code
stringlengths
1
13.8M
context("Tournaments") test_that("test get_tournaments for wrong input errors", { testthat::skip_if_offline() testthat::skip_on_cran() expect_error(squashinformr::get_tournaments(year = "2020", world_tour = TRUE)) expect_error(squashinformr::get_tournaments(year = 2020, world_tour = "TRUE")) expect_error(squashinformr::get_tournaments(year = 20, world_tour = TRUE)) expect_error(squashinformr::get_tournaments(year = -2020, world_tour = TRUE)) }) test_that("test get_tournaments for proper outputs", { testthat::skip_if_offline() testthat::skip_on_cran() df <- squashinformr::get_tournaments(year = 2021, world_tour = FALSE) expect_is(df, "data.frame") expect_is(df, "tbl") expect_equal(length(unique(na.omit(df$category))), 2) expect_is(sample(df$date, 1), "Date") expect_equal(year(sample(df$date, 1)), 2021) df <- squashinformr::get_tournaments(year = 2020, world_tour = TRUE) expect_is(df, "data.frame") expect_is(df, "tbl") expect_equal(length(unique(na.omit(df$category))), 2) expect_is(sample(df$date, 1), "Date") expect_equal(year(sample(df$date, 1)), 2020) })
test_that("get_bearer", { skip_on_cran() ORI_BEARER <- Sys.getenv("TWITTER_BEARER") Sys.setenv("TWITTER_BEARER" = "") expect_error(get_bearer()) Sys.setenv("TWITTER_BEARER" = "ABC") expect_error(get_bearer(), NA) expect_equal(get_bearer(), "ABC") Sys.setenv("TWITTER_BEARER" = ORI_BEARER) }) with_mock_api({ test_that("integration with get_all_tweets", { skip_if(!dir.exists("api.twitter.com")) emptydir <- academictwitteR:::.gen_random_dir() ORI_BEARER <- Sys.getenv("TWITTER_BEARER") Sys.setenv("TWITTER_BEARER" = "") expect_error(w1 <- capture_warnings(get_all_tweets(query = " Sys.setenv("TWITTER_BEARER" = "ABC") expect_error(w1 <- capture_warnings(get_all_tweets(query = " unlink(emptydir) Sys.setenv("TWITTER_BEARER" = ORI_BEARER) }) })
library(dash) app <- dash_app("test app") app %>% set_layout(div( h1('Hello Dash'), "Dash: A web application framework for R.", br(), "Time: ", as.character(Sys.time()), dccGraph( figure=list( data=list( list( x=list(1, 2, 3), y=list(4, 1, 2), type='bar', name='SF' ), list( x=list(1, 2, 3), y=list(2, 4, 5), type='bar', name='Montr\U{00E9}al' ) ), layout = list(title='Dash Data Visualization') ) )) ) app %>% run_app()
smd_stat<-function(x,z,xf,zf){ nvar=dim(x)[2] x1=x[z==1,] x0=x[z==0,] smd=numeric(nvar) where=numeric(nvar) smd=DiPs::check(xf,x,zf,z)[,4] smd }
library(gridGraphics) require(grDevices) matplot1 <- function() { matplot((-4:5)^2, main = "Quadratic") } sines <- outer(1:20, 1:4, function(x, y) sin(x / 20 * pi * y)) matplot2 <- function() { matplot(sines, pch = 1:4, type = "o", col = rainbow(ncol(sines))) } matplot3 <- function() { matplot(sines, type = "b", pch = 21:23, col = 2:5, bg = 2:5, main = "matplot(...., pch = 21:23, bg = 2:5)") } x <- 0:50/50 matplot4 <- function() { matplot(x, outer(x, 1:8, function(x, k) sin(k*pi * x)), ylim = c(-2,2), type = "plobcsSh", main= "matplot(,type = \"plobcsSh\" )") } matplot5 <- function() { matplot(x, outer(x, 1:4, function(x, k) sin(k*pi * x)), pch = letters[1:4], type = c("b","p","o")) } matplot6 <- function() { lends <- c("round","butt","square") matplot(matrix(1:12, 4), type="c", lty=1, lwd=10, lend=lends) text(cbind(2.5, 2*c(1,3,5)-.4), lends, col= 1:3, cex = 1.5) } table(iris$Species) iS <- iris$Species == "setosa" iV <- iris$Species == "versicolor" matplot7 <- function() { par(bg = "bisque") matplot(c(1, 8), c(0, 4.5), type = "n", xlab = "Length", ylab = "Width", main = "Petal and Sepal Dimensions in Iris Blossoms") matpoints(iris[iS,c(1,3)], iris[iS,c(2,4)], pch = "sS", col = c(2,4)) matpoints(iris[iV,c(1,3)], iris[iV,c(2,4)], pch = "vV", col = c(2,4)) legend(1, 4, c(" Setosa Petals", " Setosa Sepals", "Versicolor Petals", "Versicolor Sepals"), pch = "sSvV", col = rep(c(2,4), 2)) } nam.var <- colnames(iris)[-5] nam.spec <- as.character(iris[1+50*0:2, "Species"]) iris.S <- array(NA, dim = c(50,4,3), dimnames = list(NULL, nam.var, nam.spec)) for(i in 1:3) iris.S[,,i] <- data.matrix(iris[1:50+50*(i-1), -5]) matplot8 <- function() { matplot(iris.S[, "Petal.Length",], iris.S[, "Petal.Width",], pch = "SCV", col = rainbow(3, start = 0.8, end = 0.1), sub = paste(c("S", "C", "V"), dimnames(iris.S)[[3]], sep = "=", collapse= ", "), main = "Fisher's Iris Data") } plotdiff(expression(matplot1()), "matplot-1") plotdiff(expression(matplot2()), "matplot-2") plotdiff(expression(matplot3()), "matplot-3") plotdiff(expression(matplot4()), "matplot-4") plotdiff(expression(matplot5()), "matplot-5") plotdiff(expression(matplot6()), "matplot-6") plotdiff(expression(matplot7()), "matplot-7") plotdiff(expression(matplot8()), "matplot-8") plotdiffResult()
kfweOrd<-function(p,k=1,alpha=.01,ord=NULL,alpha.prime=alpha,J=qnbinom(alpha,k,alpha.prime),disp=TRUE,GD=FALSE){ if(!is.null(ord)){ o <- order(ord,decreasing=T) } else{o <- 1:length(p)} ps <- p[o] if(GD) alpha1 <- k*alpha.prime/(J+k) else alpha1 <- alpha.prime u<-cumsum(ps>alpha1) if(sum(u<=J)>0){ h <- rep(0,length(p)) h[1:max(which(u<=J))] <- 1 h[ps>alpha1] <- 0 if(sum(h)<k) h[(h==0)&&(ps<=alpha1)][1:min(sum((h==0)&&(ps<=alpha1)),k-1-sum(h))]=1 h[o] <- h } else{h <- rep(0,length(p))} if(disp==T) cat(paste("Ordered k-FWER procedure\n ",length(p)," tests, k=", k, ", alpha=",alpha,", individual alpha threshold=",round(alpha1,digits=7),"\n ",J," jumps allowed","\n ",sum(h)," rejections\n\n",sep="")) return(h==1)} kfweGR<-function(p,k=1,alpha=.01,disp=TRUE,SD=TRUE,const=10,alpha.prime=getAlpha(k=k,s=length(p),alpha=alpha,const=const)) { if(is.null(alpha.prime)) alpha.prime=getAlpha(k=k,s=length(p),alpha=alpha,const=50) rej <- rep(0,length(p)) rej[p<=alpha.prime] <- 1 n.rej <- sum(p<=alpha.prime) sd=((n.rej>=k)&(SD)) while (sd){ alpha.prime=getAlpha(k=k,s=length(p)-n.rej+k-1,alpha=alpha,const=const) rej[p<=alpha.prime] <- 1 sd=n.rej<sum(rej) n.rej=sum(p<=alpha.prime) } if(disp) cat(paste("Guo and Romano k-FWER ",switch(SD,"Step Down ",""),"procedure\n ",length(p)," tests, k=", k, ", alpha=",alpha, "\n ",round(alpha.prime,digits=7)," individual alpha threshold\n ",n.rej," rejections\n\n",sep="")) return(rej==1) } kfweLR <- function(p,k=1,alpha=0.01,disp=TRUE) { s <- length(p) sdconst <- rep(1,s) sdconst[1:min(k,s)] <- k*alpha/s if(s>k) sdconst[(k+1):s] <- k*alpha/(s+k-((k+1):s)) ps <- sort(p) u <- ps<sdconst res <- 0 if(any(u)) { w <- min(which(!u))-1 res <- ps[w]} p[which(p>res)] <- 1 p[p<=alpha] <- 0 h=(!p) if(disp) cat(paste("Lehmann e Romano k-FWER Step Down procedure\n ",length(p)," tests, k=", k, ", alpha=",alpha, "\n ",sum(h)," rejections\n\n",sep="")) return(h==1) } getAlpha <- function(s,k=1,alpha=.01,const=10){ start<-1E-8 stop<-1 delta<-1 while(delta>1E-8){ alphas<-start+((0:const)/(const))*(stop-start) temp<-round(pbinom(k-1,s,alphas,lower.tail=F),digits=7)-alpha temp2<-max(which(temp<=0)) alpha.prime<-alphas[temp2] start<-alpha.prime stop<-alphas[temp2+1] delta<-abs(temp[temp2]) } return(alpha.prime) }
text <- readLines(file.choose()) text docs = Corpus(VectorSource(text)) docs toSpace <- content_transformer(function (x , pattern ) gsub(pattern, " ", x)) docs <- tm_map(docs, toSpace, "/") docs <- tm_map(docs, toSpace, "@") docs <- tm_map(docs, toSpace, "\\|") docs <- tm_map(docs, content_transformer(tolower)) docs <- tm_map(docs, removeNumbers) docs <- tm_map(docs, removeWords, stopwords("english")) docs <- tm_map(docs, removeWords, c("blabla1", "blabla2")) docs <- tm_map(docs, removePunctuation) docs <- tm_map(docs, stripWhitespace) docs <- tm_map(docs, stemDocument) dtm <- TermDocumentMatrix(docs) m <- as.matrix(dtm) v <- sort(rowSums(m),decreasing=TRUE) d <- data.frame(word = names(v),freq=v) head(d, 10) set.seed(1234) wordcloud(words = d$word, freq = d$freq, min.freq = 1, max.words=200, random.order=FALSE, rot.per=0.35, colors=brewer.pal(8, "Dark2")) findFreqTerms(dtm, lowfreq = 4) findAssocs(dtm, terms = "freedom", corlimit = 0.3) head(d, 10) barplot(d[1:10,]$freq, las = 2, names.arg = d[1:10,]$word, col ="lightblue", main ="Most frequent words", ylab = "Word frequencies")
data(fremantle) fm.gev <- gev.fit(fremantle[,2]) gev.diag(fm.gev) gev.profxi(fm.gev, -0.5, 0.1) gev.prof(fm.gev, 100, 1.8, 2.2) covar <- cbind((fremantle[,1] - 1943)/46, fremantle[,3]) gev.fit(fremantle[,2], ydat = covar, mul = 1) gev.fit(fremantle[,2], ydat = covar, mul = 1, sigl = 1, siglink = exp) fm.gev2 <- gev.fit(fremantle[,2], ydat = covar, mul = c(1,2)) gev.diag(fm.gev2)
geojson_validate <- function(x, inform = FALSE, error = FALSE, greedy = FALSE) { UseMethod("geojson_validate") } geojson_validate.default <- function(x, inform = FALSE, error = FALSE, greedy = FALSE) { stop("no geojson_validate method for ", class(x), call. = FALSE) } geojson_validate.character <- function(x, inform = FALSE, error = FALSE, greedy = FALSE) { validate_geojson(json = x, verbose = inform, greedy = greedy, error = error) } geojson_validate.location <- function(x, inform = FALSE, error = FALSE, greedy = FALSE) { on.exit(close_conns()) res <- switch( attr(x, "type"), file = paste0(readLines(x), collapse = ""), url = jsonlite::minify(c_get(x)$parse("UTF-8")) ) validate_geojson(json = res, verbose = inform, greedy = greedy, error = error) } geojson_validate.geojson <- function(x, inform = FALSE, error = FALSE, greedy = FALSE) { validate_geojson(json = unclass(x), verbose = inform, greedy = greedy, error = error) } geojson_validate.json <- function(x, inform = FALSE, error = FALSE, greedy = FALSE) { validate_geojson(json = x, verbose = inform, greedy = greedy, error = error) }
stat_contour_fill <- function(mapping = NULL, data = NULL, geom = "polygon", position = "identity", ..., breaks = MakeBreaks(), bins = NULL, binwidth = NULL, global.breaks = TRUE, kriging = FALSE, na.fill = FALSE, show.legend = NA, inherit.aes = TRUE) { .check_wrap_param(list(...)) ggplot2::layer( data = data, mapping = mapping, stat = StatContourFill, geom = geom, position = position, show.legend = show.legend, inherit.aes = inherit.aes, params = list( na.rm = FALSE, na.fill = na.fill, breaks = breaks, bins = bins, binwidth = binwidth, global.breaks = global.breaks, kriging = kriging, ... ) ) } StatContourFill <- ggplot2::ggproto("StatContourFill", ggplot2::Stat, required_aes = c("x", "y", "z"), default_aes = ggplot2::aes(fill = ..level_mid.., order = ..level..), setup_params = function(data, params) { if (is.null(params$global) || isTRUE(params$global.breaks)) { params$breaks <- setup_breaks(data, breaks = params$breaks, bins = params$bins, binwidth = params$binwidth) } return(params) }, compute_layer = function(self, data, params, layout) { ggplot2:::check_required_aesthetics( self$required_aes, c(names(data), names(params)), ggplot2:::snake_class(self) ) params <- params[intersect(names(params), self$parameters())] args <- c(list(data = quote(data), scales = quote(scales)), params) data <- plyr::ddply(data, "PANEL", function(data) { scales <- layout$get_scales(data$PANEL[1]) tryCatch(do.call(self$compute_panel, args), error = function(e) { warningf("Computation failed in `%s()`:\n %s", ggplot2:::snake_class(self), e$message, call. = FALSE) data.frame() }) }) if (nrow(data) > 0) { data$level_d <- data$level class(data$level_d) <- c("metR_discretised", class(data$level_d)) } data }, compute_group = function(data, scales, bins = NULL, binwidth = NULL, breaks = scales::fullseq, complete = TRUE, na.rm = FALSE, xwrap = NULL, ywrap = NULL, na.fill = FALSE, global.breaks = TRUE, proj = NULL, kriging = FALSE) { data.table::setDT(data) if (isFALSE(global.breaks)) { breaks <- setup_breaks(data, breaks = breaks, bins = bins, binwidth = binwidth) } data <- data[!(is.na(y) | is.na(x)), ] if (!isFALSE(na.fill)) { complete.grid <- with(data, .is.regular_grid(x, y)) if (complete.grid == FALSE) { if (complete == FALSE) { warningf("The data must be a complete regular grid.", call. = FALSE) return(data.frame()) } else { data <- .complete(data, x, y) } } data <- .impute_data(data, na.fill) } else { data <- data[!is.na(z), ] } if (kriging) { check_packages("kriging", "kriging") pixels <- 40 data <- try(with(data, setNames(kriging::kriging(x, y, z, pixels = pixels)$map, c("x", "y", "z"))), silent = TRUE) if (inherits(data, "try-error")) { warningf("kriging failed. Perhaps the number of points is too small.") return(data.frame()) } data.table::setDT(data) } if (!is.null(xwrap)) { data <- suppressWarnings(WrapCircular(data, "x", xwrap)) } if (!is.null(ywrap)) { data <- suppressWarnings(WrapCircular(data, "y", ywrap)) } cont <- data.table::setDT(.contour_bands(data, breaks, complete = complete)) cont[, int.level := (level_high + level_low)/2] cont[, level_mid := int.level] cont[, nlevel := level_high/max(level_high)] if (!is.null(proj)) { if (is.function(proj)) { cont <- proj(cont) } else { if (is.character(proj)) { if (!requireNamespace("proj4", quietly = TRUE)) { stopf("Projection requires the proj4 package. Install it with 'install.packages(\"proj4\")'.") } cont <- data.table::copy(cont)[, c("x", "y") := proj4::project(list(x, y), proj, inverse = TRUE)][] } } } cont } ) .contour_bands <- function(data, breaks, complete = FALSE) { band <- level_high <- level_low <- NULL x_pos <- as.integer(factor(data$x, levels = sort(unique(data$x)))) y_pos <- as.integer(factor(data$y, levels = sort(unique(data$y)))) nrow <- max(y_pos) ncol <- max(x_pos) z <- matrix(NA_real_, nrow = nrow, ncol = ncol) z[cbind(y_pos, x_pos)] <- data$z cl <- isoband::isobands(x = sort(unique(data$x)), y = sort(unique(data$y)), z = z, levels_low = breaks[-length(breaks)], levels_high = breaks[-1]) if (length(cl) == 0) { warningf("Not possible to generate contour data.", call. = FALSE) return(data.frame()) } bands <- pretty_isoband_levels(names(cl)) cont <- data.table::rbindlist(lapply(cl, data.table::as.data.table), idcol = "band") cont[, c("level_low", "level_high") := data.table::tstrsplit(band, ":")] cont[, `:=`(level_low = as.numeric(level_low), level_high = as.numeric(level_high))] cont[, level := ordered(pretty_isoband_levels(band), bands)] cont[, piece := as.numeric(interaction(band))] cont[, group := factor(paste(data$group[1], sprintf("%03d", piece), sep = "-"))] cont[, .(level = level, level_low, level_high, x, y, piece, group, subgroup = id)] } pretty_isoband_levels <- function(isoband_levels, dig.lab = 3) { interval_low <- gsub(":.*$", "", isoband_levels) interval_high <- gsub("^[^:]*:", "", isoband_levels) label_low <- format(as.numeric(interval_low), digits = dig.lab, trim = TRUE) label_high <- format(as.numeric(interval_high), digits = dig.lab, trim = TRUE) sprintf("(%s, %s]", label_low, label_high) }
CompTTP <- function(patdata, cwm=matrix(c(0, 0.1, 0.25, 0.5, 1, 10, 0, 0.2, 0.5, 1, 2, 10, 0, 0.2, 0.4, 1, NA, NA), byrow=TRUE, nrow=3)) { toxdata <- matrix(as.numeric(as.matrix(patdata[ , c("Grade 0", "Grade 1", "Grade 2", "Grade 3", "Grade 4", "Grade 5")])),nrow=dim(cwm)[1]) epmat <- toxdata * cwm colmax <- apply(epmat, 1, max, na.rm=TRUE) ttp <- sqrt( t(colmax) %*% colmax ) if (max(colmax) > 1 ) dlt = 1 else dlt = 0 uplim <- apply(cwm, 1, max, na.rm=TRUE) maxttp <- sqrt( t(uplim) %*% uplim ) nttp <- ttp / (maxttp + 0.0001) result <- list(ttp, nttp, dlt) names(result) <- c("TTP", "nTTP", "DLT") return(result) }
expected <- eval(parse(text="12")); test(id=0, code={ argv <- eval(parse(text="list(FALSE, 5L, 12)")); .Internal(`pmax`(argv[[1]], argv[[2]], argv[[3]])); }, o=expected);
rm(list=ls(all=TRUE)) graphics.off() closeAllConnections() library(lubridate) met_path <- file.path('/Volumes/data/Model_Data/sites/PA-Bar/NGEETropics_source/') met_drivers <- read.csv(file = file.path(met_path,'BCI_met_drivers_2003_2016.csv'), header=T) met_output_path <- file.path('/Volumes/data/Model_Data/sites/PA-Bar/MAAT_drivers/') site_name <- "PA-Bar" pressure <- TRUE wind <- TRUE names(met_drivers) head(met_drivers) MAAT_Time <- lubridate::mdy_hm(as.character(met_drivers$Date_UTC_start), tz="UTC") date_range <- unique(lubridate::year(MAAT_Time)) head(MAAT_Time) met_yr_subset <- c(2015,2016) met_years <- lubridate::year(MAAT_Time) met_drivers$Time <- MAAT_Time met_drivers$PAR_umols_m2_s <- met_drivers$SR_W_m2.*2.114 met_drivers$Tair_degC <- met_drivers$Temp_o_C. met_drivers$RH_perc <- met_drivers$RH_. met_drivers$VPD_kPa <- PEcAn.data.atmosphere::get.vpd(met_drivers$RH_perc, met_drivers$Tair_degC) / 10 met_drivers$Prec_mm <- met_drivers$RA_mm_d/24 if (pressure){ met_drivers$Press_Pa <- udunits2::ud.convert(met_drivers$BP_hPa, "mmHg", "Pa") } else { met_drivers$Press_Pa <- rep(101325,length(met_drivers$Time)) } if (wind) { met_drivers$Windspeed_m_s <- met_drivers$WS_m_s } if (met_yr_subset[2]-met_yr_subset[1] != 0 ) { met_driver_subset <- subset(met_drivers, met_years %in% seq(met_yr_subset[1], met_yr_subset[2],1)) } else { met_driver_subset <- subset(met_drivers, met_years == met_yr_subset[1]) } met_years <- lubridate::year(met_driver_subset$Time) if (wind) { output_met_driver <- cbind.data.frame(Time = met_driver_subset$Time, Year = met_years, DOY = lubridate::yday(met_driver_subset$Time), Hour = strftime(met_driver_subset$Time,"%H:%M:%S", tz="UTC"), Tair_degC = met_driver_subset$Tair_degC, Prec_mm = met_driver_subset$Prec_mm, Atm_press_Pa = met_driver_subset$Press_Pa, RH_perc = met_driver_subset$RH_perc, VPD_kPa = met_driver_subset$VPD_kPa, PAR_umols_m2_s = met_driver_subset$PAR_umols_m2_s, Windspeed_m_s = met_driver_subset$Windspeed_m_s ) leaf_user_met_list <- list(leaf = list(env = list(time = "'Time'", temp = "'Tair_degC'", par = "'PAR_umols_m2_s'",vpd="'VPD_kPa'", atm_press="'Atm_press_Pa'",wind="'Windspeed_m_s'"))) } else { output_met_driver <- cbind.data.frame(Time = met_driver_subset$Time, Year = met_years, DOY = lubridate::yday(met_driver_subset$Time), Hour = strftime(met_driver_subset$Time,"%H:%M:%S", tz="UTC"), Tair_degC = met_driver_subset$Tair_degC, Prec_mm = met_driver_subset$Prec_mm, Atm_press_Pa = met_driver_subset$Press_Pa, RH_perc = met_driver_subset$RH_perc, VPD_kPa = met_driver_subset$VPD_kPa, PAR_umols_m2_s = met_driver_subset$PAR_umols_m2_s ) leaf_user_met_list <- list(leaf = list(env = list(time = "'Time'", temp = "'Tair_degC'", par = "'PAR_umols_m2_s'",vpd="'VPD_kPa'", atm_press="'Atm_press_Pa'"))) } leaf_user_met_xml <- PEcAn.settings::listToXml(leaf_user_met_list, "met_data_translator") write.csv(output_met_driver, file = file.path(met_output_path,paste0(site_name,"_NGEETropics_",met_yr_subset[1],"_", met_yr_subset[2],"_UTC.csv")),row.names = F) PREFIX_XML <- "<?xml version=\"1.0\"?>\n" XML::saveXML(leaf_user_met_xml, file = file.path(met_output_path, "leaf_user_met.xml"), indent = TRUE, prefix = PREFIX_XML)
sim.spatialDS <- function(N=1000, beta = 1, sigma=1, keep.all=FALSE, B=3, model=c("logit", "halfnorm"), lambda = B/3, useHabitat, show.plot=TRUE){ N <- round(N[1]) stopifNegative(sigma, allowZero=FALSE) stopifNegative(B, allowZero=FALSE) model <- match.arg(model) delta <- (2*B-0)/30 grx <- seq(delta/2, 2*B - delta/2, delta) gr <- expand.grid(grx, grx, KEEP.OUT.ATTRS = FALSE) if(missing(useHabitat)) { V <- exp(-e2dist(gr,gr)/lambda) x <- t(chol(V))%*%rnorm(900) } else { x <- useHabitat$Habitat if(is.null(x) || is.null(dim(x)) || dim(x)[2] != 1 || dim(x)[1] != 900) stop("useHabitat is not valid output from sim.spatialDS.") } probs <- exp(beta*x)/sum(exp(beta*x)) pixel.id <- sample(1:900, N, replace=TRUE, prob=probs) u1 <- gr[pixel.id,1] u2 <- gr[pixel.id,2] d <- sqrt((u1 - B)^2 + (u2-B)^2) N.real <- sum(d <= B) if(model=="halfnorm") p <- exp(-d*d/(2*sigma*sigma)) if(model=="logit") p<- 2*plogis( -d*d/(2*sigma*sigma) ) y <- rbinom(N, 1, p) if(show.plot) { op <- par(mar=c(3,3,3,6)) ; on.exit(par(op)) tryPlot <- try( { image(rasterFromXYZ(cbind(as.matrix(gr),x)), col=topo.colors(10), asp=1, bty='n') rect(0, 0, 2*B, 2*B) points(B, B, pch="+", cex=3) image_scale(x, col=topo.colors(10)) title("Extremely cool figure") points(u1, u2, pch = 16, col = c("black", "red")[y+1]) }, silent = TRUE) if(inherits(tryPlot, "try-error")) tryPlotError(tryPlot) } if(!keep.all){ u1 <- u1[y==1] u2 <- u2[y==1] d <- d[y==1] pixel.id <- pixel.id[y==1] } return(list(model=model, N=N, beta=beta, B=B, u1=u1, u2=u2, d=d, pixel.id=pixel.id, y=y, N.real=N.real, Habitat=x, grid=gr)) }
order.vine.level <- function(tree,help.env) { l.search<-get("lambda.search",help.env) id<-get("id",help.env) RVM<-get("RVM",help.env) len <- length(tree) base <- get("base",help.env) order.stat <- get("order.stat",help.env) pairs.old <- get("pairs.fit",help.env) q <- get("q",help.env) base <- get("base",help.env) val <- unique(c(pairs.old)) D.struc<-get("D.struc",help.env) count <- 1 pairs.new <- matrix(NA,1,2) for(i in 1:length(val)) { val.temp <- c() for(j in 1:dim(pairs.old)[1]) { if(any(pairs.old[j,]%in%val[i])) val.temp <- c(val.temp,j) } if(length(val.temp)==2) { if(count==1) { pairs.new[count,] <- val.temp count <- count+1 } else { pairs.new <- rbind(pairs.new,val.temp) count <- count+1 } } if(length(val.temp)>2) { for(j in 1:(length(val.temp)-1)) { for(k in (j+1):length(val.temp)) { if(count==1) { pairs.new[count,] <- c(val.temp[j],val.temp[k]) count <- count+1 } else { pairs.new <- rbind(pairs.new,c(val.temp[j],val.temp[k])) count <- count+1 } } } } } no.pairs <- dim(pairs.new)[1] mcoptions <- list(preschedule=FALSE) if(!is.null(RVM)) { cops<-get("cops",help.env)[[get("level",help.env)]] h.help <- foreach(i=1:no.pairs,.combine=rbind,.multicombine=TRUE,.options.multicore=mcoptions) %dopar% { UU <- c() help.j1 <- c(tree[[pairs.new[i,1]]]$j1,tree[[pairs.new[i,1]]]$j2,tree[[pairs.new[i,1]]]$D) help.j2 <- c(tree[[pairs.new[i,2]]]$j1,tree[[pairs.new[i,2]]]$j2,tree[[pairs.new[i,2]]]$D) j1 <- help.j1[!help.j1%in%help.j2] j2 <- help.j2[!help.j2%in%help.j1] D.help <- c(tree[[pairs.new[i,1]]]$D,tree[[pairs.new[i,2]]]$D) D <- sort(unique(c(help.j1[help.j1%in%help.j2],D.help))) c(j1,j2,D) } ind<-rep(NA,dim(cops)[1]) ind2<-c() h.help2<-cbind(h.help[,2],h.help[,1],h.help[,-c(1,2)]) for(k in 1:dim(h.help)[1]) { for(ll in 1:dim(cops)[1]) { if(identical(h.help[k,],cops[ll,])) ind[ll]<-k if(identical(h.help2[k,],cops[ll,])) { ind[ll]<-k ind2<-c(ind2,k) } } } if(!is.null(ind2)) pairs.new[ind2,]<-c(pairs.new[ind2,2],pairs.new[ind2,1]) pairs.new<-pairs.new[ind,] } no.pairs <- dim(pairs.new)[1] h1 <- foreach(i=1:no.pairs,.combine=c,.multicombine=TRUE,.options.multicore=mcoptions) %do%{ UU <- c() help.j1 <- c(tree[[pairs.new[i,1]]]$j1,tree[[pairs.new[i,1]]]$j2,tree[[pairs.new[i,1]]]$D) help.j2 <- c(tree[[pairs.new[i,2]]]$j1,tree[[pairs.new[i,2]]]$j2,tree[[pairs.new[i,2]]]$D) j1 <- help.j1[!help.j1%in%help.j2] j2 <- help.j2[!help.j2%in%help.j1] D.help <- c(tree[[pairs.new[i,1]]]$D,tree[[pairs.new[i,2]]]$D) D.index <- sort(unique(c(help.j1[help.j1%in%help.j2],D.help))) len.D<-length(D.index) p<-2+len.D index <- list(c(j1,D),c(j2,D)) if(p>(2+D.struc)) p<-2+D.struc for(j in 1:2) { indexi <- c(tree[[pairs.new[i,j]]]$j1,tree[[pairs.new[i,j]]]$j2,tree[[pairs.new[i,j]]]$D) index.ancestor <- c() for (ml in 1:length(tree)) { index.ancestor <- c(index.ancestor, all(indexi==(c(tree[[ml]]$j1,tree[[ml]]$j2,tree[[ml]]$D)))) } ancestor.knot <- tree[index.ancestor][[1]] if(ancestor.knot$cond&dim(ancestor.knot$U)[2]==3) diff.help<-c(TRUE,TRUE,FALSE) if(ancestor.knot$cond&dim(ancestor.knot$U)[2]==4) diff.help<-c(TRUE,TRUE,FALSE,FALSE) if(!ancestor.knot$cond) diff.help<-c(TRUE,TRUE) if(j==1) { diff.help[!(c(tree[[pairs.new[i,1]]]$j1,tree[[pairs.new[i,1]]]$j2)%in%j1)]<-FALSE } if(j==2) { diff.help[!(c(tree[[pairs.new[i,2]]]$j1,tree[[pairs.new[i,2]]]$j2)%in%j2)]<-FALSE } if(j==1&!ancestor.knot$cond) UU <-cbind(UU,hierarchbs.cond.cop(data=ancestor.knot$U,coef=ancestor.knot$v,intp=diff.help,d=get("d",help.env),D=get("D",help.env),p=2,q=q)) if(j==1&ancestor.knot$cond) UU <-cbind(UU,hierarchbs.cond.cop(data=ancestor.knot$U,coef=ancestor.knot$v,intp=diff.help,d=get("d2",help.env),D=get("D3",help.env),p=dim(ancestor.knot$U)[2],q=q)) if(j==2&!ancestor.knot$cond) UU <-cbind(UU,hierarchbs.cond.cop(data=ancestor.knot$U,coef=ancestor.knot$v,intp=diff.help,d=get("d",help.env),D=get("D",help.env),p=2,q=q)) if(j==2&ancestor.knot$cond) UU <-cbind(UU,hierarchbs.cond.cop(data=ancestor.knot$U,coef=ancestor.knot$v,intp=diff.help,d=get("d2",help.env),D=get("D3",help.env),p=dim(ancestor.knot$U)[2],q=q)) } if(any(UU>1)) UU[which(UU>1)] <-1 if(any(UU<0)) UU[which(UU<0)] <-0 if(!get("mod.cond",help.env)) { if(l.search) model.l<-lam.search(data=UU,d=get("d",help.env),D=get("D",help.env),lam=get("lam1.vec",help.env),m=get("m",help.env),max.iter=get("max.iter",help.env),q=get("q",help.env),cond=FALSE,id=get("id",help.env),l.lam=2,fix.lambda=get("fix.lambda",help.env),test.ind=get("test.ind",help.env)) if(!l.search) { model.l<-pencopula(data=UU,d=get("d",help.env),D=get("D",help.env),pen.order=get("m",help.env),base="B-spline",lambda=rep(get("lambda",help.env)[1],2),max.iter=get("max.iter",help.env),q=get("q",help.env),id=get("id",help.env),cond=FALSE,fix.lambda=get("fix.lambda",help.env),test.ind=get("test.ind",help.env)) } assign("indep",FALSE,model.l) cond<-FALSE prcomp.D<-NULL } if(get("mod.cond",help.env)) { print(paste("len.D=",len.D,".j1=",j1,".j2=",j2,".D=",D.index,sep="")) l.lam<-2+len.D if(l.lam>(2+D.struc)) l.lam<-2+D.struc if(len.D<=D.struc) { if(!get("cal.cond",help.env)) { if(get("test.cond",help.env)==1) pacotestOptions=pacotestset(testType='VI') if(get("test.cond",help.env)==2) pacotestOptions=pacotestset(testType='ECORR') if(get("test.cond",help.env)==2|get("test.cond",help.env)==1) test.res<-pacotest(UU,get("data",help.env)[,D.index],pacotestOptions)$pValue if(is.null(get("test.cond",help.env))) test.res<-0.051 if(test.res<0.05) { UU<-cbind(UU,get("data",help.env)[,D.index]) colnames(UU)<-NULL cond<-TRUE prcomp.D<-NULL if(l.search) model.l<-lam.search(data=UU,d=get("d2",help.env),D=get("D3",help.env),lam=get("lam2.vec",help.env),m=get("m",help.env),max.iter=get("max.iter",help.env),q=get("q",help.env),cond=TRUE,id=get("id",help.env),l.lam=l.lam,fix.lambda=get("fix.lambda",help.env),test.ind=get("test.ind",help.env)) if(!l.search) model.l<-pencopula(data=UU,d=get("d2",help.env),D=get("D3",help.env),pen.order=get("m",help.env),base="B-spline",lambda=rep(get("lambda",help.env)[2],l.lam),max.iter=get("max.iter",help.env),cond=TRUE,q=get("q",help.env),id=get("id",help.env),fix.lambda=get("fix.lambda",help.env),test.ind=get("test.ind",help.env)) assign("indep",FALSE,model.l) } else { prcomp.D<-NULL cond <- FALSE if(l.search) model.l<-lam.search(data=UU,d=get("d",help.env),D=get("D",help.env),lam=get("lam1.vec",help.env),m=get("m",help.env),max.iter=get("max.iter",help.env),q=get("q",help.env),cond=FALSE,id=get("id",help.env),l.lam=2,fix.lambda=get("fix.lambda",help.env),test.ind=get("test.ind",help.env)) if(!l.search) model.l<-pencopula(data=UU,d=get("d",help.env),D=get("D",help.env),pen.order=get("m",help.env),base="B-spline",lambda=rep(get("lambda",help.env)[1],2),max.iter=get("max.iter",help.env),cond=FALSE,q=get("q",help.env),id=id,fix.lambda=get("fix.lambda",help.env),test.ind=get("test.ind",help.env)) } } if(get("cal.cond",help.env)) { UU<-cbind(UU,get("data",help.env)[,D.index]) prcomp.D<-NULL l.lam<-2+len.D if(l.lam>(2+D.struc)) l.lam<-2+D.struc cond<-TRUE if(l.search) model.l<-lam.search(data=UU,d=get("d2",help.env),D=get("D3",help.env),lam=get("lam2.vec",help.env),m=get("m",help.env),max.iter=get("max.iter",help.env),q=get("q",help.env),cond=TRUE,id=get("id",help.env),l.lam=l.lam,fix.lambda=get("fix.lambda",help.env),test.ind=get("test.ind",help.env)) if(!l.search) model.l<-pencopula(data=UU,d=get("d2",help.env),D=get("D3",help.env),pen.order=get("m",help.env),base="B-spline",lambda=rep(get("lambda",help.env)[2],l.lam),max.iter=get("max.iter",help.env),cond=TRUE,q=get("q",help.env),id=get("id",help.env),fix.lambda=get("fix.lambda",help.env),test.ind=get("test.ind",help.env)) assign("indep",FALSE,model.l) } } if(len.D>D.struc) { if(!get("cal.cond",help.env)) { if(get("test.cond",help.env)==1) pacotestOptions=pacotestset(testType='VI') if(get("test.cond",help.env)==2) pacotestOptions=pacotestset(testType='ECORR') if(get("test.cond",help.env)==2|get("test.cond",help.env)==1) test.res<-pacotest(UU,get("data",help.env)[,D.index],pacotestOptions)$pValue if(is.null(get("test.cond",help.env))) test.res<-0.051 if(test.res<0.05) { pca.temp<-cal.pca(help.env,val=get("data",help.env)[,D.index]) prcomp.D<-pca.temp$prcomp.D UU<-cbind(UU,pca.temp$data.distr) colnames(UU) <- NULL cond<-TRUE if(l.search) model.l<-lam.search(data=UU,d=get("d2",help.env),D=get("D3",help.env),lam=get("lam2.vec",help.env),m=get("m",help.env),max.iter=get("max.iter",help.env),q=get("q",help.env),cond=TRUE,id=get("id",help.env),l.lam=l.lam,fix.lambda=get("fix.lambda",help.env),test.ind=get("test.ind",help.env)) if(!l.search) model.l<-pencopula(data=UU,d=get("d2",help.env),D=get("D3",help.env),pen.order=get("m",help.env),base="B-spline",lambda=rep(get("lambda",help.env)[2],l.lam),max.iter=get("max.iter",help.env),cond=TRUE,q=get("q",help.env),id=get("id",help.env),fix.lambda=get("fix.lambda",help.env),test.ind=get("test.ind",help.env)) } else { prcomp.D<-NULL cond <- FALSE if(l.search) model.l<-lam.search(data=UU,d=get("d",help.env),D=get("D",help.env),lam=get("lam1.vec",help.env),m=get("m",help.env),max.iter=get("max.iter",help.env),q=get("q",help.env),cond=FALSE,id=get("id",help.env),l.lam=2,fix.lambda=get("fix.lambda",help.env),test.ind=get("test.ind",help.env)) if(!l.search) model.l<-pencopula(data=UU,d=get("d",help.env),D=get("D",help.env),pen.order=get("m",help.env),base="B-spline",lambda=rep(get("lambda",help.env)[1],2),max.iter=get("max.iter",help.env),cond=FALSE,q=get("q",help.env),id=id,fix.lambda=get("fix.lambda",help.env),test.ind=get("test.ind",help.env)) } } if(get("cal.cond",help.env)) { pca.temp<-cal.pca(help.env,val=get("data",help.env)[,D.index]) UU<-cbind(UU,pca.temp$data.distr) colnames(UU) <- c() cond<-TRUE prcomp.D<-pca.temp$prcomp.D if(l.search) model.l<-lam.search(data=UU,d=get("d2",help.env),D=get("D3",help.env),lam=get("lam2.vec",help.env),m=get("m",help.env),max.iter=get("max.iter",help.env),q=get("q",help.env),cond=TRUE,id=get("id",help.env),l.lam=l.lam,fix.lambda=get("fix.lambda",help.env),test.ind=get("test.ind",help.env)) if(!l.search) model.l<-pencopula(data=UU,d=get("d2",help.env),D=get("D3",help.env),pen.order=get("m",help.env),base="B-spline",lambda=rep(get("lambda",help.env)[2],l.lam),max.iter=get("max.iter",help.env),cond=TRUE,q=get("q",help.env),id=get("id",help.env),fix.lambda=get("fix.lambda",help.env),test.ind=get("test.ind",help.env)) assign("indep",FALSE,model.l) } } } assign("prcomp.D",prcomp.D,model.l) model.l } if(dim(pairs.new)[1]==1) { assign("pairs.fit",pairs.new,help.env) assign("pairs.new",pairs.new,help.env) assign(paste("fit.level",get("level",help.env),sep=""),h1,help.env) } if(dim(pairs.new)[1]>1) { if(is.null(RVM)) { h <- foreach(i=1:no.pairs,.combine=rbind) %dopar% { c(pairs.new[i,],get(get("order.stat",help.env),h1[[i]])) } colnames(h) <- c("i","j","log.like") mat <- matrix(0,len,len) diag(mat) <- rep(0,len) for(i in 1:dim(pairs.new)[1]) { mat[pairs.new[i,1],pairs.new[i,2]] <- mat[pairs.new[i,2],pairs.new[i,1]] <- h[which(h[,1]==pairs.new[i,1] & h[,2]==pairs.new[i,2]),3] } } assign("pairs.new",pairs.new,help.env) assign(paste("fit.level",get("level",help.env),sep=""),h1,help.env) if(is.null(RVM)) { obj <- minimum.spanning.tree(graph.adjacency(mat,diag=FALSE,mode="lower",weighted=TRUE),algorithm="prim") pairs.fit <- get.edgelist(obj, names=TRUE) pairs.fit <- pairs.fit[order(pairs.fit[,1]),] } else pairs.fit<-pairs.new assign("pairs.fit",pairs.fit,help.env) } }
.checkrasterMemory <- function(cells,n=1) { cells <- ceiling(sqrt(cells)) canProcessInMemory(raster(nrows=cells, ncols=cells, xmn=0, xmx=cells,vals=NULL),n) } if (!isGeneric("entrogram")) { setGeneric("entrogram", function(x, width, cutoff,...) standardGeneric("entrogram")) } setMethod('entrogram', signature(x='RasterLayer'), function(x, width, cutoff, categorical, nc, dif, cloud=FALSE, s=NULL,stat,verbose=TRUE,...) { re <- res(x)[1] if (missing(verbose)) verbose <- TRUE if (missing(stat)) stat <- 'ELSA' else { stat <- toupper(stat) if (!stat %in% c('ELSA','EA','EC')) stop('stat should be either of "ELSA", "Ea", "Ec"!') } if (missing(cutoff)) cutoff<- sqrt((xmin(x)-xmax(x))^2+(ymin(x)-ymax(x))^2) / 3 if (missing(width)) width <- re else if (width < re) width <- re if (cutoff < width) stop("cutoff should be greater than width size") nlag <- ceiling(cutoff / width) n <- ncell(x) - cellStats(x,'countNA') if (is.null(s)) { if (!.checkrasterMemory(n,nlag)) { s <- c() for (i in (nlag-1):1) s <- c(s,.checkrasterMemory(n,i)) s <- which(s) if (length(s) > 0) { s <- (nlag - s[1]) / (2*nlag) s <- ceiling(n * s) s <- sampleRandom(x,s,cells=TRUE)[,1] } else { s <- 1 / (2 * nlag) s <- ceiling(n * s) while (!.checkrasterMemory(s,1)) s <- ceiling(s / 2) s <- sampleRandom(x,s,cells=TRUE)[,1] } } else { s <- (1:ncell(x))[which(!is.na(x[]))] } } else { if (!is.numeric(s)) stop("s argument should be an integer number or NULL!") while (!.checkrasterMemory(s[1],1)) s <- ceiling(s[1] * 0.8) if (s > n) s <- n s <- sampleRandom(x,s,cells=TRUE)[,1] } if (!missing(nc)) { if (missing(categorical)) { if (missing(dif)) categorical <- FALSE else { categorical <- TRUE if (verbose) cat("input data is considered categorical, and nc is ignored!\n") } } } else { if (missing(categorical) && !missing(dif)) categorical <- TRUE } if (missing(categorical) || !is.logical(categorical)) { if (.is.categorical(x)) { categorical <- TRUE if (verbose) cat("the input is considered as a categorical variable...\n") } else { categorical <- FALSE if (verbose) cat("the input is considered as a continuous variable...\n") } } if (!categorical && missing(nc)) { nc <- nclass(x) } else if (categorical) { classes <- unique(x) nc <- length(classes) } if (categorical) { if (missing(dif)) { dif <- rep(1,nc*nc) for (i in 1:nc) dif[(i-1)*nc+i] <-0 } else { dif <- .checkDif(dif,classes) } } if (!categorical) x <- categorize(x,nc) ncl <- ncol(x) nrw <- nrow(x) out <- new("Entrogram") out@width <- width out@cutoff <- cutoff if (cloud) { out@entrogramCloud <- matrix(NA,nrow=length(s),ncol=nlag) for (i in 1:nlag) { w <-.Filter(r=res(x)[1],d1=0,d2=i*width) w <- w[[2]] if (categorical) { if (is.null(stat) || stat == 'ELSA') out@entrogramCloud[,i] <- .Call('v_elsac_cell', as.integer(x[]), as.integer(ncl), as.integer(nrw), as.integer(nc), as.integer(w[,1]), as.integer(w[,2]),as.integer(classes),dif, as.integer(s), PACKAGE='elsa') else if (stat == 'EA') out@entrogramCloud[,i] <- .Call('v_elsac_cell_Ea', as.integer(x[]), as.integer(ncl), as.integer(nrw), as.integer(nc), as.integer(w[,1]), as.integer(w[,2]),as.integer(classes),dif, as.integer(s), PACKAGE='elsa') else if (stat == 'EC') out@entrogramCloud[,i] <- .Call('v_elsac_cell_Ec', as.integer(x[]), as.integer(ncl), as.integer(nrw), as.integer(nc), as.integer(w[,1]), as.integer(w[,2]),as.integer(classes),dif, as.integer(s), PACKAGE='elsa') } else { if (is.null(stat) || stat == 'ELSA') out@entrogramCloud[,i] <- .Call('v_elsa_cell', as.integer(x[]), as.integer(ncl), as.integer(nrw), as.integer(nc), as.integer(w[,1]), as.integer(w[,2]),as.integer(s), PACKAGE='elsa') else if (stat == 'EA') out@entrogramCloud[,i] <- .Call('v_elsa_cell_Ea', as.integer(x[]), as.integer(ncl), as.integer(nrw), as.integer(nc), as.integer(w[,1]), as.integer(w[,2]),as.integer(s), PACKAGE='elsa') else if (stat == 'EC') out@entrogramCloud[,i] <- .Call('v_elsa_cell_Ec', as.integer(x[]), as.integer(ncl), as.integer(nrw), as.integer(nc), as.integer(w[,1]), as.integer(w[,2]),as.integer(s), PACKAGE='elsa') } } out@entrogram <- data.frame(distance=seq(width,width*nlag,width) - (width/2),E=apply(out@entrogramCloud,2,mean,na.rm=TRUE)) } else { d <- seq(width,width*nlag,width) - (width/2) out@entrogram <- data.frame(distance=d,E=rep(NA,length(d))) for (i in 1:nlag) { w <-.Filter(r=res(x)[1],d1=0,d2=i*width)[[2]] if (categorical) { if (is.null(stat) || stat == 'ELSA') out@entrogram [i,2] <- mean(.Call('v_elsac_cell', as.integer(x[]), as.integer(ncl), as.integer(nrw), as.integer(nc), as.integer(w[,1]), as.integer(w[,2]),as.integer(classes),dif, as.integer(s), PACKAGE='elsa'),na.rm=TRUE) else if (stat == 'EA') out@entrogram [i,2] <- mean(.Call('v_elsac_cell_Ea', as.integer(x[]), as.integer(ncl), as.integer(nrw), as.integer(nc), as.integer(w[,1]), as.integer(w[,2]),as.integer(classes),dif, as.integer(s), PACKAGE='elsa'),na.rm=TRUE) else if (stat == 'EC') out@entrogram [i,2] <- mean(.Call('v_elsac_cell_Ec', as.integer(x[]), as.integer(ncl), as.integer(nrw), as.integer(nc), as.integer(w[,1]), as.integer(w[,2]),as.integer(classes),dif, as.integer(s), PACKAGE='elsa'),na.rm=TRUE) } else { if (is.null(stat) || stat == 'ELSA') out@entrogram [i,2] <- mean(.Call('v_elsa_cell', as.integer(x[]), as.integer(ncl), as.integer(nrw), as.integer(nc), as.integer(w[,1]), as.integer(w[,2]),as.integer(s), PACKAGE='elsa'),na.rm=TRUE) else if (stat == 'EA') out@entrogram [i,2] <- mean(.Call('v_elsa_cell_Ea', as.integer(x[]), as.integer(ncl), as.integer(nrw), as.integer(nc), as.integer(w[,1]), as.integer(w[,2]),as.integer(s), PACKAGE='elsa'),na.rm=TRUE) else if (stat == 'EC') out@entrogram [i,2] <- mean(.Call('v_elsa_cell_Ec', as.integer(x[]), as.integer(ncl), as.integer(nrw), as.integer(nc), as.integer(w[,1]), as.integer(w[,2]),as.integer(s), PACKAGE='elsa'),na.rm=TRUE) } } } out } ) setMethod('entrogram', signature(x='SpatialPolygonsDataFrame'), function(x, width, cutoff, categorical, nc, dif, zcol, cloud=FALSE, s=NULL,method,longlat,stat,verbose=TRUE,...) { n <- nrow(x) if (missing(verbose)) verbose <- TRUE if (missing(longlat)) longlat <- NULL if (missing(stat)) stat <- 'ELSA' else { stat <- toupper(stat) if (!stat %in% c('ELSA','EA','EC')) stop('stat should be either of "ELSA", "Ea", "Ec"!') } if (missing(cutoff)) cutoff<- sqrt((xmin(x)-xmax(x))^2+(ymin(x)-ymax(x))^2) / 3 if (missing(width)) width <- cutoff / 15 if (cutoff < width) stop("cutoff should be greater than width size") nlag <- ceiling(cutoff / width) if (missing(zcol)) { if (ncol(x@data) > 1) stop("zcol should be specified!") else zcol <- 1 } else if (is.character(zcol)) { w <- which(colnames(x@data) == zcol[1]) if (w == 0) stop('the specified variable in zcol does not exist in the data') zcol <- w } else if (is.numeric(zcol)) { zcol <- zcol[1] if (zcol > ncol(x@data)) stop('the zcol number is greater than the number of columns in data!') } else stop("zcol should be a character or a number!") if (missing(method)) method <- 'centroid' else { if (tolower(method)[1] %in% c('bnd','bound','boundary','bond','b')) method <- 'bound' else method <- 'centroid' } if (method == 'centroid') xy <- coordinates(x) else xy <- x x <- x@data[,zcol] if (!is.null(s) && is.numeric(s) && s < n) { x <- x[sample(n,s)] n <- length(n) } if (!missing(nc)) { if (missing(categorical)) { if (missing(dif)) categorical <- FALSE else { categorical <- TRUE if (verbose) cat("input data is considered categorical, and nc is ignored!\n") } } } else { if (missing(categorical) && !missing(dif)) categorical <- TRUE } if (missing(categorical) || !is.logical(categorical)) { if (.is.categorical(x)) { categorical <- TRUE if (verbose) cat("the input is considered as a categorical variable...\n") } else { categorical <- FALSE if (verbose) cat("the input is considered as a continuous variable...\n") } } if (!categorical && missing(nc)) { nc <- nclass(x) classes <- 1:nc } else if (categorical) { classes <- unique(x) nc <- length(classes) } if (categorical) { if (missing(dif)) { dif <- rep(1,nc*nc) for (i in 1:nc) dif[(i-1)*nc+i] <-0 } else { dif <- .checkDif(dif,classes) } } if (!categorical) x <- categorize(x,nc) out <- new("Entrogram") out@width <- width out@cutoff <- cutoff if (cloud) { out@entrogramCloud <- matrix(NA,nrow=n,ncol=nlag) for (i in 1:nlag) { d <- dneigh(xy,d1=0,d2=i*width,method = method,longlat = longlat)@neighbours if (categorical) { if (is.null(stat) || stat == 'ELSA') out@entrogramCloud[,i] <- .Call('v_elsac_vector', as.integer(x), d, as.integer(nc), as.integer(classes),dif, PACKAGE='elsa') else if (stat == 'EA') out@entrogramCloud[,i] <- .Call('v_elsac_vector_Ea', as.integer(x), d, as.integer(nc), as.integer(classes),dif, PACKAGE='elsa') else if (stat == 'EC') out@entrogramCloud[,i] <- .Call('v_elsac_vector_Ec', as.integer(x), d, as.integer(nc), as.integer(classes),dif, PACKAGE='elsa') } else { if (is.null(stat) || stat == 'ELSA') out@entrogramCloud[,i] <-.Call('v_elsa_vector', as.integer(x), d, as.integer(nc), PACKAGE='elsa') else if (stat == 'EA') out@entrogramCloud[,i] <-.Call('v_elsa_vector_Ea', as.integer(x), d, as.integer(nc), PACKAGE='elsa') else if (stat == 'EC') out@entrogramCloud[,i] <-.Call('v_elsa_vector_Ec', as.integer(x), d, as.integer(nc), PACKAGE='elsa') } } out@entrogram <- data.frame(distance=seq(width,width*nlag,width) - (width/2),E=apply(out@entrogramCloud,2,mean,na.rm=TRUE)) } else { d <- seq(width,width*nlag,width) - (width/2) out@entrogram <- data.frame(distance=d,E=rep(NA,length(d))) for (i in 1:nlag) { d <- dneigh(xy,d1=0,d2=i*width,method = method,longlat = longlat)@neighbours if (categorical) { if (is.null(stat) || stat == 'ELSA') out@entrogram [i,2] <- mean(.Call('v_elsac_vector', as.integer(x), d, as.integer(nc), as.integer(classes),dif, PACKAGE='elsa'),na.rm=TRUE) else if (stat == 'EA') out@entrogram [i,2] <- mean(.Call('v_elsac_vector_Ea', as.integer(x), d, as.integer(nc), as.integer(classes),dif, PACKAGE='elsa'),na.rm=TRUE) else if (stat == 'EC') out@entrogram [i,2] <- mean(.Call('v_elsac_vector_Ec', as.integer(x), d, as.integer(nc), as.integer(classes),dif, PACKAGE='elsa'),na.rm=TRUE) } else { if (is.null(stat) || stat == 'ELSA') out@entrogram [i,2] <- mean(.Call('v_elsa_vector', as.integer(x), d, as.integer(nc), PACKAGE='elsa'),na.rm=TRUE) else if (stat == 'EA') out@entrogram [i,2] <- mean(.Call('v_elsa_vector_Ea', as.integer(x), d, as.integer(nc), PACKAGE='elsa'),na.rm=TRUE) else if (stat == 'EC') out@entrogram [i,2] <- mean(.Call('v_elsa_vector_Ec', as.integer(x), d, as.integer(nc), PACKAGE='elsa'),na.rm=TRUE) } } } out } ) setMethod('entrogram', signature(x='SpatialPointsDataFrame'), function(x, width, cutoff, categorical, nc, dif, zcol, cloud=FALSE, s=NULL,longlat,stat,verbose=TRUE,...) { n <- nrow(x) if (missing(verbose)) verbose <- TRUE if (missing(stat)) stat <- 'ELSA' else { stat <- toupper(stat) if (!stat %in% c('ELSA','EA','EC')) stop('stat should be either of "ELSA", "Ea", "Ec"!') } if (missing(longlat)) longlat <- NULL if (missing(cutoff)) cutoff<- sqrt((xmin(x)-xmax(x))^2+(ymin(x)-ymax(x))^2) / 3 if (missing(width)) width <- cutoff / 15 if (cutoff < width) stop("cutoff should be greater than width size") nlag <- ceiling(cutoff / width) if (missing(zcol)) { if (ncol(x@data) > 1) stop("zcol should be specified!") else zcol <- 1 } else if (is.character(zcol)) { w <- which(colnames(x@data) == zcol[1]) if (w == 0) stop('the specified variable in zcol does not exist in the data') zcol <- w } else if (is.numeric(zcol)) { zcol <- zcol[1] if (zcol > ncol(x@data)) stop('the zcol number is greater than the number of columns in data!') } else stop("zcol should be a character or a number!") xy <- coordinates(x) x <- x@data[,zcol] if (!is.null(s) && is.numeric(s) && s < n) { x <- x[sample(n,s)] n <- length(n) } if (!missing(nc)) { if (missing(categorical)) { if (missing(dif)) categorical <- FALSE else { categorical <- TRUE if (verbose) cat("input data is considered categorical, and nc is ignored!\n") } } } else { if (missing(categorical) && !missing(dif)) categorical <- TRUE } if (missing(categorical) || !is.logical(categorical)) { if (.is.categorical(x)) { categorical <- TRUE if (verbose) cat("the input is considered as a categorical variable...\n") } else { categorical <- FALSE if (verbose) cat("the input is considered as a continuous variable...\n") } } if (!categorical && missing(nc)) { nc <- nclass(x) classes <- 1:nc } else if (categorical) { classes <- unique(x) nc <- length(classes) } if (categorical) { if (missing(dif)) { dif <- rep(1,nc*nc) for (i in 1:nc) dif[(i-1)*nc+i] <-0 } else { dif <- .checkDif(dif,classes) } } if (!categorical) x <- categorize(x,nc) out <- new("Entrogram") out@width <- width out@cutoff <- cutoff if (cloud) { out@entrogramCloud <- matrix(NA,nrow=n,ncol=nlag) for (i in 1:nlag) { d <- dneigh(xy,d1=0,d2=i*width,longlat = longlat)@neighbours if (categorical) { if (is.null(stat) || stat == 'ELSA') out@entrogramCloud[,i] <- .Call('v_elsac_vector', as.integer(x), d, as.integer(nc), as.integer(classes),dif, PACKAGE='elsa') else if (stat == 'EA') out@entrogramCloud[,i] <- .Call('v_elsac_vector_Ea', as.integer(x), d, as.integer(nc), as.integer(classes),dif, PACKAGE='elsa') else if (stat == 'EC') out@entrogramCloud[,i] <- .Call('v_elsac_vector_Ec', as.integer(x), d, as.integer(nc), as.integer(classes),dif, PACKAGE='elsa') } else { if (is.null(stat) || stat == 'ELSA') out@entrogramCloud[,i] <-.Call('v_elsa_vector', as.integer(x), d, as.integer(nc)) else if (stat == 'EA') out@entrogramCloud[,i] <-.Call('v_elsa_vector_Ea', as.integer(x), d, as.integer(nc)) else if (stat == 'EC') out@entrogramCloud[,i] <-.Call('v_elsa_vector_Ec', as.integer(x), d, as.integer(nc)) } } out@entrogram <- data.frame(distance=seq(width,width*nlag,width) - (width/2),E=apply(out@entrogramCloud,2,mean,na.rm=TRUE)) } else { d <- seq(width,width*nlag,width) - (width/2) out@entrogram <- data.frame(distance=d,E=rep(NA,length(d))) for (i in 1:nlag) { d <- dneigh(xy,d1=0,d2=i*width,longlat = longlat)@neighbours if (categorical) { if (is.null(stat) || stat == 'ELSA') out@entrogram [i,2] <- mean(.Call('v_elsac_vector', as.integer(x), d, as.integer(nc), as.integer(classes),dif, PACKAGE='elsa'),na.rm=TRUE) else if (stat == 'EA') out@entrogram [i,2] <- mean(.Call('v_elsac_vector_Ea', as.integer(x), d, as.integer(nc), as.integer(classes),dif, PACKAGE='elsa'),na.rm=TRUE) else if (stat == 'EC') out@entrogram [i,2] <- mean(.Call('v_elsac_vector_Ec', as.integer(x), d, as.integer(nc), as.integer(classes),dif, PACKAGE='elsa'),na.rm=TRUE) } else { if (is.null(stat) || stat == 'ELSA') out@entrogram [i,2] <- mean(.Call('v_elsa_vector', as.integer(x), d, as.integer(nc), PACKAGE='elsa'),na.rm=TRUE) else if (stat == 'EA') out@entrogram [i,2] <- mean(.Call('v_elsa_vector_Ea', as.integer(x), d, as.integer(nc), PACKAGE='elsa'),na.rm=TRUE) else if (stat == 'EC') out@entrogram [i,2] <- mean(.Call('v_elsa_vector_Ec', as.integer(x), d, as.integer(nc), PACKAGE='elsa'),na.rm=TRUE) } } } out } )
