code
stringlengths 1
13.8M
|
---|
conditional_means.instrumental_forest <- function(object, ...) {
tau.hat <- predict(object, ...)$predictions
Y.hat.0 <- object$Y.hat - object$W.hat * tau.hat
Y.hat.1 <- object$Y.hat + (1 - object$W.hat) * tau.hat
cbind("control" = Y.hat.0, "treated" = Y.hat.1)
}
double_robust_scores.instrumental_forest <- function(object, compliance.score = NULL, ...) {
if (is.null(compliance.score)) {
compliance.forest <- grf::causal_forest(
X = object$X.orig,
Y = object$W.orig,
W = object$Z.orig,
Y.hat = object$W.hat,
W.hat = object$Z.hat
)
compliance.score <- predict(compliance.forest)$predictions
}
Z.orig <- object$Z.orig
Z.hat <- object$Z.hat
Y.orig <- object$Y.orig
Y.hat <- object$Y.hat
W.orig <- object$W.orig
W.hat <- object$W.hat
tau.hat <- predict(object)$predictions
g.hat <- 1 / compliance.score * (Z.orig - Z.hat) / (Z.hat * (1 - Z.hat))
dr.correction <- g.hat * (Y.orig - Y.hat - (W.orig - W.hat) * tau.hat)
gamma <- tau.hat + dr.correction
cbind("control" = -gamma, "treated" = gamma)
}
|
summary.rmlr <- function(object, ...){
if (object$Penalization==0)
cat("Multinomial Logistic Regression\n")
else{
cat("Ridge Multinomial Logistic Regression\n")
cat("Penalization : ", object$Penalization,"\n\n")}
cat("\nSummary of the reponse\n")
print(object$itab)
cat("\n Model Fit :\n")
fit=matrix(c(object$Deviance, object$Difference, object$df , object$p), 1,4)
rownames(fit)="Final Model"
colnames(fit)=c(" -2 log Lik ", "Difference (Null)", " df", "P-value")
print(fit)
cat("\n\n")
Ps=rbind(object$CoxSnell, object$Nagelkerke, object$MacFaden)
rownames(Ps)=c("CoxSnell", "Nagelkerke", "MacFaden")
colnames(Ps)="Pseudo R-Squared"
print(Ps)
cat("\nOther fit indices (Information criteria)\n")
cat("AIC: ", object$AIC,"\n")
cat("BIC: ", object$BIC,"\n")
nlevels=dim(object$beta)[1]
lablevel=rownames(object$beta)
cat("\nParameter estimates :\n")
for (i in 1:nlevels){
cat("Response level : ", lablevel[i],"\n")
inf=cbind(object$beta[i,], object$stderr[i,], (object$beta[i,]/object$stderr[i,])^2, 1 - pchisq((object$beta[i,]/object$stderr[i,])^2, df = 1),
exp(object$beta[i,]), exp(object$beta[i,]-1.96*object$stderr[i,]), exp(object$beta[i,]+1.96*object$stderr[i,]))
colnames(inf)=c(" Beta", " Std. Error", " Wald", " p-value", "exp(Beta)", "CI : Lower", "CI : Upper")
print(round(inf, digits=4))}
cat("\nClassification :\n")
cat("\nTable :\n")
print(object$Table)
cat("\nPercentages :\n")
percent=round((diag(object$Table)/object$itab[,1])*100, digits=2)
print(percent)
cat("\nGlobal Percentage :", object$PercentCorrect,"\n")
}
|
context("df_to_x3p")
dftest2 <- dftest[sample(1:42, size = 38), c(1, 2, 4)]
test_that("df_to_x3p works as expected", {
suppressWarnings(
expect_error(
df_to_x3p(dftest[, 1:3]),
"!is.null.dframe\\$value. is not TRUE"
)
)
expect_silent(tmp <- df_to_x3p(dftest[, c(1, 2, 4, 5)]))
expect_equivalent(
tmp$surface.matrix,
matrix(dplyr::arrange(dftest, desc(y))$value,
byrow = F, nrow = 6
)
)
expect_equivalent(tmp$header.info, list(sizeX = 6, sizeY = 7, incrementX = 1, incrementY = 1))
expect_message(
x3ptest2 <- df_to_x3p(dftest2),
"dframe has missing values ... they will be expanded"
)
})
test_that("x3p_to_df works as expected", {
expect_silent(tmp <- x3p_to_df(x3ptest_mask))
expect_equivalent(
tmp %>%
dplyr::mutate(x = x + 1, y = y + 1) %>%
dplyr::arrange(y, x) %>%
dplyr::select(-annotation),
dftest[, c(1, 2, 4, 5)]
)
x3ptest2 <- x3ptest
x3ptest2$header.info <- list(sizeX = NULL, sizeY = NULL, incrementX = NULL, incrementY = NULL)
expect_warning(tmp2 <- x3p_to_df(x3ptest2))
expect_equivalent(sort(tmp2$value), sort(dftest$value))
x3ptest2 <- x3ptest
x3ptest2$header.info <- list(
sizeX = NULL, sizeY = NULL, incrementX = NULL, incrementY = NULL,
num_obs_per_profile = 6, num_profiles = 7, profile_inc = 1, obs_inc = 1
)
expect_silent(tmp3 <- x3p_to_df(x3ptest2))
expect_equivalent(sort(tmp3$value), sort(dftest$value))
})
|
get_parameters.zeroinfl <- function(x,
component = c("all", "conditional", "zi", "zero_inflated"),
...) {
component <- match.arg(component)
.return_zeroinf_parms(x, component)
}
get_parameters.hurdle <- get_parameters.zeroinfl
get_parameters.zerotrunc <- get_parameters.default
get_parameters.zcpglm <- function(x,
component = c("all", "conditional", "zi", "zero_inflated"),
...) {
component <- match.arg(component)
cf <- stats::coef(x)
cond <- data.frame(
Parameter = names(cf$tweedie),
Estimate = unname(cf$tweedie),
Component = "conditional",
stringsAsFactors = FALSE,
row.names = NULL
)
zi <- data.frame(
Parameter = names(cf$zero),
Estimate = unname(cf$zero),
Component = "zero_inflated",
stringsAsFactors = FALSE,
row.names = NULL
)
pars <- switch(component,
all = rbind(cond, zi),
conditional = cond,
zi = ,
zero_inflated = zi
)
if (component != "all") {
pars <- .remove_column(pars, "Component")
}
.remove_backticks_from_parameter_names(pars)
}
.return_zeroinf_parms <- function(x, component) {
cf <- stats::coef(x)
conditional <- grepl("^count_", names(cf), perl = TRUE)
zero_inflated <- grepl("^zero_", names(cf), perl = TRUE)
cond <- data.frame(
Parameter = names(cf)[conditional],
Estimate = unname(cf)[conditional],
Component = "conditional",
stringsAsFactors = FALSE,
row.names = NULL
)
zi <- data.frame(
Parameter = names(cf)[zero_inflated],
Estimate = unname(cf)[zero_inflated],
Component = "zero_inflated",
stringsAsFactors = FALSE,
row.names = NULL
)
pars <- switch(component,
all = rbind(cond, zi),
conditional = cond,
zi = ,
zero_inflated = zi
)
if (component != "all") {
pars <- .remove_column(pars, "Component")
}
.remove_backticks_from_parameter_names(pars)
}
get_parameters.mhurdle <- function(x,
component = c("all", "conditional", "zi", "zero_inflated", "infrequent_purchase", "ip", "auxiliary"),
...) {
component <- match.arg(component)
cf <- stats::coef(x)
cond_pars <- which(grepl("^h2\\.", names(cf)))
zi_pars <- which(grepl("^h1\\.", names(cf)))
ip_pars <- which(grepl("^h3\\.", names(cf)))
aux_pars <- (1:length(names(cf)))[-c(cond_pars, zi_pars, ip_pars)]
if (length(cond_pars)) {
cond_dat <- data.frame(
Parameter = names(cf)[cond_pars],
Estimate = unname(cf[cond_pars]),
Component = "conditional",
stringsAsFactors = FALSE,
row.names = NULL
)
} else {
cond_dat <- NULL
}
if (length(zi_pars)) {
zi_dat <- data.frame(
Parameter = names(cf)[zi_pars],
Estimate = unname(cf[zi_pars]),
Component = "zero_inflated",
stringsAsFactors = FALSE,
row.names = NULL
)
} else {
zi_dat <- NULL
}
if (length(ip_pars)) {
ip_dat <- data.frame(
Parameter = names(cf)[ip_pars],
Estimate = unname(cf[ip_pars]),
Component = "infrequent_purchase",
stringsAsFactors = FALSE,
row.names = NULL
)
} else {
ip_dat <- NULL
}
if (length(aux_pars)) {
aux_dat <- data.frame(
Parameter = names(cf)[aux_pars],
Estimate = unname(cf[aux_pars]),
Component = "auxiliary",
stringsAsFactors = FALSE,
row.names = NULL
)
} else {
aux_dat <- NULL
}
pars <- rbind(cond_dat, zi_dat, ip_dat, aux_dat)
pars <- .filter_component(pars, component)
if (component != "all") {
pars <- .remove_column(pars, "Component")
}
.remove_backticks_from_parameter_names(pars)
}
|
frm_fb_sample_imputed_values_eval_likelihood <- function(mm, model_results, ind0,
dat_vv, aggregation=FALSE, dat=NULL, ind_miss_vv=NULL,
sampling_level_vv=NULL, use_sampling_level_vv=FALSE )
{
ind_mm <- ind0[[mm]]
mod <- model_results[[mm]]
use_variable_level_mm <- ind_mm$use_variable_level
model <- mod
if (use_sampling_level_vv){
aggregation <- TRUE
}
if (aggregation){
dat_sel <- dat
dat_sel[ ind_miss_vv, colnames(dat_vv) ] <- dat_vv
} else {
dat_sel <- dat_vv
}
y <- dat_sel[, ind_mm$dv_vars ]
case <- dat_sel$case
design_matrix <- dat_sel
args <- list(model=model, y=y, case=case, design_matrix=design_matrix )
if (ind_mm$R_density_fct=="frm_linreg_density"){
args$use_in_frm_fb <- TRUE
}
dmod <- do.call( what=ind_mm$R_density_fct, args=args )
like <- dmod$like
if (use_variable_level_mm){
variable_level <- ind_mm$variable_level
idcluster <- dat_sel[, variable_level]
freq_cluster <- rowsum( 1+0*idcluster, idcluster)
freq_cluster <- freq_cluster[ match( idcluster, rownames(freq_cluster) ), 1]
like <- like^( 1 / freq_cluster )
}
if (aggregation & ( ! use_sampling_level_vv ) ){
like <- like[ ind_miss_vv ]
}
return(like)
}
|
knitr::opts_chunk$set(
fig.height = 4.5,
fig.width = 4.5,
fig.align = 'center',
collapse = TRUE,
comment = "
)
library(sensemakr)
data("darfur")
darfur.model <- lm(peacefactor ~ directlyharmed + village + female +
age + farmer_dar + herder_dar + pastvoted + hhsize_darfur,
data = darfur)
stargazer::stargazer(darfur.model, keep = "directlyharmed", type = "text")
darfur.sensitivity <- sensemakr(model = darfur.model,
treatment = "directlyharmed",
benchmark_covariates = "female",
kd = 1:3,
ky = 1:3,
q = 1,
alpha = 0.05,
reduce = TRUE)
darfur.sensitivity <- sensemakr(model = darfur.model,
treatment = "directlyharmed",
benchmark_covariates = "female",
kd = 1:3)
darfur.sensitivity
ovb_minimal_reporting(darfur.sensitivity, format = "html")
summary(darfur.sensitivity)
plot(darfur.sensitivity)
plot(darfur.sensitivity, sensitivity.of = "t-value")
plot(darfur.sensitivity, type = "extreme")
|
mean_tmle <- function(ftime,
ftype,
trt,
t0 = max(ftime[ftype > 0]),
adjustVars = NULL,
SL.ftime = NULL,
SL.ctime = NULL,
SL.trt = NULL,
glm.ftime = NULL,
glm.ctime = NULL,
glm.trt = "1",
glm.family = "binomial",
returnIC = TRUE,
returnModels = FALSE,
ftypeOfInterest = unique(ftype[ftype != 0]),
trtOfInterest = unique(trt),
bounds = NULL,
verbose = FALSE,
Gcomp = FALSE,
gtol = 1e-3,
...) {
n <- length(ftime)
id <- seq_len(n)
dat <- data.frame(id = id, ftime = ftime, ftype = ftype, trt = trt)
if (!is.null(adjustVars)) {
dat <- cbind(dat, adjustVars)
}
nJ <- length(ftypeOfInterest)
allJ <- sort(unique(ftype[ftype != 0]))
ofInterestJ <- sort(ftypeOfInterest)
ntrt <- length(trtOfInterest)
uniqtrt <- sort(trtOfInterest)
trtOut <- estimateTreatment(
dat = dat,
ntrt = ntrt,
uniqtrt = uniqtrt,
adjustVars = adjustVars,
SL.trt = SL.trt,
glm.trt = glm.trt,
returnModels = returnModels,
gtol = gtol
)
dat <- trtOut$dat
trtMod <- trtOut$trtMod
dataList <- makeDataList(
dat = dat, J = allJ, ntrt = ntrt, uniqtrt = uniqtrt,
t0 = t0, bounds = bounds
)
censOut <- estimateCensoring(
dataList = dataList,
ntrt = ntrt,
uniqtrt = uniqtrt,
t0 = t0,
verbose = verbose,
adjustVars = adjustVars,
SL.ctime = SL.ctime,
glm.ctime = glm.ctime,
glm.family = glm.family,
returnModels = returnModels,
gtol = gtol
)
dataList <- censOut$dataList
ctimeMod <- censOut$ctimeMod
wideDataList <- makeWideDataList(
dat = dat, dataList = dataList,
adjustVars = adjustVars, t0 = t0,
allJ = allJ, ntrt = ntrt, uniqtrt = uniqtrt
)
timeAndType <- expand.grid(rev(seq_len(t0)), ofInterestJ)
ftimeMod <- vector(mode = "list", length = length(ofInterestJ))
names(ftimeMod) <- paste0("J", ofInterestJ)
for (j in seq_along(ofInterestJ)) {
ftimeMod[[j]] <- vector(mode = "list", length = t0)
names(ftimeMod[[j]]) <- paste0("t", seq_len(t0))
}
for (i in seq_len(nrow(timeAndType))) {
estOut <- estimateIteratedMean(
wideDataList = wideDataList,
t = timeAndType[i, 1],
whichJ = timeAndType[i, 2],
ntrt = ntrt,
uniqtrt = uniqtrt,
allJ = allJ,
t0 = t0,
SL.ftime = SL.ftime,
adjustVars = adjustVars,
glm.ftime = glm.ftime,
verbose = verbose,
returnModels = returnModels,
bounds = bounds
)
wideDataList <- estOut$wideDataList
eval(parse(text = paste0(
"ftimeMod$J", timeAndType[i, 2], "$t",
timeAndType[i, 1], "<-estOut$ftimeMod"
)))
wideDataList <- fluctuateIteratedMean(
wideDataList = wideDataList,
t = timeAndType[i, 1],
whichJ = timeAndType[i, 2],
ntrt = ntrt, uniqtrt = uniqtrt,
allJ = allJ, t0 = t0,
SL.ftime = SL.ftime,
glm.ftime = glm.ftime,
returnModels = returnModels,
bounds = bounds,
Gcomp = Gcomp
)
}
est <- rowNames <- NULL
for (j in ofInterestJ) {
for (z in seq_along(uniqtrt)) {
thisEst <- eval(parse(text = paste(
"mean(wideDataList[[", z + 1, "]]$Q",
j, "star.1)",
sep = ""
)))
est <- rbind(est, thisEst)
rowNames <- c(rowNames, paste(c(uniqtrt[z], j), collapse = " "))
eval(parse(text = paste(
"wideDataList[[1]]$Q", j, "star.0.Z", uniqtrt[z],
" <- rep(thisEst,n)",
sep = ""
)))
eval(parse(text = paste(
"wideDataList[[1]]$Q", j, "star.1.Z", uniqtrt[z],
" <- wideDataList[[(z+1)]]$Q", j, "star.1",
sep = ""
)))
}
}
row.names(est) <- rowNames
for (j in ofInterestJ) {
for (z in seq_along(uniqtrt)) {
for (t in rev(seq_len(t0))) {
outcomeName <- ifelse(t == t0, paste("N", j, ".", t0, sep = ""),
paste("Q", j, "star.", t + 1, sep = "")
)
eval(parse(text = paste(
"wideDataList[[1]]$D.Z", uniqtrt[z], ".", j,
"star.", t, " <- wideDataList[[1]]$H",
uniqtrt[z], ".", t,
"*(wideDataList[[1]][,outcomeName] - wideDataList[[1]]$Q",
j, "star.", t, ")",
sep = ""
)))
}
eval(parse(text = paste(
"wideDataList[[1]]$D.Z", uniqtrt[z], ".", j,
"star.0 <- wideDataList[[1]]$Q", j, "star.1.Z",
uniqtrt[z], " - wideDataList[[1]]$Q", j,
"star.0.Z", uniqtrt[z],
sep = ""
)))
ind <- eval(parse(text = paste(
"grep('D.Z", uniqtrt[z], ".", j,
"star', names(wideDataList[[1]]))",
sep = ""
)))
eval(parse(text = paste(
"wideDataList[[1]]$IC", j, "star.Z", uniqtrt[z],
" <- rowSums(cbind(rep(0, nrow(wideDataList[[1]])),wideDataList[[1]][,ind]))",
sep = ""
)))
}
}
infCurves <- wideDataList[[1]][
, grep("IC", names(wideDataList[[1]])),
drop = FALSE
]
meanIC <- apply(infCurves, MARGIN = 2, FUN = mean)
var <- t(as.matrix(infCurves)) %*% as.matrix(infCurves) / (n^2)
row.names(var) <- colnames(var) <- rowNames
out <- list(
est = est, var = var, meanIC = meanIC, ic = infCurves,
trtMod = trtMod, ftimeMod = ftimeMod, ctimeMod = ctimeMod,
ftime = ftime, ftype = ftype, trt = trt, adjustVars = adjustVars
)
class(out) <- "survtmle"
return(out)
}
|
PREFIX_XML <- "<?xml version=\"1.0\"?>\n"
convert.samples.MAAT <- function(trait.samples, runid) {
if (is.list(trait.samples)) {
trait.samples <- as.data.frame(trait.samples)
}
trait.names <- colnames(trait.samples)
trait.names[trait.names == "leaf_respiration_rate_m2"] <- "atref.rd"
trait.names[trait.names == "Vcmax"] <- "atref.vcmax"
trait.names[trait.names == "Jmax"] <- "atref.jmax"
trait.names[trait.names == "Ev_Arrhenius"] <- "Ha.vcmax"
trait.names[trait.names == "Ej_Arrhenius"] <- "Ha.jmax"
trait.names[trait.names == "Ha_Modified_Arrhenius_Vcmax"] <- "Ha.vcmax"
trait.names[trait.names == "Hd_Modified_Arrhenius_Vcmax"] <- "Hd.vcmax"
trait.names[trait.names == "Ha_Modified_Arrhenius_Jmax"] <- "Ha.jmax"
trait.names[trait.names == "Hd_Modified_Arrhenius_Jmax"] <- "Hd.jmax"
trait.names[trait.names == "cuticular_cond"] <- "g0"
trait.names[trait.names == "stomatal_slope"] <- "g1_leuning"
trait.names[trait.names == "stomatal_slope.g1"] <- "g1_medlyn"
trait.names[trait.names == "stomatal_slope.BB"] <- "g1_ball"
trait.names[trait.names == "f_frac"] <- "f"
trait.names[trait.names == "theta"] <- "theta_j"
trait.names[trait.names == "leaf_respiration_Q10"] <- "q10.rd"
colnames(trait.samples) <- trait.names
if ("atref.rd" %in% names(trait.samples)) {
trait.samples[["b_rdv_25"]] <- trait.samples[["atref.rd"]] / trait.samples[["atref.vcmax"]]
}
if ("Ha.vcmax" %in% names(trait.samples)) {
trait.samples <- transform(trait.samples, Ha.vcmax = udunits2::ud.convert(Ha.vcmax, "kJ", "J"))
}
if ("Hd.vcmax" %in% names(trait.samples)) {
trait.samples <- transform(trait.samples, Hd.vcmax = udunits2::ud.convert(Hd.vcmax, "kJ", "J"))
}
if ("Ha.jmax" %in% names(trait.samples)) {
trait.samples <- transform(trait.samples, Ha.jmax = udunits2::ud.convert(Ha.jmax, "kJ", "J"))
}
if ("Hd.jmax" %in% names(trait.samples)) {
trait.samples <- transform(trait.samples, Hd.jmax = udunits2::ud.convert(Hd.jmax, "kJ", "J"))
}
if ("leaf_reflect_vis" %in% names(trait.samples) & "leaf_trans_vis" %in% names(trait.samples) ){
leaf_abs <- 1-(trait.samples[["leaf_reflect_vis"]]+trait.samples[["leaf_trans_vis"]])
trait.samples[["a"]] <- leaf_abs
remove <- which(colnames(trait.samples)=="leaf_trans_vis" | colnames(trait.samples)=="leaf_reflect_vis")
trait.samples <- trait.samples[,-remove]
}
if ("leaf_width" %in% names(trait.samples)) {
trait.samples <- transform(trait.samples, leaf_width = udunits2::ud.convert(leaf_width, "mm", "m"))
}
if ("g0" %in% names(trait.samples)) {
trait.samples <- transform(trait.samples, g0 = udunits2::ud.convert(g0, "umol H2O m-2 s-1", "mol H2O m-2 s-1"))
}
return(trait.samples)
}
write.config.MAAT <- function(defaults = NULL, trait.values, settings, run.id) {
nest_entries <- function(x, pattern, new_name = pattern){
matches <- grepl(pattern, names(x))
if(!any(matches)){
return(x)
}
nested <- stats::setNames(x[matches], gsub(pattern, "", names(x[matches])))
x <- x[!matches]
x[[new_name]] <- nested
x
}
rundir <- file.path(settings$host$rundir, run.id)
outdir <- file.path(settings$host$outdir, run.id)
maat_mod_obj <- as.character(settings$model$config$mod_obj)
settings$model$config$mod_obj <- NULL
system2(file.path(settings$model$binary, "run_scripts/setup_MAAT_project.bs"),
c(maat_mod_obj, rundir, file.path(settings$model$binary, "run_scripts"),
file.path(settings$model$binary, "src")))
unlink(file.path(rundir,"leaf_user_dynamic.xml"), recursive = FALSE)
if (is.null(settings$run$inputs$met)) {
unlink(file.path(rundir,"leaf_user_met.xml"), recursive = FALSE)
}
run_maat_script <- file.path(settings$model$binary, "src", "run_MAAT.R")
if (!is.null(settings$model$config$mod_mimic)) {
PEcAn.logger::logger.info(paste0("Running with model mimic: ",settings$model$config$mod_mimic))
mod_mimic <- as.character(settings$model$config$mod_mimic)
settings$model$config$mod_mimic <- NULL
xml <- PEcAn.settings::listToXml(settings$model$config, "default")
} else {
PEcAn.logger::logger.info("*** Model mimic not selected ***")
mod_mimic <- 'NULL'
xml <- PEcAn.settings::listToXml(settings$model$config, "default")
}
PEcAn.logger::logger.info("*** Convert input trait values to MAAT parameters and units ***")
traits <- convert.samples.MAAT(trait.samples = trait.values[[settings$pfts$pft$name]],runid=run.id)
traits <- as.list(traits)
traits.list <- list()
maat_param_prefix_list <- list(param=c("Ha.","Hd.","atref.","reftemp.","Topt.","deltaS.","a_deltaS_t.","b_deltaS_t.","q10.","a_q10_t.",
"b_q10_t.","tupp_cox.","tlow_cox.","exp_cox."),
xml=c("Ha","Hd","atref","reftemp","Topt","deltaS","a_deltaS_t","b_deltaS_t","q10","a_q10_t",
"b_q10_t","tupp_cox","tlow_cox","exp_cox"))
q <- 1
for (p in seq(seq_along(1:length(maat_param_prefix_list$param)))) {
if (q==1) {
traits.list <- nest_entries(traits, paste0(maat_param_prefix_list$param[p]), paste0(maat_param_prefix_list$xml[p]))
} else {
traits.list <- nest_entries(traits.list, paste0(maat_param_prefix_list$param[p]), paste0(maat_param_prefix_list$xml[p]))
}
q <- q+1
}
traits.xml <- PEcAn.settings::listToXml(traits.list, "pars")
rm(p,q)
xml[[1]] <- XML::addChildren(xml[[1]], traits.xml)
XML::saveXML(xml,
file = file.path(settings$rundir, run.id, "leaf_user_static.xml"),
indent = TRUE,
prefix = PREFIX_XML)
if (is.null(settings$run$inputs$met)) {
PEcAn.logger::logger.info("-- No met selected. Running without a met driver --")
jobsh <- paste0("
"\"srcdir <- ","'",file.path(settings$model$binary, "src"),"'","\""," ",
"\"pdir <- ","'",rundir,"'","\""," ","\"mod_obj <- ","'",maat_mod_obj,"'","\""," ",
"\"xml<-T","\""," ","\"uq<-F","\""," ",
"\"factorial<-F","\""," ","\"mod_mimic<-",mod_mimic,"\""," ",
"\"odir <- ","'",outdir,"'","\""," > ",rundir,
"/logfile.txt","\n",'echo "',
' library(PEcAn.MAAT); model2netcdf.MAAT(',
"'",rundir,"',","'",outdir,"',",
settings$run$site$lat,",",
settings$run$site$lon,", '",
settings$run$start.date,"', '",
settings$run$end.date,"') ",
'" | R --vanilla')
} else if (!is.null(settings$run$inputs$met)) {
met.dir <- dirname(as.character(settings$run$inputs$met$path))
met.file <- basename(as.character(settings$run$inputs$met$path))
file.copy(file.path(met.dir, list.files(met.dir, "*.xml")),
rundir,
overwrite = TRUE,
recursive = FALSE,
copy.mode = TRUE,
copy.date = TRUE)
PEcAn.logger::logger.info("-- Met selected. Running with a met driver --")
PEcAn.logger::logger.info(paste0("Running with met: ",met.file))
jobsh <- paste0("
"\"srcdir <- ","'",file.path(settings$model$binary, "src"),"'","\""," ",
"\"pdir <- ","'",rundir,"'","\""," ","\"mod_obj <- ","'",maat_mod_obj,"'","\""," ",
"\"xml<-T","\""," ","\"uq<-F","\""," ",
"\"factorial<-F","\""," ","\"mod_mimic<-",mod_mimic,"\""," ",
"\"odir <- ","'",outdir,"'","\""," ","\"mdir <- ","'",met.dir,"'",
"\""," ","\"metdata <- ","'",met.file,"'","\""," > ",rundir,
"/logfile.txt","\n",'echo "',
' library(PEcAn.MAAT); model2netcdf.MAAT(',
"'",rundir,"',","'",outdir,"',",
settings$run$site$lat,",",
settings$run$site$lon,", '",
settings$run$start.date,"', '",
settings$run$end.date,"') ",
'" | R --vanilla')
}
writeLines(jobsh, con = file.path(settings$rundir, run.id, "job.sh"))
Sys.chmod(file.path(settings$rundir, run.id, "job.sh"))
}
|
context("Writing Posixct")
test_that("Writing Posixct with writeData & writeDataTable", {
options("openxlsx.datetimeFormat" = "dd/mm/yy hh:mm")
tstart <- strptime("30/05/2017 08:30", "%d/%m/%Y %H:%M", tz = "CET")
TimeDT <- c(0, 5, 10, 15, 30, 60, 120, 180, 240, 480, 720, 1440) * 60 + tstart
df <- data.frame(TimeDT, TimeTxt = format(TimeDT, "%Y-%m-%d %H:%M"))
wb <- createWorkbook()
addWorksheet(wb, "writeData")
addWorksheet(wb, "writeDataTable")
writeData(wb, "writeData", df, startCol = 2, startRow = 3, rowNames = FALSE)
writeDataTable(wb, "writeDataTable", df, startCol = 2, startRow = 3)
wd <- as.numeric(wb$worksheets[[1]]$sheet_data$v)
wdt <- as.numeric(wb$worksheets[[2]]$sheet_data$v)
expected <- c(
0, 1, 42885.3541666667, 2, 42885.3576388889, 3, 42885.3611111111,
4, 42885.3645833333, 5, 42885.375, 6, 42885.3958333333, 7, 42885.4375,
8, 42885.4791666667, 9, 42885.5208333333, 10, 42885.6875, 11,
42885.8541666667, 12, 42886.3541666667, 13
)
expect_equal(object = round(wd, 12), expected = expected)
expect_equal(object = round(wdt, 12), expected = expected)
expect_equal(object = wd, expected = wdt)
options("openxlsx.datetimeFormat" = "yyyy-mm-dd hh:mm:ss")
})
test_that("Writing mixed EDT/EST Posixct with writeData & writeDataTable", {
options("openxlsx.datetimeFormat" = "dd/mm/yy hh:mm")
tstart1 <- as.POSIXct("12/03/2018 08:30", format = "%d/%m/%Y %H:%M")
tstart2 <- as.POSIXct("10/03/2018 08:30", format = "%d/%m/%Y %H:%M")
TimeDT1 <- c(NA, 0, 10, 30, 60, 120, 240, 720, 1440) * 60 + tstart1
TimeDT2 <- c(0, 10, 30, 60, 120, 240, 720, NA, 1440) * 60 + tstart2
df <- data.frame(
timeval = c(TimeDT1, TimeDT2),
timetxt = format(c(TimeDT1, TimeDT2), "%Y-%m-%d %H:%M")
)
wb <- createWorkbook()
addWorksheet(wb, "writeData")
addWorksheet(wb, "writeDataTable")
writeData(wb, "writeData", df, startCol = 2, startRow = 3, rowNames = FALSE)
writeDataTable(wb, "writeDataTable", df, startCol = 2, startRow = 3)
wd <- as.numeric(wb$worksheets[[1]]$sheet_data$v)
wdt <- as.numeric(wb$worksheets[[2]]$sheet_data$v)
wd <- wd[wb$worksheets[[1]]$sheet_data$cols == 2]
wdt <- wdt[wb$worksheets[[2]]$sheet_data$cols == 2]
wd <- wd[wd != 0 | is.na(wd)]
wdt <- wdt[wdt != 0 | is.na(wdt)]
wd <- convertToDateTime(wd[order(wd)])
wdt <- convertToDateTime(wdt[order(wdt)])
expected <- df$timeval[order(df$timeval)]
expect_equal(
object = wd,
expected = expected,
tolerance = 10 ^ -10,
check.tzone = FALSE
)
expect_equal(
object = wdt,
expected = expected,
tolerance = 10 ^ -10,
check.tzone = TRUE
)
expect_equal(
object = wd,
expected = wdt,
check.tzone = TRUE
)
options("openxlsx.datetimeFormat" = "yyyy-mm-dd hh:mm:ss")
})
|
cube <- function(x=0,y=0,z=0, bordered=TRUE,
filled = TRUE, lwd=2, scale=1,
fillcol = gray(.95),
bordercol ='black', ...) {
mycube <- cube3d()
mycube$vb[4,] <- mycube$vb[4,]/scale*2
for (i in 1:length(x)) {
if (bordered) {
bcube <- mycube
bcube$material
bcube$material$lwd <-lwd
bcube$material$front <- 'line'
bcube$material$back <- 'line'
bcube %>% translate3d(x[i], y[i], z[i]) %>% shade3d
}
if (filled) {
fcube <- mycube
fcube$vb[4,] <- fcube$vb[4,]*1.01
fcube$material$col <- fillcol
fcube %>% translate3d(x[i], y[i], z[i]) %>% shade3d
}
}
}
|
SQLKeywords_SQLiteConnection <- function(dbObj, ...) {
.SQL92Keywords
}
setMethod("SQLKeywords", "SQLiteConnection", SQLKeywords_SQLiteConnection)
|
var_imp.bagger <- function(object, ...) {
object$imp
}
|
bwadap.ts <- function(x, Kn = 5, c.thresh = 2, ...) {
n <- length(x)
thresh <- c.thresh*sqrt(log(n, 10)/n)
ac <- as.vector(acf(x, type="correlation", plot=FALSE,
lag.max = floor(n/2))$acf)
l <- length(ac)
pos <- 1
while(pos < n/10)
{
npos <- match(TRUE, abs(ac[pos:l]) < thresh)
if( is.na(npos) ) break;
pos <- pos+npos-1
if( pos+Kn-1 > floor(n/2) ) break;
if(all(abs(ac[pos:(pos+Kn-1)]) < thresh)){
return(pos-2)
} else {
npos <- match(FALSE, abs(ac[pos:(pos+Kn-1)]) < thresh)
pos <- pos + npos - 1
}
}
warning("No bandwidth found")
return(floor(n/10))
}
bwadap.numeric <- function(x, smax=13.49/IQR(x), n.points = 1000, Kn = 1.349*5/IQR(x), c.thresh = 2, ...) {
n <- length(x)
if(n <= 2) stop("x must have length greater than 2")
thresh <- c.thresh*sqrt(log(n, 10)/n)
dft <- function(s) {
dftval <- complex( real = sum(cos(s * x)), imaginary = sum(sin(s * x)) )
return(Mod(dftval)/n)
}
dft <- Vectorize(dft, "s")
svals <- seq(0, smax, length.out=n.points)
ftvals <- dft(svals)
pos <- 1
while(pos < n.points)
{
npos <- match(TRUE, ftvals[pos:n.points] < thresh) + pos - 1
if( is.na(npos) ) break;
start.s <- uniroot(function(s) dft(s) - thresh, svals[c(npos-1,npos)])$root
upcrosspos <- match(TRUE, ftvals[npos:n.points] > thresh)
if( is.na(upcrosspos) ) {
if(svals[n.points] - start.s < Kn) {
warning("Not able to check Kn units beyond selected bandwidth")
}
return(1/start.s)
}
end.s <- uniroot(function(s) dft(s) - thresh, svals[c(npos + upcrosspos - 2, npos + upcrosspos - 1)])$root
if( end.s - start.s > Kn ) {
return(1/start.s)
} else {
pos <- npos + upcrosspos - 1
}
}
warning("No bandwidth found")
return(NA)
}
bwadap <- function(x, ...) UseMethod("bwadap")
|
context("Tests for the mappingColumn R module")
library(safetyGraphics)
library(shinytest)
library(testthat)
library(stringr)
skip_on_cran()
app <- ShinyDriver$new("./module_examples/mappingColumn")
initial<-app$getAllValues()
test_that("UI function stops with invalid inputs (non-data.frame)",{
skip_on_cran()
id_meta <- meta%>%filter(domain=="labs")%>%filter(col_key=="id_col")
id_mapping_list<-list(id_col="USUBJID")
expect_error(mappingColumnUI("test1.1", list(id_col="USUBJID"), safetyData::adam_adlbc))
expect_error(mappingColumnUI("test1.2", id_meta, "invalid_data_option"))
expect_error(mappingColumnUI("test1.3", id_meta, labs, list(id_col="USUBJID")))
})
test_that("the correct number of inputs are created (1 per field/column)",{
skip_on_cran()
inputs <- names(initial$input)
expect_length(str_subset(inputs,"ex1"),1)
expect_length(str_subset(inputs,"ex2"),1)
expect_length(str_subset(inputs,"ex3"),5)
expect_length(str_subset(inputs,"ex4"),5)
})
test_that("default values for inputs are set correctly in example app",{
skip_on_cran()
expect_equal(initial$input[["ex1-id_col-colSelect"]],"")
expect_equal(initial$input[["ex2-id_col-colSelect"]],"USUBJID")
expect_equal(initial$input[["ex3-measure_col-colSelect"]],"")
expect_equal(initial$input[["ex3-measure_values--ALP-colSelect"]],"")
expect_equal(initial$input[["ex3-measure_values--ALT-colSelect"]],"")
expect_equal(initial$input[["ex3-measure_values--AST-colSelect"]],"")
expect_equal(initial$input[["ex3-measure_values--TB-colSelect"]],"")
expect_equal(initial$input[["ex4-measure_col-colSelect"]],"PARAM")
expect_equal(initial$input[["ex4-measure_values--ALP-colSelect"]],"Alkaline Phosphatase (U/L)")
expect_equal(initial$input[["ex4-measure_values--ALT-colSelect"]],"")
expect_equal(initial$input[["ex4-measure_values--AST-colSelect"]],"")
expect_equal(initial$input[["ex4-measure_values--TB-colSelect"]],"")
expect_equal(initial$input[["ex5-measure_col-colSelect"]],"")
expect_equal(initial$input[["ex5-measure_values--ALP-colSelect"]],"")
expect_equal(initial$input[["ex5-measure_values--ALT-colSelect"]],"")
expect_equal(initial$input[["ex5-measure_values--AST-colSelect"]],"")
expect_equal(initial$input[["ex5-measure_values--TB-colSelect"]],"")
expect_equal(initial$input[["ex6-measure_col-colSelect"]],"LBTEST")
expect_equal(initial$input[["ex6-measure_values--ALP-colSelect"]],"Alkaline Phosphatase")
expect_equal(initial$input[["ex6-measure_values--ALT-colSelect"]],"")
expect_equal(initial$input[["ex6-measure_values--AST-colSelect"]],"")
expect_equal(initial$input[["ex6-measure_values--TB-colSelect"]],"")
})
test_that("changing column input updates clears the field input values and updates input list",{
skip_on_cran()
app$setValue('ex4-measure_col-colSelect',"PARAMCD")
expect_equal(app$getValue("ex4-measure_col-colSelect"),"PARAMCD")
Sys.sleep(.5)
expect_equal(app$getValue("ex4-measure_values--ALP-colSelect"),"")
app$setValue('ex4-measure_values--ALP-colSelect',"ALP")
Sys.sleep(.5)
expect_equal(app$getValue("ex4-measure_values--ALP-colSelect"),"ALP")
})
test_that("output are data frames with the expected values",{
skip_on_cran()
expect_true(all(sapply(initial$export,is.data.frame)))
expect_true(all(sapply(initial$export,function(x){names(x)==c("text_key","current")})))
expect_equal(nrow(initial$export$ex1_data),1)
expect_equal(nrow(initial$export$ex2_data),1)
expect_equal(nrow(initial$export$ex3_data),5)
expect_equal(nrow(initial$export$ex4_data),5)
expect_equal(nrow(initial$export$ex5_data),5)
expect_equal(nrow(initial$export$ex6_data),5)
ex2_id_col <- initial$export$ex2_data %>% filter(text_key=="id_col") %>% pull(current) %>% as.character()
expect_equal(ex2_id_col, "USUBJID")
ex4_measure_col <- initial$export$ex4_data %>%
filter(text_key=="measure_col") %>%
pull(current) %>%
as.character()
expect_equal(ex4_measure_col, "PARAM")
ex4_measure_col_ALP <- initial$export$ex4_data %>%
filter(text_key=="measure_values--ALP") %>%
pull(current) %>%
as.character()
expect_equal(ex4_measure_col_ALP, "Alkaline Phosphatase (U/L)")
ex6_measure_col <- initial$export$ex6_data %>%
filter(text_key=="measure_col") %>%
pull(current) %>%
as.character()
expect_equal(ex6_measure_col, "LBTEST")
ex6_measure_col_ALP <- initial$export$ex6_data %>%
filter(text_key=="measure_values--ALP") %>%
pull(current) %>%
as.character()
expect_equal(ex6_measure_col_ALP, "Alkaline Phosphatase")
updated<-app$getAllValues()
ex2_id_col_updated <- updated$export$ex2_data %>% filter(text_key=="id_col") %>% pull(current) %>% as.character()
expect_equal(ex2_id_col_updated, "USUBJID")
ex4_measure_col_updated <- updated$export$ex4_data %>%
filter(text_key=="measure_col") %>%
pull(current) %>%
as.character()
expect_equal(ex4_measure_col_updated, "PARAMCD")
ex4_measure_values_ALP_updated <- updated$export$ex4_data %>%
filter(text_key=="measure_values--ALP") %>%
pull(current) %>%
as.character()
expect_equal(ex4_measure_values_ALP_updated, "ALP")
})
app$stop()
|
structure(list(url = "https://api.twitter.com/2/tweets?tweet.fields=attachments%2Cauthor_id%2Cconversation_id%2Ccreated_at%2Centities%2Cgeo%2Cid%2Cin_reply_to_user_id%2Clang%2Cpublic_metrics%2Cpossibly_sensitive%2Creferenced_tweets%2Csource%2Ctext%2Cwithheld&user.fields=created_at%2Cdescription%2Centities%2Cid%2Clocation%2Cname%2Cpinned_tweet_id%2Cprofile_image_url%2Cprotected%2Cpublic_metrics%2Curl%2Cusername%2Cverified%2Cwithheld&expansions=author_id%2Centities.mentions.username%2Cgeo.place_id%2Cin_reply_to_user_id%2Creferenced_tweets.id%2Creferenced_tweets.id.author_id&place.fields=contained_within%2Ccountry%2Ccountry_code%2Cfull_name%2Cgeo%2Cid%2Cname%2Cplace_type&ids=1266876474440761346%2C1266868259925737474%2C1266867327079002121%2C1266866660713127936%2C1266864490446012418%2C1266860737244336129%2C1266859737615826944%2C1266859455586676736%2C1266858090143588352%2C1266857669157097473%2C1266856357954756609%2C1266855807699861506%2C1266855344086663169%2C1266854627758276608%2C1266854586188476421%2C1266854533889757187%2C1266853931247906816%2C1266853419291234312%2C1266852781526302722%2C1266852099163291650%2C1266851746086899713%2C1266850733409931264%2C1266850092289572869%2C1266848161424969728%2C1266847955346210823%2C1266847040937525251%2C1266846743137837057%2C1266846080144211970%2C1266845377703149570%2C1266844755557842944%2C1266844314895777792%2C1266843758575923200%2C1266842696355897344%2C1266842682187546624%2C1266842675594104839%2C1266842473982197760%2C1266842400040849408%2C1266842270516629505%2C1266842200387784707%2C1266841835626024964%2C1266840513229074436%2C1266840285696405511%2C1266840115906777091%2C1266839491513331714%2C1266839242250084352%2C1266838724048031745%2C1266837987620524049%2C1266836992265842688%2C1266836364005388293%2C1266835587765538817%2C1266835559621767168%2C1266835230947782659%2C1266835214392799239%2C1266834647956275202%2C1266834072040587264%2C1266834042051342338%2C1266833865701756930%2C1266833807799455745%2C1266832536061214727%2C1266832245790302209%2C1266831975198986240%2C1266831225462890496%2C1266831181984813065%2C1266831085582913538%2C1266830382512685059%2C1266828500771778560%2C1266827399276224513%2C1266826884727406595%2C1266826815705939970%2C1266826792964435968%2C1266826240620662786%2C1266826036454580227%2C1266825574636535813%2C1266825188013936642%2C1266824926289371136%2C1266824597804064769%2C1266823704715157504%2C1266823295304949760%2C1266823244142821377%2C1266822697494986752%2C1266822103820574729%2C1266821913831235584%2C1266821749464858632%2C1266820820359352322%2C1266820479249244160%2C1266820145130987521%2C1266819364247998465%2C1266819340353101824%2C1266819279216877568%2C1266819132827328514%2C1266819115236364290%2C1266818671952957440%2C1266818221644144641%2C1266818177977274369%2C1266818019453435920%2C1266817292643467265%2C1266817176687779846%2C1266816778010845196%2C1266816466512297984%2C1266814311298629640",
status_code = 200L, headers = structure(list(date = "Tue, 21 Dec 2021 13:36:57 UTC",
server = "tsa_o", `api-version` = "2.32", `content-type` = "application/json; charset=utf-8",
`cache-control` = "no-cache, no-store, max-age=0", `content-length` = "37925",
`x-access-level` = "read", `x-frame-options` = "SAMEORIGIN",
`content-encoding` = "gzip", `x-xss-protection` = "0",
`x-rate-limit-limit` = "300", `x-rate-limit-reset` = "1640094716",
`content-disposition` = "attachment; filename=json.json",
`x-content-type-options` = "nosniff", `x-rate-limit-remaining` = "299",
`strict-transport-security` = "max-age=631138519", `x-response-time` = "1059",
`x-connection-hash` = "b914cde170481ca75c4b9b9291d6d4593fbb9c37fd3a37f09fefae48ca90f4e7"), class = c("insensitive",
"list")), all_headers = list(list(status = 200L, version = "HTTP/2",
headers = structure(list(date = "Tue, 21 Dec 2021 13:36:57 UTC",
server = "tsa_o", `api-version` = "2.32", `content-type` = "application/json; charset=utf-8",
`cache-control` = "no-cache, no-store, max-age=0",
`content-length` = "37925", `x-access-level` = "read",
`x-frame-options` = "SAMEORIGIN", `content-encoding` = "gzip",
`x-xss-protection` = "0", `x-rate-limit-limit` = "300",
`x-rate-limit-reset` = "1640094716", `content-disposition` = "attachment; filename=json.json",
`x-content-type-options` = "nosniff", `x-rate-limit-remaining` = "299",
`strict-transport-security` = "max-age=631138519",
`x-response-time` = "1059", `x-connection-hash` = "b914cde170481ca75c4b9b9291d6d4593fbb9c37fd3a37f09fefae48ca90f4e7"), class = c("insensitive",
"list")))), cookies = structure(list(domain = c(".twitter.com",
".twitter.com", ".twitter.com", ".twitter.com"), flag = c(TRUE,
TRUE, TRUE, TRUE), path = c("/", "/", "/", "/"), secure = c(TRUE,
TRUE, TRUE, TRUE), expiration = structure(c(1702744284, 1702744284,
1702744284, 1702744284), class = c("POSIXct", "POSIXt")),
name = c("guest_id_marketing", "guest_id_ads", "personalization_id",
"guest_id"), value = c("REDACTED", "REDACTED", "REDACTED",
"REDACTED")), row.names = c(NA, -4L), class = "data.frame"),
content = charToRaw("{\"data\":[{\"lang\":\"de\",\"text\":\"diese Petition mitzeichnen!!\\n. \\nKonsequente Ausrichtung eines zukünftigen Konjunkturpakets.\\nNur soziale und technische Innovationen,
date = structure(1640093817, class = c("POSIXct", "POSIXt"
), tzone = "GMT"), times = c(redirect = 0, namelookup = 0.058534,
connect = 0.072659, pretransfer = 0.130836, starttransfer = 1.222355,
total = 1.225534)), class = "response")
|
LV_pm_alpha_none_lambdacov_none_alphacov_none <- function(par,
fitness,
neigh_intra_matrix = NULL,
neigh_inter_matrix,
covariates,
fixed_parameters){
pos <- 1
if(is.null(fixed_parameters[["lambda"]])){
lambda <- par[pos]
pos <- pos + 1
}else{
lambda <- fixed_parameters[["lambda"]]
}
sigma <- par[length(par)]
pred <- rep(lambda, times=length(fitness))
llik <- dnorm(fitness, mean = (log(pred)), sd = (sigma), log=TRUE)
return(sum(-1*llik))
}
|
rqgauss <-function(n,q=0,mu=0,sig=1,meth="Box-Muller"){
nsam <- n
qv <- q
if(qv >= 3 || qv == 1) stop("q value must be < 3 or != 1")
if(meth != "Quantile") if(meth != "Chaotic")
if(meth != "Box-Muller") stop("invalid method")
qPDF <- array(1:nsam)
qPDF[] <-0
if (meth == "Box-Muller"){
logq <-
function(x,qva)
{
mde<-.Machine$double.exponent-2
if(abs(qva-1)<10^-mde){
a<-log(x)
}else{
b<-as.double(x/x^qva/(1-qva))
a<-as.double(b-1/(1-qva))
}
return(a)
}
qgen<-as.double((1+qv)/(3-qv))
for(i in 1:nsam){
u1<-as.double(runif(1,0,1))
u2<-as.double(runif(1,0,1))
qPDF[i]<-mu+sig*as.double(sqrt(abs(2*logq(u1,qgen)))*sin(2*pi*u2))
}
}else{
if (meth == "Quantile") qPDF<-cqgauss(runif(nsam),qv,mu,sig)
}
if (meth == "Chaotic") qPDF<-Chaotic(nsam,qv,mu,sig)
return(qPDF)
}
|
dataBuilder <- function(dataset, resp, subject, method, time, gs = NULL){
Data <- data.frame(dataset)
Data <- try(rename.vars(Data, from = c(resp, subject, method, time),
to = c("resp", "subject", "method", "time"),
info = FALSE), TRUE)
if (is.null(gs) == FALSE) {
gold <- which.max(levels(Data$method) == gs)
others <- seq(1, length(levels(Data$method)))[-gold]
Data$method <- factor(Data$method,
levels = levels(Data$method)[c(gold,
others)])
}
return(Data)
}
|
'dse03ee'
|
"as.treeshape.treebalance" <-
function(x, ...) {
tree=x
height=nrow(tree$merge)
merge=matrix(NA, height, 2)
current.tip=-1
for (node in 1:height) {
new.node=height+1-node
if (tree$merge[node,2]==1) {
res1=current.tip
current.tip=current.tip-1
} else {
res1=new.node-1
}
if ((tree$merge[node,1]-tree$merge[node,2])==1) {
res2=current.tip
current.tip=current.tip-1
} else {
res2=new.node-tree$merge[node,2]
}
merge[new.node,]=c(res1,res2)
}
res=treeshape(merge)
}
|
library(ManifoldOptim)
library(mvtnorm)
set.seed(1234)
n <- 2000
p <- 5
mu.true <- rep(0,p)
Sigma.true <- diag(2,p) + 0.01
y <- rmvnorm(n, mean = mu.true, sigma = Sigma.true)
tx <- function(x) {
S <- matrix(x, p, p)
S[lower.tri(S)] <- t(S)[lower.tri(S)]
return(S)
}
f <- function(x) {
Sigma <- tx(x)
-sum(dmvnorm(y, mean = mu.true, sigma = Sigma, log = TRUE))
}
mod <- Module("ManifoldOptim_module", PACKAGE = "ManifoldOptim")
prob <- new(mod$RProblem, f)
X0 <- diag(1, p)
x0 <- as.numeric(X0)
prob$objFun(x0)
mani.params <- get.manifold.params(IsCheckParams = TRUE)
solver.params <- get.solver.params(DEBUG = 0, Tolerance = 1e-4,
Max_Iteration = 1000, IsCheckParams = TRUE, IsCheckGradHess = FALSE)
mani.defn <- get.spd.defn(p)
res <- manifold.optim(prob, mani.defn, method = "LRBFGS",
mani.params = mani.params, solver.params = solver.params, x0 = x0)
print(res)
head(tx(res$xopt))
|
"mgp154"
"mgp2592"
|
smooth_gifti <- function(
original_fname, target_fname, surf_fname=NULL, surf_FWHM=5,
hemisphere=c("left", "right"), ROI_fname=NULL, zeroes_as_NA=FALSE) {
stopifnot(file.exists(original_fname))
if (is.null(surf_fname)) {
ciftiTools_warn(paste(
"No surface provided to `smooth_gifti`,",
"so using the surface included in `ciftiTools`."
