi_table <- multi_table[!grepl("Intercept", row.names(multi_table), ignore.case = T), ] multi_table <- round(multi_table, digits = 3) multi_table <- as.data.frame(multi_table) multi_table$V4[multi_table$V4 < 0.001] <- "<0.001" multi_table$adjusted_OR <- paste( multi_table$adjusted_OR, "(", multi_table$`2.5 %`, "-", multi_table$`97.5 %`, ")", sep = "" ) multi_table$`2.5 %` <- NULL multi_table$`97.5 %` <- NULL names(multi_table)[names(multi_table) == "V4"] <- "p value" return(multi_table) } print_scoring_table <- function(scoring_table, final_variable) { table_tmp <- data.frame() var_name <- names(scoring_table) var_name_tmp<-gsub("\\(.*","",var_name) var_name_tmp<-gsub("\\[.*","",var_name_tmp) for (i in 1:length(final_variable)) { var_tmp <- final_variable[i] { num <- grep(var_tmp, var_name_tmp) if (grepl(",", var_name[num][1]) != TRUE) { table_1 <- data.frame(name = var_name[num], value = unname(scoring_table[num])) table_1$rank_indicator <- c(seq(1:nrow(table_1))) interval <- c(gsub( pattern = var_tmp, replacement = "", table_1$name )) table_1$interval <- interval table_2 <- table_1[order(table_1$interval),] table_2$variable <- c(var_tmp, rep("", (nrow(table_2) - 1))) table_3 <- rbind(table_2, rep("", ncol(table_2))) table_tmp <- rbind(table_tmp, table_3) } else { num <- grep(paste("^",var_tmp,"$", sep=""), var_name_tmp) table_1 <- data.frame(name = var_name[num], value = unname(scoring_table[num])) rank_indicator <- gsub(".*,", "", table_1$name) rank_indicator <- gsub(")", "", rank_indicator) rank_indicator[which(rank_indicator == "")] <- max(as.numeric(rank_indicator[-which(rank_indicator == "")])) + 1 rank_indicator <- as.numeric(rank_indicator) { if (length(rank_indicator) == 2) { table_1$rank_indicator <- rank_indicator table_2 <- table_1[order(table_1$rank_indicator),] interval <- c(paste0("<", table_2$rank_indicator[1])) interval <- c(interval, paste0(">=", table_2$rank_indicator[length(rank_indicator) - 1])) table_2$interval <- interval table_2$variable <- c(var_tmp, rep("", (nrow( table_2 ) - 1))) table_3 <- rbind(table_2, rep("", ncol(table_2))) table_tmp <- rbind(table_tmp, table_3) } else{ table_1$rank_indicator <- rank_indicator table_2 <- table_1[order(table_1$rank_indicator),] interval <- c(paste0("<", table_2$rank_indicator[1])) for (j in 1:(length(table_2$rank_indicator) - 2)) { interval <- c( interval, paste0( "[", table_2$rank_indicator[j], ",", table_2$rank_indicator[j + 1], ")" ) ) } interval <- c(interval, paste0(">=", table_2$rank_indicator[length(rank_indicator) - 1])) table_2$interval <- interval table_2$variable <- c(var_tmp, rep("", (nrow( table_2 ) - 1))) table_3 <- rbind(table_2, rep("", ncol(table_2))) table_tmp <- rbind(table_tmp, table_3) } } } } } table_tmp <- table_tmp[1:(nrow(table_tmp) - 1),] table_final <- data.frame( variable = table_tmp$variable, interval = table_tmp$interval, point = table_tmp$value ) table_kable_format <- kable(table_final, align = "llc", caption = "AutoScore-created scoring model", format = "rst") print(table_kable_format) invisible(table_final) } print_roc_performance <- function(label, score, threshold = "best") { if (sum(is.na(score)) > 0) warning("NA in the score: ", sum(is.na(score))) model_roc <- roc(label, score, quiet = T) cat("AUC: ", round(auc(model_roc), 4), " ") print(ci(model_roc)) if (threshold == "best") { threshold <- ceiling(coords(model_roc, "best", ret = "threshold", transpose = TRUE)) cat("Best score threshold: >=", threshold, "\n") } else { cat("Score threshold: >=", threshold, "\n") } cat("Other performance indicators based on this score threshold: \n") roc <- ci.coords( model_roc, threshold , ret = c("specificity", "sensitivity", "npv", "ppv"), transpose = TRUE ) cat( "Sensitivity: ", round(roc$sensitivity[2], 4), " 95% CI: ", round(roc$sensitivity[1], 4), "-", round(roc$sensitivity[3], 4), "\n", sep = "" ) cat( "Specificity: ", round(roc$specificity[2], 4), " 95% CI: ", round(roc$specificity[1], 4), "-", round(roc$specificity[3], 4), "\n", sep = "" ) cat( "PPV: ", round(roc$ppv[2], 4), " 95% CI: ", round(roc$ppv[1], 4), "-", round(roc$ppv[3], 4), "\n", sep = "" ) cat( "NPV: ", round(roc$npv[2], 4), " 95% CI: ", round(roc$npv[1], 4), "-", round(roc$npv[3], 4), "\n", sep = "" ) } compute_score_table <- function(train_set_2, max_score, variable_list) { model <- glm(label ~ ., family = binomial(link = "logit"), data = train_set_2) coef_vec <- coef(model) if (length(which(is.na(coef_vec))) > 0) { warning(" WARNING: GLM output contains NULL, Replace NULL with 1") coef_vec[which(is.na(coef_vec))] <- 1 } train_set_2 <- change_reference(train_set_2, coef_vec) model <- glm(label ~ ., family = binomial(link = "logit"), data = train_set_2) coef_vec <- coef(model) if (length(which(is.na(coef_vec))) > 0) { warning(" WARNING: GLM output contains NULL, Replace NULL with 1") coef_vec[which(is.na(coef_vec))] <- 1 } coef_vec_tmp <- round(coef_vec / min(coef_vec[-1])) score_table <- add_baseline(train_set_2, coef_vec_tmp) total_max <- max_score total <- 0 for (i in 1:length(variable_list)) total <- total + max(score_table[grepl(variable_list[i], names(score_table))]) score_table <- round(score_table / (total / total_max)) return(score_table) } compute_auc_val <- function(train_set_1, validation_set_1, variable_list, categorize, quantiles, max_cluster, max_score) { cut_vec <- get_cut_vec( train_set_1, categorize = categorize, quantiles = quantiles, max_cluster = max_cluster ) train_set_2 <- transform_df_fixed(train_set_1, cut_vec) validation_set_2 <- transform_df_fixed(validation_set_1, cut_vec) if (sum(is.na(validation_set_2)) > 0) warning("NA in the validation_set_2: ", sum(is.na(validation_set_2))) if (sum(is.na(train_set_2)) > 0) warning("NA in the train_set_2: ", sum(is.na(train_set_2))) score_table <- compute_score_table(train_set_2, max_score, variable_list) if (sum(is.na(score_table)) > 0) warning("NA in the score_table: ", sum(is.na(score_table))) validation_set_3 <- assign_score(validation_set_2, score_table) if (sum(is.na(validation_set_3)) > 0) warning("NA in the validation_set_3: ", sum(is.na(validation_set_3))) validation_set_3$total_score <- rowSums(subset(validation_set_3, select = names(validation_set_3)[names(validation_set_3) != "label"])) y_validation <- validation_set_3$label model_roc <- roc(y_validation, validation_set_3$total_score, quiet = T) return(model_roc) } get_cut_vec <- function(df, quantiles = c(0, 0.05, 0.2, 0.8, 0.95, 1), max_cluster = 5, categorize = "quantile") { cut_vec <- list() for (i in 1:(length(df) - 1)) { if (class(df[, i]) == "factor") { if (length(levels(df[, i])) < 10) (next)() else warning("WARNING: The number of categories should be less than 10", names(df)[i]) } if (categorize == "quantile") { cut_off_tmp <- quantile(df[, i], quantiles) cut_off_tmp <- unique(cut_off_tmp) cut_off <- signif(cut_off_tmp, 3) } else if (categorize == "k_means") { clusters <- kmeans(df[, i], max_cluster) cut_off_tmp <- c() for (j in unique(clusters$cluster)) { cut_off_tmp <- append(cut_off_tmp, min(df[, i][clusters$cluster == j])) } cut_off_tmp <- append(cut_off_tmp, max(df[, i])) cut_off_tmp <- sort(cut_off_tmp) cut_off_tmp <- unique(cut_off_tmp) cut_off <- signif(cut_off_tmp, 3) cut_off <- unique(cut_off) } else { stop('ERROR: please specify correct method for categorizing: "quantile" or "k_means".') } l <- list(cut_off) names(l)[1] <- names(df)[i] cut_vec <- append(cut_vec, l) } for (i in 1:length(cut_vec)) { if (length(cut_vec[[i]]) <= 2) cut_vec[[i]] <- c("let_binary") else cut_vec[[i]] <- cut_vec[[i]][2:(length(cut_vec[[i]]) - 1)] } return(cut_vec) } transform_df_fixed <- function(df, cut_vec) { j <- 1 for (i in 1:(length(df) - 1)) { if (class(df[, i]) == "factor") { if (length(levels(df[, i])) < 10) (next)() else stop("ERROR: The number of categories should be less than 9") } vec <- df[, i] cut_vec_new <- cut_vec[[j]] if (cut_vec_new[1] == "let_binary") { vec[vec != getmode(vec)] <- paste0("not_", getmode(vec)) vec <- as.factor(vec) df[, i] <- vec } else{ if (min(vec) < cut_vec[[j]][1]) cut_vec_new <- c(floor(min(df[, i])) - 100, cut_vec_new) if (max(vec) >= cut_vec[[j]][length(cut_vec[[j]])]) cut_vec_new <- c(cut_vec_new, ceiling(max(df[, i]) + 100)) cut_vec_new_tmp <- signif(cut_vec_new, 3) cut_vec_new_tmp <- unique(cut_vec_new_tmp) df[, i] <- cut( df[, i], breaks = cut_vec_new_tmp, right = F, include.lowest = F, dig.lab = 3 ) if (min(vec) < cut_vec[[j]][1]) levels(df[, i])[1] <- gsub(".