code
stringlengths 1
13.8M
|
---|
chebyshev.t.quadrature <- function( functn, rule, lower=-1, upper=1, weighted=TRUE, ... )
{
if ( !is.function( functn ) )
stop( "functn argument is not an R function" )
if ( !is.data.frame( rule ) )
stop( "rule argument is not a data frame" )
if ( is.infinite( lower ) )
stop( "lower bound is infinite" )
if ( is.infinite( upper ) )
stop( "lower bound is infinite" )
if ( weighted ) {
ff <-
if ( length( list( ... ) ) && length( formals( functn ) ) > 1 )
function( x ) functn( x, ... )
else
functn
}
else {
ff <-
if ( length( list( ... ) ) && length( formals( functn ) ) > 1 )
function( x ) { functn( x, ... ) / chebyshev.t.weight( x ) }
else
function( x ) { functn( x ) / chebyshev.t.weight( x ) }
}
lambda <- ( upper - lower ) / ( 2 )
mu <- ( lower + upper ) / ( 2 )
x <- rule$x
w <- rule$w
y <- lambda * x + mu
z <- ff(y)
return( lambda * sum( w * z ) )
}
|
CDaR<-function (R, weights = NULL, geometric = TRUE, invert = TRUE, p = 0.95, ...)
{
if (is.vector(R) || ncol(R) == 1) {
R = na.omit(R)
nr = nrow(R)
if((p*nr) %% 1 == 0){
drawdowns = -Drawdowns(R)
drawdowns = drawdowns[order(drawdowns),increasing = TRUE]
result = -(1/((1-p)*nr))*sum(drawdowns[((p)*nr):nr])
}
else{
f.obj = c(rep(0,nr),rep(((1/(1-p))*(1/nr)),nr),1)
f.con = cbind(-diag(nr),diag(nr),1)
f.dir = c(rep(">=",nr))
f.rhs = c(rep(0,nr))
ut = diag(nr)
ut[-1,-nr] = ut[-1,-nr] - diag(nr - 1)
f.con = rbind(f.con,cbind(ut,matrix(0,nr,nr),0))
f.dir = c(rep(">=",nr))
f.rhs = c(f.rhs,-R)
f.con = rbind(f.con,cbind(matrix(0,nr,nr),diag(nr),0))
f.dir = c(rep(">=",nr))
f.rhs = c(f.rhs,rep(0,nr))
f.con = rbind(f.con,cbind(diag(nr),matrix(0,nr,nr),0))
f.dir = c(rep(">=",nr))
f.rhs = c(f.rhs,rep(0,nr))
val = lp("min",f.obj,f.con,f.dir,f.rhs)
val_disp = lp("min",f.obj,f.con,f.dir,f.rhs,compute.sens = TRUE )
result = -val$objval
}
if (invert)
result <- -result
return(result)
}
else {
R = checkData(R, method = "matrix")
if (is.null(weights)) {
result = matrix(nrow = 1, ncol = ncol(R))
for (i in 1:ncol(R)) {
result[i] <- CDaR(R[, i, drop = FALSE], p = p,
geometric = geometric, invert = invert, ... = ...)
}
dim(result) = c(1, NCOL(R))
colnames(result) = colnames(R)
rownames(result) = paste("Conditional Drawdown ", round(p,3)*100, "%", sep = "")
}
else {
portret <- Return.portfolio(R, weights = weights,
geometric = geometric)
result <- CDaR(portret, p = p, geometric = geometric,
invert = invert, ... = ...)
}
return(result)
}
}
|
melt_dataframe <- function(data, id_ind, measure_ind, variable_name, value_name, attrTemplate, factorsAsStrings, valueAsFactor, variableAsFactor) {
.Call(`_tidyr_melt_dataframe`, data, id_ind, measure_ind, variable_name, value_name, attrTemplate, factorsAsStrings, valueAsFactor, variableAsFactor)
}
simplifyPieces <- function(pieces, p, fillLeft) {
.Call(`_tidyr_simplifyPieces`, pieces, p, fillLeft)
}
|
setMethod("evalModel", signature(data = "dataSet"), function(data, folds = 5){
if (missing(folds))
folds <- 5
if (folds < 2)
stop("k-fold cross validation requires at least two folds to continue!")
x <- data@data
nr <- nrow(x)
fold_indices <- vector("list", folds)
fold_indices_x_user <- vector("list", nr)
rated_index_by_row <- lapply(1:nr, function(temp) which(!is.na(x[temp, ])))
for (i in 1:nr) {
where <- sample(1:folds)
userRatings <- sample(rated_index_by_row[[i]])
splitList <- suppressWarnings(split(userRatings, where))
fold_indices_x_user[[i]] <- splitList
splitList <- lapply(splitList, function(v) (v-1)*nr + i)
fold_indices <- lapply(1:folds, function(t) c(fold_indices[[t]], splitList[[t]]))
}
new("evalModel", data = data, folds = folds, fold_indices = fold_indices, fold_indices_x_user = fold_indices_x_user)
})
setMethod("evalModel", signature(data = "sparseDataSet"), function(data, folds = 5){
if (missing(folds))
folds <- 5
if (folds < 2)
stop("k-fold cross validation requires at least two folds to continue!")
fold_indices <- vector("list", folds)
fold_indices_x_user <- vector("list", nrow(data))
for(i in 1:nrow(data)){
userRatings <- data@userPointers[[i]]
userRatings <- sample(userRatings)
where <- sample(1:folds)
splitList <- suppressWarnings(split(userRatings, where))
fold_indices <- lapply(1:folds, function(t) c(fold_indices[[t]], splitList[[t]]))
fold_indices_x_user[[i]] <- splitList
}
new("evalModel",
data = data,
folds = folds,
fold_indices = fold_indices,
fold_indices_x_user = fold_indices_x_user)
})
removeScores <- function(x, tsI){
UseMethod("removeScores", x)
stop("Wrong input method!")
}
removeScores.dataSet <- function(x, tsI){
nusers <- nrow(x)
x@data[tsI] <- NA
x@data <- matrix(x@data, nusers)
x
}
removeScores.sparseDataSet <- function(x, tsI){
x@data <- x@data[-tsI, ]
x@userPointers <- getPointers(1:nrow(x), x@data$user)
x@itemPointers <- getPointers(1:ncol(x), x@data$item)
x
}
|
nardl<-function(formula,data,ic=c("aic","bic"),maxlag=4,graph=FALSE,case= 3){
f<-formula
a<-unlist(strsplit(as.character(f),"[|]"))
if(length(a)==4){
lhs <- a[[2]]
core <- a[[3]]
suffix <- a[[4]]
fm <-as.formula(paste(lhs,"~",core,"-1","|",suffix,"-1"))
mf <- match.call(expand.dots = FALSE)
m <- match(c("formula", "data", "subset", "na.action"), names(mf), 0)
mf <- mf[c(1, m)]
ffm <- Formula::Formula(fm)
mf[[1]] <- as.name("model.frame")
mf$formula <- ffm
mf <- model.frame(formula=ffm, data=data)
x <- model.matrix(ffm, data = mf, rhs = 1)
if(ncol(x)>=2) stop("nardl package accept only one decomposed variable")
h <- model.matrix(ffm, data = mf, rhs = 2)
y<-model.response(mf)
y<-as.matrix(y)
k<-ncol(x)+ncol(h)
colnames(y)<-lhs
dy<-diff(y)
colnames(dy)<-paste("D",lhs,sep=".")
dx<-diff(x)
colnames(dx)<-paste("D",colnames(x),sep=".")
dh<-diff(h)
colnames(dh)<-paste("D",colnames(h),sep=".")
n<-nrow(dx)
cl<-ncol(dx)
pos<-dx[,1:cl]>=0
dxp<-as.matrix(as.numeric(pos)*dx[,1:cl])
colnames(dxp)<-paste(colnames(dx),"p",sep="_")
dxn<-as.matrix((1-as.numeric(pos))*dx[,1:cl])
colnames(dxn)<-paste(colnames(dx),"n",sep="_")
xp<-apply(dxp,2,cumsum)
colnames(xp)<-paste(colnames(x),"p",sep="_")
xn<-apply(dxn,2,cumsum)
colnames(xn)<-paste(colnames(x),"n",sep="_")
l <- rep(list(0:maxlag),(k+2))
grid0=expand.grid(l)
b=which(grid0[1:nrow(grid0),]==0)
grid=grid0[-b,]
if(case==5){
trend<-seq_along(dy)
if(ncol(h)==2){
ss=lapply(1:nrow(grid),function(x) lm(dy~nlagm1(y,grid[x,1])[-1,]+xn+nlagm1(xn,grid[x,3])+
xp+nlagm1(xp,grid[x,2])
+slag(h,grid[x,4:ncol(grid)])[-1,]+trend))
if(ic=="aic"){
ak=sapply(1:nrow(grid),function(x) AICC(ss[[x]]))
}
if(ic=="bic"){
ak=sapply(1:nrow(grid),function(x) BICC(ss[[x]]))
}
cii=as.matrix(ak)
np=which.min(cii)
pg=grid[np,]
lay1=nlagm1(y,pg[,1])
lay=as.matrix(nlagm1(y,pg[,1])[-1,])
colnames(lay)=colnames(lay1)
lxp=nlagm(xp,pg[,2])
lxn=nlagm(xn,pg[,3])
lagh1=slag(h,pg[,4:ncol(pg)])[-1,,drop=FALSE]
rhnams<-c("Const",colnames(lay),colnames(lxp),colnames(lxn),colnames(lagh1),"trend")
fits= lm(dy~lay+lxp+lxn+lagh1+trend,na.action =na.exclude )
}else{
ss=lapply(1:nrow(grid),function(x) lm(dy~nlagm1(y,grid[x,1])[-1,]+xn+nlagm1(xn,grid[x,3])+
xp+nlagm1(xp,grid[x,2])+nlagm(h,grid[x,4])[-1,]+trend))
if(ic=="aic"){
ak=sapply(1:nrow(grid),function(x) AIC(ss[[x]]))
}
if(ic=="bic"){
ak=sapply(1:nrow(grid),function(x) BIC(ss[[x]]))
}
cii=as.matrix(ak)
np=which.min(cii)
pg=grid[np,]
lay1=nlagm1(y,pg[,1])
lay=as.matrix(nlagm1(y,pg[,1])[-1,])
colnames(lay)=colnames(lay1)
lxp=nlagm(xp,pg[,2])
lxn=nlagm(xn,pg[,3])
lagh1=as.matrix(nlagm(h,pg[,4])[-1,,drop=FALSE])
rhnams<-c("Const",colnames(lay),colnames(lxp),colnames(lxn),colnames(lagh1),"trend")
fits= lm(dy~lay+lxp+lxn+lagh1+trend,na.action =na.exclude )
}
}
if(case==3){
if(ncol(h)==2){
ss=lapply(1:nrow(grid),function(x) lm(dy~nlagm1(y,grid[x,1])[-1,]+xn+nlagm1(xn,grid[x,3])+
xp+nlagm1(xp,grid[x,2])
+slag(h,grid[x,4:ncol(grid)])[-1,]))
if(ic=="aic"){
ak=sapply(1:nrow(grid),function(x) AICC(ss[[x]]))
}
if(ic=="bic"){
ak=sapply(1:nrow(grid),function(x) BICC(ss[[x]]))
}
cii=as.matrix(ak)
np=which.min(cii)
pg=grid[np,]
lay1=nlagm1(y,pg[,1])
lay=as.matrix(nlagm1(y,pg[,1])[-1,])
colnames(lay)=colnames(lay1)
lxp=nlagm(xp,pg[,2])
lxn=nlagm(xn,pg[,3])
lagh1=slag(h,pg[,4:ncol(pg)])[-1,,drop=FALSE]
rhnams<-c("Const",colnames(lay),colnames(lxp),colnames(lxn),colnames(lagh1))
fits= lm(dy~lay+lxp+lxn+lagh1,na.action =na.exclude )
}
else{ ss=lapply(1:nrow(grid),function(x) lm(dy~nlagm1(y,grid[x,1])[-1,]+xn+nlagm1(xn,grid[x,3])+
xp+nlagm1(xp,grid[x,2])+nlagm(h,grid[x,4])[-1,]))
if(ic=="aic"){
ak=sapply(1:nrow(grid),function(x) AIC(ss[[x]]))
}
if(ic=="bic"){
ak=sapply(1:nrow(grid),function(x) BIC(ss[[x]]))
}
cii=as.matrix(ak)
np=which.min(cii)
pg=grid[np,]
lay1=nlagm1(y,pg[,1])
lay=as.matrix(nlagm1(y,pg[,1])[-1,])
colnames(lay)=colnames(lay1)
lxp=nlagm(xp,pg[,2])
lxn=nlagm(xn,pg[,3])
lagh1=as.matrix(nlagm(h,pg[,4])[-1,,drop=FALSE])
rhnams<-c("Const",colnames(lay),colnames(lxp),colnames(lxn),colnames(lagh1))
fits= lm(dy~lay+lxp+lxn+lagh1,na.action =na.exclude )
}
}
}else{
aa<-unlist(as.character(f))
lhs <- aa[[2]]
core <- aa[[3]]
fm <- paste(lhs,"~",core)
ffm<-as.formula(fm)
fffm<-update(ffm, ~ . -1)
mf <- model.frame(formula=fffm, data=data)
x <- model.matrix(attr(mf, "terms"), data=mf)
k<-ncol(x)
if(ncol(x)>=2) stop("nardl package accept only one decomposed variable")
y <- model.response(mf)
y<-as.matrix(y)
colnames(y)<-lhs
dy<-diff(y)
colnames(dy)<-paste("D",lhs,sep=".")
dx<-diff(x)
core=strsplit(a[[3]],"[+]")
core=unlist(core)
colnames(dx)<-paste("D",core,sep=".")
n<-nrow(dx)
cl<-ncol(dx)
pos<-dx[,1:cl]>=0
dxp<-as.matrix(as.numeric(pos)*dx[,1:cl])
colnames(dxp)<-paste(colnames(dx),"p",sep="_")
dxn<-as.matrix((1-as.numeric(pos))*dx[,1:cl])
colnames(dxn)<-paste(colnames(dx),"n",sep="_")
xp<-apply(dxp,2,cumsum)
colnames(xp)<-paste(colnames(x),"p",sep="_")
xn<-apply(dxn,2,cumsum)
colnames(xn)<-paste(colnames(x),"n",sep="_")
lagy<-lagm(as.matrix(y),1)
lxp<-lagm(as.matrix(xp),1)
lxn<-lagm(as.matrix(xn),1)
l <- rep(list(0:maxlag),(k+2))
grid0=expand.grid(l)
b=which(grid0[1:nrow(grid0),]==0)
grid=grid0[-b,]
if(case==5){
trend<-seq_along(dy)
ss=lapply(1:nrow(grid),function(x) lm(dy~nlagm1(y,grid[x,1])[-1,]+xn+nlagm1(xn,grid[x,3])+
xp+nlagm1(xp,grid[x,2])+trend))
if(ic=="aic"){
ak=sapply(1:nrow(grid),function(x) AICC(ss[[x]]))
}
if(ic=="bic"){
ak=sapply(1:nrow(grid),function(x) BICC(ss[[x]]))
}
cii=as.matrix(ak)
np=which.min(cii)
pg=grid[np,]
lay1=nlagm1(y,pg[,1])
lay=as.matrix(nlagm1(y,pg[,1])[-1,])
colnames(lay)=colnames(lay1)
lxp=nlagm(xp,pg[,2])
lxn=nlagm(xn,pg[,3])
rhnams<-c("Const",colnames(lay),colnames(lxp),colnames(lxn),"trend")
fits= lm(dy~lay+lxp+lxn+trend,na.action =na.exclude )
}
if(case==3){
ss=lapply(1:nrow(grid),function(x) lm(dy~nlagm1(y,grid[x,1])[-1,]+xn+nlagm1(xn,grid[x,2])+
xp+nlagm1(xp,grid[x,3])))
if(ic=="aic"){
ak=sapply(1:nrow(grid),function(x) AICC(ss[[x]]))
}
if(ic=="bic"){
ak=sapply(1:nrow(grid),function(x) BIC(ss[[x]]))
}
cii=as.matrix(ak)
np=which.min(cii)
pg=grid[np,]
lay1=nlagm1(y,pg[,1])
lay=as.matrix(nlagm1(y,pg[,1])[-1,])
colnames(lay)=colnames(lay1)
lxp=nlagm(xp,pg[,2])
lxn=nlagm(xn,pg[,3])
rhnams<-c("Const",colnames(lay),colnames(lxp),colnames(lxn))
fits= lm(dy~lay+lxp+lxn,na.action =na.exclude )
}
}
names(fits$coefficients)<-rhnams
sels=summary(fits)
errors=sels$residuals
nl=pg[[1]]
jbtest<-shapiro.test(errors)
lm2<-bp2(fits,nl,fill=0,type="F")
arch<-ArchTest(errors,nl)
coeff<-sels$coefficients
nlvars<-length(coeff[,1])
lvars<-coeff[3:nlvars,1]
seldata<-data.matrix(coeff)
coof<- -lvars/coeff[[2]]
cof<- matrix(coof, length(lvars),1)
vc<-vcov(fits)
vcc<-vc[2:nrow(vc),2:ncol(vc)]
nsel<-length(sels$coefficients[,1])
fb1<-lvars/coeff[[2]]^2
fb2<-(-1/coeff[[2]])*diag(nrow(as.matrix(fb1)))
fb<-cbind(as.matrix(fb1),fb2)
lrse<-sqrt(diag(fb%*%vcc%*%t(fb)))
lrse2=lrse
lrt<-coof/lrse2
lrpv<-2 * pnorm(-abs(lrt))
lres<-cbind(cof,lrse2,lrt,lrpv)
rownames(lres)<-names(lvars)
colnames(lres)<-c("Estimate", "Std. Error", "t value", "Pr(>|t|)" )
l<-c(paste(names(coeff[-1,1]),"=0"))
coin<-linearHypothesis(fits,l,test="F")
fstat<-coin$F[2]
tcoin=fits$coefficients[2]
rcap=matrix(c(0),1,2)
rcap[1,1]=1
rcap[1,2]=-1
rsml=matrix(c(0),1,1)
bp=paste(colnames(x),"p",sep="_")
bn=paste(colnames(x),"n",sep="_")
vcc1=vcc[c(bp,bn),c(bp,bn)]
lbetas=coof[c(bp,bn)]
wldq=wtest(rcap,lbetas,vcc1,rsml)
sbeta=coeff[c(bp,bn),1]
wldsr=wtest(rcap,sbeta,vcc1,rsml)
Nobs=length(fits$residuals)
rece<-strucchange::recresid(fits)
if(graph==TRUE){
if(length(rece)<=1) stop("length of recursive residuals is less then 1! ")
bbst<-sels$coefficients[,1]
k<-length(bbst[-1])
n<-length(errors)
cusum(rece,k,n)
cumsq(rece,k,n)
}
out<-list(fstat=fstat,tcoin=tcoin, fits=fits, sels=sels, cof=cof,coof=coof,
k=k,n=n,case=case,lvars=lvars,selresidu=errors,
jbtest=jbtest,arch=arch,
nl=nl,rece=rece,Nobs=Nobs,vcc=vcc,fb=fb,
fb1=fb1,fb2=fb2,lrse=lrse,lrt=lrt,lrpv=lrpv,
lres=lres,lm2=lm2,wldsr=wldsr,wldq=wldq,pg=pg,
ak=ak)
class(out) <- "nardl"
return(out)
}
|
update.mu <-
function(theta, y1, yP1, n){
(y1 - theta*yP1)/n
}
|
context("test-1-4-0-swap")
test_that("swap works", {
a <- 1
b <- 2
a %<->% b
expect_equal(a, 2)
expect_equal(b, 1)
})
test_that("swap errors", {
"***temp***" <- NULL
a <- list()
b <- c()
expect_error(a %<->% b)
})
|
test_that("classif_bst", {
requirePackagesOrSkip("bst", default.method = "load")
parset.list1 = list(
list(),
list(cost = 0.6, family = "gaussian"),
list(ctrl = bst::bst_control(mstop = 40L)),
list(learner = "tree", control.tree = list(maxdepth = 2L))
)
parset.list2 = list(
list(),
list(cost = 0.6, family = "gaussian"),
list(mstop = 40L),
list(Learner = "tree", maxdepth = 2L)
)
old.predicts.list = list()
for (i in seq_along(parset.list1)) {
parset = parset.list1[[i]]
parset$y = ifelse(binaryclass.train[, binaryclass.class.col] == binaryclass.class.levs[2], 1, -1)
parset$x = binaryclass.train[, -binaryclass.class.col]
m = do.call(bst::bst, parset)
p = predict(m, binaryclass.test)
old.predicts.list[[i]] = ifelse(p > 0, binaryclass.class.levs[2], binaryclass.class.levs[1])
}
testSimpleParsets("classif.bst", binaryclass.df, binaryclass.target,
binaryclass.train.inds, old.predicts.list, parset.list2)
})
|
context("Basic Tests")
test_that("steepest descent with constant step size", {
opt <- make_opt(
make_stages(
gradient_stage(
direction = sd_direction(),
step_size = constant_step_size(
value = 0.0001
)
),
verbose = FALSE
)
)
opt$count_res_fg <- FALSE
res <- opt_loop(opt, rb0, rosenbrock_fg, 3,
store_progress = TRUE,
verbose = FALSE, grad_tol = 1e-5
)
nfs <- c(0, 0, 0, 0)
ngs <- c(0, 1, 2, 3)
fs <- c(24.2, 19.18, 15.52, 12.81)
g2ns <- c(232.87, 198.56, 170.43, 147.11)
steps <- c(0, 0.0233, 0.0199, 0.017)
par <- c(-1.144, 1.023)
expect_equal(res$progress$nf, nfs)
expect_equal(res$progress$ng, ngs)
expect_equal(res$progress$f, fs, tol = 1e-3)
expect_equal(res$progress$g2n, g2ns, tol = 1e-3)
expect_equal(res$progress$step, steps, tol = 1e-3)
expect_equal(res$par, par, tol = 1e-3)
expect_equal(res$f, min(res$progress$f))
expect_equal(res$g2n, min(res$progress$g2n))
expect_equal(res$nf, nfs[length(nfs)])
expect_equal(res$ng, ngs[length(ngs)])
})
test_that("counting result fun grad calls increases counts", {
opt <- make_opt(
make_stages(
gradient_stage(
direction = sd_direction(),
step_size = constant_step_size(
value = 0.0001
)
),
verbose = FALSE
)
)
res <- opt_loop(opt, rb0, rosenbrock_fg, 3,
store_progress = TRUE,
verbose = FALSE,
grad_tol = 1e-5
)
nfs <- c(1, 2, 3, 4)
ngs <- c(1, 2, 3, 4)
fs <- c(24.2, 19.18, 15.52, 12.81)
g2ns <- c(232.87, 198.56, 170.43, 147.11)
steps <- c(0, 0.0233, 0.0199, 0.017)
par <- c(-1.144, 1.023)
expect_equal(res$progress$nf, nfs)
expect_equal(res$progress$ng, ngs)
expect_equal(res$progress$f, fs, tol = 1e-3)
expect_equal(res$progress$g2n, g2ns, tol = 1e-3)
expect_equal(res$progress$step, steps, tol = 1e-3)
expect_equal(res$par, par, tol = 1e-3)
expect_equal(res$f, min(res$progress$f))
expect_equal(res$g2n, min(res$progress$g2n))
expect_equal(res$nf, nfs[length(nfs)])
expect_equal(res$ng, ngs[length(ngs)])
})
test_that("can check convergence less often and get fewer fn/gr calls", {
opt <- make_opt(
make_stages(
gradient_stage(
direction = sd_direction(),
step_size = constant_step_size(
value = 0.0001
)
),
verbose = FALSE
)
)
res <- opt_loop(opt, rb0, rosenbrock_fg, 3,
store_progress = TRUE,
verbose = FALSE, grad_tol = 1e-5, check_conv_every = 1000
)
progress_iters <- c("0", "3")
nfs <- c(1, 2)
ngs <- c(1, 4)
fs <- c(24.2, 12.81)
g2ns <- c(232.87, 147.11)
steps <- c(0, 0.017)
par <- c(-1.144, 1.023)
expect_equal(rownames(res$progress), progress_iters)
expect_equal(res$progress$nf, nfs)
expect_equal(res$progress$ng, ngs)
expect_equal(res$progress$f, fs, tol = 1e-3)
expect_equal(res$progress$g2n, g2ns, tol = 1e-3)
expect_equal(res$progress$step, steps, tol = 1e-3)
expect_equal(res$par, par, tol = 1e-3)
expect_equal(res$f, min(res$progress$f))
expect_equal(res$g2n, min(res$progress$g2n))
expect_equal(res$nf, nfs[length(nfs)])
expect_equal(res$ng, ngs[length(ngs)])
})
test_that("no grad norm returned or stored in progress when grad_tol is NULL", {
opt <- make_opt(
make_stages(
gradient_stage(
direction = sd_direction(),
step_size = constant_step_size(
value = 0.0001
)
),
verbose = FALSE
)
)
opt$count_res_fg <- FALSE
res <- opt_loop(opt, rb0, rosenbrock_fg, 3,
store_progress = TRUE,
verbose = FALSE, grad_tol = NULL
)
nfs <- c(0, 0, 0, 0)
ngs <- c(0, 1, 2, 3)
fs <- c(24.2, 19.18, 15.52, 12.81)
steps <- c(0, 0.0233, 0.0199, 0.017)
par <- c(-1.144, 1.023)
expect_equal(res$progress$nf, nfs)
expect_equal(res$progress$ng, ngs)
expect_equal(res$progress$f, fs, tol = 1e-3)
expect_true(is.null(res$progress$g2n))
expect_true(is.null(res$g2n))
expect_equal(res$progress$step, steps, tol = 1e-3)
expect_equal(res$par, par, tol = 1e-3)
})
test_that("steepest descent with constant step size and normalized direction", {
opt <- make_opt(
make_stages(
gradient_stage(
direction = sd_direction(normalize = TRUE),
step_size = constant_step_size(
value = 0.0001
)
),
verbose = FALSE
)
)
opt$count_res_fg <- FALSE
res <- opt_loop(opt, rb0, rosenbrock_fg, 3,
store_progress = TRUE, verbose = FALSE, grad_tol = 1e-5
)
nfs <- c(0, 0, 0, 0)
ngs <- c(0, 1, 2, 3)
fs <- c(24.2, 24.18, 24.15, 24.13)
g2ns <- c(232.87, 232.72, 232.57, 232.42)
steps <- c(0, 1e-4, 1e-4, 1e-4)
par <- c(-1.2, 1.0)
expect_equal(res$progress$nf, nfs)
expect_equal(res$progress$ng, ngs)
expect_equal(res$progress$f, fs, tol = 1e-3)
expect_equal(res$progress$g2n, g2ns, tol = 1e-3)
expect_equal(res$progress$step, steps, tol = 1e-3)
expect_equal(res$par, par, tol = 1e-3)
})
test_that("steepest descent with bold driver", {
opt <- make_opt(
make_stages(
gradient_stage(
direction = sd_direction(normalize = TRUE),
step_size = bold_driver(
init_step_size = 1
)
),
verbose = FALSE
)
)
opt$count_res_fg <- FALSE
res <- opt_loop(opt, rb0, rosenbrock_fg, 3,
store_progress = TRUE, verbose = FALSE, grad_tol = 1e-5
)
nfs <- c(0, 4, 7, 12)
ngs <- c(0, 1, 2, 3)
fs <- c(24.2, 6.32, 4.12, 4.11)
g2ns <- c(232.87, 64.72, 2.90, 2.39)
steps <- c(0, 0.25, 0.069, 0.0047)
par <- c(-1.024, 1.060)
expect_equal(res$progress$nf, nfs)
expect_equal(res$progress$ng, ngs)
expect_equal(res$progress$f, fs, tol = 1e-3)
expect_equal(res$progress$g2n, g2ns, tol = 1e-3)
expect_equal(res$progress$step, steps, tol = 1e-3)
expect_equal(res$par, par, tol = 1e-3)
})
test_that("classical momentum with 0 step size should be like using no momentum", {
opt <- make_opt(
make_stages(
gradient_stage(
direction = sd_direction(normalize = TRUE),
step_size = constant_step_size(
value = 0.01
)
),
momentum_stage(
direction = momentum_direction(),
step_size = constant_step_size(
value = 0
)
),
verbose = FALSE
)
)
opt$count_res_fg <- FALSE
res <- opt_loop(opt, rb0, rosenbrock_fg, 3,
store_progress = TRUE, verbose = FALSE, grad_tol = 1e-5
)
nfs <- c(0, 0, 0, 0)
ngs <- c(0, 1, 2, 3)
fs <- c(24.2, 21.95, 19.84, 17.88)
g2ns <- c(232.87, 217.96, 203.31, 188.93)
steps <- c(0, 1e-2, 1e-2, 1e-2)
mus <- c(0, 0, 0, 0)
par <- c(-1.172, 1.011)
expect_equal(res$progress$nf, nfs)
expect_equal(res$progress$ng, ngs)
expect_equal(res$progress$f, fs, tol = 1e-3)
expect_equal(res$progress$g2n, g2ns, tol = 1e-3)
expect_equal(res$progress$step, steps, tol = 1e-3)
expect_equal(res$progress$mu, mus, tol = 1e-3)
expect_equal(res$par, par, tol = 1e-3)
})
test_that("classical momentum with constant step size", {
opt <- make_opt(
make_stages(
gradient_stage(
direction = sd_direction(normalize = TRUE),
step_size = constant_step_size(
value = 0.01
)
),
momentum_stage(
direction = momentum_direction(),
step_size = constant_step_size(
value = 0.2
)
),
verbose = FALSE
)
)
opt$count_res_fg <- FALSE
res <- opt_loop(opt, rb0, rosenbrock_fg, 3,
store_progress = TRUE, verbose = FALSE, grad_tol = 1e-5
)
nfs <- c(0, 0, 0, 0)
ngs <- c(0, 1, 2, 3)
fs <- c(24.2, 21.95, 19.44, 17.06)
g2ns <- c(232.87, 217.96, 200.42, 182.69)
steps <- c(0, 0.01, 0.012, 0.0124)
mus <- c(0.2, 0.2, 0.2, 0.2)
par <- c(-1.168, 1.013)
expect_equal(res$progress$nf, nfs)
expect_equal(res$progress$ng, ngs)
expect_equal(res$progress$f, fs, tol = 1e-3)
expect_equal(res$progress$g2n, g2ns, tol = 1e-3)
expect_equal(res$progress$step, steps, tol = 1e-3)
expect_equal(res$progress$mu, mus, tol = 1e-3)
expect_equal(res$par, par, tol = 1e-3)
})
test_that("eager classical momentum with constant step size should give same results as non-eager", {
opt <- make_opt(
make_stages(
gradient_stage(
direction = sd_direction(normalize = TRUE),
step_size = constant_step_size(
value = 0.01
)
),
momentum_stage(
direction = momentum_direction(),
step_size = constant_step_size(
value = 0.2
)
),
verbose = FALSE
)
)
opt$count_res_fg <- FALSE
opt$eager_update <- TRUE
res <- opt_loop(opt, rb0, rosenbrock_fg, 3,
store_progress = TRUE, verbose = FALSE, grad_tol = 1e-5
)
nfs <- c(0, 0, 0, 0)
ngs <- c(0, 1, 2, 3)
fs <- c(24.2, 21.95, 19.44, 17.06)
g2ns <- c(232.87, 217.96, 200.42, 182.69)
steps <- c(0, 0.01, 0.012, 0.0124)
mus <- c(0.2, 0.2, 0.2, 0.2)
par <- c(-1.168, 1.013)
expect_equal(res$progress$nf, nfs)
expect_equal(res$progress$ng, ngs)
expect_equal(res$progress$f, fs, tol = 1e-3)
expect_equal(res$progress$g2n, g2ns, tol = 1e-3)
expect_equal(res$progress$step, steps, tol = 1e-3)
expect_equal(res$progress$mu, mus, tol = 1e-3)
expect_equal(res$par, par, tol = 1e-3)
})
test_that("classical momentum with bold driver", {
opt <- make_opt(
make_stages(
gradient_stage(
direction = sd_direction(normalize = TRUE),
step_size = bold_driver()
),
momentum_stage(
direction = momentum_direction(),
step_size = constant_step_size(
value = 0.2
)
),
verbose = FALSE
)
)
opt$count_res_fg <- FALSE
res <- opt_loop(opt, rb0, rosenbrock_fg, 3,
store_progress = TRUE, verbose = FALSE, grad_tol = 1e-5
)
nfs <- c(0, 4, 8, 10)
ngs <- c(0, 1, 2, 3)
fs <- c(24.2, 6.32, 5.25, 4.62)
g2ns <- c(232.87, 64.72, 47.19, 33.88)
steps <- c(0, 0.25, 0.020, 0.0795)
mus <- c(0.2, 0.2, 0.2, 0.2)
par <- c(-1.051, 1.040)
expect_equal(res$progress$nf, nfs)
expect_equal(res$progress$ng, ngs)
expect_equal(res$progress$f, fs, tol = 1e-3)
expect_equal(res$progress$g2n, g2ns, tol = 1e-3)
expect_equal(res$progress$step, steps, tol = 1e-3)
expect_equal(res$progress$mu, mus, tol = 1e-3)
expect_equal(res$par, par, tol = 1e-3)
})
test_that("eager classical momentum with bold driver same as 'lazy' result", {
opt <- make_opt(
make_stages(
gradient_stage(
direction = sd_direction(normalize = TRUE),
step_size = bold_driver()
),
momentum_stage(
direction = momentum_direction(),
step_size = constant_step_size(
value = 0.2
)
),
verbose = FALSE
)
)
opt$eager_update <- TRUE
opt$count_res_fg <- FALSE
res <- opt_loop(opt, rb0, rosenbrock_fg, 3,
store_progress = TRUE, verbose = FALSE, grad_tol = 1e-5
)
nfs <- c(0, 4, 8, 10)
ngs <- c(0, 1, 2, 3)
fs <- c(24.2, 6.32, 5.25, 4.62)
g2ns <- c(232.87, 64.72, 47.19, 33.88)
steps <- c(0, 0.25, 0.020, 0.0795)
mus <- c(0.2, 0.2, 0.2, 0.2)
par <- c(-1.051, 1.040)
expect_equal(res$progress$nf, nfs)
expect_equal(res$progress$ng, ngs)
expect_equal(res$progress$f, fs, tol = 1e-3)
expect_equal(res$progress$g2n, g2ns, tol = 1e-3)
expect_equal(res$progress$step, steps, tol = 1e-3)
expect_equal(res$progress$mu, mus, tol = 1e-3)
expect_equal(res$par, par, tol = 1e-3)
})
test_that("linear weighted classical momentum with bold driver", {
opt <- make_opt(
make_stages(
gradient_stage(
direction = sd_direction(normalize = TRUE),
step_size = bold_driver()
),
momentum_stage(
direction = momentum_direction(),
step_size = constant_step_size(
value = 0.2
)
),
verbose = FALSE
)
)
opt$count_res_fg <- FALSE
opt <- append_stage(opt, momentum_correction_stage())
res <- opt_loop(opt, rb0, rosenbrock_fg, 3,
store_progress = TRUE, verbose = FALSE, grad_tol = 1e-5
)
nfs <- c(0, 4, 10, 12)
ngs <- c(0, 1, 2, 3)
fs <- c(24.2, 4.27, 5.04, 4.67)
g2ns <- c(232.87, 17.16, 42.78, 33.27)
steps <- c(0, 0.2, 0.027, 0.01)
mus <- c(0.2, 0.2, 0.2, 0.2)
par <- c(-0.998, 1.078)
expect_equal(res$progress$nf, nfs)
expect_equal(res$progress$ng, ngs)
expect_equal(res$progress$f, fs, tol = 1e-3)
expect_equal(res$progress$g2n, g2ns, tol = 1e-3)
expect_equal(res$progress$step, steps, tol = 1e-3)
expect_equal(res$progress$mu, mus, tol = 1e-3)
expect_equal(res$par, par, tol = 1e-3)
})
test_that("linear weighted eager classical momentum with bold driver", {
opt <- make_opt(
make_stages(
gradient_stage(
direction = sd_direction(normalize = TRUE),
step_size = bold_driver()
),
momentum_stage(
direction = momentum_direction(),
step_size = constant_step_size(
value = 0.2
)
),
verbose = FALSE
)
)
opt <- append_stage(opt, momentum_correction_stage())
opt$count_res_fg <- FALSE
opt$eager_update <- TRUE
res <- opt_loop(opt, rb0, rosenbrock_fg, 3,
store_progress = TRUE, verbose = FALSE, grad_tol = 1e-5
)
nfs <- c(0, 4, 10, 12)
ngs <- c(0, 1, 2, 3)
fs <- c(24.2, 4.27, 5.04, 4.67)
g2ns <- c(232.87, 17.16, 42.78, 33.27)
steps <- c(0, 0.2, 0.027, 0.01)
mus <- c(0.2, 0.2, 0.2, 0.2)
par <- c(-0.998, 1.078)
expect_equal(res$progress$nf, nfs)
expect_equal(res$progress$ng, ngs)
expect_equal(res$progress$f, fs, tol = 1e-3)
expect_equal(res$progress$g2n, g2ns, tol = 1e-3)
expect_equal(res$progress$step, steps, tol = 1e-3)
expect_equal(res$progress$mu, mus, tol = 1e-3)
expect_equal(res$par, par, tol = 1e-3)
})
test_that("bold classical momentum with bold driver", {
opt <- make_opt(
make_stages(
gradient_stage(
direction = sd_direction(normalize = TRUE),
step_size = bold_driver()
),
momentum_stage(
direction = momentum_direction(normalize = TRUE),
step_size = bold_driver()
),
verbose = FALSE
)
)
opt$count_res_fg <- FALSE
res <- opt_loop(opt, rb0, rosenbrock_fg, 3,
store_progress = TRUE, verbose = FALSE, grad_tol = 1e-5
)
nfs <- c(0, 6, 19, 45)
ngs <- c(0, 1, 2, 3)
fs <- c(24.2, 6.32, 4.12, 4.10)
g2ns <- c(232.87, 64.72, 2.81, 2.41)
steps <- c(0, 0.25, 0.064, 0.0047)
mus <- c(1, 1.1, 4.73e-3, 1.64e-8)
par <- c(-1.027, 1.059)
expect_equal(res$progress$nf, nfs)
expect_equal(res$progress$ng, ngs)
expect_equal(res$progress$f, fs, tol = 1e-3)
expect_equal(res$progress$g2n, g2ns, tol = 1e-3)
expect_equal(res$progress$step, steps, tol = 1e-3)
expect_equal(res$progress$mu, mus, tol = 1e-3)
expect_equal(res$par, par, tol = 1e-3)
})
test_that("bold classical momentum with bold driver without cache gives same results, but requires extra work", {
opt <- make_opt(
make_stages(
gradient_stage(
direction = sd_direction(normalize = TRUE),
step_size = bold_driver()
),
momentum_stage(
direction = momentum_direction(normalize = TRUE),
step_size = bold_driver()
),
verbose = FALSE
)
)
opt$count_res_fg <- FALSE
res <- opt_loop(opt, rb0, rosenbrock_fg, 3,
store_progress = TRUE, verbose = FALSE,
invalidate_cache = TRUE, grad_tol = 1e-5
)
nfs <- c(0, 6, 20, 47)
ngs <- c(0, 1, 2, 3)
fs <- c(24.2, 6.32, 4.12, 4.10)
g2ns <- c(232.87, 64.72, 2.81, 2.41)
steps <- c(0, 0.25, 0.064, 0.0047)
mus <- c(1, 1.1, 4.73e-3, 1.64e-8)
par <- c(-1.027, 1.059)
expect_equal(res$progress$nf, nfs)
expect_equal(res$progress$ng, ngs)
expect_equal(res$progress$f, fs, tol = 1e-3)
expect_equal(res$progress$g2n, g2ns, tol = 1e-3)
expect_equal(res$progress$step, steps, tol = 1e-3)
expect_equal(res$progress$mu, mus, tol = 1e-3)
expect_equal(res$par, par, tol = 1e-3)
})
test_that("classical momentum with bold driver and fn adaptive restart, same results as without when everything is ok", {
opt <- make_opt(
make_stages(
gradient_stage(
direction = sd_direction(normalize = TRUE),
step_size = bold_driver()
),
momentum_stage(
direction = momentum_direction(),
step_size = constant_step_size(
value = 0.2
)
),
verbose = FALSE
)
)
opt$count_res_fg <- FALSE
opt <- adaptive_restart(opt, "fn")
res <- opt_loop(opt, rb0, rosenbrock_fg, 3,
store_progress = TRUE, verbose = FALSE, grad_tol = 1e-5
)
nfs <- c(0, 5, 9, 11)
ngs <- c(0, 1, 2, 3)
fs <- c(24.2, 6.32, 5.25, 4.62)
g2ns <- c(232.87, 64.72, 47.19, 33.88)
steps <- c(0, 0.25, 0.020, 0.0795)
mus <- c(0.2, 0.2, 0.2, 0.2)
par <- c(-1.051, 1.040)
expect_equal(res$progress$nf, nfs)
expect_equal(res$progress$ng, ngs)
expect_equal(res$progress$f, fs, tol = 1e-3)
expect_equal(res$progress$g2n, g2ns, tol = 1e-3)
expect_equal(res$progress$step, steps, tol = 1e-3)
expect_equal(res$progress$mu, mus, tol = 1e-3)
expect_equal(res$par, par, tol = 1e-3)
})
test_that("classical momentum with bold driver and gr adaptive restart, same results as without when everything is ok", {
opt <- make_opt(
make_stages(
gradient_stage(
direction = sd_direction(normalize = TRUE),
step_size = bold_driver()
),
momentum_stage(
direction = momentum_direction(),
step_size = constant_step_size(
value = 0.2
)
),
verbose = FALSE
)
)
opt$count_res_fg <- FALSE
opt <- adaptive_restart(opt, "gr")
res <- opt_loop(opt, rb0, rosenbrock_fg, 3,
store_progress = TRUE, verbose = FALSE, grad_tol = 1e-5
)
nfs <- c(0, 4, 8, 10)
ngs <- c(0, 1, 2, 3)
fs <- c(24.2, 6.32, 5.25, 4.62)
g2ns <- c(232.87, 64.72, 47.19, 33.88)
steps <- c(0, 0.25, 0.020, 0.0795)
mus <- c(0.2, 0.2, 0.2, 0.2)
par <- c(-1.051, 1.040)
expect_equal(res$progress$nf, nfs)
expect_equal(res$progress$ng, ngs)
expect_equal(res$progress$f, fs, tol = 1e-3)
expect_equal(res$progress$g2n, g2ns, tol = 1e-3)
expect_equal(res$progress$step, steps, tol = 1e-3)
expect_equal(res$progress$mu, mus, tol = 1e-3)
expect_equal(res$par, par, tol = 1e-3)
})
test_that("classical momentum with bold driver aggressive momentum can cause cost increase", {
opt <- make_opt(
make_stages(
gradient_stage(
direction = sd_direction(normalize = TRUE),
step_size = bold_driver()
),
momentum_stage(
direction = momentum_direction(),
step_size = constant_step_size(
value = 0.4
)
),
verbose = FALSE
)
)
opt$count_res_fg <- FALSE
res <- opt_loop(opt, rb0, rosenbrock_fg, 3,
store_progress = TRUE, verbose = FALSE, grad_tol = 1e-5
)
nfs <- c(0, 4, 8, 10)
ngs <- c(0, 1, 2, 3)
fs <- c(24.2, 6.32, 8.71, 4.69)
g2ns <- c(232.87, 64.72, 91.13, 34.39)
steps <- c(0, 0.25, 0.033, 0.064)
mus <- c(0.4, 0.4, 0.4, 0.4)
par <- c(-0.989, 1.064)
expect_equal(res$progress$nf, nfs)
expect_equal(res$progress$ng, ngs)
expect_equal(res$progress$f, fs, tol = 1e-3)
expect_equal(res$progress$g2n, g2ns, tol = 1e-3)
expect_equal(res$progress$step, steps, tol = 1e-3)
expect_equal(res$progress$mu, mus, tol = 1e-3)
expect_equal(res$par, par, tol = 1e-3)
})
test_that("classical momentum with bold driver adaptive gr momentum prevents cost increase", {
opt <- make_opt(
make_stages(
gradient_stage(
direction = sd_direction(normalize = TRUE),
step_size = bold_driver()
),
momentum_stage(
direction = momentum_direction(),
step_size = constant_step_size(
value = 0.4
)
),
verbose = FALSE
)
)
opt$count_res_fg <- FALSE
opt <- adaptive_restart(opt, "gr")
res <- opt_loop(opt, rb0, rosenbrock_fg, 3,
store_progress = TRUE, verbose = FALSE, grad_tol = 1e-5
)
nfs <- c(0, 4, 8, 10)
ngs <- c(0, 1, 2, 2)
fs <- c(24.2, 6.32, 6.32, 4.12)
g2ns <- c(232.87, 64.72, 64.72, 2.90)
steps <- c(0, 0.25, 0, 0.069)
mus <- c(0.4, 0.4, 0.4, 0.4)
par <- c(-1.029, 1.061)
expect_equal(res$progress$nf, nfs)
expect_equal(res$progress$ng, ngs)
expect_equal(res$progress$f, fs, tol = 1e-3)
expect_equal(res$progress$g2n, g2ns, tol = 1e-3)
expect_equal(res$progress$step, steps, tol = 1e-3)
expect_equal(res$progress$mu, mus, tol = 1e-3)
expect_equal(res$par, par, tol = 1e-3)
})
test_that("classical momentum with bold driver adaptive fn momentum prevents cost increase", {
opt <- make_opt(
make_stages(
gradient_stage(
direction = sd_direction(normalize = TRUE),
step_size = bold_driver()
),
momentum_stage(
direction = momentum_direction(),
step_size = constant_step_size(
value = 0.4
)
),
verbose = FALSE
)
)
opt$count_res_fg <- FALSE
opt <- adaptive_restart(opt, "fn")
res <- opt_loop(opt, rb0, rosenbrock_fg, 3,
store_progress = TRUE, verbose = FALSE, grad_tol = 1e-5
)
nfs <- c(0, 5, 9, 11)
ngs <- c(0, 1, 2, 2)
fs <- c(24.2, 6.32, 6.32, 4.12)
g2ns <- c(232.87, 64.72, 64.72, 2.90)
steps <- c(0, 0.25, 0, 0.069)
mus <- c(0.4, 0.4, 0.4, 0.4)
par <- c(-1.029, 1.061)
expect_equal(res$progress$nf, nfs)
expect_equal(res$progress$ng, ngs)
expect_equal(res$progress$f, fs, tol = 1e-3)
expect_equal(res$progress$g2n, g2ns, tol = 1e-3)
expect_equal(res$progress$step, steps, tol = 1e-3)
expect_equal(res$progress$mu, mus, tol = 1e-3)
expect_equal(res$par, par, tol = 1e-3)
})
test_that("classical momentum with constant function factory", {
opt <- make_opt(
make_stages(
gradient_stage(
direction = sd_direction(normalize = TRUE),
step_size = constant_step_size(
value = 0.01
)
),
momentum_stage(
direction = momentum_direction(),
step_size = make_momentum_step(
make_constant(
value = 0.2
),
use_init_mom = TRUE
)
),
verbose = FALSE
)
)
opt$count_res_fg <- FALSE
res <- opt_loop(opt, rb0, rosenbrock_fg, 3,
store_progress = TRUE, verbose = FALSE, grad_tol = 1e-5
)
nfs <- c(0, 0, 0, 0)
ngs <- c(0, 1, 2, 3)
fs <- c(24.2, 21.95, 19.44, 17.06)
g2ns <- c(232.87, 217.96, 200.42, 182.69)
steps <- c(0, 0.01, 0.012, 0.0124)
mus <- c(0, 0.2, 0.2, 0.2)
par <- c(-1.168, 1.013)
expect_equal(res$progress$nf, nfs)