runmcmc_cp1_right <- function(data, iter, start.vals, prop_var, cp_prop_var, tol_edge = 50, warmup = 500, verbose = FALSE) { lognormal_ou_pdf <- function(x, mu, sigma, l) { n <- length(x) rho <- exp(-1/l) return(-n/2 * log(2 * pi) - n * log(sigma) - ((n - 1)/2) * log(1 - rho^2) - 1/2 * 1/(sigma^2 * (1 - rho^2)) * ((x[1] - mu[1])^2 + (x[n] - mu[n])^2 + (1 + rho^2) * sum((x[2:(n-1)] - mu[2:(n-1)])^2) - 2 * rho * sum((x[1:(n-1)] - mu[1:(n-1)]) * (x[2:n] - mu[2:n])))) } par <- list() par$sigma <- matrix(nrow = warmup + 1, ncol = 2) par$sigma[1,] <- start.vals$sigma par$l <- matrix(nrow = warmup + 1, ncol = 2) par$l[1,] <- start.vals$l par$cp <- matrix(nrow = warmup + 1, ncol = 1) par$cp[1,] <- start.vals$cp par$beta <- matrix(nrow = warmup + 1, ncol = 1) par$beta[1,] <- start.vals$beta par$intercept <- matrix(nrow = warmup + 1, ncol = 1) par$intercept[1,] <- start.vals$intercept interval <- range(data$x) sigma <- start.vals$sigma l <- start.vals$l cp <- start.vals$cp beta <- start.vals$beta intercept <- start.vals$intercept accept <- list() accept$gp_par <- matrix(data = c(0,0), nrow = 1, ncol = 2) accept$cp <- 0 for(i in 1:(warmup)) { xrange <- matrix(nrow = 2, ncol = 2) xrange[1,] <- c(interval[1], cp[1]) xrange[2,] <- c(cp[1], interval[2]) for(j in 1:2) { if(j == 2) { prop <- as.numeric(mvtnorm::rmvnorm(n = 1, mean = c(sigma[j], l[j], beta, intercept), sigma = prop_var[[j]])) } if(j == 1) { prop <- as.numeric(mvtnorm::rmvnorm(n = 1, mean = c(sigma[j], l[j]), sigma = prop_var[[j]])) } if(verbose == TRUE) { print(paste("iteration: ",i)) print(paste(j,"-th GP parameter proposal: ", prop)) } if(j == 2) { if(any(prop[1:2] <= 0) || prop[3] <= 0) { next } } if(j == 1) { if(any(prop <= 0)) { next } } temp_dat <- data[data$x <= xrange[j,2] & data$x > xrange[j,1], ]$y if(j == 2) { med <- median(data$x) mu <- ((data[data$x <= xrange[j,2] & data$x > xrange[j,1], ]$x - med)/(xrange[2,2] - xrange[1,1])) * beta[1] + intercept prop_mu <- ((data[data$x <= xrange[j,2] & data$x > xrange[j,1], ]$x - med) / (xrange[2,2] - xrange[1,1])) * prop[3] + prop[4] log_accept_ratio <- lognormal_ou_pdf(x = temp_dat, mu = prop_mu, sigma = prop[1], l = prop[2]) + dgamma(x = prop[2], shape = 3, rate = 5, log = TRUE) + dnorm(x = prop[3], mean = 0, sd = 10, log = TRUE) + dnorm(x = prop[4], mean = 0, sd = 10, log = TRUE) + dnorm(x = prop[1], mean = 0, sd = 1, log = TRUE) - (lognormal_ou_pdf(x = temp_dat, mu = mu, sigma = sigma[j], l = l[j]) + dgamma(x = l[j], shape = 3, rate = 5, log = TRUE) + dnorm(x = sigma[j], mean = 0, sd = 1, log = TRUE) + dnorm(x = beta, mean = 0, sd = 10, log = TRUE) + dnorm(x = intercept, mean = 0, sd = 10, log = TRUE)) if(log(runif(n = 1, min = 0, max = 1)) <= log_accept_ratio) { sigma[j] <- prop[1] l[j] <- prop[2] beta <- prop[3] intercept <- prop[4] } } if(j == 1) { log_accept_ratio <- lognormal_ou_pdf(x = temp_dat, mu = rep(0, times = length(temp_dat)), sigma = prop[1], l = prop[2]) + dgamma(x = prop[2], shape = 3, rate = 5, log = TRUE) + dnorm(x = prop[1], mean = 0, sd = 1, log = TRUE) - (lognormal_ou_pdf(x = temp_dat, mu = rep(0, times = length(temp_dat)), sigma = sigma[j], l = l[j]) + dgamma(x = l[j], shape = 3, rate = 5, log = TRUE) + dnorm(x = sigma[j], mean = 0, sd = 1, log = TRUE)) if(log(runif(n = 1, min = 0, max = 1)) <= log_accept_ratio) { sigma[j] <- prop[1] l[j] <- prop[2] } } } par$sigma[i + 1,] <- sigma par$l[i + 1,] <- l par$beta[i + 1,] <- beta par$intercept[i + 1,] <- intercept prop <- as.numeric(rnorm(n = 1, mean = cp, sd = sqrt(cp_prop_var))) if(verbose == TRUE) { print(paste(i,"-th CP proposal: ", prop)) } if(prop <= tol_edge + interval[1] || prop >= -tol_edge + interval[2]) { par$cp[i + 1,] <- cp } else{ temp_dat1 <- data[data$x <= xrange[1,2] & data$x > xrange[1,1], ]$y temp_dat2 <- data[data$x <= xrange[2,2] & data$x > xrange[2,1], ]$y prop_temp_dat1 <- data[data$x <= prop & data$x > interval[1], ]$y prop_temp_dat2 <- data[data$x < interval[2] & data$x > prop, ]$y med2 <- median(data$x) mu2 <- ((data[data$x <= xrange[2,2] & data$x > xrange[2,1], ]$x - med2) / (xrange[2,2] - xrange[1,1])) * beta[1] + intercept mu1 <- rep(0, times = length(temp_dat1)) prop_med2 <- median(data$x) prop_mu2 <- ((data[data$x > prop & data$x <= interval[2], ]$x - prop_med2) / (xrange[2,2] - xrange[1,1])) * beta[1] + intercept prop_mu1 <- rep(0, times = length(prop_temp_dat1)) log_accept_ratio <- lognormal_ou_pdf(x = prop_temp_dat1, mu = prop_mu1, sigma = sigma[1], l = l[1]) + lognormal_ou_pdf(x = prop_temp_dat2, mu = prop_mu2, sigma = sigma[2], l = l[2]) - (lognormal_ou_pdf(x = temp_dat1, mu = mu1, sigma = sigma[1], l = l[1]) + lognormal_ou_pdf(x = temp_dat2, mu = mu2, sigma = sigma[2], l = l[2])) if(log(runif(n = 1, min = 0, max = 1)) <= log_accept_ratio) { cp <- prop } } par$cp[i + 1,] <- cp } prop_var[[2]] <- 2.4^2 * var(cbind(par$sigma[round(warmup/2):warmup,2], par$l[round(warmup/2):warmup,2], par$beta[round(warmup/2):warmup,1], par$intercept[round(warmup/2):warmup,1])) / 4 + 1e-1 * diag(4) prop_var[[1]] <- 2.4^2 * var(cbind(par$sigma[round(warmup/2):warmup,1], par$l[round(warmup/2):warmup,1])) / 2 + 1e-1 * diag(2) cp_prop_var <- 2.4^2 * var(par$cp[round(warmup/2):warmup,]) + 1 lp <- numeric() lpost <- numeric() par <- list() par$sigma <- matrix(nrow = iter + 1, ncol = 2) par$sigma[1,] <- sigma par$l <- matrix(nrow = iter + 1, ncol = 2) par$l[1,] <- l par$beta <- matrix(nrow = iter + 1, ncol = 1) par$beta[1,] <- beta par$intercept <- matrix(nrow = iter + 1, ncol = 1) par$intercept[1,] <- intercept par$cp <- matrix(nrow = iter + 1, ncol = 1) par$cp[1,] <- cp for(i in 1:(iter)) { xrange <- matrix(nrow = 2, ncol = 2) xrange[1,] <- c(interval[1], cp[1]) xrange[2,] <- c(cp[1], interval[2]) for(j in 1:2) { if(j == 2) { prop <- as.numeric(mvtnorm::rmvnorm(n = 1, mean = c(sigma[j], l[j], beta, intercept), sigma = prop_var[[j]])) } if(j == 1) { prop <- as.numeric(mvtnorm::rmvnorm(n = 1, mean = c(sigma[j], l[j]), sigma = prop_var[[j]])) } if(verbose == TRUE) { print(paste("iteration: ",i)) print(paste(j,"-th GP parameter proposal: ", prop)) } if(j == 2) { if(any(prop[1:2] <= 0) || prop[3] <= 0) { next } } if(j == 1) { if(any(prop <= 0)) { next } } temp_dat <- data[data$x <= xrange[j,2] & data$x > xrange[j,1], ]$y if(j == 2) { med <- median(data$x) mu <- ((data[data$x <= xrange[j,2] & data$x > xrange[j,1], ]$x - med)/(xrange[2,2] - xrange[1,1])) * beta[1] + intercept prop_mu <- ((data[data$x <= xrange[j,2] & data$x > xrange[j,1], ]$x - med) / (xrange[2,2] - xrange[1,1])) * prop[3] + prop[4] log_accept_ratio <- lognormal_ou_pdf(x = temp_dat, mu = prop_mu, sigma = prop[1], l = prop[2]) + dgamma(x = prop[2], shape = 3, rate = 5, log = TRUE) + dnorm(x = prop[3], mean = 0, sd = 10, log = TRUE) + dnorm(x = prop[4], mean = 0, sd = 10, log = TRUE) + dnorm(x = prop[1], mean = 0, sd = 1, log = TRUE) - (lognormal_ou_pdf(x = temp_dat, mu = mu, sigma = sigma[j], l = l[j]) + dgamma(x = l[j], shape = 3, rate = 5, log = TRUE) + dnorm(x = sigma[j], mean = 0, sd = 1, log = TRUE) + dnorm(x = beta, mean = 0, sd = 10, log = TRUE) + dnorm(x = intercept, mean = 0, sd = 10, log = TRUE)) if(log(runif(n = 1, min = 0, max = 1)) <= log_accept_ratio) { accept$gp_par[1,j] <- accept$gp_par[1,j] + 1/iter sigma[j] <- prop[1] l[j] <- prop[2] beta <- prop[3] intercept <- prop[4] } } if(j == 1) { log_accept_ratio <- lognormal_ou_pdf(x = temp_dat, mu = rep(0, times = length(temp_dat)), sigma = prop[1], l = prop[2]) + dgamma(x = prop[2], shape = 3, rate = 5, log = TRUE) + dnorm(x = prop[1], mean = 0, sd = 1, log = TRUE) - (lognormal_ou_pdf(x = temp_dat, mu = rep(0, times = length(temp_dat)), sigma = sigma[j], l = l[j]) + dgamma(x = l[j], shape = 3, rate = 5, log = TRUE) + dnorm(x = sigma[j], mean = 0, sd = 1, log = TRUE)) if(log(runif(n = 1, min = 0, max = 1)) <= log_accept_ratio) { accept$gp_par[1,j] <- accept$gp_par[1,j] + 1/iter sigma[j] <- prop[1] l[j] <- prop[2] } } } par$sigma[i + 1,] <- sigma par$l[i + 1,] <- l par$beta[i + 1,] <- beta par$intercep[i + 1,] <- intercept prop <- as.numeric(rnorm(n = 1, mean = cp, sd = sqrt(cp_prop_var))) if(verbose == TRUE) { print(paste(i,"-th CP proposal: ", prop)) } if(prop <= tol_edge + interval[1] || prop >= -tol_edge + interval[2]) { par$cp[i + 1,] <- cp lp[i] <- (lognormal_ou_pdf(x = temp_dat1, mu = rep(0, times = length(temp_dat1)), sigma = sigma[1], l = l[1]) + lognormal_ou_pdf(x = temp_dat2, mu = rep(0, times = length(temp_dat2)), sigma = sigma[2], l = l[2])) lpost[i] <- lp[i] + dgamma(x = l[1], shape = 3, rate = 5, log = TRUE) + dnorm(x = sigma[1], mean = 0, sd = 1, log = TRUE) + dnorm(x = beta, mean = 0, sd = 10, log = TRUE) + dnorm(x = intercept, mean = 0, sd = 10, log = TRUE) + dgamma(x = l[2], shape = 3, rate = 5, log = TRUE) + dnorm(x = sigma[2], mean = 0, sd = 1, log = TRUE) } else{ temp_dat1 <- data[data$x <= xrange[1,2] & data$x > xrange[1,1], ]$y temp_dat2 <- data[data$x <= xrange[2,2] & data$x > xrange[2,1], ]$y prop_temp_dat1 <- data[data$x <= prop & data$x > interval[1], ]$y prop_temp_dat2 <- data[data$x < interval[2] & data$x > prop, ]$y med2 <- median(data$x) mu2 <- ((data[data$x <= xrange[2,2] & data$x > xrange[2,1], ]$x - med2) / (xrange[2,2] - xrange[1,1])) * beta[1] + intercept mu1 <- rep(0, times = length(temp_dat1)) prop_med2 <- median(data$x) prop_mu2 <- ((data[data$x > prop & data$x <= interval[2], ]$x - prop_med2) / (xrange[2,2] - xrange[1,1])) * beta[1] + intercept prop_mu1 <- rep(0, times = length(prop_temp_dat1)) log_accept_ratio <- lognormal_ou_pdf(x = prop_temp_dat1, mu = prop_mu1, sigma = sigma[1], l = l[1]) + lognormal_ou_pdf(x = prop_temp_dat2, mu = prop_mu2, sigma = sigma[2], l = l[2]) - (lognormal_ou_pdf(x = temp_dat1, mu = mu1, sigma = sigma[1], l = l[1]) + lognormal_ou_pdf(x = temp_dat2, mu = mu2, sigma = sigma[2], l = l[2])) lp[i] <- (lognormal_ou_pdf(x = temp_dat1, mu = rep(0, times = length(temp_dat1)), sigma = sigma[1], l = l[1]) + lognormal_ou_pdf(x = temp_dat2, mu = rep(0, times = length(temp_dat2)), sigma = sigma[2], l = l[2])) lpost[i] <- lp[i] + dgamma(x = l[1], shape = 3, rate = 5, log = TRUE) + dnorm(x = sigma[1], mean = 0, sd = 1, log = TRUE) + dnorm(x = beta, mean = 0, sd = 10, log = TRUE) + dnorm(x = intercept, mean = 0, sd = 10, log = TRUE) + dgamma(x = l[2], shape = 3, rate = 5, log = TRUE) + dnorm(x = sigma[2], mean = 0, sd = 1, log = TRUE) if(log(runif(n = 1, min = 0, max = 1)) <= log_accept_ratio) { cp <- prop accept$cp <- accept$cp + 1/iter lp[i] <- lognormal_ou_pdf(x = prop_temp_dat1, mu = rep(0, times = length(prop_temp_dat1)), sigma = sigma[1], l = l[1]) + lognormal_ou_pdf(x = prop_temp_dat2, mu = rep(0, times = length(prop_temp_dat2)), sigma = sigma[2], l = l[2]) lpost[i] <- lp[i] + dgamma(x = l[1], shape = 3, rate = 5, log = TRUE) + dnorm(x = sigma[1], mean = 0, sd = 1, log = TRUE) + dnorm(x = beta, mean = 0, sd = 10, log = TRUE) + dnorm(x = intercept, mean = 0, sd = 10, log = TRUE) + dgamma(x = l[2], shape = 3, rate = 5, log = TRUE) + dnorm(x = sigma[2], mean = 0, sd = 1, log = TRUE) } } par$cp[i + 1,] <- cp } return(list("parameters" = par, "accept" = accept, "lp" = lp, "lpost" = lpost,"gp_prop_var" = prop_var, "cp_prop_var" = cp_prop_var)) }
`cusp.subspacerss` <- function(predictors, dependents) { X <- predictors Y <- dependents qx <- if(is.qr(X)) {X} else {qr(X)} qy <- if(is.qr(Y)) {Y} else {qr(Y)} dx <- qx$rank dy <- qy$rank Qx <- qr.Q(qx)[,1:dx, drop=FALSE] Qy <- qr.Q(qy)[,1:dy, drop=FALSE] z <- svd(crossprod(Qx, Qy), nu=0) Ry <- qr.R(qy)[1:dy, 1:dy, drop=FALSE] rss <- (1-z$d^2) * colSums((t(Ry) %*% z$v)^2) list(rss = rss, cor=z$d) }
setMethodS3("writeLocusData", "CBS", function(fit, name=getSampleName(fit), tags=NULL, ext="tsv", path=NULL, sep="\t", nbrOfDecimals=4L, addHeader=TRUE, createdBy=NULL, overwrite=FALSE, skip=FALSE, ...) { name <- Arguments$getCharacter(name) tags <- Arguments$getCharacters(tags) ext <- Arguments$getCharacter(ext) path <- Arguments$getWritablePath(path) nbrOfDecimals <- Arguments$getInteger(nbrOfDecimals) fullname <- paste(c(name, tags), collapse=",") filename <- sprintf("%s.%s", fullname, ext) pathname <- Arguments$getWritablePathname(filename, path=path, mustNotExist=(!overwrite && !skip)) if (isFile(pathname)) { if (skip) { return(pathname) } file.remove(pathname) } pathnameT <- pushTemporaryFile(pathname) data <- getLocusData(fit, ...) if (!is.null(nbrOfDecimals)) { cols <- colnames(data) for (key in cols) { values <- data[[key]] if (is.double(values)) { values <- round(values, digits=nbrOfDecimals) data[[key]] <- values } } } if (addHeader) { sigmaDelta <- estimateStandardDeviation(fit, method="diff") createdOn <- format(Sys.time(), format="%Y-%m-%d %H:%M:%S %Z") hdr <- c( name=name, tags=tags, fullname=fullname, segmentationMethod=sprintf("segment() of %s", attr(fit, "pkgDetails")), nbrOfLoci=nbrOfLoci(fit), nbrOfSegments=nbrOfSegments(fit), joinSegments=fit$params$joinSegments, signalType=getSignalType(fit), sigmaDelta=sprintf("%.4f", sigmaDelta), createdBy=createdBy, createdOn=createdOn, nbrOfDecimals=nbrOfDecimals, nbrOfColumns=ncol(data), columnNames=paste(colnames(data), collapse=", "), columnClasses=paste(sapply(data, FUN=function(x) class(x)[1]), collapse=", ") ) bfr <- paste(" cat(file=pathnameT, bfr, sep="\n") } write.table(file=pathnameT, data, append=TRUE, quote=FALSE, sep=sep, row.names=FALSE, col.names=TRUE) pathname <- popTemporaryFile(pathnameT) pathname }, protected=TRUE) setMethodS3("writeSegments", "CBS", function(fit, name=getSampleName(fit), tags=NULL, ext="tsv", path=NULL, addHeader=TRUE, createdBy=NULL, sep="\t", nbrOfDecimals=4L, splitters=FALSE, overwrite=FALSE, skip=FALSE, ...) { name <- Arguments$getCharacter(name) tags <- Arguments$getCharacters(tags) ext <- Arguments$getCharacter(ext) path <- Arguments$getWritablePath(path) nbrOfDecimals <- Arguments$getInteger(nbrOfDecimals) fullname <- paste(c(name, tags), collapse=",") filename <- sprintf("%s.%s", fullname, ext) pathname <- Arguments$getWritablePathname(filename, path=path, mustNotExist=(!overwrite && !skip)) if (isFile(pathname)) { if (skip) { return(pathname) } file.remove(pathname) } pathnameT <- pushTemporaryFile(pathname) sampleName <- getSampleName(fit) data <- getSegments(fit, ..., splitters=splitters) if (!is.null(nbrOfDecimals)) { cols <- tolower(colnames(data)) isInt <- (regexpr("chromosome|start|end|nbrofloci", cols) != -1) cols <- which(isInt) for (cc in cols) { values <- data[[cc]] if (is.double(values)) { values <- round(values, digits=0) data[[cc]] <- values } } cols <- tolower(colnames(data)) isInt <- (regexpr("chromosome|start|end|nbrofloci", cols) != -1) isLog <- (regexpr("call", cols) != -1) isDbl <- (!isInt & !isLog) cols <- which(isDbl) for (kk in cols) { values <- data[[kk]] if (is.double(values)) { values <- round(values, digits=nbrOfDecimals) data[[kk]] <- values } } } if (addHeader) { sigmaDelta <- estimateStandardDeviation(fit, method="diff") createdOn <- format(Sys.time(), format="%Y-%m-%d %H:%M:%S %Z") hdr <- c( name=name, tags=tags, fullname=fullname, segmentationMethod=sprintf("segment() of %s", attr(fit, "pkgDetails")), nbrOfLoci=nbrOfLoci(fit), nbrOfSegments=nbrOfSegments(fit), joinSegments=fit$params$joinSegments, signalType=getSignalType(fit), sigmaDelta=sprintf("%.4f", sigmaDelta), createdBy=createdBy, createdOn=createdOn, nbrOfDecimals=nbrOfDecimals, nbrOfColumns=ncol(data), columnNames=paste(colnames(data), collapse=", "), columnClasses=paste(sapply(data, FUN=function(x) class(x)[1]), collapse=", ") ) bfr <- paste(" cat(file=pathnameT, bfr, sep="\n") } write.table(file=pathnameT, data, append=TRUE, quote=FALSE, sep=sep, row.names=FALSE, col.names=TRUE) pathname <- popTemporaryFile(pathnameT) pathname })
Y_to_E<-function(N, NE, directed, Y) { E<-matrix(NaN,NE,2) ans<-.C("Y_to_E", NAOK=TRUE, N=as.integer(N), directed=as.integer(directed), Y=as.numeric(t(Y)), E=as.integer(t(E))) return(t(matrix(ans$E,2))) } Y_to_nonE<-function(N, NnonE, directed, Y) { nonE<-matrix(0, NnonE, 2) ans<-.C("Y_to_nonE", NAOK=TRUE, N=as.integer(N), directed=as.integer(directed), Y=as.numeric(t(Y)), nonE=as.integer(t(nonE))) return(t(matrix(ans$nonE,2))) } Y_to_M<-function(N, NM, directed, Y) { M<-matrix(0, NM, 2) ans<-.C("Y_to_M", NAOK=TRUE, N=as.integer(N), directed=as.integer(directed), Y=as.numeric(t(Y)), M=as.integer(t(M))) return(t(matrix(ans$M,2))) } E_to_Y<-function(N, NE, directed, E) { Y<-matrix(0,N,N) ans<-.C("E_to_Y", NAOK=TRUE, N=as.integer(N), NE=as.integer(NE), directed=as.integer(directed), E=as.integer(t(E)), Y=as.numeric(t(Y))) return(matrix(ans$Y,N)) } hops_to_hopslist<-function(hops,diam,N) { hopslist<-matrix(0,N,1+diam+N) for (i in 1:N) { tmp<-sort(hops[i,],index=1) for (h in 0:diam) hopslist[i,1+h]<-sum(tmp$x==h) hopslist[i,(2+diam):ncol(hopslist)]<-tmp$ix } return(hopslist) }
library(reticulate) eval <- tryCatch({ config <- py_config() numeric_version(config$version) >= "3.8" && py_numpy_available() }, error = function(e) FALSE) knitr::opts_chunk$set( collapse = TRUE, comment = " eval = eval ) library(reticulate) if (TRUE) { cat("This is one expression. \n") cat("This is another expression. \n") } library(reticulate) l <- r_to_py(list(1, 2, 3)) it <- as_iterator(l) iter_next(it) iter_next(it) iter_next(it) iter_next(it, completed = "StopIteration") my_function <- function(name = "World") { cat("Hello", name, "\n") } my_function() my_function("Friend") library(reticulate) py$a_strict_Python_function(3) py$a_strict_Python_function(3L) py$a_strict_Python_function(as.integer(3))
setMethodS3("calculateResidualSet", "ProbeLevelModel", function(this, units=NULL, force=FALSE, ..., verbose=FALSE) { qsort <- function(x) { sort.int(x, index.return=TRUE, method="quick") } verbose <- Arguments$getVerbose(verbose) if (verbose) { pushState(verbose) on.exit(popState(verbose)) } ces <- getChipEffectSet(this) if (inherits(ces, "CnChipEffectSet")) { if (ces$combineAlleles) { throw("calculateResidualSet() does not yet support chip effects for which allele A and allele B have been combined.") } } paf <- getProbeAffinityFile(this) nbrOfArrays <- length(ces) verbose && enter(verbose, "Calculating PLM residuals") ds <- getDataSet(this) if (is.null(ds)) { throw("No data set specified for PLM: ", getFullName(this)) } calculateEps <- getCalculateResidualsFunction(this) cdf <- getCdf(ds) if (is.null(units)) { nbrOfUnits <- nbrOfUnits(cdf) } else { nbrOfUnits <- length(units) } verbose && printf(verbose, "Number of units: %d\n", nbrOfUnits) cdfData <- NULL chipType <- getChipType(cdf) key <- list(method="calculateResidualSet", class=class(this)[1], chipType=chipType, params=getParameters(this), units=units) dirs <- c("aroma.affymetrix", chipType) if (!force) { cdfData <- loadCache(key, dirs=dirs) if (!is.null(cdfData)) { names(cdfData) <- gsub("cells2", "ceCells", names(cdfData), fixed=TRUE) verbose && cat(verbose, "Found indices cached on file") } } if (is.null(cdfData)) { units0 <- units if (is.null(units)) { units <- seq_len(nbrOfUnits(cdf)) } nbrOfUnits <- length(units) unitChunks <- splitInChunks(units, chunkSize=100e3) cdfData <- list(unitGroupSizes=NULL, cells=NULL, ceCells=NULL) for (kk in seq_along(unitChunks)) { verbose && enter(verbose, sprintf("Chunk units <- unitChunks[[kk]] verbose && enter(verbose, "Retrieving CDF cell indices") cdfUnits <- getCellIndices(this, units=units, verbose=less(verbose)) names(cdfUnits) <- NULL; gc <- gc() verbose && exit(verbose) verbose && enter(verbose, "Calculate group sizes") unitGroupSizes <- .applyCdfGroups(cdfUnits, lapply, FUN=function(group) { length(.subset2(group, 1)) }) unitGroupSizes <- unlist(unitGroupSizes, use.names=FALSE) verbose && str(verbose, unitGroupSizes) gc <- gc() verbose && print(verbose, gc) verbose && exit(verbose) cells <- unlist(cdfUnits, use.names=FALSE) cdfUnits <- NULL gc <- gc() verbose && enter(verbose, "Retrieving CDF cell indices for chip effects") cdfUnits <- getCellIndices(ces, units=units, verbose=less(verbose)) ceCells <- unlist(cdfUnits, use.names=FALSE) verbose && exit(verbose) cdfUnits <- NULL; cdfData$unitGroupSizes <- c(cdfData$unitGroupSizes, unitGroupSizes) cdfData$cells <- c(cdfData$cells, cells) cdfData$ceCells <- c(cdfData$ceCells, ceCells) verbose && str(verbose, cdfData) unitGroupSizes <- cells <- ceCells <- NULL gc <- gc() verbose && print(verbose, gc) verbose && exit(verbose) } gc <- gc() verbose && print(verbose, gc) units <- units0 units0 <- NULL verbose && enter(verbose, "Saving to file cache") saveCache(cdfData, key=key, dirs=dirs) gc <- gc() verbose && print(verbose, gc) verbose && exit(verbose) } verbose && cat(verbose, "CDF related data cached on file:") unitGroupSizes <- cdfData$unitGroupSizes verbose && cat(verbose, "unitGroupSizes:") verbose && str(verbose, unitGroupSizes) cells <- cdfData$cells verbose && cat(verbose, "cells:") verbose && str(verbose, cells) ceCells <- cdfData$ceCells verbose && cat(verbose, "ceCells:") verbose && str(verbose, ceCells) cdfData <- NULL gc <- gc() verbose && print(verbose, gc) if (!identical(length(unitGroupSizes), length(ceCells))) { throw("Internal error: 'unitGroupSizes' and 'ceCells' are of different lengths: ", length(unitGroupSizes), " != ", length(ceCells)) } o <- qsort(cells) cells <- o$x o <- o$ix oinv <- qsort(o)$ix gc <- gc() verbose && print(verbose, gc) path <- getPath(this) phi <- NULL for (kk in seq_along(ds)) { df <- ds[[kk]] cef <- ces[[kk]] verbose && enter(verbose, sprintf("Array filename <- sprintf("%s,residuals.CEL", getFullName(df)) pathname <- Arguments$getWritablePathname(filename, path=path) pathname <- AffymetrixFile$renameToUpperCaseExt(pathname) verbose && cat(verbose, "Pathname: ", pathname) if (!force && isFile(pathname)) { verbose && cat(verbose, "Already calculated.") verbose && exit(verbose) next } verbose && enter(verbose, "Retrieving probe intensity data") y <- getData(df, indices=cells, fields="intensities")$intensities[oinv] verbose && exit(verbose) if (is.null(phi)) { verbose && enter(verbose, "Retrieving probe-affinity estimates") phi <- getData(paf, indices=cells, fields="intensities")$intensities[oinv] verbose && exit(verbose) } if (length(y) != length(phi)) { throw("Internal error: 'y' and 'phi' differ in lengths: ", length(y), " != ", length(phi)) } verbose && enter(verbose, "Retrieving chip-effect estimates") theta <- getData(cef, indices=ceCells, fields="intensities")$intensities theta <- rep(theta, times=unitGroupSizes) verbose && exit(verbose) if (length(theta) != length(phi)) { throw("Internal error: 'theta' and 'phi' differ in lengths: ", length(theta), " != ", length(phi)) } verbose && enter(verbose, "Calculating residuals") yhat <- phi * theta if (length(yhat) != length(y)) { throw("Internal error: 'yhat' and 'y' differ in lengths: ", length(yhat), " != ", length(y)) } eps <- calculateEps(y, yhat); verbose && str(verbose, eps) if (length(eps) != length(y)) { throw("Internal error: 'eps' and 'y' differ in lengths: ", length(eps), " != ", length(y)) } verbose && exit(verbose) y <- yhat <- theta <- NULL eps <- eps[o] gc <- gc() verbose && print(verbose, gc) verbose && enter(verbose, "Storing residuals") isFile <- (force && isFile(pathname)) pathnameT <- pushTemporaryFile(pathname, isFile=isFile, verbose=verbose) tryCatch({ verbose && enter(verbose, "Creating empty CEL file for results, if missing") createFrom(df, filename=pathnameT, path=NULL, methods="create", clear=TRUE, verbose=less(verbose)) verbose && exit(verbose) verbose && enter(verbose, "Writing residuals") .updateCel(pathnameT, indices=cells, intensities=eps) verbose && exit(verbose) }, interrupt = function(intr) { verbose && print(verbose, intr) file.remove(pathnameT) }, error = function(ex) { verbose && print(verbose, ex) file.remove(pathnameT) }) popTemporaryFile(pathnameT, verbose=verbose) dfZ <- getChecksumFile(pathname) verbose && exit(verbose) eps <- NULL gc <- gc() verbose && print(verbose, gc) verbose && exit(verbose) } cells <- phi <- unitGroupSizes <- NULL gc <- gc() verbose && print(verbose, gc) cdf <- getCdf(ds) rs <- ResidualSet$byPath(path, cdf=cdf, ...) verbose && exit(verbose) invisible(rs) }, protected=TRUE) setMethodS3("getCalculateResidualsFunction", "ProbeLevelModel", function(static, ...) { function(y, yhat) { y-yhat } }, static=TRUE, protected=TRUE)
"ma_r_ad.int_uvdrr" <- function(x){ barebones <- x$barebones ad_obj_x <- x$ad_obj_x ad_obj_y <- x$ad_obj_y correct_rxx <- x$correct_rxx correct_ryy <- x$correct_ryy residual_ads <- x$residual_ads cred_level <- x$cred_level cred_method <- x$cred_method var_unbiased <- x$var_unbiased flip_xy <- x$flip_xy decimals <- x$decimals k <- barebones[,"k"] N <- barebones[,"N"] mean_rxyi <- barebones[,"mean_r"] var_r <- barebones[,"var_r"] var_e <- barebones[,"var_e"] ci_xy_i <- barebones[,grepl(x = colnames(barebones), pattern = "CI")] se_r <- barebones[,"se_r"] ad_obj_x <- prepare_ad_int(ad_obj = ad_obj_x, residual_ads = residual_ads, decimals = decimals) ad_obj_y <- prepare_ad_int(ad_obj = ad_obj_y, residual_ads = residual_ads, decimals = decimals) if(!correct_rxx) ad_obj_x$qxa_irr <- ad_obj_x$qxi_irr <- ad_obj_x$qxa_drr <- ad_obj_x$qxi_drr <- data.frame(Value = 1, Weight = 1, stringsAsFactors = FALSE) if(!correct_ryy) ad_obj_y$qxa_irr <- ad_obj_y$qxi_irr <- ad_obj_y$qxa_drr <- ad_obj_y$qxi_drr <- data.frame(Value = 1, Weight = 1, stringsAsFactors = FALSE) if(flip_xy){ .ad_obj_x <- ad_obj_y .ad_obj_y <- ad_obj_x }else{ .ad_obj_x <- ad_obj_x .ad_obj_y <- ad_obj_y } .mean_qxa <- wt_mean(x = .ad_obj_x$qxa_drr$Value, wt = .ad_obj_x$qxa_drr$Weight) .mean_ux <- wt_mean(x = .ad_obj_x$ux$Value, wt = .ad_obj_x$ux$Weight) .mean_qyi <- wt_mean(x = .ad_obj_y$qxi_irr$Value, wt = .ad_obj_y$qxi_irr$Weight) .mean_qya <- NULL for(i in 1:length(mean_rxyi)).mean_qya[i] <- wt_mean(x = estimate_ryya(ryyi = .ad_obj_y$qxi_irr$Value^2, rxyi = mean_rxyi[i], ux = .mean_ux)^.5, wt = .ad_obj_y$qxi_irr$Weight) ad_list <- list(.qxa = .ad_obj_x$qxa_drr, .qyi = .ad_obj_y$qxi_irr, .ux = .ad_obj_x$ux) art_grid <- create_ad_array(ad_list = ad_list, name_vec = names(ad_list)) .qxa <- art_grid$.qxa .qyi <- art_grid$.qyi .ux <- art_grid$.ux wt_vec <- art_grid$wt mean_rtpa <- .correct_r_uvdrr(rxyi = mean_rxyi, qxa = .mean_qxa, qyi = .mean_qyi, ux = .mean_ux) ci_tp <- .correct_r_uvdrr(rxyi = ci_xy_i, qxa = .mean_qxa, qyi = .mean_qyi, ux = .mean_ux) var_art <- apply(t(mean_rtpa), 2, function(x){ wt_var(x = .attenuate_r_uvdrr(rtpa = x, qxa = .qxa, qyi = .qyi, ux = .ux), wt = wt_vec, unbiased = var_unbiased) }) var_pre <- var_e + var_art var_res <- var_r - var_pre var_rho_tp <- estimate_var_rho_int_uvdrr(mean_rxyi = mean_rxyi, mean_rtpa = mean_rtpa, mean_qxa = .mean_qxa, mean_qyi = .mean_qyi, mean_ux = .mean_ux, var_res = var_res) .mean_rxpa <- mean_rtpa * .mean_qxa .ci_xp <- ci_tp * .mean_qxa .var_rho_xp <- var_rho_tp * .mean_qxa^2 .mean_rtya <- mean_rtpa * .mean_qya .ci_ty <- ci_tp * .mean_qya .var_rho_ty <- var_rho_tp * .mean_qya^2 sd_r <- var_r^.5 sd_e <- var_e^.5 sd_art <- var_art^.5 sd_pre <- var_pre^.5 sd_res <- var_res^.5 sd_rho_tp <- var_rho_tp^.5 var_r_tp <- estimate_var_rho_int_uvdrr(mean_rxyi = mean_rxyi, mean_rtpa = mean_rtpa, mean_qxa = .mean_qxa, mean_qyi = .mean_qyi, mean_ux = .mean_ux, var_res = var_r) var_e_tp <- estimate_var_rho_int_uvdrr(mean_rxyi = mean_rxyi, mean_rtpa = mean_rtpa, mean_qxa = .mean_qxa, mean_qyi = .mean_qyi, mean_ux = .mean_ux, var_res = var_e) var_art_tp <- estimate_var_rho_int_uvdrr(mean_rxyi = mean_rxyi, mean_rtpa = mean_rtpa, mean_qxa = .mean_qxa, mean_qyi = .mean_qyi, mean_ux = .mean_ux, var_res = var_art) var_pre_tp <- estimate_var_rho_int_uvdrr(mean_rxyi = mean_rxyi, mean_rtpa = mean_rtpa, mean_qxa = .mean_qxa, mean_qyi = .mean_qyi, mean_ux = .mean_ux, var_res = var_pre) se_r_tp <- estimate_var_rho_int_uvdrr(mean_rxyi = mean_rxyi, mean_rtpa = mean_rtpa, mean_qxa = .mean_qxa, mean_qyi = .mean_qyi, mean_ux = .mean_ux, var_res = se_r^2)^.5 .var_r_xp <- var_r_tp * .mean_qxa^2 .var_e_xp <- var_e_tp * .mean_qxa^2 .var_art_xp <- var_art_tp * .mean_qxa^2 .var_pre_xp <- var_pre_tp * .mean_qxa^2 .se_r_xp <- se_r_tp * .mean_qxa .var_r_ty <- var_r_tp * .mean_qya^2 .var_e_ty <- var_e_tp * .mean_qya^2 .var_art_ty <- var_art_tp * .mean_qya^2 .var_pre_ty <- var_pre_tp * .mean_qya^2 .se_r_ty <- se_r_tp * .mean_qya if(flip_xy){ correct_meas_y <- !(all(.qxa == 1)) correct_meas_x <- !(all(.qyi == 1)) correct_drr <- !(all(.ux == 1)) mean_rxpa <- .mean_rtya ci_xp <- .ci_ty var_rho_xp <- .var_rho_ty mean_rtya <- .mean_rxpa ci_ty <- .ci_xp var_rho_ty <- .var_rho_xp var_r_xp <- .var_r_ty var_e_xp <- .var_e_ty var_art_xp <- .var_art_ty var_pre_xp <- .var_pre_ty se_r_xp <- .se_r_ty var_r_ty <- .var_r_xp var_e_ty <- .var_e_xp var_art_ty <- .var_art_xp var_pre_ty <- .var_pre_xp se_r_ty <- .se_r_xp }else{ correct_meas_x <- !(all(.qxa == 1)) correct_meas_y <- !(all(.qyi == 1)) correct_drr <- !(all(.ux == 1)) mean_rxpa <- .mean_rxpa ci_xp <- .ci_xp var_rho_xp <- .var_rho_xp mean_rtya <- .mean_rtya ci_ty <- .ci_ty var_rho_ty <- .var_rho_ty var_r_xp <- .var_r_xp var_e_xp <- .var_e_xp var_art_xp <- .var_art_xp var_pre_xp <- .var_pre_xp se_r_xp <- .se_r_xp var_r_ty <- .var_r_ty var_e_ty <- .var_e_ty var_art_ty <- .var_art_ty var_pre_ty <- .var_pre_ty se_r_ty <- .se_r_ty } sd_rho_xp <- var_rho_xp^.5 sd_rho_ty <- var_rho_ty^.5 sd_r_tp <- var_r_tp^.5 sd_r_xp <- var_r_xp^.5 sd_r_ty <- var_r_ty^.5 sd_e_tp <- var_e_tp^.5 sd_e_xp <- var_e_xp^.5 sd_e_ty <- var_e_ty^.5 sd_art_tp <- var_art_tp^.5 sd_art_xp <- var_art_xp^.5 sd_art_ty <- var_art_ty^.5 sd_pre_tp <- var_pre_tp^.5 sd_pre_xp <- var_pre_xp^.5 sd_pre_ty <- var_pre_ty^.5 out <- as.list(environment()) class(out) <- class(x) out } "ma_r_ad.tsa_uvdrr" <- function(x){ barebones <- x$barebones ad_obj_x <- x$ad_obj_x ad_obj_y <- x$ad_obj_y correct_rxx <- x$correct_rxx correct_ryy <- x$correct_ryy residual_ads <- x$residual_ads cred_level <- x$cred_level cred_method <- x$cred_method var_unbiased <- x$var_unbiased flip_xy <- x$flip_xy k <- barebones[,"k"] N <- barebones[,"N"] mean_rxyi <- barebones[,"mean_r"] var_r <- barebones[,"var_r"] var_e <- barebones[,"var_e"] ci_xy_i <- barebones[,grepl(x = colnames(barebones), pattern = "CI")] se_r <- barebones[,"se_r"] if(!correct_rxx){ ad_obj_x[c("qxi_irr", "qxi_drr", "qxa_irr", "qxa_drr"),"mean"] <- 1 ad_obj_x[c("qxi_irr", "qxi_drr", "qxa_irr", "qxa_drr"),"var"] <- 0 ad_obj_x[c("qxi_irr", "qxi_drr", "qxa_irr", "qxa_drr"),"var_res"] <- 0 } if(!correct_ryy){ ad_obj_y[c("qxi_irr", "qxi_drr", "qxa_irr", "qxa_drr"),"mean"] <- 1 ad_obj_y[c("qxi_irr", "qxi_drr", "qxa_irr", "qxa_drr"),"var"] <- 0 ad_obj_y[c("qxi_irr", "qxi_drr", "qxa_irr", "qxa_drr"),"var_res"] <- 0 } var_label <- ifelse(residual_ads, "var_res", "var") if(flip_xy){ .ad_obj_x <- ad_obj_y .ad_obj_y <- ad_obj_x }else{ .ad_obj_x <- ad_obj_x .ad_obj_y <- ad_obj_y } .mean_qxa <- .ad_obj_x["qxa_drr", "mean"] .var_qxa <- .ad_obj_x["qxa_drr", var_label] .mean_qyi <- .ad_obj_y["qxi_irr", "mean"] .var_qyi <- .ad_obj_y["qxi_irr", var_label] .mean_ux <- .ad_obj_x["ux", "mean"] .var_ux <- .ad_obj_x["ux", var_label] .mean_qya <- estimate_ryya(ryyi = .mean_qyi^2, rxyi = mean_rxyi, ux = .mean_ux)^.5 mean_rtpa <- .correct_r_uvdrr(rxyi = mean_rxyi, qxa = .mean_qxa, qyi = .mean_qyi, ux = .mean_ux) ci_tp <- .correct_r_uvdrr(rxyi = ci_xy_i, qxa = .mean_qxa, qyi = .mean_qyi, ux = .mean_ux) var_mat_tp <- estimate_var_rho_tsa_uvdrr(mean_rtpa = mean_rtpa, var_rxyi = var_r, var_e = var_e, mean_ux = .mean_ux, mean_qxa = .mean_qxa, mean_qyi = .mean_qyi, var_ux = .var_ux, var_qxa = .var_qxa, var_qyi = .var_qyi, show_variance_warnings = FALSE) .mean_rxpa <- mean_rtpa * .mean_qxa .ci_xp <- ci_tp * .mean_qxa .mean_rtya <- mean_rtpa * .mean_qxa .ci_ty <- ci_tp * .mean_qxa var_art <- var_mat_tp$var_art var_pre <- var_mat_tp$var_pre var_res <- var_mat_tp$var_res var_rho_tp <- var_mat_tp$var_rho .var_rho_xp <- var_rho_tp * .mean_qxa^2 .var_rho_ty <- var_rho_tp * .mean_qya^2 sd_r <- var_r^.5 sd_e <- var_e^.5 sd_art <- var_art^.5 sd_pre <- var_pre^.5 sd_res <- var_res^.5 sd_rho_tp <- var_rho_tp^.5 var_r_tp <- estimate_var_tsa_uvdrr(mean_rtpa = mean_rtpa, var = var_r, mean_ux = .mean_ux, mean_qxa = .mean_qxa, mean_qyi = .mean_qyi) var_e_tp <- estimate_var_tsa_uvdrr(mean_rtpa = mean_rtpa, var = var_e, mean_ux = .mean_ux, mean_qxa = .mean_qxa, mean_qyi = .mean_qyi) var_art_tp <- estimate_var_tsa_uvdrr(mean_rtpa = mean_rtpa, var = var_art, mean_ux = .mean_ux, mean_qxa = .mean_qxa, mean_qyi = .mean_qyi) var_pre_tp <- estimate_var_tsa_uvdrr(mean_rtpa = mean_rtpa, var = var_pre, mean_ux = .mean_ux, mean_qxa = .mean_qxa, mean_qyi = .mean_qyi) se_r_tp <- estimate_var_tsa_uvdrr(mean_rtpa = mean_rtpa, var = se_r^2, mean_ux = .mean_ux, mean_qxa = .mean_qxa, mean_qyi = .mean_qyi)^.5 .var_r_xp <- var_r_tp * .mean_qxa^2 .var_e_xp <- var_e_tp * .mean_qxa^2 .var_art_xp <- var_art_tp * .mean_qxa^2 .var_pre_xp <- var_pre_tp * .mean_qxa^2 .se_r_xp <- se_r_tp * .mean_qxa .var_r_ty <- var_r_tp * .mean_qya^2 .var_e_ty <- var_e_tp * .mean_qya^2 .var_art_ty <- var_art_tp * .mean_qya^2 .var_pre_ty <- var_pre_tp * .mean_qya^2 .se_r_ty <- se_r_tp * .mean_qya if(flip_xy){ correct_meas_x <- .mean_qxa != 1 correct_meas_y <- .mean_qyi != 1 correct_drr <- .mean_ux != 1 mean_rxpa <- .mean_rtya ci_xp <- .ci_ty var_rho_xp <- .var_rho_ty mean_rtya <- .mean_rxpa ci_ty <- .ci_xp var_rho_ty <- .var_rho_xp var_r_xp <- .var_r_ty var_e_xp <- .var_e_ty var_art_xp <- .var_art_ty var_pre_xp <- .var_pre_ty se_r_xp <- .se_r_ty var_r_ty <- .var_r_xp var_e_ty <- .var_e_xp var_art_ty <- .var_art_xp var_pre_ty <- .var_pre_xp se_r_ty <- .se_r_xp }else{ correct_meas_y <- .mean_qxa != 1 correct_meas_x <- .mean_qyi != 1 correct_drr <- .mean_ux != 1 mean_rxpa <- .mean_rxpa ci_xp <- .ci_xp var_rho_xp <- .var_rho_xp mean_rtya <- .mean_rtya ci_ty <- .ci_ty var_rho_ty <- .var_rho_ty var_r_xp <- .var_r_xp var_e_xp <- .var_e_xp var_art_xp <- .var_art_xp var_pre_xp <- .var_pre_xp se_r_xp <- .se_r_xp var_r_ty <- .var_r_ty var_e_ty <- .var_e_ty var_art_ty <- .var_art_ty var_pre_ty <- .var_pre_ty se_r_ty <- .se_r_ty } sd_rho_xp <- var_rho_xp^.5 sd_rho_ty <- var_rho_ty^.5 sd_r_tp <- var_r_tp^.5 sd_r_xp <- var_r_xp^.5 sd_r_ty <- var_r_ty^.5 sd_e_tp <- var_e_tp^.5 sd_e_xp <- var_e_xp^.5 sd_e_ty <- var_e_ty^.5 sd_art_tp <- var_art_tp^.5 sd_art_xp <- var_art_xp^.5 sd_art_ty <- var_art_ty^.5 sd_pre_tp <- var_pre_tp^.5 sd_pre_xp <- var_pre_xp^.5 sd_pre_ty <- var_pre_ty^.5 out <- as.list(environment()) class(out) <- class(x) out }
