code
stringlengths 1
13.8M
|
---|
"Simulated_individual"
|
calc_commonness_error <- function(x, objective_matrix) {
solution_matrix <- calculate_solution_commonness_rcpp(x$optimized_grid)
MAE_c <- mean(abs(solution_matrix - objective_matrix), na.rm = TRUE)
RCE <- MAE_c / mean(abs(objective_matrix), na.rm = TRUE) * 100
result <- c(MAE_c = MAE_c, RCE = RCE)
return(result)
}
|
context("SEMinR correctly estimates rho_A for the simple model\n")
mobi_mm <- constructs(
reflective("Image", multi_items("IMAG", 1:5)),
reflective("Expectation", multi_items("CUEX", 1:3)),
reflective("Value", multi_items("PERV", 1:2)),
reflective("Satisfaction", multi_items("CUSA", 1:3))
)
mobi_sm <- relationships(
paths(to = "Satisfaction",
from = c("Image", "Expectation", "Value"))
)
seminr_model <- estimate_pls(mobi, mobi_mm, mobi_sm,inner_weights = path_factorial)
rho <- rho_A(seminr_model)
rho_control <- as.matrix(read.csv(file = paste(test_folder,"rho1.csv", sep = ""), row.names = 1))
test_that("Seminr estimates rhoA correctly\n", {
expect_equal(rho, rho_control, tolerance = 0.00001)
})
context("SEMinR correctly estimates rhoA for the interaction model\n")
mobi_mm <- constructs(
reflective("Image", multi_items("IMAG", 1:5)),
reflective("Expectation", multi_items("CUEX", 1:3)),
reflective("Value", multi_items("PERV", 1:2)),
reflective("Satisfaction", multi_items("CUSA", 1:3)),
interaction_term(iv = "Image", moderator = "Expectation", method = orthogonal, weights = mode_A),
interaction_term(iv = "Image", moderator = "Value", method = orthogonal, weights = mode_A)
)
mobi_sm <- relationships(
paths(to = "Satisfaction",
from = c("Image", "Expectation", "Value",
"Image*Expectation", "Image*Value"))
)
seminr_model <- estimate_pls(mobi, mobi_mm, mobi_sm,inner_weights = path_factorial)
rho <- rho_A(seminr_model)
rho_control <- as.matrix(read.csv(file = paste(test_folder,"rho2.csv", sep = ""), row.names = 1))
test_that("Seminr estimates rho_A correctly\n", {
expect_equal(rho, rho_control, tolerance = 0.00001)
})
context("SEMinR correctly estimates PLSc path coefficients, rsquared and loadings for the simple model\n")
mobi_mm <- constructs(
reflective("Image", multi_items("IMAG", 1:5)),
reflective("Expectation", multi_items("CUEX", 1:3)),
reflective("Value", multi_items("PERV", 1:2)),
reflective("Satisfaction", multi_items("CUSA", 1:3))
)
mobi_sm <- relationships(
paths(to = "Satisfaction",
from = c("Image", "Expectation", "Value"))
)
seminr_model <- estimate_pls(mobi, mobi_mm, mobi_sm,inner_weights = path_factorial)
path_coef <- seminr_model$path_coef
loadings <- seminr_model$outer_loadings
rSquared <- seminr_model$rSquared
path_coef_control <- as.matrix(read.csv(file = paste(test_folder,"path_coef1.csv", sep = ""), row.names = 1))
loadings_control <- as.matrix(read.csv(file = paste(test_folder,"loadings1.csv", sep = ""), row.names = 1))
rSquared_control <- as.matrix(read.csv(file = paste(test_folder,"rsquaredplsc.csv", sep = ""), row.names = 1))
test_that("Seminr estimates PLSc path coefficients correctly\n", {
expect_equal(path_coef, path_coef_control, tolerance = 0.00001)
})
test_that("Seminr estimates PLSc loadings correctly\n", {
expect_equal(loadings[,1:4], loadings_control, tolerance = 0.00001)
})
test_that("Seminr estimates rsquared correctly\n", {
expect_equal(rSquared[1:2,], rSquared_control[1:2,], tolerance = 0.00001)
})
|
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
library(bioassays)
filelist <-list("L_HEPG2_P3_72HRS.csv","L_HEPG2_P3_24HRS.csv")
fno<-1
result <- data.frame(stringsAsFactors= FALSE)
zzz <- data.frame(stringsAsFactors= FALSE)
filename<-extract_filename(filelist[fno])[1]
filename
nickname<-extract_filename(filelist[fno], split="_",end=".csv",remove="",sep="")[2]
nickname
data(rawdata96)
rawdata<-rawdata96
head(rawdata)
data(metafile96)
metadata<-metafile96
head(metadata)
rawdata<-data2plateformat(rawdata,platetype = 96)
head(rawdata)
OD_df<- plate2df(rawdata)
head(OD_df)
data<-matrix96(OD_df,"value",rm="TRUE")
heatplate(data,"Plate 1", size=5)
plate_info<-function(file,i){
file<-file[1]
plate<- extract_filename(file,split = "_",end = ".csv", remove = " ", sep=" ")[5]
if(plate == "P2"){
compound<-"CyclosporinA"
concentration<-c(0,1,5,10,15,20,25,50)
type<-c("S1","S2","S3","S4","S5","S6","S7","S8")
dilution<-5
plate_meta<-list(compound=compound,concentration=round(concentration,2),type=type,
dilution=dilution)
}
if(plate == "P3"){
compound<-"Taxol"
concentration<-c(0,0.0125,.025,.05,0.1,1,5,10)
type<-c("S1","S2","S3","S4","S5","S6","S7","S8")
dilution<-5
plate_meta<-list(compound=compound,concentration=round(concentration,2),type=type,
dilution=dilution)
}
if(plate =="p4"){
compound<-c("Cisplatin")
concentration<-c(0,0.5,2,4,8,16,64,"")
type<-c("S1","S2","S3","S4","S5","S6","S7","")
dilution <- 5
plate_meta<-list(compound=compound,concentration=round(concentration,2),type=type,
dilution=dilution)
}
return(plate_meta)
}
plate_details<-plate_info(filelist,1)
plate_details
metadata1<-plate_metadata(plate_details,metadata,mergeby="type")
head(metadata1)
data_DF<- dplyr::inner_join(OD_df,metadata1,by=c("row","col","position"))
assign(paste("data",sep="_",nickname),data_DF)
head(data_DF)
data_DF<-reduceblank(data_DF, x_vector =c("All"),blank_vector = c("Blank"), "value")
head(data_DF)
assign(paste("Blkmin",sep="_",nickname),data_DF)
std<- dplyr::filter(data_DF, data_DF$id=="STD")
std<- aggregate(std$blankminus ~ std$concentration, FUN = mean )
colnames (std) <-c("con", "OD")
head(std)
fit1<-nplr::nplr(std$con,std$OD,npars=3,useLog = FALSE)
x1 <- nplr::getX(fit1); y1 <- nplr::getY(fit1)
x2 <- nplr::getXcurve(fit1); y2 <- nplr::getYcurve(fit1)
plot(x1, y1, pch=15, cex=1, col="red", xlab="Concentration",
ylab="Mean OD", main=paste("Standard Curve: ", nickname), cex.main=1)
lines(x2, y2, lwd=3, col="seagreen4")
params<-nplr::getPar(fit1)$params
nplr::getGoodness(fit1)
estimated_nplr<-estimate(data_DF,colname="blankminus",fitformula=fit1,method="nplr")
head(estimated_nplr)
fit2<-stats::lm(formula = con ~ OD,data = std)
ggplot2::ggplot(std, ggplot2::aes(x=OD,y=con))+
ggplot2::ggtitle(paste("Std Curve:", nickname))+
ggplot2::geom_point(color="red",size=2)+
ggplot2::geom_line(data = ggplot2::fortify(fit2),ggplot2::aes(x=OD,y=.fitted),
colour="seagreen4",size=1)+
ggplot2::theme_bw()
conpred<-estimate(std,colname="OD",fitformula=fit2,method="linear")
compare<-conpred[,c(1,3)]
corAccuracy<-cor(compare)[1,2]
corAccuracy
summary(fit2)
estimated_lr<-estimate(data_DF,colname="blankminus",fitformula=fit2,method="linear")
head(estimated_lr)
estimated_lr$estimated2 <- estimated_lr$estimated * estimated_lr$dilution
head(estimated_lr)
result<-dfsummary(estimated_lr,"estimated2",c("id","type"),
c("STD","Blank"),"plate1", rm="FALSE",
param=c(strict="FALSE",cutoff=40,n=12))
result
pval<-pvalue(result, control="S1", sigval=0.05)
head(pval)
data(rawdata384)
rawdata2<-rawdata384
dim(rawdata2)
head(rawdata2)
data(metafile384)
metadata2<-metafile384
head(metadata2)
rawdata2<-data2plateformat(rawdata2,platetype = 384)
head(rawdata2)
OD_df2 <- plate2df(rawdata2)
head(OD_df2)
data2<-matrix96(OD_df2,"value",rm="TRUE")
heatplate(data2,"Plate 384", size=1.5)
data_DF2<- dplyr::inner_join(OD_df2,metadata2,by=c("row","col","position"))
head(data_DF2)
data3<-matrix96(data_DF2,"cell",rm="TRUE")
heatplate(data3,"Plate 384", size=2)
data4<-matrix96(data_DF2,"compound",rm="TRUE")
heatplate(data4,"Plate 384", size=2)
data_blk<-reduceblank(data_DF2,
x_vector=c("drug1","drug2","drug3","drug4"),
blank_vector = c("blank1","blank2","blank3","blank4"), "value")
dim(data_blk)
head(data_blk)
result2<-dfsummary(data_blk,"blankminus",
c("cell","compound","concentration","type"),
c("blank1","blank2","blank3","blank4"),
nickname="384well",
rm="FALSE",param=c(strict="FALSE",cutoff=40,n=12))
head (result2)
dim (result2)
result3<-dfsummary(data_blk,"blankminus",
c("cell","compound","concentration"),
c("B","drug2","huh7"),
nickname="",
rm="FALSE",param=c(strict="FALSE",cutoff=40,n=12))
head (result3)
dim (result3)
pvalue<-pvalue(result3,"C3",sigval=0.05)
pvalue
|
recreate.pathway <- function(setup, pathway){
setup$super.pathway <- setup$pathway
npath <- length(pathway)
path <- list()
for(i in 1:npath){
path[[i]] <- setup$super.pathway[setup$super.pathway$Gene %in% pathway[[i]][, 'Gene'], ]
}
setup$pathway <- path
setup
}
|
f2.ld.f1 <- function(y, time, group1, group2, subject, time.name="Time",
group1.name="GroupA", group2.name="GroupB", description=TRUE,
time.order=NULL, group1.order=NULL, group2.order=NULL,plot.RTE=TRUE,show.covariance=FALSE,order.warning=TRUE)
{
var<-y
if(is.null(var)||is.null(time)||is.null(group1)||is.null(group2)||is.null(subject))
stop("At least one of the input parameters (y, time, group1, group2, or subject) is not found.")
sublen<-length(subject)
varlen<-length(var)
timlen<-length(time)
gro1len<-length(group1)
gro2len<-length(group2)
if((sublen!=varlen)||(sublen!=timlen)||(sublen!=gro1len)||(sublen!=gro2len))
stop("At least one of the input parameters (y, time, group1, group2, or subject) has a different length.")
library(MASS)
tlevel <- unique(time)
slevel <- unique(subject)
g1level <- unique(group1)
g2level <- unique(group2)
t <- length(tlevel)
s <- length(slevel)
a <- length(g1level)
b <- length(g2level)
if((t*s)!=length(var))
stop("Number of levels of subject (",s, ") times number of levels of time (",t,")
is not equal to the total number of observations (",length(var),").",sep="")
if(!is.null(time.order))
{
tlevel <- time.order
tlevel2 <- unique(time)
if(length(tlevel)!=length(tlevel2))
stop("Length of the time.order vector (",length(tlevel), ")
is not equal to the levels of time vector (",length(tlevel2),").",sep="")
if(mean(sort(tlevel)==sort(tlevel2))!=1)
stop("Elements in the time.order vector is different from the levels specified in the time vector.",sep="")
}
if(!is.null(group1.order))
{
g1level <- group1.order
g1level2 <- unique(group1)
if(length(g1level)!=length(g1level2))
stop("Length of the group1.order vector (",length(g1level), ")
is not equal to the levels of group1 vector (",length(g1level2),").",sep="")
if(mean(sort(g1level)==sort(g1level2))!=1)
stop("Elements in the group1.order vector is different from the levels specified in the group1 vector.",sep="")
}
if(!is.null(group2.order))
{
g2level <- group2.order
g2level2 <- unique(group2)
if(length(g2level)!=length(g2level2))
stop("Length of the group2.order vector (",length(g2level), ")
is not equal to the levels of group2 vector (",length(g2level2),").",sep="")
if(mean(sort(g2level)==sort(g2level2))!=1)
stop("Elements in the group2.order vector is different from the levels specified in the group2 vector.",sep="")
}
newgroup1<-double(length(var))
newgroup2<-double(length(var))
gvector<-double(length(var))
for(i in 1:length(var))
{
gvector[i]<-b*which(g1level==group1[i])+which(g2level==group2[i])-b
newgroup1[i]<-which(g1level==group1[i])
newgroup2[i]<-which(g2level==group2[i])
}
sortvector<-double(length(var))
newsubject<-double(length(var))
newtime<-double(length(var))
for(i in 1:length(var))
{
row<-which(subject[i]==slevel)
col<-which(time[i]==tlevel)
newsubject[i]<-row
newtime[i]<-col
sortvector[((col-1)*s+row)]<-i
}
subject<-newsubject[sortvector]
var<-var[sortvector]
time<-newtime[sortvector]
group1<-newgroup1[sortvector]
group2<-newgroup2[sortvector]
grouptemp<-order(gvector[1:s])
groupplus<-(rep(c(0:(t-1)),e=s))*s
groupsort<-(rep(grouptemp,t))+groupplus
subject<-rep(c(1:s),t)
var<-var[groupsort]
time<-time[groupsort]
group1<-group1[groupsort]
group2<-group2[groupsort]
origg1level<-g1level
origg2level<-g2level
origtlevel<-tlevel
origslevel<-slevel
g1level<-unique(group1)
g2level<-unique(group2)
tlevel<-unique(time)
slevel<-unique(subject)
factor1<-group1
factor2<-group2
factor1.name<-group1.name
factor2.name<-group2.name
time<-factor(time)
FAC.1<-factor(factor1)
FAC.2<-factor(factor2)
facs.1 <- levels(FAC.1)
facs.2 <- levels(FAC.2)
tlevel <- levels(time)
varL <- 1-is.na(var)
T<-nlevels(time)
A<-nlevels(FAC.1)
B<-nlevels(FAC.2)
vmat<-matrix(ncol=T, nrow=length(var)/T)
Lamdamat<-matrix(ncol=T, nrow=length(var)/T)
for(i in 1:T)
{
tempV<-var[which(time==tlevel[i])]
tempL<-varL[which(time==tlevel[i])]
subj<-subject[which(time==tlevel[i])]
ordering<-order(subj)
if(i==1)
{
fact1<-factor1[which(time==tlevel[i])]
fact2<-factor2[which(time==tlevel[i])]
FAC.1<-fact1[ordering]
FAC.2<-fact2[ordering]
FAC.1<-factor(FAC.1)
FAC.2<-factor(FAC.2)
}
vmat[,i]<-tempV[ordering]
Lamdamat[,i]<-tempL[ordering]
}
D <- vmat
colnames(D) <- NULL
rownames(D) <- NULL
N <- length(D[,1])
RD <- rank(c(D))
Rmat <- matrix(RD, nrow=N, ncol=T)
NN <- sum(varL)
Rmat <- Rmat * Lamdamat
RMeans <- rep(0, (A + B + T + (A*B) + (A*T) + (B*T) + (A*B*T)))
Ni <- apply(Lamdamat, 2, sum)
Rmat.fac <- cbind(FAC.1, FAC.2, Rmat)
colnames(Rmat.fac) <- NULL
Lamdamat.fac <- cbind(FAC.1, FAC.2, Lamdamat)
colnames(Lamdamat.fac) <- NULL
fn.fact.manip <- function(fullRmat, n, n.a, n.b, n.t, A.ni, B.ni)
{
res.list <- list(0)
res.list.A <- list(0)
res.A <- list(0)
res.AB <- list(0)
res.AT <- list(0)
for(i in 1:n.a)
{
temp.Rmat <- matrix(0, nrow=A.ni[i], ncol=(n.t+1))
temp.Rmat <- fullRmat[(fullRmat[,1]==i),-1]
res.A[[i]] <- c(temp.Rmat[,-1])
res.AB[[i]] <- list(0)
for(j in 1:n.b) res.AB[[i]][[j]] <- temp.Rmat[(temp.Rmat[,1]==j),-1]
res.AT[[i]] <- temp.Rmat[,-1]
}
res.list.A[[1]] <- res.A
res.list.A[[2]] <- res.AB
res.list.A[[3]] <- res.AT
res.list.B <- list(0)
res.B <- list(0)
res.BT <- list(0)
for(i in 1:n.b)
{
temp.Rmat <- matrix(0, nrow=B.ni[i], ncol=(n.t+1))
temp.Rmat <- fullRmat[(fullRmat[,2]==i),-2]
res.B[[i]] <- c(temp.Rmat[,-1])
res.BT[[i]] <- temp.Rmat[,-1]
}
res.list.B[[1]] <- res.B
res.list.B[[2]] <- res.BT
res.list[[1]] <- res.list.A
res.list[[2]] <- res.list.B
return(res.list)
}
Ra.list <- fn.fact.manip(Rmat.fac, N, A, B, T, as.vector(summary(FAC.1)), as.vector(summary(FAC.2)))
R1a.list <- fn.fact.manip(Lamdamat.fac, N, A, B, T, as.vector(summary(FAC.1)), as.vector(summary(FAC.2)))
for(i in 1:A) RMeans[i] <- (sum(Ra.list[[1]][[1]][[i]]) / sum(R1a.list[[1]][[1]][[i]]))
ric <- A
for(i in 1:B) RMeans[(ric + i)] <- (sum(Ra.list[[2]][[1]][[i]]) / sum(R1a.list[[2]][[1]][[i]]))
ric <- ric + B
RMeans[(ric + 1) : (ric + T)] <- (apply(Rmat, 2, sum) / apply(Lamdamat, 2, sum))
ric <- ric + T
ric.l <- ric + (A*B) + (A*T) + (B*T)
for(i in 1:A)
{
for(j in 1:B)
{
RMeans[(ric + (i-1)*B + j)] <- (sum(Ra.list[[1]][[2]][[i]][[j]]) / sum(R1a.list[[1]][[2]][[i]][[j]]))
RMeans[(ric.l + ((i-1)*B + (j-1))*T + 1) : (ric.l + ((i-1)*B + (j-1))*T + T)] <- apply(
Ra.list[[1]][[2]][[i]][[j]], 2, sum) / apply(R1a.list[[1]][[2]][[i]][[j]], 2, sum)
}
}
rm(ric.l)
ric <- ric + A*B
for(i in 1:A) RMeans[(ric + (i-1)*T + 1): (ric + (i-1)*T + T)] <- apply(Ra.list[[1]][[3]][[i]],2, sum) / apply(
R1a.list[[1]][[3]][[i]], 2, sum)
ric <- ric + A*T
for(i in 1:B) RMeans[(ric + (i-1)*T + 1): (ric + (i-1)*T + T)] <- apply(Ra.list[[2]][[2]][[i]],
2, sum) / apply(R1a.list[[2]][[2]][[i]], 2, sum)
RTE <- (RMeans - 0.5) / NN
time.vec <- tlevel
fn.nice.out <- function(A, B, T)
{
SOURCE <- rep(0,0)
for(i in 1:A) SOURCE <- c(SOURCE, paste(factor1.name, origg1level[i],sep=""))
for(i in 1:B) SOURCE <- c(SOURCE, paste(factor2.name, origg2level[i],sep=""))
for(i in 1:T) SOURCE <- c(SOURCE, paste(time.name, origtlevel[i],sep=""))
for(i in 1:A)
for(j in 1:B)
SOURCE <- c(SOURCE, paste(factor1.name,origg1level[i],":",factor2.name,origg2level[j],sep=""))
for(i in 1:A)
for(j in 1:T)
SOURCE <- c(SOURCE, paste(factor1.name,origg1level[i],":",time.name,origtlevel[j],sep=""))
for(i in 1:B)
for(j in 1:T)
SOURCE <- c(SOURCE, paste(factor2.name,origg2level[i],":",time.name,origtlevel[j],sep=""))
for(i in 1:A)
for(j in 1:B)
for(k in 1:T)
SOURCE <- c(SOURCE, paste(factor1.name,origg1level[i],":",factor2.name,origg2level[j],":",time.name,origtlevel[k],sep=""))
return(SOURCE)
}
SOURCE <- fn.nice.out(A, B, T)
Nobs <- rep(0, (A + B + T + (A*B) + (A*T) + (B*T) + (A*B*T)))
for(i in 1:A) Nobs[i] <- sum(R1a.list[[1]][[1]][[i]])
ric <- A
for(i in 1:B) Nobs[(ric + i)] <- sum(R1a.list[[2]][[1]][[i]])
ric <- ric + B
Nobs[(ric + 1) : (ric + T)] <- apply(Lamdamat, 2, sum)
ric <- ric + T
ric.l <- ric + (A*B) + (A*T) + (B*T)
for(i in 1:A)
{
for(j in 1:B)
{
Nobs[(ric + (i-1)*B + j)] <- sum(R1a.list[[1]][[2]][[i]][[j]])
Nobs[(ric.l + ((i-1)*B + (j-1))*T + 1) : (ric.l + ((i-1)*B + (j-1))*T + T)] <-
apply(R1a.list[[1]][[2]][[i]][[j]], 2, sum)
}
}
rm(ric.l)
ric <- ric + A*B
for(i in 1:A) Nobs[(ric + (i-1)*T + 1): (ric + (i-1)*T + T)] <- apply(R1a.list[[1]][[3]][[i]], 2, sum)
ric <- ric + A*T
for(i in 1:B) Nobs[(ric + (i-1)*T + 1): (ric + (i-1)*T + T)] <- apply(R1a.list[[2]][[2]][[i]], 2, sum)
PRes1 <- data.frame(RankMeans=RMeans, Nobs, RTE)
rd.PRes1 <- round(PRes1, Inf)
rownames(rd.PRes1)<-SOURCE
model.name<-"F2 LD F1 Model"
if(description==TRUE)
{
cat(" Total number of observations: ",NN,"\n")
cat(" Total number of subjects: " , N,"\n")
cat(" Total number of missing observations: ",(N*T - NN),"\n")
cat("\n Class level information ")
cat("\n ----------------------- \n")
cat(" Levels of", time.name, "(sub-plot factor time):", T, "\n")
cat(" Levels of", factor1.name, "(whole-plot factor group1):", A,"\n")
cat(" Levels of", factor2.name, "(whole-plot factor group2):", B,"\n")
cat("\n Abbreviations ")
cat("\n ----------------------- \n")
cat(" RankMeans = Rank means\n")
cat(" Nobs = Number of observations\n")
cat(" RTE = Relative treatment effect\n")
cat(" Wald.test = Wald-type test statistic\n")
cat(" ANOVA.test = ANOVA-type test statistic with Box approximation\n")
cat(" ANOVA.test.mod.Box = modified ANOVA-type test statistic with Box approximation\n")
cat(" covariance = Covariance matrix","\n")
cat(" Note: The description output above will disappear by setting description=FALSE in the input. See the help file for details.","\n\n")
}
if(order.warning==TRUE)
{
cat(" F2 LD F1 Model ")
cat("\n ----------------------- \n")
cat(" Check that the order of the time, group1, and group2 levels are correct.\n")
cat(" Time level: " , paste(origtlevel),"\n")
cat(" Group1 level: " , paste(origg1level),"\n")
cat(" Group2 level: " , paste(origg2level),"\n")
cat(" If the order is not correct, specify the correct order in time.order, group1.order, or group2.order.\n\n")
}
fn.P.mat <- function(arg1)
{
I <- diag(1, arg1, arg1)
J <- matrix((1/arg1), arg1, arg1)
return(I - J)
}
PA <- fn.P.mat(A)
PB <- fn.P.mat(B)
PT <- fn.P.mat(T)
A1 <- matrix((1/A), 1, A)
B1 <- matrix((1/B), 1, B)
T1 <- matrix((1/T), 1, T)
CA <- kronecker(PA, kronecker(B1, T1))
CB <- kronecker(A1, kronecker(PB, T1))
CT <- kronecker(A1, kronecker(B1, PT))
CAB <- kronecker(PA, kronecker(PB, T1))
CBT <- kronecker(A1, kronecker(PB, PT))
CAT <- kronecker(PA, kronecker(B1, PT))
CABT <- kronecker(PA, kronecker(PB, PT))
fn.covr<-function(N, d, NN, Rmat.list, DatRMeans, Lamdamat.list, A, B, T)
{
V<-matrix(0,d,d);
temp.mat <- matrix(0, T, T);
fn.covr.block.mats <- function(N,d,NN,Ni,Rmat,DatRMeans,Lamdamat)
{
V<-matrix(0,d,d);
for(s in 1:d)
{
for(sdash in 1:d)
{
if(s==sdash)
{
temp<-(Rmat[,s]-DatRMeans[s])*(Rmat[,s]-DatRMeans[s]);
V[s,sdash]<-V[s,sdash]+N*(Lamdamat[,s]%*%temp)/(NN^2*Ni[s]*(Ni[s]-1));
}
if(s!=sdash)
{
temp<-(Rmat[,s]-DatRMeans[s])*(Rmat[,sdash]-DatRMeans[sdash]);
temp1<-Lamdamat[,s]*Lamdamat[,sdash];
ks<-(Ni[s]-1)*(Ni[sdash]-1)+Lamdamat[,s]%*%Lamdamat[,sdash]-1;
V[s,sdash]<-V[s,sdash]+N*(temp1%*%temp)/(NN^2*ks);
}
}
}
return(V);
}
for(i in 1:A)
{
for(j in 1:B)
{
temp.Rmat <- Rmat.list[[i]][[j]]
temp.Lamdamat <- Lamdamat.list[[i]][[j]]
Ni <- apply(temp.Lamdamat, 2, sum)
temp.mat <- fn.covr.block.mats(nrow(temp.Rmat), T, NN, Ni, temp.Rmat, DatRMeans[(((i-1)*
B + (j-1))*T + 1) : (((i-1)*B + (j-1))*T + T)], temp.Lamdamat)
V[((((i-1)*B + (j-1))*T + 1) : (((i-1)*B + (j-1))*T + T)), ((((i-1)*B + (j-1))*T + 1) :
(((i-1)*B + (j-1))*T + T))] <- (N/nrow(temp.Rmat))*temp.mat
}
}
return(V);
}
ric <- (A + B + T + B*A + T*A + B*T)
V <- fn.covr(N, A*B*T, NN, Ra.list[[1]][[2]], RMeans[(ric + 1) : (ric + A*B*T)],
R1a.list[[1]][[2]], A, B, T)
SING.COV <- FALSE
if(qr(V)$rank < (A*B*T)) SING.COV <- TRUE
WARN.1 <- FALSE
if(T > N) WARN.1 <- TRUE
pvec <- RTE[(ric + 1) : (ric + A*B*T)]
if((T > 1) && (A > 1) && (B > 1))
{
WA <- N*t(CA%*%pvec)%*%ginv(CA%*%V%*%t(CA))%*%(CA%*%pvec)
WB <- N*t(CB%*%pvec)%*%ginv(CB%*%V%*%t(CB))%*%(CB%*%pvec)
WT <- N*t(CT%*%pvec)%*%ginv(CT%*%V%*%t(CT))%*%(CT%*%pvec)
WAB <- N*t(CAB%*%pvec)%*%ginv(CAB%*%V%*%t(CAB))%*%(CAB%*%pvec)
WAT <- N*t(CAT%*%pvec)%*%ginv(CAT%*%V%*%t(CAT))%*%(CAT%*%pvec)
WBT <- N*t(CBT%*%pvec)%*%ginv(CBT%*%V%*%t(CBT))%*%(CBT%*%pvec)
WABT <- N*t(CABT%*%pvec)%*%ginv(CABT%*%V%*%t(CABT))%*%(CABT%*%pvec)
dfWA <- qr(CA)$rank
dfWB <- qr(CB)$rank
dfWT <- qr(CT)$rank
dfWAB <- qr(CAB)$rank
dfWAT <- qr(CAT)$rank
dfWBT <- qr(CBT)$rank
dfWABT <- qr(CABT)$rank
if(!is.na(WA) && WA > 0) pWA <- pchisq(WA, dfWA, lower.tail=FALSE)
else pWA <- NA
if(!is.na(WB) && WB > 0) pWB <- pchisq(WB, dfWB, lower.tail=FALSE)
else pWB <- NA
if(!is.na(WT) && WT > 0) pWT <- pchisq(WT, dfWT, lower.tail=FALSE)
else pWT <- NA
if(!is.na(WAB) && WAB > 0) pWAB <- pchisq(WAB, dfWAB, lower.tail=FALSE)
else pWAB <- NA
if(!is.na(WBT) && WBT > 0) pWBT <- pchisq(WBT, dfWBT, lower.tail=FALSE)
else pWBT <- NA
if(!is.na(WAT) && WAT > 0) pWAT <- pchisq(WAT, dfWAT, lower.tail=FALSE)
else pWAT <- NA
if(!is.na(WABT) && WABT > 0) pWABT <- pchisq(WABT, dfWABT, lower.tail=FALSE)
else pWABT <- NA
W <- rbind(WA, WB, WT, WAB, WAT, WBT, WABT)
pW <- rbind(pWA, pWB, pWT, pWAB, pWAT, pWBT, pWABT)
dfW <- rbind(dfWA, dfWB, dfWT, dfWAB, dfWAT, dfWBT, dfWABT)
WaldType <- data.frame(W, dfW, pW)
rd.WaldType <- round(WaldType, Inf)
Wdesc <- rbind(factor1.name, factor2.name, time.name, paste(factor1.name, ":", factor2.name, sep=""),
paste(factor1.name, ":", time.name, sep=""), paste(factor2.name, ":", time.name, sep=""),
paste(factor1.name, ":", factor2.name, ":", time.name, sep=""))
colnames(rd.WaldType) <- c("Statistic", "df", "p-value")
rownames(rd.WaldType) <- Wdesc
fn.tr <- function(mat)
{
return(sum(diag(mat)))
}
RTE.B <- RTE[(A + B + T + B*A + T*A + B*T + 1) : (A + B + T + B*A + T*A + B*T + A*B*T)]
BtA <- t(CA)%*%(ginv(CA%*%t(CA)))%*%CA
BtB <- t(CB)%*%(ginv(CB%*%t(CB)))%*%CB
BtT <- t(CT)%*%(ginv(CT%*%t(CT)))%*%CT
BtAB <- t(CAB)%*%(ginv(CAB%*%t(CAB)))%*%CAB
BtAT <- t(CAT)%*%(ginv(CAT%*%t(CAT)))%*%CAT
BtBT <- t(CBT)%*%(ginv(CBT%*%t(CBT)))%*%CBT
BtABT <- t(CABT)%*%(ginv(CABT%*%t(CABT)))%*%CABT
TVA <- BtA%*%V
BA <- (N/fn.tr(TVA)) * ((t(RTE.B)) %*% BtA %*% (RTE.B))
BAf <- ((fn.tr(BtA%*%V))^2)/(fn.tr(BtA%*%V%*%BtA%*%V))
if((!is.na(BA))&&(!is.na(BAf))&&(BA > 0)&&(BAf > 0)) BAp <- pf(BA, BAf, Inf, lower.tail=FALSE)
else BAp <- NA
TVB <- BtB%*%V
BB <- (N/fn.tr(TVB)) * ((t(RTE.B)) %*% BtB %*% (RTE.B))
BBf <- ((fn.tr(BtB%*%V))^2)/(fn.tr(BtB%*%V%*%BtB%*%V))
if((!is.na(BB))&&(!is.na(BBf))&&(BB > 0)&&(BBf > 0)) BBp <- pf(BB, BBf, Inf, lower.tail=FALSE)
else BBp <- NA
TVT <- BtT%*%V
BT <- (N/fn.tr(TVT)) * ((t(RTE.B)) %*% BtT %*% (RTE.B))
BTf <- ((fn.tr(BtT%*%V))^2)/(fn.tr(BtT%*%V%*%BtT%*%V))
if((!is.na(BT))&&(!is.na(BTf))&&(BT > 0)&&(BTf > 0)) BTp <- pf(BT, BTf, Inf, lower.tail=FALSE)
else BTp <- NA
TVAB <- BtAB%*%V
BAB <- (N/fn.tr(TVAB)) * ((t(RTE.B)) %*% BtAB %*% (RTE.B))
BABf <- ((fn.tr(BtAB%*%V))^2)/(fn.tr(BtAB%*%V%*%BtAB%*%V))
if((!is.na(BAB))&&(!is.na(BABf))&&(BAB > 0)&&(BABf > 0)) BABp <- pf(BAB, BABf, Inf, lower.tail=FALSE)
else BABp <- NA
TVAT <- BtAT%*%V
BAT <- (N/fn.tr(TVAT)) * ((t(RTE.B)) %*% BtAT %*% (RTE.B))
BATf <- ((fn.tr(BtAT%*%V))^2)/(fn.tr(BtAT%*%V%*%BtAT%*%V))
if((!is.na(BAT))&&(!is.na(BATf))&&(BAT > 0)&&(BATf > 0)) BATp <- pf(BAT, BATf, Inf, lower.tail=FALSE)
else BATp <- NA
TVBT <- BtBT%*%V
BBT <- (N/fn.tr(TVBT)) * ((t(RTE.B)) %*% BtBT %*% (RTE.B))
BBTf <- ((fn.tr(BtBT%*%V))^2)/(fn.tr(BtBT%*%V%*%BtBT%*%V))
if((!is.na(BBT))&&(!is.na(BBTf))&&(BBT > 0)&&(BBTf > 0)) BBTp <- pf(BBT, BBTf, Inf, lower.tail=FALSE)
else BBTp <- NA
TVABT <- BtABT%*%V
BABT <- (N/fn.tr(TVABT)) * ((t(RTE.B)) %*% BtABT %*% (RTE.B))
BABTf <- ((fn.tr(BtABT%*%V))^2)/(fn.tr(BtABT%*%V%*%BtABT%*%V))
if((!is.na(BABT))&&(!is.na(BABTf))&&(BABT > 0)&&(BABTf > 0)) BABTp <- pf(BABT, BABTf, Inf, lower.tail=FALSE)
else BABTp <- NA
QB <- rbind(BA, BB, BT, BAB, BAT, BBT, BABT)
pB <- rbind(BAp, BBp, BTp, BABp, BATp, BBTp, BABTp)
dfB <- rbind(BAf, BBf, BTf, BABf, BATf, BBTf, BABTf)
BoxType <- data.frame(QB, dfB, pB)
rd.BoxType <- round(BoxType, Inf)
Bdesc <- rbind(factor1.name, factor2.name, time.name, paste(factor1.name, ":", factor2.name, sep=""),
paste(factor1.name,":", time.name, sep=""), paste(factor2.name, ":", time.name, sep=""),
paste(factor1.name, ":", factor2.name, ":", time.name, sep=""))
colnames(rd.BoxType) <- c("Statistic", "df", "p-value")
rownames(rd.BoxType) <- Bdesc
b2.ni <- as.vector(summary(FAC.1 : FAC.2))
b2.lamda <- solve((diag(b2.ni) - diag(1, length(b2.ni), length(b2.ni))))
b2.mat <- kronecker(diag(1, A, A), kronecker(diag(1, B, B), matrix((1/T), 1, T)))
b2.sd <- b2.mat %*% V %*% t(b2.mat)
b2.dA <- diag(kronecker(PA, matrix((1/B), B, B)))
b2.dA <- diag(b2.dA, length(b2.dA), length(b2.dA))
b2.dB <- diag(kronecker(matrix((1/A), A, A), PB))
b2.dB <- diag(b2.dB, length(b2.dB), length(b2.dB))
b2.dAB <- diag(kronecker(PA, PB))
b2.dAB <- diag(b2.dAB, length(b2.dAB), length(b2.dAB))
b2.df1 <- (fn.tr(b2.dA %*% b2.sd) %*% fn.tr(b2.dA %*% b2.sd)) / fn.tr(b2.dA %*%
b2.dA %*% b2.sd %*% b2.sd %*% b2.lamda)
b2.df2 <- (fn.tr(b2.dB %*% b2.sd) %*% fn.tr(b2.dB %*% b2.sd)) / fn.tr(b2.dB %*%
b2.dB %*% b2.sd %*% b2.sd %*% b2.lamda)
b2.df3 <- (fn.tr(b2.dAB %*% b2.sd) %*% fn.tr(b2.dAB %*% b2.sd)) / fn.tr(b2.dAB %*%
b2.dAB %*% b2.sd %*% b2.sd %*% b2.lamda)
if((!is.na(BA))&&(!is.na(BAf))&&(BA > 0)&&(BAf > 0)&&(b2.df1 > 0)) B2.Ap <- pf(BA, BAf, b2.df1, lower.tail=FALSE)
else BAp <- NA
if((!is.na(BB))&&(!is.na(BBf))&&(BB > 0)&&(BBf > 0)&&(b2.df2 > 0)) B2.Bp <- pf(BB, BBf, b2.df2, lower.tail=FALSE)
else BBp <- NA
if((!is.na(BAB))&&(!is.na(BABf))&&(BAB > 0)&&(BABf > 0)&&(b2.df3 > 0)) B2.ABp <- pf(BAB, BABf, b2.df3, lower.tail=FALSE)
else BABp <- NA
B2 <- rbind(BA, BB, BAB)
pB <- rbind(B2.Ap, B2.Bp, B2.ABp)
df1.B2 <- rbind(BAf, BBf, BABf)
df2.B2 <- rbind(b2.df1, b2.df2, b2.df3)
BoxType2 <- data.frame(B2, df1.B2, df2.B2, pB)
rd.BoxType2 <- round(BoxType2, Inf)
B2.desc <- rbind(factor1.name, factor2.name, paste(factor1.name, ":", factor2.name, sep=""))
colnames(rd.BoxType2) <- c("Statistic", "df1", "df2", "p-value")
rownames(rd.BoxType2) <- B2.desc
}
if(WARN.1 || SING.COV)
{
cat("\n Warning(s):\n")
if(WARN.1) cat(" There are less subjects than sub-plot factor levels.\n")
if(SING.COV) cat(" The covariance matrix is singular. \n\n")
}
if (plot.RTE == TRUE) {
id.rte <- A + T + B + A * T + B * T + A * B
plot.rte <- rd.PRes1[, 3][(id.rte + 1):(id.rte + A *
B * T)]
frank.group1 <- rep(0, 0)
frank.group2 <- rep(0, 0)
frank.time <- rep(0, 0)
for (i in 1:A) {
for (j in 1:B) {
for (k in 1:T) {
frank.group1 <- c(frank.group1, paste(origg1level[i]))
frank.group2 <- c(frank.group2, paste(origg2level[j]))
frank.time <- c(frank.time, paste(origtlevel[k]))
}
}
}
Frank <- data.frame(Group1 = frank.group1, Time = frank.time,
Group2 = frank.group2, RTE = plot.rte)
plot.samples <- split(Frank, Frank$Group1)
lev.G1 <- levels(factor(plot.samples[[1]]$Group1))
lev.G2 <- levels(factor(plot.samples[[1]]$Group2))
lev.T <- levels(factor(Frank$Time))
par(mfrow = c(1, A))
for (hh in 1:A) {
id.g <- which(names(plot.samples) == origg1level[hh])
plot(1:T, plot.samples[[id.g]]$RTE[1:T], pch = 10,
type = "b", ylim = c(0, 1.1), xaxt = "n", xlab = "",
ylab = "", cex.lab = 1.5, xlim = c(0, T + 1),
lwd = 3)
title(main = paste(group1.name, origg1level[hh]),
xlab = paste(time.name))
for (s in 1:B) {
points(1:T, plot.samples[[id.g]]$RTE[plot.samples[[hh]]$Group2 ==
lev.G2[s]], col = s, type = "b", lwd = 3)
}
axis(1, at = 1:T, labels = origtlevel)
legend("top", col = c(1:B), paste(group2.name, lev.G2),
pch = c(rep(10, B)), lwd = c(rep(3, B)))
}
}
if (show.covariance == FALSE) {
V <- NULL
}
out.f2.ld.f1 <- list(RTE=rd.PRes1,Wald.test=rd.WaldType, ANOVA.test=rd.BoxType, ANOVA.test.mod.Box=rd.BoxType2, covariance=V, model.name=model.name)
return(out.f2.ld.f1)
}
|
create_table_pages_pdf <- function(rs, cntnt, lpg_rows) {
ts <- cntnt$object
content_blank_row <- cntnt$blank_row
pgby_var <- NA
if (!is.null(rs$page_by))
pgby_var <- rs$page_by$var
else if (!is.null(ts$page_by))
pgby_var <- ts$page_by$var
if (all(ts$show_cols == "none") & length(ts$col_defs) == 0) {
stop("ERROR: At least one column must be defined if show_cols = \"none\".")
}
font_name <- rs$font
dat <- as.data.frame(ts$data, stringsAsFactors = FALSE)
dat$..blank <- ""
dat$..row <- 1
dat$..page_by <- NA
if (is.null(ts$page_var)) {
if (is.na(pgby_var))
dat$..page <- NA
else
dat$..page <- dat[[pgby_var]]
} else {
if (any(class(dat[[ts$page_var]]) == "factor"))
dat$..page <- as.character(dat[[ts$page_var]])
else
dat$..page <- dat[[ts$page_var]]
}
if (!is.na(pgby_var)) {
if (any(class(dat[[pgby_var]]) == "factor")) {
dat[[pgby_var]] <- as.character(dat[[pgby_var]] )
dat$..page_by <- dat[[pgby_var]]
if (any(class(dat$..page) == "factor"))
dat$..page <- as.character(dat[[pgby_var]])
} else {
dat$..page_by <- dat[[pgby_var]]
}
if (is.unsorted(dat[[pgby_var]], strictly = FALSE))
message("Page by variable not sorted.")