expect_equal(res$progress$ng, ngs)
expect_equal(res$progress$f, fs, tol = 1e-3)
expect_equal(res$progress$g2n, g2ns, tol = 1e-3)
expect_equal(res$progress$step, steps, tol = 1e-3)
expect_equal(res$progress$mu, mus, tol = 1e-3)
expect_equal(res$par, par, tol = 1e-3)
})
test_that("classical momentum with ramp function", {
opt <- make_opt(
make_stages(
gradient_stage(
direction = sd_direction(normalize = TRUE),
step_size = constant_step_size(
value = 0.01
)
),
momentum_stage(
direction = momentum_direction(),
step_size = make_momentum_step(
make_ramp(
init_value = 0.1,
final_value = 0.3,
wait = 0
),
use_init_mom = TRUE
)
),
verbose = FALSE
)
)
opt$count_res_fg <- FALSE
res <- opt_loop(opt, rb0, rosenbrock_fg, 3,
store_progress = TRUE, verbose = FALSE, grad_tol = 1e-5
)
nfs <- c(0, 0, 0, 0)
ngs <- c(0, 1, 2, 3)
fs <- c(24.2, 21.95, 19.44, 16.84)
g2ns <- c(232.87, 217.96, 200.42, 181.00)
steps <- c(0, 0.01, 0.012, 0.0136)
mus <- c(0, 0.1, 0.2, 0.3)
par <- c(-1.167, 1.014)
expect_equal(res$progress$nf, nfs)
expect_equal(res$progress$ng, ngs)
expect_equal(res$progress$f, fs, tol = 1e-3)
expect_equal(res$progress$g2n, g2ns, tol = 1e-3)
expect_equal(res$progress$step, steps, tol = 1e-3)
expect_equal(res$progress$mu, mus, tol = 1e-3)
expect_equal(res$par, par, tol = 1e-3)
})
test_that("classical momentum with switch function", {
opt <- make_opt(
make_stages(
gradient_stage(
direction = sd_direction(normalize = TRUE),
step_size = constant_step_size(
value = 0.01
)
),
momentum_stage(
direction = momentum_direction(),
step_size = make_momentum_step(
make_switch(
init_value = 0.5,
final_value = 0.8,
switch_iter = 2
),
use_init_mom = TRUE
)
),
verbose = FALSE
)
)
opt$count_res_fg <- FALSE
res <- opt_loop(opt, rb0, rosenbrock_fg, 3,
store_progress = TRUE, verbose = FALSE, grad_tol = 1e-5
)
nfs <- c(0, 0, 0, 0)
ngs <- c(0, 1, 2, 3)
fs <- c(24.2, 21.95, 18.26, 14.00)
g2ns <- c(232.87, 217.96, 191.79, 157.67)
steps <- c(0, 0.01, 0.018, 0.0244)
mus <- c(0, 0.5, 0.8, 0.8)
par <- c(-1.152, 1.020)
expect_equal(res$progress$nf, nfs)
expect_equal(res$progress$ng, ngs)
expect_equal(res$progress$f, fs, tol = 1e-3)
expect_equal(res$progress$g2n, g2ns, tol = 1e-3)
expect_equal(res$progress$step, steps, tol = 1e-3)
expect_equal(res$progress$mu, mus, tol = 1e-3)
expect_equal(res$par, par, tol = 1e-3)
})
test_that("sutskever nesterov momentum with bold driver", {
opt <- make_opt(
make_stages(
momentum_stage(
direction = momentum_direction(),
step_size = constant_step_size(
value = 0.2
)
),
gradient_stage(
direction = sd_direction(normalize = TRUE),
step_size = bold_driver()
),
verbose = FALSE
)
)
opt$count_res_fg <- FALSE
opt$eager_update <- TRUE
res <- opt_loop(opt, rb0, rosenbrock_fg, 3,
store_progress = TRUE, verbose = FALSE, grad_tol = 1e-5
)
nfs <- c(0, 4, 7, 10)
ngs <- c(0, 1, 2, 3)
fs <- c(24.2, 6.32, 4.33, 4.78)
g2ns <- c(232.87, 64.72, 22.22, 36.89)
steps <- c(0, 0.25, 0.088, 0.0584)
mus <- c(0.2, 0.2, 0.2, 0.2)
par <- c(-1.042, 1.046)
expect_equal(res$progress$nf, nfs)
expect_equal(res$progress$ng, ngs)
expect_equal(res$progress$f, fs, tol = 1e-3)
expect_equal(res$progress$g2n, g2ns, tol = 1e-3)
expect_equal(res$progress$step, steps, tol = 1e-3)
expect_equal(res$progress$mu, mus, tol = 1e-3)
expect_equal(res$par, par, tol = 1e-3)
expect_equal(res$f, min(fs), tol = 1e-3)
})
test_that("nesterov momentum with bold driver and adaptive fn", {
opt <- make_opt(
make_stages(
momentum_stage(
direction = momentum_direction(),
step_size = constant_step_size(
value = 0.2
)
),
gradient_stage(
direction = sd_direction(normalize = TRUE),
step_size = bold_driver()
),
verbose = FALSE
)
)
opt$count_res_fg <- FALSE
opt$eager_update <- TRUE
opt <- adaptive_restart(opt, "fn")
res <- opt_loop(opt, rb0, rosenbrock_fg, 3,
store_progress = TRUE, verbose = FALSE, grad_tol = 1e-5
)
nfs <- c(0, 5, 8, 11)
ngs <- c(0, 1, 2, 3)
fs <- c(24.2, 6.32, 4.33, 4.33)
g2ns <- c(232.87, 64.72, 22.22, 22.22)
steps <- c(0, 0.25, 0.088, 0)
mus <- c(0.2, 0.2, 0.2, 0.2)
par <- c(-1.042, 1.046)
expect_equal(res$progress$nf, nfs)
expect_equal(res$progress$ng, ngs)
expect_equal(res$progress$f, fs, tol = 1e-3)
expect_equal(res$progress$g2n, g2ns, tol = 1e-3)
expect_equal(res$progress$step, steps, tol = 1e-3)
expect_equal(res$progress$mu, mus, tol = 1e-3)
expect_equal(res$par, par, tol = 1e-3)
})
test_that("nesterov accelerated gradient with wolfe line search", {
opt <- make_opt(
make_stages(
gradient_stage(
direction = sd_direction(),
step_size = more_thuente_ls(c2 = 1.e-9)
),
momentum_stage(
direction = nesterov_momentum_direction(),
step_size = nesterov_convex_step()
),
verbose = FALSE
)
)
opt$count_res_fg <- FALSE
opt$eager_update <- TRUE
opt$depends <- c(opt$depends, "keep_stage_fs")
res <- opt_loop(opt, rb0, rosenbrock_fg, 3,
store_progress = TRUE, verbose = FALSE, ret_opt = TRUE, grad_tol = 1e-5
)
nfs <- c(0, 9, 17, 22)
ngs <- c(0, 9, 17, 22)
fs <- c(24.2, 4.128, 3.913, 3.558)
g2ns <- c(232.87, 1.777, 23.908, 7.200)
steps <- c(0, 0.184, 0.301, 0.048)
mus <- c(0, 0, 0.282, 0.434)
par <- c(-0.869, 0.781)
all_fs <- c(4.128, 4.128, 3.886, 3.913, 3.583, 3.558)
expect_equal(res$progress$nf, nfs)
expect_equal(res$progress$ng, ngs)
expect_equal(res$progress$f, fs, tol = 1e-3)
expect_equal(res$progress$g2n, g2ns, tol = 1e-3)
expect_equal(res$progress$step, steps, tol = 1e-3)
expect_equal(res$progress$mu, mus, tol = 1e-3)
expect_equal(res$par, par, tol = 1e-3)
expect_equal(res$opt$all_fs, all_fs, tol = 1e-3)
})
test_that("nesterov momentum with wolfe line search is like NAG", {
opt <- make_opt(
make_stages(
momentum_stage(
direction = momentum_direction(),
step_size = nesterov_convex_step(burn_in = 2)
),
gradient_stage(
direction = sd_direction(),
step_size = more_thuente_ls(c2 = 1.e-9)
),
verbose = FALSE
)
)
opt$count_res_fg <- FALSE
opt$eager_update <- TRUE
opt$depends <- c(opt$depends, "keep_stage_fs")
res <- opt_loop(opt, rb0, rosenbrock_fg, 3,
store_progress = TRUE, verbose = FALSE, ret_opt = TRUE,
grad_tol = 1e-5
)
nfs <- c(0, 9, 17, 22)
ngs <- c(0, 9, 17, 22)
fs <- c(24.2, 4.128, 3.886, 3.582)
g2ns <- c(232.87, 1.777, 18.114, 1.858)
steps <- c(0, 0.184, 0.235, 0.0709)
mus <- c(0, 0, 0, 0.282)
par <- c(-0.891, 0.802)
all_fs <- c(24.2, 4.128, 4.128, 3.886, 3.913, 3.583)
expect_equal(res$progress$nf, nfs)
expect_equal(res$progress$ng, ngs)
expect_equal(res$progress$f, fs, tol = 1e-3)
expect_equal(res$progress$g2n, g2ns, tol = 1e-3)
expect_equal(res$progress$step, steps, tol = 1e-3)
expect_equal(res$progress$mu, mus, tol = 1e-3)
expect_equal(res$par, par, tol = 1e-3)
expect_equal(res$opt$all_fs, all_fs, tol = 1e-3)
})
test_that("NAG with q = 1 is steepest descent", {
opt <- make_opt(
make_stages(
gradient_stage(
direction = sd_direction(),
step_size = more_thuente_ls(c2 = 1.e-9)
),
momentum_stage(
direction = nesterov_momentum_direction(),
step_size = nesterov_convex_step(q = 1)
),
verbose = FALSE
)
)
opt$count_res_fg <- FALSE
res <- opt_loop(opt, rb0, rosenbrock_fg, 3,
store_progress = TRUE, verbose = FALSE, grad_tol = 1e-5
)
nfs <- c(0, 9, 17, 22)
ngs <- c(0, 9, 17, 22)
fs <- c(24.2, 4.128, 3.886, 3.704)
g2ns <- c(232.87, 1.777, 18.114, 1.843)
steps <- c(0, 0.184, 0.235, 0.020)
mus <- c(0, 0, 0, 0)
par <- c(-0.923, 0.860)
expect_equal(res$progress$nf, nfs)
expect_equal(res$progress$ng, ngs)
expect_equal(res$progress$f, fs, tol = 1e-3)
expect_equal(res$progress$g2n, g2ns, tol = 1e-3)
expect_equal(res$progress$step, steps, tol = 1e-3)
expect_equal(res$progress$mu, mus, tol = 1e-3)
expect_equal(res$par, par, tol = 1e-3)
})
test_that("NAG with q close to 0 is the same as == 0", {
opt <- make_opt(
make_stages(
gradient_stage(
direction = sd_direction(),
step_size = more_thuente_ls(c2 = 1.e-9)
),
momentum_stage(
direction = nesterov_momentum_direction(),
step_size = nesterov_convex_step(q = 1e-8)
),
verbose = FALSE
)
)
opt$count_res_fg <- FALSE
res <- opt_loop(opt, rb0, rosenbrock_fg, 3,
store_progress = TRUE, verbose = FALSE, grad_tol = 1e-5
)
nfs <- c(0, 9, 17, 22)
ngs <- c(0, 9, 17, 22)
fs <- c(24.2, 4.128, 3.913, 3.558)
g2ns <- c(232.87, 1.777, 23.908, 7.200)
steps <- c(0, 0.184, 0.301, 0.048)
mus <- c(0, 0, 0.282, 0.434)
par <- c(-0.869, 0.781)
expect_equal(res$progress$nf, nfs)
expect_equal(res$progress$ng, ngs)
expect_equal(res$progress$f, fs, tol = 1e-3)
expect_equal(res$progress$g2n, g2ns, tol = 1e-3)
expect_equal(res$progress$step, steps, tol = 1e-3)
expect_equal(res$progress$mu, mus, tol = 1e-3)
expect_equal(res$par, par, tol = 1e-3)
})
test_that("NAG with q = 0.5 between full NAG and SD", {
opt <- make_opt(
make_stages(
gradient_stage(
direction = sd_direction(),
step_size = more_thuente_ls(c2 = 1.e-9)
),
momentum_stage(
direction = nesterov_momentum_direction(),
step_size = nesterov_convex_step(q = 0.5)
),
verbose = FALSE
)
)
opt$count_res_fg <- FALSE
res <- opt_loop(opt, rb0, rosenbrock_fg, 3,
store_progress = TRUE, verbose = FALSE, grad_tol = 1e-5
)
nfs <- c(0, 9, 17, 21)
ngs <- c(0, 9, 17, 21)
fs <- c(24.2, 4.128, 3.891, 3.664)
g2ns <- c(232.87, 1.777, 20.711, 3.442)
steps <- c(0, 0.184, 0.265, 0.028)
mus <- c(0, 0, 0.128, 0.159)
par <- c(-0.903, 0.831)
expect_equal(res$progress$nf, nfs)
expect_equal(res$progress$ng, ngs)
expect_equal(res$progress$f, fs, tol = 1e-3)
expect_equal(res$progress$g2n, g2ns, tol = 1e-3)
expect_equal(res$progress$step, steps, tol = 1e-3)
expect_equal(res$progress$mu, mus, tol = 1e-3)
expect_equal(res$par, par, tol = 1e-3)
})
test_that("NAG with approximate convex momentum", {
opt <- make_opt(
make_stages(
gradient_stage(
direction = sd_direction(),
step_size = more_thuente_ls(c2 = 1.e-9)
),
momentum_stage(
direction = nesterov_momentum_direction(),
step_size = nesterov_convex_approx_step(use_init_mu = FALSE)
),
verbose = FALSE
)
)
opt$count_res_fg <- FALSE
res <- opt_loop(opt, rb0, rosenbrock_fg, 3,
store_progress = TRUE, verbose = FALSE, grad_tol = 1e-5
)
nfs <- c(0, 9, 17, 22)
ngs <- c(0, 9, 17, 22)
fs <- c(24.2, 4.128, 4.004, 3.337)
g2ns <- c(232.87, 1.777, 30.137, 7.777)
steps <- c(0, 0.184, 0.369, 0.0999)
mus <- c(0, 0, 0.571, 0.625)
par <- c(-0.805, 0.676)
expect_equal(res$progress$nf, nfs)
expect_equal(res$progress$ng, ngs)
expect_equal(res$progress$f, fs, tol = 1e-3)
expect_equal(res$progress$g2n, g2ns, tol = 1e-3)
expect_equal(res$progress$step, steps, tol = 1e-3)
expect_equal(res$progress$mu, mus, tol = 1e-3)
expect_equal(res$par, par, tol = 1e-3)
})
test_that("NAG with approximate convex momentum and mu = 0.5 at t = 1", {
opt <- make_opt(
make_stages(
gradient_stage(
direction = sd_direction(),
step_size = more_thuente_ls(c2 = 1.e-9, max_alpha_mult = 10)
),
momentum_stage(
direction = nesterov_momentum_direction(),
step_size = nesterov_convex_approx_step(use_init_mu = TRUE)
),
verbose = FALSE
)
)
opt$count_res_fg <- FALSE
res <- opt_loop(opt, rb0, rosenbrock_fg, 3,
store_progress = TRUE, verbose = FALSE, grad_tol = 1e-5
)
nfs <- c(0, 9, 15, 26)
ngs <- c(0, 9, 15, 26)
fs <- c(24.2, 8.223, 4.097, 15.55)
g2ns <- c(232.87, 86.69, 1.791, 77.44)
steps <- c(0, 0.275, 0.0926, 1.703)
mus <- c(0, 0.5, 0.571, 0.625)
par <- c(-0.09, -0.371)
expect_equal(res$progress$nf, nfs)
expect_equal(res$progress$ng, ngs)
expect_equal(res$progress$f, fs, tol = 1e-3)
expect_equal(res$progress$g2n, g2ns, tol = 1e-3)
expect_equal(res$progress$step, steps, tol = 1e-3)
expect_equal(res$progress$mu, mus, tol = 1e-3)
expect_equal(res$par, par, tol = 1e-3)
})
test_that("Polak Ribiere CG with Rasmussen LS", {
opt <- make_opt(
make_stages(
gradient_stage(
direction = cg_direction(cg_update = pr_update),
step_size = rasmussen_ls(
initial_step_length = "r",
max_alpha_mult = 10
)
),
verbose = FALSE
)
)
opt$count_res_fg <- FALSE
res <- opt_loop(opt, rb0, rosenbrock_fg, 3,
store_progress = TRUE, verbose = FALSE, grad_tol = 1e-5
)
nfs <- c(0, 6, 10, 12)
ngs <- c(0, 6, 10, 12)
fs <- c(24.2, 4.13, 3.84, 3.52)
g2ns <- c(232.87, 1.87, 19.06, 25.24)
steps <- c(0, 0.184, 0.273, 0.311)
par <- c(-0.777, 0.543)
expect_equal(res$progress$nf, nfs)
expect_equal(res$progress$ng, ngs)
expect_equal(res$progress$f, fs, tol = 1e-3)
expect_equal(res$progress$g2n, g2ns, tol = 1e-3)
expect_equal(res$progress$step, steps, tol = 1e-3)
expect_equal(res$par, par, tol = 1e-3)
})
test_that("BFGS with More-Thuente LS", {
opt <- make_opt(
make_stages(
gradient_stage(
direction = bfgs_direction(),
step_size = more_thuente_ls(
c2 = 1e-9,
initial_step_length = "sci",
initializer = "q",
try_newton_step = TRUE
)
),
verbose = FALSE
)
)
opt$count_res_fg <- FALSE
res <- opt_loop(opt, rb0, rosen_no_hess, 3,
store_progress = TRUE, verbose = FALSE, grad_tol = 1e-5
)
nfs <- c(0, 6, 11, 17)
ngs <- c(0, 6, 11, 17)
fs <- c(24.2, 4.13, 3.85, 3.53)
g2ns <- c(232.87, 1.78, 18.62, 24.98)
steps <- c(0, 0.184, 0.261, 0.307)
par <- c(-0.785, 0.558)
expect_equal(res$progress$nf, nfs)
expect_equal(res$progress$ng, ngs)
expect_equal(res$progress$f, fs, tol = 1e-3)
expect_equal(res$progress$g2n, g2ns, tol = 1e-3)
expect_equal(res$progress$step, steps, tol = 1e-3)
expect_equal(res$par, par, tol = 1e-3)
})
test_that("L-BFGS with More-Thuente LS gives same results as BFGS with sufficiently high memory", {
opt <- make_opt(
make_stages(
gradient_stage(
direction = lbfgs_direction(),
step_size = more_thuente_ls(
c2 = 1e-9,
initial_step_length = "sci",
initializer = "q",
try_newton_step = TRUE
)
),
verbose = FALSE
)
)
opt$count_res_fg <- FALSE
res <- opt_loop(opt, rb0, rosen_no_hess, 3,
store_progress = TRUE, verbose = FALSE, grad_tol = 1e-5
)
nfs <- c(0, 6, 11, 17)
ngs <- c(0, 6, 11, 17)
fs <- c(24.2, 4.13, 3.85, 3.53)
g2ns <- c(232.87, 1.78, 18.62, 24.98)
steps <- c(0, 0.184, 0.261, 0.307)
par <- c(-0.785, 0.558)
expect_equal(res$progress$nf, nfs)
expect_equal(res$progress$ng, ngs)
expect_equal(res$progress$f, fs, tol = 1e-3)
expect_equal(res$progress$g2n, g2ns, tol = 1e-3)
expect_equal(res$progress$step, steps, tol = 1e-3)
expect_equal(res$par, par, tol = 1e-3)
})
test_that("delta bar delta adaptive learning rate", {
opt <- make_opt(
make_stages(
gradient_stage(
direction = sd_direction(normalize = TRUE),
step_size = delta_bar_delta(
epsilon = 0.1,
kappa_fun = `*`,
kappa = 1.1,
phi = 0.5,
theta = 0.2
)
)
),
verbose = FALSE
)
opt$count_res_fg <- FALSE
res <- opt_loop(opt, rb0, rosenbrock_fg, 3,
store_progress = TRUE, verbose = FALSE, grad_tol = 1e-5
)
nfs <- c(0, 0, 0, 0)
ngs <- c(0, 1, 2, 3)
fs <- c(24.2, 7.10, 5.28, 4.21)
g2ns <- c(232.87, 83.18, 47.48, 13.66)
steps <- c(0, 0.11, 0.121, 0.0605)
par <- c(-1.040, 1.060)
expect_equal(res$progress$nf, nfs)
expect_equal(res$progress$ng, ngs)
expect_equal(res$progress$f, fs, tol = 1e-3)
expect_equal(res$progress$g2n, g2ns, tol = 1e-3)
expect_equal(res$progress$step, steps, tol = 1e-3)
expect_equal(res$par, par, tol = 1e-3)
})
test_that("delta bar delta adaptive learning rate using momentum", {
opt <- make_opt(
make_stages(
gradient_stage(
direction = sd_direction(normalize = TRUE),
step_size = delta_bar_delta(
epsilon = 0.1,
use_momentum = TRUE,
kappa_fun = `*`,
kappa = 1.1,
phi = 0.5
)
),
momentum_stage(
direction = momentum_direction(),
step_size = constant_step_size(
value = 0.2
)
),
verbose = FALSE
)
)
opt$count_res_fg <- FALSE
res <- opt_loop(opt, rb0, rosenbrock_fg, 3,
store_progress = TRUE, verbose = FALSE, grad_tol = 1e-5
)
nfs <- c(0, 0, 0, 0)
ngs <- c(0, 1, 2, 3)
fs <- c(24.2, 7.10, 6.53, 4.84)
g2ns <- c(232.87, 83.18, 67.62, 37.87)
steps <- c(0, 0.11, 0.143, 0.032)
mus <- c(0.2, 0.2, 0.2, 0.2)
par <- c(-0.993, 1.080)
expect_equal(res$progress$nf, nfs)
expect_equal(res$progress$ng, ngs)
expect_equal(res$progress$f, fs, tol = 1e-3)
expect_equal(res$progress$g2n, g2ns, tol = 1e-3)
expect_equal(res$progress$step, steps, tol = 1e-3)
expect_equal(res$progress$mu, mus, tol = 1e-3)
expect_equal(res$par, par, tol = 1e-3)
})
test_that("delta bar delta adaptive learning rate using momentum and additive increase", {
opt <- make_opt(
make_stages(
gradient_stage(
direction = sd_direction(normalize = FALSE),
step_size = delta_bar_delta(
epsilon = 0.001,
use_momentum = TRUE,
kappa_fun = `+`,
kappa = 0.02,
phi = 0.8
)
),
momentum_stage(
direction = momentum_direction(),
step_size = constant_step_size(
value = 0.4
)
),
verbose = FALSE
)
)
opt$count_res_fg <- FALSE
res <- opt_loop(opt, rb0, rosenbrock_fg, 3,
store_progress = TRUE, verbose = FALSE, grad_tol = 1e-5
)
nfs <- c(0, 0, 0, 0)
ngs <- c(0, 1, 2, 3)
fs <- c(24.2, 5.59, 9.45, 6.01)
g2ns <- c(232.87, 53.36, 97.69, 60.21)
steps <- c(0, 0.238, 0.052, 0.044)
mus <- c(0.4, 0.4, 0.4, 0.4)
par <- c(-0.966, 1.079)
expect_equal(res$progress$nf, nfs)
expect_equal(res$progress$ng, ngs)
expect_equal(res$progress$f, fs, tol = 1e-3)
expect_equal(res$progress$g2n, g2ns, tol = 1e-3)
expect_equal(res$progress$step, steps, tol = 1e-3)
expect_equal(res$progress$mu, mus, tol = 1e-3)
expect_equal(res$par, par, tol = 1e-3)
})
|
wdekde <- function(x, w, bandwidth,s.x)
{
if (!missing(bandwidth) && bandwidth <= 0)
stop("'bandwidth' must be strictly positive")
if(missing(w)){
w <- rep(1,length(x))
}else{
stopifnot(length(w)==length(x))
stopifnot(all(w>0))
}
sele <- is.na(x)|is.na(w)
if(any(sele)){
x <- x[!sele]
w <- w[!sele]
}
if(missing(bandwidth)){
h0 <- bw.nrd(x);
}else{
stopifnot(is.numeric(bandwidth))
stopifnot(length(bandwidth)==1)
stopifnot(bandwidth > 0)
h0 <- bandwidth
}
tau <- 4;
gridsize = 512L
M <- 2^(ceiling(log2(gridsize)))
range.x <- c(min(x)-tau*h0, max(x)+tau*h0)
a <- range.x[1L]; b <- range.x[2L]
gpoints <- seq(a, b, length = M)
out <- .Fortran(.F_wdekde,
as.double(x),
as.double(w/sum(w)),
as.integer(length(x)),
y=as.double(gpoints),
as.integer(M),
as.double(h0),
as.double(s.x))
list(y=out$y,x=gpoints)
}
wkde <- function(x, w, bandwidth, freq=FALSE, gridsize = 401L,
range.x, truncate = TRUE, na.rm=TRUE)
{
name <- deparse(substitute(x))
if (!missing(bandwidth) && bandwidth <= 0)
stop("'bandwidth' must be strictly positive")
if(missing(w)){
if(any(is.na(x))){
if(na.rm) x <- x[!is.na(x)]
else stop("'x' contains missing value(s)")
}
xt <- table(x);
x <- as.numeric(names(xt))
w <- as.numeric(xt)
n <- length(x)
freq <- TRUE
totMass <- 1.0
}else{
tmp = .wtdata(x,w,na.rm=na.rm)
x <- tmp$x; w <- tmp$w; n <- tmp$n; totMass <- tmp$totMass
}
tau <- 4;
h0 <- bw.wnrd0(x,w, freq=freq);
gridsize = max(512L, gridsize)
M <- 2^(ceiling(log2(gridsize)))
if (missing(range.x)) range.x <- c(min(x)-tau*h0, max(x)+tau*h0)
a <- range.x[1L]; b <- range.x[2L]
gpoints <- seq(a, b, length = M)
pars = c(h0,0)
out <- if(missing(bandwidth))
.nwkde(x,w,h0,n,a,b,M,tau=tau,truncate=truncate)
else if(is.numeric(bandwidth))
.nwkde(x,w,bandwidth,n,a,b,M,tau=tau,truncate=truncate)
else if(is.character(bandwidth))
switch(tolower(bandwidth),
"wnrd" = .nwkde(x,w,bw.wnrd(x,w,freq=freq),n,a,b,M,
tau=tau,truncate=truncate),
"wnrd0" = .nwkde(x,w,h0,n,a,b,M,
tau=tau,truncate=truncate),
"blscv" = .nwkde(x,w,
bw.blscv(x,w,h0,gridsize=M),
n,a,b,M,tau=tau,truncate=truncate),
"wmise" = .Fortran(.F_wkde,as.double(x),as.double(w/sum(w)),
as.integer(n),x=as.double(gpoints),y=as.double(gpoints),
Fy=as.double(gpoints),as.integer(M), bw=as.double(pars)),
"awmise" = .Fortran(.F_awkde,as.double(x),as.double(w/sum(w)),
as.integer(n),x=as.double(gpoints),y=as.double(gpoints),
Fy=as.double(gpoints),as.integer(M), bw=as.double(pars)),
stop("Bandwidth selector not supported."))
else stop("Bandwidth selector not supported.")
if(length(out$bw)==1){
bw = out$bw; sp=NULL;
}else{
bw = out$bw[1]; sp = out$bw[2]
}
list(y=out$y,x=out$x, bw= bw, sp = sp)
}
.bw.wmise <- function(x, w, na.rm=TRUE)
{
tmp = .wtdata(x,w,na.rm=na.rm)
x <- tmp$x; w <- tmp$w; n <- tmp$n;
h0 <- bw.wnrd(x,w)
m = 50; h = seq(h0/10, by = h0/10, length=m)
out = .Fortran(.F_wmise, as.double(x), as.double(w), as.integer(n),
h = as.double(h), mise = as.double(h), as.integer(m))
sele = which(out$mise == min(out$mise))
bw = out$h[sele[1]]
list(bw = bw, x = out$h, y = out$mise)
}
bw.blscv <- function(x,w,h,gridsize=256)
{
n <- length(x);
if(missing(w)) w = rep(1/n,n)
h0 <- ifelse(missing(h), bw.wnrd0(x,w), h)
hl <- h0 * 0.5; hh <- 2.5*h0
iter <- 50; y <- rep(0,iter)
hs <- seq(hl,hh,length=iter)
a <- min(x); b <- max(x);
M <- 2^(ceiling(log(gridsize)/log(2)))
gpoints <- seq(a, b, length = M)
gcounts <- .wlinbin(x, w*n, gpoints, truncate=TRUE)
gcounts <- gcounts * M/n/(b-a)
Myl <- .Fortran(.F_yldist, as.double(gcounts), as.integer(M),
y = double(M/2))$y
ell <- 1:(M/2)
sl <- 2*pi*ell/(b-a)
lscv.temp <- function(h){
tmp2 <- n*h*sqrt(2*pi)
hs2 <- h^2*sl^2
tmp <- exp(-hs2)-2.*exp(-0.5*hs2)
sum(tmp*Myl)*(b-a)+1./tmp2
}
opt <- optimise(f = lscv.temp,
interval = c(0.25 * h0, 5 * h0,
tol = .Machine$double.eps))
return(opt$minimum)
}
bw.wnrd <- function(x, w, freq=FALSE, na.rm=TRUE)
{
size <- ifelse(freq, sum(w), length(x))
tmp = .wtdata(x,w,na.rm=na.rm)
x <- tmp$x; w <- tmp$w; n <- tmp$n;
s = .wsd(x,w); iqr = .wiqr(x,w);
1.06*min(s,iqr/1.34)*size^-.2
}
bw.wnrd0 <- function(x, w, freq=FALSE, na.rm=TRUE)
{
size <- ifelse(freq, sum(w), length(x))
tmp = .wtdata(x,w,na.rm=na.rm)
x <- tmp$x; w <- tmp$w; n <- tmp$n;
s = .wsd(x,w); iqr = .wiqr(x,w);
0.9*min(s,iqr/1.34)*size^-.2
}
.wtdata <- function(x,w,na.rm=TRUE){
n <- length(x)
if(missing(w)) w <- rep(1/n,n)
stopifnot(all(w>0))
if(any(is.na(x))){
if(na.rm){
sele <- !is.na(x)
x <- x[sele]; w <- w[sele]
n <- length(x)
}else stop("Missing value(s) in 'x'")
stopifnot(any(!is.na(w)))
}
x.finite <- is.finite(x)
totMass <- mean(x.finite)
x <- x[x.finite]; w <- w[x.finite];
n <- length(x); w <- w/sum(w)
list(x=x,w=w,n=n,totMass=totMass)
}
.wmean <- function(x,w)
ifelse(missing(w), mean(x), sum(x*w)/sum(w))
.wvar <- function(x,w)
sum((x-.wmean(x,w))^2 * w/sum(w))
.wsd <- function(x,w)
sqrt(.wvar(x,w))
.wquantile <- function(x,w,level){
if(missing(w)) w = rep(1,length(x))/length(x)
else stopifnot(length(x)==length(w))
w <- w/sum(w)
ox <- order(x); w <- w[ox]; x <- x[ox]
Fw <- cumsum(w)/sum(w)
stopifnot(all(!is.na(level)))
stopifnot(all(level <= 1 & level >= 0))
sele = level > min(Fw) & level < max(Fw)
out = rep(0, length(level))
if(sum(sele)>0){
out[sele] = approx(Fw,x,level[sele])$y
}
if(sum(!sele)>0)
out[!sele] = as.numeric(quantile(x,level[!sele], na.rm=TRUE))
out
}
.wiqr <- function(x,w){
diff(.wquantile(x,w,level=c(.25,.75)))
}
.nclass.scott <- function (x,w)
{
size <- length(x)
h <- 3.5 * .wsd(x,w) * size^(-1/3)
if (h > 0)
ceiling(diff(range(x))/h)
else 1L
}
.nclass.FD <- function (x,w)
{
size <- length(x)
w <- w/sum(w)
h <- .wiqr(x,w)
if (h == 0){
cf <- abs(cumsum(w)-0.5)
h <- x[which(cf==min(cf))[1]]
}
if (h > 0)
ceiling(diff(range(x))/(2 * h * size^(-1/3)))
else 1L
}
.nclass.Sturges <- function (n)
ceiling(log2(n) + 1)
.wlinbin <- function(X, W, gpoints, truncate = TRUE)
{
n <- length(X)
M <- length(gpoints)
trun <- ifelse(truncate, 1L, 0L)
a <- gpoints[1L]
b <- gpoints[M]
.Fortran(.F_wlinbin, as.double(X), as.double(W), as.integer(n),
as.double(a), as.double(b), as.integer(M),
as.integer(trun), wts = double(M))$wts
}
.wedf <- function(y){
stopifnot(class(y)=="wdata")
out = structure(
list(x = y$x, y = cumsum(y$w), data=y
), class = "edf")
}
.plot.edf <-
function (x, main = NULL, xlab = NULL, ylab = "Probability",
zero.line = TRUE, ...)
{
if (is.null(xlab))
xlab <- paste("N =", x$data$n.total, " NA =", x$data$n.rm)
if (is.null(main))
main <- ifelse(is.null(x$data$data.name),
"Empirical Distribution Function",
deparse(x$data$data.name))
plot.default(x, main = main, xlab = xlab, ylab = ylab,
ylim=c(0,1),pch=20,cex=.5,...)
n = length(x$x)
for(i in 1: (n-1))
segments(x$x[i], x$y[i], x$x[i+1], x$y[i],...)
if (zero.line)
abline(h = 0, lwd = 0.1, col = "gray")
invisible(NULL)
}
.lines.edf <- function (x, ...)
{
points(x,pch=20,cex=.5,...)
n = length(x$x)
for(i in 1: (n-1))
segments(x$x[i], x$y[i], x$x[i+1], x$y[i],...)
segments(x$x[n], x$y[n], x$x[n]*10, x$y[n],...)
invisible(NULL)
}
.nwkde <- function(x,w, h, n, a,b, M,tau=4,truncate=FALSE)
{
gpoints <- seq(a, b, length = M)
if(any(w>1)) w <- w/sum(w)
gcounts <- .wlinbin(x, w*n, gpoints, truncate)
delta <- (b - a)/(h * (M-1L))
L <- min(floor(tau/delta), M)
if (L == 0)
warning("Binning grid too coarse for current (small) bandwidth: consider increasing 'gridsize'")
lvec <- 0L:L
kappa <- dnorm(lvec*delta)/(n*h)
P <- 2^(ceiling(log(M+L+1L)/log(2)))
kappa <- c(kappa, rep(0, P-2L*L-1L), rev(kappa[-1L]))
tot <- sum(kappa) * (b-a)/(M-1L) * n
gcounts <- c(gcounts, rep(0L, P-M))
kappa <- fft(kappa/tot)
gcounts <- fft(gcounts)
list(x = gpoints, y = (Re(fft(kappa*gcounts, TRUE))/P)[1L:M], bw = h)
}
|
get_ARPA_Lombardia_W_registry <-
function() {
Metadata <- W_metadata_reshape()
structure(list(Metadata = Metadata))
attr(Metadata, "class") <- c("ARPALdf","ARPALdf_W","tbl_df","tbl","data.frame")
return(Metadata)
}
|
met.ci.single <- function(M) {
eigen <- met.eigen(M)
eigen.max <- eigen[which.max(eigen)]
num <- sum(eigen.max - eigen)
m <- matrix(rep(0, ncol(M) * nrow(M)), ncol = ncol(M), nrow = nrow(M))
e <- sample(c(1:nrow(m)), 1)
m[e, ] <- rep(1, ncol(m))
m[, e] <- rep(1, nrow(m))
diag(m) <- 0
eigen2 <- met.eigen(m)
eigen2.max <- eigen2[which.max(eigen2)]
den <- max(eigen2.max - eigen2)
result <- 100 * (num / den)
names(result) <- "CI"
return(result)
}
|
CurveFit2<-function(Data_Corrected){
NumTemps<-as.data.frame(Data_Corrected$NumberTemps)[1,]
NumProteins<-as.numeric(nrow(Data_Corrected))
Protein<-1
CurveFitStats<-data.frame(matrix(ncol = 11, nrow = NumProteins))
Data_Corrected_Ordered<-Data_Corrected[order(Data_Corrected$Accession),]
NumberRows<-as.numeric(nrow(Data_Corrected_Ordered))
row.names(Data_Corrected_Ordered) <- 1:NumberRows
repeat{
ProteinCount<-1
repeat{
if(ProteinCount==1){
ProteinReplicateNumber<-1
Temperature<-as.data.frame(Data_Corrected_Ordered[Protein,(4+NumTemps):(3+NumTemps*2)])
Abundance<-as.data.frame(Data_Corrected_Ordered[Protein,(7+NumTemps*3):(6+NumTemps*4)])
ProteinCount<-ProteinCount+1
ProteinStart<-Protein
ProteinID<-Data_Corrected_Ordered[Protein,1]
Protein<-Protein+1
} else {
if(ProteinCount>1 & ProteinID==Data_Corrected_Ordered[Protein,1]){
Temperature<-cbind(Temperature,as.data.frame(Data_Corrected_Ordered[Protein,(4+NumTemps):(3+NumTemps*2)]))
Abundance<-cbind(Abundance,as.data.frame(Data_Corrected_Ordered[Protein,(7+NumTemps*3):(6+NumTemps*4)]))
ProteinCount<-ProteinCount+1
Protein<-Protein+1
} else {
ProteinEnd<-Protein-1
break
}
}
if (Protein>NumProteins){
ProteinEnd<-(Protein-1)
break
}
}
Abundance<-as.numeric(t(Abundance))
Temperature<-as.numeric(t(Temperature))
AbundTemp<-as.data.frame(cbind(Temperature,Abundance))
CurveFit2<-nls(Abundance ~ B_Const+((T_Const-B_Const)/(1 + 10^(scal_Const*(xmid_Const-log10(Temperature)))))^1, data = AbundTemp, start = c(T_Const=1,B_Const=.1,xmid_Const=1.7,scal_Const=-10),nls.control(maxiter = 500,warnOnly = TRUE))
T_Const<-CurveFit2$m$getAllPars()[1]
B_Const<-CurveFit2$m$getAllPars()[2]
xmid_Const<-CurveFit2$m$getAllPars()[3]
scal_Const<-CurveFit2$m$getAllPars()[4]
if(CurveFit2$convInfo$isConv==TRUE){
CurveInflection<-10^(CurveFit2$m$getAllPars()[3])
FitParameters<-4
CurveFit2_Summary<-summary(CurveFit2)
CurveSE<-CurveFit2_Summary$sigma
if(CurveInflection < min(Temperature) || CurveInflection > max(Temperature)) {
CurveFit2<-nls(Abundance ~ 0+((T_Const-0)/(1 + 10^(scal_Const*(xmid_Const-log10(Temperature)))))^1, data = AbundTemp, start = c(T_Const=1,xmid_Const=1.7,scal_Const=-10),nls.control(maxiter = 500,warnOnly = TRUE))
if(CurveFit2$convInfo$isConv==TRUE ){
T_Const<-CurveFit2$m$getAllPars()[1]
B_Const<-0
xmid_Const<-CurveFit2$m$getAllPars()[2]
scal_Const<-CurveFit2$m$getAllPars()[3]
CurveFit2_Summary<-summary(CurveFit2)
CurveSE<-CurveFit2_Summary$sigma
PVal<-data.frame(t(CurveFit2_Summary$parameters[,4]))
Xmid_SE<-data.frame(CurveFit2_Summary$parameters[3,2])
Data_CurveFit2Pars<-cbind(T_Const,cbind(B_Const,cbind(xmid_Const,scal_Const)))
colnames(Data_CurveFit2Pars)<-paste(colnames(Data_CurveFit2Pars),"-Protein")
colnames(PVal)<-paste("P-value",colnames(PVal))
colnames(Xmid_SE)<-"Xmid_SE"
FitParameters<-3
} else {
FitParameters<-NA
T_Const<-NA
B_Const<-NA
xmid_Const<-NA
scal_Const<-NA
CurveSE<-NA
PVal<-data.frame(t(c(NA,NA,NA,NA)))
colnames(PVal)<-c("T_Const","B_Const","xmid_Const","scal_Const")
}
} else {
CurveFit2_Summary<-summary(CurveFit2)
CurveSE<-CurveFit2_Summary$sigma
PVal<-data.frame(t(CurveFit2_Summary$parameters[,4]))
Xmid_SE<-data.frame(CurveFit2_Summary$parameters[3,2])
Data_CurveFit2Pars<-cbind(T_Const,cbind(B_Const,cbind(xmid_Const,scal_Const)))
colnames(Data_CurveFit2Pars)<-paste(colnames(Data_CurveFit2Pars),"-Protein")
colnames(PVal)<-paste("P-value",colnames(PVal))
colnames(Xmid_SE)<-"Xmid_SE"
}
} else {
CurveFit2<-nls(Abundance ~ 0+((T_Const-0)/(1 + 10^(scal_Const*(xmid_Const-log10(Temperature)))))^1, data = AbundTemp, start = c(T_Const=1,xmid_Const=1.7,scal_Const=-10),nls.control(maxiter = 500,warnOnly = TRUE))
if(CurveFit2$convInfo$isConv==TRUE ){
T_Const<-CurveFit2$m$getAllPars()[1]
B_Const<-0
xmid_Const<-CurveFit2$m$getAllPars()[2]
scal_Const<-CurveFit2$m$getAllPars()[3]
CurveFit2_Summary<-summary(CurveFit2)
CurveSE<-CurveFit2_Summary$sigma
PVal<-data.frame(t(CurveFit2_Summary$parameters[,4]))
Xmid_SE<-data.frame(CurveFit2_Summary$parameters[3,2])
Data_CurveFit2Pars<-cbind(T_Const,cbind(B_Const,cbind(xmid_Const,scal_Const)))
colnames(Data_CurveFit2Pars)<-paste(colnames(Data_CurveFit2Pars),"-Protein")
colnames(PVal)<-paste("P-value",colnames(PVal))
colnames(Xmid_SE)<-"Xmid_SE"
FitParameters<-3
} else {
FitParameters<-NA
T_Const<-NA
B_Const<-NA
xmid_Const<-NA
scal_Const<-NA
CurveSE<-NA
PVal<-data.frame(t(c(NA,NA,NA,NA)))
colnames(PVal)<-c("T_Const","B_Const","xmid_Const","scal_Const")
Xmid_SE<-data.frame(c(NA))
Data_CurveFit2Pars<-cbind(T_Const,cbind(B_Const,cbind(xmid_Const,scal_Const)))
colnames(Data_CurveFit2Pars)<-paste(colnames(Data_CurveFit2Pars),"-Protein")
colnames(PVal)<-paste("P-value",colnames(PVal))
colnames(Xmid_SE)<-"Xmid_SE"
}
}
Data_CurveFit2_Summary<-cbind(Data_CurveFit2Pars,cbind(FitParameters,cbind(CurveSE,cbind(PVal,Xmid_SE))))
CurveFitStats[ProteinStart:ProteinEnd,]<-Data_CurveFit2_Summary
if (Protein>NumProteins){
break
}
}
colnames(CurveFitStats)<-colnames(Data_CurveFit2_Summary)
Data_CurveFit2<-cbind(Data_Corrected_Ordered,CurveFitStats)
Data_CurveFit2_woNA<-Data_CurveFit2[complete.cases(Data_CurveFit2),]
Rsq<-data.frame(matrix(ncol = 1, nrow = NROW(Data_CurveFit2_woNA)))
if(NROW(Data_CurveFit2_woNA)>0){
row.names(Data_CurveFit2_woNA)<-1:as.numeric(nrow(Data_CurveFit2_woNA))
NumProteins<-as.numeric(nrow(Data_CurveFit2_woNA))
NumTemps<-as.data.frame(Data_CurveFit2_woNA$NumberTemps)[1,]
Protein<-1
repeat{
ProteinCount<-1
repeat{
if(ProteinCount==1){
Temperature<-as.data.frame(Data_CurveFit2_woNA[Protein,(4+NumTemps):(3+NumTemps*2)])
Abundance<-as.data.frame(Data_CurveFit2_woNA[Protein,(7+NumTemps*3):(6+NumTemps*4)])
ProteinID<-Data_CurveFit2_woNA[Protein,1]
T_Const<-Data_CurveFit2_woNA[Protein,(11+NumTemps*4)]
B_Const<-Data_CurveFit2_woNA[Protein,(12+NumTemps*4)]
xmid_Const<-Data_CurveFit2_woNA[Protein,(13+NumTemps*4)]
scal_Const<-Data_CurveFit2_woNA[Protein,(14+NumTemps*4)]
CurveFit_Predict<-B_Const+((T_Const-B_Const)/(1 + 10^(scal_Const*(xmid_Const-log10(Temperature))))^1)
CurveFit_Actual<-t(Abundance)
CurveFit_Mean<-mean(CurveFit_Actual)
CurveFitData_Rsq<-data.frame(as.numeric(Temperature),as.numeric(CurveFit_Predict),as.numeric(CurveFit_Mean),as.numeric(CurveFit_Actual))
ProteinStart<-Protein
ProteinCount<-ProteinCount+1
Protein<-Protein+1
} else {
if(ProteinCount>1 & ProteinID==Data_CurveFit2_woNA[Protein,1]){
Temperature<-cbind(Temperature,as.data.frame(Data_CurveFit2_woNA[Protein,(4+NumTemps):(3+NumTemps*2)]))
Abundance<-cbind(Abundance,as.data.frame(Data_CurveFit2_woNA[Protein,(7+NumTemps*3):(6+NumTemps*4)]))
CurveFit_Predict<-B_Const+((T_Const-B_Const)/(1 + 10^(scal_Const*(xmid_Const-log10(Temperature))))^1)
CurveFit_Actual<-t(Abundance)
CurveFit_Mean<-mean(CurveFit_Actual)
CurveFitData_Rsq<-data.frame(as.numeric(Temperature),as.numeric(CurveFit_Predict),as.numeric(CurveFit_Mean),as.numeric(CurveFit_Actual))
ProteinCount<-ProteinCount+1
Protein<-Protein+1
} else {
break
}
}
if (Protein>NumProteins){
break
}
}
ProteinEnd<-Protein-1
TempCount<-1
RSE<-0
TSE<-0
repeat{
RSE<-((CurveFitData_Rsq[TempCount,2]-CurveFitData_Rsq[TempCount,4])^2)+RSE
TSE<-((CurveFitData_Rsq[TempCount,3]-CurveFitData_Rsq[TempCount,4])^2)+TSE
TempCount<-TempCount+1
if(TempCount>NROW(CurveFitData_Rsq)){
break
}
}
Rsq[ProteinStart:ProteinEnd,]<-1-(RSE/TSE)
if (Protein>NumProteins){
break
}
}
}
colnames(Rsq)<-"Rsq"
Data_CurveFit2_PreComplete<-cbind(Data_CurveFit2_woNA,Rsq)
Data_CurveFit2<-Data_CurveFit2_PreComplete[complete.cases(Data_CurveFit2_PreComplete),]
rm(CurveFitStats,Data_Corrected,Data_Corrected_Ordered,Data_CurveFit2_woNA,Data_CurveFit2_PreComplete)
return(Data_CurveFit2)
}
|
TableStyles <- R6::R6Class("TableStyles",
public = list(
initialize = function(parentTable, themeName=NULL, allowExternalStyles=FALSE) {
if(parentTable$argumentCheckMode > 0) {
checkArgument(parentTable$argumentCheckMode, FALSE, "TableStyles", "initialize", parentTable, missing(parentTable), allowMissing=FALSE, allowNull=FALSE, allowedClasses="BasicTable")
checkArgument(parentTable$argumentCheckMode, FALSE, "TableStyles", "initialize", themeName, missing(themeName), allowMissing=TRUE, allowNull=TRUE, allowedClasses="character")
checkArgument(parentTable$argumentCheckMode, FALSE, "TableStyles", "initialize", allowExternalStyles, missing(allowExternalStyles), allowMissing=TRUE, allowNull=TRUE, allowedClasses="logical")
}
private$p_parentTable <- parentTable
if(private$p_parentTable$traceEnabled==TRUE) private$p_parentTable$trace("TableStyles$new", "Creating new Table Styles...")
private$p_theme <- themeName
private$p_allowExternalStyles <- allowExternalStyles
private$p_styles <- list()
if(private$p_parentTable$traceEnabled==TRUE) private$p_parentTable$trace("TableStyles$new", "Created new Table Styles.")