))
hemisphere <- match.arg(hemisphere, c("left", "right"))
x_res <- nrow(readgii(original_fname)$data[[1]])
surf_fname <- file.path(tempdir(), paste0(hemisphere, ".surf.gii"))
surf_fname <- resample_gifti(
ciftiTools.files()$surf[hemisphere],
surf_fname, hemisphere=hemisphere, file_type="surface", resamp_res=x_res
)
}
stopifnot(file.exists(surf_fname))
cmd <- paste(
"-metric-smoothing",
sys_path(surf_fname), sys_path(original_fname),
surf_FWHM / (2*sqrt(2*log(2))), sys_path(target_fname)
)
if (!is.null(ROI_fname)) { cmd <- paste(cmd, "-roi", sys_path(ROI_fname)) }
if (zeroes_as_NA) { cmd <- paste(cmd, "-fix-zeros") }
run_wb_cmd(cmd)
return(invisible(target_fname))
}
smoothGIfTI <- function(
original_fname, target_fname, surf_fname, surf_FWHM=5,
zeroes_as_NA=FALSE) {
smooth_gifti(
original_fname, target_fname, surf_fname, surf_FWHM, zeroes_as_NA
)
}
smoothgii <- function(
original_fname, target_fname, surf_fname, surf_FWHM=5,
zeroes_as_NA=FALSE) {
smooth_gifti(
original_fname, target_fname, surf_fname, surf_FWHM, zeroes_as_NA
)
}
|
A1inv <- function(x) {
ifelse (0 <= x & x < 0.53, 2 * x + x^3 + (5 * x^5)/6,
ifelse (x < 0.85, -0.4 + 1.39 * x + 0.43/(1 - x), 1/(x^3 - 4 * x^2 + 3 * x)))
}
|
match_order_by_labels <- function(dend_change, dend_template, check_that_labels_match = TRUE) {
tree_to_change_labels <- labels(dend_change)
tree_template_labels <- labels(dend_template)
if (check_that_labels_match) {
if (!identical(sort(tree_to_change_labels), sort(tree_template_labels))) {
stop("labels do not match in both trees. Please make sure to fix the labels names!
(make sure also that the labels of BOTH trees are 'character')")
}
}
tree_template_order <- order.dendrogram(dend_template)
ss_order_change_leaf_numbers_to_match_template <- match(x = tree_to_change_labels, table = tree_template_labels)
tree_new_leaf_numbers <- tree_template_order[ss_order_change_leaf_numbers_to_match_template]
order.dendrogram(dend_change) <- tree_new_leaf_numbers
return(dend_change)
}
match_order_dendrogram_by_old_order <- function(dend_change, dend_template,
dend_change_old_order,
check_that_labels_match = FALSE,
check_that_leaves_order_match = FALSE) {
if (check_that_labels_match) {
if (any(sort(labels(dend_change)) != sort(labels(dend_template)))) stop("labels do not match in both trees. Please make sure to fix the labels names!")
}
if (check_that_leaves_order_match) {
if (any(sort(order.dendrogram(dend_change)) != sort(order.dendrogram(dend_template)))) stop("order.dendrogram do not match in both trees. Please make sure to fix the labels names!")
}
tree_to_change_order <- order.dendrogram(dend_change)
tree_template_order <- order.dendrogram(dend_template)
ss_order_change_leaf_numbers_to_match_template <- match(x = tree_to_change_order, table = dend_change_old_order)
new_leaves_order <- tree_template_order[ss_order_change_leaf_numbers_to_match_template]
order.dendrogram(dend_change) <- new_leaves_order
return(dend_change)
}
entanglement <- function(dend1, ...) {
UseMethod("entanglement")
}
entanglement.default <- function(dend1, dend2, ...) {
stop("no default function for entanglement")
}
entanglement.hclust <- function(dend1, dend2, ...) {
dend1 <- as.dendrogram(dend1)
dend2 <- as.dendrogram(dend2)
entanglement(dend1, dend2, ...)
}
entanglement.phylo <- function(dend1, dend2, ...) {
dend1 <- as.dendrogram(dend1)
dend2 <- as.dendrogram(dend2)
entanglement(dend1, dend2, ...)
}
entanglement.dendlist <- function(dend1, which = c(1L, 2L), ...) {
if (length(dend1) == 1) stop("Your dendlist has only 1 dendrogram - entanglement can not be calculated")
if (all(which %in% seq_len(length(dend1)))) {
entanglement.dendrogram(dend1[[which[1]]], dend1[[which[2]]], ...)
} else {
stop("You are trying to calculate the entanglement for trees which are outside the range of trees in your dendlist")
}
}
entanglement.dendrogram <- function(dend1, dend2, L = 1.5, leaves_matching_method = c("labels", "order"), ...) {
if (L == 0) L <- L + 1e-50
n_leaves <- nleaves(dend1)
one_to_n_leaves <- seq_len(n_leaves)
leaves_matching_method <- match.arg(leaves_matching_method)
if (leaves_matching_method == "order") {
dend1_old_order <- order.dendrogram(dend1)
order.dendrogram(dend1) <- one_to_n_leaves
dend2 <- match_order_dendrogram_by_old_order(dend2, dend1, dend1_old_order)
} else {
order.dendrogram(dend1) <- one_to_n_leaves
dend2 <- match_order_by_labels(dend2, dend1)
}
sum_abs_diff_L <- function(x, y, L) {
sum(abs(x - y)^L)
}
entanglement_result <- sum_abs_diff_L(order.dendrogram(dend1), order.dendrogram(dend2), L)
worse_entanglement_result <- sum_abs_diff_L(one_to_n_leaves, rev(one_to_n_leaves), L)
normalized_entanglement_result <- entanglement_result / worse_entanglement_result
return(normalized_entanglement_result)
}
|
Arrow <- R6::R6Class(
classname = "Arrow",
inherit = Edge,
private = list(
),
public = list(
initialize = function(source, target, label="") {
super$initialize(v1=source, v2=target, label=label)
return(invisible(self))
},
source = function() {
return(private$v1)
},
target = function() {
return(private$v2)
}
)
)
|
DEL <- function (mu.link ="log", sigma.link="log", nu.link="logit")
{
mstats <- checklink("mu.link", "DEL", substitute(mu.link),
c("1/mu^2", "log", "identity"))
dstats <- checklink("sigma.link", "DEL", substitute(sigma.link),
c("inverse", "log", "identity"))
vstats <- checklink("nu.link", "DEL", substitute(nu.link),
c("logit", "probit", "cloglog", "cauchit", "log"))
structure(
list(family = c("DEL", "Delaporte"),
parameters = list(mu = TRUE, sigma = TRUE, nu = TRUE),
nopar = 3,
type = "Discrete",
mu.link = as.character(substitute(mu.link)),
sigma.link = as.character(substitute(sigma.link)),
nu.link = as.character(substitute(nu.link)),
mu.linkfun = mstats$linkfun,
sigma.linkfun = dstats$linkfun,
nu.linkfun = vstats$linkfun,
mu.linkinv = mstats$linkinv,
sigma.linkinv = dstats$linkinv,
nu.linkinv = vstats$linkinv,
mu.dr = mstats$mu.eta,
sigma.dr = dstats$mu.eta,
nu.dr = vstats$mu.eta,
dldm = function(y,mu,sigma,nu)
{
logty <-log(y+1)+dDEL(y+1, mu=mu, sigma=sigma, nu=nu, log=TRUE)-
dDEL(y, mu=mu, sigma=sigma, nu=nu, log=TRUE)
ty <- exp(logty)
dldm <- (y-ty)/mu
dldm
},
d2ldm2 = function(y,mu,sigma,nu)
{
logty <-log(y+1)+dDEL(y+1, mu=mu, sigma=sigma, nu=nu, log=TRUE)-
dDEL(y, mu=mu, sigma=sigma, nu=nu, log=TRUE)
ty <- exp(logty)
dldm <- (y-ty)/mu
d2ldm2 <- - dldm * dldm
d2ldm2 <- ifelse(d2ldm2 < -1e-15, d2ldm2,-1e-15)
d2ldm2
},
dldd = function(y,mu,sigma,nu)
{
nd <- numeric.deriv(dDEL(y, mu, sigma, nu, log=TRUE), "sigma", delta=0.01)
dldd <- as.vector(attr(nd, "gradient"))
dldd
},
d2ldd2 = function(y,mu,sigma,nu)
{
nd <- numeric.deriv(dDEL(y, mu, sigma, nu, log=TRUE), "sigma", delta=0.01)
dldd <- as.vector(attr(nd, "gradient"))
d2ldd2 <- -dldd*dldd
d2ldd2 <- ifelse(d2ldd2 < -1e-15, d2ldd2,-1e-15)
d2ldd2
},
d2ldmdd = function(y,mu,sigma,nu)
{
logty <-log(y+1)+dDEL(y+1, mu=mu, sigma=sigma, nu=nu, log=TRUE)-
dDEL(y, mu=mu, sigma=sigma, nu=nu, log=TRUE)
ty <- exp(logty)
dldm <- (y-ty)/mu
nd <- numeric.deriv(dDEL(y, mu, sigma, nu, log=TRUE), "sigma", delta=0.01)
dldd <- as.vector(attr(nd, "gradient"))
d2ldmdd <- -dldm *dldd
d2ldmdd <- ifelse(d2ldmdd < -1e-15, d2ldmdd,-1e-15)
d2ldmdd
},
d2ldmdv = function(y,mu,sigma,nu)
{
logty <-log(y+1)+dDEL(y+1, mu=mu, sigma=sigma, nu=nu, log=TRUE)-
dDEL(y, mu=mu, sigma=sigma, nu=nu, log=TRUE)
ty <- exp(logty)
dldm <- (y-ty)/mu
nd <- numeric.deriv(dDEL(y, mu, sigma, nu, log=TRUE), "nu", delta=0.01)
dldv <- as.vector(attr(nd, "gradient"))
d2ldmdv <- -dldm *dldv
d2ldmdv <- ifelse(d2ldmdv < -1e-15, d2ldmdv,-1e-15)
d2ldmdv
},
d2ldddv = function(y,mu,sigma,nu)
{
nd <- numeric.deriv(dDEL(y, mu, sigma, nu, log=TRUE), "sigma", delta=0.01)
dldd <- as.vector(attr(nd, "gradient"))
nd <- numeric.deriv(dDEL(y, mu, sigma, nu, log=TRUE), "nu", delta=0.01)
dldv <- as.vector(attr(nd, "gradient"))
d2ldddv <- -dldd *dldv
d2ldddv <- ifelse(d2ldddv < -1e-15, d2ldddv,-1e-15)
d2ldddv
},
dldv = function(y,mu,sigma,nu)
{
nd <- numeric.deriv(dDEL(y, mu, sigma, nu, log=TRUE), "nu", delta=0.01)
dldv <- as.vector(attr(nd, "gradient"))
dldv
},
d2ldv2 = function(y,mu,sigma,nu)
{
nd <- numeric.deriv(dDEL(y, mu, sigma, nu, log=TRUE), "nu", delta=0.01)
dldv <- as.vector(attr(nd, "gradient"))
d2ldv2 <- -dldv*dldv
d2ldv2 <- ifelse(d2ldv2 < -1e-15, d2ldv2,-1e-15)
d2ldv2
} ,
G.dev.incr = function(y,mu,sigma,nu, pw=1,...) -2*dDEL(y, mu, sigma, nu, log=TRUE),
rqres = expression(
rqres(pfun="pDEL", type="Discrete", ymin=0, y=y, mu=mu, sigma=sigma, nu=nu)
),
mu.initial = expression(mu<- (y+mean(y)/2)),
sigma.initial = expression(
sigma <- rep( max( ((var(y)-mean(y))/(mean(y)^2)),0.1),length(y))),
nu.initial = expression({ nu <- rep(0.5,length(y)) }),
mu.valid = function(mu) all(mu > 0) ,
sigma.valid = function(sigma) all(sigma > 0),
nu.valid = function(nu) all(nu > 0) && all(nu < 1),
y.valid = function(y) all(y >= 0),
mean = function(mu, sigma, nu) mu,
variance = function(mu, sigma, nu) mu + mu^2 * sigma * (1 - nu)^2
),
class = c("gamlss.family","family"))
}
dDEL<-function(x, mu=1, sigma=1, nu=.5, log=FALSE)
{
if (any(mu <= 0) ) stop(paste("mu must be greater than 0 ", "\n", ""))
if (any(sigma <= 0) ) stop(paste("sigma must be greater than 0 ", "\n", ""))
if (any(nu <= 0) | any(nu >= 1)) stop(paste("nu must be between 0 and 1", "\n", ""))
if (any(x < 0) ) stop(paste("x must be >=0", "\n", ""))
ly <- max(length(x),length(mu),length(sigma),length(nu))
x <- rep(x, length = ly)
sigma <- rep(sigma, length = ly)
mu <- rep(mu, length = ly)
nu <- rep(nu, length = ly)
logpy0 <- -mu*nu-(1/sigma)*(log(1+mu*sigma*(1-nu)))
S <- tofyDEL2(x, mu, sigma, nu)
logfy <- logpy0-lgamma(x+1)+S
if(log==FALSE) fy <- exp(logfy) else fy <- logfy
if (length(sigma)>1) fy <- ifelse(sigma>0.0001, fy,
dPO(x, mu = mu, log = log) )
else fy <- if (sigma<0.0001) dPO(x, mu = mu, log = log)
else fy
fy
}
tofyDEL1 <- function (y, mu, sigma, nu)
{
ly <- max(length(y),length(mu),length(sigma),length(nu))
y <- rep(y, length = ly)
sigma <- rep(sigma, length = ly)
mu <- rep(mu, length = ly)
nu <- rep(nu, length = ly)
sumlty <- as.double(.C("tofydel1",
as.double(y), as.double(mu),
as.double(sigma), as.double(nu),
ans=double(ly), as.integer(length(y)),
as.integer(max(y)+1), PACKAGE="gamlss.dist")$ans)
sumlty
}
tofyDEL2 <- function (y, mu, sigma, nu)
{
ly <- max(length(y),length(mu),length(sigma),length(nu))
y <- rep(y, length = ly)
sigma <- rep(sigma, length = ly)
mu <- rep(mu, length = ly)
nu <- rep(nu, length = ly)
sumlty <- as.double(.C("tofydel2",
as.double(y), as.double(mu),
as.double(sigma), as.double(nu),
ans=double(ly), as.integer(length(y)),
as.integer(max(y)+1), PACKAGE="gamlss.dist")$ans)
sumlty
}
pDEL <- function(q, mu = 1, sigma = 1, nu = .5, lower.tail = TRUE, log.p = FALSE)
{
if (any(mu <= 0) ) stop(paste("mu must be greater than 0 ", "\n", ""))
if (any(sigma <= 0) ) stop(paste("sigma must be greater than 0 ", "\n", ""))
if (any(nu <= 0) | any(nu >= 1)) stop(paste("nu must be between 0 and 1", "\n", ""))
if (any(q < 0) ) stop(paste("q must be >=0", "\n", ""))
ly <- max(length(q),length(mu),length(sigma),length(nu))
q <- rep(q, length = ly)
sigma <- rep(sigma, length = ly)
mu <- rep(mu, length = ly)
nu <- rep(nu, length = ly)
fn <- function(q, mu, sigma, nu) sum(dDEL(0:q, mu=mu, sigma=sigma, nu=nu))
Vcdf <- Vectorize(fn)
cdf <- Vcdf(q=q, mu=mu, sigma=sigma, nu=nu)
cdf <- if(lower.tail==TRUE) cdf else 1-cdf
cdf <- if(log.p==FALSE) cdf else log(cdf)
cdf
}
qDEL <- function(p, mu=1, sigma=1, nu=0.5, lower.tail = TRUE, log.p = FALSE,
max.value = 10000)
{
if (any(mu <= 0) ) stop(paste("mu must be greater than 0 ", "\n", ""))
if (any(sigma <= 0) ) stop(paste("sigma must be greater than 0 ", "\n", ""))
if (any(nu <= 0) | any(nu >= 1)) stop(paste("nu must be between 0 and 1", "\n", ""))
if (any(p < 0) | any(p > 1.0001)) stop(paste("p must be between 0 and 1", "\n", ""))
if (log.p==TRUE) p <- exp(p) else p <- p
if (lower.tail==TRUE) p <- p else p <- 1-p
ly <- length(p)
QQQ <- rep(0,ly)
nsigma <- rep(sigma, length = ly)
nmu <- rep(mu, length = ly)
nnu <- rep(nu, length = ly)
for (i in seq(along=p))
{
cumpro <- 0
if (p[i]+0.000000001 >= 1) QQQ[i] <- Inf
else
{
for (j in seq(from = 0, to = max.value))
{
cumpro <- pDEL(j, mu = nmu[i], sigma = nsigma[i], nu = nnu[i], log.p = FALSE)
QQQ[i] <- j
if (p[i] <= cumpro ) break
}
}
}
QQQ
}
rDEL <- function(n, mu=1, sigma=1, nu=0.5, max.value = 10000)
{
if (any(mu <= 0) ) stop(paste("mu must be greater than 0 ", "\n", ""))
if (any(sigma <= 0) ) stop(paste("sigma must be greater than 0 ", "\n", ""))
if (any(nu <= 0) | any(nu >= 1)) stop(paste("nu must be between 0 and 1", "\n", ""))
if (any(n <= 0)) stop(paste("n must be a positive integer", "\n", ""))
n <- ceiling(n)
p <- runif(n)
r <- qDEL(p, mu=mu, sigma=sigma, nu=nu, max.value = max.value )
as.integer(r)
}
|
pt2d <-
function(x, y = x, rho = 0, nu = 4)
{
if (nu == Inf) return(pnorm2d(x = x, y = y, rho = rho))
sigma <- diag(2)
sigma[1, 2] <- sigma[2, 1] <- rho
X <- cbind(x, y)
.pmvt <- function(x, delta, sigma, df)
mvtnorm::pmvt(
lower = -Inf, upper = x, delta = delta, sigma = sigma, df = df)
ans <- apply(X, 1, ".pmvt", delta = c(0,0), sigma = sigma, df = nu)
attr(ans, "control") <- c(rho = rho, nu = nu)
ans
}
dt2d <-
function(x, y = x, rho = 0, nu = 4)
{
if (nu == Inf) return(dnorm2d(x = x, y = y, rho = rho))
xoy <- (x^2 - 2*rho*x*y + y^2)/ (2*(1 - rho^2))
density <- (1 + 2*xoy/nu)^(-(nu+2)/2) / (2*pi*sqrt(1-rho^2))
attr(density, "control") <- c(rho = rho, nu = nu)
density
}
rt2d <-
function(n, rho = 0, nu = 4)
{
if (nu == Inf) return(rnorm2d(n = n, rho = rho))
ans <- rnorm2d(n, rho)/sqrt(rchisq(n, nu)/nu)
attr(ans, "control") <- c(rho = rho, nu = nu)
ans
}
|
month_cnv=function(monthinput, up=FALSE, short=FALSE){
numelem = length(monthinput)
monthnames = c('january', 'february', 'march', 'april', 'may', 'june',
'july', 'august', 'september', 'october', 'november', 'december')
monthshort = substr(monthnames,1,3)
if (is.character(monthinput)){
monthinput = gsub('(^ +)|( +$)','',monthinput)
shortinput = tolower(substr(monthinput,1,3))
return(which(shortinput==monthshort))
}
else {
if(any(monthinput<1 | monthinput>12)) {
stop("bad input values. month numbers must be 1-12.")
}
else {
result = monthnames[monthinput]
if(short) result = substr(result,1,3)
if(up) result = toupper(result)
}
}
return(result)
}
|
rrum = function(Y, Q, chain_length = 10000L,
as = 1, bs = 1, ag = 1, bg = 1,
delta0 = rep(1, 2 ^ ncol(Q))) {
if(length(as) != 1 | length(ag) != 1 | length(bs) != 1 | length(bg) != 1) {
stop("as, ag, bs, and bg must all be numeric and of length 1")
}
rrum_helper(Y, Q, delta0, chain_length, as, bs, ag, bg)
}
|
plotFsiland=function(res,land,data)
{
requireNamespace("ggplot2")
requireNamespace("ggforce")
namesland=colnames(res$landcontri)
landraster=landtoraster(land,landname=namesland ,wd=res$wd)
lx=range(unlist(lapply(landraster,function(x){range(x[,"X"])})))
ly=range(unlist(lapply(landraster,function(x){range(x[,"Y"])})))
pp=c("X","Y")
Area=Fsiland.quantile(res,c(0.5,0.95))
MR=max(Area)
Area=rbind(0,Area)
ldata=NULL
DA=NULL
xx=lx[2]+MR
yy=ly[1]
for(i in 1:length(landraster))
{
ldata=rbind(ldata,data.frame(landraster[[i]][,pp],LandVar=names(landraster)[i]))
yy=yy+Area[i,2]+Area[i+1,2]+0.1*(ly[2]-ly[1])
DA=rbind(DA,data.frame(x=xx,y=yy,r=Area[i+1,],LandVar=names(landraster)[i],Type=as.factor(c(0.5,0.95))))
}
cbPalette <- c( "
g=ggplot(ldata,aes_string(x="X",y="Y",color="LandVar"))+
geom_rect(aes(xmin =lx[1],xmax= lx[2],ymin=ly[1],ymax=ly[2]),fill="grey95",inherit.aes = FALSE)+geom_point( size=0.4)+
scale_fill_manual(values=cbPalette)+scale_color_manual(values=cbPalette)+
theme_classic()+theme(axis.title=element_blank(),legend.title=element_blank(),legend.position="bottom")+
geom_point(data=data,aes_string(x="X",y="Y"),color=1)+coord_fixed()
g2=g+geom_circle(data=DA,aes_string(x0="x", y0="y", r="r",color="LandVar",fill="LandVar",linetype="Type",alpha=0.5),inherit.aes = FALSE,show.legend = FALSE)
g2
}
|
context("write_disk_path behavior")
test_that("with crul", {
skip_on_cran()
skip_if_not_installed("vcr")
library("vcr")
dir <- tempdir()
invisible(vcr_configure(dir = dir))
library(crul)
f <- tempfile(fileext = ".json")
webmockr_net_connect_allowed()
expect_error(
suppressWarnings(use_cassette("write_disk_path_not_set_crul_error", {
out <- HttpClient$new("https://httpbin.org/get")$get(disk = f)
})),
"write_disk_path must be given"
)
wdp <- file.path(dir, "files")
invisible(vcr_configure(dir = dir, write_disk_path = wdp))
expect_error(
use_cassette("write_disk_path_not_set_crul_noerror", {
out <- HttpClient$new("https://httpbin.org/get")$get(disk = f)
}),
NA
)
unlink(f)
unlink(wdp, TRUE)
unlink(file.path(dir, "write_disk_path_not_set_crul_error.yml"))
unlink(file.path(dir, "write_disk_path_not_set_crul_noerror.yml"))
webmockr_disable_net_connect()
unloadNamespace("vcr")
})
test_that("if relative path set its not expanded to full path anymore", {
skip_on_cran()
skip_if_not_installed("vcr")
library("vcr")
dir <- tempdir()
f <- "stuff.json"
wdp <- "../files"
invisible(vcr_configure(dir = dir, write_disk_path = wdp))
og <- getwd()
setwd(dir)
on.exit(setwd(og))
expect_error(
use_cassette("write_disk_path_is_relative", {
out <- HttpClient$new("https://httpbin.org/get?foo=foo")$get(disk = f)
}),
NA
)
txt <- readLines(file.path(dir, "write_disk_path_is_relative.yml"))
expect_true(any(grepl("../files/stuff.json", txt)))
unlink("stuff.json")
webmockr_disable_net_connect()
unloadNamespace("vcr")
})
test_that("with httr", {
skip_on_cran()
skip_if_not_installed("vcr")
library("vcr")
enable()
dir <- tempdir()
invisible(vcr_configure(dir = dir))
library(httr)
f <- tempfile(fileext = ".json")
webmockr_net_connect_allowed()
expect_error(
suppressWarnings(use_cassette("write_disk_path_not_set_crul_error", {
out <- GET("https://httpbin.org/get", write_disk(f))
})),
"write_disk_path must be given"
)
f <- tempfile(fileext = ".json")
wdp <- file.path(dir, "files")
invisible(vcr_configure(dir = dir, write_disk_path = wdp))
expect_error(
use_cassette("write_disk_path_not_set_crul_noerror", {
out <- GET("https://httpbin.org/get", write_disk(f))
}),
NA
)
unlink(f)
unlink(wdp, TRUE)
unlink(file.path(dir, "write_disk_path_not_set_crul_error.yml"))
unlink(file.path(dir, "write_disk_path_not_set_crul_noerror.yml"))
webmockr_disable_net_connect()
unloadNamespace("vcr")
})
test_that("if relative path set its not expanded to full path anymore: httr", {
skip_on_cran()
skip_if_not_installed("vcr")
library("vcr")
dir <- tempdir()
f <- "stuff.json"
wdp <- "../files"
invisible(vcr_configure(dir = dir, write_disk_path = wdp))
og <- getwd()
setwd(dir)
on.exit(setwd(og))
expect_error(
use_cassette("write_disk_path_is_relative", {
out <- GET("https://httpbin.org/get?foo=foo", write_disk(f))
}),
NA
)
txt <- readLines(file.path(dir, "write_disk_path_is_relative.yml"))
expect_true(any(grepl("../files/stuff.json", txt)))
unlink("stuff.json")
webmockr_disable_net_connect()
unloadNamespace("vcr")
})
|
library(dynbenchmark)
library(tidyverse)
experiment("01-datasets")
qsub::rsync_remote(
remote_src = TRUE,
path_src = derived_file(remote = TRUE, experiment = "01-datasets"),
remote_dest = FALSE,
path_dest = derived_file(remote = FALSE, experiment = "01-datasets"),
verbose = TRUE,
compress = FALSE
)
|
context("plotting")
memory <- list(
ReducedDimensionPlot(
LegendPointSize = 2
),
ColumnDataPlot(),
FeatureAssayPlot(),
RowDataPlot(),
SampleAssayPlot(),
SampleAssayPlot(),
SampleAssayPlot()
)
pObjects <- mimic_live_app(sce, memory)
sce <- iSEE:::.set_colormap(sce, ExperimentColorMap())
test_that(".make_redDimPlot/.scatter_plot produce a valid list",{
p.out <- .generateOutput(pObjects$memory$ReducedDimensionPlot1, sce,
all_memory=pObjects$memory, all_contents=pObjects$contents)
expect_type(p.out, "list")
expect_named(p.out, c("commands", "contents", "plot", "varname"))
expect_type(p.out$commands, "list")
expect_true(all(vapply(p.out$commands, is.character, TRUE)))
expect_s3_class(p.out$contents, "data.frame")
expect_named(p.out$contents, c("X","Y"))
expect_s3_class(p.out$plot, c("gg", "ggplot"))
})
test_that(".make_redDimPlot/.scatter_plot produce a valid xy with color", {
rdp <- pObjects$memory$ReducedDimensionPlot1
rdp[[iSEE:::.colorByField]] <- iSEE:::.colorByColDataTitle
p.out <- .generateOutput(rdp, sce,
all_memory=pObjects$memory, all_contents=pObjects$contents)
expect_named(p.out$contents, c("X","Y","ColorBy"))
})
test_that(".make_colDataPlot/.scatter_plot produce a valid list",{
cdp <- pObjects$memory$ColumnDataPlot1
cdp[[iSEE:::.colDataXAxis]] <- iSEE:::.colDataXAxisColDataTitle
cdp[[iSEE:::.colDataXAxisColData]] <- "NREADS"
cdp[[iSEE:::.colDataYAxis]] <- "NALIGNED"
p.out <- .generateOutput(cdp, sce,
all_memory=pObjects$memory, all_contents=pObjects$contents)
expect_type(p.out, "list")
expect_named(p.out, c("commands", "contents", "plot", "varname"))
expect_type(p.out$commands, "list")
expect_true(all(vapply(p.out$commands, is.character, TRUE)))
expect_s3_class(p.out$contents, "data.frame")
expect_named(p.out$contents, c("Y","X"))
expect_s3_class(p.out$plot, c("gg", "ggplot"))
})
test_that(".make_colDataPlot/.scatter_plot produce a valid xy with color", {
cdp <- pObjects$memory$ColumnDataPlot1
cdp[[iSEE:::.colDataXAxis]] <- iSEE:::.colDataXAxisColDataTitle
cdp[[iSEE:::.colDataXAxisColData]] <- "NREADS"
cdp[[iSEE:::.colorByField]] <- iSEE:::.colorByColDataTitle
p.out <- .generateOutput(cdp, sce,
all_memory=pObjects$memory, all_contents=pObjects$contents)
expect_named(p.out$contents, c('Y', 'X', 'ColorBy'))
})
test_that(".make_colDataPlot/.violin_plot produce a valid list",{
p.out <- .generateOutput(pObjects$memory$ColumnDataPlot1, sce,
all_memory=pObjects$memory, all_contents=pObjects$contents)
expect_type(p.out, "list")
expect_named(p.out, c("commands", "contents", "plot", "varname"))
expect_type(p.out$commands, "list")
expect_true(all(vapply(p.out$commands, is.character, TRUE)))
expect_s3_class(p.out$contents, "data.frame")
expect_named(p.out$contents, c("Y", "X", "GroupBy", "jitteredX"))
expect_s3_class(p.out$plot, c("gg", "ggplot"))
})
test_that(".make_colDataPlot/.violin_plot produce a valid xy with color", {
cdp <- pObjects$memory$ColumnDataPlot1
cdp[[iSEE:::.colorByField]] <- iSEE:::.colorByColDataTitle
p.out <- .generateOutput(cdp, sce,
all_memory=pObjects$memory, all_contents=pObjects$contents)
expect_named(p.out$contents, c("Y","X","ColorBy","GroupBy","jitteredX"))
})
test_that(".make_colDataPlot/.square_plot produce a valid list",{
cdp <- pObjects$memory$ColumnDataPlot1
cdp[[iSEE:::.colDataXAxis]] <- iSEE:::.colDataXAxisColDataTitle
cdp[[iSEE:::.colDataXAxisColData]] <- "driver_1_s"
cdp[[iSEE:::.colDataYAxis]] <- "passes_qc_checks_s"
p.out <- .generateOutput(cdp, sce,
all_memory=pObjects$memory, all_contents=pObjects$contents)
expect_type(p.out, "list")
expect_named(p.out, c("commands", "contents", "plot", "varname"))
expect_type(p.out$commands, "list")
expect_true(all(vapply(p.out$commands, is.character, TRUE)))
expect_s3_class(p.out$contents, "data.frame")
expect_named(p.out$contents, c("Y","X","jitteredX","jitteredY"))
expect_s3_class(p.out$plot, c("gg", "ggplot"))
})
test_that(".make_colDataPlot/.square_plot produce a valid xy with color", {
cdp <- pObjects$memory$ColumnDataPlot1
cdp[[iSEE:::.colDataXAxis]] <- iSEE:::.colDataXAxisColDataTitle
cdp[[iSEE:::.colDataXAxisColData]] <- "driver_1_s"
cdp[[iSEE:::.colDataYAxis]] <- "passes_qc_checks_s"
cdp[[iSEE:::.colorByField]] <- iSEE:::.colorByColDataTitle
p.out <- .generateOutput(cdp, sce,
all_memory=pObjects$memory, all_contents=pObjects$contents)
expect_named(p.out$contents, c("Y","X","ColorBy","jitteredX","jitteredY"))
})
test_that(".make_rowDataPlot/.scatter_plot produce a valid list",{
rdp <- pObjects$memory$RowDataPlot
rdp[[iSEE:::.rowDataXAxis]] <- iSEE:::.rowDataXAxisRowDataTitle
rdp[[iSEE:::.rowDataXAxisRowData]] <- "num_cells"
rdp[[iSEE:::.rowDataYAxis]] <- "mean_count"
p.out <- .generateOutput(rdp, sce,
all_memory=pObjects$memory, all_contents=pObjects$contents)
expect_type(p.out, "list")
expect_named(p.out, c("commands", "contents", "plot", "varname"))
expect_type(p.out$commands, "list")
expect_true(all(vapply(p.out$commands, is.character, TRUE)))
expect_s3_class(p.out$contents, "data.frame")
expect_named(p.out$contents, c("Y","X"))
expect_s3_class(p.out$plot, c("gg", "ggplot"))
})
test_that(".make_rowDataPlot/.violin_plot produce a valid xy with color", {
rdp <- pObjects$memory$RowDataPlot
rdp[[iSEE:::.rowDataXAxis]] <- iSEE:::.rowDataXAxisRowDataTitle
rdp[[iSEE:::.rowDataXAxisRowData]] <- "num_cells"
rdp[[iSEE:::.rowDataYAxis]] <- "mean_count"
rdp[[iSEE:::.colorByField]] <- iSEE:::.colorByRowDataTitle
p.out <- .generateOutput(rdp, sce,
all_memory=pObjects$memory, all_contents=pObjects$contents)
expect_named(p.out$contents, c('Y', 'X', 'ColorBy'))
rdp[[iSEE:::.colorByField]] <- iSEE:::.colorByFeatNameTitle
p.out <- .generateOutput(rdp, sce,
all_memory=pObjects$memory, all_contents=pObjects$contents)
expect_named(p.out$contents, c('Y', 'X', 'ColorBy'))
})
test_that(".make_rowDataPlot/.violin_plot produce a valid list",{
rdp <- pObjects$memory$RowDataPlot
p.out <- .generateOutput(rdp, sce,
all_memory=pObjects$memory, all_contents=pObjects$contents)
expect_type(p.out, "list")
expect_named(p.out, c("commands", "contents", "plot", "varname"))
expect_type(p.out$commands, "list")
expect_true(all(vapply(p.out$commands, is.character, TRUE)))
expect_s3_class(p.out$contents, "data.frame")
expect_named(p.out$contents, c("Y", "X", "GroupBy", "jitteredX"))
expect_s3_class(p.out$plot, c("gg", "ggplot"))
})
test_that(".make_rowDataPlot/.violin_plot produce a valid xy with color", {
rdp <- pObjects$memory$RowDataPlot
rdp[[iSEE:::.colorByField]] <- iSEE:::.colorByRowDataTitle
p.out <- .generateOutput(rdp, sce,
all_memory=pObjects$memory, all_contents=pObjects$contents)
expect_named(p.out$contents, c("Y","X","ColorBy","GroupBy","jitteredX"))
rdp[[iSEE:::.colorByField]] <- iSEE:::.colorByFeatNameTitle
p.out <- .generateOutput(rdp, sce,
all_memory=pObjects$memory, all_contents=pObjects$contents)
expect_named(p.out$contents, c("Y","X","ColorBy","GroupBy","jitteredX"))
})
test_that(".make_rowDataPlot/.square_plot produce a valid list",{
rowData(sce)[, "LETTERS"] <- sample(LETTERS[1:3], nrow(sce), replace=TRUE)
rdp <- pObjects$memory$RowDataPlot
rdp[[iSEE:::.rowDataXAxis]] <- iSEE:::.rowDataXAxisRowDataTitle
rdp[[iSEE:::.rowDataXAxisRowData]] <- "letters"
rdp[[iSEE:::.rowDataYAxis]] <- "LETTERS"
p.out <- .generateOutput(rdp, sce,
all_memory=pObjects$memory, all_contents=pObjects$contents)
expect_type(p.out, "list")
expect_named(p.out, c("commands", "contents", "plot", "varname"))
expect_type(p.out$commands, "list")
expect_true(all(vapply(p.out$commands, is.character, TRUE)))
expect_s3_class(p.out$contents, "data.frame")
expect_named(p.out$contents, c('Y', 'X', 'jitteredX', 'jitteredY'))
expect_s3_class(p.out$plot, c("gg", "ggplot"))
})
test_that(".make_rowDataPlot/.square_plot produce a valid xy with color",{
rowData(sce)[, "LETTERS"] <- sample(LETTERS[1:3], nrow(sce), replace=TRUE)
rdp <- pObjects$memory$RowDataPlot
rdp[[iSEE:::.rowDataXAxis]] <- iSEE:::.rowDataXAxisRowDataTitle
rdp[[iSEE:::.rowDataXAxisRowData]] <- "letters"
rdp[[iSEE:::.rowDataYAxis]] <- "LETTERS"
rdp[[iSEE:::.colorByField]] <- iSEE:::.colorByRowDataTitle
p.out <- .generateOutput(rdp, sce,
all_memory=pObjects$memory, all_contents=pObjects$contents)
expect_type(p.out, "list")
expect_named(p.out, c("commands", "contents", "plot", "varname"))
expect_type(p.out$commands, "list")
expect_true(all(vapply(p.out$commands, is.character, TRUE)))
expect_s3_class(p.out$contents, "data.frame")
expect_named(p.out$contents, c('Y', 'X', 'ColorBy', 'jitteredX', 'jitteredY'))
expect_s3_class(p.out$plot, c("gg", "ggplot"))
rdp[[iSEE:::.colorByField]] <- iSEE:::.colorByFeatNameTitle
p.out <- .generateOutput(rdp, sce,
all_memory=pObjects$memory, all_contents=pObjects$contents)
expect_named(p.out$contents, c('Y', 'X', 'ColorBy', 'jitteredX', 'jitteredY'))
})
test_that(".make_featAssayPlot/.violin_plot produce a valid list",{
fdp <- pObjects$memory$FeatureAssayPlot1
p.out <- .generateOutput(fdp, sce,
all_memory=pObjects$memory, all_contents=pObjects$contents)
expect_type(p.out, "list")
expect_named(p.out, c("commands", "contents", "plot", "varname"))
expect_type(p.out$commands, "list")
expect_true(all(vapply(p.out$commands, is.character, TRUE)))
expect_s3_class(p.out$contents, "data.frame")
expect_named(p.out$contents, c("Y", "X", "GroupBy", "jitteredX"))
expect_s3_class(p.out$plot, c("gg", "ggplot"))
})
test_that(".make_featAssayPlot/.violin_plot produce a valid xy with color", {
fdp <- pObjects$memory$FeatureAssayPlot1
fdp[[iSEE:::.colorByField]] <- iSEE:::.colorByColDataTitle
p.out <- .generateOutput(fdp, sce,
all_memory=pObjects$memory, all_contents=pObjects$contents)
expect_named(p.out$contents, c("Y","X","ColorBy","GroupBy","jitteredX"))
})
test_that(".make_featAssayPlot works for XAxis set to Column data", {
fdp <- pObjects$memory$FeatureAssayPlot1
fdp[[iSEE:::.featAssayXAxis]] <- iSEE:::.featAssayXAxisColDataTitle
fdp[[iSEE:::.featAssayXAxisColData]] <- "dissection_s"
p.out <- .generateOutput(fdp, sce,
all_memory=pObjects$memory, all_contents=pObjects$contents)
expect_true(any(grepl("dissection_s", unlist(p.out$commands))))
})
test_that(".make_featAssayPlot works for XAxis set to a character feature name", {
selected_gene <- "Lamp5"
fdp <- pObjects$memory$FeatureAssayPlot1
fdp[[iSEE:::.featAssayXAxis]] <- iSEE:::.featAssayXAxisFeatNameTitle
fdp[[iSEE:::.featAssayXAxisFeatName]] <- selected_gene
p.out <- .generateOutput(fdp, sce,
all_memory=pObjects$memory, all_contents=pObjects$contents)
expect_true(any(grepl(selected_gene, unlist(p.out$commands))))
})
test_that(".make_featAssayPlot works for groupable colour covariate", {
selected_coldata <- "dissection_s"
fdp <- pObjects$memory$FeatureAssayPlot1
fdp[[iSEE:::.colorByField]] <- iSEE:::.colorByColDataTitle
fdp[[iSEE:::.colorByColData]] <- selected_coldata
p.out <- .generateOutput(fdp, sce,
all_memory=pObjects$memory, all_contents=pObjects$contents)
expect_true(any(grepl(selected_coldata, unlist(p.out$commands))))
expect_named(p.out$contents, c("Y", "X", "ColorBy", "GroupBy", "jitteredX"))
})
test_that(".make_sampAssayPlot works with X covariate set to None", {
sap <- pObjects$memory$SampleAssayPlot1
p.out <- .generateOutput(sap, sce,
all_memory=pObjects$memory, all_contents=pObjects$contents)
expect_type(p.out, "list")
expect_named(p.out, c("commands", "contents", "plot", "varname"))
expect_type(p.out$commands, "list")
expect_true(all(vapply(p.out$commands, is.character, TRUE)))
expect_s3_class(p.out$contents, "data.frame")
expect_named(p.out$contents, c("Y", "X", "GroupBy", "jitteredX"))
expect_true(all(p.out$contents$X==""))
expect_s3_class(p.out$plot, c("gg", "ggplot"))
})
test_that(".make_sampAssayPlot works with X variable set to Row data", {
selected_rowdata <- "num_cells"
sap <- pObjects$memory$SampleAssayPlot1
sap[[iSEE:::.rowDataXAxis]] <- iSEE:::.sampAssayXAxisRowDataTitle
sap[[iSEE:::.rowDataXAxisRowData]] <- selected_rowdata
p.out <- .generateOutput(sap, sce,
all_memory=pObjects$memory, all_contents=pObjects$contents)
expect_true(any(grepl(selected_rowdata, unlist(p.out$commands))))
})
