code
stringlengths
1
13.8M
fitGMM <- function(exprVals,RDparameters,rejectNull=0.05){ Y <- exprVals Y[is.na(Y)] <- 0 simulateData <- function(expVal,RDparameters,length){ epsilons <- rnorm(length,mean=0,sd=RDparameters$sd_epsilon) epsilons <- (epsilons-mean(epsilons))/sd(epsilons) etas <- rnorm(length,mean=0,sd=RDparameters$sd_eta) etas <- (epsilons-mean(epsilons))/sd(etas) y <- 2^expVal log((y-(RDparameters$alpha+epsilons))/exp(etas),base=2) } constantData <- simulateData(median(Y),RDparameters,length=length(Y)) constantData <- constantData[!is.na(constantData)] if(length(constantData)<=2) pval <- 1 if(length(constantData)>2){ if(length(constantData)<length(Y)) constantData <- sample(constantData,length(Y),replace=TRUE) npoints <- min(length(unique(Y)),length(unique(constantData))) kstest <- ks.test(sample(unique(Y),npoints),sample(unique(constantData),npoints)) pval <- kstest$p.value rm(constantData) } if(pval>rejectNull){ print("not significant differential expression") mm <- list(modelName="null",parameters=NULL,G=0) } else{ mm <- Mclust(Y,modelNames=c("V"),G=1:5) } rm(Y) gc() mm }
pbino=function(nplus) { prob=c(rep(0,max(nplus,1)-1),1/(max(nplus,1):400+1)) prob/sum(prob) }
clean.retrieval <- function(x, gunzip = TRUE) { if (any(!file.exists(x))) stop("Some of the meta.retrieval() output files seem not to exist. Please provide valid file paths to meta.retrieval() output files.", call. = FALSE) if (gunzip) message("Cleaning file names and unzipping files ...") if (!gunzip) message("Cleaning file names ...") folder_files <- list.files(dirname(x)[1]) if (length(folder_files) == 0) stop("Unfortunately, your specified folder '", x, "' does not include any files.", call. = FALSE) file_ext <- "[.]*a$" if (any(stringr::str_detect(folder_files, "[.]faa.gz$"))) { seq_type <- "ncbi_protein" file_ext <- "[.]faa$" } if (any(stringr::str_detect(folder_files, "[.]fna.gz$"))) { seq_type <- "ncbi_nucleotide" file_ext <- "[.]fna$" } if (any(stringr::str_detect(folder_files, "[.]gff.gz$"))) { seq_type <- "ncbi_gff" file_ext <- "[.]gff$" } if (any(stringr::str_detect(folder_files, "[.]out.gz$"))) { seq_type <- "ncbi_rm" file_ext <- "[.]out$" } if (any(stringr::str_detect(folder_files, "[.]gff3.gz$"))) { seq_type <- "ensembl_gff3" file_ext <- "[.]gff3$" } if (any(stringr::str_detect(folder_files, "[.]gtf.gz$"))) { seq_type <- "ensembl_gtf" file_ext <- "[.]gtf$" } if (any(stringr::str_detect(folder_files, "[.]fa.gz$"))) { seq_type <- "ensembl_fasta" file_ext <- "[.]fa$" } find_doc <- which(stringr::str_detect(folder_files, "doc_")) find_md5 <- which(stringr::str_detect(folder_files, "md5checksum")) find_documentaion <- which(stringr::str_detect(folder_files, "documentation")) find_unzipped_files <- which(stringr::str_detect(folder_files, file_ext)) folder_files_reduced <- NULL if (length(c(find_doc, find_md5, find_documentaion, find_unzipped_files)) > 0) { folder_files_reduced <- folder_files[-c(find_doc, find_md5, find_documentaion, find_unzipped_files)] } if (length(folder_files_reduced) == 0) { message("It seems that nothing needs to be done. All files are unzipped.") return(file.path(x, folder_files[-c(find_doc, find_md5, find_documentaion)])) } else { input_files <- folder_files_reduced } input_files_without_appendix <- unlist(lapply(input_files, function(x) return(unlist(stringr::str_split(x, "[.]"))[1]))) file_ext <- stringr::str_replace(file_ext, "\\$", "") file_ext <- stringr::str_replace(file_ext, "\\[.]", "") if (gunzip) output_files <- paste0(tidy_name(input_files_without_appendix), ".", file_ext) if (!gunzip) output_files <- paste0(tidy_name(input_files_without_appendix),".",file_ext,".gz") if (!all(file.exists(file.path(dirname(x)[1], input_files)))) stop("Something went wrong during the cleaning process. Some input files seem not to exist.", call. = FALSE) if (gunzip) { for (i in seq_len(length(input_files))) { if (file.exists(file.path(dirname(x)[1], input_files[i]))) { message("Unzipping file ", input_files[i],"' ...") R.utils::gunzip(file.path(dirname(x)[1], input_files[i]), destname = file.path(dirname(x)[1], output_files[i])) } } } message("Finished formatting.") return(file.path(dirname(x)[1], output_files)) }
context("cs_dispersion") test_that("Forward wrong input data object", { expect_error(cs_dispersion(1)) expect_error(cs_dispersion("abs")) expect_error(cs_dispersion(list(a=1, b=2))) expect_error(cs_dispersion(NULL)) expect_error(cs_dispersion(NA)) expect_error(cs_dispersion(Inf)) expect_error(cs_dispersion(-Inf)) }) test_that("Tests for correct function parameterization", { set.seed(5) obs <- rnorm(100) preds <- matrix(rnorm(1000, 1), 100, 10) train_o<-obs[1:80] train_p<-preds[1:80,] data<-foreccomb(train_o, train_p) expect_error(cs_dispersion(data, measure = "SD"), NA) expect_error(cs_dispersion(data, measure = "IQR"), NA) expect_error(cs_dispersion(data, measure = "Range"), NA) expect_error(cs_dispersion(data, measure = "bb")) expect_error(cs_dispersion(data, measure = NULL)) }) test_that( "Check for correct class type and accuracy, when Forecast_Test is provided but not Actual_Test", { set.seed(5) obs <- rnorm(100) preds <- matrix(rnorm(1000, 1), 100, 10) train_o<-obs[1:80] train_p<-preds[1:80,] test_p<-preds[81:100,] data<-foreccomb(train_o, train_p, newpreds = test_p) result<-cs_dispersion(data, measure = "SD") expect_length(result, 2) expect_equal(as.vector(result$CS_Dispersion[1:6]), c(1.064505, 0.793982, 1.042518, 0.724194, 0.690324, 0.590318), tolerance = 1e-5, check.attributes = FALSE) }) test_that( "Check for correct class type and accuracy, when test set is used", { set.seed(5) obs <- rnorm(100) preds <- matrix(rnorm(1000, 1), 100, 10) train_o<-obs[1:80] train_p<-preds[1:80,] test_o<-obs[81:100] test_p<-preds[81:100,] data<-foreccomb(train_o, train_p, test_o, test_p) result<-cs_dispersion(data, measure = "SD") expect_length(result, 2) expect_equal(as.vector(result$CS_Dispersion[1:6]), c(1.064505, 0.793982, 1.042518, 0.724194, 0.690324, 0.590318), tolerance = 1e-5, check.attributes = FALSE) })
X <- nnTensor::toyModel("NMF") out1 <- myICA(X, k=10) expect_equivalent(dim(out1), c(100, 10))
ml_glm2 <- function(formula1, formula2 = ~1, data, family, mean.link, scale.link, offset = 0, start = NULL, verbose = FALSE) { mf <- model.frame(formula1, data) y <- model.response(mf, "numeric") class(y) <- c(family, mean.link, scale.link, "expFamily") X1 <- model.matrix(formula1, data = data) X2 <- model.matrix(formula2, data = data) colnames(X2) <- paste(colnames(X2), "_s", sep="") p <- ncol(X1) X <- cbind(X1, X2) if (any(is.na(cbind(y, X)))) stop("Some data are missing!") if (is.null(start)) { start <- c(kickStart(y, X1, offset), 1, rep(0, ncol(X) - p - 1)) names(start) <- c(colnames(X1), colnames(X2)) } fit <- maximize(start, Sjll2, X, y, offset, p = p) if (verbose | fit$convergence > 0) print(fit) beta.hat <- fit$par se.beta.hat <- sqrt(diag(solve(-fit$hessian))) residuals <- devianceResiduals2(y, beta.hat, X, p, offset) presiduals <- pearsonResiduals2(y, beta.hat, X, p, offset) fit.null <- maximize(c(mean(y), 1), Sjll2, X[,c(1,p+1)], y, offset, p = 1) null.deviance <- sum(devianceResiduals2(y, c(fit.null$par[1], fit$par[p+1]), X[,c(1,p+1)], 1, offset)^2) null.pearson <- sum(pearsonResiduals2(y, c(fit.null$par[1], fit$par[p+1]), X[,c(1,p+1)], 1, offset)^2) lin.pred <- as.matrix(X)[,1:p] %*% beta.hat[1:p] + offset y.hat <- unlink(y, lin.pred) results <- list(fit = fit, loglike = fit$val, X = X, y = y, p = p, rank = p, call = match.call(), obs = length(y), fitted.values = y.hat, linear.pedictor = lin.pred, df.null = length(y) - 2, df.residual = length(y) - length(beta.hat), pearson = sum(presiduals^2), null.pearson = null.pearson, dispersion = sum(presiduals^2)/(length(y) - length(beta.hat)), deviance = sum(residuals^2), null.deviance = null.deviance, residuals = residuals, presiduals = presiduals, coefficients = beta.hat, se.beta.hat = se.beta.hat, aic = - 2 * fit$val + 2 * length(beta.hat), offset = offset, i = fit$counts[1]) class(results) <- c("msme","glm") return(results) }
eblupMFH2 <- function (formula, vardir, MAXITER = 100, PRECISION = 1e-04, data){ r = length(formula) if(!missing(data)){ formula.matrix = lapply(formula, function(x){model.frame(x,na.action = na.omit,data)}) y.matrix = unlist(lapply(formula, function(x){model.frame(x,na.action = na.omit,data)}[[1]])) x.matrix = Reduce(adiag,lapply(formula, function(x){model.matrix(x,data)})) n = length(y.matrix)/r if(!all(vardir %in% names(data))) stop("Object vardir is not appropiate with data") if(length(vardir) != sum(1:r)) stop("Length of vardir is not appropiate with data") if (any(is.na(data[,vardir]))) stop("Object vardir contains NA values.") vardir = data[,vardir] R = df2matR(vardir, r) } else { formula.matrix = lapply(formula, function(x){model.frame(x,na.action = na.omit)}) y.matrix = unlist(lapply(formula, function(x){model.frame(x, na.action = na.omit)}[[1]])) x.matrix = Reduce(adiag,lapply(formula, function(x){model.matrix(x)})) n = length(y.matrix)/r if(dim(vardir)[2]!= sum(1:r)){ stop("Object vardir is not appropiate with data") } if (any(is.na(vardir))) stop("Object vardir contains NA values.") R = df2matR(vardir, r) } for(i in 1:r){ if (attr(attributes(formula.matrix[[i]])$terms,"response")==1) textformula = paste(formula[[i]][2],formula[[i]][1],formula[[i]][3]) else textformula = paste(formula[[i]][1],formula[[i]][2]) if (length(na.action(formula.matrix[[i]]))>0){ stop("Argument formula= ",textformula," contains NA values.") } } y.var = sapply(formula, "[[", 2) I=diag(n) Id = diag(r) d.Omega = list() sigmau = c(mean(sapply(vardir[,1:r], median)), 1 - 1e-04) kit = 0 diff = rep(PRECISION + 1,2) convergence = TRUE while (any(diff > rep(PRECISION,2)) & (kit < MAXITER)) { kit = kit + 1 sigmau1=sigmau Omega_AR = matrix(0, r,r) if(r == 1){ G = sigmau1[1]/(1-sigmau1[2]^2) } else { for(i in 1:r){ for(j in 1:r){ Omega_AR[i,j] = sigmau1[2]^(abs(i-j))/(1-sigmau1[2]^2) } } G = sigmau1[1] * Omega_AR } GI=kronecker(G,I) Omega = solve(GI + R) Xto = t(Omega %*% x.matrix) Q = solve(Xto %*% x.matrix) P = Omega - t(Xto) %*% Q %*% Xto d.Omega[[1]] = kronecker(Omega_AR, I) d.Omega[[2]] = matrix(NA, r,r) for(i in 1:r){ for(j in 1:r){ k = abs(i-j) d.Omega[[2]][i,j] = sigmau1[1]*(k*sigmau1[2]^(k-1) + (2-k)*(sigmau1[2]^(k+1)))/(1-sigmau1[2]^2)^2 } } d.Omega[[2]] = kronecker(d.Omega[[2]], I) Py = P %*% y.matrix s = sapply(d.Omega, function(x) (-0.5) * sum(diag(P%*%x)) + 0.5 * (t(Py)%*%x %*% Py)) iF = matrix(unlist(lapply(d.Omega, function(x) lapply(d.Omega, function(y) 0.5 * sum(diag(P%*%x%*%P%*%y))))),2) sigmau = sigmau1 + solve(iF)%*%s if(abs(sigmau[2]) > 1){ sigmau[2] = sigmau1[2] } diff = abs((sigmau - sigmau1)/sigmau1) } sigmau[1] = max(sigmau[1], 0) if (kit >= MAXITER && diff >= PRECISION) { convergence = FALSE } if(r == 1){ G = sigmau[1]/(1-sigmau[2]^2) } else { for(i in 1:r){ for(j in 1:r){ Omega_AR[i,j] = sigmau[2]^(abs(i-j))/(1-sigmau[2]^2) } } G = sigmau[1] * Omega_AR } GI=kronecker(G,I) Omega = solve(GI + R) Xto = t(Omega %*% x.matrix) Qh = solve(Xto %*% x.matrix) P = Omega - t(Xto) %*% Qh %*% Xto Py = P %*% y.matrix d.Omega[[1]] = kronecker(Omega_AR, I) d.Omega[[2]] = matrix(NA, r,r) for(i in 1:r){ for(j in 1:r){ k = abs(i-j) d.Omega[[2]][i,j] = sigmau[1]*(k*sigmau[2]^(k-1) + (2-k)*(sigmau[2]^(k+1)))/((1-sigmau[2]^2)^2) } } d.Omega[[2]] = kronecker(d.Omega[[2]], I) beta=Qh%*%Xto%*%y.matrix res=y.matrix-x.matrix%*%beta eblup=x.matrix%*%beta+GI%*%Omega%*%res eblup.df = data.frame(matrix(eblup, n, r)) names(eblup.df) = y.var se.b=sqrt(diag(Qh)) t.val=beta/se.b pv = 2 * pnorm(abs(t.val), lower.tail = FALSE) coef = cbind(beta, se.b, t.val, pv) colnames(coef) = c("beta", "std.error", "t.statistics", "p.value") FI=solve(iF) d=kronecker(Id,I)-GI%*%Omega gg1=diag(GI%*%Omega%*%R) gg2=diag(d%*%x.matrix%*%Qh%*%t(x.matrix)%*%t(d)) dg = lapply(d.Omega, function(x) x %*% Omega - GI %*% Omega %*% x %*% Omega) g3 = list() for (i in 1:2){ for (j in 1:2){ g3[[(i-1)*2+j]] = FI[i,j]*(dg[[i]]%*%(GI+R) %*% t(dg[[j]])) } } gg3 = diag(Reduce('+', g3)) mse = gg1 + gg2 + 2*gg3 mse.df = data.frame(matrix(0,n,r)) names(mse.df) = y.var for(i in 1:r) mse.df[,i] = mse[((i-1)*n+1):(i*n)] u.cap = GI %*% Omega %*% res u.cap.df = as.data.frame(matrix(u.cap, n, r)) names(u.cap.df) = y.var T.test = (sigmau[2,]) / (sqrt(FI[2,2])) p.val = 2 * pnorm(abs(T.test), lower.tail = FALSE) rho.df = data.frame(signif(data.frame(sigmau[2], T.test, p.val), digits = 5)) names(rho.df) = c("rho","T.test", "p-value") result = list(eblup = NA, MSE = NA, randomEffect=NA, Rmatrix=NA, fit = list(method = NA, convergence = NA , iterations = NA, estcoef= NA, refvar=NA, rho=NA, informationFisher=NA )) result$eblup = signif(eblup.df, digits = 5) result$MSE = signif(mse.df, digits = 5) result$randomEffect = signif(u.cap.df, digits = 5) result$Rmatrix = signif(R, digits = 5) result$fit$method = "REML" result$fit$convergence = convergence result$fit$iterations = kit result$fit$estcoef = coef result$fit$refvar = signif(sigmau[1,], digits = 5) result$fit$rho = rho.df result$fit$informationFisher = signif(iF, digits = 5) return(result) }
import_local_nut <- function(path, station_code, collMethd = c(1, 2), trace = FALSE){ if(file.exists(paste0(path, '.zip'))){ path <- paste0(path, '.zip') } if(!file.exists(path)){ stop('Path does not exist') } if(!grepl('wq|met|nut', station_code)) stop('station_code must include wq, met, or nut') if(!grepl('nut', station_code)){ stop('This function for nutrient stations only') } zips <- grepl('\\.zip$', path) station_code <- tolower(gsub('\\.csv$', '', station_code)) if(zips){ file_nms <- unzip(path, list = TRUE)$Name expr <- paste0(station_code, '.*', '\\.csv$') files_in <- grep(expr, file_nms, value = TRUE, ignore.case = TRUE) if(length(files_in) == 0) stop('File(s) not found.') tmp_fl <- tempfile() unzip(path, files = files_in, exdir = tmp_fl) files_in <- dir(tmp_fl, recursive = TRUE) path <- tmp_fl } else { file_nms <- dir(path) expr <- paste0('^', station_code, '.*', '\\.csv$') } files_in <- grep(expr, file_nms, value = TRUE, ignore.case = TRUE) if(length(files_in) == 0) stop('File(s) not found.') station_code <- tolower(station_code) dat <- vector('list', length(files_in)) names(dat) <- gsub('.csv', '', files_in) if(trace) cat('Loading files...\n\n') for(file_in in files_in){ tmp <- try({ read.csv(file.path(path, file_in), stringsAsFactors = FALSE) }, silent = TRUE) if('try-error' %in% class(tmp)){ raw <- readLines(file.path(path, file_in)) keep_lines <- grep(paste0('^', station_code), raw) tmp <- raw[keep_lines] tmp <- strsplit(tmp, ',') tmp <- do.call('rbind', tmp) tmp <- data.frame(tmp, stringsAsFactors = FALSE) names(tmp) <- strsplit( gsub('["\\"]', '', raw[keep_lines[1] - 1]), ',')[[1]] } names(tmp) <- tolower(names(tmp)) tmp <- tmp[, !names(tmp) %in% c('stationcode', 'isswmp')] names(tmp)[grep('datetimestamp', names(tmp), ignore.case = TRUE)] <- 'datetimestamp' tmp$datetimestamp <- time_vec(tmp$datetimestamp, station_code) nm <- gsub('.csv', '', file_in) dat[[nm]] <- tmp } if(zips) unlink(tmp_fl, recursive = TRUE) parm <- substring(station_code, 6) parm <- gsub('[0-9.*]', '', parm) nms <- param_names(parm)[[parm]] out <- do.call('rbind', dat) if(any(c('nut', 'wq') %in% parm) & any(duplicated(out$datetimestamp))){ out <- out[!duplicated(out$datetimestamp),] } out <- out[!is.na(out$datetimestamp), ] if(parm == 'nut'){ if(length(unique(out$collmethd)) == 2){ out <- out[out$collmethd %in% collMethd, ] }else{ warning('This station does not have diel sampling data. All data will be retained.', call. = FALSE) out <- out } } out <- data.frame( datetimestamp = out$datetimestamp, out[, names(out) %in% nms], row.names = seq(1, nrow(out)) ) names(out) <- tolower(names(out)) station_code <- gsub('[0-9]*$', '', station_code) out <- swmpr(out, station_code) if(trace) cat('\n\nData imported...') return(out) }
IFS.available.codes <- DataStructureMethod('IFS') names(IFS.available.codes) IFS.available.codes[[1]] CodeSearch(IFS.available.codes, 'CLL', 'GDP') CodeSearch(IFS.available.codes, 'CL_INDICATOR_IFS', 'GDP') CodeSearch(IFS.available.codes, 'CL_INDICATOR_IFS', 'GDPABCDE')
predIntNparSimultaneousTestPower <- function (n, n.median = 1, k = 1, m = 2, r = 1, rule = "k.of.m", lpl.rank = ifelse(pi.type == "upper", 0, 1), n.plus.one.minus.upl.rank = ifelse(pi.type == "lower", 0, 1), delta.over.sigma = 0, pi.type = "upper", r.shifted = r, method = "approx", NMC = 100, ci = FALSE, ci.conf.level = 0.95, integrate.args.list = NULL, evNormOrdStats.method = "royston") { rule <- match.arg(rule, c("k.of.m", "CA", "Modified.CA"), several.ok = TRUE) pi.type <- match.arg(pi.type, c("upper", "lower")) method <- match.arg(method, c("approx", "simulate")) if (!is.vector(n, mode = "numeric") || !all(is.finite(n)) || any(n < 2)) stop(paste("'n' must be a numeric vector", "with all elements greater than or equal to 2", "and no Missing (NA), Infinite (-Inf, Inf),", "or Undefined (Nan) values.")) if (!is.vector(n.median, mode = "numeric") || !all(is.finite(n.median)) || any(n.median < 1) || !all(n.median == trunc(n.median)) || !all(is.odd(n.median))) stop("'n.median' must be a numeric vector of positive odd integers") if (!is.vector(k, mode = "numeric") || !all(is.finite(k)) || any(k < 1)) stop(paste("'k' must be a numeric vector", "with all elements greater than or equal to 1", "and no Missing (NA), Infinite (-Inf, Inf),", "or Undefined (Nan) values.")) if (!is.vector(m, mode = "numeric") || !all(is.finite(m)) || any(m < 1)) stop(paste("'m' must be a numeric vector", "with all elements greater than or equal to 1", "and no Missing (NA), Infinite (Inf, -Inf),", "or Undefined (Nan) values.")) if (!is.vector(r, mode = "numeric") || !all(is.finite(r)) || any(r < 1)) stop(paste("'r' must be a numeric vector", "with all elements greater than or equal to 1", "and no Missing (NA), Infinite (-Inf, Inf),", "or Undefined (Nan) values.")) if (pi.type == "upper") lpl.rank <- 0 else n.plus.one.minus.upl.rank <- 0 if (!is.vector(lpl.rank, mode = "numeric") || !all(is.finite(lpl.rank)) || any(lpl.rank != trunc(lpl.rank)) || any(lpl.rank < 0 | lpl.rank >= n)) stop(paste("'lpl.rank' must be a vector of non-negative", "integers less than the corresponding value of 'n'")) if (pi.type == "lower" & any(lpl.rank < 1)) stop("When pi.type='lower', all values of 'lpl.rank' must be positive integers") if (!is.vector(n.plus.one.minus.upl.rank, mode = "numeric") || !all(is.finite(n.plus.one.minus.upl.rank)) || any(n.plus.one.minus.upl.rank != trunc(n.plus.one.minus.upl.rank)) || any(n.plus.one.minus.upl.rank < 0 | n.plus.one.minus.upl.rank >= n)) stop(paste("'n.plus.one.minus.upl.rank' must be a vector of non-negative", "integers less than the corresponding value of 'n'")) if (pi.type == "upper" & any(n.plus.one.minus.upl.rank < 1)) stop("When pi.type='upper' all values of 'n.plus.one.minus.upl.rank' must be positive integers") if (!is.vector(delta.over.sigma, mode = "numeric") || any(is.na(delta.over.sigma))) stop(paste("'delta.over.sigma' must be a numeric vector", "with no Missing (NA) or Undefined (Nan) values.")) if (!is.vector(r.shifted, mode = "numeric") || !all(is.finite(r.shifted)) || !all(r.shifted == trunc(r.shifted)) || any(r.shifted < 1) || any(r.shifted > r)) stop(paste("'r.shifted' must be a numeric vector of positive integers", "with all values less than or equal to", "the corresponding values of 'r'")) arg.mat <- cbind.no.warn(n = as.vector(n), n.median = as.vector(n.median), k = as.vector(k), m = as.vector(m), r = as.vector(r), lpl.rank = as.vector(lpl.rank), n.plus.one.minus.upl.rank = as.vector(n.plus.one.minus.upl.rank), delta.over.sigma = as.vector(delta.over.sigma), r.shifted = as.vector(r.shifted)) nrow.arg.mat <- nrow(arg.mat) length.rule <- length(rule) if (length.rule > nrow.arg.mat) arg.mat <- arg.mat[rep(1:nrow.arg.mat, length.out = length.rule), ] else rule <- rep(rule, length.out = nrow.arg.mat) for (i in c("n", "n.median", "k", "m", "r", "lpl.rank", "n.plus.one.minus.upl.rank", "delta.over.sigma", "r.shifted")) assign(i, arg.mat[, i]) index <- rule == "k.of.m" if (any(index)) { if (any(k[index] > m[index])) stop(paste("For cases where rule='k.of.m',", "all elements of 'k' must be less than or equal to", "the corresponding elements of 'm'")) } index <- rule == "Modified.CA" m[index] <- 4 N <- length(n) conf.level <- numeric(N) power <- numeric(N) for (i in 1:N) { conf.level[i] <- predIntNparSimultaneousConfLevel(n = n[i], n.median = n.median[i], k = k[i], m = m[i], r = r[i], rule = rule[i], lpl.rank = lpl.rank[i], n.plus.one.minus.upl.rank = n.plus.one.minus.upl.rank[i], pi.type = pi.type, integrate.args.list = integrate.args.list) } if (pi.type == "upper") pl.rank <- n + 1 - n.plus.one.minus.upl.rank else pl.rank <- lpl.rank if (method == "approx") { K <- numeric(N) for (i in 1:N) K[i] <- evNormOrdStatsScalar(r = pl.rank[i], n = n[i], method = evNormOrdStats.method) if (pi.type == "lower") K <- -K for (i in 1:N) { power[i] <- predIntNormSimultaneousTestPowerScalar(n = n[i], n.mean = n.median[i], K = K[i], k = k[i], m = m[i], r = r.shifted[i], rule = rule[i], delta.over.sigma = delta.over.sigma[i], pi.type = pi.type, conf.level = conf.level[i], integrate.args.list = integrate.args.list) } } else { for (i in 1:N) { n.i <- n[i] n.median.i <- n.median[i] k.i <- k[i] m.i <- m[i] r.i <- r[i] pl.rank.i <- pl.rank[i] r.shifted.i <- r.shifted[i] delta.over.sigma.i <- delta.over.sigma[i] mean.i <- c(rep(delta.over.sigma.i, r.shifted.i), rep(0, r.i - r.shifted.i)) out.vec <- logical(NMC) if (pi.type == "upper") { test.fcn <- switch(rule[i], k.of.m = function(z, PL, k) sum(z <= PL) < k, CA = function(z, PL, k) (z[1] > PL) & (sum(z > PL) >= 2), Modified.CA = function(z, PL, k) (z[1] > PL) & (sum(z > PL) >= 3)) } else { test.fcn <- switch(rule[i], k.of.m = function(z, PL, k) sum(z >= PL) < k, CA = function(z, PL, k) (z[1] < PL) & (sum(z < PL) >= 2), Modified.CA = function(z, PL, k) (z[1] < PL) & (sum(z < PL) >= 3)) } for (j in 1:NMC) { x <- rnorm(n.i) PL <- sort(x)[pl.rank.i] new.x <- array(rnorm(n.median.i * m.i * r.i, mean = mean.i), dim = c(r.i, n.median.i, m.i)) new.x <- apply(new.x, c(1, 3), median) out.vec[j] <- any(apply(new.x, 1, test.fcn, PL = PL, k = k.i)) } power[i] <- mean(out.vec) } if (ci) { SE.power <- sqrt(power * (1 - power)/NMC) LCL <- power - qnorm(ci.conf.level) * SE.power UCL <- power + qnorm(ci.conf.level) * SE.power attr(power, "conf.int") <- rbind(LCL = LCL, UCL = UCL) } } power }
mincontri<- function(mix,loc=NULL) { if(is.null(loc)) { tmp <- [email protected] tmp2 <- max(sapply(tmp,length))/2 return(ceiling(tmp2)) } else{ tmp <- [email protected][loc] tmp2 <- max(sapply(tmp,length))/2 return(ceiling(tmp2)) } }
library(civis) context("civis_ml_plot") model_list <- readRDS("data/civis_ml_models.rds") plotable_mods <- model_list[1:(length(model_list) - 4)] err_mod <- tail(model_list, n = 4) is_classif <- sapply(plotable_mods, function(m) is(m, "civis_ml_classifier")) test_that("decile plot for classification is produced", { ps <- lapply(plotable_mods[is_classif], function(m) plot(m)) expect_true(all(sapply(ps, is, "ggplot"))) plot_has_facets <- function(p) !is.null(p$facet) expect_true(all(sapply(ps, plot_has_facets))) plot_has_bars <- function(p) is((p[["layers"]][[1]][["geom"]]), "GeomBar") expect_true(all(sapply(ps, plot_has_bars))) plot_has_x_decile <- function(p) { all(p$data[["decile"]] %in% 1:10) } expect_true(all(sapply(ps, plot_has_x_decile))) }) ps <- lapply(plotable_mods[!is_classif], function(m) plot(m)) test_that("models with no metrics throw errors for hist and plot", { msg <- "Plotting data not available." for (m in err_mod) { e <- tryCatch(plot(m), error = function(e) e) expect_equal(e$message, msg) } msg <- "Histogram data not available." for (m in err_mod) { e <- tryCatch(hist(m), error = function(e) e) expect_equal(e$message, msg) } }) test_that("y_yhat plot for reg is produced", { expect_true(all(sapply(ps, is, "ggplot"))) plot_has_bins <- function(p) is(p[["layers"]][[1]][["geom"]], "GeomTile") expect_true(all(sapply(ps, plot_has_bins))) plot_vals_correct <- function(p, m) { all.equal(c(m$metrics$metrics$y_yhat_plot$values), p$data[["values"]]) } ms <- plotable_mods[!is_classif] expect_true(all(mapply(plot_vals_correct, ps, ms), fill = T)) }) test_that("hist is produced", { hs <- lapply(plotable_mods, function(m) hist(m)) expect_true(all(sapply(hs, is, "ggplot"))) plot_has_bars <- function(p) is(p[["layers"]][[1]][["geom"]], "GeomBar") expect_true(all(sapply(hs, plot_has_bars))) })
statsExpressions::`%>%` statsExpressions::`%<>%` statsExpressions::`%$%` statsExpressions::`%<-%` statsExpressions::tibble statsExpressions::enframe statsExpressions::as_tibble rlang::exec rlang::`!!` rlang::`!!!` rlang::`%|%` rlang::`%||%` rlang::`:=`
context("test enrich_dimension_export") test_that("enrich_dimension_export works", { tb <- enrich_dimension_export(st_mrs_age_test, name = "when_common", attributes = c("week", "year")) expect_equal( tb, structure( list( week = c("01", "02", "Unknown", "03", "04", "05"), year = c("1962", "1962", "Unknown", "1962", "1962", "1962") ), row.names = c(NA,-6L), name = "when_common", type = "role_playing", class = c("tbl_df", "tbl", "data.frame") ) ) })
walk_ast <- function(expr, walk_call) { counter <- counter_init() walk_expr(expr, counter, walk_call) sort(counter_get_names(counter)) } walk_expr <- function(expr, counter, walk_call) { if (!length(expr)) { return() } else if (is.call(expr)) { walk_call(expr, counter) lapply(expr, walk_expr, counter = counter, walk_call = walk_call) } else if (typeof(expr) == "closure") { walk_expr(formals(expr), counter, walk_call) walk_expr(body(expr), counter, walk_call) } else if (is.pairlist(expr) || is.recursive(expr)) { lapply(expr, walk_expr, counter = counter, walk_call = walk_call) } }
PEMlegend <- function() { par(mar=c(1, 1, 1, 1)) plot.new() legend("center", c("Behavior","PEM "), col = c("red","gray"), lwd = 1,ncol=2,bty ="n") }
