code
stringlengths
1
13.8M
ate <- function(event, treatment, censor = NULL, data, data.index = NULL, formula, estimator = NULL, strata = NULL, contrasts = NULL, allContrasts = NULL, times, cause = NA, landmark, se = TRUE, iid = (B == 0) && (se || band), known.nuisance = FALSE, band = FALSE, B = 0, seed, handler = "foreach", mc.cores = 1, cl = NULL, verbose = TRUE, ...){ dots <- list(...) call <- match.call() if(is.data.table(data)){ data <- data.table::copy(data) }else{ data <- data.table::as.data.table(data) } init <- ate_initArgs(object.event = event, object.treatment = treatment, object.censor = censor, formula = formula, landmark = landmark, mydata = data, data.index = data.index, estimator = estimator, times = times, cause = cause, handler = handler, product.limit = dots$product.limit, store.iid = dots$store.iid) object.event <- init$object.event object.treatment <- init$object.treatment object.censor <- init$object.censor data.index <- init$data.index times <- init$times handler <- init$handler formula <- init$formula landmark <- init$landmark treatment <- init$treatment cause <- init$cause estimator <- init$estimator fct.pointEstimate <- init$fct.pointEstimate n.obs <- init$n.obs n.censor <- init$n.censor eventVar.time <- init$eventVar.time eventVar.status <- init$eventVar.status level.censoring <- init$level.censoring level.states <- init$level.states censorVar.time <- init$censorVar.time censorVar.status <- init$censorVar.status dots$product.limit <- init$product.limit store.iid <- init$store.iid return.iid.nuisance <- (se || band || iid) && (B==0) && (known.nuisance == FALSE) if("method.iid" %in% names(dots)){ method.iid <- dots$method.iid dots$method.iid <- NULL }else{ method.iid <- 1 } check <- ate_checkArgs(call = call, object.event = object.event, object.censor = object.censor, object.treatment = object.treatment, mydata = data, formula = formula, treatment = treatment, strata = strata, contrasts = contrasts, allContrasts = allContrasts, times = times, cause = cause, landmark = landmark, se = se, iid = iid, data.index = data.index, return.iid.nuisance = return.iid.nuisance, band = band, B = B, seed = seed, handler = handler, mc.cores = mc.cores, cl = cl, verbose = verbose, n.censor = n.censor, level.censoring = level.censoring, level.states = level.states, estimator = estimator, eventVar.time = eventVar.time, eventVar.status = eventVar.status, censorVar.time = censorVar.time, censorVar.status = censorVar.status, n.obs = n.obs ) testE.Cox <- inherits(object.event,"coxph") || inherits(object.event,"cph") || inherits(object.event,"phreg") testE.CSC <- inherits(object.event,"CauseSpecificCox") testE.glm <- inherits(object.event,"glm") if(!is.null(strata)){ if(!is.factor(data[[strata]])){ data[[strata]] <- factor(data[[strata]]) } if(is.null(contrasts)){ contrasts <- levels(data[[strata]]) } levels <- levels(data[[strata]]) }else{ if(!is.factor(data[[treatment]])){ data[[treatment]] <- factor(data[[treatment]]) } if(is.null(contrasts)){ contrasts <- levels(data[[treatment]]) } levels <- levels(data[[treatment]]) } if(is.null(allContrasts)){ allContrasts <- utils::combn(contrasts, m = 2) }else if(any(contrasts %in% allContrasts == FALSE)){ contrasts <- contrasts[contrasts %in% allContrasts] } out <- list(meanRisk = NULL, diffRisk = NULL, ratioRisk = NULL, iid = NULL, boot = NULL, estimator = estimator, eval.times = times, n = n.obs, variables = c(time = eventVar.time, event = eventVar.status, treatment = if(is.null(treatment)){NA}else{treatment}, strata = if(is.null(strata)){NA}else{strata}), theCause = cause, contrasts = contrasts, allContrasts = allContrasts, computation.time = list("point" = NA, "iid" = NA, "bootstrap" = NA), inference = data.frame("se" = se, "iid" = iid, "band" = band, "bootstrap" = B>0, "ci" = FALSE, "p.value" = FALSE, "conf.level" = NA, "alternative" = NA, "bootci.method" = NA, "n.bootstrap" = if(B>0){B}else{NA}, "method.band" = NA, "n.sim" = NA) ) attr(out$theCause,"cause") <- level.states attr(out$theCause,"level.censoring") <- level.censoring if(!is.na(eventVar.time)){ attr(out$variables,"range.time") <- range(data[[eventVar.time]]) if(!is.null(strata)){ var.group <- strata }else{ var.group <- treatment } if(attr(estimator,"TD")){ attr(out$eval.times,"n.at.risk") <- dcast(cbind(times = paste0(times,"+",landmark), data[data[[var.group]] %in% contrasts, list(pc = sapply(times+landmark, function(t){sum(.SD[[eventVar.time]]>=t)})), by = var.group]), value.var = "pc", formula = as.formula(paste0(var.group,"~times"))) }else{ attr(out$eval.times,"n.at.risk") <- dcast(cbind(times = times, data[data[[var.group]] %in% contrasts, list(pc = sapply(times, function(t){sum(.SD[[eventVar.time]]>=t)})), by = var.group]), value.var = "pc", formula = as.formula(paste0(var.group,"~times"))) } } attr(out$eval.times,"n.censored") <- n.censor class(out) <- c("ate") if(verbose>1/2){ print(out) cat("\n Processing\n") } if(return.iid.nuisance){ if(verbose>1/2){ cat(" - Prepare influence function:") } if(attr(estimator,"GFORMULA") && (testE.Cox || testE.CSC) && identical(is.iidCox(object.event),FALSE)){ if(verbose>1/2){cat(" outcome")} object.event <- iidCox(object.event, tau.max = max(times), store.iid = store.iid, return.object = TRUE) } if(attr(estimator,"IPCW")){ if(identical(is.iidCox(object.censor),FALSE)){ if(verbose>1/2){cat(" censoring")} object.censor <- iidCox(object.censor, store.iid = store.iid, tau.max = max(times)) } } if(verbose>1/2){cat(" done \n")} } if(verbose>1/2){ cat(" - Point estimation:") } args.pointEstimate <- c(list(object.event = object.event, object.censor = object.censor, object.treatment = object.treatment, mydata=data, treatment=treatment, strata=strata, contrasts=contrasts, allContrasts=allContrasts, levels=levels, times=times, cause=cause, landmark=landmark, n.censor = n.censor, level.censoring = level.censoring, estimator = estimator, eventVar.time = eventVar.time, eventVar.status = eventVar.status, censorVar.time = censorVar.time, censorVar.status = censorVar.status, return.iid.nuisance = return.iid.nuisance, data.index = data.index, method.iid = method.iid), dots) if (attr(estimator,"TD")){ args.pointEstimate <- c(args.pointEstimate,list(formula=formula)) } tps1 <- Sys.time() pointEstimate <- do.call(fct.pointEstimate, args.pointEstimate) tps2 <- Sys.time() out$meanRisk <- pointEstimate$meanRisk out$diffRisk <- pointEstimate$diffRisk out$ratioRisk <- pointEstimate$ratioRisk out$computation.time[["point"]] <- tps2-tps1 if(verbose>1/2){cat(" done \n")} if(se || band || iid){ if (attr(estimator,"TD")){ key1 <- c("treatment","landmark") key2 <- c("treatment.A","treatment.B","landmark") } else{ key1 <- c("treatment","time") key2 <- c("treatment.A","treatment.B","time") } if(B>0){ if (verbose>1/2){ cat(" - Non-parametric bootstrap using ",B," samples and ",mc.cores," core",if(mc.cores>1){"s"},"\n", sep ="") cat(" (expected time: ",round(as.numeric(out$computation.time$point)*B/mc.cores,2)," seconds)\n", sep = "") } name.estimate <- c(paste("mean",out$meanRisk$estimator,out$meanRisk$time,out$meanRisk$landmark,out$meanRisk$treatment,sep="."), paste("difference",out$diffRisk$estimator,out$diffRisk$time,out$diffRisk$landmark,out$diffRisk$A,out$diffRisk$B,sep="."), paste("ratio",out$ratioRisk$estimator,out$ratioRisk$time,out$ratioRisk$landmark,out$ratioRisk$A,out$ratioRisk$B,sep=".")) estimate <- setNames(c(out$meanRisk$estimate,out$diffRisk$estimate,out$ratioRisk$estimate), name.estimate) resBoot <- calcBootATE(args = args.pointEstimate, n.obs = n.obs["data"], fct.pointEstimate = fct.pointEstimate, name.estimate = name.estimate, handler = handler, B = B, seed = seed, mc.cores = mc.cores, cl = cl, verbose = verbose) out$boot <- list(t0 = estimate, t = resBoot$boot, R = B, data = data, seed = resBoot$bootseeds, statistic = NULL, sim = "ordinary", call = quote(boot(data = XX, statistic = XX, R = XX)), stype = "i", strata = rep(1,n.obs["data"]), weights = rep(1/n.obs["data"],n.obs["data"]), pred.i = NULL, L = NULL, ran.gen = NULL, mle = NULL ) class(out$boot) <- "boot" tps3 <- Sys.time() out$computation.time[["bootstrap"]] <- tps3-tps2 if (verbose>1/2){ cat("\n") } } else { if (verbose>1/2){ cat(" - Decomposition iid: ") } if(return.iid.nuisance && (attr(estimator,"IPTW") == TRUE)){ args.pointEstimate[names(pointEstimate$store)] <- pointEstimate$store if(identical(method.iid,2)){ out$iid <- do.call(iidATE2, args.pointEstimate) }else{ out$iid <- do.call(iidATE, args.pointEstimate) } }else{ out$iid <- list(GFORMULA = pointEstimate$store$iid.GFORMULA, IPTW = pointEstimate$store$iid.IPTW, AIPTW = pointEstimate$store$iid.AIPTW) } tps3 <- Sys.time() out$computation.time[["iid"]] <- tps3-tps2 if (verbose>1/2){ cat("done\n") } } } if(se || band){ if (verbose>1/2){ if(se && band){ cat(" - Confidence intervals / bands: ") }else if(se){ cat(" - Confidence intervals: ") }else if(band){ cat(" - Confidence bands: ") } } out[c("meanRisk","diffRisk","ratioRisk","inference","inference.allContrasts","inference.contrasts","transform")] <- stats::confint(out, p.value = TRUE) if(iid == FALSE){ out$iid <- NULL } if (verbose>1/2){ cat("done\n") } } return(out) } ate_initArgs <- function(object.event, object.treatment, object.censor, landmark, formula, estimator, mydata, data.index, cause, times, handler, product.limit, store.iid){ handler <- match.arg(handler, c("foreach","mclapply","snow","multicore")) if(is.null(data.index)){data.index <- 1:NROW(mydata)} if(missing(object.event)){ formula.event <- NULL model.event <- NULL }else if(inherits(object.event,"formula")){ formula.event <- object.event if(any(grepl("Hist(",object.event, fixed = TRUE))){ model.event <- do.call(CSC, args = list(formula = object.event, data = mydata)) }else if(any(grepl("Surv(",object.event, fixed = TRUE))){ model.event <- do.call(rms::cph, args = list(formula = object.event, data = mydata, x = TRUE, y = TRUE)) }else{ model.event <- do.call(stats::glm, args = list(formula = object.event, data = mydata, family = stats::binomial(link = "logit"))) } }else if(is.list(object.event) && all(sapply(object.event, function(iE){inherits(iE,"formula")}))){ formula.event <- object.event model.event <- CSC(object.event, data = mydata) }else if(inherits(object.event,"glm") ||inherits(object.event,"wglm") || inherits(object.event,"CauseSpecificCox")){ formula.event <- stats::formula(object.event) model.event <- object.event }else if(inherits(object.event,"coxph") || inherits(object.event,"cph") ||inherits(object.event,"phreg")){ formula.event <- coxFormula(object.event) model.event <- object.event }else{ formula.event <- NULL model.event <- NULL } if(missing(object.treatment)){ formula.treatment <- NULL model.treatment <- NULL }else if(inherits(object.treatment,"formula")){ model.treatment <- do.call(stats::glm, args = list(formula = object.treatment, data = mydata, family = stats::binomial(link = "logit"))) formula.treatment <- object.treatment }else if(inherits(object.treatment,"glm") || inherits(object.treatment,"nnet")){ formula.treatment <- stats::formula(object.treatment) model.treatment <- object.treatment }else{ formula.treatment <- NULL model.treatment <- NULL } if(missing(object.censor)){ formula.censor <- NULL model.censor <- NULL }else if(inherits(object.censor,"formula")){ formula.censor <- object.censor model.censor <- do.call(rms::cph, args = list(formula = object.censor, data = mydata, x = TRUE, y = TRUE)) }else if(inherits(object.censor,"coxph") || inherits(object.censor,"cph") || inherits(object.censor,"phreg")){ formula.censor <- coxFormula(object.censor) model.censor <- object.censor }else{ formula.censor <- NULL model.censor <- NULL } if(missing(times) && (inherits(model.event,"glm") || (inherits(model.treatment,"glm") && is.null(model.event) && is.null(model.censor)))){ times <- NA } if(inherits(model.censor,"coxph") || inherits(model.censor,"cph") || inherits(model.censor,"phreg")){ censoringMF <- coxModelFrame(model.censor) test.censor <- censoringMF$status == 1 n.censor <- sapply(times, function(t){sum(test.censor * (censoringMF$stop <= t))}) info.censor <- SurvResponseVar(coxFormula(model.censor)) censorVar.status <- info.censor$status censorVar.time <- info.censor$time level.censoring <- unique(mydata[[censorVar.status]][model.censor$y[,2]==1]) }else{ censorVar.status <- NA censorVar.time <- NA if(inherits(model.event,"CauseSpecificCox")){ test.censor <- model.event$response[,"status"] == 0 n.censor <- sapply(times, function(t){sum(test.censor * (model.event$response[,"time"] <= t))}) level.censoring <- attr(model.event$response,"cens.code") }else if(inherits(model.event,"coxph") || inherits(model.event,"cph") || inherits(model.event,"phreg")){ censoringMF <- coxModelFrame(model.event) test.censor <- censoringMF$status == 0 n.censor <- sapply(times, function(t){sum(test.censor * (censoringMF$stop <= t))}) level.censoring <- 0 }else if(inherits(model.event,"wglm")){ n.censor <- object.event$n.censor level.censoring <- setdiff(unique(object.event$data[[object.event$var.outcome]]), object.event$causes) }else{ n.censor <- rep(0,length(times)) } if(all(n.censor==0)){level.censoring <- NA} } if(missing(object.treatment) || is.null(object.treatment)){ treatment <- NULL }else if(!is.null(formula.treatment)){ treatment <- all.vars(formula.treatment)[1] }else if(is.character(object.treatment)){ treatment <- object.treatment } if(inherits(model.event,"CauseSpecificCox")){ responseVar <- SurvResponseVar(formula.event) eventVar.time <- responseVar$time eventVar.status <- responseVar$status if(is.na(cause)){ cause <- model.event$theCause } if(is.null(product.limit)){product.limit <- TRUE} level.states <- model.event$cause }else if(inherits(model.event,"coxph") || inherits(model.event,"cph") || inherits(model.event,"phreg")){ responseVar <- SurvResponseVar(formula.event) eventVar.time <- responseVar$time eventVar.status <- responseVar$status if(is.na(cause)){ if(any(model.event$y[,NCOL(model.event$y)]==1)){ modeldata <- try(eval(model.event$call$data), silent = TRUE) if(inherits(modeldata,"try-error")){ cause <- unique(mydata[[eventVar.status]][model.event$y[,NCOL(model.event$y)]==1]) }else{ cause <- unique(modeldata[[eventVar.status]][model.event$y[,NCOL(model.event$y)]==1]) } } } if(is.null(product.limit)){product.limit <- FALSE} level.states <- 1 }else if(inherits(model.event,"glm")){ eventVar.time <- as.character(NA) eventVar.status <- all.vars(formula.event)[1] if(is.na(cause)){ cause <- unique(stats::model.frame(model.event)[[eventVar.status]][model.event$y==1]) }else{ cause <- NA } if(is.null(product.limit)){product.limit <- FALSE} level.states <- unique(mydata[[eventVar.status]]) }else if(inherits(object.event,"wglm")){ eventVar.time <- object.event$var.time eventVar.status <- object.event$var.outcome if(is.na(cause)){ cause <- object.event$theCause } level.states <- object.event$causes if(is.null(product.limit)){product.limit <- (length(level.states)>1)} }else{ if(identical(names(object.event),c("time","status"))){ eventVar.time <- object.event[1] eventVar.status <- object.event[2] }else if(identical(names(object.event),c("status","time"))){ eventVar.status <- object.event[1] eventVar.time <- object.event[2] }else if(length(object.event)==2){ eventVar.time <- object.event[1] eventVar.status <- object.event[2] }else if(length(object.event)==1){ eventVar.time <- NA eventVar.status <- object.event[1] if(is.na(cause)){ if(any(mydata[[eventVar.status]] %in% 0:2 == FALSE)){ stop("The event variable must be an integer variable taking value 0, 1, or 2. \n") } cause <- 1 } } level.states <- setdiff(unique(mydata[[eventVar.status]]), level.censoring) if(is.na(cause)){ cause <- sort(level.states)[1] } if(is.null(product.limit)){product.limit <- FALSE} } TD <- switch(class(object.event)[[1]], "coxph"=(attr(object.event$y,"type")=="counting"), "CauseSpecificCox"=(attr(object.event$models[[1]]$y,"type")=="counting"), FALSE) if(TD){ fct.pointEstimate <- ATE_TD }else{ landmark <- NULL formula <- NULL fct.pointEstimate <- ATE_TI } if(is.null(estimator)){ if(!is.null(model.event) && is.null(model.treatment)){ if(TD){ estimator <- "GFORMULATD" }else{ estimator <- "GFORMULA" } }else if(is.null(model.event) && !is.null(model.treatment)){ if(any(n.censor>0)){ estimator <- "IPTW,IPCW" }else{ estimator <- "IPTW" } }else if(!is.null(model.event) && !is.null(model.treatment)){ if(any(n.censor>0)){ estimator <- "AIPTW,AIPCW" }else{ estimator <- "AIPTW" } }else{ estimator <- NA } test.monotone <- FALSE }else{ estimator <- toupper(estimator) mestimator <- estimator estimator <- gsub("MONOTONE","",estimator) index.westimator <- which(estimator %in% c("IPTW","IPTW,IPCW","AIPTW","AIPTW,AIPCW")) if(length(index.westimator)>0){ test.monotone <- unique(grepl(pattern = "MONOTONE",mestimator[index.westimator])) }else{ test.monotone <- FALSE } if(any(estimator == "IPTW") && any(n.censor>0)){ estimator[estimator == "IPTW"] <- "IPTW,IPCW" } if(any(estimator == "AIPTW") && any(n.censor>0)){ estimator[estimator == "AIPTW"] <- "AIPTW,AIPCW" } if(any(estimator == "G-FORMULA")){ estimator[estimator == "G-FORMULA"] <- "GFORMULA" } if(any(estimator == "G-FORMULATD")){ estimator[estimator == "G-FORMULATD"] <- "GFORMULA" } } estimator.output <- unname(sapply(estimator, switch, "GFORMULA" = "GFORMULA", "GFORMULATD" = "GFORMULA", "IPTW" = "IPTW", "IPTW,IPCW" = "IPTW", "AIPTW" = "AIPTW", "AIPTW,AIPCW" = "AIPTW" )) if(TD){ attr(estimator.output,"TD") <- TRUE }else{ attr(estimator.output,"TD") <- FALSE } if(any(estimator %in% c("GFORMULA","GFORMULATD","AIPTW","AIPTW,AIPCW"))){ attr(estimator.output,"GFORMULA") <- TRUE }else{ attr(estimator.output,"GFORMULA") <- FALSE } if(any(estimator %in% c("IPTW","IPTW,IPCW","AIPTW","AIPTW,AIPCW"))){ attr(estimator.output,"IPTW") <- TRUE }else{ attr(estimator.output,"IPTW") <- FALSE } if(any(estimator %in% c("IPTW,IPCW","AIPTW,AIPCW"))){ attr(estimator.output,"IPCW") <- TRUE }else{ attr(estimator.output,"IPCW") <- FALSE } if(any(estimator %in% c("AIPTW,AIPCW"))){ attr(estimator.output,"integral") <- !inherits(object.event,"wglm") }else{ attr(estimator.output,"integral") <- FALSE } if(any(estimator %in% c("AIPTW","AIPTW,AIPCW"))){ attr(estimator.output,"augmented") <- TRUE }else{ attr(estimator.output,"augmented") <- FALSE } if(any(estimator %in% c("GFORMULA","GFORMULATD"))){ attr(estimator.output,"export.GFORMULA") <- TRUE }else{ attr(estimator.output,"export.GFORMULA") <- FALSE } if(any(estimator %in% c("IPTW","IPTW,IPCW"))){ attr(estimator.output,"export.IPTW") <- TRUE }else{ attr(estimator.output,"export.IPTW") <- FALSE } if(any(estimator %in% c("AIPTW","AIPTW,AIPCW"))){ attr(estimator.output,"export.AIPTW") <- TRUE }else{ attr(estimator.output,"export.AIPTW") <- FALSE } attr(estimator.output,"full") <- estimator attr(estimator.output,"monotone") <- test.monotone n.obs <- c(data = NROW(mydata), model.event = if(!is.null(model.event)){stats::nobs(model.event)}else{NA}, model.treatment = if(!is.null(model.treatment)){stats::nobs(model.treatment)}else{NA}, model.censor = if(!is.null(model.censor)){coxN(model.censor)}else{NA} ) if(is.null(store.iid)){ store.iid <- "minimal" } return(list(object.event = model.event, object.treatment = model.treatment, object.censor = model.censor, times = times, handler = handler, estimator = estimator.output, formula = formula, landmark = landmark, fct.pointEstimate = fct.pointEstimate, n.obs = n.obs, n.censor = n.censor, treatment = treatment, cause = cause, level.censoring = level.censoring, level.states = level.states, eventVar.time = eventVar.time, eventVar.status = eventVar.status, censorVar.time = censorVar.time, censorVar.status = censorVar.status, product.limit = product.limit, data.index = data.index, store.iid = store.iid )) } ate_checkArgs <- function(call, object.event, object.treatment, object.censor, mydata, formula, treatment, strata, contrasts, allContrasts, times, cause, landmark, se, iid, data.index, return.iid.nuisance, band, B, confint, seed, handler, mc.cores, cl, verbose, n.censor, level.censoring, level.states, estimator, eventVar.time, eventVar.status, censorVar.time, censorVar.status, n.obs){ options <- riskRegression.options() if(inherits(object.event,"glm") && length(times)!=1){ stop("Argument \'times\' has no effect when using a glm object \n", "It should be set to NA \n") } if(eventVar.status %in% names(mydata) == FALSE){ stop("The data set does not seem to have a variable ",eventVar.status," (argument: event[2]). \n") } if(inherits(object.event,"glm") && is.na(cause)){ stop("Argument \'cause\' should not be specified when using a glm model in argument \'event\'") } if(length(cause)>1 || is.na(cause)){ stop("Cannot guess which value of the variable \"",eventVar.status,"\" corresponds to the outcome of interest \n", "Please specify the argument \'cause\'. \n") } if(cause %in% mydata[[eventVar.status]] == FALSE){ stop("Value of the argument \'cause\' not found in column \"",eventVar.status,"\" \n") } if(any(is.na(estimator))){ stop("No model for the outcome/treatment/censoring has been specified. Cannot estimate the average treatment effect. \n") } valid.estimator <- c("GFORMULA","IPTW,IPCW","IPTW","AIPTW,AIPCW","AIPTW") if(any(estimator %in% valid.estimator == FALSE)){ stop("Incorrect value(s) for argument \'estimator\': \"",paste(estimator[estimator %in% valid.estimator == FALSE], collapse = "\" \""),"\"\n", "Valid values: \"G-formula\", \"IPTW\", \"AIPTW\" \n") } if(attr(estimator,"GFORMULA")){ if(is.null(object.event)){ stop("Using a G-formula/AIPTW estimator requires to specify a model for the outcome (argument \'event\') \n") } } if(attr(estimator,"IPTW")){ if(is.null(object.treatment)){ stop("Using a ITPW/AIPTW estimator requires to specify a model for the treatment allocation (argument \'treatment\') \n") } } if(attr(estimator,"IPCW")){ if(is.null(object.censor)){ stop("Using a ITPW/AIPTW estimator requires to specify a model for the censoring mechanism (argument \'censor\') in presence of right-censoring \n") } } if(length(attr(estimator,"monotone"))>1){ stop("monotonicity constrain should be request for all or none of the IPW estimators \n") } if(!is.null(object.event)){ candidateMethods <- paste("predictRisk",class(object.event),sep=".") if (all(match(candidateMethods,options$method.predictRisk,nomatch=0)==0)){ stop(paste("Could not find predictRisk S3-method for ",class(object.event),collapse=" ,"),sep="") } if((inherits(object.event,"wglm") || inherits(object.event,"CauseSpecificCox")) && (cause %in% object.event$causes == FALSE)){ stop("Argument \'cause\' does not match one of the available causes: ",paste(object.event$causes,collapse=" "),"\n") } if(inherits(object.event,"wglm") && (cause != object.event$theCause)){ stop("Argument \'cause\' does not match the one of \'object.event\' \n", "Consider re-fitting the model with appropriate cause.") } if(any(is.na(level.censoring)) && any(na.omit(level.censoring) == cause)){ stop("The cause of interest must differ from the level indicating censoring (in the outcome model) \n") } if(any(is.na(coef(object.event)))){ stop("Cannot handle missing values in the model coefficients (event) \n") } if(!is.null(treatment) && identical(eventVar.status, treatment)){ stop("The treatment variable has the same name as the event variable. \n") } } if(!is.null(object.treatment)){ if(!inherits(object.treatment,"multinom") && (!inherits(object.treatment,"glm") || object.treatment$family$family!="binomial")){ stop("Argument \'treatment\' must be a logistic regression (glm object) or a multinomial regression (nnet::multinom)\n", " or a character variable giving the name of the treatment variable. \n") } if(any(levels(mydata[[treatment]]) %in% mydata[[treatment]] == FALSE)){ mistreat <- levels(mydata[[treatment]])[levels(mydata[[treatment]]) %in% mydata[[treatment]] == FALSE] stop("Argument \'mydata\' needs to take all possible treatment values when using IPTW/AIPTW \n", "missing treatment values: \"",paste(mistreat,collapse="\" \""),"\"\n") } if(any(is.na(coef(object.treatment)))){ stop("Cannot handle missing values in the model coefficients (object.treatment) \n") } if(inherits(object.treatment,"glm") && object.treatment$family$family == "binomial" && length(unique(mydata[[treatment]]))>2){ stop("Cannot use a logistic regression in argument \"treatment\" when there are more than two treatment categories \n", "Consider subsetting the dataset to have only two treatment categories or using a multinomial regression (nnet::multinom).") } } if(attr(estimator,"IPCW")){ if(!inherits(object.censor,"coxph") && !inherits(object.censor,"cph") && !inherits(object.censor,"phreg")){ stop("Argument \'object.censor\' must be a Cox model \n") } if(inherits(object.event,"glm") && any(n.censor > 0) && all(object.event$prior.weights==1)){ stop("Argument \'object.event\' should not be a standard logistic regression in presence of censoring \n") } if(!identical(censorVar.time,eventVar.time)){ stop("The time variable should be the same in \'object.event\' and \'object.censor\' \n") } if(any(cause == level.censoring)){ stop("The level indicating censoring should differ between the outcome model and the censoring model \n", "maybe you have forgotten to set the event type == 0 in the censoring model \n") } if(!identical(censorVar.status,eventVar.status)){ if(sum(diag(table(mydata[[censorVar.status]] == level.censoring, mydata[[eventVar.status]] %in% level.states == FALSE)))!=NROW(mydata)){ stop("The status variables in object.event and object.censor are inconsistent \n") } } if(any(is.na(coef(object.censor)))){ stop("Cannot handle missing values in the model coefficients (object.treatment) \n") } } if(B>0){ if(se==FALSE){ warning("Argument 'se=0' means 'no standard errors' so number of bootstrap repetitions is forced to B=0.") } if(iid==TRUE){ stop("Influence function cannot be computed when using the bootstrap approach \n", "Either set argument \'iid\' to FALSE to not compute the influence function \n", "or set argument \'B\' to 0 \n") } if(band==TRUE){ stop("Confidence bands cannot be computed when using the bootstrap approach \n", "Either set argument \'band\' to FALSE to not compute the confidence bands \n", "or set argument \'B\' to 0 to use the estimate of the asymptotic distribution instead of the bootstrap\n") } if(!is.null(object.event) && is.null(object.event$call)){ stop("Argument \'event\' does not contain its own call, which is needed to refit the model in the bootstrap loop.") } if(!is.null(object.treatment) && is.null(object.treatment$call)){ stop("Argument \'treatment\' does not contain its own call, which is needed to refit the model in the bootstrap loop.") } if(!is.null(object.censor) && is.null(object.censor$call)){ stop("Argument \'censor\' does not contain its own call, which is needed to refit the model in the bootstrap loop.") } max.cores <- parallel::detectCores() if(mc.cores > max.cores){ stop("Not enough available cores \n","available: ",max.cores," | requested: ",mc.cores,"\n") } } if(B==0 && (se|band|iid)){ if(!is.null(landmark)){ stop("Calculation of the standard errors via the functional delta method not implemented for time dependent covariates \n") } if(length(unique(stats::na.omit(n.obs[-1])))>1){ stop("Arguments \'",paste(names(stats::na.omit(n.obs[-1])), collapse ="\' "),"\' must be fitted using the same number of observations \n") } test.data.index <- any(data.index %in% 1:max(n.obs[-1],na.rm = TRUE) == FALSE) if(is.null(data.index) || (is.null(call$data.index) && test.data.index)){ stop("Incompatible number of observations between argument \'data\' and the dataset from argument(s) \'",paste(names(stats::na.omit(n.obs[-1])), collapse ="\' "),"\' \n", "Consider specifying argument \'data.index\' \n \n") } if(!is.numeric(data.index) || any(duplicated(data.index)) || any(is.na(data.index)) || test.data.index){ stop("Incorrect specification of argument \'data.index\' \n", "Must be a vector of integers between 0 and ",max(n.obs[-1],na.rm = TRUE)," \n") } if(!is.null(object.event)){ candidateMethods <- paste("predictRiskIID",class(object.event),sep=".") if (all(match(candidateMethods,options$method.predictRiskIID,nomatch=0)==0)){ stop(paste("Could not find predictRiskIID S3-method for ",class(object.event),collapse=" ,"),"\n", "Functional delta method not implemented for this type of object \n", "Set argument \'B\' to a positive integer to use a boostrap instead \n",sep="") } } if(!is.null(object.treatment) && stats::nobs(object.treatment)!=NROW(mydata)){ stop("Argument \'treatment\' must be have been fitted using argument \'data\' for the functional delta method to work\n", "(discrepancy found in number of rows) \n") } if(!is.null(object.censor) && coxN(object.censor)!=NROW(mydata)){ stop("Argument \'censor\' must be have been fitted using argument \'data\' for the functional delta method to work\n", "(discrepancy found in number of rows) \n") } } if(!is.null(treatment)){ if(treatment %in% names(mydata) == FALSE){ stop("The data set does not seem to have a variable ",treatment," (argument: object.treatment). \n") } if(is.numeric(mydata[[treatment]])){ stop("The treatment variable must be a factor variable. \n", "Convert treatment to factor, re-fit the object using this new variable and then call ate. \n") } }else if(is.null(strata)){ stop("The treatment variable must be specified using the argument \'treatment\' \n") } if(!is.null(contrasts)){ if(any(contrasts %in% unique(mydata[[treatment]]) == FALSE)){ stop("Incorrect values for the argument \'contrasts\' \n", "Possible values: \"",paste(unique(mydata[[treatment]]),collapse="\" \""),"\" \n") } } if(!is.null(allContrasts)){ if(any(allContrasts %in% unique(mydata[[treatment]]) == FALSE)){ stop("Incorrect values for the argument \'allContrasts\' \n", "Possible values: \"",paste(unique(mydata[[treatment]]),collapse="\" \""),"\" \n") } if(!is.matrix(allContrasts) || NROW(allContrasts)!=2){ stop("Argument \'allContrasts\' must be a matrix with 2 rows \n") } } if(!is.null(strata)){ if(attr(estimator, "IPTW")){ stop("Argument \'strata\' only compatible with the G-formula estimator \n") } if(any(strata %in% names(mydata) == FALSE)){ stop("The data set does not seem to have a variable \"",paste0(strata, collapse = "\" \""),"\" (argument: strata). \n") } if(length(strata) != 1){ stop("Argument strata should have length 1. \n") } if(attr(estimator,"TD")){ stop("Landmark analysis is not available when argument strata is specified. \n") } } if(!is.na(eventVar.time)){ if(eventVar.time %in% names(mydata) == FALSE){ stop("The data set does not seem to have a variable ",eventVar.time," (argument: object.event[1]). \n") } if(is.na(cause)){ stop("Argument \'cause\' not specified\n") } data.status <- mydata[[eventVar.status]] if(!is.null(treatment)){ data.strata <- mydata[[treatment]] }else{ data.strata <- mydata[[strata]] } if(is.factor(data.strata)){ data.strata <- droplevels(data.strata) } freq.event <- tapply(data.status, data.strata, function(x){mean(x==cause)}) count.event <- tapply(data.status, data.strata, function(x){sum(x==cause)}) if(any(count.event < 5) ){ warning("Rare event \n") } if(any(mydata[[eventVar.time]]<0)){ stop("The time to event variable should only take positive values \n") } } if (attr(estimator,"TD")){ if (missing(formula)) stop("Need formula to do landmark analysis.") if (missing(landmark)) stop("Need landmark time(s) to do landmark analysis.") if(length(times)!=1){ stop("In settings with time-dependent covariates argument 'time' must be a single value, argument 'landmark' may be a vector of time points.") } } if((return.iid.nuisance == FALSE) & (iid == TRUE) & (attr(estimator, "augmented") == FALSE)){ warning("Ignoring the uncertainty associated with the estimation of the nuisance parameters may lead to inconsistent standard errors. \n", "Consider using a double robust estimator or setting the argument \'known.nuisance\' to TRUE \n") } return(TRUE) } coef.ate <- function(object, ...){ name.coef <- interaction(object$meanRisk[["treatment"]],object$meanRisk[["time"]]) value.coef <- object$meanRisk[[paste0("meanRisk.",object$estimator[1])]] return(setNames(value.coef, name.coef)) } vcov.ate <- function(object, ...){ if(is.null(object$iid)){ stop("Missing iid decomposition in object \n", "Consider setting the argument \'iid\' to TRUE when calling the ate function \n") } name.coef <- interaction(object$meanRisk[["treatment"]],object$meanRisk[["time"]]) iid <- NULL for(iT in names(object$iid[[object$estimator[1]]])){ tempo <- object$iid[[object$estimator[1]]][[iT]] colnames(tempo) <- interaction(iT,object$time) iid <- cbind(iid,tempo) } return(crossprod(iid[,names(coef(object)),drop=FALSE])) } nobs.multinom <- function(object,...){ NROW(object$residuals) }
use_datadriven_cv <- function(full_name = "Sarah Arcos", data_location = system.file("sample_data/", package = "datadrivencv"), pdf_location = "https://github.com/nstrayer/cv/raw/master/strayer_cv.pdf", html_location = "nickstrayer.me/datadrivencv/", source_location = "https://github.com/nstrayer/datadrivencv", which_files = "all", output_dir = getwd(), create_output_dir = FALSE, use_network_logo = TRUE, open_files = TRUE){ if(is.character(which_files) && which_files == "all"){ which_files <- c("cv.rmd", "dd_cv.css", "render_cv.r", "cv_printing_functions.r") } which_files <- tolower(which_files) if("cv.rmd" %in% which_files){ use_ddcv_template( file_name = "cv.rmd", params = list( full_name = full_name, data_location = data_location, pdf_location = pdf_location, html_location = html_location, source_location = source_location, use_network_logo = use_network_logo ), output_dir = output_dir, create_output_dir = create_output_dir, open_after_making = open_files ) } if("dd_cv.css" %in% which_files){ use_ddcv_template( file_name = "dd_cv.css", output_dir = output_dir, create_output_dir ) } if("render_cv.r" %in% which_files){ use_ddcv_template( file_name = "render_cv.r", output_dir = output_dir, create_output_dir, open_after_making = open_files ) } if("cv_printing_functions.r" %in% which_files){ use_ddcv_template( file_name = "cv_printing_functions.r", output_dir = output_dir, create_output_dir ) } }
snotel_phenology <- function(df){ if (!is.data.frame(df) | base::missing(df)) { stop("File is not a (SNOTEL) data frame, or missing!") } metric <- "temperature_min" %in% colnames(df) if ( !metric ) { stop("The content of the data frame might not be (metric) SNOTEL data...") } if ( all(is.na(df$snow_water_equivalent)) ) { warning("Insufficient data, no snow phenology metrics returned...") return(NULL) } df$date <- as.Date(df$date) year <- format(df$date,"%Y") df$snow_na <- df$snow_water_equivalent df$snow_na[df$snow_water_equivalent > 0] <- NA minmax <- function(x, ...){ if (nrow(x) < 365){ return(rep(NA,4)) } if ( all(is.na(x$snow_na)) ) { return(rep(NA,4)) } minmax_loc <- which(x$snow_water_equivalent == 0) na_loc <- as.numeric(na.action(stats::na.contiguous(x$snow_na))) doy <- 1:365 doy[na_loc] <- NA year <- as.numeric(format(x$date[min(minmax_loc)],"%Y")) min_loc <- as.numeric(format(x$date[min(minmax_loc)],"%j")) max_loc <- as.numeric(format(x$date[max(minmax_loc)],"%j")) min_na_loc <- as.numeric(format(x$date[min(doy, na.rm = TRUE)],"%j")) max_na_loc <- as.numeric(format(x$date[max(doy, na.rm = TRUE)],"%j")) max_swe <- max(x$snow_water_equivalent[1:min(minmax_loc)],na.rm=TRUE) max_swe_doy <- as.numeric( format(x$date[which(x$snow_water_equivalent == max_swe)[1]],"%j") ) return(data.frame(year, min_loc, max_loc, min_na_loc, max_na_loc, max_swe, max_swe_doy)) } output <- do.call("rbind", by(df, INDICES = c(year), FUN = minmax)) output <- stats::na.omit(output) if ( dim(output)[1] == 0 ){ warning("Insufficient data, no snow phenology metrics returned...") return(NULL) } else { colnames(output) <- c("year", "first_snow_melt", "cont_snow_acc", "last_snow_melt", "first_snow_acc", "max_swe", "max_swe_doy" ) return(output) } }
interpolateWoods <- function (point, std_point, nq1, nq2, delta) { term1 <- (point - std_point)/delta term2 <- nq2 - nq1 term1 * term2 + nq1 } extrapolateWoods <- function (point, std_point, nq1, nq2, delta, tail) { if (tail == "left") { ratio <- nq1/nq2 if(is.nan(ratio) || ratio < .0000001) ratio <- .001 (ratio ^ ((std_point - point) / delta)) * nq1 } else if (tail == "right") { ratio <- nq2/nq1 if(is.nan(ratio) || ratio < .0000001) ratio <- .001 (ratio ^ ((point - std_point) / delta)) * nq2 } } standardizeQuadrature <- function (qp, nq, estmean=FALSE, estsd=FALSE) { qp_m <- sum(nq*qp) / sum(nq) qp_sd <- sqrt(sum(nq * (qp - qp_m)^2) / sum(nq)) attr_ret <- c(mean = qp_m, var=qp_sd^2) if(estmean) qp_m <- 0 if(estsd) qp_sd <- 1 std_qp <- (qp - qp_m) / qp_sd if(estmean && estsd){ attr(nq, 'mean_var') <- attr_ret return(nq) } min_stdqp <- min(std_qp) max_stdqp <- max(std_qp) res <- numeric(length(qp)) delta <- qp[2] - qp[1] for (i in 1:length(qp)) { if (qp[i] <= min_stdqp) { res[i] <- extrapolateWoods(qp[i], min_stdqp, nq[1], nq[2], delta, "left") } else if (max_stdqp <= qp[i]) { res[i] <- extrapolateWoods(qp[i], max_stdqp, nq[length(nq)-1], nq[length(nq)], delta, "right") } else { std_ind <- max(which(qp[i] > std_qp)) res[i] <- interpolateWoods(qp[i], std_qp[std_ind], nq[std_ind], nq[std_ind+1], delta) } } res <- res / sum(res) * sum(nq) attr(res, 'mean_var') <- attr_ret res }
library(grid) GeomMyPoint <- ggproto("GeomMyPoint", Geom, required_aes = c("x", "y"), default_aes = aes(shape = 1), draw_key = draw_key_point, draw_panel = function(data, panel_scales, coord) { coords <- coord$transform(data, panel_scales) polygonGrob( x = coords$x, y = coords$y ) }) geom_mypoint <- function(mapping = NULL, data = NULL, stat = "identity", position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ...) { ggplot2::layer( geom = GeomMyPoint, mapping = mapping, data = data, stat = stat, position = position, show.legend = show.legend, inherit.aes = inherit.aes, params = list(na.rm = na.rm, ...) ) } ggplot(data = cube_df, aes(x, y, group = zorder)) + geom_mypoint(fill = "pink") + coord_fixed()
context('df_stats()') test_that("always get a data frame", { expect_is(df_stats(~ cesd, data = mosaicData::HELPmiss), "data.frame") expect_is(df_stats(~ cesd | sex, data = mosaicData::HELPmiss), "data.frame") expect_is(df_stats(cesd ~ sex, data = mosaicData::HELPmiss), "data.frame") expect_is(df_stats(cesd ~ substance, data = mosaicData::HELPmiss), "data.frame") expect_is(df_stats(cesd ~ substance + sex, data = mosaicData::HELPmiss), "data.frame") }) test_that("always get a data frame with simple vectors as columns", { is_simple_df <- function(data) { all(sapply(1:ncol(data), rlang::is_bare_numeric)) } expect_true( df_stats(~ cesd, data = mosaicData::HELPmiss) %>% is_simple_df()) expect_true( df_stats(~ cesd | sex, data = mosaicData::HELPmiss) %>% is_simple_df()) expect_true( df_stats(cesd ~ sex, data = mosaicData::HELPmiss) %>% is_simple_df()) expect_true( df_stats(cesd ~ substance, data = mosaicData::HELPmiss) %>% is_simple_df()) expect_true( df_stats(cesd ~ substance + sex, data = mosaicData::HELPmiss) %>% is_simple_df()) expect_true( df_stats(~ cesd, data = mosaicData::HELPmiss, mean, median) %>% is_simple_df()) expect_true( df_stats(~ cesd, data = mosaicData::HELPmiss, mean, median, range) %>% is_simple_df()) }) test_that("naming works", { expect_equivalent( names(df_stats(~ substance, data = mosaicData::HELPmiss, prop())), c("response", "prop_alcohol")) expect_equivalent( names(df_stats(substance ~ sex, data = mosaicData::HELPmiss, prop())), c("response", "sex", "prop_alcohol")) expect_equivalent( names(df_stats(~ cesd, data = mosaicData::HELPmiss)), c("response", "min", "Q1", "median", "Q3", "max", "mean", "sd", "n", "missing")) expect_equivalent( names(df_stats(~ cesd | sex, data = mosaicData::HELPmiss)), c("response", "sex", "min", "Q1", "median", "Q3", "max", "mean", "sd", "n", "missing")) expect_equivalent( names(df_stats(~ cesd | sex, data = mosaicData::HELPmiss, mean)), c("response", "sex", "mean")) expect_equivalent( names(df_stats(~ cesd | sex, data = mosaicData::HELPmiss, A = mean, median)), c("response", "sex", "A", "median")) expect_equivalent( names(df_stats(~ cesd | sex, data = mosaicData::HELPmiss, A = range, median)), c("response", "sex", "A_1", "A_2", "median")) expect_equivalent( names(df_stats(~ cesd | sex, data = mosaicData::HELPmiss, range)), c("response", "sex", "range_1", "range_2")) expect_equivalent( names(df_stats(~ cesd | sex, data = mosaicData::HELPmiss, range, long_names = FALSE)), c("response", "sex", "range_1", "range_2")) }) test_that("mean works", { expect_equivalent( df_stats(~ cesd, data = mosaicData::HELPmiss, mean)[, "mean"], mean( mosaicData::HELPmiss$cesd, na.rm = TRUE) ) expect_equivalent( df_stats(cesd ~ substance, data = mosaicData::HELPmiss, mean)[, "mean"], sapply(c("alcohol", "cocaine", "heroin", "missing"), function(s) mean( subset(mosaicData::HELPmiss$cesd, mosaicData::HELPmiss$substance == s), na.rm = TRUE) ) ) }) test_that("formulas can be used to specify groups.", { expect_equivalent( df_stats(cesd ~ substance, data = mosaicData::HELPmiss, mean), df_stats( ~ cesd, groups = ~ substance, data = mosaicData::HELPmiss, mean) ) expect_equivalent( df_stats(cesd ~ substance, groups = sex, data = mosaicData::HELPmiss, mean), df_stats(cesd ~ substance, groups = ~ sex, data = mosaicData::HELPmiss, mean) ) })