test_that(".make_sampAssayPlot works with X variable set to Sample name", {
selected_sample <- colnames(sce)[2]
sap <- pObjects$memory$SampleAssayPlot1
sap[[iSEE:::.rowDataXAxis]] <- iSEE:::.sampAssayXAxisSampNameTitle
sap[[iSEE:::.sampAssayXAxisSampName]] <- selected_sample
p.out <- .generateOutput(sap, sce,
all_memory=pObjects$memory, all_contents=pObjects$contents)
expect_true(any(grepl(selected_sample, unlist(p.out$commands))))
})
test_that(".make_colDataPlot/.create_plot can produce horizontal violins", {
selected_coldataX <- "NREADS"
selected_coldataY <- "driver_1_s"
cdp <- pObjects$memory$ColumnDataPlot
cdp[[iSEE:::.colDataXAxis]] <- iSEE:::.colorByColDataTitle
cdp1 <- cdp
cdp1[[iSEE:::.colDataXAxisColData]] <- selected_coldataX
cdp1[[iSEE:::.colDataYAxis]] <- selected_coldataY
cdp2 <- cdp
cdp2[[iSEE:::.colDataXAxisColData]] <- selected_coldataY
cdp2[[iSEE:::.colDataYAxis]] <- selected_coldataX
p.out1 <- .generateOutput(cdp1, sce, all_memory=pObjects$memory, all_contents=pObjects$contents)
p.out2 <- .generateOutput(cdp2, sce, all_memory=pObjects$memory, all_contents=pObjects$contents)
expect_identical(p.out1$contents, p.out2$contents)
expect_true(any(grepl("coord_flip", unlist(p.out1$commands))))
expect_false(any(grepl("coord_flip", unlist(p.out2$commands))))
})
test_that(".scatter_plot works with zoom",{
params <- pObjects$memory$ReducedDimensionPlot1
ref <- .generateOutput(params, sce, all_memory=pObjects$memory, all_contents=pObjects$contents)
rd <- reducedDim(sce, params[[iSEE:::.redDimType]])
x_range <- range(head(rd[, params[[iSEE:::.redDimXAxis]]]), 10)
y_range <- range(head(rd[, params[[iSEE:::.redDimYAxis]]]), 10)
zoom_range <- c(x_range, y_range)
names(zoom_range) <- c("xmin","xmax","ymin","ymax")
params[[iSEE:::.zoomData]] <- zoom_range
p.out <- .generateOutput(params, sce, all_memory=pObjects$memory, all_contents=pObjects$contents)
expect_identical(p.out$contents, ref$contents)
expect_true(any(grepl("coord_cartesian.*xmin.*xmax", unlist(p.out$commands))))
expect_false(any(grepl("coord_cartesian.*xmin.*xmax", unlist(ref$commands))))
})
test_that(".make_colDataPlot/.violin_plot works with zoom",{
cdp <- pObjects$memory$ColumnDataPlot1
cdp[[iSEE:::.colDataXAxis]] <- iSEE:::.colDataXAxisColDataTitle
chosen_x <- "driver_1_s"
cdp[[iSEE:::.colDataXAxisColData]] <- chosen_x
ref <- .generateOutput(cdp, sce, all_memory=pObjects$memory, all_contents=pObjects$contents)
x_unique <- unique(as.numeric(as.factor(colData(sce)[,chosen_x])))
chosen_y <- cdp[[iSEE:::.colDataYAxis]]
y_range <- range(head(colData(sce)[,chosen_y], 10))
zoom_range <- c(sort(head(x_unique, 2)), y_range)
zoom_range <- zoom_range + c(-0.5, 0.5, 0, 0)
names(zoom_range) <- c("xmin","xmax","ymin","ymax")
cdp[[iSEE:::.zoomData]] <- zoom_range
p.out <- .generateOutput(cdp, sce, all_memory=pObjects$memory, all_contents=pObjects$contents)
expect_identical(p.out$contents, ref$contents)
expect_true(any(grepl("coord_cartesian.*xmin.*xmax", unlist(p.out$commands))))
expect_false(any(grepl("coord_cartesian.*xmin.*xmax", unlist(ref$commands))))
})
test_that(".make_colDataPlot/.violin_plot works with zoom",{
cdp <- pObjects$memory$ColumnDataPlot1
cdp[[iSEE:::.colDataXAxis]] <- iSEE:::.colDataXAxisColDataTitle
chosen_x <- "NREADS"
cdp[[iSEE:::.colDataXAxisColData]] <- chosen_x
chosen_y <- "driver_1_s"
cdp[[iSEE:::.colDataYAxis]] <- chosen_y
ref <- .generateOutput(cdp, sce, all_memory=pObjects$memory, all_contents=pObjects$contents)
x_range <- range(head(colData(sce)[,chosen_x], 10))
y_unique <- unique(as.numeric(as.factor(colData(sce)[,chosen_y])))
zoom_range <- c(x_range, sort(head(y_unique, 2)))
zoom_range <- zoom_range + c(0, 0, -0.5, 0.5)
names(zoom_range) <- c("xmin","xmax","ymin","ymax")
cdp[[iSEE:::.zoomData]] <- zoom_range
p.out <- .generateOutput(cdp, sce, all_memory=pObjects$memory, all_contents=pObjects$contents)
expect_identical(p.out$contents, ref$contents)
expect_true(any(grepl("coord_flip.*xmin.*xmax", unlist(p.out$commands))))
expect_false(any(grepl("coord_flip.*xmin.*xmax", unlist(ref$commands))))
})
test_that(".make_colDataPlot/.square_plot works with zoom",{
cdp <- pObjects$memory$ColumnDataPlot1
cdp[[iSEE:::.colDataXAxis]] <- iSEE:::.colDataXAxisColDataTitle
chosen_x <- "passes_qc_checks_s"
cdp[[iSEE:::.colDataXAxisColData]] <- chosen_x
chosen_y <- "driver_1_s"
cdp[[iSEE:::.colDataYAxis]] <- chosen_y
ref <- .generateOutput(cdp, sce, all_memory=pObjects$memory, all_contents=pObjects$contents)
x_unique <- unique(as.numeric(as.factor(colData(sce)[,chosen_x])))
y_unique <- unique(as.numeric(as.factor(colData(sce)[,chosen_y])))
zoom_range <- c(
sort(head(x_unique, 2)),
sort(head(y_unique, 2))
)
zoom_range <- zoom_range + rep(c(-0.5, 0.5), times=2)
names(zoom_range) <- c("xmin","xmax","ymin","ymax")
cdp[[iSEE:::.zoomData]] <- zoom_range
p.out <- .generateOutput(cdp, sce, all_memory=pObjects$memory, all_contents=pObjects$contents)
expect_identical(p.out$contents, ref$contents)
expect_true(any(grepl("coord_cartesian.*xmin.*xmax", unlist(p.out$commands))))
expect_false(any(grepl("coord_cartesian.*xmin.*xmax", unlist(ref$commands))))
})
test_that("define_shapeby_for_column_plot produces the expected commands", {
params <- pObjects$memory$ReducedDimensionPlot1
params[[iSEE:::.shapeByField]] <- iSEE:::.shapeByColDataTitle
params[[iSEE:::.shapeByColData]] <- "driver_1_s"
env <- new.env()
env$se <- sce
.generateDotPlotData(params, env)
shape_out <- iSEE:::.addDotPlotDataShape(params, env)
expect_true(!is.null(env$plot.data$ShapeBy))
expect_identical(shape_out$labels$ShapeBy, "driver_1_s")
expect_match(shape_out$commands, "driver_1_s", fixed=TRUE)
})
test_that(".define_shapeby_for_row_plot produces the expected commands", {
params <- pObjects$memory$RowDataPlot1
params[[iSEE:::.shapeByField]] <- iSEE:::.shapeByRowDataTitle
params[[iSEE:::.shapeByRowData]] <- "letters"
env <- new.env()
env$se <- sce
.generateDotPlotData(params, env)
shape_out <- iSEE:::.addDotPlotDataShape(params, env)
expect_true(!is.null(env$plot.data$ShapeBy))
expect_identical(shape_out$labels$ShapeBy, "letters")
expect_match(shape_out$commands, "letters", fixed=TRUE)
})
test_that("define_sizeby_for_column_plot produces the expected commands", {
params <- pObjects$memory$ReducedDimensionPlot1
params[[iSEE:::.sizeByField]] <- iSEE:::.sizeByColDataTitle
params[[iSEE:::.sizeByColData]] <- "NREADS"
env <- new.env()
env$se <- sce
.generateDotPlotData(params, env)
size_out <- iSEE:::.addDotPlotDataSize(params, env)
expect_true(!is.null(env$plot.data$SizeBy))
expect_identical(size_out$labels$SizeBy, "NREADS")
expect_match(size_out$commands, "NREADS", fixed=TRUE)
})
test_that(".define_sizeby_for_row_plot produces the expected commands", {
params <- pObjects$memory$RowDataPlot1
params[[iSEE:::.sizeByField]] <- iSEE:::.sizeByRowDataTitle
params[[iSEE:::.sizeByRowData]] <- "mean_count"
env <- new.env()
env$se <- sce
.generateDotPlotData(params, env)
size_out <- iSEE:::.addDotPlotDataSize(params, env)
expect_true(!is.null(env$plot.data$SizeBy))
expect_identical(size_out$labels$SizeBy, "mean_count")
expect_match(size_out$commands, "mean_count", fixed=TRUE)
})
test_that(".coerce_type handles various inputs correctly", {
input_field <- "XYZ"
expect_warning(
lab_out <- iSEE:::.coerce_type(letters, input_field, max_levels=0),
"covariate has too many unique values, coercing to numeric"
)
expect_identical(lab_out, "plot.data$XYZ <- as.numeric(as.factor(plot.data$XYZ));")
expect_warning(
lab_out <- iSEE:::.coerce_type(factor(letters), input_field, max_levels=0),
"covariate has too many unique values, coercing to numeric"
)
expect_identical(lab_out, "plot.data$XYZ <- as.numeric(plot.data$XYZ);")
lab_out <- iSEE:::.coerce_type(1:10, input_field)
expect_identical(lab_out, NULL)
lab_out <- iSEE:::.coerce_type(letters, input_field)
expect_identical(lab_out, 'plot.data[["XYZ"]] <- factor(plot.data[["XYZ"]]);')
lab_out <- iSEE:::.coerce_type(factor(letters), input_field)
expect_identical(lab_out, NULL)
})
test_that(".create_points handles selection effects", {
all_memory <- pObjects$memory
rdp <- all_memory$ReducedDimensionPlot1
fap <- all_memory$FeatureAssayPlot1
fap[[iSEE:::.selectColSource]] <- .getEncodedName(rdp)
rd <- reducedDim(sce, rdp[[iSEE:::.redDimType]])
x_10 <- head(rd[, rdp[[iSEE:::.redDimXAxis]]], 10)
y_10 <- head(rd[, rdp[[iSEE:::.redDimYAxis]]], 10)
all_memory$ReducedDimensionPlot1[[iSEE:::.brushData]] <- list(
xmin=min(x_10), xmax=max(x_10), ymin=min(y_10), ymax=max(y_10),
direction="xy", mapping=list(x="X", y="Y"),
brushId="dummy_brush", outputId="dummy_plot"
)
out <- .generateOutput(fap, sce, all_memory=all_memory, all_contents=pObjects$contents)
expect_true(!is.null(out$contents$SelectBy))
expect_true(any(grepl("geom_point.*SelectBy.*alpha", unlist(out$commands))))
fap[[iSEE:::.colorByField]] <- iSEE:::.colorByColSelectionsTitle
fap[[iSEE:::.selectTransAlpha]] <- 1
out <- .generateOutput(fap, sce, all_memory=all_memory, all_contents=pObjects$contents)
expect_true(!is.null(out$contents$SelectBy))
expect_false(any(grepl("geom_point.*SelectBy.*alpha", unlist(out$commands))))
expect_true(any(grepl("columnSelectionColorMap", unlist(out$commands))))
fap[[iSEE:::.selectColRestrict]] <- TRUE
out <- .generateOutput(fap, sce, all_memory=all_memory, all_contents=pObjects$contents)
expect_true(!is.null(out$contents$SelectBy))
expect_true(any(grepl("plot.data.all", unlist(out$commands))))
expect_true(any(grepl("subset.*SelectBy", unlist(out$commands))))
})
test_that(".create_points handles sizing effects", {
all_memory <- pObjects$memory
rdp <- all_memory$ReducedDimensionPlot1
rdp[[iSEE:::.sizeByField]] <- iSEE:::.sizeByColDataTitle
out <- .generateOutput(rdp, sce, all_memory=all_memory, all_contents=pObjects$contents)
expect_true(!is.null(out$contents$SizeBy))
expect_true(any(grepl("geom_point.*SizeBy.*alpha", unlist(out$commands))))
})
test_that(".self_brush_box draw multiple shiny brushes", {
cdp <- pObjects$memory$ColumnDataPlot1
cdp[[iSEE:::.colDataXAxis]] <- iSEE:::.colDataXAxisColDataTitle
cdp[[iSEE:::.colDataXAxisColData]] <- "NREADS"
cdp[[iSEE:::.colDataYAxis]] <- "driver_1_s"
brushHistory <- list(
list(xmin=1, xmax=2, ymin=3, ymax=4),
list(xmin=2, xmax=3, ymin=4, ymax=5)
)
cdp[[iSEE:::.multiSelectHistory]] <- brushHistory
out <- iSEE:::.self_select_boxes(cdp, flip=TRUE)
expect_length(out, 2*length(brushHistory))
expect_type(out, "character")
expect_match(out[1], "geom_rect", fixed=TRUE)
expect_match(out[2], "geom_text", fixed=TRUE)
expect_match(out[3], "geom_rect", fixed=TRUE)
expect_match(out[4], "geom_text", fixed=TRUE)
})
test_that(".self_brush_box can flip axes", {
cdp <- pObjects$memory$ColumnDataPlot1
cdp[[iSEE:::.colDataXAxis]] <- iSEE:::.colDataXAxisColDataTitle
cdp[[iSEE:::.colDataXAxisColData]] <- "NREADS"
cdp[[iSEE:::.colDataYAxis]] <- "driver_1_s"
brushData <- list(xmin=1, xmax=2, ymin=3, ymax=4)
cdp[[iSEE:::.brushData]] <- brushData
out <- iSEE:::.self_select_boxes(cdp, flip=TRUE)
expect_match(out, "aes(xmin=ymin, xmax=ymax, ymin=xmin, ymax=xmax)", fixed=TRUE)
})
test_that(".self_brush_box flip axes when faceting on both X and Y", {
cdp <- pObjects$memory$ColumnDataPlot1
cdp[[iSEE:::.colDataXAxis]] <- iSEE:::.colDataXAxisColDataTitle
cdp[[iSEE:::.colDataXAxisColData]] <- "NREADS"
cdp[[iSEE:::.colDataYAxis]] <- "driver_1_s"
cdp[[iSEE:::.facetRow]] <- "Column data"
cdp[[iSEE:::.facetRowByColData]] <- "Core.Type"
cdp[[iSEE:::.facetColumn]] <- "Column data"
cdp[[iSEE:::.facetColumnByColData]] <- "passes_qc_checks_s"
brushData <- list(xmin=1, xmax=2, ymin=3, ymax=4)
cdp[[iSEE:::.brushData]] <- brushData
out <- iSEE:::.self_select_boxes(cdp, flip=TRUE)
expect_match(
out,
"list(FacetRow=all_active[['ColumnDataPlot1']][['panelvar2']], FacetColumn=all_active[['ColumnDataPlot1']][['panelvar1']])",
fixed=TRUE)
})
test_that(".self_lasso_path work with a single point", {
rdp <- pObjects$memory$ReducedDimensionPlot1
rd <- reducedDim(sce, rdp[[iSEE:::.redDimType]])
x_10 <- head(rd[, rdp[[iSEE:::.redDimXAxis]]], 10)
y_10 <- head(rd[, rdp[[iSEE:::.redDimYAxis]]], 10)
new_lasso <- list(lasso=NULL, closed=FALSE, panelvar1=NULL,
panelvar2=NULL, mapping=list(x="X", y="Y"))
new_lasso$coord <- matrix(
data=c(
min(x_10), min(y_10)
),
ncol=2,
byrow=TRUE
)
rdp[[iSEE:::.brushData]] <- new_lasso
lasso_cmd <- iSEE:::.self_select_boxes(rdp, flip=FALSE)
expect_match(lasso_cmd, "geom_point", fixed=TRUE)
})
test_that(".self_lasso_path work with an open path", {
rdp <- pObjects$memory$ReducedDimensionPlot1
rd <- reducedDim(sce, rdp[[iSEE:::.redDimType]])
x_10 <- head(rd[, rdp[[iSEE:::.redDimXAxis]]], 10)
y_10 <- head(rd[, rdp[[iSEE:::.redDimYAxis]]], 10)
new_lasso <- list(lasso=NULL, closed=FALSE, panelvar1=NULL,
panelvar2=NULL, mapping=list(x="X", y="Y"))
new_lasso$coord <- matrix(
data=c(
min(x_10), min(y_10),
max(x_10), min(y_10),
max(x_10), max(y_10)
),
ncol=2,
byrow=TRUE
)
rdp[[iSEE:::.brushData]] <- new_lasso
lasso_cmd <- iSEE:::.self_select_boxes(rdp, flip=FALSE)
expect_match(lasso_cmd[1], "geom_path", fixed=TRUE)
expect_match(lasso_cmd[2], "geom_point", fixed=TRUE)
expect_identical(lasso_cmd[3], "scale_shape_manual(values=c('TRUE'=22, 'FALSE'=20))")
expect_identical(lasso_cmd[4], "guides(shape='none')")
})
test_that(".self_lasso_path work with an open path and a ShapeBy covariate", {
rdp <- pObjects$memory$ReducedDimensionPlot1
rdp[[iSEE:::.shapeByField]] <- iSEE:::.shapeByColDataTitle
rd <- reducedDim(sce, rdp[[iSEE:::.redDimType]])
x_10 <- head(rd[, rdp[[iSEE:::.redDimXAxis]]], 10)
y_10 <- head(rd[, rdp[[iSEE:::.redDimYAxis]]], 10)
new_lasso <- list(lasso=NULL, closed=FALSE, panelvar1=NULL,
panelvar2=NULL, mapping=list(x="X", y="Y"))
new_lasso$coord <- matrix(
data=c(
min(x_10), min(y_10),
max(x_10), min(y_10),
max(x_10), max(y_10)
),
ncol=2,
byrow=TRUE
)
rdp[[iSEE:::.brushData]] <- new_lasso
lasso_cmd <- iSEE:::.self_select_boxes(rdp, flip=FALSE)
expect_match(lasso_cmd[1], "geom_path", fixed=TRUE)
expect_match(lasso_cmd[2], "geom_point", fixed=TRUE)
expect_identical(lasso_cmd[3], "scale_size_manual(values=c('TRUE'=1.5, 'FALSE'=0.25))")
expect_identical(lasso_cmd[4], "guides(size='none')")
})
test_that(".self_lasso_path work with a closed path", {
rdp <- pObjects$memory$ReducedDimensionPlot1
rd <- reducedDim(sce, rdp[[iSEE:::.redDimType]])
x_10 <- head(rd[, rdp[[iSEE:::.redDimXAxis]]], 10)
y_10 <- head(rd[, rdp[[iSEE:::.redDimYAxis]]], 10)
new_lasso <- list(lasso=NULL, closed=TRUE, panelvar1=NULL,
panelvar2=NULL, mapping=list(x="X", y="Y"))
new_lasso$coord <- matrix(
data=c(
min(x_10), min(y_10),
max(x_10), min(y_10),
max(x_10), max(y_10),
min(x_10), max(y_10),
min(x_10), min(y_10)
),
ncol=2,
byrow=TRUE
)
rdp[[iSEE:::.brushData]] <- new_lasso
lasso_cmd <- iSEE:::.self_select_boxes(rdp, flip=FALSE)
expect_match(lasso_cmd[1], "geom_polygon", fixed=TRUE)
})
test_that(".self_lasso_path works with multiple lassos", {
cdp <- pObjects$memory$ColumnDataPlot
cdp[[iSEE:::.colDataXAxis]] <- iSEE:::.colDataXAxisColDataTitle
cdp[[iSEE:::.colDataXAxisColData]] <- "NREADS"
cdp[[iSEE:::.colDataYAxis]] <- "driver_1_s"
LASSO_CLOSED <- list(
lasso=NULL,
closed=TRUE,
panelvar1=NULL, panelvar2=NULL,
mapping=list(x="X", y="Y"),
coord=matrix(c(1, 2, 2, 1, 1, 1, 1, 2, 2, 1), ncol=2))
lassoHistory <- list(LASSO_CLOSED, LASSO_CLOSED)
cdp[[iSEE:::.multiSelectHistory]] <- lassoHistory
lasso_cmd <- iSEE:::.self_select_boxes(cdp, flip=FALSE)
expect_type(lasso_cmd, "character")
expect_length(lasso_cmd, 2*length(lassoHistory))
expect_match(lasso_cmd[1], "geom_polygon", fixed=TRUE)
expect_match(lasso_cmd[2], "geom_text", fixed=TRUE)
})
test_that(".self_lasso_path flip axes when faceting on both X and Y", {
cdp <- pObjects$memory$ColumnDataPlot1
cdp[[iSEE:::.colDataXAxis]] <- iSEE:::.colDataXAxisColDataTitle
cdp[[iSEE:::.colDataXAxisColData]] <- "NREADS"
cdp[[iSEE:::.colDataYAxis]] <- "driver_1_s"
cdp[[iSEE:::.facetRow]] <- "Column data"
cdp[[iSEE:::.facetRowByColData]] <- "Core.Type"
cdp[[iSEE:::.facetColumn]] <- "Column data"
cdp[[iSEE:::.facetColumnByColData]] <- "passes_qc_checks_s"
LASSO_CLOSED <- list(
lasso=NULL,
closed=TRUE,
panelvar1=NULL, panelvar2=NULL,
mapping=list(x="X", y="Y"),
coord=matrix(c(1, 2, 2, 1, 1, 1, 1, 2, 2, 1), ncol=2))
cdp[[iSEE:::.brushData]] <- LASSO_CLOSED
lasso_cmd <- iSEE:::.self_select_boxes(cdp, flip=FALSE)
expect_match(
lasso_cmd,
"FacetRow=all_active[['ColumnDataPlot1']][['panelvar2']], FacetColumn=all_active[['ColumnDataPlot1']][['panelvar1']]",
fixed=TRUE)
})
test_that(".addFacets works correctly plots", {
params <- pObjects$memory$ReducedDimensionPlot1
out <- iSEE:::.addFacets(params)
expect_null(out)
params[["FacetRowBy"]] <- "Column data"
params[["FacetRowByColData"]] <- "driver_1_s"
params[["FacetColumnBy"]] <- "Column data"
params[["FacetColumnByColData"]] <- "Core.Type"
out <- iSEE:::.addFacets(params)
expect_identical(out, "facet_grid(FacetRow ~ FacetColumn)")
params <- pObjects$memory$RowDataPlot1
out <- iSEE:::.addFacets(params)
expect_null(out)
params[["FacetRowBy"]] <- "Row data"
params[["FacetRowByRowData"]] <- "letters"
out <- iSEE:::.addFacets(params)
expect_identical(out, "facet_grid(FacetRow ~ .)")
params[["FacetRowBy"]] <- "None"
params[["FacetColumnBy"]] <- "Row data"
params[["FacetColumnByRowData"]] <- "letters"
out <- iSEE:::.addFacets(params)
expect_identical(out, "facet_grid(. ~ FacetColumn)")
})
test_that(".choose_plot_type flips both full and restricted plot.data for horizontal violins", {
plot.data <- data.frame(X=runif(10), Y=factor(letters[1:10]))
envir <- new.env()
assign("plot.data", plot.data, envir=envir)
assign("plot.data.all", plot.data, envir=envir)
out <- iSEE:::.choose_plot_type(envir=envir)
expect_identical(envir$plot.data$X, plot.data$Y)
expect_identical(envir$plot.data$Y, plot.data$X)
expect_identical(envir$plot.data.all$X, plot.data$Y)
expect_identical(envir$plot.data.all$Y, plot.data$X)
})
test_that("Jitter is properly performed for faceted plots", {
plot.data <- data.frame(Y=runif(10), X=factor(letters[1:10]),
FacetRow=factor(letters[1:10]), FacetColumn=factor(LETTERS[1:10]))
out <- iSEE:::.violin_setup(plot_data=plot.data, horizontal=FALSE)
expect_match(out[3], "jitterViolinPoints")
expect_match(out[3], "FacetRow")
expect_match(out[3], "FacetColumn")
plot.data <- data.frame(Y=factor(letters[1:10]), X=factor(letters[1:10]),
FacetRow=factor(letters[1:10]), FacetColumn=factor(LETTERS[1:10]))
out <- iSEE:::.square_setup(plot_data=plot.data)
expect_match(out, "jitterSquarePoints")
expect_match(out, "FacetRow")
expect_match(out, "FacetColumn")
})
test_that(".downsample_points produces the appropriate code for scatter plots", {
rdp <- pObjects$memory$ReducedDimensionPlot1
sce <- .cacheCommonInfo(rdp, sce)
rdp <- .refineParameters(rdp, sce)
ref <- .generateOutput(rdp, sce, all_memory=all_memory, all_contents=pObjects$contents)
expect_false(any(grepl("subsetPointsByGrid", unlist(ref$commands))))
expect_false(any(grepl("plot.data.pre", unlist(ref$commands))))
rdp[[iSEE:::.plotPointDownsample]] <- TRUE
out <- .generateOutput(rdp, sce, all_memory=all_memory, all_contents=pObjects$contents)
expect_true(any(grepl("subsetPointsByGrid.*X.*Y", unlist(out$commands))))
expect_true(any(grepl("plot.data.pre", unlist(out$commands))))
})
test_that(".downsample_points produces the appropriate code for square plots", {
cdp <- pObjects$memory$ColumnDataPlot1
cdp[[iSEE:::.colDataXAxis]] <- iSEE:::.colDataXAxisColDataTitle
cdp[[iSEE:::.colDataXAxisColData]] <- "driver_1_s"
cdp[[iSEE:::.colDataYAxis]] <- "passes_qc_checks_s"
ref <- .generateOutput(cdp, sce, all_memory=all_memory, all_contents=pObjects$contents)
expect_false(any(grepl("subsetPointsByGrid", unlist(ref$commands))))
expect_false(any(grepl("plot.data.pre", unlist(ref$commands))))
cdp[[iSEE:::.plotPointDownsample]] <- TRUE
out <- .generateOutput(cdp, sce, all_memory=all_memory, all_contents=pObjects$contents)
expect_true(any(grepl("subsetPointsByGrid.*jitteredX.*jitteredY", unlist(out$commands))))
expect_true(any(grepl("plot.data.pre", unlist(out$commands))))
})
test_that(".downsample_points produces the appropriate code for violin plots", {
cdp <- pObjects$memory$ColumnDataPlot1
cdp[[iSEE:::.colDataXAxis]] <- iSEE:::.colDataXAxisColDataTitle
cdp[[iSEE:::.colDataXAxisColData]] <- "passes_qc_checks_s"
cdp[[iSEE:::.colDataYAxis]] <- "NREADS"
ref <- .generateOutput(cdp, sce, all_memory=all_memory, all_contents=pObjects$contents)
expect_false(any(grepl("subsetPointsByGrid", unlist(ref$commands))))
expect_false(any(grepl("plot.data.pre", unlist(ref$commands))))
cdp[[iSEE:::.plotPointDownsample]] <- TRUE
out <- .generateOutput(cdp, sce, all_memory=all_memory, all_contents=pObjects$contents)
expect_true(any(grepl("subsetPointsByGrid.*jitteredX", unlist(out$commands))))
expect_true(any(grepl("plot.data.pre", unlist(out$commands))))
})
test_that(".downsample_points produces the appropriate code for horizontal violin plots", {
cdp <- pObjects$memory$ColumnDataPlot1
cdp[[iSEE:::.colDataXAxis]] <- iSEE:::.colDataXAxisColDataTitle
cdp[[iSEE:::.colDataXAxisColData]] <- "NREADS"
cdp[[iSEE:::.colDataYAxis]] <- "passes_qc_checks_s"
ref <- .generateOutput(cdp, sce, all_memory=all_memory, all_contents=pObjects$contents)
expect_false(any(grepl("subsetPointsByGrid", unlist(ref$commands))))
expect_false(any(grepl("plot.data.pre", unlist(ref$commands))))
cdp[[iSEE:::.plotPointDownsample]] <- TRUE
out <- .generateOutput(cdp, sce, all_memory=all_memory, all_contents=pObjects$contents)
expect_true(any(grepl("subsetPointsByGrid.*jitteredX", unlist(out$commands))))
expect_true(any(grepl("plot.data.pre", unlist(out$commands))))
})
test_that(".downsample_points interacts correctly with selection of a specific sample/feature", {
rdp <- pObjects$memory$ReducedDimensionPlot1
rdp[[iSEE:::.colorByField]] <- iSEE:::.colorBySampNameTitle
rdp[[iSEE:::.plotPointDownsample]] <- TRUE
sce <- .cacheCommonInfo(rdp, sce)
rdp <- .refineParameters(rdp, sce)
out <- .generateOutput(rdp, sce, all_memory=all_memory, all_contents=pObjects$contents)
expect_true(any(grepl(".subsetted | as.logical(plot.data$ColorBy)", unlist(out$commands), fixed=TRUE)))
})
setClass("ColumnDataPlotPrioritized", contains="ColumnDataPlot")
setMethod(".prioritizeDotPlotData", "ColumnDataPlotPrioritized", function(x, envir) {
cmds <- c(
".priority <- rep(letters[1:5], length.out=ncol(se));",
".priority <- factor(.priority, ordered=TRUE);",
".rescaled <- c(a=1, b=0.5, c=2, d=3, e=1);"
)
eval(parse(text=cmds), envir=envir)
list(commands=cmds, rescaled=TRUE)
})
test_that(".generateDotPlot responds to priority", {
cdp <- pObjects$memory$ColumnDataPlot1
cdp[[iSEE:::.colDataXAxis]] <- iSEE:::.colDataXAxisColDataTitle
cdp[[iSEE:::.colDataXAxisColData]] <- "driver_1_s"
cdp[[iSEE:::.colDataYAxis]] <- "passes_qc_checks_s"
ref <- .generateOutput(cdp, sce, all_memory=all_memory, all_contents=pObjects$contents)
expect_false(any(grepl('plot.data\\[order\\(.priority\\)', unlist(ref$commands))))
cdpp <- as(cdp, "ColumnDataPlotPrioritized")
out <- .generateOutput(cdpp, sce, all_memory=all_memory, all_contents=pObjects$contents)
expect_true(any(grepl('plot.data\\[order\\(.priority\\)', unlist(out$commands))))
expect_identical(out$contents, ref$contents)
expect_identical(sort(rownames(out$plot$data)), sort(rownames(ref$plot$data)))
expect_false(identical(out$plot$data, ref$plot$data))
})
test_that(".downsample_points responds to priority", {
cdp <- pObjects$memory$ColumnDataPlot1
cdp[[iSEE:::.colDataXAxis]] <- iSEE:::.colDataXAxisColDataTitle
cdp[[iSEE:::.colDataXAxisColData]] <- "driver_1_s"
cdp[[iSEE:::.colDataYAxis]] <- "passes_qc_checks_s"
cdp[[iSEE:::.plotPointDownsample]] <- TRUE
cdp[[iSEE:::.plotPointSampleRes]] <- 50
ref <- .generateOutput(cdp, sce, all_memory=all_memory, all_contents=pObjects$contents)
expect_false(any(grepl('grouping=\\.priority', unlist(ref$commands))))
expect_false(any(grepl('resolution=50\\*\\.rescaled', unlist(ref$commands))))
cdpp <- as(cdp, "ColumnDataPlotPrioritized")
out <- .generateOutput(cdpp, sce, all_memory=all_memory, all_contents=pObjects$contents)
expect_true(any(grepl('grouping=\\.priority', unlist(out$commands))))
expect_true(any(grepl('resolution=50\\*\\.rescaled', unlist(out$commands))))
expect_identical(out$contents, ref$contents)
expect_false(identical(out$plot$data, ref$plot$data))
})
test_that(".create_plot can add faceting commands", {
rdp <- pObjects$memory$ReducedDimensionPlot1
rdp[["FacetColumnBy"]] <- "Column data"
rdp[["FacetColumnByColData"]] <- "driver_1_s"
out <- .generateOutput(rdp, sce, all_memory=all_memory, all_contents=pObjects$contents)
expect_true(any(grepl("facet_grid(. ~ FacetColumn)", out$commands$plot, fixed=TRUE)))
})
test_that("2d density contours can be added to scatter plots ", {
rdp <- pObjects$memory$ReducedDimensionPlot1
rdp[[iSEE:::.contourAdd]] <- TRUE
out <- .generateOutput(rdp, sce, all_memory=all_memory, all_contents=pObjects$contents)
expect_true(any(grepl("geom_density_2d", out$commands$plot, fixed=TRUE)))
})
test_that("plots subsetted to no data contain a geom_blank command", {
geom_blank_cmd <- "geom_blank(data=plot.data.all, inherit.aes=FALSE, aes(x=X, y=Y)) +"
out <- iSEE:::.scatter_plot(
plot_data=data.frame(), param_choices=pObjects$memory$ReducedDimensionPlot1,
"x_lab", "y_lab", "color_lab", "shape_lab", "size_lab", "title",
by_row=FALSE, is_subsetted=TRUE, is_downsampled=FALSE)
expect_identical(out[["select_blank"]], geom_blank_cmd)
cdp <- pObjects$memory$ColumnDataPlot1
cdp[[iSEE:::.colDataXAxis]] <- iSEE:::.colDataXAxisColDataTitle
cdp[[iSEE:::.colDataXAxisColData]] <- "driver_1_s"
out <- iSEE:::.violin_plot(
plot_data=data.frame(), param_choices=cdp,
"x_lab", "y_lab", "color_lab", "shape_lab", "size_lab", "title",
by_row=FALSE, is_subsetted=TRUE, is_downsampled=FALSE)
expect_identical(out[["select_blank"]], geom_blank_cmd)
cdp[[iSEE:::.colDataYAxis]] <- "dissection_s"
out <- iSEE:::.square_plot(
plot_data=data.frame(), param_choices=cdp,
"x_lab", "y_lab", "color_lab", "shape_lab", "size_lab", "title",
by_row=FALSE, is_subsetted=TRUE)
expect_identical(out[["select_blank"]], geom_blank_cmd)
})
test_that(".buildLabs returns NULL for NULL inputs", {
expect_null(iSEE:::.buildLabs())
})
test_that(".add_selectby_column handles NAs correctly", {
rdp <- pObjects$memory$ReducedDimensionPlot1
env <- new.env()
env$plot.data <- data.frame(X=1, Y=2, FacetRow=1, FacetColumn=2)
out <- iSEE:::.add_selectby_column(rdp, env)
expect_false(any(grepl("subset.*is.na", unlist(out))))
expect_identical(nrow(env$plot.data), 1L)
env$plot.data <- data.frame(X=1, Y=NA_real_)
out <- iSEE:::.add_selectby_column(rdp, env)
expect_true(any(grepl("subset.*is.na", unlist(out))))
expect_identical(nrow(env$plot.data), 0L)
env$plot.data <- data.frame(X=1, Y=1, FacetRow=NA_real_)
out <- iSEE:::.add_selectby_column(rdp, env)
expect_true(any(grepl("subset.*is.na", unlist(out))))
expect_identical(nrow(env$plot.data), 0L)
})
test_that(".create_guides_command produces a command when expected", {
x <- ReducedDimensionPlot(PointSize = 1, LegendPointSize = 2)
out <- iSEE:::.create_guides_command(x, factor(sce$driver_1_s))
expect_identical(
out,
"guides(colour = guide_legend(override.aes = list(size=2)), fill = guide_legend(override.aes = list(size=2))) +"
)
x <- ReducedDimensionPlot(LegendPointSize = 2, PointSize = 2)
out <- iSEE:::.create_guides_command(x, factor(sce$driver_1_s))
expect_null(out)
x <- ReducedDimensionPlot(PointSize = 1, LegendPointSize = 2)
out <- iSEE:::.create_guides_command(x, sce$NREADS)
expect_null(out)
})
test_that(".generateDotPlot handles custom labels", {
rdp <- pObjects$memory$ReducedDimensionPlot1
rdp[[iSEE:::.plotCustomLabels]] <- TRUE
cn <- colnames(sce)[1:3]
rdp[[iSEE:::.plotCustomLabelsText]] <- paste0(cn, collapse = "\n")
p.out <- .generateOutput(rdp, sce,
all_memory=pObjects$memory, all_contents=pObjects$contents)
expect_type(p.out, "list")
expect_named(p.out, c("commands", "contents", "plot", "varname"))
expect_type(p.out$commands, "list")
expect_true(all(vapply(p.out$commands, is.character, TRUE)))
expect_true(any(grepl("LabelBy", p.out$commands)))
expect_s3_class(p.out$plot, c("gg", "ggplot"))
})
test_that(".generateDotPlot handles centered labels", {
rdp <- pObjects$memory$ReducedDimensionPlot1
rdp[[iSEE:::.plotLabelCenters]] <- TRUE
p.out <- .generateOutput(rdp, sce,
all_memory=pObjects$memory, all_contents=pObjects$contents)
expect_true(any(grepl("\\.aggregated", p.out$commands)))
expect_s3_class(p.out$plot, c("gg", "ggplot"))
rdp[["FacetRowBy"]] <- "Column data"
rdp[["FacetColumnBy"]] <- "Column data"
rdp[["FacetColumnByColData"]] <- "dissection_s"
rdp[["FacetRowByColData"]] <- "dissection_s"
p.out <- .generateOutput(rdp, sce,
all_memory=pObjects$memory, all_contents=pObjects$contents)
expect_true(any(grepl("LabelCenters.*FacetRow", p.out$commands)))
expect_true(any(grepl("LabelCenters.*FacetColumn", p.out$commands)))
rdp <- pObjects$memory$RowDataPlot1
rdp[["XAxis"]] <- "Row data"
rdp[[iSEE:::.plotLabelCenters]] <- TRUE
p.out <- .generateOutput(rdp, sce,
all_memory=pObjects$memory, all_contents=pObjects$contents)
expect_true(any(grepl("\\.aggregated", p.out$commands)))
})
|
"ccme_glyphosate"
|
siaf <- function (f, F, Fcircle, effRange, deriv, Deriv, simulate, npars,
validpars = NULL)
{
npars <- as.integer(npars)
if (length(npars) != 1 || npars < 0L) {
stop("'siaf$npars' must be a single nonnegative number")
}
f <- .checknargs3(f, "siaf$f")
F <- if (missing(F) || is.null(F)) siaf.fallback.F else {
F <- match.fun(F)
if (length(formals(F)) < 4L)
stop("siaf$F() must accept >=4 arguments ",
"(polydomain, f, pars, type)")
F
}
haspars <- npars > 0L
if (!haspars || missing(deriv)) deriv <- NULL
if (!is.null(deriv)) deriv <- .checknargs3(deriv, "siaf$deriv")
if (missing(effRange)) effRange <- NULL
if (missing(Fcircle) || is.null(Fcircle)) {
Fcircle <- NULL
if (!is.null(effRange)) {
message("'siaf$effRange' only works in conjunction with 'siaf$Fcircle'")
effRange <- NULL
}
}
if (!is.null(Fcircle)) Fcircle <- .checknargs3(Fcircle, "siaf$Fcircle")
if (!is.null(effRange)) {
effRange <- match.fun(effRange)
if (length(formals(effRange)) < 1L) {
stop("the 'siaf$effRange' function must accept a parameter vector")
}
}
Deriv <- if (is.null(deriv)) NULL else if (missing(Deriv) || is.null(Deriv))
siaf.fallback.Deriv else {
Deriv <- match.fun(Deriv)
if (length(formals(Deriv)) < 4L)
stop("siaf$Deriv() must accept >=4 arguments ",
"(polydomain, deriv, pars, type)")
Deriv
}
if (missing(simulate)) simulate <- NULL
if (!is.null(simulate)) {
simulate <- .checknargs3(simulate, "siaf$simulate")
if (length(formals(simulate)) == 3L)
formals(simulate) <- c(formals(simulate), alist(ub=))
}
validpars <- if (!haspars || is.null(validpars))
NULL else match.fun(validpars)
list(f = f, F = F, Fcircle = Fcircle, effRange = effRange,
deriv = deriv, Deriv = Deriv,
simulate = simulate,
npars = npars, validpars = validpars)
}
siaf.constant <- function ()
{
res <- list(
f = as.function(c(alist(s=, pars=NULL, types=NULL),
quote(rep.int(1, length(s)/2))),
envir = .GlobalEnv),
Fcircle = as.function(c(alist(r=, pars=NULL, type=NULL),
quote(pi*r^2)),
envir = .GlobalEnv),
simulate = as.function(c(alist(n=, pars=NULL, type=NULL, ub=),
quote(runifdisc(n, ub))),
envir = getNamespace("surveillance")),
npars = 0L
)
attr(res, "constant") <- TRUE
res
}
siaf.fallback.F <- function (polydomain, f, pars, type, method = "SV", ...)