simple_model <- function(data, Y_value, Fixed_Factor, ...){ Y <- substitute(Y_value) d <- substitute(data) ifelse(length(Fixed_Factor) == 1, Facs <- paste0(Fixed_Factor, collapse = ""), Facs <- paste0(Fixed_Factor, collapse = "*")) fo <- as.formula(paste(Y, Facs, sep = "~")) call1 <- paste0("lm(formula = ", deparse1(fo), ", data = ", deparse1(d), ", ...)") mod <- eval(parse(text = call1)) mod }
tar_test("graph$produce_upstream()", { edges <- pipeline_upstream_edges(pipeline_order(), targets_only = TRUE) graph <- graph_init(remove_loops(edges)) expect_equal(graph$produce_upstream("data1"), character(0)) expect_equal(graph$produce_upstream("data2"), character(0)) expect_equal(graph$produce_upstream("min1"), "data1") expect_equal(graph$produce_upstream("min2"), "data2") expect_equal(graph$produce_upstream("max1"), "data1") expect_equal(graph$produce_upstream("max2"), "data2") expect_equal(sort(graph$produce_upstream("mins")), sort(c("min1", "min2"))) expect_equal(sort(graph$produce_upstream("maxes")), sort(c("max1", "max2"))) expect_equal(sort(graph$produce_upstream("all")), sort(c("mins", "maxes"))) }) tar_test("graph$produce_downstream()", { edges <- pipeline_upstream_edges(pipeline_order(), targets_only = TRUE) graph <- graph_init(remove_loops(edges)) expect_equal( sort(graph$produce_downstream("data1")), sort(c("min1", "max1")) ) expect_equal( sort(graph$produce_downstream("data2")), sort(c("min2", "max2")) ) expect_equal(graph$produce_downstream("min1"), "mins") expect_equal(graph$produce_downstream("min2"), "mins") expect_equal(graph$produce_downstream("max1"), "maxes") expect_equal(graph$produce_downstream("max2"), "maxes") expect_equal(graph$produce_downstream("mins"), "all") expect_equal(graph$produce_downstream("maxes"), "all") expect_equal(graph$produce_downstream("all"), character(0)) }) tar_test("graph$produce_degrees(mode = \"in\")", { edges <- pipeline_upstream_edges(pipeline_order(), targets_only = TRUE) graph <- graph_init(remove_loops(edges)) expect_equal(graph$produce_degrees("data1", mode = "upstream"), 0L) expect_equal(graph$produce_degrees("data2", mode = "upstream"), 0L) expect_equal(graph$produce_degrees("min1", mode = "upstream"), 1L) expect_equal(graph$produce_degrees("min2", mode = "upstream"), 1L) expect_equal(graph$produce_degrees("max1", mode = "upstream"), 1L) expect_equal(graph$produce_degrees("max2", mode = "upstream"), 1L) expect_equal(graph$produce_degrees("mins", mode = "upstream"), 2L) expect_equal(graph$produce_degrees("maxes", mode = "upstream"), 2L) expect_equal(graph$produce_degrees("all", mode = "upstream"), 2L) expect_equal( graph$produce_degrees(c("all", "data1"), mode = "upstream"), c(2L, 0L) ) }) tar_test("graph$produce_degrees(mode = \"out\")", { edges <- pipeline_upstream_edges(pipeline_order(), targets_only = TRUE) graph <- graph_init(remove_loops(edges)) expect_equal(graph$produce_degrees("data1", mode = "out"), 2L) expect_equal(graph$produce_degrees("data2", mode = "out"), 2L) expect_equal(graph$produce_degrees("min1", mode = "out"), 1L) expect_equal(graph$produce_degrees("min2", mode = "out"), 1L) expect_equal(graph$produce_degrees("max1", mode = "out"), 1L) expect_equal(graph$produce_degrees("max2", mode = "out"), 1L) expect_equal(graph$produce_degrees("mins", mode = "out"), 1L) expect_equal(graph$produce_degrees("maxes", mode = "out"), 1L) expect_equal(graph$produce_degrees("all", mode = "out"), 0L) expect_equal( graph$produce_degrees(c("all", "data1"), mode = "out"), c(0L, 2L) ) }) tar_test("graph$insert_edges() upstream checks", { edges <- pipeline_upstream_edges(pipeline_order(), targets_only = TRUE) graph <- graph_init(remove_loops(edges)) new_edgelist <- data_frame( from = c("abc", "xyz", "min1", "other1"), to = c("data1", "data2", "123", "other2") ) graph$insert_edges(new_edgelist) upstream <- graph$upstream expect_null(upstream[["abc"]]) expect_null(upstream[["xyz"]]) expect_null(upstream[["other1"]]) expect_equal(upstream[["123"]], "min1") expect_equal(upstream[["other2"]], "other1") expect_equal(upstream[["data1"]], "abc") expect_equal(upstream[["data2"]], "xyz") expect_equal(upstream[["min1"]], "data1") expect_equal(upstream[["min2"]], "data2") expect_equal(upstream[["max1"]], "data1") expect_equal(upstream[["max2"]], "data2") expect_equal(sort(upstream[["mins"]]), sort(c("min1", "min2"))) expect_equal(sort(upstream[["maxes"]]), sort(c("max1", "max2"))) expect_equal(sort(upstream[["all"]]), sort(c("mins", "maxes"))) }) tar_test("graph$insert_edges() downstream checks", { edges <- pipeline_upstream_edges(pipeline_order(), targets_only = TRUE) graph <- graph_init(remove_loops(edges)) new_edgelist <- data_frame( from = c("abc", "xyz", "min1", "other1"), to = c("data1", "data2", "123", "other2") ) graph$insert_edges(new_edgelist) downstream <- graph$downstream expect_equal(downstream[["other1"]], "other2") expect_null(downstream[["other2"]]) expect_null(downstream[["123"]]) expect_equal(downstream[["abc"]], "data1") expect_equal(downstream[["xyz"]], "data2") expect_equal(sort(downstream[["min1"]]), sort(c("mins", "123"))) expect_equal(sort(downstream[["data1"]]), sort(c("min1", "max1"))) expect_equal(sort(downstream[["data2"]]), sort(c("min2", "max2"))) expect_equal(sort(downstream[["min1"]]), sort(c("123", "mins"))) expect_equal(downstream[["min2"]], "mins") expect_equal(downstream[["max1"]], "maxes") expect_equal(downstream[["max2"]], "maxes") expect_equal(downstream[["mins"]], "all") expect_equal(downstream[["maxes"]], "all") expect_null(downstream[["all"]]) }) tar_test("graph$replace_upstream()", { graph <- graph_init() new_edgelist <- data_frame( from = c("abc", "xyz", "123"), to = c("data1", "data1", "data2") ) graph$insert_edges(new_edgelist) expect_equal(sort(graph$upstream[["data1"]]), sort(c("abc", "xyz"))) graph$replace_upstream("data1", "xyz", "789") expect_equal(sort(graph$upstream[["data1"]]), sort(c("abc", "789"))) }) tar_test("graph$validate()", { edges <- pipeline_upstream_edges(pipeline_order(), targets_only = TRUE) graph <- graph_init(remove_loops(edges)) expect_silent(graph$validate()) })
get_rdf <- function(file){ if (!requireNamespace("xslt", quietly = TRUE)) { stop("xslt package required to convert to rdf", call. = FALSE) } xml_xslt <- getExportedValue("xslt", "xml_xslt") if(is(file, "nexml")){ who <- tempfile() nexml_write(x=file, file=who) file <- who } to_rdf <- system.file("examples", "RDFa2RDFXML.xsl", package="RNeXML") rdf <- rdf <- xml_xslt(xml2::read_xml(file), xml2::read_xml(to_rdf)) rdf }
phenorm_longit_simpl <- function(df, var_surrogate, surrogates_quali, id_rnd, rf = FALSE, ntree = 100, bool_weight = FALSE, p.noise = .3, bool_SAFE = TRUE, size = 10^5){ df.unid <- df %>% select(-id_rnd) colmin <- apply(df.unid, 2, min) fct_min <- function(x) min(x) > 0 df_transf <- df.unid %>% mutate_if(fct_min, .funs = function(x) log(1+x)) if(bool_SAFE){ lasso_sur <- safe_selection(df = df_transf, var_surrogate = var_surrogate, surrogate_quali = surrogates_quali, bool_weight = bool_weight) var.prediction <- lasso_sur$important_var } else { var.prediction <- colnames(df_transf) } df_select <- df_transf %>% select(var.prediction) x_matrix <- as.data.frame(df_select) rf_model <- NULL if(rf){ x_rf <- as.data.frame(x_matrix) rf_model <- randomForest::randomForest(x = x_rf[surrogates_quali != 3,], y = as.factor(surrogates_quali[surrogates_quali != 3]), ntree = ntree) sur_quali_rf <- predict(rf_model, x_rf) surrogates_quali <- as.numeric(as.character(sur_quali_rf)) } phenorm <- phenorm_longit_fit(x_matrix = x_matrix, y_sur = surrogates_quali, p.noise = p.noise, size = size, ID = df[,id_rnd]) return(list(model = phenorm, var.prediction = var.prediction, rf_model = rf_model )) }
get_table_readable <- function(table, endpoint) { get_fields(table, endpoint) }
"butterfly"
library(hamcrest) expected <- c(-0x1.02e2ac13ef8eep+2 + 0x1.782ebc592b0f2p+1i, 0x1.ebcc370a6681bp+1 + -0x1.a1fb0a2a2fd82p+1i, -0x1.7500f32b8cbeap+1 + 0x1.27377121757e4p+2i, 0x1.ebcc370a66804p+1 + -0x1.a1fb0a2a2fd7p+1i, -0x1.02e2ac13ef8efp+2 + 0x1.782ebc592b104p+1i) assertThat(stats:::fft(inverse=TRUE,z=c(-0.663984427460662+0.791932836256974i, -1.22572926077441-0.35639067155105i, -2.94672604778838-1.48843108985784i, 1.50907360675607+2.93620816008711i, -0.71771884260736+1.05560702652717i)) , identicalTo( expected, tol = 1e-6 ) )
fmla_lhs <- function(f, grp=NULL, lvl=NULL, rhs.lpad=FALSE) { fl = as.list(f) l=length(fl) rl = list() i=0 colon.op = FALSE Rn.op = FALSE lvl.found = FALSE if (l == 1) return(f) for (tm in fl) { i=i+1 if (i==1) { rl[[i]] = tm if (tm == ":") colon.op = TRUE if (tm == "Rn") Rn.op = TRUE if (tm == "|") rl[[i]] = as.symbol("+") } if (i > 1) { if (typeof(tm) == "language") {rl[[i]] = fmla_lhs(tm) } else if (tm == lvl) lvl.found = TRUE rl[[i]] = tm } } if (colon.op == TRUE) return(rl[[3]]) if (Rn.op == TRUE) return(rl[[2]]) if (rhs.lpad == TRUE && lvl.found == TRUE) return(rl[[2]]) return(as.call(rl)) } fmla_rhs <- function(f, span, Rnl=list(Rn.o=list(), Rn.n=NULL, rn.i=0), byvars=list(byvars1=NULL, byvars2=NULL, byvars.i=0) ) { fl = as.list(f) l=length(fl) rl = list() i=0; colon.op = FALSE Rn.op = FALSE cond.op = FALSE period.op = FALSE I.op = FALSE for (tm in fl) { i=i+1 if (i==1) { rl[[i]] = tm if (tm == ".") {period.op = TRUE;} if (tm == ":") {colon.op = TRUE} if (tm == "Rn") {Rn.op = TRUE; Rnl$rn.i<-Rnl$rn.i+1 Rnl$Rn.o[[Rnl$rn.i]] <- fl[[2]] Rnl$Rn.n <- c(Rnl$Rn.n, fl[[3]]) } if (tm == "|") { cond.op = TRUE rl[[i]] = as.symbol("+"); byvars$byvars.i=byvars$byvars.i+1; if (byvars$byvars.i==1) {byvars$byvars1 <- all.vars(fl[[3]])} if (byvars$byvars.i==2) { byvars$byvars2 <- byvars$byvars1 byvars$byvars1 <- all.vars(fl[[3]]) if (byvars$byvars1==".") {byvars$byvars1<-NULL} } } if (sum(colon.op, Rn.op, cond.op, period.op)==0) {I.op<-TRUE} } if (i > 1) { if (typeof(tm) == "language") { rhs.obj <- fmla_rhs(tm, span=span, Rnl=Rnl, byvars=byvars) rl <- c(rl, rhs.obj$rl) Rnl = rhs.obj$Rnl byvars = rhs.obj$byvars } else rl[[i]] = tm } } if (!span) {if (colon.op) {return(list(rl=rl[[3]], Rnl=Rnl, byvars=byvars))}} if (Rn.op) {return(list(rl=rl[[2]], Rnl=Rnl, byvars=byvars))} if (cond.op) {return(list(rl=rl[[2]], Rnl=Rnl, byvars=byvars))} if (I.op) {return(list(rl=as.call(rl), Rnl=Rnl, byvars=byvars))} if (period.op) { return(list(rl=as.symbol(rl[[1]]), Rnl=Rnl, byvars=byvars)) } return(list(rl=as.call(rl), Rnl=Rnl, byvars=byvars)) } fmla_inter <- function(f, data=NULL, regx=NA) { level <- NULL group <- NULL byvars <- NULL rhs.lpad <- FALSE grp <- NULL lvl <- NULL lvl.v <- NULL byvars1.v <- NULL byvars2.v <- NULL fl = as.list(f) rl = list() l = length(fl) rhs <- if(l > 2) fl[[3]] else fl[[2]] lhs <- if(l > 2) fl[[2]] else NULL if (length(all.vars(lhs)) == 1 ) { rhs.lpad = FALSE lvl = all.vars(lhs)[1] } if (length(all.vars(lhs)) > 1 ) { rhs.lpad = TRUE grp = all.vars(lhs)[1] lvl = all.vars(lhs)[2] } rhs.obj <- fmla_rhs(rhs, span=FALSE) rhs.obj.span <- fmla_rhs(rhs, span=TRUE) rhs = rhs.obj$rl rhs.span = rhs.obj.span$rl Rn.o <- as.character(unlist(rhs.obj$Rnl$Rn.o)) Rn.n <- rhs.obj$Rnl$Rn.n if (!is.null(lhs)) { lhs = fmla_lhs(lhs, grp, lvl, rhs.lpad) fmla = as.call(list(as.symbol("~"), lhs, rhs)) fmla.span = as.call(list(as.symbol("~"), lhs, rhs.span)) } else { fmla = as.call(list(as.symbol("~"), rhs)) fmla.span = as.call(list(as.symbol("~"), rhs.span)) } fmla.span <- as.formula(fmla.span) fmla <- as.formula(fmla) trms <- terms(fmla.span, data=data, keep.order=T) t.trmlbls <- attr(trms, "term.labels") if (!is.null(lvl)) {if (lvl=="."){lvl<- NULL} else {lvl.v <- data[,lvl]} } if (!is.null(rhs.obj$byvars$byvars1)) {byvars1.v <- data[,rhs.obj$byvars$byvars1]} if (!is.null(rhs.obj$byvars$byvars2)) {byvars2.v <- data[,rhs.obj$byvars$byvars2]} if (sum(!is.null(rhs.obj$byvars$byvars1), !is.null(rhs.obj$byvars$byvars2), !is.null(lvl))) { byvartrms <- which(t.trmlbls %in% c(rhs.obj$byvars$byvars1, rhs.obj$byvars$byvars2, lvl)) if (length(byvartrms)>0) {t.trmlbls <- t.trmlbls[-byvartrms]} } colnames.obj <- colnames.struct(t.trmlbls, FALSE) if (length(Rn.o) > 0) {for (rn.i in 1:length(Rn.o)) {colnames.obj$cname[colnames.obj$cname == Rn.o[rn.i]] <- Rn.n[rn.i]}} colnames.obj <- colnames.linebreak(colnames.obj) colnames.obj <- colnames.row(colnames.obj) if (!is.na(regx)) {colnames.obj$cname <- kill.multiregx(colnames.obj$cname, regx=regx)} trms.cn <- attr(terms(fmla, data=data), "term.labels") trms.cn <- kill.multiregx(trms.cn, "`") data=model.frame(fmla, data) cn.dx <- which(colnames(data) %in% c(grp, trms.cn)) data <-data[,cn.dx] if (!is.data.frame(data)) {data <- as.data.frame(data)} if(!is.null(lvl)) {data[,lvl] <- lvl.v} if(!is.null(byvars1.v)) {data[,rhs.obj$byvars$byvars1] <- byvars1.v} if(!is.null(byvars2.v)) {data[,rhs.obj$byvars$byvars2] <- byvars2.v} return(list(tbl=data, group=grp, label=lvl, byvars1=rhs.obj$byvars$byvars1, byvars2=rhs.obj$byvars$byvars2, fmla=fmla, colnames.obj=colnames.obj)) }
portfolioBacktesting <- function(formula, data, spec = portfolioSpec(), constraints = "LongOnly", backtest = portfolioBacktest(), trace = TRUE) { if (class(data) == "fPFOLIODATA") { Data <- data data <- getSeries(data) } else if (class(data) == "timeSeries") { Data <- portfolioData(data, spec) } if (class(constraints) == "fPFOLIOSPEC") { Constraints <- constraints constraints <- Constraints@stringConstraints } else if (class(constraints) == "character") { Constraints <- portfolioConstraints(data, spec, constraints) } benchmarkName = as.character(formula)[2] assetsNames <- strsplit(gsub(" ", "", as.character(formula)[3]), "\\+")[[1]] nAssets <- length(assetsNames) if(trace) { cat("\nPortfolio Backtesting:\n") cat("\nAssets: ", assetsNames) cat("\nBenchmark: ", benchmarkName) cat("\nStart Series: ", as.character(start(data))) cat("\nEnd Series: ", as.character(end(data))) cat("\n Type: ", getType(spec)) cat("\n Cov Estimator: ", getEstimator(spec)) cat("\n Solver: ", getSolver(spec)) cat("\nPortfolio Windows: ", getWindowsFun(backtest)) cat("\n Horizon: ", getWindowsHorizon(backtest)) cat("\nPortfolio Strategy: ", getStrategyFun(backtest)) cat("\nPortfolio Smoother: ", getSmootherFun(backtest)) cat("\n doubleSmoothing: ", getSmootherDoubleSmoothing(backtest)) cat("\n Lambda: ", getSmootherLambda(backtest)) } if(trace) { cat("\n\nPortfolio Optimization:") cat("\nOptimization Period\tTarget\tBenchmark\t Weights\n") } windowsFun <- match.fun(getWindowsFun(backtest)) rollingWindows <- windowsFun(data, backtest) from <- rollingWindows$from to <- rollingWindows$to strategyFun <- match.fun(getStrategyFun(backtest)) strategyList <- list() Sigma <- NULL for (i in 1:length(from)) { pfSeries <- window(data[, assetsNames], start = from[i], end = to[i]) bmSeries <- window(data[, benchmarkName], start = from[i], end = to[i]) pfSeries <- portfolioData(pfSeries, spec) Sigma <- c(Sigma, mean(diag(getSigma(pfSeries)))) strategy <- strategyFun( data = getSeries(pfSeries), spec = spec, constraints = constraints, backtest = backtest) strategyList[[i]] <- strategy if (trace) { cat(as.character(from[i]), as.character(to[i])) spReturn <- getTargetReturn(strategy@portfolio)[[2]] cat("\t", round(spReturn[1], digits = 3)) bmReturn <- mean(series(bmSeries)) cat("\t", round(bmReturn, digits = 3)) nAssets <- length(assetsNames) weights <- round(getWeights(strategy), digits = 3) cat("\t") for (i in 1:length(assetsNames)) cat("\t", weights[i]) cat("\t * ", round(sum(weights), 2)) cat("\n") } } weights <- NULL for (i in 1:length(strategyList)) weights <- rbind(weights, getWeights(strategyList[[i]])) rownames(weights) <- as.character(to) colnames(weights) <- assetsNames ans <- list( formula = formula, data = data, spec = spec, constraints = constraints, backtest = backtest, benchmarkName = benchmarkName, assetsNames = assetsNames, weights = weights, strategyList = strategyList, Sigma = Sigma) class(ans) <- c("portfolioBacktesting", "list") invisible(ans) } portfolioSmoothing <- function(object, backtest=NULL, trace=TRUE) { if (!is.null(backtest)) { warning("The backtest argument is obsolete and will be removed for the next release.") } formula <- object$formula data <- object$data spec <- object$spec constraints <- object$constraints backtest <- object$backtest benchmarkName <- object$benchmarkName assetsNames <- object$assetsNames weights <- object$weights skip <- getSmootherSkip(backtest) if (skip > 0) weights <- weights[-(1:skip), ] nAssets <- ncol(weights) if (trace) print("smooth ...") smoother <- match.fun(getSmootherFun(backtest)) smoothWeights <- object$smoothWeights <- smoother(weights, spec, backtest) if (trace) print("aggregate ...") ow <- options("warn") options(warn = -1) monthlyAssets <- object$monthlyAssets <- applySeries(data[, assetsNames], by = "monthly", FUN = colSums) monthlyBenchmark <- object$monthlyBenchmark <- applySeries(data[, benchmarkName], by = "monthly", FUN = colSums) options(ow) if (trace) print("offset ...") cumX <- colCumsums(data[, benchmarkName]) lastX <- window(cumX, start = start(cumX), end = rownames(weights)[1] ) offsetReturn <- as.vector(lastX[end(lastX), ]) names(offsetReturn) <- as.character(end(lastX)) object$offsetReturn <- offsetReturn Datum <- as.vector(rownames(smoothWeights)) nDatum <- length(Datum) Portfolio = Benchmark = NULL for (i in 1:(nDatum-1)) { Portfolio <- rbind(Portfolio, as.vector(( as.matrix(monthlyAssets[Datum[i+1], ]) %*% smoothWeights[Datum[i], ]))) Benchmark <- rbind(Benchmark, as.vector(monthlyBenchmark[Datum[i+1], ])) } P <- timeSeries(data = Portfolio, charvec = Datum[-1], units = "Portfolio") object$portfolioReturns <- portfolio <- colCumsums(P) object$P <- P B <- timeSeries(data = Benchmark, charvec = Datum[-1], units = "Benchmark") object$benchmarkReturns <- benchmark <- colCumsums(B) object$B <- B daily <- colCumsums(data[, benchmarkName]) Daily <- window(daily, start = start(portfolio), end = end(portfolio)) portfolio <- portfolio - portfolio[1] + Daily[1] benchmark <- benchmark - benchmark[1] + Daily[1] object$portfolio <- portfolio object$benchmark <- benchmark P <- as.vector(P) B <- as.vector(B) Stats <- c(sum(P, na.rm = TRUE), sum(B)) Stats <- rbind(Stats, c(mean(P, na.rm = TRUE), mean(B))) Stats <- rbind(Stats, c(sd(P, na.rm = TRUE), sd(B))) Stats <- rbind(Stats, c(min(P, na.rm = TRUE), min(B))) colnames(Stats) <- c( "Portfolio", "Benchmark") rownames(Stats) <- c( "Total Return", "Mean Return", "StandardDev Return", "Maximum Loss") object$stats <- Stats class(object) <- c("portfolioSmoothing", "list") object }
check_known_collections <- function(R, M) { ret <- FALSE if(!is.null(R[["known_collection"]]) && is.null(M[["known_collection"]])) { stop("Reference data frame has known_collection column, but not the mixture data frame.") } if(!is.null(M[["known_collection"]]) && is.null(R[["known_collection"]])) { stop("Mixture data frame has known_collection column, but not the reference data frame.") } if(!is.null(R[["known_collection"]])) { if(!is.character(R[["known_collection"]])) { stop("Column known_collection in reference data frame must be a character vector.") } } if(!is.null(M[["known_collection"]])) { if(!is.character(M[["known_collection"]])) { stop("Column known_collection in mixture data frame must be a character vector.") } KC <- M[["known_collection"]] uKC <- unique(KC[!is.na(KC)]) mKC <- setdiff(uKC, unique(R[["collection"]])) if(length(mKC) > 0) { stop("These known_collection entries in mixture data frame not found amongst reference collections: ", paste(mKC, collapse = ", "), ". Please fix that and try again.") } ret <- any(!is.na(KC)) } ret }
socket <- function(protocol = c("pair", "bus", "push", "pull", "req", "rep", "pub", "sub", "surveyor", "respondent"), dial = NULL, listen = NULL, autostart = TRUE) { protocol <- match.arg(protocol) res <- .Call(rnng_protocol_open, protocol) if (is.integer(res)) message(res, " : ", nng_error(res)) if (!missing(dial)) { dial(res, url = dial, autostart = autostart) } if (!missing(listen)) { listen(res, url = listen, autostart = autostart) } res } subscribe <- function(socket, topic = NULL) { xc <- .Call(rnng_socket_set_string, socket, "sub:subscribe" , topic) if (xc) message(xc, " : ", nng_error(xc)) else message("subscribed topic: ", if (is.null(topic)) "ALL" else topic) invisible(xc) } unsubscribe <- function(socket, topic = NULL) { xc <- .Call(rnng_socket_set_string, socket, "sub:unsubscribe" , topic) if (xc) message(xc, " : ", nng_error(xc)) else message("unsubscribed topic: ", if (is.null(topic)) "ALL" else topic) invisible(xc) }
setClass ( Class = "DiscernibilityMatrix", representation = representation( discernibilityMatrix = "array" ), validity = function(object){ if(length(dim(object@discernibilityMatrix)) != 3){ stop ("[DiscernibilityMatrix: validation] Discernibility Matrix must be an 3 dim array") }else{} return(TRUE) } ) setMethod ( f="initialize", signature="DiscernibilityMatrix", definition=function(.Object,discernibilityMatrix){ if(!missing(discernibilityMatrix)){ .Object@discernibilityMatrix <- discernibilityMatrix validObject(.Object) }else{ .Object@discernibilityMatrix <- matrix(nrow=0,ncol=0) } return(.Object) } ) discernibilityMatrix <- function(theDiscernibilityMatrix){ new (Class="DiscernibilityMatrix",discernibilityMatrix = theDiscernibilityMatrix) } setGeneric("getDiscernibilityMatrix",function(object){standardGeneric ("getDiscernibilityMatrix")}) setMethod("getDiscernibilityMatrix","DiscernibilityMatrix", function(object){ return(object@discernibilityMatrix) } ) setMethod ("print","DiscernibilityMatrix", function(x,...){ cat("*** Class DiscernibilityMatrix, method Print *** \n") disMat <- x@discernibilityMatrix if(length(disMat) != 0){ mat <- .buildPrintMatrix(disMat) print(formatC(mat),quote=FALSE) }else{} cat("******* End Print (DiscernibilityMatrix) ******* \n") } ) setMethod("show","DiscernibilityMatrix", function(object){ cat("*** Class DiscernibilityMatrix, method Show *** \n") cat("* DiscernibilityMatrix (limited to a matrix 10x10) = \n") disMat <- object@discernibilityMatrix if(length(disMat) != 0){ mat <- .buildPrintMatrix(disMat) nrowShow <- min(10,nrow(mat)) ncolShow <- min(10,ncol(mat)) print(formatC(mat[1:nrowShow,1:ncolShow]),quote=FALSE) }else{} cat("******* End Show (DiscernibilityMatrix) ******* \n") } ) setGeneric (name = "computeCore",def = function(object){standardGeneric("computeCore")}) setMethod( f = "computeCore", signature = "DiscernibilityMatrix", definition = function(object){ dm <- object@discernibilityMatrix core <- .computeCore(dm) return(core) } ) .buildPrintMatrix <- function(theArray){ disMat <- theArray lenI <- dim(disMat)[1] lenJ <- dim(disMat)[2] lenK <- dim(disMat)[3] if(length(disMat) != 0){ mat <- matrix(NA,nrow = lenI, ncol = lenJ) for(i in 1:lenI){ for(j in 1:lenJ){ ij <- disMat[i,j,] partialElement <- vector(mode = "numeric",length = 0) partialCounter <- 0 for(k in 1:lenK){ if(!is.na(ij[k])){ if(ij[k]){ partialCounter <- (partialCounter +1) partialElement[partialCounter] <- k }else{} }else{} } if(length(partialElement) > 0){ mat[i,j] <- paste("C",partialElement,sep="",collapse=",") }else{} } } mat <- t(mat) rownames(mat) <- paste("R",1:nrow(mat),sep="") colnames(mat) <- paste("R",1:nrow(mat),sep="") }else{} return(mat) } .computeCore <- function(theDiscernibilityMatrix){ ruleCount <- nrow(theDiscernibilityMatrix) discernibilityMatrix <- theDiscernibilityMatrix idRedMat <- apply(discernibilityMatrix,c(1,2),.reductIdentification) idRedVec <- vector(mode = "numeric", length = 0) for(i in 1:ruleCount){ for(j in 1:ruleCount){ if(!is.na(idRedMat[i,j])){ idRedVec[length(idRedVec) + 1] <- idRedMat[i,j] }else{} } } idRedVec <- unique(idRedVec) idRedVec <- sort(idRedVec) return(idRedVec) } .reductIdentification <- function(discernibilityMatrixElement){ conditionCount <- length(discernibilityMatrixElement) result <- NA if(sum(discernibilityMatrixElement,na.rm = TRUE) == 1){ for(i in 1:conditionCount){ if(discernibilityMatrixElement[i] == TRUE){ result <- i break }else{} } }else if(sum(discernibilityMatrixElement,na.rm = TRUE) != 1){ result <- NA }else{} return(result) }
viewTIC <- function(x, Seq = NULL, Batch = NULL, Group = NULL, Trans = "none", resultBy = "Group"){ value = NULL Group <- as.factor(Group) if(is.null(Group)){stop("Please include group information")} if(is.null(Seq)){Seq = 1:nrow(x)} if(length(Group) != nrow(x)){stop("Missing group informaiton detected")} if(!(resultBy %in% c("Group", "Batch"))){stop("Please choose if you want to show the result by Batch or by Group?")} x[x == 0] <- 1 if(toupper(Trans) == "LOG2"){x = log2(x)} if(toupper(Trans) == "LOG10"){x = log10(x)} if(is.null(Batch)) { dat2 <- cbind.data.frame(Seq = Seq, Group = Group, x) dat2 <- dat2[order(dat2$Seq, dat2$Group), ] dat3 <- melt(dat2, id = c("Seq", "Group")) } else { dat2 <- cbind.data.frame(Seq = Seq, Batch = Batch, Group = Group, x) dat2 <- dat2[order(dat2$Seq, dat2$Batch, dat2$Group), ] dat3 <- melt(dat2, id = c("Seq", "Batch", "Group")) } dat3$Group <- as.factor(dat3$Group) dat3$Seq <- as.factor(dat3$Seq) if(resultBy == "Group"){ p <- ggplot2::ggplot(dat3, aes(x = Seq, y = value, fill = Group)) + geom_boxplot(alpha = 0.5) + facet_grid(. ~ Group, scales = "free_x", space = "free_x") + theme_bw() + xlab("Sample (injection sequence)") + ylab("Intensity") } else if (resultBy == "Batch"){ dat3$Batch <- as.factor(dat3$Batch) p <- ggplot2::ggplot(dat3, aes(x = Seq, y = value, fill = Batch)) + geom_boxplot(alpha = 0.5) + facet_grid(. ~ Batch, scales = "free_x", space = "free_x") + theme_bw() + xlab("Sample (injection sequence)") + ylab("Intensity") } return(p) }