gammaNUMCKpar <- function(matAp, matBp, n.cores = NULL, cut.a = 1, cut.p = 2) { if(any(class(matAp) %in% c("tbl_df", "data.table"))){ matAp <- as.data.frame(matAp)[,1] } if(any(class(matBp) %in% c("tbl_df", "data.table"))){ matBp <- as.data.frame(matBp)[,1] } matAp[matAp == ""] <- NA matBp[matBp == ""] <- NA if(sum(is.na(matAp)) == length(matAp) | length(unique(matAp)) == 1){ cat("WARNING: You have no variation in this variable, or all observations are missing in dataset A.\n") } if(sum(is.na(matBp)) == length(matBp) | length(unique(matBp)) == 1){ cat("WARNING: You have no variation in this variable, or all observations are missing in dataset B.\n") } if(is.null(n.cores)) { n.cores <- detectCores() - 1 } matrix.1 <- as.matrix(as.numeric(matAp)) matrix.2 <- as.matrix(as.numeric(matBp)) max <- max(max(matrix.1, na.rm = T), max(matrix.2, na.rm = T)) end.points <- c((round((max), 0) + 1), (round(max + cut.p, 0) + 3)) matrix.1[is.na(matrix.1)] <- end.points[2] matrix.2[is.na(matrix.2)] <- end.points[1] u.values.1 <- unique(matrix.1) u.values.2 <- unique(matrix.2) n.slices1 <- max(round(length(u.values.1)/(10000), 0), 1) n.slices2 <- max(round(length(u.values.2)/(10000), 0), 1) limit.1 <- round(quantile((0:nrow(u.values.2)), p = seq(0, 1, 1/n.slices2)), 0) limit.2 <- round(quantile((0:nrow(u.values.1)), p = seq(0, 1, 1/n.slices1)), 0) temp.1 <- temp.2 <- list() n.cores2 <- min(n.cores, n.slices1 * n.slices2) for(i in 1:n.slices2) { temp.1[[i]] <- list(u.values.2[(limit.1[i]+1):limit.1[i+1]], limit.1[i]) } for(i in 1:n.slices1) { temp.2[[i]] <- list(u.values.1[(limit.2[i]+1):limit.2[i+1]], limit.2[i]) } difference <- function(m, y, cut) { x <- as.matrix(m[[1]]) e <- as.matrix(y[[1]]) t <- calcPWDcpp(as.matrix(x), as.matrix(e)) t[ t == 0 ] <- cut[1] t[ t > cut[2] ] <- 0 t <- Matrix(t, sparse = T) t@x[t@x <= cut[1]] <- cut[2] + 1; gc() t@x[t@x > cut[1] & t@x <= cut[2]] <- 1; gc() slice.1 <- m[[2]] slice.2 <- y[[2]] indexes.2 <- which(t == cut[2] + 1, arr.ind = T) indexes.2[, 1] <- indexes.2[, 1] + slice.2 indexes.2[, 2] <- indexes.2[, 2] + slice.1 indexes.1 <- which(t == 1, arr.ind = T) indexes.1[, 1] <- indexes.1[, 1] + slice.2 indexes.1[, 2] <- indexes.1[, 2] + slice.1 list(indexes.2, indexes.1) } do <- expand.grid(1:n.slices2, 1:n.slices1) if (n.cores2 == 1) '%oper%' <- foreach::'%do%' else { '%oper%' <- foreach::'%dopar%' cl <- makeCluster(n.cores2) registerDoParallel(cl) on.exit(stopCluster(cl)) } temp.f <- foreach(i = 1:nrow(do), .packages = c("Rcpp", "Matrix")) %oper% { r1 <- do[i, 1] r2 <- do[i, 2] difference(temp.1[[r1]], temp.2[[r2]], c(cut.a, cut.p)) } gc() reshape2 <- function(s) { s[[1]] } reshape1 <- function(s) { s[[2]] } temp.2 <- lapply(temp.f, reshape2) temp.1 <- lapply(temp.f, reshape1) indexes.2 <- do.call('rbind', temp.2) indexes.1 <- do.call('rbind', temp.1) n.values.2 <- as.matrix(cbind(u.values.1[indexes.2[, 2]], u.values.2[indexes.2[, 1]])) n.values.1 <- as.matrix(cbind(u.values.1[indexes.1[, 2]], u.values.2[indexes.1[, 1]])) matches.2 <- lapply(seq_len(nrow(n.values.2)), function(i) n.values.2[i, ]) matches.1 <- lapply(seq_len(nrow(n.values.1)), function(i) n.values.1[i, ]) if(Sys.info()[['sysname']] == 'Windows') { if (n.cores == 1) '%oper%' <- foreach::'%do%' else { '%oper%' <- foreach::'%dopar%' cl <- makeCluster(n.cores) registerDoParallel(cl) on.exit(stopCluster(cl)) } final.list2 <- foreach(i = 1:length(matches.2)) %oper% { ht1 <- which(matrix.1 == matches.2[[i]][[1]]); ht2 <- which(matrix.2 == matches.2[[i]][[2]]) list(ht1, ht2) } final.list1 <- foreach(i = 1:length(matches.1)) %oper% { ht1 <- which(matrix.1 == matches.1[[i]][[1]]); ht2 <- which(matrix.2 == matches.1[[i]][[2]]) list(ht1, ht2) } } else { no_cores <- n.cores final.list2 <- mclapply(matches.2, function(s){ ht1 <- which(matrix.1 == s[1]); ht2 <- which(matrix.2 == s[2]); list(ht1, ht2) }, mc.cores = getOption("mc.cores", no_cores)) final.list1 <- mclapply(matches.1, function(s){ ht1 <- which(matrix.1 == s[1]); ht2 <- which(matrix.2 == s[2]); list(ht1, ht2) }, mc.cores = getOption("mc.cores", no_cores)) } na.list <- list() na.list[[1]] <- which(matrix.1 == end.points[2]) na.list[[2]] <- which(matrix.2 == end.points[1]) out <- list() out[["matches2"]] <- final.list2 out[["matches1"]] <- final.list1 out[["nas"]] <- na.list class(out) <- c("fastLink", "gammaNUMCKpar") return(out) }
context("do_parallel") test_that("a missing trajectory fails", { expect_error(do_parallel(trajectory(), "asdf", .env=simmer())) }) test_that("do_parallel generates the correct sequence of activities", { t <- trajectory() %>% do_parallel(trajectory(), trajectory(), .env=env, wait=TRUE) expect_equal(length(t), 2) expect_equal(get_n_activities(t), 8) expect_output(print(t[[1]]), paste0( "Clone.*3.*", "Fork 1.*Trap.*Wait.*Wait.*UnTrap.*", "Fork 2.*Send.*Fork 3.*Send")) expect_output(print(t[[2]]), "Synchronize.*1") t <- trajectory() %>% do_parallel(trajectory(), trajectory(), .env=env, wait=FALSE) expect_equal(length(t), 4) expect_equal(get_n_activities(t), 7) expect_output(print(t[[1]]), paste0( "Clone.*3.*", "Fork 1.*Trap.*", "Fork 2.*Send.*Fork 3.*Send")) expect_output(print(t[[2]]), "Synchronize.*0") expect_output(print(t[[3]]), "Wait") expect_output(print(t[[4]]), "UnTrap") })
glmnetSE <- function(data, cf.no.shrnkg, alpha=1, method="10CVoneSE", test="none",r=250, nlambda=100, seed=0, family="gaussian", type="basic", conf=0.95, perf.metric="mse", ncore = "mx.core"){ coef.name <- colnames(data)[-1] c <- which(names(data) %in% coef.name)-1 c <- 1:(ncol(data)-1) n <- nrow(data) no.shrink <- which(names(data) %in% cf.no.shrnkg)-1 p.fac <- rep(1, ncol(data)-1) p.fac[no.shrink] <- 0 dep.var <- colnames(data[1]) if(length(alpha) > 1){ model_type = "Elastic Net" }else if(alpha == 1){ model_type = "LASSO" }else if(alpha == 0){ model_type = "Ridge" } "%ni%" <- Negate("%in%") if(class(data)!= "data.frame" && class(data)!= "tbl_df" && class(data)!= "matrix"){ warning("Use an object of class data frame, tibble or matrix as data input") stop() } if(class(class(cf.no.shrnkg))!= "character"){ warning("The input of the coefficients without applied shrinkage has to be a character") stop() } if(class(alpha)!= "numeric"){ warning("Alpha has to be numeric") stop() }else if(any(alpha > 1) || any(alpha < 0)){ warning("Alpha should be between 0 and 1") stop() } if(method!= "none" && method!= "10CVmin" && method!= "10CVoneSE"){ warning("The method should be 'none', '10CVmin' or '10CVoneSE'") stop() } if(class(r)!= "numeric"){ warning("The number of bootstrap repetitions has to be numeric") stop() }else if(r < 100){ warning("Be aware that you are using less than 100 bootstrap repetitions") } if(class(nlambda)!= "numeric"){ warning("The number of tested lambdas has to be numeric") stop() } if(family!= "gaussian" && family!= "binomial"){ warning("The model family should be 'gaussian' or 'binomial'") stop() } if(type!= "basic" && type!= "norm" && type!= "perc" && type!= "bca"){ warning("The bootstrap confidence interval type has to be 'basic', 'norm', 'perc', or 'bca'") stop() } if(class(conf)!= "numeric"){ warning("Conf has to be numeric") stop() }else if(any(conf > 1) || any(conf < 0)){ warning("Conf should be between 0 and 1") stop() } if(perf.metric!= "mse" && perf.metric!= "mae" && perf.metric!= "auc" && perf.metric!= "class"){ warning("The performance metric should be 'mse', 'mae', 'class' or 'auc'") stop() } if(family == "binomial" && (perf.metric!= "auc" && perf.metric!= "class")){ warning("With family 'binomial' please use the performance metric 'class' or 'auc'") stop() } if(family == "gaussian" && (perf.metric!= "mse" && perf.metric!= "mae")){ warning("With family 'gaussian' please use the performance metric 'mse' or 'mae'") stop() } if((class(test)== "data.frame" || class(test)== "tbl_df" || class(test)== "matrix") & (method != "10CVmin" && method != "10CVoneSE")){ warning("The model performance on the test data is only supplied for method '10CVmin' and '10CVoneSE'") } if((r < n) && type=="bca"){ warning("The number of bootstrap repetitions 'r' should at leaste be as large as the sample size.") stop() } if((length(alpha)>1) && seed == 0){ warning("For using automated alpha selection properly please set a seed. The seed should not be 0.") } if(length(alpha)>1){ if(all(alpha != 0) && all(alpha != 1)){ enet <- NULL for(i in alpha){ y = as.matrix(data[,1]) x = as.matrix(data[,-1]) set.seed(seed) enet.fit <- glmnet::cv.glmnet(x=x, y=y, alpha=i, family=family, nlambda=nlambda, penalty.factor=p.fac, type.measure=perf.metric) enet.fit[["alpha"]] = i enet.fit_new = enet.fit enet[[length(enet) + 1]] = enet.fit_new } alpha.n <- 1:length(alpha) enet.mod.check <- data.frame(alpha = numeric(), mtr.min = numeric(), mtr.oneSE = numeric()) for(i in alpha.n){ mtr.min = enet[[i]]$cvm[enet[[i]]$lambda == enet[[i]]$lambda.min] mtr.oneSE = enet[[i]]$cvm[enet[[i]]$lambda == enet[[i]]$lambda.1se] alpha = enet[[i]]$alpha enet.mod.check[nrow(enet.mod.check) + 1,] = c(alpha, mtr.min, mtr.oneSE) } if(method == "10CVmin"){ alpha <- enet.mod.check$alpha[enet.mod.check$mtr.min==min(enet.mod.check$mtr.min)] print(paste("The best alpha is: ", alpha)) }else if(method == "10CVoneSE"){ alpha <- enet.mod.check$alpha[enet.mod.check$mtr.oneSE==min(enet.mod.check$mtr.oneSE)] print(paste("The best alpha is: ", alpha)) }else{ warning("Select method '10CVmin' or '10CVoneSE'") } }else{ warning("A Elastic Net should have a alpha >0 and <1. Alpha values of 0 and 1 results in a ridge or LASSO model.") } }else{ alpha <- alpha } getROC_AUC = function(probs, true_Y){ probsSort = sort(probs, decreasing = TRUE, index.return = TRUE) val = unlist(probsSort$x) idx = unlist(probsSort$ix) roc_y = true_Y[idx]; stack_x = cumsum(roc_y == 0)/sum(roc_y == 0) stack_y = cumsum(roc_y == 1)/sum(roc_y == 1) auc = sum((stack_x[2:length(roc_y)]-stack_x[1:length(roc_y)-1])*stack_y[2:length(roc_y)]) return(list(stack_x=stack_x, stack_y=stack_y, auc=auc)) } envir = environment(glmnetSE) if(ncore == "mx.core"){ cpus <- parallel::detectCores() cl <- parallel::makeCluster(ifelse((cpus-1)>32, 32, (cpus-1))) }else if(typeof(ncore) == "double"){ cpus <- ncore cl <- parallel::makeCluster(ncore) } parallel::clusterExport(cl=cl, varlist = ls(envir), envir = envir) if(method=="10CVoneSE"){ if(perf.metric == "auc" && (class(test)== "data.frame" || class(test)== "tbl_df" || class(test)== "matrix")){ y = as.matrix(data[,1]) x = as.matrix(data[,-1]) set.seed(seed) fit.roc = glmnet::cv.glmnet(x=x, y=y, alpha=alpha, family=family, nlambda=nlambda, penalty.factor=p.fac, type.measure=perf.metric) y.test = as.matrix(test[,1]) x.test = as.matrix(test[,-1]) p.fit.test <- stats::predict(fit.roc, s=fit.roc$lambda.1se, newx=x.test, type = "response") roc = getROC_AUC(p.fit.test, y.test) roc <- list(roc$stack_y, roc$stack_x) } boot.glmnet <- function(data, indices, R) { d = data[indices,] y = as.matrix(d[,1]) x = as.matrix(d[,-1]) set.seed(seed) fit = glmnet::cv.glmnet(x=x, y=y, alpha=alpha, family=family, nlambda=nlambda, penalty.factor=p.fac, type.measure=perf.metric) coef <- coef(fit, s = "lambda.1se")[-1] if(perf.metric == "auc"){ y.train = as.matrix(data[,1]) x.train = as.matrix(data[,-1]) p.fit.train <- stats::predict(fit, s=fit$lambda.1se, newx=x.train, type = "response") roc.auc = getROC_AUC(p.fit.train, y.train) metric <- roc.auc$auc }else{ metric <- fit$cvm[fit$lambda == fit$lambda.1se] } if(class(test)== "data.frame" || class(test)== "tbl_df" || class(test)== "matrix"){ if(dep.var == colnames(test[1]) && ncol(data) == ncol(test)){ y.test = as.matrix(test[,1]) x.test = as.matrix(test[,-1]) p.fit.test <- stats::predict(fit, s=fit$lambda.1se, newx=x.test) SSE <- sum((p.fit.test - y.test)^2) if(perf.metric == "mse"){ metric.test <- SSE/nrow(test) }else if(perf.metric == "auc"){ y.test = as.matrix(test[,1]) x.test = as.matrix(test[,-1]) p.fit.test <- stats::predict(fit, s=fit$lambda.1se, newx=x.test, type = "response") roc.auc = getROC_AUC(p.fit.test, y.test) metric.test <- roc.auc$auc }else if(perf.metric == "class"){ y.test = as.matrix(test[,1]) x.test = as.matrix(test[,-1]) p.fit.test <- as.numeric(stats::predict(fit, s=fit$lambda.1se, newx=x.test, type = "class")) metric.test <- mean(y.test != p.fit.test, na.rm = TRUE) }else{ metric.test <- mean(abs(y.test - p.fit.test), na.rm = TRUE) } return(c(coef, metric, metric.test)) }else{ warning("Training and test data need to have the same outcome and feature variables.") stop() } }else{ return(c(coef, metric)) } } if(seed==0){ results = boot::boot(data=data, statistic=boot.glmnet, R=r, parallel = "snow", ncpus =cpus, cl=cl) parallel::stopCluster(cl=cl) }else{ set.seed(seed) results = boot::boot(data=data, statistic=boot.glmnet, R=r, parallel = "snow", ncpus =cpus, cl=cl) parallel::stopCluster(cl=cl) } }else if(method=="10CVmin"){ if(perf.metric == "auc" && (class(test)== "data.frame" || class(test)== "tbl_df" || class(test)== "matrix")){ y = as.matrix(data[,1]) x = as.matrix(data[,-1]) set.seed(seed) fit.roc = glmnet::cv.glmnet(x=x, y=y, alpha=alpha, family=family, nlambda=nlambda, penalty.factor=p.fac, type.measure=perf.metric) y.test = as.matrix(test[,1]) x.test = as.matrix(test[,-1]) p.fit.test <- stats::predict(fit.roc, s=fit.roc$lambda.1se, newx=x.test, type = "response") roc = getROC_AUC(p.fit.test, y.test) roc <- list(roc$stack_y, roc$stack_x) } boot.glmnet <- function(data, indices, R) { d = data[indices,] y = as.matrix(d[,1]) x = as.matrix(d[,-1]) set.seed(seed) fit = glmnet::cv.glmnet(x=x, y=y,alpha=alpha, family=family, nlambda=nlambda, penalty.factor=p.fac, type.measure=perf.metric) coef <- coef(fit, s = "lambda.min")[-1] if(perf.metric == "auc"){ y.train = as.matrix(data[,1]) x.train = as.matrix(data[,-1]) p.fit.train <- stats::predict(fit, s=fit$lambda.min, newx=x.train, type = "response") roc.auc = getROC_AUC(p.fit.train, y.train) metric <- roc.auc$auc }else{ metric <- fit$cvm[fit$lambda == fit$lambda.min] } if(class(test)== "data.frame" || class(test)== "tbl_df" || class(test)== "matrix"){ if(dep.var == colnames(test[1]) && ncol(data) == ncol(test)){ y.test = as.matrix(test[,1]) x.test = as.matrix(test[,-1]) p.fit.test <- stats::predict(fit, s=fit$lambda.min, newx=x.test) SSE <- sum((p.fit.test - y.test)^2) if(perf.metric == "mse"){ metric.test <- SSE/nrow(test) }else if(perf.metric == "auc"){ y.test = as.matrix(test[,1]) x.test = as.matrix(test[,-1]) p.fit.test <- stats::predict(fit, s=fit$lambda.1se, newx=x.test, type = "response") roc.auc = getROC_AUC(p.fit.test, y.test) metric.test <- roc.auc$auc }else if(perf.metric == "class"){ y.test = as.matrix(test[,1]) x.test = as.matrix(test[,-1]) p.fit.test <- as.numeric(stats::predict(fit, s=fit$lambda.1se, newx=x.test, type = "class")) metric.test <- mean(y.test != p.fit.test, na.rm = TRUE) }else{ metric.test <- mean(abs(y.test - p.fit.test), na.rm = TRUE) } return(c(coef, metric, metric.test)) }else{ warning("Training and test data need to have the same outcome and feature variables.") } }else{ return(c(coef, metric)) } } if(seed==0){ results = boot::boot(data=data, statistic=boot.glmnet, R=r, parallel = "snow", ncpus =cpus, cl=cl) parallel::stopCluster(cl=cl) }else{ set.seed(seed) results = boot::boot(data=data, statistic=boot.glmnet, R=r, parallel = "snow", ncpus =cpus, cl=cl) parallel::stopCluster(cl=cl) } }else{ boot.glmnet <- function(data, indices, R) { d = data[indices,] y = as.matrix(d[,1]) x = as.matrix(d[,-1]) fit = glmnet::glmnet(x=x, y=y,alpha=alpha, family=family, nlambda=nlambda, penalty.factor=p.fac) return(coef(fit, s = 0.1)[-1]) } if(seed==0){ results = boot::boot(data=data, statistic=boot.glmnet, R=r, parallel = "snow", ncpus =cpus, cl=cl) parallel::stopCluster(cl=cl) }else{ set.seed(seed) results = boot::boot(data=data, statistic=boot.glmnet, R=r, parallel = "snow", ncpus =cpus, cl=cl) parallel::stopCluster(cl=cl) } } name <- NULL coef <- NULL SE <- NULL KI_low <- NULL KI_up <- NULL p.val <- NULL star <- NULL if(type=="norm"){ type.name="normal" bt.s <- 2 bt.e <- 3 }else if(type=="perc"){ type.name="percent" bt.s <- 4 bt.e <- 5 }else{ type.name=type bt.s <- 4 bt.e <- 5 } if(method == "none"){ iter.loop <- 0 for(C in c){ iter.loop <- iter.loop + 1 coef.nm <- coef.name[iter.loop] KI <- boot::boot.ci(results, type=type, conf=conf, index=C)[[type.name]][bt.s:bt.e] if(coef.nm %ni% cf.no.shrnkg){ name_new <- coef.name[iter.loop] name <- c(name, name_new) coef_new <- results[["t0"]][C] coef <- c(coef, coef_new) SE_new <- NA SE <- c(SE, SE_new) p.val_new <- NA p.val <- c(p.val, p.val_new) KI_low_new <- NA KI_low <- c(KI_low, KI_low_new) KI_up_new <- NA KI_up <- c(KI_up, KI_up_new) star_new <- " " star <- c(star, star_new) }else{ name_new <- coef.name[iter.loop] name <- c(name, name_new) coef_new <- results[["t0"]][C] coef <- c(coef, coef_new) SE_new <- apply(results$t,2,stats::sd)[C] SE <- c(SE, SE_new) p.val_new <- mean(abs(results$t0[C]-(mean(results$t[,C])-results$t0[C])) <= abs(results$t[,C]-mean(results$t[,C]))) p.val <- c(p.val, p.val_new) KI_low_new <- KI[1] KI_low <- c(KI_low, KI_low_new) KI_up_new <- KI[2] KI_up <- c(KI_up, KI_up_new) star_new <- if(p.val[C] < 0.05 && p.val[C] >= 0.01){ "*" }else if(p.val[C] < 0.01 && p.val[C] >= 0.001){ "**" }else if(p.val[C] < 0.001){ "***" }else{ " " } star <- c(star, star_new) } output <- list(model_type = model_type, coefficients = name, outcome_var = dep.var, variables_no_shrinkage = cf.no.shrnkg, estimat = coef, standard_error = SE, p.value = p.val, CI_low = KI_low, CI_up = KI_up, star = star, metric_name = "not applied") } }else{ if(class(test)== "data.frame" || class(test)== "tbl_df" || class(test)== "matrix"){ metric.KI <- boot::boot.ci(results, type=type, conf=conf, index=max(c)+1)[[type.name]][bt.s:bt.e] metric <- results[["t0"]][max(c)+1] metric.KI.test <- boot::boot.ci(results, type=type, conf=conf, index=max(c)+2)[[type.name]][bt.s:bt.e] metric.test <- results[["t0"]][max(c)+2] test.set <- "test data supplied" }else{ metric.KI <- boot::boot.ci(results, type=type, conf=conf, index=max(c)+1)[[type.name]][bt.s:bt.e] metric <- results[["t0"]][max(c)+1] test.set <- "no test data supplied" } iter.loop <- 0 for(C in c){ iter.loop <- iter.loop + 1 coef.nm <- coef.name[iter.loop] KI <- boot::boot.ci(results, type=type, conf=conf, index=C)[[type.name]][bt.s:bt.e] if(coef.nm %ni% cf.no.shrnkg){ name_new <- coef.name[iter.loop] name <- c(name, name_new) coef_new <- results[["t0"]][C] coef <- c(coef, coef_new) SE_new <- NA SE <- c(SE, SE_new) p.val_new <- NA p.val <- c(p.val, p.val_new) KI_low_new <- NA KI_low <- c(KI_low, KI_low_new) KI_up_new <- NA KI_up <- c(KI_up, KI_up_new) star_new <- " " star <- c(star, star_new) }else{ name_new <- coef.name[iter.loop] name <- c(name, name_new) coef_new <- results[["t0"]][C] coef <- c(coef, coef_new) SE_new <- apply(results$t,2,stats::sd)[C] SE <- c(SE, SE_new) p.val_new <- mean(abs(results$t0[C]-(mean(results$t[,C])-results$t0[C])) <= abs(results$t[,C]-mean(results$t[,C]))) p.val <- c(p.val, p.val_new) KI_low_new <- KI[1] KI_low <- c(KI_low, KI_low_new) KI_up_new <- KI[2] KI_up <- c(KI_up, KI_up_new) star_new <- if(p.val[C] < 0.05 && p.val[C] >= 0.01){ "*" }else if(p.val[C] < 0.01 && p.val[C] >= 0.001){ "**" }else if(p.val[C] < 0.001){ "***" }else{ " " } star <- c(star, star_new) } if(perf.metric == "auc" && (class(test)== "data.frame" || class(test)== "tbl_df" || class(test)== "matrix")){ output <- list(model_type = model_type, coefficients = name, outcome_var = dep.var, variables_no_shrinkage = cf.no.shrnkg, estimat = coef, standard_error = SE, p.value = p.val, CI_low = KI_low, CI_up = KI_up, star = star, metric_name = perf.metric, metric = metric, metric_CI = metric.KI, test.set = test.set, metric.test = metric.test, metric_CI.test = metric.KI.test, roc_y = roc[1], roc_x = roc[2]) }else if(class(test)== "data.frame" || class(test)== "tbl_df" || class(test)== "matrix"){ output <- list(model_type = model_type, coefficients = name, outcome_var = dep.var, variables_no_shrinkage = cf.no.shrnkg, estimat = coef, standard_error = SE, p.value = p.val, CI_low = KI_low, CI_up = KI_up, star = star, metric_name = perf.metric, metric = metric, metric_CI = metric.KI, test.set = test.set, metric.test = metric.test, metric_CI.test = metric.KI.test) }else{ output <- list(model_type = model_type, coefficients = name, outcome_var = dep.var, variables_no_shrinkage = cf.no.shrnkg, test.set = test.set, estimat = coef, standard_error = SE, p.value = p.val, CI_low = KI_low, CI_up = KI_up, star = star, metric_name = perf.metric, metric = metric, metric_CI = metric.KI) } } } class(output) <- c("glmnetSE") invisible(output) } summary.glmnetSE <- function(object, ...){ if(class(object)!= "glmnetSE"){ warning("A object of the class 'glmnetSE' should be used") stop() } if(object$metric_name == "not applied"){ coef <- data.frame(cbind("Coefficients" = object$coefficients, "Estimates" = round(object$estimat,4), "Std.Error" = round(object$standard_error,4), "CI.low" = round(object$CI_low,4), "CI.up" = round(object$CI_up,4), "p-value" = round(object$p.value,4), "Sig." = object$star)) }else{ coef <- data.frame(cbind("Coefficients" = object$coefficients, "Estimates" = round(object$estimat,4), "Std.Error" = round(object$standard_error,4), "CI.low" = round(object$CI_low,4), "CI.up" = round(object$CI_up,4), "p-value" = round(object$p.value,4), "Sig." = object$star)) if(object$test.set == "test data supplied"){ metric <- data.frame(cbind("Metric" = c(object$metric_name), "Value" = c(round(object$metric,2)), "CI.low" = c(round(object$metric_CI[1],2)), "CI.up" = c(round(ifelse(object$metric_name == "auc" && object$metric_CI[2] > 1,1, object$metric_CI[2]),2)))) metric.test <- data.frame(cbind("Metric" = c(object$metric_name), "Value" = c(round(object$metric.test,2)), "CI.low" = c(round(object$metric_CI.test[1],2)), "CI.up" = c(round(ifelse(object$metric_name == "auc" && object$metric_CI[2] > 1,1, object$metric_CI[2]),2)))) }else{ metric <- data.frame(cbind("Metric" = c(object$metric_name), "Value" = c(round(object$metric,2)), "CI.low" = c(round(object$metric_CI[1],2)), "CI.up" = c(round(ifelse(object$metric_name == "auc" && object$metric_CI[2] > 1,1, object$metric_CI[2]),2)))) } } cat(paste0(object$model_type), "model:\n") cat("Outcome variable:", paste0(object$outcome_var), "\n") cat("Variables without shrinkage:", paste0(object$variables_no_shrinkage), "\n") cat("\n\n") print(coef, row.names = FALSE) cat("\n\n") if(object$metric_name == "not applied"){ cat("Performance Metric: \n") cat(c("Metric only applicable with method '10CVmin' or '10CVoneSE'"), fill = getOption("width")) }else{ if(object$test.set == "test data supplied"){ cat("Performance metric train data: \n") print(metric, row.names = FALSE) cat("\n\n") cat("Performance metric test data: \n") print(metric.test, row.names = FALSE) }else{ cat("Performance Metric: \n") print(metric, row.names = FALSE) } } } plot.glmnetSE <- function(x, ...){ if(class(x)!= "glmnetSE"){ warning("A object of the class 'glmnetSE' should be used") stop() } if(x$test.set!= "test data supplied"){ warning("The ROC curve can only be plotted if test data is supplied to 'glmnetSE'") stop() } graphics::plot(x[["roc_x"]][[1]], x[["roc_y"]][[1]], type = "l", col = "blue", xlab = "False Positive Rate", ylab = "True Positive Rate", main = "ROC") graphics::axis(1, seq(0.0,1.0,0.1)) graphics::axis(2, seq(0.0,1.0,0.1)) graphics::abline(0, 1, col="black", lty=3) }
focus <- function(x, ..., mirror = FALSE) { focus_( x = x, .dots = ..., ... = ..., mirror = mirror ) } dice <- function(x, ...) { UseMethod("dice") } dice.cor_df <- function(x, ...) { focus(x, ..., mirror = TRUE) } focus_ <- function(x, ..., .dots, mirror) { UseMethod("focus_") } focus_if <- function(x, .predicate, ..., mirror = FALSE) { UseMethod("focus_if") } focus_if.default <- function(x, .predicate, ..., mirror = FALSE) { x <- as_cordf(x) focus_if.cor_df(x, .predicate, ..., mirror = mirror) } stretch <- function(x, na.rm = FALSE, remove.dups = FALSE) { UseMethod("stretch") } stretch.cor_df <- function(x, na.rm = FALSE, remove.dups = FALSE) { if(remove.dups) x <- shave(x) row_name <- x$term x <- x[colnames(x) != "term"] tb <- imap_dfr(x, ~tibble(x = .y, y = row_name, r = .x)) if(na.rm) tb <- tb[!is.na(tb$r), ] if(remove.dups) { stretch_unique(tb) } else { tb } } stretch_unique <- function(.data, x = x, y = y, val = r) { val <- enquo(val) y <- enquo(y) x <- enquo(x) row_names <- unique(.data[, as_label(y)][[1]]) td <- purrr::transpose(.data) combos <- map_chr( td, ~paste0(sort(c(.x$x, .x$y)), collapse = " | ") ) .data$combos <- combos map_dfr( unique(combos), ~{ cr <- .data[.data$combos == .x, ] vl <- cr[, as_label(val)][[1]] if(nrow(cr) == 2) cr <- cr[!is.na(vl), ] if(nrow(cr) != 1) stop("Error deduplicating stretched table") cr[, colnames(cr) != "combos"] } ) }
library(testthat) update_expectation <- FALSE test_that("One Shot: writing with read-only privileges", { credential <- retrieve_credential_testing(project_id = 153L) expected_message <- "The REDCapR write/import operation was not successful. The error message was:\nERROR: You do not have API Import/Update privileges" expected_text <- "ERROR: You do not have API Import/Update privileges" expect_message( result <- REDCapR::redcap_write_oneshot(ds=mtcars, redcap_uri=credential$redcap_uri, token=credential$token) ) expect_false(result$success) expect_equal(result$status_code, expected=403L) expect_equal(result$outcome_message, expected_message) expect_true( is.na(result$records_affected_count)) expect_equal(result$affected_ids, character(0)) expect_equal(result$raw_text, expected_text, ignore_attr = TRUE) expect_null( result$data) expect_null( result$records_collapsed) expect_null( result$fields_collapsed) }) test_that("Single Batch: writing with read-only privileges", { credential <- retrieve_credential_testing(project_id = 153L) expected_message <- "The REDCapR write/import operation was not successful. The error message was:\nERROR: You do not have API Import/Update privileges" expected_text <- "ERROR: You do not have API Import/Update privileges" expect_error( result <- REDCapR::redcap_write(ds=mtcars, redcap_uri=credential$redcap_uri, token=credential$token) ) }) test_that("Many Batches: writing with read-only privileges", { credential <- retrieve_credential_testing(project_id = 153L) expected_message <- "The REDCapR write/import operation was not successful. The error message was:\nERROR: You do not have API Import/Update privileges" expected_text <- "ERROR: You do not have API Import/Update privileges" expect_error( result <- REDCapR::redcap_write(ds=mtcars, redcap_uri=credential$redcap_uri, token=credential$token, batch_size=10) ) }) test_that("Single Batch: writing with read-only privileges --contiue on error", { credential <- retrieve_credential_testing(project_id = 153L) expected_message <- "The REDCapR write/import operation was not successful. The error message was:\nERROR: You do not have API Import/Update privileges" expect_warning(expect_message( result <- REDCapR::redcap_write(ds=mtcars, redcap_uri=credential$redcap_uri, token=credential$token, continue_on_error=TRUE) )) expect_false(result$success) expect_equal(result$status_code, expected="403") expect_equal(result$outcome_message, expected_message) expect_equal( result$records_affected_count, 0L) expect_equal(result$affected_ids, character(0)) expect_null( result$raw_text) expect_null( result$records_collapsed) expect_null( result$fields_collapsed) }) test_that("Many Batches: writing with read-only privileges --contiue on error", { credential <- retrieve_credential_testing(project_id = 153L) expected_message <- "The REDCapR write/import operation was not successful. The error message was:\nERROR: You do not have API Import/Update privileges" expect_warning(expect_warning(expect_warning(expect_warning( result <- REDCapR::redcap_write(ds=mtcars, redcap_uri=credential$redcap_uri, token=credential$token, continue_on_error=TRUE, batch_size=10) )))) expect_false(result$success) expect_equal(result$status_code, expected="403; 403; 403; 403") expect_match(result$outcome_message, expected_message) expect_equal( result$records_affected_count, 0L) expect_equal(result$affected_ids, character(0)) expect_null( result$raw_text) expect_null( result$records_collapsed) expect_null( result$fields_collapsed) })
context("kbdate") test_that("kbdate works", { expect_equal(kbdate(), format(Sys.Date(), "%Y-%m-%d")) })
topRunsBatsmenAcrossOversAllOppnAllMatches <- function(matches,t1,plot=1) { team=ball=totalRuns=total=runsPowerPlay=runsMiddleOvers=runsDeathOvers=batsman=str_extract=NULL ggplotly=NULL a <-filter(matches,team==t1) a1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 0.1, 5.9)) a2 <- select(a1,ball,totalRuns,batsman) a3 <- a2 %>% group_by(batsman) %>% summarise(runsPowerPlay= sum(totalRuns)) %>% arrange(desc(runsPowerPlay)) b1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 6.1, 15.9)) b2 <- select(b1,ball,totalRuns,batsman) b3 <- b2 %>% group_by(batsman) %>% summarise(runsMiddleOvers= sum(totalRuns)) %>% arrange(desc(runsMiddleOvers)) c1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 16.1, 20.0)) c2 <- select(c1,ball,totalRuns,batsman) c3 <- c2 %>% group_by(batsman) %>% summarise(runsDeathOvers= sum(totalRuns)) %>% arrange(desc(runsDeathOvers)) val=min(dim(a3)[1],dim(b3)[1],dim(c3)[1]) m=cbind(a3[1:val,],b3[1:val,],c3[1:val,]) m }
infer_ts_ind_ttest <- function(data, x, y, confint = 0.95, alternative = c("both", "less", "greater", "all"), ...) UseMethod("infer_ts_ind_ttest") infer_ts_ind_ttest.default <- function(data, x, y, confint = 0.95, alternative = c("both", "less", "greater", "all"), ...) { x1 <- deparse(substitute(x)) y1 <- deparse(substitute(y)) yone <- names(data[y1]) if (check_x(data, x1)) { stop("x must be a binary factor variable", call. = FALSE) } if (check_level(data, x1) > 2) { stop("x must be a binary factor variable", call. = FALSE) } method <- match.arg(alternative) var_y <- yone alpha <- 1 - confint a <- alpha / 2 h <- indth(data, x1, y1, a) grp_stat <- h g_stat <- as.matrix(h) comb <- indcomb(data, y1, a) k <- indcomp(grp_stat, alpha) j <- indsig(k$n1, k$n2, k$s1, k$s2, k$mean_diff) m <- indpool(k$n1, k$n2, k$mean_diff, k$se_dif) result <- list(alternative = method, combined = comb, confint = confint, conf_diff = round(k$conf_diff, 5), den_df = k$n2 - 1, df_pooled = m$df_pooled, df_satterthwaite = j$d_f, f = round(k$s1 / k$s2, 4), f_sig = fsig(k$s1, k$s2, k$n1, k$n2), levels = g_stat[, 1], lower = g_stat[, 8], mean = g_stat[, 3], mean_diff = round(k$mean_diff, 3), n = k$n, num_df = k$n1 - 1, obs = g_stat[, 2], sd = g_stat[, 4], sd_dif = round(k$sd_dif, 3), se = g_stat[, 5], se_dif = round(k$se_dif, 3), sig = j$sig, sig_l = j$sig_l, sig_pooled_l = m$sig_pooled_l, sig_pooled_u = m$sig_pooled_u, sig_pooled = m$sig_pooled, sig_u = j$sig_u, t_pooled = round(m$t_pooled, 4), t_satterthwaite = round(j$t, 4), upper = g_stat[, 9], var_y = var_y) class(result) <- "infer_ts_ind_ttest" return(result) } print.infer_ts_ind_ttest <- function(x, ...) { print_two_ttest(x) } indth <- function(data, x, y, a) { h <- data_split(data, x, y) h$df <- h$length - 1 h$error <- qt(a, h$df) * -1 h$lower <- h$mean_t - (h$error * h$std_err) h$upper <- h$mean_t + (h$error * h$std_err) return(h) } data_split <- function(data, x, y) { dat <- data.table(data[c(x, y)]) out <- dat[, .(length = length(get(y)), mean_t = mean_t(get(y)), sd_t = sd_t(get(y)), std_err = std_err(get(y))), by = x] setDF(out) } indcomb <- function(data, y, a) { comb <- da(data, y) comb$df <- comb$length - 1 comb$error <- qt(a, comb$df) * -1 comb$lower <- round(comb$mean_t - (comb$error * comb$std_err), 5) comb$upper <- round(comb$mean_t + (comb$error * comb$std_err), 5) names(comb) <- NULL return(comb) } da <- function(data, y) { dat <- data[[y]] data.frame(length = length(dat), mean_t = mean_t(dat), sd_t = sd_t(dat), std_err = std_err(dat)) } mean_t <- function(x) { round(mean(x), 3) } sd_t <- function(x) { round(sd(x), 3) } std_err <- function(x) { x %>% sd() %>% divide_by(x %>% length() %>% sqrt()) %>% round(3) } indcomp <- function(grp_stat, alpha) { n1 <- grp_stat[1, 2] n2 <- grp_stat[2, 2] n <- n1 + n2 means <- grp_stat[, 3] mean_diff <- means[1] - means[2] sd1 <- grp_stat[1, 4] sd2 <- grp_stat[2, 4] s1 <- grp_stat[1, 4] ^ 2 s2 <- grp_stat[2, 4] ^ 2 sd_dif <- sd_diff(n1, n2, s1, s2) se_dif <- se_diff(n1, n2, s1, s2) conf_diff <- conf_int_p(mean_diff, se_dif, alpha = alpha) list(conf_diff = conf_diff, mean_diff = mean_diff, n = n, n1 = n1, n2 = n2, s1 = s1, s2 = s2, sd1 = sd1, sd2 = sd2, sd_dif = sd_dif, se_dif = se_dif) } sd_diff <- function(n1, n2, s1, s2) { n1 <- n1 - 1 n2 <- n2 - 1 n <- (n1 + n2) - 2 (n1 * s1) %>% add(n2 * s2) %>% divide_by(n) %>% raise_to_power(0.5) } se_diff <- function(n1, n2, s1, s2) { df <- n1 + n2 - 2 n_1 <- n1 - 1 n_2 <- n2 - 1 (n_1 * s1) %>% add(n_2 * s2) %>% divide_by(df) -> v (1 / n1) %>% add(1 / n2) %>% multiply_by(v) %>% sqrt() } conf_int_p <- function(u, se, alpha = 0.05) { a <- alpha / 2 error <- round(qnorm(a), 3) * -1 lower <- u - (error * se) upper <- u + (error * se) c(lower, upper) } indsig <- function(n1, n2, s1, s2, mean_diff) { d_f <- as.vector(df(n1, n2, s1, s2)) t <- mean_diff / (((s1 / n1) + (s2 / n2)) ^ 0.5) sig_l <- round(pt(t, d_f), 4) sig_u <- round(pt(t, d_f, lower.tail = FALSE), 4) if (sig_l < 0.5) { sig <- round(pt(t, d_f) * 2, 4) } else { sig <- round(pt(t, d_f, lower.tail = FALSE) * 2, 4) } list(d_f = d_f, sig_l = sig_l, sig_u = sig_u, sig = sig, t = t) } df <- function(n1, n2, s1, s2) { sn1 <- s1 / n1 sn2 <- s2 / n2 m1 <- 1 / (n1 - 1) m2 <- 1 / (n2 - 1) num <- (sn1 + sn2) ^ 2 den <- (m1 * (sn1 ^ 2)) + (m2 * (sn2 ^ 2)) round(num / den) } fsig <- function(s1, s2, n1, n2) { round(min( pf((s1 / s2), (n1 - 1), (n2 - 1)), pf((s1 / s2), (n1 - 1), (n2 - 1), lower.tail = FALSE ) ) * 2, 4) } indpool <- function(n1, n2, mean_diff, se_dif) { df_pooled <- (n1 + n2) - 2 t_pooled <- mean_diff / se_dif sig_pooled_l <- round(pt(t_pooled, df_pooled), 4) sig_pooled_u <- round(pt(t_pooled, df_pooled, lower.tail = FALSE), 4) if (sig_pooled_l < 0.5) { sig_pooled <- round(pt(t_pooled, df_pooled) * 2, 4) } else { sig_pooled <- round(pt(t_pooled, df_pooled, lower.tail = FALSE) * 2, 4) } list(df_pooled = df_pooled, sig_pooled_l = sig_pooled_l, sig_pooled_u = sig_pooled_u, sig_pooled = sig_pooled, t_pooled = t_pooled) } check_x <- function(data, x) { !is.factor(data[[x]]) } check_level <- function(data, x) { nlevels(data[[x]]) }
CACEcov <- function(Y, D, Z, X, grp = NULL, data = parent.frame(), robust = FALSE, fast = TRUE){ call <- match.call() Y <- matrix(eval(call$Y, data), ncol = 1) N <- nrow(Y) D <- matrix(eval(call$D, data), ncol = 1) X <- model.matrix(X, data = data) Z <- cbind(X, matrix(eval(call$Z, data), nrow = N)) X <- cbind(X, D) grp <- eval(call$grp, data) if (!is.null(grp)) { sgrp <- sort(grp, index.return = TRUE) grp <- grp[sgrp$ix] X <- X[sgrp$ix,] Z <- Z[sgrp$ix,] D <- D[sgrp$ix,] Y <- Y[sgrp$ix,] } dhat <- fitted(tmp <- lm(D ~ -1 + Z)) beta <- coef(lm(Y ~ -1 + X[,-ncol(X)] + dhat)) ZZinv <- (vcov(tmp)/(summary(tmp)$sigma^2)) XZ <- t(X) %*% Z XPzXinv <- solve(XZ %*% ZZinv %*% t(XZ)) epsilon <- c(Y - X %*% beta) est <- beta[length(beta)] if (is.null(grp)) { if (robust) { if (fast) ZOmegaZ <- t(Z) %*% diag(epsilon^2) %*% Z else { ZOmegaZ <- matrix(0, ncol = ncol(Z), nrow = ncol(Z)) for (i in 1:nrow(Z)) ZOmegaZ <- ZOmegaZ + crossprod(matrix(Z[i,], nrow = 1)) * epsilon[i]^2 } var <- XPzXinv %*% XZ %*% ZZinv var <- var %*% ZOmegaZ %*% t(var) } else { sig2 <- c(crossprod(epsilon))/ N var <- sig2 * XPzXinv } } else { n.grp <- length(unique(grp)) if (fast) { Omega <- matrix(0, ncol = N, nrow = N) counter <- 1 for (i in 1:n.grp) { n.grp.obs <- sum(grp == unique(grp)[i]) Omega[counter:(counter+n.grp.obs-1),counter:(counter+n.grp.obs-1)] <- epsilon[grp == unique(grp)[i]] %*% t(epsilon[grp == unique(grp)[i]]) counter <- counter + n.grp.obs } ZOmegaZ <- t(Z) %*% Omega %*% Z } else { ZOmegaZ <- matrix(0, ncol = ncol(Z), nrow = ncol(Z)) for (i in 1:n.grp) { ZOmegaZ <- ZOmegaZ + t(Z[grp == unique(grp)[i],]) %*% (epsilon[grp == unique(grp)[i]] %*% t(epsilon[grp == unique(grp)[i]])) %*% Z[grp == unique(grp)[i],] } } var <- XPzXinv %*% XZ %*% ZZinv var <- var %*% ZOmegaZ %*% t(var) } names(est) <- "CACE" return(list(est = est, var = var[nrow(var),ncol(var)])) }
getSimilarity = function(x) UseMethod("getSimilarity") getSimilarity.TopicSimilarity = function(x){ x$sims } getRelevantWords = function(x) UseMethod("getRelevantWords") getRelevantWords.TopicSimilarity = function(x){ x$wordslimit } getConsideredWords = function(x) UseMethod("getConsideredWords") getConsideredWords.TopicSimilarity = function(x){ x$wordsconsidered } getParam.TopicSimilarity = function(x){ x$param }
testdat <- iris[1:5, ] testdatatt <- attributes(testdat) testdat <- rtf_body(testdat, border_left = "single", border_right = "double", border_top = "double", border_bottom = "dot", border_color_left = "black", border_color_right = "red", border_color_top = "green", border_color_bottom = "gold", border_width = 1440, text_font = 2, text_format = "iub", text_color = "greenyellow", text_justification = "l", text_font_size = 12, text_space_before = 10, text_space_after = 10, text_background_color = "lightgoldenrod", text_convert = matrix(TRUE, nrow(testdat), ncol(testdat)), cell_justification = "r", col_rel_width = c(1, 2, 3, 4, 5), cell_height = 2 ) testdat2 <- rtf_table_content( tbl = testdat, use_border_bottom = TRUE ) test_that("RTF table content generation", { expect_snapshot_output(testdat2) })
library("exactRankTests") suppressWarnings(RNGversion("3.5.3")) set.seed(29081975) hansi <- c() seppl <- c() for (i in 1:10) { m <- sample(10:50, 1) score <- sample(m) val <- sample(0:m, 1) hansi <- c(hansi, psignrank(val, m)) cat("psignrank: ", hansi[length(hansi)]) seppl <- c(seppl, pperm(val, score, m, alternative="less")) cat(" pperm: ", seppl[length(seppl)], "\n") } stopifnot(max(abs(hansi - seppl)) <= 1e-10) hansi <- c() seppl <- c() for (i in 1:10) { m <- sample(10:50, 1) score <- sample(m) prob <- runif(1) hansi <- c(hansi, qsignrank(prob, m)) cat("qwilcox: ", hansi[length(hansi)]) seppl <- c(seppl, qperm(prob, score, m)) cat(" qperm: ", seppl[length(seppl)], "\n") } stopifnot(max(abs(hansi - seppl)) <= 1e-10) hansi <- c() seppl <- c() for (i in 1:10) { m <- sample(10:50, 1) if (runif(1) < 0.5) n <- sample(10:50, 1) else n <- m score <- sample(n+m) val <- sample(0:(m*n), 1) hansi <- c(hansi, pwilcox(val, m, n)) cat("pwilcox: ", hansi[length(hansi)]) seppl <- c(seppl, pperm(val + m*(m+1)/2, score, m, alternative="less")) cat(" pperm: ", seppl[length(seppl)], "\n") } stopifnot(max(abs(hansi - seppl)) <= 1e-10) hansi <- c() seppl <- c() for (i in 1:10) { m <- sample(10:50, 1) if (runif(1) < 0.5) n <- sample(10:50, 1) else n <- m score <- sample(n+m) prob <- runif(1) hansi <- c(hansi, qwilcox(prob, m, n)) cat("qwilcox: ", hansi[length(hansi)]) seppl <- c(seppl, qperm(prob, score, m) - m*(m+1)/2) cat(" qperm: ", seppl[length(seppl)], "\n") } stopifnot(max(abs(hansi - seppl)) <= 1e-10) for (i in 1:20) { x <- rnorm(10) y <- rnorm(10) group <- factor(c(rep(0, 10), rep(1, 10))) stopifnot(all.equal(wilcox.test(x,y)$p.value, wilcox.exact(x,y)$p.value)) stopifnot(all.equal(wilcox.test(y)$p.value, wilcox.exact(y)$p.value)) r <- rank(c(x,y)) stopifnot(all.equal(wilcox.test(r ~ group)$p.value, perm.test(r ~ group)$p.value)) } if (FALSE) { dansari <- function(x, m ,n) { .C(dansari, as.integer(length(x)), d = as.double(x), as.integer(m), as.integer(n))$d } n <- 10 x <- rnorm(n, 2, 1) y <- rnorm(n, 2, 2) sc <- cscores(c(x,y), type="Ansari") dabexac <- dperm(0:(n*(2*n+1)/2), sc, n) sum(dabexac) tr <- which(dabexac > 0) dab <- dansari(0:(n*(2*n+1)/2), n, n) stopifnot(all.equal(max(abs(dab[tr] - dabexac[tr])), 0)) }
