code
stringlengths
1
13.8M
anova.ppm <- local({ do.gripe <- function(...) warning(paste(...), call.=FALSE) dont.gripe <- function(...) NULL nquad <- function(x) { if(is.quad(x)) n.quad(x) else 0 } fmlaString <- function(z) { paste(as.expression(formula(z))) } interString <- function(z) { as.interact(z)$creator } anova.ppm <- function(object, ..., test=NULL, adjust=TRUE, warn=TRUE, fine=FALSE) { gripe <- if(warn) do.gripe else dont.gripe if(!is.null(test)) { test <- match.arg(test, c("Chisq", "LRT", "Rao", "score", "F", "Cp")) if(test == "score") test <- "Rao" if(!(test %in% c("Chisq", "LRT", "Rao"))) stop("test=", dQuote(test), "is not yet implemented") } argh <- list(...) if("override" %in% names(argh)) { gripe("Argument 'override' is superseded and was ignored") argh <- argh[-which(names(argh) == "override")] } objex <- append(list(object), argh) if(!all(sapply(objex, is.ppm))) stop(paste("Arguments must all be", sQuote("ppm"), "objects")) pois <- all(sapply(objex, is.poisson.ppm)) gibbs <- !pois newton <- any(sapply(objex, inherits, what="ippm")) if(gibbs && !is.null(test) && test == "Rao") stop("Score test is only implemented for Poisson models", call.=FALSE) expandedfrom1 <- FALSE if(length(objex) == 1 && (gibbs || newton)) { Terms <- drop.scope(object) if((nT <- length(Terms)) > 0) { objex <- vector(mode="list", length=nT+1) for(n in 1L:nT) { fmla <- paste(". ~ . - ", paste(Terms[n:nT], collapse=" - ")) fmla <- as.formula(fmla) objex[[n]] <- update(object, fmla) } objex[[nT+1L]] <- object expandedfrom1 <- TRUE } } fitmethod <- unique(sapply(objex, getElement, name="method")) if(length(fitmethod) > 1) stop(paste("Models were fitted by different methods", commasep(sQuote(fitmethod)), "- comparison is not possible")) if(!(fitmethod %in% c("mpl", "logi"))) stop(paste("Not implemented for models fitted by method=", sQuote(fitmethod))) logi <- (fitmethod == "logi") refitargs <- list() fitz <- NULL if(length(objex) > 1) { datas <- lapply(objex, data.ppm) samedata <- all(sapply(datas[-1L], identical, y=datas[[1L]])) if(!samedata) stop("Models were fitted to different datasets") quads <- lapply(objex, quad.ppm) samequad <- all(sapply(quads[-1L], identical, y=quads[[1L]])) if(!samequad) { gripe("Models were re-fitted using a common quadrature scheme") sizes <- sapply(quads, nquad) imax <- which.max(sizes) bigQ <- quads[[imax]] refitargs$Q <- bigQ } corrxn <- unique(sapply(objex, getElement, name="correction")) if(length(corrxn) > 1) stop(paste("Models were fitting using different edge corrections", commasep(sQuote(corrxn)))) if(corrxn == "border") { rbord <- unique(sapply(objex, getElement, name="rbord")) if(length(rbord) > 1) { gripe("Models were re-fitted using a common value of 'rbord'") refitargs$rbord <- max(rbord) } } fitz <- lapply(objex, getglmfit) trivial <- sapply(fitz, is.null) if(any(trivial)) refitargs$forcefit <- TRUE isgam <- sapply(fitz, inherits, what="gam") isglm <- sapply(fitz, inherits, what="glm") usegam <- any(isgam) if(usegam && any(isglm)) { gripe("Models were re-fitted with use.gam=TRUE") refitargs$use.gam <- TRUE refitargs$forcefit <- TRUE } if(length(refitargs) > 0) { objex <- do.call(lapply, append(list(X=objex, FUN=update), refitargs)) fitz <- lapply(objex, getglmfit) } } subz <- lapply(objex, getglmsubset) if(length(unique(subz)) > 1) { subsub <- Reduce("&", subz) fitz <- lapply(fitz, refittosubset, sub=subsub) gripe("Models were re-fitted after discarding quadrature points", "that were illegal under some of the models") } if(newton) { nfree <- sapply(lapply(objex, logLik), attr, which="df") ncanonical <- lengths(lapply(objex, coef)) nextra <- nfree - ncanonical if(is.null(fitz)) fitz <- lapply(objex, getglmfit) for(i in seq_along(fitz)) if(nextra[i] != 0) fitz[[i]]$df.residual <- fitz[[i]]$df.residual - nextra[i] } if(is.null(fitz)) fitz <- lapply(objex, getglmfit) result <- do.call(anova, append(fitz, list(test=test, dispersion=1))) result[, "Resid. Dev"] <- NULL if("Resid. Df" %in% names(result)) { obj1 <- objex[[1L]] ss <- getglmsubset(obj1) nq <- if(!is.null(ss)) sum(ss) else n.quad(quad.ppm(obj1)) result[, "Resid. Df"] <- nq - result[, "Resid. Df"] names(result)[match("Resid. Df", names(result))] <- "Npar" } if(!is.null(h <- attr(result, "heading"))) { h <- gsub(".mpl.Y", "", h) h <- gsub(".logi.Y", "", h) h <- gsub("Model: quasi, link: log", "", h) h <- gsub("Model: binomial, link: logit", "", h) h <- gsub("Response: ", "", h) for(i in 1L:5L) h <- gsub("\n\n", "\n", h) if(length(objex) > 1 && length(h) > 1) { fmlae <- sapply(objex, fmlaString) intrx <- sapply(objex, interString) h[2L] <- paste("Model", paste0(1L:length(objex), ":"), fmlae, "\t", intrx, collapse="\n") } if(expandedfrom1) h <- c(h[1L], "Terms added sequentially (first to last)\n", h[-1L]) if(!waxlyrical('space')) h <- gsub("\n$", "", h) attr(result, "heading") <- h } if(adjust && gibbs) { fitz <- lapply(objex, getglmfit) usegam <- any(sapply(fitz, inherits, what="gam")) if(usegam) { gripe("Deviance adjustment is not available for gam fits;", "unadjusted composite deviance calculated.") } else { if(warn) warn.once("anovaAdjust", "anova.ppm now computes the *adjusted* deviances", "when the models are not Poisson processes.") nmodels <- length(objex) if(nmodels > 1) { cfac <- rep(1, nmodels) for(i in 2:nmodels) { a <- objex[[i-1]] b <- objex[[i]] df <- length(coef(a)) - length(coef(b)) if(df > 0) { ibig <- i-1 ismal <- i } else { ibig <- i ismal <- i-1 df <- -df } bigger <- objex[[ibig]] smaller <- objex[[ismal]] if(df == 0) { gripe("Models", i-1, "and", i, "have the same dimension") } else { bignames <- names(coef(bigger)) smallnames <- names(coef(smaller)) injection <- match(smallnames, bignames) if(any(uhoh <- is.na(injection))) { gripe("Unable to match", ngettext(sum(uhoh), "coefficient", "coefficients"), commasep(sQuote(smallnames[uhoh])), "of model", ismal, "to coefficients in model", ibig) } else { thetaDot <- 0 * coef(bigger) thetaDot[injection] <- coef(smaller) JH <- vcov(bigger, what="internals", new.coef=thetaDot, fine=fine) J <- if(!logi) JH$Sigma else (JH$Sigma1log+JH$Sigma2log) H <- if(!logi) JH$A1 else JH$Slog G <- H%*%solve(J)%*%H if(df == 1) { cfac[i] <- H[-injection,-injection]/G[-injection,-injection] } else { Res <- residuals(bigger, type="score", new.coef=thetaDot, drop=TRUE) U <- integral.msr(Res) Uo <- U[-injection] Uo <- matrix(Uo, ncol=1) Hinv <- solve(H) Ginv <- solve(G) Hoo <- Hinv[-injection,-injection, drop=FALSE] Goo <- Ginv[-injection,-injection, drop=FALSE] HooUo <- Hoo %*% Uo ScoreStat <- t(HooUo) %*% solve(Goo) %*% HooUo cfac[i] <- ScoreStat/(t(HooUo) %*% Uo) } } } } oldresult <- result result$Deviance <- AdjDev <- result$Deviance * cfac cn <- colnames(result) colnames(result)[cn == "Deviance"] <- "AdjDeviance" if("Pr(>Chi)" %in% colnames(result)) result[["Pr(>Chi)"]] <- c(NA, pchisq(abs(AdjDev[-1L]), df=abs(result$Df[-1L]), lower.tail=FALSE)) class(result) <- class(oldresult) attr(result, "heading") <- attr(oldresult, "heading") } } if(newton) { cfa <- lapply(lapply(objex, getElement, name="covfunargs"), names) cfa <- unique(unlist(cfa)) action <- if(adjust && gibbs) "Adjustment to composite likelihood" else if(test == "Rao") "Score test calculation" else NULL if(!is.null(action)) gripe(action, "does not account for", "irregular trend parameters (covfunargs)", commasep(sQuote(cfa))) } } return(result) } refittosubset <- function(fut, sub) { etf <- environment(terms(fut)) gd <- get("glmdata", envir=etf) gd$.mpl.SUBSET <- sub assign("glmdata", gd, envir=etf) up <- update(fut, evaluate=FALSE) eval(up, envir=etf) } anova.ppm })
library(logmult) data(occupationalStatus) occupationalStatus[5,]<-colSums(occupationalStatus[5:6,]) occupationalStatus[,5]<-rowSums(occupationalStatus[,5:6]) occupationalStatus <- occupationalStatus[-6,-6] model <- rc(occupationalStatus, diagonal=TRUE, symmetric=TRUE, weighting="none", start=NA) stopifnot(round(model$assoc$phi[1,1], d=3) == 6.10) stopifnot(isTRUE(all.equal(round(c(model$assoc$row), d=3), c(0.532, 0.438, 0.206, -0.031, -0.216, -0.426, -0.503)))) model <- rc(occupationalStatus, diagonal=TRUE, symmetric=TRUE, weighting="uniform", start=NA) stopifnot(round(model$assoc$phi[1,1], d=3) == 0.871) stopifnot(isTRUE(all.equal(round(c(model$assoc$row), d=3), c(1.409, 1.159, 0.544, -0.082, -0.571, -1.127, -1.332))))
bcontSurvG_extended <- function(params, respvec, VC, ps, AT = FALSE){ p1 <- p2 <- pdf1 <- pdf2 <- c.copula.be2 <- c.copula.be1 <- c.copula2.be1be2 <- NA monP <- monP1 <- k1 <- k2 <- 0; Veq1 <- Veq2 <- list() monP2 <- matrix(0, length(params),length(params)) rotConst <- 1 params1 <- params[1:VC$X1.d2] params2 <- params[(VC$X1.d2 + 1):(VC$X1.d2 + VC$X2.d2)] params1[VC$mono.sm.pos1] <- exp( params1[VC$mono.sm.pos1] ) params2[VC$mono.sm.pos2] <- exp( params2[VC$mono.sm.pos2] ) eta1 <- VC$X1%*%params1 eta2 <- VC$X2%*%params2 eta1.2 <- VC$X1.2%*%params1 eta2.2 <- VC$X2.2%*%params2 etad <- etas1 <- etas2 <- l.ln <- NULL Xd1P <- VC$Xd1%*%params1 Xd2P <- VC$Xd2%*%params2 etad <- etas1 <- etas2 <- l.ln <- NULL if( is.null(VC$X3) ){ X3 <- matrix(1, VC$n, 1) teta.st <- etad <- params[(VC$X1.d2 + VC$X2.d2 + 1)] } if( !is.null(VC$X3) ){ X3 <- VC$X3 teta.st <- etad <- X3%*%params[(VC$X1.d2 + VC$X2.d2 + 1):(VC$X1.d2 + VC$X2.d2 + VC$X3.d2)] } indNeq1 <- as.numeric(Xd1P < 0) indNeq2 <- as.numeric(Xd2P < 0) Xd1P <- ifelse(Xd1P < VC$min.dn, VC$min.dn, Xd1P ) Xd2P <- ifelse(Xd2P < VC$min.dn, VC$min.dn, Xd2P ) resT <- teta.tr(VC, teta.st) teta.st1 <- teta.st2 <- teta.st <- resT$teta.st teta1 <- teta2 <- teta <- resT$teta Cop1 <- Cop2 <- VC$BivD nC1 <- nC2 <- VC$nC teta.ind1 <- as.logical(c(1,0,round(runif(VC$n-2))) ) teta.ind2 <- teta.ind1 == FALSE if(!(VC$BivD %in% VC$BivD2) && length(teta.st) > 1){ teta.st1 <- teta.st[teta.ind1] teta.st2 <- teta.st[teta.ind2] teta1 <- teta[teta.ind1] teta2 <- teta[teta.ind2] } if(VC$BivD %in% VC$BivD2){ if(VC$BivD %in% VC$BivD2[c(1:4,13:16)]) teta.ind1 <- ifelse(VC$my.env$signind*teta > exp(VC$zerov), TRUE, FALSE) if(VC$BivD %in% VC$BivD2[5:12]) teta.ind1 <- ifelse(VC$my.env$signind*teta > exp(VC$zerov) + 1, TRUE, FALSE) teta.ind2 <- teta.ind1 == FALSE VC$my.env$signind <- ifelse(teta.ind1 == TRUE, 1, -1) teta1 <- teta[teta.ind1] teta2 <- -teta[teta.ind2] teta.st1 <- teta.st[teta.ind1] teta.st2 <- teta.st[teta.ind2] if(length(teta) == 1) teta.ind2 <- teta.ind1 <- rep(TRUE, VC$n) Cop1Cop2R <- Cop1Cop2(VC$BivD) Cop1 <- Cop1Cop2R$Cop1 Cop2 <- Cop1Cop2R$Cop2 nC1 <- VC$ct[which(VC$ct[,1] == Cop1),2] nC2 <- VC$ct[which(VC$ct[,1] == Cop2),2] } pd1 <- probmS(eta1, VC$margins[1], min.dn = VC$min.dn, min.pr = VC$min.pr, max.pr = VC$max.pr) pd2 <- probmS(eta2, VC$margins[2], min.dn = VC$min.dn, min.pr = VC$min.pr, max.pr = VC$max.pr) pd1.2 <- probmS(eta1.2, VC$margins[1], min.dn = VC$min.dn, min.pr = VC$min.pr, max.pr = VC$max.pr) pd2.2 <- probmS(eta2.2, VC$margins[2], min.dn = VC$min.dn, min.pr = VC$min.pr, max.pr = VC$max.pr) p1 <- pd1$pr p2 <- pd2$pr p1.2 <- pd1.2$pr p2.2 <- pd2.2$pr dS1eta1 <- pd1$dS dS2eta2 <- pd2$dS dS1eta1.2 <- pd1.2$dS dS2eta2.2 <- pd2.2$dS d2S1eta1 <- pd1$d2S d2S2eta2 <- pd2$d2S d2S1eta1.2 <- pd1.2$d2S d2S2eta2.2 <- pd2.2$d2S d3S1eta1 <- pd1$d3S d3S2eta2 <- pd2$d3S d3S1eta1.2 <- pd1.2$d3S d3S2eta2.2 <- pd2.2$d3S if( length(teta1) != 0) dH1 <- copgHs(p1[teta.ind1], p2[teta.ind1], eta1=NULL, eta2=NULL, teta1, teta.st1, Cop1, VC$dof, min.dn = VC$min.dn, min.pr = VC$min.pr, max.pr = VC$max.pr) if( length(teta2) != 0) dH2 <- copgHs(p1[teta.ind2], p2[teta.ind2], eta1=NULL, eta2=NULL, teta2, teta.st2, Cop2, VC$dof, min.dn = VC$min.dn, min.pr = VC$min.pr, max.pr = VC$max.pr) if( length(teta1) != 0) dH1.2 <- copgHs(p1.2[teta.ind1], p2.2[teta.ind1], eta1=NULL, eta2=NULL, teta1, teta.st1, Cop1, VC$dof, min.dn = VC$min.dn, min.pr = VC$min.pr, max.pr = VC$max.pr) if( length(teta2) != 0) dH2.2 <- copgHs(p1.2[teta.ind2], p2.2[teta.ind2], eta1=NULL, eta2=NULL, teta2, teta.st2, Cop2, VC$dof, min.dn = VC$min.dn, min.pr = VC$min.pr, max.pr = VC$max.pr) if( length(teta1) != 0) dH1.mix1 <- copgHs(p1[teta.ind1], p2.2[teta.ind1], eta1=NULL, eta2=NULL, teta1, teta.st1, Cop1, VC$dof, min.dn = VC$min.dn, min.pr = VC$min.pr, max.pr = VC$max.pr) if( length(teta2) != 0) dH2.mix1 <- copgHs(p1[teta.ind2], p2.2[teta.ind2], eta1=NULL, eta2=NULL, teta2, teta.st2, Cop2, VC$dof, min.dn = VC$min.dn, min.pr = VC$min.pr, max.pr = VC$max.pr) if( length(teta1) != 0) dH1.mix2 <- copgHs(p1.2[teta.ind1], p2[teta.ind1], eta1=NULL, eta2=NULL, teta1, teta.st1, Cop1, VC$dof, min.dn = VC$min.dn, min.pr = VC$min.pr, max.pr = VC$max.pr) if( length(teta2) != 0) dH2.mix2 <- copgHs(p1.2[teta.ind2], p2[teta.ind2], eta1=NULL, eta2=NULL, teta2, teta.st2, Cop2, VC$dof, min.dn = VC$min.dn, min.pr = VC$min.pr, max.pr = VC$max.pr) c.copula2.be1be2 <- c.copula.be1 <- c.copula.be2 <- p00 <- c.copula.theta <- c.copula.thet <- bit1.th2ATE <- NA c.copula2.be1be2.2 <- c.copula.be1.2 <- c.copula.be2.2 <- p00.2 <- c.copula.theta.2 <- c.copula.thet.2 <- bit1.th2ATE.2 <- NA c.copula2.be1be2.mix1 <- c.copula.be1.mix1 <- c.copula.be2.mix1 <- p00.mix1 <- c.copula.theta.mix1 <- c.copula.thet.mix1 <- bit1.th2ATE.mix1 <- NA c.copula2.be1be2.mix2 <- c.copula.be1.mix2 <- c.copula.be2.mix2 <- p00.mix2 <- c.copula.theta.mix2 <- c.copula.thet.mix2 <- bit1.th2ATE.mix2 <- NA if( length(teta1) != 0){ c.copula2.be1be2[teta.ind1] <- dH1$c.copula2.be1be2 c.copula.be1[teta.ind1] <- dH1$c.copula.be1 c.copula.be2[teta.ind1] <- dH1$c.copula.be2 c.copula.theta[teta.ind1] <- dH1$c.copula.theta c.copula.thet[teta.ind1] <- dH1$c.copula.thet bit1.th2ATE[teta.ind1] <- dH1$bit1.th2ATE p00[teta.ind1] <- mm(BiCDF(p1[teta.ind1], p2[teta.ind1], nC1, teta1, VC$dof), min.pr = VC$min.pr, max.pr = VC$max.pr ) } if( length(teta1) != 0){ c.copula2.be1be2.mix1[teta.ind1] <- dH1.mix1$c.copula2.be1be2 c.copula.be1.mix1[teta.ind1] <- dH1.mix1$c.copula.be1 c.copula.be2.mix1[teta.ind1] <- dH1.mix1$c.copula.be2 c.copula.theta.mix1[teta.ind1] <- dH1.mix1$c.copula.theta c.copula.thet.mix1[teta.ind1] <- dH1.mix1$c.copula.thet bit1.th2ATE.mix1[teta.ind1] <- dH1.mix1$bit1.th2ATE p00.mix1[teta.ind1] <- mm(BiCDF(p1[teta.ind1], p2.2[teta.ind1], nC1, teta1, VC$dof), min.pr = VC$min.pr, max.pr = VC$max.pr ) } if( length(teta1) != 0){ c.copula2.be1be2.mix2[teta.ind1] <- dH1.mix2$c.copula2.be1be2 c.copula.be1.mix2[teta.ind1] <- dH1.mix2$c.copula.be1 c.copula.be2.mix2[teta.ind1] <- dH1.mix2$c.copula.be2 c.copula.theta.mix2[teta.ind1] <- dH1.mix2$c.copula.theta c.copula.thet.mix2[teta.ind1] <- dH1.mix2$c.copula.thet bit1.th2ATE.mix2[teta.ind1] <- dH1.mix2$bit1.th2ATE p00.mix2[teta.ind1] <- mm(BiCDF(p1.2[teta.ind1], p2[teta.ind1], nC1, teta1, VC$dof), min.pr = VC$min.pr, max.pr = VC$max.pr ) } if( length(teta1) != 0){ c.copula2.be1be2.2[teta.ind1] <- dH1.2$c.copula2.be1be2 c.copula.be1.2[teta.ind1] <- dH1.2$c.copula.be1 c.copula.be2.2[teta.ind1] <- dH1.2$c.copula.be2 c.copula.theta.2[teta.ind1] <- dH1.2$c.copula.theta c.copula.thet.2[teta.ind1] <- dH1.2$c.copula.thet bit1.th2ATE.2[teta.ind1] <- dH1.2$bit1.th2ATE p00.2[teta.ind1] <- mm(BiCDF(p1.2[teta.ind1], p2.2[teta.ind1], nC1, teta1, VC$dof), min.pr = VC$min.pr, max.pr = VC$max.pr ) } if( length(teta2) != 0){ c.copula2.be1be2[teta.ind2] <- dH2$c.copula2.be1be2 c.copula.be1[teta.ind2] <- dH2$c.copula.be1 c.copula.be2[teta.ind2] <- dH2$c.copula.be2 c.copula.theta[teta.ind2] <- dH2$c.copula.theta c.copula.thet[teta.ind2] <- dH2$c.copula.thet bit1.th2ATE[teta.ind2] <- dH2$bit1.th2ATE p00[teta.ind2] <- mm(BiCDF(p1[teta.ind2], p2[teta.ind2], nC2, teta2, VC$dof), min.pr = VC$min.pr, max.pr = VC$max.pr ) } if( length(teta2) != 0){ c.copula2.be1be2.mix1[teta.ind2] <- dH2.mix1$c.copula2.be1be2 c.copula.be1.mix1[teta.ind2] <- dH2.mix1$c.copula.be1 c.copula.be2.mix1[teta.ind2] <- dH2.mix1$c.copula.be2 c.copula.theta.mix1[teta.ind2] <- dH2.mix1$c.copula.theta c.copula.thet.mix1[teta.ind2] <- dH2.mix1$c.copula.thet bit1.th2ATE.mix1[teta.ind2] <- dH2.mix1$bit1.th2ATE p00.mix1[teta.ind2] <- mm(BiCDF(p1[teta.ind2], p2.2[teta.ind2], nC2, teta2, VC$dof), min.pr = VC$min.pr, max.pr = VC$max.pr ) } if( length(teta2) != 0){ c.copula2.be1be2.mix2[teta.ind2] <- dH2.mix2$c.copula2.be1be2 c.copula.be1.mix2[teta.ind2] <- dH2.mix2$c.copula.be1 c.copula.be2.mix2[teta.ind2] <- dH2.mix2$c.copula.be2 c.copula.theta.mix2[teta.ind2] <- dH2.mix2$c.copula.theta c.copula.thet.mix2[teta.ind2] <- dH2.mix2$c.copula.thet bit1.th2ATE.mix2[teta.ind2] <- dH2.mix2$bit1.th2ATE p00.mix2[teta.ind2] <- mm(BiCDF(p1.2[teta.ind2], p2[teta.ind2], nC2, teta2, VC$dof), min.pr = VC$min.pr, max.pr = VC$max.pr ) } if( length(teta2) != 0){ c.copula2.be1be2.2[teta.ind2] <- dH2.2$c.copula2.be1be2 c.copula.be1.2[teta.ind2] <- dH2.2$c.copula.be1 c.copula.be2.2[teta.ind2] <- dH2.2$c.copula.be2 c.copula.theta.2[teta.ind2] <- dH2.2$c.copula.theta c.copula.thet.2[teta.ind2] <- dH2.2$c.copula.thet bit1.th2ATE.2[teta.ind2] <- dH2.2$bit1.th2ATE p00.2[teta.ind2] <- mm(BiCDF(p1.2[teta.ind2], p2.2[teta.ind2], nC2, teta2, VC$dof), min.pr = VC$min.pr, max.pr = VC$max.pr ) } der.par1 <- der2.par1 <- params1; der.par2 <- der2.par2 <- params2 der.par1[-c( VC$mono.sm.pos1 )] <- 1 der.par2[-c( VC$mono.sm.pos2 )] <- 1 der2.par1[-c( VC$mono.sm.pos1 )] <- 0 der2.par2[-c( VC$mono.sm.pos2 )] <- 0 der2eta1dery1b1 <- t(t(VC$Xd1)*der.par1) der2eta2dery2b2 <- t(t(VC$Xd2)*der.par2) dereta1derb1 <- t(t(VC$X1)*der.par1) dereta2derb2 <- t(t(VC$X2)*der.par2) dereta1derb1.2 <- t(t(VC$X1.2)*der.par1) dereta2derb2.2 <- t(t(VC$X2.2)*der.par2) if( length(teta1) != 0) BITS1 <- copgHsCont(p1[teta.ind1], p2[teta.ind1], teta1, teta.st1, Cop1, Cont = TRUE, par2 = VC$dof, nu.st = log(VC$dof - 2)) if( length(teta2) != 0) BITS2 <- copgHsCont(p1[teta.ind2], p2[teta.ind2], teta2, teta.st2, Cop2, Cont = TRUE, par2 = VC$dof, nu.st = log(VC$dof - 2)) if( length(teta1) != 0) BITS1.mix1 <- copgHsCont(p1[teta.ind1], p2.2[teta.ind1], teta1, teta.st1, Cop1, Cont = TRUE, par2 = VC$dof, nu.st = log(VC$dof - 2)) if( length(teta2) != 0) BITS2.mix1 <- copgHsCont(p1[teta.ind2], p2.2[teta.ind2], teta2, teta.st2, Cop2, Cont = TRUE, par2 = VC$dof, nu.st = log(VC$dof - 2)) if( length(teta1) != 0) BITS1.mix2 <- copgHsCont(p1.2[teta.ind1], p2[teta.ind1], teta1, teta.st1, Cop1, Cont = TRUE, par2 = VC$dof, nu.st = log(VC$dof - 2)) if( length(teta2) != 0) BITS2.mix2 <- copgHsCont(p1.2[teta.ind2], p2[teta.ind2], teta2, teta.st2, Cop2, Cont = TRUE, par2 = VC$dof, nu.st = log(VC$dof - 2)) if( length(teta1) != 0) BITS1.2 <- copgHsCont(p1.2[teta.ind1], p2.2[teta.ind1], teta1, teta.st1, Cop1, Cont = TRUE, par2 = VC$dof, nu.st = log(VC$dof - 2)) if( length(teta2) != 0) BITS2.2 <- copgHsCont(p1.2[teta.ind2], p2.2[teta.ind2], teta2, teta.st2, Cop2, Cont = TRUE, par2 = VC$dof, nu.st = log(VC$dof - 2)) der2h.derp1p1 <- NA if( length(teta1) != 0) der2h.derp1p1[teta.ind1] <- BITS1$der2h.derp1p1 if( length(teta2) != 0) der2h.derp1p1[teta.ind2] <- BITS2$der2h.derp1p1 der2h.derp1p1.mix1 <- NA if( length(teta1) != 0) der2h.derp1p1.mix1[teta.ind1] <- BITS1.mix1$der2h.derp1p1 if( length(teta2) != 0) der2h.derp1p1.mix1[teta.ind2] <- BITS2.mix1$der2h.derp1p1 der2h.derp1p1.mix2 <- NA if( length(teta1) != 0) der2h.derp1p1.mix2[teta.ind1] <- BITS1.mix2$der2h.derp1p1 if( length(teta2) != 0) der2h.derp1p1.mix2[teta.ind2] <- BITS2.mix2$der2h.derp1p1 der2h.derp1p1.2 <- NA if( length(teta1) != 0) der2h.derp1p1.2[teta.ind1] <- BITS1.2$der2h.derp1p1 if( length(teta2) != 0) der2h.derp1p1.2[teta.ind2] <- BITS2.2$der2h.derp1p1 der2h.derp1p2 <- NA if( length(teta1) != 0) der2h.derp1p2[teta.ind1] <- BITS1$der2h.derp1p2 if( length(teta2) != 0) der2h.derp1p2[teta.ind2] <- BITS2$der2h.derp1p2 der2h.derp1p2.mix1 <- NA if( length(teta1) != 0) der2h.derp1p2.mix1[teta.ind1] <- BITS1.mix1$der2h.derp1p2 if( length(teta2) != 0) der2h.derp1p2.mix1[teta.ind2] <- BITS2.mix1$der2h.derp1p2 der2h.derp1p2.mix2 <- NA if( length(teta1) != 0) der2h.derp1p2.mix2[teta.ind1] <- BITS1.mix2$der2h.derp1p2 if( length(teta2) != 0) der2h.derp1p2.mix2[teta.ind2] <- BITS2.mix2$der2h.derp1p2 der2h.derp1p2.2 <- NA if( length(teta1) != 0) der2h.derp1p2.2[teta.ind1] <- BITS1.2$der2h.derp1p2 if( length(teta2) != 0) der2h.derp1p2.2[teta.ind2] <- BITS2.2$der2h.derp1p2 der2h.derp1teta <- NA derteta.derteta.st <- NA if( length(teta1) != 0) der2h.derp1teta[teta.ind1] <- BITS1$der2h.derp1teta if( length(teta2) != 0) der2h.derp1teta[teta.ind2] <- BITS2$der2h.derp1teta if( length(teta1) != 0) derteta.derteta.st[teta.ind1] <- BITS1$derteta.derteta.st if( length(teta2) != 0) derteta.derteta.st[teta.ind2] <- BITS2$derteta.derteta.st der2h.derp1teta.st <- der2h.derp1teta * derteta.derteta.st der2h.derp1teta.mix1 <- NA derteta.derteta.st.mix1 <- NA if( length(teta1) != 0) der2h.derp1teta.mix1[teta.ind1] <- BITS1.mix1$der2h.derp1teta if( length(teta2) != 0) der2h.derp1teta.mix1[teta.ind2] <- BITS2.mix1$der2h.derp1teta if( length(teta1) != 0) derteta.derteta.st.mix1[teta.ind1] <- BITS1.mix1$derteta.derteta.st if( length(teta2) != 0) derteta.derteta.st.mix1[teta.ind2] <- BITS2.mix1$derteta.derteta.st der2h.derp1teta.st.mix1 <- der2h.derp1teta.mix1 * derteta.derteta.st.mix1 der2h.derp1teta.mix2 <- NA derteta.derteta.st.mix2 <- NA if( length(teta1) != 0) der2h.derp1teta.mix2[teta.ind1] <- BITS1.mix2$der2h.derp1teta if( length(teta2) != 0) der2h.derp1teta.mix2[teta.ind2] <- BITS2.mix2$der2h.derp1teta if( length(teta1) != 0) derteta.derteta.st.mix2[teta.ind1] <- BITS1.mix2$derteta.derteta.st if( length(teta2) != 0) derteta.derteta.st.mix2[teta.ind2] <- BITS2.mix2$derteta.derteta.st der2h.derp1teta.st.mix2 <- der2h.derp1teta.mix2 * derteta.derteta.st.mix2 der2h.derp1teta.2 <- NA derteta.derteta.st.2 <- NA if( length(teta1) != 0) der2h.derp1teta.2[teta.ind1] <- BITS1.2$der2h.derp1teta if( length(teta2) != 0) der2h.derp1teta.2[teta.ind2] <- BITS2.2$der2h.derp1teta if( length(teta1) != 0) derteta.derteta.st.2[teta.ind1] <- BITS1.2$derteta.derteta.st if( length(teta2) != 0) derteta.derteta.st.2[teta.ind2] <- BITS2.2$derteta.derteta.st der2h.derp1teta.st.2 <- der2h.derp1teta.2 * derteta.derteta.st.2 c.copula2.be1 <- c.copula2.be2 <- c.copula2.be1th <- c.copula2.be2th <- bit1.th2 <- c.copula2.be1t <- c.copula2.be2t <- NA if( length(teta1) != 0){ c.copula2.be1[teta.ind1] <- dH1$c.copula2.be1 c.copula2.be2[teta.ind1] <- dH1$c.copula2.be2 c.copula2.be1th[teta.ind1] <- dH1$c.copula2.be1th c.copula2.be2th[teta.ind1] <- dH1$c.copula2.be2th c.copula2.be1t[teta.ind1] <- dH1$c.copula2.be1t c.copula2.be2t[teta.ind1] <- dH1$c.copula2.be2t bit1.th2[teta.ind1] <- dH1$bit1.th2 } c.copula2.be1.mix1 <- c.copula2.be2.mix1 <- c.copula2.be1th.mix1 <- c.copula2.be2th.mix1 <- bit1.th2.mix1 <- c.copula2.be1t.mix1 <- c.copula2.be2t.mix1 <- NA if( length(teta1) != 0){ c.copula2.be1.mix1[teta.ind1] <- dH1.mix1$c.copula2.be1 c.copula2.be2.mix1[teta.ind1] <- dH1.mix1$c.copula2.be2 c.copula2.be1th.mix1[teta.ind1] <- dH1.mix1$c.copula2.be1th c.copula2.be2th.mix1[teta.ind1] <- dH1.mix1$c.copula2.be2th c.copula2.be1t.mix1[teta.ind1] <- dH1.mix1$c.copula2.be1t c.copula2.be2t.mix1[teta.ind1] <- dH1.mix1$c.copula2.be2t bit1.th2.mix1[teta.ind1] <- dH1.mix1$bit1.th2 } c.copula2.be1.mix2 <- c.copula2.be2.mix2 <- c.copula2.be1th.mix2 <- c.copula2.be2th.mix2 <- bit1.th2.mix2 <- c.copula2.be1t.mix2 <- c.copula2.be2t.mix2 <- NA if( length(teta1) != 0){ c.copula2.be1.mix2[teta.ind1] <- dH1.mix2$c.copula2.be1 c.copula2.be2.mix2[teta.ind1] <- dH1.mix2$c.copula2.be2 c.copula2.be1th.mix2[teta.ind1] <- dH1.mix2$c.copula2.be1th c.copula2.be2th.mix2[teta.ind1] <- dH1.mix2$c.copula2.be2th c.copula2.be1t.mix2[teta.ind1] <- dH1.mix2$c.copula2.be1t c.copula2.be2t.mix2[teta.ind1] <- dH1.mix2$c.copula2.be2t bit1.th2.mix2[teta.ind1] <- dH1.mix2$bit1.th2 } c.copula2.be1.2 <- c.copula2.be2.2 <- c.copula2.be1th.2 <- c.copula2.be2th.2 <- bit1.th2.2 <- c.copula2.be1t.2 <- c.copula2.be2t.2 <- NA if( length(teta1) != 0){ c.copula2.be1.2[teta.ind1] <- dH1.2$c.copula2.be1 c.copula2.be2.2[teta.ind1] <- dH1.2$c.copula2.be2 c.copula2.be1th.2[teta.ind1] <- dH1.2$c.copula2.be1th c.copula2.be2th.2[teta.ind1] <- dH1.2$c.copula2.be2th c.copula2.be1t.2[teta.ind1] <- dH1.2$c.copula2.be1t c.copula2.be2t.2[teta.ind1] <- dH1.2$c.copula2.be2t bit1.th2.2[teta.ind1] <- dH1.2$bit1.th2 } if( length(teta2) != 0){ c.copula2.be1[teta.ind2] <- dH2$c.copula2.be1 c.copula2.be2[teta.ind2] <- dH2$c.copula2.be2 c.copula2.be1th[teta.ind2] <- dH2$c.copula2.be1th c.copula2.be2th[teta.ind2] <- dH2$c.copula2.be2th c.copula2.be1t[teta.ind2] <- dH2$c.copula2.be1t c.copula2.be2t[teta.ind2] <- dH2$c.copula2.be2t bit1.th2[teta.ind2] <- dH2$bit1.th2 } if( length(teta2) != 0){ c.copula2.be1.mix1[teta.ind2] <- dH2.mix1$c.copula2.be1 c.copula2.be2.mix1[teta.ind2] <- dH2.mix1$c.copula2.be2 c.copula2.be1th.mix1[teta.ind2] <- dH2.mix1$c.copula2.be1th c.copula2.be2th.mix1[teta.ind2] <- dH2.mix1$c.copula2.be2th c.copula2.be1t.mix1[teta.ind2] <- dH2.mix1$c.copula2.be1t c.copula2.be2t.mix1[teta.ind2] <- dH2.mix1$c.copula2.be2t bit1.th2.mix1[teta.ind2] <- dH2.mix1$bit1.th2 } if( length(teta2) != 0){ c.copula2.be1.mix2[teta.ind2] <- dH2.mix2$c.copula2.be1 c.copula2.be2.mix2[teta.ind2] <- dH2.mix2$c.copula2.be2 c.copula2.be1th.mix2[teta.ind2] <- dH2.mix2$c.copula2.be1th c.copula2.be2th.mix2[teta.ind2] <- dH2.mix2$c.copula2.be2th c.copula2.be1t.mix2[teta.ind2] <- dH2.mix2$c.copula2.be1t c.copula2.be2t.mix2[teta.ind2] <- dH2.mix2$c.copula2.be2t bit1.th2.mix2[teta.ind2] <- dH2.mix2$bit1.th2 } if( length(teta2) != 0){ c.copula2.be1.2[teta.ind2] <- dH2.2$c.copula2.be1 c.copula2.be2.2[teta.ind2] <- dH2.2$c.copula2.be2 c.copula2.be1th.2[teta.ind2] <- dH2.2$c.copula2.be1th c.copula2.be2th.2[teta.ind2] <- dH2.2$c.copula2.be2th c.copula2.be1t.2[teta.ind2] <- dH2.2$c.copula2.be1t c.copula2.be2t.2[teta.ind2] <- dH2.2$c.copula2.be2t bit1.th2.2[teta.ind2] <- dH2.2$bit1.th2 } der2c.derrho.derrho <- NA der2c.derp1.derp1 <- NA der2c.derp2.derp2 <- NA der2c.derp1.derp2 <- NA der2c.derp1.derrho <- NA der2c.derp2.derrho <- NA der2teta.derteta.stteta.st <- NA if( length(teta1) != 0){ der2c.derrho.derrho[teta.ind1] <- BITS1$der2c.derrho.derrho der2c.derp1.derp1[teta.ind1] <- BITS1$der2c.derp1.derp1 der2c.derp2.derp2[teta.ind1] <- BITS1$der2c.derp2.derp2 der2c.derp1.derp2[teta.ind1] <- BITS1$der2c.derp1.derp2 der2c.derp1.derrho[teta.ind1] <- BITS1$der2c.derp1.derrho der2c.derp2.derrho[teta.ind1] <- BITS1$der2c.derp2.derrho } der2c.derrho.derrho.mix1 <- NA der2c.derp1.derp1.mix1 <- NA der2c.derp2.derp2.mix1 <- NA der2c.derp1.derp2.mix1 <- NA der2c.derp1.derrho.mix1 <- NA der2c.derp2.derrho.mix1 <- NA der2teta.derteta.stteta.st.mix1 <- NA if( length(teta1) != 0){ der2c.derrho.derrho.mix1[teta.ind1] <- BITS1.mix1$der2c.derrho.derrho der2c.derp1.derp1.mix1[teta.ind1] <- BITS1.mix1$der2c.derp1.derp1 der2c.derp2.derp2.mix1[teta.ind1] <- BITS1.mix1$der2c.derp2.derp2 der2c.derp1.derp2.mix1[teta.ind1] <- BITS1.mix1$der2c.derp1.derp2 der2c.derp1.derrho.mix1[teta.ind1] <- BITS1.mix1$der2c.derp1.derrho der2c.derp2.derrho.mix1[teta.ind1] <- BITS1.mix1$der2c.derp2.derrho } der2c.derrho.derrho.mix2 <- NA der2c.derp1.derp1.mix2 <- NA der2c.derp2.derp2.mix2 <- NA der2c.derp1.derp2.mix2 <- NA der2c.derp1.derrho.mix2 <- NA der2c.derp2.derrho.mix2 <- NA der2teta.derteta.stteta.st.mix2 <- NA if( length(teta1) != 0){ der2c.derrho.derrho.mix2[teta.ind1] <- BITS1.mix2$der2c.derrho.derrho der2c.derp1.derp1.mix2[teta.ind1] <- BITS1.mix2$der2c.derp1.derp1 der2c.derp2.derp2.mix2[teta.ind1] <- BITS1.mix2$der2c.derp2.derp2 der2c.derp1.derp2.mix2[teta.ind1] <- BITS1.mix2$der2c.derp1.derp2 der2c.derp1.derrho.mix2[teta.ind1] <- BITS1.mix2$der2c.derp1.derrho der2c.derp2.derrho.mix2[teta.ind1] <- BITS1.mix2$der2c.derp2.derrho } der2c.derrho.derrho.2 <- NA der2c.derp1.derp1.2 <- NA der2c.derp2.derp2.2 <- NA der2c.derp1.derp2.2 <- NA der2c.derp1.derrho.2 <- NA der2c.derp2.derrho.2 <- NA der2teta.derteta.stteta.st.2 <- NA if( length(teta1) != 0){ der2c.derrho.derrho.2[teta.ind1] <- BITS1.2$der2c.derrho.derrho der2c.derp1.derp1.2[teta.ind1] <- BITS1.2$der2c.derp1.derp1 der2c.derp2.derp2.2[teta.ind1] <- BITS1.2$der2c.derp2.derp2 der2c.derp1.derp2.2[teta.ind1] <- BITS1.2$der2c.derp1.derp2 der2c.derp1.derrho.2[teta.ind1] <- BITS1.2$der2c.derp1.derrho der2c.derp2.derrho.2[teta.ind1] <- BITS1.2$der2c.derp2.derrho } if( length(teta2) != 0){ der2c.derrho.derrho[teta.ind2] <- BITS2$der2c.derrho.derrho der2c.derp1.derp1[teta.ind2] <- BITS2$der2c.derp1.derp1 der2c.derp2.derp2[teta.ind2] <- BITS2$der2c.derp2.derp2 der2c.derp1.derp2[teta.ind2] <- BITS2$der2c.derp1.derp2 der2c.derp1.derrho[teta.ind2] <- BITS2$der2c.derp1.derrho der2c.derp2.derrho[teta.ind2] <- BITS2$der2c.derp2.derrho } if( length(teta2) != 0){ der2c.derrho.derrho.mix1[teta.ind2] <- BITS2.mix1$der2c.derrho.derrho der2c.derp1.derp1.mix1[teta.ind2] <- BITS2.mix1$der2c.derp1.derp1 der2c.derp2.derp2.mix1[teta.ind2] <- BITS2.mix1$der2c.derp2.derp2 der2c.derp1.derp2.mix1[teta.ind2] <- BITS2.mix1$der2c.derp1.derp2 der2c.derp1.derrho.mix1[teta.ind2] <- BITS2.mix1$der2c.derp1.derrho der2c.derp2.derrho.mix1[teta.ind2] <- BITS2.mix1$der2c.derp2.derrho } if( length(teta2) != 0){ der2c.derrho.derrho.mix2[teta.ind2] <- BITS2.mix2$der2c.derrho.derrho der2c.derp1.derp1.mix2[teta.ind2] <- BITS2.mix2$der2c.derp1.derp1 der2c.derp2.derp2.mix2[teta.ind2] <- BITS2.mix2$der2c.derp2.derp2 der2c.derp1.derp2.mix2[teta.ind2] <- BITS2.mix2$der2c.derp1.derp2 der2c.derp1.derrho.mix2[teta.ind2] <- BITS2.mix2$der2c.derp1.derrho der2c.derp2.derrho.mix2[teta.ind2] <- BITS2.mix2$der2c.derp2.derrho } if( length(teta2) != 0){ der2c.derrho.derrho.2[teta.ind2] <- BITS2.2$der2c.derrho.derrho der2c.derp1.derp1.2[teta.ind2] <- BITS2.2$der2c.derp1.derp1 der2c.derp2.derp2.2[teta.ind2] <- BITS2.2$der2c.derp2.derp2 der2c.derp1.derp2.2[teta.ind2] <- BITS2.2$der2c.derp1.derp2 der2c.derp1.derrho.2[teta.ind2] <- BITS2.2$der2c.derp1.derrho der2c.derp2.derrho.2[teta.ind2] <- BITS2.2$der2c.derp2.derrho } if( length(teta1) != 0) der2teta.derteta.stteta.st[teta.ind1] <- BITS1$der2teta.derteta.stteta.st if( length(teta1) != 0) der2teta.derteta.stteta.st.mix1[teta.ind1] <- BITS1.mix1$der2teta.derteta.stteta.st if( length(teta1) != 0) der2teta.derteta.stteta.st.mix2[teta.ind1] <- BITS1.mix2$der2teta.derteta.stteta.st if( length(teta1) != 0) der2teta.derteta.stteta.st.2[teta.ind1] <- BITS1.2$der2teta.derteta.stteta.st if( length(teta2) != 0) der2teta.derteta.stteta.st[teta.ind2] <- BITS2$der2teta.derteta.stteta.st if( length(teta2) != 0) der2teta.derteta.stteta.st.mix1[teta.ind2] <- BITS2.mix1$der2teta.derteta.stteta.st if( length(teta2) != 0) der2teta.derteta.stteta.st.mix2[teta.ind2] <- BITS2.mix2$der2teta.derteta.stteta.st if( length(teta2) != 0) der2teta.derteta.stteta.st.2[teta.ind2] <- BITS2.2$der2teta.derteta.stteta.st der3C.derp1p1p1 <- der3C.derp1tetateta <- der2h.derteta.teta.st <- der3C.p1p1teta <- der2h.derp2teta <- der2h.derp2p2 <- NA der3C.derp1p1p1.mix1 <- der3C.derp1tetateta.mix1 <- der2h.derteta.teta.st.mix1 <- der3C.p1p1teta.mix1 <- der2h.derp2teta.mix1 <- der2h.derp2p2.mix1 <- NA der3C.derp1p1p1.mix2 <- der3C.derp1tetateta.mix2 <- der2h.derteta.teta.st.mix2 <- der3C.p1p1teta.mix2 <- der2h.derp2teta.mix2 <- der2h.derp2p2.mix2 <- NA der3C.derp1p1p1.2 <- der3C.derp1tetateta.2 <- der2h.derteta.teta.st.2 <- der3C.p1p1teta.2 <- der2h.derp2teta.2 <- der2h.derp2p2.2 <- NA if( length(teta1) != 0){der3C.derp1p1p1[teta.ind1] <- BITS1$der3C.derp1p1p1 der2h.derteta.teta.st[teta.ind1] <- BITS1$der2h.derteta.teta.st der3C.derp1tetateta[teta.ind1] <- BITS1$der3C.derp1tetateta der3C.p1p1teta[teta.ind1] <- BITS1$der3C.p1p1teta der2h.derp2teta[teta.ind1] <- BITS1$der2h.derp2teta der2h.derp2p2[teta.ind1] <- BITS1$der2h.derp2p2 der2h.derp1teta[teta.ind1] <- BITS1$der2h.derp1teta } if( length(teta1) != 0){ der3C.derp1p1p1.mix1[teta.ind1] <- BITS1.mix1$der3C.derp1p1p1 der2h.derteta.teta.st.mix1[teta.ind1] <- BITS1.mix1$der2h.derteta.teta.st der3C.derp1tetateta.mix1[teta.ind1] <- BITS1.mix1$der3C.derp1tetateta der3C.p1p1teta.mix1[teta.ind1] <- BITS1.mix1$der3C.p1p1teta der2h.derp2teta.mix1[teta.ind1] <- BITS1.mix1$der2h.derp2teta der2h.derp2p2.mix1[teta.ind1] <- BITS1.mix1$der2h.derp2p2 der2h.derp1teta.mix1[teta.ind1] <- BITS1.mix1$der2h.derp1teta } if( length(teta1) != 0){ der3C.derp1p1p1.mix2[teta.ind1] <- BITS1.mix2$der3C.derp1p1p1 der2h.derteta.teta.st.mix2[teta.ind1] <- BITS1.mix2$der2h.derteta.teta.st der3C.derp1tetateta.mix2[teta.ind1] <- BITS1.mix2$der3C.derp1tetateta der3C.p1p1teta.mix2[teta.ind1] <- BITS1.mix2$der3C.p1p1teta der2h.derp2teta.mix2[teta.ind1] <- BITS1.mix2$der2h.derp2teta der2h.derp2p2.mix2[teta.ind1] <- BITS1.mix2$der2h.derp2p2 der2h.derp1teta.mix2[teta.ind1] <- BITS1.mix2$der2h.derp1teta } if( length(teta1) != 0){ der3C.derp1p1p1.2[teta.ind1] <- BITS1.2$der3C.derp1p1p1 der2h.derteta.teta.st.2[teta.ind1] <- BITS1.2$der2h.derteta.teta.st der3C.derp1tetateta.2[teta.ind1] <- BITS1.2$der3C.derp1tetateta der3C.p1p1teta.2[teta.ind1] <- BITS1.2$der3C.p1p1teta der2h.derp2teta.2[teta.ind1] <- BITS1.2$der2h.derp2teta der2h.derp2p2.2[teta.ind1] <- BITS1.2$der2h.derp2p2 der2h.derp1teta.2[teta.ind1] <- BITS1.2$der2h.derp1teta } if( length(teta2) != 0){ der3C.derp1p1p1[teta.ind2] <- BITS2$der3C.derp1p1p1 der2h.derteta.teta.st[teta.ind2] <- BITS2$der2h.derteta.teta.st der3C.derp1tetateta[teta.ind2] <- BITS2$der3C.derp1tetateta der3C.p1p1teta[teta.ind2] <- BITS2$der3C.p1p1teta der2h.derp2teta[teta.ind2] <- BITS2$der2h.derp2teta der2h.derp2p2[teta.ind2] <- BITS2$der2h.derp2p2 der2h.derp1teta[teta.ind2] <- BITS2$der2h.derp1teta } if( length(teta2) != 0){ der3C.derp1p1p1.mix1[teta.ind2] <- BITS2.mix1$der3C.derp1p1p1 der2h.derteta.teta.st.mix1[teta.ind2] <- BITS2.mix1$der2h.derteta.teta.st der3C.derp1tetateta.mix1[teta.ind2] <- BITS2.mix1$der3C.derp1tetateta der3C.p1p1teta.mix1[teta.ind2] <- BITS2.mix1$der3C.p1p1teta der2h.derp2teta.mix1[teta.ind2] <- BITS2.mix1$der2h.derp2teta der2h.derp2p2.mix1[teta.ind2] <- BITS2.mix1$der2h.derp2p2 der2h.derp1teta.mix1[teta.ind2] <- BITS2.mix1$der2h.derp1teta } if( length(teta2) != 0){ der3C.derp1p1p1.mix2[teta.ind2] <- BITS2.mix2$der3C.derp1p1p1 der2h.derteta.teta.st.mix2[teta.ind2] <- BITS2.mix2$der2h.derteta.teta.st der3C.derp1tetateta.mix2[teta.ind2] <- BITS2.mix2$der3C.derp1tetateta der3C.p1p1teta.mix2[teta.ind2] <- BITS2.mix2$der3C.p1p1teta der2h.derp2teta.mix2[teta.ind2] <- BITS2.mix2$der2h.derp2teta der2h.derp2p2.mix2[teta.ind2] <- BITS2.mix2$der2h.derp2p2 der2h.derp1teta.mix2[teta.ind2] <- BITS2.mix2$der2h.derp1teta } if( length(teta2) != 0){ der3C.derp1p1p1.2[teta.ind2] <- BITS2.2$der3C.derp1p1p1 der2h.derteta.teta.st.2[teta.ind2] <- BITS2.2$der2h.derteta.teta.st der3C.derp1tetateta.2[teta.ind2] <- BITS2.2$der3C.derp1tetateta der3C.p1p1teta.2[teta.ind2] <- BITS2.2$der3C.p1p1teta der2h.derp2teta.2[teta.ind2] <- BITS2.2$der2h.derp2teta der2h.derp2p2.2[teta.ind2] <- BITS2.2$der2h.derp2p2 der2h.derp1teta.2[teta.ind2] <- BITS2.2$der2h.derp1teta } likelihood <- 0 G <- 0 H <- 0 if(sum(VC$indUU)>1){ l.par <- VC$weights*( VC$indUU*( log(c.copula2.be1be2) + log(-dS1eta1) + log(-dS2eta2) + log(Xd1P) + log(Xd2P) )) res <- -sum(l.par) likelihood<-likelihood+ res dl.dbe1 <- -VC$weights*(VC$indUU*(c(c.copula2.be1be2^(-1)*der2h.derp1p1*dS1eta1) * dereta1derb1+ c(dS1eta1^(-1)*d2S1eta1)*dereta1derb1 +c(Xd1P)^(-1)* der2eta1dery1b1 )) dl.dbe1 <- colSums(dl.dbe1) dl.dbe2 <- -VC$weights*(VC$indUU*(c(c.copula2.be1be2^(-1)*der2h.derp1p2*dS2eta2)*dereta2derb2+ c((dS2eta2)^(-1)*d2S2eta2)*dereta2derb2 +c(Xd2P)^(-1)*der2eta2dery2b2 )) dl.dbe2 <- colSums(dl.dbe2) dl.dteta.st <- -VC$weights*(VC$indUU*(c.copula2.be1be2^(-1)*der2h.derp1teta.st ))*X3 dl.dteta.st <- colSums( dl.dteta.st) G <-G+ c( dl.dbe1, dl.dbe2, dl.dteta.st ) be1.be1 <- -( crossprod(VC$weights*VC$indUU*c(-c.copula2.be1be2^-2*der2h.derp1p1^2*dS1eta1^2 + c.copula2.be1be2^-1*der2c.derp1.derp1*dS1eta1^2 + c.copula2.be1be2^-1*der2h.derp1p1*d2S1eta1 -dS1eta1^-2*d2S1eta1^2 + dS1eta1^-1*d3S1eta1)*dereta1derb1, dereta1derb1) + diag( colSums( t( t(VC$weights*VC$indUU*c(c.copula2.be1be2^-1*der2h.derp1p1*dS1eta1 + dS1eta1^-1*d2S1eta1)*VC$X1)*der2.par1 ) ) ) + crossprod(VC$weights*VC$indUU*c(-Xd1P^-2)*der2eta1dery1b1, der2eta1dery1b1) + diag( colSums( t( t(VC$weights*VC$indUU*c(Xd1P^-1)*VC$Xd1)*der2.par1 ) ) ) ) be2.be2 <- -( crossprod(VC$weights*VC$indUU*c(-c.copula2.be1be2^-2*der2h.derp1p2^2*dS2eta2^2 + c.copula2.be1be2^-1*der2c.derp2.derp2*dS2eta2^2 + c.copula2.be1be2^-1*der2h.derp1p2*d2S2eta2 -dS2eta2^-2*d2S2eta2^2 + dS2eta2^-1*d3S2eta2)*dereta2derb2, dereta2derb2) + diag( colSums( t( t(VC$weights*VC$indUU*c(c.copula2.be1be2^-1*der2h.derp1p2*dS2eta2 + dS2eta2^-1*d2S2eta2)*VC$X2)*der2.par2 ) ) ) + crossprod(VC$weights*VC$indUU*c(-Xd2P^-2)*der2eta2dery2b2, der2eta2dery2b2) + diag( colSums( t( t(VC$weights*VC$indUU*c(Xd2P^-1)*VC$Xd2)*der2.par2 ) ) ) ) be1.be2 <- -( crossprod(VC$weights*VC$indUU*c((-c.copula2.be1be2^-2*der2h.derp1p2*der2h.derp1p1 + c.copula2.be1be2^-1*der2c.derp1.derp2)*dS1eta1*dS2eta2)*dereta1derb1, dereta2derb2) ) if(VC$BivD %in% c("GAL180","C180","J180","G180","GAL90","C90","J90","G90","GAL270","C270","J270","G270") ) rotConst <- -1 if(VC$BivD %in% VC$BivD2) rotConst <- VC$my.env$signind d2l.rho.rho <- -( VC$weights*VC$indUU*( -c.copula2.be1be2^-2*der2h.derp1teta^2*derteta.derteta.st^2 + c.copula2.be1be2^-1*der2c.derrho.derrho*derteta.derteta.st^2 + c.copula2.be1be2^-1*der2h.derp1teta*der2teta.derteta.stteta.st) ) rho.rho <- crossprod(X3*c(d2l.rho.rho), X3) be1.rho <- -( crossprod(VC$weights*VC$indUU*c((-c.copula2.be1be2^-2*der2h.derp1p1*der2h.derp1teta + c.copula2.be1be2^-1*der2c.derp1.derrho)*dS1eta1*derteta.derteta.st)*dereta1derb1, X3) ) be2.rho <- -( crossprod(VC$weights*VC$indUU*c((-c.copula2.be1be2^-2*der2h.derp1p2*der2h.derp1teta + c.copula2.be1be2^-1*der2c.derp2.derrho)*dS2eta2*derteta.derteta.st)*dereta2derb2, X3) ) H <- H+ rbind( cbind( be1.be1 , be1.be2 , be1.rho ), cbind( t(be1.be2) , be2.be2 , be2.rho ), cbind( t(be1.rho) , t(be2.rho) , rho.rho ) ) } if(sum(VC$indRR)>1){ l.par <- VC$weights*( VC$indRR*log(p00) ) res <- -sum(l.par) likelihood<-likelihood+ res dl.dbe1 <- -VC$weights*(VC$indRR*(c(p00^(-1)*c.copula.be1*dS1eta1) *dereta1derb1)) dl.dbe1 <- colSums(dl.dbe1) dl.dbe2 <- -VC$weights*( VC$indRR*(c(p00^(-1)*(c.copula.be2*dS2eta2))*dereta2derb2 )) dl.dbe2 <- colSums(dl.dbe2) dl.dteta.st <- -VC$weights*(VC$indRR*(p00^(-1)*c.copula.theta ))*X3 dl.dteta.st <- colSums( dl.dteta.st) G <-G+ c( dl.dbe1, dl.dbe2, dl.dteta.st ) be1.be1 <- -( crossprod(VC$weights*VC$indRR*c(-p00^-2*c.copula.be1^2*dS1eta1^2 + p00^-1*c.copula2.be1*dS1eta1^2 + p00^-1*c.copula.be1*d2S1eta1)*dereta1derb1, dereta1derb1) + diag( colSums( t( t(VC$weights*VC$indRR*c( p00^-1*c.copula.be1*dS1eta1 )*VC$X1)*der2.par1 ) ) ) ) be2.be2 <- -( crossprod(VC$weights*VC$indRR*c(-p00^-2*c.copula.be2^2*dS2eta2^2 + p00^-1*c.copula2.be2*dS2eta2^2 + p00^-1*c.copula.be2*d2S2eta2)*dereta2derb2, dereta2derb2) + diag( colSums( t( t(VC$weights*VC$indRR*c( p00^-1*c.copula.be2*dS2eta2 )*VC$X2)*der2.par2 ) ) ) ) be1.be2 <- -( crossprod(VC$weights*VC$indRR*c((-p00^-2*c.copula.be2*c.copula.be1 + p00^-1*c.copula2.be1be2)*dS1eta1*dS2eta2)*dereta1derb1, dereta2derb2) ) if(VC$BivD %in% c("GAL180","C180","J180","G180","GAL90","C90","J90","G90","GAL270","C270","J270","G270") ) rotConst <- -1 if(VC$BivD %in% VC$BivD2) rotConst <- VC$my.env$signind d2l.rho.rho <- -( VC$weights*VC$indRR*( -p00^-2*c.copula.thet^2*derteta.derteta.st^2 + p00^-1*bit1.th2ATE*derteta.derteta.st^2 + rotConst*p00^-1*c.copula.thet*der2teta.derteta.stteta.st ) ) rho.rho <- crossprod(X3*c(d2l.rho.rho), X3) be1.rho <- -( crossprod(VC$weights*VC$indRR*c(rotConst*(-p00^-2*c.copula.be1*c.copula.thet + p00^-1*c.copula2.be1t)*dS1eta1*derteta.derteta.st)*dereta1derb1, X3) ) be2.rho <- -( crossprod(VC$weights*VC$indRR*c(rotConst*(-p00^-2*c.copula.be2*c.copula.thet + p00^-1*c.copula2.be2t)*dS2eta2*derteta.derteta.st)*dereta2derb2, X3) ) H <- H+ rbind( cbind( be1.be1 , be1.be2 , be1.rho ), cbind( t(be1.be2) , be2.be2 , be2.rho ), cbind( t(be1.rho) , t(be2.rho) , rho.rho ) ) } if(sum(VC$indLL)>1){ l.par <- VC$weights*(VC$indLL*log(c(1-p1-p2+p00))) res <- -sum(l.par) likelihood<-likelihood+ res dl.dbe1 <- -VC$weights*(VC$indLL*(c((1-p1-p2+p00)^(-1))*c(((-dS1eta1)+c.copula.be1*dS1eta1))*dereta1derb1 )) dl.dbe1 <- colSums(dl.dbe1) dl.dbe2 <- -VC$weights*(VC$indLL*(c((1-p1-p2+p00)^(-1)*((-dS2eta2)+c.copula.be2*dS2eta2))*dereta2derb2 )) dl.dbe2 <- colSums(dl.dbe2) dl.dteta.st <- -VC$weights*(VC$indLL*(c((1-p1-p2+p00)^(-1)*c.copula.theta) ))*X3 dl.dteta.st <- colSums( dl.dteta.st) G <-G+ c( dl.dbe1, dl.dbe2, dl.dteta.st ) be1.be1 <- -( crossprod(VC$weights*VC$indLL*c(-(1-p1-p2+p00)^-2*(-dS1eta1+c.copula.be1*dS1eta1)^2 + (1-p1-p2+p00)^-1*(c.copula2.be1*dS1eta1^2 + c.copula.be1*d2S1eta1-d2S1eta1))*dereta1derb1, dereta1derb1) + diag( colSums( t( t(VC$weights*VC$indLL*c( (1-p1-p2+p00)^-1*(c.copula.be1*dS1eta1 -dS1eta1) )*VC$X1)*der2.par1 ) ) ) ) be2.be2 <- -( crossprod(VC$weights*VC$indLL*c(-(1-p1-p2+p00)^-2*(-dS2eta2+c.copula.be2*dS2eta2)^2 + (1-p1-p2+p00)^-1*(c.copula2.be2*dS2eta2^2 + c.copula.be2*d2S2eta2-d2S2eta2) )*dereta2derb2, dereta2derb2) + diag( colSums( t( t(VC$weights*VC$indLL*c( (1-p1-p2+p00)^-1*(c.copula.be2*dS2eta2 - dS2eta2) )*VC$X2)*der2.par2 ) ) ) ) be1.be2 <- -( crossprod(VC$weights*VC$indLL*c((-(1-p1-p2+p00)^-2*((c.copula.be2-1)*(c.copula.be1-1)) + (1-p1-p2+p00)^-1*c.copula2.be1be2)*dS2eta2*dS1eta1)*dereta1derb1, dereta2derb2) ) if(VC$BivD %in% c("GAL180","C180","J180","G180","GAL90","C90","J90","G90","GAL270","C270","J270","G270") ) rotConst <- -1 if(VC$BivD %in% VC$BivD2) rotConst <- VC$my.env$signind d2l.rho.rho <- -( VC$weights*VC$indLL*( -(1-p1-p2+p00)^-2*c.copula.thet^2*derteta.derteta.st^2 + (1-p1-p2+p00)^-1*bit1.th2ATE*derteta.derteta.st^2 + rotConst*(1-p1-p2+p00)^-1*c.copula.thet*der2teta.derteta.stteta.st ) ) rho.rho <- crossprod(X3*c(d2l.rho.rho), X3) be1.rho <- -( crossprod(VC$weights*VC$indLL*c(rotConst*(-(1-p1-p2+p00)^-2*(c.copula.be1-1)*c.copula.thet + (1-p1-p2+p00)^-1*c.copula2.be1t)*dS1eta1*derteta.derteta.st)*dereta1derb1, X3) ) be2.rho <- -( crossprod(VC$weights*VC$indLL*c(rotConst*(-(1-p1-p2+p00)^-2*(c.copula.be2-1)*c.copula.thet + (1-p1-p2+p00)^-1*c.copula2.be2t)*dS2eta2*derteta.derteta.st)*dereta2derb2, X3)) H <- H+ rbind( cbind( be1.be1 , be1.be2 , be1.rho ), cbind( t(be1.be2) , be2.be2 , be2.rho ), cbind( t(be1.rho) , t(be2.rho) , rho.rho ) ) } if(sum(VC$indUR)>1){ l.par <- VC$weights*( VC$indUR*(log(c.copula.be1)+log(-dS1eta1)+log(Xd1P))) res <- -sum(l.par) likelihood<-likelihood+ res dl.dbe1 <- -VC$weights*( VC$indUR*(c(c.copula.be1^(-1)*c.copula2.be1*dS1eta1)*dereta1derb1+ c((dS1eta1)^(-1)*(d2S1eta1)) *dereta1derb1 +c(Xd1P)^(-1)*der2eta1dery1b1 )) dl.dbe1 <- colSums(dl.dbe1) dl.dbe2 <- -VC$weights*(VC$indUR*(c(c.copula.be1^(-1)*c.copula2.be1be2*dS2eta2)*dereta2derb2 )) dl.dbe2 <- colSums(dl.dbe2) dl.dteta.st <- -VC$weights*(VC$indUR*(c.copula.be1^(-1)*c.copula2.be1th ))*X3 dl.dteta.st <- colSums( dl.dteta.st) G <-G+ c( dl.dbe1, dl.dbe2, dl.dteta.st ) be1.be1 <- -( crossprod(VC$weights*VC$indUR*c(-c.copula.be1^-2*c.copula2.be1^2*dS1eta1^2 + c.copula.be1^-1*der3C.derp1p1p1*dS1eta1^2 + c.copula.be1^-1*c.copula2.be1*d2S1eta1 -dS1eta1^-2*d2S1eta1^2 + dS1eta1^-1*d3S1eta1)*dereta1derb1, dereta1derb1) + diag( colSums( t( t(VC$weights*VC$indUR*c(c.copula.be1^-1*c.copula2.be1*dS1eta1 + dS1eta1^-1*d2S1eta1)*VC$X1)*der2.par1 ) ) ) + crossprod(VC$weights*VC$indUR*c(-Xd1P^-2)*der2eta1dery1b1, der2eta1dery1b1) + diag( colSums( t( t(VC$weights*VC$indUR*c(Xd1P^-1)*VC$Xd1)*der2.par1 ) ) ) ) be2.be2 <- -( crossprod(VC$weights*VC$indUR*c(-c.copula.be1^-2*c.copula2.be1be2^2*dS2eta2^2 + c.copula.be1^-1*der2h.derp1p2*dS2eta2^2 + c.copula.be1^-1*c.copula2.be1be2*d2S2eta2)*dereta2derb2, dereta2derb2) + diag( colSums( t( t(VC$weights*VC$indUR*c( c.copula.be1^-1*c.copula2.be1be2*dS2eta2 )*VC$X2)*der2.par2 ) ) ) ) be1.be2 <- -( crossprod(VC$weights*VC$indUR*c((-c.copula.be1^-2*c.copula2.be1be2*c.copula2.be1 + c.copula.be1^-1*der2h.derp1p1)*dS1eta1*dS2eta2)*dereta1derb1, dereta2derb2) ) if(VC$BivD %in% c("GAL180","C180","J180","G180","GAL90","C90","J90","G90","GAL270","C270","J270","G270") ) rotConst <- -1 if(VC$BivD %in% VC$BivD2) rotConst <- VC$my.env$signind d2l.rho.rho <- -( VC$weights*VC$indUR*( -c.copula.be1^-2*c.copula2.be1t^2*derteta.derteta.st^2 + c.copula.be1^-1*der3C.derp1tetateta*derteta.derteta.st^2 + rotConst*c.copula.be1^-1*c.copula2.be1t*der2teta.derteta.stteta.st ) ) rho.rho <- crossprod(X3*c(d2l.rho.rho), X3) be1.rho <- -( crossprod(VC$weights*VC$indUR*c((rotConst*-c.copula.be1^-2*c.copula2.be1*c.copula2.be1t + c.copula.be1^-1*der3C.p1p1teta)*dS1eta1*derteta.derteta.st)*dereta1derb1, X3) ) be2.rho <- -( crossprod(VC$weights*VC$indUR*c((rotConst*-c.copula.be1^-2*c.copula2.be1be2*c.copula2.be1t + c.copula.be1^-1*der2h.derp1teta)*dS2eta2*derteta.derteta.st)*dereta2derb2, X3) ) H <- H+ rbind( cbind( be1.be1 , be1.be2 , be1.rho ), cbind( t(be1.be2) , be2.be2 , be2.rho ), cbind( t(be1.rho) , t(be2.rho) , rho.rho ) ) } if(sum(VC$indRU)>1){ l.par <- VC$weights*(VC$indRU*(log(c.copula.be2)+ log(-dS2eta2)+ log(Xd2P))) res <- -sum(l.par) likelihood<-likelihood+ res dl.dbe1 <- -VC$weights*(VC$indRU*(c(c.copula.be2^(-1)*c.copula2.be1be2*dS1eta1)*dereta1derb1)) dl.dbe1 <- colSums(dl.dbe1) dl.dbe2 <- -VC$weights*(VC$indRU*(c(c.copula.be2^(-1)*c.copula2.be2*dS2eta2)*dereta2derb2+ c((dS2eta2)^(-1)*(d2S2eta2))*dereta2derb2 +c(Xd2P)^(-1)*der2eta2dery2b2 )) dl.dbe2 <- colSums(dl.dbe2) dl.dteta.st <- -VC$weights*(VC$indRU*(c.copula.be2^(-1)*c.copula2.be2th ))*X3 dl.dteta.st <- colSums( dl.dteta.st) G <-G+ c( dl.dbe1, dl.dbe2, dl.dteta.st ) be1.be1 <- -( crossprod(VC$weights*VC$indRU*c(-c.copula.be2^-2*c.copula2.be1be2^2*dS1eta1^2 + c.copula.be2^-1*der2h.derp1p1*dS1eta1^2 + c.copula.be2^-1*c.copula2.be1be2*d2S1eta1)*dereta1derb1, dereta1derb1) + diag( colSums( t( t(VC$weights*VC$indRU*c( c.copula.be2^-1*c.copula2.be1be2*dS1eta1 )*VC$X1)*der2.par1 ) ) ) ) be2.be2 <- -( crossprod(VC$weights*VC$indRU*c(-c.copula.be2^-2*c.copula2.be2^2*dS2eta2^2 + c.copula.be2^-1*der2h.derp2p2*dS2eta2^2 + c.copula.be2^-1*c.copula2.be2*d2S2eta2 -dS2eta2^-2*d2S2eta2^2 + dS2eta2^-1*d3S2eta2)*dereta2derb2, dereta2derb2) + diag( colSums( t( t(VC$weights*VC$indRU*c(c.copula.be2^-1*c.copula2.be2*dS2eta2 + dS2eta2^-1*d2S2eta2)*VC$X2)*der2.par2 ) ) ) + crossprod(VC$weights*VC$indRU*c(-Xd2P^-2)*der2eta2dery2b2, der2eta2dery2b2) + diag( colSums( t( t(VC$weights*VC$indRU*c(Xd2P^-1)*VC$Xd2)*der2.par2 ) ) ) ) be1.be2 <- -( crossprod(VC$weights*VC$indRU*c((-c.copula.be2^-2*c.copula2.be1be2*c.copula2.be2 + c.copula.be2^-1*der2h.derp1p2)*dS1eta1*dS2eta2)*dereta1derb1, dereta2derb2) ) if(VC$BivD %in% c("GAL180","C180","J180","G180","GAL90","C90","J90","G90","GAL270","C270","J270","G270") ) rotConst <- -1 if(VC$BivD %in% VC$BivD2) rotConst <- VC$my.env$signind d2l.rho.rho <- -( VC$weights*VC$indRU*( -c.copula.be2^-2*c.copula2.be2t^2*derteta.derteta.st^2 + c.copula.be2^-1*der2h.derteta.teta.st*derteta.derteta.st^2 + rotConst*c.copula.be2^-1*c.copula2.be2t*der2teta.derteta.stteta.st ) ) rho.rho <- crossprod(X3*c(d2l.rho.rho), X3) be1.rho <- -( crossprod(VC$weights*VC$indRU*c((rotConst*-c.copula.be2^-2*c.copula2.be1be2*c.copula2.be2t + c.copula.be2^-1*der2h.derp1teta)*dS1eta1*derteta.derteta.st)*dereta1derb1, X3) ) be2.rho <- -( crossprod(VC$weights*VC$indRU*c((rotConst*-c.copula.be2^-2*c.copula2.be2*c.copula2.be2t + c.copula.be2^-1*der2h.derp2teta)*dS2eta2*derteta.derteta.st)*dereta2derb2, X3) ) H <- H+ rbind( cbind( be1.be1 , be1.be2 , be1.rho ), cbind( t(be1.be2) , be2.be2 , be2.rho ), cbind( t(be1.rho) , t(be2.rho) , rho.rho ) ) } if(sum(VC$indUL)>1){ l.par <- VC$weights*(VC$indUL*(log( (c.copula.be1-1) * (dS1eta1) * Xd1P))) res <- -sum(l.par) likelihood<-likelihood+ res dl.dbe1 <- -VC$weights*(VC$indUL*(c((c.copula.be1-1)^(-1)*c.copula2.be1*dS1eta1)*dereta1derb1+ c((dS1eta1^(-1))*d2S1eta1)*dereta1derb1 +c(Xd1P)^(-1)*der2eta1dery1b1 )) dl.dbe1 <- colSums(dl.dbe1) dl.dbe2 <- -VC$weights*( VC$indUL*(c((c.copula.be1-1)^(-1)*c.copula2.be1be2*dS2eta2)*dereta2derb2 )) dl.dbe2 <- colSums(dl.dbe2) dl.dteta.st <- -VC$weights*(VC$indUL*((c.copula.be1-1)^(-1)*c.copula2.be1th ))*X3 dl.dteta.st <- colSums( dl.dteta.st) G <-G+ c( dl.dbe1, dl.dbe2, dl.dteta.st ) be1.be1 <- -( crossprod(VC$weights*VC$indUL*c(-(c.copula.be1-1)^-2*c.copula2.be1^2*dS1eta1^2 + (c.copula.be1-1)^-1*der3C.derp1p1p1*dS1eta1^2 + (c.copula.be1-1)^-1*c.copula2.be1*d2S1eta1 -dS1eta1^-2*d2S1eta1^2 + dS1eta1^-1*d3S1eta1)*dereta1derb1, dereta1derb1) + diag( colSums( t( t(VC$weights*VC$indUL*c((c.copula.be1-1)^-1*c.copula2.be1*dS1eta1 + dS1eta1^-1*d2S1eta1)*VC$X1)*der2.par1 ) ) ) + crossprod(VC$weights*VC$indUL*c(-Xd1P^-2)*der2eta1dery1b1, der2eta1dery1b1) + diag( colSums( t( t(VC$weights*VC$indUL*c(Xd1P^-1)*VC$Xd1)*der2.par1 ) ) ) ) be2.be2 <- -( crossprod(VC$weights*VC$indUL*c(-(c.copula.be1-1)^-2*c.copula2.be1be2^2*dS2eta2^2 + (c.copula.be1-1)^-1*der2h.derp1p2*dS2eta2^2 + (c.copula.be1-1)^-1*c.copula2.be1be2*d2S2eta2)*dereta2derb2, dereta2derb2) + diag( colSums( t( t(VC$weights*VC$indUL*c( (c.copula.be1-1)^-1*c.copula2.be1be2*dS2eta2 )*VC$X2)*der2.par2 ) ) ) ) be1.be2 <- -( crossprod(VC$weights*VC$indUL*c((-(c.copula.be1-1)^-2*c.copula2.be1*c.copula2.be1be2 + (c.copula.be1-1)^-1*der2h.derp1p1)*dS1eta1*dS2eta2)*dereta1derb1, dereta2derb2) ) if(VC$BivD %in% c("GAL180","C180","J180","G180","GAL90","C90","J90","G90","GAL270","C270","J270","G270") ) rotConst <- -1 if(VC$BivD %in% VC$BivD2) rotConst <- VC$my.env$signind d2l.rho.rho <- -( VC$weights*VC$indUL*( -(c.copula.be1-1)^-2*c.copula2.be1t^2*derteta.derteta.st^2 + (c.copula.be1-1)^-1*der3C.derp1tetateta*derteta.derteta.st^2 + rotConst*(c.copula.be1-1)^-1*c.copula2.be1t*der2teta.derteta.stteta.st ) ) rho.rho <- crossprod(X3*c(d2l.rho.rho), X3) be1.rho <- -( crossprod(VC$weights*VC$indUL*c(rotConst*(-(c.copula.be1-1)^-2*c.copula2.be1*c.copula2.be1t + (c.copula.be1-1)^-1*der3C.p1p1teta)*dS1eta1*derteta.derteta.st)*dereta1derb1, X3) ) be2.rho <- -( crossprod(VC$weights*VC$indUL*c(rotConst*(-(c.copula.be1-1)^-2*(c.copula2.be1be2)*c.copula2.be1t + (c.copula.be1-1)^-1*der2h.derp1teta)*dS2eta2*derteta.derteta.st)*dereta2derb2, X3) ) H <- H+ rbind( cbind( be1.be1 , be1.be2 , be1.rho ), cbind( t(be1.be2) , be2.be2 , be2.rho ), cbind( t(be1.rho) , t(be2.rho) , rho.rho ) ) } if(sum(VC$indLU)>1){ l.par <- VC$weights*(VC$indLU*(log( (c.copula.be2-1) * (dS2eta2) * Xd2P))) res <- -sum(l.par) likelihood<-likelihood+ res dl.dbe1 <- -VC$weights*(VC$indLU*(c((c.copula.be2-1)^(-1)*c.copula2.be1be2*dS1eta1)*dereta1derb1)) dl.dbe1 <- colSums(dl.dbe1) dl.dbe2 <- -VC$weights*(VC$indLU*(c((c.copula.be2-1)^(-1)*c.copula2.be2*dS2eta2)*dereta2derb2+ c((dS2eta2)^(-1)*d2S2eta2)*dereta2derb2 +c(Xd2P)^(-1)*der2eta2dery2b2 )) dl.dbe2 <- colSums(dl.dbe2) dl.dteta.st <- -VC$weights*( VC$indLU*((c.copula.be2-1)^(-1)*c.copula2.be2th ))*X3 dl.dteta.st <- colSums( dl.dteta.st) G <-G+ c( dl.dbe1, dl.dbe2, dl.dteta.st ) be1.be1 <- -( crossprod(VC$weights*VC$indLU*c(-(c.copula.be2-1)^-2*c.copula2.be1be2^2*dS1eta1^2 + (c.copula.be2-1)^-1*der2h.derp1p1*dS1eta1^2 + (c.copula.be2-1)^-1*c.copula2.be1be2*d2S1eta1)*dereta1derb1, dereta1derb1) + diag( colSums( t( t(VC$weights*VC$indLU*c( (c.copula.be2-1)^-1*c.copula2.be1be2*dS1eta1 )*VC$X1)*der2.par1 ) ) ) ) be2.be2 <- -( crossprod(VC$weights*VC$indLU*c(-(c.copula.be2-1)^-2*c.copula2.be2^2*dS2eta2^2 + (c.copula.be2-1)^-1*der2h.derp2p2*dS2eta2^2 + (c.copula.be2-1)^-1*c.copula2.be2*d2S2eta2 -dS2eta2^-2*d2S2eta2^2 + dS2eta2^-1*d3S2eta2)*dereta2derb2, dereta2derb2) + diag( colSums( t( t(VC$weights*VC$indLU*c((c.copula.be2-1)^-1*c.copula2.be2*dS2eta2 + dS2eta2^-1*d2S2eta2)*VC$X2)*der2.par2 ) ) ) + crossprod(VC$weights*VC$indLU*c(-Xd2P^-2)*der2eta2dery2b2, der2eta2dery2b2) + diag( colSums( t( t(VC$weights*VC$indLU*c(Xd2P^-1)*VC$Xd2)*der2.par2 ) ) ) ) be1.be2 <- -( crossprod(VC$weights*VC$indLU*c((-(c.copula.be2-1)^-2*c.copula2.be1be2*c.copula2.be2 + (c.copula.be2-1)^-1*der2h.derp1p2)*dS1eta1*dS2eta2)*dereta1derb1, dereta2derb2) ) if(VC$BivD %in% c("GAL180","C180","J180","G180","GAL90","C90","J90","G90","GAL270","C270","J270","G270") ) rotConst <- -1 if(VC$BivD %in% VC$BivD2) rotConst <- VC$my.env$signind d2l.rho.rho <- -( VC$weights*VC$indLU*( -(c.copula.be2-1)^-2*c.copula2.be2t^2*derteta.derteta.st^2 + (c.copula.be2-1)^-1*der2h.derteta.teta.st*derteta.derteta.st^2 + rotConst*(c.copula.be2-1)^-1*c.copula2.be2t*der2teta.derteta.stteta.st ) ) rho.rho <- crossprod(X3*c(d2l.rho.rho), X3) be1.rho <- -( crossprod(VC$weights*VC$indLU*c(rotConst*(-(c.copula.be2-1)^-2*c.copula2.be1be2*c.copula2.be2t + (c.copula.be2-1)^-1*der2h.derp1teta)*dS1eta1*derteta.derteta.st)*dereta1derb1, X3) ) be2.rho <- -( crossprod(VC$weights*VC$indLU*c(rotConst*(-(c.copula.be2-1)^-2*(c.copula2.be2)*c.copula2.be2t + (c.copula.be2-1)^-1*der2h.derp2teta)*dS2eta2*derteta.derteta.st)*dereta2derb2, X3) ) H <- H+ rbind( cbind( be1.be1 , be1.be2 , be1.rho ), cbind( t(be1.be2) , be2.be2 , be2.rho ), cbind( t(be1.rho) , t(be2.rho) , rho.rho ) ) } if(sum(VC$indRL)>1){ l.par <- VC$weights*(VC$indRL*log(c(p1-p00))) res <- -sum(l.par) likelihood<-likelihood+ res dl.dbe1 <- -VC$weights*( VC$indRL*(c( ((p1-p00)^(-1)) *( dS1eta1 -c.copula.be1*dS1eta1))*dereta1derb1 )) dl.dbe1 <- colSums(dl.dbe1) dl.dbe2 <- -VC$weights*( VC$indRL*(c((p1-p00)^(-1)*(-c.copula.be2*dS2eta2))*dereta2derb2 )) dl.dbe2 <- colSums(dl.dbe2) dl.dteta.st <- -VC$weights*( VC$indRL*(c((p1-p00)^(-1)*(-c.copula.theta)) ))*X3 dl.dteta.st <- colSums( dl.dteta.st) G <-G+ c( dl.dbe1, dl.dbe2, dl.dteta.st ) be1.be1 <- -( crossprod(VC$weights*VC$indRL*c(-(p1-p00)^-2*(dS1eta1-c.copula.be1*dS1eta1)^2 + (p1-p00)^-1*(d2S1eta1-c.copula2.be1*dS1eta1^2-c.copula.be1*d2S1eta1))*dereta1derb1, dereta1derb1) + diag( colSums( t( t(VC$weights*VC$indRL*c( (p1-p00)^-1*(-c.copula.be1*dS1eta1+dS1eta1) )*VC$X1)*der2.par1 ) ) ) ) be2.be2 <- -( crossprod(VC$weights*VC$indRL*c(-(p1-p00)^-2*(-c.copula.be2)^2*dS2eta2^2 + (p1-p00)^-1*(-c.copula2.be2)*dS2eta2^2 + (p1-p00)^-1*(-c.copula.be2)*d2S2eta2)*dereta2derb2, dereta2derb2) + diag( colSums( t( t(VC$weights*VC$indRL*c( (p1-p00)^-1*(-c.copula.be2)*dS2eta2 )*VC$X2)*der2.par2 ) ) ) ) be1.be2 <- -( crossprod(VC$weights*VC$indRL*c((-(p1-p00)^-2*(1-c.copula.be1)*(-c.copula.be2) + (p1-p00)^-1*(-c.copula2.be1be2))*dS1eta1*dS2eta2)*dereta1derb1, dereta2derb2) ) if(VC$BivD %in% c("GAL180","C180","J180","G180","GAL90","C90","J90","G90","GAL270","C270","J270","G270") ) rotConst <- -1 if(VC$BivD %in% VC$BivD2) rotConst <- VC$my.env$signind d2l.rho.rho <- -( VC$weights*VC$indRL*( -(p1-p00)^-2*(-c.copula.thet)^2*derteta.derteta.st^2 + (p1-p00)^-1*(-bit1.th2ATE)*derteta.derteta.st^2 + rotConst*(p1-p00)^-1*(-c.copula.thet)*der2teta.derteta.stteta.st ) ) rho.rho <- crossprod(X3*c(d2l.rho.rho), X3) be1.rho <- -( crossprod(VC$weights*VC$indRL*c(rotConst*(-(p1-p00)^-2*(1-c.copula.be1)*(-c.copula.thet) + (p1-p00)^-1*(-c.copula2.be1t))*dS1eta1*derteta.derteta.st)*dereta1derb1, X3) ) be2.rho <- -( crossprod(VC$weights*VC$indRL*c(rotConst*(-(p1-p00)^-2*(-c.copula.be2)*(-c.copula.thet) + (p1-p00)^-1*(-c.copula2.be2t))*dS2eta2*derteta.derteta.st)*dereta2derb2, X3) ) H <- H+ rbind( cbind( be1.be1 , be1.be2 , be1.rho ), cbind( t(be1.be2) , be2.be2 , be2.rho ), cbind( t(be1.rho) , t(be2.rho) , rho.rho ) ) } if(sum(VC$indLR)>1){ l.par <- VC$weights*(VC$indLR*log(c(p2-p00))) res <- -sum(l.par) likelihood<-likelihood+ res dl.dbe1 <- -VC$weights*( VC$indLR*(c(((p2-p00)^(-1))*(-c.copula.be1*dS1eta1)) * dereta1derb1 )) dl.dbe1 <- colSums(dl.dbe1) dl.dbe2 <- -VC$weights*(VC$indLR*(c((p2-p00)^(-1))*( c(dS2eta2)*dereta2derb2 -c(c.copula.be2*dS2eta2)*dereta2derb2) )) dl.dbe2 <- colSums(dl.dbe2) dl.dteta.st <- -VC$weights*( VC$indLR*(c((p2-p00)^(-1)*(-c.copula.theta)) ))*X3 dl.dteta.st <- colSums( dl.dteta.st) G <-G+ c( dl.dbe1, dl.dbe2, dl.dteta.st ) be1.be1 <- -( crossprod(VC$weights*VC$indLR*c(-(p2-p00)^-2*(-c.copula.be1*dS1eta1)^2 + (p2-p00)^-1*(-c.copula2.be1*dS1eta1^2-c.copula.be1*d2S1eta1))*dereta1derb1, dereta1derb1) + diag( colSums( t( t(VC$weights*VC$indLR*c( (p2-p00)^-1*(-c.copula.be1*dS1eta1) )*VC$X1)*der2.par1 ) ) ) ) be2.be2 <- -( crossprod(VC$weights*VC$indLR*c(-(p2-p00)^-2*(dS2eta2-c.copula.be2*dS2eta2)^2 + (p2-p00)^-1*(-c.copula2.be2*dS2eta2^2 -c.copula.be2*d2S2eta2+ d2S2eta2) )*dereta2derb2, dereta2derb2) + diag( colSums( t( t(VC$weights*VC$indLR*c( (p2-p00)^-1*(-c.copula.be2*dS2eta2 + dS2eta2) )*VC$X2)*der2.par2 ) ) ) ) be1.be2 <- -( crossprod(VC$weights*VC$indLR*c((-(p2-p00)^-2*(1-c.copula.be2)*(-c.copula.be1) + (p2-p00)^-1*(-c.copula2.be1be2))*dS1eta1*dS2eta2)*dereta1derb1, dereta2derb2) ) if(VC$BivD %in% c("GAL180","C180","J180","G180","GAL90","C90","J90","G90","GAL270","C270","J270","G270") ) rotConst <- -1 if(VC$BivD %in% VC$BivD2) rotConst <- VC$my.env$signind d2l.rho.rho <- -( VC$weights*VC$indLR*( -(p2-p00)^-2*(-c.copula.thet)^2*derteta.derteta.st^2 + (p2-p00)^-1*(-bit1.th2ATE)*derteta.derteta.st^2 + rotConst*(p2-p00)^-1*(-c.copula.thet)*der2teta.derteta.stteta.st ) ) rho.rho <- crossprod(X3*c(d2l.rho.rho), X3) be1.rho <- -( crossprod(VC$weights*VC$indLR*c(rotConst*(-(p2-p00)^-2*(-c.copula.be1)*(-c.copula.thet) + (p2-p00)^-1*(-c.copula2.be1t))*dS1eta1*derteta.derteta.st)*dereta1derb1, X3) ) be2.rho <- -( crossprod(VC$weights*VC$indLR*c(rotConst*(-(p2-p00)^-2*(1-c.copula.be2)*(-c.copula.thet) + (p2-p00)^-1*(-c.copula2.be2t))*dS2eta2*derteta.derteta.st)*dereta2derb2, X3) ) H <- H+ rbind( cbind( be1.be1 , be1.be2 , be1.rho ), cbind( t(be1.be2) , be2.be2 , be2.rho ), cbind( t(be1.rho) , t(be2.rho) , rho.rho ) ) } if(sum(VC$indRI)>1){ l.par <- VC$weights*(VC$indRI*log(mm(p00-p00.