.dtsq <- function(x, param, df, log = FALSE){ fx <- x*(df - param + 1)/(param*df) p <- df(fx, param, df - param + 1, log=log) if(log) p + log((df - param + 1)/(param*df)) else p*((df - param + 1)/(param*df)) } .ptsq <- function (q, param, df, lower.tail = TRUE, log.p = FALSE){ fq <- q*(df - param + 1)/(param*df) pf(fq, param, df - param + 1, lower.tail=lower.tail, log.p=log.p) } .qtsq <- function(p, param, df, lower.tail = TRUE, log.p = FALSE){ fq <- qf(p, param, df - param + 1, lower.tail=lower.tail, log.p=log.p) fq / ((df - param + 1)/(param*df)) } approx.hotelling.diff.test<-function(x,y=NULL, mu0=0, assume.indep=FALSE, var.equal=FALSE, ...){ if(!is.mcmc.list(x)) x <- mcmc.list(mcmc(as.matrix(x))) if(!is.null(y) && !is.mcmc.list(y)) y <- mcmc.list(mcmc(as.matrix(y))) if(is.null(mu0)) mu0 <- rep(0,nvar(x)) mu0 <- rep(mu0, length.out = nvar(x)) tr <- function(x) sum(diag(as.matrix(x))) vars <- list(x=list(v=x)) if(!is.null(y)) vars$y <- list(v=y) vars <- lapply(if(is.null(y)) list(x=x) else list(x=x,y=y), function(v, ...){ vm <- as.matrix(v) vcov.indep <- cov(vm) if(assume.indep){ vcov <- vcov.indep }else{ vcov <- ERRVL(try(spectrum0.mvar(v, ...), silent=TRUE), stop("Unable to compute autocorrelation-adjusted standard errors.")) } m <- colMeans(vm) n <- nrow(vm) infl <- if(assume.indep) 1 else attr(vcov, "infl") neff <- n / infl vcov.m <- vcov/n list(v=v, vm=vm, m=m, n=n, vcov.indep=vcov.indep, vcov=vcov, infl=infl, neff=neff, vcov.m=vcov.m) }, ...) x <- vars$x y <- vars$y d <- x$m vcov.d <- x$vcov.m if(!is.null(y)){ d <- d - y$m if(var.equal){ vcov.pooled <- (x$vcov*(x$n-1) + y$vcov*(y$n-1))/(x$n+y$n-2) vcov.d <- vcov.pooled * (1/x$n + 1/y$n) }else{ vcov.d <- vcov.d + y$vcov.m } } p <- nvar(x$v) names(mu0)<-varnames(x$v) novar <- diag(vcov.d)==0 p <- p-sum(novar) if(p==0) stop("data are essentially constant") ivcov.d <-ginv(vcov.d[!novar,!novar,drop=FALSE]) method <- paste0("Hotelling's ", NVL2(y, "Two", "One"), "-Sample",if(var.equal) " Pooled"," T^2-Test", if(!assume.indep) " with correction for autocorrelation") if(any((d-mu0)[novar]!=0)){ warning("Vector(s) ", paste.and(colnames(x)[novar]), NVL2(y, " do not vary and do not equal mu0", " do not vary in x or in y and have differences unequal to mu0"), "; P-value has been set to 0.") T2 <- +Inf }else{ if(any(novar)){ warning("Vector(s) ", paste.and(colnames(x)[novar]), NVL2(y, " do not vary but equal mu0", " do not vary in x or in y but have differences equal to mu0"), "; they have been ignored for the purposes of testing.") } T2 <- c(t((d-mu0)[!novar])%*%ivcov.d%*%(d-mu0)[!novar]) } NANVL <- function(z, ifNAN) ifelse(is.nan(z),ifNAN,z) names(T2) <- "T^2" pars <- c(param = p, df = if(is.null(y)){ NANVL(x$neff,1)-1 }else if(var.equal){ NANVL(x$neff,1)+NANVL(y$neff,1)-2 }else{ (p+p^2)/( NANVL((tr(x$vcov.m[!novar,!novar] %*% ivcov.d %*% x$vcov.m[!novar,!novar] %*% ivcov.d) + tr(x$vcov.m[!novar,!novar] %*% ivcov.d)^2)/x$neff,0) + NANVL((tr(y$vcov.m[!novar,!novar] %*% ivcov.d %*% y$vcov.m[!novar,!novar] %*% ivcov.d) + tr(y$vcov.m[!novar,!novar] %*% ivcov.d)^2)/y$neff,0)) }) if(pars[1]>=pars[2]) warning("Effective degrees of freedom (",pars[2],") must exceed the number of varying parameters (",pars[1],"). P-value will not be computed.") out <- list(statistic=T2, parameter=pars, p.value=if(pars[1]<pars[2]) .ptsq(T2,pars[1],pars[2],lower.tail=FALSE) else NA, method = method, null.value=mu0, alternative="two.sided", estimate = d, covariance = vcov.d, covariance.x = x$vcov.m, covariance.y = y$vcov.m, novar = novar) class(out)<-"htest" out } geweke.diag.mv <- function(x, frac1 = 0.1, frac2 = 0.5, split.mcmc.list = FALSE, ...){ if(is.mcmc.list(x)){ if(split.mcmc.list){ return(lapply(x, geweke.diag.mv, frac1, frac2, ...)) } }else{ x <- as.mcmc(x) } x.len <- end(x) - start(x) x1 <- window(x, start=start(x), end=start(x) + frac1*x.len) x2 <- window(x, start=end(x) - frac2*x.len, end=end(x)) test <- ERRVL(try(approx.hotelling.diff.test(x1,x2,var.equal=TRUE,...), silent=TRUE), { warning("Multivariate Geweke diagnostic failed, probably due to insufficient sample size.", call.=FALSE, immediate.=TRUE) test <- structure(list(p.value=NA), class="htest") }) if(is.na(test$p.value)) test$p.value <- 0 test$method <- paste("Multivariate extension to Geweke's burn-in convergence diagnostic") test } spectrum0.mvar <- function(x, order.max=NULL, aic=is.null(order.max), tol=.Machine$double.eps^0.5, ...){ breaks <- if(is.mcmc.list(x)) c(0,cumsum(sapply(x, niter))) else NULL x <- as.matrix(x) n <- nrow(x) p <- ncol(x) v <- matrix(0,p,p) novar <- abs(apply(x,2,stats::sd))<tol x <- x[,!novar,drop=FALSE] if(ncol(x) == 0) stop("All variables are constant.") first_local_min <- function(x){ d <- diff(c(Inf,x,Inf)) min(which(d>=0))-1 } e <- eigen(cov(x), symmetric=TRUE) Q <- e$vectors[,sqrt(pmax(e$values,0)/max(e$values))>tol*2,drop=FALSE] xr <- x%*%Q ind.var <- cov(xr) xr <- if(!is.null(breaks)) do.call(mcmc.list,lapply(lapply(seq_along(breaks[-1]), function(i) xr[(breaks[i]+1):(breaks[i+1]),,drop=FALSE]), mcmc)) else as.mcmc.list(mcmc(xr)) ord <- NVL(order.max, ceiling(10*log10(niter(xr)))) xr <- do.call(rbind, c(lapply(unclass(xr)[-nchain(xr)], function(z) rbind(cbind(z), matrix(NA, ord, nvar(z)))), unclass(xr)[nchain(xr)])) arfit <- .catchToList(ar(xr,aic=is.null(order.max), order.max=ord, na.action=na.pass, ...)) while((!is.null(arfit$error) || ERRVL(try(any(eigen(arfit$value$var.pred, only.values=TRUE)$values<0), silent=TRUE), TRUE)) && ord > 0){ ord <- ord - 1 if(ord<=0) stop("Unable to fit ar() even with order 1; this is likely to be due to insufficient sample size or a trend in the data.") arfit <- .catchToList(ar(xr,aic=is.null(order.max), order.max=ord, na.action=na.pass, ...)) } arfit <- arfit$value if(aic && arfit$order>(ord <- first_local_min(arfit$aic)-1)){ arfit <- ar(xr, aic=ord==0, order.max=max(ord,1), na.action=na.pass) } arvar <- arfit$var.pred arcoefs <- arfit$ar arcoefs <- NVL2(dim(arcoefs), apply(arcoefs,2:3,base::sum), sum(arcoefs)) adj <- diag(1,nrow=ncol(xr)) - arcoefs iadj <- solve(adj) v.var <- iadj %*% arvar %*% t(iadj) infl <- exp((determinant(v.var)$modulus-determinant(ind.var)$modulus)/ncol(ind.var)) v.var <- Q%*%v.var%*%t(Q) v[!novar,!novar] <- v.var attr(v, "infl") <- infl v }
context("Utility") test_that("MVP.Version() works fine.", { expect_output(MVP.Version()) })
quartetStarTestInd = function(rqt) { M = dim(rqt)[1] qcols = c("12|34", "13|24", "14|23") rqt = cbind(rqt, p_star = 0) message("Applying hypothesis test for star tree model to ",M," quartets.") for (i in 1:M) { obs = rqt[i, qcols] rqt[i, "p_star"] = quartetStarTest(obs) } return(rqt) } quartetStarTest = function(obs) { z = chisq.test(obs) p = z$p.value return(p) }
NULL ENG <- function(x, ...) { UseMethod("ENG") } ENG.formula <- function(formula, data, ...) { if(!is.data.frame(data)){ stop("data argument must be a data.frame") } modFrame <- model.frame(formula,data) attr(modFrame,"terms") <- NULL ret <- ENG.default(x=modFrame,...,classColumn = 1) ret$call <- match.call(expand.dots = TRUE) ret$call[[1]] <- as.name("ENG") cleanData <- data if(!is.null(ret$repIdx)){ cleanData[ret$repIdx,which(colnames(cleanData)==colnames(modFrame)[1])] <- ret$repLab } ret$cleanData <- cleanData[setdiff(1:nrow(cleanData),ret$remIdx),] return(ret) } ENG.default <- function(x, graph = "RNG", classColumn=ncol(x), ...) { if(!is.data.frame(x)){ stop("data argument must be a data.frame") } if(!classColumn%in%(1:ncol(x))){ stop("class column out of range") } if(!is.factor(x[,classColumn])){ stop("class column of data must be a factor") } if(!graph%in%c("RNG","GG")){ stop("the 'graph' argument must be either 'GG' (Gabriel Graph) or 'RNG' (Relative Neighborhood Graph)") } PG <- sapply(1:(nrow(x)-1),function(i){c(rep(NA,i), sapply((i+1):nrow(x),function(j){isNeighbor(i,j,x,graph,classColumn)}))}) PG <- cbind(PG,rep(NA,nrow(x))) for(i in 1:(nrow(x)-1)){ for(j in (i+1):nrow(x)){ PG[i,j] <- PG[j,i] } } isMisclassified <- sapply(1:nrow(x),function(i){ classes <- table(x[PG[i,],classColumn]) if(names(classes)[nnet::which.is.max(classes)]==x[i,classColumn]){ out <- FALSE }else{ out <- TRUE } return(out) }) toRemove <- sapply(which(isMisclassified),function(i){ sameClassNeigh <- c(i,which(PG[i,] & x[,classColumn]==x[i,classColumn])) classes <- character(0) for(j in sameClassNeigh){ classes <- c(classes,as.character(x[PG[j,],classColumn])) } tableClasses <- table(classes) if(names(tableClasses)[nnet::which.is.max(tableClasses)]==x[i,classColumn]){ out <- FALSE } else{ out <- TRUE } return(out) }) remIdx <- which(isMisclassified)[toRemove] cleanData <- x[setdiff(1:nrow(x),remIdx),] repIdx <- NULL repLab <- NULL parameters <- list(graph=graph) call <- match.call() call[[1]] <- as.name("ENG") ret <- list(cleanData = cleanData, remIdx = remIdx, repIdx=repIdx, repLab=repLab, parameters=parameters, call = call, extraInf = NULL ) class(ret) <- "filter" return(ret) } distt <- function(x,y){ class <- sapply(x,class) if("factor"%in%class){ out <- sum((x[1,class!="factor"]-y[1,class!="factor"])^2)+sum(x[1,class=="factor"]!=y[1,class=="factor"]) } else{ out <- sum((x-y)^2) } out <- sqrt(out) return(out) } isNeighbor <- function(i, j, data, graphType, classColumn){ out <- TRUE if(graphType=="GG"){ for(k in 1:nrow(data)){ if(distt(data[i,- classColumn],data[j,- classColumn])^2 > (distt(data[i,- classColumn],data[k,- classColumn])^2 + distt(data[j,- classColumn],data[k,- classColumn])^2)){ out <- FALSE break } } } else{ for(k in 1:nrow(data)){ if(distt(data[i,- classColumn],data[j,- classColumn]) > max(distt(data[i,- classColumn],data[k,- classColumn]),distt(data[j,- classColumn],data[k,- classColumn]))){ out <- FALSE break } } } return(out) }
test_that("reporter as expected", { expect_snapshot_reporter(MinimalReporter$new()) })
prepare.mpt.fia <- function(data, model.filename, restrictions.filename = NULL, outfile = "clipboard", Sample = 200000, model.type = c("easy", "eqn", "eqn2")){ if(is.vector(data)) { data <- array(data, dim = c(1, length(data))) multiFit <- FALSE } else if(is.matrix(data) | is.data.frame(data)) { if (is.data.frame(data)) data <- as.matrix(data) multiFit <- TRUE } else stop("data is neither vector, nor matrix, nor data.frame!") if(!is.null(restrictions.filename)) { restrictions <- .read.MPT.restrictions(restrictions.filename) } class.model <- class(model.filename) if ("connection" %in% class.model) { tmp.model <- readLines(model.filename) model.filename <- textConnection(tmp.model) model <- .get.mpt.model(model.filename, model.type) model.filename <- textConnection(tmp.model) } else model <- .get.mpt.model(model.filename, model.type) n.data <- dim(data)[1] if (sum(sapply(model, length)) != length(data[1,])) stop(paste("Size of data does not correspond to size of model (i.e., model needs ", sum(sapply(model, length)), " datapoints, data gives ", length(data[1,]), " datapoints).", sep = "")) df.n <- apply(data, 1, .DF.N.get, tree = model) n_items <- sapply(df.n, function (x) sum(x[[2]])) mpt.string <- make.mpt.cf(model.filename, model.type=model.type) is.category <- grepl("^[[:digit:]]+$", mpt.string) s <- paste(ifelse(is.category == 0, "p", "C"), collapse = "") params <- mpt.string[!is.category] category <- mpt.string[is.category] category <- paste(category, collapse = ",") is.p.join <- grepl("^hank\\.join\\.", params) c.join <- sum(is.p.join) p.join <- params[is.p.join] p.n.join <- params[!is.p.join] hank.restrictions <- vector("list", c.join) ns <- t(sapply(df.n, function (x) x[[2]])) p.n.join.lev <- sort(unique(p.n.join)) f.p.n.join <- factor(p.n.join, levels = p.n.join.lev) names(p.n.join.lev) <- 1:length(p.n.join.lev) if (c.join > 0) { for (indiv in 1:n.data) { for (c.hank in 1:(c.join)) { hank.restrictions[[c.hank]][indiv] <- sum(ns[indiv,1:c.hank]) / sum(ns[indiv,1:(c.hank+1)]) } } params.join.mat <- matrix(NA, nrow = n.data, ncol = (c.join)) for (indiv in 1:n.data) { for (par.join in 1:length(p.join)) { params.join.mat[indiv,par.join] <- -hank.restrictions[[length(p.join)-(par.join-1)]][indiv] } } parameters <- vector("list", n.data) for (indiv in 1:n.data) { parameters[[indiv]] <- c(as.character(round(params.join.mat[indiv,],4)), as.numeric(f.p.n.join)) } } else { parameters <- vector("list", n.data) for (indiv in 1:n.data) { parameters[[indiv]] <- as.character(as.numeric(f.p.n.join)) } } ineq <- "[" if(!is.null(restrictions.filename)) { for (restr in 1:length(restrictions)) { if (restrictions[[restr]][3] == "=") { if (grepl("^[[:digit:]]", restrictions[[restr]][2])) { for (indiv in 1:n.data) { parameters[[indiv]][params == restrictions[[restr]][1]] <- as.character(-as.numeric(restrictions[[restr]][2])) } } else { for (indiv in 1:n.data) { parameters[[indiv]][params == restrictions[[restr]][1]] <- (parameters[[indiv]][params == restrictions[[restr]][2]])[1] } } } else { if (restrictions[[restr]][3] == "<") { if (nchar(ineq) > 1) ineq <- paste(ineq, ";", sep = "") ineq <- paste(ineq, paste((parameters[[indiv]][params == restrictions[[restr]][1]])[1], (parameters[[indiv]][params == restrictions[[restr]][4]])[1], sep = ","), sep = "") } } } } ineq <- paste(ineq, "]", sep = "") calls <- vector("character", n.data) for (indiv in 1:n.data) { calls[indiv] <- paste("[CFIA,CI,lnInt,CI1,lnconst,CI2] = BMPTFIA(\'", s, "\',[", paste(parameters[[indiv]], collapse=","), "],", ineq, ",[", category, "],", n_items[indiv], ",", Sample, ")", sep ="") } writeLines(calls, outfile) outlist <- list(s = s, parameters = parameters, param.codes = p.n.join.lev, category = category, ineq0 = ineq, n = n_items, internal = mpt.string) outlist }
suppressPackageStartupMessages({ require(data.table) require(jsonlite) require(ggplot2) require(cowplot) }) .args <- commandArgs(trailingOnly = T) load(.args[1]) refpars <- readRDS(.args[3])[, seropos := 1 - seroneg9 ] reducedrois <- readRDS(.args[2])[mechanism == "binary"][ refpars, on = .(foi, disparity) ][, .(roi = max(roi)), by = .(foi, disparity, seropos, p_H, log10OR, nu, tau) ] rename <- function(res, ref) { names(res) <- ref; return(res) } foiref <- refpars[, seropos[1], by = .(ref = foi)][, rename(V1, ref)] pHref <- refpars[, p_H[1], by = .(ref = disparity)][, rename(V1, ref)] ORref <- refpars[, log10OR[1], by = .(ref = disparity)][, rename(V1, ref)] disref <- list( md = quote(Disparity ~ (p[H] * ", " * log[10] * OR)), ll = quote(phantom("Disparity" ~ (p[H] * ", " * log[10] * OR))), ul = quote(phantom("Disparity" ~ (p[H] * ", " * log[10] * OR))) ) p <- ggplot(reducedrois) + aes( log10(tau), nu, fill = roi, z = roi, color = c("neg", "pos")[(roi > 0) + 1] ) + facet_grid( disparity ~ foi, labeller = label_bquote( cols = .( sprintf("%s\n%d%%", ifelse(foi == "md", "% Seropositive 9-year-olds", ""), foiref[foi] * 100) ), rows = atop( .( disref[[disparity]]), (.(pHref[disparity]) * ", " * .(ORref[disparity])) ) ), scales = "free" ) + geom_heat + thm + scale_contour + scale_roi + scale_nu + scale_tau save_plot(tail(.args, 1), p, ncol = 3, nrow = 3, base_height = 4 * 2 / 3)
lsm_c_division <- function(landscape, directions = 8) { landscape <- landscape_as_list(landscape) result <- lapply(X = landscape, FUN = lsm_c_division_calc, directions = directions) layer <- rep(seq_along(result), vapply(result, nrow, FUN.VALUE = integer(1))) result <- do.call(rbind, result) tibble::add_column(result, layer, .before = TRUE) } lsm_c_division_calc <- function(landscape, directions, resolution = NULL) { patch_area <- lsm_p_area_calc(landscape, directions = directions, resolution = resolution) total_area <- sum(patch_area$value) if (is.na(total_area)) { return(tibble::tibble(level = "class", class = as.integer(NA), id = as.integer(NA), metric = "division", value = as.double(NA))) } patch_area$value <- (patch_area$value / total_area) ^ 2 division <- stats::aggregate(x = patch_area[, 5], by = patch_area[, 2], FUN = sum) division$value <- 1 - division$value return(tibble::tibble(level = "class", class = as.integer(division$class), id = as.integer(NA), metric = "division", value = as.double(division$value))) }
context("narcc testing") set.seed(8675309) datcc <- PROscorerTools::makeFakeData(n = 30, nitems = 10, values = 0:3) datnar <- PROscorerTools::makeFakeData(n = 30, nitems = 6, values = 0:3) test_that("narcc: Error if no or wrong 'whichScale' given", { expect_error(narcc(df = datcc), "use the 'whichScale' argument") expect_error(narcc(df = datcc, whichScale = "Cog"), "use the 'whichScale' argument") }) test_that("narcc: Expect no error (silent) when correct input given", { expect_silent(narcc(df = datcc, whichScale = "CC")) expect_silent(narcc(df = datnar, whichScale = "NAR")) expect_silent(narcc(df = datcc, whichScale = "CC", keepNvalid = TRUE)) expect_silent(narcc(df = datnar, whichScale = "NAR", keepNvalid = TRUE)) })
mkdb <- function(isrec) { dbfun <- function(x, lower = 0, upper = 0, values = "", extra = 0) { catf("x: %s\nlower: %s\nupper: %s\nvalues: %s\nextra: %s", collapse(x), collapse(lower), collapse(upper), collapse(values), extra) if (isrec) do.call(wrapChildren, x) else x } } debugrec <- makeRecombinator(mkdb(TRUE), "custom", n.parents = 2, n.children = 2) debugmut <- makeMutator(mkdb(FALSE), "custom")
pwecxcens<-function(t=seq(0,10,by=0.5),rate1=c(1,0.5),rate2=rate1, rate3=c(0.7,0.4),rate4=rate2,rate5=rate2,ratec=c(0.2,0.3), tchange=c(0,1),type=1,rp2=0.5,eps=1.0e-2){ tin<-t r1<-rate1;r2<-rate2;r3<-rate3;r4<-rate4;r5<-rate5;rc<-ratec; a2<-pwefv2(t=tin,rate1=r1,rate2=(r1+r3+rc),tchange=tchange,eps=eps) a4<-pwefvplus(t=tin,rate1=r1,rate2=r2,rate3=r3,rate4=r4,rate5=r5,rate6=rc,tchange=tchange,type=type,rp2=rp2,eps=eps) du<-a2$f0+a4$f0 b2<-pwecx(t=tin,rate1=r1,rate2=r2,rate3=r3,rate4=r4,rate5=r5,tchange=tchange,type=type,rp2=rp2,eps=eps) b4<-pwe(t=tin,rate=rc,tchange=tchange) duprime<-b2$density*b4$surv list(du=du,duprime=duprime,s=b2$surv,sc=b4$surv) }
nextp<-function(perm,b=1){ out<-.Fortran("nextp",perm=as.integer(perm),as.integer(length(perm)),as.integer(b),PACKAGE="MultNonParam") return(out$perm) }
levelCheck <- function(x, klass_data){ if(!all(grepl("^[A-Za-z_-]+$", x))){ tab <- data.frame(table(nchar(tm::removePunctuation(unlist(x))))) t <- which.max(tab$Freq) nVar <- tab[t,]$Var1 nVar <- nVar[!is.na(nVar)] input_level <- NA for (i in 1:length(unique(klass_data$level))){ if(nVar==nchar(tm::removePunctuation(unlist(klass_data[klass_data$level==i,]$code[1])))){ input_level <- i } } } else { m <- match(x, klass_data$code) tab <- table(klass_data[m, ]$level) input_level <- as.numeric(names(tab)[which.max(tab)]) } if(is.na(input_level)) stop("Cannot find an input level, please check the input vector") return (input_level) }
expected <- eval(parse(text="list(structure(c(\"0.007239522\", \"0.014584634\", \"0.014207936\", \"0.018442267\", \"0.011128505\", \"0.019910082\", \"0.027072311\", \"0.034140379\", \"0.028320657\", \"0.037525507\"), class = \"AsIs\"), structure(c(\" 1\", \" 6\", \" 7\", \" 8\", \"13\", \"14\", \"15\", \"20\", \"21\", \"22\"), class = \"AsIs\"), structure(c(\" 16\", \" 16\", \"144\", \" 16\", \" 16\", \"128\", \" 16\", \" 16\", \"112\", \" 16\"), .Dim = 10L, .Dimnames = structure(list(c(\"1\", \"6\", \"7\", \"8\", \"13\", \"14\", \"15\", \"20\", \"21\", \"22\")), .Names = \"\")))")); test(id=0, code={ argv <- eval(parse(text="list(list(structure(list(structure(c(\"0.007239522\", \"0.014584634\", \"0.014207936\", \"0.018442267\", \"0.011128505\", \"0.019910082\", \"0.027072311\", \"0.034140379\", \"0.028320657\", \"0.037525507\"), class = \"AsIs\")), row.names = c(NA, -10L), class = \"data.frame\"), structure(list(structure(c(\" 1\", \" 6\", \" 7\", \" 8\", \"13\", \"14\", \"15\", \"20\", \"21\", \"22\"), class = \"AsIs\")), row.names = c(NA, -10L), class = \"data.frame\"), structure(list(structure(c(\" 16\", \" 16\", \"144\", \" 16\", \" 16\", \"128\", \" 16\", \" 16\", \"112\", \" 16\"), .Dim = 10L, .Dimnames = structure(list(c(\"1\", \"6\", \"7\", \"8\", \"13\", \"14\", \"15\", \"20\", \"21\", \"22\")), .Names = \"\"))), row.names = c(\"1\", \"6\", \"7\", \"8\", \"13\", \"14\", \"15\", \"20\", \"21\", \"22\"), class = \"data.frame\")), FALSE, FALSE)")); .Internal(unlist(argv[[1]], argv[[2]], argv[[3]])); }, o=expected);
tar_test("tar_exist_process()", { expect_false(tar_exist_process()) dir_create(dirname(path_process(path_store_default()))) file.create(path_process(path_store_default())) expect_true(tar_exist_process()) }) tar_test("custom script and store args", { skip_on_cran() expect_equal(tar_config_get("script"), path_script_default()) expect_equal(tar_config_get("store"), path_store_default()) tar_script(tar_target(x, 1), script = "example/script.R") expect_false(tar_exist_process(store = "example/store")) expect_false(file.exists("example/store")) tar_make( callr_function = NULL, script = "example/script.R", store = "example/store" ) expect_true(tar_exist_process(store = "example/store")) expect_true(file.exists("example/store")) expect_false(file.exists("_targets.yaml")) expect_equal(tar_config_get("script"), path_script_default()) expect_equal(tar_config_get("store"), path_store_default()) expect_false(file.exists(path_script_default())) expect_false(file.exists(path_store_default())) expect_true(file.exists("example/script.R")) tar_config_set(script = "x") expect_equal(tar_config_get("script"), "x") expect_true(file.exists("_targets.yaml")) })
load_bbs_data <- function(level = "state") { bbs_data <- NULL rm(bbs_data) bbs_dir <- app_dir(appname = "bbsBayes") if (level == "state") { if(isFALSE(file.exists(paste0(bbs_dir$data(), "/bbs_raw_data.RData")))) { stop("No BBS data downloaded. Please use fetch_bbs_data() first.") } load(file = paste0(bbs_dir$data(), "/bbs_raw_data.RData")) }else if (level == "stop") { if(isFALSE(file.exists(paste0(bbs_dir$data(), "/bbs_stop_data.RData")))) { stop("No BBS stop data downloaded. Please use fetch_bbs_data(level = \"stop\") first.") } load(file = paste0(bbs_dir$data(), "/bbs_stop_data.RData")) } return(bbs_data) }
plotdelineator<-function(shtseq,coordi=1,ngrid=40,shift=0.05, volumefunction=NULL,redu=TRUE,type="l") { if (is.null(volumefunction)){ lnum<-length(shtseq$level) st<-shtseq$shtseq[[1]] td<-treedisc(st,shtseq$pcf,ngrid=ngrid) reduseq<-list(td) for (i in 2:lnum){ st<-shtseq$shtseq[[i]] td<-treedisc(st,shtseq$pcf,ngrid=ngrid) reduseq<-c(reduseq,list(td)) } estiseq<-list(lstseq=reduseq,hseq=shtseq$level) mg<-modegraph(estiseq) plotmodet(mg,coordi=coordi,shift=shift) } else{ vd<-volumefunction if (redu){ x<-vd$delineator.redu[,coordi] y<-vd$delineatorlevel.redu or<-order(x) x1<-x[or] y1<-y[or] plot(x1,y1,type=type, ylab="level",xlab=paste("coordinate",as.character(coordi))) } else plot(vd$delineator[,coordi],vd$delineatorlevel,ylab="level") } }
generate.data2d = function() { n = c(60, 80) x = vector("list", 2) x[[1]] = seq_len(n[1])/n[1] - 1/2/n[1] x[[2]] = seq_len(n[2])/n[2] - 1/2/n[2] mu2d = matrix(0, nrow = n[1], ncol = n[2]) for (i in seq_len(n[1])) { for (j in seq_len(n[2])) { mu2d[i, j] = sin(2 * pi * (x[[1]][i] - .5) ^ 3) * cos(4 * pi * x[[2]][j]) } } data2d = mu2d + stats::rnorm(prod(n)) return(list(x = x, mu2d = mu2d, data2d = data2d)) } generate_data2d = generate.data2d generateData2d = generate.data2d GenerateData2d = generate.data2d
repeatedMeasuresPlot <- function(data, within, within.names, within.levels, between.names=NULL, response.name="score", trace, xvar, pch=15:25, lty=1:6, col=palette()[-1], plot.means=TRUE, print.tables=FALSE){ if (!(plot.means || print.tables)) stop("nothing to do (neither print tables nor plot means)!") if (missing(trace)) trace <- NA if (missing(xvar)) xvar <- NA reshapeW2L <- function(data){ timevar <- paste(within.names, collapse=".") long <- reshape(data, varying=within, v.names=response.name, timevar=timevar, direction="long") n.levels <- sapply(within.levels, length) n.within <- length(within.names) if (n.within > 2 || n.within < 1) stop("there must be 1 or 2 within factors") if (prod(n.levels) != length(within)){ stop("the number of repeated measures, ", length(within), ", is not equal to the product of the numbers of levels of the within factors, ", prod(n.levels)) } if (length(within.names) != length(within.levels)){ stop("the number of within factors, ", length(within.names), ", is not equal to the number of sets of within-factor levels, ", length(within.levels)) } if (n.within == 2){ long[[within.names[1]]] <- factor(within.levels[[within.names[1]]][1 + ((long[[timevar]] - 1) %/% n.levels[2])], levels=within.levels[[within.names[1]]]) long[[within.names[2]]] <- factor(within.levels[[within.names[2]]][1 + ((long[[timevar]] - 1) %% n.levels[2])], levels=within.levels[[within.names[2]]]) } else{ long[[within.names]] <- factor(within.levels[[1]][long[[timevar]]], levels=within.levels[[1]]) } long } computeMeans <- function(data){ formula <- paste(response.name, " ~", paste(c(within.names, between.names), collapse="+")) meanTable <- Tapply(formula, mean, data=data) sdTable <- Tapply(formula, sd, data=data) means <- meanTable if(length(dim(means)) > 1){ means <- as.data.frame(ftable(means)) names(means)[ncol(means)] <- response.name } else { means <- data.frame(factor(names(means), levels=levels(data[, within.names])), means) names(means) <- c(within.names, response.name) } list(means=means, meanTable=meanTable, sdTable=sdTable) } rmPlot <- function(data) { n.levels <-sapply(data[,-ncol(data), drop = FALSE], function(x) length(levels(x))) n.factors <- length(n.levels) fnames <- names(data)[-ncol(data), drop = FALSE] if (is.na(trace)) { wnames <- if (!is.na(xvar)) within.names[!(within.names == xvar)] else within.names trace <- if (length(wnames) > 0) wnames[which.min(n.levels[wnames])] else NULL } if (is.na(xvar)) { wnames <- if (!is.na(trace)) within.names[!(within.names == trace)] else within.names xvar <- wnames[which.max(n.levels[wnames])] } if (length(within.names) == 1 && length(xvar) == 0){ xvar <- within.names trace <- NULL } if (!is.null(trace) && trace == xvar) trace <- NULL form <- paste(response.name, " ~", xvar, if (n.factors > 1 + !is.null(trace)) "|", paste(setdiff(fnames, c(trace, xvar)), collapse = "+")) tr.levels <- n.levels[trace] if (!is.null(trace)) { xyplot( as.formula(form), groups = if (!is.null(trace)) data[[trace]] else 1, type = "b", lty = lty[1:tr.levels], pch = pch[1:tr.levels], col = col[1:tr.levels], cex = 1.25, strip = function(...) strip.default(strip.names = c(TRUE, TRUE), ...), data = data, ylab = paste("mean", response.name), key = list( title = trace, cex.title = 1, text = list(levels(data[[trace]])), lines = list(lty = lty[1:tr.levels], col = col[1:tr.levels]), points = list( pch = pch[1:tr.levels], col = col[1:tr.levels], cex = 1.25 ) ) ) } else { xyplot( as.formula(form), type = "b", lty = lty[1], pch = pch[1], col = col[1], cex = 1.25, strip = function(...) strip.default(strip.names = c(TRUE, TRUE), ...), data = data, ylab = paste("mean", response.name) ) } } Long <- reshapeW2L(data) Means <- computeMeans(Long) if (print.tables){ cat("\n Means of", response.name, "\n") if (length(dim(Means$meanTable)) > 1) print(ftable(Means$meanTable)) else print(Means$meanTable) cat("\n\n Standard deviations of", response.name, "\n") if (length(dim(Means$sdTable)) > 1) print(ftable(Means$sdTable)) else print(Means$sdTable) } if (plot.means) rmPlot(Means$means) else invisible(NULL) }