},
isExistingStyle = function(styleName=NULL) {
if(private$p_parentTable$argumentCheckMode > 0) {
checkArgument(private$p_parentTable$argumentCheckMode, FALSE, "TableStyles", "isExistingStyle", styleName, missing(styleName), allowMissing=FALSE, allowNull=FALSE, allowedClasses="character")
}
if(private$p_parentTable$traceEnabled==TRUE) private$p_parentTable$trace("TableStyles$isExistingStyle", "Checking style exists...", list(styleName=styleName))
styleExists <- styleName %in% names(private$p_styles)
if(private$p_parentTable$traceEnabled==TRUE) private$p_parentTable$trace("TableStyles$isExistingStyle", "Checked style exists.")
return(invisible(styleExists))
},
getStyle = function(styleName=NULL) {
if(private$p_parentTable$argumentCheckMode > 0) {
checkArgument(private$p_parentTable$argumentCheckMode, FALSE, "TableStyles", "getStyle", styleName, missing(styleName), allowMissing=FALSE, allowNull=FALSE, allowedClasses="character")
}
if(private$p_parentTable$traceEnabled==TRUE) private$p_parentTable$trace("TableStyles$getStyle", "Getting style...", list(styleName=styleName))
style <- private$p_styles[[styleName]]
if(is.null(style)) {
stop(paste0("TableStyles$getStyle(): No style exists with the name '", styleName, "'"), call. = FALSE)
}
if(private$p_parentTable$traceEnabled==TRUE) private$p_parentTable$trace("TableStyles$getStyle", "Got style.")
return(invisible(style))
},
addStyle = function(styleName=NULL, declarations= NULL) {
if(private$p_parentTable$argumentCheckMode > 0) {
checkArgument(private$p_parentTable$argumentCheckMode, FALSE, "TableStyles", "addStyle", styleName, missing(styleName), allowMissing=FALSE, allowNull=FALSE, allowedClasses="character")
checkArgument(private$p_parentTable$argumentCheckMode, FALSE, "TableStyles", "addStyle", declarations, missing(declarations), allowMissing=TRUE, allowNull=TRUE, allowedClasses="list", allowedListElementClasses="character")
}
if(private$p_parentTable$traceEnabled==TRUE) private$p_parentTable$trace("TableStyles$addStyle", "Adding style...", list(styleName=styleName))
if(styleName %in% names(private$p_styles)) {
stop(paste0("TableStyles$addStyle(): A style already exists",
" with the name '", styleName, "'. styleName must unique."), call. = FALSE)
}
style <- TableStyle$new(private$p_parentTable, styleName, declarations)
private$p_styles[[styleName]] <- style
if(private$p_parentTable$traceEnabled==TRUE) private$p_parentTable$trace("TableStyles$addStyle", "Added style.")
return(invisible(style))
},
copyStyle = function(styleName=NULL, newStyleName=NULL) {
if(private$p_parentTable$argumentCheckMode > 0) {
checkArgument(private$p_parentTable$argumentCheckMode, FALSE, "TableStyles", "copyStyle", styleName, missing(styleName), allowMissing=FALSE, allowNull=FALSE, allowedClasses="character")
checkArgument(private$p_parentTable$argumentCheckMode, FALSE, "TableStyles", "copyStyle", newStyleName, missing(newStyleName), allowMissing=FALSE, allowNull=FALSE, allowedClasses="character")
}
if(private$p_parentTable$traceEnabled==TRUE) private$p_parentTable$trace("TableStyles$copyStyle", "Copying style...", list(styleName=styleName, newStyleName=newStyleName))
style <- self$getStyle(styleName=styleName)
newStyle <- self$addStyle(styleName=newStyleName, declarations=style$declarations)
if(private$p_parentTable$traceEnabled==TRUE) private$p_parentTable$trace("TableStyles$copyStyle", "Copied style.")
return(invisible(newStyle))
},
asCSSRule = function(styleName=NULL, selector=NULL) {
if(private$p_parentTable$argumentCheckMode > 0) {
checkArgument(private$p_parentTable$argumentCheckMode, FALSE, "TableStyles", "asCSSRule", styleName, missing(styleName), allowMissing=FALSE, allowNull=FALSE, allowedClasses="character")
checkArgument(private$p_parentTable$argumentCheckMode, FALSE, "TableStyles", "asCSSRule", selector, missing(selector), allowMissing=TRUE, allowNull=TRUE, allowedClasses="character")
}
if(private$p_parentTable$traceEnabled==TRUE) private$p_parentTable$trace("TableStyles$asCSSRule", "Getting style as CSS rule...", list(styleName=styleName))
style <- self$getStyle(styleName)
cssRule <- style$asCSSRule(selector=selector)
if(private$p_parentTable$traceEnabled==TRUE) private$p_parentTable$trace("TableStyles$asCSSRule", "Got style as CSS rule.")
return(invisible(cssRule))
},
asNamedCSSStyle = function(styleName=NULL, styleNamePrefix=NULL) {
if(private$p_parentTable$argumentCheckMode > 0) {
checkArgument(private$p_parentTable$argumentCheckMode, FALSE, "TableStyles", "asNamedCSSStyle", styleName, missing(styleName), allowMissing=FALSE, allowNull=FALSE, allowedClasses="character")
checkArgument(private$p_parentTable$argumentCheckMode, FALSE, "TableStyles", "asNamedCSSStyle", styleNamePrefix, missing(styleNamePrefix), allowMissing=TRUE, allowNull=TRUE, allowedClasses="character")
}
if(private$p_parentTable$traceEnabled==TRUE) private$p_parentTable$trace("TableStyles$asNamedCSSStyle", "Getting style as named CSS rule...", list(styleName=styleName, styleNamePrefix=styleNamePrefix))
style <- self$getStyle(styleName)
cssRule <- style$asNamedCSSStyle(styleNamePrefix=styleNamePrefix)
if(private$p_parentTable$traceEnabled==TRUE) private$p_parentTable$trace("TableStyles$asNamedCSSStyle", "Got style as named CSS rule.")
return(invisible(cssRule))
},
asList = function() {
lst <- list()
if(length(private$p_styles) > 0) {
groupNames <- names(private$p_styles)
for (i in 1:length(private$p_styles)) {
groupName <- groupNames[i]
lst[[groupName]] = private$p_styles[[groupName]]$asList()
}
}
return(invisible(lst))
},
asJSON = function() {
if (!requireNamespace("jsonlite", quietly = TRUE)) {
stop("The jsonlite package is needed to convert to JSON. Please install the jsonlite package.", call. = FALSE)
}
jsonliteversion <- utils::packageDescription("jsonlite")$Version
if(numeric_version(jsonliteversion) < numeric_version("1.1")) {
stop("Version 1.1 or above of the jsonlite package is needed to convert to JSON. Please install an updated version of the jsonlite package.", call. = FALSE)
}
return(jsonlite::toJSON(self$asList()))
},
asString = function(seperator=", ") {
if(private$p_parentTable$argumentCheckMode > 0) {
checkArgument(private$p_parentTable$argumentCheckMode, FALSE, "TableStyles", "asString", seperator, missing(seperator), allowMissing=TRUE, allowNull=FALSE, allowedClasses="character")
}
cstr <- ""
if(length(private$p_styles)>0) {
for(i in 1:length(private$p_styles)) {
cg <- private$p_styles[[i]]
sep <- ""
if(i > 1) { sep <- seperator }
cstr <- paste0(cstr, sep, cg$asString())
}
}
return(cstr)
}
),
active = list(
count = function(value) { return(invisible(length(private$p_styles))) },
theme = function(value) { return(invisible(private$p_theme)) },
styles = function(value) { return(invisible(private$p_styles)) },
allowExternalStyles = function(value) {
if(missing(value)) return(invisible(private$p_allowExternalStyles))
else {
if(private$p_parentTable$argumentCheckMode > 0) {
checkArgument(private$p_parentTable$argumentCheckMode, FALSE, "TableStyles", "allowExternalStyles", value, missing(value), allowMissing=FALSE, allowNull=FALSE, allowedClasses="logical")
}
private$p_allowExternalStyles <- value
return(invisible())
}
},
tableStyle = function(value) {
if(missing(value)) return(invisible(private$p_tableStyle))
else {
if(private$p_parentTable$argumentCheckMode > 0) {
checkArgument(private$p_parentTable$argumentCheckMode, FALSE, "TableStyles", "tableStyle", value, missing(value), allowMissing=FALSE, allowNull=FALSE, allowedClasses="character")
}
if(private$p_allowExternalStyles==FALSE) {
if(!(value %in% names(private$p_styles))) stop(paste0("TableStyles$tableStyle: '", value, "' style not found in styles list."))
}
private$p_tableStyle <- value
return(invisible())
}
},
rootStyle = function(value) {
if(missing(value)) return(invisible(private$p_rootStyle))
else {
if(private$p_parentTable$argumentCheckMode > 0) {
checkArgument(private$p_parentTable$argumentCheckMode, FALSE, "TableStyles", "rootStyle", value, missing(value), allowMissing=FALSE, allowNull=FALSE, allowedClasses="character")
}
if(private$p_allowExternalStyles==FALSE) {
if(!(value %in% names(private$p_styles))) stop(paste0("TableStyles$rootStyle: '", value, "' style not found in styles list."))
}
private$p_rootStyle <- value
return(invisible())
}
},
rowHeaderStyle = function(value) {
if(missing(value)) return(invisible(private$p_rowHeaderStyle))
else {
if(private$p_parentTable$argumentCheckMode > 0) {
checkArgument(private$p_parentTable$argumentCheckMode, FALSE, "TableStyles", "rowHeaderStyle", value, missing(value), allowMissing=FALSE, allowNull=FALSE, allowedClasses="character")
}
if(private$p_allowExternalStyles==FALSE) {
if(!(value %in% names(private$p_styles))) stop(paste0("TableStyles$rowHeaderStyle: '", value, "' style not found in styles list."))
}
private$p_rowHeaderStyle <- value
return(invisible())
}
},
colHeaderStyle = function(value) {
if(missing(value)) return(invisible(private$p_colHeaderStyle))
else {
if(private$p_parentTable$argumentCheckMode > 0) {
checkArgument(private$p_parentTable$argumentCheckMode, FALSE, "TableStyles", "colHeaderStyle", value, missing(value), allowMissing=FALSE, allowNull=FALSE, allowedClasses="character")
}
if(private$p_allowExternalStyles==FALSE) {
if(!(value %in% names(private$p_styles))) stop(paste0("TableStyles$colHeaderStyle: '", value, "' style not found in styles list."))
}
private$p_colHeaderStyle <- value
return(invisible())
}
},
cellStyle = function(value) {
if(missing(value)) return(invisible(private$p_cellStyle))
else {
if(private$p_parentTable$argumentCheckMode > 0) {
checkArgument(private$p_parentTable$argumentCheckMode, FALSE, "TableStyles", "cellStyle", value, missing(value), allowMissing=FALSE, allowNull=FALSE, allowedClasses="character")
}
if(private$p_allowExternalStyles==FALSE) {
if(!(value %in% names(private$p_styles))) stop(paste0("TableStyles$cellStyle: '", value, "' style not found in styles list."))
}
private$p_cellStyle <- value
return(invisible())
}
},
totalStyle = function(value) {
if(missing(value)) return(invisible(private$p_totalStyle))
else {
if(private$p_parentTable$argumentCheckMode > 0) {
checkArgument(private$p_parentTable$argumentCheckMode, FALSE, "TableStyles", "totalStyle", value, missing(value), allowMissing=FALSE, allowNull=FALSE, allowedClasses="character")
}
if(private$p_allowExternalStyles==FALSE) {
if(!(value %in% names(private$p_styles))) stop(paste0("TableStyles$totalStyle: '", value, "' style not found in styles list."))
}
private$p_totalStyle <- value
return(invisible())
}
}
),
private = list(
p_parentTable = NULL,
p_theme = NULL,
p_allowExternalStyles = FALSE,
p_styles = NULL,
p_tableStyle = NULL,
p_rootStyle = NULL,
p_rowHeaderStyle = NULL,
p_colHeaderStyle = NULL,
p_cellStyle = NULL,
p_totalStyle = NULL
)
)
|
summary.CA <- function(object,nb.dec=3,nbelements=10,ncp=3,align.names=TRUE,file="",...){
print2 <- function(mat,file=""){
if (file=="") print(mat, quote = FALSE, right = TRUE)
else {
mat <- cbind(format(rownames(mat)),mat)
mat <- rbind(colnames(mat),mat)
mat2 <- cbind(format(mat[,1],justify="right"),format(mat[,2],justify="right"))
for (k in 3:ncol(mat)) mat2 <- cbind(mat2,format(mat[,k],justify="right"))
mat2 <- cbind(mat2,"\n")
for (i in 1:nrow(mat2)) cat(mat2[i,],file=file,append=TRUE)
}
}
print3 <- function(obj,file="",ncp,width.row=0,nbelements=nbelements){
list.obj <- match.arg(names(obj),c("dist","inertia","coord","cos2","contrib","v.test","vtest"),several.ok=TRUE)
nb.col <- sum(c("coord","cos2","contrib","v.test")%in%list.obj)
nbelements <- min(nbelements,nrow(obj$coord))
mat <- matrix(NA,nbelements,sum(c("dist","inertia")%in%list.obj)+nb.col*ncp)
colnames(mat) <- paste("v",1:ncol(mat))
rownames(mat) <- format(rownames(obj$coord)[1:nbelements,drop=FALSE],width=width.row)
indice <- 1
if (sum(c("dist","inertia")%in%list.obj)) {
if ("dist"%in%list.obj) {
if (!is.null(obj$dist)) mat[,indice] <- obj$dist[1:nbelements]
colnames(mat)[indice] <- "Dist"
}
if ("inertia"%in%list.obj) {
if (!is.null(obj$inertia)) mat[,indice] <- obj$inertia[1:nbelements]*1000
colnames(mat)[indice] <- "Iner*1000"
}
indice <- indice + 1
}
if ("coord"%in%list.obj){
if (!is.null(obj$coord)) mat[,indice+nb.col*(0:(ncp-1))] <- obj$coord[1:nbelements,1:ncp,drop=FALSE]
colnames(mat)[indice+nb.col*(0:(ncp-1))] <- paste("Dim.",1:ncp,sep="")
indice <- indice +1
}
if ("contrib"%in%list.obj){
if (!is.null(obj$contrib)) mat[,indice+nb.col*(0:(ncp-1))] <- obj$contrib[1:nbelements,1:ncp,drop=FALSE]
colnames(mat)[indice+nb.col*(0:(ncp-1))] <- "ctr"
indice <- indice +1
}
if ("cos2"%in%list.obj){
if (!is.null(obj$cos2)) mat[,indice+nb.col*(0:(ncp-1))] <- obj$cos2[1:nbelements,1:ncp,drop=FALSE]
colnames(mat)[indice+nb.col*(0:(ncp-1))] <- "cos2"
indice <- indice +1
}
if ("v.test"%in%list.obj){
if (!is.null(obj$v.test)) mat[,indice+nb.col*(0:(ncp-1))] <- obj$v.test[1:nbelements,1:ncp,drop=FALSE]
colnames(mat)[indice+nb.col*(0:(ncp-1))] <- "v.test"
indice <- indice +1
}
mat <- format(round(mat,nb.dec))
if (sum(c("dist","inertia")%in%list.obj)) mat2 <- cbind("|", mat[1:nbelements,1,drop=FALSE],"|")
else mat2 <- "|"
for (k in 1:ncp) mat2 <- cbind(mat2, mat[,(1+sum(c("dist","inertia")%in%list.obj)+nb.col*(k-1)):(sum(c("dist","inertia")%in%list.obj)+nb.col*k),drop=FALSE],"|")
colnames(mat2)[1] <- ""
print2(as.matrix(mat2),file=file)
}
res <- object
if (!inherits(res, "CA")) stop("non convenient object")
cat(paste("\nCall:\n"),file=file)
cat(paste(deparse(res$call$call),"\n"),file=file,append=TRUE)
cat("\n",file=file,append=TRUE)
IT <- sum(res$eig[, 1] )* sum(res$call$X)
df <- (nrow(res$call$X) - 1) * (ncol(res$call$X) - 1)
pc <- pchisq(IT, df = df,lower.tail = FALSE)
cat("The chi square of independence between the two variables is equal to", IT,
"(p-value = ", pc, ").\n",file=file,append=TRUE)
cat("\nEigenvalues\n",file=file,append=TRUE)
eige <- format(t(round(res$eig[,1:3],nb.dec)),justify="right")
rownames(eige) <- c("Variance","% of var.","Cumulative % of var.")
colnames(eige) <- paste("Dim",1:ncol(eige),sep=".")
print2(eige,file=file)
width.row <- 0
if (align.names==TRUE){
aux <- match.arg(names(res),c("ind","ind.sup","freq","freq.sup","var","quanti.var","quanti.sup","quali.var","quali.sup","quanti.sup","quali.sup","group","row","row.sup","col","col.sup"),several.ok = TRUE)
width.row = max(nchar(rownames(res[aux[1]][[1]]$coord)))
for (k in 1:length(aux)) width.row = max(width.row,nchar(rownames(res[aux[k]][[1]]$coord)[1:min(nrow(res[aux[k]][[1]]$coord),nbelements)]))
}
ncp <- min(res$call$ncp,ncp)
cat("\nRows",file=file,append=TRUE)
if (nrow(res$row$coord) > nbelements) cat(paste(" (the ",nbelements," first)",sep=""),file=file,append=TRUE)
cat("\n",file=file,append=TRUE)
print3(res$row,file=file,ncp=ncp,width.row=width.row,nbelements=nbelements)
cat("\nColumns",file=file,append=TRUE)
if (nrow(res$col$coord) > nbelements) cat(paste(" (the ",nbelements," first)",sep=""),file=file,append=TRUE)
cat("\n",file=file,append=TRUE)
print3(res$col,file=file,ncp=ncp,width.row=width.row,nbelements=nbelements)
if (!is.null(res$row.sup)){
cat("\nSupplementary row",file=file,append=TRUE)
if (nrow(res$row.sup$coord)>1) cat("s",file=file,append=TRUE)
if (nrow(res$row.sup$coord) > nbelements) cat(paste(" (the ",nbelements," first)",sep=""),file=file,append=TRUE)
cat("\n",file=file,append=TRUE)
print3(res$row.sup,file=file,ncp=ncp,width.row=width.row,nbelements=nbelements)
}
if (!is.null(res$col.sup)){
cat("\nSupplementary column",file=file,append=TRUE)
if (nrow(res$col.sup$coord)>1) cat("s",file=file,append=TRUE)
if (nrow(res$col.sup$coord) > nbelements) cat(paste(" (the ",nbelements," first)",sep=""),file=file,append=TRUE)
cat("\n",file=file,append=TRUE)
print3(res$col.sup,file=file,ncp=ncp,width.row=width.row,nbelements=nbelements)
}
if (!is.null(res$quanti.sup)){
cat("\nSupplementary continuous variable",file=file,append=TRUE)
if (nrow(res$quanti.sup$coord)>1) cat("s",file=file,append=TRUE)
cat("\n",file=file,append=TRUE)
print3(res$quanti.sup,file=file,ncp=ncp,width.row=width.row,nbelements=nbelements)
}
if (!is.null(res$quali.sup)){
cat("\nSupplementary categorical variable",file=file,append=TRUE)
if (nrow(res$quali.sup$coord)>1) cat("s",file=file,append=TRUE)
cat("\n",file=file,append=TRUE)
print3(res$quali.sup,file=file,ncp=ncp,width.row=width.row,nbelements=nbelements)
}
}
|
add_bar_grouped <-
function(shift,
data,
cat,
series,
k ,
y,
width_of_one,
series_labels = NULL,
df_styles = NULL) {
svg_string <- ""
labels <- ""
value_label <- ""
x <- get_margins()$left + shift
for (i in length(series):1){
value <- data[,series[i]]
color <- get_color_stacked(i)
if(length(series) == 2 || i == 1){
styles <- df_styles[,length(series)-i+1]
}else{
styles <- df_styles[,i - 1]
}
if(i != 1 && value[k] < 0){
x <- x - (width_of_one*abs(value[k]))
}
if(i == 1){
rect <- draw_triangle("", width_of_one*value[k] + x ,y+8 , orientation = "bottom", style=styles[k])
}else{
rect <- draw_rect(x, y - 4.8*(i-2), color$bar_color, (width_of_one*abs(value[k])), 16, style = styles[k])
}
x <- get_margins()$left + shift
svg_string <- paste(svg_string, rect, labels, sep = '\n')
if(i == 2){
if(value[k]>0){value_label <- paste(value_label,
add_label((x + width_of_one*value[k]+4.8), y+12, value[k], anchor="start"),
sep='\n')}
else{value_label <- add_label(x + 4.8, y+12, value[k], anchor="start")}
}
}
return(paste(svg_string,
value_label,
add_label( get_margins()$left - 7.8, y+14, cat[k], anchor="end"),
draw_line(get_margins()$left + shift, get_margins()$left+shift, (y-4.8) - 4.8, (y+16+4.8)),
sep = '\n'
))
}
draw_bars_grouped <- function(svg_string, data, cat, foreground, background, markers, series_labels, df_with_real_values=NULL, df_styles = NULL){
bars <- svg_string
y = get_margins()$top
if(length(foreground) == 1){forg <- data[ ,foreground]
}else{
forg <- foreground
foreground <- "foreground"}
if(length(background) == 1){backg <- data[ ,background]
}else{
backg <- background
background <- "background"}
if(length(markers) == 1){mark <- data[ ,markers]
}else{
mark <- markers
markers <- "markers"}
if(length(cat) == 1){cat <- data[ ,cat]
}
series <- c(markers, foreground, background)
data <- cbind(mark, forg, backg)
colnames(data) <- series
data <- as.data.frame(data)
neg <- data[, series][data[,series] < 0]
maximum <- max(abs(data[,series]))
width_of_one <- 200/maximum
if(length(neg) == 0){shift <- 0
}else{
shift <- width_of_one*abs(min(neg))}
if(length(series)==3){
bars <- paste(
bars,
add_label(get_margins()$left + shift + data[,series[3]][1]*width_of_one/2, get_margins()$top - 4.8*(length(series)-1), series_labels[3]),
sep= '\n'
)
}
bars <- paste(bars,
add_label(get_margins()$left + shift + data[,series[2]][length(cat)]*width_of_one/2, get_margins()$top + 24 * length(cat) + 4.8, series_labels[2]),
add_bar_grouped(shift, data, cat, series, 1, y, width_of_one, series_labels, df_styles=df_styles),
sep='\n')
y <- y + 24
for(i in 2:length(cat)){
bars <- paste(bars,
add_bar_grouped(shift ,data, cat, series,i, y, width_of_one, df_styles = df_styles),
sep='\n')
y <- y + 24
}
return (bars)
}
bar_chart_grouped <- function(data, cat, foreground, background, markers=NULL, series_labels, styles = NULL){
svg_string <- initialize(width = 320 + get_margins()$left, height= get_margins()$top + 24*length(cat) + get_margins()$top) %>%
draw_bars_grouped(data, cat, foreground, background, markers, series_labels, df_styles = styles) %>%
finalize()
class(svg_string) <- c('tidychart', 'character')
return(svg_string)
}
|
soboltouati <- function(model = NULL, X1, X2, conf = 0.95, ...) {
if ((ncol(X1) != ncol(X2)) | (nrow(X1) != nrow(X2)))
stop("The samples X1 and X2 must have the same dimensions")
p <- ncol(X1)
X <- rbind(X1,X2)
for (i in 1:p) {
Xb <- X1
Xb[,i] <- X2[,i]
X <- rbind(X, Xb)
}
x <- list(model = model, X1 = X1, X2 = X2, conf = conf, X = X,
call = match.call())
class(x) <- "soboltouati"
if (!is.null(x$model)) {
response(x, ...)
tell(x)
}
return(x)
}
Pmv = function(x,Y,Z){
cov11 = cov(Y,Z)
cov21 = cov(Y^2,Z)
cov12 = cov(Y,Z^2)
cov22 = cov(Y^2,Z^2)
cov31 = cov(Y^3,Z)
cov13 = cov(Y,Z^3)
EY = mean(Y)
EY2 = mean(Y^2)
EZ = mean(Z)
EZ2 = mean(Z^2)
sdY = sd(Y)
sdZ = sd(Z)
corYZ = cor(Y,Z)
K11 = var((Y-EY)*(Z-EZ))
K12 = (cov31 - 3*EY*cov21 - cov11*(EY2-4*EY^2))/(2*sdY)
K13 = (cov13 - 3*EZ*cov12 - cov11*(EZ2-4*EZ^2))/(2*sdZ)
K22 = (mean((Y-EY)^4) - sdY^4)/(4*sdY^2)
K23 = (cov((Y-EY)^2,(Z-EZ)^2) + 2*EZ*cov((Y-EY)^2,(Z-EZ)) - 2*EZ*cov((Y-EY)^2, Y-EY))/(4*sdY*sdZ)
K33 = (mean((Z-EZ)^4) - sdZ^4)/(4*sdZ^2)
return(abs((K22/(sdY^2) + K33/(sdZ^2) + 2*K23/(sdY*sdZ))*x^2
- 2*x*(K12/sdY + K13/sdZ)/(sdY*sdZ)
+ K11/((sdY*sdZ)^2)))
}
estim.soboltouati <- function(data, i = 1 : nrow(data), conf=0) {
d <- as.matrix(data[i, ])
n <- nrow(d)
p <- ncol(d)-2
V <- var(d[, 1])
ecor <- rep(0,p) ; ecorcompl <- rep(0,p)
if(conf != 0) {
VV <- matrix(V,nrow=1,ncol=3,dimnames=list(1,c("estim","CIinf","CIsup")))
estcor <- matrix(0,nrow=p,ncol=3,dimnames=list(2:(p+1),c("estim","CIinf","CIsup")))
estcorcompl <- matrix(0,nrow=p,ncol=3,dimnames=list((p+2):(2*p+1),c("estim","CIinf","CIsup")))
}
for(ii in 1:p) {
ecor[ii] <- cor(d[,2],d[,ii+2],use="pairwise.complete.obs")
ecorcompl[ii] <- cor(d[,1],d[,ii+2],use="pairwise.complete.obs")
if(conf != 0) {
estcor[ii,1] <- ecor[ii]
tau2 = Pmv(estcor[ii,1],d[,2],d[,ii+2])
estcor[ii,2] <- estcor[ii,1] - sqrt(tau2)*qnorm((1+conf)/2)/sqrt(n)
estcor[ii,3] <- estcor[ii,1] + sqrt(tau2)*qnorm((1+conf)/2)/sqrt(n)
estcorcompl[ii,1] <- ecorcompl[ii]
tau2 = Pmv(estcorcompl[ii,1],d[,1],d[,ii+2])
estcorcompl[ii,2] <- estcorcompl[ii,1] + sqrt(tau2)*qnorm((1+conf)/2)/sqrt(n)
estcorcompl[ii,3] <- estcorcompl[ii,1] - sqrt(tau2)*qnorm((1+conf)/2)/sqrt(n)
}
}
if(conf != 0)
{ return(rbind(VV, estcor, estcorcompl))}
else
{ return(c(V, ecor, ecorcompl))}
}
tell.soboltouati <- function(x, y = NULL, return.var = NULL, ...) {
id <- deparse(substitute(x))
if (! is.null(y)) {
x$y <- y
} else if (is.null(x$y)) {
stop("y not found")
}
p <- ncol(x$X1)
n <- nrow(x$X1)
data <- matrix(x$y, nrow = n)
V <- data.frame(original = estim.soboltouati(data, 1:n, x$conf))
if(x$conf){colnames(V) <- c("original","min. c.i.","max. c.i.")}
else{colnames(V) <- c("original")}
S <- V[2:(p + 1),, drop = FALSE]
T <- 1 - V[(p + 2):(2 * p + 1),, drop = FALSE]
rownames(S) <- colnames(x$X1)
rownames(T) <- colnames(x$X1)
x$V <- V
x$S <- S
x$T <- T
assign(id, x, parent.frame())
}
print.soboltouati <- function(x, ...) {
cat("\nCall:\n", deparse(x$call), "\n", sep = "")
if (!is.null(x$y)) {
cat("\nModel runs:", length(x$y), "\n")
cat("\nFirst order indices:\n")
if(!is.null(x$S$original.CIinf)) {
df=data.frame(pointEstimate=x$S[,1], minCI=x$S[,2], maxCI=x$S[,3])
colnames(df)=c("estimate","min. c.i.","max. c.i.")
print(df)
} else {
print(x$S)
}
cat("\nTotal indices:\n")
if(!is.null(x$T$original.CIinf)) {
df=data.frame(pointEstimate=x$T[,1], minCI=x$T[,2], maxCI=x$T[,3])
colnames(df)=c("estimate","min. c.i.","max. c.i.")
print(df)
} else {
print(x$T)
}
}
}
plot.soboltouati <- function(x, ylim = c(0, 1), ...) {
if (!is.null(x$y)) {
p <- ncol(x$X1)
pch = c(21, 24)
nodeplot(x$S, xlim = c(1, p + 1), ylim = ylim, pch = pch[1])
nodeplot(x$T, xlim = c(1, p + 1), ylim = ylim, labels = FALSE,
pch = pch[2], at = (1:p)+.3, add = TRUE)
legend(x = "topright", legend = c("main effect", "total effect"), pch = pch)
}
}
ggplot.soboltouati <- function(x, ylim = c(0, 1), ...) {
if (!is.null(x$y)) {
p <- ncol(x$X1)
pch = c(21, 24)
nodeggplot(listx = list(x$S,x$T), xname = c("Main effet","Total effect"), ylim = ylim, pch = pch)
}
}
|
GroupFXTrades = function(group_trades, trade_classes_tree,hedging_set_name)
{
lapply(group_trades, function(x) x$base_ccy="EUR")
lapply(group_trades, function(x) x$setFXDynamic())
ccypairs <- unique(lapply(group_trades, function(x) x$ccyPair))
if(!missing(hedging_set_name))
{
if(substr(hedging_set_name,1,4)=="Vol_"||substr(hedging_set_name,1,6)=="Basis_")
temp_ccypairs = paste0(hedging_set_name,"_",ccypairs)
}else
{ temp_ccypairs = ccypairs}
ccypairs_addon <- array(data<-0,dim<-length(ccypairs))
ccypairs_tree = list()
if(length(trade_classes_tree[["Currency Pairs"]])==0)
{ ccypairs_tree_name = trade_classes_tree$AddChild("Currency Pairs")
}else
{ ccypairs_tree_name = trade_classes_tree[["Currency Pairs"]]}
for (j in 1:length(ccypairs))
{
ccypairs_trades <- group_trades[sapply(group_trades, function(x) (x$ccyPair==temp_ccypairs[j]))]
ccypairs_tree[[j]] = ccypairs_tree_name$AddChild(temp_ccypairs[[j]])
trades_tree_name = ccypairs_tree[[j]]$AddChild("Trades")
for (l in 1:length(ccypairs_trades))
{
tree_trade = trades_tree_name$AddChild(ccypairs_trades[[l]]$external_id)
tree_trade$trade_details = Trading::GetTradeDetails(ccypairs_trades[[l]])
tree_trade$trade = ccypairs_trades[[l]]
}
}
return(trade_classes_tree)
}
|
context("Testing add_prior_information")
orig_cell_ids <- c("a", "b", "c", "d", "e", "f")
cell_ids <- unlist(map(1:100, ~ paste0(orig_cell_ids, .)))
milestone_ids <- c("W", "X", "Y", "Z", "A")
milestone_network <- tribble(
~from, ~to, ~length, ~directed,
"W", "X", 2, TRUE,
"X", "Y", 3, TRUE,
"X", "Z", 4, TRUE,
"Z", "A", 5, TRUE
)
divergence_regions <- tribble(
~divergence_id, ~milestone_id, ~is_start,
"XYZ", "X", TRUE,
"XYZ", "Y", FALSE,
"XYZ", "Z", FALSE
)
milestone_percentages <- tribble(
~cell_id, ~milestone_id, ~percentage,
"a", "W", 1,
"b", "W", .2,
"b", "X", .8,
"c", "X", .8,
"c", "Z", .2,
"d", "Z", 1,
"e", "X", .3,
"e", "Y", .2,
"e", "Z", .5,
"f", "Z", .8,
"f", "A", .2
) %>%
crossing(i = 1:100) %>%
mutate(cell_id = paste0(cell_id, i)) %>%
select(-i)
progressions <- convert_milestone_percentages_to_progressions(
cell_ids, milestone_ids, milestone_network, milestone_percentages
)
num_genes <- 100
gene_ids <- paste0("Gene", seq_len(num_genes))
expression <- matrix(rbinom(num_genes * length(cell_ids), 10000, .01), ncol = num_genes, dimnames = list(cell_ids, gene_ids))
feature_info <- tibble(
feature_id = gene_ids,
test = 1,
housekeeping = sample(c(T, F), size = length(gene_ids), replace = TRUE)
)
cell_info <- tibble(
cell_id = cell_ids,
test = 2,
simulationtime = runif(length(cell_ids)),
timepoint = runif(length(cell_ids))
)
test_that("Testing generate_prior_information", {
tmp <- tempfile()
on.exit(file.remove(tmp))
sink(tmp)
prior_info <-
generate_prior_information(
cell_ids = cell_ids,
milestone_ids = milestone_ids,
milestone_network = milestone_network,
milestone_percentages = milestone_percentages,
progressions = progressions,
divergence_regions = divergence_regions,
expression = expression,
feature_info = feature_info,
cell_info = cell_info,
verbose = TRUE
)
sink()
expected_prior <- c(
"start_milestones",
"start_id",
"end_milestones",
"end_id",
"groups_id",
"groups_network",
"features_id",
"groups_n",
"timecourse_continuous",
"timecourse_discrete",
"end_n",
"start_n",
"leaves_n"
)
testthat::expect_true(all(expected_prior %in% names(prior_info)))
testthat::expect_equal(prior_info$start_milestones, "W")
testthat::expect_equal(gsub("[0-9]+", "", prior_info$start_id), "a")
testthat::expect_equal(prior_info$end_milestones %>% sort, c("A", "Y"))
testthat::expect_equal(gsub("[0-9]+", "", prior_info$end_id), c("b", "f"))
join_check <-
milestone_percentages %>%
group_by(cell_id) %>%
arrange(desc(percentage)) %>%
slice(1) %>%
select(-percentage) %>%
ungroup() %>%
full_join(prior_info$groups_id, by = "cell_id")
testthat::expect_equal(join_check$group_id, join_check$milestone_id)
testthat::expect_equal(prior_info$groups_network, milestone_network %>% select(from, to))
testthat::expect_true(all(prior_info$features_id %in% gene_ids))
testthat::expect_equal(prior_info$groups_n, 4)
testthat::expect_equal(prior_info$timecourse_continuous, set_names(cell_info$simulationtime, cell_info$cell_id))
testthat::expect_equal(prior_info$timecourse_discrete, set_names(cell_info$timepoint, cell_info$cell_id))
testthat::expect_equal(prior_info$end_n, 2)
testthat::expect_equal(prior_info$start_n, 1)
testthat::expect_equal(prior_info$leaves_n, 3)
})
test_that("Testing add_prior_information", {
trajectory <-
wrap_data(
id = "test",
cell_ids = cell_ids,
cell_info = cell_info
) %>% add_trajectory(
milestone_ids = milestone_ids,
milestone_network = milestone_network,
milestone_percentages = milestone_percentages,
divergence_regions = divergence_regions
) %>% add_expression(
counts = expression,
expression = expression,
feature_info = feature_info
)
trajectory2 <- add_prior_information(trajectory, verbose = FALSE)
prior_info <- trajectory2$prior_information
expect_false(is_wrapper_with_prior_information(trajectory))
expect_true(is_wrapper_with_prior_information(trajectory2))
expected_prior <- c(
"start_milestones",
"start_id",
"end_milestones",
"end_id",
"groups_id",
"groups_network",
"features_id",
"groups_n",
"timecourse_continuous",
"timecourse_discrete",
"start_n",
"end_n",
"leaves_n"
)
testthat::expect_true(all(expected_prior %in% names(prior_info)))
testthat::expect_equal(prior_info$start_milestones, "W")
testthat::expect_equal(gsub("[0-9]+", "", prior_info$start_id), "a")
testthat::expect_equal(prior_info$end_milestones %>% sort, c("A", "Y"))
testthat::expect_equal(gsub("[0-9]+", "", prior_info$end_id), c("b", "f"))
join_check <-
milestone_percentages %>%
group_by(cell_id) %>%
arrange(desc(percentage)) %>%
slice(1) %>%
select(-percentage) %>%
ungroup() %>%
full_join(prior_info$groups_id, by = "cell_id")
testthat::expect_equal(join_check$group_id, join_check$milestone_id)
testthat::expect_equal(prior_info$groups_network, milestone_network %>% select(from, to))
testthat::expect_true(all(prior_info$features_id %in% gene_ids))
testthat::expect_equal(prior_info$groups_n, 4)
testthat::expect_equal(prior_info$timecourse_continuous, set_names(cell_info$simulationtime, cell_info$cell_id))
testthat::expect_equal(prior_info$timecourse_discrete, set_names(cell_info$timepoint, cell_info$cell_id))
testthat::expect_equal(prior_info$end_n, 2)
testthat::expect_equal(prior_info$start_n, 1)
testthat::expect_equal(prior_info$leaves_n, 3)
})
orig_cell_ids <- c("a", "b", "c", "d", "e", "f")
cell_ids <- orig_cell_ids %>% map(~paste0(., seq_len(20))) %>% unlist()
orig_map <- set_names(gsub("[0-9]+", "", cell_ids), cell_ids)
milestone_ids <- c("X", "Y", "Z")
milestone_network <- tribble(
~from, ~to, ~length, ~directed,
"X", "Y", 3, FALSE,
"Y", "Z", 4, FALSE,
"Z", "X", 5, FALSE
)
divergence_regions <- NULL
orig_progressions <- tribble(
~orig_cell_id, ~from, ~to, ~percentage,
"a", "Z", "X", 1,
"b", "X", "Y", 0.8,
"c", "X", "Y", 1,
"d", "Y", "Z", 0.75,
"e", "Y", "Z", 1,
"f", "Z", "X", .6
)
progressions <-
tibble(cell_id = cell_ids, orig_cell_id = orig_map) %>%
left_join(orig_progressions, by = "orig_cell_id") %>%
mutate(
percentage = percentage + runif(n(), -.3, .3),
percentage = ifelse(percentage > 1, 1, ifelse(percentage < 0, 0, percentage))
) %>%
select(-orig_cell_id)
milestone_percentages <-
convert_progressions_to_milestone_percentages(
cell_ids,
milestone_ids,
milestone_network,
progressions
)
num_genes <- 20
orig_gene_ids <- paste0("Gene", seq_len(num_genes))
orig_expression <- matrix(rbinom(num_genes * length(cell_ids), 10000, .01), ncol = num_genes, dimnames = list(cell_ids, orig_gene_ids))
milpct <- milestone_percentages %>% reshape2::acast(cell_id ~ milestone_id, value.var = "percentage", fill = 0)
expression <- cbind(orig_expression, milpct) * 100 + 2
gene_ids <- colnames(expression)
test_that("Testing generate_prior_information", {
prior_info <-
generate_prior_information(
cell_ids = cell_ids,
milestone_ids = milestone_ids,
milestone_network = milestone_network,
milestone_percentages = milestone_percentages,
progressions = progressions,
divergence_regions = divergence_regions,
expression = expression
)
expected_prior <- c(
"start_milestones",
"start_id",
"end_milestones",
"end_id",
"groups_id",
"groups_network",
"features_id",
"groups_n",
"timecourse_continuous",
"timecourse_discrete",
"end_n"
)
testthat::expect_true(all(expected_prior %in% names(prior_info)))
join_check <-
milestone_percentages %>%
group_by(cell_id) %>%
arrange(desc(percentage)) %>%
slice(1) %>%
select(-percentage) %>%
ungroup() %>%
full_join(prior_info$groups_id, by = "cell_id")
testthat::expect_equal(join_check$group_id, join_check$milestone_id)
testthat::expect_equal(prior_info$groups_network, milestone_network %>% select(from, to))
testthat::expect_true(all(prior_info$features_id %in% gene_ids))
testthat::expect_equal(prior_info$groups_n, 3)
})
test_that("Testing add_prior_information", {
trajectory <-
wrap_data(
id = "test",
cell_ids = cell_ids
) %>% add_trajectory(
milestone_ids = milestone_ids,
milestone_network = milestone_network,
milestone_percentages = milestone_percentages,
divergence_regions = divergence_regions
) %>% add_expression(
expression = expression,
counts = expression
)
tmp <- tempfile()
on.exit(file.remove(tmp))
sink(tmp)
trajectory2 <- add_prior_information(trajectory, verbose = TRUE)
sink()
prior_info <- trajectory2$prior_information
expect_false(is_wrapper_with_prior_information(trajectory))
expect_true(is_wrapper_with_prior_information(trajectory2))
expected_prior <- c(
"start_milestones",
"start_id",
"end_milestones",
"end_id",
"groups_id",
"groups_network",
"features_id",
"groups_n",
"timecourse_continuous",
"timecourse_discrete",
"end_n"
)
testthat::expect_true(all(expected_prior %in% names(prior_info)))
join_check <-
milestone_percentages %>%
group_by(cell_id) %>%
arrange(desc(percentage)) %>%
slice(1) %>%
select(-percentage) %>%
ungroup() %>%
full_join(prior_info$groups_id, by = "cell_id")
testthat::expect_equal(join_check$group_id, join_check$milestone_id)
testthat::expect_equal(prior_info$groups_network, milestone_network %>% select(from, to))
testthat::expect_true(all(prior_info$features_id %in% gene_ids))
testthat::expect_equal(prior_info$groups_n, 3)
})
|
auk_clean <- function(f_in, f_out, sep = "\t", remove_text = FALSE,
overwrite = FALSE) {
.Deprecated()
awk_path <- auk_get_awk_path()
if (is.na(awk_path)) {
stop("auk_clean() requires a valid AWK install.")
}
assertthat::assert_that(
assertthat::is.string(sep), nchar(sep) == 1, sep != " ",
assertthat::is.flag(remove_text),
assertthat::is.flag(overwrite)
)
f_in <- ebd_file(f_in)
if (!dir.exists(dirname(f_out))) {
stop("Output directory doesn't exist.")
}
if (!overwrite && file.exists(f_out)) {
stop("Output file already exists, use overwrite = TRUE.")