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr))) res <- -sum(l.par) likelihood<-likelihood+ res dl.dbe1 <- -VC$weights*(VC$indRI*(mm(p00-p00.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^(-1)*( c(c.copula.be1*dS1eta1)*dereta1derb1 -c(c.copula.be1.mix1*dS1eta1)*dereta1derb1) )) dl.dbe1 <- colSums(dl.dbe1) dl.dbe2 <- -VC$weights*(VC$indRI*(c(mm(p00-p00.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1)*( c(c.copula.be2*dS2eta2)*dereta2derb2 -c(c.copula.be2.mix1*dS2eta2.2)*dereta2derb2.2) )) dl.dbe2 <- colSums(dl.dbe2) dl.dteta.st <- -VC$weights*(VC$indRI*(c(mm(p00-p00.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^(-1))*( c.copula.theta -c.copula.theta.mix1) ))*X3 dl.dteta.st <- colSums( dl.dteta.st) G <-G+ c( dl.dbe1, dl.dbe2, dl.dteta.st ) be1.be1 <- -( crossprod(VC$weights*VC$indRI*c(-mm(p00-p00.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula.be1*dS1eta1-c.copula.be1.mix1*dS1eta1)^2 + mm(p00-p00.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula2.be1*dS1eta1^2+c.copula.be1*d2S1eta1 -c.copula2.be1.mix1*dS1eta1^2-c.copula.be1.mix1*d2S1eta1))*dereta1derb1, dereta1derb1) + diag( colSums( t( t(VC$weights*VC$indRI*c( mm(p00-p00.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula.be1*dS1eta1-c.copula.be1.mix1*dS1eta1) )*VC$X1)*der2.par1 ) ) ) ) be2.be2 <- -( crossprod(VC$weights*VC$indRI*c(-mm(p00-p00.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula.be2*dS2eta2)^2 + mm(p00-p00.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula2.be2*dS2eta2^2 + c.copula.be2*d2S2eta2) )*dereta2derb2, dereta2derb2) + diag( colSums( t( t(VC$weights*VC$indRI*c( mm(p00-p00.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*c.copula.be2*dS2eta2 )*VC$X2)*der2.par2 ) ) )+ crossprod(VC$weights*VC$indRI*c(-mm(p00-p00.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(-c.copula.be2.mix1*dS2eta2.2)^2 + mm(p00-p00.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(-c.copula2.be2.mix1*dS2eta2.2^2 -c.copula.be2.mix1*d2S2eta2.2) )*dereta2derb2.2, dereta2derb2.2) + diag( colSums( t( t(VC$weights*VC$indRI*c( mm(p00-p00.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(-c.copula.be2.mix1)*dS2eta2.2 )*VC$X2.2)*der2.par2 ) ) ) + crossprod(VC$weights*VC$indRI*c(-mm(p00-p00.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(-c.copula.be2.mix1*c.copula.be2)*dS2eta2*dS2eta2.2 )*dereta2derb2, dereta2derb2.2)+ crossprod(VC$weights*VC$indRI*c(-mm(p00-p00.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(-c.copula.be2.mix1*c.copula.be2)*dS2eta2*dS2eta2.2 )*dereta2derb2.2, dereta2derb2) ) be1.be2 <- -( crossprod(VC$weights*VC$indRI*c((-mm(p00-p00.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula.be2)*(c.copula.be1-c.copula.be1.mix1)+ mm(p00-p00.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^(-1)*(c.copula2.be1be2) )*dS1eta1*dS2eta2)*dereta1derb1, dereta2derb2)+ crossprod(VC$weights*VC$indRI*c((-mm(p00-p00.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(-c.copula.be2.mix1)*(c.copula.be1-c.copula.be1.mix1) + mm(p00-p00.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^(-1)*(-c.copula2.be1be2.mix1) )*dS1eta1*dS2eta2.2)*dereta1derb1, dereta2derb2.2) ) if(VC$BivD %in% c("GAL180","C180","J180","G180","GAL90","C90","J90","G90","GAL270","C270","J270","G270") ) rotConst <- -1 if(VC$BivD %in% VC$BivD2) rotConst <- VC$my.env$signind d2l.rho.rho <- -( VC$weights*VC$indRI*( -mm(p00-p00.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula.thet*derteta.derteta.st-c.copula.thet.mix1*derteta.derteta.st)^2 + mm(p00-p00.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(bit1.th2ATE-bit1.th2ATE.mix1)*derteta.derteta.st^2 + rotConst*mm(p00-p00.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula.thet-c.copula.thet.mix1)*der2teta.derteta.stteta.st ) ) rho.rho <- crossprod(X3*c(d2l.rho.rho), X3) be1.rho <- -( crossprod(VC$weights*VC$indRI*c(rotConst*(-mm(p00-p00.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula.be1-c.copula.be1.mix1)*(c.copula.thet-c.copula.thet.mix1) + mm(p00-p00.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula2.be1t-c.copula2.be1t.mix1))*dS1eta1*derteta.derteta.st)*dereta1derb1, X3) ) be2.rho <- -( crossprod(VC$weights*VC$indRI*c(rotConst*(-mm(p00-p00.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula.be2)*(c.copula.thet-c.copula.thet.mix1) + mm(p00-p00.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula2.be2t))*dS2eta2*derteta.derteta.st)*dereta2derb2, X3)+ crossprod(VC$weights*VC$indRI*c(rotConst*(-mm(p00-p00.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(-c.copula.be2.mix1)*(c.copula.thet-c.copula.thet.mix1) + mm(p00-p00.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(-c.copula2.be2t.mix1))*dS2eta2.2*derteta.derteta.st)*dereta2derb2.2, X3) ) H <- H+ rbind( cbind( be1.be1 , be1.be2 , be1.rho ), cbind( t(be1.be2) , be2.be2 , be2.rho ), cbind( t(be1.rho) , t(be2.rho) , rho.rho ) ) } if(sum(VC$indIR)>1){ l.par <- VC$weights*( VC$indIR*log(mm(p00-p00.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)) ) res <- -sum(l.par) likelihood<-likelihood+ res dl.dbe1 <- -VC$weights*(VC$indIR*(mm(p00-p00.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^(-1)*( c(c.copula.be1*dS1eta1)*dereta1derb1 -c(c.copula.be1.mix2*dS1eta1.2)*dereta1derb1.2) )) dl.dbe1 <- colSums(dl.dbe1) dl.dbe2 <- -VC$weights*( VC$indIR*(c(mm(p00-p00.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^(-1))*( c(c.copula.be2*dS2eta2)*dereta2derb2 -c(c.copula.be2.mix2*dS2eta2)*dereta2derb2) )) dl.dbe2 <- colSums(dl.dbe2) dl.dteta.st <- -VC$weights*(VC$indIR*(c(mm(p00-p00.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^(-1))*( c.copula.theta -c.copula.theta.mix2) ))*X3 dl.dteta.st <- colSums( dl.dteta.st) G <-G+ c( dl.dbe1, dl.dbe2, dl.dteta.st ) be1.be1 <- -( crossprod(VC$weights*VC$indIR*c(-mm(p00-p00.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula.be1*dS1eta1)^2 + mm(p00-p00.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula2.be1*dS1eta1^2+c.copula.be1*d2S1eta1 ))*dereta1derb1, dereta1derb1) + diag( colSums( t( t(VC$weights*VC$indIR*c( mm(p00-p00.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula.be1*dS1eta1) )*VC$X1)*der2.par1 ) ) )+ crossprod(VC$weights*VC$indIR*c(-mm(p00-p00.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(-c.copula.be1.mix2*dS1eta1.2)^2 + mm(p00-p00.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(-c.copula2.be1.mix2*dS1eta1.2^2-c.copula.be1.mix2*d2S1eta1.2 ))*dereta1derb1.2, dereta1derb1.2) + diag( colSums( t( t(VC$weights*VC$indIR*c( mm(p00-p00.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(-c.copula.be1.mix2*dS1eta1.2) )*VC$X1.2)*der2.par1 ) ) )+ crossprod(VC$weights*VC$indIR*c(-mm(p00-p00.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(-c.copula.be1.mix2*dS1eta1.2)*(c.copula.be1*dS1eta1) )*dereta1derb1, dereta1derb1.2) + crossprod(VC$weights*VC$indIR*c(-mm(p00-p00.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(-c.copula.be1.mix2*dS1eta1.2)*(c.copula.be1*dS1eta1) )*dereta1derb1.2, dereta1derb1) ) be2.be2 <- -( crossprod(VC$weights*VC$indIR*c(-mm(p00-p00.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula.be2*dS2eta2-c.copula.be2.mix2*dS2eta2)^2 + mm(p00-p00.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula2.be2-c.copula2.be2.mix2)*dS2eta2^2 + mm(p00-p00.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula.be2-c.copula.be2.mix2)*d2S2eta2 )*dereta2derb2, dereta2derb2) + diag( colSums( t( t(VC$weights*VC$indIR*c( mm(p00-p00.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula.be2-c.copula.be2.mix2)*dS2eta2 )*VC$X2)*der2.par2 ) ) ) ) be1.be2 <- -( crossprod(VC$weights*VC$indIR*c((-mm(p00-p00.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula.be1)*(c.copula.be2-c.copula.be2.mix2)+ mm(p00-p00.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^(-1)*(c.copula2.be1be2) )*dS1eta1*dS2eta2)*dereta1derb1, dereta2derb2)+ crossprod(VC$weights*VC$indIR*c((-mm(p00-p00.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(-c.copula.be1.mix2)*(c.copula.be2-c.copula.be2.mix2)+ mm(p00-p00.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^(-1)*(-c.copula2.be1be2.mix2) )*dS1eta1.2*dS2eta2)*dereta1derb1.2, dereta2derb2) ) if(VC$BivD %in% c("GAL180","C180","J180","G180","GAL90","C90","J90","G90","GAL270","C270","J270","G270") ) rotConst <- -1 if(VC$BivD %in% VC$BivD2) rotConst <- VC$my.env$signind d2l.rho.rho <- -( VC$weights*VC$indIR*( -mm(p00-p00.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula.thet*derteta.derteta.st-c.copula.thet.mix2*derteta.derteta.st)^2 + mm(p00-p00.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(bit1.th2ATE-bit1.th2ATE.mix2)*derteta.derteta.st^2 + rotConst*mm(p00-p00.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula.thet-c.copula.thet.mix2)*der2teta.derteta.stteta.st ) ) rho.rho <- crossprod(X3*c(d2l.rho.rho), X3) be1.rho <- -( crossprod(VC$weights*VC$indIR*c(rotConst*(-mm(p00-p00.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula.be1)*(c.copula.thet-c.copula.thet.mix2) + mm(p00-p00.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula2.be1t))*dS1eta1*derteta.derteta.st)*dereta1derb1, X3)+ crossprod(VC$weights*VC$indIR*c(rotConst*(-mm(p00-p00.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(-c.copula.be1.mix2)*(c.copula.thet-c.copula.thet.mix2) + mm(p00-p00.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(-c.copula2.be1t.mix2))*dS1eta1.2*derteta.derteta.st)*dereta1derb1.2, X3) ) be2.rho <- -( crossprod(VC$weights*VC$indIR*c(rotConst*(-mm(p00-p00.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula.be2-c.copula.be2.mix2)*(c.copula.thet-c.copula.thet.mix2) + mm(p00-p00.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula2.be2t-c.copula2.be2t.mix2))*dS2eta2*derteta.derteta.st)*dereta2derb2, X3) ) H <- H+ rbind( cbind( be1.be1 , be1.be2 , be1.rho ), cbind( t(be1.be2) , be2.be2 , be2.rho ), cbind( t(be1.rho) , t(be2.rho) , rho.rho ) ) } if(sum(VC$indLI)>1){ l.par <- VC$weights*(VC$indLI*log(mm(p2-p2.2+p00.mix1-p00, min.pr = VC$min.pr, max.pr = VC$max.pr))) res <- -sum(l.par) likelihood<-likelihood+ res dl.dbe1 <- -VC$weights*( VC$indLI*(c(mm(p2-p2.2+p00.mix1-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^(-1))*( c(c.copula.be1.mix1*dS1eta1 -c.copula.be1*dS1eta1)*dereta1derb1) )) dl.dbe1 <- colSums(dl.dbe1) dl.dbe2 <- -VC$weights*(VC$indLI*(c(mm(p2-p2.2+p00.mix1-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^(-1))*( c(dS2eta2)*dereta2derb2 -c(dS2eta2.2)*dereta2derb2.2 +c(c.copula.be2.mix1*dS2eta2.2)*dereta2derb2.2 -c(c.copula.be2*dS2eta2)*dereta2derb2) )) dl.dbe2 <- colSums(dl.dbe2) dl.dteta.st <- -VC$weights*(VC$indLI*(c(mm(p2-p2.2+p00.mix1-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^(-1)*( c.copula.theta.mix1 -c.copula.theta)) ))*X3 dl.dteta.st <- colSums( dl.dteta.st) G <-G+ c( dl.dbe1, dl.dbe2, dl.dteta.st ) be1.be1 <- -( crossprod(VC$weights*VC$indLI*c(-mm(p2-p2.2+p00.mix1-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula.be1.mix1*dS1eta1-c.copula.be1*dS1eta1)^2 + mm(p2-p2.2+p00.mix1-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula2.be1.mix1*dS1eta1^2+c.copula.be1.mix1*d2S1eta1 -c.copula2.be1*dS1eta1^2-c.copula.be1*d2S1eta1))*dereta1derb1, dereta1derb1) + diag( colSums( t( t(VC$weights*VC$indLI*c( mm(p2-p2.2+p00.mix1-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula.be1.mix1*dS1eta1-c.copula.be1*dS1eta1) )*VC$X1)*der2.par1 ) ) ) ) be2.be2 <- -( crossprod(VC$weights*VC$indLI*c(-mm(p2-p2.2+p00.mix1-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(dS2eta2-c.copula.be2*dS2eta2)^2 + mm(p2-p2.2+p00.mix1-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(-c.copula2.be2)*dS2eta2^2 + mm(p2-p2.2+p00.mix1-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(1-c.copula.be2)*d2S2eta2 )*dereta2derb2, dereta2derb2) + diag( colSums( t( t(VC$weights*VC$indLI*c( mm(p2-p2.2+p00.mix1-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(1-c.copula.be2)*dS2eta2 )*VC$X2)*der2.par2 ) ) )+ crossprod(VC$weights*VC$indLI*c(-mm(p2-p2.2+p00.mix1-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula.be2.mix1*dS2eta2.2-dS2eta2.2)^2 + mm(p2-p2.2+p00.mix1-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula2.be2.mix1)*dS2eta2.2^2 + mm(p2-p2.2+p00.mix1-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula.be2.mix1-1)*d2S2eta2.2 )*dereta2derb2.2, dereta2derb2.2) + diag( colSums( t( t(VC$weights*VC$indLI*c(mm(p2-p2.2+p00.mix1-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula.be2.mix1-1)*dS2eta2.2 )*VC$X2.2)*der2.par2 ) ) )+ crossprod(VC$weights*VC$indLI*c(-mm(p2-p2.2+p00.mix1-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*((dS2eta2-c.copula.be2*dS2eta2)*(c.copula.be2.mix1*dS2eta2.2-dS2eta2.2)) )*dereta2derb2, dereta2derb2.2)+ crossprod(VC$weights*VC$indLI*c(-mm(p2-p2.2+p00.mix1-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*((dS2eta2-c.copula.be2*dS2eta2)*(c.copula.be2.mix1*dS2eta2.2-dS2eta2.2)) )*dereta2derb2.2, dereta2derb2) ) be1.be2 <- -( crossprod(VC$weights*VC$indLI*c((-mm(p2-p2.2+p00.mix1-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula.be1.mix1-c.copula.be1)*(1-c.copula.be2)+ mm(p2-p2.2+p00.mix1-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^(-1)*(-c.copula2.be1be2) )*dS1eta1*dS2eta2)*dereta1derb1, dereta2derb2)+ crossprod(VC$weights*VC$indLI*c((-mm(p2-p2.2+p00.mix1-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula.be1.mix1-c.copula.be1)*(c.copula.be2.mix1-1)+ mm(p2-p2.2+p00.mix1-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^(-1)*(c.copula2.be1be2.mix1))*dS1eta1*dS2eta2.2)*dereta1derb1, dereta2derb2.2) ) if(VC$BivD %in% c("GAL180","C180","J180","G180","GAL90","C90","J90","G90","GAL270","C270","J270","G270") ) rotConst <- -1 if(VC$BivD %in% VC$BivD2) rotConst <- VC$my.env$signind d2l.rho.rho <- -( VC$weights*VC$indLI*( -mm(p2-p2.2+p00.mix1-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula.thet.mix1*derteta.derteta.st-c.copula.thet*derteta.derteta.st)^2 + mm(p2-p2.2+p00.mix1-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(bit1.th2ATE.mix1-bit1.th2ATE)*derteta.derteta.st^2 + rotConst*mm(p2-p2.2+p00.mix1-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula.thet.mix1-c.copula.thet)*der2teta.derteta.stteta.st ) ) rho.rho <- crossprod(X3*c(d2l.rho.rho), X3) be1.rho <- -( crossprod(VC$weights*VC$indLI*c(rotConst*(-mm(p2-p2.2+p00.mix1-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula.be1.mix1-c.copula.be1)*(c.copula.thet.mix1-c.copula.thet) + mm(p2-p2.2+p00.mix1-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula2.be1t.mix1-c.copula2.be1t))*dS1eta1*derteta.derteta.st)*dereta1derb1, X3) ) be2.rho <- -( crossprod(VC$weights*VC$indLI*c(rotConst*(-mm(p2-p2.2+p00.mix1-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(1-c.copula.be2)*(c.copula.thet.mix1-c.copula.thet) + mm(p2-p2.2+p00.mix1-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(-c.copula2.be2t))*dS2eta2*derteta.derteta.st)*dereta2derb2, X3)+ crossprod(VC$weights*VC$indLI*c(rotConst*(-mm(p2-p2.2+p00.mix1-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula.be2.mix1-1)*(c.copula.thet.mix1-c.copula.thet) + mm(p2-p2.2+p00.mix1-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula2.be2t.mix1))*dS2eta2.2*derteta.derteta.st)*dereta2derb2.2, X3) ) H <- H+ rbind( cbind( be1.be1 , be1.be2 , be1.rho ), cbind( t(be1.be2) , be2.be2 , be2.rho ), cbind( t(be1.rho) , t(be2.rho) , rho.rho ) ) } if(sum(VC$indIL)>1){ l.par <- VC$weights*(VC$indIL*log(mm(p1-p1.2+p00.mix2-p00, min.pr = VC$min.pr, max.pr = VC$max.pr))) res <- -sum(l.par) likelihood<-likelihood+ res dl.dbe1 <- -VC$weights*(VC$indIL*(c(mm(p1-p1.2+p00.mix2-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^(-1))*( c(dS1eta1-c.copula.be1*dS1eta1)*dereta1derb1 +c(c.copula.be1.mix2*dS1eta1.2-dS1eta1.2)*dereta1derb1.2) )) dl.dbe1 <- colSums(dl.dbe1) dl.dbe2 <- -VC$weights*(VC$indIL*(c(mm(p1-p1.2+p00.mix2-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^(-1))*( c(c.copula.be2.mix2*dS2eta2)*dereta2derb2 -c(c.copula.be2*dS2eta2)*dereta2derb2) )) dl.dbe2 <- colSums(dl.dbe2) dl.dteta.st <- -VC$weights*( VC$indIL*(c(mm(p1-p1.2+p00.mix2-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^(-1))*( c.copula.theta.mix2 -c.copula.theta) ))*X3 dl.dteta.st <- colSums( dl.dteta.st) G <-G+ c( dl.dbe1, dl.dbe2, dl.dteta.st ) be1.be1 <- -( crossprod(VC$weights*VC$indIL*c(-mm(p1-p1.2+p00.mix2-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(dS1eta1-c.copula.be1*dS1eta1)^2 + mm(p1-p1.2+p00.mix2-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(d2S1eta1-c.copula2.be1*dS1eta1^2-c.copula.be1*d2S1eta1))*dereta1derb1, dereta1derb1) + diag( colSums( t( t(VC$weights*VC$indIL*c( mm(p1-p1.2+p00.mix2-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(dS1eta1-c.copula.be1*dS1eta1) )*VC$X1)*der2.par1 ) ) )+ crossprod(VC$weights*VC$indIL*c(-mm(p1-p1.2+p00.mix2-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(-dS1eta1.2+c.copula.be1.mix2*dS1eta1.2)^2 + mm(p1-p1.2+p00.mix2-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(-d2S1eta1.2+c.copula2.be1.mix2*dS1eta1.2^2+c.copula.be1.mix2*d2S1eta1.2))*dereta1derb1.2, dereta1derb1.2) + diag( colSums( t( t(VC$weights*VC$indIL*c( mm(p1-p1.2+p00.mix2-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(-dS1eta1.2+c.copula.be1.mix2*dS1eta1.2) )*VC$X1.2)*der2.par1 ) ) )+ crossprod(VC$weights*VC$indIL*c(-mm(p1-p1.2+p00.mix2-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(-dS1eta1.2+c.copula.be1.mix2*dS1eta1.2)*(dS1eta1-c.copula.be1*dS1eta1) )*dereta1derb1, dereta1derb1.2)+ crossprod(VC$weights*VC$indIL*c(-mm(p1-p1.2+p00.mix2-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(-dS1eta1.2+c.copula.be1.mix2*dS1eta1.2)*(dS1eta1-c.copula.be1*dS1eta1) )*dereta1derb1.2, dereta1derb1) ) be2.be2 <- -( crossprod(VC$weights*VC$indIL*c(-mm(p1-p1.2+p00.mix2-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula.be2.mix2*dS2eta2-c.copula.be2*dS2eta2)^2 + mm(p1-p1.2+p00.mix2-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula2.be2.mix2-c.copula2.be2)*dS2eta2^2 + mm(p1-p1.2+p00.mix2-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula.be2.mix2-c.copula.be2)*d2S2eta2 )*dereta2derb2, dereta2derb2) + diag( colSums( t( t(VC$weights*VC$indIL*c( mm(p1-p1.2+p00.mix2-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula.be2.mix2-c.copula.be2)*dS2eta2 )*VC$X2)*der2.par2 ) ) ) ) be1.be2 <- -( crossprod(VC$weights*VC$indIL*c((-mm(p1-p1.2+p00.mix2-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(1-c.copula.be1)*(c.copula.be2.mix2-c.copula.be2)+ mm(p1-p1.2+p00.mix2-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^(-1)*(-c.copula2.be1be2) )*dS1eta1*dS2eta2)*dereta1derb1, dereta2derb2)+ crossprod(VC$weights*VC$indIL*c((-mm(p1-p1.2+p00.mix2-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula.be1.mix2-1)*(c.copula.be2.mix2-c.copula.be2)+ mm(p1-p1.2+p00.mix2-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^(-1)*(c.copula2.be1be2.mix2))*dS1eta1.2*dS2eta2)*dereta1derb1.2, dereta2derb2) ) if(VC$BivD %in% c("GAL180","C180","J180","G180","GAL90","C90","J90","G90","GAL270","C270","J270","G270") ) rotConst <- -1 if(VC$BivD %in% VC$BivD2) rotConst <- VC$my.env$signind d2l.rho.rho <- -( VC$weights*VC$indIL*( -mm(p1-p1.2+p00.mix2-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula.thet.mix2*derteta.derteta.st-c.copula.thet*derteta.derteta.st)^2 + mm(p1-p1.2+p00.mix2-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(bit1.th2ATE.mix2-bit1.th2ATE)*derteta.derteta.st^2 + rotConst*mm(p1-p1.2+p00.mix2-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula.thet.mix2-c.copula.thet)*der2teta.derteta.stteta.st ) ) rho.rho <- crossprod(X3*c(d2l.rho.rho), X3) be1.rho <- -( crossprod(VC$weights*VC$indIL*c(rotConst*(-mm(p1-p1.2+p00.mix2-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(1-c.copula.be1)*(c.copula.thet.mix2-c.copula.thet) + mm(p1-p1.2+p00.mix2-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(-c.copula2.be1t))*dS1eta1*derteta.derteta.st)*dereta1derb1, X3)+ crossprod(VC$weights*VC$indIL*c(rotConst*(-mm(p1-p1.2+p00.mix2-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula.be1.mix2-1)*(c.copula.thet.mix2-c.copula.thet)+ mm(p1-p1.2+p00.mix2-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula2.be1t.mix2) )*dS1eta1.2*derteta.derteta.st)*dereta1derb1.2, X3) ) be2.rho <- -( crossprod(VC$weights*VC$indIL*c(rotConst*(-mm(p1-p1.2+p00.mix2-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula.be2.mix2-c.copula.be2)*(c.copula.thet.mix2-c.copula.thet) + mm(p1-p1.2+p00.mix2-p00, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula2.be2t.mix2-c.copula2.be2t))*dS2eta2*derteta.derteta.st)*dereta2derb2, X3) ) H <- H+ rbind( cbind( be1.be1 , be1.be2 , be1.rho ), cbind( t(be1.be2) , be2.be2 , be2.rho ), cbind( t(be1.rho) , t(be2.rho) , rho.rho ) ) } if(sum(VC$indII)>1){ l.par <- VC$weights*(VC$indII*log( mm(p00-p00.mix1-p00.mix2+p00.2, min.pr = VC$min.pr, max.pr = VC$max.pr) )) res <- -sum(l.par) likelihood<-likelihood+ res dl.dbe1 <- -VC$weights*(VC$indII*(c(mm(p00-p00.mix1-p00.mix2+p00.2, min.pr = VC$min.pr, max.pr = VC$max.pr)^(-1))*( (c(c.copula.be1*dS1eta1)*dereta1derb1) -(c(c.copula.be1.mix1*dS1eta1) * dereta1derb1) -(c(c.copula.be1.mix2*dS1eta1.2)*dereta1derb1.2) +(c(c.copula.be1.2*dS1eta1.2)*dereta1derb1.2)) )) dl.dbe1 <- colSums(dl.dbe1) dl.dbe2 <- -VC$weights*(VC$indII*(c(mm(p00-p00.mix1-p00.mix2+p00.2, min.pr = VC$min.pr, max.pr = VC$max.pr)^(-1))*( c(c.copula.be2*dS2eta2)*dereta2derb2 -c(c.copula.be2.mix1*dS2eta2.2)*dereta2derb2.2 -c(c.copula.be2.mix2*dS2eta2)*dereta2derb2 +c(c.copula.be2.2*dS2eta2.2)*dereta2derb2.2) )) dl.dbe2 <- colSums(dl.dbe2) dl.dteta.st <- -VC$weights*(VC$indII*(c(mm(p00-p00.mix1-p00.mix2+p00.2, min.pr = VC$min.pr, max.pr = VC$max.pr)^(-1))*( c(c.copula.theta -(c.copula.theta.mix1) -(c.copula.theta.mix2) +c.copula.theta.2)) ))*X3 dl.dteta.st <- colSums( dl.dteta.st) G <-G+ c( dl.dbe1, dl.dbe2, dl.dteta.st ) be1.be1 <- -( crossprod(VC$weights*VC$indII*c(-mm(p00-p00.mix1-p00.mix2+p00.2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula.be1*dS1eta1-c.copula.be1.mix1*dS1eta1)^2 + mm(p00-p00.mix1-p00.mix2+p00.2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula2.be1*dS1eta1^2+c.copula.be1*d2S1eta1 -c.copula2.be1.mix1*dS1eta1^2-c.copula.be1.mix1*d2S1eta1))*dereta1derb1, dereta1derb1) + diag( colSums( t( t(VC$weights*VC$indII*c( mm(p00-p00.mix1-p00.mix2+p00.2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula.be1*dS1eta1-c.copula.be1.mix1*dS1eta1) )*VC$X1)*der2.par1 ) ) ) + crossprod(VC$weights*VC$indII*c(-mm(p00-p00.mix1-p00.mix2+p00.2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(-c.copula.be1.mix2*dS1eta1.2+c.copula.be1.2*dS1eta1.2)^2 + mm(p00-p00.mix1-p00.mix2+p00.2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula2.be1.2*dS1eta1.2^2+c.copula.be1.2*d2S1eta1.2 -c.copula2.be1.mix2*dS1eta1.2^2-c.copula.be1.mix2*d2S1eta1.2))*dereta1derb1.2, dereta1derb1.2) + diag( colSums( t( t(VC$weights*VC$indII*c( mm(p00-p00.mix1-p00.mix2+p00.2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula.be1.2*dS1eta1.2-c.copula.be1.mix2*dS1eta1.2) )*VC$X1.2)*der2.par1 ) ) ) + crossprod(VC$weights*VC$indII*c(-mm(p00-p00.mix1-p00.mix2+p00.2, min.pr = VC$min.pr, max.pr = VC$max.pr)^(-2)*(c.copula.be1*dS1eta1-c.copula.be1.mix1*dS1eta1)*(-c.copula.be1.mix2*dS1eta1.2+c.copula.be1.2*dS1eta1.2) )*dereta1derb1, dereta1derb1.2)+ crossprod(VC$weights*VC$indII*c(-mm(p00-p00.mix1-p00.mix2+p00.2, min.pr = VC$min.pr, max.pr = VC$max.pr)^(-2)*(c.copula.be1*dS1eta1-c.copula.be1.mix1*dS1eta1)*(-c.copula.be1.mix2*dS1eta1.2+c.copula.be1.2*dS1eta1.2) )*dereta1derb1.2, dereta1derb1) ) be2.be2 <- -( crossprod(VC$weights*VC$indII*c(-mm(p00-p00.mix1-p00.mix2+p00.2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula.be2*dS2eta2-c.copula.be2.mix2*dS2eta2)^2 + mm(p00-p00.mix1-p00.mix2+p00.2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula2.be2-c.copula2.be2.mix2)*dS2eta2^2 +mm(p00-p00.mix1-p00.mix2+p00.2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula.be2-c.copula.be2.mix2)*d2S2eta2 )*dereta2derb2, dereta2derb2) + diag( colSums( t( t(VC$weights*VC$indII*c( mm(p00-p00.mix1-p00.mix2+p00.2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula.be2-c.copula.be2.mix2)*dS2eta2 )*VC$X2)*der2.par2 ) ) ) + crossprod(VC$weights*VC$indII*c(-mm(p00-p00.mix1-p00.mix2+p00.2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula.be2.2*dS2eta2.2-c.copula.be2.mix1*dS2eta2.2)^2 + mm(p00-p00.mix1-p00.mix2+p00.2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula2.be2.2-c.copula2.be2.mix1)*dS2eta2.2^2 +mm(p00-p00.mix1-p00.mix2+p00.2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula.be2.2-c.copula.be2.mix1)*d2S2eta2.2 )*dereta2derb2.2, dereta2derb2.2) + diag( colSums( t( t(VC$weights*VC$indII*c( mm(p00-p00.mix1-p00.mix2+p00.2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula.be2.2-c.copula.be2.mix1)*dS2eta2.2 )*VC$X2.2)*der2.par2 ) ) )+ crossprod(VC$weights*VC$indII*c(-mm(p00-p00.mix1-p00.mix2+p00.2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*((c.copula.be2*dS2eta2-c.copula.be2.mix2*dS2eta2)*(c.copula.be2.2*dS2eta2.2-c.copula.be2.mix1*dS2eta2.2)) )*dereta2derb2, dereta2derb2.2)+ crossprod(VC$weights*VC$indII*c(-mm(p00-p00.mix1-p00.mix2+p00.2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*((c.copula.be2*dS2eta2-c.copula.be2.mix2*dS2eta2)*(c.copula.be2.2*dS2eta2.2-c.copula.be2.mix1*dS2eta2.2)) )*dereta2derb2.2, dereta2derb2) ) be1.be2 <- -( crossprod(VC$weights*VC$indII*c((-mm(p00-p00.mix1-p00.mix2+p00.2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula.be2-c.copula.be2.mix2)*(c.copula.be1-c.copula.be1.mix1)+ mm(p00-p00.mix1-p00.mix2+p00.2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula2.be1be2) )*dS1eta1*dS2eta2)*dereta1derb1, dereta2derb2)+ crossprod(VC$weights*VC$indII*c((-mm(p00-p00.mix1-p00.mix2+p00.2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula.be2.2-c.copula.be2.mix1)*(c.copula.be1-c.copula.be1.mix1)+ mm(p00-p00.mix1-p00.mix2+p00.2, min.pr = VC$min.pr, max.pr = VC$max.pr)^(-1)*(-c.copula2.be1be2.mix1) )*dS1eta1*dS2eta2.2)*dereta1derb1, dereta2derb2.2)+ crossprod(VC$weights*VC$indII*c((-mm(p00-p00.mix1-p00.mix2+p00.2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula.be2-c.copula.be2.mix2)*(c.copula.be1.2-c.copula.be1.mix2)+ mm(p00-p00.mix1-p00.mix2+p00.2, min.pr = VC$min.pr, max.pr = VC$max.pr)^(-1)*(-c.copula2.be1be2.mix2) )*dS1eta1.2*dS2eta2)*dereta1derb1.2, dereta2derb2)+ crossprod(VC$weights*VC$indII*c((-mm(p00-p00.mix1-p00.mix2+p00.2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula.be2.2-c.copula.be2.mix1)*(c.copula.be1.2-c.copula.be1.mix2)+ mm(p00-p00.mix1-p00.mix2+p00.2, min.pr = VC$min.pr, max.pr = VC$max.pr)^(-1)*(c.copula2.be1be2.2) )*dS1eta1.2*dS2eta2.2)*dereta1derb1.2, dereta2derb2.2) ) if(VC$BivD %in% c("GAL180","C180","J180","G180","GAL90","C90","J90","G90","GAL270","C270","J270","G270") ) rotConst <- -1 if(VC$BivD %in% VC$BivD2) rotConst <- VC$my.env$signind d2l.rho.rho <- -( VC$weights*VC$indII*( -mm(p00-p00.mix1-p00.mix2+p00.2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula.thet*derteta.derteta.st-c.copula.thet.mix1*derteta.derteta.st-c.copula.thet.mix2*derteta.derteta.st+c.copula.thet.2*derteta.derteta.st)^2 + mm(p00-p00.mix1-p00.mix2+p00.2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(bit1.th2ATE-bit1.th2ATE.mix1-bit1.th2ATE.mix2+bit1.th2ATE.2)*derteta.derteta.st^2 + rotConst*mm(p00-p00.mix1-p00.mix2+p00.2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula.thet-c.copula.thet.mix1-c.copula.thet.mix2+c.copula.thet.2)*der2teta.derteta.stteta.st ) ) rho.rho <- crossprod(X3*c(d2l.rho.rho), X3) be1.rho <- -( crossprod(VC$weights*VC$indII*c(rotConst*(-mm(p00-p00.mix1-p00.mix2+p00.2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula.be1-c.copula.be1.mix1)*(c.copula.thet-c.copula.thet.mix1-c.copula.thet.mix2+c.copula.thet.2) + mm(p00-p00.mix1-p00.mix2+p00.2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula2.be1t-c.copula2.be1t.mix1))*dS1eta1*derteta.derteta.st)*dereta1derb1, X3)+ crossprod(VC$weights*VC$indII*c(rotConst*(-mm(p00-p00.mix1-p00.mix2+p00.2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula.be1.2-c.copula.be1.mix2)*(c.copula.thet-c.copula.thet.mix1-c.copula.thet.mix2+c.copula.thet.2) + mm(p00-p00.mix1-p00.mix2+p00.2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula2.be1t.2-c.copula2.be1t.mix2))*dS1eta1.2*derteta.derteta.st)*dereta1derb1.2, X3) ) be2.rho <- -( crossprod(VC$weights*VC$indII*c(rotConst*(-mm(p00-p00.mix1-p00.mix2+p00.2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula.be2-c.copula.be2.mix2)*(c.copula.thet-c.copula.thet.mix1-c.copula.thet.mix2+c.copula.thet.2) + mm(p00-p00.mix1-p00.mix2+p00.2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula2.be2t-c.copula2.be2t.mix2))*dS2eta2*derteta.derteta.st)*dereta2derb2, X3)+ crossprod(VC$weights*VC$indII*c(rotConst*(-mm(p00-p00.mix1-p00.mix2+p00.2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula.be2.2-c.copula.be2.mix1)*(c.copula.thet-c.copula.thet.mix1-c.copula.thet.mix2+c.copula.thet.2) + mm(p00-p00.mix1-p00.mix2+p00.2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula2.be2t.2-c.copula2.be2t.mix1))*dS2eta2.2*derteta.derteta.st)*dereta2derb2.2, X3) ) H <- H+ rbind( cbind( be1.be1 , be1.be2 , be1.rho ), cbind( t(be1.be2) , be2.be2 , be2.rho ), cbind( t(be1.rho) , t(be2.rho) , rho.rho ) ) } if(sum(VC$indUI)>1){ l.par <- VC$weights*( VC$indUI*( log( mm(c.copula.be1-c.copula.be1.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr) ) + log(-dS1eta1)+ log(Xd1P))) res <- -sum(l.par) likelihood<-likelihood+ res dl.dbe1 <- -VC$weights*(VC$indUI*(c(mm(c.copula.be1 - c.copula.be1.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^(-1)) * c( (c.copula2.be1 - c.copula2.be1.mix1) * dS1eta1) * dereta1derb1 + c((dS1eta1)^(-1)*d2S1eta1) * dereta1derb1 +c(Xd1P)^(-1)*der2eta1dery1b1 )) dl.dbe1 <- colSums(dl.dbe1) dl.dbe2 <- -VC$weights*(VC$indUI*( mm(c.copula.be1 - c.copula.be1.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^(-1) * ( c(c.copula2.be1be2 * dS2eta2) * dereta2derb2 - c(c.copula2.be1be2.mix1 * dS2eta2.2) * dereta2derb2.2 ) )) dl.dbe2 <- colSums(dl.dbe2) dl.dteta.st <- -VC$weights*(VC$indUI*(c(mm(c.copula.be1 - c.copula.be1.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^(-1))*( c(c.copula2.be1th - c.copula2.be1th.mix1)) ))*X3 dl.dteta.st <- colSums( dl.dteta.st) G <-G+ c( dl.dbe1, dl.dbe2, dl.dteta.st ) be1.be1 <- -( crossprod(VC$weights*VC$indUI*c(-mm(c.copula.be1-c.copula.be1.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula2.be1*dS1eta1-c.copula2.be1.mix1*dS1eta1)^2 + mm(c.copula.be1-c.copula.be1.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(der3C.derp1p1p1-der3C.derp1p1p1.mix1)*dS1eta1^2 + mm(c.copula.be1-c.copula.be1.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula2.be1-c.copula2.be1.mix1)*d2S1eta1 -dS1eta1^-2*d2S1eta1^2 + dS1eta1^-1*d3S1eta1)*dereta1derb1, dereta1derb1) + diag( colSums( t( t(VC$weights*VC$indUI*c(mm(c.copula.be1-c.copula.be1.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula2.be1-c.copula2.be1.mix1)*dS1eta1 + dS1eta1^-1*d2S1eta1)*VC$X1)*der2.par1 ) ) ) + crossprod(VC$weights*VC$indUI*c(-Xd1P^-2)*der2eta1dery1b1, der2eta1dery1b1) + diag( colSums( t( t(VC$weights*VC$indUI*c(Xd1P^-1)*VC$Xd1)*der2.par1 ) ) ) ) be2.be2 <- -( crossprod(VC$weights*VC$indUI*c(-mm(c.copula.be1-c.copula.be1.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula2.be1be2*dS2eta2)^2 + mm(c.copula.be1-c.copula.be1.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(der2h.derp1p2)*dS2eta2^2 + mm(c.copula.be1-c.copula.be1.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*c.copula2.be1be2*d2S2eta2 )*dereta2derb2, dereta2derb2)+ diag( colSums( t( t(VC$weights*VC$indUI*c( mm(c.copula.be1-c.copula.be1.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula2.be1be2)*dS2eta2 )*VC$X2)*der2.par2 ) ) )+ crossprod(VC$weights*VC$indUI*c(-mm(c.copula.be1-c.copula.be1.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(-c.copula2.be1be2.mix1*dS2eta2.2)^2 + mm(c.copula.be1-c.copula.be1.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*-der2h.derp1p2.mix1*dS2eta2.2^2 + mm(c.copula.be1-c.copula.be1.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*-c.copula2.be1be2.mix1*d2S2eta2.2 )*dereta2derb2.2, dereta2derb2.2) + diag( colSums( t( t(VC$weights*VC$indUI*c(mm(c.copula.be1-c.copula.be1.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*-c.copula2.be1be2.mix1*dS2eta2.2)*VC$X2.2)*der2.par2 ) ) )+ crossprod(VC$weights*VC$indUI*c(-mm(c.copula.be1-c.copula.be1.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(-c.copula2.be1be2.mix1*c.copula2.be1be2)*dS2eta2*dS2eta2.2 )*dereta2derb2, dereta2derb2.2)+ crossprod(VC$weights*VC$indUI*c(-mm(c.copula.be1-c.copula.be1.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(-c.copula2.be1be2.mix1*c.copula2.be1be2)*dS2eta2*dS2eta2.2 )*dereta2derb2.2, dereta2derb2) ) be1.be2 <- -( crossprod(VC$weights*VC$indUI*c((-mm(c.copula.be1-c.copula.be1.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula2.be1-c.copula2.be1.mix1)*(c.copula2.be1be2)+ mm(c.copula.be1-c.copula.be1.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^(-1)*(der2h.derp1p1) )*dS1eta1*dS2eta2)*dereta1derb1, dereta2derb2)+ crossprod(VC$weights*VC$indUI*c((-mm(c.copula.be1-c.copula.be1.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula2.be1-c.copula2.be1.mix1)*(-c.copula2.be1be2.mix1)+ mm(c.copula.be1-c.copula.be1.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^(-1)*(-der2h.derp1p1.mix1))*dS1eta1*dS2eta2.2)*dereta1derb1, dereta2derb2.2) ) if(VC$BivD %in% c("GAL180","C180","J180","G180","GAL90","C90","J90","G90","GAL270","C270","J270","G270") ) rotConst <- -1 if(VC$BivD %in% VC$BivD2) rotConst <- VC$my.env$signind d2l.rho.rho <- -( VC$weights*VC$indUI*( -mm(c.copula.be1-c.copula.be1.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula2.be1t*derteta.derteta.st-c.copula2.be1t.mix1*derteta.derteta.st)^2 + mm(c.copula.be1-c.copula.be1.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(der3C.derp1tetateta-der3C.derp1tetateta.mix1)*derteta.derteta.st^2 + rotConst*mm(c.copula.be1-c.copula.be1.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula2.be1t-c.copula2.be1t.mix1)*der2teta.derteta.stteta.st ) ) rho.rho <- crossprod(X3*c(d2l.rho.rho), X3) be1.rho <- -( crossprod(VC$weights*VC$indUI*c(rotConst*(-mm(c.copula.be1-c.copula.be1.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula2.be1-c.copula2.be1.mix1)*(c.copula2.be1t-c.copula2.be1t.mix1) + mm(c.copula.be1-c.copula.be1.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(der3C.p1p1teta-der3C.p1p1teta.mix1))*dS1eta1*derteta.derteta.st)*dereta1derb1, X3) ) be2.rho <- -( crossprod(VC$weights*VC$indUI*c(rotConst*(-mm(c.copula.be1-c.copula.be1.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula2.be1be2)*(c.copula2.be1t-c.copula2.be1t.mix1) + mm(c.copula.be1-c.copula.be1.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(der2h.derp1teta))*dS2eta2*derteta.derteta.st)*dereta2derb2, X3)+ crossprod(VC$weights*VC$indUI*c(rotConst*(-mm(c.copula.be1-c.copula.be1.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(-c.copula2.be1be2.mix1)*(c.copula2.be1t-c.copula2.be1t.mix1) + mm(c.copula.be1-c.copula.be1.mix1, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(-der2h.derp1teta.mix1))*dS2eta2.2*derteta.derteta.st)*dereta2derb2.2, X3)) H <- H+ rbind( cbind( be1.be1 , be1.be2 , be1.rho ), cbind( t(be1.be2) , be2.be2 , be2.rho ), cbind( t(be1.rho) , t(be2.rho) , rho.rho ) ) } if(sum(VC$indIU)>1){ l.par <- VC$weights*(VC$indIU*( log( mm(c.copula.be2-c.copula.be2.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr) ) + log(-dS2eta2)+log(Xd2P))) res <- -sum(l.par) likelihood<-likelihood+ res dl.dbe1 <- -VC$weights*(VC$indIU*( mm(c.copula.be2 - c.copula.be2.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^(-1) * ( c(c.copula2.be1be2 * dS1eta1) * dereta1derb1 - c(c.copula2.be1be2.mix2 * dS1eta1.2) * dereta1derb1.2 ) )) dl.dbe1 <- colSums(dl.dbe1) dl.dbe2 <- -VC$weights*(VC$indIU*(c(mm(c.copula.be2 - c.copula.be2.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^(-1)) * ( c( (c.copula2.be2 - c.copula2.be2.mix2) * dS2eta2 ) * dereta2derb2 ) + c((dS2eta2)^(-1)*d2S2eta2) * dereta2derb2 + c(Xd2P)^(-1)*der2eta2dery2b2 )) dl.dbe2 <- colSums(dl.dbe2) dl.dteta.st <- -VC$weights*(VC$indIU*(c(mm(c.copula.be2 - c.copula.be2.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^(-1))*( c(c.copula2.be2th - c.copula2.be2th.mix2)) ))*X3 dl.dteta.st <- colSums( dl.dteta.st) G <-G+ c( dl.dbe1, dl.dbe2, dl.dteta.st ) be1.be1 <- -( crossprod(VC$weights*VC$indIU*c(-mm(c.copula.be2-c.copula.be2.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula2.be1be2*dS1eta1)^2 + mm(c.copula.be2-c.copula.be2.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(der2h.derp1p1*dS1eta1^2 ) + mm(c.copula.be2-c.copula.be2.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*c.copula2.be1be2*d2S1eta1)*dereta1derb1, dereta1derb1) + diag( colSums( t( t(VC$weights*VC$indIU*c( mm(c.copula.be2-c.copula.be2.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*c.copula2.be1be2*dS1eta1 )*VC$X1)*der2.par1 ) ) )+ crossprod(VC$weights*VC$indIU*c(-mm(c.copula.be2-c.copula.be2.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(-c.copula2.be1be2.mix2*dS1eta1.2)^2 + mm(c.copula.be2-c.copula.be2.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(-der2h.derp1p1.mix2*dS1eta1.2^2 ) + mm(c.copula.be2-c.copula.be2.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(-c.copula2.be1be2.mix2*d2S1eta1.2))*dereta1derb1.2, dereta1derb1.2) + diag( colSums( t( t(VC$weights*VC$indIU*c( (mm(c.copula.be2-c.copula.be2.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1)*(-c.copula2.be1be2.mix2*dS1eta1.2) )*VC$X1.2)*der2.par1 ) ) )+ crossprod(VC$weights*VC$indIU*c(-mm(c.copula.be2-c.copula.be2.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(-c.copula2.be1be2.mix2*c.copula2.be1be2)*dS1eta1*dS1eta1.2 )*dereta1derb1, dereta1derb1.2)+ crossprod(VC$weights*VC$indIU*c(-mm(c.copula.be2-c.copula.be2.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(-c.copula2.be1be2.mix2*c.copula2.be1be2)*dS1eta1*dS1eta1.2 )*dereta1derb1.2, dereta1derb1) ) be2.be2 <- -( crossprod(VC$weights*VC$indIU*c(-mm(c.copula.be2-c.copula.be2.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula2.be2-c.copula2.be2.mix2)^2*dS2eta2^2 -dS2eta2^-2*(d2S2eta2^2)+dS2eta2^-1*(d3S2eta2)+ + mm(c.copula.be2-c.copula.be2.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(der2h.derp2p2-der2h.derp2p2.mix2)*dS2eta2^2 + mm(c.copula.be2-c.copula.be2.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula2.be2-c.copula2.be2.mix2)*d2S2eta2 )*dereta2derb2, dereta2derb2) + diag( colSums( t( t(VC$weights*VC$indIU*c( mm(c.copula.be2-c.copula.be2.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula2.be2-c.copula2.be2.mix2)*dS2eta2+ dS2eta2^-1*d2S2eta2 )*VC$X2)*der2.par2 ) ) )+ crossprod(VC$weights*VC$indIU*c(-Xd2P^-2)*der2eta2dery2b2, der2eta2dery2b2) + diag( colSums( t( t(VC$weights*VC$indIU*c(Xd2P^-1)*VC$Xd2)*der2.par2 ) ) ) ) be1.be2 <- -( crossprod(VC$weights*VC$indIU*c(-mm(c.copula.be2-c.copula.be2.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*c.copula2.be1be2*dS1eta1*(c.copula2.be2*dS2eta2-c.copula2.be2.mix2*dS2eta2))*dereta1derb1, dereta2derb2)+ crossprod(VC$weights*VC$indIU*c(mm(c.copula.be2-c.copula.be2.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(der2h.derp1p2*dS1eta1*dS2eta2))*dereta1derb1, dereta2derb2)+ crossprod(VC$weights*VC$indIU*c(-mm(c.copula.be2-c.copula.be2.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(-c.copula2.be1be2.mix2*dS1eta1.2)*(c.copula2.be2*dS2eta2-c.copula2.be2.mix2*dS2eta2))*dereta1derb1.2, dereta2derb2)+ crossprod(VC$weights*VC$indIU*c(mm(c.copula.be2-c.copula.be2.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(-der2h.derp1p2.mix2*dS1eta1.2*dS2eta2))*dereta1derb1.2, dereta2derb2) ) if(VC$BivD %in% c("GAL180","C180","J180","G180","GAL90","C90","J90","G90","GAL270","C270","J270","G270") ) rotConst <- -1 if(VC$BivD %in% VC$BivD2) rotConst <- VC$my.env$signind d2l.rho.rho <- -( VC$weights*VC$indIU*( -mm(c.copula.be2-c.copula.be2.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula2.be2t*derteta.derteta.st-c.copula2.be2t.mix2*derteta.derteta.st)^2 + mm(c.copula.be2-c.copula.be2.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(der2h.derteta.teta.st -der2h.derteta.teta.st.mix2 )*derteta.derteta.st^2 + rotConst*mm(c.copula.be2-c.copula.be2.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(c.copula2.be2t-c.copula2.be2t.mix2)*der2teta.derteta.stteta.st ) ) rho.rho <- crossprod(X3*c(d2l.rho.rho), X3) be1.rho <- -( crossprod(VC$weights*VC$indIU*c(rotConst*(-mm(c.copula.be2-c.copula.be2.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula2.be1be2)*(c.copula2.be2t-c.copula2.be2t.mix2) + mm(c.copula.be2-c.copula.be2.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(der2h.derp1teta))*dS1eta1*derteta.derteta.st)*dereta1derb1, X3)+ crossprod(VC$weights*VC$indIU*c(rotConst*(-mm(c.copula.be2-c.copula.be2.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(-c.copula2.be1be2.mix2)*(c.copula2.be2t-c.copula2.be2t.mix2) + mm(c.copula.be2-c.copula.be2.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(-der2h.derp1teta.mix2))*dS1eta1.2*derteta.derteta.st)*dereta1derb1.2, X3) ) be2.rho <- -( crossprod(VC$weights*VC$indIU*c(rotConst*(-mm(c.copula.be2-c.copula.be2.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-2*(c.copula2.be2-c.copula2.be2.mix2)*(c.copula2.be2t-c.copula2.be2t.mix2) + mm(c.copula.be2-c.copula.be2.mix2, min.pr = VC$min.pr, max.pr = VC$max.pr)^-1*(der2h.derp2teta-der2h.derp2teta.mix2))*dS2eta2*derteta.derteta.st)*dereta2derb2, X3)) H <- H+ rbind( cbind( be1.be1 , be1.be2 , be1.rho ), cbind( t(be1.be2) , be2.be2 , be2.rho ), cbind( t(be1.rho) , t(be2.rho) , rho.rho ) ) } if(VC$extra.regI == "pC") H <- regH(H, type = 1) S.h <- ps$S.h + monP2 S.h1 <- 0.5*crossprod(params, ps$S.h)%*%params + monP S.h2 <- S.h%*%params + monP1 S.res <- likelihood res <- S.res + S.h1 G <- G + S.h2 H <- H + S.h if(VC$extra.regI == "sED") H <- regH(H, type = 2) list(value=res, gradient=G, hessian=H, S.h=S.h, S.h1=S.h1, S.h2=S.h2, l=S.res, l.ln = l.ln, l.par=l.par,ps = ps, eta1=eta1, eta2=eta2, etad=etad, etas1 = 1, etas2 = 1, BivD=VC$BivD, p1 = p1, p2 = p2, pdf1 = -dS1eta1, pdf2 = -dS2eta2, c.copula.be2 = c.copula.be2, c.copula.be1 = c.copula.be1, c.copula2.be1be2 = c.copula2.be1be2, dl.dbe1 = NULL, dl.dbe2 = NULL, dl.dteta.st = NULL, teta.ind2 = teta.ind2, teta.ind1 = teta.ind1, Cop1 = Cop1, Cop2 = Cop2, teta1 = teta1, teta2 = teta2, indNeq1 = indNeq1, indNeq2 = indNeq2, Veq1 = Veq1, Veq2 = Veq2, k1 = VC$my.env$k1, k2 = VC$my.env$k2, monP2 = monP2) }
op_lists <- function(environmental_df, species_df, listOnly=0){ if(missing(environmental_df) | missing(species_df) ) { print("Select CSV matrices") Filters <- matrix(c("Comma Separated Values (CSV)", "*.csv"), 1, 2, byrow = TRUE) print("Select ENVIRONMENTAL matrix first") env <- read.csv(file.choose()) environmental_df <- read.csv(file.choose()) print("Select SPECIES matrix second") species_df <- read.csv(file.choose()) } df_ambientales <- environmental_df df_densidades <- species_df if(missing(environmental_df) | missing(species_df) ) { stop("The correct matrices were not selected, the script will cancel.") } list_sites <- t(colnames(df_densidades[2:ncol(df_densidades)])) list_especies <- as.vector(df_densidades[,1]) list_ambientales <- as.vector(df_ambientales[,1]) if(listOnly==0){ newList <- list(list_sites, list_especies, list_ambientales) return(newList) } else if(listOnly==1){ newList <- list(list_sites) return(newList) } else if(listOnly==2){ newList <- list(list_especies) return(newList) } else if(listOnly==3){ newList <- list(list_ambientales) return(newList) } }
knitr::opts_chunk$set( collapse = TRUE, comment = " fig.width = 7, fig.height = 4, fig.align = "center" ) library(missMethods) library(ggplot2) set.seed(123) make_simple_MDplot <- function(ds_comp, ds_mis) { ds_comp$missX <- is.na(ds_mis$X) ggplot(ds_comp, aes(x = X, y = Y, col = missX)) + geom_point() } ds_comp <- data.frame(X = rnorm(100), Y = rnorm(100)) ds_mcar <- delete_MCAR(ds_comp, 0.3, "X") make_simple_MDplot(ds_comp, ds_mcar) ds_mar <- delete_MAR_censoring(ds_comp, 0.3, "X", cols_ctrl = "Y") make_simple_MDplot(ds_comp, ds_mar) ds_mar <- delete_MAR_1_to_x(ds_comp, 0.3, "X", cols_ctrl = "Y", x = 2) make_simple_MDplot(ds_comp, ds_mar) ds_mar <- delete_MAR_1_to_x(ds_comp, 0.3, "X", cols_ctrl = "Y", x = 10) make_simple_MDplot(ds_comp, ds_mar) ds_mnar <- delete_MNAR_censoring(ds_comp, 0.3, "X") make_simple_MDplot(ds_comp, ds_mnar)
context("xgb.Booster") test_that("xgb.Booster + linear solver + predict() works", { skip_on_cran() skip_if_not_installed("xgboost") library(xgboost) data(agaricus.train) data(agaricus.test) bst <- xgboost(data = agaricus.train$data, label = agaricus.train$label, eta = 1, nthread = 2, nrounds = 2, eval_metric = "logloss", objective = "binary:logistic", verbose = 0) x <- axe_call(bst) expect_equal(x$call, rlang::expr(dummy_call())) x <- axe_env(bst) expect_lt(lobstr::obj_size(x), lobstr::obj_size(bst)) x <- axe_ctrl(bst) expect_equal(x$params, list(NULL)) x <- axe_fitted(bst) expect_equal(x$raw, raw()) x <- butcher(bst) expect_equal(xgb.importance(model = x), xgb.importance(model = bst)) expect_equal(predict(x, agaricus.test$data), predict(bst, agaricus.test$data)) expect_equal(xgb.dump(x, with_stats = TRUE), xgb.dump(bst, with_stats = TRUE)) }) test_that("xgb.Booster + tree-learning algo + predict() works", { skip_on_cran() skip_if_not_installed("xgboost") library(xgboost) data(agaricus.train) data(agaricus.test) dtrain <- xgb.DMatrix(data = agaricus.train$data, label = agaricus.train$label) bst <- xgb.train(data = dtrain, booster = "gblinear", nthread = 2, nrounds = 2, eval_metric = "logloss", objective = "binary:logistic", print_every_n = 10000L) x <- axe_call(bst) expect_equal(x$call, rlang::expr(dummy_call())) x <- axe_env(bst) expect_lt(lobstr::obj_size(x), lobstr::obj_size(bst)) x <- axe_ctrl(bst) expect_equal(x$params, list(NULL)) x <- axe_fitted(bst) expect_equal(x$raw, raw()) x <- butcher(bst) expect_equal(xgb.importance(model = x), xgb.importance(model = bst)) expect_equal(predict(x, agaricus.test$data), predict(bst, agaricus.test$data)) expect_equal(xgb.dump(x, with_stats = TRUE), xgb.dump(bst, with_stats = TRUE)) })
knitr::opts_chunk$set(fig.width=6, fig.height=4) options(digits = 4) library(phangorn) fdir <- system.file("extdata/trees", package = "phangorn") primates <- read.phyDat(file.path(fdir, "primates.dna"), format = "interleaved") tree <- pratchet(primates, trace=0) |> acctran(primates) parsimony(tree, primates) anc.acctran <- ancestral.pars(tree, primates, "ACCTRAN") anc.mpr <- ancestral.pars(tree, primates, "MPR") plotAnc(tree, anc.mpr, 17) title("MPR") plotAnc(tree, anc.acctran, 17) title("ACCTRAN") fit <- pml(tree, primates) fit <- optim.pml(fit, model="F81", control = pml.control(trace=0)) anc.ml <- ancestral.pml(fit, "ml") anc.bayes <- ancestral.pml(fit, "bayes") plotAnc(tree, anc.ml, 17) title("ML") plotAnc(tree, anc.bayes, 17) title("Bayes") sessionInfo()