`rgl.renyiaccum` <- function(x, rgl.height = 0.2, ...) { if (!inherits(x, "renyiaccum")) stop("'x' must be a 'renyiaccum' result object") y <- x[,,1] * rgl.height rgl.min = 0 rgl.max = max(y) xp <- seq(0, 1, len = nrow(y)) z <- seq(0, 1, len = ncol(y)) ylim <- 1000 * range(y) ylen <- ylim[2] - ylim[1] + 1 colorlut <- rainbow(ylen) col <- colorlut[1000*y-ylim[1]+1] rgl.clear() rgl.surface(xp, z, y, color=col) y <- x[,,5] * rgl.height rgl.surface(xp, z, y, color="black", front="lines", back="lines") y <- x[,,6] * rgl.height rgl.surface(xp, z, y, color="black", front="lines", back="lines") y <- x[,,6]*0 + rgl.min rgl.surface(xp, z, y, alpha=0) y <- x[,,6] * 0 + rgl.max rgl.surface(xp, z, y, alpha=0) labs <- pretty(c(rgl.min, range(x))) rgl.bbox(color=" zlen=0, xlen=0, yat = rgl.height*labs, ylab=labs) rgl.texts(0, rgl.min, 0.5, "Scale", col = "darkblue") rgl.texts(0.5, rgl.min, 0, "Sites", col="darkblue") }
.check_dat_base <- function(dat, check_one_concresp = TRUE) { cols_ori <- colnames(dat) cols_stand <- c("endpoint", "chemical", "conc", "resp") cols_inter <- intersect(cols_ori, c(cols_stand, 'mask')) dat <- dat[, cols_inter] cols_removed <- setdiff(cols_ori, cols_inter) if (length(cols_removed) != 0) { rlang::warn(stringr::str_glue("{cols_removed} are removed in the input")) } cols <- colnames(dat) if (!(all(rlang::has_name(dat, c(cols_stand, "mask"))) && length(cols) == 5)) { if (!(all(rlang::has_name(dat, c(cols_stand))) && length(cols) == 4)) { rlang::abort( "dataset needs to have endpoint, chemical, conc, resp, mask (optional) columns" ) } } if (check_one_concresp) { dat2 <- dplyr::count(dat, .data$endpoint, .data$chemical, .data$conc) if (sum(dat2$n) != nrow(dat2)) { rlang::abort("one endpoint-chemical-concentration pair can have only one response. Use combi_run_rcurvep() instead") } } return(dat) } .check_mask_input <- function(vec, d) { if (rlang::has_name(d, "mask")) { rlang::warn("mask column exists; use original mask column") return(NULL) } if (any(vec == 0)) return(0) if (any(is.null(vec))) return(NULL) if (!all(vec == floor(vec))) { rlang::abort("input value must be integers") } if (any(vec < 0)) { rlang::abort("input value must be equal or larger than 0") } min_n_conc <- d %>% dplyr::count(.data$endpoint, .data$chemical) %>% dplyr::pull(.data$n) %>% min() if (any(vec > min_n_conc)) { rlang::abort("input value must be smaller than total number of concs") } return(vec) } .check_config_name <- function(config = curvep_defaults(), ...) { config <- .check_class(config, 'curvep_config', "config is absent or corrupt") args <- list(...) config <- modifyList(config, args) defaults <- curvep_defaults() para_diff <- setdiff(names(config), names(defaults)) if (length(para_diff) > 0) { rlang::abort("nonexistent curvep parameters are added") } return(config) } .check_config_value <- function(config) { if (rlang::is_double(config$TRSH) == FALSE | config$TRSH < 0) { rlang::abort("TRSH has to be a positive double value") } if (rlang::is_double(config$RNGE) == FALSE) { rlang::abort("RNGE has to be a double value") } if (rlang::is_double(config$MXDV) == FALSE | config$MXDV < 0 ) { rlang::abort("MXDV has to be a positive double value") } if (rlang::is_integer(config$BSFT) | config$BSFT < 0) { rlang::abort("BSFT has to be a positive integer value") } if (rlang::is_integer(config$USHP) | config$USHP < 0) { rlang::abort("USHP has to be a positive integer value") } if (rlang::is_logical(config$TrustHi) == FALSE | rlang::is_logical(config$StrictImp) == FALSE) { rlang::abort("TrustHi and TrustHi have to be a TRUE/FALSE value") } return(config) } .check_config_name2 <- function(config = curvep_defaults(), ...) { if (length(list(...)) == 0) { rlang::abort("Input parameters are needed, for example, TRSH = 5") } config <- .check_config_name(config = curvep_defaults(), ...) return(config) } .check_dat <- function(dat) { cols <- colnames(dat) dev_cols <- c("endpoint", "chemical", "conc", "n_in", "N") beh_cols <- c("endpoint", "chemical", "conc", "resp") if (!(all(rlang::has_name(dat, c(beh_cols, "mask"))) && length(cols) == 5) && !(all(rlang::has_name(dat, c(dev_cols, "mask"))) && length(cols) == 6) ) { if (!(all(rlang::has_name(dat, c(beh_cols))) && length(cols) == 4) && !(all(rlang::has_name(dat, c(dev_cols))) && length(cols) == 5)) { rlang::abort("data is not a continuous/dichotomous dataset") } } return(dat) } .check_n_samples <- function(n_samples) { if (!is.null(n_samples)) { if (rlang::is_integer(as.integer(n_samples)) == FALSE || n_samples < 0) { rlang::abort("n_samples is not a valid number or is not NULL") } } return(n_samples) } .check_vdata <- function(vdata, dataset_type) { if (!all(!is.na(as.numeric(vdata)))) { rlang::abort("vdata is not NULL or all numeric") } else if (!is.null(vdata) && dataset_type == "dichotomous") { rlang::abort("currently numeric vdata is not supported for dichotomous dataset") } return(vdata) } .check_keep_sets <- function(keep_sets, allowed_sets, must_set) { keep_sets <- unique(keep_sets) if (length(keep_sets) > length(allowed_sets) || !all(keep_sets %in% allowed_sets)) { sets <- stringr::str_c(allowed_sets, collapse = " ") rlang::abort( stringr::str_glue( "Only a combination {sets} is allowed.") ) } if (!must_set %in% keep_sets) { rlang::abort( stringr::str_glue("{must_set} is needed.") ) } return(keep_sets) } .check_result_sets <- function(lsets) { if (!rlang::is_list(lsets) || length(lsets) > 3 || !all(names(lsets) %in% c("act_set", "resp_set", "fp_set"))) { rlang::abort("Only a list with names of act_set, resp_set, fp_set is allowed") } if (!"act_set" %in% names(lsets)) { rlang::abort("At least act_set tibble is needed") } return(lsets) } .check_combirun_out <- function(combi_run_out) { if (!rlang::is_list(combi_run_out) || !rlang::has_name(combi_run_out, "result") || !rlang::has_name(combi_run_out, "config")) { rlang::abort("the combi_run_out is not a list or does not have result and config item.\n The input does not come from combi_run_rcurvep()") } return(combi_run_out) } .check_bmr_input <- function(d) { d <- .check_class(d, "rcurvep", "not a rcurvep object") if (!rlang::has_name(d$result$act_set, "sample_id")) { rlang::abort("The input act_set needs to have multiple samples (sample_id). Please set n_samples in combi_run_rcurvep()") } return(d) } .check_bmr_statsd <- function(d) { result <- d if (!rlang::has_name(d, "endpoint")) { col_names <- colnames(d) col_names <- c("TRSH", "pvar", col_names[-c(1,2)]) result <- d %>% rlang::set_names(col_names) result <- result %>% dplyr::mutate( endpoint = "noname" ) %>% dplyr::select( .data$endpoint, dplyr::everything() ) } return(result) } .check_class <- function(obj, class_name, error_message) { if ( !class_name %in% class(obj) ) { rlang::abort(error_message, class_name) } return(obj) } .check_mask_on_concresp <- function(conc, resp, mask) { result <- list(Conc = conc, Resp = resp) len_inp <- purrr::map_dbl(list(conc, resp), length) if (length(unique(len_inp)) != 1 ) { rlang::abort("the length of Conc Resp is not the same.") } if (!is.null(mask)) { if (length(mask) != length(conc)) { rlang::abort("the length of Conc Resp Mask is not the same.") } result <- mask_resp_conc(conc, resp, mask) conc <- result$Conc resp <- result$Resp } if (length(conc) < 4) { rlang::abort("at least four resps are needed.") } return(result) } .check_hill_args <- function(ori, new) { if (!all(names(new) %in% names(ori))) { rlang::warn("The supplied arguments are not registered. No changes will be applied.") } config <- modifyList(ori, new) return(config) } .check_modls_args <- function(args, modls) { syn <- paste0("(", stringr::str_c(modls, collapse = "|"), ")") if (!all(stringr::str_detect(names(args), syn))) { rlang::warn("Some supplied arguments do not have model type as the prefix. No changes will be applied.") } return(args) } .check_objs_type <- function(objs) { objclass <- purrr::map_lgl( objs, ~ any(stringr::str_detect(class(.x), "rcurvep"))) if (!all(objclass)) { rlang::abort("all objects need to be rcurvep objects") } else { objtype <- purrr::map_lgl( objs, ~ "config" %in% names(.x) ) objsize <- purrr::map_int( objs, ~ length(.x$result) ) if (!all(objtype)) { rlang::abort( "only results by curvep calculation are supported") } if (length(unique(objsize)) != 1) { rlang::abort( "different list size in results") } } return(objs) } .check_inactivate <- function(inactivate) { inactivate <- na.omit(inactivate) if (!is.character(inactivate) & !rlang::is_integerish(inactivate) & !is.null(inactivate)) { rlang::abort("only string or integer is allowed for inactivate") } return(inactivate) }
fgeo_elevation <- function(elev) { UseMethod("fgeo_elevation") } fgeo_elevation.fgeo_elevation <- function(elev) { elev } fgeo_elevation.default <- function(elev) { abort(glue("Can't deal with data of class {class(elev)}")) } fgeo_elevation.list <- function(elev) { pull_elevation(elev) %>% nms_try_rename(want = "gx", try = "x") %>% nms_try_rename(want = "gy", try = "y") %>% new_fgeo_elevation() } fgeo_elevation.data.frame <- fgeo_elevation.list new_fgeo_elevation <- function(elev) { stopifnot(is.data.frame(elev)) structure(elev, class = c("fgeo_elevation", class(elev))) } pull_elevation <- function(elev) { UseMethod("pull_elevation") } pull_elevation.data.frame <- function(elev) { check_crucial_names(elev, "elev") elev } pull_elevation.default <- function(elev) { msg <- paste0( "`elevation` must be data.frame or list but its class is: ", class(elev) ) abort(msg) } pull_elevation.list <- function(elev) { safe_check <- purrr::safely(check_crucial_names) check_result <- safe_check(elev, "col") if (!is.null(check_result$error)) { msg <- paste0( "Your list must contain the element `col` with elevation data.\n", "* Names of the elements of the list provided:\n", commas(names(elev)) ) abort(msg) } elevation <- elev[["col"]] elevation }
`Boot.ts` <- function(obj, R=1, ...){ p<-SelectModel(obj, lag.max=ceiling(length(obj)/4), Best=1) ans<-FitAR(obj, 1:p) Boot.FitAR(ans, R=R) }
is_place <- function(place, PN) { if(place %in% places(PN)$id) return(T) else return(F) }
reachableRate<-function(nD, start, end, seeds){ if (missing(start) | missing(end)) { times <- get.change.times(nD) if (length(times) == 0) { warning("network does not appear to have any dynamic information. Using start=0 end=1") start = 0 end = 0 } times[times == Inf] <- NA times[times == -Inf] <- NA start = min(times, na.rm = T) end = max(times, na.rm = T) } reachableRates<-sapply(seeds,function(s){ reachableN<-sum(tPath(nD,v=s,start=start,end=end)$tdist<Inf) reachableN/(end-start) }) return(mean(reachableRates)) } meanReachTimes<-function(nD, start, end, seeds){ if (missing(start) | missing(end)) { times <- get.change.times(nD) if (length(times) == 0) { warning("network does not appear to have any dynamic information. Using start=0 end=1") start = 0 end = 0 } times[times == Inf] <- NA times[times == -Inf] <- NA start = min(times, na.rm = T) end = max(times, na.rm = T) } distances<-lapply(seeds, function(s){ tPath(nD,v =s,start = start,end=end,graph.step.time = 1 )$tdist }) times<-seq(from=start,to=end,length.out = 10) means<-sapply(times,function(t){ dAtT<-sapply(distances,function(d){ sum(d<=t) }) mean(dAtT) }) names(means)<-times return(means) } timeToReach<-function(nD, num.targets=round(network.size(nD)/2), start, end, seeds){ if (missing(start) | missing(end)) { times <- get.change.times(nD) if (length(times) == 0) { warning("network does not appear to have any dynamic information. Using start=0 end=1") start = 0 end = 0 } times[times == Inf] <- NA times[times == -Inf] <- NA start = min(times, na.rm = T) end = max(times, na.rm = T) } distances<-lapply(seeds, function(s){ tPath(nD,v =s,start = start,end=end,graph.step.time = 1 )$tdist }) reachTimes<-sapply(distances,function(d){ d<-sort(d) d[num.targets] }) return(reachTimes) }
rm(list=ls()); gc(); library(CSTools) library(ClimProjDiags) library(zeallot) library(ragg) dir_output <- '/esarchive/scratch/nperez/CSTools_manuscript/v20210603/' era5 <- list(name = 'era5', path = '/esarchive/recon/ecmwf/era5/$STORE_FREQ$_mean/$VAR_NAME$_f1h-r1440x721cds/$VAR_NAME$_$YEAR$$MONTH$.nc') years <- unlist(lapply(1993:2018, function(x){ paste0(x, sprintf("%02d",1:12), '01')})) era5 <- CST_Load(var = 'prlr', exp = list(era5), sdates = years, nmember = 1, storefreq = "daily", sampleperiod = 1, latmin = 37.5, latmax = 53.25, lonmin = 2.5, lonmax = 18.25, output = 'lonlat', nprocs = 1) era5$data <- era5$data * 24 * 3600 * 1000 era5 <- CST_SplitDim(era5, split_dim = 'sdate', indices = rep(1:12, 26)) slope <- CST_RFSlope(era5, time_dim = c('sdate', 'ftime'), kmin = 5) save(slope, file = paste0(dir_output, 'Slope.RDS'), version = 2) slope_plot <- slope StartDates <- paste0(1993:2018, '1101') exp <- list(name = 'ecmwfS5', path = "/esarchive/exp/ecmwf/system5c3s/$STORE_FREQ$_mean/$VAR_NAME$_s0-24h/$VAR_NAME$_$START_DATE$.nc") obs <- list(name = 'era5', path = '/esarchive/recon/ecmwf/era5/$STORE_FREQ$_mean/$VAR_NAME$_f1h-r1440x721cds/$VAR_NAME$_$YEAR$$MONTH$.nc') c(exp, obs) %<-% CST_Load(var = 'prlr', exp = list(exp), obs = list(obs), sdates = StartDates, nmember = 25, storefreq = "daily", sampleperiod = 1, latmin = 42, latmax = 49, lonmin = 4, lonmax = 11, output = 'lonlat', nprocs = 1) exp <- CST_SplitDim(exp, split_dim = c('ftime')) obs <- CST_SplitDim(obs, split_dim = c('ftime')) exp$data <- exp$data * 24 * 3600 * 1000 obs$data <- obs$data * 24 * 3600 * 1000 exp$data[which(exp$data < 0)] <- 0 exp.qm <- CST_QuantileMapping(exp, obs, method = "QUANT", wet.day = FALSE, sample_dims = c('member', 'sdate', 'ftime'), ncores = 4) save(exp.qm, file = paste0(dir_output, 'ExpQM.RDS'), version = 2) load(paste0(dir_output, 'weightsRF100.RDS')) agg_png(paste0(dir_output, "RF100_WeightsDec.png"), width = 1000, height = 1100, units = 'px',res = 144) PlotEquiMap(weight$data[,,12], lon = weight$lon, lat = weight$lat, filled.continents = FALSE, title_scale = 1, intylat = 2, intxlon = 2, toptitle = 'December Weights RF 100') dev.off() weights <- Subset(weight$data, along = 'monthly', indices = c(11, 12, 1:6)) slope <- Subset(slope, along = 'monthly', indices = c(11, 12, 1:6), drop = 'non-selected') k = 1 for (realizations in 1:10) { for (member in 1:25) { result <- exp.qm result$data <- NULL for (month in 1:8) { data <- exp.qm data$data <- data$data[1, member, , , , , month] fs <- CST_RainFARM(data, nf = 100, weights = weights, slope = slope[month], kmin = 1, nens = 1, verbose = TRUE, nprocs = 8, drop_realization = TRUE) result$data <- abind::abind(result$data, fs$data, along = 5) if (month == 2 & member == 1 & realization == 1) { agg_png(paste0(dir_output, "RF100_Down_11dec.png"), width = 1000, height = 1100, units = 'px',res = 144) PlotEquiMap(fs$data[1,11,,],lon = fs$lon, lat = fs$lat, filled.continents = FALSE, bar_limits = c(0,40), intylat = 2, intxlon = 2, title_scale = 1, triangle_ends = c(TRUE, FALSE), toptitle = 'Downsacaled RF 100', units = 'precipitation (mm)') dev.off() } result$lon <- fs$lon result$lat <- fs$lat result <- CST_MergeDims(result, merge_dims = c("ftime", "monthly"), na.rm = TRUE) result$Dataset <- paste0('RF100_ECMWFC3S_QM_member_', member, '_real_', realizations) result$Dates[[1]] <- exp$Dates[[1]] CST_SaveExp(result, destination = dir_output, extra_string = paste0('member', k)) gc() k = k + 1 rm(list= list('fs', 'result', 'data')) } }
fit <- lm(mpg ~ qsec + factor(am) + wt + factor(gear), data = mtcars) summary(fit) broom::tidy(fit) library(pixiedust) dust(fit) dust(fit) %>% sprinkle(cols = c("estimate", "std.error", "statistic"), round = 3) %>% sprinkle(cols = "p.value", fn = quote(pvalString(value))) %>% sprinkle_colnames("Term", "Coefficient", "SE", "T-statistic", "P-value") %>% sprinkle(bg_pattern = c("orchid", "plum")) %>% sprinkle_print_method("html") dust(fit) %>% sprinkle(cols = c("estimate", "std.error", "statistic"), round = 2) dust(fit) %>% sprinkle(cols = c("estimate", "std.error", "statistic"), round = 3) %>% sprinkle(cols = "p.value", fn = quote(pvalString(value))) dust(fit) %>% sprinkle(cols = c("estimate", "std.error", "statistic"), round = 3) %>% sprinkle(cols = "p.value", fn = quote(pvalString(value))) %>% sprinkle_colnames(term = "Term", p.value = "P-value") dust(fit) %>% sprinkle(cols = c("estimate", "std.error", "statistic"), round = 3) %>% sprinkle(cols = "p.value", fn = quote(pvalString(value))) %>% sprinkle_colnames(term = "Term", p.value = "P-value", std.error = "SE", statistic = "T-statistic", estimate = "Coefficient") dust(fit) %>% sprinkle(cols = c("estimate", "std.error", "statistic"), round = 3) %>% sprinkle(cols = "p.value", fn = quote(pvalString(value))) %>% sprinkle_colnames("Term", "Coefficient", "SE", "T-statistic", "P-value") dust(fit) %>% sprinkle(cols = c("estimate", "std.error", "statistic"), round = 3) %>% sprinkle(cols = "p.value", fn = quote(pvalString(value))) %>% sprinkle_colnames("Term", "Coefficient", "SE", "T-statistic", "P-value", "Extra Column Name") dust(fit) %>% sprinkle(cols = "term", replace = c("Intercept", "Quarter Mile Time", "Automatic vs. Manual", "Weight", "Gears: 4 vs. 3", "Gears: 5 vs 3")) %>% sprinkle(cols = c("estimate", "std.error", "statistic"), round = 3) %>% sprinkle(cols = "p.value", fn = quote(pvalString(value))) %>% sprinkle_colnames("Term", "Coefficient", "SE", "T-statistic", "P-value") dust(fit) %>% sprinkle(rows = 2:3, cols = 3:4, replace = c(100, 300, 200, 400), italic = TRUE) %>% sprinkle(cols = c("estimate", "std.error", "statistic"), round = 3) %>% sprinkle(cols = "p.value", fn = quote(pvalString(value))) %>% sprinkle_colnames("Term", "Coefficient", "SE", "T-statistic", "P-value") basetable <- dust(fit) %>% sprinkle(cols = c("estimate", "std.error", "statistic"), round = 3) %>% sprinkle(cols = "p.value", fn = quote(pvalString(value))) %>% sprinkle_colnames(term = "Term", estimate = "Coefficient", std.error = "SE", statistic = "T-statistic", p.value = "P-value") %>% sprinkle_print_method("html") basetable %>% sprinkle(rows = c(2, 4), border_color = "orchid") basetable %>% sprinkle(rows = c(2, 4), cols = 1, border = c("left", "top", "bottom"), border_color = "orchid") %>% sprinkle(rows = c(2, 4), cols = 5, border = c("right", "top", "bottom"), border_color = "orchid") %>% sprinkle(rows = c(2, 4), cols = 2:4, border = c("top", "bottom"), border_color = "orchid") basetable %>% sprinkle(rows = c(2, 4), border_color = "orchid", pad = 15) basetable %>% sprinkle(rows = c(2, 4), bold = TRUE) basetable %>% sprinkle(rows = c(2, 4), bold = TRUE, italic=TRUE) basetable %>% sprinkle(rows = c(2, 4), bg = "orchid") basetable %>% sprinkle(rows = c(2, 4), bg = "rgba(218,112,214,.5)") basetable %>% sprinkle(bg_pattern = c("orchid", "plum")) basetable %>% sprinkle(rows = c(2, 4), font_color = "orchid", font_size = 24, font_size_units = "pt") basetable %>% sprinkle(rows = 1, cols = 2, halign = "left", valign = "top", height = 50, width = 50) %>% sprinkle(rows = 1, cols = 3, halign = "center", valign = "top", height = 50, width = 50) %>% sprinkle(rows = 1, cols = 4, halign = "right", valign = "top", height = 50, width = 50) %>% sprinkle(rows = 2, cols = 2, halign = "left", valign = "middle", height = 50, width = 50) %>% sprinkle(rows = 2, cols = 3, halign = "center", valign = "middle", height = 50, width = 50) %>% sprinkle(rows = 2, cols = 4, halign = "right", valign = "middle", height = 50, width = 50) %>% sprinkle(rows = 3, cols = 2, halign = "left", valign = "bottom", height = 50, width = 50) %>% sprinkle(rows = 3, cols = 3, halign = "center", valign = "bottom", height = 50, width = 50) %>% sprinkle(rows = 3, cols = 4, halign = "right", valign = "bottom", height = 50, width = 50) dust(mtcars, tidy_df = TRUE) %>% sprinkle(cols = c("mean", "sd", "median", "trimmed", "mad", "min", "max", "range", "skew", "kurtosis", "se"), round = 2) %>% sprinkle(rows = 1, rotate_degree = -90, height = 60, part = "head") %>% sprinkle_print_method("html")
Gibbs_pefa_main<-function(y,mu=0,ome,ly,psx, tausq,pig,prior,ilamsq,ilamsq_t,const,count){ Q <- const$Q J <- const$J N <- const$N K <- const$K indg<-const$indg t_num <- const$t_num Ycen<-y-mu lyb<-tausq a_gamma <- prior$a_gaml_sq b_gamma <- prior$b_gaml_sq Pmean <- prior$m_LA Sigla <- prior$s_LA sub_sl <- const$sub_sl len_sl <- const$len_sl temp <- Ycen - ly %*% ome Stmp <- temp %*% t(temp) for(j in 1:J){ psx[j,j]<-1/rgamma(1, shape=a_gamma+(N-1)/2, rate=b_gamma+(Stmp[j,j])/2) ind1 <- sub_sl[j, ] len <- len_sl[j] if(len>0){ yj<-as.vector(Ycen[j,]) if(len==1){ omesub<-t(ome[ind1,]) }else{omesub<-ome[ind1,]} PSiginv<-Sigla*diag(len) vtmp<-chol2inv(chol(tcrossprod(omesub)/psx[j,j]+PSiginv)) mtmp<-(omesub%*%yj/psx[j,j]+PSiginv%*%rep(Pmean,len)) ly[j,ind1]<-mvrnorm(1,vtmp%*%mtmp,Sigma = vtmp) } } for(k in 1:K){ vgh<-diag(sqrt(tausq[,k])) sigg<-chol2inv(chol(vgh%*%vgh*sum(ome[k,]^2)/diag(psx)+diag(J))) mug<-sigg%*%vgh%*%as.vector(ome[k,]%*%t(Ycen))/diag(psx) lyb[,k]<- mvrnorm(1,mug,Sigma=(sigg)) if(indg[k]){ m1<-(sigg)%*%vgh%*%as.vector(ome[k,]%*%t(Ycen-ly[,!indg]%*%ome[!indg,]))/diag(psx) tmp<-log(det(sigg))/2+t(m1)%*%chol2inv(chol(sigg))%*%m1/2 tmp<-exp(tmp) p0<-rbeta(1,sum(1-pig[indg])+1,sum(pig[indg])+1) pg<-p0/(p0+(1-p0)*tmp) pig[k]<-(1-pg>runif(1)) lyb[,k]<- pig[k]*lyb[,k] vg2<-pmin(1/(1/ilamsq[k]+sum(ome[k,]^2)*lyb[,k]^2/diag(psx)),const$max_var) ug<-(Ycen-ly[,-k]%*%ome[-k,])%*%ome[k,]*vg2*lyb[,k]/diag(psx) tmp<-(log(vg2)-log(ilamsq[k])+ug^2/vg2+2*pnorm(ug/sqrt(vg2)))/2 tmp<-exp(tmp) tmp1<-sum(tausq==0) pi1<-rbeta(1,tmp1+1,J*K-tmp1+1) qg<-pi1/(pi1+2*(1-pi1)*tmp) pij<-1-(qg>runif(J)) tausq[,k]<-(rnorm(J,ug,(vg2))*pij)^2 s_pij<-sum(pij) if (s_pij < const$mjf && s_pij>0){ count[k,3:4]<-count[k,3:4]+1 if (count[k,4] >const$no_mjf) { tausq[,k] <- 0 count[k,5] =count[k,5] + 1 count[k,4] = 0 } }else{ count[k,4] = 0 } ly[,k]<-lyb[,k]*sqrt(tausq[,k]) lam.tmp<- rgamma(t_num, shape=1+sum(tausq[,k]!=0)/2, rate=ilamsq_t[k]+sum(tausq[,k])/2) ilamsq_t[k]<-1/mean(lam.tmp) ilamsq[k]<-1/rgamma(1, shape=1+sum(tausq[,k]!=0)/2, rate=ilamsq_t[k]+sum(tausq[,k])/2) }else{ vg2<-pmin(1/(1/ilamsq[k]+sum(ome[k,]^2)*lyb[,k]^2/diag(psx)),const$max_var) ug<-(Ycen-ly[,-k]%*%ome[-k,])%*%ome[k,]*vg2*lyb[,k]/diag(psx) tmp<-(log(vg2)-log(ilamsq[k])+ug^2/vg2+2*pnorm(ug/sqrt(vg2)))/2 tmp<-exp(tmp) tmp1<-sum(tausq==0) pi1<-rbeta(1,tmp1+1,J*K-tmp1+1) qg<-pi1/(pi1+2*(1-pi1)*tmp) pij<-1-(qg>runif(J)) tmp2<-(rnorm(J,ug,(vg2))*pij)^2 ind<-(Q[,k]==-1) tausq[ind,k]<-tmp2[ind] ly[ind,k]<-lyb[ind,k]*sqrt(tausq[ind,k]) } } if(any(!indg)){ lam.tmp<- rgamma(t_num, shape=1+sum(tausq[,!indg]!=0)/2, rate=mean(ilamsq_t[!indg])+sum(tausq[,!indg])/2) ilamsq_t[!indg] <- tmp_t <- 1/mean(lam.tmp) ilamsq[!indg]<-1/rgamma(1, shape=1+sum(tausq[,!indg]!=0)/2, rate=tmp_t+sum(tausq[,!indg])/2) } return(list(ly=ly,ilamsq=ilamsq,pig=pig,psx=psx,tausq=tausq,ilamsq_t=ilamsq_t,count=count)) }