}
f_out <- normalizePath(f_out, winslash = "/", mustWork = FALSE)
header <- get_header(f_in, sep)
if (header[length(header)] == "") {
header <- header[-length(header)]
}
ncols <- length(header)
if (ncols < 30) {
stop(
sprintf("There is an error in your EBD file, only %i columns detected.",
ncols)
)
}
if (remove_text) {
text_cols <- c("locality",
"first name", "last name",
"trip comments",
"species comments")
keep_cols <- which(!tolower(header) %in% text_cols)
print_cols <- paste0("$", keep_cols, collapse = ",")
} else {
print_cols <- "$0"
}
awk <- str_interp(awk_clean,
list(sep = sep, ncols = ncols, print_cols = print_cols))
exit_code <- system2(awk_path,
args = paste0("'", awk, "' ", f_in),
stdout = f_out, stderr = FALSE)
if (exit_code == 0) {
f_out
} else {
exit_code
}
}
awk_clean <- "
BEGIN {
FS = \"${sep}\"
OFS = \"${sep}\"
}
{
sub(/\t$/, \"\", $0)
if (NF != ${ncols} || NR == 1) {
print ${print_cols}
}
}
"
|
context("Testing minor lookup tables for STN_* functions")
test_that("hy_stn_remarks returns a dataframe", {
expect_is(hy_stn_remarks(
station_number = "08MF005",
hydat_path = hy_test_db()
),
class = "tbl_df")
})
test_that("hy_stn_datum_conv returns a dataframe", {
expect_is(hy_stn_datum_conv(
station_number = "08MF005",
hydat_path = hy_test_db()
),
class = "tbl_df")
})
test_that("hy_stn_data_range returns a dataframe", {
expect_is(hy_stn_data_range(
station_number = "08MF005",
hydat_path = hy_test_db()
),
class = "tbl_df")
})
test_that("hy_stn_data_coll returns a dataframe", {
expect_is(hy_stn_data_coll(
station_number = "08MF005",
hydat_path = hy_test_db()
),
class = "tbl_df")
})
test_that("hy_stn_op_schedule returns a dataframe", {
expect_is(hy_stn_op_schedule(
station_number = "08MF005",
hydat_path = hy_test_db()
),
class = "tbl_df")
})
test_that("hy_stn_data_range contains properly coded NA's",{
expect_true(is.na(hy_stn_data_range(hydat_path = hy_test_db())$SED_DATA_TYPE[1]))
})
|
plot.gevp <-
function(x, type = c("histogram","predictive", "retlevel"), t=2, k=100, ...){
if(type=="histogram"){
par(mfrow=c(1,3))
hist(x$posterior[,1],freq=FALSE,main=expression(mu), xlab=NULL)
abline(v=quantile(x$posterior[,1],0.025),lwd=2)
abline(v=quantile(x$posterior[,1],0.975),lwd=2)
hist(x$posterior[,2],freq=FALSE,main=expression(sigma), xlab=NULL)
abline(v=quantile(x$posterior[,2],0.025),lwd=2)
abline(v=quantile(x$posterior[,2],0.975),lwd=2)
hist(x$posterior[,3],freq=FALSE,main=expression(xi), xlab=NULL)
abline(v=quantile(x$posterior[,3],0.025),lwd=2)
abline(v=quantile(x$posterior[,3],0.975),lwd=2)
par(mfrow=c(1,1))
}
if(type=="predictive"){
dat=x$data
linf = max(min(dat) - 1, 0)
lsup = 11 * max(dat)/10
dat1 = seq(linf, lsup, (lsup - linf)/70)
n = length(dat1)
int = length(x$posterior[, 1])
res = array(0, c(n))
for (i in 1:n) {
for (j in 1:int) {
if ((x$posterior[j, 3] > 0) && (dat1[i] > (x$posterior[j, 1] -
x$posterior[j, 2]/x$posterior[j, 3])))
res[i] = res[i] + (1/int) * dgev(dat1[i], x$posterior[j,
3], x$posterior[j, 1], x$posterior[j, 2])
if ((x$posterior[j, 3] < 0) && (dat1[i] < (x$posterior[j, 1] -
x$posterior[j, 2]/x$posterior[j, 3])))
res[i] = res[i] + (1/int) * dgev(dat1[i], x$posterior[j,
3], x$posterior[j, 1], x$posterior[j, 2])
}
}
hist(dat, freq = F, ylim = c(min(res), max(res)), main=NULL, xlab = "data", ylab = "density", ...)
lines(dat1, res)
out<-list(pred=res)
return(out)
}
if(type=="retlevel"){
sampl = qgev(1 - 1/t, x$posterior[, 3], x$posterior[, 1], x$posterior[, 2])
res = quantile(sampl, 0.5)
ta=seq(1,k,1)
n = length(ta)
li = array(0, c(n))
ls = array(0, c(n))
pred = array(0, c(n))
for (s in 1:n) {
sampl = qgev(1 - 1/s, x$posterior[, 3], x$posterior[, 1], x$posterior[,
2])
li[s] = quantile(sampl, 0.025)
ls[s] = quantile(sampl, 0.975)
pred[s] = quantile(sampl, 0.5)
}
plot(ta, pred, type = "l", xlab="t", ylim = c(li[2], max(ls)), ylab = "returns", ...)
lines(ta, li, lty = 2)
lines(ta, ls, lty = 2)
out<-list(retmedian=res, retpred=pred)
return(out)
}
}
|
AcceptableMove <-
function(proposal, qmax, self.loops, target, fixed.edges) {
acceptable = all(apply(proposal, 1, sum) <= qmax)
if(!self.loops) {
acceptable = acceptable && all(proposal[,target] == 0)
}
fixed.segs = t(matrix(c(fixed.edges, -1), dim(proposal)[2], dim(proposal)[1]))
indices.fixed = fixed.segs >= 0
acceptable = acceptable &&
all(fixed.segs[indices.fixed] == proposal[indices.fixed])
return(acceptable)
}
|
"arsefigures"
|
function.id <- function( cores, site.id, tree.id, core.id){
site <- substr( cores, site.id[ 1 ], site.id[ 2 ])
tree <- substr( cores, tree.id[ 1 ], tree.id[ 2 ])
series <- substr( cores,core.id[ 1 ], core.id[ 2 ])
cores.x <- toupper(paste("HUP",tree,series,sep="",collapse=NULL))
return( cores.x )
}
SumNotNa <- function( x ) {
sum( is.na( x ) == FALSE)
}
exact.ci<- function(p.adjust, size.x, size.y, i){
n <- (size.x[i]*size.y[i])
s <- as.integer(as.vector(p.adjust[i]*n))
ci.j <- matrix(NA, nrow = length(s), ncol = 2)
for ( t in 1: length(s)){
if(is.na(s)){ci.j[,t] <- NA}else{
if(s[t] > n){s[t] = n}
ci.j[t,] <- binom.test(s[t],n , p = 1,
alternative = c("two.sided"),
conf.level = 0.95)$conf.int
}
}
return(ci.j)
}
function.id.master <- function( cores, site.id, tree.id, core.id){
site <- substr( cores, site.id[ 1 ], site.id[ 2 ])
tree <- substr( cores, tree.id[ 1 ], tree.id[ 2 ])
series <- substr( cores,core.id[ 1 ], core.id[ 2 ])
cores.x <- toupper(paste(site,tree,series,sep="",collapse=NULL))
return( cores.x )
}
|
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
library(gremes)
data("SeineData", package = "gremes")
head(Seine)
seg<- graph(c(1,2,
2,3,
2,4,
4,5,
5,6,
5,7), directed = FALSE)
name_stat<- c("Paris", "2", "Meaux", "Melun", "5", "Nemours", "Sens")
seg<- set.vertex.attribute(seg, "name", V(seg), name_stat)
tobj<- Tree(seg, Seine)
Uc<- getNoDataNodes(tobj)
Uc<- c("2", "5")
tup<- Tuples()
x<- rep(1,5)
names(x)<- getNodesWithData(tobj)
tup<- evalPoints(tup, tobj, x)
eks<- EKS(seg)
eks<-estimate(eks, Seine, tup, k_ratio=0.2)
subs<- Neighborhood()
subs<- subset(subs, 2, seg, Uc)
eks_part<- EKS_part(seg)
eks_part<- suppressMessages(estimate(eks_part, Seine, subs, k_ratio=0.2, xx=x))
eks$depParams
eks_part$depParams
|
library("perryExamples")
data("coleman")
set.seed(1234)
folds <- cvFolds(nrow(coleman), K = 5, R = 10)
fit50 <- ltsReg(Y ~ ., data = coleman, alpha = 0.5)
cv50 <- perry(fit50, splits = folds, fit = "both",
cost = rtmspe, trim = 0.25)
fit75 <- ltsReg(Y ~ ., data = coleman, alpha = 0.75)
cv75 <- perry(fit75, splits = folds, fit = "both",
cost = rtmspe, trim = 0.25)
cv <- perrySelect("0.5" = cv50, "0.75" = cv75)
cv
reperry(cv50, cost = rtmspe, trim = 0.1)
reperry(cv, cost = rtmspe, trim = 0.1)
|
is.inCH <- function(p, M, verbose=FALSE, ...) {
verbose <- max(0, min(verbose, 4))
if(is.null(dim(p))) p <- rbind(p)
if (!is.matrix(M))
stop("Second argument must be a matrix.")
if ((d <- ncol(p)) != ncol(M))
stop("Number of columns in matrix (2nd argument) is not equal to dimension ",
"of first argument.")
if((n <- nrow(M)) == 1L){
for(i in seq_len(nrow(p))){
if(!isTRUE(all.equal(p[i,], M, check.attributes = FALSE))) return(FALSE)
}
return(TRUE)
}
timeout <- 1
setup.lp <- function(){
L <- cbind(1, M)
lprec <- make.lp(n, d+1)
for(k in seq_len(d+1)) set.column(lprec, k, L[,k])
set.constr.type(lprec, rep.int(2L, n))
set.rhs(lprec, numeric(n))
set.bounds(lprec, lower = rep.int(-1, d+1L), upper = rep.int(1, d+1L))
lp.control(lprec, break.at.value = -.Machine$double.eps, verbose=c("important","important","important","normal","detailed")[min(max(verbose+1,0),5)], timeout=timeout)
lprec
}
lprec <- setup.lp()
for(i in seq_len(nrow(p))){
flag <- -1
while(flag%in%c(-1,1,7)){
set.objfn(lprec, c(1, p[i,]))
flag <- solve(lprec)
if(flag%in%c(1,7)){
timeout <- timeout * 2
z <- rnorm(1)
p <- p + z
M <- M + z
lprec <- setup.lp()
}
}
if(get.objective(lprec) < 0){
if(verbose > 1) message(sprintf("is.inCH: iter = %d, outside hull.",i))
return(FALSE)
}else if(verbose > 2 && nrow(p) > 1) message(sprintf("is.inCH: iter = %d, inside hull.", i))
}
if(verbose > 1) message("is.inCH: all test points inside hull.")
return(TRUE)
}
|
GoralczykEtAl2011 <- data.frame("publication"=c("Fasola (2005)", "Innocenti (2003)", "Lu (2006)",
"Neuhaus (2002)", "Schmeding (2007)", "Calmus (2010)",
"Heffron (2001)", "Lin (2005)", "Neuberger (2009)",
"Yan (2004)", "Yoshida (2005)", "Boillot (2005)",
"de Simone (2007)", "Humar (2007)",
"Kato, cohort 1 (2007)", "Kato, cohort 2 (2007)",
"Klintmalm (2007)", "Lupo (2008)", "Washburn (2001)"),
"year"=c(2005, 2003, 2006, 2002, 2007, 2010, 2001, 2005, 2009, 2004,
2005, 2005, 2007, 2007, 2007, 2007, 2007, 2008, 2001),
"randomized"=factor(c("yes","no","n.s.")[c(1,2,3,1,1,1,3,2,1,1,1,1,1,2,1,1,1,1,1)],
levels=c("yes","no","n.s.")),
"control.type"=factor(c("concurrent","historical")[c(1,1,1,1,1, 1,1,1,1,1, 1,1,1,2,1, 1,1,1,1)],
levels=c("concurrent","historical")),
"comparison"=factor(c("IL-2RA only","delayed CNI","no/low steroids")[c(1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3)],
levels=c("IL-2RA only","delayed CNI","no/low steroids")),
"IL2RA"=factor(c("basiliximab","daclizumab")[c(2,2,2,1,1,2,2,1,2,1,2,2,1,1,2,2,2,1,2)]),
"CNI"=factor(c("cyclosporine A","tacrolimus")[c(2,1,2,1,2,2,2,2,2,1,2,2,1,2,2,2,2,1,2)]),
"MMF"=factor(c("yes","no")[c(1,1,1,2,2,1,1,1,1,1,1,2,1,1,2,1,1,2,1)],
levels=c("yes","no")),
"followup"=c(12,NA,6,12,NA,24,12,6,12,3,12,3,12,16,12,12,12,22,18),
"exp.AR.events"=c(13,7,3,74,29,23,14,3,28,3,17,89,17,9,7,3,80,4,1),
"exp.SRR.events"=c(NA,NA,NA,34,6,1,NA,NA,NA,0,NA,10,NA,0,NA,NA,NA,NA,NA),
"exp.deaths"=c(4,0,3,25,4,9,4,0,11,NA,10,25,7,10,NA,NA,11,4,0),
"exp.total"=c(46,24,40,188,51,98,54,27,168,24,72,351,95,83,15,16,153,26,15),
"cont.AR.events"=c(11,4,3,88,25,24,23,5,45,9,21,92,21,10,9,8,46,6,1),
"cont.SRR.events"=c(NA,NA,NA,51,3,3,NA,NA,NA,1,NA,22,NA,0,NA,NA,NA,NA,NA),
"cont.deaths"=c(2,1,2,31,3,6,4,0,19,NA,5,20,8,16,NA,NA,8,8,1),
"cont.total"=c(24,10,27,193,48,101,47,18,168,24,76,347,95,83,16,23,79,21,15),
stringsAsFactors=FALSE)[c(7,19,4,2,10,12,1,8,11,3,13,14,15,16,17,5,18,9,6),]
rownames(GoralczykEtAl2011) <- as.character(1:19)
|
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
library(bayesrules)
example_data <- data.frame(x = sample(1:100, 20))
example_data$y <- example_data$x*3 + rnorm(20, 0, 5)
example_model <- rstanarm::stan_glm(y ~ x, data = example_data, refresh = FALSE)
prediction_summary(example_model, example_data,
prob_inner = 0.6, prob_outer = 0.80,
stable = TRUE)
prediction_summary_cv(model = example_model, data = example_data,
k = 2, prob_inner = 0.6, prob_outer = 0.80)
x <- rnorm(20)
z <- 3*x
prob <- 1/(1+exp(-z))
y <- rbinom(20, 1, prob)
example_data <- data.frame(x = x, y = y)
example_model <- rstanarm::stan_glm(y ~ x, data = example_data,
family = binomial, refresh = FALSE)
classification_summary(model = example_model, data = example_data, cutoff = 0.5)
classification_summary_cv(model = example_model, data = example_data, k = 2, cutoff = 0.5)
data(penguins_bayes, package = "bayesrules")
example_model <- e1071::naiveBayes(species ~ bill_length_mm, data = penguins_bayes)
naive_classification_summary(model = example_model, data = penguins_bayes, y = "species")
naive_classification_summary_cv(model = example_model, data = penguins_bayes,
y = "species", k = 2)
|
wce <- function(x) {
check_if_solver_is_available()
validate_data_matrix(x)
if (!is_distance_matrix(x)) {
stop("The input via argument `weights` is not a similarity matrix, ",
"the upper and lower triangulars of your matrix differ.")
}
x <- as.matrix(x)
ilp <- anticlustering_ilp(x, K = 0, FALSE)
solution <- solve_ilp(ilp, "max")
ilp_to_groups(solution, nrow(x))
}
|
context("GSEA analysis")
test_that("fgseaSimple works", {
data(examplePathways)
data(exampleRanks)
set.seed(42)
nperm <- 100
fgseaRes <- fgseaSimple(examplePathways, exampleRanks, nperm=nperm, maxSize=500)
expect_equal(fgseaRes[23, ES], 0.5788464)
expect_equal(fgseaRes[23, nMoreExtreme], 0)
expect_gt(fgseaRes[1237, nMoreExtreme], 50 * nperm / 1000)
expect_true("70385" %in% fgseaRes[grep("5991851", pathway), leadingEdge][[1]])
expect_true(!"68549" %in% fgseaRes[grep("5991851", pathway), leadingEdge][[1]])
expect_true(!"11909" %in% fgseaRes[grep("5992314", pathway), leadingEdge][[1]])
expect_true("69386" %in% fgseaRes[grep("5992314", pathway), leadingEdge][[1]])
fgsea1Res <- fgseaSimple(examplePathways[1237], exampleRanks, nperm=nperm, maxSize=500)
expect_gt(fgseaRes[1, nMoreExtreme], 50 * nperm / 1000)
fgseaRes <- fgseaSimple(examplePathways, exampleRanks, nperm=2000, maxSize=100, nproc=2)
expect_false(all(fgseaRes$nMoreExtreme %% 2 == 0))
})
test_that("fgseaSimple is reproducable independent of bpparam settings", {
data(examplePathways)
data(exampleRanks)
nperm <- 2000
set.seed(42)
fr <- fgseaSimple(examplePathways[1:2], exampleRanks, nperm=nperm, maxSize=500, nproc=1)
set.seed(42)
fr1 <- fgseaSimple(examplePathways[1:2], exampleRanks, nperm=nperm, maxSize=500)
expect_equal(fr1$nMoreExtreme, fr$nMoreExtreme)
set.seed(42)
fr2 <- fgseaSimple(examplePathways[1:2], exampleRanks, nperm=nperm, maxSize=500, nproc=0)
expect_equal(fr2$nMoreExtreme, fr$nMoreExtreme)
set.seed(42)
fr3 <- fgseaSimple(examplePathways[1:2], exampleRanks, nperm=nperm, maxSize=500, nproc=2)
expect_equal(fr3$nMoreExtreme, fr$nMoreExtreme)
})
test_that("fgseaSimple works with zero pathways", {
data(examplePathways)
data(exampleRanks)
set.seed(42)
nperm <- 100
fgseaRes <- fgseaSimple(examplePathways, exampleRanks, nperm=nperm,
minSize=50, maxSize=10)
expect_equal(nrow(fgseaRes), 0)
fgseaRes1 <- fgseaSimple(examplePathways[1], exampleRanks, nperm=nperm)
expect_equal(colnames(fgseaRes), colnames(fgseaRes1))
})
test_that("fgseaLabel works", {
mat <- matrix(rnorm(1000*20),1000,20)
labels <- rep(1:2, c(10, 10))
rownames(mat) <- as.character(seq_len(nrow(mat)))
pathways <- list(sample(rownames(mat), 100),
sample(rownames(mat), 200))
fgseaRes <- fgseaLabel(pathways, mat, labels, nperm = 1000, minSize = 15, maxSize = 500)
expect_true(!is.null(fgseaRes))
})
test_that("fgseaLabel example works", {
skip_on_bioc()
helpFile <- system.file("../man/fgseaLabel.Rd", package="fgsea")
if (helpFile == "") {
example("fgseaLabel", run.donttest = TRUE, local = FALSE)
} else {
tcon <- textConnection("exampleCode", open="w", local=TRUE)
tools::Rd2ex(helpFile, out=tcon)
close(tcon)
econ <- textConnection(exampleCode, open="r")
source(econ)
}
expect_true(!is.null(fgseaRes))
})
test_that("Ties detection in ranking works", {
data(examplePathways)
data(exampleRanks)
exampleRanks.ties <- exampleRanks
exampleRanks.ties[41] <- exampleRanks.ties[42]
exampleRanks.ties.zero <- exampleRanks.ties
exampleRanks.ties.zero[41] <- exampleRanks.ties.zero[42] <- 0
expect_silent(fgseaSimple(examplePathways, exampleRanks, nperm=100, minSize=10, maxSize=50, nproc=1))
expect_warning(fgseaSimple(examplePathways, exampleRanks.ties, nperm=100, minSize=10, maxSize=50, nproc=1))
expect_silent(fgseaSimple(examplePathways, exampleRanks.ties.zero, nperm=100, minSize=10, maxSize=50, nproc=1))
})
test_that("fgseaSimple throws a warning when there are duplicate gene names", {
data(examplePathways)
data(exampleRanks)
exampleRanks.dupNames <- exampleRanks
names(exampleRanks.dupNames)[41] <- names(exampleRanks.dupNames)[42]
expect_warning(fgseaSimple(examplePathways, exampleRanks.dupNames, nperm=100, minSize=10, maxSize=50, nproc=1))
})
test_that("fgseaSimple returns leading edge ordered by decreasing of absolute statistic value", {
data(examplePathways)
data(exampleRanks)
set.seed(42)
nperm <- 100
fgseaRes <- fgseaSimple(examplePathways, exampleRanks, nperm=nperm, maxSize=50)
expect_true(abs(exampleRanks[fgseaRes$leadingEdge[[1]][1]]) >
abs(exampleRanks[fgseaRes$leadingEdge[[1]][2]]))
expect_true(abs(exampleRanks[fgseaRes$leadingEdge[[2]][1]]) >
abs(exampleRanks[fgseaRes$leadingEdge[[2]][2]]))
})
test_that("collapsePathways work", {
data(examplePathways)
data(exampleRanks)
set.seed(42)
nperm <- 100
pathways <- list(p1=examplePathways$`5991851_Mitotic_Prometaphase`)
pathways <- c(pathways, list(p2=unique(c(pathways$p1, sample(names(exampleRanks), 20)))))
pathways <- c(pathways, list(p3=sample(pathways$p1, floor(length(pathways$p1) * 0.8))))
fgseaRes <- fgseaSimple(pathways, exampleRanks, nperm=nperm, maxSize=500)
collapsedPathways <- collapsePathways(fgseaRes[order(pval)],
pathways, exampleRanks)
collapsedPathways$mainPathways
expect_identical("p1", collapsedPathways$mainPathways)
})
test_that("fgseaSimple throws a warning when there are unbalanced gene-level statistic values", {
data(exampleRanks)
data(examplePathways)
ranks <- sort(exampleRanks, decreasing = TRUE)
firstNegative <- which(ranks < 0)[1]
ranks <- c(abs(ranks[1:(firstNegative - 1)]) ^ 0.1, ranks[firstNegative:length(ranks)])
pathway <- list(testPathway = names(ranks)[1:100])
set.seed(1)
expect_warning(fgseaSimple(pathway, ranks, nperm = 200, minSize = 15, maxSize = 500))
})
test_that("fgseaSimple and fgseaMultilevel properly handle duplicated in gene sets", {
data(exampleRanks)
data(examplePathways)
pathways <- list(p1=examplePathways$`5991851_Mitotic_Prometaphase`,
p2=rep(examplePathways$`5991851_Mitotic_Prometaphase`, 2))
set.seed(42)
fr1 <- fgseaSimple(pathways, exampleRanks, nperm=1000)
expect_equal(fr1$size[1], fr1$size[2])
fr2 <- suppressWarnings(fgseaMultilevel(pathways, exampleRanks, eps = 1e-4))
expect_equal(fr2$size[1], fr2$size[2])
})
test_that("fgsea works correctly if gene sets have signed ES = 0 and scoreType != std", {
data("exampleRanks")
stats <- exampleRanks
stats <- sort(stats, decreasing=TRUE)
gsInTail <- list("gsInTail" = names(stats)[(length(stats) - 14) : length(stats)])
set.seed(1)
expect_silent(fr <- fgseaSimple(gsInTail, stats, nperm = 1000, scoreType = "pos"))
gsInHead <- list("gsInHead" = names(stats)[1:15])
set.seed(1)
expect_silent(fr <- fgseaSimple(gsInHead, stats, nperm = 1000, scoreType = "neg"))
})
|
library(hansard)
context("all_answered_questions part2")
test_that("all_answered_questions return expected format", {
skip_on_cran()
skip_on_travis()
anameid <- hansard_all_answered_questions(
house = "lords", answering_body = 60,
start_date = "2017-03-01",
end_date = "2017-03-20",
verbose = TRUE
)
expect_length(anameid, 31)
expect_type(anameid, "list")
expect_true(tibble::is_tibble(anameid))
expect_equal(nrow(anameid), 38)
bidname <- hansard_all_answered_questions(
house = 2,
answering_body = "Education",
start_date = "2017-03-01",
end_date = "2017-03-20",
verbose = TRUE
)
expect_length(bidname, 31)
expect_type(bidname, "list")
expect_true(tibble::is_tibble(bidname))
expect_equal(nrow(bidname), 38)
expect_true(names(bidname[1]) == names(anameid[1]))
expect_equivalent(names(bidname), names(anameid))
expect_equal(nrow(bidname), nrow(anameid))
})
|
context("test-dynardl-auto")
test_that("Stop for non-dynardl objects", {
y <- rnorm(500)
expect_error(dynardl.auto.correlated(y), "provide a dynardl model object")
})
test_that("Correct fit statistics reported", {
dyn.out.1.1 <- dynardl(concern ~ incshare10 + urate, data = ineq,
lags = list("concern" = 1, "incshare10" = 1, "urate" = 1), ec = TRUE,
simulate = FALSE)
expect_output(dynardl.auto.correlated(dyn.out.1.1), paste(round(AIC(dyn.out.1.1$model), 3)))
expect_output(dynardl.auto.correlated(dyn.out.1.1), paste(round(BIC(dyn.out.1.1$model), 3)))
expect_output(dynardl.auto.correlated(dyn.out.1.1, digits = 5), paste(round(AIC(dyn.out.1.1$model), 5)))
expect_output(dynardl.auto.correlated(dyn.out.1.1, digits = 5), paste(round(BIC(dyn.out.1.1$model), 5)))
})
test_that("Correct bgtest reported", {
dyn.out.1.1 <- dynardl(concern ~ incshare10 + urate, data = ineq,
lags = list("concern" = 1, "incshare10" = 1, "urate" = 1), ec = TRUE,
simulate = FALSE)
expect_output(dynardl.auto.correlated(dyn.out.1.1, digits = 3), paste(round(bgtest(dyn.out.1.1$model)$statistic, 3)))
expect_output(dynardl.auto.correlated(dyn.out.1.1, digits = 3, order = 5), paste(round(bgtest(dyn.out.1.1$model, order = 5)$statistic, 3)))
expect_output(dynardl.auto.correlated(dyn.out.1.1, digits = 3, bg.type = "F"), paste(round(bgtest(dyn.out.1.1$model, type = "F")$statistic, 3)))
})
test_that("Correct shapiro test reported", {
dyn.out.1.1 <- dynardl(concern ~ incshare10 + urate, data = ineq,
lags = list("concern" = 1, "incshare10" = 1, "urate" = 1), ec = TRUE,
simulate = FALSE)
expect_output(dynardl.auto.correlated(dyn.out.1.1, digits = 3), paste(round(shapiro.test(dyn.out.1.1$model$residuals)$statistic, 3)))
})
test_that("Information out correctly", {
dyn.out.1.2 <- dynardl(concern ~ incshare10 + urate, data = ineq,
lags = list("concern" = 1, "incshare10" = 1, "urate" = 1), ec = TRUE,
simulate = FALSE)
info <- dynardl.auto.correlated(dyn.out.1.2, object.out = TRUE)
expect_equal(names(info), c("bg", "sw", "AIC", "BIC", "logLik"))
})
test_that("Does clear autocorrelation fail the test?", {
dyn.out.1.3 <- dynardl(urate ~ concern, data = ineq,
lags = list("urate" = 1), ec = FALSE,
simulate = FALSE)
expect_output(dynardl.auto.correlated(dyn.out.1.3), "Breusch-Godfrey test indicates we reject the null hypothesis")
expect_output(dynardl.auto.correlated(dyn.out.1.3), "Shapiro-Wilk test indicates we reject the null hypothesis")
})
|
make_tile_mosaic <- function(aoi, data_folder, dataset, filename="",
stack="change", ...) {
if (stack == 'change') {
image_names <- c('treecover2000', 'lossyear', 'gain',
'datamask')
band_names <- image_names
} else if (stack == 'first') {
image_names <- 'first'
band_names <- c('Band3', 'Band4', 'Band5', 'Band7')
} else if (stack == 'last') {
image_names <- 'last'
band_names <- c('Band3', 'Band4', 'Band5', 'Band7')
} else {
stop('"stack" must be equal to "change", "first", or "last"')
}
aoi <- check_aoi(aoi)
tiles <- calc_gfc_tiles(aoi)
aoi <- spTransform(aoi, CRS(proj4string(tiles)))
file_root <- paste0('Hansen_', dataset, '_')
tile_stacks <- c()
for (n in 1:length(tiles)) {
tile <- tiles[n]
min_x <- bbox(tile)[1, 1]
max_y <- bbox(tile)[2, 2]
if (min_x < 0) {
min_x <- paste0(sprintf('%03i', abs(min_x)), 'W')
} else {
min_x <- paste0(sprintf('%03i', min_x), 'E')
}
if (max_y < 0) {
max_y <- paste0(sprintf('%02i', abs(max_y)), 'S')
} else {
max_y <- paste0(sprintf('%02i', max_y), 'N')
}
file_suffix <- paste0('_', max_y, '_', min_x, '.tif')
filenames <- file.path(data_folder, paste0(file_root, image_names,
file_suffix))
tile_stack <- crop(stack(filenames), aoi, datatype='INT1U',
format='GTiff', options="COMPRESS=LZW")
names(tile_stack) <- band_names
tile_stacks <- c(tile_stacks, list(tile_stack))
}
if (length(tile_stacks) > 1) {
mosaic_list <- function(x, fun, datatype, format, options, overwrite,
tolerance=0.05, filename="") {
mosaic_args <- x
if (!missing(fun)) mosaic_args$fun <- fun
if (!missing(tolerance)) mosaic_args$tolerance <- tolerance
if (!missing(datatype)) mosaic_args$datatype <- datatype
if (!missing(format)) mosaic_args$format <- format
if (!missing(options)) mosaic_args$options <- options
if (!missing(overwrite)) mosaic_args$overwrite <- overwrite
mosaic_args$filename <- filename
do.call(mosaic, mosaic_args)
}
tile_mosaic <- mosaic_list(tile_stacks, fun='mean', filename=filename,
datatype='INT1U', format='GTiff',
options='COMPRESS=LZW', ...)
} else {
tile_mosaic <- tile_stacks[[1]]
if (filename != '') {
tile_mosaic <- writeRaster(tile_mosaic, filename=filename,
datatype="INT1U", format="GTiff",
options="COMPRESS=LZW", ...)
}
}
names(tile_mosaic) <- band_names
NAvalue(tile_mosaic) <- -1
return(tile_mosaic)
}
scale_toar <- function(x, ...) {
if (!nlayers(x) == 4) {
stop('input image should have 4 bands')
}
scale_func <- function(b3, b4, b5, b7) {
b3 <- (b3 - 1) / 508
b4 <- (b4 - 1) / 254
b5 <- (b5 - 1) / 363
b7 <- (b7 - 1) / 423
return(cbind(b3, b4, b5, b7))
}
x <- overlay(x, fun=scale_func, datatype='FLT4S',
format='GTiff', options="COMPRESS=LZW", ...)
return(x)
}
extract_gfc <- function(aoi, data_folder, to_UTM=FALSE, stack="change",
dataset='GFC-2019-v1.7', ...) {
if (stack == 'change') {
band_names <- c('treecover2000', 'lossyear', 'gain',
'datamask')
} else if (stack == 'first') {
band_names <- c('Band3', 'Band4', 'Band5', 'Band7')
} else if (stack == 'last') {
band_names <- c('Band3', 'Band4', 'Band5', 'Band7')
} else {
stop('"stack" must be equal to "change", "first", or "last"')
}
if (to_UTM) {
tile_mosaic <- make_tile_mosaic(aoi, data_folder, stack=stack,
dataset=dataset, ...)
bounding_poly <- as(extent(tile_mosaic), "SpatialPolygons")
proj4string(bounding_poly) <- proj4string(tile_mosaic)
utm_proj4string <- utm_zone(bounding_poly, proj4string=TRUE)
band_name <- names(tile_mosaic)
tile_mosaic <- projectRaster(tile_mosaic, crs=utm_proj4string,
method='ngb', datatype='INT1U',
format='GTiff', options="COMPRESS=LZW",
...)
names(tile_mosaic) <- band_names
NAvalue(tile_mosaic) <- -1
} else {
tile_mosaic <- make_tile_mosaic(aoi, data_folder, stack=stack,
dataset=dataset, ...)
NAvalue(tile_mosaic) <- -1
}
return(tile_mosaic)
}
|
geodesic_pos<-function(P1,P2,p=2,steps){
P1type<-type_check(P1)
P2type<-type_check(P2)
P1<-process_data(P1,P1type,return_type="wpp")
P2<-process_data(P2,P2type,return_type="wpp")
plan<-transport::transport(P1,P2,p)
L<-length(plan$from)
d<-P1$dimension
start<-matrix(0,L,d)
V<-matrix(0,L,d)
W<-rep(0,L)
for (k in 1:L){
f<-plan$from[k]
t<-plan$to[k]
start[k,]<-P1$coordinates[f,]
V[k,]<-P2$coordinates[t,]-P1$coordinates[f,]
W[k]<-plan$mass[k]
}
N<-length(steps)
out.list<-vector("list",N)
for (i in 1:N){
out.list[[i]]<-transport::wpp(start+(V*steps[i]),W)
}
return(out.list)
}
|
qregression <-
function(bws, xeval, tau, quantile, quanterr = NA, quantgrad = NA, ntrain, trainiseval = FALSE, gradients = FALSE){
if (missing(bws) | missing(xeval) | missing(tau) | missing(quantile) | missing(ntrain))
stop("improper invocation of qregression constructor")
d <- list(
xbw = bws$xbw,
ybw = bws$ybw,
bws = bws,
xnames = bws$xnames,
ynames = bws$ynames,
nobs = nrow(xeval),
xndim = bws$xndim,
yndim = bws$yndim,
xnord = bws$xnord,
xnuno = bws$xnuno,
xncon = bws$xncon,
ynord = bws$ynord,
ynuno = bws$ynuno,
yncon = bws$yncon,
pscaling = bws$pscaling,
ptype = bws$ptype,
pcxkertype = bws$pcxkertype,
puxkertype = bws$puxkertype,
poxkertype = bws$poxkertype,
pcykertype = bws$pcykertype,
puykertype = bws$puykertype,
poykertype = bws$poykertype,
xeval = xeval,
tau = tau,
quantile = quantile,
quanterr = quanterr,
quantgrad = quantgrad,
ntrain = ntrain,
trainiseval = trainiseval,
gradients = gradients)
class(d) <- "qregression"
return(d)
}
print.qregression <- function(x, digits=NULL, ...){
cat("\nQuantile regression data: ", x$ntrain, " training points,",
ifelse(x$trainiseval, "", paste(" and ", x$nobs, " evaluation points,\n", sep="")),
" in ", x$xndim + x$yndim, " variable(s)",
"\n(", x$yndim, " dependent variable(s), and ", x$xndim, " explanatory variable(s))\n\n",
sep="")
print(matrix(x$ybw,ncol=x$yndim,dimnames=list(paste("Dep. Var. ",x$pscaling,":",sep=""),x$ynames)))
print(matrix(x$xbw,ncol=x$xndim,dimnames=list(paste("Exp. Var. ",x$pscaling,":",sep=""),x$xnames)))
cat(genRegEstStr(x))
cat(genBwKerStrs(x$bws))
cat("\n\n")
if(!missing(...))
print(...,digits=digits)
invisible(x)
}
fitted.qregression <- function(object, ...){
object$quantile
}
quantile.qregression <- function(x, ...){ x$quantile }
plot.qregression <- function(x, ...) { npplot(bws = x$bws, ...) }
predict.qregression <- function(object, se.fit = FALSE, ...) {
tr <- eval(npqreg(bws = object$bws, ...), envir = parent.frame())
if(se.fit)
return(list(fit = fitted(tr), se.fit = se(tr),
df = tr$nobs, residual.scale = NA))
else
return(fitted(tr))
}
se.qregression <- function(x) { x$quanterr }
gradients.qregression <- function(x, errors = FALSE, ...) {
if(!errors)
return(x$quantgrad)
else
return(NULL)
}
summary.qregression <- function(object, ...) {
cat("\nQuantile Regression Data: ", object$ntrain, " training points,",
ifelse(object$trainiseval, "", paste(" and ", object$nobs, " evaluation points,\n", sep="")),
" in ", object$xndim + object$yndim, " variable(s)",
"\n(", object$yndim, " dependent variable(s), and ", object$xndim, " explanatory variable(s))\n\n",
sep="")
cat(genOmitStr(object))
print(matrix(object$ybw,ncol=object$yndim,dimnames=list(paste("Dep. Var. ",object$pscaling,":",sep=""),object$ynames)))
print(matrix(object$xbw,ncol=object$xndim,dimnames=list(paste("Exp. Var. ",object$pscaling,":",sep=""),object$xnames)))
cat(genRegEstStr(object))
cat(genBwKerStrs(object$bws))
cat("\n\n")
}
|
SnowMap <- function(xlim=c(3,20), ylim=c(3,20), axis.labels=FALSE,
main="Snow's Cholera Map of London",
scale=TRUE, polygons=FALSE, density=FALSE,
streets.args=list(col="grey", lwd=1),
deaths.args=list(col="red", pch=15, cex=0.6),
pumps.args=list(col="blue", pch=17, cex=1.5, cex.lab=0.9),
scale.args=list(xs=3.5, ys=19.7),
polygons.args=list(col=NA, border="brown", lwd=2, lty=1),
density.args=list(bandwidth=c(0.5,0.5),
col1=rgb(0,1,0,0),
col2=rgb(1,0,0,.8))
) {
Splot(xlim=xlim, ylim=ylim, axis.labels=axis.labels, main=main)
do.call("Sstreets", streets.args)
if (density) do.call("Sdensity", density.args)
do.call("Sdeaths", deaths.args)
do.call("Spumps", pumps.args)
if (scale) do.call("Sscale", scale.args)
if (polygons) do.call("Spolygons", polygons.args)
}
Splot <- function(xlim=c(3,20), ylim=c(3,20),
xlab="", ylab="", axis.labels=FALSE,
main="Snow's Cholera Map of London") {
Snow.deaths <- NULL
data(Snow.deaths, package = 'HistData', envir = environment())
plot(Snow.deaths[,c("x","y")], type="n", asp=1,
xlab=xlab, ylab=ylab, xlim=xlim, ylim=ylim,
xaxt = if (axis.labels) "s" else "n",
yaxt = if (axis.labels) "s" else "n",
main=main)
}
Sdeaths <- function(col="red", pch=15, cex=0.6) {
Snow.deaths <- NULL
data(Snow.deaths, package = 'HistData', envir = environment())
points(Snow.deaths[,c("x","y")], col=col, pch=pch, cex=cex)
}
Spumps <- function(col="blue", pch=17, cex=1.5, cex.lab=0.9) {
Snow.pumps <- NULL
data(Snow.pumps, package = 'HistData', envir = environment())
points(Snow.pumps[,c("x","y")], col=col, pch=pch, cex=cex)
text(Snow.pumps[,c("x","y")], labels=Snow.pumps$label, pos=1, cex=cex.lab)
}
Sstreets <- function(col="gray", lwd=1) {
Snow.streets <- NULL
data(Snow.streets, package = 'HistData', envir = environment())
slist <- split(Snow.streets[,c("x","y")],as.factor(Snow.streets[,"street"]))
invisible(lapply(slist, lines, col=col, lwd=lwd))
}
Sscale <- function(xs=3.5, ys=19.7) {
scale <- matrix(c(0,0, 4,0, NA, NA), nrow=3, ncol=2, byrow=TRUE)
colnames(scale)<- c("x","y")
scale <- rbind(scale, expand.grid(y=c(-.1, .1, NA), x=0:4)[,2:1])
lines(xs+scale[,1], ys+scale[,2])
stext <- matrix(c(0,0, 2,0, 4,0, 4, 0.1), nrow=4, ncol=2, byrow=TRUE)
text(xs+stext[,1], ys+stext[,2], labels=c("0", "2", "4", "100 m."), pos=c(1,1,1,4), cex=0.8)
}
Spolygons <- function(col=NA, border="brown", lwd=2, lty=1) {
polygons <- HistData::Snow.polygons
np <- length(polygons)
if (length(col) < np) col <- rep(col, length.out=np)
if (length(border) < np) border <- rep(border, length.out=np)
for(i in seq_along(polygons)) {
coord <- polygons[[i]]
polygon(coord$x, coord$y, col=col[i], border=border[i], lwd=lwd, lty=lty)
}
}
Sdensity <- function(bandwidth=c(0.5,0.5),
col1=rgb(0,1,0,0),
col2=rgb(1,0,0,.8)
) {
Snow.deaths <- NULL
data(Snow.deaths, package = 'HistData', envir = environment())
kde2d <- KernSmooth::bkde2D(Snow.deaths[,2:3], bandwidth=bandwidth)
clrs <- grDevices::colorRampPalette(c(col1, col2), alpha = TRUE)(20)
graphics::contour(x=kde2d$x1, y=kde2d$x2,z=kde2d$fhat, add=TRUE)
graphics::image(x=kde2d$x1, y=kde2d$x2,z=kde2d$fhat, add=TRUE, col=clrs)
}
TESTME <- FALSE
if (TESTME) {
library(HistData)
SnowMap()
SnowMap(axis.labels=TRUE)
SnowMap(deaths.args=list(col="darkgreen"))
SnowMap(polygons=TRUE, main="Snow's Cholera Map with Pump Polygons")
SnowMap(density=TRUE)
op <- par(mar=c(1,1,3,1)+.1)
SnowMap(xlim=c(7.5,16.5), ylim=c(7,16), polygons=TRUE,
main="Snow's Cholera Map, Enhanced")
Sdensity()
Spumps()
par(op)
obj <- c("SnowMap", "Splot", "Sdeaths", "Spumps", "Sstreets", "Sscale", "Spolygons", "Sdensity")
SoDA::promptAll(obj)
}
|
"typical_data"
|
NULL
get_zillow_web_service_id <- function() {
getOption('ZillowR-zws_id')
}
set_zillow_web_service_id <- function(x) {
validate_arg(x, required = TRUE, class = 'character', length_min = 1, length_max = 1)
options('ZillowR-zws_id' = x)
return(invisible())
}
|
select_last_edges_created <- function(graph) {
time_function_start <- Sys.time()
fcn_name <- get_calling_fcn()
if (graph_object_valid(graph) == FALSE) {
emit_error(
fcn_name = fcn_name,
reasons = "The graph object is not valid")
}
if (graph_contains_edges(graph) == FALSE) {
emit_error(
fcn_name = fcn_name,
reasons = "The graph contains no edges")
}
graph_transform_steps <-
graph$graph_log %>%
dplyr::mutate(step_created_edges = dplyr::if_else(
function_used %in% edge_creation_functions(), 1, 0)) %>%
dplyr::mutate(step_deleted_edges = dplyr::if_else(
function_used %in% edge_deletion_functions(), 1, 0)) %>%
dplyr::mutate(step_init_with_edges = dplyr::if_else(
function_used %in% graph_init_functions() &
edges > 0, 1, 0)) %>%
dplyr::filter(
step_created_edges == 1 | step_deleted_edges == 1 | step_init_with_edges) %>%
dplyr::select(-version_id, -time_modified, -duration)
if (nrow(graph_transform_steps) > 0) {
if (graph_transform_steps %>%
utils::tail(1) %>%
dplyr::pull(step_deleted_edges) == 1) {
emit_error(
fcn_name = fcn_name,
reasons = "The previous graph transformation function resulted in a removal of edges")
} else {
if (nrow(graph_transform_steps) > 1) {
number_of_edges_created <-
(graph_transform_steps %>%
dplyr::select(edges) %>%
utils::tail(2) %>%
dplyr::pull(edges))[2] -
(graph_transform_steps %>%
dplyr::select(edges) %>%
utils::tail(2) %>%
dplyr::pull(edges))[1]
} else {
number_of_edges_created <-
graph_transform_steps %>%
dplyr::pull(edges)
}
}
edge_id_values <-
graph$edges_df %>%
dplyr::select(id) %>%
utils::tail(number_of_edges_created) %>%
dplyr::pull(id)
} else {
edge_id_values <- NA
}
if (!any(is.na(edge_id_values))) {
graph <-
suppressMessages(
select_edges_by_edge_id(
graph = graph,
edges = edge_id_values)
)
graph$graph_log <-
graph$graph_log[-nrow(graph$graph_log),] %>%
add_action_to_log(
version_id = nrow(graph$graph_log) + 1,
function_used = fcn_name,
time_modified = time_function_start,
duration = graph_function_duration(time_function_start),
nodes = nrow(graph$nodes_df),
edges = nrow(graph$edges_df))
if (graph$graph_info$write_backups) {
save_graph_as_rds(graph = graph)
}
}
graph
}
|
splitpick <- function(k, gen, k.WP, nfac.WP, show=10){
hilf <- c(k,abs(gen),k.WP,nfac.WP,show)
if (!is.numeric(hilf))
stop ("All inputs to splitpick must be numeric.")
if (!all(hilf == floor(hilf) & hilf > 0))
stop ("All inputs to splitpick must contain integer numbers.")
minus <- which(gen<0)
gen <- abs(gen)
if (!k >= 3) stop ("splitpick requires k>=3.")
if (!k.WP < k) stop ("splitpick requires k.WP < k.")
if (!nfac.WP < 2^k.WP) stop ("nfac.WP >= 2^k.WP is not permitted.")
if (!nfac.WP >= k.WP) stop ("nfac.WP < k.WP is not permitted.
You must increase nfac.WP by ", k.WP - nfac.WP,
" in order to support generation of ", 2^k.WP, " whole plots.")
if (any(gen %in% 2^(0:(k-1))))
stop ("gen must not contain column numbers of base factors.")
if (any(!gen %in% 3:(2^k-1)))
stop ("Column numbers in gen must be smaller than ", 2^k,".")
g <- length(gen)
if (!nfac.WP < k+g) stop ("nfac.WP must be smaller than the total number of factors!")
perm <- permutations(k)
hilf <- digitsBase(gen,ndigits=k)
ergeb <- matrix(0,nrow=nrow(perm),ncol=length(gen))
nfacs.WP <- rep(NA, nrow=nrow(perm))
for (i in 1:factorial(k)){
ergeb[i,] <- sort(as.integer(reord(hilf,perm[i,])))
nfacs.WP[i] <- sum(ergeb[i,]<2^k.WP)
}
pick <- which(nfacs.WP==nfac.WP-k.WP)
if (length(pick)<show) show <- length(pick)
if (show==0) stop("no adequate split-plot design found\n")
else {
gens <- ergeb[pick[1:show],,drop=FALSE]
if (nfac.WP==k.WP) res.WP <- rep(Inf,show)
else {
if (nfac.WP > 2^(k.WP-1)) res.WP <- rep(3,show)
else {
hilf <- gens[,1:(nfac.WP-k.WP),drop=FALSE]
res.WP <- apply(hilf,1,function(obj) min(sapply(words.all(k.WP,obj)[[2]],length)))
}
}
reorder <- sort(res.WP,index.return=TRUE,decreasing=TRUE)$ix
gen[minus] <- -gen[minus]
list(orig=gen, basics=c(nruns=2^k, nWPs=2^k.WP, nfac.WP=nfac.WP, nfac.SP=k+g-nfac.WP),
perms=perm[pick[1:show][reorder],,drop=FALSE],
res.WP=res.WP[reorder], gen=gens[reorder,,drop=FALSE])
}
}
|
`cophenetic.spantree` <-
function(x)
{
n <- x$n
mat <- matrix(NA, nrow=n, ncol=n)
if (n < 2)
return(as.dist(mat))
ind <- apply(cbind(2:n, x$kid), 1, sort)
ind <- t(ind[2:1,])
mat[ind] <- x$dist
d <- as.dist(mat)
attr(d, "Labels") <- x$labels
stepacross(d, path = "extended", toolong=0, trace=FALSE)
}
|
ABB <- function(X, K=1)
{
if(missing(X)) stop("X is a required argument.")
if(!is.matrix(X)) X <- as.matrix(X)
J <- ncol(X)
N <- nrow(X)
M <- X*0
M[which(is.na(X))] <- 1
if(sum(M) == 0) stop("There are no missing values to impute.")