}
keys <- get_table_cols(ts)
dat <- get_data_subset(dat, keys, rs$preview)
ts$col_defs <- set_column_defaults(ts, keys)
labels <- get_labels(dat, ts)
aligns <- get_aligns(dat, ts)
label_aligns <- get_label_aligns(ts, aligns)
cdat <- clear_formats(dat)
formats(cdat) <- get_col_formats(dat, ts)
fdat <- fdata(cdat)
fdat <- prep_data(fdat, ts, rs$char_width, rs$missing)
keys <- names(fdat)
if ("width" %in% ts$use_attributes)
widths(fdat) <- widths(dat)
widths_uom <- get_col_widths_variable(fdat, ts, labels,
rs$font, rs$font_size, rs$units,
rs$gutter_width)
sp <- split_cells_variable(fdat, widths_uom, rs$font,
rs$font_size, rs$units, rs$output_type)
fdat <- sp$data
wdat <- sp$widths
wraps <- get_page_wraps(rs$line_size, ts,
widths_uom, 0)
tmp_pi <- list(keys = keys, col_width = widths_uom, label = labels,
label_align = label_aligns, table_align = cntnt$align)
content_offset <- get_content_offsets_pdf(rs, ts, tmp_pi, content_blank_row)
splits <- get_splits_text(fdat, widths_uom, rs$body_line_count,
lpg_rows, content_offset$lines, ts, TRUE)
if (!is.null(rs$preview)) {
if (rs$preview < length(splits))
splits <- splits[seq(1, rs$preview)]
}
tot_count <- length(splits) * length(wraps)
counter <- 0
wrap_flag <- FALSE
blnk_ind <- "none"
spstart <- 1
spend <- 1
fp_offset <- lpg_rows
pg_lst <- list()
for(s in splits) {
spend <- spstart + nrow(s) - 1
spwidths <- wdat[seq(spstart, spend)]
for(pg in wraps) {
counter <- counter + 1
if (counter < tot_count)
wrap_flag <- TRUE
else
wrap_flag <- FALSE
blnk_ind <- get_blank_indicator(counter, tot_count, content_blank_row,
rs$body_line_count, content_offset$lines,
nrow(s))
if (!is.na(pgby_var))
pgby <- trimws(s[1, "..page_by"])
else
pgby <- NULL
pi <- page_info(data= s[, pg], keys = pg, label=labels[pg],
col_width = widths_uom[pg], col_align = aligns[pg],
font_name = font_name, label_align = label_aligns[pg],
pgby, cntnt$align)
pg_lst[[length(pg_lst) + 1]] <- create_table_pdf(rs, ts, pi,
blnk_ind, wrap_flag,
fp_offset, spwidths)
fp_offset <- 0
}
spstart <- spend + 1
}
ret <- list(widths = widths_uom, page_list = pg_lst)
return(ret)
}
create_table_pdf <- function(rs, ts, pi, content_blank_row, wrap_flag,
lpg_rows, spwidths) {
rh <- rs$row_height
ys <- lpg_rows * rh
conv <- rs$point_conversion
bf <- FALSE
ls <- rs$content_size[["width"]]
ys <- sum(ys, rs$page_template$page_header$points,
rs$page_template$titles$points, rs$page_template$title_hdr$points)
if (!is.null(pi$col_width))
ls <- sum(pi$col_width, na.rm = TRUE)
if (content_blank_row %in% c("above", "both"))
ys <- ys + rh
if (!is.null(ts$title_hdr))
ttls <- get_title_header_pdf(ts$title_hdr, ls, rs, pi$table_align,
ystart = ys)
else
ttls <- get_titles_pdf(ts$titles, ls, rs, pi$table_align, ystart = ys)
ys <- ys + ttls$points
if (ttls$lines > 0)
bf <- ttls$border_flag
if (!is.null(rs$page_by)) {
pgby <- get_page_by_pdf(rs$page_by, rs$content_size[["width"]],
pi$page_by, rs, pi$table_align, ystart = ys,
brdr_flag = bf)
} else if(!is.null(ts$page_by))
pgby <- get_page_by_pdf(ts$page_by, ls, pi$page_by, rs, pi$table_align,
ystart = ys, brdr_flag = bf)
else
pgby <- c()
if (length(pgby) > 0) {
ys <- ys + pgby$points
bf <- pgby$border_flag
}
shdrs <- list(lines = 0, points = 0)
hdrs <- list(lines = 0, points = 0)
if (ts$headerless == FALSE) {
shdrs <- get_spanning_header_pdf(rs, ts, pi, ystart = ys,
brdr_flag = bf)
ys <- ys + shdrs$points
hs <- FALSE
if (shdrs$lines > 0) {
bf <- shdrs$border_flag
hs <- TRUE
}
hdrs <- get_table_header_pdf(rs, ts, pi$col_width,
pi$label, pi$label_align,
pi$table_align, ystart = ys,
brdr_flag = bf, has_spans = hs)
ys <- ys + hdrs$points
}
bdy <- get_table_body_pdf(rs, pi$data, pi$col_width,
pi$col_align, pi$table_align, ts$borders,
ystart = ys,
spwidths, frb = ts$first_row_blank)
ys <- ys + bdy$points
if (bdy$lines > 0)
bf <- bdy$border_flag
ftnts <- get_page_footnotes_pdf(rs, ts, ls, lpg_rows, ys,
wrap_flag, content_blank_row, pi$table_align,
brdr_flag = bf)
rc <- sum(ttls$lines, pgby$lines, shdrs$lines,
hdrs$lines, bdy$lines, ftnts$lines)
ret <- list(pdf = c(ttls$pdf, pgby$pdf, shdrs$pdf,
hdrs$pdf, bdy$pdf, ftnts$pdf),
lines = rc,
points = rc * rh)
return(ret)
}
get_page_footnotes_pdf <- function(rs, spec, spec_width, lpg_rows, ystart,
wrap_flag, content_blank_row, talgn,
brdr_flag = FALSE) {
ftnts <- list(lines = 0, twips = 0, border_flag = FALSE)
vflag <- "none"
fl <- rs$page_template$page_footer$lines
if (!is.null(spec$footnotes)) {
if (!is.null(spec$footnotes[[length(spec$footnotes)]])) {
if (spec$footnotes[[length(spec$footnotes)]]$valign == "bottom") {
vflag <- "bottom"
ftnts <- get_footnotes_pdf(spec$footnotes,
spec_width, rs,
talgn, footer_lines = fl)
} else {
vflag <- "top"
ftnts <- get_footnotes_pdf(spec$footnotes, spec_width, rs, talgn,
ystart = ystart,
brdr_flag = brdr_flag)
}
}
} else {
if (!is.null(rs$footnotes[[1]])) {
if (!is.null(rs$footnotes[[1]]$valign)) {
if (rs$footnotes[[1]]$valign == "top") {
vflag <- "top"
ftnts <- get_footnotes_pdf(rs$footnotes,
spec_width, rs,
talgn, ystart = ystart,
brdr_flag = brdr_flag)
} else {
if (wrap_flag)
vflag <- "bottom"
}
}
}
}
blen <- 0
if (content_blank_row %in% c("below", "both")) {
blen <- 1
}
tlns <- ftnts$lines + blen
ret <- list(pdf = ftnts$pdf,
lines = tlns,
points = tlns * rs$line_height,
border_flag = ftnts$border_flag)
return(ret)
}
get_content_offsets_pdf <- function(rs, ts, pi, content_blank_row) {
ret <- c(upper = 0, lower = 0, blank_upper = 0, blank_lower = 0)
cnt <- c(upper = 0, lower = 0, blank_upper = 0, blank_lower = 0)
wdth <- rs$content_size[["width"]]
if (!is.null(pi$col_width))
wdth <- sum(pi$col_width)
shdrs <- list(lines = 0, points = 0)
hdrs <- list(lines = 0, points = 0)
if (ts$headerless == FALSE) {
shdrs <- get_spanning_header_pdf(rs, ts, pi)
hdrs <- get_table_header_pdf(rs, ts, pi$col_width,
pi$label, pi$label_align,
pi$table_align)
}
if (is.null(ts$title_hdr))
ttls <- get_titles_pdf(ts$titles, wdth, rs)
else
ttls <- get_title_header_pdf(ts$title_hdr, wdth, rs)
pgb <- list(lines = 0, points = 0)
if (!is.null(ts$page_by))
pgb <- get_page_by_pdf(ts$page_by, wdth, NULL, rs, pi$table_align)
else if (!is.null(rs$page_by))
pgb <- get_page_by_pdf(rs$page_by, wdth, NULL, rs, pi$table_align)
ret[["upper"]] <- shdrs$points + hdrs$points + ttls$points + pgb$points
cnt[["upper"]] <- shdrs$lines + hdrs$lines + ttls$lines + pgb$lines
if (content_blank_row %in% c("above", "both")) {
ret[["blank_upper"]] <- rs$line_height
cnt[["blank_upper"]] <- 1
}
ftnts <- get_footnotes_pdf(ts$footnotes, wdth, rs)
rftnts <- get_footnotes_pdf(rs$footnotes, wdth, rs)
if (has_top_footnotes(rs)) {
ret[["lower"]] <- ftnts$points + rftnts$points
cnt[["lower"]] <- ftnts$lines + rftnts$lines
} else {
ret[["lower"]] <- ftnts$points
cnt[["lower"]] <- ftnts$lines
}
brdrs <- strip_borders(ts$borders )
if (any(brdrs %in% c("all", "inside"))) {
epnts <- floor(rs$body_line_count - cnt[["lower"]] - cnt[["upper"]]) * rs$border_height
ret[["lower"]] <- ret[["lower"]] + epnts - rs$line_height
cnt[["lower"]] <- cnt[["lower"]] + floor(epnts / rs$row_height) - 1
}
if (content_blank_row %in% c("both", "below")) {
ret[["blank_lower"]] <- rs$line_height
cnt[["blank_lower"]] <- 1
}
res <- list(lines = cnt,
points = ret)
return(res)
}
get_table_header_pdf <- function(rs, ts, widths, lbls, halgns, talgn,
ystart = 0, brdr_flag = FALSE,
has_spans = FALSE) {
ret <- c()
cnt <- 0
rh <- rs$row_height
bs <- rs$border_spacing
bh <- rs$border_height
tbl <- ts$data
conv <- rs$point_conversion
nms <- names(lbls)[is.controlv(names(lbls)) == FALSE]
unts <- rs$units
wdths <- widths[nms]
brdrs <- strip_borders(ts$borders)
pnts <- 0
width <- sum(wdths, na.rm = TRUE)
if (talgn == "right") {
tlb <- rs$content_size[["width"]] - width
trb <- rs$content_size[["width"]]
} else if (talgn %in% c("center", "centre")) {
tlb <- (rs$content_size[["width"]] - width) / 2
trb <- width + tlb
} else {
tlb <- 0
trb <- width
}
cnt <- 1
pdf(NULL)
par(family = get_font_family(rs$font), ps = rs$font_size)
tmplst <- list()
mxlns <- 0
for(k in seq_along(nms)) {
tmplst[[k]] <- split_string_text(lbls[k], wdths[k], rs$units)
if (tmplst[[k]]$lines > mxlns)
mxlns <- tmplst[[k]]$lines
pnts <- mxlns * rh
}
if (any(brdrs %in% c("all", "outside", "top"))) {
if (!brdr_flag & !has_spans) {
tbs <- ystart + bs - rh
pnts <- pnts + bs + 1
} else {
tbs <- ystart - rh + 1
pnts <- pnts + 3
}
} else {
tbs <- ystart - rh + 1
pnts <- pnts + bh
}
for(k in seq_along(nms)) {
tmp <- tmplst[[k]]
yline <- ystart + (rh * (mxlns - tmp$lines))
if (any(brdrs %in% c("all", "outside", "top")) & !brdr_flag & !has_spans) {
yline <- yline + bh
}
if (k == 1) {
lb <- tlb
rb <- lb + wdths[k]
} else {
lb <- rb
rb <- lb + wdths[k]
}
for (ln in seq_len(tmp$lines)) {
ret[[length(ret) + 1]] <- page_text(tmp$text[ln], rs$font_size,
bold = FALSE,
xpos = get_points(lb,
rb,
tmp$widths[ln],
units = unts,
align = halgns[k]),
ypos = yline)
yline <- yline + rh
}
if (any(brdrs %in% c("all", "inside"))) {
ret[[length(ret) + 1]] <- page_vline(rb * conv,
tbs,
(rh * mxlns) + bs)
}
xtr <- tmp$lines
if (xtr > cnt)
cnt <- xtr
}
dev.off()
if (ts$first_row_blank == TRUE) {
cnt <- cnt + 1
pnts <- pnts + rh
}
if ((any(brdrs == "all")) | (any(brdrs %in% c("outside", "top")) & !has_spans)) {
ret[[length(ret) + 1]] <- page_hline(tlb * conv,
tbs,
(trb - tlb) * conv)
}
if (any(brdrs %in% c("all", "outside", "left"))) {
ret[[length(ret) + 1]] <- page_vline(tlb * conv,
tbs,
(rh * cnt) + bs)
}
if (any(brdrs %in% c("all", "outside", "right"))) {
ret[[length(ret) + 1]] <- page_vline(trb * conv,
tbs,
(rh * cnt) + bs)
}
yline <- tbs + (rh * mxlns) + bs
if (!any(brdrs %in% c("all", "outside", "top")) & brdr_flag) {
}
if (ts$first_row_blank == TRUE) {
if (any(brdrs %in% c("all", "inside")) ) {
ret[[length(ret) + 1]] <- page_hline(tlb * conv,
yline + rh,
(trb - tlb) * conv)
}
}
ret[[length(ret) + 1]] <- page_hline(tlb * conv,
yline,
(trb - tlb) * conv)
res <- list(pdf = ret,
lines = pnts / rh,
points = pnts )
return(res)
}
get_spanning_header_pdf <- function(rs, ts, pi, ystart = 0, brdr_flag = FALSE) {
spns <- ts$col_spans
cols <- pi$keys
cols <- cols[!is.controlv(cols)]
w <- pi$col_width
w <- w[cols]
gutter <- 0
gap <- 3
cnt <- c()
rh <- rs$row_height
bs <- rs$border_spacing
bh <- rs$border_height
border_flag <- FALSE
wlvl <- get_spanning_info(rs, ts, pi, w, gutter)
lvls <- sort(seq_along(wlvl), decreasing = TRUE)
conv <- rs$point_conversion
talgn <- pi$table_align
brdrs <- strip_borders(ts$borders)
rh <- rs$row_height
if (any(brdrs %in% c("all", "inside")))
rh <- rh + bh
width <- sum(w)
if (talgn == "right") {
tlb <- rs$content_size[["width"]] - width
trb <- rs$content_size[["width"]]
} else if (talgn %in% c("center", "centre")) {
tlb <- (rs$content_size[["width"]] - width) / 2
trb <- width + tlb
} else {
tlb <- 0
trb <- width
}
ret <- list()
lline <- ystart
if (brdr_flag) {
lline <- ystart + bs
}
pdf(NULL)
par(family = get_font_family(rs$font), ps = rs$font_size)
ln <- c()
for (l in lvls) {
s <- wlvl[[l]]
widths <- s$width
names(widths) <- s$name
algns <- s$align
names(algns) <- s$name
lbls <- s$label
names(lbls) <- s$name
cs <- s$col_span
r <- ""
cnt[length(cnt) + 1] <- 1
mxyl <- 0
mxlns <- 0
lnadj <- 0
tmps <- list()
for (k in seq_along(lbls)) {
tmps[[k]] <- split_string_text(lbls[k], widths[k], rs$units)
if (tmps[[k]]$lines > mxlns)
mxlns <- tmps[[k]]$lines
}
for(k in seq_along(lbls)) {
yline <- lline
if (k == 1) {
lb <- tlb
rb <- lb + widths[k]
} else {
lb <- rb
rb <- lb + widths[k]
}
if (lbls[k] != "") {
tmp <- tmps[[k]]
for (ln in seq_len(tmp$lines)) {
if (ln == 1)
yline <- yline + ((mxlns - tmp$lines) * rh)
adj <- 0
if (any(brdrs %in% c("all", "inside")))
adj <- 4
ret[[length(ret) + 1]] <- page_text(tmp$text[ln], rs$font_size,
bold = FALSE,
xpos = get_points(lb,
rb,
tmp$widths[ln],
units = rs$units,
align = algns[k]),
ypos = yline - adj)
yline <- yline + rh
if (yline > mxyl)
mxyl <- yline
}
if (any(brdrs %in% c("all", "inside"))) {
ret[[length(ret) + 1]] <- page_vline(lb * conv,
lline - rh,
(mxlns * rh) + .5)
ret[[length(ret) + 1]] <- page_vline(rb * conv,
lline - rh,
(mxlns * rh) + .5)
} else {
if (s$span[k] > 0 & s$underline[k]) {
lnadj <- .5
yline <- mxyl + lnadj - (rh * .75) + 1
ret[[length(ret) + 1]] <- page_hline((lb * conv) + gap,
yline,
((rb - lb) * conv) - (gap * 2))
}
}
xtr <- tmp$lines + lnadj
if (xtr > cnt[length(cnt)])
cnt[length(cnt)] <- xtr
}
}
if (any(brdrs %in% c("all", "inside"))) {
ret[[length(ret) + 1]] <- page_hline(tlb * conv,
lline - rh,
(trb - tlb) * conv)
}
lline <- mxyl + (rh * lnadj)
}
dev.off()
cnts <- sum(cnt)
if (length(lvls) > 0) {
ypos <- ystart - rh + bs
if (any(brdrs %in% c("all", "outside", "top"))) {
ret[[length(ret) + 1]] <- page_hline(tlb * conv,
ypos,
(trb - tlb) * conv)
}
if (any(brdrs %in% c("all", "outside", "left"))) {
ret[[length(ret) + 1]] <- page_vline(tlb * conv,
ypos,
(cnts * rh))
}
if (any(brdrs %in% c("all", "outside", "right"))) {
ret[[length(ret) + 1]] <- page_vline(trb * conv,
ypos,
(cnts * rh))
}
}
res <- list(pdf = ret,
lines = cnts,
points = (cnts * rh),
border_flag = border_flag)
return(res)
}
get_table_body_pdf <- function(rs, tbl, widths, algns, talgn, tbrdrs,
ystart = 0, spwidths = list(),
brdr_flag = FALSE, frb = FALSE) {
border_flag <- FALSE
if ("..blank" %in% names(tbl))
flgs <- tbl$..blank
else
flgs <- NA
rws <- c()
cnt <- 0
nms <- names(widths)
nms <- nms[!is.na(nms)]
nms <- nms[!is.controlv(nms)]
wdths <- widths[nms]
if (!"..blank" %in% names(tbl))
blnks <- rep("", nrow(tbl))
else
blnks <- tbl$..blank
if (length(nms) == 1) {
t <- as.data.frame(tbl[[nms]])
names(t) <- nms
} else
t <- tbl[ , nms]
conv <- rs$point_conversion
unts <- rs$units
bs <- rs$border_spacing
bh <- rs$border_height
cp <- rs$cell_padding
brdrs <- strip_borders(tbrdrs)
if (all(tbrdrs == "body"))
brdrs <- c("top", "bottom", "left", "right")
if (any(brdrs %in% c("all", "inside")))
rh <- rs$row_height + bh
else
rh <- rs$row_height
width <- sum(wdths, na.rm = TRUE)
if (talgn == "right") {
tlb <- rs$content_size[["width"]] - width
trb <- rs$content_size[["width"]]
} else if (talgn %in% c("center", "centre")) {
tlb <- (rs$content_size[["width"]] - width) / 2
trb <- width + tlb
} else {
tlb <- 0
trb <- width
}
rline <- ystart + 1
ret <- c()
fs <- rs$font_size
pdf(NULL)
par(family = get_font_family(rs$font), ps = fs)
for(i in seq_len(nrow(t))) {
yline <- rline
mxrw <- yline
cnt <- cnt + 1
for(j in nms) {
if (class(tbl[i, j]) != "character")
vl <- as.character(tbl[i, j])
else
vl <- tbl[i, j]
tmp <- strsplit(vl, "\n", fixed = TRUE)[[1]]
if (j == nms[1]) {
lb <- tlb
rb <- lb + wdths[j]
} else {
lb <- rb
rb <- lb + wdths[j]
}
if (length(tmp) == 0) {
yline <- yline + rh
} else if (length(trimws(tmp)) == 0) {
yline <- yline + rh
} else {
for (ln in seq_len(length(tmp))) {
ret[[length(ret) + 1]] <- page_text(tmp[ln], fs,
bold = FALSE,
xpos = get_points(lb,
rb,
spwidths[[i]][[j]][ln],
units = unts,
align = algns[j]),
ypos = yline)
yline <- yline + rh
}
}
if (yline > mxrw)
mxrw <- yline
yline <- rline
}
for(j in nms) {
if (any(brdrs %in% c("all", "inside")) & j != nms[length(nms)]
& !blnks[i] %in% c("B", "L")) {
if (j == nms[1]) {
lb <- tlb
rb <- lb + wdths[j]
} else {
lb <- rb
rb <- lb + wdths[j]
}
if (i == 1) {
if (is.null(frb)) {
ret[[length(ret) + 1]] <- page_vline(rb * conv, (rline + bs) - rh - 1,
mxrw - rline + 1)
} else if (frb == FALSE) {
ret[[length(ret) + 1]] <- page_vline(rb * conv, (rline + bs) - rh - 1,
mxrw - rline + 1)
} else {
ret[[length(ret) + 1]] <- page_vline(rb * conv, (rline + bs) - rh,
mxrw - rline + 1)
}
} else if (i == nrow(t)) {
ret[[length(ret) + 1]] <- page_vline(rb * conv, (rline + bs) - rh,
mxrw - rline + 1)
} else {
ret[[length(ret) + 1]] <- page_vline(rb * conv, (rline + bs) - rh,
mxrw - rline )
}
}
}
if (any(brdrs %in% c("all", "inside")) & i < nrow(t)) {
ret[[length(ret) + 1]] <- page_hline(tlb * conv, mxrw -rh + bs,
(trb - tlb) * conv)
}
rline <- mxrw
}
ypos <- ystart - rs$row_height + bh - 1
ylen <- rline - rh + bs + 1
if (any(brdrs %in% c("all", "left", "outside"))) {
ret[[length(ret) + 1]] <- page_vline(tlb * conv, ypos, ylen - ypos)
}
if (any(brdrs %in% c("all", "right", "outside"))) {
ret[[length(ret) + 1]] <- page_vline(trb * conv, ypos, ylen - ypos)
}
pnts <- ylen - ystart + rh
if (any(brdrs %in% c("all", "bottom", "outside"))) {
ret[[length(ret) + 1]] <- page_hline(tlb * conv, ylen,
(trb - tlb) * conv)
border_flag <- TRUE
if (any(brdrs %in% c("all"))) {
pnts <- pnts - bh
}
}
dev.off()
rws <- rline
res <- list(pdf = ret,
lines = pnts / rs$row_height,
points = pnts ,
border_flag = border_flag)
return(res)
}
|
mat.dissim <- function(inFossil, inModern, llMod=c(), modTaxa=c(), llFoss=c(), fosTaxa=c(), numAnalogs = 1, counts=T,
sitenames = 1:length(inFossil[, 1]), dist.method = "euclidean")
{
modchar=deparse(substitute(inModern))
fosschar=deparse(substitute(inFossil))
if (length(modTaxa) != length(fosTaxa)) stop("Number of taxa in modern sample does not equal number of taxa in fossil sample")
if (counts) {
inModern[,modTaxa]=inModern[,modTaxa]/rowSums(inModern[,modTaxa])
inFossil[,fosTaxa]=inFossil[,fosTaxa]/rowSums(inFossil[,fosTaxa])
}
nColsMatrix = length(inFossil[, 1])
LocMinRow = matrix(NA, nrow = numAnalogs, ncol = nColsMatrix)
PosMinRow = matrix(NA, nrow = numAnalogs, ncol = nColsMatrix)
DistMinRow <- matrix(NA, nrow = numAnalogs, ncol = nColsMatrix)
DirMinRow <- matrix(NA, nrow = numAnalogs, ncol = nColsMatrix)
CompxMinRow <- matrix(NA, nrow = numAnalogs, ncol = nColsMatrix)
CompyMinRow <- matrix(NA, nrow = numAnalogs, ncol = nColsMatrix)
colNames = vector("character")
modMatrix = as.matrix(inModern[, modTaxa])
fossilMatrix = sqrt(as.matrix(inFossil[, fosTaxa]))
fossilLongLatm=as.matrix(inFossil[,llFoss])
modernLongLatm=as.matrix(inModern[, llMod])
dimnames(fossilLongLatm)=NULL
dimnames(modernLongLatm)=NULL
dimnames(modMatrix) = NULL
dimnames(fossilMatrix) = NULL
modMatrix = sqrt(t(modMatrix))
for(i in 1:length(inFossil[, 1])) {
currSpectrum = fossilMatrix[i, ]
sqdistVec = (currSpectrum - modMatrix)
sqdistVec= sqdistVec*sqdistVec
x = colSums(sqdistVec)
y = rank(x,ties.method="first")
ysubset = y <= numAnalogs
xysubset = x[ysubset]
zorder = order(xysubset)
x = sort(xysubset)
tseq=1:length(y)
topn = tseq[ysubset][zorder]
if(dist.method == "spherical") {
DistMinRow[, i] <- apply(rbind(modernLongLatm[topn, ]), 1, great.circle.distance.f, fossilLongLatm[i, ])
DirMinRow[, i] <- rep(NA, numAnalogs)
}
else if(dist.method == "euclidean") {
DistMinRow[, i] <- apply(rbind(modernLongLatm[topn, ]), 1, euclidean.distance.f, fossilLongLatm[i, ])
DirMinRow[, i] <- apply(rbind(modernLongLatm[topn, ]), 1, euclidean.direction.f, fossilLongLatm[i, ])
CompxMinRow[, i] <- apply(rbind(modernLongLatm[topn, ]), 1, euclidean.compx.f, fossilLongLatm[i, ])
CompyMinRow[, i] <- apply(rbind(modernLongLatm[topn, ]), 1, euclidean.compy.f, fossilLongLatm[i, ])
}
LocMinRow[, i] = x
PosMinRow[, i] = topn
}
colNames = sitenames
dimnames(LocMinRow) = list(NULL, colNames)
dimnames(PosMinRow) = list(NULL, colNames)
dimnames(DistMinRow) = list(NULL, colNames)
dimnames(DirMinRow) = list(NULL, colNames)
return(list(
x = inFossil[, llFoss[1]],
y = inFossil[, llFoss[2]],
sqdist = LocMinRow,
position = PosMinRow,
distance = DistMinRow,
direction = DirMinRow,
xcomponent = CompxMinRow,
ycomponent = CompyMinRow,
inModern=modchar,
inFossil=fosschar,
llmod=llMod,
modTaxa=modTaxa,
counts=counts
))
}
|
odb.read = function(
odb,
sqlQuery,
stringsAsFactors = FALSE,
check.names = FALSE,
encode = TRUE,
autoLogical = TRUE
)
{
if (!is(odb, "ODB")) {
stop("'odb' must be an 'ODB' object")
}
validObject(odb)
if (!is.character(sqlQuery) || length(sqlQuery) != 1 || is.na(sqlQuery)) {
stop(call.=FALSE, "'sqlQuery' must be a unique non NA character vector")
}
tryCatch(
query <- dbSendQuery(odb, sqlQuery),
error = function(e) {
stop(call.=FALSE, "Error while executing SQL query : \"", conditionMessage(e), "\"")
},
warning = function(w) {
stop(call.=FALSE, "Warning while executing SQL query : \"", conditionMessage(w), "\"")
}
)
results = fetch(res=query, n=-1)
if (!check.names) {
columns = dbColumnInfo(res=query)
names(results) = as.character(columns$field.name)
}
if (!stringsAsFactors) {
for(k in 1:ncol(results)) {
if (is.factor(results[,k])) {
results[,k] = as.character(results[,k])
}
}
}
if (encode) {
for(k in 1:ncol(results)) {
if (is.character(results[,k]) | is.factor(results[,k])) {
naVals = is.na(results[,k])
results[,k] = iconv(results[,k], from="UTF-8", to="")
if (length(naVals) > 0) {
results[naVals,k] = NA
}
}
}
}
if (autoLogical) {
for(k in 1:ncol(results)) {
if (all(is.na(results[,k]) | results[,k] %in% c("true", "false"))) {
results[,k] = as.logical(results[,k])
}
}
}
return(results)
}
|
f.points.CKrige<- function(
formula,
data,
locations,
object,
method = 2,
ex.out = F
)
{
t.support.designmat <- model.matrix(object = formula, data = data)
t.response <- model.response( model.frame( formula, data ) )
locations <- terms( x= locations)
attr(locations, "intercept") = 0
locations <- model.matrix(object = locations, data = data)
if( dim( object@data )[1] == 0 && dim( object@data )[2] == 0 )
{
t.pred.designmat <- matrix( rep( 1, dim( object@coords )[1] ) , ncol = 1 )
}
else
{
t.terms.wr <- delete.response( termobj = terms( x = formula ) )
t.pred.designmat <- model.matrix( object = t.terms.wr, data = object@data)
rm( t.terms.wr )
}
model.me.free <- object@model[unlist(lapply(1:length(object@model), function(i,m){m[[i]]$model != "mev"}, m = object@model))]
t.support.covmat <- f.covmat.support( object@model, locations )
t.ichol <- forwardsolve(
t.chol <- t( chol(t.support.covmat ) ),
diag( nrow( t.support.covmat ) )
)
t.isupport.covmat <- crossprod( t.ichol, t.ichol )
t.orth.designmat <- t.ichol %*% t.support.designmat
t.orth.data <- t.ichol %*% t.response
t.qr <- qr( as.data.frame( t.orth.designmat ) )
t.R <- qr.R( t.qr )
t.iR <- backsolve( t.R, diag( nrow( t.R ) ) )
t.beta.coef <- matrix( qr.coef( t.qr, as.data.frame( t.orth.data )), ncol = 1)
t.cov.beta.coef <- crossprod( t( t.iR ), t( t.iR ) )
t.orth.resid <- qr.resid( t.qr, t.orth.data )
t.residuals <- t.chol %*% t.orth.resid
t.index <- as.list( 1:dim( object@coords )[1] )
t.krige.res <- lapply(t.index,
function(i, coords, posindex, t.bb.covmat.list, t.pred.designmat,
locations, model, t.ichol, t.isupport.covmat, t.beta.coef,
t.cov.beta.coef , t.orth.resid, t.orth.designmat, t.iR, method)
{
t.indices <- posindex[[ i ]]
coords <- matrix( coords[ t.indices, ], ncol= 2 )
t.bb.covmat <- as.matrix( t.bb.covmat.list[[ t.indices[1] ]] )
t.pred.designmat <- matrix(t.pred.designmat[ t.indices, ],
ncol = length( t.beta.coef ), nrow = length( t.indices ) )
t.dist <- f.row.dist( locations, coords )
t.pred.covmat <- matrix(f.pp.cov( as.vector(t.dist), model), ncol = ncol(t.dist) )
rm( t.dist )
t.pred.covmat.ichol.trans <- crossprod( t.pred.covmat, t( t.ichol) )
t.sk.weights <- t.pred.covmat.ichol.trans %*% t.ichol
t.lin.trend.est <- crossprod( t( t.pred.designmat), t.beta.coef )
t.weighted.resid <- crossprod( t( t.pred.covmat.ichol.trans ), t.orth.resid )
t.uk.pred <- t.lin.trend.est + t.weighted.resid
t.aux <- crossprod( t( t.pred.designmat - crossprod(t(t.pred.covmat.ichol.trans), t.orth.designmat) ) , t.iR)
t.uk.mspe <- t.bb.covmat - tcrossprod( t.pred.covmat.ichol.trans, t.pred.covmat.ichol.trans ) + t.aux %*% t( t.aux )
t.result <- f.kriging.method( t.lin.trend.est, t.cov.beta.coef, t.weighted.resid,
t.uk.mspe, t.bb.covmat, t.pred.designmat,
t.orth.designmat, t.pred.covmat.ichol.trans, method)
if(method == 1)
{
return( list( prediction = t.result[[1]], sqrt.mspe = t.result[[2]], sk.weights = t.sk.weights ) )
}
if( method == 2 )
{
return( list( prediction = t.result[[1]], sqrt.mspe = t.result[[2]],
P1 = t.result[[3]], Q1 =t.result[[4]], K = t.result[[5]], sk.weights = t.sk.weights) )
}
if( method == 3)
{
return( list( prediction = t.result[[1]], mspe = t.result[[2]],
P1 = t.result[[3]], Q1 =t.result[[4]], K = t.result[[5]], sk.weights = t.sk.weights ) )
}
},
coords = object@coords,
posindex = object@posindex,
t.bb.covmat.list = object@covmat,
t.pred.designmat = t.pred.designmat,
locations = locations,
model = model.me.free,
t.ichol = t.ichol,
t.isupport.covmat = t.isupport.covmat,
t.beta.coef = t.beta.coef,
t.cov.beta.coef = t.cov.beta.coef,
t.orth.resid = t.orth.resid,
t.orth.designmat = t.orth.designmat,
t.iR = t.iR,
method = method
)
if( method == 1 ){
krige.result <- data.frame( matrix( NaN, nrow = nrow( t.pred.designmat ), ncol = 2 ) )
krige.result[,1] <- unlist( lapply( t.krige.res, function( poly ){ return( poly$prediction ) } ) )
krige.result[,2] <- unlist( lapply( t.krige.res, function( poly ){ return( poly$sqrt.mspe ) } ) )
colnames( krige.result) = c("prediction", "prediction.se")
}
if( method == 2 )
{
krige.result <- data.frame( matrix( NaN, nrow = nrow(t.pred.designmat), ncol = 5 ) )
krige.result[,1] <- unlist( lapply( t.krige.res, function( poly ){ return( poly$prediction ) } ) )
krige.result[,2] <- unlist( lapply( t.krige.res, function( poly ){ return( poly$sqrt.mspe ) } ) )
krige.result[,3] <- unlist( lapply( t.krige.res, function( poly ){ return( poly$P1 ) } ) )
krige.result[,4] <- unlist( lapply( t.krige.res, function( poly ){ return( poly$Q1 ) } ) )
krige.result[,5] <- unlist( lapply( t.krige.res, function( poly ){ return( poly$K ) } ) )
colnames( krige.result) = c("prediction", "prediction.se", "P1", "Q1", "K")
}
if( method == 3)
{
krige.result <- data.frame( matrix( NaN, nrow = nrow(t.pred.designmat), ncol = 5 ) )
krige.result[,1] <- unlist( lapply( t.krige.res, function( poly ){ return( poly$prediction[1,1] ) } ) )
krige.result[,2] <- unlist( lapply( t.krige.res, function( poly ){ return( sqrt( poly$mspe[1,1] ) ) } ) )
krige.result[,3] <- unlist( lapply( t.krige.res, function( poly ){ return( poly$P1[1,1] ) } ) )
krige.result[,4] <- unlist( lapply( t.krige.res, function( poly ){ return( poly$Q1[1,1] ) } ) )
krige.result[,5] <- unlist( lapply( t.krige.res, function( poly ){ return( poly$K[1,1] ) } ) )
colnames( krige.result) = c("prediction", "prediction.se","P1.11", "Q1.11", "K.11")
}
if( ex.out == T)
{
if( method == 1 | method == 2 )
{
if( is.null( dim(t.krige.res[[1]]$sk.weights) ) )
{
sk.weights.matrix <- t(matrix( unlist( lapply( t.krige.res, function( points ){ return( points$sk.weights ) } ) ), ncol = nrow( data ), byrow = T ))
}else{
sk.weights.matrix <- t(matrix( unlist( lapply( t.krige.res, function( points ){ return( points$sk.weights[1,] ) } ) ), ncol = nrow( data ), byrow = T))
}
object <- SpatialPointsDataFrame( SpatialPoints( object@coords ), data = krige.result, match.ID = F)
res <- list(
object = object,
krig.method = method,
parameter = list( beta.coef = t.beta.coef, cov.beta.coef = t.cov.beta.coef),
sk.weights = sk.weights.matrix,
inv.Sigma = t.isupport.covmat,
residuals = t.residuals
)
class( res ) <- "CKrige.exout.points"
return( res )
}
else
{
object <- SpatialPointsDataFrame( SpatialPoints(object@coords ), data = krige.result, match.ID = F)
P1.list = lapply( t.krige.res, function( points ){ return(points$P1)})
Q1.list = lapply( t.krige.res, function( points ){ return(points$Q1)})
K.list = lapply( t.krige.res, function( points ){ return(points$K)})
sk.weights.list <-lapply( t.krige.res, function( points ){ return(t(points$sk.weights))})
res <- list(
object = object,
krig.method = method,
CMCK.par = list(P1 = P1.list, Q1 =Q1.list,K = K.list),
parameter = list( beta.coef = t.beta.coef, cov.beta.coef = t.cov.beta.coef),
sk.weights = sk.weights.list,
inv.Sigma = t.isupport.covmat,
residuals = t.residuals
)
class( res ) <- "CKrige.exout.points"
return( res )
}
}
else
{
row.names( krige.result ) <- row.names( object@coords )
object <- SpatialPointsDataFrame( SpatialPoints( object@coords ), krige.result )
return( object )
}
}
|
encrypt_data <- function(data, key, dest = NULL) {
if (!is.raw(data)) {
stop("Expected a raw vector; consider serialize(data, NULL)")
}
assert_is(key, "cyphr_key")
res <- key$encrypt(data)
if (is.null(dest)) {
res
} else {
writeBin(res, dest)
}
}
encrypt_object <- function(object, key, dest = NULL, rds_version = NULL) {
encrypt_data(serialize(object, NULL, version = rds_version), key, dest)
}
encrypt_string <- function(string, key, dest = NULL) {
if (!(is.character(string) && length(string) == 1L)) {
stop("'string' must be a scalar character")
}
encrypt_data(charToRaw(string), key, dest)
}
encrypt_file <- function(path, key, dest = NULL) {
encrypt_data(read_binary(path), key, dest)
}
decrypt_data <- function(data, key, dest = NULL) {
assert_is(key, "cyphr_key")
if (is.character(data)) {
if (file.exists(data)) {
data <- read_binary(data)
} else {
stop("If given as a character string, data must be a file that exists")
}
}
res <- key$decrypt(data)
if (is.null(dest)) {
res
} else {
writeBin(res, dest)
}
}
decrypt_object <- function(data, key) {
unserialize(decrypt_data(data, key, NULL))
}
decrypt_string <- function(data, key) {
rawToChar(decrypt_data(data, key, NULL))
}
decrypt_file <- function(path, key, dest = NULL) {
decrypt_data(read_binary(path), key, dest)
}
|
`cleanphe` <-
function(x,string='Buffer')
{
require(qtl)
if ( ! any(class(x) == 'cross') & ! any(class(x) == 'scanone') )
stop("Input should have class \"cross\" or class \"scanone\".")
if ( ! is.character(string) & !is.vector(string))
stop("Expecting a characte r vector for string")
if ( class(x)[1] == 'scanone') {
coord <- grep(string,names(x))
cat("Drop ",length(coord),"lodcolumn\n");
if(!length(coord)) return(x);
nf <- x[,-coord]
} else {
coord <- grep(string,names(x$pheno))
cat("Drop ",length(coord),"phenotypes\n");
if(!length(coord)) return(x);
nf <- x
nf$pheno <- x$pheno[,-coord]
}
attributes(nf)$class <- class(x)
try(return(nf),silent=FALSE)
}
|
bfactor <- function(data, model, model2 = paste0('G = 1-', ncol(data)),
group = NULL, quadpts = NULL, invariance = '', ...)
{
Call <- match.call()
dots <- list(...)
if(!is.null(dots$dentype))
stop('bfactor does not currently support changing the dentype input', call.=FALSE)
if(!is.null(dots$method))
stop('method cannot be changed for bifactor models', call.=FALSE)
if(!is.null(dots$formula))
stop('bfactor does not currently support latent regression models', call.=FALSE)
if(missing(model)) missingMsg('model')
if(!is.numeric(model))
stop('model must be a numeric vector', call.=FALSE)
if(is.numeric(model))
if(length(model) != ncol(data))
stop('length of model must equal the number of items', call.=FALSE)
uniq_vals <- sort(na.omit(unique(model)))
specific <- model
for(i in seq_len(length(uniq_vals)))
specific[uniq_vals[i] == model & !is.na(model)] <- i
nspec <- length(uniq_vals)
if(is.character(model2)){
tmp <- any(sapply(colnames(data), grepl, x=model2))
model2 <- mirt.model(model2, itemnames = if(tmp) colnames(data) else NULL)
}
if(!is(model2, 'mirt.model'))
stop('model2 must be an appropriate second-tier model', call.=FALSE)
model <- bfactor2mod(specific, ncol(data))
model$x <- rbind(model2$x, model$x)
attr(model, 'nspec') <- nspec
attr(model, 'specific') <- specific
if(is.null(group)) group <- rep('all', nrow(data))
mod <- ESTIMATION(data=data, model=model, group=group,
method='EM', quadpts=quadpts,
BFACTOR = TRUE, invariance=invariance, ...)
if(is(mod, 'SingleGroupClass') || is(mod, 'MultipleGroupClass'))
mod@Call <- Call
return(mod)
}
|
call(arg, , more_args)
a[, , drop = FALSE]
|
pie2 <- function (x, label = "",
radius = 0.8,
pie.bord=.1,
pie.col='white',
pie.col2 = 'grey',
bg = 'white',
border.width = 1)
{
x <- c(1-x, x)
t2xy <- function(t, radius) {
t2p <- twopi * t + init.angle * pi/180
list(x = radius * cos(t2p), y = radius * sin(t2p))
}
init.angle <- 90
edges = 200
angle <- 45
density = c(NULL, NULL)
lty = c(NULL, NULL)
clockwise = FALSE
col = c(pie.col2, pie.col)
border = c(TRUE, TRUE)
radius2 <- radius - radius*pie.bord
n <- 200
x <- c(0, cumsum(x)/sum(x))
dx <- diff(x)
nx <- length(dx)
twopi <- 2 * pi
plot.new()
pin <- par("pin")
xlim <- ylim <- c(-1, 1)
plot.window(xlim, ylim, "", asp = 1)
par("fg")
for (i in 1L:nx) {
P <- t2xy(seq.int(x[i], x[i + 1], length.out = n), radius)
polygon(c(P$x, 0), c(P$y, 0), density = density[i], angle = angle[i],
border = border[i], col = col[i], lty = lty[i], lwd = border.width)
}
border2 <- TRUE
P2 <- t2xy(seq.int(x[1], x[3], length.out = n), radius2)
polygon(c(P2$x, 0), c(P2$y, 0), density = NULL, angle = 45, border=TRUE, col=bg, lty=NULL, lwd = border.width)
P3 <- t2xy(seq.int(x[1], x[3], length.out = n), radius2-radius2*.001)
polygon(c(P2$x, 0), c(P2$y, 0), density = NULL, angle = 45, border=FALSE, col=bg, lty=NULL, lwd = border.width)
text(0,0,label)
}
|
expected <- eval(parse(text="complex(0)"));
test(id=0, code={
argv <- eval(parse(text="list(logical(0), logical(0))"));
do.call(`as.complex`, argv);
}, o=expected);
|
bayesianLayman <- function(mu.post) {
nr <- dim(mu.post[[1]])[1]
layman.B <- list()
for (k in 1:length(mu.post)) {
layman.B[[k]] <- matrix(NA, nrow = nr, ncol = 6)
for (i in 1:nr) {
layman <- laymanMetrics(mu.post[[k]][i,1,], mu.post[[k]][i,2,])
layman.B[[k]][i,] <- layman$metrics
}
colnames(layman.B[[k]]) <- names(layman$metrics)
}
return(layman.B)
}
|
test_that("Test suite aal.R, functionality in math.R",{
testequal <- function(x,y){testzero(x-y)}
testzero <- function(x, TOL= 1e-8){expect_true(max(Mod(x))<TOL)}
n <- 4
checker1 <- function(a){
stopifnot(length(a)==1)
testequal(a,cumsum(a))
testequal(a,cumprod(a))
}
checker1a <- function(a){
testequal(a,asin(sin(a)))
testequal(a,atan(tan(a)))
testzero(Mod(acos(cos(a))/a)-1)
testequal(a,asinh(sinh(a)))
testequal(a,atanh(tanh(a)))
testzero(Mod(acosh(cosh(a))/a)-1)
testzero(Mod(sign(a))-1)
testequal(log(a,base=exp(1)),log(a))
}
checker3 <- function(a){
stopifnot(length(a) == 3)
testequal(c(a[1],a[1]*a[2],(a[1]*a[2])*a[3]),cumprod(a))
testequal(c(a[1],a[1]+a[2],(a[1]+a[2])+a[3]), cumsum(a))
testequal(a[1]+a[2]+a[3],sum(a))
if(is.quaternion(a)){testequal(a[1]*a[2]*a[3],prod(a))}
if(is.octonion(a)){expect_error(prod(a))}
expect_error(digamma(a))
expect_error(digamma(as.onionmat(a)))
expect_error(Arg(a))
expect_error(Arg(as.onionmat(a)))
expect_error(Complex(a))
expect_error(Complex(as.onionmat(a)))
testequal(Norm(a),Mod(a)^2)
testequal(Norm(as.onionmat(a)),Mod(as.onionmat(a))^2)
}
jj <- romat()
testequal(jj,Conj(Conj(jj)))
expect_true(all(Mod(jj) >= 0))
for(i in seq_len(n)){
checker1(rquat(1))
checker1(roct(1))
checker1a(rquat(3)/31)
checker1a(roct(3)/31)
checker3(rquat(3))
checker3(roct(3))
}
})
|
set.seed(1)
total_dp <- 10
tau_t <- rep(0.8, total_dp)
p_t <- rep(0.4, total_dp)
gamma <- 0.05
b <- 0.2
g_t <- cbind(rep(1, total_dp), 1:total_dp)
alpha <- as.matrix(c(-0.2, -0.1), ncol = 1)
mu0_t <- exp(g_t %*% alpha)
f_t <- cbind(rep(1, total_dp), 1:total_dp)
beta <- as.matrix(c(0.15, - 0.01), ncol = 1)
mee_t <- f_t %*% beta
mu1_t <- mu0_t * exp(mee_t)
p_t <- rep(0.4, total_dp)
gamma <- 0.05
b <- 0.2
g_t <- cbind(rep(1, total_dp), 1:total_dp)
alpha <- as.matrix(c(-0.2, -0.1), ncol = 1)
mu0_t <- exp(g_t %*% alpha)
f_t <- cbind(rep(1, total_dp), 1:total_dp)
beta <- as.matrix(c(0.15, - 0.01), ncol = 1)
mee_t <- f_t %*% beta
mu1_t <- mu0_t * exp(mee_t)
g_new <- cbind(rep(1, total_dp), 1:total_dp, (1:total_dp)^2)
alpha_new <- as.matrix(c(-0.2, -0.1, .01), ncol = 1)
f_new <- cbind(rep(1, total_dp), 1:total_dp, (1:total_dp)^2)
beta_new <- as.matrix(c(0.15, - 0.01, -.1), ncol = 1)
test_that(
"check if first error check of invalid probabilities catches error",
{
expect_error(
compute_m_sigma(tau_t, f_t, -g_t, beta, alpha, p_t),
message="g_t and alpha values led to invalid probabilities")
}
)
test_that(
"check if second error check of invalid probabilities catches error",
{
expect_error(
compute_m_sigma(tau_t, f_t, g_t, beta+1, alpha, p_t, gamma, b),
message="f_t and beta values led to invalid probabilities")
}
)
|
vcov.fitfrail <- function(object, boot=FALSE, B=100,
Lambda.times=NULL,
cores=0, ...) {
fit <- object
Call <- match.call()
if (is.null(Lambda.times)) {
Lambda.times <- fit$Lambda$time
}
if (!boot) {
Lambda.times = NULL
}
if (!is.null(fit$VARS[["COV"]]) && !is.null(fit$VARS[["COV.call"]])) {
new.Call <- fit$VARS[["COV.call"]]
cache.Call <- Call
new.Call$object <- NULL
new.Call$cores <- NULL
cache.Call$object <- NULL
cache.Call$cores <- NULL
if(identical(new.Call, cache.Call))
return(fit$VARS[["COV"]])
}
vcov.boot <- function() {
fn <- function(s) {
set.seed(s)
weights <- rexp(fit$n.clusters)
weights <- weights/mean(weights)
new.call <- fit$call
new.call$weights <- weights
new.fit <- eval(new.call)
c(new.fit$beta,
new.fit$theta,
setNames(new.fit$Lambda.fun(Lambda.times),
paste("Lambda.", format(Lambda.times, nsmall=2), sep="")))
}
hats <- t(simplify2array(plapply(B, fn, cores=cores)))
cov(hats)
}
vcov.estimator <- function() with(fit$VARS, {
jac <- score_jacobian()
V <- Reduce('+', lapply(1:n.clusters, function(i) {
xi_[i,] %*% t(xi_[i,])
}))/n.clusters
Q_beta_ <- lapply(1:n.beta, function(r) {
Q_beta(X_, K_, H_, R_star, phi_1_, phi_2_, phi_3_, r)
})
Q_theta_ <- lapply((n.beta+1):(n.beta+n.theta), function(r) {
Q_theta(H_, R_star, phi_1_, phi_2_,
phi_prime_1_[[r - n.beta]], phi_prime_2_[[r - n.beta]])
})
Q_ <- c(Q_beta_, Q_theta_)
Ycal_ <- Ycal(X_, R_star, Y_, psi_, hat.beta)
eta_ <- eta(phi_1_, phi_2_, phi_3_)
Upsilon_ <- Upsilon(X_, R_star, K_, R_dot_, eta_, Ycal_, hat.beta)
Omega_ <- Omega(X_, R_star, N_, R_dot_, eta_, Ycal_, hat.beta)
p_hat_ <- p_hat(I_, Upsilon_, Omega_, N_tilde_)
pi_ <- lapply(1:n.gamma, function(r) {
pi_r(Q_[[r]], N_tilde_, p_hat_)
})
G <- outer(1:n.gamma, 1:n.gamma, Vectorize(function(r, l) {
G_rl(pi_[[r]], pi_[[l]], p_hat_, Ycal_, N_)
}))
M_hat_ <- M_hat(X_, R_star, N_, Y_, psi_, hat.beta, Lambda)
u_star_ <- u_star(pi_, p_hat_, Ycal_, M_hat_)
C <- outer(1:n.gamma, 1:n.gamma, Vectorize(function(r, l) {
sum(vapply(1:n.clusters, function(i) {
xi_[i,r] * u_star_[i,l] + xi_[i,l] * u_star_[i,r]
}, 0))
}))/n.clusters
D_inv <- solve(jac)
(D_inv %*% (V + G + C) %*% t(D_inv))/n.clusters
})
if (boot) {
COV <- vcov.boot()
} else {
COV <- vcov.estimator()
}
param.names <- c(names(fit$beta), names(fit$theta))
if (length(Lambda.times) > 0) {
param.names <- c(param.names, paste("Lambda.", format(Lambda.times, nsmall=2), sep=""))
}
rownames(COV) <- param.names
colnames(COV) <- param.names
fit$VARS[["COV"]] <- COV
fit$VARS[["COV.call"]] <- Call
COV
}
|
optim.boxcox <- function (formula, groups = 1, data, K = 3, steps = 500, tol = 0.5,
start = "gq", EMdev.change = 1e-04, find.in.range = c(-3,
3), s = 60, plot.opt = 3, verbose = FALSE, noformat = FALSE,
...)