vim_adjusted <- function(model, scoring_rule, vim_type, interaction_order, nodesize, alpha, X_oob, y_oob, Z_oob, leaves = "4pl", ...) { X <- model$X N <- nrow(X) disj <- model$disj n_conj <- sum(rowSums(!is.na(disj)) > 0) n_vars <- rowSums(!is.na(disj[1:n_conj,,drop=FALSE])) if(interaction_order < 2 || n_conj < 2) { return(NULL) } new.conjs <- list() new.conj.vecs <- NULL for(i in 2:min(interaction_order, n_conj)) { tmp.conjs <- combn(n_conj, i, simplify = FALSE) rem.conjs <- integer() tmp.disj <- NULL for(j in 1:length(tmp.conjs)) { conj.vec <- as.integer(disj[tmp.conjs[[j]],,drop=FALSE]) conj.vec <- conj.vec[!is.na(conj.vec)] if(length(conj.vec) > interaction_order) { rem.conjs <- c(rem.conjs, j) } else { conj.vec <- c(conj.vec, rep(NA_integer_, interaction_order - length(conj.vec))) tmp.disj <- rbind(tmp.disj, matrix(conj.vec, ncol = interaction_order, nrow = 1)) } } if(length(rem.conjs) > 0) tmp.conjs <- tmp.conjs[-rem.conjs] if(is.null(tmp.disj)) { next } mode(tmp.disj) <- "integer" dm <- getDesignMatrix(X, tmp.disj) nodesizes <- colSums(dm) rem.conjs <- which((nodesizes < nodesize) | (nodesizes > N - nodesize)) if(length(rem.conjs) > 0) { tmp.conjs <- tmp.conjs[-rem.conjs] tmp.disj <- tmp.disj[-rem.conjs,,drop=FALSE] } new.conjs <- c(new.conjs, tmp.conjs) new.conj.vecs <- rbind(new.conj.vecs, tmp.disj) } vims <- data.frame(matrix(nrow = length(new.conjs), ncol = 2)) colnames(vims) <- c("var", "vim") if(nrow(vims) == 0) return(vims) tmp.real.disj <- translateLogicPET(new.conj.vecs, X) vims$var <- getPredictorNames(tmp.real.disj, sort_conj = TRUE) vims$vim <- 0 rem.conjs <- integer() for(i in 1:length(new.conjs)) { vim.vars <- list() rem.vars <- new.conjs[[i]] for(j in length(new.conjs[[i]]):1) { vim.vars <- c(vim.vars, combn(new.conjs[[i]], j, simplify = FALSE)) } tmp.vims <- vim_single(model, scoring_rule, vim_type, vim.vars = vim.vars, rem.vars = rem.vars, X_oob = X_oob, y_oob = y_oob, Z_oob = Z_oob, leaves = leaves, ...) for(j in 1:length(vim.vars)) { coefficient <- ((length(new.conjs[[i]]) - length(vim.vars[[j]])) %% 2) * (-2) + 1 vims$vim[i] <- vims$vim[i] + coefficient * tmp.vims[j] } } keep.ind <- is.finite(vims$vim) vims <- vims[keep.ind,] if(alpha > 0 && nrow(vims) > 0) { new.conjs <- new.conjs[keep.ind] new.conj.vecs <- new.conj.vecs[keep.ind,,drop=FALSE] dm <- getDesignMatrix(X, model$disj) y <- model$y y.sum <- sum(y) name.pool <- getPredictorNames(model$real_disj, sort_conj = TRUE) for(i in 1:length(new.conjs)) { current.conj <- new.conjs[[i]] combs <- expand.grid(rep(list(0:1), length(current.conj))) dm.tmp <- dm[,current.conj,drop=FALSE] p.values <- rep(1.0, nrow(combs)) for(j in 1:nrow(combs)) { stacked <- matrix(rep(combs[j,], N), byrow = TRUE, nrow = N) comb.rows <- unname(rowMeans(dm.tmp == stacked)) == 1 if(model$y_bin) { y.comb.sum <- sum(y[comb.rows]) N.comb <- sum(comb.rows) p.values[j] <- fisher.test(matrix(c(y.comb.sum, y.sum - y.comb.sum, N.comb - y.comb.sum, N - N.comb - (y.sum - y.comb.sum)), ncol = 2), alternative = "two.sided", conf.int = FALSE)$p.value } else { p.values[j] <- t.test(y[comb.rows], y[!comb.rows], alternative = "two.sided", paired = FALSE, var.equal = FALSE)$p.value } } if(min(p.values) < alpha) { j <- which.min(p.values) comb <- as.integer(combs[j,]) new.vars <- character() for(k in 1:length(comb)) { current.name <- name.pool[current.conj[k]] if(comb[k] == 0) { if(n_vars[current.conj[k]] > 1) { new.vars <- c(new.vars, paste("-(", current.name, ")", sep = "")) } else { new.vars <- c(new.vars, ifelse(startsWith(current.name, "-"), substr(current.name, 2, nchar(current.name)), paste("-", current.name, sep = ""))) } } else { if(n_vars[current.conj[k]] > 1) { single.vars <- strsplit(current.name, "\\^")[[1]] new.vars <- c(new.vars, single.vars) } else { new.vars <- c(new.vars, current.name) } } } vims$var[i] <- paste(sort(new.vars), collapse = "^") } } } return(vims) } vim_single <- function(model, scoring_rule, vim_type, vim.vars, rem.vars, X_oob, y_oob, Z_oob, leaves = "4pl", ...) { FUN <- getPerfFUN(vim_type) base.perf <- FUN(model, scoring_rule, rem.vars, X_oob = X_oob, y_oob = y_oob, Z_oob = Z_oob, leaves = leaves, ...) if(is.list(vim.vars)) { vim <- numeric(length(vim.vars)) for(i in 1:length(vim.vars)) { adj.rem.vars <- setdiff(rem.vars, vim.vars[[i]]) if(length(adj.rem.vars) > 0) { vim[i] <- base.perf - FUN(model, scoring_rule, adj.rem.vars, X_oob = X_oob, y_oob = y_oob, Z_oob = Z_oob, leaves = leaves, ...) } else { vim[i] <- base.perf - perf(model, scoring_rule, X_oob = X_oob, y_oob = y_oob, Z_oob = Z_oob, leaves = leaves) } } } else { vim <- base.perf - perf(model, scoring_rule, X_oob = X_oob, y_oob = y_oob, Z_oob = Z_oob, leaves = leaves) } return(vim) } perf <- function(model, scoring_rule, X_oob, y_oob, Z_oob, leaves = "4pl") { orig_score <- 0 n_folds <- length(model$X_train) for(j in 1:n_folds) { dm_orig <- getDesignMatrix(X_oob[[j]], model$disj) Z_temp <- NULL if(!is.null(Z_oob)) Z_temp <- Z_oob[[j]] probs_orig <- predict_pet(model$ensemble[[j]], dm_orig, Z = Z_temp, "prob", leaves) orig_score <- orig_score + calcScore(probs_orig, y_oob[[j]], scoring_rule) } orig_score/n_folds } getPerfFUN <- function(vim_type) { if(vim_type == "logic") FUN <- perf.logic else if(vim_type == "remove") FUN <- perf.remove else if(vim_type == "permutation") FUN <- perf.permutation FUN } perf.logic <- function(model, scoring_rule, rem.vars, X_oob, y_oob, Z_oob, leaves = "4pl", average = "before") { n_folds <- length(model$X_train) score <- 0 for(j in 1:n_folds) { Z_temp <- NULL if(!is.null(Z_oob)) Z_temp <- Z_oob[[j]] dm_orig <- getDesignMatrix(X_oob[[j]], model$disj) combs <- expand.grid(rep(list(0:1), length(rem.vars))) probs <- 0 tmp.score <- 0 for(k in 1:nrow(combs)) { dm_inv <- dm_orig dm_inv[,rem.vars] <- rep(as.integer(combs[k,]), each = nrow(dm_orig)) if(average == "before") probs <- probs + predict_pet(model$ensemble[[j]], dm_inv, Z = Z_temp, "prob", leaves) else { probs <- predict_pet(model$ensemble[[j]], dm_inv, Z = Z_temp, "prob", leaves) tmp.score <- tmp.score + calcScore(probs, y_oob[[j]], scoring_rule) } } if(average == "before") { probs <- probs/nrow(combs) score <- score + calcScore(probs, y_oob[[j]], scoring_rule) } else score <- score + tmp.score/nrow(combs) } score/n_folds } perf.remove <- function(model, scoring_rule, rem.vars, X_oob, y_oob, Z_oob, leaves = "4pl", empty.model = "mean") { n_folds <- length(model$X_train) disj <- model$disj disj <- disj[-rem.vars,,drop=FALSE] n_conj <- sum(rowSums(!is.na(disj)) > 0) if(n_conj == 0) { if(empty.model == "none") return(-Inf) else { score <- 0 for(j in 1:n_folds) { score <- score + calcScore(rep(mean(model$y_train[[j]]), length(y_oob[[j]])), y_oob[[j]], scoring_rule) } return(score/n_folds) } } ensemble <- fitPETs(model$X_train, model$y_train, model$X_val, model$y_val, model$Z_train, model$Z_val, model$use_validation, model$y_bin, model$tree_control$nodesize, model$tree_control$cp, model$tree_control$smoothing, model$tree_control$mtry, model$tree_control$covariable_final, disj, n_conj, getScoreRule(scoring_rule), TRUE) score <- 0 for(j in 1:n_folds) { Z_temp <- NULL if(!is.null(Z_oob)) Z_temp <- Z_oob[[j]] dm <- getDesignMatrix(X_oob[[j]], disj) probs <- predict_pet(ensemble[[j]], dm, Z = Z_temp, "prob", leaves) score <- score + calcScore(probs, y_oob[[j]], scoring_rule) } score/n_folds } perf.permutation <- function(model, scoring_rule, rem.vars, X_oob, y_oob, Z_oob, leaves = "4pl", n.perm = 100) { n_folds <- length(model$X_train) disj <- model$disj score <- 0 for(i in 1:n.perm) { for(j in 1:n_folds) { Z_temp <- NULL if(!is.null(Z_oob)) Z_temp <- Z_oob[[j]] dm <- getDesignMatrix(X_oob[[j]], disj) for(k in 1:length(rem.vars)) { perm <- sample(nrow(X_oob[[j]])) dm[,rem.vars[k]] <- dm[perm, rem.vars[k]] } probs <- predict_pet(model$ensemble[[j]], dm, Z = Z_temp, "prob", leaves) score <- score + calcScore(probs, y_oob[[j]], scoring_rule) } } score/(n_folds * n.perm) } calcScore <- function(preds, y, scoring_rule) { if(scoring_rule == "deviance") { score <- calcDev(preds, y) } else if(scoring_rule == "brier") { score <- calcBrier(preds, y) } else if(scoring_rule == "mis") { score <- calcMis(preds, y) } else if(scoring_rule == "auc") { score <- -calcAUCFast(preds, y) } else if(scoring_rule == "nce") { score <- calcNCE(preds, y) } else if(scoring_rule == "mse") { score <- calcMSE(preds, y) } else if(scoring_rule == "nrmse") { score <- calcNRMSE(preds, y) } score } vim <- function(model, scoring_rule = "auc", vim_type = "logic", adjust = TRUE, interaction_order = 3, nodesize = NULL, alpha = 0.05, X_oob = NULL, y_oob = NULL, Z_oob = NULL, leaves = "4pl", ...) { type <- class(model) if(type == "logicDT") { if(is.null(X_oob)) { X_oob <- model$X_val y_oob <- model$y_val Z_oob <- model$Z_val } else { XyZ <- prepareXyZ(X_oob, y_oob, Z_oob, model$y_bin, make.list = TRUE) X_oob <- XyZ$X; y_oob <- XyZ$y; Z_oob <- XyZ$Z } if(!model$y_bin && scoring_rule == "auc") scoring_rule <- "nrmse" if(is.null(nodesize)) nodesize <- model$conjsize disj <- model$disj n_conj <- sum(rowSums(!is.na(disj)) > 0) vims <- data.frame(matrix(nrow = n_conj, ncol = 2)) colnames(vims) <- c("var", "vim") vims$var <- getPredictorNames(model$real_disj, sort_conj = TRUE) vims$vim <- 0 for(i in 1:n_conj) { vims$vim[i] <- vim_single(model, scoring_rule, vim_type, NULL, i, X_oob = X_oob, y_oob = y_oob, Z_oob = Z_oob, leaves = leaves, ...) } if(adjust) { vims <- rbind(vims, vim_adjusted(model, scoring_rule = scoring_rule, vim_type = vim_type, interaction_order = interaction_order, nodesize = nodesize, alpha = alpha, X_oob = X_oob, y_oob = y_oob, Z_oob = Z_oob, leaves = leaves, ...)) } } else if(type == "logic.bagged") { models <- model$models bags <- model$bags XyZ <- prepareXyZ(model$X, model$y, model$Z, models[[1]]$y_bin, make.list = FALSE) X <- XyZ$X; y <- XyZ$y; Z <- XyZ$Z N <- nrow(X) bagging.iter <- length(models) vims <- data.frame(matrix(nrow = 0, ncol = 2)) colnames(vims) <- c("var", "vim") if(is.null(nodesize)) nodesize <- models[[1]]$conjsize if(!models[[1]]$y_bin && scoring_rule == "auc") scoring_rule <- "nrmse" Z_temp <- NULL vim.iter <- bagging.iter for(i in 1:bagging.iter) { oob <- setdiff(1:N, bags[[i]]) n_folds <- length(models[[i]]$ensemble) if(!is.null(Z)) Z_temp <- rep(list(Z[oob,]), n_folds) ret <- vim(models[[i]], scoring_rule, vim_type, adjust = adjust, interaction_order = interaction_order, nodesize = nodesize, alpha = alpha, X_oob = rep(list(X[oob,]), n_folds), y_oob = rep(list(y[oob]), n_folds), Z_oob = Z_temp, leaves = leaves, ...)$vims predictor_names <- ret$var current_vims <- ret$vim if(any(!is.finite(current_vims))) { vim.iter <- vim.iter - 1 next } for(j in 1:length(predictor_names)) { if(predictor_names[j] %in% vims$var) { vims$vim[vims$var == predictor_names[j]] <- vims$vim[vims$var == predictor_names[j]] + current_vims[j] } else { vims <- rbind(vims, data.frame(var = predictor_names[j], vim = current_vims[j])) } } } vims$vim <- vims$vim/vim.iter } else { stop("VIMs can only be calculated for models of type logicDT or logic.bagged!") } vims <- vims[order(vims$vim, decreasing = TRUE),] rownames(vims) <- 1:nrow(vims) ret <- list(vims = vims, vim_type = vim_type, scoring_rule = scoring_rule) class(ret) <- "vim" return(ret) } permutation_test <- function(x1, x2, n_perm_t = 10000) { n <- length(x1) t_perm <- vector() for(i in 0:n_perm_t) { if(i == 0) perm <- rep(FALSE, n) else perm <- sample(c(FALSE, TRUE), n, replace = TRUE) x1p <- c(x1[!perm], x2[perm]) x2p <- c(x2[!perm], x1[perm]) inner_rank_x1 <- rank(x1p) inner_rank_x2 <- rank(x2p) full_rank <- rank(c(x1p,x2p)) full_rank_x1 <- full_rank[1:n] full_rank_x2 <- full_rank[(n+1):(2*n)] p_est <- 1/(2*n) * mean(full_rank_x2 - full_rank_x1) + 0.5 Z_k <- 1/n * (full_rank_x2 - inner_rank_x2 - full_rank_x1 + inner_rank_x1) sd_est <- sd(Z_k) t_perm <- c(t_perm, sqrt(n) * (p_est - 0.5)/sd_est) } return(mean(t_perm[1] <= t_perm[-1])) } prepareXyZ <- function(X, y, Z, y_bin, make.list = TRUE) { if(!is.list(y)) { X <- as.matrix(X) mode(X) <- "integer" if(!y_bin) { y <- as.numeric(y) } else { y <- as.integer(y) } if(make.list) { X <- list(X) y <- list(y) } if(!is.null(Z)) { Z <- as.matrix(Z) mode(Z) <- "double" if(make.list) { Z <- list(Z) } } } else { n_folds <- length(X) for(i in 1:n_folds) { X[[i]] <- as.matrix(X[[i]]) mode(X[[i]]) <- "integer" if(!y_bin) { y[[i]] <- as.numeric(y[[i]]) } else { y[[i]] <- as.integer(y[[i]]) } if(!is.null(Z)) { Z[[i]] <- as.matrix(Z[[i]]) mode(Z[[i]]) <- "double" } } } return(list(X = X, y = y, Z = Z)) }
bipartite_stats <- function(nullnet, signif.level = 0.95, index.type, indices, prog.count = TRUE, ...) { if(class(nullnet) != "nullnet") { stop("bipartite_stats requires a nullnet object")} if("degree distribution" %in% indices) { stop("Degree distribution is not currently supported by bipartite_stats")} if("topology" %in% indices) { stop("Degree distribution (called by indices = 'topology') is not currently supported by bipartite_stats")} if (signif.level <= 0 || signif.level >= 1) { stop("Invalid percentile value specified")} p <- (1 - signif.level) / 2 obs.web <- nullnet$obs.interactions rownames(obs.web) <- obs.web[, 1] obs.web <- obs.web[, -1] obs.web <- t(obs.web) if (index.type == "networklevel") { if("ALL" %in% indices){ obs.net.stats <- bipartite::networklevel(obs.web, index = "ALLBUTDD", ...) } else { obs.net.stats <- bipartite::networklevel(obs.web, index = indices, ...) } net.stats <- matrix(ncol = length(obs.net.stats), nrow = 0) colnames(net.stats) <- names(obs.net.stats) for (i in 1:nullnet$n.iterations) { web1 <- eval(parse(text = paste( 'nullnet$rand.data[nullnet$rand.data$Iteration == "It.', i, '", ]', sep = ""))) rownames(web1) <- web1$Consumer web1 <- web1[, -c(1:2)] web1 <- t(web1) if("ALL" %in% indices){ net.stats <- rbind(net.stats, bipartite::networklevel(web1, index = "ALLBUTDD", ...)) } else { net.stats <- rbind(net.stats, bipartite::networklevel(web1, indices, ...)) } if (prog.count == TRUE){Sys.sleep(0.02); print(i); utils::flush.console()} } net.level.mean <- apply(net.stats, 2, mean, na.rm = TRUE) net.level.up <- apply(net.stats, 2, stats::quantile, probs = 1 - p, na.rm = TRUE) net.level.low <- apply(net.stats, 2, stats::quantile, probs = p, na.rm = TRUE) net.level.sd <- apply(net.stats, 2, stats::sd, na.rm = TRUE) net.level.ses <- (obs.net.stats - net.level.mean) / net.level.sd net.level.results <- data.frame(obs.net.stats, net.level.mean, net.level.low, net.level.up, rep("ns", length(net.level.low)), net.level.ses) colnames(net.level.results) <- c("Observed", "Null", "Lower.CL", "Upper.CL", "Test", "SES") net.level.results$Test <- as.character(net.level.results$Test) for (i in 1:nrow(net.level.results)) { if (is.na(net.level.results$Observed[i])) {net.level.results$Test[i] <- "NA"} else { if ((net.level.results$Observed[i] == net.level.results$Lower.CL[i]) & (net.level.results$Observed[i] == net.level.results$Upper.CL[i])) {net.level.results$Test[i] <- "NA"} if (net.level.results$Observed[i] > net.level.results$Upper.CL[i]) {net.level.results$Test[i] <- "Higher"} if (net.level.results$Observed[i] < net.level.results$Lower.CL[i]) {net.level.results$Test[i] <- "Lower"} } } } if (index.type == "grouplevel") { if("ALL" %in% indices){ obs.net.stats <- bipartite::grouplevel(obs.web, index = "ALLBUTDD", ...) } else { obs.net.stats <- bipartite::grouplevel(obs.web, index = indices, ...) } net.stats <- matrix(ncol = length(obs.net.stats), nrow = 0) colnames(net.stats) <- names(obs.net.stats) for (i in 1:nullnet$n.iterations) { web1 <- eval(parse(text = paste( 'nullnet$rand.data[nullnet$rand.data$Iteration == "It.', i, '", ]', sep = ""))) rownames(web1) <- web1$Consumer web1 <- web1[, -c(1:2)] web1 <- t(web1) if("ALL" %in% indices){ net.stats <- rbind(net.stats, bipartite::grouplevel(web1, "ALLBUTDD", ...)) } else { net.stats <- rbind(net.stats, bipartite::grouplevel(web1, indices, ...)) } if (prog.count == TRUE){Sys.sleep(0.02); print(i); utils::flush.console()} } net.level.mean <- apply(net.stats, 2, mean, na.rm = TRUE) net.level.up <- apply(net.stats, 2, stats::quantile, probs = 1 - p, na.rm = TRUE) net.level.low <- apply(net.stats, 2, stats::quantile, probs = p, na.rm = TRUE) net.level.sd <- apply(net.stats, 2, stats::sd, na.rm = TRUE) net.level.ses <- (obs.net.stats - net.level.mean) / net.level.sd grp.level.results <- data.frame(obs.net.stats, net.level.mean, net.level.low, net.level.up, rep("ns", length(net.level.low)), net.level.ses) colnames(grp.level.results) <- c("Observed", "Null", "Lower.CL", "Upper.CL", "Test", "SES") grp.level.results$Test <- as.character(grp.level.results$Test) for (i in 1:nrow(grp.level.results)) { if (is.na(grp.level.results$Observed[i])) {grp.level.results$Test[i] <- "NA"} else { if ((grp.level.results$Observed[i] == grp.level.results$Lower.CL[i]) & (grp.level.results$Observed[i] == grp.level.results$Upper.CL[i])) {grp.level.results$Test[i] <- "NA"} if (grp.level.results$Observed[i] > grp.level.results$Upper.CL[i]) {grp.level.results$Test[i] <- "Higher"} if (grp.level.results$Observed[i] < grp.level.results$Lower.CL[i]) {grp.level.results$Test[i] <- "Lower"} } } } if (index.type == "specieslevel") { if("ALL" %in% indices){ obs.net.stats <- bipartite::specieslevel(obs.web, index = "ALLBUTD", level = "both", ...)} else { obs.net.stats <- bipartite::specieslevel(obs.web, index = indices, level = "both", ...) } obs.high <- cbind(rownames(obs.net.stats$'higher level'), obs.net.stats$'higher level') rownames(obs.high) <- NULL colnames(obs.high)[1] <- "species" obs.low <- cbind(rownames(obs.net.stats$'lower level'), obs.net.stats$'lower level') rownames(obs.low) <- NULL colnames(obs.low)[1] <- "species" for (i in 1:nullnet$n.iterations) { web1 <- eval(parse(text = paste( 'nullnet$rand.data[nullnet$rand.data$Iteration == "It.', i, '", ]', sep = ""))) rownames(web1) <- web1$Consumer web1 <- web1[, -c(1:2)] web1 <- t(web1) if("ALL" %in% indices){ iteration.stats <- bipartite::specieslevel(web1, index = "ALLBUTD", level = "both", ...)} else { iteration.stats <- bipartite::specieslevel(web1, index = indices, level = "both", ...) } iteration.high <- cbind(rownames(iteration.stats$'higher level'), iteration.stats$'higher level') rownames(iteration.high) <- NULL colnames(iteration.high)[1] <- "species" if (i == 1) { net.stats.high <- iteration.high } else { net.stats.high <- rbind(net.stats.high, iteration.high) } iteration.low <- cbind(rownames(iteration.stats$'lower level'), iteration.stats$'lower level') rownames(iteration.low) <- NULL colnames(iteration.low)[1] <- "species" if (i == 1) { net.stats.low <- iteration.low } else { net.stats.low <- rbind(net.stats.low, iteration.low) } if (prog.count == TRUE){Sys.sleep(0.02); print(i); utils::flush.console()} } matrix.names <- colnames(net.stats.high)[2:ncol(net.stats.high)] higher.mean <- stats::aggregate(net.stats.high[, 2:ncol(net.stats.high)], by = list(net.stats.high$species), mean, na.rm = TRUE) higher.up <- stats::aggregate(net.stats.high[, 2:ncol(net.stats.high)], by = list(net.stats.high$species), stats::quantile, probs = 1 - p, na.rm = TRUE) higher.low <- stats::aggregate(net.stats.high[, 2:ncol(net.stats.high)], by = list(net.stats.high$species), stats::quantile, probs = p, na.rm = TRUE) higher.sd <- stats::aggregate(net.stats.high[, 2:ncol(net.stats.high)], by = list(net.stats.high$species), stats::sd, na.rm = TRUE) higher.ses <- cbind.data.frame(obs.high[, 1], ((obs.high[, -1] - higher.mean[, -1]) / higher.sd[, -1])) colnames(higher.mean) <- colnames(net.stats.high) colnames(higher.up) <- colnames(net.stats.high) colnames(higher.low) <- colnames(net.stats.high) colnames(higher.sd) <- colnames(net.stats.high) colnames(higher.ses) <- colnames(net.stats.high) lower.taxa <- data.frame(Species = unique(c(as.character(obs.low$species), as.character(net.stats.low$species)))) obs.low <- merge(lower.taxa, obs.low, by.x = "Species", by.y = "species", all.x = TRUE, all.y = TRUE) obs.low <- obs.low[order(obs.low$Species), ] lower.mean <- stats::aggregate(net.stats.low[, 2:ncol(net.stats.low)], by = list(net.stats.low$species), mean, na.rm = TRUE) lower.mean <- merge(lower.taxa, lower.mean, by.x = "Species", by.y = "Group.1",all.x = TRUE, all.y = TRUE) lower.mean <- lower.mean[order(lower.mean$Species), ] lower.up <- stats::aggregate(net.stats.low[, 2:ncol(net.stats.low)], by = list(net.stats.low$species), stats::quantile, probs = 1 - p, na.rm = TRUE) lower.up <- merge(lower.taxa, lower.up, by.x = "Species", by.y = "Group.1", all.x = TRUE, all.y = TRUE) lower.up <- lower.up[order(lower.up$Species), ] lower.low <- stats::aggregate(net.stats.low[, 2:ncol(net.stats.low)], by = list(net.stats.low$species), stats::quantile, probs = p, na.rm = TRUE) lower.low <- merge(lower.taxa, lower.low, by.x = "Species", by.y = "Group.1", all.x = TRUE, all.y = TRUE) lower.low <- lower.low[order(lower.low$Species), ] lower.sd <- stats::aggregate(net.stats.low[, 2:ncol(net.stats.low)], by = list(net.stats.low$species), stats::sd, na.rm = TRUE) lower.sd <- merge(lower.taxa, lower.sd, by.x = "Species", by.y = "Group.1", all.x = TRUE, all.y = TRUE) lower.sd <- lower.sd[order(lower.sd$Species), ] lower.ses <- cbind.data.frame(obs.low[, 1], ((obs.low[, -1] - lower.mean[, -1]) / lower.sd[, -1])) if(!identical(obs.low$Species, lower.mean$Species) || !identical(obs.low$Species, lower.mean$Species) || !identical(obs.low$Species, lower.up$Species) || !identical(obs.low$Species, lower.sd$Species)) {stop( "Different taxon lists in observed and modelled data")} colnames(lower.mean) <- colnames(net.stats.high) colnames(lower.up) <- colnames(net.stats.high) colnames(lower.low) <- colnames(net.stats.high) colnames(lower.sd) <- colnames(net.stats.high) colnames(lower.ses) <- colnames(net.stats.high) if (!identical(as.vector(colnames(net.stats.high)[2:ncol(net.stats.high)]), as.vector(colnames(net.stats.high)[2:ncol(net.stats.high)]))) {stop("Different indices at lower and higher levels")} sp.level <- list() for (j in 1:length(matrix.names)) { mat1 <- merge(obs.high[, c("species", matrix.names[j])], higher.mean[, c("species", matrix.names[j])], by.x = "species", by.y = "species") colnames(mat1) <- c("Species", "Observed", "Null") mat1 <- merge(mat1, higher.low[, c("species", matrix.names[j])], by.x = "Species", by.y = "species") mat1 <- merge(mat1, higher.up[, c("species", matrix.names[j])], by.x = "Species", by.y = "species") mat1 <- cbind(mat1, rep("ns", nrow(mat1))) mat1 <- merge(mat1, higher.ses[, c("species", matrix.names[j])], by.x = "Species", by.y = "species") colnames(mat1)[4:7] <- c("Lower.CL", "Upper.CL", "Test", "SES") mat1$Test <- as.character(mat1$Test) for (k in 1:nrow(mat1)) { if (is.na(mat1$Observed[k])) {mat1$Test[k] <- "NA"} else { if ((mat1$Observed[k] == mat1$Lower.CL[k]) & (mat1$Observed[k] == mat1$Upper.CL[k])) {mat1$Test[k] <- "NA"} if (mat1$Observed[k] > mat1$Upper.CL[k]) {mat1$Test[k] <- "Higher"} if (mat1$Observed[k] < mat1$Lower.CL[k]) {mat1$Test[k] <- "Lower"} } } sp.level[[matrix.names[j]]]$higher <- mat1 mat1 <- merge(obs.low[, c("Species", matrix.names[j])], lower.mean[, c("species", matrix.names[j])], by.x = "Species", by.y = "species") colnames(mat1) <- c("Species", "Observed", "Null") mat1 <- merge(mat1, lower.low[, c("species", matrix.names[j])], by.x = "Species", by.y = "species") mat1 <- merge(mat1, lower.up[, c("species", matrix.names[j])], by.x = "Species", by.y = "species") mat1 <- cbind(mat1, rep("ns", nrow(mat1))) mat1 <- merge(mat1, lower.ses[, c("species", matrix.names[j])], by.x = "Species", by.y = "species") colnames(mat1)[4:7] <- c("Lower.CL", "Upper.CL", "Test", "SES") mat1$Test <- as.character(mat1$Test) for (k in 1:nrow(mat1)) { if (is.na(mat1$Observed[k]) || is.na(mat1$Lower.CL[k])) {mat1$Test[k] <- "NA"} else { if ((mat1$Observed[k] == mat1$Lower.CL[k]) & (mat1$Observed[k] == mat1$Upper.CL[k])) {mat1$Test[k] <- "ns"} if (mat1$Observed[k] > mat1$Upper.CL[k]) {mat1$Test[k] <- "Higher"} if (mat1$Observed[k] < mat1$Lower.CL[k]) {mat1$Test[k] <- "Lower"} } } sp.level[[matrix.names[j]]]$lower <- mat1 } } if (index.type == "specieslevel" & indices[1] == "ALL") { warning("Dependence matrix is not currently supported by bipartite_stats: indices = 'ALLBUTD' used instead")} if (index.type == "grouplevel" & indices[1] == "ALL") { warning("Degree distribution is not currently supported by bipartite_stats: indices = 'ALLBUTDD' used instead")} if (index.type == "networklevel" & indices[1] == "ALL") { warning("Degree distribution is not currently supported by bipartite_stats: indices = 'ALLBUTDD' used instead")} if (index.type == "networklevel") {return(net.level.results)} if (index.type == "grouplevel") {return(grp.level.results)} if (index.type == "specieslevel") {return(sp.level)} }
context("Assertion assertions") test_that("is.integerish works correctly", { expect_true(is.integerish(1L)) expect_true(is.integerish(c(1L, 2L, 3L))) expect_true(is.integerish(c(1L, NA, 3L))) expect_false(is.integerish(c(1L, 2.1, 3L))) expect_false(is.integerish(1L + .Machine$double.eps)) expect_false(is.integerish(1L - .Machine$double.neg.eps)) expect_true(is.integerish(Inf)) expect_true(is.integerish(-Inf)) expect_true(is.integerish(1e10)) expect_true(is.integerish(-1e10)) expect_false(is.integerish(1e10 + 0.0002)) expect_false(is.integerish(1e10 - 0.0002)) expect_false(is.integerish(NA)) expect_false(is.integerish(NA_real_)) expect_false(is.integerish(NULL)) expect_false(is.integerish(NaN)) }) test_that("is.named works correctly", { expect_false(is.named(1)) x <- 1:3 expect_false(is.named(x)) names(x) <- letters[1:3] expect_true(is.named(x)) names(x)[2] <- "" expect_false(is.named(x)) names(x)[2] <- NA expect_false(is.named(x)) names(x) <- NULL expect_false(is.named(x)) expect_false(is.named(NA)) expect_false(is.named(NULL)) }) test_that("has_attr works correctly", { x <- 1:3 expect_false(has_attr(x, "names")) names(x) <- letters[1:3] expect_true(has_attr(x, "names")) expect_false(has_attr(x, "something else")) }) test_that("has_name works correctly", { x <- 1:3 expect_false(has_name(x, "a")) names(x) <- letters[1:3] expect_true(has_name(x, letters[2])) expect_false(has_name(x, "something else")) expect_false(has_name(x, NA)) expect_true(has_name(x, c("a", "b"))) expect_true(has_name(x, c("a", "b", "c"))) expect_false(has_name(x, c("a", "d"))) }) test_that("noNA works correctly", { expect_true(noNA("a")) expect_false(noNA(c(TRUE, NA))) x <- sample(c(1:10, NA), 100, rep = TRUE) expect_false(noNA(x)) expect_true(noNA(1:1000)) }) test_that("are_equal works correctly", { x <- 2 expect_false(are_equal(x, 1.9)) expect_true(are_equal(x, 1.999, tol = 0.01)) expect_true(are_equal(x, 2)) expect_true(are_equal('a', 'a')) expect_false(are_equal('a', 'b')) expect_true(are_equal(NA, NA)) expect_true(are_equal(NULL, NULL)) }) test_that("is.error works correctly", { x <- try(stop("!!"), silent=TRUE) expect_true(is.error(x)) expect_false(is.error(1)) expect_false(is.error(NA)) expect_false(is.error(NULL)) }) test_that("is.time works correctly", { expect_true(is.time(Sys.time())) expect_false(is.time(Sys.Date())) expect_false(is.time(1)) expect_false(is.time(NA)) expect_false(is.time(NULL)) }) test_that("is.date works correctly", { expect_false(is.date(Sys.time())) expect_true(is.date(Sys.Date())) expect_false(is.date(1)) expect_false(is.date(NA)) expect_false(is.date(NULL)) }) test_that("has_args works correctly", { expect_error(1 %has_args% "x") expect_true(mean %has_args% "x") expect_false(mean %has_args% "y") expect_error(NA %has_args% "x") expect_error(NULL %has_args% "x") expect_true(has_args(rnorm, "n")) expect_true(has_args(rnorm, c("n", "mean"))) expect_true(has_args(rnorm, c("mean", "sd", "n"))) expect_false(has_args(rnorm, "n", exact = TRUE)) expect_false(has_args(rnorm, c("n", "mean"), exact = TRUE)) expect_false(has_args(rnorm, c("mean", "sd", "n"), exact = TRUE)) }) test_that("not_empty works correctly", { expect_true(not_empty(1)) expect_false(not_empty(numeric())) expect_false(not_empty(mtcars[0, ])) expect_false(not_empty(mtcars[, 0])) expect_true(not_empty(NA)) expect_false(not_empty(NULL)) })