M.sums <- colSums(M)
MI <- list()
for (k in 1:K) {
imp <- NULL
for (j in 1:J) {
if(M.sums[j] > 0) {
X.obs <- X[which(M[,j] == 0),j]
X.star.obs <- sample(X.obs, length(X.obs),
replace=TRUE)
X.star.mis <- sample(X.star.obs, M.sums[j],
replace=TRUE)
if(length(imp) > 0) imp <- c(imp, X.star.mis)
else imp <- X.star.mis}
}
MI[[k]] <- imp
}
return(MI)
}
|
rawToCharNull <- function(raw_dat) {
result <- ""
if (length(raw_dat) < 3) try(result <- (rawToChar(raw_dat)), silent = T) else
{
result <- raw_dat
runlength <- rle(result)$lengths
if (length(runlength) > 2)
{
rel_range <- (runlength[1] + 1):(length(result) - runlength[length(runlength)])
if (result[[1]] != raw(1)) rel_range <- 1:rel_range[length(rel_range)]
if (result[[length(result)]] != raw(1)) rel_range <- rel_range[1]:length(result)
result[rel_range][result[rel_range] == as.raw(0x00)] <- as.raw(0x20)
result <- result[result != raw(1)]
}
try(result <- rawToChar(result), silent = T)
if ("raw" %in% class(result)) result <- ""
}
return(result)
}
rawToUnsignedInt <-
function(raw_dat)
{
if (!("raw" %in% class(raw_dat))) stop ("This function requires raw data as input")
result <- as.integer(raw_dat)
return(as.integer(sum(result*(256^((length(result):1) - 1)))))
}
unsignedIntToRaw <-
function(int_dat, length.out = 1)
{
if (length(int_dat) > 1) warning ("Argument 'int_dat' has more than 1 element. Only first element converted")
if (int_dat < 0) warning ("Argument 'int_dat' is signed, taking absolute value")
int_dat <- abs(as.integer(int_dat[[1]]))
if (int_dat >= 256^length.out)
{
int_dat <- 256^length.out - 1
warning ("Argument 'in_dat' is out of range, proceeding with clipped value")
}
result <- NULL
remaining <- int_dat
repeat
{
result <- c(remaining%%256, result)
remaining <- floor(remaining/256)
if(remaining <= 0) break
}
result <- as.raw(result)
if (length(result) < length.out) result <- c(raw(length.out - length(result)), result)
return(result)
}
signedIntToRaw <-
function(int_dat)
{
int_dat <- as.integer(int_dat)
if(any(int_dat < -128)) stop("Some or all values out of range")
if(any(int_dat > 127)) stop("Some or all values out of range")
result <- int_dat
result[result < 0] <- result[result < 0] + 256
return(as.raw(result))
}
rawToSignedInt <-
function(raw_dat)
{
if (!("raw" %in% class(raw_dat))) stop("Argument 'raw_dat' is not of class 'raw'")
result <- as.integer(raw_dat)
result[result > 127] <- result[result > 127] - 256
return(as.integer(result))
}
.getPeriodIndex <-
function(period)
{
return(128 - round(logb(period, 1.060199)))
}
periodToChar <-
function(period)
{
oct <- as.character(octave(period))
oct[oct == "0"] <- "-"
paste(note(period), oct, sep = "")
}
noteToPeriod <-
function(note = "C-3", finetune = 0)
{
if (length(note) != length(finetune) &&
(length(note) > 1 && length(finetune) > 1))
stop("note and finetune should have the same length,
or either should have length 1!")
note <- toupper(as.character(note))
note[nchar(note) == 2] <- paste(substr(note[nchar(note) == 2], 1, 1),
substr(note[nchar(note) == 2], 2, 2), sep = "-")
finetune <- as.integer((finetune))
if (length(note) > length(finetune)) finetune <- rep(finetune, length(note))
if (length(note) < length(finetune)) note <- rep(note, length(finetune))
if (any(finetune > 7))
{
warning("finetune is out of range. Value clipped")
fintune[finetune > 7] <- 7
}
if (any(finetune < -8))
{
warning("finetune is out of range. Value clipped")
fintune[finetune < -8] <- 8
}
r_index <- suppressWarnings(apply(outer(ProTrackR::period_table$octave, as.numeric(substr(note, 3,3)), "==") &
outer(ProTrackR::period_table$tuning, finetune, "=="),
2, which))
r_index <- unlist(lapply(as.list(r_index), function(x) ifelse(length(x) == 0, NA, x)))
index <- cbind(r_index, match(substr(note, 1, 2), names(ProTrackR::period_table)))
if (ncol(index) != 2) return (0)
period <- ProTrackR::period_table[index]
period[is.na(period)] <- 0
return(period)
}
noteToSampleRate <-
function(note = "C-3", finetune = 0, video = c("PAL", "NTSC"))
{
rate <- periodToSampleRate(noteToPeriod(note, finetune), match.arg(video))
if (is.infinite(rate)) stop ("Note not in ProTracker period table.")
return (rate)
}
periodToSampleRate <-
function(period, video = c("PAL", "NTSC"))
{
ProTrackR::paula_clock$frequency[ProTrackR::paula_clock$video == match.arg(video)]/period
}
nybble <-
function(raw_dat, which = c("low", "high"))
{
if (match.arg(which) == "low") return (loNybble(raw_dat))
if (match.arg(which) == "high") return (hiNybble(raw_dat))
}
loNybble <-
function(raw_dat)
{
if (!("raw" %in% class(raw_dat))) stop ("Only raw data is accepted as input")
return(as.integer(raw_dat)%%16)
}
hiNybble <-
function(raw_dat)
{
if (!("raw" %in% class(raw_dat))) stop ("Only raw data is accepted as input")
return(as.integer(as.integer(raw_dat)/16))
}
nybbleToSignedInt <- function(raw_dat, which = c("low", "high"))
{
nb <- nybble(raw_dat, which)
nb[nb > 7] <- nb[nb > 7] - 16
return(nb)
}
signedIntToNybble <- function(int_dat, which = c("low", "high"))
{
int_dat <- as.integer(int_dat)
if (any(int_dat < -8) || any(int_dat > 7)) stop("int_dat out of range [-8,7]!")
int_dat[int_dat < 0] <- int_dat[int_dat < 0] + 16
fact <- ifelse(match.arg(which) == "low", 1, 16)
return(as.raw(fact*int_dat))
}
proTrackerVibrato <- function(x)
{
return(as.integer(255*sin(pi*(as.integer(x))/32)))
}
.unpackFibonacciDelta <-
function(raw_data)
{
if (!("raw" %in% class(raw_data))) stop ("Only raw data is accepted as input")
fibonacci <- c(-34, -21, -13, -8, -5, -3, -2, -1, 0, 1, 2, 3, 5, 8, 13, 21)
result <- as.raw(rep(0, 2*length(raw_data) - 2))
result[1] <- raw_data[2]
for (i_byte in 2:length(result))
{
nybble <- ifelse((i_byte%%2) == 0, c(hiNybble), c(loNybble))
work_byte <- raw_data[1 + (i_byte/2)]
result_val <- rawToSignedInt(result[i_byte - 1]) + fibonacci[1 + nybble[[1]](work_byte)]
result_val <- ifelse(result_val > 127, 127, result_val)
result_val <- ifelse(result_val < -128, -128, result_val)
result[i_byte] <- signedIntToRaw(result_val)
}
return(result)
}
|
cat("\014")
rm(list = ls())
setwd("~/git/of_dollars_and_data")
source(file.path(paste0(getwd(),"/header.R")))
library(scales)
library(readxl)
library(lubridate)
library(ggrepel)
library(tidylog)
library(zoo)
library(tidyverse)
folder_name <- "0249_dca_around_the_world"
out_path <- paste0(exportdir, folder_name)
dir.create(file.path(paste0(out_path)), showWarnings = FALSE)
period_length <- 120
raw_1970 <- read.csv(paste0(importdir, "/0249_world_returns/dfa_msci_1970.csv"), skip = 6,
col.names = c("date", "US", "Spain",
"UK", "Canada", "Japan", "Italy"),
) %>%
filter(row_number() != 1, `US` != "") %>%
mutate(date = as.Date(date, "%m/%d/%y"))
df_1970 <- sapply(raw_1970[2:ncol(raw_1970)], as.numeric) %>%
as.data.frame() %>%
bind_cols(date = raw_1970[, "date"]) %>%
select(date, everything())
raw_1999 <- read.csv(paste0(importdir, "/0249_world_returns/dfa_msci_1999.csv"), skip = 6,
col.names = c("date", "China", "Greece", "Russia"),
) %>%
filter(row_number() != 1, `China` != "") %>%
mutate(date = as.Date(date, "%m/%d/%y"))
df_1999 <- sapply(raw_1999[2:ncol(raw_1999)], as.numeric) %>%
as.data.frame() %>%
bind_cols(date = raw_1999[, "date"]) %>%
select(date, everything())
df <- df_1970 %>%
left_join(df_1999)
long_df <- df %>%
gather(-date, key=key, value=value)
first_1970 <- long_df %>%
filter(date == as.Date("1970-01-31")) %>%
rename(first_value = value) %>%
select(-date) %>%
drop_na
ew_df <- long_df %>%
filter(date >= as.Date("1970-01-31")) %>%
inner_join(first_1970) %>%
mutate(index = value/first_value) %>%
group_by(date) %>%
summarize(count = n(),
sum_index = sum(index),
) %>%
ungroup() %>%
mutate(EW = sum_index/count) %>%
select(date, EW)
df <- df %>%
left_join(ew_df)
index_cols <- colnames(df[, 2:ncol(df)])
final_results <- data.frame()
counter <- 0
for(x in index_cols){
print(x)
pre_filter <- df %>%
select_("date", x) %>%
rename_(.dots = setNames(paste0(x), "index")) %>%
drop_na %>%
mutate(ret = index/lag(index, 1) - 1)
start_months <- pre_filter[1:(nrow(pre_filter)-period_length+1), "date"]
for(s in 1:length(start_months)){
print(start_months[s])
start_month <- start_months[s]
end_month <- start_month + days(1) + months(period_length-1) - days(1)
tmp <- pre_filter %>%
filter(date >= start_month, date <= end_month)
dca_amount <- 100
for(j in 1:nrow(tmp)){
if(j == 1){
tmp[j, "cost_basis"] <- dca_amount
tmp[j, "value"] <- dca_amount
} else{
ret <- 1 + tmp[j, "ret"]
mt <- month(tmp[j, "date"])
tmp[j, "cost_basis"] <- tmp[(j-1), "cost_basis"] + dca_amount
tmp[j, "value"] <- (tmp[(j-1), "value"] * ret) + dca_amount
}
}
tail <- tmp %>%
tail(1)
counter <- counter + 1
final_results[counter, "start_date"] <- start_month
final_results[counter, "end_date"] <- end_month
final_results[counter, "cost_basis"] <- tail$cost_basis
final_results[counter, "value"] <- tail$value
final_results[counter, "country"] <- x
}
}
final_results <- final_results %>%
mutate(stock_premium = value/cost_basis - 1,
stock_beats_cash = ifelse(stock_premium > 0, 1, 0),
stock_premium_bins = case_when(
stock_premium < 0 ~ "<0%",
stock_premium < 0.5~ "0%-50%",
TRUE ~ ">50%"
)
)
final_results$stock_premium_bins <- factor(final_results$stock_premium_bins, levels = c("<0%", "0%-50%",">50%"))
final_results_no_ew <- final_results %>%
filter(country != "EW")
source_string <- paste0("Source: Returns 2.0")
note_string <- str_wrap(paste0("Note: Assumes that DCA invests $100 a month for 10 years. Returns are shown net of dividends. ",
"All country data starts in 1970, except data for China, Russia, and Greece which start in 1999."),
width = 80)
file_path <- paste0(out_path, "/dca_all_countries.jpeg")
to_plot <- final_results_no_ew
plot <- ggplot(to_plot, aes(x= start_date, y=value, col = country)) +
geom_line() +
scale_y_continuous(label = dollar) +
geom_hline(yintercept = period_length*dca_amount, linetype = "dashed") +
of_dollars_and_data_theme +
theme(legend.position = "bottom",
legend.title = element_blank()) +
ggtitle(paste0("DCA Final Portfolio Value\nOver 10 Years\nBy Country")) +
labs(x="Start Date", y="Final Portfolio Value",
caption = paste0(source_string, "\n", note_string))
ggsave(file_path, plot, width = 15, height = 12, units = "cm")
file_path <- paste0(out_path, "/dca_bins_all_countries.jpeg")
country_bin <- final_results_no_ew %>%
group_by(stock_premium_bins, country) %>%
summarise(count = n()) %>%
ungroup()
country <- final_results_no_ew %>%
group_by(country) %>%
summarise(country_total = n()) %>%
ungroup()
to_plot <- country_bin %>%
left_join(country) %>%
mutate(pct = count/country_total,
label = paste0(100*round(pct, 2), "%")) %>%
select(country, stock_premium_bins, pct, label)
plot <- ggplot(to_plot, aes(x=stock_premium_bins, y=pct, fill = country)) +
geom_bar(stat = "identity") +
geom_text(data=to_plot, aes(x=stock_premium_bins, y=pct + 0.05, label = label), col = "black", size = 2) +
facet_wrap(~country) +
scale_fill_discrete(guide = FALSE) +
scale_y_continuous(label = percent_format(accuracy = 1)) +
of_dollars_and_data_theme +
ggtitle(paste0("DCA Return Above Cash\nOver 10 Years\nBy Country and Return Amount")) +
labs(x="Final Return Above Cash", y="Percentage",
caption = paste0(source_string, "\n", note_string))
ggsave(file_path, plot, width = 15, height = 12, units = "cm")
print_sim_stats <- function(df){
print(paste0("Stock beats cash: ", 100*round(mean(df$stock_beats_cash), 2), "% of the time (avg)"))
print(paste0("Stock beats cash by: ", 100*round(quantile(df$stock_premium, probs = 0.25), 2), "% (25th pct)"))
print(paste0("Stock beats cash by: ", 100*round(quantile(df$stock_premium, probs = 0.5), 2), "% (median)"))
print(paste0("Stock beats cash by: ", 100*round(quantile(df$stock_premium, probs = 0.75), 2), "% (75th pct)"))
}
ew_only <- final_results %>%
filter(country == "EW")
print_sim_stats(final_results_no_ew)
print_sim_stats(ew_only)
|
eye <- hijack(r_sample_factor,
name = "Eye",
x = c("Brown", "Blue", "Green", "Hazel", "Gray"),
prob = c(.44, .3, .13, .09, .04)
)
|
dubininradanalysis <- function(Ce, Qe){
x <- Ce
y <- Qe
data <- data.frame(x, y)
mod205 <- Qe ~ Xm*exp(-K*Ce^2)
start <- data.frame(Xm = c(0, 10), K = c(0, 10))
set.seed(511)
suppressWarnings(fit206<- nls2(mod205, start = start, control = nls.control(maxiter = 100, warnOnly = TRUE), algorithm = "plinear-random"))
print("Dubinin-Radushkevich Isotherm")
print(summary(fit206))
N <- nrow(na.omit(data))
error <- function(y){
pv <- (predict(fit206))
rmse<- (rmse(y,predict(fit206)))
mae <- (mae(y,predict(fit206)))
mse <- (mse(y,predict(fit206)))
rae <- (rae(y,predict(fit206)))
PAIC <- AIC(fit206)
PBIC <- BIC(fit206)
SE <-(sqrt(sum(predict(fit206)-x)^2)/(N-2))
colnames(y) <- rownames(y) <- colnames(y)
list("Predicted Values" = pv,
"Relative Mean Square Error" = rmse,
"Mean Absolute Error" = mae,
"Mean Squared Error" = mse,
"Relative Absolute Error" = rae,
"AIC" = PAIC,
"BIC" = PBIC,
"Standard Error Estimate" = SE)
}
e <- error(y)
print(e)
plot(x, y, main = "Dubinin-Radushkevich Isotherm Model", xlab = "Ce",
ylab = "Qe")
lines(x,predict(fit206),lty=1, col="black", lwd=1)
rsqq <- lm(Qe~predict(fit206))
print(summary(rsqq))
}
|
check_integer <- function(x, min_len = 1, max_len = 1, min = -Inf, max = Inf, strict = FALSE) {
arg <- deparse(substitute(x))
if (strict && !is.integer(x))
stop("The type of ", arg, " must be integer", call. = FALSE)
fun <- function(e) stop(arg, " must be coercible to integer", call. = FALSE)
tryCatch({
x <- as.integer(x)
}, warning = fun, error = fun)
x <- check_length(x, min_len, max_len, arg)
x <- check_na(x, arg)
x <- check_range(x, min, max, arg)
return(x)
}
check_double <- function(x, min_len = 1, max_len = 1, min = -Inf, max = Inf, strict = FALSE) {
arg <- deparse(substitute(x))
if (strict && !is.double(x))
stop("The type of ", arg, " must be double", call. = FALSE)
fun <- function(e) stop(arg, " must be coercible to double", call. = FALSE)
tryCatch({
x <- as.double(x)
}, warning = fun, error = fun)
x <- check_length(x, min_len, max_len, arg)
x <- check_na(x, arg)
x <- check_range(x, min, max, arg)
return(x)
}
check_logical <- function(x, min_len = 1, max_len = 1, strict = FALSE) {
arg <- deparse(substitute(x))
if (strict && !is.logical(x))
stop("The type of ", arg, " must be logical", call. = FALSE)
fun <- function(e) stop(arg, " must be coercible to logical", call. = FALSE)
tryCatch({
x <- as.logical(x)
}, warning = fun, error = fun)
x <- check_length(x, min_len, max_len, arg)
x <- check_na(x, arg)
return(x)
}
check_character <- function(x, min_len = 1, max_len = 1, min_nchar = 0, max_nchar = Inf, strict = FALSE) {
arg <- deparse(substitute(x))
if (strict && !is.character(x))
stop("The type of ", arg, " must be character", call. = FALSE)
fun <- function(e) stop(arg, " must be coercible to character", call. = FALSE)
tryCatch({
x <- as.character(x)
}, warning = fun, error = fun)
x <- check_length(x, min_len, max_len, arg)
x <- check_na(x, arg)
n <- stringi::stri_length(x)
if (any(n < min_nchar) || any(max_nchar < n)) {
if (min_nchar == max_nchar) {
stop("The value of ", arg, " must be ", max_nchar, " character\n", call. = FALSE)
} else {
stop("The value of ", arg, " must be between " , min_nchar, " and ", max_nchar, " character\n", call. = FALSE)
}
}
return(x)
}
check_na <- function(x, arg) {
if (any(is.na(x)))
stop("The value of ", arg, " cannot be NA\n", call. = FALSE)
return(x)
}
check_range <- function(x, min, max, arg) {
if (any(x < min) || any(max < x))
stop("The value of ", arg, " must be between " , min, " and ", max, "\n", call. = FALSE)
return(x)
}
check_length <- function(x, min_len, max_len, arg) {
len <- length(x)
if (len < min_len || max_len < len) {
if (min_len == max_len) {
stop("The length of ", arg, " must be ", max_len, "\n", call. = FALSE)
} else {
stop("The length of ", arg, " must be between " , min_len, " and ", max_len, "\n", call. = FALSE)
}
}
return(x)
}
check_class <- function(class, method) {
class_valid <- rownames(attr(utils::methods(method), "info"))
class_valid <- stringi::stri_replace_first_fixed(class_valid, paste0(method, "."), "")
class_valid <- class_valid[class_valid != "default"]
if (!length(intersect(class, class_valid)))
stop(method, "() only works on ", paste(class_valid, collapse = ", "), " objects.", call. = FALSE)
}
friendly_class_undefined_message <- check_class
check_dots <- function(..., method = NULL) {
arg <- setdiff(names(list(...)), "")
if (!is.null(method)) {
arg_used <- unlist(lapply(method, function(x) names(formals(x))))
arg <- setdiff(arg, arg_used)
}
if (length(arg) > 1) {
warning(paste0(arg, collapse = ", "), " arguments are not used.", call. = FALSE)
} else if (length(arg) == 1) {
warning(arg, " argument is not used.", call. = FALSE)
}
}
unused_dots <- check_dots
|
pressure <- function(x1,x2,x3,x4){
if(!is.numeric(x1) | !is.numeric(x2) | !is.numeric(x3) | !is.numeric(x4) |
length(x1) != 1 | length(x2) !=1 | length(x3) != 1 | length(x4) != 1){
stop("Input is invalid.")
}else if(x1 < 0 | x1 > 99 | x2 < 0 | x2 > 99 | x3 < 0 | x3 > 200 | x4 < 0 | x4 > 200){
stop("Input is outside of the domain.")
}else{
ans <- .C("pressurec",x1=x1,x2=x2,x3=x3,x4=x4,fx=0,c1x=0,c2x=0,c3x=0,c4x=0)
return(list(obj = ans$fx, con = c(ans$c1x,ans$c2x,ans$c3x,ans$c4x)))
}
}
|
library(shiny)
library(rintrojs)
ui <- fluidPage(
introjsUI(),
titlePanel("Tabsets"),
sidebarLayout(
sidebarPanel(
introBox(
radioButtons(
"dist", "Distribution type:",
c(
"Normal" = "norm",
"Uniform" = "unif",
"Log-normal" = "lnorm",
"Exponential" = "exp"
)
),
data.step = 1,
data.intro = "This is an input"
),
br(),
introBox(
sliderInput(
"n",
"Number of observations:",
value = 500,
min = 1,
max = 1000
),
data.step = 2,
data.intro = "And so is this"
)
),
mainPanel(
tabsetPanel(
type = "tabs",
tabPanel(
"Histogram",
introBox(
plotOutput("histogram"),
data.step = 3,
data.intro = "Took a look at this histogram"
)
),
tabPanel(
"Boxplot",
introBox(
plotOutput("boxplot"),
data.step = 4,
data.intro = "And this handsome boxplot.<br><br>See how the active tab
switched from 'Histogram' to 'Boxplot' before moving to this step?"
)
),
tabPanel(
"Summary",
tags$br(),
tabsetPanel(
tabPanel("Summary sub-tab 1", HTML("<br>Pretty boring tab, right?")),
tabPanel(
"Summary sub-tab 2",
introBox(
verbatimTextOutput("summary"),
data.step = 5,
data.intro = "There it goes again..."
)
)
)
)
)
)
)
)
server <- shinyServer(function(input, output, session) {
d <- reactive({
dist <- switch(input$dist,
norm = rnorm,
unif = runif,
lnorm = rlnorm,
exp = rexp,
rnorm
)
dist(input$n)
})
output$histogram <- renderPlot({
dist <- input$dist
n <- input$n
hist(
d(),
main = paste("r", dist, "(", n, ")", sep = ""),
col = "
)
})
output$boxplot <- renderPlot({
dist <- input$dist
n <- input$n
boxplot(
d(),
main = paste("r", dist, "(", n, ")", sep = ""),
col = "
)
})
output$summary <- renderPrint({
summary(d())
})
introjs(session, events = list(onbeforechange = readCallback("switchTabs")))
})
shinyApp(ui, server)
|
rare_signatures <- function() {
return(paste0("SBS", c(84:90, 91, 94)))
}
|
MULTIPROCESS = R6::R6Class("MULTIPROCESS",
inherit = QSys,
public = list(
initialize = function(addr=host("127.0.0.1"), ...) {
if (! requireNamespace("callr", quietly=TRUE))
stop("The ", sQuote(callr), " package is required for ", sQuote("multiprocess"))
super$initialize(addr=addr, ...)
},
submit_jobs = function(n_jobs, ..., log_worker=FALSE, log_file=NULL, verbose=TRUE) {
if (verbose)
message("Starting ", n_jobs, " processes ...")
if (log_worker && is.null(log_file))
log_file = "cmq-%i.log"
for (i in seq_len(n_jobs)) {
if (is.character(log_file))
log_i = suppressWarnings(sprintf(log_file, i))
else
log_i = nullfile()
cr = callr::r_bg(function(m) clustermq:::worker(m),
args=list(m=private$master),
stdout=log_i, stderr=log_i)
private$callr[[as.character(cr$get_pid())]] = cr
}
private$workers_total = n_jobs
},
cleanup = function(quiet=FALSE, timeout=3) {
success = super$cleanup(quiet=quiet, timeout=timeout)
dead_workers = sapply(private$callr, function(x) ! x$is_alive())
if (length(dead_workers) > 0)
private$callr[dead_workers] = NULL
invisible(success)
},
finalize = function(quiet=FALSE) {
if (!private$is_cleaned_up) {
dead_workers = sapply(private$callr, function(x) ! x$is_alive())
if (length(dead_workers) > 0)
private$callr[dead_workers] = NULL
if (!quiet && length(private$callr) > 0)
warning("Unclean shutdown for PIDs: ",
paste(names(private$callr), collapse=", "), immediate.=TRUE)
for (cr in private$callr)
cr$kill_tree()
private$is_cleaned_up = TRUE
}
}
),
private = list(
callr = list()
)
)
|
test_partial_fn_parse <- function() {
d <- data.frame(x = c(1, NA), g = c(1, 1))
expect_error(
d %.>%
project(.,
x = mean(x, na.rm = TRUE),
groupby = c())
)
mean2 <- function(x) (mean(x, na.rm = TRUE))
ops <- local_td(d) %.>%
project(.,
x = mean2(x),
groupby = c())
sql <- to_sql(ops, rquery_default_db_info())
d <- data.frame(AUC = 0.6, R2 = 0.2)
exprs <- list()
exprs <- c(exprs, "v" %:=% "AUC + R2")
exprs <- c(exprs, "x" %:=% "pmax(AUC,v)")
ops <- extend_se(local_td(d), exprs)
sql <- to_sql(ops, rquery_default_db_info())
invisible(NULL)
}
test_partial_fn_parse()
|
NULL
tokenizer_delim <- function(delim, quote = '"', na = "NA", quoted_na = TRUE, comment = "",
trim_ws = TRUE,
escape_double = TRUE,
escape_backslash = FALSE,
skip_empty_rows = TRUE) {
structure(
list(
delim = delim,
quote = quote,
na = na,
quoted_na = quoted_na,
comment = comment,
trim_ws = trim_ws,
escape_double = escape_double,
escape_backslash = escape_backslash,
skip_empty_rows = skip_empty_rows
),
class = "tokenizer_delim"
)
}
tokenizer_csv <- function(na = "NA", quoted_na = TRUE, quote = "\"",
comment = "", trim_ws = TRUE,
skip_empty_rows = TRUE) {
tokenizer_delim(
delim = ",",
na = na,
quoted_na = quoted_na,
quote = quote,
comment = comment,
trim_ws = trim_ws,
escape_double = TRUE,
escape_backslash = FALSE,
skip_empty_rows = skip_empty_rows
)
}
tokenizer_tsv <- function(na = "NA", quoted_na = TRUE, quote = "\"",
comment = "", trim_ws = TRUE,
skip_empty_rows = TRUE) {
tokenizer_delim(
delim = "\t",
na = na,
quoted_na = quoted_na,
quote = quote,
comment = comment,
trim_ws = trim_ws,
escape_double = TRUE,
escape_backslash = FALSE,
skip_empty_rows = skip_empty_rows
)
}
tokenizer_line <- function(na = character(), skip_empty_rows = TRUE) {
structure(list(na = na, skip_empty_rows = skip_empty_rows),
class = "tokenizer_line"
)
}
tokenizer_log <- function(trim_ws) {
structure(list(trim_ws = trim_ws), class = "tokenizer_log")
}
tokenizer_fwf <- function(begin, end, na = "NA", comment = "", trim_ws = TRUE,
skip_empty_rows = TRUE) {
structure(list(
begin = as.integer(begin), end = as.integer(end), na = na, comment = comment,
trim_ws = trim_ws, skip_empty_rows = skip_empty_rows
),
class = "tokenizer_fwf"
)
}
tokenizer_ws <- function(na = "NA", comment = "", skip_empty_rows = TRUE) {
structure(list(na = na, comment = comment, skip_empty_rows = skip_empty_rows),
class = "tokenizer_ws"
)
}
|
library(tidyverse)
library(usethis)
fastfood <- read_csv(here::here("data-raw/fastfood", "fastfood.csv"))
fastfood <- fastfood %>%
select(-X1)
use_data(fastfood, overwrite = TRUE)
|
`quantBMAgamma0` <-
function(alpha, WEIGHTS, MEAN, VAR, PROB0)
{
if (sum(WEIGHTS*PROB0) > alpha) return(0)
lower <- 0
upper <- max(MEAN+6*sqrt(VAR))
if (cdfBMAgamma0(lower, WEIGHTS, MEAN, VAR, PROB0, 0) > alpha) return(NA)
if (cdfBMAgamma0(upper, WEIGHTS, MEAN, VAR, PROB0, 0) < alpha) return(NA)
z <- uniroot(cdfBMAgamma0, lower = lower, upper = upper,
WEIGHTS=WEIGHTS, MEAN=MEAN, VAR=VAR, PROB0 = PROB0, offset = alpha)
z$root
}
|
set.seed(123)
par(mar = c(6, 1, 0.1, 0.1), las = 2)
plot(1:6, rep(1, 6), type = "n", axes = FALSE,
ann = FALSE, xlim = c(0.8, 7.2), ylim = c(0, 5),
panel.first = grid())
x = seq(1, 2, length = 4)
symbols(x, 1:4, circles = runif(4, 0.1, 0.6),
add = TRUE, bg = heat.colors(4), inches = FALSE)
symbols(x + 1, 1:4, squares = runif(4, 0.1,0.6), add = TRUE,
bg = terrain.colors(4), inches = FALSE)
symbols(x + 2, 1:4, rect = matrix(runif(8,0.1, 0.6), 4), add = TRUE,
bg = rainbow(4), inches = FALSE)
symbols(x + 3, 1:4, stars = matrix(runif(20, 0.1, 0.6), 4), add = TRUE,
bg = topo.colors(4), inches = FALSE)
symbols(x + 4, 1:4, therm = matrix(runif(12, 0.1, 0.7), 4), add = TRUE, inches = FALSE)
symbols(x + 5, 1:4, boxplot = matrix(runif(20, 0.1, 0.7), 4), add = TRUE, inches = FALSE)
axis(1, 1:6, c("circles", "squares", "rectangles",
"stars", "thermometers", "boxplots"), cex.axis = 0.85)
|
setGeneric("extender", function(object) standardGeneric("extender"))
setMethod("extender", "nifti", function(object) object@"extender")
setGeneric("extender<-", function(object, value) standardGeneric("extender<-"))
setMethod("extender<-",
signature(object="nifti"),
function(object, value) {
if ( "extender" %in% slotNames(object) ){
object@"extender" <- value
audit.trail(object) <-
niftiAuditTrailEvent(object, "modification", match.call(),
paste("extender <-", value))
} else {
warning("extender is not in slotNames of object")
}
return(object)
})
|
censpois.mle <- function(x, tol = 1e-07) {
ca <- min(x)
z <- 0:ca
fac <- factorial(z)
n <- length(x)
n2 <- sum(x == ca)
n1 <- n - n2
sx <- sum( x[x > ca] )
a1 <- log( sx/n )
down <- sum( exp(a1 * z)/fac )
dera <- - n1 * exp(a1) + sx + n2 * sum( z * exp( a1 * z )/fac ) / down
dera2 <- - n1 * exp(a1) +
n2 * ( sum( z^2 * exp( a1 * z/fac ) ) - sum( z * exp(a1 * z)/fac )^2 ) / down^2
a2 <- a1 - dera/dera2
i <- 2
while ( abs(a2 - a1) > tol ) {
i <- i + 1
down <- sum( exp(a1 * z)/fac )
a1 <- a2
dera <- - n * exp(a1) + sx + n2 * sum( z * exp( a1 * z )/fac ) / down
dera2 <- - n * exp(a1) +
n2 * ( sum( z^2 * exp( a1 * z/fac ) ) - sum( z * exp(a1 * z)/fac )^2 ) / down^2
a2 <- a1 - dera/dera2
}
loglik <- - n * exp(a1) + sx * a1 - sum( lgamma(x + 1) ) + n2 * log( down )
list(iters = i, loglik = loglik, lambda = exp(a2) )
}
censweibull.mle <- function(x, di, tol = 1e-07) {
y <- log(x)
y1 <- y[di == 1]
y2 <- y[di == 0]
n <- length(x)
n1 <- length(y1)
n2 <- n - n1
mod <- Rfast::weibull.mle(x[di==1])
if ( n2 > 0 ) {
m <- log(mod$param[2])
es <- 1/mod$param[1]
s <- log( es )
z1 <- ( y1 - m ) / es
z2 <- ( y2 - m ) /es
com <- sum(z1)
ez1 <- exp(z1)
ez2 <- exp(z2)
com1 <- sum(ez1)
com2 <- sum(ez2)
lik1 <- com - com1 - n1 * s - com2
derm2 <- - com1 / es^2 - com2 / es^2
derm <- - n1/ es + - derm2 * es
ders <- - com + sum(ez1 * z1) - n1 + sum(ez2 * z2)
ders2 <- com - sum(ez1 * z1^2) - sum(ez1 * z1) - sum(ez2 * z2^2) - sum(ez2 * z2)
derms <- n1/es - sum(ez1 * z1) / es - com1/es - sum(ez2 * z2) / es - com2/es
anew <- c(m, s) - c(ders2 * derm - derms * ders, -derms *
derm + derm2 * ders)/(derm2 * ders2 - derms^2)
m <- anew[1]
s <- anew[2]
es <- exp(s)
z1 <- ( y1 - m ) / es
z2 <- ( y2 - m ) /es
com <- sum(z1)
ez1 <- exp(z1)
ez2 <- exp(z2)
com1 <- sum(ez1)
com2 <- sum(ez2)
lik2 <- com1 - sum(ez1) - n1 * s - com2
i <- 2
while ( abs(lik2 - lik1) > tol ) {
i <- i + 1
lik1 <- lik2
derm2 <- - com1 / es^2 - com2 / es^2
derm <- - n1/ es + - derm2 * es
ders <- - com + sum(ez1 * z1) - n1 + sum(ez2 * z2)
ders2 <- com - sum(ez1 * z1^2) - sum(ez1 * z1) - sum(ez2 * z2^2) - sum(ez2 * z2)
derms <- n1/es - sum(ez1 * z1) / es - com1/es - sum(ez2 * z2) / es - com2/es
anew <- c(m, s) - c(ders2 * derm - derms * ders, -derms *
derm + derm2 * ders)/(derm2 * ders2 - derms^2)
m <- anew[1]
s <- anew[2]
es <- exp(s)
z1 <- ( y1 - m ) / es
z2 <- ( y2 - m ) /es
com <- sum(z1)
ez1 <- exp(z1)
ez2 <- exp(z2)
com1 <- sum(ez1)
com2 <- sum(ez2)
lik2 <- com - com1 - n1 * s - com2
}
param <- c(exp(m), es)
names(param) <- c("scale", "1/shape")
mod <- list(iters = i, loglik = lik2 - sum(y1), param = param)
} else mod <- mod
mod
}
gammapois.mle <- function(x, tol = 1e-07) {
n <- length(x)
slx <- sum( lgamma(x + 1) )
sx <- sum(x)
m <- sx/n
m2 <- sum(x^2)/n
p <- 1 - m/(m2 - m^2)
ini.ea <- max(0, m/p - m)
eb <- ini.ea/m
if (eb < 1) {
lik1 <- sum( lgamma(x + ini.ea) ) - n * lgamma(ini.ea) + sx * log(eb/(1 + eb)) - n *ea * log1p(eb)
dera <- sum( digamma(x + ini.ea) ) * ini.ea - n * digamma(ini.ea) * ea - n * ini.ea * log1p(eb)
p <- eb / (1 + eb)
derab <- - n * ini.ea * p
derb <- sx * (1 - p) + derab
dera2 <- dera + sum( trigamma(x + ini.ea) ) * ea^2 - n * trigamma(ini.ea) * ini.ea^2
derb2 <- - p * (1 - p) * sx - n * ini.ea * p * (1 - p)
anew <- log(c(ini.ea, eb)) - c(derb2 * dera - derab * derb, -derab * dera + dera2 * derb)/(dera2 * derb2 - derab^2)
ea <- exp(anew[1]) ; eb <- exp(anew[2])
lik2 <- sum( lgamma(x + ea) ) - n * lgamma(ea) + sx * log(eb/(1 + eb)) - n * ea * log1p(eb)
i <- 2
while ( lik2 - lik1 > tol ) {
i <- i + 1
lik1 <- lik2
dera <- sum( digamma(x + ea) ) * ea - n * digamma(ea) * ea - n * ea * log1p(eb)
p <- eb / (1 + eb)
derab <- - n * ea * p
derb <- sx * (1 - p) + derab
dera2 <- dera + sum( trigamma(x + ea) ) * ea^2 - n * trigamma(ea) * ea^2
derb2 <- - p * (1 - p) * sx - n * ea * p * (1 - p)
anew <- log(c(ea, eb)) - c(derb2 * dera - derab * derb, -derab * dera + dera2 * derb)/(dera2 * derb2 - derab^2)
ea <- exp(anew[1]) ; eb <- exp(anew[2])
lik2 <- sum( lgamma(x + ea) ) - n * lgamma(ea) + sx * log(eb/(1 + eb)) - n * ea * log1p(eb)
}
par <- c(ea, eb)
names(par) <- c("shape", "scale")
res <- list(iters = i, loglik = lik2, par = par)
} else {
ea <- ini.ea
eb <- m/ea
lik1 <- sum( lgamma(x + ea) ) - n * lgamma(ea) + sx * log(eb/(1 + eb)) - n *ea * log1p(eb)
dera <- sum( digamma(x + ea) ) * ea - n * digamma(ea) * ea - n * ea * log1p(eb)
p <- eb / (1 + eb)
derab <- - n * ea * p
derb <- sx * (1 - p) + derab
dera2 <- dera + sum( trigamma(x + ea) ) * ea^2 - n * trigamma(ea) * ea^2
derb2 <- - p * (1 - p) * sx - n * ea * p * (1 - p)
anew <- log(c(ea, eb)) - c(derb2 * dera - derab * derb, -derab * dera + dera2 * derb)/(dera2 * derb2 - derab^2)
ea <- exp(anew[1]) ; eb <- exp(anew[2])
lik2 <- sum( lgamma(x + ea) ) - n * lgamma(ea) + sx * log(eb/(1 + eb)) - n * ea * log1p(eb)
i <- 2
while ( lik2 - lik1 > tol ) {
i <- i + 1
lik1 <- lik2
dera <- sum( digamma(x + ea) ) * ea - n * digamma(ea) * ea - n * ea * log1p(eb)
p <- eb / (1 + eb)
derab <- - n * ea * p
derb <- sx * (1 - p) + derab
dera2 <- dera + sum( trigamma(x + ea) ) * ea^2 - n * trigamma(ea) * ea^2
derb2 <- - p * (1 - p) * sx - n * ea * p * (1 - p)
anew <- log(c(ea, eb)) - c(derb2 * dera - derab * derb, -derab * dera + dera2 * derb)/(dera2 * derb2 - derab^2)
ea <- exp(anew[1]) ; eb <- exp(anew[2])
lik2 <- sum( lgamma(x + ea) ) - n * lgamma(ea) + sx * log(eb/(1 + eb)) - n * ea * log1p(eb)
}
par <- c(ea, eb)
names(par) <- c("shape", "scale")
res <- list(iters = i, loglik = lik2, par = par)
}
res
}
halfcauchy.mle <- function(x, tol = 1e-07) {
n <- length(x)
es <- 0.5 * (Rfast::nth(x, 3 * n/4) - Rfast::nth(x, n/4))
logs <- log(es)
x2 <- x^2
down <- 1/(x2 + es^2)
lik1 <- n * logs + sum( log(down) )
der <- n - 2 * es^2 * sum(down)
der2 <- - 4 * es^4 * sum(down^2)
logs <- logs - der/der2
es <- exp(logs)
down <- 1/(x2 + es^2)
lik2 <- n * logs + sum( log(down) )
i <- 2
while ( lik2 - lik1 > tol ) {
i <- i + 1
lik1 <- lik2
der <- n - 2 * es^2 * sum(down)
der2 <- - 4 * es^4 * sum(down^2)
logs <- logs - der/der2
es <- exp(logs)
down <- 1/(x2 + es^2)
lik2 <- n * logs + sum( log(down) )
}
list(iters = i, loglik = lik2 - n * log(2/pi), scale = es)
}
cauchy0.mle <- function(x, tol = 1e-07) {
n <- length(x)
es <- 0.5 * (Rfast::nth(x, 3 * n/4) - Rfast::nth(x, n/4))
logs <- log(es)
x2 <- x^2
down <- 1/(x2 + es^2)
lik1 <- n * logs + sum( log(down) )
der <- n - 2 * es^2 * sum(down)
der2 <- - 4 * es^4 * sum(down^2)
logs <- logs - der/der2
es <- exp(logs)
down <- 1/(x2 + es^2)
lik2 <- n * logs + sum( log(down) )
i <- 2
while ( lik2 - lik1 > tol ) {
i <- i + 1
lik1 <- lik2
der <- n - 2 * es^2 * sum(down)
der2 <- - 4 * es^4 * sum(down^2)
logs <- logs - der/der2
es <- exp(logs)
down <- 1/(x2 + es^2)
lik2 <- n * logs + sum( log(down) )
}
list(iters = i, loglik = lik2 - n * log(pi), scale = es)
}
kumar.mle <- function(x, tol = 1e-07, maxiters = 50) {
n <- length(x)
lx <- log(x)
slx <- sum(lx)
ini <- Rfast::beta.mle(x)$param
expa <- ini[1] ; expb <- ini[2]
xa <- x^expa
ya <- 1 - xa
com <- xa * lx / ya
scom <- sum(com)
derab <- - expb * expa * scom
dera <- n + expa * slx + (1 - 1/ expb) * derab
dera2 <- expa * slx - (expb - 1) * expa^2 * sum( com * lx / ya )
derb2 <- expb * sum( log(ya) )
derb <- n + derb2
aold <- c( log(expa), log(expb) )
anew <- aold - c( derb2 * dera - derab * derb, - derab * dera + dera2 * derb ) / ( dera2 * derb2 - derab^2 )
i <- 2
while ( sum( abs(anew - aold) ) > tol & i < maxiters ) {
i <- i + 1
aold <- anew
expa <- exp( aold[1] ) ; expb <- exp( aold[2] )
xa <- x^expa
ya <- 1 - xa
com <- xa * lx / ya
scom <- sum(com)
derab <- - expb * expa * scom
dera <- n + expa * slx + (1 - 1/ expb) * derab
dera2 <- expa * slx - (expb - 1) * expa^2 * sum( com * lx / ya )
derb2 <- expb * sum( log(ya) )
derb <- n + derb2
anew <- aold - c( derb2 * dera - derab * derb, - derab * dera + dera2 * derb ) / ( dera2 * derb2 - derab^2 )
}
a <- exp( anew[1] ) ; b <- exp( anew[2] )
param <- c(a, b)
loglik <- n * log(a * b) + (a - 1) * slx + (b - 1) * derb2/expb
names(param) <- c("shape", "scale")
list(iters = i, param = param, loglik = loglik)
}
powerlaw.mle <- function(x) {
n <- length(x)
x1 <- min(x)
com <- sum( log(x) ) - n * log(x1)
a <- 1 + n / com
loglik <- n * log( (a - 1) / x1 ) - a * com
list(alpha = a, loglik = loglik)
}
purka.mle <- function(x, tol = 1e-07) {
if ( !is.matrix(x) ) x <- cbind( cos(x), sin(x) )
p <- dim(x)[2]
theta <- Rfast::mediandir(x)
a <- x %*% theta
a[ abs(a) > 1 ] <- 1
A <- sum( acos(a) )
n <- dim(x)[1]
circle <- function(a, A, n) n * log(a) - n * log(2) - n * log( 1 - exp( - a * pi ) ) - a * A
sphere <- function(a, A, n) n * log(a^2 + 1) - n * log(2 * pi) - n * log( 1 + exp( - a * pi ) ) - a * A
hypersphere <- function(a, A, n) {
n * lgamma(p/2) - 0.5 * n * p * log(pi) + n * ( log(besselI(a, p - 1, expon.scaled = TRUE)) + a ) - a * A
}
if (p == 2) {
lika <- optimize(circle, c(0.001, 30000), maximum = TRUE, A = A, n = n, tol = tol)
a <- lika$maximum
f2 <- -n / a^2 + n * pi^2 * exp( -a * pi)/ ( 1 - exp(-a * pi) )^2
} else if (p == 3) {
lika <- optimize(sphere, c(0.001, 30000), maximum = TRUE, A = A, n = n, tol = tol)
a <- lika$maximum
f2 <- - (2 * a^2 * n - 2 * n) / (a^2 + 1)^2 - n * pi^2 * ( 1 + exp( a * pi) )^(-2) * exp( a * pi )
} else {
lika <- optimize(hypersphere, c(0.001, 30000), maximum = TRUE, A = A, n = n, tol = tol)
a <- lika$maximum
up1 <- ( besselI(a, p - 3) + 2 * besselI(p - 1, a) + besselI(p + 1, a) ) * besselI(p - 1, a)
up2 <- ( besselI(a, p - 2) + 2 * besselI(p, a) )^2
f2 <- 0.5 * n * ( up1 - up2 ) / besselI(p - 1, a)^2
}
list( theta = theta, alpha = a, loglik = lika$objective, alpha.sd = 1 / sqrt( - f2 ) )
}
simplex.mle <- function(x, tol = 1e-07) {
n <- length(x)
xx <- x * (1 - x)
simplexfun <- function(m, xx, x) sum( (x - m)^2 /xx ) / ( m^2 * (1 - m)^2 )
mod <- optimise(simplexfun, c(0, 1), xx = xx, x = x, tol = tol)
s <- sqrt( mod$objective/n )
param <- c( mod$minimum, s)
names(param) <- c("mean", "sigma")
list(param = param, loglik = -0.5 * n * log(2 * pi) - 1.5 * sum( log(xx) ) - n * log(s) - n/2 )
}
trunccauchy.mle <- function (x, a, b, tol = 1e-07) {
n <- length(x)
m <- Rfast::med(x)
es <- 0.5 * (Rfast::nth(x, 3 * n/4) - Rfast::nth(x, n/4))
logs <- log(es)
y <- x - m
y2 <- y^2
lik1 <- n * logs - sum(log(es^2 + y2))
down <- 1/(es^2 + y2)
down2 <- down^2
derm <- 2 * sum(y * down)
ders <- n - 2 * es^2 * sum(down)
derm2 <- 2 * sum((y2 - es^2) * down2)
ders2 <- -2 * es^2 * (derm2 + 2 * es^2 * sum(down2))
derms <- -4 * es^2 * sum(y * down2)
m <- m - (ders2 * derm - derms * ders)/(derm2 * ders2 - derms^2)
logs <- logs - (-derms * derm + derm2 * ders)/(derm2 * ders2 -
derms^2)
y <- x - m
y2 <- y^2
es <- exp(logs)
lik2 <- n * logs - sum(log(es^2 + y2))
i <- 2
while (lik2 - lik1 > tol) {
i <- i + 1
lik1 <- lik2
down <- 1/(es^2 + y2)
down2 <- down^2
derm <- 2 * sum(y * down)
ders <- n - 2 * es^2 * sum(down)
derm2 <- 2 * sum((y2 - es^2) * down2)
ders2 <- -2 * es^2 * (derm2 + 2 * es^2 * sum(down2))
derms <- -4 * es^2 * sum(y * down2)
m <- m - (ders2 * derm - derms * ders)/(derm2 * ders2 -
derms^2)
logs <- logs - (-derms * derm + derm2 * ders)/(derm2 *
ders2 - derms^2)
y <- x - m
y2 <- y^2
es <- exp(logs)
lik2 <- n * logs - sum(log(es^2 + y2))
}
param <- c(m, es)
names(param) <- c("location", "scale")
tr <- atan(b) - atan(a)
list(iters = i, loglik = lik2 - n * log(tr), param = param)
}
truncexpmle <- function(x, b, tol = 1e-07) {
trexp <- function(lam, sx, b, n) {
- n * log(lam) - sx/lam - n * log( 1 - exp(-b/lam) )
}
mod <- optimise(trexp, c(0, b), sx = sum(x), b = b, n = length(x),
tol = tol, maximum = TRUE )
list(loglik = mod$objective, lambda = mod$minimum)
}
zigamma.mle <- function(x, tol = 1e-07) {
n <- length(x)
x1 <- x[x > 0]
n1 <- length(x1)
n0 <- n - n1
prob <- n1/n
lik0 <- n0 * log(1 - prob) + n1 * log(prob)
mod <- Rfast::gammamle(x1, tol = tol)
param <- c(prob, mod$param)
names(param) <- c("prop1", "shape", "scale")
list(iters = mod$iters, loglik = sum(lik0, mod$loglik, na.rm = TRUE), param = param)
}
zil.mle <- function(x) {
n <- length(x)
x1 <- x[x > 0]
n1 <- length(x1)
n0 <- n - n1
prob <- n1/n
lik0 <- n0 * log(1 - prob) + n1 * log(prob)
lx1 <- log(x1)
lx2 <- log(1 - x1)
y <- lx1 - lx2
sy <- sum(y)
m <- sy/n1
s <- (sum(y^2) - n1 * m^2)/n1
loglik <- sum(dnorm(y, m, sqrt(s), log = TRUE)) - sy
param <- c(prob, m, n1 * s/(n1 - 1))
names(param) <- c("prop1", "mean", "unbiased variance")