load(file = "helper_data.rda") df3 <- df2 df3$dat[1, 1:2] <- 8 test_that("Input validation", { expect_error(checkValue(df1, value = 3:4), "'value' needs to be of length 1.") expect_error(checkValue(df1, vars = 1, value = 3), "'vars' needs to be a character of at least length 1.", ) expect_error(checkValue(df1, vars = "lala", value = 3), "The following 'vars' are not variables in the GADSdat: lala") }) test_that("Value checks raise no false alarms", { expect_equal(checkValue(df1, value = 4), integer(0)) expect_equal(checkValue(df2, value = -1), integer(0)) }) test_that("Value occurences reported", { expect_equal(checkValue(df1, value = 1), c(ID1 = 1L)) expect_equal(checkValue(df3, value = 8), c(ID1 = 1L, V2 = 2L)) }) test_that("Value checks for variable subset", { expect_equal(checkValue(df1, vars = "V1", value = 1), integer()) expect_equal(checkValue(df3, vars = "V2", value = 8), c(V2 = 2)) }) test_that("Value checks for NA", { df5 <- df1 df5$dat[1:2, "V1"] <- NA expect_equal(checkValue(df5, value = NA), c(V1 = 2L)) expect_equal(checkValue(df1, value = NA), integer()) })
cor_diss <- function(Xr, Xu = NULL, ws = NULL, center = TRUE, scale = FALSE) { if (!ncol(Xr) >= 2) { stop("For correlation dissimilarity the number of variables must be larger than 1") } if (!is.null(Xu)) { if (ncol(Xu) != ncol(Xr)) { stop("The number of columns (variables) in Xr must be equal to the number of columns (variables) in Xu") } if (sum(is.na(Xu)) > 0) { stop("Input data contains missing values") } } if (sum(is.na(Xr)) > 0) { stop("Matrices with missing values are not accepted") } if (!is.logical(center)) { stop("'center' argument must be logical") } if (!is.logical(scale)) { stop("'scale' argument must be logical") } if (center | scale) { X <- rbind(Xr, Xu) if (center) { X <- sweep(x = X, MARGIN = 2, FUN = "-", STATS = colMeans(X)) } if (scale) { X <- sweep(x = X, MARGIN = 2, FUN = "/", STATS = get_col_sds(X)) } if (!is.null(Xu)) { Xu <- X[(nrow(X) - nrow(Xu) + 1):nrow(X), , drop = FALSE] Xr <- X[1:(nrow(X) - nrow(Xu)), ] } else { Xr <- X } rm(X) } if (!is.null(ws)) { if (ws < 3 | length(ws) != 1) { stop(paste("'ws' must be an unique odd value larger than 2")) } if ((ws %% 2) == 0) { stop("'ws' must be an odd value") } if (ws >= ncol(Xr)) { stop("'ws' must lower than the number of columns (variables) in Xr") } if (!is.null(Xu)) { rslt <- moving_cor_diss(Xu, Xr, ws) colnames(rslt) <- paste("Xu", 1:nrow(Xu), sep = "_") rownames(rslt) <- paste("Xr", 1:nrow(Xr), sep = "_") } else { rslt <- moving_cor_diss(Xr, Xr, ws) rownames(rslt) <- colnames(rslt) <- paste("Xr", 1:nrow(Xr), sep = "_") } } else { if (!is.null(Xu)) { rslt <- fast_diss(Xu, Xr, "cor") colnames(rslt) <- paste("Xu", 1:nrow(Xu), sep = "_") rownames(rslt) <- paste("Xr", 1:nrow(Xr), sep = "_") } else { rslt <- fast_diss(Xr, Xr, "cor") rownames(rslt) <- colnames(rslt) <- paste("Xr", 1:nrow(Xr), sep = "_") } } rslt[rslt < 1e-15] <- 0 rslt }
print.aodml <- function(x, ...) print( list( call = x$call, b = x$b, phi = x$phi, phi.scale = x$phi.scale, varparam = x$varparam, logL = x$logL, iterations = x$iterations, code = x$code ) )
fluidRow( box( title = i18n$t("現在の感染状況"), width = 6, height = "550px", icon = icon("現在の感染状況"), sidebar = boxSidebar( id = "CurrentBoxtableOfEachPrefecturesBoxSidebar", width = 100, icon = icon("info-circle"), i18n$t("現在の感染状況") ), echarts4rOutput("currentActive", height = "550px") %>% withSpinner(proxy.height = "550px") ) )
rshift <- function(a) { n <- length(a) return(c(a[n], a[1:(n - 1)])) }
sen2r_getElements <- function( s2_names, naming_convention, format = "data.table", abort = TRUE ) { list_regex <- list( "sen2r" = list( "regex" = "^S2([AB])([12][AC])\\_([0-9]{8})\\_([0-9]{3})\\_([^\\_\\.]*)\\_([^\\_\\.]+)\\_([126]0)\\.?([^\\_]*)$", "elements" = c("mission","level","sensing_date","id_orbit","extent_name","prod_type","res","file_ext"), "date_format" = "%Y%m%d" ), "sen2r_new" = list( "regex" = "^S2\\_([0-9]{8})\\_([0-9]{3})\\_([^\\_\\.]*)\\_([AB])\\_([^\\_\\.]+)\\.?([^\\_]*)$", "elements" = c("sensing_date","id_orbit","extent_name","mission","prod_type","file_ext"), "date_format" = "%Y%m%d" ) ) if (!format %in% c("list", "data.frame", "data.table")) { print_message( type="warning", "Argument must be one between 'data.frame' and 'list'.", "Returnig a list.") format <- "list" } if (is.null(s2_names)) { return(invisible(NULL)) } s2_names <- basename(s2_names) if (missing(naming_convention) || is.null(naming_convention)) { regex_match <- sapply(list_regex, function(x){sum(grepl(x$regex,s2_names))}) if (regex_match[["sen2r"]] == 0 & regex_match[["sen2r_new"]] > 0) { naming_convention <- "sen2r_new" } else { naming_convention <- "sen2r" } } if (inherits(naming_convention, "character")) { if (naming_convention[1] %in% c("sen2r", "sen2r_new")) { fs2nc_regex <- list_regex[[naming_convention[1]]] } else { print_message( type = "error", "The argument 'naming_convention' is not recognised." ) } } else if ( inherits(naming_convention, "list") && all(c("regex", "elements", "date_format") %in% names(naming_convention)) ) { fs2nc_regex <- naming_convention } else { print_message( type = "error", "The argument 'naming_convention' is not recognised." ) } metadata <- data.frame( "type" = rep(NA, length(s2_names)) ) for (sel_el in fs2nc_regex$elements) { metadata[,sel_el] <- gsub( fs2nc_regex$regex, paste0("\\",which(fs2nc_regex$elements==sel_el)), s2_names ) } metadata[,"sensing_date"] <- as.Date( metadata[,"sensing_date"], format = fs2nc_regex$date_format ) if (nrow(metadata)>0) { if (!is.null(metadata$res) && all(grepl("[126]0", metadata[,"res"]))) { metadata[,"res"] <- paste0(metadata[,"res"],"m") } metadata$type <- ifelse( !grepl(fs2nc_regex$regex,s2_names), "unrecognised", ifelse( grepl("[0-9]{2}[A-Z]{3}[a-z]?",metadata$extent_name), "tile", ifelse( metadata$extent_name=="", "merged", "clipped" ) ) ) } else { metadata$type <- as.character(metadata$type) } if (sum(metadata$type=="unrecognised") > 0) { print_message( type = if(abort==TRUE){"error"}else{"warning"}, "\"",paste(s2_names[metadata$type=="unrecognised"], collapse="\", \""), "\" were not recognised." ) metadata[metadata$type=="unrecognised",2:(length(fs2nc_regex$elements)+1)] <- NA } if (format == "data.table") { return(data.table(metadata)) } else if (format == "data.frame") { return(metadata) } else if (format == "list") { meta_list <- lapply(seq_along(s2_names), function(i) { l <- as.list(metadata[i,]) l$sensing_date <- as.character(l$sensing_date) l[l==""|is.na(l)] <- NULL l }) names(meta_list) <- s2_names if (length(meta_list)==1) { return(meta_list[[1]]) } else { return(meta_list) } } }
modelFAMT <- function(data,x=1,test=x[1],nbf=NULL,maxnbfactors=8,min.err=1e-03) { if (class(data)[1]!="FAMTdata") stop("Class of data should be FAMTdata") if (!is.null(nbf)) optimnbfactors = nbf if (is.null(nbf)) optimnbfactors = nbfactors(data,x,test,pvalues=NULL,maxnbfactors,min.err)$optimalnbfactors pval = raw.pvalues(data,x,test) if (optimnbfactors==0) { adjdata = data adjpval = pval fa = NULL } if (optimnbfactors>0) { fa = emfa(data,nbf=optimnbfactors,x=x,test=test,pvalues=NULL,min.err=min.err) rdata = residualsFAMT(data,x,test,pvalues=NULL)$residuals stdev = apply(rdata,2,sd) adjdata = data adjdata$expression = sweep(data$expression,1,FUN="/",STATS=stdev)-fa$B%*%t(fa$Factors) adjpval = raw.pvalues(adjdata,x,test) fa = emfa(data,nbf=optimnbfactors,x=x,test=test,pvalues=adjpval$pval,min.err=min.err) adjdata$expression = sweep(data$expression,1,FUN="/",STATS=stdev)-fa$B%*%t(fa$Factors) adjpval = raw.pvalues(adjdata,x,test) } idcovar=data$idcovar res = list(adjpval=adjpval$pval,adjtest=adjpval$test,adjdata=adjdata,FA=fa,pval=pval$pval,x=x,test=test, nbf=optimnbfactors, idcovar=idcovar) class(res) = c("FAMTmodel","list") return(res) }
setMethod("hist", signature(x = "missing_variable"), def = function(x, ...) { y <- x@data NAs <- is.na(x) h_all <- hist(y, plot = FALSE) plot(h_all, border = "lightgray", main = "", xlab = if(x@done) "Completed" else "Observed", axes = FALSE, mgp = c(2, 1, 0), tcl = .05, col = if(x@done) "lightgray" else "blue", freq = TRUE, ...) axis(1, lwd = 0) axis(2) if(x@done) { h_obs <- hist(y[!NAs], breaks = h_all$breaks, plot = FALSE) h_miss <- hist(y[NAs], breaks = h_all$breaks, plot = FALSE) segments(h_obs$breaks[1], 0, y1 = h_obs$counts[1], col = "blue") segments(h_miss$breaks[1], 0, y1 = h_miss$counts[1], col = "red") segments(h_obs$breaks[1], y0 = h_obs$counts[1], x1 = h_obs$breaks[2], col = "blue") segments(h_miss$breaks[1], y0 = h_miss$counts[1], x1 = h_miss$breaks[2], col = "red") for(i in 2:(length(h_obs$breaks)-1)) { segments(x0 = h_obs$breaks[i], y0 = h_obs$counts[i-1], y1 = h_obs$counts[i], col = "blue") segments(x0 = h_miss$breaks[i], y0 = h_miss$counts[i-1], y1 = h_miss$counts[i], col = "red") segments(x0 = h_obs$breaks[i], y0 = h_obs$counts[i], x1 = h_obs$breaks[i+1], col = "blue") segments(x0 = h_miss$breaks[i], y0 = h_miss$counts[i], x1 = h_miss$breaks[i+1], col = "red") } segments(x0 = h_obs$breaks[i+1], y0 = h_obs$counts[i], y1 = 0, col = "blue") segments(x0 = h_miss$breaks[i+1], y0 = h_miss$counts[i], y1 = 0, col = "blue") if(.MI_DEBUG) stopifnot(all(h_all$counts == (h_obs$counts + h_miss$counts))) } return(invisible(NULL)) }) setMethod("hist", signature(x = "semi-continuous"), def = function(x, ...) { con <- complete(x@indicator, 0L) == 0 y <- x@data[con] NAs <- is.na(x)[con] h_all <- hist(y, plot = FALSE) plot(h_all, freq = TRUE, border = "lightgray", main = "", xlab = if(x@done) "Completed" else "Observed", axes = FALSE, mgp = c(2, 1, 0), tcl = .05, col = if(x@done) "lightgray" else "blue", xlim = range(x@data, na.rm = TRUE), ...) axis(1, lwd = 0) axis(2) if(x@done) { h_obs <- hist(y[!NAs], breaks = h_all$breaks, plot = FALSE) h_miss <- hist(y[NAs], breaks = h_all$breaks, plot = FALSE) segments(h_obs$breaks[1], 0, y1 = h_obs$counts[1], col = "blue") segments(h_miss$breaks[1], 0, y1 = h_miss$counts[1], col = "red") segments(h_obs$breaks[1], y0 = h_obs$counts[1], x1 = h_obs$breaks[2], col = "blue") segments(h_miss$breaks[1], y0 = h_miss$counts[1], x1 = h_miss$breaks[2], col = "red") for(i in 2:(length(h_obs$breaks)-1)) { segments(x0 = h_obs$breaks[i], y0 = h_obs$counts[i-1], y1 = h_obs$counts[i], col = "blue") segments(x0 = h_miss$breaks[i], y0 = h_miss$counts[i-1], y1 = h_miss$counts[i], col = "red") segments(x0 = h_obs$breaks[i], y0 = h_obs$counts[i], x1 = h_obs$breaks[i+1], col = "blue") segments(x0 = h_miss$breaks[i], y0 = h_miss$counts[i], x1 = h_miss$breaks[i+1], col = "red") } segments(x0 = h_obs$breaks[i+1], y0 = h_obs$counts[i], y1 = 0, col = "blue") segments(x0 = h_miss$breaks[i+1], y0 = h_miss$counts[i], y1 = 0, col = "blue") NAs <- is.na(x)[!con] tab <- table(x@data[!con], NAs) for(i in 1:NROW(tab)) { segments(x0 = as.numeric(rownames(tab)[i]), y0 = 0, y1 = sum(tab[i,]), col = "lightgray", lty = "dashed") segments(x0 = as.numeric(rownames(tab)[i]), y0 = 0, y1 = tab[i,1], col = "blue", lty = "dashed") if(ncol(tab) == 2) segments(x0 = as.numeric(rownames(tab)[i]), y0 = 0, y1 = tab[i,2], col = "red", lty = "dashed") } if(.MI_DEBUG) stopifnot(all(h_all$counts == (h_obs$counts + h_miss$counts))) } else { tab <- table(x@data[!con]) for(i in 1:NCOL(tab)) segments(x0 = as.numeric(names(tab)[i]), y0 = 0, y1 = tab[i], col = "blue", lty = "dashed") } return(invisible(NULL)) }) setMethod("hist", signature(x = "categorical"), def = function(x, ...) { y <- x@data values <- sort(unique(y)) breaks <- c(min(values) - 0.5, values + 0.5) values <- unique(y) values <- sort(values[!is.na(values)]) breaks <- c(sapply(values, FUN = function(x) c(x - .25, x + .25))) NAs <- is.na(x) h_all <- hist(y, breaks, plot = FALSE) plot(h_all, border = "lightgray", axes = FALSE, main = "", xlab = if(x@done) "Completed" else "Observed", mgp = c(2, 1, 0), tcl = .05, col = if(x@done) "lightgray" else "blue", freq = TRUE, ylim = range(h_all$counts, na.rm = TRUE), ...) axis(1, at = values, labels = levels(x@raw_data), lwd = 0) axis(2) if(x@done) { h_obs <- hist(y[!NAs], breaks, plot = FALSE) h_miss <- hist(y[NAs], breaks, plot = FALSE) counts_obs <- h_obs$counts counts_obs <- counts_obs counts_miss <- h_miss$counts counts_miss <- counts_miss segments(breaks[1], 0, y1 = counts_obs[1], col = "blue") segments(breaks[1], 0, y1 = counts_miss[1], col = "red") if(counts_obs[1]) segments(breaks[1], y0 = counts_obs[1], x1 = breaks[2], col = "blue") if(counts_miss[1]) segments(breaks[1], y0 = counts_miss[1], x1 = breaks[2], col = "red") for(i in 2:(length(breaks)-1)) { segments(x0 = breaks[i], y0 = counts_obs[i-1], y1 = counts_obs[i], col = "blue") segments(x0 = breaks[i], y0 = counts_miss[i-1], y1 = counts_miss[i], col = "red") if(counts_obs[i]) segments(x0 = breaks[i], y0 = counts_obs[i], x1 = breaks[i+1], col = "blue") if(counts_miss[i]) segments(x0 = breaks[i], y0 = counts_miss[i], x1 = breaks[i+1], col = "red") } segments(x0 = breaks[i+1], y0 = counts_obs[i], y1 = 0, col = "blue") segments(x0 = breaks[i+1], y0 = counts_miss[i], y1 = 0, col = "red") if(.MI_DEBUG) stopifnot(all(h_all$counts == (h_obs$counts + h_miss$counts))) } return(invisible(NULL)) }) setMethod("hist", signature(x = "binary"), def = function(x, ...) { y <- x@data if(max(y, na.rm = TRUE) > 1) y <- y - 1L values <- 0:1 breaks <- c(-.5, .5, 1.5) breaks <- c(-.25, .25, .75, 1.25) NAs <- is.na(x) h_all <- hist(y, breaks, plot = FALSE) plot(h_all, border = "lightgray", axes = FALSE, main = "", xlab = if(x@done) "Completed" else "Observed", mgp = c(2, 1, 0), tcl = .05, col = if(x@done) "lightgray" else "blue", freq = TRUE, ylim = range(h_all$counts, na.rm = TRUE), ...) axis(1, at = values, lwd = 0) axis(2) if(x@done) { h_obs <- hist(y[!NAs], breaks, plot = FALSE) h_miss <- hist(y[NAs], breaks, plot = FALSE) counts_obs <- h_obs$counts counts_obs <- counts_obs counts_miss <- h_miss$counts counts_miss <- counts_miss segments(breaks[1], 0, y1 = counts_obs[1], col = "blue") segments(breaks[1], 0, y1 = counts_miss[1], col = "red") if(counts_obs[1]) segments(breaks[1], y0 = counts_obs[1], x1 = breaks[2], col = "blue") if(counts_miss[1]) segments(breaks[1], y0 = counts_miss[1], x1 = breaks[2], col = "red") for(i in 2:(length(breaks)-1)) { segments(x0 = breaks[i], y0 = counts_obs[i-1], y1 = counts_obs[i], col = "blue") segments(x0 = breaks[i], y0 = counts_miss[i-1], y1 = counts_miss[i], col = "red") if(counts_obs[i]) segments(x0 = breaks[i], y0 = counts_obs[i], x1 = breaks[i+1], col = "blue") if(counts_miss[i]) segments(x0 = breaks[i], y0 = counts_miss[i], x1 = breaks[i+1], col = "red") } segments(x0 = breaks[i+1], y0 = counts_obs[i], y1 = 0, col = "blue") segments(x0 = breaks[i+1], y0 = counts_miss[i], y1 = 0, col = "red") if(.MI_DEBUG) stopifnot(all(h_all$counts == (h_obs$counts + h_miss$counts))) } return(invisible(NULL)) }) setMethod("hist", signature(x = "missing_data.frame"), def = function(x, ask = TRUE, ...) { k <- sum(!x@no_missing) if (.Device != "null device" && x@done) { oldask <- grDevices::devAskNewPage(ask = ask) if (!oldask) on.exit(grDevices::devAskNewPage(oldask), add = TRUE) op <- options(device.ask.default = TRUE) on.exit(options(op), add = TRUE) } par(mfrow = n2mfrow(k)) for(i in 1:x@DIM[2]) { if(x@no_missing[i]) next hist(x@variables[[i]]) header <- x@variables[[i]]@variable_name if(is(x@variables[[i]], "continuous")) { trans <- .show_helper(x@variables[[i]])$transformation[1] header <- paste("\n", header, " (", trans, ")", sep = "") } title(main = header) } return(invisible(NULL)) }) setMethod("hist", signature(x = "mdf_list"), def = function(x, ask = TRUE, ...) { if (.Device != "null device") { oldask <- grDevices::devAskNewPage(ask = ask) if (!oldask) on.exit(grDevices::devAskNewPage(oldask), add = TRUE) op <- options(device.ask.default = ask) on.exit(options(op), add = TRUE) } sapply(x, FUN = hist, ...) return(invisible(NULL)) }) setMethod("hist", signature(x = "mi"), def = function(x, m = 1:length(x), ask = TRUE, ...) { for(i in m) hist(x@data[[i]], ask = ask, ...) return(invisible(NULL)) }) setMethod("hist", signature(x = "mi_list"), def = function(x, m = 1:length(x), ask = TRUE, ...) { if (.Device != "null device") { oldask <- grDevices::devAskNewPage(ask = ask) if (!oldask) on.exit(grDevices::devAskNewPage(oldask), add = TRUE) op <- options(device.ask.default = ask) on.exit(options(op), add = TRUE) } sapply(x, FUN = hist, m = m, ask = ask, ...) return(invisible(NULL)) })
testthat::test_that("Test regressionModelMetrics", { set.seed(111) mod <- lm(formula = wt ~ ., data = mtcars) predictions <- predict(mod, mtcars[,-6]) actials <- mtcars[,6] res <- regressionModelMetrics(actuals = actials, predictions = predictions, model = mod) expect_type(res, 'list') expect_named(res) expect_equal(names(res), c("AIC", "BIC", "MAE", "MSE", "RMSE", "MAPE", "Corelation", "r.squared", 'adj.r.squared')) })
getTreeSpecies <- function(species){ conn <- try(makeConnection(), T) if ('try-error' %in% class(conn)){ stop("Invalid database connection. Please use setDB() to connect to a valid DB", call. = FALSE) } table <- RSQLite::dbGetQuery(conn, "SELECT * FROM TREESPECIES") RSQLite::dbDisconnect(conn) if(!is.null(species)){ if (species %in% table[["species"]]){ species_id <- table[table$species==species,]$species_id }else if(species %in% table[["species_id"]]){ species_id <- table[table$species_id==species,]$species_id }else{ stop("Invalid tree species", call. = FALSE) } }else{ stop("Invalid tree species", call. = FALSE) } return(species_id) }
library(dplyr) library(stringr) library(statar) context("sumup") test_that("sum_up", { a <- cars %>% sum_up(speed) expect_equal(nrow(cars %>% sum_up(speed)), 1) expect_equal(nrow(cars %>% group_by(ok = speed %/% 10) %>% sum_up(dist)), 3) })
randtest.amova <- function(xtest, nrepet = 99, ...) { if (!inherits(xtest, "amova")) stop("Object of class 'amova' expected for xtest") if (nrepet <= 1) stop("Non convenient nrepet") distances <- as.matrix(xtest$distances) / 2 samples <- as.matrix(xtest$samples) structures <- xtest$structures ddl <- xtest$results$Df ddl[1:(length(ddl) - 1)] <- ddl[(length(ddl) - 1):1] sigma <- xtest$componentsofcovariance$Sigma lesss <- xtest$results$"Sum Sq" if (is.null(structures)) { structures <- cbind.data.frame(rep(1, nrow(samples))) indic <- 0 } else { for (i in 1:ncol(structures)) { structures[, i] <- factor(as.numeric(structures[, i])) } indic <- 1 } if (indic != 0) { longueurresult <- nrepet * (length(sigma) - 1) res <- testamova(distances, nrow(distances), nrow(distances), samples, nrow(samples), ncol(samples), structures, nrow(structures), ncol(structures), indic, sum(samples), nrepet, lesss[length(lesss)] / sum(samples), ddl, longueurresult) restests <- matrix(res, nrepet, length(sigma) - 1, byrow = TRUE) alts <- rep("greater", length(names(structures)) + 1) permutationtests <- as.krandtest(sim=restests,obs=sigma[(length(sigma) - 1):1],names = paste("Variations", c("within samples", "between samples", paste("between", names(structures)))), alter=c("less", alts), call = match.call(), ...) } else { longueurresult <- nrepet * (length(sigma) - 2) res <- testamova(distances, nrow(distances), nrow(distances), samples, nrow(samples), ncol(samples), structures, nrow(structures), ncol(structures), indic, sum(samples), nrepet, lesss[length(lesss)] / sum(samples), ddl, longueurresult) permutationtests <- as.randtest(sim = res, obs = sigma[1], ...) } return(permutationtests) }
writeBiclusterResults=function(fileName, bicResult, bicName, geneNames, arrayNames, append=FALSE, delimiter=" ") { write(bicName, file=fileName, append=append) for(i in 1:bicResult@Number) { listar=row(matrix(bicResult@RowxNumber[,i]))[bicResult@RowxNumber[,i]==T] listac=row(matrix(bicResult@NumberxCol[i,]))[bicResult@NumberxCol[i,]==T] write(c(length(listar), length(listac)), file=fileName, ncolumns=2, append=TRUE, sep =delimiter) write(geneNames[listar], file=fileName, ncolumns=length(listar), append=TRUE, sep =delimiter) write(arrayNames[listac], file=fileName, ncolumns=length(listac), append=TRUE, sep =delimiter) } }
abundtest <- function (prabobj, teststat = "distratio", tuning = 0.25, times = 1000, p.nb = NULL, prange = c(0, 1), nperp = 4, step = 0.1, step2 = 0.01, twostep = TRUE, species.fixed=TRUE, prab01=NULL, groupvector=NULL, sarestimate=prab.sarestimate(prabobj), dist = prabobj$distance, n.species = prabobj$n.species) { if (is.null(prab01)) prab01 <- prabinit(prabmatrix=toprab(prabobj),rows.are.species=FALSE, distance="none",neighborhood=prabobj$nb) if (is.null(p.nb) & prabobj$spatial){ ac <- autoconst(prab01, twostep = twostep, prange = prange, nperp = nperp, step1 = step, step2 = step2, species.fixed = species.fixed) p.nb <- ac$pd } if (is.null(p.nb)) p.nb <- 1 statres <- rep(0, times) if (teststat=="groups"){ groupvector <- as.factor(groupvector) ng <- length(levels(groupvector)) lg <- levels(groupvector) nsg <- numeric(0) for (i in 1:ng) nsg[i] <- sum(groupvector==lg[i]) pa <- pb <- rep(1,ng) groupinfo <- list(lg=lg,ng=ng,nsg=nsg) statreslist <- list(overall=numeric(0),mean=numeric(0), gr=matrix(0,nrow=ng,ncol=times)) } else groupinfo <- NULL for (i in 1:times) { cat("Simulation run ", i) if (is.null(sarestimate) || teststat == "inclusions") mat <- randpop.nb(neighbors=prabobj$nb, p.nb = p.nb, n.species = prabobj$n.species, vector.species = prab01$regperspec, species.fixed = species.fixed, pdf.regions = prab01$specperreg/sum(prab01$specperreg), count = FALSE) else mat <- regpop.sar(prabobj, prab01, sarestimate, p.nb, count = FALSE) if (teststat != "inclusions"){ if (dist == "jaccard") distm <- jaccard(mat) if (dist == "kulczynski") distm <- kulczynski(mat) if (dist == "qkulczynski") distm <- qkulczynski(mat) if (dist == "logkulczynski") distm <- qkulczynski(mat,log.distance=TRUE) } else statres[i] <- incmatrix(mat)$ninc if (teststat == "isovertice") { test <- homogen.test(distm, ne = tuning) statres[i] <- test$iv } if (teststat == "lcomponent") statres[i] <- lcomponent(distm, ne = tuning)$lc if (teststat == "mean") statres[i] <- mean(as.dist(distm)) if (teststat == "distratio") statres[i] <- distratio(distm, prop = tuning)$dr if (teststat == "nn") statres[i] <- nn(distm, ne = tuning) if (teststat == "groups"){ slist <- specgroups(distm, groupvector, groupinfo) statreslist$overall[i] <- slist$overall statreslist$mean[i] <- mean(as.dist(distm)) statreslist$gr[,i] <- slist$gr cat(" statistics value=", statreslist$overall[i], "\n") } else cat(" statistics value=", statres[i], "\n") } regmat <- prabobj$prab if (teststat != "inclusions") { if (dist==prabobj$distance) distm <- prabobj$distmat else{ if (dist == "jaccard") distm <- jaccard(regmat) if (dist == "kulczynski") distm <- kulczynski(regmat) if (dist == "qkulczynski") distm <- qkulczynski(regmat) if (dist == "logkulczynski") distm <- qkulczynski(regmat,log.distance=TRUE) } } else { regmat <- prab01$prab test <- incmatrix(regmat)$ninc p.above <- (1 + sum(statres >= test))/(1 + times) p.below <- (1 + sum(statres <= test))/(1 + times) datac <- test tuning <- NA } if (teststat == "mean"){ test <- mean(as.dist(distm)) p.above <- (1 + sum(statres >= test))/(1 + times) p.below <- (1 + sum(statres <= test))/(1 + times) datac <- test tuning <- NA } if (teststat == "isovertice") { test <- homogen.test(distm, ne = tuning) p.above <- (1 + sum(statres >= test$iv))/(1 + times) p.below <- (1 + sum(statres <= test$iv))/(1 + times) pb <- min(p.above, p.below) * 2 p.above <- max(p.above, p.below) p.below <- pb datac <- test$iv tuning <- test$ne } if (teststat == "lcomponent") { test <- lcomponent(distm, ne = tuning) p.above <- (1 + sum(statres >= test$lc))/(1 + times) p.below <- (1 + sum(statres <= test$lc))/(1 + times) datac <- test$lc tuning <- test$ne } if (teststat == "nn") { test <- nn(distm, ne = tuning) p.above <- (1 + sum(statres >= test))/(1 + times) p.below <- (1 + sum(statres <= test))/(1 + times) datac <- test } if (teststat == "distratio") { test <- distratio(distm, prop = tuning) p.above <- (1 + sum(statres >= test$dr))/(1 + times) p.below <- (1 + sum(statres <= test$dr))/(1 + times) datac <- test$dr tuning <- test$prop } if (teststat=="groups"){ test <- specgroups(distm, groupvector, groupinfo) testm <- mean(as.dist(distm)) p.above <- (1 + sum(statreslist$overall >= test$overall))/(1 + times) p.below <- (1 + sum(statreslist$overall <= test$overall))/(1 + times) p.m.above <- (1 + sum(statreslist$mean >= testm))/(1 + times) p.m.below <- (1 + sum(statreslist$mean <= testm))/(1 + times) for (i in 1:ng){ pa[i] <- (1 + sum(statreslist$gr[i,] >= test$gr[i]))/(1 + times) pb[i] <- (1 + sum(statreslist$gr[i,] <= test$gr[i]))/(1 + times) } datac <- test tuning <- NA groupinfo$testm <- testm groupinfo$pa <- pa groupinfo$pb <- pb groupinfo$pma <- p.m.above groupinfo$pmb <- p.m.below cat("Data value: ", datac$overall, "\n") } else cat("Data value: ", datac, "\n") if (!prabobj$spatial || is.null(sarestimate)) sarlambda <- NULL else sarlambda <- sarestimate$lambda*sarestimate$nbweight if (teststat=="groups") results <- statreslist else results=statres out <- list(results = results, p.above = p.above, p.below = p.below, datac = datac, tuning = tuning, distance=dist, times=times, teststat=teststat, pd=p.nb, abund=!is.null(sarestimate), sarlambda=sarlambda, sarestimate=sarestimate, groupinfo=groupinfo) class(out) <- "prabtest" out } toprab <- function(prabobj) prabobj$prab>0 build.nblist <- function(prabobj,prab01=NULL,style="C"){ if (is.null(prab01)) prab01 <- prabinit(prabmatrix=toprab(prabobj),rows.are.species=FALSE, distance="none") nblist <- list() q <- 1 ijsum <- 0 for (i in 1:prabobj$n.species){ iregs <- (1:prabobj$n.regions)[prab01$prab[,i]] for (j in 1:prab01$regperspec[i]){ nblist[[q]] <- (1:length(iregs))[iregs %in% prabobj$nb[[iregs[j]]]]+ijsum q <- q+1 } ijsum <- ijsum+prab01$regperspec[i] } nblist <- lapply(nblist,as.integer) nblist[sapply(nblist, length) == 0L] <- 0L class(nblist) <- "nb" out <- spdep::nb2listw(nblist,style=style,zero.policy=TRUE) invisible(out) } prab.sarestimate <- function(abmat, prab01=NULL,sarmethod="eigen", weightstyle="C", quiet=TRUE, sar=TRUE, add.lmobject=TRUE){ if (is.null(prab01)) prab01 <- prabinit(prabmatrix=toprab(abmat),rows.are.species=FALSE, distance="none") logabund <- log(abmat$prab[prab01$prab[,1],1]) species <- rep(1,sum(prab01$prab[,1])) region <- (1:abmat$n.regions)[prab01$prab[,1]] for (j in 2:abmat$n.species){ logabund <- c(logabund,log(abmat$prab[prab01$prab[,j],j])) species <- c(species,rep(j,sum(prab01$prab[,j]))) region <- c(region,(1:abmat$n.regions)[prab01$prab[,j]]) } species <- as.factor(species) region <- as.factor(region) abundreg <- data.frame(logabund,species,region, row.names=sapply(1:length(species),toString)) if (sar){ nblistw <- build.nblist(abmat,prab01=prab01,style=weightstyle) abundlm <- spatialreg::errorsarlm(logabund~region+species,data=abundreg, listw=nblistw,quiet=quiet,zero.policy=TRUE, method=sarmethod) interc <- coef(abundlm)[2] sigma <- sqrt(summary(abundlm)$s2) regeffects <- c(0,coef(abundlm)[3:(abmat$n.regions+1)]) speffects <- c(0,coef(abundlm)[(abmat$n.regions+2): (abmat$n.regions+abmat$n.species)]) lambda <- abundlm$lambda nbweight <- mean(c(nblistw[[3]],recursive=TRUE)) if (!add.lmobject) abundlm <- NULL out <- list(sar=sar,intercept=interc,sigma=sigma,regeffects=regeffects, speffects=speffects,lambda=lambda,size=length(nblistw[[3]]), nbweight=nbweight,lmobject=abundlm) } else{ abundlm <- lm(logabund~region+species,data=abundreg) interc <- coef(abundlm)[1] sigma <- summary(abundlm)$sigma regeffects <- c(0,coef(abundlm)[2:abmat$n.regions]) speffects <- c(0,coef(abundlm)[(abmat$n.regions+1): (abmat$n.regions+abmat$n.species-1)]) if (!add.lmobject) abundlm <- NULL out <- list(sar=sar,intercept=interc,sigma=sigma,regeffects=regeffects, speffects=speffects,lmobject=abundlm) } out } regpop.sar <- function(abmat, prab01=NULL, sarestimate=prab.sarestimate(abmat), p.nb=NULL, vector.species=prab01$regperspec, pdf.regions=prab01$specperreg/(sum(prab01$specperreg)), count=FALSE){ if (is.null(prab01)){ prab01 <- prabinit(prabmatrix=toprab(abmat),rows.are.species=FALSE, distance="none") vector.species=prab01$regperspec pdf.regions=prab01$specperreg/(sum(prab01$specperreg)) } proble <- function(v,val) mean(v<=val, na.rm=TRUE) logabund <- log(abmat$prab[prab01$prab[,1],1]) species <- rep(1,sum(prab01$prab[,1])) region <- (1:abmat$n.regions)[prab01$prab[,1]] for (j in 2:abmat$n.species){ logabund <- c(logabund,log(abmat$prab[prab01$prab[,j],j])) species <- c(species,rep(j,sum(prab01$prab[,j]))) region <- c(region,(1:abmat$n.regions)[prab01$prab[,j]]) } species <- as.factor(species) region <- as.factor(region) neighbors <- abmat$nb m01 <- matrix(FALSE, ncol = abmat$n.species, nrow = abmat$n.regions) out <- matrix(0, ncol = abmat$n.species, nrow = abmat$n.regions) cdf.local <- cdf.regions <- c() for (i in 1:abmat$n.regions) cdf.regions[i] <- sum(pdf.regions[1:i]) for (i in 1:abmat$n.species){ if (count) cat("Species ", i, "\n") spec.regind <- spec.neighb <- rep(FALSE, abmat$n.regions) nsize <- vector.species[i] if (is.null(p.nb)){ m01[,i] <- rep(FALSE,abmat$n.regions) m01[sample(abmat$n.regions,nsize,prob=pdf.regions),i] <- rep(TRUE,nsize) } else{ r1 <- runif(1) reg <- 1 + sum(r1 > cdf.regions) spec.regind[reg] <- TRUE for (k in neighbors[[reg]]) spec.neighb[k] <- TRUE m01[reg, i] <- TRUE if (nsize > 1) for (j in 2:nsize) if (all(!spec.neighb) | all(pdf.regions[spec.neighb] < 1e-08) | all(spec.neighb | spec.regind) | all(pdf.regions[!(spec.regind | spec.neighb)] < 1e-08)) { nreg <- sum(!spec.regind) pdf.local <- pdf.regions[!spec.regind] pdf.local <- pdf.local/sum(pdf.local) for (l in 1:nreg) cdf.local[l] <- sum(pdf.local[1:l]) r1 <- runif(1) zz <- 1 + sum(r1 > cdf.local[1:nreg]) reg <- (1:abmat$n.regions)[!spec.regind][zz] spec.regind[reg] <- TRUE spec.neighb[reg] <- FALSE for (k in neighbors[[reg]]) spec.neighb[k] <- !(spec.regind[k]) m01[reg, i] <- TRUE } else if (runif(1) < p.nb) { regs <- !(spec.regind | spec.neighb) nreg <- sum(regs) pdf.local <- pdf.regions[regs] pdf.local <- pdf.local/sum(pdf.local) for (l in 1:nreg) cdf.local[l] <- sum(pdf.local[1:l]) r1 <- runif(1) zz <- 1 + sum(r1 > cdf.local[1:nreg]) reg <- (1:abmat$n.regions)[regs][zz] spec.regind[reg] <- TRUE for (k in neighbors[[reg]]) spec.neighb[k] <- !(spec.regind[k]) m01[reg, i] <- TRUE } else { nreg <- sum(spec.neighb) pdf.local <- pdf.regions[spec.neighb] pdf.local <- pdf.local/sum(pdf.local) for (l in 1:nreg) cdf.local[l] <- sum(pdf.local[1:l]) r1 <- runif(1) zz <- 1 + sum(r1 > cdf.local[1:nreg]) reg <- (1:abmat$n.regions)[spec.neighb][zz] spec.regind[reg] <- TRUE spec.neighb[reg] <- FALSE for (k in neighbors[[reg]]) spec.neighb[k] <- !(spec.regind[k]) m01[reg, i] <- TRUE } } iregions <- (1:abmat$n.regions)[m01[,i]] if (sarestimate$sar){ inbmatrix <- matrix(0,nrow=nsize,ncol=nsize) for (j in 1:nsize) inbmatrix[j,(1:nsize)[iregions %in% abmat$nb[[iregions[j]]]]] <- 1 inbmatrix <- sarestimate$lambda*sarestimate$nbweight*inbmatrix invmatrix <- solve(diag(nsize)-inbmatrix) icov <- sarestimate$sigma^2*invmatrix %*% invmatrix ierror <- mvtnorm::rmvnorm(1,sigma=icov) } else ierror <- rnorm(nsize,sd=sarestimate$sigma) for (j in 1:nsize){ abundmean <- sarestimate$intercept+sarestimate$speffects[i]+ sarestimate$regeffects[iregions[j]] out[iregions[j],i] <- exp(abundmean+ierror[j]) } } out } specgroups <- function (distmat,groupvector, groupinfo) { distmat <- as.matrix(distmat) nc <- ncol(distmat) sgd <- mgd <- numeric(0) sni <- 0 for (i in 1:groupinfo$ng){ gd <- distmat[groupvector==groupinfo$lg[i], groupvector==groupinfo$lg[i]] ni <- groupinfo$nsg[i] ni <- ni*(ni-1)/2 sni <- sni+ni sgd[i] <- sum(gd[upper.tri(gd)]) mgd[i] <- sgd[i]/ni } overall <- sum(sgd)/sni out <- list(overall=overall,gr=mgd) out }
Vm.spc <- function (obj, m, ...) { if (! inherits(obj, "spc")) stop("first argument must be object of class 'spc'") m <- as.integer(m) if ( any(is.na(m)) || any(m < 1) ) stop("second argument must be integer(s) >= 1") idx <- match(m, obj$m) Vm <- ifelse(is.na(idx), 0, obj$Vm[idx]) m.max <- attr(obj, "m.max") if (m.max > 0) { idx <- m > m.max if (any(idx)) Vm[idx] <- NA } Vm }
require(bvpSolve) require(rootSolve) mathieu<- function(t, y, lambda = 15) { list(c(y[2], -(lambda-10*cos(2*t)) * y[1])) } x = seq(0, pi, by = 0.01) init <- c(1, 0) sol <- bvpshoot(yini = init, yend = c(NA, 0), x = x, func = mathieu, guess = NULL, extra = 15) plot(sol[,1:2]) cost <- function(X) { sol<- bvptwp(yini = c(1, NA), yend = c(NA, 0), x = c(0, pi), parms = X, func = mathieu) return(sol[2,3]) } lam <- multiroot(f = cost, start = 15) Sol<- bvptwp(yini = c(1,NA), yend = c(NA, 0), x = x, parms = lam$root, func = mathieu, atol = 1e-10) lines(Sol, col = "red") mathieu2<- function(t,y,parms) { list(c(y[2], -(y[3]-10*cos(2*t))*y[1], 0 )) } init <- c(y = 1,dy = 0, lambda = NA) sol1 <- bvpshoot(yini = init, yend = c(NA, 0, NA), x = x, func = mathieu2, guess = 1) plot(sol1) jac <- function(x, y ,p) { df <- matrix(nr = 3, nc = 3, 0) df[1,2] <- 1 df[2,1] <- -(y[3]-10*cos(2*x)) df[2,3] <- -y[1] df } xguess <- c(0, 1, 2*pi) yguess <- matrix(nr = 3, rep(1, 9)) rownames(yguess) <- c("y", "dy", "lambda") print(system.time( sol1b <- bvptwp(yini = init, yend = c(NA, 0, NA), x = x, func = mathieu2, jacfunc = jac, xguess = xguess, yguess = yguess) )) plot(sol1b, type="l",lwd=2) xguess <- c(0,1,2*pi) yguess <- matrix(nr=3,rep(17,9)) print(system.time( sol2 <- bvpshoot(yini = init, yend = c(NA, 0, NA), x = x, func = mathieu2, jacfunc =jac, guess = 17) )) plot(sol2, type="l",lwd=2) bound <- function(i,y,parms){ if (i ==1) return(y[1]-1) if (i ==2) return(y[2]) if (i ==3) return(y[2]) } print(system.time( sol2b <- bvptwp(bound = bound, leftbc = 2,x=x, func=mathieu2, jacfunc =jac, xguess = xguess, yguess = yguess) )) xguess <- c(0,1,2*pi) yguess <- matrix(nr=3,rep(35,9)) print(system.time( sol3 <- bvpshoot(bound = bound, leftbc = 2,x=x, atol=1e-9, func=mathieu2, jacfunc =jac, guess=c(y=1,dy=0,lambda=35)) )) jacbound <- function(i,y,parms){ if (i ==1) return(c(1,0,0)) else return(c(0,1,0)) } print(system.time( sol3b <- bvptwp(bound = bound, jacbound = jacbound, leftbc = 2, x=x, func=mathieu2, jacfunc =jac, xguess = xguess, yguess = yguess) )) xguess <- c(0,1,2*pi) yguess <- matrix(nr=3,rep(105,9)) print(system.time( sol4 <- bvpshoot(bound = bound, jacbound = jacbound, leftbc = 2,x=x, func=mathieu2, jacfunc =jac, guess=c(y=1,dy=1,lam=105)) )) print(system.time( sol4b <- bvptwp(bound = bound, jacbound = jacbound, leftbc = 2, x=x, func=mathieu2, jacfunc =jac, xguess = xguess, yguess = yguess) )) par(mfrow=c(2,3)) plot(sol1,which="y", mfrow=NULL,type="l",lwd=2) plot(sol2,which="y", mfrow=NULL,type="l",lwd=2) plot(sol3,which="y", mfrow=NULL,type="l",lwd=2) plot(sol1b,which="y", mfrow=NULL,type="l",lwd=2) plot(sol2b,which=1, mfrow=NULL,type="l",lwd=2) plot(sol3b,which=1, mfrow=NULL,type="l",lwd=2) par(mfrow=c(1,1)) c(sol1[1,4],sol2[1,4],sol3[1,4],sol4[1,4]) c(sol1b[1,4],sol2b[1,4],sol3b[1,4],sol4b[1,4])
vkGetDbRegions <- function( country_id, q = NULL, username = getOption("rvkstat.username"), api_version = getOption("rvkstat.api_version"), token_path = vkTokenPath(), access_token = getOption("rvkstat.access_token") ) { if ( is.null(access_token) ) { if ( Sys.getenv("RVK_API_TOKEN") != "" ) { access_token <- Sys.getenv("RVK_API_TOKEN") } else { access_token <- vkAuth(username = username, token_path = token_path)$access_token } } if ( class(access_token) == "vk_auth" ) { access_token <- access_token$access_token } if(nchar(q) > 15 && !(is.null(q))){ stop(paste0("In query ( argument q ) max length is 15 characters. You enter ", nchar(q)," characters!")) } result <- list() offset <- 0 count <- 1000 last_iteration <- FALSE while ( last_iteration == FALSE ) { answer <- GET("https://api.vk.com/method/database.getRegions", query = list( country_id = country_id, q = q, offset = offset, count = count, access_token = access_token, v = api_version )) stop_for_status(answer) dataRaw <- content(answer, "parsed", "application/json") if(!is.null(dataRaw$error)){ stop(paste0("Error ", dataRaw$error$error_code," - ", dataRaw$error$error_msg)) } result <- append(result, dataRaw$response$items) if ( length( dataRaw$response$items ) < count ) { last_iteration <- TRUE } offset <- offset + length( dataRaw$response$items ) Sys.sleep(0.5) } result <- bind_rows(result) return(result) }
library(RProtoBuf) isProto3 <- (RProtoBuf:::getProtobufLibVersion() >= 3000000) if (!isProto3) exit_file("Need Proto3 for this test.") if( !exists("SearchRequest", "RProtoBuf:DescriptorPool")) { unitest.proto.file <- system.file("tinytest", "data", "proto3.proto", package="RProtoBuf") readProtoFiles(file = unitest.proto.file) } q <- new(SearchRequest, query="abc", page_number=42L, result_per_page=77L) expect_equal(q$query, "abc", msg="proto3 string") expect_equal(q$page_number, 42L, msg="proto3 int") expect_equal(q$result_per_page, 77L, msg="proto3 int again")
T3func <- function(X,n,m,p,r1,r2,r3,start,conv,A,B,C,H){ X=as.matrix(X) cputime=system.time({ ss=sum(X^2) dys=0 if (start==0){ cat("Rational ORTHONORMALIZED start",fill=TRUE) EIG=eigen(X%*%t(X)) A=EIG$vectors[,1:r1] Z=permnew(X,n,m,p) EIG=eigen(Z%*%t(Z)) B=EIG$vectors[,1:r2] Z=permnew(Z,m,p,n) EIG=eigen(Z%*%t(Z)) C=EIG$vectors[,1:r3] } if (start==1){ cat("Random ORTHONORMALIZED starts",fill=TRUE) if (n>=r1){ A=orth(matrix(runif(n*r1,0,1),n,r1)-.5) } else{ A=orth(matrix(runif(r1*r1,0,1),r1,r1)-.5) A=A[1:n,] } if (m>=r2){ B=orth(matrix(runif(m*r2,0,1),m,r2)-.5) } else{ B=orth(matrix(runif(r2*r2,0,1),r2,r2)-.5) B=B[1:m,] } if (p>=r3){ C=orth(matrix(runif(p*r3,0,1),p,r3)-.5) } else{ C=orth(matrix(runif(r3*r3,0,1),r3,r3)-.5) C=C[1:p,] } } if (start!=2){ Z=permnew(t(A)%*%X,r1,m,p) Z=permnew(t(B)%*%Z,r2,p,r1) H=permnew(t(C)%*%Z,r3,r1,r2) } if (start==2){ Z=B%*%permnew(A%*%H,n,r2,r3) Z=C%*%permnew(Z,m,r3,n) Z=permnew(Z,p,n,m) f=sum((X-Z)^2) } else{ f=ss-sum(H^2) } cat(paste("Tucker3 function value at start is ",f),fill=TRUE) iter=0 fold=f+2*conv*f while (fold-f>f*conv){ iter=iter+1 fold=f Z=permnew(X,n,m,p) Z=permnew(t(B)%*%Z,r2,p,n) Z=permnew(t(C)%*%Z,r3,n,r2) A=qr.Q(qr(Z%*%(t(Z)%*%A)),complete=FALSE) Z=permnew(X,n,m,p) Z=permnew(Z,m,p,n) Z=permnew(t(C)%*%Z,r3,n,m) Z=permnew(t(A)%*%Z,r1,m,r3) B=qr.Q(qr(Z%*%(t(Z)%*%B)),complete=FALSE) Z=permnew(t(A)%*%X,r1,m,p) Z=permnew(t(B)%*%Z,r2,p,r1) C=qr.Q(qr(Z%*%(t(Z)%*%C)),complete=FALSE) Z=permnew(t(A)%*%X,r1,m,p) Z=permnew(t(B)%*%Z,r2,p,r1) H=permnew(t(C)%*%Z,r3,r1,r2) f=ss-sum(H^2) if ((iter%%10)==0){ cat(paste("Tucker3 function value after iteration ",iter," is ",f),fill=TRUE) } } }) ss=sum(X^2) fp=100*(ss-f)/ss La=H%*%t(H) Y=permnew(H,r1,r2,r3) Lb=Y%*%t(Y) Y=permnew(Y,r2,r3,r1) Lc=Y%*%t(Y) cat(paste("Tucker3 function value is",f,"after",iter,"iterations", sep=" "),fill=TRUE) cat(paste("Fit percentage is",fp,"%",sep=" "),fill=TRUE) cat(paste("Procedure used",(round(cputime[1],2)),"seconds", sep=" "),fill=TRUE) out=list() out$A=A out$B=B out$C=C out$H=H out$f=f out$fp=fp out$iter=iter out$cputime=cputime[1] out$La=La out$Lb=Lb out$Lc=Lc return(out) }
library(act) examplecorpus@transcripts[[1]]@tiers$name[order(examplecorpus@transcripts[[1]]@tiers$position)] examplecorpus@transcripts[[2]]@tiers$name[order(examplecorpus@transcripts[[2]]@tiers$position)] sortVector <- c(examplecorpus@transcripts[[1]]@tiers$name, examplecorpus@transcripts[[2]]@tiers$name) sortVector <- sortVector[length(sortVector):1] examplecorpus <- act::tiers_sort(x=examplecorpus, sortVector=sortVector) examplecorpus@transcripts[[1]]@tiers$name[order(examplecorpus@transcripts[[1]]@tiers$position)] examplecorpus@transcripts[[2]]@tiers$name[order(examplecorpus@transcripts[[2]]@tiers$position)] examplecorpus <- act::tiers_sort(x=examplecorpus, sortVector=sortVector, addMissingTiers=TRUE) examplecorpus@transcripts[[1]]@tiers$name[order(examplecorpus@transcripts[[1]]@tiers$position)] examplecorpus@transcripts[[2]]@tiers$name[order(examplecorpus@transcripts[[2]]@tiers$position)] for (t in examplecorpus@transcripts) { sortVector <- c(t@tiers$name, "newTier") examplecorpus <- act::tiers_sort(x=examplecorpus, sortVector=sortVector, filterTranscriptNames=t@name, addMissingTiers=TRUE) } examplecorpus@transcripts[[1]]@tiers