test_that("dweibull extremes", { expect_identical(dweibull(numeric(0)), numeric(0)) expect_identical(dweibull(NA), NA_real_) expect_identical(dweibull(NaN), NaN) expect_identical(dweibull(0), 1) expect_equal(dweibull(1), 0.367879441171442) expect_equal(dweibull(1, log = TRUE), log(dweibull(1))) expect_equal(dweibull(1, shape = -1), NaN) expect_equal(dweibull(1, scale = -1), NaN) expect_identical(dweibull(0), 1) expect_identical(dweibull(-Inf), 0) expect_identical(dweibull(Inf), 0) expect_identical(dweibull(c(NA, NaN, 0, Inf, -Inf)), c(dweibull(NA), dweibull(NaN), dweibull(0), dweibull(Inf), dweibull(-Inf))) expect_equal(dweibull(1:2, shape = 1:2, scale = 3:4), c(dweibull(1, 1, 3), dweibull(2, 2, 4))) expect_equal(dweibull(1:2, shape = c(1, NA), scale = 3:4), c(dweibull(1, 1, 3), NA)) }) test_that("pweibull extremes", { expect_identical(pweibull(numeric(0)), numeric(0)) expect_identical(pweibull(NA), NA_real_) expect_identical(pweibull(NaN), NaN) expect_identical(pweibull(0), 0) expect_equal(pweibull(1), 0.632120558828558) expect_equal(pweibull(1, log.p = TRUE), log(pweibull(1))) expect_equal(pweibull(1, lower.tail = FALSE), 1 - pweibull(1)) expect_equal(pweibull(1, lower.tail = FALSE, log.p = TRUE), log(1 - pweibull(1))) expect_equal(pweibull(1, shape = -1), NaN) expect_equal(pweibull(1, scale = -1), NaN) expect_identical(pweibull(0), 0) expect_identical(pweibull(-Inf), 0) expect_identical(pweibull(Inf), 1) expect_identical(pweibull(c(NA, NaN, 0, Inf, -Inf)), c(pweibull(NA), pweibull(NaN), pweibull(0), pweibull(Inf), pweibull(-Inf))) expect_equal(pweibull(1:2, shape = 1:2, scale = 3:4), c(pweibull(1, 1, 3), pweibull(2, 2, 4))) expect_equal(pweibull(1:2, shape = c(1, NA), scale = 3:4), c(pweibull(1, 1, 3), NA)) }) test_that("qweibull extremes", { expect_identical(qweibull(numeric(0)), numeric(0)) expect_identical(qweibull(NA), NA_real_) expect_identical(qweibull(NaN), NaN) expect_identical(qweibull(0), 0) expect_identical(qweibull(1), Inf) expect_equal(qweibull(0.75), 1.38629436111989) expect_equal(qweibull(0.75, log.p = TRUE), NaN) expect_equal(qweibull(log(0.75), log.p = TRUE), qweibull(0.75)) expect_equal(qweibull(0.75, lower.tail = FALSE), qweibull(0.25)) expect_equal(qweibull(log(0.75), lower.tail = FALSE, log.p = TRUE), qweibull(0.25)) expect_equal(qweibull(0.5, shape = -1), NaN) expect_equal(qweibull(0.5, scale = -1), NaN) expect_identical(qweibull(0), 0) expect_identical(qweibull(-Inf), NaN) expect_identical(qweibull(Inf), NaN) expect_identical(qweibull(c(NA, NaN, 0, Inf, -Inf)), c(qweibull(NA), qweibull(NaN), qweibull(0), qweibull(Inf), qweibull(-Inf))) expect_equal(qweibull(1:2, shape = 1:2, scale = 3:4), c(qweibull(1, 1, 3), qweibull(2, 2, 4))) expect_equal(qweibull(1:2, shape = c(1, NA), scale = 3:4), c(qweibull(1, 1, 3), NA)) expect_equal(qweibull(pweibull(c(0, 0.1, 0.5, 0.9, 1))), c(0, 0.1, 0.5, 0.9, 1)) }) test_that("rweibull extremes", { expect_identical(rweibull(numeric(0)), numeric(0)) expect_error(rweibull(NA)) expect_identical(rweibull(0), numeric(0)) set.seed(42) expect_equal(rweibull(1), 0.0890432104972705) set.seed(42) expect_equal(rweibull(1.9), 0.0890432104972705) set.seed(42) expect_equal(rweibull(2), c(0.0890432104972705, 0.0649915162066272)) set.seed(42) expect_equal(rweibull(3:4), c(0.0890432104972705, 0.0649915162066272)) expect_equal(rweibull(0, shape = -1), numeric(0)) expect_equal(rweibull(1, shape = -1), NaN) expect_equal(rweibull(2, shape = -1), c(NaN, NaN)) expect_equal(rweibull(0, scale = -1), numeric(0)) expect_equal(rweibull(1, scale = -1), NaN) expect_equal(rweibull(2, scale = -1), c(NaN, NaN)) expect_error(rweibull(1, shape = 1:2)) expect_error(rweibull(1, scale = 1:2)) expect_identical(rweibull(1, shape = NA), NA_real_) }) test_that("fit weibull quinoline", { quin <- ssdtools::test_data[ssdtools::test_data$Chemical == "Quinoline", ] expect_warning(dist <- ssd_fit_dist(quin, dist = "weibull")) expect_true(is.fitdist(dist)) expect_equal( coef(dist), c(shape = 0.627542681172847, scale = 15343.492101029) ) }) test_that("fit weibull boron", { dist <- ssd_fit_dist(ssdtools::boron_data, dist = "weibull") expect_true(is.fitdist(dist)) expect_equal( coef(dist), c(shape = 0.966282452187714, scale = 23.5097477721338) ) })
dunn=function(trat, resp, method="holm", alpha=0.05, decreasing=TRUE) {requireNamespace("dunn.test") dtres <- capture.output(res <- dunn.test::dunn.test(resp, trat, method, kw = TRUE, altp = TRUE)) res <- data.frame(res[-which(names(res) == "chi2")])[,c(4, 1, 2, 3)] names(res) <- c("Comparison", "Z", "P.unadj", "P.adj") vec2mat2=function (x, sep = "-"){splits <- strsplit(x, sep) n.spl <- sapply(splits, length) if (any(n.spl != 2)) stop("Names must contain exactly one '", sep, "' each; instead got ", paste(x, collapse = ", ")) x2 <- t(as.matrix(as.data.frame(splits))) dimnames(x2) <- list(x, NULL) x2} multcompLetters=function (x, compare = "<", threshold = alpha, Letters = c(letters, LETTERS, "."), reversed = decreasing) {x.is <- deparse(substitute(x)) if (any(class(x) == "dist")) x <- as.matrix(x) if (!is.logical(x)) x <- do.call(compare, list(x, threshold)) dimx <- dim(x) { if ((length(dimx) == 2) && (dimx[1] == dimx[2])) { Lvls <- dimnames(x)[[1]] if (length(Lvls) != dimx[1]) stop("Names requred for ", x.is) else { x2. <- t(outer(Lvls, Lvls, paste, sep = "")) x2.n <- outer(Lvls, Lvls, function(x1, x2) nchar(x2)) x2.2 <- x2.[lower.tri(x2.)] x2.2n <- x2.n[lower.tri(x2.n)] x2a <- substring(x2.2, 1, x2.2n) x2b <- substring(x2.2, x2.2n + 1) x2 <- cbind(x2a, x2b) x <- x[lower.tri(x)] } } else { namx <- names(x) if (length(namx) != length(x)) stop("Names required for ", x.is) x2 <- vec2mat2(namx) Lvls <- unique(as.vector(x2))}} n <- length(Lvls) LetMat <- array(TRUE, dim = c(n, 1), dimnames = list(Lvls, NULL)) k2 <- sum(x) if (k2 == 0) { Ltrs <- rep(Letters[1], n) names(Ltrs) <- Lvls dimnames(LetMat)[[2]] <- Letters[1] return(list(Letters = Ltrs, LetterMatrix = LetMat))} distinct.pairs <- x2[x, , drop = FALSE] absorb <- function(A.) { k. <- dim(A.)[2] if (k. > 1) { for (i. in 1:(k. - 1)) for (j. in (i. + 1):k.) { if (all(A.[A.[, j.], i.])) { A. <- A.[, -j., drop = FALSE] return(absorb(A.))} else { if (all(A.[A.[, i.], j.])) { A. <- A.[, -i., drop = FALSE] return(absorb(A.)) } } } } A. } for (i in 1:k2) { dpi <- distinct.pairs[i, ] ijCols <- (LetMat[dpi[1], ] & LetMat[dpi[2], ]) if (any(ijCols)) { A1 <- LetMat[, ijCols, drop = FALSE] A1[dpi[1], ] <- FALSE LetMat[dpi[2], ijCols] <- FALSE LetMat <- cbind(LetMat, A1) LetMat <- absorb(LetMat) } } sortCols <- function(B) { firstRow <- apply(B, 2, function(x) which(x)[1]) B <- B[, order(firstRow)] firstRow <- apply(B, 2, function(x) which(x)[1]) reps <- (diff(firstRow) == 0) if (any(reps)) { nrep <- table(which(reps)) irep <- as.numeric(names(nrep)) k <- dim(B)[1] for (i in irep) { i. <- i:(i + nrep[as.character(i)]) j. <- (firstRow[i] + 1):k B[j., i.] <- sortCols(B[j., i., drop = FALSE]) } } B } LetMat. <- sortCols(LetMat) if (reversed) LetMat. <- LetMat.[, rev(1:ncol(LetMat.))] k.ltrs <- dim(LetMat.)[2] makeLtrs <- function(kl, ltrs = Letters) { kL <- length(ltrs) if (kl < kL) return(ltrs[1:kl]) ltrecurse <- c(paste(ltrs[kL], ltrs[-kL], sep = ""), ltrs[kL]) c(ltrs[-kL], makeLtrs(kl - kL + 1, ltrecurse)) } Ltrs <- makeLtrs(k.ltrs, Letters) dimnames(LetMat.)[[2]] <- Ltrs LetVec <- rep(NA, n) names(LetVec) <- Lvls for (i in 1:n) LetVec[i] <- paste(Ltrs[LetMat.[i, ]], collapse = "") nch.L <- nchar(Ltrs) blk.L <- rep(NA, k.ltrs) for (i in 1:k.ltrs) blk.L[i] <- paste(rep(" ", nch.L[i]), collapse = "") monoVec <- rep(NA, n) names(monoVec) <- Lvls for (j in 1:n) { ch2 <- blk.L if (any(LetMat.[j, ])) ch2[LetMat.[j, ]] <- Ltrs[LetMat.[j, ]] monoVec[j] <- paste(ch2, collapse = "") } InsertAbsorb <- list(Letters = LetVec, monospacedLetters = monoVec, LetterMatrix = LetMat.) class(InsertAbsorb) <- "multcompLetters" InsertAbsorb} cldList=function (formula = NULL, data = NULL, comparison = NULL, p.value = NULL, threshold = alpha, print.comp = FALSE, remove.space = TRUE, remove.equal = TRUE, remove.zero = TRUE, swap.colon = TRUE, swap.vs = FALSE){if (!is.null(formula)) { p.value = eval(parse(text = paste0("data", "$", all.vars(formula[[2]])[1]))) comparison = eval(parse(text = paste0("data", "$", all.vars(formula[[3]])[1])))} Comparison = (as.numeric(p.value) <= threshold) if (sum(Comparison) == 0) {stop("No significant differences.", call. = FALSE)} if (remove.space == TRUE) {comparison = gsub(" ", "", comparison)} if (remove.equal == TRUE) {comparison = gsub("=", "", comparison)} if (remove.zero == TRUE) {comparison = gsub("0", "", comparison)} if (swap.colon == TRUE) {comparison = gsub(":", "-", comparison)} if (swap.vs == TRUE) {comparison = gsub("vs", "-", comparison)} names(Comparison) = comparison if (print.comp == TRUE) { Y = data.frame(Comparisons = names(Comparison), p.value = p.value, Value = Comparison, Threshold = threshold) cat("\n", "\n") print(Y) cat("\n", "\n")} MCL = multcompLetters(Comparison) Group = names(MCL$Letters) Letter = as.character(MCL$Letters) MonoLetter = as.character(MCL$monospacedLetters) Z = data.frame(Group, Letter, MonoLetter) return(Z)} resp1=resp names(resp1)=trat postos=rank(resp1) somaposto=tapply(postos,names(postos),sum) N=tapply(postos,names(postos), length) postosmedios=somaposto/N media=tapply(resp1,trat,mean) mediana=tapply(resp1,trat,median) dunns=cldList(P.adj~Comparison, data=res) tabela=data.frame("group"=dunns$Group, "Sum Rank"=somaposto, "Mean Rank"=postosmedios, "Mean"=media, "Median"=mediana, "dunn"=dunns$Letter) krusk=kruskal.test(resp,trat,method=method) chi=krusk$statistic pvalor=krusk$p.value list("Statistic"=chi, "p-value"=pvalor, "Post-hoc"=tabela)}
gwr.morantest <- function(x, lw, zero.policy = FALSE) { if(class(x) != "gwr") stop(paste(deparse(substitute(x)), "not a gwr object")) if (is.null(x$lhat)) stop("hatmatrix=TRUE needed in gwr fit") if (!inherits(lw, "listw")) stop(paste(deparse(substitute(lw)), "is not a listw object")) n <- ncol(x$lhat) if (n != length(lw$neighbours)) stop("objects of different length") if (lw$style != "W") warning(deparse(substitute(lw)), "not row standardised") if (requireNamespace("spdep", quietly = TRUE)) { W <- spdep::listw2mat(spdep::listw2U(lw)) } else { stop("spdep not available") } N <- diag(n) - x$lhat e.gwr <- N %*% x$lm$y I0.gwr <- c((t(e.gwr) %*% W %*% e.gwr) / (t(e.gwr) %*% e.gwr)) A <- t(N) %*% (W - I0.gwr*diag(n)) %*% N EQ.gwr <- sum(diag(A)) tr2 <- sum(diag(A %*% A)) tr3 <- sum(diag(A %*% A %*% A)) varQ.gwr <- 2*tr2 EQ.EQ3.gwr <- 8*tr3 h.gwr <- tr2^3/tr3^2 chi2.gwr <- 0 p.gwr <- 0 if (EQ.EQ3.gwr > 0) { chi2.gwr <- h.gwr - ((sqrt(2*h.gwr)*EQ.gwr)/(sqrt(varQ.gwr))) p.gwr <- 1 - pchisq(chi2.gwr, h.gwr) } else if (EQ.EQ3.gwr < 0) { chi2.gwr <- (h.gwr + ((sqrt(2*h.gwr)*EQ.gwr)/(sqrt(varQ.gwr)))) p.gwr <- pchisq(chi2.gwr, h.gwr) } GWRtest <- list(estimate=c(I = I0.gwr), statistic=c(statistic = chi2.gwr), parameter=c(df = h.gwr), p.value=p.gwr, data.name="GWR residuals", method="Leung et al. 2000 three moment approximation for Moran's I") class(GWRtest) <- "htest" GWRtest }
LA_LHD=function(n,k,m=10,N=10,prun=1/(k-1),OC="phi_p",p=15,q=1,maxtime=5){ maxtime=maxtime*60 timeALL=NULL C=1 X=rep(0,n*k*m) dim(X)=c(n,k,m) for (i in 1:m) { X[,,i]=LHD::rLHD(n=n,k=k) } if(OC=="phi_p"){ result=rep(0,m) for (i in 1:m) { result[i]=LHD::phi_p(X[,,i],p=p,q=q) } progressbar = utils::txtProgressBar(min = 0, max = N, style = 3) while (C<=N) { time0=Sys.time() temp=cbind(result,1:m) temp=temp[order(temp[,1]),] centre=X[,,temp[1,2]] LW=X[,,temp[2,2]] RW=X[,,temp[3,2]] m=6*k+3 Xnew=rep(0,n*k*m) dim(Xnew)=c(n,k,m) Xnew[,,1]=centre Xnew[,,2]=LW Xnew[,,3]=RW index=4 for (j in 1:k) { Xnew[,,index]=centre Xnew[,j,index]=LW[,j] index=index+1 Xnew[,,index]=centre Xnew[,j,index]=RW[,j] index=index+1 } for (j in 1:k) { Xnew[,,index]=LW Xnew[,j,index]=centre[,j] index=index+1 Xnew[,,index]=LW Xnew[,j,index]=RW[,j] index=index+1 } for (j in 1:k) { Xnew[,,index]=RW Xnew[,j,index]=centre[,j] index=index+1 Xnew[,,index]=RW Xnew[,j,index]=LW[,j] index=index+1 } X=Xnew for (i in 2:m) { for (j in 1:k) { z=stats::runif(1,0,1) if (z<=prun){ X[,,i]=LHD::exchange(X=X[,,i],j=j) } } } result=rep(0,m) for (i in 1:m) { result[i]=LHD::phi_p(X[,,i],p=p,q=q) } time1=Sys.time() timediff=time1-time0 timeALL=c(timeALL,timediff) utils::setTxtProgressBar(progressbar, C) if(as.numeric(sum(timeALL)+timediff)<=maxtime){C=C+1} if(as.numeric(sum(timeALL)+timediff)>maxtime){C=N+1} } temp=cbind(result,1:m) temp=temp[order(temp[,1]),] centre=X[,,temp[1,2]] } if(OC=="AvgAbsCor"){ result=rep(0,m) for (i in 1:m) { result[i]=LHD::AvgAbsCor(X[,,i]) } progressbar = utils::txtProgressBar(min = 0, max = N, style = 3) while (C<=N) { time0=Sys.time() temp=cbind(result,1:m) temp=temp[order(temp[,1]),] centre=X[,,temp[1,2]] LW=X[,,temp[2,2]] RW=X[,,temp[3,2]] m=6*k+3 Xnew=rep(0,n*k*m) dim(Xnew)=c(n,k,m) Xnew[,,1]=centre Xnew[,,2]=LW Xnew[,,3]=RW index=4 for (j in 1:k) { Xnew[,,index]=centre Xnew[,j,index]=LW[,j] index=index+1 Xnew[,,index]=centre Xnew[,j,index]=RW[,j] index=index+1 } for (j in 1:k) { Xnew[,,index]=LW Xnew[,j,index]=centre[,j] index=index+1 Xnew[,,index]=LW Xnew[,j,index]=RW[,j] index=index+1 } for (j in 1:k) { Xnew[,,index]=RW Xnew[,j,index]=centre[,j] index=index+1 Xnew[,,index]=RW Xnew[,j,index]=LW[,j] index=index+1 } X=Xnew for (i in 2:m) { for (j in 1:k) { z=stats::runif(1,0,1) if (z<=prun){ X[,,i]=LHD::exchange(X=X[,,i],j=j) } } } result=rep(0,m) for (i in 1:m) { result[i]=LHD::AvgAbsCor(X[,,i]) } time1=Sys.time() timediff=time1-time0 timeALL=c(timeALL,timediff) utils::setTxtProgressBar(progressbar, C) if(as.numeric(sum(timeALL)+timediff)<=maxtime){C=C+1} if(as.numeric(sum(timeALL)+timediff)>maxtime){C=N+1} } temp=cbind(result,1:m) temp=temp[order(temp[,1]),] centre=X[,,temp[1,2]] } if(OC=="MaxAbsCor"){ result=rep(0,m) for (i in 1:m) { result[i]=LHD::MaxAbsCor(X[,,i]) } progressbar = utils::txtProgressBar(min = 0, max = N, style = 3) while (C<=N) { time0=Sys.time() temp=cbind(result,1:m) temp=temp[order(temp[,1]),] centre=X[,,temp[1,2]] LW=X[,,temp[2,2]] RW=X[,,temp[3,2]] m=6*k+3 Xnew=rep(0,n*k*m) dim(Xnew)=c(n,k,m) Xnew[,,1]=centre Xnew[,,2]=LW Xnew[,,3]=RW index=4 for (j in 1:k) { Xnew[,,index]=centre Xnew[,j,index]=LW[,j] index=index+1 Xnew[,,index]=centre Xnew[,j,index]=RW[,j] index=index+1 } for (j in 1:k) { Xnew[,,index]=LW Xnew[,j,index]=centre[,j] index=index+1 Xnew[,,index]=LW Xnew[,j,index]=RW[,j] index=index+1 } for (j in 1:k) { Xnew[,,index]=RW Xnew[,j,index]=centre[,j] index=index+1 Xnew[,,index]=RW Xnew[,j,index]=LW[,j] index=index+1 } X=Xnew for (i in 2:m) { for (j in 1:k) { z=stats::runif(1,0,1) if (z<=prun){ X[,,i]=LHD::exchange(X=X[,,i],j=j) } } } result=rep(0,m) for (i in 1:m) { result[i]=LHD::MaxAbsCor(X[,,i]) } time1=Sys.time() timediff=time1-time0 timeALL=c(timeALL,timediff) utils::setTxtProgressBar(progressbar, C) if(as.numeric(sum(timeALL)+timediff)<=maxtime){C=C+1} if(as.numeric(sum(timeALL)+timediff)>maxtime){C=N+1} } temp=cbind(result,1:m) temp=temp[order(temp[,1]),] centre=X[,,temp[1,2]] } if(OC=="MaxProCriterion"){ result=rep(0,m) for (i in 1:m) { result[i]=LHD::MaxProCriterion(X[,,i]) } progressbar = utils::txtProgressBar(min = 0, max = N, style = 3) while (C<=N) { time0=Sys.time() temp=cbind(result,1:m) temp=temp[order(temp[,1]),] centre=X[,,temp[1,2]] LW=X[,,temp[2,2]] RW=X[,,temp[3,2]] m=6*k+3 Xnew=rep(0,n*k*m) dim(Xnew)=c(n,k,m) Xnew[,,1]=centre Xnew[,,2]=LW Xnew[,,3]=RW index=4 for (j in 1:k) { Xnew[,,index]=centre Xnew[,j,index]=LW[,j] index=index+1 Xnew[,,index]=centre Xnew[,j,index]=RW[,j] index=index+1 } for (j in 1:k) { Xnew[,,index]=LW Xnew[,j,index]=centre[,j] index=index+1 Xnew[,,index]=LW Xnew[,j,index]=RW[,j] index=index+1 } for (j in 1:k) { Xnew[,,index]=RW Xnew[,j,index]=centre[,j] index=index+1 Xnew[,,index]=RW Xnew[,j,index]=LW[,j] index=index+1 } X=Xnew for (i in 2:m) { for (j in 1:k) { z=stats::runif(1,0,1) if (z<=prun){ X[,,i]=LHD::exchange(X=X[,,i],j=j) } } } result=rep(0,m) for (i in 1:m) { result[i]=LHD::MaxProCriterion(X[,,i]) } time1=Sys.time() timediff=time1-time0 timeALL=c(timeALL,timediff) utils::setTxtProgressBar(progressbar, C) if(as.numeric(sum(timeALL)+timediff)<=maxtime){C=C+1} if(as.numeric(sum(timeALL)+timediff)>maxtime){C=N+1} } temp=cbind(result,1:m) temp=temp[order(temp[,1]),] centre=X[,,temp[1,2]] } avgtime=round(mean(timeALL),2) iterations=length(timeALL) close(progressbar) print(paste0("average CPU time per iteration is: ", avgtime, " seconds")) print(paste0("the number of iterations completed is: ", iterations)) centre }
meanDecompose <- function(formula, data) { v <- as.character(attr(terms(formula), "variables"))[-1] if (!is.data.table(data)) { data <- as.data.table(data)[, v, with = FALSE] } else { data <- data[, v, with = FALSE] } out <- vector("list", length = length(v)) vres <- paste0(v[1], "_residual") stopifnot(!any(vres %in% v)) data[, (vres) := get(v[1])] vfinal <- vector("character", length = length(v)) for (i in 2:length(v)) { vname <- paste0(v[1], "_", v[i]) data[, (vname) := mean(get(vres), na.rm = TRUE), by = c(v[2:i])] data[, (vres) := get(vres) - get(vname)] out[[i - 1]] <- data[, .(X = get(vname)[1]), by = c(v[2:i])] vfinal[i - 1] <- paste0(v[1], " by ", paste(v[2:i], collapse = " & ")) } out[[length(v)]] <- data[, .(X = get(vres))] vfinal[length(v)] <- paste0(v[1], " by ", "residual") names(out) <- vfinal return(out) } if(getRversion() >= "2.15.1") utils::globalVariables(c("vcov", "grp")) iccMixed <- function(dv, id, data, family = c("gaussian", "binomial")) { if (!is.data.table(data)) { if (is.data.frame(data)) { data <- as.data.table(data) } else { message("Attempting to coerce data to a data.table") data <- as.data.table(data) } } stopifnot(all(c(dv, id) %in% names(data))) stopifnot(is.character(dv)) stopifnot(all(is.character(id))) stopifnot(identical(length(dv), 1L)) stopifnot(length(id) >= 1L) d <- copy(data[, c(dv, id), with = FALSE]) f <- sprintf("%s ~ 1 + %s", dv, paste(paste0("(1 | ", id, ")"), collapse = " + ")) family <- match.arg(family) res.binom <- (pi^2) / 3 m <- switch(family, gaussian = lmer(formula = as.formula(f), data = d, REML = TRUE), binomial = glmer(formula = as.formula(f), data = d, family = binomial()) ) est <- as.data.table(as.data.frame(VarCorr(m)))[, .(grp, vcov)] if (identical(family, "binomial")) { est <- rbind(est, est[1]) est[nrow(est), c("grp", "vcov") := .("Residual", res.binom)] } est[, .(Var = grp, Sigma = vcov, ICC = vcov / sum(vcov))] } nEffective <- function(n, k, icc, dv, id, data, family = c("gaussian", "binomial")) { if (any(missing(n), missing(k), missing(icc))) { if (!is.data.table(data)) { if (is.data.frame(data)) { data <- as.data.table(data) } else { message("Attempting to coerce data to a data.table") data <- as.data.table(data) } } stopifnot(all(c(dv, id) %in% names(data))) stopifnot(is.character(dv)) stopifnot(all(is.character(id))) stopifnot(identical(length(dv), 1L)) stopifnot(identical(length(id), 1L)) d <- copy(data[, c(dv, id), with = FALSE]) if (missing(icc)) { icc <- iccMixed(dv = dv, id = id, data = data, family = family)$ICC[1] } if (missing(n)) { n <- length(unique(data[[id]])) } if (missing(k)) { k <- nrow(data) / n } } neff <- (n * k) / ((1 + (k - 1) * icc)) data.table( Type = c("Effective Sample Size", "Independent Units", "Total Observations"), N = c(neff, n, n * k)) } meanDeviations <- function(x, na.rm = TRUE) { m <- mean(x, na.rm = na.rm) list(m, x - m) } acfByID <- function(xvar, timevar, idvar, data, lag.max = 10L, na.function = c("na.approx", "na.spline", "na.locf"), ...) { if (!is.data.table(data)) { if (is.data.frame(data)) { data <- as.data.table(data) } else { message("Attempting to coerce data to a data.table") data <- as.data.table(data) } } stopifnot(is.integer(lag.max)) stopifnot(is.character(xvar)) stopifnot(is.character(timevar)) stopifnot(all(c(xvar, timevar) %in% names(data))) stopifnot(identical(length(xvar), 1L)) stopifnot(identical(length(timevar), 1L)) na.function <- match.arg(na.function) na.function <- switch(na.function, na.approx = na.approx, na.spline = na.spline, na.locf = na.locf) if (!missing(idvar)) { stopifnot(is.character(idvar)) stopifnot(idvar %in% names(data)) stopifnot(identical(length(idvar), 1L)) d <- copy(data[, c(xvar, timevar, idvar), with = FALSE]) } else { d <- copy(data[, c(xvar, timevar), with = FALSE]) idvar <- "ID" while(idvar %in% names(d)) { idvar <- paste0("TMP_", idvar) } d[, (idvar) := 1L] } d[, .( Variable = xvar, Lag = 0:lag.max, AutoCorrelation = acf(na.function(zoo(get(xvar), order.by = get(timevar))), lag.max = lag.max, plot = FALSE, ...)$acf[, 1, 1]), by = idvar] }
expect_colname <- function(expected_colname, colnames) { expect_true(expected_colname %in% colnames) }
get.placeholder = function(ps=get.ps()) { ph = ps$rps$placeholder if (is.null(ph)) return("___") ph } get.placeholder.sym = function() { as.name(".PH_._") } has.call.placeholder = function(call) { if (!is.character(call)) { call = deparse1(call) } has.substr(call,".PH_._") } is.call.placeholder = function(call) { if (is.null(call)) return(FALSE) if (!is.character(call)) { call = deparse1(call) } isTRUE(call == ".PH_._") }
update.direction <- function(stat, ref.allele){ RefAllele <- ref.allele$RefAllel EffectAllele <- ref.allele$EffectAllele snps <- names(RefAllele) nsnp <- length(snps) A1 <- paste(RefAllele, EffectAllele, sep = '') names(A1) <- snps nstudy <- length(stat) for(i in 1:nstudy){ s <- stat[[i]][, 'SNP'] A2 <- paste(stat[[i]][, 'RefAllele'], stat[[i]][, 'EffectAllele'], sep = '') names(A2) <- s id <- which(A2 != A1[s]) if(length(id) == 0){ next } d <- strsplit(stat[[i]][id, 'Direction'], '') d <- sapply(d, function(u){paste(ifelse(u %in% c('+','-'), ifelse(u == '+', '-', '+'), u), collapse = '')}) stat[[i]][id, 'Direction'] <- d stat[[i]][id, 'RefAllele'] <- RefAllele[s[id]] stat[[i]][id, 'EffectAllele'] <- EffectAllele[s[id]] stat[[i]][id, 'BETA'] <- -stat[[i]][id, 'BETA'] } stat }
collapseClips <- function( rec, start.times, end.times, return.times=FALSE ) { rec <- getClip(rec, output="Wave") start.times[start.times<0] <- 0 end.times[end.times>length(rec@left)/[email protected]] <- length(rec@left)/[email protected] times <- cbind(start.times, end.times) duration <- end.times - start.times cum.times <- data.frame(start.time.collapse=cumsum(duration)-duration, end.time.collapse=cumsum(duration)) waves <- apply(times, 1,function(x) cutWave(rec, from=x[1], to=x[2])) collapsed <- do.call(tuneR::bind, waves) if(return.times) return(list(wave=collapsed, times=cum.times)) else return(collapsed) }
source(here::here('dictionary/utilities.R')) url <- 'http://databank.worldbank.org/data/download/site-content/CLASS.xls' filename <- tempfile(fileext = '.xls') download.file(url, filename, quiet = TRUE) not_countries <- c("Arab World", "Caribbean small states", "Central Europe and the Baltics", "Early-demographic dividend", "East Asia & Pacific", "East Asia & Pacific (excluding high income)", "East Asia & Pacific (IDA & IBRD)", "Euro area", "Europe & Central Asia", "Europe & Central Asia (excluding high income)", "Europe & Central Asia (IDA & IBRD)", "European Union", "Fragile and conflict affected situations", "Heavily indebted poor countries (HIPC)", "High income", "IBRD only", "IDA & IBRD total", "IDA blend", "IDA only", "IDA total", "Late-demographic dividend", "Latin America & Caribbean", "Latin America & Caribbean (excluding high income)", "Latin America & Caribbean (IDA & IBRD)", "Least developed countries: UN classification", "Low & middle income", "Low income", "Lower middle income", "Middle East & North Africa", "Middle East & North Africa (excluding high income)", "Middle East & North Africa (IDA & IBRD)", "Middle income", "North America", "OECD members", "Other small states", "Pacific island small states", "Post-demographic dividend", "Pre-demographic dividend", "Small states", "South Asia", "South Asia (IDA & IBRD)", "Sub-Saharan Africa", "Sub-Saharan Africa (excluding high income)", "Sub-Saharan Africa (IDA & IBRD)", "Upper middle income", "World") wb <- read_excel(filename, skip = 6, col_names = letters[1:9]) %>% select(3:4) %>% setNames(c('country', 'wb')) %>% filter(!country %in% not_countries, !is.na(wb)) wb %>% write_csv('dictionary/data_world_bank.csv', na = "")
LocalModel <- R6Class("LocalModel", inherit = InterpretationMethod, public = list( initialize = function(predictor, x.interest, dist.fun = "gower", kernel.width = NULL, k = 3) { assert_number(k, lower = 1, upper = predictor$data$n.features) assert_data_frame(x.interest, null.ok = TRUE) assert_choice(dist.fun, c( "gower", "euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski" )) if (!require("glmnet")) { stop("Please install glmnet.") } super$initialize(predictor = predictor) self$k <- k if (!is.null(x.interest)) { self$x.interest <- private$match_cols(x.interest) } private$weight.fun <- private$get.weight.fun(dist.fun, kernel.width) if (!is.null(x.interest)) private$run() }, predict = function(newdata = NULL, ...) { if (is.null(newdata)) { newdata <- self$x.interest } else { newdata <- private$match_cols(newdata) } X.recode <- recode(newdata, self$x.interest) if (private$multiClass) { prediction <- predict(self$model, newx = as.matrix(X.recode), type = "response" ) prediction <- data.frame(prediction[, , self$best.fit.index]) colnames(prediction) <- colnames(private$predictResults) prediction } else { prediction <- predict(self$model, newx = as.matrix(X.recode)) pred <- prediction[, self$best.fit.index, drop = FALSE] colnames(pred) <- NULL data.frame(prediction = pred) } }, explain = function(x.interest) { self$x.interest <- private$match_cols(x.interest) private$flush() private$run() }, x.interest = NULL, k = NULL, model = NULL, best.fit.index = NULL ), private = list( q = function(pred) probs.to.labels(pred), best.index = NULL, match_cols = function(newdata) { self$predictor$data$match_cols(data.frame(newdata)) }, aggregate = function() { X.recode <- recode(private$dataDesign, self$x.interest) x.recoded <- recode(self$x.interest, self$x.interest) fam <- ifelse(private$multiClass, "multinomial", "gaussian") y <- unlist(private$qResults[1]) w <- private$weight.fun(X.recode, x.recoded) self$model <- glmnet( x = as.matrix(X.recode), y = y, family = fam, w = w, intercept = TRUE, standardize = TRUE, type.multinomial = "grouped" ) res <- self$model if (any(res$df == self$k)) { best.index <- max(which(res$df == self$k)) } else { best.index <- max(which(res$df < self$k)) warning("Had to choose a smaller k") } self$best.fit.index <- best.index if (private$multiClass) { class.results <- lapply(res$beta, extract.glmnet.effects, best.index = best.index, x.recoded = x.recoded, x.original = self$x.interest ) res <- data.table::rbindlist(class.results) res$.class <- rep(names(class.results), each = ncol(X.recode)) } else { res <- extract.glmnet.effects( res$beta, best.index, x.recoded, self$x.interest ) } res[res$beta != 0, ] }, intervene = function() private$dataSample, generatePlot = function() { requireNamespace("ggplot2", quietly = TRUE) p <- ggplot(self$results) + geom_col(aes(y = effect, x = reorder(feature.value, effect))) + coord_flip() + ylab("effect") + xlab("") if (!private$multiClass) { original_prediction <- self$predictor$predict(self$x.interest)[[1]] p <- p + ggtitle(sprintf( "Actual prediction: %.2f\nLocalModel prediction: %.2f", original_prediction, self$predict() )) } if (private$multiClass) p <- p + facet_wrap(".class") p }, get.weight.fun = function(dist.fun, kernel.width) { if (dist.fun == "gower") { require("gower") function(X, x.interest) { 1 - gower_dist(X, x.interest) } } else if (is.character(dist.fun)) { assert_numeric(kernel.width) function(X, x.interest) { d <- dist(rbind(x.interest, X), method = dist.fun)[1:nrow(X)] sqrt(exp(-(d^2) / (kernel.width^2))) } } else { dist.fun } }, weight.fun = NULL ) ) predict.LocalModel <- function(object, newdata = NULL, ...) { object$predict(newdata = newdata, ...) } plot.LocalModel <- function(object) { object$plot() }