list(loglik = sum(lik0, loglik, na.rm = TRUE), param = param)
}
ziweibull.mle <- function(x, tol = 1e-07) {
n <- length(x)
x1 <- x[x > 0]
n1 <- length(x1)
n0 <- n - n1
prob <- n1/n
lik0 <- n0 * log(1 - prob) + n1 * log(prob)
mod <- Rfast::weibull.mle(x1, tol = tol)
param <- c(prob, mod$param)
names(param) <- c("prop1", "shape", "scale")
list(iters = mod$iters, loglik = sum(lik0, mod$loglik, na.rm = TRUE), param = param)
}
censpois.mle <- function(x, tol = 1e-07) {
ca <- min(x)
z <- 0:ca
fac <- factorial(z)
n <- length(x)
n2 <- sum(x == ca)
n1 <- n - n2
sx <- sum( x[x > ca] )
a1 <- log( sx/n )
down <- sum( exp(a1 * z)/fac )
dera <- - n1 * exp(a1) + sx + n2 * sum( z * exp( a1 * z )/fac ) / down
dera2 <- - n1 * exp(a1) +
n2 * ( sum( z^2 * exp( a1 * z/fac ) ) - sum( z * exp(a1 * z)/fac )^2 ) / down^2
a2 <- a1 - dera/dera2
i <- 2
while ( abs(a2 - a1) > tol ) {
i <- i + 1
down <- sum( exp(a1 * z)/fac )
a1 <- a2
dera <- - n * exp(a1) + sx + n2 * sum( z * exp( a1 * z )/fac ) / down
dera2 <- - n * exp(a1) +
n2 * ( sum( z^2 * exp( a1 * z/fac ) ) - sum( z * exp(a1 * z)/fac )^2 ) / down^2
a2 <- a1 - dera/dera2
}
loglik <- - n * exp(a1) + sx * a1 - sum( lgamma(x + 1) ) + n2 * log( down )
list(iters = i, loglik = loglik, lambda = exp(a2) )
}
censweibull.mle <- function(x, di, tol = 1e-07) {
y <- log(x)
y1 <- y[di == 1]
y2 <- y[di == 0]
n <- length(x)
n1 <- length(y1)
n2 <- n - n1
mod <- Rfast::weibull.mle(x[di==1])
if ( n2 > 0 ) {
m <- log(mod$param[2])
es <- 1/mod$param[1]
s <- log( es )
z1 <- ( y1 - m ) / es
z2 <- ( y2 - m ) /es
com <- sum(z1)
ez1 <- exp(z1)
ez2 <- exp(z2)
com1 <- sum(ez1)
com2 <- sum(ez2)
lik1 <- com - com1 - n1 * s - com2
derm2 <- - com1 / es^2 - com2 / es^2
derm <- - n1/ es + - derm2 * es
ders <- - com + sum(ez1 * z1) - n1 + sum(ez2 * z2)
ders2 <- com - sum(ez1 * z1^2) - sum(ez1 * z1) - sum(ez2 * z2^2) - sum(ez2 * z2)
derms <- n1/es - sum(ez1 * z1) / es - com1/es - sum(ez2 * z2) / es - com2/es
anew <- c(m, s) - c(ders2 * derm - derms * ders, -derms *
derm + derm2 * ders)/(derm2 * ders2 - derms^2)
m <- anew[1]
s <- anew[2]
es <- exp(s)
z1 <- ( y1 - m ) / es
z2 <- ( y2 - m ) /es
com <- sum(z1)
ez1 <- exp(z1)
ez2 <- exp(z2)
com1 <- sum(ez1)
com2 <- sum(ez2)
lik2 <- com1 - sum(ez1) - n1 * s - com2
i <- 2
while ( abs(lik2 - lik1) > tol ) {
i <- i + 1
lik1 <- lik2
derm2 <- - com1 / es^2 - com2 / es^2
derm <- - n1/ es + - derm2 * es
ders <- - com + sum(ez1 * z1) - n1 + sum(ez2 * z2)
ders2 <- com - sum(ez1 * z1^2) - sum(ez1 * z1) - sum(ez2 * z2^2) - sum(ez2 * z2)
derms <- n1/es - sum(ez1 * z1) / es - com1/es - sum(ez2 * z2) / es - com2/es
anew <- c(m, s) - c(ders2 * derm - derms * ders, -derms *
derm + derm2 * ders)/(derm2 * ders2 - derms^2)
m <- anew[1]
s <- anew[2]
es <- exp(s)
z1 <- ( y1 - m ) / es
z2 <- ( y2 - m ) /es
com <- sum(z1)
ez1 <- exp(z1)
ez2 <- exp(z2)
com1 <- sum(ez1)
com2 <- sum(ez2)
lik2 <- com - com1 - n1 * s - com2
}
param <- c(exp(m), es)
names(param) <- c("scale", "1/shape")
mod <- list(iters = i, loglik = lik2 - sum(y1), param = param)
} else mod <- mod
mod
}
gammapois.mle <- function(x, tol = 1e-07) {
n <- length(x)
slx <- sum( lgamma(x + 1) )
sx <- sum(x)
m <- sx/n
m2 <- sum(x^2)/n
p <- 1 - m/(m2 - m^2)
ini.ea <- max(0, m/p - m)
eb <- ini.ea/m
if (eb < 1) {
lik1 <- sum( lgamma(x + ini.ea) ) - n * lgamma(ini.ea) + sx * log(eb/(1 + eb)) - n *ea * log1p(eb)
dera <- sum( digamma(x + ini.ea) ) * ini.ea - n * digamma(ini.ea) * ea - n * ini.ea * log1p(eb)
p <- eb / (1 + eb)
derab <- - n * ini.ea * p
derb <- sx * (1 - p) + derab
dera2 <- dera + sum( trigamma(x + ini.ea) ) * ea^2 - n * trigamma(ini.ea) * ini.ea^2
derb2 <- - p * (1 - p) * sx - n * ini.ea * p * (1 - p)
anew <- log(c(ini.ea, eb)) - c(derb2 * dera - derab * derb, -derab * dera + dera2 * derb)/(dera2 * derb2 - derab^2)
ea <- exp(anew[1]) ; eb <- exp(anew[2])
lik2 <- sum( lgamma(x + ea) ) - n * lgamma(ea) + sx * log(eb/(1 + eb)) - n * ea * log1p(eb)
i <- 2
while ( lik2 - lik1 > tol ) {
i <- i + 1
lik1 <- lik2
dera <- sum( digamma(x + ea) ) * ea - n * digamma(ea) * ea - n * ea * log1p(eb)
p <- eb / (1 + eb)
derab <- - n * ea * p
derb <- sx * (1 - p) + derab
dera2 <- dera + sum( trigamma(x + ea) ) * ea^2 - n * trigamma(ea) * ea^2
derb2 <- - p * (1 - p) * sx - n * ea * p * (1 - p)
anew <- log(c(ea, eb)) - c(derb2 * dera - derab * derb, -derab * dera + dera2 * derb)/(dera2 * derb2 - derab^2)
ea <- exp(anew[1]) ; eb <- exp(anew[2])
lik2 <- sum( lgamma(x + ea) ) - n * lgamma(ea) + sx * log(eb/(1 + eb)) - n * ea * log1p(eb)
}
par <- c(ea, eb)
names(par) <- c("shape", "scale")
res <- list(iters = i, loglik = lik2, par = par)
} else {
ea <- ini.ea
eb <- m/ea
lik1 <- sum( lgamma(x + ea) ) - n * lgamma(ea) + sx * log(eb/(1 + eb)) - n *ea * log1p(eb)
dera <- sum( digamma(x + ea) ) * ea - n * digamma(ea) * ea - n * ea * log1p(eb)
p <- eb / (1 + eb)
derab <- - n * ea * p
derb <- sx * (1 - p) + derab
dera2 <- dera + sum( trigamma(x + ea) ) * ea^2 - n * trigamma(ea) * ea^2
derb2 <- - p * (1 - p) * sx - n * ea * p * (1 - p)
anew <- log(c(ea, eb)) - c(derb2 * dera - derab * derb, -derab * dera + dera2 * derb)/(dera2 * derb2 - derab^2)
ea <- exp(anew[1]) ; eb <- exp(anew[2])
lik2 <- sum( lgamma(x + ea) ) - n * lgamma(ea) + sx * log(eb/(1 + eb)) - n * ea * log1p(eb)
i <- 2
while ( lik2 - lik1 > tol ) {
i <- i + 1
lik1 <- lik2
dera <- sum( digamma(x + ea) ) * ea - n * digamma(ea) * ea - n * ea * log1p(eb)
p <- eb / (1 + eb)
derab <- - n * ea * p
derb <- sx * (1 - p) + derab
dera2 <- dera + sum( trigamma(x + ea) ) * ea^2 - n * trigamma(ea) * ea^2
derb2 <- - p * (1 - p) * sx - n * ea * p * (1 - p)
anew <- log(c(ea, eb)) - c(derb2 * dera - derab * derb, -derab * dera + dera2 * derb)/(dera2 * derb2 - derab^2)
ea <- exp(anew[1]) ; eb <- exp(anew[2])
lik2 <- sum( lgamma(x + ea) ) - n * lgamma(ea) + sx * log(eb/(1 + eb)) - n * ea * log1p(eb)
}
par <- c(ea, eb)
names(par) <- c("shape", "scale")
res <- list(iters = i, loglik = lik2, par = par)
}
res
}
halfcauchy.mle <- function(x, tol = 1e-07) {
n <- length(x)
es <- 0.5 * (Rfast::nth(x, 3 * n/4) - Rfast::nth(x, n/4))
logs <- log(es)
x2 <- x^2
down <- 1/(x2 + es^2)
lik1 <- n * logs + sum( log(down) )
der <- n - 2 * es^2 * sum(down)
der2 <- - 4 * es^4 * sum(down^2)
logs <- logs - der/der2
es <- exp(logs)
down <- 1/(x2 + es^2)
lik2 <- n * logs + sum( log(down) )
i <- 2
while ( lik2 - lik1 > tol ) {
i <- i + 1
lik1 <- lik2
der <- n - 2 * es^2 * sum(down)
der2 <- - 4 * es^4 * sum(down^2)
logs <- logs - der/der2
es <- exp(logs)
down <- 1/(x2 + es^2)
lik2 <- n * logs + sum( log(down) )
}
list(iters = i, loglik = lik2 - n * log(2/pi), scale = es)
}
cauchy0.mle <- function(x, tol = 1e-07) {
n <- length(x)
es <- 0.5 * (Rfast::nth(x, 3 * n/4) - Rfast::nth(x, n/4))
logs <- log(es)
x2 <- x^2
down <- 1/(x2 + es^2)
lik1 <- n * logs + sum( log(down) )
der <- n - 2 * es^2 * sum(down)
der2 <- - 4 * es^4 * sum(down^2)
logs <- logs - der/der2
es <- exp(logs)
down <- 1/(x2 + es^2)
lik2 <- n * logs + sum( log(down) )
i <- 2
while ( lik2 - lik1 > tol ) {
i <- i + 1
lik1 <- lik2
der <- n - 2 * es^2 * sum(down)
der2 <- - 4 * es^4 * sum(down^2)
logs <- logs - der/der2
es <- exp(logs)
down <- 1/(x2 + es^2)
lik2 <- n * logs + sum( log(down) )
}
list(iters = i, loglik = lik2 - n * log(pi), scale = es)
}
kumar.mle <- function(x, tol = 1e-07, maxiters = 50) {
n <- length(x)
lx <- log(x)
slx <- sum(lx)
ini <- Rfast::beta.mle(x)$param
expa <- ini[1] ; expb <- ini[2]
xa <- x^expa
ya <- 1 - xa
com <- xa * lx / ya
scom <- sum(com)
derab <- - expb * expa * scom
dera <- n + expa * slx + (1 - 1/ expb) * derab
dera2 <- expa * slx - (expb - 1) * expa^2 * sum( com * lx / ya )
derb2 <- expb * sum( log(ya) )
derb <- n + derb2
aold <- c( log(expa), log(expb) )
anew <- aold - c( derb2 * dera - derab * derb, - derab * dera + dera2 * derb ) / ( dera2 * derb2 - derab^2 )
i <- 2
while ( sum( abs(anew - aold) ) > tol & i < maxiters ) {
i <- i + 1
aold <- anew
expa <- exp( aold[1] ) ; expb <- exp( aold[2] )
xa <- x^expa
ya <- 1 - xa
com <- xa * lx / ya
scom <- sum(com)
derab <- - expb * expa * scom
dera <- n + expa * slx + (1 - 1/ expb) * derab
dera2 <- expa * slx - (expb - 1) * expa^2 * sum( com * lx / ya )
derb2 <- expb * sum( log(ya) )
derb <- n + derb2
anew <- aold - c( derb2 * dera - derab * derb, - derab * dera + dera2 * derb ) / ( dera2 * derb2 - derab^2 )
}
a <- exp( anew[1] ) ; b <- exp( anew[2] )
param <- c(a, b)
loglik <- n * log(a * b) + (a - 1) * slx + (b - 1) * derb2/expb
names(param) <- c("shape", "scale")
list(iters = i, param = param, loglik = loglik)
}
powerlaw.mle <- function(x) {
n <- length(x)
x1 <- min(x)
com <- sum( log(x) ) - n * log(x1)
a <- 1 + n / com
loglik <- n * log( (a - 1) / x1 ) - a * com
list(alpha = a, loglik = loglik)
}
purka.mle <- function(x, tol = 1e-07) {
if ( !is.matrix(x) ) x <- cbind( cos(x), sin(x) )
p <- dim(x)[2]
theta <- Rfast::mediandir(x)
a <- x %*% theta
a[ abs(a) > 1 ] <- 1
A <- sum( acos(a) )
n <- dim(x)[1]
circle <- function(a, A, n) n * log(a) - n * log(2) - n * log( 1 - exp( - a * pi ) ) - a * A
sphere <- function(a, A, n) n * log(a^2 + 1) - n * log(2 * pi) - n * log( 1 + exp( - a * pi ) ) - a * A
hypersphere <- function(a, A, n) {
n * lgamma(p/2) - 0.5 * n * p * log(pi) + n * ( log(besselI(a, p - 1, expon.scaled = TRUE)) + a ) - a * A
}
if (p == 2) {
lika <- optimize(circle, c(0.001, 30000), maximum = TRUE, A = A, n = n, tol = tol)
a <- lika$maximum
f2 <- -n / a^2 + n * pi^2 * exp( -a * pi)/ ( 1 - exp(-a * pi) )^2
} else if (p == 3) {
lika <- optimize(sphere, c(0.001, 30000), maximum = TRUE, A = A, n = n, tol = tol)
a <- lika$maximum
f2 <- - (2 * a^2 * n - 2 * n) / (a^2 + 1)^2 - n * pi^2 * ( 1 + exp( a * pi) )^(-2) * exp( a * pi )
} else {
lika <- optimize(hypersphere, c(0.001, 30000), maximum = TRUE, A = A, n = n, tol = tol)
a <- lika$maximum
up1 <- ( besselI(a, p - 3) + 2 * besselI(p - 1, a) + besselI(p + 1, a) ) * besselI(p - 1, a)
up2 <- ( besselI(a, p - 2) + 2 * besselI(p, a) )^2
f2 <- 0.5 * n * ( up1 - up2 ) / besselI(p - 1, a)^2
}
list( theta = theta, alpha = a, loglik = lika$objective, alpha.sd = 1 / sqrt( - f2 ) )
}
simplex.mle <- function(x, tol = 1e-07) {
n <- length(x)
xx <- x * (1 - x)
simplexfun <- function(m, xx, x) sum( (x - m)^2 /xx ) / ( m^2 * (1 - m)^2 )
mod <- optimise(simplexfun, c(0, 1), xx = xx, x = x, tol = tol)
s <- sqrt( mod$objective/n )
param <- c( mod$minimum, s)
names(param) <- c("mean", "sigma")
list(param = param, loglik = -0.5 * n * log(2 * pi) - 1.5 * sum( log(xx) ) - n * log(s) - n/2 )
}
trunccauchy.mle <- function (x, a, b, tol = 1e-07) {
n <- length(x)
m <- Rfast::med(x)
es <- 0.5 * (Rfast::nth(x, 3 * n/4) - Rfast::nth(x, n/4))
logs <- log(es)
y <- x - m
y2 <- y^2
lik1 <- n * logs - sum(log(es^2 + y2))
down <- 1/(es^2 + y2)
down2 <- down^2
derm <- 2 * sum(y * down)
ders <- n - 2 * es^2 * sum(down)
derm2 <- 2 * sum((y2 - es^2) * down2)
ders2 <- -2 * es^2 * (derm2 + 2 * es^2 * sum(down2))
derms <- -4 * es^2 * sum(y * down2)
m <- m - (ders2 * derm - derms * ders)/(derm2 * ders2 - derms^2)
logs <- logs - (-derms * derm + derm2 * ders)/(derm2 * ders2 -
derms^2)
y <- x - m
y2 <- y^2
es <- exp(logs)
lik2 <- n * logs - sum(log(es^2 + y2))
i <- 2
while (lik2 - lik1 > tol) {
i <- i + 1
lik1 <- lik2
down <- 1/(es^2 + y2)
down2 <- down^2
derm <- 2 * sum(y * down)
ders <- n - 2 * es^2 * sum(down)
derm2 <- 2 * sum((y2 - es^2) * down2)
ders2 <- -2 * es^2 * (derm2 + 2 * es^2 * sum(down2))
derms <- -4 * es^2 * sum(y * down2)
m <- m - (ders2 * derm - derms * ders)/(derm2 * ders2 -
derms^2)
logs <- logs - (-derms * derm + derm2 * ders)/(derm2 *
ders2 - derms^2)
y <- x - m
y2 <- y^2
es <- exp(logs)
lik2 <- n * logs - sum(log(es^2 + y2))
}
param <- c(m, es)
names(param) <- c("location", "scale")
tr <- atan(b) - atan(a)
list(iters = i, loglik = lik2 - n * log(tr), param = param)
}
truncexpmle <- function(x, b, tol = 1e-07) {
trexp <- function(lam, sx, b, n) {
- n * log(lam) - sx/lam - n * log( 1 - exp(-b/lam) )
}
mod <- optimise(trexp, c(0, b), sx = sum(x), b = b, n = length(x),
tol = tol, maximum = TRUE )
list(loglik = mod$objective, lambda = mod$minimum)
}
zigamma.mle <- function(x, tol = 1e-07) {
n <- length(x)
x1 <- x[x > 0]
n1 <- length(x1)
n0 <- n - n1
prob <- n1/n
lik0 <- n0 * log(1 - prob) + n1 * log(prob)
mod <- Rfast::gammamle(x1, tol = tol)
param <- c(prob, mod$param)
names(param) <- c("prop1", "shape", "scale")
list(iters = mod$iters, loglik = sum(lik0, mod$loglik, na.rm = TRUE), param = param)
}
zil.mle <- function(x) {
n <- length(x)
x1 <- x[x > 0]
n1 <- length(x1)
n0 <- n - n1
prob <- n1/n
lik0 <- n0 * log(1 - prob) + n1 * log(prob)
lx1 <- log(x1)
lx2 <- log(1 - x1)
y <- lx1 - lx2
sy <- sum(y)
m <- sy/n1
s <- (sum(y^2) - n1 * m^2)/n1
loglik <- sum(dnorm(y, m, sqrt(s), log = TRUE)) - sy
param <- c(prob, m, n1 * s/(n1 - 1))
names(param) <- c("prop1", "mean", "unbiased variance")
list(loglik = sum(lik0, loglik, na.rm = TRUE), param = param)
}
ziweibull.mle <- function(x, tol = 1e-07) {
n <- length(x)
x1 <- x[x > 0]
n1 <- length(x1)
n0 <- n - n1
prob <- n1/n
lik0 <- n0 * log(1 - prob) + n1 * log(prob)
mod <- Rfast::weibull.mle(x1, tol = tol)
param <- c(prob, mod$param)
names(param) <- c("prop1", "shape", "scale")
list(iters = mod$iters, loglik = sum(lik0, mod$loglik, na.rm = TRUE), param = param)
}
gnormal0.mle <- function(x, tol = 1e-06) {
n <- length(x)
xabs <- abs(x)
fun <- function(b, xabs, n) {
y <- xabs^b
sy <- sum(y)
1 + digamma(1/b) / b - sum( y * log(xabs) ) / sy + log( b/n * sy ) / b
}
b <- mean(xabs) / sqrt( mean(x^2) )
mod <- uniroot(fun, lower = max(1e-5, b - 100 * b), upper = b + min(30, 200 * b), tol = tol, xabs = xabs, n = n )
b <- mod$root
a <- ( b/n * sum( xabs^b ) ) ^ ( 1/b )
loglik <- n * log(b) - sum( xabs^b )/a^b - n * log(2 * a) - n * lgamma(1/b)
param <- c(a, b)
names(param) <- c( "alpha", "beta" )
list(iters = mod$iter, loglik = loglik, param = param)
}
unitweibull.mle <- function(x, tol = 1e-07, maxiters = 100) {
lx <- - log(x)
mod <- Rfast::weibull.mle( lx, tol = tol, maxiters = maxiters )
param <- as.vector( mod$param )
names(param) <- c("alpha", "beta")
a <- mod$param[1] ; b <- mod$param[2]
n <- length(x)
loglik <- sum(lx) + n * log(a * b) + (b - 1) * sum( log(lx) ) - a * sum(lx^b)
list(iters = mod$iters, loglik = loglik, param = param)
}
|
species_aggreg <- function(df, species, plot, NI_label = ""){
if( missing(df) ){
stop("df not set", call. = F)
}else if(!is.data.frame(df)){
stop("df must be a dataframe", call.=F)
}else if(length(df)<=1 | nrow(df)<=1){
stop("Length and number of rows of 'df' must be greater than 1", call.=F)
}
if( missing(species) ){
stop("species not set", call. = F)
}else if( !is.character(species) ){
stop("'species' must be a character containing a variable name", call.=F)
}else if(length(species)!=1){
stop("Length of 'species' must be 1", call.=F)
}else if(forestmangr::check_names(df, species)==F){
stop(forestmangr::check_names(df, species, boolean=F), call.=F)
}
if( missing(plot) ){
stop("plot not set", call. = F)
}else if( !is.character(plot) ){
stop("'plot' must be a character containing a variable name", call.=F)
}else if(length(plot)!=1){
stop("Length of 'plot' must be 1", call.=F)
}else if(forestmangr::check_names(df, plot)==F){
stop(forestmangr::check_names(df, plot, boolean=F), call.=F)
}
if(!is.character( NI_label )){
stop( "'NI_label' must be character", call.=F)
}else if(length(NI_label)!=1){
stop("Length of 'NI_label' must be 1", call.=F)
}
SPECIES = species
PLOTS = plot
NI = NI_label
df <- as.data.frame(df)
df = df[!is.na(df[SPECIES]),]
if(is.null(NI)||NI==""){NI <- ""}
df = df[! df[,SPECIES] %in% NI,]
espList = levels(factor(df[,SPECIES]))
df[,PLOTS] <- as.factor(df[,PLOTS])
df[,SPECIES] <- as.factor(df[,SPECIES])
pivot = data.frame(table(df[SPECIES]))
names(pivot) = c("especie", "sum")
pivot = pivot[which(pivot$especie %in% espList),]
nplots = length(unique(df[,PLOTS]))
chisq75 = stats::qchisq(0.75, nplots - 1)
chisq99 = stats::qchisq(0.99, nplots - 1)
for (i in levels(df[,PLOTS])){
tableFreq = data.frame(table(df[df[PLOTS] == i,SPECIES]))
pivot = cbind(pivot, tableFreq[which(tableFreq[,1] %in% espList),2])
names(pivot)[ncol(pivot)] = i
}
agreg = pivot[1]
if(nplots > 3){
for (i in seq(1, length(pivot[,1]))){
Si = stats::var(as.numeric(pivot[i, seq(3, (2 + nplots), 1)]))
Mi = mean(as.numeric(pivot[i, seq(3, (2 + nplots), 1)]))
agreg[i,"Payandeh"] = round(Si/Mi, 1)
if(round(Si/Mi, 1) == 1){
agreg[i, "Pay.res"] = "Random"
} else if(round(Si/Mi, 1) < 1) {
agreg[i, "Pay.res"] = "Regular"
} else {
agreg[i, "Pay.res"] = "Aggregated"
}
agreg[i,"Hazen"] = round(Si/Mi * (nplots - 1), 1)
if(round(Si/Mi * (nplots - 1), 1) > chisq99){
agreg[i, "Haz.res"] = "Aggregated"
} else if(round(Si/Mi * (nplots - 1), 1) < chisq75) {
agreg[i, "Haz.res"] = "Not aggregated"
} else {
agreg[i, "Haz.res"] = "Tends to aggregate"
}
if ( (as.numeric(pivot[i, 2]) * (as.numeric(pivot[i, 2])-1)) != 0){
agreg[i,"Morisita"] = round((sum(as.numeric(pivot[i, seq(3, (2 + nplots), 1)]) * (as.numeric(pivot[i, seq(3, (2 + nplots), 1)]) - 1))) / (as.numeric(pivot[i, 2]) * (as.numeric(pivot[i, 2])-1)) * nplots, 1)
} else {
agreg[i,"Morisita"] = round(0, 0)
}
if(agreg[i,"Morisita"] == 1){
agreg[i, "Mor.res"] = "Random"
} else if(agreg[i,"Morisita"] < 1 & agreg[i,"Morisita"] > 0) {
agreg[i, "Mor.res"] = "Regular"
} else if(agreg[i,"Morisita"] == 0){
agreg[i, "Mor.res"] = "Rare"
} else {
agreg[i, "Mor.res"] = "Aggregated"
}
}
return(dplyr::as_tibble(agreg))
} else {
stop("Low number of plots", .call=FALSE)
}
}
|
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
library(EBImage)
library(ExpImage)
end=example_image(2)
im=read_image(end,plot=TRUE)
im2=resize_image(im,w=1000,plot=TRUE)
r=gray_scale(im2,method = "r",plot=T)
g=gray_scale(im2,method = "g",plot=T)
b=gray_scale(im2,method = "b",plot=T)
plot_indexes(im,NumberCores=2)
MatrizSegmentada=segmentation(b,treshold = 0.20,fillHull = F,selectHigher = T,plot=T)
MatrizSegmentada=segmentation(b,treshold = 0.40,fillHull = F,selectHigher = T,plot=T)
MatrizSegmentada=segmentation(b,treshold = 0.60,fillHull = F,selectHigher = T,plot=T)
MatrizSegmentada=segmentation(b,treshold = 0.80,fillHull = F,selectHigher = T,plot=T)
MatrizSegmentada=segmentation(r,treshold = "otsu",fillHull = F,selectHigher = T,plot=T)
plot_image(b,col = 3)
MatrizSegmentada=segmentation(b,treshold = 0.4,fillHull = F,selectHigher = F,plot=T)
MatrizSegmentada=segmentation(b,treshold = 0.4,fillHull = T,selectHigher = F,plot=T)
im3=extract_pixels(im2,target =MatrizSegmentada,valueTarget =1,valueSelect = c(0,0,0),plot=T )
r=gray_scale(im3,method = "r",plot=T)
g=gray_scale(im3,method = "g",plot=T)
b=gray_scale(im3,method = "b",plot=T)
MatrizSegmentada2=segmentation(b,treshold = 0.50,fillHull = T,selectHigher = T,plot = T)
Medidas=measure_image(MatrizSegmentada2)
Medidas$ObjectNumber
im4=extract_pixels(im2,target =MatrizSegmentada2,valueTarget =0,valueSelect = c(1,0,0),plot=T )
im5=join_image(im2,im4,plot = TRUE)
|
emnormmix <- function(y, prop, mu, sigma, err, maxit, verbose){
checkErrors(prop, mu, sigma, err)
if (length(err) < 3) err <- rep(err, length.out = 3)
k <- length(prop)
yvals <- sort(unique(y))
n.yvals <- length(yvals)
counts <- as.vector(table(y))
dy <- rep(yvals,each=k)
no <- length(y)
it <- 0
repeat {
it <- it + 1
muold <- mu
sigmaold <- sigma
propold <- prop
dprop <- rep(propold, n.yvals)
dmu <- rep(muold, n.yvals)
dsigma <- rep(sigmaold, n.yvals)
dn <- dnorm(dy, mean = dmu, sd = dsigma)
interprop <- matrix(dprop * dn, ncol = k, byrow = TRUE)
indices <- sweep(interprop, 1, rowSums(interprop), `/`)
sumIndices <- as.vector(counts %*% indices)
prop <- sumIndices/no
mu <- as.vector(((yvals * counts) %*% indices)/sumIndices)
sigma <- sqrt(counts %*% (outer(yvals, mu, `-`) ^ 2 * indices) / sumIndices)
flag <- checkStopVerbose(muold, mu, sigmaold, sigma, err, it, maxit, verbose, propold, prop)
if(flag==1) break
}
list(prop = prop, mu = mu, sigma = sigma)
}
mritc.em <- function(y, prop, mu, sigma, err=1e-4, maxit=200, verbose) {
checkErrors(prop, mu, sigma, err)
k <- length(prop)
nvert <- length(y)
result <- emnormmix(y, prop, mu, sigma, err, maxit, verbose)
prop <- result$prop
mu <- result$mu
sigma <- result$sigma
yvals <- sort(unique(y))
n.yvals <- length(yvals)
counts <- as.vector(table(y))
k <- length(prop)
dy <- rep(yvals,each=k)
no <- length(y)
dprop <- rep(prop, n.yvals)
dmu <- rep(mu, n.yvals)
dsigma <- rep(sigma, n.yvals)
dn <- dnorm(dy, mean = dmu, sd = dsigma)
interprop <- matrix(dprop * dn, ncol = k, byrow = TRUE)
indices <- sweep(interprop, 1, rowSums(interprop), `/`)
pre <- indices
list(prob=pre[match(y, yvals),], mu=mu, sigma=sigma)
}
|
calculateRatio_gui <- function(env = parent.frame(), savegui = NULL,
debug = FALSE, parent = NULL) {
.gData <- NULL
.gRef <- NULL
.gDataName <- NULL
.gRefName <- NULL
fnc <- as.character(match.call()[[1]])
if (debug) {
print(paste("IN:", fnc))
}
strWinTitle <- "Calculate ratio"
strChkGui <- "Save GUI settings"
strBtnHelp <- "Help"
strFrmDataset <- "Datasets"
strLblDataset <- "Sample dataset:"
strDrpDataset <- "<Select dataset>"
strLblSamples <- "samples"
strLblRefDataset <- "Reference dataset:"
strLblRef <- "references"
strBtnCheck <- "Check subsetting"
strFrmOptions <- "Options"
strLblPre <- "Pre-processing:"
strChkOL <- "Remove off-ladder alleles"
strLblMethod <- "Calculate marker ratio:"
strLblNumerator <- "Select numerator markers:"
strDrpMarker <- "<Select Marker>"
strLblDenominator <- "Select denominator markers:"
strLblGroupBy <- "Group by column:"
strDrpColumn <- "<Select Columns>"
strLblMatching <- "Reference sample name matching:"
strChkIgnore <- "Ignore case"
strChkWord <- "Add word boundaries"
strChkExact <- "Exact matching"
strFrmSave <- "Save as"
strLblSave <- "Name for result:"
strBtnCalculate <- "Calculate"
strBtnProcessing <- "Processing..."
strMsgDataset <- "A sample dataset and a reference dataset must be selected."
strMsgTitleDataset <- "Dataset not selected"
strMsgCheck <- "Data frame is NULL!\n\nMake sure to select a sample dataset."
strWinTitleCheck <- "Check subsetting"
strMsgTitleError <- "Error"
dtStrings <- getStrings(gui = fnc)
if (!is.null(dtStrings)) {
strtmp <- dtStrings["strWinTitle"]$value
strWinTitle <- ifelse(is.na(strtmp), strWinTitle, strtmp)
strtmp <- dtStrings["strChkGui"]$value
strChkGui <- ifelse(is.na(strtmp), strChkGui, strtmp)
strtmp <- dtStrings["strBtnHelp"]$value
strBtnHelp <- ifelse(is.na(strtmp), strBtnHelp, strtmp)
strtmp <- dtStrings["strFrmDataset"]$value
strFrmDataset <- ifelse(is.na(strtmp), strFrmDataset, strtmp)
strtmp <- dtStrings["strLblDataset"]$value
strLblDataset <- ifelse(is.na(strtmp), strLblDataset, strtmp)
strtmp <- dtStrings["strDrpDataset"]$value
strDrpDataset <- ifelse(is.na(strtmp), strDrpDataset, strtmp)
strtmp <- dtStrings["strLblSamples"]$value
strLblSamples <- ifelse(is.na(strtmp), strLblSamples, strtmp)
strtmp <- dtStrings["strLblRefDataset"]$value
strLblRefDataset <- ifelse(is.na(strtmp), strLblRefDataset, strtmp)
strtmp <- dtStrings["strLblRef"]$value
strLblRef <- ifelse(is.na(strtmp), strLblRef, strtmp)
strtmp <- dtStrings["strBtnCheck"]$value
strBtnCheck <- ifelse(is.na(strtmp), strBtnCheck, strtmp)
strtmp <- dtStrings["strFrmOptions"]$value
strFrmOptions <- ifelse(is.na(strtmp), strFrmOptions, strtmp)
strtmp <- dtStrings["strLblPre"]$value
strLblPre <- ifelse(is.na(strtmp), strLblPre, strtmp)
strtmp <- dtStrings["strChkOL"]$value
strChkOL <- ifelse(is.na(strtmp), strChkOL, strtmp)
strtmp <- dtStrings["strLblMethod"]$value
strLblMethod <- ifelse(is.na(strtmp), strLblMethod, strtmp)
strtmp <- dtStrings["strLblNumerator"]$value
strLblNumerator <- ifelse(is.na(strtmp), strLblNumerator, strtmp)
strtmp <- dtStrings["strDrpMarker"]$value
strDrpMarker <- ifelse(is.na(strtmp), strDrpMarker, strtmp)
strtmp <- dtStrings["strLblDenominator"]$value
strLblDenominator <- ifelse(is.na(strtmp), strLblDenominator, strtmp)
strtmp <- dtStrings["strLblGroupBy"]$value
strLblGroupBy <- ifelse(is.na(strtmp), strLblGroupBy, strtmp)
strtmp <- dtStrings["strDrpColumn"]$value
strDrpColumn <- ifelse(is.na(strtmp), strDrpColumn, strtmp)
strtmp <- dtStrings["strLblMatching"]$value
strLblMatching <- ifelse(is.na(strtmp), strLblMatching, strtmp)
strtmp <- dtStrings["strChkIgnore"]$value
strChkIgnore <- ifelse(is.na(strtmp), strChkIgnore, strtmp)
strtmp <- dtStrings["strChkWord"]$value
strChkWord <- ifelse(is.na(strtmp), strChkWord, strtmp)
strtmp <- dtStrings["strChkExact"]$value
strChkExact <- ifelse(is.na(strtmp), strChkExact, strtmp)
strtmp <- dtStrings["strFrmSave"]$value
strFrmSave <- ifelse(is.na(strtmp), strFrmSave, strtmp)
strtmp <- dtStrings["strLblSave"]$value
strLblSave <- ifelse(is.na(strtmp), strLblSave, strtmp)
strtmp <- dtStrings["strBtnCalculate"]$value
strBtnCalculate <- ifelse(is.na(strtmp), strBtnCalculate, strtmp)
strtmp <- dtStrings["strBtnProcessing"]$value
strBtnProcessing <- ifelse(is.na(strtmp), strBtnProcessing, strtmp)
strtmp <- dtStrings["strMsgDataset"]$value
strMsgDataset <- ifelse(is.na(strtmp), strMsgDataset, strtmp)
strtmp <- dtStrings["strMsgTitleDataset"]$value
strMsgTitleDataset <- ifelse(is.na(strtmp), strMsgTitleDataset, strtmp)
strtmp <- dtStrings["strMsgCheck"]$value
strMsgCheck <- ifelse(is.na(strtmp), strMsgCheck, strtmp)
strtmp <- dtStrings["strWinTitleCheck"]$value
strWinTitleCheck <- ifelse(is.na(strtmp), strWinTitleCheck, strtmp)
strtmp <- dtStrings["strMsgTitleError"]$value
strMsgTitleError <- ifelse(is.na(strtmp), strMsgTitleError, strtmp)
}
w <- gwindow(title = strWinTitle, visible = FALSE)
addHandlerUnrealize(w, handler = function(h, ...) {
.saveSettings()
if (!is.null(parent)) {
focus(parent)
}
if (gtoolkit() == "tcltk") {
if (as.numeric(gsub("[^0-9]", "", packageVersion("gWidgets2tcltk"))) <= 106) {
message("tcltk version <= 1.0.6, returned TRUE!")
return(TRUE)
} else {
message("tcltk version >1.0.6, returned FALSE!")
return(FALSE)
}
} else {
message("RGtk2, returned FALSE!")
return(FALSE)
}
})
gv <- ggroup(
horizontal = FALSE,
spacing = 8,
use.scrollwindow = FALSE,
container = w,
expand = TRUE
)
gh <- ggroup(container = gv, expand = FALSE, fill = "both")
savegui_chk <- gcheckbox(text = strChkGui, checked = FALSE, container = gh)
addSpring(gh)
help_btn <- gbutton(text = strBtnHelp, container = gh)
addHandlerChanged(help_btn, handler = function(h, ...) {
print(help(fnc, help_type = "html"))
})
f0 <- gframe(
text = strFrmDataset,
horizontal = TRUE,
spacing = 5,
container = gv
)
g0 <- glayout(container = f0, spacing = 1)
g0[1, 1] <- glabel(text = strLblDataset, container = g0)
dfs <- c(strDrpDataset, listObjects(env = env, obj.class = "data.frame"))
g0[1, 2] <- g0_data_drp <- gcombobox(
items = dfs,
selected = 1,
editable = FALSE,
container = g0,
ellipsize = "none"
)
g0[1, 3] <- g0_data_samples_lbl <- glabel(
text = paste(" 0", strLblSamples),
container = g0
)
addHandlerChanged(g0_data_drp, handler = function(h, ...) {
val_obj <- svalue(g0_data_drp)
requiredCol <- c("Sample.Name", "Marker", "Allele", "Height")
ok <- checkDataset(
name = val_obj, reqcol = requiredCol,
slim = TRUE, slimcol = "Height",
env = env, parent = w, debug = debug
)
if (ok) {
.gData <<- get(val_obj, envir = env)
.gDataName <<- val_obj
svalue(g0_data_samples_lbl) <- paste(
length(unique(.gData$Sample.Name)),
strLblSamples
)
f1_numerator_drp[, ] <- unique(c(strDrpMarker, .gData$Marker))
f1_denominator_drp[, ] <- unique(c(strDrpMarker, .gData$Marker))
f1_group_drp[, ] <- unique(c(strDrpColumn, names(.gData)))
svalue(f1_numerator_drp, index = TRUE) <- 1
svalue(f1_denominator_drp, index = TRUE) <- 1
svalue(f1_group_drp, index = TRUE) <- 1
svalue(save_edt) <- paste(val_obj, "_ratio", sep = "")
} else {
.gData <<- NULL
.gDataName <<- NULL
svalue(g0_data_drp, index = TRUE) <- 1
svalue(g0_data_samples_lbl) <- paste(" 0", strLblSamples)
svalue(save_edt) <- ""
f1_numerator_drp[, ] <- strDrpMarker
f1_denominator_drp[, ] <- strDrpMarker
f1_group_drp[, ] <- strDrpColumn
svalue(f1_numerator_drp, index = TRUE) <- 1
svalue(f1_denominator_drp, index = TRUE) <- 1
svalue(f1_group_drp, index = TRUE) <- 1
}
})
g0[2, 1] <- glabel(text = strLblRefDataset, container = g0)
g0[2, 2] <- g0_ref_drp <- gcombobox(
items = dfs,
selected = 1,
editable = FALSE,
container = g0,
ellipsize = "none"
)
g0[2, 3] <- g0_ref_samples_lbl <- glabel(
text = paste(" 0", strLblRef),
container = g0
)
addHandlerChanged(g0_ref_drp, handler = function(h, ...) {
val_obj <- svalue(g0_ref_drp)
requiredCol <- c("Sample.Name", "Marker", "Allele")
ok <- checkDataset(
name = val_obj, reqcol = requiredCol,
slim = TRUE, slimcol = "Allele",
env = env, parent = w, debug = debug
)
if (ok) {
.gRef <<- get(val_obj, envir = env)
.gRefName <<- val_obj
svalue(g0_ref_samples_lbl) <- paste(
length(unique(.gRef$Sample.Name)),
strLblRef
)
} else {
.gRef <<- NULL
.gRefName <<- NULL
svalue(g0_ref_drp, index = TRUE) <- 1
svalue(g0_ref_samples_lbl) <- paste(" 0", strLblRef)
}
})
g0[3, 2] <- g0_check_btn <- gbutton(text = strBtnCheck, container = g0)
addHandlerChanged(g0_check_btn, handler = function(h, ...) {
val_data <- .gData
val_ref <- .gRef
val_ignore <- svalue(f1_ignore_chk)
val_word <- svalue(f1_word_chk)
if (!is.null(.gData) || !is.null(.gRef)) {
chksubset_w <- gwindow(
title = strWinTitleCheck,
visible = FALSE, name = title,
width = NULL, height = NULL, parent = w,
handler = NULL, action = NULL
)
chksubset_txt <- checkSubset(
data = val_data,
ref = val_ref,
console = FALSE,
ignore.case = val_ignore,
word = val_word
)
gtext(
text = chksubset_txt, width = NULL, height = 300, font.attr = NULL,
wrap = FALSE, container = chksubset_w
)
visible(chksubset_w) <- TRUE
} else {
gmessage(
msg = strMsgCheck,
title = strMsgTitleError,
icon = "error"
)
}
})
f1 <- gframe(
text = strFrmOptions,
horizontal = FALSE,
spacing = 10,
container = gv
)
glabel(text = strLblPre, anchor = c(-1, 0), container = f1)
f1_ol_chk <- gcheckbox(
text = strChkOL, checked = TRUE,
container = f1
)
glabel(text = strLblMethod, anchor = c(-1, 0), container = f1)
f1g1 <- glayout(container = f1)
f1g1[1, 1] <- glabel(text = strLblNumerator, container = f1g1)
f1g1[1, 2] <- f1_numerator_drp <- gcombobox(
items = strDrpMarker,
container = f1g1, ellipsize = "none"
)
f1g1[2, 1:2] <- f1_numerator_edt <- gedit(text = "", container = f1g1)
f1g1[3, 1] <- glabel(text = strLblDenominator, container = f1g1)
f1g1[3, 2] <- f1_denominator_drp <- gcombobox(
items = strDrpMarker,
container = f1g1, ellipsize = "none"
)
f1g1[4, 1:2] <- f1_denominator_edt <- gedit(text = "", container = f1g1)
f1g1[5, 1] <- glabel(text = strLblGroupBy, container = f1g1)
f1g1[5, 2] <- f1_group_drp <- gcombobox(
items = strDrpColumn,
container = f1g1, ellipsize = "none"
)
addHandlerChanged(f1_numerator_drp, handler = function(h, ...) {
val_marker <- svalue(f1_numerator_drp)
val_value <- svalue(f1_numerator_edt)
if (!is.null(val_marker)) {
if (val_marker != strDrpMarker) {
if (nchar(val_value) == 0) {
svalue(f1_numerator_edt) <- val_marker
} else {
svalue(f1_numerator_edt) <- paste(val_value, val_marker, sep = ",")
}
}
}
})
addHandlerChanged(f1_denominator_drp, handler = function(h, ...) {
val_marker <- svalue(f1_denominator_drp)
val_value <- svalue(f1_denominator_edt)
if (!is.null(val_marker)) {
if (val_marker != strDrpMarker) {
if (nchar(val_value) == 0) {
svalue(f1_denominator_edt) <- val_marker
} else {
svalue(f1_denominator_edt) <- paste(val_value, val_marker, sep = ",")
}
}
}
})
glabel(text = strLblMatching, anchor = c(-1, 0), container = f1)
f1_ignore_chk <- gcheckbox(
text = strChkIgnore, checked = TRUE,
container = f1
)
f1_word_chk <- gcheckbox(
text = strChkWord, checked = FALSE,
container = f1
)
f1_exact_chk <- gcheckbox(
text = strChkExact, checked = FALSE,
container = f1
)
save_frame <- gframe(text = strFrmSave, container = gv)
glabel(text = strLblSave, container = save_frame)
save_edt <- gedit(expand = TRUE, fill = TRUE, container = save_frame)
calculate_btn <- gbutton(text = strBtnCalculate, container = gv)
addHandlerClicked(calculate_btn, handler = function(h, ...) {
val_data <- .gData
val_name_data <- .gDataName
val_ref <- .gRef
val_name_ref <- .gRefName
val_ol <- svalue(f1_ol_chk)
val_ignore <- svalue(f1_ignore_chk)
val_word <- svalue(f1_word_chk)
val_exact <- svalue(f1_exact_chk)
val_name <- svalue(save_edt)
val_numerator <- svalue(f1_numerator_edt)
val_denominator <- svalue(f1_denominator_edt)
val_group <- svalue(f1_group_drp)
if (val_group == strDrpColumn) {
val_group <- NULL
}
if (debug) {
print("Read Values:")
print("val_data")
print(head(val_data))
print("val_ref")
print(head(val_ref))
print("val_ol")
print(val_ol)
print("val_ignore")
print(val_ignore)
print("val_word")
print(val_word)
print("val_exact")
print(val_exact)
print("val_name")
print(val_name)
}
if (!is.null(.gData)) {
if (!nchar(val_numerator) > 0) {
val_numerator <- NULL
} else {
val_numerator <- unlist(strsplit(val_numerator, split = ","))
}
if (!nchar(val_denominator) > 0) {
val_denominator <- NULL
} else {
val_denominator <- unlist(strsplit(val_denominator, split = ","))
}
if (debug) {
print("Sent Values:")
print("val_numerator")
print(val_numerator)
print("val_denominator")
print(val_denominator)
print("val_group")
print(val_group)
}
blockHandlers(calculate_btn)
svalue(calculate_btn) <- strBtnProcessing
unblockHandlers(calculate_btn)
enabled(calculate_btn) <- FALSE
datanew <- calculateRatio(
data = val_data, ref = val_ref,
numerator = val_numerator,
denominator = val_denominator,
group = val_group, ol.rm = val_ol,
ignore.case = val_ignore, word = val_word,
exact = val_exact, debug = debug
)
keys <- list(
"data", "ref", "numerator",
"denominator", "group", "ol", "ignore.case", "word",
"exact"
)
values <- list(
val_name_data, val_name_ref, val_numerator,
val_denominator, val_group, val_ol, val_ignore, val_word,
val_exact
)
datanew <- auditTrail(
obj = datanew, key = keys, value = values,
label = fnc, arguments = FALSE,
package = "strvalidator"
)
saveObject(name = val_name, object = datanew, parent = w, env = env)
if (debug) {
print(str(datanew))
print(head(datanew))
print(paste("EXIT:", fnc))
}
.saveSettings()
dispose(w)
} else {
gmessage(
msg = strMsgDataset,
title = strMsgTitleDataset,
icon = "error",
parent = w
)
}
})
.loadSavedSettings <- function() {
if (!is.null(savegui)) {
svalue(savegui_chk) <- savegui
enabled(savegui_chk) <- FALSE
if (debug) {
print("Save GUI status set!")
}
} else {
if (exists(".strvalidator_calculateRatio_gui_savegui", envir = env, inherits = FALSE)) {
svalue(savegui_chk) <- get(".strvalidator_calculateRatio_gui_savegui", envir = env)
}
if (debug) {
print("Save GUI status loaded!")
}
}
if (debug) {
print(svalue(savegui_chk))
}
if (svalue(savegui_chk)) {
if (exists(".strvalidator_calculateRatio_gui_numerator", envir = env, inherits = FALSE)) {
svalue(f1_numerator_edt) <- get(".strvalidator_calculateRatio_gui_numerator", envir = env)
}
if (exists(".strvalidator_calculateRatio_gui_denominator", envir = env, inherits = FALSE)) {
svalue(f1_denominator_edt) <- get(".strvalidator_calculateRatio_gui_denominator", envir = env)
}
if (exists(".strvalidator_calculateRatio_gui_ol", envir = env, inherits = FALSE)) {
svalue(f1_ol_chk) <- get(".strvalidator_calculateRatio_gui_ol", envir = env)
}
if (exists(".strvalidator_calculateRatio_gui_ignore", envir = env, inherits = FALSE)) {
svalue(f1_ignore_chk) <- get(".strvalidator_calculateRatio_gui_ignore", envir = env)
}
if (exists(".strvalidator_calculateRatio_gui_word", envir = env, inherits = FALSE)) {
svalue(f1_word_chk) <- get(".strvalidator_calculateRatio_gui_word", envir = env)
}
if (exists(".strvalidator_calculateRatio_gui_exact", envir = env, inherits = FALSE)) {
svalue(f1_exact_chk) <- get(".strvalidator_calculateRatio_gui_exact", envir = env)
}
if (debug) {
print("Saved settings loaded!")
}
}
}
.saveSettings <- function() {
if (svalue(savegui_chk)) {
assign(x = ".strvalidator_calculateRatio_gui_savegui", value = svalue(savegui_chk), envir = env)
assign(x = ".strvalidator_calculateRatio_gui_numerator", value = svalue(f1_numerator_edt), envir = env)
assign(x = ".strvalidator_calculateRatio_gui_denominator", value = svalue(f1_denominator_edt), envir = env)
assign(x = ".strvalidator_calculateRatio_gui_word", value = svalue(f1_word_chk), envir = env)
assign(x = ".strvalidator_calculateRatio_gui_ignore", value = svalue(f1_ignore_chk), envir = env)
assign(x = ".strvalidator_calculateRatio_gui_exact", value = svalue(f1_exact_chk), envir = env)
} else {
if (exists(".strvalidator_calculateRatio_gui_savegui", envir = env, inherits = FALSE)) {
remove(".strvalidator_calculateRatio_gui_savegui", envir = env)
}
if (exists(".strvalidator_calculateRatio_gui_numerator", envir = env, inherits = FALSE)) {
remove(".strvalidator_calculateRatio_gui_numerator", envir = env)
}
if (exists(".strvalidator_calculateRatio_gui_denominator", envir = env, inherits = FALSE)) {
remove(".strvalidator_calculateRatio_gui_denominator", envir = env)
}
if (exists(".strvalidator_calculateRatio_gui_ignore", envir = env, inherits = FALSE)) {
remove(".strvalidator_calculateRatio_gui_ignore", envir = env)
}
if (exists(".strvalidator_calculateRatio_gui_word", envir = env, inherits = FALSE)) {
remove(".strvalidator_calculateRatio_gui_word", envir = env)
}
if (exists(".strvalidator_calculateRatio_gui_exact", envir = env, inherits = FALSE)) {
remove(".strvalidator_calculateRatio_gui_exact", envir = env)
}
if (debug) {
print("Settings cleared!")