VarWT <- function(dataTox, saveName = NULL){ saveResult <-function(saveName, dataFrame){ write.table(dataFrame, file = paste(saveName,".txt", sep = ""), sep = "\t") } sigma2 <- NULL V1 <- NULL V2 <- NULL varwtdlt <- NULL n <- NULL analyf0 <- dataTox[order(dataTox$simulation), ] analyf0$dlt = rep(0, nrow(analyf0)) analyf0$lagr = rep(0, nrow(analyf0)) nrow = which(analyf0$n>0) first.trial = findFirstLast(analyf0)$Trial total = rep(1:nrow(analyf0)) total = total[-c(nrow, first.trial)] analyf0$dlt[nrow] = analyf0$x[nrow]/analyf0$n[nrow] analyf0$lagr[nrow] = analyf0$dlt[nrow] analyf0$dlt[first.trial] = 0 analyf0$lagr[first.trial] = analyf0$dlt[first.trial] for(k in total){ analyf0$dlt[k] = analyf0$lagr[k-1] analyf0$lagr[k] = analyf0$dlt[k] } zkodltvar <- analyf0 colNum_lagr <- which(colnames(zkodltvar) == "lagr") zkodltvar <- zkodltvar[, -colNum_lagr] zkodltvar$sigma2 <- analyf0$n * analyf0$dlt * (1 - analyf0$dlt) zkodltvar colNum_Simu <- which(colnames(zkodltvar) == "simulation") colNum_dose <- which(colnames(zkodltvar) == "dose") colNum_sigma2 <- which(colnames(zkodltvar) == "sigma2") varsum <- do.call(data.table, c(lapply(unname(zkodltvar[colNum_Simu:colNum_dose]), as.numeric), zkodltvar[colNum_sigma2])) varsum <- varsum[, .(sigma2 = sum(sigma2)), by= .(V1, V2)] colnames(varsum) <- c("simulation", "dose", "sumsigma2") varsum = as.data.frame(varsum) zkodltvar <- zkodltvar[order(zkodltvar$simulation, zkodltvar$dose),] varmerge <- merge(zkodltvar, varsum, by = c("simulation", "dose")) varweight <- varmerge varweight$varwt <- ifelse(varweight$sumsigma2 == 0, 1/20, varweight$sigma2 / varweight$sumsigma2 ) varweight$varwtdlt <- varweight$varwt * varweight$dlt colNum_Simu2 <- which(colnames(varweight) == "simulation") colNum_dose2 <- which(colnames(varweight) == "dose") colNum_n <- which(colnames(varweight) == "n") colNum_varwtdlt <- which(colnames(varweight) == "varwtdlt") vardlt1 <- do.call(data.table, c(lapply(unname(varweight[c(colNum_Simu2,colNum_dose2)]), as.numeric), varweight[colNum_varwtdlt])) vardlt1 <- vardlt1[, .(varwtdlt = sum(varwtdlt)), by= .(V1, V2)] colnames(vardlt1) <- c("simulation", "dose", "dltvar") vardlt2 <- do.call(data.table, c(lapply(unname(varweight[c(colNum_Simu2,colNum_dose2)]), as.numeric), varweight[colNum_n])) vardlt2 <- vardlt2[, .(n = sum(n)), by= .(V1, V2)] colnames(vardlt2) <- c("simulation", "dose", "totaln") vardlt <- merge(vardlt2, vardlt1, by = c("simulation", "dose")) vardlt = as.data.frame(vardlt) if(is.null(saveName) == "FALSE"){ saveResult(saveName, vardlt) } return(list(dataTox = vardlt)) }
source('../gsDesign_independent_code.R') testthat::test_that(desc = "Test: checking class object gsDesign or gsProbability", code = { x <- seq(1, 2, 0.5) local_edition(3) expect_error(gsCPOS(x,i = 1, theta = c(-1.50, -0.75, 0.00, 0.75, 1.50), wgts = c(0.064758798, 0.301137432, 0.199471140, 0.301137432, 0.064758798) )) }) testthat::test_that(desc = "Test: checking lengths of input", code = { x <- gsDesign(k = 3, test.type = 2, n.fix = 800) local_edition(3) expect_error(gsCPOS(x, i = 1, theta = c(-1.50, -0.75, 0.75, 1.50), wgts = c(0.064758798, 0.301137432, 0.199471140, 0.301137432, 0.064758798) )) }) testthat::test_that(desc = "Test: checking out of range i ", code = { x <- gsDesign(k = 3, test.type = 1, n.fix = 800) local_edition(3) expect_error(gsCPOS(x, i = 4, theta = c(-1.50, -0.75, 0.75, 1.50), wgts = c(0.064758798, 0.01137432, 0.199471140, 0.301137432) )) }) testthat::test_that(desc = "Test: output validation source: gsDesign_independent_code.R", code = { x <- gsDesign(k = 3, test.type = 2, n.fix = 800) theta = c(-1.50, -0.75, 0.00, 0.75, 1.50) wgts = c(0.064758798, 0.301137432, 0.199471140, 0.301137432, 0.064758798) i <- 2 local_edition(3) CPOS <- gsCPOS(x, i = 2, theta = theta, wgts = wgts) expected_CPOS <- validate_gsCPOS(x, theta, wgts, i) expect_equal(CPOS , expected_CPOS[1]) })
set.seed(0) options(digits=4) quadForm <- function(D) { C <- seq(1, N) return( - t(D - C) %*% W %*% ( D - C) ) } N <- 3 library(maxLik) W <- diag(N) D <- rep(1/N, N) res <- maxBFGSR(quadForm, start=D) all.equal(coef(res), 1:3, tolerance=1e-4) all.equal(gradient(res), rep(0,3), tolerance=1e-3) all.equal(nIter(res) < 100, TRUE) all.equal(returnCode(res) < 4, TRUE) hat <- function(param) { x <- param[1] y <- param[2] exp(-(x-2)^2 - (y-2)^2) } hatNC <- maxBFGSR(hat, start=c(1,1), tol=0, reltol=0) all.equal(coef(hatNC), rep(2,2), tolerance=1e-4) all.equal(gradient(hatNC), rep(0,2), tolerance=1e-3) all.equal(nIter(hatNC) < 100, TRUE) all.equal(returnCode(hatNC) < 4, TRUE) hat3 <- function(param) { x <- param[1] y <- param[2] z <- param[3] exp(-(x-2)^2-(y-2)^2-(z-2)^2) } sv <- c(x=1,y=1,z=1) A <- matrix(c(1,1,1), 1, 3) B <- -8 constraints <- list(eqA=A, eqB=B) hat3CF <- maxBFGSR(hat3, start=sv, constraints=constraints, fixed=3) all.equal(coef(hat3CF), c(x=3.5, y=3.5, z=1), tolerance=1e-4) all.equal(nIter(hat3CF) < 100, TRUE) all.equal(returnCode(hat3CF) < 4, TRUE) all.equal(sum(coef(hat3CF)), 8, tolerance=1e-4)
circdensity <- function(x, sigma="nrd0", ..., bw=NULL, weights=NULL, unit=c("degree", "radian")) { xname <- short.deparse(substitute(x)) missu <- missing(unit) if(missing(sigma) && !is.null(bw)) sigma <- bw unit <- match.arg(unit) unit <- validate.angles(x, unit, missu) FullCircle <- switch(unit, degree = 360, radian = 2*pi) if(is.character(sigma)) { sigma <- switch(sigma, bcv = bw.bcv, nrd = bw.nrd, nrd0 = bw.nrd0, SJ = bw.SJ, ucv = bw.ucv, get(paste0("bw.", sigma), mode="function")) } if(is.function(sigma)) { sigma <- sigma(x) if(!(is.numeric(sigma) && length(sigma) == 1L && sigma > 0)) stop("Bandwidth selector should return a single positive number") } check.1.real(sigma) x <- x %% FullCircle xx <- c(x - FullCircle, x, x + FullCircle) if(!is.null(weights)) { stopifnot(length(weights) == length(x)) weights <- rep(weights, 3)/3 } z <- do.call(density.default, resolve.defaults(list(x=xx, bw=sigma, weights=weights), list(...), list(from=0, to=FullCircle))) z$y <- 3 * z$y z$data.name <- xname return(z) }
node_insert <- function(tree, node.name, ...) { the.parent <- node_set(tree, node.name)$parent if (is.null(the.parent)) { warning("Li: the non-root node having the name specified is not found.") return() } tmp.parent <- Clone(the.parent) sibling.node.names <- sapply(the.parent$children, function(x) x$name) for (name.k in sibling.node.names) { node_prune(the.parent, name.k) } for (name.k in sibling.node.names) { if (name.k == node.name) { new.nodes <- list(...) lapply(new.nodes, function(x) { switch(class(x)[1], "character" = { the.parent$AddChild(x) }, "R6" = , "Node" = { the.parent$AddChildNode(x) }, stop("Li: the class of the new node is wrong.") ) }) } the.parent$AddChildNode(node_set(tmp.parent, name.k)) } invisible(the.parent) }
test_that("can set path to local config", { tmp <- tempdir() test.pkg <- fs::dir_create(tmp, "test.proj") expect_equal( set_config_source(NULL, root = test.pkg), system.file("pre-commit-config-proj.yaml", package = "precommit") ) expect_error( set_config_source(tempfile()), "does not exist" ) }) test_that("can set path to remote config", { skip_on_cran() path <- set_config_source( example_remote_config() ) expect_equal(fs::path_ext(path), "yaml") expect_silent(yaml::read_yaml(path)) expect_error(set_config_source("https://apple.com"), "valid yaml") }) test_that("defaults to right config depending on whether or not root is a pkg", { tmp <- tempdir() test.pkg <- fs::dir_create(tmp, "test.pkg") withr::with_dir(test.pkg, { desc <- desc::description$new("!new") desc$set(Package = "test.pkg") desc$write("DESCRIPTION") }) expect_message( set_config_source(NULL, root = test.pkg), "pkg\\.yaml" ) fs::file_delete(fs::path(test.pkg, "DESCRIPTION")) expect_message( set_config_source(NULL, root = test.pkg), "proj\\.yaml" ) }) test_that(".Rbuildignore is written to the right directory when root is relative", { root <- tempfile() fs::dir_create(root) withr::with_dir(root, { desc <- desc::description$new("!new") desc$set(Package = "test.pkg") desc$write("DESCRIPTION") }) withr::with_dir( fs::path_dir(root), use_precommit_config(root = fs::path_file(root)) ) expect_true(file_exists(fs::path(root, ".Rbuildignore"))) }) test_that(".Rbuildignore is written to the right directory when root is absolute", { root <- tempfile() fs::dir_create(root) withr::with_dir(root, { desc <- desc::description$new("!new") desc$set(Package = "test.pkg") desc$write("DESCRIPTION") }) use_precommit_config(root = root) expect_true(file_exists(fs::path(root, ".Rbuildignore"))) })
EM.Iter <- function(sdata,Xp,r,n.int,order,max.iter,cov.rate){ P<-ncol(Xp) L<-n.int+order N<-nrow(sdata) b0<-rep(0,P) g0<-rep(1,L) r.mat<-function(x) matrix(x,ncol=N,nrow=L,byrow=TRUE) c.mat<-function(x) matrix(x,ncol=N,nrow=L) ti <- c(sdata$Li[sdata$d2 == 1], sdata$Ri[sdata$d3 == 0]) knots <-quantile(ti,seq(0,1,length.out = (n.int + 2))) bl.Li<-bl.Ri<-matrix(0,nrow=L,ncol=N) bl.Li[,sdata$d1==0]<-Ispline(sdata$Li[sdata$d1==0],order=order,knots=knots) bl.Ri[,sdata$d3==0]<-Ispline(sdata$Ri[sdata$d3==0],order=order,knots=knots) dif<-numeric() est.par<-matrix(ncol=ncol(Xp)+L,nrow=max.iter) ll<-numeric() dd<-1 ii<-0 while(dd>cov.rate & ii<max.iter){ ii<-ii+1 Lamd.Li<-t(bl.Li)%*%matrix(g0,ncol=1) Lamd.Ri<-t(bl.Ri)%*%matrix(g0,ncol=1) exb<-exp(Xp%*%b0) lambdai<-r*exb*(sdata$d1*Lamd.Ri+sdata$d2*Lamd.Li) omegai<-r*exb*(sdata$d2*(Lamd.Ri-Lamd.Li)+sdata$d3*Lamd.Li) lambdail<-c.mat(g0)*r.mat(r*exb)*(r.mat(sdata$d1)*bl.Ri+r.mat(sdata$d2)*bl.Li) omegail<-c.mat(g0)*r.mat(r*exb)*(r.mat(sdata$d2)*(bl.Ri-bl.Li)+r.mat(sdata$d3)*bl.Li) Eyi<-sdata$d1*lambdai/r/(sdata$d1*(1-(1+lambdai)^(-1/r))+1-sdata$d1) Ewi<-sdata$d2*omegai/r/(1+lambdai)/(sdata$d2*(1-((1+lambdai)/(1+lambdai+omegai))^(1/r))+1-sdata$d2) pc1<-sdata$d1*(1-(1+lambdai)^(-1/r-1))/r/(sdata$d1*(1-(1+lambdai)^(-1/r))+1-sdata$d1) pc2<-sdata$d2*((1+lambdai)^(-1/r-1)-(1+lambdai+omegai)^(-1/r-1))/r/(sdata$d2*((1+lambdai)^(-1/r)-(1+lambdai+omegai)^(-1/r))+1-sdata$d2) pc3<-sdata$d3*(1+omegai)^(-1)/r Efi<-pc1+pc2+pc3 Eyil<-r.mat(sdata$d1/r/(sdata$d1*(1-(1+lambdai)^(-1/r))+1-sdata$d1))*lambdail Ewil<-r.mat(sdata$d2/r/(1+lambdai)/(sdata$d2*(1-((1+lambdai)/(1+lambdai+omegai))^(1/r))+1-sdata$d2))*omegail fit<-nlm(bb.gamma,p=b0,sdata=sdata,Xp=Xp,Eyil=Eyil,Ewil=Ewil,Efi=Efi,r=r,bl.Li=bl.Li,bl.Ri=bl.Ri) if(!is.character(fit)){ b0<-fit$estimate g0<-gg.beta(bb=b0,sdata=sdata,Xp=Xp,Eyil=Eyil,Ewil=Ewil,Efi=Efi,r=r,bl.Li=bl.Li,bl.Ri=bl.Ri) est.par[ii,]<-c(b0,g0) ll<-c(ll,loglik(x0=c(b0,g0),sdata=sdata,Xp=Xp,r=r,bl.Li=bl.Li,bl.Ri=bl.Ri)) } if(ii>2) dd<-abs(ll[ii]-ll[ii-1]) } loglik<-ll[ii] AIC<-2*(L+P)-2*loglik Hessian<-Louis.VCOV(b0=b0,g0=g0,sdata=sdata,r=r,Xp=Xp,bl.Li=bl.Li,bl.Ri=bl.Ri) return(list(Beta=b0,gl=g0,Hessian=Hessian,AIC=AIC,loglik=loglik,r=r,n.int=n.int,order=order,knots=knots,sdata=sdata,Xp=Xp,bl.Li=bl.Li,bl.Ri=bl.Ri)) }
vi.fun<-function(X){ data.frame(vi=var(X)/mean(X)^2) }
knitr::opts_chunk$set( collapse = TRUE, comment = " message = TRUE ) library(ggplot2) library(data.table) library(magrittr) library(latrend) knitr::opts_chunk$set( cache = TRUE, collapse = TRUE, comment = " ) library(latrend) library(data.table) options( latrend.id = "Traj", latrend.time = "Time", latrend.verbose = TRUE ) set.seed(1) casedata <- generateLongData( sizes = c(40, 60), data = data.frame(Time = 0:10), fixed = Y ~ 1, fixedCoefs = 1, cluster = ~ Time, clusterCoefs = cbind(c(2, -.1), c(0, .05)), random = ~ Time, randomScales = cbind(c(.2, .02), c(.2, .02)), noiseScales = .05 ) %>% as.data.table() plotTrajectories(casedata, response = "Y") plotClusterTrajectories(casedata, response = "Y", cluster = "Class") ggplot(casedata[Time == 0], aes(x = Mu)) + geom_density(fill = "gray", adjust = .3) method <- lcMethodStratify(response = "Y", Y[1] > 1.6) model <- latrend(method, casedata) clusterProportions(model) stratfun <- function(data) { int <- coef(lm(Y ~ Time, data))[1] factor(int > 1.7, levels = c(FALSE, TRUE), labels = c("Low", "High")) } m2 <- lcMethodStratify(response = "Y", stratify = stratfun, center = mean) model2 <- latrend(m2, casedata) clusterProportions(model2) casedata[, Intercept := coef(lm(Y ~ Time, .SD))[1], by = Traj] m3 <- lcMethodStratify( response = "Y", stratify = Intercept[1] > 1.7, clusterNames = c("Low", "High") ) model3 <- latrend(m3, casedata) repStep <- function(method, data, verbose) { dt <- as.data.table(data) coefdata <- dt[, lm(Y ~ Time, .SD) %>% coef() %>% as.list(), keyby = Traj] coefmat <- subset(coefdata, select = -1) %>% as.matrix() rownames(coefmat) <- coefdata$Traj return(coefmat) } clusStep <- function(method, data, repMat, envir, verbose) { km <- kmeans(repMat, centers = 3) lcModelCustom( response = method$response, method = method, data = data, trajectoryAssignments = km$cluster, clusterTrajectories = method$center, model = km ) } m.twostep <- lcMethodFeature( response = "Y", representationStep = repStep, clusterStep = clusStep ) model.twostep <- latrend(m.twostep, data = casedata) summary(model.twostep) repStep.gen <- function(method, data, verbose) { dt <- as.data.table(data) coefdata <- dt[, lm(method$formula, .SD) %>% coef() %>% as.list(), keyby = c(method$id)] coefmat <- subset(coefdata, select = -1) %>% as.matrix() rownames(coefmat) <- coefdata[[method$id]] return(coefmat) } clusStep.gen <- function(method, data, repMat, envir, verbose) { km <- kmeans(repMat, centers = method$nClusters) lcModelCustom( response = method$response, method = method, data = data, trajectoryAssignments = km$cluster, clusterTrajectories = method$center, model = km ) } m.twostepgen <- lcMethodFeature( response = "Y", representationStep = repStep.gen, clusterStep = clusStep.gen ) model.twostepgen <- latrend(m.twostepgen, formula = Y ~ Time, nClusters = 2, casedata) summary(model.twostepgen) setClass("lcMethodSimpleGBTM", contains = "lcMethod") lcMethodSimpleGBTM <- function(...) { mc = match.call() mc$Class = 'lcMethodSimpleGBTM' do.call(new, as.list(mc)) } setMethod("getArgumentDefaults", "lcMethodSimpleGBTM", function(object, ...) { list( formula = Value ~ Time, time = getOption("latrend.time"), id = getOption("latrend.id"), nClusters = 2, nwg = FALSE ) }) setMethod("getName", "lcMethodSimpleGBTM", function(object, ...) "simple group-based trajectory model") setMethod("getShortName", "lcMethodSimpleGBTM", function(object, ...) "sgbtm") setMethod("prepareData", "lcMethodSimpleGBTM", function(method, data, verbose, ...) { envir <- new.env() envir$data <- as.data.frame(data) envir$data[[method$id]] <- factor(data[[method$id]]) %>% as.integer() return(envir) }) setMethod("fit", "lcMethodSimpleGBTM", function(method, data, envir, verbose, ...) { args <- as.list(method, args = lcmm::lcmm) args$data <- envir$data args$fixed <- method$formula if (method$nClusters > 1) { args$mixture <- update(method$formula, NULL ~ .) } else { args$mixture <- NULL } args$subject <- method$id args$ng <- method$nClusters args$returndata <- TRUE model <- do.call(lcmm::lcmm, args) new( "lcModelSimpleGBTM", method = method, data = data, model = model, clusterNames = LETTERS[seq_len(method$nClusters)] ) }) setClass("lcModelSimpleGBTM", contains = "lcModel") slotNames("lcModelSimpleGBTM") fitted.lcModelSimpleGBTM <- function(object, clusters = trajectoryAssignments(object)) { predNames <- paste0("pred_m", 1:nClusters(object)) predMat <- as.matrix(object@model$pred[predNames]) colnames(predMat) <- clusterNames(object) transformFitted(pred = predMat, model = object, clusters = clusters) } setMethod("predictForCluster", "lcModelSimpleGBTM", function( object, newdata, cluster, what = 'mu', ...) { predMat = lcmm::predictY(object@model, newdata = newdata)$pred %>% set_colnames(clusterNames(object)) clusIdx = match(cluster, clusterNames(object)) predMat[, clusIdx] }) setMethod("postprob", signature("lcModelSimpleGBTM"), function(object) { as.matrix(object@model$pprob)[, c(-1, -2), drop = FALSE] }) setMethod("converged", signature("lcModelSimpleGBTM"), function(object, ...) { object@model$conv }) m <- lcMethodSimpleGBTM(formula = Y ~ Time) show(m) sgbtm <- latrend(m, casedata) summary(sgbtm) plot(sgbtm)
GENMETA.control <- function(epsilon = 1e-06, maxit = 1000) { return(list(epsilon = epsilon, maxit = maxit)) }
str <- "abc abc cba cba bac xxx abc abc cba cba bac" test_that("RePair test grammar <- str_to_repair_grammar(str) expect_equal("R4 xxx R4", grammar[[1]]$rule_string) expect_equal("R3", grammar[[4]]$rule_string) })
parent_representation = function(node_number, rep_matrix, nodiv_data, metric = c("rval", "SR")) { desc = Descendants(node_number, nodiv_data) if (desc[1] < basal_node(nodiv_data) | desc[2] < basal_node(nodiv_data)) return(rep(NA, nrow(rep_matrix))) desc1col = desc[1] - Nspecies(nodiv_data) desc2col = desc[2] - Nspecies(nodiv_data) desc1 = rep_matrix[,desc1col] desc2 = -rep_matrix[, desc2col] if (metric == "rval") desc2 = desc2 + 1 return(rowMeans(cbind(desc1, desc2))) } nodenames <- function(nodiv_data) { ret <- nodenumbers(nodiv_data) if (!is.null(nodiv_data$phylo$node.label)) ret <- paste(ret, nodiv_data$phylo$node.label) ret } nodiv_res <- function(results, nodiv_data, repeats, method) { ret <- nodiv_data class(ret) <- c("nodiv_result", class(nodiv_data)) ret$method <- method ret$repeats <- repeats SR <- sapply(results, "[[", 1) ret$SOS <- sapply(nodenumbers(nodiv_data), function(node) parent_representation(node, SR, nodiv_data, metric = "SR")) colnames(ret$SOS) <- nodenames(nodiv_data) rownames(ret$SOS) <- nodiv_data$coords$sites rval <- sapply(results, "[[", 2) par_rval <- sapply(nodenumbers(nodiv_data), function(node) parent_representation(node, rval, nodiv_data, metric = "rval")) pval <- apply(par_rval, 2, pval_sig) pval[pval > 1-2/repeats] <- 1-2/repeats pval[pval < 2/repeats] <- 2/repeats ret$GND <- apply(pval, 2, function(x) 1-inv_logit(mean(logit(x), na.rm = T))) return(ret) }
require(knitr) old_ops <- options(width=80) set.seed(1121) stdt<-date() library(intcensROC) U <- runif(100, min = 0.1, max = 5) V <- runif(100, min = 0.1, max = 5) + U Marker <- runif(100, min = 5, max = 10) Delta <- sample.int(3, size = 100, replace = TRUE) pTime <- 4 res <- intcensROC(U, V, Marker, Delta, pTime, gridNumber = 500) head(res) auc <- intcensAUC(res) print(auc) library("copula") f <- function(x, L0, rate, censor){ 1/((x-L0)*rate)*exp(-L0*rate)-1/((x-L0)*rate)*exp(-x*rate)-censor } dataSim <- function(kendall_tau = 0.3, n = 100, rho = 0.3, lambda = log(2)/6){ b_alpha <- 2.35 b_beta <- 1.87 scale <- 10 kendall_tau <- iTau( claytonCopula(), kendall_tau) Int_cop <- claytonCopula(param = kendall_tau, dim = 2) Int_mvdc <- mvdc(Int_cop, c("exp","beta"), paramMargins = list(list(rate = lambda), list(shape1=b_alpha,shape2=b_beta))) Int_obs_data <- rMvdc(n, Int_mvdc) colnames(Int_obs_data) <- c("event_time", "marker") Int_obs_data[,"marker"] <- Int_obs_data[,"marker"]*scale L0 <-0.1 size <-n U <-rep(0,size) L <-uniroot(f, lower = 10^(-6), upper = 500, tol=0.000001, L0=L0, rate=lambda, censor=rho) V <-runif(size,L0,L$root) for (i in 1:size) U[i] <-runif(1,0,(V[i]-L0)) delta_1 <- Int_obs_data[ ,"event_time"] < U delta_2 <- Int_obs_data[ ,"event_time"] >= U& Int_obs_data[ ,"event_time"] <= V delta_3 <- Int_obs_data[ ,"event_time"] > V data <- data.frame(U = U, V = V, delta = delta_1+2*delta_2+3*delta_3, marker=Int_obs_data[,"marker"]) } mydata <- dataSim(kendall_tau = 0.7, n = 300, rho = 0.3, lambda = log(2)/24) roc <- intcensROC(U=mydata[,"U"],V=mydata[,"V"], Marker=mydata[,"marker"], Delta=mydata[,"delta"], PredictTime=12) print(intcensAUC(roc)) plot(roc$fp, roc$tp, type = "l", lwd = 1.2, col="blue", main = "Example ROC", xlab = "False Positive Rate", ylab = "True Positive Rate" ) toLatex(sessionInfo(), locale=FALSE) print(paste("Start Time",stdt)) print(paste("End Time ",date())) options(old_ops)
library(checkargs) context("isNumberScalarOrNull") test_that("isNumberScalarOrNull works for all arguments", { expect_identical(isNumberScalarOrNull(NULL, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberScalarOrNull(TRUE, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberScalarOrNull(FALSE, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberScalarOrNull(NA, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberScalarOrNull(0, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberScalarOrNull(-1, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberScalarOrNull(-0.1, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberScalarOrNull(0.1, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberScalarOrNull(1, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberScalarOrNull(NaN, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberScalarOrNull(-Inf, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberScalarOrNull(Inf, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberScalarOrNull("", stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberScalarOrNull("X", stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberScalarOrNull(c(TRUE, FALSE), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberScalarOrNull(c(FALSE, TRUE), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberScalarOrNull(c(NA, NA), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberScalarOrNull(c(0, 0), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberScalarOrNull(c(-1, -2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberScalarOrNull(c(-0.1, -0.2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberScalarOrNull(c(0.1, 0.2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberScalarOrNull(c(1, 2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberScalarOrNull(c(NaN, NaN), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberScalarOrNull(c(-Inf, -Inf), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberScalarOrNull(c(Inf, Inf), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberScalarOrNull(c("", "X"), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberScalarOrNull(c("X", "Y"), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberScalarOrNull(NULL, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_error(isNumberScalarOrNull(TRUE, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNumberScalarOrNull(FALSE, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNumberScalarOrNull(NA, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_identical(isNumberScalarOrNull(0, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberScalarOrNull(-1, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberScalarOrNull(-0.1, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberScalarOrNull(0.1, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberScalarOrNull(1, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_error(isNumberScalarOrNull(NaN, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNumberScalarOrNull(-Inf, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNumberScalarOrNull(Inf, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNumberScalarOrNull("", stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNumberScalarOrNull("X", stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNumberScalarOrNull(c(TRUE, FALSE), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNumberScalarOrNull(c(FALSE, TRUE), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNumberScalarOrNull(c(NA, NA), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNumberScalarOrNull(c(0, 0), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNumberScalarOrNull(c(-1, -2), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNumberScalarOrNull(c(-0.1, -0.2), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNumberScalarOrNull(c(0.1, 0.2), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNumberScalarOrNull(c(1, 2), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNumberScalarOrNull(c(NaN, NaN), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNumberScalarOrNull(c(-Inf, -Inf), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNumberScalarOrNull(c(Inf, Inf), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNumberScalarOrNull(c("", "X"), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNumberScalarOrNull(c("X", "Y"), stopIfNot = TRUE, message = NULL, argumentName = NULL)) })
setMethod(f="plot",signature=c(x="cold",y="missing"), definition=function(x,which=c(1:3),xlab=NULL,ylab=NULL,main=NULL, factor,subSET,ident=FALSE,caption=c("Individual mean profiles"), cex.caption=1) { if (!is.numeric(which) || any(which < 1) || any(which > 3)) stop("'which' must be in 1:3") if(missing(which)) {which=1} show <- rep(FALSE, 3) show[which] <- TRUE x2<-x@Fitted depend<- x@call$dependence subset1<-x@call$subSET time<-x@Time x3<-unique(x@Time) n.time<-length(x3) x4<-unique([email protected]) n.id<[email protected] data<[email protected] data$id<[email protected] data$y<-as.vector(t([email protected])) id.new<-unique(data$id) n<-dim(x4)[1] if(missing(factor)) { ncurves<-1 trace.label=" "} if(!missing(factor)) { factor1 <- deparse(substitute(factor)) f.value <- as.factor(data[[factor1]]) f<-f.value level.f<-unique(f) nlevel.f<-length(unique(f)) levg<-as.vector(level.f) colg<-seq(1:nlevel.f) ncurves<-nlevel.f if (length(factor1)==0 && length(subset1)==0) { trace.label=" "} else if(length(factor1)==0 && length(subset1)!=0) {trace.label=deparse(substitute(subset1))} else if (length(factor1)!=0) {trace.label=deparse(substitute(factor))} } aa<-matrix(x@Fitted,n.id,n.time,byrow=TRUE) aanew<-numeric(n.id) x3new<-numeric(n.id) pos.id<-seq(1:n.id) id.numb<-unique(data$id) afit<-data.frame(id.numb,pos.id,aa) xlab2<-"Time" if (any(show[1:2])){ if(length(ylab)==0) ylab="Number" else ylab<-ylab if(length(main)==0) main=" " else main<-main } if (any(show[1:2])){ if(length(xlab)==0) xlab="Time" else xlab<-xlab if(length(main)==0) main=" " else main<-main } if(show[1]) { coef<-x@coefficients npar <-length(coef) omega<-as.double(coef[npar]) n.col<-ncol(x4) coef1<-as.double(x@coefficients[1:n.col]) eta<-x4%*%coef1 n.time<-length(x3) l<-exp(eta) ylim<-range(l,na.rm=TRUE) ylim<-extendrange(l,f=0.08) plot(x3,c(0,rep(1,n.time-1)), type="n", xlab=xlab,ylab=ylab, main=" ",ylim=ylim) mtext(main,side=3,0.25, cex=1) n1<-1 n2<-n.time p<-round(ylim[2]) p1<-ylim[2]-0.08 for(j1 in 1:ncurves) { n2<-j1*(n.time) lines(x3,exp(eta[n1:n2]),col="grey60",lty=j1,lwd=1.25) n1<-n2+1 } if(ncurves>1) {legend(x3[2],p1,levg,lty=c(seq(1:ncurves)),col="grey60",bty="n", cex=0.75)} if(ncurves==1){legend(x3[1],p,paste(trace.label),bty="n",cex=0.75)} } if(show[2]) { if (depend=="ind"||depend=="AR1") stop("dependence must be indR or AR1R") l1<-aa ylim<-range(l1,na.rm=TRUE) ylim<-extendrange(l1,f=0.05) plot(x3,c(0,rep(1,n.time-1)), type="n", xlab=xlab,ylab=ylab,main=" ",ylim=ylim) mtext(main,side=3,0.75, cex=0.8) if(missing(subSET)){ for(i in 1:n.id) { lines(x3,aa[i,],col=1,lty=i) if(i<=n.time){aanew[i]<-aa[i,i] x3new[i]<-x3[i]} else{aanew[i]<-aa[i,n.time] x3new[i]<-x3[n.time]} } aanew<-matrix(aanew,n.id,1) aanew1<-data.frame(id.new,x3new,aanew) if(ident==TRUE) { text(aanew1[,2],aanew1[,3],labels=aanew1[,1],cex=0.8) } } if(!missing(subSET)){ id1 <- eval(substitute(subSET), data) data<-subset(data, id1) n.subj<-length(unique(data$id)) id.new1<-unique(data$id) aanew2<-numeric(n.subj) x3new1<-numeric(n.subj) for(j in 1:n.subj) { id.numbj<-id.new1[j] i<-afit[afit$id.numb==id.numbj,2] lines(x3,aa[i,],col=1,lty=i) if(i<=n.time){aanew2[j]<-aa[i,i] x3new1[j]<-x3[i]} else{aanew2[j]<-aa[i,n.time] x3new1[j]<-x3[n.time]} } aanew2<-matrix(aanew2,n.subj,1) aanew3<-data.frame(id.new1,x3new1,aanew2) if(ident==TRUE){ text(aanew3[,2],aanew3[,3],labels=aanew3[,1],cex=0.8)} } } if(show[3]) { if (depend=="ind"||depend=="AR1") stop("dependence must be indR or AR1R") if(missing(subSET)) stop("number of id must be given") l1<-data$y ylim<-range(l1,na.rm=TRUE) ylim<-extendrange(l1,f=0.10) plot(x3,c(0,rep(1,n.time-1)), type="n", xlab=xlab,ylab=ylab,main=" ",ylim=ylim) mtext(main,side=3,0.75, cex=0.8) id1 <- eval(substitute(subSET), data) data<-subset(data, id1) n.subj<-length(unique(data$id)) id.new1<-unique(data$id) aanew2<-numeric(n.subj) x3new1<-numeric(n.subj) ynew<-data$y for(j in 1:n.subj) { id.numbj<-id.new1[j] i<-afit[afit$id.numb==id.numbj,2] p2<-round(ylim[2]) p3<-p2-1 points(x3,ynew,pch=19,col="grey50",cex=1.3) points(x3,aa[i,],pch=19,col="grey70") if(i<=n.time){aanew2[j]<-aa[i,i] x3new1[j]<-x3[i]} else{aanew2[j]<-aa[i,n.time] x3new1[j]<-x3[n.time]} } aanew2<-matrix(aanew2,n.subj,1) aanew3<-data.frame(id.new1,x3new1,aanew2) legend(x3[1],p2,c("Observed","Fitted"),pch=c(19,19),col=c("grey50","grey70"),cex=0.8,bty="n") } } )
library(copula) a <- c(1/4, 1/2) b <- c(1/3, 1) stopifnot(0 <= a, a <= 1, 0 <= b, b <= 1, a <= b) ic <- indepCopula() vol <- prob(ic, l = a, u = b) p <- (b[1] - a[1]) * (b[2] - a[2]) stopifnot(all.equal(vol, p)) vol. <- prob(indepCopula(dim = 3), l = c(a, 1/8), u = c(b, 3/8)) p. <- p * (3/8 - 1/8) stopifnot(all.equal(vol., p.)) W <- function(u1, u2) max(u1 + u2 - 1, 0) vol <- W(b[1], b[2]) - W(b[1], a[2]) - W(a[1], b[2]) + W(a[1], a[2]) p <- sqrt(2*(b[1] - a[1])^2) / sqrt(2) stopifnot(all.equal(vol, p)) a. <- a b. <- c(1/3, 1/2) stopifnot(0 <= a., a. <= 1, 0 <= b., b. <= 1, a.[1]+a.[2] <= 1, b. >= a.) W(b.[1], b.[2]) - W(b.[1], a.[2]) - W(a.[1], b.[2]) + W(a.[1], a.[2]) a. <- c(2/3, 1/2) b. <- c(3/4, 3/4) stopifnot(0 <= a., a. <= 1, 0 <= b., b. <= 1, a.[1]+a.[2] >= 1, b. >= a.) W(b.[1], b.[2]) - W(b.[1], a.[2]) - W(a.[1], b.[2]) + W(a.[1], a.[2]) nu <- 3 tc <- tCopula(iTau(tCopula(df = nu), tau = 0.5), df = nu) vol <- prob(tc, l = a, u = b) p <- pCopula(b, copula = tc) - pCopula(c(b[1], a[2]), copula = tc) - pCopula(c(a[1], b[2]), copula = tc) + pCopula(a, copula = tc) stopifnot(all.equal(vol, p)) N <- 1e6 set.seed(271) U <- rCopula(N, copula = tc) volMC <- mean(a[1] < U[,1] & U[,1] <= b[1] & a[2] < U[,2] & U[,2] <= b[2]) stopifnot(all.equal(volMC, p, tol = 1e-2))
test_that('Xcol argument checking works',{ expect_error(.checkargs(Xcol = 1)) }) test_that('Ycol argument checking works',{ expect_error(.checkargs(Ycol = NA)) }) test_that('Pcol argument checking works',{ expect_error(.checkargs(Pcol = 1)) }) test_that('Spcol argument checking works',{ expect_error(.checkargs(Spcol = 2)) }) test_that('name argument checking works',{ expect_error(.checkargs(name = 1)) }) test_that('Spname argument checking works',{ expect_error(.checkargs(Spname = 1)) }) test_that('PA argument checking works',{ expect_error(.checkargs(PA = 1)) }) test_that('rep argument checking works',{ expect_error(.checkargs(rep = 'deux')) }) test_that('cv argument checking works',{ expect_error(.checkargs(cv = 4)) }) test_that('cv.param argument checking works',{ expect_error(.checkargs(cv.param = 1)) }) test_that('thresh argument checking works',{ expect_error(.checkargs(thresh = 'thousand')) }) test_that('metric argument checking works',{ expect_error(.checkargs(metric = 2)) }) test_that('axes.metric argument checking works',{ expect_error(.checkargs(axes.metric = 2)) }) test_that('select argument checking works',{ expect_error(.checkargs(select = 'TRUE')) }) test_that('select.metric argument checking works',{ expect_error(.checkargs(select.metric = 2)) }) test_that('select.thresh argument checking works',{ expect_error(.checkargs(select.thresh = 'zero')) }) test_that('verbose argument checking works',{ expect_error(.checkargs(verbose = 'TRUE')) }) test_that('GUI argument checking works',{ expect_error(.checkargs(GUI = 'TRUE')) }) test_that('uncertainty argument checking works',{ expect_error(.checkargs(uncertainty = 'TRUE')) }) test_that('tmp argument checking works',{ expect_error(.checkargs(tmp = 'TRUE')) }) test_that('ensemble.metric argument checking works',{ expect_error(.checkargs(ensemble.metric = 2)) }) test_that('ensemble.thresh argument checking works',{ expect_error(.checkargs(ensemble.thresh = 'zero')) }) test_that('weight argument checking works',{ expect_error(.checkargs(weight = 'TRUE')) }) test_that('method argument checking works',{ expect_error(.checkargs(method = 2)) }) test_that('rep.B argument checking works',{ expect_error(.checkargs(method = 'B', rep.B = 'thousand')) }) test_that('GeoRes argument checking works',{ expect_error(.checkargs(GeoRes = 'TRUE')) }) test_that('reso argument checking works',{ expect_error(.checkargs(reso = 'zero')) }) test_that('file argument checking works',{ expect_error(.checkargs(file = 1)) }) test_that('files argument checking works',{ expect_error(.checkargs(files = 1)) }) test_that('format argument checking works',{ expect_error(.checkargs(format = 2)) }) test_that('categorical argument checking works',{ expect_error(.checkargs(categorical = 1)) }) test_that('Norm argument checking works',{ expect_error(.checkargs(Norm = 'TRUE')) }) test_that('enm argument checking works',{ expect_error(.checkargs(enm = numeric())) }) test_that('stack argument checking works',{ expect_error(.checkargs(stack = numeric())) }) test_that('range argument checking works',{ expect_error(.checkargs(range = 'one-two')) }) test_that('endemism argument checking works',{ expect_error(.checkargs(endemism = c(1,2))) }) test_that('cores argument checking works',{ expect_error(.checkargs(cores = 'one')) })
timestamp_new <- function() { timestamp_class$new() } timestamp_class <- R6::R6Class( classname = "tar_timestamp", inherit = reporter_class, class = FALSE, portable = FALSE, cloneable = FALSE, public = list( report_started = function(target, progress = NULL) { cli_start( target_get_name(target), target_get_type_cli(target), time_stamp = TRUE ) }, report_built = function(target, progress) { cli_built( target_get_name(target), target_get_type_cli(target), time_stamp = TRUE ) }, report_skipped = function(target, progress) { cli_skip( target_get_name(target), target_get_type_cli(target), time_stamp = TRUE ) }, report_errored = function(target, progress = NULL) { cli_error( target_get_name(target), target_get_type_cli(target), time_stamp = TRUE ) }, report_canceled = function(target = NULL, progress = NULL) { cli_cancel( target_get_name(target), target_get_type_cli(target), time_stamp = TRUE ) }, report_workspace = function(target) { cli_workspace(target_get_name(target), time_stamp = TRUE) }, report_end = function(progress = NULL) { progress$cli_end(time_stamp = TRUE) super$report_end(progress) } ) )
as.data.frame.function <- function(x, row.names, optional, ...) { function(...) data.frame(value = x(...)) }
context("nltt_plot") test_that("use", { testthat::expect_silent(nltt_plot(ape::rcoal(10))) testthat::expect_silent(nltt_lines(ape::rcoal(10))) }) test_that("abuse", { testthat::expect_error( nltt_plot("not a phylogeny"), "phylogeny must be of class 'phylo'" ) testthat::expect_error( nltt_lines("not a phylogeny"), "phylogeny must be of class 'phylo'" ) })
scanPhyloQTL <- function(crosses, partitions, chr, pheno.col=1, model=c("normal","binary"), method=c("em","imp","hk"), addcovar, maxit=4000, tol=0.0001, useAllCrosses=TRUE, verbose=FALSE) { if(missing(chr)) chr <- names(crosses[[1]]$geno) model <- match.arg(model) method <- match.arg(method) thecrosses <- names(crosses) taxa <- sort(unique(unlist(strsplit(thecrosses, "")))) thecrosses <- names(crosses) <- checkPhyloCrosses(thecrosses, taxa) if(missing(partitions)) { partitions <- genAllPartitions(length(taxa), taxa) } checkPhyloPartition(partitions, taxa) crossmat <- qtlByPartition(thecrosses, partitions) dimnames(crossmat) <- list(thecrosses, partitions) if(!missing(addcovar)) { if(!is.list(addcovar) || length(addcovar) != length(crosses)) stop("addcovar must be a list with the same length as crosses (", length(crosses), ")") n.ind <- sapply(crosses, nind) if(is.matrix(addcovar[[1]])) { nind.addcovar <- sapply(addcovar, nrow) n.addcovar <- sapply(addcovar, ncol) } else { nind.addcovar <- sapply(addcovar, length) n.addcovar <- 1 } if(any(nind.addcovar != n.ind)) { err <- paste("crosses: ", paste(n.ind, collapse=" "), "\n", "addcovar:", paste(n.addcovar, collapse=" "), "\n") stop("Mismatch between no. individuals in addcovar and crosses.\n", err) } if(length(unique(n.addcovar)) > 1) stop("Mismatch in no. add've covariates: ", paste(n.addcovar, collapse=" ")) } n.chr <- sapply(crosses, nchr) if(!all(n.chr == n.chr[1])) stop("Different numbers of chromosomes") chrnam1 <- chrnames(crosses[[1]]) for(j in 2:length(crosses)) { chrnam2 <- chrnames(crosses[[j]]) if(!all(chrnam1 == chrnam2)) stop("Different chromosome names") } n.mar1 <- nmar(crosses[[1]]) for(j in 2:length(crosses)) { n.mar2 <- nmar(crosses[[j]]) if(!all(n.mar1 == n.mar2)) stop("Different numbers of markers") } mn1 <- markernames(crosses[[1]]) for(j in 2:length(crosses)) { mn2 <- markernames(crosses[[j]]) if(!all(mn1 == mn2)) stop("Different marker names") } mp1 <- unlist(pull.map(crosses[[1]])) for(j in 2:length(crosses)) { mp2 <- unlist(pull.map(crosses[[j]])) if(!all(mp1 == mp2)) stop("Different marker positions") } out <- vector("list", length(partitions)) for(i in seq(along=partitions)) { if(verbose) cat("Partition", i, "of", length(partitions), "\n") cm <- crossmat[,i] if(!any(cm > 0)) cm <- -cm if(!useAllCrosses) { whcm <- which(cm != 0) x <- crosses[whcm] cm <- cm[whcm] } else { o <- order(abs(cm), decreasing=TRUE) cm <- cm[o] whcm <- seq(along=cm) x <- crosses[o] if(!missing(addcovar)) addcovar <- addcovar[o] } if(any(cm < 0)) for(j in which(cm < 0)) x[[j]] <- flipcross(x[[j]]) xx <- x[[1]] n.phe <- nphe(x[[1]]) if(length(x) > 1) { for(j in 2:length(x)) { xx <- c(xx, x[[j]]) xx$pheno <- xx$pheno[,1:n.phe,drop=FALSE] } } if(length(x)==1) alladdcovar<-NULL else { ni <- sapply(x, nind) alladdcovar <- matrix(0, ncol=length(x)-1, nrow=sum(ni)) thestart <- cumsum(c(1,ni)) end <- cumsum(ni) for(j in 2:length(x)) alladdcovar[thestart[j]:end[j],j-1] <- 1 } if(!missing(addcovar)) { theaddcovar <- as.matrix(addcovar[[whcm[1]]]) if(length(whcm) > 1) for(j in 2:length(whcm)) theaddcovar <- rbind(theaddcovar, as.matrix(addcovar[[whcm[j]]])) if(ncol(theaddcovar)>1 || length(unique(theaddcovar))>1) alladdcovar <- cbind(alladdcovar, theaddcovar) } ind.noqtl <- rep(cm == 0, sapply(x, nind)) out[[i]] <- scanone(xx, chr=chr, pheno.col=pheno.col, addcovar=alladdcovar, model=model, method=method, maxit=maxit, tol=tol, ind.noqtl=ind.noqtl) } if(length(out) == 1) return(out[[1]]) result <- out[[1]] for(j in 2:length(out)) result <- c(result, out[[j]]) colnames(result)[-(1:2)] <- partitions class(result) <- c("scanPhyloQTL", "scanone", "data.frame") result } max.scanPhyloQTL <- function(object, chr, format=c("postprob", "lod"), ...) { format <- match.arg(format) if(!missing(chr)) object <- subset.scanone(object, chr=chr) mx <- summary.scanPhyloQTL(object, format=format) if(nrow(mx) > 1) { nc <- ncol(mx) mx <- mx[!is.na(mx[,nc]) & mx[,nc]==max(mx[,nc], na.rm=TRUE),,drop=FALSE] } class(mx) <- c("summary.scanPhyloQTL", "summary.scanone", "data.frame") mx } summary.scanPhyloQTL <- function(object, format=c("postprob", "lod"), threshold, ...) { format <- match.arg(format) themax <- apply(object[,-(1:2)], 2, tapply, object[,1], max, na.rm=TRUE) if(length(unique(object[,1]))==1) { themax <- as.data.frame(matrix(themax, nrow=1), stringsAsFactors=TRUE) names(themax) <- colnames(object)[-(1:2)] } wh <- apply(themax, 1, function(a) { a <- which(a==max(a)); if(length(a) > 1) a <- sample(a, 1); a }) whpos <- rep(NA, length(wh)) names(whpos) <- unique(object[,1]) for(i in seq(along=whpos)) { temp <- object[object[,1]==names(whpos)[i],,drop=FALSE] temp2 <- which(temp[,wh[i]+2]==max(temp[,wh[i]+2],na.rm=TRUE)) if(length(temp2) > 1) temp2 <- sample(temp2, 1) whpos[i] <- temp[temp2,2] names(whpos)[i] <- rownames(temp)[temp2] } if(format=="lod") { out <- data.frame(chr=unique(object[,1]), pos=whpos, themax, loddif=apply(themax, 1, function(a) -diff(sort(a, decreasing=TRUE)[1:2])), inferred=colnames(object)[wh+2], maxlod=apply(themax, 1, max), stringsAsFactors=TRUE) } else { out <- data.frame(chr=unique(object[,1]), pos=whpos, themax, inferred=colnames(object)[wh+2], maxlod=apply(themax, 1, max), stringsAsFactors=TRUE) temp <- out[,-c(1:2, ncol(out)-0:1)] out[,-c(1:2, ncol(out)-0:1)] <- t(apply(temp, 1, function(a) 10^a/sum(10^a))) } colnames(out)[(1:ncol(themax))+2] <- colnames(themax) rownames(out) <- names(whpos) if(!missing(threshold)) out <- out[out$maxlod >= threshold,,drop=FALSE] class(out) <- c("summary.scanPhyloQTL", "summary.scanone", "data.frame") out } plot.scanPhyloQTL <- function(x, chr, incl.markers=TRUE, col, xlim, ylim, lwd=2, gap=25, mtick=c("line", "triangle"), show.marker.names=FALSE, alternate.chrid=FALSE, legend=TRUE, ...) { mtick <- match.arg(mtick) if(!missing(chr)) x <- subset(x, chr=chr) if(missing(col)) { col <- c("black","blue","red","green","orange","brown","gray","cyan","magenta") if(ncol(x)-2 > length(col)) stop("Please give a list of colors") col <- col[1:(ncol(x)-2)] } if(missing(ylim)) ylim <- c(0, max(apply(x[,-(1:2)], 2, max))) dots <- list(...) if(missing(xlim)) { if("ylab" %in% names(dots)) plot.scanone(x, incl.markers=incl.markers, col=col[1], lodcolumn=1, ylim=ylim, lwd=lwd, gap=gap, mtick=mtick, show.marker.names=show.marker.names, alternate.chrid=alternate.chrid, ...) else plot.scanone(x, incl.markers=incl.markers, col=col[1], lodcolumn=1, ylim=ylim, lwd=lwd, gap=gap, mtick=mtick, show.marker.names=show.marker.names, alternate.chrid=alternate.chrid, ylab="LOD score", ...) } else { if("ylab" %in% names(dots)) plot.scanone(x, incl.markers=incl.markers, col=col[1], lodcolumn=1, ylim=ylim, xlim=xlim, lwd=lwd, gap=gap, mtick=mtick, show.marker.names=show.marker.names, alternate.chrid=alternate.chrid, ...) else plot.scanone(x, incl.markers=incl.markers, col=col[1], lodcolumn=1, ylim=ylim, xlim=xlim, lwd=lwd, gap=gap, mtick=mtick, show.marker.names=show.marker.names, alternate.chrid=alternate.chrid, ylab="LOD score", ...) } if(ncol(x) > 3) for(i in 2:(ncol(x)-2)) plot.scanone(x, col=col[i], lodcolumn=i, add=TRUE, ...) if(is.character(legend) || legend) { if(is.character(legend)) legend(legend, legend=colnames(x)[-(1:2)], col=col, lwd=lwd) else legend("topright", legend=colnames(x)[-(1:2)], col=col, lwd=lwd) } invisible() } inferredpartitions <- function(output, chr, lodthreshold, probthreshold=0.9) { if(!inherits(output, "scanPhyloQTL")) stop("Argument 'output' must be of class \"scanPhyloQTL\", as output by scanPhyloQTL.") if(missing(chr)) { chr <- output[1,1] warning("Missing chromosome; using ", chr) } else if(!any(output[,1]==chr)) stop("Chromosome \"", chr, "\" not found.") if(missing(lodthreshold)) { warning("No lodthreshold given; using lodthreshold=0.") lodthreshold=0 } if(probthreshold >= 1 || probthreshold <= 0) { stop("probthreshold should be in (0,1)") } output <- output[output[,1]==chr,] output[,1] <- as.factor(as.character(output[,1])) output <- summary(output, format="postprob") if(output$maxlod < lodthreshold) return("null") prob <- sort(unlist(output[,3:(ncol(output)-2)]), decreasing=TRUE) cs <- cumsum(as.numeric(prob)) if(!any(cs >= probthreshold)) { warning("No values >= probthreshold") return(NULL) } wh <- min(which(cs >= probthreshold)) names(prob)[seq_len(wh)] }