{
call <- match.call()
mform <- strsplit(as.character(groups), "\\|")
mform <- gsub(" ", "", mform)
if (!noformat) {
if (steps > 8)
graphics::par(mfrow = c(4, 4), cex = 0.5)
else graphics::par(mfrow = c(3, 3), cex = 0.5, cex.axis = 1.1)
}
result <- disp <- loglik <- EMconverged <- rep(0, s + 1)
S <- 0:s
lambda <- find.in.range[1] + (find.in.range[2] - find.in.range[1]) *
S/s
for (t in 1:(s + 1)) {
fit <- try(np.boxcoxmix(formula = formula, groups = groups,
data = data, K = K, lambda = lambda[t], steps = steps,
tol = tol, start = start, EMdev.change = EMdev.change,
plot.opt = plot.opt, verbose = verbose))
if (class(fit) == "try-error") {
cat("optim.boxcox failed using lambda=", lambda[t],
". Hint: specify another range of lambda values and try again.")
return()
}
EMconverged[t] <- fit$EMconverged
result[t] <- fit$loglik
if (!all(is.finite(result[t]))) {
print.plot <- FALSE
}
}
s.max <- which.max(result)
max.result <- result[s.max]
lambda.max <- lambda[s.max]
fit <- np.boxcoxmix(formula = formula, groups = groups, data = data,
K = K, lambda = lambda.max, steps = steps, tol = tol,
start = start, EMdev.change = EMdev.change, plot.opt = 0,
verbose = verbose)
W <- fit$w
P <- fit$p
se <- fit$se
iter <- fit$EMiteration
names(P) <- paste("MASS", 1:K, sep = "")
Z <- fit$mass.point
names(Z) <- paste("MASS", 1:K, sep = "")
Beta <- fit$beta
Sigma <- fit$sigma
Disp <- fit$disparity
Disparities <- fit$Disparities
n <- NROW(data)
if (fit$model == "pure") {
if(K==1){
aic <- Disp + 2 * 2
bic <- Disp + log(n) * 2
}
else {
aic <- Disp + 2 * (2 * K)
bic <- Disp + log(n) * (2 * K)
}}
else {if(K==1){
aic <- Disp + 2 * (length(Beta) +1)
bic <- Disp + log(n) * (length(Beta) +1)
}
else {
aic <- Disp + 2 * (length(Beta) + 2 * K)
bic <- Disp + log(n) * (length(Beta) + 2 * K)
}}
y <- fit$y
yt <- fit$yt
fitted <- fit$fitted
fitted.transformed <- fit$fitted.transformed
masses <- fit$masses
ylim <- fit$ylim
residuals <- fit$residuals
residuals.transformed <- fit$residuals.transformed
predicted.re <- fit$predicted.re
Class <- fit$Class
xx <- fit$xx
model <- fit$model
Disp <- fit$disparity
Disparities <- fit$Disparities
Loglik <- fit$loglik
npcolors <- "green"
ylim1 = range(result, max.result)
maxl <- paste("Maximum profile log-likelihood:", round(max.result,
digits = 3), "at lambda=", round(lambda.max, digits = 2),
"\n")
if (plot.opt == 3) {
graphics::plot(lambda, result, type = "l", xlab = expression(lambda),
ylab = "Profile log-likelihood", ylim = ylim1, col = "green")
plims <- graphics::par("usr")
y0 <- plims[3]
graphics::segments(lambda.max, y0, lambda.max, max.result,
lty = 1, col = "red", lwd = 2)
cat("Maximum profile log-likelihood:", max.result, "at lambda=",
lambda.max, "\n")
result <- list(call = call, y0 = y0, p = P, mass.point = Z,
beta = Beta, sigma = Sigma, se = se, w = W, Disparities = Disparities,
formula = formula, data = data, loglik = Loglik,
aic = aic, bic = bic, masses = masses, y = y, yt = yt,
All.lambda = lambda, profile.loglik = result, disparity = Disp,
EMconverged = EMconverged, Maximum = lambda.max,
mform = length(mform), ylim = ylim, fitted = fitted,
Class = Class, fitted.transformed = fitted.transformed,
predicted.re = predicted.re, residuals = residuals,
residuals.transformed = residuals.transformed, objective = max.result,
kind = 3, EMiteration = iter, ss = s, s.max = s.max,
npcolor = npcolors, ylim1 = ylim1, xx = xx, maxl = maxl,
model = model)
class(result) <- "boxcoxmix"
}
else {
result <- list(call = call, p = P, mass.point = Z, beta = Beta,
sigma = Sigma, se = se, w = W, Disparities = Disparities,
formula = formula, data = data, loglik = Loglik,
aic = aic, bic = bic, masses = masses, y = y, yt = yt,
All.lambda = lambda, profile.loglik = result, disparity = Disp,
EMconverged = EMconverged, Maximum = lambda.max,
mform = length(mform), ylim = ylim, fitted = fitted,
Class = Class, fitted.transformed = fitted.transformed,
predicted.re = predicted.re, residuals = residuals,
residuals.transformed = residuals.transformed, objective = max.result,
kind = 3, EMiteration = iter, ss = s, s.max = s.max,
npcolor = npcolors, ylim1 = ylim1, xx = xx, maxl = maxl,
model = model)
class(result) <- "boxcoxmix"
}
return(result)
}
|
imp.rfnode.prox <- function(
data,
num.imp = 5,
max.iter = 5,
num.trees = 10,
pre.boot = TRUE,
print.flag = FALSE,
...) {
return(mice(
data = data,
method = "rfnode",
m = num.imp,
maxit = max.iter,
num.trees.node = num.trees,
pre.boot = pre.boot,
use.node.cond.dist = FALSE,
obs.eq.prob = FALSE,
do.sample = TRUE,
printFlag = print.flag,
maxcor = 1.0,
eps = 0,
remove.collinear = FALSE,
remove.constant = FALSE,
...))
}
|
ExponentSet <- R6Class("ExponentSet",
inherit = ProductSet,
public = list(
initialize = function(set, power) {
if (power == "n") {
lower <- set$lower
upper <- set$upper
setlist <- list(set)
private$.power <- "n"
cardinality <- NULL
} else {
lower <- Tuple$new(rep(set$lower, power))
upper <- Tuple$new(rep(set$upper, power))
setlist <- rep(list(set), power)
private$.power <- as.integer(power)
if (is.null(set$properties$cardinality)) {
cardinality <- NULL
} else if (grepl("Beth|Aleph", set$properties$cardinality)) {
cardinality <- set$properties$cardinality
} else {
cardinality <- set$properties$cardinality^power
}
}
type <- "{}"
super$initialize(setlist = setlist, lower = lower, upper = upper, type = type,
cardinality = cardinality)
},
strprint = function(n = 2) {
if (inherits(self$wrappedSets[[1]], "SetWrapper")) {
paste0("(", self$wrappedSets[[1]]$strprint(n = n), ")^", self$power)
} else {
paste(self$wrappedSets[[1]]$strprint(n = n), self$power, sep = "^")
}
},
contains = function(x, all = FALSE, bound = FALSE) {
x <- listify(x)
if (self$power == "n") {
ret <- vapply(x, function(.x) {
if (testSet(.x)) {
self$wrappedSets[[1]]$contains(.x$elements, all = TRUE, bound = bound)
} else {
self$wrappedSets[[1]]$contains(.x, all = TRUE, bound = bound)
}
}, logical(1))
} else {
ret <- sapply(x, function(el) {
if (!testSet(el)) {
el <- as.Set(el)
}
if (el$length != self$power) {
return(FALSE)
}
all(self$wrappedSets[[1]]$contains(el$elements, bound = bound))
})
}
returner(ret, all)
}
),
active = list(
power = function() {
return(private$.power)
}
),
private = list(
.power = 1L
)
)
|
sGBJ_scores=function(surv, factor_matrix, covariates = NULL, nperm = 300){
lsScores <- .survival_scores(factor_matrix = factor_matrix,
covariates = covariates,
surv = surv)
epsilon <- .epsilon_matrix(Z = lsScores$Z,
nperm = nperm,
surv = surv,
factor_matrix = lsScores$updatedFactor_matrix,
covariates = covariates,
dat = lsScores$datas)
scores_GBJ <- list("test_stats" = lsScores$Z,
"cor_mat" = epsilon)
return(scores_GBJ)
}
|
context("MULTSBM test")
library(greed)
library(ggplot2)
set.seed(1234)
test_that("MULTSBM sim", {
N = 100
K = 3
pi = rep(1/K,K)
mu = array(dim=c(K,K,3))
mu[,,1] = diag(rep(1/5,K))+runif(K^2)*0.005
mu[1,1,1]=runif(1)*0.005
mu[,,2] = diag(rep(1/5,K))+runif(K^2)*0.005
mu[2,2,1]=runif(1)*0.005
mu[,,3] = 1- mu[,,1]-mu[,,2]
lambda = 10
multsbm = rmultsbm(N,pi,mu,10)
expect_equal(dim(multsbm$x)[1], N)
expect_equal(dim(multsbm$x)[2], N)
expect_equal(length(multsbm$cl),N)
expect_gte(min(multsbm$cl), 1)
expect_lte(max(multsbm$cl), K)
})
test_that("MULTSBM hybrid", {
N = 100
K = 3
pi = rep(1/K,K)
mu = array(dim=c(K,K,3))
mu[,,1] = diag(rep(1/5,K))+runif(K^2)*0.005
mu[1,1,1]=runif(1)*0.005
mu[,,2] = diag(rep(1/5,K))+runif(K^2)*0.005
mu[2,2,1]=runif(1)*0.005
mu[,,3] = 1- mu[,,1]-mu[,,2]
lambda = 10
multsbm = rmultsbm(N,pi,mu,10)
sol=greed(multsbm$x,model=new('multsbm'))
expect_equal(sol@K, K)
solc = cut(sol,2)
expect_true(is.ggplot(plot(solc,type='tree')))
expect_true(is.ggplot(plot(solc,type='path')))
expect_true(is.ggplot(plot(solc,type='front')))
expect_true(is.ggplot(plot(solc,type='blocks')))
expect_true(is.ggplot(plot(solc,type='nodelink')))
})
test_that("MULTSBM seed", {
N = 100
K = 3
pi = rep(1/K,K)
mu = array(dim=c(K,K,3))
mu[,,1] = diag(rep(1/5,K))+runif(K^2)*0.005
mu[1,1,1]=runif(1)*0.005
mu[,,2] = diag(rep(1/5,K))+runif(K^2)*0.005
mu[2,2,1]=runif(1)*0.005
mu[,,3] = 1- mu[,,1]-mu[,,2]
lambda = 10
multsbm = rmultsbm(N,pi,mu,10)
sol=greed(multsbm$x,model=new('multsbm'),alg=new("seed"))
expect_gte(sol@K, K-2)
expect_lte(sol@K, K+2)
solc = cut(sol,2)
expect_true(is.ggplot(plot(solc,type='tree')))
expect_true(is.ggplot(plot(solc,type='path')))
expect_true(is.ggplot(plot(solc,type='front')))
expect_true(is.ggplot(plot(solc,type='blocks')))
expect_true(is.ggplot(plot(solc,type='nodelink')))
})
test_that("MULTSBM multitstart", {
N = 100
K = 3
pi = rep(1/K,K)
mu = array(dim=c(K,K,3))
mu[,,1] = diag(rep(1/5,K))+runif(K^2)*0.005
mu[1,1,1]=runif(1)*0.005
mu[,,2] = diag(rep(1/5,K))+runif(K^2)*0.005
mu[2,2,1]=runif(1)*0.005
mu[,,3] = 1- mu[,,1]-mu[,,2]
lambda = 10
multsbm = rmultsbm(N,pi,mu,10)
sol=greed(multsbm$x,model=new('multsbm'),alg=new("multistarts"))
expect_gte(sol@K, K-2)
expect_lte(sol@K, K+2)
solc = cut(sol,2)
expect_true(is.ggplot(plot(solc,type='tree')))
expect_true(is.ggplot(plot(solc,type='path')))
expect_true(is.ggplot(plot(solc,type='front')))
expect_true(is.ggplot(plot(solc,type='blocks')))
expect_true(is.ggplot(plot(solc,type='nodelink')))
})
test_that("MULTSBM genetic", {
N = 100
K = 3
pi = rep(1/K,K)
mu = array(dim=c(K,K,3))
mu[,,1] = diag(rep(1/5,K))+runif(K^2)*0.005
mu[1,1,1]=runif(1)*0.005
mu[,,2] = diag(rep(1/5,K))+runif(K^2)*0.005
mu[2,2,1]=runif(1)*0.005
mu[,,3] = 1- mu[,,1]-mu[,,2]
lambda = 10
multsbm = rmultsbm(N,pi,mu,10)
sol=greed(multsbm$x,model=new('multsbm'),alg=new("genetic"))
expect_gte(sol@K, K-2)
expect_lte(sol@K, K+2)
solc = cut(sol,2)
expect_true(is.ggplot(plot(solc,type='tree')))
expect_true(is.ggplot(plot(solc,type='path')))
expect_true(is.ggplot(plot(solc,type='front')))
expect_true(is.ggplot(plot(solc,type='blocks')))
expect_true(is.ggplot(plot(solc,type='nodelink')))
})
|
plot_weighting_continuous <- function(mod, covariate, alpha = 0.05, ...) {
checkmate::assert_class(mod, "regweight")
checkmate::assert_numeric(covariate)
ok <- stats::complete.cases(covariate, mod$weights)
n <- sum(ok)
covariate <- covariate[ok]
wts <- mod$weights[ok]
range <- stats::quantile(covariate, probs = c(0.05, 0.95))
eval_pts <- seq(range[1], range[2], length = 250)
wkde <- lpdensity::lpdensity(
covariate,
grid = eval_pts,
Pweights = wts / sum(wts) * n,
kernel = "epanechnikov",
bwselect = "imse-dpi"
)
kde <- lpdensity::lpdensity(
covariate,
grid = eval_pts,
kernel = "epanechnikov",
bwselect = "imse-dpi"
)
tbl <- dplyr::tibble(
weight = rep(c("Implicit regression", "Nominal"), c(250, 250)),
transp = rep(c(1, 0.5), c(250, 250)),
covariate = c(eval_pts, eval_pts),
density = c(wkde$Estimate[, "f_p"], kde$Estimate[, "f_p"]),
std_error = c(wkde$Estimate[, "se_q"], kde$Estimate[, "se_q"]),
lwr = .data$density - stats::qnorm(1 - alpha / 2) * .data$std_error,
upr = .data$density + stats::qnorm(1 - alpha / 2) * .data$std_error
)
ggplot2::ggplot(tbl,
ggplot2::aes(
x = .data$covariate,
alpha = .data$transp,
color = .data$weight,
fill = .data$weight
)
) +
ggplot2::geom_line(aes(y = .data$density)) +
ggplot2::geom_line(aes(y = .data$lwr), linetype = "dashed") +
ggplot2::geom_line(aes(y = .data$upr), linetype = "dashed") +
ggplot2::scale_x_continuous("") +
ggplot2::scale_y_continuous("Covariate density") +
ggplot2::scale_fill_manual("",
values = c("Implicit regression" = "black", "Nominal" = "red")
) +
ggplot2::scale_color_manual("",
values = c("Implicit regression" = "black", "Nominal" = "red")
) +
ggplot2::scale_alpha_continuous(guide = "none", limits = c(0, 1)) +
ggplot2::scale_linetype_discrete(guide = "none") +
ggplot2::theme_minimal()
}
|
randTree <- function(n, wndmtrx=FALSE, parallel=FALSE) {
.randomPrinds <- function(n) {
pool <- rep((1:(n-1)), each=2)
res <- rep(NA, length(pool)+1)
res[1] <- 1
for(i in 2:length(res)) {
pssbls <- which(i > pool)
if(length(pssbls) == 1) {
i_pool <- pssbls
} else {
i_pool <- sample(pssbls, 1)
}
res[i] <- pool[i_pool]
pool[i_pool] <- NA
}
res
}
if(n < 3) {
stop("`n` is too small")
}
prinds <- .randomPrinds(n)
.cnstrctTree(n, prinds, wndmtrx=wndmtrx,
parallel=parallel)
}
blncdTree <- function(n, wndmtrx=FALSE, parallel=FALSE) {
if(n < 3) {
stop("`n` is too small")
}
prinds <- c(1, rep((1:(n-1)), each=2))
.cnstrctTree(n, prinds, wndmtrx=wndmtrx,
parallel=parallel)
}
unblncdTree <- function(n, wndmtrx=FALSE, parallel=FALSE) {
if(n < 3) {
stop("`n` is too small")
}
prinds <- c(1, 1:(n-1), 1:(n-1))
.cnstrctTree(n, prinds, wndmtrx=wndmtrx,
parallel=parallel)
}
.cnstrctTree <- function(n, prinds, wndmtrx, parallel) {
.add <- function(i) {
nd <- vector("list", length=4)
names(nd) <- c('id', 'ptid', 'prid', 'spn')
nd[['id']] <- ids[i]
nd[['spn']] <- spns[i]
nd[['prid']] <- ids[prinds[i]]
nd[['ptid']] <- ptids[ptnds_pool == i]
nd
}
nnds <- length(prinds)
spns <- c(0, runif(nnds-1, 0, 1))
ids <- rep(NA, nnds)
tinds <- which(!1:nnds %in% prinds)
ids[tinds] <- paste0('t', 1:n)
ids[1:nnds %in% prinds] <- paste0('n', 1:(n-1))
ptnds_pool <- prinds[-1]
ptids <- ids[-1]
ndlst <- plyr::mlply(.data=1:nnds, .fun=.add, .parallel=parallel)
attr(ndlst, "split_labels") <-
attr(ndlst, "split_type") <- NULL
names(ndlst) <- ids
tree <- new('TreeMan', ndlst=ndlst, root='n1', wtxnyms=FALSE,
ndmtrx=NULL, prinds=prinds, tinds=tinds)
tree <- updateSlts(tree)
if(wndmtrx) {
tree <- addNdmtrx(tree)
}
tree
}
twoer <- function(tids=c('t1', 't2'), spns=c(1,1),
rid='root', root_spn=0) {
ndlst <- list()
ndlst[[rid]] <- list('id'=rid, 'prid'=rid,
'ptid'=tids[1:2], 'spn'=root_spn)
ndlst[[tids[1]]] <- list('id'=tids[[1]], 'prid'=rid,
'ptid'=NULL, 'spn'=spns[1])
ndlst[[tids[2]]] <- list('id'=tids[[2]], 'prid'=rid,
'ptid'=NULL, 'spn'=spns[2])
prinds <- c(1, 1, 1)
tinds <- c(2, 3)
tree <- new('TreeMan', ndlst=ndlst, root='root', wtxnyms=FALSE,
ndmtrx=NULL, prinds=prinds, tinds=tinds)
updateSlts(tree)
}
|
perspdepth=function(x,method="Tukey",output=FALSE,tt=50,xlab="X",ylab="Y",zlab=NULL,col=NULL,...){
if(is.data.frame(x)) x=as.matrix(x)
if(is.list(x)) {
m=length(x)
n=length(x[[1]])
y=matrix(0,n,m)
for(i in 1:m){
y[,i]=x[[i]]
if(length(x[[i]])!=n){ stop("When using a list, each element must be a vector of the same length.") }
}
x=y
}
match.arg(method,c("Tukey","Liu","Oja"))
p=length(x[1,])
n=length(x[,1])
if(p>n) { warning(message=paste("Is your data ",n," points in ",p," dimensions.\nIf not, you should transpose your data matrix.")) }
if(p!=2) { stop("Data must be bivariate.\n") }
if(is.null(zlab)){ zlab=paste(method,"'s depth",sep="") }
if(method=="Tukey"||method=="Liu"){
y=x[,2]
x=x[,1]
minx=min(x)
miny=min(y)
ecx=max(x)-minx
ecy=max(y)-miny
xx=minx
yy=miny
for (i in 1:tt){
xx=c(xx,minx+i/tt*ecx)
yy=c(yy,miny+i/tt*ecy)
}
ans = .Fortran("iso3d",
as.numeric(x),
as.numeric(y),
z=numeric((tt+1)^2),
as.integer(n),
as.integer(tt),
as.integer(method=="Liu"),
as.numeric(xx),
as.numeric(yy),
PACKAGE="depth")
zz=matrix(ans$z,tt+1,tt+1)
if(output==FALSE){
if(is.null(col)){ col="lightblue" }
persp3d(xx,yy,zz,col=col,xlab=xlab,ylab=ylab,zlab=zlab,...)
rep=NULL
}
if(output==TRUE){
return(list(x=as.vector(xx),y=as.vector(yy),z=as.matrix(zz)))
}
}
if(method=="Oja"){
w=x
y=x[,2]
x=x[,1]
minx=min(x)
miny=min(y)
ecx=max(x)-minx
ecy=max(y)-miny
xx=minx
yy=miny
for (i in 1:tt){
xx=c(xx,minx+i/tt*ecx)
yy=c(yy,miny+i/tt*ecy)
}
ans = .Fortran("ojaiso3d",
as.numeric(w),
z=numeric((tt+1)^2),
as.integer(n),
as.integer(tt),
as.numeric(xx),
as.numeric(yy),
PACKAGE="depth")
zz=matrix(ans$z,tt+1,tt+1)
if(output==FALSE){
if(is.null(col)){ col="lightblue" }
persp3d(xx,yy,zz,col=col,xlab=xlab,ylab=ylab,zlab=zlab,...)
rep=NULL
}
if(output==TRUE){
return(list(x=as.vector(xx),y=as.vector(yy),z=as.matrix(zz)))
}
}
invisible()
}
|
discretizeDF.supervised <- function(formula, data, method = "mdlp",
dig.lab = 3, ...) {
if(!is(data, "data.frame")) stop("data needs to be a data.frame")
methods = c("mdlp", "caim", "cacc", "ameva", "chi2", "chimerge", "extendedchi2", "modchi2")
method <- methods[pmatch(tolower(method), methods)]
if(is.na(method)) stop(paste("Unknown method! Available methods are", paste(methods, collapse = ", ")))
vars <- .parseformula(formula, data)
cl_id <- vars$class_ids
var_ids <- vars$var_ids
if(any(!sapply(data[var_ids], is.numeric))) stop("Cannot discretize non-numeric column: ",
colnames(data)[var_ids[!sapply(data[var_ids], is.numeric)]])
if(method == "mdlp") {
cps <- structure(vector("list", ncol(data)), names = colnames(data))
for(i in var_ids) {
missing <- is.na(data[[i]])
cPts <- try(discretization::cutPoints(data[[i]][!missing], data[[cl_id]][!missing]), silent = TRUE)
if(is(cPts, "try-error")) stop("Problem with discretizing column ", i,
" (maybe not enough non-missing values?)")
cps[[i]] <- list(
breaks = c(-Inf, cPts, Inf),
method = "fixed")
}
} else {
data_num_id <- var_ids
data_num <- data[,c(data_num_id, cl_id)]
res <- switch(method,
caim = discretization::disc.Topdown(data_num, method = 1),
cacc = discretization::disc.Topdown(data_num, method = 2),
ameva = discretization::disc.Topdown(data_num, method = 3),
chi2 = discretization::chi2(data_num, ...),
chimerge = discretization::chiM(data_num, ...),
extendedchi2 = discretization::extendChi2(data_num, ...),
modchi2 = discretization::modChi2(data_num, ...)
)
cps <- structure(vector("list", ncol(data)), names = colnames(data))
for(i in 1:length(data_num_id)) {
cps[[data_num_id[i]]] <- list(
breaks = c(-Inf, res$cutp[[i]], Inf),
method = "fixed")
}
}
data <- discretizeDF(data, methods = cps, default = list(method = "none"))
for(i in var_ids) attr(data[[i]], "discretized:method") <- method
data
}
|
"ktaskv" <-
function(x,n=nrow(x),tau=.dFvGet()$tua,f=.dFvGet()$fff) {
if (missing(x)) messagena("x")
np <- ncol(x)
mdx <- nrow(x)
ncov <- np*(np+1)/2
a <- single(ncov)
cov <- single(ncov)
f.res <- .Fortran("ktaskvz",
x=to.single(x),
n=to.integer(n),
np=to.integer(np),
mdx=to.integer(mdx),
ncov=to.integer(ncov),
tau=to.single(tau),
f=to.single(f),
a=to.single(a),
cov=to.single(cov))
list(a=f.res$a,cov=f.res$cov)
}
|
test_that("performance_and_fairness with plot", {
paf <- performance_and_fairness(fobject)
expect_s3_class(paf, "performance_and_fairness")
suppressWarnings(expect_error(performance_and_fairness(fobject, fairness_metric = "non_existing")))
suppressWarnings(expect_error(performance_and_fairness(fobject, performance_metric = "non_existing")))
suppressWarnings(expect_error(performance_and_fairness(fairness_metric = c("d", "f"))))
suppressWarnings(expect_error(performance_and_fairness(performance_metric = c("d", "f"))))
suppressWarnings(expect_error(performance_and_fairness(fairness_metric = 17)))
suppressWarnings(expect_error(performance_and_fairness(performance_metric = 17)))
plt <- plot(paf)
expect_s3_class(plt, "ggplot")
paf <- suppressWarnings(performance_and_fairness(fobject, performance_metric = "auc"))
paf <- performance_and_fairness(fobject, performance_metric = "accuracy")
paf <- performance_and_fairness(fobject, performance_metric = "precision")
paf <- performance_and_fairness(fobject, performance_metric = "recall")
})
|
library(nlsem)
mod <- specify_sem(num.x=4, num.y=4, num.xi=2, num.eta=2,
xi="x1-x2,x3-x4", eta="y1-y2,y3-y4",
constraints="direct1", num.classes=2,
interaction="none",
rel.lat="eta1~xi1,eta2~xi2,eta2~eta1,eta1~eta2")
dat <- as.data.frame(mod)
dat[c(2,8,10,16),2:3] <- 1
dat[c(58,62),2:3] <- 0
dat[65:72,2:3] <- 1
model <- create_sem(dat)
parameters <- c(
rep(0.5, 2),
c(-0.3, 0.7),
rep(0.5, 10),
rep(1, 2),
rep(1, 2),
rep(1, 2),
rep(-0.5, 2),
c(0.7, -0.3),
rep(0.5, 10),
rep(1, 2),
rep(1, 2),
rep(4, 2)
)
data <- simulate(model, seed=7, parameters=parameters)
set.seed(8)
parameters <- runif(count_free_parameters(model), 0.1, 1.5)
|
library(lazytrade)
library(testthat)
library(magrittr)
library(dplyr)
context("util_profit_factor")
test_that("test value of the calculation", {
data(profit_factor_data)
DF_Stats <- profit_factor_data %>%
group_by(X1) %>%
summarise(PnL = sum(X5),
NumTrades = n(),
PrFact = util_profit_factor(X5)) %>%
select(PrFact) %>%
head(1) %>%
round(3)
expect_equal(DF_Stats$PrFact, 0.68)
})
|
negbin.pow <-
function(n,lambda1,k,disp=1.5,alpha,seed = 200, numsim = 1000,monitor=TRUE,sig=3)
{
n.integer <- function(x, tol = .Machine$double.eps)
{ abs(x - round(x)) < tol }
if(alpha >= 1 || alpha <= 0) stop("Error: alpha must be between 0 and 1")
if( any(k <= 0) ) stop("Error: k <= 0")
if( any(disp <= 0) ) stop("Error: Dispersion <= 0. See documentation for underdispersion specification")
if( mean(n.integer(n)) !=1 || n<= 0) stop("n must be positive integer")
negbin.disp<-function (n, lambda,disp)
{
if (disp==1) {rpois(n, lambda)}
else {rnbinom(n, size=(1/(disp-1)), mu=lambda)}
}
l <- list(n=n,lambda1=lambda1,k=k,disp=disp,alpha=alpha,seed = seed,numsim=numsim)
store <- expand.grid(l)
inner.fcn <- function(n,lambda1,k,disp,alpha,seed,numsim)
{
T_nb <- NULL
set.seed(seed)
for (i in 1:numsim)
{
x <- negbin.disp(n, lambda1,disp)
y <- negbin.disp(n, lambda1,disp)
a <- mean(x); b <- mean(y)
se <- sqrt((a+(disp-1)*a^2)/n + (b+(disp-1)*b^2)/n)
t <- ( mean(x) - mean(y) ) / se
T_nb[i] <- t
}
T_nb <- na.omit(T_nb)
T_crit <- c(quantile(T_nb,alpha/2),quantile(T_nb,1-alpha/2))
T_nb.alt <- NULL
for (i in 1:numsim)
{
x <- negbin.disp(n, lambda1,disp)
y <- negbin.disp(n, k*lambda1, disp)
a <- mean(x); b <- mean(y)
se <- sqrt((a+(disp-1)*a^2)/n + (b+(disp-1)*b^2)/n)
t <- ( mean(x) - mean(y) ) / se
T_nb.alt[i] <- t
}
summary(T_nb.alt)
val1 <- length(T_nb.alt[T_nb.alt > T_crit[2]])
val2 <- length(T_nb.alt[T_nb.alt < T_crit[1]])
power <- sum(val1,val2)/numsim
}
if (monitor == TRUE)
{
pb <- txtProgressBar(min = 0, max = dim(store)[1], style = 3)
for (i in 1:dim(store)[1])
{
power <- mapply(inner.fcn,store[,1],store[,2],store[,3],store[,4],store[,5],store[,6],store[,7])
std.err <- sqrt(power*(1-power)/store[,7])
out <- cbind(store[,1:5],round(power,sig),round(std.err,3))
colnames(out) <- c("N","Mean.Null","Effect.Size","Disp.Par","Type.I.Error","Power","Std.Err")
setTxtProgressBar(pb, i)
}
close(pb)
return(out)
}
if (monitor == FALSE)
{
power <- mapply(inner.fcn,store[,1],store[,2],store[,3],store[,4],store[,5],store[,6],store[,7])
std.err <- sqrt(power*(1-power)/store[,7])
out <- cbind(store[,1:5],round(power,sig),round(std.err,3))
colnames(out) <- c("N","Mean.Null","Effect.Size","Disp.Par","Type.I.Error","Power","Std.Err")
return(out)
}
}
|
context("Binary")
test_that("Rational example works", {
suppressWarnings({
Rational <- defineClass("Rational", contains = c("Show", "Binary"), {
numer <- 0
denom <- 1
.g <- 1
.gcd <- function(a, b) if(b == 0) a else Recall(b, a %% b)
init <- function(numer, denom) {
.self$.g <- .gcd(numer, denom)
.self$numer <- numer / .g
.self$denom <- denom / .g
}
show <- function() {
cat(paste0(.self$numer, "/", .self$denom, "\n"))
}
".+" <- function(that) {
Rational(numer = numer * that$denom + that$numer * denom,
denom = denom * that$denom)
}
neg <- function() {
Rational(numer = -.self$numer,
denom = .self$denom)
}
".-" <- function(that) {
.self + that$neg()
}
})
rational <- Rational(2, 3)
expect_equal(rational$numer, 2)
expect_equal(rational$denom, 3)
rational <- rational + rational
expect_equal(rational$numer, 4)
expect_equal(rational$denom, 3)
rational <- rational$neg()
expect_equal(rational$numer, -4)
expect_equal(rational$denom, 3)
rational <- rational - rational
expect_equal(rational$numer, 0)
expect_equal(rational$denom, 1)
x <- Rational(numer = 1, denom = 3)
y <- Rational(numer = 5, denom = 7)
z <- Rational(numer = 3, denom = 2)
rational <- x - y - z
expect_equal(rational$numer, -79)
expect_equal(rational$denom, 42)
})
})
|
structure(list(url = "https://api.twitter.com/2/tweets/search/all?query=%23standwithhongkong&max_results=500&start_time=2020-06-20T00%3A00%3A00Z&end_time=2020-06-21T00%3A00%3A00Z&tweet.fields=attachments%2Cauthor_id%2Cconversation_id%2Ccreated_at%2Centities%2Cgeo%2Cid%2Cin_reply_to_user_id%2Clang%2Cpublic_metrics%2Cpossibly_sensitive%2Creferenced_tweets%2Csource%2Ctext%2Cwithheld&user.fields=created_at%2Cdescription%2Centities%2Cid%2Clocation%2Cname%2Cpinned_tweet_id%2Cprofile_image_url%2Cprotected%2Cpublic_metrics%2Curl%2Cusername%2Cverified%2Cwithheld&expansions=author_id%2Centities.mentions.username%2Cgeo.place_id%2Cin_reply_to_user_id%2Creferenced_tweets.id%2Creferenced_tweets.id.author_id&place.fields=contained_within%2Ccountry%2Ccountry_code%2Cfull_name%2Cgeo%2Cid%2Cname%2Cplace_type&q=%23CPC100Years",
status_code = 401L, headers = structure(list(date = "Sun, 04 Jul 2021 13:14:24 UTC",
server = "tsa_o", `content-type` = "application/json; charset=utf-8",
`cache-control` = "no-cache, no-store, max-age=0", `content-length` = "91",
`x-frame-options` = "SAMEORIGIN", `content-encoding` = "gzip",
`x-xss-protection` = "0", `content-disposition` = "attachment; filename=json.json",
`x-content-type-options` = "nosniff", `strict-transport-security` = "max-age=631138519",
`x-connection-hash` = "cf5ec88fb71130f8e692029e90502ae4a86a4ca038611670dd0f5955841268e9"), class = c("insensitive",
"list")), all_headers = list(list(status = 401L, version = "HTTP/2",
headers = structure(list(date = "Sun, 04 Jul 2021 13:14:24 UTC",
server = "tsa_o", `content-type` = "application/json; charset=utf-8",
`cache-control` = "no-cache, no-store, max-age=0",
`content-length` = "91", `x-frame-options` = "SAMEORIGIN",
`content-encoding` = "gzip", `x-xss-protection` = "0",
`content-disposition` = "attachment; filename=json.json",
`x-content-type-options` = "nosniff", `strict-transport-security` = "max-age=631138519",
`x-connection-hash` = "cf5ec88fb71130f8e692029e90502ae4a86a4ca038611670dd0f5955841268e9"), class = c("insensitive",
"list")))), cookies = structure(list(domain = c(".twitter.com",
".twitter.com"), flag = c(TRUE, TRUE), path = c("/", "/"),
secure = c(TRUE, TRUE), expiration = structure(c(1688456705,
1688456705), class = c("POSIXct", "POSIXt")), name = c("personalization_id",
"guest_id"), value = c("REDACTED", "REDACTED")), row.names = c(NA,
-2L), class = "data.frame"), content = charToRaw("{\"title\":\"Unauthorized\",\"type\":\"about:blank\",\"status\":401,\"detail\":\"Unauthorized\"}"),
date = structure(1625404464, class = c("POSIXct", "POSIXt"
), tzone = "GMT"), times = c(redirect = 0, namelookup = 4.4e-05,
connect = 4.6e-05, pretransfer = 0.000186, starttransfer = 0.125812,
total = 0.125846)), class = "response")
|
sideBySideQQPlot <- function(x, fun, envelope = TRUE, half.normal = FALSE,
n.samples = 250, level = .95, id.n = 3, qqline = TRUE,
...)
{
confidence.envelope <- function(n, sd = 1, n.samples = 250, level = 0.95,
half.normal = FALSE)
{
lower <- upper <- matrix(0.0, n, n.models)
alphaOver2 <- (1.0 - level) / 2.0
probs <- c(alphaOver2, 1.0 - alphaOver2)
env <- matrix(rnorm(n * n.samples, sd = sd), n.samples, n)
if(half.normal)
env <- abs(env)
env <- apply(env, 1, sort)
env <- apply(env, 1, quantile, probs = probs)
list(lower = env[1, ], upper = env[2, ])
}
n.models <- length(x)
mod.names <- names(x)
res <- lapply(x, fun)
n.res <- sapply(res, length)
px <- py <- list()
for(i in 1:n.models) {
tmp <- qqnorm(res[[i]], plot.it = FALSE)
px[[i]] <- tmp$x
py[[i]] <- tmp$y
}
if(half.normal) {
py <- lapply(py, abs)
px <- lapply(n.res, function (u) .5 + (0:(u-1)) / (2*u))
px <- lapply(px, qnorm)
for(i in 1:n.models)
px[[i]][order(py[[i]])] <- px[[i]]
}
if(envelope) {
sigma.hats <- numeric(n.models)
for(i in 1:n.models) {
if(!is.null(x[[i]]$scale))
sigma.hats[i] <- x[[i]]$scale
else {
x.sum <- summary(x[[i]])
if(!is.null(x.sum$dispersion))
sigma.hats[i] <- sqrt(x.sum$dispersion)
else if(!is.null(x.sum$sigma))
sigma.hats[i] <- x.sum$sigma
else
stop("unable to determine residual scale")
}
}
env <- list()
for(i in 1:n.models)
env[[i]] <- confidence.envelope(n.res[i], sigma.hats[i], n.samples,
level, half.normal)
lower <- lapply(env, function(u) u$lower)
upper <- lapply(env, function(u) u$upper)
den.range <- c(min(unlist(py), unlist(lower)),
max(unlist(py), unlist(upper)))
}
else
den.range <- c(min(unlist(py)), max(unlist(py)))
if(envelope && half.normal) {
mod <- factor(rep(rep(mod.names, n.res), 3), levels = mod.names)
tdf <- data.frame(py = c(unlist(py),
unlist(lower),
unlist(upper)),
px = rep(unlist(px), 3),
mod = mod)
panel.special <- function(x, y, id.n, qqline, ...) {
dat.idx <- 1:(length(x)/3)
panel.xyplot(x[dat.idx], y[dat.idx], ...)
if(qqline) {
u <- quantile(x[!is.na(x)], c(0.25, 0.75))
v <- quantile(y[!is.na(y)], c(0.25, 0.75))
slope <- diff(v) / diff(u)
int <- v[1] - slope * u[1]
panel.abline(int, slope, ...)
}
panel.addons(x[dat.idx], y[dat.idx], id.n = id.n)
dat.idx <- ((length(x)/3)+1):(2*length(x)/3)
llines(sort(x[dat.idx]), sort(y[dat.idx]), col.line = "black", lty = 2)
dat.idx <- (2*(length(x)/3)+1):(length(x))
llines(sort(x[dat.idx]), sort(y[dat.idx]), col.line = "black", lty = 2)
invisible()
}
}
else if(envelope) {
mod <- factor(rep(rep(mod.names, n.res), 3), levels = mod.names)
tdf <- data.frame(py = c(unlist(py),
unlist(lower),
unlist(upper)),
px = rep(unlist(px), 3),
mod = mod)
panel.special <- function(x, y, id.n, qqline, ...) {
dat.idx <- 1:(length(x)/3)
panel.xyplot(x[dat.idx], y[dat.idx], ...)
panel.addons(x[dat.idx], y[dat.idx], id.n = id.n)
if(qqline) {
u <- quantile(x[!is.na(x)], c(0.25, 0.75))
v <- quantile(y[!is.na(y)], c(0.25, 0.75))
slope <- diff(v) / diff(u)
int <- v[1] - slope * u[1]
panel.abline(int, slope, ...)
}
dat.idx <- ((length(x)/3)+1):(2*length(x)/3)
llines(sort(x[dat.idx]), sort(y[dat.idx]), col.line = "black", lty = 2)
dat.idx <- (2*(length(x)/3)+1):(length(x))
llines(sort(x[dat.idx]), sort(y[dat.idx]), col.line = "black", lty = 2)
invisible()
}
}
else {
mod <- factor(rep(mod.names, n.res), levels = mod.names)
tdf <- data.frame(px = unlist(px), py = unlist(py), mod = mod)
panel.special <- function(x, y, id.n, qqline, ...) {
panel.xyplot(x, y, ...)
panel.addons(x, y, id.n = id.n)
if(qqline) {
u <- quantile(x[!is.na(x)], c(0.25, 0.75))
v <- quantile(y[!is.na(y)], c(0.25, 0.75))
slope <- diff(v) / diff(u)
int <- v[1] - slope * u[1]
panel.abline(int, slope, ...)