symbol_legend_y_correction <- function(x) { is_num <- is.numeric(x) res <- lapply(x, function(s) { if (is.numeric(s)) { ifelse(s %in% c(2, 17, 24), -.025, ifelse(s %in% c(6, 25), .025, 0)) } else 0 }) if (is_num) { unlist(res, use.names = FALSE) } else { res } } get_symbol_gpar <- function(x, fill, col, lwd, separate=FALSE) { is_num <- is.numeric(x) n <- max(length(x), length(fill), length(col), length(lwd)) x <- rep(x, length.out=n) fill <- rep(fill, length.out=n) col <- rep(col, length.out=n) lwd <- rep(lwd, length.out=n) res <- lapply(1:n, function(i) { if (is.numeric(x[i])) { if (x[i] %in% 21:25) { list(fill=fill[i], col=col[i], lwd=lwd[i]) } else { list(fill=as.character(NA), col=fill[i], lwd=lwd[i]) } } else { list(fill=fill[i], col=col[i], lwd=lwd[i]) } }) if (separate) { lapply(res, function(r){ do.call(gpar, r) }) } else { fills <- vapply(res, function(r)r$fill, character(1)) cols <- vapply(res, function(r)r$col, character(1)) lwds <- vapply(res, function(r)r$lwd, numeric(1)) gpar(fill=fills, col=cols, lwd=lwds) } }
knitr::opts_chunk$set( collapse = TRUE, comment = " ) library(finalfit) library(dplyr) dependent = "differ.factor" explanatory = c("age", "sex.factor", "extent.factor", "obstruct.factor", "nodes") colon_s %>% select(age, sex.factor, extent.factor, obstruct.factor, nodes) %>% names() -> explanatory colon_s %>% ff_glimpse(dependent, explanatory) colon_s %>% summary_factorlist(dependent, explanatory, p=TRUE, na_include=TRUE) %>% knitr::kable(row.names=FALSE, align=c("l", "l", "r", "r", "r", "r")) Hmisc::label(colon_s$nodes) = "Lymph nodes involved" explanatory = c("age", "sex.factor", "extent.factor", "nodes") colon_s %>% summary_factorlist(dependent, explanatory, p=TRUE, na_include=TRUE, add_dependent_label=TRUE) %>% knitr::kable(row.names=FALSE, align=c("l", "l", "r", "r", "r", "r")) explanatory = c("age", "sex.factor", "extent.factor", "nodes", "differ.factor") dependent = "mort_5yr" colon_s %>% finalfit(dependent, explanatory, dependent_label_prefix = "") %>% knitr::kable(row.names=FALSE, align=c("l", "l", "r", "r", "r", "r"))
print.kcpRS_workflow<-function(x,...){ res_kcpMean=x$kcpMean res_kcpVar=x$kcpVar res_kcpAR=x$kcpAR res_kcpCorr=x$kcpCorr RMean=ifelse(class(res_kcpMean)=="kcpRS",1,0) RVar=ifelse(class(res_kcpVar)=="kcpRS",1,0) RAR=ifelse(class(res_kcpAR)=="kcpRS",1,0) RCorr=ifelse(class(res_kcpCorr)=="kcpRS",1,0) ntests=RMean+RVar+RAR+RCorr if (ntests==0){warning("No running statistic selected.","\n")} if (ntests>0){ if(RMean==1){ cat("\n") cat(" KCP-Mean:","\n") print(res_kcpMean,kcp_details=FALSE) cat(" ===============================================================================================","\n") } if(RVar==1){ cat("\n") cat(" KCP-Var:","\n") print(res_kcpVar,kcp_details=FALSE) cat(" ===============================================================================================","\n") } if(RAR==1){ cat("\n") cat(" KCP-AR:","\n") print(res_kcpAR,kcp_details=FALSE) cat(" ===============================================================================================","\n") } if(RCorr==1){ cat("\n") cat(" KCP-Corr:","\n") print(res_kcpCorr,kcp_details=FALSE) cat(" ===============================================================================================","\n") } } }
norm.appr.param <- function(parammat){ J <- ncol(parammat) ellipse.param <- list(mu = NULL, Sigmainv = NULL, c = NULL) ellipse.param$mu <- cbind(parammat[5, ], parammat[6, ]) for (j in 1:J){ kap1 <- parammat[2, j] kap2 <- parammat[3, j] lamb <- parammat[4, j] pi_j <- parammat[1, j] ellipse.param$Sigmainv[[j]] <- matrix(c(kap1, rep(lamb, 2), kap2), nrow = 2) ellipse.param$c[j] <- log(pi_j^2 * (kap1 * kap2 - lamb^2)) } return(ellipse.param) }
testthat::test_that("DefaultModelFit: initialize function works", { testthat::expect_is(DefaultModelFit$new(), "DefaultModelFit") }) testthat::test_that("DefaultModelFit: createFormula function works", { instances <- data.frame(c(1, 2), c(2, 2)) colnames(instances) <- c("C1", "Class") testthat::expect_is(DefaultModelFit$new()$createFormula(instances, "Class", simplify = FALSE), "formula") testthat::expect_is(DefaultModelFit$new()$createFormula(instances, "Class", simplify = TRUE), "formula") }) testthat::test_that("DefaultModelFit: createRecipe function works", { instances <- data.frame(c(1, 2), c(2, 2)) colnames(instances) <- c("C1", "Class") testthat::expect_is(DefaultModelFit$new()$createRecipe(instances, "Class"), "recipe") })
library("detectRUNS") genotypeFilePath <- system.file( "extdata", "Kijas2016_Sheep_subset.ped", package="detectRUNS") mapFilePath <- system.file( "extdata", "Kijas2016_Sheep_subset.map", package="detectRUNS") slidingRuns <- slidingRUNS.run( genotypeFile = genotypeFilePath, mapFile = mapFilePath, windowSize = 15, threshold = 0.05, minSNP = 20, ROHet = FALSE, maxOppWindow = 1, maxMissWindow = 1, maxGap = 10^6, minLengthBps = 250000, minDensity = 1/10^3, maxOppRun = NULL, maxMissRun = NULL ) consecutiveRuns <- consecutiveRUNS.run( genotypeFile =genotypeFilePath, mapFile = mapFilePath, minSNP = 20, ROHet = FALSE, maxGap = 10^6, minLengthBps = 250000, maxOppRun = 1, maxMissRun = 1 ) slidingRuns_het <- slidingRUNS.run( genotypeFile = genotypeFilePath, mapFile = mapFilePath, windowSize = 10, threshold = 0.05, minSNP = 10, ROHet = TRUE, maxOppWindow = 2, maxMissWindow = 1, maxGap = 10^6, minLengthBps = 10000, minDensity = 1/10^6, maxOppRun = NULL, maxMissRun = NULL ) consecutiveRuns_het <- consecutiveRUNS.run( genotypeFile =genotypeFilePath, mapFile = mapFilePath, minSNP = 10, ROHet = TRUE, maxGap = 10^6, minLengthBps = 10000, maxOppRun = 2, maxMissRun = 1 ) summaryList <- summaryRuns( runs = slidingRuns, mapFile = mapFilePath, genotypeFile = genotypeFilePath, Class = 6, snpInRuns = TRUE) summaryList$summary_ROH_count summaryList$summary_ROH_mean_chr head(summaryList$SNPinRun) plot_Runs(runs = slidingRuns) plot_StackedRuns(runs = slidingRuns) plot_SnpsInRuns( runs = slidingRuns[slidingRuns$chrom==2,], genotypeFile = genotypeFilePath, mapFile = mapFilePath) plot_SnpsInRuns( runs = slidingRuns[slidingRuns$chrom==24,], genotypeFile = genotypeFilePath, mapFile = mapFilePath) topRuns <- tableRuns( runs = slidingRuns, genotypeFile = genotypeFilePath, mapFile = mapFilePath, threshold = 0.7) print(topRuns) plot_manhattanRuns( runs = slidingRuns[slidingRuns$group=="Jacobs",], genotypeFile = genotypeFilePath, mapFile = mapFilePath) head( Froh_inbreeding(runs = slidingRuns,mapFile = mapFilePath,genome_wide = TRUE)) plot_InbreedingChr( runs = slidingRuns, mapFile = mapFilePath, style = "FrohBoxPlot") savedRunFile <- system.file( "extdata", "Kijas2016_Sheep_subset.sliding.csv", package="detectRUNS") runs <- readExternalRuns(inputFile = savedRunFile, program = "detectRUNS") head(runs)
add_seasons <- function(data, level = "site", season_level = 2, date_column = "yearmon", summary_funs = NA, path = get_default_data_path(), download_if_missing = TRUE, clean = TRUE) { date_column <- tolower(date_column) if (!is.na(summary_funs)) {sumfun <- get(summary_funs)} grouping <- switch(level, "plot" = c("seasonyear", "treatment", "plot"), "treatment" = c("seasonyear", "treatment"), "site" = c("seasonyear")) if("species" %in% colnames(data)) {grouping <- c(grouping, "species")} newmoons_table <- load_datafile(file.path("Rodents", "moon_dates.csv"), na.strings = "NA", path, download_if_missing) if (date_column == "period" || date_column == "newmoonnumber") { date_vars <- setdiff(c("newmoonnumber", "newmoondate", "censusdate", "period"), date_column) full_data <- data %>% dplyr::left_join(newmoons_table, by = date_column) %>% dplyr::mutate(year = lubridate::year(.data$censusdate), month = lubridate::month(.data$censusdate)) %>% dplyr::select(-tidyselect::any_of(date_vars)) } else if (date_column == "date") { full_data <- data %>% dplyr::mutate(year = lubridate::year(.data$date), month = lubridate::month(.data$date)) } else if (date_column == "yearmon") { full_data <- data } else { print("date_column must equal period, newmoonnumber, date, or yearmon") } if (season_level == 2 || season_level == 4) { full_data$wateryear <- full_data$year if (season_level == 4) { seasons <- rep(c("winter", "spring", "summer", "fall"), each = 3) names(seasons) <- c(12, 1:11) full_data$wateryear[full_data$month == 12] <- full_data$year[full_data$month == 12] + 1 } else if (season_level == 2) { seasons <- rep(c("winter", "summer"), each = 6) names(seasons) <- c(11:12, 1:10) full_data$wateryear[full_data$month %in% c(11,12)] <- full_data$year[full_data$month %in% c(11,12)] + 1 } full_data$season <- seasons[match(unlist(full_data$month), names(seasons))] full_data$seasonyear <- paste(full_data$season, full_data$wateryear) full_data <- full_data %>% dplyr::select(-.data$wateryear) %>% dplyr::mutate(season = factor(.data$season, unique(seasons))) %>% dplyr::arrange(.data$year, .data$month) if (!is.na(summary_funs)) { date_vars <- c("month", "day", "date", "newmoonnumber", "period", "year", "season") full_data <- full_data %>% dplyr::ungroup() %>% dplyr::select(-tidyselect::any_of(date_vars)) %>% dplyr::group_by_at(grouping) %>% dplyr::summarize_all(list(sumfun), na.rm = TRUE) %>% dplyr::mutate(season = sub( " .*$", "", .data$seasonyear ), year = sub( ".* ", "", .data$seasonyear )) %>% dplyr::mutate(season = factor(.data$season, unique(seasons))) %>% dplyr::group_by(.data$year, .data$season) %>% dplyr::select(-.data$seasonyear) %>% dplyr::arrange(.data$year, .data$season) } } else if (season_level == "year" && !(is.na(summary_funs))) { grouping <- grouping[-1] date_vars <- c("month", "day", "date", "newmoonnumber", "period") full_data <- full_data %>% dplyr::ungroup() %>% dplyr::select(-tidyselect::any_of(date_vars)) %>% dplyr::group_by_at(c("year", grouping)) %>% dplyr::summarize_all(list(sumfun), na.rm = TRUE) %>% dplyr::arrange(.data$year) } else { stop("`season_level` must equal 2, 4, or year") } return(full_data) } yearly <- function(...) { add_seasons(..., season_level = "year", summary_funs = "mean") }
setMethod(f = "slingBranchID", signature = signature(x = "ANY"), definition = function(x, thresh = NULL){ L <- length(slingLineages(x)) if(is.null(thresh)){ thresh <- 1/L }else{ if(thresh < 0 | thresh > 1){ stop("'thresh' value must be between 0 and 1.") } } return(factor(apply(slingCurveWeights(x) >= thresh, 1, function(bin){ paste(which(bin), collapse = ',') }))) }) setMethod(f = "slingBranchGraph", signature = signature(x = "ANY"), definition = function(x, thresh = NULL, max_node_size = 100){ brID <- slingBranchID(x, thresh = thresh) nodes <- as.character(levels(brID)) which.lin <- strsplit(nodes, split='[,]') nlins <- vapply(which.lin, length, 0) maxL <- max(nlins) if(maxL == 1){ g <- igraph::graph_from_literal(1) igraph::vertex_attr(g, 'cells') <- length(brID) igraph::vertex_attr(g, 'size') <- max_node_size return(g) } if(length(nodes)==1){ m <- matrix(0, dimnames = list(nodes[1], nodes[1])) g <- igraph::graph_from_adjacency_matrix(m) igraph::vertex_attr(g, 'cells') <- length(brID) igraph::vertex_attr(g, 'size') <- max_node_size return(g) } el <- NULL for(l in seq(2,maxL)){ for(n in nodes[nlins==l]){ desc <- .under(n, nodes) for(d in desc){ if(l - nlins[which(nodes==d)] >= 2){ granddesc <- unique(unlist(lapply(desc, .under, nodes))) if(! d %in% granddesc){ el <- rbind(el, c(n, d)) } }else{ el <- rbind(el, c(n, d)) } } } } g <- igraph::graph_from_edgelist(el) igraph::vertex_attr(g, 'cells') <- table(brID)[ igraph::vertex_attr(g)$name] igraph::vertex_attr(g, 'size') <- max_node_size * igraph::vertex_attr(g)$cells / max(igraph::vertex_attr(g)$cells) return(g) })
PSPMequi <- function(modelname = NULL, biftype = NULL, startpoint = NULL, stepsize = NULL, parbnds = NULL, parameters = NULL, minvals = NULL, maxvals = NULL, options = NULL, clean = FALSE, force = FALSE, debug = FALSE, silent = FALSE) { Oldwd = model.Name = Rmodel = Varlist = Funlist = libfile.Basename = DefaultParameters = NULL; libfile.Fullname = buildSO("PSPMequi", modelname, debug, force, silent) setwd(Oldwd) if (!file.exists(libfile.Fullname)) stop(paste0("\nExecutable ", libfile.Basename, " not found! Computation aborted.\n")) if (!is.character(biftype)) stop('Bifurcation type should be a string (BP, BPE, EQ, LP, ESS or PIP)') if ((!length(startpoint)) || (!is.double(startpoint))) stop('Starting values should be a vector with double values') if ((length(stepsize) != 1) || (!is.double(stepsize))) stop('Step size argument should be a single double value') if (Rmodel == 1) { if ((!length(parbnds)) || (!((length(parbnds) == 3) || (length(parbnds) == 6) || (((length(parbnds)-3) %% 4) == 0)))) stop('Parameter bounds values should be a vector of length 3, 6 or 3+4*N (in case of ESS continuation)') parbnds2 <- NULL if (is.character(parbnds[1])) { defpars <- get("DefaultParameters", envir = .GlobalEnv) if (parbnds[1] %in% names(defpars)) { indx <- (1:length(defpars))[parbnds[1] == names(defpars)] parbnds2 <- c(parbnds2, as.integer(indx)-1, as.double(parbnds[2]), as.double(parbnds[3])) } else { stop(paste0("\nName of bifurcation parameter ", parbnds[1], " not found in DefaultParameters! Computation aborted.\n")) } } else { if (!is.double(parbnds[1:3])) stop('Parameter bounds should be double values') parbnds2 <- c(parbnds2, as.integer(parbnds[1]), as.double(parbnds[2]), as.double(parbnds[3])) } if (length(parbnds) > 3) { if (length(parbnds) == 6) { if (is.character(parbnds[4])) { defpars <- get("DefaultParameters", envir = .GlobalEnv) if (parbnds[4] %in% names(defpars)) { indx <- (1:length(defpars))[parbnds[4] == names(defpars)] parbnds2 <- c(parbnds2, as.integer(indx)-1, as.double(parbnds[5]), as.double(parbnds[6])) } else { stop(paste0("\nName of bifurcation parameter ", parbnds[4], " not found in DefaultParameters! Computation aborted.\n")) } } else { if (!is.double(parbnds[4:6])) stop('Parameter bounds should be double values') parbnds2 <- c(parbnds2, as.integer(parbnds[4]), as.double(parbnds[5]), as.double(parbnds[6])) } } else if (((length(parbnds)-3) %% 4) == 0) { for (i in seq(4, length(parbnds), 4)) { if (is.character(parbnds[i+1])) { defpars <- get("DefaultParameters", envir = .GlobalEnv) if (parbnds[i+1] %in% names(defpars)) { indx <- (1:length(defpars))[parbnds[i+1] == names(defpars)] parbnds2 <- c(parbnds2, as.integer(parbnds[i]), as.integer(indx)-1, as.double(parbnds[i+2]), as.double(parbnds[i+3])) } else { stop(paste0("\nName of bifurcation parameter ", parbnds[i+1], " not found in DefaultParameters! Computation aborted.\n")) } } else { if (!is.double(parbnds[i:(i+3)])) stop('Parameter bounds should be double values') parbnds2 <- c(parbnds2, as.integer(parbnds[i]), as.integer(parbnds[i+1]), as.double(parbnds[i+2]), as.double(parbnds[i+3])) } } } else stop('Parameter bounds values should be a vector of length 3, 6 or 3+4*N (in case of ESS continuation)') } parbnds <- parbnds2 } if ((!is.double(parbnds)) || (!((length(parbnds) == 3) || (length(parbnds) == 6) || (((length(parbnds)-3) %% 4) == 0)))) stop('Parameter bounds values should be a vector of length 3, 6 or 3+4*N (in case of ESS continuation)') if ((length(parameters)) && (!is.double(parameters))) stop('If specified parameter values should be a vector with double values') if ((length(minvals)) && (!is.double(minvals))) stop('If specified minimum values of variables should be a vector with double values') if ((length(maxvals)) && (!is.double(maxvals))) stop('If specified maximum values of variables should be a vector with double values') if ((length(options)) && (!is.character(options))) stop('If specified options should be an array with strings') if (clean) { outlist=list.files(pattern=paste0(model.Name, "-.*-.*.", "[bcemo][israu][fbrt]")) if (debug) cat("\nCleaning :", outlist, "\n") for (i in outlist) file.remove(i) } dyn.load(libfile.Fullname) cout <- .Call("PSPMequi", model.Name, biftype, startpoint, stepsize, parbnds, parameters, options, minvals, maxvals, PACKAGE=paste0(model.Name, "equi")) dyn.unload(libfile.Fullname) if (Rmodel == 1) { rm(list = Filter( exists, Varlist ), envir = .GlobalEnv ) rm(list = Filter( exists, Funlist ), envir = .GlobalEnv ) } suspendInterrupts( { desc = data = bifpoints = biftypes = NULL if (exists("cout")) { outfile.name = paste0(cout, ".out") if (file.exists(outfile.name) && (file.info(outfile.name)$size > 0)) { desc <- readLines(outfile.name) data <- as.matrix(read.table(text=desc, blank.lines.skip = TRUE, fill=TRUE)) desc <- desc[grepl("^ lbls <- strsplit(desc[length(desc)], ":")[[1]] cnames <- gsub("[ ]+[0-9]+$", "", lbls[2:length(lbls)]) colnames(data) <- gsub("\\[[ ]+", "[", cnames) desc[-length(desc)] <- paste0(desc[-length(desc)], '\n') desc[1] <- ' } biffile.name = paste0(cout, ".bif") if (file.exists(biffile.name) && (file.info(biffile.name)$size > 0)) { bifinput <- readLines(biffile.name) bifpoints <- as.matrix(read.table(text=bifinput, blank.lines.skip = TRUE, comment.char='*', fill=TRUE)) colnames(bifpoints) <- gsub("\\[[ ]+", "[", cnames) biftypes = gsub("^.*\\*\\*\\*\\*\\s+|\\s+\\*\\*\\*\\*.*$", "", bifinput) } } setwd(Oldwd) if (length(desc) || length(data) || length(bifpoints) || length(biftypes)) { if (length(bifpoints) || length(biftypes)) { output = list(curvedesc = desc, curvepoints = data, bifpoints = bifpoints, biftypes = biftypes) } else { if ((biftype == "EQ") || (biftype == "ESS")) cat("\nNo bifurcations points detected during computations with ", modelname, "\n") output = list(curvedesc = desc, curvepoints = data, bifpoints = NULL, biftypes = NULL) } return(output) } else cat("\nComputations with ", modelname, " produced no output\n") } ) }
BestDes_SR <- function(p, ridge, workGrid, Cov, CCov, isSequential=FALSE){ if(isSequential == FALSE){ comblist <- utils::combn(1:length(workGrid), p) temps <- rep(0,ncol(comblist)) for(i in 1:ncol(comblist)){ temps[i] <- SRCri(comblist[,i], ridge, Cov, CCov) } best <- sort(comblist[,min(which(temps==max(temps)))]) return(list(best=best)) } else{ optdes <- c() for(iter in 1:p){ candidx <- which(!((1:length(workGrid)) %in% optdes)) seqcri <- rep(NA, length(candidx)) for(i in 1:length(candidx)){ tempdes <- sort(c(optdes,candidx[i])) seqcri[i] <- SRCri(tempdes, ridge, Cov, CCov) } optdes <- sort(c(optdes, candidx[min(which(seqcri == max(seqcri)))])) } return(list(best=optdes,med=NULL)) } } SRCri <- function(design,ridge,Cov,CCov){ design <- sort(design) ridgeCov <- Cov + diag(ridge,nrow(Cov)) srcri <- t(CCov[design]) %*% solve(ridgeCov[design,design]) %*% CCov[design] return(srcri) }
sbn_to_mtx <- function(g, method = c("dwn_mtx", "undir_mtx", "up_mtx", "n2n_dist_up", "n2n_dist_dwn", "n2n_dist_undir"), unconnected = Inf, weights = NULL) { if (!igraph::is.directed(g)) stop("g must be a downstream directed graph") if (method == "dwn_mtx") res <- igraph::as_adj(g, sparse = FALSE) if (method == "up_mtx") res <- t(igraph::as_adj(g, sparse = FALSE)) if (method == "undir_mtx") { undir_mtx <- igraph::as.undirected(g) res <- igraph::as_adj(undir_mtx, sparse = FALSE) } if (method == "n2n_dist_dwn") { res <- igraph::shortest.paths(g, mode = "out", weights = weights) res[is.infinite(res)] <- unconnected } if (method == "n2n_dist_up") { res <- igraph::shortest.paths(g, mode = "in", weights = weights) res[is.infinite(res)] <- unconnected } if (method == "n2n_dist_undir") { res <- igraph::shortest.paths(g, mode = "all", weights = weights) res[is.infinite(res)] <- unconnected } return(res) }
expected <- eval(parse(text="list(list(2, 2, 6))")); test(id=0, code={ argv <- eval(parse(text="list(list(list(2, 2, 6), list(1, 3, 9), list(1, 3, -1)), value = 1)")); do.call(`length<-`, argv); }, o=expected);
library(OpenMx) library(testthat) context("gendata-multilevel") suppressWarnings(RNGversion("3.5")) set.seed(1) df <- NULL for (batch in 1:50) { df <- rbind(df, expand.grid(case=1:(5+sample.int(4, 1)), Batch=batch, Yield=0)) } batch <- mxModel( 'batch', type="RAM", latentVars = c('batch'), mxData(data.frame(batch=unique(df$Batch)), 'raw', primaryKey='batch'), mxPath('batch', arrows=2, values=.75, lbound=.001)) trueYield <- mxModel( 'yield', type='RAM', batch, manifestVars = c('Yield'), mxData(df, 'raw'), mxPath('one', 'Yield', values=1e-6), mxPath('Yield', arrows=2, values=1), mxPath('batch.batch', 'Yield', free=FALSE, values=1, joinKey="Batch")) result <- expand.grid(rep=1:5) for (px in names(coef(trueYield))) result[[px]] <- NA result$rep <- NULL for (rep in 1:nrow(result)) { yield <- mxGenerateData(trueYield, returnModel = TRUE) yield <- mxRun(yield, silent = TRUE) result[rep, names(coef(yield))] <- coef(yield) } omxCheckCloseEnough(colMeans(result) - coef(trueYield), rep(0,3), .1) omxCheckCloseEnough(apply(result, 2, var), rep(0,3), .03)
igaprobability <- function(withinabund,gatesize,presortabund,nazeros=TRUE){ if(withinabund<0|gatesize<0|presortabund<0){ stop("Abundances and gate size must be greater than or equal to zero.") } if(withinabund>1|gatesize>1|presortabund>1){ stop("Abundances and gate size should be less than 1. Function expects values relative to 1 not 100 (i.e. not a percentage).") } if(withinabund==0&presortabund==0&nazeros==TRUE){ return(NA) } nume <- withinabund*gatesize denom <- presortabund if(nume>denom){ ip <- 1 }else if(nume==0&&denom==0){ ip <- NA }else{ ip <- nume/denom } return(ip) }
dis.nness.find.m <- function(comm, ness=FALSE){ min1 <- min(rowSums(comm)) if(ness==TRUE){ if(min1 < 61){ ms <- 1:(min1/2) } else{ ms <- round(seq(1, (min1/2), length.out=30), digits=0) } } if(ness==FALSE){ if(min1 < 31){ ms <- 1:min1 } else{ ms <- round(seq(1, min1, length.out=30), digits=0) } } comp <- (nrow(comm)*(nrow(comm)-1))/2 ms.n <- length(ms) dists.m <- matrix(, comp, ms.n) for(i in 1:ms.n){ dists.m[, i] <- as.vector(dis.nness(comm, m=ms[i], ness=ness)) } kendall.resu <- cor(dists.m, method="kendall") rownames(kendall.resu) <- ms colnames(kendall.resu) <- ms dif1 <- kendall.resu[, 1] - kendall.resu[, ms.n] dif2 <- abs(dif1) posi <- which.min(dif2) m <- ms[posi] return(m) }
graph.rmedge <- function(n,g,fix.edge=TRUE) { k=degree(g) nV=length(V(g)) allp=t(combn(nV,2)) pe=k[allp[,1]]*k[allp[,2]]/(sum(k)) adjm=diag(0,nV) Sg=NULL for(i in 1:n) { if (fix.edge==TRUE)ce=rmulti.one(size=sum(k)/2,p=pe) else ce=rbinom(n=nrow(allp),size=1,prob=pe) adjm[allp]=ce ind <- lower.tri(adjm) adjm[ind] <- t(adjm)[ind] sg=graph.adjacency(adjm, mode=c("undirected")) Sg=c(Sg,list(sg)) } return(Sg) }
ntwrkEdges<-function(x, importBlocks = FALSE, removeDuplicates = TRUE, parallel = FALSE, nCores = (parallel::detectCores()/2)){ i <- NULL j <- NULL k <- NULL dupAction<-removeDuplicates par = parallel cores = nCores summarizeContacts<- function(x, importBlocks, avg = FALSE, parallel, nCores){ i <- NULL summaryAgg.block<-function(x,y){ sumTable<-y[which(y$block == unname(unlist(x[1]))),] if(nrow(sumTable) == 0){output <- NULL }else{ blockStart<- unique(lubridate::as_datetime(sumTable$block.start)) blockEnd<- unique(lubridate::as_datetime(sumTable$block.end)) blockNum<- unique(sumTable$numBlocks) sumTable.redac<-sumTable[,-c(match("id", names(sumTable)), match("block", names(sumTable)), match("block.start", names(sumTable)), match("block.end", names(sumTable)), match("numBlocks", names(sumTable)))] output<-stats::aggregate(sumTable.redac, list(id = sumTable$id), mean) output$block = unname(unlist(x[1])) output$block.start = blockStart output$block.end = blockEnd output$numBlocks = blockNum } return(output) } summary.generator<-function(x, importBlocks, parallel, nCores){ blockSum <-function(x,y, indivSeq, areaSeq){ blockDurFrame<-y[which(y$block == unname(unlist(x[1]))),] indivSeqFrame <- data.frame(indivSeq, stringsAsFactors = TRUE) summary.contacts<-apply(indivSeqFrame, 1, contSum, blockDurFrame, indivSeq, areaSeq) indivSum.full<- data.frame(data.table::rbindlist(summary.contacts), stringsAsFactors = TRUE) indivSum.full$block <- unname(unlist(x[1])) indivSum.full$block.start <- unique(lubridate::as_datetime(blockDurFrame$block.start)) indivSum.full$block.end <- unique(lubridate::as_datetime(blockDurFrame$block.end)) indivSum.full$numBlocks <- unique(blockDurFrame$numBlocks) return(indivSum.full) } contSum <-function(x,y, indivSeq, areaSeq){ me = (unname(unlist(x[1]))) if(length(y$dyadMember1) > 0){ indivContact1 <- y[c(which(as.character(y$dyadMember1) == me)),] indivContact2 <- y[c(which(as.character(y$dyadMember2) == me)),] }else{ indivContact1 <- y[c(which(as.character(y$indiv.id) == me)),] indivContact2 <- matrix(nrow=0,ncol=0) } if((nrow(indivContact1) >= 1) & (nrow(indivContact2) >= 1)){ indivContact.full <- data.frame(data.table::rbindlist(list(indivContact1,indivContact2)), stringsAsFactors = TRUE) specIndivSeq = unique(c(as.character(indivContact.full$dyadMember1),as.character(indivContact.full$dyadMember2))) specIndivSeq1 = specIndivSeq[-which(specIndivSeq == me)] } if((nrow(indivContact1) >= 1) & (nrow(indivContact2) == 0)){ indivContact.full <- indivContact1 if(length(y$dyadMember1) > 0){ specIndivSeq = unique(c(as.character(indivContact.full$dyadMember1),as.character(indivContact.full$dyadMember2))) specIndivSeq1 = specIndivSeq[-which(specIndivSeq == me)] }else{ specIndivSeq1 = unique(as.character(indivContact.full$area.id)) } } if((nrow(indivContact2) >= 1) & (nrow(indivContact1) == 0)){ indivContact.full <- indivContact2 specIndivSeq = unique(c(as.character(indivContact.full$dyadMember1),as.character(indivContact.full$dyadMember2))) specIndivSeq1 = specIndivSeq[-which(specIndivSeq == me)] } if((nrow(indivContact2) == 0) & (nrow(indivContact1) == 0)){ indivContact.full <- indivContact1 specIndivSeq1 = 0 } if(length(y$dyadMember1) > 0){ if(nrow(indivContact.full) > 1){ indivSeqFrame1 <-data.frame(indivSeq, stringsAsFactors = TRUE) contactSum<-apply(indivSeqFrame1, 1, distributeContacts1, indivContact.full, me) sumTable <- data.frame(matrix(ncol = (3+length(indivSeq)), nrow = 1), stringsAsFactors = TRUE) colnames(sumTable) <- c("id","totalDegree","totalContactDurations", paste("contactDuration_Indiv",indivSeq, sep = "")) sumTable$id = me sumTable$totalDegree <- length(specIndivSeq1) sumTable$totalContactDurations = sum(indivContact.full$contactDuration) sumTable[1,4:ncol(sumTable)] <- contactSum sumTable[,match(paste("contactDuration_Indiv",me, sep = ""), names(sumTable))] = NA }else{ if(nrow(indivContact.full) == 1){ sumTable <- data.frame(matrix(ncol = (3+length(indivSeq)), nrow = 1), stringsAsFactors = TRUE) colnames(sumTable) <- c("id","totalDegree","totalContactDurations", paste("contactDuration_Indiv",indivSeq, sep = "")) sumTable$id = me sumTable$totalDegree <- 1 sumTable$totalContactDurations = indivContact.full$contactDuration sumTable[1,4:ncol(sumTable)] <- 0 sumTable[,match(paste("contactDuration_Indiv",specIndivSeq1, sep = ""), names(sumTable))] = indivContact.full$contactDuration sumTable[,match(paste("contactDuration_Indiv",me, sep = ""), names(sumTable))] = NA } if(nrow(indivContact.full) == 0){ sumTable <- data.frame(matrix(ncol = (3+length(indivSeq)), nrow = 1), stringsAsFactors = TRUE) colnames(sumTable) <- c("id","totalDegree","totalContactDurations", paste("contactDuration_Indiv",indivSeq, sep = "")) sumTable$id = me sumTable[1,2:ncol(sumTable)] <- 0 sumTable[,match(paste("contactDuration_Indiv",me, sep = ""), names(sumTable))] = NA } } }else{ if(nrow(indivContact.full) > 1){ areaSeqFrame <- data.frame(areaSeq, stringsAsFactors = TRUE) contactSum<-apply(areaSeqFrame, 1, distributeContacts2, indivContact.full) sumTable <- data.frame(matrix(ncol = (3+length(areaSeq)), nrow = 1), stringsAsFactors = TRUE) colnames(sumTable) <- c("id","totalDegree","totalContactDurations", paste("contactDuration_Area_",areaSeq, sep = "")) sumTable$id = me sumTable$totalDegree <- length(specIndivSeq1) sumTable$totalContactDurations = sum(indivContact.full$contactDuration) sumTable[1,4:ncol(sumTable)] <- contactSum }else{ if(nrow(indivContact.full) == 1){ areaVec <- unique(y$area.id) sumTable <- data.frame(matrix(ncol = (3+length(areaSeq)), nrow = 1), stringsAsFactors = TRUE) colnames(sumTable) <- c("id","totalDegree","totalContactDurations", paste("contactDuration_Area_",areaSeq, sep = "")) sumTable$id = me sumTable$totalDegree <- 1 sumTable$totalContactDurations = indivContact.full$contactDuration sumTable[1,4:ncol(sumTable)] <- 0 sumTable[,match(paste("contactDuration_Area_",areaVec, sep = ""), names(sumTable))] = indivContact.full$contactDuration } if(nrow(indivContact.full) == 0){ sumTable <- data.frame(matrix(ncol = (3+length(areaSeq)), nrow = 1), stringsAsFactors = TRUE) colnames(sumTable) <- c("id","totalDegree","totalContactDurations", paste("contactDuration_Area_",areaSeq, sep = "")) sumTable$id = me sumTable[1,2:ncol(sumTable)] <- 0 } } } return(sumTable) } distributeContacts1<- function(x,y, me){ if(unname(unlist(x[1])) == me){ spec.durations = 0 }else{ contact1 <- y[c(which(as.character(y$dyadMember1) == unname(unlist(x[1])))),] contact2 <- y[c(which(as.character(y$dyadMember2) == unname(unlist(x[1])))),] if((nrow(contact1) >= 1) & (nrow(contact2) >= 1)){ contact.full <- data.frame(data.table::rbindlist(list(contact1,contact2)), stringsAsFactors = TRUE) } if((nrow(contact1) >= 1) & (nrow(contact2) == 0)){ contact.full <- contact1 } if((nrow(contact2) >= 1) & (nrow(contact1) == 0)){ contact.full <- contact2 } if((nrow(contact2) == 0) & (nrow(contact1) == 0)){ contact.full <- contact1 } spec.durations <- ifelse(nrow(contact.full) >= 1, sum(contact.full$contactDuration),0) } return(spec.durations) } distributeContacts2<- function(x,y){ contact.full <- y[c(which(y$area.id == unname(unlist(x[1])))),] spec.durations <- ifelse(nrow(contact.full) >= 1, sum(contact.full$contactDuration),0) return(spec.durations) } if(importBlocks == TRUE){ if(length(x$dyadMember1) > 0){ x<-x[order(x$block,x$dyadMember1,x$dyadMember2),] indivVec <- c(as.character(x[,match("dyadMember1", names(x))]), as.character(x[,match("dyadMember2", names(x))])) areaSeq = NULL }else{ x<-x[order(x$block,x$indiv.id),] indivVec <- x[,match("indiv.id", names(x))] areaVec <- x[,match("area.id", names(x))] areaVec <- areaVec[order(areaVec)] areaSeq<-as.character(unique(areaVec)) } indivSeq <- unique(indivVec) indivSeq<-indivSeq[order(indivSeq)] indivSeq<-as.character(indivSeq) if(parallel == TRUE){ cl <- parallel::makeCluster(nCores) doParallel::registerDoParallel(cl) on.exit(parallel::stopCluster(cl)) summary.block<- foreach::foreach(i = unique(as.character(x$block))) %dopar% blockSum(i, x, indivSeq, areaSeq) }else{ blockVecFrame <- data.frame(unique(as.character(x$block)), stringsAsFactors = TRUE) summary.block <- apply(blockVecFrame, 1, blockSum, x, indivSeq, areaSeq) } summaryTable<- data.frame(data.table::rbindlist(summary.block), stringsAsFactors = TRUE) summaryTable<-summaryTable[order(as.numeric(as.character(summaryTable$block)),summaryTable$id),] }else{ if(length(x$dyadMember1) > 0){ x<-x[order(x$dyadMember1,x$dyadMember2),] indivVec <- c(as.character(x[,match("dyadMember1", names(x))]), as.character(x[,match("dyadMember2", names(x))])) areaSeq = NULL }else{ x<-x[order(x$indiv.id),] indivVec <- x[,match("indiv.id", names(x))] areaVec <- x[,match("area.id", names(x))] areaVec <- areaVec[order(areaVec)] areaSeq<-as.character(unique(areaVec)) } indivSeq <- unique(indivVec) indivSeq<-indivSeq[order(indivSeq)] indivSeq<-as.character(indivSeq) indivSeqFrame <- data.frame(indivSeq, stringsAsFactors = TRUE) summary.contacts <- apply(indivSeqFrame, 1, contSum, x, indivSeq, areaSeq) summaryTable<- data.frame(data.table::rbindlist(summary.contacts), stringsAsFactors = TRUE) summaryTable<-summaryTable[order(summaryTable$id),] } return(summaryTable) } if(is.data.frame(x) == FALSE & is.list(x) == TRUE){ summaryList<-lapply(x, summary.generator, importBlocks, parallel, nCores) if(avg == TRUE){ full.summary<- data.frame(data.table::rbindlist(summaryList, fill = TRUE), stringsAsFactors = TRUE) idSeq<-unique(full.summary$id) if(importBlocks == TRUE){ blockSeq<-unique(full.summary$block) sumTab <- apply(data.frame(blockSeq, stringsAsFactors = TRUE), 1, summaryAgg.block, y = full.summary) sumTab.agg <- data.frame(data.table::rbindlist(sumTab), stringsAsFactors = TRUE) }else{ sumTab.agg<-stats::aggregate(full.summary[,-match("id", colnames(full.summary))], list(id = full.summary$id), mean) } summary.output<-list(sumTab.agg, summaryList) names(summary.output)<-c("avg.","contactSummaries.") }else{ summary.output<- summaryList } }else{ summary.output <- summary.generator(x, importBlocks, parallel, nCores) } return(summary.output) } edgeGenerator.noBlock<-function(x, removeDuplicates = dupAction, par = parallel, cores = nCores){ confirm_edges.noBlock<-function(x,y){ if(length(levels(unname(unlist(x[1])))) > 1){ x1.id <- droplevels(unname(unlist(x[1]))) }else{ x1.id <-unname(unlist(x[1])) } if(length(levels(unname(unlist(x[2])))) > 1){ x2.id <- droplevels(unname(unlist(x[2]))) }else{ x2.id <-unname(unlist(x[2])) } out.frame<-data.frame(from = x1.id, to = x2.id, stringsAsFactors = TRUE) y.ContactNames<-c(NA,NA,NA,substring((names(y[grep("contactDuration_", names(y))])),22)) duration <- unname(unlist(y[which(y$id == x1.id), which(y.ContactNames == x2.id)])) duration.corrected<-ifelse(duration > 0, duration, NA) out.frame$durations<-duration.corrected return(out.frame) } contactSummary<-summarizeContacts(x, importBlocks = FALSE, parallel = par, nCores = cores) if(is.data.frame(contactSummary) == FALSE & is.list(contactSummary) == TRUE){ if (parallel == TRUE){ cl <- parallel::makeCluster(nCores) doParallel::registerDoParallel(cl) on.exit(parallel::stopCluster(cl)) confirmed_edges.list <- foreach::foreach(k = 1:length(contactSummary), .packages = "foreach") %dopar% { contactSummary.frame <- contactSummary[[k]] contactSummary.node1 <- unique(contactSummary.frame$id) contactSummary.node2 <- substring((names(contactSummary.frame[grep("contactDuration_", names(contactSummary.frame))])),22) potential_edges <- expand.grid(contactSummary.node1, contactSummary.node2, stringsAsFactors = TRUE) names(potential_edges) <- c("from", "to") potential.ntwrk <- igraph::simplify(igraph::graph_from_data_frame(potential_edges, directed = FALSE), remove.multiple = TRUE) potential_edges <- igraph::as_data_frame(potential.ntwrk) edgelist<-apply(potential_edges,1,confirm_edges.noBlock, y=contactSummary.frame) edgeFrame<-data.frame(data.table::rbindlist(edgelist), stringsAsFactors = TRUE) confirmed_edges <- edgeFrame[is.na(edgeFrame$duration) == FALSE,] if(removeDuplicates == FALSE){ confirmed_edges.reflected <- confirmed_edges confirmed_edges.reflected[,c(1,2)] <- confirmed_edges.reflected[,c(2,1)] confirmed_edges <- data.frame(data.table::rbindlist(list(confirmed_edges, confirmed_edges.reflected))) } rownames(confirmed_edges)<-seq(1,nrow(confirmed_edges)) return(confirmed_edges) } }else{ confirmed_edges.list <- foreach::foreach(k = 1:length(contactSummary), .packages = "foreach") %do% { contactSummary.frame <- contactSummary[[k]] contactSummary.node1 <- unique(contactSummary.frame$id) contactSummary.node2 <- substring((names(contactSummary.frame[grep("contactDuration_", names(contactSummary.frame))])),22) potential_edges <- expand.grid(contactSummary.node1, contactSummary.node2, stringsAsFactors = TRUE) names(potential_edges) <- c("from", "to") potential.ntwrk <- igraph::simplify(igraph::graph_from_data_frame(potential_edges, directed = FALSE), remove.multiple = TRUE) potential_edges <- igraph::as_data_frame(potential.ntwrk) edgelist<-apply(potential_edges,1,confirm_edges.noBlock, y=contactSummary.frame) edgeFrame<-data.frame(data.table::rbindlist(edgelist), stringsAsFactors = TRUE) confirmed_edges <- edgeFrame[is.na(edgeFrame$duration) == FALSE,] if(removeDuplicates == FALSE){ confirmed_edges.reflected <- confirmed_edges confirmed_edges.reflected[,c(1,2)] <- confirmed_edges.reflected[,c(2,1)] confirmed_edges <- data.frame(data.table::rbindlist(list(confirmed_edges, confirmed_edges.reflected))) } rownames(confirmed_edges)<-seq(1,nrow(confirmed_edges)) return(confirmed_edges) } } return(confirmed_edges.list) }else{ contactSummary.node1 <- unique(contactSummary$id) contactSummary.node2 <- substring((names(contactSummary[grep("contactDuration_", names(contactSummary))])),22) potential_edges <- expand.grid(contactSummary.node1, contactSummary.node2, stringsAsFactors = TRUE) names(potential_edges) <- c("from", "to") potential.ntwrk <- igraph::simplify(igraph::graph_from_data_frame(potential_edges, directed = FALSE), remove.multiple = TRUE) potential_edges <- igraph::as_data_frame(potential.ntwrk) edgelist<-apply(potential_edges,1,confirm_edges.noBlock, y=contactSummary) edgeFrame<-data.frame(data.table::rbindlist(edgelist), stringsAsFactors = TRUE) confirmed_edges <- edgeFrame[is.na(edgeFrame$duration) == FALSE,] if(removeDuplicates == FALSE){ confirmed_edges.reflected <- confirmed_edges confirmed_edges.reflected[,c(1,2)] <- confirmed_edges.reflected[,c(2,1)] confirmed_edges <- data.frame(data.table::rbindlist(list(confirmed_edges, confirmed_edges.reflected))) } rownames(confirmed_edges)<-seq(1,nrow(confirmed_edges)) return(confirmed_edges) } } edgeGenerator.Block<-function(x, removeDuplicates = dupAction, par = parallel, cores = nCores){ block <-NULL confirm_edges.Block<-function(x,y){ if(length(levels(unname(unlist(x[2])))) > 1){ x2.id <- droplevels(unname(unlist(x[2]))) }else{ x2.id <-unname(unlist(x[2])) } if(length(levels(unname(unlist(x[3])))) > 1){ x3.id <- droplevels(unname(unlist(x[3]))) }else{ x3.id <-unname(unlist(x[3])) } out.frame<-data.frame(from = x2.id, to = x3.id, stringsAsFactors = TRUE) y.ContactNames<-c(NA,NA,NA,substring((names(y[grep("contactDuration_", names(y))])),22)) duration <- unname(unlist(y[which(y$id == x2.id & y$block == unname(unlist(x[1]))), which(y.ContactNames == x3.id)])) duration.corrected<-ifelse(duration > 0, duration, NA) out.frame$durations<-duration.corrected out.frame$block <- unname(unlist(x[1])) out.frame$block.start <- unname(unlist(as.character(x[4]))) out.frame$block.end <- unname(unlist(as.character(x[5]))) return(out.frame) } contactSummary<-summarizeContacts(x, importBlocks = TRUE, parallel = par, nCores = cores) if(is.data.frame(contactSummary) == FALSE & is.list(contactSummary) == TRUE){ if (parallel == TRUE){ cl <- parallel::makeCluster(nCores) doParallel::registerDoParallel(cl) on.exit(parallel::stopCluster(cl)) confirmed_edges.list <- foreach::foreach(k = 1:length(contactSummary), .packages = "foreach") %dopar% { contactSummary.frame <- contactSummary[[k]] contactSummary.node1 <- unique(contactSummary.frame$id) contactSummary.node2 <- substring((names(contactSummary.frame[grep("contactDuration_", names(contactSummary.frame))])),22) block_info<-data.frame(block = unique(contactSummary.frame$block), block.start = unique(contactSummary.frame$block.start), block.end = unique(contactSummary.frame$block.end), stringsAsFactors = TRUE) potential_edges1 <- expand.grid(contactSummary.node1, contactSummary.node2, block_info$block, stringsAsFactors = TRUE) names(potential_edges1) <- c("from", "to", "block") potential_edges2<-merge(potential_edges1, block_info, by = "block") potential_edges2<-potential_edges2[order(as.numeric(as.character(potential_edges2$block))),] blocks.adjusted<- foreach::foreach(j = unique(potential_edges2$block), .packages = "foreach") %do% { blockSub<- droplevels(subset(potential_edges2, block == j)) potential.ntwrk <- igraph::simplify(igraph::graph_from_data_frame(blockSub[,c(2,3)], directed = FALSE), remove.multiple = TRUE) blockSub.edges <- igraph::as_data_frame(potential.ntwrk) blockSub.out <- data.frame(block = unique(blockSub$block), from = blockSub.edges$from, to = blockSub.edges$to, block.start = unique(blockSub$block.start), block.end = unique(blockSub$block.end)) return(blockSub.out) } potential_edges2 <- data.frame(data.table::rbindlist(blocks.adjusted)) edgelist<-apply(potential_edges2,1,confirm_edges.Block, y=contactSummary.frame) edgeFrame<-data.frame(data.table::rbindlist(edgelist), stringsAsFactors = TRUE) confirmed_edges <- edgeFrame[is.na(edgeFrame$duration) == FALSE,] if(removeDuplicates == FALSE){ confirmed_edges.reflected <- confirmed_edges confirmed_edges.reflected[,c(1,2)] <- confirmed_edges.reflected[,c(2,1)] confirmed_edges <- data.frame(data.table::rbindlist(list(confirmed_edges, confirmed_edges.reflected))) } rownames(confirmed_edges)<-seq(1,nrow(confirmed_edges)) return(confirmed_edges) } }else{ confirmed_edges.list <- foreach::foreach(k = 1:length(contactSummary), .packages = "foreach") %do% { contactSummary.frame <- contactSummary[[k]] contactSummary.node1 <- unique(contactSummary.frame$id) contactSummary.node2 <- substring((names(contactSummary.frame[grep("contactDuration_", names(contactSummary.frame))])),22) block_info<-data.frame(block = unique(contactSummary.frame$block), block.start = unique(contactSummary.frame$block.start), block.end = unique(contactSummary.frame$block.end), stringsAsFactors = TRUE) potential_edges1 <- expand.grid(contactSummary.node1, contactSummary.node2, block_info$block, stringsAsFactors = TRUE) names(potential_edges1) <- c("from", "to", "block") potential_edges2<-merge(potential_edges1, block_info, by = "block") potential_edges2<-potential_edges2[order(as.numeric(as.character(potential_edges2$block))),] blocks.adjusted<- foreach::foreach(j = unique(potential_edges2$block), .packages = "foreach") %do% { blockSub<- droplevels(subset(potential_edges2, block == j)) potential.ntwrk <- igraph::simplify(igraph::graph_from_data_frame(blockSub[,c(2,3)], directed = FALSE), remove.multiple = TRUE) blockSub.edges <- igraph::as_data_frame(potential.ntwrk) blockSub.out <- data.frame(block = unique(blockSub$block), from = blockSub.edges$from, to = blockSub.edges$to, block.start = unique(blockSub$block.start), block.end = unique(blockSub$block.end)) return(blockSub.out) } potential_edges2 <- data.frame(data.table::rbindlist(blocks.adjusted)) edgelist<-apply(potential_edges2,1,confirm_edges.Block, y=contactSummary.frame) edgeFrame<-data.frame(data.table::rbindlist(edgelist), stringsAsFactors = TRUE) confirmed_edges <- edgeFrame[is.na(edgeFrame$duration) == FALSE,] if(removeDuplicates == FALSE){ confirmed_edges.reflected <- confirmed_edges confirmed_edges.reflected[,c(1,2)] <- confirmed_edges.reflected[,c(2,1)] confirmed_edges <- data.frame(data.table::rbindlist(list(confirmed_edges, confirmed_edges.reflected))) } rownames(confirmed_edges)<-seq(1,nrow(confirmed_edges)) return(confirmed_edges) } } return(confirmed_edges.list) }else{ contactSummary.node1 <- unique(contactSummary$id) contactSummary.node2 <- substring((names(contactSummary[grep("contactDuration_", names(contactSummary))])),22) block_info<-data.frame(block = unique(contactSummary$block), block.start = unique(contactSummary$block.start), block.end = unique(contactSummary$block.end), stringsAsFactors = TRUE) potential_edges1 <- expand.grid(contactSummary.node1, contactSummary.node2, block_info$block, stringsAsFactors = TRUE) names(potential_edges1) <- c("from", "to", "block") potential_edges2<-merge(potential_edges1, block_info, by = "block") potential_edges2<-potential_edges2[order(as.numeric(as.character(potential_edges2$block))),] blocks.adjusted<- foreach::foreach(j = unique(potential_edges2$block), .packages = "foreach") %do% { blockSub<- droplevels(subset(potential_edges2, block == j)) potential.ntwrk <- igraph::simplify(igraph::graph_from_data_frame(blockSub[,c(2,3)], directed = FALSE), remove.multiple = TRUE) blockSub.edges <- igraph::as_data_frame(potential.ntwrk) blockSub.out <- data.frame(block = unique(blockSub$block), from = blockSub.edges$from, to = blockSub.edges$to, block.start = unique(blockSub$block.start), block.end = unique(blockSub$block.end)) return(blockSub.out) } potential_edges2 <- data.frame(data.table::rbindlist(blocks.adjusted)) edgelist<-apply(potential_edges2,1,confirm_edges.Block, y=contactSummary) edgeFrame<-data.frame(data.table::rbindlist(edgelist), stringsAsFactors = TRUE) confirmed_edges <- edgeFrame[is.na(edgeFrame$duration) == FALSE,] if(removeDuplicates == FALSE){ confirmed_edges.reflected <- confirmed_edges confirmed_edges.reflected[,c(1,2)] <- confirmed_edges.reflected[,c(2,1)] confirmed_edges <- data.frame(data.table::rbindlist(list(confirmed_edges, confirmed_edges.reflected))) } rownames(confirmed_edges)<-seq(1,nrow(confirmed_edges)) return(confirmed_edges) } } if(importBlocks == FALSE){ edgeSet<-edgeGenerator.noBlock(x) }else{ edgeSet<-edgeGenerator.Block(x) } return(edgeSet) }
saddlepointRuinprob <- function(process, jensen = FALSE, normalize = TRUE) { stopifnot(is.logical(jensen), is.logical(normalize)) p <- process[['p']] zeta <- process[['zeta']] vx <- process[['vx']] KL <- process[['KL']] KL.d1 <- process[['KL.d1']] KL.d2 <- process[['KL.d2']] if (normalize) { corrconst <- integrate( f = function(v) { exp(KL(v) - v * KL.d1(v)) * sqrt(KL.d2(v)) * dnorm(0.0) }, lower = -Inf, upper = adjcoef(process) - .Machine$double.eps^(2.0 / 3.0) )$value } else { corrconst <- 1.0 } if (jensen) { psi <- function(x) { res <- pnorm(vx(x)$z, lower.tail = FALSE) res[almost.equal(x, 0.0)] <- 1.0 return(res) } psi.v <- function(v) { pnorm(process[['zv']](v), lower.tail = FALSE) } psi.1 <- function(x) { v <- vx(x) res <- pnorm(v$z - log(1.0 - v$v / (zeta * p * corrconst)) / v$r) - pnorm(v$z) res[almost.equal(x, 0.0)] <- 1.0 return(res) } psi.1.v <- function(v) { z <- process[['zv']](v) r <- process[['rv']](v) pnorm(z - log(1.0 - v / (zeta * p * corrconst)) / r) - pnorm(z) } psi.2 <- function(x) { v <- vx(x) res <- pnorm(v$z - log(1.0 - v$v / (zeta * p * corrconst)) / v$r, lower.tail = FALSE) res[almost.equal(x, 0.0)] <- 0.0 return(res) } psi.2.v <- function(v) { z <- process[['zv']](v) r <- process[['rv']](v) pnorm(z - log(1.0 - v / (zeta * p * corrconst)) / r, lower.tail = FALSE) } } else { psi <- function(x) { v <- vx(x) res <- pnorm(v$r, lower.tail = FALSE) - dnorm(v$r) * (1.0 / v$r - 1.0 / v$s) res[almost.equal(x, 0.0)] <- 1.0 return(res) } psi.v <- function(v) { r <- process[['rv']](v) s <- process[['sv']](v) pnorm(r, lower.tail = FALSE) - dnorm(r) * (1.0 / r - 1.0 / s) } psi.1 <- function(x) { v <- vx(x) res <- exp(v$value) * dnorm(0.0) / (sqrt(v$hessian) * p * zeta * corrconst) res[almost.equal(x, 0.0)] <- 1.0 return(res) } psi.1.v <- function(v) { exp(KL(v) - v * KL.d1(v)) / sqrt(KL.d2(v) * p * zeta * corrconst) * dnorm(0.0) } psi.2 <- function(x) { v <- vx(x) res <- pnorm(v$r, lower.tail = FALSE) - dnorm(v$r) * (1.0 / v$r - 1.0 / v$s * (1.0 - v$v / (p * zeta * corrconst))) res[almost.equal(x, 0.0)] <- 0.0 return(res) } psi.2.v <- function(v) { r <- process[['rv']](v) s <- process[['sv']](v) pnorm(r, lower.tail = FALSE) - dnorm(r) * (1.0 / r - 1.0 / s * (1.0 - v / (p * zeta * corrconst))) } } return(structure(.Data = list(psi = psi, psi.1 = psi.1, psi.2 = psi.2), compmethod = 'saddlepoint', riskproc = process, parameters = list(jensen = jensen, normalize = normalize), diagnostics = list(corrconst = corrconst, psi.v = psi.v, psi.1.v = psi.1.v, psi.2.v = psi.2.v))) }
knitr::opts_chunk$set( collapse = TRUE, comment = " fig.width = 8, fig.height = 6, out.width = '100%' ) library(ggside) p <- ggplot(mpg, aes(displ, hwy, colour = class)) + geom_point(size = 2) + theme_bw() p geom_xsidedensity_legacy <- function(mapping = NULL, data = NULL, stat = "density", position = "identity", ..., na.rm = FALSE, orientation = "x", show.legend = NA, inherit.aes = TRUE, outline.type = "upper") { outline.type <- match.arg(outline.type, c("both", "upper", "lower", "full")) l <- layer( data = data, mapping = mapping, stat = stat, geom = ggside:::GeomXsidedensity, position = position, show.legend = show.legend, inherit.aes = inherit.aes, params = list( na.rm = na.rm, orientation = orientation, outline.type = outline.type, ... ), layer_class = ggside:::XLayer ) structure(l, class = c("ggside_layer",class(l))) } p + geom_xsidedensity_legacy(aes(y = after_stat(density))) p + geom_xsidedensity() + geom_ysidedensity() p + geom_xsidedensity(aes(y = after_stat(count))) + geom_ysidedensity(aes(x = after_stat(scaled))) p + geom_xsidedensity(orientation = "y")
structure(list(url = "https://api.scryfall.com/symbology/parse-mana?cost=k", status_code = 422L, headers = structure(list(date = "Wed, 05 Jan 2022 05:19:30 GMT", `content-type` = "application/json; charset=utf-8", `x-frame-options` = "DENY", `x-xss-protection` = "1; mode=block", `x-content-type-options` = "nosniff", `x-download-options` = "noopen", `x-permitted-cross-domain-policies` = "none", `referrer-policy` = "strict-origin-when-cross-origin", `access-control-allow-origin` = "*", `access-control-allow-methods` = "GET, POST, DELETE, OPTIONS", `access-control-allow-headers` = "Accept, Accept-Charset, Accept-Language, Authorization, Cache-Control, Content-Language, Content-Type, DNT, Host, If-Modified-Since, Keep-Alive, Origin, Referer, User-Agent, X-Requested-With", `access-control-max-age` = "300", `x-robots-tag` = "none", `cache-control` = "no-cache", vary = "Accept-Encoding", `content-encoding` = "gzip", `strict-transport-security` = "max-age=31536000; includeSubDomains; preload", via = "1.1 vegur", `cf-cache-status` = "DYNAMIC", `expect-ct` = "max-age=604800, report-uri=\"https://report-uri.cloudflare.com/cdn-cgi/beacon/expect-ct\"", `report-to` = "{\"endpoints\":[{\"url\":\"https:\\/\\/a.nel.cloudflare.com\\/report\\/v3?s=K5Hf2jmoK4woQJ%2BjaXd6kR8Xt%2B5r2XlDk3d2uL7NKB9AzjixtIu0mCxFzNuSuatZl2IzzYiM7DBI4nu9SrrNIRfDdrrHBrKsOBI0OwghGRMFNpCtap0IVFbMYI%2BSnysmY70igQrfuqafg0m0JG0%3D\"}],\"group\":\"cf-nel\",\"max_age\":604800}", nel = "{\"success_fraction\":0,\"report_to\":\"cf-nel\",\"max_age\":604800}", server = "cloudflare", `cf-ray` = "6c8a4087ce444edd-GRU", `alt-svc` = "h3=\":443\"; ma=86400, h3-29=\":443\"; ma=86400, h3-28=\":443\"; ma=86400, h3-27=\":443\"; ma=86400"), class = c("insensitive", "list")), all_headers = list(list(status = 422L, version = "HTTP/2", headers = structure(list(date = "Wed, 05 Jan 2022 05:19:30 GMT", `content-type` = "application/json; charset=utf-8", `x-frame-options` = "DENY", `x-xss-protection` = "1; mode=block", `x-content-type-options` = "nosniff", `x-download-options` = "noopen", `x-permitted-cross-domain-policies` = "none", `referrer-policy` = "strict-origin-when-cross-origin", `access-control-allow-origin` = "*", `access-control-allow-methods` = "GET, POST, DELETE, OPTIONS", `access-control-allow-headers` = "Accept, Accept-Charset, Accept-Language, Authorization, Cache-Control, Content-Language, Content-Type, DNT, Host, If-Modified-Since, Keep-Alive, Origin, Referer, User-Agent, X-Requested-With", `access-control-max-age` = "300", `x-robots-tag` = "none", `cache-control` = "no-cache", vary = "Accept-Encoding", `content-encoding` = "gzip", `strict-transport-security` = "max-age=31536000; includeSubDomains; preload", via = "1.1 vegur", `cf-cache-status` = "DYNAMIC", `expect-ct` = "max-age=604800, report-uri=\"https://report-uri.cloudflare.com/cdn-cgi/beacon/expect-ct\"", `report-to` = "{\"endpoints\":[{\"url\":\"https:\\/\\/a.nel.cloudflare.com\\/report\\/v3?s=K5Hf2jmoK4woQJ%2BjaXd6kR8Xt%2B5r2XlDk3d2uL7NKB9AzjixtIu0mCxFzNuSuatZl2IzzYiM7DBI4nu9SrrNIRfDdrrHBrKsOBI0OwghGRMFNpCtap0IVFbMYI%2BSnysmY70igQrfuqafg0m0JG0%3D\"}],\"group\":\"cf-nel\",\"max_age\":604800}", nel = "{\"success_fraction\":0,\"report_to\":\"cf-nel\",\"max_age\":604800}", server = "cloudflare", `cf-ray` = "6c8a4087ce444edd-GRU", `alt-svc` = "h3=\":443\"; ma=86400, h3-29=\":443\"; ma=86400, h3-28=\":443\"; ma=86400, h3-27=\":443\"; ma=86400"), class = c("insensitive", "list")))), cookies = structure(list(domain = ".api.scryfall.com", flag = TRUE, path = "/", secure = FALSE, expiration = structure(1641440572, class = c("POSIXct", "POSIXt")), name = "heroku-session-affinity", value = "REDACTED"), row.names = c(NA, -1L), class = "data.frame"), content = charToRaw("{\n \"object\": \"error\",\n \"code\": \"validation_error\",\n \"status\": 422,\n \"details\": \"The string fragment(s) “K” could not be understood as part of mana cost.\"\n}"), date = structure(1641359970, class = c("POSIXct", "POSIXt" ), tzone = "GMT"), times = c(redirect = 0, namelookup = 3.7e-05, connect = 3.8e-05, pretransfer = 0.000107, starttransfer = 0.198428, total = 0.198566)), class = "response")