"_PACKAGE" if (getRversion() >= "2.15.1") utils::globalVariables(c("abbr", "county", "group", "x", "y")) us_map <- function(regions = c("states", "state", "counties", "county"), include = c(), exclude = c()) { regions_ <- match.arg(regions) if (regions_ == "state") regions_ <- "states" else if (regions_ == "county") regions_ <- "counties" df <- utils::read.csv(system.file("extdata", paste0("us_", regions_, ".csv"), package = "usmap"), colClasses = col_classes(regions_), stringsAsFactors = FALSE) if (length(include) > 0) { df <- df[df$full %in% include | df$abbr %in% include | df$fips %in% include | substr(df$fips, 1, 2) %in% include, ] } if (length(exclude) > 0) { df <- df[!(df$full %in% exclude | df$abbr %in% exclude | df$fips %in% exclude | substr(df$fips, 1, 2) %in% exclude), ] } df } col_classes <- function(regions) { result <- c("numeric", "numeric", "integer", "logical", "integer", rep("character", 4)) if (regions %in% c("county", "counties")) { result <- c(result, "character") } result }
colhalfnorm.mle <- function(x) { n <- dim(x)[1] s <- sqrt( Rfast::colsums(x^2)/n ) loglik <- n/2 * log( 2 / pi / s) - n/2 res <- cbind(s, loglik) colnames(res) <- c("sigma.squared", "loglik") res } colordinal.mle <- function (x, link = "logit") { ina <- Rfast::colTabulate(x) d <- dim(ina)[2] for (i in 1:d) ina[, i] <- as.numeric(ina[, i]) k <- dim(ina)[1] - Rfast::colCountValues(ina, rep(0, d) ) ni <- Rfast::colCumSums(ina)/dim(x)[1] if (link == "logit") { param <- log(ni/(1 - ni)) } else param <- qnorm(ni) ep <- which( is.infinite(param) ) param[ep] <- NA loglik <- Rfast::rowsums( t(ina) * log( cbind( ni[1, ], Rfast::coldiffs( t(ni)) ) ), na.rm = TRUE ) list(param = param, loglik = loglik) } collognorm.mle <- function(x) { n <- dim(x)[1] x <- Rfast::Log(x) sx <- Rfast::colsums(x) m <- sx/n s <- Rfast::colsums(x^2)/n - m^2 loglik <- -0.5 * n * (log(2 * pi * s) + 1) - sx res <- cbind(m, s, loglik) colnames(res) <- c("mean", "variance", "loglik") res } collogitnorm.mle <- function(x) { n <- dim(x)[1] lx1 <- Rfast::Log(x) lx2 <- Rfast::Log(1 - x) y <- lx1 - lx2 sy <- Rfast::colsums(y) m <- sy/n s <- ( Rfast::colsums(y^2) - n * m^2 ) / n loglik <- Rfast::rowsums( dnorm(t(y), m, sqrt(s), log = TRUE) ) - Rfast::colsums(lx1) - Rfast::colsums(lx2) res <- cbind(m, n * s/(n - 1), loglik) colnames(res) <- c("mean", "unbiased variance", "loglik") res } colborel.mle <- function(x) { n <- dim(x)[1] sx <- Rfast::colsums(x) m <- 1 - n/sx loglik <- -sx + n + Rfast::colsums( (x - 1) * log( t( t(x) * m ) ) ) - Rfast::colsums( Rfast::Lgamma(x + 1) ) res <- cbind(m, loglik) colnames(res) <- c("m", "loglik") res } colspml.mle <- function(x, tol = 1e-07, maxiters = 100, parallel = FALSE) { res <- .Call( Rfast2_colspml_mle,x, tol, maxiters, parallel) colnames(res) <- c("mu1", "mu2", "gamma", "loglik") res } colcauchy.mle <- function (x, tol = 1e-07, maxiters = 100, parallel = FALSE) { res <- .Call(Rfast2_colcauchy_mle, x, tol, parallel, maxiters) colnames(res) <- c("location", "scale", "loglik") res } colbeta.mle <- function(x, tol = 1e-07, maxiters = 100, parallel = FALSE) { res <- .Call(Rfast2_colbeta_mle, x, tol, parallel, maxiters) colnames(res) <- c("alpha", "beta", "loglik") res } colunitweibull.mle <- function(x, tol = 1e-07, maxiters = 100, parallel = FALSE) { lx <- - log(x) mod <- Rfast::colweibull.mle( lx, tol = tol, maxiters = maxiters, parallel = parallel ) param <- mod[, 1:2] colnames(param) <- c("alpha", "beta") a <- param[, 1] ; b <- param[, 2] n <- dim(x)[1] loglik <- Rfast::colsums(lx) + n * log(a * b) + (b - 1) * Rfast::colsums( log(lx) ) - a * Rfast::rowsums( t(lx)^b ) param <- cbind(param, loglik) param }
library(hamcrest) expected <- c(-0x1.064434e52cd78p+10 + 0x0p+0i, 0x1.8d0136158ab2p+4 + -0x1.59d55390dd1bfp+8i, 0x1.7451f918f3bc5p+6 + 0x1.930a2422786dcp+6i, -0x1.398ec3b749565p+6 + 0x1.28bdbd79c138ep+8i, -0x1.74748e6bf28d5p+7 + -0x1.e90c9ffbdc9f4p+3i, -0x1.05e161facd218p+7 + -0x1.b02a8f0ab7f7cp+7i, 0x1.e02be52ec9c62p+6 + 0x1.0159245633f06p+7i, -0x1.6f72f73630853p+6 + 0x1.9663ff776ba1ap+6i, -0x1.ccef2d256bb8ap+8 + -0x1.f8f38522353d4p+7i, 0x1.3c675ee1efb85p+5 + 0x1.df9c557b3be2ep+5i, -0x1.c96d0fc5de40cp+5 + -0x1.c47fdf597c086p+6i, 0x1.5eeb89627b7e8p+7 + 0x1.200b0dbacb7fep+7i, -0x1.013c76e2bbad2p+8 + 0x1.6d07c80aa2e2dp+7i, -0x1.423302a82d54p+0 + -0x1.4c13db02c48dbp+5i, -0x1.b28691b96eb6p+4 + 0x1.97b773159a7b2p+6i, -0x1.616599568f352p+4 + 0x1.da9775c12f2f3p+4i, -0x1.123210d139548p+3 + 0x1.e969db35deb4p+4i, 0x1.42f440d275d12p+4 + 0x1.7bd00686fe8e8p+4i, -0x1.ba435666f0a7cp+4 + -0x1.e5ddf70e55b64p+2i, -0x1.5a9b0a8b7693ap+6 + 0x1.13b21635a4d99p+8i, 0x1.de70abc025248p+5 + 0x1.15b208535441cp+6i, -0x1.93f5dd3515378p+6 + 0x1.1265b2476f6c4p+6i, 0x1.924133eeec99cp+2 + 0x1.4336410a761cdp+5i, -0x1.2d76deb892e59p+7 + 0x1.e547f3aa4ead6p+6i, 0x1.089045da1b629p+7 + -0x1.895ea0a49ace5p+6i, 0x1.f5ed4b47fcfccp+6 + 0x1.60b1ad9de0196p+6i, -0x1.3987ad68d127ap+3 + 0x1.36783a135ddd1p+7i, -0x1.a41a885cdb864p+6 + 0x1.de5ace05a8e22p+5i, 0x1.0423d958ae69p+8 + 0x1.af537fcdf37ddp+5i, 0x1.7a623d8f4016ep+6 + 0x1.31070076fb719p+5i, -0x1.31bbee051719p+5 + -0x1.15cde40838a3ep+6i, -0x1.2e70269ad529p+3 + -0x1.81660475818aep+4i, 0x1.50c55ac480a94p+6 + 0x1.5e5c2860cfd8p+1i, 0x1.592a4897081cap+6 + 0x1.1233c5b2ec7e1p+5i, -0x1.ba655187caae7p+5 + -0x1.90e0f55b504e4p+6i, 0x1.e5a5f085ed289p+6 + 0x1.a2fc85bd835d2p+5i, 0x1.0bdc309c1aa71p+6 + 0x1.1060c90714068p+4i, -0x1.81f2c632f9cdbp+2 + -0x1.a9e119e9f9524p+4i, 0x1.8839113f237ccp+2 + 0x1.046a03385d0cp-2i, -0x1.2e5b5add0e06p+2 + -0x1.7e7ed60d12822p+5i, 0x1.de5c4271f0a64p+5 + 0x1.6ac965f50f058p+7i, -0x1.10a4199d8f8ecp+5 + 0x1.386523d8cbc8p+1i, -0x1.6ca13047f6b57p+6 + 0x1.092d2fda7d2dap+4i, 0x1.3f29ac48a2ba1p+6 + 0x1.17094eea3cd3p+6i, 0x1.767b013eb0149p+6 + 0x1.63c2d02224427p+4i, -0x1.5db6afbbb7948p+3 + 0x1.3df089c19f863p+6i, -0x1.f64d574245d18p+5 + -0x1.002e583559dddp+4i, 0x1.829a2e28f604p-1 + 0x1.6058a66a7dcd4p+3i, -0x1.89af0a205384ap+3 + -0x1.0d93ba6311ebbp+5i, 0x1.35ffd99ded70fp+6 + 0x1.9ca05d2536552p+6i, -0x1.1caf93a6e61d4p+4 + 0x1.0b92e046b2f6p+1i, 0x1.f184baeb60514p+2 + 0x1.50aa1677a0f9cp+5i, -0x1.69d79fb351478p+2 + 0x1.0d330d5570782p+5i, 0x1.cd96550194383p+5 + 0x1.0af6c636ea484p+4i, -0x1.83712c81d551p+4 + -0x1.33bda65529fd8p+6i, -0x1.7abe36a4650aap+4 + 0x1.7ac696837b4acp+5i, -0x1.7f5bffbb42e0ep+4 + 0x1.0f324e1cc30f4p+4i, -0x1.32ccb69219de8p+4 + -0x1.d79036f340ap+1i, -0x1.138c96bf7dbdp+4 + -0x1.12a7c7e5fa904p+4i, -0x1.08b45f83a91d4p+5 + -0x1.48427893cc484p+5i, -0x1.25b25cf157cffp+7 + 0x1.10965f2a6b85cp+5i, -0x1.214760b1c47dap+4 + -0x1.57e9f045c4822p+6i, 0x1.0e691af8132ep+3 + 0x1.4e848ea7279e4p+3i, 0x1.3c86adc2f40ep+1 + 0x1.0e22a83a65ffep+5i, -0x1.06970be16f2a9p+7 + 0x1.32289d842f75p+1i, -0x1.8c0f45cce8d04p+4 + 0x1.c4cd21458656cp+4i, -0x1.5ae8e31231cp+3 + 0x1.00438ac8e864cp+6i, -0x1.a5ea11f21ac4dp+5 + 0x1.0e3bc7e5bdb6dp+6i, 0x1.ac9b3d135d68p-1 + 0x1.b6c357032b00fp+5i, -0x1.93c6b39348832p+6 + -0x1.ca1c317965198p+1i, -0x1.3caf039983d9p+1 + 0x1.865db26b3fc51p+6i, -0x1.296792c1c2916p+5 + -0x1.2f988bfd38b7ap+3i, 0x1.f9fe118f97819p+4 + 0x1.7c0905d297d6ep+6i, -0x1.f7547f2aa362p+5 + 0x1.bce0ccf5dba84p+3i, -0x1.65d1ecaf68174p+5 + -0x1.e7d9383b6802p+0i, -0x1.cb7349b389c64p+4 + -0x1.5b9a13e46b1c8p+3i, -0x1.02f31298a85cap+4 + 0x1.1695f9eb72854p+6i, -0x1.31bd8d0cce7e3p+5 + 0x1.c1de747cc1e26p+4i, -0x1.1c7487b0f6ff5p+4 + 0x1.5952e4708598ep+5i, -0x1.32cf16ebd0ap+4 + -0x1.a17d0b36a63fap+4i, -0x1.e8a04eb18039p+3 + -0x1.7440411854b94p+2i, -0x1.4350b6ef3594p+4 + -0x1.051d9a7e2afbp+2i, -0x1.cc803de874976p+4 + 0x1.4ce986a53d602p+3i, -0x1.1a108e238574cp+4 + -0x1.00e59f2015be8p+6i, -0x1.5ce9b16713598p+3 + 0x1.6dd038daaef19p+5i, -0x1.17b67d4b8d9aep+5 + 0x1.3f97f12f56c17p+5i, -0x1.644ae14db62b1p+5 + 0x1.5f7ca698db957p+5i, -0x1.ed54aeca7744dp+4 + -0x1.0de1f475334f8p+3i, 0x1.b7b69a3a1faccp+5 + -0x1.8b2c69e89b674p+3i, -0x1.66862bc9c41b4p+2 + 0x1.78183ccc9791p+3i, -0x1.416bde296d173p+5 + 0x1.6bd26d6879a38p+1i, 0x1.6cb0aa5f0a8cfp+5 + -0x1.8363bc4bd811bp+3i, 0x1.885f8aa7973e8p+5 + -0x1.ed0cb00681eacp+3i, 0x1.fff03c1ba9d4p+3 + 0x1.059616f7daa8fp+6i, -0x1.d077528e3f062p+6 + 0x1.82400cc6310c1p+5i, -0x1.2a9c12a99c7b6p+5 + 0x1.64019311e16ap+0i, 0x1.e76a484fa1ap+1 + -0x1.9d4acd2f58ce8p+5i, -0x1.daee9a65ace5p+5 + 0x1.86cae79eb243p+4i, -0x1.2c342532852e5p+6 + -0x1.bc732cbd7cc6ap+5i, -0x1.4049b465ab548p+5 + -0x1.43ab0900e290cp+3i, -0x1.1b5ab510be79ep+5 + 0x1.54461a3830f6cp+3i, -0x1.41d4d1d89be12p+5 + 0x1.9a6d1bfb219cp+3i, -0x1.9046dfbb92d88p+5 + 0x1.42a9909cc2622p+5i, -0x1.286538b6cf49ep+5 + 0x1.40a01fac7afcap+4i, -0x1.2ed399010cd73p+6 + -0x1.3d4993ed2953dp+2i, -0x1.2e0ab41d921cp+2 + 0x1.13738e6f11cep+1i, -0x1.6561a269e1487p+5 + 0x1.a8a02c6d7922cp+4i, -0x1.51d2c4c2a6c4p+6 + -0x1.693325812a0b6p+4i, -0x1.ff04eafaa3264p+4 + -0x1.2194cacc79b59p+4i, 0x1.4a70ac1d6443cp+5 + 0x1.27f89d7e5af7ap+3i, -0x1.d9045afcf2373p+5 + 0x1.61899a5683c24p+5i, -0x1.6725d05d718c4p+5 + 0x1.a6e3532b19fb8p+1i, -0x1.a74af98202813p+4 + -0x1.605c5b016daccp+4i, -0x1.f6f8f75113986p+4 + -0x1.7caf8d295693dp+4i, 0x1.1fb3b722eee64p+3 + 0x1.46330eb808aacp+6i, -0x1.246e8b78ad546p+6 + 0x1.0db371b907e3ap+5i, -0x1.b9b030a2092edp+5 + -0x1.b383fd292481ep+2i, 0x1.f013398f7292ep+5 + -0x1.0e16680a4347dp+4i, -0x1.c0ec23cb4cffdp+5 + 0x1.45b330ac047b5p+5i, 0x1.3bc81a4e88b28p+2 + 0x1.10fd8b18e5fd7p+5i, -0x1.9b448cb74cd8ap+6 + -0x1.37fc38e42e966p+3i, 0x1.24b761aacc5bp+4 + -0x1.67bd277ed5ed6p+5i, -0x1.af00d9d383ccep+5 + 0x1.8be0ab9ca13a3p+4i, -0x1.03323f9534c53p+6 + -0x1.32e249bf4b438p+6i, -0x1.02a1d384e3ecbp+7 + 0x1.64a5955760326p+2i, -0x1.de513b6680361p+4 + -0x1.1bf962b93618dp+2i, -0x1.14dbf754ce9b5p+4 + -0x1.40cc98bcad5b7p+5i, -0x1.3cdc0d1430368p+5 + 0x1.7f68afae0fc84p+5i, -0x1.5ab9b02469dabp+5 + 0x1.01914e07d1b48p+7i, 0x1.6d1a19cfc8f88p+3 + -0x1.7cda4cbad8a9dp+5i, 0x1.47f02d9639bccp+5 + -0x1.97a46d83c9fcbp+6i, 0x1.654bffd590884p+3 + 0x1.120974c6ad39ap+4i, -0x1.652acfc0015dp+7 + 0x1.7dfc85ad913b4p+5i, -0x1.4bd8a374a9823p+3 + -0x1.734a32aa9351cp+6i, 0x1.7e46d97809dd1p+5 + 0x1.88d386bab3b05p+4i, 0x1.16e7ae676ea86p+5 + 0x1.69a552d0759a8p+4i, -0x1.a0b2b9a07d80ep+5 + 0x1.4fff1af614902p+6i, 0x1.04b7bcefc07b6p+6 + -0x1.b6271d00df2b9p+3i, 0x1.31221e6771d6p+6 + 0x1.3eec0445b1c9ep+4i, -0x1.4effe86c82a44p+5 + -0x1.172fcc8421dcp+6i, -0x1.39c3e496f0e5dp+6 + -0x1.c5c7ec04b12cdp+5i, 0x1.5101bdbf540ap+2 + -0x1.cdc9aa4bfb679p+3i, -0x1.0435bb2d2a04cp+3 + 0x1.fece182f023ffp+3i, -0x1.919eeb8d1be88p+5 + -0x1.43165a895f957p+4i, -0x1.09c04a4898201p+7 + 0x1.e68b8e96371fp+1i, 0x1.77c30914663f4p+3 + -0x1.00dbda33a402cp+6i, 0x1.3bebfc7776d1ep+5 + 0x1.e8f308684273p+4i, 0x1.0ffcc098427e2p+5 + -0x1.7bf3ce6d35779p+5i, -0x1.e9b73852c3d36p+5 + 0x1.c21d8d63c93cfp+2i, -0x1.7c9ee2c1494a6p+6 + -0x1.143c26daf9f4p+1i, -0x1.6cf24a8c62a96p+5 + -0x1.92d15d9a3b12cp+6i, -0x1.ee3bb03094779p+4 + -0x1.02746f073d268p+6i, -0x1.4eb9b6218483cp+6 + 0x1.0f9f2c6c4c467p+6i, -0x1.ddf75b9dc5e92p+5 + -0x1.63a1690e2766cp+6i, -0x1.c9f8466f6e3f4p+6 + -0x1.21751610b88d2p+6i, 0x1.5c28aecf9aea2p+6 + 0x1.b3a060aa8101ap+5i, -0x1.8052c3b658c96p+5 + -0x1.43a6727d3a35dp+6i, -0x1.46682ee7feeap+7 + -0x1.a5145529073ebp+4i, -0x1.e3c97eee530c2p+5 + -0x1.3c2f7cf358fbfp+7i, -0x1.2b41bdd70fc32p+6 + 0x1.fb02fe00a1ddap+5i, -0x1.0716d6dc170a4p+7 + -0x1.8cac3594423f4p+6i, 0x1.c547855675c4bp+6 + -0x1.9306e3acf9accp+6i, -0x1.296d154b5978fp+8 + -0x1.97052eabcc44cp+6i, 0x1.25394b9f72eb4p+7 + -0x1.bc5d8960fe63cp+7i, 0x1.1d65b93aa4a96p+6 + -0x1.8281846bf18a8p+6i, -0x1.427e70a0a0ab1p+3 + 0x1.ff67a7c30c064p+6i, -0x1.5ea78472be434p+8 + 0x1.2c80492d642a6p+6i, 0x1.49071b07270bcp+5 + -0x1.a973be44f6992p+7i, 0x1.835cd116c470ep+7 + 0x1.b26d2dc1331p+5i, -0x1.f052650cd0d9dp+7 + 0x1.f7e683d41c5e1p+6i, -0x1.50dd99e57046bp+8 + -0x1.edde5eb520c28p+7i, 0x1.e7c1e6be3edf4p+7 + -0x1.4a2ab3246387ep+7i, 0x1.eec61e1b59b7ap+5 + 0x1.f60d54bdc04ap+3i, 0x1.674ead79c8763p+4 + 0x1.7612fa9f728d8p+7i, -0x1.39553b99faffep+8 + 0x1.a2c0003936dd6p+5i, -0x1.fcfd11771039p+1 + -0x1.0409ec0f9bc0dp+7i, 0x1.076531694668bp+4 + 0x1.d3e9241beabe4p+7i, 0x1.d73d851af933p+0 + -0x1.5159b1a751577p+6i, -0x1.016820c2aeffep+8 + -0x1.735b00a57c81dp+6i, 0x1.ac2ebbdfb36abp+6 + 0x1.02bb00608ebb2p+5i, 0x1.1a489ae7ca6a6p+6 + -0x1.bfbd431970ceep+5i, 0x1.938921a65faf4p+5 + 0x1.9b76d2f2b269p+6i, -0x1.9cdf53f55bad7p+7 + 0x1.052951816467p+6i, 0x1.b3df904fc0bf6p+5 + 0x1.84193f92deb32p+5i, -0x1.43e795b87cddcp+7 + -0x1.3f2924b5e3cccp+3i, 0x1.18921d0639944p+7 + -0x1.8ee8589f83f64p+3i, -0x1.2e362b7e02fa4p+7 + -0x1.4aa344f6999bep+2i, 0x1.199cfefaf6cbap+4 + 0x1.45ea961d28812p+5i, 0x1.16320d00df576p+4 + 0x1.02966c37d5d44p+5i, 0x1.15eacbdf2e7a7p+5 + -0x1.450c47cd7063cp+5i, 0x1.3a13028be1694p+5 + 0x1.f01da5a0e984p+4i, 0x1.499b7d0303b34p+0 + 0x1.b33ca2dea14b1p+5i, 0x1.5463eb13d34f4p+5 + 0x1.141054c8c6027p+7i, -0x1.9214c17a74abcp+6 + 0x1.78064a3d2d8cp+0i, 0x1.3137f823c7a4ap+7 + 0x1.8c2b27ac5a0e3p+5i, -0x1.52c9e3f098e5p+2 + 0x1.6df241b4a5176p+2i, -0x1.64c5ef079924ep+6 + 0x1.ba4c472ac36d5p+6i, 0x1.324d542b6c3c4p+2 + -0x1.86fc45b2eb338p+5i, 0x1.def661ce3ddccp+5 + -0x1.ae56327ff029cp+3i, -0x1.4c06d107b5284p+4 + 0x1.26f97d09927abp+6i, 0x1.b4c66b465578p+0 + 0x1.44b88f4e8dc06p+7i, -0x1.448062f580096p+7 + -0x1.baab633a261cbp+5i, 0x1.95088877888d9p+5 + 0x1.491faf2b00ecdp+7i, -0x1.6df2728c33b52p+4 + 0x1.1cf9151948155p+6i, 0x1.b0be9c6461e68p+5 + -0x1.7ccaa09b17102p+4i, -0x1.4ce6bee121c26p+6 + -0x1.51e8b4570895dp+6i, 0x1.e5c75ed1a6576p+5 + 0x1.748cc4eda5504p+2i, -0x1.e6aea577916dap+5 + 0x1.1928b1243eb49p+4i, -0x1.ad4dd338cf87p+0 + 0x1.9695bbd6423bap+6i, 0x1.d8df47e199cep+0 + -0x1.c6d250f2f0678p+4i, 0x1.7ace9cd175728p+5 + 0x1.0d22cc8e8df01p+5i, -0x1.de7e0ebc5242ap+2 + -0x1.90ccf22f721c6p+3i, 0x1.366a4d9e6dad1p+6 + 0x1.6b7a34488dbe2p+6i, 0x1.d9222a4825facp+2 + -0x1.17fb918e7845bp+5i, 0x1.17284d14951d3p+6 + -0x1.05f6d9af1ba1p+5i, -0x1.8079d90ab868ep+6 + 0x1.6ff0be669414cp+4i, 0x1.bd6ecd9632248p+6 + 0x1.8dcaf655c8a34p+6i, 0x1.07e2cdeea9e6p+5 + -0x1.3e8b0e9698178p+5i, 0x1.5ec02380984b8p+4 + -0x1.7351abe74f608p+2i, -0x1.1f500d86562ebp+6 + 0x1.3dab535ac8258p+5i, 0x1.e4c1af93299f8p+6 + -0x1.49b608ac374cp+2i, -0x1.4e2a9098a3624p+5 + 0x1.ef69409a73092p+4i, -0x1.0957e250bf176p+6 + -0x1.5c1431555116p+3i, -0x1.7bfac6316627ap+5 + -0x1.6712a5c7c0ab7p+6i, -0x1.b438628640a88p+4 + -0x1.15733ce6e81eap+4i, -0x1.0cf3bac949832p+7 + -0x1.80355eb70fadp+3i, -0x1.0af8b6fcac736p+7 + 0x1.ccbae4298f15ap+5i, -0x1.9c688fde593c4p+5 + -0x1.5c558516080ap+4i, -0x1.d9762caadf13p+5 + 0x0p+0i, -0x1.9c688fde593c8p+5 + 0x1.5c558516080ep+4i, -0x1.0af8b6fcac73ep+7 + -0x1.ccbae4298f16p+5i, -0x1.0cf3bac949836p+7 + 0x1.80355eb70fa9p+3i, -0x1.b438628640a68p+4 + 0x1.15733ce6e81eap+4i, -0x1.7bfac63166274p+5 + 0x1.6712a5c7c0ac8p+6i, -0x1.0957e250bf17ep+6 + 0x1.5c14315551148p+3i, -0x1.4e2a9098a3622p+5 + -0x1.ef69409a730ap+4i, 0x1.e4c1af9329a12p+6 + 0x1.49b608ac375p+2i, -0x1.1f500d86562ecp+6 + -0x1.3dab535ac826p+5i, 0x1.5ec02380984c4p+4 + 0x1.7351abe74f638p+2i, 0x1.07e2cdeea9e56p+5 + 0x1.3e8b0e969817cp+5i, 0x1.bd6ecd9632252p+6 + -0x1.8dcaf655c8a3ep+6i, -0x1.8079d90ab869p+6 + -0x1.6ff0be669414ap+4i, 0x1.17284d14951d5p+6 + 0x1.05f6d9af1ba13p+5i, 0x1.d9222a4825f8p+2 + 0x1.17fb918e7845ap+5i, 0x1.366a4d9e6dad9p+6 + -0x1.6b7a34488dbe3p+6i, -0x1.de7e0ebc5243p+2 + 0x1.90ccf22f721b9p+3i, 0x1.7ace9cd17572ap+5 + -0x1.0d22cc8e8dfp+5i, 0x1.d8df47e199dep+0 + 0x1.c6d250f2f066cp+4i, -0x1.ad4dd338cf8cp+0 + -0x1.9695bbd6423bep+6i, -0x1.e6aea577916dp+5 + -0x1.1928b1243eb5p+4i, 0x1.e5c75ed1a6572p+5 + -0x1.748cc4eda5518p+2i, -0x1.4ce6bee121c24p+6 + 0x1.51e8b45708958p+6i, 0x1.b0be9c6461e64p+5 + 0x1.7ccaa09b1711p+4i, -0x1.6df2728c33b56p+4 + -0x1.1cf9151948156p+6i, 0x1.95088877888d6p+5 + -0x1.491faf2b00ecfp+7i, -0x1.448062f580098p+7 + 0x1.baab633a261cap+5i, 0x1.b4c66b465578p+0 + -0x1.44b88f4e8dc07p+7i, -0x1.4c06d107b528ep+4 + -0x1.26f97d09927aap+6i, 0x1.def661ce3ddccp+5 + 0x1.ae56327ff0294p+3i, 0x1.324d542b6c3e3p+2 + 0x1.86fc45b2eb33bp+5i, -0x1.64c5ef079925p+6 + -0x1.ba4c472ac36dcp+6i, -0x1.52c9e3f098e58p+2 + -0x1.6df241b4a5158p+2i, 0x1.3137f823c7a4dp+7 + -0x1.8c2b27ac5a0e1p+5i, -0x1.9214c17a74abbp+6 + -0x1.78064a3d2d8dp+0i, 0x1.5463eb13d34f2p+5 + -0x1.141054c8c6029p+7i, 0x1.499b7d0303c0cp+0 + -0x1.b33ca2dea14aap+5i, 0x1.3a13028be1698p+5 + -0x1.f01da5a0e983fp+4i, 0x1.15eacbdf2e799p+5 + 0x1.450c47cd70638p+5i, 0x1.16320d00df575p+4 + -0x1.02966c37d5d42p+5i, 0x1.199cfefaf6cbcp+4 + -0x1.45ea961d2880ap+5i, -0x1.2e362b7e02fa4p+7 + 0x1.4aa344f6999d6p+2i, 0x1.18921d0639946p+7 + 0x1.8ee8589f83f7p+3i, -0x1.43e795b87cddep+7 + 0x1.3f2924b5e3ca6p+3i, 0x1.b3df904fc0bfep+5 + -0x1.84193f92deb26p+5i, -0x1.9cdf53f55badap+7 + -0x1.0529518164679p+6i, 0x1.938921a65fb01p+5 + -0x1.9b76d2f2b2698p+6i, 0x1.1a489ae7ca6a8p+6 + 0x1.bfbd431970cf1p+5i, 0x1.ac2ebbdfb36adp+6 + -0x1.02bb00608ebbcp+5i, -0x1.016820c2aefffp+8 + 0x1.735b00a57c81ep+6i, 0x1.d73d851af91bp+0 + 0x1.5159b1a751578p+6i, 0x1.0765316946696p+4 + -0x1.d3e9241beabe2p+7i, -0x1.fcfd11771045p+1 + 0x1.0409ec0f9bc1p+7i, -0x1.39553b99fafffp+8 + -0x1.a2c0003936de8p+5i, 0x1.674ead79c875ap+4 + -0x1.7612fa9f728dap+7i, 0x1.eec61e1b59b7dp+5 + -0x1.f60d54bdc04bp+3i, 0x1.e7c1e6be3edf7p+7 + 0x1.4a2ab3246387fp+7i, -0x1.50dd99e57046dp+8 + 0x1.edde5eb520c28p+7i, -0x1.f052650cd0d9bp+7 + -0x1.f7e683d41c5e6p+6i, 0x1.835cd116c4711p+7 + -0x1.b26d2dc133108p+5i, 0x1.49071b07270c1p+5 + 0x1.a973be44f6993p+7i, -0x1.5ea78472be435p+8 + -0x1.2c80492d642a4p+6i, -0x1.427e70a0a0af8p+3 + -0x1.ff67a7c30c067p+6i, 0x1.1d65b93aa4a99p+6 + 0x1.8281846bf18aep+6i, 0x1.25394b9f72eb2p+7 + 0x1.bc5d8960fe63ap+7i, -0x1.296d154b5979p+8 + 0x1.97052eabcc446p+6i, 0x1.c547855675c56p+6 + 0x1.9306e3acf9ad3p+6i, -0x1.0716d6dc170a6p+7 + 0x1.8cac3594423eep+6i, -0x1.2b41bdd70fc2ep+6 + -0x1.fb02fe00a1ddp+5i, -0x1.e3c97eee530bfp+5 + 0x1.3c2f7cf358fcp+7i, -0x1.46682ee7fee9ep+7 + 0x1.a5145529073efp+4i, -0x1.8052c3b658c98p+5 + 0x1.43a6727d3a35ep+6i, 0x1.5c28aecf9ae9cp+6 + -0x1.b3a060aa81023p+5i, -0x1.c9f8466f6e3f2p+6 + 0x1.21751610b88ccp+6i, -0x1.ddf75b9dc5e96p+5 + 0x1.63a1690e2766ep+6i, -0x1.4eb9b6218483cp+6 + -0x1.0f9f2c6c4c468p+6i, -0x1.ee3bb0309477ap+4 + 0x1.02746f073d266p+6i, -0x1.6cf24a8c62a9ap+5 + 0x1.92d15d9a3b12dp+6i, -0x1.7c9ee2c1494a6p+6 + 0x1.143c26daf9f94p+1i, -0x1.e9b73852c3d3p+5 + -0x1.c21d8d63c9444p+2i, 0x1.0ffcc098427d8p+5 + 0x1.7bf3ce6d3577ap+5i, 0x1.3bebfc7776d2fp+5 + -0x1.e8f3086842733p+4i, 0x1.77c3091466444p+3 + 0x1.00dbda33a402ep+6i, -0x1.09c04a4898202p+7 + -0x1.e68b8e96371dp+1i, -0x1.919eeb8d1be88p+5 + 0x1.43165a895f952p+4i, -0x1.0435bb2d2a04cp+3 + -0x1.fece182f0240dp+3i, 0x1.5101bdbf5406cp+2 + 0x1.cdc9aa4bfb67ep+3i, -0x1.39c3e496f0e5ap+6 + 0x1.c5c7ec04b12dbp+5i, -0x1.4effe86c82a4ap+5 + 0x1.172fcc8421dbbp+6i, 0x1.31221e6771d5ep+6 + -0x1.3eec0445b1c9bp+4i, 0x1.04b7bcefc07bap+6 + 0x1.b6271d00df2dbp+3i, -0x1.a0b2b9a07d804p+5 + -0x1.4fff1af614908p+6i, 0x1.16e7ae676ea7cp+5 + -0x1.69a552d07599fp+4i, 0x1.7e46d97809dep+5 + -0x1.88d386bab3b2ep+4i, -0x1.4bd8a374a97eep+3 + 0x1.734a32aa9351cp+6i, -0x1.652acfc0015d1p+7 + -0x1.7dfc85ad913bp+5i, 0x1.654bffd59088p+3 + -0x1.120974c6ad3a4p+4i, 0x1.47f02d9639bcap+5 + 0x1.97a46d83c9fcbp+6i, 0x1.6d1a19cfc8f7bp+3 + 0x1.7cda4cbad8a9fp+5i, -0x1.5ab9b02469da2p+5 + -0x1.01914e07d1b45p+7i, -0x1.3cdc0d143036p+5 + -0x1.7f68afae0fc8ap+5i, -0x1.14dbf754ce9bp+4 + 0x1.40cc98bcad5bep+5i, -0x1.de513b668035cp+4 + 0x1.1bf962b936176p+2i, -0x1.02a1d384e3ecap+7 + -0x1.64a5955760343p+2i, -0x1.03323f9534c59p+6 + 0x1.32e249bf4b437p+6i, -0x1.af00d9d383ccbp+5 + -0x1.8be0ab9ca13aep+4i, 0x1.24b761aacc5c2p+4 + 0x1.67bd277ed5ed5p+5i, -0x1.9b448cb74cd89p+6 + 0x1.37fc38e42e96ap+3i, 0x1.3bc81a4e88b3p+2 + -0x1.10fd8b18e5fdap+5i, -0x1.c0ec23cb4d003p+5 + -0x1.45b330ac047aap+5i, 0x1.f013398f72928p+5 + 0x1.0e16680a43493p+4i, -0x1.b9b030a2092e4p+5 + 0x1.b383fd292482p+2i, -0x1.246e8b78ad544p+6 + -0x1.0db371b907e3ap+5i, 0x1.1fb3b722eee4ep+3 + -0x1.46330eb808aa8p+6i, -0x1.f6f8f75113984p+4 + 0x1.7caf8d2956939p+4i, -0x1.a74af9820281ap+4 + 0x1.605c5b016dabp+4i, -0x1.6725d05d718c6p+5 + -0x1.a6e3532b19f28p+1i, -0x1.d9045afcf236fp+5 + -0x1.61899a5683c31p+5i, 0x1.4a70ac1d64445p+5 + -0x1.27f89d7e5af79p+3i, -0x1.ff04eafaa3262p+4 + 0x1.2194cacc79b57p+4i, -0x1.51d2c4c2a6c3fp+6 + 0x1.693325812a0b9p+4i, -0x1.6561a269e1488p+5 + -0x1.a8a02c6d7921dp+4i, -0x1.2e0ab41d92204p+2 + -0x1.13738e6f11c8p+1i, -0x1.2ed399010cd6ep+6 + 0x1.3d4993ed2952ap+2i, -0x1.286538b6cf496p+5 + -0x1.40a01fac7afd7p+4i, -0x1.9046dfbb92d88p+5 + -0x1.42a9909cc261dp+5i, -0x1.41d4d1d89be0ep+5 + -0x1.9a6d1bfb219d6p+3i, -0x1.1b5ab510be79bp+5 + -0x1.54461a3830fa8p+3i, -0x1.4049b465ab54ap+5 + 0x1.43ab0900e2914p+3i, -0x1.2c342532852e4p+6 + 0x1.bc732cbd7cc66p+5i, -0x1.daee9a65ace47p+5 + -0x1.86cae79eb2436p+4i, 0x1.e76a484fa19ep+1 + 0x1.9d4acd2f58ce4p+5i, -0x1.2a9c12a99c7b5p+5 + -0x1.64019311e172p+0i, -0x1.d077528e3f062p+6 + -0x1.82400cc6310b6p+5i, 0x1.fff03c1ba9cf7p+3 + -0x1.059616f7daa8cp+6i, 0x1.885f8aa7973fp+5 + 0x1.ed0cb00681ea4p+3i, 0x1.6cb0aa5f0a8d9p+5 + 0x1.8363bc4bd8107p+3i, -0x1.416bde296d17ap+5 + -0x1.6bd26d68799d8p+1i, -0x1.66862bc9c41a8p+2 + -0x1.78183ccc9791ep+3i, 0x1.b7b69a3a1fad6p+5 + 0x1.8b2c69e89b61cp+3i, -0x1.ed54aeca77448p+4 + 0x1.0de1f47533505p+3i, -0x1.644ae14db62bbp+5 + -0x1.5f7ca698db956p+5i, -0x1.17b67d4b8d9a8p+5 + -0x1.3f97f12f56c22p+5i, -0x1.5ce9b167135ap+3 + -0x1.6dd038daaef1bp+5i, -0x1.1a108e2385756p+4 + 0x1.00e59f2015bep+6i, -0x1.cc803de874968p+4 + -0x1.4ce986a53d60fp+3i, -0x1.4350b6ef35947p+4 + 0x1.051d9a7e2afe8p+2i, -0x1.e8a04eb180378p+3 + 0x1.7440411854b9bp+2i, -0x1.32cf16ebd0ap+4 + 0x1.a17d0b36a63e4p+4i, -0x1.1c7487b0f6febp+4 + -0x1.5952e47085988p+5i, -0x1.31bd8d0cce7ep+5 + -0x1.c1de747cc1e22p+4i, -0x1.02f31298a85cp+4 + -0x1.1695f9eb72859p+6i, -0x1.cb7349b389c65p+4 + 0x1.5b9a13e46b1ccp+3i, -0x1.65d1ecaf68178p+5 + 0x1.e7d9383b6802p+0i, -0x1.f7547f2aa3618p+5 + -0x1.bce0ccf5dba7ep+3i, 0x1.f9fe118f97815p+4 + -0x1.7c0905d297d6fp+6i, -0x1.296792c1c291ap+5 + 0x1.2f988bfd38b56p+3i, -0x1.3caf039983d18p+1 + -0x1.865db26b3fc4ep+6i, -0x1.93c6b39348836p+6 + 0x1.ca1c317965248p+1i, 0x1.ac9b3d135d9p-1 + -0x1.b6c357032b00fp+5i, -0x1.a5ea11f21ac46p+5 + -0x1.0e3bc7e5bdb7p+6i, -0x1.5ae8e31231c2p+3 + -0x1.00438ac8e864cp+6i, -0x1.8c0f45cce8cecp+4 + -0x1.c4cd21458657cp+4i, -0x1.06970be16f2a4p+7 + -0x1.32289d842f83p+1i, 0x1.3c86adc2f409cp+1 + -0x1.0e22a83a65ff8p+5i, 0x1.0e691af81329p+3 + -0x1.4e848ea7279fcp+3i, -0x1.214760b1c47c5p+4 + 0x1.57e9f045c481cp+6i, -0x1.25b25cf157cfcp+7 + -0x1.10965f2a6b854p+5i, -0x1.08b45f83a91dcp+5 + 0x1.48427893cc47ep+5i, -0x1.138c96bf7dbdp+4 + 0x1.12a7c7e5fa8fp+4i, -0x1.32ccb69219ddp+4 + 0x1.d79036f340aap+1i, -0x1.7f5bffbb42df5p+4 + -0x1.0f324e1cc30e4p+4i, -0x1.7abe36a4650a5p+4 + -0x1.7ac696837b4bp+5i, -0x1.83712c81d552p+4 + 0x1.33bda65529fdbp+6i, 0x1.cd96550194387p+5 + -0x1.0af6c636ea488p+4i, -0x1.69d79fb351484p+2 + -0x1.0d330d557078ap+5i, 0x1.f184baeb60524p+2 + -0x1.50aa1677a0f94p+5i, -0x1.1caf93a6e61e8p+4 + -0x1.0b92e046b2fcp+1i, 0x1.35ffd99ded715p+6 + -0x1.9ca05d2536551p+6i, -0x1.89af0a205383ap+3 + 0x1.0d93ba6311eb8p+5i, 0x1.829a2e28f6p-1 + -0x1.6058a66a7dcep+3i, -0x1.f64d574245d14p+5 + 0x1.002e583559de6p+4i, -0x1.5db6afbbb7968p+3 + -0x1.3df089c19f859p+6i, 0x1.767b013eb0145p+6 + -0x1.63c2d0222441ap+4i, 0x1.3f29ac48a2bap+6 + -0x1.17094eea3cd32p+6i, -0x1.6ca13047f6b58p+6 + -0x1.092d2fda7d2c2p+4i, -0x1.10a4199d8f8e2p+5 + -0x1.386523d8cbc68p+1i, 0x1.de5c4271f0a5fp+5 + -0x1.6ac965f50f057p+7i, -0x1.2e5b5add0e038p+2 + 0x1.7e7ed60d1282p+5i, 0x1.8839113f237e4p+2 + -0x1.046a03385d6p-2i, -0x1.81f2c632f9c8dp+2 + 0x1.a9e119e9f953ep+4i, 0x1.0bdc309c1aa7p+6 + -0x1.1060c90714058p+4i, 0x1.e5a5f085ed282p+6 + -0x1.a2fc85bd835dap+5i, -0x1.ba655187caaddp+5 + 0x1.90e0f55b504e2p+6i, 0x1.592a4897081cdp+6 + -0x1.1233c5b2ec7d1p+5i, 0x1.50c55ac480a8ep+6 + -0x1.5e5c2860cfcep+1i, -0x1.2e70269ad527p+3 + 0x1.8166047581888p+4i, -0x1.31bbee051719p+5 + 0x1.15cde40838a44p+6i, 0x1.7a623d8f4016dp+6 + -0x1.31070076fb70ap+5i, 0x1.0423d958ae68cp+8 + -0x1.af537fcdf37cap+5i, -0x1.a41a885cdb865p+6 + -0x1.de5ace05a8e1dp+5i, -0x1.3987ad68d1274p+3 + -0x1.36783a135ddcdp+7i, 0x1.f5ed4b47fcfdp+6 + -0x1.60b1ad9de0195p+6i, 0x1.089045da1b628p+7 + 0x1.895ea0a49ace2p+6i, -0x1.2d76deb892e55p+7 + -0x1.e547f3aa4eadbp+6i, 0x1.924133eeec9d4p+2 + -0x1.4336410a761ccp+5i, -0x1.93f5dd3515379p+6 + -0x1.1265b2476f6b3p+6i, 0x1.de70abc02523cp+5 + -0x1.15b208535441ep+6i, -0x1.5a9b0a8b76934p+6 + -0x1.13b21635a4d98p+8i, -0x1.ba435666f0a68p+4 + 0x1.e5ddf70e55c28p+2i, 0x1.42f440d275d06p+4 + -0x1.7bd00686fe8f5p+4i, -0x1.123210d139558p+3 + -0x1.e969db35deb3fp+4i, -0x1.616599568f347p+4 + -0x1.da9775c12f2fdp+4i, -0x1.b28691b96eb5p+4 + -0x1.97b773159a7b4p+6i, -0x1.423302a82d6ap+0 + 0x1.4c13db02c48eap+5i, -0x1.013c76e2bbacfp+8 + -0x1.6d07c80aa2e28p+7i, 0x1.5eeb89627b7e8p+7 + -0x1.200b0dbacb7fcp+7i, -0x1.c96d0fc5de406p+5 + 0x1.c47fdf597c084p+6i, 0x1.3c675ee1efb84p+5 + -0x1.df9c557b3be1cp+5i, -0x1.ccef2d256bb86p+8 + 0x1.f8f38522353cap+7i, -0x1.6f72f73630848p+6 + -0x1.9663ff776ba1cp+6i, 0x1.e02be52ec9c5ap+6 + -0x1.0159245633efep+7i, -0x1.05e161facd218p+7 + 0x1.b02a8f0ab7f76p+7i, -0x1.74748e6bf28d3p+7 + 0x1.e90c9ffbdc98cp+3i, -0x1.398ec3b749564p+6 + -0x1.28bdbd79c138ap+8i, 0x1.7451f918f3bbep+6 + -0x1.930a2422786d9p+6i, 0x1.8d0136158abp+4 + 0x1.59d55390dd1bcp+8i ) assertThat(stats:::fft(z=c(-23.7708328961019, -2.48921505288605, -4.90830773790793, -14.4661842424985, -0.0112409636343406, -18.5187018260077, -11.083880463647, -5.33346401321436, -21.001660964052, -2.47440694787375, -3.64289619709057, -0.485671274325257, -1.79150748730684, -0.00699051626401592, -5.84161465236154, 3.93541806689383, 0.580090052642676, 8.83280397726006, -0.0855815903316173, 4.86314588739365, 0.893315847228107, -1.39413198498495, -9.43505914289666, -1.89582261049555, -2.92584908474875, -0.167023699559072, -0.95211123444879, -0.0850797145816957, -2.27890951884572, -0.0240852501124118, 0.297792537522955, 4.07403716521123, -1.55709869399089, 0.794901604001893, 0.61639845328725, 0.60652209619971, -1.73787669761526, -4.42267314671622, -2.25810095330843, -2.38106109234659, -0.152614629435355, -3.5818727977903, -3.79637026343724, -0.0628129499795985, -5.45480541078524, -5.25873801964453, -0.524089349557156, -1.64797077778525, -8.81562418347194, -2.203854673928, -0.465662662602988, -4.27473933998855, -1.15524467357413, -1.3173188710311, 0.0261379057483793, -13.2515228047897, 0.579270570920853, -3.76365942440711, -6.09045013757277, -4.09447631000989, -0.594551821624292, -3.13583397010958, 2.1948508590458, 3.17925315041831, -0.336522923571445, 1.77027254991647, -3.35912813364607, 0.767620154866166, -0.519152728792464, -5.59072572408497, 0.351053050125732, -1.47227845477831, -3.29702326535081, -4.460501645463, 1.52352976889322, -4.44252504084926, 0.751113315054035, -3.421485926237, -0.0011131292069267, -0.611950853556652, 2.00633725675673, -0.328110272508359, 3.61905869429299, -1.0387114622791, -1.97069348996823, 0.957313748450439, -3.04446310768145, 0.476038535978084, 1.71992445613516, -1.87173432459001, 2.31592422483145, -3.89693114502531, -0.00231724417211365, -1.37856367193994, 4.66621624867694, 1.84820218129735, 4.53703512467387, -3.11217913779258, -4.98728947434255, 1.85212739292499, -6.09479337590528, -0.739389424181602, -6.13477905916407, 1.26666787409151, -6.60037366550041, -7.31723751792718, 0.364699359003178, -10.9086928700515, -9.67060579259072, 7.01274179196495, -3.05386630925926, 1.90465844957369, 6.74978018731347, -0.157958709779155, 8.21784987499043, -4.88920451071072, 3.88169217013359, -2.51846998794342, -7.6482159924715, -2.67093252742662, -0.795368258356022, -10.0767647689672, -0.744350077963692, -3.5023958195383, -0.557160274458648, -0.796910998277958, 2.06672597719393, 0.150284569933939, 3.60909318296994, 3.41878757873279, 0.150117842665926, 3.83376341569708, 0.0056135019428917, -0.94002986557939, 5.98096615092899, 5.06302546555031, -1.47198614356067, 8.50795526087376, 0.294391090897194, 9.66282612560964, -2.08205932867156, 3.65346402206044, 0.817169735872419, 0.932363354024994, 0.0838267021344608, 4.35696604612699, 0.0011403547375502, 1.87624668305354, 0.118114143455508, -3.56918046914932, 2.48958723337287, -9.79955497292962, -1.53517280463178, 0.262116677362443, -8.15360823029713, 7.47698965906146, -0.896188552072715, 0.853563522421709, -2.34303467101326, -3.40927262943559, 1.39711266137523, -8.58976501193787, 0.0673953311905804, -7.01249516176988, -1.81953774771164, -0.75028488737011, -7.85089806213536, -0.115439816286216, 1.88751694393334, -11.1217917608909, -3.9268463960581, -3.68175431954811, -12.6368639218082, 0.0964019615309718, -10.7992420808952, -7.03604736814949, -1.48809939406581, -6.58079559232476, -3.83651375198913, 0.0412560858732186, -0.470671295619956, 0.715188870932853, 0.0161282637791481, -2.07497355320696, -8.77215545542282, -1.87146186385855, -5.79663959819262, -0.0220820188886129, 3.26187500832309, -0.597975134956941, 1.04140895918285, 0.847425492903929, 0.171097595802369, -0.269053071844262, 0.200776424169706, 0.946810931635553, 0.0535106818155922, -1.5662852174347, -11.4462035679278, -1.34505606949549, -4.70291881416161, -0.161173920653758, 1.50028203409213, 0.512906238070806, 3.34841196153997, -0.405650415891143, -0.286226001565449, 4.01481669642967, -2.51995805250717, 6.62068561542198, 0.0186414157827039, 4.36835005407095, 3.01018100235096, -3.37294516113314, 5.30349993964238, -1.04740683554501, -2.77957505019764, -5.47003826094368, -12.9205653962092, -1.31054197471382, -12.7006806639148, 0.98071531505332, -9.3337132816696, -7.88202142164254, 0.0290063956716996, -15.9463258109089, -0.249851816611657, 2.51845535401001, -12.3831584719474, -5.09800673335618, 7.71774284278186, -14.4272937650689, 12.7750092928108, -9.75517948564174, 5.58092474352622, -2.0786740214615, -16.6076418415933, 1.93546019463257, -7.22941825349685, -0.604779345248724, -0.0380796614495173, -0.442412191893814, -5.19003574435343, -1.51425133367873, 0.328449276296988, -2.30676657138257, 4.51359805143108, 5.94900325472736, 2.55780713186469, 12.0365097591601, -0.350983180146331, 2.03137884695212, 2.59702831888015, -0.286166583217754, -0.301369922198854, -0.609741219605781, -3.94636013356208, -1.07059680270632, 0.279290355232868, -2.59224305773414, -0.782055223621052, 4.08193163726087, -10.5815036701018, -7.39266086900985, -0.406112911818016, -17.2813308745814, -1.85936095421505, -15.806565214123, -8.59802311713947, -3.31232179056552, -15.8804404253228, 0.338994453453923, -2.48229567490467, -12.3949326434608, -0.125799452112133, -4.76193938087667, -9.08056108879784, -0.960827207462225, -8.61349346045266, -5.11465044429881, 1.85608607955244, -7.76662678870028, -2.41185063029492, -6.00872596773918, -0.0961085034219549, -0.226751413320635, -0.701154301093359, 3.75799494635908, 0.484263025818292, 0.650839155322851, 2.09820817230294, 0.461505956959652, 3.0719822690346, 1.96619289958002, -1.28329335671985, 3.92345110436591, 1.4796962189703, -2.87503911708975, 0.016449694713669, -2.7973903416279, -4.44677865337309, -1.83128370986172, -9.24368939400586, 0.16176300273731, -4.44672359700833, -5.38128714422861, -0.505292299085497, -4.75338356447713, -3.64267185145559, 9.32698648939374, -3.72079007515387, -3.72085980600647, 0.851471462286869, -3.98502900524379, -4.69399475838604, -1.0146650902497, -9.35315442132272, -0.432872368819136, -5.45273299190182, -20.2358431688654, -0.0580885705320379, -12.3400069994593, -13.2357278451641, 10.3029992236082, -8.824015078503, -6.97048285863946, 5.0998435467116, -5.4906060918701, 0.278974228302104, -2.86450419989226, -6.97741646531178, 3.26857829808821, -8.62427487521362, -19.5435094704963, -0.430284610840763, -33.3971576710936, -9.4960610648362, -8.0517802734759, -24.2842566595871, -0.302509243111669, -15.888937036993, -10.0974809181923, -0.825107439627948, -18.2363783722242, -1.34238282407111, -13.9482247487648, -23.339636337563, 6.94670264911198, -8.19409730508363, -30.8453598515067, 4.3492422636956, -17.8500283608891, -0.342537230017422, 0.466879231667901, -16.9150299607625, 1.29754784316414, -10.8255811654385, -13.0962743046474, -0.718287360059733, -4.73560549883694, 0.92555876224882, 0.894667253879575, 3.04681288490875, 3.41031751671125, -1.76960993297074, 1.28231715573552, 0.0447747411873069, -1.5816298496508, -1.65746997241004, -0.521929750354521, -4.84376045266799, -0.377763205198271, 4.43657188857965, -1.05747013923845, -0.488748151471062, 1.59757423651317, -1.35932049537957, -2.67581452717236, -0.653970483263626, -0.780747293148137, -1.96747937745114, 0.464219672364819, 1.57846726067049, -2.38268223797788, -1.01151859434694, 0.334921929412904, -8.86110181014566, -0.897558543432608, -8.3392573466435, -6.60368996348284, -2.32360044534742, -7.49048926597187, -1.48266109891754, -8.85536791013645, -9.30677909523497, -1.05682779622314, -7.24028288954046, -2.6520361148532, 1.76248220023412, -8.6136738139441, 4.0484970522523, 2.50149988391237, -3.45376596079403, 7.72639905329669, -8.08941080048887, 4.08648617701736, 8.59258828063225, -6.50741110419116, 2.4495301999403, -3.04486607588424, -2.07422050173826, 0.530759052159716, -0.458774960575477, -2.41734927444894, -1.44428807078285, -0.502305972586792, -0.0280919109939653, 0.257846089968202, -1.42436350767346, 1.81221254933213, 4.59350664320127, 1.11332742192993, 1.16149503171754, 0.36535808966167, -2.68535388040155, 0.721475247046701, -0.15725590789861, -1.41146428874462, 2.85950639992502, 0.101103088164485, -0.160726220552455, -0.31692834219527, -0.338286779841711, -4.14497474944947, -2.50789089266492, 1.40254044921914, -4.68839189801662, 0.130727831047866, -12.2055694701825, 0.435136114228676, -2.73052231356705, -2.21111393534214, -2.00361466932587, 1.81668340740864, -5.3313559132075, 0.345897001172932, 1.13686232350228, -5.26651213380651, -4.78973178084752, -1.5936337086337, -11.9481636405046, 2.98236949155947, -7.99370525305061, 0.905741341963133, 11.0514655594728, 2.54671290745589)) , identicalTo( expected, tol = 1e-6 ) )
`rbfkernel` <- function(X, sigma = 1, Y = NULL) { if(!is.matrix(X)) { print("X must be a matrix containing samples in its rows") return() } if(length(sigma) != 1 || sigma <= 0) { print("sigma must be a number > 0 specifying the rbf-kernel width") return() } if(!is.null(Y)) { if(!is.matrix(Y)) { print("Y must be a matrix containing samples in its rows or NULL if it should not be used") return() } if(ncol(X) != ncol(Y)) { print("The samples in the rows of X and Y must be of same dimension") return() } } n <- nrow(X) if(is.null(Y)) { XtX <- tcrossprod(X) XX <- matrix(1, n) %*% diag(XtX) D <- XX - 2*XtX + t(XX) } else { m <- nrow(Y) XX <- matrix(apply(X ^ 2, 1, sum), n, m) YY <- matrix(apply(Y ^ 2, 1, sum), n, m, byrow = TRUE) XY <- tcrossprod(X, Y) D <- XX - 2*XY + YY } K <- exp(-D/(2*sigma)) return(K) }
focalMultiBand <- function(x, w, fun, filename = "", na.rm = FALSE, pad = FALSE, padValue = NA, NAonly = FALSE, keepNA = TRUE, ...) { UseMethod("focalMultiBand", x) } focalMultiBand.Raster <- function(x, w, fun, filename = "", na.rm = FALSE, pad = FALSE, padValue = NA, NAonly = FALSE, keepNA = TRUE, ...) { if (class(x)[1] == "RasterLayer") { if (missing(fun)) { out <- raster::focal(x = x, w = w, filename = "", na.rm = na.rm, pad = pad , padValue = padValue, NAonly = NAonly, ...) } else { out <- raster::focal(x = x, w = w, fun = fun, filename = "", na.rm = na.rm , pad = pad, padValue = padValue, NAonly = NAonly, ...) } } else if (class(x)[1] %in% c("RasterStack", "RasterBrick")) { x.list <- raster::as.list(x) if (missing(fun)) { out <- lapply(x.list, function(r) raster::focal(x = r, w = w, na.rm = na.rm, pad = pad, padValue = padValue, NAonly = NAonly, filename = "")) } else { out <- lapply(x.list, function(r) raster::focal(x = r, w = w, fun = fun, na.rm = na.rm, pad = pad, padValue = padValue, NAonly = NAonly, filename = "")) } out <- raster::stack(out) } else { stop("x must be a Raster object") } if (keepNA) { out <- raster::mask(x = out, mask = x, maskValue = NA) } if (filename != "") { names(out) <- names(x) out <- raster::writeRaster(out, filename = filename, ...) } names(out) <- names(x) return(out) } focalMultiBand.list <- function(x, w, fun, filename = "", na.rm = FALSE, pad = FALSE, padValue = NA, NAonly = FALSE, keepNA = TRUE, ...) { if (length(filename) < length(list)) { toAdd <- length(list) - length(filename) filename = c(filename, rep("", toAdd)) } filename_non_empty <- filename[filename != ""] if (length(unique(filename_non_empty)) != length(filename_non_empty)) { stop("filename must have unique values (other than \"\") for each element of the list x") } args <- c(as.list(environment()), list(...)) args <- args[ ! names(args) %in% c("x", "filename")] mapply(focalMultiBand, x, filename, MoreArgs = args) }
Pi.matrix <- function(group, data, formula, ref.level){ if (!is.factor(group)) group <- factor(group, levels=unique(group)) if (is.numeric(ref.level)) ref.level <- as.character(ref.level) if (!(ref.level %in% levels(group))) stop("'ref.level' is not a level of 'group'") if (missing(data)) { stop("Needs data to calculate probailities") }else{ if (nrow(data) != length(group)) { stop("'data' has wrong dimensions") } } alt.levels <- levels(group)[levels(group) != ref.level] data.reg <- as.data.frame(data) if(missing(formula)){ formula <- as.formula(paste("~", paste(colnames(data), collapse = "+")))} data.reg <- cbind(ind.pheno = group, data.reg) rownames(data.reg) <- NULL data.reg <- dfidx(data.reg, varying = NULL, shape = "wide", choice = "ind.pheno") z <- as.character(formula) if (z[1] != "~" | length(z) != 2) stop("'formula' should be a formula of the form \"~ var1 + var2\"") z <- z[2] my.formula <- Formula(as.formula(paste("ind.pheno ~ 0 | ", z))) fit <- tryCatch(mlogit(my.formula, data = data.reg, reflevel = ref.level), error = identity, warning = identity) if (is(fit, "error")) { pi.matrix <- matrix(NA, ncol=nlevels(group), nrow=nrow(data), byrow=TRUE, dimnames=list(rownames(data), levels(group))) }else{ pi.matrix <- matrix(fit$model$probabilities, ncol=nlevels(group), nrow=nrow(data), byrow=TRUE, dimnames=list(rownames(data), fit$model$idx$id2[1:nlevels(group)])) pi.matrix <- pi.matrix[,levels(group)] } return(pi.matrix) }
expected <- structure(8.33333333333333, units = "mins", .Names = "a", class = "difftime") test(id=0, code={ argv <- structure(list(x = structure(500, units = "secs", class = "difftime", .Names = "a"), value = "mins"), .Names = c("x", "value")) do.call('units<-.difftime', argv); }, o = expected);