validate_arguments <- function( argument_obj_list, field_def_obj, ..., parent_obj, oh, skip_variables = FALSE ) { if ( is.null(argument_obj_list) && is.null(field_def_obj$arguments) ) { return(invisible(TRUE)) } if (is.null(field_def_obj$arguments)) { oh$error_list$add( "5.3.1", "Arguments supplied, but there are no arguments for field: ", format(field_def_obj$name), loc = parent_obj$loc ) return(FALSE) } field_arg_map <- field_def_obj$arguments field_arg_map %>% lapply("[[", "name") %>% lapply(format) %>% unlist() -> names(field_arg_map) values_seen <- list() for (argument_obj in argument_obj_list) { arg_name <- argument_obj$name arg_name_str <- format(arg_name) if (!is.null(values_seen[[arg_name_str]])) { oh$error_list$add( "5.3.2", "duplicate arguments with same name: ", arg_name_str, loc = parent_obj$loc ) return(FALSE) } arg_value <- argument_obj$value values_seen[[arg_name_str]] <- arg_value matching_arg_obj <- field_arg_map[[format(arg_name)]] if (is.null(matching_arg_obj)) { oh$error_list$add( "5.3.1", "could not find matching arg value with label: ", format(arg_name), " for field: ", format(field_def_obj$name), loc = parent_obj$loc ) return(FALSE) } if (inherits(arg_value, "Variable")) { if (!isTRUE(skip_variables)) { oh$variable_validator$check_variable(arg_value, matching_arg_obj$type) } next } validate_value_can_be_coerced(arg_value, matching_arg_obj$type, oh = oh, rule_code = "5.3.3.1") if (inherits(arg_value, "ObjectValue")) { validate_input_object_fields(arg_value, oh = oh) } } for (field_arg in field_arg_map) { if (inherits(field_arg$type, "NonNullType")) { arg_value <- values_seen[[format(field_arg$name)]] if ( is.null(arg_value) || inherits(arg_value, "NullValue") ) { oh$error_list$add( "5.3.3.2", "null or missing argument not allowed for argument: ", format(field_arg$name), " for field: ", format(field_def_obj$name), loc = parent_obj$loc ) next } } } invisible(TRUE) }
baseline_sampling<-function(Y, C, A, X, base_line_old, C_prior, sigma_noise, sigma_A, sigma_baseline, sigma_X){ Num_genes=nrow(Y) Num_samples=ncol(Y) Num_TFs=ncol(C_prior) baseline_new=matrix(0, nrow=1, ncol=Num_genes) for (n in 1:Num_genes){ temp=matrix(0, nrow=1, ncol=Num_samples) for (m in 1:Num_samples){ for (t in 1:Num_TFs){ temp[m]=temp[m]+A[n,t]*X[t,m] } } mean_baseline = sum(Y[n,]-temp)/Num_samples*sigma_baseline/(sigma_noise+sigma_baseline) variance_baseline = sigma_baseline*sigma_baseline/(sigma_noise+sigma_baseline) baseline_new[n]=rnorm(1, mean=mean_baseline, sd=sqrt(variance_baseline)) } return(baseline_new) }
NULL NULL if (!isS4(nrow)) methods::setGeneric("nrow", function(x) standardGeneric("nrow")) methods::setMethod("nrow", "OptimizationProblem", function(x) x$nrow()) if (!isS4(ncol)) methods::setGeneric("ncol", function(x) standardGeneric("ncol")) methods::setMethod("ncol", "OptimizationProblem", function(x) x$ncol()) if (!exists("ncell") || !isS4(ncell)) methods::setGeneric("ncell", function(x) standardGeneric("ncell")) methods::setMethod("ncell", "OptimizationProblem", function(x) x$ncell()) methods::setGeneric("modelsense", function(x) standardGeneric("modelsense")) methods::setMethod("modelsense", "OptimizationProblem", function(x) x$modelsense()) methods::setGeneric("vtype", function(x) standardGeneric("vtype")) methods::setMethod("vtype", "OptimizationProblem", function(x) x$vtype()) methods::setGeneric("obj", function(x) standardGeneric("obj")) methods::setMethod("obj", "OptimizationProblem", function(x) x$obj()) methods::setGeneric("pwlobj", function(x) standardGeneric("pwlobj")) methods::setMethod("pwlobj", "OptimizationProblem", function(x) x$pwlobj()) methods::setGeneric("A", function(x) standardGeneric("A")) methods::setMethod("A", "OptimizationProblem", function(x) x$A()) methods::setGeneric("rhs", function(x) standardGeneric("rhs")) methods::setMethod("rhs", "OptimizationProblem", function(x) x$rhs()) methods::setGeneric("sense", function(x) standardGeneric("sense")) methods::setMethod("sense", "OptimizationProblem", function(x) x$sense()) methods::setGeneric("lb", function(x) standardGeneric("lb")) methods::setMethod("lb", "OptimizationProblem", function(x) x$lb()) methods::setGeneric("ub", function(x) standardGeneric("ub")) methods::setMethod("ub", "OptimizationProblem", function(x) x$ub()) methods::setGeneric("col_ids", function(x) standardGeneric("col_ids")) methods::setMethod("col_ids", "OptimizationProblem", function(x) x$col_ids()) methods::setGeneric("row_ids", function(x) standardGeneric("row_ids")) methods::setMethod("row_ids", "OptimizationProblem", function(x) x$row_ids()) methods::setGeneric("number_of_branches", function(x) standardGeneric("number_of_branches")) methods::setMethod("number_of_branches", "OptimizationProblem", function(x) x$number_of_branches()) methods::setGeneric("get_data", function(x) standardGeneric("get_data")) methods::setMethod("get_data", "OptimizationProblem", function(x) x$get_data()) as.list.OptimizationProblem <- function(x, ...) { rcpp_optimization_problem_as_list(x$ptr) }
validate_elements <- function(DT, .progress_cat = FALSE){ out <- rep_len(NA, ncol(DT)) avbl_noms <- names(heims_data_dict)[names(heims_data_dict) %in% names(DT)] noms <- if_else(names(DT) %in% avbl_noms, names(DT), gsub("A$", "", gsub("_[12]", "", names(DT)))) noms <- gsub("^e([0-9]+)$", "E\\1", noms) for (n in seq_along(DT)){ nom <- noms[n] if (.progress_cat){ cat(nom, ".", sep = "") } if (!is.null(heims_data_dict[[nom]]) && is.function(heims_data_dict[[nom]]$validate)){ DTn <- DT[[n]] out[n] <- heims_data_dict[[nom]]$validate(DTn[!is.na(DTn)]) } } if (.progress_cat){ cat("\n") } names(out) <- names(DT) out } prop_elements_valid <- function(DT, char = FALSE){ out <- rep_len(NA_real_, ncol(DT)) noms <- gsub("A$", "", gsub("_[12]", "", names(DT))) noms <- gsub("^e([0-9]+)$", "E\\1", noms) for (n in seq_along(DT)){ nom <- noms[n] if (!is.null(heims_data_dict[[nom]]) && is.function(heims_data_dict[[nom]]$validate)){ DTn <- DT[[n]] if (is.function(heims_data_dict[[nom]]$ad_hoc_prepare)){ DTn <- heims_data_dict[[nom]]$ad_hoc_prepare(DTn) } DTn <- DTn[!is.na(DTn)] if (heims_data_dict[[nom]]$validate(DTn)){ out[n] <- if (char) "--" else 1 } else { if (!is.null(heims_data_dict[[nom]]) && is.function(heims_data_dict[[nom]]$valid)){ prop <- mean(heims_data_dict[[nom]]$valid(DTn), na.rm = TRUE) out[n] <- if (char) paste0(round(prop * 100), "%") else prop } } } } names(out) <- names(DT) out } count_elements_invalid <- function(DT, char = FALSE){ out <- rep_len(NA_real_, ncol(DT)) noms <- gsub("A$", "", gsub("_[12]", "", names(DT))) noms <- gsub("^e([0-9]+)$", "E\\1", noms) for (n in seq_along(DT)) { nom <- noms[n] if (!is.null(heims_data_dict[[nom]]) && is.function(heims_data_dict[[nom]]$validate)) { DTn <- DT[[n]] if (is.function(heims_data_dict[[nom]]$ad_hoc_prepare)) { DTn <- heims_data_dict[[nom]]$ad_hoc_prepare(DTn) } DTn <- DTn[!is.na(DTn)] if (heims_data_dict[[nom]]$validate(DTn)) { out[n] <- if (char) "--" else 0L } else { if (AND(!is.null(heims_data_dict[[nom]]), AND("valid" %in% names(heims_data_dict[[nom]]), is.function(heims_data_dict[[nom]]$valid)))) { prop <- sum(!heims_data_dict[[nom]]$valid(DTn), na.rm = TRUE) out[n] <- if (char) paste0(round(prop * 100), "%") else prop } } } } names(out) <- names(DT) out }
test_that("normal distribution fitting and feedback works",{ skip_on_cran() m <- 10 s <- 20 vals <- c(m - s, m , m + 2 * s) myfit <- fitdist(vals, pnorm(vals, m, s )) fb <- feedback(myfit, quantiles=c(0.05, 0.95), values = c(m -0.5*s, m+s)) norm.parameters <- unlist(myfit$Normal) best.name <- as.character(unlist(myfit$best.fitting)) attributes(norm.parameters) <- NULL expect_equal(norm.parameters, c(m, s)) expect_equal(best.name, "normal") expect_equal(fb$fitted.quantiles[, 1], signif(qnorm(c(0.05, 0.95), m, s),3)) expect_equal(fb$fitted.probabilities[, 1], signif(pnorm(c(m -0.5*s, m+s), m, s),3)) }) test_that("student-t distribution fitting and feedback works",{ skip_on_cran() m <- 10 s <- 20 tdftest <- 4 vals <- c(m - s, m , m + 2 * s) myfit <- fitdist(vals, pt((vals-m)/s, tdftest ), tdf = tdftest) fb <- feedback(myfit, quantiles=c(0.05, 0.95), values = c(m -0.5*s, m+s)) t.parameters <- unlist(myfit$Student.t) best.name <- as.character(unlist(myfit$best.fitting)) attributes(t.parameters) <- NULL expect_equal(t.parameters, c(m, s, tdftest), tolerance = 0.001) expect_equal(best.name, "t") expect_equal(fb$fitted.quantiles[, "t"], signif(m + s * qt(c(0.05, 0.95), tdftest),3)) expect_equal(fb$fitted.probabilities[, "t"], signif(pt(c( -0.5, 1), tdftest),3)) }) test_that("log-t distribution fitting and feedback works",{ skip_on_cran() m <- log(30) s <- 0.5 tdftest <- 5 vals <- c(22, 30, 42) myfit <- fitdist(vals, pt((log(vals) - m) / s, tdftest ), lower = 0, tdf = tdftest) fb <- feedback(myfit, quantiles=c(0.05, 0.95), values = c(25, 55)) lt.parameters <- unlist(myfit$Log.Student.t) best.name <- as.character(unlist(myfit$best.fitting)) attributes(lt.parameters) <- NULL expect_equal(lt.parameters, c(m, s, tdftest), tolerance = 0.001) expect_equal(best.name, "logt") expect_equal(fb$fitted.quantiles[, "logt"], signif(exp(m + s * qt(c(0.05, 0.95), tdftest)), 3)) expect_equal(fb$fitted.probabilities[, "logt"], signif(pt((log(c(25, 55)) - m )/s, tdftest), 3)) }) test_that("mirror log-t distribution fitting and feedback works",{ skip_on_cran() m <- log(30) s <- 0.5 tdftest <- 5 vals <- c(22, 30, 42) u <- 60 myfit <- fitdist(vals, 1 - pt((log(u - vals) - m) / s, tdftest ), lower = 0, tdf = tdftest, upper = u) fb <- feedback(myfit, quantiles=c(0.05, 0.95), values = c(25, 55)) mirrorlogtparameters <- unlist(myfit$mirrorlogt) best.name <- as.character(unlist(myfit$best.fitting)) attributes(mirrorlogtparameters) <- NULL expect_equal(mirrorlogtparameters, c(m, s, tdftest), tolerance = 0.001) expect_equal(best.name, "mirrorlogt") expect_equal(fb$fitted.quantiles[, "mirrorlogt"], signif(u - exp(m + s * qt(1 - c(0.05, 0.95), tdftest)), 3)) expect_equal(fb$fitted.probabilities[, "mirrorlogt"], signif(1 - pt((log(u - c(25, 55)) - m )/s, tdftest), 3)) }) test_that("scaled beta distribution fitting and feedback works",{ skip_on_cran() a <- 5 b <- 20 l <- 10 u <- 60 vals <- c(18, 20, 24) myfit <- fitdist(vals, pbeta((vals-l)/(u-l), a, b ), lower = l, upper = u) fb <- feedback(myfit, quantiles=c(0.05, 0.95), values = c(19, 29)) beta.parameters <- unlist(myfit$Beta) best.name <- as.character(unlist(myfit$best.fitting)) attributes(beta.parameters) <- NULL expect_equal(beta.parameters, c(a, b), tolerance = 0.001) expect_equal(best.name, "beta") expect_equal(fb$fitted.quantiles[, "beta"], signif(l + (u-l) * qbeta(c(0.05, 0.95), a, b),3)) expect_equal(fb$fitted.probabilities[, "beta"], signif(pbeta((c(19, 29)-l)/(u-l), a, b),3)) }) test_that("shifted lognormal distribution fitting and feedback works",{ skip_on_cran() l <- -100 m <- log(30) s <- 0.5 vals <- c(22, 30, 42) + l myfit <- fitdist(vals, plnorm(vals - l, m, s ), lower = l) fb <- feedback(myfit, quantiles=c(0.05, 0.95), values = c(25, 55) + l) lnorm.parameters <- unlist(myfit$Log.normal) best.name <- as.character(unlist(myfit$best.fitting)) attributes(lnorm.parameters) <- NULL expect_equal(lnorm.parameters, c(m, s), tolerance = 0.001) expect_equal(best.name, "lognormal") expect_equal(fb$fitted.quantiles[, "lognormal"], signif(l + qlnorm(c(0.05, 0.95), m, s),3)) expect_equal(fb$fitted.probabilities[, "lognormal"], signif(plnorm(c(25, 55), m, s),3)) }) test_that("shifted lognormal distribution fitting and feedback works",{ skip_on_cran() m <- 2 s <- 0.5 l <- -10 vals <- c(-6, -2, 2, 6) myfit <- fitdist(vals, plnorm(vals - l, m, s ), lower = l) fb <- feedback(myfit, quantiles=c(0.05, 0.95), values = c(-4, 4)) lnorm.parameters <- unlist(myfit$Log.normal) best.name <- as.character(unlist(myfit$best.fitting)) attributes(lnorm.parameters) <- NULL expect_equal(lnorm.parameters, c(m, s), tolerance = 0.001) expect_equal(best.name, "lognormal") expect_equal(fb$fitted.quantiles[, "lognormal"], signif(qlnorm(c(0.05, 0.95), m, s)+l, 3) ) expect_equal(fb$fitted.probabilities[, "lognormal"], signif(plnorm(c(-4, 4) - l, m, s),3)) }) test_that("mirror lognormal distribution fitting and feedback works",{ skip_on_cran() m <- 2 s <- 0.5 u <- 10 vals <- c(-6, -2, 2, 6) myfit <- fitdist(vals, 1 - plnorm(u - vals, m, s ), lower = -20, upper = u) fb <- feedback(myfit, quantiles=c(0.05, 0.95), values = c(-4, 4)) mirrorlognormalparameters <- unlist(myfit$mirrorlognormal) best.name <- as.character(unlist(myfit$best.fitting)) attributes(mirrorlognormalparameters) <- NULL expect_equal(mirrorlognormalparameters, c(m, s), tolerance = 0.001) expect_equal(best.name, "mirrorlognormal") expect_equal(fb$fitted.quantiles[, "mirrorlognormal"], signif(u - qlnorm(1 - c(0.05, 0.95), m, s), 3) ) expect_equal(fb$fitted.probabilities[, "mirrorlognormal"], signif(1 - plnorm(u - c(-4, 4), m, s),3)) }) test_that("shifted gamma distribution fitting and feedback works",{ skip_on_cran() a <- 50 b <- 2 l <- 10 vals <- c(32, 35, 37) myfit <- fitdist(vals, pgamma(vals-l, a, b ), lower = l) fb <- feedback(myfit, quantiles=c(0.05, 0.95), values = c(33, 40)) gamma.parameters <- unlist(myfit$Gamma) best.name <- as.character(unlist(myfit$best.fitting)) attributes(gamma.parameters) <- NULL expect_equal(gamma.parameters, c(a, b), tolerance = 0.001) expect_equal(best.name, "gamma") expect_equal(fb$fitted.quantiles[, "gamma"], signif(l + qgamma(c(0.05, 0.95), a, b),3)) expect_equal(fb$fitted.probabilities[, "gamma"], signif(pgamma(c(33, 40)-l, a, b),3)) }) test_that("mirror gamma distribution fitting and feedback works",{ skip_on_cran() a <- 50 b <- 2 u <- 25 p <- c(0.25, 0.5 , 0.75) v <- u - qgamma(1 - p, a, b) myfit <- fitdist(vals = v, probs = p, lower = -10, upper = u) fb <- feedback(myfit, quantiles=c(0.05, 0.95), values = c(-3, 3)) mirrorgammaparameters <- unlist(myfit$mirrorgamma) best.name <- as.character(unlist(myfit$best.fitting)) attributes(mirrorgammaparameters) <- NULL expect_equal(mirrorgammaparameters, c(a, b), tolerance = 0.001) expect_equal(best.name, "mirrorgamma") expect_equal(fb$fitted.quantiles[, "mirrorgamma"], signif(u - qgamma(1 - c(0.05, 0.95), a, b),3)) expect_equal(fb$fitted.probabilities[, "mirrorgamma"], signif(1 - pgamma(u - c(-3, 3), a, b),3)) }) test_that("precision fitting works - normal",{ skip_on_cran() med <- 10 k <- 1 a <- 3 b <- 4 sigmasq <- 1 / qgamma(c(0.05, 0.95), a, b) probs1 <- pnorm(rep(med + k, 2), med, sigmasq^0.5) - 0.5 pfit1 <- fitprecision(c(med, med + k), probs1, pplot = F) gamma.parameters1 <- unlist(pfit1$Gamma) attributes(gamma.parameters1) <- NULL expect_equal(gamma.parameters1, c(a, b), tolerance = 1e-4) probs2 <- pnorm(rep(med - k, 2), med, sigmasq^0.5) pfit2 <- fitprecision(c(-Inf, med - k), probs2, med = med, pplot = F) gamma.parameters2 <- unlist(pfit2$Gamma) attributes(gamma.parameters2) <- NULL expect_equal(gamma.parameters2, c(a, b), tolerance = 1e-4) probs3 <- 1 - pnorm(rep(med + k, 2), med, sigmasq^0.5) pfit3 <- fitprecision(c(med + k, Inf), probs3, med = med, pplot = F) gamma.parameters3 <- unlist(pfit3$Gamma) attributes(gamma.parameters3) <- NULL expect_equal(gamma.parameters3, c(a, b), tolerance = 1e-4) }) test_that("precision fitting works - lognormal",{ skip_on_cran() med <- 10 k <- 5 a <- 3 b <- 4 sigmasq <- 1 / qgamma(c(0.05, 0.95), a, b) probs1 <- plnorm(rep(med + k, 2), log(med), sigmasq^0.5) - 0.5 pfit1 <- fitprecision(interval = c(med, med + k), propvals = probs1, trans = "log", pplot = F) gamma.parameters1 <- unlist(pfit1$Gamma) attributes(gamma.parameters1) <- NULL expect_equal(gamma.parameters1, c(a, b), tolerance = 1e-4) probs2 <- plnorm(rep(med - k, 2), log(med), sigmasq^0.5) pfit2 <- fitprecision(interval = c(-Inf, med - k), propvals = probs2, med = med, trans = "log", pplot = F) gamma.parameters2 <- unlist(pfit2$Gamma) attributes(gamma.parameters2) <- NULL expect_equal(gamma.parameters2, c(a, b), tolerance = 1e-4) probs3 <- 1 - plnorm(rep(med + k, 2), log(med), sigmasq^0.5) pfit3 <- fitprecision(interval = c(med + k, Inf), propvals = probs3, med = med, trans = "log", pplot = F) gamma.parameters3 <- unlist(pfit3$Gamma) attributes(gamma.parameters3) <- NULL expect_equal(gamma.parameters3, c(a, b), tolerance = 1e-4) }) test_that("linear pooling works",{ skip_on_cran() p1 <- c(0.25, 0.5, 0.75) a <- 10; b <- 4 v1 <- qgamma(p1, a, b) mu <- 3 ; sigma <- 2 v2 <- qnorm(p1, mu, sigma) v3 <- qlnorm(p1, log(mu), sigma) V <- matrix(c(v1, v2, v3), 3, 3) myfit <- fitdist(vals = V, probs = p1, lower = 0) w1 <- 1/6; w2 <- 2/6; w3 <- 3/6 xtest <- 1.5 qu <- 0.95 qlp <- qlinearpool(myfit, qu, w = c(w1, w2, w3)) qcheck <- w1 * pgamma(qlp, a, b) + w2 * pnorm(qlp, mu, sigma) + w3 * plnorm(qlp, log(mu), sigma) expect_equal(qcheck, qu , tolerance = 1e-4) expect_equal(plinearpool(myfit, qlp, w = c(w1, w2, w3)), qu , tolerance = 1e-4) plp <- plinearpool(myfit, x = xtest, w = c(w1, w2, w3)) pcheck <- w1 * pgamma(xtest, a, b) + w2 * pnorm(xtest, mu, sigma) + w3 * plnorm(xtest, log(mu), sigma) expect_equal(plp, pcheck , tolerance = 1e-4) }) test_that("linear pooling works - different lower limits",{ skip_on_cran() llimits <- c(-2, 1, -4) p1 <- c(0.25, 0.5, 0.6, 0.75) a <- 10; b <- 4 v1 <- llimits[1] + qgamma(p1, a, b) mu <- 3 ; sigma <- 2 v2 <- llimits[2] + qlnorm(p1, log(mu), sigma) v3 <- llimits[3] + exp(1 + 2 * qt(p1, 3)) V <- matrix(c(v1, v2, v3), length(p1), 3) myfit <- fitdist(vals = V, probs = p1, lower = llimits) w1 <- 1/6; w2 <- 2/6; w3 <- 3/6 xtest <- 3 qu <- 0.03 qlp <- qlinearpool(myfit, qu, w = c(w1, w2, w3)) qcheck <- w1 * pgamma(qlp - llimits[1], a, b) + w2 * plnorm(qlp - llimits[2], log(mu), sigma) + w3 * pt((log(qlp - llimits[3]) - 1) / 2 , 3) expect_equal(qcheck, qu , tolerance = 1e-4) expect_equal(plinearpool(myfit, qlp, w = c(w1, w2, w3)), qu , tolerance = 1e-4) plp <- plinearpool(myfit, x = xtest, w = c(w1, w2, w3)) pcheck <- w1 * pgamma(xtest - llimits[1], a, b) + w2 * plnorm(xtest - llimits[2], log(mu), sigma) + w3 * pt((log(xtest - llimits[3]) - 1) / 2, 3) expect_equal(plp, pcheck , tolerance = 1e-4) })
setClass("cold", representation(coefficients = "matrix", se = "matrix", covariance = "matrix", correlation="matrix", log.likelihood="numeric", message ="integer",n.cases="numeric", ni.cases="numeric", aic="numeric", Fitted="numeric", bi.estimate="matrix",Fitted.av="numeric", Time="numeric", model.matrix= "matrix", y.matrix="matrix", random.matrix="matrix", subset.data="data.frame",final.data="data.frame", y.av="numeric", data.id="numeric", call="language")) setMethod(f="anova", signature(object = "cold"), function(object,...) { dots <- list(...) object <- list(object, ...) if(length(object)<2) stop("single argument anova not implemented") x<-object[[1]] y<-object[[2]] data1<[email protected] data2<[email protected] if(all.equal(data1,data2)!=TRUE) stop("all models must be fit to the same data object") m1<-x@call$formula m2<-y@call$formula x3<-x@call$dependence y3<-y@call$dependence if(m1==m2&&x3==y3 ) stop("models are identical") if(length(x@coefficients)>length(y@coefficients)){ x1<[email protected] x2<-x@aic y1<[email protected] y2<-y@aic n1<-length(x@coefficients) n2<-length(y@coefficients) n11<-length(x@Time) n22<-length(y@Time) bic1<--2*[email protected]+length(x@coefficients)*log(n11) bic2<--2*[email protected]+length(y@coefficients)*log(n22) X3<-c(bic1,bic2) df<-length(x@coefficients)-length(y@coefficients) } else { x1<[email protected] x2<-y@aic y1<[email protected] y2<-x@aic data1<[email protected] data2<[email protected] n11<-length(y@Time) n22<-length(x@Time) df<-length(y@coefficients)-length(x@coefficients) bic1<--2*[email protected]+length(y@coefficients)*log(n11) bic2<--2*[email protected]+length(x@coefficients)*log(n22) X3<-c(bic2,bic1) } X1<-c("Model1 ","Model2 ") X2<-c(x@aic,y@aic) X31<-c([email protected],[email protected]) teste<-2*(x1-y1) p<-1-pchisq(teste,df) X4<-c(" ",round(teste,3)) X5<-c(" ",round(df,0)) X6<-c(" ",formatC(p)) tabela1<-data.frame(X1,X2,X3,X31,X4,X5,X6) names(tabela1)<-c(" ","AIC","BIC","logLik"," Deviance","df", "p-value") cat("\nData: ") print(x@call$data) cat("\nModel1: ") print(x@call$formula) a<-x@call$dependence cat("dependence =",a,"\n") cat("Model2: ") print(y@call$formula) b<-y@call$dependence cat("dependence =",b,"\n") cat(" \n") print(tabela1,row.names=FALSE) } )
reml.newton <- function(Psi, Xlist, Zlist, ylist, Slist, nalist, rep, k, q, nall, const, bscov, fix, control) { par <- unlist(Psi2par(Psi,bscov,k,q,fix)) fn <- reml.loglik.fn gr <- if(is.null(Zlist) && bscov=="unstr") reml.loglik.gr else NULL if(control$showiter) cat("Newton iterations:\n") opt <- optim(par=par,fn=fn,gr=gr,Xlist=Xlist,Zlist=Zlist,ylist=ylist, Slist=Slist,nalist=nalist,rep=rep,k=k,q=q,nall=nall,const=const,bscov=bscov, fix=fix,method="BFGS",control=control$optim,hessian=control$hessian) Psi <- par2Psi(opt$par,bscov,k,q,fix) list(Psi=Psi,par=opt$par,logLik=opt$value,converged=opt$convergence==0, niter=opt$counts[[2]],hessian=opt$hessian) }
"piracy"