ProcTraj <- function(lat = 51.5, lon = -45.1, hour.interval = 1, name = "london", start.hour = "00:00", end.hour="23:00", met, out, hours = 12, height = 100, hy.path, ID = 1, dates, script.name="test", add.new.column = F, new.column.name, new.column.value, tz="GMT", clean.files=TRUE ) { wd <- getwd() script.extension <- ".sh" OS <- "unix" if(.Platform$OS.type == "windows"){ script.extension <- ".bat" OS <- "windows" } hy.split.wd <- file.path(hy.path, "working" ) hy.split.wd <- normalizePath(hy.split.wd) setwd(hy.split.wd) folder.name = paste( "process_", ID, sep="") process.working.dir <- file.path(hy.split.wd, folder.name) dir.create(process.working.dir, showWarnings = FALSE) process.working.dir <- normalizePath(process.working.dir) setwd(process.working.dir) hy.split.exec.dir <- file.path(hy.path, "exec", "hyts_std") bdyfiles.path <- file.path(hy.path, "bdyfiles") symb.link.files <- list.files(path = bdyfiles.path) for( i in 1:length(symb.link.files) ){ from <- normalizePath( file.path(bdyfiles.path, symb.link.files[[i]] ) ) to <- file.path(process.working.dir, symb.link.files[[i]]) file.copy( from, to) } control.file.number <- 1 script.name <- paste(script.name, "_", ID, script.extension, sep="") dates.and.times <- laply( .data = dates, .fun=function(d) { start.day <- paste(d, start.hour, sep=" ") end.day <- paste(d, end.hour, sep=" ") posix.date <- seq(as.POSIXct(start.day, tz), as.POSIXct(end.day, tz), by = paste(hour.interval, "hour", sep=" ")) as.character(posix.date) }) hour.interval <- paste( hour.interval, "hour", sep=" ") for (i in 1:length(dates.and.times)) { control.file <- "CONTROL" date <- as.POSIXct(dates.and.times[i], tz=tz) control.file.extension <- paste(as.character(ID), "_", control.file.number, sep="") control.file <- paste(control.file, control.file.extension, sep=".") year <- format(date, "%y") Year <- format(date, "%Y") month <- format(date, "%m") day <- format(date, "%d") hour <- format(date, "%H") script.file <- file(script.name, "w") if(OS == "unix"){ cat(" } line <- paste("echo", year, month, day, hour, ">", control.file, sep=" ") cat( line, file = script.file, sep = "\n") line <- paste("echo 1 >>", control.file, sep=" " ) cat(line, file = script.file, sep="\n") line <- paste("echo", lat, lon, height, ">>", control.file, sep=" ") cat(line, file = script.file, sep="\n") line <- paste("echo", hours, ">>", control.file, sep=" ") cat(line, file = script.file, sep="\n") line <- paste("echo 0 >> ", control.file, "\n", "echo 10000.0 >> ", control.file, "\n", "echo 3 >> ", control.file, "\n", sep="") cat(line, file = script.file, sep="") months <- as.numeric(unique(format(date, "%m"))) months <- c(months, months + 1:2) months <- months - 1 months <- months[months <= 12] if (length(months) == 2) { months <- c(min(months) - 1, months) } for (i in 1:3) { AddMetFiles(months[i], Year, met, script.file, control.file) } line <- paste("echo ./ >>", control.file, sep=" ") cat(line, file = script.file, sep="\n") line <- paste("echo tdump", "_", ID, "_", year, month, day, hour, " >> ", control.file, sep = "") cat(line, file = script.file, sep="\n") line <- paste(hy.split.exec.dir, control.file.extension, sep=" ") cat(line, file = script.file, sep="\n") close(script.file) if(OS == "unix"){ system(paste0("sh ", script.name)) } else { system(paste0(script.name)) } control.file.number <- control.file.number + 1 } traj <- ReadFiles(process.working.dir, ID, dates.and.times, tz) if (add.new.column == T){ if( !missing(new.column.name) & !missing(new.column.value) ){ traj[new.column.name] <- new.column.value } else { stop("Parameters 'new.column.name' and 'new.column.value' are not defined.") } } if( !missing(out) ) { file.name <- paste(out, name, Year, ".RData", sep = "") save(traj, file = file.name) } setwd(hy.split.wd) if(clean.files == T){ unlink(folder.name, recursive = TRUE) } setwd(wd) traj }
"ironsup"
`smooth_terms` <- function(obj, ...) { UseMethod("smooth_terms") } `smooth_terms.gam` <- function(object, ...) { lapply(object[["smooth"]], `[[`, "term") } `smooth_terms.gamm` <- function(object, ...) { smooth_terms(object[["gam"]], ...) } `smooth_terms.mgcv.smooth` <- function(object, ...) { object[["term"]] } `smooth_terms.fs.interaction` <- function(object, ...) { object[["term"]] } `smooth_dim` <- function(object) { UseMethod("smooth_dim") } `smooth_dim.gam` <- function(object) { vapply(object[["smooth"]], FUN = `[[`, FUN.VALUE = integer(1), "dim") } `smooth_dim.gamm` <- function(object) { smooth_dim(object[["gam"]]) } `smooth_dim.mgcv.smooth` <- function(object) { object[["dim"]] } `select_terms` <- function(object, terms) { TERMS <- unlist(smooth_terms(object)) terms <- if (missing(terms)) { TERMS } else { want <- terms %in% TERMS if (any(!want)) { msg <- paste("Terms:", paste(terms[!want], collapse = ", "), "not found in `object`") message(msg) } terms[want] } terms } `select_smooth` <- function(object, smooth) { SMOOTHS <- smooths(object) if (missing(smooth)) { stop("'smooth' must be supplied; eg. `smooth = 's(x2)'`") } if (length(smooth) > 1L) { message(paste("Multiple smooths supplied. Using only first:", smooth[1])) smooth <- smooth[1] } want <- grep(smooth, SMOOTHS, fixed = TRUE) SMOOTHS[want] } `smooths` <- function(object) { vapply(object[["smooth"]], FUN = `[[`, FUN.VALUE = character(1), "label") } `smooth_variable` <- function(smooth) { check_is_mgcv_smooth(smooth) smooth[["term"]] } `smooth_factor_variable` <- function(smooth) { check_is_mgcv_smooth(smooth) smooth[["fterm"]] } `smooth_label` <- function(smooth) { check_is_mgcv_smooth(smooth) smooth[["label"]] } `is_mgcv_smooth` <- function(smooth) { inherits(smooth, "mgcv.smooth") } `is_mrf_smooth` <- function(smooth) { inherits(smooth, what= "mrf.smooth") } `check_is_mgcv_smooth` <- function(smooth) { out <- is_mgcv_smooth(smooth) if (identical(out, FALSE)) { stop("Object passed to 'smooth' is not a 'mgcv.smooth'.") } invisible(out) } `is.gamm` <- function(object) { inherits(object, "gamm") } `is.gam` <- function(object) { inherits(object, "gam") } `get_smooth` <- function(object, term) { if (is.gamm(object)) { object <- object[["gam"]] } smooth <- object[["smooth"]][which_smooth(object, term)] if (identical(length(smooth), 1L)) { smooth <- smooth[[1L]] } smooth } `old_get_smooth` <- function(object, term) { if (is.gamm(object)) { object <- object[["gam"]] } smooth <- object[["smooth"]][old_which_smooth(object, term)] if (identical(length(smooth), 1L)) { smooth <- smooth[[1L]] } smooth } `get_smooths_by_id` <- function(object, id) { if (is.gamm(object)) { object <- object[["gam"]] } object[["smooth"]][id] } `get_by_smooth` <- function(object, term, level) { if (is.gamm(object)) { object <- object[["gam"]] } take <- old_which_smooth(object, term) S <- object[["smooth"]][take] is_by <- vapply(S, is_factor_by_smooth, logical(1L)) if (any(is_by)) { if (missing(level)) { stop("No value provided for argument 'level':\n Getting a factor by-variable smooth requires a 'level' be supplied.") } level <- as.character(level) levs <- vapply(S, `[[`, character(1L), "by.level") take <- match(level, levs) if (is.na(take)) { msg <- paste0("Invalid 'level' for smooth '", term, "'. Possible levels are:\n") msg <- paste(msg, paste(strwrap(paste0(shQuote(levs), collapse = ", "), prefix = " ", initial = ""), collapse = "\n")) stop(msg) } S <- S[[take]] } else { stop("The requested smooth '", term, "' is not a by smooth.") } S } `which_smooths` <- function(object, ...) { UseMethod("which_smooths") } `which_smooths.default` <- function(object, ...) { stop("Don't know how to identify smooths for <", class(object)[[1L]], ">", call. = FALSE) } `which_smooths.gam` <- function(object, terms, ...) { ids <- unique(unlist(lapply(terms, function(x, object) { which_smooth(object, x) }, object = object))) if (identical(length(ids), 0L)) { stop("None of the terms matched a smooth.") } ids } `which_smooths.bam` <- function(object, terms, ...) { ids <- unique(unlist(lapply(terms, function(x, object) { which_smooth(object, x) }, object = object))) if (identical(length(ids), 0L)) { stop("None of the terms matched a smooth.") } ids } `which_smooths.gamm` <- function(object, terms, ...) { ids <- unique(unlist(lapply(terms, function(x, object) { which_smooth(object, x) }, object = object[["gam"]]))) if (identical(length(ids), 0L)) { stop("None of the terms matched a smooth.") } ids } `which_smooth` <- function(object, term) { if (is.gamm(object)) { object <- object[["gam"]] } smooths <- smooths(object) which(term == smooths) } `old_which_smooth` <- function(object, term) { if (is.gamm(object)) { object <- object[["gam"]] } smooths <- smooths(object) grep(term, smooths, fixed = TRUE) } `n_smooths` <- function(object) { UseMethod("n_smooths") } `n_smooths.default` <- function(object) { if (!is.null(object[["smooth"]])) { return(length(object[["smooth"]])) } stop("Don't know how to identify smooths for <", class(object)[[1L]], ">", call. = FALSE) } `n_smooths.gam` <- function(object) { length(object[["smooth"]]) } `n_smooths.gamm` <- function(object) { length(object[["gam"]][["smooth"]]) } `n_smooths.bam` <- function(object) { length(object[["smooth"]]) } `get_vcov` <- function(object, unconditional = FALSE, frequentist = FALSE, term = NULL, by_level = NULL) { V <- if (frequentist) { object$Ve } else if (unconditional) { if (is.null(object$Vc)) { warning("Covariance corrected for smoothness uncertainty not available.\nUsing uncorrected covariance.") object$Vp } else { object$Vc } } else { object$Vp } if (!is.null(term)) { if (length(term) > 1L) { message("Supplied more than 1 'term'; using only the first") term <- term[1L] } term <- select_smooth(object, term) smooth <- get_smooth(object, term) start <- smooth$first.para end <- smooth$last.para para.seq <- start:end V <- V[para.seq, para.seq, drop = FALSE] } V } `has_s` <- function(terms) { grepl("^s\\(.+\\)$", terms) } `add_s` <- function(terms) { take <- ! has_s(terms) terms[take] <- paste("s(", terms[take], ")", sep = "") terms } `is_re_smooth` <- function(smooth) { check_is_mgcv_smooth(smooth) inherits(smooth, "random.effect") } `is_fs_smooth` <- function(smooth) { check_is_mgcv_smooth(smooth) inherits(smooth, "fs.interaction") } `fix_offset` <- function(model, newdata, offset_val = NULL) { m.terms <- names(newdata) p.terms <- attr(terms(model[["pred.formula"]]), "term.labels") tt <- terms(model) resp <- names(attr(tt, "dataClasses"))[attr(tt, "response")] Y <- m.terms == resp if (any(Y)) { m.terms <- m.terms[!Y] } off <- is_offset(m.terms) if (any(off)) { ind <- m.terms %in% p.terms off_var <- grep(p.terms[!ind], m.terms[off]) if (any(off_var)) { names(newdata)[which(names(newdata) %in% m.terms)][off] <- p.terms[!ind][off_var] } if (!is.null(offset_val)) { newdata[, p.terms[!ind][off_var]] <- offset_val } } newdata } `is_offset` <- function(terms) { grepl("offset\\(", terms) } `parametric_terms` <- function(model, ...) { UseMethod("parametric_terms") } `parametric_terms.default` <- function(model, ...) { stop("Don't know how to identify parametric terms from <", class(model)[[1L]], ">", call. = FALSE) } `parametric_terms.gam` <- function(model, ...) { tt <- model$pterms if (is.list(tt)) { labs <- unlist(lapply(tt, function(x) labels(delete.response(x)))) names(labs) <- unlist(lapply(seq_along(labs), function(i, labs) { if (i > 1L) { paste0(labs[[i]], ".", i-1) } else { labs[[i]]} }, labs)) labs } else { if (length(attr(tt, "term.labels") > 0L)) { tt <- delete.response(tt) labs <- labels(tt) names(labs) <- labs } else { labs <- character(0) } } labs } `by_smooth_failure` <- function(object) { msg <- paste("Hmm, something went wrong identifying the requested smooth. Found:\n", paste(vapply(object, FUN = smooth_label, FUN.VALUE = character(1L)), collapse = ', '), "\nNot all of these are 'by' variable smooths. Contact Maintainer.") msg } `rep_first_factor_value` <- function(f, n) { stopifnot(is.factor(f)) levs <- levels(f) factor(rep(levs[1L], length.out = n), levels = levs) } `seq_min_max` <- function(x, n) { if (is.factor(x)) { factor(levels(x), levels = levels(x)) } else { seq(from = min(x, na.rm = TRUE), to = max(x, na.rm = TRUE), length.out = n) } } `seq_min_max_eps` <- function(x, n, order, type = c("forward", "backward", "central"), eps) { minx <- min(x, na.rm = TRUE) maxx <- max(x, na.rm = TRUE) heps <- eps / 2 deps <- eps * 2 type <- match.arg(type) if (isTRUE(all.equal(order, 1L))) { minx <- switch(type, forward = minx, backward = minx + eps, central = minx + heps) maxx <- switch(type, forward = maxx - eps, backward = maxx, central = maxx - heps) } else { minx <- switch(type, forward = minx, backward = minx + deps, central = minx + eps) maxx <- switch(type, forward = maxx - deps, backward = maxx, central = maxx - eps) } seq(from = minx, to = maxx, length.out = n) } `data_class` <- function(df) { vapply(df, data.class, character(1L)) } `factor_var_names` <- function(df) { ind <- is_factor_var(df) result <- if (any(ind)) { names(df)[ind] } else { NULL } result } `is_factor_var` <- function(df) { result <- vapply(df, is.factor, logical(1L)) result } `is_numeric_var` <- function(df) { result <- vapply(df, is.numeric, logical(1L)) result } `shift_values` <- function(df, h, i, FUN = '+') { FUN <- match.fun(FUN) result <- df if (any(i)) { result[, !i] <- FUN(result[, !i], h) } else { result <- FUN(result, h) } result } `coverage_normal` <- function(level) { if (level <= 0 || level >= 1 ) { stop("Invalid 'level': must be 0 < level < 1", call. = FALSE) } qnorm((1 - level) / 2, lower.tail = FALSE) } `coverage_t` <- function(level, df) { if (level <= 0 || level >= 1 ) { stop("Invalid 'level': must be 0 < level < 1", call. = FALSE) } qt((1 - level) / 2, df = df, lower.tail = FALSE) } `get_family_rd` <- function(object) { if (inherits(object, "glm")) { fam <- family(object) } else { fam <- object[["family"]] } fam <- fix.family.rd(fam) if (is.null(fam[["rd"]])) { stop("Don't yet know how to simulate from family <", fam[["family"]], ">", call. = FALSE) } fam[["rd"]] } `check_user_select_smooths` <- function(smooths, select = NULL, partial_match = FALSE, model_name = NULL) { lenSmo <- length(smooths) select <- if (!is.null(select)) { lenSel <- length(select) if (is.numeric(select)) { if (lenSmo < lenSel) { stop("Trying to select more smooths than are in the model.") } if (any(select > lenSmo)) { stop("One or more indices in 'select' > than the number of smooths in the model.") } l <- rep(FALSE, lenSmo) l[select] <- TRUE l } else if (is.character(select)) { take <- if (isTRUE(partial_match)) { if (length(select) != 1L) { stop("When 'partial_match' is 'TRUE', 'select' must be a single string") } grepl(select, smooths, fixed = TRUE) } else { smooths %in% select } if (sum(take) < length(select)) { if (all(!take)) { stop("Failed to match any smooths in model", ifelse(is.null(model_name), "", paste0(" ", model_name)), ".\nTry with 'partial_match = TRUE'?", call. = FALSE) } else { stop("Some smooths in 'select' were not found in model ", ifelse(is.null(model_name), "", model_name), ":\n\t", paste(select[!select %in% smooths], collapse = ", "), call. = FALSE) } } take } else if (is.logical(select)) { if (lenSmo != lenSel) { stop("When 'select' is a logical vector, 'length(select)' must equal\nthe number of smooths in the model.") } select } else { stop("'select' is not numeric, character, or logical.") } } else { rep(TRUE, lenSmo) } select } `smooth_coefs` <- function(smooth) { if(!is_mgcv_smooth(smooth)) { stop("Not an mgcv smooth object") } start <- smooth[["first.para"]] end <- smooth[["last.para"]] seq(from = start, to = end, by = 1L) } `load_mgcv` <- function() { res <- suppressWarnings(requireNamespace("mgcv", quietly = TRUE)) if (!res) { stop("Unable to load mgcv. Is it installed?", .call = FALSE) } attached <- "package:mgcv" %in% search() if(!attached) { suppressPackageStartupMessages(attachNamespace("mgcv")) } invisible(res) } `is_gamm4` <- function(object) { out <- FALSE if (!inherits(object, "list")) { return(out) } nms <- names(object) if (! all(c("gam","mer") %in% nms)) { return(out) } if (! (inherits(object[["mer"]], "lmerMod") && inherits(object[["gam"]], "gam"))) { return(out) } out <- TRUE out } `is_gamm` <- function(object) { inherits(object, "gamm") } `is_factor_term` <- function(object, term, ...) { UseMethod("is_factor_term", object) } `is_factor_term.terms` <- function(object, term, ...) { if (missing(term)) { stop("Argument 'term' must be provided.") } facs <- attr(object, "factors") out <- if (term %in% colnames(facs)) { facs <- facs[, term, drop = FALSE] take <- rownames(facs)[as.logical(facs)] data_types <- attr(object, 'dataClasses')[take] all(data_types %in% c("factor", "character")) } else { NULL } out } `is_factor_term.gam` <- function(object, term, ...) { object <- terms(object) is_factor_term(object, term, ...) } `is_factor_term.bam` <- function(object, term, ...) { object <- terms(object) is_factor_term(object, term, ...) } `is_factor_term.gamm` <- function(object, term, ...) { object <- terms(object$gam) is_factor_term(object, term, ...) } `is_factor_term.list` <- function(object, term, ...) { if (!is_gamm4(object)) { if (all(vapply(object, inherits, logical(1), "terms"))) { out <- any(unlist(lapply(object, is_factor_term, term))) } else { stop("Don't know how to handle generic list objects.") } } else { object <- terms(object$gam) out <- is_factor_term(object, term, ...) } out } `term_variables` <- function(object, term, ...) { UseMethod("term_variables") } `term_variables.terms` <- function(object, term, ...) { if (missing(term)) { stop("'term' must be supplied.") } facs <- attr(object, "factors")[ , term] names(facs)[as.logical(facs)] } `term_variables.gam` <- function(object, term, ...) { object <- terms(object) term_variables(object, term = term, ...) } `term_variables.bam` <- function(object, term, ...) { object <- terms(object) term_variables(object, term, ...) } `mgcv_by_smooth_labels` <- function(smooth, by_var, level) { paste0(smooth, ":", by_var, level) } vars_from_label <- function(label) { if (length(label) > 1) { label <- rep(label, length.out = 1) warning("'label' must be a length 1 vector; using 'label[1]' only.") } vars <- gsub("^[[:alnum:]]{1,2}\\.?[[:digit:]]*\\(([[:graph:]]+)\\):?(.*)$", "\\1", label) vec_c(strsplit(vars, ",")[[1L]]) } `transform_fun` <- function(object, fun = NULL , ...) { UseMethod("transform_fun") } `transform_fun.evaluated_smooth` <- function(object, fun = NULL, ...) { if (!is.null(fun)) { fun <- match.fun(fun) object[["est"]] <- fun(object[["est"]]) if (!is.null(object[["upper"]])) { object[["upper"]] <- fun(object[["upper"]]) } if (!is.null(object[["lower"]])) { object[["lower"]] <- fun(object[["lower"]]) } } object } `transform_fun.smooth_estimates` <- function(object, fun = NULL, ...) { if (!is.null(fun)) { fun <- match.fun(fun) object[["est"]] <- fun(object[["est"]]) if (!is.null(object[["upper"]])) { object[["upper"]] <- fun(object[["upper"]]) } if (!is.null(object[["lower"]])) { object[["lower"]] <- fun(object[["lower"]]) } } object } `transform_fun.mgcv_smooth` <- function(object, fun = NULL, ...) { if (!is.null(fun)) { fun <- match.fun(fun) object <- mutate(object, across(all_of(c("est", "lower_ci", "upper_ci")), .fns = fun)) } object } `transform_fun.evaluated_parametric_term` <- function(object, fun = NULL, ...) { if (!is.null(fun)) { fun <- match.fun(fun) object <- mutate(object, across(all_of(c("est", "lower", "upper")), .fns = fun)) } object } `transform_fun.parametric_effects` <- function(object, fun = NULL, ...) { if (!is.null(fun)) { fun <- match.fun(fun) object <- mutate(object, across(any_of(c("partial")), .fns = fun)) } object } `transform_fun.tbl_df` <- function(object, fun = NULL, column = NULL, ...) { if (is.null(column)) { stop("'column' to modify must be supplied.") } if (!is.null(fun)) { fun <- match.fun(fun) object <- mutate(object, across(all_of(column), .fns = fun)) } object } `norm_minus_one_to_one` <- function(x) { abs_x <- abs(x) sign_x <- sign(x) minx <- 0 maxx <- max(abs_x, na.rm = TRUE) abs_x <- (abs_x - 0) / (maxx - 0) abs_x * sign_x } `delete_response` <- function(model, data = NULL, model_frame = TRUE) { if (is.null(data)) { if (is.null(model[["model"]])) { stop("`data` must be supplied if not available from 'model'") } else { data <- model[["model"]] } } tt <- terms(model[["pred.formula"]]) tt <- delete.response(tt) out <- model.frame(tt, data = data) if(identical(model_frame, FALSE)) { attr(out, "terms") <- NULL } out } `term_names` <- function(object, ...) { UseMethod("term_names") } `term_names.gam` <- function(object, ...) { tt <- object[["pred.formula"]] if (is.null(tt)) { stop("`object` does not contain `pred.formula`; is this is fitted GAM?", call. = FALSE) } tt <- terms(tt) attr(tt, "term.labels") } `term_names.mgcv.smooth` <- function(object, ...) { tt <- object[["term"]] if (is.null(tt)) { stop("`object` does not contain `term`; is this is an {mgcv} smooth?", call. = FALSE) } if (is_by_smooth(object)) { tt <- append(tt, by_variable(object)) } tt } `term_names.gamm` <- function(object, ...) { object <- object[["gam"]] term_names(object) } `terms_in_smooth` <- function(smooth) { check_is_mgcv_smooth(smooth) sm_terms <- smooth[["term"]] sm_by <- by_variable(smooth) if (sm_by == "NA") { sm_by <- NULL } c(sm_terms, sm_by) }
dbSendQuery_SQLiteConnection_character <- function(conn, statement, params = NULL, ...) { statement <- enc2utf8(statement) if (!is.null(conn@ref$result)) { warning("Closing open result set, pending rows", call. = FALSE) dbClearResult(conn@ref$result) stopifnot(is.null(conn@ref$result)) } rs <- new("SQLiteResult", sql = statement, ptr = result_create(conn@ptr, statement), conn = conn, bigint = conn@bigint ) on.exit(dbClearResult(rs), add = TRUE) if (!is.null(params)) { dbBind(rs, params) } on.exit(NULL, add = FALSE) conn@ref$result <- rs rs } setMethod("dbSendQuery", c("SQLiteConnection", "character"), dbSendQuery_SQLiteConnection_character)
data("dataLatentIV") context("Runability - latentIV - Runability") test_that("Works with intercept", { expect_silent(latentIV(formula = y~P, data = dataLatentIV, verbose=FALSE)) }) test_that("Verbose produces output", { expect_message(latentIV(formula = y~P, data = dataLatentIV, verbose=TRUE), regexp = "No start parameters were given. The linear model") }) test_that("Works without intercept", { expect_silent(res.no.i <- latentIV(formula = y~P-1, data = dataLatentIV, verbose=FALSE)) expect_false("(Intercept)" %in% coef(res.no.i)) expect_false("(Intercept)" %in% rownames(coef(suppressWarnings(summary(res.no.i))))) expect_silent(res.w.i <- latentIV(formula = y~P, data = dataLatentIV, verbose=FALSE)) expect_false(isTRUE(all.equal(coef(res.no.i)["P"], coef(res.w.i)["P"]))) expect_false(isTRUE(all.equal(coef(res.no.i), coef(res.w.i)))) }) test_that("Works with start.params given", { expect_silent(latentIV(formula = y~P, start.params = c("(Intercept)"=2.5, P=-0.5), data = dataLatentIV, verbose=FALSE)) }) test_that("Works with start.params and transformations", { expect_silent(latentIV(formula = y~I(P+1), start.params = c("(Intercept)"=2.5, "I(P + 1)"=-0.5), data = dataLatentIV, verbose=FALSE)) }) test_that("Same results with start.params swapped", { expect_silent(res.lat.1 <- latentIV(formula = y~P, start.params = c("(Intercept)"=2.5, P=-0.5), data = dataLatentIV, verbose=FALSE)) expect_silent(res.lat.2 <- latentIV(formula = y~P, start.params = c(P=-0.5, "(Intercept)"=2.5), data = dataLatentIV, verbose=FALSE)) expect_identical(coef(res.lat.1), coef(res.lat.2)) }) test_that("Fails graciously for bad start.params", { expect_error(latentIV(formula = y~P, start.params = c("(Intercept)"=10e99, P=10e99), data = dataLatentIV, verbose=FALSE), regexp = "Failed to optimize the log-likelihood function with error") }) test_that("Works with function in lhs", { expect_silent(latentIV(formula = I(y+1)~P, data = dataLatentIV, verbose = FALSE)) }) test_that("Works with all endo transformed", { expect_silent(latentIV(formula = y~I(P/2), data = dataLatentIV, verbose = FALSE)) }) test_that("Works with proper optimx.args", { expect_silent(latentIV(optimx.args = list(itnmax = 1000), formula = y~P, data = dataLatentIV, verbose = FALSE)) expect_silent(latentIV(optimx.args = list(itnmax = 1000, control=list(kkttol=0.01)), formula = y~P, data = dataLatentIV, verbose = FALSE)) }) test_that("Summary prints about SE unavailable", { expect_silent(res.latent <- latentIV(formula = y~P, start.params = c("(Intercept)"=1, P=9999), verbose = FALSE,data = dataLatentIV)) expect_warning(res.sum <- summary(res.latent), regexp = "For some parameters the standard error could not be calculated.") expect_output(print(res.sum), all = FALSE, regexp = "because the Std. Errors are unavailable") expect_true(anyNA(coef(res.sum))) }) test_that("Stops if lm fails for start",{ expect_error(latentIV(y~K, data=data.frame(y=1:100, K=rep(2, 100))), regexp = "The start parameters could not be derived by fitting a linear model") })
join_rows <- function(x_key, y_key, type = c("inner", "left", "right", "full"), na_equal = TRUE, error_call = caller_env()) { type <- arg_match(type) y_split <- vec_group_loc(y_key) tryCatch( matches <- vec_match(x_key, y_split$key, na_equal = na_equal), vctrs_error_incompatible_type = function(cnd) { rx <- "^[^$]+[$]" x_name <- sub(rx, "", cnd$x_arg) y_name <- sub(rx, "", cnd$y_arg) bullets <- c( glue("Can't join on `x${x_name}` x `y${y_name}` because of incompatible types."), i = glue("`x${x_name}` is of type <{x_type}>>.", x_type = vec_ptype_full(cnd$x)), i = glue("`y${y_name}` is of type <{y_type}>>.", y_type = vec_ptype_full(cnd$y)) ) abort(bullets, call = error_call) } ) y_loc <- y_split$loc[matches] if (type == "left" || type == "full") { if (anyNA(matches)) { y_loc <- vec_assign(y_loc, vec_equal_na(matches), list(NA_integer_)) } } x_loc <- seq_len(vec_size(x_key)) x_loc <- rep(x_loc, lengths(y_loc)) y_loc <- index_flatten(y_loc) y_extra <- integer() if (type == "right" || type == "full") { miss_x <- !vec_in(y_key, x_key, na_equal = na_equal) if (!na_equal) { miss_x[is.na(miss_x)] <- TRUE } if (any(miss_x)) { y_extra <- seq_len(vec_size(y_key))[miss_x] } } list(x = x_loc, y = y_loc, y_extra = y_extra) } index_flatten <- function(x) { unlist(x, recursive = FALSE, use.names = FALSE) }
expected <- eval(parse(text="structure(list(Y = NULL, B = NULL, V = NULL, N = NULL), .Names = c(\"Y\", \"B\", \"V\", \"N\"), terms = quote(Y ~ B + V + N + V:N), row.names = 2:72, class = \"data.frame\")")); test(id=0, code={ argv <- eval(parse(text="list(structure(list(Y = c(130L, 157L, 174L, 117L, 114L, 161L, 141L, 105L, 140L, 118L, 156L, 61L, 91L, 97L, 100L, 70L, 108L, 126L, 149L, 96L, 124L, 121L, 144L, 68L, 64L, 112L, 86L, 60L, 102L, 89L, 96L, 89L, 129L, 132L, 124L, 74L, 89L, 81L, 122L, 64L, 103L, 132L, 133L, 70L, 89L, 104L, 117L, 62L, 90L, 100L, 116L, 80L, 82L, 94L, 126L, 63L, 70L, 109L, 99L, 53L, 74L, 118L, 113L, 89L, 82L, 86L, 104L, 97L, 99L, 119L, 121L), B = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L), .Label = c(\"I\", \"II\", \"III\", \"IV\", \"V\", \"VI\"), class = \"factor\"), V = structure(c(3L, 3L, 3L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L), .Label = c(\"Golden.rain\", \"Marvellous\", \"Victory\"), class = \"factor\"), N = structure(c(2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L), .Label = c(\"0.0cwt\", \"0.2cwt\", \"0.4cwt\", \"0.6cwt\"), class = \"factor\")), .Names = c(\"Y\", \"B\", \"V\", \"N\"), terms = quote(Y ~ B + V + N + V:N), row.names = 2:72, class = \"data.frame\"), structure(list(Y = NULL, B = NULL, V = NULL, N = NULL), .Names = c(\"Y\", \"B\", \"V\", \"N\"), terms = quote(Y ~ B + V + N + V:N), row.names = 2:72, class = \"data.frame\"))")); .Internal(`copyDFattr`(argv[[1]], argv[[2]])); }, o=expected);
list_to_dfr <- function(lst) { col_names <- character() invisible(lapply(lst, function(x) {col_names <<- union(col_names, names(x))})) df <- data.frame(matrix(NA, nrow = length(lst), ncol = length(col_names))) colnames(df) <- col_names counter <- 1 f <- function(x) { for (field in names(x)) { df[counter ,field] <<- x[[field]] } counter <<- counter + 1 } invisible(lapply(lst, f)) return(df) }
"PointsUpdatemp" <- function(X,coeff,nbrs,newnbrs,index,remove,pointsin,weights,lengths){ r<-which(pointsin==remove); N<-length(pointsin) pos<-NULL for (i in 1:length(nbrs)){ pos[i]<-min(which(newnbrs==nbrs[i])) } if ((r>=2)&(r<=(N-1))){ lengths[index]<-as.row(lengths[index]) weights<-as.row(weights) lengths[index]<-lengths[index]+lengths[r]*weights[pos] } else{ if(r==1){ lengths[2]<-lengths[2]+lengths[1] } if(r==N){ lengths[N-1]<-lengths[N-1]+lengths[N] } } alpha<-matrix(0,1,length(nbrs)) if (length(nbrs)>=2){ alpha<-lengths[r]*lengths[index]/(sum(lengths[index]^2)) for (i in 1:length(nbrs)){ coeff[[pointsin[index][i]]]<-coeff[[pointsin[index][i]]]+alpha[i]*coeff[[remove]] } } else{ q<-which(pointsin==nbrs) alpha<-lengths[r]/lengths[q] coeff[[pointsin[q]]]<-coeff[[pointsin[q]]]+alpha*coeff[[remove]] } return(list(coeff=coeff,lengths=lengths,r=r,N=N,weights=weights,alpha=alpha)) }
ok_proj6 <- function() { FALSE }
TaskGeneratorMoons = R6Class("TaskGeneratorMoons", inherit = TaskGenerator, public = list( initialize = function() { ps = ps( sigma = p_dbl(0, default = 1, tags = "required") ) ps$values = list(sigma = 1) super$initialize(id = "moons", task_type = "classif", param_set = ps, man = "mlr3::mlr_task_generators_moons") }, plot = function(n = 200L, pch = 19L, ...) { tab = private$.generate_obj(n) plot(tab$x1, tab$x2, pch = pch, col = tab$y) } ), private = list( .generate_obj = function(n) { sigma = self$param_set$values$sigma n1 = n %/% 2L n2 = n - n1 mu = c(rep(-2.5, n1), rep(2.5, n2)) x = c(runif(n1, 0, pi), runif(n2, pi, 2 * pi)) data.table( y = factor(rep(c("A", "B"), c(n1, n2)), levels = c("A", "B")), x1 = 5 * cos(x) + rnorm(n, mean = mu, sd = sigma), x2 = 10 * sin(x) + rnorm(n, mean = mu, sd = sigma) ) }, .generate = function(n) { tab = private$.generate_obj(n) TaskClassif$new(sprintf("%s_%i", self$id, n), tab, target = "y") } ) ) mlr_task_generators$add("moons", TaskGeneratorMoons)
test_that("can flatten input", { expect_equal(rray_flatten(1:5), new_array(1:5)) x <- matrix(1:6, 2) expect_equal(rray_flatten(x), new_array(as.vector(x))) x <- array(1:8, c(2, 2, 2)) expect_equal(rray_flatten(as.vector(x)), new_array(as.vector(x))) }) test_that("rray class is kept", { expect_equal(rray_flatten(rray(1)), rray(1)) }) test_that("can keep names with 1D objects", { x <- rray(1, dim_names = list("foo")) expect_equal(rray_dim_names(rray_flatten(x)), rray_dim_names(x)) }) test_that("can keep names with higher dim objects", { x <- rray(1:2, c(2, 1), dim_names = list(c("foo", "foofy"), "bar")) expect_equal(rray_dim_names(rray_flatten(x)), list(c("foo", "foofy"))) x_t <- t(x) expect_equal(rray_dim_names(rray_flatten(x_t)), list(NULL)) }) test_that("can flatten NULL", { expect_equal(rray_flatten(NULL), NULL) }) test_that("can flatten 0 length input", { expect_equal(rray_flatten(numeric()), new_array(numeric())) })
library(testthat) update_expectation <- FALSE test_that("Smoke Test", { testthat::skip_on_cran() start_clean_result <- REDCapR:::clean_start_simple(batch=TRUE) project <- start_clean_result$redcap_project }) test_that("read-insert-and-update", { testthat::skip_on_cran() path_expected <- "test-data/specific-redcapr/test-project/read-insert-and-update.R" start_clean_result <- REDCapR:::clean_start_simple(batch=TRUE) project <- start_clean_result$redcap_project expected_outcome_message <- "\\d+ records and \\d+ columns were read from REDCap in \\d+(\\.\\d+\\W|\\W)seconds\\." expect_message( returned_object1 <- project$read(raw_or_label="raw"), regexp = expected_outcome_message ) returned_object1$data$bmi <- NULL returned_object1$data$age <- NULL returned_object1$data$address <- 1000 + seq_len(nrow(returned_object1$data)) returned_object1$data$telephone <- sprintf("(405) 321-%1$i%1$i%1$i%1$i", seq_len(nrow(returned_object1$data))) project$write(ds=returned_object1$data) expected_outcome_message <- "\\d+ records and \\d+ columns were read from REDCap in \\d+(\\.\\d+\\W|\\W)seconds\\." expect_message( returned_object2 <- project$read(raw_or_label="raw"), regexp = expected_outcome_message ) returned_object2$data$bmi <- NULL returned_object2$data$age <- NULL if (update_expectation) save_expected(returned_object2$data, path_expected) expected_data_frame <- retrieve_expected(path_expected) expect_equal(returned_object2$data, expected=expected_data_frame, label="The returned data.frame should be correct") expect_equal(returned_object2$status_code, expected="200") expect_true(returned_object2$records_collapsed=="", "A subset of records was not requested.") expect_true(returned_object2$fields_collapsed=="", "A subset of fields was not requested.") expect_match(returned_object2$outcome_message, regexp=expected_outcome_message, perl=TRUE) expect_true(returned_object2$success) })
pcor_sum <- function(..., iter = NULL, relations){ collect_objects <- list(...) groups <- length(collect_objects) partial_sum_i <- list() if(is.null(iter)){ iter <- collect_objects[[1]]$iter } count_sums <- strsplit(relations, "\\;")[[1]] n_sums <- length(count_sums) remove_space <- gsub("[[:space:]]", "", count_sums) remove_plus <- gsub("\\+", replacement = " ", remove_space) each_sum <- strsplit(remove_plus, split = "[[:space:]]") if (n_sums > 2) { stop("there is only support for 'at most' two sums") } if (groups == 1) { if(!all(c("estimate", "default") %in% class(collect_objects[[1]]))){ stop("the object must be of class 'estimate'") } samps <- posterior_samples(collect_objects[[1]])[1:iter,] if (n_sums == 1) { sums <- lapply(1:1, function(x) { sum_i <- eval(parse(text = paste0("samps[,'", each_sum[[x]], "']", collapse = "+"))) }) names(sums) <- remove_space diff <- NULL } else { sums <- lapply(1:2, function(x) { sum_i <- eval(parse(text = paste0( "samps[,'", each_sum[[x]], "']", collapse = "+" ))) }) diff <- sums[[1]] - sums[[2]] names(sums) <- remove_space } } else if (groups == 2) { if (!all(c("estimate", "default") %in% class(collect_objects[[1]]))) { stop("the object must be of class 'estimate'") } if (!all(c("estimate", "default") %in% class(collect_objects[[2]]))) { stop("the object must be of class 'estimate'") } if (n_sums > 1) { stop("only one sum can be specified when there are two groups") } sums <- lapply(1:2, function(g) { samps <- posterior_samples(collect_objects[[g]])[1:iter, ] sapply(1:1, function(x) { eval(parse(text = paste0( "samps[,'", each_sum[[x]], "']", collapse = "+" ))) }) }) names(sums) <- paste0("g", 1:2, ": ", remove_space) diff <- sums[[1]] - sums[[2]] } else{ stop("too many groups. only two is currently support") } partial_sum_i <- list(post_diff = diff, post_sums = sums, n_sums = n_sums, iter = iter) returned_object <- partial_sum_i class(returned_object) <- c("BGGM", "pcor_sum") return(returned_object) } print_pcor_sum <- function(x, cred = 0.95, row_names = TRUE){ cat("BGGM: Bayesian Gaussian Graphical Models \n") cat("--- \n") cat("Network Stats: Posterior Sum\n") cat("Posterior Samples:", x$iter, "\n") cat("--- \n") cat("Estimates \n\n") lb <- (1 - cred) / 2 ub <- 1 - lb if(is.null(x$post_diff)){ cat("Sum:", "\n") res <- round( data.frame(Post.mean = mean(x$post_sums[[1]]), Post.sd = sd(x$post_sums[[1]]), Cred.lb = quantile(x$post_sums[[1]], probs = lb), Cred.ub = quantile(x$post_sums[[1]], probs = ub) ), 3) if(isTRUE(row_names)){ rownames(res) <- names(x$post_sums) } else { rownames(res) <- NULL } print(res, row.names = row_names) } else { cat("Sum:", "\n") dat_i <- list() for(i in 1:2){ dat_i[[i]] <- round( data.frame(Post.mean = mean(x$post_sums[[i]]), Post.sd = sd(x$post_sums[[i]]), Cred.lb = quantile(x$post_sums[[i]], probs = lb), Cred.ub = quantile(x$post_sums[[i]], probs = ub) ), 3) } diff_res <- round( data.frame(Post.mean = mean(x$post_diff), Post.sd = sd(x$post_diff), Cred.lb = quantile(x$post_diff, probs = lb), Cred.ub = quantile(x$post_diff, probs = ub), Prob.greater = mean(x$post_diff > 0), Prob.less = mean(x$post_diff < 0) ), 3) res <- do.call(rbind.data.frame, dat_i) if(isTRUE(row_names)){ rownames(res) <- names(x$post_sums) } else { rownames(res) <- NULL } rownames(diff_res) <- NULL print(res, row.names = row_names) cat("--- \n\n") cat("Difference:\n") cat(paste(names(x$post_sums)[1]), "-", paste(names(x$post_sums)[2]), "\n\n") print(diff_res, row.names = FALSE) cat("--- \n") } } plot.pcor_sum <- function(x, fill = " ...){ if(is.null( x$post_diff)){ g1 <- ggplot(data.frame(x = x$post_sums[[1]]), aes(x = x)) + geom_histogram(color = "white", fill = fill) + xlab(names(x$post_sums)[1]) if(length( x$post_sums) == 2){ g2 <- ggplot(data.frame(x = x$post_sums[[2]]), aes(x = x)) + geom_histogram(color = "white", fill = fill) + xlab(names(x$post_sums)[2]) list(g1 = g1, g2 = g2) } else { list(g1 = g1) } } else { g1 <- ggplot(data.frame(x = x$post_sums[[1]]), aes(x = x)) + geom_histogram(color = "white", fill = fill) + xlab(names(x$post_sums)[1]) g2 <- ggplot(data.frame(x = x$post_sums[[2]]), aes(x = x)) + geom_histogram(color = "white", fill = fill) + xlab(names(x$post_sums)[2]) diff <- ggplot(data.frame(x = x$post_diff), aes(x = x)) + geom_histogram(color = "white", fill = fill) + xlab("Difference") suppressWarnings( list(g1 = g1, g2 = g2, diff = diff)) } }