*,", "(,", levels(df[, i])[1]) if (max(vec) >= cut_vec[[j]][length(cut_vec[[j]])]) levels(df[, i])[length(levels(df[, i]))] <- gsub(",.*", ",)", levels(df[, i])[length(levels(df[, i]))]) } j <- j + 1 } return(df) } plot_roc_curve <- function(prob, labels, quiet = TRUE) { model_roc <- roc(labels, prob, quiet = quiet) auc <- auc(model_roc) roc.data <- data.frame(fpr = as.vector( coords( model_roc, "local maximas", ret = "1-specificity", transpose = TRUE ) ), tpr = as.vector( coords( model_roc, "local maximas", ret = "sensitivity", transpose = TRUE ) )) p <- ggplot(roc.data, aes_string(x = "fpr", ymin = 0, ymax = "tpr")) + geom_ribbon(alpha = 0.2) + geom_line(aes_string(y = "tpr")) + xlab("1-Specificity") + ylab("Sensitivity") + ggtitle(paste0( "Receiver Operating Characteristic (ROC) Curve \nAUC=", round(auc, digits = 4) )) print(p) } change_reference <- function(df, coef_vec) { df_tmp <- subset(df, select = names(df)[names(df) != "label"]) for (i in (1:length(df_tmp))) { var_name <- names(df_tmp)[i] var_levels <- levels(df_tmp[, i]) var_coef_names <- paste0(var_name, var_levels) coef_i <- coef_vec[which(names(coef_vec) %in% var_coef_names)] if (min(coef_i) < 0) { ref <- var_levels[which(var_coef_names == names(coef_i)[which.min(coef_i)])] df_tmp[, i] <- relevel(df_tmp[, i], ref = ref) } } df_tmp$label <- df$label return(df_tmp) } add_baseline <- function(df, coef_vec) { df <- subset(df, select = names(df)[names(df) != "label"]) coef_names_all <- unlist(lapply(names(df), function(var_name) { paste0(var_name, levels(df[, var_name])) })) coef_vec_all <- numeric(length(coef_names_all)) names(coef_vec_all) <- coef_names_all coef_vec_core <- coef_vec[which(names(coef_vec) %in% names(coef_vec_all))] i_coef <- match(x = names(coef_vec_core), table = names(coef_vec_all)) coef_vec_all[i_coef] <- coef_vec_core coef_vec_all } assign_score <- function(df, score_table) { for (i in 1:(length(names(df)) - 1)) { score_table_tmp <- score_table[grepl(names(df)[i], names(score_table))] df[, i] <- as.character(df[, i]) for (j in 1:length(names(score_table_tmp))) { df[, i][df[, i] %in% gsub(names(df)[i], "", names(score_table_tmp)[j])] <- score_table_tmp[j] } df[, i] <- as.numeric(df[, i]) } return(df) } getmode <- function(vect) { uniqvect <- unique(vect) uniqvect[which.max(tabulate(match(vect, uniqvect)))] } "sample_data" "sample_data_small"
if(FALSE){ library(mvtnorm) library(testthat) library(BuyseTest) library(data.table) } context("Check BuyseTest without strata") n.patients <- c(90,100) BuyseTest.options(check = TRUE, keep.pairScore = TRUE, method.inference = "none", trace = 0) set.seed(10) dt.sim <- simBuyseTest(n.T = n.patients[1], n.C = n.patients[2], argsBin = list(p.T = list(c(0.5,0.5),c(0.25,0.75))), argsCont = list(mu.T = 1:3, sigma.T = rep(1,3)), argsTTE = list(scale.T = 1:3, scale.Censoring.T = rep(1,3))) dt.sim$status1.noC <- 1 dtS.sim <- rbind(cbind(dt.sim, strata = 1), cbind(dt.sim, strata = 2), cbind(dt.sim, strata = 3)) test_that("BuyseTest - binary (no strata)", { BT.bin <- BuyseTest(treatment ~ bin(toxicity1), data = dt.sim) BT2 <- BuyseTest(data = dt.sim, endpoint = "toxicity1", treatment = "treatment", type = "bin") test <- list(favorable = as.double(coef(BT.bin, statistic = "count.favorable", cumulative = FALSE)), unfavorable = as.double(coef(BT.bin, statistic = "count.unfavorable", cumulative = FALSE)), neutral = as.double(coef(BT.bin, statistic = "count.neutral", cumulative = FALSE)), uninf = as.double(coef(BT.bin, statistic = "count.uninf", cumulative = FALSE)), favorable = as.double(coef(BT.bin, statistic = "favorable", cumulative = TRUE)), unfavorable = as.double(coef(BT.bin, statistic = "unfavorable", cumulative = TRUE)), netChange = as.double(coef(BT.bin, statistic = "netBenefit", cumulative = TRUE)), winRatio = as.double(coef(BT.bin, statistic = "winRatio", cumulative = TRUE)) ) GS <- list(favorable = c(1968) , unfavorable = c(2478) , neutral = c(4554) , uninf = c(0) , favorable = c(0.21866667) , unfavorable = c(0.27533333) , netChange = c(-0.05666667) , winRatio = c(0.79418886) ) expect_equal(test, GS, tol = 1e-6, scale = 1) BT.bin@call <- list() BT2@call <- list() expect_equal(BT.bin,BT2) tableS <- summary(BT.bin, print = FALSE, percentage = FALSE)$table dt.tableS <- as.data.table(tableS)[strata == "global"] expect_equal(dt.tableS[,total], unname(dt.tableS[,favorable + unfavorable + neutral + uninf]) ) }) test_that("BuyseTest - binary (strata)", { BT.bin <- BuyseTest(treatment ~ bin(toxicity1) + strata, data = dtS.sim) tableS <- summary(BT.bin, print = FALSE, percentage = FALSE)$table dt.tableS <- as.data.table(tableS) expect_equal(dt.tableS[,total], unname(dt.tableS[,favorable + unfavorable + neutral + uninf] )) expect_equal(dt.tableS[,total], c(27000,9000,9000,9000)) expect_equal(dt.tableS[,favorable], c(5904, 1968, 1968, 1968)) expect_equal(dt.tableS[,unfavorable], c(7434, 2478, 2478, 2478)) expect_equal(dt.tableS[,neutral], c(13662, 4554, 4554, 4554)) expect_equal(dt.tableS[,uninf], c(0, 0, 0, 0)) expect_equal(dt.tableS[,delta], c(-0.05666667, -0.05666667, -0.05666667, -0.05666667), tol = 1e-6) expect_equal(dt.tableS[,Delta], c(-0.05666667, NA, NA, NA), tol = 1e-6) }) test_that("BuyseTest - continuous (no strata)", { BT.cont <- BuyseTest(treatment ~ cont(score1, 1) + cont(score2, 0), data = dt.sim) BT2 <- BuyseTest(data = dt.sim, endpoint = c("score1","score2"), treatment = "treatment", type = c("cont","cont"), threshold = c(1,0) ) test <- list(favorable = as.double(coef(BT.cont, statistic = "count.favorable", cumulative = FALSE)), unfavorable = as.double(coef(BT.cont, statistic = "count.unfavorable", cumulative = FALSE)), neutral = as.double(coef(BT.cont, statistic = "count.neutral", cumulative = FALSE)), uninf = as.double(coef(BT.cont, statistic = "count.uninf", cumulative = FALSE)), favorable = as.double(coef(BT.cont, statistic = "favorable", cumulative = TRUE)), unfavorable = as.double(coef(BT.cont, statistic = "unfavorable", cumulative = TRUE)), netChange = as.double(coef(BT.cont, statistic = "netBenefit", cumulative = TRUE)), winRatio = as.double(coef(BT.cont, statistic = "winRatio", cumulative = TRUE)) ) GS <- list(favorable = c(2196, 2142) , unfavorable = c(2501, 2161) , neutral = c(4303, 0) , uninf = c(0, 0) , favorable = c(0.244, 0.482) , unfavorable = c(0.27788889, 0.518) , netChange = c(-0.03388889, -0.036) , winRatio = c(0.87804878, 0.93050193) ) BT.cont@call <- list() BT2@call <- list() expect_equal(test, GS, tol = 1e-6, scale = 1) expect_equal(BT.cont,BT2) tableS <- summary(BT.cont, print = FALSE, percentage = FALSE)$table dt.tableS <- as.data.table(tableS)[strata == "global"] expect_equal(dt.tableS[,total], unname(dt.tableS[, favorable + unfavorable + neutral + uninf] )) }) test_that("BuyseTest - continuous (strata)", { BT.cont <- BuyseTest(treatment ~ cont(score1, 1) + cont(score2, 0) + strata, data = dtS.sim) tableS <- summary(BT.cont, print = FALSE, percentage = FALSE)$table dt.tableS <- as.data.table(tableS) expect_equal(dt.tableS[,total], unname(dt.tableS[,favorable + unfavorable + neutral + uninf] )) expect_equal(dt.tableS[,total], c(27000, 9000, 9000, 9000, 12909, 4303, 4303, 4303)) expect_equal(dt.tableS[,favorable], c(6588, 2196, 2196, 2196, 6426, 2142, 2142, 2142)) expect_equal(dt.tableS[,unfavorable], c(7503, 2501, 2501, 2501, 6483, 2161, 2161, 2161)) expect_equal(dt.tableS[,neutral], c(12909, 4303, 4303, 4303, 0, 0, 0, 0)) expect_equal(dt.tableS[,uninf], c(0, 0, 0, 0, 0, 0, 0, 0)) expect_equal(dt.tableS[,delta], c(-0.03388889, -0.03388889, -0.03388889, -0.03388889, -0.00211111, -0.00211111, -0.00211111, -0.00211111), tol = 1e-6) expect_equal(dt.tableS[,Delta], c(-0.03388889, NA, NA, NA, -0.036, NA, NA, NA), tol = 1e-6) }) for(method in c("Gehan","Peron")){ test_that(paste0("BuyseTest - tte (same, ",method,", no strata)"),{ BT.tte <- BuyseTest(treatment ~ tte(eventtime1, status1, threshold = 1) + tte(eventtime1, status1, threshold = 0.5) + tte(eventtime1, status1, threshold = 0.25), data = dt.sim, scoring.rule = method, correction.uninf = FALSE ) BT.1tte <- BuyseTest(treatment ~ tte(eventtime1, status1, threshold = 0.25), data = dt.sim, scoring.rule = method, correction.uninf = FALSE ) BT2 <- BuyseTest(data = dt.sim, endpoint = c("eventtime1","eventtime1","eventtime1"), status = c("status1","status1","status1"), treatment = "treatment", type = c("tte","tte","tte"), threshold = c(1,0.5,0.25), scoring.rule = method, correction.uninf = FALSE ) BT.tte@call <- list() BT2@call <- list() expect_equal(BT.tte, BT2) expect_equal(sum(coef(BT.tte, statistic = "count.favorable", cumulative = FALSE)), as.double(coef(BT.1tte, statistic = "count.favorable", cumulative = FALSE))) expect_equal(sum(coef(BT.tte, statistic = "count.unfavorable", cumulative = FALSE)), as.double(coef(BT.1tte, statistic = "count.unfavorable", cumulative = FALSE))) expect_equal(coef(BT.tte, statistic = "count.neutral", cumulative = FALSE)[3], coef(BT.1tte, statistic = "count.neutral", cumulative = FALSE)) expect_equal(coef(BT.tte, statistic = "count.uninf", cumulative = FALSE)[3], coef(BT.1tte, statistic = "count.uninf", cumulative = FALSE)) expect_equal(coef(BT.tte, statistic = "netBenefit", cumulative = TRUE)[3], coef(BT.1tte, statistic = "netBenefit", cumulative = TRUE)) expect_equal(coef(BT.tte, statistic = "winRatio", cumulative = TRUE)[3], coef(BT.1tte, statistic = "winRatio", cumulative = TRUE)) test <- list(favorable = as.double(coef(BT.tte, statistic = "count.favorable", cumulative = FALSE)), unfavorable = as.double(coef(BT.tte, statistic = "count.unfavorable", cumulative = FALSE)), neutral = as.double(coef(BT.tte, statistic = "count.neutral", cumulative = FALSE)), uninf = as.double(coef(BT.tte, statistic = "count.uninf", cumulative = FALSE)), favorable = as.double(coef(BT.tte, statistic = "favorable", cumulative = TRUE)), unfavorable = as.double(coef(BT.tte, statistic = "unfavorable", cumulative = TRUE)), netChange = as.double(coef(BT.tte, statistic = "netBenefit", cumulative = TRUE)), winRatio = as.double(coef(BT.tte, statistic = "winRatio", cumulative = TRUE)) ) if(method == "Gehan"){ GS <- list(favorable = c(438, 719, 543) , unfavorable = c(325, 582, 500) , neutral = c(2284, 1569, 1084) , uninf = c(5953, 5367, 4809) , favorable = c(0.04866667, 0.12855556, 0.18888889) , unfavorable = c(0.03611111, 0.10077778, 0.15633333) , netChange = c(0.01255556, 0.02777778, 0.03255556) , winRatio = c(1.34769231, 1.27563396, 1.20824449) ) }else if(method == "Peron"){ GS <- list(favorable = c(1289.0425448, 1452.9970531, 682.33602169) , unfavorable = c(2044.84933459, 908.62963327, 578.82862552) , neutral = c(5666.10812061, 3304.48143424, 2043.31678703) , uninf = c(0, 0, 0) , favorable = c(0.14322695, 0.30467107, 0.38048618) , unfavorable = c(0.22720548, 0.32816433, 0.39247862) , netChange = c(-0.08397853, -0.02349326, -0.01199244) , winRatio = c(0.6303851, 0.92841006, 0.96944434) ) } expect_equal(test, GS, tolerance = 1e-6, scale = 1) tableS <- summary(BT.tte, print = FALSE, percentage = FALSE)$table dt.tableS <- as.data.table(tableS)[strata == "global"] expect_equal(dt.tableS[,total], unname(dt.tableS[,favorable + unfavorable + neutral + uninf]), tolerance = 1e-1, scale = 1) }) } for(method in c("Gehan","Peron")){ test_that(paste0("BuyseTest - tte (different, ",method,", no strata)"),{ BT.tte <- BuyseTest(treatment ~ tte(eventtime1, status1, threshold = 1) + tte(eventtime2, status2, threshold = 0.5) + tte(eventtime3, status3, threshold = 0.25), data = dt.sim, scoring.rule = method, correction.uninf = FALSE) BT2 <- BuyseTest(data = dt.sim, endpoint = c("eventtime1","eventtime2","eventtime3"), status = c("status1","status2","status3"), treatment = "treatment", type = c("tte","tte","tte"), threshold = c(1,0.5,0.25), scoring.rule = method, correction.uninf = FALSE ) test <- list(favorable = as.double(coef(BT.tte, statistic = "count.favorable", cumulative = FALSE)), unfavorable = as.double(coef(BT.tte, statistic = "count.unfavorable", cumulative = FALSE)), neutral = as.double(coef(BT.tte, statistic = "count.neutral", cumulative = FALSE)), uninf = as.double(coef(BT.tte, statistic = "count.uninf", cumulative = FALSE)), favorable = as.double(coef(BT.tte, statistic = "favorable", cumulative = TRUE)), unfavorable = as.double(coef(BT.tte, statistic = "unfavorable", cumulative = TRUE)), netChange = as.double(coef(BT.tte, statistic = "netBenefit", cumulative = TRUE)), winRatio = as.double(coef(BT.tte, statistic = "winRatio", cumulative = TRUE)) ) BT.tte@call <- list() BT2@call <- list() expect_equal(BT.tte, BT2) if(method == "Gehan"){ GS <- list(favorable = c(438, 620, 794) , unfavorable = c(325, 561, 361) , neutral = c(2284, 339, 73) , uninf = c(5953, 6717, 5828) , favorable = c(0.04866667, 0.11755556, 0.20577778) , unfavorable = c(0.03611111, 0.09844444, 0.13855556) , netChange = c(0.01255556, 0.01911111, 0.06722222) , winRatio = c(1.34769231, 1.19413093, 1.48516439) ) }else if(method == "Peron"){ GS <- list(favorable = c(1289.0425448, 2318.38791489, 1231.91554493) , unfavorable = c(2044.84933459, 1529.8258322, 491.18260522) , neutral = c(5666.10812061, 867.93018367, 94.79622337) , uninf = c(0, 949.96418985, 0) , favorable = c(0.14322695, 0.40082561, 0.53770511) , unfavorable = c(0.22720548, 0.39718613, 0.45176197) , netChange = c(-0.08397853, 0.00363948, 0.08594314) , winRatio = c(0.6303851, 1.00916315, 1.19023986) ) } tableS <- summary(BT.tte, print = FALSE, percentage = FALSE)$table dt.tableS <- as.data.table(tableS)[strata == "global"] expect_equal(dt.tableS[,total], unname(dt.tableS[,favorable + unfavorable + neutral + uninf]), tolerance = 1e-1, scale = 1) }) } for(method in c("Gehan","Peron")){ test_that(paste0("BuyseTest - tte (same, ",method,", strata)"),{ BT.tte <- BuyseTest(treatment ~ tte(eventtime1, status1, threshold = 1) + tte(eventtime1, status1, threshold = 0.5) + tte(eventtime1, status1, threshold = 0.25) + strata, data = dtS.sim, scoring.rule = method) test <- list(favorable = as.double(coef(BT.tte, statistic = "count.favorable", stratified = TRUE, cumulative = FALSE)), unfavorable = as.double(coef(BT.tte, statistic = "count.unfavorable", stratified = TRUE, cumulative = FALSE)), neutral = as.double(coef(BT.tte, statistic = "count.neutral", stratified = TRUE, cumulative = FALSE)), uninf = as.double(coef(BT.tte, statistic = "count.uninf", stratified = TRUE, cumulative = FALSE)), favorable = as.double(coef(BT.tte, statistic = "favorable", stratified = FALSE, cumulative = TRUE)), unfavorable = as.double(coef(BT.tte, statistic = "unfavorable", stratified = FALSE, cumulative = TRUE)), netChange = as.double(coef(BT.tte, statistic = "netBenefit", stratified = FALSE, cumulative = TRUE)), winRatio = as.double(coef(BT.tte, statistic = "winRatio", stratified = FALSE, cumulative = TRUE)) ) if(method == "Gehan"){ GS <- list(favorable = c(438, 438, 438, 719, 719, 719, 543, 543, 543) , unfavorable = c(325, 325, 325, 582, 582, 582, 500, 500, 500) , neutral = c(2284, 2284, 2284, 1569, 1569, 1569, 1084, 1084, 1084) , uninf = c(5953, 5953, 5953, 5367, 5367, 5367, 4809, 4809, 4809) , favorable = c(0.04867, 0.12856, 0.18889) , unfavorable = c(0.03611, 0.10078, 0.15633) , netChange = c(0.01256, 0.02778, 0.03256) , winRatio = c(1.34769, 1.27563, 1.20824) ) } else if(method == "Peron"){ GS <- list(favorable = c(1289.04254, 1289.04254, 1289.04254, 1452.99705, 1452.99705, 1452.99705, 682.33602, 682.33602, 682.33602) , unfavorable = c(2044.84933, 2044.84933, 2044.84933, 908.62963, 908.62963, 908.62963, 578.82863, 578.82863, 578.82863) , neutral = c(5666.10812, 5666.10812, 5666.10812, 3304.48143, 3304.48143, 3304.48143, 2043.31679, 2043.31679, 2043.31679) , uninf = c(0, 0, 0, 0, 0, 0, 0, 0, 0) , favorable = c(0.14323, 0.30467, 0.38049) , unfavorable = c(0.22721, 0.32816, 0.39248) , netChange = c(-0.08398, -0.02349, -0.01199) , winRatio = c(0.63039, 0.92841, 0.96944) ) } expect_equal(GS, test, tol = 1e-4, scale = 1) tableS <- summary(BT.tte, print = FALSE, percentage = FALSE)$table expect_equal(tableS[tableS$strata=="1","Delta"],tableS[tableS$strata=="2","Delta"]) expect_equal(tableS[tableS$strata=="1","Delta"],tableS[tableS$strata=="3","Delta"]) expect_equal(tableS[tableS$strata=="1","Delta"],tableS[tableS$strata=="3","Delta"]) dt.tableS <- as.data.table(tableS)[strata == "global"] expect_equal(dt.tableS[,total], unname(dt.tableS[,favorable + unfavorable + neutral + uninf]), tolerance = 1e-1, scale = 1) }) } for(method in c("Gehan","Peron")){ test_that(paste0("BuyseTest - mixed (",method,", no strata)"),{ BT.mixed <- BuyseTest(treatment ~ tte(eventtime1, status1, threshold = 0.5) + cont(score1, 1) + bin(toxicity1) + tte(eventtime1, status1, threshold = 0.25) + cont(score1, 0.5), data = dt.sim, scoring.rule = method) BT2 <- BuyseTest(data=dt.sim, endpoint=c("eventtime1","score1","toxicity1","eventtime1","score1"), status=c("status1","..NA..","..NA..","status1","..NA.."), treatment="treatment", type=c("timeToEvent","continuous","binary","timeToEvent","continuous"), threshold=c(0.5,1,NA,0.25,0.5), scoring.rule=method) BT.mixed@call <- list() BT2@call <- list() expect_equal(BT.mixed, BT2) test <- list(favorable = as.double(coef(BT.mixed, statistic = "count.favorable", cumulative = FALSE)), unfavorable = as.double(coef(BT.mixed, statistic = "count.unfavorable", cumulative = FALSE)), neutral = as.double(coef(BT.mixed, statistic = "count.neutral", cumulative = FALSE)), uninf = as.double(coef(BT.mixed, statistic = "count.uninf", cumulative = FALSE)), favorable = as.double(coef(BT.mixed, statistic = "favorable", cumulative = TRUE)), unfavorable = as.double(coef(BT.mixed, statistic = "unfavorable", cumulative = TRUE)), netChange = as.double(coef(BT.mixed, statistic = "netBenefit", cumulative = TRUE)), winRatio = as.double(coef(BT.mixed, statistic = "winRatio", cumulative = TRUE)) ) if(method == "Gehan"){ GS <- list(favorable = c(1157, 1753, 751, 134, 373) , unfavorable = c(907, 1806, 949, 129, 323) , neutral = c(1569, 3377, 1677, 277, 718) , uninf = c(5367, 0, 0, 1137, 0) , favorable = c(0.12855556, 0.32333333, 0.40677778, 0.42166667, 0.46311111) , unfavorable = c(0.10077778, 0.30144444, 0.40688889, 0.42122222, 0.45711111) , netChange = c(0.02777778, 0.02188889, -0.00011111, 0.00044444, 0.006) , winRatio = c(1.27563396, 1.07261334, 0.99972693, 1.00105513, 1.01312591) ) }else if(method == "Peron"){ GS <- list(favorable = c(2742.0395979, 792.80301972, 403.03891763, 160.70305305, 134.38721963) , unfavorable = c(2953.47896786, 896.93725328, 407.50415506, 142.85049401, 122.54879121) , neutral = c(3304.48143424, 1614.74116124, 804.19808854, 500.64454148, 243.70853064) , uninf = c(0, 0, 0, 0, 0) , favorable = c(0.30467107, 0.39276029, 0.43754239, 0.45539829, 0.4703302) , unfavorable = c(0.32816433, 0.42782402, 0.47310226, 0.48897454, 0.50259107) , netChange = c(-0.02349326, -0.03506373, -0.03555987, -0.03357625, -0.03226087) , winRatio = c(0.92841006, 0.91804169, 0.92483682, 0.93133333, 0.93581089) ) } expect_equal(test, GS, tolerance = 1e-6, scale = 1) tableS <- summary(BT.mixed, print = FALSE, percentage = FALSE)$table dt.tableS <- as.data.table(tableS)[strata == "global"] expect_equal(dt.tableS[,total], unname(dt.tableS[,favorable + unfavorable + neutral + uninf]) ) }) } test_that("ordering does not matter", { BT.mixed1 <- BuyseTest(treatment ~ tte(eventtime1, status1, threshold = 0.25) + cont(score1, 1), data = dt.sim, scoring.rule = method) BT.mixed2 <- BuyseTest(treatment ~ tte(eventtime1, status1, threshold = 0.5) + tte(eventtime1, status1, threshold = 0.25) + cont(score1, 1), data = dt.sim, scoring.rule = method) expect_equal(coef(BT.mixed2, statistic = "netBenefit")[2:3], coef(BT.mixed1, statistic = "netBenefit"), tol = 1e-6) expect_equal(coef(BT.mixed2, statistic = "winRatio")[2:3], coef(BT.mixed1, statistic = "winRatio"), tol = 1e-6) }) test_that(paste0("BuyseTest - Peron scoring rule with 2 TTE, one without censoring"),{ BT.mixed <- BuyseTest(treatment ~ tte(eventtime2, status2, threshold = 0.5) + tte(eventtime1, status1.noC, threshold = 0), data = dt.sim, scoring.rule = "Peron") expect_equal(unname(attr([email protected],"method.score")), c("SurvPeron","continuous")) BT.mixed <- BuyseTest(treatment ~ tte(eventtime1, status1.noC, threshold = 0) + tte(eventtime2, status2, threshold = 0.5), data = dt.sim, scoring.rule = "Peron") expect_equal(unname(attr([email protected],"method.score")), c("continuous","SurvPeron")) }) test_that("BuyseTest - left vs. right censoring", { BT.left <- BuyseTest(treatment ~ tte(eventtime1, status = status1, censoring = "left"), data = dt.sim, scoring.rule = "Gehan") expect_equal(as.double(coef(BT.left)), 0.09488889, tol = 1e-6) BT.left <- BuyseTest(treatment ~ tte(eventtime1, status = status1, censoring = "left"), data = dt.sim, scoring.rule = "Gehan", correction.uninf = TRUE) expect_equal(as.double(coef(BT.left)), 0.1768116, tol = 1e-6) }) df.1 <- data.frame(mean = 0:1, sd = 1, treatment = c("C","T")) df.2 <- data.frame(mean = 0:1, sd = c(2,0.5), treatment = c("C","T")) df.3 <- rbind(df.1,df.2) test_that("BuyseTest - uncorrelated gaussians", { GS.1 <- 1 - pnorm(0, mean = 1, sd = sqrt(2)) BTG.1 <- BuyseTest(treatment ~ gaus(mean, sd), data = df.1, method.inference = "none") expect_equal(GS.1,as.double(coef(BTG.1, statistic = "favorable")),tol=1e-6) GS.2 <- 1 - pnorm(0, mean = 1, sd = sqrt(4.25)) BTG.2 <- BuyseTest(treatment ~ gaus(mean = mean, std = sd), data = df.2, method.inference = "none") expect_equal(GS.2,as.double(coef(BTG.2, statistic = "favorable")),tol=1e-6) GS.3 <- mean(c(GS.1, (1 - pnorm(0, mean = 1, sd = sqrt(5))), 1 - pnorm(0, mean = 1, sd = sqrt(1.25)), GS.2)) BTG.3 <- BuyseTest(treatment ~ gaus(mean = mean, std = sd), data = df.3, method.inference = "none") expect_equal(GS.3,as.double(coef(BTG.3, statistic = "favorable")),tol=1e-6) }) complement <- function(rho, n) { x <- rnorm(n) y <- rnorm(n) y.perp <- residuals(lm(x ~ y)) z <- rho * sd(y.perp) * y + sqrt(1 - rho^2) * sd(y) * y.perp return(list(Y=as.double(y),X=as.double(z))) } df.1$iid <- complement(rho = 0.5, n = 10) df.2$iid <- complement(rho = 0.5, n = 10) df.3 <- rbind(df.1,df.2) test_that("BuyseTest - correlated gaussians", { GS.1 <- 1 - pnorm(0, mean = 1, sd = sqrt(1)) BTG.1 <- BuyseTest(treatment ~ gaus(mean, sd, iid), data = df.1, method.inference = "none") expect_equal(GS.1,as.double(coef(BTG.1, statistic = "favorable")),tol=1e-6) GS.2 <- 1 - pnorm(0, mean = 1, sd = sqrt(3.25)) BTG.2 <- BuyseTest(treatment ~ gaus(mean = mean, std = sd, iid), data = df.2, method.inference = "none") expect_equal(GS.2,as.double(coef(BTG.2, statistic = "favorable")),tol=1e-6) GS.3 <- mean(c(GS.1, 1 - pnorm(0, mean = 1, sd = sqrt(1.25-cor(df.1$iid[[1]],df.2$iid[[2]]))), 1 - pnorm(0, mean = 1, sd = sqrt(5-4*cor(df.1$iid[[2]],df.2$iid[[1]]))), GS.2)) BTG.3 <- BuyseTest(treatment ~ gaus(mean = mean, std = sd, iid = iid), data = df.3, method.inference = "none") expect_equal(GS.3,as.double(coef(BTG.3, statistic = "favorable")),tol=1e-6) })
mod1 <- mread('ex_mbr1', mbrlib()) mod2 <- mread('ex_mbr2', mbrlib()) mod3 <- mread('ex_mbr3', mbrlib()) test_that("example models are suitable for these tests", { expect_equal(adm_cmt(mod1), c(1,2)) expect_equal(adm_cmt(mod2), 1) expect_equal(adm_cmt(mod3), 1) expect_equal(adm_0_cmt(mod1), 2) expect_equal(adm_0_cmt(mod2), 1) expect_null(adm_0_cmt(mod3)) }) test_that("detection of default administration compartment is good",{ expect_equal(get_data(adm_lines(mod1, amt = 100))[["cmt"]], adm_cmt(mod1)) expect_equal(get_data(adm_lines(mod2, amt = 100))[["cmt"]], adm_cmt(mod2)) expect_equal(get_data(adm_lines(mod3, amt = 100))[["cmt"]], adm_cmt(mod3)) }) test_that("explicit cmt works well",{ expect_equal(get_data(adm_lines(mod1, amt = 100, cmt = 1))[["cmt"]], 1) expect_equal(get_data(adm_lines(mod1, amt = 100, cmt = c(3, -99)))[["cmt"]], c(-99, 3)) }) test_that("rate incrementation is ok",{ expect_equal(get_data(adm_lines(mod1, amt = 100))[c("cmt","rate")], tibble(cmt = c(1,2), rate = c(0, -2))) expect_equal(get_data(adm_lines(mod2, amt = 100))[c("cmt","rate")], tibble(cmt = 1, rate = -2)) expect_null(get_data(adm_lines(mod3, amt = 100))[["rate"]]) }) test_that("rate incrementation is ok with explicit cmt",{ expect_equal(get_data(adm_lines(mod2, amt = 100, cmt = 3))[["rate"]], 0) expect_equal(get_data(adm_lines(mod2, amt = 100, cmt = c(1, 3, -99)))[c("cmt","rate")], tibble(cmt = c(-99, 1, 3), rate = c(0, -2 , 0))) }) test_that("rate incrementation is ok with explicit rate",{ expect_equal(get_data(adm_lines(mod2, amt = 100, cmt = 3, rate = 150))[["rate"]], 150) expect_equal(get_data(adm_lines(mod2, amt = 100, cmt = c(1, 3, -99), rate = 150))[c("cmt","rate")], tibble(cmt = c(-99, 1, 3), rate = 150)) }) test_that("ID increment ok", { expect_equal((mod3 %>% adm_lines(ID = 3, amt = 100) %>% get_data())$ID, 3) expect_equal((mod3 %>% adm_lines(ID = 3, amt = 100) %>% obs_lines(time = 23, DV = 1.01) %>% get_data())$ID, c(3,3)) expect_equal((mod3 %>% adm_lines(ID = 3, amt = 100) %>% adm_lines(ID = 2, time = 1, amt = 1) %>% get_data())$ID, c(2,3)) expect_error(mod3 %>% adm_lines(ID = 1, amt = 100) %>% obs_lines(ID = 88)) }) test_that("realize addl works", { expect_equal( mod3 %>% adm_lines(amt = 100, addl = 9, ii = 24, realize_addl = T) %>% get_data() %>% nrow(), 10 ) }) test_that("no NA in SS, ADDL, RATE or II",{ data1 <- mod1 %>% adm_lines(time = 0, amt = 10000) %>% adm_lines(time = 72, amt = 10000, addl = 2, ii = 24, realize_addl = TRUE) %>% get_data() expect_false(any(is.na(data1$addl))) expect_false(any(is.na(data1$ii))) data2 <- mod2 %>% adm_lines(time = 0, amt = 10000, ss = 1, ii = 24) %>% adm_lines(time = 72, amt = 10000) %>% get_data() expect_false(any(is.na(data2$ss))) expect_false(any(is.na(data2$ii))) data3 <- mod3 %>% adm_lines(time = 0, amt = 100, rate = 20) %>% adm_lines(time = 24, amt = 100) %>% get_data() expect_false(any(is.na(data3$rate))) })
confMatrixMetrics <- function(predTest,depTest,cutoff=0.5,dyn.cutoff=FALSE,predVal=NULL,depVal=NULL){ checkDepVector(depTest) cm<-dynConfMatrix(predTest,depTest,cutoff=cutoff,dyn.cutoff=dyn.cutoff,predVal=predVal,depVal=depVal) ACC<-sum(diag(cm$confMatrix))/sum(cm$confMatrix) TP = cm$confMatrix[2,2] TN = cm$confMatrix[1,1] FP = cm$confMatrix[1,2] FN = cm$confMatrix[2,1] TPR = TP/(TP+FN) TNR = TN/(FP+TN) FPR = FP/(TP+FN) FNR = FN/(FP+TN) if (TP+FN>0) REC = TP/(TP+FN) else REC=NA if (TP+FP>0) PRE = TP/(TP+FP) else PRE=NA if (is.na(PRE)==FALSE && is.na(REC)==FALSE) F1 = 2*PRE*REC/(PRE+REC) else F1 = NA ans<-list(accuracy=ACC,truePositiveRate=TPR,trueNegativeRate=TNR,falsePostiveRate=FPR,falseNegativeRate=FPR,F1Score=F1,cutoff=cutoff) ans }
write_JAGS_model <- function(filename = "MixSIAR_model.txt", resid_err = TRUE, process_err = TRUE, mix, source){ if(!process_err && !resid_err){ stop(paste("Invalid error structure, must choose one of: 1. Residual * Process (resid_err=TRUE, process_err=TRUE) 2. Residual only (resid_err=TRUE, process_err=FALSE) 3. Process only (resid_err=FALSE, process_err=TRUE)",sep="")) } if(resid_err && !process_err){ err_model <- "Residual only" err <- "resid" } if(process_err && !resid_err){ err_model <- "Process only (MixSIR, for N = 1)" err <- "process" } if(resid_err && process_err){ err_model <- "Residual * Process" err <- "mult" } if(mix$N==1 && err!="process"){ stop(paste("Invalid error structure. If N=1 mix data point, must choose Process only error model (MixSIR). Set resid_err=FALSE and process_err=TRUE.",sep=""))} if(mix$n.fe==1 && mix$N==mix$FAC[[1]]$levels && err!="process"){ stop(paste("Invalid error structure. If fitting each individual mix data point separately, must choose Process only error model (MixSIR). Set resid_err=FALSE and process_err=TRUE.",sep=""))} cat(paste(" cat(" ", file=filename, append=T) cat(paste(" cat(" ", file=filename, append=T) cat(paste(" cat(" ", file=filename, append=T) cat(paste(" cat(" ", file=filename, append=T) cat(paste(" cat(" ", file=filename, append=T) cat(paste(" cat(" ", file=filename, append=T) cat(paste(" cat(" ", file=filename, append=T) cat(paste(" cat(" ", file=filename, append=T) cat(paste(" if(source$data_type=="raw" && is.na(source$by_factor)){ cat(" var rho[n.sources,n.iso,n.iso], src_cov[n.sources,n.iso,n.iso], src_var[n.sources,n.iso,n.iso], src_Sigma[n.sources,n.iso,n.iso], Sigma.ind[N,n.iso,n.iso], mix.cov[N,n.iso,n.iso];", file=filename, append=T) } if(source$data_type=="raw" && !is.na(source$by_factor)){ cat(" var rho[n.sources,source_factor_levels,n.iso,n.iso], src_cov[n.sources,source_factor_levels,n.iso,n.iso], src_var[n.sources,source_factor_levels,n.iso,n.iso], src_Sigma[n.sources,source_factor_levels,n.iso,n.iso], Sigma.ind[N,n.iso,n.iso], mix.cov[N,n.iso,n.iso];", file=filename, append=T) } cat(" model{", file=filename, append=T) if(source$data_type=="raw" && !is.na(source$by_factor) && mix$n.iso > 1){ cat(" for(src in 1:n.sources){ for(f1 in 1:source_factor_levels){ for(iso in 1:n.iso){ src_mu[src,iso,f1] ~ dnorm(0,.001); } for(i in 2:n.iso){ for(j in 1:(i-1)){ src_tau[src,f1,i,j] <- 0; src_tau[src,f1,j,i] <- 0; } } for(i in 1:n.iso){ src_tau[src,f1,i,i] ~ dgamma(.001,.001); } for(i in 2:n.iso){ for(j in 