setConstructorS3("GString", function(..., sep="") { s <- paste(..., sep=sep) if (length(s) > 1L) { throw("Trying to coerce more than one character string to a GString, which is not supported.") } extend(s, "GString") }) setMethodS3("getRaw", "GString", function(object, ...) { unclass(object) }) setMethodS3("print", "GString", function(x, ...) { object <- x print(as.character(object), ...) }) setMethodS3("getBuiltinPid", "GString", function(static, ...) { pid <- Sys.getpid() pid }, static=TRUE) setMethodS3("getBuiltinHostname", "GString", function(static, ...) { host <- Sys.getenv(c("HOST", "HOSTNAME", "COMPUTERNAME")) host <- host[host != ""] if (length(host) == 0L) { tryCatch({ host <- readLines(pipe("/usr/bin/env uname -n")) host <- host[host != ""] }, error = function(ex) {}) } if (length(host) == 0L) host <- NA host[1L] }, static=TRUE) setMethodS3("getBuiltinUsername", "GString", function(static, ...) { user <- Sys.info()["user"] user <- user[user != "unknown"] if (length(user) == 0L) { user <- Sys.getenv(c("USER", "USERNAME")) user <- user[user != ""] } if (length(user) == 0L) { tryCatch({ user <- readLines(pipe("/usr/bin/env whoami")) user <- user[user != ""] }, error = function(ex) {}) } if (length(user) == 0L) user <- NA user[1L] }, static=TRUE) setMethodS3("getBuiltinDate", "GString", function(static, format="%Y-%m-%d", ...) { args <- list(Sys.time(), format=format) do.call(base::format, args) }, static=TRUE) setMethodS3("getBuiltinTime", "GString", function(static, format="%H:%M:%S", ...) { args <- list(Sys.time(), format=format) do.call(base::format, args) }, static=TRUE) setMethodS3("getBuiltinDatetime", "GString", function(static, format=NULL, ...) { args <- list(Sys.time(), format=format) do.call(base::format, args) }, static=TRUE) setMethodS3("getBuiltinRversion", "GString", function(static, ...) { getRversion() }, static=TRUE) setMethodS3("getBuiltinRhome", "GString", function(static, ...) { R.home() }, static=TRUE) setMethodS3("getBuiltinOs", "GString", function(static, ...) { .Platform$OS.type }, static=TRUE) setMethodS3("getVariableValue", "GString", function(static, name, attributes="", where=c("builtin", "envir", "parent", "Sys.getenv", "getOption"), envir=parent.frame(), inherits=TRUE, missingValue=NA, ...) { if (is.null(name)) { throw("Argument 'name' is NULL.") } else if (!is.character(name)) { throw("Argument 'name' must be a character string: ", mode(name)) } .stop_if_not(is.environment(envir)) attrs <- strsplit(attributes, split=", ")[[1L]] if (length(attrs) > 0L) { isSimpleAttr <- (regexpr("^[abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0-9._]+=.*$", attrs) == -1L) simpleAttrs <- attrs[isSimpleAttr] if (length(simpleAttrs) == 0L) simpleAttrs <- NULL attrs <- paste(attrs[!isSimpleAttr], collapse=", ") attrs <- eval(parse(text=paste("list(", attrs, ")"))) } else { attrs <- NULL simpleAttrs <- NULL } value <- NULL for (ww in where) { if (ww == "builtin") { capitalizedName <- paste(toupper(substr(name, start=1L, stop=1L)), substr(name, start=2L, stop=nchar(name)), sep="") builtInMethodName <- paste("getBuiltin", capitalizedName, sep="") tryCatch({ args <- list(static) args <- c(args, attrs) value <- do.call(builtInMethodName, args=args) }, error = function(ex) { }) } else if (ww == "Sys.getenv") { value <- Sys.getenv(name) if (nchar(value) == 0L) value <- NULL } else if (ww == "getOption") { value <- getOption(name) } else if (ww == "envir") { if (exists(name, envir=envir, inherits=inherits)) { value <- get(name, envir=envir, inherits=inherits) } } else if (ww == "parent") { envirL <- NULL n <- 0L while (TRUE) { n <- n + 1L envirP <- parent.frame(n=n) if (identical(envirP, envirL)) break envirL <- envirP if (exists("...abcdef", envir=envirP, inherits=FALSE)) next if (exists(name, envir=envirP, inherits=FALSE)) { value <- get(name, envir=envirP, inherits=FALSE) break } if (identical(envir, .GlobalEnv)) break } } else { if (exists(ww, mode="function")) { tryCatch({ args <- c(attrs, list(...)) value <- do.call(name, args=args) }, error = function(ex) {}) } else { throw("Unknown search location of variable '", name, "': ", ww) } } if (!is.null(value)) { tryCatch({ value <- as.character(value) }, error = function(ex) { value <<- NA }) for (attr in simpleAttrs) { if (attr == "capitalize") { value <- paste(toupper(substring(value, first=1L, last=1L)), substring(value, first=2L), sep="") } else { tryCatch({ fcn <- get(attr, mode="function") value <- fcn(value) }, error = function(ex) {}) } } if (any(nchar(value) > 0L)) break } } if (is.null(value)) { value <- missingValue } value }, static=TRUE, private=TRUE) setMethodS3("parse", "GString", function(object, ...) { s <- getRaw(object) if (length(s) == 0L || !regexpr("${", s, fixed=TRUE) != -1L) { return(list(text=s)) } parts <- list() while(TRUE) { pattern <- "^\\$(\\[.*\\]|)\\{([^\\}]*)\\}" pos <- regexpr(pattern, s) matchLen <- attr(pos, "match.length") pos <- pos[1L] if (pos != -1L) { text <- "" } else { pattern <- "[^\\\\$]\\$(\\[.*\\]|)\\{([^\\}]*)\\}" pos <- regexpr(pattern, s) matchLen <- attr(pos, "match.length") pos <- pos[1] if (pos != -1) { text <- substr(s, start=1L, stop=pos) text <- gsub("\\\\\\$", "$", text) } else { text <- s text <- gsub("\\\\\\$", "$", text) parts <- c(parts, list(text=text)) break } } prefix <- list(text=text) parts <- c(parts, prefix) last <- pos + matchLen - 1L var <- substr(s, start=pos, stop=last) attributes <- gsub(pattern, "\\1", var) attributes <- gsub("^\\[", "", attributes) attributes <- gsub("\\]$", "", attributes) name <- gsub(pattern, "\\2", var) searchReplace <- NULL patterns <- c("^[']([^']*)[']$", '^["]([^"]*)["]$') if (all(sapply(patterns, FUN=regexpr, name) == -1L)) { pattern <- "^(.*)/(.*)/(.*)" if (regexpr(pattern, name) != -1L) { searchPattern <- gsub(pattern, "\\2", name) replacePattern <- gsub(pattern, "\\3", name) name <- gsub(pattern, "\\1", name) searchReplace <- list(search=searchPattern, replace=replacePattern) } } else { for (pattern in patterns) { name <- gsub(pattern, "\\1", name) } } pattern <- "^`(.*)`" isExpression <- (regexpr(pattern, name) != -1L) if (isExpression) { call <- gsub(pattern, "\\1", name) part <- list(expression=list(call=call)) } else { part <- list(variable=list(name=name)) } part[[1L]]$attributes <- attributes part[[1L]]$searchReplace <- searchReplace parts <- c(parts, part) s <- substr(s, start=last+1L, stop=nchar(s)) if (nchar(s) == 0L) break } parts }, private=TRUE) setMethodS3("evaluate", "GString", function(object, envir=parent.frame(), ...) { .stop_if_not(is.environment(envir)) s <- unclass(object) if (length(s) == 0L || !regexpr("${", s, fixed=TRUE) != -1L) { return(s) } parts <- parse(object, ...) keys <- names(parts) ...abcdef <- TRUE isVariable <- (keys == "variable") for (kk in which(isVariable)) { part <- parts[[kk]] value <- getVariableValue(object, name=part$name, attributes=part$attributes, envir=envir, ...) if (!is.null(part$searchReplace)) value <- gsub(part$searchReplace$search, part$searchReplace$replace, value) parts[[kk]] <- value } isExpression <- (keys == "expression") for (kk in which(isExpression)) { part <- parts[[kk]] expr <- parse(text=part$call) value <- eval(expr) if (!is.null(part$searchReplace)) value <- gsub(part$searchReplace$search, part$searchReplace$replace, value) parts[[kk]] <- value } s <- "" for (kk in seq_along(parts)) { part <- parts[[kk]] s <- paste(s, part, sep="") } s }, protected=TRUE) setMethodS3("as.character", "GString", function(x, envir=parent.frame(), ...) { evaluate(x, envir=envir, ...) })
"CellCycle"
WPSOutputDescription <- R6Class("WPSOutputDescription", inherit = WPSDescriptionParameter, private = list(), public = list( initialize = function(xml = NULL, version, logger = NULL, ...){ super$initialize(xml = xml, version = version, logger = logger, ...) } ) )
prev = getOption("batchtools.verbose") options(batchtools.verbose = FALSE) test_that("batchmark", { requirePackagesOrSkip("batchtools") reg = makeExperimentRegistry(file.dir = NA, make.default = FALSE, seed = 1) task.names = c("binary", "multiclass") tasks = list(binaryclass.task, multiclass.task) learner.names = c("classif.lda", "classif.rpart") learners = lapply(learner.names, makeLearner) rin = makeResampleDesc("CV", iters = 2L) ids = batchmark(learners = makeLearner("classif.lda", predict.type = "prob"), tasks = binaryclass.task, resamplings = rin, reg = reg) expect_data_table(ids, ncol = 1L, nrow = 2, key = "job.id") expect_set_equal(ids$job.id, 1:2) tab = summarizeExperiments(reg = reg) expect_equal(tab$problem, "binary") expect_equal(tab$algorithm, "classif.lda") expect_set_equal(findExperiments(reg = reg)$job.id, 1:2) submitJobs(reg = reg) expect_true(waitForJobs(reg = reg)) res = reduceBatchmarkResults(reg = reg) preds = getBMRPredictions(res, as.df = FALSE) expect_true(is.list(preds)) expect_true(setequal(names(preds), "binary")) preds1 = preds[[1L]] expect_true(is.list(preds1)) expect_true(setequal(names(preds1), "classif.lda")) preds11 = preds1[[1L]] expect_s3_class(preds11, "Prediction") preds = getBMRPredictions(res, as.df = TRUE) expect_s3_class(preds, "data.frame") expect_equal(nrow(preds), getTaskSize(binaryclass.task)) expect_equal(ncol(preds), 9) expect_equal(unique(preds$iter), 1:2) reg = makeExperimentRegistry(file.dir = NA, make.default = FALSE, seed = 1) res = batchmark(learners = learners, tasks = tasks, resamplings = rin, reg = reg) submitJobs(reg = reg) expect_true(waitForJobs(reg = reg)) res = reduceBatchmarkResults(reg = reg) expect_true(all(sapply(res$results$binary[[1]]$extract, function(x) is.null(x)))) expect_true("BenchmarkResult" %in% class(res)) df = as.data.frame(res) expect_true(is.data.frame(df)) expect_equal(dim(df), c(rin$iters * length(task.names) * length(learner.names), 4L)) expect_true(setequal(df$task.id, task.names)) expect_true(setequal(df$learner.id, learner.names)) expect_true(is.numeric(df$mmce)) expect_equal(getBMRTaskIds(res), task.names) expect_equal(getBMRLearnerIds(res), learner.names) expect_equal(getBMRMeasures(res), list(mmce)) expect_equal(getBMRMeasureIds(res), "mmce") preds = getBMRPredictions(res, as.df = FALSE) expect_true(is.list(preds)) expect_true(setequal(names(preds), task.names)) preds1 = preds[[1L]] expect_true(is.list(preds1)) expect_true(setequal(names(preds1), learner.names)) preds11 = preds1[[1L]] expect_s3_class(preds11, "Prediction") preds = getBMRPredictions(res, as.df = TRUE) expect_s3_class(preds, "data.frame") expect_equal(nrow(preds), 2 * (getTaskSize(multiclass.task) + getTaskSize(binaryclass.task))) p = getBMRPerformances(res, as.df = TRUE) expect_s3_class(p, "data.frame") expect_equal(nrow(p), length(task.names) * length(learner.names) * rin$iters) a = getBMRAggrPerformances(res, as.df = TRUE) expect_s3_class(a, "data.frame") expect_equal(nrow(a), length(task.names) * length(learner.names)) ps = makeParamSet(makeDiscreteLearnerParam("cp", values = c(0.01, 0.1))) learner.names = c("classif.lda", "classif.rpart", "classif.lda.featsel", "classif.rpart.tuned", "classif.lda.filtered") learners = list(makeLearner("classif.lda"), makeLearner("classif.rpart")) learners = c(learners, list( makeFeatSelWrapper(learners[[1L]], resampling = rin, control = makeFeatSelControlRandom(maxit = 3)), makeTuneWrapper(learners[[2L]], resampling = rin, par.set = ps, control = makeTuneControlGrid()), makeFilterWrapper(learners[[1L]], fw.perc = 0.5) )) resamplings = list(rin, makeResampleDesc("Bootstrap", iters = 2L)) measures = list(mmce, acc) reg = makeExperimentRegistry(file.dir = NA, make.default = FALSE, seed = 1) res = batchmark(learners = learners, tasks = tasks, resamplings = resamplings, measures = measures, reg = reg, keep.extract = TRUE) submitJobs(reg = reg) expect_true(waitForJobs(reg = reg)) expect_data_table(findErrors(reg = reg), nrow = 0L) res = reduceBatchmarkResults(reg = reg) expect_true("BenchmarkResult" %in% class(res)) df = as.data.frame(res) expect_true(is.data.frame(df)) expect_equal(dim(df), c(rin$iters * length(task.names) * length(learner.names), 5L)) expect_true(setequal(df$task.id, task.names)) expect_true(setequal(df$learner.id, learner.names)) expect_true(is.numeric(df$mmce)) expect_true(is.numeric(df$acc)) expect_equal(getBMRTaskIds(res), task.names) expect_equal(getBMRLearnerIds(res), learner.names) preds = getBMRPredictions(res, as.df = FALSE) expect_true(is.list(preds)) expect_true(setequal(names(preds), task.names)) preds1 = preds[[1L]] expect_true(is.list(preds1)) expect_true(setequal(names(preds1), learner.names)) preds11 = preds1[[1L]] expect_s3_class(preds11, "Prediction") preds = getBMRPredictions(res, as.df = TRUE) expect_s3_class(preds, "data.frame") p = getBMRPerformances(res, as.df = TRUE) expect_s3_class(p, "data.frame") expect_equal(nrow(p), length(task.names) * length(learner.names) * rin$iters) a = getBMRAggrPerformances(res, as.df = TRUE) expect_s3_class(a, "data.frame") expect_equal(nrow(a), length(task.names) * length(learner.names)) tr = getBMRTuneResults(res, as.df = FALSE) expect_list(tr) expect_equal(length(tr), 2) expect_true(setequal(names(tr), task.names)) tr1 = tr[[task.names[1L]]] expect_true(is.list(tr1)) expect_true(setequal(names(tr1), learner.names)) tr11 = tr1[[paste0(learner.names[2L], ".tuned")]] expect_equal(length(tr11), 2) tr111 = tr11[[1L]] expect_s3_class(tr111, "TuneResult") trd = getBMRTuneResults(res, as.df = TRUE) expect_s3_class(trd, "data.frame") expect_equal(ncol(trd), 5) expect_equal(nrow(trd), 4) expect_equal(levels(as.factor(trd$task.id)), task.names) expect_equal(levels(as.factor(trd$learner.id)), "classif.rpart.tuned") expect_equal(unique(trd$iter), 1:2) tf = getBMRFeatSelResults(res, as.df = FALSE) expect_list(tf) expect_equal(length(tf), 2) expect_true(setequal(names(tf), task.names)) tf1 = tf[[task.names[1L]]] expect_true(is.list(tf1)) expect_true(setequal(names(tf1), learner.names)) tf11 = tf1[[paste0(learner.names[1L], ".featsel")]] expect_equal(length(tf11), 2) tf111 = tf11[[1L]] expect_s3_class(tf111, "FeatSelResult") tfd = getBMRFeatSelResults(res, as.df = TRUE) expect_s3_class(tfd, "data.frame") expect_equal(ncol(tfd), 4) feats = c( lapply(tf$binary$classif.lda.featsel, function(x) x$x), lapply(tf$multiclass$classif.lda.featsel, function(x) x$x) ) expect_equal(nrow(tfd), sum(lengths(feats))) expect_equal(levels(as.factor(tfd$task.id)), task.names) expect_equal(levels(as.factor(tfd$learner.id)), "classif.lda.featsel") expect_equal(unique(tfd$iter), 1:2) tff = getBMRFilteredFeatures(res, as.df = FALSE) expect_list(tff) expect_equal(length(tff), 2) expect_true(setequal(names(tff), task.names)) tff1 = tff[[task.names[1L]]] expect_true(is.list(tff1)) expect_true(setequal(names(tff1), learner.names)) tff11 = tff1[[paste0(learner.names[1L], ".filtered")]] expect_equal(length(tff11), 2) tff111 = tff11[[1L]] expect_type(tff111, "character") tffd = getBMRFilteredFeatures(res, as.df = TRUE) expect_s3_class(tffd, "data.frame") expect_equal(ncol(tffd), 4) expect_equal(nrow(tffd), 64) expect_equal(levels(as.factor(tffd$task.id)), task.names) expect_equal(levels(as.factor(tffd$learner.id)), "classif.lda.filtered") expect_equal(unique(tffd$iter), 1:2) f = function(tmp, cl) { expect_true(is.list(tmp)) expect_true(setequal(names(tmp), task.names)) tmp = tmp[[1L]] expect_equal(length(tmp), length(learners)) tmp = Filter(Negate(is.null), tmp) expect_equal(length(tmp), 1L) tmp = tmp[[1L]] expect_true(inherits(tmp[[1L]], cl)) } f(getBMRFeatSelResults(res), "FeatSelResult") f(getBMRTuneResults(res), "TuneResult") f(getBMRFilteredFeatures(res), "character") }) test_that("keep.preds and models are passed down to resample()", { skip_if_not_installed("batchtools") requirePackagesOrSkip("batchtools") task.names = "binary" tasks = list(binaryclass.task) learner.names = "classif.lda" learners = lapply(learner.names, makeLearner) rin = makeResampleDesc("CV", iters = 2L) reg = makeExperimentRegistry(file.dir = NA, make.default = FALSE) res = batchmark(learners = makeLearner("classif.lda", predict.type = "prob"), task = binaryclass.task, resampling = rin, models = TRUE, reg = reg) submitJobs(reg = reg) expect_true(waitForJobs(reg = reg)) res = reduceBatchmarkResults(reg = reg, keep.pred = TRUE) x = res$results$binary$classif.lda expect_s3_class(x, "ResampleResult") expect_list(x$models, types = "WrappedModel") expect_s3_class(x$pred, "ResamplePrediction") models = getBMRModels(res) expect_true(is.list(models)) expect_true(setequal(names(models), "binary")) models1 = models[[1L]] expect_true(is.list(models1)) expect_true(setequal(names(models1), "classif.lda")) models11 = models1[[1L]] expect_true(is.list(models11)) expect_equal(length(models11), 2L) models111 = models11[[1L]] expect_s3_class(models111, "WrappedModel") reg = makeExperimentRegistry(file.dir = NA, make.default = FALSE) res = batchmark(learners = makeLearner("classif.lda", predict.type = "prob"), tasks = binaryclass.task, resamplings = rin, models = FALSE, reg = reg) submitJobs(reg = reg) expect_true(waitForJobs(reg = reg)) res = reduceBatchmarkResults(reg = reg, keep.pred = FALSE) x = res$results$binary$classif.lda models11 = getBMRModels(res)[[1L]][[1L]] expect_s3_class(x, "ResampleResult") expect_null(x$pred) expect_null(models11) }) test_that("batchmark works with resampling instances", { requirePackagesOrSkip("batchtools") reg = makeExperimentRegistry(file.dir = NA, make.default = FALSE, seed = 1) task = binaryclass.task learner.names = c("classif.lda", "classif.rpart") learners = lapply(learner.names, makeLearner) rdesc = makeResampleDesc("CV", iters = 2L) rin = makeResampleInstance(rdesc, task) ids = batchmark(learners = learners, tasks = task, resamplings = rin, reg = reg) expect_data_table(ids, nrow = 4) }) test_that("batchmark works with incomplete results", { requirePackagesOrSkip("batchtools") reg = makeExperimentRegistry(file.dir = NA, make.default = FALSE) task = binaryclass.task learner.names = c("classif.lda", "classif.rpart") learners = lapply(learner.names, makeLearner) rdesc = makeResampleDesc("CV", iters = 4L) rin = makeResampleInstance(rdesc, task) ids = batchmark(learners = learners, tasks = task, resamplings = rin, reg = reg) submitJobs(1:6, reg = reg) expect_true(waitForJobs(reg = reg)) expect_warning({ res = reduceBatchmarkResults(ids = 1:6, reg = reg, keep.pred = FALSE) }, "subset") expect_set_equal(getBMRLearnerIds(res), c("classif.lda", "classif.rpart")) expect_warning({ res = reduceBatchmarkResults(ids = 1:3, reg = reg, keep.pred = FALSE) }, "subset") expect_set_equal(getBMRLearnerIds(res), "classif.lda") expect_warning({ res = reduceBatchmarkResults(ids = data.table(job.id = 5), reg = reg, keep.pred = FALSE) }, "subset") expect_set_equal(getBMRLearnerIds(res), "classif.rpart") }) options(batchtools.verbose = prev)
expected <- eval(parse(text="structure(list(coefficients = structure(NA_real_, .Names = \"x\"), residuals = structure(c(-0.667819876370237, 0.170711734013213, 0.552921941721332, -0.253162069270378, -0.00786394222146348, 0.0246733498130512, 0.0730305465518564, -1.36919169254062, 0.0881443844426084, -0.0834190388782434), .Names = c(\"1\", \"2\", \"3\", \"4\", \"5\", \"6\", \"7\", \"8\", \"9\", \"10\")), effects = structure(c(-0.667819876370237, 0.170711734013213, 0.552921941721332, -0.253162069270378, -0.00786394222146348, 0.0246733498130512, 0.0730305465518564, -1.36919169254062, 0.0881443844426084, -0.0834190388782434), .Names = c(\"\", \"\", \"\", \"\", \"\", \"\", \"\", \"\", \"\", \"\")), rank = 0L, fitted.values = structure(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0), .Names = c(\"1\", \"2\", \"3\", \"4\", \"5\", \"6\", \"7\", \"8\", \"9\", \"10\")), assign = 1L, qr = structure(list(qr = structure(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0), .Dim = c(10L, 1L), .Dimnames = list(c(\"1\", \"2\", \"3\", \"4\", \"5\", \"6\", \"7\", \"8\", \"9\", \"10\"), \"x\"), assign = 1L), qraux = 0, pivot = 1L, tol = 1e-07, rank = 0L), .Names = c(\"qr\", \"qraux\", \"pivot\", \"tol\", \"rank\"), class = \"qr\"), df.residual = 10L, xlevels = structure(list(), .Names = character(0)), call = quote(lm(formula = y ~ x + 0)), terms = quote(y ~ x + 0), model = structure(list(y = c(-0.667819876370237, 0.170711734013213, 0.552921941721332, -0.253162069270378, -0.00786394222146348, 0.0246733498130512, 0.0730305465518564, -1.36919169254062, 0.0881443844426084, -0.0834190388782434), x = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)), .Names = c(\"y\", \"x\"), terms = quote(y ~ x + 0), row.names = c(NA, 10L), class = \"data.frame\")), .Names = c(\"coefficients\", \"residuals\", \"effects\", \"rank\", \"fitted.values\", \"assign\", \"qr\", \"df.residual\", \"xlevels\", \"call\", \"terms\", \"model\"), class = \"lm\")")); test(id=0, code={ argv <- eval(parse(text="list(structure(list(coefficients = structure(NA_real_, .Names = \"x\"), residuals = structure(c(-0.667819876370237, 0.170711734013213, 0.552921941721332, -0.253162069270378, -0.00786394222146348, 0.0246733498130512, 0.0730305465518564, -1.36919169254062, 0.0881443844426084, -0.0834190388782434), .Names = c(\"1\", \"2\", \"3\", \"4\", \"5\", \"6\", \"7\", \"8\", \"9\", \"10\")), effects = structure(c(-0.667819876370237, 0.170711734013213, 0.552921941721332, -0.253162069270378, -0.00786394222146348, 0.0246733498130512, 0.0730305465518564, -1.36919169254062, 0.0881443844426084, -0.0834190388782434), .Names = c(\"\", \"\", \"\", \"\", \"\", \"\", \"\", \"\", \"\", \"\")), rank = 0L, fitted.values = structure(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0), .Names = c(\"1\", \"2\", \"3\", \"4\", \"5\", \"6\", \"7\", \"8\", \"9\", \"10\")), assign = 1L, qr = structure(list(qr = structure(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0), .Dim = c(10L, 1L), .Dimnames = list(c(\"1\", \"2\", \"3\", \"4\", \"5\", \"6\", \"7\", \"8\", \"9\", \"10\"), \"x\"), assign = 1L), qraux = 0, pivot = 1L, tol = 1e-07, rank = 0L), .Names = c(\"qr\", \"qraux\", \"pivot\", \"tol\", \"rank\"), class = \"qr\"), df.residual = 10L, xlevels = structure(list(), .Names = character(0)), call = quote(lm(formula = y ~ x + 0)), terms = quote(y ~ x + 0), model = structure(list(y = c(-0.667819876370237, 0.170711734013213, 0.552921941721332, -0.253162069270378, -0.00786394222146348, 0.0246733498130512, 0.0730305465518564, -1.36919169254062, 0.0881443844426084, -0.0834190388782434), x = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)), .Names = c(\"y\", \"x\"), terms = quote(y ~ x + 0), row.names = c(NA, 10L), class = \"data.frame\")), .Names = c(\"coefficients\", \"residuals\", \"effects\", \"rank\", \"fitted.values\", \"assign\", \"qr\", \"df.residual\", \"xlevels\", \"call\", \"terms\", \"model\"), class = \"lm\"))")); do.call(`(`, argv); }, o=expected);
"peccary"
expected <- eval(parse(text="c(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49)")); test(id=0, code={ argv <- eval(parse(text="list(0L, 49, 1)")); do.call(`seq.int`, argv); }, o=expected);
setMethodS3("equals", "default", function(object, other, ...) { (is.null(object) && is.null(other)) || identical(object, other) })
ctmaCombPRaw <- function(listOfStudyFits=NULL, moderatorValues=NULL) { allSampleSizes <- maxLatents <- allTpoints <- c() n.latent <- listOfStudyFits$n.latent; n.latent n.manifest <- listOfStudyFits$n.manifest; n.manifest if (is.null(n.manifest)) n.manifest <- 0 allSampleSizes <- listOfStudyFits$statisticsList$allSampleSizes; allSampleSizes allTpoints <- listOfStudyFits$statisticsList$allTpoints; allTpoints; length(allTpoints) currentVarnames <- c() for (j in 1:(max(allTpoints))) { if (n.manifest == 0) { for (h in 1:n.latent) { currentVarnames <- c(currentVarnames, paste0("V",h,"_T", (j-1))) } } else { for (h in 1:n.manifest) { currentVarnames <- c(currentVarnames, paste0("y",h,"_T", (j-1))) } } } targetColNames <- c(c(currentVarnames, paste0("dT", seq(1:(max(allTpoints)-1))))); targetColNames n.var <- max(n.latent, n.manifest); n.var alldata <- matrix(NA, 0, (n.var*max(allTpoints)+max(allTpoints)-1)); dim(alldata) colnames(alldata) <- targetColNames; alldata groups <- c() if (!(is.null(moderatorValues))) { moderatorGroups <- matrix(NA, nrow=0, ncol=dim(moderatorValues)[[2]]) } for (i in 1:length(listOfStudyFits$studyFitList)) { tmp <- listOfStudyFits$emprawList[[i]] tmp2 <- colnames(tmp); tmp2 if (n.manifest > 0) colnames(tmp) <- gsub("V", "y", tmp2) tmp <- tmp[, colnames(tmp) %in% targetColNames] missingColNames <- colnames(alldata)[!(colnames(alldata) %in% colnames(tmp))]; missingColNames tmp2 <- matrix(NA, dim(tmp)[1], length(missingColNames)); colnames(tmp2) <- missingColNames tmp2 <- cbind(tmp, tmp2) tmp2 <- as.data.frame(tmp2) tmp3 <- grep("dT", colnames(tmp2)); tmp3 tmp2[tmp3][is.na(tmp2[tmp3])] <- .00001 alldata <- rbind(alldata, tmp2[, targetColNames]) groups <- c(groups, rep(i, dim(tmp)[1])) if (!(is.null(moderatorValues))) { if (!(is.na(moderatorValues[i]))) { moderatorGroups <- rbind(moderatorGroups, (matrix(rep(unlist(moderatorValues[i, ]), dim(tmp2)[1]), nrow=dim(tmp2)[1], byrow=T))) } else { moderatorGroups <- rbind(moderatorGroups, (matrix(rep(NA, dim(tmp2)[1]), nrow=dim(tmp2)[1], byrow=T))) } } } casesToDelete <- c() if(exists("moderatorGroups")) { if (any(is.na(moderatorGroups))) { casesToDelete <- which(is.na(moderatorGroups)); casesToDelete alldata <- alldata[-casesToDelete] moderatorGroups <- moderatorGroups[-casesToDelete] } } if (!(is.null(moderatorValues))) { toReturn <- list(alldata=alldata, groups=groups, moderatorGroups=moderatorGroups, casesToDelete=casesToDelete) } else { toReturn <- list(alldata=alldata, groups=groups) } return(toReturn) }
glm_v <- function(...) { fit <- glm(...) print(tabglm(fit)) return(NULL) }
pltltn<- function(object){ if (!inherits(object, "Bvs")) stop("calling summary.Bvs(<fake-Bvs-x>) ...") if (object$method != "gibbs") stop("This corrected estimates are for Gibbs sampling objects.") if (object$priorprobs!="ScottBerger"){ stop("This function was conceived to be used in combination with Scott-Berger prior\n") } cat("Info: Use this function only for problems with p>>n (not just p>n)\n") kgamma<- rowSums(object$modelslogBF[,1:object$p]) isMr<- kgamma < object$n-length(object$lmnull$coefficients) inclprobMr<- colMeans(object$modelslogBF[isMr,1:object$p]) postprobdimMr<- table(kgamma[isMr])/sum(isMr) names(postprobdimMr)<- as.numeric(names(postprobdimMr))+length(object$lmnull$coefficients) qSR<- (object$p-object$n)/(object$n+1) pS<- qSR/(qSR+object$C) cat(paste("Estimate of the posterior probability of the\n model space with singular models is:", round(pS,3),"\n")) postprobdim<- postprobdimMr*(1-pS) inclprob<- inclprobMr*(1-pS) + 0.5*pS result<- list() result$pS<- pS result$postprobdim<- postprobdim result$inclprob<- inclprob return(result) }
lcarsBox <- function(..., title = NULL, subtitle = NULL, corners = c(1, 4), sides = c(1, 3, 4), left_inputs = NULL, right_inputs = NULL, color = "atomic-tangerine", side_color = color, title_color = color, subtitle_color = color, title_right = TRUE, subtitle_right = TRUE, clip = TRUE, width_left = 150, width_right = 150, width = "100%"){ width <- shiny::validateCssUnit(width) width_left <- as.numeric(width_left) width_right <- as.numeric(width_right) wrn <- "Side panel widths must each be <= 150 pixels to ensure proper corner scaling." if(width_left > 150){ warning(wrn) width_left <- 150 } if(width_right > 150){ warning(wrn) width_right <- 150 } if(is.null(width)) width <- "100%" if(is.null(corners)){ corners <- 0 } else { if(any(!corners %in% 1:4)) stop("`corners` must be values in 1:4 or NULL.") } if(is.null(sides)){ sides <- 0 } else { if(any(!sides %in% 1:4)) stop("`sides` must be values in 1:4 or NULL.") } color <- c(rep(color, length = 4), rep(side_color, length = 4)) x <- .lcars_color_check(c(color, title_color[1], subtitle_color[1])) topclass <- .box_top_class(corners, title, title_right) botclass <- .box_bot_class(corners, subtitle, subtitle_right) left_input <- !is.null(left_inputs) right_input <- !is.null(right_inputs) centerclass <- .box_center_class(sides, left_input, right_input) centerstyle <- .box_center_style(centerclass, width_left, width_right) left_bar <- !is.null(sides) && 4 %in% sides right_bar <- !is.null(sides) && 2 %in% sides title_div <- div(class = "lcars-box-title", title, style = paste0("color:", x[9], ";")) subtitle_div <- div(class = "lcars-box-subtitle", subtitle, style = paste0("color:", x[10], ";")) div(class = "lcars-box", style = paste0("grid-template-areas: ", topclass, " ", centerclass, " ", botclass, ";", "width:", width, ";"), if(grepl("none", topclass)){ if(is.null(title)){ if(1 %in% sides) lcarsHeader(NULL, x[5], x[9]) } else { lcarsHeader(title, if(1 %in% sides) x[5] else " title_right = title_right) } } else { div(class = topclass, style = paste0("--corner-width-left: ", 2 * width_left, "px; --corner-width-right: ", 2* width_right, "px;"), .box_tl_div(corners, x[1], width_left), if(!is.null(title) & !title_right) title_div, div(class = "lcars-rect-top", style = paste0("background-color:", if(1 %in% sides) x[5] else " if(!is.null(title) & title_right) title_div, .box_tr_div(corners, x[2], width_right) ) }, div(class = centerclass, style = centerstyle, if(left_bar | left_input){ div(class = "lcars-box-buttons-left", style = if(left_bar){ "grid-template-rows: auto minmax(60px, 1fr); grid-template-areas: 'lcars-button-col' 'lcars-rect-side';" } else { "grid-template-rows: auto; grid-template-areas: 'lcars-button-col';" }, if(left_input) left_inputs, if(left_bar) div(class = "lcars-rect-side", style = paste0("background-color:", x[8], ";")) ) }, div(class = "lcars-box-main text", style = if(!clip) "margin: -45px 0 -45px 0;", ...), if(right_bar | right_input){ div(class = "lcars-box-buttons-right", style = if(right_bar){ "grid-template-rows: auto minmax(60px, 1fr); grid-template-areas: 'lcars-button-col' 'lcars-rect-side';" } else { "grid-template-rows: auto; grid-template-areas: 'lcars-button-col';" }, if(right_input) right_inputs, if(right_bar) div(class = "lcars-rect-side", style = paste0("background-color:", x[6], ";")) ) } ), if(grepl("none", botclass)){ if(is.null(subtitle)){ if(3 %in% sides) lcarsHeader(NULL, x[7], x[10]) } else { lcarsHeader(subtitle, if(3 %in% sides) x[7] else " title_right = subtitle_right) } } else { div(class = botclass, style = paste0("--corner-width-left: ", 2 * width_left, "px; --corner-width-right: ", 2* width_right, "px;"), .box_bl_div(corners, x[4], width_left), if(!is.null(subtitle) & !subtitle_right) subtitle_div, div(class = "lcars-rect-bot", style = paste0("background-color:", if(3 %in% sides) x[7] else " if(!is.null(subtitle) & subtitle_right) subtitle_div, .box_br_div(corners, x[3], width_right) ) } ) } .box_center_class <- function(sides, left, right){ if((all(c(2, 4) %in% sides)) | (left & right) | (2 %in% sides & left) | (4 %in% sides & right)){ x <- "lcars-box-center" } else if(4 %in% sides | left){ x <- "lcars-box-centerleft" } else if(2 %in% sides | right){ x <- "lcars-box-centerright" } else { x <- "lcars-box-centernone" } x } .box_center_style <- function(x, wl, wr){ if(x == "lcars-box-centernone") return("") switch(x, "lcars-box-center" = paste0("grid-template-columns: ", wl, "px auto ", wr, "px;"), "lcars-box-centerleft" = paste0("grid-template-columns: ", wl, "px auto;"), "lcars-box-centerright" = paste0("grid-template-columns: auto ", wr, "px;")) } .box_top_class <- function(corners, title, right){ if(all(1:2 %in% corners)){ x <- "lcars-box-top" } else if(1 %in% corners){ x <- "lcars-box-topleft" } else if(2 %in% corners){ x <- "lcars-box-topright" } else { x <- "lcars-box-topnone" } if(is.null(title)){ x <- paste0(x, 2) } else if(!right){ x <- paste0(x, "-ljust") } x } .box_tl_div <- function(corners, color, w){ w <- 2 * w r <- 300 / w if(1 %in% corners){ div(class = "lcars-box-top-elbow-left", shiny::HTML(paste0('<svg style = "fill:', color, ';height:90px;width:', w, 'px;"> <use xlink:href="svg/sprites.svg </svg>')) ) } else { div(class = "lcars-box-top-pill-left", shiny::HTML('<svg style = "fill:', color, ';height:30px;width:45px;"> <use xlink:href="svg/sprites.svg </svg>') ) } } .box_tr_div <- function(corners, color, w){ w <- 2 * w r <- 300 / w if(2 %in% corners){ div(class = "lcars-box-top-elbow-right", shiny::HTML(paste0('<svg style = "fill:', color, ';height:90px;width:', w, 'px;"> <use xlink:href="svg/sprites.svg </svg>')) ) } else { div(class = "lcars-box-top-pill-right", shiny::HTML('<svg style = "fill:', color, ';height:30px;width:45px;"> <use xlink:href="svg/sprites.svg </svg>') ) } } .box_bot_class <- function(corners, title, right){ if(all(3:4 %in% corners)){ x <- "lcars-box-bot" } else if(4 %in% corners){ x <- "lcars-box-botleft" } else if(3 %in% corners){ x <- "lcars-box-botright" } else { x <- "lcars-box-botnone" } if(!is.null(title)){ x <- paste0(x, 2) if(!right) x <- paste0(x, "-ljust") } x } .box_bl_div <- function(corners, color, w){ w <- 2 * w r <- 300 / w if(4 %in% corners){ div(class = "lcars-box-bot-elbow-left", shiny::HTML(paste0('<svg style = "fill:', color, ';height:90px;width:', w, 'px;"> <use xlink:href="svg/sprites.svg '" transform="translate(0 ', -(r - 1) * 45, ') scale(1, ', r, ')"></use> </svg>')) ) } else { div(class = "lcars-box-bot-pill-left", shiny::HTML('<svg style = "fill:', color, ';height:30px;width:45px;"> <use xlink:href="svg/sprites.svg </svg>') ) } } .box_br_div <- function(corners, color, w){ w <- 2 * w r <- 300 / w if(3 %in% corners){ div(class = "lcars-box-bot-elbow-right", shiny::HTML(paste0('<svg style = "fill:', color, ';height:90px;width:', w, 'px;"> <use xlink:href="svg/sprites.svg '" transform="rotate(180, 150, 45) translate(', 300 - w, ' ', -(r - 1) * 45, ') scale(1, ', r, ')"></use> </svg>')) ) } else { div(class = "lcars-box-bot-pill-right", shiny::HTML('<svg style = "fill:', color, ';height:30px;width:45px;"> <use xlink:href="svg/sprites.svg </svg>') ) } }
SL.loess <- function(Y, X, newX, family, obsWeights, span = 0.75, l.family = "gaussian", ...) { if(family$family == "gaussian") { fit.loess <- loess(as.formula(paste("Y~", names(X))), data = X, family = l.family, span = span, control = loess.control(surface = "direct"), weights = obsWeights) } if(family$family == "binomial") { stop('family = binomial() not currently implemented for SL.loess') } pred <- predict(fit.loess, newdata = newX) fit <- list(object = fit.loess) out <- list(pred = pred,fit = fit) class(out$fit) <- c("SL.loess") return(out) } predict.SL.loess <- function(object, newdata, ...) { pred <- predict(object = object$object, newdata = newdata) return(pred) }
context("explore") set.seed(400) m <- machine_learn(pima_diabetes[1:200, ], patient_id, outcome = diabetes, tune = FALSE, n_folds = 2) multi <- machine_learn(na.omit(pima_diabetes[1:200, ]), patient_id, outcome = weight_class, tune = FALSE, models = "glm") variabs <- attr(m, "recipe")$var_info %>% dplyr::filter(role == "predictor") %>% split(., .$type) %>% purrr::map(dplyr::pull, variable) sm <- explore(m) plot_sm <- plot(sm, print = FALSE) test_that("test_presence", { expect_error(test_presence(c("weight_class", "insulin", "age"), variabs), NA) against <- list(a = c("one", "thing", "or"), b = "another") expect_error(test_presence(c("one", "another"), against), NA) expect_error(test_presence("one", against), NA) expect_error(test_presence("another", against), NA) expect_error(test_presence(c("one", "thing"), against), NA) expect_error(test_presence("a", against), "aren't predictors") }) test_that("choose_variables default", { cv <- list( c1 = choose_variables(m, vary = 1, variables = variabs), c5 = choose_variables(m, vary = 5, variables = variabs), c99 = choose_variables(m, vary = 99, variables = variabs) ) purrr::map_lgl(cv, ~ all(.x %in% names(pima_diabetes))) %>% all() %>% expect_true() expect_length(cv$c1, 1) expect_length(cv$c5, 5) expect_length(cv$c99, length(unlist(variabs))) }) test_that("choose_variables glm", { expect_warning(g3 <- choose_variables(m["glmnet"], 3, variabs), "glm") expect_length(g3, 3) expect_true(all(g3 %in% names(pima_diabetes))) expect_warning({ pima_diabetes[1:200, ] %>% prep_data(patient_id, outcome = diabetes, scale = TRUE) %>% flash_models(diabetes, models = "glm", n_folds = 2) %>% explore() }, NA) }) test_that("choose_values nums only", { cv <- choose_values(m, vary = c("skinfold", "age"), variables = variabs, numerics = 5, characters = Inf, training_data = pima_diabetes[1:50, ]) expect_setequal(names(cv), c("skinfold", "age")) expect_equal(names(cv[[1]]), names(cv[[2]])) expect_true(all(stringr::str_sub(names(cv[[1]]), -1, -1) == "%")) }) test_that("choose_values noms only", { cv <- choose_values(m, vary = "weight_class", variables = variabs, numerics = 5, characters = Inf, training_data = pima_diabetes[1:50, ]) expect_equal(names(cv), "weight_class") expect_setequal(cv$weight_class, unique(pima_diabetes$weight_class[1:50])) }) test_that("choose_values both", { cv <- choose_values(m, vary = c("weight_class", "age"), variables = variabs, numerics = 5, characters = Inf, training_data = pima_diabetes[1:50, ]) expect_setequal(names(cv), c("weight_class", "age")) expect_true(is.numeric(cv$age)) expect_true(is.character(cv$weight_class)) }) test_that("choose_values limit characters", { cv <- choose_values(m, vary = c("weight_class", "age"), variables = variabs, numerics = 5, characters = 3, training_data = pima_diabetes[1:50, ]) pima_diabetes %>% dplyr::count(weight_class) %>% dplyr::top_n(3, n) %>% pull(weight_class) %>% expect_setequal(cv$weight_class, .) }) test_that("choose_values numerics is integer", { cv <- choose_values(m, vary = c("weight_class", "age"), variables = variabs, numerics = 3, characters = Inf, training_data = pima_diabetes[1:50, ]) expect_setequal(names(cv), c("weight_class", "age")) expect_length(cv$age, 3) expect_setequal(names(cv$age), c("5%", "50%", "95%")) }) test_that("choose_values numerics is quantiles", { cv <- choose_values(m, vary = "plasma_glucose", variables = variabs, numerics = c(.33, .67), characters = Inf, training_data = pima_diabetes[1:50, ]) expect_equal(names(cv), "plasma_glucose") expect_length(cv$plasma_glucose, 2) expect_setequal(names(cv$plasma_glucose), c("33%", "67%")) }) test_that("choose_static_values nums only", { sv <- choose_static_values(m, static_variables = list(nominal = character(), numeric = c("insulin", "age")), hold = list(numerics = median, characters = Mode), training_data = pima_diabetes[1:50, ]) expect_true(is.list(sv)) expect_setequal(names(sv), c("insulin", "age")) purrr::walk(sv, expect_length, 1) }) test_that("choose_static_values noms only", { sv <- choose_static_values(m, static_variables = list(nominal = "weight_class", numeric = character()), hold = list(numerics = median, characters = Mode), training_data = pima_diabetes[1:50, ]) expect_true(is.list(sv)) expect_setequal(names(sv), "weight_class") purrr::walk(sv, expect_length, 1) }) test_that("choose_static_values both", { sv <- choose_static_values(m, static_variables = list(nominal = "weight_class", numeric = c("insulin", "age")), hold = list(numerics = median, characters = Mode), training_data = pima_diabetes[1:50, ]) expect_true(is.list(sv)) expect_setequal(names(sv), c("insulin", "age", "weight_class")) purrr::walk(sv, expect_length, 1) }) test_that("choose_static_values hold from training data", { sv <- choose_static_values(m, static_variables = list(nominal = "weight_class", numeric = c("insulin", "age")), hold = pima_diabetes[3, ], training_data = pima_diabetes[1:50, ]) expect_true(is.list(sv)) expect_setequal(names(sv), c("insulin", "age", "weight_class")) purrr::walk(sv, expect_length, 1) }) test_that("choose_static_values hold is custom values", { sv <- choose_static_values(m, static_variables = list(nominal = "weight_class", numeric = c("insulin", "age")), hold = list(pregnancies = 0, plasma_glucose = 99, weight_class = "obese", insulin = 3, age = 32), training_data = pima_diabetes[1:50, ]) expect_true(is.list(sv)) expect_setequal(names(sv), c("insulin", "age", "weight_class")) purrr::walk(sv, expect_length, 1) }) test_that("explore returns a tibble with custom class", { expect_s3_class(sm, "tbl_df") expect_s3_class(sm, "explore_df") }) test_that("explore can use any algorithm", { suppressWarnings({ purrr::map_lgl(seq_along(m), ~ is.tbl(explore(m[.x]))) %>% all() %>% expect_true() }) }) test_that("vary varies the correct number of variables", { explore(m, vary = 1) %>% dplyr::select(-predicted_diabetes) %>% purrr::map_lgl(~ dplyr::n_distinct(.x) > 1) %>% sum() %>% expect_equal(1) explore(m, vary = 5) %>% dplyr::select(-predicted_diabetes) %>% purrr::map_lgl(~ dplyr::n_distinct(.x) > 1) %>% sum() %>% expect_equal(5) }) test_that("list of values to vary works right", { values_to_use <- list( plasma_glucose = c(50, 100, 150), weight_class = c("underweight", "normal", NA) ) preds <- explore(m, vary = values_to_use) expect_s3_class(preds, "explore_df") expect_setequal(preds$plasma_glucose, values_to_use$plasma_glucose) expect_setequal(preds$weight_class, values_to_use$weight_class) }) test_that("explore hold custom functions (mean instead of median for numerics)", { sm_def <- explore(m, vary = c("weight_class", "skinfold")) sm2 <- explore(m, vary = c("weight_class", "skinfold"), hold = list(numerics = mean, characters = Mode)) same <- purrr::map2(sm_def, sm2, ~ isTRUE(all.equal(.x, .y))) expect_true(same$weight_class) expect_false(same$plasma_glucose) expect_false(same$predicted_diabetes) }) test_that("explore hold row from test data", { p51 <- explore(m, hold = pima_diabetes[51, ], vary = c("weight_class")) varying <- purrr::map_lgl(p51, ~ dplyr::n_distinct(.x) > 1) expect_setequal(names(varying)[varying], c("predicted_diabetes", "weight_class")) actual <- p51[, !varying] %>% dplyr::distinct() %>% as.numeric() expected <- as.numeric(pima_diabetes[51, which(names(pima_diabetes) %in% names(varying)[!varying])]) expect_equal(actual, expected) }) test_that("explore hold custom list", { ch <- explore(m, vary = dplyr::setdiff(names(pima_diabetes), c("patient_id", "diabetes", "age", "skinfold")), hold = list(age = 21, skinfold = 18)) varying <- purrr::map_lgl(ch, ~ dplyr::n_distinct(.x) > 1) expect_setequal(names(varying)[!varying], c("age", "skinfold")) expect_equal(unique(ch$age), 21) expect_equal(unique(ch$skinfold), 18) }) test_that("explore returns right number of character values", { expect_equal(dplyr::n_distinct(explore(m, vary = "weight_class", characters = 2)$weight_class), 2) expect_equal(dplyr::n_distinct(explore(m, characters = 4)$weight_class), 4) expect_equal(dplyr::n_distinct(sm$weight_class), dplyr::n_distinct(pima_diabetes$weight_class[1:50])) }) test_that("explore returns the right number of numeric values", { expect_equal(dplyr::n_distinct(explore(m, vary = "plasma_glucose", numerics = 2)$plasma_glucose), 2) expect_equal(dplyr::n_distinct(explore(m, numerics = 9)$plasma_glucose), 9) expect_equal(dplyr::n_distinct(explore(m, numerics = c(.1, .3, .8))$plasma_glucose), 3) }) test_that("explore errors as expected", { expect_error(explore(pima_diabetes), "model_list") expect_error(explore(structure(m, recipe = NULL)), "prep_data") expect_error(explore(m, vary = c("age", "not_a_var")), "not_a_var") expect_error(explore(m, hold = list(numerics = mean)), "hold") expect_error(explore(m, hold = list(characters = Mode)), "hold") expect_error(explore(m, hold = list(characters = letters)), "hold") expect_error(explore(m, hold = list(numerics = mean, characters = Mode)), NA) expect_error(explore(m, hold = list(median, Mode)), "named") expect_error(explore(m, hold = list(age = 50)), "hold") }) test_that("printing a explored df doesn't print training performance info", { sim_print <- capture_output(sim_mess <- capture_messages(print(sm))) sim_output <- paste(sim_print, sim_mess) expect_false(stringr::str_detect(sim_print, "Performance")) }) test_that("plot.explore_df is registered", { stringr::str_detect(methods("plot"), "explore_df") %>% any() %>% expect_true() }) test_that("plot.explore_df returns a ggplot", { expect_s3_class(plot_sm, "gg") }) test_that("plot.cf args work", { default_plot <- plot(sm, print = FALSE, jitter_y = FALSE) suppressWarnings({ expect_false(isTRUE(all.equal( plot(sm, print = FALSE, jitter_y = FALSE, n_use = 2), plot(sm, print = FALSE, jitter_y = FALSE, n_use = 2, aggregate_fun = mean)))) }) expect_message(plot(sm, print = FALSE, n_use = 2), "aggregate") altered_plots <- list( plot(sm, print = FALSE, jitter_y = FALSE, reorder_categories = FALSE), plot(sm, print = FALSE, jitter_y = TRUE), plot(sm, print = FALSE, jitter_y = FALSE, x_var = weight_class), plot(sm, print = FALSE, jitter_y = FALSE, color_var = weight_class), plot(sm, print = FALSE, jitter_y = FALSE, font_size = 8), plot(sm, print = FALSE, jitter_y = FALSE, strip_font_size = .5), plot(sm, print = FALSE, jitter_y = FALSE, line_width = 1), plot(sm, print = FALSE, jitter_y = FALSE, line_alpha = .5), plot(sm, print = FALSE, jitter_y = FALSE, rotate_x = TRUE) ) purrr::map_lgl(altered_plots, ~ isTRUE(all.equal(.x, default_plot))) %>% any() %>% expect_false() use2 <- plot(sm, print = FALSE, jitter_y = FALSE, n_use = 2) expect_equal(nrow(ggplot2::ggplot_build(use2)$layout$layout), 1) use1 <- plot(sm, print = FALSE, jitter_y = FALSE, n_use = 1) expect_false(isTRUE(all.equal(use1, use2))) use3 <- plot(sm, print = FALSE, jitter_y = FALSE, n_use = 3) expect_false(isTRUE(all.equal(use3, use2))) }) vars <- tibble::tibble(variable = letters[1:4], numeric = c(FALSE, TRUE, TRUE, FALSE), nlev = 5) test_that("map_variables without mappings specified", { map_variables(vars, x_var = rlang::quo(), color_var = rlang::quo()) %>% dplyr::pull(map_to) %>% expect_equal(c("color", "x", "facet", "facet")) vars[c(2, 1, 3, 4), ] %>% map_variables(x_var = rlang::quo(), color_var = rlang::quo()) %>% dplyr::pull(map_to) %>% expect_equal(c("x", "color", "facet", "facet")) map_variables(vars[1, ], x_var = rlang::quo(), color_var = rlang::quo()) %>% dplyr::pull(map_to) %>% expect_equal("x") map_variables(vars[2, ], x_var = rlang::quo(), color_var = rlang::quo()) %>% dplyr::pull(map_to) %>% expect_equal("x") vars %>% dplyr::filter(numeric) %>% map_variables(x_var = rlang::quo(), color_var = rlang::quo()) %>% dplyr::pull(map_to) %>% expect_equal(c("x", "color")) vars %>% dplyr::filter(!numeric) %>% map_variables(x_var = rlang::quo(), color_var = rlang::quo()) %>% dplyr::pull(map_to) %>% expect_equal(c("x", "color")) }) test_that("map_variables with mappings specified", { vars %>% map_variables(x_var = rlang::quo(a), color_var = rlang::quo()) %>% dplyr::pull(map_to) %>% expect_equal(c("x", "color", "facet", "facet")) vars %>% map_variables(x_var = rlang::quo(d), color_var = rlang::quo()) %>% dplyr::pull(map_to) %>% expect_equal(c("color", "facet", "facet", "x")) vars %>% map_variables(x_var = rlang::quo(), color_var = rlang::quo(b)) %>% dplyr::pull(map_to) %>% expect_equal(c("facet", "color", "x", "facet")) vars %>% map_variables(x_var = rlang::quo(d), color_var = rlang::quo(b)) %>% dplyr::pull(map_to) %>% expect_equal(c("facet", "color", "facet", "x")) vars %>% dplyr::filter(!numeric) %>% map_variables(x_var = rlang::quo(), color_var = rlang::quo(a)) %>% dplyr::pull(map_to) %>% expect_equal(c("color", "x")) expect_error(map_variables(vars[1, ], color_var = rlang::quo(a)), "color") }) test_that("map_variables errors informatively", { expect_error(map_variables(vars, rlang::quo("something else"), rlang::quo()), "x_var") expect_error(map_variables(vars, rlang::quo(), rlang::quo("something else")), "color_var") }) test_that("n_use > 4 errors informatively", { expect_error(plot(sm, print = FALSE, n_use = 5), "n_use") }) test_that("explore can handle once-logical features", { n <- 20 d <- tibble::tibble(x = sample(c(FALSE, TRUE), n, TRUE), other = rnorm(n), another = sample(c("dog", "cat"), n, TRUE), y = sample(c("Y", "N"), n, TRUE)) m <- machine_learn(d, outcome = y, tune = FALSE, models = "xgb", n_folds = 2) expect_error(expl <- explore(m), NA) expect_s3_class(expl, "explore_df") }) test_that("explore uses scaled features appropriately", { n <- 100 d <- data.frame(x1 = sort(rnorm(n, 10, 100)), x2 = sort(rpois(n, 5)), x3 = runif(n, -10, 10), x4 = sample(letters, n, TRUE), y = sort(rnorm(n))) pd <- prep_data(d, outcome = y, center = TRUE, scale = TRUE) m <- flash_models(pd, outcome = y, models = "xgb", n_folds = 3) var1 <- explore(m) %>% dplyr::pull(predicted_y) %>% stats::var() pd2 <- prep_data(d, outcome = y) m2 <- flash_models(pd2, outcome = y, models = "xgb", n_folds = 3) var2 <- explore(m2) %>% dplyr::pull(predicted_y) %>% stats::var() expect_equal(var1, var2, tolerance = min(var1, var2)) }) test_that("multiclass errors", { expect_error(explore(multi), "multiclass") }) test_that("test removed data throws error", { save_models(m) reloaded_m <- load_models("models.RDS") expect_error(explore(reloaded_m), "Explore requires that data is ") file.remove("models.RDS") })
knitr::opts_chunk$set( collapse = TRUE, comment = " ) library(MixMatrix) library(MixMatrix) set.seed(20180221) A <- rmatrixt(30,mean=matrix(0,nrow=3,ncol=4), df = 10) B <- rmatrixt(30,mean=matrix(1,nrow=3,ncol=4), df = 10) C <- array(c(A,B), dim=c(3,4,60)) prior <- c(.5,.5) init = list(centers = array(c(rep(0,12),rep(1,12)), dim = c(3,4,2)), U = array(c(diag(3), diag(3)), dim = c(3,3,2)), V = array(c(diag(4), diag(4)), dim = c(4,4,2)) ) res<-matrixmixture(C, init = init, prior = prior, nu = 10, model = "t", tolerance = 1e-2) print(res$centers) print(res$pi) logLik(res) AIC(logLik(res)) plot(res) init_matrixmixture(C, prior = c(.5,.5), centermethod = 'kmeans') init_matrixmixture(C, K = 2, centermethod = 'random') sessionInfo() labs = knitr::all_labels() labs = labs[!labs %in% c("setup", "toc", "getlabels", "allcode")]
AdaBoost_I <- function(train, test, pruned=TRUE, confidence=0.25, instancesPerLeaf=2, numClassifiers=10, algorithm="ADABOOST.NC", trainMethod="NORESAMPLING", seed=-1){ alg <- RKEEL::R6_AdaBoost_I$new() alg$setParameters(train, test, pruned, confidence, instancesPerLeaf, numClassifiers, algorithm, trainMethod, seed) return (alg) } R6_AdaBoost_I <- R6::R6Class("R6_AdaBoost_I", inherit = ClassificationAlgorithm, public = list( pruned = TRUE, confidence = 0.25, instancesPerLeaf = 2, numClassifiers = 10, algorithm = "ADABOOST.NC", trainMethod = "NORESAMPLING", seed = -1, setParameters = function(train, test, pruned=TRUE, confidence=0.25, instancesPerLeaf=2, numClassifiers=10, algorithm="ADABOOST", trainMethod="NORESAMPLING", seed=-1){ super$setParameters(train, test) self$pruned <- pruned self$confidence <- confidence self$instancesPerLeaf <- 2 self$numClassifiers <- numClassifiers if((tolower(algorithm) == "adaboost")){ self$algorithm <- algorithm } else{ self$algorithm <- "ADABOOST" } if((tolower(trainMethod) == "noresampling") || (tolower(trainMethod) == "resampling")){ self$trainMethod <- toupper(trainMethod) } else{ self$trainMethod <- "NORESAMPLING" } if(seed == -1) { self$seed <- sample(1:1000000, 1) } else { self$seed <- seed } } ), private = list( jarName = "Ensembles-I.jar", algorithmName = "AdaBoost-I", algorithmString = "AdaBoost algorithm", getParametersText = function(){ text <- "" text <- paste0(text, "seed = ", self$seed, "\n") text <- paste0(text, "pruned = ", self$pruned, "\n") text <- paste0(text, "confidence = ", self$confidence, "\n") text <- paste0(text, "isntancesPerLeaf = ", self$instancesPerLeaf, "\n") text <- paste0(text, "Number of Classifiers = ", self$numClassifiers, "\n") text <- paste0(text, "Algorithm = ", self$algorithm, "\n") text <- paste0(text, "Train Method = ", self$trainMethod, "\n") return(text) } ) )
context("cleanup testthat reporter") test_that("unit: test, mode: cleanup-fail", { out <- list() on.exit(if (!is.null(out$p)) out$p$kill(), add = TRUE) expect_failure( with_reporter( CleanupReporter(testthat::SilentReporter)$new(proc_unit = "test"), { test_that("foobar", { out$p <<- processx::process$new(px(), c("sleep", "5")) out$running <<- out$p$is_alive() }) } ), "did not clean up processes" ) expect_true(out$running) deadline <- Sys.time() + 2 while (out$p$is_alive() && Sys.time() < deadline) Sys.sleep(0.05) expect_true(Sys.time() < deadline) expect_false(out$p$is_alive()) }) test_that("unit: test, multiple processes", { out <- list() on.exit(if (!is.null(out$p1)) out$p1$kill(), add = TRUE) on.exit(if (!is.null(out$p2)) out$p2$kill(), add = TRUE) expect_failure( with_reporter( CleanupReporter(testthat::SilentReporter)$new(proc_unit = "test"), { test_that("foobar", { out$p1 <<- processx::process$new(px(), c("sleep", "5")) out$p2 <<- processx::process$new(px(), c("sleep", "5")) out$running <<- out$p1$is_alive() && out$p2$is_alive() }) } ), "px.*px" ) expect_true(out$running) expect_false(out$p1$is_alive()) expect_false(out$p2$is_alive()) }) test_that("on.exit() works", { out <- list() on.exit(if (!is.null(out$p)) out$p$kill(), add = TRUE) expect_success( with_reporter( CleanupReporter(testthat::SilentReporter)$new(proc_unit = "test"), { test_that("foobar", { out$p <<- processx::process$new(px(), c("sleep", "5")) on.exit(out$p$kill(), add = TRUE) out$running <<- out$p$is_alive() }) } ) ) expect_true(out$running) expect_false(out$p$is_alive()) }) test_that("only report", { out <- list() on.exit(if (!is.null(out$p)) out$p$kill(), add = TRUE) expect_failure( with_reporter( CleanupReporter(testthat::SilentReporter)$new( proc_unit = "test", proc_cleanup = FALSE, proc_fail = TRUE), { test_that("foobar", { out$p <<- processx::process$new(px(), c("sleep", "5")) out$running <<- out$p$is_alive() }) } ), "did not clean up processes" ) expect_true(out$running) expect_true(out$p$is_alive()) out$p$kill() }) test_that("only kill", { out <- list() on.exit(if (!is.null(out$p)) out$p$kill(), add = TRUE) with_reporter( CleanupReporter(testthat::SilentReporter)$new( proc_unit = "test", proc_cleanup = TRUE, proc_fail = FALSE, conn_fail = FALSE), { test_that("foobar", { out$p <<- processx::process$new(px(), c("sleep", "5")) out$running <<- out$p$is_alive() }) test_that("foobar2", { deadline <- Sys.time() + 3 while (out$p$is_alive() && Sys.time() < deadline) Sys.sleep(0.05) out$running2 <<- out$p$is_alive() }) } ) expect_true(out$running) expect_false(out$running2) expect_false(out$p$is_alive()) }) test_that("unit: testsuite", { out <- list() on.exit(if (!is.null(out$p)) out$p$kill(), add = TRUE) expect_failure( with_reporter( CleanupReporter(testthat::SilentReporter)$new( proc_unit = "testsuite", rconn_fail = FALSE, file_fail = FALSE, conn_fail = FALSE), { test_that("foobar", { out$p <<- processx::process$new(px(), c("sleep", "5")) out$running <<- out$p$is_alive() }) test_that("foobar2", { out$running2 <<- out$p$is_alive() }) } ), "did not clean up processes" ) expect_true(out$running) expect_true(out$running2) deadline <- Sys.time() + 3 while (out$p$is_alive() && Sys.time() < deadline) Sys.sleep(0.05) expect_false(out$p$is_alive()) }) test_that("R connection cleanup, test, close, fail", { out <- list() tmp <- tempfile() on.exit(unlink(tmp), add = TRUE) on.exit(try(close(out$conn), silent = TRUE), add = TRUE) expect_failure( with_reporter( CleanupReporter(testthat::SilentReporter)$new(proc_fail = FALSE), { test_that("foobar", { out$conn <<- file(tmp, open = "w") out$open <<- isOpen(out$conn) }) } ), "did not close R connections" ) expect_true(out$open) expect_error(isOpen(out$conn)) }) test_that("R connection cleanup, test, do not close, fail", { out <- list() tmp <- tempfile() on.exit(unlink(tmp), add = TRUE) on.exit(try(close(out$conn), silent = TRUE), add = TRUE) expect_failure( with_reporter( CleanupReporter(testthat::SilentReporter)$new( proc_fail = FALSE, rconn_cleanup = FALSE), { test_that("foobar", { out$conn <<- file(tmp, open = "w") out$open <<- isOpen(out$conn) }) } ), "did not close R connections" ) expect_true(out$open) expect_true(isOpen(out$conn)) expect_silent(close(out$conn)) }) test_that("R connection cleanup, test, close, do not fail", { out <- list() tmp <- tempfile() on.exit(unlink(tmp), add = TRUE) on.exit(try(close(out$conn), silent = TRUE), add = TRUE) with_reporter( CleanupReporter(testthat::SilentReporter)$new( proc_fail = FALSE, rconn_fail = FALSE), { test_that("foobar", { out$conn <<- file(tmp, open = "w") out$open <<- isOpen(out$conn) }) } ) expect_true(out$open) expect_error(isOpen(out$conn)) }) test_that("R connections, unit: testsuite", { out <- list() tmp <- tempfile() on.exit(unlink(tmp), add = TRUE) on.exit(try(close(out$conn), silent = TRUE), add = TRUE) expect_failure( with_reporter( CleanupReporter(testthat::SilentReporter)$new( rconn_unit = "testsuite", proc_fail = FALSE, file_fail = FALSE, conn_fail = FALSE), { test_that("foobar", { out$conn <<- file(tmp, open = "w") out$open <<- isOpen(out$conn) }) test_that("foobar2", { out$open2 <<- isOpen(out$conn) }) } ), "did not close R connections" ) expect_true(out$open) expect_true(out$open2) expect_error(isOpen(out$conn)) }) test_that("connections already open are ignored", { tmp2 <- tempfile() on.exit(unlink(tmp2), add = TRUE) conn <- file(tmp2, open = "w") on.exit(try(close(conn), silent = TRUE), add = TRUE) out <- list() tmp <- tempfile() on.exit(unlink(tmp), add = TRUE) on.exit(try(close(out$conn), silent = TRUE), add = TRUE) expect_success( with_reporter( CleanupReporter(testthat::SilentReporter)$new(proc_fail = FALSE), { test_that("foobar", { out$conn <<- file(tmp, open = "w") out$open <<- isOpen(out$conn) close(out$conn) }) } ) ) expect_error(isOpen(out$conn)) expect_true(isOpen(conn)) expect_silent(close(conn)) }) test_that("File cleanup, test, fail", { out <- list() tmp <- tempfile() cat("data\ndata2\n", file = tmp) on.exit(unlink(tmp), add = TRUE) on.exit(try(close(out$conn), silent = TRUE), add = TRUE) expect_failure( with_reporter( CleanupReporter(testthat::SilentReporter)$new( proc_fail = FALSE, rconn_cleanup = FALSE, rconn_fail = FALSE), { test_that("foobar", { out$conn <<- file(tmp, open = "r") out$open <<- isOpen(out$conn) }) } ), "did not close open files" ) expect_true(out$open) expect_true(isOpen(out$conn)) close(out$conn) }) test_that("File cleanup, unit: testsuite", { out <- list() tmp <- tempfile() on.exit(unlink(tmp), add = TRUE) on.exit(try(close(out$conn), silent = TRUE), add = TRUE) expect_failure( with_reporter( CleanupReporter(testthat::SilentReporter)$new( file_unit = "testsuite", proc_fail = FALSE, rconn_fail = FALSE, rconn_cleanup = FALSE, conn_fail = FALSE), { test_that("foobar", { out$conn <<- file(tmp, open = "w") out$open <<- isOpen(out$conn) }) test_that("foobar2", { out$open2 <<- isOpen(out$conn) }) } ), "did not close open files" ) expect_true(out$open) expect_true(out$open2) expect_true(isOpen(out$conn)) close(out$conn) }) test_that("files already open are ignored", { tmp2 <- tempfile() on.exit(unlink(tmp2), add = TRUE) conn <- file(tmp2, open = "w") on.exit(try(close(conn), silent = TRUE), add = TRUE) out <- list() tmp <- tempfile() on.exit(unlink(tmp), add = TRUE) on.exit(try(close(out$conn), silent = TRUE), add = TRUE) expect_success( with_reporter( CleanupReporter(testthat::SilentReporter)$new( proc_fail = FALSE, rconn_fail = FALSE, rconn_cleanup = FALSE), { test_that("foobar", { out$conn <<- file(tmp, open = "w") out$open <<- isOpen(out$conn) close(out$conn) }) } ) ) expect_error(isOpen(out$conn)) expect_true(isOpen(conn)) expect_silent(close(conn)) }) offline <- is_offline() if (!offline) { conn <- curl::curl(httpbin_url(), open = "r") close(conn) } test_that("Network cleanup, test, fail", { if (offline) skip("Offline") out <- list() on.exit({ try(close(out$conn), silent = TRUE); gc() }, add = TRUE) expect_failure( with_reporter( CleanupReporter(testthat::SilentReporter)$new( proc_fail = FALSE, rconn_cleanup = FALSE, rconn_fail = FALSE, file_fail = FALSE), { test_that("foobar", { out$conn <<- curl::curl(httpbin_url(), open = "r") out$open <<- isOpen(out$conn) }) } ), "did not close network" ) expect_true(out$open) expect_true(isOpen(out$conn)) close(out$conn) }) test_that("Network cleanup, unit: testsuite", { if (offline) skip("Offline") out <- list() on.exit(try(close(out$conn), silent = TRUE), add = TRUE) expect_failure( with_reporter( CleanupReporter(testthat::SilentReporter)$new( conn_unit = "testsuite", proc_fail = FALSE, rconn_fail = FALSE, rconn_cleanup = FALSE, file_fail = FALSE), { test_that("foobar", { out$conn <<- curl::curl(httpbin_url(), open = "r") out$open <<- isOpen(out$conn) }) test_that("foobar2", { out$open2 <<- isOpen(out$conn) }) } ), "did not close network connections" ) expect_true(out$open) expect_true(out$open2) expect_true(isOpen(out$conn)) close(out$conn) }) test_that("Network connections already open are ignored", { if (offline) skip("Offline") conn <- curl::curl(httpbin_url(), open = "r") on.exit(try(close(conn), silent = TRUE), add = TRUE) out <- list() on.exit(try(close(out$conn), silent = TRUE), add = TRUE) expect_success( with_reporter( CleanupReporter(testthat::SilentReporter)$new( proc_fail = FALSE, rconn_fail = FALSE, rconn_cleanup = FALSE), { test_that("foobar", { out$conn <<- curl::curl(httpbin_url(), open = "r") out$open <<- isOpen(out$conn) close(out$conn) }) } ) ) expect_error(isOpen(out$conn)) expect_true(isOpen(conn)) expect_silent(close(conn)) })
strip_punc <- function(wpe) { for(i in 1:length(wpe)){ if(!(tolower(wpe[i]) %in% vaderLexicon$V1)) { leadingAndTrailing <- "(^\\W+)|(\\W+$)" wpe[i] <- gsub(leadingAndTrailing, "", wpe[i]) } } return(wpe) } wordsPlusEmo <- function(text) { wpe <- unlist(strsplit(text, "\\s+")) stripped <- strip_punc(wpe) return(stripped) }
countRules <- function(x) { x <- strsplit(x, "\n")[[1]] comNum <- ruleNum <- condNum <- rep(NA, length(x)) comIdx <- rIdx <- 0 for(i in seq(along = x)) { tt <- parser(x[i]) if(names(tt)[1] == "rules") { comIdx <- comIdx + 1 rIdx <- 0 } comNum[i] <-comIdx if(names(tt)[1] == "conds") { rIdx <- rIdx + 1 cIdx <- 0 } ruleNum[i] <-rIdx if(names(tt)[1] == "type") { cIdx <- cIdx + 1 condNum[i] <- cIdx } } numCom <- sum(grepl("^rules=", x)) rulesPerCom <- unlist(lapply(split(ruleNum, as.factor(comNum)), max)) rulesPerCom <- rulesPerCom[rulesPerCom > 0] rulesPerCom } getSplits <- function(x) { x <- strsplit(x, "\n")[[1]] comNum <- ruleNum <- condNum <- rep(NA, length(x)) comIdx <- rIdx <- 0 for(i in seq(along = x)) { tt <- parser(x[i]) if(names(tt)[1] == "rules") { comIdx <- comIdx + 1 rIdx <- 0 } comNum[i] <-comIdx if(names(tt)[1] == "conds") { rIdx <- rIdx + 1 cIdx <- 0 } ruleNum[i] <-rIdx if(names(tt)[1] == "type") { cIdx <- cIdx + 1 condNum[i] <- cIdx } } numCom <- sum(grepl("^rules=", x)) rulesPerCom <- unlist(lapply(split(ruleNum, as.factor(comNum)), max)) rulesPerCom <- rulesPerCom[rulesPerCom > 0] if (! is.null(rulesPerCom) && numCom > 0) names(rulesPerCom) <- paste("Com", 1:numCom) isNewRule <- ifelse(grepl("^conds=", x), TRUE, FALSE) splitVar <- rep("", length(x)) splitVal <- rep(NA, length(x)) splitCats <- rep("", length(x)) splitDir <- rep("", length(x)) isType2 <- grepl("^type=\"2\"", x) if(any(isType2)) { splitVar[isType2] <- type2(x[isType2])$var splitVar[isType2] <- gsub("\"", "", splitVar[isType2]) splitDir[isType2] <- type2(x[isType2])$rslt splitVal[isType2] <- type2(x[isType2])$val } isType3 <- grepl("^type=\"3\"", x) if(any(isType3)) { splitVar[isType3] <- type3(x[isType3])$var splitCats[isType3] <- type3(x[isType3])$val splitCats[isType3] <- gsub("[{}]", "", splitCats[isType3]) splitCats[isType3] <- gsub("\"", "", splitCats[isType3]) splitCats[isType3] <- gsub(" ", "", splitCats[isType3]) } if(!any(isType2) & !any(isType3)) return(NULL) splitData <- data.frame(committee = comNum, rule = ruleNum, variable = splitVar, dir = splitDir, value = as.numeric(splitVal), category = splitCats) splitData$type <- "" if(any(isType2)) splitData$type[isType2] <- "type2" if(any(isType3)) splitData$type[isType3] <- "type3" splitData <- splitData[splitData$variable != "" ,] splitData } printCubistRules <- function(x, dig = max(3, getOption("digits") - 5)) { comNum <- ruleNum <- condNum <- rep(NA, length(x)) comIdx <- rIdx <- 0 for(i in seq(along = x)) { tt <- parser(x[i]) if(names(tt)[1] == "rules") { comIdx <- comIdx + 1 rIdx <- 0 } comNum[i] <-comIdx if(names(tt)[1] == "conds") { rIdx <- rIdx + 1 cIdx <- 0 } ruleNum[i] <-rIdx if(names(tt)[1] == "type") { cIdx <- cIdx + 1 condNum[i] <- cIdx } } numCom <- sum(grepl("^rules=", x)) rulesPerCom <- unlist(lapply(split(ruleNum, as.factor(comNum)), max)) rulesPerCom <- rulesPerCom[rulesPerCom > 0] names(rulesPerCom) <- paste("Com", 1:numCom) cat("Number of committees:", numCom, "\n") cat("Number of rules per committees:", paste(rulesPerCom, collapse = ", "), "\n\n") isNewRule <- ifelse(grepl("^conds=", x), TRUE, FALSE) isEqn <- ifelse(grepl("^coeff=", x), TRUE, FALSE) cond <- rep("", length(x)) isType2 <- grepl("^type=\"2\"", x) if(any(isType2)) cond[isType2] <- type2(x[isType2], dig = dig)$text isType3 <- grepl("^type=\"3\"", x) if(any(isType3)) cond[isType3] <- type3(x[isType3])$text isEqn <- grepl("^coeff=", x) eqtn <- rep("", length(x)) eqtn[isEqn] <- eqn(x[isEqn], dig = dig) tmp <- x[isNewRule] tmp <- parser(tmp) ruleN <- rep(NA, length(x)) ruleN[isNewRule] <- as.numeric(unlist(lapply(tmp, function(x) x["cover"]))) for(i in seq(along = x)) { if(isNewRule[i]) { cat("Rule ", comNum[i], "/", ruleNum[i], ": (n=", ruleN[i], ")\n", sep = "") cat(" If\n") } else { if(cond[i] != "") { cat(" |", cond[i], "\n") if(cond[i+1] == "") { cat(" Then\n") cat(" prediction =", eqtn[i+1], "\n\n") } } } } } type3 <- function(x) { aInd <- regexpr("att=", x) eInd <- regexpr("elts=", x) var <- substring(x, aInd + 4, eInd - 2) val <- substring(x, eInd + 5) multVals <- grepl(",", val) val <- gsub(",", ", ", val) val <- ifelse(multVals, paste("{", val, "}", sep = ""), val) txt <- ifelse(multVals, paste(var, "in", val), paste(var, "=", val)) list(var = var, val = val, text = txt) } type2 <- function(x, dig = 3) { x <- gsub("\"", "", x) aInd <- regexpr("att=", x) cInd <- regexpr("cut=", x) rInd <- regexpr("result=", x) vInd <- regexpr("val=", x) var <- val <- rslt <- rep("", length(x)) missingRule <- cInd < 1 & vInd > 0 if(any(missingRule)) { var[missingRule] <- substring(x[missingRule], aInd[missingRule] + 4, vInd[missingRule] - 2) val[missingRule] <- "NA" rslt[missingRule] <- "=" } if(any(!missingRule)) { var[!missingRule] <- substring(x[!missingRule], aInd[!missingRule] + 4, cInd[!missingRule] - 2) val[!missingRule] <- substring(x[!missingRule], cInd[!missingRule] + 4, rInd[!missingRule] - 1) val[!missingRule] <- format(as.numeric(val[!missingRule]), digits = dig) rslt[!missingRule] <- substring(x[!missingRule], rInd[!missingRule] + 7) } list(var = var, val = as.numeric(val), rslt = rslt, text = paste(var, rslt, val)) } eqn <- function(x, dig = 10, text = TRUE, varNames = NULL) { x <- gsub("\"", "", x) out <- vector(mode = "list", length = length(x)) for(j in seq(along = x)) { starts <- gregexpr("(coeff=)|(att=)", x[j])[[1]] p <- (length(starts) - 1)/2 vars <- vector(mode = "numeric", length = p + 1) tmp <- vector(mode = "character", length = length(starts)) for(i in seq(along = starts)) { if(i < length(starts)) { txt <- substring(x[j], starts[i], starts[i + 1] - 2) } else txt <- substring(x[j], starts[i]) tmp[i] <- gsub("(coeff=)|(att=)", "", txt) } valSeq <- seq(1, length(tmp), by = 2) vals <- as.double(tmp[valSeq]) nms <- tmp[-valSeq] if(text) { signs <- sign(vals) vals <- abs(vals) for(i in seq(along = vals)) { if(i == 1) { txt <- ifelse(signs[1] == -1, format(-vals[1], digits = dig), format(vals[1], digits = dig)) } else { tmp2 <- ifelse(signs[i] == -1, paste("-", format(vals[i], digits = dig)), paste("+", format(vals[i], digits = dig))) txt <- paste(txt, tmp2, nms[i-1]) } } out[j] <- txt } else { nms <- c("(Intercept)", nms) names(vals) <- nms if(!is.null(varNames)) { vars2 <- varNames[!(varNames %in% nms)] vals2 <- rep(NA, length(vars2)) names(vals2) <- vars2 vals <- c(vals, vals2) newNames <- c("(Intercept)", varNames) vals <- vals[newNames] } out[[j]] <- vals } } out } parser <- function(x) { x <- strsplit(x, " ") x <- lapply(x, function(y) { y <- strsplit(y, "=") nms <- unlist(lapply(y, function(z) z[1])) val <- unlist(lapply(y, function(z) z[2])) names(val) <- nms val }) if(length(x) == 1) x <- x[[1]] x } coef.cubist <- function(object, varNames = NULL, ...) { x <- object$model x <- strsplit(x, "\n")[[1]] comNum <- ruleNum <- condNum <- rep(NA, length(x)) comIdx <- rIdx <- 0 for (i in seq(along = x)) { tt <- parser(x[i]) if (names(tt)[1] == "rules") { comIdx <- comIdx + 1 rIdx <- 0 } comNum[i] <- comIdx if (names(tt)[1] == "conds") { rIdx <- rIdx + 1 cIdx <- 0 } ruleNum[i] <- rIdx if (names(tt)[1] == "type") { cIdx <- cIdx + 1 condNum[i] <- cIdx } } isEqn <- ifelse(grepl("^coeff=", x), TRUE, FALSE) isEqn <- grepl("^coeff=", x) coefs <- eqn(x[isEqn], dig = 0, text = FALSE, varNames = varNames) p <- length(coefs) dims <- unlist(lapply(coefs, length)) coefs <- do.call("c", coefs) coms <- rep(comNum[isEqn], dims) rls <- rep(ruleNum[isEqn], dims) out <- data.frame( tmp = paste(coms, rls, sep = "."), value = coefs, var = names(coefs) ) out <- reshape( out, direction = "wide", v.names = "value", timevar = "var", idvar = "tmp" ) colnames(out) <- gsub("value.", "", colnames(out), fixed = TRUE) tmp <- strsplit(as.character(out$tmp), ".", fixed = TRUE) out$committee <- unlist(lapply(tmp, function(x) x[1])) out$rule <- unlist(lapply(tmp, function(x) x[2])) out$tmp <- NULL out }
mpower_integrity <- function(effect_size, study_size, k, i2, es_type, test_type, p, con_table){ test_type_options <- c("one-tailed", "two-tailed") es_type_options <- c("d","r", "or") if(missing(study_size)) stop("Need to specify expected sample size") if(!(is.numeric(study_size))) stop("study_size must be numeric") if(length(study_size) > 1) stop("study_size must be a single number") if(study_size < 1) stop("study_size must be greater than 0") if(missing(k)) stop("Need to specify expected number of studies") if(!(is.numeric(k))) stop("k must be numeric") if(length(k) > 1) stop("k must be a single number") if(k < 2) stop("k must be greater than 1") if(missing(i2)) stop("Need to specify heterogeneity(i2); Small = .25, moderatoe = .50, Large = .75") if(i2 > .9999) stop("i2 cannot be greater than 1") if(i2 < 0) stop("i2 cannot be less than 0") if(missing(es_type)) stop("Need to specify effect size as 'd', 'r', or 'or'") if(!(es_type %in% es_type_options)) stop("Need to specify effect size as 'd', 'r', or 'or'") if(es_type == 'd'){ if(is.null(effect_size)) stop("Need to specify expected effect size") if(!(is.numeric(effect_size))) stop("effect_size must be numeric") if(length(effect_size) > 1) stop("effect_size must be a single number") if(effect_size < 0) stop("effect_size must be greater than zero") if(effect_size > 10) warning("Are you sure effect size is >10?") } if(es_type == 'r'){ if(is.null(effect_size)) stop("Need to specify expected effect size") if(!(is.numeric(effect_size))) stop("effect_size must be numeric") if(length(effect_size) > 1) stop("effect_size must be a single number") if(effect_size > 1) stop("Correlation cannot be above 1") if(effect_size < 0) stop("Correlation must be above 0") } if(es_type == 'or'){ if(!is.null(effect_size)) stop("Do not enter an effect size for Odds Ratio. Instead, Enter a 2x2 contingency table") if(missing(con_table)) stop("For Odds Ratio, must enter contigency table (con_table)") if(!missing(con_table)){ if(length(con_table) != 4) stop("con_table must reflect a 2x2 contingency table with the form c(a,b,c,d). see documentation") if(study_size != sum(con_table)) stop("Entered sample size should equal the sum of the contigency table") } } if(!(test_type %in% test_type_options)) stop("Need to specify two-tailed or one-tailed") }
test_that("Package readme in root directory can be built ", { skip_on_cran() pkg_path <- create_local_package() expect_error( build_readme(pkg_path), "Can't find a 'README.Rmd'" ) suppressMessages(use_readme_rmd()) suppressMessages(build_readme(pkg_path)) expect_true(file_exists(path(pkg_path, "README.md"))) expect_false(file_exists(path(pkg_path, "README.html"))) }) test_that("Package readme in inst/ can be built ", { skip_on_cran() pkg_path <- create_local_package() suppressMessages(use_readme_rmd()) dir_create(pkg_path, "inst") file_copy( path(pkg_path, "README.Rmd"), path(pkg_path, "inst", "README.Rmd") ) expect_error( build_readme(pkg_path), "Can't have both" ) file_delete(path(pkg_path, "README.Rmd")) suppressMessages(build_readme(pkg_path)) expect_true(file_exists(path(pkg_path, "inst", "README.md"))) expect_false(file_exists(path(pkg_path, "README.Rmd"))) expect_false(file_exists(path(pkg_path, "README.md"))) expect_false(file_exists(path(pkg_path, "inst", "README.html"))) })
test_that("gammaln() matchest log(gamma())", { for (i in 1:100){ expect_equal(gammaln(i), log(gamma(i))) } for (i in 1:100){ expect_true(gammaln(i*10) > 0) } })
localIntegration = function(x, y, R1, R2=R1) { if(ncol(x)!=ncol(y)) stop("Dimensions of x and y must agree.") if(ncol(x)>3) stop("Dimensions must be less than 3.") Nx = nrow(x) Px = nrow(y) if(all(Nx!=0,Px!=0)) { int = local.int.cpp(posx=x, posy=y, R1=R1, R2=R2) intX = int$x intY = int$y } else { intX = rep(0, length=Nx) intY = rep(0, length=Px) } return(list(x=intX, y=intY)) } brownian1D = function(object, sd, N=NULL, ...) { if(N==0) return(object) if(any(is.null(N), N>length(object), N<0)) N = length(object) object[seq_len(N)] = object[seq_len(N)] + rnorm(N, mean=0, sd=sd) return(object) } brownian2D = function(object, sd, N=NULL, ...) { if(N==0) return(object) if(any(is.null(N), N>length(object), N<0)) N = nrow(object) angulo = runif(N) dist = rnorm(N, mean=0, sd=sd) object[seq_len(N), ] = object[seq_len(N), ] + dist*cbind(cos(pi*angulo),sin(pi*angulo)) return(object) } brownian3D = function(object, sd, N=NULL, ...) { if(N==0) return(object) if(any(is.null(N), N>length(object), N<0)) N = nrow(object) angulo1 = runif(N) angulo2 = runif(N) dist = rnorm(N, mean=0, sd=sd) object[seq_len(N), , ] = object[seq_len(N), , ] + dist*cbind(sin(pi*angulo2)*cos(pi*angulo1), sin(pi*angulo2)*sin(pi*angulo1), cos(pi*angulo2)) return(object) } .checkRates = function(rates, n) { if(length(rates)==1) rates = rep(rates, length=n) if(length(rates)!=n) stop("Rates and population size do not match.") rates = pmin(pmax(rates, 0),1) if(any(is.na(rates))) warning("NA rates are being taken as zero.") rates[is.na(rates)] = 0 return(rates) } .getVector = function(x, size) { if(is.null(size)) return(x) if(size>length(x)) return(x) return(x[seq_len(size)]) } .getMatrix = function(x, size) { if(is.null(size)) return(x) if(size>nrow(x)) return(x) return(x[seq_len(size), , drop=FALSE]) } updateMatrixSize = function(x, n, max) { ndim = dim(x) ndim[1] = min(max(5*ndim[1], 2*n), max) out = array(dim=ndim) out[seq_len(dim(x)[1]), ] = x return(out) } .summary = function(x, alpha, nmax) { nmax = min(nmax, ncol(x)) output = list() output$mean = rowMeans(x, na.rm=TRUE) output$median = apply(x, 1, median, na.rm=TRUE) output$ll = apply(x, 1, quantile, prob=(1-alpha)/2, na.rm=TRUE) output$ul = apply(x, 1, quantile, prob=1-(1-alpha)/2, na.rm=TRUE) output$rep = x[, sample(ncol(x), nmax)] output$xlim = c(0, nrow(x)) output$ylim = quantile(x, prob=c((1-alpha)/4, 1-(1-alpha)/4), na.rm=TRUE) return(output) }
xgx_scale_y_log10 <- function(breaks = xgx_breaks_log10, minor_breaks = NULL, labels = xgx_labels_log10, ...) { if (is.null(minor_breaks)) { minor_breaks <- function(x) xgx_minor_breaks_log10(x) } ret <- try(list(ggplot2::scale_y_log10(..., breaks = breaks, minor_breaks = minor_breaks, labels = labels)), silent = TRUE) if (inherits(ret, "try-error")) { return(ggplot2::scale_y_log10(...)) } else { return(ret) } }
runMACS <- function( obj, output.prefix, path.to.snaptools, path.to.macs, gsize, tmp.folder, buffer.size=500, macs.options="--nomodel --shift 37 --ext 73 --qval 1e-2 -B --SPMR --call-summits", num.cores=1, keep.minimal=TRUE ){ cat("Epoch: checking input parameters ... \n", file = stderr()) if(missing(obj)){ stop("obj is missing") }else{ if(!is.snap(obj)){ stop("obj is not a snap object"); } if((x=nrow(obj))==0L){ stop("obj is empty"); } if((x=length(obj@barcode))==0L){ stop("obj@barcode is empty"); } if((x=length(obj@file))==0L){ stop("obj@file is empty"); } } fileList = as.list(unique(obj@file)); if(any(do.call(c, lapply(fileList, function(x){file.exists(x)})) == FALSE)){ idx = which(do.call(c, lapply(fileList, function(x){file.exists(x)})) == FALSE) print("error: these files does not exist") print(fileList[idx]) stop() } if(any(do.call(c, lapply(fileList, function(x){isSnapFile(x)})) == FALSE)){ idx = which(do.call(c, lapply(fileList, function(x){isSnapFile(x)})) == FALSE) print("error: these files are not snap file") print(fileList[idx]) stop() } if(any(do.call(c, lapply(fileList, function(x){ "FM" %in% h5ls(x, recursive=1)$name })) == FALSE)){ idx = which(do.call(c, lapply(fileList, function(x){ "FM" %in% h5ls(x, recursive=1)$name })) == FALSE) print("error: the following nsap files do not contain FM session") print(fileList[idx]) stop() } if(missing(output.prefix)){ stop("output.prefix is missing"); } if(missing(path.to.snaptools)){ stop("path.to.snaptools is missing"); }else{ if(!file.exists(path.to.snaptools)){ stop("path.to.snaptools does not exist"); } flag = tryCatch({ file_test('-x', path.to.snaptools); }, error=function(cond){ return(FALSE) }) if(flag == FALSE){ stop("path.to.snaptools is not an excutable file"); } } if(missing(path.to.macs)){ stop("path.to.macs is missing"); }else{ if(!file.exists(path.to.macs)){ stop("path.to.macs does not exist"); } flag = tryCatch({ file_test('-x', path.to.macs); }, error=function(cond){ return(FALSE) }) if(flag == FALSE){ stop("path.to.macs is not an excutable file"); } } if(missing(gsize)){ stop("gsize is missing"); } if(missing(tmp.folder)){ stop("tmp.folder is missing") }else{ if(!dir.exists(tmp.folder)){ stop("tmp.folder does not exist"); } } barcode.files = lapply(fileList, function(file){ tempfile(tmpdir = tmp.folder, fileext = ".barcode.txt"); }) bed.files = lapply(fileList, function(file){ tempfile(tmpdir = tmp.folder, fileext = ".bed.gz"); }) cat("Epoch: extracting fragments from each snap files ...\n", file = stderr()) flag.list = lapply(seq(fileList), function(i){ file.name = fileList[[i]]; idx = which(obj@file == file.name); barcode.use = obj@barcode[idx] write.table(barcode.use, file = barcode.files[[i]], append = FALSE, quote = FALSE, sep = "\t", eol = "\n", na = "NA", dec = ".", row.names = FALSE, col.names = FALSE, qmethod = c("escape", "double"), fileEncoding = "") }) flag.list = mclapply(seq(fileList), function(i){ flag = system2(command=path.to.snaptools, args=c("dump-fragment", "--snap-file", fileList[[i]], "--output-file", bed.files[[i]], "--barcode-file", barcode.files[[i]], "--buffer-size", buffer.size ) ) }, mc.cores=num.cores); combined.bed = tempfile(tmpdir = tmp.folder, fileext = ".bed.gz"); flag = system2(command="cat", args=c(paste(bed.files, collapse = ' '), ">", combined.bed ) ) flag = system2(command=path.to.macs, args=c("callpeak", "-t", combined.bed, "-f", "BED", "-g", gsize, macs.options, "-n", output.prefix ) ) if (flag != 0) { stop("'MACS' call failed"); } if(keep.minimal){ system(paste("rm ", output.prefix, "_control_lambda.bdg", sep="")); system(paste("rm ", output.prefix, "_peaks.xls", sep="")); system(paste("rm ", output.prefix, "_summits.bed", sep="")); } return(read.table(paste(output.prefix, "_peaks.narrowPeak", sep=""))); } runMACSForAll <- function( obj, output.prefix, path.to.snaptools, path.to.macs, gsize, tmp.folder, num.cores=1, min.cells=100, buffer.size=500, macs.options="--nomodel --shift 37 --ext 73 --qval 1e-2 -B --SPMR --call-summits", keep.minimal=TRUE ){ cat("Epoch: checking input parameters ... \n", file = stderr()) if(missing(obj)){ stop("obj is missing") }else{ if(!is.snap(obj)){ stop("obj is not a snap object"); } if((x=nrow(obj))==0L){ stop("obj is empty"); } if((x=length(obj@barcode))==0L){ stop("obj@barcode is empty"); } if((x=length(obj@file))==0L){ stop("obj@file is empty"); } nclusters = length(levels(obj@cluster)); } fileList = as.list(unique(obj@file)); if(any(do.call(c, lapply(fileList, function(x){file.exists(x)})) == FALSE)){ idx = which(do.call(c, lapply(fileList, function(x){file.exists(x)})) == FALSE) print("error: these files does not exist") print(fileList[idx]) stop() } if(any(do.call(c, lapply(fileList, function(x){isSnapFile(x)})) == FALSE)){ idx = which(do.call(c, lapply(fileList, function(x){isSnapFile(x)})) == FALSE) print("error: these files are not snap file") print(fileList[idx]) stop() } if(any(do.call(c, lapply(fileList, function(x){ "FM" %in% h5ls(x, recursive=1)$name })) == FALSE)){ idx = which(do.call(c, lapply(fileList, function(x){ "FM" %in% h5ls(x, recursive=1)$name })) == FALSE) print("error: the following nsap files do not contain FM session") print(fileList[idx]) stop() } if(nclusters == 0L){ stop("obj does not have cluster, runCluster first") } if(missing(output.prefix)){ stop("output.prefix is missing"); } if(missing(path.to.snaptools)){ stop("path.to.snaptools is missing"); }else{ if(!file.exists(path.to.snaptools)){ stop("path.to.snaptools does not exist"); } flag = tryCatch({ file_test('-x', path.to.snaptools); }, error=function(cond){ return(FALSE) }) if(flag == FALSE){ stop("path.to.snaptools is not an excutable file"); } } if(missing(path.to.macs)){ stop("path.to.macs is missing"); }else{ if(!file.exists(path.to.macs)){ stop("path.to.macs does not exist"); } flag = tryCatch({ file_test('-x', path.to.macs); }, error=function(cond){ return(FALSE) }) if(flag == FALSE){ stop("path.to.macs is not an excutable file"); } } if(missing(gsize)){ stop("gsize is missing"); } if(missing(tmp.folder)){ stop("tmp.folder is missing") }else{ if(!dir.exists(tmp.folder)){ stop("tmp.folder does not exist"); } } peak.ls <- parallel::mclapply(as.list(levels(obj@cluster)), function(x){ num.cells = length(which(obj@cluster == x)); if(num.cells < min.cells){ return(GenomicRanges::GRanges()) } peaks.df <- runMACS( obj=obj[which(obj@cluster==x),], output.prefix=paste(output.prefix, x, sep="."), path.to.snaptools=path.to.snaptools, path.to.macs=path.to.macs, gsize=gsize, buffer.size=buffer.size, macs.options=macs.options, tmp.folder=tmp.folder, keep.minimal=keep.minimal, num.cores=1 ); if((x=nrow(peaks.df)) > 0L){ peaks.gr = GenomicRanges::GRanges(peaks.df[,1], IRanges(peaks.df[,2], peaks.df[,3])); }else{ peaks.gr = GenomicRanges::GRanges(); } }, mc.cores=num.cores) peaks.gr = GenomicRanges::reduce(do.call(c, peak.ls)); return(peaks.gr); }