MI.random.times <- function (time.points) { indFixed <- object$derivForm$indFixed indRandom <- object$derivForm$indRandom t.max <- if (is.null(tt <- attr(time.points, "t.max"))) max(obs.times) else tt max.visits <- if (is.null(tt <- attr(time.points, "max.visits"))) max(ni) * 5 else tt id.GK <- rep(TRUE, length(object$x$id.GK)) y.missO <- y logT.missO <- logT d.missO <- d X.missO <- X Z.missO <- Z idT.missO <- object$x$idT if (parameterization %in% c("value", "both")) { Xtime.missO <- Xtime Ztime.missO <- Ztime WintF.vl.missO <- WintF.vl Ws.intF.vl.missO <- Ws.intF.vl } if (parameterization %in% c("slope", "both")) { Xtime.deriv.missO <- Xtime.deriv Ztime.deriv.missO <- Ztime.deriv WintF.sl.missO <- WintF.sl Ws.intF.sl.missO <- Ws.intF.sl } if (method %in% c("weibull-PH-GH", "weibull-AFT-GH")) { P.missO <- P log.st.missO <- log.st if (parameterization %in% c("value", "both")) { Xs.missO <- Xs Zs.missO <- Zs } if (parameterization %in% c("slope", "both")) { Xs.deriv.missO <- Xs.deriv Zs.deriv.missO <- Zs.deriv } } if (method == "spline-PH-GH") { P.missO <- P if (parameterization %in% c("value", "both")) { Xs.missO <- Xs Zs.missO <- Zs } if (parameterization %in% c("slope", "both")) { Xs.deriv.missO <- Xs.deriv Zs.deriv.missO <- Zs.deriv } W2s.missO <- W2s W2.missO <- W2 } if (method == "piecewise-PH-GH") { st.missO <- st ind.D.missO <- ind.D ind.K.missO <- ind.K wkP.missO <- wkP if (parameterization %in% c("value", "both")) { Xs.missO <- Xs Zs.missO <- Zs } if (parameterization %in% c("slope", "both")) { Xs.deriv.missO <- Xs.deriv Zs.deriv.missO <- Zs.deriv } } WW.missO <- WW n.missO <- length(unique(idT.missO)) id.miss <- id3.miss <- id D <- object$coefficients$D diag.D <- ncz != ncol(D) list.thetas <- if (object$method == "weibull-PH-GH" || object$method == "weibull-AFT-GH") { list(betas = object$coefficients$betas, log.sigma = log(object$coefficients$sigma), gammas = object$coefficients$gammas, alpha = object$coefficients$alpha, Dalpha = object$coefficients$Dalpha, log.sigma.t = log(object$coefficients$sigma.t), D = if (diag.D) log(D) else chol.transf(D)) } else if (object$method == "spline-PH-GH") { list(betas = object$coefficients$betas, log.sigma = log(object$coefficients$sigma), gammas = object$coefficients$gammas, alpha = object$coefficients$alpha, Dalpha = object$coefficients$Dalpha, gammas.bs = object$coefficients$gammas.bs, D = if (diag.D) log(D) else chol.transf(D)) } else if (object$method == "piecewise-PH-GH") { list(betas = object$coefficients$betas, log.sigma = log(object$coefficients$sigma), gammas = object$coefficients$gammas, alpha = object$coefficients$alpha, Dalpha = object$coefficients$Dalpha, log.xi = log(object$coefficients$xi), D = if (diag.D) log(D) else chol.transf(D)) } if (!is.null(object$scaleWB)) list.thetas$log.sigma.t <- NULL list.thetas <- list.thetas[!sapply(list.thetas, is.null)] thetas <- unlist(as.relistable(list.thetas)) V.thetas <- vcov(object) EBs <- ranef(object, postVar = TRUE) Var <- attr(EBs, "postVar") EBs <- proposed.b <- EBs U <- time.points$y[, 1] X.vs <- time.points$x ncx.vs <- ncol(X.vs) id.onevisit <- as.vector(which(tapply(id, id, length) == 1)) id.mrvisits <- as.vector(which(tapply(id, id, length) > 1)) ev.vs <- tapply(id, id, length) - 1 ev.vs <- as.vector(ev.vs[ev.vs > 0]) id.vs.fl <- rep(id.mrvisits, ev.vs) n.vs.one <- length(id.onevisit) n.vs.more <- length(id.mrvisits) n.vs <- n.vs.one + n.vs.more thetas.vs <- c(time.points$coefficients$betas, log(time.points$coefficients$scale), log(time.points$coefficients$shape), log(time.points$coefficients$var.frailty)) Var.vs <- vcov(time.points) p.vs <- length(thetas.vs) current.b <- b.new <- EBs environment(posterior.b) <- environment() fitted.valsM.lis <- resid.valsM.lis <- vector("list", M) old <- options(warn = (-1)) on.exit(options(old)) for (m in 1:M) { curr.y <- tapply(object$y$y, object$id, function (x) x[length(x)]) new.visit <- last.visit <- tapply(obs.times, object$id, function (x) x[length(x)]) thetas.new <- mvrnorm(1, thetas, V.thetas) thetas.new <- relist(thetas.new, skeleton = list.thetas) betas.new <- thetas.new$betas sigma.new <- exp(thetas.new$log.sigma) gammas.new <- thetas.new$gammas alpha.new <- thetas.new$alpha Dalpha.new <- thetas.new$Dalpha D.new <- thetas.new$D D.new <- if (diag.D) exp(D.new) else chol.transf(D.new) if (object$method == "weibull-PH-GH" || object$method == "weibull-AFT-GH") sigma.t.new <- if (is.null(object$scaleWB)) { exp(thetas.new$log.sigma.t) } else { object$scaleWB } if (object$method == "spline-PH-GH") gammas.bs.new <- thetas.new$gammas.bs if (object$method == "piecewise-PH-GH") xi.new <- exp(thetas.new$log.xi); Q <- object$x$Q thetas.vs.new <- mvrnorm(1, thetas.vs, Var.vs) betas.vs.new <- thetas.vs.new[seq_len(ncx.vs)] scale.vs.new <- exp(thetas.vs.new[ncx.vs + 1]) shape.vs.new <- exp(thetas.vs.new[ncx.vs + 2]) var.fr.new <- exp(thetas.vs.new[ncx.vs + 3]) eta.yx <- as.vector(X.missO %*% betas.new) eta.yxT <- as.vector(Xtime.missO %*% betas.new) eta.tw <- as.vector(WW.missO %*% gammas.new) dmvt.current <- dmvt.proposed <- numeric(n.missO) for (i in seq_len(n.missO)) { proposed.b[i, ] <- rmvt(1, EBs[i, ], Var[[i]], 4) tt <- dmvt(rbind(current.b[i, ], proposed.b[i, ]), EBs[i, ], Var[[i]], 4, TRUE) dmvt.current[i] <- tt[1] dmvt.proposed[i] <- tt[2] } a <- pmin(exp(posterior.b(proposed.b) + dmvt.current - posterior.b(current.b) - dmvt.proposed), 1) ind <- runif(n.missO) <= a b.new[ind, ] <- proposed.b[ind, ] current.b <- b.new omega.new <- numeric(n) omega.new[id.onevisit] <- rgamma(n.vs.one, 1/var.fr.new, 1/var.fr.new) exp.eta.vs <- exp(X.vs %*% betas.vs.new) omega.new[id.mrvisits] <- rgamma(n.vs.more, 1/var.fr.new + ev.vs, 1/var.fr.new + scale.vs.new * tapply(c(U^shape.vs.new * exp.eta.vs), id.vs.fl, sum)) fitted.valsM <- resid.valsM <- Visit.Times <- matrix(as.numeric(NA), n, max.visits) Z.missM.lis <- vector("list", max.visits) ii <- 1 while (any(new.visit[!is.na(new.visit)] < t.max)) { data.vs <- time.points$data[!duplicated(time.points$data[[time.points$nam.id]]), ] if (!is.null(nam <- attr(time.points, "prev.y"))) data.vs[[nam]] <- curr.y mf.vs <- model.frame(time.points$terms, data = data.vs, na.action = NULL) X.vs.new <- model.matrix(formula(time.points), mf.vs)[, -1, drop = FALSE] mu.vs <- c(log(scale.vs.new) + X.vs.new %*% betas.vs.new) + log(omega.new) / shape.vs.new u.new <- rweibull(n, shape.vs.new, 1 / exp(mu.vs)) Visit.Times[, ii] <- new.visit <- last.visit + u.new ind.tmax <- new.visit > t.max dataM <- object$data.id dataM[object$timeVar] <- pmax(new.visit - object$y$lag, 0) mfX <- model.frame(object$termsYx, data = dataM, na.action = NULL) mfZ <- model.frame(object$termsYz, data = dataM, na.action = NULL) X.missM <- model.matrix(object$formYx, mfX) Z.missM.lis[[ii]] <- Z.missM <- model.matrix(object$formYz, mfZ) fitted.valsM[, ii] <- if (type == "Marginal" || type == "stand-Marginal") { as.vector(X.missM %*% object$coefficients$betas) } else { as.vector(X.missM %*% object$coefficients$betas + rowSums(Z.missM * b.new)) } mu <- as.vector(X.missM %*% betas.new + rowSums(Z.missM * b.new)) y.new <- rnorm(n, mu, sigma.new) resid.valsM[, ii] <- y.new - fitted.valsM[, ii] Visit.Times[ind.tmax, ii] <- fitted.valsM[ind.tmax, ii] <- resid.valsM[ind.tmax, ii] <- as.numeric(NA) curr.y <- y.new last.visit <- new.visit ii <- ii + 1 if (ii > max.visits) break } na.ind <- colSums(is.na(fitted.valsM)) != n Visit.Times <- Visit.Times[, na.ind] fitted.valsM <- fitted.valsM[, na.ind] resid.valsM <- resid.valsM[, na.ind] Z.missM <- do.call(rbind, Z.missM.lis[na.ind]) id2.miss <- rep(1:n, ncol(resid.valsM)) if (type == "stand-Subject") resid.valsM <- resid.valsM / object$coefficients$sigma if (type == "stand-Marginal") { resid.valsM <- unlist(lapply(split(cbind(Z.missM, c(resid.valsM)), id2.miss), function (y) { M <- matrix(y, ncol = ncz + 1) z <- M[, - (ncz + 1), drop = FALSE] res <- M[, ncz + 1] nz <- nrow(M) result <- rep(as.numeric(NA), nz) na.ind <- !is.na(res) if (all(!na.ind)) { result } else { out <- z[na.ind, , drop = FALSE] %*% D %*% t(z[na.ind, , drop = FALSE]) diag(out) <- diag(out) + object$coefficients$sigma^2 result[na.ind] <- solve(chol(out)) %*% res[na.ind] result } })) } fitted.valsM.lis[[m]] <- fitted.valsM resid.valsM.lis[[m]] <- resid.valsM } names(resid.vals) <- names(fitted.vals) <- names(y) names(fitted.valsM.lis) <- names(resid.valsM.lis) <- paste("m", seq_len(M), sep = "") fitted.valsM.lis <- lapply(fitted.valsM.lis, function (x) { dimnames(x) <- list(1:n, paste("time", seq_len(ncol(x)), sep = "")) x }) resid.valsM.lis <- if (type == "stand-Marginal") { resid.valsM.lis } else { lapply(resid.valsM.lis, function (x) { dimnames(x) <- list(1:n, paste("time", seq_len(ncol(x)), sep = "")) x }) } list("fitted.values" = fitted.vals, "residuals" = resid.vals, "fitted.valsM" = fitted.valsM.lis, "mean.resid.valsM" = NULL, "resid.valsM" = resid.valsM.lis, "dataM" = NULL) }
skip_if_no_numpy <- function() { have_numpy <- reticulate::py_module_available("numpy") if (!have_numpy) testthat::skip("numpy not available for testing") }
hetcalc <- function(TE, seTE, method.tau, method.tau.ci, TE.tau, level.hetstats, subgroup, control, id = NULL) { Ccalc <- function(x) { res <- (sum(x, na.rm = TRUE) - sum(x^2, na.rm = TRUE) / sum(x, na.rm = TRUE)) res } by <- !missing(subgroup) sel.noInf <- !is.infinite(TE) & !is.infinite(seTE) TE <- TE[sel.noInf] seTE <- seTE[sel.noInf] if (!is.null(id)) id <- id[sel.noInf] if (by) subgroup <- subgroup[sel.noInf] sel.noNA <- !(is.na(TE) | is.na(seTE)) TE <- TE[sel.noNA] seTE <- seTE[sel.noNA] if (!is.null(id)) id <- id[sel.noNA] if (by) subgroup <- subgroup[sel.noNA] noHet <- all(!sel.noNA) || sum(sel.noNA) < 2 allNA <- all(!sel.noNA) if (!(is.null(TE.tau)) & method.tau == "DL") { w.fixed <- 1 / seTE^2 w.fixed[is.na(w.fixed)] <- 0 Q <- sum(w.fixed * (TE - TE.tau)^2, na.rm = TRUE) df.Q <- sum(!is.na(seTE)) - 1 pval.Q <- pvalQ(Q, df.Q) if (df.Q == 0) tau2 <- NA else if (round(Q, digits = 18) <= df.Q) tau2 <- 0 else tau2 <- (Q - df.Q) / Ccalc(w.fixed) se.tau2 <- lower.tau2 <- upper.tau2 <- NA tau <- sqrt(tau2) lower.tau <- upper.tau <- NA sign.lower.tau <- sign.upper.tau <- method.tau.ci <- "" } else { if (noHet) { if (allNA) Q <- NA else Q <- 0 df.Q <- 0 pval.Q <- pvalQ(Q, df.Q) tau2 <- NA se.tau2 <- lower.tau2 <- upper.tau2 <- NA tau <- sqrt(tau2) lower.tau <- upper.tau <- NA sign.lower.tau <- sign.upper.tau <- method.tau.ci <- "" } else { if (is.null(id)) { mf0 <- runNN(rma.uni, list(yi = TE, sei = seTE, method = method.tau, control = control)) tau2 <- mf0$tau2 se.tau2 <- mf0$se.tau2 } else { idx <- seq_along(TE) mf0 <- runNN(rma.mv, list(yi = TE, V = seTE^2, method = method.tau, random = as.call(~ 1 | id / idx), control = control, data = data.frame(id, idx)), warn = FALSE) tau2 <- mf0$sigma2 se.tau2 <- NA } tau <- sqrt(tau2) Q <- mf0$QE df.Q <- mf0$k - mf0$p pval.Q <- pvalQ(Q, df.Q) if (df.Q < 2) method.tau.ci <- "" else if (!is.null(id) & method.tau.ci != "") method.tau.ci <- "PL" if (method.tau.ci == "BJ") ci0 <- confint.rma.uni( runNN(rma.uni, list(yi = TE, sei = seTE, weights = 1 / seTE^2, method = "GENQ", control = control))) else if (method.tau.ci == "J") ci0 <- confint.rma.uni( runNN(rma.uni, list(yi = TE, sei = seTE, weights = 1 / seTE, method = "GENQ", control = control))) else if (method.tau.ci == "QP") ci0 <- confint.rma.uni(mf0) else if (method.tau.ci == "PL") ci0 <- confint.rma.mv(mf0) } } useFE <- FALSE if (by) { if (is.numeric(subgroup)) subgroup <- as.factor(subgroup) if (is.null(id)) { if (length(unique(subgroup)) == 1) mf1 <- runNN(rma.uni, list(yi = TE, sei = seTE, method = method.tau, control = control)) else { mf1 <- try(runNN(rma.uni, list(yi = TE, sei = seTE, method = method.tau, mods = as.call(~ subgroup), control = control, data = data.frame(TE, seTE, subgroup))), silent = TRUE) if ("try-error" %in% class(mf1)) if (grepl(paste0("Number of parameters to be estimated is ", "larger than the number of observations"), mf1)) { useFE <- TRUE mf1 <- runNN(rma.uni, list(yi = TE, sei = seTE, method = "FE", mods = as.call(~ subgroup), control = control, data = data.frame(TE, seTE, subgroup))) } else stop(mf1) } tau2.resid <- mf1$tau2 se.tau2.resid <- mf1$se.tau2 } else { idx <- seq_along(TE) if (length(unique(subgroup)) == 1) mf1 <- runNN(rma.mv, list(yi = TE, V = seTE^2, method = method.tau, random = as.call(~ 1 | id / idx), control = control, data = data.frame(id, idx)), warn = FALSE) else { mf1 <- try( runNN(rma.mv, list(yi = TE, V = seTE^2, method = method.tau, random = as.call(~ 1 | id / idx), mods = as.call(~ subgroup), control = control, data = data.frame(TE, seTE, subgroup, id, idx)), warn = FALSE), silent = TRUE) if ("try-error" %in% class(mf1)) if (grepl(paste0("Number of parameters to be estimated is ", "larger than the number of observations"), mf1)) { useFE <- TRUE mf1 <- runNN(rma.mv, list(yi = TE, V = seTE^2, method = "FE", random = as.call(~ 1 | id / idx), mods = as.call(~ subgroup), control = control, data = data.frame(TE, seTE, subgroup, id, idx)), warn = FALSE) } else stop(mf1) } tau2.resid <- mf1$sigma2 se.tau2.resid <- NA } tau.resid <- sqrt(tau2.resid) Q.resid <- mf1$QE df.Q.resid <- mf1$k - mf1$p pval.Q.resid <- pvalQ(Q.resid, df.Q.resid) if (df.Q < 2 || useFE) method.tau.ci <- "" else if (!is.null(id) & method.tau.ci != "") method.tau.ci <- "PL" if (method.tau.ci == "BJ") ci1 <- confint.rma.uni( runNN(rma.uni, list(yi = TE, sei = seTE, weights = 1 / seTE^2, method = "GENQ", mods = as.call(~ subgroup), control = control, data = data.frame(TE, seTE, subgroup)))) else if (method.tau.ci == "J") ci1 <- confint.rma.uni( runNN(rma.uni, list(yi = TE, sei = seTE, weights = 1 / seTE, method = "GENQ", mods = as.call(~ subgroup), control = control, data = data.frame(TE, seTE, subgroup)))) else if (method.tau.ci == "QP") ci1 <- confint.rma.uni(mf1) else if (method.tau.ci == "PL") ci1 <- confint.rma.mv(mf1) } H <- calcH(Q, df.Q, level.hetstats) I2 <- isquared(Q, df.Q, level.hetstats) if (by) { H.resid <- calcH(Q.resid, df.Q.resid, level.hetstats) I2.resid <- isquared(Q.resid, df.Q.resid, level.hetstats) } if (method.tau.ci %in% c("QP", "BJ", "J")) { lower.tau2 <- ci0$random["tau^2", "ci.lb"] upper.tau2 <- ci0$random["tau^2", "ci.ub"] lower.tau <- ci0$random["tau", "ci.lb"] upper.tau <- ci0$random["tau", "ci.ub"] sign.lower.tau <- ci0$lb.sign sign.upper.tau <- ci0$ub.sign } else if (method.tau.ci == "PL") { if (any(names(ci0) == "random")) { lower.tau2 <- c(NA, ci0$random["sigma^2.2", "ci.lb"]) upper.tau2 <- c(NA, ci0$random["sigma^2.2", "ci.ub"]) lower.tau <- c(NA, ci0$random["sigma.2", "ci.lb"]) upper.tau <- c(NA, ci0$random["sigma.2", "ci.ub"]) sign.lower.tau <- c("", ci0$lb.sign) sign.upper.tau <- c("", ci0$ub.sign) } else { lower.tau2 <- c(ci0[[1]]$random["sigma^2.1", "ci.lb"], ci0[[2]]$random["sigma^2.2", "ci.lb"]) upper.tau2 <- c(ci0[[1]]$random["sigma^2.1", "ci.ub"], ci0[[2]]$random["sigma^2.2", "ci.ub"]) lower.tau <- c(ci0[[1]]$random["sigma.1", "ci.lb"], ci0[[2]]$random["sigma.2", "ci.lb"]) upper.tau <- c(ci0[[1]]$random["sigma.1", "ci.ub"], ci0[[2]]$random["sigma.2", "ci.ub"]) sign.lower.tau <- c(ci0[[1]]$lb.sign, ci0[[2]]$lb.sign) sign.upper.tau <- c(ci0[[1]]$ub.sign, ci0[[2]]$ub.sign) } } else { lower.tau2 <- upper.tau2 <- lower.tau <- upper.tau <- NA sign.lower.tau <- sign.upper.tau <- "" } if (by) { if (method.tau.ci %in% c("QP", "BJ", "J")) { lower.tau2.resid <- ci1$random["tau^2", "ci.lb"] upper.tau2.resid <- ci1$random["tau^2", "ci.ub"] lower.tau.resid <- ci1$random["tau", "ci.lb"] upper.tau.resid <- ci1$random["tau", "ci.ub"] sign.lower.tau.resid <- ci1$lb.sign sign.upper.tau.resid <- ci1$ub.sign } else if (method.tau.ci == "PL") { if (any(names(ci0) == "random")) { lower.tau2.resid <- c(NA, ci0$random["sigma^2.2", "ci.lb"]) upper.tau2.resid <- c(NA, ci0$random["sigma^2.2", "ci.ub"]) lower.tau.resid <- c(NA, ci0$random["sigma.2", "ci.lb"]) upper.tau.resid <- c(NA, ci0$random["sigma.2", "ci.ub"]) } else { lower.tau2.resid <- c(ci1[[1]]$random["sigma^2.1", "ci.lb"], ci1[[2]]$random["sigma^2.2", "ci.lb"]) upper.tau2.resid <- c(ci1[[1]]$random["sigma^2.1", "ci.ub"], ci1[[2]]$random["sigma^2.2", "ci.ub"]) lower.tau.resid <- c(ci1[[1]]$random["sigma.1", "ci.lb"], ci1[[2]]$random["sigma.2", "ci.lb"]) upper.tau.resid <- c(ci1[[1]]$random["sigma.1", "ci.ub"], ci1[[2]]$random["sigma.2", "ci.ub"]) } } else { lower.tau2.resid <- upper.tau2.resid <- lower.tau.resid <- upper.tau.resid <- NA } } res <- list(tau2 = tau2, se.tau2 = se.tau2, lower.tau2 = lower.tau2, upper.tau2 = upper.tau2, tau = tau, lower.tau = lower.tau, upper.tau = upper.tau, method.tau.ci = method.tau.ci, sign.lower.tau = sign.lower.tau, sign.upper.tau = sign.upper.tau, Q = Q, df.Q = df.Q, pval.Q = pval.Q, H = H$TE, lower.H = H$lower, upper.H = H$upper, I2 = I2$TE, lower.I2 = I2$lower, upper.I2 = I2$upper, tau2.resid = if (by) tau2.resid else NA, se.tau2.resid = if (by) se.tau2.resid else NA, lower.tau2.resid = if (by) lower.tau2.resid else NA, upper.tau2.resid = if (by) upper.tau2.resid else NA, tau.resid = if (by) tau.resid else NA, lower.tau.resid = if (by) lower.tau.resid else NA, upper.tau.resid = if (by) upper.tau.resid else NA, Q.resid = if (by) Q.resid else NA, df.Q.resid = if (by) df.Q.resid else NA, pval.Q.resid = if (by) pval.Q.resid else NA, H.resid = if (by) H.resid$TE else NA, lower.H.resid = if (by) H.resid$lower else NA, upper.H.resid = if (by) H.resid$upper else NA, H.resid = if (by) H.resid$TE else NA, lower.H.resid = if (by) H.resid$lower else NA, upper.H.resid = if (by) H.resid$upper else NA, I2.resid = if (by) I2.resid$TE else NA, lower.I2.resid = if (by) I2.resid$lower else NA, upper.I2.resid = if (by) I2.resid$upper else NA ) res }
d <- data.frame( trt = factor(c(1, 1, 2, 2)), resp = c(1, 5, 3, 4), group = factor(c(1, 2, 1, 2)), upper = c(1.1, 5.3, 3.3, 4.2), lower = c(0.8, 4.6, 2.4, 3.6) ) p <- ggplot(d, aes(trt, resp)) + geom_crossbar(aes(ymin = lower, ymax = upper), width = 0.2) test_that("Basic geom_crossbar() works", { l <- plotly_build(p)$x expect_length(l$data, 5) }) p <- ggplot(d, aes(trt, resp, color = group, linetype = group)) + geom_crossbar(aes(ymin = lower, ymax = upper), width = 0.2) + scale_colour_manual(values = c("red", "purple")) test_that("geom_crossbar() with aesthetics", { l <- plotly_build(p)$x expect_length(l$data, 6) colors <- vapply(l$data, function(x) x$line$color, character(1)) dashes <- vapply(l$data, function(x) x$line$dash, character(1)) expect_equivalent( unique(colors), toRGB(c("red", "purple")) ) expect_equivalent( unique(dashes), lty2dash(1:2) ) })
context("Evaluation") library("testthat") library("pROC") library("AUC") library("scoring") library("Metrics") library("PRROC") test_that("evaluatePlp", { eval <- evaluatePlp(prediction = plpResult$prediction, plpData = plpData) testthat::expect_equal(class(eval), 'plpEvaluation') testthat::expect_equal(names(eval), c('evaluationStatistics', 'thresholdSummary', 'demographicSummary', 'calibrationSummary', 'predictionDistribution') ) }) test_that("AUROC", { Eprediction <- data.frame(value= runif(100), outcomeCount = round(runif(100))) attr(Eprediction, "metaData") <- list(predictionType = "binary") proc.auc <- pROC::roc(Eprediction$outcomeCount, Eprediction$value, algorithm = 3, direction="<") auc.auc <- AUC::auc(AUC::roc(Eprediction$value, factor(Eprediction$outcomeCount))) tolerance <- 0.001 expect_equal(as.numeric(proc.auc$auc), auc.auc, tolerance = tolerance) plpAUC <- computeAuc(Eprediction, confidenceInterval = FALSE) expect_equal(as.numeric(proc.auc$auc), plpAUC, tolerance = tolerance) plpAUCdf <- computeAucFromDataFrames(prediction = Eprediction$value, status = Eprediction$outcomeCount, modelType = "logistic") expect_equal(as.numeric(proc.auc$auc), plpAUCdf, tolerance = tolerance) }) test_that("AUPRC", { Eprediction <- data.frame(value= runif(100), outcomeCount = round(runif(100))) positive <- Eprediction$value[Eprediction$outcomeCount == 1] negative <- Eprediction$value[Eprediction$outcomeCount == 0] pr <- PRROC::pr.curve(scores.class0 = positive, scores.class1 = negative) auprc <- pr$auc.integral expect_gte(auprc, 0) expect_lte(auprc, 1) }) test_that("Brierscore", { Eprediction <- data.frame(value= runif(100), outcomeCount = round(runif(100))) Eprediction$dummy <- 1 brier.scoring <- scoring::brierscore(outcomeCount ~ value, data=Eprediction, group='dummy')$brieravg brier.plp <- brierScore(Eprediction)$brier expect_that(as.double(brier.scoring), equals(brier.plp)) }) test_that("Average precision", { Eprediction <- data.frame(value= runif(100), outcomeCount = round(runif(100))) aveP.metrics <- Metrics::apk(nrow(Eprediction), which(Eprediction$outcomeCount==1), (1:nrow(Eprediction))[order(-Eprediction$value)]) aveP.plp <- averagePrecision(Eprediction) expect_that(as.double(aveP.metrics), equals(aveP.plp)) }) test_that("f1Score", { expect_that(f1Score(TP=0,TN=0,FN=0,FP=0), equals(NaN)) expect_that(f1Score(TP=-1,TN=0,FN=0,FP=0), throws_error()) expect_that(f1Score(TP=1,TN=-1,FN=0,FP=0), throws_error()) expect_that(f1Score(TP=1,TN=3,FN=-1,FP=0), throws_error()) expect_that(f1Score(TP=1,TN=1,FN=5,FP=-1), throws_error()) expect_that(f1Score(TP=NULL,TN=0,FN=0,FP=0), throws_error()) expect_that(f1Score(TP=1,TN=NULL,FN=0,FP=0), throws_error()) expect_that(f1Score(TP=1,TN=3,FN=NULL,FP=0), throws_error()) expect_that(f1Score(TP=1,TN=1,FN=5,FP=NULL), throws_error()) expect_that(f1Score(TP=10,TN=3,FN=5,FP=5), equals(0.6666667,tolerance = 0.0001) ) }) test_that("accuracy", { expect_that(accuracy(TP=0,TN=0,FN=0,FP=0), equals(NaN)) expect_that(accuracy(TP=-1,TN=0,FN=0,FP=0), throws_error()) expect_that(accuracy(TP=1,TN=-1,FN=0,FP=0), throws_error()) expect_that(accuracy(TP=1,TN=3,FN=-1,FP=0), throws_error()) expect_that(accuracy(TP=1,TN=1,FN=5,FP=-1), throws_error()) expect_that(accuracy(TP=NULL,TN=0,FN=0,FP=0), throws_error()) expect_that(accuracy(TP=1,TN=NULL,FN=0,FP=0), throws_error()) expect_that(accuracy(TP=1,TN=3,FN=NULL,FP=0), throws_error()) expect_that(accuracy(TP=1,TN=1,FN=5,FP=NULL), throws_error()) expect_that(accuracy(TP=10,TN=3,FN=5,FP=5), equals(13/23, tolerance = 0.0001)) }) test_that("sensitivity", { expect_that(sensitivity(TP=0,TN=0,FN=0,FP=0), equals(NaN)) expect_that(sensitivity(TP=-1,TN=0,FN=0,FP=0), throws_error()) expect_that(sensitivity(TP=1,TN=-1,FN=0,FP=0), throws_error()) expect_that(sensitivity(TP=1,TN=3,FN=-1,FP=0), throws_error()) expect_that(sensitivity(TP=1,TN=1,FN=5,FP=-1), throws_error()) expect_that(sensitivity(TP=NULL,TN=0,FN=0,FP=0), throws_error()) expect_that(sensitivity(TP=1,TN=NULL,FN=0,FP=0), throws_error()) expect_that(sensitivity(TP=1,TN=3,FN=NULL,FP=0), throws_error()) expect_that(sensitivity(TP=1,TN=1,FN=5,FP=NULL), throws_error()) expect_that(sensitivity(TP=10,TN=3,FN=5,FP=5), equals(10/(10+5),tolerance = 0.0001)) }) test_that("falseNegativeRate", { expect_that(falseNegativeRate(TP=0,TN=0,FN=0,FP=0), equals(NaN)) expect_that(falseNegativeRate(TP=-1,TN=0,FN=0,FP=0), throws_error()) expect_that(falseNegativeRate(TP=1,TN=-1,FN=0,FP=0), throws_error()) expect_that(falseNegativeRate(TP=1,TN=3,FN=-1,FP=0), throws_error()) expect_that(falseNegativeRate(TP=1,TN=1,FN=5,FP=-1), throws_error()) expect_that(falseNegativeRate(TP=NULL,TN=0,FN=0,FP=0), throws_error()) expect_that(falseNegativeRate(TP=1,TN=NULL,FN=0,FP=0), throws_error()) expect_that(falseNegativeRate(TP=1,TN=3,FN=NULL,FP=0), throws_error()) expect_that(falseNegativeRate(TP=1,TN=1,FN=5,FP=NULL), throws_error()) expect_that(falseNegativeRate(TP=10,TN=3,FN=5,FP=5), equals(5/(10+5), tolerance = 0.0001)) }) test_that("falsePositiveRate", { expect_that(falsePositiveRate(TP=0,TN=0,FN=0,FP=0), equals(NaN)) expect_that(falsePositiveRate(TP=-1,TN=0,FN=0,FP=0), throws_error()) expect_that(falsePositiveRate(TP=1,TN=-1,FN=0,FP=0), throws_error()) expect_that(falsePositiveRate(TP=1,TN=3,FN=-1,FP=0), throws_error()) expect_that(falsePositiveRate(TP=1,TN=1,FN=5,FP=-1), throws_error()) expect_that(falsePositiveRate(TP=NULL,TN=0,FN=0,FP=0), throws_error()) expect_that(falsePositiveRate(TP=1,TN=NULL,FN=0,FP=0), throws_error()) expect_that(falsePositiveRate(TP=1,TN=3,FN=NULL,FP=0), throws_error()) expect_that(falsePositiveRate(TP=1,TN=1,FN=5,FP=NULL), throws_error()) expect_that(falsePositiveRate(TP=10,TN=3,FN=5,FP=5), equals(5/(5+3), tolerance = 0.0001)) }) test_that("specificity", { expect_that(specificity(TP=0,TN=0,FN=0,FP=0), equals(NaN)) expect_that(specificity(TP=-1,TN=0,FN=0,FP=0), throws_error()) expect_that(specificity(TP=1,TN=-1,FN=0,FP=0), throws_error()) expect_that(specificity(TP=1,TN=3,FN=-1,FP=0), throws_error()) expect_that(specificity(TP=1,TN=1,FN=5,FP=-1), throws_error()) expect_that(specificity(TP=NULL,TN=0,FN=0,FP=0), throws_error()) expect_that(specificity(TP=1,TN=NULL,FN=0,FP=0), throws_error()) expect_that(specificity(TP=1,TN=3,FN=NULL,FP=0), throws_error()) expect_that(specificity(TP=1,TN=1,FN=5,FP=NULL), throws_error()) expect_that(specificity(TP=10,TN=3,FN=5,FP=5), equals(3/(5+3), tolerance = 0.0001)) }) test_that("positivePredictiveValue", { expect_that(positivePredictiveValue(TP=0,TN=0,FN=0,FP=0), equals(NaN)) expect_that(positivePredictiveValue(TP=-1,TN=0,FN=0,FP=0), throws_error()) expect_that(positivePredictiveValue(TP=1,TN=-1,FN=0,FP=0), throws_error()) expect_that(positivePredictiveValue(TP=1,TN=3,FN=-1,FP=0), throws_error()) expect_that(positivePredictiveValue(TP=1,TN=1,FN=5,FP=-1), throws_error()) expect_that(positivePredictiveValue(TP=NULL,TN=0,FN=0,FP=0), throws_error()) expect_that(positivePredictiveValue(TP=1,TN=NULL,FN=0,FP=0), throws_error()) expect_that(positivePredictiveValue(TP=1,TN=3,FN=NULL,FP=0), throws_error()) expect_that(positivePredictiveValue(TP=1,TN=1,FN=5,FP=NULL), throws_error()) expect_that(positivePredictiveValue(TP=10,TN=3,FN=5,FP=5), equals(10/(10+5), tolerance = 0.0001)) }) test_that("falseDiscoveryRate", { expect_that(falseDiscoveryRate(TP=0,TN=0,FN=0,FP=0), equals(NaN)) expect_that(falseDiscoveryRate(TP=-1,TN=0,FN=0,FP=0), throws_error()) expect_that(falseDiscoveryRate(TP=1,TN=-1,FN=0,FP=0), throws_error()) expect_that(falseDiscoveryRate(TP=1,TN=3,FN=-1,FP=0), throws_error()) expect_that(falseDiscoveryRate(TP=1,TN=1,FN=5,FP=-1), throws_error()) expect_that(falseDiscoveryRate(TP=NULL,TN=0,FN=0,FP=0), throws_error()) expect_that(falseDiscoveryRate(TP=1,TN=NULL,FN=0,FP=0), throws_error()) expect_that(falseDiscoveryRate(TP=1,TN=3,FN=NULL,FP=0), throws_error()) expect_that(falseDiscoveryRate(TP=1,TN=1,FN=5,FP=NULL), throws_error()) expect_that(falseDiscoveryRate(TP=10,TN=3,FN=5,FP=5), equals(5/(10+5), tolerance = 0.0001)) }) test_that("negativePredictiveValue", { expect_that(negativePredictiveValue(TP=0,TN=0,FN=0,FP=0), equals(NaN)) expect_that(negativePredictiveValue(TP=-1,TN=0,FN=0,FP=0), throws_error()) expect_that(negativePredictiveValue(TP=1,TN=-1,FN=0,FP=0), throws_error()) expect_that(negativePredictiveValue(TP=1,TN=3,FN=-1,FP=0), throws_error()) expect_that(negativePredictiveValue(TP=1,TN=1,FN=5,FP=-1), throws_error()) expect_that(negativePredictiveValue(TP=NULL,TN=0,FN=0,FP=0), throws_error()) expect_that(negativePredictiveValue(TP=1,TN=NULL,FN=0,FP=0), throws_error()) expect_that(negativePredictiveValue(TP=1,TN=3,FN=NULL,FP=0), throws_error()) expect_that(negativePredictiveValue(TP=1,TN=1,FN=5,FP=NULL), throws_error()) expect_that(negativePredictiveValue(TP=10,TN=3,FN=5,FP=5), equals(3/(5+3), tolerance = 0.0001)) }) test_that("falseOmissionRate", { expect_that(falseOmissionRate(TP=0,TN=0,FN=0,FP=0), equals(NaN)) expect_that(falseOmissionRate(TP=-1,TN=0,FN=0,FP=0), throws_error()) expect_that(falseOmissionRate(TP=1,TN=-1,FN=0,FP=0), throws_error()) expect_that(falseOmissionRate(TP=1,TN=3,FN=-1,FP=0), throws_error()) expect_that(falseOmissionRate(TP=1,TN=1,FN=5,FP=-1), throws_error()) expect_that(falseOmissionRate(TP=NULL,TN=0,FN=0,FP=0), throws_error()) expect_that(falseOmissionRate(TP=1,TN=NULL,FN=0,FP=0), throws_error()) expect_that(falseOmissionRate(TP=1,TN=3,FN=NULL,FP=0), throws_error()) expect_that(falseOmissionRate(TP=1,TN=1,FN=5,FP=NULL), throws_error()) expect_that(falseOmissionRate(TP=10,TN=3,FN=5,FP=5), equals(5/(5+3), tolerance = 0.0001)) }) test_that("negativeLikelihoodRatio", { expect_that(negativeLikelihoodRatio(TP=0,TN=0,FN=0,FP=0), equals(NaN)) expect_that(negativeLikelihoodRatio(TP=-1,TN=0,FN=0,FP=0), throws_error()) expect_that(negativeLikelihoodRatio(TP=1,TN=-1,FN=0,FP=0), throws_error()) expect_that(negativeLikelihoodRatio(TP=1,TN=3,FN=-1,FP=0), throws_error()) expect_that(negativeLikelihoodRatio(TP=1,TN=1,FN=5,FP=-1), throws_error()) expect_that(negativeLikelihoodRatio(TP=NULL,TN=0,FN=0,FP=0), throws_error()) expect_that(negativeLikelihoodRatio(TP=1,TN=NULL,FN=0,FP=0), throws_error()) expect_that(negativeLikelihoodRatio(TP=1,TN=3,FN=NULL,FP=0), throws_error()) expect_that(negativeLikelihoodRatio(TP=1,TN=1,FN=5,FP=NULL), throws_error()) expect_that(negativeLikelihoodRatio(TP=10,TN=3,FN=5,FP=5), equals((5/(10+5))/(3/(5+3)), tolerance = 0.0001)) }) test_that("positiveLikelihoodRatio", { expect_that(positiveLikelihoodRatio(TP=0,TN=0,FN=0,FP=0), equals(NaN)) expect_that(positiveLikelihoodRatio(TP=-1,TN=0,FN=0,FP=0), throws_error()) expect_that(positiveLikelihoodRatio(TP=1,TN=-1,FN=0,FP=0), throws_error()) expect_that(positiveLikelihoodRatio(TP=1,TN=3,FN=-1,FP=0), throws_error()) expect_that(positiveLikelihoodRatio(TP=1,TN=1,FN=5,FP=-1), throws_error()) expect_that(positiveLikelihoodRatio(TP=NULL,TN=0,FN=0,FP=0), throws_error()) expect_that(positiveLikelihoodRatio(TP=1,TN=NULL,FN=0,FP=0), throws_error()) expect_that(positiveLikelihoodRatio(TP=1,TN=3,FN=NULL,FP=0), throws_error()) expect_that(positiveLikelihoodRatio(TP=1,TN=1,FN=5,FP=NULL), throws_error()) expect_that(positiveLikelihoodRatio(TP=10,TN=3,FN=5,FP=5), equals((10/(10+5))/(5/(5+3)), tolerance = 0.0001)) }) test_that("diagnosticOddsRatio", { expect_that(diagnosticOddsRatio(TP=0,TN=0,FN=0,FP=0), equals(NaN)) expect_that(diagnosticOddsRatio(TP=-1,TN=0,FN=0,FP=0), throws_error()) expect_that(diagnosticOddsRatio(TP=1,TN=-1,FN=0,FP=0), throws_error()) expect_that(diagnosticOddsRatio(TP=1,TN=3,FN=-1,FP=0), throws_error()) expect_that(diagnosticOddsRatio(TP=1,TN=1,FN=5,FP=-1), throws_error()) expect_that(diagnosticOddsRatio(TP=NULL,TN=0,FN=0,FP=0), throws_error()) expect_that(diagnosticOddsRatio(TP=1,TN=NULL,FN=0,FP=0), throws_error()) expect_that(diagnosticOddsRatio(TP=1,TN=3,FN=NULL,FP=0), throws_error()) expect_that(diagnosticOddsRatio(TP=1,TN=1,FN=5,FP=NULL), throws_error()) expect_that(diagnosticOddsRatio(TP=10,TN=3,FN=5,FP=5), equals(((10/(10+5))/(5/(5+3)))/((5/(10+5))/(3/(5+3))), tolerance = 0.0001)) }) test_that("getPredictionDistribution", { Eprediction <- data.frame(value= runif(100), outcomeCount =round(runif(100))) predSum <- getPredictionDistribution(Eprediction) expect_that(nrow(predSum ), equals(2)) expect_that(ncol(predSum ), equals(11)) }) test_that("getCalibration", { Eprediction <- data.frame(rowId=1:100, value= runif(100), outcomeCount =round(runif(100))) attr(Eprediction, "metaData")$predictionType <- "binary" calib <- getCalibration(Eprediction) expect_that(nrow(calib ), equals(10)) expect_that(ncol(calib ), equals(11)) }) test_that("getThresholdSummary", { Eprediction <- data.frame(value= runif(100), outcomeCount =round(runif(100))) thresSum <- getThresholdSummary(Eprediction) expect_that(nrow(thresSum), equals(length(unique(Eprediction$value)))) expect_that(ncol(thresSum), equals(23)) expect_that(thresSum$truePositiveCount+thresSum$falseNegativeCount, equals(rep(sum(Eprediction$outcomeCount),length(thresSum$truePositiveCount)))) expect_that(thresSum$truePositiveCount+thresSum$falsePositiveCount+ thresSum$trueNegativeCount+thresSum$falseNegativeCount, equals(rep(nrow(Eprediction),length(thresSum$truePositiveCount)))) }) test_that("Calibration", { Eprediction <- data.frame(rowId=1:100, value= c(rep(0,50),rep(1,50)), outcomeCount =c(rep(0,50),rep(1,50))) calibrationTest1 <- calibrationLine(Eprediction,numberOfStrata=2) expect_that(calibrationTest1$lm['Intercept'], is_equivalent_to(0)) expect_that(calibrationTest1$lm['Gradient'], is_equivalent_to(1)) expect_that(nrow(calibrationTest1$aggregateLmData)==2, equals(T)) Eprediction2 <- data.frame(rowId=1:100, value= c(0.1+runif(50)*0.9,runif(50)*0.6), outcomeCount =c(rep(1,50),rep(0,50))) hs.exist2 <- ResourceSelection::hoslem.test(Eprediction2$outcomeCount, Eprediction2$value, g=10) calibrationTest2 <- calibrationLine(Eprediction2,numberOfStrata=10) expect_that(calibrationTest2$hosmerlemeshow['Xsquared'], is_equivalent_to(hs.exist2$statistic)) expect_that(calibrationTest2$hosmerlemeshow['df'], is_equivalent_to(hs.exist2$parameter)) expect_that(calibrationTest2$hosmerlemeshow['pvalue'], is_equivalent_to(hs.exist2$p.value)) })
testGvsGH <- function(x, nsim, verbose = 'vv') { t0 <- Sys.time() LLR <- rep(0, nsim) vmessage(verbose, 2, TRUE, 'Fitting g distribution to data') depo <- fitG(x, verbose = FALSE) mleG <- stats::coef(depo)[3] maxG <- depo$loglik vmessage(verbose, 2, TRUE, 'Fitting g-and-h distribution to data') depo <- fitGH(x, method = 'mle', verbose = FALSE) mleGH <- stats::coef(depo)[3:4] maxGH <- depo$loglik observed_LLR <- pmax(2 * (maxGH - maxG), 0) vmessage(verbose, 2, TRUE, 'Running simulations') if (verbose %in% c('v', 'vv', 'vvv')) { pb <- utils::txtProgressBar(min = 0, max = nsim, style = 3) } for (i in seq_len(nsim)) { xsim <- rgh(n = length(x), a = 0, b = 1, g = mleGH[1], h =0) depo <- fitG(xsim, verbose = FALSE) maxG <- depo$loglik depo <- fitGH(xsim, method = 'mle', verbose = FALSE) maxGH <- depo$loglik LLR[i] <- 2 * (maxGH - maxG) if (verbose %in% c('v', 'vv', 'vvv')) { utils::setTxtProgressBar(pb, i) } } if (verbose %in% c('v', 'vv', 'vvv')) { close(pb) } vmessage(verbose, 2, TRUE, 'Done!') list( call = match.call(), n = length(x), nsim = nsim, statistic = observed_LLR, LLR = LLR, p.value = mean(LLR > observed_LLR), CIp.value = suppressWarnings( stats::prop.test(sum(LLR > observed_LLR), nsim)$conf.int ), time = Sys.time() - t0 ) %>% structure(class = 'testGvsGH') %>% return() } print.testGvsGH <- function(x, ...) { cat("\nSimulated LLR of g vs Tukey's g-and-h distribution test\n") cat('\nCall:\n') print(x$call) cat('\nStatistic: ', x$statistic, ', Estimated p-value: ', x$p.value,sep = '') cat('\nApproximate 95% C.I. of p-value: ') cat('(', paste0(signif(x$CIp.value, 4), collapse = ', '), ')', '\n', sep = '') cat('\nSummary statistics of the simulated log-likelihood ratios:\n') print(summary(x$LLR)) cat('\n', 'Fitting method: Maximum Likelihood\n', 'Number of simulations: ', x$nsim, ', ', 'Computation time: ', signif(x$time, 3), ' ', units(x$time), '\n', 'Observations: ', x$n, ', degrees of freedom: ', 1, '\n', sep = '' ) invisible(x) } summary.testGvsGH <- function(object, ...) { print(object, ...) }
samplePriorSeparationLimits <- function(n, prior, mean.limits, rate.limits, sample.sd=TRUE){ pars <- prior$pars mu <- matrix(nrow=n, ncol=pars$r) if(pars$den.mu == "unif"){ for(i in 1:pars$r){ mu[,i] <- stats::runif(n=n, min=mean.limits[1], max=mean.limits[2]) } } else{ for(i in 1:pars$r){ for(j in 1:n){ repeat{ mu[j,i] <- stats::rnorm(n=1, mean=pars$par.mu[i,1], sd=pars$par.mu[i,2]) if( mu[j,i] > mean.limits[1] && mu[j,i] < mean.limits[2] ) break } } } } sample_vcv <- function(){ if(pars$unif.corr == TRUE){ if( pars$p == 1){ vcv <- riwish(v=pars$r + 1, S=diag(nrow=pars$r)) } else{ vcv <- list() for(i in 1:pars$p){ vcv[[i]] <- riwish(v=pars$r + 1, S=diag(nrow=pars$r) ) } } } else{ if( is.matrix(pars$Sigma) ){ vcv <- riwish(v=pars$nu, S=pars$Sigma) } if( is.list(pars$Sigma) ){ vcv <- list() for(i in 1:pars$p){ vcv[[i]] <- riwish(v=pars$nu[i], S=pars$Sigma[[i]]) } } if( !is.matrix(pars$Sigma) && !is.list(pars$Sigma) ) stop("Error. Check if the parameter 'Sigma' in function 'make.prior.zhang' is of class 'matrix' or class 'list'. Check if length of 'Sigma', if a list, is equal to 'p'.") } return(vcv) } sample_sd <- function(){ if(pars$den.sd == "unif"){ if(pars$p == 1){ sd <- stats::runif(n=pars$r, min=pars$par.sd[1], max=pars$par.sd[2]) } else{ sd <- list() for(i in 1:pars$p){ sd[[i]] <- stats::runif(n=pars$r, min=pars$par.sd[i,1], max=pars$par.sd[i,2]) } } } else{ if(pars$p == 1){ sd <- stats::rlnorm(n=pars$r, meanlog=pars$par.sd[1], sdlog=pars$par.sd[2]) } else{ sd <- list() for(i in 1:pars$p){ sd[[i]] <- stats::rlnorm(n=pars$r, meanlog=pars$par.sd[i,1], sdlog=pars$par.sd[i,2]) } } } return(sd) } check_limit <- function(X){ mm <- c( X[ upper.tri(X, diag=TRUE) ] ) low <- mm > rate.limits[1] high <- mm < rate.limits[2] if( sum(low) == length(mm) && sum(high) == length(mm) ){ return(TRUE) } else{ return(FALSE) } } if( sample.sd == TRUE ){ prior.samples <- list() for( i in 1:n ){ repeat{ vcv <- sample_vcv() sd <- sample_sd() corr <- decompose.cov(vcv)$r vv <- (sd)^2 prior.samples[[i]] <- rebuild.cov(r=corr, v=vv) if( check_limit( prior.samples[[i]] ) ) break } } } else{ prior.samples <- list() for( i in 1:n ){ repeat{ prior.samples[[i]] <- sample_vcv() if( check_limit( prior.samples[[i]] ) ) break } } } out <- list( mu=mu, matrix=prior.samples ) return( out ) }
context("Test of ODEsobol.ODEnetwork() (and plotting)") masses <- c(1, 1) dampers <- diag(c(1, 1)) springs <- diag(c(1, 1)) springs[1, 2] <- 1 distances <- diag(c(0, 2)) distances[1, 2] <- 1 lfonet <- ODEnetwork(masses, dampers, springs, cartesian = TRUE, distances = distances) lfonet <- setState(lfonet, c(0.5, 1), c(0, 0)) LFObinf <- rep(0.001, 3) LFObsup <- c(6, 6, 3) LFOtimes1 <- seq(0.1, 20, by = 5) LFOtimes2 <- 10 set.seed(2015) LFOres1 <- suppressWarnings( ODEsobol(mod = lfonet, pars = c("k.1", "k.2", "k.1.2"), times = LFOtimes1, n = 10, rfuncs = c("runif", "rnorm", "rexp"), rargs = c("min = 0.001, max = 6", "mean = 3, sd = 0.5", "rate = 1 / 3"), sobol_method = "Martinez", ode_method = "adams", parallel_eval = FALSE, parallel_eval_ncores = NA) ) set.seed(2015) LFOres2 <- suppressWarnings( ODEsobol(mod = lfonet, pars = c("k.1", "k.2", "k.1.2"), times = LFOtimes2, n = 10, rfuncs = c("runif", "rnorm", "rexp"), rargs = c("min = 0.001, max = 6", "mean = 3, sd = 0.5", "rate = 1 / 3"), sobol_method = "Martinez", ode_method = "adams", parallel_eval = FALSE, parallel_eval_ncores = NA) ) set.seed(2015) LFOres3 <- suppressWarnings( ODEsobol(mod = lfonet, pars = "k.1", times = LFOtimes2, n = 10, rfuncs = "runif", rargs = "min = 0.001, max = 6", sobol_method = "Martinez", ode_method = "adams", parallel_eval = FALSE, parallel_eval_ncores = NA) ) set.seed(2015) LFOres_parallel <- suppressWarnings( ODEsobol(mod = lfonet, pars = c("k.1", "k.2", "k.1.2"), times = LFOtimes1, n = 10, rfuncs = c("runif", "rnorm", "rexp"), rargs = c("min = 0.001, max = 6", "mean = 3, sd = 0.5", "rate = 1 / 3"), sobol_method = "Martinez", ode_method = "adams", parallel_eval = TRUE, parallel_eval_ncores = 2) ) set.seed(2015) LFOres_jansen <- suppressWarnings( ODEsobol(mod = lfonet, pars = c("k.1", "k.2", "k.1.2"), times = LFOtimes1, n = 10, rfuncs = c("runif", "rnorm", "rexp"), rargs = c("min = 0.001, max = 6", "mean = 3, sd = 0.5", "rate = 1 / 3"), sobol_method = "Jansen", ode_method = "adams", parallel_eval = FALSE, parallel_eval_ncores = NA) ) test_that("Result type is correct", { expect_true(is.list(LFOres1)) expect_equal(class(LFOres1), "ODEsobol") expect_equal(attr(LFOres1, "sobol_method"), "Martinez") expect_equal(length(LFOres1), 4) expect_equal(names(LFOres1), c("x.1", "v.1", "x.2", "v.2")) expect_true(is.list(LFOres1$"x.1")) expect_true(is.list(LFOres1$"v.1")) expect_true(is.list(LFOres1$"x.2")) expect_true(is.list(LFOres1$"v.2")) expect_equal(length(LFOres1$"x.1"), 2) expect_equal(length(LFOres1$"v.1"), 2) expect_equal(length(LFOres1$"x.2"), 2) expect_equal(length(LFOres1$"v.2"), 2) expect_equal(dim(LFOres1$"x.1"$S), c(1 + length(c("k.1", "k.2", "k.1.2")), length(LFOtimes1))) expect_equal(dim(LFOres1$"x.1"$T), c(1 + length(c("k.1", "k.2", "k.1.2")), length(LFOtimes1))) expect_equal(dim(LFOres1$"v.1"$S), c(1 + length(c("k.1", "k.2", "k.1.2")), length(LFOtimes1))) expect_equal(dim(LFOres1$"v.1"$T), c(1 + length(c("k.1", "k.2", "k.1.2")), length(LFOtimes1))) expect_equal(dim(LFOres1$"x.2"$S), c(1 + length(c("k.1", "k.2", "k.1.2")), length(LFOtimes1))) expect_equal(dim(LFOres1$"x.2"$T), c(1 + length(c("k.1", "k.2", "k.1.2")), length(LFOtimes1))) expect_equal(dim(LFOres1$"v.2"$S), c(1 + length(c("k.1", "k.2", "k.1.2")), length(LFOtimes1))) expect_equal(dim(LFOres1$"v.2"$T), c(1 + length(c("k.1", "k.2", "k.1.2")), length(LFOtimes1))) expect_true(is.list(LFOres2)) expect_equal(class(LFOres2), "ODEsobol") expect_equal(attr(LFOres2, "sobol_method"), "Martinez") expect_equal(length(LFOres2), 4) expect_equal(names(LFOres2), c("x.1", "v.1", "x.2", "v.2")) expect_true(is.list(LFOres2$"x.1")) expect_true(is.list(LFOres2$"v.1")) expect_true(is.list(LFOres2$"x.2")) expect_true(is.list(LFOres2$"v.2")) expect_equal(length(LFOres2$"x.1"), 2) expect_equal(length(LFOres2$"v.1"), 2) expect_equal(length(LFOres2$"x.2"), 2) expect_equal(length(LFOres2$"v.2"), 2) expect_equal(dim(LFOres2$"x.1"$S), c(1 + length(c("k.1", "k.2", "k.1.2")), length(LFOtimes2))) expect_equal(dim(LFOres2$"x.1"$T), c(1 + length(c("k.1", "k.2", "k.1.2")), length(LFOtimes2))) expect_equal(dim(LFOres2$"v.1"$S), c(1 + length(c("k.1", "k.2", "k.1.2")), length(LFOtimes2))) expect_equal(dim(LFOres2$"v.1"$T), c(1 + length(c("k.1", "k.2", "k.1.2")), length(LFOtimes2))) expect_equal(dim(LFOres2$"x.2"$S), c(1 + length(c("k.1", "k.2", "k.1.2")), length(LFOtimes2))) expect_equal(dim(LFOres2$"x.2"$T), c(1 + length(c("k.1", "k.2", "k.1.2")), length(LFOtimes2))) expect_equal(dim(LFOres2$"v.2"$S), c(1 + length(c("k.1", "k.2", "k.1.2")), length(LFOtimes2))) expect_equal(dim(LFOres2$"v.2"$T), c(1 + length(c("k.1", "k.2", "k.1.2")), length(LFOtimes2))) expect_true(is.list(LFOres3)) expect_equal(class(LFOres3), "ODEsobol") expect_equal(attr(LFOres3, "sobol_method"), "Martinez") expect_equal(length(LFOres3), 4) expect_equal(names(LFOres3), c("x.1", "v.1", "x.2", "v.2")) expect_true(is.list(LFOres3$"x.1")) expect_true(is.list(LFOres3$"v.1")) expect_true(is.list(LFOres3$"x.2")) expect_true(is.list(LFOres3$"v.2")) expect_equal(length(LFOres3$"x.1"), 2) expect_equal(length(LFOres3$"v.1"), 2) expect_equal(length(LFOres3$"x.2"), 2) expect_equal(length(LFOres3$"v.2"), 2) expect_equal(dim(LFOres3$"x.1"$S), c(1 + length(c("k.1")), length(LFOtimes2))) expect_equal(dim(LFOres3$"x.1"$T), c(1 + length(c("k.1")), length(LFOtimes2))) expect_equal(dim(LFOres3$"v.1"$S), c(1 + length(c("k.1")), length(LFOtimes2))) expect_equal(dim(LFOres3$"v.1"$T), c(1 + length(c("k.1")), length(LFOtimes2))) expect_equal(dim(LFOres3$"x.2"$S), c(1 + length(c("k.1")), length(LFOtimes2))) expect_equal(dim(LFOres3$"x.2"$T), c(1 + length(c("k.1")), length(LFOtimes2))) expect_equal(dim(LFOres3$"v.2"$S), c(1 + length(c("k.1")), length(LFOtimes2))) expect_equal(dim(LFOres3$"v.2"$T), c(1 + length(c("k.1")), length(LFOtimes2))) expect_equal(LFOres_parallel, LFOres1) expect_true(is.list(LFOres_jansen)) expect_equal(class(LFOres_jansen), "ODEsobol") expect_equal(attr(LFOres_jansen, "sobol_method"), "Jansen") expect_equal(length(LFOres_jansen), 4) expect_equal(names(LFOres_jansen), c("x.1", "v.1", "x.2", "v.2")) expect_true(is.list(LFOres_jansen$"x.1")) expect_true(is.list(LFOres_jansen$"v.1")) expect_true(is.list(LFOres_jansen$"x.2")) expect_true(is.list(LFOres_jansen$"v.2")) expect_equal(length(LFOres_jansen$"x.1"), 2) expect_equal(length(LFOres_jansen$"v.1"), 2) expect_equal(length(LFOres_jansen$"x.2"), 2) expect_equal(length(LFOres_jansen$"v.2"), 2) expect_equal(dim(LFOres_jansen$"x.1"$S), c(1 + length(c("k.1", "k.2", "k.1.2")), length(LFOtimes1))) expect_equal(dim(LFOres_jansen$"x.1"$T), c(1 + length(c("k.1", "k.2", "k.1.2")), length(LFOtimes1))) expect_equal(dim(LFOres_jansen$"v.1"$S), c(1 + length(c("k.1", "k.2", "k.1.2")), length(LFOtimes1))) expect_equal(dim(LFOres_jansen$"v.1"$T), c(1 + length(c("k.1", "k.2", "k.1.2")), length(LFOtimes1))) expect_equal(dim(LFOres_jansen$"x.2"$S), c(1 + length(c("k.1", "k.2", "k.1.2")), length(LFOtimes1))) expect_equal(dim(LFOres_jansen$"x.2"$T), c(1 + length(c("k.1", "k.2", "k.1.2")), length(LFOtimes1))) expect_equal(dim(LFOres_jansen$"v.2"$S), c(1 + length(c("k.1", "k.2", "k.1.2")), length(LFOtimes1))) expect_equal(dim(LFOres_jansen$"v.2"$T), c(1 + length(c("k.1", "k.2", "k.1.2")), length(LFOtimes1))) }) test_that("Errors and warnings are thrown", { set.seed(2015) expect_error(ODEsobol(mod = lfonet, pars = c("k.1", "k.2", "k.1.2"), times = LFOtimes1, n = 1, rfuncs = c("runif", "rnorm", "rexp"), rargs = c("min = 0.001, max = 6", "mean = 3, sd = 0.5", "rate = 1 / 3"), sobol_method = "Martinez", ode_method = "adams", parallel_eval = FALSE, parallel_eval_ncores = NA)) }) test_that("Plots are generated", { expect_true(plot(LFOres1)) expect_true(plot(LFOres2)) expect_true(plot(LFOres3)) expect_true(plot(LFOres_parallel)) expect_true(plot(LFOres_jansen)) expect_true(plot(LFOres1, state_plot = "x.2", main_title = "Hi!", legendPos = "topleft", type = "b")) my_cols <- c("firebrick", "chartreuse3", "dodgerblue") expect_true(plot(LFOres1, state_plot = "x.2", colors_pars = my_cols)) expect_true(plot(LFOres1, state_plot = "x.2", cex.axis = 2, cex = 4, main = "Small Title", cex.main = 0.5)) })