1:(i-1)){ rho[src,f1,i,j] ~ dunif(-1,1); rho[src,f1,j,i] <- rho[src,f1,i,j]; } } for(i in 1:n.iso){ rho[src,f1,i,i] <- 1; } src_var[src,f1,,] <- inverse(src_tau[src,f1,,]); src_cov[src,f1,,] <- src_var[src,f1,,] %*% rho[src,f1,,] %*% src_var[src,f1,,]; src_Sigma[src,f1,,] <- inverse(src_cov[src,f1,,]); for(r in 1:n.rep[src,f1]){ SOURCE_array[src,,f1,r] ~ dmnorm(src_mu[src,,f1],src_Sigma[src,f1,,]); } } } ", file=filename, append=T) } if(source$data_type=="raw" && is.na(source$by_factor) && mix$n.iso > 1){ cat(" for(src in 1:n.sources){ for(iso in 1:n.iso){ src_mu[src,iso] ~ dnorm(0,.001); } for(i in 2:n.iso){ for(j in 1:(i-1)){ src_tau[src,i,j] <- 0; src_tau[src,j,i] <- 0; } } for(i in 1:n.iso){ src_tau[src,i,i] ~ dgamma(.001,.001); } for(i in 2:n.iso){ for(j in 1:(i-1)){ rho[src,i,j] ~ dunif(-1,1); rho[src,j,i] <- rho[src,i,j]; } } for(i in 1:n.iso){ rho[src,i,i] <- 1; } src_var[src,,] <- inverse(src_tau[src,,]); src_cov[src,,] <- src_var[src,,] %*% rho[src,,] %*% src_var[src,,]; src_Sigma[src,,] <- inverse(src_cov[src,,]); for(r in 1:n.rep[src]){ SOURCE_array[src,,r] ~ dmnorm(src_mu[src,],src_Sigma[src,,]); } } ", file=filename, append=T) } if(source$data_type=="raw" && mix$n.iso == 1){ cat(" for(src in 1:n.sources){ for(iso in 1:n.iso){ src_mu[src,iso] ~ dnorm(0,.001); src_tau[src,iso,iso] ~ dgamma(.001,.001); rho[src,iso,iso] <- 1; } src_var[src,,] <- 1/src_tau[src,,]; src_cov[src,,] <- src_var[src,,] %*% rho[src,,] %*% src_var[src,,]; src_Sigma[src,,] <- 1/src_cov[src,,]; for(r in 1:n.rep[src]){ SOURCE_array[src,,r] ~ dnorm(src_mu[src,],src_Sigma[src,,]); } } ", file=filename, append=T) } if(source$data_type=="means" && is.na(source$by_factor)){ cat(" for(src in 1:n.sources){ for(iso in 1:n.iso){ src_mu[src,iso] ~ dnorm(MU_array[src,iso], n_array[src]/SIG2_array[src,iso]); tmp.X[src,iso] ~ dchisqr(n_array[src]); src_tau[src,iso] <- tmp.X[src,iso]/(SIG2_array[src,iso]*(n_array[src] - 1)); } } ", file=filename, append=T) } if(source$data_type=="means" && !is.na(source$by_factor)){ cat(" for(src in 1:n.sources){ for(f1 in 1:source_factor_levels){ for(iso in 1:n.iso){ src_mu[src,iso,f1] ~ dnorm(MU_array[src,iso,f1], n_array[src,f1]/SIG2_array[src,iso,f1]); tmp.X[src,iso,f1] ~ dchisqr(n_array[src,f1]); src_tau[src,iso,f1] <- tmp.X[src,iso,f1]/(SIG2_array[src,iso,f1]*(n_array[src,f1] - 1)); } } } ", file=filename, append=T) } cat(" p.global[1:n.sources] ~ ddirch(alpha[1:n.sources]); for(src in 1:(n.sources-1)){ gmean[src] <- prod(p.global[1:src])^(1/src); ilr.global[src] <- sqrt(src/(src+1))*log(gmean[src]/p.global[src+1]); } ", file=filename, append=T) if(mix$n.effects > 0 && mix$FAC[[1]]$re){ cat(" fac1.sig ~ dunif(0,20); fac1.invSig2 <- 1/(fac1.sig*fac1.sig); for(f1 in 1:factor1_levels) { for(src in 1:(n.sources-1)) { ilr.fac1[f1,src] ~ dnorm(0,fac1.invSig2); } } ", file=filename, append=T)} if(mix$n.effects > 0 && !mix$FAC[[1]]$re){ cat(" for(src in 1:(n.sources-1)){ ilr.fac1[1,src] <- 0; for(f1 in 2:factor1_levels){ ilr.fac1[f1,src] ~ dnorm(0,1); } } ", file=filename, append=T)} if(mix$n.effects > 1 && mix$FAC[[2]]$re){ cat(" fac2.sig ~ dunif(0,20); fac2.invSig2 <- 1/(fac2.sig*fac2.sig); for(f2 in 1:factor2_levels){ for(src in 1:(n.sources-1)){ ilr.fac2[f2,src] ~ dnorm(0,fac2.invSig2); } } ", file=filename, append=T)} if(mix$n.effects > 1 && !mix$FAC[[2]]$re){ cat(" for(src in 1:(n.sources-1)){ ilr.fac2[1,src] <- 0; for(f2 in 2:factor2_levels){ ilr.fac2[f2,src] ~ dnorm(0,1); } } ", file=filename, append=T)} ilr.cont.string <- "" if(mix$n.ce > 0){ cat(" for(ce in 1:mix$n.ce){ cat(" for(src in 1:(n.sources-1)){ ilr.cont",ce,"[src] ~ dnorm(0,.001) } ", file=filename, append=T, sep="") ilr.cont.string <- paste(ilr.cont.string," + ilr.cont",ce,"[src]*Cont.",ce,"[i]",sep="")} } cat(" for(i in 1:N) { for(src in 1:(n.sources-1)) { ilr.ind[i,src] <- 0;", file=filename, append=T) if(mix$n.effects==2){ cat(" ilr.tot[i,src] <- ilr.global[src] + ilr.fac1[Factor.1[i],src] + ilr.fac2[Factor.2[i],src]",ilr.cont.string," + ilr.ind[i,src]; } } ", file=filename, append=T, sep="")} if(mix$n.effects==1){ cat(" ilr.tot[i,src] <- ilr.global[src] + ilr.fac1[Factor.1[i],src]",ilr.cont.string," + ilr.ind[i,src]; } } ", file=filename, append=T, sep="")} if(mix$n.effects==0){ cat(" ilr.tot[i,src] <- ilr.global[src]",ilr.cont.string," + ilr.ind[i,src]; } } ", file=filename, append=T, sep="")} cat(" for(i in 1:N){ for(j in 1:(n.sources-1)){ cross[i,,j] <- (e[,j]^ilr.tot[i,j])/sum(e[,j]^ilr.tot[i,j]); } for(src in 1:n.sources){ tmp.p[i,src] <- prod(cross[i,src,]); } for(src in 1:n.sources){ p.ind[i,src] <- tmp.p[i,src]/sum(tmp.p[i,]); } } for(src in 1:n.sources) { for(i in 1:N){ p2[i,src] <- p.ind[i,src]*p.ind[i,src]; } } ", file=filename, append=T) if(mix$n.effects > 0 & !mix$fere){ if(mix$fac_nested[1]){ cat(" for(f1 in 1:factor1_levels) { for(src in 1:(n.sources-1)) { ilr.fac1.tot[f1,src] <- ilr.global[src] + ilr.fac2[factor2_lookup[f1],src] + ilr.fac1[f1,src]; cross.fac1[f1,,src] <- (e[,src]^ilr.fac1.tot[f1,src])/sum(e[,src]^ilr.fac1.tot[f1,src]); } for(src in 1:n.sources) { tmp.p.fac1[f1,src] <- prod(cross.fac1[f1,src,]); } for(src in 1:n.sources){ p.fac1[f1,src] <- tmp.p.fac1[f1,src]/sum(tmp.p.fac1[f1,]); } } ", file=filename, append=T) } else { cat(" for(f1 in 1:factor1_levels) { for(src in 1:(n.sources-1)) { ilr.fac1.tot[f1,src] <- ilr.global[src] + ilr.fac1[f1,src]; cross.fac1[f1,,src] <- (e[,src]^ilr.fac1.tot[f1,src])/sum(e[,src]^ilr.fac1.tot[f1,src]); } for(src in 1:n.sources) { tmp.p.fac1[f1,src] <- prod(cross.fac1[f1,src,]); } for(src in 1:n.sources){ p.fac1[f1,src] <- tmp.p.fac1[f1,src]/sum(tmp.p.fac1[f1,]); } } ", file=filename, append=T) } } if(mix$n.effects > 1 & !mix$fere){ if(mix$fac_nested[2]){ cat(" for(f2 in 1:factor2_levels){ for(src in 1:(n.sources-1)){ ilr.fac2.tot[f2,src] <- ilr.global[src] + ilr.fac1[factor1_lookup[f2],src] + ilr.fac2[f2,src]; cross.fac2[f2,,src] <- (e[,src]^ilr.fac2.tot[f2,src])/sum(e[,src]^ilr.fac2.tot[f2,src]); } for(src in 1:n.sources) { tmp.p.fac2[f2,src] <- prod(cross.fac2[f2,src,]); } for(src in 1:n.sources){ p.fac2[f2,src] <- tmp.p.fac2[f2,src]/sum(tmp.p.fac2[f2,]); } } ", file=filename, append=T) } else { cat(" for(f2 in 1:factor2_levels){ for(src in 1:(n.sources-1)){ ilr.fac2.tot[f2,src] <- ilr.global[src] + ilr.fac2[f2,src]; cross.fac2[f2,,src] <- (e[,src]^ilr.fac2.tot[f2,src])/sum(e[,src]^ilr.fac2.tot[f2,src]); } for(src in 1:n.sources) { tmp.p.fac2[f2,src] <- prod(cross.fac2[f2,src,]); } for(src in 1:n.sources){ p.fac2[f2,src] <- tmp.p.fac2[f2,src]/sum(tmp.p.fac2[f2,]); } } ", file=filename, append=T) } } if(mix$fere){ if(mix$n.re==1){ cat(" for(f1 in 1:factor1_levels) { for(src in 1:(n.sources-1)) { ilr.fac1.tot[f1,src] <- ilr.global[src] + ilr.fac1[f1,src]; cross.fac1[f1,,src] <- (e[,src]^ilr.fac1.tot[f1,src])/sum(e[,src]^ilr.fac1.tot[f1,src]); } for(src in 1:n.sources) { tmp.p.fac1[f1,src] <- prod(cross.fac1[f1,src,]); } for(src in 1:n.sources){ p.fac1[f1,src] <- tmp.p.fac1[f1,src]/sum(tmp.p.fac1[f1,]); } } ", file=filename, append=T) } } cat(" for(iso in 1:n.iso) { for(i in 1:N) { ", file=filename, append=T) if(!is.na(source$by_factor) && source$conc_dep==T){ if(source$by_factor == 1){ cat(" mix.mu[iso,i] <- (inprod(src_mu[,iso,Factor.1[i]],(p.ind[i,]*conc[,iso])) + inprod(frac_mu[,iso],(p.ind[i,]*conc[,iso]))) / inprod(p.ind[i,],conc[,iso]);", file=filename, append=T) } else { cat(" mix.mu[iso,i] <- (inprod(src_mu[,iso,Factor.2[i]],(p.ind[i,]*conc[,iso])) + inprod(frac_mu[,iso],(p.ind[i,]*conc[,iso]))) / inprod(p.ind[i,],conc[,iso]);", file=filename, append=T) } } else