}
}
if (debug) {
print("Settings saved!")
}
}
.loadSavedSettings()
visible(w) <- TRUE
focus(w)
}
|
library(karel)
test_that("Checking conditions work fine.", {
generar_mundo("mundo001")
expect_true(frente_abierto())
expect_false(frente_cerrado())
expect_true(izquierda_abierto())
expect_false(izquierda_cerrado())
expect_false(derecha_abierto())
expect_true(derecha_cerrado())
expect_false(hay_cosos())
expect_true(no_hay_cosos())
expect_true(karel_tiene_cosos())
expect_false(karel_no_tiene_cosos())
expect_true(mira_al_este())
expect_false(mira_al_oeste())
expect_false(mira_al_norte())
expect_false(mira_al_sur())
})
|
waggle <- function(min, max, value = (min + max) / 2, step = (max - min) / 50,
fps = 10) {
vals <- shiny::reactiveValues()
vals$x <- value
connect <- function(session, plot_id) {
direction <- 1
shiny::observe({
shiny::invalidateLater(1000 / fps, NULL)
next_value <- shiny::isolate(vals$x) + direction * step
if (next_value < min || next_value > max) {
direction <<- -1 * direction
next_value <- pmax(pmin(next_value, max), min)
}
vals$x <<- next_value
})
}
create_broker(reactive(vals$x), connect = connect)
}
|
myvector = round(runif(6*12)*100,0)
myvector
myts <- ts(myvector, start=c(2009, 1), end=c(2014, 12), frequency=12)
myts
myts2 <- window(myts, start=c(2014, 6), end=c(2014, 12))
myts2
plot(myts)
sales= c(18,33,41,7,34,35,24,25,24,21,25,20, 22,31,40,29,25,21,22,54,31,25,26,35)
tsales = ts(sales, start=c(2003,1), frequency=12)
tsales
plot(tsales)
plot(tsales, type='o', pch=19)
start(tsales)
end(tsales)
frequency(tsales)
tsales.subset = window(tsales, start=c(2003,5), end=c(2004,6))
tsales.subset
myvector = round(runif(50) * 100,0)
myvector
myts <- ts(myvector, start=c(2009,2), end=c(2014,11), frequency=3)
myts
myts2 <- window(myts, start=c(2010), end=c(2013))
myts2
myvector = round(runif(50) * 100,0)
myvector
myts <- ts(myvector, start=c(2009,1), end=c(2014,11), frequency=3)
myts
str(myts)
plot(myts, type='o', pch=19)
text()
plot.ts(myts, type='o', pch=19, xy.labels=F)
axis(1, myts$Date, format(myts$Date, "%b %d"), cex.axis = .7)
myts <- ts(myvector, start=c(2009,2), end=c(2014,9), frequency=3)
myts
str(myts)
myts2 <- window(myts, start=c(2010), end=c(2013))
myts2
plot(myts, type='o', pch=19)
str(myts2)
myts2 <- window(myts, start=c(2014, 6), end=c(2014, 12))
plot(myts,type='o', pch=19)
text()
plot(myts2,type='o', pch=19)
library(zoo)
x.Date <- as.Date(paste(rep(2003:2004, each = 12), rep(1:12, 2), 1, sep = "-"))
x.Date
?zoo
x <- zoo(rnorm(24), x.Date)
x
plot(x)
plot(x, xaxt = "n")
axis(1, at = time(x), labels = FALSE)
plot(x)
axis(1, at = time(x), labels = FALSE)
plot(x)
times <- time(x)
ticks <- seq(times[1], times[length(times)], by = "weeks")
axis(1, at = ticks, labels = FALSE, tcl = -0.3)
library(zoo)
library(lattice)
z <- zooreg(1:83, start = as.Date("2009-04-01"), deltat = 7)
xyplot(z)
library(zoo)
today = Sys.Date()
dates = as.Date((today-500):today)
dates
z = zoo (100+cumsum(rnorm(501)), dates)
z
?plot.zoo
plot(z)
?plot.ts
plot(ts(z))
time(z)
library(lattice)
?xyplot.zoo
xyplot(z)
xyplot(z, lwd=2, col="tomato")
library(xts)
?plot.xts
plot(as.xts(z))
plot(as.xts(z), auto.grid=F, major.format="%b %y", las=2)
timeline = time(z)
summary(timeline)
index = seq(from=1, to=length(timeline), 90)
plot(z, xaxt="n")
axis(side=1, at=timeline[index], label=format(timeline[index], "%b %y"), cex.axis=0.8)
library(ggplot2)
library(scales)
?date_breaks
df = data.frame(date=as.POSIXct(time(z)), value=as.numeric(z))
head(df)
ggplot(df, aes(x=date, y=value)) + geom_line()
ggplot(df, aes(x=date, y=value)) + geom_line() +
scale_x_datetime(labels=date_format("%b '%y"))
ggplot(df, aes(x=date, y=value)) + geom_line() +
scale_x_datetime(labels=date_format("%b '%y"), breaks=date_breaks("3 months"))
|
face.sparse.inner <- function(data, newdata = NULL, W = NULL,
center=TRUE,argvals.new=NULL,
knots=7, knots.option="equally-spaced",
p=3,m=2,lambda=NULL,lambda_mean=NULL,
search.length=14,
lower=-3,upper=10,
calculate.scores=FALSE,pve=0.99){
check.data(data)
if(!is.null(newdata)){ check.data(newdata,type="predict")}
y <- data$y
t <- data$argvals
subj <- data$subj
tnew <- argvals.new
if(is.null(tnew)) tnew <- seq(min(t),max(t),length=100)
fit_mean <- NULL
knots.initial <- knots
r <- y
mu.new <- rep(0,length(tnew))
if(center){
fit_mean <- pspline(data,argvals.new=tnew,knots=knots.initial,lambda=lambda_mean)
mu.new <- fit_mean$mu.new
r <- y - fit_mean$fitted.values
}
indW <- F
if(is.null(W)) indW <- T
raw <- raw.construct(data.frame("argvals" = t, "subj" = subj, "y" = as.vector(r)))
C <- raw$C
st <- raw$st
N <- raw$st
N2 <- raw$N2
if(indW) W <- raw$W
n0 <- raw$n0
delta <- Matrix((st[,1]==st[,2]) * 1)
knots <- construct.knots(t,knots,knots.option,p)
List <- pspline.setting(st[,1],knots=knots,p,m,type="simple",knots.option=knots.option)
B1 <- List$B
B1 <- Matrix(B1)
DtD <- List$P
B2 = spline.des(knots=knots, x=st[,2], ord = p+1,outer.ok = TRUE,sparse=TRUE)$design
c = dim(B1)[2]
c2 = c*(c+1)/2
B = Matrix(t(KhatriRao(Matrix(t(B2)),Matrix(t(B1)))))
G = Matrix(duplication.matrix(c))
BtWB = matrix(0,nrow=c^2,ncol=c^2)
Wdelta = c()
WC = c()
for(i in 1:n0){
seq = (sum(N2[1:i])-N2[i]+1):(sum(N2[1:i]))
B3 = Matrix(matrix(B[seq,],nrow=length(seq)))
W3 = W[[i]]
BtWB = BtWB + crossprod(B3, W3%*%B3)
Wdelta <- c(Wdelta,as.matrix(W3 %*% delta[seq]))
WC <- c(WC,as.matrix(W3 %*% C[seq]))
}
GtBtWBG = crossprod(G,BtWB%*%G)
BG = B%*%G
detWde <- crossprod(delta,Wdelta)
GtBtWdelta <- crossprod(BG,Wdelta)
XtWX <- rbind(cbind(GtBtWBG,GtBtWdelta), cbind(t(GtBtWdelta),detWde))
eSig = eigen(XtWX,symmetric=TRUE)
V = eSig$vectors
E = eSig$values
E = E + 0.000001*max(E)
Sigi_sqrt = matrix.multiply(V,1/sqrt(E))%*%t(V)
P = crossprod(G,Matrix(suppressMessages(kronecker(diag(c),DtD))))%*%G
Q = bdiag(P,0)
tUQU = crossprod(Sigi_sqrt,(Q%*%Sigi_sqrt))
Esig = eigen(tUQU,symmetric=TRUE)
U = Esig$vectors
s = Esig$values
A0 <- Sigi_sqrt%*%U
X <- cbind(BG,delta)
A = as.matrix(X%*%A0)
AtA = crossprod(A)
f = crossprod(A,C)
ftilde = crossprod(A,WC)
c2 <- c2 + 1
g <- rep(0, c2)
G1 <- matrix(0,c2,c2)
mat_list <- list()
for(i in 1:n0){
seq = (sum(N2[1:i])-N2[i]+1):(sum(N2[1:i]))
Ai = matrix(A[seq,],nrow=length(seq))
AitAi = crossprod(Ai)
Wi = W[[i]]
fi = crossprod(Ai,C[seq])
Ji = crossprod(Ai,Wi%*%C[seq])
Li = crossprod(Ai,Wi%*%Ai)
g = g + Ji*fi
G1 = G1 + AitAi*(Ji%*%t(ftilde))
LList <- list()
LList[[1]] = AitAi
LList[[2]] = Li
mat_list[[i]] = LList
}
Lambda <- seq(lower,upper,length=search.length)
Gcv <- 0*Lambda
gcv <- function(x){
lambda <- exp(x)
d <- 1/(1+lambda*s)
ftilde_d <- ftilde*d
cv0 <- -2*sum(ftilde_d*f)
cv1 <- sum(ftilde_d*(AtA%*%ftilde_d))
cv2 <- 2*sum(d*g)
cv3 <- -4*sum(d*(G1%*%d))
cv4 <- sum(unlist(sapply(mat_list,function(x){
a <- x[[1]]%*%ftilde_d
b <- x[[2]]%*%ftilde_d
2*sum(a*b*d)
})))
cv <- cv0 + cv1 + cv2 + cv3 + cv4
return(cv)
}
if(is.null(lambda)){
Lambda <- seq(lower,upper,length=search.length)
Length <- length(Lambda)
Gcv <- rep(0,Length)
for(i in 1:Length)
Gcv[i] <- gcv(Lambda[i])
i0 <- which.min(Gcv)
lambda <- exp(Lambda[i0])
}
alpha <- matrix.multiply(A0,1/(1+lambda*s))%*%ftilde
Theta <- G %*% alpha[1:c2-1]
Theta <- matrix(Theta,c,c)
sigma2 <- alpha[c2]
if(sigma2 <= 0.000001) {
warning("error variance cannot be non-positive, reset to 1e-6!")
sigma2 <- 0.000001
}
Eigen <- eigen(Theta,symmetric=TRUE)
Eigen$values[Eigen$values<0] <- 0
npc <- sum(Eigen$values>0)
if(npc >1){
Theta <- matrix.multiply(Eigen$vectors[,1:npc],Eigen$values[1:npc])%*%t(Eigen$vectors[,1:npc])
Theta_half <- matrix.multiply(Eigen$vectors[,1:npc],sqrt(Eigen$values[1:npc]))
}
if(npc==1){
Theta <- Eigen$values[1]*suppressMessages(kronecker(Eigen$vectors[,1],t(Eigen$vectors[,1])))
Theta_half <- sqrt(Eigen$values[1])*Eigen$vectors[,1]
}
Eigen <- eigen(Theta,symmetric=TRUE)
Bnew = spline.des(knots=knots, x=tnew, ord = p+1,outer.ok = TRUE,sparse=TRUE)$design
Gmat <- crossprod(Bnew) / nrow(Bnew)
eig_G <- eigen(Gmat, symmetric = T)
G_half <- eig_G$vectors %*% diag(sqrt(eig_G$values)) %*% t(eig_G$vectors)
G_invhalf <- eig_G$vectors %*% diag(1/sqrt(eig_G$values)) %*% t(eig_G$vectors)
Chat.new = as.matrix(tcrossprod(Bnew%*%Matrix(Theta),Bnew))
Chat.diag.new = as.vector(diag(Chat.new))
Cor.new = diag(1/sqrt(Chat.diag.new))%*%Chat.new%*%diag(1/sqrt(Chat.diag.new))
Eigen.new = eigen(as.matrix(G_half%*%Matrix(Theta)%*%G_half),symmetric=TRUE)
npc = which.max(cumsum(Eigen$values)/sum(Eigen$values)>pve)[1]
eigenfunctions = matrix(Bnew%*%G_invhalf%*%Eigen.new$vectors[,1:min(npc,length(tnew))],ncol=min(npc,length(tnew)))
eigenvalues = Eigen.new$values[1:min(npc,length(tnew))]
var.error.hat <- rep(sigma2,length(t))
var.error.new <- rep(sigma2,length(tnew))
Chat.raw.new = as.matrix(tcrossprod(Bnew%*%Matrix(Theta),Bnew)) + diag(var.error.new)
Chat.raw.diag.new = as.vector(diag(Chat.raw.new))
Cor.raw.new = diag(1/sqrt(Chat.raw.diag.new))%*%Chat.raw.new%*%diag(1/sqrt(Chat.raw.diag.new))
if(!is.null(newdata)){
mu.pred <- rep(0,length(newdata$argvals))
var.error.pred <- rep(sigma2,length(newdata$argvals))
if(center){
mu.pred <- predict.pspline.face(fit_mean,newdata$argvals)
}
subj.pred = newdata$subj
subj_unique.pred = unique(subj.pred)
y.pred = newdata$y
Chat.diag.pred = 0*y.pred
se.pred = 0*y.pred
scores = list(subj=subj_unique.pred,
scores = matrix(NA,nrow=length(subj_unique.pred),ncol=npc),
u = matrix(NA,nrow=length(subj_unique.pred),ncol=nrow(Theta))
)
for(i in 1:length(subj_unique.pred)){
sel.pred = which(subj.pred==subj_unique.pred[i])
lengthi = length(sel.pred)
pred.points <- newdata$argvals[sel.pred]
mu.predi <- mu.pred[sel.pred]
var.error.predi <- var.error.pred[sel.pred]
y.predi = y.pred[sel.pred] - mu.predi
sel.pred.obs = which(!is.na(y.predi))
obs.points <- pred.points[sel.pred.obs]
if(!is.null(obs.points)){
var <- mean(var.error.predi[sel.pred.obs])
if(var==0&length(sel.pred.obs) < npc)
stop("Measurement error estimated to be zero and there are fewer observed points thans PCs; scores
cannot be estimated.")
B3i.pred = spline.des(knots=knots, x=pred.points, ord = p+1,outer.ok = TRUE,sparse=TRUE)$design
B3i = spline.des(knots=knots, x=obs.points, ord = p+1,outer.ok = TRUE,sparse=TRUE)$design
Chati = tcrossprod(B3i%*%Theta,B3i)
Chat.diag.pred[sel.pred] = diag(Chati)
if(length(sel.pred.obs)==1) Ri = var.error.predi[sel.pred.obs]
if(length(sel.pred.obs)>1) Ri = diag(var.error.predi[sel.pred.obs])
Vi.inv = as.matrix(solve(Chati + Ri))
Vi.pred = tcrossprod(B3i.pred%*%Theta,B3i.pred)
Hi = as.matrix(B3i.pred%*%tcrossprod(Theta,B3i)%*%Vi.inv)
ui =tcrossprod(Theta,B3i)%*%Vi.inv %*%y.predi[sel.pred.obs]
scores$u[i,] = as.vector(ui)
y.pred[sel.pred] = as.numeric(Hi%*%y.predi[sel.pred.obs]) + mu.predi
temp = as.matrix(B3i.pred%*%tcrossprod(Theta,B3i))
if(length(sel.pred.obs) >1){
se.pred[sel.pred] = sqrt(diag(Vi.pred - temp%*%Vi.inv%*%t(temp)))
}
if(length(sel.pred.obs) ==1){
se.pred[sel.pred] = sqrt(Vi.pred[1,1] - Vi.inv[1,1]*temp%*%t(temp))
}
if(calculate.scores==TRUE){
temp = matrix(t(eigenfunctions),nrow=npc)%*%(as.matrix(Bnew)%*%ui)/sum(eigenfunctions[,1]^2)
temp = as.matrix(temp)
scores$scores[i,1:npc] = temp[,1]
}
}
}
}
if(is.null(newdata)){
y.pred=NULL
mu.pred = NULL
var.error.pred = NULL
Chat.diag.pred = NULL
se.pred = NULL
scores=NULL
}
res <- list(newdata=newdata, W = W, y.pred = y.pred, Theta=Theta,argvals.new=tnew,
mu.new = mu.new, Chat.new=Chat.new, var.error.new = var.error.new,
Cor.new = Cor.new, eigenfunctions = eigenfunctions, eigenvalues = eigenvalues,
Cor.raw.new = Cor.raw.new, Chat.raw.diag.new = Chat.raw.diag.new,
scores = scores, calculate.scores=calculate.scores,
mu.hat = fit_mean$fitted.values,var.error.hat = var.error.hat,
mu.pred = mu.pred, var.error.pred = var.error.pred, Chat.diag.pred = Chat.diag.pred,
se.pred = se.pred,
fit_mean = fit_mean, lambda_mean=fit_mean$lambda,
lambda=lambda,Gcv=Gcv,Lambda=Lambda,knots=knots,knots.option=knots.option,s=s,npc=npc, p = p, m=m,
center=center,pve=pve,sigma2=sigma2, r = r, DtD = DtD,
U = Eigen.new$vectors[,1:npc],G_invhalf = G_invhalf)
class(res) <- "face.sparse"
return(res)
}
|
expected <- eval(parse(text="NULL"));
test(id=0, code={
argv <- eval(parse(text="list(c(7.50863122075491e-09, 1.87762632589663e-07, 2.29589583061716e-06, 1.83002461474278e-05, 0.000106962770210119, 0.000488992941332962, 0.00182154707835978, 0.0056884235091347, 0.0152093632759767, 0.0353957474549943, 0.0726726073416657, 0.13316547411151))"));
do.call(`oldClass`, argv);
}, o=expected);
|
mstdesign <- "
B1 =~ paste0('i',1:5)
B2 =~ c(i6, i7, i8, i9, i10)
B3 =~ c(i11, i12, i13, i14, i15)
B4 =~ c(i16, i17, i18, i19, i20)
B5 =~ c(i21, i22, i23, i24, i25)
B6 =~ c(i26, i27, i28, i29, i30)
b1 := B4(0,2) + B2(0,2) + B1(0,5)
b2 := B4(0,2) + B2(3,5) + B3(0,5)
b3 := B4(3,5) + B5(0,2) + B3(0,5)
b4 := B4(3,5) + B5(3,5) + B6(0,5)
"
dat <- tmt:::sim.rm(100, 5, 1111)
colnames(dat) <- paste0("i",seq_len(ncol(dat)))
datna <- dat
datna[sample(seq_len(length(datna)),50,replace = FALSE)] <- NA
datrm_1 <- tmt_rm(dat, optimization="optim")
items <- seq(-2,2, length.out = 30)
names(items) <- c(paste0("i",seq_len(30)))
dat_mst <- tmt_sim(mstdesign = mstdesign,
items = items,
persons = 500,
seed = 1111)
datrm_1a <- tmt_rm(dat, optimization = "optim")
datrm_1b <- tmt_rm(data.frame(dat), optimization = "optim")
datrm_1c <- tmt_rm(dat, optimization = "nlminb")
datrm_2a <- tmt_rm(dat_mst$data, mstdesign = mstdesign, optimization = "optim")
datrm_2b <- tmt_rm(dat_mst, optimization = "optim")
datrm_2c <- tmt_rm(dat_mst, optimization = "nlminb")
context("test-raschmodel")
test_that("raschmodel.mst data structure", {
expect_is(datrm_2a,"mst")
expect_equal(datrm_1a$betapar,datrm_1b$betapar)
expect_equal(datrm_1a$se.beta,datrm_1b$se.beta)
expect_equal(datrm_2a$betapar,datrm_2b$betapar)
expect_equal(datrm_2a$se.beta,datrm_2b$se.beta)
})
test_that("raschmodel se", {
expect_that(tmt_rm(dat, se = FALSE, optimization = "optim")$se.beta, equals(NULL))
expect_that(tmt_rm(dat, se = FALSE, optimization = "nlminb")$se.beta, equals(NULL))
expect_that(tmt_rm(datna, se = FALSE, optimization = "optim")$se.beta, equals(NULL))
expect_that(tmt_rm(datna, se = FALSE, optimization = "nlminb")$se.beta, equals(NULL))
expect_that(tmt_rm(dat_mst, se = FALSE, optimization = "optim")$se.beta, equals(NULL))
expect_that(tmt_rm(dat_mst, se = FALSE, optimization = "nlminb")$se.beta, equals(NULL))
})
test_that("raschmodel compare results nlminb and optim", {
expect_equal(
tmt_rm(dat, optimization = "optim")$betapar,
tmt_rm(dat, optimization = "nlminb")$betapar, tolerance = 0.001)
expect_equal(
tmt_rm(datna, optimization = "optim")$betapar,
tmt_rm(datna, optimization = "nlminb")$betapar, tolerance = 0.001)
expect_equal(
tmt_rm(dat_mst, optimization = "optim")$betapar,
tmt_rm(dat_mst, optimization = "nlminb")$betapar, tolerance = 0.01)
expect_equal(
tmt_rm(dat, optimization = "optim")$se.beta,
tmt_rm(dat, optimization = "nlminb")$se.beta, tolerance = 0.001)
expect_equal(
tmt_rm(dat_mst, optimization = "optim")$se.beta,
tmt_rm(dat_mst, optimization = "nlminb")$se.beta, tolerance = 0.001)
})
context("test-raschmodel check warnings")
test_that("error raschmodel.mst",{
expect_that(tmt_rm(list(dat_mst$data),mstdesign=mstdesign, optimization="optim"),throws_error())
expect_that(tmt_rm(list(dat_mst$data),mstdesign=mstdesign), throws_error())
expect_that(tmt_rm(dat_mst,mstdesign=mstdesign, start = rep(0,10)), throws_error())
expect_that(raschmodel.mst(dat_mst$data,mstdesign=NULL), throws_error())
})
test_that("error raschmodel.nmst",{
expect_that(suppressWarnings(raschmodel.nmst(datrm_1a, start = rep(0,10))), throws_error())
expect_that(suppressWarnings(raschmodel.nmst(dat, start = rep(0,10))), throws_error())
})
context("test-raschmodel check errors")
test_that("test-raschmodel mst wrong item names", {
dat_mst_5 <- dat_mst_4 <- dat_mst_3 <- dat_mst
dat_mst_4$data[!is.na(dat_mst_4$data[,1]),1] <- 0
dat_mst_5$data[3:500,] <- 0
colnames(dat_mst_3$data)[1] <- "ii1"
expect_that(raschmodel.mst(dat_mst_3, optimization="optim"), throws_error())
expect_that(tmt_rm(dat, optimization="optimo"), throws_error())
expect_that(tmt_rm(dat_mst, optimization="optimo"), throws_error())
expect_that(suppressWarnings(tmt_rm(dat_mst_4)), throws_error())
expect_that(suppressWarnings(tmt_rm(dat_mst_5)), throws_error())
})
|
register_class("tis")
ts_tis_dts <- function(x) {
stopifnot(requireNamespace("tis"))
x.ts <- ts_ts(x)
x.tis <- tis::as.tis(x.ts)
colnames(x.tis) <- colnames(x.ts)
x.tis
}
ts_dts.tis <- function(x) {
stopifnot(requireNamespace("tis"))
ts_dts(as.ts(x))
}
ts_tis <- function(x) {
stopifnot(ts_boxable(x))
if (relevant_class(x) == "tis") return(x)
ts_tis_dts(ts_dts(x))
}
|
read.fas <- function(x, text){
if (!missing(text)){
x <- text
} else {
x <- scan(x, what = character(), quiet = TRUE)
}
if (!length(x)) stop("file is empty")
start <- grep("^ {0,}>", x)
h <- unlist(strsplit(x[start][1], ""))
if (length(h) == 1){
taxnames <- x[start + 1]
nlines_metadata <- 2
} else {
nlines_metadata <- diff(start[1:2]) - 1
if (nlines_metadata > 2){
id <- lapply(start, function(start, n) start + (1:n) - 1, n = nlines_metadata)
taxnames <- sapply(id, function(id, x) paste(x[id], collapse = "_"), x = x)
} else {
taxnames <- x[start]
}
taxnames <- gsub(">", "", taxnames)
}
ntax <- length(taxnames)
start <- c(start, length(x) + 1)
obj <- vector("list", ntax)
for (i in 1:ntax){
obj[[i]] <- unlist(strsplit(gsub(" ", "", x[(start[i] + nlines_metadata):(start[i + 1] - 1)]), NULL))
}
names(obj) <- taxnames
aa_string <- c("Q","E","I","L","F","P","U","O","J","Z","X","*")
if (any(toupper(unlist(obj)) %in% aa_string)){
obj <- as.AAbin(obj)
} else {
obj <- lapply(obj, tolower)
obj <- as.DNAbin(obj)
}
if (length(unique(sapply(obj, length))) == 1)
obj <- as.matrix(obj)
return(obj)
}
|
library(testthat)
library(purrr)
test_check("purrr")
|
app_save <- function(app, path = tempfile(), env = parent.frame()) {
if (!is_installed("globals")) {
abort(c(
"globals package required to test app object",
i = "Do you need to run `install.packages('globals')`"
))
}
if (!dir.exists(path)) {
dir.create(path)
}
file.copy(
system.file("app-template.R", package = "shinytest"),
file.path(path, "app.R")
)
data <- app_data(app, env)
saveRDS(data, file.path(path, "data.rds"))
path
}
app_data <- function(app, env = parent.frame()) {
server <- app$serverFuncSource()
globals <- app_server_globals(server, env)
data <- globals$globals
data$ui <- environment(app$httpHandler)$ui
data$server <- server
data$resources <- shiny::resourcePaths()
data$packages <- globals$packages
data
}
app_server_globals <- function(server, env = parent.frame()) {
env <- new.env(parent = env)
env$output <- NULL
globals <- globals::globalsOf(server, envir = env, recursive = FALSE)
globals <- globals::cleanup(globals)
pkgs <- globals::packagesOf(globals)
in_package <- vapply(
attr(globals, "where"),
function(x) !is.null(attr(x, "name")),
logical(1)
)
globals <- globals[!in_package]
attributes(globals) <- list(names = names(globals))
globals$output <- NULL
list(
globals = globals,
packages = pkgs
)
}
|
context("Testing 'efetch()'")
if (getOption('reutils.test.remote')) {
test_that("Fetch PMIDs 17284678 and 9997 as text abstracts", {
a <- efetch(uid = c(17284678, 9997), db = 'pubmed', rettype = 'abstract')
expect_equal(retmode(a), "text")
expect_equal(rettype(a), "abstract")
expect_is(content(a), 'character')
expect_is(content(a, "text"), 'character')
expect_error(content(a, 'xml'), "Cannot return data of retmode.+")
expect_error(content(a, 'json'), "Cannot return data of retmode.+")
expect_is(content(a, 'parsed'), 'character')
expect_is(content(a, 'textConnection'), 'textConnection')
})
test_that("Fetch PMIDs 17284678 and 9997 as XML", {
a <- efetch(c(17284678, 9997), 'pubmed', retmode = 'xml')
expect_equal(retmode(a), "xml")
expect_equal(rettype(a), "")
expect_is(content(a), 'XMLInternalDocument')
expect_is(content(a, "text"), 'character')
expect_is(content(a, 'xml'), "XMLInternalDocument")
expect_error(content(a, 'json'), "Cannot return data of retmode.+")
expect_is(content(a, 'parsed'), 'XMLInternalDocument')
expect_error(content(a, 'textConnection'), "Cannot return data of retmode.+")
})
test_that("Fetch 100 bases of the minus strand of GI 21614549", {
a <- efetch('21614549', 'nuccore', strand = 1, seqstart = 1, seqstop = 100,
rettype = "fasta", retmode = "text")
expect_equal(retmode(a), "text")
expect_equal(rettype(a), "fasta")
expect_equal(nchar(paste0(strsplit(content(a), '\n')[[1]][-1], collapse = "")), 100)
})
test_that("efetch works with UIDs provided as character or numeric vectors", {
a <- efetch(c(28800982, 28628843), "protein", "fasta")
if (!all(is.na(a$xmlName("//TSeqSet/*")))) {
expect_equal(a$xmlName("//TSeqSet/*"), c("TSeq", "TSeq"))
}
})
test_that("efetch works with an esearch object as input", {
x <- esearch("erythroid associated factor AND Homo sapiens", 'protein', retmax = 2)
a <- efetch(x, rettype = "fasta")
if (!all(is.na(a$xmlValue("//TSeq_taxid")))) {
expect_equal(a$xmlValue("//TSeq_taxid"), c("9606", "9606"))
}
})
}
|
expected <- eval(parse(text="2L"));
test(id=0, code={
argv <- eval(parse(text="list(c(-167.089651989438, -122.420302709026))"));
do.call(`length`, argv);
}, o=expected);
|
test_that("vld_unused", {
expect_true(vld_unused())
expect_false(vld_unused(1))
})
test_that("chk_unused", {
expect_null(chk_unused())
expect_invisible(chk_unused())
expect_chk_error(chk_unused(1), "^`...` must be unused[.]$")
})
test_that("vld_used", {
expect_true(vld_used(1))
expect_false(vld_used())
})
test_that("chk_used", {
expect_null(chk_used(1))
expect_invisible(chk_used(1))
expect_chk_error(chk_used(), "^`...` must be used[.]$")
})
|
expected <- eval(parse(text="c(1-0i, 1+0i, 1+0i, 9.99999999999989e-01-5e-15i, 1+0i, 1+0i, 1-0i, 1e+00+9e-16i, 9.99999999999999e-01+3e-15i, 9.99999999999997e-01-3e-15i, 1e+00-1e-15i, 1+0i, 1+0i, 1e+00+1e-15i, 1+0i, 1+0i, 1+0i, 1-0i, 1+0i, 1e+00-5e-15i, 1-0i, 1+0i, 1+0i, 1+0i)"));
test(id=0, code={
argv <- eval(parse(text="list(c(1-0i, 1+0i, 1+0i, 9.99999999999989e-01-5e-15i, 1+0i, 1+0i, 1-0i, 1e+00+9e-16i, 9.99999999999999e-01+3e-15i, 9.99999999999997e-01-3e-15i, 1e+00-1e-15i, 1+0i, 1+0i, 1e+00+1e-15i, 1+0i, 1+0i, 1+0i, 1-0i, 1+0i, 1e+00-5e-15i, 1-0i, 1+0i, 1+0i, 1+0i))"));
do.call(`(`, argv);
}, o=expected);
|
mkDummy <- function(x) {
xN <- deparse(substitute(x))
if (!inherits(x,"factor")) stop("x should be a factor")
lev <- levels(x)
result <- lapply(lev,function(l) as.integer(x==l))
names(result) <- paste(xN,".",lev,sep="")
result
}
|
read_filet <- function(file_name,col_types=NULL,col_names=NULL,na_strings=NULL){
raw_lines <- readLines(file_name)
experiment <- raw_lines %>%
str_subset('\\*EXP\\. *DATA *\\([AT]\\): *') %>%
str_remove('\\*EXP\\. *DATA *\\([AT]\\): *')
comments <- extract_comments(raw_lines)
col_types <- cols(` TRNO `=col_double()) %>%
{.$cols <- c(.$cols,col_types$cols);.}
filet <- read_tier(raw_lines = raw_lines,
col_types = col_types,
col_names = c(col_names,' TRNO '),
na_strings=na_strings)
trno_date_cols <- intersect(c('TRNO','DATE'),colnames(filet))
if(length(trno_date_cols) > 0 ){
filet <- filet %>%
arrange_at(trno_date_cols)
}
attr(filet,'experiment') <- experiment
attr(filet,'comments') <- comments
filet <- as_DSSAT_tbl(filet)
return(filet)
}
|
"COL"
|
maxlikec <- function(z, x, data=NULL, effects=NULL,
returnChains=FALSE, byGroup=FALSE, byWave=FALSE,
returnDataFrame=FALSE,
returnLoglik=FALSE, onlyLoglik=FALSE)
{
f <- FRANstore()
callGrid <- z$callGrid
if (nrow(callGrid) == 1)
{
if (byGroup)
{
theta <- z$thetaMat[1,]
}
else
{
theta <- z$theta
}
ans <- .Call(C_mlPeriod, PACKAGE=pkgname, z$Deriv, f$pData,
f$pModel, f$myeffects, theta,
1, 1, z$nrunMH, z$addChainToStore,
z$returnDataFrame, z$returnDeps,
z$returnChains, returnLoglik, onlyLoglik)
if (!onlyLoglik)
{
ans[[6]] <- list(ans[[6]])
ans[[7]] <- list(ans[[7]])
if (byGroup)
{
ans[[8]] <- list(ans[[8]])
ans[[9]] <- list(ans[[9]])
ans[[10]] <- list(ans[[10]])
ans[[11]] <- list(ans[[11]])
}
}
else
{
ans[[2]] <- list(ans[[2]])
ans[[3]] <- list(ans[[3]])
ans[[4]] <- list(ans[[4]])
}
if (z$returnDeps)
{
sims <- ans[[12]]
}
else
{
sims <- 'there are no simulated dependent variables'
}
}
else
{
if (z$int2 == 1)
{
anss <- apply(cbind(callGrid, 1:nrow(callGrid)),
1, doMLModel, z$Deriv, z$thetaMat,
z$nrunMH, z$addChainToStore,
z$returnDataFrame, z$returnDeps,
z$returnChains, byGroup, z$theta, returnLoglik,
onlyLoglik)
}
else
{
use <- 1:(min(nrow(callGrid), z$int2))
anss <- parRapply(z$cl[use], cbind(callGrid, 1:nrow(callGrid)),
doMLModel, z$Deriv, z$thetaMat,
z$nrunMH, z$addChainToStore,
z$returnDataFrame, z$returnDeps, z$returnChains, byGroup,
z$theta, returnLoglik, onlyLoglik)
}
ans <- list()
if (!onlyLoglik)
{
ans[[1]] <- sapply(anss, "[[", 1)
ans[[2]] <- NULL
ans[[3]] <- NULL
ans[[4]] <- NULL
ans[[5]] <- NULL
if (z$returnChains)
{
fff <- lapply(anss, function(x) x[[6]][[1]])
fff <- split(fff, callGrid[, 1 ])
ans[[6]] <- fff
}
ans[[7]] <- lapply(anss, "[[", 7)
ans[[8]] <- lapply(anss, "[[", 8)
ans[[9]] <- lapply(anss, "[[", 9)
ans[[10]] <- lapply(anss, "[[", 10)
if (!byGroup)
{
ans[[8]] <- Reduce("+", ans[[8]])
ans[[9]] <- Reduce("+", ans[[9]])
ans[[10]] <- Reduce("+", ans[[10]])
}
ans[[11]] <- sapply(anss, "[[", 11)
if (z$returnDeps)
{
fff <- lapply(anss, function(x) x[[12]])
sims <- split(fff, callGrid[, 1 ])
}
else
{
sims <- 'no simulated dependent variables'
}
}
else
{
ans[[1]] <- sum(sapply(anss, '[[', 1))
ans[[2]] <- lapply(anss, "[[", 2)
ans[[3]] <- lapply(anss, "[[", 3)
ans[[4]] <- lapply(anss, "[[", 4)
}
}
FRANstore(f)
if (z$Deriv && !onlyLoglik)
{
resp <- reformatDerivs(z, f, ans[[7]])
dff <- resp[[1]]
dff2 <- resp[[2]]
}
else
{
dff <- NULL
dff2 <- NULL
}
if (!onlyLoglik)
{
fra <- -t(ans[[1]])
list(fra = fra, ntim0 = NULL, feasible = TRUE, OK = TRUE,
sims=sims, dff=dff, dff2=dff2,
chain = ans[[6]], accepts=ans[[8]],
rejects= ans[[9]], aborts=ans[[10]], loglik=ans[[11]])
}
else
{
list(loglik=ans[[1]], accepts=ans[[2]],
rejects= ans[[3]], aborts=ans[[4]])
}
}
doMLModel <- function(x, Deriv, thetaMat, nrunMH, addChainToStore,
returnDataFrame, returnDeps, returnChains,
byGroup, theta, returnLoglik, onlyLoglik)
{
f <- FRANstore()
if (byGroup)
{
theta <- thetaMat[x[1], ]
}
else
{
theta <- theta
}
.Call(C_mlPeriod, PACKAGE=pkgname, Deriv, f$pData,
f$pModel, f$myeffects, theta,
as.integer(x[1]), as.integer(x[2]), nrunMH[x[3]], addChainToStore,
returnDataFrame, returnDeps, returnChains,
returnLoglik, onlyLoglik)
}
reformatDerivs <- function(z, f, derivList)
{
dff <- as(matrix(0, z$pp, z$pp), "dsyMatrix")
nPeriods <- length(derivList)
dff2 <- vector("list", nPeriods)
if (z$byWave)
{
tmp <- as(matrix(0, z$pp, z$pp), "dsyMatrix")
dff2[] <- tmp
}
for (period in 1:nPeriods)
{
dffraw <- derivList[[period]]
start <- 1
rawsub <- 1
for (i in 1:length(f$myeffects))
{
dffPeriod <- matrix(0, nrow=z$pp, ncol=z$pp)
rows <- nrow(f$myeffects[[i]])
nRates <- sum(f$myeffects[[i]]$type == 'rate')
nonRates <- rows - nRates
dffPeriod[cbind(start:(start + nRates -1),
start:(start + nRates - 1))] <-
dffraw[rawsub:(rawsub + nRates - 1)]
start <- start + nRates
rawsub <- rawsub + nRates
dffPeriod[start : (start + nonRates - 1 ),
start : (start + nonRates - 1)] <-
dffraw[rawsub:(rawsub + nonRates * nonRates - 1)]
start <- start + nonRates
rawsub <- rawsub + nonRates * nonRates
dffPeriod <- dffPeriod + t(dffPeriod)
diag(dffPeriod) <- diag(dffPeriod) / 2
if (z$byWave)
{
dff2[[period]] <- dff2[[period]] - dffPeriod
}
dff <- dff - dffPeriod
}
}
list(dff, dff2)
}
|
fixParents <- function (id, dadid, momid, sex, missid = 0) {
n <- length(id)
if (length(momid) != n)
stop("Mismatched lengths, id and momid")
if (length(dadid) != n)
stop("Mismatched lengths, id and momid")
if (length(sex) != n)
stop("Mismatched lengths, id and sex")
if (is.factor(sex))
sex <- as.character(sex)
codes <- c("male", "female", "unknown", "terminated")
if (is.character(sex)) {
sex <- charmatch(casefold(sex, upper = FALSE), codes, nomatch = 3)
}
sex <- as.integer(sex)
if (min(sex) == 0) {
warning("Sex values contain 0, but expected codes 1-4.\n Setting 0=male, 1=female, 2=unknown, 3=terminated. \n")
sex <- sex + 1
}
sex <- ifelse(sex < 1 | sex > 4, 3, sex)
if (all(sex > 2))
stop("Invalid values for 'sex'")
else if (mean(sex == 3) > 0.25)
warning("More than 25% of the gender values are 'unknown'")
if (missing(missid)) {
if (is.numeric(id))
missid <- 0
else missid <- ""
}
if (any(is.na(id)))
stop("Missing value for the id variable")
if (!is.numeric(id)) {
id <- as.character(id)
addids <- paste("addin", 1:length(id), sep = "-")
dadid <- as.character(dadid)
momid <- as.character(momid)
missid <- as.character(missid)
if (length(grep("^ *$", id)) > 0)
stop("A blank or empty string is not allowed as the id variable")
}
else {
addids <- seq(max(id, na.rm = TRUE) + 1, max(id, na.rm = TRUE) +
length(id))
}
nofather <- (is.na(dadid) | dadid == missid)
nomother <- (is.na(momid) | momid == missid)
if (any(duplicated(id))) {
duplist <- id[duplicated(id)]
msg.n <- min(length(duplist), 6)
stop(paste("Duplicate subject id:", duplist[1:msg.n]))
}
findex <- match(dadid, id, nomatch = 0)
mindex <- match(momid, id, nomatch = 0)
if (any(findex == 0 & !nofather)) {
dadnotfound <- unique(dadid[which(findex == 0 & !nofather)])
id <- c(id, dadnotfound)
sex <- c(sex, rep(1, length(dadnotfound)))
dadid <- c(dadid, rep(0, length(dadnotfound)))
momid <- c(momid, rep(0, length(dadnotfound)))
}
if (any(mindex == 0 & !nomother)) {
momnotfound <- unique(momid[which(mindex == 0 & !nomother)])
id <- c(id, momnotfound)
sex <- c(sex, rep(2, length(momnotfound)))
dadid <- c(dadid, rep(0, length(momnotfound)))
momid <- c(momid, rep(0, length(momnotfound)))
}
if (any(sex[mindex] != 1)) {
dadnotmale <- unique((id[findex])[sex[findex] != 1])
sex[id %in% dadnotmale] <- 1
}
if (any(sex[mindex] != 2)) {
momnotfemale <- unique((id[mindex])[sex[mindex] != 2])
sex[id %in% momnotfemale] <- 2
}
findex <- match(dadid, id, nomatch = 0)
mindex <- match(momid, id, nomatch = 0)
addids <- addids[!(addids %in% id)]
if (any(findex == 0 & mindex != 0)) {
nodad.idx <- which(findex == 0 & mindex != 0)
dadid[nodad.idx] <- addids[1:length(nodad.idx)]
id <- c(id, addids[1:length(nodad.idx)])
sex <- c(sex, rep(1, length(nodad.idx)))
dadid <- c(dadid, rep(0, length(nodad.idx)))
momid <- c(momid, rep(0, length(nodad.idx)))
}
addids <- addids[!(addids %in% id)]
if (any(mindex == 0 & findex != 0)) {
nomom.idx <- which(mindex == 0 & findex != 0)
momid[nomom.idx] <- addids[1:length(nomom.idx)]
id <- c(id, addids[1:length(nomom.idx)])
sex <- c(sex, rep(2, length(nomom.idx)))
dadid <- c(dadid, rep(0, length(nomom.idx)))
momid <- c(momid, rep(0, length(nomom.idx)))
}
return(data.frame(id = id, momid = momid, dadid = dadid,
sex = sex))
}
|
boolSkip=F
test_that("Check 14.1 - weightedMajorityGameValue ",{
if(boolSkip){
skip("Test was skipped")
}
S=c(1,2)
w=c(1,2,2)
q = 4
result=weightedVotingGameValue(S, w, q)
expect_equal(result,0)
})
test_that("Check 14.2 - weightedMajorityGameValue ",{
if(boolSkip){
skip("Test was skipped")
}
S=c(1,2)
w=c(1:5)
q = 4
result=weightedVotingGameValue(S, w, q)
expect_equal(result,0)
})
test_that("Check 14.3 - weightedMajorityGameValue ",{
if(boolSkip){
skip("Test was skipped")
}
S=c(1,2)
w=c(1:5)
q = 4
result=weightedVotingGameValue(S, w, q)
expect_equal(result,0)
})
|
minimal.cover <-
function(z) minimal.incidence(cover2incidence(z))
|
ROCscore<-function(xobs, yobs, type="output")
{
n1<-nrow(xobs)
p.input<-ncol(xobs)
if(n1!=nrow(yobs)) stop("xobs and yobs have not the same number of observations")
match.arg(type,c("output","input","hyper"))
alpha=seq(0.01,1,by=0.01)
m=c(1,5,8,11,14,17,20,23,26,29,32,35,40,45,50,55,60,65,70,75,80,85,90,95,seq(100,2500,length.out=76))
perf1=NULL
perf2=NULL
for(k in 1:length(alpha))
{
res1<-alphascore(xobs,yobs, alpha=alpha[k])[,type]
res2<-ordermscore(xobs,yobs, m=m[k])[,type]
perf1=c(perf1,length(which(res1>1))/n1)
perf2=c(perf2,length(which(res2>1))/n1)
}
plot(alpha,perf1,type='l',xlab="alpha",ylab="Percentage of super-efficiency firms",ylim=c(0,1),col='royalblue')
par(new=TRUE)
plot(m, perf2,type='l',lty=2, ann = FALSE, yaxt = "n", xaxt="n",yaxt="n",ylim=c(0,1),col='red')
axis(3)
mtext(side=3,"m")
legend("topright",legend=c("f(alpha)","f(m)"),lty=1:2,col=c("royalblue","red"))
res<-data.frame(alpha,perf1,m,perf2)
names(res)=c("alpha","f(alpha)","m","f(m)")
return(res)
}
|
GADAG_Run <- function(X, lambda, threshold=0.1,
GADAG.control = list(n.gen=100, tol.Shannon=1e-6, max.eval=1e4,pop.size=10, p.xo=.25, p.mut=.05),
grad.control = list(tol.obj.inner=1e-6, max.ite.inner=50),
ncores=1,print.level=0, return.level=0) {
if (is.null(GADAG.control$n.gen)){
n.gen <- 100
} else {
n.gen <- GADAG.control$n.gen
}
if (is.null(GADAG.control$max.eval)){
max.eval <- 1e4
} else {
max.eval <- GADAG.control$max.eval
}
if (is.null(GADAG.control$tol.Shannon)){
tol.Shannon <- 1e-6
} else {
tol.Shannon <- GADAG.control$tol.Shannon
}
if (is.null(GADAG.control$pop.size)){
pop.size <- 10
} else {
pop.size <- GADAG.control$pop.size
}
if (is.null(GADAG.control$p.xo)){
p.xo <- 0.25
} else {
p.xo <- GADAG.control$p.xo
}
if (is.null(GADAG.control$p.mut)){
p.mut <- 0.05
} else {
p.mut <- GADAG.control$p.mut
}
if (is.null(grad.control$tol.obj.inner)){
grad.control$tol.obj.inner <- 1e-6
} else {
grad.control$tol.obj.inner <- grad.control$tol.obj.inner
}
if (is.null(grad.control$max.ite.inner)){
grad.control$max.ite.inner <- 50
} else {
grad.control$max.ite.inner <- grad.control$max.ite.inner
}
if (grad.control$max.ite.inner < 0){
stop("grad.control$max.ite.inner should be non-negative.")