}
invisible()
}
}
p <- xyplot(py ~ px | mod,
data = tdf,
id.n = id.n,
qqline = qqline,
panel = panel.special,
strip = function(...) strip.default(..., style = 1),
layout = c(n.models, 1, 1),
...)
print(p)
invisible(p)
}
|
sample(x=1:10, size=3)
sample(x=c(1.5, 2.5, 3, 6.7), size=2)
sample(x=1:10, size=15)
sample(x=1:10, size=15, replace=T)
sample.int(n=100, size=30, replace=F)
month.abb[1:12]
sample(x=month.abb[1:12], size=3, replace=T)
sample(x=c('M','F'), size=10, replace=T)
|
ClusterTreeCompile <- function(dag, node.class) {
elim.order <- EliminationOrder(dag, node.class=node.class)
graph.mor <- Moralize(dag)
graph.tri <- Triangulate(graph.mor, elim.order)
cs <- ElimTreeNodes(graph.tri, elim.order)
strongET <- StrongEliminationTree(cs, elim.order)
semiET <- SemiEliminationTree(strongET, cs, node.class, elim.order)
output <- list(tree.graph=semiET,
dag=dag,
cluster.sets=cs,
node.class=node.class,
elimination.order=elim.order)
return(output)
}
|
require(geometa, quietly = TRUE)
require(testthat)
context("ISOReferenceIdentifier")
test_that("encoding",{
testthat::skip_on_cran()
md <- ISOReferenceIdentifier$new(code = "4326", codeSpace = "EPSG")
expect_is(md, "ISOReferenceIdentifier")
expect_equal(md$code, "4326")
expect_equal(md$codeSpace, "EPSG")
xml <- md$encode()
expect_is(xml, "XMLInternalNode")
md2 <- ISOReferenceIdentifier$new(xml = xml)
xml2 <- md2$encode()
expect_true(ISOAbstractObject$compare(md, md2))
})
|
addGhostVars <- function(obj, keyVar, ghostVars) {
addGhostVarsX(obj, keyVar, ghostVars)
}
setGeneric("addGhostVarsX", function(obj, keyVar, ghostVars) {
standardGeneric("addGhostVarsX")
})
setMethod(f="addGhostVarsX", signature=c(obj="sdcMicroObj", keyVar="character", ghostVars="character"),
definition = function(obj, keyVar, ghostVars) {
obj <- nextSdcObj(obj)
cn <- colnames(get.sdcMicroObj(obj, type="origData"))
kv <- cn[get.sdcMicroObj(obj, type="keyVars")]
if (length(keyVar)!=1) {
stop("length of argument 'keyVar' must be 1 in addGhostVars!\n")
}
if (!keyVar %in% kv) {
stop("variable specified in 'keyVar' in not a categorical key variable!\n")
}
nv <- cn[get.sdcMicroObj(obj, type="numVars")]
pv <- cn[get.sdcMicroObj(obj, type="pramVars")]
wv <- cn[get.sdcMicroObj(obj, type="weightVar")]
hhid <- cn[get.sdcMicroObj(obj, type="hhId")]
sv <- cn[get.sdcMicroObj(obj, type="strataVar")]
non_poss <- c(kv, nv, pv, wv, hhid, sv)
gv <- get.sdcMicroObj(obj, type="ghostVars")
if (!is.null(gv)) {
ex_gv <- cn[unlist(sapply(gv, function(x) {
x[[2]]
}))]
non_poss <- c(non_poss, ex_gv)
}
non_poss <- unique(non_poss)
if (any(ghostVars %in% non_poss)) {
stop("variables listed in 'ghostVars' were either specified as important (key) variables or were already specified as ghost-variables!\n")
}
new_kv <- standardizeInput(obj=obj, v=keyVar)
new_gv <- standardizeInput(obj=obj, v=ghostVars)
if (is.null(gv)) {
tmp <- list()
tmp[[1]] <- new_kv
tmp[[2]] <- new_gv
inp <- list()
inp[[1]] <- tmp
} else {
inp <- gv
ii <- which(unlist(sapply(gv, function(x) {
x[[1]]
})) == new_kv)
if (length(ii)==1) {
inp[[ii]][[2]] <- c(inp[[ii]][[2]], new_gv)
} else {
tmp <- list()
tmp[[1]] <- new_kv
tmp[[2]] <- new_gv
inp[[length(inp)+1]] <- tmp
}
}
manipGhostVars <- get.sdcMicroObj(obj, type = "manipGhostVars")
if (is.null(manipGhostVars)) {
manipGhostVars <- get.sdcMicroObj(obj, "origData")[, new_gv, drop = FALSE]
} else {
df <- get.sdcMicroObj(obj, "origData")[, new_gv, drop = FALSE]
new <- setdiff(colnames(df), colnames(manipGhostVars))
if (length(new) > 0) {
df <- df[, new, drop = FALSE]
manipGhostVars <- cbind(manipGhostVars, df)
}
}
obj <- set.sdcMicroObj(obj, type="manipGhostVars", input=list(manipGhostVars))
obj <- set.sdcMicroObj(obj, type="ghostVars", input=list(inp))
obj
})
|
factorPlot <- function(v, partial, band, rug, w, top, line.par, fill.par, points.par, ...) {
if (band) fp_bands(v, w, fill.par)
if (!partial) {
fp_lines(v, w, line.par)
} else {
if (top=='line') {
fp_points(v, w, points.par)
fp_lines(v, w, line.par)
} else {
fp_lines(v, w, line.par)
fp_points(v, w, points.par)
}
}
fp_rug(v, w, rug, line.par)
}
fp_lines <- function(v, w, line.par) {
xx <- v$fit[, v$meta$x]
K <- length(levels(xx))
len <- K*(1-w)+(K-1)*w
yy <- v$fit$visregFit
for(k in 1:K) {
x1 <- (k-1)/len
x2 <- (k-1)/len + (1-w)/len
xx <- c(x1, x2)
line.args <- list(x=c(x1, x2), y=rep(yy[k], 2), lwd=3, col="
if (length(line.par)) line.args[names(line.par)] <- line.par
do.call("lines", line.args)
}
}
fp_bands <- function(v, w, fill.par) {
xx <- v$fit[, v$meta$x]
K <- length(levels(xx))
len <- K*(1-w)+(K-1)*w
lwr <- v$fit$visregLwr
upr <- v$fit$visregUpr
for(k in 1:K) {
x1 <- (k-1)/len
x2 <- (k-1)/len + (1-w)/len
xx <- c(x1, x2)
fill.args <- list(x=c(xx, rev(xx)), y=c(rep(lwr[k], 2), rev(rep(upr[k], 2))), col="gray85", border=F)
if (length(fill.par)) fill.args[names(fill.par)] <- fill.par
do.call("polygon", fill.args)
}
}
fp_points <- function(v, w, points.par) {
x <- v$res[, v$meta$x]
y <- v$res$visregRes
K <- length(levels(x))
len <- K*(1-w)+(K-1)*w
for(k in 1:K) {
x1 <- (k-1)/len
x2 <- (k-1)/len + (1-w)/len
ind <- x==levels(x)[k]
rx <- seq(x1, x2, len=sum(ind)+2)[c(-1, -(sum(ind)+2))]
points.args <- list(x=rx, y=y[ind], pch=19, cex=0.4, col="gray50")
if (length(points.par)) points.args[names(points.par)] <- points.par
do.call("points", points.args)
}
}
fp_rug <- function(v, w, rug, line.args) {
x <- v$res[, v$meta$x]
y <- v$res$visregRes
K <- length(levels(x))
len <- K*(1-w)+(K-1)*w
for(k in 1:K) {
x1 <- (k-1)/len
x2 <- (k-1)/len + (1-w)/len
ind <- x==levels(x)[k]
rx <- seq(x1, x2, len=sum(ind)+2)[c(-1, -(sum(ind)+2))]
if (!all(is.na(v$res$visregPos))) {
if (rug==1) rug(rx, col=line.args$col)
if (rug==2) {
ind1 <- ind & !v$res$visregPos
ind2 <- ind & v$res$visregPos
rx1 <- seq(x1, x2, len=sum(ind1)+2)[c(-1,-(sum(ind1)+2))]
rx2 <- seq(x1, x2, len=sum(ind2)+2)[c(-1,-(sum(ind2)+2))]
rug(rx1, col=line.args$col)
rug(rx2, side=3, col=line.args$col)
}
}
}
}
|
cv.glmtlp <- function(X, y, ..., seed=NULL, nfolds=10, obs.fold=NULL, ncores=1) {
cv.call <- match.call(expand.dots = TRUE)
fit <- glmtlp(X = X, y = y, ...)
nobs <- nrow(X)
family <- fit$family
penalty <- fit$penalty
lambda <- fit$lambda
kappa <- fit$kappa
if (family == "binomial" & !identical(sort(unique(y)), 0:1)) {
y <- as.double(y == max(y))
}
if (!is.null(seed)) set.seed(seed)
if (nfolds > nobs) stop(paste("nfolds (", nfolds, ") cannot be larger than the number of observations (", nobs, ")", sep = ""))
if (is.null(obs.fold)) {
if (family == "binomial") {
n0 <- sum(y == 0)
obs.fold[y == 0] <- sample(rep(1:nfolds, length.out = n0))
obs.fold[y == 1] <- sample(rep(1:nfolds, length.out = nobs - n0))
} else {
obs.fold <- sample(rep(1:nfolds, length.out = nobs))
}
} else {
nfolds <- max(obs.fold)
}
if (ncores > 1) {
doParallel::registerDoParallel(cores = ncores)
cv.res <- foreach(fold = 1:nfolds, .combine = "rbind", .packages = c("glmtlp")) %dopar% {
fit.fold <- glmtlp(X, y, weights = 1 * (obs.fold != fold),
lambda = lambda, kappa = kappa,
family = family, penalty = penalty)
yhat <- predict.glmtlp(fit.fold, X=X[obs.fold == fold, , drop=FALSE],
type="response")
loss <- loss.glmtlp(y[obs.fold == fold], yhat, family)
loss
}
} else {
cv.res <- c()
for (fold in 1:nfolds) {
fit.fold <- glmtlp(X, y, weights = 1 * (obs.fold != fold),
lambda = lambda, kappa = kappa,
family = family, penalty = penalty)
yhat <- predict.glmtlp(fit.fold, X=X[obs.fold == fold, , drop = FALSE],
type="response")
loss <- loss.glmtlp(y[obs.fold == fold], yhat, family)
cv.res <- rbind(cv.res, loss)
}
}
cv.mean <- apply(cv.res, 2, mean)
cv.se <- apply(cv.res, 2, sd)
idx.min <- which.min(cv.mean)[1]
out <- structure(list(call = cv.call,
fit = fit,
obs.fold = obs.fold,
cv.mean = cv.mean,
cv.se = cv.se,
idx.min = idx.min,
null.dev = loss.glmtlp(y, rep(mean(y), nobs), family)
),
class = "cv.glmtlp")
if (penalty == "l0") {
out$lambda <- lambda
out$kappa <- kappa
out$kappa.min <- kappa[idx.min]
} else {
out$lambda <- lambda
out$lambda.min <- lambda[idx.min]
}
out
}
|
context("connections - gateway")
sc <- testthat_spark_connection()
test_that("gateway connection fails with invalid session", {
expect_error(
spark_connect(master = "sparklyr://localhost:8880/0")
)
})
test_that("can connect to an existing session via gateway", {
gw <- spark_connect(
master = paste0("sparklyr://localhost:8880/", sc$sessionId)
)
expect_equal(spark_context(gw)$backend, spark_context(sc)$backend)
})
|
general.carryover.old <- function(design, model, t0=1, rho=0.5){
if ("CrossoverSearchResult" %in% class(design)) {
if(missing(model)) {
model <- design@model
} else {
if (model!=design@model) warning("Model from object does not equal specified model")
}
design <- design@design
}
if ("CrossoverDesign" %in% class(design)) {
if(missing(model)) {
model <- design@model
} else {
if (model!=design@model) warning("Model from object does not equal specified model")
}
design <- design@design
}
model <- getModelNr(model)
design <- t(design)
n.subj<-length(design[,1])
n.per<-length(design[1,])
n.dat<-n.subj*n.per
n.trt<-length(table(design))
unique.seq<-unique(data.frame(design))
n.seq<-dim(unique.seq)[1]
n.per.seq<-rep(0,n.seq)
group.id<-numeric(length=n.dat)
for(i in 1:n.subj){
for(k in 1:n.seq){
if(sum(abs(design[i,]-unique.seq[k,]))==0){
n.per.seq[k]<-n.per.seq[k]+1
low<-(i-1)*n.per+1
upp<-low+(n.per-1)
group.id[low:upp]<-k
}
}
}
subject<-rep(1:n.subj, rep(n.per,n.subj))
per<-rep(1:n.per, n.subj)
Xmat.mean<-matrix(1,n.dat,1)
Xmat.subj<-matrix(0,n.dat,n.subj)
for(i in 1:n.dat){
Xmat.subj[i,subject[i]]<-1
}
Xmat.per<-matrix(0,n.dat,n.per)
for(i in 1:n.dat){
Xmat.per[i,per[i]]<-1
}
if(model==9){
trt<-NULL
for(i in 1:n.subj){
trt<-c(trt,design[i,])
}
Xmat.trt<-matrix(0,n.dat,n.trt)
for(i in 1:n.dat){
Xmat.trt[i,trt[i]]<-1
}
Xmat<-cbind(Xmat.mean,Xmat.subj,Xmat.per,Xmat.trt)
XtX<-t(Xmat)%*%Xmat
XtX.inv<-ginv(XtX)
Var.trt<-XtX.inv[(1+n.subj+n.per+1):(1+n.subj+n.per+n.trt),(1+n.subj+n.per+1):(1+n.subj+n.per+n.trt)]
Var.trt.pair<-matrix(0,n.trt,n.trt)
for(i in 1:(n.trt-1)){
for(j in 1:n.trt){
Var.trt.pair[i,j]<-Var.trt[i,i]+Var.trt[j,j]-2*Var.trt[i,j]
Var.trt.pair[j,i]<-Var.trt.pair[i,j]
}}
return(list(Var.trt.pair=Var.trt.pair,model=model))
}
if(model==1){
trt<-NULL
for(i in 1:n.subj){
trt<-c(trt,design[i,])
}
Xmat.trt<-matrix(0,n.dat,n.trt)
for(i in 1:n.dat){
Xmat.trt[i,trt[i]]<-1
}
car<-NULL
for(i in 1:n.subj){
car<-c(car,1,design[i,1:(n.per-1)])
}
Xmat.car<-matrix(0,n.dat,n.trt)
for(i in 1:n.dat){
if(car[i]>0){Xmat.car[i,car[i]]<-1}
}
Xmat<-cbind(Xmat.mean,Xmat.subj,Xmat.per,Xmat.trt,Xmat.car)
XtX<-t(Xmat)%*%Xmat
XtX.inv<-ginv(XtX)
Var.trt<-XtX.inv[(1+n.subj+n.per+1):(1+n.subj+n.per+n.trt),(1+n.subj+n.per+1):(1+n.subj+n.per+n.trt)]
Var.trt.pair<-matrix(0,n.trt,n.trt)
for(i in 1:(n.trt-1)){
for(j in 1:n.trt){
Var.trt.pair[i,j]<-Var.trt[i,i]+Var.trt[j,j]-2*Var.trt[i,j]
Var.trt.pair[j,i]<-Var.trt.pair[i,j]
}
}
Var.car<-XtX.inv[(1+n.subj+n.per+n.trt+1):(1+n.subj+n.per+n.trt+n.trt),(1+n.subj+n.per+n.trt+1):(1+n.subj+n.per+n.trt+n.trt)]
Var.car.pair<-matrix(0,n.trt,n.trt)
for(i in 1:(n.trt-1)){
for(j in 1:n.trt){
Var.car.pair[i,j]<-Var.car[i,i]+Var.car[j,j]-2*Var.car[i,j]
Var.car.pair[j,i]<-Var.car.pair[i,j]
}
}
return(list(Var.trt.pair=Var.trt.pair,Var.car.pair=Var.car.pair,model=model))
}
if(model==2){
trt<-NULL
for(i in 1:n.subj){
trt<-c(trt,design[i,])
}
Xmat.trt<-matrix(0,n.dat,n.trt)
for(i in 1:n.dat){
Xmat.trt[i,trt[i]]<-1
}
carry.mat.1<-matrix(0,n.subj,n.per)
for(i in 1:n.subj){
for(j in 2:n.per){
if(design[i,j]!=design[i,(j-1)]){carry.mat.1[i,j]<-design[i,(j-1)]}
}}
car.1<-NULL
for(i in 1:n.subj){
car.1<-c(car.1,carry.mat.1[i,])
}
Xmat.car.1<-matrix(0,n.dat,n.trt)
for(i in 1:n.dat){
if(car.1[i]>0){Xmat.car.1[i,car.1[i]]<-1}
}
carry.mat.2<-matrix(0,n.subj,n.per)
for(i in 1:n.subj){
for(j in 2:n.per){
if(design[i,j]==design[i,(j-1)]){carry.mat.2[i,j]<-design[i,(j-1)]}
}}
car.2<-NULL
for(i in 1:n.subj){
car.2<-c(car.2,carry.mat.2[i,])
}
Xmat.car.2<-matrix(0,n.dat,n.trt)
for(i in 1:n.dat){
if(car.2[i]>0){Xmat.car.2[i,car.2[i]]<-1}
}
Xmat<-cbind(Xmat.mean,Xmat.subj,Xmat.per,Xmat.trt,Xmat.car.1,Xmat.car.2)
XtX<-t(Xmat)%*%Xmat
XtX.inv<-ginv(XtX)
Var.trt<-XtX.inv[(1+n.subj+n.per+1):(1+n.subj+n.per+n.trt),(1+n.subj+n.per+1):(1+n.subj+n.per+n.trt)]
Var.trt.pair<-matrix(0,n.trt,n.trt)
for(i in 1:(n.trt-1)){
for(j in 1:n.trt){
Var.trt.pair[i,j]<-Var.trt[i,i]+Var.trt[j,j]-2*Var.trt[i,j]
Var.trt.pair[j,i]<-Var.trt.pair[i,j]
}}
Var.car.1<-XtX.inv[(1+n.subj+n.per+n.trt+1):(1+n.subj+n.per+n.trt+n.trt),(1+n.subj+n.per+n.trt+1):(1+n.subj+n.per+n.trt+n.trt)]
Var.car.pair.1<-matrix(0,n.trt,n.trt)
for(i in 1:(n.trt-1)){
for(j in 1:n.trt){
Var.car.pair.1[i,j]<-Var.car.1[i,i]+Var.car.1[j,j]-2*Var.car.1[i,j]
Var.car.pair.1[j,i]<-Var.car.pair.1[i,j]
}}
Var.car.2<-XtX.inv[(1+n.subj+n.per+n.trt+n.trt+1):(1+n.subj+n.per+n.trt+n.trt+n.trt),(1+n.subj+n.per+n.trt+n.trt+1):(1+n.subj+n.per+n.trt+n.trt+n.trt)]
Var.car.pair.2<-matrix(0,n.trt,n.trt)
for(i in 1:(n.trt-1)){
for(j in 1:n.trt){
Var.car.pair.2[i,j]<-Var.car.2[i,i]+Var.car.2[j,j]-2*Var.car.2[i,j]
Var.car.pair.2[j,i]<-Var.car.pair.2[i,j]
}}
return(list(Var.trt.pair=Var.trt.pair,Var.car.pair.1=Var.car.pair.1,Var.car.pair.2=Var.car.pair.2,model=model))
}
if(model==3){
trt<-NULL
for(i in 1:n.subj){
trt<-c(trt,design[i,])
}
Xmat.trt<-matrix(0,n.dat,n.trt)
for(i in 1:n.dat){
Xmat.trt[i,trt[i]]<-1
}
car<-NULL
for(i in 1:n.subj){
car<-c(car,0,design[i,1:(n.per-1)])
}
Xmat.car<-matrix(0,n.dat,n.trt)
for(i in 1:n.dat){
if(car[i]>0){Xmat.car[i,car[i]]<-rho}
}
Xmat.trt<-Xmat.trt+Xmat.car
Xmat<-cbind(Xmat.mean,Xmat.subj,Xmat.per,Xmat.trt)
XtX<-t(Xmat)%*%Xmat
XtX.inv<-ginv(XtX)
Var.trt<-XtX.inv[(1+n.subj+n.per+1):(1+n.subj+n.per+n.trt),(1+n.subj+n.per+1):(1+n.subj+n.per+n.trt)]
Var.trt.pair<-matrix(0,n.trt,n.trt)
for(i in 1:(n.trt-1)){
for(j in 1:n.trt){
Var.trt.pair[i,j]<-Var.trt[i,i]+Var.trt[j,j]-2*Var.trt[i,j]
Var.trt.pair[j,i]<-Var.trt.pair[i,j]
}}
return(list(Var.trt.pair=Var.trt.pair,model=model,rho=rho))
}
if(model==4){
trt<-NULL
for(i in 1:n.subj){
trt<-c(trt,design[i,])
}
Xmat.trt<-matrix(0,n.dat,n.trt)
for(i in 1:n.dat){
Xmat.trt[i,trt[i]]<-1
}
carry.mat<-matrix(0,n.subj,n.per)
for(i in 1:n.subj){
for(j in 2:n.per){
if(design[i,(j-1)]>t0){carry.mat[i,j]<-design[i,(j-1)]}
}}
car<-NULL
for(i in 1:n.subj){
car<-c(car,carry.mat[i,])
}
Xmat.car<-matrix(0,n.dat,n.trt)
for(i in 1:n.dat){
if(car[i]>0){Xmat.car[i,car[i]]<-1}
}
Xmat<-cbind(Xmat.mean,Xmat.subj,Xmat.per,Xmat.trt,Xmat.car)
XtX<-t(Xmat)%*%Xmat
XtX.inv<-ginv(XtX)
Var.trt<-XtX.inv[(1+n.subj+n.per+1):(1+n.subj+n.per+n.trt),(1+n.subj+n.per+1):(1+n.subj+n.per+n.trt)]
Var.trt.pair<-matrix(0,n.trt,n.trt)
for(i in 1:(n.trt-1)){
for(j in 1:n.trt){
Var.trt.pair[i,j]<-Var.trt[i,i]+Var.trt[j,j]-2*Var.trt[i,j]
Var.trt.pair[j,i]<-Var.trt.pair[i,j]
}}
Var.car<-XtX.inv[(1+n.subj+n.per+n.trt+1):(1+n.subj+n.per+n.trt+n.trt),(1+n.subj+n.per+n.trt+1):(1+n.subj+n.per+n.trt+n.trt)]
Var.car.pair<-matrix(0,n.trt,n.trt)
for(i in 1:(n.trt-1)){
for(j in 1:n.trt){
Var.car.pair[i,j]<-Var.car[i,i]+Var.car[j,j]-2*Var.car[i,j]
Var.car.pair[j,i]<-Var.car.pair[i,j]
}}
return(list(Var.trt.pair=Var.trt.pair,Var.car.pair=Var.car.pair,model=model,t0=t0))
}
if(model==5){
trt<-NULL
for(i in 1:n.subj){
trt<-c(trt,design[i,])
}
Xmat.trt<-matrix(0,n.dat,n.trt)
for(i in 1:n.dat){
Xmat.trt[i,trt[i]]<-1
}
carry.mat<-matrix(0,n.subj,n.per)
for(i in 1:n.subj){
for(j in 2:n.per){
if(design[i,j]!=design[i,(j-1)]){carry.mat[i,j]<-design[i,(j-1)]}
}}
car<-NULL
for(i in 1:n.subj){
car<-c(car,carry.mat[i,])
}
Xmat.car<-matrix(0,n.dat,n.trt)
for(i in 1:n.dat){
if(car[i]>0){Xmat.car[i,car[i]]<-1}
}
Xmat<-cbind(Xmat.mean,Xmat.subj,Xmat.per,Xmat.trt,Xmat.car)
XtX<-t(Xmat)%*%Xmat
XtX.inv<-ginv(XtX)
Var.trt<-XtX.inv[(1+n.subj+n.per+1):(1+n.subj+n.per+n.trt),(1+n.subj+n.per+1):(1+n.subj+n.per+n.trt)]
Var.trt.pair<-matrix(0,n.trt,n.trt)
for(i in 1:(n.trt-1)){
for(j in 1:n.trt){
Var.trt.pair[i,j]<-Var.trt[i,i]+Var.trt[j,j]-2*Var.trt[i,j]
Var.trt.pair[j,i]<-Var.trt.pair[i,j]
}}
Var.car<-XtX.inv[(1+n.subj+n.per+n.trt+1):(1+n.subj+n.per+n.trt+n.trt),(1+n.subj+n.per+n.trt+1):(1+n.subj+n.per+n.trt+n.trt)]
Var.car.pair<-matrix(0,n.trt,n.trt)
for(i in 1:(n.trt-1)){
for(j in 1:n.trt){
Var.car.pair[i,j]<-Var.car[i,i]+Var.car[j,j]-2*Var.car[i,j]
Var.car.pair[j,i]<-Var.car.pair[i,j]
}}
return(list(Var.trt.pair=Var.trt.pair,Var.car.pair=Var.car.pair,model=model))
}
if(model==6){
trt<-NULL
for(i in 1:n.subj){
trt<-c(trt,design[i,])
}
Xmat.trt<-matrix(0,n.dat,n.trt)
for(i in 1:n.dat){
Xmat.trt[i,trt[i]]<-1
}
carry.mat<-matrix(0,n.subj,n.per)
for(i in 1:n.subj){
for(j in 2:n.per){
if(design[i,j]==design[i,(j-1)]){carry.mat[i,j]<-design[i,(j-1)]}
}}
car<-NULL
for(i in 1:n.subj){
car<-c(car,carry.mat[i,])
}
Xmat.car<-matrix(0,n.dat,n.trt)
for(i in 1:n.dat){
if(car[i]>0){Xmat.car[i,car[i]]<--1}
}
Xmat<-cbind(Xmat.mean,Xmat.subj,Xmat.per,Xmat.trt,Xmat.car)
XtX<-t(Xmat)%*%Xmat
XtX.inv<-ginv(XtX)
Var.trt<-XtX.inv[(1+n.subj+n.per+1):(1+n.subj+n.per+n.trt),(1+n.subj+n.per+1):(1+n.subj+n.per+n.trt)]
Var.trt.pair<-matrix(0,n.trt,n.trt)
for(i in 1:(n.trt-1)){
for(j in 1:n.trt){
Var.trt.pair[i,j]<-Var.trt[i,i]+Var.trt[j,j]-2*Var.trt[i,j]
Var.trt.pair[j,i]<-Var.trt.pair[i,j]
}}
Var.car<-XtX.inv[(1+n.subj+n.per+n.trt+1):(1+n.subj+n.per+n.trt+n.trt),(1+n.subj+n.per+n.trt+1):(1+n.subj+n.per+n.trt+n.trt)]
Var.car.pair<-matrix(0,n.trt,n.trt)
for(i in 1:(n.trt-1)){
for(j in 1:n.trt){
Var.car.pair[i,j]<-Var.car[i,i]+Var.car[j,j]-2*Var.car[i,j]
Var.car.pair[j,i]<-Var.car.pair[i,j]
}}
return(list(Var.trt.pair=Var.trt.pair,Var.car.pair=Var.car.pair,model=model))
}
if(model==7){
trt<-NULL
for(i in 1:n.subj){
trt<-c(trt,design[i,])
}
Xmat.trt<-matrix(0,n.dat,n.trt)
for(i in 1:n.dat){
Xmat.trt[i,trt[i]]<-1
}
car<-NULL
for(i in 1:n.subj){
car<-c(car,0,design[i,1:(n.per-1)])
}
Xmat.car<-matrix(0,n.dat,n.trt)
for(i in 1:n.dat){
if(car[i]>0){Xmat.car[i,car[i]]<-1}
}
Xmat.int<-matrix(0,n.dat,n.trt*n.trt)
count<-0
for(i in 1:n.trt){
for(j in 1:n.trt){
count<-count+1
Xmat.int[,count]<-Xmat.trt[,i]*Xmat.car[,j]
}
}
Xmat<-cbind(Xmat.mean,Xmat.subj,Xmat.per,Xmat.trt,Xmat.car,Xmat.int)
XtX<-t(Xmat)%*%Xmat
XtX.inv<-ginv(XtX)
Var.trt<-XtX.inv[(1+n.subj+n.per+1):(1+n.subj+n.per+n.trt),(1+n.subj+n.per+1):(1+n.subj+n.per+n.trt)]
Var.trt.pair<-matrix(0,n.trt,n.trt)
for(i in 1:(n.trt-1)){
for(j in 1:n.trt){
Var.trt.pair[i,j]<-Var.trt[i,i]+Var.trt[j,j]-2*Var.trt[i,j]
Var.trt.pair[j,i]<-Var.trt.pair[i,j]
}}
return(list(Var.trt.pair=Var.trt.pair,model=model))
}
if(model==8){
trt<-NULL
for(i in 1:n.subj){
trt<-c(trt,design[i,])
}
Xmat.trt<-matrix(0,n.dat,n.trt)
for(i in 1:n.dat){
Xmat.trt[i,trt[i]]<-1
}
car.1<-NULL
for(i in 1:n.subj){
car.1<-c(car.1,1,design[i,1:(n.per-1)])
}
Xmat.car.1<-matrix(0,n.dat,n.trt)
for(i in 1:n.dat){
if(car.1[i]>0){Xmat.car.1[i,car.1[i]]<-1}
}
car.2<-NULL
for(i in 1:n.subj){
car.2<-c(car.2,1,1,design[i,1:(n.per-2)])
}
Xmat.car.2<-matrix(0,n.dat,n.trt)
for(i in 1:n.dat){
if(car.2[i]>0){Xmat.car.2[i,car.2[i]]<-1}
}
Xmat<-cbind(Xmat.mean,Xmat.subj,Xmat.per,Xmat.trt,Xmat.car.1,Xmat.car.2)
XtX<-t(Xmat)%*%Xmat
XtX.inv<-ginv(XtX)
Var.trt<-XtX.inv[(1+n.subj+n.per+1):(1+n.subj+n.per+n.trt),(1+n.subj+n.per+1):(1+n.subj+n.per+n.trt)]
Var.trt.pair<-matrix(0,n.trt,n.trt)
for(i in 1:(n.trt-1)){
for(j in 1:n.trt){
Var.trt.pair[i,j]<-Var.trt[i,i]+Var.trt[j,j]-2*Var.trt[i,j]
Var.trt.pair[j,i]<-Var.trt.pair[i,j]
}}
Var.car.1<-XtX.inv[(1+n.subj+n.per+n.trt+1):(1+n.subj+n.per+n.trt+n.trt),(1+n.subj+n.per+n.trt+1):(1+n.subj+n.per+n.trt+n.trt)]
Var.car.pair.1<-matrix(0,n.trt,n.trt)
for(i in 1:(n.trt-1)){
for(j in 1:n.trt){
Var.car.pair.1[i,j]<-Var.car.1[i,i]+Var.car.1[j,j]-2*Var.car.1[i,j]
Var.car.pair.1[j,i]<-Var.car.pair.1[i,j]
}}
Var.car.2<-XtX.inv[(1+n.subj+n.per+n.trt+n.trt+1):(1+n.subj+n.per+n.trt+n.trt+n.trt),(1+n.subj+n.per+n.trt+n.trt+1):(1+n.subj+n.per+n.trt+n.trt+n.trt)]
Var.car.pair.2<-matrix(0,n.trt,n.trt)
for(i in 1:(n.trt-1)){
for(j in 1:n.trt){
Var.car.pair.2[i,j]<-Var.car.2[i,i]+Var.car.2[j,j]-2*Var.car.2[i,j]
Var.car.pair.2[j,i]<-Var.car.pair.2[i,j]
}}
return(list(Var.trt.pair=Var.trt.pair,Var.car.pair.1=Var.car.pair.1,Var.car.pair.2=Var.car.pair.2,model=model))
}
}
test.ge <- function() {
if (!"extended" %in% strsplit(Sys.getenv("CROSSOVER_UNIT_TESTS"),",")[[1]]) {
cat("Skipping comparison of old and new general.carryover function.\n")
return()
}
f <- stop
f <- cat
path <- system.file("data", package="Crossover")
for (file in dir(path=path)) {
if (file %in% c("clatworthy1.rda", "clatworthyC.rda", "pbib2combine.rda")) next
designs <- load(paste(path, file, sep="/"))
for (designS in designs) {
design <- get(designS)
v <- length(table(design))
for (model in 1:7) {
r1 <- general.carryover(design, model=model)
r2 <- general.carryover.old(design, model=model)
if (estimable(design, v, model)) {
if(!isTRUE(all.equal(r1$Var.trt.pair, r2$Var.trt.pair))) {
f(paste("Unequal treatment variances for",designS," in model ", model," (",max(abs(r1$Var.trt.pair - r2$Var.trt.pair)),")!\n"))
}
}
if (model==1) {
if(!isTRUE(all.equal(r1$Var.car.pair, r2$Var.car.pair))) {
f(paste("Unequal carry-over variances for",designS," in model ", model," (",max(abs(r1$Var.car.pair - r2$Var.car.pair))," - ",getCounts(design),")!\n"))
}
}
}
cat("Everything okay for design ", designS, ".\n")
}
}
}
test.ge()
|
max_length <-
function(.stack)
{
attr(.stack, "max_length")
}
"max_length<-" <-
function(x,
value)
{
attr(x, "max_length") <- value
x
}
|
source('../gsDesign_independent_code.R')
testthat::test_that("Test: alpha - incorrect variable type", {
tx <- (0:100) / 100
param <- list(trange = c(.2, .8), sf = gsDesign::sfHSD, param = 1)
testthat::expect_error(gsDesign::spendingFunction(alpha = "abc", t = c(.1, .4), param),
info = "Checking for incorrect variable type"
)
testthat::expect_error(gsDesign::spendingFunction(alpha = 0, t = c(.1, .4), param),
info = "Checking for out-of-range variable value"
)
testthat::expect_error(gsDesign::spendingFunction(alpha = -1, t = c(.1, .4), param),
info = "Checking for out-of-range variable value"
)
})
testthat::test_that("Test: t - Checking Variable Type, Out-of-Range,
Order-of-List", {
param <- list(trange = c(.2, .8), sf = gsDesign::sfHSD, param = 1)
testthat::expect_error(gsDesign::spendingFunction(alpha = .025, t = "a", param),
info = "Checking for incorrect variable type"
)
testthat::expect_error(gsDesign::spendingFunction(alpha = .025, t = c("a", "b"), param),
info = "Checking for incorrect variable type"
)
testthat::expect_error(gsDesign::spendingFunction(alpha = .025, t = c(-.5, .75), param),
info = "Checking for out-of-range variable value"
)
testthat::expect_error(gsDesign::spendingFunction(alpha = .025, t = c(.5, -.75), param),
info = "Checking for out-of-range variable value"
)
testthat::expect_error(gsDesign::spendingFunction(alpha = .025, t = c(1, -5), param),
info = "Checking for out-of-range variable value"
)
testthat::expect_error(gsDesign::spendingFunction(alpha = .025, t = c(-1, 5), param),
info = "Checking for out-of-range variable value"
)
})
testthat::test_that("Test: output validation for alpha - 0.025,
Source: gsDesign_independent_code.R )", {
tx <- c(.025, .05, .25, .75, 1)
alpha <- 0.025
param <- 1
spend <- gsDesign::spendingFunction(alpha, tx, param)$spend
expected_spend <- validate_spendingFunction(alpha, tx, param)
expect_equal(spend, expected_spend)
})
testthat::test_that("Test: output validation for alpha - 0.02,
Source: gsDesign_independent_code.R )", {
tx <- c(.2, .15, 1)
alpha <- 0.02
param <- NULL
spend <- gsDesign::spendingFunction(alpha, tx, param)$spend
expected_spend <- validate_spendingFunction(alpha, tx, param)
expect_equal(spend, expected_spend)
})
testthat::test_that("Test: output validation for param - 0,
Source: gsDesign_independent_code.R )", {
tx <- c(0.9, .5)
alpha <- .01
param <- 0
spend <- gsDesign::spendingFunction(alpha, tx, param)$spend
expected_spend <- validate_spendingFunction(alpha, tx, param)
expect_equal(spend, expected_spend)
})
testthat::test_that("Test: output validation for param - 5,
Source: gsDesign_independent_code.R )", {
tx <- c(.25, 0.5, 0.75, 1)
alpha <- .025
param <- 5
spend <- gsDesign::spendingFunction(alpha, tx, param)$spend
expected_spend <- validate_spendingFunction(alpha, tx, param)
expect_equal(spend, expected_spend)
})
|
test_that("can handle NA `from` and `to` values", {
na <- new_date(NA_real_)
expect_error(alma_seq(na, Sys.Date(), daily()), "cannot be `NA`")
expect_error(alma_seq(Sys.Date(), na, daily()), "cannot be `NA`")
})
test_that("behavior is like rlang::seq2() when `from` is after `to`", {
expect_identical(alma_seq("1999-01-01", "1998-01-01", runion()), almanac_global_empty_date)
})
test_that("empty runion means no dates are removed", {
expect_identical(
alma_seq(new_date(0), new_date(1), runion()),
new_date(c(0, 1))
)
})
test_that("events are removed", {
rule <- monthly() %>% recur_on_mday(2)
expect_identical(
alma_seq("2000-01-01", "2000-01-03", rule),
as.Date(c("2000-01-01", "2000-01-03"))
)
})
test_that("inclusiveness of from/to is respected", {
rrule <- daily(since = "1970-01-01", until = "1970-01-03") %>%
recur_on_mday(c(1, 3))
from <- "1970-01-01"
to <- "1970-01-03"
expect_identical(
alma_seq(from, to, rrule, inclusive = TRUE),
new_date(1)
)
expect_identical(
alma_seq(from, to, rrule, inclusive = FALSE),
new_date(c(0, 1, 2))
)
})
|
nullspace<-function(A)
{
if(! is.matrix(A)) stop("A not matrix")
n<-nrow(A)
p<-ncol(A)
if(n >= p) stop("no. of rows greater or equal to the no. of columns")
s<-svd(A, nu=n, nv=p)
k<-0
for(i in 1:n) {
if (s$d[i] >1e-6) k<-k+1
}
v2<-NULL
for(i in (k+1):p) v2<-cbind(v2,s$v[,i])
return(v2)
}
|
library("graphsim")
library("igraph")
context("Make Adjacency Matrix")
test_that("Generate adjacency matrix from graph structure", {
graph_test1_edges <- rbind(c("A", "B"), c("B", "C"), c("B", "D"))
graph_test1 <- graph.edgelist(graph_test1_edges, directed = TRUE)
adjacency_matrix1 <- make_adjmatrix_graph(graph_test1)
expect_equal(isSymmetric(adjacency_matrix1), TRUE)
expect_equal(sum(diag(adjacency_matrix1)), 0)
expect_equal(nrow(adjacency_matrix1), length(V(graph_test1)))
expect_equal(ncol(adjacency_matrix1), length(V(graph_test1)))
expect_equal(sum(adjacency_matrix1), length(E(graph_test1))*2)
expect_equal(all(is.matrix(adjacency_matrix1)), TRUE)
expect_true(all(adjacency_matrix1 == cbind(c(0, 1, 0, 0), c(1, 0, 1, 1), c(0, 1, 0, 0), c(0, 1, 0, 0))))
})
|
library(tidyverse)
locales <- readr::read_rds(file = "data-raw/locales.RDS")
|
fmi_spectra <- function (
parameters,
n_cores = 1
) {
f <- function(parameters) {
p_turbulence <- eseis::model_turbulence(d_s = parameters$d_s,
s_s = parameters$s_s,
r_s = parameters$r_s,
h_w = parameters$h_w,
w_w = parameters$w_w,
a_w = parameters$a_w,
f = c(parameters$f_min,
parameters$f_max),
r_0 = parameters$r_0,
f_0 = parameters$f_0,
q_0 = parameters$q_0,
v_0 = parameters$v_0,
p_0 = parameters$p_0,
n_0 = c(parameters$n_0_a,
parameters$n_0_b),
res = parameters$res,
eseis = FALSE)
p_bedload <- eseis::model_bedload(d_s = parameters$d_s,
s_s = parameters$s_s,
r_s = parameters$r_s,
q_s = parameters$q_s,
h_w = parameters$h_w,
w_w = parameters$w_w,
a_w = parameters$a_w,
f = c(parameters$f_min,
parameters$f_max),
r_0 = parameters$r_0,
f_0 = parameters$f_0,
q_0 = parameters$q_0,
e_0 = parameters$e_0,
v_0 = parameters$v_0,
x_0 = parameters$p_0,
n_0 = parameters$n_0_a,
res = parameters$res,
eseis = FALSE)
p_combined <- p_turbulence
p_combined$spectrum <- p_turbulence$spectrum + p_bedload$spectrum
p_turbulence_log <- p_turbulence
p_bedload_log <-p_bedload
p_combined_log <- p_combined
p_turbulence_log$spectrum <- 10 * log10(p_turbulence$spectrum)
p_bedload_log$spectrum <- 10 * log10(p_bedload$spectrum)
p_combined_log$spectrum <- 10 * log10(p_combined$spectrum)
return(list(pars = parameters,
frequency = p_combined_log$frequency,
spectrum = p_combined_log$spectrum))
}
if(n_cores > 1) {
n_cores_system <- parallel::detectCores()
n_cores <- ifelse(test = n_cores > n_cores_system,
yes = n_cores_system,
no = n_cores)
cl <- parallel::makeCluster(n_cores)
spectra <- parallel::parLapply(cl = cl,
X = parameters,
fun = f)
parallel::stopCluster(cl = cl)
} else {
spectra <- lapply(X = parameters, FUN = f)
}
return(spectra)
}
|
suppressWarnings(RNGversion("3.5.2"))
library("partykit")
stopifnot(require("party"))
set.seed(29)
airq <- airquality[complete.cases(airquality),]
mtry <- ncol(airq) - 1L
ntree <- 25
cf_partykit <- partykit::cforest(Ozone ~ ., data = airq,
ntree = ntree, mtry = mtry)
w <- do.call("cbind", cf_partykit$weights)
cf_party <- party::cforest(Ozone ~ ., data = airq,
control = party::cforest_unbiased(ntree = ntree, mtry = mtry),
weights = w)
p_partykit <- predict(cf_partykit)
p_party <- predict(cf_party)
stopifnot(max(abs(p_partykit - p_party)) < sqrt(.Machine$double.eps))
prettytree(cf_party@ensemble[[1]], inames = names(airq)[-1])
party(cf_partykit$nodes[[1]], data = model.frame(cf_partykit))
v_party <- do.call("rbind", lapply(1:5, function(i) party::varimp(cf_party)))
v_partykit <- do.call("rbind", lapply(1:5, function(i) partykit::varimp(cf_partykit)))
summary(v_party)
summary(v_partykit)
party::varimp(cf_party, conditional = TRUE)
partykit::varimp(cf_partykit, conditional = TRUE)
set.seed(29)
mtry <- ncol(iris) - 1L
ntree <- 25
cf_partykit <- partykit::cforest(Species ~ ., data = iris,
ntree = ntree, mtry = mtry)
w <- do.call("cbind", cf_partykit$weights)
cf_party <- party::cforest(Species ~ ., data = iris,
control = party::cforest_unbiased(ntree = ntree, mtry = mtry),
weights = w)
p_partykit <- predict(cf_partykit, type = "prob")
p_party <- do.call("rbind", treeresponse(cf_party))
stopifnot(max(abs(unclass(p_partykit) - unclass(p_party))) < sqrt(.Machine$double.eps))
prettytree(cf_party@ensemble[[1]], inames = names(iris)[-5])
party(cf_partykit$nodes[[1]], data = model.frame(cf_partykit))
v_party <- do.call("rbind", lapply(1:5, function(i) party::varimp(cf_party)))
v_partykit <- do.call("rbind", lapply(1:5, function(i)
partykit::varimp(cf_partykit, risk = "mis")))
summary(v_party)
summary(v_partykit)
party::varimp(cf_party, conditional = TRUE)
partykit::varimp(cf_partykit, risk = "misclass", conditional = TRUE)
set.seed(29)
cf <- partykit::cforest(dist ~ speed, data = cars, ntree = 100)
pr <- predict(cf, newdata = cars[1,,drop = FALSE], type = "response", scale = TRUE)
w <- predict(cf, newdata = cars[1,,drop = FALSE], type = "weights")
stopifnot(isTRUE(all.equal(pr, sum(w * cars$dist) / sum(w),
check.attributes = FALSE)))
nd1 <- predict(cf, newdata = cars[1,,drop = FALSE], type = "node")
nd <- predict(cf, newdata = cars, type = "node")
lw <- cf$weights
np <- vector(mode = "list", length = length(lw))
m <- numeric(length(lw))
for (i in 1:length(lw)) {
np[[i]] <- tapply(lw[[i]] * cars$dist, nd[[i]], sum) /
tapply(lw[[i]], nd[[i]], sum)
m[i] <- np[[i]][as.character(nd1[i])]
}
stopifnot(isTRUE(all.equal(mean(m), sum(w * cars$dist) / sum(w))))
if(.Platform$OS.type == "unix") {
RNGkind("L'Ecuyer-CMRG")
v1 <- partykit::varimp(cf_partykit, risk = "misclass", conditional = TRUE, cores = 2)
v2 <- partykit::varimp(cf_partykit, risk = "misclass", conditional = TRUE, cores = 2)
stopifnot(all.equal(v1, v2))
}
cf_partykit <- partykit::cforest(Species ~ ., data = iris,
ntree = ntree, mtry = 4)
w <- do.call("cbind", cf_partykit$weights)
cf_2 <- partykit::cforest(Species ~ ., data = iris,
ntree = ntree, mtry = 4, weights = w)
stopifnot(max(abs(predict(cf_2, type = "prob") -
predict(cf_partykit, type = "prob"))) < sqrt(.Machine$double.eps))
|
HELPrct %>% select(contains("risk")) %>% head(2)
|
fadalara_no_paral <- function(data, seed, N, m, numArchoid, numRep, huge, prob, type_alg = "fada",
compare = FALSE, verbose = TRUE, PM, vect_tol = c(0.95, 0.9, 0.85),
alpha = 0.05, outl_degree = c("outl_strong", "outl_semi_strong",
"outl_moderate"), method = "adjbox",
multiv, frame){
nbasis <- dim(data)[2]
nvars <- dim(data)[3]
n <- nrow(data)
rss_aux <- Inf
rand_obs_iter <- c()
for (i in 1:N) {
if (verbose) {
print("Iteration:")
print(i)
}
if (is.null(rand_obs_iter)) {
set.seed(seed)
rand_obs_si <- sample(1:n, size = m)
}else{
set.seed(seed)
rand_obs_si <- sample(setdiff(1:n, rand_obs_iter), size = m - numArchoid)
rand_obs_si <- c(rand_obs_si, k_aux)
}
rand_obs_iter <- c(rand_obs_iter, rand_obs_si)
if (multiv) {
si <- apply(data, 2:3, function(x) x[rand_obs_si])
}else{
si <- data[rand_obs_si,]
}
if (type_alg == "fada") {
fada_si <- do_fada(si, numArchoid, numRep, huge, compare, PM, vect_tol, alpha,
outl_degree, method, prob)
}else if (type_alg == "fada_rob") {
if (multiv) {
if (frame) {
g1 <- t(si[,,1])
G <- dim(si)[3]
for (i in 2:G) {
g12 <- t(si[,,i])
g1 <- rbind(g1, g12)
}
X <- t(g1)
si_frame <- frame_in_r(X)
si <- apply(si, 2:3, function(x) x[si_frame])
rand_obs_si <- rand_obs_si[si_frame]
}
fada_si <- do_fada_multiv_robust(si, numArchoid, numRep, huge, prob, compare, PM, method)
}else{
if (frame) {
si_frame <- frame_in_r(si)
si <- si[si_frame,]
rand_obs_si <- rand_obs_si[si_frame]
}
fada_si <- do_fada_robust(si, numArchoid, numRep, huge, prob, compare, PM, vect_tol, alpha,
outl_degree, method)
}
}else{
stop("Algorithms available are 'fada' or 'fada_rob'.")
}
k_si <- fada_si$cases
alphas_si <- fada_si$alphas
colnames(alphas_si) <- rownames(si)
if (multiv) {
rss_si <- do_alphas_rss_multiv(data, si, huge, k_si, rand_obs_si, alphas_si,
type_alg, PM, prob, nbasis, nvars)
}else{
rss_si <- do_alphas_rss(data, si, huge, k_si, rand_obs_si, alphas_si, type_alg, PM, prob)
}
if (verbose) {
print("Previous rss value:")
print(rss_aux)
print("Current rss value:")
print(rss_si[[1]])
}
if (rss_si[[1]] < rss_aux) {
rss_aux <- rss_si[[1]]
k_aux <- which(rownames(data) %in% rownames(si)[k_si])
alphas_aux <- rss_si[[3]]
resid_aux <- rss_si[[2]]
}
}
if (method == "adjbox") {
if (multiv) {
seq_pts <- sort(c(seq(1, nbasis*nvars, by = nbasis),
rev(nbasis*nvars - nbasis *(1:(nvars-1))),
nbasis*nvars))
odd_pos <- seq(1, length(seq_pts), 2)
r_list <- list()
for (i in odd_pos) {
r_list[[i]] <- apply(resid_aux[seq_pts[i]:seq_pts[i+1],], 2, int_prod_mat_funct, PM = PM)
}
r_list1 <- r_list[odd_pos]
aux <- Reduce(`+`, r_list1)
resid_vect <- sqrt(aux)
}else{
resid_vect <- apply(resid_aux, 2, int_prod_mat_sq_funct, PM = PM)
}
outl_boxb <- boxB(x = resid_vect, k = 1.5, method = method)
outl <- which(resid_vect > outl_boxb$fences[2])
if (multiv) {
local_rel_imp <- sapply(1:nvars, function(i, j, x, y) round((x[[i]][j]/y[j]) * 100, 2),
outl, r_list1, aux)
if (length(outl) > 0) {
if (length(outl) == 1) {
local_rel_imp <- t(local_rel_imp)
}
dimnames(local_rel_imp) <- list(as.character(outl), paste("V", 1:nvars, sep = ""))
}
margi_rel_imp <- sapply(1:nvars, function(i, j, x) round((x[[i]][j]/sum(x[[i]])) * 100, 2),
outl, r_list1)
if (length(outl) > 0) {
if (length(outl) == 1) {
margi_rel_imp <- t(margi_rel_imp)
}
dimnames(margi_rel_imp) <- list(as.character(outl), paste("V", 1:nvars, sep = ""))
}
}else{
local_rel_imp <- NULL
margi_rel_imp <- NULL
}
}else if (method == "toler" & multiv == FALSE) {
resid_vect <- apply(resid_aux, 2, int_prod_mat_funct, PM = PM)
outl <- do_outl_degree(vect_tol, resid_vect, alpha,
paste(outl_degree, "_non_rob", sep = ""))
}
return(list(cases = k_aux, rss = rss_aux, outliers = outl, alphas = alphas_aux,
local_rel_imp = local_rel_imp, margi_rel_imp = margi_rel_imp))
}
|
test_that("simFossilRecord doesn't return extant taxa in extinct-only simulations", {
testthat::skip_on_cran()
testthat::skip_on_travis()
library(paleotree)
set.seed(1)
res <- simFossilRecord(
p = 0.1,
q = 0.1,
r = 0.1,
nTotalTaxa = 10,
nExtant = 0,
nruns = 1000,
plot = TRUE
)
anyLive <- any(sapply(res, function(z)
any(sapply(z,function(x) x[[1]][5] == 1)))
)
if(anyLive){
stop("Runs have extant taxa under conditioning for none?")