if(!is.na(source$by_factor) && source$conc_dep==F){ if(source$by_factor == 1){ cat(" mix.mu[iso,i] <- inprod(src_mu[,iso,Factor.1[i]],p.ind[i,]) + inprod(frac_mu[,iso],p.ind[i,]);", file=filename, append=T) } else { cat(" mix.mu[iso,i] <- inprod(src_mu[,iso,Factor.2[i]],p.ind[i,]) + inprod(frac_mu[,iso],p.ind[i,]);", file=filename, append=T) } } else if(is.na(source$by_factor) && source$conc_dep==T){ cat(" mix.mu[iso,i] <- (inprod(src_mu[,iso],(p.ind[i,]*conc[,iso])) + inprod(frac_mu[,iso],(p.ind[i,]*conc[,iso]))) / inprod(p.ind[i,],conc[,iso]);", file=filename, append=T) } else if(is.na(source$by_factor) && source$conc_dep==F){ cat(" mix.mu[iso,i] <- inprod(src_mu[,iso],p.ind[i,]) + inprod(frac_mu[,iso],p.ind[i,]);", file=filename, append=T) } cat(" } } ", file=filename, append=T) if(err=="mult"){ cat(" for(iso in 1:n.iso){ resid.prop[iso] ~ dunif(0,20); } ", file=filename, append=T) if(source$data_type=="means"){ cat(" for(iso in 1:n.iso) { for(i in 1:N) { ", file=filename, append=T) if(!is.na(source$by_factor)){ if(source$by_factor == 1){ cat(" process.var[iso,i] <- inprod(1/src_tau[,iso,Factor.1[i]],p2[i,]) + inprod(frac_sig2[,iso],p2[i,]);", file=filename, append=T) } else { cat(" process.var[iso,i] <- inprod(1/src_tau[,iso,Factor.2[i]],p2[i,]) + inprod(frac_sig2[,iso],p2[i,]);", file=filename, append=T) } } else { cat(" process.var[iso,i] <- inprod(1/src_tau[,iso],p2[i,]) + inprod(frac_sig2[,iso],p2[i,]);", file=filename, append=T) } cat(" } } for(ind in 1:N){ for(i in 1:n.iso){ for(j in 1:n.iso){ Sigma.ind[ind,i,j] <- equals(i,j)/(process.var[i,ind]*resid.prop[i]); } } } for(i in 1:N) { ", file=filename, append=T) if(mix$n.iso > 1){ cat(" X_iso[i,] ~ dmnorm(mix.mu[,i], Sigma.ind[i,,]); loglik[i] <- logdensity.mnorm(X_iso[i,], mix.mu[,i], Sigma.ind[i,,]);", file=filename, append=T) } else { cat(" X_iso[i,] ~ dnorm(mix.mu[,i], Sigma.ind[i,,]); loglik[i] <- logdensity.norm(X_iso[i,], mix.mu[,i], Sigma.ind[i,,]);", file=filename, append=T) } cat(" } } ", file=filename, append=T) } if(source$data_type=="raw"){ cat(" for(i in 1:n.iso){ for(j in 1:n.iso){ resid.prop.mat[i,j] <- sqrt(resid.prop[i]*resid.prop[j]); } } for(ind in 1:N){ for(i in 1:n.iso){ for(j in 1:n.iso){ ", file=filename, append=T) if(!is.na(source$by_factor)){ if(source$by_factor == 1){ cat(" mix.cov[ind,i,j] <- equals(i,j)*resid.prop[i]*(inprod(src_cov[,Factor.1[ind],i,j],p2[ind,]) + inprod(frac_sig2[,i],p2[ind,])) + (1-equals(i,j))*inprod(src_cov[,Factor.1[ind],i,j],p2[ind,])*resid.prop.mat[i,j];", file=filename, append=T) } else { cat(" mix.cov[ind,i,j] <- equals(i,j)*resid.prop[i]*(inprod(src_cov[,Factor.2[ind],i,j],p2[ind,]) + inprod(frac_sig2[,i],p2[ind,])) + (1-equals(i,j))*inprod(src_cov[,Factor.2[ind],i,j],p2[ind,])*resid.prop.mat[i,j];", file=filename, append=T) } } else { cat(" mix.cov[ind,i,j] <- equals(i,j)*resid.prop[i]*(inprod(src_cov[,i,j],p2[ind,]) + inprod(frac_sig2[,i],p2[ind,])) + (1-equals(i,j))*inprod(src_cov[,i,j],p2[ind,])*resid.prop.mat[i,j];", file=filename, append=T) } cat(" } } Sigma.ind[ind,,] <- inverse(mix.cov[ind,,]); } for(i in 1:N){ ", file=filename, append=T) if(mix$n.iso > 1){ cat(" X_iso[i,] ~ dmnorm(mix.mu[,i], Sigma.ind[i,,]); loglik[i] <- logdensity.mnorm(X_iso[i,], mix.mu[,i], Sigma.ind[i,,]);", file=filename, append=T) } else { cat(" X_iso[i,] ~ dnorm(mix.mu[,i], Sigma.ind[i,,]); loglik[i] <- logdensity.norm(X_iso[i,], mix.mu[,i], Sigma.ind[i,,]);", file=filename, append=T) } cat(" } } ", file=filename, append=T) } } if(err=="resid" && mix$n.iso>1){ cat(" Sigma ~ dwish(I,n.iso+1); for(i in 1:N) { X_iso[i,] ~ dmnorm(mix.mu[,i], Sigma); loglik[i] <- logdensity.mnorm(X_iso[i,], mix.mu[,i], Sigma); } } ", file=filename, append=T) } if(err=="resid" && mix$n.iso==1){ cat(" Sigma ~ dgamma(.001,.001); for(i in 1:N) { X_iso[i,] ~ dnorm(mix.mu[,i], Sigma); loglik[i] <- logdensity.norm(X_iso[i,], mix.mu[,i], Sigma); } } ", file=filename, append=T) } if(err=="process"){ cat(" for(i in 1:N){ for(iso in 1:n.iso){ ", file=filename, append=T) if(source$data_type=="raw"){ cat(" process.var[iso,i] <- inprod(1/src_tau[,iso,iso],p2[i,]) + inprod(frac_sig2[,iso],p2[i,]);", file=filename, append=T) } else { cat(" process.var[iso,i] <- inprod(1/src_tau[,iso],p2[i,]) + inprod(frac_sig2[,iso],p2[i,]);", file=filename, append=T) } cat(" mix.prcsn[iso,i] <- 1/process.var[iso,i]; X_iso[i,iso] ~ dnorm(mix.mu[iso,i], mix.prcsn[iso,i]); loglik_mat[i,iso] <- logdensity.norm(X_iso[i,iso], mix.mu[iso,i], mix.prcsn[iso,i]); } loglik[i] <- sum(loglik_mat[i,]) } } ", file=filename, append=T) } }
expected <- eval(parse(text="FALSE")); test(id=0, code={ argv <- eval(parse(text="list(structure(c(1, 1, 1, 1, 2, 3), .Dim = c(3L, 2L), .Dimnames = list(NULL, c(\"I\", \"a\")), foo = \"bar\", class = \"matrix\"), structure(c(1, 1, 1, 1, 2, 3), .Dim = c(3L, 2L), class = \"matrix\", foo = \"bar\", .Dimnames = list(NULL, c(\"I\", \"a\"))), TRUE, TRUE, FALSE, TRUE, FALSE)")); .Internal(identical(argv[[1]], argv[[2]], argv[[3]], argv[[4]], argv[[5]], argv[[6]], argv[[7]])); }, o=expected);
`mv.Csample.test` <- function(X, g, score="identity", stand="outer", method = "approximation", n.simu = 1000, na.action=na.fail,...) { DNAME=paste(deparse(substitute(X)),"by",deparse(substitute(g))) score <- match.arg(score,c("identity","sign","rank")) stand <- match.arg(stand,c("inner","outer")) method <- match.arg(method,c("approximation","permutation")) if (length(g)!= dim(X)[1]) stop("'g' must have as many elements as 'X' rows") DATA <- data.frame(g=g) DATA$X <- as.matrix(X) DATA<-na.action(DATA) X <- DATA$X g <- DATA$g if(!all(sapply(X, is.numeric))) stop("'X' must be numeric") p<-dim(X)[2] if (p<2) stop("'X' must be at least bivariate") n<-dim(X)[1] if (!is.factor(g)) stop("'g' must be a factor") n.g<-length(g) if (n.g!= n) stop("'g' must have as many elements as 'X' rows") if (nlevels(g)<2) stop("'g' must have at least two levels") if (min(by(g,g,length))<2) stop("each level of 'g' must have at least two observations") res1<-switch(score, "identity"={ hot.csample(X,g,method=method,n.simu=n.simu) } , "sign"={ switch(stand, "outer" = { CssTestOuter(X,g,method=method,n.simu=n.simu,...) } , "inner" = { CssTestInner(X,g,method=method,n.simu=n.simu,...) } ) } , "rank"={ switch(stand, "outer" = { CsrTestOuter(X,g,method=method,n.simu=n.simu,...) } , "inner" = { CsrTestInner(X,g,method=method,n.simu=n.simu,...) } ) } ) NVAL<-paste("c(",paste(rep(0,p),collapse=","),")",sep="") names(NVAL)<-"location difference between some groups" ALTERNATIVE <- "two.sided" res<-c(res1,list(data.name=DNAME,alternative=ALTERNATIVE,null.value=NVAL)) class(res) <- "htest" return(res) }
goldsectmin <- function(f, a, b, tol = 1e-3, m = 100) { iter <- 0 phi <- (sqrt(5) - 1) / 2 a.star <- b - phi * abs(b - a) b.star <- a + phi * abs(b - a) while (abs(b - a) > tol) { iter <- iter + 1 if (iter > m) { warning("iterations maximum exceeded") break } if(f(a.star) < f(b.star)) { b <- b.star b.star <- a.star a.star <- b - phi * abs(b - a) } else { a <- a.star a.star <- b.star b.star <- a + phi * abs(b - a) } } return((a + b) / 2) } goldsectmax <- function(f, a, b, tol = 1e-3, m = 100) { iter <- 0 phi <- (sqrt(5) - 1) / 2 a.star <- b - phi * abs(b - a) b.star <- a + phi * abs(b - a) while (abs(b - a) > tol) { iter <- iter + 1 if (iter > m) { warning("iterations maximum exceeded") break } if(f(a.star) > f(b.star)) { b <- b.star b.star <- a.star a.star <- b - phi * abs(b - a) } else { a <- a.star a.star <- b.star b.star <- a + phi * abs(b - a) } } return((a + b) / 2) }