}
n <- dim(X)[1]
p <- dim(X)[2]
XtX <- crossprod(X)
Pop <- create.population(p, pop.size)
evalTandf <- evaluation(Pop, X, XtX, lambda, grad.control = grad.control, ncores=ncores)
f.pop <- evalTandf$f
T.pop <- evalTandf$Tpop
f.count <- pop.size
Shannon.val <- rep(0,p)
for (j in (1:p)){
frac <- colMeans(Pop==j)
h <- frac*log(frac)
h[is.nan(h)] <- 0
Shannon.val[j] <- -sum(h)
}
pop.best <- which.min(f.pop)
f.best.alltimes <- min(f.pop)
P.best.alltimes <- Pop[pop.best,]
T.best.alltimes <- T.pop[pop.best,]
if (return.level != 0) {
fmin.pop.save <- rep(0, n.gen)
fmean.pop.save <- rep(0, n.gen)
fp10.pop.save <- rep(0, n.gen)
fp90.pop.save <- rep(0, n.gen)
fmin.pop.save[1] <- min(f.pop)
fmean.pop.save[1] <- mean(f.pop)
fp10.pop.save[1] <- quantile(f.pop, probs = .1)
fp90.pop.save[1] <- quantile(f.pop, probs = .9)
f.best.alltimes.save <- rep(0, n.gen)
P.best.alltimes.save <- matrix(data = 0, nrow = n.gen, ncol = p)
T.best.alltimes.save <- matrix(data = 0, nrow = n.gen, ncol = p^2)
f.best.alltimes.save[1] <- f.best.alltimes
P.best.alltimes.save[1,] <- P.best.alltimes
T.best.alltimes.save[1,] <- T.best.alltimes
Shannon.save <- matrix(data = 0, nrow = n.gen, ncol = p)
Shannon.save[1,] <- Shannon.val
}
k <- 1
if ((print.level != 0) ) cat("Nb gen | best f | average (sd) f in pop | Shannon | f count \n")
while (k < n.gen && sum(Shannon.val) > tol.Shannon && f.count<max.eval){
if (print.level != 0) cat(k, f.best.alltimes, mean(f.pop), "(", sd(f.pop), ")", sum(Shannon.val), f.count, "\n")
I <- selection(Pop, f.pop)
Results.crossover <- crossover(Pop=Pop[I,],p.xo=p.xo)
Children <- Results.crossover$Children
I.cross <- Results.crossover$I.cross
if (length(I.cross)>1){
Children <- mutation(Children, p.mut=p.mut)
evalTandfe <- evaluation(Pop=Children, X=X, XtX=XtX, lambda=lambda, grad.control=grad.control, ncores=ncores)
I.cross <- I[I.cross]
Pop[I.cross,] <- Children
f.pop[I.cross] <- evalTandfe$f
T.pop[I.cross,] <- evalTandfe$Tpop
}
pop.worst <- which.max(f.pop)
f.pop[pop.worst] <- f.best.alltimes
Pop[pop.worst,] <- P.best.alltimes
T.pop[pop.worst,] <- T.best.alltimes
f.count <- f.count + length(I.cross) + p-1
k <- k + 1
Shannon.val <- rep(0,p)
for (j in (1:p)){
frac <- colMeans(Pop==j)
h <- frac*log(frac)
h[is.nan(h)] <- 0
Shannon.val[j] <- -sum(h)
}
pop.best <- which.min(f.pop)
if (min(f.pop) < f.best.alltimes) {
f.best.alltimes <- min(f.pop)
P.best.alltimes <- Pop[pop.best,]
T.best.alltimes <- T.pop[pop.best,]
}
if (return.level != 0) {
fmin.pop.save[k] <- min(f.pop)
fmean.pop.save[k] <- mean(f.pop)
fp10.pop.save[k] <- quantile(f.pop, probs = .1)
fp90.pop.save[k] <- quantile(f.pop, probs = .9)
f.best.alltimes.save[k] <- f.best.alltimes
P.best.alltimes.save[k,] <- P.best.alltimes
T.best.alltimes.save[k,] <- T.best.alltimes
Shannon.save[k,] <- Shannon.val
}
}
if (print.level != 0) cat(k, f.best.alltimes, mean(f.pop), "(", sd(f.pop), ")", sum(Shannon.val), f.count, "\n")
P <- chrom(P.best.alltimes)
T <- matrix(T.best.alltimes,p,p)
T[T<threshold] <- 0
G.best <- P %*% T %*% t(P)
Gbest.bin <- G.best*0
Gbest.bin[(abs(G.best)>0)] <- 1
if (return.level > 0) {
return(list(f.best=f.best.alltimes, P.best=P.best.alltimes, T.best=T.best.alltimes,G.best=G.best,
f.best.evol=f.best.alltimes.save[1:k], P.best.evol=P.best.alltimes.save[1:k,], T.best.evol=T.best.alltimes.save[1:k,],
fmin.evol=fmin.pop.save[1:k], fmean.evol=fmean.pop.save[1:k], fp10.evol=fp10.pop.save[1:k],
fp90.evol=fp90.pop.save[1:k],
Shannon.evol=Shannon.save[1:k,]))
} else {
return(list(f.best=f.best.alltimes, P.best=P.best.alltimes, T.best=T.best.alltimes, G.best=G.best))
}
}
|
S_soft <- function(z,lambda){
return((abs(z) - lambda)*(abs(z) - lambda > 0)*sign(z))
}
|
fred_tags <- function(key=NULL, args=list()){
if (is.null(key)) key <- .use_default_key()
other <- .args_parse(args)
.fred_tags(key, other)
}
fred_related_tags <- function(..., key=NULL, args = list()){
if (is.null(key)) key <- .use_default_key()
other <- .args_parse(args)
ids <- parse_search(...)
.fred_related_tags(ids, key, other)
}
fred_tags_series <- function(..., key=NULL, args = list()){
if (is.null(key)) key <- .use_default_key()
other <- .args_parse(args)
ids <- parse_search(...)
.fred_tags_series(ids, key, other)
}
|
knitr::opts_chunk$set(
warning = FALSE, message = FALSE,
collapse = TRUE,
comment = "
suppressPackageStartupMessages(library(ggplot2))
theme_set(theme_light())
library(dplyr)
library(janeaustenr)
library(tidytext)
library(stringr)
tidy_bigrams <- austen_books() %>%
unnest_tokens(bigram, text, token="ngrams", n = 2, to_lower = FALSE) %>%
filter(!str_detect(bigram, "[A-Z]"))
bigram_counts <- tidy_bigrams %>%
count(book, bigram, sort = TRUE)
bigram_counts
library(tidylo)
bigram_log_odds <- bigram_counts %>%
bind_log_odds(book, bigram, n)
bigram_log_odds %>%
arrange(-log_odds_weighted)
library(ggplot2)
bigram_log_odds %>%
group_by(book) %>%
top_n(10) %>%
ungroup %>%
mutate(bigram = reorder(bigram, log_odds_weighted)) %>%
ggplot(aes(bigram, log_odds_weighted, fill = book)) +
geom_col(show.legend = FALSE) +
facet_wrap(~book, scales = "free") +
coord_flip() +
labs(x = NULL)
gear_counts <- mtcars %>%
count(vs, gear)
gear_counts
regularized <- gear_counts %>%
bind_log_odds(vs, gear, n)
regularized
unregularized <- gear_counts %>%
bind_log_odds(vs, gear, n, uninformative = TRUE, unweighted = TRUE)
unregularized
|
library(testthat)
library(hms)
test_check("hms")
|
tidy.mle2 <- function(x, conf.int = FALSE, conf.level = .95, ...) {
co <- bbmle::coef(bbmle::summary(x))
ret <- ret <- as_tidy_tibble(
co,
new_names = c("estimate", "std.error", "statistic", "p.value")
)
if (conf.int) {
ci <- bbmle::confint(x, level = conf.level)
if (is.null(dim(ci))) {
ci <- matrix(ci, nrow = 1)
}
colnames(ci) <- c("conf.low", "conf.high")
ci <- as_tibble(ci)
ret <- dplyr::bind_cols(ret, ci)
}
as_tibble(ret)
}
|
local({
gui.file<-function(){
tcltk::tclvalue(file.name) <- tcltk::tcl("tk_getOpenFile") }
gui.mask<-function(){
tcltk::tclvalue(mask) <- tcltk::tcl("tk_getOpenFile") }
gui.save<-function(...){
assign(tcltk::tclvalue(save.r), tmp.ica.obj, envir = .GlobalEnv)
}
gui.ica<-function(...){
if(tcltk::tclvalue(mask) == "" && tcltk::tclvalue(create.mask) == 0){
err1 <- tcltk::tktoplevel()
err1.f1 <- tcltk::tkframe(err1, relief="groove", borderwidth = 2)
err1.label <- tcltk::tklabel(err1.f1, text = "Either select a mask file or select create mask", bg = "
tcltk::tkgrid(err1.label)
tcltk::tkgrid(err1.f1)
return()
}
if(tcltk::tclvalue(mask) != "" && tcltk::tclvalue(create.mask) == 0) msk <- tcltk::tclvalue(mask)
if(tcltk::tclvalue(mask) == "" && tcltk::tclvalue(create.mask) == 1) msk <- NULL
v.norm <- 1
if(tcltk::tclvalue(var.norm) == 0) v.norm <- 0
sl <- NULL
if(tcltk::tclvalue(slices) == 0) sl <- "all"
tmp.ica.obj <<- f.ica.fmri(tcltk::tclvalue(file.name),
n.comp = as.numeric(tcltk::tclvalue(n.comp)),
norm.col = v.norm,
fun = "logcosh",
maxit = 100,
alg.type = "parallel",
alpha = 1,
tol = 0.0001,
mask.file.name = msk,
sl)
print("done")
}
gui.jpeg<-function(...){
f.plot.ica.fmri.jpg(tmp.ica.obj, tcltk::tclvalue(jpeg), width = 700, height = 700)}
gui.end<-function(...){
rm(tmp.ica.obj, envir = .GlobalEnv)
tcltk::tkdestroy(base.ica)
}
gui.plot.ica<-function(...){
f.plot.ica.fmri(tmp.ica.obj, as.numeric(tcltk::tclvalue(comp)))}
file.name <- tcltk::tclVar()
mask <- tcltk::tclVar()
n.comp <- tcltk::tclVar("30")
var.norm <- tcltk::tclVar("0")
slices <- tcltk::tclVar("0")
create.mask <- tcltk::tclVar("0")
save.r <- tcltk::tclVar()
jpeg <- tcltk::tclVar()
comp <- tcltk::tclVar()
if(.Platform$OS.type == "windows") flush.console()
base.ica <- tcltk::tktoplevel(bg="
tcltk::tkwm.title(base.ica, "Spatial ICA for fMRI datasets")
ica.f1 <- tcltk::tkframe(base.ica, relief = "groove", borderwidth = 2, bg = "
ica.file.entry <- tcltk::tkentry(ica.f1, textvariable = file.name, width = 50, bg = "
ica.file.find.but <- tcltk::tkbutton(ica.f1, text = "Select File", width = 15, command = gui.file, bg = "
tcltk::tkgrid(ica.file.find.but, ica.file.entry, pady = 10, padx = 10)
ica.mask.entry <- tcltk::tkentry(ica.f1, textvariable = mask, width = 50, bg = "
ica.mask.find.but <- tcltk::tkbutton(ica.f1, text = "Select Mask File", width = 15, command = gui.mask, bg = "
tcltk::tkgrid(ica.mask.find.but, ica.mask.entry, padx = 10, pady = 10)
tcltk::tkgrid(ica.f1)
ica.f2 <- tcltk::tkframe(base.ica, relief = "groove", borderwidth = 2, bg = "
ica.n.comp.label <- tcltk::tklabel(ica.f2, text = "Number of components to extract", bg = "
ica.n.comp.entry <- tcltk::tkentry(ica.f2, textvariable = n.comp, width = 5, bg = "
tcltk::tkgrid(ica.n.comp.label, ica.n.comp.entry, padx = 10, pady = 10)
tcltk::tkgrid(ica.f2, sticky = "ew")
ica.f3 <- tcltk::tkframe(base.ica, relief = "groove", borderwidth = 2, bg = "
ica.normalise.but <- tcltk::tkcheckbutton(ica.f3, text = "Variance Normalize", bg = "
ica.slices.but <- tcltk::tkcheckbutton(ica.f3, text = "Exclude top/bottom slices", bg = "
ica.create.mask.but <- tcltk::tkcheckbutton(ica.f3, text = "Create Mask", bg = "
tcltk::tkgrid(ica.normalise.but, ica.slices.but, ica.create.mask.but, padx = 30, pady = 10)
tcltk::tkgrid(ica.f3, sticky = "ew")
ica.f4 <- tcltk::tkframe(base.ica, relief = "groove", borderwidth = 2, bg = "
ica.save.entry <- tcltk::tkentry(ica.f4, textvariable = save.r, width = 40, bg = "
ica.save.but <- tcltk::tkbutton(ica.f4, text = "Save to R object", width = 15, command = gui.save, bg = "
tcltk::tkgrid(ica.save.but, ica.save.entry, padx = 10, pady = 10)
tcltk::tkgrid(ica.f4,sticky = "ew")
ica.f5 <- tcltk::tkframe(base.ica, relief = "groove", borderwidth = 2, bg = "
ica.jpeg.entry <- tcltk::tkentry(ica.f5, textvariable = jpeg, width = 40, bg = "
ica.jpeg.but <- tcltk::tkbutton(ica.f5, text = "Save to jpeg files", width = 15, command = gui.jpeg, bg = "
tcltk::tkgrid(ica.jpeg.but, ica.jpeg.entry, padx = 10, pady = 10)
tcltk::tkgrid(ica.f5, sticky = "ew")
ica.f6 <- tcltk::tkframe(base.ica, relief = "groove", borderwidth = 2, bg = "
ica.plot.entry <- tcltk::tkentry(ica.f6, textvariable = comp, width = 5, bg = "
ica.plot.but <- tcltk::tkbutton(ica.f6, text = "Plot component", width = 15, command = gui.plot.ica, bg = "
tcltk::tkgrid(ica.plot.but, ica.plot.entry, padx = 10, pady = 10)
tcltk::tkgrid(ica.f6, sticky = "ew")
fr3 <- tcltk::tkframe(base.ica, borderwidth = 2, bg = "
go.but<- tcltk::tkbutton(fr3, text = "Start", bg = "
q.but <- tcltk::tkbutton(fr3, text = "Quit",
command = gui.end, bg = "
tcltk::tkgrid(go.but, q.but, padx = 30, pady = 20)
tcltk::tkgrid(fr3)
})
|
knitr::opts_chunk$set(
collapse = TRUE,
comment = '
eval = FALSE
)
options(scipen = 9999)
library(irg)
library(data.table)
ndvi <- fread(system.file('extdata', 'sampled-ndvi-MODIS-MOD13Q1.csv', package = 'irg'))
?ndvi
knitr::kable(ndvi[90:95])
library(DiagrammeR)
g <- grViz(
"
digraph irg_functions {
graph [rankdir=LR, compound=TRUE, fontsize = 28]
node[shape=none, fontsize=28]
subgraph cluster_filt{
label= '1)'; labeljust='l';
Filtering -> filter_ndvi [dir=none]
filter_ndvi -> filter_qa [dir=none]
filter_ndvi -> filter_winter [dir=none]
filter_ndvi -> filter_roll [dir=none]
filter_ndvi -> filter_top [dir=none]
filter_top -> filter_roll -> filter_winter -> filter_qa [dir=back]
{rank=same; filter_qa; filter_winter; filter_roll; filter_top}
}
subgraph cluster_scal{
label= '2)' labeljust='l';
Scaling -> scale_doy [dir=none]
Scaling -> scale_ndvi [dir=none]
}
subgraph cluster_mod{
label= '3)' labeljust='l';
Modeling -> model_start [dir=none]
Modeling -> model_params [dir=none]
Modeling -> model_ndvi [dir=none]
model_ndvi -> model_params -> model_start [dir=back]
{rank=same; model_ndvi; model_params; model_start}
}
subgraph cluster_irg{
label= '4)' labeljust='l';
IRG -> calc_irg [dir=none]
}
Filtering -> Scaling -> Modeling -> IRG
}
", width = 700, height = 600)
g
fs <-
data.table(functions = as.character(lsf.str('package:irg')))[,
arguments := paste(unlist(formalArgs(functions)),
collapse = ', ' ),
by = functions]
out <- irg(ndvi)
knitr::kable(out[between(t, 0.4, 0.5)][1:5, .(id, yr, t, fitted, irg)])
knitr::kable(fs[grepl('filter', functions), .(functions, arguments)])
|
context("test-any")
test_that("returns a single value with shaped arrays", {
expect_equal(any(rray(c(TRUE, FALSE), c(2, 2))), rray(TRUE))
expect_equal(any(rray(c(FALSE, FALSE), c(2, 2))), rray(FALSE))
})
test_that("`na.rm` propagates", {
expect_equal(any(rray(c(NA, 0L)), na.rm = FALSE), rray(NA))
expect_equal(any(rray(c(NA, 0L)), na.rm = TRUE), rray(FALSE))
})
context("test-all")
test_that("returns a single value with shaped arrays", {
expect_equal(all(rray(c(TRUE, FALSE), c(2, 2))), rray(FALSE))
expect_equal(all(rray(c(TRUE, TRUE), c(2, 2))), rray(TRUE))
})
test_that("`na.rm` propagates", {
expect_equal(all(rray(c(NA, 1L)), na.rm = FALSE), rray(NA))
expect_equal(all(rray(c(NA, 1L)), na.rm = TRUE), rray(TRUE))
})
context("test-prod")
test_that("returns same values as base R", {
x <- rray(c(5, 6), c(2, 2))
expect_equal(prod(x), rray(prod(vec_data(x))))
expect_equal(prod(x, x), rray(prod(vec_data(x), vec_data(x))))
})
test_that("broadcasts input using vctrs", {
x <- rray(c(5, 6), c(2, 2))
expect_equal(prod(x, 5), prod(x, matrix(5, c(1, 2))))
})
test_that("`na.rm` propagates", {
expect_equal(prod(rray(c(NA, 1L)), na.rm = FALSE), rray(NA_real_))
expect_equal(prod(rray(c(NA, 1L)), na.rm = TRUE), rray(1))
})
context("test-sum")
test_that("returns same values as base R", {
x <- rray(c(5, 6), c(2, 2))
expect_equal(sum(x), rray(sum(vec_data(x))))
expect_equal(sum(x, x), rray(sum(vec_data(x), vec_data(x))))
})
test_that("broadcasts input using vctrs", {
x <- rray(c(5, 6), c(2, 2))
expect_equal(sum(x, 5), rray(sum(x, matrix(5, c(1, 2)))))
})
test_that("`na.rm` propagates", {
expect_equal(sum(rray(c(NA, 1L)), na.rm = FALSE), rray(NA_integer_))
expect_equal(sum(rray(c(NA, 1L)), na.rm = TRUE), rray(1L))
})
context("test-cummax")
test_that("vctrs dispatch works", {
x <- rray(5:1)
expect_equal(cummax(x), rray(cummax(vec_data(x))))
})
test_that("flattens 2D+ arrays", {
x <- rray(5:1, c(5, 1))
expect_equal(cummax(x), rray(rep(5L, 5)))
})
test_that("keeps names if x is 1D", {
x <- rray(5:1, dim_names = list(letters[1:5]))
expect_equal(rray_dim_names(cummax(x)), rray_dim_names(x))
})
context("test-cummin")
test_that("vctrs dispatch works", {
x <- rray(1:5)
expect_equal(cummin(x), rray(cummin(vec_data(x))))
})
test_that("flattens 2D+ arrays", {
x <- rray(1:5, c(5, 1))
expect_equal(cummin(x), rray(rep(1L, 5)))
})
test_that("keeps names if x is 1D", {
x <- rray(1:5, dim_names = list(letters[1:5]))
expect_equal(rray_dim_names(cummin(x)), rray_dim_names(x))
})
context("test-cumsum")
test_that("vctrs dispatch works", {
x <- rray(1:5)
expect_equal(cumsum(x), rray(cumsum(vec_data(x))))
})
test_that("flattens 2D+ arrays", {
x <- rray(1:5, c(5, 1))
expect_equal(cumsum(x), rray(cumsum(1:5)))
})
test_that("keeps names if x is 1D", {
x <- rray(1:5, dim_names = list(letters[1:5]))
expect_equal(rray_dim_names(cumsum(x)), rray_dim_names(x))
})
test_that("integer overflow throws a warning", {
x <- rray(c(2147483647L, 1L))
expect_warning(cumsum(x), "integer overflow")
})
context("test-cumprod")
test_that("vctrs dispatch works", {
x <- rray(1:5)
expect_equal(cumprod(x), rray(cumprod(vec_data(x))))
})
test_that("flattens 2D+ arrays", {
x <- rray(1:5, c(5, 1))
expect_equal(cumprod(x), rray(cumprod(1:5)))
})
test_that("keeps names if x is 1D", {
x <- rray(1:5, dim_names = list(letters[1:5]))
expect_equal(rray_dim_names(cumprod(x)), rray_dim_names(x))
})
test_that("a double is returned so no integer overflow occurs", {
x <- rray(c(2147483647L, 2L))
expect_equal(storage.mode(cumprod(x)), "double")
})
context("test-mean")
test_that("vctrs dispatch works", {
x <- rray(1:5)
expect_equal(mean(x), rray(mean(vec_data(x))))
})
test_that("flattens 2D+ arrays", {
x <- rray(1:5, c(5, 1))
expect_equal(mean(x), rray(mean(1:5)))
})
test_that("logicals become numerics", {
x <- rray(TRUE, c(5, 1))
expect_equal(mean(x), rray(1))
})
context("test-is-nan")
test_that("vctrs dispatch works", {
nms <- list(NULL, "c1")
x <- rray(c(1, NaN, 2), c(3, 1), dim_names = nms)
expect <- rray(c(FALSE, TRUE, FALSE), c(3, 1), dim_names = nms)
expect_equal(is.nan(x), expect)
})
context("test-is-finite")
test_that("vctrs dispatch works", {
nms <- list(NULL, "c1")
x <- rray(c(1, NaN, 2), c(3, 1), dim_names = nms)
expect <- rray(c(TRUE, FALSE, TRUE), c(3, 1), dim_names = nms)
expect_equal(is.finite(x), expect)
y <- rray(c(1, Inf, 2), c(3, 1), dim_names = nms)
expect_equal(is.finite(y), expect)
})
context("test-is-infinite")
test_that("vctrs dispatch works", {
nms <- list(NULL, "c1")
x <- rray(c(1, NaN, 2), c(3, 1), dim_names = nms)
expect <- rray(c(FALSE, FALSE, FALSE), c(3, 1), dim_names = nms)
expect_equal(is.infinite(x), expect)
y <- rray(c(1, Inf, 2), c(3, 1), dim_names = nms)
expect <- rray(c(FALSE, TRUE, FALSE), c(3, 1), dim_names = nms)
expect_equal(is.infinite(y), expect)
})
context("test-math-unary")
.fs <- c(
abs,
sign,
ceiling,
floor,
trunc,
round,
signif,
exp,
expm1,
log,
log2,
log10,
log1p,
sin,
cos,
tan,
asin,
acos,
atan,
sinpi,
cospi,
tanpi,
sinh,
cosh,
tanh,
asinh,
acosh,
atanh,
gamma,
lgamma,
digamma,
trigamma
)
.f_names <- c(
"abs",
"sign",
"ceiling",
"floor",
"trunc",
"round",
"signif",
"exp",
"expm1",
"log",
"log2",
"log10",
"log1p",
"sin",
"cos",
"tan",
"asin",
"acos",
"atan",
"sinpi",
"cospi",
"tanpi",
"sinh",
"cosh",
"tanh",
"asinh",
"acosh",
"atanh",
"gamma",
"lgamma",
"digamma",
"trigamma"
)
for (i in seq_along(.fs)) {
.f <- .fs[[i]]
.f_name <- .f_names[[i]]
test_that(glue::glue("vctrs dispatch works - {.f_name}"), {
expect_equal(.f(rray(1)), rray(.f(1)))
expect_equal(.f(rray(1L)), rray(.f(1L)))
})
}
context("test-unary-math-extra")
test_that("vctrs dispatch passes `base` through", {
expect_equal(log(rray(2), base = 2), rray(log(2, base = 2)))
})
test_that("vctrs dispatch passes `digits` through", {
expect_equal(round(rray(1)), rray(round(1)))
expect_equal(round(rray(1.5), digits = 0), rray(round(1.5, digits = 0)))
})
test_that("vctrs dispatch passes `digits` through", {
expect_equal(signif(rray(1.5), digits = 1), rray(signif(1.5, digits = 1)))
})
context("test-binary-math")
test_that(glue::glue("atan2() keeps class of `y` (first argument)"), {
expect_equal(atan2(rray(1), 2), rray(atan2(1, 2)))
expect_equal(atan2(1, rray(2)), atan2(1, 2))
})
|
plotCalibration <- function(x,
models,
times,
method="nne",
cens.method,
round=TRUE,
bandwidth=NULL,
q=10,
bars=FALSE,
hanging=FALSE,
names="quantiles",
pseudo=FALSE,
rug,
show.frequencies=FALSE,
plot=TRUE,
add=FALSE,
diag=!add,
legend=!add,
auc.in.legend,
brier.in.legend,
axes=!add,
xlim=c(0,1),
ylim=c(0,1),
xlab=ifelse(bars,"Risk groups","Predicted risk"),
ylab,
col,
lwd,
lty,
pch,
type,
percent=TRUE,
na.action=na.fail,
cex=1,
...){
if (x$response.type!="binary" && missing(cens.method)){
cens.method <- "local"
message("The default method for estimating calibration curves based on censored data has changed for riskRegression version 2019-9-8 or higher\nSet cens.method=\"jackknife\" to get the estimate using pseudo-values.\nHowever, note that the option \"jackknife\" is sensititve to violations of the assumption that the censoring is independent of both the event times and the covariates.\nSet cens.method=\"local\" to suppress this message.")
}
model=risk=event=status=NULL
if (missing(ylab)){
if (bars==TRUE){
ylab=""
} else{
if (x$cens.type=="rightCensored"){
ylab="Estimated actual risk"
} else{
ylab="Observed frequency"
}
}
}
if (missing(auc.in.legend))
auc.in.legend <- ("auc" %in% tolower(x$metrics))
if (missing(brier.in.legend))
brier.in.legend <- ("auc" %in% tolower(x$metrics))
if (missing(pseudo) & missing(rug))
if (x$cens.type=="rightCensored"){
showPseudo <- FALSE
showRug <- FALSE
} else{
showPseudo <- FALSE
showRug <- TRUE
}
else{
if (missing(pseudo) || pseudo[[1]]==FALSE) showPseudo <- FALSE else showPseudo <- TRUE
if (missing(rug) || rug[[1]]==FALSE) showRug <- FALSE else showRug <- TRUE
}
pframe <- x$Calibration$plotframe
if (is.null(pframe))
stop("Object has no information for calibration plot.\nYou should call the function \"riskRegression::Score\" with plots=\"calibration\".")
Rvar <- grep("^(ReSpOnSe|pseudovalue)$",names(pframe),value=TRUE)
if (!missing(models)){
fitted.models <- pframe[,unique(model)]
if (all(models%in%fitted.models)){
pframe <- pframe[model%in%models]
} else{
if (all(is.numeric(models)) && (max(models)<=length(fitted.models))){
models <- fitted.models[models]
pframe <- pframe[model%in%models]
}else{
stop(paste0("The requested models: ",
models,
"\ndo not all match the fitted models: ",
paste0(fitted.models,collapse=", ")))
}
}
}
data.table::setkey(pframe,model)
if (x$response.type!="binary"){
if (missing(times)){
tp <- max(pframe[["times"]])
if (length(unique(pframe$times))>1)
warning("Time point not specified, use max of the available times: ",tp)
} else{
tp <- times[[1]]
if (!(tp%in%unique(pframe$times)))
stop(paste0("Requested time ",times[[1]]," is not in object"))
}
pframe <- pframe[times==tp]
}else tp <- NULL
NF <- pframe[,length(unique(model))]
if (bars){
method="quantile"
if (!(NF==1)) stop(paste0("Barplots work only for one risk prediction model at a time. Provided are ",NF, "models."))
}
if (missing(lwd)) lwd <- rep(3,NF)
if (missing(col)) {
if (bars)
col <- c("grey90","grey30")
else{
cbbPalette <- c("
if (NF>length(cbbPalette))
col <- 1:NF
else col <- cbbPalette[1:NF]
}
}
if (missing(type)){
if (method=="quantile"){
type <- rep("b",length.out=NF)
} else{
type <- rep("l",length.out=NF)
}
}
if (missing(lty)) lty <- rep(1, length.out=NF)
if (missing(pch)) pch <- rep(1, length.out=NF)
if (length(lwd) < NF) lwd <- rep(lwd, length.out=NF)
if (length(type) < NF) type <- rep(type,length.out=NF)
if (length(lty) < NF) lty <- rep(lty,length.out=NF)
if (length(col) < NF) col <- rep(col,length.out=NF)
if (length(pch) < NF) pch <- rep(pch,length.out=NF)
modelnames <- pframe[,unique(model)]
axis1.DefaultArgs <- list(side=1,las=1,at=seq(0,xlim[2],xlim[2]/4))
axis2.DefaultArgs <- list(side=2,las=2,at=seq(0,ylim[2],ylim[2]/4),mgp=c(4,1,0))
if (is.character(legend[[1]])|| legend[[1]]==TRUE||auc.in.legend==TRUE|| brier.in.legend==TRUE){
legend.data <- getLegendData(object=x,
models=models,
times=tp,
auc.in.legend=auc.in.legend,
brier.in.legend=brier.in.legend,
drop.null.model=TRUE)
if (is.character(legend))
legend.text <- legend
else{
legend.text <- unlist(legend.data[,1])
}
nrows.legend <- NROW(legend.data)
if (nrows.legend==1){
legend.lwd <- NA
} else{
legend.lwd <- lwd
}
legend.DefaultArgs <- list(legend=legend.text,lwd=legend.lwd,col=col,ncol=1,lty=lty,cex=cex,bty="n",y.intersp=1,x="topleft",title="")
if (NCOL(legend.data)>1){
addtable2plot.DefaultArgs <- list(yjust=1.18,
cex=cex,
table=legend.data[,-1,drop=FALSE])
}else{
addtable2plot.DefaultArgs <- NULL
}
}else{
legend.DefaultArgs <- NULL
addtable2plot.DefaultArgs <- NULL
}
if (bars){
legend.DefaultArgs <- list(legend=modelnames,col=col,cex=cex,bty="n",x="topleft")
names.DefaultArgs <- list(cex=.7*par()$cex,y=c(-abs(diff(ylim))/15,-abs(diff(ylim))/25))
frequencies.DefaultArgs <- list(cex=.7*par()$cex,percent=FALSE,offset=0)
} else{
if (length(modelnames)<=1 && sum(auc.in.legend+brier.in.legend)==0){
legend=FALSE
}
}
if(bars){
if (x$cens.type=="rightCensored")
legend.DefaultArgs$legend <- c("Predicted risk",
"Estimated actual risk")
else
legend.DefaultArgs$legend <- c("Predicted risk",
"Observed frequency")
}
lines.DefaultArgs <- list(pch=pch,type=type,cex=cex,lwd=lwd,col=col,lty=lty)
abline.DefaultArgs <- list(lwd=1,col="red")
if (missing(ylim)){
if (showPseudo[1] && !bars[1]){
ylim <- range(pframe[[Rvar]])
}
else
ylim <- c(0,1)
}
if (missing(xlim)){
xlim <- c(0,1)
}
plot.DefaultArgs <- list(x=0,
y=0,
type = "n",
ylim = ylim,
xlim = xlim,
ylab=ylab,
xlab=xlab)
rug.DefaultArgs <- list(col=col,lwd=lwd,side=1,ticksize=0.03)
pseudo.DefaultArgs <- list(col=col,cex=cex,density=55)
barplot.DefaultArgs <- list(ylim = ylim,
col=col,
axes=FALSE,
ylab=ylab,
xlab=xlab,
beside=TRUE,
legend.text=NULL,
cex.axis=cex,
cex.lab=par()$cex.lab,
cex.names=cex)
if (bars){
control <- prodlim::SmartControl(call= list(...),
keys=c("barplot","legend","addtable2plot","axis2","abline","names","frequencies"),
ignore=NULL,
ignore.case=TRUE,
defaults=list("barplot"=barplot.DefaultArgs,
"addtable2plot"=addtable2plot.DefaultArgs,
"abline"=abline.DefaultArgs,
"legend"=legend.DefaultArgs,
"names"=names.DefaultArgs,
"frequencies"=frequencies.DefaultArgs,
"axis2"=axis2.DefaultArgs),
forced=list("abline"=list(h=0)),
verbose=TRUE)
}else{
control <- prodlim::SmartControl(call= list(...),
keys=c("plot","rug","pseudo","lines","legend","addtable2plot","axis1","axis2"),
ignore=NULL,
ignore.case=TRUE,
defaults=list("plot"=plot.DefaultArgs,"pseudo"=pseudo.DefaultArgs,"rug"=rug.DefaultArgs,
"addtable2plot"=addtable2plot.DefaultArgs,
"lines"=lines.DefaultArgs,
"legend"=legend.DefaultArgs,
"axis1"=axis1.DefaultArgs,
"axis2"=axis2.DefaultArgs),
forced=list("plot"=list(axes=FALSE),
"axis1"=list(side=1)),
verbose=TRUE)
}
method <- match.arg(method,c("quantile","nne"))
getXY <- function(f){
risk=NULL
p <- pframe[model==f,risk]
jackF <- pframe[model==f][[Rvar]]
switch(method,
"quantile"={
if (length(q)==1)
groups <- quantile(p,seq(0,1,1/q))
else{
groups <- q
}
xgroups <- (groups[-(length(groups))]+groups[-1])/2
pcut <- cut(p,groups,include.lowest=TRUE)
if (x$response.type=="binary"){
plotFrame=data.frame(Pred=tapply(p,pcut,mean),
Obs=pmin(1,pmax(0,tapply(jackF,pcut,mean))))
}else{
if(x$response.type=="survival"){
censcode <- pframe[status==0,status[1]]
qfit <- prodlim::prodlim(prodlim::Hist(time,status,cens.code=censcode)~pcut,data=pframe)
plotFrame=data.frame(Pred=tapply(p,pcut,mean),
Obs=predict(qfit,
newdata=data.frame(pcut=levels(pcut)),
cause=1,
mode="matrix",
times=tp,type="cuminc"))
}else{
censcode <- pframe[status==0,event[1]]
qfit <- prodlim::prodlim(prodlim::Hist(time,event,cens.code=censcode)~pcut,data=pframe)
n.cause <- match(x$cause,x$states)
plotFrame=data.frame(Pred=tapply(p,pcut,mean),
Obs=predict(qfit,
newdata=data.frame(pcut=levels(pcut)),
cause=n.cause,
mode="matrix",
times=tp,type="cuminc"))
}
}
attr(plotFrame,"quantiles") <- groups
plotFrame
},
"nne"={
if (round==TRUE){
if (!is.null(bandwidth) && bandwidth[1]>=1){
} else{
p <- round(p,2)
}
}
p <- na.omit(p)
if (no <- length(attr(p,"na.action")))
warning("calPlot: removed ",no," missing values in risk prediction.",call.=FALSE,immediate.=TRUE)
if (is.null(bandwidth)){
if (length(unique(p))==1)
bw <- 1
else
bw <- prodlim::neighborhood(p)$bandwidth
} else{
bw <- bandwidth
}
if (bw>=1){
plotFrame <- data.frame(Pred=mean(p),Obs=mean(jackF))
} else{
if (x$response.type=="binary"){
nbh <- prodlim::meanNeighbors(x=p,y=jackF,bandwidth=bw)
plotFrame <- data.frame(Pred=nbh$uniqueX,Obs=nbh$averageY)
}else{
if (cens.method=="local"){
if(x$response.type=="survival"){
censcode <- pframe[status==0,status[1]]
pfit <- prodlim::prodlim(prodlim::Hist(time,status,cens.code=censcode)~p,data=pframe,bandwidth=bandwidth)
plotFrame=data.frame(Pred=sort(unique(p)),
Obs=predict(pfit,
newdata=data.frame(p=sort(unique(p))),
cause=1,
mode="matrix",
times=tp,type="cuminc"))
}else{
censcode <- pframe[status==0,event[1]]
pfit <- prodlim::prodlim(prodlim::Hist(time,event,cens.code=censcode)~p,data=pframe,bandwidth=bandwidth)
n.cause <- match(x$cause,x$states)
plotFrame=data.frame(Pred=sort(unique(p)),
Obs=predict(pfit,
newdata=data.frame(p=sort(unique(p))),
cause=n.cause,
mode="matrix",
times=tp,type="cuminc"))
}
} else{
nbh <- prodlim::meanNeighbors(x=p,y=jackF,bandwidth=bw)
plotFrame <- data.frame(Pred=nbh$uniqueX,Obs=nbh$averageY)
}
}
}
attr(plotFrame,"bandwidth") <- bw
plotFrame
})
}
plotFrames <- lapply(modelnames,function(f){getXY(f)})
names(plotFrames) <- modelnames
if (bars){
if ((is.logical(names[[1]]) && names[[1]]==TRUE)|| names[[1]] %in% c("quantiles.labels","quantiles")){
qq <- attr(plotFrames[[1]],"quantiles")
if (names[1]=="quantiles.labels"){
pp <- seq(0,1,1/q)
names <- paste0("(",
sprintf("%1.0f",100*pp[-length(pp)]),",",
sprintf("%1.0f",100*pp[-1]),
")\n",
sprintf("%1.1f",100*qq[-length(qq)])," - ",
sprintf("%1.1f",100*qq[-1]))
}
else
names <- paste0(sprintf("%1.1f",100*qq[-length(qq)])," - ",
sprintf("%1.1f",100*qq[-1]))
}
}
out <- list(plotFrames=plotFrames,
times=tp,
control=control,
legend=legend,
bars=bars,
diag=diag,
add=add,
names=names,
method=method,
axes=axes,
percent=percent,
hanging=hanging,
show.frequencies=show.frequencies,
col=col,
ylim=ylim,
xlim=xlim,
ylab=ylab,
xlab=xlab,
lwd=lwd,
lty=lty,
pch=pch,
lty=lty,
type=type,
NF=NF)
if (method=="nne")
out <- c(out,list(bandwidth=sapply(plotFrames,
function(x)attr(x,"bandwidth"))))
if (plot){
if (out$add[1]==FALSE && !out$bars[1]){
do.call("plot",control$plot)
}
if (out$diag[1] && !out$bars[1]){
segments(x0=0,y0=0,x1=1,y1=1,col="gray77",lwd=2,xpd=FALSE)
}
if (out$diag[1] && !out$bars[1]){
segments(x0=0,y0=0,x1=1,y1=1,col="gray77",lwd=2,xpd=FALSE)
}
if (out$bars[1]) {
stopifnot(NF==1)
pf <- na.omit(plotFrames[[1]])
Pred <- pf$Pred
Obs <- pf$Obs
if (is.character(legend[[1]]) || legend[[1]]==FALSE){
control$barplot$legend.text <- NULL
}else{
if (is.null(control$barplot$legend.text)){
control$barplot$legend.text <- control$legend$legend
}
control$barplot$args.legend <- control$legend
}
if (is.null(control$barplot$space))
control$barplot$space <- rep(c(1,0),length(Pred))
PredObs <- c(rbind(Pred,Obs))
control$barplot$height <- PredObs
if (out$hanging){
control$barplot$offset <- c(rbind(0,Pred-Obs))
minval <- min(Pred-Obs)
if (minval<0)
negY.offset <- 0.05+seq(0,1,0.05)[prodlim::sindex(jump.times=seq(0,1,0.05),eval.times=abs(minval))]
else
negY.offset <- 0
control$barplot$ylim[1] <- min(control$barplot$ylim[1],-negY.offset)
control$names$y <- control$names$y-negY.offset
}
coord <- do.call("barplot",control$barplot)
if (length(out$names)>0 && (out$names[[1]]!=FALSE) && is.character(out$names)){
if (out$names[[1]]!=FALSE && length(out$names)==(length(coord)/2)){
mids <- rowMeans(matrix(coord,ncol=2,byrow=TRUE))
text(x=mids,
y=control$names$y,
out$names,
xpd=NA,
cex=control$names$cex)
}
}
if (out$hanging){
do.call("abline",control$abline)
}
if (out$show.frequencies){
if(out$hanging){
text(x=coord,
cex=control$frequencies$cex,
pos=3,
y=(as.vector(rbind(Pred,Pred)) +rep(control$frequencies$offset,times=length(as.vector(coord))/2)),
paste(round(100*c(rbind(Pred,Obs)),0),ifelse(control$frequencies$percent,"%",""),sep=""),xpd=NA)
}else{
text(coord,
pos=3,
c(rbind(Pred,Obs))+control$frequencies$offset,
cex=control$frequencies$cex,
paste(round(100*c(rbind(Pred,Obs)),0),ifelse(control$frequencies$percent,"%",""),sep=""),xpd=NA)
}
}
coords <- list(xcoord=coord[,1],ycoord=PredObs,offset=control$barplot$offset)
out <- c(out,coords)
}else{
nix <- lapply(1:NF,function(f){
pf <- out$plotFrames[[f]]
pf <- na.omit(pf)
if (showRug){
do.call(graphics::rug,c(list(x=pf$Pred,col=control$rug$col[f],lwd=control$rug$lwd[f]*0.5)))
}
if (showPseudo) {
if (!is.null(control$pseudo$density) & control$pseudo$density>0){
control$pseudo$col <- prodlim::dimColor(control$pseudo$col[f],
control$pseudo$density)
}
if ((gotcha <- match("density",names(control$pseudo),nomatch=0))>0){
control$pseudo <- control$pseudo[-gotcha]
}
do.call(points, c(list(x=pframe[model==modelnames[f]][,risk],y=pframe[model==modelnames[f]][[Rvar]]),control$pseudo))
}
lineF <- lapply(control$lines,function(x)x[[min(f,length(x))]])
lineF$x <- pf$Pred
lineF$y <- pf$Obs
do.call("lines",lineF)
})
if (is.character(out$legend[[1]]) || out$legend[[1]]==TRUE){
legend.coords <- do.call("legend",control$legend)
if (!is.null(addtable2plot.DefaultArgs)){
if (is.null(control$addtable2plot[["x"]]))
control$addtable2plot[["x"]] <- legend.coords$rect$left+legend.coords$rect$w
if (is.null(control$addtable2plot[["y"]]))
control$addtable2plot[["y"]] <- legend.coords$rect$top-legend.coords$rect$h
do.call(plotrix::addtable2plot,control$addtable2plot)
}
}
}
if (out$axes){
if (out$percent){
if (is.null(control$axis1$labels)){
control$axis1$labels <- paste(100*control$axis1$at,"%")
}
if (is.null(control$axis2$labels)){
control$axis2$labels <- paste(100*control$axis2$at,"%")
}
}
if (!out$bars)
do.call("axis",control$axis1)
do.call("axis",control$axis2)
}
}
class(out) <- "calibrationPlot"
invisible(out)
}
|
zdifference_ordinal<-function(x,ref,w=NULL,na.rm=TRUE,r=10){
if(is.null(w)){
w<-rep(1,length(x))
}
if(na.rm==TRUE){
exclna<-which(is.na(x)==TRUE |is.na(w)==TRUE | is.na(ref)==TRUE)
if(length(exclna)!=0){
x<-x[-exclna]
w<-w[-exclna]
ref<-ref[-exclna]
}
}
else{
if(any(is.na(x)==TRUE |is.na(w)==TRUE | is.na(ref)==TRUE))
warning("NA in the data and NAs not removed")
}
if(any(w<0)){
stop("negative weights are not allowed")
}
if(length(unique(na.omit(ref)))!= 2){
stop("reference variable is not binomial")
}
if(class(x)=="integer"){
x<-as.numeric(as.character(x))
}
if(class(x)=="factor"){
x<-as.numeric(x)
}
x0<-x[which(ref==(sort(unique(ref)))[1])]
x1<-x[-which(ref==(sort(unique(ref)))[1])]
w0<-w[which(ref==(sort(unique(ref)))[1])]/sum(w[which(ref==sort(unique(ref))[1])],na.rm=na.rm)
w1<-w[which(ref==sort((unique(ref)))[2])]/sum(w[which(ref==sort(unique(ref))[2])],na.rm=na.rm)
x<-c(x0,x1)
w<-c(w0,w1)
d<-length(which(ref==sort(unique(ref))[1]))
ran<-rank(x,ties.method="average")
t<-unlist(lapply(1:length(unique(ran)),function(i) length(which(ran==unique(ran)[i]))))
if(length(unique(ran))==length(x)){
nenner<-sum(w0^2+w1^2)*((length(x)^2-1)/12+(length(x)+1)/12)
}
else{
rs<-unique(ran)
N<-length(ran)
cvv<-sum(rs^2*t*(t-1))/(N*(N-1))+(sum(rs*t*sum(rs*t)-rs^2*t^2))/(N*(N-1))-((N+1)/2)^2
v<-c(-sum(t^3-t)/12/length(ran)+(length(ran)^2-1)/12)
nenner<-sum(w0^2)*v+(-sum(w0^2))*cvv+sum(w1^2)*v +(-sum(w1^2))*cvv
}
return(round((sum(w0*ran[1:d])-sum(w1*ran[-c(1:d)]))/sqrt(nenner),r))
}
|
NULL
NULL
.onAttach <- function(libname, pkgname) {
packageStartupMessage("Notice:
Formerly the gendistance() function scaled the Mahalanobis distances into large
integers, as required by the nonbimatch() function. Starting in version 1.5.0,
gendistance() will return unscaled distances. This facilitates comparison to an
appropriate F distribution for multivariate normal data. Any required scaling
will happen invisibly within nonbimatch(). This notice will be removed in a
future version of nbpMatching.")
}
|
KIR <- function(level){
x <- NULL
if(level==1){
x1 <- github.cssegisanddata.covid19(country = "Kiribati")
x2 <- ourworldindata.org(id = "KIR")
x <- full_join(x1, x2, by = "date")
}
return(x)
}
|
extractMass <- function(mass,F,g=NULL,S=NULL,method,crit=NULL,Kmat=NULL,trace=NULL,
D=NULL,W=NULL,J=NULL,param=NULL){
n<-nrow(mass)
c<-ncol(F)
if(any(F[1,]==1)){
F<-rbind(rep(0,c),F)
mass<-cbind(rep(0,n),mass)
}
f<-nrow(F)
card<-rowSums(F)
conf<-mass[,1]
C<- 1/(1-conf)
mass.n<- C*mass[,2:f]
pl<- mass%*% F
pl.n<- C*pl
p <-pl/rowSums(pl)
bel<- mass[,card==1]
bel.n<-C*bel
y.pl<-max.col(pl)
y.bel<-max.col(bel)
Y<-F[max.col(mass),]
Ynd<-matrix(0,n,c)
for (i in 1:n){
ii<-which(pl[i,]>= bel[i,y.bel[i]])
Ynd[i,ii]<-1
}
P<-F/card
P[1,]<- rep(0,c)
betp<- mass %*% P
betp.n<- C* betp
lower.approx<-vector(mode='list',length=c)
upper.approx<-vector(mode='list',length=c)
lower.approx.nd<-vector(mode='list',length=c)
upper.approx.nd<-vector(mode='list',length=c)
nclus<-rowSums(Y)
outlier<-which(nclus==0)
nclus.nd<-rowSums(Ynd)
for(i in 1:c){
upper.approx[[i]]<- which(Y[,i]==1)
lower.approx[[i]]<- which((Y[,i]==1) & (nclus==1))
upper.approx.nd[[i]]<- which(Ynd[,i]==1)
lower.approx.nd[[i]]<- which((Ynd[,i]==1) & (nclus.nd==1))
}
card<-c(c,card[2:f])
Card<-matrix(card,n,f,byrow=TRUE)
N <- sum(log(Card)*mass)/log(c)/n
clus<-list(conf=conf,F=F,mass=mass,mass.n=mass.n,pl=pl,pl.n=pl.n,bel=bel,bel.n=bel.n,y.pl=y.pl,
y.bel=y.bel,Y=Y,betp=betp,betp.n=betp.n,p=p,upper.approx=upper.approx,
lower.approx=lower.approx,Ynd=Ynd,upper.approx.nd=upper.approx.nd,
lower.approx.nd=lower.approx.nd,N=N,outlier=outlier,g=g,S=S,
crit=crit,Kmat=Kmat,trace=trace,D=D,method=method,W=W,J=J,param=param)
class(clus)<-"credpart"
return(clus)
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.