{
if (identical(method,"SV")) {
polyCub.SV(polyregion = polydomain, f = f, pars, type,
alpha = 0, ...)
} else {
polyCub(polyregion = polydomain, f = f, method = method,
pars, type, ...)
}
}
getFcircle <- function (siaf, control.F = list()) {
if (is.null(siaf$Fcircle)) {
function (r, pars, type) {
disc <- discpoly(c(0,0), r, npoly = 64, class = "owin")
do.call(siaf$F, c(alist(disc, siaf$f, pars, type), control.F))
}
} else {
siaf$Fcircle
}
}
siaf.fallback.Deriv <- function (polydomain, deriv, pars, type,
method = "SV", ...)
{
deriv1 <- function (s, paridx)
deriv(s, pars, type)[,paridx,drop=TRUE]
intderiv1 <- function (paridx)
polyCub(polyregion = polydomain, f = deriv1, method = method,
paridx = paridx, ...)
vapply(X = seq_along(pars), FUN = intderiv1,
FUN.VALUE = 0, USE.NAMES = FALSE)
}
siaf.simulatePC <- function (intrfr)
{
as.function(c(alist(n=, siafpars=, type=, ub=), substitute({
stopifnot(is.finite(ub))
normconst <- intrfr(ub, siafpars, type)
CDF <- function (q) intrfr(q, siafpars, type) / normconst
QF <- function (p) uniroot(function(q) CDF(q)-p, lower=0, upper=ub)$root
r <- vapply(X=runif(n), FUN=QF, FUN.VALUE=0, USE.NAMES=FALSE)
theta <- runif(n, 0, 2*pi)
r * cbind(cos(theta), sin(theta))
})), envir=parent.frame())
}
checksiaf <- function (siaf, pargrid, type = 1, tolerance = 1e-5,
method = "SV", ...)
{
stopifnot(is.list(siaf), is.numeric(pargrid), !is.na(pargrid),
length(pargrid) > 0)
pargrid <- as.matrix(pargrid)
stopifnot(siaf$npars == ncol(pargrid))
if (!is.null(siaf$F)) {
cat("'F' vs. cubature using method = \"", method ,"\" ... ", sep="")
comp.F <- checksiaf.F(siaf$F, siaf$f, pargrid, type=type,
method=method, ...)
cat(attr(comp.F, "all.equal") <-
all.equal(comp.F[,1], comp.F[,2],
check.attributes=FALSE, tolerance=tolerance),
"\n")
}
if (!is.null(siaf$Fcircle)) {
cat("'Fcircle' vs. cubature using method = \"",method,"\" ... ", sep="")
comp.Fcircle <- checksiaf.Fcircle(siaf$Fcircle, siaf$f, pargrid,
type=type, method=method, ...)
cat(attr(comp.Fcircle, "all.equal") <-
all.equal(comp.Fcircle[,1], comp.Fcircle[,2],
check.attributes=FALSE, tolerance=tolerance),
"\n")
}
if (!is.null(siaf$deriv)) {
cat("'deriv' vs. numerical derivative ... ")
if (requireNamespace("maxLik", quietly=TRUE)) {
maxRelDiffs.deriv <- checksiaf.deriv(siaf$deriv, siaf$f, pargrid,
type=type)
cat(attr(maxRelDiffs.deriv, "all.equal") <-
if (any(maxRelDiffs.deriv > tolerance))
paste("maxRelDiff =", max(maxRelDiffs.deriv)) else TRUE,
"\n")
} else cat("Failed: need package", sQuote("maxLik"), "\n")
}
if (!is.null(siaf$Deriv)) {
cat("'Deriv' vs. cubature using method = \"", method ,"\" ... ", sep="")
comp.Deriv <- checksiaf.Deriv(siaf$Deriv, siaf$deriv, pargrid,
type=type, method=method, ...)
if (siaf$npars > 1) cat("\n")
attr(comp.Deriv, "all.equal") <-
sapply(seq_len(siaf$npars), function (j) {
if (siaf$npars > 1) cat("\tsiaf parameter ", j, ": ", sep="")
ae <- all.equal(comp.Deriv[,j], comp.Deriv[,siaf$npars+j],
check.attributes=FALSE, tolerance=tolerance)
cat(ae, "\n")
ae
})
}
if (interactive() && !is.null(siaf$simulate)) {
cat("Simulating ... ")
checksiaf.simulate(siaf$simulate, siaf$f, pargrid[1,], type=type)
cat("(-> check the plot)\n")
}
invisible(mget(c("comp.F", "comp.Fcircle",
"maxRelDiffs.deriv", "comp.Deriv"),
ifnotfound=list(NULL), inherits=FALSE))
}
checksiaf.F <- function (F, f, pargrid, type=1, method="SV", ...)
{
res <- t(apply(pargrid, 1, function (pars) {
given <- F(LETTERR, f, pars, type)
num <- siaf.fallback.F(polydomain = LETTERR, f = f, pars = pars,
type = type, method = method, ...)
c(given, num)
}))
colnames(res) <- c("F", method)
res
}
checksiaf.Fcircle <- function (Fcircle, f, pargrid, type=1,
rs=c(1,5,10,50,100), method="SV", ...)
{
pargrid <- pargrid[rep(1:nrow(pargrid), each=length(rs)),,drop=FALSE]
rpargrid <- cbind(rs, pargrid, deparse.level=0)
res <- t(apply(rpargrid, 1, function (x) {
disc <- discpoly(c(0,0), x[1L], npoly = 128, class = "owin")
c(ana = Fcircle(x[1L], x[-1L], type),
num = siaf.fallback.F(polydomain = disc, f = f, pars = x[-1L],
type = type, method = method, ...))
}))
res
}
checksiaf.deriv <- function (deriv, f, pargrid, type=1, rmax=100)
{
rgrid <- seq(-rmax,rmax,len=21) / sqrt(2)
rgrid <- rgrid[rgrid != 0]
sgrid <- cbind(rgrid, rgrid)
apply(pargrid, 1, function (pars) {
maxLik::compareDerivatives(f, deriv, t0=pars, s=sgrid,
print=FALSE)$maxRelDiffGrad
})
}
checksiaf.Deriv <- function (Deriv, deriv, pargrid, type=1, method="SV", ...)
{
res <- t(apply(pargrid, 1, function (pars) {
given <- Deriv(LETTERR, deriv, pars, type)
num <- siaf.fallback.Deriv(polydomain = LETTERR, deriv = deriv, pars = pars,
type = type, method = method, ...)
c(given, num)
}))
paridxs <- seq_len(ncol(pargrid))
colnames(res) <- c(paste("Deriv",paridxs,sep="."),
paste(method,paridxs,sep="."))
res
}
checksiaf.simulate <- function (simulate, f, pars, type=1, B=3000, ub=10,
plot=interactive())
{
simpoints <- simulate(B, pars, type=type, ub=ub)
if (plot) {
opar <- par(mfrow=c(2,1), mar=c(4,3,2,1)); on.exit(par(opar))
plot(as.im.function(function(x,y,...) f(cbind(x,y), pars, type),
W=discpoly(c(0,0), ub, class="owin")),
axes=TRUE, main="Simulation from the spatial kernel")
points(simpoints, cex=0.2)
kdens <- kde2d(simpoints[,1], simpoints[,2], n=100)
contour(kdens, add=TRUE, col=2, lwd=2,
labcex=1.5, vfont=c("sans serif", "bold"))
truehist(sqrt(rowSums(simpoints^2)), xlab="Distance")
rfr <- function (r) r*f(cbind(r,0), pars, type)
rfrnorm <- integrate(rfr, 0, ub)$value
do.call("curve", list(quote(rfr(x)/rfrnorm), add=TRUE, col=2, lwd=2))
}
invisible(simpoints)
}
|
plotSEMM_setup <- function(pi, alpha1, alpha2, beta21, psi11, psi22, points = 50) {
if (!is.vector(pi)) {
print("Error:Probabilities must be provided as a vector")
}
if (!is.vector(alpha2)) {
print("Error: Alpha values must be provided as a vector")
}
if (!is.vector(alpha1)) {
print("Error: Kappa values must be provided as a vector")
}
if (!is.vector(beta21)) {
print("Error: Beta values must be provided as a vector")
}
if (!is.vector(psi11)) {
print("Error: Psi values must be provided as a vector")
}
if (!is.vector(psi22)) {
print("Error: Psi values must be provided as a vector")
}
classes <- length(beta21)
alphaarray <- array(data = 0, c(2, 1, classes))
j <- 0
for (i in 1:classes) {
alphaarray[1, 1, i] <- alpha1[i]
alphaarray[2, 1, i] <- alpha2[i]
j <- j+1
}
gammaarray <- array(data = 0, c(2, 2, classes))
j <- 0
for (i in 1:classes) {
gammaarray[2, 1, i] <- beta21[i]
j <- j+1
}
psiarray <- array(data = 0, c(2, 2, classes))
j <- 0
for (i in 1:classes) {
psiarray[1, 1, i] <- psi11[i]
psiarray[2, 2, i] <- psi22[i]
j <- j+1
}
IMPCOV <- array(data = NA, c(2, 2, classes))
IMPMEAN <- array(data = NA, c(2, 2, classes))
for (i in 1:classes) {
IMPCOV[, , i] <- solve(diag(x = 1, nrow = 2, ncol = 2) - gammaarray[, , i]) %*% (psiarray[, , i]) %*%
t(solve(diag(x = 1, nrow = 2, ncol = 2) - gammaarray[, , i]))
IMPMEAN[, , i] <- solve(diag(x = 1, nrow = 2, ncol = 2) - gammaarray[, , i]) %*% (alphaarray[,
, i])
}
MuKsi <- vector(mode = "numeric", length = classes)
MuEta <- vector(mode = "numeric", length = classes)
VKsi <- vector(mode = "numeric", length = classes)
VEta <- vector(mode = "numeric", length = classes)
COVKSIETA <- vector(mode = "numeric", length = classes)
alpha <- vector(mode = "numeric", length = classes)
gamma <- vector(mode = "numeric", length = classes)
for (i in 1:classes) {
MuKsi[i] = IMPMEAN[1, 1, i]
MuEta[i] = IMPMEAN[2, 2, i]
VKsi[i] = IMPCOV[1, 1, i]
VEta[i] = IMPCOV[2, 2, i]
COVKSIETA[i] = IMPCOV[1, 2, i]
alpha[i] = alphaarray[2, 1, i]
gamma[i] = gammaarray[2, 1, i]
}
overallmuKSI <- 0
overallmuETA <- 0
for (i in 1:classes) {
overallmuKSI = overallmuKSI + pi[i] * MuKsi[i]
overallmuETA = overallmuETA + pi[i] * MuEta[i]
}
overallvKSI <- 0
overallvETA <- 0
for (i in 1:classes) {
for (j in 1:classes) {
if (i < j) {
overallvKSI <- overallvKSI + pi[i] * pi[j] * (MuKsi[i] - MuKsi[j]) * t(MuKsi[i] - MuKsi[j])
overallvETA <- overallvETA + pi[i] * pi[j] * (MuEta[i] - MuEta[j]) * t(MuEta[i] - MuEta[j])
}
}
}
for (i in 1:classes) {
overallvKSI = overallvKSI + (VKsi[i] * pi[i])
overallvETA = overallvETA + (VEta[i] * pi[i])
}
upperboundKsi <- overallmuKSI + 3 * sqrt(overallvKSI)
lowerboundKsi <- overallmuKSI - 3 * sqrt(overallvKSI)
upperboundEta <- overallmuETA + 3 * sqrt(overallvETA)
lowerboundEta <- overallmuETA - 3 * sqrt(overallvETA)
Ksi <- seq(lowerboundKsi, upperboundKsi, length = points)
Eta <- seq(lowerboundEta, upperboundEta, length = points)
pKsi <- matrix(data = 0, nrow = length(Ksi), ncol = classes)
for (i in 1:classes) {
pKsi[, i] <- pi[i] * dnorm(Ksi, mean = MuKsi[i], sd = sqrt(VKsi[i]))
}
pEta <- matrix(data = 0, nrow = length(Eta), ncol = classes)
for (i in 1:classes) {
pEta[, i] <- pi[i] * dnorm(Eta, mean = MuEta[i], sd = sqrt(VEta[i]))
}
post <- matrix(data = 0, nrow = length(Ksi), ncol = classes)
sumpKsi = matrix(data = 0, nrow = length(Ksi), ncol = 1)
for (i in 1:classes) {
sumpKsi[, 1] = sumpKsi[, 1] + pKsi[, i]
}
for (i in 1:classes) {
post[, i] <- pKsi[, i]/sumpKsi[, 1]
}
denKsi <- sumpKsi[, 1]
sumpEta <- matrix(data = 0, nrow = length(Eta), ncol = classes)
for (i in 1:classes) {
sumpEta[, 1] <- sumpEta[, 1] + pEta[, i]
}
denEta <- sumpEta[, 1]
etahmat <- matrix(data = 0, nrow = length(Ksi), ncol = classes)
for (i in 1:classes) {
etahmat[, i] <- alpha[i] + gamma[i] * Ksi
}
etah <- vector(mode = "numeric", length = length(Ksi))
for (i in 1:classes) {
etah <- etah + post[, i] * etahmat[, i]
}
etah_ <- etah
etah_[denKsi <= 0.02] <- NA
etah_[denEta <= 0.02] <- NA
r <- vector(mode = "numeric", length = classes)
for (i in 1:classes) {
r[i] <- COVKSIETA[i]/sqrt(VKsi[i] * VEta[i])
}
denKE <- function(Ksi, Eta) {
placeholder <- 0
denKE_ <- matrix(data = 0, nrow = length(Ksi), ncol = classes)
for (i in 1:classes) {
z <- ((Ksi - MuKsi[i])^2)/VKsi[i] + ((Eta - MuEta[i])^2)/VEta[i] - 2 * r[i] * (Ksi - MuKsi[i]) *
(Eta - MuEta[i])/sqrt(VKsi[i] * VEta[i])
denKE_[, i] <- (1/(2 * 22/7 * sqrt(VKsi[i]) * sqrt(VEta[i]) * sqrt(1 - r[i]^2))) * exp(-z/(2 *
(1 - r[i]^2)))
}
for (i in 1:classes) {
placeholder <- placeholder + pi[i] * denKE_[, i]
}
denKE <- placeholder
}
z <- outer(Ksi, Eta, denKE)
SEMLIdatapks <- data.frame(Eta1=Ksi, Eta2=Eta, agg_denEta1=denKsi, agg_denEta2=denEta,
agg_pred=etah_, etah=etah, class_pred=I(etahmat), contour=I(z),
classes=classes, class_prob=I(post), class_denEta1=I(pKsi),
class_denEta2=I(pEta), setup2=FALSE)
return(SEMLIdatapks)
}
|
hai_data_poly <- function(.recipe_object = NULL, ...,
.p_degree = 2){
if(is.null(.recipe_object)){
rlang::abort("`.recipe_object` must be passed, please add.")
} else {
rec_obj <- .recipe_object
}
terms <- rlang::enquos(...)
degree <- as.double(.p_degree)
if(!is.double(degree)){
stop(call. = FALSE, "(.p_degree) must be an integer.")
}
scale_obj <- recipes::step_poly(
recipe = rec_obj,
degree = degree,
!!! terms
)
output <- list(
rec_base = rec_obj,
scale_rec_obj = scale_obj
)
return(output)
}
|
plot_sdp <-
function(pos, sdp, strain_labels=names(qtl2::CCcolors), ...)
{
n_str <- length(strain_labels)
stopifnot(length(pos) == length(sdp))
stopifnot(all(sdp < 2^n_str & sdp >= 0))
alleles <- invert_sdp(sdp, n_str)
y <- seq_len(n_str)
plot_sdp_internal <-
function(xlim=range(pos), ylim=c(max(y)+0.5, min(y)-0.5),
xlab="Position (Mbp)", ylab="",
xaxs="i", yaxs="i",
main="", mgp.x=c(2.6, 0.5, 0), mgp.y=c(2.6, 0.5, 0),
mgp=NULL, las=1,
hlines=NULL, hlines_col="black", hlines_lwd=1, hlines_lty=1,
vlines=NULL, vlines_col="white", vlines_lwd=1, vlines_lty=1,
bgcolor="gray90", lwd=2, col="darkslateblue", sub="", ...)
{
dots <- list(...)
if(!is.null(mgp)) mgp.x <- mgp.y <- mgp
plot(0, 0, xlab="", ylab="", xlim=xlim, ylim=ylim,
xaxs=xaxs, yaxs=yaxs, xaxt="n", yaxt="n", type="n",
main=main, sub=sub)
u <- par("usr")
if(!is.null(bgcolor))
rect(u[1], u[3], u[2], u[4], col=bgcolor, border=NA)
if(is.null(dots$xaxt)) dots$xaxt <- par("xaxt")
if(is.null(dots$yaxt)) dots$yaxt <- par("yaxt")
if(dots$xaxt != "n") {
axis(side=1, at=pretty(xlim), mgp=mgp.x, las=las, tick=FALSE)
}
if(dots$yaxt != "n") {
axis(side=2, at=y, strain_labels, mgp=mgp.y, las=las, tick=FALSE)
}
title(xlab=xlab, mgp=mgp.x)
title(ylab=ylab, mgp=mgp.y)
if(!(length(hlines)==1 && is.na(hlines))) {
if(is.null(hlines)) hlines <- seq(0.5, n_str+0.5)
abline(h=hlines, col=hlines_col, lwd=hlines_lwd, lty=hlines_lty)
}
if(!(length(vlines)==1 && is.na(vlines))) {
if(is.null(vlines)) vlines <- pretty(xlim)
abline(v=vlines, col=vlines_col, lwd=vlines_lwd, lty=vlines_lty)
}
for(i in seq_len(n_str)) {
if(all(alleles[,i] == 1)) next
wh <- which(alleles[,i]==3)
yy <- rep(y[i], length(wh))
segments(pos[wh], yy-0.5, pos[wh], yy+0.5, lwd=lwd, col=col)
}
box()
}
plot_sdp_internal(...)
}
|
with_mock_dir <- function(dir, expr, simplify = TRUE, replace = TRUE) {
if (dir.exists("tests/testthat") && !(substr(dir, 1, 1) %in% c("/", "\\"))) {
dir <- file.path("tests", "testthat", dir)
}
with_mock_path(dir, replace = replace, {
if (dir.exists(dir)) {
verbose_message("Using mocks found in ", dir)
with_mock_api(expr)
} else {
verbose_message("Recording responses to ", dir)
capture_requests(expr, simplify = simplify)
}
})
}
|
cdf.bundle <-
function (bundle, qout = NA, extrap = FALSE,quietly=FALSE)
{
if (!inherits(bundle, "bundle") && !inherits(bundle, "restricted"))
stop("Function needs 'expectreg' estimated by bundle or restricted.")
basis = bundle$design
np = length(bundle$intercepts)
pp <- bundle$asymmetries
rst <- (bundle$response - (basis %*% bundle$trend.coef))/(basis %*%
bundle$residual.coef)
u <- seq(1.2 * min(rst), 1.2 * max(rst), length = 100)
m <- length(u)
bundle$asymmetry.coef = sort(bundle$asymmetry.coef)
A <- matrix(0, np + 1, m)
A[np + 1, ] <- 1
for (k in 1:np) {
a1 <- (1 - pp[k]) * (u - bundle$asymmetry.coef[k]) *
(u <= bundle$asymmetry.coef[k])
a2 <- pp[k] * (u - bundle$asymmetry.coef[k]) * (u > bundle$asymmetry.coef[k])
A[k, ] <- a1 + a2
}
D <- diff(diag(m), diff = 2)
lambda <- 100
P <- lambda * t(D) %*% D
v1 <- solve(t(A) %*% A + P, t(A) %*% c(rep(0, np), 1))
q <- c(rep(0, np), 1)
lambda2 <- 1
D2 <- diff(diag(m), diff = 3)
P2 <- lambda2 * t(D2) %*% D2
z <- log(v1 - min(v1) + 0.02 * max(v1))
for (it in 1:20) {
g <- exp(z)
r <- q - A %*% g
B <- A * outer(rep(1, np + 1), as.vector(g))
Q <- t(B) %*% B
znew <- solve(Q + P2, t(B) %*% r + Q %*% z)
dz <- max(abs(z - znew))
z <- znew
if(!quietly)
cat("iteration: ", it, ", convergence: ", dz, "\n")
if (dz < 1e-06)
break
}
dens = g/(u[2] - u[1])
F = cumsum(dens)
dens = dens/max(F)
F = F/max(F)
if (any(is.na(qout)))
qout = pp
if (extrap)
quant <- as.vector(my.approx(F, u, xout = qout, rule = 3)$y)
else quant <- as.vector(my.approx(F, u, xout = qout, rule = 2)$y)
result = list(x = u, density = dens, cdf = F, quantiles = quant,
qout = qout, random = rst)
class(result) = c("expectilecdf", "bundledensity")
result
}
|
petitr<-function(tabvie,niter=100,eps=1E-07,m=1,alpha=0.05,s=1)
{
if (class(tabvie)!="data.frame") stop("**** Parameter tabvie must be a data frame ****\n")
n=dim(tabvie)[2]-1
if( n %% m != 0) stop ("**** m must divide n ****\n")
tablif=xlxmx(tabvie,s)
rm=r(tablif,eps)
cat("-----------------------------------------------------------------------\n")
cat(" petitr : intrinsic rate of increase calculus \n")
cat("-----------------------------------------------------------------------\n")
cat("\nraw estimator : r= \t",rm,"\n\n")
rpart=NULL
range=1:n
for(i in 1:(n %/% m))
{
index=range<((i-1)*m+1) | range>(i*m)
index=c(TRUE,index)
partlife=xlxmx(tabvie[,index],s)
rminus=r(partlife,eps)
rpart=c(rpart,rminus)
}
psv=(n*rm-(n-m)*rpart)/m
rmj=mean(psv)
se = sqrt(var(psv))
lower = rmj-qnorm(1-alpha)*sqrt(var(psv))
upper = rmj+qnorm(1-alpha)*sqrt(var(psv))
res=data.frame(t(c(rm,rmj,se,lower,upper)))
names(res)=c("rm raw","rm jackknife","se","lower","upper")
print(res)
invisible(psv)
}
|
heckitrob.control <-
function(acc = 1e-04, test.acc = "coef", maxit = 50, maxitO = 50, weights.x1 = c("none", "hat", "robCov", "covMcd"),
weights.x2 = c("none", "hat", "robCov", "covMcd"), tcc = 1.345, t.c = 1.345)
{
if (!is.numeric(acc) || acc <= 0)
stop("value of acc must be > 0")
if (test.acc != "coef")
stop("Only 'test.acc = \"coef\"' is currently implemented")
if (!is.numeric(maxit) || maxit <= 0)
stop("maximum number of iterations must be > 0")
if (!is.numeric(maxitO) || maxitO <= 0)
stop("maximum number of iterations must be > 0")
if (!is.numeric(tcc) || tcc <= 0)
stop("value of the tuning constant c (tcc) must be > 0")
if (!is.numeric(t.c) || t.c <= 0)
stop("value of the tuning constant c (t.c) must be > 0")
if (!is.character(weights.x1))
stop("choose the implemented method of the weight function")
if (!is.character(weights.x2))
stop("choose the implemented method of the weight function")
list(acc = acc, test.acc = test.acc, maxit = maxit, maxitO = maxitO, weights.x1 = weights.x1, weights.x2 = weights.x2[1], tcc = tcc, t.c = t.c)
}
|
isStrictlyNegativeNumberScalar <- function(argument, default = NULL, stopIfNot = FALSE, message = NULL, argumentName = NULL) {
checkarg(argument, "N", default = default, stopIfNot = stopIfNot, nullAllowed = FALSE, n = 1, zeroAllowed = FALSE, negativeAllowed = TRUE, positiveAllowed = FALSE, nonIntegerAllowed = TRUE, naAllowed = FALSE, nanAllowed = FALSE, infAllowed = FALSE, message = message, argumentName = argumentName)
}
|
context("parameter objects")
test_that('param ranges', {
expect_equal(frac_common_cov(c(.1, .5))$range, list(lower = .1, upper = .5))
expect_equal(frac_identity(c(.1, .5))$range, list(lower = .1, upper = .5))
expect_equal(smoothness(c(.1, .5))$range, list(lower = .1, upper = .5))
})
|
compute_p <- function(test_type, test_stat, df1, df2, two_tailed){
stopifnot(test_type %in% c("t", "F", "Z", "r", "Chi2", "Q", "Qb", "Qw"))
if(test_type == "t"){
computed <- stats::pt(-1 * abs(test_stat), df2)
} else if(test_type == "F"){
computed <- stats::pf(test_stat, df1, df2, lower.tail = FALSE)
} else if(test_type == "Z"){
computed <- stats::pnorm(abs(test_stat), lower.tail = FALSE)
} else if(test_type == "r"){
t <- r2t(test_stat, df2)
computed <- stats::pt(-1 * abs(t), df2)
} else if(test_type == "Chi2" |
test_type == "Q" | test_type == "Qb" | test_type == "Qw"){
computed <- stats::pchisq(test_stat, df1, lower.tail = FALSE)
}
if (!is.na(computed) &
(test_type == "t" | test_type == "Z" | test_type == "r") &
two_tailed) {
computed <- computed * 2
}
return(computed)
}
r2t <- function(r, df){
t <- r / (sqrt((1 - r^2) / df))
return(t)
}
|
sim_simName <- function(simSetup, name) {
slot(simSetup, "simName") <- name
simSetup
}
|
prep_log_AUC <- function(dat,
x_axis,
log_base = 2,
type = "adjust",
correction = 1,
dec_offset = TRUE) {
{ if (!tibble::is_tibble(dat)) {
stop("dat must be a tibble")
}
if (!base::is.character(x_axis)) {
base::stop("x_axis must be a string indicating the x-axis variable")
}
if (!base::is.numeric(log_base) | (log_base <= 0)) {
base::stop("log_base must be a number greater than 0")
}
if (!(type %in% (c("corr", "adjust", "IHS")))) {
base::stop("type must be a string of either \"corr\", \"adjust\", or \"IHS\".")
}
if (!base::is.numeric(correction) | (correction <= 0)) {
base::stop("correction must be a number greater than 0")
}
if (!base::is.logical(dec_offset)) {
base::stop("dec_offset must be either TRUE or FALSE")
} }
x_vals <- dat %>%
dplyr::pull({{ x_axis }}) %>%
base::unique()
log_vals <- dplyr::tibble(orig = x_vals) %>%
dplyr::arrange(.data$orig) %>%
dplyr::mutate(
log_val = base::log(.data$orig, log_base),
log_diff = .data$log_val - dplyr::lag(.data$log_val)
)
if (type == "adjust") {
mean_diff <- log_vals %>%
dplyr::filter(!base::is.na(.data$log_diff) & !base::is.infinite(.data$log_diff)) %>%
dplyr::pull(.data$log_diff) %>%
base::mean()
} else if (type == "corr") {
mean_diff <- 1
}
inc_zero <- base::min(x_vals) == 0
if (!inc_zero) {
mean_diff <- 0
}
if (dec_offset) {
log_offset <- log_vals %>%
dplyr::filter(!base::is.infinite(.data$log_val)) %>%
dplyr::pull(.data$log_val) %>%
base::min()
if (log_offset < 0) {
log_offset <- base::abs(log_offset)
} else {
log_offset <- 0
}
} else {
log_offset <- 0
}
if (type == "adjust") {
log_vals <- log_vals %>%
dplyr::mutate(log_val_adj = .data$log_val + log_offset + mean_diff)
} else if (type == "corr") {
log_vals <- log_vals %>%
dplyr::mutate(log_val_adj = base::log(.data$orig + correction,
base = log_base
))
} else if (type == "IHS") {
log_vals <- log_vals %>%
dplyr::mutate(log_val_adj = base::asinh(.data$orig))
}
if (inc_zero) {
log_vals[1, "log_val_adj"] <- 0
}
new_col <- glue::glue("log_{x_axis}")
log_vals <-
log_vals %>%
dplyr::select(.data$orig, .data$log_val_adj) %>%
dplyr::rename(
{{ x_axis }} := "orig",
{{ new_col }} := "log_val_adj"
)
dat <- dplyr::left_join(dat,
log_vals,
by = x_axis
)
base::return(dat)
}
|
expected <- eval(parse(text="1"));
test(id=0, code={
argv <- list();
do.call(`prod`, argv);
}, o=expected);
|
relativeWeights = function(price, index.weights) {
relative_weights = (price * index.weights) / sum(price * index.weights)
return(relative_weights)
}
|
plot.see_check_collinearity <- function(x,
data = NULL,
colors = c("
...) {
if (is.null(data)) {
dat <- datawizard::compact_list(.retrieve_data(x))
} else {
dat <- data
}
if (is.null(dat)) {
return(NULL)
}
dat$group <- "low"
dat$group[dat$VIF >= 5 & dat$VIF < 10] <- "moderate"
dat$group[dat$VIF >= 10] <- "high"
if (ncol(dat) == 5) {
colnames(dat) <- c("x", "y", "se", "facet", "group")
dat[, c("x", "y", "facet", "group")]
} else {
colnames(dat) <- c("x", "y", "se", "group")
dat[, c("x", "y", "group")]
}
if (length(unique(dat$facet)) == 1) {
dat <- dat[, -which(colnames(dat) == "facet")]
}
.plot_diag_vif(dat, colors = colors)
}
|
createConstraints <- function(whichConstraint = whichConstraint) {
if (length(whichConstraint) == 1) {
createConstraint(whichConstraint = whichConstraint)
} else if (length(whichConstraint) > 1) {
constraints <- data.frame()
for (cons in seq_along(whichConstraint)) {
constraint <- createConstraint(whichConstraint[cons])
constraints <- rbind(constraints, constraint)
}
return(constraints)
}
}
createConstraint <- function(whichConstraint = whichConstraint) {
constraintEffect <- names(whichConstraint)
constraintEffect <- cleanName(constraintEffect)
constraintElement <- gsub("\\s", "", whichConstraint[1])
if (grepl("<", constraintElement, fixed = TRUE)) {
constraintUpper <- sub(".*<", "", constraintElement)
constraintLower <- sub("<.*", "", constraintElement)
} else if (grepl(">", constraintElement, fixed = TRUE)) {
constraintUpper <- sub(">.*", "", constraintElement)
constraintLower <- sub(".*>", "", constraintElement)
}
return(data.frame(constraintEffect = constraintEffect,
constraintElement = constraintElement,
constraintUpper = constraintUpper,
constraintLower = constraintLower))
}
|
cumulated <-
function(x, ...)
{
UseMethod("cumulated")
}
cumulated.default <-
function(x, method = c("continuous", "discrete", "compound", "simple"),
percentage = FALSE, ...)
{
stopifnot(is.timeSeries(x))
method <- match.arg(method)
Title <- x@title
Documentation <- x@documentation
if (percentage) x <- x/100
positions <- time(x)
if(method == "geometric") {
ans <- colCumsums(x)
}
if(method == "compound" || method == "continuous") {
ans <- exp(colCumsums(x))
}
if(method == "simple" || method == "discrete") {
ans <- colCumprods(1+x)
}
ans@title <- Title
ans@documentation <- Documentation
ans
}
|
peacock3 <- function(x, y)
{
xx <- as.matrix(x)
yy <- as.matrix(y)
n1 <- nrow(xx)
n2 <- nrow(yy)
n <- n1 + n2
dd <- gcd(n1, n2)
L <- n1/dd*n2
d1 <- L/n1
d2 <- L/n2
dim1 <- ncol(xx)
dim2 <- ncol(yy)
dmin <- min(dim1, dim2)
if( dmin < 3 ) stop('The dimensions of both samples should be at least three')
xy1 <- c(xx[,1], yy[,1])
xy2 <- c(xx[,2], yy[,2])
xy3 <- c(xx[,3], yy[,3])
I1 <- order( xy1 )
I2 <- order( xy2 )
I3 <- order( xy3 )
max_hnnn <- 0
max_hnpn <- 0
max_hpnn <- 0
max_hppn <- 0
max_hnnp <- 0
max_hnpp <- 0
max_hpnp <- 0
max_hppp <- 0
for(zu in xy1[I1]){
for(zv in xy2[I2]){
hnnn <- 0
hnpn <- 0
hpnn <- 0
hppn <- 0
t <- 1
while( t <= n ){
w <- I3[t]
if(xy1[w] <= zu){
if(xy2[w] <= zv){
if(w <= n1)
hnnn <- hnnn + d1
else
hnnn <- hnnn - d2
max_hnnn <- max(max_hnnn, abs(hnnn))
}else{
if(w <= n1)
hnpn <- hnpn + d1
else
hnpn <- hnpn - d2
max_hnpn <- max(max_hnpn, abs(hnpn))
}
}else{
if(xy2[w] <= zv){
if(w <= n1)
hpnn <- hpnn + d1
else
hpnn <- hpnn - d2
max_hpnn <- max(max_hpnn, abs(hpnn))
}else{
if(w <= n1)
hppn <- hppn + d1
else
hppn <- hppn - d2
max_hppn <- max(max_hppn, abs(hppn))
}
}
t <- t + 1
}
hnnp <- 0
hnpp <- 0
hpnp <- 0
hppp <- 0
t <- n
while( t > 1 ){
w <- I3[t]
if(xy1[w] <= zu){
if(xy2[w] <= zv){
if(w <= n1)
hnnp <- hnnp + d1
else
hnnp <- hnnp - d2
max_hnnp <- max(max_hnnp, abs(hnnp))
}else{
if(w <= n1)
hnpp <- hnpp + d1
else
hnpp <- hnpp - d2
max_hnpp <- max(max_hnpp, abs(hnpp))
}
}else{
if(xy2[w] <= zv){
if(w <= n1)
hpnp <- hpnp + d1
else
hpnp <- hpnp - d2
max_hpnp <- max(max_hpnp, abs(hpnp))
}else{
if(w <= n1)
hppp <- hppp + d1
else
hppp <- hppp - d2
max_hppp <- max(max_hppp, abs(hppp))
}
}
t <- t - 1
}
}
}
return (max(max_hnnn, max_hnpn, max_hpnn, max_hppn, max_hnnp, max_hnpp, max_hpnp, max_hppp)/L);
}
|
require(PortfolioEffectHFT)
portfolio=portfolio_create(fromTime="2014-04-13 9:30:01",
toTime="2014-04-16 16:00:00")
portfolio_settings(portfolio,windowLength = '360m',portfolioMetricsMode='price')
positionGOOG=position_add(portfolio,'GOOG',1)
positionAAPL=position_add(portfolio,'AAPL',1)
positionC=position_add(portfolio,'C',1)
plot(portfolio)
portfolio_settings(portfolio,resultsSamplingInterval='last')
resultLintner=data.frame(Variance=0,ExpectedReturn=0)
for(x in seq(0.004,0.016,0.004)){
optimizer=optimization_goal(variance(portfolio),"min")
optimizer=optimization_constraint(optimizer,value(portfolio),'=',10^9)
optimizer=optimization_constraint(optimizer,expected_return(portfolio),"=",x)
optimPortfolio=optimization_run(optimizer)
resultLintner=rbind(resultLintner,c(compute(variance(optimPortfolio))[[1]][2],compute(expected_return(optimPortfolio))[[1]][2]))
}
resultLintner=resultLintner[-1,]
resultLintner=data.frame(Variance=spline(resultLintner$Variance, n=100)$y,
ExpectedReturn=spline(resultLintner$ExpectedReturn, n=100)$y)
ggplot()+geom_path(data=resultLintner, aes(x=Variance,y=ExpectedReturn),size=1.2)+util_plotTheme()+ggtitle("Efficient Frontier")+ylab("Expected Return")
resultLintner3000Portfolio=data.frame(Variance=0,ExpectedReturn=0)
for(x in seq(0.004,0.016,0.004)){
optimizer=optimization_goal(variance(portfolio),"min")
optimizer=optimization_constraint(optimizer,value(portfolio),'=',3000)
optimizer=optimization_constraint(optimizer,expected_return(portfolio),"=",x)
optimPortfolio=optimization_run(optimizer)
resultLintner3000Portfolio=rbind(resultLintner3000Portfolio,c(compute(variance(optimPortfolio))[[1]][2],compute(expected_return(optimPortfolio))[[1]][2]))
}
resultLintner3000Portfolio=resultLintner3000Portfolio[-1,]
resultLintner20000Portfolio=data.frame(Variance=0,ExpectedReturn=0)
for(x in seq(0.004,0.016,0.004)){
optimizer=optimization_goal(variance(portfolio),"min")
optimizer=optimization_constraint(optimizer,value(portfolio),'=',20000)
optimizer=optimization_constraint(optimizer,expected_return(portfolio),"=",x)
optimPortfolio=optimization_run(optimizer)
resultLintner20000Portfolio=rbind(resultLintner20000Portfolio,c(compute(variance(optimPortfolio))[[1]][2],compute(expected_return(optimPortfolio))[[1]][2]))
}
resultLintner20000Portfolio=resultLintner20000Portfolio[-1,]
resultLintner3000Portfolio$legend="$3000 Portfolio"
resultLintner20000Portfolio$legend="$20000 Portfolio"
resultLintner$legend="Theoretical Portfolio"
result=rbind(resultLintner3000Portfolio,resultLintner20000Portfolio,resultLintner)
ggplot()+geom_path(data=result, aes(x=Variance,y=ExpectedReturn,col=legend),size=1.2)+
util_plotTheme()+ggtitle("Efficient Frontier of Theoretical/$20000/$3000 portfolio")+
ylab("Expected Return")+util_colorScheme()
portfolio_settings(portfolio,
windowLength = '360m',
resultsSamplingInterval='last',
shortSalesMode = 'markowitz',portfolioMetricsMode='price')
resultMarkowitz=data.frame(Variance=0,ExpectedReturn=0)
for(x in seq(0.004,0.016,0.004)){
optimizer=optimization_goal(variance(portfolio),"min")
optimizer=optimization_constraint(optimizer,value(portfolio),'=',10^9)
optimizer=optimization_constraint(optimizer,expected_return(portfolio),"=",x)
optimPortfolio=optimization_run(optimizer)
resultMarkowitz=rbind(resultMarkowitz,c(compute(variance(optimPortfolio))[[1]][2],compute(expected_return(optimPortfolio))[[1]][2]))
}
resultMarkowitz=resultMarkowitz[-1,]
resultMarkowitz=data.frame(Variance=spline(resultMarkowitz$Variance, n=100)$y,
ExpectedReturn=spline(resultMarkowitz$ExpectedReturn, n=100)$y)
resultMarkowitz$legend="Markowitz"
resultLintner$legend="Lintner"
result=rbind(resultMarkowitz,resultLintner)
ggplot()+geom_path(data=result, aes(x=Variance,y=ExpectedReturn,col=legend),size=1.2)+
util_plotTheme()+ggtitle("Markowitz and Lintner Efficient Frontier")+ylab("Expected Return")+
util_colorScheme()
|
write_fitted_parameters <- function(model, parhistory, csv.output) {
setup <- elt(model, "setup")
read.only <- elt(setup, "read.only")
model.path <- elt(setup, "model.path")
identifier <- elt(setup, "model.ident")
if (read.only & csv.output==TRUE) {
message("Warning: cannot write fitted parameters back to the model input folders - model is read-only")
message("Warning: to fix this, make a copy of the model using e2e_copy() into your own workspace.")
stop("Model is not writable!")