}
expect_false(anyLive)
})
|
tm1_api_request <- function(tm1_connection,
url, body ="", type = "GET") {
tm1_auth_key <- tm1_connection$key
url <- gsub(" ", "%20", url, fixed=TRUE)
tm1_process_return <-
do.call(get(type, asNamespace("httr")),
list(url,
httr::add_headers("Authorization" = tm1_auth_key),
httr::add_headers("Content-Type" = "application/json"),
body = body))
tm1_return <- jsonlite::fromJSON(httr::content(tm1_process_return, "text"))
return(tm1_return)
}
|
download.MERRA <- function(outfolder, start_date, end_date,
lat.in, lon.in,
overwrite = FALSE,
verbose = FALSE,
...) {
dates <- seq.Date(as.Date(start_date), as.Date(end_date), "1 day")
dir.create(outfolder, showWarnings = FALSE, recursive = TRUE)
for (i in seq_along(dates)) {
date <- dates[[i]]
PEcAn.logger::logger.debug(paste0(
"Downloading ", as.character(date), " (", i, " of ", length(dates), ")"
))
get_merra_date(date, lat.in, lon.in, outfolder, overwrite = overwrite)
}
start_year <- lubridate::year(start_date)
end_year <- lubridate::year(end_date)
ylist <- seq(start_year, end_year)
nyear <- length(ylist)
results <- data.frame(
file = character(nyear),
host = "",
mimetype = "",
formatname = "",
startdate = "",
enddate = "",
dbfile.name = "MERRA",
stringsAsFactors = FALSE
)
for (i in seq_len(nyear)) {
year <- ylist[i]
baseday <- paste0(year, "-01-01T00:00:00Z")
y_startdate <- pmax(ISOdate(year, 01, 01, 0, tz = "UTC"),
lubridate::as_datetime(start_date))
y_enddate <- pmin(ISOdate(year, 12, 31, 23, 59, 59, tz = "UTC"),
lubridate::as_datetime(paste(end_date, "23:59:59Z")))
timeseq <- as.numeric(difftime(
seq(y_startdate, y_enddate, "hours"),
baseday,
tz = "UTC", units = "days"
))
ntime <- length(timeseq)
loc.file <- file.path(outfolder, paste("MERRA", year, "nc", sep = "."))
results$file[i] <- loc.file
results$host[i] <- PEcAn.remote::fqdn()
results$startdate[i] <- paste0(year, "-01-01 00:00:00")
results$enddate[i] <- paste0(year, "-12-31 23:59:59")
results$mimetype[i] <- "application/x-netcdf"
results$formatname[i] <- "CF Meteorology"
lat <- ncdf4::ncdim_def(name = "latitude", units = "degree_north", vals = lat.in, create_dimvar = TRUE)
lon <- ncdf4::ncdim_def(name = "longitude", units = "degree_east", vals = lon.in, create_dimvar = TRUE)
time <- ncdf4::ncdim_def(name = "time", units = paste("Days since ", baseday),
vals = timeseq, create_dimvar = TRUE, unlim = TRUE)
dim <- list(lat, lon, time)
var_list <- list()
for (dat in list(merra_vars, merra_pres_vars, merra_flux_vars, merra_lfo_vars)) {
for (j in seq_len(nrow(dat))) {
var_list <- c(var_list, list(ncdf4::ncvar_def(
name = dat[j, ][["CF_name"]],
units = dat[j, ][["units"]],
dim = dim,
missval = -999
)))
}
}
var_list <- c(var_list, list(
ncdf4::ncvar_def(
name = "surface_direct_downwelling_shortwave_flux_in_air",
units = "W/m2", dim = dim, missval = -999
),
ncdf4::ncvar_def(
name = "surface_diffuse_downwelling_shortwave_flux_in_air",
units = "W/m2", dim = dim, missval = -999
)
))
if (file.exists(loc.file)) {
PEcAn.logger::logger.warn(
"Target file ", loc.file, " already exists.",
"It will be overwritten."
)
}
loc <- ncdf4::nc_create(loc.file, var_list)
on.exit(ncdf4::nc_close(loc), add = TRUE)
dates_yr <- dates[lubridate::year(dates) == year]
for (d in seq_along(dates_yr)) {
date <- dates_yr[[d]]
end <- d * 24
start <- end - 23
mostfile <- file.path(outfolder, sprintf("merra-most-%s.nc", as.character(date)))
nc <- ncdf4::nc_open(mostfile)
for (r in seq_len(nrow(merra_vars))) {
x <- ncdf4::ncvar_get(nc, merra_vars[r,][["MERRA_name"]])
ncdf4::ncvar_put(loc, merra_vars[r,][["CF_name"]], x,
start = c(1, 1, start), count = c(1, 1, 24))
}
ncdf4::nc_close(nc)
presfile <- file.path(outfolder, sprintf("merra-pres-%s.nc", as.character(date)))
nc <- ncdf4::nc_open(presfile)
for (r in seq_len(nrow(merra_pres_vars))) {
x <- ncdf4::ncvar_get(nc, merra_pres_vars[r,][["MERRA_name"]])
ncdf4::ncvar_put(loc, merra_pres_vars[r,][["CF_name"]], x,
start = c(1, 1, start), count = c(1, 1, 24))
}
ncdf4::nc_close(nc)
fluxfile <- file.path(outfolder, sprintf("merra-flux-%s.nc", as.character(date)))
nc <- ncdf4::nc_open(fluxfile)
for (r in seq_len(nrow(merra_flux_vars))) {
x <- ncdf4::ncvar_get(nc, merra_flux_vars[r,][["MERRA_name"]])
ncdf4::ncvar_put(loc, merra_flux_vars[r,][["CF_name"]], x,
start = c(1, 1, start), count = c(1, 1, 24))
}
lfofile <- file.path(outfolder, sprintf("merra-lfo-%s.nc", as.character(date)))
nc <- ncdf4::nc_open(lfofile)
for (r in seq_len(nrow(merra_lfo_vars))) {
x <- ncdf4::ncvar_get(nc, merra_lfo_vars[r,][["MERRA_name"]])
ncdf4::ncvar_put(loc, merra_lfo_vars[r,][["CF_name"]], x,
start = c(1, 1, start), count = c(1, 1, 24))
}
ncdf4::nc_close(nc)
}
sw_diffuse <-
ncdf4::ncvar_get(loc, "surface_diffuse_downwelling_photosynthetic_radiative_flux_in_air") +
ncdf4::ncvar_get(loc, "surface_diffuse_downwelling_nearinfrared_radiative_flux_in_air")
ncdf4::ncvar_put(loc, "surface_diffuse_downwelling_shortwave_flux_in_air", sw_diffuse,
start = c(1, 1, 1), count = c(1, 1, -1))
sw_direct <-
ncdf4::ncvar_get(loc, "surface_direct_downwelling_photosynthetic_radiative_flux_in_air") +
ncdf4::ncvar_get(loc, "surface_direct_downwelling_nearinfrared_radiative_flux_in_air")
ncdf4::ncvar_put(loc, "surface_direct_downwelling_shortwave_flux_in_air", sw_direct,
start = c(1, 1, 1), count = c(1, 1, -1))
}
return(results)
}
get_merra_date <- function(date, latitude, longitude, outdir, overwrite = FALSE) {
date <- as.character(date)
dpat <- "([[:digit:]]{4})-([[:digit:]]{2})-([[:digit:]]{2})"
year <- as.numeric(gsub(dpat, "\\1", date))
month <- as.numeric(gsub(dpat, "\\2", date))
day <- as.numeric(gsub(dpat, "\\3", date))
dir.create(outdir, showWarnings = FALSE, recursive = TRUE)
version <- if (year >= 2011) {
400
} else if (year >= 2001) {
300
} else {
200
}
base_url <- "https://goldsmr4.gesdisc.eosdis.nasa.gov/opendap/MERRA2"
lat_grid <- seq(-90, 90, 0.5)
lon_grid <- seq(-180, 180, 0.625)
ilat <- which.min(abs(lat_grid - latitude))
ilon <- which.min(abs(lon_grid - longitude))
idxstring <- sprintf("[0:1:23][%d][%d]", ilat, ilon)
url <- glue::glue(
"{base_url}/{merra_prod}/{year}/{sprintf('%02d', month)}/",
"MERRA2_{version}.{merra_file}.",
"{year}{sprintf('%02d', month)}{sprintf('%02d', day)}.nc4.nc4"
)
qvars <- sprintf("%s%s", merra_vars$MERRA_name, idxstring)
qstring <- paste(qvars, collapse = ",")
outfile <- file.path(outdir, sprintf("merra-most-%d-%02d-%02d.nc",
year, month, day))
if (overwrite || !file.exists(outfile)) {
req <- httr::GET(
paste(url, qstring, sep = "?"),
httr::authenticate(user = "pecanproject", password = "Data4pecan3"),
httr::write_disk(outfile, overwrite = TRUE)
)
}
url <- glue::glue(
"{base_url}/{merra_pres_prod}/{year}/{sprintf('%02d', month)}/",
"MERRA2_{version}.{merra_pres_file}.",
"{year}{sprintf('%02d', month)}{sprintf('%02d', day)}.nc4.nc4"
)
qvars <- sprintf("%s%s", merra_pres_vars$MERRA_name, idxstring)
qstring <- paste(qvars, collapse = ",")
outfile <- file.path(outdir, sprintf("merra-pres-%d-%02d-%02d.nc",
year, month, day))
if (overwrite || !file.exists(outfile)) {
req <- httr::GET(
paste(url, qstring, sep = "?"),
httr::authenticate(user = "pecanproject", password = "Data4pecan3"),
httr::write_disk(outfile, overwrite = TRUE)
)
}
url <- glue::glue(
"{base_url}/{merra_flux_prod}/{year}/{sprintf('%02d', month)}/",
"MERRA2_{version}.{merra_flux_file}.",
"{year}{sprintf('%02d', month)}{sprintf('%02d', day)}.nc4.nc4"
)
qvars <- sprintf("%s%s", merra_flux_vars$MERRA_name, idxstring)
qstring <- paste(qvars, collapse = ",")
outfile <- file.path(outdir, sprintf("merra-flux-%d-%02d-%02d.nc",
year, month, day))
if (overwrite || !file.exists(outfile)) {
req <- robustly(httr::GET, n = 10)(
paste(url, qstring, sep = "?"),
httr::authenticate(user = "pecanproject", password = "Data4pecan3"),
httr::write_disk(outfile, overwrite = TRUE)
)
}
url <- glue::glue(
"{base_url}/{merra_lfo_prod}/{year}/{sprintf('%02d', month)}/",
"MERRA2_{version}.{merra_lfo_file}.",
"{year}{sprintf('%02d', month)}{sprintf('%02d', day)}.nc4.nc4"
)
qvars <- sprintf("%s%s", merra_lfo_vars$MERRA_name, idxstring)
qstring <- paste(qvars, collapse = ",")
outfile <- file.path(outdir, sprintf("merra-lfo-%d-%02d-%02d.nc",
year, month, day))
if (overwrite || !file.exists(outfile)) {
req <- robustly(httr::GET, n = 10)(
paste(url, qstring, sep = "?"),
httr::authenticate(user = "pecanproject", password = "Data4pecan3"),
httr::write_disk(outfile, overwrite = TRUE)
)
}
}
merra_prod <- "M2T1NXFLX.5.12.4"
merra_file <- "tavg1_2d_flx_Nx"
merra_vars <- tibble::tribble(
~CF_name, ~MERRA_name, ~units,
"air_temperature", "TLML", "Kelvin",
"eastward_wind", "ULML", "m/s",
"northward_wind", "VLML", "m/s",
"specific_humidity", "QSH", "g/g",
"precipitation_flux", "PRECTOT", "kg/m2/s",
"surface_diffuse_downwelling_nearinfrared_radiative_flux_in_air", "NIRDF", "W/m2",
"surface_direct_downwelling_nearinfrared_radiative_flux_in_air", "NIRDR", "W/m2"
)
merra_pres_prod <- "M2I1NXASM.5.12.4"
merra_pres_file <- "inst1_2d_asm_Nx"
merra_pres_vars <- tibble::tribble(
~CF_name, ~MERRA_name, ~units,
"air_pressure", "PS", "Pascal",
)
merra_flux_prod <- "M2T1NXRAD.5.12.4"
merra_flux_file <- "tavg1_2d_rad_Nx"
merra_flux_vars <- tibble::tribble(
~CF_name, ~MERRA_name, ~units,
"surface_downwelling_longwave_flux_in_air", "LWGAB", "W/m2",
"surface_downwelling_shortwave_flux_in_air", "SWGDN", "W/m2"
)
merra_lfo_prod <- "M2T1NXLFO.5.12.4"
merra_lfo_file <- "tavg1_2d_lfo_Nx"
merra_lfo_vars <- tibble::tribble(
~CF_name, ~MERRA_name, ~units,
"surface_diffuse_downwelling_photosynthetic_radiative_flux_in_air", "PARDF", "W/m2",
"surface_direct_downwelling_photosynthetic_radiative_flux_in_air", "PARDR", "W/m2"
)
|
clvarselhlfwd <- function(X, G = 1:9,
emModels1 = c("E","V"),
emModels2 = mclust.options("emModelNames"),
samp = FALSE, sampsize = 2000,
hcModel = "VVV",
allow.EEE = TRUE, forcetwo = TRUE,
BIC.upper = 0, BIC.lower = -10,
itermax = 100,
verbose = interactive())
{
X <- as.matrix(X)
n <- nrow(X)
d <- ncol(X)
G <- setdiff(G, 1)
if(samp) { sub <- sample(1:n, min(sampsize,n), replace = FALSE) }
else { sub <- seq.int(1,n) }
if(verbose) cat(paste("iter 1\n+ adding step\n"))
maxBIC <- BICdiff <- oneBIC <- rep(NA,d)
ModelG <- vector(mode = "list", length = d)
for(i in 1:d)
{
xBIC <- NULL
try(xBIC <- Mclust(X[,i], G = G, modelNames = emModels1,
initialization = list(subset = sub),
verbose = FALSE),
silent = TRUE)
if(is.null(xBIC))
try(xBIC <- Mclust(X[,i], G = G, modelNames = emModels1),
silent = TRUE)
if((allow.EEE) & sum(is.finite(xBIC$BIC))==0)
try(xBIC <- Mclust(X[,i], G = G, modelNames = emModels1,
initialization = list(hcPairs = hcE(X[sub,i]),
subset = sub),
verbose = FALSE),
silent = TRUE)
if(sum(is.finite(xBIC$BIC))==0)
maxBIC[i] <- NA
else
maxBIC[i] <- max(xBIC$BIC[is.finite(xBIC$BIC)])
try(oneBIC[i] <- Mclust(X[,i], G = 1, modelNames = emModels1,
initialization = list(subset = sub),
verbose = FALSE)$BIC[1],
silent = TRUE)
BICdiff[i] <- c(maxBIC[i] - oneBIC[i])
ModelG[[i]] <- c(xBIC$modelName, xBIC$G)
}
m <- max(BICdiff[is.finite(BICdiff)])
arg <- which(BICdiff==m,arr.ind=TRUE)[1]
S <- X[,arg,drop=FALSE]
BICS <- maxBIC[arg]
temp <- order(BICdiff[-arg], decreasing = TRUE)
NS <- as.matrix(X[,-arg])
NS <- NS[,temp,drop=FALSE]
info <- data.frame(Var = colnames(S),
BIC = BICS, BICdiff = BICdiff[arg],
Step = "Add", Decision = "Accepted",
Model = ModelG[[arg]][1],
G = ModelG[[arg]][2],
stringsAsFactors = FALSE)
info$BIC <- as.numeric(info$BIC)
info$BICdiff <- as.numeric(info$BICdiff)
if(verbose)
{ print(info[,c(1,3:5),drop=FALSE])
cat(paste("iter 2\n+ adding step\n")) }
depBIC <- cindepBIC <- cdiff <- rep(NA, ncol(NS))
ModelG <- vector(mode = "list", length = ncol(NS))
crit <- -Inf
i <- 0
while( (crit <= BIC.upper) & (i < ncol(NS)) )
{
i <- i+1
regBIC <- BICreg(y = NS[,i], x = S)
sBIC <- NULL
try(sBIC <- Mclust(cbind(S,NS[,i]), G = G, modelNames = emModels2,
initialization = list(hcPairs = hc(hcModel,
data = cbind(S,NS[,i])[sub,]),
subset = sub),
verbose = FALSE),
silent = TRUE)
if((allow.EEE) & sum(is.finite(sBIC$BIC))==0)
try(sBIC <- Mclust(cbind(S,NS[,i]), G = G, modelNames = emModels2,
initialization = list(hcPairs = hc("EEE",
data = cbind(S,NS[,i])[sub,]),
subset = sub),
verbose = FALSE),
silent = TRUE)
if(sum(is.finite(sBIC$BIC))>0)
depBIC[i] <- max(sBIC$BIC[is.finite(sBIC$BIC)])
cindepBIC[i] <- regBIC + BICS
cdiff[i] <- depBIC[i] - cindepBIC[i]
if(!is.finite(cdiff[i])) cdiff[i] <- BIC.upper
crit <- cdiff[i]
ModelG[[i]] <- c(sBIC$modelName, sBIC$G)
}
depBIC <- depBIC[1:i]
cindepBIC <- cindepBIC[1:i]
cdiff <- cdiff[1:i]
if(cdiff[i] > BIC.upper)
{
k <- c(colnames(S),colnames(NS)[i])
S <- cbind(S,NS[,i])
colnames(S) <- k
BICS <- depBIC[i]
info <- rbind(info, c(colnames(NS)[i], BICS, cdiff[i],
"Add", "Accepted", ModelG[[i]]))
ns <- s <- NULL
if(i < ncol(NS))
ns <- seq(i+1, ncol(NS))
if(i > 1)
s <- seq(i-1)[which(cdiff[-i] > BIC.lower)]
ind <- c(s,ns)
if(!is.null(ind))
{ nks <- c(colnames(NS)[ind])
NS <- as.matrix(NS[,ind])
colnames(NS) <- nks
}
else
{ NS <- NULL }
}
else
{
if((cdiff[i] < BIC.upper) & (forcetwo))
{
m <- max(cdiff[is.finite(cdiff)])
i <- which(cdiff==m,arr.ind=TRUE)[1]
k <- c(colnames(S),colnames(NS)[i])
S <- cbind(S,NS[,i])
colnames(S) <- k
BICS <- depBIC[i]
info <- rbind(info, c(colnames(NS)[i], BICS, cdiff[i],
"Add", "Accepted", ModelG[[i]]))
nks <- c(colnames(NS)[-i])
NS <- as.matrix(NS[,-i])
temp <- cdiff[-i]
if(sum(temp > BIC.lower) != 0)
{ NS <- as.matrix(NS[,c(which(temp > BIC.lower))])
colnames(NS) <- nks[c(which(temp > BIC.lower))]
}
else
{ NS <- NULL }
}
else
{ m <- max(cdiff[is.finite(cdiff)])
i <- which(cdiff==m,arr.ind=TRUE)[1]
info <- rbind(info, c(colnames(NS)[i], BICS, cdiff[i],
"Add", "Rejected", ModelG[[i]]))
}
}
info$BIC <- as.numeric(info$BIC)
info$BICdiff <- as.numeric(info$BICdiff)
if(verbose) print(info[2,c(1,3:5),drop=FALSE])
criterion <- 1
iter <- 0
while((criterion == 1) & (iter < itermax))
{
iter <- iter+1
check1 <- colnames(S)
if(verbose) cat(paste("iter", iter+2, "\n"))
if(verbose) cat("+ adding step\n")
if((NCOL(NS) != 0 & !is.null(ncol(NS))) &
(ncol(S) == 0) || (is.null(ncol(S))) )
{
depBIC <- 0
DepBIC <- NULL
crit <- -10
cdiff <- 0
Cdiff <- NULL
oneBIC <- rep(NA,d)
ModelG <- vector(mode = "list", length = d)
i <- 0
crit <- -10
while((crit <= BIC.upper) & (i < ncol(NS)))
{
xBIC <- NULL
i <- i+1
try(xBIC <- Mclust(X[,i], G = G, modelNames = emModels1,
initialization = list(subset = sub),
verbose = FALSE),
silent = TRUE)
if((allow.EEE) & sum(is.finite(xBIC$BIC))==0)
try(xBIC <- Mclust(X[,i], G = G, modelNames = emModels1,
initialization = list(hcPairs = hcE(X[sub,i]),
subset = sub),
verbose = FALSE),
silent = TRUE)
if(sum(is.finite(xBIC$BIC)) == 0)
depBIC <- NA
else
depBIC <- max(xBIC$BIC[is.finite(xBIC$BIC)])
DepBIC <- c(DepBIC,depBIC)
try(oneBIC <- Mclust(X[,i], G = 1, modelNames = "V", verbose = FALSE)$BIC[1],
silent = TRUE)
cdiff <- c(depBIC - oneBIC)
if(!is.finite(cdiff)) cdiff <- BIC.upper
Cdiff <- c(Cdiff,cdiff)
crit <- cdiff
ModelG[[i]] <- c(xBIC$modelName, xBIC$G)
}
if(cdiff > BIC.upper)
{
k <- c(colnames(NS)[i])
S <- as.matrix(NS[,i])
colnames(S) <- k
BICS <- depBIC
info <- rbind(info, c(colnames(NS)[i], BICS, cdiff,
"Add", "Accepted", ModelG[[i]]))
ns <- s <- NULL
if(i < ncol(NS)) ns <- seq(i+1, ncol(NS))
if(i > 1) s <- seq(i-1)[which(Cdiff[-i] > BIC.lower)]
ind <- c(s,ns)
if(!is.null(ind))
{ nks <- c(colnames(NS)[ind])
NS <- as.matrix(NS[,ind])
colnames(NS)<-nks
}
else
{ NS <- NULL }
}
else
{
m <- max(Cdiff[is.finite(Cdiff)])
i <- which(Cdiff==m,arr.ind=TRUE)[1]
info <- rbind(info, c(colnames(NS)[i], BICS, Cdiff[i],
"Add", "Rejected", ModelG[[i]]))
ind <- seq(ncol(NS))[which(Cdiff > BIC.lower)]
if(!is.null(ind))
{ k <- colnames(NS)[ind]
NS <- as.matrix(NS[,ind])
colnames(NS) <- k
}
else
{ NS <- NULL }
}
}
else
{
if((NCOL(NS) != 0) & !is.null(ncol(NS)))
{
depBIC <- cindepBIC <- cdiff <- rep(NA, ncol(NS))
ModelG <- vector(mode = "list", length = ncol(NS))
crit <- -Inf
i <- 0
while(crit <= BIC.upper & i < ncol(NS))
{
sBIC <- NULL
i <- i+1
regBIC <- BICreg(y = NS[,i], x = S)
try(sBIC <- Mclust(cbind(S,NS[,i]), G = G, modelNames = emModels2,
initialization = list(hcPairs = hc(hcModel,
data = cbind(S,NS[,i])[sub,]),
subset = sub),
verbose = FALSE),
silent = TRUE)
if((allow.EEE) & (sum(is.finite(sBIC$BIC))==0))
try(sBIC <- Mclust(cbind(S,NS[,i]), G = G, modelNames = emModels2,
initialization = list(hcPairs = hc("EEE",
data = cbind(S,NS[,i])[sub,]),
subset = sub),
verbose = FALSE),
silent = TRUE)
if(sum(is.finite(sBIC$BIC))>0)
depBIC[i] <- max(sBIC$BIC[is.finite(sBIC$BIC)])
cindepBIC[i] <- regBIC + BICS
cdiff[i] <- depBIC[i] - cindepBIC[i]
if(!is.finite(cdiff[i])) cdiff[i] <- BIC.upper
crit <- cdiff[i]
ModelG[[i]] <- c(sBIC$modelName, sBIC$G)
}
depBIC <- depBIC[1:i]
cindepBIC <- cindepBIC[1:i]
cdiff <- cdiff[1:i]
if(cdiff[i] > BIC.upper)
{
k <- c(colnames(S),colnames(NS)[i])
nks <- c(colnames(NS)[-i])
S <- cbind(S,NS[,i])
colnames(S) <- k
BICS <- depBIC[i]
info <- rbind(info, c(colnames(NS)[i], BICS, cdiff[i],
"Add", "Accepted", ModelG[[i]]))
ns <- s <- NULL
if(i < ncol(NS)) ns <- seq(i+1,ncol(NS))
if(i > 1) s <- seq(i-1)[which(cdiff[-i] > BIC.lower)]
ind <- c(s,ns)
if(!is.null(ind))
{ nks <- colnames(NS)[ind]
NS <- as.matrix(NS[,ind])
colnames(NS) <- nks
}
else
{ NS <- NULL }
}
else
{
m <- max(cdiff[is.finite(cdiff)])
i <- which(cdiff==m,arr.ind=TRUE)[1]
info <- rbind(info, c(colnames(NS)[i], depBIC[i], cdiff[i],
"Add", "Rejected", ModelG[[i]]))
ind <- seq(1,ncol(NS))[which(cdiff > BIC.lower)]
if(!is.null(ind))
{ k <- colnames(NS)[ind]
NS <- as.matrix(NS[,ind])
colnames(NS) <- k
}
else
{ NS <- NULL }
}
}
}
if(verbose) cat("- removing step\n")
if(ncol(S) == 1)
{ cdiff <- 0
oneBIC <- NA
try(oneBIC <- Mclust(S, G = 1, modelNames = "V",
initialization = list(subset = sub),
verbose = FALSE)$BIC[1],
silent = TRUE)
cdiff <- BICS - oneBIC
if(is.na(cdiff)) cdiff <- BIC.upper
if(cdiff <= BIC.upper)
{
BICS <- NA
info <- rbind(info, c(colnames(S), BICS, cdiff,
"Remove", "Accepted",
oneBIC$modelName, oneBIC$G))
if(cdiff > BIC.lower)
{ k <- c(colnames(NS),colnames(S))
NS <- cbind(NS,S)
colnames(NS) <- k
S <- NULL
}
else
{ S <- NULL }
}
else
{ info <- rbind(info, c(colnames(S), BICS, cdiff,
"Remove", "Rejected",
oneBIC$modelName, oneBIC$G)) }
}
else
{
if(ncol(S) >= 2)
{ depBIC <- BICS
cindepBIC <- rdep <- cdiff <- rep(NA, ncol(S))
ModelG <- vector(mode = "list", length = ncol(S))
crit <- Inf
i <- 0
name <- if(ncol(S) > 2) emModels2 else emModels1
while(crit > BIC.upper & (i<ncol(S)))
{
i <- i+1
regBIC <- BICreg(y = S[,i], x = S[,-i])
sBIC <- NULL
try(sBIC <- Mclust(S[,-i], G = G, modelNames = name,
initialization =
list(hcPairs = hc(hcModel,
data = S[sub,-i,drop=FALSE]),
subset = sub),
verbose = FALSE),
silent = TRUE)
if(allow.EEE & (ncol(S) >= 3) & sum(is.finite(sBIC$BIC))==0)
{ try(sBIC <- Mclust(S[,-i], G = G, modelNames = name,
initialization = list(hcPairs = hc("EEE",
data = S[sub,-i]),
subset = sub),
verbose = FALSE),
silent = TRUE) }
else
{ if((allow.EEE) & (ncol(S)==2) & sum(is.finite(sBIC$BIC))==0)
{ try(sBIC <- Mclust(as.matrix(S[,-i]), G = G, modelNames = name,
initialization = list(hcPairs = hcE(S[sub,-i,drop=FALSE]),
subset = sub),
verbose = FALSE),
silent = TRUE) }
}
if(sum(is.finite(sBIC$BIC))>0)
rdep[i] <- max(sBIC$BIC[is.finite(sBIC$BIC)])
cindepBIC[i] <- regBIC + rdep[i]
cdiff[i] <- depBIC - cindepBIC[i]
if(!is.finite(cdiff[i])) cdiff[i] <- BIC.upper
crit <- cdiff[i]
ModelG[[i]] <- c(sBIC$modelName, sBIC$G)
}
if((cdiff[i] < BIC.upper) & (cdiff[i] > BIC.lower))
{
BICS <- rdep[i]
info <- rbind(info, c(colnames(S)[i], BICS, cdiff[i],
"Remove", "Accepted", ModelG[[i]]))
k <- c(colnames(NS),colnames(S)[i])
nk <- colnames(S)[-i]
NS <- cbind(NS,S[,i])
S <- as.matrix(S[,-i])
colnames(NS) <- k
colnames(S) <- nk
}
else
{ if(cdiff[i] < BIC.lower)
{
BICS <- rdep[i]
info <- rbind(info, c(colnames(S)[i], BICS, cdiff[i],
"Remove", "Accepted", ModelG[[i]]))
nk <- colnames(S)[-i]
S <- as.matrix(S[,-i])
colnames(S) <- nk
}
else
{ m <- min(cdiff[is.finite(cdiff)])
i <- which(cdiff==m,arr.ind=TRUE)[1]
info <- rbind(info, c(colnames(S)[i], rdep[i], cdiff[i],
"Remove", "Rejected", ModelG[[i]]))
}
}
}
}
info$BIC <- as.numeric(info$BIC)
info$BICdiff <- as.numeric(info$BICdiff)
if(verbose)
print(info[seq(nrow(info)-1,nrow(info)),c(1,3:5),drop=FALSE])
check2 <- colnames(S)
if(is.null(check2))
{ criterion <- 0 }
else
{ if(length(check2) != length(check1))
{ criterion <- 1 }
else
{ criterion <- if(sum(check1==check2) != length(check1)) 1 else 0 }
}
}
if(iter >= itermax)
warning("Algorithm stopped because maximum number of iterations was reached")
info$BIC <- as.numeric(info$BIC)
info$BICdiff <- as.numeric(info$BICdiff)
info <- info[,c(1,4,2,6,7,3,5),drop=FALSE]
colnames(info) <- c("Variable proposed", "Type of step",
"BICclust", "Model", "G", "BICdiff", "Decision")
varnames <- colnames(X)
subset <- sapply(colnames(S), function(x) which(x == varnames))
out <- list(variables = varnames,
subset = subset,
steps.info = info,
search = "headlong",
direction = "forward")
return(out)
}
|
findEquilibrium <- function(deriv, y0 = NULL, parameters = NULL,
system = "two.dim", tol = 1e-16,
max.iter = 50, h = 1e-6, plot.it = FALSE,
summary = TRUE,
state.names =
if (system == "two.dim") c("x", "y") else "y") {
if (is.null(y0)) {
y0 <- locator(n = 1)
if (system == "one.dim") {
y0 <- y0$y
} else {
y0 <- c(y0$x, y0$y)
}
}
if (all(!is.vector(y0), !is.matrix(y0))) {
stop("y0 is not a vector or matrix, as is required")
}
if (is.vector(y0)) {
y0 <- as.matrix(y0)
}
if (!(system %in% c("one.dim", "two.dim"))) {
stop("system must be set to either \"one.dim\" or \"two.dim\"")
}
if (all(system == "one.dim", nrow(y0)*ncol(y0) != 1)) {
stop("For system = \"one.dim\", y0 should be a matrix where ",
"nrow(y0)*ncol(y0) = 1 or a vector of length one")
}
if (all(system == "two.dim", nrow(y0)*ncol(y0) != 2)) {
stop("For system = \"two.dim\", y0 should be a matrix where ",
"nrow(y0)*ncol(y0) = 2 or a vector of length two")
}
if (nrow(y0) < ncol(y0)) {
y0 <- t(y0)
}
if (tol <= 0) {
stop("tol is less than or equal to zero")
}
if (max.iter <= 0) {
stop("max.iter is less than or equal to zero")
}
if (h <= 0) {
stop("h is less than or equal to zero")
}
if (!is.logical(plot.it)) {
stop("plot.it must be set to either TRUE or FALSE")
}
if (!is.logical(summary)){
stop("summary must be set to either TRUE or FALSE")
}
y <- y0
dim <- nrow(y)
for (i in 1:max.iter) {
dy <-
deriv(0, stats::setNames(y, utils::head(state.names, n = dim)),
parameters)[[1]]
jacobian <- matrix(0, dim, dim)
for (j in 1:dim) {
h.vec <- numeric(dim)
h.vec[j] <- h
jacobian[, j] <-
(deriv(0, stats::setNames(y + h.vec, state.names), parameters)[[1]] -
deriv(0, stats::setNames(y - h.vec, state.names),
parameters)[[1]])/(2*h)
}
if (sum(dy^2) < tol) {
if (system == "one.dim") {
discriminant <- jacobian
if (discriminant > 0) {
classification <- "Unstable"
} else if (discriminant < 0) {
classification <- "Stable"
} else {
classification <- "Indeterminate"
}
} else {
A <- jacobian[1, 1]
B <- jacobian[1, 2]
C <- jacobian[2, 1]
D <- jacobian[2, 2]
Delta <- A*D - B*C
tr <- A + D
discriminant <- tr^2 - 4*Delta
if (Delta == 0) {
classification <- "Indeterminate"
} else if (discriminant == 0) {
if (tr < 0) {
classification <- "Stable node"
} else {
classification <- "Unstable node"
}
} else if (Delta < 0) {
classification <- "Saddle"
} else {
if (discriminant > 0) {
if (tr < 0) {
classification <- "Stable node"
} else {
classification <- "Unstable node"
}
} else {
if (tr < 0) {
classification <- "Stable focus"
} else if (tr > 0) {
classification <- "Unstable focus"
} else {
classification <- "Centre"
}
}
}
}
if (plot.it) {
eigenvalues <- eigen(jacobian)$values
pchs <- matrix(c(17, 5, 2, 16, 1, 1), 2, 3, byrow = T)
pch1 <- 1 + as.numeric(Im(eigenvalues[1]) != 0)
pch2 <- 1 + sum(Re(eigenvalues) > 0)
old.par <- graphics::par(no.readonly = T)
on.exit(graphics::par(old.par))
graphics::par(xpd = T)
if (system == "one.dim") {
graphics::points(0, y[1], type = "p", pch = pchs[pch1, pch2],
cex = 1.5, lwd = 2)
} else {
graphics::points(y[1], y[2], type = "p", pch = pchs[pch1, pch2],
cex = 1.5, lwd = 2)
}
}
if (summary) {
if (system == "one.dim") {
message("Fixed point at ", state.names," = ", round(y, 5))
message("discriminant = ", round(discriminant, 5),
", classification = ", classification)
} else {
message("Fixed point at (", paste0(state.names, collapse = ','),
") = ", round(y, 5))
message("tr = ", round(tr, 5), ", Delta = ", round(Delta, 5),
", discriminant = ", round(discriminant, 5),
", classification = ", classification)
}
}
if (system == "one.dim") {
return(list(classification = classification,
deriv = deriv,
discriminant = discriminant,
h = h,
max.iter = max.iter,
parameters = parameters,
plot.it = plot.it,
summary = summary,
system = system,
tol = tol,
y0 = y0,
ystar = y))
} else {
return(list(classification = classification,
Delta = Delta,
deriv = deriv,
discriminant = discriminant,
eigenvalues = eigen(jacobian)$values,
eigenvectors = eigen(jacobian)$vectors,
h = h,
jacobian = jacobian,
max.iter = max.iter,
parameters = parameters,
plot.it = plot.it,
summary = summary,
system = system,
tol = tol,
tr = tr,
y0 = y0,
ystar = y))
}
}
y <- y - solve(jacobian, dy)
if (summary) {
message(i, y)
}
}
if (summary) {
message("Convergence failed")
}
}
|
getDE_DC_OptimalThreshold = function(t_result, MaxGene, d_r, minSupport) {
optimal=data.frame(chi2Value=double(), pValue=double(), tCutOff=double(), rCutOff=double(),
obsA=double(), obsB=double(), obsC=double(), obsD=double(),
expA=double(), expB=double(), expC=double(), expD=double())
rank_abs_t = rank(t_result$absTScore, ties.method= "min")
for (i in 1:MaxGene) {
optimal[i,"pValue"]=1
optimal[i,"chi2Value"]=0
optimal[i,"tCutOff"]=0
optimal[i,"rCutOff"]=0
optimal[i,"obsA"]=0
optimal[i,"obsB"]=0
optimal[i,"obsC"]=0
optimal[i,"obsD"]=0
optimal[i,"expA"]=0
optimal[i,"expB"]=0
optimal[i,"expC"]=0
optimal[i,"expD"]=0
rank_one_d_r = rank(d_r[i,], ties.method= "min")
for (j in 1:MaxGene) {
currentTcutoff = t_result$absTScore[j]
currentRcutoff = d_r[i,j]
tempA = sum(rank_abs_t >=rank_abs_t[j] & rank_one_d_r >=rank_one_d_r[j])
tempB = MaxGene-rank_one_d_r[j]+1-tempA
tempC = MaxGene-rank_abs_t[j]+1-tempA
tempD = MaxGene-tempA -tempB-tempC
expectedA = (tempA+tempB)*(tempA+tempC)/ MaxGene;
expectedB = (tempA+tempB)*(tempB+tempD)/ MaxGene;
expectedC = (tempA+tempC)*(tempC+tempD)/ MaxGene;
expectedD = (tempD+tempB)*(tempD+tempC)/ MaxGene;
if (expectedA<minSupport || expectedB<minSupport|| expectedC<minSupport|| expectedD<minSupport) {
next
}
expectedValues = c(expectedA, expectedB, expectedC, expectedD)
observedValues = matrix(c(tempA, tempB, tempC, tempD),nrow=2,ncol=2)
chi2stat = sum((observedValues-expectedValues)^2 / expectedValues)
if (chi2stat> optimal[i,"chi2Value"]) {
pValue = pchisq(chi2stat,1,lower.tail=FALSE)
optimal[i,"pValue"]=pValue
optimal[i,"chi2Value"]=chi2stat
optimal[i,"tCutOff"]=currentTcutoff
optimal[i,"rCutOff"]=currentRcutoff
optimal[i,"obsA"]=tempA
optimal[i,"obsB"]=tempB
optimal[i,"obsC"]=tempC
optimal[i,"obsD"]=tempD
optimal[i,"expA"]=expectedA
optimal[i,"expB"]=expectedB
optimal[i,"expC"]=expectedC
optimal[i,"expD"]=expectedD
}
}
if (i %%1==0) {
print(sprintf("Gene id: %d",i))
}
}
adjustedPValues = getBonferroniPValue(optimal$pValue)
adjustedPValues = getFDR(adjustedPValues)
optimal$pValue =adjustedPValues
return(optimal)
}
|
kmeans.centers.update=function(out,group
,dfunc=func.trim.FM,draw=TRUE
,par.dfunc=list(trim=0.05)
,...){
if (class(out)!="kmeans.fd")
stop("Error: incorrect input data")
z = out$fdataobj[["data"]]
tt = out$fdataobj[["argvals"]]
rtt <- out$fdataobj[["rangeval"]]
names = out$fdataobj[["names"]]
mdist = out$z.dist
centers = out$centers
xm = centers[["data"]]
nr = nrow(z)
nc = ncol(z)
grupo = group
ngroups = length(unique(group))
d = out$d
ncl = nrow(xm)
for (j in 1:ngroups){
jgrupo <- grupo==j
dm=z[jgrupo,]
ind=which(jgrupo)
if (is.vector(dm) || nrow(dm)<3) {k=j}
else {
par.dfunc$fdataobj<-centers
par.dfunc$fdataobj$data<-dm
stat=do.call(dfunc,par.dfunc)
}
if (is.fdata(stat)) xm[j,]=stat[["data"]]
else xm[j,]=stat
}
centers$data=xm
rownames(centers$data) <- paste("center ",1:ngroups,sep="")
if (draw){
if (nr==2){
plot(out$fdataobj,main="Center update")
for (i in 1:ngroups){points(xm[i,1],xm[i,2],col=i+1,pch=8,cex=1.5)}}
else{
plot(out$fdataobj,col="grey",lty=grupo+1,lwd=0.15,cex=0.2,main="Update centers")
lines(centers,col=2:(length(grupo+1)),lwd=3,lty=1)
}}
return(list("centers"=centers,"cluster"=grupo))
}
|
sim.weightsplot <- function(weights, nei, nx, ny, thresh=0.05, ...) {
require(spatstat)
if(is.matrix(weights)!=TRUE)
stop("weights needs to be a matrix!")
if(dim(nei)[2]!=dim(weights)[1])
stop("The row dimension of weights needs to be the same size as the
column dimension of nei!")
nrow <- nx
ncol <- ny
w <- apply(weights,1,median)
if(ncol(nei)!=((ncol-1)*nrow + (nrow-1)*ncol))
stop("Wrong matrix dimension!")
getcoor <- function(image, valbool) {
if(is.logical(valbool))
ind <- which(valbool)
else
ind <- which(image$v==valbool)
nx <- ncol(image$v)
ny <- nrow(image$v)
xind <- ceiling(ind/ny)
X <- image$xcol[xind]
Y <- image$yrow[ind - (xind-1)*ny]
data.frame(X,Y)
}
nrowim <- 2*nrow - 1
ncolim <- 2*ncol - 1
Z <- matrix(nrow=nrowim, ncol=ncolim)
Zim <- im(Z, xcol=1:ncolim, yrow=1:nrowim)
inds <- rep(seq(1,ncolim,by=2), times=nrow) + rep((0:(nrow-1))*(2*ncolim), each=ncol)
pixelinds <- rep(0, nrowim*ncolim)
pixelinds[inds] <- 1:(nrow*ncol)
Zim$v <- matrix(ncol=ncolim, nrow=nrowim, data=pixelinds, byrow=TRUE)
coorweights <- sapply(as.data.frame(nei), function(x) colMeans(getcoor(Zim, Zim$v %in% x)))
coorweights <- coorweights[,w<thresh]
Zim[list(x=coorweights[1,], y=coorweights[2,])] <- 1.5
coorzero <- getcoor(Zim, Zim$v==0)
Zim[list(x=coorzero$X, y=coorzero$Y)] <- NA
coornonweights <- getcoor(Zim, Zim$v!=1.5)
Zim[list(x=coornonweights$X, y=coornonweights$Y)] <- 1
coorweights <- getcoor(Zim, Zim$v==1.5)
Zim[list(x=coorweights$X, y=coorweights$Y)] <- 2
Zim$v <- Zim$v[1:nrow(Zim$v),1:ncol(Zim$v)]
image(Zim$v, x=1:nrow(Zim$v), y=1:ncol(Zim$v), axes=FALSE, xlab="", ylab="", ...)
}
|
getUsedFactorLevels = function(x) {
intersect(levels(x), unique(x))
}
|
PairwiseDistances1 <- function(X, distfun, ...) {
if (is.matrix(X)) {
n <- dim(X)[1]
}
if (is.list(X)) {
n <- length(X)
}
distances <- matrix(0, n, n)
for (i in 1:(n - 1)) {
for (j in (i + 1):n) {
d <- distfun(X, Y=NULL, i, j, ...)
distances[i,j] <- d
distances[j,i] <- d
}
}
return(distances)
}
PairwiseDistances2 <- function(X, Y, distfun, ...) {
if (is.matrix(X)) {
n <- dim(X)[1]
m <- dim(Y)[1]
}
if (is.list(X)) {
n <- length(X)
m <- length(Y)
}
distances <- matrix(0, n, m)
for (i in 1:n) {
for (j in 1:m) {
d <- distfun(X, Y, i, j, ...)
distances[i,j] <- d
}
}
return(distances)
}
MatrixToList <- function(X) {
aux <- X
X <- list()
for (i in 1:nrow(aux)) {
X[[i]] <- aux[i,]
}
names(X) <- rownames(aux)
return(X)
}
PairwiseARPicDistance <- function(X, Y=NULL, i, j, order.x=NULL, order.y=NULL,
permissive=TRUE) {
if (! is.list(X)) {X <- MatrixToList(X)}
options(show.error.messages = TRUE)
if (! is.null(order.x) && dim(order.x)[1] != length(X)) {
stop("The length of order.x must be equal to the number of
series in the database.")}
if (is.null(Y)) {
options(show.error.messages = FALSE)
d <- diss.AR.PIC(X[[i]], X[[j]], order.x[i, ], order.x[j, ], permissive)
} else {
if (! is.list(Y)) {Y <- MatrixToList(Y)}
if (! is.null(order.y) && dim(order.y)[1] != length(Y)) {
stop("The length of order.y must be equal to the number of
series in the database Y.")}
options(show.error.messages = FALSE)
d <- diss.AR.PIC(X[[i]], Y[[j]], order.x[i, ], order.y[j, ], permissive)
}
options(show.error.messages = TRUE)
return(d)
}
PairwiseARLPCCepsDistance <- function(X, Y=NULL, i, j, k=50, order.x=NULL,
order.y=NULL, seasonal.x=NULL,
seasonal.y=NULL, permissive=TRUE) {
if (! is.list(X)) {X <- MatrixToList(X)}
options(show.error.messages = TRUE)
if (! is.null(order.x) && dim(order.x)[1] != length(X))
stop("The number of rows of order.x must be equal to the number
of series in the database X.")
if (is.null(Y)) {
if (is.null(seasonal.x)) {
seasonal.x[[i]] <- list(order=c(0, 0, 0), period=NA)
seasonal.x[[j]] <- list(order=c(0, 0, 0), period=NA)
}
options(show.error.messages = FALSE)
d <- diss.AR.LPC.CEPS(X[[i]], X[[j]], k, order.x[i, ], order.x[j, ],
seasonal.x[[i]], seasonal.x[[j]], permissive)
} else {
if (! is.list(Y)) {Y <- MatrixToList(Y)}
if (! is.null(order.y) && dim(order.y)[1] != length(Y)) {
stop("The length of order.y must be equal to the number of
series in the database Y.")