miss2NA <- function(GADSdat) { UseMethod("miss2NA") } miss2NA.GADSdat <- function(GADSdat) { check_GADSdat(GADSdat) datL <- lapply(names(GADSdat$dat), function(nam) { recodeVar(var = GADSdat$dat[, nam], labs = GADSdat$labels[GADSdat$labels$varName == nam, ]) }) dat <- as.data.frame(datL, stringsAsFactors = FALSE) names(dat) <- names(GADSdat$dat) dat } recodeVar <- function(var, labs){ mLabs <- labs[labs$miss == "miss", ] mCodes <- na_omit(mLabs[, "value", drop = TRUE]) var[var %in% mCodes] <- NA var }
test_ZVD <- function(w, test, classMeans, mus, scaling, ztol){ if (scaling==TRUE){ mu = mus$mu sig = mus$sig } else{ mu = mus } test_labels = factor(test[,1]) test_obs = as.matrix(data.frame(test[,2:dim(test)[2]])) N = length(test_labels) K = length(levels(test_labels)) test_obs = test_obs - matrix(1, nrow =N, ncol=1) %*% t(mu) if (scaling==TRUE){ test_obs = test_obs %*% diag(1/sig) } proj = t(w) %*% t(as.matrix(test_obs)) cent = t(w) %*% classMeans dist = apply(X = t(proj), MARGIN=1, FUN=function(y){ apply(X=cent, MARGIN=2, FUN= function(x){ norm(as.matrix( x - y, 'f')) } ) } ) predicted_labels = max.col(-t(dist)) true_labels = test[,1] misclassed= sum(abs(true_labels - predicted_labels) > 0) / N l0 = apply(w, MARGIN=2, FUN= function(x){ sum(abs(x)>ztol)}) l1 = apply(w, MARGIN=2, FUN= function(x){sum(abs(x))}) results = list(stats=list(mc=misclassed, l0=l0, l1=l1), pred_labs = predicted_labels, dist=dist) return(results) }
source("ESEUR_config.r") statics=read.csv(paste0(ESEUR_dir, "regression/melton-statics.csv.xz"), as.is=TRUE) statics$num_accesses=statics$access*statics$size cyc_mod=glm(cycle ~ size+I(size^2), data=statics) summary(cyc_mod)
NULL spark_context <- function(sc) { sc$state$spark_context } java_context <- function(sc) { sc$state$java_context } hive_context <- function(sc) { UseMethod("hive_context") } spark_session <- function(sc) { UseMethod("spark_session") } hive_context.spark_connection <- function(sc) { sc$state$hive_context } spark_session.spark_connection <- function(sc) { sc$state$hive_context } spark_connection <- function(x, ...) { UseMethod("spark_connection") } spark_connection.default <- function(x, ...) { stop("Unable to retrieve a spark_connection from object of class ", paste(class(x), collapse = " "), call. = FALSE ) } spark_connection.spark_connection <- function(x, ...) { x } spark_connection.spark_jobj <- function(x, ...) { x$connection } connection_config <- function(sc, prefix, not_prefix = list()) { config <- sc$config master <- sc$master isLocal <- spark_master_is_local(master) isApplicable <- unlist(lapply( seq_along(config), function(idx) { config_name <- names(config)[[idx]] (is.null(prefix) || identical(substring(config_name, 1, nchar(prefix)), prefix)) && all(unlist( lapply(not_prefix, function(x) !identical(substring(config_name, 1, nchar(x)), x)) )) && !(grepl("\\.local$", config_name) && !isLocal) && !(grepl("\\.remote$", config_name) && isLocal) && !(is.character(config[[idx]]) && all(nchar(config[[idx]]) == 0)) } )) configNames <- lapply( names(config)[isApplicable], function(configName) { configName %>% substr(nchar(prefix) + 1, nchar(configName)) %>% sub("(\\.local$)|(\\.remote$)", "", ., perl = TRUE) } ) configValues <- config[isApplicable] names(configValues) <- configNames configValues } spark_log <- function(sc, n = 100, filter = NULL, ...) { UseMethod("spark_log") } spark_log.default <- function(sc, n = 100, ...) { stop("Invalid class passed to spark_log") } print.spark_log <- function(x, ...) { cat(x, sep = "\n") } spark_web <- function(sc, ...) { if (!identical(sc$state, NULL) && !identical(sc$state$spark_web, NULL)) { sc$state$spark_web } else { sparkui_url <- spark_config_value( sc$config, c("sparklyr.web.spark", "sparklyr.sparkui.url") ) if (!is.null(sparkui_url)) { structure(sprintf("%s/jobs/", sparkui_url), class = "spark_web_url") } else { UseMethod("spark_web") } } } spark_web.default <- function(sc, ...) { url <- tryCatch( { invoke(spark_context(sc), "%>%", list("uiWebUrl"), list("get")) }, error = function(e) { default_url <- "http://localhost:4040" warning( "Unable to retrieve Spark UI URL through SparkContext, ", sprintf("will boldly assume it's '%s'", default_url) ) default_url } ) if (!identical(substr(url, nchar(url), nchar(url)), "/")) { url <- paste0(url, "/") } structure(sprintf("%sjobs/", url), class = "spark_web_url") } print.spark_web_url <- function(x, ...) { tryCatch( { browse_url(x) }, error = NULL ) } get_spark_sql_catalog_implementation <- function(sc) { if (spark_version(sc) < "2.0.0") { stop( "get_spark_sql_catalog_implementation is only supported for Spark 2.0.0+", call. = FALSE ) } invoke( hive_context(sc), "%>%", list("conf"), list("get", "spark.sql.catalogImplementation") ) } initialize_connection <- function(sc) { UseMethod("initialize_connection") } new_spark_connection <- function(scon, ..., class = character()) { structure( scon, ..., class = c("spark_connection", class, "DBIConnection") ) } new_spark_shell_connection <- function(scon, ..., class = character()) { new_spark_connection( scon, ..., class = c(class, "spark_shell_connection") ) } new_spark_gateway_connection <- function(scon, ..., class = character()) { new_spark_shell_connection( scon, ..., class = c(class, "spark_gateway_connection") ) } new_livy_connection <- function(scon) { new_spark_connection( scon, class = "livy_connection" ) }
context("tuning homogeneous models") dfile <- system.file("testdata","testdataH.rda", package = "xnet") load(dfile) lambdas <- c(0.01) mod <- tskrr(Yh,Kh,lambda = lambdas) test_that("input of tune is correctly processed",{ expect_error(tune(mod, lim = "a"), "lim .* single series of numeric values") expect_error(tune(mod, lim = numeric(0)), "lim needs 2 numeric values") expect_error(tune(mod, lim = list(c(0.01,1), c(1,2))), "lim .* single series of numeric values") expect_error(tune(mod, ngrid = list(12,12)), "ngrid .* single series of numeric values") expect_warning(tune(mod, onedim = FALSE), "one-dimensional search .* homogeneous networks") }) tuned <- tune(mod, lim = list(c(0.001,1)), ngrid = list(20), exclusion = "both") manlambdas <- create_grid(lim = c(0.001,1), ngrid = 20) tunedman <- tune(mod, lambda = manlambdas, exclusion = "both") tunedirect <- tune(Yh, Kh, lim = list(c(0.001,1)), ngrid = list(20), exclusion = "both") test_that("Output of tuned model is correct", { expect_identical(tuned, tune(tuned, lim = list(c(0.001,1)), ngrid = list(20), exclusion = "both")) expect_identical(tuned, tunedman) expect_identical(get_loo_fun(tuned), get_loo_fun(mod, exclusion = "both")) expect_identical(tuned@loss_function, loss_mse) expect_identical(get_grid(tuned), list(k = manlambdas)) lossval <- get_loss_values(tuned) expect_equal(dim(lossval), c(length(manlambdas),1)) testmod <- update(mod,manlambdas[15]) expect_equal(lossval[15,1], loss(testmod, exclusion = "both")) expect_equal(tuned, tunedirect) }) test_that("loss is calculated correctly",{ expect_equal(loss(tuned),loss_mse(response(tuned), loo(tuned, exclusion = "both"))) expect_equal(loss(tuned, exclusion = "interaction", fun = loss_auc, replaceby0 = TRUE), loss_auc(response(tuned), loo(tuned, replaceby0 = TRUE))) }) test_that("get_loo_fun works correctly on tuned homogeneous models",{ expect_identical(get_loo_fun(tuned, exclusion = "interaction", replaceby0 = TRUE), get_loo_fun(mod, exclusion = "interaction", replaceby0 = TRUE)) })
GroAgeExp <- function(x, ...) UseMethod("GroAgeExp")