rangemap_enm <- function(model_output, occurrences = NULL, threshold_value = NULL, threshold_omission = NULL, min_polygon_area = 0, simplify = FALSE, simplify_level = 0, polygons = NULL, extent_of_occurrence = TRUE, area_of_occupancy = TRUE, final_projection = NULL, save_shp = FALSE, name, overwrite = FALSE, verbose = TRUE) { if (is.null(model_output)) { stop("'model_output' is necessary to perform the analysis.") } if (save_shp == TRUE) { if (missing(name)) { stop("Argument 'name' must be defined if 'save_shp' = TRUE.") } if (file.exists(paste0(name, ".shp")) & overwrite == FALSE) { stop("Files already exist, use 'overwrite' = TRUE.") } } WGS84 <- sp::CRS("+init=epsg:4326") if (is.null(final_projection)) { final_projection <- WGS84 } else { final_projection <- sp::CRS(final_projection) } if (!is.null(threshold_value) | !is.null(threshold_omission) | !is.null(occurrences)) { if (!is.null(threshold_value)) { binary <- model_output >= threshold_value } else { if (!is.null(threshold_omission) & !is.null(occurrences)) { occ <- occurrences[, 2:3] o_suit <- na.omit(raster::extract(model_output, occ)) o_suit_sort <- sort(o_suit) thres <- o_suit_sort[ceiling(length(occ[, 1]) * threshold_omission / 100) + 1] binary <- model_output >= thres } else { stop(paste0("Parameters 'threshold_omission' and 'occurrences', or 'threshold_value'", "\nmust be defined to perform the calculations.")) } } } binary[binary[] == 0] <- NA if (!is.null(occurrences)) { occ <- as.data.frame(unique(occurrences))[, 1:3] colnames(occ) <- c("Species", "Longitude", "Latitude") } if (is.na(model_output@crs)) { raster::crs(binary) <- WGS84@projargs } enm_range <- as(binary, "SpatialPolygonsDataFrame") enm_range <- rgeos::gUnaryUnion(enm_range, enm_range$layer) enm_range <- sp::SpatialPolygonsDataFrame(enm_range, data = data.frame(ID = 1)) enm_range <- keep_big_polygons(polygons = enm_range, min_polygon_area) if (simplify == TRUE) { enm_range <- suppressWarnings(rgeos::gSimplify(enm_range, tol = simplify_level)) } enm_range <- raster::disaggregate(enm_range) if (is.null(polygons)) { polygons <- simple_wmap(which = "simple") } LAEA <- LAEA_projection(spatial_object = enm_range) if (!is.null(occurrences)) { occ_sp <- sp::SpatialPointsDataFrame(coords = occ[, 2:3], data = occ, proj4string = WGS84) occ_pr <- sp::spTransform(occ_sp, LAEA) } enm_range_pr <- sp::spTransform(enm_range, LAEA) area <- raster::area(enm_range_pr) / 1000000 areakm2 <- sum(area) if (is.null(occurrences)) { df <- data.frame(Species = "Species", area) clip_area <- sp::SpatialPolygonsDataFrame(enm_range_pr, data = df, match.ID = FALSE) if (is.null(final_projection)) { final_projection <- WGS84 } else { final_projection <- sp::CRS(final_projection) } clip_area <- sp::spTransform(clip_area, final_projection) if (save_shp == TRUE) { if (verbose == TRUE) { message("Writing shapefiles in the working directory.") } rgdal::writeOGR(clip_area, ".", name, driver = "ESRI Shapefile") } sp_dat <- data.frame(Species = "Species", Range_area = areakm2) results <- sp_range(name = "ENM", summary = sp_dat, species_range = clip_area) } else { if (extent_of_occurrence == TRUE) { eooc <- eoo(occ_sp@data, polygons) eocckm2 <- eooc$area extent_occurrence <- eooc$spolydf extent_occurrence <- sp::spTransform(extent_occurrence, final_projection) } else { eocckm2 <- 0 extent_occurrence <- new("SpatialPolygonsDataFrame") } species <- as.character(occurrences[1, 1]) if (area_of_occupancy == TRUE) { aooc <- aoo(occ_pr, species) aocckm2 <- aooc$area area_occupancy <- aooc$spolydf area_occupancy <- sp::spTransform(area_occupancy, final_projection) } else { aocckm2 <- 0 area_occupancy <- new("SpatialPolygonsDataFrame") } clip_area <- sp::SpatialPolygonsDataFrame(enm_range_pr, data = data.frame(species, area), match.ID = FALSE) clip_area <- sp::spTransform(clip_area, final_projection) occ_pr <- sp::spTransform(occ_pr, final_projection) if (save_shp == TRUE) { if (verbose == TRUE) { message("Writing shapefiles in the working directory.") } rgdal::writeOGR(clip_area, ".", name, driver = "ESRI Shapefile", overwrite_layer = overwrite) rgdal::writeOGR(occ_pr, ".", paste(name, "unique_records", sep = "_"), driver = "ESRI Shapefile", overwrite_layer = overwrite) if (!is.null(occurrences)) { if (extent_of_occurrence == TRUE) { rgdal::writeOGR(extent_occurrence, ".", paste(name, "extent_occ", sep = "_"), driver = "ESRI Shapefile", overwrite_layer = overwrite) } if (area_of_occupancy == TRUE) { rgdal::writeOGR(area_occupancy, ".", paste(name, "area_occ", sep = "_"), driver = "ESRI Shapefile", overwrite_layer = overwrite) } } } sp_dat <- data.frame(Species = species, Unique_records = dim(occ_pr)[1], Range_area = areakm2, Extent_of_occurrence = eocckm2, Area_of_occupancy = aocckm2) results <- sp_range_iucn(name = "ENM", summary = sp_dat, species_unique_records = occ_pr, species_range = clip_area, extent_of_occurrence = extent_occurrence, area_of_occupancy = area_occupancy) } return(results) }
summary.lbreg <- function(object, ...) { se <- object$se zval <- coef(object) / se TAB <- cbind(Estimate = coef(object), StdErr = se, z.value = zval, p.value = 2*pnorm(-abs(zval),mean=0,sd=1)) res <- list(call=object$call, coefficients=TAB, loglik=object$loglik, df=object$df, deviance=object$deviance, residuals=object$residuals, X2 = object$X2, yclass = attr(object$terms, 'dataClasses')[1] ) class(res) <- "summary.lbreg" res }
test_that("Test Timing mean", { skip_on_cran() data("sample_results", package = "benchmarkme") expect_true(is.character(benchmarkme:::timings_mean(sample_results))) } )
require(randomForest) require(MASS) attach(Boston) set.seed(101) dim(Boston) train=sample(1:nrow(Boston),300) ?Boston Boston.rf=randomForest(medv ~ . , data = Boston , subset = train) Boston.rf plot(Boston.rf) oob.err=double(13) test.err=double(13) for(mtry in 1:13) { rf=randomForest(medv ~ . , data = Boston , subset = train,mtry=mtry,ntree=400) oob.err[mtry] = rf$mse[400] pred<-predict(rf,Boston[-train,]) test.err[mtry]= with(Boston[-train,], mean( (medv - pred)^2)) cat(mtry," ") } test.err oob.err matplot(1:mtry , cbind(oob.err,test.err), pch=19 , col=c("red","blue"),type="b",ylab="Mean Squared Error",xlab="Number of Predictors Considered at each Split") legend("topright",legend=c("Out of Bag Error","Test Error"),pch=19, col=c("red","blue"))
summary.tosANYN <- function (object, quiet = FALSE, ...) { hwtosop <- object ntests <- length(hwtosop$allpvals) if (quiet == FALSE) { cat("There are ", ntests, " hypothesis tests altogether\n") cat("There were ", hwtosop$nreject, " reject(s)\n") cat("P-val adjustment method was: ", object$mc.method[1], "\n") } rejix <- which(object$allpvals < object$alpha) vmat <- cbind(object$allbigscale[rejix]-1, object$alllitscale[rejix], object$alllv[rejix], object$allindex[rejix]) v <- as.data.frame(t(vmat)) class(v) <- "list" if (quiet==FALSE) { if (hwtosop$nreject != 0) { cat("Listing rejects...\n") for(i in 1:hwtosop$nreject) { cat("P: ", v[[i]][1], " HWTlev: ", v[[i]][2], " Max Poss Ix: ", v[[i]][3], " Indices: ", v[[i]][c(-1,-2,-3)], "\n") } } } vret <- list(rejlist = v, nreject = hwtosop$nreject, mctype = object$p.adjust.method[1]) return(invisible(vret)) }
dhnorm <- function(x, sigma = 1, log = FALSE) { cpp_dhnorm(x, sigma, log[1L]) } phnorm <- function(q, sigma = 1, lower.tail = TRUE, log.p = FALSE) { cpp_phnorm(q, sigma, lower.tail[1L], log.p[1L]) } qhnorm <- function(p, sigma = 1, lower.tail = TRUE, log.p = FALSE) { cpp_qhnorm(p, sigma, lower.tail[1L], log.p[1L]) } rhnorm <- function(n, sigma = 1) { if (length(n) > 1) n <- length(n) cpp_rhnorm(n, sigma) }
context("checking that the length of pse_pssm feature vector is equal to 40") test_that("whether the pse_pssm function gives us the expected output",{ ss<-pse_pssm(system.file("extdata","C7GQS7.txt.pssm",package="PSSMCOOL")) expect_equal(length(ss),40) })
get_nhdplus <- function(AOI = NULL, comid = NULL, nwis = NULL, realization = "flowline", streamorder = NULL, t_srs = NULL){ if(!is.null(AOI)){ if(all(!methods::is(AOI,"sf"), !methods::is(AOI,"sfc"))){ stop("AOI must be of class sf.", .call = FALSE) } if(st_geometry_type(AOI) == "POINT"){ comid <- discover_nhdplus_id(AOI) AOI <- NULL } } if(!is.null(AOI) & !is.null(c(nwis, comid))){ stop("Either IDs (comid, nwis) or a spatial AOI can be passed.",.call = FALSE) } else if(is.null(AOI) & is.null(c(nwis, comid))){ stop("IDs (comid, nwis) or a spatial AOI must be passed.",.call = FALSE) } hy_realizations = c("flowline", "catchment", 'outlet') if("all" %in% realization){ realization = hy_realizations} if(any(!realization %in% hy_realizations)){ stop(paste(realization, "not valid.\n Select from", paste(hy_realizations, collapse = ", "))) } geoms = list() if(!is.null(nwis)){ comid = c(unlist(lapply(nwis, extact_comid_nwis)), comid) } if("catchment" %in% realization){ geoms$catchment <- query_usgs_geoserver(AOI = AOI, ids = comid, type = "catchment", t_srs = t_srs) } if(any(c("flowline", "outlet") %in% realization)){ geoms$flowline <- query_usgs_geoserver(AOI = AOI, ids = comid, type = 'nhd', filter = streamorder_filter(streamorder), t_srs = t_srs) if("outlet" %in% realization){ geoms$outlet <- geoms$flowline geoms$outlet$geometry <- st_geometry( get_node(geoms$outlet, position = "end") ) } } geoms = tc(geoms) geoms = geoms[names(geoms) %in% realization] if(length(geoms) == 1){ geoms = geoms[[1]]} return(geoms) }
test_that("parallel.seeds is currently not reproducible", { skip_if_not_installed("rjags") withr::local_seed(11) seed1 <- rjags::parallel.seeds("base::BaseRNG", 1) withr::local_seed(11) seed2 <- rjags::parallel.seeds("base::BaseRNG", 1) expect_false(identical(seed1, seed2)) }) test_that("rjags replicable when prior in model", { skip_if_not_installed("rjags") code <- "model{beta ~ dunif(0,1)}" inits <- list( .RNG.name = "base::Wichmann-Hill", .RNG.seed = 799289926L ) model1 <- rjags::jags.model(textConnection(code), data = list(), inits = inits, n.adapt = 0, quiet = TRUE ) sample1 <- rjags::jags.samples(model1, variable.names = "beta", n.iter = 1) model2 <- rjags::jags.model(textConnection(code), data = list(), inits = inits, n.adapt = 0, quiet = TRUE ) sample2 <- rjags::jags.samples(model2, variable.names = "beta", n.iter = 1) expect_identical(sample1, sample2) }) test_that("rjags not replicable when prior in data", { skip_if_not_installed("rjags") code <- "data{beta ~ dunif(0,1)} model{dummy <- 0}" inits <- list( .RNG.name = "base::Wichmann-Hill", .RNG.seed = 799289926L ) model1 <- rjags::jags.model(textConnection(code), data = list(), inits = inits, n.adapt = 0, quiet = TRUE ) sample1 <- rjags::jags.samples(model1, variable.names = "beta", n.iter = 1) model2 <- rjags::jags.model(textConnection(code), data = list(), inits = inits, n.adapt = 0, quiet = TRUE ) sample2 <- rjags::jags.samples(model2, variable.names = "beta", n.iter = 1) expect_false(identical(sample1, sample2)) })
require(pls) sessionInfo() rm(list = ls(all = TRUE)) mydata <- gasoline form <- octane ~ NIR nc <- 27 refmod <- mvr(form, nc = nc, data = mydata, method = "oscorespls") refmod$method <- refmod$call <- refmod$fit.time <- NULL save.image(file = "ref_singresp.RData") rm(list = ls(all = TRUE)) mydata <- oliveoil form <- sensory ~ chemical nc <- 4 refmod <- mvr(form, nc = nc, data = mydata, method = "oscorespls") refmod$method <- refmod$call <- refmod$fit.time <-NULL for (i in 2:7) refmod[[i]] <- abs(refmod[[i]]) save.image(file = "ref_multiresp.RData")
outputNetworks_topEdges_matrix<-function(dataMatrix, subpopulationLabels, threshold){ SampleID<-dataMatrix[1,1] inputMatrix<-cbind(dataMatrix, subpopulationLabels) labels<-unique(subpopulationLabels) for(i in 1:length(labels)){ inputMatrix_subpopSubset<-subset(inputMatrix, inputMatrix[,ncol(inputMatrix)] == i) inputMatrix_subpopSubset_datapoints<-inputMatrix_subpopSubset[,c(2:(ncol(inputMatrix_subpopSubset)-1))] png(paste(SampleID, '_Subpopulation', "0", i, '.png', sep="")) MINetworkPlot_topEdges(inputMatrix_subpopSubset_datapoints, threshold) title(main=paste("Subpopulation", i)) dev.off() Networks<-MINetwork_matrix_topEdges(inputMatrix_subpopSubset_datapoints, threshold) save(Networks, file=paste0(SampleID, "_", i, "_subpop_Network.Rdata")) } }
gdina_prob_item_designmatrix <- function( delta_jj, Mjjj, linkfct, eps_squeeze ) { irf1 <- ( Mjjj %*% delta_jj )[,1] if ( linkfct=="log"){ irf1 <- exp(irf1) } if ( linkfct=="logit"){ irf1 <- stats::plogis(irf1) } irf1 <- cdm_squeeze( irf1, c(eps_squeeze, 1-eps_squeeze) ) return(irf1) }
summary.Multivar.PCA.ContCont <- function(object, ..., Object){ if (missing(Object)){Object <- object} mode <- function(data) { x <- data z <- density(x) mode_val <- z$x[which.max(z$y)] fit <- list(mode_val= mode_val) } cat("\nFunction call:\n\n") print(Object$Call) cat("\n\n cat("\n cat("\n cat(Object$Total.Num.Matrices) cat("\n\n cat("\n cat(Object$Pos.Def) cat("\n\n\n cat("\n cat("Mean (SD) PCA: ", format(round(mean(Object$PCA), 4), nsmall = 4), " (", format(round(sd(Object$PCA), 4), nsmall = 4), ")", " [min: ", format(round(min(Object$PCA), 4), nsmall = 4), "; max: ", format(round(max(Object$PCA), 4), nsmall = 4), "]", sep="") cat("\nMode PCA: ", format(round(mode(Object$PCA)$mode_val, 4), nsmall = 4)) cat("\n\nQuantiles of the PCA distribution: \n\n") quant <- quantile(Object$PCA, probs = c(.05, .10, .20, .50, .80, .90, .95)) print(quant) }
GWPR.pFtest <- function(formula, data, index, SDF, bw = NULL, adaptive = FALSE, p = 2, effect = "individual", kernel = "bisquare", longlat = FALSE) { if(length(index) != 2) { stop("The \"index\" have included \"ID\" or/and \"time\" index.") } if(!((index[1] %in% colnames(data)) & (index[2] %in% colnames(data)))) { stop("The data.frame(data) does not have the index columns.") } if(!(index[1] %in% colnames(SDF@data))) { stop("The SDF does not have the \"ID\" columns.") } if(is.null(bw)) { stop("The bw must be set.") } varibale_name_in_equation <- all.vars(formula) data <- dplyr::select(data, index, varibale_name_in_equation) data$raw_order_data <- 1:nrow(data) raw_id <- index[1] colnames(data)[1] <- "id" index[1] <- "id" model <- "within" .N <- 0 ID <- dplyr::select(data, index[1]) ID_num <- data.table::setDT(ID)[,list(Count=.N),names(ID)] if(model == "within") { data <- drop_ID_with_single_observation(data, ID_num) ID <- dplyr::select(data, index[1]) ID_num <- data.table::setDT(ID)[,list(Count=.N),names(ID)] } if (nrow(ID_num) > 1000) { message("Dear my friend, thanks for your patience!. We pass the bandwidth\n", "selection part. Now, regression! This should be faster. Thanks.\n", "................................................................\n") huge_data_size <- TRUE } else { huge_data_size <- FALSE } SDF@data <- dplyr::select(SDF@data, dplyr::all_of(raw_id)) colnames(SDF@data)[1] <- "id" dp.locat <- sp::coordinates(SDF) coord <- cbind(as.data.frame(dp.locat), SDF@data$id) colnames(coord) <- c("X", "Y", "id") data <- dplyr::left_join(data, coord, by = "id") lvl1_data <- data if(huge_data_size) { message("Data Prepared! Go!............................................\n") } if (adaptive) { result <- gwpr_A_pFtest(bw = bw, data = lvl1_data, SDF=SDF, index=index, ID_list = ID_num, formula = formula, p = p, longlat = longlat, adaptive = adaptive, kernel = kernel, effect = effect, huge_data_size = huge_data_size) } else { result <- gwpr_F_pFtest(bw = bw, data = lvl1_data, SDF=SDF, index=index, ID_list = ID_num, formula = formula, p = p, longlat = longlat, adaptive = adaptive, kernel = kernel, effect = effect, huge_data_size = huge_data_size) } return(result) }
wheel <- function(color, num=12, bg="gray95", border=NULL, init.angle=105, cex=1, lty=NULL, main=NULL, verbose=TRUE, ...) { if (!is.numeric(num) || any(is.na(num) | num < 0)) stop("\n'num' must be positive") x <- rep(1, num) x <- c(0, cumsum(x)/sum(x)) dx <- diff(x) nx <- length(dx) col = setColors(color, num) labels = col labcol = ifelse( mean(col2rgb(bg)) > 127, "black", "white") par(bg = bg) plot.new() pin <- par("pin") xlim <- ylim <- c(-1, 1) if (pin[1L] > pin[2L]) xlim <- (pin[1L]/pin[2L]) * xlim else ylim <- (pin[2L]/pin[1L]) * ylim dev.hold() on.exit(dev.flush()) plot.window(xlim, ylim, "", asp = 1) if (is.null(border[1])) { border <- rep(bg, length.out = nx) } else { border <- rep(border, length.out = nx) } if (!is.null(lty)) lty <- rep(NULL, length.out = nx) angle <- rep(45, length.out = nx) radius = seq(1, 0, by=-1/num)[1:num] twopi <- -2 * pi t2xy <- function(t, rad) { t2p <- twopi * t + init.angle * pi/180 list(x = rad * cos(t2p), y = rad * sin(t2p)) } for (i in 1L:nx) { n <- max(2, floor(200 * dx[i])) P <- t2xy(seq.int(x[i], x[i + 1], length.out = n), rad=radius[1]) polygon(c(P$x, 0), c(P$y, 0), angle = angle[i], border = border[i], col = col[i], lty = lty[i]) P <- t2xy(mean(x[i + 0:1]), rad=radius[1]) lab <- labels[i] if (!is.na(lab) && nzchar(lab)) { adjs = 0.5 if (P$x > 1e-08) adjs <- 0 if (P$x < -1e-08) adjs <- 1 lines(c(1, 1.05) * P$x, c(1, 1.05) * P$y) text(1.1 * P$x, 1.1 * P$y, labels[i], xpd = TRUE, adj = adjs, cex=cex, col=labcol, ...) } } title(main = main, ...) if (verbose) col }
.Random.seed <- c(403L, 1L, -788367838L, 165038100L, 79326359L, 1084589709L, -858183772L, -591177334L, 1733125621L, 494884943L, -1515335850L, -699963904L, 1538717507L, 35303137L, -1791529904L, 255227054L, -453349287L, 38236267L, -1868184102L, 33222300L, -1151401825L, -327804171L, 278390668L, -1144461726L, 643938877L, 1113875639L, -582247586L, -1235943784L, 1679588859L, 1326145433L, 574412840L, -1766784810L, 2070021457L, 451572739L, 387595154L, -868542172L, 44277735L, 700580925L, 1457607348L, -155623142L, -242937243L, 2035889919L, -1457280122L, -807080688L, -1608464973L, -194906543L, -1458522624L, 1097044702L, -1041399511L, -960647973L, -1387045910L, 825961356L, -554603313L, -880520059L, 186998588L, -677143022L, 1873050893L, -1270299065L, 286260270L, -196648568L, 1367357579L, 1495405161L, -688386504L, 1429341926L, -103357823L, -1947120109L, -186582590L, -2028981644L, 458658935L, -707854995L, -1603624444L, 1392165162L, 42792597L, -2042307281L, 1109682230L, 1385643104L, -1563856221L, 1110336961L, -1124568656L, 558379214L, 77475385L, -1618816949L, 510403066L, 278764796L, -2128350913L, 31378965L, -640496340L, -1920762366L, 1080222941L, 1021755351L, -1657595202L, 648682744L, 352977627L, 386627897L, -980271992L, -2074342346L, 828758129L, -517100893L, 888459250L, 157852484L, 1212623879L, -975074851L, -167037228L, -1656792582L, 1538389317L, -276225633L, -1943829722L, 1116773296L, 412747859L, 2099938161L, 1769575072L, 1976731198L, 844148041L, 1659450363L, 1346631626L, -1200133844L, 2132337967L, 235924453L, -1354272100L, 1291777778L, -1079138451L, 1951068327L, 1650840270L, 905650216L, 1761745963L, -358551991L, 1970669400L, 1600459270L, -113640479L, -2102503053L, 284367330L, -1572233900L, -802958249L, -923232179L, 265100260L, -1809327670L, 727523381L, -1069597041L, -1329524842L, -2005544128L, -1243832829L, 352076833L, 2015176464L, -846701330L, 1772668057L, -43462357L, 798926874L, -1609391396L, 892601055L, -1406419787L, -719693236L, -428513630L, -1769435651L, -1339955465L, 1555509278L, 1750442712L, -1708652997L, -533597223L, -225427096L, -1849206634L, 1917654545L, -814747709L, -1602587694L, -2129645980L, 480681383L, 473043709L, -989206796L, 132985306L, 1303713061L, 1410200639L, -2132819002L, -729362352L, 420813939L, 802615441L, 1284640960L, 2041944734L, -1215662487L, 1369540251L, 1319283626L, -1656926260L, -1470987633L, 449211077L, -1854946692L, 1472990930L, -630502835L, 368903943L, -117454098L, 935698376L, -63119157L, 239010089L, 1207818616L, -1359122778L, -1103111999L, -1240927917L, -1207460350L, 1302939444L, 887825591L, -1305488211L, -2113392188L, -598797846L, 607030869L, 1233190895L, 513241078L, 1897474336L, -1970157853L, -1276256383L, -1138365968L, -718546802L, -1954488327L, 317420939L, 428331450L, -1658466116L, 1871459327L, 1621442901L, -1144702356L, -1739927870L, -1476331235L, 528609175L, -1120523522L, 462770360L, -2109556069L, 1988679929L, -581219768L, -396421770L, 3024049L, -1347434269L, 262293426L, 2046015492L, 2110737223L, 1762933488L, 1568427588L, -377765288L, 419557178L, 510420464L, -499870020L, -1352042220L, 750568130L, 531469408L, -1202838660L, -640567344L, 439968034L, 969054888L, 1371462540L, 1854421180L, 302599986L, 1318341184L, 833182900L, 1198391880L, -2093980230L, -1499028976L, -1008094484L, -941563564L, 1900339474L, 1496993184L, -1663892788L, -836919712L, 637401026L, -312998104L, -254644308L, -609631428L, 1070983538L, -1569563856L, -928920284L, -82515144L, 323387098L, -556611696L, -973091076L, 1055009684L, 1395621954L, 255849728L, -841874372L, 30638416L, -1794649950L, 631406920L, 1740330764L, 999367388L, -626348718L, 1599259776L, 1816641620L, 656609256L, -193754886L, -1107236016L, -94437588L, -440809100L, -1442878574L, -977778592L, -846926452L, -213918880L, 1830410722L, 657699752L, 203175116L, 342499324L, -503011918L, 795710960L, -381203516L, -994818728L, -2024482438L, 607716272L, 566241724L, -149579692L, -1318045758L, -1961365472L, 2074892476L, 374026832L, 881816546L, 649150568L, 289473612L, -31639300L, -337703950L, -932263680L, 2038063476L, 201763848L, 1780096954L, 1546301904L, -19416084L, -1212694124L, 1635340754L, 35090784L, 1923215180L, -794494688L, 2031419266L, 323743464L, -348962580L, -947063748L, -937559182L, -329884048L, 321082404L, -259298504L, -2033128294L, 452604624L, -2126569284L, -378081644L, -1551690110L, 893167808L, 59908924L, -360031088L, 394927650L, -1751183352L, 1897364748L, -265966436L, 1950875154L, -787218560L, -1049129452L, -1094800856L, 1760998714L, 1211009488L, 1018000492L, 1438288180L, 1571796626L, -869037216L, 1739985740L, -1227319328L, -187877470L, -1483880536L, 1102556556L, 37103804L, -1043035790L, -602786576L, -1532112828L, 1625350488L, -1687247302L, -1741243536L, -1260079044L, -130973932L, -1556240958L, 797965024L, -720554116L, 225836752L, 583858338L, -1173812184L, -2009905908L, -1046067268L, -67303118L, -863614528L, -1004467660L, -370754616L, -1479919430L, 927492496L, -984550932L, 714547796L, -1884139374L, -1706119392L, 723970508L, 1779930592L, -792512830L, 538821672L, -1564224852L, -190577476L, -804353550L, 1216816L, -375630684L, -791402824L, 1831255386L, 1445098896L, 222466940L, -936376044L, 1747444546L, 833903360L, -1676724292L, -12837040L, 1472955170L, -139322040L, 270600716L, 1231284316L, 1547664594L, -488162816L, -405729964L, 1081162216L, 994298L, 618594512L, 138087724L, 727966452L, 1951021458L, 763941984L, 1538237708L, 367350496L, 2034583906L, -1273505112L, -1555185076L, 991637884L, -1619466958L, 354750576L, 605669188L, -189850152L, -1663603590L, 744844848L, -1531041092L, -1448878252L, 1410094146L, -1114268256L, 859368124L, 1007548880L, -2032198302L, 356765672L, -1445623860L, 860016380L, 700269042L, -643544960L, -541891340L, -1734703480L, 1499060026L, 2073727824L, -2001140116L, 1277083796L, 1188704594L, 1939406560L, 327897804L, 1406259360L, 525908866L, 808719080L, -824429844L, -1098572740L, -1147334030L, -1966500752L, 1397745188L, -1015479240L, 1872388343L, -790393856L, -1982861730L, -1031745237L, 1297756717L, 132887194L, -1354428840L, -381546047L, 126959219L, 101497748L, -76205534L, -582001353L, 1552227329L, -898629370L, 1477887300L, -2060515211L, 995346911L, -558656200L, 824829718L, 1504618275L, -752143131L, 1893748994L, -1063632016L, -236979431L, 1023105803L, 1705732092L, -2059770838L, -839489441L, -177356823L, 2147311870L, -1716137748L, -678415299L, -179058681L, 1547359216L, -1238327410L, -560300613L, -236856419L, 1552965962L, 276048232L, -446423215L, 2100878403L, 1120781636L, 316704242L, 2008518599L, 56390033L, -477559530L, 870333812L, 595328005L, 522505295L, -796270520L, 1094473190L, 1438706451L, -178746251L, 1501181522L, -1261055840L, 977512841L, -358602309L, 1104487948L, -1401618534L, -1323948273L, 1396120921L, -964175890L, 1750187644L, 1602209517L, 1251209623L, 1283021408L, -606449602L, 167721227L, 1840774029L, -627279686L, -664797448L, 604927137L, -1303793581L, -1734960268L, 186575106L, -1733162601L, 79246177L, -1444075610L, -513531484L, 21854293L, -96801537L, -1724010088L, 1084263094L, -993000637L, 1776483973L, 1797051170L, -1251366896L, -125054023L, 766850155L, -858486948L, -868458870L, -1367889281L, 1063277513L, 653906014L, -603196660L, 2092661469L, -1306094617L, -495474672L, -29989586L, 1793669595L, 447733437L, 369839146L, -213693240L, 1644562929L, 1043416931L, -1536311452L, -1892460910L, -365710489L, -361816783L, -16730506L, -1459140716L, -1130179675L, -658627409L, 2012731752L, -759766714L, -937887501L, 499631701L, -775509454L, 990320640L, -607654679L, -82228389L, -1484304980L, -463202886L, 942240623L, -323279623L, -1083229810L, 1516006492L, 799325901L, -1915291081L, 2051395776L, 148750238L, 937223275L, -1348123667L, 1347880538L, -982333160L, 1337357953L, 1181600819L, 1908677204L, 712863330L, -98393865L, -1840729279L, 66873798L, -1988308220L, 1740363445L, -1505140321L, 677813752L, -174623786L, 1755729507L, 630132261L, 234847682L, 2002956976L, 274627289L, -1590461365L, -1463295300L, 225779946L, 193854751L, 28304809L, 1393689406L, -1779081684L, 591981693L, 2002056903L, 235614128L, -1613815346L, -1957299461L, 1333225821L, -1407100278L, -732911448L, -226796527L, 1326664963L, -1265759059L)
VDJ_clonotype <- function(VDJ, clone.strategy, homology.threshold, hierarchical, VDJ.VJ.1chain, global.clonotype, output.format, platypus.version){ Nr_of_VDJ_chains <- NULL Nr_of_VJ_chains <- NULL ccombs1 <- NULL if(missing(platypus.version)) platypus.version <- "v3" if(missing(output.format)) output.format <- "vgm" if(missing(global.clonotype)) global.clonotype <- F if(missing(clone.strategy)) clone.strategy <- "cdr3.aa" if(missing(VDJ.VJ.1chain)) VDJ.VJ.1chain <- T if(missing(VDJ)) stop("Please provide input data as VDJ") if(missing(hierarchical)) hierarchical <- F clone.strategy.as.input <- clone.strategy switch(clone.strategy, VDJJ.VJJ.cdr3length.CDR3.homology = {clone.strategy <- 'hvj.lvj.CDR3length.CDR3.homology'}, VDJJ.VJJ.cdr3length.VDJCDR3.homology = {clone.strategy <- 'hvj.lvj.CDR3length.CDRH3.homology'}, cdr3.homology = {clone.strategy <- 'CDR3.homology'}, VDJcdr3.homology = {clone.strategy <- 'CDRH3.homology'}, VDJJ.VJJ = {clone.strategy <- "hvj.lvj"}, VDJJ.VJJ.cdr3 = {clone.strategy <- "hvj.lvj.cdr3"}, VDJJ.VJJ.cdr3lengths = {clone.strategy <- "hvj.lvj.cdr3lengths"}) if(platypus.version=="v2"){ clonotype.list <- VDJ VDJ <- NULL output.clonotype <- list() if(missing(homology.threshold) & grepl(clone.strategy,pattern = "homology")) message("No homology threshold supplied. Clonotyping based on 70% amino acid homology.") if(missing(homology.threshold) & grepl(clone.strategy,pattern = "homology")) homology.threshold<-0.3 for(i in 1:length(clonotype.list)){ if(clone.strategy=="cdr3.nt"){ unique_clones <- unique(clonotype.list[[i]]$CDR3_nt_pasted) clonotype.list[[i]]$new_clone_unique <- clonotype.list[[i]]$CDR3_nt_pasted } else if(clone.strategy=="cdr3.aa"){ unique_clones <- unique(clonotype.list[[i]]$CDR3_aa_pasted) clonotype.list[[i]]$new_clone_unique <- clonotype.list[[i]]$CDR3_aa_pasted } else if(clone.strategy=="hvj.lvj"){ unique_clones <- unique(paste(clonotype.list[[i]]$HC_vgene, clonotype.list[[i]]$HC_jgene, clonotype.list[[i]]$LC_vgene, clonotype.list[[i]]$LC_jgene,sep="_")) clonotype.list[[i]]$new_clone_unique <- paste(clonotype.list[[i]]$HC_vgene, clonotype.list[[i]]$HC_jgene, clonotype.list[[i]]$LC_vgene, clonotype.list[[i]]$LC_jgene,sep="_") } else if(clone.strategy=="hvj.lvj.cdr3lengths"){ unique_clones <- unique(paste(clonotype.list[[i]]$HC_vgene, clonotype.list[[i]]$HC_jgene, clonotype.list[[i]]$LC_vgene, clonotype.list[[i]]$LC_jgene, nchar(clonotype.list[[i]]$CDRH3_aa), nchar(clonotype.list[[i]]$CDRL3_aa),sep="_")) clonotype.list[[i]]$new_clone_unique <- paste(clonotype.list[[i]]$HC_vgene, clonotype.list[[i]]$HC_jgene, clonotype.list[[i]]$LC_vgene, clonotype.list[[i]]$LC_jgene, nchar(clonotype.list[[i]]$CDRH3_aa), nchar(clonotype.list[[i]]$CDRL3_aa),sep="_") } else if(clone.strategy=="hvj.lvj.cdr3length.CDR3.homology" | clone.strategy=="hvj.lvj.CDR3length.CDRH3.homology"){ clones_temp <- (paste(clonotype.list[[i]]$HC_vgene, clonotype.list[[i]]$HC_jgene, clonotype.list[[i]]$LC_vgene, clonotype.list[[i]]$LC_jgene, nchar(clonotype.list[[i]]$CDRH3_aa), nchar(clonotype.list[[i]]$CDRL3_aa),sep="_")) clonotype.list[[i]]$new_clone_unique <- clones_temp unique_clones <- unique(clones_temp) for(j in 1:length(unique_clones)){ original_clone_indices <- which(clones_temp==unique_clones[j]) if (length(original_clone_indices) >= 2){ vh_distance <- stringdist::stringdistmatrix(clonotype.list[[i]]$CDRH3_aa[original_clone_indices],clonotype.list[[i]]$CDRH3_aa[original_clone_indices],method = "lv")/nchar(clonotype.list[[i]]$CDRH3_aa[original_clone_indices]) if (clone.strategy=="hvj.lvj.cdr3length.CDR3.homology"){ vl_distance <- stringdist::stringdistmatrix(clonotype.list[[i]]$CDRL3_aa[original_clone_indices],clonotype.list[[i]]$CDRL3_aa[original_clone_indices],method = "lv")/nchar(clonotype.list[[i]]$CDRL3_aa[original_clone_indices]) }else{ vl_distance <- 0 } combined_distance <- vh_distance + vl_distance diag(combined_distance) <- NA hclust_combined <- stats::hclust(stats::as.dist(combined_distance)) hclust_combined_cut <- stats::cutree(hclust_combined, h = homology.threshold) clonotype.list[[i]]$new_clone_unique[original_clone_indices] <- paste(clonotype.list[[i]]$new_clone_unique[original_clone_indices],j,hclust_combined_cut) }else{ clonotype.list[[i]]$new_clone_unique[original_clone_indices] <- paste(clonotype.list[[i]]$new_clone_unique[original_clone_indices],j,"1") } } unique_clones <- unique(clonotype.list[[i]]$new_clone_unique) } else if (clone.strategy=="CDR3.homology" | clone.strategy=="CDRH3.homology"){ vh_distance <- stringdist::stringdistmatrix(clonotype.list[[i]]$CDRH3_aa, clonotype.list[[i]]$CDRH3_aa, method = "lv")/nchar(clonotype.list[[i]]$CDRH3_aa) if(clone.strategy=="CDR3.homology"){ vl_distance <- stringdist::stringdistmatrix(clonotype.list[[i]]$CDRL3_aa, clonotype.list[[i]]$CDRL3_aa, method = "lv")/nchar(clonotype.list[[i]]$CDRL3_aa) }else{ vl_distance <- 0 } combined_distance <- vh_distance + vl_distance diag(combined_distance) <- NA hclust_combined <- stats::hclust(stats::as.dist(combined_distance)) hclust_combined_cut <- stats::cutree(hclust_combined, h = homology.threshold) clonotype.list[[i]]$new_clone_unique <- paste(hclust_combined_cut) unique_clones <- unique(clonotype.list[[i]]$new_clone_unique) } clone_number <-length(unique_clones) output.clonotype[[i]] <- data.frame(clonotype_id=paste("clonotype",1:clone_number,sep=""),frequency=rep(NA,clone_number),proportion=rep("",clone_number),cdr3s_aa=rep("",clone_number),cdr3s_nt=rep("",clone_number),HC_count=rep("",clone_number),IGK_count=rep("",clone_number),IGL_count=rep("",clone_number),LC_count=rep("",clone_number),CDRH3_aa=rep("",clone_number),CDRL3_aa=rep("",clone_number),CDRH3_nt=rep("",clone_number),CDRL3_nt=rep("",clone_number),CDR3_aa_pasted=rep("",clone_number),CDR3_nt_pasted=rep("",clone_number),HC_cgene=rep("",clone_number),HC_vgene=rep("",clone_number),HC_dgene=rep("",clone_number),HC_jgene=rep("",clone_number),LC_cgene=rep("",clone_number),LC_vgene=rep("",clone_number),LC_jgene=rep("",clone_number),barcodes=rep("",clone_number),nt_clone_ids=rep("",clone_number),new_unique_clone=unique_clones,nt_clone_cdrh3s=rep("",clone_number),nt_clone_cdrl3s=rep("",clone_number),stringsAsFactors = F) for(j in 1:length(unique_clones)){ output.clonotype[[i]]$frequency[j] <- sum(clonotype.list[[i]]$frequency[which(clonotype.list[[i]]$new_clone_unique==unique_clones[j])]) output.clonotype[[i]]$proportion[j] <- output.clonotype[[i]]$frequency[j]/sum(clonotype.list[[i]]$frequency) output.clonotype[[i]]$cdr3s_aa[j] <- names(which.max(table(clonotype.list[[i]]$cdr3s_aa[which(clonotype.list[[i]]$new_clone_unique==unique_clones[j])]))) output.clonotype[[i]]$cdr3s_nt[j] <- names(which.max(table(clonotype.list[[i]]$cdr3s_nt[which(clonotype.list[[i]]$new_clone_unique==unique_clones[j])]))) output.clonotype[[i]]$HC_count[j] <- names(which.max(table(clonotype.list[[i]]$HC_count[which(clonotype.list[[i]]$new_clone_unique==unique_clones[j])]))) output.clonotype[[i]]$IGK_count[j] <- names(which.max(table(clonotype.list[[i]]$IGK_count[which(clonotype.list[[i]]$new_clone_unique==unique_clones[j])]))) output.clonotype[[i]]$IGL_count[j] <- names(which.max(table(clonotype.list[[i]]$IGL_count[which(clonotype.list[[i]]$new_clone_unique==unique_clones[j])]))) output.clonotype[[i]]$LC_count[j] <- names(which.max(table(clonotype.list[[i]]$LC_count[which(clonotype.list[[i]]$new_clone_unique==unique_clones[j])]))) output.clonotype[[i]]$CDRH3_aa[j] <- names(which.max(table(clonotype.list[[i]]$CDRH3_aa[which(clonotype.list[[i]]$new_clone_unique==unique_clones[j])]))) output.clonotype[[i]]$CDRL3_aa[j] <- names(which.max(table(clonotype.list[[i]]$CDRL3_aa[which(clonotype.list[[i]]$new_clone_unique==unique_clones[j])]))) output.clonotype[[i]]$CDRH3_nt[j] <- names(which.max(table(clonotype.list[[i]]$CDRH3_nt[which(clonotype.list[[i]]$new_clone_unique==unique_clones[j])]))) output.clonotype[[i]]$CDRL3_nt[j] <- names(which.max(table(clonotype.list[[i]]$CDRL3_nt[which(clonotype.list[[i]]$new_clone_unique==unique_clones[j])]))) output.clonotype[[i]]$CDR3_aa_pasted[j] <- names(which.max(table(clonotype.list[[i]]$CDR3_aa_pasted[which(clonotype.list[[i]]$new_clone_unique==unique_clones[j])]))) output.clonotype[[i]]$CDR3_nt_pasted[j] <- names(which.max(table(clonotype.list[[i]]$CDR3_nt_pasted[which(clonotype.list[[i]]$new_clone_unique==unique_clones[j])]))) output.clonotype[[i]]$HC_cgene[j] <- names(which.max(table(clonotype.list[[i]]$HC_cgene[which(clonotype.list[[i]]$new_clone_unique==unique_clones[j])]))) output.clonotype[[i]]$HC_vgene[j] <- names(which.max(table(clonotype.list[[i]]$HC_vgene[which(clonotype.list[[i]]$new_clone_unique==unique_clones[j])]))) output.clonotype[[i]]$HC_dgene[j] <- names(which.max(table(clonotype.list[[i]]$HC_dgene[which(clonotype.list[[i]]$new_clone_unique==unique_clones[j])]))) output.clonotype[[i]]$HC_jgene[j] <- names(which.max(table(clonotype.list[[i]]$HC_jgene[which(clonotype.list[[i]]$new_clone_unique==unique_clones[j])]))) output.clonotype[[i]]$LC_cgene[j] <- names(which.max(table(clonotype.list[[i]]$LC_cgene[which(clonotype.list[[i]]$new_clone_unique==unique_clones[j])]))) output.clonotype[[i]]$LC_vgene[j] <- names(which.max(table(clonotype.list[[i]]$LC_vgene[which(clonotype.list[[i]]$new_clone_unique==unique_clones[j])]))) output.clonotype[[i]]$LC_jgene[j] <- names(which.max(table(clonotype.list[[i]]$LC_jgene[which(clonotype.list[[i]]$new_clone_unique==unique_clones[j])]))) output.clonotype[[i]]$barcodes[j] <- gsub(toString(clonotype.list[[i]]$barcodes[which(clonotype.list[[i]]$new_clone_unique==unique_clones[j])]),pattern=", ", replacement = ";") output.clonotype[[i]]$nt_clone_ids[j] <- gsub(toString(clonotype.list[[i]]$clonotype_id[which(clonotype.list[[i]]$new_clone_unique==unique_clones[j])]),pattern = ", ", replacement = ";") output.clonotype[[i]]$nt_clone_cdrh3s[j] <- gsub(toString(clonotype.list[[i]]$CDRH3_nt[which(clonotype.list[[i]]$new_clone_unique==unique_clones[j])]),pattern = ", ",replacement = ";") output.clonotype[[i]]$nt_clone_cdrl3s[j] <- gsub(toString(clonotype.list[[i]]$CDRL3_aa[which(clonotype.list[[i]]$new_clone_unique==unique_clones[j])],sep=";"),pattern = ", ",replacement = ";") } } return(output.clonotype) } if(platypus.version=="v3"){ message("Please consider using the updated function VDJ_clonotype_v3 with increased flexibility for hierarchical clonotyping and overall higher performance.") VDJ.GEX.matrix <- list() VDJ.GEX.matrix[[1]] <- VDJ VDJ <- NULL if(hierarchical == F){ if(global.clonotype==F){ repertoire.number <- unique(VDJ.GEX.matrix[[1]]$sample_id) sample_dfs <- list() for(i in 1:length(repertoire.number)){ sample_dfs[[i]] <- VDJ.GEX.matrix[[1]][which(VDJ.GEX.matrix[[1]]$sample_id==repertoire.number[i]),] if(VDJ.VJ.1chain== T){ sample_dfs[[i]]<- sample_dfs[[i]][which(sample_dfs[[i]]$Nr_of_VDJ_chains==1 & sample_dfs[[i]]$Nr_of_VJ_chains==1),] } if(clone.strategy=="10x.default"){ sample_dfs[[i]]$new_clonal_feature <- sample_dfs[[i]]$clonotype_id_10x } if(clone.strategy=="cdr3.nt"){ sample_dfs[[i]]$new_clonal_feature <- paste0(sample_dfs[[i]]$VDJ_cdr3s_nt, sample_dfs[[i]]$VJ_cdr3s_nt) } else if(clone.strategy=="cdr3.aa"){ sample_dfs[[i]]$new_clonal_feature <- paste0(sample_dfs[[i]]$VDJ_cdr3s_aa, sample_dfs[[i]]$VJ_cdr3s_aa) } else if(clone.strategy=="hvj.lvj"){ sample_dfs[[i]]$new_clonal_feature <- paste(sample_dfs[[i]]$VDJ_vgene, sample_dfs[[i]]$VDJ_jgene, sample_dfs[[i]]$VJ_jgene, sample_dfs[[i]]$VJ_jgene,sep="_") } else if(clone.strategy=="hvj.lvj.cdr3"){ sample_dfs[[i]]$new_clonal_feature <- paste(sample_dfs[[i]]$VDJ_cdr3s_aa, sample_dfs[[i]]$VJ_cdr3s_aa, sample_dfs[[i]]$VDJ_vgene, sample_dfs[[i]]$VDJ_jgene, sample_dfs[[i]]$VJ_jgene, sample_dfs[[i]]$VJ_jgene,sep="_") } else if(clone.strategy=="hvj.lvj.cdr3lengths"){ sample_dfs[[i]]$new_clonal_feature <- paste(sample_dfs[[i]]$VDJ_vgene, sample_dfs[[i]]$VDJ_jgene, sample_dfs[[i]]$VJ_vgene, sample_dfs[[i]]$VJ_jgene, nchar(sample_dfs[[i]]$VDJ_cdr3s_aa), nchar(sample_dfs[[i]]$VJ_cdr3s_aa),sep="_") } else if(clone.strategy=="Hvj.Lvj.CDR3length.CDR3.homology" | clone.strategy=="Hvj.Lvj.CDR3length.CDRH3.homology"){ clones_temp <- (paste(sample_dfs[[i]]$VDJ_vgene, sample_dfs[[i]]$VDJ_jgene, sample_dfs[[i]]$VJ_vgene, sample_dfs[[i]]$VJ_jgene, nchar(sample_dfs[[i]]$VDJ_cdr3s_aa), nchar(sample_dfs[[i]]$VJ_cdr3s_aa),sep="_")) sample_dfs[[i]]$new_clonal_feature <- clones_temp unique_clones <- unique(clones_temp) for(j in 1:length(unique_clones)){ original_clone_indices <- which(clones_temp==unique_clones[j]) if(length(original_clone_indices) >= 2){ if(any(nchar(sample_dfs[[i]]$VDJ_cdr3s_aa[original_clone_indices]) == 0) & !all(nchar(sample_dfs[[i]]$VDJ_cdr3s_aa[original_clone_indices]) == 0)){ nchars_vh <- nchar(sample_dfs[[i]]$VDJ_cdr3s_aa[original_clone_indices]) nchars_vh[which(nchars_vh == 0)] <- mean(nchars_vh[nchars_vh > 0]) } else if(all(nchar(sample_dfs[[i]]$VDJ_cdr3s_aa[original_clone_indices]) == 0)){ nchars_vh <- rep(1,length(original_clone_indices)) } else { nchars_vh <- nchar(sample_dfs[[i]]$VDJ_cdr3s_aa[original_clone_indices]) } vh_distance <- stringdist::stringdistmatrix(sample_dfs[[i]]$VDJ_cdr3s_aa[original_clone_indices],sample_dfs[[i]]$VDJ_cdr3s_aa[original_clone_indices],method = "lv")/nchars_vh if (clone.strategy=="Hvj.Lvj.CDR3length.CDR3.homology"){ if(any(nchar(sample_dfs[[i]]$VJ_cdr3s_aa[original_clone_indices]) == 0) & !all(nchar(sample_dfs[[i]]$VJ_cdr3s_aa[original_clone_indices]) == 0)){ nchars_vl <- nchar(sample_dfs[[i]]$VJ_cdr3s_aa[original_clone_indices]) nchars_vl[which(nchars_vl == 0)] <- mean(nchars_vl[nchars_vl > 0]) } else if(all(nchar(sample_dfs[[i]]$VJ_cdr3s_aa[original_clone_indices]) == 0)){ nchars_vl <- rep(1,length(original_clone_indices)) } else { nchars_vl <- nchar(sample_dfs[[i]]$VJ_cdr3s_aa[original_clone_indices]) } vl_distance <- stringdist::stringdistmatrix(sample_dfs[[i]]$VJ_cdr3s_aa[original_clone_indices],sample_dfs[[i]]$VJ_cdr3s_aa[original_clone_indices],method = "lv")/nchars_vl }else{ vl_distance <- 0 } combined_distance <- vh_distance + vl_distance diag(combined_distance) <- NA hclust_combined <- stats::hclust(stats::as.dist(combined_distance)) hclust_combined_cut <- stats::cutree(hclust_combined, h = homology.threshold) sample_dfs[[i]]$new_clonal_feature[original_clone_indices] <- paste(sample_dfs[[i]]$new_clonal_feature[original_clone_indices],j,hclust_combined_cut) }else{ sample_dfs[[i]]$new_clonal_feature[original_clone_indices] <- paste(sample_dfs[[i]]$new_clonal_feature[original_clone_indices],j,"1") } } unique_clones <- unique(sample_dfs[[i]]$new_clonal_feature) } else if (clone.strategy=="CDR3.homology" | clone.strategy=="CDRH3.homology"){ if(any(nchar(sample_dfs[[i]]$VDJ_cdr3s_aa) == 0) & !all(nchar(sample_dfs[[i]]$VDJ_cdr3s_aa) == 0)){ nchars_vh <- nchar(sample_dfs[[i]]$VDJ_cdr3s_aa) nchars_vh[which(nchars_vh == 0)] <- mean(nchars_vh[nchars_vh > 0]) } else if(all(nchar(sample_dfs[[i]]$VDJ_cdr3s_aa) == 0)){ nchars_vh <- rep(1,length(sample_dfs[[i]]$VDJ_cdr3s_aa)) } else { nchars_vh <- nchar(sample_dfs[[i]]$VDJ_cdr3s_aa) } vh_distance <- stringdist::stringdistmatrix(sample_dfs[[i]]$VDJ_cdr3s_aa, sample_dfs[[i]]$VDJ_cdr3s_aa, method = "lv")/nchars_vh if(clone.strategy=="CDR3.homology"){ if(any(nchar(sample_dfs[[i]]$VJ_cdr3s_aa) == 0) & !all(nchar(sample_dfs[[i]]$VJ_cdr3s_aa) == 0)){ nchars_vl <- nchar(sample_dfs[[i]]$VJ_cdr3s_aa) nchars_vl[which(nchars_vl == 0)] <- mean(nchars_vl[nchars_vl > 0]) } else if(all(nchar(sample_dfs[[i]]$VJ_cdr3s_aa) == 0)){ nchars_vl <- rep(1,length(sample_dfs[[i]]$VJ_cdr3s_aa)) } else { nchars_vl <- nchar(sample_dfs[[i]]$VJ_cdr3s_aa) } vl_distance <- stringdist::stringdistmatrix(sample_dfs[[i]]$VJ_cdr3s_aa, sample_dfs[[i]]$VJ_cdr3s_aa, method = "lv")/nchars_vl }else{ vl_distance <- 0 } combined_distance <- vh_distance + vl_distance diag(combined_distance) <- NA hclust_combined <- stats::hclust(stats::as.dist(combined_distance)) hclust_combined_cut <- stats::cutree(hclust_combined, h = homology.threshold) sample_dfs[[i]]$new_clonal_feature <- paste(hclust_combined_cut) unique_clones <- unique(sample_dfs[[i]]$new_clonal_feature) } sample_dfs[[i]]$new_clonotype_id <- rep(NA,nrow(sample_dfs[[i]])) sample_dfs[[i]]$new_clonal_frequency <- rep(NA,nrow(sample_dfs[[i]])) sample_dfs[[i]]$new_clonal_rank <- rep(NA,nrow(sample_dfs[[i]])) unique.clonal.features <- unique(sample_dfs[[i]]$new_clonal_feature) unique.clonal.frequencies <- rep(NA,length(unique.clonal.features)) for(j in 1:length(unique.clonal.features)){ unique.clonal.frequencies[j] <- length(which(sample_dfs[[i]]$new_clonal_feature==unique.clonal.features[j])) sample_dfs[[i]]$new_clonal_frequency[which(sample_dfs[[i]]$new_clonal_feature==unique.clonal.features[j])] <- unique.clonal.frequencies[j] } sample_dfs[[i]] <-sample_dfs[[i]][with(sample_dfs[[i]], order(-new_clonal_frequency)), ] unique.clone.frequencies <- unique(sample_dfs[[i]]$new_clonal_frequency) for(j in 1:length(unique.clone.frequencies)){ sample_dfs[[i]]$new_clonal_rank[which(sample_dfs[[i]]$new_clonal_frequency==unique.clone.frequencies[j])] <- j } unique.clonal.features <- unique(sample_dfs[[i]]$new_clonal_feature) for(j in 1:length(unique.clonal.features)){ sample_dfs[[i]]$new_clonotype_id[which(sample_dfs[[i]]$new_clonal_feature == unique.clonal.features[j])] <- paste0("clonotype",j) } } } else if(global.clonotype==T){ sample_dfs <- VDJ.GEX.matrix[[1]] sample_dfs$clonotype_id_10x <- paste0(sample_dfs$clonotype_id_10x,"_",sample_dfs$sample_id) if(VDJ.VJ.1chain==T){ sample_dfs <- sample_dfs[which(sample_dfs$Nr_of_VDJ_chains==1 & sample_dfs$Nr_of_VJ_chains==1), ]} if(clone.strategy=="10x.default"){ sample_dfs$new_clonal_feature <- sample_dfs$clonotype_id_10x } if(clone.strategy=="cdr3.nt"){ sample_dfs$new_clonal_feature <- paste0(sample_dfs$VDJ_cdr3s_nt, sample_dfs$VJ_cdr3s_nt) } else if(clone.strategy=="cdr3.aa"){ sample_dfs$new_clonal_feature <- paste0(sample_dfs$VDJ_cdr3s_aa, sample_dfs$VJ_cdr3s_aa) } else if(clone.strategy=="hvj.lvj"){ sample_dfs$new_clonal_feature <- paste(sample_dfs$VDJ_vgene, sample_dfs$VDJ_jgene, sample_dfs$VJ_vgene, sample_dfs$VJ_jgene,sep="_") } else if(clone.strategy=="hvj.lvj.cdr3"){ sample_dfs$new_clonal_feature <- paste(sample_dfs$VDJ_cdr3s_aa, sample_dfs$VJ_cdr3s_aa, sample_dfs$VDJ_vgene, sample_dfs$VDJ_jgene, sample_dfs$VJ_jgene, sample_dfs$VJ_jgene,sep="_") } else if(clone.strategy=="hvj.lvj.cdr3lengths"){ sample_dfs$new_clonal_feature <- paste(sample_dfs$VDJ_vgene, sample_dfs$VDJ_jgene, sample_dfs$VJ_vgene, sample_dfs$VJ_jgene, nchar(sample_dfs$VDJ_cdr3s_aa), nchar(sample_dfs$VJ_cdr3s_aa),sep="_") } else if(clone.strategy=="Hvj.Lvj.CDR3length.CDR3.homology" | clone.strategy=="Hvj.Lvj.CDR3length.CDRH3.homology"){ clones_temp <- (paste(sample_dfs$VDJ_vgene, sample_dfs$VDJ_jgene, sample_dfs$VJ_vgene, sample_dfs$VJ_jgene, nchar(sample_dfs$VDJ_cdr3s_aa), nchar(sample_dfs$VJ_cdr3s_aa),sep="_")) sample_dfs$new_clonal_feature <- clones_temp unique_clones <- unique(clones_temp) for(j in 1:length(unique_clones)){ original_clone_indices <- which(clones_temp==unique_clones[j]) if(length(original_clone_indices) >= 2){ if(any(nchar(sample_dfs$VDJ_cdr3s_aa[original_clone_indices]) == 0) & !all(nchar(sample_dfs$VDJ_cdr3s_aa[original_clone_indices]) == 0)){ nchars_vh <- nchar(sample_dfs$VDJ_cdr3s_aa[original_clone_indices]) nchars_vh[which(nchars_vh == 0)] <- mean(nchars_vh[nchars_vh > 0]) } else if(all(nchar(sample_dfs$VDJ_cdr3s_aa[original_clone_indices]) == 0)){ nchars_vh <- rep(1,length(original_clone_indices)) } else { nchars_vh <- nchar(sample_dfs$VDJ_cdr3s_aa[original_clone_indices]) } vh_distance <- stringdist::stringdistmatrix(sample_dfs$VDJ_cdr3s_aa[original_clone_indices],sample_dfs$VDJ_cdr3s_aa[original_clone_indices],method = "lv")/nchars_vh if (clone.strategy=="Hvj.Lvj.CDR3length.CDR3.homology"){ if(any(nchar(sample_dfs$VJ_cdr3s_aa[original_clone_indices]) == 0) & !all(nchar(sample_dfs$VJ_cdr3s_aa[original_clone_indices]) == 0)){ nchars_vl <- nchar(sample_dfs$VJ_cdr3s_aa[original_clone_indices]) nchars_vl[which(nchars_vl == 0)] <- mean(nchars_vl[nchars_vl > 0]) } else if(all(nchar(sample_dfs$VJ_cdr3s_aa[original_clone_indices]) == 0)){ nchars_vl <- rep(1,length(original_clone_indices)) } else { nchars_vl <- nchar(sample_dfs$VJ_cdr3s_aa[original_clone_indices]) } vl_distance <- stringdist::stringdistmatrix(sample_dfs$VJ_cdr3s_aa[original_clone_indices],sample_dfs$VJ_cdr3s_aa[original_clone_indices],method = "lv")/nchars_vl }else{ vl_distance <- 0 } combined_distance <- vh_distance + vl_distance diag(combined_distance) <- NA hclust_combined <- stats::hclust(stats::as.dist(combined_distance)) hclust_combined_cut <- stats::cutree(hclust_combined, h = homology.threshold) sample_dfs$new_clonal_feature[original_clone_indices] <- paste(sample_dfs[[i]]$new_clonal_feature[original_clone_indices],j,hclust_combined_cut) }else{ sample_dfs$new_clonal_feature[original_clone_indices] <- paste(sample_dfs[[i]]$new_clonal_feature[original_clone_indices],j,"1") } } unique_clones <- unique(sample_dfs$new_clonal_feature) } else if (clone.strategy=="CDR3.homology" | clone.strategy=="CDRH3.homology"){ if(any(nchar(sample_dfs$VDJ_cdr3s_aa) == 0) & !all(nchar(sample_dfs$VDJ_cdr3s_aa) == 0)){ nchars_vh <- nchar(sample_dfs$VDJ_cdr3s_aa) nchars_vh[which(nchars_vh == 0)] <- mean(nchars_vh[nchars_vh > 0]) } else if(all(nchar(sample_dfs$VDJ_cdr3s_aa) == 0)){ nchars_vh <- rep(1,length(sample_dfs$VDJ_cdr3s_aa)) } else { nchars_vh <- nchar(sample_dfs$VDJ_cdr3s_aa) } vh_distance <- stringdist::stringdistmatrix(sample_dfs$VDJ_cdr3s_aa, sample_dfs$VDJ_cdr3s_aa, method = "lv")/nchars_vh if(clone.strategy=="CDR3.homology"){ if(any(nchar(sample_dfs$VJ_cdr3s_aa) == 0) & !all(nchar(sample_dfs$VJ_cdr3s_aa) == 0)){ nchars_vl <- nchar(sample_dfs$VJ_cdr3s_aa) nchars_vl[which(nchars_vl == 0)] <- mean(nchars_vl[nchars_vl > 0]) } else if(all(nchar(sample_dfs$VJ_cdr3s_aa) == 0)){ nchars_vl <- rep(1,length(sample_dfs$VJ_cdr3s_aa)) } else { nchars_vl <- nchar(sample_dfs$VJ_cdr3s_aa) } vl_distance <- stringdist::stringdistmatrix(sample_dfs$VJ_cdr3s_aa, sample_dfs$VJ_cdr3s_aa, method = "lv")/nchars_vl }else{ vl_distance <- 0 } combined_distance <- vh_distance + vl_distance diag(combined_distance) <- NA hclust_combined <- stats::hclust(stats::as.dist(combined_distance)) hclust_combined_cut <- stats::cutree(hclust_combined, h = homology.threshold) sample_dfs$new_clonal_feature <- paste(hclust_combined_cut) unique_clones <- unique(sample_dfs$new_clonal_feature) } sample_dfs$new_clonotype_id <- rep(NA,nrow(sample_dfs)) sample_dfs$new_clonal_frequency <- rep(NA,nrow(sample_dfs)) sample_dfs$new_clonal_rank <- rep(NA,nrow(sample_dfs)) unique.clonal.features <- unique(sample_dfs$new_clonal_feature) unique.clonal.frequencies <- rep(NA,length(unique.clonal.features)) for(j in 1:length(unique.clonal.features)){ unique.clonal.frequencies[j] <- length(which(sample_dfs$new_clonal_feature==unique.clonal.features[j])) sample_dfs$new_clonal_frequency[which(sample_dfs$new_clonal_feature==unique.clonal.features[j])] <- unique.clonal.frequencies[j] } sample_dfs <-sample_dfs[with(sample_dfs, order(-new_clonal_frequency)), ] unique.clone.frequencies <- unique(sample_dfs$new_clonal_frequency) for(j in 1:length(unique.clone.frequencies)){ sample_dfs$new_clonal_rank[which(sample_dfs$new_clonal_frequency==unique.clone.frequencies[j])] <- j } unique.clonal.features <- unique(sample_dfs$new_clonal_feature) for(j in 1:length(unique.clonal.features)){ sample_dfs$new_clonotype_id[which(sample_dfs$new_clonal_feature == unique.clonal.features[j])] <- paste0("clonotype",j) } } } if(hierarchical){ if(global.clonotype==F){ repertoire.number <- unique(VDJ.GEX.matrix[[1]]$sample_id) sample_dfs <- list() for(i in 1:length(repertoire.number)){ sample_dfs[[i]] <- VDJ.GEX.matrix[[1]][which(VDJ.GEX.matrix[[1]]$sample_id==repertoire.number[i]),] prior_filtering <- nrow(sample_dfs[[i]]) sample_dfs[[i]] <- subset(sample_dfs[[i]], (Nr_of_VDJ_chains > 0 | Nr_of_VJ_chains > 0) & sample_dfs[[i]]$Nr_of_VDJ_chains + sample_dfs[[i]]$Nr_of_VJ_chains < 4) if(nrow(sample_dfs[[i]]) > 0){ message(paste0("Filtered out ", prior_filtering - nrow(sample_dfs[[i]]), " cells containing more than one VDJ AND VJ chain, as these likely correspond to doublets"))} if(VDJ.VJ.1chain== T){message("Hierarchical clonotyping is specifically designed to incorporate cells with abberand numbers of chains. Filtering for 1VDJ 1VJ chain thereby defeats its purpose. Function will continue without filtering.")