}
if (is.null(seasonal.x)) {
seasonal.x[[i]] <- list(order=c(0, 0, 0), period=NA)
}
if (is.null(seasonal.y)) {
seasonal.y[[j]] <- list(order=c(0, 0, 0), period=NA)
}
options(show.error.messages = FALSE)
d <- diss.AR.LPC.CEPS(X[[i]], Y[[i]], k, order.x[i, ], order.y[j, ], seasonal.x[[i]], seasonal.y[[j]],permissive)
}
options(show.error.messages = TRUE)
return(d)
}
PairwisePredDistance <- function(X, Y=NULL, h, B=500, logarithms.x=NULL, logarithms.y=NULL, differences.x=NULL, differences.y=NULL, plot=FALSE) {
if (! is.list(X)) {X <- MatrixToList(X)}
n1 <- length(X)
if (! is.null(logarithms.x) && length(logarithms.x) != n1) {
stop("The length of logarithms.x must be equal to the number of series in X.")}
if (! is.null(differences.x) && length(differences.x) != n1) {
stop("The length of differences.x must be equal to the number of series in X.")}
if (is.null(logarithms.x)) {
logarithms.x <- rep(FALSE, n1)
}
if (is.null(differences.x)) {
differences.x <- rep(0, n1)
}
if (is.null(Y)) {
individual.dens1 <- list()
ii <- 1
while (ii < n1) {
dP <- diss.PRED(X[[ii]], X[[ii + 1]], h , B, logarithms.x[ii], logarithms.x[ii + 1], differences.x[ii], differences.x[ii+1], FALSE )
individual.dens1[[ii]] <- list(dens=dP$dens.x, bw=dP$bw.x)
individual.dens1[[ii + 1]] <- list(dens=dP$dens.y, bw=dP$bw.y)
ii = ii + 2
if (ii == n1) {ii <- ii -1}
}
densities <- list()
distances <- matrix(0, n1, n1)
rownames(distances) <- names(X)
for (i in 1:(n1 - 1) ) {
for (j in (i + 1):n1 ) {
distance <- L1dist(individual.dens1[[i]]$dens, individual.dens1[[j]]$dens, individual.dens1[[i]]$bw, individual.dens1[[j]]$bw )
distances[i, j] <- distance
distances[j, i] <- distance
}
}
} else {
if (! is.list(Y)) {Y <- MatrixToList(Y)}
n2 <- length(Y)
if (! is.null(logarithms.y) && length(logarithms.y) != n2) {
stop("The length of logarithms.y must be equal to the number of series in Y.")}
if (! is.null(differences.y) && length(differences.y) != n2) {
stop("The length of differences.y must be equal to the number of series in Y.")}
if (is.null(logarithms.y)) {
logarithms.y <- rep(FALSE, n2)
}
if (is.null(differences.y)) {
differences.y <- rep(0, n2)
}
densities <- list()
individual.dens1 <- list()
individual.dens2 <- list()
ii <- 1
XY <- append(X, Y)
logarithms.xy <- append(logarithms.x, logarithms.y)
differences.xy <- append(differences.x, differences.y)
while (ii < n1+n2) {
dP <- diss.PRED(XY[[ii]], XY[[ii + 1]], h , B, logarithms.xy[ii], logarithms.xy[ii+1] , differences.xy[ii], differences.xy[ii + 1], FALSE )
individual.dens1[[ii]] <- list(dens=dP$dens.x, bw=dP$bw.x)
individual.dens1[[ii + 1]] <- list(dens=dP$dens.y, bw=dP$bw.y)
ii <- ii + 2
if (ii == n1+n2) {ii <- ii - 1}
}
densities <- list()
distances <- matrix(0, n1, n2)
rownames(distances) <- names(X)
colnames(distances) <- names(Y)
for (i in 1:n1 ) {
for (j in 1:n2 ) {
distance <- L1dist(individual.dens1[[i]]$dens, individual.dens1[[n1+j]]$dens, individual.dens1[[i]]$bw, individual.dens1[[n1+j]]$bw )
distances[i, j] <- distance
}
}
}
return(distances)
}
PairwiseSpecLLRDistance <- function(X, Y=NULL, method="DLS",
alpha=0.5, plot=FALSE, n=NULL) {
if (! is.list(X)) {X <- MatrixToList(X)}
if (! is.null(Y) && ! is.list(Y)) {Y <- MatrixToList(Y)}
if (is.null(n)) {
n <- length(X[[1]])
}
if (n > 0) {
interpfun <- NULL
type <- (pmatch(method, c("DLS", "LK" )))
if (is.na(type)) {
stop(paste("Unknown method", method))
} else if (type == 1) {
interpfun <- interp.SPEC.LS
}
else if (type == 2) {
interpfun <- interp.W.LK
}
d <- PairwiseInterpSpecDistance(X, Y, n, interpfun, integrate.divergenceW, alpha)
} else {
if (is.null(Y)) {
d <- dist(X, method="TSDistances", distance="spec.llr", alpha=alpha, plot=FALSE, n=n)
} else {
d <- dist(X, Y, method="TSDistances", distance="spec.llr", alpha=alpha, plot=FALSE, n=n)
}
}
options(show.error.messages = TRUE)
return(d)
}
PairwiseSpecGLKDistance <- function(X, Y=NULL, plot=FALSE) {
if (! is.list(X)) {X <- MatrixToList(X)}
if (! is.null(Y) && ! is.list(Y)) {Y <- MatrixToList(Y)}
PairwiseInterpSpecDistance(X, Y, floor(length(X[[1]])/2), interp.SPEC.GLK, integrate.GLK)
}
PairwiseSpecISDDistance<- function(X, Y=NULL, plot=FALSE, n=NULL) {
if (! is.list(X)) {X <- MatrixToList(X)}
if (! is.null(Y) && ! is.list(Y)) {Y <- MatrixToList(Y)}
if (is.null(n)) {
n <- length(X[[1]])
}
if (n > 0) {
d <- PairwiseInterpSpecDistance(X, Y, n, interp.SPEC.LOGLIKELIHOOD , integrate.ISD)
}else {
if (is.null(Y)) {
d <- dist(X, method="TSDistances", distance= "spec.isd", plot=FALSE, n=n)
} else {
d <- dist(X, Y, method="TSDistances", distance= "spec.isd", plot=FALSE, n=n)
}
}
return(d)
}
PairwiseInterpSpecDistance <- function(X, Y=NULL, n, interpfun,
integrationfun, ...) {
l1 <- length(X)
interps1 <- lapply(X, interpfun, n)
base <- interps1[[1]]$x
if (is.null(Y)) {
dists <- matrix(0, l1, l1)
for (i in 1:(l1-1)) {
for (j in (i+1):l1) {
d <- integrationfun(base, interps1[[i]]$y , interps1[[j]]$y, ...)
dists[i,j] <- d
dists[j,i] <- d
}
}
} else {
l2 <- length(Y)
dists <- matrix(0, l1, l2)
interps2 <- lapply(Y, interpfun, n)
for (i in 1:l1) {
for (j in 1:l2) {
d <- integrationfun(base, interps1[[i]]$y , interps2[[j]]$y, ...)
dists[i,j] <- d
}
}
}
dists
}
PairwiseCDMDistance <- function(X, Y=NULL, i, j, ...) {
if (! is.list(X)) {X <- MatrixToList(X)}
if (! is.null(Y) && ! is.list(Y)) {Y <- MatrixToList(Y)}
if (is.null(Y)) {
as.numeric(diss.CDM(X[[i]], X[[j]], ...))
} else {
as.numeric(diss.CDM(X[[i]], Y[[j]], ...))
}
}
PairwiseNCDDistance <- function(X, Y=NULL, i, j, ...) {
if (! is.list(X)) {X <- MatrixToList(X)}
if (! is.null(Y) && ! is.list(Y)) {Y <- MatrixToList(Y)}
if (is.null(Y)) {
as.numeric(diss.NCD(X[[i]], X[[j]], ...))
} else {
as.numeric(diss.NCD(X[[i]], Y[[j]], ...))
}
}
PairwiseFrechetDistance <- function(X, Y=NULL, i, j, ...) {
if (! is.list(X)) {
X <- MatrixToList(X)
}
if (! is.null(Y) && ! is.list(Y)) {
Y <- MatrixToList(Y)
}
if (is.null(Y)) {
as.numeric(FrechetDistance(X[[i]], X[[j]], ...))
} else {
as.numeric(FrechetDistance(X[[i]], Y[[j]], ...))
}
}
divergenceMatrix2 <- function(codebooks1, codebooks2, divergence)
{
l1 <- dim(codebooks1)[1]
l2 <- dim(codebooks2)[1]
mt <- matrix(rep(0, l1 * l2), l1, )
for (i in 1:l1)
{
for (j in 1:l2)
{
mt[i, j] <- divergence(codebooks1[i, ], codebooks2[j, ])
}
}
return(mt);
}
PDCDist2 <- function(X, Y, m=NULL, t=NULL, divergence=symmetricAlphaDivergence)
{
if (is.null(t) | is.null(m)) {
ent <- entropyHeuristic(cbind(X,Y))
if (is.null(m)) {
m <- ent$m;
}
if (is.null(t)) {
t <- ent$t;
}
}
codebooks1 <- ConvertMatrix(X,m,t);
codebooks2 <- ConvertMatrix(Y,m,t);
D <- divergenceMatrix2( codebooks1, codebooks2, divergence );
return(D);
}
ConvertMatrix <-function(X, m, td){
return( t(apply(X, 2, codebook, m=m, t=td)) )
}
|
test_that("classif_ada", {
requirePackagesOrSkip("ada", default.method = "load")
parset.list = list(
list(),
list(iter = 5L)
)
old.predicts.list = list()
old.probs.list = list()
for (i in seq_along(parset.list)) {
parset = parset.list[[i]]
pars = list(binaryclass.formula, data = binaryclass.train)
pars = c(pars, parset)
set.seed(getOption("mlr.debug.seed"))
m = do.call(ada::ada, pars)
set.seed(getOption("mlr.debug.seed"))
p = predict(m, newdata = binaryclass.test, type = "probs")
old.probs.list[[i]] = p[, 1]
old.predicts.list[[i]] = as.factor(binaryclass.class.levs[ifelse(p[, 2] > 0.5, 2, 1)])
}
testSimpleParsets("classif.ada", binaryclass.df, binaryclass.target,
binaryclass.train.inds, old.predicts.list, parset.list)
testProbParsets("classif.ada", binaryclass.df, binaryclass.target,
binaryclass.train.inds, old.probs.list, parset.list)
})
test_that("classif_ada passes parameters correctly to rpart.control (
cp.vals = c(0.022, 0.023)
loss.vals = c("exponential", "logistic")
for (cp in cp.vals) {
for (loss in loss.vals) {
lrn = makeLearner("classif.ada", cp = cp, loss = loss)
mod = getLearnerModel(train(lrn, pid.task))
expect_equal(mod$model$trees[[1]]$control$cp, cp)
expect_equal(mod$model$lossObj$loss, loss)
}
}
})
|
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
library(FAMoS)
true.p2 <- 3
true.p5 <- 2
sim.data <- cbind.data.frame(range = 1:10,
y = true.p2^2 * (1:10)^2 - exp(true.p5 * (1:10)))
inits <- c(p1 = 3, p2 = 4, p3 = -2, p4 = 2, p5 = 0)
cost_function <- function(parms, binary, data){
if(max(abs(parms)) > 5){
return(NA)
}
with(as.list(c(parms)), {
res <- p1*4 + p2^2*data$range^2 + p3*sin(data$range) + p4*data$range - exp(p5*data$range)
diff <- sum((res - data$y)^2)
nr.par <- length(which(binary == 1))
nr.data <- nrow(data)
AICC <- diff + 2*nr.par + 2*nr.par*(nr.par + 1)/(nr.data - nr.par -1)
return(AICC)
})
}
swaps <- list(c("p1", "p5"))
res <- famos(init.par = inits,
fit.fn = cost_function,
homedir = tempdir(),
method = "swap",
swap.parameters = swaps,
init.model.type = c("p1", "p3"),
optim.runs = 1,
data = sim.data)
famos.performance(input = res$mrun, path = tempdir())
fig.sc <- sc.order(input = tempdir(), mrun = res$mrun)
par(mfrow = c(1,2))
fig.sc1 <- sc.order(input = tempdir(), mrun = res$mrun, colour.par = "p1")
fig.sc2 <- sc.order(input = tempdir(), mrun = res$mrun, colour.par = "p5")
fig.aicc <- aicc.weights(input = tempdir(), mrun = res$mrun)
|
StomatalClosure <- function(data,
sample = "sample",
time.since.start = "time.since.start",
conductance = "conductance",
RWD = "RWD.interval",
threshold = FALSE,
graph = TRUE,
show.legend = TRUE) {
data_in <-
ValidityCheck(
data,
sample = sample,
time.since.start = time.since.start,
conductance = conductance,
RWD = RWD
)
OrderCheck(data_in, sample = sample, time.since.start = time.since.start)
sc.model <- list()
for (i in 1:length(unique(data_in[[sample]]))) {
sub.sample <- unique(data_in[[sample]])[i]
data_in_subset <- data_in[data_in[[sample]] == sub.sample, ]
data_in_subset <-
data_in_subset[!is.na(data_in_subset[[conductance]]), ]
data_in_subset <- data_in_subset[!is.na(data_in_subset[[RWD]]), ]
try({
all.fine <-
FALSE
data_in_subset$norm.x <-
data_in_subset[[time.since.start]] - min(data_in_subset[[time.since.start]])
m <-
ApplyCombMod(data_in_subset,
y = conductance,
x = "norm.x")
a <- as.numeric(coef(m)[1])
b <- as.numeric(coef(m)[2])
c <- as.numeric(coef(m)[3])
d <- as.numeric(coef(m)[4])
coef <- coef(m)
try({
conf_int <-
suppressMessages(confint(m))
}, silent = TRUE)
xnew <- 1:max(data_in_subset[[time.since.start]])
xnew_plot <-
(1:max(data_in_subset[[time.since.start]]) + min(data_in_subset[[time.since.start]]))
all_fit_plot <- a * exp(b * xnew) + c * xnew + d
exp_fit_plot <-
a * exp(b * xnew) + d
lin_fit_plot <-
c * xnew + d
exp_slope <- c(diff(exp_fit_plot))
if (threshold == FALSE) {
sens = -(b ^ 2 * 60)
}else{
sens = -(b ^2 * threshold)
}
time.sc <-
(which(exp_slope > sens)[[1]]) + min(data_in_subset[[time.since.start]])
gmin.sc <-
a * exp(b * (time.sc - min(data_in_subset[[time.since.start]]))) + c * (time.sc - min(data_in_subset[[time.since.start]])) + d
time.linear <-
data_in_subset[[time.since.start]][data_in_subset[[time.since.start]] > time.sc]
RWD.linear <-
data_in_subset[[RWD]][data_in_subset[[time.since.start]] > time.sc]
if (length(RWD.linear) < 3) {
warning(
paste0("sample ", sub.sample),
": not enough data points (< 3) in the linear region of the leaf drying curve"
)
} else{
li <- lm(RWD.linear ~ time.linear)
RWD.sc <-
coef(li)[2] * time.sc + coef(li)[1]
if (graph == TRUE) {
suppressMessages(suppressWarnings(
PlotOutput(
sub.sample = sub.sample,
x = data_in_subset[[time.since.start]],
y = data_in_subset[[conductance]],
legend.y = "leaf conductance",
x.axis = "time since start (min)",
y.axis = expression('g ' * ('mmol ' * m ^ -2 * s ^ -1)),
x.intercept = time.sc,
legend.x.intercept = "stomatal closure",
line.y = all_fit_plot,
line.y2 = lin_fit_plot,
line.y3 = exp_fit_plot,
line.x = xnew_plot,
legend.line.y = "entire fit",
legend.line.y2 = "linear part of fit",
legend.line.y3 = "exp. part of fit",
show.legend = show.legend
)
))
}
sc.model[[paste0("sample ", sub.sample)]] <-
list(
stomatal.closure = list(
time.since.start = time.sc,
RWD = as.numeric(RWD.sc),
conductance = gmin.sc
),
formula = list(linear = "conductance ~ (c * time.since.start + d)",
exponential = "conductance ~ (a * exp(b * time.since.start) + d)"),
coef = coef,
conf.int = list("2.5 %" = conf_int[, 1], "97.5 %" = conf_int[, 2])
)
}
all.fine <- TRUE
}, silent = TRUE)
if (all.fine == FALSE) {
warning(paste0("sample ", sub.sample),
": fitting of data to a combined model didn't work")
}
}
return(sc.model)
}
|
match.index <- function(lattice.note, ggplot.note)
{
tmp.lattice.list <- strsplit(lattice.note, "lattice")
tmp.ggplot.list <- strsplit(ggplot.note, "ggplot2")
tmp.lattice <- unlist(tmp.lattice.list)
rm.index <- which(tmp.lattice==")")
tmp.lattice <- tmp.lattice[-rm.index]
tmp.ggplot <- unlist(tmp.ggplot.list)
rm.index <- which(tmp.ggplot==")")
tmp.ggplot <- tmp.ggplot[-rm.index]
ggplot.index <- match(tmp.lattice, tmp.ggplot)
return(ggplot.index)
}
writeHTML <- function(htmldir, save.format)
{
html.start <- "<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.0 Transitional//EN\"
\"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd\">"
html.start <- paste(html.start, "<html><header><link rel=\"stylesheet\"
type=\"text/css\" href=\"",
"http://129.186.62.12/PKreport.css",
"\"/>", sep="")
html.start <- paste(html.start, "<title>PKoutput", htmldir, "Figures</title></header><body>",
sep=" ")
html.start <- paste(html.start, "<hr><h3><p class=\"subtitle\">", htmldir,
"Figures</p></h3>", sep=" ")
html.content <- NULL
fig.files <- dir(htmldir, pattern=save.format)
fig.files <- paste(htmldir, fig.files, sep="/")
txt <- paste("<img src=", fig.files, sep="")
txt <- paste(txt, ">", sep="")
if (.pkplot$getConfig("package")==0)
{
lattice.txt <- txt[grep("lattice", txt)]
lattice.no <- sapply(1:length(lattice.txt), function(i) strsplit(lattice.txt[i], "_")[[1]][2])
lattice.note <- .pkplot$getAllPKCodeNote()[c(as.numeric(lattice.no))]
lattice.note <- unlist(lattice.note)
html.tmp <- paste("<a href=\"
html.tmp <- paste("<td>", html.tmp, "</td>", sep="")
tr.index <- which((((1:length(lattice.note))-1)%%4) == 0)
html.tmp[tr.index] <- paste("<tr>", html.tmp[tr.index], sep="")
tr.index <- which(((1:length(lattice.note))%%4) == 0)
html.tmp[tr.index] <- paste(html.tmp[tr.index], "</tr>", sep="")
html.content <- paste(html.content, html.tmp, collapse="")
html.content <- paste("<a name=\"top\"><h3><table cellpadding=5 align=center>", html.content, "</table></h3></a>", sep="")
title.body <- "<p><center><h2>Lattice package</h2></center></p>"
fig.tmp <- paste("<a name=\"", lattice.no, "\">", lattice.no, "</a>", sep="")
fig.body <- paste("<p>Figure ID: ", fig.tmp, "</p><a href=\"
fig.body <- paste(fig.body, "<p> Note: ", lattice.note, "</p>", sep="")
fig.body <- paste(fig.body, lattice.txt, collapse="")
html.body <- paste(title.body, fig.body, sep="")
}
if (.pkplot$getConfig("package")==1)
{
ggplot.txt <- txt[grep("ggplot", txt)]
if (length(ggplot.txt) > 0)
{
ggplot.no <- sapply(1:length(ggplot.txt), function(i) strsplit(ggplot.txt[i], "_")[[1]][2])
ggplot.note <- .pkplot$getAllPKCodeNote()[c(as.numeric(ggplot.no))]
ggplot.note <- unlist(ggplot.note)
html.tmp <- paste("<a href=\"
html.tmp <- paste("<td>", html.tmp, "</td>", sep="")
tr.index <- which((((1:length(ggplot.note))-1)%%4) == 0)
html.tmp[tr.index] <- paste("<tr>", html.tmp[tr.index], sep="")
tr.index <- which(((1:length(ggplot.note))%%4) == 0)
html.tmp[tr.index] <- paste(html.tmp[tr.index], "</tr>", sep="")
html.content <- paste(html.content, html.tmp, collapse="")
html.content <- paste("<a name=\"top\"><h3><table cellpadding=5 align=center>", html.content, "</table></h3></a>", sep="")
title.body <- "<p><center><h2>ggplot package</h2></center></p>"
fig.tmp <- paste("<a name=\"", ggplot.no, "\">", ggplot.no, "</a>", sep="")
fig.body <- paste("<p>Figure ID: ", fig.tmp, "</p><a href=\"
fig.body <- paste(fig.body, "<p> Note: ", ggplot.note, "</p>", sep="")
fig.body <- paste(fig.body, ggplot.txt, collapse="")
html.body <- paste(title.body, fig.body, sep="")
}
}
if (.pkplot$getConfig("package")==2)
{
lattice.txt <- txt[grep("lattice", txt)]
ggplot.txt <- txt[grep("ggplot", txt)]
if (length(lattice.txt)==0) stop("There is no lattice figure!")
if (length(ggplot.txt)==0) stop("There is no ggplot figure!")
lattice.no <- sapply(1:length(lattice.txt), function(i) strsplit(lattice.txt[i], "_")[[1]][2])
lattice.note <- .pkplot$getAllPKCodeNote()[c(as.numeric(lattice.no))]
lattice.note <- unlist(lattice.note)
ggplot.no <- sapply(1:length(ggplot.txt), function(i) strsplit(ggplot.txt[i], "_")[[1]][2])
ggplot.note <- .pkplot$getAllPKCodeNote()[c(as.numeric(ggplot.no))]
ggplot.note <- unlist(ggplot.note)
ggplot.index <- match.index(lattice.note, ggplot.note)
ggplot.txt <- ggplot.txt[ggplot.index]
ggplot.note <- ggplot.note[ggplot.index]
ggplot.no <- ggplot.no[ggplot.index]
lattice.note.1 <- strsplit(lattice.note, " \\(")
lattice.note.2 <- unlist(lattice.note.1)
tmp.index <- which(lattice.note.2 == "lattice)")
lattice.note.3 <- lattice.note.2[-tmp.index]
html.tmp <- paste("<a href=\"
html.tmp <- paste("<td>", html.tmp, "</td>", sep="")
trs.index <- which((((1:length(lattice.note))-1)%%4) == 0)
html.tmp[trs.index] <- paste("<tr>", html.tmp[trs.index], sep="")
tre.index <- which(((1:length(lattice.note))%%4) == 0)
html.tmp[tre.index] <- paste(html.tmp[tre.index], "</tr>", sep="")
html.content <- paste(html.content, html.tmp, collapse="")
if (length(trs.index) != length(tre.index)) html.content <- paste(html.content, "</tr>", sep="")
html.content <- paste("<a name=\"top\"><h3><table class=\"figcenter\">", html.content, "</table></h3></a>", sep="")
fig.tmp.lattice <- paste("<a name=\"", lattice.no, "\">", lattice.no, "</a>", sep="")
fig.id.lattice <- paste("<td>Figure ID: ", fig.tmp.lattice, "<a href=\"
fig.id.ggplot <- paste("<td>Figure ID: ", ggplot.no, "</td>", sep="")
fig.id <- paste("<tr>", fig.id.lattice, fig.id.ggplot, "</tr>", sep="")
fig.note.lattice <- paste("<td> Note: ", lattice.note, "</td>", sep="")
fig.note.ggplot <- paste("<td> Note: ", ggplot.note, "</td>", sep="")
fig.note <- paste("<tr>", fig.note.lattice, fig.note.ggplot, "</tr>", sep="")
fig.fig.lattice <- paste("<td>", lattice.txt, "</td>", sep="")
fig.fig.ggplot <- paste("<td>", ggplot.txt, "</td>", sep="")
fig.fig <- paste("<tr>", fig.fig.lattice, fig.fig.ggplot, "</tr>", sep="")
fig.body <- paste(fig.id, fig.note, fig.fig, sep="")
fig.body <- paste(fig.body, collapse="")
fig.body <- paste("<table class=\"center\">", fig.body, "</table>", sep="")
title.body <- "<p><center><h2>lattice and ggplot package</h2></center></p>"
html.body <- paste(title.body, fig.body, sep="")
}
html.end <- paste("<p></p><p></p><hr><p align=\"right\" class=\"bottomFont\">PKreport", packageDescription("PKreport")$Version,
date(), "</p></body></html>", sep=" ")
filename <- paste("PK", htmldir, ".html", sep="")
PK.html <- file(filename, "w")
html.all <- paste(html.start, html.content, html.body, html.end, sep="\n")
writeLines(html.all, con = PK.html, sep = "\n")
close(PK.html)
}
writeTable <- function(filename, mytitle, mydata)
{
html.start <- "<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.0 Transitional//EN\"
\"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd\">"
html.start <- paste(html.start, "<html><header><link rel=\"stylesheet\"
type=\"text/css\" href=\"",
"http://129.186.62.12/PKreport.css",
"\"/>", sep="")
html.end <- paste("<p></p><p></p><hr><p align=\"right\" class=\"bottomFont\">PKreport", packageDescription("PKreport")$Version,
date(), "</p></body></html>", sep=" ")
html.start<- paste(html.start, "<title>", mytitle,
"</title></header><body>", sep=" ")
html.start <- paste(html.start, "<hr><h3><p class=\"subtitle\">", mytitle,
"Table</p></h3>", sep=" ")
html.content <- paste("<h4>Color Description (scaled in column direction)</h4>", sep="")
html.content <- paste(html.content,
"<table><tr><td BGCOLOR=
html.content <- paste(html.content, "<h4>Data</h4><table>", sep="")
html.colname <- paste("<td BGCOLOR=
html.content <- paste(html.content, "<tr>", html.colname, "</tr>", sep="")
html.data <- NULL
for (i in 1:ncol(mydata))
{
tmp <- mydata[,i]
if (length(unique(tmp))>=5 && is.numeric(tmp))
{
order.index <- order(as.numeric(tmp))
quantile.index <- round(quantile(1:length(order.index), c(0.25,0.5,0.75)))
q25.index <- c(1:quantile.index[1])
if (quantile.index[1]!=quantile.index[2]) q50.index <- c((quantile.index[1]+1):quantile.index[2])
if (quantile.index[2]!=quantile.index[3]) q75.index <- c((quantile.index[2]+1):quantile.index[3])
if (quantile.index[3] < length(order.index)) q100.index <- c((quantile.index[3]+1):(length(order.index)))
tmp[order.index[q25.index]] <- paste("<td BGCOLOR=
tmp[order.index[q50.index]] <- paste("<td BGCOLOR=
tmp[order.index[q75.index]] <- paste("<td BGCOLOR=
tmp[order.index[q100.index]] <- paste("<td BGCOLOR=
}
else
{
if (length(unique(tmp)) >=3 && is.numeric(tmp))
{
min.index <- which(tmp==min(tmp))
max.index <- which(tmp==max(tmp))
tmp[min.index] <- paste("<td BGCOLOR=
tmp[max.index] <- paste("<td BGCOLOR=
tmp[-c(min.index, max.index)] <- paste("<td>", tmp[-c(min.index, max.index)], "</td>", sep="")
}
else
{
tmp <- paste("<td>", tmp, "</td>", sep="")
}
}
mydata[,i] <- tmp
}
for (i in 1:nrow(mydata))
{
html.data <- paste(mydata[i,], sep="", collapse="")
html.content <- paste(html.content, "<tr>", html.data, "</tr>", sep="")
}
html.content <- paste(html.content, "</table>", sep="")
PK.html <- file(filename, "w")
html.all <- paste(html.start, html.content, html.end, sep="\n")
writeLines(html.all, con = PK.html, sep = "\n")
close(PK.html)
}
writeLst <- function(filename, lstString)
{
html.start <- "<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.0 Transitional//EN\"
\"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd\">"
html.start <- paste(html.start, "<html><header><link rel=\"stylesheet\"
type=\"text/css\" href=\"",
"http://129.186.62.12/PKreport.css",
"\"/>", sep="")
html.end <- paste("<p></p><p></p><hr><p align=\"right\" class=\"bottomFont\">PKreport", packageDescription("PKreport")$Version,
date(), "</p></body></html>", sep=" ")
html.start<- paste(html.start, "<title>lst file",
"</title></header><body>", sep=" ")
html.start <- paste(html.start, "<hr><h3><p class=\"subtitle\">lst file</p></h3>", sep=" ")
html.content <- paste(lstString, "<br>", sep="")
html.content <- paste(html.content, collapse="")
html.content <- paste("<p><pre>", html.content, "</pre></p>", sep="")
PK.html <- file(filename, "w")
html.all <- paste(html.start, html.content, html.end, sep="\n")
writeLines(html.all, con = PK.html, sep = "\n")
close(PK.html)
}
writeLst.tab <- function(filename, lstString)
{
html.start <- "<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.0 Transitional//EN\"
\"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd\">"
html.start <- paste(html.start, "<html><header><link rel=\"stylesheet\"
type=\"text/css\" href=\"",
"http://129.186.62.12/PKreport.css",
"\"/>", sep="")
html.end <- paste("<p></p><p></p><hr><p align=\"right\" class=\"bottomFont\">PKreport", packageDescription("PKreport")$Version,
date(), "</p></body></html>", sep=" ")
html.start<- paste(html.start, "<title>lst file",
"</title></header><body>", sep=" ")
html.content <- "<table>"
for (i in 1:length(lstString))
{
tmp <- strsplit(lstString[i], " ")[[1]]
tmp.html <- paste(tmp, collapse="</td><td>")
html.content <- paste(html.content, "<tr><td>", tmp.html, "</td></tr>", sep="")
}
html.content <- paste(html.content, "</table>", sep="")
PK.html <- file(filename, "w")
html.all <- paste(html.start, html.content, html.end, sep="\n")
writeLines(html.all, con = PK.html, sep = "\n")
close(PK.html)
}
PKoutput <- function(nonmemObj=NULL, table.Rowv=FALSE, table.Colv=FALSE)
{
general.list <- .pkplot$getGlobalConfig()
html.start <- "<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.0 Transitional//EN\"
\"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd\">"
html.start <- paste(html.start, "<html><header><link rel=\"stylesheet\"
type=\"text/css\" href=\"",
"http://129.186.62.12/PKreport.css",
"\"/>", sep="")
html.index <- paste(html.start, "<title>PKreport</title></header><body>", sep="")
html.index <- paste(html.index, "<h1><p class=\"title\">PKreport</p></h1>", sep="")
if ((!is.null(nonmemObj)) && class(nonmemObj) == "nonmem")
{
html.index <- paste(html.index,
"<h3><p class=\"subtitle\">NONMEM results</p></h3><table class=\"center\" border=0>",
sep="")
if (length([email protected]) != 0)
{
writeLst("lst.html", [email protected])
html.index <- paste(html.index, "<tr><td><a href=lst.html>lst file</a></td></tr>", sep="")
}
if (nrow(nonmemObj@tabdata) != 0)
{
order.data <- nonmemObj@tabdata
if (table.Colv || table.Rowv)
{
tmp.data <- order.data[,sapply(order.data, is.numeric)]
tmp.heat <- heatmap(as.matrix(tmp.data))
if (table.Rowv) order.data <- order.data[rev(tmp.heat$rowInd),]
if (table.Colv) order.data <- order.data[, tmp.heat$colInd]
}
writeTable("tab.html", "tab file", order.data)
html.index <- paste(html.index, "<tr><td><a href=tab.html>Tab file</a></td></tr>", sep="")
}
if (nrow([email protected]$data) != 0)
{
order.data <- [email protected]$data
if (table.Colv || table.Rowv)
{
tmp.data <- order.data[,sapply(order.data, is.numeric)]
tmp.heat <- heatmap(as.matrix(tmp.data))
if (table.Rowv) order.data <- order.data[rev(tmp.heat$rowInd),]
if (table.Colv) order.data <- order.data[, tmp.heat$colInd]
}
writeTable("cov.html", "cov file",order.data)
html.index <- paste(html.index, "<tr><td><a href=cov.html>Cov file</a></td></tr>", sep="")
}
if (nrow([email protected]$data) != 0)
{
order.data <- [email protected]$data
if (table.Colv || table.Rowv)
{
tmp.data <- order.data[,sapply(order.data, is.numeric)]
tmp.heat <- heatmap(as.matrix(tmp.data))
if (table.Rowv) order.data <- order.data[rev(tmp.heat$rowInd),]
if (table.Colv) order.data <- order.data[, tmp.heat$colInd]
}
writeTable("cor.html", "cor file",order.data)
html.index <- paste(html.index, "<tr><td><a href=cor.html>Cor file</a></td></tr>", sep="")
}
if (nrow([email protected]$data) != 0)
{
order.data <- [email protected]$data
if (table.Colv || table.Rowv)
{
tmp.data <- order.data[,sapply(order.data, is.numeric)]
tmp.heat <- heatmap(as.matrix(tmp.data))
if (table.Rowv) order.data <- order.data[rev(tmp.heat$rowInd),]
if (table.Colv) order.data <- order.data[, tmp.heat$colInd]
}
writeTable("coi.html", "coi file",order.data)
html.index <- paste(html.index, "<tr><td><a href=coi.html>Coi file</a></td></tr>", sep="")
}
if (nrow([email protected]$data) != 0)
{
order.data <- [email protected]$data
if (table.Colv || table.Rowv)
{
tmp.data <- order.data[,sapply(order.data, is.numeric)]
tmp.heat <- heatmap(as.matrix(tmp.data))
if (table.Rowv) order.data <- order.data[rev(tmp.heat$rowInd),]
if (table.Colv) order.data <- order.data[, tmp.heat$colInd]
}
writeTable("phi.html", "phi file",order.data)
html.index <- paste(html.index, "<tr><td><a href=phi.html>phi file</a></td></tr>", sep="")
}
}
html.index <- paste(html.index, "</table><hr><h3><p class=\"subtitle\">Diagnostics</p></h3><table class=\"center\" border=0>", sep="")
if (file.exists(general.list$univar.dir))
{
writeHTML(general.list$univar.dir,general.list$save.format)
html.index <- paste(html.index, "<tr><td><a href=PKunivar.html>Univariate Figures</a></td></tr>", sep="")
}
if (file.exists(general.list$bivar.dir))
{
writeHTML(general.list$bivar.dir,general.list$save.format)
html.index <- paste(html.index, "<tr><td><a href=PKbivar.html>Bivariate Figures</a></td></tr>", sep="")
}
if (file.exists(general.list$ind.dir))
{
writeHTML(general.list$ind.dir,general.list$save.format)
html.index <- paste(html.index, "<tr><td><a href=PKind.html>Individual Figures</a></td></tr>", sep="")
}
if (file.exists(general.list$gof.dir))
{
writeHTML(general.list$gof.dir,general.list$save.format)
html.index <- paste(html.index, "<tr><td><a href=PKgof.html>Figures for Goodness of Fit</a></td></tr>", sep="")
}
if (file.exists(general.list$struct.dir))
{
writeHTML(general.list$struct.dir,general.list$save.format)
html.index <- paste(html.index, "<tr><td><a href=PKstruct.html>Figures for Structural Model Dagnostics</a></td></tr>", sep="")
}
if (file.exists(general.list$resid.dir))
{
writeHTML(general.list$resid.dir,general.list$save.format)
html.index <- paste(html.index, "<tr><td><a href=PKresid.html>Figures for Residual Model Dagnostics</a></td></tr>", sep="")
}
if (file.exists(general.list$para.dir))
{
writeHTML(general.list$para.dir,general.list$save.format)
html.index <- paste(html.index, "<tr><td><a href=PKpara.html>Figures for Parameters Dagnostics</a></td></tr>", sep="")
}
if (file.exists(general.list$cov.dir))
{
writeHTML(general.list$cov.dir,general.list$save.format)
html.index <- paste(html.index, "<tr><td><a href=PKcov.html>Figures for Covariate Model Dagnostics</a></td></tr>", sep="")
}
if (file.exists(general.list$eta.dir))
{
writeHTML(general.list$eta.dir,general.list$save.format)
html.index <- paste(html.index, "<tr><td><a href=PKeta.html>Figures for Random Effects Dagnostics</a></td></tr>", sep="")
}
if (file.exists("PKcode.txt"))
{
html.index <- paste(html.index, "<tr><td><a href=PKcode.txt>R Code for Figures</a></td></tr>", sep="")
}
html.index <- paste(html.index, "</table>", sep="")
html.end <- paste("<p></p><p></p><hr><p align=\"right\" class=\"bottomFont\">PKreport", packageDescription("PKreport")$Version,
date(), "</p></body></html>", sep=" ")
html.index <- paste(html.index, html.end, sep="")
PK.html <- file("PKindex.html", "w")
writeLines(html.index, con = PK.html, sep = "\n")
close(PK.html)
}
|
dwiRiceBias <- function(object, ...) cat("No Rice Bias correction defined for this class:",class(object),"\n")
setGeneric("dwiRiceBias", function(object, ...) standardGeneric("dwiRiceBias"))
setMethod("dwiRiceBias", "dtiData", function(object,
sigma = NULL,
ncoils = 1) {
if (is.null(sigma) || sigma < 1) {
cat("Please provide a value for sigma ... returning the original object!\n")
return(object)
}
args <- object@call
corrected <- FALSE
for (i in 1:length(args)) {
if (length(grep("dwiRiceBias", args[i][[1]])) > 0) {
corrected <- TRUE
cat("Rice bias correction already performed by\n")
print(args[i][[1]])
cat("\n ... returning the original object!\n")
}
}
if (!corrected) {
object@si <- array(ricebiascorr(object@si, sigma, ncoils), dim(object@si))
object@call <- c(args, sys.call(-1))
}
invisible(object)
})
ricebiascorr <- function(x, s = 1, ncoils = 1){
varstats <- aws::sofmchi(ncoils, 50, .002)
xt <- x/s
xt <- pmax(varstats$minlev, xt)
ind <-
findInterval(xt, varstats$mu, rightmost.closed = FALSE, all.inside = FALSE)
varstats$ncp[ind] * s
}
|
library(httk)
signif(head(solve_gas_pbtk(chem.name="pyrene")),3)
signif(head(solve_gas_pbtk(chem.cas="129-00-0")),3)
signif(head(solve_gas_pbtk(parameters=parameterize_gas_pbtk(chem.cas="129-00-0"))),3)
quit("no")
|
spec_energy_trap <- function(Q = NULL, b = NULL, m = NULL, y = NULL, scale = 3,
units = c("SI", "Eng")) {
if(!requireNamespace("ggplot2", quietly = TRUE)) {
stop("xc_trap diagram plot requires ggplot2 to be installed.",
call. = FALSE)
}
if(!requireNamespace("grid", quietly = TRUE)) {
stop("xc_trap diagram plot requires grid to be installed.",
call. = FALSE)
}
if (length(c(Q, b, m)) != 3) {
stop("One of required inputs is missing: Q, b or m may be zero")
}
if (any(c(Q, b, m) < 0)) {
stop("Either Q, b, or m is < 0. All of these variables must be non-negative")
}
if ( ( b == 0 ) & ( m == 0 ) ) {
stop("m (side slope) and b (bottom width) are zero. Channel has no area")
}
if( class(Q) == "units" ) Q <- units::drop_units(Q)
if( class(b) == "units" ) b <- units::drop_units(b)
if( class(m) == "units" ) m <- units::drop_units(m)
scalefact <- scale
units <- units
if (units == "SI") {
g <- 9.80665
txtx <- sprintf("Specific Energy, E (m)")
txty <- sprintf("Depth, y (m)")
} else if (units == "Eng") {
g <- 32.2
txtx <- sprintf("Specific Energy, E (ft)")
txty <- sprintf("Depth, y (ft)")
} else if (all(c("SI", "Eng") %in% units == FALSE) == FALSE) {
stop("Incorrect unit system. Must be SI or Eng")
}
ycfun <- function(yc) { (Q^2 / g) - ((b * yc + m * yc^2)^3)/(b + 2 * m * yc)}
yc <- uniroot(ycfun, interval = c(0.0000001, 200), extendInt = "yes")$root
Ac <- yc * (b + m * yc)
Emin <- yc + ((Q ^ 2) / (2 * g * Ac ^ 2))
ylim <- yc*scalefact
yalt <- E1 <- NULL
if ( ! missing (y) ) {
E1 <- y + (Q ^ 2) / (2 * g * (y * (b + m * y))^2)
if ( y > yc ) interv <- c(0.0000001, yc)
if ( y < yc ) interv <- c(yc, 200)
yaltfun <- function(ya) { E1 - (ya + (Q ^ 2) / (2 * g * (ya * (b + m * ya))^2)) }
yalt <- uniroot(yaltfun, interval = interv, extendInt = "yes")$root
ylim <- max(ylim, y, yalt)
}
ordr <- floor(log10(ylim))
ymax <- round(ylim + 0.5*10^(ordr-1), -(ordr-1))
ys <- seq(0.1*yc,ymax,length=1000)
As <- ys * (b + m * ys)
Es <- ys + ((Q ^ 2) / (2 * g * As ^ 2))
xx <- yy <- NULL
eycurve <- data.frame( xx = Es , yy = ys )
eycurve <- subset(eycurve, xx <= ymax,select=c(xx, yy))
seg1 <- data.frame(xx = c(Emin, Emin),yy = c(0, yc))
seg2 <- data.frame(xx = c(0, Emin),yy = c(yc, yc))
txt1 <- sprintf("Emin=%.3f",Emin)
txt2 <- sprintf("yc=%.3f",yc)
offst <- ymax*0.0275
p <- ggplot2::ggplot() +
ggplot2::geom_path(data=eycurve,ggplot2::aes(x=xx, y=yy),color="black", size=1.5) +
ggplot2::scale_x_continuous(txtx, limits = c(0, ymax), expand = c(0,0)) +
ggplot2::scale_y_continuous(txty, limits = c(0, ymax), expand = c(0,0)) +
ggplot2::geom_abline(slope = 1, intercept = 0 ,color="black",linetype = "dashed") +
ggplot2::geom_segment(ggplot2::aes(x=Emin, xend=Emin, y=0, yend=yc)) +
ggplot2::geom_segment(ggplot2::aes(x=0, xend=Emin, y=yc, yend=yc)) +
ggplot2::annotate(geom="text", x=Emin-offst, y=yc/2, label=txt1, angle = 90, size = 3) +
ggplot2::annotate(geom="text", x=Emin/2, y=yc+offst, label=txt2, angle = 0, size = 3) +
ggplot2::coord_fixed(ratio = 1) +
ggplot2::theme_bw()
if ( ! missing (y) ) {
txt3 <- sprintf("y=%.3f",y)
txt4 <- sprintf("y=%.3f",yalt)
txt5 <- sprintf("E=%.3f",E1)
p <- p + ggplot2::geom_segment(ggplot2::aes(x=E1, xend=E1, y=0, yend=max(y,yalt)),linetype=3) +
ggplot2::geom_segment(ggplot2::aes(x=0, xend=E1, y=yalt, yend=yalt), linetype=3) +
ggplot2::geom_segment(ggplot2::aes(x=0, xend=E1, y=y, yend=y), linetype=3) +
ggplot2::annotate(geom="text", x=min(Emin/2,E1/2), y=y+offst, label=txt3, angle = 0, size = 3,hjust = "left") +
ggplot2::annotate(geom="text", x=min(Emin/2,E1/2), y=yalt+offst, label=txt4, angle = 0, size = 3,hjust = "left") +
ggplot2::annotate(geom="text", x=E1+offst, y=(y+yalt)/2, label=txt5, angle = 90, size = 3)
}
return(p)
}
|
MVoptbd.maeA<-function(trt.N,blk.N,theta,nrep,itr.cvrgval) {
arrays=t(combn(trt.N,2))
na=dim(arrays)[1]
ii=2
trco=cbind(matrix(1,trt.N-1),-diag(1,trt.N-1,trt.N-1))
while(ii<=trt.N-1){
if (ii==trt.N-1){
trco1=cbind(matrix(0,1,trt.N-2),matrix(1,trt.N-ii),-diag(1,trt.N-ii,trt.N-ii))}
else
{trco1=cbind(matrix(0,trt.N-ii,trt.N-(trt.N-ii+1)),matrix(1,trt.N-ii),-diag(1,trt.N-ii,trt.N-ii))}
trco=rbind(trco,trco1)
ii=ii+1
}
del.1<-matrix(10^20,na,3)
desbest.1<-matrix(0,nrep*2,blk.N)
MVoptbest.1<-matrix(0,nrep,2)
for(irep in 1:nrep){
des<-intcbd.mae(trt.N, blk.N)
if(trt.N==blk.N&trt.N>3&irep<(trt.N-1)) {in.desns=matrix(0,(trt.N-3)*2,blk.N)
in.desns0=rbind(seq(1,trt.N),c(seq(1,trt.N)[2:trt.N],1))
for(i in 1:(trt.N-3)) {in.desns01=cbind(rbind(seq(1,(trt.N-i)),c(seq(1,(trt.N-i))[2:(trt.N-i)],1)), rbind(rep(1,i),((trt.N-i+1):trt.N))); in.desns[c((i-1)*2+1,i*2),]=in.desns01}
in.desns=rbind(rbind(seq(1,trt.N),c(seq(1,trt.N)[2:trt.N],1)),in.desns)
des=in.desns[c((irep-1)*2+1,irep*2),]}
cmat<-cmatbd.mae(trt.N,blk.N,theta,des)
invc=ginv(cmat)
invcp=trco%*%invc%*%t(trco);
MVopt =max(diag(invcp));
MVcold=MVopt
descold=t(des)
cdel=100
ivalMVcold={}
for (i in 1:blk.N){
j=1;
for (j in 1:na){
temp=descold[i,]
if(all(descold[i,]==arrays[j,])) {MVopt=MVcold; del.1[j,]<-c(j,(MVcold-MVopt),MVopt); next}
descold[i,]=arrays[j,]
trtin<-contrasts(as.factor(t(descold)),contrasts=FALSE)[as.factor(t(descold)),]
R.trt<-t(trtin)%*%trtin
if (rankMatrix(R.trt)[1]<trt.N) {MVopt=10^20; del.1[j,]<-c(j,(MVcold-MVopt),MVopt); next}
cmato=cmatbd.mae(trt.N,blk.N, 0,t(descold))
egv<-sort(eigen(cmato)$values)
if(egv[2]<0.000001) {MVopt=10^20; del.1[j,]<-c(j,(MVcold-MVopt),MVopt); next}
cmat=cmatbd.mae(trt.N,blk.N,theta,t(descold))
invc=ginv(cmat)
invcp=trco%*%invc%*%t(trco);
MVopt =max(diag(invcp));
del.n<-del.1[j,]<-c(j,(MVcold-MVopt),MVopt)
descold[i,]=temp
}
del.1<-del.1[order(del.1[,3]),]
delbest=t(del.1[1,])
descold[i,]=arrays[delbest[1],]
MVcold=delbest[3]
cdel=delbest[2]
ivalMVcold=rbind(ivalMVcold, c(i,MVcold))
if(i>itr.cvrgval) if(all(ivalMVcold[c(i-(itr.cvrgval-2),i),2]==ivalMVcold[i-(itr.cvrgval-1),2])) break
}
if (irep==1) {desbest.1=t(descold)} else {desbest.1=rbind(desbest.1,t(descold))}
MVoptbest.1[irep,]=c(irep,MVcold)
}
best=MVoptbest.1[order(MVoptbest.1[,2]),]
nb=best[1,1]
MVscore<-best[1,2]
MVoptde<- desbest.1[c((nb-1)*2+1,nb*2),]
tkmessageBox(title="Search completed",message=paste("Search completed",sep=""))
cnames=paste0("Ary",1:blk.N)
dimnames(MVoptde)=list(NULL,cnames)
MVopt_sum2<-list("v"=trt.N,"b"=blk.N,theta=theta,nrep=nrep,itr.cvrgval=itr.cvrgval, "OptdesF"=MVoptde,"Optcrtsv" =MVscore)
return(MVopt_sum2)
}
|
see.mixedII <- function(){
old.par <- par(no.readonly = TRUE)
if(dev.capabilities("locator")$locator == FALSE) stop("Device cannot implement function")
setup.mixed <- function(){
if(as.numeric(dev.cur())!=1)dev.off()
dev.new(width=9, height = 4)
make.table <- function(nr, nc) {
savepar <- par(mar=rep(0, 4),pty = "m")
plot(c(0, nc + 6.9), c(1, -(nr + 1)),
type="n", xlab="", ylab="", axes=FALSE)
savepar
}
draw.cell<-function(text, r, c, cex = .9){
rect(c, -r, c+1, -r+1)
text(c+.5, -r+.5, text, cex = cex)
}
make.table(4,19)
cn <- c("",paste("R",1:18,sep=""))
c1 <- c(7,6,5,7,6,5,4,4,4,1,2,3,4,4,4,1,2,3)
c2 <- c(4,4,4,1,2,3,7,6,5,7,6,5,1,2,3,4,4,4)
c3 <- c(1,2,3,4,4,4,1,2,3,4,4,4,7,6,5,7,6,5)
data <- t(cbind(c1,c2,c3))
for(i in 1:19){
draw.cell(cn[i], 1, i)
}
draw.cell("F1",2,1)
for(i in 2:19){
draw.cell(c1[i-1], 2, i)
}
draw.cell("F2",3,1)
for(i in 2:19){
draw.cell(c2[i-1], 3, i)
}
draw.cell("F3",4,1)
for(i in 2:19){
draw.cell(c3[i-1], 4, i)
}
text(11, 0.6, "Random", cex=1.2, font = 2)
text(-0.2, -2, "Fixed", cex=1.2, font = 2, srt = 90)
text(23.25, 0, "Mean", cex=1.1, font = 2)
text(21.5, -0.5, expression(underline("All levels")))
text(25, -0.5, expression(underline("Selected levels")))
mn <- apply(data, 1, mean)
for(i in 2:4)text(21.5,-i+.5,round(mn[i-1],0))
rect(8.2, -5.1, 11.8, -4.2)
text(10, -4.65, "SAMPLE", font = 2, col = 1)
fl <- function(){
ans <- locator(1)
yv <- ans$y
xv <- ans$x
if((yv>=-5.1)&(yv<=-4.2)&(xv >= 8.2)&(xv <= 11.8))
{rect(8.2, -5.1, 11.8, -4.2, col = rgb(red=0.5,blue=0.5,green=0.5,alpha=.6));sample.mixed()}
else fl1()
}
fl1 <- function(){
ans <- locator(1)
yv <- ans$y
xv <- ans$x
if((yv>=-5.1)&(yv<=-4.2)&(xv >= 8.2)&(xv <= 11.8))
{rect(8.2, -5.1, 11.8, -4.2, col = rgb(red=0.5,blue=0.5,green=0.5,alpha=.6));sample.mixed()}
else fl()
}
fl()
}
sample.mixed <- function(r = 4, c = 19, n = 3){
col.row<- function(col=rgb(red=0.5, blue=0.5, green=0.5, alpha=.6), r, c)
{
rect(c, -r-3, c+1, -r+1, col = col)
}
sn <- sample(seq(2, 19), size = n)
for(i in 1:length(sn)) col.row(c = sn[i], r=1)
rect(8.2, -5.1, 11.8, -4.2)
text(10, -4.65, "SAMPLE", font = 2, col = 1)
c1 <- c(7,6,5,7,6,5,4,4,4,1,2,3,4,4,4,1,2,3)
c2 <- c(4,4,4,1,2,3,7,6,5,7,6,5,1,2,3,4,4,4)
c3 <- c(1,2,3,4,4,4,1,2,3,4,4,4,7,6,5,7,6,5)
data <- t(cbind(c1,c2,c3))
mn <- apply(data[,sn-1], 1, mean)
for(i in 2:4)text(25,-i+.5,round(mn[i-1],1))
fl <- function(){
ans <- locator(1)
yv <- ans$y
xv <- ans$x
if((yv>=-5.1)&(yv<=-4.2)&(xv >= 8.2)&(xv <= 11.8))
{dev.off(); setup.mixed()}
else fl1()
}
fl1 <- function(){
ans <- locator(1)
yv <- ans$y
xv <- ans$x
if((yv>=-5.1)&(yv<=-4.2)&(xv >= 8.2)&(xv <= 11.8))
{dev.off(); setup.mixed()}
else fl()
}
fl()
}
setup.mixed()
on.exit(par(old.par))
}
|
DoMohrFig1 <-
function(Stensor=matrix(c(5,1, 1, 3), ncol=2), rot1=NULL)
{
if(missing(Stensor)) {Stensor=matrix(c(5,1, 1, 3), ncol=2) }
if(missing(rot1))
{
s1 = Stensor
}
else
{
s1 = Stensor %*% rot1
}
ES = eigen(s1)
Rmohr = sqrt( ((s1[1,1]-s1[2,2])^2)/4 + s1[1,2]^2 )
Save = (ES$values[1]+ES$values[2])/2
ps1 = ES$values[1]
ps2 = ES$values[2]
ex = Save
why = 0
cmohr = GEOmap::darc( rad=Rmohr, ang1=0, ang2=360, x1=ex, y1=why, n=1)
RNGM = range( cmohr$x)
Prange = c(0 , RNGM[2]+0.05*diff(RNGM))
plot(range( Prange ) , range(cmohr$y), type='n', asp=1, axes=FALSE, ann=FALSE)
abline(v=0, h=0, lty=2)
lines(cmohr, lwd=2)
points(ex, why)
u = par("usr")
segments(ex, 0, ex, 0.9*u[3])
segments(ps1, 0.95*u[4] , ps1, 0)
arrows( 0, 0.90*u[4] ,ps1, 0.90*u[4], length=0.1, code=2)
text(mean(c( 0, ps1 ) ), 0.90*u[4], labels=expression(sigma[1]), pos=3, xpd=TRUE)
segments(ps2, 0, ps2, 0.6*u[3])
arrows( 0, 0.58*u[3] ,ps2, 0.58*u[3], length=0.1, code=2)
text(mean(c( 0, ps2 ) ), 0.58*u[3], labels=expression(sigma[2]), pos=3, xpd=TRUE)
segments(ex, 0, ex, 0.9*u[3])
arrows( 0, 0.88*u[3] ,ex, 0.88*u[3], length=0.1, code=2)
text(mean(c( 0, ex ) ), 0.88*u[3], labels=expression(sigma[ave]), pos=3, xpd=TRUE)
points(s1[1,1], -s1[2,1])
points(s1[2,2], s1[2,1])
segments(s1[1,1], -s1[2,1], s1[2,2], s1[2,1])
text(s1[1,1], -s1[2,1], labels="X", adj =c(-1,1), font=2, xpd=TRUE)
text(s1[2,2], s1[2,1], labels="Y", adj =c(1.2,-.7), font=2, xpd=TRUE)
points(ps1, 0)
points(ps2, 0)
text(ps1, 0, labels="A", xpd=TRUE, adj =c(-.5,0) , font=2)
text(ps2, 0, labels="B", xpd=TRUE, adj =c(1.5, 0) , font=2)
segments(s1[1,1], -s1[2,1], s1[1,1], u[3])
arrows( 0, 0.98*u[3] , s1[1,1], 0.98*u[3], length=0.1, code=3)
text(mean(c( 0, s1[1,1] ) ), 0.98*u[3] , labels=expression(sigma[x]), pos=3, xpd=TRUE)
segments(s1[2,2], s1[2,1], s1[2,2], 0.8*u[4])
arrows( 0, 0.78*u[4] , s1[2,2], 0.78*u[4], length=0.1, code=3)
sigylabx = mean(c( 0, s1[2,2] ) )
text(sigylabx, 0.78*u[4] , labels=expression(sigma[y]), pos=1, xpd=TRUE)