knitr::opts_chunk$set( collapse = TRUE, comment = " ) load("models_IRT.RData") library(lcmm) library(ggplot2) library(ggpubr) library(splines) library(gridExtra) library(dplyr) str(simdataHADS) demo <- simdataHADS %>% group_by(ID) %>% arrange(time) %>% filter(row_number()==1) summary(demo) tempSim <- simdataHADS %>% group_by(ID) %>% arrange(time) %>% mutate(Visit=ifelse(time==time_entry,"Entry","Follow-up")) p <- ggplot(tempSim, aes(x=time,fill=Visit,color=Visit)) + geom_histogram(binwidth=1,aes(y=..density..)) + labs(x="Months on the waiting list") p + scale_color_grey(start = 0.1, end = 0.5)+scale_fill_grey(start = 0.1, end = 0.5) + theme_classic() quantile(simdataHADS$time,probs=(0:10)/10) summary(modIRT) datnew <- data.frame(time = seq(0,75,by=1)) datnew$grp <- 0 pIRT0 <- predictL(modIRT,datnew,var.time="time",confint = T) datnew$grp <- 1 pIRT1 <- predictL(modIRT,datnew,var.time="time",confint = T) plot(pIRT0,col=1,lwd=2,ylim=c(-1.5,1.5),legend=NULL,main="",ylab="latent depressive symptomatology",xlab="months since entry on the waiting list",type="l",bty="l",shades=T) plot(pIRT1,add=T,col=4,lwd=2,shades=T) legend(x="topleft",legend=c("dialysed","preemptive"),lty=c(1,1),col=c(1,4),lwd=2,bty="n") beta <- modIRT$best t <- 0:72 Z <- cbind(rep(1,length(t)),ns(t,knots=c(7,15),Boundary.knots = c(0,60))) chol <- matrix(0,ncol=4,nrow=4) chol[upper.tri(chol, diag = T)] <- c(1,beta[7:15]) library(mvtnorm) Lambda0 <- rmvnorm(10000,mean = Z%*%c(0,beta[1:3]),Z%*%t(chol)%*%chol%*%t(Z)) Lambda1 <- rmvnorm(10000,mean = Z%*%beta[4:7],Z%*%t(chol)%*%chol%*%t(Z)) Lambda <- data.frame(Lambda = as.vector(rbind(Lambda0,Lambda1))) phist <- ggplot(Lambda,aes(x=Lambda))+ geom_density(color="grey", fill="grey") + theme_bw() + xlab("underlying depressive symptomatology") +xlim(-7,7) phist quantile(Lambda$Lambda,p=c(0.025,0.975)) nlevel <- 4 nitems <- 7 levels <- rep(nlevel,nitems) npm <- length(modIRT$best) seuils <- modIRT$best[(npm-(nlevel-1)*(nitems)+1):(npm)] err <- abs(modIRT$best[(npm-(nlevel-1)*(nitems)-(nitems-1)):(npm-(nlevel-1)*(nitems))]) seuils err Vseuils <- VarCov(modIRT)[(npm-(nlevel-1)*(nitems)+1):(npm),(npm-(nlevel-1)*(nitems)+1):(npm)] Verr <- VarCov(modIRT)[(npm-(nlevel-1)*(nitems)-(nitems-1)):(npm-(nlevel-1)*(nitems)),(npm-(nlevel-1)*(nitems)-(nitems-1)):(npm-(nlevel-1)*(nitems))] location <- function(min,max,param,Vparam){ loc <- param[1] se <- sqrt(Vparam[1,1]) param2 <- rep(0,length(param)) param2[1] <- 1 if ((max-min)>1) { for (l in 1:(max-min-1)) { param2[l+1] <- 2*param[l+1] loc[l+1] <- loc[l] + param[1+l]^2 se[l+1] <- sqrt(t(param2) %*%Vparam %*%param2) } } return(c(loc,se)) } ItemLoc <- sapply(1:nitems,function(k){location(min=0,max=nlevel-1,param=seuils[((nlevel-1)*(k-1)+1):((nlevel-1)*k)],Vparam=Vseuils[((nlevel-1)*(k-1)+1):((nlevel-1)*k),((nlevel-1)*(k-1)+1):((nlevel-1)*k)])}) colnames(ItemLoc) <- paste("Item",(1:nitems)*2) ItemLoc <- ItemLoc[c(1,4,2,5,3,6),] rownames(ItemLoc) <- rep(c("Threshold","SE"),nlevel-1) discrimination <- 1/abs(err) sediscr <- diag(err^(-2))%*%Verr%*%diag(err^(-2)) t(rbind(ItemLoc,discrimination,Se=sqrt(diag(sediscr)))) info_modIRT <- ItemInfo(modIRT, lprocess=seq(-6,6,0.1)) meaning <- c("Enjoy","Laugh","Cheerful" ,"Slow" ,"Appearance" ,"Looking Forward" ,"Leisure") items <- paste("hads", seq(2,14,2), sep="_") par(mfrow=c(2,4), mar=c(3,2,2,1), mgp=c(2,0.5,0)) for(k in 1:7) { plot(info_modIRT, which="LevelProb", outcome=items[k], main=paste("Item",2*k,"-",meaning[k]), lwd=2, legend=NULL) } plot(0,axes=FALSE, xlab="", ylab="", col="white") legend("center", legend=paste("Level",0:3), col=1:4, lwd=2, box.lty=0) p <- NULL for (k in 1:7){ ICC <- info_modIRT$LevelInfo[which(info_modIRT$LevelInfo[,1]==items[k]),] p[[k]] <- (ggplot(ICC) + geom_line(aes(x = Lprocess, y = Prob, group = Level,color=Level), show.legend = F,alpha = 1,size=1.2) + theme_bw() + labs(title=paste("Item",2*k,"-",meaning[k])) + xlab("construct") + ylim(0,1) + ylab("Probability of item level")) } p[[8]] <- (ggplot(ICC) + geom_line(aes(x = Lprocess, y = Prob, group = Level,color=Level),alpha = 1,size=1.2) + theme_bw() ) legend <- get_legend(p[[8]]) grid.arrange(p[[1]],p[[2]],p[[3]],p[[4]],p[[5]],p[[6]],p[[7]],as_ggplot(legend),ncol=4) expe <- predictYcond(modIRT,lprocess = seq(-6,6,by=0.1)) plot(expe, xlab="underlying depressive symptomatology", main="Item Expectation Curves", legend=paste("Item",(1:nitems)*2), lwd=2) j <- table(expe$pred$Yname)[1] expe$pred$item <- as.factor(c(rep(2,j),rep(4,j),rep(6,j),rep(8,j),rep(10,j),rep(12,j),rep(14,j))) p <- (ggplot(expe$pred) + geom_line(aes(x = Lprocess, y = Ypred, group=item,color=item),alpha = 1,size=1.2) + theme_bw() + xlab("underlying depressive symptomatology") + ylim(0,3) + ylab("Item Expectation")) p par(mfrow=c(2,4), mar=c(3,2,2,1), mgp=c(2,0.5,0)) for(k in 1:7) { plot(info_modIRT, which="LevelInfo", outcome=items[k], main=paste("Item",2*k,"-",meaning[k]), lwd=2, legend=NULL, ylim=c(0,1.3)) } plot(0,axes=FALSE, xlab="", ylab="", col="white") legend("center", legend=paste("Level",0:3), col=1:4, lwd=2, box.lty=0) plot(info_modIRT, which="ItemInfo", lwd=2, legend.loc="topleft") par(mfrow=c(2,4), mar=c(3,2,2,1), mgp=c(2,0.5,0)) for(k in 1:7){ plot(ns0,outcome = k,shades = T,ylim=c(0,3),bty="l",legend=NULL,main=paste("Item",2*k,"-",meaning[k]),ylab="Item level",xlab="months on the waiting list") plot(ns1,outcome=k,shades=T,add=T,col=2) } sumDIF <- summary(modIRT_DIFg) sumDIF[,2] WaldMult(modIRT_DIFg,pos=c(8:13)) sum <- summary(modIRT_DIFg)[10,] c(sum[1],sum[1]- qnorm(0.975)*sum[2],sum[1]+ qnorm(0.975)*sum[2]) summary(modIRT_DIFt) b <- coef(modIRT_DIFt) v <- vcov(modIRT_DIFt) A <- rbind(c(rep(0,7), rep(-1,6), rep(0,49)), c(rep(0,7+6), rep(-1,6), rep(0,49-6)), c(rep(0,7+12), rep(-1,6), rep(0,49-12))) w <- t(A%*%b) %*% solve(A%*%v%*%t(A)) %*% A%*%b DIF14 <- 1-pchisq(w, df=nrow(A)) DIF <- cbind(seq(2,14,by=2),c(sapply(1:6,function(k){WaldMult(modIRT_DIFt,pos=c(7+k,(7+6+k),(7+2*6+k)))[2]}),DIF14)) colnames(DIF) <- c("item","pvalue") DIF par(mfrow=c(3,3), mar=c(3,2,2,1), mgp=c(2,0.5,0)) for(k in 1:7){ plot(ns0,outcome = k,shades = T,ylim=c(0,3),bty="l",legend=NULL,main=paste("Item",2*k,"-",meaning[k]),ylab="Item level",xlab="months on the waiting list",color=1,lwd=2,xlim=c(0,50)) plot(ns0DIFt,outcome=k,shades=T,lty=2,add=T,col=1,lwd=2) plot(ns1,outcome=k,shades=T,add=T,col=4,lwd=2) plot(ns1DIFt,outcome=k,shades=T,add=T,col=4,lty=2,lwd=2) legend("top",legend=paste("(RS overall test: p = ",round(DIF[k,2],digits = 3),")",sep=""),bty="n") } plot(0,xaxt='n',yaxt='n',bty='n',pch='',ylab='',xlab='', main ='') legend(x="top",legend=c("dialysed","pre-emptive"),lty=c(1,1),col=c(1,4),lwd=2,bty="n") legend(x="bottom",legend=c("without RS","with RS"),lty=c(1,2),col=c("gray","gray"),lwd=2,bty="n")
multResp<- function (...) { nameargs <- function(dots) { nm <- names(dots) fixup <- if (is.null(nm)) seq(along = dots) else nm == "" dep <- sapply(dots[fixup], function(x) deparse(x, width.cutoff = 500)[1]) if (is.null(nm)) nm <- dep else { nm[fixup] <- dep } nm } dots<-as.list(substitute(list(...)))[-1] n=1 if(sys.nframe()>1) for(i in 1:(sys.nframe()-1)){ if(sys.call(-i)[[1]]=="eval"){ n <- i break } } mt<-NULL for (i in seq(along=dots)) { mt<-cbind(mt,as.matrix(eval.parent(dots[i][[1]],n))) } colnames(mt)<-nameargs(dots) mt }
encounter <- function(object,include=NULL,exclude=NULL,debias=FALSE,...) { UD <- object check.projections(UD) if(is.null(include) && is.null(exclude)) { exclude <- diag(1,length(UD)) } if(is.null(include)) { include <- 1 - exclude } axes <- UD[[1]]$axes AXES <- length(axes) CTMM <- lapply(UD,function(U){U@CTMM}) STUFF <- encounter.ctmm(CTMM,include=include,exclude=exclude,debias=debias) CTMM <- STUFF$CTMM BIAS <- STUFF$BIAS bias <- STUFF$bias DOF.area <- rep(DOF.area(CTMM),AXES) names(DOF.area) <- axes for(i in 1:length(object)) { UD[[i]]$PMF <- UD[[i]]$PDF * prod(UD[[i]]$dr) if(debias) { UD[[i]]$PMF <- debias.volume(UD[[i]]$PMF,BIAS[i])$PMF } } GRID <- grid.union(object) DIM <- c(length(GRID$r$x),length(GRID$r$y)) PMF <- matrix(0,DIM[1],DIM[2]) for(i in 1:(length(UD)-1)) { for(j in (i+1):length(UD)) { SUB <- grid.intersection(list(GRID,UD[[i]],UD[[j]])) if(length(SUB[[1]]$x) && length(SUB[[1]]$y)) { PROD <- UD[[i]]$PMF[SUB[[2]]$x,SUB[[2]]$y] * UD[[j]]$PMF[SUB[[3]]$x,SUB[[3]]$y] if(debias) { gamma <- sum(PROD) PROD <- PROD / gamma PROD <- debias.volume(PROD,bias[i,j])$PMF PROD <- PROD * gamma } PMF[SUB[[1]]$x,SUB[[1]]$y] <- PMF[SUB[[1]]$x,SUB[[1]]$y] + include[i,j] * PROD } } } dV <- prod(UD[[1]]$dr) GAMMA <- sum(PMF) PMF <- PMF / GAMMA object <- GRID object$PDF <- PMF / dV object$CDF <- pmf2cdf(PMF) object$axes <- axes IN <- 0 H <- matrix(0,AXES,AXES) for(i in 1:(length(UD)-1)) { for(j in (i+1):length(UD)) { IN <- IN + include[i,j] H <- H + include[i,j] * PDsolve( PDsolve(UD[[i]]$H) + PDsolve(UD[[i]]$H) ) } } H <- H/IN dimnames(H) <- list(axes,axes) object$H <- H object$DOF.area <- DOF.area info <- mean.info(UD) object <- new.UD(object,info=info,type='encounter',CTMM=CTMM) return(object) } encounter.ctmm <- function(CTMM,include=NULL,exclude=NULL,debias=FALSE,...) { axes <- CTMM[[1]]$axes AXES <- length(axes) isotropic <- sapply(CTMM,function(C){C$isotropic}) DIM <- ifelse(isotropic,1,AXES) WC <- 1 + DIM MULT <- ifelse(isotropic,AXES,1) WC <- WC/MULT CLAMP <- 1 DOF <- sapply(CTMM,DOF.area) BIAS <- 1/(1+WC/clamp(DOF,CLAMP,Inf)) isotropic <- all(isotropic) P <- lapply(CTMM,function(M){PDsolve(M$sigma)}) dof <- matrix(0,length(DOF),length(DOF)) bias <- matrix(1,length(DOF),length(DOF)) for(i in 1:length(DOF)) { for(j in 1:length(DOF)) { Pi <- tr(P[[i]]) Pj <- tr(P[[j]]) Pij <- Pi + Pj dof[i,j] <- Pij^2 / ( Pi^2/DOF[i] + Pj^2/DOF[j] ) wc <- (Pi/Pij)*WC[i] + (Pj/Pij)*WC[j] bias[i,j] <- 1 + wc/clamp(dof[i,j],2*CLAMP,Inf) } } fn <- function(CTMM) { IN <- 0 M1 <- array(0,AXES) M2 <- matrix(0,AXES,AXES) P <- lapply(CTMM,function(M){PDsolve(M$sigma)}) for(i in 1:(length(CTMM)-1)) { for(j in (i+1):length(CTMM)) { Pi <- P[[i]] Pj <- P[[j]] if(debias) { Pi <- Pi * BIAS[i] Pj <- Pj * BIAS[j] } Pij <- Pi + Pj sigma <- PDsolve(Pij) mu <- sigma %*% (Pi %*% CTMM[[i]]$mu[1,] + Pj %*% CTMM[[j]]$mu[1,]) mu <- c(mu) include[i,j] <- include[i,j] / sqrt( det(CTMM[[i]]$sigma) * det(CTMM[[j]]$sigma) * det(Pij) ) if(debias) { sigma <- sigma / bias[i,j] } IN <- IN + include[i,j] M1 <- M1 + include[i,j] * mu M2 <- M2 + include[i,j] * (sigma + outer(mu)) } } M1 <- M1/IN M2 <- M2/IN mu <- M1 sigma <- M2 - outer(M1) sigma <- covm(sigma)@par if(isotropic) { sigma <- sigma[1] } return(c(mu,sigma)) } STUFF <- gauss.comp(fn,CTMM,COV=TRUE) I <- 1:AXES mu <- STUFF$MLE[I] names(mu) <- axes COV.mu <- STUFF$COV[I,I,drop=FALSE] dimnames(COV.mu) <- list(axes,axes) I <- (AXES+1):length(STUFF$MLE) sigma <- STUFF$MLE[I] sigma <- covm(sigma,axes=axes,isotropic=isotropic) COV <- STUFF$COV[I,I,drop=FALSE] NAMES <- names(sigma@par)[1:length(I)] dimnames(COV) <- list(NAMES,NAMES) info <- mean.info(CTMM) CTMM <- ctmm(mu=mu,sigma=sigma,COV.mu=COV.mu,COV=COV,axes=axes,isotropic=isotropic,info=info) return(list(CTMM=CTMM,BIAS=BIAS,bias=bias)) }
setup.parameters <- function(model,parameters=list(),nocc=NULL,check=FALSE,number.of.groups=1) { fdir=system.file(package="RMark") fdir=file.path(fdir,"parameters.txt") parameter_definitions=read.delim(fdir,header=TRUE, colClasses=c("character","character",rep("numeric",3),rep("character",4), "logical","character","logical","numeric",rep("logical",3),"numeric","logical","logical","character","logical")) parameter_definitions=parameter_definitions[parameter_definitions$model==model,] par.list=parameter_definitions$parname if(check)return(par.list) pars=vector("list",length(par.list)) names(pars)=par.list for (i in 1:length(par.list)) { if(par.list[i]%in%names(parameters)) pars[[i]]=parameters[[par.list[i]]] } for(i in 1:length(par.list)) { for(j in 3:ncol(parameter_definitions)) if(!is.na(parameter_definitions[i,j]) & parameter_definitions[i,j]!="" & !names(parameter_definitions)[j]%in%names(parameters[[par.list[i]]])) pars[[par.list[i]]][names(parameter_definitions)[j]]=list(parameter_definitions[i,j]) if(pars[[par.list[i]]]$formula!=" " && is.character(pars[[par.list[i]]]$formula)) pars[[par.list[i]]]$formula=as.formula(pars[[par.list[i]]]$formula) if(is.null(pars[[par.list[i]]]$num))pars[[par.list[i]]]$num=NA if(!is.na(pars[[par.list[i]]]$num)&&pars[[par.list[i]]]$num==1)pars[[par.list[i]]]$num=-(nocc-1) if(!is.null(pars[[par.list[i]]]$share) && pars[[par.list[i]]]$share && is.null(pars[[par.list[i]]]$pair)) pars[[par.list[i]]]$share=NULL } return(pars) }
mcmc.list2init <- function(dat) { need_packages("coda") allname <- strsplit(colnames(dat[[1]]),"[",fixed = TRUE) firstname <- sapply(allname,function(x){x[1]}) dims <- lapply(allname,function(x){ y <- sub(pattern = "]",replacement = "",x[2]) y <- as.numeric(strsplit(y,",",fixed=TRUE)[[1]]) return(y) }) ind <- t(sapply(dims,function(x){ if(length(x)==2){ return(x) } else { return(c(NA,NA))} })) uname <- unique(firstname) ic <- list() n <- nrow(dat[[1]]) nc <- coda::nchain(dat) for(c in seq_len(nc)) ic[[c]] <- list() for(v in seq_along(uname)){ cols <- which(firstname == uname[v]) if(length(cols) == 1){ for(c in seq_len(nc)){ ic[[c]][[v]] <- dat[[c]][nr,cols] names(ic[[c]])[v] <- uname[v] } } else { dim <- length(dims[[cols[1]]]) if(dim == 1){ for(c in seq_len(nc)){ ic[[c]][[v]] <- dat[[c]][nr,cols] names(ic[[c]])[v] <- uname[v] } } else if (dim == 2){ for(c in seq_len(nc)){ ic[[c]][[v]] <- matrix(seq_along(cols),max(ind[cols,1]),max(ind[cols,2])) ic[[c]][[v]][ind[cols]] <- dat[[c]][nr,cols] names(ic[[c]])[v] <- uname[v] } } else { PEcAn.logger::logger.severe("dimension not supported",dim,uname[v]) } } } return(ic) }
GetTopography <- function(lon.west, lon.east, lat.north, lat.south, resolution = 3.5, cache = TRUE, file.dir = tempdir(), verbose = interactive()) { checks <- makeAssertCollection() assertNumber(lon.west, finite = TRUE, lower = 0, upper = 360, add = checks) assertNumber(lon.east, finite = TRUE, lower = 0, upper = 360, add = checks) assertNumber(lat.north, finite = TRUE, lower = -90, upper = 90, add = checks) assertNumber(lat.south, finite = TRUE, lower = -90, upper = 90, add = checks) assertNumeric(resolution, lower = 1/60, finite = TRUE, max.len = 2, add = checks) assertFlag(cache, add = checks) assertFlag(verbose, add = checks) reportAssertions(checks) if (isTRUE(cache)) { assertAccess(file.dir, add = checks) } reportAssertions(checks) if (lat.north < lat.south) stopf("'lat.north' can't be smaller than 'lat.south'.") if (lon.west > lon.east) stopf("'lon.east' can't be smaller than '.lon.west'.") d <- 1/60 if (length(resolution) == 1) resolution[2] <- resolution[1] if (lon.west < 180 & lon.east > 180) { field.left <- GetTopography(lon.west, 180, lat.north, lat.south, resolution, cache, file.dir, verbose) field.right <- GetTopography(180 + d, lon.east, lat.north, lat.south, resolution, cache, file.dir, verbose) field <- rbind(field.left, field.right) } else { lon.west <- ConvertLongitude(lon.west, from = 360) lon.east <- ConvertLongitude(lon.east, from = 360) if (cache == TRUE) { file.name <- paste0(digest::sha1(paste(lon.west, lon.east, lat.north, lat.south, resolution[1], resolution[2], sep = "_")), ".txt") file <- file.path(file.dir, file.name) files <- list.files(file.dir, full.names = TRUE) } if (cache == TRUE && file %in% files) { if (verbose == TRUE) messagef("Fetching cached field.") field <- data.table::fread(file)[, -1] } else { url <- .BuildETOPORequest(lon.west, lon.east, lat.north, lat.south, resolution[1], resolution[2]) temp_file <- tempfile(fileext = ".tif") field <- try(utils::download.file(url, temp_file, quiet = TRUE), silent = TRUE) if (is.error(field)) stopf("Failed to fetch file.") check_packages(c("raster", "rgdal"), "GetTopography") field <- data.table::as.data.table(raster::rasterToPoints(raster::raster(temp_file))) colnames(field) <- c("lon", "lat", "h") } field[, lon := ConvertLongitude(lon, from = 180)] if (cache == TRUE) write.csv(field, file = file) } return(field[]) } .BuildETOPORequest <- function(lon.west, lon.east, lat.north, lat.south, resx, resy) { width <- (lon.east - lon.west )/resx height <- (lat.north - lat.south)/resy bbox <- paste(lon.west, lat.south, lon.east, lat.north, sep = "," ) url <- paste0( "https://gis.ngdc.noaa.gov/arcgis/rest/services/DEM_mosaics/ETOPO1_ice_surface/ImageServer/exportImage", "?bbox=", bbox, "&bboxSR=4326", "&size=", paste(width, height, sep = ","), "&imageSR=4326&format=tiff&pixelType=S16&interpolation=+RSP_NearestNeighbor&compression=LZW&f=image") url }
test_that("numeric by numeric", { x1=crosstable(mtcars3, where(is.numeric.and.not.surv), by=disp) expect_equal(dim(x1), c(7,4)) expect_equal(sum(is.na(x1)), 0) x2=crosstable(mtcars3, where(is.numeric.and.not.surv), by=disp, test=T) expect_equal(dim(x2), c(7,5)) expect_equal(sum(is.na(x2)), 0) crosstable(mtcars3, carb, by=disp, cor_method = "kendall") crosstable(mtcars3, where(is.numeric.and.not.surv), by=disp, cor_method = "pearson") crosstable(mtcars3, where(is.numeric.and.not.surv), by=disp, cor_method = "kendall") crosstable(mtcars3, where(is.numeric.and.not.surv), by=disp, cor_method = "spearman") expect_warning(crosstable(mtcars2, disp, by=hp, funs=mean), class="crosstable_funs_by_warning") }) test_that("by factor if numeric <= 3 levels", { x10 = crosstable(mtcars2, cyl, by=vs, total="both", margin="all") x10 %>% as_flextable() x10 = as.data.frame(x10) expect_identical(x10[3,5], "14 (43.75% / 100.00% / 77.78%)") expect_equal(dim(x10), c(4,6)) expect_equal(sum(is.na(x10)), 0) }) test_that("Functions work", { x = crosstable(mtcars3, c(disp, hp, am), by=vs, funs=c(meanCI), funs_arg = list(level=0.99)) x %>% as_flextable() expect_equal(dim(x), c(4,6)) expect_equal(sum(is.na(x)), 0) }) test_that("Function arguments work", { x = crosstable(mtcars3, c(disp, hp, am), by=vs, funs=c(meansd, quantile), funs_arg = list(dig=3, probs=c(0.25,0.75)), total=T, showNA="always") ft = as_flextable(x) x = as.data.frame(x) expect_snapshot(x) expect_snapshot(ft) }) test_that("One function", { bar=function(x, dig=1, ...) c("MinMax" = minmax(x, dig=dig, ...), "N_NA" = nna(x)) bar2=function(x, dig=1, ...) c(minmax(x, dig=dig, ...), "N_NA"=nna(x)) bar3=function(x, dig=1, ...) c(minmax(x, dig=dig, ...), nna(x)) cross_list = list( crosstable(iris2, c(Sepal.Length), funs=mean), crosstable(iris2, c(Sepal.Length), funs="mean"), crosstable(iris2, c(Sepal.Length), funs=c("My mean" = mean)), crosstable(iris2, c(Sepal.Length), funs=cross_summary), crosstable(iris2, c(Sepal.Length), funs=c(" " = cross_summary)), crosstable(iris2, c(Sepal.Length), funs=list(" " = cross_summary)), crosstable(iris2, c(Sepal.Length), funs=c("first"=function(xx) xx[1])), crosstable(iris2, c(Sepal.Length), funs=c("first"=~.x[1])) ) %>% map(as.data.frame) expect_snapshot(cross_list, error=FALSE) expect_warning(crosstable(iris2, c(Sepal.Length, Sepal.Width), funs=function(y) mean(y, na.rm=TRUE)), class="crosstable_unnamed_anonymous_warning") expect_warning(crosstable(iris2, c(Sepal.Length, Sepal.Width), funs=~mean(.x, na.rm=TRUE)), class="crosstable_unnamed_lambda_warning") }) test_that("One function by", { bar=function(x, dig=1, ...) c("MinMax" = minmax(x, dig=dig, ...), "N_NA" = nna(x)) bar2=function(x, dig=1, ...) c(minmax(x, dig=dig, ...), "N_NA"=nna(x)) bar3=function(x, dig=1, ...) c(minmax(x, dig=dig, ...), nna(x)) cross_list = list( crosstable(iris2, c(Sepal.Length), by=Species, funs=mean), crosstable(iris2, c(Sepal.Length), by=Species, funs="mean"), crosstable(iris2, c(Sepal.Length), by=Species, funs=c("My mean" = mean)), crosstable(iris2, c(Sepal.Length), by=Species, funs=cross_summary), crosstable(iris2, c(Sepal.Length), by=Species, funs=c(" " = cross_summary)), crosstable(iris2, c(Sepal.Length), by=Species, funs=list(" " = cross_summary)), crosstable(iris2, c(Sepal.Length), by=Species, funs=c("first"=function(xx) xx[1])), crosstable(iris2, c(Sepal.Length), by=Species, funs=c("first"=~.x[1])) ) %>% map(as.data.frame) expect_snapshot(cross_list, error=FALSE) expect_warning(crosstable(iris2, c(Sepal.Length, Sepal.Width), funs=function(y) mean(y, na.rm=TRUE)), class="crosstable_unnamed_anonymous_warning") expect_warning(crosstable(iris2, c(Sepal.Length, Sepal.Width), funs=~mean(.x, na.rm=TRUE)), class="crosstable_unnamed_lambda_warning") }) test_that("Multiple functions", { x1 = crosstable(iris2, c(Sepal.Length, Sepal.Width), funs=c(var, "meannnn"=mean)) expect_setequal(x1$variable, c("var", "meannnn")) x2 = crosstable(iris2, c(Sepal.Length, Sepal.Width), funs=c( "moy_lambda"=~mean(.x, na.rm=TRUE), "moy_fn"=function(.x) mean(.x, na.rm=TRUE), var, "cross_summary1" = cross_summary )) expect_setequal(x2$variable, c("moy_lambda", "moy_fn", "var", paste("cross_summary1", names(cross_summary(1)))) ) x3 = crosstable(iris2, c(Sepal.Length, Sepal.Width), funs=c( ~mean(.x, na.rm=TRUE), function(.x){ .x=.x+1 mean(.x, na.rm=TRUE) }, var, "moyenne"=mean )) %>% expect_warning2(class="crosstable_unnamed_anonymous_warning") %>% expect_warning2(class="crosstable_unnamed_lambda_warning") expect_setequal(attr(x3, "obj")$variable, c("~mean(.x, na.rm = TRUE)", "function(.x){.x = .x + 1...}", "var", "moyenne")) x4 = crosstable(iris2, c(Sepal.Length, Sepal.Width), funs=c( ~mean(.x, na.rm=TRUE), function(.x){mean(.x, na.rm=TRUE)}, var, mean )) %>% expect_warning2(class="crosstable_unnamed_anonymous_warning") %>% expect_warning2(class="crosstable_unnamed_lambda_warning") expect_setequal(attr(x4, "obj")$variable, c("~mean(.x, na.rm = TRUE)", "function(.x){mean(.x, na.rm = TRUE)}", "var", "mean")) }) test_that("Special summary functions", { ct = crosstable(mtcars2, hp_date, date_format="%d/%m/%Y") %>% as.data.frame() expect_equal(ct[1,4], "22/02/2010 - 02/12/2010") x = mtcars2 %>% dplyr::transmute(mpg=mpg/100000) rlang::local_options(crosstable_only_round=NULL) ct = crosstable(x, funs_arg=list(dig=2, zero_digits=5)) %>% as.data.frame() expect_equal(ct[1,4], "0.000104 / 0.000339") rlang::local_options(crosstable_only_round=TRUE) ct = crosstable(x, funs_arg=list(dig=2, zero_digits=5)) %>% as.data.frame() expect_equal(ct[1,4], "0 / 0") })
embeds_ui <- function(){ fluidPage( title = "coronavirus", tags$head( tags$link(rel="stylesheet", type="text/css", href="www/style.css"), tags$link(rel="stylesheet", type="text/css", href="www/embeds.css"), sever::use_sever(), waiter::use_waiter(include_js = FALSE), HTML( " <script async src='https://www.googletagmanager.com/gtag/js?id=UA-74544116-1'></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'UA-74544116-1'); </script>" ) ), echarts4r::echarts4rOutput("chart", height = "100vh"), waiter::waiter_show_on_load(loader, color = " waiter::waiter_hide_on_render("chart") ) }
make_tcga_group <- function(exp){ k1 = stringr::str_starts(colnames(exp),"TCGA") if(!any(k1))stop("no TCGA samples detected,please check it") k2 = suppressWarnings(as.numeric(stringr::str_sub(colnames(exp),14,15))<10) group_list = ifelse(k1&k2,"tumor","normal") group_list = factor(group_list,levels = c("normal","tumor")) return(group_list) } trans_exp = function(exp,mrna_only = FALSE,lncrna_only = FALSE,gtex = FALSE){ k00 = any(str_detect(colnames(exp),"TCGA")) if(!k00)warning("this expression set probably not from TCGA,please ensure it") k0 = any(str_detect(colnames(exp),"GTEX")) kd = any(str_detect(rownames(exp),"\\.")) if((!(k0|gtex))){ lanno = lnc_anno manno = mRNA_anno }else if(k00){ lanno = lnc_annov23 manno = mRNA_annov23 } if(!kd){ lanno$gene_id = str_remove(lanno$gene_id,"\\.\\d*") manno$gene_id = str_remove(manno$gene_id,"\\.\\d*") } n1 = sum(rownames(exp) %in% manno$gene_id) k1 = length(n1)/nrow(exp)< 0.25 & length(n1)<5000 n2 = sum(rownames(exp) %in% lanno$gene_id) k2 = length(n2)/nrow(exp)< 0.25 & length(n2)<5000 mRNA_exp = exp[rownames(exp) %in% manno$gene_id,] tmp = data.frame(gene_id = rownames(exp)) x = dplyr::inner_join(tmp,manno,by = "gene_id") mRNA_exp = mRNA_exp[!duplicated(x$gene_name),] x = x[!duplicated(x$gene_name),] rownames(mRNA_exp) = x$gene_name lnc_exp = exp[rownames(exp) %in% lanno$gene_id,] tmp = data.frame(gene_id = rownames(exp)) x = dplyr::inner_join(tmp,lanno,by = "gene_id") lnc_exp = lnc_exp[!duplicated(x$gene_name),] x = x[!duplicated(x$gene_name),] rownames(lnc_exp) = x$gene_name message(paste0(nrow(mRNA_exp), " of genes successfully mapping to mRNA,", nrow(lnc_exp), " of genes successfully mapping to lncRNA")) if(mrna_only){ return(mRNA_exp) }else if(lncrna_only){ return(lnc_exp) }else{ expa = rbind(mRNA_exp,lnc_exp) k = !duplicated(rownames(expa)) expa = expa[k,] return(expa) message(paste0(sum(!k), " of duplicaterd genes removed")) } } utils::globalVariables(c("lnc_anno","mRNA_anno","lnc_annov23","mRNA_annov23")) trans_array = function(exp,ids,from = "probe_id", to = "symbol"){ a = intersect(rownames(exp),ids[,from]) message(paste0(length(a) ," of ",nrow(exp)," rownames matched")) ids = ids[!duplicated(ids[,to]),] exp = exp[rownames(exp) %in% ids[,from],] ids = ids[ids[,from]%in% rownames(exp),] exp = exp[ids[,from],] rownames(exp)=ids[,to] message(paste0(nrow(exp)," rownames transformed after duplicate rows removed")) return(exp) } sam_filter = function(exp){ exp = exp[,order(colnames(exp))] n1 = ncol(exp) group = make_tcga_group(exp) exptumor = exp[,group == "tumor"] expnormol = exp[,group == "normal"] exptumor = exptumor[,!duplicated(str_sub(colnames(exptumor),1,12))] expnormol = expnormol[,!duplicated(str_sub(colnames(expnormol),1,12))] exp = cbind(exptumor,expnormol) message(paste("filtered",n1-ncol(exp),"samples.")) return(exp) } match_exp_cl = function(exp,cl,id_column = "id",sample_centric = TRUE){ colnames(cl)[colnames(cl)==id_column] = "id" cl = cl[cl$id %in% substr(colnames(exp),1,12),] exp = exp[,substr(colnames(exp),1,12) %in% cl$id] patient <- substr(colnames(exp),1,12) if(nrow(cl)==0) stop("your exp or cl doesn't match,please check them.") da = data.frame(sample_id = colnames(exp), id = patient) cl = merge(da,cl,by ="id",all.y = TRUE) cl = cl[match(colnames(exp),cl$sample_id),] if(!sample_centric) { Group = make_tcga_group(exp) exp = exp[,Group=="tumor"] cl = cl[Group=="tumor",] cl = cl[order(colnames(exp)),] exp = exp[,sort(colnames(exp))] exp = exp[,!duplicated(cl$id)] cl = cl[!duplicated(cl$id),] } k = identical(colnames(exp),cl$sample_id) if(k)message("match successfully") rownames(cl) = cl$sample_id compiler::setCompilerOptions(suppressAll = TRUE) return(list(exp_matched = exp, cl_matched = cl)) print("New version of tinyarray canceled global assigning inside the package, please obtain exp_matched and cl_matched by split this list result.") }
.Random.seed <- c(403L, 10L, -1980412102L, -1218464891L, -1220695969L, -584492314L, -52584080L, -844273005L, -1505995983L, -33680928L, 1738106494L, -899543799L, 214884155L, 580187914L, -96409876L, 1637995375L, -746216283L, 171284060L, 2082430514L, 479755565L, -263214105L, 213207822L, 353955048L, 2032256747L, -613881975L, -585395432L, 315401798L, -537512287L, 688216371L, 2011920546L, 1536243604L, 260232727L, -21233139L, -306800860L, -400370934L, -97313163L, -1604493873L, -523270442L, -1275164032L, -2039089981L, -1955630495L, -201504048L, -666866642L, 637485529L, 1482595819L, -656279462L, 2113813020L, 446339871L, -1228845195L, -1373923828L, -13905950L, 1397273789L, -1854737609L, 940530654L, -306308840L, -1249088389L, 906809881L, 690688680L, 587020374L, 1931089105L, 1667199107L, 2146304786L, 929568420L, -1255767449L, -1917822019L, -2107599564L, -111235430L, -1094206235L, 1696349823L, 470034438L, -1134408816L, -1256729037L, -1919629871L, -913549440L, 1722714718L, -81579607L, 1635000411L, 1575680106L, 548477196L, 1933325135L, 2093084677L, 897355452L, -779270254L, 170177677L, 525398727L, 1860199342L, -1596539384L, 1254814219L, 2146820841L, 1095404984L, -940447130L, 299013889L, -2056150637L, -2110358974L, -1682829836L, -1463011337L, -2067354643L, 1413235844L, -559031638L, 322637845L, -618637137L, 1743582902L, 646874336L, -1513895901L, 1009686337L, -2129536464L, -2030516146L, 941045945L, 1638853835L, -943066758L, 164031612L, -1298544449L, 1341095317L, -525845076L, -951314558L, -2106852003L, 1878340695L, 322720574L, 323255160L, -1045415845L, -560955463L, -1004651000L, -121738058L, 546143217L, 1761822243L, 201193074L, -112775996L, 1461103239L, 1427612253L, 1526539348L, 567619194L, -561574459L, -984633569L, -914842970L, -1501225936L, 959807187L, -1992237839L, 885405728L, -1972199746L, 827751113L, -781905797L, 2143080010L, 1442839212L, 1532243375L, 623713637L, -1418671332L, 921644914L, -434846739L, -408812505L, -2112955314L, 1939251368L, 571412139L, -571905079L, 1412892632L, -1145090426L, -1415800991L, 162564851L, 1914246498L, 169206740L, -2016278825L, -1990628147L, -117543836L, 47456842L, 725723061L, 1081506575L, 1624262678L, 992481984L, -1083825021L, -1742778207L, -1317562736L, -727251602L, -1833241831L, -1090160725L, -88271462L, -1778618020L, 1398704223L, -944306123L, -1612821556L, -1393131742L, 1834344829L, -1983739273L, -579742818L, 484336216L, -977417285L, 97025369L, 1613657832L, 123750166L, -97646447L, -872020669L, 1763229778L, -590142748L, 1058239783L, -1631793795L, 8176756L, -453243302L, 1533115045L, 1230094527L, 1892303686L, 1597739472L, 405091315L, 1665665809L, -1200424128L, 2131690270L, 1086999529L, -935657189L, 1166326570L, -1556841396L, 713045007L, 1505902405L, 1318623484L, 1061660498L, 324757709L, -1637599097L, -1386370194L, -1972323000L, -1614304949L, -1080886103L, 728568L, 455951654L, -1372047807L, 938360787L, -389343870L, -1641383500L, -381713097L, -1763389395L, -709616316L, -1150117270L, 1601139925L, -1561558417L, -1660824004L, 587125908L, -319265662L, 294170560L, -1949723332L, 42231440L, -1974748126L, 1186449416L, 1315566732L, 1936148508L, 1522353298L, -1900512128L, -1709392876L, -1927146712L, -159593414L, -392495920L, 1506593900L, -1633143116L, -588914670L, -1550663712L, 463041484L, -231983648L, -1391100894L, 1530623272L, 74178828L, 790781500L, 1007834354L, -234219280L, 1290897220L, -994951080L, -373245382L, 1758423280L, -1091980612L, 1437782548L, -999273278L, 717645408L, -1435323012L, 200690896L, -1057252318L, 778750120L, -470418036L, -426038852L, 280696882L, 211319616L, 1257424564L, -1183780536L, -1316281670L, 1022318352L, -476428052L, -1890396076L, -267555054L, -1958411872L, -2053140532L, 1122391904L, 130790594L, -1813848536L, 1398655404L, -164113604L, 186643314L, -525641936L, 311863332L, 1996832312L, -265530662L, 280815504L, -1327158020L, 1961072020L, 1563382594L, -1879373312L, -1846712260L, 1208232528L, -1796587358L, 1276007240L, 1021338124L, 426095324L, 1218291794L, -149869440L, 2055368532L, -458965016L, 1170930426L, -1542324400L, -1259105236L, -668847756L, 392885906L, -1159062944L, -128657268L, -169440928L, 1249257698L, -845912920L, -1091232052L, -690705924L, -1737247822L, 2089548784L, -1430607420L, 699755864L, -1034528390L, -573695568L, -631430724L, -419656108L, -1899710014L, -1211348192L, 1300650940L, 872804432L, 1865294818L, 1833338728L, -1936695476L, -1653502212L, 1621446386L, 1359449344L, 251470964L, 933162504L, 1449672122L, 908019152L, -1523879956L, 1560562580L, 1309716690L, -616678304L, 30700876L, 1693485856L, -269567358L, 181690856L, -457104404L, -506341828L, 887422578L, -1110510736L, -1448260316L, -1701389768L, 1991299482L, -1035319856L, 339928508L, 740460180L, -1006452094L, 2002687424L, -647991492L, -1533185392L, -743987422L, -441166328L, -1394867444L, -573138020L, -894254062L, -256699520L, 1684933396L, -1904184024L, 1210454074L, 480179152L, 1031297644L, 289750068L, -768862062L, 1844527456L, 211823948L, -892367392L, -429050974L, -186872920L, -1711059828L, 589693884L, 315489394L, -1276323856L, 505025604L, 1227962456L, -1519198150L, 1074376816L, 470799932L, -1538533612L, 68119234L, -1249946912L, 725142652L, 1910734032L, -505312350L, 357084712L, -882116340L, 1475041212L, -1293981390L, 711254208L, -1755479500L, -2111698232L, -631932230L, 1717765264L, -2083735828L, -1401135532L, -637712750L, 152753952L, 1639942092L, 1494491360L, 178847426L, -1011514328L, 587680684L, 1304566460L, -2142680590L, -553249232L, -499759196L, -1894936136L, -1009388710L, -1159613296L, -48923780L, -1839040748L, 639765826L, -2031337728L, 709669820L, -1094742192L, 1012586786L, 160145992L, 1130409996L, -1654737828L, -123371054L, -1597219328L, -1159483052L, -942018328L, 1704677626L, -1717958960L, 238735660L, -55996172L, -1688031854L, 79260000L, -342972404L, 1912627936L, -246564254L, -1624419672L, 218180172L, 1167531900L, 453444914L, 2019636848L, -1778592956L, 2092050392L, -1941416070L, 719480368L, -291579972L, -630983084L, -89841598L, 375996906L, 1660611208L, 1297742897L, 1332203171L, 1573332644L, 466003794L, 1934429863L, 1694970609L, -1693328842L, 1073231572L, -263890331L, -1341884305L, 1319836328L, -2119604218L, 861177139L, -2072737387L, -1930881550L, -379639232L, 2141438889L, -497148389L, -1249658900L, -1936449542L, 162186287L, 1693201465L, -1814124978L, 1148032668L, -1582748659L, -548704137L, -305153920L, -1667088674L, 1793070507L, 1942611629L, 540457754L, 1612112856L, 565690433L, 514256627L, 1404424468L, 587490466L, 1738080695L, 586630529L, 1568887686L, -1057087036L, -1585559307L, 1305364831L, -1219837000L, -371186026L, 1582477475L, 468466277L, 1833987970L, -815127312L, 639597721L, -558787445L, 1225694588L, 961571754L, -804394017L, -1639480983L, -1194201730L, -1249153684L, -2146880067L, -1529301369L, -546893200L, 1283930382L, 563570235L, 151680285L, 115089354L, 648112360L, -1071141935L, -1882632765L, 894338756L, 1009634674L, 9314375L, 452879377L, -311687786L, 837933300L, -1544547707L, -245179441L, -432942392L, -954387610L, -930838125L, -1136622859L, 935123666L, -376601312L, -1538396919L, -439797189L, 2038230924L, -1254871526L, -1848256881L, -1454640679L, 1357891182L, -413325828L, 1916411757L, 151259415L, 355476704L, 416910014L, 1488750731L, -508840179L, 895227706L, -1590677640L, 334775585L, -16984621L, -1501924108L, 764415362L, -1359513577L, 426933985L, 758655014L, -672649948L, -677390891L, 661051775L, -967866344L, 900691766L, -1864543805L, 503046149L, 1417298850L, 1682116496L, -1752061127L, -870678549L, -1142955812L, 1934221578L, 586035199L, 281379401L, 1363863518L, -420223092L, -914622627L, -969969817L, 1946932368L, -630457682L, -364325029L, -1286232259L, -625896022L, 303012424L, 1819884145L, 1266228195L, 2087667428L, -1451287022L, 1090152935L, -29129295L, 993608694L, -1539953132L, 1678455077L, -1344710097L, -353411096L, -257652538L, -1285763725L, 1314264533L, -2132567630L, 682530688L, 1308625769L, 1882374107L, -1657411796L, -1428616902L, 1690630127L, -1290485127L, 871908622L, 802467036L, -346356915L, -1957164361L, -230004672L, 1315932446L, 459330539L, 737714029L, -610052646L, -149182568L, -525670911L, -1633925197L, -261081388L, 1784172514L, 291156599L, 512519105L, 1659574598L, 1393684513L )
add_cell_coloring <- dynutils::inherit_default_params( add_milestone_coloring, function( cell_positions, color_cells = c("auto", "none", "grouping", "feature", "milestone", "pseudotime"), trajectory, grouping = NULL, groups = NULL, feature_oi = NULL, expression_source = "expression", pseudotime = NULL, color_milestones = NULL, milestones = NULL, milestone_percentages = NULL ) { color_cells <- match.arg(color_cells) if (color_cells == "auto") { if (!is.null(grouping)) { message("Coloring by grouping") color_cells <- "grouping" } else if (!is.null(feature_oi)) { message("Coloring by expression") color_cells <- "feature" } else if (!is.null(milestones) | !is.null(milestone_percentages)) { message("Coloring by milestone") color_cells <- "milestone" } else if (!is.null(pseudotime)) { message("Coloring by pseudotime") color_cells <- "pseudotime" } else { color_cells <- "grey" } } if (color_cells == "grouping") { grouping <- get_grouping(trajectory, grouping) } else if (color_cells == "feature") { expression <- get_expression(trajectory, expression_source) check_feature(expression, feature_oi) } else if (color_cells == "milestone") { if (is.null(milestone_percentages)) { message("Using milestone_percentages from trajectory") milestone_percentages <- trajectory$milestone_percentages } } else if (color_cells == "pseudotime") { pseudotime <- check_pseudotime(trajectory, pseudotime) cell_positions$pseudotime <- pseudotime[cell_positions$cell_id] } if (color_cells == "grouping") { groups <- check_groups(grouping, groups) cell_positions$color <- grouping[match(cell_positions$cell_id, names(grouping))] color_scale <- scale_color_manual(color_cells, values = set_names(groups$color, groups$group_id), guide = guide_legend(ncol = 5)) fill_scale <- scale_fill_manual(color_cells, values = set_names(groups$color, groups$group_id), guide = guide_legend(ncol = 5)) } else if (color_cells == "feature") { cell_positions$color <- expression[cell_positions$cell_id, feature_oi] color_scale <- scale_color_distiller(paste0(feature_oi, " expression"), palette = "RdYlBu") fill_scale <- scale_fill_distiller(paste0(feature_oi, " expression"), palette = "RdYlBu") } else if (is_colour_vector(color_cells)) { cell_positions$color <- "trajectories_are_awesome" color_scale <- scale_color_manual(NULL, values = c("trajectories_are_awesome" = color_cells), guide = "none") fill_scale <- scale_fill_manual(NULL, values = c("trajectories_are_awesome" = color_cells), guide = "none") } else if (color_cells == "milestone") { if (is.null(milestones)) { assert_that( milestone_percentages$milestone_id %in% trajectory$milestone_ids, msg = "Not all milestones were found in milestones tibble. Supply milestones tibble if supplying milestone_percentages separately." ) milestones <- tibble(milestone_id = trajectory$milestone_ids) } if (!"color" %in% names(milestones)) { milestones <- milestones %>% add_milestone_coloring(color_milestones) } milestone_colors <- set_names(milestones$color, milestones$milestone_id) %>% col2rgb %>% t cell_colors <- milestone_percentages %>% group_by(.data$cell_id) %>% summarise(color = mix_colors(.data$milestone_id, .data$percentage, milestone_colors)) cell_positions <- left_join(cell_positions, cell_colors, "cell_id") color_scale <- scale_color_identity(NULL, guide = "none") fill_scale <- scale_fill_identity(NULL, guide = "none") } else if (color_cells == "pseudotime") { cell_positions$color <- cell_positions$pseudotime color_scale <- ggplot2::scale_color_viridis_c("pseudotime") fill_scale <- ggplot2::scale_fill_viridis_c("pseudotime") } else if (color_cells == "none") { cell_positions$color <- "black" color_scale <- scale_color_identity() fill_scale <- scale_fill_identity() } lst(cell_positions, color_scale, fill_scale, color_cells) } )
library(BART) data(leukemia) leukemia$TD=ceiling(leukemia$TD/30) leukemia$TB=ceiling(leukemia$TB/30) leukemia$TA=ceiling(leukemia$TA/30) leukemia$TC=ceiling(leukemia$TC/30) leukemia$TP=ceiling(leukemia$TP/30) leukemia$X7=ceiling(leukemia$X7/30) N=137 events=unique(sort(c(leukemia$TD, leukemia$TB))) K=length(events) T=events[K] pick=c(1, 3, 5, 7, 8, 9, 10, 11, 12, 14, 20) x.train3=as.matrix(leukemia[ , -c(2, 4, 6)]) P=ncol(x.train3) L=32 x.test3=matrix(nrow=L*N, ncol=P) dimnames(x.test3)=dimnames(x.train3) k=1 for(R in 0:1) for(A in 0:1) for(C in 0:1) for(P in 0:1) for(X2 in c(23, 32)) { h=(k-1)*N+1:N x.test3[h, ]=x.train3 x.test3[h, 'TB']=R*8+(1-R)*T x.test3[h, 'R']=R x.test3[h, 'TA']=A*1+(1-A)*T x.test3[h, 'A']=A x.test3[h, 'TC']=C*5+(1-C)*T x.test3[h, 'C']=C x.test3[h, 'TP']=P*1+(1-P)*T x.test3[h, 'P']=P x.test3[h, 'X2']=X2 k=k+1 } post3=mc.surv.bart(x.train=x.train3, times=leukemia$TD, delta=leukemia$D, events=events, ztimes=c(2, 4, 6, 8), zdelta=c(3, 5, 7, 9), sparse=TRUE, mc.cores=8, seed=99) state3=surv.pre.bart(leukemia$TD, leukemia$D, x.train3, x.test3, events=events, ztimes=c(2, 4, 6, 8), zdelta=c(3, 5, 7, 9)) x.train2=x.train3[ , -(2:3)] x.test2=x.test3[ , -(2:3)] post2=mc.surv.bart(x.train=x.train2, times=leukemia$TB, delta=leukemia$R, events=events, ztimes=c(2, 4, 6), zdelta=c(3, 5, 7), sparse=TRUE, mc.cores=8, seed=99) state2=surv.pre.bart(leukemia$TB, leukemia$R, x.train2, x.test2, events=events, ztimes=c(2, 4, 6), zdelta=c(3, 5, 7)) par(mfrow=c(2, 2)) for(l in 1:L) { h=(l-1)*N*K+1:(N*K) for(G in 1:5) { if(G==1) { state3$tx.test[h, 'G']=1 state3$tx.test[h, 'X8']=0 } else if(G %in% 2:3) { state3$tx.test[h, 'G']=2 state3$tx.test[h, 'X8']=G-2 } else if(G %in% 4:5) { state3$tx.test[h, 'G']=3 state3$tx.test[h, 'X8']=G-4 } state2$tx.test[h, 'G']=state3$tx.test[h, 'G'] state2$tx.test[h, 'X8']=state3$tx.test[h, 'X8'] pred3=predict(post3, state3$tx.test[h, ], mc.cores=8) pred2=predict(post2, state2$tx.test[h, ], mc.cores=8) i=(l-1)*N+1 R=x.test3[i, 'R'] string=paste0(' R=', R, ' A=', x.test3[i, 'A'], ' C=', x.test3[i, 'C'], ' P=', x.test3[i, 'P'], ' X2=', x.test3[i, 'X2']) state0.mean=double(K) state1.mean=double(K) for(j in 1:K) { k=seq(j, N*K, by=K) state0.mean[j]=mean(apply(pred3$surv.test[ , k], 1, mean)) state1.mean[j]=mean(apply(pred2$surv.test[ , k]* pred3$surv.test[ , k], 1, mean)) } if(R==1) state1.mean[8:K]=0 if(G==1) plot(c(0, pred3$times), c(1, state0.mean), type='s', lwd=2, lty=G, ylim=0:1, xlab='t (months)', ylab='P(t, state)', main=string) else lines(c(0, pred3$times), c(1, state0.mean), type='s', lwd=2, lty=G) lines(c(0, pred3$times), c(1, state1.mean), lty=G, type='s', lwd=2, col=2) lines(c(0, pred3$times), c(0, state0.mean-state1.mean), lty=G, type='s', lwd=2, col=4) if((l%%4)==0) { legend('topright', col=c(1, 2, 4), lty=1, lwd=2, legend=c('alive', 'remission', 'relapsed')) } else if((l%%2)==0) { legend('topright', lty=1:5, lwd=2, legend=c('G=1 X8=0', 'G=2 X8=0', 'G=2 X8=1', 'G=3 X8=0', 'G=3 X8=1')) } } } dev.off()