} aberant_cells <- subset(sample_dfs[[i]], Nr_of_VDJ_chains != 1 | Nr_of_VJ_chains != 1) onlyVJ_ind <- which(aberant_cells$Nr_of_VJ_chains > 0 & aberant_cells$Nr_of_VDJ_chains == 0) onlyVDJ_ind <- which(aberant_cells$Nr_of_VDJ_chains > 0 & aberant_cells$Nr_of_VJ_chains == 0) multVJ_ind <- which(aberant_cells$Nr_of_VJ_chains > 1 & aberant_cells$Nr_of_VDJ_chains == 1) multVDJ_ind <- which(aberant_cells$Nr_of_VDJ_chains > 1 & aberant_cells$Nr_of_VJ_chains == 1) aberant_cells$new_clonal_feature <- NA sample_dfs[[i]] <- subset(sample_dfs[[i]],Nr_of_VDJ_chains == 1 & Nr_of_VJ_chains == 1) if(clone.strategy=="10x.default"){ sample_dfs[[i]]$new_clonal_feature <- sample_dfs[[i]]$clonotype_id_10x } if(clone.strategy=="cdr3.nt"){ sample_dfs[[i]]$new_clonal_feature <- paste0(sample_dfs[[i]]$VDJ_cdr3s_nt, sample_dfs[[i]]$VJ_cdr3s_nt) n_new_clones <- length(unique(sample_dfs[[i]]$new_clonal_feature)) print() if(length(onlyVJ_ind) > 0){ for(cel in onlyVJ_ind){ if(stringr::str_detect(aberant_cells$VJ_cdr3s_nt[cel], ";")){ clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, stringr::str_split(aberant_cells$VJ_cdr3s_nt[cel], ";", simplify = T)[1,1])), which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, stringr::str_split(aberant_cells$VJ_cdr3s_nt[cel], ";", simplify = T)[1,2]))) } else { clone_matches <- which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, aberant_cells$VJ_cdr3s_nt[cel])) } if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ aberant_cells$new_clonal_feature[cel] <- names(which.max(table(sample_dfs[[i]]$new_clonal_feature[clone_matches]))) } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- aberant_cells$VJ_cdr3s_nt[cel] } } } if(length(onlyVDJ_ind) > 0){ for(cel in onlyVDJ_ind){ if(stringr::str_detect(aberant_cells$VDJ_cdr3s_nt[cel], ";")){ clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, stringr::str_split(aberant_cells$VDJ_cdr3s_nt[cel], ";", simplify = T)[1,1])), which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, stringr::str_split(aberant_cells$VDJ_cdr3s_nt[cel], ";", simplify = T)[1,2]))) } else { clone_matches <- which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, aberant_cells$VDJ_cdr3s_nt[cel])) } if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ aberant_cells$new_clonal_feature[cel] <- names(which.max(table(sample_dfs[[i]]$new_clonal_feature[clone_matches]))) } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- aberant_cells$VDJ_cdr3s_nt[cel] } } } if(length(multVJ_ind) > 0){ for(cel in multVJ_ind){ VDJs <- aberant_cells$VDJ_cdr3s_nt[cel] VJs <- stringr::str_split(aberant_cells$VJ_cdr3s_nt[cel], ";", simplify = T)[1,] ccombs <- expand.grid(VDJs, VJs) ccombs <- paste0(ccombs[,1], ccombs[,2]) clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[1])),which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[2]))) if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ aberant_cells$new_clonal_feature[cel] <- names(which.max(table(sample_dfs[[i]]$new_clonal_feature[clone_matches]))) } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- paste0(aberant_cells$VDJ_cdr3s_nt[cel],aberant_cells$VJ_cdr3s_nt[cel]) } } } if(length(multVDJ_ind) > 0){ for(cel in multVDJ_ind){ VDJs <- stringr::str_split(aberant_cells$VDJ_cdr3s_nt[cel], ";", simplify = T)[1,] VJs <- aberant_cells$VJ_cdr3s_nt[cel] ccombs <- expand.grid(VDJs, VJs) ccombs <- paste0(ccombs[,1], ccombs[,2]) clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[1])),which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[2]))) if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ aberant_cells$new_clonal_feature[cel] <- names(which.max(table(sample_dfs[[i]]$new_clonal_feature[clone_matches]))) } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- paste0(aberant_cells$VDJ_cdr3s_nt[cel],aberant_cells$VJ_cdr3s_nt[cel]) } } } } else if(clone.strategy=="cdr3.aa"){ sample_dfs[[i]]$new_clonal_feature <- paste0(sample_dfs[[i]]$VDJ_cdr3s_aa, sample_dfs[[i]]$VJ_cdr3s_aa) n_new_clones <- length(unique(sample_dfs[[i]]$new_clonal_feature)) if(length(onlyVJ_ind) > 0){ for(cel in onlyVJ_ind){ if(stringr::str_detect(aberant_cells$VJ_cdr3s_aa[cel], ";")){ clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,1])), which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,2]))) } else { clone_matches <- which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, aberant_cells$VJ_cdr3s_aa[cel])) } if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ aberant_cells$new_clonal_feature[cel] <- names(which.max(table(sample_dfs[[i]]$new_clonal_feature[clone_matches]))) } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- aberant_cells$VJ_cdr3s_aa[cel] } } } if(length(onlyVDJ_ind) > 0){ for(cel in onlyVDJ_ind){ if(stringr::str_detect(aberant_cells$VDJ_cdr3s_aa[cel], ";")){ clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,1])), which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,2]))) } else { clone_matches <- which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, aberant_cells$VDJ_cdr3s_aa[cel])) } if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ aberant_cells$new_clonal_feature[cel] <- names(which.max(table(sample_dfs[[i]]$new_clonal_feature[clone_matches]))) } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- aberant_cells$VDJ_cdr3s_aa[cel] } } } if(length(multVJ_ind) > 0){ for(cel in multVJ_ind){ VDJs <- aberant_cells$VDJ_cdr3s_aa[cel] VJs <- stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,] ccombs <- expand.grid(VDJs, VJs) ccombs <- paste0(ccombs[,1], ccombs[,2]) clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[1])),which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[2]))) if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ aberant_cells$new_clonal_feature[cel] <- names(which.max(table(sample_dfs[[i]]$new_clonal_feature[clone_matches]))) } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- paste0(aberant_cells$VDJ_cdr3s_aa[cel],aberant_cells$VJ_cdr3s_aa[cel]) } } } if(length(multVDJ_ind) > 0){ for(cel in multVDJ_ind){ VDJs <- stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,] VJs <- aberant_cells$VJ_cdr3s_aa[cel] ccombs <- expand.grid(VDJs, VJs) ccombs <- paste0(ccombs[,1], ccombs[,2]) clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[1])),which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[2]))) if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ aberant_cells$new_clonal_feature[cel] <- names(which.max(table(sample_dfs[[i]]$new_clonal_feature[clone_matches]))) } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- paste0(aberant_cells$VDJ_cdr3s_aa[cel],aberant_cells$VJ_cdr3s_aa[cel]) } } } } else if(clone.strategy=="hvj.lvj"){ sample_dfs[[i]]$new_clonal_feature <- paste(sample_dfs[[i]]$VDJ_vgene, sample_dfs[[i]]$VDJ_jgene, sample_dfs[[i]]$VJ_vgene, sample_dfs[[i]]$VJ_jgene,sep="_") n_new_clones <- length(unique(sample_dfs[[i]]$new_clonal_feature)) if(length(onlyVJ_ind) > 0){ for(cel in onlyVJ_ind){ if(stringr::str_detect(aberant_cells$VJ_vgene[cel], ";")){ comb1 <- paste0(stringr::str_split(aberant_cells$VJ_vgene[cel], ";", simplify = T)[1,1], "_", stringr::str_split(aberant_cells$VJ_jgene[cel], ";", simplify = T)[1,1]) comb2 <- paste0(stringr::str_split(aberant_cells$VJ_vgene[cel], ";", simplify = T)[1,2], "_", stringr::str_split(aberant_cells$VJ_jgene[cel], ";", simplify = T)[1,2]) clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, comb1)), which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, comb2))) } else { comb1 <- paste0(aberant_cells$VJ_vgene[cel], "_",aberant_cells$VJ_jgene[cel]) clone_matches <- which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, comb1)) } if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ aberant_cells$new_clonal_feature[cel] <- names(which.max(table(sample_dfs[[i]]$new_clonal_feature[clone_matches]))) } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- comb1 } } } if(length(onlyVDJ_ind) > 0){ for(cel in onlyVDJ_ind){ if(stringr::str_detect(aberant_cells$VDJ_vgene[cel], ";")){ comb1 <- paste0(stringr::str_split(aberant_cells$VDJ_vgene[cel], ";", simplify = T)[1,1], "_", stringr::str_split(aberant_cells$VDJ_jgene[cel], ";", simplify = T)[1,1]) comb2 <- paste0(stringr::str_split(aberant_cells$VDJ_vgene[cel], ";", simplify = T)[1,2], "_", stringr::str_split(aberant_cells$VDJ_jgene[cel], ";", simplify = T)[1,2]) clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, comb1)), which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, comb2))) } else { comb1 <- paste0(aberant_cells$VDJ_vgene[cel], "_",aberant_cells$VDJ_jgene[cel]) clone_matches <- which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, comb1)) } if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ aberant_cells$new_clonal_feature[cel] <- names(which.max(table(sample_dfs[[i]]$new_clonal_feature[clone_matches]))) } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- comb1 } } } if(length(multVJ_ind) > 0){ for(cel in multVJ_ind){ VDJs <- paste0(aberant_cells$VDJ_vgene[cel], "_",aberant_cells$VDJ_jgene[cel]) VJs <- c(paste0(stringr::str_split(aberant_cells$VJ_vgene[cel], ";", simplify = T)[1,1], "_", stringr::str_split(aberant_cells$VJ_jgene[cel], ";", simplify = T)[1,1]),paste0(stringr::str_split(aberant_cells$VJ_vgene[cel], ";", simplify = T)[1,2], "_", stringr::str_split(aberant_cells$VJ_jgene[cel], ";", simplify = T)[1,2])) ccombs <- expand.grid(VDJs, VJs) ccombs <- paste0(ccombs[,1], ccombs[,2]) clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[1])),which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[2]))) if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ aberant_cells$new_clonal_feature[cel] <- names(which.max(table(sample_dfs[[i]]$new_clonal_feature[clone_matches]))) } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- ccombs[1] } } } if(length(multVDJ_ind) > 0){ for(cel in multVDJ_ind){ VDJs <- c(paste0(stringr::str_split(aberant_cells$VDJ_vgene[cel], ";", simplify = T)[1,1], "_", stringr::str_split(aberant_cells$VDJ_jgene[cel], ";", simplify = T)[1,1]),paste0(stringr::str_split(aberant_cells$VDJ_vgene[cel], ";", simplify = T)[1,2], "_", stringr::str_split(aberant_cells$VDJ_jgene[cel], ";", simplify = T)[1,2])) VJs <- paste0(aberant_cells$VJ_vgene[cel], "_",aberant_cells$VJ_jgene[cel]) ccombs <- expand.grid(VDJs, VJs) ccombs <- paste0(ccombs[,1], ccombs[,2]) clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[1])),which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[2]))) if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ aberant_cells$new_clonal_feature[cel] <- names(which.max(table(sample_dfs[[i]]$new_clonal_feature[clone_matches]))) } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- ccombs[1] } } } } else if(clone.strategy=="hvj.lvj.cdr3"){ sample_dfs[[i]]$new_clonal_feature <- paste(sample_dfs[[i]]$VDJ_cdr3s_aa, sample_dfs[[i]]$VDJ_vgene, sample_dfs[[i]]$VDJ_jgene, sample_dfs[[i]]$VJ_cdr3s_aa, sample_dfs[[i]]$VJ_vgene, sample_dfs[[i]]$VJ_jgene,sep="_") n_new_clones <- length(unique(sample_dfs[[i]]$new_clonal_feature)) if(length(onlyVJ_ind) > 0){ for(cel in onlyVJ_ind){ if(stringr::str_detect(aberant_cells$VJ_vgene[cel], ";")){ comb1 <- paste0(stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,1], "_" ,stringr::str_split(aberant_cells$VJ_vgene[cel], ";", simplify = T)[1,1], "_", stringr::str_split(aberant_cells$VJ_jgene[cel], ";", simplify = T)[1,1]) comb2 <- paste0(stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,2], "_" ,stringr::str_split(aberant_cells$VJ_vgene[cel], ";", simplify = T)[1,2], "_", stringr::str_split(aberant_cells$VJ_jgene[cel], ";", simplify = T)[1,2]) clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, comb1)), which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, comb2))) } else { comb1 <- paste0(aberant_cells$VJ_cdr3s_aa[cel], "_",aberant_cells$VJ_vgene[cel], "_",aberant_cells$VJ_jgene[cel]) clone_matches <- which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, comb1)) } if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ aberant_cells$new_clonal_feature[cel] <- names(which.max(table(sample_dfs[[i]]$new_clonal_feature[clone_matches]))) } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- comb1 } } } if(length(onlyVDJ_ind) > 0){ for(cel in onlyVDJ_ind){ if(stringr::str_detect(aberant_cells$VDJ_vgene[cel], ";")){ comb1 <- paste0(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,1], "_" ,stringr::str_split(aberant_cells$VDJ_vgene[cel], ";", simplify = T)[1,1], "_", stringr::str_split(aberant_cells$VDJ_jgene[cel], ";", simplify = T)[1,1]) comb2 <- paste0(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,2], "_" ,stringr::str_split(aberant_cells$VDJ_vgene[cel], ";", simplify = T)[1,2], "_", stringr::str_split(aberant_cells$VDJ_jgene[cel], ";", simplify = T)[1,2]) clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, comb1)), which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, comb2))) } else { comb1 <- paste0(aberant_cells$VDJ_cdr3s_aa[cel], "_",aberant_cells$VDJ_vgene[cel], "_",aberant_cells$VDJ_jgene[cel]) clone_matches <- which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, comb1)) } if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ aberant_cells$new_clonal_feature[cel] <- names(which.max(table(sample_dfs[[i]]$new_clonal_feature[clone_matches]))) } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- comb1 } } } if(length(multVJ_ind) > 0){ for(cel in multVJ_ind){ VDJs <- paste0(aberant_cells$VDJ_cdr3s_aa[cel], "_",aberant_cells$VDJ_vgene[cel], "_",aberant_cells$VDJ_jgene[cel]) VJs <- c(paste0(stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,1], "_",stringr::str_split(aberant_cells$VJ_vgene[cel], ";", simplify = T)[1,1], "_", stringr::str_split(aberant_cells$VJ_jgene[cel], ";", simplify = T)[1,1]),paste0(stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,2], "_",stringr::str_split(aberant_cells$VJ_vgene[cel], ";", simplify = T)[1,2], "_", stringr::str_split(aberant_cells$VJ_jgene[cel], ";", simplify = T)[1,2])) ccombs <- expand.grid(VDJs, VJs) ccombs <- paste0(ccombs[,1], ccombs[,2]) clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[1])),which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[2]))) if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ aberant_cells$new_clonal_feature[cel] <- names(which.max(table(sample_dfs[[i]]$new_clonal_feature[clone_matches]))) } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- ccombs[1] } } } if(length(multVDJ_ind) > 0){ for(cel in multVDJ_ind){ VDJs <- c(paste0(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,1], "_",stringr::str_split(aberant_cells$VDJ_vgene[cel], ";", simplify = T)[1,1], "_", stringr::str_split(aberant_cells$VDJ_jgene[cel], ";", simplify = T)[1,1]),paste0(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,2], "_",stringr::str_split(aberant_cells$VDJ_vgene[cel], ";", simplify = T)[1,2], "_", stringr::str_split(aberant_cells$VDJ_jgene[cel], ";", simplify = T)[1,2])) VJs <- paste0(aberant_cells$VJ_cdr3s_aa[cel], "_", aberant_cells$VJ_vgene[cel], "_",aberant_cells$VJ_jgene[cel]) ccombs <- expand.grid(VDJs, VJs) ccombs <- paste0(ccombs[,1], ccombs[,2]) clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[1])),which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[2]))) if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ aberant_cells$new_clonal_feature[cel] <- names(which.max(table(sample_dfs[[i]]$new_clonal_feature[clone_matches]))) } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- ccombs[1] } } } } else if(clone.strategy=="hvj.lvj.cdr3lengths"){ sample_dfs[[i]]$new_clonal_feature <- paste(nchar(sample_dfs[[i]]$VDJ_cdr3s_aa), sample_dfs[[i]]$VDJ_vgene, sample_dfs[[i]]$VDJ_jgene, nchar(sample_dfs[[i]]$VJ_cdr3s_aa), sample_dfs[[i]]$VJ_vgene, sample_dfs[[i]]$VJ_jgene, sep="_") n_new_clones <- length(unique(sample_dfs[[i]]$new_clonal_feature)) if(length(onlyVJ_ind) > 0){ for(cel in onlyVJ_ind){ if(stringr::str_detect(aberant_cells$VJ_vgene[cel], ";")){ comb1 <- paste0(nchar(stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,1]), "_" ,stringr::str_split(aberant_cells$VJ_vgene[cel], ";", simplify = T)[1,1], "_", stringr::str_split(aberant_cells$VJ_jgene[cel], ";", simplify = T)[1,1]) comb2 <- paste0(nchar(stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,2]), "_" ,stringr::str_split(aberant_cells$VJ_vgene[cel], ";", simplify = T)[1,2], "_", stringr::str_split(aberant_cells$VJ_jgene[cel], ";", simplify = T)[1,2]) clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, comb1)), which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, comb2))) } else { comb1 <- paste0(nchar(aberant_cells$VJ_cdr3s_aa[cel]), "_",aberant_cells$VJ_vgene[cel], "_",aberant_cells$VJ_jgene[cel]) clone_matches <- which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, comb1)) } if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ aberant_cells$new_clonal_feature[cel] <- names(which.max(table(sample_dfs[[i]]$new_clonal_feature[clone_matches]))) } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- comb1 } } } if(length(onlyVDJ_ind) > 0){ for(cel in onlyVDJ_ind){ if(stringr::str_detect(aberant_cells$VDJ_vgene[cel], ";")){ comb1 <- paste0(nchar(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,1]), "_" ,stringr::str_split(aberant_cells$VDJ_vgene[cel], ";", simplify = T)[1,1], "_", stringr::str_split(aberant_cells$VDJ_jgene[cel], ";", simplify = T)[1,1]) comb2 <- paste0(nchar(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,2]), "_" ,stringr::str_split(aberant_cells$VDJ_vgene[cel], ";", simplify = T)[1,2], "_", stringr::str_split(aberant_cells$VDJ_jgene[cel], ";", simplify = T)[1,2]) clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, comb1)), which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, comb2))) } else { comb1 <- paste0(nchar(aberant_cells$VDJ_cdr3s_aa[cel]), "_",aberant_cells$VDJ_vgene[cel], "_", aberant_cells$VDJ_jgene[cel]) clone_matches <- which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, comb1)) } if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ aberant_cells$new_clonal_feature[cel] <- names(which.max(table(sample_dfs[[i]]$new_clonal_feature[clone_matches]))) } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- comb1 } } } if(length(multVJ_ind) > 0){ for(cel in multVJ_ind){ VDJs <- paste0(nchar(aberant_cells$VDJ_cdr3s_aa[cel]), "_",aberant_cells$VDJ_vgene[cel], "_",aberant_cells$VDJ_jgene[cel]) VJs <- c(paste0(nchar(stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,1]), "_",stringr::str_split(aberant_cells$VJ_vgene[cel], ";", simplify = T)[1,1], "_", stringr::str_split(aberant_cells$VJ_jgene[cel], ";", simplify = T)[1,1]),paste0(nchar(stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,2]), "_",stringr::str_split(aberant_cells$VJ_vgene[cel], ";", simplify = T)[1,2], "_", stringr::str_split(aberant_cells$VJ_jgene[cel], ";", simplify = T)[1,2])) ccombs <- expand.grid(VDJs, VJs) ccombs <- paste0(ccombs[,1], ccombs[,2]) clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[1])),which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[2]))) if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ aberant_cells$new_clonal_feature[cel] <- names(which.max(table(sample_dfs[[i]]$new_clonal_feature[clone_matches]))) } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- ccombs[1] } } } if(length(multVDJ_ind) > 0){ for(cel in multVDJ_ind){ VDJs <- c(paste0(nchar(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,1]), "_",stringr::str_split(aberant_cells$VDJ_vgene[cel], ";", simplify = T)[1,1], "_", stringr::str_split(aberant_cells$VDJ_jgene[cel], ";", simplify = T)[1,1]),paste0(nchar(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,2]), "_",stringr::str_split(aberant_cells$VDJ_vgene[cel], ";", simplify = T)[1,2], "_", stringr::str_split(aberant_cells$VDJ_jgene[cel], ";", simplify = T)[1,2])) VJs <- paste0(nchar(aberant_cells$VJ_cdr3s_aa[cel]), "_", aberant_cells$VJ_vgene[cel], "_",aberant_cells$VJ_jgene[cel]) ccombs <- expand.grid(VDJs, VJs) ccombs <- paste0(ccombs[,1], ccombs[,2]) clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[1])),which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[2]))) if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ aberant_cells$new_clonal_feature[cel] <- names(which.max(table(sample_dfs[[i]]$new_clonal_feature[clone_matches]))) } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- ccombs[1] } } } } else if(clone.strategy=="hvj.lvj.cdr3length.CDR3.homology" | clone.strategy=="hvj.lvj.CDR3length.CDRH3.homology"){ clones_temp <- (paste(nchar(sample_dfs[[i]]$VDJ_cdr3s_aa), sample_dfs[[i]]$VDJ_vgene, sample_dfs[[i]]$VDJ_jgene, nchar(sample_dfs[[i]]$VJ_cdr3s_aa), sample_dfs[[i]]$VJ_vgene, sample_dfs[[i]]$VJ_jgene,sep="_")) sample_dfs[[i]]$new_clonal_feature <- clones_temp unique_clones <- unique(clones_temp) for(j in 1:length(unique_clones)){ original_clone_indices <- which(clones_temp==unique_clones[j]) if(length(original_clone_indices) >= 2){ if(any(nchar(sample_dfs[[i]]$VDJ_cdr3s_aa[original_clone_indices]) == 0) & !all(nchar(sample_dfs[[i]]$VDJ_cdr3s_aa[original_clone_indices]) == 0)){ nchars_vh <- nchar(sample_dfs[[i]]$VDJ_cdr3s_aa[original_clone_indices]) nchars_vh[which(nchars_vh == 0)] <- mean(nchars_vh[nchars_vh > 0]) } else if(all(nchar(sample_dfs[[i]]$VDJ_cdr3s_aa[original_clone_indices]) == 0)){ nchars_vh <- rep(1,length(original_clone_indices)) } else { nchars_vh <- nchar(sample_dfs[[i]]$VDJ_cdr3s_aa[original_clone_indices]) } vh_distance <- stringdist::stringdistmatrix(sample_dfs[[i]]$VDJ_cdr3s_aa[original_clone_indices],sample_dfs[[i]]$VDJ_cdr3s_aa[original_clone_indices],method = "lv")/nchars_vh if (clone.strategy=="hvj.lvj.cdr3length.CDR3.homology"){ if(any(nchar(sample_dfs[[i]]$VJ_cdr3s_aa[original_clone_indices]) == 0) & !all(nchar(sample_dfs[[i]]$VJ_cdr3s_aa[original_clone_indices]) == 0)){ nchars_vl <- nchar(sample_dfs[[i]]$VJ_cdr3s_aa[original_clone_indices]) nchars_vl[which(nchars_vl == 0)] <- mean(nchars_vl[nchars_vl > 0]) } else if(all(nchar(sample_dfs[[i]]$VJ_cdr3s_aa[original_clone_indices]) == 0)){ nchars_vl <- rep(1,length(original_clone_indices)) } else { nchars_vl <- nchar(sample_dfs[[i]]$VJ_cdr3s_aa[original_clone_indices]) } vl_distance <- stringdist::stringdistmatrix(sample_dfs[[i]]$VJ_cdr3s_aa[original_clone_indices],sample_dfs[[i]]$VJ_cdr3s_aa[original_clone_indices],method = "lv")/nchars_vl }else{ vl_distance <- 0 } combined_distance <- vh_distance + vl_distance diag(combined_distance) <- NA hclust_combined <- stats::hclust(stats::as.dist(combined_distance)) hclust_combined_cut <- stats::cutree(hclust_combined, h = homology.threshold) sample_dfs[[i]]$new_clonal_feature[original_clone_indices] <- paste(sample_dfs[[i]]$new_clonal_feature[original_clone_indices],j,hclust_combined_cut) }else{ sample_dfs[[i]]$new_clonal_feature[original_clone_indices] <- paste(sample_dfs[[i]]$new_clonal_feature[original_clone_indices],j,"1") } } unique_clones <- unique(sample_dfs[[i]]$new_clonal_feature) sur_clonal_feature <- paste(clones_temp, "_", sample_dfs[[i]]$new_clonal_feature) if(length(onlyVJ_ind) > 0){ for(cel in onlyVJ_ind){ if(stringr::str_detect(aberant_cells$VJ_vgene[cel], ";")){ comb1 <- paste0(nchar(stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,1]), "_" ,stringr::str_split(aberant_cells$VJ_vgene[cel], ";", simplify = T)[1,1], "_", stringr::str_split(aberant_cells$VJ_jgene[cel], ";", simplify = T)[1,1]) comb2 <- paste0(nchar(stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,2]), "_" ,stringr::str_split(aberant_cells$VJ_vgene[cel], ";", simplify = T)[1,2], "_", stringr::str_split(aberant_cells$VJ_jgene[cel], ";", simplify = T)[1,2]) clone_matches <- c(which(stringr::str_detect(sur_clonal_feature, comb1)), which(stringr::str_detect(sur_clonal_feature, comb2))) } else { comb1 <- paste0(nchar(aberant_cells$VJ_cdr3s_aa[cel]), "_",aberant_cells$VJ_vgene[cel], "_",aberant_cells$VJ_jgene[cel]) clone_matches <- which(stringr::str_detect(sur_clonal_feature, comb1)) } if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ if(clone.strategy=="hvj.lvj.CDR3length.CDRH3.homology"){ aberant_cells$new_clonal_feature[cel] <- names(which.max(table(sample_dfs[[i]]$new_clonal_feature[clone_matches]))) } else if(clone.strategy=="hvj.lvj.cdr3length.CDR3.homology"){ if(stringr::str_detect(aberant_cells$VJ_vgene[cel], ";")){ dists1 <- stringdist::stringdist(sample_dfs[[i]]$VJ_cdr3s_aa[clone_matches], stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,1]) / nchar(stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,1]) dists2 <- stringdist::stringdist(sample_dfs[[i]]$VJ_cdr3s_aa[clone_matches], stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,2]) / nchar(stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,2]) dists <- c(dists1,dists2) if(any(dists <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- sample_dfs[[i]]$new_clonal_feature[rep(clone_matches,2)[which.min(dists)]] } else { aberant_cells$new_clonal_feature[cel] <- paste0(comb1,"_", aberant_cells$VJ_cdr3s_aa[cel]) } } else { dists <- stringdist::stringdist(sample_dfs[[i]]$VJ_cdr3s_aa[clone_matches], aberant_cells$VJ_cdr3s_aa[cel]) / nchar(aberant_cells$VJ_cdr3s_aa[cel]) if(any(dists <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- sample_dfs[[i]]$new_clonal_feature[clone_matches[which.min(dists)]] } else { aberant_cells$new_clonal_feature[cel] <- paste0(comb1,"_", aberant_cells$VJ_cdr3s_aa[cel]) } } } } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ if(any(stringdist::stringdist(stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,],unique(sample_dfs[[i]]$VJ_cdr3s_aa[clone_matches]))/nchar(stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,]) <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- paste0(comb1,"_", aberant_cells$VJ_cdr3s_aa[cel]) } } else { aberant_cells$new_clonal_feature[cel] <- paste0(comb1,"_", aberant_cells$VJ_cdr3s_aa[cel]) } } } if(length(onlyVDJ_ind) > 0){ for(cel in onlyVDJ_ind){ if(stringr::str_detect(aberant_cells$VDJ_vgene[cel], ";")){ comb1 <- paste0(nchar(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,1]), "_" ,stringr::str_split(aberant_cells$VDJ_vgene[cel], ";", simplify = T)[1,1], "_", stringr::str_split(aberant_cells$VDJ_jgene[cel], ";", simplify = T)[1,1]) comb2 <- paste0(nchar(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,2]), "_" ,stringr::str_split(aberant_cells$VDJ_vgene[cel], ";", simplify = T)[1,2], "_", stringr::str_split(aberant_cells$VDJ_jgene[cel], ";", simplify = T)[1,2]) clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, comb1)), which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, comb2))) } else { comb1 <- paste0(nchar(aberant_cells$VDJ_cdr3s_aa[cel]), "_",aberant_cells$VDJ_vgene[cel], "_", aberant_cells$VDJ_jgene[cel]) clone_matches <- which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, comb1)) } if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ if(clone.strategy=="hvj.lvj.CDR3length.CDRH3.homology"){ if(stringr::str_detect(aberant_cells$VDJ_vgene[cel], ";")){ dists1 <- stringdist::stringdist(sample_dfs[[i]]$VDJ_cdr3s_aa[clone_matches], stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,1]) / nchar(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,1]) dists2 <- stringdist::stringdist(sample_dfs[[i]]$VDJ_cdr3s_aa[clone_matches], stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,2]) / nchar(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,2]) dists <- c(dists1,dists2) if(any(dists <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- sample_dfs[[i]]$new_clonal_feature[rep(clone_matches,2)[which.min(dists)]] } else { aberant_cells$new_clonal_feature[cel] <- paste0(comb1,"_", aberant_cells$VDJ_cdr3s_aa[cel]) } } else { dists <- stringdist::stringdist(sample_dfs[[i]]$VDJ_cdr3s_aa[clone_matches], aberant_cells$VDJ_cdr3s_aa[cel]) / nchar(aberant_cells$VDJ_cdr3s_aa[cel]) if(any(dists <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- sample_dfs[[i]]$new_clonal_feature[clone_matches[which.min(dists)]] } else { aberant_cells$new_clonal_feature[cel] <- paste0(comb1,"_", aberant_cells$VDJ_cdr3s_aa[cel]) } } } else if(clone.strategy=="hvj.lvj.cdr3length.CDR3.homology"){ if(stringr::str_detect(aberant_cells$VDJ_vgene[cel], ";")){ dists1 <- stringdist::stringdist(sample_dfs[[i]]$VDJ_cdr3s_aa[clone_matches], stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,1]) / nchar(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,1]) dists2 <- stringdist::stringdist(sample_dfs[[i]]$VDJ_cdr3s_aa[clone_matches], stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,2]) / nchar(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,2]) dists <- c(dists1,dists2) if(any(dists <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- sample_dfs[[i]]$new_clonal_feature[rep(clone_matches,2)[which.min(dists)]] } else { aberant_cells$new_clonal_feature[cel] <- paste0(comb1,"_", aberant_cells$VDJ_cdr3s_aa[cel]) } } else { dists <- stringdist::stringdist(sample_dfs[[i]]$VDJ_cdr3s_aa[clone_matches], aberant_cells$VJD_cdr3s_aa[cel]) / nchar(aberant_cells$VDJ_cdr3s_aa[cel]) if(any(dists <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- sample_dfs[[i]]$new_clonal_feature[clone_matches[which.min(dists)]] } else { aberant_cells$new_clonal_feature[cel] <- paste0(comb1,"_", aberant_cells$VDJ_cdr3s_aa[cel]) } } } } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ if(any(stringdist::stringdist(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,],unique(sample_dfs[[i]]$VDJ_cdr3s_aa[clone_matches]))/nchar(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,]) <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- paste0(comb1,"_", aberant_cells$VDJ_cdr3s_aa[cel]) } } else { aberant_cells$new_clonal_feature[cel] <- paste0(comb1,"_", aberant_cells$VDJ_cdr3s_aa[cel]) } } } if(length(multVJ_ind) > 0){ for(cel in multVJ_ind){ VDJs <- paste0(nchar(aberant_cells$VDJ_cdr3s_aa[cel]), "_",aberant_cells$VDJ_vgene[cel], "_",aberant_cells$VDJ_jgene[cel]) VJs <- c(paste0(nchar(stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,1]), "_",stringr::str_split(aberant_cells$VJ_vgene[cel], ";", simplify = T)[1,1], "_", stringr::str_split(aberant_cells$VJ_jgene[cel], ";", simplify = T)[1,1]),paste0(nchar(stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,2]), "_",stringr::str_split(aberant_cells$VJ_vgene[cel], ";", simplify = T)[1,2], "_", stringr::str_split(aberant_cells$VJ_jgene[cel], ";", simplify = T)[1,2])) ccombs <- expand.grid(VDJs, VJs) ccombs <- paste0(ccombs[,1], ccombs[,2]) clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[1])),which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[2]))) if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ if(clone.strategy=="hvj.lvj.CDR3length.CDRH3.homology"){ dists <- stringdist::stringdist(sample_dfs[[i]]$VDJ_cdr3s_aa[clone_matches], aberant_cells$VDJ_cdr3s_aa[cel]) / nchar(aberant_cells$VDJ_cdr3s_aa[cel]) if(any(dists <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- sample_dfs[[i]]$new_clonal_feature[clone_matches[which.min(dists)]] } else { aberant_cells$new_clonal_feature[cel] <- paste0(comb1,"_", aberant_cells$VDJ_cdr3s_aa[cel]) } } else if(clone.strategy=="hvj.lvj.cdr3length.CDR3.homology"){ dists1 <- stringdist::stringdist(paste0(sample_dfs[[i]]$VDJ_cdr3s_aa[clone_matches],"_",sample_dfs[[i]]$VJ_cdr3s_aa[clone_matches]), paste0(aberant_cells$VDJ_cdr3s_aa[cel], "_", stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,1])) / nchar(paste0(aberant_cells$VDJ_cdr3s_aa[cel], "_", stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,1])) dists2 <- stringdist::stringdist(paste0(sample_dfs[[i]]$VDJ_cdr3s_aa[clone_matches],"_",sample_dfs[[i]]$VJ_cdr3s_aa[clone_matches]), paste0(aberant_cells$VDJ_cdr3s_aa[cel], "_", stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,2])) / nchar(paste0(aberant_cells$VDJ_cdr3s_aa[cel], "_", stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,2])) dists <- c(dists1,dists2) if(any(dists <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- sample_dfs[[i]]$new_clonal_feature[rep(clone_matches,2)[which.min(dists)]] } else { aberant_cells$new_clonal_feature[cel] <- paste0(ccombs[1],"_", aberant_cells$VDJ_cdr3s_aa[cel], "_", aberant_cells$VJ_cdr3s_aa[cel]) } } } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ if(stringdist::stringdist(aberant_cells$VDJ_cdr3s_aa[cel],unique(sample_dfs[[i]]$VDJ_cdr3s_aa[clone_matches]))/nchar(aberant_cells$VDJ_cdr3s_aa[cel]) <= homology.threshold & any(stringdist::stringdist(stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,],unique(sample_dfs[[i]]$VJ_cdr3s_aa[clone_matches]))/nchar(stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,]) <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- paste0(ccombs[1],"_", aberant_cells$VDJ_cdr3s_aa[cel], "_", aberant_cells$VJ_cdr3s_aa[cel]) } } else { aberant_cells$new_clonal_feature[cel] <- paste0(ccombs[1],"_", aberant_cells$VDJ_cdr3s_aa[cel], "_", aberant_cells$VJ_cdr3s_aa[cel]) } } } if(length(multVDJ_ind) > 0){ for(cel in multVDJ_ind){ VDJs <- c(paste0(nchar(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,1]), "_",stringr::str_split(aberant_cells$VDJ_vgene[cel], ";", simplify = T)[1,1], "_", stringr::str_split(aberant_cells$VDJ_jgene[cel], ";", simplify = T)[1,1]),paste0(nchar(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,2]), "_",stringr::str_split(aberant_cells$VDJ_vgene[cel], ";", simplify = T)[1,2], "_", stringr::str_split(aberant_cells$VDJ_jgene[cel], ";", simplify = T)[1,2])) VJs <- paste0(nchar(aberant_cells$VJ_cdr3s_aa[cel]), "_", aberant_cells$VJ_vgene[cel], "_",aberant_cells$VJ_jgene[cel]) ccombs <- expand.grid(VDJs, VJs) ccombs <- paste0(ccombs[,1], ccombs[,2]) clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[1])),which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[2]))) if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ if(clone.strategy=="hvj.lvj.CDR3length.CDRH3.homology"){ dists1 <- stringdist::stringdist(sample_dfs[[i]]$VDJ_cdr3s_aa[clone_matches], stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,1]) / nchar(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,1]) dists2 <- stringdist::stringdist(sample_dfs[[i]]$VDJ_cdr3s_aa[clone_matches], stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,2]) / nchar(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,2]) dists <- c(dists1,dists2) if(any(dists <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- sample_dfs[[i]]$new_clonal_feature[rep(clone_matches,2)[which.min(dists)]] } else { aberant_cells$new_clonal_feature[cel] <- paste0(comb1,"_", aberant_cells$VDJ_cdr3s_aa[cel],"_", aberant_cells$VJ_cdr3s_aa[cel]) } } else if(clone.strategy=="hvj.lvj.cdr3length.CDR3.homology"){ dists1 <- stringdist::stringdist(paste0(sample_dfs[[i]]$VDJ_cdr3s_aa[clone_matches],"_",sample_dfs[[i]]$VJ_cdr3s_aa[clone_matches]), paste0(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,1], "_", aberant_cells$VJ_cdr3s_aa[cel])) / nchar(paste0(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,1], "_", aberant_cells$VJ_cdr3s_aa[cel])) dists2 <- stringdist::stringdist(paste0(sample_dfs[[i]]$VDJ_cdr3s_aa[clone_matches],"_",sample_dfs[[i]]$VJ_cdr3s_aa[clone_matches]), paste0(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,2], "_", aberant_cells$VJ_cdr3s_aa[cel])) / nchar(paste0(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,2], "_", aberant_cells$VJ_cdr3s_aa[cel])) dists <- c(dists1,dists2) if(any(dists <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- sample_dfs[[i]]$new_clonal_feature[rep(clone_matches,2)[which.min(dists)]] } else { aberant_cells$new_clonal_feature[cel] <- paste0(ccombs[1],"_", aberant_cells$VDJ_cdr3s_aa[cel], "_", aberant_cells$VJ_cdr3s_aa[cel]) } } } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ if(stringdist::stringdist(aberant_cells$VJ_cdr3s_aa[cel],unique(sample_dfs[[i]]$VJ_cdr3s_aa[clone_matches]))/nchar(aberant_cells$VJ_cdr3s_aa[cel]) <= homology.threshold & any(stringdist::stringdist(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,],unique(sample_dfs[[i]]$VDJ_cdr3s_aa[clone_matches]))/nchar(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,]) <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- paste0(ccombs[1],"_", aberant_cells$VDJ_cdr3s_aa[cel], "_", aberant_cells$VJ_cdr3s_aa[cel]) } } else { aberant_cells$new_clonal_feature[cel] <- paste0(ccombs[1],"_", aberant_cells$VDJ_cdr3s_aa[cel], "_", aberant_cells$VJ_cdr3s_aa[cel]) } } } } else if (clone.strategy=="CDR3.homology" | clone.strategy=="CDRH3.homology"){ if(any(nchar(sample_dfs[[i]]$VDJ_cdr3s_aa) == 0) & !all(nchar(sample_dfs[[i]]$VDJ_cdr3s_aa) == 0)){ nchars_vh <- nchar(sample_dfs[[i]]$VDJ_cdr3s_aa) nchars_vh[which(nchars_vh == 0)] <- mean(nchars_vh[nchars_vh > 0]) } else if(all(nchar(sample_dfs[[i]]$VDJ_cdr3s_aa) == 0)){ nchars_vh <- rep(1,length(sample_dfs[[i]]$VDJ_cdr3s_aa)) } else { nchars_vh <- nchar(sample_dfs[[i]]$VDJ_cdr3s_aa) } vh_distance <- stringdist::stringdistmatrix(sample_dfs[[i]]$VDJ_cdr3s_aa, sample_dfs[[i]]$VDJ_cdr3s_aa, method = "lv")/nchars_vh if(clone.strategy=="CDR3.homology"){ if(any(nchar(sample_dfs[[i]]$VJ_cdr3s_aa) == 0) & !all(nchar(sample_dfs[[i]]$VJ_cdr3s_aa) == 0)){ nchars_vl <- nchar(sample_dfs[[i]]$VJ_cdr3s_aa) nchars_vl[which(nchars_vl == 0)] <- mean(nchars_vl[nchars_vl > 0]) } else if(all(nchar(sample_dfs[[i]]$VJ_cdr3s_aa) == 0)){ nchars_vl <- rep(1,length(sample_dfs[[i]]$VJ_cdr3s_aa)) } else { nchars_vl <- nchar(sample_dfs[[i]]$VJ_cdr3s_aa) } vl_distance <- stringdist::stringdistmatrix(sample_dfs[[i]]$VJ_cdr3s_aa, sample_dfs[[i]]$VJ_cdr3s_aa, method = "lv")/nchars_vl }else{ vl_distance <- 0 } combined_distance <- vh_distance + vl_distance diag(combined_distance) <- NA hclust_combined <- stats::hclust(stats::as.dist(combined_distance)) hclust_combined_cut <- stats::cutree(hclust_combined, h = homology.threshold) sample_dfs[[i]]$new_clonal_feature <- paste(hclust_combined_cut) unique_clones <- unique(sample_dfs[[i]]$new_clonal_feature) if(length(onlyVJ_ind) > 0){ for(cel in onlyVJ_ind){ if(clone.strategy=="CDRH3.homology"){ if(stringr::str_detect(aberant_cells$VJ_cdr3s_aa[cel], ";")){ clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,1])), which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,2]))) } else { clone_matches <- which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, aberant_cells$VJ_cdr3s_aa[cel])) } if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ aberant_cells$new_clonal_feature[cel] <- names(which.max(table(sample_dfs[[i]]$new_clonal_feature[clone_matches]))) } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- aberant_cells$VJ_cdr3s_aa[cel] } } else if(clone.strategy=="CDR3.homology"){ if(stringr::str_detect(aberant_cells$VJ_vgene[cel], ";")){ dists1 <- stringdist::stringdist(sample_dfs[[i]]$VJ_cdr3s_aa, stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,1]) / nchar(stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,1]) dists2 <- stringdist::stringdist(sample_dfs[[i]]$VJ_cdr3s_aa, stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,2]) / nchar(stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,2]) dists <- c() for(k in 1:length(dists1)){ if(dists1[k] < dists2[k]){ dists <- c(dists, dists1[k]) } else{ dists <- c(dists, dists2[k]) } } if(any(dists <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- sample_dfs[[i]]$new_clonal_feature[which.min(dists)] } else { aberant_cells$new_clonal_feature[cel] <- paste0(aberant_cells$VJ_cdr3s_aa[cel]) } } else { dists <- stringdist::stringdist(sample_dfs[[i]]$VJ_cdr3s_aa, aberant_cells$VJ_cdr3s_aa[cel]) / nchar(aberant_cells$VJ_cdr3s_aa[cel]) if(any(dists <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- sample_dfs[[i]]$new_clonal_feature[which.min(dists)] } else { aberant_cells$new_clonal_feature[cel] <- paste0(aberant_cells$VJ_cdr3s_aa[cel]) } } } } } if(length(onlyVDJ_ind) > 0){ for(cel in onlyVDJ_ind){ if(clone.strategy=="CDRH3.homology"){ if(stringr::str_detect(aberant_cells$VDJ_vgene[cel], ";")){ dists1 <- stringdist::stringdist(sample_dfs[[i]]$VDJ_cdr3s_aa, stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,1]) / nchar(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,1]) dists2 <- stringdist::stringdist(sample_dfs[[i]]$VDJ_cdr3s_aa, stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,2]) / nchar(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,2]) dists <- c() for(k in 1:length(dists1)){ if(dists1[k] < dists2[k]){ dists <- c(dists, dists1[k]) } else{ dists <- c(dists, dists2[k]) } } if(any(dists <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- sample_dfs[[i]]$new_clonal_feature[which.min(dists)] } else { aberant_cells$new_clonal_feature[cel] <- paste0(aberant_cells$VDJ_cdr3s_aa[cel]) } } else { dists <- stringdist::stringdist(sample_dfs[[i]]$VDJ_cdr3s_aa, aberant_cells$VDJ_cdr3s_aa[cel]) / nchar(aberant_cells$VDJ_cdr3s_aa[cel]) if(any(dists <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- sample_dfs[[i]]$new_clonal_feature[which.min(dists)] } else { aberant_cells$new_clonal_feature[cel] <- paste0(aberant_cells$VDJ_cdr3s_aa[cel]) } } } else if(clone.strategy=="CDR3.homology"){ if(stringr::str_detect(aberant_cells$VDJ_vgene[cel], ";")){ dists1 <- stringdist::stringdist(sample_dfs[[i]]$VDJ_cdr3s_aa, stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,1]) / nchar(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,1]) dists2 <- stringdist::stringdist(sample_dfs[[i]]$VDJ_cdr3s_aa, stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,2]) / nchar(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,2]) dists <- c() for(k in 1:length(dists1)){ if(dists1[k] < dists2[k]){ dists <- c(dists, dists1[k]) } else{ dists <- c(dists, dists2[k]) } } if(any(dists <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- sample_dfs[[i]]$new_clonal_feature[which.min(dists)] } else { aberant_cells$new_clonal_feature[cel] <- paste0(aberant_cells$VDJ_cdr3s_aa[cel]) } } else { dists <- stringdist::stringdist(sample_dfs[[i]]$VDJ_cdr3s_aa, aberant_cells$VDJ_cdr3s_aa[cel]) / nchar(aberant_cells$VDJ_cdr3s_aa[cel]) if(any(dists <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- sample_dfs[[i]]$new_clonal_feature[which.min(dists)] } else { aberant_cells$new_clonal_feature[cel] <- paste0(aberant_cells$VDJ_cdr3s_aa[cel]) } } } } } if(length(multVJ_ind) > 0){ for(cel in multVJ_ind){ if(clone.strategy=="CDRH3.homology"){ dists <- stringdist::stringdist(sample_dfs[[i]]$VDJ_cdr3s_aa, aberant_cells$VDJ_cdr3s_aa[cel]) / nchar(aberant_cells$VDJ_cdr3s_aa[cel]) if(any(dists <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- sample_dfs[[i]]$new_clonal_feature[which.min(dists)] } else { aberant_cells$new_clonal_feature[cel] <- paste0(aberant_cells$VDJ_cdr3s_aa[cel]) } } else if(clone.strategy=="CDR3.homology"){ VDJs <- aberant_cells$VDJ_cdr3s_aa[cel] VJs <- c(stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,1], stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,2]) ccombs <- expand.grid(VDJs, VJs) ccombs <- paste0(ccombs[,1], ccombs[,2]) pasted_sample_dfs <- paste0(sample_dfs[[i]]$VDJ_cdr3s_aa, sample_dfs[[i]]$VJ_cdr3s_aa) dists1 <- stringdist::stringdist(pasted_sample_dfs, ccombs[1]) / nchar(ccombs[1]) dists2 <- stringdist::stringdist(pasted_sample_dfs, ccombs[2]) / nchar(ccombs[2]) dists <- c() for(k in 1:length(dists1)){ if(dists1[k] < dists2[k]){ dists <- c(dists, dists1[k]) } else{ dists <- c(dists, dists2[k]) } } if(any(dists <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- sample_dfs[[i]]$new_clonal_feature[which.min(dists)] } else { aberant_cells$new_clonal_feature[cel] <- ccombs1 } } } } if(length(multVDJ_ind) > 0){ for(cel in multVDJ_ind){ if(clone.strategy=="CDRH3.homology"){ dists1 <- stringdist::stringdist(sample_dfs[[i]]$VDJ_cdr3s_aa, stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,1]) / nchar(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,1]) dists2 <- stringdist::stringdist(sample_dfs[[i]]$VDJ_cdr3s_aa, stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,2]) / nchar(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,2]) dists <- c() for(k in 1:length(dists1)){ if(dists1[k] < dists2[k]){ dists <- c(dists, dists1[k]) } else{ dists <- c(dists, dists2[k]) } } if(any(dists <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- sample_dfs[[i]]$new_clonal_feature[which.min(dists)] } else { aberant_cells$new_clonal_feature[cel] <- paste0(aberant_cells$VDJ_cdr3s_aa[cel]) } } else if(clone.strategy=="CDR3.homology"){ VDJs <- c(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,1], stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,2]) VJs <- aberant_cells$VJ_cdr3s_aa[cel] ccombs <- expand.grid(VDJs, VJs) ccombs <- paste0(ccombs[,1], ccombs[,2]) pasted_sample_dfs <- paste0(sample_dfs[[i]]$VDJ_cdr3s_aa, sample_dfs[[i]]$VJ_cdr3s_aa) dists1 <- stringdist::stringdist(pasted_sample_dfs, ccombs[1]) / nchar(ccombs[1]) dists2 <- stringdist::stringdist(pasted_sample_dfs, ccombs[2]) / nchar(ccombs[2]) dists <- c() for(k in 1:length(dists1)){ if(dists1[k] < dists2[k]){ dists <- c(dists, dists1[k]) } else{ dists <- c(dists, dists2[k]) } } if(any(dists <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- sample_dfs[[i]]$new_clonal_feature[which.min(dists)] } else { aberant_cells$new_clonal_feature[cel] <- ccombs1 } } } } } sample_dfs[[i]] <- rbind(sample_dfs[[i]], aberant_cells) unique_clones <- unique(sample_dfs[[i]]$new_clonal_feature) sample_dfs[[i]]$new_clonotype_id <- rep(NA,nrow(sample_dfs[[i]])) sample_dfs[[i]]$new_clonal_frequency <- rep(NA,nrow(sample_dfs[[i]])) sample_dfs[[i]]$new_clonal_rank <- rep(NA,nrow(sample_dfs[[i]])) unique.clonal.features <- unique(sample_dfs[[i]]$new_clonal_feature) unique.clonal.frequencies <- rep(NA,length(unique.clonal.features)) for(j in 1:length(unique.clonal.features)){ unique.clonal.frequencies[j] <- length(which(sample_dfs[[i]]$new_clonal_feature==unique.clonal.features[j])) sample_dfs[[i]]$new_clonal_frequency[which(sample_dfs[[i]]$new_clonal_feature==unique.clonal.features[j])] <- unique.clonal.frequencies[j] } sample_dfs[[i]] <-sample_dfs[[i]][with(sample_dfs[[i]], order(-new_clonal_frequency)), ] unique.clone.frequencies <- unique(sample_dfs[[i]]$new_clonal_frequency) for(j in 1:length(unique.clone.frequencies)){ sample_dfs[[i]]$new_clonal_rank[which(sample_dfs[[i]]$new_clonal_frequency==unique.clone.frequencies[j])] <- j } unique.clonal.features <- unique(sample_dfs[[i]]$new_clonal_feature) for(j in 1:length(unique.clonal.features)){ sample_dfs[[i]]$new_clonotype_id[which(sample_dfs[[i]]$new_clonal_feature == unique.clonal.features[j])] <- paste0("clonotype",j) } } } else if(global.clonotype==T){ sample_dfs <- list() sample_dfs[[1]] <- VDJ.GEX.matrix[[1]] i <- 1 sample_dfs$clonotype_id_10x <- paste0(sample_dfs$clonotype_id_10x,"_",sample_dfs$sample_id) prior_filtering <- nrow(sample_dfs[[i]]) sample_dfs[[i]] <- subset(sample_dfs[[i]], (Nr_of_VDJ_chains > 0 | Nr_of_VJ_chains > 0) & sample_dfs[[i]]$Nr_of_VDJ_chains + sample_dfs[[i]]$Nr_of_VJ_chains < 4) if(nrow(sample_dfs[[i]]) > 0){ message(paste0("Filtered out ", prior_filtering - nrow(sample_dfs[[i]]), " cells containing more than one VDJ AND VJ chain, as these likely correspond to doublets"))} if(VDJ.VJ.1chain== T){message("Hierarchical clonotyping is specifically designed to better incorporate cells with abberand numbers of chains. Filtering for 1VDJ 1VJ chain thereby defeats its purpose. Function will continue with out filtering. For standard clonotyping with filtering set hierarchical = FALSE. ")} aberant_cells <- subset(sample_dfs[[i]], Nr_of_VDJ_chains != 1 | Nr_of_VJ_chains != 1) onlyVJ_ind <- which(aberant_cells$Nr_of_VJ_chains > 0 & aberant_cells$Nr_of_VDJ_chains == 0) onlyVDJ_ind <- which(aberant_cells$Nr_of_VDJ_chains > 0 & aberant_cells$Nr_of_VJ_chains == 0) multVJ_ind <- which(aberant_cells$Nr_of_VJ_chains > 1 & aberant_cells$Nr_of_VDJ_chains == 1) multVDJ_ind <- which(aberant_cells$Nr_of_VDJ_chains > 1 & aberant_cells$Nr_of_VJ_chains == 1) aberant_cells$new_clonal_feature <- NA sample_dfs[[i]] <- subset(sample_dfs[[i]],Nr_of_VDJ_chains == 1 & Nr_of_VJ_chains == 1) if(clone.strategy=="10x.default"){ sample_dfs[[i]]$new_clonal_feature <- sample_dfs[[i]]$clonotype_id_10x } if(clone.strategy=="cdr3.nt"){ sample_dfs[[i]]$new_clonal_feature <- paste0(sample_dfs[[i]]$VDJ_cdr3s_nt, sample_dfs[[i]]$VJ_cdr3s_nt) n_new_clones <- length(unique(sample_dfs[[i]]$new_clonal_feature)) if(length(onlyVJ_ind) > 0){ for(cel in onlyVJ_ind){ if(stringr::str_detect(aberant_cells$VJ_cdr3s_nt[cel], ";")){ clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, stringr::str_split(aberant_cells$VJ_cdr3s_nt[cel], ";", simplify = T)[1,1])), which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, stringr::str_split(aberant_cells$VJ_cdr3s_nt[cel], ";", simplify = T)[1,2]))) } else { clone_matches <- which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, aberant_cells$VJ_cdr3s_nt[cel])) } if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ aberant_cells$new_clonal_feature[cel] <- names(which.max(table(sample_dfs[[i]]$new_clonal_feature[clone_matches]))) } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- aberant_cells$VJ_cdr3s_nt[cel] } } } if(length(onlyVDJ_ind) > 0){ for(cel in onlyVDJ_ind){ if(stringr::str_detect(aberant_cells$VDJ_cdr3s_nt[cel], ";")){ clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, stringr::str_split(aberant_cells$VDJ_cdr3s_nt[cel], ";", simplify = T)[1,1])), which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, stringr::str_split(aberant_cells$VDJ_cdr3s_nt[cel], ";", simplify = T)[1,2]))) } else { clone_matches <- which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, aberant_cells$VDJ_cdr3s_nt[cel])) } if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ aberant_cells$new_clonal_feature[cel] <- names(which.max(table(sample_dfs[[i]]$new_clonal_feature[clone_matches]))) } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- aberant_cells$VDJ_cdr3s_nt[cel] } } } if(length(multVJ_ind) > 0){ for(cel in multVJ_ind){ VDJs <- aberant_cells$VDJ_cdr3s_nt[cel] VJs <- stringr::str_split(aberant_cells$VJ_cdr3s_nt[cel], ";", simplify = T)[1,] ccombs <- expand.grid(VDJs, VJs) ccombs <- paste0(ccombs[,1], ccombs[,2]) clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[1])),which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[2]))) if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ aberant_cells$new_clonal_feature[cel] <- names(which.max(table(sample_dfs[[i]]$new_clonal_feature[clone_matches]))) } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- paste0(aberant_cells$VDJ_cdr3s_nt[cel],aberant_cells$VJ_cdr3s_nt[cel]) } } } if(length(multVDJ_ind) > 0){ for(cel in multVDJ_ind){ VDJs <- stringr::str_split(aberant_cells$VDJ_cdr3s_nt[cel], ";", simplify = T)[1,] VJs <- aberant_cells$VJ_cdr3s_nt[cel] ccombs <- expand.grid(VDJs, VJs) ccombs <- paste0(ccombs[,1], ccombs[,2]) clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[1])),which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[2]))) if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ aberant_cells$new_clonal_feature[cel] <- names(which.max(table(sample_dfs[[i]]$new_clonal_feature[clone_matches]))) } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- paste0(aberant_cells$VDJ_cdr3s_nt[cel],aberant_cells$VJ_cdr3s_nt[cel]) } } } } else if(clone.strategy=="cdr3.aa"){ sample_dfs[[i]]$new_clonal_feature <- paste0(sample_dfs[[i]]$VDJ_cdr3s_aa, sample_dfs[[i]]$VJ_cdr3s_aa) n_new_clones <- length(unique(sample_dfs[[i]]$new_clonal_feature)) if(length(onlyVJ_ind) > 0){ for(cel in onlyVJ_ind){ if(stringr::str_detect(aberant_cells$VJ_cdr3s_aa[cel], ";")){ clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,1])), which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,2]))) } else { clone_matches <- which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, aberant_cells$VJ_cdr3s_aa[cel])) } if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ aberant_cells$new_clonal_feature[cel] <- names(which.max(table(sample_dfs[[i]]$new_clonal_feature[clone_matches]))) } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- aberant_cells$VJ_cdr3s_aa[cel] } } } if(length(onlyVDJ_ind) > 0){ for(cel in onlyVDJ_ind){ if(stringr::str_detect(aberant_cells$VDJ_cdr3s_aa[cel], ";")){ clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,1])), which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,2]))) } else { clone_matches <- which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, aberant_cells$VDJ_cdr3s_aa[cel])) } if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ aberant_cells$new_clonal_feature[cel] <- names(which.max(table(sample_dfs[[i]]$new_clonal_feature[clone_matches]))) } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- aberant_cells$VDJ_cdr3s_aa[cel] } } } if(length(multVJ_ind) > 0){ for(cel in multVJ_ind){ VDJs <- aberant_cells$VDJ_cdr3s_aa[cel] VJs <- stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,] ccombs <- expand.grid(VDJs, VJs) ccombs <- paste0(ccombs[,1], ccombs[,2]) clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[1])),which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[2]))) if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ aberant_cells$new_clonal_feature[cel] <- names(which.max(table(sample_dfs[[i]]$new_clonal_feature[clone_matches]))) } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- paste0(aberant_cells$VDJ_cdr3s_aa[cel],aberant_cells$VJ_cdr3s_aa[cel]) } } } if(length(multVDJ_ind) > 0){ for(cel in multVDJ_ind){ VDJs <- stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,] VJs <- aberant_cells$VJ_cdr3s_aa[cel] ccombs <- expand.grid(VDJs, VJs) ccombs <- paste0(ccombs[,1], ccombs[,2]) clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[1])),which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[2]))) if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ aberant_cells$new_clonal_feature[cel] <- names(which.max(table(sample_dfs[[i]]$new_clonal_feature[clone_matches]))) } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- paste0(aberant_cells$VDJ_cdr3s_aa[cel],aberant_cells$VJ_cdr3s_aa[cel]) } } } } else if(clone.strategy=="hvj.lvj"){ sample_dfs[[i]]$new_clonal_feature <- paste(sample_dfs[[i]]$VDJ_vgene, sample_dfs[[i]]$VDJ_jgene, sample_dfs[[i]]$VJ_vgene, sample_dfs[[i]]$VJ_jgene,sep="_") n_new_clones <- length(unique(sample_dfs[[i]]$new_clonal_feature)) if(length(onlyVJ_ind) > 