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
context("Functions output") library(andurinha) test_that("findPeaks return a list", { expect_equal(class(findPeaks(andurinhaData)), "list") expect_equal(class(findPeaks(andurinhaData, scale = FALSE, ndd = FALSE)), "list") }) test_that("finPeaks return a list with the correct length", { expect_equal(length(findPeaks(andurinhaData)), 4) expect_equal(length(findPeaks(andurinhaData, scale = FALSE)), 3) expect_equal(length(findPeaks(andurinhaData, ndd = FALSE)), 3) expect_equal(length(findPeaks(andurinhaData, scale = FALSE, ndd = FALSE)), 2) }) test_that("gOverview return a ggplot objetc", { expect_equal(class(gOverview(andurinhaData)), c("gg", "ggplot")) expect_equal(class(gOverview(findPeaks(andurinhaData)$dataZ, findPeaks(andurinhaData)$secondDerivative)), c("gg", "ggplot")) }) test_that("plotPeaks return a ggplot objetc", { expect_equal(class(plotPeaks(findPeaks(andurinhaData)[[4]]$WN, findPeaks(andurinhaData)$dataZ, findPeaks(andurinhaData)$secondDerivative)), c("gg", "ggplot")) expect_equal(class(plotPeaks(findPeaks(andurinhaData, ndd = FALSE)[[3]]$WN, findPeaks(andurinhaData)$dataZ)), c("gg", "ggplot")) })
polynomial.roots <- function( m.r ) { matrices <- jacobi.matrices( m.r ) n <- length( matrices ) eigen.list <- lapply( matrices, eigen ) roots <- as.list( rep( NULL, n+1 ) ) j <- 1 while ( j <= n ) { roots[[j+1]] <- eigen.list[[j]]$values j <- j + 1 } return( roots ) }
eps <- function(file="Rplot%03d.eps", width=7, height=7, horizontal=FALSE, paper="special", onefile=FALSE, ...) { onefile <- FALSE postscript(file=file, width=width, height=height, horizontal=horizontal, paper=paper, onefile=onefile, ...) }
superpc.plotcv <- function (object, cv.type=c("full", "preval"), smooth=TRUE, smooth.df=10, call.win.metafile=FALSE, ...) { cv.type <- match.arg(cv.type) if(cv.type == "full"){ scor <- object$scor smooth <- FALSE } else { scor <- object$scor.preval } k <- nrow(scor) if (smooth) { for (j in 1:nrow(scor)) { if(is.null(smooth.df)){ om <- !is.na(scor[j, ]) junk <- smooth.spline(object$th[om], scor[j,om ]) scor[j,om] <- predict(junk,object$th[om])$y } if(!is.null(smooth.df)){ om <- !is.na(scor[j, ]) junk <- smooth.spline(object$th[om], scor[j,om ], df=smooth.df) scor[j,om] <- predict(junk,object$th[om])$y } } } if (object$type == "survival") { if (cv.type == "full") { ymax <- max(object$scor.upper[!is.na(object$scor.upper)], qchisq(0.95, nrow(scor))) } if (cv.type == "preval") { ymax <- max(scor[!is.na(scor)], qchisq(0.95, nrow(scor))) } } if (object$type == "regression") { n.mean <- 0 for(i in 1:object$n.fold){ n.mean <- n.mean + length(object$folds[[i]]) / object$n.fold } denom.df <- n.mean -1 - nrow(scor) if (cv.type == "full") { ymax <- max(object$scor.upper[!is.na(object$scor.upper)], qf(0.95, nrow(scor), denom.df)) } if (cv.type == "preval") { ymax <- max(scor[!is.na(scor)], qf(0.95, nrow(scor), denom.df)) } } if (call.win.metafile) { dev.new() } ylab <- "Likelihood ratio test statistic" matplot(object$th, t(scor), xlab="Threshold", ylab=ylab, ylim=c(0, ymax), lty=rep(1,k)) matlines(object$th, t(scor), lty=rep(1,k), ...) for (j in 1:k) { if (object$type == "survival") { abline(h=qchisq(0.95, j), lty=2, col=j) } if (object$type == "regression") { abline(h=qf(0.95, j, denom.df), lty=2, col=j) } if (cv.type == "full") { delta <- ((-1)^j) * diff(object$th)[1] / 4 error.bars(object$th+delta*(j>1), t(object$scor.lower[j,]), t(object$scor.upper[j,]), lty=2, col=j) } } if (call.win.metafile) { dev.off() } return(TRUE) } error.bars <- function(x, upper, lower, width=0.005, ...) { xlim <- range(x) barw <- diff(xlim) * width segments(x, upper, x, lower, ...) segments(x - barw, upper, x + barw, upper, ...) segments(x - barw, lower, x + barw, lower, ...) range(upper, lower) } jitter <- function(x) { return(x + 0.03 * abs(x) * sign(rnorm(length(x)))) }
ICFTs <- function (design, digits = 3, resk.only = TRUE, kmin = NULL, kmax = ncol(design), detail = FALSE, with.blocks = FALSE, conc = TRUE) { if ("design" %in% class(design)) { fn <- names(factor.names(design)) if (with.blocks) fn <- c(fn, design.info(design)$block.name) design <- design[, fn] nfac <- length(fn) } else { nfac <- ncol(design) fn <- 1:nfac } nlev <- levels.no(design) dfs <- nlev - 1 if (!is.data.frame(design)) design <- as.data.frame(design) for (i in 1:nfac){ design[[i]] <- factor(design[[i]]) contrasts(design[[i]]) <- contr.XuWuPoly(nlev[i]) } ks <- which(round(GWLP(design, kmax = kmax)[-1], 8) > 0) N <- nrow(design) if (length(ks) == 0) { hilf <- list(list(ICFT = cbind(IC = 0, frequency = sum(nlev) - kmax), IC1 = 0)) names(hilf) <- kmax return(hilf) } k <- min(ks) if (k < 2) stop("resolution of design must be at least 2") kminset <- FALSE if (is.null(kmin)) kmin <- k else { if (!kmin == min(ks)) kminset <- TRUE redu <- ks[ks >= kmin] message(paste("Check sets of sizes ", paste(redu, collapse = ","))) if (length(redu) == 0) return() kmin <- min(redu) k <- kmin ks <- redu } if (k >= kmin) { k <- kmin ns <- choose(nfac, k) auswahl <- 1:ns selproj <- sel <- nchoosek(nfac, k) GWLPs <- round(apply(selproj, 2, function(obj) GWLP(design[, obj])[-1]), 4) selproj <- apply(selproj, 2, function(obj) paste(obj, collapse = ":")) names(auswahl) <- selproj if (resk.only) { reskproj <- apply(GWLPs, 2, function(obj) all(obj[-k] == 0)) if (all(!reskproj)) { message("no projections with resolution ", k, " or higher") return() }} berechn <- lapply(auswahl, function(obj) { hilf2 <- design[, sel[, obj]] mmX <- model.matrix(formula(substitute(~.^km1, list(km1 = k))), data = hilf2) mmX <- mmX[,-(1:(ncol(mmX) - prod(dfs[sel[, obj]])))] hilfc <- svd(mmX) hilf2 <- table(round(hilfc$d^2,6)) cumcounts <- cumsum(rev(hilf2)) from <- c(1, cumcounts[-length(hilf2)]+1) hilf2 <- rep(0, prod(dfs[sel[, obj]])) if (conc) hilf2[from] <- sapply(1:length(from), function(obj) sum((hilfc$d^2*colMeans(hilfc$u)^2)[from[obj]:cumcounts[obj]]) ) else { for (i in 1:length(from)){ bereich <- from[i]:cumcounts[i] hilf2[bereich] <- mean((hilfc$d^2*colMeans(hilfc$u)^2)[bereich]) }} list(hilf2, hilfc$d^2, colMeans(hilfc$u)^2) }) ICs <- lapply(berechn, function(obj) obj[[1]]) sv2s <- lapply(berechn, function(obj) obj[[2]]) mean.u2s <- lapply(berechn, function(obj) obj[[3]]) rund <- lapply(ICs, function(obj) round(obj,digits)) ICFT <- table(unlist(rund)) ICFT <- cbind(IC = as.numeric(names(ICFT)), frequency = ICFT) rownames(ICFT) <- rep("", nrow(ICFT)) aus <- list(ICFT = ICFT) if (detail) aus <- c(aus, list(ICs = rund, sv2s = sv2s, mean.u2s = mean.u2s )) if (!resk.only || kminset){ aus <- list(aus); names(aus) <- k if (!resk.only){ ks <- kmin:kmax if (length(ks)>1){ for (k in (kmin+1):kmax){ ns <- choose(nfac, k) auswahl <- 1:ns selproj <- sel <- nchoosek(nfac, k) GWLPs <- round(apply(selproj, 2, function(obj) GWLP(design[, obj])[-1]), 4) selproj <- apply(selproj, 2, function(obj) paste(obj, collapse = ":")) names(auswahl) <- selproj berechn <- lapply(auswahl, function(obj) { hilf2 <- design[, sel[, obj]] mmX <- model.matrix(formula(substitute(~.^km1, list(km1 = k))), data = hilf2) mmX <- mmX[,-(1:(ncol(mmX) - prod(dfs[sel[, obj]])))] hilfc <- svd(mmX) hilf2 <- table(round(hilfc$d^2,6)) cumcounts <- cumsum(rev(hilf2)) from <- c(1, cumcounts[-length(hilf2)]+1) hilf2 <- rep(0, prod(dfs[sel[, obj]])) if (conc) hilf2[from] <- sapply(1:length(from), function(obj) sum((hilfc$d^2*colMeans(hilfc$u)^2)[from[obj]:cumcounts[obj]]) ) else { for (i in 1:length(from)){ bereich <- from[i]:cumcounts[i] hilf2[bereich] <- mean((hilfc$d^2*colMeans(hilfc$u)^2)[bereich]) }} list(hilf2, hilfc$d^2, colMeans(hilfc$u)^2) }) ICs <- lapply(berechn, function(obj) obj[[1]]) sv2s <- lapply(berechn, function(obj) obj[[2]]) mean.u2s <- lapply(berechn, function(obj) obj[[3]]) rund <- lapply(ICs, function(obj) round(obj,digits)) ICFT <- table(unlist(rund)) ICFT <- cbind(IC = as.numeric(names(ICFT)), frequency = ICFT) rownames(ICFT) <- rep("", nrow(ICFT)) ausn <- list(ICFT = ICFT) if (detail) ausn <- c(ausn, list(ICs = rund, sv2s = sv2s, mean.u2s = mean.u2s )) ausn <- list(ausn) names(ausn) <- k aus <- c(aus, ausn) } } }} } else aus <- list(ICFT = NULL) aus }
library(glmnet) linear.predictor = function(X, b_0, b_x) { return(b_0 + X %*% b_x) } glmnet.loss = function(G, Y, b_0, b_x, lambda, penalty.factor, family="gaussian") { n = dim(G)[1] xbeta = linear.predictor(G, b_0, b_x) penalty_loss = lambda * (abs(b_x) %*% penalty.factor)[1,1] if (family == "gaussian"){ loss = sum((Y - xbeta)^2) / (2 * n) } if (family == "binomial"){ loss = sum(log(1 + exp(xbeta)) - Y * xbeta) / n } return(loss + penalty_loss) } grid_size = 10 grid = 10^seq(-4, log10(1), length.out=grid_size) grid = rev(grid) max_iterations = 20000 tol = 1e-5 for (family in c("gaussian", "binomial")){ for (seed in 1:20) { if (seed <= 5) { sample_size = 200 p = 50 n_confounders = NULL } else if (seed <= 10) { sample_size = 200 p = 50 n_confounders = 2 } else if (seed <= 15) { sample_size = 100 p = 500 n_confounders = 5 } else { sample_size = 200 p = 500 n_confounders = 10 } cat("-", seed, family, "\n") data = data.gen(sample_size=sample_size, p=p, n_g_non_zero=10, n_gxe_non_zero=4, seed=seed, family=family, n_confounders=n_confounders, normalize=TRUE) file_name = paste0("tests/testthat/testdata/compare_with_glmnet/", seed, "_", family, "_data.rds") saveRDS(data, file_name) start = Sys.time() fit = hierNetGxE.fit(G=data$G_train, E=rep(0, sample_size), Y=data$Y_train, C=data$C_train, tolerance=tol, grid=grid, family=family, normalize=FALSE, max_iterations=max_iterations) cat("-- hierNetGxE.fit done in ", Sys.time() - start, " seconds. num not converged ", sum(1 - fit$has_converged), "\n") glmnet_X = cbind(data$G_train, data$C_train) penalty.factor = rep(0, ncol(glmnet_X)) penalty.factor[1:ncol(data$G_train)] = 1 glmnet_fit = glmnet(x=glmnet_X, y=data$Y_train, lambda=grid, thresh=1e-10, intercept=TRUE, standardize.response=FALSE, standardize=FALSE, family=family, penalty.factor=penalty.factor) objective_value = c() for (i in 1:grid_size) { cur_objective_value = glmnet.loss(glmnet_X, data$Y_train, glmnet_fit$a0[i], glmnet_fit$beta[,i], glmnet_fit$lambda[i], penalty.factor=penalty.factor, family=family) objective_value = c(objective_value, cur_objective_value) } cat("-- max difference in loss", max(fit$objective_value - rep(objective_value, rep(grid_size, grid_size))), "\n") file_name = paste0("tests/testthat/testdata/compare_with_glmnet/", seed, "_", family, "_glmnet_results.rds") saveRDS(list(objective_value=objective_value), file_name) } }
affil_df = function( affil_id = NULL, affil_name = NULL, api_key = NULL, verbose = TRUE, facets = NULL, sort = "document-count", ...){ L = affil_data( affil_id = affil_id, affil_name = affil_name, verbose = verbose, facets = facets, sort = sort, ... = ...) df = L$df return(df) } affil_data = function( affil_id = NULL, affil_name = NULL, api_key = NULL, verbose = TRUE, facets = NULL, sort = "document-count", ...){ if (is.null(affil_id)) { res = process_affiliation_name( affil_id = affil_id, affil_name = affil_name, api_key = api_key, verbose = verbose ) affil_id = res$affil_id } affil_id = gsub("AFFILIATION_ID:", "", affil_id, fixed = TRUE) entries = author_search_by_affil( affil_id = affil_id, verbose = verbose, facets = facets, sort = sort, ...) total_results = entries$total_results facets = entries$facets entries = entries$entries df = gen_entries_to_df( entries = entries) df$df$affil_id = affil_id L = list(entries = entries, df = df) L$total_results = total_results L$facets = facets return(L) }
write.nexus.data <- function(x, file, format = "dna", datablock = TRUE, interleaved = TRUE, charsperline = NULL, gap = NULL, missing = NULL) { format <- match.arg(toupper(format), c("DNA", "PROTEIN", "STANDARD", "CONTINUOUS")) if (inherits(x, "DNAbin") && format != "DNA") { format <- "DNA" warning("object 'x' is of class DNAbin: format forced to DNA") } if (inherits(x, "AAbin") && format != "PROTEIN") { format <- "PROTEIN" warning("object 'x' is of class AAbin: format forced to PROTEIN") } indent <- " " maxtax <- 5 defcharsperline <- 80 defgap <- "-" defmissing <- "?" if (is.matrix(x)) { if (inherits(x, "DNAbin")) x <- as.list(x) else { xbak <- x x <- vector("list", nrow(xbak)) for (i in seq_along(x)) x[[i]] <- xbak[i, ] names(x) <- rownames(xbak) rm(xbak) } } ntax <- length(x) nchars <- length(x[[1]]) zz <- file(file, "w") if (is.null(names(x))) names(x) <- as.character(1:ntax) fcat <- function(..., file = zz) cat(..., file = file, sep = "", append = TRUE) find.max.length <- function(x) max(nchar(x)) print.matrix <- function(x, dindent = " ", collapse = "") { Names <- names(x) printlength <- find.max.length(Names) + 2 if (!interleaved) { for (i in seq_along(x)) { sequence <- paste(x[[i]], collapse = collapse) taxon <- Names[i] thestring <- sprintf("%-*s%s%s", printlength, taxon, dindent, sequence) fcat(indent, indent, thestring, "\n") } } else { ntimes <- ceiling(nchars/charsperline) start <- 1 end <- charsperline for (j in seq_len(ntimes)) { for (i in seq_along(x)) { sequence <- paste(x[[i]][start:end], collapse = collapse) taxon <- Names[i] thestring <- sprintf("%-*s%s%s", printlength, taxon, dindent, sequence) fcat(indent, indent, thestring, "\n") } if (j < ntimes) fcat("\n") start <- start + charsperline end <- end + charsperline if (end > nchars) end <- nchars } } } if (inherits(x, "DNAbin") || inherits(x, "AAbin")) x <- as.character(x) fcat(" NCHAR <- paste("NCHAR=", nchars, sep = "") NTAX <- paste0("NTAX=", ntax) DATATYPE <- paste0("DATATYPE=", format) if (is.null(charsperline)) { if (nchars <= defcharsperline) { charsperline <- nchars interleaved <- FALSE } else charsperline <- defcharsperline } if (is.null(missing)) missing <- defmissing MISSING <- paste0("MISSING=", missing) if (is.null(gap)) gap <- defgap GAP <- paste0("GAP=", gap) INTERLEAVE <- if (interleaved) "INTERLEAVE=YES" else "INTERLEAVE=NO" if (datablock) { fcat("BEGIN DATA;\n") fcat(indent, "DIMENSIONS ", NTAX, " ", NCHAR, ";\n") if(format != "STANDARD") { fcat(indent, "FORMAT", " ", DATATYPE, " ", MISSING, " ", GAP, " ", INTERLEAVE, ";\n") } else { fcat(indent, "FORMAT", " ", DATATYPE, " ", MISSING, " ", GAP, " ", INTERLEAVE, " symbols=\"0123456789\";\n") } fcat(indent, "MATRIX\n") if(format != "CONTINUOUS") { print.matrix(x) } else { print.matrix(x, collapse = "\t") } fcat(indent, ";\nEND;\n\n") } else { fcat("BEGIN TAXA;\n") fcat(indent, "DIMENSIONS", " ", NTAX, ";\n") fcat(indent, "TAXLABELS\n") fcat(indent, indent) j <- 0 for (i in seq_len(ntax)) { fcat(names(x[i]), " ") j <- j + 1 if (j == maxtax) { fcat("\n", indent, indent) j <- 0 } } fcat("\n", indent, ";\n") fcat("END;\n\nBEGIN CHARACTERS;\n") fcat(indent, "DIMENSIONS", " ", NCHAR, ";\n") if(format != "STANDARD") { fcat(indent, "FORMAT", " ", MISSING, " ", GAP, " ", DATATYPE, " ", INTERLEAVE, ";\n") } else { fcat(indent, "FORMAT", " ", MISSING, " ", GAP, " ", DATATYPE, " ", INTERLEAVE, " symbols=\"0123456789\";\n") } fcat(indent,"MATRIX\n") if(format != "CONTINUOUS") { print.matrix(x) } else { print.matrix(x, collapse = "\t") } fcat(indent, ";\nEND;\n\n") } close(zz) }
context("test-symbols.R") test_that("symbols work", { skip_on_cran() skip_on_travis() skip_on_appveyor() syms <- fixer_symbols() expect_equal(length(syms), 2) expect_true("USD" %in% syms$name) expect_true(tibble::is.tibble(syms)) })
read.magpie <- function(file_name, file_folder = "", file_type = NULL, as.array = FALSE, comment.char = "*", check.names = FALSE, ...) { .buildFileName <- function(fileName, fileFolder) { fileName <- paste0(fileFolder, fileName) fileNameOut <- Sys.glob(fileName) if (length(fileNameOut) > 1) { fileNameOut <- fileNameOut[1] warning("File name ", fileName, " is ambiguous, only first alternative is used!") } else if (length(fileNameOut) == 0) { stop("File ", fileName, " does not exist!") } return(fileNameOut) } fileName <- .buildFileName(file_name, file_folder) .getFileType <- function(fileType, fileName) { fileType <- ifelse(is.null(fileType), tail(strsplit(fileName, "\\.")[[1]], 1), fileType) allowedTypes <- c("rds", "m", "mz", "csv", "cs2", "cs2b", "cs3", "cs4", "csvr", "cs2r", "cs3r", "cs4r", "put", "asc", "nc") if (!(fileType %in% allowedTypes)) stop("Unknown file type: ", fileType) return(fileType) } fileType <- .getFileType(file_type, fileName) if (fileType %in% c("m", "mz")) { readMagpie <- readMagpieMZ(fileName, compressed = (fileType == "mz")) } else if (fileType == "rds") { readMagpie <- readRDS(fileName) if (!is.magpie(readMagpie)) stop("File does not contain a magpie object!") } else if (fileType == "cs3" | fileType == "cs3r") { x <- read.csv(fileName, comment.char = comment.char, check.names = check.names, stringsAsFactors = TRUE) datacols <- grep("^dummy\\.?[0-9]*$", colnames(x)) xdimnames <- lapply(x[datacols], function(x) return(as.character(unique(x)))) xdimnames[[length(xdimnames) + 1]] <- colnames(x)[-datacols] names(xdimnames) <- NULL tmparr <- array(NA, dim = sapply(xdimnames, length), dimnames = xdimnames) for (i in xdimnames[[length(xdimnames)]]) { j <- sapply(cbind(x[datacols], i), as.character) .duplicates_check(j) tmparr[j] <- x[, i] } readMagpie <- as.magpie(tmparr) if (length(grep("^[A-Z]+_[0-9]+$", getCells(readMagpie))) == ncells(readMagpie)) { getCells(readMagpie) <- sub("_", ".", getCells(readMagpie)) } attr(readMagpie, "comment") <- .readComment(fileName, commentChar = comment.char) } else if (fileType == "cs4" | fileType == "cs4r") { x <- read.csv(fileName, comment.char = comment.char, header = FALSE, check.names = check.names, stringsAsFactors = TRUE) readMagpie <- as.magpie(x, tidy = TRUE) attr(readMagpie, "comment") <- .readComment(fileName, commentChar = comment.char) } else if (fileType %in% c("asc", "nc", "grd", "tif")) { if (!requireNamespace("raster", quietly = TRUE)) stop("The package \"raster\" is required!") if (fileType == "nc") { if (!requireNamespace("ncdf4", quietly = TRUE)) { stop("The package \"ncdf4\" is required!") } nc <- ncdf4::nc_open(fileName) var <- names(nc[["var"]]) vdim <- vapply(nc[["var"]], function(x) return(x$ndim), integer(1)) var <- var[vdim > 0] ncdf4::nc_close(nc) tmp <- list() for (v in var) { warning <- capture.output(tmp[[v]] <- raster::brick(fileName, varname = v, ...)) if (length(warning) > 0) { tmp[[v]] <- NULL next } name <- sub("^X([0-9]*)$", "y\\1", names(tmp[[v]]), perl = TRUE) if (length(name) == 1 && name == "layer") name <- "y0" names(tmp[[v]]) <- paste0(name, "..", v) } readMagpie <- as.magpie(raster::brick(tmp)) } else { readMagpie <- as.magpie(raster::brick(fileName, ...)) } } else { readMagpie <- readMagpieOther(fileName, fileType, comment.char = comment.char, check.names = check.names) } if (as.array) readMagpie <- as.array(readMagpie)[, , ] return(readMagpie) }
SL.npreg <- function(Y, X, newX, family = gaussian(), obsWeights = rep(1, length(Y)), rangeThresh = 1e-7, ...) { options(np.messages = FALSE) if (abs(diff(range(Y))) <= rangeThresh) { thisMod <- glm(Y ~ 1, data = X) } else { bw <- np::npregbw( stats::as.formula( paste("Y ~", paste(names(X), collapse = "+")) ), data = X, ftol = 0.01, tol = 0.01, remin = FALSE ) thisMod <- np::npreg(bw) } pred <- stats::predict(thisMod, newdata = newX) fit <- list(object = thisMod) class(fit) <- "SL.npreg" out <- list(pred = pred, fit = fit) return(out) } predict.SL.npreg <- function(object, newdata, ...) { pred <- stats::predict(object = object$object, newdata = newdata) pred }
setGeneric("getformula", function(x) standardGeneric("getformula"), package = "xergm.common") setGeneric("interpret", function(object, ...) standardGeneric("interpret"), package = "xergm.common") setGeneric("gof", function(object, ...) standardGeneric("gof"), package = "xergm.common") setGeneric("checkdegeneracy", function(object, ...) standardGeneric("checkdegeneracy"), package = "xergm.common")
interactive_composite <- function(image, composite_image, operator = "atop", compose_args = "", resolution = 1, return_param = FALSE, scale) { image_original <- image image <- image_convert(as.list(image)[[1]], format = "png") composite_image_original <- composite_image composite_image <- image_convert(as.list(composite_image)[[1]], format = "png") iniv <- 0 initial <- image_composite(image, composite_image, operator = operator, offset = geometry_point(iniv, iniv), compose_args = compose_args) is_missing_scale <- missing(scale) iminfo <- image_info(image) iminfo_composite <- image_info(composite_image) range_x <- c(-iminfo_composite[["width"]], iminfo[["width"]]) range_y <- c(-iminfo_composite[["height"]], iminfo[["height"]]) length_slider <- as.integer(iminfo$width * 0.6) if (length_slider < 200) { length_slider <- 200 } text_label_x <- "x: " text_label_y <- "y: " quit_waiting <- !is.null(getOption("unit_test_magickGUI")) temp <- tempfile(fileext = ".jpg") on.exit(unlink(temp), add = TRUE) if (!is_missing_scale) { image_write(image_scale(initial, scale), temp) } else { image_write(initial, temp) } image_tcl <- tkimage.create("photo", "image_tcl", file = temp) label_digits <- -as.integer(log(resolution, 10)) label_digits <- ifelse(label_digits > 0, label_digits, 0) label_template <- sprintf("%%.%df", label_digits) win1 <- tktoplevel() on.exit(tkdestroy(win1), add = TRUE) win1.frame1 <- tkframe(win1) win1.frame2 <- tkframe(win1) win1.im <- tklabel(win1, image = image_tcl) win1.frame1.label <- tklabel(win1.frame1, text = sprintf("%s%s", text_label_x, sprintf(label_template, iniv))) win1.frame2.label <- tklabel(win1.frame2, text = sprintf("%s%s", text_label_y, sprintf(label_template, iniv))) slider_value_x <- tclVar(iniv) slider_value_y <- tclVar(iniv) command_slider_x <- function(...) { assign("slider_value_x", slider_value_x, inherits = TRUE) } command_slider_y <- function(...) { assign("slider_value_y", slider_value_y, inherits = TRUE) } win1.frame1.slider <- tkscale(win1.frame1, from = range_x[1], to = range_x[2], variable = slider_value_x, orient = "horizontal", length = length_slider, command = command_slider_x, resolution = resolution, showvalue = 0) win1.frame2.slider <- tkscale(win1.frame2, from = range_y[1], to = range_y[2], variable = slider_value_y, orient = "horizontal", length = length_slider, command = command_slider_y, resolution = resolution, showvalue = 0) temp_val <- iniv update_image <- function() { temp_image <- image_composite(image, composite_image, operator = operator, offset = geometry_point(temp_val[1], temp_val[2]), compose_args = compose_args) if (!is_missing_scale) { image_write(image_scale(temp_image, scale), temp) } else { image_write(temp_image, temp) } image_tcl <- tkimage.create("photo", "image_tcl", file = temp) tkconfigure(win1.im, image = image_tcl) } command_button <- function(...) { assign("quit_waiting", TRUE, inherits = TRUE) } win1.button <- tkbutton(win1, text = "OK", command = command_button) tkpack(win1.im, side = "top") tkpack(win1.frame1.label, side = "left", anchor = "c") tkpack(win1.frame1.slider, side = "left", anchor = "c") tkpack(win1.frame1, side = "top", anchor = "c") tkpack(win1.frame2.label, side = "left", anchor = "c") tkpack(win1.frame2.slider, side = "left", anchor = "c") tkpack(win1.frame2, side = "top", anchor = "c") tkpack(win1.button, side = "top", anchor = "c", pady = 20) pre_slider_values <- c(as.numeric(tclvalue(slider_value_x)), as.numeric(tclvalue(slider_value_y))) if (quit_waiting) { wait_test <- TRUE while (wait_test) { wait_test <- FALSE tryCatch({ tkwm.state(win1) }, error = function(e) assign("wait_test", TRUE, inherits = TRUE) ) } wait_time_long() tkdestroy(win1.button) } tkwm.state(win1, "normal") while (TRUE) { tryCatch({ tkwm.state(win1) }, error = function(e) assign("quit_waiting", TRUE, inherits = TRUE) ) if (quit_waiting) break temp_val <- c(as.numeric(tclvalue(slider_value_x)), as.numeric(tclvalue(slider_value_y))) if (any(temp_val != pre_slider_values)) { temp_label_x <- sprintf("%s%s", text_label_x, sprintf(label_template, temp_val[1])) temp_label_y <- sprintf("%s%s", text_label_y, sprintf(label_template, temp_val[2])) tkconfigure(win1.frame1.label, text = temp_label_x) tkconfigure(win1.frame2.label, text = temp_label_y) update_image() pre_slider_values <- temp_val } } val_res <- pre_slider_values names(val_res) <- c("x", "y") if (return_param) { return(geometry_point(val_res[1], val_res[2])) } return(image_composite(image_original, composite_image_original, operator = operator, offset = geometry_point(val_res[1], val_res[2]), compose_args = compose_args)) }
eblupFH <- function(formula,vardir,method="REML",MAXITER=100,PRECISION=0.0001,B=0,data) { result <- list(eblup=NA, fit=list(method=method, convergence=TRUE, iterations=0, estcoef=NA, refvar=NA, goodness=NA) ) if (method!="REML" & method!="ML" & method!="FH") stop(" method=\"",method, "\" must be \"REML\", \"ML\" or \"FH\".") namevar <- deparse(substitute(vardir)) if (!missing(data)) { formuladata <- model.frame(formula,na.action = na.omit,data) X <- model.matrix(formula,data) vardir <- data[,namevar] } else { formuladata <- model.frame(formula,na.action = na.omit) X <- model.matrix(formula) } y <- formuladata[,1] if (attr(attributes(formuladata)$terms,"response")==1) textformula <- paste(formula[2],formula[1],formula[3]) else textformula <- paste(formula[1],formula[2]) if (length(na.action(formuladata))>0) stop("Argument formula=",textformula," contains NA values.") if (any(is.na(vardir))) stop("Argument vardir=",namevar," contains NA values.") m<-length(y) p<-dim(X)[2] Xt<-t(X) if (method=="ML") { Aest.ML<-0 Aest.ML[1]<-median(vardir) k<-0 diff<-PRECISION+1 while ((diff>PRECISION)&(k<MAXITER)) { k<-k+1 Vi<-1/(Aest.ML[k]+vardir) XtVi<-t(Vi*X) Q<-solve(XtVi%*%X) P<-diag(Vi)-t(XtVi)%*%Q%*%XtVi Py<-P%*%y s<-(-0.5)*sum(Vi)+0.5*(t(Py)%*%Py) F<-0.5*sum(Vi^2) Aest.ML[k+1]<-Aest.ML[k]+s/F diff<-abs((Aest.ML[k+1]-Aest.ML[k])/Aest.ML[k]) } A.ML<-max(Aest.ML[k+1],0) result$fit$iterations <- k if(k>=MAXITER && diff>=PRECISION) { result$fit$convergence <- FALSE return(result) } Vi<-1/(A.ML+vardir) XtVi<-t(Vi*X) Q<-solve(XtVi%*%X) beta.ML<-Q%*%XtVi%*%y varA<-1/F std.errorbeta<-sqrt(diag(Q)) tvalue<-beta.ML/std.errorbeta pvalue<-2*pnorm(abs(tvalue),lower.tail=FALSE) Xbeta.ML<-X%*%beta.ML resid<-y-Xbeta.ML loglike<-(-0.5)*(sum(log(2*pi*(A.ML+vardir))+(resid^2)/(A.ML+vardir))) AIC<-(-2)*loglike+2*(p+1) BIC<-(-2)*loglike+(p+1)*log(m) goodness<-c(loglike=loglike,AIC=AIC,BIC=BIC) coef <- data.frame(beta=beta.ML,std.error=std.errorbeta,tvalue,pvalue) variance <- A.ML EBLUP <- Xbeta.ML+A.ML*Vi*resid } else if (method=="REML") { Aest.REML<-0 Aest.REML[1]<-median(vardir) k<-0 diff<-PRECISION+1 while ((diff>PRECISION)&(k<MAXITER)) { k<-k+1 Vi<-1/(Aest.REML[k]+vardir) XtVi<-t(Vi*X) Q<-solve(XtVi%*%X) P<-diag(Vi)-t(XtVi)%*%Q%*%XtVi Py<-P%*%y s<-(-0.5)*sum(diag(P))+0.5*(t(Py)%*%Py) F<-0.5*sum(diag(P%*%P)) Aest.REML[k+1]<-Aest.REML[k]+s/F diff<-abs((Aest.REML[k+1]-Aest.REML[k])/Aest.REML[k]) } A.REML<-max(Aest.REML[k+1],0) result$fit$iterations <- k if(k>=MAXITER && diff>=PRECISION) { result$fit$convergence <- FALSE return(result) } Vi<-1/(A.REML+vardir) XtVi<-t(Vi*X) Q<-solve(XtVi%*%X) beta.REML<-Q%*%XtVi%*%y varA<-1/F std.errorbeta<-sqrt(diag(Q)) tvalue<-beta.REML/std.errorbeta pvalue<-2*pnorm(abs(tvalue),lower.tail=FALSE) Xbeta.REML<-X%*%beta.REML resid<-y-Xbeta.REML loglike<-(-0.5)*(sum(log(2*pi*(A.REML+vardir))+(resid^2)/(A.REML+vardir))) AIC<-(-2)*loglike+2*(p+1) BIC<-(-2)*loglike+(p+1)*log(m) goodness<-c(loglike=loglike,AIC=AIC,BIC=BIC) coef <- data.frame(beta=beta.REML,std.error=std.errorbeta,tvalue,pvalue) variance <- A.REML EBLUP <- Xbeta.REML+A.REML*Vi*resid } else { Aest.FH<-NULL Aest.FH[1]<-median(vardir) k<-0 diff<-PRECISION+1 while ((diff>PRECISION)&(k<MAXITER)){ k<-k+1 Vi<-1/(Aest.FH[k]+vardir) XtVi<-t(Vi*X) Q<-solve(XtVi%*%X) betaaux<-Q%*%XtVi%*%y resaux<-y-X%*%betaaux s<-sum((resaux^2)*Vi)-(m-p) F<-sum(Vi) Aest.FH[k+1]<-Aest.FH[k]+s/F diff<-abs((Aest.FH[k+1]-Aest.FH[k])/Aest.FH[k]) } A.FH<-max(Aest.FH[k+1],0) result$fit$iterations <- k if(k>=MAXITER && diff>=PRECISION) { result$fit$convergence <- FALSE return(result) } Vi<-1/(A.FH+vardir) XtVi<-t(Vi*X) Q<-solve(XtVi%*%X) beta.FH<-Q%*%XtVi%*%y varA<-1/F varbeta<-diag(Q) std.errorbeta<-sqrt(varbeta) zvalue<-beta.FH/std.errorbeta pvalue<-2*pnorm(abs(zvalue),lower.tail=FALSE) Xbeta.FH<-X%*%beta.FH resid<-y-Xbeta.FH loglike<-(-0.5)*(sum(log(2*pi*(A.FH+vardir))+(resid^2)/(A.FH+vardir))) AIC<-(-2)*loglike+2*(p+1) BIC<-(-2)*loglike+(p+1)*log(m) goodness<-c(loglike=loglike,AIC=AIC,BIC=BIC) coef <- data.frame(beta=beta.FH,std.error=std.errorbeta,tvalue=zvalue,pvalue) variance <- A.FH EBLUP <- Xbeta.FH+A.FH*Vi*resid } result$fit$estcoef <- coef result$fit$refvar <- variance result$fit$goodness <- goodness result$eblup <- EBLUP min2loglike <- (-2)*loglike KIC <- min2loglike + 3 * (p+1) if (B>=1) { sigma2d <- vardir lambdahat <- result$fit$refvar betahat <- matrix(result$fit$estcoef[,"beta"],ncol=1) D <- nrow(X) B1hatast <- 0 B3ast <- 0 B5ast <- 0 sumlogf_ythetahatastb <- 0 sumlogf_yastbthetahatastb <- 0 Xbetahat <- X%*%betahat b <- 1 while (b<=B) { uastb <- sqrt(lambdahat)*matrix(data=rnorm(D, mean=0, sd=1), nrow=D, ncol=1) eastb <- sqrt(sigma2d)*matrix(data=rnorm(D, mean=0, sd=1), nrow=D, ncol=1) yastb <- Xbetahat + uastb + eastb resultb <- eblupFH(yastb~X-1,sigma2d,method=method,MAXITER=MAXITER,PRECISION=PRECISION) if (resultb$fit$convergence==FALSE) { message <- paste("Bootstrap b=",b,": ",method," iteration does not converge.\n") cat(message) next }else { betahatastb <- matrix(resultb$fit$estcoef[,"beta"],ncol=1) lambdahatastb <- resultb$fit$refvar Xbetahathatastb2 <- (X%*%(betahat-betahatastb))^2 yastbXbetahatastb2 <- (yastb-X%*%betahatastb)^2 lambdahatastbsigma2d <- lambdahatastb + sigma2d lambdahatsigma2d <- lambdahat + sigma2d B1ast <- sum((lambdahatsigma2d + Xbetahathatastb2 - yastbXbetahatastb2) / lambdahatastbsigma2d) B1hatast <- B1hatast + B1ast logf <- (-0.5)*sum( log(2*pi*lambdahatastbsigma2d) + ((y-X%*%betahatastb)^2)/lambdahatastbsigma2d ) sumlogf_ythetahatastb <- sumlogf_ythetahatastb + logf sumlogf_yastbthetahatastb <- sumlogf_yastbthetahatastb + resultb$fit$goodness["loglike"] B3ast <- B3ast + sum((lambdahatastbsigma2d + Xbetahathatastb2)/lambdahatsigma2d) B5ast <- B5ast + sum(log(lambdahatastbsigma2d) + yastbXbetahatastb2/lambdahatastbsigma2d) b <- b+1 } } B2ast <- sum(log(lambdahatsigma2d)) + B3ast/B - B5ast/B AICc <- min2loglike + B1hatast/B AICb1 <- as.vector(min2loglike -2/B*(sumlogf_ythetahatastb - sumlogf_yastbthetahatastb)) AICb2 <- as.vector(min2loglike -4/B*(sumlogf_ythetahatastb - result$fit$goodness["loglike"]*B)) KICc <- AICc + B2ast KICb1 <- AICb1 + B2ast KICb2 <- AICb2 + B2ast result$fit$goodness <- c(result$fit$goodness,KIC=KIC,AICc=AICc,AICb1=AICb1,AICb2=AICb2,KICc=KICc,KICb1=KICb1,KICb2=KICb2,nBootstrap=B) } else result$fit$goodness <- c(result$fit$goodness,KIC=KIC) return(result) }
afficheResult <- function(x, noCycle, noEtape, nbSujets, nbVar){ cat("Cycle no.", noCycle, "\n") cat("Step no.", noEtape, "\n") cat("Number of observations : ", nbSujets, "\n") cat("Coefficients : ", x[1:nbVar], "\n") cat("Threshold=", x["seuil"], " Se=", x["Se"], "Sp=", x["Sp"], "AUC=", x["AUC"], "\n") cat("=============================================================================\n") }
text_drake_graph <- function( ..., from = NULL, mode = c("out", "in", "all"), order = NULL, subset = NULL, targets_only = FALSE, make_imports = TRUE, from_scratch = FALSE, group = NULL, clusters = NULL, show_output_files = TRUE, nchar = 1L, print = TRUE, config = NULL ) { } text_drake_graph_impl <- function( config, from = NULL, mode = c("out", "in", "all"), order = NULL, subset = NULL, targets_only = FALSE, make_imports = TRUE, from_scratch = FALSE, group = NULL, clusters = NULL, show_output_files = TRUE, nchar = 1L, print = TRUE ) { assert_pkg("visNetwork") graph_info <- drake_graph_info_impl( config = config, from = from, mode = mode, order = order, subset = subset, build_times = "none", digits = 0, targets_only = targets_only, font_size = 20, make_imports = make_imports, from_scratch = from_scratch, full_legend = FALSE, group = group, clusters = clusters, show_output_files = show_output_files, hover = FALSE ) render_text_drake_graph( graph_info = graph_info, nchar = nchar, print = print ) } body(text_drake_graph) <- config_util_body(text_drake_graph_impl) render_text_drake_graph <- function(graph_info, nchar = 1L, print = TRUE) { assert_pkg("txtplot") pch <- apply( X = graph_info$nodes, MARGIN = 1, FUN = function(node) { id <- redisplay_keys(node["id"]) id <- substr(x = id, start = 0L, stop = nchar) id <- ifelse(nchar > 0, id, " ") if (requireNamespace("crayon", quietly = TRUE)) { cl <- gsub("000000", "666666", node["color"]) id <- crayon::make_style(cl, bg = nchar < 1L)(id) } id } ) x <- graph_info$nodes$x y <- graph_info$nodes$y txt <- utils::capture.output( txtplot::txtplot(x = x, y = y, pch = pch) ) txt <- txt[-c(1L, length(txt) - 1L, length(txt))] txt <- gsub("\\+|\\|", "|", txt) txt <- gsub("^[^\\|]*\\|", "", txt) txt <- gsub("\\|", "", txt) txt <- paste(txt, collapse = "\n") if (print) { message(txt) } invisible(txt) }
library(testthat) library(rray) test_check("rray")
X <- toyModel("Tucker") out1_1 <- NTD(X, rank=c(1,2,3), algorithm="Frobenius", num.iter=2) out1_2 <- NTD(X, rank=c(1,2,3), algorithm="Frobenius", init="ALS", num.iter=2) out1_3 <- NTD(X, rank=c(1,2,3), algorithm="Frobenius", init="Random", num.iter=2) out2 <- NTD(X, rank=c(1,2,3), algorithm="KL", num.iter=2) out3 <- NTD(X, rank=c(1,2,3), algorithm="IS", num.iter=2) out4 <- NTD(X, rank=c(1,2,3), algorithm="Pearson", num.iter=2) out5 <- NTD(X, rank=c(1,2,3), algorithm="Hellinger", num.iter=2) out6 <- NTD(X, rank=c(1,2,3), algorithm="Neyman", num.iter=2) out7 <- NTD(X, rank=c(1,2,3), algorithm="Alpha", num.iter=2) out8 <- NTD(X, rank=c(1,2,3), algorithm="Beta", num.iter=2) out9 <- NTD(X, rank=c(1,2,3), algorithm="HALS", num.iter=2) out10 <- NTD(X, rank=c(1,2,3), algorithm="NMF", init = "Random", nmf.algorithm="Projected", num.iter=2, num.iter2=2) out_NTD2_1 <- NTD(X, rank=c(2,3), modes=1:2, algorithm="Frobenius", num.iter=2) out_NTD2_2 <- NTD(X, rank=c(3,4), modes=2:3, algorithm="Frobenius", num.iter=2) out_NTD2_3 <- NTD(X, rank=c(4,6), modes=c(1,3), algorithm="Frobenius", num.iter=2) out_NTD1_1 <- NTD(X, rank=3, modes=1, algorithm="Frobenius", num.iter=2) out_NTD1_2 <- NTD(X, rank=4, modes=2, algorithm="Frobenius", num.iter=2) out_NTD1_3 <- NTD(X, rank=5, modes=3, algorithm="Frobenius", num.iter=2) expect_equivalent(length(out1_1), 6) expect_equivalent(length(out1_2), 6) expect_equivalent(length(out1_3), 6) expect_equivalent(length(out2), 6) expect_equivalent(length(out3), 6) expect_equivalent(length(out4), 6) expect_equivalent(length(out5), 6) expect_equivalent(length(out6), 6) expect_equivalent(length(out7), 6) expect_equivalent(length(out8), 6) expect_equivalent(length(out9), 6) expect_equivalent(length(out10), 6) expect_equivalent(length(out_NTD2_1), 6) expect_equivalent(length(out_NTD2_2), 6) expect_equivalent(length(out_NTD2_3), 6) expect_equivalent(length(out_NTD1_1), 6) expect_equivalent(length(out_NTD1_2), 6) expect_equivalent(length(out_NTD1_3), 6)
betaRegDisp <- function(y, x, xy.coords = NULL, ws = 3, method.1 = "jaccard", method.2 = "ruzicka", method.3 = "ruzicka", independent.data = FALSE, illust.plot = FALSE){ y <- y[order(x, decreasing = FALSE), ] if(!is.null(xy.coords))xy.coords <- xy.coords[order(x, decreasing = FALSE), ] x <- x[order(x, decreasing = FALSE)] N <- (ws)/2 is.even <- function(ee){ ee %% 2 == 0 } if(is.even(ws)==FALSE){ N <- N - 0.5 } size <- length(x) SEQ <- 1:(size-ws+1) if(is.even(ws)==FALSE){ SEQ <- (N+1):(size-N) } if (independent.data) SEQ <- seq (1,size-(ws-1),ws) if (independent.data && is.even(ws)==FALSE) SEQ <- seq (N+1,size-N,ws) n <- length(SEQ) result <- matrix(0, n, 10) colnames(result) <- c("grad", "mean.grad", "mean.diss.pairs", "mean.diss.focal", "mean.dist.cent", "SS.group", "SS.focal", "beta.TOT","beta.NES","beta.TUR") result[, "grad"] <- x[SEQ] rownames(result) <- names(x)[SEQ] disT <- vegdist(y, method = method.1) if(!is.null(xy.coords)){ geo.dist<-matrix(0,n,2, dimnames = list(NULL,c('mean.geodist','focal.geodist'))) } count = 1 for(i in SEQ){ group <- rep("B", times = size) if(is.even(ws)==FALSE){ sites <- (i-N):(i+N) } if(is.even(ws)==TRUE){ sites <- i:(i+ws-1) } sites <- c(i, sites[sites!=i]) result[count, "mean.grad"] <- mean(x[sites]) if(!is.null(xy.coords)){ d <- dist(xy.coords[sites,], method = "euclidean") geo.dist[count,] <- c(mean(d), mean(d[1:(ws-1)])) } if(illust.plot == TRUE){ plot(1:size, x) points(sites, x[sites], cex = 2, col = "blue") points(i, x[i], cex = 3, col = "red", pch = 0) } group[sites] <- "A" mat <- y[sites, ] dis <- vegdist(mat, method = method.1) result[count, "mean.diss.pairs"] <- mean(dis) result[count, "mean.diss.focal"] <- mean(dis[1:(ws-1)]) mod <- betadisper(disT, group = group) d <- mod$distances result[count, "mean.dist.cent"] <- mean(d[group=="A"]) beta.b <- beta.multi.abund(x = mat, index.family = method.3) nomes.m3 <- c("bray", "ruzicka") method.3 <- nomes.m3[pmatch(method.3, nomes.m3)] if(method.3 == "bray"){ result[count, "beta.TOT"] <- beta.b$beta.BRAY result[count, "beta.TUR"] <- beta.b$beta.BRAY.BAL result[count, "beta.NES"] <- beta.b$beta.BRAY.GRA } if(method.3 == "ruzicka"){ result[count, "beta.TOT"] <- beta.b$beta.RUZ result[count, "beta.TUR"] <- beta.b$beta.RUZ.BAL result[count, "beta.NES"] <- beta.b$beta.RUZ.GRA } res.SS <- beta.div(Y = mat, method = method.2, nperm = 0) result[count, "SS.group"] <- res.SS$beta["SStotal"] result[count, "SS.focal"] <- res.SS$LCBD[rownames(mat)[1]]*res.SS$beta["SStotal"] count = count + 1 } if(!is.null(xy.coords))result<-cbind(result,geo.dist) return(result) }
library(Hmisc) d1 = data.frame(drugId = c(11, 22, 33), drugInfo = c("$36.", "2 for $11", "50% sale"), stringsAsFactors = FALSE) d1$drugInfo = gsub("\\$", "\\\\$", d1$drugInfo) d1$drugInfo = gsub("\\%", "\\\\%", d1$drugInfo) d1 latex(d1, rowname = NULL, colheads = c("Drug ID", "Drug Price"), file = "")
df <- data.frame(State = LETTERS[1:3], Y = sample(1:10, 30, replace = TRUE), X = rep(1:10, 3)) df library(ggplot2) ggplot(df, aes(X, Y)) + geom_bar(stat = "identity", position = "dodge") + facet_grid(State ~ .) ggplot(df) + geom_rect(aes(xmin = X - 0.4, xmax = X + 0.4, ymin = 0, ymax = Y)) + facet_grid(State ~ .) ggplot(df) + geom_rect(aes(xmin = 0, xmax = Y, ymin = X - 0.4, ymax = X + 0.4)) + geom_boxplot(aes(X, Y)) + coord_flip() + facet_grid(State ~ .) ggplot(df) + geom_rect(aes(xmin = 0, xmax = Y, ymin = X - 0.4, ymax = X + 0.4), fill = "blue", color = "black") + geom_boxplot(aes(X, Y), alpha = 0.7, fill = "salmon2") + coord_flip() + facet_grid(State ~ .) + theme_classic() + scale_y_continuous(breaks = 1:max(df$X)) ggplot(iris, aes(x = Sepal.Width)) + geom_histogram(binwidth = 0.05) + geom_boxplot(aes(x = 3, y = Sepal.Width)) library(gridExtra) a <- ggplot(iris, aes(x = Sepal.Width)) + geom_histogram(binwidth = 0.05) b <- ggplot(iris, aes(x = "", y = Sepal.Width)) + geom_boxplot() + coord_flip() grid.arrange(a,b,nrow=2) a <- ggplot(mtcars, aes(x = mpg)) + geom_histogram(binwidth = 0.1) b <- ggplot(mtcars, aes(x = "", y = mpg)) + geom_boxplot() + coord_flip() grid.arrange(a,b,nrow=2) my3cols <- c(" ggplot(mtcars, aes(x=cyl, y=mpg , group=gear)) + geom_dotplot(aes(color = gear, fill = gear), binaxis = 'y', stackdir = 'center') + scale_color_manual(values = my3cols) + scale_fill_manual(values = my3cols)