}
preference_matrix_input <- get.model.file(model.path, PARAMETERS_DIR, file.pattern=FITTED_PARAMETERS_PREFERENCE, row.names=1)
uptake_mort_input <- get.model.file(model.path, PARAMETERS_DIR, file.pattern=FITTED_PARAMETERS_UPTAKE_MORT)
microbiology_input <- get.model.file(model.path, PARAMETERS_DIR, file.pattern=FITTED_PARAMETERS_MICROBIOLOGY)
preference_matrix_input_NEW<-preference_matrix_input
uptake_mort_input_NEW<-uptake_mort_input
microbiology_input_NEW<-microbiology_input
ROW_TO_USE <- nrow(parhistory)
preference_matrix_input_NEW$kelp[which(rownames(preference_matrix_input_NEW)=="nitrate")] <- parhistory$PREF_NIT_kelp[ROW_TO_USE]
preference_matrix_input_NEW$kelp[which(rownames(preference_matrix_input_NEW)=="ammonia")] <- parhistory$PREF_AMM_kelp[ROW_TO_USE]
preference_matrix_input_NEW$phyt[which(rownames(preference_matrix_input_NEW)=="nitrate")] <- parhistory$PREF_NIT_phyt[ROW_TO_USE]
preference_matrix_input_NEW$phyt[which(rownames(preference_matrix_input_NEW)=="ammonia")] <- parhistory$PREF_AMM_phyt[ROW_TO_USE]
preference_matrix_input_NEW$omnivzoo[which(rownames(preference_matrix_input_NEW)=="phyt")] <- parhistory$PREF_phyt_omni[ROW_TO_USE]
preference_matrix_input_NEW$omnivzoo[which(rownames(preference_matrix_input_NEW)=="suspdet")] <- parhistory$PREF_det_omni[ROW_TO_USE]
preference_matrix_input_NEW$omnivzoo[which(rownames(preference_matrix_input_NEW)=="benthslar")] <- parhistory$PREF_benthslar_omni[ROW_TO_USE]
preference_matrix_input_NEW$omnivzoo[which(rownames(preference_matrix_input_NEW)=="benthclar")] <- parhistory$PREF_benthclar_omni[ROW_TO_USE]
preference_matrix_input_NEW$carnzoo[which(rownames(preference_matrix_input_NEW)=="omnivzoo")] <- parhistory$PREF_omni_carn[ROW_TO_USE]
preference_matrix_input_NEW$carnzoo[which(rownames(preference_matrix_input_NEW)=="benthslar")] <- parhistory$PREF_benthslar_carn[ROW_TO_USE]
preference_matrix_input_NEW$carnzoo[which(rownames(preference_matrix_input_NEW)=="benthclar")] <- parhistory$PREF_benthclar_carn[ROW_TO_USE]
preference_matrix_input_NEW$carnzoo[which(rownames(preference_matrix_input_NEW)=="fishplar")] <- parhistory$PREF_fishplar_carn[ROW_TO_USE]
preference_matrix_input_NEW$carnzoo[which(rownames(preference_matrix_input_NEW)=="fishdlar")] <- parhistory$PREF_fishdlar_carn[ROW_TO_USE]
preference_matrix_input_NEW$fishplar[which(rownames(preference_matrix_input_NEW)=="omnivzoo")] <- parhistory$PREF_omni_fishplar[ROW_TO_USE]
preference_matrix_input_NEW$fishplar[which(rownames(preference_matrix_input_NEW)=="benthslar")] <- parhistory$PREF_benthslar_fishplar[ROW_TO_USE]
preference_matrix_input_NEW$fishplar[which(rownames(preference_matrix_input_NEW)=="benthclar")] <- parhistory$PREF_benthclar_fishplar[ROW_TO_USE]
preference_matrix_input_NEW$fishp[which(rownames(preference_matrix_input_NEW)=="omnivzoo")] <- parhistory$PREF_omni_fishp[ROW_TO_USE]
preference_matrix_input_NEW$fishp[which(rownames(preference_matrix_input_NEW)=="carnzoo")] <- parhistory$PREF_carn_fishp[ROW_TO_USE]
preference_matrix_input_NEW$fishp[which(rownames(preference_matrix_input_NEW)=="benthslar")] <- parhistory$PREF_benthslar_fishp[ROW_TO_USE]
preference_matrix_input_NEW$fishp[which(rownames(preference_matrix_input_NEW)=="benthclar")] <- parhistory$PREF_benthclar_fishp[ROW_TO_USE]
preference_matrix_input_NEW$fishp[which(rownames(preference_matrix_input_NEW)=="fishdlar")] <- parhistory$PREF_fishdlar_fishp[ROW_TO_USE]
preference_matrix_input_NEW$fishp[which(rownames(preference_matrix_input_NEW)=="fishplar")] <- parhistory$PREF_fishplar_fishp[ROW_TO_USE]
preference_matrix_input_NEW$fishm[which(rownames(preference_matrix_input_NEW)=="omnivzoo")] <- parhistory$PREF_omni_fishm[ROW_TO_USE]
preference_matrix_input_NEW$fishm[which(rownames(preference_matrix_input_NEW)=="carnzoo")] <- parhistory$PREF_carn_fishm[ROW_TO_USE]
preference_matrix_input_NEW$fishm[which(rownames(preference_matrix_input_NEW)=="benthslar")] <- parhistory$PREF_benthslar_fishm[ROW_TO_USE]
preference_matrix_input_NEW$fishm[which(rownames(preference_matrix_input_NEW)=="benthclar")] <- parhistory$PREF_benthclar_fishm[ROW_TO_USE]
preference_matrix_input_NEW$fishm[which(rownames(preference_matrix_input_NEW)=="fishdlar")] <- parhistory$PREF_fishdlar_fishm[ROW_TO_USE]
preference_matrix_input_NEW$fishm[which(rownames(preference_matrix_input_NEW)=="fishplar")] <- parhistory$PREF_fishplar_fishm[ROW_TO_USE]
preference_matrix_input_NEW$fishdlar[which(rownames(preference_matrix_input_NEW)=="omnivzoo")] <- parhistory$PREF_omni_fishdlar[ROW_TO_USE]
preference_matrix_input_NEW$fishdlar[which(rownames(preference_matrix_input_NEW)=="benthslar")] <- parhistory$PREF_benthslar_fishdlar[ROW_TO_USE]
preference_matrix_input_NEW$fishdlar[which(rownames(preference_matrix_input_NEW)=="benthclar")] <- parhistory$PREF_benthclar_fishdlar[ROW_TO_USE]
preference_matrix_input_NEW$fishd[which(rownames(preference_matrix_input_NEW)=="carnzoo")] <- parhistory$PREF_carn_fishd[ROW_TO_USE]
preference_matrix_input_NEW$fishd[which(rownames(preference_matrix_input_NEW)=="benths")] <- parhistory$PREF_benths_fishd[ROW_TO_USE]
preference_matrix_input_NEW$fishd[which(rownames(preference_matrix_input_NEW)=="benthc")] <- parhistory$PREF_benthc_fishd[ROW_TO_USE]
preference_matrix_input_NEW$fishd[which(rownames(preference_matrix_input_NEW)=="fishplar")] <- parhistory$PREF_fishplar_fishd[ROW_TO_USE]
preference_matrix_input_NEW$fishd[which(rownames(preference_matrix_input_NEW)=="fishdlar")] <- parhistory$PREF_fishdlar_fishd[ROW_TO_USE]
preference_matrix_input_NEW$fishd[which(rownames(preference_matrix_input_NEW)=="fishp")] <- parhistory$PREF_fishp_fishd[ROW_TO_USE]
preference_matrix_input_NEW$fishd[which(rownames(preference_matrix_input_NEW)=="fishm")] <- parhistory$PREF_fishm_fishd[ROW_TO_USE]
preference_matrix_input_NEW$fishd[which(rownames(preference_matrix_input_NEW)=="fishd")] <- parhistory$PREF_fishd_fishd[ROW_TO_USE]
preference_matrix_input_NEW$fishd[which(rownames(preference_matrix_input_NEW)=="discards")] <- parhistory$PREF_disc_fishd[ROW_TO_USE]
preference_matrix_input_NEW$fishd[which(rownames(preference_matrix_input_NEW)=="corpses")] <- parhistory$PREF_corp_fishd[ROW_TO_USE]
preference_matrix_input_NEW$benthslar[which(rownames(preference_matrix_input_NEW)=="phyt")] <- parhistory$PREF_phyt_benthslar[ROW_TO_USE]
preference_matrix_input_NEW$benthclar[which(rownames(preference_matrix_input_NEW)=="phyt")] <- parhistory$PREF_phyt_benthclar[ROW_TO_USE]
preference_matrix_input_NEW$benthslar[which(rownames(preference_matrix_input_NEW)=="suspdet")] <- parhistory$PREF_det_benthslar[ROW_TO_USE]
preference_matrix_input_NEW$benthclar[which(rownames(preference_matrix_input_NEW)=="suspdet")] <- parhistory$PREF_det_benthclar[ROW_TO_USE]
preference_matrix_input_NEW$benths[which(rownames(preference_matrix_input_NEW)=="phyt")] <- parhistory$PREF_phyt_benths[ROW_TO_USE]
preference_matrix_input_NEW$benths[which(rownames(preference_matrix_input_NEW)=="suspdet")] <- parhistory$PREF_det_benths[ROW_TO_USE]
preference_matrix_input_NEW$benths[which(rownames(preference_matrix_input_NEW)=="seddet")] <- parhistory$PREF_sed_benths[ROW_TO_USE]
preference_matrix_input_NEW$benthc[which(rownames(preference_matrix_input_NEW)=="kelp")] <- parhistory$PREF_kelp_benthc[ROW_TO_USE]
preference_matrix_input_NEW$benthc[which(rownames(preference_matrix_input_NEW)=="kelpdebris")] <- parhistory$PREF_kelpdebris_benthc[ROW_TO_USE]
preference_matrix_input_NEW$benthc[which(rownames(preference_matrix_input_NEW)=="benths")] <- parhistory$PREF_benths_benthc[ROW_TO_USE]
preference_matrix_input_NEW$benthc[which(rownames(preference_matrix_input_NEW)=="corpses")] <- parhistory$PREF_corp_benthc[ROW_TO_USE]
preference_matrix_input_NEW$bird[which(rownames(preference_matrix_input_NEW)=="carnzoo")] <- parhistory$PREF_carn_bird[ROW_TO_USE]
preference_matrix_input_NEW$bird[which(rownames(preference_matrix_input_NEW)=="benths")] <- parhistory$PREF_benths_bird[ROW_TO_USE]
preference_matrix_input_NEW$bird[which(rownames(preference_matrix_input_NEW)=="benthc")] <- parhistory$PREF_benthc_bird[ROW_TO_USE]
preference_matrix_input_NEW$bird[which(rownames(preference_matrix_input_NEW)=="fishp")] <- parhistory$PREF_fishp_bird[ROW_TO_USE]
preference_matrix_input_NEW$bird[which(rownames(preference_matrix_input_NEW)=="fishm")] <- parhistory$PREF_fishm_bird[ROW_TO_USE]
preference_matrix_input_NEW$bird[which(rownames(preference_matrix_input_NEW)=="fishd")] <- parhistory$PREF_fishd_bird[ROW_TO_USE]
preference_matrix_input_NEW$bird[which(rownames(preference_matrix_input_NEW)=="discards")] <- parhistory$PREF_disc_bird[ROW_TO_USE]
preference_matrix_input_NEW$bird[which(rownames(preference_matrix_input_NEW)=="corpses")] <- parhistory$PREF_corp_bird[ROW_TO_USE]
preference_matrix_input_NEW$seal[which(rownames(preference_matrix_input_NEW)=="carnzoo")] <- parhistory$PREF_carn_seal[ROW_TO_USE]
preference_matrix_input_NEW$seal[which(rownames(preference_matrix_input_NEW)=="benths")] <- parhistory$PREF_benths_seal[ROW_TO_USE]
preference_matrix_input_NEW$seal[which(rownames(preference_matrix_input_NEW)=="benthc")] <- parhistory$PREF_benthc_seal[ROW_TO_USE]
preference_matrix_input_NEW$seal[which(rownames(preference_matrix_input_NEW)=="fishp")] <- parhistory$PREF_fishp_seal[ROW_TO_USE]
preference_matrix_input_NEW$seal[which(rownames(preference_matrix_input_NEW)=="fishm")] <- parhistory$PREF_fishm_seal[ROW_TO_USE]
preference_matrix_input_NEW$seal[which(rownames(preference_matrix_input_NEW)=="fishd")] <- parhistory$PREF_fishd_seal[ROW_TO_USE]
preference_matrix_input_NEW$seal[which(rownames(preference_matrix_input_NEW)=="discards")] <- parhistory$PREF_disc_seal[ROW_TO_USE]
preference_matrix_input_NEW$seal[which(rownames(preference_matrix_input_NEW)=="corpses")] <- parhistory$PREF_corp_seal[ROW_TO_USE]
preference_matrix_input_NEW$seal[which(rownames(preference_matrix_input_NEW)=="bird")] <- parhistory$PREF_bird_seal[ROW_TO_USE]
preference_matrix_input_NEW$ceta[which(rownames(preference_matrix_input_NEW)=="omnivzoo")] <- parhistory$PREF_omni_ceta[ROW_TO_USE]
preference_matrix_input_NEW$ceta[which(rownames(preference_matrix_input_NEW)=="carnzoo")] <- parhistory$PREF_carn_ceta[ROW_TO_USE]
preference_matrix_input_NEW$ceta[which(rownames(preference_matrix_input_NEW)=="benths")] <- parhistory$PREF_benths_ceta[ROW_TO_USE]
preference_matrix_input_NEW$ceta[which(rownames(preference_matrix_input_NEW)=="benthc")] <- parhistory$PREF_benthc_ceta[ROW_TO_USE]
preference_matrix_input_NEW$ceta[which(rownames(preference_matrix_input_NEW)=="fishp")] <- parhistory$PREF_fishp_ceta[ROW_TO_USE]
preference_matrix_input_NEW$ceta[which(rownames(preference_matrix_input_NEW)=="fishm")] <- parhistory$PREF_fishm_ceta[ROW_TO_USE]
preference_matrix_input_NEW$ceta[which(rownames(preference_matrix_input_NEW)=="fishd")] <- parhistory$PREF_fishd_ceta[ROW_TO_USE]
preference_matrix_input_NEW$ceta[which(rownames(preference_matrix_input_NEW)=="discards")] <- parhistory$PREF_disc_ceta[ROW_TO_USE]
preference_matrix_input_NEW$ceta[which(rownames(preference_matrix_input_NEW)=="bird")] <- parhistory$PREF_bird_ceta[ROW_TO_USE]
preference_matrix_input_NEW$ceta[which(rownames(preference_matrix_input_NEW)=="seal")] <- parhistory$PREF_seal_ceta[ROW_TO_USE]
uptake_mort_input_NEW$Cumax[which(uptake_mort_input_NEW$consumer=="kelp")] <- parhistory$uC_kelp[ROW_TO_USE]
uptake_mort_input_NEW$Cddexud[which(uptake_mort_input_NEW$consumer=="kelp")] <- parhistory$ddexudC_kelp[ROW_TO_USE]
uptake_mort_input_NEW$Numax[which(uptake_mort_input_NEW$consumer=="kelp")] <- parhistory$u_kelp[ROW_TO_USE]
uptake_mort_input_NEW$Numax[which(uptake_mort_input_NEW$consumer=="phyt_s")] <- parhistory$u_phyt[ROW_TO_USE]
uptake_mort_input_NEW$Numax[which(uptake_mort_input_NEW$consumer=="omnivzoo")] <- parhistory$u_omni[ROW_TO_USE]
uptake_mort_input_NEW$Numax[which(uptake_mort_input_NEW$consumer=="carnzoo")] <- parhistory$u_carn[ROW_TO_USE]
uptake_mort_input_NEW$Numax[which(uptake_mort_input_NEW$consumer=="fishplar")] <- parhistory$u_fishplar[ROW_TO_USE]
uptake_mort_input_NEW$Numax[which(uptake_mort_input_NEW$consumer=="fishp")] <- parhistory$u_fishp[ROW_TO_USE]
uptake_mort_input_NEW$Numax[which(uptake_mort_input_NEW$consumer=="fishm")] <- parhistory$u_fishm[ROW_TO_USE]
uptake_mort_input_NEW$Numax[which(uptake_mort_input_NEW$consumer=="fishdlar")] <- parhistory$u_fishdlar[ROW_TO_USE]
uptake_mort_input_NEW$Numax[which(uptake_mort_input_NEW$consumer=="fishd")] <- parhistory$u_fishd[ROW_TO_USE]
uptake_mort_input_NEW$Numax[which(uptake_mort_input_NEW$consumer=="benthslar")] <- parhistory$u_benthslar[ROW_TO_USE]
uptake_mort_input_NEW$Numax[which(uptake_mort_input_NEW$consumer=="benthclar")] <- parhistory$u_benthclar[ROW_TO_USE]
uptake_mort_input_NEW$Numax[which(uptake_mort_input_NEW$consumer=="benths")] <- parhistory$u_benths[ROW_TO_USE]
uptake_mort_input_NEW$Numax[which(uptake_mort_input_NEW$consumer=="benthc")] <- parhistory$u_benthc[ROW_TO_USE]
uptake_mort_input_NEW$Numax[which(uptake_mort_input_NEW$consumer=="bird")] <- parhistory$u_bird[ROW_TO_USE]
uptake_mort_input_NEW$Numax[which(uptake_mort_input_NEW$consumer=="seal")] <- parhistory$u_seal[ROW_TO_USE]
uptake_mort_input_NEW$Numax[which(uptake_mort_input_NEW$consumer=="ceta")] <- parhistory$u_ceta[ROW_TO_USE]
uptake_mort_input_NEW$Nhsat[which(uptake_mort_input_NEW$consumer=="kelp")] <- parhistory$h_kelp[ROW_TO_USE]
uptake_mort_input_NEW$Nhsat[which(uptake_mort_input_NEW$consumer=="phyt_s")] <- parhistory$h_phyt[ROW_TO_USE]
uptake_mort_input_NEW$Nhsat[which(uptake_mort_input_NEW$consumer=="omnivzoo")] <- parhistory$h_omni[ROW_TO_USE]
uptake_mort_input_NEW$Nhsat[which(uptake_mort_input_NEW$consumer=="carnzoo")] <- parhistory$h_carn[ROW_TO_USE]
uptake_mort_input_NEW$Nhsat[which(uptake_mort_input_NEW$consumer=="fishplar")] <- parhistory$h_fishplar[ROW_TO_USE]
uptake_mort_input_NEW$Nhsat[which(uptake_mort_input_NEW$consumer=="fishp")] <- parhistory$h_fishp[ROW_TO_USE]
uptake_mort_input_NEW$Nhsat[which(uptake_mort_input_NEW$consumer=="fishm")] <- parhistory$h_fishm[ROW_TO_USE]
uptake_mort_input_NEW$Nhsat[which(uptake_mort_input_NEW$consumer=="fishdlar")] <- parhistory$h_fishdlar[ROW_TO_USE]
uptake_mort_input_NEW$Nhsat[which(uptake_mort_input_NEW$consumer=="fishd")] <- parhistory$h_fishd[ROW_TO_USE]
uptake_mort_input_NEW$Nhsat[which(uptake_mort_input_NEW$consumer=="benthslar")] <- parhistory$h_benthslar[ROW_TO_USE]
uptake_mort_input_NEW$Nhsat[which(uptake_mort_input_NEW$consumer=="benthclar")] <- parhistory$h_benthclar[ROW_TO_USE]
uptake_mort_input_NEW$Nhsat[which(uptake_mort_input_NEW$consumer=="benths")] <- parhistory$h_benths[ROW_TO_USE]
uptake_mort_input_NEW$Nhsat[which(uptake_mort_input_NEW$consumer=="benthc")] <- parhistory$h_benthc[ROW_TO_USE]
uptake_mort_input_NEW$Nhsat[which(uptake_mort_input_NEW$consumer=="bird")] <- parhistory$h_bird[ROW_TO_USE]
uptake_mort_input_NEW$Nhsat[which(uptake_mort_input_NEW$consumer=="seal")] <- parhistory$h_seal[ROW_TO_USE]
uptake_mort_input_NEW$Nhsat[which(uptake_mort_input_NEW$consumer=="ceta")] <- parhistory$h_ceta[ROW_TO_USE]
uptake_mort_input_NEW$BdeApar[which(uptake_mort_input_NEW$consumer=="bird")] <- parhistory$bda_par_bird[ROW_TO_USE]
uptake_mort_input_NEW$BdeApar[which(uptake_mort_input_NEW$consumer=="seal")] <- parhistory$bda_par_seal[ROW_TO_USE]
uptake_mort_input_NEW$BdeApar[which(uptake_mort_input_NEW$consumer=="ceta")] <- parhistory$bda_par_ceta[ROW_TO_USE]
uptake_mort_input_NEW$ddmort[which(uptake_mort_input_NEW$consumer=="kelp")] <- parhistory$xxwave_kelp[ROW_TO_USE]
uptake_mort_input_NEW$ddmort[which(uptake_mort_input_NEW$consumer=="phyt_s")] <- parhistory$xxst[ROW_TO_USE]
uptake_mort_input_NEW$ddmort[which(uptake_mort_input_NEW$consumer=="phyt_d")] <- parhistory$xxdt[ROW_TO_USE]
uptake_mort_input_NEW$ddmort[which(uptake_mort_input_NEW$consumer=="omnivzoo")] <- parhistory$xxomni[ROW_TO_USE]
uptake_mort_input_NEW$ddmort[which(uptake_mort_input_NEW$consumer=="carnzoo")] <- parhistory$xxcarn[ROW_TO_USE]
uptake_mort_input_NEW$ddmort[which(uptake_mort_input_NEW$consumer=="benthslar")] <- parhistory$xxbenthslar[ROW_TO_USE]
uptake_mort_input_NEW$ddmort[which(uptake_mort_input_NEW$consumer=="benthclar")] <- parhistory$xxbenthclar[ROW_TO_USE]
uptake_mort_input_NEW$ddmort[which(uptake_mort_input_NEW$consumer=="benths")] <- parhistory$xxbenths[ROW_TO_USE]
uptake_mort_input_NEW$ddmort[which(uptake_mort_input_NEW$consumer=="benthc")] <- parhistory$xxbenthc[ROW_TO_USE]
uptake_mort_input_NEW$ddmort[which(uptake_mort_input_NEW$consumer=="fishplar")] <- parhistory$xxpfishlar[ROW_TO_USE]
uptake_mort_input_NEW$ddmort[which(uptake_mort_input_NEW$consumer=="fishdlar")] <- parhistory$xxdfishlar[ROW_TO_USE]
uptake_mort_input_NEW$ddmort[which(uptake_mort_input_NEW$consumer=="fishp")] <- parhistory$xxpfish[ROW_TO_USE]
uptake_mort_input_NEW$ddmort[which(uptake_mort_input_NEW$consumer=="fishm")] <- parhistory$xxmfish[ROW_TO_USE]
uptake_mort_input_NEW$ddmort[which(uptake_mort_input_NEW$consumer=="fishd")] <- parhistory$xxdfish[ROW_TO_USE]
uptake_mort_input_NEW$ddmort[which(uptake_mort_input_NEW$consumer=="bird")] <- parhistory$xxbird[ROW_TO_USE]
uptake_mort_input_NEW$ddmort[which(uptake_mort_input_NEW$consumer=="seal")] <- parhistory$xxseal[ROW_TO_USE]
uptake_mort_input_NEW$ddmort[which(uptake_mort_input_NEW$consumer=="ceta")] <- parhistory$xxceta[ROW_TO_USE]
uptake_mort_input_NEW$migration_coef[which(uptake_mort_input_NEW$consumer=="fishp")] <- parhistory$xpfish_migcoef[ROW_TO_USE]
uptake_mort_input_NEW$migration_coef[which(uptake_mort_input_NEW$consumer=="fishm")] <- parhistory$xmfish_migcoef[ROW_TO_USE]
uptake_mort_input_NEW$migration_coef[which(uptake_mort_input_NEW$consumer=="fishd")] <- parhistory$xdfish_migcoef[ROW_TO_USE]
uptake_mort_input_NEW$migration_coef[which(uptake_mort_input_NEW$consumer=="bird")] <- parhistory$xbird_migcoef[ROW_TO_USE]
uptake_mort_input_NEW$migration_coef[which(uptake_mort_input_NEW$consumer=="seal")] <- parhistory$xseal_migcoef[ROW_TO_USE]
uptake_mort_input_NEW$migration_coef[which(uptake_mort_input_NEW$consumer=="ceta")] <- parhistory$xceta_migcoef[ROW_TO_USE]
uptake_mort_input_NEW$max_exploitable_f[which(uptake_mort_input_NEW$consumer=="kelp")] <- parhistory$xmax_exploitable_f_KP[ROW_TO_USE]
uptake_mort_input_NEW$max_exploitable_f[which(uptake_mort_input_NEW$consumer=="fishp")] <- parhistory$xmax_exploitable_f_PF[ROW_TO_USE]
uptake_mort_input_NEW$max_exploitable_f[which(uptake_mort_input_NEW$consumer=="fishd")] <- parhistory$xmax_exploitable_f_DF[ROW_TO_USE]
uptake_mort_input_NEW$max_exploitable_f[which(uptake_mort_input_NEW$consumer=="fishm")] <- parhistory$xmax_exploitable_f_MF[ROW_TO_USE]
uptake_mort_input_NEW$max_exploitable_f[which(uptake_mort_input_NEW$consumer=="benths")] <- parhistory$xmax_exploitable_f_SB[ROW_TO_USE]
uptake_mort_input_NEW$max_exploitable_f[which(uptake_mort_input_NEW$consumer=="benthc")] <- parhistory$xmax_exploitable_f_CB[ROW_TO_USE]
uptake_mort_input_NEW$max_exploitable_f[which(uptake_mort_input_NEW$consumer=="carnzoo")] <- parhistory$xmax_exploitable_f_CZ[ROW_TO_USE]
uptake_mort_input_NEW$max_exploitable_f[which(uptake_mort_input_NEW$consumer=="bird")] <- parhistory$xmax_exploitable_f_BD[ROW_TO_USE]
uptake_mort_input_NEW$max_exploitable_f[which(uptake_mort_input_NEW$consumer=="seal")] <- parhistory$xmax_exploitable_f_SL[ROW_TO_USE]
uptake_mort_input_NEW$max_exploitable_f[which(uptake_mort_input_NEW$consumer=="ceta")] <- parhistory$xmax_exploitable_f_CT[ROW_TO_USE]
microbiology_input_NEW$Value[1] <- parhistory$xmt[ROW_TO_USE]
microbiology_input_NEW$Value[2] <- parhistory$xnst[ROW_TO_USE]
microbiology_input_NEW$Value[3] <- parhistory$xdst[ROW_TO_USE]
microbiology_input_NEW$Value[4] <- parhistory$xndt[ROW_TO_USE]
microbiology_input_NEW$Value[5] <- parhistory$xddt[ROW_TO_USE]
microbiology_input_NEW$Value[6] <- parhistory$xqs_p1[ROW_TO_USE]
microbiology_input_NEW$Value[7] <- parhistory$xqs_p2[ROW_TO_USE]
microbiology_input_NEW$Value[8] <- parhistory$xqs_p3[ROW_TO_USE]
microbiology_input_NEW$Value[9] <- parhistory$xmsedt[ROW_TO_USE]
microbiology_input_NEW$Value[10] <- parhistory$xmsens[ROW_TO_USE]
microbiology_input_NEW$Value[11] <- parhistory$xnsedt[ROW_TO_USE]
microbiology_input_NEW$Value[12] <- parhistory$xnsens[ROW_TO_USE]
microbiology_input_NEW$Value[13] <- parhistory$xdsedt[ROW_TO_USE]
microbiology_input_NEW$Value[14] <- parhistory$xdsens[ROW_TO_USE]
microbiology_input_NEW$Value[15] <- parhistory$xdisc_corp[ROW_TO_USE]
microbiology_input_NEW$Value[16] <- parhistory$xxcorp_det[ROW_TO_USE]
microbiology_input_NEW$Value[17] <- parhistory$xkelpdebris_det[ROW_TO_USE]
microbiology_input_NEW$Value[18] <- parhistory$xdsink_s[ROW_TO_USE]
microbiology_input_NEW$Value[19] <- parhistory$xdsink_d[ROW_TO_USE]
microbiology_input_NEW$Value[20] <- parhistory$xkelpshade[ROW_TO_USE]
microbiology_input_NEW$Value[21] <- parhistory$xwave_kelpdebris[ROW_TO_USE]
microbiology_input_NEW$Value[22] <- parhistory$xdfdp[ROW_TO_USE]
parameterpath <- makepath(model.path, PARAMETERS_DIR)
if(read.only==FALSE & csv.output==TRUE) {
filename = csvname(parameterpath, "fitted_preference_matrix", identifier)
writecsv(preference_matrix_input_NEW, filename, row.names=TRUE)
print(paste("Writing preference matrix file :",filename))
}
if(read.only==FALSE & csv.output==TRUE) {
filename = csvname(parameterpath, "fitted_uptake_mort_rates", identifier)
writecsv(uptake_mort_input_NEW, filename, row.names=FALSE)
print(paste("Writing uptake and mortality parameter file :",filename))
}
if(read.only==FALSE & csv.output==TRUE) {
filename = csvname(parameterpath, "fitted_microbiology_others", identifier)
writecsv(microbiology_input_NEW, filename, row.names=FALSE)
print(paste("Writing microbiology parameter file :",filename))
}
new_parameter_set<-list(new_preference_matrix = preference_matrix_input_NEW,
new_uptake_mort_rate_parameters = uptake_mort_input_NEW,
new_microbiology_parameters = microbiology_input_NEW)
new_parameter_set
}
|
context("64bit-support")
test_that("Dataset with more than 2^31 rows", {
large_space <- H5S$new(type="simple", dim=as.integer64(2)^33)
large_space$select_hyperslab(start=1, count=1, stride=1, block=as.integer64(2)^32)
expect_equal(large_space$get_select_hyper_blocklist()[,1], setNames(c(1, 2^32), c("block_1_start", "block_1_end")))
large_space$select_none()
large_space[2:2^32]
expect_equal(large_space$get_select_hyper_blocklist()[,1], setNames(c(2, 2^32), c("block_1_start", "block_1_end")))
large_space$select_none()
large_space[as.integer64(2):(as.integer64(2)^32)]
expect_equal(large_space$get_select_hyper_blocklist()[,1], setNames(c(2, 2^32), c("block_1_start", "block_1_end")))
test_file <- tempfile(fileext=".h5")
file.h5 <- H5File$new(test_file, mode="w")
large_ds <- file.h5$create_dataset("large_ds", dtype=h5types$H5T_NATIVE_INT, space=large_space, chunk_dims=1e6, gzip_level = 4)
large_ds[(2^32-10):(2^32+10)] <- 1:21
expect_equal(large_ds[(2^32-20):(2^32+20)], c(rep(0L,10), 1:21, rep(0L, 10)))
file.h5$close_all()
file.remove(test_file)
})
truncateVec <- function(x, min, max) {
x[!is.na(x) & x < min] <- min
x[!is.na(x) & x > max] <- max
return(x)
}
value_LLONG_MAX <- function() {
res <- bit64::as.integer64(0)
for(i in 0:62) {
res <- res + bit64::as.integer64(2)^i
}
return(res)
}
test_that("Datatype conversion with 64bit", {
LLONG_MAX <- value_LLONG_MAX()
dtype_uint64 <- h5types$H5T_NATIVE_ULLONG
dtype_int64 <- h5types$H5T_NATIVE_LLONG
dbl_vec_pos <- c(1, 2, 2^31-1, 2^31, 2^32, 2^33, 2^62, 2^63, 1.5 * 2^63, 2^65)
dbl_vec <- c(-dbl_vec_pos, dbl_vec_pos)
dbl_vec_int64 <- suppressWarnings(bit64::as.integer64(dbl_vec))
res_dbl_uint64_default <- hdf5r:::convertRoundTrip(dbl_vec, dtype_uint64, flags=h5const$H5TOR_CONV_NONE)
res_dbl_uint64_na <- suppressWarnings(hdf5r:::convertRoundTrip(dbl_vec, dtype_uint64, flags=h5const$H5TOR_CONV_UINT64_NA))
res_dbl_uint64_force <- hdf5r:::convertRoundTrip(dbl_vec, dtype_uint64, flags=h5const$H5TOR_CONV_INT64_FLOAT_FORCE)
dbl_vec_int64_trunc <- suppressWarnings(bit64::as.integer64(dbl_vec))
dbl_vec_int64_trunc[dbl_vec < 0] <- 0
dbl_vec_int64_trunc[is.na(dbl_vec_int64_trunc)] <- LLONG_MAX
dbl_vec_int64_na <- suppressWarnings(bit64::as.integer64(dbl_vec))
suppressWarnings({
dbl_vec_int64_na[18] <- dbl_vec_int64_na[18] + 1
})
dbl_vec_int64_na[dbl_vec < 0] <- 0
expect_equal(suppressWarnings(truncateVec(dbl_vec_int64_trunc, 0, LLONG_MAX)), res_dbl_uint64_default$output)
expect_equal(suppressWarnings(truncateVec(dbl_vec_int64_na, 0, LLONG_MAX)), res_dbl_uint64_na$output)
dbl_vec_force <- truncateVec(dbl_vec, 0, 2^64)
expect_equal(dbl_vec_force, res_dbl_uint64_force$output)
res_dbl_int64_default <- suppressWarnings(hdf5r:::convertRoundTrip(dbl_vec, dtype_int64, flags=h5const$H5TOR_CONV_NONE))
expect_equal(dbl_vec_int64, res_dbl_int64_default$output)
res_dbl_int64_int_noloss_short_int <- hdf5r:::convertRoundTrip(dbl_vec[abs(dbl_vec) < 2^31], dtype_int64,
flags=h5const$H5TOR_CONV_INT64_INT_NOLOSS)
expect_equal(as.integer(dbl_vec[abs(dbl_vec) < 2^31]), res_dbl_int64_int_noloss_short_int$output)
res_dbl_int64_int_noloss_short_int_withNA <- hdf5r:::convertRoundTrip(c(dbl_vec[abs(dbl_vec) < 2^31], NA), dtype_int64,
flags=h5const$H5TOR_CONV_INT64_INT_NOLOSS)
expect_equal(as.integer(c(dbl_vec[abs(dbl_vec) < 2^31], NA)), res_dbl_int64_int_noloss_short_int_withNA$output)
res_dbl_int64_int_noloss <- suppressWarnings(hdf5r:::convertRoundTrip(dbl_vec, dtype_int64,
flags=h5const$H5TOR_CONV_INT64_INT_NOLOSS))
expect_equal(dbl_vec_int64, res_dbl_int64_int_noloss$output)
res_dbl_int64_float_noloss_short_float <- hdf5r:::convertRoundTrip(dbl_vec[abs(dbl_vec) < 2^51], dtype_int64,
flags=h5const$H5TOR_CONV_INT64_FLOAT_NOLOSS)
expect_equal(as.numeric(dbl_vec[abs(dbl_vec) < 2^51]), res_dbl_int64_float_noloss_short_float$output)
res_dbl_int64_float_noloss_short_float_withNA <- hdf5r:::convertRoundTrip(c(dbl_vec[abs(dbl_vec) < 2^51], NA), dtype_int64,
flags=h5const$H5TOR_CONV_INT64_FLOAT_NOLOSS)
expect_equal(as.numeric(c(dbl_vec[abs(dbl_vec) < 2^51], NA)), res_dbl_int64_float_noloss_short_float_withNA$output)
res_dbl_int64_float_noloss <- suppressWarnings(hdf5r:::convertRoundTrip(dbl_vec, dtype_int64,
flags=h5const$H5TOR_CONV_INT64_FLOAT_NOLOSS))
expect_equal(dbl_vec_int64, res_dbl_int64_int_noloss$output)
res_dbl_int64_noloss <- suppressWarnings(hdf5r:::convertRoundTrip(dbl_vec, dtype_int64, flags=h5const$H5TOR_CONV_INT64_NOLOSS))
expect_equal(dbl_vec_int64, res_dbl_int64_noloss$output)
res_dbl_int64_noloss_short_int <- hdf5r:::convertRoundTrip(dbl_vec[abs(dbl_vec) < 2^31], dtype_int64,
flags=h5const$H5TOR_CONV_INT64_NOLOSS)
expect_equal(as.integer(dbl_vec[abs(dbl_vec) < 2^31]), res_dbl_int64_noloss_short_int$output)
res_dbl_int64_noloss_short_float <- hdf5r:::convertRoundTrip(dbl_vec[abs(dbl_vec) < 2^51], dtype_int64,
flags=h5const$H5TOR_CONV_INT64_NOLOSS)
expect_equal(as.numeric(dbl_vec[abs(dbl_vec) < 2^51]), res_dbl_int64_noloss_short_float$output)
suppressWarnings(res_dbl_int64_force <- hdf5r:::convertRoundTrip(dbl_vec, dtype_int64, flags=h5const$H5TOR_CONV_INT64_FLOAT_FORCE))
expect_equal(suppressWarnings(as.numeric(dbl_vec_int64)), res_dbl_int64_force$output)
})
|
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
fig.width = 7,
fig.align = "center"
)
if (!requireNamespace("microbenchmark", quietly = TRUE)) {
stop("Package \"microbenchmark\" needed for this vignette to work. Please install it.",
call. = FALSE)
}
library(EFAtools)
DOSPERT_sub <- DOSPERT_raw[1:500,]
BARTLETT(DOSPERT_sub)
KMO(DOSPERT_sub)
PARALLEL(DOSPERT_sub, eigen_type = "SMC")
print(PARALLEL(DOSPERT_sub, eigen_type = "SMC"), plot = FALSE)
print(EKC(DOSPERT_sub), plot = FALSE)
N_FACTORS(DOSPERT_sub, criteria = c("PARALLEL", "EKC", "SMT"),
eigen_type_other = c("SMC", "PCA"))
N_FACTORS(DOSPERT_sub, method = "ULS")
N_FACTORS(test_models$baseline$cormat, N = 500,
method = "ULS", eigen_type_other = c("SMC", "PCA"))
EFA(DOSPERT_sub, n_factors = 6)
EFA(DOSPERT_sub, n_factors = 6, rotation = "promax")
EFA(DOSPERT_sub, n_factors = 6, rotation = "promax", type = "psych")
EFA(DOSPERT_sub, n_factors = 6, rotation = "promax", type = "SPSS")
COMPARE(
EFA(DOSPERT_sub, n_factors = 6, rotation = "promax", type = "psych")$rot_loadings,
EFA(DOSPERT_sub, n_factors = 6, rotation = "promax", type = "SPSS")$rot_loadings
)
EFA(DOSPERT_sub, n_factors = 6, rotation = "oblimin", method = "ULS")
COMPARE(
EFA(DOSPERT_sub, n_factors = 6, rotation = "promax")$rot_loadings,
EFA(DOSPERT_sub, n_factors = 6, rotation = "oblimin", method = "ULS")$rot_loadings,
x_labels = c("PAF and promax", "ULS and oblimin")
)
EFA_mod <- EFA(DOSPERT_sub, n_factors = 6, rotation = "promax")
fac_scores <- FACTOR_SCORES(DOSPERT_sub, f = EFA_mod)
microbenchmark::microbenchmark(
PARALLEL(DOSPERT_sub, eigen_type = "SMC", n_datasets = 25),
psych::fa.parallel(DOSPERT_sub, SMC = TRUE, plot = FALSE, n.iter = 25)
)
microbenchmark::microbenchmark(
EFA(DOSPERT_raw, 6),
psych::fa(DOSPERT_raw, 6, rotate = "none", fm = "pa")
)
EFA_AV <- EFA_AVERAGE(test_models$baseline$cormat, n_factors = 3, N = 500,
method = c("PAF", "ML", "ULS"), rotation = "oblique",
show_progress = FALSE)
EFA_AV
efa_dospert <- EFA(DOSPERT_sub, n_factors = 6, rotation = "promax")
efa_dospert
sl_dospert <- SL(efa_dospert)
sl_dospert
OMEGA(sl_dospert, type = "psych")
OMEGA(sl_dospert, factor_corres = matrix(c(rep(0, 18), rep(1, 6), rep(0, 30),
rep(1, 6), rep(0, 6), 1, 0, 1, 0, 1,
rep(0, 19), rep(1, 6), rep(0, 31), 1, 0,
1, 0, 1, rep(0, 30), rep(1, 6),
rep(0, 12)), ncol = 6, byrow = FALSE))
|
"all_valid_nuts_codes"
|
library(pointblank)
create_informant(
read_fn = ~ palmerpenguins::penguins,
tbl_name = "penguins",
label = "Les données `penguins` du paquet **palmerpenguins**.",
lang = "fr"
) %>%
info_columns(
columns = "species",
`ℹ️` = "Un facteur désignant les espèces de manchots ({species_snippet})."
) %>%
info_columns(
columns = "island",
`ℹ️` = "L'île de l'archipel de Palmer, Antarctique
({island_snippet})."
) %>%
info_columns(
columns = "year",
`ℹ️` = "L'année d'étude: {year_snippet}."
) %>%
info_snippet(
snippet_name = "species_snippet",
fn = snip_list(column = "species", and_or = "and")
) %>%
info_snippet(
snippet_name = "island_snippet",
fn = snip_list(column = "island", and_or = "or")
) %>%
info_snippet(
snippet_name = "year_snippet",
fn = snip_list(column = "year", limit = 1)
) %>%
incorporate()
|
"tac_metadata"
|
"frames.time" <- function(dataset, datanum)
{
if(is.matrix(dataset$ftime) == FALSE) dataset$ftime <- rbind(dataset$ftime)
if(is.matrix(dataset$index) == FALSE) dataset$index <- rbind(dataset$index)
nums <- seq(1, nrow(dataset$ftime))
incl <- dataset$index[, 1] <= datanum & dataset$index[, 2] >= datanum
retv <- NULL
segnum <- nums[incl]
percent <- (datanum - dataset$index[segnum, 1])/
(dataset$index[segnum, 2] - dataset$index[segnum, 1])
retv$segnum <- segnum
retv$time <- dataset$ftime[segnum, 1] +
percent * (dataset$ftime[segnum, 2] - dataset$ftime[segnum, 1])
retv
}
"get.time.element"<- function(timeval, dataset)
{
numrows <- nrow(dataset$ftime)
left <- dataset$ftime[1, 1]
right <- dataset$ftime[numrows, 2]
left.i <- dataset$index[1, 1]
right.i <- dataset$index[numrows, 2]
round(((timeval - left)/(right - left)) * (right.i - left.i)) + 1
}
|
"print.howmany" <-
function(x,...)
{
summary(x)
}
|
rpygeo_build_env <- function(path = NULL,
overwrite = TRUE,
extensions = NULL,
x64 = FALSE,
pro = FALSE,
arcgisAPI = FALSE,
workspace = NULL,
scratch_workspace = NULL) {
if (is.null(path)) {
if (x64) {
dirs1 <- list.files(
path = "C:/Python27",
pattern = "64", recursive = FALSE, full.names = TRUE
)
dirs <- list.files(
path = dirs1,
pattern = "python.exe", recursive = TRUE, full.names = TRUE
)
}
if (pro) {
dirs <- list.files(
path = "C:/Program Files/ArcGIS/Pro/bin/Python/envs/arcgispro-py3",
pattern = "python.exe", full.names = TRUE
)
}
if (!pro && !x64) {
dirs <- list.files(
path = "C:/Python27", pattern = "python.exe", recursive = TRUE,
full.names = TRUE
)
}
if (length(dirs) == 1) {
path <- dirs
}
if (length(dirs) > 1) {
stop("multiple paths found, define ArcGIS Path\n")
}
if (length(dirs) < 1) {
stop("No python version found in 'C:/Python27' - please define python path\n")
}
}
if (!is.null(path)) {
path == path
}
reticulate::use_python(python = path, required = TRUE)
if (!arcgisAPI) {
reticulate::py_run_string("import arcpy")
}
if (arcgisAPI) {
reticulate::py_run_string("import arcgis")
}
if (!arcgisAPI) {
input_check(overwrite = overwrite, extensions = extensions)
}
if (!arcgisAPI) {
if (!is.null(workspace)) {
set_workspace(workspace)
}
}
if (!arcgisAPI) {
if (!is.null(workspace) & !is.null(scratch_workspace)) {
set_scratch_workspace(scratch_workspace)
} else if (!is.null(workspace) & is.null(scratch_workspace)) {
if (tools::file_ext(basename(workspace)) == "gdb") {
dir.create(paste0(dirname(workspace), "/scratch"), showWarnings = FALSE)
set_scratch_workspace(paste0(dirname(workspace), "/scratch"))
} else {
dir.create(paste0(workspace, "/scratch"), showWarnings = FALSE)
set_scratch_workspace(paste0(workspace, "/scratch"))
}
}
}
if (!arcgisAPI) {
return(reticulate::py_run_string("import arcpy")$arcpy)
}
if (arcgisAPI) {
return(reticulate::py_run_string("import arcgis")$arcpy)
}
}
rpygeo_search <- function(search_term = NULL) {
modules <- reticulate::py_run_file(system.file("python", "get_modules.py",
package = "RPyGeo"))
if(is.null(search_term)) {
return(modules$module)
}
search_result <-
modules$module %>%
purrr::map(function(a) stringr::str_subset(a, stringr::regex(search_term, ignore_case = TRUE))) %>%
purrr::keep(function(a) length(a) > 0)
if (length(search_result) < 1) {
return(NULL)
}
search_result
}
rpygeo_load <- function(data) {
path <-
data %>%
utils::type.convert() %>%
as.character()
info <- reticulate::py_run_string(paste0("info = arcpy.Describe('", path, "')"))
if (tools::file_ext(basename(info$info$path)) == "gdb") {
if (info$info$dataType == "FeatureClass") {
sf::st_read(dsn = info$info$path, layer = info$info$baseName, quiet = TRUE) %>%
return()
} else if (info$info$dataType == "RasterDataset") {
tempdir() %>%
paste0("/r", paste0(floor(stats::runif(7, min = 0, max = 9)), collapse = ""), ".asc") -> temp_file
reticulate::py_run_string(paste0("arcpy.RasterToASCII_conversion('", info$info$baseName, "', '", temp_file, "')"))
raster::raster(temp_file) %>%
return()
} else {
stop("Unsupported dataset. rpygeo_load supports Feature Class and Raster Dataset.")