segments(s1[1,1], -s1[2,1], u[2] , -s1[2,1])
arrows( (u[2]+ps1)/2 , 0, (u[2]+ps1)/2,-s1[2,1], code=3, length=0.1)
text( (u[2]+ps1)/2, mean(c(0, -s1[2,1])), xpd=TRUE, labels=expression(tau[xy]), pos=4, xpd=TRUE)
g1x = mean(c( 0, sigylabx))
segments(s1[2,2], s1[2,1], g1x, s1[2,1])
arrows( mean(c( g1x, sigylabx)), 0, mean(c( g1x, sigylabx)) , s1[2,1], code=3, length=0.1)
text( mean(c( g1x, sigylabx)), mean(c(0, s1[2,1])), labels=expression(tau[xy]), pos=2, xpd=TRUE)
}
|
library(knotR)
filename <- "8_11.svg"
a <- reader(filename)
sym811 <- symmetry_object(a,Mver=NULL,xver=4)
a <- symmetrize(a,sym811)
ou811 <- matrix(c(
22,09,
10,21,
20,11,
07,19,
17,06,
12,16,
15,02,
03,13
),ncol=2,byrow=TRUE)
jj <-
knotoptim(filename,
symobj = sym811,
ou = ou811,
prob = 0,
iterlim=3000,print.level=2,hessian=FALSE
)
write_svg(jj, filename,safe=FALSE)
dput(jj,file=sub('.svg','.S',filename))
|
check_can_create_screenlog_file <- function(
beast2_options
) {
testthat::expect_true(file.exists(beast2_options$input_filename))
text <- readr::read_lines(beast2_options$input_filename, progress = FALSE)
screenlog_line <- stringr::str_subset(
string = text,
pattern = "<logger id=\"screenlog\""
)
testthat::expect_equal(length(screenlog_line), 1)
matches <- stringr::str_match(
string = screenlog_line,
pattern = "fileName=\\\"([:graph:]+)\\\" "
)
testthat::expect_equal(ncol(matches), 2)
screenlog_filename <- matches[1, 2]
if (is.na(screenlog_filename)) return()
if (file.exists(screenlog_filename)) {
file.remove(screenlog_filename)
return()
}
tryCatch(
beastier::check_can_create_file(
filename = screenlog_filename, overwrite = FALSE
),
error = function(e) {
stop("Cannot create screenlog file '", screenlog_filename, "'")
}
)
invisible(beast2_options)
}
|
rm(list=ls())
setwd("C:/Users/Tom/Documents/Kaggle/Santander")
library(data.table)
library(bit64)
library(xgboost)
library(stringr)
submissionDate <- "30-11-2016"
loadFile <- ""
submissionFile <- "xgboost weighted trainAll 8, linear increase jun15 times6 back 13-0 no zeroing, exponential normalisation conditional"
targetDate <- "12-11-2016"
trainModelsFolder <- "trainTrainAll"
trainAll <- grepl("TrainAll", trainModelsFolder)
testFeaturesFolder <- "test"
loadPredictions <- FALSE
loadBaseModelPredictions <- FALSE
savePredictions <- TRUE
saveBaseModelPredictions <- TRUE
savePredictionsBeforeNormalisation <- TRUE
normalizeProdProbs <- TRUE
normalizeMode <- c("additive", "linear", "exponential")[3]
additiveNormalizeProds <- NULL
fractionPosFlankUsers <- 0.035
expectedCountPerPosFlank <- 1.25
marginalNormalisation <- c("linear", "exponential")[2]
monthsBackModels <- 0:13
monthsBackWeightDates <- rev(as.Date(paste(c(rep(2015, 9), rep(2016, 5)),
str_pad(c(4:12, 1:5), 2, pad='0'),
28, sep="-")))
monthsBackModelsWeights <- rev(c(1.2, 1.3, 13, 0.1*(15:25)))
weightSum <- sum(monthsBackModelsWeights)
monthsBackLags <- 16:3
nominaNomPensSoftAveraging <- FALSE
predictSubset <- FALSE
nbLags <- length(monthsBackModelsWeights)
if(nbLags != length(monthsBackModels) ||
nbLags != length(monthsBackLags) ||
nbLags != length(monthsBackWeightDates)) browser()
predictionsFolder <- "Predictions"
ccoNoPurchase <- FALSE
zeroTargets <- NULL
source("Common/exponentialNormaliser.R")
monthProductWeightOverride <- NULL
monthProductWeightOverride <-
rbind(monthProductWeightOverride, data.frame(product = "ind_cco_fin_ult1",
month = as.Date(c("2015-12-28"
)),
weight = 13)
)
monthProductWeightOverride <-
rbind(monthProductWeightOverride, data.frame(product = "ind_cco_fin_ult1",
month = as.Date(c("2015-04-28",
"2015-05-28",
"2015-07-28",
"2015-08-28",
"2015-09-28",
"2015-10-28",
"2015-11-28",
"2016-01-28",
"2016-02-28",
"2016-03-28",
"2016-04-28",
"2016-05-28"
)),
weight = 0)
)
predictionsPath <- file.path(getwd(), "Submission", submissionDate,
predictionsFolder)
dir.create(predictionsPath, showWarnings = FALSE)
if(saveBaseModelPredictions && !loadBaseModelPredictions){
baseModelPredictionsPath <- file.path(predictionsPath, submissionFile)
dir.create(baseModelPredictionsPath, showWarnings = FALSE)
} else{
if(loadBaseModelPredictions){
baseModelPredictionsPath <- file.path(predictionsPath, loadFile)
}
}
if(loadPredictions){
rawPredictionsPath <- file.path(predictionsPath,
paste0("prevNorm", loadFile, ".rds"))
} else{
rawPredictionsPath <- file.path(predictionsPath,
paste0("prevNorm", submissionFile, ".rds"))
}
posFlankClientsFn <- file.path(getwd(), "Feature engineering", targetDate,
"positive flank clients.rds")
posFlankClients <- readRDS(posFlankClientsFn)
modelsBasePath <- file.path(getwd(), "First level learners", targetDate,
trainModelsFolder)
modelGroups <- list.dirs(modelsBasePath)[-1]
nbModelGroups <- length(modelGroups)
baseModelInfo <- NULL
baseModels <- list()
for(i in 1:nbModelGroups){
modelGroup <- modelGroups[i]
slashPositions <- gregexpr("\\/", modelGroup)[[1]]
modelGroupExtension <- substring(modelGroup,
1 + slashPositions[length(slashPositions)])
modelGroupFiles <- list.files(modelGroup)
nbModels <- length(modelGroupFiles)
monthsBack <- as.numeric(substring(gsub("Lag.*$", "", modelGroupExtension),
5))
lag <- as.numeric(gsub("^.*Lag", "", modelGroupExtension))
relativeWeightOrig <- monthsBackModelsWeights[match(monthsBack,
monthsBackModels)]
weightDate <- monthsBackWeightDates[match(monthsBack, monthsBackModels)]
for(j in 1:nbModels){
modelInfo <- readRDS(file.path(modelGroup, modelGroupFiles[j]))
targetProduct <- modelInfo$targetVar
overrideId <- which(monthProductWeightOverride$product == targetProduct &
monthProductWeightOverride$month == weightDate)
if(length(overrideId)>0){
relativeWeight <- monthProductWeightOverride$weight[overrideId]
} else{
relativeWeight <- relativeWeightOrig
}
baseModelInfo <- rbind(baseModelInfo,
data.table(
modelGroupExtension = modelGroupExtension,
targetProduct = targetProduct,
monthsBack = monthsBack,
modelLag = lag,
relativeWeight = relativeWeight)
)
baseModels <- c(baseModels, list(modelInfo))
}
}
baseModelInfo[, modelId := 1:nrow(baseModelInfo)]
uniqueBaseModels <- sort(unique(baseModelInfo$targetProduct))
for(i in 1:length(uniqueBaseModels)){
productIds <- baseModelInfo$targetProduct==uniqueBaseModels[i]
productWeightSum <- baseModelInfo[productIds, sum(relativeWeight)]
normalizeWeightRatio <- weightSum/productWeightSum
baseModelInfo[productIds, relativeWeight := relativeWeight*
normalizeWeightRatio]
}
if(all(is.na(baseModelInfo$modelLag))){
nbGroups <- length(unique(baseModelInfo$modelGroupExtension))
baseModelInfo$monthsBack <- 0
baseModelInfo$modelLag <- 17
baseModelInfo$relativeWeight <- 1
monthsBackLags <- rep(17, nbGroups)
nbLags <- length(monthsBackLags)
monthsBackModelsWeights <- rep(1, nbGroups)
weightSum <- sum(monthsBackModelsWeights)
}
baseModelInfo <- baseModelInfo[order(monthsBack), ]
baseModelNames <- unique(baseModelInfo[monthsBack==0, targetProduct])
testDataLag <- readRDS(file.path(getwd(), "Feature engineering", targetDate,
testFeaturesFolder, "Lag3 features.rds"))
if(predictSubset){
testDataLag <- testDataLag[1:predictFirst]
}
testDataPosFlank <- testDataLag$ncodpers %in% posFlankClients
trainFn <- "train/Back13Lag3 features.rds"
colOrderData <- readRDS(file.path(getwd(), "Feature engineering", targetDate,
trainFn))
targetCols <- grep("^ind_.*_ult1$", names(colOrderData), value=TRUE)
nbBaseModels <- length(targetCols)
countContributions <- readRDS(file.path(getwd(), "Feature engineering",
targetDate,
"monthlyRelativeProductCounts.rds"))
if(!trainAll){
posFlankModelInfo <- baseModelInfo[targetProduct=="hasNewProduct"]
newProdPredictions <- rep(0, nrow(testDataLag))
if(nrow(posFlankModelInfo) != nbLags) browser()
for(i in 1:nbLags){
cat("Generating new product predictions for lag", i, "of", nbLags, "\n")
lag <- posFlankModelInfo[i, lag]
weight <- posFlankModelInfo[i, relativeWeight]
newProdModel <- baseModels[[posFlankModelInfo[i, modelId]]]
testDataLag <- readRDS(file.path(getwd(), "Feature engineering", targetDate,
testFeaturesFolder,
paste0("Lag", lag, " features.rds")))
if(predictSubset){
testDataLag <- testDataLag[1:predictFirst]
}
predictorData <- testDataLag[, newProdModel$predictors, with=FALSE]
predictorDataM <- data.matrix(predictorData)
rm(predictorData)
gc()
newProdPredictionsLag <- predict(newProdModel$model, predictorDataM)
newProdPredictions <- newProdPredictions + newProdPredictionsLag*weight
}
newProdPredictions <- newProdPredictions/weightSum
meanGroupPredsMayFlag <-
c(mean(newProdPredictions[testDataLag$hasMay15Data==0]),
mean(newProdPredictions[testDataLag$hasMay15Data==1]))
meanGroupPredsPosFlank <- c(mean(newProdPredictions[!testDataPosFlank]),
mean(newProdPredictions[testDataPosFlank]))
expectedPosFlanks <- sum(newProdPredictions)
leaderboardPosFlanks <- fractionPosFlankUsers*nrow(testDataLag)
normalisedProbRatio <- leaderboardPosFlanks/expectedPosFlanks
cat("Expected/leaderboard positive flank ratio",
round(1/normalisedProbRatio, 2), "\n")
if(marginalNormalisation == "linear"){
newProdPredictions <- newProdPredictions * normalisedProbRatio
} else{
newProdPredictions <- probExponentNormaliser(newProdPredictions,
normalisedProbRatio)
}
} else{
newProdPredictions <- rep(1, nrow(testDataLag))
}
if(loadPredictions && file.exists(rawPredictionsPath)){
allPredictions <- readRDS(rawPredictionsPath)
} else{
allPredictions <- NULL
for(lagId in 1:nbLags){
cat("\nGenerating positive flank predictions for lag", lagId, "of", nbLags,
"@", as.character(Sys.time()), "\n\n")
lag <- monthsBackLags[lagId]
testDataLag <- readRDS(file.path(getwd(), "Feature engineering", targetDate,
testFeaturesFolder,
paste0("Lag", lag, " features.rds")))
if(predictSubset){
testDataLag <- testDataLag[1:predictFirst]
}
for(i in 1:nbBaseModels){
targetVar <- targetCols[i]
targetModelId <- baseModelInfo[targetProduct==targetVar &
modelLag==lag, modelId]
if(length(targetModelId)>1){
targetModelId <- targetModelId[lagId]
}
targetModel <- baseModels[[targetModelId]]
weight <- baseModelInfo[modelId == targetModelId, relativeWeight]
if(targetModel$targetVar != targetVar) browser()
cat("Generating test predictions for model", i, "of", nbBaseModels, "\n")
baseModelPredPath <- file.path(baseModelPredictionsPath,
paste0(targetVar, " Lag ", lag, ".rds"))
if(loadBaseModelPredictions && file.exists(baseModelPredPath)){
predictionsDT <- readRDS(baseModelPredPath)
} else{
if(targetVar %in% zeroTargets){
predictions <- rep(0, nrow(testDataLag))
} else{
predictorData <- testDataLag[, targetModel$predictors, with=FALSE]
predictorDataM <- data.matrix(predictorData)
rm(predictorData)
gc()
predictions <- predict(targetModel$model, predictorDataM)
alreadyOwned <- is.na(testDataLag[[paste0(targetVar, "Lag1")]]) |
testDataLag[[paste0(targetVar, "Lag1")]] == 1
predictionsPrevNotOwned <- predictions[!alreadyOwned]
}
predictions[alreadyOwned] <- 0
predictionsDT <- data.table(ncodpers = testDataLag$ncodpers,
predictions = predictions,
product = targetVar)
}
predictionsDT[, weightedPrediction :=
predictionsDT$predictions*weight]
if(targetVar %in% allPredictions$product){
allPredictions[product==targetVar, weightedPrediction:=
weightedPrediction +
predictionsDT$weightedPrediction]
} else{
allPredictions <- rbind(allPredictions, predictionsDT)
}
if(saveBaseModelPredictions && !loadBaseModelPredictions){
predictionsDT[, weightedPrediction:=NULL]
saveRDS(predictionsDT, baseModelPredPath)
}
}
}
allPredictions[, prediction := weightedPrediction / weightSum]
allPredictions[, weightedPrediction := NULL]
allPredictions[, predictions := NULL]
if(savePredictionsBeforeNormalisation){
saveRDS(allPredictions, file=rawPredictionsPath)
}
}
if(nominaNomPensSoftAveraging){
nominaProb <- allPredictions[product == "ind_nomina_ult1", prediction] *
newProdPredictions
nomPensProb <- allPredictions[product == "ind_nom_pens_ult1", prediction] *
newProdPredictions
avIds <- nominaProb>0 & nomPensProb>0 & (nomPensProb-nominaProb < 0.1)
avVals <- (nominaProb[avIds] + nomPensProb[avIds])/2
ncodpers <- unique(allPredictions$ncodpers)
avNcodPers <- ncodpers[avIds]
allPredictions[ncodpers %in% avNcodPers & product == "ind_nomina_ult1",
prediction := avVals]
allPredictions[ncodpers %in% avNcodPers & product == "ind_nom_pens_ult1",
prediction := avVals]
}
probMultipliers <- rep(NA, nbBaseModels)
if(normalizeProdProbs){
for(i in 1:nbBaseModels){
cat("Normalizing product predictions", i, "of", nbBaseModels, "\n")
targetVar <- targetCols[i]
alreadyOwned <- is.na(testDataLag[[paste0(targetVar, "Lag1")]]) |
testDataLag[[paste0(targetVar, "Lag1")]] == 1
predictions <- allPredictions[product==targetVar, prediction]
predictionsPrevNotOwned <- predictions[!alreadyOwned]
if(suppressWarnings(max(predictions[alreadyOwned]))>0) browser()
predictedPosFlankCount <- sum(predictionsPrevNotOwned *
newProdPredictions[!alreadyOwned])
probMultiplier <- nrow(testDataLag) * fractionPosFlankUsers *
expectedCountPerPosFlank * countContributions[17, i] /
predictedPosFlankCount
probMultipliers[i] <- probMultiplier
if(i %in% c(3, 5, 7, 13, 18, 19, 22, 23, 24)) browser()
if(is.finite(probMultiplier)){
if(normalizeMode == "additive" || targetVar %in% additiveNormalizeProds){
predictions[!alreadyOwned] <- predictions[!alreadyOwned] +
(probMultiplier-1)*mean(predictions[!alreadyOwned])
} else{
if(normalizeMode == "linear"){
predictions[!alreadyOwned] <- predictions[!alreadyOwned] *
probMultiplier
} else{
predictions[!alreadyOwned] <- probExponentNormaliser(
predictions[!alreadyOwned], probMultiplier,
weights=newProdPredictions[!alreadyOwned])
}
}
allPredictions[product==targetVar, prediction:=predictions]
}
}
}
if(ccoNoPurchase){
allPredictions[!ncodpers %in% posFlankClients &
ncodpers %in% testDataLag[ind_cco_fin_ult1Lag1==0, ncodpers] &
product == "ind_cco_fin_ult1",
prediction := 10]
}
setkey(allPredictions, ncodpers)
allPredictions[,order_predict := match(1:length(prediction),
order(-prediction)), by=ncodpers]
allPredictions <- allPredictions[order(ncodpers, -prediction), ]
orderCount <- allPredictions[, .N, .(ncodpers, order_predict)]
if(max(orderCount$N)>1) browser()
hist(allPredictions[order_predict==1, prediction])
topPredictions <- allPredictions[order_predict==1, .N, product]
topPredictions <- topPredictions[order(-N)]
topPredictionsPosFlanks <- allPredictions[order_predict==1 &
ncodpers %in% posFlankClients,
.N, product]
topPredictionsPosFlanks <- topPredictionsPosFlanks[order(-N)]
productRankDelaFin <- allPredictions[product=="ind_dela_fin_ult1", .N,
order_predict]
productRankDelaFin <- productRankDelaFin[order(order_predict),]
productRankDecoFin <- allPredictions[product=="ind_deco_fin_ult1", .N,
order_predict]
productRankDecoFin <- productRankDecoFin[order(order_predict),]
productRankTjcrFin <- allPredictions[product=="ind_tjcr_fin_ult1", .N,
order_predict]
productRankTjcrFin <- productRankTjcrFin[order(order_predict),]
productRankRecaFin <- allPredictions[product=="ind_reca_fin_ult1", .N,
order_predict]
productRankRecaFin <- productRankRecaFin[order(order_predict),]
allPredictions[, totalProb := prediction * rep(newProdPredictions,
each = nbBaseModels)]
meanProductProbs <- allPredictions[, .(meanCondProb = mean(prediction),
meanProb = mean(totalProb),
totalProb = sum(totalProb)), product]
meanProductProbs <- meanProductProbs[order(-meanProb), ]
productString <- paste(allPredictions[order_predict==1, product],
allPredictions[order_predict==2, product],
allPredictions[order_predict==3, product],
allPredictions[order_predict==4, product],
allPredictions[order_predict==5, product],
allPredictions[order_predict==6, product],
allPredictions[order_predict==7, product])
if(length(productString) != nrow(testDataLag)) browser()
submission <- data.frame(ncodpers = testDataLag$ncodpers,
added_products = productString)
paddedSubmission <- fread("Data/sample_submission.csv")
paddedSubmission[, added_products := ""]
matchIds <- match(submission$ncodpers, paddedSubmission$ncodpers)
paddedSubmission[matchIds, added_products := submission$added_products]
write.csv(paddedSubmission, file.path(getwd(), "Submission", submissionDate,
paste0(submissionFile, ".csv")),
row.names = FALSE)
if(savePredictions){
saveRDS(allPredictions, file=file.path(predictionsPath,
paste0(submissionFile, ".rds")))
}
cat("Submission file created successfully!\n",
nrow(submission)," records were predicted (",
round(nrow(submission)/nrow(paddedSubmission)*100,2), "%)\n", sep="")
|
test_that("Inner join example query
skip_if_not(exists("toys") && exists("makers"), message = "Test data not loaded")
expect_equal(
query("SELECT * FROM toys JOIN makers ON toys.maker_id = makers.id"),
toys %>%
inner_join(makers, by = c(maker_id = "id"), suffix = c(".toys", ".makers")) %>%
rename(toys.name = "name.toys", makers.name = "name.makers")
)
})
test_that("Inner join example query
skip_if_not(exists("toys") && exists("makers"), message = "Test data not loaded")
expect_equal(
query("SELECT * FROM toys t JOIN makers m ON toys.maker_id = makers.id"),
toys %>%
inner_join(makers, by = c(maker_id = "id"), suffix = c(".t", ".m")) %>%
rename(t.name = "name.t", m.name = "name.m")
)
})
test_that("Inner join example query
skip_if_not(exists("toys") && exists("makers"), message = "Test data not loaded")
expect_equal(
query("SELECT * FROM toys t JOIN makers m ON t.maker_id = m.id"),
toys %>%
inner_join(makers, by = c(maker_id = "id"), suffix = c(".t", ".m")) %>%
rename(t.name = "name.t", m.name = "name.m")
)
})
test_that("Inner join example query
skip_if_not(exists("toys") && exists("makers"), message = "Test data not loaded")
expect_equal(
query("SELECT toys.id AS id, toys.name AS toy, price, maker_id, makers.name AS maker, city
FROM toys JOIN makers ON toys.maker_id = makers.id;"),
toys %>%
inner_join(makers, by = c(maker_id = "id"), suffix = c(".toys", ".makers")) %>%
rename(toys.name = "name.toys", makers.name = "name.makers") %>%
select(id, toy = toys.name, price, maker_id, maker = makers.name, city)
)
})
test_that("Inner join example query
skip_if_not(exists("toys") && exists("makers"), message = "Test data not loaded")
expect_equal(
query("SELECT t.id AS id, t.name AS toy, price, maker_id, m.name AS maker, city
FROM toys t JOIN makers m ON t.maker_id = m.id;"),
toys %>%
inner_join(makers, by = c(maker_id = "id"), suffix = c(".t", ".m")) %>%
rename(t.name = "name.t", m.name = "name.m") %>%
select(id, toy = t.name, price, maker_id, maker = m.name, city)
)
})
test_that("Inner join example query
skip_if_not(exists("toys") && exists("makers"), message = "Test data not loaded")
expect_equal(
query("SELECT m.name AS maker, AVG(price) AS avg_price
FROM toys t JOIN makers m ON t.maker_id = m.id
GROUP BY maker
ORDER BY avg_price;"),
toys %>%
inner_join(makers, by = c(maker_id = "id"), suffix = c(".toys", ".makers")) %>%
rename(toys.name = "name.toys", makers.name = "name.makers") %>%
rename(maker = makers.name) %>%
group_by(maker) %>%
summarise(avg_price = mean(price, na.rm = TRUE)) %>%
ungroup() %>%
arrange(avg_price)
)
})
test_that("Inner join example query
skip_if_not(exists("flights") && exists("airlines"), message = "Test data not loaded")
expect_equal(
query("SELECT concat_ws(' ', 'Now boarding', name, 'flight', CAST(flight AS string))
FROM flights f JOIN airlines a USING (carrier)"),
flights %>%
inner_join(airlines, by = "carrier") %>%
transmute(stringr::str_c("Now boarding", name, "flight", as.character(flight), sep = " "))
)
})
test_that("Inner join example query
skip_if_not(exists("flights") && exists("airlines"), message = "Test data not loaded")
expect_equal(
query("SELECT concat_ws(' ', 'Now boarding', airlines.name, 'flight', CAST(flight AS string))
FROM flights f JOIN airlines a USING (carrier)"),
flights %>%
inner_join(airlines, by = "carrier") %>%
transmute(stringr::str_c("Now boarding", name, "flight", as.character(flight), sep = " "))
)
})
test_that("Inner join example query
skip_if_not(exists("flights") && exists("airlines"), message = "Test data not loaded")
expect_equal(
query("SELECT concat_ws(' ', 'Now boarding', a.name, 'flight', CAST(f.flight AS string))
FROM flights f JOIN airlines a USING (carrier)"),
flights %>%
inner_join(airlines, by = "carrier") %>%
transmute(stringr::str_c("Now boarding", name, "flight", as.character(flight), sep = " "))
)
})
test_that("Inner join example query
skip_if_not(exists("flights") && exists("airlines"), message = "Test data not loaded")
expect_equal(
query("SELECT concat_ws(' ', 'Now boarding', airlines.name, 'flight', CAST(flights.flight AS string))
FROM flights f JOIN airlines a USING (carrier)"),
flights %>%
inner_join(airlines, by = "carrier") %>%
transmute(stringr::str_c("Now boarding", name, "flight", as.character(flight), sep = " "))
)
})
test_that("Join fails on misqualified column reference example
skip_if_not(exists("flights") && exists("airlines"), message = "Test data not loaded")
expect_error(
query("SELECT concat_ws(' ', 'Now boarding', a.name, 'flight', CAST(a.flight AS string)) FROM flights f JOIN airlines a USING (carrier)"),
"a.flight"
)
})
test_that("Join fails when column names have suffixes matching table names or aliases", {
expect_error(
query("select * FROM iris JOIN iris AS Length ON Species = Species"),
"Names"
)
})
test_that("Join fails on misqualified column reference example
skip_if_not(exists("flights") && exists("airlines"), message = "Test data not loaded")
expect_error(
query("SELECT concat_ws(' ', 'Now boarding', airlines.name, 'flight', CAST(airlines.flight AS string)) FROM flights f JOIN airlines a USING (carrier)"),
"airlines.flight"
)
})
test_that("Join fails on ambiguous column reference example
skip_if_not(exists("toys") && exists("makers"), message = "Test data not loaded")
expect_error(
query("SELECT name FROM toys t JOIN makers m ON toys.maker_id = makers.id"),
"name"
)
})
test_that("Join alias/conditions example
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_equal(
query("SELECT * FROM inventory JOIN games ON game = name"),
inventory %>% inner_join(games, by = c(game = "name"))
)
})
test_that("Join alias/conditions example
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_equal(
query("SELECT * FROM inventory i JOIN games g ON game = name"),
inventory %>% inner_join(games, by = c(game = "name"))
)
})
test_that("Join alias/conditions example
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_equal(
query("SELECT * FROM inventory JOIN games ON name = game"),
inventory %>% inner_join(games, by = c(game = "name"))
)
})
test_that("Join alias/conditions example
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_equal(
query("SELECT * FROM inventory i JOIN games g ON name = game"),
inventory %>% inner_join(games, by = c(game = "name"))
)
})
test_that("Join alias/conditions example
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_equal(
query("SELECT * FROM inventory JOIN games ON inventory.game = games.name"),
inventory %>% inner_join(games, by = c(game = "name"))
)
})
test_that("Join alias/conditions example
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_equal(
query("SELECT * FROM inventory JOIN games ON games.name = inventory.game"),
inventory %>% inner_join(games, by = c(game = "name"))
)
})
test_that("Join alias/conditions example
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_equal(
query("SELECT * FROM inventory i JOIN games g ON i.game = g.name"),
inventory %>% inner_join(games, by = c(game = "name"))
)
})
test_that("Join alias/conditions example
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_equal(
query("SELECT * FROM inventory i JOIN games g ON g.name = i.game"),
inventory %>% inner_join(games, by = c(game = "name"))
)
})
test_that("Join alias/conditions example
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_equal(
query("SELECT * FROM inventory i JOIN games g ON inventory.game = g.name"),
inventory %>% inner_join(games, by = c(game = "name"))
)
})
test_that("Join alias/conditions example
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_equal(
query("SELECT * FROM inventory i JOIN games g ON g.name = inventory.game"),
inventory %>% inner_join(games, by = c(game = "name"))
)
})
test_that("Join alias/conditions example
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_equal(
query("SELECT * FROM inventory i JOIN games g ON i.game = games.name"),
inventory %>% inner_join(games, by = c(game = "name"))
)
})
test_that("Join alias/conditions example
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_equal(
query("SELECT * FROM inventory i JOIN games g ON games.name = i.game"),
inventory %>% inner_join(games, by = c(game = "name"))
)
})
test_that("Join alias/conditions example
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_equal(
query("SELECT * FROM inventory i JOIN games ON games.name = i.game"),
inventory %>% inner_join(games, by = c(game = "name"))
)
})
test_that("Join alias/conditions example
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_equal(
query("SELECT * FROM inventory i JOIN games ON name = i.game"),
inventory %>% inner_join(games, by = c(game = "name"))
)
})
test_that("Join alias/conditions example
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_equal(
query("SELECT * FROM inventory i JOIN games ON i.game = name"),
inventory %>% inner_join(games, by = c(game = "name"))
)
})
test_that("Join alias/conditions example
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_equal(
query("SELECT * FROM inventory JOIN games g ON g.name = inventory.game"),
inventory %>% inner_join(games, by = c(game = "name"))
)
})
test_that("Join alias/conditions example
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_equal(
{
games_with_col_renamed <<- games %>% rename(game = name)
query("SELECT * FROM inventory JOIN games_with_col_renamed USING (game)")
},
inventory %>% inner_join(games %>% rename(game = name), by = c("game"))
)
})
test_that("Join alias/conditions example
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_equal(
{
games_with_col_renamed <<- games %>% rename(game = name)
query("SELECT * FROM inventory i JOIN games_with_col_renamed g USING (game)")
},
inventory %>% inner_join(games %>% rename(game = name), by = c("game"))
)
})
test_that("Join alias/conditions example
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_equal(
{
games_with_col_renamed <<- games %>% rename(game = name)
query("SELECT * FROM inventory i JOIN games_with_col_renamed g ON game = game")
},
inventory %>% inner_join(games %>% rename(game = name), by = c("game"))
)
})
test_that("Join alias/conditions example
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_equal(
query("SELECT * FROM inventory JOIN games g ON game = g.name"),
inventory %>% inner_join(games %>% rename(game = name), by = c("game"))
)
})
test_that("Join alias/conditions example
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_equal(
{
games_with_col_renamed <<- games %>% rename(game = name)
query("SELECT * FROM inventory i JOIN games_with_col_renamed g ON g.game = game")
},
inventory %>% inner_join(games %>% rename(game = name), by = c("game"))
)
})
test_that("Join alias/conditions example
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_equal(
query("SELECT * FROM inventory JOIN games g ON games.name = game"),
inventory %>% inner_join(games %>% rename(game = name), by = c("game"))
)
})
test_that("Bad join conditions example
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_error(
query("SELECT * FROM inventory i JOIN games g ON i.foo = i.bar"),
"Invalid"
)
})
test_that("Bad join conditions example
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_error(
query("SELECT * FROM inventory JOIN games g ON i.game = i.bar"),
"Invalid"
)
})
test_that("Bad join conditions example
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_error(
query("SELECT * FROM inventory JOIN games g ON i.foo = i.game"),
"Invalid"
)
})
test_that("Bad join conditions example
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_error(
query("SELECT * FROM inventory i JOIN games g ON name = name"),
"Invalid"
)
})
test_that("Bad join conditions example
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_error(
{
games_with_col_renamed <<- games %>% rename(game = name)
query("SELECT * FROM inventory i JOIN games_with_col_renamed g ON name = name")
},
"Invalid"
)
})
test_that("Bad join conditions example
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_error(
query("SELECT * FROM inventory i JOIN games g ON g.name = name"),
"Invalid"
)
})
test_that("Bad join conditions example
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_error(
query("SELECT * FROM inventory i JOIN games g ON g.foo = game"),
"Invalid"
)
})
test_that("Bad join conditions example
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_error(
{
games_with_col_renamed <<- games %>% rename(game = name)
query("SELECT * FROM inventory i JOIN games_with_col_renamed g ON g.name = game")
},
"Invalid"
)
})
test_that("Bad join conditions example
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_error(
{
games_with_col_renamed <<- games %>% rename(game = name)
query("SELECT * FROM inventory i JOIN games_with_col_renamed g ON q.game = game")
},
"Invalid"
)
})
test_that("Bad join conditions example
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_error(
query("SELECT * FROM inventory i JOIN games g ON foo = bar"),
"Invalid"
)
})
test_that("Bad join conditions example
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_error(
query("SELECT * FROM inventory i JOIN games g ON foo = g.bar"),
"Invalid"
)
})
test_that("Bad join conditions example
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_error(
query("SELECT * FROM inventory i JOIN games g ON foo = z.bar"),
"Invalid"
)
})
test_that("Bad join conditions example
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_error(
query("SELECT * FROM inventory i JOIN games g ON inventory.foo = bar"),
"Invalid"
)
})
test_that("Bad join conditions example
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_error(
query("SELECT * FROM inventory i JOIN games g ON i.zzz = g.zzz"),
"Invalid"
)
})
test_that("Bad join conditions example
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_error(
query("SELECT * FROM inventory i JOIN games g ON g.zzz = i.zzz"),
"Invalid"
)
})
test_that("Bad join conditions example
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_error(
query("SELECT * FROM inventory i JOIN games g ON mmm.name = i.game"),
"Invalid"
)
})
test_that("Bad join conditions example
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_error(
{
games_with_col_renamed <<- games %>% rename(game = name)
query("SELECT * FROM inventory i JOIN games_with_col_renamed g ON yyy.game = zzz.game")
},
"Invalid"
)
})
test_that("Bad join conditions example
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_error(
query("SELECT * FROM inventory i JOIN games g ON foo = i.game"),
"Invalid"
)
})
test_that("Bad join conditions example
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_error(
query("SELECT * FROM inventory i JOIN games g ON i.name = g.game"),
"Invalid"
)
})
test_that("Bad join conditions example
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_error(
query("SELECT * FROM inventory i JOIN games g ON g.game = i.game"),
"Invalid"
)
})
test_that("Bad join conditions example
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_error(
{
games_with_col_renamed <<- games %>% rename(game = name)
query("SELECT * FROM inventory i JOIN games_with_col_renamed g ON i.game = i.game")
},
"Invalid"
)
})
test_that("Bad join conditions example
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_error(
query("SELECT * FROM inventory i JOIN games g ON g.game = i.name"),
"Invalid"
)
})
test_that("Inner join with two join conditions example query
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_equal(
query("SELECT * FROM inventory INNER JOIN games ON inventory.game = games.name AND inventory.price = games.list_price"),
inventory %>% inner_join(games, by = c(game = "name", price = "list_price"))
)
})
test_that("Inner join with two join conditions example query
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_equal(
query("SELECT * FROM inventory i INNER JOIN games g ON i.game = g.name AND i.price = g.list_price"),
inventory %>% inner_join(games, by = c(game = "name", price = "list_price"))
)
})
test_that("Left semi-join example query
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_equal(
query("SELECT name, list_price FROM games g LEFT SEMI JOIN inventory i ON g.name = i.game"),
games %>% semi_join(inventory, by = c(name = "game")) %>% select(name, list_price)
)
})
test_that("Left anti-join example query
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_equal(
query("SELECT name, list_price FROM games g LEFT ANTI JOIN inventory i ON g.name = i.game"),
games %>% anti_join(inventory, by = c(name = "game")) %>% select(name, list_price)
)
})
test_that("Left outer join example query
skip_if_not(exists("offices") && exists("employees"), message = "Test data not loaded")
expect_equal(
query("SELECT empl_id, first_name, e.office_id AS office_id, city
FROM employees e LEFT OUTER JOIN offices o
ON e.office_id = o.office_id;"),
employees %>%
left_join(offices, by = "office_id") %>%
select(empl_id, first_name, office_id, city)
)
})
test_that("Left outer join fails when query includes qualified join key column from the right table", {
skip_if_not(exists("offices") && exists("employees"), message = "Test data not loaded")
expect_error(
query("SELECT city FROM offices o LEFT OUTER JOIN employees e USING (office_id) WHERE e.office_id IS NULL"),
"e.office_id"
)
})
test_that("Full outer join fails when query includes qualified join key column from the right table", {
skip_if_not(exists("offices") && exists("employees"), message = "Test data not loaded")
expect_error(
query("SELECT city FROM offices o FULL OUTER JOIN employees e USING (office_id) WHERE e.office_id IS NULL"),
"e.office_id"
)
})
test_that("Right outer join example query
skip_if_not(exists("offices") && exists("employees"), message = "Test data not loaded")
expect_equal(
query("SELECT empl_id, first_name, o.office_id AS office_id, city
FROM employees e RIGHT OUTER JOIN offices o
ON e.office_id = o.office_id;"),
employees %>%
right_join(offices, by = "office_id") %>%
select(empl_id, first_name, office_id, city)
)
})
test_that("Right outer join fails when query includes qualified join key column from the left table", {
skip_if_not(exists("offices") && exists("employees"), message = "Test data not loaded")
expect_error(
query("SELECT first_name, last_name FROM offices o RIGHT OUTER JOIN employees e USING (office_id) WHERE o.office_id IS NULL"),
"o.office_id"
)
})
test_that("Full outer join example query
skip_if_not(exists("offices") && exists("employees"), message = "Test data not loaded")
expect_equal(
query("SELECT empl_id, first_name, office_id, city
FROM employees e FULL OUTER JOIN offices o
ON e.office_id = o.office_id;"),
employees %>%
full_join(offices, by = "office_id") %>%
select(empl_id, first_name, office_id, city)
)
})
test_that("Full outer join fails when query includes qualified join key column from the left table", {
skip_if_not(exists("offices") && exists("employees"), message = "Test data not loaded")
expect_error(
query("SELECT first_name, last_name FROM offices o FULL OUTER JOIN employees e USING (office_id) WHERE o.office_id IS NULL"),
"o.office_id"
)
})
test_that("Full outer join with USING fails when query includes qualified join key columns from both tables", {
skip_if_not(exists("offices") && exists("employees"), message = "Test data not loaded")
expect_error(
query("SELECT city, first_name, last_name FROM offices o FULL OUTER JOIN employees e USING (office_id) WHERE e.office_id IS NULL OR o.office_id IS NULL"),
"\\Qo.office_id, e.office_id\\E|\\Qe.office_id, o.office_id\\E"
)
})
test_that("Full outer join with ON and table names fails when query includes qualified join key column from the right table", {
skip_if_not(exists("offices") && exists("employees"), message = "Test data not loaded")
expect_error(
query("SELECT city FROM offices o FULL OUTER JOIN employees e ON o.office_id = e.office_id WHERE e.office_id IS NULL"),
"e.office_id"
)
})
test_that("Full outer join with ON and table aliases fails when query includes qualified join key column from the right table", {
skip_if_not(exists("offices") && exists("employees"), message = "Test data not loaded")
expect_error(
query("SELECT city FROM offices o FULL OUTER JOIN employees e ON offices.office_id = employees.office_id WHERE e.office_id IS NULL"),
"e.office_id"
)
})
test_that("Full outer join with ON fails when query includes table-name-qualified join key column from the right table", {
skip_if_not(exists("offices") && exists("employees"), message = "Test data not loaded")
expect_error(
query("SELECT city FROM offices o FULL OUTER JOIN employees e ON o.office_id = e.office_id WHERE employees.office_id IS NULL"),
"employees.office_id"
)
})
test_that("Full outer join with ON and unqualified conditions fails when query includes qualified join key column from the right table", {
skip_if_not(exists("offices") && exists("employees"), message = "Test data not loaded")
expect_error(
query("SELECT city FROM offices o FULL OUTER JOIN employees e ON office_id = office_id WHERE e.office_id IS NULL"),
"e.office_id"
)
})
test_that("Left outer join example with all clauses returns expected result", {
skip_if_not(exists("flights") && exists("planes"), message = "Test data not loaded")
expect_equal(
{
my_query <- "SELECT origin, dest,
round(AVG(distance)) AS dist,
round(COUNT(*)/10) AS flights_per_year,
round(SUM(seats)/10) AS seats_per_year,
round(AVG(arr_delay)) AS avg_arr_delay
FROM flights f LEFT JOIN planes p
ON f.tailnum = p.tailnum
WHERE distance BETWEEN 300 AND 400
GROUP BY origin, dest
HAVING flights_per_year > 100
ORDER BY seats_per_year DESC
LIMIT 6;"
query(my_query)
},
flights %>%
left_join(planes, by = "tailnum", suffix = c(".f", ".p"), na_matches = "never") %>%
rename(f.year = "year.f", p.year = "year.p") %>%
filter(between(distance, 300, 400)) %>%
group_by(origin, dest) %>%
filter(round(n() / 10) > 100) %>%
summarise(
dist = round(mean(distance, na.rm = TRUE)),
flights_per_year = round(n() / 10),
seats_per_year = round(sum(seats, na.rm = TRUE) / 10),
avg_arr_delay = round(mean(arr_delay, na.rm = TRUE))
) %>%
ungroup() %>%
arrange(desc(seats_per_year)) %>%
head(6)
)
})
test_that("Natural inner join example query
skip_if_not(exists("offices") && exists("employees"), message = "Test data not loaded")
expect_equal(
query("SELECT * FROM offices NATURAL JOIN employees"),
offices %>% inner_join(employees)
)
})
test_that("Natural left outer join example query
skip_if_not(exists("offices") && exists("employees"), message = "Test data not loaded")
expect_equal(
query("SELECT * FROM offices NATURAL LEFT OUTER JOIN employees"),
offices %>% left_join(employees)
)
})
test_that("Natural right outer join example query
skip_if_not(exists("offices") && exists("employees"), message = "Test data not loaded")
expect_equal(
query("SELECT * FROM offices NATURAL RIGHT OUTER JOIN employees"),
offices %>% right_join(employees)
)
})
test_that("Natural full outer join example query
skip_if_not(exists("offices") && exists("employees"), message = "Test data not loaded")
expect_equal(
query("SELECT * FROM offices NATURAL FULL OUTER JOIN employees"),
offices %>% full_join(employees)
)
})
test_that("Natural join example query generates the expected message", {
skip_if_not(exists("offices") && exists("employees"), message = "Test data not loaded")
expect_message(
query("SELECT * FROM offices NATURAL JOIN employees"),
"office_id"
)
})
test_that("Right anti-join fails", {
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_error(
query("SELECT name, list_price FROM inventory i RIGHT ANTI JOIN games g ON i.game = g.name"),
"Unsupported"
)
})
test_that("Right semi-join fails", {
skip_if_not(exists("inventory") && exists("games"), message = "Test data not loaded")
expect_error(
query("SELECT name, list_price FROM inventory i RIGHT SEMI JOIN games g ON i.game = g.name"),
"Unsupported"
)
})
test_that("Cross join fails", {
skip_if_not(exists("card_rank") && exists("card_suit"), message = "Test data not loaded")
expect_error(
query("SELECT rank, suit FROM card_rank CROSS JOIN card_suit;"),
"Unsupported"
)
})
test_that("Join with three tables fails", {
skip_if_not(exists("employees") && exists("offices") && exists("orders"), message = "Test data not loaded")
expect_error(
query("SELECT city, SUM(total) total FROM orders LEFT JOIN employees USING (empl_id) LEFT JOIN offices USING (office_id) GROUP BY city"),
"unsupported"
)
})
test_that("Join fails when data object does not exist", {
expect_error(
query("SELECT a FROM a435irawjesz9834are JOIN w3tzldvjsdfkgjwetro USING (b)"),
"exist"
)
})
test_that("Join fails when data object has unsupported type", {
skip_if_not(exists("letters"), message = "Test data not loaded")
expect_error(
query("SELECT * FROM letters NATURAL JOIN state.name"),
"supported"
)
})
test_that("Inner join does not match NAs", {
expect_equal(
{
join_test_na_match_data_x <<- data.frame(k1 = c(NA, NA, 3, 4, 5), k2 = c(1, NA, NA, 4, 5), data = 1:5)
join_test_na_match_data_y <<- data.frame(k1 = c(NA, 2, NA, 4, 5), k2 = c(NA, NA, 3, 4, 5), data = 1:5)
query("select COUNT(*) FROM join_test_na_match_data_x JOIN join_test_na_match_data_y USING (k1)") %>% pull(1)
},
2L
)
})
|
addToTree.default <-
function(tree, input){
stop("object \"",substitute(tree),"\" is not of the appropriate class \"tstTree\"")
}
|
estimateSUR <- function(PPP,
xi_PPP_X,
integrated = TRUE,
N_ppp,
method = "discrete",
SUR_pop,
r = N.batch,
optimcontrol = list(pop.size = 50*d,
max.generations = 10*d),
approx.pnorm,
J = 0,
N.batch = foreach::getDoParWorkers(),
verbose = 0,
...