split_plot <- function(wp = NULL, sp = NULL, reps = NULL, type = 2, l = 1, plotNumber = 101, seed = NULL, locationNames = NULL, factorLabels = TRUE, data = NULL) { if (is.null(seed) || is.character(seed) || is.factor(seed)) seed <- runif(1, min = -50000, max = 50000) set.seed(seed) if (all(c(1,2) != type)) { stop("Input type is unknown. Please, choose one: 1 or 2, for CRD or RCBD, respectively.") } args0 <- c(wp, sp, reps, l) args1 <- list(wp, sp, reps, l) if (is.null(data)) { if(all(!is.null(args0))) { if(all(is.numeric(args0)) && all(lengths(args1) == 1)) { WholePlots <- 1:wp SubPlots <- 1:sp }else if(is.character(wp)) { if (length(wp) > 1) { if (is.numeric(sp)) { if (length(sp) == 1) { WholePlots <- wp wp <- length(WholePlots) SubPlots <- 1:sp }else { stop("Input sp should be a integer number.") } }else if (is.character(sp) || is.numeric(sp)) { if (length(sp) > 1) { WholePlots <- wp wp <- length(WholePlots) SubPlots <- sp sp <- length(SubPlots) }else { stop("The number of sub plots should be more than one.") } } }else { stop("The numerb of whole plots should be more than one.") } } }else { stop("Input wp, sp, reps and l must be differents of NULL.") } }else { if(!is.data.frame(data)) stop("Data must be a data frame.") data <- as.data.frame(data[,1:2]) colnames(data) <- c("WholePlot", "SubPlot") WholePlots <- as.vector(na.omit(data$WholePlot)) SubPlots <- as.vector(na.omit(data$SubPlot)) WholePlots.f <- factor(WholePlots, as.character(unique(WholePlots))) SubPlots.f <- factor(SubPlots, as.character(unique(SubPlots))) wp <- length(levels(WholePlots.f)) sp <- length(levels(SubPlots.f)) WholePlots <- as.character(WholePlots.f) SubPlots <- as.character(SubPlots.f) if(!factorLabels) { WholePlots <- as.character(1:wp) SubPlots <- as.character((wp + 1):(wp + sp)) } } b <- reps if (!is.null(plotNumber)) { if (any(!is.numeric(plotNumber)) || any(plotNumber < 1) || any(plotNumber %% 1 != 0) || any(diff(plotNumber) < 0)) { shiny::validate("Input plotNumber must be an integer greater than 0 and sorted.") } }else { plotNumber <- seq(1001, 1000*(l+1), 1000) warning("Since plotNumber was NULL, it was set up to its default value for each location.") } plot.number <- plotNumber if (type == 1) crd <- TRUE else crd <- FALSE pred_plots <- plot_number_splits(plot.number = plot.number, reps = b, l = l, t = wp, crd = crd) plot.random <- pred_plots$plots p.number.loc <- pred_plots$plots_loc if (crd) { loc.list <- vector(mode = "list", length = l) for (v in 1:l) { spd.layout <- matrix(data = 0, nrow = wp * b, ncol = 4) spd.layout[,1] <- plot.random[,v] spd.layout[,2] <- rep(1:b, each = wp) spd.layout[,3] <- rep(WholePlots, each = b) spd.layout <- spd.layout[order(spd.layout[,1]),] rownames(spd.layout) <- 1:(wp * b) colnames(spd.layout) <- c("PLOT", "REP", "Whole-plot", "Sub-plot") loc.list[[v]] <- spd.layout } spd.layout <- paste_by_row(loc.list) plots.n <- as.numeric(spd.layout[,1]) wp.reps <- as.numeric(spd.layout[,2]) wp.random <- as.vector(spd.layout[,3]) type <- "CRD" }else { plot.numbers <- as.vector(unlist(p.number.loc)) wp.random <- replicate(b * l, sample(WholePlots, replace = FALSE)) spd.layout <- matrix(data = 0, nrow = (b * wp) * l, ncol = 4) colnames(spd.layout) <- c("PLOT", "REP", "Whole-plot", "Sub-plot") spd.layout[,1] <- plot.numbers spd.layout[,2] <- rep(1:b, each = wp) spd.layout[,3] <- as.vector(wp.random) plots.n <- as.numeric(spd.layout[,1]) type <- "RCBD" } sp.random <- replicate((b * wp) * l, sample(SubPlots, replace = FALSE)) k <- (b * wp) * l for(i in 1:k) { spd.layout[i,4] <- paste(sp.random[,i], collapse = " ") } loc.spd.layout <- vector(mode = "list", length = l) y <- seq(1, k, b * wp) z <- seq(b * wp, k, b * wp) i <- 1;j <- 1 for(sites in 1:l) { loc.spd.layout[[sites]] <- spd.layout[y[i]:z[j],] i <- i + 1 j <- j + 1 } spd.layout <- as.data.frame(spd.layout) rownames(spd.layout) <- 1:nrow(spd.layout) wp.d <- rep(as.vector(wp.random), each = sp) sp.d <- as.vector(sp.random) if (!is.null(locationNames) && length(locationNames) == l) { LOCATION <- rep(locationNames, each = (sp * wp) * b) }else if (is.null(locationNames) || length(locationNames) != l) { LOCATION <- rep(1:l, each = (sp * wp) * b) } if (crd) { PLOT <- rep(plots.n, each = sp) REPS <- rep(wp.reps, each = sp) spd.output <- data.frame(list(LOCATION = LOCATION, PLOT = PLOT, REP = REPS, wp = wp.d, sp = sp.d, TREATMENT = NA)) colnames(spd.output) <- c("LOCATION", "PLOT", "REP", "WHOLE-PLOT", "SUB-PLOT", "TRT_COMB") }else { PLOT <- rep(plots.n, each = sp) Block <- rep(rep(1:b, each = wp * sp), times = l) spd.output <- data.frame(list(LOCATION = LOCATION, PLOT = PLOT, BLOCK = Block, wp = wp.d, sp = sp.d, TREATMENT = NA)) colnames(spd.output) <- c("LOCATION", "PLOT", "REP", "WHOLE-PLOT", "SUB-PLOT", "TRT_COMB") } z <- 1:nrow(spd.output) for (j in z) { spd.output[j, ncol(spd.output)] <- paste(spd.output[j, 4:5], collapse = "|") } spd_output <- cbind(ID = 1:nrow(spd.output), spd.output) info.design = list(WholePlots = WholePlots, SubPlots = SubPlots, locationNumber = l, locationNames = locationNames, plotNumbers = plot.number, typeDesign = type, seed = seed, idDesign = 5) output <- list(infoDesign = info.design, layoutlocations = loc.spd.layout, fieldBook = spd_output) class(output) <- "FielDHub" return(invisible(output)) }
library(conflicted) suppressMessages(conflict_prefer("filter", "dplyr")) suppressPackageStartupMessages(library(tidyverse)) suppressMessages(library(gsubfn)) suppressMessages(library(readxl)) library(sqldf) CCNI <- read_xlsx(here::here("inst/extdata/IQVIA","Copy of OVERALL_CATEGORIES-4.xlsx"), sheet = "Codeine & Comb, non-injectable", col_names = c("what", "count"), skip = 1) DD <- read_xlsx(here::here("inst/extdata/IQVIA","Copy of OVERALL_CATEGORIES-4.xlsx"), sheet = "Drug Dependence", col_names = c("what", "count"), skip = 1) MOI <- read_xlsx(here::here("inst/extdata/IQVIA","Copy of OVERALL_CATEGORIES-4.xlsx"), sheet = "Morphine-Opium, Injectable", col_names = c("what", "count"), skip = 1) MONI <- read_xlsx(here::here("inst/extdata/IQVIA","Copy of OVERALL_CATEGORIES-4.xlsx"), sheet = "Morphine-Opium, Non Injectable", col_names = c("what", "count"), skip = 1) ORA <- read_xlsx(here::here("inst/extdata/IQVIA","Copy of OVERALL_CATEGORIES-4.xlsx"), sheet = "Opioid Rev agts", col_names = c("what", "count"), skip = 1) SNI <- read_xlsx(here::here("inst/extdata/IQVIA","Copy of OVERALL_CATEGORIES-4.xlsx"), sheet = "Synth Narcotic, Injectable", col_names = c("what", "count"), skip = 1) SNNI <- read_xlsx(here::here("inst/extdata/IQVIA","Copy of OVERALL_CATEGORIES-4.xlsx"), sheet = "Synth Narcotic, Non-Injectable", col_names = c("what", "count"), skip = 1) everything <- tibble(what = unique(c(CCNI$what, DD$what, MOI$what, MONI$what, ORA$what, SNI$what, SNNI$what))) iqvia <- read_rds("inst/extdata/IQVIA/iqvia_raw.rds") parse_iqvia <- DOPE::parse(iqvia$what) %>% tibble() %>% distinct() fill_lookup <- function(x){ if(x %in% c("cd", "dhc", "codeine", "endocet", "hycd", "hydrocodone","hysingla", "ibudone", "lorcet", "lortab", "nalocet", "norco", "oxaydo", "oxycodone", "oxycontin", "percocet", "primlev", "roxicodone", "roxybond", "trezix", "vicodin", "vicoprofen", "xtampza", "zohydro", "xodol")){ df <- tibble(class = "narcotics (opioids)", category = "codeine combinations, non-injectable", synonym = x) } else if(x %in% c("acamprosate", "antabuse", "bunavail" , "buprenex", "bup/nx", "buprenorphine", "butrans", "disulfiram", "naltrexone", "probuphine" , "sublocade", "suboxone", "vivitrol", "zubsolv")){ df <- tibble(class = "treatment drug", category = "treatment drug", synonym = x) } else if(x %in% c("apap", "fiorinal", "ascomp", "butalb", "asa", "ibuprofen", "fioricet", "tylenol", "ibuprof")){ df <- tibble(class = "analgesic", category = "pain relief", synonym = x) } else if(x %in% c("dilaudid", "fentanyl", "hydromorphone", "infumorph", "morphine", "nalbuphine")){ df <- tibble(class = "narcotics (opioids)", category = "morphine-opium, injectable", synonym = x) } else if(x %in% c("abstral", "actiq", "arymo", "belbuca", "duragesic", "embeda", "exalgo","fentora","kadian","lazanda","morphabond", "opana", "opium","oxymorphone","subsys", "ms")){ df <- tibble(class = "narcotics (opioids)", category = "morphine-opium, non-injectable", synonym = x) } else if(x %in% c("evzio", "naloxone", "narcan")){ df <- tibble(class = "reversal agent", category = "reversal agent", synonym = x) } else if(x %in% c("butorphanol", "demerol", "meperidine", "methadone")){ df <- tibble(class = "narcotics (opioids)", category = "synthetic narcotic, injectable", synonym = x) } else if(x %in% c("conzip", "dolophine", "levorphanol", "methadose", "nucynta", "pentazocine", "naloxo", "tramadol", "ultracet", "ultram")){ df <- tibble(class = "narcotics (opioids)", category = "synthetic narcotic, non-injectable", synonym = x) } else if(x %in% c("caf")){ df <- tibble(class = "diuretic", category = "caffeine", synonym = x) }else{ df <- tibble(class = "WHAT", category = "WHAT", synonym = x) } df } iqvia <- map_dfr(parse_iqvia$., fill_lookup) usethis::use_data(iqvia, overwrite = TRUE)
context("files") fname <- paste(sample(unlist(strsplit("somecrazyfile", ""))), collapse = "") test_that("file not found is friendly", { skip_on_cran() expect_error(tidync(fname)) }) test_that("files and bad files are handled", { skip_on_cran() l3b_file <- system.file("extdata/oceandata/S2008001.L3b_DAY_RRS.nc", package = "tidync", mustWork = TRUE) expect_error(suppressWarnings(tidync(l3b_file)), "no variables or dimensions") expect_warning(try(tidync(l3b_file), silent = TRUE), "no dimensions found") expect_warning(try(tidync(l3b_file), silent = TRUE), "no variables found") expect_warning(try(tidync(l3b_file), silent = TRUE), "no variables recognizable") f <- "S20080012008031.L3m_MO_CHL_chlor_a_9km.nc" l3file <- system.file("extdata/oceandata", f, package= "tidync", mustWork = TRUE) expect_warning(try(tidync(l3file[c(1, 1)])), "only one source allowed, first supplied chosen") tfile <- tempfile() nothingfile <- RNetCDF::create.nc(tfile) RNetCDF::close.nc(nothingfile) expect_warning(ouch <- try(tidync::tidync(tfile), silent = TRUE), "no dimensions found") tnc <- tidync(l3file) tnc$grid <- tnc$grid[0, ] expect_output(print(tnc)) }) test_that("verbs have a character method", { skip_on_cran() f <- "S20080012008031.L3m_MO_CHL_chlor_a_9km.nc" l3file <- system.file("extdata/oceandata", f, package= "tidync", mustWork = TRUE) hyper_tibble(l3file, lon = lon < -140, lat = lat > 85) %>% expect_s3_class("tbl_df") hyper_filter(l3file, lon = lon < -140, lat = lat > 85) %>% expect_s3_class("tidync") expect_warning(hyper_slice(l3file, lon = lon < -140, lat = lat > 85, select_var = "chlor_a")) %>% expect_type("list") expect_silent(hyper_array(l3file, lon = lon < -140, lat = lat > 85, select_var = "chlor_a")) %>% expect_type("list") hyper_tbl_cube(l3file, lon = lon < -140, lat = lat > 85) %>% expect_s3_class("tbl_cube") }) test_that("RNetCDF fall back works", { skip_on_cran() ufile <- system.file("extdata", "unidata", "madis-hydro.nc", package = "tidync", mustWork = TRUE) nc_get(ufile, "invTime") %>% expect_is("array") %>% expect_length(1176) nc_get(ufile, "invTime", test = TRUE) %>% expect_is("array") %>% expect_length(1176) expect_output({ expect_error(nc_get(ufile, "notavariable")) expect_error(nc_get(ufile, "notavariable", test = TRUE)) }) })
validEstimObject <- function(object){ par <- object@par; if (length(par) ==4) ansp <- TRUE else ansp <- "Parameter of length different of 4" par0 <- object@par0; if (length(par0) ==4) ansp0 <- TRUE else ansp0 <- "Initial Parameter of length different of 4" vcov <- object@vcov; if (ncol(vcov) ==4 && nrow(vcov)==4) anscov <- TRUE else anscov <- "covariance matrix of length different of 4x4" confint <- object@confint; if (ncol(confint) ==2 && nrow(confint)==4) ansconfint <- TRUE else ansconfint <- "confidance intervall matrix of length different of 4x2" if (ansp==TRUE && ansp0==TRUE && anscov==TRUE && ansconfint==TRUE) res <- TRUE else if (is.character(ansp)) res <- ansp else if (is.character(ansp0)) res <- ansp0 else if (is.character(anscov)) res <- anscov else if (is.character(ansconfint)) res <- ansconfint res } setClass(Class="Estim", representation=representation( par = "numeric", par0 = "numeric", vcov = "matrix", confint = "matrix", data = "numeric", sampleSize = "numeric", others = "list", duration = "numeric", failure = "numeric", method = "character"), validity=validEstimObject ) setMethod("initialize","Estim", function(.Object,par,par0,vcov,confint, method,level,others,data, duration,failure,...){ if (missing(par)) par <- numeric(4) if (missing(par0)) par0 <- numeric(4) if (missing(vcov)) vcov <- matrix(nrow=4,ncol=4) if (missing(confint)) confint <- matrix(nrow=4,ncol=2) if (missing(data)) data <- numeric(100) sampleSize <- length(data) if (missing(method)) method <- "Default" if (missing(others)) others <- list() if (missing(level)) level <- 0 if (missing(duration)) duration <- 0 if (missing(failure)) failure <- 0 NameParamsObjects(par) NameParamsObjects(par0) NameParamsObjects(vcov) NameParamsObjects(confint);attr(confint,"level") <- level callNextMethod(.Object,par=par,par0=par0,vcov=vcov, confint=confint,data=data,sampleSize=sampleSize, method=method,others=others,duration=duration, failure=failure,...) }) setMethod("show","Estim", function(object){ cat("*** Class Estim, method Show *** \n") cat("** Method ** \n") print(object@method) cat("** Parameters Estimation ** \n") print(object@par) cat("** Covariance Matrix Estimation ** \n") print(object@vcov) cat("** Confidence interval Estimation ** \n") print(paste("Confidence level=",attributes(object@confint)$level)) print(paste("data length=",object@sampleSize)) print(object@confint) cat("** Estimation time ** \n") PrintDuration(object@duration) cat("** Estimation status ** \n") if(object@failure==0) cat("success") else cat("failure") cat("\n ******* End Show (Estim) ******* \n") } )
"plot.optPar" <- function( x, main=NULL, which=1, ... ){ if(is.null(main)) main <- deparse(substitute(x)) l<-length(x$best) if(l==0)l<-1 if(which>l){ warning("The selected (",which,") best solution does not exist!\nOnly ", length(x$best)," best solution(s) exist(s).\nThe first best solution will be ploted.\n") which<-1 } plot.mat(x$M,clu=clu(x,which=which),IM=IM(x,which=which),main=main,...) } plot.opt.par<-plot.optPar
create.ETmain <- function (ecopath, smooth_type = NULL, sigmaLN_cst = NULL, pas = NULL, shift = NULL, smooth_param = NULL) { B <- apply(biomass <- Transpose(tab_smooth <- create.smooth(tab_input = ecopath, smooth_type, sigmaLN_cst, pas, shift, smooth_param), ecopath, "biomass"), 1, sum) B_acc <- apply(biomass_acc <- sweep(biomass, 2, ecopath$accessibility, FUN = "*"), 1, sum) P <- apply(flowP <- sweep(biomass, 2, ecopath$prod, FUN = "*"), 1, sum) P_acc <- apply(flowP_acc <- sweep(flowP, 2, ecopath$accessibility, FUN = "*"), 1, sum) Kin <- P/B Kin_acc <- P_acc/B_acc Y <- list() somme_pecheries <- biomass somme_pecheries[] <- 0 for (pecheries in colnames(ecopath)[grep("catch", colnames(ecopath))]) { Y[[paste(pecheries)]] <- Transpose(tab_smooth, ecopath, pecheries) somme_pecheries <- somme_pecheries + Y[[paste(pecheries)]] } Y_tot <- apply(somme_pecheries, 1, sum) F_loss <- Y_tot/P F_loss_acc <- Y_tot/P_acc V <- as.numeric(rownames(biomass))[-1] - as.numeric(rownames(biomass))[-nrow(biomass)] N_loss <- c(log(P[-length(P)]/P[-1])/V - F_loss[-length(F_loss)], NA) N_loss[1]=log(P[1]/P[2]*V[2])-F_loss[1] Fish_mort <- Y_tot/B Fish_mort_acc <- Fish_mort/(B_acc/B) Selec <- B_acc/B Time <- cumsum(c(0, V/Kin[-length(Kin)])) N_loss_acc <- c(log(P_acc[-length(P_acc)]/P_acc[-1])/V - F_loss_acc[-length(F_loss_acc)], NA) N_loss_acc[1]=log(P_acc[1]/P_acc[2]*V[2])-F_loss_acc[1] ET_Main <- cbind(B, B_acc, P, P_acc, Kin, Kin_acc, Y_tot, F_loss, F_loss_acc, N_loss, Fish_mort, Fish_mort_acc, Selec, Time, N_loss_acc) retour<-list(ET_Main = as.data.frame(ET_Main), biomass = biomass, biomass_acc = biomass_acc, prod = flowP, prod_acc = flowP_acc, tab_smooth = tab_smooth,Y=Y) class(retour)<-"ETmain" return(retour) }
DrawArrow <- function(x,y,r,angle=pi/4,cex,open=FALSE,lwd=1,lty=1,col="black") { r <- r%%(2*pi) xrange <- abs(diff(par("usr")[1:2])) yrange <- abs(diff(par("usr")[3:4])) xmarrange <- sum(par("mai")[c(2,4)]) ymarrange <- sum(par("mai")[c(1,3)]) xin <- par("pin")[1] yin <- par("pin")[2] xLeft <- x + ((xin+xmarrange)/xin)*(7/(xin+xmarrange))*(xrange/2.16)*cex*par("csi")*sin(r-angle + pi)/17.5 yLeft <- y + ((yin+ymarrange)/yin)*(7/(yin+ymarrange))*(yrange/2.16)*cex*par("csi")*cos(r-angle + pi)/17.5 xRight <- x + ((xin+xmarrange)/xin)*(7/(xin+xmarrange))*(xrange/2.16)*cex*par("csi")*sin(r+angle + pi)/17.5 yRight <- y + ((yin+ymarrange)/yin)*(7/(yin+ymarrange))*(yrange/2.16)*cex*par("csi")*cos(r+angle + pi)/17.5 if (open) { lines(c(xLeft,x,xRight),c(yLeft,y,yRight),lwd=lwd,col=col,lty=lty) } else { polygon(c(xLeft,x,xRight),c(yLeft,y,yRight),lwd=lwd,col=col,border=NA) } } ArrowMidPoint <- function(x,y,r,angle=pi/4,cex) { r <- r%%(2*pi) xrange <- abs(diff(par("usr")[1:2])) yrange <- abs(diff(par("usr")[3:4])) xmarrange <- sum(par("mai")[c(2,4)]) ymarrange <- sum(par("mai")[c(1,3)]) xin <- par("pin")[1] yin <- par("pin")[2] xLeft <- x + ((xin+xmarrange)/xin)*(7/(xin+xmarrange))*(xrange/2.16)*cex*par("csi")*sin(r-angle + pi)/17.5 yLeft <- y + ((yin+ymarrange)/yin)*(7/(yin+ymarrange))*(yrange/2.16)*cex*par("csi")*cos(r-angle + pi)/17.5 xRight <- x + ((xin+xmarrange)/xin)*(7/(xin+xmarrange))*(xrange/2.16)*cex*par("csi")*sin(r+angle + pi)/17.5 yRight <- y + ((yin+ymarrange)/yin)*(7/(yin+ymarrange))*(yrange/2.16)*cex*par("csi")*cos(r+angle + pi)/17.5 mids <- c((xRight+xLeft)/2,(yRight+yLeft)/2) return(mids) } ArrowRadIn <- function(angle=pi/4,cex) { r <- 0 xrange <- abs(diff(par("usr")[1:2])) yrange <- abs(diff(par("usr")[3:4])) xmarrange <- sum(par("mai")[c(2,4)]) ymarrange <- sum(par("mai")[c(1,3)]) xin <- par("pin")[1] yin <- par("pin")[2] xLeft <- ((xin+xmarrange)/xin)*(7/(xin+xmarrange))*(xrange/2.16)*cex*par("csi")*sin(r-angle + pi)/17.5 yLeft <- ((yin+ymarrange)/yin)*(7/(yin+ymarrange))*(yrange/2.16)*cex*par("csi")*cos(r-angle + pi)/17.5 xRight <- ((xin+xmarrange)/xin)*(7/(xin+xmarrange))*(xrange/2.16)*cex*par("csi")*sin(r+angle + pi)/17.5 yRight <- ((yin+ymarrange)/yin)*(7/(yin+ymarrange))*(yrange/2.16)*cex*par("csi")*cos(r+angle + pi)/17.5 mids <- c(usr2inX2((xRight+xLeft)/2),usr2inY2((yRight+yLeft)/2)) return(sqrt(sum(mids^2))) }
alpha = 0.003 iter = 500 gradient = function(x) return((4*x^3) - (9*x^2)) set.seed(100) x = floor(runif(1)*10) x x.All = vector("numeric",iter) ?vector x.All for(i in 1:iter){ x = x - alpha*gradient(x) x.All[i] = x print(x) } head(x.All); x print(paste("The minimum of f(x) is ", x, sep = "")) layout(1,1) plot(x.All, type = "l")
iso8601chartime2POSIX = function(x,tz){ return(as.POSIXlt(x,format="%Y-%m-%dT%H:%M:%S%z",tz)) }
meigen0 <- function( meig, coords0, s_id0 = NULL ){ if( meig$other$model == "other" ){ stop( "meigen0 is not supported for user-specified spatial proximity matrix" ) } if( !is.null( meig$other$s_id )[ 1 ] ){ if( is.null( s_id0 ) ) { stop( "s_id0 must be provided" ) } else { coords0_0 <-coords0 coords0_x<-tapply(coords0[,1],s_id0,mean) coords0_y<-tapply(coords0[,2],s_id0,mean) coords0 <-as.matrix(cbind(coords0_x, coords0_y)) s_id2 <-data.frame( s_id=rownames(coords0_x), s_id_num = 1:length(coords0_x) ) s_id_dat<-data.frame( s_id = s_id0, id = 1:length(s_id0)) s_id_dat2<-merge(s_id_dat, s_id2, by="s_id", all.x=TRUE) s_id_dat2<-s_id_dat2[order(s_id_dat2$id),c("s_id", "s_id_num")] } } if( meig$other$fast == 0 ){ if( !is.null( meig$other$s_id )[ 1 ] ){ sfk <-meig$other$sfk evk <-meig$ev coordk<-meig$other$coordk Cmean <-meig$other$Cmeank } else { sfk <- meig$sf evk <- meig$ev coordk<- meig$other$coords Cmean <- meig$other$Cmean } } else { sfk <- meig$other$sfk evk <- meig$other$evk coordk <- meig$other$coordk Cmean <- meig$other$Cmean } h <- meig$other$h nm <- dim( coords0 )[ 1 ] sfk <- sfk %*% diag( 1 / (evk+1) ) Dk <- rdist( coordk, coords0 ) if( meig$other$model == "exp" ){ sfk <- t( exp( -Dk / h ) - Cmean ) %*% sfk } else if( meig$other$model == "gau" ){ sfk <- t( exp( - ( Dk / h ) ^ 2 ) - Cmean ) %*% sfk } else if( meig$other$model == "sph" ){ sfk <- t( ifelse( Dk < h , 1 - 1.5 * ( Dk / h ) + 0.5 * ( Dk / h ) ^ 3, 0 ) - Cmean ) %*% sfk } if( !is.null( meig$other$s_id )[ 1 ] ){ sfk <- sfk[ s_id_dat2$s_id_num,] } return( list( sf = sfk, ev = meig$ev, ev_full = meig$ev_full ) ) }
message("TESTING: Object...") library("R.oo") obj <- Object() print(obj) obj <- Object(42L) print(obj) stopifnot(obj == 42L) obj$a <- 1:99 print(obj) fields <- getFields(obj) print(fields) hasA <- hasField(obj, "a") print(hasA) stopifnot(hasA) value <- obj$a str(value) stopifnot(identical(value, 1:99)) obj$a <- 1:100 print(obj) value <- obj[["a"]] str(value) stopifnot(identical(value, 1:100)) obj[["a"]] <- 1:101 print(obj) value <- obj[["a"]] str(value) stopifnot(identical(value, 1:101)) size <- objectSize(obj) print(size) ref <- isReferable(obj) print(ref) stopifnot(isTRUE(ref)) time <- getInstantiationTime(obj) print(time) res <- attach(obj) print(res) stopifnot(exists("a", mode="integer")) str(a) res <- tryCatch(attach(obj), warning=function(w) w) stopifnot(inherits(res, "warning")) res <- detach(obj) print(res) res <- tryCatch(detach(obj), warning=function(w) w) stopifnot(inherits(res, "warning")) obj <- Object() obj$a <- 1 obj$b <- 2 pathnameT <- tempfile() save(obj, file=pathnameT) obj2 <- Object$load(pathnameT) stopifnot(all.equal(getFields(obj2), getFields(obj))) for (key in getFields(obj)) { stopifnot(identical(obj2[[key]], obj[[key]])) } file.remove(pathnameT) obj2 <- newInstance(obj, 43L) print(obj2) stopifnot(obj2 == 43L) hash <- hashCode(obj) print(hash) stopifnot(length(hash) == 1L) neq <- equals(obj, 1) print(neq) stopifnot(!neq) eq <- equals(obj, obj) print(eq) stopifnot(eq) obj3 <- clone(obj) print(obj3) stopifnot(!identical(obj3, obj)) stopifnot(all.equal(obj3, obj)) message("TESTING: Object...DONE")
create_lambda <- function(obj, x_test, group = 0){ nrows <- ifelse(length(attr(obj, "colnames")) == 1, nrow(obj$beta), nrow(obj$beta[[1]])) ncols <- ifelse(length(attr(obj, "colnames")) == 1, ncol(obj$beta), ncol(obj$beta[[1]])) res <- matrix(0, nrow = nrows, ncol = ncols) if (length(attr(obj, "colnames")) == 1) { res <- obj$beta * x_test[attr(obj, "colnames")] } else { lapply(attr(obj, "colnames"), function(nam){ parent <- parent.frame(2) parent$res <- parent$res + obj$beta[[paste0("beta_", nam)]] * x_test[nam] }) } if (!is.null(attr(obj, "group"))) { res[ ,2:ncol(res)] <- res[ ,2:ncol(res)] + obj$f * obj$phi[, group + 1] } exp(res) } predict_obs <- function(x_row, obj, ndraws, cens) { if (!is.null(attr(obj, "group"))) { group <- x_row[length(x_row)] } else { group <- NA } lams <- create_lambda(obj, x_row, group) time_points <- c(0, attr(obj, "S")) if (max(obj$model$y) != max(attr(obj, "S"))) { time_points <- c(time_points, max(obj$model$y)) } U <- diff(time_points) time_per <- 1:length(U) par_surv <- matrix(0, nrow = ndraws, ncol = length(U)) selector <- rep(TRUE, ndraws) for (j in time_per){ if (sum(selector) == 0) break par_surv[selector, j] <- rexp(sum(selector), lams[selector, j + 1]) selector <- par_surv[,j] > U[j] if (j < length(U)){ par_surv[selector, j] <- U[j] } else if (cens == TRUE){ par_surv[selector, j] <- U[j] } } y <- apply(par_surv, 1, sum) return(y) } predict.shrinkDSM <- function(object, newdata, cens = TRUE, ...){ terms <- delete.response(object$model$terms) m <- model.frame(terms, data = newdata, xlev = object$model$xlevels) x_test <- model.matrix(terms, m) if(!is.null(attr(object, "group"))) { x_test <- cbind(x_test, newdata[, attr(object, "group")]) } colnames(x_test)[colnames(x_test) == "(Intercept)"] <- "Intercept" ndraws <- ifelse(length(attr(object, "colnames")) == 1, nrow(object$beta), nrow(object$beta[[1]])) res <- apply(x_test, 1, function(x) predict_obs(x, object, ndraws, cens)) per_surv <- apply(res, 2, function(y) sum(y >= max(object$model$y))/length(y)) class(res) <- "shrinkDSM_pred" attr(res, "censored") <- cens attr(res, "xlim") <- c(min(object$model$y), max(object$model$y)) attr(res, "per_surv") <- per_surv return(res) } plot.shrinkDSM_pred <- function(x, dens_args, legend = TRUE, ...){ assert(!bool_input_bad(legend), "legend has to be a single logical value") xlim <- attr(x, "xlim") standard_plot_args <- list(from = xlim[1], to = xlim[2]) if(!missing(dens_args)){ assert(is.list(dens_args), "dens_args has to be a list") missing_args <- names(standard_plot_args)[!names(standard_plot_args) %in% names(dens_args)] dens_args[missing_args] <- standard_plot_args[missing_args] } else{ dens_args <- standard_plot_args } dens_args$x <- x[,1] dens_estim <- list() dens_estim[[1]] <- do.call(density, dens_args) if (ncol(x) > 1){ for (i in 2:ncol(x)){ dens_args$x <- x[,i] dens_estim[[i]] <- do.call(density, dens_args) } } plot_args <- list(...) standard_plot_args <- list( ylim = c(0, max(sapply(dens_estim, function(x) max(x$y * 1.1)))), main = "Predictive Density of Survival Time" ) missing_args <- names(standard_plot_args)[!names(standard_plot_args) %in% names(plot_args)] plot_args[missing_args] <- standard_plot_args[missing_args] plot_args$x <- dens_estim[[1]] do.call(plot, plot_args) if (ncol(x) > 1){ for (i in 2:ncol(x)){ lines(dens_estim[[i]], col = i) } } if(legend){ lty <- ifelse("lty" %in% names(plot_args), plot_args$lty, 1) legend("topright", legend = paste("Percent survived:", round(attr(x, "per_surv")*100, 2)), col = 1:ncol(x), lty = lty, bty = "n") } }
require(timeSeries) X <- cumulated(LPP2005REC)[, 1:3] for (i in 1:3) X[, i] <- 100*X[, i]/as.vector(X[1,i]) Data <- alignDailySeries(X) Index <- time(Data) tS <- timeSeries(data=Data, charvec=format(Index)) tR <- returns(tS) open <- function(x) as.vector(x)[1] close <- function(x) rev(as.vector(x))[1] high <- function(x) max(x) low <- function(x) min(x) spread <- function(x) max(x) - min(x) by <- timeLastDayInMonth(time(tS)) mean.tR <- aggregate(tR[, "SPI"], by, mean) sd.tR <- aggregate(tR[, "SPI"], by, sd) plot(cbind(mean.tR, sd.tR), type="h") by <- timeLastBizdayInMonth(time(tS), holidays = holidayZURICH()) mean.tR <- aggregate(tR[, "SPI"], by, mean) sd.tR <- aggregate(tR[, "SPI"], by, sd) plot(cbind(mean.tR, sd.tR), type="h") by <- timeSequence(from=start(tD), to=end(tD), by = "week") mean.tR <- aggregate(tR[, "SPI"], by, mean) sd.tR <- aggregate(tR[, "SPI"], by, sd) plot(cbind(mean.tR, sd.tR), type="h") open <- function(x) as.vector(x)[1] close <- function(x) rev(as.vector(x))[1] high <- function(x) max(x) low <- function(x) min(x) SPI <- tS[, "SPI"] by <- timeLastDayInMonth(time(tS)) OHLC <- cbind( aggregate(SPI, by, open), aggregate(SPI, by, high), aggregate(SPI, by, low), aggregate(SPI, by, close)) OHLC spread <- function(x) max(x) - min(x) pspread <- function(x) (max(x) - min(x)) / (0.5 * (max(x) + min(x))) SPI <- tS[, "SPI"] by <- timeLastDayInMonth(time(tS)) SPREAD <- cbind( Points=aggregate(SPI, by, spread), Percent=100*aggregate(SPI, by, pspread)) SPREAD <- round(SPREAD, 2) SPREAD ep <- xts::endpoints(x.xts, on='weeks', k=1) by1 <- index(x.xts)[ep[-1]] period1 <- xts::period.apply(x.xts, INDEX=ep, FUN=mean) FUN <- mean x <- x.xts apply.daily(x, FUN) apply.weekly(x, FUN) apply.monthly(x, FUN) apply.quarterly(x, FUN) apply.yearly(x, FUN) FUN <- mean x <- unique(time(x.tS)) alignDaily(x, include.weekends=FALSE) by1 <- unique(alignMonthly(x, include.weekends=FALSE)) x1 <- timeSeries::aggregate(x.tS, by1, FUN) by2 <- unique(alignMonthly(x, include.weekends=TRUE)) x2 <- timeSeries::aggregate(x.tS, by2, FUN) by1 <- unique(alignQuarterly(x, include.weekends=FALSE)) x1 <- timeSeries::aggregate(x.tS, by1, FUN) by2 <- unique(alignQuarterly(x, include.weekends=TRUE)) x2 <- timeSeries::aggregate(x.tS, by2, FUN) cbind(x1,x2) xts::first(x.xts) xts::last(x.xts) first2 <- function(x) x[start(x), ] last2 <- function(x) x[end(x), ] first2(x.tS) last2(x.tS) INDEX <- seq(1, nrow(xts), by=21) INDEX .period.apply(tS, INDEX, FUN=max) .period.max <- function(x, INDEX, FUN=max) .period.apply(x, INDEX, max) .period.max(tS[, 1], INDEX) .period.min <- function(x, INDEX) .period.apply(x, INDEX, min) .period.min(tS[, 1], INDEX) xts::period.apply(xts[, 1], INDEX, FUN=max) xts::period.max(xts[, 1], INDEX) xts::period.min(xts[, 1], INDEX) xts::period.prod(xts[, 1], INDEX) xts::period.sum(xts[, 1], INDEX) is.timeBased <- function (x) { if (!any(sapply(c( "Date", "POSIXt", "chron", "dates", "times", "timeDate", "yearmon", "yearqtr", "xtime"), function(xx) inherits(x, xx)))) { ans <- FALSE } else { ans <- TRUE } ans } timeBased <- function(x) { is.timeBased(x) } alignDaily(x=time(tS), include.weekends=FALSE) alignMonthly(x=time(tS), include.weekends=FALSE) alignQuarterly(x=time(tS), include.weekends=FALSE) tD <- Sys.timeDate() + 1:1000 timeDate::align(tD, by="10s") timeDate::align(tD, by="60s") timeDate::align(tD, by="10m") td <- as.xts(Sys.time()) + 1:1000 xts::align.time(td, n=10) xts::align.time(td, n=60) xts::align.time(td, n=10*60) xts::shift.time(td, n=10) xts::shift.time(td, n=60) xts::shift.time(td) xts::to.minutes(x,k,name,...) xts::to.minutes3(x,name,...) xts::to.minutes5(x,name,...) xts::to.minutes10(x,name,...) xts::to.minutes15(x,name,...) xts::to.minutes30(x,name,...) xts::to.hourly(x,name,...) xts::to.daily(x,drop.time=TRUE,name,...) xts::to.weekly(x, drop.time=TRUE, name,...) xts::to.monthly(x, indexAt='yearmon', drop.time=TRUE,name,...) xts::to.quarterly(x, indexAt='yearqtr', drop.time=TRUE,name,...) xts::to.yearly(x,drop.time=TRUE,name,...) xts::to.period( x, period = 'months', k = 1, indexAt, name=NULL, OHLC = TRUE, ...) Convert an object to a specified periodicity lower than the given data object. For example, convert a daily series to a monthly series, or a monthly series to a yearly one, or a one minute series to an hourly series. data(sample_matrix) xts <- as.xts(sample_matrix) to.weekly(xts) to.monthly(xts) to.quarterly(xts) to.yearly(xts) tS <- as.timeSeries(sample_matrix) % ----------------------------------------------------------------------------- as.numeric(as.POSIXct(time(tS))) getFinCenter(tS) indexTZ(xts, ) tzone(xts, ) tzone(xts) <- "GMT" .index(xts, ) indexClass(xts) class(time(tS)) % ----------------------------------------------------------------------------- .index <- function(x) as.numeric(as.POSIXct(time(x))) .indexDate <- function(x) .index(x)%/%86400L .indexday <- function(x) .index(x)%/%86400L .indexmday <- function(x) as.POSIXlt(.POSIXct(.index(x)))$mday .indexwday <- function(x) as.POSIXlt(.POSIXct(.index(x)))$wday .indexweek <- function(x) .indexmon <- function(x) .indexyday <- function(x) .indexyear <- function(x) .indexhour <- function(x) .indexmin <- function(x) .indexsec <- function(x) atoms timeSeries::rollMin( x, k, na.pad = FALSE, align = c("center", "left", "right"), ...) timeSeries::rollMax( x, k, na.pad = FALSE, align = c("center", "left", "right"), ...) timeSeries::rollMean( x, k, na.pad = FALSE, align = c("center", "left", "right"), ...) timeSeries::rollMedian( x, k, na.pad = FALSE, align = c("center", "left", "right"), ...) timeSeries::rollStats( x, k, FUN = mean, na.pad = FALSE, align = c("center", "left", "right"), ...) rollDailySeries(x, period="7d", FUN, ...) rollMonthlySeries(x, period="12m", by="1m", FUN, ...) rollMonthlyWindows(x, period="12m", by="1m") apply applySeries
knotsWCE <- function(x){x$knotsmat}
learnerArgsToControl = function(control, ...) { args = list() dots = match.call(expand.dots = FALSE)$... for (i in seq_along(dots)) { arg = dots[[i]] is.missing = if (is.symbol(arg)) { argname = as.character(arg) eval(substitute(missing(symbol), list(symbol = arg)), envir = parent.frame()) } else { argname = names(dots)[i] FALSE } if (!is.missing) { value = tryCatch(eval(arg, envir = parent.frame()), error = function(...) NULL) if (!is.null(value)) { args[[as.character(argname)]] = value } } } do.call(control, args) }
ENAdata <- R6::R6Class("ENAdata", public = list( initialize = function( file, units = NULL, units.used = NULL, units.by = NULL, conversations.by = NULL, codes = NULL, model = NULL, weight.by = "binary", window.size.back = 1, window.size.forward = 0, mask = NULL, include.meta = T, ... ) { args <- list(...); self$function.call <- sys.call(-1); self$function.params <- list(); private$file <- file; self$units <- units; private$units.used <- units.used; private$units.by <- units.by private$conversations.by <- conversations.by; self$codes <- codes; if (is.data.frame(self$codes)) { self$codes <- colnames(self$codes); } private$weight.by <- weight.by; private$window.size <- list( "back" = window.size.back, "forward" = window.size.forward ); for (p in c("units", "units.used", "units.by", "conversations.by", "codes", "model", "weight.by", "window.size.back", "window.size.forward", "mask", "in.par", "grainSize", "include.meta") ) { if (exists(x = p)) { self$function.params[[p]] <- get(p) } else if (!is.null(args[[p]])) { self$function.params[[p]] <- args[[p]] } } self$model <- model private$mask <- mask return(self) }, model = NULL, raw = NULL, adjacency.vectors = NULL, adjacency.matrix = NULL, accumulated.adjacency.vectors = NULL, adjacency.vectors.raw = NULL, units = NULL, unit.names = NULL, metadata = NULL, trajectories = list( units = NULL, step = NULL ), codes = NULL, function.call = NULL, function.params = NULL, process = function() { private$loadFile(); }, get = function(x = "data") { return(private[[x]]) }, add.metadata = function(merge = F) { meta_avail <- colnames(self$raw)[ -which(colnames(self$raw) %in% c(self$codes, private$units.by, private$conversations.by))] meta_avail <- meta_avail[which(meta_avail != "ENA_UNIT")] meta_cols_to_use <- meta_avail[apply(self$raw[, lapply(.SD, uniqueN), by = c(private$units.by), .SDcols = meta_avail ][, c(meta_avail), with = F] , 2, function(x) all(x == 1)) ] raw.meta <- self$raw[!duplicated(ENA_UNIT)][ ENA_UNIT %in% unique( self$accumulated.adjacency.vectors$ENA_UNIT ), c("ENA_UNIT", private$units.by, meta_cols_to_use), with = F ] df_to_return <- raw.meta[ENA_UNIT %in% self$unit.names,]; return(df_to_return) } ), private = list( file = NULL, window.size = NULL, units.used = NULL, units.by = NULL, conversations.by = NULL, weight.by = NULL, trajectory.by = NULL, mask = NULL, loadFile = function() { if(any(class(private$file) == "data.table")) { df_DT <- private$file } else { if(any(class(private$file) == "data.frame")) { df <- private$file } else { df <- read.csv(private$file) } df_DT <- data.table::as.data.table(df) } self$raw <- data.table::copy(df_DT) self$raw$ENA_UNIT <- merge_columns_c(self$raw, private$units.by) self <- accumulate.data(self) self$units <- self$adjacency.vectors[, private$units.by, with = F] if (!self$model %in% c("AccumulatedTrajectory", "SeparateTrajectory")) { self$unit.names <- self$adjacency.vectors$ENA_UNIT } else { self$trajectories$units <- self$units conversation <- self$adjacency.vectors[, private$conversations.by, with = F ] self$trajectories$step <- conversation self$units <- cbind(self$units, conversation) self$unit.names <- paste( self$adjacency.vectors$ENA_UNIT, self$adjacency.vectors$TRAJ_UNIT, sep = "." ) } self$adjacency.vectors.raw <- self$adjacency.vectors adjCols <- colnames(self$adjacency.vectors)[ grep("adjacency.code", colnames(self$adjacency.vectors)) ]; if (is.null(private$mask)) { private$mask <- matrix(1, nrow = length(self$codes), ncol = length(self$codes), dimnames = list(self$codes, self$codes)) } self$adjacency.vectors[, c(adjCols)] <- self$adjacency.vectors[, c(adjCols), with = F] * rep( private$mask[upper.tri(private$mask)], rep(nrow(self$adjacency.vectors), length(adjCols)) ) if( self$function.params$include.meta == T) { self$metadata <- self$add.metadata(merge = F); } else { self$metadata <- data.frame(); } self$adjacency.vectors <- self$adjacency.vectors[, grep("adjacency.code", colnames(self$adjacency.vectors)), with = F ] return(self); } ) )
declareConsts = function() { testData = list() testData$N = 10^4 testData$d = 3 testData$mu = rep(0, 3) testData$Sigma = matrix( c( 1, 0.3, 0.5, 0.3, 1, 0.2, 0.5, 0.2, 1 ), ncol = 3 ) testData$X = MASS::mvrnorm( testData$N, testData$mu, testData$Sigma ) testData$n = 100 testData$data = list( "X" = testData$X ) testData$params = list( "theta" = rnorm( 3, mean = 0, sd = 1 ) ) testData$optStepsize = 1e-5 testData$nIters = 1100 testData$nItersOpt = 1000 testData$burnIn = 100 return( testData ) } logLik = function( params, data ) { Sigma = matrix( c( 1, 0.3, 0.5, 0.3, 1, 0.2, 0.5, 0.2, 1 ), ncol = 3 ) Sigma = tf$constant( Sigma, dtype = tf$float32 ) baseDist = tf$distributions$MultivariateNormalFullCovariance( params$theta, Sigma ) return( tf$reduce_sum( baseDist$log_prob( data$X ) ) ) } logPrior = function( params ) { baseDist = tf$distributions$Normal( 0, 5 ) return( tf$reduce_sum( baseDist$log_prob( params$theta ) ) ) } sgldTest = function( testData ) { stepsize = list( "theta" = 1e-4 ) storage = sgld( logLik, testData$data, testData$params, stepsize, testData$n, logPrior = logPrior, nIters = testData$nIters, verbose = FALSE, seed = 13 ) thetaOut = storage$theta[-c(1:testData$burnIn),] return( thetaOut ) } sgldcvTest = function( testData ) { stepsize = list( "theta" = 1e-4 ) storage = sgldcv( logLik, testData$data, testData$params, stepsize, testData$optStepsize, logPrior = logPrior, minibatchSize = testData$n, nIters = testData$nIters, nItersOpt = testData$nItersOpt, verbose = FALSE, seed = 13 ) thetaOut = storage$theta[-c(1:testData$burnIn),] return( thetaOut ) } sghmcTest = function( testData ) { eta = list( "theta" = 1e-5 ) alpha = list( "theta" = 1e-1 ) L = 3 storage = sghmc( logLik, testData$data, testData$params, eta, logPrior = logPrior, minibatchSize = testData$n, alpha = alpha, L = L, nIters = testData$nIters, verbose = FALSE, seed = 13 ) thetaOut = storage$theta[-c(1:testData$burnIn),] return( thetaOut ) } sghmccvTest = function( testData ) { eta = list( "theta" = 5e-5 ) alpha = list( "theta" = 1e-1 ) L = 3 storage = sghmccv( logLik, testData$data, testData$params, eta, testData$optStepsize, logPrior = logPrior, minibatchSize = testData$n, alpha = alpha, L = L, nIters = testData$nIters, nItersOpt = testData$nItersOpt, verbose = FALSE, seed = 13 ) thetaOut = storage$theta[-c(1:testData$burnIn),] return( thetaOut ) } sgnhtTest = function( testData ) { eta = list( "theta" = 5e-6 ) a = list( "theta" = 1e-2 ) sgnht = list( "theta" = testData$mu ) storage = sgnht( logLik, testData$data, testData$params, eta, logPrior = logPrior, minibatchSize = testData$n, a = a, nIters = testData$nIters, verbose = FALSE, seed = 13 ) thetaOut = storage$theta[-c(1:testData$burnIn),] return( thetaOut ) } sgnhtcvTest = function( testData ) { eta = list( "theta" = 1e-4 ) a = list( "theta" = 1e-2 ) storage = sgnhtcv( logLik, testData$data, testData$params, eta, testData$optStepsize, logPrior = logPrior, minibatchSize = testData$n, a = a, nIters = testData$nIters, nItersOpt = testData$nItersOpt, verbose = FALSE, seed = 13 ) thetaOut = storage$theta[-c(1:testData$burnIn),] return( thetaOut ) } test_that( "Check SGLD chain reasonable for 3d Gaussian", { tryCatch({ tf$constant(c(1, 1)) }, error = function (e) skip("tensorflow not fully built, skipping...")) testData = declareConsts() thetaOut = sgldTest( testData ) for ( d in 1:testData$d ) { expect_gte(min(thetaOut[,d]), -0.5) expect_lte(max(thetaOut[,d]), 0.5) expect_lte(mean(thetaOut[,d]^2), 0.1) } } ) test_that( "Check SGLDCV chain reasonable for 3d Gaussian", { tryCatch({ tf$constant(c(1, 1)) }, error = function (e) skip("tensorflow not fully built, skipping...")) testData = declareConsts() thetaOut = sgldcvTest( testData ) for ( d in 1:testData$d ) { expect_gte(min(thetaOut[,d]), -0.5) expect_lte(max(thetaOut[,d]), 0.5) expect_lte(mean(thetaOut[,d]^2), 0.1) } } ) test_that( "Check SGHMC chain reasonable for 3d Gaussian", { tryCatch({ tf$constant(c(1, 1)) }, error = function (e) skip("tensorflow not fully built, skipping...")) testData = declareConsts() thetaOut = sghmcTest( testData ) for ( d in 1:testData$d ) { expect_gte(min(thetaOut[,d]), -0.5) expect_lte(max(thetaOut[,d]), 0.5) expect_lte(mean(thetaOut[,d]^2), 0.1) } } ) test_that( "Check SGHMCCV chain reasonable for 3d Gaussian", { tryCatch({ tf$constant(c(1, 1)) }, error = function (e) skip("tensorflow not fully built, skipping...")) testData = declareConsts() thetaOut = sghmccvTest( testData ) for ( d in 1:testData$d ) { expect_gte(min(thetaOut[,d]), -0.5) expect_lte(max(thetaOut[,d]), 0.5) expect_lte(mean(thetaOut[,d]^2), 0.1) } } ) test_that( "Check SGNHT chain reasonable for 3d Gaussian", { tryCatch({ tf$constant(c(1, 1)) }, error = function (e) skip("tensorflow not fully built, skipping...")) testData = declareConsts() thetaOut = sgnhtTest( testData ) for ( d in 1:testData$d ) { expect_gte(min(thetaOut[,d]), -0.5) expect_lte(max(thetaOut[,d]), 0.5) expect_lte(mean(thetaOut[,d]^2), 0.1) } } ) test_that( "Check SGNHTCV chain reasonable for 3d Gaussian", { tryCatch({ tf$constant(c(1, 1)) }, error = function (e) skip("tensorflow not fully built, skipping...")) testData = declareConsts() thetaOut = sgnhtcvTest( testData ) for ( d in 1:testData$d ) { expect_gte(min(thetaOut[,d]), -0.5) expect_lte(max(thetaOut[,d]), 0.5) expect_lte(mean(thetaOut[,d]^2), 0.1) } } )