RNGkind("default") rm(list=objects()) if(file.exists("./clinDR/inst/tests/extraGraphics")){ pvarA<-"./clinDR/inst/tests/extraGraphics" } else pvarA<-NULL source(file.path(pvarA,'test.densityplots.R'),echo=TRUE) RNGkind("default") rm(list=objects()) if(file.exists("./clinDR/inst/tests/extraGraphics")){ pvarA<-"./clinDR/inst/tests/extraGraphics" } else pvarA<-NULL source(file.path(pvarA,'test.plot.emaxsimBobj.R'),echo=TRUE) RNGkind("default") rm(list=objects()) if(file.exists("./clinDR/inst/tests/extraGraphics")){ pvarA<-"./clinDR/inst/tests/extraGraphics" } else pvarA<-NULL source(file.path(pvarA,'test.plot.emaxsimobj.R'),echo=TRUE) RNGkind("default") rm(list=objects()) if(file.exists("./clinDR/inst/tests/extraGraphics")){ pvarA<-"./clinDR/inst/tests/extraGraphics" } else pvarA<-NULL source(file.path(pvarA,'test.plot.fitEmax.R'),echo=TRUE) RNGkind("default") rm(list=objects()) if(file.exists("./clinDR/inst/tests/extraGraphics")){ pvarA<-"./clinDR/inst/tests/extraGraphics" } else pvarA<-NULL source(file.path(pvarA,'test.plot.fitEmaxB.R'),echo=TRUE) RNGkind("default") rm(list=objects()) if(file.exists("./clinDR/inst/tests/extraGraphics")){ pvarA<-"./clinDR/inst/tests/extraGraphics" } else pvarA<-NULL source(file.path(pvarA,'test.plotB.R'),echo=TRUE) RNGkind("default") rm(list=objects()) if(file.exists("./clinDR/inst/tests/extraGraphics")){ pvarA<-"./clinDR/inst/tests/extraGraphics" } else pvarA<-NULL source(file.path(pvarA,'test.plotD.R'),echo=TRUE)
context("DeduImpute") test_that('deduImpute works for editarrays',{ E <- editmatrix(c( "x1 + x2 == x3", "x2 == x4", "x5 + x6 + x7 == x8", "x3 + x8 == x9", "x9 - x10 == x11", "x6 >= 0", "x7 >= 0" )) dat <- data.frame( x1=c(145,145), x2=c(NA,NA), x3=c(155,155), x4=c(NA,NA), x5=c(NA, 86), x6=c(NA,NA), x7=c(NA,NA), x8=c(86,86), x9=c(NA,NA), x10=c(217,217), x11=c(NA,NA) ) v <- deduImpute(E,dat)$corrected expect_equal(v$x1,c(145,145)) expect_equal(v$x2,c(10,10)) expect_equal(v$x5,c(NA,86)) expect_equal(v$x6,c(NA,0)) }) test_that('deduImpute handles variables in records not in edits',{ E <- editmatrix(" x + y == z") dat <- data.frame(x=1,y=NA,z=2,v=0) v <- deduImpute(E,dat)$corrected expect_equal(as.numeric(v[1,]),c(1,1,2,0)) }) context('Deductive imputation with solSpace and imputess') test_that('solution space works for a simple equality',{ expect_equal(solSpace(editmatrix("x + y == z"),x=c(x=1,y=NA,z=3))$x0[1],2) expect_equal(solSpace(editmatrix("x + y == z"),x=c(x=1,y=NA,z=3))$C[1],0) }) test_that('solution space works with extra variables in record',{ expect_equal(solSpace(editmatrix("x + y == z"),x=c(x=1,y=NA,z=3,w=9))$x0[1],2) expect_equal(solSpace(editmatrix("x + y == z"),x=c(x=1,y=NA,z=3,u=1,v=NA))$x0[1],2) }) context('Deductive imputation with deductiveZeros') test_that('deductiveZeros works for a simple equality',{ expect_equal(deductiveZeros(editmatrix(c("x + y == z","y>=0")),x=c(x=1,y=NA,z=1)),c(x=FALSE,y=TRUE,z=FALSE)) }) test_that('deductiveZeros works with variables in record not in editmatrix',{ expect_equal(deductiveZeros(editmatrix(c("x + y == z","y>=0")),x=c(x=1,y=NA,z=1,u=1,v=2)),c(x=FALSE,y=TRUE,z=FALSE,u=FALSE,v=FALSE)) expect_equal(deductiveZeros(editmatrix(c("x + y == z","y>=0")),x=c(x=1,y=NA,z=1,u=1,v=NA)),c(x=FALSE,y=TRUE,z=FALSE,u=FALSE,v=FALSE)) }) context('The deduImpute method for editset') test_that('deduImpute.editset works for pure numeric',{ E <- editset(expression(x + y == z)) x <- data.frame( x = NA, y = 1, z = 1) expect_equal(deduImpute(E,x)$corrected$x,0) }) test_that('deduImpute.editset works for pure categorical',{ E <- editset(expression( A %in% c('a','b'), B %in% c('c','d'), if ( A == 'a' ) B == 'b') ) x <- data.frame( A = 'a', B = NA) expect_equal(deduImpute(E, x)$corrected$B,'b') }) test_that('deduImpute.editset works for unconnected categorical and numerical',{ E <- editset(expression( x + y == z, A %in% c('a','b'), B %in% c('c','d'), if ( A == 'a' ) B == 'b') ) x <- data.frame( x = NA, y = 1, z = 1, A = 'a', B = NA) v <- deduImpute(E,x) expect_equal(v$corrected$B,'b') expect_equal(v$corrected$x, 0) expect_true(v$status$status == 'corrected') }) test_that('deduImpute.editset works for connected numerical and categorical',{ E <- editset(expression( x + y == z, x >= 0, A %in% c('a','b'), B %in% c('c','d'), if ( A == 'a' ) B == 'b', if ( B == 'b' ) x > 0 )) x <- data.frame( x = NA, y = 1, z = 1, A = 'a', B = NA ) v <- deduImpute(E,x) expect_equal(nrow(v$corrections),0) expect_equal(v$corrected,x) })
a = b = c = d = e = f = g <- 4
suppressMessages(library(rENA, quietly = T, verbose = F)) context("Test making R6 sets"); code_names <- c("Data", "Technical.Constraints","Performance.Parameters", "Client.and.Consultant.Requests","Design.Reasoning","Collaboration") test_that("Accumulate returns an R6", { data(RS.data) df.file <- RS.data df.accum <- suppressWarnings( ena.accumulate.data.file( df.file, units.by = c("UserName", "Condition"), conversations.by = c("ActivityNumber", "GroupName"), codes = code_names, as.list = FALSE) ) testthat::expect_is(df.accum, "ENAdata", "Accumulation with as.list = FALSE did not return ENAdata" ) }) test_that("Function params includes ... args", { data(RS.data) df.file <- RS.data df.accum <- suppressWarnings( ena.accumulate.data.file( df.file, units.by = c("UserName", "Condition"), conversations.by = c("ActivityNumber", "GroupName"), codes = code_names, as.list = FALSE) ) df.accum.grain <- suppressWarnings( ena.accumulate.data.file( df.file, units.by = c("UserName", "Condition"), conversations.by = c("ActivityNumber", "GroupName"), codes = code_names, as.list = FALSE, grainSize = 10) ) testthat::expect_false("grainSize" %in% names(df.accum$function.params)) testthat::expect_true("grainSize" %in% names(df.accum.grain$function.params)) }) test_that("Old accum ignored meta.data", { data(RS.data) df.file <- RS.data df.accum <- suppressWarnings( ena.accumulate.data.file( df.file, units.by = c("UserName", "Condition"), conversations.by = c("ActivityNumber", "GroupName"), codes = code_names, as.list = FALSE, include.meta = FALSE ) ) testthat::expect_equal(nrow(df.accum$metadata), 0) }) test_that("Make.set returns an R6", { data(RS.data) df.file <- RS.data df.accum <- suppressWarnings( rENA:::ena.accumulate.data.file( df.file, units.by = c("UserName", "Condition"), conversations.by = c("ActivityNumber", "GroupName"), codes = code_names, as.list = FALSE ) ) df.set <- suppressWarnings( rENA:::ena.make.set(df.accum, as.list = FALSE) ) testthat::expect_is(df.set, "ENAset", "Set with as.list = FALSE did not return ENAset") df.accum2 <- rENA:::ena.accumulate.data.file( df.file, units.by = c("UserName", "Condition"), conversations.by = c("ActivityNumber", "GroupName"), codes = code_names, as.list = T ) error_set <- testthat::expect_error( suppressWarnings(rENA:::ena.make.set(df.accum2, as.list = F)), regexp = "Re-run the accumulation with as.list=FALSE" ) error_set2 <- testthat::expect_warning( rENA:::ena.make.set(df.accum, as.list = T), regexp = "ENAdata objects will be deprecated" ) }) test_that("Old sets are the same as the new ones", { data(RS.data) units.by <- c("UserName", "Condition") conv.by <- c("Condition", "GroupName") df.accum <- suppressWarnings( rENA:::ena.accumulate.data.file( RS.data, units.by = units.by, conversations.by = conv.by, codes = code_names, as.list = FALSE, window.size.back = 4 ) ) df.set <- suppressWarnings( rENA:::ena.make.set(df.accum, as.list = FALSE) ) new.set <- rENA:::ena.accumulate.data( units = RS.data[, units.by], conversation = RS.data[, conv.by], metadata = RS.data[, code_names], codes = RS.data[,code_names], model = "EndPoint", window.size.back = 4 ) %>% rENA:::ena.make.set() testthat::expect_equivalent(df.set$points.rotated[1, ], as.matrix(new.set$points)[1, ]) testthat::expect_equivalent(df.set$line.weights[1, ], as.matrix(new.set$line.weights)[1, ]) }) test_that("Old R6 w custom rotation", { data(RS.data) df.file <- RS.data df.accum <- suppressWarnings( rENA:::ena.accumulate.data.file( df.file, units.by = c("UserName", "Condition"), conversations.by = c("ActivityNumber", "GroupName"), codes = code_names, as.list = FALSE ) ) df.set <- suppressWarnings( rENA:::ena.make.set(df.accum, as.list = FALSE) ) df.accum.2 <- suppressWarnings( rENA:::ena.accumulate.data.file( df.file, units.by = c("GroupName", "Condition"), conversations.by = c("ActivityNumber", "GroupName"), codes = code_names, as.list = FALSE ) ) df.set.2 <- suppressWarnings( rENA:::ena.make.set(df.accum.2, as.list = FALSE, rotation.set = df.set$rotation.set) ) testthat::expect_equal(df.set$node.positions, df.set.2$node.positions) testthat::expect_error( suppressWarnings(rENA:::ena.make.set(df.accum.2, as.list = FALSE, rotation.set = -1)), regexp = "Supplied rotation.set is not an instance of ENARotationSet" ) testthat::expect_error( suppressWarnings(rENA:::ena.make.set(df.accum.2, as.list = FALSE, rotation.by = "NOTHING")), regexp = "Unable to find or create a rotation set" ) testthat::expect_error( suppressWarnings(rENA:::ena.make.set(df.accum.2, as.list = FALSE, node.position.method = function(set) { return(list("failed" = NULL)) })), regexp = "node position method didn't return back the expected objects" ) testthat::expect_error( suppressWarnings(rENA:::ena.make.set(df.accum.2, as.list = FALSE, rotation.set = -1)), regexp = "Supplied rotation.set is not an instance of ENARotationSet" ) rot.set <- list( "rotation" = matrix(rep(0, choose(length(code_names),2) ^ 2 ), nrow = choose(length(code_names),2)), "node.positions" = NULL ) class(rot.set) <- c("ENARotationSet") testthat::expect_error( suppressWarnings(rENA:::ena.make.set(df.accum.2, as.list = FALSE, rotation.set = rot.set)), regexp = "Unable to determine the node positions either by calculating" ) }) test_that("Verify ENArotation set class", { data(RS.data) df.file <- RS.data df.accum <- suppressWarnings( rENA:::ena.accumulate.data.file( df.file, units.by = c("UserName", "Condition"), conversations.by = c("ActivityNumber", "GroupName"), codes = code_names, as.list = FALSE ) ) df.set <- suppressWarnings( rENA:::ena.make.set(df.accum, as.list = FALSE) ) nodes <- df.set$node.positions rownames(nodes) <- NULL rotationSet = ENARotationSet$new( rotation = df.set$rotation.set$rotation, codes = df.set$codes, node.positions = nodes, eigenvalues = NULL ) testthat::expect_true(all(rownames(rotationSet$node.positions) == df.set$codes)) })
summaryTotalDistance <- function(list, summary.df = NA) { stimulus <- NULL id_stim <- NULL distance <- NULL list <- purrr::map_if(list, is.data.frame, function(.x) { total_distance <- .x %>% select(distance) %>% sum() if (any(names(.x) == "id_stim")) { out <- data.frame(id_stim = .x$id_stim[1], total_distance = total_distance, stringsAsFactors = FALSE) } else{ out <- data.frame(id = .x$id[1], total_distance = total_distance, stringsAsFactors = FALSE) } if (any(!is.na(summary.df))){ if (any(names(.x) == "id_stim")) { out <- inner_join(out, summary.df, by = "id_stim") } else { out <- inner_join(out, summary.df, by = "id") } } else { if (any(names(.x) == "id_stim")) { trial_cols <- .x %>% select(!!list$col.names, stimulus, -id_stim) %>% slice(1) out <- bind_cols(out, trial_cols) } else { trial_cols <- .x %>% select(!!list$col.names, stimulus, -id) %>% slice(1) out <- bind_cols(out, trial_cols) } } return(out) }) magrittr::extract(list, 1:(length(list) - 1)) %>% bind_rows() } summaryNetDisplacement <- function(list, summary.df = NA) { stimulus <- NULL id_stim <- NULL list <- purrr::map_if(list, is.data.frame, function(.x) { net_displacement <- sqrt((.x$x[nrow(.x)] ^ 2) + (.x$y[nrow(.x)] ^ 2)) if (any(names(.x) == "id_stim")) { out <- data.frame(id_stim = .x$id_stim[1], net_displacement = net_displacement, stringsAsFactors = FALSE) } else{ out <- data.frame(id = .x$id[1], net_displacement = net_displacement, stringsAsFactors = FALSE) } if (any(!is.na(summary.df))){ if (any(names(.x) == "id_stim")) { out <- inner_join(out, summary.df, by = "id_stim") } else { out <- inner_join(out, summary.df, by = "id") } } else { if (any(names(.x) == "id_stim")) { trial_cols <- .x %>% select(!!list$col.names, stimulus, -id_stim) %>% slice(1) out <- bind_cols(out, trial_cols) } else { trial_cols <- .x %>% select(!!list$col.names, stimulus, -id) %>% slice(1) out <- bind_cols(out, trial_cols) } } return(out) }) magrittr::extract(list, 1:(length(list) - 1)) %>% bind_rows() } summaryTortuosity <- function(summary.df, total.distance, net.displacement, inverse = FALSE) { total.distance <- enquo(total.distance) net.displacement <- enquo(net.displacement) if (inverse == FALSE) { summary.df <- summary.df %>% mutate(tortuosity = !!net.displacement / !!total.distance) } else { summary.df <- summary.df %>% mutate(tortuosity = !!total.distance / !!net.displacement) } return(summary.df) } summaryAvgBearing <- function(list, summary.df = NA) { stimulus <- NULL id_stim <- NULL out <- list %>% purrr::map_if(is.data.frame, function(.x) { b <- .x[!is.na(.x$bearing), "bearing"] r <- b * (pi / 180) mean.r <- atan3((sum(sin(r))) / length(r), (sum(cos(r))) / length(r)) mean.c <- mean.r * (180 / pi) if (mean.c < 0) { mean.c <- 360 + mean.c } rho <- sqrt(((sum(sin(r))) / length(r)) ^ 2 + ((sum(cos(r))) / length(r)) ^ 2) if (any(names(.x) == "id_stim")) { return(c(.x$id_stim[1], mean.c, rho)) } else { return(c(.x$id[1], mean.c, rho)) } }) out <- magrittr::extract(out, 1:(length(out) - 1)) out <- unlist(out) id <- unname(out[seq(1, length(out), by = 3)]) circular.mean <- unname(out[seq(2, (length(out) - 1), by = 3)]) circular.rho <- unname(out[seq(3, (length(out) - 0), by = 3)]) if (any(names(list[[1]]) == "id_stim")) { out <- data.frame( id_stim = id, circular_mean = circular.mean, circular_rho = circular.rho, stringsAsFactors = FALSE ) } else{ out <- data.frame( id = id, circular_mean = circular.mean, circular_rho = circular.rho, stringsAsFactors = FALSE ) } if (any(!is.na(summary.df))) { if (any(names(list[[1]]) == "id_stim")) { out <- inner_join(out, summary.df, by = "id_stim") } else { out <- inner_join(out, summary.df, by = "id") } } else { if (any(names(list[[1]]) == "id_stim")) { trial_cols <- list %>% map_if(is.data.frame, function(.x) { .x %>% select(!!list$col.names, stimulus, -id_stim) %>% slice(1) }) trial_cols <- trial_cols %>% magrittr::extract(1:((length(.data) - 1))) %>% bind_rows out <- bind_cols(out, trial_cols) } else { trial_cols <- list %>% map_if(is.data.frame, function(.x) { .x %>% select(!!list$col.names, stimulus, -id) %>% slice(1) }) trial_cols <- trial_cols %>% magrittr::extract(1:((length(.data) - 1))) %>% bind_rows out <- bind_cols(out, trial_cols) } return(out) } } summaryAvgVelocity <- function(list, summary.df = NA) { stimulus <- NULL id_stim <- NULL list <- list %>% purrr::map_if(is.data.frame, function(.x) { out <- data.frame(id = .x$id[1], avg.velocity = mean(.x$velocity, na.rm = TRUE)) if (any(names(.x) == "id_stim")) { out <- data.frame(id_stim = .x$id_stim[1], avg_velocity = out$avg.velocity, stringsAsFactors = FALSE) } else{ out <- data.frame(id = .x$id[1], avg_velocity = out$avg.velocity, stringsAsFactors = FALSE) } if (any(!is.na(summary.df))){ if (any(names(.x) == "id_stim")) { out <- inner_join(out, summary.df, by = "id_stim") } else { out <- inner_join(out, summary.df, by = "id") } } else { if (any(names(.x) == "id_stim")) { trial_cols <- .x %>% select(!!list$col.names, stimulus, -id_stim) %>% slice(1) out <- bind_cols(out, trial_cols) } else { trial_cols <- .x %>% select(!!list$col.names, stimulus, -id) %>% slice(1) out <- bind_cols(out, trial_cols) } } }) magrittr::extract(list, 1:(length(list) - 1)) %>% bind_rows() } summaryStops <- function(list, summary.df = NA, stop.threshold = 0) { stimulus <- NULL id_stim <- NULL list <- list %>% purrr::map_if(is.data.frame, function(.x) { stops <- ifelse(.x$velocity <= stop.threshold, 0, .x$velocity) stops <- rle(stops) num_stops <- length(stops$lengths[stops$values == 0]) len_stops <- mean(stops$lengths[stops$values == 0]) out <- data.frame(id = .x$id[1], number_stops = num_stops, avg_length_stops = len_stops) if (any(names(.x) == "id_stim")) { out <- data.frame(id_stim = .x$id_stim[1], number_stops = num_stops, avg_length_stops = len_stops, stringsAsFactors = FALSE) } else{ out <- data.frame(id = .x$id[1], number_stops = num_stops, avg_length_stops = len_stops, stringsAsFactors = FALSE) } if (any(!is.na(summary.df))){ if (any(names(.x) == "id_stim")) { out <- inner_join(out, summary.df, by = "id_stim") } else { out <- inner_join(out, summary.df, by = "id") } } else { if (any(names(.x) == "id_stim")) { trial_cols <- .x %>% select(!!list$col.names, stimulus, -id_stim) %>% slice(1) out <- bind_cols(out, trial_cols) } else { trial_cols <- .x %>% select(!!list$col.names, stimulus, -id) %>% slice(1) out <- bind_cols(out, trial_cols) } } }) magrittr::extract(list, 1:(length(list) - 1)) %>% bind_rows() }
library(hamcrest) expected <- c(0x1.22af67381fb8p-5 + 0x0p+0i, 0x1.22193386ea6p-5 + -0x1.1adb230dcef8p-9i, 0x1.20575bd7f218p-5 + -0x1.1a32d0e5597p-8i, 0x1.1d6c2944ab48p-5 + -0x1.a5a8530f4fep-8i, 0x1.195b675f5ad8p-5 + -0x1.17943cf34498p-7i, 0x1.142a5ed440bp-5 + -0x1.5b082bbbbd4p-7i, 0x1.0ddfcdef99ap-5 + -0x1.9ce046ae20dp-7i, 0x1.0683df132acp-5 + -0x1.dccf1382b3bp-7i, 0x1.fc403a52021p-6 + -0x1.0d44db6be13p-6i, 0x1.e97ecc47db1p-6 + -0x1.2ae42d3571f8p-6i, 0x1.d4dbb7422ebp-6 + -0x1.4723477f024p-6i, 0x1.be71a3814eap-6 + -0x1.61e1d4add4bp-6i, 0x1.a65d789c4c6p-6 + -0x1.7b018cfa6ce8p-6i, 0x1.8cbe34a72848p-6 + -0x1.92665f4d581p-6i, 0x1.71b4c06916d8p-6 + -0x1.a7f696ef04cp-6i, 0x1.5563c0e1ba4p-6 + -0x1.bb9afdd45f2p-6i, 0x1.37ef66602158p-6 + -0x1.cd3efb56c13p-6i, 0x1.197d3971dddp-6 + -0x1.dcd0af2adb1p-6i, 0x1.f467cbe77p-7 + -0x1.ea41086f94ap-6i, 0x1.b47609207cap-7 + -0x1.f583d8b37c2p-6i, 0x1.7375c5f599a8p-7 + -0x1.fe8fe2d51eep-6i, 0x1.31b8966f181p-7 + -0x1.02af72d4487p-5i, 0x1.df212909889p-8 + -0x1.04f6d12941cp-5i, 0x1.5a9fd99f3be8p-8 + -0x1.061def27b708p-5i, 0x1.ad21ad19dc6p-9 + -0x1.06263091c418p-5i, 0x1.4e584565c8cp-10 + -0x1.051276db4d4p-5i, -0x1.6d886a637bp-11 + -0x1.02e71bb275ap-5i, -0x1.595108089a8p-9 + -0x1.ff53d2d4c62p-6i, -0x1.28b891f33a4p-8 + -0x1.f6c422a6438p-6i, -0x1.a14e897e407p-8 + -0x1.ec30401901cp-6i, -0x1.0aeecda9d888p-7 + -0x1.dfabdfc96c5p-6i, -0x1.42efcc4cad4p-7 + -0x1.d14d32ace4fp-6i, -0x1.786ad590ecfp-7 + -0x1.c12cc379b52p-6i, -0x1.ab24814caadp-7 + -0x1.af6550acedep-6i, -0x1.dae5bad4931p-7 + -0x1.9c13a365787p-6i, -0x1.03be0588c8c8p-6 + -0x1.87566350458p-6i, -0x1.185cedd5ddap-6 + -0x1.714de7e607p-6i, -0x1.2b3b5972e5bp-6 + -0x1.5a1c073eea5p-6i, -0x1.3c47b3e7783p-6 + -0x1.41e3e2c487dp-6i, -0x1.4b73273dcd7p-6 + -0x1.28c9b20d88bp-6i, -0x1.58b1ae00c0ep-6 + -0x1.0ef28c31733p-6i, -0x1.63fa20ff72dp-6 + -0x1.e9085fcb0a8p-7i, -0x1.6d4640c0b9fp-6 + -0x1.b349956b2d2p-7i, -0x1.7492ba96d33p-6 + -0x1.7cf57f5b0bp-7i, -0x1.79df294a2ccp-6 + -0x1.4658db91b74p-7i, -0x1.7d2e1158a03p-6 + -0x1.0fbfecfddb4p-7i, -0x1.7e84d8ccf78p-6 + -0x1.b2ec1307bacp-8i, -0x1.7debbab9255p-6 + -0x1.478a531c254p-8i, -0x1.7b6db664199p-6 + -0x1.bbd5e766754p-9i, -0x1.77187a4295cp-6 + -0x1.da67813eb4p-10i, -0x1.70fc4ad8bb4p-6 + -0x1.21dc6f15e4p-12i, -0x1.692be5a84cep-6 + 0x1.3c22bc91a1p-10i, -0x1.5fbc6055ab8p-6 + 0x1.58bf363d2bcp-9i, -0x1.54c50433738p-6 + 0x1.05748b9fdbp-8i, -0x1.485f266a3f6p-6 + 0x1.59dd2bfec18p-8i, -0x1.3aa5fcf771p-6 + 0x1.a937deb32d4p-8i, -0x1.2bb670c2f92p-6 + 0x1.f32c49fbf8dp-8i, -0x1.1baeed10c16p-6 + 0x1.1bb5eaec613p-7i, -0x1.0aaf2c96cf2p-6 + 0x1.3ad90d446b78p-7i, -0x1.f1b0090a4acp-7 + 0x1.56e29f6b1c4p-7i, -0x1.cc965ba011p-7 + 0x1.6fbb22c5a918p-7i, -0x1.a6561a20cdcp-7 + 0x1.8550a4c50e08p-7i, -0x1.7f34f2a1c4p-7 + 0x1.9796d40a9dap-7i, -0x1.57790440498p-7 + 0x1.a6870c7addbp-7i, -0x1.2f686a85ecp-7 + 0x1.b2205a21933p-7i, -0x1.0748c8c355p-7 + 0x1.ba6772d7aabp-7i, -0x1.bebdac355b8p-8 + 0x1.bf66a6a9a4cp-7i, -0x1.6fdbd5e5318p-8 + 0x1.c12dc70b5eep-7i, -0x1.226f2114638p-8 + 0x1.bfd204f43d6p-7i, -0x1.adec4d9309p-9 + 0x1.bb6dc60cec4p-7i, -0x1.1bd4650426p-9 + 0x1.b4207126076p-7i, -0x1.1ef9da6078p-10 + 0x1.aa0e323cdeap-7i, -0x1.37d29d4bdp-14 + 0x1.9d5fb6613cp-7i, 0x1.d274611b7ep-11 + 0x1.8e41dfdc5ap-7i, 0x1.d5ba0ddb47p-10 + 0x1.7ce57306306p-7i, 0x1.5859d569658p-9 + 0x1.697ebc42a0ep-7i, 0x1.bc7ef07f288p-9 + 0x1.54452fabfa6p-7i, 0x1.0b65c853ffcp-8 + 0x1.3d7302fb7ap-7i, 0x1.3369cb1dbe4p-8 + 0x1.2544c24affcp-7i, 0x1.56202160ed8p-8 + 0x1.0bf8e055014p-7i, 0x1.736866f596cp-8 + 0x1.e39e85c13f8p-8i, 0x1.8b2d6a6e6acp-8 + 0x1.ae11981fc88p-8i, 0x1.9d65515ec7p-8 + 0x1.77cdc29a7ap-8i, 0x1.aa11a8d0b28p-8 + 0x1.4155e136e5p-8i, 0x1.b13f619924p-8 + 0x1.0b2bea20ba8p-8i, 0x1.b306b85765ap-8 + 0x1.ab9fed1a5ep-9i, 0x1.af8b090ba42p-8 + 0x1.437e9a5546p-9i, 0x1.a6fa8e5084ep-8 + 0x1.bdcdbef8a2p-10i, 0x1.998e0c63e1cp-8 + 0x1.fb096c8c7p-11i, 0x1.8788684b2bap-8 + 0x1.1f7bc5341p-12i, 0x1.71362b807e5p-8 + -0x1.86026fa75p-12i, 0x1.56ecf4b5d19p-8 + -0x1.fa286b5cap-11i, 0x1.390ad65bd8ep-8 + -0x1.8976817d52p-10i, 0x1.17f5a3b9a79p-8 + -0x1.02b2bdf8e1p-9i, 0x1.e8345b0281ap-9 + -0x1.37e29afdc3p-9i, 0x1.9bd6ddd6a14p-9 + -0x1.63d129e217p-9i, 0x1.4bc35902c26p-9 + -0x1.861a23f962p-9i, 0x1.f1e61767d6p-10 + -0x1.9e6fa328f3p-9i, 0x1.48cbee91224p-10 + -0x1.ac9af49b47p-9i, 0x1.3c835bd60ep-11 + -0x1.b07d42b488p-9i, -0x1.753e7ad0cp-15 + -0x1.aa10145ed2p-9i, -0x1.65ce9e687ep-11 + -0x1.99659ffe68p-9i, -0x1.556a30a1aap-10 + -0x1.7ea8f09b0ep-9i, -0x1.f12e4b5f18p-10 + -0x1.5a1ddc0c47p-9i, -0x1.421dd987cdp-9 + -0x1.2c20c939acp-9i, -0x1.8655aa3c048p-9 + -0x1.ea4c8b8d3ap-10i, -0x1.c455b2d58d8p-9 + -0x1.6b74d59256p-10i, -0x1.fb41e2e3dd8p-9 + -0x1.ba0041db18p-11i, -0x1.15269116b9p-8 + -0x1.017e87ea88p-12i, -0x1.285db21b68cp-8 + 0x1.a349279858p-12i, -0x1.36f1d3d272cp-8 + 0x1.1cd4d634fp-10i, -0x1.4098eec3988p-8 + 0x1.d9c3dded6cp-10i, -0x1.45145a518b4p-8 + 0x1.4ecda9f9fbp-9i, -0x1.4431a2760ep-8 + 0x1.b31d84ebb1p-9i, -0x1.3dcb4bb6e68p-8 + 0x1.0c5ab232964p-8i, -0x1.31c9838522p-8 + 0x1.3f37ae07bbcp-8i, -0x1.2022bb4a728p-8 + 0x1.718f02fdfb8p-8i, -0x1.08dc2c7d85p-8 + 0x1.a2c77d942bcp-8i, -0x1.d814885c02p-9 + 0x1.d246b4fb8fp-8i, -0x1.93a1e9279ep-9 + 0x1.ff7263912a8p-8i, -0x1.44c7d694fap-9 + 0x1.14d8e55b35cp-7i, -0x1.d81aac06f2p-10 + 0x1.28379006648p-7i, -0x1.14321e39eep-10 + 0x1.398c80fdcc6p-7i, -0x1.fb106d9e4p-13 + 0x1.4891f8a67ap-7i, 0x1.491790a6c8p-11 + 0x1.5505e6cb49cp-7i, 0x1.95917a8d1ap-10 + 0x1.5eaaa90732ap-7i, 0x1.48b77e38ap-9 + 0x1.6547c82bf34p-7i, 0x1.cad654f1aap-9 + 0x1.68aab363e13p-7i, 0x1.27e79580ecp-8 + 0x1.68a777c74dbp-7i, 0x1.6b19b734368p-8 + 0x1.651973193e98p-7i, 0x1.ae3f0d9e64p-8 + 0x1.5de4005c358p-7i, 0x1.f08b029e2dp-8 + 0x1.52f31cee6438p-7i, 0x1.189417f945p-7 + 0x1.443c04dd1df8p-7i, 0x1.379ce0d778p-7 + 0x1.31bdc521947p-7i, 0x1.54ee7b0229cp-7 + 0x1.1b81c27ceb1p-7i, 0x1.70155c8ca6p-7 + 0x1.019c33afa13p-7i, 0x1.889cadbc954p-7 + 0x1.c8591ba015ep-8i, 0x1.9e0f30b7b1cp-7 + 0x1.86bbc31a65p-8i, 0x1.aff834b9ac8p-7 + 0x1.3ece506dfdap-8i, 0x1.bde493cc13p-7 + 0x1.e22dfdc7304p-9i, 0x1.c763b9e292p-7 + 0x1.3c694a2b43cp-9i, 0x1.cc08b4273ep-7 + 0x1.1b7b839d8fp-10i, 0x1.cb6b472cc68p-7 + -0x1.419e5036fep-12i, 0x1.c5290aa7e18p-7 + -0x1.c7327fce5ep-10i, 0x1.b8e6893da28p-7 + -0x1.a26fe2d0a4p-9i, 0x1.a65062e265p-7 + -0x1.3142a847e48p-8i, 0x1.8d1c70342e8p-7 + -0x1.90bc6e0d7f8p-8i, 0x1.6d0ae52c42ep-7 + -0x1.ee5ea2d6148p-8i, 0x1.45e7717627cp-7 + -0x1.2466b47addep-7i, 0x1.178a5caea14p-7 + -0x1.4f4c70426d6p-7i, 0x1.c3b33986ad8p-8 + -0x1.771f498bbeep-7i, 0x1.4993c947e08p-8 + -0x1.9b1587c9546p-7i, 0x1.817ea5be898p-9 + -0x1.ba5ddae970ap-7i, 0x1.4b01c46882p-11 + -0x1.d42058ca8f6p-7i, -0x1.f0ef48db9dp-10 + -0x1.e77f91e80eap-7i, -0x1.2fa20da6df8p-8 + -0x1.f399bcb3e3ap-7i, -0x1.f039146503cp-8 + -0x1.f789f6efc6p-7i, -0x1.5e9fb3cf758p-7 + -0x1.f2699c3594cp-7i, -0x1.cae51218536p-7 + -0x1.e351b0bc188p-7i, -0x1.1e30f9111dfp-6 + -0x1.c95c5f42becp-7i, -0x1.593af434c0fp-6 + -0x1.a3a688ecb04p-7i, -0x1.963539925058p-6 + -0x1.715165b1e26p-7i, -0x1.d4b95bdd9258p-6 + -0x1.318433eba3ep-7i, -0x1.0a2ad7375ee8p-5 + -0x1.c6dbeac3b04p-8i, -0x1.2a46a0a912p-5 + -0x1.0c8e703d4acp-8i, -0x1.4a6bf6813d08p-5 + -0x1.953e93033cp-11i, -0x1.6a51373390b4p-5 + 0x1.906b42737fp-9i, -0x1.89a749d08f6p-5 + 0x1.e5496836668p-8i, -0x1.a819bd10dc9p-5 + 0x1.92d8815d114p-7i, -0x1.c54eef3a7728p-5 + 0x1.229909ed36ep-6i, -0x1.e0e83f0c17f4p-5 + 0x1.850c3eba9f7p-6i, -0x1.fa8245d19168p-5 + 0x1.f0ee12648e5p-6i, -0x1.08da8d5d249cp-4 + 0x1.332d3a51397p-5i, -0x1.130a4fc056d6p-4 + 0x1.72b013e724f8p-5i, -0x1.1b986b33802ep-4 + 0x1.b6ffee4b9c2p-5i, -0x1.224b20c171fep-4 + 0x1.000ad5202448p-4i, -0x1.26e725a2f782p-4 + 0x1.26f12320f99p-4i, -0x1.292fdc130794p-4 + 0x1.50273c4bc4fcp-4i, -0x1.28e7909e73ap-4 + 0x1.7b9d27660f6cp-4i, -0x1.25cfbbd4bba4p-4 + 0x1.a93e69a045e8p-4i, -0x1.1fa94839bbe6p-4 + 0x1.d8f1dcc03158p-4i, -0x1.1634dc51e278p-4 + 0x1.054cc480fd9ap-3i, -0x1.0933289c9b12p-4 + 0x1.1f094181ab5ep-3i, -0x1.f0ca72953b78p-5 + 0x1.399a67055748p-3i, -0x1.c71996efafb4p-5 + 0x1.54e9a17d0c18p-3i, -0x1.94d94b5585ap-5 + 0x1.70ddbe1da396p-3i, -0x1.5991e6aa5fccp-5 + 0x1.8d5ae377655p-3i, -0x1.14cf4619c928p-5 + 0x1.aa428cd2c458p-3i, -0x1.8c431cb3687p-6 + 0x1.c7738873d7e2p-3i, -0x1.b477c454cefp-7 + 0x1.e4c9f8e417dap-3i, -0x1.2beeb982868p-10 + 0x1.010facafd2dep-2i, 0x1.95e0ea5775cp-7 + 0x1.0fa542c07a76p-2i, 0x1.bf801060cb8p-6 + 0x1.1e0fe2218221p-2i, 0x1.65c69d8495b8p-5 + 0x1.2c386b37c539p-2i, 0x1.f7d1988021dp-5 + 0x1.3a068445bdcc8p-2i, 0x1.4b0e5e0ea7c8p-4 + 0x1.4760a428945ap-2i, 0x1.a06c91be9d8p-4 + 0x1.542c1ee1f6df8p-2i, 0x1.fc163bb42028p-4 + 0x1.604d33f2f8f8p-2i, 0x1.2f0c09c965c6p-3 + 0x1.6ba71e8a74e58p-2i, 0x1.633c2967e418p-3 + 0x1.761c27878c0d8p-2i, 0x1.9a9b2af35d48p-3 + 0x1.7f8db94efe478p-2i, 0x1.d5252057a73p-3 + 0x1.87dc75701a9dp-2i, 0x1.096929948059p-2 + 0x1.8ee84c140e548p-2i, 0x1.29cb8d56ca46p-2 + 0x1.949095304e5c4p-2i, 0x1.4bb1da1ac24bp-2 + 0x1.98b42b72c9428p-2i, 0x1.6f120f0048fp-2 + 0x1.9b3188dc7aa58p-2i, 0x1.93dffa77effcp-2 + 0x1.9be6e4fce2e24p-2i, 0x1.ba0d2aa0b9a3p-2 + 0x1.9ab254becc518p-2i, 0x1.e188df48f5f4p-2 + 0x1.9771ebb4b05c4p-2i, 0x1.051ffed7e5b6p-1 + 0x1.9203ded0fa05cp-2i, 0x1.1a0e83121123p-1 + 0x1.8a46a87454448p-2i, 0x1.2f8405ce58af4p-1 + 0x1.80192dba2aaa8p-2i, 0x1.457356b1e8408p-1 + 0x1.735ae4e984d2p-2i, 0x1.5bce09783b388p-1 + 0x1.63ebfcee727a8p-2i, 0x1.7284750234cc8p-1 + 0x1.51ad85be5a5b8p-2i, 0x1.8985b39314a5p-1 + 0x1.3c819987a98fp-2i, 0x1.a0bfa445ba4ap-1 + 0x1.244b868ba03b8p-2i, 0x1.b81eedc3c8be8p-1 + 0x1.08eff97f4b778p-2i, 0x1.cf8f02474c254p-1 + 0x1.d4aa509e4cd1p-3i, 0x1.e6fa24ee83b1p-1 + 0x1.90c5fa3ebfdep-3i, 0x1.fe49706865a18p-1 + 0x1.460682c2c0658p-3i, 0x1.0ab26f7fabbdp+0 + 0x1.e88723579009p-4i, 0x1.1619aa0336efp+0 + 0x1.36b271477aacp-4i, 0x1.214d5356299d2p+0 + 0x1.d94241b4cb2cp-6i, 0x1.2c3fd71adb2f2p+0 + -0x1.634ae4dc0738p-6i, 0x1.36e327cfec77ap+0 + -0x1.36e0dc995396p-4i, 0x1.4128c65542108p+0 + -0x1.11fbf09a35eb8p-3i, 0x1.4b01ca23a7ee6p+0 + -0x1.9014e483589d8p-3i, 0x1.545eea3563edp+0 + -0x1.0adefe6c7f528p-2i, 0x1.5d30869d49a4ep+0 + -0x1.5179aadd5c8cp-2i, 0x1.6566b2c92c53p+0 + -0x1.9bd517ae3d6ep-2i, 0x1.6cf1406bd4272p+0 + -0x1.e9e856383f1cp-2i, 0x1.73bfcb09e4356p+0 + -0x1.1dd36523f8bd8p-1i, 0x1.79c1c4246540dp+0 + -0x1.488006bedd77cp-1i, 0x1.7ee67ffaf190fp+0 + -0x1.74efea832604cp-1i, 0x1.831d42dec64dp+0 + -0x1.a316eceb198d8p-1i, 0x1.86554f0f4968cp+0 + -0x1.d2e6e1c94388cp-1i, 0x1.887df317df9dp+0 + -0x1.0227c593d65d4p+0i, 0x1.898698a63dfd8p+0 + -0x1.1b9f48d2cac33p+0i, 0x1.895ed3cfb6189p+0 + -0x1.35cfbf333f097p+0i, 0x1.87f672bb53d55p+0 + -0x1.50addb5230a21p+0i, 0x1.853d8da601a1dp+0 + -0x1.6c2d3c7b04faap+0i, 0x1.812497354acd4p+0 + -0x1.88406e2cab34bp+0i, 0x1.7b9c6d0cbdcdcp+0 + -0x1.a4d8e8880acb4p+0i, 0x1.7496689961a47p+0 + -0x1.c1e711ae767f7p+0i, 0x1.6c0470062a8f3p+0 + -0x1.df5a401632709p+0i, 0x1.61d9074bdc5b2p+0 + -0x1.fd20bdda6a7f3p+0i, 0x1.5607614e53a3p+0 + -0x1.0d93e6859d7a8p+1i, 0x1.488370f8c489dp+0 + -0x1.1cadd680d5048p+1i, 0x1.3941fa4a1cccap+0 + -0x1.2bd3d05d527c4p+1i, 0x1.2838a34261dd5p+0 + -0x1.3afafb1da03b5p+1i, 0x1.155e04a199aeep+0 + -0x1.4a18077fd0e2ap+1i, 0x1.00a9ba688f4dcp+0 + -0x1.591f34ba8adcap+1i, 0x1.d428e81725d38p-1 + -0x1.680455bf7a337p+1i, 0x1.a330088e6220fp-1 + -0x1.76bad70282c8ap+1i, 0x1.6e5ee10d8b6e6p-1 + -0x1.8535c4c4952fep+1i, 0x1.35adff998d95p-1 + -0x1.9367d1e08f278p+1i, 0x1.f23124329b2d9p-2 + -0x1.a1435f1815edp+1i, 0x1.713903990d4f5p-2 + -0x1.aeba82dddcfbp+1i, 0x1.d0ea3597a8d24p-3 + -0x1.bbbf119a4f987p+1i, 0x1.5fb30d4878e44p-4 + -0x1.c842a66717521p+1i, -0x1.014a7c9628d5p-4 + -0x1.d436ac3d7d734p+1i, -0x1.c06ae8654f22p-3 + -0x1.df8c67932a724p+1i, -0x1.87a1c7ce6f8b4p-2 + -0x1.ea3500604c1eep+1i, -0x1.1b3b93ab9b763p-1 + -0x1.f4218c89b32c2p+1i, -0x1.76474159a2c6cp-1 + -0x1.fd431aa9023dp+1i, -0x1.d4dd08e44667ap-1 + -0x1.02c55e964a83p+2i, -0x1.1b714f9f16bb8p+0 + -0x1.0674cae42a9a6p+2i, -0x1.4e1d24dae3107p+0 + -0x1.09a8709822d28p+2i, -0x1.82616be23a856p+0 + -0x1.0c59018a91654p+2i, -0x1.b82bcfb317c67p+0 + -0x1.0e7f492d89272p+2i, -0x1.ef683e069b384p+0 + -0x1.101432c0fda3p+2i, -0x1.14007410fbc4p+1 + -0x1.1110cf9b62ac2p+2i, -0x1.30ef228342192p+1 + -0x1.116e5d8233aaap+2i, -0x1.4e738a840c74ap+1 + -0x1.11264d0daf172p+2i, -0x1.6c803367eae2ep+1 + -0x1.10324812eddf1p+2i, -0x1.8b06cee83968ep+1 + -0x1.0e8c380f5d1dcp+2i, -0x1.a9f83d180f28ap+1 + -0x1.0c2e4c9082c0bp+2i, -0x1.c94491156a8b9p+1 + -0x1.09130192db95cp+2i, -0x1.e8db16777de9ep+1 + -0x1.053525d28af55p+2i, -0x1.04552bbd352c7p+2 + -0x1.008fe10881fdcp+2i, -0x1.145011f40e93fp+2 + -0x1.f63d741d6c49dp+1i, -0x1.2454cc5eb45f4p+2 + -0x1.e9bb39cbea0eep+1i, -0x1.34599444e9a41p+2 + -0x1.db91c12fbb94p+1i, -0x1.44545243fad3p+2 + -0x1.cbba99df0eac2p+1i, -0x1.543aa335d1d25p+2 + -0x1.ba304006bc396p+1i, -0x1.6401dd713a2b3p+2 + -0x1.a6ee2715985d6p+1i, -0x1.739f16614f6efp+2 + -0x1.91f0c3f496382p+1i, -0x1.83072871bede8p+2 + -0x1.7b3596c1210cbp+1i, -0x1.922eb94d349ap+2 + -0x1.62bb33ff38d82p+1i, -0x1.a10a406afc899p+2 + -0x1.48814d39162fbp+1i, -0x1.af8e0de89005ap+2 + -0x1.2c88b902586bep+1i, -0x1.bdae51ab7b58bp+2 + -0x1.0ed37a5509c08p+1i, -0x1.cb5f22c7b9b8fp+2 + -0x1.dec98e7e2d9dfp+0i, -0x1.d89487265bb17p+2 + -0x1.9c821dae64d3cp+0i, -0x1.e5427b68033e6p+2 + -0x1.56dbfce104e6p+0i, -0x1.f15cfafe7a9b4p+2 + -0x1.0de50c09bfd1p+0i, -0x1.fcd8087866eabp+2 + -0x1.835b6f37a7c64p-1i, -0x1.03d3dafceb841p+3 + -0x1.c923f82d507b8p-2i, -0x1.08e016ee1879ep+3 + -0x1.fcc73901bfeep-4i, -0x1.0d8addb7e2f0dp+3 + 0x1.ad7ddf0f5d91p-3i, -0x1.11ce69ec8f039p+3 + 0x1.1c2198f0caf44p-1i, -0x1.15a50f81ed261p+3 + 0x1.d272c87fd3a48p-1i, -0x1.190940526d818p+3 + 0x1.470996c9f0ad1p+0i, -0x1.1bf590a2980ccp+3 + 0x1.a75eeac292706p+0i, -0x1.1e64bba798861p+3 + 0x1.050a30be0c5fp+1i, -0x1.2051a80b7ca8dp+3 + 0x1.3781403a762dcp+1i, -0x1.21b76c6bb4a86p+3 + 0x1.6affae6d7c4b2p+1i, -0x1.229153ce5a2bp+3 + 0x1.9f6f54870f5bep+1i, -0x1.22dae20ab8beep+3 + 0x1.d4b8e210e74aep+1i, -0x1.228fd8218c3a8p+3 + 0x1.0561f2d7134a2p+2i, -0x1.21ac3881659bep+3 + 0x1.20bb6b6c281bp+2i, -0x1.202c4b33a5f14p+3 + 0x1.3c5b904ba07eep+2i, -0x1.1e0ca1ee80906p+3 + 0x1.58349698883dcp+2i, -0x1.1b4a1c087a86p+3 + 0x1.74383966f8481p+2i, -0x1.17e1ea49e4a8p+3 + 0x1.9057c085aa7c4p+2i, -0x1.13d19298d81edp+3 + 0x1.ac8407bc6f8eep+2i, -0x1.0f16f37c4a8e4p+3 + 0x1.c8ad867c5f294p+2i, -0x1.09b04772df4bcp+3 + 0x1.e4c457fe352b7p+2i, -0x1.039c281a2e33cp+3 + 0x1.005c21e575814p+3i, -0x1.f9b322469d83ep+2 + 0x1.0e3c63551cccp+3i, -0x1.eacfc6231df28p+2 + 0x1.1bfa8df927e6ep+3i, -0x1.da8dcb80b2c91p+2 + 0x1.298e2399d58ap+3i, -0x1.c8ed955ad80aap+2 + 0x1.36ee8f1dd1f06p+3i, -0x1.b5f05e09467bcp+2 + 0x1.441329b3f3634p+3i, -0x1.a1983ad57f5a8p+2 + 0x1.50f340225e8eep+3i, -0x1.8be81f0968dfap+2 + 0x1.5d861837daf6ap+3i, -0x1.74e3de726861p+2 + 0x1.69c2f65bf893ep+3i, -0x1.5c902f54bdaeap+2 + 0x1.75a1233a827f8p+3i, -0x1.42f2abcb3ea06p+2 + 0x1.8117f1869779p+3i, -0x1.2811d28ff1826p+2 + 0x1.8c1ec3d1a0758p+3i, -0x1.0bf5072a68ef5p+2 + 0x1.96ad12723f25ep+3i, -0x1.dd49230256c59p+1 + 0x1.a0ba717732c8ap+3i, -0x1.a0533997b849ap+1 + 0x1.aa3e96a218aecp+3i, -0x1.611c6bc893c46p+1 + 0x1.b3315f65d7ce8p+3i, -0x1.1fba91e9f1d88p+1 + 0x1.bb8ad6e473958p+3i, -0x1.b88a7a10ce142p+0 + 0x1.c3433be7f2172p+3i, -0x1.2dab5f6c85802p+0 + 0x1.ca5306d1f4b25p+3i, -0x1.3e1b56470260cp-1 + 0x1.d0b2ef7d988c1p+3i, -0x1.9d4e610940fcp-5 + 0x1.d65bf30f2db3ap+3i, 0x1.1104151168d9cp-1 + 0x1.db4759ad50a5ep+3i, 0x1.20f87f3a0ec9p+0 + 0x1.df6ebc1ef218ep+3i, 0x1.bc36a7cb46676p+0 + 0x1.e2cc0949dca94p+3i, 0x1.2cfbb4c90fa32p+1 + 0x1.e5598b8d4f218p+3i, 0x1.7cf97931e486ep+1 + 0x1.e711edf44cb2p+3i, 0x1.cdef6d6c28b8bp+1 + 0x1.e7f0413b528fdp+3i, 0x1.0fdb92b639a34p+2 + 0x1.e7f000a53409ap+3i, 0x1.39148819e15bcp+2 + 0x1.e70d169af33dcp+3i, 0x1.628e46233374p+2 + 0x1.e543e112852aep+3i, 0x1.8c33fe95b63b2p+2 + 0x1.e29135b88bce5p+3i, 0x1.b5f070f4883c2p+2 + 0x1.def265d930673p+3i, 0x1.dfadf638f046cp+2 + 0x1.da6542046aa3cp+3i, 0x1.04ab467d53dcp+3 + 0x1.d4e81d6a2774ep+3i, 0x1.1969f3016c60ep+3 + 0x1.ce79d0eaeb6b6p+3i, 0x1.2e07b8a132144p+3 + 0x1.c719bdd9b8b5ap+3i, 0x1.42793591cffeep+3 + 0x1.bec7d06c301a1p+3i, 0x1.56b2f517b1e43p+3 + 0x1.b58481d6165ep+3i, 0x1.6aa9767e6f334p+3 + 0x1.ab50da0d9c6c6p+3i, 0x1.7e513431afabbp+3 + 0x1.a02e713600122p+3i, 0x1.919eaaf278102p+3 + 0x1.941f70ae55257p+3i, 0x1.a486612429c9cp+3 + 0x1.872693c28346cp+3i, 0x1.b6fcee2c600f9p+3 + 0x1.794727fcc2f24p+3i, 0x1.c8f701e0b81a9p+3 + 0x1.6a850d1625265p+3i, 0x1.da696bfd784efp+3 + 0x1.5ae4b484f34cap+3i, 0x1.eb49239ff428bp+3 + 0x1.4a6b20a7f9213p+3i, 0x1.fb8b4ebf7839ap+3 + 0x1.391de38e0fdffp+3i, 0x1.0592a4cfbd659p+4 + 0x1.27031d5988d34p+3i, 0x1.0d06571ae15c6p+4 + 0x1.14217a3f5d468p+3i, 0x1.141badbf9784cp+4 + 0x1.0080302252a54p+3i, 0x1.1acdbe5ee352bp+4 + 0x1.d84df7951602fp+2i, 0x1.2117c84d5c307p+4 + 0x1.ae3c3b74883aap+2i, 0x1.26f538137c395p+4 + 0x1.82dcad41a26c6p+2i, 0x1.2c61aada98ac4p+4 + 0x1.5641c6da4bd32p+2i, 0x1.3158f1c3e596p+4 + 0x1.287ef20324f26p+2i, 0x1.35d71526eebc9p+4 + 0x1.f350fe2a6ca1p+1i, 0x1.39d857b4fa618p+4 + 0x1.93a735ec74ec3p+1i, 0x1.3d59397ed7062p+4 + 0x1.322c88c0f0226p+1i, 0x1.40567adaa3ef9p+4 + 0x1.9e1d01febacdcp+0i, 0x1.42cd1f2734b1ap+4 + 0x1.a9f077491c298p-1i, 0x1.44ba6f6ac2893p+4 + 0x1.296e7ab188c4p-5i, 0x1.461bfccab2afep+4 + -0x1.890c3be974064p-1i, 0x1.46efa2da4f17fp+4 + -0x1.9416f75d74da6p+0i, 0x1.473389be6710ap+4 + -0x1.327fc23b5f5cep+1i, 0x1.46e62823e726p+4 + -0x1.9b6b2d87cfbafp+1i, 0x1.4606450793186p+4 + -0x1.024c1df67c05p+2i, 0x1.4492f94d29ef1p+4 + -0x1.36e85f509da98p+2i, 0x1.428bb1245adb2p+4 + -0x1.6b6efcf4fe2d7p+2i, 0x1.3ff02d3a11da4p+4 + -0x1.9fc462ff20e83p+2i, 0x1.3cc083b4c495cp+4 + -0x1.d3ccd842b176p+2i, 0x1.38fd20fa8ae4dp+4 + -0x1.03b647a70173p+3i, 0x1.34a6c83ff2742p+4 + -0x1.1d43dbd248d68p+3i, 0x1.2fbe93dea24e4p+4 + -0x1.368147930f899p+3i, 0x1.2a45f5730940ap+4 + -0x1.4f60b9cb60c8ap+3i, 0x1.243eb5c0793f6p+4 + -0x1.67d47a1e0931cp+3i, 0x1.1daaf45b39defp+4 + -0x1.7fcef1c1bae3p+3i, 0x1.168d271844a3p+4 + -0x1.9742b452ac80ap+3i, 0x1.0ee8194287162p+4 + -0x1.ae22889c93edep+3i, 0x1.06beea95b04fcp+4 + -0x1.c4617156d51eep+3i, 0x1.fc2a1bfd731e6p+3 + -0x1.d9f2b5ccb9939p+3i, 0x1.e9dc904507985p+3 + -0x1.eec9ea6b85a65p+3i, 0x1.d69d5b561ce3ap+3 + -0x1.016d7c98230f8p+4i, 0x1.c27542b7eb7c6p+3 + -0x1.0b0d14f79d216p+4i, 0x1.ad6da3de22c4cp+3 + -0x1.143e15376682ep+4i, 0x1.97906f746ba94p+3 + -0x1.1cfb0b281181fp+4i, 0x1.80e8243e88654p+3 + -0x1.253ebf5fad3bp+4i, 0x1.697fc98fbae8ep+3 + -0x1.2d0438f2db38p+4i, 0x1.5162e95c6bd46p+3 + -0x1.3446c10c07a78p+4i, 0x1.389d89e95ad93p+3 + -0x1.3b01e65e039acp+4i, 0x1.1f3c271bee5e9p+3 + -0x1.4131806f556cp+4i, 0x1.054bab6f8344fp+3 + -0x1.46d1b2bbaa33p+4i, 0x1.d5b2d127cc9f9p+2 + -0x1.4bdeefa8ec129p+4i, 0x1.9fe61f72cdd5cp+2 + -0x1.5055fb4d9c09ep+4i, 0x1.694d531e6cc6cp+2 + -0x1.5433ee062acaap+4i, 0x1.32051bf20e3fbp+2 + -0x1.577636d72acb2p+4i, 0x1.f4556e047271fp+1 + -0x1.5a1a9d9a564fcp+4i, 0x1.83b7ba30db508p+1 + -0x1.5c1f44f486619p+4i, 0x1.126d6153e8076p+1 + -0x1.5d82ac12db83p+4i, 0x1.4166ada53184ap+0 + -0x1.5e43b02d7e578p+4i, 0x1.7638b7e413dd8p-2 + -0x1.5e618dce85444p+4i, -0x1.0c65fc784801ep-1 + -0x1.5ddbe1dbb438ep+4i, -0x1.6960a0ad89515p+0 + -0x1.5cb2aa61f527ap+4i, -0x1.25bf2c82a3f3fp+1 + -0x1.5ae6472192326p+4i, -0x1.9607f5d0541c3p+1 + -0x1.587779da66014p+4i, -0x1.02a6642c16b66p+2 + -0x1.55676657630b6p+4i, -0x1.39a810e1abadbp+2 + -0x1.51b79238ffa99p+4i, -0x1.6fea847754c6cp+2 + -0x1.4d69e47e42709p+4i, -0x1.a54f9ab6f986p+2 + -0x1.4880a4cc587e9p+4i, -0x1.d9b99b6a19518p+2 + -0x1.42fe7a74cddb8p+4i, -0x1.0685a6e952986p+3 + -0x1.3ce66b3aaecacp+4i, -0x1.1f9405f572bf4p+3 + -0x1.363bd9d707adbp+4i, -0x1.37f9eaaf66c8fp+3 + -0x1.2f02843d67d39p+4i, -0x1.4fa9b1189e7ccp+3 + -0x1.273e81a13a198p+4i, -0x1.66961a7fead11p+3 + -0x1.1ef4403cf46c3p+4i, -0x1.7cb2566c1ff74p+3 + -0x1.162882dc4cf7p+4i, -0x1.91f20b48f8b4ap+3 + -0x1.0ce05e2ad0e5bp+4i, -0x1.a6495ecfe804ep+3 + -0x1.032135c864fdfp+4i, -0x1.b9acfe26ad8fdp+3 + -0x1.f1e1724ac79d9p+3i, -0x1.cc1225adadad5p+3 + -0x1.dca9c0506f624p+3i, -0x1.dd6ea8783e912p+3 + -0x1.c6a7cf3cf04eap+3i, -0x1.edb8f7695190ep+3 + -0x1.afe89af77479ap+3i, -0x1.fce827ef192c9p+3 + -0x1.987999d0d4665p+3i, -0x1.0579fd2c4539dp+4 + -0x1.8068b44653ec8p+3i, -0x1.0bea6fdfed2e6p+4 + -0x1.67c43c6ea6af4p+3i, -0x1.11c1ffc2aec42p+4 + -0x1.4e9ae516bdc67p+3i, -0x1.16fd9e2b3d3d7p+4 + -0x1.34fbb894201e6p+3i, -0x1.1b9a9c5e55b7p+4 + -0x1.1af60f52cb1b8p+3i, -0x1.1f96ad986e9bcp+4 + -0x1.00998624d0fap+3i, -0x1.22efe8d7e61ccp+4 + -0x1.cbebe8b43c10cp+2i, -0x1.25a4ca662b48p+4 + -0x1.9636c34dfa2adp+2i, -0x1.27b4351e89d1bp+4 + -0x1.6033f7c03c073p+2i, -0x1.291d73716e35ep+4 + -0x1.2a0419260ea98p+2i, -0x1.29e0382326947p+4 + -0x1.e78fba07f20fdp+1i, -0x1.29fc9ec55431cp+4 + -0x1.7b400c29fbf6ep+1i, -0x1.29732bea71ebcp+4 + -0x1.0f5a9df699e7ep+1i, -0x1.2844cd1304f7ap+4 + -0x1.4841538cf9755p+0i, -0x1.2672d8543ebbap+4 + -0x1.ce9822751aa7p-2i, -0x1.23ff0bb80880fp+4 + 0x1.7a706fc0ebd3p-2i, -0x1.20eb8c56a3cafp+4 + 0x1.2e060658eef16p+0i, -0x1.1d3ae52a3c52ap+4 + 0x1.fa1a6c0ac4a18p+0i, -0x1.18f0059cfab9p+4 + 0x1.612f0f5adfd4p+1i, -0x1.140e3fd258e66p+4 + 0x1.c32c2f19a0b79p+1i, -0x1.0e9946acaa8c8p+4 + 0x1.1164ca4259f79p+2i, -0x1.08952b8ffd422p+4 + 0x1.3fe6e2d467767p+2i, -0x1.02065be3a4064p+4 + 0x1.6d007af29affep+2i, -0x1.f5e33ca7e3048p+3 + 0x1.989695b76cfb1p+2i, -0x1.e6b81faba5fe2p+3 + 0x1.c28f31d971344p+2i, -0x1.d69640dc5707ap+3 + 0x1.ead15b3f4934cp+2i, -0x1.c5891f7df5ce4p+3 + 0x1.08a29df4cfcb2p+3i, -0x1.b39cd2b90f1dcp+3 + 0x1.1aea16137b4a6p+3i, -0x1.a0de01d9d62fap+3 + 0x1.2c346102c5e73p+3i, -0x1.8d59dc2913fecp+3 + 0x1.3c776ffc09ddcp+3i, -0x1.791e10644926ap+3 + 0x1.4ba9e1514c443p+3i, -0x1.6438c3daa7783p+3 + 0x1.59c306e2acabep+3i, -0x1.4eb88934cd2dp+3 + 0x1.66baec1e10067p+3i, -0x1.38ac56ed6c436p+3 + 0x1.728a5b84921d8p+3i, -0x1.22237d8144e16p+3 + 0x1.7d2ae3b19c9bfp+3i, -0x1.0b2d9d5d1170cp+3 + 0x1.8696dbdfd996ep+3i, -0x1.e7b539206c9ep+2 + 0x1.8ec967e891625p+3i, -0x1.b87538966a86cp+2 + 0x1.95be7bba60283p+3i, -0x1.88bbdc621c8bbp+2 + 0x1.9b72de448ec21p+3i, -0x1.58aa1305b6c99p+2 + 0x1.9fe42bd4bba42p+3i, -0x1.2861005a29398p+2 + 0x1.a310d7e4e3d5ep+3i, -0x1.f003cef808a12p+1 + 0x1.a4f82e5840c5cp+3i, -0x1.8f5c2933e06c4p+1 + 0x1.a59a5425d5ee4p+3i, -0x1.2f0d8d68139b7p+1 + 0x1.a4f8476ff07bp+3i, -0x1.9eb4656e2d8b8p+0 + 0x1.a313df08430b2p+3i, -0x1.c20f7411711d6p-1 + 0x1.9fefc960b01cap+3i, -0x1.2cbb0d15ba668p-3 + 0x1.9b8f8ae93e33ep+3i, 0x1.2637e221b74cfp-1 + 0x1.95f77bdc193cep+3i, 0x1.489378440595fp+0 + 0x1.8f2cc578ec8efp+3i, 0x1.fa52b06f78031p+0 + 0x1.87355eb1482c6p+3i, 0x1.53efd62299afep+1 + 0x1.7e18084829f09p+3i, 0x1.a861b37cb15a1p+1 + 0x1.73dc486728228p+3i, 0x1.fa450a53e537dp+1 + 0x1.688a65ac1df5cp+3i, 0x1.24b0dc2759c42p+2 + 0x1.5c2b61b29bb24p+3i, 0x1.4ac0c253d0e6cp+2 + 0x1.4ec8f31cbb1c5p+3i, 0x1.6f38227248ff2p+2 + 0x1.406d7f1f552d4p+3i, 0x1.91fe001816a12p+2 + 0x1.31241295efc2cp+3i, 0x1.b2fa889e403f8p+2 + 0x1.20f85aa3108ccp+3i, 0x1.d217234b74e86p+2 + 0x1.0ff69ce1f5c93p+3i, 0x1.ef3e80ab455cep+2 + 0x1.fc575e5e0a3c4p+2i, 0x1.052e5483e6046p+3 + 0x1.d749de1919bbep+2i, 0x1.11af84fdc58cbp+3 + 0x1.b0e0715377f8ap+2i, 0x1.1d1a4188f512ap+3 + 0x1.8937bb23f179ep+2i, 0x1.2766b8b6b3166p+3 + 0x1.606d3615fb00dp+2i, 0x1.308ddd359b5p+3 + 0x1.369f2050bba84p+2i, 0x1.38896a9e70154p+3 + 0x1.0bec673697c94p+2i, 0x1.3f53e9b874c0ap+3 + 0x1.c0e925169dfbcp+1i, 0x1.44e8b43253976p+3 + 0x1.68af5e5e2f13fp+1i, 0x1.4943f7ccec29ap+3 + 0x1.0f6c72fadded4p+1i, 0x1.4c62b8f5cbb5ep+3 + 0x1.6ac41d7a6a61p+0i, 0x1.4e42d4cf77385p+3 + 0x1.6b4990d8558f8p-1i, 0x1.4ee302a6165fcp+3 + 0x0p+0i, 0x1.4e42d4cf7738p+3 + -0x1.6b4990d8558e8p-1i, 0x1.4c62b8f5cbb58p+3 + -0x1.6ac41d7a6a603p+0i, 0x1.4943f7ccec294p+3 + -0x1.0f6c72faddecdp+1i, 0x1.44e8b43253972p+3 + -0x1.68af5e5e2f136p+1i, 0x1.3f53e9b874c07p+3 + -0x1.c0e925169dfb9p+1i, 0x1.38896a9e7015p+3 + -0x1.0bec673697c9p+2i, 0x1.308ddd359b4fcp+3 + -0x1.369f2050bba7ep+2i, 0x1.2766b8b6b3162p+3 + -0x1.606d3615fb009p+2i, 0x1.1d1a4188f5128p+3 + -0x1.8937bb23f1798p+2i, 0x1.11af84fdc58cap+3 + -0x1.b0e0715377f86p+2i, 0x1.052e5483e6043p+3 + -0x1.d749de1919bb9p+2i, 0x1.ef3e80ab455ccp+2 + -0x1.fc575e5e0a3bep+2i, 