0){ for(cel in onlyVJ_ind){ if(stringr::str_detect(aberant_cells$VJ_vgene[cel], ";")){ comb1 <- paste0(stringr::str_split(aberant_cells$VJ_vgene[cel], ";", simplify = T)[1,1], "_", stringr::str_split(aberant_cells$VJ_jgene[cel], ";", simplify = T)[1,1]) comb2 <- paste0(stringr::str_split(aberant_cells$VJ_vgene[cel], ";", simplify = T)[1,2], "_", stringr::str_split(aberant_cells$VJ_jgene[cel], ";", simplify = T)[1,2]) clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, comb1)), which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, comb2))) } else { comb1 <- paste0(aberant_cells$VJ_vgene[cel], "_",aberant_cells$VJ_jgene[cel]) clone_matches <- which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, comb1)) } if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ aberant_cells$new_clonal_feature[cel] <- names(which.max(table(sample_dfs[[i]]$new_clonal_feature[clone_matches]))) } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- comb1 } } } if(length(onlyVDJ_ind) > 0){ for(cel in onlyVDJ_ind){ if(stringr::str_detect(aberant_cells$VDJ_vgene[cel], ";")){ comb1 <- paste0(stringr::str_split(aberant_cells$VDJ_vgene[cel], ";", simplify = T)[1,1], "_", stringr::str_split(aberant_cells$VDJ_jgene[cel], ";", simplify = T)[1,1]) comb2 <- paste0(stringr::str_split(aberant_cells$VDJ_vgene[cel], ";", simplify = T)[1,2], "_", stringr::str_split(aberant_cells$VDJ_jgene[cel], ";", simplify = T)[1,2]) clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, comb1)), which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, comb2))) } else { comb1 <- paste0(aberant_cells$VDJ_vgene[cel], "_",aberant_cells$VDJ_jgene[cel]) clone_matches <- which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, comb1)) } if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ aberant_cells$new_clonal_feature[cel] <- names(which.max(table(sample_dfs[[i]]$new_clonal_feature[clone_matches]))) } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- comb1 } } } if(length(multVJ_ind) > 0){ for(cel in multVJ_ind){ VDJs <- paste0(aberant_cells$VDJ_vgene[cel], "_",aberant_cells$VDJ_jgene[cel]) VJs <- c(paste0(stringr::str_split(aberant_cells$VJ_vgene[cel], ";", simplify = T)[1,1], "_", stringr::str_split(aberant_cells$VJ_jgene[cel], ";", simplify = T)[1,1]),paste0(stringr::str_split(aberant_cells$VJ_vgene[cel], ";", simplify = T)[1,2], "_", stringr::str_split(aberant_cells$VJ_jgene[cel], ";", simplify = T)[1,2])) ccombs <- expand.grid(VDJs, VJs) ccombs <- paste0(ccombs[,1], ccombs[,2]) clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[1])),which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[2]))) if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ aberant_cells$new_clonal_feature[cel] <- names(which.max(table(sample_dfs[[i]]$new_clonal_feature[clone_matches]))) } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- ccombs[1] } } } if(length(multVDJ_ind) > 0){ for(cel in multVDJ_ind){ VDJs <- c(paste0(stringr::str_split(aberant_cells$VDJ_vgene[cel], ";", simplify = T)[1,1], "_", stringr::str_split(aberant_cells$VDJ_jgene[cel], ";", simplify = T)[1,1]),paste0(stringr::str_split(aberant_cells$VDJ_vgene[cel], ";", simplify = T)[1,2], "_", stringr::str_split(aberant_cells$VDJ_jgene[cel], ";", simplify = T)[1,2])) VJs <- paste0(aberant_cells$VJ_vgene[cel], "_",aberant_cells$VJ_jgene[cel]) ccombs <- expand.grid(VDJs, VJs) ccombs <- paste0(ccombs[,1], ccombs[,2]) clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[1])),which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[2]))) if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ aberant_cells$new_clonal_feature[cel] <- names(which.max(table(sample_dfs[[i]]$new_clonal_feature[clone_matches]))) } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- ccombs[1] } } } } else if(clone.strategy=="hvj.lvj.cdr3"){ sample_dfs[[i]]$new_clonal_feature <- paste(sample_dfs[[i]]$VDJ_cdr3s_aa, sample_dfs[[i]]$VDJ_vgene, sample_dfs[[i]]$VDJ_jgene, sample_dfs[[i]]$VJ_cdr3s_aa, sample_dfs[[i]]$VJ_vgene, sample_dfs[[i]]$VJ_jgene,sep="_") n_new_clones <- length(unique(sample_dfs[[i]]$new_clonal_feature)) if(length(onlyVJ_ind) > 0){ for(cel in onlyVJ_ind){ if(stringr::str_detect(aberant_cells$VJ_vgene[cel], ";")){ comb1 <- paste0(stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,1], "_" ,stringr::str_split(aberant_cells$VJ_vgene[cel], ";", simplify = T)[1,1], "_", stringr::str_split(aberant_cells$VJ_jgene[cel], ";", simplify = T)[1,1]) comb2 <- paste0(stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,2], "_" ,stringr::str_split(aberant_cells$VJ_vgene[cel], ";", simplify = T)[1,2], "_", stringr::str_split(aberant_cells$VJ_jgene[cel], ";", simplify = T)[1,2]) clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, comb1)), which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, comb2))) } else { comb1 <- paste0(aberant_cells$VJ_cdr3s_aa[cel], "_",aberant_cells$VJ_vgene[cel], "_",aberant_cells$VJ_jgene[cel]) clone_matches <- which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, comb1)) } if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ aberant_cells$new_clonal_feature[cel] <- names(which.max(table(sample_dfs[[i]]$new_clonal_feature[clone_matches]))) } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- comb1 } } } if(length(onlyVDJ_ind) > 0){ for(cel in onlyVDJ_ind){ if(stringr::str_detect(aberant_cells$VDJ_vgene[cel], ";")){ comb1 <- paste0(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,1], "_" ,stringr::str_split(aberant_cells$VDJ_vgene[cel], ";", simplify = T)[1,1], "_", stringr::str_split(aberant_cells$VDJ_jgene[cel], ";", simplify = T)[1,1]) comb2 <- paste0(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,2], "_" ,stringr::str_split(aberant_cells$VDJ_vgene[cel], ";", simplify = T)[1,2], "_", stringr::str_split(aberant_cells$VDJ_jgene[cel], ";", simplify = T)[1,2]) clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, comb1)), which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, comb2))) } else { comb1 <- paste0(aberant_cells$VDJ_cdr3s_aa[cel], "_",aberant_cells$VDJ_vgene[cel], "_",aberant_cells$VDJ_jgene[cel]) clone_matches <- which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, comb1)) } if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ aberant_cells$new_clonal_feature[cel] <- names(which.max(table(sample_dfs[[i]]$new_clonal_feature[clone_matches]))) } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- comb1 } } } if(length(multVJ_ind) > 0){ for(cel in multVJ_ind){ VDJs <- paste0(aberant_cells$VDJ_cdr3s_aa[cel], "_",aberant_cells$VDJ_vgene[cel], "_",aberant_cells$VDJ_jgene[cel]) VJs <- c(paste0(stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,1], "_",stringr::str_split(aberant_cells$VJ_vgene[cel], ";", simplify = T)[1,1], "_", stringr::str_split(aberant_cells$VJ_jgene[cel], ";", simplify = T)[1,1]),paste0(stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,2], "_",stringr::str_split(aberant_cells$VJ_vgene[cel], ";", simplify = T)[1,2], "_", stringr::str_split(aberant_cells$VJ_jgene[cel], ";", simplify = T)[1,2])) ccombs <- expand.grid(VDJs, VJs) ccombs <- paste0(ccombs[,1], ccombs[,2]) clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[1])),which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[2]))) if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ aberant_cells$new_clonal_feature[cel] <- names(which.max(table(sample_dfs[[i]]$new_clonal_feature[clone_matches]))) } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- ccombs[1] } } } if(length(multVDJ_ind) > 0){ for(cel in multVDJ_ind){ VDJs <- c(paste0(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,1], "_",stringr::str_split(aberant_cells$VDJ_vgene[cel], ";", simplify = T)[1,1], "_", stringr::str_split(aberant_cells$VDJ_jgene[cel], ";", simplify = T)[1,1]),paste0(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,2], "_",stringr::str_split(aberant_cells$VDJ_vgene[cel], ";", simplify = T)[1,2], "_", stringr::str_split(aberant_cells$VDJ_jgene[cel], ";", simplify = T)[1,2])) VJs <- paste0(aberant_cells$VJ_cdr3s_aa[cel], "_", aberant_cells$VJ_vgene[cel], "_",aberant_cells$VJ_jgene[cel]) ccombs <- expand.grid(VDJs, VJs) ccombs <- paste0(ccombs[,1], ccombs[,2]) clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[1])),which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[2]))) if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ aberant_cells$new_clonal_feature[cel] <- names(which.max(table(sample_dfs[[i]]$new_clonal_feature[clone_matches]))) } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- ccombs[1] } } } } else if(clone.strategy=="hvj.lvj.cdr3lengths"){ sample_dfs[[i]]$new_clonal_feature <- paste(nchar(sample_dfs[[i]]$VDJ_cdr3s_aa), sample_dfs[[i]]$VDJ_vgene, sample_dfs[[i]]$VDJ_jgene, nchar(sample_dfs[[i]]$VJ_cdr3s_aa), sample_dfs[[i]]$VJ_vgene, sample_dfs[[i]]$VJ_jgene, sep="_") n_new_clones <- length(unique(sample_dfs[[i]]$new_clonal_feature)) if(length(onlyVJ_ind) > 0){ for(cel in onlyVJ_ind){ if(stringr::str_detect(aberant_cells$VJ_vgene[cel], ";")){ comb1 <- paste0(nchar(stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,1]), "_" ,stringr::str_split(aberant_cells$VJ_vgene[cel], ";", simplify = T)[1,1], "_", stringr::str_split(aberant_cells$VJ_jgene[cel], ";", simplify = T)[1,1]) comb2 <- paste0(nchar(stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,2]), "_" ,stringr::str_split(aberant_cells$VJ_vgene[cel], ";", simplify = T)[1,2], "_", stringr::str_split(aberant_cells$VJ_jgene[cel], ";", simplify = T)[1,2]) clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, comb1)), which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, comb2))) } else { comb1 <- paste0(nchar(aberant_cells$VJ_cdr3s_aa[cel]), "_",aberant_cells$VJ_vgene[cel], "_",aberant_cells$VJ_jgene[cel]) clone_matches <- which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, comb1)) } if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ aberant_cells$new_clonal_feature[cel] <- names(which.max(table(sample_dfs[[i]]$new_clonal_feature[clone_matches]))) } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- comb1 } } } if(length(onlyVDJ_ind) > 0){ for(cel in onlyVDJ_ind){ if(stringr::str_detect(aberant_cells$VDJ_vgene[cel], ";")){ comb1 <- paste0(nchar(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,1]), "_" ,stringr::str_split(aberant_cells$VDJ_vgene[cel], ";", simplify = T)[1,1], "_", stringr::str_split(aberant_cells$VDJ_jgene[cel], ";", simplify = T)[1,1]) comb2 <- paste0(nchar(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,2]), "_" ,stringr::str_split(aberant_cells$VDJ_vgene[cel], ";", simplify = T)[1,2], "_", stringr::str_split(aberant_cells$VDJ_jgene[cel], ";", simplify = T)[1,2]) clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, comb1)), which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, comb2))) } else { comb1 <- paste0(nchar(aberant_cells$VDJ_cdr3s_aa[cel]), "_",aberant_cells$VDJ_vgene[cel], "_", aberant_cells$VDJ_jgene[cel]) clone_matches <- which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, comb1)) } if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ aberant_cells$new_clonal_feature[cel] <- names(which.max(table(sample_dfs[[i]]$new_clonal_feature[clone_matches]))) } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- comb1 } } } if(length(multVJ_ind) > 0){ for(cel in multVJ_ind){ VDJs <- paste0(nchar(aberant_cells$VDJ_cdr3s_aa[cel]), "_",aberant_cells$VDJ_vgene[cel], "_",aberant_cells$VDJ_jgene[cel]) VJs <- c(paste0(nchar(stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,1]), "_",stringr::str_split(aberant_cells$VJ_vgene[cel], ";", simplify = T)[1,1], "_", stringr::str_split(aberant_cells$VJ_jgene[cel], ";", simplify = T)[1,1]),paste0(nchar(stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,2]), "_",stringr::str_split(aberant_cells$VJ_vgene[cel], ";", simplify = T)[1,2], "_", stringr::str_split(aberant_cells$VJ_jgene[cel], ";", simplify = T)[1,2])) ccombs <- expand.grid(VDJs, VJs) ccombs <- paste0(ccombs[,1], ccombs[,2]) clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[1])),which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[2]))) if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ aberant_cells$new_clonal_feature[cel] <- names(which.max(table(sample_dfs[[i]]$new_clonal_feature[clone_matches]))) } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- ccombs[1] } } } if(length(multVDJ_ind) > 0){ for(cel in multVDJ_ind){ VDJs <- c(paste0(nchar(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,1]), "_",stringr::str_split(aberant_cells$VDJ_vgene[cel], ";", simplify = T)[1,1], "_", stringr::str_split(aberant_cells$VDJ_jgene[cel], ";", simplify = T)[1,1]),paste0(nchar(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,2]), "_",stringr::str_split(aberant_cells$VDJ_vgene[cel], ";", simplify = T)[1,2], "_", stringr::str_split(aberant_cells$VDJ_jgene[cel], ";", simplify = T)[1,2])) VJs <- paste0(nchar(aberant_cells$VJ_cdr3s_aa[cel]), "_", aberant_cells$VJ_vgene[cel], "_",aberant_cells$VJ_jgene[cel]) ccombs <- expand.grid(VDJs, VJs) ccombs <- paste0(ccombs[,1], ccombs[,2]) clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[1])),which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[2]))) if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ aberant_cells$new_clonal_feature[cel] <- names(which.max(table(sample_dfs[[i]]$new_clonal_feature[clone_matches]))) } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- ccombs[1] } } } } else if(clone.strategy=="hvj.lvj.cdr3length.CDR3.homology" | clone.strategy=="hvj.lvj.CDR3length.CDRH3.homology"){ clones_temp <- (paste(nchar(sample_dfs[[i]]$VDJ_cdr3s_aa), sample_dfs[[i]]$VDJ_vgene, sample_dfs[[i]]$VDJ_jgene, nchar(sample_dfs[[i]]$VJ_cdr3s_aa), sample_dfs[[i]]$VJ_vgene, sample_dfs[[i]]$VJ_jgene,sep="_")) sample_dfs[[i]]$new_clonal_feature <- clones_temp unique_clones <- unique(clones_temp) for(j in 1:length(unique_clones)){ original_clone_indices <- which(clones_temp==unique_clones[j]) if(length(original_clone_indices) >= 2){ if(any(nchar(sample_dfs[[i]]$VDJ_cdr3s_aa[original_clone_indices]) == 0) & !all(nchar(sample_dfs[[i]]$VDJ_cdr3s_aa[original_clone_indices]) == 0)){ nchars_vh <- nchar(sample_dfs[[i]]$VDJ_cdr3s_aa[original_clone_indices]) nchars_vh[which(nchars_vh == 0)] <- mean(nchars_vh[nchars_vh > 0]) } else if(all(nchar(sample_dfs[[i]]$VDJ_cdr3s_aa[original_clone_indices]) == 0)){ nchars_vh <- rep(1,length(original_clone_indices)) } else { nchars_vh <- nchar(sample_dfs[[i]]$VDJ_cdr3s_aa[original_clone_indices]) } vh_distance <- stringdist::stringdistmatrix(sample_dfs[[i]]$VDJ_cdr3s_aa[original_clone_indices],sample_dfs[[i]]$VDJ_cdr3s_aa[original_clone_indices],method = "lv")/nchars_vh if (clone.strategy=="hvj.lvj.cdr3length.CDR3.homology"){ if(any(nchar(sample_dfs[[i]]$VJ_cdr3s_aa[original_clone_indices]) == 0) & !all(nchar(sample_dfs[[i]]$VJ_cdr3s_aa[original_clone_indices]) == 0)){ nchars_vl <- nchar(sample_dfs[[i]]$VJ_cdr3s_aa[original_clone_indices]) nchars_vl[which(nchars_vl == 0)] <- mean(nchars_vl[nchars_vl > 0]) } else if(all(nchar(sample_dfs[[i]]$VJ_cdr3s_aa[original_clone_indices]) == 0)){ nchars_vl <- rep(1,length(original_clone_indices)) } else { nchars_vl <- nchar(sample_dfs[[i]]$VJ_cdr3s_aa[original_clone_indices]) } vl_distance <- stringdist::stringdistmatrix(sample_dfs[[i]]$VJ_cdr3s_aa[original_clone_indices],sample_dfs[[i]]$VJ_cdr3s_aa[original_clone_indices],method = "lv")/nchars_vl }else{ vl_distance <- 0 } combined_distance <- vh_distance + vl_distance diag(combined_distance) <- NA hclust_combined <- stats::hclust(stats::as.dist(combined_distance)) hclust_combined_cut <- stats::cutree(hclust_combined, h = homology.threshold) sample_dfs[[i]]$new_clonal_feature[original_clone_indices] <- paste(sample_dfs[[i]]$new_clonal_feature[original_clone_indices],j,hclust_combined_cut) }else{ sample_dfs[[i]]$new_clonal_feature[original_clone_indices] <- paste(sample_dfs[[i]]$new_clonal_feature[original_clone_indices],j,"1") } } unique_clones <- unique(sample_dfs[[i]]$new_clonal_feature) sur_clonal_feature <- paste(clones_temp, "_", sample_dfs[[i]]$new_clonal_feature) if(length(onlyVJ_ind) > 0){ for(cel in onlyVJ_ind){ if(stringr::str_detect(aberant_cells$VJ_vgene[cel], ";")){ comb1 <- paste0(nchar(stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,1]), "_" ,stringr::str_split(aberant_cells$VJ_vgene[cel], ";", simplify = T)[1,1], "_", stringr::str_split(aberant_cells$VJ_jgene[cel], ";", simplify = T)[1,1]) comb2 <- paste0(nchar(stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,2]), "_" ,stringr::str_split(aberant_cells$VJ_vgene[cel], ";", simplify = T)[1,2], "_", stringr::str_split(aberant_cells$VJ_jgene[cel], ";", simplify = T)[1,2]) clone_matches <- c(which(stringr::str_detect(sur_clonal_feature, comb1)), which(stringr::str_detect(sur_clonal_feature, comb2))) } else { comb1 <- paste0(nchar(aberant_cells$VJ_cdr3s_aa[cel]), "_",aberant_cells$VJ_vgene[cel], "_",aberant_cells$VJ_jgene[cel]) clone_matches <- which(stringr::str_detect(sur_clonal_feature, comb1)) } if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ if(clone.strategy=="hvj.lvj.CDR3length.CDRH3.homology"){ aberant_cells$new_clonal_feature[cel] <- names(which.max(table(sample_dfs[[i]]$new_clonal_feature[clone_matches]))) } else if(clone.strategy=="hvj.lvj.cdr3length.CDR3.homology"){ if(stringr::str_detect(aberant_cells$VJ_vgene[cel], ";")){ dists1 <- stringdist::stringdist(sample_dfs[[i]]$VJ_cdr3s_aa[clone_matches], stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,1]) / nchar(stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,1]) dists2 <- stringdist::stringdist(sample_dfs[[i]]$VJ_cdr3s_aa[clone_matches], stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,2]) / nchar(stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,2]) dists <- c(dists1,dists2) if(any(dists <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- sample_dfs[[i]]$new_clonal_feature[rep(clone_matches,2)[which.min(dists)]] } else { aberant_cells$new_clonal_feature[cel] <- paste0(comb1,"_", aberant_cells$VJ_cdr3s_aa[cel]) } } else { dists <- stringdist::stringdist(sample_dfs[[i]]$VJ_cdr3s_aa[clone_matches], aberant_cells$VJ_cdr3s_aa[cel]) / nchar(aberant_cells$VJ_cdr3s_aa[cel]) if(any(dists <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- sample_dfs[[i]]$new_clonal_feature[clone_matches[which.min(dists)]] } else { aberant_cells$new_clonal_feature[cel] <- paste0(comb1,"_", aberant_cells$VJ_cdr3s_aa[cel]) } } } } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ if(any(stringdist::stringdist(stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,],unique(sample_dfs[[i]]$VJ_cdr3s_aa[clone_matches]))/nchar(stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,]) <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- paste0(comb1,"_", aberant_cells$VJ_cdr3s_aa[cel]) } } else { aberant_cells$new_clonal_feature[cel] <- paste0(comb1,"_", aberant_cells$VJ_cdr3s_aa[cel]) } } } if(length(onlyVDJ_ind) > 0){ for(cel in onlyVDJ_ind){ if(stringr::str_detect(aberant_cells$VDJ_vgene[cel], ";")){ comb1 <- paste0(nchar(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,1]), "_" ,stringr::str_split(aberant_cells$VDJ_vgene[cel], ";", simplify = T)[1,1], "_", stringr::str_split(aberant_cells$VDJ_jgene[cel], ";", simplify = T)[1,1]) comb2 <- paste0(nchar(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,2]), "_" ,stringr::str_split(aberant_cells$VDJ_vgene[cel], ";", simplify = T)[1,2], "_", stringr::str_split(aberant_cells$VDJ_jgene[cel], ";", simplify = T)[1,2]) clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, comb1)), which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, comb2))) } else { comb1 <- paste0(nchar(aberant_cells$VDJ_cdr3s_aa[cel]), "_",aberant_cells$VDJ_vgene[cel], "_", aberant_cells$VDJ_jgene[cel]) clone_matches <- which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, comb1)) } if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ if(clone.strategy=="hvj.lvj.CDR3length.CDRH3.homology"){ if(stringr::str_detect(aberant_cells$VDJ_vgene[cel], ";")){ dists1 <- stringdist::stringdist(sample_dfs[[i]]$VDJ_cdr3s_aa[clone_matches], stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,1]) / nchar(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,1]) dists2 <- stringdist::stringdist(sample_dfs[[i]]$VDJ_cdr3s_aa[clone_matches], stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,2]) / nchar(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,2]) dists <- c(dists1,dists2) if(any(dists <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- sample_dfs[[i]]$new_clonal_feature[rep(clone_matches,2)[which.min(dists)]] } else { aberant_cells$new_clonal_feature[cel] <- paste0(comb1,"_", aberant_cells$VDJ_cdr3s_aa[cel]) } } else { dists <- stringdist::stringdist(sample_dfs[[i]]$VDJ_cdr3s_aa[clone_matches], aberant_cells$VDJ_cdr3s_aa[cel]) / nchar(aberant_cells$VDJ_cdr3s_aa[cel]) if(any(dists <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- sample_dfs[[i]]$new_clonal_feature[clone_matches[which.min(dists)]] } else { aberant_cells$new_clonal_feature[cel] <- paste0(comb1,"_", aberant_cells$VDJ_cdr3s_aa[cel]) } } } else if(clone.strategy=="hvj.lvj.cdr3length.CDR3.homology"){ if(stringr::str_detect(aberant_cells$VDJ_vgene[cel], ";")){ dists1 <- stringdist::stringdist(sample_dfs[[i]]$VDJ_cdr3s_aa[clone_matches], stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,1]) / nchar(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,1]) dists2 <- stringdist::stringdist(sample_dfs[[i]]$VDJ_cdr3s_aa[clone_matches], stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,2]) / nchar(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,2]) dists <- c(dists1,dists2) if(any(dists <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- sample_dfs[[i]]$new_clonal_feature[rep(clone_matches,2)[which.min(dists)]] } else { aberant_cells$new_clonal_feature[cel] <- paste0(comb1,"_", aberant_cells$VDJ_cdr3s_aa[cel]) } } else { dists <- stringdist::stringdist(sample_dfs[[i]]$VDJ_cdr3s_aa[clone_matches], aberant_cells$VJD_cdr3s_aa[cel]) / nchar(aberant_cells$VDJ_cdr3s_aa[cel]) if(any(dists <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- sample_dfs[[i]]$new_clonal_feature[clone_matches[which.min(dists)]] } else { aberant_cells$new_clonal_feature[cel] <- paste0(comb1,"_", aberant_cells$VDJ_cdr3s_aa[cel]) } } } } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ if(any(stringdist::stringdist(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,],unique(sample_dfs[[i]]$VDJ_cdr3s_aa[clone_matches]))/nchar(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,]) <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- paste0(comb1,"_", aberant_cells$VDJ_cdr3s_aa[cel]) } } else { aberant_cells$new_clonal_feature[cel] <- paste0(comb1,"_", aberant_cells$VDJ_cdr3s_aa[cel]) } } } if(length(multVJ_ind) > 0){ for(cel in multVJ_ind){ VDJs <- paste0(nchar(aberant_cells$VDJ_cdr3s_aa[cel]), "_",aberant_cells$VDJ_vgene[cel], "_",aberant_cells$VDJ_jgene[cel]) VJs <- c(paste0(nchar(stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,1]), "_",stringr::str_split(aberant_cells$VJ_vgene[cel], ";", simplify = T)[1,1], "_", stringr::str_split(aberant_cells$VJ_jgene[cel], ";", simplify = T)[1,1]),paste0(nchar(stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,2]), "_",stringr::str_split(aberant_cells$VJ_vgene[cel], ";", simplify = T)[1,2], "_", stringr::str_split(aberant_cells$VJ_jgene[cel], ";", simplify = T)[1,2])) ccombs <- expand.grid(VDJs, VJs) ccombs <- paste0(ccombs[,1], ccombs[,2]) clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[1])),which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[2]))) if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ if(clone.strategy=="hvj.lvj.CDR3length.CDRH3.homology"){ dists <- stringdist::stringdist(sample_dfs[[i]]$VDJ_cdr3s_aa[clone_matches], aberant_cells$VDJ_cdr3s_aa[cel]) / nchar(aberant_cells$VDJ_cdr3s_aa[cel]) if(any(dists <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- sample_dfs[[i]]$new_clonal_feature[clone_matches[which.min(dists)]] } else { aberant_cells$new_clonal_feature[cel] <- paste0(comb1,"_", aberant_cells$VDJ_cdr3s_aa[cel]) } } else if(clone.strategy=="hvj.lvj.cdr3length.CDR3.homology"){ dists1 <- stringdist::stringdist(paste0(sample_dfs[[i]]$VDJ_cdr3s_aa[clone_matches],"_",sample_dfs[[i]]$VJ_cdr3s_aa[clone_matches]), paste0(aberant_cells$VDJ_cdr3s_aa[cel], "_", stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,1])) / nchar(paste0(aberant_cells$VDJ_cdr3s_aa[cel], "_", stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,1])) dists2 <- stringdist::stringdist(paste0(sample_dfs[[i]]$VDJ_cdr3s_aa[clone_matches],"_",sample_dfs[[i]]$VJ_cdr3s_aa[clone_matches]), paste0(aberant_cells$VDJ_cdr3s_aa[cel], "_", stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,2])) / nchar(paste0(aberant_cells$VDJ_cdr3s_aa[cel], "_", stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,2])) dists <- c(dists1,dists2) if(any(dists <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- sample_dfs[[i]]$new_clonal_feature[rep(clone_matches,2)[which.min(dists)]] } else { aberant_cells$new_clonal_feature[cel] <- paste0(ccombs[1],"_", aberant_cells$VDJ_cdr3s_aa[cel], "_", aberant_cells$VJ_cdr3s_aa[cel]) } } } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ if(stringdist::stringdist(aberant_cells$VDJ_cdr3s_aa[cel],unique(sample_dfs[[i]]$VDJ_cdr3s_aa[clone_matches]))/nchar(aberant_cells$VDJ_cdr3s_aa[cel]) <= homology.threshold & any(stringdist::stringdist(stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,],unique(sample_dfs[[i]]$VJ_cdr3s_aa[clone_matches]))/nchar(stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,]) <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- paste0(ccombs[1],"_", aberant_cells$VDJ_cdr3s_aa[cel], "_", aberant_cells$VJ_cdr3s_aa[cel]) } } else { aberant_cells$new_clonal_feature[cel] <- paste0(ccombs[1],"_", aberant_cells$VDJ_cdr3s_aa[cel], "_", aberant_cells$VJ_cdr3s_aa[cel]) } } } if(length(multVDJ_ind) > 0){ for(cel in multVDJ_ind){ VDJs <- c(paste0(nchar(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,1]), "_",stringr::str_split(aberant_cells$VDJ_vgene[cel], ";", simplify = T)[1,1], "_", stringr::str_split(aberant_cells$VDJ_jgene[cel], ";", simplify = T)[1,1]),paste0(nchar(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,2]), "_",stringr::str_split(aberant_cells$VDJ_vgene[cel], ";", simplify = T)[1,2], "_", stringr::str_split(aberant_cells$VDJ_jgene[cel], ";", simplify = T)[1,2])) VJs <- paste0(nchar(aberant_cells$VJ_cdr3s_aa[cel]), "_", aberant_cells$VJ_vgene[cel], "_",aberant_cells$VJ_jgene[cel]) ccombs <- expand.grid(VDJs, VJs) ccombs <- paste0(ccombs[,1], ccombs[,2]) clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[1])),which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature,ccombs[2]))) if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ if(clone.strategy=="hvj.lvj.CDR3length.CDRH3.homology"){ dists1 <- stringdist::stringdist(sample_dfs[[i]]$VDJ_cdr3s_aa[clone_matches], stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,1]) / nchar(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,1]) dists2 <- stringdist::stringdist(sample_dfs[[i]]$VDJ_cdr3s_aa[clone_matches], stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,2]) / nchar(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,2]) dists <- c(dists1,dists2) if(any(dists <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- sample_dfs[[i]]$new_clonal_feature[rep(clone_matches,2)[which.min(dists)]] } else { aberant_cells$new_clonal_feature[cel] <- paste0(comb1,"_", aberant_cells$VDJ_cdr3s_aa[cel],"_", aberant_cells$VJ_cdr3s_aa[cel]) } } else if(clone.strategy=="hvj.lvj.cdr3length.CDR3.homology"){ dists1 <- stringdist::stringdist(paste0(sample_dfs[[i]]$VDJ_cdr3s_aa[clone_matches],"_",sample_dfs[[i]]$VJ_cdr3s_aa[clone_matches]), paste0(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,1], "_", aberant_cells$VJ_cdr3s_aa[cel])) / nchar(paste0(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,1], "_", aberant_cells$VJ_cdr3s_aa[cel])) dists2 <- stringdist::stringdist(paste0(sample_dfs[[i]]$VDJ_cdr3s_aa[clone_matches],"_",sample_dfs[[i]]$VJ_cdr3s_aa[clone_matches]), paste0(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,2], "_", aberant_cells$VJ_cdr3s_aa[cel])) / nchar(paste0(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,2], "_", aberant_cells$VJ_cdr3s_aa[cel])) dists <- c(dists1,dists2) if(any(dists <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- sample_dfs[[i]]$new_clonal_feature[rep(clone_matches,2)[which.min(dists)]] } else { aberant_cells$new_clonal_feature[cel] <- paste0(ccombs[1],"_", aberant_cells$VDJ_cdr3s_aa[cel], "_", aberant_cells$VJ_cdr3s_aa[cel]) } } } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ if(stringdist::stringdist(aberant_cells$VJ_cdr3s_aa[cel],unique(sample_dfs[[i]]$VJ_cdr3s_aa[clone_matches]))/nchar(aberant_cells$VJ_cdr3s_aa[cel]) <= homology.threshold & any(stringdist::stringdist(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,],unique(sample_dfs[[i]]$VDJ_cdr3s_aa[clone_matches]))/nchar(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,]) <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- paste0(ccombs[1],"_", aberant_cells$VDJ_cdr3s_aa[cel], "_", aberant_cells$VJ_cdr3s_aa[cel]) } } else { aberant_cells$new_clonal_feature[cel] <- paste0(ccombs[1],"_", aberant_cells$VDJ_cdr3s_aa[cel], "_", aberant_cells$VJ_cdr3s_aa[cel]) } } } } else if (clone.strategy=="CDR3.homology" | clone.strategy=="CDRH3.homology"){ if(any(nchar(sample_dfs[[i]]$VDJ_cdr3s_aa) == 0) & !all(nchar(sample_dfs[[i]]$VDJ_cdr3s_aa) == 0)){ nchars_vh <- nchar(sample_dfs[[i]]$VDJ_cdr3s_aa) nchars_vh[which(nchars_vh == 0)] <- mean(nchars_vh[nchars_vh > 0]) } else if(all(nchar(sample_dfs[[i]]$VDJ_cdr3s_aa) == 0)){ nchars_vh <- rep(1,length(sample_dfs[[i]]$VDJ_cdr3s_aa)) } else { nchars_vh <- nchar(sample_dfs[[i]]$VDJ_cdr3s_aa) } vh_distance <- stringdist::stringdistmatrix(sample_dfs[[i]]$VDJ_cdr3s_aa, sample_dfs[[i]]$VDJ_cdr3s_aa, method = "lv")/nchars_vh if(clone.strategy=="CDR3.homology"){ if(any(nchar(sample_dfs[[i]]$VJ_cdr3s_aa) == 0) & !all(nchar(sample_dfs[[i]]$VJ_cdr3s_aa) == 0)){ nchars_vl <- nchar(sample_dfs[[i]]$VJ_cdr3s_aa) nchars_vl[which(nchars_vl == 0)] <- mean(nchars_vl[nchars_vl > 0]) } else if(all(nchar(sample_dfs[[i]]$VJ_cdr3s_aa) == 0)){ nchars_vl <- rep(1,length(sample_dfs[[i]]$VJ_cdr3s_aa)) } else { nchars_vl <- nchar(sample_dfs[[i]]$VJ_cdr3s_aa) } vl_distance <- stringdist::stringdistmatrix(sample_dfs[[i]]$VJ_cdr3s_aa, sample_dfs[[i]]$VJ_cdr3s_aa, method = "lv")/nchars_vl }else{ vl_distance <- 0 } combined_distance <- vh_distance + vl_distance diag(combined_distance) <- NA hclust_combined <- stats::hclust(stats::as.dist(combined_distance)) hclust_combined_cut <- stats::cutree(hclust_combined, h = homology.threshold) sample_dfs[[i]]$new_clonal_feature <- paste(hclust_combined_cut) unique_clones <- unique(sample_dfs[[i]]$new_clonal_feature) if(length(onlyVJ_ind) > 0){ for(cel in onlyVJ_ind){ if(clone.strategy=="CDRH3.homology"){ if(stringr::str_detect(aberant_cells$VJ_cdr3s_aa[cel], ";")){ clone_matches <- c(which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,1])), which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,2]))) } else { clone_matches <- which(stringr::str_detect(sample_dfs[[i]]$new_clonal_feature, aberant_cells$VJ_cdr3s_aa[cel])) } if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) > 1){ aberant_cells$new_clonal_feature[cel] <- names(which.max(table(sample_dfs[[i]]$new_clonal_feature[clone_matches]))) } else if(length(unique(sample_dfs[[i]]$new_clonal_feature[clone_matches])) == 1){ aberant_cells$new_clonal_feature[cel] <- unique(sample_dfs[[i]]$new_clonal_feature[clone_matches]) } else { aberant_cells$new_clonal_feature[cel] <- aberant_cells$VJ_cdr3s_aa[cel] } } else if(clone.strategy=="CDR3.homology"){ if(stringr::str_detect(aberant_cells$VJ_vgene[cel], ";")){ dists1 <- stringdist::stringdist(sample_dfs[[i]]$VJ_cdr3s_aa, stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,1]) / nchar(stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,1]) dists2 <- stringdist::stringdist(sample_dfs[[i]]$VJ_cdr3s_aa, stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,2]) / nchar(stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,2]) dists <- c() for(k in 1:length(dists1)){ if(dists1[k] < dists2[k]){ dists <- c(dists, dists1[k]) } else{ dists <- c(dists, dists2[k]) } } if(any(dists <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- sample_dfs[[i]]$new_clonal_feature[which.min(dists)] } else { aberant_cells$new_clonal_feature[cel] <- paste0(aberant_cells$VJ_cdr3s_aa[cel]) } } else { dists <- stringdist::stringdist(sample_dfs[[i]]$VJ_cdr3s_aa, aberant_cells$VJ_cdr3s_aa[cel]) / nchar(aberant_cells$VJ_cdr3s_aa[cel]) if(any(dists <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- sample_dfs[[i]]$new_clonal_feature[which.min(dists)] } else { aberant_cells$new_clonal_feature[cel] <- paste0(aberant_cells$VJ_cdr3s_aa[cel]) } } } } } if(length(onlyVDJ_ind) > 0){ for(cel in onlyVDJ_ind){ if(clone.strategy=="CDRH3.homology"){ if(stringr::str_detect(aberant_cells$VDJ_vgene[cel], ";")){ dists1 <- stringdist::stringdist(sample_dfs[[i]]$VDJ_cdr3s_aa, stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,1]) / nchar(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,1]) dists2 <- stringdist::stringdist(sample_dfs[[i]]$VDJ_cdr3s_aa, stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,2]) / nchar(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,2]) dists <- c() for(k in 1:length(dists1)){ if(dists1[k] < dists2[k]){ dists <- c(dists, dists1[k]) } else{ dists <- c(dists, dists2[k]) } } if(any(dists <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- sample_dfs[[i]]$new_clonal_feature[which.min(dists)] } else { aberant_cells$new_clonal_feature[cel] <- paste0(aberant_cells$VDJ_cdr3s_aa[cel]) } } else { dists <- stringdist::stringdist(sample_dfs[[i]]$VDJ_cdr3s_aa, aberant_cells$VDJ_cdr3s_aa[cel]) / nchar(aberant_cells$VDJ_cdr3s_aa[cel]) if(any(dists <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- sample_dfs[[i]]$new_clonal_feature[which.min(dists)] } else { aberant_cells$new_clonal_feature[cel] <- paste0(aberant_cells$VDJ_cdr3s_aa[cel]) } } } else if(clone.strategy=="CDR3.homology"){ if(stringr::str_detect(aberant_cells$VDJ_vgene[cel], ";")){ dists1 <- stringdist::stringdist(sample_dfs[[i]]$VDJ_cdr3s_aa, stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,1]) / nchar(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,1]) dists2 <- stringdist::stringdist(sample_dfs[[i]]$VDJ_cdr3s_aa, stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,2]) / nchar(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,2]) dists <- c() for(k in 1:length(dists1)){ if(dists1[k] < dists2[k]){ dists <- c(dists, dists1[k]) } else{ dists <- c(dists, dists2[k]) } } if(any(dists <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- sample_dfs[[i]]$new_clonal_feature[which.min(dists)] } else { aberant_cells$new_clonal_feature[cel] <- paste0(aberant_cells$VDJ_cdr3s_aa[cel]) } } else { dists <- stringdist::stringdist(sample_dfs[[i]]$VDJ_cdr3s_aa, aberant_cells$VDJ_cdr3s_aa[cel]) / nchar(aberant_cells$VDJ_cdr3s_aa[cel]) if(any(dists <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- sample_dfs[[i]]$new_clonal_feature[which.min(dists)] } else { aberant_cells$new_clonal_feature[cel] <- paste0(aberant_cells$VDJ_cdr3s_aa[cel]) } } } } } if(length(multVJ_ind) > 0){ for(cel in multVJ_ind){ if(clone.strategy=="CDRH3.homology"){ dists <- stringdist::stringdist(sample_dfs[[i]]$VDJ_cdr3s_aa, aberant_cells$VDJ_cdr3s_aa[cel]) / nchar(aberant_cells$VDJ_cdr3s_aa[cel]) if(any(dists <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- sample_dfs[[i]]$new_clonal_feature[which.min(dists)] } else { aberant_cells$new_clonal_feature[cel] <- paste0(aberant_cells$VDJ_cdr3s_aa[cel]) } } else if(clone.strategy=="CDR3.homology"){ VDJs <- aberant_cells$VDJ_cdr3s_aa[cel] VJs <- c(stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,1], stringr::str_split(aberant_cells$VJ_cdr3s_aa[cel], ";", simplify = T)[1,2]) ccombs <- expand.grid(VDJs, VJs) ccombs <- paste0(ccombs[,1], ccombs[,2]) pasted_sample_dfs <- paste0(sample_dfs[[i]]$VDJ_cdr3s_aa, sample_dfs[[i]]$VJ_cdr3s_aa) dists1 <- stringdist::stringdist(pasted_sample_dfs, ccombs[1]) / nchar(ccombs[1]) dists2 <- stringdist::stringdist(pasted_sample_dfs, ccombs[2]) / nchar(ccombs[2]) dists <- c() for(k in 1:length(dists1)){ if(dists1[k] < dists2[k]){ dists <- c(dists, dists1[k]) } else{ dists <- c(dists, dists2[k]) } } if(any(dists <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- sample_dfs[[i]]$new_clonal_feature[which.min(dists)] } else { aberant_cells$new_clonal_feature[cel] <- ccombs1 } } } } if(length(multVDJ_ind) > 0){ for(cel in multVDJ_ind){ if(clone.strategy=="CDRH3.homology"){ dists1 <- stringdist::stringdist(sample_dfs[[i]]$VDJ_cdr3s_aa, stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,1]) / nchar(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,1]) dists2 <- stringdist::stringdist(sample_dfs[[i]]$VDJ_cdr3s_aa, stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,2]) / nchar(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,2]) dists <- c() for(k in 1:length(dists1)){ if(dists1[k] < dists2[k]){ dists <- c(dists, dists1[k]) } else{ dists <- c(dists, dists2[k]) } } if(any(dists <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- sample_dfs[[i]]$new_clonal_feature[which.min(dists)] } else { aberant_cells$new_clonal_feature[cel] <- paste0(aberant_cells$VDJ_cdr3s_aa[cel]) } } else if(clone.strategy=="CDR3.homology"){ VDJs <- c(stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,1], stringr::str_split(aberant_cells$VDJ_cdr3s_aa[cel], ";", simplify = T)[1,2]) VJs <- aberant_cells$VJ_cdr3s_aa[cel] ccombs <- expand.grid(VDJs, VJs) ccombs <- paste0(ccombs[,1], ccombs[,2]) pasted_sample_dfs <- paste0(sample_dfs[[i]]$VDJ_cdr3s_aa, sample_dfs[[i]]$VJ_cdr3s_aa) dists1 <- stringdist::stringdist(pasted_sample_dfs, ccombs[1]) / nchar(ccombs[1]) dists2 <- stringdist::stringdist(pasted_sample_dfs, ccombs[2]) / nchar(ccombs[2]) dists <- c() for(k in 1:length(dists1)){ if(dists1[k] < dists2[k]){ dists <- c(dists, dists1[k]) } else{ dists <- c(dists, dists2[k]) } } if(any(dists <= homology.threshold)){ aberant_cells$new_clonal_feature[cel] <- sample_dfs[[i]]$new_clonal_feature[which.min(dists)] } else { aberant_cells$new_clonal_feature[cel] <- ccombs1 } } } } } sample_dfs[[i]] <- rbind(sample_dfs[[i]], aberant_cells) unique_clones <- unique(sample_dfs[[i]]$new_clonal_feature) sample_dfs[[i]]$new_clonotype_id <- rep(NA,nrow(sample_dfs[[i]])) sample_dfs[[i]]$new_clonal_frequency <- rep(NA,nrow(sample_dfs[[i]])) sample_dfs[[i]]$new_clonal_rank <- rep(NA,nrow(sample_dfs[[i]])) unique.clonal.features <- unique(sample_dfs[[i]]$new_clonal_feature) unique.clonal.frequencies <- rep(NA,length(unique.clonal.features)) for(j in 1:length(unique.clonal.features)){ unique.clonal.frequencies[j] <- length(which(sample_dfs[[i]]$new_clonal_feature==unique.clonal.features[j])) sample_dfs[[i]]$new_clonal_frequency[which(sample_dfs[[i]]$new_clonal_feature==unique.clonal.features[j])] <- unique.clonal.frequencies[j] } sample_dfs[[i]] <-sample_dfs[[i]][with(sample_dfs[[i]], order(-new_clonal_frequency)), ] unique.clone.frequencies <- unique(sample_dfs[[i]]$new_clonal_frequency) for(j in 1:length(unique.clone.frequencies)){ sample_dfs[[i]]$new_clonal_rank[which(sample_dfs[[i]]$new_clonal_frequency==unique.clone.frequencies[j])] <- j } unique.clonal.features <- unique(sample_dfs[[i]]$new_clonal_feature) for(j in 1:length(unique.clonal.features)){ sample_dfs[[i]]$new_clonotype_id[which(sample_dfs[[i]]$new_clonal_feature == unique.clonal.features[j])] <- paste0("clonotype",j) } } } if(output.format=="dataframe.per.sample"){ return(sample_dfs) } else if(output.format=="vgm"){ if(!global.clonotype) VDJ.GEX.matrix <- do.call("rbind",sample_dfs) if(global.clonotype){ if(class(sample_dfs)=="list"){ VDJ.GEX.matrix <- sample_dfs[[1]] } else { VDJ.GEX.matrix <- sample_dfs } } if("sample_id" %in% names(VDJ.GEX.matrix)){ clono_10x_index <- which(names(VDJ.GEX.matrix) == "sample_id") VDJ.GEX.matrix<- VDJ.GEX.matrix[,c(1:clono_10x_index, ((ncol(VDJ.GEX.matrix)-3):ncol(VDJ.GEX.matrix)), (clono_10x_index+1):(ncol(VDJ.GEX.matrix)-4))] } names(VDJ.GEX.matrix)[which(names(VDJ.GEX.matrix) == "new_clonotype_id")] <- paste0("clonotype_id_",clone.strategy.as.input) names(VDJ.GEX.matrix)[which(names(VDJ.GEX.matrix) == "new_clonal_feature")] <- paste0("clonal_feature_",clone.strategy.as.input) names(VDJ.GEX.matrix)[which(names(VDJ.GEX.matrix) == "new_clonal_frequency")] <- paste0("clonotype_frequency_",clone.strategy.as.input) VDJ.GEX.matrix <- VDJ.GEX.matrix[,-c(which(names(VDJ.GEX.matrix) == "new_clonal_rank"))] return(VDJ.GEX.matrix) } else if(output.format=="clone.level.dataframes" & global.clonotype == F){ clone.dataframe.list <- list() for(i in 1:length(sample_dfs)){ sample_dfs[[i]]$VDJ_VJ_trimmed <- paste0(sample_dfs[[i]]$VDJ_sequence_nt_trimmed,sample_dfs[[i]]$VJ_sequence_nt_trimmed) clones_unique <- (sample_dfs[[i]][!duplicated(sample_dfs[[i]]$clonotype_id),]) clones_unique$count.VDJ_VJ_trimmed_majority <- rep(NA,nrow(clones_unique)) clones_unique$VDJ_VJ_trimmed_majority <- rep(NA,nrow(clones_unique)) clones_unique$VDJ_trimmed_majority <- rep(NA,nrow(clones_unique)) clones_unique$count.unique.trimVH.trimVL <- rep(NA,nrow(clones_unique)) for (k in 1:nrow(clones_unique)){ cells.per.clone <- sample_dfs[[i]][sample_dfs[[i]]$clonotype_id %in% clones_unique$clonotype_id[k], ] cells.per.clone.stats.VDJ_VJ <- sort(table(cells.per.clone$VDJ_VJ_trimmed),decreasing = T) cells.per.clone.stats.VDJ <- sort(table(cells.per.clone$VDJ_sequence_nt_trimmed),decreasing = T) cells.per.clone.stats.isotype <- sort(table(cells.per.clone$VDJ_cgene),decreasing = T) clones_unique$count.VDJ_VJ_trimmed_majority[k] <- cells.per.clone.stats.VDJ_VJ[1] clones_unique$VDJ_VJ_trimmed_majority[k] <- names(cells.per.clone.stats.VDJ_VJ)[1] clones_unique$count.unique.trimVH.trimVL[k] <- length(unique(cells.per.clone$VDJ_VJ_trimmed)) clones_unique$count.VDJ_trimmed_majority[k] <- cells.per.clone.stats.VDJ[1] clones_unique$VDJ_trimmed_majority[k] <- names(cells.per.clone.stats.VDJ)[1] clones_unique$count.unique.trimVH[k] <- length(unique(cells.per.clone$VDJ_sequence_nt_trimmed)) clones_unique$VDJ_cgene[k] <- names(cells.per.clone.stats.isotype)[1] } clone.dataframe.list[[i]] <- clones_unique } return(clone.dataframe.list) } else if(output.format=="clone.level.dataframes" & global.clonotype == T){ sample_dfs$VDJ_VJ_trimmed <- paste0(sample_dfs$VDJ_sequence_nt_trimmed,sample_dfs$VJ_sequence_nt_trimmed) clones_unique <- (sample_dfs[!duplicated(sample_dfs$clonotype_id),]) clones_unique$count.VDJ_VJ_trimmed_majority <- rep(NA,nrow(clones_unique)) clones_unique$VDJ_VJ_trimmed_majority <- rep(NA,nrow(clones_unique)) clones_unique$VDJ_trimmed_majority <- rep(NA,nrow(clones_unique)) clones_unique$count.unique.trimVH.trimVL <- rep(NA,nrow(clones_unique)) for (k in 1:nrow(clones_unique)){ cells.per.clone <- sample_dfs[sample_dfs$clonotype_id %in% clones_unique$clonotype_id[k], ] cells.per.clone.stats.VDJ_VJ <- sort(table(cells.per.clone$VDJ_VJ_trimmed),decreasing = T) cells.per.clone.stats.VDJ <- sort(table(cells.per.clone$VDJ_sequence_nt_trimmed),decreasing = T) cells.per.clone.stats.isotype <- sort(table(cells.per.clone$VDJ_cgene),decreasing = T) clones_unique$count.VDJ_VJ_trimmed_majority[k] <- cells.per.clone.stats.VDJ_VJ[1] clones_unique$VDJ_VJ_trimmed_majority[k] <- names(cells.per.clone.stats.VDJ_VJ)[1] clones_unique$count.unique.trimVH.trimVL[k] <- length(unique(cells.per.clone$VDJ_VJ_trimmed)) clones_unique$count.VDJ_trimmed_majority[k] <- cells.per.clone.stats.VDJ[1] clones_unique$VDJ_trimmed_majority[k] <- names(cells.per.clone.stats.VDJ)[1] clones_unique$count.unique.trimVH[k] <- length(unique(cells.per.clone$VDJ_sequence_nt_trimmed)) clones_unique$VDJ_cgene[k] <- names(cells.per.clone.stats.isotype)[1] } return(clones_unique) } else if(output.format=="phylo.dataframes"){ phylo.dataframe.list <- list() for(i in 1:length(sample_dfs)){ if(VDJ.VJ.1chain==T){ sample_dfs[[i]] <- sample_dfs[[i]][which(sample_dfs[[i]]$clonotype_id!="clonotypeNA"),] } phylo.dataframe.list[[i]] <- split(sample_dfs[[i]],sample_dfs[[i]]$clonotype_id) } return(phylo.dataframe.list) } } }
find_offset <- function(x) { terms <- find_terms(x, flatten = TRUE) offset <- NULL offcol <- grep("^offset\\((.*)\\)", terms) if (length(offcol)) { offset <- clean_names(terms[offcol]) } if (is.null(offset) && .obj_has_name(x, "call") && .obj_has_name(x$call, "offset")) { offset <- clean_names(.safe_deparse(x$call$offset)) } offset }
summarise.enrichResult <- function(.data, ...) { dots <- quos(...) .data@result %>% summarise(!!!dots) } summarise.gseaResult <- summarise.enrichResult summarise.compareClusterResult <- function(.data, ...) { dots <- quos(...) .data@compareClusterResult %>% summarise(!!!dots) }
straightPath<- function(gps, nSmall = 10, nLarge = 60, thresh = 10, plot = FALSE) { if(is.null(gps$Heading) || any(is.na(gps$Heading))) { head <- bearing(matrix(c(gps$Longitude[1:(nrow(gps)-1)], gps$Latitude[1:(nrow(gps)-1)]), ncol=2), matrix(c(gps$Longitude[2:(nrow(gps))], gps$Latitude[2:(nrow(gps))]), ncol=2)) %% 360 gps$Heading <- c(head, head[length(head)]) } gps$realHead <- cos(gps$Heading * pi / 180) gps$imHead <- sin(gps$Heading * pi / 180) smallLag <- Arg(complex(real=roll_sumr(gps$realHead, n=nSmall, fill=NA), imaginary=roll_sumr(gps$imHead, n = nSmall, fill = NA))) * 180 / pi bigLag <- Arg(complex(real=roll_sumr(gps$realHead, n=nLarge, fill=NA), imaginary=roll_sumr(gps$imHead, n = nLarge, fill = NA))) * 180 / pi gps$timeDiff <- gps$UTC - c(gps$UTC[1], gps$UTC[1:(nrow(gps)-1)]) gps$timeGroup <- as.factor(cumsum(gps$timeDiff > 30)) gps$headDiff <- (bigLag - smallLag) %% 360 gps$headDiff <- ifelse(gps$headDiff > 180, gps$headDiff - 360, gps$headDiff) gps$straight <- abs(gps$headDiff) < thresh if(plot) { gpsEnds <- gps[c(1, nrow(gps)), ] gpsEnds$Type <- c('Start', 'End') myPlot <- ggplot(gps, aes_string(x='Longitude', y='Latitude')) + geom_point(data=gpsEnds, aes_string(x='Longitude', y='Latitude', shape='Type', col='straight'), size=4) + geom_path() + geom_path(aes_string(group='timeGroup', col='straight'), size = 1.3) + scale_color_manual(limits=c(TRUE, FALSE), values = c('darkgreen','red')) + scale_shape_manual(limits=c('Start', 'End'), values = c(16,7)) + guides(color=guide_legend(override.aes=list(shape=32), title='Straight'), shape=guide_legend(title='Endpoint', override.aes=list(color=ifelse(gpsEnds$straight, 'darkgreen', 'red')))) print(myPlot) } gps }
hyear <- function(dat, startmonth = 1){ if(startmonth > 6.5){ dat$hyear <- dat$year + (dat$month >= startmonth) } else { dat$hyear <- dat$year - (dat$month < startmonth) } dat } calendar_year <- function(x) { x <- as.Date(x) x <- as.numeric(format(x, "%Y")) return(factor(x, levels = seq(min(x), max(x)))) } water_year <- function(x, origin = "din", as.POSIX = FALSE, assign = c("majority", "start", "end"), ...) { assign <- match.arg(assign) x <- as.POSIXlt(x, ...) if (length(origin) != 1) stop("argument 'origin' must be of length 1.", call. = FALSE) defs <- c("din" = 11, "usgs" = 10, "swiss" = 10, "glacier" = 9) if (origin %in% names(defs)) { idx <- as.numeric(defs[origin]) } else { idx <- pmatch(gsub(".", "", tolower(origin), fixed = TRUE), tolower(month.name)) if (is.na(idx)) { idx <- tryCatch(as.POSIXlt(origin)$mon + 1, error = function(x) suppressWarnings(as.numeric(origin))) if(is.na(idx) | !idx %in% 1:12) stop("argument 'origin' must be either one of ", paste(sQuote(names(defs)), collapse=", "), " or a (possibly abbreviated) name of a month,", " an integer between 1 and 12 or valid POSIX/Date object.") } } origin <- idx year <- x$year + 1900 month <- x$mon + 1 if(assign == "majority") assign <- ifelse(origin > 6, "end", "start") offset <- if(assign == "start") 0 else 1 y <- year - (month < origin) + offset if (as.POSIX) { y <- as.POSIXct(paste(y, origin, "01", sep = "-")) } else { y <- factor(y, levels = seq(min(y), max(y))) } return(y) } "hyear_start<-" <- function(x, value) { UseMethod("hyear_start<-") } "hyear_start<-.lfobj" <- function(x, value) { attr(x, "lfobj")$hyearstart <- value time <- time(x) x$hyear <- as.numeric(as.character(water_year(x = time, origin = value))) return(x) } "hyear_start<-.xts" <- function(x, value) { if(!value %in% 1:12) stop("must be an integer between 1 and 12.") xtsAttributes(x)$hyearstart <- value return(x) } hyear_start <- function(x, abbreviate = FALSE) { UseMethod("hyear_start") } hyear_start.data.frame <- function(x, abbreviate = FALSE){ hy <- attr(x, "lfobj")$hyearstart if(is.null(hy) || (!hy %in% 1:12)) hy <- .guess_hyearstart(x) if(is.null(hy)) { warning("Couldn't determine start of hydrological year from attributes or columns.\nDefaulting to 'January'.", call. = FALSE) hy <- 1 } if(abbreviate) hy <- month.abb[hy] return(hy) } hyear_start.xts <- function(x, abbreviate = FALSE){ hy <- xtsAttributes(x)$hyearstart if(is.null(hy) || (!hy %in% 1:12)) { warning("Couldn't determine start of hydrological year from attributes.\nDefaulting to 'January'.", call. = FALSE) hy <- 1 } if(abbreviate) hy <- month.abb[hy] return(hy) } .guess_hyearstart <- function(lfobj) { if(!"hyear" %in% names(lfobj)) { hyearstart <- NULL } else { ii <- subset(lfobj, year != hyear, month) if(nrow(ii) == 0){ hyearstart <- 1 } else if(max(ii) < 5.5){ hyearstart <- max(ii) + 1 } else { hyearstart <- min(ii) } } return(hyearstart) }