){
X <- NULL
N <- length(PPP$final_U)
d <- dim(PPP$final_X)[1]
n <- dim(xi_PPP_X$Kinv_kn)[1]
if(method=='discrete' && missing(SUR_pop)){
SUR_pop = cbind(PPP$X, PPP$final_X)
u_SUR_pop <- c(PPP$U, PPP$final_U)
N_pop = dim(SUR_pop)[2]
xi_SUR_POP <- xi_PPP_X
SUR_aug <- rbind(SUR_pop, matrix(xi_SUR_POP$mean, nrow = 1), matrix(xi_SUR_POP$sd, nrow = 1), xi_SUR_POP$kn, xi_SUR_POP$Kinv_kn)
}
if(!missing(N_ppp) && N_ppp<N) {
ind <- sample(x = 1:N, size = N_ppp, replace = FALSE)
sel1 <- names(PPP$U)%in%ind
PPP$X <- PPP$X[,sel1]
PPP$U <- PPP$U[sel1]
sel2 <- names(PPP$final_U)%in%ind
PPP$final_X <- PPP$final_X[,sel2]
PPP$final_U <- PPP$final_U[sel2]
xi_PPP_X$mean <- xi_PPP_X$mean[c(sel1, sel2)]
xi_PPP_X$sd <- xi_PPP_X$sd[c(sel1, sel2)]
xi_PPP_X$kn <- as.matrix(xi_PPP_X$kn[,c(sel1, sel2)])
xi_PPP_X$Kinv_kn <- as.matrix(xi_PPP_X$Kinv_kn[,c(sel1, sel2)])
N <- N_ppp
}
x = PPP$final_X
u = PPP$final_U
u_lpa <- NULL
xi_x <- xi_PPP_X
if(integrated == TRUE){
x = cbind(PPP$X, x)
u = c(PPP$U, u)
u_lpa <- rep(PPP$U, each = N)
} else {
xi_x$mean = tail(xi_PPP_X$mean, N)
xi_x$sd = tail(xi_PPP_X$sd, N)
xi_x$kn = t(tail(t(xi_PPP_X$kn), N))
xi_x$Kinv_kn = t(tail(t(xi_PPP_X$Kinv_kn), N))
}
args = list(...)
args$x = x
args$u = u
args$u_lpa = u_lpa
args$xi_x = xi_x
args$integrated = integrated
args$N = N
if(approx.pnorm) {
x_pnorm <- seq(from = -4, to = 4, by = 0.2)
args$pnorm = stats::approxfun(x_pnorm, pnorm(x_pnorm), yleft = 0, yright = 1)
}
args$Xnew <- Xnew <- NULL
args$xi_Xnew <- xi_Xnew <- NULL
cat(" * Evaluation of SUR criterion: integrated = ",integrated, ", r = ", ifelse(is.null(args$r), 1, args$r), ", approx = ",ifelse(is.null(args$approx), FALSE, args$approx),", approx.pnorm = ",approx.pnorm,", optim = ", method,", N_ppp = ", ifelse(missing(N_ppp),N, N_ppp)," \n", sep = "")
sur = list(x = NULL, u = NULL, t = NULL)
for(k in 1:r){
if(method=="discrete"){
SUR <- foreach::foreach(X = iterators::iter(SUR_aug, by ='col', chunksize = ceiling(N_pop/N.batch)),
.combine = 'c',
.export = 'fSUR',
.options.multicore = list(set.seed = TRUE),
.errorhandling = "pass") %dopar% {
tmp <- c(apply(X, 2, function(xaug){
args$xnew <- xaug[1:d]
args$xi_xnew <- list(mean = xaug[d+1], sd = xaug[d+2], kn = xaug[(d+3):(d+2+n)], Kinv_kn = tail(xaug, n))
do.call(fSUR, args)
}))
return(tmp)
}
if(class(SUR)!="numeric"){
message(' ! memory issue with parallel computing, approximated SUR used insteead !')
args$approx = TRUE
x_pnorm <- seq(from = -4, to = 4, by = 0.2)
args$pnorm = stats::approxfun(x_pnorm, pnorm(x_pnorm), yleft = 0, yright = 1)
SUR <- foreach::foreach(X = iterators::iter(SUR_aug, by ='col', chunksize = ceiling(N_pop/N.batch)),
.combine = 'c',
.export = 'fSUR',
.options.multicore = list(set.seed = TRUE),
.errorhandling = "pass") %dopar% {
tmp <- c(apply(X, 2, function(xaug){
args$xnew <- xaug[1:d]
args$xi_xnew <- list(mean = xaug[d+1], sd = xaug[d+2], kn = xaug[(d+3):(d+2+n)], Kinv_kn = tail(xaug, n))
do.call(fSUR, args)
}))
return(tmp)
}
}
if(class(SUR)!="numeric"){
message(' ! memory issue with parallel computing, standard SUR used insteead !')
args$integrated = FALSE
SUR <- foreach::foreach(X = iterators::iter(SUR_aug, by ='col', chunksize = ceiling(N_pop/N.batch)),
.combine = 'c',
.export = 'fSUR',
.options.multicore = list(set.seed = TRUE),
.errorhandling = "pass") %dopar% {
tmp <- c(apply(X, 2, function(xaug){
args$xnew <- xaug[1:d]
args$xi_xnew <- list(mean = xaug[d+1], sd = xaug[d+2], kn = xaug[(d+3):(d+2+n)], Kinv_kn = tail(xaug, n))
do.call(fSUR, args)
}))
return(tmp)
}
}
if(class(SUR)!="numeric"){
print(SUR)
}
ind_min = which.min(SUR)
SUR_point <- SUR_pop[,ind_min]
SUR_aug <- SUR_aug[,-ind_min]
sur$u = c(sur$u, u_SUR_pop[ind_min])
sur$t = c(sur$t, ind_min/length(SUR))
} else {
f_gen <- function(xnew) {
args$xnew = xnew
do.call(fSUR, args)
}
SUR_point <- do.call(rgenoud::genoud, c(optimcontrol, list(fn = f_gen, nvars = d, print.level = verbose)))$par
}
Xnew = cbind(Xnew, as.matrix(SUR_point))
sur$x = cbind(sur$x, SUR_point)
}
return(sur)
}
t.list <- function(l){
lapply(split(do.call("c", l), names(l[[1]])), unname)
}
|
context("Cleaning")
library(missCompare)
data("clindata_miss")
small <- clindata_miss[1:80, 1:4]
small$string <- "string"
test_that("error if strings present", {
testthat::expect_error(clean(small))
})
small <- clindata_miss[1:80, 1:4]
test_that("message for numeric conversion", {
testthat::expect_message(clean(small))
})
small$sex <- as.numeric(small$sex)
test_that("no message for numeric conversion", {
expect_message(clean(small, var_removal_threshold = 0.7), NA)
})
small$age[1:60] <- NA
test_that("message for variable removal", {
expect_message(clean(small, var_removal_threshold = 0.5))
})
small$age <- NULL
small[c(1:10),] <- NA
test_that("message for individual removal", {
expect_message(clean(small, ind_removal_threshold = 1))
})
small <- clindata_miss[1:80, 1:4]
cleaned <- clean(small)
test_that("output dataset obs", {
expect_output(str(cleaned), "80 obs")
})
test_that("output dataset vars", {
expect_output(str(cleaned), "4 variables")
})
test_that("equal dims", {
expect_equal(dim(small), dim(cleaned))
})
rm(list=ls())
|
`ROTY` <-
function( deg )
{
rad1 = deg * 0.0174532925199;
r = diag(4)
r[1, 1] = cos(rad1)
r[3, 1] = sin(rad1)
r[3, 3] = r[1, 1]
r[1, 3] = -r[3, 1]
return(r)
}
|
summary_round_helper <- function( obji, digits, exclude=NULL, print=TRUE)
{
NC <- ncol(obji)
ind <- 1:NC
if ( ! is.null(exclude) ){
ind2 <- which( colnames(obji) %in% exclude )
ind <- setdiff( ind, ind2 )
}
obji[,ind] <- round( obji[,ind], digits )
rownames(obji) <- NULL
print(obji)
invisible(obji)
}
|
svr.gacv <- function(obj){
gacv <- rep(0, length(obj$lambda))
n <- length(obj$y)
y <- obj$y
svr.eps <- obj$eps
for(i in 1:length(obj$lambda)){
fx <- ( 1/obj$lambda[i]) * (obj$theta[,i]%*%obj$Kscript + obj$theta0[i])
loss_gacv <- loss(t(fx), y, svr.eps)
gacv[i] <- loss_gacv / ( n - (length(obj$Elbow.L[[i]]) + length(obj$Elbow.R[[i]])) )
}
lambda3 <- obj$lambda[which.min(gacv)]
theta3 <- obj$theta[,which.min(gacv)]
theta3.0 <- obj$theta0[which.min(gacv)]
elbow.l <- obj$Elbow.L[[which.min(gacv)]]
elbow.r <- obj$Elbow.R[[which.min(gacv)]]
return(list(GACV = gacv, optimal.lambda = lambda3,
Elbow.L = elbow.l, Elbow.R = elbow.r,
theta = theta3, theta0 = theta3.0))
}
|
add_group_item <- function (resource_details, ...)
{
json_arg <- toJSON(resource_details, auto_unbox=TRUE)
res <- tubern_POST("groupItems", body = json_arg, encode='json', ...)
res
}
|
fs::file_copy("pkgdown/extra.css", new_path = "docs/extra.css", overwrite = TRUE)
pkgdown::build_home()
Sys.sleep(1)
try(fs::file_delete("pkgdown/index.html"))
Sys.sleep(1)
rmarkdown::render("pkgdown/index.Rmd", envir = new.env())
library(tidyverse)
index <- read_lines("docs/index.html", lazy = FALSE)
ttle_indx <- which(str_detect(index, "HIGHCHARTER"))
ttle <- index[[ttle_indx]]
ttle <- str_replace(ttle, "HIGHCHARTER", "<span id=\"brand\"> h|1i|0g|3h|2c|1h|2a|1r|3t|2e|1r|2{rpackage}</span>")
index[[ttle_indx]] <- ttle
indx1 <- which(str_detect(index, "section level2"))
indx1 <- indx1[[1]]
indx1 <- indx1 - 1
index[(indx1 + -1:1)] %>% tibble()
indx1
index_new <- read_lines("pkgdown/index.html")
scripts <- str_subset(index_new, "index_files")
scripts <- str_subset(scripts, "bootstrap|tabsets|highlightjs", negate = TRUE)
index_new1 <- which(str_detect(index_new, "section level2"))
index_new1 <- index_new1[[1]]
index_new[(index_new1 + -1:1)] %>% tibble()
index_new2 <- which(str_detect(index_new, "<span></span>"))
index_new2 <- index_new2 + 1
index_new[(index_new2 + -1:1)] %>% tibble()
index_final <- c(
index[1:indx1],
scripts,
index_new[index_new1:index_new2],
index[(indx1+1):length(index)]
)
try(fs::file_delete("docs/index_files/"))
write_lines(x = index_final, file = "docs/index.html")
fs::file_move("pkgdown/index_files/", "docs/")
pkgdown::preview_site()
|
UKgas <- stats::ts(c(160.1, 129.7, 84.8, 120.1, 160.1, 124.9, 84.8, 116.9,
169.7, 140.9, 89.7, 123.3, 187.3, 144.1, 92.9, 120.1, 176.1, 147.3,
89.7, 123.3, 185.7, 155.3, 99.3, 131.3, 200.1, 161.7, 102.5, 136.1,
204.9, 176.1, 112.1, 140.9, 227.3, 195.3, 115.3, 142.5, 244.9, 214.5,
118.5, 153.7, 244.9, 216.1, 188.9, 142.5, 301.0, 196.9, 136.1, 267.3,
317.0, 230.5, 152.1, 336.2, 371.4, 240.1, 158.5, 355.4, 449.9, 286.6,
179.3, 403.4, 491.5, 321.8, 177.7, 409.8, 593.9, 329.8, 176.1, 483.5,
584.3, 395.4, 187.3, 485.1, 669.2, 421.0, 216.1, 509.1, 827.7, 467.5,
209.7, 542.7, 840.5, 414.6, 217.7, 670.8, 848.5, 437.0, 209.7, 701.2,
925.3, 443.4, 214.5, 683.6, 917.3, 515.5, 224.1, 694.8, 989.4, 477.1,
233.7, 730.0, 1087.0, 534.7, 281.8, 787.6, 1163.9, 613.1, 347.4,
782.8), start = 1960, frequency = 4)
|
declareConsts = function() {
testData = list()
testData$N = 10^4
testData$x = rnorm( testData$N )
testData$n = 100
testData$data = list( "x" = testData$x )
testData$params = list( "theta" = rnorm( 1, mean = 0, sd = 10 ) )
testData$optStepsize = 1e-5
testData$nIters = 1100
testData$nItersOpt = 1000
testData$burnIn = 100
testData$alpha = 0.01
testData$width = 1
return( testData )
}
logLik = function( params, data ) {
sigma = tf$constant( 1, dtype = tf$float64 )
baseDist = tf$distributions$Normal(params$theta, sigma)
return(tf$reduce_sum(baseDist$log_prob(data$x)))
}
logPrior = function( params ) {
baseDist = tf$distributions$Normal(0, 5)
return( baseDist$log_prob( params$theta ) )
}
sgldTest = function( testData ) {
stepsize = list( "theta" = 1e-4 )
storage = sgld( logLik, testData$data, testData$params, stepsize, logPrior = logPrior, minibatchSize = testData$n, nIters = testData$nIters, verbose = FALSE )
thetaOut = storage$theta[-c(1:testData$burnIn)]
return( thetaOut )
}
sgldcvTest = function( testData ) {
stepsize = list( "theta" = 1e-4 )
storage = sgldcv( logLik, testData$data, testData$params, stepsize, testData$optStepsize, logPrior = logPrior, minibatchSize = testData$n, nIters = testData$nIters, nItersOpt = testData$nItersOpt, verbose = FALSE )
return( storage )
}
sghmcTest = function( testData ) {
eta = list( "theta" = 1e-5 )
alpha = list( "theta" = 1e-1 )
L = 3
storage = sghmc( logLik, testData$data, testData$params, eta, logPrior = logPrior, minibatchSize = testData$n, alpha = alpha, L = L, nIters = testData$nIters, verbose = FALSE )
thetaOut = storage$theta[-c(1:testData$burnIn)]
return( thetaOut )
}
sghmccvTest = function( testData ) {
eta = list( "theta" = 1e-4 )
alpha = list( "theta" = 1e-1 )
L = 3
storage = sghmccv( logLik, testData$data, testData$params, eta, testData$optStepsize, logPrior = logPrior, minibatchSize = testData$n, alpha = alpha, L = L, nIters = testData$nIters, nItersOpt = testData$nItersOpt, verbose = FALSE )
return( storage )
}
sgnhtTest = function( testData ) {
eta = list( "theta" = 1e-6 )
a = list( "theta" = 1e-2 )
storage = sgnht( logLik, testData$data, testData$params, eta, logPrior = logPrior, minibatchSize = testData$n, a = a, nIters = testData$nIters, verbose = FALSE )
thetaOut = storage$theta[-c(1:testData$burnIn)]
return( thetaOut )
}
sgnhtcvTest = function( testData ) {
eta = list( "theta" = 1e-5 )
a = list( "theta" = 1e-2 )
storage = sgnhtcv( logLik, testData$data, testData$params, eta, testData$optStepsize, logPrior = logPrior, minibatchSize = testData$n, a = a, nIters = testData$nIters, nItersOpt = testData$nItersOpt, verbose = FALSE )
return( storage )
}
test_that( "sgld: Check Error thrown for float64 input", {
tryCatch({
tf$constant(c(1, 1))
}, error = function (e) skip("tensorflow not fully built, skipping..."))
testData = declareConsts()
expect_error( sgldTest( testData ) )
} )
test_that( "sgldcv: Check Error thrown for float64 input", {
tryCatch({
tf$constant(c(1, 1))
}, error = function (e) skip("tensorflow not fully built, skipping..."))
testData = declareConsts()
expect_error( sgldcvTest( testData ) )
} )
test_that( "sghmc: Check Error thrown for float64 input", {
tryCatch({
tf$constant(c(1, 1))
}, error = function (e) skip("tensorflow not fully built, skipping..."))
testData = declareConsts()
expect_error( sghmcTest( testData ) )
} )
test_that( "sghmccv: Check Error thrown for float64 input", {
tryCatch({
tf$constant(c(1, 1))
}, error = function (e) skip("tensorflow not fully built, skipping..."))
testData = declareConsts()
expect_error( sghmccvTest( testData ) )
} )
test_that( "sgnht: Check Error thrown for float64 input", {
tryCatch({
tf$constant(c(1, 1))
}, error = function (e) skip("tensorflow not fully built, skipping..."))
testData = declareConsts()
expect_error( sgnhtTest( testData ) )
} )
test_that( "sgnhtcv: Check Error thrown for float64 input", {
tryCatch({
tf$constant(c(1, 1))
}, error = function (e) skip("tensorflow not fully built, skipping..."))
testData = declareConsts()
expect_error( sgnhtcvTest( testData ) )
} )
|
expect_equal(NOW(),format(Sys.time(),"%Y-%m-%d %H:%M"))
|
norm.2008RJB <- function(x, C1=6, C2=24, method=c("asymptotic","MC"), nreps=2000){
check_1d(x)
myrule = tolower(method)
if (myrule=="a"){
myrule = "asymptotic"
} else if (myrule=="m"){
myrule = "mc"
}
finrule = match.arg(myrule, c("asymptotic","mc"))
nreps = as.integer(nreps)
if ((C1<=0)||(length(C1)>1)){
stop("* norm.2008RJB : 'C1' must be a nonnegative constant number.")
}
if ((C2<=0)||(length(C2)>1)){
stop("* norm.2008RJB : 'C2' must be a nonnegative constant number.")
}
if (finrule=="asymptotic"){
thestat = norm_2008RJB_single(x, C1, C2)
pvalue = pchisq(thestat, df=2, lower.tail = FALSE)
} else {
tmpout = norm_2008RJB_mcarlo(x, nreps, C1, C2)
thestat = tmpout$statistic
pvalue = tmpout$counts/nreps
}
hname = "Robust Jarque-Bera Test of Univariate Normality by Gel and Gastwirth (2008)"
DNAME = deparse(substitute(x))
Ha = paste("Sample ", DNAME, " does not follow normal distribution.",sep="")
names(thestat) = "RJB"
res = list(statistic=thestat, p.value=pvalue, alternative = Ha, method=hname, data.name = DNAME)
class(res) = "htest"
return(res)
}
|
NULL
mobile <- function(config = list()) {
svc <- .mobile$operations
svc <- set_config(svc, config)
return(svc)
}
.mobile <- list()
.mobile$operations <- list()
.mobile$metadata <- list(
service_name = "mobile",
endpoints = list("*" = list(endpoint = "mobile.{region}.amazonaws.com", global = FALSE), "cn-*" = list(endpoint = "mobile.{region}.amazonaws.com.cn", global = FALSE), "us-iso-*" = list(endpoint = "mobile.{region}.c2s.ic.gov", global = FALSE), "us-isob-*" = list(endpoint = "mobile.{region}.sc2s.sgov.gov", global = FALSE)),
service_id = "Mobile",
api_version = "2017-07-01",
signing_name = "AWSMobileHubService",
json_version = "1.1",
target_prefix = ""
)
.mobile$service <- function(config = list()) {
handlers <- new_handlers("restjson", "v4")
new_service(.mobile$metadata, handlers, config)
}
|
\donttest{
library(MASS)
X = model.matrix(~ Sex + Bwt, cats)
beta_mu = c(-0.1, 0.3, 4)
beta_sigma = c(-0.5, -0.1, 0.3)
mu = X %*% beta_mu
log_sigma = X %*% beta_sigma
y = rnorm( nrow(X), mean = mu, sd = exp(log_sigma))
fit = lmvar(y, X_mu = X[,-1], X_sigma = X[,-1])
cv.lmvar(fit) \dontshow{
cv.lmvar(fit, max_cores = 1)
cv.lmvar(fit, ks_test = TRUE, max_cores = 2)
cv.lmvar(fit, k = 5, seed = 5483, max_cores = 1)
cv.lmvar(fit, exclude = c(5, 11, 20), max_cores = 1)
fourth = function(object, y, X_mu, X_sigma){
mu = predict(object, X_mu[,-1], X_sigma[,-1], sigma = FALSE)
residuals = y - mu
return(mean(residuals^4))
}
cv.lmvar(fit, fun = fourth)
rm(fourth)
cv.lmvar(fit, slvr_options = list( method = "NR", control = list(iterlim = 500)))
fit = lmvar(log(y), X_mu = X[,-1], X_sigma = X[,-1])
cv = cv.lmvar(fit, log = TRUE)
cv
print(cv, digits = 2)
}
|
if(getRversion() >= "4.0.0") {
sum.unit = function(..., na.rm = FALSE) {
lt = list(...)
u = NULL
for(i in seq_along(lt)) {
if(length(lt[[i]]) > 1) {
for(k in seq_along(lt[[i]])) {
if(is.null(u)) {
u = lt[[i]][k]
} else {
u = u + lt[[i]][k]
}
}
} else {
if(is.null(u)) {
u = lt[[i]]
} else {
u = u + lt[[i]]
}
}
}
return(u)
}
}
|
demo.dag6 <-
function()
{
dag<-dag.init(covs=c(2,1,1,1,1), arcs=c(1,0, 1,2, 3,2, 3,-1, 4,3, 5,3));
dag$x<-c(0.000, 0.211, 0.492, 0.492, 0.236, 0.098, 1.000);
dag$y<-c(0.000, 0.300, 0.300, 0.663, 0.550, 0.816, 0.000);
return(dag);
}
|
poetry_config <- function(required_module) {
project <- poetry_project()
projfile <- file.path(project, "pyproject.toml")
if (!file.exists(projfile))
return(NULL)
toml <- tryCatch(
RcppTOML::parseTOML(projfile),
error = identity
)
if (inherits(toml, "error")) {
warning("This project contains a 'pyproject.toml' file, but it could not be parsed")
warning(toml)
return(NULL)
}
info <- tryCatch(toml[[c("tool", "poetry")]], error = identity)
if (inherits(info, "error"))
return(NULL)
poetry <- poetry_exe()
if (!file.exists(poetry)) {
msg <- heredoc("
This project appears to use Poetry for Python dependency maangement.
However, the 'poetry' command line tool is not available.
reticulate will be unable to activate this project.
Please ensure that 'poetry' is available on the PATH.
")
warning(msg)
return(NULL)
}
python <- poetry_python(project)
python_config(python, required_module, forced = "Poetry")
}
poetry_exe <- function() {
poetry <- getOption("reticulate.poetry.exe")
if (!is.null(poetry))
return(poetry)
Sys.which("poetry")
}
poetry_project <- function() {
project <- getOption("reticulate.poetry.project")
if (!is.null(project))
return(project)
projfile <- tryCatch(
dirname(here::here("pyproject.toml")),
error = function(e) ""
)
}
poetry_python <- function(project) {
owd <- setwd(project)
on.exit(setwd(owd), add = TRUE)
envpath <- system2("poetry", c("env", "info", "--path"), stdout = TRUE)
virtualenv_python(envpath)
}
|
library(arules)
library(arulesViz)
itemlist = list(c('I1','I2','I5'), c('I2','I4'), c('I2','I3'),c('I1','I2','I4'),c('I1','I3'),c('I2','I3'),c('I1','I3'),c('I1','I2','I3','I5'),c('I1','I2','I3'))
itemlist
length(itemlist)
names(itemlist) <- paste("Tr",c(1:9), sep = "")
itemlist
tdata3 <- as(itemlist, "transactions")
tdata3
summary(tdata3)
tdata=tdata3
summary(tdata)
itemlist
image(tdata)
freqitems = eclat(tdata)
freqitems = eclat(tdata, parameter = list(minlen=1, supp=.1, maxlen=2 ))
freqitems
inspect(freqitems)
support(items(freqitems[1:2]), transactions=tdata)
inspect(freqitems[1])
inspect(items(freqitems[1]))
itemFrequencyPlot(tdata,topN = 5,type="absolute")
itemFrequencyPlot(tdata,topN = 5,type="relative", horiz=T)
write.csv(as.data.frame(inspect(freqitems)),'freqitems1.csv')
rules = apriori(tdata, parameter = list(supp = 0.2, conf = 0.5, minlen=2))
itemFrequencyPlot(items(rules))
inspect(rules[1:5])
inspect(rules)
write.csv(as.data.frame(inspect(rules)),'rules1.csv')
rules_s = sort(rules, by="support", decreasing=TRUE )
inspect(rules_s)
inspect(rules_s[1:5])
rules_c = sort(rules, by="confidence", decreasing=TRUE )
inspect(rules_c)
inspect(rules_c[1:5])
inspect(head(rules, n = 3, by ="lift"))
rules_l = sort(rules, by="lift", decreasing=TRUE )
inspect(rules_l)
inspect(rules_l[1:5])
quality(rules_c)
inspect(rules)
(redundant = which(is.redundant(rules)))
inspect(rules[c(8,9,10,11,12,14,14)])
inspect(rules[redundant])
inspect(rules)
write.csv(as(rules,"data.frame"), file='./data/rulesR.csv')
rulesNR <- rules[-redundant]
is.redundant(rulesNR)
sum(is.redundant(rulesNR))
inspect(rulesNR)
rules2= rulesNR
inspect(rules2)
rules2.lhs1 <- subset(rules2, lhs %in% c("I1", "I5"))
inspect(rules2.lhs1)
rules2.rhs1 <- subset(rules2, rhs %in% c("I3"))
inspect(rules2.rhs1)
rules2.lhsrhs1 = subset(rules2, lhs %in% c("I1") & rhs %in% c("I3"))
inspect(rules2.lhsrhs1)
rules2.lhsrhs2 = subset(rules2, lhs %in% c("I1") | rhs %in% c("I3"))
inspect(rules2.lhsrhs2)
rules_DF <- as(rules,"data.frame")
rules_DF
str(rules_DF)
write.csv(rules_DF, './data/myrules1.csv')
plot(rules)
|
typical_value <- function(x, fun = "mean", weights = NULL, ...) {
fnames <- names(fun)
if (!is.null(fnames)) {
if (is.integer(x)) {
fun <- fun[which(fnames %in% c("integer", "i"))]
x <- as.numeric(x)
} else if (is.numeric(x)) {
fun <- fun[which(fnames %in% c("numeric", "n"))]
} else if (is.factor(x)) {
fun <- fun[which(fnames %in% c("factor", "f"))]
if (fun != "mode") x <- to_value(x, keep.labels = FALSE)
}
}
if (!(fun %in% c("mean", "median", "mode", "weighted.mean", "zero")))
stop("`fun` must be one of \"mean\", \"median\", \"mode\", \"weighted.mean\" or \"zero\".", call. = FALSE)
if (fun == "weighted.mean" && !is.null(weights)) {
if (length(weights) != length(x)) {
warning("Vector of weights is of different length than `x`. Using `mean` as function for typical value.", call. = FALSE)
fun <- "mean"
}
if (all(weights == 1)) {
warning("All weight values are `1`. Using `mean` as function for typical value.", call. = FALSE)
fun <- "mean"
}
}
if (fun == "weighted.mean" && is.null(weights)) fun <- "mean"
if (fun == "median")
myfun <- get("median", asNamespace("stats"))
else if (fun == "weighted.mean")
myfun <- get("weighted.mean", asNamespace("stats"))
else if (fun == "mode")
myfun <- get("mode_value", asNamespace("sjmisc"))
else if (fun == "zero")
return(0)
else
myfun <- get("mean", asNamespace("base"))
if (is.integer(x)) {
stats::median(x, na.rm = TRUE)
} else if (is.numeric(x)) {
if (fun == "weighted.mean")
do.call(myfun, args = list(x = x, na.rm = TRUE, w = weights, ...))
else
do.call(myfun, args = list(x = x, na.rm = TRUE, ...))
} else if (is.factor(x)) {
if (fun != "mode")
levels(x)[1]
else
mode_value(x)
} else {
mode_value(x)
}
}
mode_value <- function(x, ...) {
counts <- table(x)
modus <- names(counts)[max(counts) == counts]
if (length(modus) > 1) modus <- modus[1]
if (!is.na(suppressWarnings(as.numeric(modus))))
as.numeric(modus)
else
modus
}
|
context("Test na_interp.R")
test_that("na_interp() doesn't fall over", {
sst_Med_prep <- sst_Med %>%
dplyr::rename(ts_x = t, ts_y = temp)
ts <- heatwaveR:::make_whole_fast(sst_Med_prep)
res <- heatwaveR:::na_interp(doy = ts$doy, x = ts$ts_x, y = ts$ts_y, maxPadLength = 2)
expect_is(res, "data.table")
})
test_that("na_interp() handles unusual maxPadLength values correctly", {
sst_Med_prep <- sst_Med %>%
dplyr::rename(ts_x = t, ts_y = temp)
ts <- heatwaveR:::make_whole_fast(sst_Med_prep)
expect_is(heatwaveR:::na_interp(doy = ts$doy, x = ts$ts_x, y = ts$ts_y, maxPadLength = 0), "data.table")
expect_is(heatwaveR:::na_interp(doy = ts$doy, x = ts$ts_x, y = ts$ts_y, maxPadLength = 15000), "data.table")
})
|
gdfpd.read.dfp.zip.file <- function(my.zip.file,
folder.to.unzip = tempdir(),
id.type) {
if (tools::file_ext(my.zip.file) != 'zip') {
stop(paste('File', my.zip.file, ' is not a zip file.') )
}
if (!file.exists(my.zip.file)) {
stop(paste('File', my.zip.file, ' does not exists.') )
}
if (file.size(my.zip.file) == 0){
file.remove(my.zip.file)
stop(paste('File', my.zip.file, ' has size 0! File deleted. Try again..') )
}
if (length(my.zip.file) != 1){
stop('This function only works for a single zip file... check your inputs')
}
if (!dir.exists(folder.to.unzip)) {
cat(paste('Folder', folder.to.unzip, 'does not exist. Creating it.'))
dir.create(folder.to.unzip)
}
my.basename <- tools::file_path_sans_ext(basename(my.zip.file))
rnd.folder.name <- file.path(folder.to.unzip, paste0('DIR-',my.basename))
if (!dir.exists(rnd.folder.name)) dir.create(rnd.folder.name)
utils::unzip(my.zip.file, exdir = rnd.folder.name, junkpaths = TRUE)
my.files <- list.files(rnd.folder.name)
if (length(my.files) == 0) {
file.remove(my.zip.file)
stop(paste0('Zipped file contains 0 files. ',
'This is likelly a problem with the downloaded file. ',
'Try running the code again as the corrupted zip file was deleted and will be downloaded again.',
'\n\nIf the problem persists, my suggestions is to remove the time period with problem.') )
}
if (id.type == 'after 2011') {
my.l <- gdfpd.read.dfp.zip.file.type.1(rnd.folder.name, folder.to.unzip)
}
if (id.type == 'before 2011') {
my.l <- gdfpd.read.dfp.zip.file.type.2(rnd.folder.name, folder.to.unzip)
}
my.fct <- function(df.in) {
if (nrow(df.in)==0) {
df.out <- data.frame(acc.number = NA, acc.desc = NA, acc.value = NA)
} else {
df.out <- df.in
}
return(df.out)
}
my.l <- lapply(my.l, my.fct)
return(my.l)
}
gdfpd.read.dfp.zip.file.type.1 <- function(rnd.folder.name, folder.to.unzip = tempdir()) {
company.reg.file <- file.path(rnd.folder.name,'FormularioDemonstracaoFinanceiraDFP.xml')
xml_data <- XML::xmlToList(XML::xmlParse(company.reg.file, encoding = 'UTF-8'))
company.name = xml_data$CompanhiaAberta$NomeRazaoSocialCompanhiaAberta
company.cvm_code <- xml_data$CompanhiaAberta$CodigoCvm
company.SeqNumber <- xml_data$CompanhiaAberta$NumeroSequencialRegistroCvm
company.date.delivery <- xml_data$DataEntrega
date.docs <- as.Date(xml_data$DataReferenciaDocumento, format = '%Y-%m-%d')
zipped.file <- file.path(rnd.folder.name, list.files(rnd.folder.name, pattern = '*.dfp')[1])
utils::unzip(zipped.file, exdir = rnd.folder.name)
flag.thousands <- switch(xml_data$CodigoEscalaMoeda,
'2' = FALSE,
'1' = TRUE)
fin.report.file <- file.path(rnd.folder.name, 'InfoFinaDFin.xml')
if (!file.exists(fin.report.file)) {
stop('Cant find file', fin.report.file)
}
xml_data <- XML::xmlToList(XML::xmlParse(fin.report.file, encoding = 'UTF-8'))
file.remove(fin.report.file)
my.fct <- function(x, type.df, info, flag.thousands){
if (type.df == 'individual') my.char = '1'
if (type.df == 'consolidated') my.char = '2'
if (x$PlanoConta$VersaoPlanoConta$CodigoTipoInformacaoFinanceira == my.char){
if (info == 'Descricao') return(x$DescricaoConta1)
if (info == 'Valor') {
my.value <- as.numeric(c(x$ValorConta1, x$ValorConta2, x$ValorConta3,x$ValorConta4))
if (length(my.value)==0) {
my.value <- 0
} else {
if (flag.thousands) {
my.value <- my.value[1]*1/1000
} else {
my.value <- my.value[1]
}
}
return(my.value)
}
if (info == 'id') return(x$PlanoConta$NumeroConta)
} else {
return(NA)
}
}
type.df <- 'individual'
acc.desc <- as.character(sapply(xml_data, my.fct, type.df = type.df, info = 'Descricao', flag.thousands = flag.thousands))
acc.value <- as.numeric(sapply(xml_data, my.fct, type.df = type.df, info = 'Valor', flag.thousands = flag.thousands))
acc.number <- as.character(sapply(xml_data, my.fct, type.df = type.df, info = 'id', flag.thousands = flag.thousands))
ind.df <- data.frame(acc.number,acc.desc,acc.value)
df.assets <- stats::na.omit(ind.df[stringr::str_sub(ind.df$acc.number,1,1) == '1', ])
df.liabilities <- stats::na.omit(ind.df[stringr::str_sub(ind.df$acc.number,1,1) == '2', ])
df.income <- stats::na.omit(ind.df[stringr::str_sub(ind.df$acc.number,1,1) == '3', ])
df.cashflow <- stats::na.omit(ind.df[stringr::str_sub(ind.df$acc.number,1,1) == '6', ])
df.value <- stats::na.omit(ind.df[stringr::str_sub(ind.df$acc.number,1,1) == '7', ])
l.individual.dfs <- list(df.assets = df.assets,
df.liabilities = df.liabilities,
df.income = df.income,
df.cashflow = df.cashflow,
df.value = df.value)
type.df <- 'consolidated'
acc.desc <- as.character(sapply(xml_data, my.fct, type.df = type.df, info = 'Descricao', flag.thousands = flag.thousands))
acc.value <- as.numeric(sapply(xml_data, my.fct, type.df = type.df, info = 'Valor', flag.thousands = flag.thousands))
acc.number <- as.character(sapply(xml_data, my.fct, type.df = type.df, info = 'id', flag.thousands = flag.thousands))
consolidated.df <- data.frame(acc.number,acc.desc,acc.value)
df.assets.cons <- stats::na.omit(consolidated.df[stringr::str_sub(consolidated.df$acc.number,1,1) == '1', ])
df.liabilities.cons <- stats::na.omit(consolidated.df[stringr::str_sub(consolidated.df$acc.number,1,1) == '2', ])
df.income.cons <- stats::na.omit(consolidated.df[stringr::str_sub(consolidated.df$acc.number,1,1) == '3', ])
df.cashflow.cons <- stats::na.omit(consolidated.df[stringr::str_sub(consolidated.df$acc.number,1,1) == '6', ])
df.value.cons <- stats::na.omit(consolidated.df[stringr::str_sub(consolidated.df$acc.number,1,1) == '7', ])
l.consolidated.dfs <- list(df.assets = df.assets,
df.liabilities = df.liabilities,
df.income = df.income,
df.cashflow = df.cashflow,
df.value = df.value)
fin.report.file <- file.path(rnd.folder.name, 'AnexoTexto.xml')
if (!file.exists(fin.report.file)) {
stop('Cant find file', fin.report.file)
}
xml_data <- NA
try({
xml_data <- XML::xmlToList(XML::xmlParse(fin.report.file, encoding = 'UTF-8'))
})
if (is.na(xml_data)) {
warning('Cant read auditing notes..')
df.auditing.report = data.frame(text.indep.auditor = NA,
text.fiscal.counsil = NA,
text.directors.about.fr = NA,
text.directors.about.auditor = NA,
stringsAsFactors = FALSE)
} else {
parsing.fct <- function(x, n.item) {
if (x$NumeroQuadroRelacionado == as.character(n.item)) {
return(x$Texto)
} else {
return('')
}
}
text.indep.auditor <- paste0(sapply(xml_data, parsing.fct, n.item = 1655 ), collapse = '')
text.fiscal.counsil <- paste0(sapply(xml_data, parsing.fct, n.item = 1657 ), collapse = '')
text.directors.about.fr <- paste0(sapply(xml_data, parsing.fct, n.item = 1660 ), collapse = '')
text.directors.about.auditor <- paste0(sapply(xml_data, parsing.fct, n.item = 1662 ), collapse = '')
df.auditing.report = data.frame(text.indep.auditor = text.indep.auditor,
text.fiscal.counsil = text.fiscal.counsil,
text.directors.about.fr = text.directors.about.fr,
text.directors.about.auditor = text.directors.about.auditor,
stringsAsFactors = FALSE)
}
my.l <- list(df.assets = df.assets,
df.liabilities = df.liabilities,
df.income = df.income,
df.cashflow = df.cashflow,
df.value = df.value,
df.assets.cons = df.assets.cons,
df.liabilities.cons = df.liabilities.cons,
df.income.cons = df.income.cons,
df.cashflow.cons = df.cashflow.cons,
df.value.cons = df.value.cons,
df.auditing.report = df.auditing.report)
return(my.l)
}
gdfpd.read.dfp.zip.file.type.2 <- function(rnd.folder.name, folder.to.unzip = tempdir()) {
fin.report.file <- file.path(rnd.folder.name, 'CONFIG.XML')
if (!file.exists(fin.report.file)) {
flag.thousands = TRUE
} else {
xml_data <- XML::xmlToList(XML::xmlParse(fin.report.file, encoding = 'UTF-8'))
flag.thousands <- switch(xml_data$ROWDATA$ROW['MOEDA'],
'02' = FALSE,
'01' = TRUE)
}
my.f <- list.files(rnd.folder.name,'DFPBPA', full.names = T)[1]
df.assets <- gdfpd.read.fwf.file(my.f, flag.thousands)
my.f <- list.files(rnd.folder.name, 'DFPBPP', full.names = T)[1]
df.liabilities <- gdfpd.read.fwf.file(my.f, flag.thousands)
my.f <- list.files(rnd.folder.name, 'DFPDERE', full.names = T)[1]
df.income <- gdfpd.read.fwf.file(my.f, flag.thousands)
my.f <- list.files(rnd.folder.name, 'DFPDVAE', full.names = T)[1]
df.value <- gdfpd.read.fwf.file(my.f, flag.thousands)
my.f <- list.files(rnd.folder.name, 'DFPDFCE', full.names = T)
if ( (length(my.f) == 0) ) {
df.cashflow <- data.frame(acc.desc = NA,
acc.value = NA,
acc.number = NA)
}else {
df.cashflow <- gdfpd.read.fwf.file(my.f[1], flag.thousands)
}
l.individual.dfs <- list(df.assets = df.assets,
df.liabilities = df.liabilities,
df.income = df.income,
df.cashflow = df.cashflow,
df.value = df.value)
my.f <- list.files(rnd.folder.name,'DFPCBPA', full.names = T)[1]
df.assets.cons <- gdfpd.read.fwf.file(my.f, flag.thousands)
my.f <- list.files(rnd.folder.name,'DFPCBPP', full.names = T)[1]
df.liabilities.cons <- gdfpd.read.fwf.file(my.f, flag.thousands)
my.f <- list.files(rnd.folder.name,'DFPCDER', full.names = T)[1]
df.income.cons <- gdfpd.read.fwf.file(my.f, flag.thousands)
my.f <- list.files(rnd.folder.name, 'DFPCDVAE', full.names = T)[1]
df.value.cons <- gdfpd.read.fwf.file(my.f, flag.thousands)
my.f <- list.files(rnd.folder.name,'DFPCDFCE', full.names = T)
if (length(my.f) == 0) {
df.cashflow.cons <- data.frame(acc.desc = NA,
acc.value = NA,
acc.number = NA)
} else {
df.cashflow.cons <- gdfpd.read.fwf.file(my.f[1], flag.thousands)
}
l.consolidated.dfs<- list(df.assets = df.assets,
df.liabilities = df.liabilities,
df.income = df.income,
df.cashflow = df.cashflow,
df.value = df.value)
df.auditing.report = data.frame(text = NA)
my.l <- list(df.assets = df.assets,
df.liabilities = df.liabilities,
df.income = df.income,
df.cashflow = df.cashflow,
df.value = df.value,
df.assets.cons = df.assets.cons,
df.liabilities.cons = df.liabilities.cons,
df.income.cons = df.income.cons,
df.cashflow.cons = df.cashflow.cons,
df.value.cons = df.value.cons,
df.auditing.report = df.auditing.report)
return(my.l)
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.