0x1.d217234b74e84p+2 + -0x1.0ff69ce1f5c9p+3i, 0x1.b2fa889e403f4p+2 + -0x1.20f85aa3108c8p+3i, 0x1.91fe001816a1p+2 + -0x1.31241295efc29p+3i, 0x1.6f38227248fecp+2 + -0x1.406d7f1f552d2p+3i, 0x1.4ac0c253d0e6cp+2 + -0x1.4ec8f31cbb1c2p+3i, 0x1.24b0dc2759c42p+2 + -0x1.5c2b61b29bb1fp+3i, 0x1.fa450a53e537ap+1 + -0x1.688a65ac1df59p+3i, 0x1.a861b37cb15ap+1 + -0x1.73dc486728226p+3i, 0x1.53efd62299b03p+1 + -0x1.7e18084829f09p+3i, 0x1.fa52b06f7802fp+0 + -0x1.87355eb1482c4p+3i, 0x1.489378440595ap+0 + -0x1.8f2cc578ec8eep+3i, 0x1.2637e221b74cep-1 + -0x1.95f77bdc193cep+3i, -0x1.2cbb0d15ba628p-3 + -0x1.9b8f8ae93e33ep+3i, -0x1.c20f7411711dp-1 + -0x1.9fefc960b01cap+3i, -0x1.9eb4656e2d8bap+0 + -0x1.a313df08430b1p+3i, -0x1.2f0d8d68139b2p+1 + -0x1.a4f8476ff07bp+3i, -0x1.8f5c2933e06bep+1 + -0x1.a59a5425d5ee6p+3i, -0x1.f003cef808a1p+1 + -0x1.a4f82e5840c5ep+3i, -0x1.2861005a29398p+2 + -0x1.a310d7e4e3d6p+3i, -0x1.58aa1305b6c9ap+2 + -0x1.9fe42bd4bba42p+3i, -0x1.88bbdc621c8b8p+2 + -0x1.9b72de448ec1fp+3i, -0x1.b87538966a86ap+2 + -0x1.95be7bba60284p+3i, -0x1.e7b539206c9ep+2 + -0x1.8ec967e891624p+3i, -0x1.0b2d9d5d1170bp+3 + -0x1.8696dbdfd996ep+3i, -0x1.22237d8144e16p+3 + -0x1.7d2ae3b19c9c2p+3i, -0x1.38ac56ed6c436p+3 + -0x1.728a5b84921d8p+3i, -0x1.4eb88934cd2d2p+3 + -0x1.66baec1e10068p+3i, -0x1.6438c3daa7785p+3 + -0x1.59c306e2acac2p+3i, -0x1.791e10644926ap+3 + -0x1.4ba9e1514c446p+3i, -0x1.8d59dc2913fecp+3 + -0x1.3c776ffc09dep+3i, -0x1.a0de01d9d62fcp+3 + -0x1.2c346102c5e74p+3i, -0x1.b39cd2b90f1dep+3 + -0x1.1aea16137b4a9p+3i, -0x1.c5891f7df5ce6p+3 + -0x1.08a29df4cfcb5p+3i, -0x1.d69640dc5707cp+3 + -0x1.ead15b3f49353p+2i, -0x1.e6b81faba5fe4p+3 + -0x1.c28f31d971349p+2i, -0x1.f5e33ca7e304cp+3 + -0x1.989695b76cfb6p+2i, -0x1.02065be3a4065p+4 + -0x1.6d007af29b004p+2i, -0x1.08952b8ffd424p+4 + -0x1.3fe6e2d46776dp+2i, -0x1.0e9946acaa8cap+4 + -0x1.1164ca4259f7dp+2i, -0x1.140e3fd258e68p+4 + -0x1.c32c2f19a0b83p+1i, -0x1.18f0059cfab92p+4 + -0x1.612f0f5adfd4cp+1i, -0x1.1d3ae52a3c52cp+4 + -0x1.fa1a6c0ac4a22p+0i, -0x1.20eb8c56a3cb2p+4 + -0x1.2e060658eef2p+0i, -0x1.23ff0bb808812p+4 + -0x1.7a706fc0ebd6cp-2i, -0x1.2672d8543ebbep+4 + 0x1.ce9822751aa38p-2i, -0x1.2844cd1304f7ep+4 + 0x1.4841538cf974dp+0i, -0x1.29732bea71ecp+4 + 0x1.0f5a9df699e8p+1i, -0x1.29fc9ec55431fp+4 + 0x1.7b400c29fbf6cp+1i, -0x1.29e038232694ap+4 + 0x1.e78fba07f20fap+1i, -0x1.291d73716e362p+4 + 0x1.2a0419260ea9ap+2i, -0x1.27b4351e89d1fp+4 + 0x1.6033f7c03c074p+2i, -0x1.25a4ca662b481p+4 + 0x1.9636c34dfa2aep+2i, -0x1.22efe8d7e61c7p+4 + 0x1.cbebe8b43c108p+2i, -0x1.1f96ad986e9b8p+4 + 0x1.00998624d0f9cp+3i, -0x1.1b9a9c5e55b6cp+4 + 0x1.1af60f52cb1b6p+3i, -0x1.16fd9e2b3d3d4p+4 + 0x1.34fbb894201e2p+3i, -0x1.11c1ffc2aec4p+4 + 0x1.4e9ae516bdc64p+3i, -0x1.0bea6fdfed2e3p+4 + 0x1.67c43c6ea6afp+3i, -0x1.0579fd2c4539ap+4 + 0x1.8068b44653ec4p+3i, -0x1.fce827ef192c4p+3 + 0x1.987999d0d4663p+3i, -0x1.edb8f7695190ap+3 + 0x1.afe89af774796p+3i, -0x1.dd6ea8783e91p+3 + 0x1.c6a7cf3cf04e8p+3i, -0x1.cc1225adadad2p+3 + 0x1.dca9c0506f622p+3i, -0x1.b9acfe26ad8fap+3 + 0x1.f1e1724ac79d4p+3i, -0x1.a6495ecfe804ap+3 + 0x1.032135c864fddp+4i, -0x1.91f20b48f8b48p+3 + 0x1.0ce05e2ad0e5ap+4i, -0x1.7cb2566c1ff73p+3 + 0x1.162882dc4cf6ep+4i, -0x1.66961a7fead0ep+3 + 0x1.1ef4403cf46c2p+4i, -0x1.4fa9b1189e7ccp+3 + 0x1.273e81a13a196p+4i, -0x1.37f9eaaf66c8ep+3 + 0x1.2f02843d67d37p+4i, -0x1.1f9405f572bf3p+3 + 0x1.363bd9d707ad9p+4i, -0x1.0685a6e952986p+3 + 0x1.3ce66b3aaecacp+4i, -0x1.d9b99b6a19518p+2 + 0x1.42fe7a74cddb7p+4i, -0x1.a54f9ab6f985ep+2 + 0x1.4880a4cc587e7p+4i, -0x1.6fea847754c6cp+2 + 0x1.4d69e47e4270ap+4i, -0x1.39a810e1abadbp+2 + 0x1.51b79238ffa98p+4i, -0x1.02a6642c16b68p+2 + 0x1.55676657630b7p+4i, -0x1.9607f5d0541c2p+1 + 0x1.587779da66013p+4i, -0x1.25bf2c82a3f4p+1 + 0x1.5ae6472192326p+4i, -0x1.6960a0ad89522p+0 + 0x1.5cb2aa61f527ap+4i, -0x1.0c65fc784802ep-1 + 0x1.5ddbe1dbb438ep+4i, 0x1.7638b7e413de4p-2 + 0x1.5e618dce85444p+4i, 0x1.4166ada531846p+0 + 0x1.5e43b02d7e578p+4i, 0x1.126d6153e8076p+1 + 0x1.5d82ac12db831p+4i, 0x1.83b7ba30db502p+1 + 0x1.5c1f44f486618p+4i, 0x1.f4556e0472718p+1 + 0x1.5a1a9d9a564fcp+4i, 0x1.32051bf20e3fbp+2 + 0x1.577636d72acb2p+4i, 0x1.694d531e6cc6ap+2 + 0x1.5433ee062acabp+4i, 0x1.9fe61f72cdd58p+2 + 0x1.5055fb4d9c09ep+4i, 0x1.d5b2d127cc9f8p+2 + 0x1.4bdeefa8ec129p+4i, 0x1.054bab6f8344fp+3 + 0x1.46d1b2bbaa332p+4i, 0x1.1f3c271bee5e9p+3 + 0x1.4131806f556c2p+4i, 0x1.389d89e95ad94p+3 + 0x1.3b01e65e039aep+4i, 0x1.5162e95c6bd48p+3 + 0x1.3446c10c07a78p+4i, 0x1.697fc98fbae92p+3 + 0x1.2d0438f2db382p+4i, 0x1.80e8243e88654p+3 + 0x1.253ebf5fad3b2p+4i, 0x1.97906f746ba96p+3 + 0x1.1cfb0b281182p+4i, 0x1.ad6da3de22c4ep+3 + 0x1.143e15376683p+4i, 0x1.c27542b7eb7c9p+3 + 0x1.0b0d14f79d218p+4i, 0x1.d69d5b561ce3cp+3 + 0x1.016d7c98230fap+4i, 0x1.e9dc904507988p+3 + 0x1.eec9ea6b85a6ap+3i, 0x1.fc2a1bfd731e9p+3 + 0x1.d9f2b5ccb993ep+3i, 0x1.06beea95b04fep+4 + 0x1.c4617156d51f4p+3i, 0x1.0ee8194287164p+4 + 0x1.ae22889c93ee3p+3i, 0x1.168d271844a32p+4 + 0x1.9742b452ac81p+3i, 0x1.1daaf45b39df1p+4 + 0x1.7fcef1c1bae32p+3i, 0x1.243eb5c0793f8p+4 + 0x1.67d47a1e0932p+3i, 0x1.2a45f5730940dp+4 + 0x1.4f60b9cb60c8fp+3i, 0x1.2fbe93dea24e6p+4 + 0x1.368147930f89dp+3i, 0x1.34a6c83ff2746p+4 + 0x1.1d43dbd248d6cp+3i, 0x1.38fd20fa8ae51p+4 + 0x1.03b647a701732p+3i, 0x1.3cc083b4c496p+4 + 0x1.d3ccd842b1765p+2i, 0x1.3ff02d3a11da8p+4 + 0x1.9fc462ff20e8ap+2i, 0x1.428bb1245adb6p+4 + 0x1.6b6efcf4fe2dap+2i, 0x1.4492f94d29ef6p+4 + 0x1.36e85f509da9ap+2i, 0x1.4606450793186p+4 + 0x1.024c1df67c05p+2i, 0x1.46e62823e725cp+4 + 0x1.9b6b2d87cfbb2p+1i, 0x1.473389be67106p+4 + 0x1.327fc23b5f5d4p+1i, 0x1.46efa2da4f17bp+4 + 0x1.9416f75d74da7p+0i, 0x1.461bfccab2afap+4 + 0x1.890c3be97407ep-1i, 0x1.44ba6f6ac289p+4 + -0x1.296e7ab188a4p-5i, 0x1.42cd1f2734b18p+4 + -0x1.a9f077491c28cp-1i, 0x1.40567adaa3ef6p+4 + -0x1.9e1d01febaccap+0i, 0x1.3d59397ed706p+4 + -0x1.322c88c0f0221p+1i, 0x1.39d857b4fa614p+4 + -0x1.93a735ec74ecp+1i, 0x1.35d71526eebc7p+4 + -0x1.f350fe2a6ca0fp+1i, 0x1.3158f1c3e595dp+4 + -0x1.287ef20324f26p+2i, 0x1.2c61aada98ac1p+4 + -0x1.5641c6da4bd2ep+2i, 0x1.26f538137c393p+4 + -0x1.82dcad41a26c2p+2i, 0x1.2117c84d5c305p+4 + -0x1.ae3c3b74883a8p+2i, 0x1.1acdbe5ee3529p+4 + -0x1.d84df7951602ep+2i, 0x1.141badbf9784ap+4 + -0x1.0080302252a53p+3i, 0x1.0d06571ae15c6p+4 + -0x1.14217a3f5d465p+3i, 0x1.0592a4cfbd659p+4 + -0x1.27031d5988d2fp+3i, 0x1.fb8b4ebf7839ap+3 + -0x1.391de38e0fdfbp+3i, 0x1.eb49239ff428bp+3 + -0x1.4a6b20a7f9212p+3i, 0x1.da696bfd784efp+3 + -0x1.5ae4b484f34c8p+3i, 0x1.c8f701e0b81a8p+3 + -0x1.6a850d1625262p+3i, 0x1.b6fcee2c600f9p+3 + -0x1.794727fcc2f22p+3i, 0x1.a486612429c9cp+3 + -0x1.872693c28346ap+3i, 0x1.919eaaf278102p+3 + -0x1.941f70ae55256p+3i, 0x1.7e513431afabap+3 + -0x1.a02e713600122p+3i, 0x1.6aa9767e6f335p+3 + -0x1.ab50da0d9c6c8p+3i, 0x1.56b2f517b1e44p+3 + -0x1.b58481d6165e2p+3i, 0x1.42793591cffeep+3 + -0x1.bec7d06c301a1p+3i, 0x1.2e07b8a132144p+3 + -0x1.c719bdd9b8b5ap+3i, 0x1.1969f3016c60ep+3 + -0x1.ce79d0eaeb6b7p+3i, 0x1.04ab467d53dbep+3 + -0x1.d4e81d6a2774fp+3i, 0x1.dfadf638f046ep+2 + -0x1.da6542046aa3ap+3i, 0x1.b5f070f4883cap+2 + -0x1.def265d930674p+3i, 0x1.8c33fe95b63b3p+2 + -0x1.e29135b88bce6p+3i, 0x1.628e46233374p+2 + -0x1.e543e112852aep+3i, 0x1.39148819e15bfp+2 + -0x1.e70d169af33ddp+3i, 0x1.0fdb92b639a36p+2 + -0x1.e7f000a53409bp+3i, 0x1.cdef6d6c28b94p+1 + -0x1.e7f0413b528ffp+3i, 0x1.7cf97931e4874p+1 + -0x1.e711edf44cb23p+3i, 0x1.2cfbb4c90fa32p+1 + -0x1.e5598b8d4f21ap+3i, 0x1.bc36a7cb46676p+0 + -0x1.e2cc0949dca98p+3i, 0x1.20f87f3a0ec8cp+0 + -0x1.df6ebc1ef219p+3i, 0x1.1104151168d88p-1 + -0x1.db4759ad50a61p+3i, -0x1.9d4e6109410cp-5 + -0x1.d65bf30f2db3ep+3i, -0x1.3e1b56470261cp-1 + -0x1.d0b2ef7d988c4p+3i, -0x1.2dab5f6c85816p+0 + -0x1.ca5306d1f4b29p+3i, -0x1.b88a7a10ce152p+0 + -0x1.c3433be7f2174p+3i, -0x1.1fba91e9f1d86p+1 + -0x1.bb8ad6e47395cp+3i, -0x1.611c6bc893c46p+1 + -0x1.b3315f65d7cecp+3i, -0x1.a0533997b849ap+1 + -0x1.aa3e96a218af1p+3i, -0x1.dd49230256c5bp+1 + -0x1.a0ba717732c8fp+3i, -0x1.0bf5072a68ef8p+2 + -0x1.96ad12723f262p+3i, -0x1.2811d28ff1828p+2 + -0x1.8c1ec3d1a075cp+3i, -0x1.42f2abcb3ea09p+2 + -0x1.8117f18697795p+3i, -0x1.5c902f54bdaf2p+2 + -0x1.75a1233a827fcp+3i, -0x1.74e3de7268617p+2 + -0x1.69c2f65bf8942p+3i, -0x1.8be81f0968e02p+2 + -0x1.5d861837daf6ep+3i, -0x1.a1983ad57f5b1p+2 + -0x1.50f340225e8f2p+3i, -0x1.b5f05e09467c5p+2 + -0x1.441329b3f3638p+3i, -0x1.c8ed955ad80b2p+2 + -0x1.36ee8f1dd1f0ap+3i, -0x1.da8dcb80b2c9ap+2 + -0x1.298e2399d58a4p+3i, -0x1.eacfc6231df33p+2 + -0x1.1bfa8df927e72p+3i, -0x1.f9b322469d83ep+2 + -0x1.0e3c63551cccp+3i, -0x1.039c281a2e336p+3 + -0x1.005c21e575812p+3i, -0x1.09b04772df4b6p+3 + -0x1.e4c457fe352b4p+2i, -0x1.0f16f37c4a8dfp+3 + -0x1.c8ad867c5f292p+2i, -0x1.13d19298d81e9p+3 + -0x1.ac8407bc6f8ecp+2i, -0x1.17e1ea49e4a7dp+3 + -0x1.9057c085aa7c2p+2i, -0x1.1b4a1c087a85cp+3 + -0x1.74383966f8482p+2i, -0x1.1e0ca1ee80902p+3 + -0x1.58349698883dcp+2i, -0x1.202c4b33a5f12p+3 + -0x1.3c5b904ba07ecp+2i, -0x1.21ac3881659bap+3 + -0x1.20bb6b6c281adp+2i, -0x1.228fd8218c3a6p+3 + -0x1.0561f2d7134ap+2i, -0x1.22dae20ab8bedp+3 + -0x1.d4b8e210e74a8p+1i, -0x1.229153ce5a2aep+3 + -0x1.9f6f54870f5b9p+1i, -0x1.21b76c6bb4a84p+3 + -0x1.6affae6d7c4afp+1i, -0x1.2051a80b7ca8bp+3 + -0x1.3781403a762d6p+1i, -0x1.1e64bba79886p+3 + -0x1.050a30be0c5edp+1i, -0x1.1bf590a2980c9p+3 + -0x1.a75eeac29270bp+0i, -0x1.190940526d816p+3 + -0x1.470996c9f0addp+0i, -0x1.15a50f81ed261p+3 + -0x1.d272c87fd3a74p-1i, -0x1.11ce69ec8f038p+3 + -0x1.1c2198f0caf74p-1i, -0x1.0d8addb7e2f0ep+3 + -0x1.ad7ddf0f5d98p-3i, -0x1.08e016ee1879ep+3 + 0x1.fcc73901bfe2p-4i, -0x1.03d3dafceb84p+3 + 0x1.c923f82d50798p-2i, -0x1.fcd8087866eaap+2 + 0x1.835b6f37a7c5p-1i, -0x1.f15cfafe7a9b2p+2 + 0x1.0de50c09bfd0ep+0i, -0x1.e5427b68033e5p+2 + 0x1.56dbfce104e62p+0i, -0x1.d89487265bb16p+2 + 0x1.9c821dae64d3ap+0i, -0x1.cb5f22c7b9b92p+2 + 0x1.dec98e7e2d9e8p+0i, -0x1.bdae51ab7b58cp+2 + 0x1.0ed37a5509c0ap+1i, -0x1.af8e0de89005bp+2 + 0x1.2c88b902586c2p+1i, -0x1.a10a406afc898p+2 + 0x1.48814d39163p+1i, -0x1.922eb94d349a2p+2 + 0x1.62bb33ff38d84p+1i, -0x1.83072871bede8p+2 + 0x1.7b3596c1210cdp+1i, -0x1.739f16614f6f2p+2 + 0x1.91f0c3f49637fp+1i, -0x1.6401dd713a2b6p+2 + 0x1.a6ee2715985d4p+1i, -0x1.543aa335d1d26p+2 + 0x1.ba304006bc396p+1i, -0x1.44545243fad3p+2 + 0x1.cbba99df0eac1p+1i, -0x1.34599444e9a42p+2 + 0x1.db91c12fbb94p+1i, -0x1.2454cc5eb45f7p+2 + 0x1.e9bb39cbea0ecp+1i, -0x1.145011f40e942p+2 + 0x1.f63d741d6c4ap+1i, -0x1.04552bbd352c8p+2 + 0x1.008fe10881fddp+2i, -0x1.e8db16777dea2p+1 + 0x1.053525d28af58p+2i, -0x1.c94491156a8bcp+1 + 0x1.09130192db96p+2i, -0x1.a9f83d180f288p+1 + 0x1.0c2e4c9082c0fp+2i, -0x1.8b06cee83968ap+1 + 0x1.0e8c380f5d1ep+2i, -0x1.6c803367eae2cp+1 + 0x1.10324812eddf6p+2i, -0x1.4e738a840c74ap+1 + 0x1.11264d0daf177p+2i, -0x1.30ef228342194p+1 + 0x1.116e5d8233aadp+2i, -0x1.14007410fbc3ep+1 + 0x1.1110cf9b62ac6p+2i, -0x1.ef683e069b389p+0 + 0x1.101432c0fda34p+2i, -0x1.b82bcfb317c6ap+0 + 0x1.0e7f492d89276p+2i, -0x1.82616be23a856p+0 + 0x1.0c59018a91658p+2i, -0x1.4e1d24dae310bp+0 + 0x1.09a8709822d2cp+2i, -0x1.1b714f9f16bb7p+0 + 0x1.0674cae42a9acp+2i, -0x1.d4dd08e446674p-1 + 0x1.02c55e964a833p+2i, -0x1.76474159a2c7p-1 + 0x1.fd431aa9023dap+1i, -0x1.1b3b93ab9b752p-1 + 0x1.f4218c89b32ccp+1i, -0x1.87a1c7ce6f88ap-2 + 0x1.ea3500604c1f8p+1i, -0x1.c06ae8654f208p-3 + 0x1.df8c67932a72bp+1i, -0x1.014a7c9628c6p-4 + 0x1.d436ac3d7d73cp+1i, 0x1.5fb30d4878fp-4 + 0x1.c842a66717526p+1i, 0x1.d0ea3597a8dap-3 + 0x1.bbbf119a4f98fp+1i, 0x1.713903990d532p-2 + 0x1.aeba82dddcfb6p+1i, 0x1.f23124329b2f3p-2 + 0x1.a1435f1815edap+1i, 0x1.35adff998d95p-1 + 0x1.9367d1e08f278p+1i, 0x1.6e5ee10d8b6dcp-1 + 0x1.8535c4c4952fap+1i, 0x1.a330088e621fep-1 + 0x1.76bad70282c8cp+1i, 0x1.d428e81725d27p-1 + 0x1.680455bf7a337p+1i, 0x1.00a9ba688f4d4p+0 + 0x1.591f34ba8adcdp+1i, 0x1.155e04a199aedp+0 + 0x1.4a18077fd0e2ep+1i, 0x1.2838a34261dc8p+0 + 0x1.3afafb1da03b6p+1i, 0x1.3941fa4a1ccc1p+0 + 0x1.2bd3d05d527c8p+1i, 0x1.488370f8c4896p+0 + 0x1.1cadd680d5046p+1i, 0x1.5607614e53a2ep+0 + 0x1.0d93e6859d7a8p+1i, 0x1.61d9074bdc5adp+0 + 0x1.fd20bdda6a7f8p+0i, 0x1.6c0470062a8f8p+0 + 0x1.df5a401632707p+0i, 0x1.7496689961a49p+0 + 0x1.c1e711ae767f6p+0i, 0x1.7b9c6d0cbdcdep+0 + 0x1.a4d8e8880acb2p+0i, 0x1.812497354acd5p+0 + 0x1.88406e2cab34cp+0i, 0x1.853d8da601a24p+0 + 0x1.6c2d3c7b04fafp+0i, 0x1.87f672bb53d4fp+0 + 0x1.50addb5230a26p+0i, 0x1.895ed3cfb6189p+0 + 0x1.35cfbf333f09ep+0i, 0x1.898698a63dfdcp+0 + 0x1.1b9f48d2cac46p+0i, 0x1.887df317df9ccp+0 + 0x1.0227c593d65e4p+0i, 0x1.86554f0f4968dp+0 + 0x1.d2e6e1c9438a4p-1i, 0x1.831d42dec64dcp+0 + 0x1.a316eceb198ep-1i, 0x1.7ee67ffaf1912p+0 + 0x1.74efea832606p-1i, 0x1.79c1c4246540cp+0 + 0x1.488006bedd79p-1i, 0x1.73bfcb09e4353p+0 + 0x1.1dd36523f8bd4p-1i, 0x1.6cf1406bd4275p+0 + 0x1.e9e856383f198p-2i, 0x1.6566b2c92c52fp+0 + 0x1.9bd517ae3d6fp-2i, 0x1.5d30869d49a59p+0 + 0x1.5179aadd5c8cp-2i, 0x1.545eea3563eep+0 + 0x1.0adefe6c7f52p-2i, 0x1.4b01ca23a7efp+0 + 0x1.9014e483589c8p-3i, 0x1.4128c6554210cp+0 + 0x1.11fbf09a35e58p-3i, 0x1.36e327cfec77cp+0 + 0x1.36e0dc995394p-4i, 0x1.2c3fd71adb2f8p+0 + 0x1.634ae4dc0738p-6i, 0x1.214d5356299dcp+0 + -0x1.d94241b4cb3cp-6i, 0x1.1619aa0336efcp+0 + -0x1.36b271477aaap-4i, 0x1.0ab26f7fabbd6p+0 + -0x1.e88723579008p-4i, 0x1.fe49706865a2p-1 + -0x1.460682c2c0658p-3i, 0x1.e6fa24ee83b18p-1 + -0x1.90c5fa3ebfe28p-3i, 0x1.cf8f02474c268p-1 + -0x1.d4aa509e4ccep-3i, 0x1.b81eedc3c8cp-1 + -0x1.08eff97f4b78p-2i, 0x1.a0bfa445ba49cp-1 + -0x1.244b868ba03ep-2i, 0x1.8985b39314a68p-1 + -0x1.3c819987a9908p-2i, 0x1.7284750234cdcp-1 + -0x1.51ad85be5a5d8p-2i, 0x1.5bce09783b398p-1 + -0x1.63ebfcee727b8p-2i, 0x1.457356b1e840cp-1 + -0x1.735ae4e984d38p-2i, 0x1.2f8405ce58afp-1 + -0x1.80192dba2aad8p-2i, 0x1.1a0e83121123p-1 + -0x1.8a46a8745447p-2i, 0x1.051ffed7e5b68p-1 + -0x1.9203ded0fa07cp-2i, 0x1.e188df48f5f5p-2 + -0x1.9771ebb4b05f8p-2i, 0x1.ba0d2aa0b9a6p-2 + -0x1.9ab254becc544p-2i, 0x1.93dffa77effep-2 + -0x1.9be6e4fce2e74p-2i, 0x1.6f120f0048f1p-2 + -0x1.9b3188dc7aa9p-2i, 0x1.4bb1da1ac24bp-2 + -0x1.98b42b72c947p-2i, 0x1.29cb8d56ca47p-2 + -0x1.949095304e61p-2i, 0x1.096929948059p-2 + -0x1.8ee84c140e574p-2i, 0x1.d5252057a732p-3 + -0x1.87dc75701aa1p-2i, 0x1.9a9b2af35d4ap-3 + -0x1.7f8db94efe4ap-2i, 0x1.633c2967e416p-3 + -0x1.761c27878c108p-2i, 0x1.2f0c09c965c6p-3 + -0x1.6ba71e8a74e4p-2i, 0x1.fc163bb42024p-4 + -0x1.604d33f2f8fap-2i, 0x1.a06c91be9d78p-4 + -0x1.542c1ee1f6e18p-2i, 0x1.4b0e5e0ea7c4p-4 + -0x1.4760a428945cp-2i, 0x1.f7d1988021c8p-5 + -0x1.3a068445bddp-2i, 0x1.65c69d8495cp-5 + -0x1.2c386b37c53bp-2i, 0x1.bf801060cb9p-6 + -0x1.1e0fe2218223p-2i, 0x1.95e0ea57759p-7 + -0x1.0fa542c07a78p-2i, -0x1.2beeb98285p-10 + -0x1.010facafd2e1p-2i, -0x1.b477c454cedp-7 + -0x1.e4c9f8e417dep-3i, -0x1.8c431cb3686p-6 + -0x1.c7738873d7e8p-3i, -0x1.14cf4619c93p-5 + -0x1.aa428cd2c45ep-3i, -0x1.5991e6aa5fc4p-5 + -0x1.8d5ae3776556p-3i, -0x1.94d94b55858cp-5 + -0x1.70ddbe1da39cp-3i, -0x1.c71996efafcp-5 + -0x1.54e9a17d0c1ep-3i, -0x1.f0ca72953b84p-5 + -0x1.399a67055748p-3i, -0x1.0933289c9b0ap-4 + -0x1.1f094181ab64p-3i, -0x1.1634dc51e278p-4 + -0x1.054cc480fd9cp-3i, -0x1.1fa94839bbeap-4 + -0x1.d8f1dcc03164p-4i, -0x1.25cfbbd4bba4p-4 + -0x1.a93e69a045ecp-4i, -0x1.28e7909e7394p-4 + -0x1.7b9d27660f78p-4i, -0x1.292fdc130794p-4 + -0x1.50273c4bc5p-4i, -0x1.26e725a2f782p-4 + -0x1.26f12320f99cp-4i, -0x1.224b20c17212p-4 + -0x1.000ad520245p-4i, -0x1.1b986b338036p-4 + -0x1.b6ffee4b9c3p-5i, -0x1.130a4fc056dep-4 + -0x1.72b013e7252p-5i, -0x1.08da8d5d24a2p-4 + -0x1.332d3a513978p-5i, -0x1.fa8245d1918p-5 + -0x1.f0ee12648e4p-6i, -0x1.e0e83f0c1804p-5 + -0x1.850c3eba9f9p-6i, -0x1.c54eef3a7738p-5 + -0x1.229909ed36fp-6i, -0x1.a819bd10dc88p-5 + -0x1.92d8815d112p-7i, -0x1.89a749d08f64p-5 + -0x1.e549683666p-8i, -0x1.6a51373390bp-5 + -0x1.906b427381p-9i, -0x1.4a6bf6813d1p-5 + 0x1.953e93033ep-11i, -0x1.2a46a0a91224p-5 + 0x1.0c8e703d4a4p-8i, -0x1.0a2ad7375eecp-5 + 0x1.c6dbeac3bp-8i, -0x1.d4b95bdd9248p-6 + 0x1.318433eba3cp-7i, -0x1.96353992506p-6 + 0x1.715165b1e28p-7i, -0x1.593af434c13p-6 + 0x1.a3a688ecb06p-7i, -0x1.1e30f9111e3p-6 + 0x1.c95c5f42bfp-7i, -0x1.cae5121853ap-7 + 0x1.e351b0bc18ap-7i, -0x1.5e9fb3cf75ap-7 + 0x1.f2699c3594cp-7i, -0x1.f0391465038p-8 + 0x1.f789f6efc62p-7i, -0x1.2fa20da6ep-8 + 0x1.f399bcb3e3ep-7i, -0x1.f0ef48dbap-10 + 0x1.e77f91e80eap-7i, 0x1.4b01c4687ep-11 + 0x1.d42058ca8f8p-7i, 0x1.817ea5be88p-9 + 0x1.ba5ddae971p-7i, 0x1.4993c947ep-8 + 0x1.9b1587c9548p-7i, 0x1.c3b33986aep-8 + 0x1.771f498bbecp-7i, 0x1.178a5caea14p-7 + 0x1.4f4c70426d6p-7i, 0x1.45e7717627cp-7 + 0x1.2466b47addcp-7i, 0x1.6d0ae52c432p-7 + 0x1.ee5ea2d6148p-8i, 0x1.8d1c70342e8p-7 + 0x1.90bc6e0d7fcp-8i, 0x1.a65062e264cp-7 + 0x1.3142a847e5p-8i, 0x1.b8e6893da28p-7 + 0x1.a26fe2d0a58p-9i, 0x1.c5290aa7e18p-7 + 0x1.c7327fce5fp-10i, 0x1.cb6b472cc68p-7 + 0x1.419e503706p-12i, 0x1.cc08b4273d8p-7 + -0x1.1b7b839d8cp-10i, 0x1.c763b9e291cp-7 + -0x1.3c694a2b43p-9i, 0x1.bde493cc12cp-7 + -0x1.e22dfdc72dcp-9i, 0x1.aff834b9ac8p-7 + -0x1.3ece506dfdp-8i, 0x1.9e0f30b7b1cp-7 + -0x1.86bbc31a646p-8i, 0x1.889cadbc95p-7 + -0x1.c8591ba015cp-8i, 0x1.70155c8ca68p-7 + -0x1.019c33afa12p-7i, 0x1.54ee7b0229cp-7 + -0x1.1b81c27ceb2p-7i, 0x1.379ce0d778p-7 + -0x1.31bdc521947p-7i, 0x1.189417f944cp-7 + -0x1.443c04dd1e1p-7i, 0x1.f08b029e2ep-8 + -0x1.52f31cee63fp-7i, 0x1.ae3f0d9e64p-8 + -0x1.5de4005c35ap-7i, 0x1.6b19b734358p-8 + -0x1.651973193e7p-7i, 0x1.27e79580ecp-8 + -0x1.68a777c74d9p-7i, 0x1.cad654f1aap-9 + -0x1.68aab363e11p-7i, 0x1.48b77e38ap-9 + -0x1.6547c82bf32p-7i, 0x1.95917a8d16p-10 + -0x1.5eaaa90732ap-7i, 0x1.491790a6c4p-11 + -0x1.5505e6cb499p-7i, -0x1.fb106d9e2p-13 + -0x1.4891f8a67ap-7i, -0x1.14321e39f2p-10 + -0x1.398c80fdcc6p-7i, -0x1.d81aac06f6p-10 + -0x1.28379006644p-7i, -0x1.44c7d694fcp-9 + -0x1.14d8e55b36p-7i, -0x1.93a1e9279fp-9 + -0x1.ff7263912bp-8i, -0x1.d814885c02p-9 + -0x1.d246b4fb8f4p-8i, -0x1.08dc2c7d85p-8 + -0x1.a2c77d942c4p-8i, -0x1.2022bb4a73p-8 + -0x1.718f02fdfbcp-8i, -0x1.31c98385218p-8 + -0x1.3f37ae07bcp-8i, -0x1.3dcb4bb6e7p-8 + -0x1.0c5ab232968p-8i, -0x1.4431a2760e8p-8 + -0x1.b31d84ebb1p-9i, -0x1.45145a518bcp-8 + -0x1.4ecda9f9fbp-9i, -0x1.4098eec398cp-8 + -0x1.d9c3dded6ap-10i, -0x1.36f1d3d2724p-8 + -0x1.1cd4d634eep-10i, -0x1.285db21b68cp-8 + -0x1.a34927984p-12i, -0x1.15269116b9p-8 + 0x1.017e87ea8p-12i, -0x1.fb41e2e3dcp-9 + 0x1.ba0041db18p-11i, -0x1.c455b2d58dp-9 + 0x1.6b74d5925ap-10i, -0x1.8655aa3c05p-9 + 0x1.ea4c8b8d3ap-10i, -0x1.421dd987cep-9 + 0x1.2c20c939adp-9i, -0x1.f12e4b5f1ap-10 + 0x1.5a1ddc0c47p-9i, -0x1.556a30a1adp-10 + 0x1.7ea8f09b0ep-9i, -0x1.65ce9e687dp-11 + 0x1.99659ffe69p-9i, -0x1.753e7ad0bp-15 + 0x1.aa10145ed3p-9i, 0x1.3c835bd60ep-11 + 0x1.b07d42b488p-9i, 0x1.48cbee91208p-10 + 0x1.ac9af49b48p-9i, 0x1.f1e61767d44p-10 + 0x1.9e6fa328f4p-9i, 0x1.4bc35902c1ep-9 + 0x1.861a23f961p-9i, 0x1.9bd6ddd6a04p-9 + 0x1.63d129e217p-9i, 0x1.e8345b02834p-9 + 0x1.37e29afdc4p-9i, 0x1.17f5a3b9a79p-8 + 0x1.02b2bdf8e2p-9i, 0x1.390ad65bd83p-8 + 0x1.8976817d5p-10i, 0x1.56ecf4b5d16p-8 + 0x1.fa286b5cap-11i, 0x1.71362b807eap-8 + 0x1.86026fa758p-12i, 0x1.8788684b2c8p-8 + -0x1.1f7bc53408p-12i, 0x1.998e0c63e14p-8 + -0x1.fb096c8c7p-11i, 0x1.a6fa8e50848p-8 + -0x1.bdcdbef8a4p-10i, 0x1.af8b090ba3ap-8 + -0x1.437e9a5546p-9i, 0x1.b306b857658p-8 + -0x1.ab9fed1a5ep-9i, 0x1.b13f619923p-8 + -0x1.0b2bea20ba8p-8i, 0x1.aa11a8d0b1cp-8 + -0x1.4155e136e6p-8i, 0x1.9d65515ec68p-8 + -0x1.77cdc29a7ap-8i, 0x1.8b2d6a6e6bp-8 + -0x1.ae11981fc8p-8i, 0x1.736866f5968p-8 + -0x1.e39e85c14p-8i, 0x1.56202160ed4p-8 + -0x1.0bf8e05501cp-7i, 0x1.3369cb1dbe4p-8 + -0x1.2544c24bp-7i, 0x1.0b65c854004p-8 + -0x1.3d7302fb7ap-7i, 0x1.bc7ef07f29p-9 + -0x1.54452fabfacp-7i, 0x1.5859d56964p-9 + -0x1.697ebc42a12p-7i, 0x1.d5ba0ddb45p-10 + -0x1.7ce57306308p-7i, 0x1.d274611b7ep-11 + -0x1.8e41dfdc5a4p-7i, -0x1.37d29d4bep-14 + -0x1.9d5fb6613c4p-7i, -0x1.1ef9da607cp-10 + -0x1.aa0e323cdeep-7i, -0x1.1bd4650427p-9 + -0x1.b420712607p-7i, -0x1.adec4d930bp-9 + -0x1.bb6dc60cec4p-7i, -0x1.226f211464p-8 + -0x1.bfd204f43d4p-7i, -0x1.6fdbd5e532p-8 + -0x1.c12dc70b5fp-7i, -0x1.bebdac355c8p-8 + -0x1.bf66a6a9a4cp-7i, -0x1.0748c8c354cp-7 + -0x1.ba6772d7aafp-7i, -0x1.2f686a85ecp-7 + -0x1.b2205a21932p-7i, -0x1.57790440498p-7 + -0x1.a6870c7add6p-7i, -0x1.7f34f2a1c4p-7 + -0x1.9796d40a9d9p-7i, -0x1.a6561a20cd8p-7 + -0x1.8550a4c50dfp-7i, -0x1.cc965ba0114p-7 + -0x1.6fbb22c5a8f8p-7i, -0x1.f1b0090a4bp-7 + -0x1.56e29f6b1c6p-7i, -0x1.0aaf2c96cf2p-6 + -0x1.3ad90d446b48p-7i, -0x1.1baeed10c14p-6 + -0x1.1bb5eaec616p-7i, -0x1.2bb670c2f94p-6 + -0x1.f32c49fbf84p-8i, -0x1.3aa5fcf7714p-6 + -0x1.a937deb32cep-8i, -0x1.485f266a3f6p-6 + -0x1.59dd2bfec1p-8i, -0x1.54c5043373ap-6 + -0x1.05748b9fdabp-8i, -0x1.5fbc6055ab8p-6 + -0x1.58bf363d2a4p-9i, -0x1.692be5a84ccp-6 + -0x1.3c22bc919fp-10i, -0x1.70fc4ad8bb6p-6 + 0x1.21dc6f15ecp-12i, -0x1.77187a4295ep-6 + 0x1.da67813eb28p-10i, -0x1.7b6db66419bp-6 + 0x1.bbd5e766758p-9i, -0x1.7debbab9254p-6 + 0x1.478a531c26p-8i, -0x1.7e84d8ccf78p-6 + 0x1.b2ec1307baap-8i, -0x1.7d2e1158ap-6 + 0x1.0fbfecfddb2p-7i, -0x1.79df294a2cdp-6 + 0x1.4658db91b7p-7i, -0x1.7492ba96d32p-6 + 0x1.7cf57f5b0b4p-7i, -0x1.6d4640c0bap-6 + 0x1.b349956b2cep-7i, -0x1.63fa20ff72cp-6 + 0x1.e9085fcb0a4p-7i, -0x1.58b1ae00c0cp-6 + 0x1.0ef28c31733p-6i, -0x1.4b73273dcd8p-6 + 0x1.28c9b20d89p-6i, -0x1.3c47b3e7782p-6 + 0x1.41e3e2c488p-6i, -0x1.2b3b5972e5cp-6 + 0x1.5a1c073eea2p-6i, -0x1.185cedd5ddap-6 + 0x1.714de7e607p-6i, -0x1.03be0588c8c8p-6 + 0x1.8756635045ap-6i, -0x1.dae5bad4931p-7 + 0x1.9c13a36578ap-6i, -0x1.ab24814caaap-7 + 0x1.af6550acedep-6i, -0x1.786ad590ecep-7 + 0x1.c12cc379b5p-6i, -0x1.42efcc4cad1p-7 + 0x1.d14d32ace51p-6i, -0x1.0aeecda9d8dp-7 + 0x1.dfabdfc96c4p-6i, -0x1.a14e897e405p-8 + 0x1.ec30401901cp-6i, -0x1.28b891f33a2p-8 + 0x1.f6c422a643bp-6i, -0x1.595108089ap-9 + 0x1.ff53d2d4c64p-6i, -0x1.6d886a637c8p-11 + 0x1.02e71bb275ap-5i, 0x1.4e584565c64p-10 + 0x1.051276db4d28p-5i, 0x1.ad21ad19dd9p-9 + 0x1.06263091c43p-5i, 0x1.5a9fd99f3bfp-8 + 0x1.061def27b71p-5i, 0x1.df212909891p-8 + 0x1.04f6d12941dp-5i, 0x1.31b8966f1818p-7 + 0x1.02af72d4487p-5i, 0x1.7375c5f599fp-7 + 0x1.fe8fe2d51fp-6i, 0x1.b47609207cfp-7 + 0x1.f583d8b37c4p-6i, 0x1.f467cbe7701p-7 + 0x1.ea41086f94bp-6i, 0x1.197d3971ddd8p-6 + 0x1.dcd0af2adbp-6i, 0x1.37ef6660216p-6 + 0x1.cd3efb56c15p-6i, 0x1.5563c0e1ba58p-6 + 0x1.bb9afdd45f5p-6i, 0x1.71b4c06916e8p-6 + 0x1.a7f696ef04dp-6i, 0x1.8cbe34a72838p-6 + 0x1.92665f4d582p-6i, 0x1.a65d789c4c48p-6 + 0x1.7b018cfa6cep-6i, 0x1.be71a3814ebp-6 + 0x1.61e1d4add4cp-6i, 0x1.d4dbb7422ecp-6 + 0x1.4723477f0248p-6i, 0x1.e97ecc47db1p-6 + 0x1.2ae42d3571f8p-6i, 0x1.fc403a52021p-6 + 0x1.0d44db6be11p-6i, 0x1.0683df132ae8p-5 + 0x1.dccf1382b3dp-7i, 0x1.0ddfcdef99b8p-5 + 0x1.9ce046ae209p-7i, 0x1.142a5ed440b8p-5 + 0x1.5b082bbbbd68p-7i, 0x1.195b675f5aep-5 + 0x1.17943cf3449p-7i, 0x1.1d6c2944ab58p-5 + 0x1.a5a8530f5p-8i, 0x1.20575bd7f22p-5 + 0x1.1a32d0e559a8p-8i, 0x1.22193386ea5p-5 + 0x1.1adb230dcf48p-9i ) assertThat(stats:::fft(z=c(0, 0.0903382508251652, -0.692612979277417, 2.22118689394031, -3.63146376683691, 2.37397647099501, 2.17310165159549, -6.40442160751507, 6.55905914403848, -3.49594360553802, 0.842263577161454, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)) , identicalTo( expected, tol = 1e-6 ) )
checkTask = function(x, cl = "Task", allow.desc = FALSE, task.type = NULL, binary = FALSE, .var.name = "task") { if (allow.desc) { assert(.var.name = .var.name, checkClass(x, classes = cl), checkClass(x, "TaskDesc") ) } else { assertClass(x, classes = cl, .var.name = .var.name) } td = getTaskDesc(x) if (!is.null(task.type) && td$type %nin% task.type) { stopf("Task must be one of '%s', but is: '%s'", collapse(task.type), td$type) } if (binary && length(td$class.levels) != 2L) { stopf("Task '%s' must be binary classification!", td$id) } }
"print.gvlma" <- function(x, ...) { NextMethod("print", x,...) display.gvlmatests(x) }
require(quantstrat) source(paste0(path.package("quantstrat"),"/demo/luxor.include.R")) strategy(strategy.st, store=TRUE) add.indicator(strategy.st, name = "SMA", arguments = list( x = quote(Cl(mktdata)[,1]), n = .fast ), label="nFast" ) add.indicator(strategy.st, name="SMA", arguments = list( x = quote(Cl(mktdata)[,1]), n = .slow ), label="nSlow" ) add.signal(strategy.st, name='sigCrossover', arguments = list( columns=c("nFast","nSlow"), relationship="gte" ), label='long' ) add.signal(strategy.st, name='sigCrossover', arguments = list( columns=c("nFast","nSlow"), relationship="lt" ), label='short' ) add.rule(strategy.st, name = 'ruleSignal', arguments=list(sigcol='long' , sigval=TRUE, replace=TRUE, orderside='short', ordertype='market', TxnFees=.txnfees, orderqty='all', orderset='ocoshort' ), type='exit', timespan = .timespan, label='Exit2LONG' ) add.rule(strategy.st, name = 'ruleSignal', arguments=list(sigcol='short', sigval=TRUE, replace=TRUE, orderside='long' , ordertype='market', TxnFees=.txnfees, orderqty='all', orderset='ocolong' ), type='exit', timespan = .timespan, label='Exit2SHORT' ) add.rule(strategy.st, name = 'ruleSignal', arguments=list(sigcol='long' , sigval=TRUE, replace=FALSE, orderside='long' , ordertype='stoplimit', prefer='High', threshold=.threshold, TxnFees=0, orderqty=+.orderqty, osFUN=osMaxPos, orderset='ocolong' ), type='enter', timespan = .timespan, label='EnterLONG' ) add.rule(strategy.st, name = 'ruleSignal', arguments=list(sigcol='short', sigval=TRUE, replace=FALSE, orderside='short', ordertype='stoplimit', prefer='Low', threshold=.threshold, TxnFees=0, orderqty=-.orderqty, osFUN=osMaxPos, orderset='ocoshort' ), type='enter', timespan = .timespan, label='EnterSHORT' ) add.distribution(strategy.st, paramset.label = 'SMA', component.type = 'indicator', component.label = 'nFast', variable = list(n = .FastSMA), label = 'nFAST' ) add.distribution(strategy.st, paramset.label = 'SMA', component.type = 'indicator', component.label = 'nSlow', variable = list(n = .SlowSMA), label = 'nSLOW' ) add.distribution.constraint(strategy.st, paramset.label = 'SMA', distribution.label.1 = 'nFAST', distribution.label.2 = 'nSLOW', operator = '<', label = 'SMA' ) add.rule(strategy.st, name = 'ruleSignal', arguments=list(sigcol='long' , sigval=TRUE, replace=FALSE, orderside='long', ordertype='stoplimit', tmult=TRUE, threshold=quote(.stoploss), TxnFees=.txnfees, orderqty='all', orderset='ocolong' ), type='chain', parent='EnterLONG', label='StopLossLONG', enabled=FALSE ) add.rule(strategy.st, name = 'ruleSignal', arguments=list(sigcol='short' , sigval=TRUE, replace=FALSE, orderside='short', ordertype='stoplimit', tmult=TRUE, threshold=quote(.stoploss), TxnFees=.txnfees, orderqty='all', orderset='ocoshort' ), type='chain', parent='EnterSHORT', label='StopLossSHORT', enabled=FALSE ) add.distribution(strategy.st, paramset.label = 'StopLoss', component.type = 'chain', component.label = 'StopLossLONG', variable = list(threshold = .StopLoss), label = 'StopLossLONG' ) add.distribution(strategy.st, paramset.label = 'StopLoss', component.type = 'chain', component.label = 'StopLossSHORT', variable = list(threshold = .StopLoss), label = 'StopLossSHORT' ) add.distribution.constraint(strategy.st, paramset.label = 'StopLoss', distribution.label.1 = 'StopLossLONG', distribution.label.2 = 'StopLossSHORT', operator = '==', label = 'StopLoss' ) add.rule(strategy.st, name = 'ruleSignal', arguments=list(sigcol='long' , sigval=TRUE, replace=FALSE, orderside='long', ordertype='stoptrailing', tmult=TRUE, threshold=quote(.stoptrailing), TxnFees=.txnfees, orderqty='all', orderset='ocolong' ), type='chain', parent='EnterLONG', label='StopTrailingLONG', enabled=FALSE ) add.rule(strategy.st, name = 'ruleSignal', arguments=list(sigcol='short' , sigval=TRUE, replace=FALSE, orderside='short', ordertype='stoptrailing', tmult=TRUE, threshold=quote(.stoptrailing), TxnFees=.txnfees, orderqty='all', orderset='ocoshort' ), type='chain', parent='EnterSHORT', label='StopTrailingSHORT', enabled=FALSE ) add.distribution(strategy.st, paramset.label = 'StopTrailing', component.type = 'chain', component.label = 'StopTrailingLONG', variable = list(threshold = .StopTrailing), label = 'StopTrailingLONG' ) add.distribution(strategy.st, paramset.label = 'StopTrailing', component.type = 'chain', component.label = 'StopTrailingSHORT', variable = list(threshold = .StopTrailing), label = 'StopTrailingSHORT' ) add.distribution.constraint(strategy.st, paramset.label = 'StopTrailing', distribution.label.1 = 'StopTrailingLONG', distribution.label.2 = 'StopTrailingSHORT', operator = '==', label = 'StopTrailing' ) add.rule(strategy.st, name = 'ruleSignal', arguments=list(sigcol='long' , sigval=TRUE, replace=FALSE, orderside='long', ordertype='limit', tmult=TRUE, threshold=quote(.takeprofit), TxnFees=.txnfees, orderqty='all', orderset='ocolong' ), type='chain', parent='EnterLONG', label='TakeProfitLONG', enabled=FALSE ) add.rule(strategy.st, name = 'ruleSignal', arguments=list(sigcol='short' , sigval=TRUE, replace=FALSE, orderside='short', ordertype='limit', tmult=TRUE, threshold=quote(.takeprofit), TxnFees=.txnfees, orderqty='all', orderset='ocoshort' ), type='chain', parent='EnterSHORT', label='TakeProfitSHORT', enabled=FALSE ) add.distribution(strategy.st, paramset.label = 'TakeProfit', component.type = 'chain', component.label = 'TakeProfitLONG', variable = list(threshold = .TakeProfit), label = 'TakeProfitLONG' ) add.distribution(strategy.st, paramset.label = 'TakeProfit', component.type = 'chain', component.label = 'TakeProfitSHORT', variable = list(threshold = .TakeProfit), label = 'TakeProfitSHORT' ) add.distribution.constraint(strategy.st, paramset.label = 'TakeProfit', distribution.label.1 = 'TakeProfitLONG', distribution.label.2 = 'TakeProfitSHORT', operator = '==', label = 'TakeProfit' ) add.distribution(strategy.st, paramset.label = 'WFA', component.type = 'indicator', component.label = 'nFast', variable = list(n = .FastWFA), label = 'nFAST' ) add.distribution(strategy.st, paramset.label = 'WFA', component.type = 'indicator', component.label = 'nSlow', variable = list(n = .SlowWFA), label = 'nSLOW' ) add.distribution.constraint(strategy.st, paramset.label = 'WFA', distribution.label.1 = 'nFAST', distribution.label.2 = 'nSLOW', operator = '<', label = 'WFA' ) save.strategy(strategy.st)
get_index_quo <- function(.tbl_time) { if(!inherits(.tbl_time, "tbl_time")) glue_stop("Object is not of class `tbl_time`.") index_quo <- attr(.tbl_time, "index_quo") if(is.null(index_quo)) { glue_stop("Attribute, `index_quo`, has been lost, ", "but class is still `tbl_time`. This should not happen unless ", "something has gone horribly wrong.") } index_quo } get_index_char <- function(.tbl_time) { rlang::quo_name(get_index_quo(.tbl_time)) } get_index_col <- function(.tbl_time) { .tbl_time[[get_index_char(.tbl_time)]] } get_index_time_zone <- function(.tbl_time) { if(!inherits(.tbl_time, "tbl_time")) glue_stop("Object is not of class `tbl_time`.") index_time_zone <- attr(.tbl_time, "index_time_zone") if(is.null(index_time_zone)) { glue_stop("Attribute, `index_time_zone`, has been lost, ", "but class is still `tbl_time`. This should not happen unless ", "something has gone horribly wrong.") } index_time_zone } get_index_class <- function(.tbl_time) { class(get_index_col(.tbl_time))[[1]] } get_.index_col <- function(.tbl_time) { to_posixct_numeric(get_index_col(.tbl_time)) } get_index_dispatcher <- function(.tbl_time) { make_dummy_dispatch_obj(get_index_class(.tbl_time)) } get_default_time_zone <- function() { "UTC" } get_index_col_time_zone <- function(index) { if(inherits(index, "POSIXct")) { (attr(index, "tzone") %||% Sys.timezone()) %||% get_default_time_zone() } else { get_default_time_zone() } } get_index_col_class <- function(index) { class(index)[[1]] }
tar_test("fst_tbl format", { skip_if_not_installed("fst") skip_if_not_installed("tibble") envir <- new.env(parent = baseenv()) envir$f <- function() { tibble::tibble(x = 1, y = 2) } x <- target_init( name = "abc", expr = quote(f()), format = "fst_tbl" ) store_update_stage_early(x$store, "abc", path_store_default()) builder_update_build(x, envir = envir) builder_update_paths(x, path_store_default()) builder_update_object(x) exp <- envir$f() out <- tibble::as_tibble(fst::read_fst(x$store$file$path)) expect_equal(out, exp) expect_equal(target_read_value(x)$object, exp) expect_silent(target_validate(x)) }) tar_test("fst_tbl coercion", { skip_if_not_installed("fst") skip_if_not_installed("tibble") envir <- new.env(parent = baseenv()) envir$f <- function() { data.frame(x = 1, y = 2) } x <- target_init( name = "abc", expr = quote(f()), format = "fst_tbl" ) store_update_stage_early(x$store, "abc", path_store_default()) builder_update_build(x, envir) expect_true(inherits(x$value$object, "tbl_df")) builder_update_paths(x, path_store_default()) builder_update_object(x) expect_true(inherits(target_read_value(x)$object, "tbl_df")) }) tar_test("bad compression level throws error (unstructured resources)", { skip_if_not_installed("fst") skip_if_not_installed("tibble") tar_script({ list( tar_target( abc, data.frame(x = 1, y = 2), format = "fst_tbl", resources = list(compress = "bad") ) ) }) expect_warning( tar_target( abc, data.frame(x = 1, y = 2), format = "fst_tbl", resources = list(compress = "bad") ), class = "tar_condition_deprecate" ) suppressWarnings( expect_error( tar_make(callr_function = NULL), class = "tar_condition_run" ) ) }) tar_test("fst_tbl packages", { skip_if_not_installed("fst") skip_if_not_installed("tibble") x <- tar_target(x, 1, format = "fst_tbl") out <- sort(store_get_packages(x$store)) expect_equal(out, sort(c("fst", "tibble"))) }) tar_test("does not inherit from tar_external", { skip_if_not_installed("fst") skip_if_not_installed("tibble") store <- tar_target(x, "x_value", format = "fst_tbl")$store expect_false(inherits(store, "tar_external")) }) tar_test("store_row_path()", { skip_if_not_installed("fst") skip_if_not_installed("tibble") store <- tar_target(x, "x_value", format = "fst_tbl")$store store$file$path <- "path" expect_equal(store_row_path(store), NA_character_) }) tar_test("store_path_from_record()", { skip_if_not_installed("fst") skip_if_not_installed("tibble") store <- tar_target(x, "x_value", format = "fst_tbl")$store record <- record_init(name = "x", path = "path", format = "fst_tbl") expect_equal( store_path_from_record(store, record, path_store_default()), path_objects(path_store_default(), "x") ) })
NULL ml_is_set <- function(x, param, ...) { UseMethod("ml_is_set") } ml_is_set.ml_pipeline_stage <- function(x, param, ...) { jobj <- spark_jobj(x) param_jobj <- jobj %>% invoke(ml_map_param_names(param, direction = "rs")) jobj %>% invoke("isSet", param_jobj) } ml_is_set.spark_jobj <- function(x, param, ...) { param_jobj <- x %>% invoke(ml_map_param_names(param, direction = "rs")) x %>% invoke("isSet", param_jobj) } ml_param_map <- function(x, ...) { x$param_map %||% stop("'x' does not have a param map") } ml_param <- function(x, param, allow_null = FALSE, ...) { ml_param_map(x)[[param]] %||% (if (allow_null) NULL else stop("param ", param, " not found")) } ml_params <- function(x, params = NULL, allow_null = FALSE, ...) { params <- params %||% names(x$param_map) params %>% lapply(function(param) ml_param(x, param, allow_null)) %>% rlang::set_names(unlist(params)) } ml_set_param <- function(x, param, value, ...) { setter <- param %>% ml_map_param_names(direction = "rs") %>% { paste0( "set", toupper(substr(., 1, 1)), substr(., 2, nchar(.)) ) } spark_jobj(x) %>% invoke(setter, value) %>% ml_call_constructor() } ml_get_param_map <- function(jobj) { sc <- spark_connection(jobj) object <- if (spark_version(sc) < "2.0.0") { "sparklyr.MLUtils" } else { "sparklyr.MLUtils2" } invoke_static( sc, object, "getParamMap", jobj ) %>% ml_map_param_list_names() } ml_map_param_list_names <- function(x, direction = c("sr", "rs"), ...) { direction <- rlang::arg_match(direction) mapping <- if (identical(direction, "sr")) { .globals$param_mapping_s_to_r } else { .globals$param_mapping_r_to_s } rlang::set_names( x, unname( sapply( names(x), function(nm) rlang::env_get(mapping, nm, default = NULL, inherit = TRUE) %||% nm ) ) ) } ml_map_param_names <- function(x, direction = c("sr", "rs"), ...) { direction <- rlang::arg_match(direction) mapping <- if (identical(direction, "sr")) { .globals$param_mapping_s_to_r } else { .globals$param_mapping_r_to_s } unname( sapply( x, function(nm) rlang::env_get(mapping, nm, default = NULL, inherit = TRUE) %||% nm ) ) }
OPC3d <- function (OPC_Output_Object, binColors = hsv(h=(seq(10, 290, 40)/360), s=0.9, v=0.85), patchOutline = FALSE, outlineColor = "black", maskDiscard = FALSE, legend = TRUE, legendScale= 1, legendTextCol = "black", legendLineCol = "black", leftOffset = 1, fieldofview = 0, fileName = NA, binary = FALSE) { plyFile <- OPC_Output_Object$plyFile bins <- plyFile$Directional_Bins BinCount <- as.numeric(length(unique(plyFile$Directional_Bins))) BlackPatch <- NULL for (i in 1:BinCount) { Bin <- which(bins == i) bins[Bin] <- binColors[i] if (maskDiscard == TRUE) { if(OPC_Output_Object$Parameters$Minimum_Area==0){ PatchList <- unlist(OPC_Output_Object$Patches[i], recursive = F) SmallPatch <- names(which(lapply(PatchList, length) < OPC_Output_Object$Parameters$Minimum_Faces)) Discarded <- as.numeric(unlist(PatchList[SmallPatch])) BlackPatch <- c(BlackPatch, Discarded) } if(OPC_Output_Object$Parameters$Minimum_Area>0){ AreaList <- as.vector(OPC_Output_Object$Patch_Details[[i]][,2]) MinAreaPercentage <- sum(OPC_Output_Object$plyFile$Face_Areas)* OPC_Output_Object$Parameters$Minimum_Area SmallPatchList <- which(AreaList < MinAreaPercentage) Discarded <- as.numeric(unlist(OPC_Output_Object$Patches[[i]][SmallPatchList])) } BlackPatch <- c(BlackPatch, Discarded) } } colormatrix <- bins if (maskDiscard == TRUE) { colormatrix[BlackPatch] <- " } open3d() par3d(windowRect = c(100, 100, 900, 900)) if (patchOutline == TRUE) { for (i in 1:BinCount) { Orientation <- OPC_Output_Object$Patches[i] PatchCount <- as.numeric(length(Orientation[[1]])) for (j in 1:PatchCount) { Patch <- Orientation[[1]][j] Patch <- as.numeric(Patch[[1]]) Faces <- t(plyFile$it[, Patch]) fnum <- length(Faces[, 1]) vorder <- vector("list", fnum) for (i in 1:fnum) {vorder[[i]] <- unlist(sort(Faces[i, ]))} edges <- vector("list", fnum) for (i in 1:fnum) { Ordered <- vorder[[i]] G1 <- Ordered[1] G2 <- Ordered[2] G3 <- Ordered[3] ED1 <- paste(G1, G2, sep = "_") ED2 <- paste(G1, G3, sep = "_") ED3 <- paste(G2, G3, sep = "_") edges[[i]] <- paste(ED1, ED2, ED3, sep = ",") } for (i in 1:fnum) {edges[[i]] <- unlist(strsplit(edges[[i]], ","))} string <- unlist(edges) edgeframe <- data.frame(names = string) UniqueEdge <- aggregate(edgeframe, list(edgeframe$names), FUN = length) PatchEdge <- subset(UniqueEdge, UniqueEdge$names == 1) EdgeVerts <- as.numeric(unlist(strsplit(as.character(unlist(PatchEdge$Group.1)), "_"))) EdgeCoords <- plyFile$vb[1:3, EdgeVerts] segments3d(t(EdgeCoords), color = outlineColor, lwd = 1.25, shininess = 120) } } } shade3d(plyFile, meshColor='faces', color = colormatrix, shininess = 100) if (legend == TRUE) { if(legendScale <= 0){stop("legendScale must be a positive number")} if(legendScale > 1.05){ warning("legendScale greater than 1.05 will restrict legend visibility") } Fills <- rep(" for (i in 1:BinCount) { Fills[i] <- binColors[i] } molaR_bgplot(OPC_Legend(binColors=Fills, binNumber = BinCount, maskDiscard = maskDiscard, size = legendScale, textCol=legendTextCol, lineCol=legendLineCol)) } if (leftOffset > 1) {warning("Left offset greater than 1 may restrict mesh visibility")} if (leftOffset < -1) {warning("Left offset less than -1 may restrict mesh visibility")} rgl.viewpoint(fov = fieldofview) ZView <- par3d("observer")[3] XView <- leftOffset * ZView *0.055 observer3d(XView, 0, ZView) if(!is.na(fileName)){ if(!is.character(fileName)){stop("Enter a name for fileName")} if(substr(fileName, nchar(fileName)-3, nchar(fileName))!=".ply"){ fileName <- paste(fileName, ".ply", sep="") } OutPly <- plyFile NewVertList <- plyFile$vb[,plyFile$it[1:length(plyFile$it)]] NewNormList <- plyFile$normals[,plyFile$it[1:length(plyFile$it)]] NewFaceList <- matrix(1:ncol(NewVertList), nrow=3) colormatrix <- matrix(rep(colormatrix, 3), nrow = 3, byrow = TRUE) NewColorList <- colormatrix[1:length(colormatrix)] OutPly$vb <- NewVertList OutPly$it <- NewFaceList OutPly$normals <- NewNormList OutPly$material$color <- NewColorList vcgPlyWrite(mesh=OutPly, filename = fileName, binary = binary) if(binary==FALSE){ FileText <- readLines(con=paste(getwd(), "/", fileName, sep=""), warn = F) NewCom <- paste("comment OPC plot generated in molaR", packageVersion("molaR"), "for", R.version.string) NewCom <- unlist(strsplit(NewCom, split='\n')) NewOut <- c(FileText[1:3], NewCom, FileText[(4):length(FileText)]) writeLines(NewOut, con=paste(getwd(), "/", fileName, sep="")) } } }