niche.Model.Build<-function(prese=NULL,absen=NULL, prese.env=NULL,absen.env=NULL, model="RF", en.vir=NULL,bak.vir=NULL) { search.For.Diff.Absen.From.Prese<-function(prese,absen){ eucl.dist.two.vect<-function(v1,v2){ v1minusv2<-v1-v2 squared.v1minusv2<-v1minusv2*v1minusv2 out.sqrt<-sqrt(sum(squared.v1minusv2)) return(out.sqrt) } prese<-stats::na.omit(prese) absen<-stats::na.omit(absen) prese<-as.matrix(prese) absen<-as.matrix(absen) prese<-apply(prese,MARGIN=2,as.numeric) group.mean.prese<-apply(prese, MARGIN=2, mean, na.rm = T) dist2center.prese<-apply(prese,1,eucl.dist.two.vect,v2=group.mean.prese) ci95<-stats::quantile(dist2center.prese,prob=c(0.025,0.975),na.rm = T) dist2center.absen<-apply(absen,1,eucl.dist.two.vect,v2=group.mean.prese) dist2center.absen within.CI95<-function(ci,x){ if(x>=ci[1]&&x<=ci[2]) return(TRUE) else return (FALSE) } out2<-sapply(dist2center.absen, within.CI95,ci=ci95) out2 return(out2) } model<-gsub("randomforest|RandomForest|randomForest","RF",model) model<-gsub("maxent|Maxent","MAXENT",model) if (is.null(prese.env) == T & is.null(en.vir) == T){ cat("Environmental layers downloading ... ") envir<-raster::getData("worldclim",download=TRUE,var="bio",res=10) en.vir<-raster::brick(envir) cat("Done!\n") } if (is.null(prese)==TRUE & is.null(prese.env)==FALSE){ present.env0<-prese.env if (nrow(present.env0) < 3){ warning ("prese.env has less than 3 records!\n") } }else{ if (!is.data.frame(prese)|dim(prese)[2]!=3){ stop ("The present data must be a dataframe with three columns (species name, lon, lat)!\n") }else{ if (is.null(prese.env)==TRUE){ if (nrow(prese) < 10){ prese<-pseudo.present.points(prese,10,10,2,en.vir=en.vir) } present.env0<-raster::extract(en.vir,prese[,2:3]) }else{ present.env0<-prese.env if (nrow(present.env0) < 3){ warning ("prese.env has less than 3 records!\n") } } } } if (is.null(absen)==TRUE & is.null(absen.env)==TRUE){ outputNum=nrow(present.env0)*10 if (is.null(bak.vir)==TRUE){ back<-dismo::randomPoints(mask=en.vir,n=outputNum*2,ext=NULL, extf=1.1,excludep=TRUE,prob=FALSE, cellnumbers=FALSE,tryf=3,warn=2, lonlatCorrection=TRUE) bak.vir<-raster::extract(en.vir,back) bak0<-bak.vir[,colnames(bak.vir) %in% colnames(present.env0)] diff.absen.from.prese<-search.For.Diff.Absen.From.Prese(present.env0,bak0) diff<-bak0[which(diff.absen.from.prese==FALSE),] samp<-sample(dim(diff)[1],size=outputNum) absent.env0<-diff[samp,] }else{ bak0<-bak.vir[,colnames(bak.vir) %in% colnames(present.env0)] if (nrow(bak.vir) < outputNum*2){ more<-outputNum*2-nrow(bak.vir) more.back<-dismo::randomPoints(mask=en.vir,n=more,ext=NULL,extf=1.1, excludep=TRUE,prob=FALSE,cellnumbers=FALSE, tryf=3,warn=2,lonlatCorrection=TRUE) more.bak.vir<-raster::extract(en.vir,more.back) more.bak0<-more.bak.vir[,colnames(more.bak.vir) %in% colnames(present.env0)] bak0<-rbind(bak0,more.bak0) } diff.absen.from.prese<-search.For.Diff.Absen.From.Prese(present.env0,bak0) diff<-bak0[which(diff.absen.from.prese==FALSE),] if (is.null(nrow(diff)) || nrow(diff) == 0){ ref.mean<-apply(present.env0,FUN=mean,MARGIN=2) ref.sd<-apply(present.env0,FUN=stats::sd,MARGIN=2) ref.range<-apply(present.env0,FUN=max,MARGIN=2)-apply(present.env0,FUN=min,MARGIN=2) for (rs in 1:length(ref.sd)){ if (ref.sd[rs] == 0){ ref.sd[rs]<-ref.mean[rs]/4 } if (ref.range[rs] == 0){ ref.range[rs]<-ref.sd[rs]*2 } } q.01<-stats::qnorm(0.01,mean=ref.mean,sd=ref.sd) q.99<-stats::qnorm(0.99,mean=ref.mean,sd=ref.sd) absent.env0<-matrix(nrow=outputNum,ncol=ncol(present.env0)) for (en in 1:ncol(present.env0)){ tmp.left<-stats::runif(outputNum/2,min=(q.01[en]-2*ref.range[en]),max=q.01[en]-ref.range[en]) tmp.right<-stats::runif(outputNum/2,min=q.99[en]+ref.range[en],max=q.99[en]+2*ref.range[en]) tmp.ab<-c(tmp.left,tmp.right) absent.env0[,en]<-as.integer(tmp.ab) } colnames(absent.env0)<-colnames(present.env0) warning ("The pseudoabsence data are randomly generated from the 95%CI of the presence data.\n") }else if(nrow(diff) < outputNum){ absent.env0<-diff }else{ samp<-sample(dim(diff)[1],size=outputNum) absent.env0<-diff[samp,] } } }else{ if (is.null(absen.env)==TRUE){ absent.env0<-raster::extract(en.vir,absen) }else{ absent.env0<-absen.env } } present.env<-cbind(Count=1,present.env0) present.env<-as.data.frame(apply(present.env,FUN=as.numeric,MARGIN=2)) absent.env<-cbind(Count=0,absent.env0) absent.env<-as.data.frame(apply(absent.env,FUN=as.numeric,MARGIN=2)) Data<-as.data.frame(rbind(present.env,absent.env)) Data$Count=as.factor(Data$Count) if (model == "RF"){ mod<-randomForest::randomForest(Count ~., Data, ntree=500, importance=TRUE, na.action=randomForest::na.roughfix) use<-c(rep(1,nrow(present.env)),rep(0,nrow(absent.env))) prb<-c(stats::predict(mod,present.env,type="prob")[,2], stats::predict(mod,absent.env,type="prob")[,2]) }else if (model == "MAXENT"){ jar<-paste(system.file(package="dismo"), "/java/maxent.jar", sep='') if (file.exists(jar)){ mod<-suppressWarnings(dismo::maxent(Data[,-1],Data[,1], args='outputformat=logistic')) use<-c(rep(1,nrow(present.env)),rep(0,nrow(absent.env))) prb<-c(dismo::predict(mod,present.env,args='outputformat=logistic'), dismo::predict(mod,absent.env,args='outputformat=logistic')) }else{ stop(paste("Please insure that the maxent.jar file have been placed into\n", system.file(package="dismo"), "/java",sep="")) } } roc1<-pROC::roc(use,prb,precent=T,auc=T,plot=F,quiet=T) SST<-pROC::coords(roc1,x="best",ret=c("specificity","sensitivity","threshold"), transpose=T) NMB<-list() NMB$model<-mod NMB$SST<-SST return(NMB) }
print.gmnl <- function(x, digits = max(3, getOption("digits") - 3), width = getOption("width"), ...){ cat("\nCall:\n", deparse(x$call),"\n\n", sep = "") cat("\nCoefficients:\n") print.default(format(coef(x), digits = digits), print.gap = 2, quote = FALSE) cat("\n") invisible(x) } summary.gmnl <- function(object,...){ b <- object$coefficients std.err <- sqrt(diag(vcov(object))) z <- b / std.err p <- 2 * (1 - pnorm(abs(z))) CoefTable <- cbind(b, std.err, z, p) colnames(CoefTable) <- c("Estimate", "Std. Error", "z-value", "Pr(>|z|)") object$CoefTable <- CoefTable class(object) <- c("summary.gmnl", "gmnl") return(object) } print.summary.gmnl <- function(x, digits = max(3, getOption("digits") - 2), width = getOption("width"), ...){ cat(paste("\nModel estimated on:", format(Sys.time(), "%a %b %d %X %Y"), "\n")) cat("\nCall:\n") cat(paste(deparse(x$call), sep = "\n", collapse = "\n"), "\n", sep = "") cat("\nFrequencies of categories:\n") print(prop.table(x$freq), digits = digits) cat("\n") cat(paste("The estimation took:", make.time(x) ,"\n")) cat("\nCoefficients:\n") printCoefmat(x$CoefTable, digits = digits) cat(paste("\nOptimization of log-likelihood by", x$logLik$type)) cat(paste("\nLog Likelihood:", signif(x$logLik$maximum, digits))) cat(paste("\nNumber of observations:", x$logLik$nobs)) cat(paste("\nNumber of iterations:" , x$logLik$iterations)) cat(paste("\nExit of MLE:", x$logLik$message)) if (!(x$model == "mnl" | x$model == "lc")) cat(paste("\nSimulation based on", x$R, "draws")) invisible(x) } vcov.gmnl <- function(object, what = c('coefficient', 'ranp'), type = c('cov', 'cor', 'sd'), se = FALSE, Q = NULL, digits = max(3, getOption("digits") - 2), ...) { what <- match.arg(what) type <- match.arg(type) if (what == 'coefficient') { H <- object$logLik$hessian vcov <- solve(-H) rownames(vcov) <- colnames(vcov) <- names(coef(object)) return(vcov) } if (what == 'ranp') { if (se) { if (type == 'cov') se.cov.gmnl(object, sd = FALSE, Q = Q, digits = digits) if (type == 'sd') se.cov.gmnl(object, sd = TRUE, Q = Q, digits = digits) if (type == 'cor') stop("standard error for correlation coefficients not implemented yet") } else { if (type == 'cov') print(cov.gmnl(object, Q = Q)) if (type == 'cor') print(cor.gmnl(object, Q = Q)) if (type == 'sd') print(sqrt(diag(cov.gmnl(object, Q)))) } } } update.gmnl <- function(object, new, ...){ call <- object$call if (is.null(call)) stop("need an object with call component") extras <- match.call(expand.dots = FALSE)$... if (!missing(new)) call$formula <- update(formula(object), new) if (length(extras) > 0) { existing <- !is.na(match(names(extras), names(call))) for (a in names(extras)[existing]) call[[a]] <- extras[[a]] if (any(!existing)) { call <- c(as.list(call), extras[!existing]) call <- as.call(call) } } eval(call, parent.frame()) } coef.gmnl <- function(object, ...){ result <- object$coefficients return(result) } model.matrix.gmnl <- function(object, ...){ model.matrix(object$formula, object$mf) } model.response.gmnl <- function(object, ...){ y.name <- paste(deparse(object$formula[[2]])) object$mf[[y.name]] } residuals.gmnl <- function(object, outcome = TRUE, ...){ if (!outcome) { result <- object$residuals } else{ J <- ncol(object$residuals) y <- matrix(model.response.gmnl(object), ncol = J, byrow = T) result <- apply(y * object$residuals, 1, sum) } result } df.residual.gmnl <- function(object, ...){ n <- length(residuals(object)) K <- length(coef(object)) return(n - K) } fitted.gmnl <- function(object, outcome = TRUE, ...){ if (outcome) result <- object$prob.ind else result <- object$prob.alt return(result) } logLik.gmnl <- function(object,...){ structure(object$logLik$maximum[[1]], df = length(object$coefficients), nobs = object$logLik$nobs, class = "logLik") } getSummary.gmnl <- function(obj, alpha = 0.05, ...){ smry <- summary(obj) coef <- smry$CoefTable lower <- coef[, 1] - coef[, 2] * qnorm(alpha / 2) upper <- coef[, 1] + coef[, 2] * qnorm(alpha / 2) coef <- cbind(coef, lower, upper) colnames(coef) <- c("est", "se", "stat", "p", "lwr", "upr") N <- obj$logLik$nobs ll <- logLik(obj) sumstat <- c(logLik = ll, deviance = NA, AIC = AIC(obj), BIC = BIC(obj), N = N, LR = NA, df = NA, p = NA, Aldrich.Nelson = NA, McFadden = NA, Cox.Snell = NA, Nagelkerke = NA) list(coef = coef, sumstat = sumstat, contrasts = obj$contrasts, xlevels = NULL, call = obj$call) } AIC.gmnl <- function(object, ..., k = 2){ return(-2 * object$logLik$maximum[[1]] + k * length(coef(object))) } BIC.gmnl <- function(object, ...){ return(AIC(object, k = log(object$logLik$nobs))) } bread.gmnl <- function(x, ... ){ return( vcov( x ) * x$logLik$nobs) } estfun.gmnl <- function(x, ... ){ return(x$logLik$gradientObs ) } nObs.gmnl <- function(x, ... ){ return(x$logLik$nobs) } effect.gmnl <- function(x, par = NULL, effect = c("ce", "wtp"), wrt = NULL, ... ){ if (!inherits(x, "gmnl")) stop("not a \"gmnl\" object") model <- x$model if (model == "mnl") stop("This function is valid only for models with individual heterogeneity") type <- match.arg(effect) ranp <- x$ranp if (type == "wtp" & is.null(wrt)) stop("you need to specify wrt") bi <- x$bi Qir <- x$Qir if (model == "mixl" || model == "gmnl" || model == "smnl") { N <- nrow(Qir) K <- dim(bi)[[3]] var_coefn <- dimnames(bi)[[3]] mean <- mean.sq <- matrix(NA, N, K) if (type == "wtp") { if (model != "smnl") { is.ran <- any(names(ranp) %in% wrt) gamma <- if (is.ran) bi[, , wrt] else coef(x)[wrt] } else gamma <- bi[, , wrt] for (j in 1:K) { mean[, j] <- rowSums((bi[, , j] / gamma) * Qir) mean.sq[, j] <- rowSums(((bi[, , j] / gamma) ^ 2) * Qir) } } else { for (j in 1:K) { mean[, j] <- rowSums(bi[, , j] * Qir) mean.sq[, j] <- rowSums(bi[, , j] ^ 2 * Qir) } } } if (model == "lc") { N <- nrow(Qir) K <- ncol(bi) var_coefn <- colnames(bi) mean <- mean.sq <- matrix(NA, N, K) if (type == "wtp") { gamma <- bi[, wrt] for (j in 1:K) { mean[, j] <- rowSums(repRows(bi[, j] / gamma, N) * Qir) mean.sq[, j] <- rowSums(repRows((bi[, j] / gamma) ^ 2, N) * Qir) } } else { for (j in 1:K) { mean[, j] <- rowSums(repRows(bi[, j], N) * Qir) mean.sq[, j] <- rowSums(repRows(bi[, j] ^ 2, N) * Qir) } } } if (model == "mm") { wnq <- Qir$wnq Ln <- Qir$Ln Pnrq <- Qir$Pnrq N <- length(Ln) K <- dim(bi)[[4]] mean <- mean.sq <- matrix(NA, N, K) var_coefn <- dimnames(bi)[[4]] if (type == "wtp") { gamma <- bi[,,,wrt] for (j in 1:K) { mean[, j] <- rowSums(wnq * apply((bi[,,,j] / gamma) * Pnrq, c(1, 3), mean) / Ln) mean.sq[, j] <- rowSums(wnq * apply((bi[,,,j] / gamma) ^ 2 * Pnrq, c(1, 3), mean) / Ln) } } else { for (j in 1:K) { mean[, j] <- rowSums(wnq * apply(bi[,,,j] * Pnrq, c(1, 3), mean) / Ln) mean.sq[, j] <- rowSums(wnq * apply(bi[,,,j] ^ 2 * Pnrq, c(1, 3), mean) / Ln) } } } sd.est <- suppressWarnings(sqrt(mean.sq - mean ^ 2)) colnames(mean) <- colnames(sd.est) <- var_coefn if (!is.null(par)) { mean <- mean[, par] sd.est <- sd.est[, par] } effe <- list( mean = mean, sd.est = sd.est) return(effe) } plot.gmnl <- function(x, par = NULL, effect = c("ce", "wtp"), wrt = NULL, type = c("density", "histogram"), adjust = 1, main = NULL, col = "indianred1", breaks = 10, ylab = NULL, xlab = NULL, ind = FALSE, id = NULL, ...){ model <- x$model if (model == "mnl") stop("The plot is valid only for models with individual heterogeneity") if (is.null(par)) stop("Must specified the name of the parameter") type <- match.arg(type) effect <- match.arg(effect) xlab <- switch(effect, "wtp" = expression(E(hat(wtp[i]))), "ce" = expression(E(hat(beta[i])))) if (!ind) { if (is.null(main)) main <- paste("Conditional Distribution for", par) if (is.null(ylab)) { ylab <- switch(type, "density" = "Density", "histogram" = "Frequency") } rpar <- effect.gmnl(x, par, effect = effect, wrt = wrt)$mean if (type == "density") { pdens <- density(rpar, adjust = adjust) plot(pdens, ylab = ylab, xlab = xlab, main = main, col = col) has.pos <- any(pdens$x > 0) if (has.pos) { x1 <- min(which(pdens$x >= 0)) x2 <- max(which(pdens$x < max(pdens$x))) with(pdens, polygon(x = c(x[c(x1, x1:x2, x2)]), y = c(0, y[x1:x2], 0), col = col, border = NA)) } } else { minb <- round(min(rpar), 2) maxb <- round(max(rpar), 2) hist(rpar, xlab = xlab, main = main, col = col, breaks = breaks, xaxs = "i", yaxs = "i", las = 1, xaxt = 'n', ylab = ylab) axis(1, at = seq(minb, maxb, (maxb - minb) * .05)) } } else { if (is.null(main)) main <- paste("95% Probability Intervals for ", par) if (is.null(id)) id <- seq(1, 10, 1) if (is.null(ylab)) ylab <- "Individuals" f.bran <- effect.gmnl(x, par, effect = effect, wrt = wrt)$mean f.sran <- effect.gmnl(x, par, effect = effect, wrt = wrt)$sd.est lower <- f.bran - qnorm(0.975) * f.sran upper <- f.bran + qnorm(0.975) * f.sran plotrix::plotCI(as.numeric(id), f.bran[id], ui = upper[id], li = lower[id], xlab = ylab, ylab = xlab, lty = 2, main = main, pch = 21, col = col) } } cov.gmnl <- function(x, Q = NULL){ if (!inherits(x, "gmnl")) stop("not a \"gmnl\" object") if (is.null(x$ranp)) stop('cov.gmnl only relevant for random coefficient model') model <- x$model if (!is.null(Q) & model != "mm") stop("Q is only relevant for MM-MNL model") if (model == "mm") { if (is.null(Q)) stop("MM-MNL model requires Q") if (Q > x$Q) stop("Q is greater than the number of classes in the fitted model") } beta.hat <- x$coefficients K <- length(x$ranp) nr <- names(x$ranp) if (x$correlation) { names.stds <- c() if (model == "mm") { for (i in 1:K) names.stds <- c(names.stds, paste('class', Q, 'sd', nr[i], nr[i:K], sep = '.')) } else { for (i in 1:K) names.stds <- c(names.stds, paste('sd', nr[i], nr[i:K], sep = '.')) } v <- beta.hat[names.stds] V <- tcrossprod(makeL(v)) colnames(V) <- rownames(V) <- nr } else{ names.stds <- if (model != "mm") paste("sd", nr, sep = ".") else paste("class", Q, "sd", nr, sep = ".") sv <- beta.hat[names.stds] V <- matrix(0, K, K) diag(V) <- sv ^ 2 colnames(V) <- rownames(V) <- nr } return(V) } cor.gmnl <- function(x, Q = NULL){ if (!x$correlation) stop('cor.gmnl only relevant for correlated random coefficient') V <- cov.gmnl(x, Q = Q) nr <- names(x$ranp) D <- diag(sqrt(diag(V))) Rho <- solve(D) %*% V %*% solve(D) colnames(Rho) <- rownames(Rho) <- nr return(Rho) } se.cov.gmnl <- function(x, sd = FALSE, Q = NULL, digits = max(3, getOption("digits") - 2)){ if (!inherits(x, "gmnl")) stop("not a \"gmnl\" object") if (!x$correlation) stop('se.cov.gmnl only relevant for correlated random coefficient') model <- x$model if (!is.null(Q) & model != "mm") stop("Q is only relevant for MM-MNL model") if (model == "mm") { if (is.null(Q)) stop("MM-MNL model requires Q") if (Q > x$Q) stop("Q is greater than the number of classes in the fitted model") } beta.hat <- x$coefficients Ka <- length(x$ranp) nr <- names(x$ranp) names.stds <- c() if (model == "mm") { for (i in 1:Ka) names.stds <- c(names.stds, paste('class', Q, 'sd', nr[i], nr[i:Ka], sep = '.')) } else { for (i in 1:Ka) names.stds <- c(names.stds, paste('sd', nr[i], nr[i:Ka], sep = '.')) } stds.hat <- beta.hat[names.stds] sel.vcov <- vcov(x)[names.stds, names.stds] form <- c() if (sd) { for (i in 1:Ka) { k <- i if (i == 1) { form <- paste("~ sqrt(", c(form, paste(paste("x", i, sep = ""), paste("x", k, sep = ""), sep = "*")), ")") } else { temp <- paste(paste("x", i, sep = ""), paste("x", k, sep = ""), sep = "*") j <- 2 while (j <= i) { temp <- paste(temp, make.add(row = j, col = k, Ka = Ka)[1], sep = "+") j <- j + 1 } form <- c(form, paste("~ sqrt(", temp, ")")) } } b <- sqrt(diag(cov.gmnl(x, Q))) names(b) <- colnames(cov.gmnl(x, Q)) } else { for (i in 1:Ka) { if (i == 1) { form <- paste("~", c(form, paste(paste("x", i:Ka, sep = ""), paste("x", i, sep = ""), sep = "*"))) } else { temp <- paste(paste("x", i:Ka, sep = ""), paste("x", i, sep = ""), sep = "*") j <- 2 while (j <= i) { temp <- paste(temp, make.add(row = j, col = i, Ka = Ka), sep = "+") j <- j + 1 } form <- c(form, paste("~", temp)) } } names.vcov <- c() for (i in 1:Ka) names.vcov <- c(names.vcov, paste('v', nr[i], nr[i:Ka], sep = '.')) b <- drop(cov.gmnl(x, Q)[lower.tri(cov.gmnl(x, Q), diag = TRUE)]) names(b) <- names.vcov } std.err <- c() for (i in 1:length(form)) { std.err <- c(std.err, msm::deltamethod(as.formula(form[i]), stds.hat, sel.vcov, ses = TRUE)) } z <- b / std.err p <- 2 * (1 - pnorm(abs(z))) tableChol <- cbind(b, std.err, z, p) if (!sd) cat(paste("\nElements of the variance-covariance matrix \n\n")) else cat(paste("\nStandard deviations of the random parameters \n\n")) colnames(tableChol) <- c("Estimate", "Std. Error", "z-value", "Pr(>|z|)") printCoefmat(tableChol, digits = digits) } wtp.gmnl <- function(object, wrt = NULL, digits = max(3, getOption("digits") - 2)){ if (is.null(wrt)) stop("WTP needs the variable in the denominator: wrt") beta.hat <- coef(object) posi <- match(wrt, names(beta.hat)) form <- c() b <- c() namesb <- names(beta.hat)[-c(posi)] for (i in 1:length(beta.hat)) { if (i != posi) { b <- c(b, beta.hat[i]/ beta.hat[posi]) form <- c(form, paste("~", "x", i, "/", "x", posi, sep = "")) } } names(b) <- namesb std.err <- c() for (i in 1:length(form)) { std.err <- c(std.err, msm::deltamethod(as.formula(form[i]), beta.hat, vcov(object), ses = TRUE)) } z <- b / std.err p <- 2 * (1 - pnorm(abs(z))) tablewtp <- cbind(b, std.err, z, p) colnames(tablewtp) <- c("Estimate", "Std. Error", "t-value", "Pr(>|t|)") cat(paste("\nWilligness-to-pay respect to: ", wrt, "\n\n")) printCoefmat(tablewtp, digits = digits) }
library(animint) data(generation.loci) generations <- data.frame(generation=unique(generation.loci$generation)) loci <- data.frame(locus=unique(generation.loci$locus)) two.selectors.not.animated <- list(ts=ggplot()+ geom_vline(aes(xintercept=generation, clickSelects=generation), data=generations, alpha=1/2, lwd=4)+ geom_line(aes(generation, frequency, group=population, showSelected=locus), data=generation.loci), loci=ggplot()+ geom_vline(aes(xintercept=locus, clickSelects=locus), data=loci, alpha=1/2, size=4)+ geom_point(aes(locus, frequency, showSelected=generation), data=generation.loci), duration=list(generation=1000) ) animint2dir(two.selectors.not.animated) colormap <- c(blue="blue",red="red",ancestral="black",neutral="grey30") ancestral <- subset(generation.loci,population==1 & generation==1) ancestral$color <- "ancestral" two.selectors.color <- list(ts=ggplot()+ make_tallrect(generation.loci, "generation")+ geom_text(aes(generation,frequency,showSelected=locus, label=sprintf("locus %d",locus)), data=data.frame(loci,generation=50,frequency=1.05))+ scale_colour_manual(values=colormap)+ geom_line(aes(generation, frequency, group=population, colour=color, showSelected=locus), data=generation.loci)+ geom_point(aes(generation, frequency, showSelected=locus), data=ancestral), loci=ggplot()+ make_tallrect(generation.loci, "locus")+ scale_fill_manual(values=colormap)+ scale_colour_manual(values=colormap)+ geom_point(aes(locus, frequency, colour=color, fill=color, showSelected=generation), data=generation.loci, pch=21)+ geom_point(aes(locus, frequency, colour=color, fill=color), data=ancestral, pch=21)+ geom_text(aes(locus,frequency,showSelected=generation, label=sprintf("generation %d",generation)), data=data.frame(generations,locus=35,frequency=1)), duration=list(generation=1000)) animint2dir(two.selectors.color) first <- subset(generation.loci,generation==1) ancestral <- do.call(rbind,lapply(split(first,first$locus),with,{ stopifnot(all(frequency==frequency[1])) data.frame(locus=locus[1],ancestral=frequency[1]) })) gl.list <- split(generation.loci, with(generation.loci,list(generation,locus))) generation.pop <- do.call(rbind,lapply(gl.list,with,{ data.frame(generation=generation[1], locus=locus[1], estimated=mean(frequency)) })) generation.pop$ancestral <- ancestral$ancestral[generation.pop$locus] generation.loci.last <- subset(generation.loci,generation==max(generation)) generation.pop.last <- subset(generation.pop,generation==max(generation)) one.selector.not.animated <- list(ts=ggplot()+ geom_line(aes(generation, frequency, group=population, showSelected=locus), data=generation.loci), predictions=ggplot()+ geom_point(aes(ancestral, estimated, clickSelects=locus), data=generation.pop.last, size=4, alpha=3/4), loci=ggplot()+ geom_vline(aes(xintercept=locus, clickSelects=locus), data=loci, alpha=1/2, lwd=4)+ geom_point(aes(locus, frequency), data=generation.loci.last) ) animint2dir(one.selector.not.animated) two.selectors.animated <- list(ts=ggplot()+ geom_vline(aes(xintercept=generation, clickSelects=generation), data=generations, alpha=1/2, lwd=4)+ geom_line(aes(generation, frequency, group=population, showSelected=locus), data=generation.loci), predictions=ggplot()+ geom_point(aes(ancestral, estimated, showSelected=generation, clickSelects=locus), data=generation.pop, size=4, alpha=3/4), loci=ggplot()+ geom_vline(aes(xintercept=locus, clickSelects=locus), data=loci, alpha=1/2, lwd=4)+ geom_point(aes(locus, frequency, showSelected=generation), data=generation.loci), duration=list(generation=1000), time=list(variable="generation",ms=2000)) animint2dir(two.selectors.animated)
dotplotGUI <- function(){ defaults <- list(initial.x = NULL, initialGroup=NULL, initial.stacked = 0, initial.commonscale = 1) dialog.values <- getDialog("dotplot", defaults) initializeDialog(title=gettextRcmdr("Dotplot")) variablesFrame <- tkframe(top) .numeric <- Numeric() xBox <- variableListBox(variablesFrame, .numeric, title=gettextRcmdr("Variable to be ploted (pick one)"), initialSelection = varPosn (dialog.values$initial.x, "numeric")) initial.group <- dialog.values$initial.group .groups <- if (is.null(initial.group)) FALSE else initial.group onOK <- function(){ x <- getSelection(xBox) stacked <- tclvalue(stackedVariable) commonscale <- tclvalue(commonscaleVariable) if (length(x) != 1){ errorCondition(recall=dotplotGUI, message=gettextRcmdr("You must select one variable.")) return() } putDialog ("dotplot", list(initial.x = x, initial.group=if (.groups == FALSE) NULL else .groups, initial.stacked = "1"==stacked, initial.commonscale = "1"==commonscale)) closeDialog() .activeDataSet <- ActiveDataSet() if (is.null(.groups) || .groups == FALSE) { doItAndPrint(paste("dotPlot(", .activeDataSet, "$", x, ", xlab='", x, "',cex=1)", sep="")) } else { ngr <- eval(parse(text=paste("length(levels(",.activeDataSet,"$",.groups,"))"))) if(stacked=="1"){ pch.tmp <- c(21,20,17,15,5,4,3) doItAndPrint(paste("pch <- c(", paste(pch.tmp[1:ngr],sep="",collapse=","),")",sep="")) doItAndPrint(paste("ord <- order(as.numeric(", .activeDataSet, "$", .groups, "))", sep="")) doItAndPrint(paste("dotPlot(", .activeDataSet, "$", x, "[ord], xlab='", x, "', pch=pch[",.activeDataSet,"$",.groups,"[ord]], cex=1)", sep="")) doItAndPrint(paste("legend('topright', legend=c('",paste(eval(parse(text=paste("levels(factor(",.activeDataSet,"$",.groups,"[ord]))",sep=""))),sep="",collapse="','"),"'), pch=pch)",sep="")) doItAndPrint("rm(list=c('pch','ord'))") } else { doItAndPrint(paste("par(mfrow=c(",ngr,",1), mar=c(4,4,1,1), cex=1)",sep="")) if(commonscale=="1"){ for(i in 1:ngr){ doItAndPrint(paste("dotPlot(", .activeDataSet, "$", x, "[", .activeDataSet,"$",.groups,"==levels(", .activeDataSet,"$",.groups,")[",i,"]],xlim = range(",.activeDataSet,"$",x,", na.rm = TRUE), xlab='", x, " (",eval(parse(text=paste("levels(", .activeDataSet,"$",.groups,")[",i,"]",sep=""))),")')", sep="")) } }else{ for(i in 1:ngr){ doItAndPrint(paste("dotPlot(", .activeDataSet, "$", x, "[", .activeDataSet,"$",.groups,"==levels(", .activeDataSet,"$",.groups,")[",i,"]], xlab='", x, " (",eval(parse(text=paste("levels(", .activeDataSet,"$",.groups,")[",i,"]",sep=""))),")')", sep="")) } } doItAndPrint(paste("par(mfrow=c(1,1), mar=c(5,4,4,2)+0.1, cex=1)",sep="")) } } tkfocus(CommanderWindow()) } groupsBox(dotPlot, initialGroup=initial.group, initialLabel=if (is.null(initial.group)) gettextRcmdr("Plot by groups") else paste(gettextRcmdr("Plot by:"), initial.group)) OKCancelHelp(helpSubject="dotPlot") tkgrid(getFrame(xBox), sticky="nw") tkgrid(variablesFrame, sticky="nw") tkgrid(groupsFrame, sticky = "w") stackedFrame <- tkframe(top) commonscaleFrame <- tkframe(top) checkBoxes(frame="stackedFrame", boxes=c("stacked"), initialValues=dialog.values$initial.stacked, labels=gettextRcmdr(c("Stack groups"))) checkBoxes(frame="commonscaleFrame", boxes=c("commonscale"), initialValues=dialog.values$initial.commonscale, labels=gettextRcmdr(c("Use common x-scale"))) tkgrid(stackedFrame, sticky="w") tkgrid(commonscaleFrame, sticky="w") tkgrid(buttonsFrame, sticky="w") dialogSuffix(rows=3, columns=1) } fittedLinePlot <- function(){ initializeDialog(title=gettextRcmdr("Fitted regression plot")) variablesXFrame <- tkframe(top) variablesYFrame <- tkframe(top) .numeric <- Numeric() .activeDataSet <- ActiveDataSet() xBox <- variableListBox(variablesXFrame, .numeric, title=gettextRcmdr("X: regressor variable (pick one)")) yBox <- variableListBox(variablesYFrame, .numeric, title=gettextRcmdr("Y: response variable (pick one)")) comboXFrame <- tkframe(top) comboXVar <- tclVar() valuesX <- c('none', 'no intercept', 'x^2, x', 'x^3, x^2, x', 'log(x)', '1/x', 'exp(x)') onOK <- function(){ x <- getSelection(xBox) y <- getSelection(yBox) if (length(x) == 0 | length(y) == 0){ errorCondition(recall=fittedLinePlot, message=gettextRcmdr("You must select two variables.")) return() } if (x == y){ errorCondition(recall=fittedLinePlot, message=gettextRcmdr("Variables must be different.")) return() } level <- tclvalue(confidenceLevel) range.X <- justDoIt(paste("range(", .activeDataSet, "$", x, ")", sep="")) new.x <- seq(range.X[1], range.X[2], length.out=200) if(tclvalue(comboXVar)==""){ selectedTrans <- 1 } else { selectedTrans <- which(valuesX==tclvalue(comboXVar))} if(selectedTrans==1){ x.val <- paste(x, sep="") } if(selectedTrans==2){ x.val <- paste(x, "-1", sep="") } if(selectedTrans==3){ x.val <- paste("I(", x, "^2) + ", x, sep="") } if(selectedTrans==4){ x.val <- paste("I(", x, "^3) + I(", x, "^2) + ", x, sep="") } if(selectedTrans==5){ x.val <- paste("log(", x, ")", sep="") } if(selectedTrans==6){ x.val <- paste("1/", x, sep="") } if(selectedTrans==7){ x.val <- paste("exp(", x, ")", sep="") } closeDialog() justDoIt(paste("my.lm <- lm(", y, "~", x.val, ", data=list(", y, "=", .activeDataSet, "$", y, ", ", x, "=", .activeDataSet, "$", x, "))", sep="")) y.conf <- justDoIt(paste("predict(my.lm, data.frame(", x, "=c(", paste(new.x, sep="", collapse=","), ")), interval='conf', level=", level, ")", sep="")) y.pred <- justDoIt(paste("predict(my.lm, data.frame(", x, "=c(", paste(new.x, sep="", collapse=","), ")), interval='prediction', level=", level, ")", sep="")) lm.coef <- coef(my.lm) fit.text <- paste(y, " ~ ", format(lm.coef[1],digits=2), sep="") for(i in 2:length(lm.coef)) fit.text <- paste(fit.text, " + ", format(lm.coef[i],digits=2), "*", names(lm.coef)[i], sep="") sub.text <- paste(100 * as.numeric(level), "% CI and PI, R^2=", format(summary(my.lm)[]$r.squared, digits=2), sep = "") justDoIt(paste("plot(", .activeDataSet, "$", x, ", ", .activeDataSet, "$", y, ", xlab='", x, "', ylab='", y, "', ylim=c(",min(y.pred),",",max(y.pred),"), main=c('",fit.text,"', '", sub.text,"'))", sep="")) justDoIt(paste("lines(c(", paste(new.x, sep="", collapse=","), "), c(", paste(y.conf[,1], sep="", collapse=","), "))", sep="")) justDoIt(paste("lines(c(", paste(new.x, sep="", collapse=","), "), c(", paste(y.conf[,2], sep="", collapse=","), "), lty=2, col='blue')", sep="")) justDoIt(paste("lines(c(", paste(new.x, sep="", collapse=","), "), c(", paste(y.conf[,3], sep="", collapse=","), "), lty=2, col='blue')", sep="")) justDoIt(paste("lines(c(", paste(new.x, sep="", collapse=","), "), c(", paste(y.pred[,2], sep="", collapse=","), "), lty=2, col='red')", sep="")) justDoIt(paste("lines(c(", paste(new.x, sep="", collapse=","), "), c(", paste(y.pred[,3], sep="", collapse=","), "), lty=2, col='red')", sep="")) tkfocus(CommanderWindow()) } OKCancelHelp(helpSubject="lm") optionsFrame <- tkframe(top) confidenceFrame <- tkframe(optionsFrame) confidenceLevel <- tclVar(".95") confidenceField <- ttkentry(confidenceFrame, width="6", textvariable=confidenceLevel) tkgrid(getFrame(xBox), sticky="nw") tkgrid(variablesXFrame, column=1, row=1, columnspan=1, sticky="nw") tkgrid(getFrame(yBox), sticky="nw") tkgrid(variablesYFrame, column=2, row=1, columnspan=1, sticky="nw") comboX <- ttkcombobox(comboXFrame, values=valuesX, textvariable=comboXVar) tkgrid(labelRcmdr(comboXFrame, text=gettextRcmdr("X transf.:"), fg="blue"), comboX, sticky="w") tkgrid(comboXFrame, sticky="w", column=1, row=2, columnspan=1) tkgrid(labelRcmdr(confidenceFrame, text=gettextRcmdr("Confidence Level"), fg="blue"),sticky="w") tkgrid(confidenceField, sticky="w") tkgrid(confidenceFrame, labelRcmdr(optionsFrame, text=" "),sticky="nw") tkgrid(optionsFrame, column=1, row=3, columnspan=2, sticky="nw") tkgrid(buttonsFrame, column=1, row=4, columnspan=2, sticky="w") dialogSuffix(rows=4, columns=2) } linePlotNMBU <- function(){ initializeDialog(title=gettextRcmdr("Line and point plot")) variablesFrame <- tkframe(top) .numeric <- Numeric() .variable <- Variables() xBox <- variableListBox(variablesFrame, .numeric, title=gettextRcmdr("x variable (pick one)")) yBox <- variableListBox(variablesFrame, .numeric, title=gettextRcmdr("y variables (pick one or more)"), selectmode="multiple", initialSelection=NULL) zBox <- variableListBox(variablesFrame, .variable, title=gettextRcmdr("Groups (optional)")) axisLabelVariable <- tclVar(gettextRcmdr("<use y-variable names>")) axisLabelFrame <- tkframe(top) axisLabelEntry <- ttkentry(axisLabelFrame, width="40", textvariable=axisLabelVariable) axisLabelScroll <- ttkscrollbar(axisLabelFrame, orient="horizontal", command=function(...) tkxview(axisLabelEntry, ...)) tkconfigure(axisLabelEntry, xscrollcommand=function(...) tkset(axisLabelScroll, ...)) legendFrame <- tkframe(top) legendVariable <- tclVar("0") legendCheckBox <- tkcheckbutton(legendFrame, variable=legendVariable) onOK <- function(){ z <- getSelection(zBox) y <- getSelection(yBox) x <- getSelection(xBox) lineType <- as.character(tclvalue(lineTypeVariable)) closeDialog() if (0 == length(x)) { errorCondition(recall=linePlotNMBU, message=gettextRcmdr("No x variable selected.")) return() } if (0 == length(y)) { errorCondition(recall=linePlotNMBU, message=gettextRcmdr("No y variables selected.")) return() } if (1 < length(y) && length(z) == 1) { errorCondition(recall=linePlotNMBU, message=gettextRcmdr("Only one y variable can be plotted with groups.")) return() } if (is.element(x, y)) { errorCondition(recall=linePlotNMBU, message=gettextRcmdr("x and y variables must be different.")) return() } .activeDataSet <- ActiveDataSet() .x <- na.omit(eval(parse(text=paste(.activeDataSet, "$", x, sep="")), envir=.GlobalEnv)) if (!identical(order(.x), seq(along.with=.x)) && length(z)==0){ response <- tclvalue(RcmdrTkmessageBox(message=gettextRcmdr("x-values are not in order.\nContinue?"), icon="warning", type="okcancel", default="cancel")) if (response == "cancel") { onCancel() return() } } axisLabel <- tclvalue(axisLabelVariable) legend <- tclvalue(legendVariable) == "1" if (axisLabel == gettextRcmdr("<use y-variable names>")){ axisLabel <- if (legend && length(z)==0) "" else if(length(y) == 1) y else paste(paste("(", 1:length(y), ") ", y, sep=""), collapse=", ") } pch <- if (length(y) == 1) ", pch=1" else "" if (legend && length(y) > 1){ mar <- par("mar") top <- 3.5 + length(y) command <- paste(".mar <- par(mar=c(", mar[1], ",", mar[2], ",", top, ",", mar[4], "))", sep="") logger(command) justDoIt(command) } if(length(z)==0){ command <- paste("matplot(", .activeDataSet, "$", x, ", ", .activeDataSet, "[, ", paste("c(", paste(paste('"', y, '"', sep=""), collapse=","), ")", sep=""), '], type="',lineType,'", lty=1:',length(y),', ylab="', axisLabel, '"', pch, ")", sep="") logger(command) justDoIt(command) } else { doItAndPrint(paste("plotByGroups(x.name='",x,"', y.name='",y,"', z.name='",z,"', lineType='",lineType,"', axisLabel='",axisLabel,"', legend=", legend, ")", sep="")) } if (legend && length(y) > 1){ n <- length(y) cols <- rep(1:6, 1 + n %/% 6)[1:n] logger(".xpd <- par(xpd=TRUE)") justDoIt(".xpd <- par(xpd=TRUE)") usr <- par("usr") command <- paste("legend(", usr[1], ", ", usr[4] + 1.2*top*strheight("x"), ", legend=", paste("c(", paste(paste('"', y, '"', sep=""), collapse=","), ")", sep=""), ", col=c(", paste(cols, collapse=","), "), lty=1:",length(y),", pch=c(", paste(paste('"', as.character(1:n), '"', sep=""), collapse=","), "))", sep="") logger(command) justDoIt(command) logger("par(mar=.mar)") justDoIt("par(mar=.mar)") logger("par(xpd=.xpd)") justDoIt("par(xpd=.xpd)") } activateMenus() tkfocus(CommanderWindow()) } OKCancelHelp(helpSubject="matplot") radioButtons(name="lineType", buttons=c("b", "l", "p"), values=c("b", "l", "p"), initialValue="b", labels=gettextRcmdr(c("Lines and points", "Lines", "Points")), title=gettextRcmdr("Plot type")) tkgrid(getFrame(xBox), labelRcmdr(variablesFrame, text=" "), getFrame(yBox), labelRcmdr(variablesFrame, text=" "), getFrame(zBox), sticky="nw") tkgrid(variablesFrame, sticky="nw", row=1, column=1, columnspan=2) tkgrid(labelRcmdr(axisLabelFrame, text=gettextRcmdr("Label for y-axis"), fg="blue"), sticky="w") tkgrid(axisLabelEntry, sticky="w") tkgrid(axisLabelScroll, sticky="ew") tkgrid(axisLabelFrame, sticky="w", row=2, column=1, columnspan=2) tkgrid(labelRcmdr(legendFrame, text=gettextRcmdr("Plot legend")), legendCheckBox, sticky="w") tkgrid(lineTypeFrame, sticky="w", row=3, column=1, columnspan=1) tkgrid(legendFrame, sticky="w", row=3, column=2, columnspan=1) tkgrid(buttonsFrame, stick="w", row=4, column=1, columnspan=2) dialogSuffix(rows=4, columns=2) } simplexGUI <- function(){ initializeDialog(title=gettextRcmdr("Plot points in three component mixture designs")) .numeric <- Numeric() comboVar <- tclVar() comboFrame <- tkframe(top) comboVar2 <- tclVar() comboFrame2 <- tkframe(top) formatFrame <- tkframe(top) zoomFrame <- tkframe(top) variablesFrame <- tkframe(top) x1Box <- variableListBox(variablesFrame, .numeric, title=gettextRcmdr("Left variable (pick one)")) x2Box <- variableListBox(variablesFrame, .numeric, title=gettextRcmdr("Top variable (pick one)")) x3Box <- variableListBox(variablesFrame, .numeric, title=gettextRcmdr("Right variable (pick one)")) onOK <- function(){ x1 <- getSelection(x1Box) x2 <- getSelection(x2Box) x3 <- getSelection(x3Box) mix.format <- as.character(tclvalue(label.formatVariable)) zoomed <- tclvalue(zoomedVariable) if(zoomed == gettextRcmdr("1")){ zoomed <- "TRUE" } else { zoomed <- "FALSE" } n.ticks <- which(as.character(2:10)==tclvalue(comboVar))+1 if(length(n.ticks)==0) n.ticks <- "6" n.grade <- which(as.character(seq(5,25,5))==tclvalue(comboVar2))*5 if(length(n.grade)==0) n.grade <- "15" closeDialog() .activeDataSet <- ActiveDataSet() formula1 <- justDoIt(paste("formula(~ ",x1," + ",x2," + ",x3, ")", sep="")) doItAndPrint(paste("mixture.contour(", .activeDataSet, ", ", paste(formula1[1],formula1[2],sep=" "), ", n.tick=", n.ticks, ", n.grade=", n.grade,", mix.format='",mix.format,"', show.points=TRUE, show.contour=FALSE, zoomed=",zoomed,", pch=21, cex=1.25, col.points='black', fill.points='white')", sep="")) tkfocus(CommanderWindow()) } OKCancelHelp(helpSubject="plot") tkgrid(getFrame(x1Box), labelRcmdr(variablesFrame, text=" "), getFrame(x2Box), labelRcmdr(variablesFrame, text=" "), getFrame(x3Box), sticky="nw") tkgrid(variablesFrame, sticky="nw", row=1, column=1, columnspan=2) combo <- ttkcombobox(comboFrame, values=as.character(2:10), textvariable=comboVar, width=3) combo2 <- ttkcombobox(comboFrame2, values=as.character(seq(5,25,5)), textvariable=comboVar2, width=3) tkgrid(labelRcmdr(comboFrame, text=gettextRcmdr("Plot ticks (default=6):")), combo, sticky="w") tkgrid(labelRcmdr(comboFrame2, text=gettextRcmdr("Plot gradings (approximate, default=15):")), combo2, sticky="w") tkgrid(comboFrame, sticky="w", column=1, row=2, columnspan=1) tkgrid(comboFrame2, sticky="w", column=1, row=3, columnspan=1) radioButtonsNMBU(formatFrame,name="label.format", buttons=c("frac", "dec"), values=c("frac", "dec"), initialValue = "frac", labels=gettextRcmdr(c("Fraction", "Decimal"))) tkgrid(formatFrame, row=4, column=1, columnspan=1, rowspan=1, sticky="w") checkBoxes(frame="zoomFrame", boxes=c("zoomed"), initialValues=c("0"), labels=gettextRcmdr(c("Zoom on samples"))) tkgrid(zoomFrame, row=5, column=1, columnspan=1, rowspan=1, sticky="w") tkgrid(buttonsFrame, sticky="w", row=6, column=1, columnspan=1) dialogSuffix(rows=6, columns=1) } histogram_discrete <- function () { defaults <- list(initial.x = NULL, initial.scale = "frequency", initial.bins = gettextRcmdr ("<auto>"), initial.discrete = "0") dialog.values <- getDialog("histogram_discrete", defaults) initializeDialog(title = gettextRcmdr("Histogram")) xBox <- variableListBox(top, Numeric(), title = gettextRcmdr("Variable (pick one)"), initialSelection = varPosn (dialog.values$initial.x, "numeric")) discreteFrame <- tkframe(top) comboVar <- tclVar() values <- c("normal", "exponential", "gamma", "geometric", "log-normal", "lognormal", "logistic", "negative binomial", "Poisson", "t", "weibull") comboFrame <- tkframe(top) onOK <- function() { x <- getSelection(xBox) discrete <- tclvalue(discreteVariable) closeDialog() if (length(x) == 0) { errorCondition(recall = histogram_discrete, message = gettextRcmdr("You must select a variable")) return() } fitDens <- tclvalue(comboVar) bins <- tclvalue(binsVariable) opts <- options(warn = -1) binstext <- if (bins == gettextRcmdr("<auto>")) "\"Sturges\"" else as.numeric(bins) options(opts) scale <- tclvalue(scaleVariable) putDialog ("histogram_discrete", list (initial.x = x, initial.bins = bins, initial.scale = scale, initial.discrete=discrete)) if(discrete == gettextRcmdr("0")){ command <- paste("Hist(", ActiveDataSet(), "$", x, ", scale=\"", scale, "\", breaks=", binstext, ", col=\"darkgray\", xlab='", x, "')", sep = "") doItAndPrint(command) if(fitDens %in% values){ if(scale=="density"){ command <- paste("plotFitDens(", ActiveDataSet(), "$", x, ", '", fitDens, "')", sep="") } else { eval(parse(text=paste("tmp <- hist(", ActiveDataSet(), "$", x, ", breaks=", binstext, ", plot=FALSE)", sep=""))) scaling <- max(tmp$counts)/max(tmp$density) command <- paste("plotFitDens(", ActiveDataSet(), "$", x, ", '", fitDens, "', scaling=", scaling, ")", sep="") } doItAndPrint(command) } } else { if(fitDens %in% values) errorCondition(recall = histogram_discrete, message = gettextRcmdr("'Density fit' not available for 'Discrete variable'")) command <- paste("barplot(.tmp, col=\"darkgray\", space=0, xlab='", x, "',", sep = "") doItAndPrint(paste(".tmp <- table(factor(", ActiveDataSet(), "$", x, "))",sep="")) if(scale=="percent"){ doItAndPrint(paste(".tmp <- .tmp/sum(.tmp)*100",sep="")) command <- paste(command, "ylab='percent')") } else { if(scale=="density"){ doItAndPrint(paste(".tmp <- .tmp/sum(.tmp)",sep="")) command <- paste(command, "ylab='density')") } else { command <- paste(command, "ylab='frequency')") } } doItAndPrint(command) doItAndPrint("rm(.tmp)") } activateMenus() tkfocus(CommanderWindow()) } OKCancelHelp(helpSubject = "Hist", reset = "Histogram") radioButtons(name = "scale", buttons = c("frequency", "percent", "density"), labels = gettextRcmdr(c("Frequency counts", "Percentages", "Densities")), title = gettextRcmdr("Axis Scaling"), initialValue = dialog.values$initial.scale) binsFrame <- tkframe(top) binsVariable <- tclVar(dialog.values$initial.bins) binsField <- ttkentry(binsFrame, width = "8", textvariable = binsVariable) tkgrid(getFrame(xBox), sticky = "nw") tkgrid(labelRcmdr(binsFrame, text = gettextRcmdr("Number of bins: ")), binsField, sticky = "w") tkgrid(binsFrame, sticky = "w") tkgrid(scaleFrame, sticky = "w") checkBoxes(frame="discreteFrame", boxes=c("discrete"), initialValues=dialog.values$initial.discrete, labels=gettextRcmdr(c("Discrete variable"))) tkgrid(discreteFrame, sticky="w") combo <- ttkcombobox(comboFrame, values=values, textvariable=comboVar) tkgrid(labelRcmdr(comboFrame, text=gettextRcmdr("Density fit:")), combo, sticky="w") tkgrid(comboFrame, sticky="w") tkgrid(buttonsFrame, sticky = "w") tkgrid.configure(binsField, sticky = "e") dialogSuffix(rows = 5, columns = 1) } boxPlotNMBU <- function () { defaults <- list(initial.x = NULL, initial.identifyPoints = 0, initialGroup=NULL, initial.means = 0) dialog.values <- getDialog("boxPlot", defaults) initializeDialog(title = gettextRcmdr("Boxplot")) xBox <- variableListBox(top, Numeric(), title = gettextRcmdr("Variable (pick one)"), initialSelection = varPosn (dialog.values$initial.x, "numeric")) identifyVariable <- tclVar(dialog.values$initial.identifyPoints) identifyFrame <- tkframe(top) identifyCheckBox <- tkcheckbutton(identifyFrame, variable = identifyVariable) initial.group <- dialog.values$initial.group .groups <- if (is.null(initial.group)) FALSE else initial.group onOK <- function() { x <- getSelection(xBox) identifyPoints <- "1" == tclvalue(identifyVariable) means <- tclvalue(meansVariable) putDialog ("boxPlot", list(initial.x = x, initial.identifyPoints = identifyPoints, initial.group=if (.groups == FALSE) NULL else .groups, initial.means = "1"==means)) closeDialog() if (length(x) == 0) { errorCondition(recall = boxPlotNMBU, message = gettextRcmdr("You must select a variable")) return() } .activeDataSet <- ActiveDataSet() var <- paste(.activeDataSet, "$", x, sep = "") if (is.null(.groups) || .groups == FALSE) { command <- (paste("boxplot(", var, ", ylab=\"", x, "\")", sep = "")) logger(command) justDoIt(command) if(means=="1") doItAndPrint(paste("points(1, mean(", var, ", na.rm=TRUE), pch=4)", sep="")) if (identifyPoints) { RcmdrTkmessageBox(title = "Identify Points", message = paste(gettextRcmdr("Use left mouse button to identify points,\n"), gettextRcmdr(if (MacOSXP()) "esc key to exit." else "right button to exit."), sep = ""), icon = "info", type = "ok") doItAndPrint(paste("identify(rep(1, length(", var, ")), ", var, ", rownames(", .activeDataSet, "))", sep = "")) } } else { command <- (paste("boxplot(", x, "~", .groups, ", ylab=\"", x, "\", xlab=\"", .groups, "\"", ", data=", .activeDataSet, ")", sep = "")) logger(command) justDoIt(command) if(means=="1") doItAndPrint(paste("points(1:length(levels(",ActiveDataSet(),"$",.groups,")), tapply(", var, ", ", ActiveDataSet(), "$", .groups, ", mean, na.rm=TRUE), pch=4)", sep="")) if (identifyPoints) { RcmdrTkmessageBox(title = "Identify Points", message = paste(gettextRcmdr("Use left mouse button to identify points,\n"), gettextRcmdr(if (MacOSXP()) "esc key to exit." else "right button to exit."), sep = ""), icon = "info", type = "ok") doItAndPrint(paste("identify(", .activeDataSet, "$", .groups, ", ", var, ", rownames(", .activeDataSet, "))", sep = "")) } } activateMenus() tkfocus(CommanderWindow()) } groupsBox(boxPlot, initialGroup=initial.group, initialLabel=if (is.null(initial.group)) gettextRcmdr("Plot by groups") else paste(gettextRcmdr("Plot by:"), initial.group)) OKCancelHelp(helpSubject = "boxplot", reset = "boxPlotNMBU") tkgrid(getFrame(xBox), sticky = "nw") tkgrid(labelRcmdr(identifyFrame, text = gettextRcmdr("Identify outliers with mouse"), justify = "left"), identifyCheckBox, sticky = "w") tkgrid(identifyFrame, stick = "w") meansFrame <- tkframe(top) checkBoxes(frame="meansFrame", boxes=c("means"), initialValues=dialog.values$initial.means, labels=gettextRcmdr(c("Plot mean value(s)"))) tkgrid(meansFrame, sticky="w") tkgrid(groupsFrame, sticky = "w") tkgrid(buttonsFrame, sticky = "w") dialogSuffix(rows = 4, columns = 1) }
X <- model.matrix(model); X
gridPointsFitError <- function(p, nx, points, ny=NULL) mean(sqrt((points - gridPointsFit(p, nx, ny))^2))
shade.poi.tck<-function(){ local({ have_ttk <- as.character(tcl("info", "tclversion")) >= "8.5" if(have_ttk) { tkbutton <- ttkbutton tkcheckbutton <- ttkcheckbutton tkentry <- ttkentry tkframe <- ttkframe tklabel <- ttklabel tkradiobutton <- ttkradiobutton } tclServiceMode(FALSE) dialog.sd <- function(){ tt <- tktoplevel() tkwm.title(tt,"Depiction of binomial probability") x.entry <- tkentry(tt, textvariable=X, width = 10) lambda.entry<-tkentry(tt, textvariable=Lambda, width = 10) from.entry<-tkentry(tt, textvariable=From, width =10) to.entry<-tkentry(tt, textvariable=To, width = 10) Tail.par<-tclVar("X=x") done <- tclVar(0) show.p<-tclVar(1) show.d<-tclVar(0) show.dist<-tclVar(1) reset <- function() { tclvalue(X)<-"1" tclvalue(Lambda)<-"5" tclvalue(From)<-"" tclvalue(To)<-"" tclvalue(show.p)<-"1" tclvalue(show.d)<-"0" tclvalue(show.dist)<-"1" } reset.but <- tkbutton(tt, text="Reset", command=reset) submit.but <- tkbutton(tt, text="Submit",command=function()tclvalue(done)<-1) build <- function() { x <- tclvalue(X) lambda <-tclvalue(Lambda) from <-tclvalue(From) to<-tclvalue(To) tail<-tclvalue(Tail.par) show.p <- as.logical(tclObj(show.p)) show.d <- as.logical(tclObj(show.d)) show.dist <- as.logical(tclObj(show.dist)) substitute(shade.poi(x=as.numeric(x),lambda=as.numeric(lambda), from = as.numeric(from), to=as.numeric(to),tail=tail,show.p=show.p,show.d=show.d,show.dist=show.dist)) } p.cbut <- tkcheckbutton(tt, text="Show probability", variable=show.p) d.cbut <- tkcheckbutton(tt, text="Show density", variable=show.d) dist.cbut <- tkcheckbutton(tt, text="Show distribution", variable=show.dist) tkgrid(tklabel(tt,text="Poisson probability"),columnspan=2) tkgrid(tklabel(tt,text="")) tkgrid(tklabel(tt,text="x",font=c("Helvetica","9","italic")), x.entry) tkgrid(tklabel(tt,text='\u03bb', font=c("Helvetica","9","italic")), lambda.entry) tkgrid(tklabel(tt,text="")) alt.rbuts <- tkframe(tt) tkpack(tklabel(alt.rbuts, text="Tail")) for ( i in c("X=x","lower","upper","two","middle")){ tmp <- tkradiobutton(alt.rbuts, text=i, variable=Tail.par, value=i) tkpack(tmp,anchor="w") } tkgrid(alt.rbuts) tkgrid(tklabel(tt,text="")) tkgrid(tklabel(tt,text="Middle 'tail' span")) tkgrid(tklabel(tt,text="From"),from.entry) tkgrid(tklabel(tt,text="To"),to.entry) tkgrid(tklabel(tt,text="")) tkgrid(p.cbut,sticky="w", columnspan=2) tkgrid(d.cbut,sticky="w", columnspan=2) tkgrid(dist.cbut,sticky="w", columnspan=2) tkgrid(tklabel(tt,text="")) tkgrid(submit.but,reset.but, sticky ="w") tkbind(tt, "<Destroy>", function()tclvalue(done)<-2) tkwait.variable(done) if(tclvalue(done)=="2") stop("aborted") tkdestroy(tt) cmd <- build() eval.parent(cmd) tclServiceMode(FALSE) } X<-tclVar("1") Lambda<-tclVar("5") Tail<-tclVar("X=x") From<-tclVar("") To<-tclVar("") dialog.sd() }) }
hash_e <- function(x, mode.out = "numeric") { hash_help_e(x, mode.out = mode.out) } hash_help_e <- function(x, mode.out) { if (is.factor(x[, 2])) { x[, 2] <- as.character(x[, 2]) FUN <- as.factor } else { FUN <- match.fun(paste0("as.", mode(x[, 2]))) } evnt <- new.env(hash = TRUE, size = nrow(x), parent = emptyenv()) outmode <- match.fun(paste0("as.", mode.out)) apply(x, 1, function(col) { assign(col[1], outmode(col[2]), envir = evnt) }) class(evnt) <- c("qdap_hash", "evir", class(evnt)) attributes(evnt)[["mode"]] <- FUN evnt } hash_look_e <- function(terms, envir, missing = NA) { hits <- which(!is.na(match(terms, names(as.list(envir))))) x <- rep(ifelse(is.null(missing), NA, missing), length(terms)) x[hits] <- recoder(terms[hits], envr = envir) if (is.null(missing)) { keeps <- which(is.na(x)) x[keeps] <- terms[keeps] x } x } recoder <- function(x, envr){ x <- as.character(x) unlist(lapply(x, get, envir = envr)) }
predict.MFA <- function(object, newdata, ...){ ec <- function(V, poids) { res <- sqrt(sum(V^2 * poids,na.rm=TRUE)/sum(poids[!is.na(V)])) } if (!is.null(object$quanti.var$coord)) ncp=ncol(object$quanti.var$coord) else ncp=ncol(object$quali.var$coord) tab.supp=matrix(NA,nrow(newdata),0) for (g in 1:length(object$call$group)){ if (object$call$nature.group[g]=="quanti"){ tab.aux <- t(t(newdata[,(c(1,1+cumsum(object$call$group))[g]):cumsum(object$call$group)[g]]) - object$separate.analyses[[g]][["call"]]$centre) tab.aux <- t(t(tab.aux) / object$separate.analyses[[g]][["call"]]$ecart.type) tab.supp <- cbind(tab.supp,as.matrix(tab.aux)) } else { tab.disj <- tab.disjonctif(object$separate.analyses[[g]][["call"]]$X) tab.disj.supp <- tab.disjonctif(rbind.data.frame(object$separate.analyses[[g]][["call"]]$X[1:2,],newdata[,(c(1,1+cumsum(object$call$group))[g]):cumsum(object$call$group)[g]])[-(1:2),,drop=FALSE]) if (!is.null(object$call$row.w.init)) SomRow <- sum(object$call$row.w.init) else SomRow <- length(object$call$row.w) M <- object$separate.analyses[[g]]$call$marge.col/SomRow Z <- t(t(tab.disj/SomRow)-M*2) Zsup <- t(t(tab.disj.supp/SomRow) - M*2) Zsup <- t(t(Zsup) / apply(Z,2,ec,object$global.pca$call$row.w.init)) tab.supp <- cbind(as.matrix(tab.supp),Zsup) } } tab.supp <- sweep(tab.supp,2,sqrt(object$call$col.w),FUN="*") coord <- crossprod(t(tab.supp),object$global.pca$svd$V*sqrt(object$call$col.w)) dist2 <- rowSums(tab.supp^2) cos2 <- (coord)^2/dist2 coord <- coord[, 1:ncp, drop = FALSE] cos2 <- cos2[, 1:ncp, drop = FALSE] colnames(coord) <- colnames(cos2) <- paste("Dim", c(1:ncp), sep = ".") rownames(coord) <- rownames(cos2) <- names(dist2) <- rownames(newdata) result <- list(coord = coord, cos2 = cos2, dist = sqrt(dist2)) }
hypothesize <- function(x, null, p = NULL, mu = NULL, med = NULL, sigma = NULL) { null <- match_null_hypothesis(null) hypothesize_checks(x, null) attr(x, "null") <- null attr(x, "hypothesized") <- TRUE dots <- compact(list(p = p, mu = mu, med = med, sigma = sigma)) switch( null, independence = { params <- sanitize_hypothesis_params_independence(dots) attr(x, "type") <- "permute" }, point = { params <- sanitize_hypothesis_params_point(dots, x) attr(x, "params") <- unlist(params) if (!is.null(params$p)) { attr(x, "type") <- "draw" } else { if (is.factor(response_variable(x))) { stop_glue( 'Testing one categorical variable requires `p` to be used as a ', 'parameter.' ) } attr(x, "type") <- "bootstrap" } } ) res <- append_infer_class(tibble::as_tibble(x)) copy_attrs(to = res, from = x) } hypothesise <- hypothesize hypothesize_checks <- function(x, null) { if (!inherits(x, "data.frame")) { stop_glue("x must be a data.frame or tibble") } if ((null == "independence") && !has_explanatory(x)) { stop_glue( 'Please `specify()` an explanatory and a response variable when ', 'testing a null hypothesis of `"independence"`.' ) } } match_null_hypothesis <- function(null) { null_hypothesis_types <- c("point", "independence") if(length(null) != 1) { stop_glue('You should specify exactly one type of null hypothesis.') } i <- pmatch(null, null_hypothesis_types) if(is.na(i)) { stop_glue('`null` should be either "point" or "independence".') } null_hypothesis_types[i] } sanitize_hypothesis_params_independence <- function(dots) { if (length(dots) > 0) { warning_glue( "Parameter values are not specified when testing that two variables are ", "independent." ) } NULL } sanitize_hypothesis_params_point <- function(dots, x) { if(length(dots) != 1) { stop_glue("You must specify exactly one of `p`, `mu`, `med`, or `sigma`.") } if (!is.null(dots$p)) { dots$p <- sanitize_hypothesis_params_proportion(dots$p, x) } dots } sanitize_hypothesis_params_proportion <- function(p, x) { eps <- if (capabilities("long.double")) {sqrt(.Machine$double.eps)} else {0.01} if(anyNA(p)) { stop_glue('`p` should not contain missing values.') } if(any(p < 0 | p > 1)) { stop_glue('`p` should only contain values between zero and one.') } if(length(p) == 1) { if(!has_attr(x, "success")) { stop_glue( "A point null regarding a proportion requires that `success` ", "be indicated in `specify()`." ) } p <- c(p, 1 - p) names(p) <- get_success_then_response_levels(x) } else { if (sum(p) < 1 - eps | sum(p) > 1 + eps) { stop_glue( "Make sure the hypothesized values for the `p` parameters sum to 1. ", "Please try again." ) } } p }
add_es <- function(eg,eg2,current_rank,ff=0,method=c("esm","isvd")){ if(method=="esm"){ if (missing("current_rank")) { current_rank = length(eg$d) } out = add_eig(eg, eg2, current_rank)} else{ if (is.null(eg$m)) { m = dim(eg$u)[1] } else { m = eg$m } B = eg2 if (missing("current_rank")) { current_rank = dim(B)[2] } out = add_svd(eg,B,m,current_rank,ff = ff) } return(out) }
test_succeeds("multi_head_attention", { if (tensorflow::tf_version() < "2.4") skip("requires tf_version() >= 2.4") layer <- layer_multi_head_attention(num_heads=2, key_dim=2, name = "hello") target <- layer_input(shape=c(8, 16)) source <- layer_input(shape=c(4, 16)) expect_equal(layer$name, "hello") c(output_tensor, weights) %<-% layer(target, source,return_attention_scores=TRUE) expect_equal(output_tensor$shape$as_list(), list(NULL, 8, 16)) expect_equal(weights$shape$as_list(), list(NULL, 2, 8, 4)) })
test_that("works as expected", { expect_equal( eq( c(NA,'NA',1,2,'c'), c(NA,NA,1,2,'a') ), c( TRUE, FALSE, TRUE, TRUE, FALSE ) ) expect_true( eq( NA, NULL ) ) expect_equal( eq( c('a', 'b'), c('a', 'b', 'c') ), FALSE) })