}
} else {
if (any(info$info$extension %in% c("tif", "img", "asc"))) {
raster::raster(paste0(info$info$path, "/", info$info$file)) %>%
return()
} else if (any(info$info$extension %in% c("shp"))) {
sf::st_read(paste0(info$info$path, "/", info$info$file), quiet = TRUE) %>%
return()
} else if (info$info$extension == "" & file.exists(paste0(info$info$path, "/", info$info$file, "/hdr.adf"))) {
raster::raster(paste0(info$info$path, "/", info$info$file)) %>%
return()
} else {
stop("Unsupported data type. rpygeo_load supports Tagged Image File Format (.tif), Erdas Imagine Images (.img), Arc/Info Binary Grid (.adf), Esri ASCII Raster (.asc) and Shapefiles (.shp)")
}
}
}
rpygeo_help <- function(arcpy_function) {
doc <-
substitute(arcpy_function) %>%
deparse() %>%
reticulate::py_function_docs()
help_type <-
arcpy_function$func_doc %>%
stringr::str_match("(INPUTS:|Arguments:)")
if (is.na(help_type[[1]])) {
parameters <- c("No input parameters", "No output parameters")
template <- "help_template_generic.Rmd"
template_parameter <- list(
name = doc$name,
description = arcpy_function$func_doc
)
} else if (help_type[[1]] == "INPUTS:") {
output_type <-
arcpy_function$func_doc %>%
stringr::str_match("OUTPUTS:")
if (is.na(output_type)) {
res <-
arcpy_function$func_doc %>%
stringr::str_match("(INPUTS:)([\\S\\s]*)") %>%
stringr::str_replace_all("\\n {6}", "\\\n") %>%
stringr::str_replace("^\\n", "") %>%
stringr::str_replace("\\s*$", "")
template <- "help_template_no_output.Rmd"
template_parameter <- list(
name = doc$name,
input = res[[3]],
example = doc$signature
)
} else {
res <-
arcpy_function$func_doc %>%
stringr::str_match("(INPUTS:)([\\S\\s]*)(OUTPUTS:)([\\S\\s]*)") %>%
stringr::str_replace_all("\\n {6}", "\\\n") %>%
stringr::str_replace("^\\n", "") %>%
stringr::str_replace("\\s*$", "")
template <- "help_template.Rmd"
template_parameter <- list(
name = doc$name,
input = res[[3]],
output = res[[5]],
example = doc$signature
)
}
} else if (help_type[[1]] == "Arguments:") {
res <-
arcpy_function$func_doc %>%
stringr::str_match("(Arguments:)([\\S\\s]*)(Results:)([\\S\\s]*)") %>%
stringr::str_replace_all("\\n {4}", "\\\n") %>%
stringr::str_replace("^\\n", "") %>%
stringr::str_replace("\\s*$", "")
template <- "help_template.Rmd"
template_parameter <- list(
name = doc$name,
input = res[[3]],
output = res[[5]],
example = doc$signature
)
}
help_file <-
rmarkdown::render(system.file("template", template, package = "RPyGeo"),
output_file = "help.html",
output_dir = tempdir(),
params = template_parameter,
quiet = TRUE)
if (!is.null(getOption("viewer"))) {
rstudioapi::viewer(help_file)
} else {
utils::browseURL(help_file)
}
}
rpygeo_save <- function(data, filename) {
path <-
data %>%
utils::type.convert() %>%
as.character()
overwrite <- reticulate::py_run_string("overwrite = arcpy.env.overwriteOutput")
workspace <- reticulate::py_run_string("workspace = arcpy.env.workspace")
info <- reticulate::py_run_string(paste0("info = arcpy.Describe('", path, "')"))
if (info$info$dataType != "RasterDataset") {
stop("Only raster files or raster datasets in file geodatabases are supported.")
}
if (tools::file_ext(basename(info$info$path)) == "gdb" & tools::file_ext(basename(workspace$workspace)) == "gdb") {
reticulate::py_run_string(paste0("arcpy.Copy_management('", info$info$catalogpath, "', '", workspace$workspace, "/", filename, "')"))
} else if (tools::file_ext(basename(workspace$workspace)) == "gdb") {
reticulate::py_run_string(paste0("arcpy.Copy_management('", info$info$catalogpath, "', '", workspace$workspace, "/", filename, "')"))
} else if (tools::file_ext(basename(info$info$path)) == "gdb") {
reticulate::py_run_string(paste0("arcpy.RasterToOtherFormat_conversion('", info$info$catalogpath, "', '", workspace$workspace, "')"))
} else {
raster::raster(info$info$catalogpath) %>%
raster::writeRaster(paste0(workspace$workspace, "/", filename), overwrite = overwrite$overwrite)
}
}
|
hypergraph.union <-
function(h1,h2,reduce=TRUE)
{
edges <- c(hypergraph_as_edgelist(h1),hypergraph_as_edgelist(h2))
h <- as.hypergraph(edges)
if(reduce){
h <- reduce.hypergraph(h)
}
h
}
|
context("test news creation")
test_that("existing file is checked", {
tmp_file <- file.path(paste0(tempdir(), "/tmp_NEWS.md"))
writeLines(text = "test NEWS.md", con = tmp_file)
this_warning <- paste0(
"version check not yet implemented! ",
"Consider given an initial version. ",
"It is set to 0.0.0.9000 for now.")
expect_warning(news$new(file = tmp_file), this_warning)
unlink(tmp_file)
expect_error(news$new(file = "this/does/not/exists.md"),
"given file does not exists")
})
|
print.summary.GORMC <-
function(x,...){
cat("Call:\n")
print(x$call)
cat("\n")
printCoefmat(x$coefficients,P.values=TRUE,has.Pvalue=TRUE)
print(paste("Loglik=",round(x$loglik,2)))
class(x)<-"summary.GORMC"
}
|
context("isd_parse_line")
path <- system.file('extdata/024130-99999-2016.gz', package = "isdparser")
lns <- readLines(path, encoding = "latin1")
test_that("isd_parse_line", {
aa <- isd_parse_line(lns[1])
expect_is(aa, "tbl_df")
expect_is(aa, "data.frame")
expect_type(aa$total_chars, "character")
expect_type(aa$usaf_station, "character")
expect_type(aa$wban_station, "character")
expect_type(aa$date, "character")
expect_type(aa$time, "character")
expect_equal(NCOL(aa), 38)
expect_true(any(grepl("REM", names(aa))))
bb <- isd_parse_line(lns[1], as_data_frame = FALSE)
expect_is(bb, "list")
expect_type(aa$total_chars, "character")
expect_type(aa$usaf_station, "character")
expect_type(aa$wban_station, "character")
expect_type(aa$date, "character")
expect_type(aa$time, "character")
expect_equal(length(bb), 38)
expect_true(any(grepl("REM", names(bb))))
})
test_that("isd_parse_line - additional param works", {
aa <- isd_parse_line(lns[1], additional = FALSE)
expect_is(aa, "tbl_df")
expect_is(aa, "data.frame")
expect_equal(NCOL(aa), 31)
expect_false(any(grepl("REM", names(aa))))
bb <- isd_parse_line(lns[1], additional = FALSE, as_data_frame = FALSE)
expect_is(bb, "list")
expect_equal(length(bb), 31)
expect_false(any(grepl("REM", names(bb))))
})
test_that("isd_parse_line fails well", {
expect_error(isd_parse_line(),
"argument \"x\" is missing")
expect_error(isd_parse_line(5),
"'x' must be class character")
})
|
BMTmoment <- function(p3, p4, type.p.3.4 = "t w",
p1 = 0, p2 = 1, type.p.1.2 = "c-d",
order, type = "standardised", method = "quadrature"){
is.wholenumber <- function(x, tol = .Machine$double.eps^0.5) abs(x - round(x)) < tol
if (any(!is.wholenumber(order)) || any(order < 1))
stop("order should be a vector of integers greater or equal than 1")
type <- match.arg(type, c("raw","central","standardised"))
method <- match.arg(method, c("quadrature","exact"))
TYPE.P.3.4 <- c("t w", "a-s")
int.type.p.3.4 <- pmatch(type.p.3.4, TYPE.P.3.4)
if (is.na(int.type.p.3.4))
stop("invalid type of parametrization for parameters 3 and 4")
if (int.type.p.3.4 == -1)
stop("ambiguous type of parametrization for parameters 3 and 4")
TYPE.P.1.2 <- c("c-d", "l-s")
int.type.p.1.2 <- pmatch(type.p.1.2, TYPE.P.1.2)
if (is.na(int.type.p.1.2))
stop("invalid type of parametrization for parameters 1 and 2")
if (int.type.p.1.2 == -1)
stop("ambiguous type of parametrization for parameters 1 and 2")
len1 <- max(length(p3),length(p4))
p3 <- rep(p3, len=len1)
p4 <- rep(p4, len=len1)
len2 <- max(length(p1),length(p2))
p1 <- rep(p1, len=len2)
p2 <- rep(p2, len=len2)
if(int.type.p.1.2 == 1){
min <- replace(p1, p1 >= p2, NaN)
max <- replace(p2, p1 >= p2, NaN)
a <- max - min
b <- min
}
else{
mu <- p1
sigma <- replace(p2, p2 <= 0, NaN)
a <- sigma/BMTsd(p3, p4, type.p.3.4)
b <- mu - a * BMTmean(p3, p4, type.p.3.4)
}
if(method=="quadrature"){
if(int.type.p.3.4 == 1){
kappa_l <- replace(p3, p3 < 0 | p3 > 1, NaN)
kappa_r <- replace(p4, p4 < 0 | p4 > 1, NaN)
a_3 <- 3*kappa_l+3*kappa_r-2
a_2 <- (-6*kappa_l-3*kappa_r+3)
a_1 <- (3*kappa_l)
}
else{
zeta <- replace(p3, p3 < -1 | p3 > 1, NaN)
xi <- replace(p4, p4 < 0 | p4 > 1, NaN)
abs.zeta <- abs(zeta)
aux1 <- 0.5-xi
a_3 <- 6*(xi+abs.zeta*aux1)-2
a_2 <- -9*(xi+abs.zeta*aux1)+1.5*zeta+3
a_1 <- 3*(xi+abs.zeta*aux1)-1.5*zeta
}
funct1 <- function(order,a_3,a_2,a_1,a,b){
t <- 0.5*.GL.10.points + 0.5
x.t <- .x.t(t, a_3, a_2, a_1)
if(a!=1)
x.t <- a * x.t
if(b!=0)
x.t <- x.t + b
yFp.t <- 6*t*(1-t)
return(0.5*sum(.GL.10.weights*(x.t^order)*yFp.t))
}
if(type=="raw"){
m <- mapply(funct1,order,a_3,a_2,a_1,a,b)
}
else{
mean <- BMTmean(p3, p4, type.p.3.4)
m <- mapply(funct1,order,a_3,a_2,a_1,rep(1,len=len2),-mean)
if(type=="central"){
m <- a^order * m
}
else{
sigma <- BMTsd(p3, p4, type.p.3.4)
m <- m / ( sigma^order )
}
}
}
else{
if(int.type.p.3.4 == 1){
kappa_l <- replace(p3, p3 < 0 | p3 > 1, NaN)
kappa_r <- replace(p4, p4 < 0 | p4 > 1, NaN)
}
else{
p <- BMTchangepars(p3, p4, type.p.3.4)
kappa_l <- p$p3
kappa_r <- p$p4
}
funct2 <- function(kappa_l,kappa_r,order,a,b){
K <- partitions::compositions(order, 4, include.zero=TRUE)
term4 <- function(v,kappa_l,kappa_r,order,a,b){
term4 <- factorial(order) * 3^(v[2]+v[3]) *
ifelse(v[1]==0,1,(b)^v[1]) *
ifelse(v[2]==0,1,(a*kappa_l+b)^v[2]) *
ifelse(v[3]==0,1,(a*(1-kappa_r)+b)^v[3]) *
ifelse(v[4]==0,1,(a+b)^v[4]) /
factorial(v[1]) /
factorial(v[2]) /
factorial(v[3]) /
factorial(v[4]) /
choose((3*order+2),(1+v[2]+2*v[3]+3*v[4]))
return(term4)
}
return(2/(order+1) * sum(apply(K,2,term4,kappa_l,kappa_r,order,a,b)))
}
if(type=="raw"){
m <- mapply(funct2,kappa_l,kappa_r,order,a,b)
}
else{
mean <- BMTmean(kappa_l, kappa_r)
m <- mapply(funct2,kappa_l,kappa_r,order,rep(1,len=len2),-mean)
if(type=="central"){
m <- a^order * m
}
else{
sigma <- BMTsd(kappa_l, kappa_r)
m <- m / ( sigma^order )
}
}
}
return(m)
}
BMTmgf <- function(s, p3, p4, type.p.3.4 = "t w",
p1 = 0, p2 = 1, type.p.1.2 = "c-d"){
TYPE.P.3.4 <- c("t w", "a-s")
int.type.p.3.4 <- pmatch(type.p.3.4, TYPE.P.3.4)
if (is.na(int.type.p.3.4))
stop("invalid type of parametrization for parameters 3 and 4")
if (int.type.p.3.4 == -1)
stop("ambiguous type of parametrization for parameters 3 and 4")
TYPE.P.1.2 <- c("c-d", "l-s")
int.type.p.1.2 <- pmatch(type.p.1.2, TYPE.P.1.2)
if (is.na(int.type.p.1.2))
stop("invalid type of parametrization for parameters 1 and 2")
if (int.type.p.1.2 == -1)
stop("ambiguous type of parametrization for parameters 1 and 2")
len1 <- max(length(p3),length(p4))
p3 <- rep(p3, len=len1)
p4 <- rep(p4, len=len1)
len2 <- max(length(s),length(p1),length(p2))
s <- rep(s, len=len2)
p1 <- rep(p1, len=len2)
p2 <- rep(p2, len=len2)
if(int.type.p.3.4 == 1){
kappa_l <- replace(p3, p3 < 0 | p3 > 1, NaN)
kappa_r <- replace(p4, p4 < 0 | p4 > 1, NaN)
a_3 <- 3*kappa_l+3*kappa_r-2
a_2 <- (-6*kappa_l-3*kappa_r+3)
a_1 <- (3*kappa_l)
}
else{
zeta <- replace(p3, p3 < -1 | p3 > 1, NaN)
xi <- replace(p4, p4 < 0 | p4 > 1, NaN)
abs.zeta <- abs(zeta)
aux1 <- 0.5-xi
a_3 <- 6*(xi+abs.zeta*aux1)-2
a_2 <- -9*(xi+abs.zeta*aux1)+1.5*zeta+3
a_1 <- 3*(xi+abs.zeta*aux1)-1.5*zeta
}
funct3 <- function(s,a_3,a_2,a_1){
t <- 0.5*.GL.10.points + 0.5
x.t <- .x.t(t, a_3, a_2, a_1)
yFp.t <- 6*t*(1-t)
return(0.5*sum(.GL.10.weights*exp(s*x.t)*yFp.t))
}
if(int.type.p.1.2 == 1){
min <- replace(p1, p1 >= p2, NaN)
max <- replace(p2, p1 >= p2, NaN)
range <- max - min
y <- mapply(funct3,range*s,a_3,a_2,a_1)*exp(min*s)
}
else{
mu <- p1
sigma <- replace(p2, p2 <= 0, NaN)
range <- sigma/BMTsd(p3, p4, type.p.3.4)
y <- mapply(funct3,range*s,a_3,a_2,a_1)*exp((mu-range*BMTmean(p3, p4, type.p.3.4))*s)
}
return(y)
}
BMTchf <- function(s, p3, p4, type.p.3.4 = "t w",
p1 = 0, p2 = 1, type.p.1.2 = "c-d"){
y <- BMTmgf(1i*s, p3, p4, type.p.3.4, p1, p2, type.p.1.2)
return(y)
}
mBMT <- function(order, p3, p4, type.p.3.4, p1, p2, type.p.1.2){
fun <- switch(order,BMTmean,BMTsd,BMTskew,BMTkurt)
return(fun(p3, p4, type.p.3.4, p1, p2, type.p.1.2))
}
.GL.10.points <- c(-0.973906528517171720078,
-0.8650633666889845107321,
-0.6794095682990244062343,
-0.4333953941292471907993,
-0.148874338981631210885,
0.1488743389816312108848,
0.433395394129247190799,
0.6794095682990244062343,
0.8650633666889845107321,
0.973906528517171720078)
.GL.10.weights <- c(0.0666713443086881375936,
0.149451349150580593146,
0.2190863625159820439955,
0.2692667193099963550912,
0.295524224714752870174,
0.295524224714752870174,
0.2692667193099963550913,
0.219086362515982043995,
0.1494513491505805931458,
0.0666713443086881375936)
|
x <- function()
3
x<- function()
3
if (x)
3 else
4
if (x) {
3
} else
4
if (x)
3 else 4
while (x)
"x"
while (x)
"x"
|
context("test-twoxtwo")
test_that("summary computes measures", {
tmp_twoxtwo <-
titanic %>%
twoxtwo::twoxtwo(., exposure = Crew, outcome = Survived, retain = TRUE)
expect_equal(summary(tmp_twoxtwo)$odds_ratio, odds_ratio(titanic, exposure = Crew, outcome = Survived))
expect_equal(summary(tmp_twoxtwo)$risk_ratio, risk_ratio(titanic, exposure = Crew, outcome = Survived))
expect_equal(summary(tmp_twoxtwo)$risk_difference, risk_diff(titanic, exposure = Crew, outcome = Survived))
})
test_that("summary does not try to compute measures with retain FALSE", {
tmp_twoxtwo <-
titanic %>%
twoxtwo::twoxtwo(., exposure = Crew, outcome = Survived, retain = FALSE)
expect_null(summary(tmp_twoxtwo)$odds_ratio)
expect_null(summary(tmp_twoxtwo)$risk_ratio)
expect_null(summary(tmp_twoxtwo)$risk_difference)
})
test_that("levels argument can flip orientation", {
tmp_twoxtwo <-
titanic %>%
twoxtwo::twoxtwo(., exposure = Crew, outcome = Survived, levels = list(exposure = c(FALSE,TRUE), outcome = c("Yes","No")))
expect_equal(tmp_twoxtwo$cells$A, 499)
expect_equal(tmp_twoxtwo$cells$B, 817)
expect_equal(tmp_twoxtwo$cells$C, 212)
expect_equal(tmp_twoxtwo$cells$D, 673)
tmp_twoxtwo <-
titanic %>%
twoxtwo::twoxtwo(., exposure = Crew, outcome = Survived, levels = list(exposure = c(FALSE,TRUE), outcome = c("No","Yes")))
expect_equal(tmp_twoxtwo$cells$A, 817)
expect_equal(tmp_twoxtwo$cells$B, 499)
expect_equal(tmp_twoxtwo$cells$C, 673)
expect_equal(tmp_twoxtwo$cells$D, 212)
tmp_twoxtwo <-
titanic %>%
dplyr::mutate(Survived = ifelse(Survived == "Yes", 1, 0)) %>%
twoxtwo(., exposure = Crew, outcome = Survived, levels = list(exposure = c(FALSE,TRUE), outcome = c(1,0)))
expect_equal(tmp_twoxtwo$cells$A, 499)
expect_equal(tmp_twoxtwo$cells$B, 817)
expect_equal(tmp_twoxtwo$cells$C, 212)
expect_equal(tmp_twoxtwo$cells$D, 673)
})
test_that("levels argument errors with level that does not exist", {
expect_error({
tmp_twoxtwo <-
titanic %>%
twoxtwo(., exposure = Crew, outcome = Survived, levels = list(exposure = c(FALSE,TRUE), outcome = c("Survived","Died")))
})
})
test_that("cell count with 0 triggers warning", {
tmp <-
dplyr::tribble(~exposed, ~diseased,~n,
TRUE, TRUE, 7,
TRUE, FALSE,15,
FALSE, TRUE, 0,
FALSE, FALSE, 19) %>%
tidyr::uncount(n)
wrng_msg <- "\nAt least one of the cells in the two-by-two table is 0.\nEstimates may be uninformative."
expect_warning(odds_ratio(tmp, exposed, diseased), wrng_msg)
expect_warning(risk_ratio(tmp, exposed, diseased), wrng_msg)
expect_warning(risk_diff(tmp, exposed, diseased), wrng_msg)
expect_warning(twoxtwo(tmp, exposed, diseased), wrng_msg)
})
|
e <- expression
vague_dt_default <- list(
list(c = e(seconds < 10), s = "moments ago"),
list(c = e(seconds < 45), s = "less than a minute ago"),
list(c = e(seconds < 90), s = "about a minute ago"),
list(c = e(minutes < 45), s = e("%d minutes ago" %s% round(minutes))),
list(c = e(minutes < 90), s = "about an hour ago"),
list(c = e(hours < 24), s = e("%d hours ago" %s% round(hours))),
list(c = e(hours < 42), s = "a day ago"),
list(c = e(days < 30), s = e("%d days ago" %s% round(days))),
list(c = e(days < 45), s = "about a month ago"),
list(c = e(days < 335), s = e("%d months ago" %s% round(days / 30))),
list(c = e(years < 1.5), s = "about a year ago"),
list(c = TRUE, s = e("%d years ago" %s% round(years)))
)
vague_dt_short <- list(
list(c = e(seconds < 50), s = "<1 min"),
list(c = e(minutes < 50), s = e("%d min" %s% round(minutes))),
list(c = e(hours < 1.5), s = "1 hour"),
list(c = e(hours < 18), s = e("%d hours" %s% round(hours))),
list(c = e(hours < 42), s = "1 day"),
list(c = e(days < 30), s = e("%d day" %s% round(days))),
list(c = e(days < 45), s = "1 mon"),
list(c = e(days < 335), s = e("%d mon" %s% round(days / 30))),
list(c = e(years < 1.5), s = "1 year"),
list(c = TRUE, s = e("%d years" %s% round(years)))
)
vague_dt_terse <- list(
list(c = e(seconds < 50), s = e("%2ds" %s% round(seconds))),
list(c = e(minutes < 50), s = e("%2dm" %s% round(minutes))),
list(c = e(hours < 18), s = e("%2dh" %s% round(hours))),
list(c = e(days < 30), s = e("%2dd" %s% round(days))),
list(c = e(days < 335), s = e("%2dM" %s% round(days / 30))),
list(c = TRUE, s = e("%2dy" %s% round(years)))
)
vague_dt_formats <- list(
"default" = vague_dt_default,
"short" = vague_dt_short,
"terse" = vague_dt_terse
)
time_ago <- function(date, format = c("default", "short", "terse")) {
date <- as.POSIXct(date)
if (length(date) > 1) return(sapply(date, time_ago, format = format))
seconds <- difftime(Sys.time(), date, units = "secs")
vague_dt(seconds, format = format)
}
vague_dt <- function(dt, format = c("default", "short", "terse")) {
assert_diff_time(dt)
units(dt) <- "secs"
seconds <- as.vector(dt)
if (!length(seconds)) return(character())
pieces <- list(
minutes = seconds / 60,
hours = seconds / 60 / 60,
days = seconds / 60 / 60 / 24,
years = seconds / 60 / 60 / 24 / 365.25
)
format <- match.arg(format)
for (p in vague_dt_formats[[format]]) {
if (eval(p$c, pieces)) return(eval(p$s, pieces))
}
}
|
seqBIC <- function(seqdata, seqdata2=NULL, group=NULL, set=NULL,
s=100, seed=36963, squared="LRTonly", weighted=TRUE, opt=NULL,
BFopt=NULL, method, ...)
{
return(seqCompare(seqdata, seqdata2, group, set, s, seed,
stat="BIC", squared, weighted, opt, BFopt, method, ...))
}
seqLRT <- function(seqdata, seqdata2=NULL, group=NULL, set=NULL,
s=100, seed=36963, squared="LRTonly", weighted=TRUE, opt=NULL,
BFopt=NULL, method, ...)
{
return(seqCompare(seqdata, seqdata2, group, set, s, seed,
stat="LRT", squared, weighted, opt, BFopt, method, ...))
}
seqCompare <- function(seqdata, seqdata2=NULL, group=NULL, set=NULL,
s=100, seed=36963, stat="all", squared="LRTonly",
weighted=TRUE, opt=NULL, BFopt=NULL, method, ...)
{
gc(FALSE)
ptime.begin <- proc.time()
if (is.null(seqdata2) & is.null(group)){
stop("'seqdata2' and 'group' cannot both be NULL!")
}
if (!is.null(set) & is.null(group)){
stop("'set' not NULL while 'group' is NULL!")
}
if (!is.logical(weighted)) {
if (weighted != 'by.group')
stop("weighted must be logical or 'by.group'")
weight.by <- weighted
weighted <- TRUE
}
else {
weight.by <- 'global'
}
if (is.logical(squared))
LRTpow <- 1
else {
if (squared != "LRTonly") stop("squared must be logical or 'LRTonly'")
LRTpow <- 2
squared <- FALSE
}
is1.stslist <- inherits(seqdata,"stslist")
is2.stslist <- inherits(seqdata2,"stslist")
if (is.list(seqdata) & !is1.stslist) {
if (is2.stslist | length(seqdata) != length(seqdata2))
stop("When 'seqdata' is a list, seqdata2 must be a list of same length")
else {
l <- length(seqdata)
i <- 1
while (i <= l) {
if(!inherits(seqdata[[i]], "stslist") | !inherits(seqdata2[[i]], "stslist"))
stop("At least one element of the seqdata lists is not a state sequence object!")
i=i+1
}
}
}
else if (!is1.stslist) {
stop("If not a list, 'seqdata' must be a state sequence object (stslist) created with seqdef()")
}
else if (!is.null(seqdata2) & !is2.stslist) {
stop("If not a list, 'seqdata2' must be a state sequence object (stslist) created with seqdef()")
}
if (any(!stat %in% c("LRT","BIC","all")))
stop("Bad stat value, must be one of 'LRT', 'BIC', or 'all'")
if (any(stat=="all")) {
is.LRT <- is.BIC <- TRUE
}
else{
is.LRT <- "LRT" %in% stat
is.BIC <- "BIC" %in% stat
}
if (!is1.stslist){
seq1 <- seqdata
seq2 <- seqdata2
}
else if (is1.stslist & !is.null(seqdata2)) {
seq1 <- list(seqdata)
seq2 <- list(seqdata2)
}
else if (is1.stslist & is.null(seqdata2)) {
gvar <- as.vector(group)
if (!is.null(set)){
setvar <- as.vector(set)
inotna <- which(!is.na(gvar) & !is.na(setvar))
setvar <- setvar[inotna]
setvar <- factor(setvar)
lev.set <- levels(setvar)
}
else {
inotna <- which(!is.na(gvar))
}
ina <- nrow(seqdata) - length(inotna)
if(ina > 0)
message("[!!] ", ina, " sequences removed because of NA values of the grouping variable(s)\n")
gvar <- gvar[inotna]
gvar <- factor(gvar)
lev.g <- levels(gvar)
if (length(lev.g) > 2)
stop("Currently seqLRT supports only 2 groups!")
seqdata <- seqdata[inotna,]
seq1 <- list()
seq2 <- list()
if (is.null(set)){
seq1[[1]] <- seqdata[gvar==lev.g[1],]
seq2[[1]] <- seqdata[gvar==lev.g[2],]
}
else {
for (i in 1:length(lev.set)){
seq1[[i]] <- seqdata[gvar==lev.g[1] & setvar==lev.set[i],]
seq2[[i]] <- seqdata[gvar==lev.g[2] & setvar==lev.set[i],]
}
}
}
G = length(seq1)
n = matrix(NA,nrow=G,ncol=2)
seq.a = seq.b <- list(rep(NA,G))
for (i in 1:G) {
if (nrow(seq1[[i]])>=nrow(seq2[[i]])) {
n[i,1] <- nrow(seq1[[i]])
n[i,2] <- nrow(seq2[[i]])
seq.a[[i]] <- seq1[[i]]
seq.b[[i]] <- seq2[[i]]
}
else {
n[i,1] <- nrow(seq2[[i]])
n[i,2] <- nrow(seq1[[i]])
seq.a[[i]] <- seq2[[i]]
seq.b[[i]] <- seq1[[i]]
}
}
if (s>0) {
m.n = apply(n,1,max)
n.n = apply(n,1,min)
f.n1 <- floor(s/m.n)
ff.n1 <- sapply(f.n1, g<-function(x){max(1,x)})
r.n1 = ifelse(s<m.n, s - m.n%%s, s - f.n1*m.n)
k.n = floor((ff.n1*m.n+r.n1)/n.n)
r.n2 = (ff.n1*m.n+r.n1)-k.n*n.n
if(any(m.n<r.n1)) {
ii <- which(m.n<r.n1)
stop("rest r.n1 values greater than max m.n for i= ", ii, " s= ", s)
}
if(any(n.n<r.n2)) {
ii <- which(n.n<r.n2)
stop("rest r.n2 values greater than min n.n for i= ", ii, " s= ", s)
}
}
nc <- ifelse(is.LRT & is.BIC, 4, 2)
Results <- matrix(NA,G,nc)
oopt <- opt
multsple <- FALSE
for (i in 1:G) {
if (s==0) {
r1 <- 1:nrow(seq.a[[i]])
r2 <- 1:nrow(seq.b[[i]]) + nrow(seq.a[[i]])
suppressMessages(diss <- seqdist(rbind(seq.a[[i]],seq.b[[i]]), method=method, weighted=weighted, ...))
weights <- c(attr(seq.a[[i]],"weights"),attr(seq.b[[i]],"weights"))
suppressMessages(
Results[i,] <-
seq.comp(r1, r2, diss, weights, is.LRT=is.LRT, is.BIC=is.BIC,
squared=squared, weighted=weighted, weight.by=weight.by,
LRTpow=LRTpow, ...))
}
else {
set.seed(seed)
r.s1 <- c(permute(rep(1:m.n[i],ff.n1[i])),sample(1:m.n[i],r.n1[i],F))
r.s2 <- c(permute(rep(1:n.n[i],k.n[i])),sample(1:n.n[i],r.n2[i],F))
r.s1 = matrix(r.s1,ncol=s)
r.s2 = matrix(r.s2,ncol=s)
if (is.null(oopt))
opt <- ifelse(nrow(seq.a[[i]]) + nrow(seq.b[[i]]) > 2*s, 1, 2)
if (opt==2) {
suppressMessages(diss <- seqdist(rbind(seq.a[[i]],seq.b[[i]]), method=method, weighted=weighted, ...))
weights <- c(attr(seq.a[[i]],"weights"),attr(seq.b[[i]],"weights"))
}
multsple <- nrow(r.s1) > 1 || multsple
t<-matrix(NA,nrow=nrow(r.s1),ncol=nc)
for (j in 1:nrow(r.s1)) {
if (opt==2) {
r1 <- r.s1[j,]
r2 <- r.s2[j,] + nrow(seq.a[[i]])
}
else {
seqA<-seq.a[[i]][r.s1[j,],]
seqB<-seq.b[[i]][r.s2[j,],]
seqAB <- rbind(seqA, seqB)
wA <- attr(seqA,"weights")
wB <- attr(seqB,"weights")
weights <- c(wA,wB)
r1 <- 1:length(r.s1[j,])
r2 <- length(r.s1[j,]) + 1:length(r.s2[j,])
suppressMessages(diss <- seqdist(seqAB, method=method, weighted=weighted, ...))
}
suppressMessages(t[j,] <-
seq.comp(r1, r2, diss, weights, is.LRT=is.LRT, is.BIC=is.BIC,
squared=squared, weighted=weighted, weight.by=weight.by,
LRTpow=LRTpow, ...))
}
Results[i,]<-apply(t,2,mean)
}
}
colnames <- NULL
if (is.LRT) colnames <- c("LRT", "p-value")
if (is.BIC) {
if (is.null(BFopt) && multsple) {
BF2 <- exp(Results[,nc-1]/2)
Results <- cbind(Results, BF2)
colnames <- c(colnames, "BIC diff.", "Bayes Factor (Avg)", "Bayes Factor (From Avg BIC)")
}
else if (BFopt==1 && multsple) {
colnames <- c(colnames, "BIC diff.", "Bayes Factor (Avg)")
}
else if (BFopt==2 && multsple) {
BF2 <- exp(Results[,nc-1]/2)
Results[,nc] <- BF2
colnames <- c(colnames, "BIC diff.", "Bayes Factor (From Avg BIC)")
}
else {
colnames <- c(colnames, "BIC diff.", "Bayes Factor")
}
}
colnames(Results) <- colnames
if(!is.null(set)) rownames(Results) <- lev.set
ptime.end <- proc.time()
time.begin <- as.POSIXct(sum(ptime.begin[1:2]), origin = "1960-01-01")
time.end <- as.POSIXct(sum(ptime.end[1:2]), origin = "1960-01-01")
time.elapsed <- format(round(difftime(time.end, time.begin), 3))
message("elapsed time:", time.elapsed)
return(Results)
}
seq.comp <- function(r1, r2, diss, weights, is.LRT,is.BIC, squared, weighted, weight.by,
LRTpow,...)
{
n1 <- length(r1)
n2 <- length(r2)
n0 <- n1+n2
dist.S=dist.S1=dist.S2<-vector()
weighted <- weighted && !any(is.null(weights))
if (weighted) {
w1 <- weights[r1]
w2 <- weights[r2]
w <- c(w1,w2)
if (weight.by == 'by.group') {
w1 <- n1/sum(w1) * w1
w2 <- n2/sum(w2) * w2
w <- c(w1,w2)
}
nw <- sum(w)
nw1 <- sum(w1)
nw2 <- sum(w2)
}
else {
nw <- n0
nw1 <- n1
nw2 <- n2
w <- rep(1,nw)
w1 <- rep(1,nw1)
w2 <- rep(1,nw2)
}
dist.S <-disscenter(diss[c(r1,r2),c(r1,r2)], weights=w, squared=squared)
dist.S1<-disscenter(diss[r1,r1], weights=w1, squared=squared)
dist.S2<-disscenter(diss[r2,r2], weights=w2, squared=squared)
SS <- sum(w*dist.S^LRTpow)
SS1 <- sum(w1*dist.S1^LRTpow)
SS2 <- sum(w2*dist.S2^LRTpow)
res <- NULL
LRT <- n0*(log(SS/n0) - log((SS1+SS2)/n0))
if (is.LRT) {
p.LRT <- pchisq(LRT,1,lower.tail=FALSE)
res <- cbind(LRT, p.LRT)
}
if (is.BIC) {
BIC <- LRT - 1*log(n0)
BF <- exp(BIC/2)
res <- cbind(res, BIC, BF)
}
return(res)
}
|
context("Spatial modeling functions")
skip_on_cran()
set.seed(567)
dat_occ <- data.frame(cov1=rnorm(500), x=runif(500, 0,10), y=runif(500,0,10))
dat_p <- data.frame(x2=rnorm(500*5))
y <- matrix(NA, 500, 5)
z <- rep(NA, 500)
b <- c(0.4, -0.5, 0, 0.5)
idx <- 1
for (i in sample(1:500, 300, replace=FALSE)){
z[i] <- rbinom(1,1, plogis(b[1] + b[2]*dat_occ$cov1[i]))
for (j in 1:5){
y[i,j] <- z[i]*rbinom(1,1, plogis(b[3] + b[4]*dat_p$x2[idx]))
idx <- idx + 1
}
}
umf <- unmarkedFrameOccu(y=y, siteCovs=dat_occ, obsCovs=dat_p)
fit <- suppressMessages(suppressWarnings(stan_occu(~1~cov1+RSR(x,y,1),
data=umf[1:20,], chains=2, iter=200, refresh=0)))
fit2 <- suppressWarnings(stan_occu(~1~1, data=umf[1:10,], chains=2, iter=200, refresh=0))
test_that("spatial model output structure", {
expect_is(fit, "ubmsFitOccu")
expect_true(has_spatial(fit@submodels@submodels$state))
expect_equal(names(coef(fit))[3], "state[RSR [tau]]")
})
test_that("methods for spatial model work", {
pr <- suppressMessages(predict(fit, "state"))
expect_is(pr, "data.frame")
expect_equal(dim(pr), c(20,4))
nd <- data.frame(cov1=c(0,1))
expect_error(suppressMessages(predict(fit, "state", newdata=nd)))
pr <- suppressMessages(predict(fit, "state", newdata=nd, re.form=NA))
expect_equal(dim(pr), c(2,4))
ss <- suppressMessages(sim_state(fit, samples=1:2))
expect_equal(dim(ss), c(2,13))
expect_warning(ppred <- suppressMessages(posterior_predict(fit, "z", draws=2)))
expect_equal(dim(ppred), c(2, 13))
expect_warning(ppred <- suppressMessages(posterior_predict(fit, "y", draws=2)))
expect_equal(dim(ppred), c(2, 65))
fitted <- getMethod("fitted", "ubmsFit")
ft <- suppressMessages(fitted(fit, "state", draws=2))
expect_is(ft, "matrix")
expect_equal(dim(ft), c(2, 13))
})
test_that("RSR() generates spatial matrices", {
rsr_out <- RSR(dat_occ$x, dat_occ$y, threshold=1)
rsr_out2 <- RSR(dat_occ$x, dat_occ$y, threshold=5)
expect_is(rsr_out, "list")
expect_equal(names(rsr_out), c("A","Q","n_eig","coords"))
expect_equal(as.matrix(rsr_out$coords),
as.matrix(dat_occ[,c("x","y")]))
expect_equal(rsr_out$Q[1], -sum(rsr_out$Q[1,2:500]))
expect_true(sum(diag(rsr_out$Q)) < sum(diag(rsr_out2$Q)))
expect_equal(rsr_out$n_eig, nrow(dat_occ)*0.1)
rsr_out3 <- RSR(dat_occ$x, dat_occ$y, threshold=1, moran_cut=100)
expect_equal(rsr_out3$n_eig, 100)
expect_error(RSR(dat_occ$x, dat_occ$y, threshold=1, moran_cut=1000))
expect_equal(dim(rsr_out$A), c(nrow(dat_occ), nrow(dat_occ)))
expect_true(max(rsr_out$A)==1)
})
test_that("RSR() can generate a plot", {
pdf(NULL)
rsr_out <- RSR(dat_occ$x, dat_occ$y, threshold=1)
gg <- RSR(dat_occ$x, dat_occ$y, threshold=1, plot_site=1)
expect_is(gg, "gg")
dev.off()
})
test_that("RSR info can be extracted from submodel", {
sm <- fit@submodels@submodels$state
inf <- get_rsr_info(sm)
expect_is(inf, "list")
expect_equal(names(inf), c("A","Q","n_eig","coords"))
})
test_that("remove_RSR removes spatial component of formula", {
nf <- remove_RSR(fit@submodels@submodels$state@formula)
expect_equal(as.formula(~cov1), nf)
expect_equal(~1, remove_RSR(~RSR(x,y,1)))
expect_error(remove_RSR(~cov1+RSR(x,y,1)+(1|fake)))
expect_error(remove_RSR(~cov1+(1|fake)+RSR(x,y,1)))
})
test_that("has_spatial identifies spatial submodels", {
expect_true(has_spatial(fit@submodels@submodels$state))
expect_false(has_spatial(fit@submodels@submodels$det))
})
test_that("has_spatial works on lists of formulas", {
expect_true(has_spatial(list(det=~1,state=~RSR(x,y,1))))
expect_error(has_spatial(list(state=~1,det=~RSR(x,y,1))))
expect_error(has_spatial(list(state=~RSR(x,y,1),det=~RSR(x,y,1))))
expect_error(has_spatial(list(det=~1,state=~RSR(x,y,1)),support=FALSE))
})
test_that("construction of ubmsSubmodelSpatial objects", {
ex <- extract_missing_sites(umf)
sm <- ubmsSubmodelSpatial("Test","test", ex$umf@siteCovs, ~1+RSR(x,y,1), "plogis",
uniform(-5,5), normal(0,2.5), gamma(1,1),
ex$sites_augment, ex$data_aug)
expect_is(sm, "ubmsSubmodelSpatial")
})
test_that("extract_missing_sites identifies augmented sites", {
es <- extract_missing_sites(umf)
expect_is(es, "list")
expect_equivalent(es$sites_augment, apply(umf@y, 1, function(x) all(is.na(x))))
expect_equal(nrow(es$data_aug), sum(es$sites_augment))
expect_equal(nrow(siteCovs(es$umf)), numSites(umf) - sum(es$sites_augment))
expect_true(!any(apply(es$umf@y, 1, function(x) all(is.na(x)))))
umf2 <- umf
umf2@siteCovs$cov1[1] <- NA
expect_error(extract_missing_sites(umf2))
})
test_that("spatial_matrices builds correct RSR matrices", {
sm <- fit@submodels@submodels$state
mats <- suppressMessages(spatial_matrices(sm))
expect_is(mats, "list")
n_eig <- get_rsr_info(sm)$n_eig
expect_equal(dim(mats$Qalpha), c(n_eig, n_eig))
expect_equal(mats$Qalpha[1,1:2], c(0.08389,0.44826), tol=1e-4)
expect_equal(dim(mats$Kmat), c(20, n_eig))
expect_equal(mats$Kmat[1,1:2], c(-0.0197,0.0250), tol=1e-4)
expect_equal(mats$n_eigen, n_eig)
})
test_that("get_pars method for ubmsSubmodelSpatial adds tau param", {
sm <- fit@submodels@submodels$state
expect_equal(get_pars(sm), c("beta_state","b_state","tau"))
})
test_that("get_stan_data for ubmsSubmodelSpatial includes spatial data", {
sm <- fit@submodels@submodels$state
dat <- suppressMessages(get_stan_data(sm))
expect_is(dat, "list")
expect_equal(dat$n_random_state[1], 2)
expect_true(all(c("Kmat","Qalpha","n_eigen","n_aug_sites","X_aug","offset_aug") %in%
names(dat)))
expect_equal(nrow(dat$X_aug), 7)
expect_equal(length(dat$offset_aug), 7)
})
test_that("stanfit_names returns correct names for ubmsSubmodelSpatial", {
sm <- fit@submodels@submodels$state
sname <- stanfit_names(sm)
expect_equal(length(sname), 5)
expect_equal(sname[5], "tau")
})
test_that("plot_spatial returns ggplot", {
pdf(NULL)
gg1 <- suppressMessages(plot_spatial(fit, "state"))
expect_is(gg1, "gg")
gg2 <- suppressMessages(plot_spatial(fit, "eta"))
expect_is(gg2, "gg")
gg3 <- suppressMessages(plot_spatial(fit, "state", sites=TRUE))
expect_is(gg3, "gg")
dev.off()
expect_error(plot_spatial(umf))
expect_error(plot_spatial(fit2))
})
|
annual_range <- function(swmpr_in, ...) UseMethod('annual_range')
annual_range.swmpr <- function(swmpr_in
, param = NULL
, target_yr = NULL
, criteria = NULL
, free_y = FALSE
, log_trans = FALSE
, converted = FALSE
, criteria_lab = 'WQ Threshold'
, plot_title = FALSE
, plot = TRUE
, ...) {
dat <- swmpr_in
parm <- sym(param)
conv <- converted
seas <- sym('season')
res <- sym('result')
dt <- sym('date')
avg <- sym('mean')
mini <- sym('min')
maxi <- sym('max')
mini_avg <- sym('min_avg')
maxi_avg <- sym('max_avg')
parameters <- attr(dat, 'parameters')
station <- attr(dat, 'station')
data_type <- substr(station, 6, nchar(station))
if(data_type == 'nut')
warning('Nutrient data detected. Consider specifying seasons > 1 month. See `?assign_season` for details.')
x <- dat[ , c('datetimestamp', param)]
x <- x[complete.cases(x), ]
if(is.null(target_yr)) {
warning('No target year specified. Maximum year in data set will be used.')
target_yr <- max(lubridate::year(x$datetimestamp))
}
if(!is.null(target_yr)) {
if(!(target_yr %in% unique(year(x$datetimestamp)))) {
warning('User-specified target year is not present in the data set. target_yr argument will be set to max year in the data set')
target_yr <- max(year(x$datetimestamp))
}
}
if(!any(param %in% parameters))
stop('Param argument must name input column')
y_trans <- ifelse(log_trans, 'log10', 'identity')
y_label <- y_labeler(param = param, converted = conv)
if(attr(dat, 'qaqc_cols'))
warning('QAQC columns present. QAQC not performed before analysis.')
dat <- dat %>% filter(lubridate::year(.data$datetimestamp) == target_yr)
dat$season <- assign_season(dat$datetimestamp, abb = TRUE, ...)
dat$date <- lubridate::floor_date(dat$datetimestamp, unit = 'days')
dat <- dat %>% dplyr::select(.data$datetimestamp, date, .data$season, !!parm)
dat <- dat %>% dplyr::filter(!is.na(!! parm))
dat_day <- dat %>%
group_by(!! seas, !! dt) %>%
summarise(mean = mean(!! parm, na.rm = TRUE)
, min = min(!! parm, na.rm = TRUE)
, max = max(!! parm, na.rm = TRUE)
, .groups = "drop_last")
dat_month <- dat_day %>%
group_by(!! seas) %>%
summarise(mean = mean(!! avg, na.rm = TRUE)
, min_avg = mean(!! mini, na.rm = TRUE)
, max_avg = mean(!! maxi, na.rm = TRUE)
, min = min(!! mini, na.rm = TRUE)
, max = max(!! maxi, na.rm = TRUE)
, .groups = "drop_last")
dat_month <- tidyr::complete(dat_month, !! seas)
if(plot){
mn <- min(dat_month$min, na.rm = TRUE)
mn <- ifelse(mn < 0 , min(pretty(mn)), 0)
mn <- ifelse(log_trans, ifelse(substr(station, 6, nchar(station)) == 'nut', 0.001, 0.1), mn)
lab_ln <- ifelse(data_type == 'nut', paste('Monthly Sample \n(', target_yr, ')', sep = ''), paste('Daily Average \n(', target_yr, ')', sep = ''))
plt <-
ggplot(data = dat_month, aes_(x = seas, y = avg, group = 1)) +
geom_line(lwd = 1, color = 'steelblue3') +
geom_point(aes_(fill = lab_ln, shape = lab_ln), color = 'black', size = 2) +
labs(x = NULL, y = eval(y_label)) +
theme_bw() +
theme(legend.position = 'top', legend.direction = 'horizontal')
if(data_type != 'nut') {
lab_rng_avg <- paste('Avg Daily Range \n(', target_yr, ')', sep = '')
lab_rng_mx <- paste('Daily Range \n(', target_yr, ')', sep = '')
plt <-
plt +
geom_ribbon(aes_(x = seas, ymax = maxi_avg, ymin = mini_avg, fill = lab_rng_avg, alpha = lab_rng_avg)) +
geom_ribbon(aes_(x = seas, ymax = maxi, ymin = mini, group = 1, fill = lab_rng_mx, alpha = lab_rng_mx))
}
if(!log_trans) {
plt <- plt +
scale_y_continuous(labels = format_format(digits = 2, big.mark = ",", decimal.mark = ".", scientific = FALSE)
, breaks = pretty_breaks(n = 8))
if(!free_y){plt <- plt + expand_limits(y = mn)}
} else {
plt <- plt +
scale_y_continuous(trans = y_trans
, labels = format_format(digits = 2, big.mark = ",", decimal.mark = ".", scientific = FALSE)
, breaks = pretty_breaks(n = 8))
if(!free_y) {plt <- plt + expand_limits(y = mn)}
}
plt <-
plt +
scale_fill_manual('', values = c(rep('steelblue3', 3)), guide = "none") +
scale_shape_manual('', values = c(21)) +
scale_alpha_manual('', values = c(0.4, 0.15))
plt <-
plt +
guides(alpha = guide_legend(override.aes = list(fill = 'steelblue3'))
, shape = guide_legend(override.aes = list(fill = 'steelblue3')))
if(!is.null(criteria)) {
plt <- plt +
geom_hline(aes(yintercept = criteria, color = factor(criteria_lab)
, linetype = factor(criteria_lab))
, show.legend = TRUE) +
scale_color_manual('', values = c('red')) +
scale_linetype_manual('', values = c('longdash'))
}
if(plot_title) {
ttl <- title_labeler(nerr_site_id = station)
plt <-
plt +
ggtitle(ttl) +
theme(plot.title = element_text(hjust = 0.5))
}
plt <-
plt +
guides(alpha = guide_legend(override.aes = list(fill = 'steelblue3', linetype = 0), order = 2)
, shape = guide_legend(override.aes = list(fill = 'steelblue3', linetype = 0), order = 1)
, 'WQ Threshold' = guide_legend(order = 3))
plt <-
plt +
theme(strip.background = element_blank(),
panel.border = element_rect(color = 'black')) +
theme(axis.title.y = element_text(margin = unit(c(0, 8, 0, 0), 'pt'), angle = 90)) +
theme(text = element_text(size = 16))
plt <-
plt +
theme(legend.key.height = unit(0.1, 'cm')
, legend.key.width = unit(0.5, 'cm')) +
theme(legend.text = element_text(size = 10)
, legend.text.align = 0.5) +
theme(legend.spacing.x = unit(3, 'pt'))
return(plt)
} else {
tbl <- dat_month
}
}
|
spherical.flipping<-function(C,mesh,param1,param2){
C<-matrix(as.vector(C),ncol=3,nrow=1)
mesh<-mesh
P<-t(mesh$vb)[,-4]
numVer<-dim(P)[2]
numDim<-dim(P)[1]
P2<-P-(repmat(C,numDim,1))
normp<-rowSums(P2^2)
normp<-sqrt(normp)
param<-param1
R2<-matrix(repmat(max(normp)*(param2^param1),numDim, 1))
SF<-P2+2*repmat(R2-cbind(normp),1,3)*
P2/(repmat(cbind(normp),1,3))
return(SF)
}
|
slitFrame <- structure(function
(
rd,
lv = cClass(rd,'factor')
) {
rd11 <- rd[lv]
if(is.null(lv)){
rd1 <- Filter(is.factor, rd)
rd11 <- rd1[1:length(rd1)]
}
lrd <- split(rd, rd11, drop = TRUE)
spn <- data.frame(
do.call(rbind,
strsplit(names(lrd), '\\.')))
nmr <- apply(spn[rev(names(spn))], 1,
paste, collapse = '.')
options(warn=-1)
anm <- all(is.na(as.numeric(as.character(nmr))))
options(warn=0)
if(anm)
names(lrd) <- nmr
lrd <- lrd[order(names(lrd))]
return(lrd)
},
ex=function() {
data(Prings05, envir = environment())
data(PTclim05, envir = environment())
spl <- slitFrame(Prings05)
str(spl)
spl <- slitFrame(Prings05,'year')
str(spl)
spl <- slitFrame(PTclim05,'year')
str(spl)
})
|
expected <- eval(parse(text="2L"));
test(id=0, code={
argv <- eval(parse(text="list(FALSE)"));
.Internal(sink.number(argv[[1]]));
}, o=expected);
|
polychoric2 <- function( dat, maxiter=100, cor.smooth=TRUE, use_pbv=1,
conv=1e-10, rho_init=NULL, weights=NULL )
{
dat1 <- as.matrix(dat)
NV <- ncol(dat1)
N <- nrow(dat1)
if (is.null(rho_init)){
rho_init <- matrix(0, nrow=NV, ncol=NV)
}
if (is.null(weights)){
weights <- rep(1,N)
}
min_val <- apply(dat1, 2, min, na.rm=TRUE)
if (any(min_val>0)){
stop("Minimum value must always zero.\n")
}
maxK <- max(dat1, na.rm=TRUE )
res0 <- sirt_rcpp_polychoric2( dat=dat1, maxK=maxK, maxiter=maxiter,
use_pbv=use_pbv, conv=conv, rho_init=rho_init,
weights=weights)
iter <- res0$iter
rho <- res0$rho
Nobs <- res0$Nobs
maxcat <- res0$maxcat
thresh <- res0$thresh
tau <- thresh[,c(2:(maxK+1))]
tau[ tau==99 ] <- Inf
rownames(rho) <- colnames(rho) <- colnames(dat1)
if ( maxK > 1 ){
rownames(tau) <- rownames(rho)
colnames(tau) <- paste0("Cat", 1:maxK)
}
if ( maxK==1 ){
names(tau) <- rownames(rho)
}
rho[ Nobs==0 ] <- NA
diag(rho) <- 1
if ( sum( is.na(rho) > 0 ) ){
cor.smooth <- FALSE
}
if (cor.smooth){
rho <- sirt_import_psych_cor.smooth(x=rho)
}
res <- list(tau=tau, rho=rho, Nobs=Nobs, maxcat=maxcat,
cor.smooth=cor.smooth, iter=iter)
return(res)
}
|
context("Install from GitHub")
test_that("github_resolve_ref.github_release", {
skip_on_cran()
skip_if_offline()
skip_if_over_rate_limit()
expect_error(
github_resolve_ref.github_release(
NA,
list(username = "hadley", repo = "devtools"),
host = "api.github.com"
),
NA
)
})
test_that("github_resolve_ref.NULL", {
expect_equal(
github_resolve_ref(NULL, list()),
list(ref = "HEAD")
)
})
test_that("github_resolve_ref.github_pull", {
expect_error(
github_resolve_ref(
github_pull("1"),
list(userame = "gaborcsardi", repo = "pkgconfig")
),
"Cannot find GitHub pull request"
)
})
test_that("github_resolve_ref.github_release", {
skip_on_cran()
skip_if_offline()
skip_if_over_rate_limit()
expect_error(
github_resolve_ref(
github_release(),
list(userame = "gaborcsardi", repo = "xxxxxxxxxx")
),
"Cannot find repo"
)
})
test_that("github_release", {
skip_on_cran()
skip_if_offline()
skip_if_over_rate_limit()
Sys.unsetenv("R_TESTS")
lib <- tempfile()
on.exit(unlink(lib, recursive = TRUE), add = TRUE)
dir.create(lib)
install_github(
"gaborcsardi/falsy",
ref = github_release(),
lib = lib,
quiet = TRUE
)
expect_silent(packageDescription("falsy", lib.loc = lib))
expect_equal(
packageDescription("falsy", lib.loc = lib)$RemoteRepo,
"falsy")
})
test_that("install_github", {
skip_on_cran()
skip_if_offline()
skip_if_over_rate_limit()
Sys.unsetenv("R_TESTS")
lib <- tempfile()
on.exit(unlink(lib, recursive = TRUE), add = TRUE)
dir.create(lib)
install_github("cran/falsy", lib = lib, quiet = TRUE)
expect_silent(packageDescription("falsy", lib.loc = lib))
expect_equal(
packageDescription("falsy", lib.loc = lib)$RemoteRepo,
"falsy")
remote <- package2remote("falsy", lib = lib)
expect_s3_class(remote, "remote")
expect_s3_class(remote, "github_remote")
expect_equal(format(remote), "GitHub")
expect_equal(remote$host, "api.github.com")
expect_equal(remote$username, "cran")
expect_equal(remote$repo, "falsy")
expect_equal(remote$ref, "HEAD")
expect_equal(remote$subdir, NULL)
expect_true(!is.na(remote$sha) && nzchar(remote$sha))
})
test_that("error if not username, warning if given as argument", {
skip_on_cran()
skip_if_offline()
skip_if_over_rate_limit()
Sys.unsetenv("R_TESTS")
lib <- tempfile()
on.exit(unlink(lib, recursive = TRUE), add = TRUE)
dir.create(lib)
expect_error(
install_github("falsy", lib = lib, quiet = TRUE),
"Invalid git repo specification"
)
})
test_that("remote_download.github_remote messages", {
mockery::stub(remote_download.github_remote, "download", TRUE)
expect_message(
remote_download.github_remote(
list(
host = "api.github.com",
username = "cran",
repo = "falsy",
ref = "HEAD"
)
),
"Downloading GitHub repo"
)
})
test_that("remote_metadata.github_remote", {
expect_equal(
remote_metadata.github_remote(list(), sha = "foobar")$RemoteSha,
"foobar"
)
})
test_that("remote_sha.github_remote", {
skip_on_cran()
skip_if_offline()
skip_if_over_rate_limit()
expect_equal(
remote_sha.github_remote(
list(
username = "cran",
repo = "falsy",
ref = "1.0",
host = "api.github.com"
)
),
"0f39d9eb735bf16909831c0bb129063dda388375"
)
})
test_that("github_remote with deleted branch", {
skip_on_cran()
skip_if_offline()
skip_if_over_rate_limit()
skip_if(is_standalone() || !pkg_installed("curl"))
expect_equal(
remote_sha.github_remote(
list(
username = "tidyverse",
repo = "purrr",
ref = "rc-0.3.1",
host = "api.github.com"
)
),
NA_character_
)
})
test_that("github_pull", {
skip_on_cran()
skip_if_offline()
skip_if_over_rate_limit()
Sys.unsetenv("R_TESTS")
lib <- tempfile()
on.exit(unlink(lib, recursive = TRUE), add = TRUE)
dir.create(lib)
install_github(
"r-lib/desc",
ref = github_pull(64),
lib = lib,
quiet = TRUE
)
expect_silent(packageDescription("desc", lib.loc = lib))
expect_equal(
packageDescription("desc", lib.loc = lib)$RemoteRepo,
"desc")
})
test_that("remote_sha.github_remote errors if remote doesn't exist", {
skip_on_cran()
skip_if_offline()
skip_if_over_rate_limit()
expect_error(remote_sha(github_remote("arst/arst")))
})
test_that("remote_sha.github_remote returns expected value if remote does exist", {
skip_on_cran()
skip_if_offline()
skip_if_over_rate_limit()
expect_equal(remote_sha(github_remote("r-lib/[email protected]")), "ad9aac7b9a522354e1ff363a86f389e32cec181b")
})
|
vegindex <- function(
x,
index,
returnHCR = "auto",
L = 0.5,
weighted = TRUE,
...
)
{
vegindex_available <- function()
{
av <- c("NDVI","OSAVI","SAVI","MTVI","NDWI","PWI",
"MSI", "SRWI","GMI1","GMI2","MCARI","TVI",
"Vogelmann4","Boochs","Boochs2",
"CARI","CI","Carter","Carter2","Carter3","Carter4",
"Carter5","Carter6","Datt","Datt2","Datt3","Datt4",
"Datt5","Datt6","DD","DDn","D1","D2","EVI","EGFR","EGFN",
"GI","Gitelson","Gitelson2","Green NDVI","MCARI/OSAVI",
"MCARI2","MCARI2/OSAVI2","mNDVI","mND705","Maccioni",
"mREIP","MSAVI","mSR","mSR705","mSR2","MTCI","NDVI2",
"NDVI3","NPCI","OSAVI2","RDVI","REP_LE","REP_Li",
"SIPI","SPVI","SR","SR1","SR2","SR3","SR4","SR5","SR6",
"SR7", "SR8","SRPI","Sum_Dr1","Sum_Dr2","TCARI","TCARI2",
"TCARI/OSAVI","TCARI2/OSAVI2","Vogelmann","NDLI",
"Vogelmann2","Vogelmann3","PRI","CAI","NDNI",
"PSSR", "PSND", "CRI1", "CRI2", "CRI3",
"CRI4", "MPRI", "PRI*CI2", "CI2", "PSRI", "ClAInt",
"TGI", "PRI_norm","PARS","DPI","Datt7","Datt8",
"GDVI_2","GDVI_3","GDVI_4","LWVI1","LWVI2",
"DWSI1","DWSI2","DWSI3","DWSI4","DWSI5",
"SWIR FI", "SWIR LI", "SWIR SI", "SWIR VI"
)
return(sort(av))
}
return_index <- function(x)
{
if (eval.parent(convertSpatialGrid))
{
spec <- speclib(x, 1)
spec@rastermeta <- gridMeta
result <- HyperSpecRaster(spec)
}
return (x)
}
if (length(names(match.call()))==0)
{
return(vegindex_available())
}
if (x@spectra@fromRaster)
return(.blockwise(speclib_obj = "x", pos = 1))
x_back <- x
if (!is.speclib(x))
stop("x is not of class 'Speclib'")
if (returnHCR == "auto")
returnHCR <- .is.rastermeta(x)
convertSpatialGrid <- returnHCR
gridMeta <- x@rastermeta
if (returnHCR)
{
if (!.is.rastermeta(x))
stop("If returnHCR, x must contain meta information")
}
if (length(index)>1)
{
result <- as.data.frame(matrix(data = NA,
nrow = dim(x)[1],
ncol = length(index)))
for (i in 1:length(index))
{
temp <- vegindex(x, index[i], returnHCR=FALSE, ...)
if (!is.null(temp))
{
result[,i] <- temp
}
}
if (nspectra(x) > 1 & nspectra(x) < 10000)
{
names(result) <- index
row.names(result) <- idSpeclib(x)
}
if (returnHCR)
{
spec <- speclib(result, c(1:ncol(result)))
if (.is.rastermeta(x))
spec@rastermeta <- x@rastermeta
result <- HyperSpecRaster(spec)
}
return(result)
}
d_indexs <- c("Boochs","Boochs2","Datt3","D1","D2","EGFR","EGFN",
"Vogelmann3","Sum_Dr1","Sum_Dr2","REP_LE","DPI")
m <- c(rep.int(1,length(d_indexs)))
if (any(index==d_indexs))
x <- derivative.speclib(x, m=m[d_indexs==index], ...)
wlunit <- x@wlunit
y <- spectra(x)
x <- wavelength(x)
if (index=="NDVI")
{
return(return_index((get_reflectance(y,x,800,weighted)-get_reflectance(y,x,680,weighted)) /
(get_reflectance(y,x,800,weighted)+get_reflectance(y,x,680,weighted))))
}
if (index=="OSAVI")
{
return(return_index((1+0.16) * (get_reflectance(y,x,800,weighted)-get_reflectance(y,x,670,weighted))/
(get_reflectance(y,x,800,weighted)+get_reflectance(y,x,670,weighted)+0.16) ))
}
if (index=="RDVI")
{
return(return_index((get_reflectance(y,x,800,weighted)-get_reflectance(y,x,670,weighted))/
sqrt(get_reflectance(y,x,800,weighted)+get_reflectance(y,x,670,weighted))))
}
if (index=="SAVI")
{
return(return_index((1+L)*(get_reflectance(y,x,800,weighted)-get_reflectance(y,x,670,weighted))/
(get_reflectance(y,x,800,weighted)+get_reflectance(y,x,670,weighted)+L)))
}
if (index=="MTVI")
{
return(return_index(1.2*(1.2*(get_reflectance(y,x,800,weighted)-get_reflectance(y,x,550,weighted))-
2.5*(get_reflectance(y,x,670,weighted)-get_reflectance(y,x,550,weighted)))))
}
if (index=="NDWI")
{
return(return_index((get_reflectance(y,x,860,weighted)-get_reflectance(y,x,1240,weighted)) /
(get_reflectance(y,x,860,weighted)+get_reflectance(y,x,1240,weighted))))
}
if (index=="PWI")
{
return(return_index(get_reflectance(y,x,900,weighted)/get_reflectance(y,x,970,weighted)))
}
if (index=="MSI")
{
return(return_index(get_reflectance(y,x,1600,weighted)/ get_reflectance(y,x,817,weighted)))
}
if (index=="WBI")
{
return(return_index(get_reflectance(y,x,970,weighted)/ get_reflectance(y,x,900,weighted)))
}
if (index=="SRWI")
{
return(return_index(get_reflectance(y,x,850,weighted)/get_reflectance(y,x,1240,weighted)))
}
if (index=="GMI1")
{
return(return_index(get_reflectance(y,x,750,weighted)/get_reflectance(y,x,550,weighted)))
}
if (index=="GMI2")
{
return(return_index(get_reflectance(y,x,750,weighted)/get_reflectance(y,x,700,weighted)))
}
if (index=="MCARI")
{
return(return_index(((get_reflectance(y,x,700,weighted)-get_reflectance(y,x,670,weighted))-
0.2*(get_reflectance(y,x,700,weighted)-get_reflectance(y,x,550,weighted)))*
(get_reflectance(y,x,700,weighted)/get_reflectance(y,x,670,weighted))))
}
if (index=="TVI")
{
return(return_index(0.5*(120*(get_reflectance(y,x,750,weighted)-get_reflectance(y,x,550,weighted))-
200*(get_reflectance(y,x,670,weighted)-get_reflectance(y,x,550,weighted)))))
}
if (index=="Vogelmann4")
{
return(return_index((get_reflectance(y,x,734,weighted)-get_reflectance(y,x,747,weighted))/
(get_reflectance(y,x,715,weighted)+get_reflectance(y,x,720,weighted))))
}
if (index=="Boochs")
{
return(return_index(get_reflectance(y,x,703,weighted)))
}
if (index=="Boochs2")
{
return(return_index(get_reflectance(y,x,720,weighted)))
}
if (index=="CARI")
{
a = (get_reflectance(y,x,700,weighted)-get_reflectance(y,x,550,weighted)) / 150
b = get_reflectance(y,x,550,weighted)-(a*550)
return(return_index(get_reflectance(y,x,700,weighted)*abs(a*670+get_reflectance(y,x,670,weighted)+b)/
get_reflectance(y,x,670,weighted)*(a^2+1)^0.5))
}
if (index=="CI")
{
return(return_index(get_reflectance(y,x,675,weighted)*get_reflectance(y,x,690,weighted)/
get_reflectance(y,x,683,weighted)^2))
}
if (index=="Carter")
{
return(return_index(((get_reflectance(y,x,695,weighted))/(get_reflectance(y,x,420,weighted)))))
}
if (index=="Carter2")
{
return(return_index(((get_reflectance(y,x,695,weighted))/(get_reflectance(y,x,760,weighted)))))
}
if (index=="Carter3")
{
return(return_index(((get_reflectance(y,x,605,weighted))/(get_reflectance(y,x,760,weighted)))))
}
if (index=="Carter4")
{
return(return_index(((get_reflectance(y,x,710,weighted))/(get_reflectance(y,x,760,weighted)))))
}
if (index=="Carter5")
{
return(return_index(((get_reflectance(y,x,695,weighted))/(get_reflectance(y,x,670,weighted)))))
}
if (index=="Carter6")
{
return(return_index((get_reflectance(y,x,550,weighted))))
}
if (index=="Datt")
{
return(return_index(((get_reflectance(y,x,850,weighted)-get_reflectance(y,x,710,weighted))/
(get_reflectance(y,x,850,weighted)-get_reflectance(y,x,680,weighted)))))
}
if (index=="Datt2")
{
return(return_index(((get_reflectance(y,x,850,weighted))/(get_reflectance(y,x,710,weighted)))))
}
if (index=="Datt3")
{
return(return_index(((get_reflectance(y,x,754,weighted))/(get_reflectance(y,x,704,weighted)))))
}
if (index=="Datt4")
{
return(return_index(((get_reflectance(y,x,672,weighted))/
(get_reflectance(y,x,550,weighted)*get_reflectance(y,x,708,weighted)))))
}
if (index=="Datt5")
{
return(return_index(((get_reflectance(y,x,672,weighted))/(get_reflectance(y,x,550,weighted)))))
}
if (index=="Datt6")
{
return(return_index(((get_reflectance(y,x,860,weighted))/
(get_reflectance(y,x,550,weighted)*get_reflectance(y,x,708,weighted)))))
}
if (index=="Datt7")
{
return(return_index((get_reflectance(y,x,860,weighted) - get_reflectance(y,x,2218,weighted))/
(get_reflectance(y,x,860,weighted) - get_reflectance(y,x,1928,weighted))))
}
if (index=="Datt8")
{
return(return_index((get_reflectance(y,x,860,weighted) - get_reflectance(y,x,1788,weighted))/
(get_reflectance(y,x,860,weighted) - get_reflectance(y,x,1928,weighted))))
}
if (index=="DD")
{
return(return_index((get_reflectance(y,x,749,weighted)-get_reflectance(y,x,720,weighted))-
(get_reflectance(y,x,701,weighted)-get_reflectance(y,x,672,weighted))))
}
if (index=="DDn")
{
return(return_index(2*(get_reflectance(y,x,710,weighted)-get_reflectance(y,x,660,weighted)-
get_reflectance(y,x,760,weighted))))
}
if (index=="D1")
{
return(return_index(get_reflectance(y,x,730,weighted)/get_reflectance(y,x,706,weighted)))
}
if (index=="D2")
{
return(return_index(get_reflectance(y,x,705,weighted)/get_reflectance(y,x,722,weighted)))
}
if (index=="DPI")
{
return(return_index(get_reflectance(y,x,688,weighted)*get_reflectance(y,x,710,weighted)/get_reflectance(y,x,697,weighted)^2))
}
if (index=="EVI")
{
return(return_index(2.5*((get_reflectance(y,x,800,weighted)-get_reflectance(y,x,670,weighted))/
(get_reflectance(y,x,800,weighted)-(6*get_reflectance(y,x,670,weighted))-
(7.5*get_reflectance(y,x,475,weighted))+1))))
}
if (index=="EGFR")
{
if (x[1] > 500) return(NULL)
if (x[length(x)] < 750) return(NULL)
dG <- apply(y[,x>=500 & x<=550],1,max)
dRE <- apply(y[,x>=650 & x<=750],1,max)
return(return_index(dRE/dG))
}
if (index=="EGFN")
{
if (x[1] > 500) return(NULL)
if (x[length(x)] < 750) return(NULL)
dG <- apply(y[,x>=500 & x<=550],1,max)
dRE <- apply(y[,x>=650 & x<=750],1,max)
return(return_index((dRE-dG)/(dRE+dG)))
}
if (index=="GI")
{
return(return_index(get_reflectance(y,x,554,weighted)/get_reflectance(y,x,677,weighted)))
}
if (index=="Gitelson")
{
return(return_index(1/get_reflectance(y,x,700,weighted)))
}
if (index=="Gitelson2")
{
return(return_index((get_reflectance(y,x,750,weighted)-get_reflectance(y,x,800,weighted)/
get_reflectance(y,x,695,weighted)-get_reflectance(y,x,740,weighted))-1))
}
if (index=="Green NDVI")
{
return(return_index((get_reflectance(y,x,800,weighted)-get_reflectance(y,x,550,weighted))/
(get_reflectance(y,x,800,weighted)+get_reflectance(y,x,550,weighted))))
}
if (index=="MCARI/OSAVI")
{
x <- speclib(spectra=y,wavelength=x)
return(return_index(vegindex(x,"MCARI",weighted=weighted)/vegindex(x,"OSAVI",weighted=weighted)))
}
if (index=="MCARI2")
{
return(return_index(((get_reflectance(y,x,750,weighted)-get_reflectance(y,x,705,weighted))-
0.2*(get_reflectance(y,x,750,weighted)-get_reflectance(y,x,550,weighted)))*
(get_reflectance(y,x,750,weighted)/get_reflectance(y,x,705,weighted))))
}
if (index=="MCARI2/OSAVI2")
{
x <- speclib(spectra=y,wavelength=x)
return(return_index(vegindex(x,"MCARI2",weighted=weighted)/vegindex(x,"OSAVI2",weighted=weighted)))
}
if (index=="mNDVI")
{
return(return_index((get_reflectance(y,x,800,weighted)-get_reflectance(y,x,680,weighted))/
(get_reflectance(y,x,800,weighted)+get_reflectance(y,x,680,weighted)-
2*get_reflectance(y,x,445,weighted))))
}
if (index=="mND705")
{
return(return_index((get_reflectance(y,x,750,weighted)-get_reflectance(y,x,705,weighted))/
(get_reflectance(y,x,750,weighted)+get_reflectance(y,x,705,weighted)-
2*get_reflectance(y,x,445,weighted))))
}
if (index=="Maccioni")
{
return(return_index((get_reflectance(y,x,780,weighted)-get_reflectance(y,x,710,weighted))/
(get_reflectance(y,x,780,weighted)-get_reflectance(y,x,680,weighted))))
}
if (index=="mREIP")
{
mREIP_fun <- function(x, wl)
{
Rs <- x[length(x)-1]
R0 <- x[length(x)]
x <- x[1:(length(x)-2)]
Bl <- -1*log(sqrt((Rs-x)/(Rs-R0)))
if (all(is.finite(Bl)))
{
coef <- summary(lm(Bl~wl))$coefficients
c(-1*coef[1,1]/coef[2,1])
} else {
c(NA, NA)
}
}
if (x[1] > 670) return(rep.int(NA,nrow(y)))
if (x[length(x)] < 795) return(rep.int(NA,nrow(y)))
if (nrow(y)==1)
{
R0 <- matrix(data=apply(matrix(y[,x>=670&x<=685], nrow = 1),1,mean),ncol=1)
Rs <- matrix(data=apply(matrix(y[,x>=780&x<=795], nrow = 1),1,mean),ncol=1)
Rl <- matrix(y[,x>=670&x<=685], nrow = 1)
} else {
R0 <- matrix(data=apply(y[,x>=670&x<=685],1,mean),ncol=1)
Rs <- matrix(data=apply(y[,x>=780&x<=795],1,mean),ncol=1)
Rl <- as.matrix(y[,x>=670&x<=685])
}
dat <- cbind(Rl,Rs,R0)
Bl <- apply(dat,1,mREIP_fun,x[x>=670&x<=685])
return(return_index(as.vector(t(Bl))))
}
if (index=="MSAVI")
{
return(return_index(0.5 * (2*get_reflectance(y,x,800,weighted)+1-((2*get_reflectance(y,x,800,weighted)+1)^2-
8*(get_reflectance(y,x,800,weighted)-get_reflectance(y,x,670,weighted)))^0.5)))
}
if (index=="mSR")
{
return(return_index((get_reflectance(y,x,800,weighted)-get_reflectance(y,x,445,weighted))/
(get_reflectance(y,x,680,weighted)-get_reflectance(y,x,445,weighted))))
}
if (index=="mSR705")
{
return(return_index((get_reflectance(y,x,750,weighted)-get_reflectance(y,x,445,weighted))/
(get_reflectance(y,x,705,weighted)-get_reflectance(y,x,445,weighted))))
}
if (index=="mSR2")
{
return(return_index((get_reflectance(y,x,750,weighted)/get_reflectance(y,x,705,weighted))-
1/(get_reflectance(y,x,750,weighted)/get_reflectance(y,x,705,weighted)+1)^0.5))
}
if (index=="MTCI")
{
return(return_index((get_reflectance(y,x,754,weighted)-get_reflectance(y,x,709,weighted))/
(get_reflectance(y,x,709,weighted)-get_reflectance(y,x,681,weighted))))
}
if (index=="NDVI2")
{
return(return_index((get_reflectance(y,x,750,weighted)-get_reflectance(y,x,705,weighted))/
(get_reflectance(y,x,750,weighted)+get_reflectance(y,x,705,weighted))))
}
if (index=="NDVI3")
{
return(return_index((get_reflectance(y,x,682,weighted)-get_reflectance(y,x,553,weighted))/
(get_reflectance(y,x,682,weighted)+get_reflectance(y,x,553,weighted))))
}
if (index=="NPCI")
{
return(return_index((get_reflectance(y,x,680,weighted)-get_reflectance(y,x,430,weighted))/
(get_reflectance(y,x,680,weighted)+get_reflectance(y,x,430,weighted))))
}
if (index=="OSAVI2")
{
return(return_index((1+0.16) * (get_reflectance(y,x,750,weighted)-get_reflectance(y,x,705,weighted))/
(get_reflectance(y,x,750,weighted)+get_reflectance(y,x,705,weighted)+0.16) ))
}
if (index=="RDVI")
{
return(return_index((get_reflectance(y,x,800,weighted)-get_reflectance(y,x,670,weighted))/
(get_reflectance(y,x,800,weighted)+get_reflectance(y,x,670,weighted))^0.5))
}
if (index=="REP_LE")
{
if (x[1] > 680) return(NULL)
if (x[length(x)] < 760) return(NULL)
mFR <- (get_reflectance(y,x,680,weighted)-get_reflectance(y,x,700,weighted))/(680-700)
tFR <- get_reflectance(y,x,680,weighted) - mFR * 680
mNIR <- (get_reflectance(y,x,725,weighted)-get_reflectance(y,x,760,weighted))/(725-760)
tNIR <- get_reflectance(y,x,725,weighted) - mNIR * 725
return(return_index((tNIR-tFR)/(mFR-mNIR)))
}
if (index=="REP_Li")
{
Rre <- (get_reflectance(y,x,670,weighted)+get_reflectance(y,x,780,weighted))/2
return(return_index(700 + 40*(((Rre - get_reflectance(y,x,700,weighted))/
(get_reflectance(y,x,740,weighted)-get_reflectance(y,x,700,weighted))))))
}
if (index=="SIPI")
{
return(return_index((get_reflectance(y,x,800,weighted)-get_reflectance(y,x,445,weighted))/
(get_reflectance(y,x,800,weighted)-get_reflectance(y,x,680,weighted))))
}
if (index=="SPVI")
{
return(return_index(0.4*3.7*(get_reflectance(y,x,800,weighted)-get_reflectance(y,x,670,weighted))-
1.2*((get_reflectance(y,x,530,weighted)-get_reflectance(y,x,670,weighted))^2)^0.5))
}
if (index=="SR")
{
return(return_index(get_reflectance(y,x,800,weighted)/get_reflectance(y,x,680,weighted)))
}
if (index=="SR1")
{
return(return_index(get_reflectance(y,x,750,weighted)/get_reflectance(y,x,700,weighted)))
}
if (index=="SR2")
{
return(return_index(get_reflectance(y,x,752,weighted)/get_reflectance(y,x,690,weighted)))
}
if (index=="SR3")
{
return(return_index(get_reflectance(y,x,750,weighted)/get_reflectance(y,x,550,weighted)))
}
if (index=="SR4")
{
return(return_index(get_reflectance(y,x,700,weighted)/get_reflectance(y,x,670,weighted)))
}
if (index=="SR5")
{
return(return_index(get_reflectance(y,x,675,weighted)/get_reflectance(y,x,700,weighted)))
}
if (index=="SR6")
{
return(return_index(get_reflectance(y,x,750,weighted)/get_reflectance(y,x,710,weighted)))
}
if (index=="SR7")
{
return(return_index(get_reflectance(y,x,440,weighted)/get_reflectance(y,x,690,weighted)))
}
if (index=="SR8")
{
return(return_index(get_reflectance(y,x,515,weighted)/get_reflectance(y,x,550,weighted)))
}
if (index=="SRPI")
{
return(return_index(get_reflectance(y,x,430,weighted)/get_reflectance(y,x,680,weighted)))
}
if (index=="Sum_Dr1")
{
if (x[1] > 626) return(NULL)
if (x[length(x)] < 795) return(NULL)
y <- abs(y[,x>=626&x<=795])
return(return_index(as.vector(rowSums(y))))
}
if (index=="Sum_Dr2")
{
if (x[1] > 680) return(NULL)
if (x[length(x)] < 780) return(NULL)
y <- y[,x>=680&x<=780]
return(return_index(as.vector(rowSums(y))))
}
if (index=="TCARI")
{
return(return_index(3*((get_reflectance(y,x,700,weighted)-get_reflectance(y,x,670,weighted))-
0.2*(get_reflectance(y,x,700,weighted)-get_reflectance(y,x,550,weighted))*
(get_reflectance(y,x,700,weighted)/get_reflectance(y,x,670,weighted)))))
}
if (index=="TCARI2")
{
return(return_index(3*((get_reflectance(y,x,750,weighted)-get_reflectance(y,x,705,weighted))-
0.2*(get_reflectance(y,x,750,weighted)-get_reflectance(y,x,550,weighted))*
(get_reflectance(y,x,750,weighted)/get_reflectance(y,x,705,weighted)))))
}
if (index=="TCARI/OSAVI")
{
x <- speclib(spectra=y,wavelength=x)
return(return_index(vegindex(x,"TCARI",weighted=weighted)/vegindex(x,"OSAVI",weighted=weighted)))
}
if (index=="TCARI2/OSAVI2")
{
x <- speclib(spectra=y,wavelength=x)
return(return_index(vegindex(x,"TCARI2",weighted=weighted)/vegindex(x,"OSAVI2",weighted=weighted)))
}
if (index=="TVI")
{
return(return_index(0.5*(120*(get_reflectance(y,x,750,weighted)-get_reflectance(y,x,550,weighted))-
200*(get_reflectance(y,x,670,weighted)-get_reflectance(y,x,550,weighted)))))
}
if (index=="Vogelmann")
{
return(return_index(get_reflectance(y,x,740,weighted)/get_reflectance(y,x,720,weighted)))
}
if (index=="Vogelmann2")
{
return(return_index((get_reflectance(y,x,734,weighted)-get_reflectance(y,x,747,weighted))/
(get_reflectance(y,x,715,weighted)+get_reflectance(y,x,726,weighted))))
}
if (index=="Vogelmann3")
{
return(return_index(get_reflectance(y,x,715,weighted)/get_reflectance(y,x,705,weighted)))
}
if (index=="PRI")
{
return(return_index((get_reflectance(y,x,531,weighted)-get_reflectance(y,x,570,weighted))/
(get_reflectance(y,x,531,weighted)+get_reflectance(y,x,570,weighted))))
}
if (index=="PRI_norm")
{
xx <- speclib(spectra=y,wavelength=x)
return(return_index(vegindex(xx,"PRI",weighted=weighted)*(-1)/(vegindex(xx,"RDVI",weighted=weighted)*
get_reflectance(y,x,700,weighted)/get_reflectance(y,x,670,weighted))))
}
if (index=="TCARI")
{
return(return_index(3*((get_reflectance(y,x,700,weighted)-get_reflectance(y,x,670,weighted))-
0.2*(get_reflectance(y,x,700,weighted)-get_reflectance(y,x,550,weighted))*
(get_reflectance(y,x,700,weighted)/get_reflectance(y,x,670,weighted)))))
}
if (index=="CAI")
{
return(return_index(0.5*(get_reflectance(y,x,2000,weighted)+get_reflectance(y,x,2200,weighted))-
get_reflectance(y,x,2100,weighted)))
}
if (index=="NDNI")
{
return(return_index((log(1/get_reflectance(y,x,1510,weighted)) - log(1/get_reflectance(y,x,1680,weighted)))/
(log(1/get_reflectance(y,x,1510,weighted)) + log(1/get_reflectance(y,x,1680,weighted)))))
}
if (index=="NDLI")
{
return(return_index((log(1/get_reflectance(y,x,1754,weighted)) - log(1/get_reflectance(y,x,1680,weighted)))/
(log(1/get_reflectance(y,x,1754,weighted)) + log(1/get_reflectance(y,x,1680,weighted)))))
}
if (index=="PARS")
{
return(return_index(get_reflectance(y,x,746,weighted)/get_reflectance(y,x,513,weighted)))
}
if (index=="PSSR")
{
return(return_index(get_reflectance(y,x,800,weighted)/get_reflectance(y,x,635,weighted)))
}
if (index=="PSND")
{
return(return_index((get_reflectance(y,x,800,weighted)-get_reflectance(y,x,470,weighted))/
(get_reflectance(y,x,800,weighted)+get_reflectance(y,x,470,weighted))))
}
if (index=="CRI1")
{
return(return_index(1/get_reflectance(y,x,515,weighted)-1/get_reflectance(y,x,550,weighted)))
}
if (index=="CRI2")
{
return(return_index(1/get_reflectance(y,x,515,weighted)-1/get_reflectance(y,x,700,weighted)))
}
if (index=="CRI3")
{
return(return_index(1/get_reflectance(y,x,515,weighted)-1/get_reflectance(y,x,550,weighted)*
get_reflectance(y,x,770,weighted)))
}
if (index=="CRI4")
{
return(return_index(1/get_reflectance(y,x,515,weighted)-1/get_reflectance(y,x,700,weighted)*
get_reflectance(y,x,770,weighted)))
}
if (index=="MPRI")
{
return(return_index((get_reflectance(y,x,515,weighted)-get_reflectance(y,x,530,weighted)/
(get_reflectance(y,x,515,weighted)+get_reflectance(y,x,530,weighted)))))
}
if (index=="PRI*CI2")
{
x <- speclib(spectra=y,wavelength=x)
return(return_index(vegindex(x,"PRI",weighted=weighted)*vegindex(x,"CI2",weighted=weighted)))
}
if (index=="CI2")
{
return(return_index(get_reflectance(y,x,760,weighted)/get_reflectance(y,x,700,weighted)-1))
}
if (index=="PSRI")
{
return(return_index((get_reflectance(y,x,678,weighted)-get_reflectance(y,x,500,weighted))/
get_reflectance(y,x,750,weighted)))
}
if (index=="ClAInt")
{
if (x[1] > 600) return(NULL)
if (x[length(x)] < 735) return(NULL)
y <- abs(y[,x>=600&x<=735])
return(return_index(as.vector(rowSums(y))))
}
if (index=="TGI")
{
return(return_index(-0.5*(190*(get_reflectance(y,x,670,weighted)-get_reflectance(y,x,550,weighted)) -
120*(get_reflectance(y,x,670,weighted)-get_reflectance(y,x,480,weighted)))))
}
if (substr(index, 1, 4) == "GDVI")
{
pow <- strsplit(index, "_")
if (length(pow[[1]]) < 2)
{
pow <- 2
warning("Exponent of GDVI missing. Use 2 for exponent")
}
pow <- try(as.numeric(pow[[1]][2]), silent = TRUE)
if (inherits(pow, "try-error"))
{
pow <- 2
warning("Exponent of GDVI not numeric. Use 2 for exponent")
}
return(return_index((get_reflectance(y,x,800,weighted)^pow-get_reflectance(y,x,680,weighted)^pow) /
(get_reflectance(y,x,800,weighted)^pow+get_reflectance(y,x,680,weighted)^pow)))
}
if (index=="LWVI1")
{
return(return_index((get_reflectance(y,x,1094,weighted)-get_reflectance(y,x,983,weighted)) /
(get_reflectance(y,x,1094,weighted)+get_reflectance(y,x,983,weighted))))
}
if (index=="LWVI2")
{
return(return_index((get_reflectance(y,x,1094,weighted)-get_reflectance(y,x,1205,weighted)) /
(get_reflectance(y,x,1094,weighted)+get_reflectance(y,x,1205,weighted))))
}
if (index=="DWSI1")
{
return(return_index(get_reflectance(y,x,800,weighted)/get_reflectance(y,x,1660,weighted)))
}
if (index=="DWSI2")
{
return(return_index(get_reflectance(y,x,1660,weighted)/get_reflectance(y,x,550,weighted)))
}
if (index=="DWSI3")
{
return(return_index(get_reflectance(y,x,1660,weighted)/get_reflectance(y,x,680,weighted)))
}
if (index=="DWSI4")
{
return(return_index(get_reflectance(y,x,550,weighted)/get_reflectance(y,x,680,weighted)))
}
if (index=="DWSI5")
{
return(return_index((get_reflectance(y,x,800,weighted)+get_reflectance(y,x,550,weighted)) /
(get_reflectance(y,x,1660,weighted)+get_reflectance(y,x,680,weighted))))
}
if (index=="SWIR FI")
{
return(return_index((get_reflectance(y,x,2133,weighted)^2) /
(get_reflectance(y,x,2225,weighted)*get_reflectance(y,x,2209,weighted)^3)))
}
if (index=="SWIR LI")
{
return(return_index(3.87* (get_reflectance(y,x,2210,weighted)-get_reflectance(y,x,2090,weighted)) -
27.51*(get_reflectance(y,x,2280,weighted)-get_reflectance(y,x,2090,weighted)) - 0.2))
}
if (index=="SWIR SI")
{
return(return_index(-41.59* (get_reflectance(y,x,2210,weighted)-get_reflectance(y,x,2090,weighted)) +
1.24*(get_reflectance(y,x,2280,weighted)-get_reflectance(y,x,2090,weighted)) + 0.64))
}
if (index=="SWIR VI")
{
return(return_index(37.72* (get_reflectance(y,x,2210,weighted)-get_reflectance(y,x,2090,weighted)) +
26.27*(get_reflectance(y,x,2280,weighted)-get_reflectance(y,x,2090,weighted)) + 0.57))
}
x <- x * .ConvWlBwd(wlunit)
index <- gsub("R", "", gsub("(R[.0-9]+)", "get_reflectance(y,x,\\1,weighted)", index,
perl = TRUE)
)
index <- gsub("D", "", gsub("(D[.0-9]+)", "get_reflectance(spectra(derivative.speclib(x_back, m=1, ...)),x,\\1,weighted)", index,
perl = TRUE)
)
index <- gsub("S", "", gsub("(S[.0-9]+)", "get_reflectance(spectra(derivative.speclib(x_back, m=2, ...)),x,\\1,weighted)", index,
perl = TRUE)
)
index_val <- try(return_index(eval(parse(text = index))), silent = TRUE)
if (inherits(index_val, "try-error"))
{
cat("Error in self-defined index string or unimplemented index selected\n")
cat("Index string evals to:\n")
cat(paste(index, "\n"))
return(NULL)
}
return(index_val)
}
|
KNN_C <- function(train, test, k=1, distance="Euclidean"){
alg <- RKEEL::R6_KNN_C$new()
alg$setParameters(train, test, k, distance)
return (alg)
}
R6_KNN_C <- R6::R6Class("R6_KNN_C",
inherit = ClassificationAlgorithm,
public = list(
k = 1,
distance = "Euclidean",
setParameters = function(train, test, k=1, distance="Euclidean"){
super$setParameters(train, test)
self$k <- k
if((tolower(distance) == "euclidean") || (tolower(distance) == "manhattan") || (tolower(distance) == "hvdm")){
self$distance <- distance
}
else{
self$distance <- "Euclidean"
}
}
),
private = list(
jarName = "KNN.jar",
algorithmName = "KNN-C",
algorithmString = "K Nearest Neighbors Classifier",
getParametersText = function(){
text <- ""
text <- paste0(text, "K Value = ", self$k, "\n")
text <- paste0(text, "Distance Function = ", self$distance, "\n")
return(text)
}
)
)
|
rbind_columnwise <- function(...) {
input <- lapply(list(...),
function(x) slam::as.simple_triplet_matrix(x))
.convert_internal_result_to_seqR_Matrix_class(.cpp_merge_kmer_results(input))
}
.convert_internal_result_to_seqR_Matrix_class <- function(seqR_list) {
.convert_seqR_list_to_Matrix_class(seqR_list)
}
.convert_seqR_list_to_Matrix_class <- function(seqR_list) {
if (length(seqR_list$i) == 0) {
Matrix::Matrix(nrow=seqR_list$nrow,
ncol=0,
sparse = TRUE)
} else {
dimnames <- .get_dimnames(seqR_list)
Matrix::sparseMatrix(
i = seqR_list$i,
j = seqR_list$j,
x = seqR_list$v,
dims = c(seqR_list$nrow, seqR_list$ncol),
dimnames = dimnames
)
}
}
.get_dimnames <- function(seqR_list) {
list(NULL, seqR_list$names)
}
|
pargroup <- function (A) {
nr <- nrow(A)
nc <- ncol(A)
tol <- 2.220446e-16
r <- 1
for (i in 1:nc) {
pivot <- which.max(abs(A[r:nr, i]))
pivot <- r + pivot - 1
m <- abs(A[pivot, i])
if (m <= tol) {
A[r:nr, i] <- 0
}
else {
A[c(pivot, r), i:nc] <- A[c(r, pivot), i:nc]
A[r, i:nc] <- A[r, i:nc]/A[r, i]
if (r == 1) {
ridx <- c((r + 1):nr)
}
else if (r == nr) {
ridx <- c(1:(r - 1))
}
else {
ridx <- c(1:(r - 1), (r + 1):nr)
}
A[ridx, i:nc] <- A[ridx, i:nc] - A[ridx, i, drop = FALSE] %*%
A[r, i:nc, drop = FALSE]
if (r == nr)
break
r <- r + 1
}
}
A[abs(A) < tol] <- 0
pos <- c()
for(i in 1:nc) {
if(!all(A[,i] %in% c(0,1)) | sum(A[,i] == 1) > 1) {
pos <- c(pos, i)
}
}
A2 <- A
while(length(pos) > 1) {
A2[,pos[1]] <- 0
temp <- rep(0, ncol(A2))
temp[pos[1]] <- 1
pos2 <- c(1)
for(j in 2:length(pos)) {
if(all(A[,pos[j]] == A[,pos[1]])) {
temp[pos[j]] <- 1
A2[,pos[j]] <- 0
pos2 <- c(pos2, j)
}
}
A2 <- rbind(A2, temp)
pos <- setdiff(pos, pos[pos2])
}
if(length(pos) == 1) {
temp <- rep(0, ncol(A2))
temp[pos[1]] <- 1
A2[,pos[1]] <- 0
A2 <- rbind(A2, temp)
}
rownames(A2)<- NULL
A2
}
|
tidy.margins <- function(x, conf.int = FALSE, conf.level = 0.95, ...) {
ret <- as_tibble(summary(x, level = conf.level))
if ("at" %in% names(attributes(x))) {
at_vars <- setdiff(names(attributes(x)$at), "index")
std_cols <- c("factor", "AME", "SE", "z", "p", "lower", "upper")
ret <-
ret %>%
{
tryCatch(
tidyr::pivot_longer(., dplyr::all_of(at_vars), names_to = "at.variable", values_to = "at.value"),
error = function(e) {
mutate(
., dplyr::across(dplyr::all_of(at_vars), as.character),
message("Warning: `at.value` column coerced to character.")