Time2 = function( x, w, thresh, smallerthan = TRUE, bout.length = 1 ){ if(missing(w)){ stop("Please input weartime flag vector w with same dimension") } if(length(x) != length(w)){ stop("count x and weartime w should have the same length") } uwear = unique(c(w)) uwear = as.integer(uwear) if (!all(uwear %in% c(0, 1, NA))) { stop("weartime w has non 0-1 data") } x = na.omit(x) w = na.omit(w) w[w == 0] = NA y = create.bouts(counts = x, thresh_lower = thresh, bout_length = bout.length) yw = y * w if(smallerthan){ time = sum(yw == 0, na.rm = T) } if(!smallerthan){ time = sum(yw == 1, na.rm = T) } return(time = time) } Time_long2 = function( count.data, weartime, thresh, smallerthan = TRUE, bout.length = 1 ){ n1440<-ncol(count.data)-2 n1441<- n1440+1 n1442<- n1440+2 n2880<- 2*n1440 minuteUnit<-n1440/1440 if(missing(weartime)){ print("No weartime supplied, calculated based on defualt from 05:00 to 23:00") weartime = wear_flag(count.data = count.data) } else { if (length(which(count.data[,1]!= weartime[,1] | count.data[,2]!= weartime[,2]))>=1) stop ("Checking IDs between count.data and weartime in Time_long2 function.") } mat = cbind(as.matrix(count.data[,-c(1:2)]),as.matrix(weartime[,-c(1:2)])) result.list = apply(mat,1,function(x){ Time2(x[1:n1440],x[n1441:n2880],thresh = thresh,bout.length = bout.length, smallerthan = smallerthan) }) time_all = as.data.frame(cbind(count.data[,c(1,2)],result.list/minuteUnit)) names(time_all) = c("ID","Day","time") return(time_all = time_all) } PAfun = function(count.data,weartime,PA.threshold=c(50,100,400)){ PA.threshold = c(PA.threshold,Inf) sed_all0<-NULL for (f in 1:length(PA.threshold)){ temp = Time_long2(count.data = count.data, weartime = weartime, thresh =PA.threshold[f], smallerthan = TRUE) colnames(temp)[3]<-paste(colnames(temp)[3],PA.threshold[f],sep="") if (f==1) sed_all0<-temp else { if (length(which(sed_all0[,1]!=temp[,1]))>=1 | length(which(sed_all0[,2]!=temp[,2]))>=1) stop("check ID+Day in Time_long2 function") sed_all0<-cbind(sed_all0,temp[,3]) } } sed_all<-sed_all0 for (j in 4:6) sed_all[,j]<-sed_all0[,j]-sed_all0[,j-1] colnames(sed_all)[3:6]<-c("sed_dur","light_dur","mod_dur","vig_dur") sed_all[,"MVPA_dur"]<-sed_all[,"mod_dur"] + sed_all[,"vig_dur"] sed_all[,"activity_dur"]<-sed_all[,"light_dur"] +sed_all[,"mod_dur"] + sed_all[,"vig_dur"] minuteNcol=(ncol(count.data)-2)/1440 for (j in 4:ncol(sed_all)) sed_all[,j]<-sed_all[,j]/minuteNcol return(sed_all) } create.bouts<-function(counts, thresh_lower, bout_length = 1){ S1<-which(counts>=thresh_lower) S0<-which(counts<thresh_lower) bouts<-rep(NA,length(counts)) bouts[S1]<-1 bouts[S0]<-0 if (bout_length>1){ for (i in 2:length(S0)){ W<-S0[i]-S0[i-1] if (W-1<bout_length) bouts[ S0[i-1]:S0[i] ]<-0 } } return(bouts) }
sde.sim <- function (t0 = 0, T = 1, X0 = 1, N = 100, delta, drift, sigma, drift.x, sigma.x, drift.xx, sigma.xx, drift.t, method = c("euler", "milstein", "KPS", "milstein2", "cdist","ozaki","shoji","EA"), alpha = 0.5, eta = 0.5, pred.corr = T, rcdist = NULL, theta = NULL, model = c("CIR", "VAS", "OU", "BS"), k1, k2, phi, max.psi = 1000, rh, A, M=1) { method <- match.arg(method) if(!missing(model)){ model <- match.arg(model) method <- "model" } x0 <- rep(X0,M)[1:M] if (missing(drift)){ if (method == "cdist" || !missing(model)) drift <- expression(NULL) else stop("please specify al least the drift coefficient of the SDE") } if (missing(sigma)) sigma <- expression(1) if (!is.expression(drift) || !is.expression(sigma)) stop("coefficients must be expressions in `t' and `x'") if (pred.corr == F) { alpha <- 0 eta <- 0 sigma.x <- NULL } needs.sx <- FALSE needs.dx <- FALSE needs.sxx <- FALSE needs.dxx <- FALSE needs.dt <- FALSE if (method == "cdist" && is.null(rcdist)) stop("please provide a random number generator `rcdist'") if (method == "milstein") needs.sx = TRUE if ((method == "euler" && pred.corr == T)) needs.sx = TRUE if (method == "KPS" || method == "milstein2") { needs.sx <- TRUE needs.dx <- TRUE needs.sxx <- TRUE needs.dxx <- TRUE } if(method == "ozaki" || method == "shoji" || method == "EA") needs.dx <- TRUE if(method == "shoji"){ needs.dxx <- TRUE needs.dt <- TRUE } if (needs.sx && missing(sigma.x)) { message("sigma.x not provided, attempting symbolic derivation.\n") sigma.x <- D(sigma, "x") } if (needs.dx && missing(drift.x)) { message("drift.x not provided, attempting symbolic derivation.\n") drift.x <- D(drift, "x") } if (needs.dxx && missing(drift.xx)) { message("drift.xx not provided, attempting symbolic derivation.\n") drift.xx <- D(D(drift, "x"), "x") } if (needs.sxx && missing(sigma.xx)) { message("sigma.xx not provided, attempting symbolic derivation.\n") sigma.xx <- D(D(sigma, "x"), "x") } if (needs.dt && missing(drift.t)) { message("drift.t not provided, attempting symbolic derivation.\n") drift.t <- D(drift, "t") } d1 <- function(t, x) eval(drift) d1.x <- function(t, x) eval(drift.x) d1.xx <- function(t, x) eval(drift.x) d1.t <- function(t, x) eval(drift.t) s1 <- function(t, x) eval(sigma) s1.x <- function(t, x) eval(sigma.x) s1.xx <- function(t, x) eval(sigma.xx) if (t0 < 0 || T < 0) stop("please use positive times!") if (missing(delta)) { t <- seq(t0, T, length = N + 1) } else { t <- c(t0, t0 + cumsum(rep(delta, N))) T <- t[N + 1] message(sprintf("\nT set to = %f\n", T)) } Dt <- (T - t0)/N if(method == "model"){ if(is.null(theta)) stop("please provide a vector of parameters for the model") if(model == "CIR") X <- sde.sim.cdist(x0, t0, Dt, N, M, rcCIR, theta) if(model == "OU") X <- sde.sim.cdist(x0, t0, Dt, N, M, rcOU, theta) if(model == "BS") X <- sde.sim.cdist(x0, t0, Dt, N, M, rcBS, theta) } if (method == "EA") X <- sde.sim.ea(X0, t0, Dt, N, d1, d1.x, k1, k2, phi, max.psi, rh, A) if (method == "cdist"){ if(is.null(theta)) stop("please provide a vector of parameters for `rcdist'") else X <- sde.sim.cdist(x0, t0, Dt, N, M, rcdist, theta) } if (method == "ozaki"){ vd <- all.vars(drift) vs <- all.vars(sigma) if((length(vd)!=1) || (length(vs)>0)) stop("drift must depend on `x' and volatility must be constant") if((length(vd) == 1) && (vd != "x")) stop("drift must depend on `x'") X <- sde.sim.ozaki(x0, t0, Dt, N, M, d1, d1.x, s1) } if (method == "shoji"){ vd <- all.vars(drift) vs <- all.vars(sigma) if(length(vd)>2 || length(vd)<1 || length(vs)>0) stop("drift must depend on `x' and/or `t' and volatility must be constant") if((length(vd) == 1) && (vd != "x")) stop("drift must depend at least on `x'") X <- sde.sim.shoji(x0, t0, Dt, N, M, d1, d1.x, d1.xx, d1.t, s1) } if (method == "euler") X <- sde.sim.euler(x0, t0, Dt, N, M, d1, s1, s1.x, alpha, eta, pred.corr) if (method == "milstein") X <- sde.sim.milstein(x0, t0, Dt, N, M, d1, s1, s1.x) if (method == "milstein2") X <- sde.sim.milstein2(x0, t0, Dt, N, M, d1, d1.x, d1.xx, s1, s1.x, s1.xx) if (method == "KPS") { Sigma <- matrix(c(Dt, 0.5 * Dt^2, 0.5 * Dt^2, 1/3 * Dt^3), 2, 2) tmp <- mvrnorm(N*M, c(0, 0), Sigma) Z <- tmp[, 1] U <- tmp[, 2] X <- sde.sim.KPS(x0, t0, Dt, N, M, d1, d1.x, d1.xx, s1, s1.x, s1.xx, Z, U) } nm <- "X" nm <- if(M>1) paste("X",1:M,sep="") X <- ts(X, start = t0, deltat = Dt, names=nm) invisible(X) }
| pacman Function | Base Equivalent | Description | |----------------------|----------------------|----------------| | `p_detectOS` | `Sys.info` | Detect Operating System | | `p_extract` | NONE | Extract Packages from String | | `p_opendir` | `system`/`shell` | Open a Directory |
makeControl <- function (f = list(~1), S = list(0, 0, 1), period = 52, offset = 1, ...) { control <- mapply(function (f, S, period, offset) { f <- addSeason2formula(f = f, S = S, period = period) list(f = f, offset = offset) }, f, S, period, offset, SIMPLIFY = FALSE, USE.NAMES = FALSE) names(control) <- c("ar", "ne", "end") control$family <- "NegBin1" modifyList(control, list(...)) }
update_dollar_data <- function(ctl_name, new_data_name) { if (is_single_na(ctl_name)) { return(NA) } ctl <- ctl_character(ctl_name) ctl <- gsub("^(\\s*\\$DATA\\s*)[^ ]+(.*)$", paste0("\\1", new_data_name, "\\2"), ctl) ctl } nm_tran <- function(x) UseMethod("nm_tran") nm_tran.default <- function(x) { if (is.null(nm_tran_command())) stop("nm_tran not set up, see ?nm_tran_command") tempdir0 <- basename(tempdir()) dir.create(tempdir0) on.exit(unlink(tempdir0, recursive = TRUE, force = TRUE)) file.copy(x, tempdir0) data_path <- file.path(dirname(x), data_name(x)) file.copy(data_path, tempdir0) dataset.name <- basename(data_path) suppressMessages({ ctl_text <- update_dollar_data(file.path(tempdir0, basename(x)), dataset.name) write(ctl_text, file.path(tempdir0, basename(x))) }) message("running NMTRAN on ", x) nm_tran_command <- nm_tran_command() cmd <- stringr::str_glue(nm_tran_command, .envir = list(ctl_name = basename(x)), .na = NULL) if (cmd == nm_tran_command) cmd <- paste(cmd, "<", basename(x)) system_nm(cmd, dir = tempdir0, wait = TRUE) } nm_tran.nm_generic <- function(x) { xtmp <- x %>% run_in(file.path(run_in(x), "temp")) xtmp %>% write_ctl(force = TRUE) nm_tran.default(ctl_path(xtmp)) invisible(x) } nm_tran.nm_list <- Vectorize_nm_list(nm_tran.nm_generic, SIMPLIFY = FALSE, invisible = TRUE)
get_PMCtable = function(url){ test = getURL(url) test1 = htmlTreeParse(test,useInternalNodes = T) test2 = lapply(getNodeSet(test1,"//tr"),function(x){(x)}) table=NULL;for (i in 3:length(test2)){table=rbind(table,getChildrenStrings(test2[[i]])) } colnames(table)= as.character(getChildrenStrings(test2[[2]])) return(table)}
TML.BetaW <- function(X,y,delta,Beta,sigma,Beta.t,sigma.t,cl,cu,maxit,tol,nitmon) { p <- length(Beta); n <- length(y); nu <- sum(delta); nc <- n-nu; zero <- 1e-6 nit <- 1; Beta1 <- rep(100,p) indu <- (1:n)[delta==1]; indc <- (1:n)[delta==0] mui.t <- X %*% as.matrix(Beta.t) rs.t <- (y-mui.t)/sigma.t wgt <- ww(rs.t, cl, cu) while ( max(abs(Beta1-Beta)) > tol & (nit < maxit) ) { D1 <- D2 <- ym <- rep(0,n); vi <- ti <- rep(0,nc) nit <- nit+1; Beta1 <- Beta mui <- X %*% as.matrix(Beta1) rs <- (y-mui)/sigma gi <- rep(1,nu) if (nu > 0) { ru <- rs[indu] cnd <- ru != 0 gi[cnd] <- ps0(ru[cnd])/ru[cnd] D1[indu] <- wgt[indu]*gi D2[indu] <- wgt[indu]*gi ym[indu] <- y[indu]} if (nu < n) { I1 <- I0 <- rep(0,nc) rc <- rs[delta==0] muic <- mui[indc] muit <- mui.t[indc] ai <- pmax( rc, (sigma.t*cl - muic + muit )/sigma ) bi <- (sigma.t*cu - muic + muit )/sigma den <- 1-plweibul(rc) ok <- den > zero for (i in 1:nc) { if (bi[i] > ai[i]) I0[i] <- integrate(intg0.TMLW,ai[i],bi[i])$val if (bi[i] > ai[i]) I1[i] <- dlweibul(ai[i])-dlweibul(bi[i]) } I1 <- sigma*I1+muic*I0 vi[ok] <- I0[ok]/den[ok] ti[ok] <- I1[ok]/den[ok] D1[indc] <- vi D2[indc] <- ti ym[indc] <- rep(1,nc)} A <- t(X)%*%(D2*ym) B <- t(X)%*%(D1*X) Beta <- solve(B)%*%A if(nitmon) cat(nit, Beta, Beta1, "\n") } list(Beta=Beta,nit=nit) }
test_that("Test suite aap.R",{ expect_true(Hi*Hj == Hk) expect_true(Hj*Hi == -Hk) expect_true(Hj*Hk == Hi) expect_true(Hk*Hj == -Hi) expect_true(Hk*Hi == Hj) expect_true(Hi*Hk == -Hj) expect_true(Hi*Hi == -H1) expect_true(Hj*Hj == -H1) expect_true(Hk*Hk == -H1) expect_true(H1*H1 == H1) expect_true(H1*Hi == Hi) expect_true(H1*Hj == Hj) expect_true(H1*Hk == Hk) expect_true(H1*H1 == H1) expect_true(Hi*H1 == Hi) expect_true(Hj*H1 == Hj) expect_true(Hk*H1 == Hk) expect_true(Hi*Hj*Hk == -H1) expect_true(H0*H1 == H0) expect_true(H0*Hi == H0) expect_true(H0*Hj == H0) expect_true(H0*Hk == H0) expect_true(H1*H0 == H0) expect_true(Hi*H0 == H0) expect_true(Hj*H0 == H0) expect_true(Hk*H0 == H0) expect_true(H1 + Him == Hall) expect_true(Hi + Hj + Hk == Him) expect_true(H1 + Hi + Hj + Hk == Hall) expect_true(Hi - Hi == H0) expect_true(Hall - Hi - Hj - Hk == H1) expect_true(Hall - Him == H1) expect_true(O1*O1 == O1 ) expect_true(O1*Oi == Oi ) expect_true(O1*Oj == Oj ) expect_true(O1*Ok == Ok ) expect_true(O1*Ol == Ol ) expect_true(O1*Oil == Oil) expect_true(O1*Ojl == Ojl) expect_true(O1*Okl == Okl) expect_true(Oi*O1 == Oi ) expect_true(Oi*Oi == -O1 ) expect_true(Oi*Oj == Ok ) expect_true(Oi*Ok == -Oj ) expect_true(Oi*Ol == Oil) expect_true(Oi*Oil == -Ol ) expect_true(Oi*Ojl == -Okl) expect_true(Oi*Okl == Ojl) expect_true(Oj*O1 == Oj ) expect_true(Oj*Oi == -Ok ) expect_true(Oj*Oj == -O1 ) expect_true(Oj*Ok == Oi ) expect_true(Oj*Ol == Ojl) expect_true(Oj*Oil == Okl) expect_true(Oj*Ojl == -Ol ) expect_true(Oj*Okl == -Oil) expect_true(Ok*O1 == Ok ) expect_true(Ok*Oi == Oj ) expect_true(Ok*Oj == -Oi ) expect_true(Ok*Ok == -O1 ) expect_true(Ok*Ol == Okl) expect_true(Ok*Oil == -Ojl) expect_true(Ok*Ojl == Oil) expect_true(Ok*Okl == -Ol ) expect_true(Ol*O1 == Ol ) expect_true(Ol*Oi == -Oil) expect_true(Ol*Oj == -Ojl) expect_true(Ol*Ok == -Okl) expect_true(Ol*Ol == -O1 ) expect_true(Ol*Oil == Oi ) expect_true(Ol*Ojl == Oj ) expect_true(Ol*Okl == Ok ) expect_true(Oil*O1 == Oil) expect_true(Oil*Oi == Ol ) expect_true(Oil*Oj == -Okl) expect_true(Oil*Ok == Ojl) expect_true(Oil*Ol == -Oi ) expect_true(Oil*Oil == -O1 ) expect_true(Oil*Ojl == -Ok ) expect_true(Oil*Okl == Oj ) expect_true(Ojl*O1 == Ojl) expect_true(Ojl*Oi == Okl) expect_true(Ojl*Oj == Ol ) expect_true(Ojl*Ok == -Oil) expect_true(Ojl*Ol == -Oj ) expect_true(Ojl*Oil == Ok ) expect_true(Ojl*Ojl == -O1 ) expect_true(Ojl*Okl == -Oi ) expect_true(Okl*O1 == Okl) expect_true(Okl*Oi == -Ojl) expect_true(Okl*Oj == Oil) expect_true(Okl*Ok == Ol ) expect_true(Okl*Ol == -Ok ) expect_true(Okl*Oil == -Oj ) expect_true(Okl*Ojl == Oi ) expect_true(Okl*Okl == -O1 ) expect_true(O0*O0 == O0) expect_true(O0*O1 == O0) expect_true(O0*Oi == O0) expect_true(O0*Oj == O0) expect_true(O0*Ok == O0) expect_true(O0*Ol == O0) expect_true(O0*Oil == O0) expect_true(O0*Ojl == O0) expect_true(O0*Okl == O0) expect_true(O1*O0 == O0) expect_true(Oi*O0 == O0) expect_true(Oj*O0 == O0) expect_true(Ok*O0 == O0) expect_true(Ol*O0 == O0) expect_true(Oil*O0 == O0) expect_true(Ojl*O0 == O0) expect_true(Okl*O0 == O0) expect_true(O1 + Oim == Oall) expect_true(Oi + Oj + Ok + Ol + Oil + Ojl + Okl == Oim) expect_true(O1 + Oi + Oj + Ok + Ol + Oil + Ojl + Okl == Oall) expect_true(Oil - Oil == O0) expect_true(Oall - Oim == O1) expect_true(as.onion(1:4,single=TRUE)==1*H1 + 2*Hi + 3*Hj + 4*Hk) expect_true(as.onion(1:8,single=TRUE)==1*O1 + 2*Oi + 3*Oj + 4*Ok + 5*Ol + 6*Oil + 7*Ojl + 8*Okl) expect_error(as.onion(matrix(1:25,5,5))) expect_true(is.quaternion(as.quaternion(rquat(4)))) expect_true(is.octonion(as.octonion(roct(4)))) expect_false(is.octonion(as.quaternion(rquat(4)))) expect_false(is.quaternion(as.octonion(roct(4)))) expect_true(is.quaternion(as.onion(1:4,matrix(rquat(1),2,2)))) expect_false(is.quaternion(as.onion(1:4,matrix(roct(1),2,2)))) expect_false(is.octonion(as.onion(1:4,matrix(rquat(1),2,2)))) expect_true(is.octonion(as.onion(1:4,matrix(roct(1),2,2)))) expect_true(is.onion(drop(matrix(Hi,1,3)))) expect_false(is.onionmat(drop(matrix(Hi,1,3)))) o <- as.onion(c(1,1e-20,1e-20,1e-20),single=TRUE) expect_false(Im(o)==0) expect_true(Im(zapsmall(o))==0) o <- onionmat(o,2,2) expect_false(all(Im(o)==0)) expect_true(all(Im(zapsmall(o))==0)) })
to.unbalanced <- function(data, id.col, times, Y.col, other.col = NA) { if (length(id.col) > 1) { stop("Only a single vector of subject identification is possible") } if (is.numeric(id.col)) { pat <- data[, id.col] } else { pat <- data[[id.col]] } tm <- as.vector(times) ltt <- length(tm) if (!is.numeric(Y.col)) { Y.col <- which(names(data) %in% Y.col) } Y.col <- as.vector(Y.col) nY <- length(Y.col) / length(tm) if ((nY %% 1) != 0) { stop("Number of longitudinal variables not consistent with the number of longitudinal time points") } time <- rep(tm, times = length(pat)) indv <- rep(pat, each = ltt) Y <- as.matrix(data[, Y.col]) data.trans <- as.data.frame(cbind(indv, time)) names(data.trans)[1] <- names(data)[id.col] for (i in 1:nY) { Y.tt <- c(t(Y[, (ltt * (i - 1) + 1):(ltt * i)])) data.trans <- cbind(data.trans, Y.tt) names(data.trans)[dim(data.trans)[2]] <- (names(data)[Y.col])[(i - 1) * ltt + 1] } ddt <- dim(data.trans)[2] if (!identical(NA, other.col)) { if (!is.numeric(other.col)) { other.col <- which(names(data) %in% other.col) } other.col <- as.vector(other.col) other <- as.data.frame(data[, other.col]) l.other <- dim(other)[2] for (i in 1:l.other) { data.trans <- cbind(data.trans, rep(other[, i], each = ltt)) } data.trans <- as.data.frame(data.trans) names(data.trans)[(ddt + 1):(dim(data.trans)[2])] <- names(data)[other.col] } row.names(data.trans) <- 1:(dim(data.trans)[1]) return(data.trans) }
fit_topt_VJs <- function(data, group, varnames = list(Vcmax = "Vcmax", Jmax = "Jmax", Tleaf = "Tleaf"), limit_jmax = 100000, limit_vcmax = 100000, ...) { data$group <- data[, group] data <- split(data, data$group) fits <- list() for (i in 1:length(data)) { fits[[i]] <- fit_topt_VJ(data = data[[i]], varnames = varnames, title = names(data[i]), limit_jmax = limit_jmax, limit_vcmax = limit_vcmax, ...) names(fits)[i] <- names(data[i]) } return(fits) }
cluster_vars <- function(x = NULL, d = NULL, block = NULL, method = "average", use = "pairwise.complete.obs", sort.parallel = TRUE, parallel = c("no", "multicore", "snow"), ncpus = 1L, cl = NULL) { parallel <- match.arg(parallel) do.parallel <- (parallel != "no" && ncpus > 1L) if (do.parallel && parallel == "multicore" && .Platform$OS.type == "windows") { stop("The argument parallel = 'multicore' is not available for windows. Use parallel = 'snow' for parallel computing or parallel = 'no' for serial execution of the code.") } check_input_cl(x = x, d = d, method = method, block = block, use = use) if (!is.null(x)) { if (is.matrix(x)) { x.all <- x } if (is.list(x)) { len.x <- length(x) dim.x <- unlist(lapply(x, nrow)) colnames.x <- lapply(x, colnames) unique.colnames.x <- unique(x = unlist(colnames.x)) x.all <- matrix(NA, nrow = sum(dim.x), ncol = length(unique.colnames.x)) colnames(x.all) <- unique.colnames.x cumsum.dim <- cumsum(c(0, dim.x)) for (i in seq_len(len.x)) { x.all[(cumsum.dim[i] + 1):(cumsum.dim[i + 1]), colnames.x[[i]]] <- x[[i]] } } } resultDendr <- if (!is.null(x) & !is.null(block)) { cluster_the_blocks <- local({ x.all block method use function(givenBlock) { tryCatch_W_E(cluster_one_block(x = x.all, block = block, d = NULL, method = method, use = use, givenBlock = givenBlock), ret.obj = NA) }}) if (sort.parallel) { unique.blocks <- names(sort(table(block[, 2]), decreasing = TRUE)) } else { unique.blocks <- unique(block[, 2]) } if (do.parallel) { if (parallel == "multicore") { parallel::mclapply(unique.blocks, cluster_the_blocks, mc.cores = ncpus) } else if (parallel == "snow") { if (is.null(cl)) { cl <- parallel::makePSOCKcluster(rep("localhost", ncpus)) parallel::clusterExport(cl, varlist = getNamespaceExports("hierinf")) if(RNGkind()[1L] == "L'Ecuyer-CMRG") parallel::clusterSetRNGStream(cl) res <- parallel::parLapply(cl, unique.blocks, cluster_the_blocks) parallel::stopCluster(cl) res } else parallel::parLapply(cl, unique.blocks, cluster_the_blocks) } } else lapply(unique.blocks, cluster_the_blocks) } else if (!is.null(x) & is.null(block)) { list(tryCatch_W_E(cluster_one_block(x = x.all, block = NULL, d = NULL, method = method, use = use, givenBlock = NULL), ret.obj = NA)) } else if (!is.null(d)) { list(tryCatch_W_E(cluster_one_block(x = NULL, block = NULL, d = d, method = method, use = use, givenBlock = NULL), ret.obj = NA)) } if (!is.null(x) & !is.null(block)) { names(resultDendr) <- unique.blocks } resultDendr <- do.call(cbind, resultDendr) resD <- resultDendr["value", ] attr(resD,"errorMsgs") <- do.call(c, resultDendr["error", ]) attr(resD, "warningMsgs") <- do.call(c, resultDendr["warning", ]) if (!is.null(attr(resD, "errorMsgs"))) { warning("There occurred some errors while clustering. See attribute 'errorMsgs' of the corresponding list element of the return object for more details.") } if (!is.null(attr(resD, "warningMsgs"))) { warning("There occurred some warnings while clustering. See attribute 'warningMsgs' of the corresponding list element of the return object for more details.") } resDD <- list("block" = block, "res.tree" = resD) resDD <- structure(resDD, class = c("hierD", "list")) return(resDD) } cluster_one_block <- function(x, d, method, block, use, givenBlock) { if (!is.null(x)) { if (!is.null(block)) { indX <- which(colnames(x) %in% block[block[, 2] == givenBlock, 1]) }else{ indX <- seq_len(ncol(x)) } d <- 1 - abs(stats::cor(x = x[, indX], use = use))^2 } dist.matrix <- stats::as.dist(m = d) if (!all(!is.na(dist.matrix))) { stop("There are NA's in the calculated dissimilarity matrix / distance matrix. The variables cannot be clustered. This might be due to multiple data sets which do not contain all the same variables.") } x.hclust <- stats::hclust(d = dist.matrix, method = method) x.dendr <- stats::as.dendrogram(object = x.hclust) return(x.dendr) }
context("Functions that create interpretable inputs") testthat::test_that("Extracting numerical features is okay", { testthat::expect_equal( extract_numerical_feature(c("x > 4", "x <= 4"), 5)$label, "x > 4" ) testthat::expect_equal( extract_numerical_feature(c("x > 4", "x <= 4"), 4)$label, "x <= 4" ) testthat::expect_equal( extract_numerical_feature(c("x <= 4 & x <= 5", "x > 5 & x <= 8"), 3)$label, "x <= 4" ) testthat::expect_equal( extract_numerical_feature(c("x <= 4 & x <= 5", "x > 5 & x <= 8"), 7)$label, "5 < x <= 8" ) })
knitr::opts_chunk$set(echo = TRUE) library(PKNCA) library(dplyr) method.choices <- names(PKNCA:::interp.extrap.conc.dose.select) method.choices <- factor(method.choices, levels=method.choices, ordered=TRUE) all_combs <- expand.grid(event_before=setdiff(unlist(PKNCA:::event_choices_interp.extrap.conc.dose), "output_only"), event=setdiff(unlist(PKNCA:::event_choices_interp.extrap.conc.dose), "none"), event_after=setdiff(unlist(PKNCA:::event_choices_interp.extrap.conc.dose), "output_only"), Method="", stringsAsFactors=FALSE) for (n in method.choices) { mask <- do.call(PKNCA:::interp.extrap.conc.dose.select[[n]]$select, list(x=all_combs), envir=environment(pk.nca)) all_combs$Method[mask] <- n } all_combs <- all_combs[do.call(order, args=append(as.list(all_combs), list(na.last=FALSE))),] methodorder <- names(sort(summary(factor(all_combs$Method)), decreasing=TRUE)) for (n in methodorder) { cat(" cat(PKNCA:::interp.extrap.conc.dose.select[[n]]$description, "\n\n", sep="") print(knitr::kable( all_combs[all_combs$Method %in% n, c("event_before","event", "event_after")], row.names=FALSE, col.names=c("Event Before", "Event At", "Event After"))) cat("\n") } knitr::kable( all_combs[,c("event_before", "event", "event_after", "Method")], row.names=FALSE, col.names=c("Event Before", "Event At", "Event After", "Method Used"))
define_dimension <- function(st, name = NULL, attributes = NULL) { UseMethod("define_dimension") } define_dimension.dimensional_model <- function(st, name = NULL, attributes = NULL) { stopifnot(!is.null(name)) stopifnot(!(name %in% names(st$dimension))) stopifnot(length(attributes) > 0) stopifnot(length(attributes) == length(unique(attributes))) attributes_defined <- get_attribute_names(st) for (attribute in attributes) { stopifnot(!(attribute %in% attributes_defined)) } if (is.null(st$dimension)) { st$dimension <- list(name = attributes) names(st$dimension) <- name } else { dim_names <- names(st$dimension) st$dimension <- c(st$dimension, list(name = attributes)) names(st$dimension) <- c(dim_names, name) } st }
forecast_infections <- function(infections, rts, gt_mean, gt_sd, gt_max = 30, ensemble_type = "mean", forecast_model, CrIs = c(0.2, 0.5, 0.9), horizon = 14, samples = 1000){ if (!requireNamespace("EpiSoon", quietly = TRUE)) { stop('The EpiSoon package is missing. Install it with: install.packages("drat"); drat:::add("epiforecasts"); install.packages("EpiSoon")') } data.table::setDTthreads(1) infections <- data.table::setDT(infections) rts <- data.table::setDT(rts) if (missing(forecast_model)) { stop("A forecasting model has not been supplied so no forecast can be produced. See the documentation for examples.") } sample_forecast <- function(df, samples) { safe_forecast <- purrr::safely(EpiSoon::forecast_rt) rt_forecasts <- data.table::setDT( safe_forecast(rts = df[, .(date, rt = mean)], model = forecast_model, horizon = horizon, samples = samples)[[1]] ) rt_sd <- df[date == max(date, na.rm = TRUE)]$sd rt_sd <- ifelse(rt_sd <= 0, 1e-3, rt_sd) rt_forecasts <- rt_forecasts[, rt := purrr::map_dbl(rt, ~ truncnorm::rtruncnorm(1, a = 0, mean = ., sd = rt_sd))][, .(sample, date, horizon, rt)] return(rt_forecasts) } rt_forecast <- sample_forecast(rts, samples = samples) generate_pmf <- function(mean, sd, max_value) { params <- list( alpha = (mean/sd)^2, beta = mean/sd^2 ) sample_fn <- function(n, ...) { c(0, EpiNow2::dist_skel(n = n, model = "gamma", params = params, max_value = max_value, ...)) } dist_pdf <- sample_fn(0:(max_value - 1), dist = TRUE, cum = FALSE) return(dist_pdf) } generation_pmf <- generate_pmf(gt_mean, gt_sd, max_value = gt_max) case_forecast <- sample_forecast(infections, samples = samples)[, `:=`(cases = rt, forecast_type = "case")][, rt := NULL] case_rt_forecast <- data.table::setDT( EpiSoon::forecast_cases( cases = infections[, .(date, cases = mean)], fit_samples = rt_forecast, rdist = rpois, serial_interval = generation_pmf ) ) case_rt_forecast <- case_rt_forecast[, cases := purrr::map_dbl(cases, ~ as.integer(truncnorm::rtruncnorm(1, a = 0, mean = ., sd = infections$sd[nrow(infections)])))][, forecast_type := "rt"] case_forecast <- data.table::rbindlist(list( case_forecast, case_rt_forecast), use.names = TRUE) if (ensemble_type %in% "mean") { ensemble_forecast <- data.table::copy(case_forecast)[, .(cases = mean(cases, na.rm = TRUE), forecast_type = "ensemble"), by = .(sample, date, horizon)] case_forecast <- data.table::rbindlist(list(case_forecast, ensemble_forecast)) } forecast <- data.table::rbindlist(list( rt_forecast[, value := rt][, rt := NULL][, type := "rt"], case_forecast[, value := cases][, cases := NULL][, type := "case"] ), fill = TRUE) summarised_forecast <- calc_summary_measures(forecast, summarise_by = c("date", "type", "forecast_type"), order_by = c("type", "forecast_type", "date"), CrIs = CrIs) out <- list(samples = forecast, summarised = summarised_forecast) return(out) }
mris_convert_vertex = function( opts = "", ... ){ opts = paste(opts, collapse = " ") opts = paste0(opts, " ", "-v ") outfile = mris_convert(..., opts = opts) return(outfile) }
setMethod("shape1", "BetaParameter", function(object) object@shape1) setMethod("shape2", "BetaParameter", function(object) object@shape2) setMethod("ncp", "BetaParameter", function(object) object@ncp) setReplaceMethod("shape1", "BetaParameter", function(object, value){ object@shape1 <- value; object}) setReplaceMethod("shape2", "BetaParameter", function(object, value){ object@shape2 <- value; object}) setReplaceMethod("ncp", "BetaParameter", function(object, value){ object@ncp <- value; object}) setValidity("BetaParameter", function(object){ if(length(shape1(object)) != 1) stop("shape1 has to be a numeric of length 1") if(shape1(object) <= 0) stop("shape1 has to be positive") if(length(shape2(object)) != 1) stop("shape2 has to be a numeric of length 1") if(shape2(object) <= 0) stop("shape2 has to be positive") if(length(ncp(object)) != 1) stop("ncp has to be a numeric of length 1") else return(TRUE) } ) Beta <- function(shape1 = 1, shape2 = 2, ncp = 0) new("Beta", shape1 = shape1, shape2 = shape2, ncp = ncp) setMethod("shape1", "Beta", function(object) shape1(param(object))) setMethod("shape2", "Beta", function(object) shape2(param(object))) setMethod("ncp", "Beta", function(object) ncp(param(object))) setMethod("shape1<-", "Beta", function(object, value) new("Beta", shape1 = value, shape2 = shape2(object), ncp = ncp(object))) setMethod("shape2<-", "Beta", function(object, value) new("Beta", shape1 = shape1(object), shape2 = value, ncp = ncp(object))) setMethod("ncp<-", "Beta", function(object, value) new("Beta", shape1 = shape1(object), shape2 = shape2(object), ncp = value)) setMethod("-", c("numeric","Beta"), function(e1, e2) {if(isTRUE(all.equal(e1,1))&& isTRUE(all.equal(ncp(e2),0))) return(Beta(shape1=shape2(e2),shape2=shape1(e2))) else e1-as(e2,"AbscontDistribution")})
summary.fitdstn <- function(object, ...) { object }
`labels.setupSNP` <- function(object, ...) attr(object,"label.SNPs")
formatResult <- function(text, themestring, labelstring, oneline, formatR = TRUE) { result <- NULL if (!is.null(themestring) && length(themestring) > 0) { if (oneline) { result <- paste0(' + theme(', paste(themestring, collapse = ', '),')') } else { result <- paste0(paste(text, ' <- ', text, ' + theme(', themestring, ')', sep = ''), collapse = '\n') } } if (!is.null(labelstring)) { if (oneline) { result <- c(result, ' + ', labelstring) } else { labelstring <- paste0(text, ' <- ', text, ' + ', labelstring) result <- paste(c(result, labelstring), collapse = '\n') } } if (oneline) { if (formatR) { result <- formatR::tidy_source(text = result, output = FALSE, width.cutoff = 40)$text.tidy result <- gsub('^\\+theme', ' + theme', result) } result <- paste0(text, paste(result, collapse = ' ')) } result <- paste(result, collapse = "\n") return(result) }
distr_crit <- function(target, feature, criterion = "ig", iter_limit = 200) { n <- length(target) if (length(feature) != n) { stop("Target and feature have different lengths.") } if (!all(target %in% c(0, 1))) { stop("Target is not {0,1}-valued vector.") } if (!all(feature %in% c(0,1)) ) { stop("Feature is not {0,1}-valued vector.") } valid_criterion <- check_criterion(criterion) crit_function <- function(target, features) calc_criterion(target, features, valid_criterion[["crit_function"]]) non_zero_target <- sum(target) non_zero_feat <- sum(feature) p <- non_zero_target/n q <- non_zero_feat/n max_iter <- min(non_zero_target, non_zero_feat) min_iter <- max(0, non_zero_target + non_zero_feat - n) cross_tab <- fast_crosstable(target, length(target), sum(target), feature) if (is.null(iter_limit)) iter_limit <- max_iter crit_range <- max_iter - min_iter possible_crit_values <- if(crit_range > iter_limit) { round(seq(from = min_iter, to = max_iter, length.out = iter_limit), 0) } else { min_iter:max_iter } diff_conts <- sapply(possible_crit_values, function(i) { k <- c(i, non_zero_feat - i, non_zero_target - i, n - non_zero_target - non_zero_feat + i) prob_log <- dmultinom(x = k, size = n, prob = c(p*q, (1-p)*q, p*(1-q), (1-p)*(1-q)), log = TRUE) ft_data <- do.call(create_feature_target, as.list(k)) vals <- unname(crit_function(ft_data[,1], ft_data[, 2, drop = FALSE])) c(prob_log = prob_log, vals = vals) }) dist_temp <- exp(diff_conts["prob_log", ])/sum(exp(diff_conts["prob_log", ])) dist_temp <- dist_temp[order(diff_conts["vals", ])] val_temp <- diff_conts["vals", ][order(diff_conts["vals", ])] j <- 1 criterion_distribution <- dist_temp[1] criterion_values <- val_temp[1] if(length(val_temp) > 1) for(i in 2L:length(val_temp)) { if (abs(val_temp[i - 1] - val_temp[i]) < 1e-10) { criterion_values[j] <- criterion_values[j] criterion_distribution[j] <- criterion_distribution[j] + dist_temp[i] } else { j <- j + 1 criterion_values[j] <- val_temp[i] criterion_distribution[j] <- dist_temp[i] } } create_criterion_distribution(criterion_values, criterion_distribution, possible_crit_values, diff_conts["vals", ], exp(diff_conts["prob_log", ])/sum(exp(diff_conts["prob_log", ])), valid_criterion[["nice_name"]]) }
readRasterFolder <- function(path, samplename = 'sample', filenames = NULL, object = new('rasclass'), asInteger = FALSE){} setMethod('readRasterFolder', signature(path = 'character'), function(path, samplename = 'sample', filenames = NULL, object = new('rasclass'), asInteger = FALSE){ if(substr(samplename, nchar(samplename)-3, nchar(samplename)) == '.asc'){ samplename <- substr(samplename, 1, nchar(samplename)-4) } object@samplename <- samplename if(substr(path,nchar(path), nchar(path)) != '/'){ path <- paste(path,'/', sep='') } object@path <- path userwd <- getwd() on.exit(setwd(userwd)) setwd(path) if(length(filenames) == 0){ filelist <- Sys.glob('*.asc') filelist <- filelist[filelist != paste(object@samplename, '.asc' , sep='')] } else{ filelist <- NA for(i in 1:length(filenames)){ file <- filenames[i] if(substr(file, nchar(file)-3, nchar(file)) == '.asc'){ filelist[i] <- file } else { filelist[i] <- paste(file, '.asc', sep='') } } } namelist <- substr(filelist, 1, nchar(filelist)-4) cat('\nReading Raster grids from "', getwd(), '"\n', sep ='') cat(paste(paste(object@samplename),'.asc',sep=''), '\n') thissample <- readRaster(paste(object@samplename, '.asc', sep=''), asInteger = asInteger) object@data <- data.frame(thissample@grid) object@gridSkeleton@ncols <- thissample@ncols object@gridSkeleton@nrows <- thissample@nrows object@gridSkeleton@xllcorner <- thissample@xllcorner object@gridSkeleton@yllcorner <- thissample@yllcorner object@gridSkeleton@cellsize <- thissample@cellsize object@gridSkeleton@NAvalue <- thissample@NAvalue rm(thissample) for(i in 1:length(filelist)){ cat(filelist[i], '\n') tempraster <- readRaster(filelist[i], asInteger = asInteger) if( object@gridSkeleton@nrows != tempraster@nrows | object@gridSkeleton@ncols != tempraster@ncols | object@gridSkeleton@xllcorner != tempraster@xllcorner | object@gridSkeleton@yllcorner != tempraster@yllcorner | object@gridSkeleton@cellsize != tempraster@cellsize ){ stop('The input raster grids do not all have the same header') } if(i == 1){ object@data <- data.frame(object@data, tempraster@grid) object@gridSkeleton@grid <- as.integer(!is.na(tempraster@grid)) } else{ object@data <- data.frame(object@data, tempraster@grid[as.logical(object@gridSkeleton@grid)]) object@gridSkeleton@grid <- as.integer(object@gridSkeleton@grid * !is.na(tempraster@grid)) } object@data <- object@data[!is.na(object@data[, i+1]), ] } names(object@data) <- append(object@samplename, namelist) object <- buildFormula(object) object } )
chrvec2dl <- function(x, splt="-"){ m <- splt layers <- length(strsplit(x[1], split = m)[[1]]) rpt <- length(x) ept_list <- list() result <- list(ept_list)[rep(1,layers)] if (rpt==1){ x <- as.character(x) i <- 1 for (i in 1:layers) { result[[i]] <- strsplit(x[1], split = m)[[1]][i] } } if (is.vector(x) != TRUE){ stop("input data should be a vector", call. = FALSE) } if (is.character(x) != TRUE){ x <- as.character(x) } length_vec <- c(1:rpt) i <- 1 for (i in 1:rpt) { length_vec[i] <- length(strsplit(x[i], split = m)[[1]]) } layers <- max(length_vec) result <- list(ept_list)[rep(1,layers)] j <- 1 i <- 1 while (j <= layers) { temp_vec <- c() for (i in 1:rpt) { if (j > length_vec[i]){ temp_vec <- append(temp_vec, "*") } else { temp_vec <- append(temp_vec, strsplit(x[i], split = m)[[1]][j]) } } result[[j]] <- temp_vec j <- j + 1 } i <- 1 for (i in 1:layers) { result[[i]] <- levels(factor(result[[i]])) } class(result) <- "Double.List" return(result) }
StatsBombFreeLineups <- function(MatchesDF = "ALL", Parallel = T){ print("Whilst we are keen to share data and facilitate research, we also urge you to be responsible with the data. Please register your details on https://www.statsbomb.com/resource-centre and read our User Agreement carefully.") events.df <- tibble() if(Parallel == T){ if(MatchesDF == "ALL"){ Comp <- FreeCompetitions() Matches2 <- FreeMatches(Comp$competition_id) cl <- makeCluster(detectCores()) registerDoParallel(cl) events.df <- foreach(i = 1:dim(Matches2)[1], .combine=bind_rows, .multicombine = TRUE, .errorhandling = 'remove', .export = c("get.lineupsFree"), .packages = c("httr", "jsonlite", "dplyr")) %dopar% {get.lineupsFree(Matches2[i,])} stopCluster(cl) } else { cl <- makeCluster(detectCores()) registerDoParallel(cl) events.df <- foreach(i = 1:dim(MatchesDF)[1], .combine=bind_rows, .multicombine = TRUE, .errorhandling = 'remove', .export = c("get.lineupsFree"), .packages = c("httr", "jsonlite", "dplyr")) %dopar% {get.lineupsFree(MatchesDF[i,])} stopCluster(cl) } } else { if(MatchesDF == "ALL"){ Comp <- FreeCompetitions() Matches2 <- FreeMatches(Comp$competition_id) for(i in 1:length(Matches2$match_id)){ events <- get.lineupsFree(Matches2[i,]) events.df <- bind_rows(events.df, events) } } else { for(i in 1:length(MatchesDF$match_id)){ events <- get.lineupsFree(MatchesDF[i,]) events.df <- bind_rows(events.df, events) } } } return(events.df) }
spark_schema_from_rdd <- function(sc, rdd, column_names) { columns_typed <- length(names(column_names)) > 0 if (columns_typed) { schema <- spark_data_build_types(sc, column_names) return(schema) } sampleRows <- rdd %>% invoke( "take", cast_scalar_integer( spark_config_value(sc$config, "sparklyr.apply.schema.infer", 10) ) ) map_special_types <- list( date = "date", posixct = "timestamp", posixt = "timestamp" ) colTypes <- NULL lapply(sampleRows, function(r) { row <- r %>% invoke("toSeq") if (is.null(colTypes)) { colTypes <<- replicate(length(row), "character") } lapply(seq_along(row), function(colIdx) { colVal <- row[[colIdx]] lowerClass <- tolower(class(colVal)[[1]]) if (lowerClass %in% names(map_special_types)) { colTypes[[colIdx]] <<- map_special_types[[lowerClass]] } else if (!is.na(colVal) && !is.null(colVal)) { colTypes[[colIdx]] <<- typeof(colVal) } }) }) if (any(sapply(colTypes, is.null))) { stop("Failed to infer column types, please use explicit types.") } fields <- lapply(seq_along(colTypes), function(idx) { name <- if (idx <= length(column_names)) { column_names[[idx]] } else { paste0("X", idx) } invoke_static( sc, "sparklyr.SQLUtils", "createStructField", name, colTypes[[idx]], TRUE ) }) invoke_static( sc, "sparklyr.SQLUtils", "createStructType", fields ) }
context("sjmisc, empty_cols") library(sjmisc) tmp <- data.frame(a = c(1, 2, 3, NA, 5), b = c(1, NA, 3, NA , 5), c = c(NA, NA, NA, NA, NA), d = c(1, NA, 3, NA, 5)) test_that("empty_cols", { expect_equal(unname(empty_cols(tmp)), 3) }) test_that("empty_rows", { expect_equal(empty_rows(tmp), 4) })
image.TPCmsm <- function(x, image.type="tc", tr.choice, xlim, ylim, zlim=c(0, 1), col, xlab, ylab, main, sub, key.title, key.axes, las=1, conf.int=FALSE, legend=TRUE, curvlab, contour=TRUE, nlevels=20, levels=pretty(zlim, nlevels), ...) { if ( !inherits(x, "TPCmsm") ) stop("'x' must be of class 'TPCmsm'") if ( !( image.type %in% c("tc", "ct") ) ) stop("Argument 'image.type' must be one of 'tc' or 'ct'") if ( missing(tr.choice) ) tr.choice <- dimnames(x$est)[[3]] lt <- length(tr.choice) if (sum( tr.choice %in% dimnames(x$est)[[3]] ) != lt) stop("Argument 'tr.choice' and possible transitions must match") if ( anyDuplicated(tr.choice) ) stop("Argument 'tr.choice' must be unique") draw.conf <- conf.int & !is.null(x$inf) & !is.null(x$sup) itr <- match( tr.choice, dimnames(x$est)[[3]] ) if ( missing(main) ) main <- "" if ( missing(sub) ) sub <- "" if ( missing(col) ) col <- heat.colors(nlevels)[nlevels:1] if ( missing(curvlab) ) curvlab <- tr.choice mat <- matrix(nrow=2*draw.conf+1, ncol=lt+1) par.orig <- par( c("mar", "las", "mfrow", "new") ) on.exit( par(par.orig) ) if (draw.conf) { mat[1,1:lt] <- (lt*2+1):(lt*3) mat[2,1:lt] <- 1:lt mat[3,1:lt] <- (lt+1):(lt*2) } else mat[1,1:lt] <- 1:lt mat[,ncol(mat)] <- rep( (2*draw.conf+1)*lt+1, nrow(mat) ) mar.orig <- par.orig$mar if (length(tr.choice) < 2 & !draw.conf) { w <- (3 + mar.orig[2L]) * par("csi") * 2.54 } else w <- (3 + mar.orig[2L]) * par("csi") * 2 layout( mat, widths=c( rep(1, lt), lcm(w) ) ) mar <- mar.orig mar[4L] <- 1 par(las=las, mar=mar) if (image.type == "tc") { if ( missing(xlab) ) xlab <- "Time" if ( missing(ylab) ) ylab <- "Covariate" if ( missing(xlim) ) xlim <- c(x$time[1], x$time[length(x$time)]) if ( missing(ylim) ) ylim <- c(x$covariate[1], x$covariate[length(x$covariate)]) for ( i in seq_len(lt) ) { image(x=x$time, y=x$covariate, z=x$est[,,itr[i]], xlim=xlim, ylim=ylim, zlim=zlim, col=col, main="", sub="", xlab="", ylab="", breaks=levels, ...) if (contour) contour(x=x$time, y=x$covariate, z=x$est[,,itr[i]], nlevels=nlevels, levels=levels, xlim=xlim, ylim=ylim, zlim=zlim, axes=FALSE, col=grey(0.4), add=TRUE) if (legend) title(main=curvlab[i], sub="", xlab="", ylab="", ...) } } else if (image.type == "ct") { if ( missing(xlab) ) xlab <- "Covariate" if ( missing(ylab) ) ylab <- "Time" if ( missing(xlim) ) xlim <- c(x$covariate[1], x$covariate[length(x$covariate)]) if ( missing(ylim) ) ylim <- c(x$time[1], x$time[length(x$time)]) for ( i in seq_len(lt) ) { image(x=x$covariate, y=x$time, z=t(x$est[,,itr[i]]), xlim=xlim, ylim=ylim, zlim=zlim, col=col, main="", sub="", xlab="", ylab="", breaks=levels, ...) if (contour) contour(x=x$covariate, y=x$time, z=t(x$est[,,itr[i]]), nlevels=nlevels, levels=levels, xlim=xlim, ylim=ylim, zlim=zlim, axes=FALSE, col=grey(0.4), add=TRUE) if (legend) title(main=curvlab[i], sub="", xlab="", ylab="", ...) } } if (draw.conf) { if (image.type == "tc") { for ( i in seq_len(lt) ) { image(x=x$time, y=x$covariate, z=x$inf[,,itr[i]], xlim=xlim, ylim=ylim, zlim=zlim, col=col, main="", sub="", xlab="", ylab="", breaks=levels, ...) if (contour) contour(x=x$time, y=x$covariate, z=x$inf[,,itr[i]], nlevels=nlevels, levels=levels, xlim=xlim, ylim=ylim, zlim=zlim, axes=FALSE, col=grey(0.4), add=TRUE) } for ( i in seq_len(lt) ) { image(x=x$time, y=x$covariate, z=x$sup[,,itr[i]], xlim=xlim, ylim=ylim, zlim=zlim, col=col, main="", sub="", xlab="", ylab="", breaks=levels, ...) if (contour) contour(x=x$time, y=x$covariate, z=x$sup[,,itr[i]], nlevels=nlevels, levels=levels, xlim=xlim, ylim=ylim, zlim=zlim, axes=FALSE, col=grey(0.4), add=TRUE) } } else if (image.type == "ct") { for ( i in seq_len(lt) ) { image(x=x$covariate, y=x$time, z=t(x$inf[,,itr[i]]), xlim=xlim, ylim=ylim, zlim=zlim, col=col, main="", sub="", xlab="", ylab="", breaks=levels, ...) if (contour) contour(x=x$covariate, y=x$time, z=t(x$inf[,,itr[i]]), nlevels=nlevels, levels=levels, xlim=xlim, ylim=ylim, zlim=zlim, axes=FALSE, col=grey(0.4), add=TRUE) } for ( i in seq_len(lt) ) { image(x=x$covariate, y=x$time, z=t(x$sup[,,itr[i]]), xlim=xlim, ylim=ylim, zlim=zlim, col=col, main="", sub="", xlab="", ylab="", breaks=levels, ...) if (contour) contour(x=x$covariate, y=x$time, z=t(x$sup[,,itr[i]]), nlevels=nlevels, levels=levels, xlim=xlim, ylim=ylim, zlim=zlim, axes=FALSE, col=grey(0.4), add=TRUE) } } } mar <- par("mar") mar[4L] <- mar[2L] mar[2L] <- 1 par(mar=mar) plot.new() plot.window(xlim=c(0, 1), ylim=range(levels), xaxs="i", yaxs="i") rect(0, levels[-length(levels)], 1, levels[-1L], col=col) if ( missing(key.axes) ) { axis(4) } else key.axes box() if ( missing(key.title) ) { if (length(tr.choice) < 2 & !draw.conf) { cex.main <- 0.8 } else cex.main <- 1 title(main="Transition\nprobability", cex.main=cex.main) } else key.title par(par.orig) par(new=TRUE) plot.new() title(main=main, sub=sub, xlab=xlab, ylab=ylab, cex.main=1.2, cex.lab=1.2, ...) invisible() }
material_side_nav <- function(..., fixed = FALSE, image_source = NULL, background_color = NULL){ if(is.null(image_source)){ side_nav_content <- shiny::tagList(...) } else { side_nav_content <- shiny::tagList( shiny::tags$li( shiny::tags$div( style = "height:160px", class = "user-view", shiny::tags$div( class = "background", shiny::tags$img( style = "height:160px;width:300px", src = image_source ) ) ) ), ... ) } css_file <- paste0( "css/shiny-material-side-nav", ifelse( fixed, "-fixed", "" ), ifelse( !is.null(image_source), "-image", "" ), ".css" ) shiny::tagList( shiny::includeCSS( system.file( css_file, package = "shinymaterial" ) ), shiny::tags$ul( id = "slide-out", class = paste0( "sidenav", ifelse( !is.null(background_color), paste0(" ", background_color), "" ), ifelse( fixed, " sidenav-fixed", "" ) ), side_nav_content ), shiny::includeScript( system.file( paste0( "js/shiny-material-side-nav", ifelse( fixed, "-fixed", ""), ".js" ), package = "shinymaterial" ) ) ) }
plev <- function(z) { exp(-exp(-z)) }
"table"
generics::augment augment.dr4pl <- function(x, data = NULL, ...) { if (...length()>0) abort("... were used in `augment.dr4pl`. These dots are only present for future extension and should be empty.") data <- data %||% x$data mapping <- parse_dr4pl_mapping(x$call) if (inherits(mapping, "no_mapping")) abort("cannot use `augment.dr4pl` when dr4pl object was constructed with the `dr4pl.default` method.\nConstruct dr4pl with formula or data.frame method.") .dose <- eval(mapping$Dose, data) .resp <- eval(mapping$Response, data) .fitted <- MeanResponse(coef(x), x = .dose) .resid <- residuals(coef(x), dose = .dose, response = .resp) data[['.fitted']] <- .fitted data[['.resid']] <- .resid if(requireNamespace("tibble", quietly = T)){ return(tibble::as_tibble(data)) } else { return(data) } } parse_dr4pl_mapping <- function(call){ args <- call_args(call) args <- switch(names(args)[1], formula = mapping_parser("parse_formula", args), data = mapping_parser("parse_data", args), mapping_parser("parse_default", args)) arg_parse(args) } mapping_parser <- function(.class, args) { structure(args, class = .class) } arg_parse <- function(args) UseMethod('arg_parse') arg_parse.parse_formula <- function(args) { list( Response = args[[1]][[2]], Dose = args[[1]][[3]] ) } arg_parse.parse_data <- function(args) { list( Response = args$response, Dose = args$dose ) } arg_parse.parse_default <- function(args) { structure(list(), class = "no_mapping") } call_args <- function(call){ args <- as.list(call[-1]) stats::setNames(args, nm = names(args)) }
print.treeClust <- function(x, ...) { cat("Call:\n") cat(deparse(x$call), "\n") if (any (names (x) == "mat")) cat("Structure is ", nrow(x$mat), "by", ncol(x$mat), "\n") if (x$final.algorithm == "None") cat ("No final clustering was performed\n") else cat (paste ("Final clustering by", x$final.algorithm, "\n")) print(x$tbl) }
rehash <- function(prompt = interactive(), ...) { renv_scope_error_handler() renv_dots_check(...) invisible(renv_rehash_impl(prompt)) } renv_rehash_impl <- function(prompt) { oldcache <- renv_paths_cache(version = renv_cache_version_previous())[[1L]] newcache <- renv_paths_cache(version = renv_cache_version())[[1L]] if (file.exists(oldcache) && !file.exists(newcache)) renv_rehash_cache(oldcache, prompt, renv_file_copy, "copied") renv_rehash_cache(newcache, prompt, renv_file_move, "moved") } renv_rehash_cache <- function(cache, prompt, action, label) { old <- renv_cache_list(cache = cache) vprintf("* Re-computing package hashes ... ") new <- map_chr(old, renv_progress(renv_cache_path, length(old))) vwritef("Done!") changed <- which(old != new & file.exists(old) & !file.exists(new)) if (empty(changed)) { vwritef("* Your cache is already up-to-date -- nothing to do.") return(TRUE) } if (prompt) { fmt <- "%s [%s -> %s]" packages <- basename(old)[changed] oldhash <- renv_path_component(old[changed], 2L) newhash <- renv_path_component(new[changed], 2L) renv_pretty_print( sprintf(fmt, format(packages), format(oldhash), format(newhash)), "The following packages will be re-cached:", sprintf("Packages will be %s to their new locations in the cache.", label), wrap = FALSE ) if (prompt && !proceed()) { renv_report_user_cancel() return(FALSE) } } sources <- old[changed] targets <- new[changed] names(sources) <- targets names(targets) <- sources vprintf("* Re-caching packages ... ") enumerate(targets, renv_progress(action, length(targets))) vwritef("Done!") n <- length(targets) fmt <- "Successfully re-cached %i %s." vwritef(fmt, n, plural("package", n)) renv_cache_clean_empty() TRUE }
ch_lon <- function(n = 1) { assert(n, c('integer', 'numeric')) if (n == 1) { CoordinateProvider$new()$lon() } else { x <- CoordinateProvider$new() replicate(n, x$lon()) } } ch_lat <- function(n = 1) { assert(n, c('integer', 'numeric')) if (n == 1) { CoordinateProvider$new()$lat() } else { x <- CoordinateProvider$new() replicate(n, x$lat()) } } ch_position <- function(n = 1, bbox = NULL) { assert(n, c('integer', 'numeric')) if (n == 1) { CoordinateProvider$new()$position(bbox) } else { x <- CoordinateProvider$new() replicate(n, x$position(bbox), FALSE) } }
"mathpnl"
cbs_get_themes <- function(..., select=NULL, verbose = TRUE, cache = FALSE , base_url = getOption("cbsodataR.base_url", BASE_URL)){ url <- whisker.render("{{BASEURL}}/{{CATALOG}}/Themes?$format=json" , list( BASEURL = base_url , CATALOG = CATALOG ) ) url <- paste0(url, get_query(..., select=select)) themes <- resolve_resource(url, "Retrieving themes from ", verbose = verbose, cache = cache) themes } cbs_get_tables_themes <- function(..., select=NULL, verbose = FALSE, cache = TRUE , base_url = getOption("cbsodataR.base_url", BASE_URL)){ url <- whisker.render("{{BASEURL}}/{{CATALOG}}/Tables_Themes?$format=json" , list( BASEURL = base_url , CATALOG = CATALOG ) ) url <- paste0(url, get_query(..., select=select)) table_themes <- resolve_resource(url, "Retrieving themes from ", cache = cache, verbose = verbose) table_themes }
options(stringsAsFactors=TRUE) file.create("foo1") try(read.table("foo1")) read.table("foo1", col.names=LETTERS[1:4]) unlink("foo1") cat("head\n", file = "foo2") read.table("foo2") try(read.table("foo2", header=TRUE)) unlink("foo2") cat("head\n", 1:2, "\n", 3:4, "\n", file = "foo3") read.table("foo3", header=TRUE) read.table("foo3", header=TRUE, col.names="V1") read.table("foo3", header=TRUE, row.names=1) read.table("foo3", header=TRUE, row.names="row.names") read.table("foo3", header=TRUE, row.names="head") try(read.table("foo3", header=TRUE, col.names=letters[1:4])) unlink("foo3") cat("head\n", 1:2, "\n", 3:4, file = "foo4") read.table("foo4", header=TRUE) unlink("foo4") cat("head\n\n", 1:2, "\n", 3:4, "\n\n", file = "foo5") read.table("foo5", header=TRUE) read.table("foo5", header=FALSE, fill=TRUE, blank.lines.skip=FALSE) unlink("foo5") cat("head\n", 1:2, "\n", 3:5, "\n", 6:9, "\n", file = "foo6") try(read.table("foo6", header=TRUE)) try(read.table("foo6", header=TRUE, fill=TRUE)) read.table("foo6", header=FALSE, fill=TRUE) unlink("foo6") cat("A B C D E F\n", "1 1 1.1 1.1+0i NA F abc\n", "2 NA NA NA NA NA NA\n", "3 1 2 3 NA TRUE def\n", sep = "", file = "foo7") (res <- read.table("foo7")) sapply(res, typeof) sapply(res, class) (res2 <- read.table("foo7", colClasses = c("character", rep("numeric", 2), "complex", "integer", "logical", "character"))) sapply(res2, typeof) sapply(res2, class) unlink("foo7") type.convert(character(0)) cat(" " " " " " " a b c", " "1 2 3", "4 5 6 " "7 8 9", " file= "ex.data", sep="\n") read.table("ex.data", header = T) unlink("ex.data") cat("x1\tx read.table("test.dat", header=T, comment.char="") unlink("test.dat") cat(' 'C1\tC2\tC3\n"Panel"\t"Area Examined"\t" '"1"\t"0.8"\t"3"\n', '"2"\t"0.6"\t"2"\n', '"3"\t"0.8"\t"3"\n', file = "test.dat", sep="") read.table("test.dat") unlink("test.dat") cat('%comment\n\n%another\n%\n%\n', 'C1\tC2\tC3\n"Panel"\t"Area Examined"\t"% Blemishes"\n', '"1"\t"0.8"\t"3"\n', '"2"\t"0.6"\t"2"\n', '"3"\t"0.8"\t"3"\n', file = "test.dat", sep="") read.table("test.dat", comment.char = "%") unlink("test.dat") con <- file(file.path(Sys.getenv("SRCDIR"), "WinUnicode.dat"), encoding="UCS-2LE") scan(con, 0, quiet=TRUE) close(con) x <- "1 2 3 \\ab\\c" writeLines(x, "test.dat") readLines("test.dat") scan("test.dat", "", allowEscapes=TRUE) scan("test.dat", "", allowEscapes=FALSE) read.table("test.dat", header=FALSE, allowEscapes=TRUE) read.table("test.dat", header=FALSE, allowEscapes=FALSE) x <- c("TEST", 1, 2, "\\b", 4, 5, "\\040", "\\x20", "c:\\spencer\\tests", "\\t", "\\n", "\\r") writeLines(x, "test.dat") read.table("test.dat", allowEscapes=FALSE, header = TRUE) unlink("test.dat")
tidy_up_ <- function(data, flatten_weather_ = TRUE, use_underscore_ = TRUE, remove_prefix_ = c("main", "sys")) { .Deprecated("owmr_as_tibble") if (flatten_weather_ & "weather" %in% colnames(data)) { data %<>% cbind_weather() } if (!is.null(remove_prefix_)) { data %<>% remove_prefix(remove_prefix_) } if (use_underscore_) { data %<>% use_underscore() } data } tidy_up <- function(data, ...) { data$list %<>% tidy_up_(...) data }
library("git2r") sessionInfo() path <- tempfile(pattern = "git2r-") dir.create(path) repo <- init(path, bare = TRUE) stopifnot(identical(is_bare(repo), TRUE)) stopifnot(identical(is_empty(repo), TRUE)) stopifnot(is.null(workdir(repo))) setwd(path) stopifnot(identical(is_bare(), TRUE)) unlink(path, recursive = TRUE)