) %>%
tidyr::pivot_longer(dplyr::all_of(at_vars), names_to = "at.variable", values_to = "at.value")
}
)
}
}
ret <-
ret %>%
dplyr::select(
term = .data$factor,
dplyr::contains("at."),
estimate = .data$AME,
std.error = .data$SE,
statistic = .data$z,
p.value = .data$p,
conf.low = .data$lower,
conf.high = .data$upper
)
if(!conf.int) {
ret <- dplyr::select(ret, -c(conf.low, conf.high))
}
return(ret)
}
glance.margins <- function(x, ...) {
orig_mod_call <- attributes(x)$call
ret <- broom::glance(eval(orig_mod_call), ...)
return(ret)
}
augment.margins <- augment.default
|
extract_xpdf <- function(...){
.Defunct(package = "crminer", msg = "Removed - see crminer::crm_extract()")
}
|
vis_value_plot <- vis_value(airquality)
test_that("vis_value creates the right plot",{
skip_on_cran()
skip_on_ci()
vdiffr::expect_doppelganger("vis_value vanilla",
vis_value_plot)
})
test_that("vis_value sends an error when used with the wrong data",{
expect_snapshot(
error = TRUE,
vis_value(iris)
)
})
|
`vrais.LDL.add` <-
function(moyenne.pere,alpha.Q,s,CD,perf,PLA,DL.m,DL.chrom1,DL.chrom2,desc.pere,mean.gene)
{
nb.pere = length(desc.pere[,1])
logvrais = 0
for (i in 1:nb.pere)
{
deb=desc.pere[i,1]
fin=desc.pere[i,2]
vrais.intra.pere = vrais.LDL.add.pere(moyenne.pere[i],alpha.Q,s,CD[deb:fin],perf[deb:fin],PLA[deb:fin],DL.m[deb:fin],DL.chrom1[i],DL.chrom2[i],mean.gene)
logvrais = logvrais + vrais.intra.pere
}
logvrais
}
|
epi.pooled <- function(se, sp, P, m, r){
PlSp <- sp^m
HSp <- (PlSp)^r
HSe <- 1 - ((1 - (1 - P)^m) * (1 - se) + (1 - P)^m * PlSp)^r
HAPneg <- 1 - HSp
rval <- list(HAPneg = HAPneg, HSe = HSe, HSp = HSp)
rval
}
|
SeeDist <- function(x,
title = "Default",
subtitle = "Default",
numbins = 0,
xlab = NULL,
var_explain = NULL,
data.fill.color = "deepskyblue",
mean.line.color = "darkgreen",
median.line.color = "yellow",
mode.line.color = "orange",
mean.line.type = "longdash",
median.line.type = "dashed",
mode.line.type = "dashed",
mean.line.size = 1.5,
median.line.size = 1.5,
mean.point.shape = 21,
median.point.shape = 23,
mean.point.size = 4,
median.point.size = 4,
zcurve.color = "red",
zcurve.type = "twodash",
zcurve.size = 1,
tcurve.color = "black",
tcurve.type = "dotted",
tcurve.size = 1,
mode.line.size = 1,
whatplots = c("d", "b", "h", "v"),
k = 2,
add_jitter = TRUE,
add_rug = TRUE,
xlim_left = NULL,
xlim_right = NULL,
ggtheme = ggplot2::theme_bw()
) {
ggplot2::theme_set(ggtheme)
if (!is.numeric(x)) {
stop("Sorry the data must be numeric")
}
x_name <- deparse(substitute(x))
if (is.null(xlab)) {
xlab <- x_name
}
binnumber <- nclass.FD(x)
binnumber <- ifelse(numbins == 0,
binnumber,
numbins)
desc.output <- DescTools::Desc(x,
plotit = FALSE,
main = xlab,
digits = k)
if (sum(is.na(x)) != 0) {
missing_count <- sum(is.na(x))
warning(paste("Removing",
missing_count,
"missing values"),
call. = FALSE)
x <- x[!is.na(x)]
}
x_mean <- desc.output[[1]]$mean
x_sd <- desc.output[[1]]$sd
x_median <- desc.output[[1]]$quant['median']
x_mode <- CGPfunctions::Mode(x)
x_skew <- desc.output[[1]]$skew
x_kurtosis <- desc.output[[1]]$kurt
if (length(x_mode) >= 4) {
warning(paste("There are",
length(x_mode)),
" modal values displaying just the first 3",
call. = FALSE)
x_mode <- x_mode[c(1, 2, 3)]
}
my_jitter_geom <- list()
if (add_jitter) {
my_jitter_geom <- list(
geom_jitter(aes(x = "",
y = x),
width = 0.05,
height = 0,
alpha = .5)
)
}
my_rug_geom <- list()
if (add_rug) {
my_rug_geom <- list(
geom_rug(aes(y = 0),
sides = "b")
)
}
if (is.null(xlim_left)) {
xlim_left <- -3 * x_sd + x_mean
}
if (is.null(xlim_right)) {
xlim_right <- +3 * x_sd + x_mean
}
if (!is.null(title) && title == "Default") {
my_title <- paste0("Distribution of the variable ",
x_name,
" ",
var_explain
)
} else {
my_title <- title
}
make_subtitle <-
function(x,
mean_x,
sd_x,
median_x,
Skew_x,
Kurtosis_x,
k = k) {
ret_subtitle <- bquote("N =" ~ .(length(x)) *
"," ~ bar(X) ~ "=" ~ .(round(mean_x, k)) *
", SD =" ~ .(round(sd_x, k)) *
", Median =" ~ .(round(median_x, k)) *
", Skewness =" ~ .(round(Skew_x, k)) *
", Kurtosis =" ~ .(round(Kurtosis_x, k)
)
)
}
if (!is.null(subtitle) && subtitle == "Default") {
my_subtitle <- make_subtitle(x,
x_mean,
x_sd,
x_median,
x_skew,
x_kurtosis,
k)
} else {
my_subtitle <- subtitle
}
mycaption <- bquote(bar(X) ~ "is" ~ .(mean.line.color) ~
", Median is" ~ .(median.line.color) ~
", Mode is" ~ .(mode.line.color) ~
", z curve is" ~ .(zcurve.color) ~
", t curve is" ~ .(tcurve.color)
)
custom_t_function <- function(x, mu, nu, df, ncp) {
dt((x - mu)/nu, df, ncp) / nu
}
if ("d" %in% tolower(whatplots)) {
p <- ggplot(data.frame(x)) +
aes(x) +
geom_density(fill = data.fill.color, ) +
stat_function(fun = dnorm,
color = zcurve.color,
linetype = zcurve.type,
size = zcurve.size,
args = list(mean = x_mean,
sd = x_sd)
) +
stat_function(fun = custom_t_function,
color = tcurve.color,
linetype = tcurve.type,
size = tcurve.size,
args = list(mu = x_mean,
nu = x_sd,
df = length(x) - 1,
ncp = 0)
) +
geom_vline(xintercept = x_mean,
colour = mean.line.color,
linetype = mean.line.type,
size = mean.line.size) +
geom_vline(xintercept = x_median,
colour = median.line.color,
linetype = median.line.type,
size = median.line.size) +
geom_vline(xintercept = x_mode,
colour = mode.line.color,
linetype = mode.line.type,
size = mode.line.size) +
my_rug_geom +
labs(
title = my_title,
subtitle = my_subtitle,
x = xlab,
caption = mycaption
) +
xlim(xlim_left,
xlim_right) +
theme(
axis.title.y = element_blank(),
axis.text.y = element_blank(),
axis.ticks.y = element_blank(),
axis.line.y = element_blank(),
panel.grid.major.y = element_blank(),
panel.grid.minor.y = element_blank()
)
print(p)
}
if ("b" %in% tolower(whatplots)) {
pp <- ggplot(data.frame(x)) +
aes(x) +
labs(
title = my_title,
subtitle = my_subtitle,
y = xlab,
caption = mycaption
) +
stat_boxplot(aes(x = "",
y = x),
geom = "errorbar",
width = 0.2) +
geom_boxplot(aes(x = "",
y = x),
fill = data.fill.color,
outlier.color = data.fill.color) +
coord_flip() +
geom_point(aes(x = "",
y = x_mean),
shape = mean.point.shape,
size = mean.point.size,
fill = mean.line.color) +
theme(
axis.title.y = element_blank(),
axis.text.y = element_blank(),
axis.ticks.y = element_blank(),
axis.line.y = element_blank(),
panel.grid.major.y = element_blank()
)
print(pp)
}
if ("h" %in% tolower(whatplots)) {
ppp <- ggplot(data.frame(x)) +
aes(x) +
labs(
title = my_title,
subtitle = my_subtitle,
x = xlab,
caption = mycaption
) +
geom_histogram(bins = binnumber,
color = "black",
fill = data.fill.color) +
my_rug_geom +
geom_vline(xintercept = x_mean,
colour = mean.line.color,
linetype = mean.line.type,
size = mean.line.size) +
geom_vline(xintercept = x_median,
colour = median.line.color,
linetype = median.line.type,
size = median.line.size) +
geom_vline(xintercept = x_mode,
colour = mode.line.color,
linetype = mode.line.type,
size = mode.line.size)
print(ppp)
}
if ("v" %in% tolower(whatplots)) {
pppp <- ggplot(data.frame(x)) +
aes(x) +
labs(
title = my_title,
subtitle = my_subtitle,
y = xlab,
caption = mycaption
) +
geom_violin(aes(x = "",
y = x),
fill = data.fill.color) +
my_jitter_geom +
coord_flip() +
geom_point(aes(x = "",
y = x_mean),
shape = mean.point.shape,
size = mean.point.size,
fill = mean.line.color) +
geom_point(aes(x = "",
y = x_median),
shape = median.point.shape,
size = median.point.size,
fill = median.line.color) +
theme(
axis.title.y = element_blank(),
axis.text.y = element_blank(),
axis.ticks.y = element_blank(),
axis.line.y = element_blank(),
panel.grid.major.y = element_blank()
)
print(pppp)
}
return(desc.output)
}
|
lifeTable <- function (dataSet, timeColumn, censColumn, intervalBorders=NULL) {
if(!is.data.frame(dataSet)) {stop("Data set is not of type data.frame! Please convert the data!")}
if(!(length(timeColumn)==1 & is.character(timeColumn))) {stop("The column name is not correctly specified! The argument must be a scalar as character.")}
if(!(length(censColumn)==1 & is.character(censColumn))) {stop("The column name is not correctly specified! The argument must be a scalar as character.")}
if(!(is.null (intervalBorders) )) {
if(!(is.character(intervalBorders))) {stop("The interval borders are not in character format! Please give the appropriate format, e. g. [0, a_1), [a_1, a_2), ..., [a_{q-1}, a_q) with a_q beeing the number of intervals")}
MaxTime <- max(dataSet [, timeColumn])
if(!(length(intervalBorders)==MaxTime)) {stop("The interval borders have not the same length as the number of unique intervals! Please give the appropriate format, e. g. [0, a_1), [a_1, a_2), ..., [a_{q-1}, a_q) with a_q beeing the number of intervals")}
}
atRiskInitial <- dim(dataSet) [1]
dataSet <- dataSet [order(dataSet [, timeColumn]), ]
formulaInput <- as.formula(paste(censColumn, timeColumn, sep="~"))
events <- aggregate(formula=formulaInput, data=dataSet, FUN=function (x) sum(x)) [, 2]
dropouts <- aggregate(formula=formulaInput, data=dataSet, FUN=function (x) sum(1-x)) [, 2]
atRiskInput <- c(atRiskInitial, atRiskInitial-cumsum(events+dropouts))
atRiskInput <- atRiskInput [-length(atRiskInput)]
times <- as.numeric(names(table(as.numeric(as.character(dataSet [, timeColumn])))))
Index <- which(diff(times)>1)
while(any(diff(times)>1)) {
Index <- which(diff(times)>1) [1]
atRiskInput <- c(atRiskInput [1:Index],
atRiskInput [Index] - (events[Index] + dropouts[Index]),
atRiskInput [(Index+1):length(atRiskInput)])
events <- c(events [1:Index], 0, events [(Index+1):length(events)])
dropouts <- c(dropouts [1:Index], 0, dropouts [(Index+1):length(dropouts)])
times <- c(times [1:Index], times[Index] + 1, times [(Index+1):length(times)])
}
if(times[1]!=1) {
atRiskInput <- c(rep(atRiskInput [1], times[1] -1), atRiskInput)
events <- c(rep(0, times[1] - 1), events)
dropouts <- c(rep(0, times[1] - 1), dropouts)
times <- c(1:(times[1] - 1), times)
}
atRisk <- atRiskInput - dropouts/2
haz <- events / atRisk
S <- cumprod(1 - haz)
sehaz <- sqrt((haz - haz^2) / atRisk)
seS <- S * sqrt(cumsum(haz / (1 - haz) / (atRisk)))
cumHazard <- cumsum(haz)
seCumHazard <- sqrt(cumsum(events / atRisk^2))
if(is.null(intervalBorders)) {
RowNames <- paste("[", c(0, times [-length(times)]), ", ", times, ")", sep = "")
} else {
RowNames <- intervalBorders
}
margProb <- haz * c(1, S[-length(S)])
Output <- data.frame(n=atRiskInput, events = events, dropouts = dropouts, atRisk = atRisk,
hazard = haz, seHazard = sehaz,
S = S, seS = seS,
cumHazard=cumHazard, seCumHazard=seCumHazard, margProb=margProb,
row.names = RowNames)
Output <- list(Output=Output)
class(Output) <- "discSurvLifeTable"
return(Output)
}
print.discSurvLifeTable <- function (x, ...) {
x <- x [[1]]
for(i in 1:dim(x) [2]) {
x [, i] <- round(x [, i], 4)
}
print(x)
}
|
OptimiseParametersFNB <- function(area,
observed,
extent,
model = "FNB",
starting.params = NULL) {
resid.fun <- getFunction(paste("Resid", model, sep = ""))
pred.fun <- getFunction(paste("Predict", model, sep = ""))
if(is.null(starting.params)) {
starting.pars <- get(paste("Params", model, sep = ""))
}
if(!is.null(starting.params)) {
starting.pars <- starting.params
}
optimisation <- minpack.lm::nls.lm(par = starting.pars,
fn = resid.fun,
area = area,
extent = extent,
observed = log(observed),
lower = c("N" = -Inf, "k" = 0),
upper = c("N" = Inf,
"k" = min(area, na.rm = TRUE) *
100),
control = minpack.lm::nls.lm.control(
maxiter = 1000))
optim.pars <- as.list(coef(optimisation))
return(optim.pars)
}
|
midint<-function(data)
{
if(!is.data.frame(data))
stop("Invalid input parameter specification: check data")
if(!(all(c("Start.Date","End.Date")%in%names(data))))
stop("Error: data does not contain columns named Start.Date/End.Date")
start<-tryCatch(as.POSIXct(as.character(data$Start.Date),tz="UTC"),error=function(e){return(NA)})
end<-tryCatch(as.POSIXct(as.character(data$End.Date),tz="UTC"),error=function(e){return(NA)})
if(is.na(start) || is.na(end))
stop("Error: check dates format in data")
start+time_length(interval(start,end))/2
}
|
names_list <- function(df, len){
df %>%
names %>%
gtools::combinations(n = length(.), r = len, v = . ) %>%
as.data.frame() %>%
as.list()
}
make_distincts <- function(df, ...){
df %>%
dplyr::select(...) -> id_cols
nms_list <- list()
for(i in seq_along(id_cols)) {
nms_list %>% append(list(names_list(id_cols, i))) -> nms_list
}
nms_list
}
determine_distinct <- function(df, ..., listviewer = TRUE){
n_dupes(df) -> d_rows
if(d_rows > 0) {
print(stringr::str_glue("database has {d_rows} duplicate rows, and will eliminate them"))
df <- dplyr::distinct(df)}
get_unique_col_names(df) -> unique_names
df %>% framecleaner::select_otherwise(..., otherwise = tidyselect::everything(), return_type = "names") %>% setdiff(unique_names) -> db_names
df %>% dplyr::select(-tidyselect::any_of(unique_names)) -> df
make_distincts(df, tidyselect::any_of(db_names)) -> dst_list
distinct_combos <- list()
new_list <- list()
for(j in seq_along(dst_list)){
stringr::str_c("LEVEL ", j) -> col_nm
dst_list %>%
purrr::pluck(j) -> the_lev
filter_list(smaller_list = distinct_combos,
bigger_list = data.table::transpose(the_lev)) %>%
data.table::transpose() -> the_lev
utils::capture.output(
the_lev %>%
purrr::pmap_lgl(., ~confirm_distinct(df, ...)) -> dst_nms)
the_lev %>%
as.data.frame() %>%
dplyr::filter(dst_nms) -> d1
d1 %>%
rows_to_list() -> l1
l1 %>%
append(distinct_combos) -> distinct_combos
if(nrow(d1) != 0){
d1 %>%
tidyr::unite(col = !!col_nm, sep = ", ") %>%
append(new_list) -> new_list}
}
new_list[["LEVEL 1"]] <- as.list(unique_names)
new_list %>%
purrr::map(~if(rlang::is_empty(.)) {. <- 'no primary keys'} else{.}) -> output
if(listviewer){
output %>%
listviewer::jsonedit(.)
} else{
output
}
}
pivot_summary <- function(sumr, ...){
column <- rowname <- NULL
if (!missing(..1)) {
sumr %>%
tidyr::unite(col = "column", ..., remove = T) %>% dplyr::relocate(column) -> sumr1
sumr1 %>%
dplyr::select(-1) %>% as.matrix() %>% mode -> output_mode
}
else{
sumr -> sumr1
}
sumr1 %>%
t %>%
as.data.frame() %>%
tibble::rownames_to_column() %>%
tibble::as_tibble() %>%
dplyr::rename(column = rowname) %>%
dplyr::arrange(column) -> sumr2
if (!missing(..1)) {
sumr2 %>%
janitor::row_to_names(row_number = 1) %>%
dplyr::mutate(dplyr::across(-1, ~as(., output_mode)))-> sumr3
}
else{
sumr2 -> sumr3
}
sumr3
}
get_unique_col_names <- function(df){
nrow(df) -> rws
V1 <- column <- NULL
df %>%
dplyr::summarize(dplyr::across(.fns = ~dplyr::n_distinct(.) == rws)) %>%
pivot_summary() %>%
dplyr::filter(V1) %>%
dplyr::pull(column)
}
rows_to_list <- function(df){
df %>% t() %>% as.data.frame() %>% lapply(unlist)}
is_subset_list <- function(chr, chr_list){
any(purrr::map_lgl(chr_list, ~all(is.element(el = ., set = chr))))
}
filter_list <- function(smaller_list, bigger_list){
bigger_list %>% purrr::map_lgl(~is_subset_list(chr = ., chr_list = smaller_list)) -> logical_vec
purrr::discard(bigger_list, logical_vec)
}
|
cste_surv <- function(x,y,z,s,h){
n <- nrow(z)
p <- ncol(z)
sep <- 20
myfun <- function(w){return(as.numeric(y>=w))}
R <- matrix(sapply(y,myfun),n,n,byrow=TRUE)
stdel <- matrix(0,nrow=n,ncol=p)
for(i in 1:n){
tempfun <- function(t){return(lpl(t,x,x[i],R,z,s,h))}
ans = nmk(rep(0,2*p+1),tempfun)$par
stdel[i,] <- ans[1:p]
}
return(stdel)
}
|
spDynLM <- function(formula, data = parent.frame(), coords, knots,
starting, tuning, priors, cov.model, get.fitted=FALSE,
n.samples, verbose=TRUE, n.report=100, ...){
formal.args <- names(formals(sys.function(sys.parent())))
elip.args <- names(list(...))
for(i in elip.args){
if(! i %in% formal.args)
warning("'",i, "' is not an argument")
}
if(missing(formula)){stop("error: formula must be specified")}
if(class(formula) == "list"){
holder <- mkspDynMats(formula, data)
Y <- holder[[1]]
X <- as.matrix(holder[[2]])
x.names <- holder[[3]]
}else{
stop("error: formula is misspecified")
}
p <- ncol(X)
n <- nrow(Y)
N.t <- length(formula)
miss <- as.vector(is.na(Y))
storage.mode(Y) <- "double"
storage.mode(X) <- "double"
storage.mode(p) <- "integer"
storage.mode(n) <- "integer"
storage.mode(N.t) <- "integer"
storage.mode(miss) <- "integer"
if(!is.matrix(coords)){stop("error: coords must n-by-2 matrix of xy-coordinate locations")}
if(ncol(coords) != 2 || nrow(coords) != n){
stop("error: either the coords have more than two columns or then number of rows is different than
data used in the model formula")
}
is.pp <- FALSE
if(!missing(knots)){
if(is.vector(knots) && length(knots) %in% c(2,3)){
if(knots[1] > 1){
x.knots <- seq(min(coords[,1]), max(coords[,1]), length.out=knots[1])
}else{
x.knots <- (max(coords[,1])-min(coords[,1]))/2
}
if(knots[2] > 1){
y.knots <- seq(min(coords[,2]), max(coords[,2]), length.out=knots[2])
}else{
y.knots <- (max(coords[,2])-min(coords[,2]))/2
}
if(length(knots) == 2){
if(knots[1] > 1){
x.int <- (x.knots[2]-x.knots[1])/2
x.knots <- seq(min(x.knots)-x.int, max(x.knots)+x.int, length.out=knots[1])
}
if(knots[2] > 1){
y.int <- (y.knots[2]-y.knots[1])/2
y.knots <- seq(min(y.knots)-y.int, max(y.knots)+y.int, length.out=knots[2])
}
knot.coords <- as.matrix(expand.grid(x.knots, y.knots))
is.pp <- TRUE
}else{
if(knots[1] > 1){
x.int <- knots[3]
x.knots <- seq(min(x.knots)-x.int, max(x.knots)+x.int, length.out=knots[1])
}
if(knots[2] > 1){
y.int <- knots[3]
y.knots <- seq(min(y.knots)-y.int, max(y.knots)+y.int, length.out=knots[2])
}
knot.coords <- as.matrix(expand.grid(x.knots, y.knots))
is.pp <- TRUE
}
}else if(is.matrix(knots) && ncol(knots) == 2){
knot.coords <- knots
is.pp <- TRUE
}else{
stop("error: knots is misspecified")
}
}
m <- 0
coords.D <- 0
knots.D <- 0
coords.knots.D <- 0
if(is.pp){
knots.D <- iDist(knot.coords)
m <- nrow(knots.D)
coords.knots.D <- iDist(coords, knot.coords)
if(min(coords.knots.D) == 0){
stop("error: knots and observation coordinates cannot coincide. At least one knot location coincides with an observed coordinate.")
}
}else{
coords.D <- iDist(coords)
}
storage.mode(m) <- "integer"
storage.mode(coords.D) <- "double"
storage.mode(knots.D) <- "double"
storage.mode(coords.knots.D) <- "double"
if(missing(cov.model)){stop("error: cov.model must be specified")}
if(!cov.model%in%c("gaussian","exponential","matern","spherical"))
{stop("error: specified cov.model '",cov.model,"' is not a valid option; choose, from gaussian, exponential, matern, spherical.")}
if(missing(priors)) {stop("error: prior list for the parameters must be specified")}
names(priors) <- tolower(names(priors))
if(!"beta.0.norm" %in% names(priors)){stop("error: beta.0.norm must be specified")}
beta.0.Norm <- priors[["beta.0.norm"]]
if(!is.list(beta.0.Norm) || length(beta.0.Norm) != 2){stop("error: beta.0.Norm must be a list of length 2")}
if(length(beta.0.Norm[[1]]) != p ){stop(paste("error: beta.0.Norm[[1]] must be a vector of length, ",p, "",sep=""))}
if(length(beta.0.Norm[[2]]) != p^2 ){stop(paste("error: beta.0.Norm[[2]] must be a ",p,"x",p," covariance matrix",sep=""))}
if(!"sigma.sq.ig" %in% names(priors)){stop("error: sigma.sq.IG must be specified")}
sigma.sq.IG <- priors[["sigma.sq.ig"]]
if(!is.list(sigma.sq.IG) || length(sigma.sq.IG) != 2){stop("error: sigma.sq.IG must be a list of length 2")}
if(length(sigma.sq.IG[[1]]) != N.t){stop(paste("error: sigma.sq.IG[[1]] must be a vector of length, ",N.t, "",sep=""))}
if(length(sigma.sq.IG[[2]]) != N.t){stop(paste("error: sigma.sq.IG[[2]] must be a vector of length, ",N.t, "",sep=""))}
sigma.sq.IG <- as.vector(t(cbind(sigma.sq.IG[[1]],sigma.sq.IG[[2]])))
if(!"tau.sq.ig" %in% names(priors)){stop("error: tau.sq.IG must be specified")}
tau.sq.IG <- priors[["tau.sq.ig"]]
if(!is.list(tau.sq.IG) || length(tau.sq.IG) != 2){stop("error: tau.sq.IG must be a list of length 2")}
if(length(tau.sq.IG[[1]]) != N.t){stop(paste("error: tau.sq.IG[[1]] must be a vector of length, ",N.t, "",sep=""))}
if(length(tau.sq.IG[[2]]) != N.t){stop(paste("error: tau.sq.IG[[2]] must be a vector of length, ",N.t, "",sep=""))}
tau.sq.IG <- as.vector(t(cbind(tau.sq.IG[[1]],tau.sq.IG[[2]])))
if(!"phi.unif" %in% names(priors)){stop("error: phi.Unif must be specified")}
phi.Unif <- priors[["phi.unif"]]
if(!is.list(phi.Unif) || length(phi.Unif) != 2){stop("error: phi.Unif must be a list of length 2")}
if(length(phi.Unif[[1]]) != N.t){stop(paste("error: phi.Unif[[1]] must be a vector of length, ",N.t, "",sep=""))}
if(length(phi.Unif[[2]]) != N.t){stop(paste("error: phi.Unif[[2]] must be a vector of length, ",N.t, "",sep=""))}
if(any(phi.Unif[[2]]-phi.Unif[[1]] <= 0)){stop("error: phi.Unif has zero support")}
phi.Unif <- as.vector(t(cbind(phi.Unif[[1]],phi.Unif[[2]])))
nu.Unif <- 0
if(cov.model == "matern"){
if(!"nu.unif" %in% names(priors)){stop("error: nu.Unif must be specified")}
nu.Unif <- priors[["nu.unif"]]
if(!is.list(nu.Unif) || length(nu.Unif) != 2){stop("error: nu.Unif must be a list of length 2")}
if(length(nu.Unif[[1]]) != N.t){stop(paste("error: nu.Unif[[1]] must be a vector of length, ",N.t, "",sep=""))}
if(length(nu.Unif[[2]]) != N.t){stop(paste("error: nu.Unif[[2]] must be a vector of length, ",N.t, "",sep=""))}
if(any(nu.Unif[[2]]-nu.Unif[[1]] <= 0)){stop("error: nu.Unif has zero support")}
nu.Unif <- as.vector(t(cbind(nu.Unif[[1]],nu.Unif[[2]])))
}
if(!"sigma.eta.iw" %in% names(priors)){stop("error: Sigma.eta.IW must be specified")}
sigma.eta.IW <- priors[["sigma.eta.iw"]]
if(!is.list(sigma.eta.IW) || length(sigma.eta.IW) != 2){stop("error: Sigma.eta.IW must be a list of length 2")}
if(length(sigma.eta.IW[[1]]) != 1){stop("error: Sigma.eta.IW[[1]] must be of length 1 (i.e., the IW df hyperparameter)")}
if(length(sigma.eta.IW[[2]]) != p^2){stop(paste("error: Sigma.eta.IW[[2]] must be a vector or matrix of length, ",p^2, ", (i.e., the IW scale matrix hyperparameter)",sep=""))}
storage.mode(sigma.sq.IG) <- "double"
storage.mode(tau.sq.IG) <- "double"
storage.mode(phi.Unif) <- "double"
storage.mode(nu.Unif) <- "double"
storage.mode(sigma.eta.IW[[1]]) <- "double"; storage.mode(sigma.eta.IW[[2]]) <- "double"
if(missing(starting)){stop("error: starting value list for the parameters must be specified")}
names(starting) <- tolower(names(starting))
if(!"beta" %in% names(starting)){stop("error: beta must be specified in starting value list")}
beta.starting <- starting[["beta"]]
if(length(beta.starting) != N.t*p){stop(paste("error: beta starting must be of length ",N.t,"*",p,sep=""))}
if(!"sigma.sq" %in% names(starting)){stop("error: sigma.sq must be specified in starting value list")}
sigma.sq.starting <- starting[["sigma.sq"]]
if(length(sigma.sq.starting) != N.t){stop(paste("error: sigma.sq starting must be a vector of length, ",N.t, "",sep=""))}
if(!"tau.sq" %in% names(starting)){stop("error: a prior was spcified for tau.sq therefore tau.sq must be specified in starting value list")}
tau.sq.starting <- starting[["tau.sq"]]
if(length(tau.sq.starting) != N.t){stop(paste("error: tau.sq starting must be a vector of length, ",N.t, "",sep=""))}
if(!"phi" %in% names(starting)){stop("error: phi must be specified in starting value list")}
phi.starting <- starting[["phi"]]
if(length(phi.starting) != N.t){stop(paste("error: phi starting must be a vector of length, ",N.t, "",sep=""))}
nu.starting <- 0
if(cov.model == "matern"){
if(!"nu" %in% names(starting)){stop("error: nu must be specified in starting value list")}
nu.starting <- starting[["nu"]]
if(length(nu.starting) != N.t){stop(paste("error: nu starting must be a vector of length, ",N.t, "",sep=""))}
}
if(!"sigma.eta" %in% names(starting)){stop("error: Sigma.eta must be specified in starting value list")}
sigma.eta.starting <- as.vector(starting[["sigma.eta"]])
if(length(sigma.eta.starting) != p^2){stop(paste("error: Sigma.eta must be a positive definite matrix of length, ",p^2, sep=""))}
storage.mode(beta.starting) <- "double"
storage.mode(phi.starting) <- "double"
storage.mode(sigma.sq.starting) <- "double"
storage.mode(tau.sq.starting) <- "double"
storage.mode(nu.starting) <- "double"
storage.mode(sigma.eta.starting) <- "double"
if(missing(tuning)){stop("error: tuning value vector for the spatial parameters must be specified")}
names(tuning) <- tolower(names(tuning))
if(!"phi" %in% names(tuning)){stop("error: phi must be specified in tuning value list")}
phi.tuning <- tuning[["phi"]]
if(length(phi.tuning) != N.t){stop(paste("error: phi tuning must be a vector of length, ",N.t, "",sep=""))}
nu.tuning <- 0
if(cov.model == "matern"){
if(!"nu" %in% names(tuning)){stop("error: nu must be specified in tuning value list")}
nu.tuning <- tuning[["nu"]]
if(length(nu.tuning) != N.t){stop(paste("error: nu tuning must be a vector of length, ",N.t, "",sep=""))}
}
storage.mode(phi.tuning) <- "double"
storage.mode(nu.tuning) <- "double"
if(missing(n.samples)){stop("error: n.samples needs to be specified")}
storage.mode(n.samples) <- "integer"
storage.mode(get.fitted) <- "integer"
storage.mode(n.report) <- "integer"
storage.mode(verbose) <- "integer"
ptm <- proc.time()
if(is.pp){
out <- .Call("spPPDynLM", Y, t(X), p, n, m, N.t, knots.D, coords.knots.D,
beta.0.Norm, sigma.sq.IG, tau.sq.IG, nu.Unif, phi.Unif, sigma.eta.IW,
beta.starting, phi.starting, sigma.sq.starting, tau.sq.starting, nu.starting, sigma.eta.starting,
phi.tuning, nu.tuning,
cov.model, n.samples, miss, get.fitted, verbose, n.report)
}else{
out <- .Call("spDynLM", Y, t(X), p, n, N.t, coords.D,
beta.0.Norm, sigma.sq.IG, tau.sq.IG, nu.Unif, phi.Unif, sigma.eta.IW,
beta.starting, phi.starting, sigma.sq.starting, tau.sq.starting, nu.starting, sigma.eta.starting,
phi.tuning, nu.tuning,
cov.model, n.samples, miss, get.fitted, verbose, n.report)
}
run.time <- proc.time() - ptm
out$p.beta.0.samples <- mcmc(t(out$p.beta.0.samples))
colnames(out$p.beta.0.samples) <- x.names
out$p.beta.samples <- mcmc(t(out$p.beta.samples))
colnames(out$p.beta.samples) <- as.vector(t(sapply(paste(x.names,".t",sep=""),paste,1:N.t,sep="")))
out$p.theta.samples <- mcmc(t(out$p.theta.samples))
if(cov.model != "matern"){
colnames(out$p.theta.samples) <- as.vector(t(sapply(paste(c("sigma.sq", "tau.sq", "phi"),".t",sep=""),paste,1:N.t,sep="")))
}else{
colnames(out$p.theta.samples) <- as.vector(t(sapply(paste(c("sigma.sq", "tau.sq", "phi", "nu"),".t",sep=""),paste,1:N.t,sep="")))
}
out$p.sigma.eta.samples <- mcmc(t(out$p.sigma.eta.samples))
colnames(out$p.sigma.eta.samples) <- paste("eta[",matrix(apply(cbind(expand.grid(x.names,x.names)), 1, function(x) paste(x, collapse=",")),p,p),"]",sep="")
out$Y <- Y
out$X <- X
out$coords <- coords
out$cov.model <- cov.model
out$x.names <- x.names
out$run.time <- run.time
out$missing.indx <- miss
if(is.pp){
out$knot.coords <- knot.coords
}
class(out) <- "spDynLM"
out
}
|
sum_up <- function(df, ..., d = FALSE, wt = NULL) {
wt = dplyr::enquo(wt)
if (rlang::is_null(rlang::f_rhs(wt))) {
wtvar <- character(0)
}
else{
wtvar <- names(tidyselect::vars_select(names(df), !!wt))
}
byvars <- dplyr::group_vars(df)
vars <- setdiff(names(tidyselect::vars_select(names(df), ...)), c(wtvar, byvars))
if (length(vars) == 0) {
vars <- setdiff(names(df), c(byvars, wtvar))
}
nums <- sapply(df, is.numeric)
nums_name <- names(nums[nums == TRUE])
vars <- intersect(vars, nums_name)
if (!length(vars)) stop("Please select at least one numeric variable", call. = FALSE)
df <- dplyr::select(df, dplyr::all_of(c(vars, byvars, wtvar)))
df <- dplyr::summarize(df, describe(dplyr::across(), d = d, wtvar = wtvar, byvars = byvars))
out <- dplyr::arrange(df, dplyr::across(dplyr::all_of(c(byvars, "Variable"))))
if (d) {
out1 <- dplyr::select(out, dplyr::all_of(c(byvars, "Variable", "Obs", "Missing", "Mean", "StdDev", "Skewness", "Kurtosis")))
out2 <- dplyr::select(out, dplyr::all_of(c(byvars, "Variable", "Min", "p1", "p5", "p10", "p25", "p50")))
out3 <- dplyr::select(out, dplyr::all_of(c(byvars, "Variable", "p50", "p75", "p90", "p95", "p99", "Max")))
statascii(out1, n_groups = length(byvars) + 1)
cat("\n")
statascii(out2, n_groups = length(byvars) + 1)
cat("\n")
statascii(out3, n_groups = length(byvars) + 1)
}
else{
out <- dplyr::select(out, dplyr::all_of(c(byvars, "Variable", setdiff(names(out), c(byvars, "Variable")))))
statascii(out, n_groups = length(byvars) + 1)
}
invisible(out)
}
describe <- function(df, d = FALSE, wtvar = character(0), byvars = character(0)){
if (length(byvars)){
df <- dplyr::select(df, dplyr::all_of(setdiff(names(df), byvars)))
}
if (length(wtvar)){
w <- df[[wtvar]]
df <- dplyr::select(df, dplyr::all_of(setdiff(names(df), wtvar)))
}
else{
w <- NULL
}
names <- names(df)
if (d==FALSE) {
if (!is.null(w)){
sum <- lapply(df ,function(x){
take <- !is.na(x) & !is.na(w) & w > 0
x_omit <- x[take]
w_omit <- w[take]
m <- matrixStats::weightedMean(x_omit, w = w_omit)
c(length(x_omit), length(x)-length(x_omit), m, sqrt(matrixStats::weightedMean((x_omit-m)^2, w = w_omit)), matrixStats::colRanges(x_omit, dim = c(length(x_omit), 1)))
})
}else{
sum <- lapply(df ,function(x){
x_omit <- stats::na.omit(x)
c(length(x_omit), length(x) - length(x_omit), mean(x_omit), stats::sd(x_omit), matrixStats::colRanges(x_omit, dim = c(length(x_omit), 1)))
})
}
sum <- do.call(cbind, sum)
sum <- as.data.frame(t(sum))
sum <- dplyr::bind_cols(dplyr::tibble(names), sum)
sum <- stats::setNames(sum, c("Variable", "Obs","Missing","Mean","StdDev","Min", "Max"))
} else {
N <- nrow(df)
f=function(x){
if (!is.null(w)){
take <- !is.na(x) & !is.na(w) & w > 0
x_omit <- x[take]
w_omit <- w[take]
m <- matrixStats::weightedMean(x_omit, w = w_omit)
sum_higher <- matrixStats::colWeightedMeans(cbind((x_omit-m)^2,(x_omit-m)^3,(x_omit-m)^4), w = w_omit)
sum_higher[1] <- sqrt(sum_higher[1])
sum_higher[2] <- sum_higher[2]/sum_higher[1]^3
sum_higher[3] <- sum_higher[3]/sum_higher[1]^4
sum_quantile <- pctile(x_omit, c(0, 0.01, 0.05, 0.1, 0.25, 0.50, 0.75, 0.9, 0.95, 0.99, 1), wt = w_omit)
} else{
x_omit <- stats::na.omit(x)
m <- mean(x_omit)
sum_higher <- colMeans(cbind((x_omit-m)^2,(x_omit-m)^3,(x_omit-m)^4))
sum_higher[1] <- sqrt(sum_higher[1])
sum_higher[2] <- sum_higher[2]/sum_higher[1]^3
sum_higher[3] <- sum_higher[3]/sum_higher[1]^4
sum_quantile= pctile(x_omit, c(0, 0.01, 0.05, 0.1, 0.25, 0.50, 0.75, 0.9, 0.95, 0.99, 1))
}
n_NA <- length(x) - length(x_omit)
sum <- c(N-n_NA, n_NA, m, sum_higher, sum_quantile)
}
sum <- parallel::mclapply(df, f)
sum <- do.call(cbind, sum)
sum <- as.data.frame(t(sum))
sum <- dplyr::bind_cols(dplyr::tibble(names), sum)
sum <- stats::setNames(sum, c("Variable", "Obs","Missing","Mean","StdDev","Skewness","Kurtosis","Min","p1","p5","p10","p25","p50","p75","p90","p95","p99","Max"))
}
sum
}
|
context("image")
test_that("fails well with no input", {
expect_error(image(), "argument \"id\" is missing")
})
test_that("fails well with non-existent droplet", {
skip_on_cran()
expect_error(image("bearbearbear"), "The resource you were accessing could not be found")
})
test_that("httr curl options work", {
skip_on_cran()
library("httr")
expect_error(image("asdfadf", config = timeout(seconds = 0.001)))
})
|
gefs <- function(...) {
.Defunct(msg = "`gefs` is defunct; it may return later")
}
gefs_dimension_values <- function(...) {
.Defunct(msg = "`gefs_dimension_values` is defunct; it may return later")
}
gefs_dimensions <- function(...) {
.Defunct(msg = "`gefs_dimensions` is defunct; it may return later")
}
gefs_ensembles <- function(...) {
.Defunct(msg = "`gefs_ensembles` is defunct; it may return later")
}
gefs_latitudes <- function(...) {
.Defunct(msg = "`gefs_latitudes` is defunct; it may return later")
}
gefs_longitudes <- function(...) {
.Defunct(msg = "`gefs_longitudes` is defunct; it may return later")
}
gefs_times <- function(...) {
.Defunct(msg = "`gefs_times` is defunct; it may return later")
}
gefs_variables <- function(...) {
.Defunct(msg = "`gefs_variables` is defunct; it may return later")
}
NULL
|
NULL
NULL
methods::setGeneric("number_of_total_units",
function(x) standardGeneric("number_of_total_units"))
methods::setMethod("number_of_total_units", "ConservationProblem",
function(x) x$number_of_total_units())
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.