NULL .acmpca$create_certificate_authority_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CertificateAuthorityConfiguration = structure(list(KeyAlgorithm = structure(logical(0), tags = list(type = "string")), SigningAlgorithm = structure(logical(0), tags = list(type = "string")), Subject = structure(list(Country = structure(logical(0), tags = list(type = "string")), Organization = structure(logical(0), tags = list(type = "string")), OrganizationalUnit = structure(logical(0), tags = list(type = "string")), DistinguishedNameQualifier = structure(logical(0), tags = list(type = "string")), State = structure(logical(0), tags = list(type = "string")), CommonName = structure(logical(0), tags = list(type = "string")), SerialNumber = structure(logical(0), tags = list(type = "string")), Locality = structure(logical(0), tags = list(type = "string")), Title = structure(logical(0), tags = list(type = "string")), Surname = structure(logical(0), tags = list(type = "string")), GivenName = structure(logical(0), tags = list(type = "string")), Initials = structure(logical(0), tags = list(type = "string")), Pseudonym = structure(logical(0), tags = list(type = "string")), GenerationQualifier = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), CsrExtensions = structure(list(KeyUsage = structure(list(DigitalSignature = structure(logical(0), tags = list(type = "boolean")), NonRepudiation = structure(logical(0), tags = list(type = "boolean")), KeyEncipherment = structure(logical(0), tags = list(type = "boolean")), DataEncipherment = structure(logical(0), tags = list(type = "boolean")), KeyAgreement = structure(logical(0), tags = list(type = "boolean")), KeyCertSign = structure(logical(0), tags = list(type = "boolean")), CRLSign = structure(logical(0), tags = list(type = "boolean")), EncipherOnly = structure(logical(0), tags = list(type = "boolean")), DecipherOnly = structure(logical(0), tags = list(type = "boolean"))), tags = list(type = "structure")), SubjectInformationAccess = structure(list(structure(list(AccessMethod = structure(list(CustomObjectIdentifier = structure(logical(0), tags = list(type = "string")), AccessMethodType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), AccessLocation = structure(list(OtherName = structure(list(TypeId = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Rfc822Name = structure(logical(0), tags = list(type = "string")), DnsName = structure(logical(0), tags = list(type = "string")), DirectoryName = structure(list(Country = structure(logical(0), tags = list(type = "string")), Organization = structure(logical(0), tags = list(type = "string")), OrganizationalUnit = structure(logical(0), tags = list(type = "string")), DistinguishedNameQualifier = structure(logical(0), tags = list(type = "string")), State = structure(logical(0), tags = list(type = "string")), CommonName = structure(logical(0), tags = list(type = "string")), SerialNumber = structure(logical(0), tags = list(type = "string")), Locality = structure(logical(0), tags = list(type = "string")), Title = structure(logical(0), tags = list(type = "string")), Surname = structure(logical(0), tags = list(type = "string")), GivenName = structure(logical(0), tags = list(type = "string")), Initials = structure(logical(0), tags = list(type = "string")), Pseudonym = structure(logical(0), tags = list(type = "string")), GenerationQualifier = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), EdiPartyName = structure(list(PartyName = structure(logical(0), tags = list(type = "string")), NameAssigner = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), UniformResourceIdentifier = structure(logical(0), tags = list(type = "string")), IpAddress = structure(logical(0), tags = list(type = "string")), RegisteredId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure", box = TRUE))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "structure")), RevocationConfiguration = structure(list(CrlConfiguration = structure(list(Enabled = structure(logical(0), tags = list(box = TRUE, type = "boolean")), ExpirationInDays = structure(logical(0), tags = list(box = TRUE, type = "integer")), CustomCname = structure(logical(0), tags = list(type = "string")), S3BucketName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), CertificateAuthorityType = structure(logical(0), tags = list(type = "string")), IdempotencyToken = structure(logical(0), tags = list(type = "string")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .acmpca$create_certificate_authority_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CertificateAuthorityArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .acmpca$create_certificate_authority_audit_report_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CertificateAuthorityArn = structure(logical(0), tags = list(type = "string")), S3BucketName = structure(logical(0), tags = list(type = "string")), AuditReportResponseFormat = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .acmpca$create_certificate_authority_audit_report_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AuditReportId = structure(logical(0), tags = list(type = "string")), S3Key = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .acmpca$create_permission_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CertificateAuthorityArn = structure(logical(0), tags = list(type = "string")), Principal = structure(logical(0), tags = list(type = "string")), SourceAccount = structure(logical(0), tags = list(type = "string")), Actions = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .acmpca$create_permission_output <- function(...) { list() } .acmpca$delete_certificate_authority_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CertificateAuthorityArn = structure(logical(0), tags = list(type = "string")), PermanentDeletionTimeInDays = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")) return(populate(args, shape)) } .acmpca$delete_certificate_authority_output <- function(...) { list() } .acmpca$delete_permission_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CertificateAuthorityArn = structure(logical(0), tags = list(type = "string")), Principal = structure(logical(0), tags = list(type = "string")), SourceAccount = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .acmpca$delete_permission_output <- function(...) { list() } .acmpca$delete_policy_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ResourceArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .acmpca$delete_policy_output <- function(...) { list() } .acmpca$describe_certificate_authority_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CertificateAuthorityArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .acmpca$describe_certificate_authority_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CertificateAuthority = structure(list(Arn = structure(logical(0), tags = list(type = "string")), OwnerAccount = structure(logical(0), tags = list(type = "string")), CreatedAt = structure(logical(0), tags = list(type = "timestamp")), LastStateChangeAt = structure(logical(0), tags = list(type = "timestamp")), Type = structure(logical(0), tags = list(type = "string")), Serial = structure(logical(0), tags = list(type = "string")), Status = structure(logical(0), tags = list(type = "string")), NotBefore = structure(logical(0), tags = list(type = "timestamp")), NotAfter = structure(logical(0), tags = list(type = "timestamp")), FailureReason = structure(logical(0), tags = list(type = "string")), CertificateAuthorityConfiguration = structure(list(KeyAlgorithm = structure(logical(0), tags = list(type = "string")), SigningAlgorithm = structure(logical(0), tags = list(type = "string")), Subject = structure(list(Country = structure(logical(0), tags = list(type = "string")), Organization = structure(logical(0), tags = list(type = "string")), OrganizationalUnit = structure(logical(0), tags = list(type = "string")), DistinguishedNameQualifier = structure(logical(0), tags = list(type = "string")), State = structure(logical(0), tags = list(type = "string")), CommonName = structure(logical(0), tags = list(type = "string")), SerialNumber = structure(logical(0), tags = list(type = "string")), Locality = structure(logical(0), tags = list(type = "string")), Title = structure(logical(0), tags = list(type = "string")), Surname = structure(logical(0), tags = list(type = "string")), GivenName = structure(logical(0), tags = list(type = "string")), Initials = structure(logical(0), tags = list(type = "string")), Pseudonym = structure(logical(0), tags = list(type = "string")), GenerationQualifier = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), CsrExtensions = structure(list(KeyUsage = structure(list(DigitalSignature = structure(logical(0), tags = list(type = "boolean")), NonRepudiation = structure(logical(0), tags = list(type = "boolean")), KeyEncipherment = structure(logical(0), tags = list(type = "boolean")), DataEncipherment = structure(logical(0), tags = list(type = "boolean")), KeyAgreement = structure(logical(0), tags = list(type = "boolean")), KeyCertSign = structure(logical(0), tags = list(type = "boolean")), CRLSign = structure(logical(0), tags = list(type = "boolean")), EncipherOnly = structure(logical(0), tags = list(type = "boolean")), DecipherOnly = structure(logical(0), tags = list(type = "boolean"))), tags = list(type = "structure")), SubjectInformationAccess = structure(list(structure(list(AccessMethod = structure(list(CustomObjectIdentifier = structure(logical(0), tags = list(type = "string")), AccessMethodType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), AccessLocation = structure(list(OtherName = structure(list(TypeId = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Rfc822Name = structure(logical(0), tags = list(type = "string")), DnsName = structure(logical(0), tags = list(type = "string")), DirectoryName = structure(list(Country = structure(logical(0), tags = list(type = "string")), Organization = structure(logical(0), tags = list(type = "string")), OrganizationalUnit = structure(logical(0), tags = list(type = "string")), DistinguishedNameQualifier = structure(logical(0), tags = list(type = "string")), State = structure(logical(0), tags = list(type = "string")), CommonName = structure(logical(0), tags = list(type = "string")), SerialNumber = structure(logical(0), tags = list(type = "string")), Locality = structure(logical(0), tags = list(type = "string")), Title = structure(logical(0), tags = list(type = "string")), Surname = structure(logical(0), tags = list(type = "string")), GivenName = structure(logical(0), tags = list(type = "string")), Initials = structure(logical(0), tags = list(type = "string")), Pseudonym = structure(logical(0), tags = list(type = "string")), GenerationQualifier = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), EdiPartyName = structure(list(PartyName = structure(logical(0), tags = list(type = "string")), NameAssigner = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), UniformResourceIdentifier = structure(logical(0), tags = list(type = "string")), IpAddress = structure(logical(0), tags = list(type = "string")), RegisteredId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure", box = TRUE))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "structure")), RevocationConfiguration = structure(list(CrlConfiguration = structure(list(Enabled = structure(logical(0), tags = list(box = TRUE, type = "boolean")), ExpirationInDays = structure(logical(0), tags = list(box = TRUE, type = "integer")), CustomCname = structure(logical(0), tags = list(type = "string")), S3BucketName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), RestorableUntil = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .acmpca$describe_certificate_authority_audit_report_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CertificateAuthorityArn = structure(logical(0), tags = list(type = "string")), AuditReportId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .acmpca$describe_certificate_authority_audit_report_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AuditReportStatus = structure(logical(0), tags = list(type = "string")), S3BucketName = structure(logical(0), tags = list(type = "string")), S3Key = structure(logical(0), tags = list(type = "string")), CreatedAt = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure")) return(populate(args, shape)) } .acmpca$get_certificate_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CertificateAuthorityArn = structure(logical(0), tags = list(type = "string")), CertificateArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .acmpca$get_certificate_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Certificate = structure(logical(0), tags = list(type = "string")), CertificateChain = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .acmpca$get_certificate_authority_certificate_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CertificateAuthorityArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .acmpca$get_certificate_authority_certificate_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Certificate = structure(logical(0), tags = list(type = "string")), CertificateChain = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .acmpca$get_certificate_authority_csr_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CertificateAuthorityArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .acmpca$get_certificate_authority_csr_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Csr = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .acmpca$get_policy_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ResourceArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .acmpca$get_policy_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Policy = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .acmpca$import_certificate_authority_certificate_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CertificateAuthorityArn = structure(logical(0), tags = list(type = "string")), Certificate = structure(logical(0), tags = list(type = "blob")), CertificateChain = structure(logical(0), tags = list(type = "blob"))), tags = list(type = "structure")) return(populate(args, shape)) } .acmpca$import_certificate_authority_certificate_output <- function(...) { list() } .acmpca$issue_certificate_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CertificateAuthorityArn = structure(logical(0), tags = list(type = "string")), Csr = structure(logical(0), tags = list(type = "blob")), SigningAlgorithm = structure(logical(0), tags = list(type = "string")), TemplateArn = structure(logical(0), tags = list(type = "string")), Validity = structure(list(Value = structure(logical(0), tags = list(box = TRUE, type = "long")), Type = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), IdempotencyToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .acmpca$issue_certificate_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CertificateArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .acmpca$list_certificate_authorities_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(NextToken = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(type = "integer")), ResourceOwner = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .acmpca$list_certificate_authorities_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CertificateAuthorities = structure(list(structure(list(Arn = structure(logical(0), tags = list(type = "string")), OwnerAccount = structure(logical(0), tags = list(type = "string")), CreatedAt = structure(logical(0), tags = list(type = "timestamp")), LastStateChangeAt = structure(logical(0), tags = list(type = "timestamp")), Type = structure(logical(0), tags = list(type = "string")), Serial = structure(logical(0), tags = list(type = "string")), Status = structure(logical(0), tags = list(type = "string")), NotBefore = structure(logical(0), tags = list(type = "timestamp")), NotAfter = structure(logical(0), tags = list(type = "timestamp")), FailureReason = structure(logical(0), tags = list(type = "string")), CertificateAuthorityConfiguration = structure(list(KeyAlgorithm = structure(logical(0), tags = list(type = "string")), SigningAlgorithm = structure(logical(0), tags = list(type = "string")), Subject = structure(list(Country = structure(logical(0), tags = list(type = "string")), Organization = structure(logical(0), tags = list(type = "string")), OrganizationalUnit = structure(logical(0), tags = list(type = "string")), DistinguishedNameQualifier = structure(logical(0), tags = list(type = "string")), State = structure(logical(0), tags = list(type = "string")), CommonName = structure(logical(0), tags = list(type = "string")), SerialNumber = structure(logical(0), tags = list(type = "string")), Locality = structure(logical(0), tags = list(type = "string")), Title = structure(logical(0), tags = list(type = "string")), Surname = structure(logical(0), tags = list(type = "string")), GivenName = structure(logical(0), tags = list(type = "string")), Initials = structure(logical(0), tags = list(type = "string")), Pseudonym = structure(logical(0), tags = list(type = "string")), GenerationQualifier = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), CsrExtensions = structure(list(KeyUsage = structure(list(DigitalSignature = structure(logical(0), tags = list(type = "boolean")), NonRepudiation = structure(logical(0), tags = list(type = "boolean")), KeyEncipherment = structure(logical(0), tags = list(type = "boolean")), DataEncipherment = structure(logical(0), tags = list(type = "boolean")), KeyAgreement = structure(logical(0), tags = list(type = "boolean")), KeyCertSign = structure(logical(0), tags = list(type = "boolean")), CRLSign = structure(logical(0), tags = list(type = "boolean")), EncipherOnly = structure(logical(0), tags = list(type = "boolean")), DecipherOnly = structure(logical(0), tags = list(type = "boolean"))), tags = list(type = "structure")), SubjectInformationAccess = structure(list(structure(list(AccessMethod = structure(list(CustomObjectIdentifier = structure(logical(0), tags = list(type = "string")), AccessMethodType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), AccessLocation = structure(list(OtherName = structure(list(TypeId = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Rfc822Name = structure(logical(0), tags = list(type = "string")), DnsName = structure(logical(0), tags = list(type = "string")), DirectoryName = structure(list(Country = structure(logical(0), tags = list(type = "string")), Organization = structure(logical(0), tags = list(type = "string")), OrganizationalUnit = structure(logical(0), tags = list(type = "string")), DistinguishedNameQualifier = structure(logical(0), tags = list(type = "string")), State = structure(logical(0), tags = list(type = "string")), CommonName = structure(logical(0), tags = list(type = "string")), SerialNumber = structure(logical(0), tags = list(type = "string")), Locality = structure(logical(0), tags = list(type = "string")), Title = structure(logical(0), tags = list(type = "string")), Surname = structure(logical(0), tags = list(type = "string")), GivenName = structure(logical(0), tags = list(type = "string")), Initials = structure(logical(0), tags = list(type = "string")), Pseudonym = structure(logical(0), tags = list(type = "string")), GenerationQualifier = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), EdiPartyName = structure(list(PartyName = structure(logical(0), tags = list(type = "string")), NameAssigner = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), UniformResourceIdentifier = structure(logical(0), tags = list(type = "string")), IpAddress = structure(logical(0), tags = list(type = "string")), RegisteredId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure", box = TRUE))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "structure")), RevocationConfiguration = structure(list(CrlConfiguration = structure(list(Enabled = structure(logical(0), tags = list(box = TRUE, type = "boolean")), ExpirationInDays = structure(logical(0), tags = list(box = TRUE, type = "integer")), CustomCname = structure(logical(0), tags = list(type = "string")), S3BucketName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), RestorableUntil = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .acmpca$list_permissions_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CertificateAuthorityArn = structure(logical(0), tags = list(type = "string")), NextToken = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")) return(populate(args, shape)) } .acmpca$list_permissions_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Permissions = structure(list(structure(list(CertificateAuthorityArn = structure(logical(0), tags = list(type = "string")), CreatedAt = structure(logical(0), tags = list(type = "timestamp")), Principal = structure(logical(0), tags = list(type = "string")), SourceAccount = structure(logical(0), tags = list(type = "string")), Actions = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), Policy = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .acmpca$list_tags_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CertificateAuthorityArn = structure(logical(0), tags = list(type = "string")), NextToken = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")) return(populate(args, shape)) } .acmpca$list_tags_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .acmpca$put_policy_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ResourceArn = structure(logical(0), tags = list(type = "string")), Policy = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .acmpca$put_policy_output <- function(...) { list() } .acmpca$restore_certificate_authority_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CertificateAuthorityArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .acmpca$restore_certificate_authority_output <- function(...) { list() } .acmpca$revoke_certificate_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CertificateAuthorityArn = structure(logical(0), tags = list(type = "string")), CertificateSerial = structure(logical(0), tags = list(type = "string")), RevocationReason = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .acmpca$revoke_certificate_output <- function(...) { list() } .acmpca$tag_certificate_authority_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CertificateAuthorityArn = structure(logical(0), tags = list(type = "string")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .acmpca$tag_certificate_authority_output <- function(...) { list() } .acmpca$untag_certificate_authority_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CertificateAuthorityArn = structure(logical(0), tags = list(type = "string")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .acmpca$untag_certificate_authority_output <- function(...) { list() } .acmpca$update_certificate_authority_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CertificateAuthorityArn = structure(logical(0), tags = list(type = "string")), RevocationConfiguration = structure(list(CrlConfiguration = structure(list(Enabled = structure(logical(0), tags = list(box = TRUE, type = "boolean")), ExpirationInDays = structure(logical(0), tags = list(box = TRUE, type = "integer")), CustomCname = structure(logical(0), tags = list(type = "string")), S3BucketName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), Status = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .acmpca$update_certificate_authority_output <- function(...) { list() }
collapseDose <- function(x, noteMetaData, naFreq = 'most', ...) { ld <- list(...) if(length(ld)) { dn <- x[['drugname']] path <- numeric(length(dn)) for(i in seq_along(ld)) { path[grepl(ld[[i]], dn, ignore.case = TRUE) & path == 0] <- i } sx <- split(x, path) res <- lapply(sx, makeDose, noteMetaData, naFreq) rn <- do.call(qrbind, lapply(res, function(i) i[['note']])) rn <- rn[order(rn[[1]]),] rownames(rn) <- NULL rd <- do.call(qrbind, lapply(res, function(i) i[['date']])) rd <- rd[order(rd[[1]]),] rownames(rd) <- NULL nx <- list(note = rn, date = rd) } else { nx <- makeDose(x, noteMetaData, naFreq) } nx }
BayesRobustProbitSummary = function(object, digits = max(1L, getOption("digits") - 4L)) { if(object$call[1]!="BayesProbitHSD()" & object$call[1]!="BayesProbitARMA()" & object$call[1]!="BayesCumulativeProbitHSD()") stop("Please input the correct object!!") if(object$call[1] == "BayesProbitHSD()") output = BayesProbitHSD.Summary(object, digits = digits) if(object$call[1] == "BayesProbitARMA()") output = BayesProbitARMA.Summary(object, digits = digits) if(object$call[1] == "BayesCumulativeProbitHSD()") output = BayesProbitHSD.Summary(object, digits = digits) output }
TestIndNH <- function(posx, posy, posz=NULL, alpha=0.05, nsim=100,PA=FALSE,cores=1, type='Poisson',lambdaMarg=NULL, lambdaParent=NULL, lambdaNumP=NULL, dist='normal',sigmaC=1, minC=-1, maxC=1,fixed.seed=NULL) { NumProcess<-2+(is.null(posz)==F) if (is.null(lambdaMarg)) Tf<-length(lambdaParent) else Tf<-dim(lambdaMarg)[1] n<-length(posx) distObs<-DistObs(posx=posx,posy=posy,posz=posz, Tf=Tf, drawpoints='F', PA=PA) cl<-makeCluster(cores) clusterExport(cl, c('simNHPc')) clusterExport(cl, objects(, envir = .GlobalEnv)) if (is.null(fixed.seed)) matdist<- parSapply(cl, c(1:nsim), FUN=fn2, posx=posx, NumProcess=NumProcess, PA=PA, type=type, dist=dist,lambdaMarg=lambdaMarg, lambdaParent=lambdaParent, lambdaNumP=lambdaNumP, sigmaC=sigmaC,minC=minC, maxC=maxC) else matdist<- parSapply(cl, c(1:nsim), FUN=fn2fix, posx=posx, NumProcess=NumProcess, PA=PA, type=type, dist=dist,lambdaMarg=lambdaMarg, lambdaParent=lambdaParent, lambdaNumP=lambdaNumP, sigmaC=sigmaC,minC=minC, maxC=maxC, fixed.seed=fixed.seed) matdistT<-cbind(distObs,matdist) matperT<-parSapply(cl, c(1:length(distObs)), FUN=mirank,mat=matdistT)/(nsim+1) KSest<-parSapply(cl, c(1:(nsim+1)), FUN=miKS,mat=matperT) stopCluster(cl) KSpv<-1-rank(KSest)[1]/(nsim+1) names(KSpv)<-"p-value" reject<-as.numeric(KSpv<alpha) return(list(pv=KSpv, reject=reject, est=KSest)) }
test_that("as.orcid", { skip_on_cran() vcr::use_cassette("as_orcid", { aa <- as.orcid("0000-0002-1642-628X") }) expect_is(aa, "or_cid") expect_is(aa[[1]], "list") expect_named(aa, "0000-0002-1642-628X") }) test_that("as.orcid accepts itself, or_cid class", { skip_on_cran() vcr::use_cassette("as_orcid_accepts_self_or_or_cid_class", { tmp <- as.orcid("0000-0002-1642-628X") bb <- as.orcid(tmp) }) expect_is(bb, "or_cid") expect_is(bb[[1]], "list") expect_identical(bb, tmp) expect_identical(bb[[1]], tmp[[1]]) }) test_that("as.orcid fails well", { skip_on_cran() expect_error(as.orcid(5), "no 'as.orcid' method") expect_error(as.orcid(list(a = 6)), "no 'as.orcid' method for numeric") vcr::use_cassette("as_orcid_invalid_orcid_id", { expect_error(as.orcid("adfafadf"), class = "error") }) })
models2wux <- function(userinput, modelinput = NULL ) { cat("\n") if (!is.list(userinput)) { user.input.sourced <- source(userinput, local = TRUE) user.input <- user.input.sourced$value } else { user.input <- userinput } save.as.data <- user.input$save.as.data if ( !file.exists(dirname(save.as.data)) ) dir.create(dirname(save.as.data), recursive = TRUE) if ( !is.null(user.input$plot.subregions$save.subregions.plots) ) { save.subregions.plots <- user.input$plot.subregions$save.subregions.plots if ( !file.exists(save.subregions.plots) ) dir.create(save.subregions.plots, recursive = TRUE) } else { save.subregions.plots <- NULL } if ( !is.null(user.input$area.fraction) ) { does.area.fraction <- user.input$area.fraction } else { does.area.fraction <- FALSE } if ( !is.null(user.input$use.land.mask) ) { use.land.mask <- user.input$use.land.mask print("USING LAND-SEA MASK") } else { use.land.mask <- FALSE } if ( !is.null(user.input$spatial.weighting) ) { does.spatial.weighting <- user.input$spatial.weighting } else { does.spatial.weighting <- FALSE } reference.period <- user.input$reference.period scenario.period <- user.input$scenario.period periods <- c("reference.period" = reference.period, "scenario.period" = scenario.period) if ( !is.null(user.input$na.rm) ) { na.rm <- user.input$na.rm } else { na.rm <- FALSE } subregions <- user.input$subregions temporal.aggr <- user.input$temporal.aggregation parameter.names <- user.input$parameter.names wux.df.list <- vector("list", length(parameter.names)) names(wux.df.list) <- parameter.names for ( parameter.longname in parameter.names ) { cat("\n******************************************************************") cat("****\n", "PROCESSING PARAMETER \"", parameter.longname, "\"\n", sep = "") cat("******************************************************************") cat("****\n") wux.df <- data.frame() user.model.names <- user.input$climate.models model.input <- ReadFromModelDictionary(user.model.names, modelinput) model.names <- names(model.input) for (modelname.counter in model.names) { model.pars <- model.input[[modelname.counter]]$parameters parameter.shortname <- GetParameterShortName(parameter.longname, model.pars) institute.name <- model.input[[modelname.counter]]$institute global.model.name <- model.input[[modelname.counter]]$gcm gcm.run <- model.input[[modelname.counter]]$gcm.run rcm.name <- model.input[[modelname.counter]]$rcm emission.scenario <- model.input[[modelname.counter]]$emission.scenario is.corrected <- model.input[[modelname.counter]]$corrected.data resolution <- model.input[[modelname.counter]]$resolution what.timesteps <- model.input[[modelname.counter]]$what.timesteps model.ref.per <- model.input[[modelname.counter]]$reference.period model.scn.per <- model.input[[modelname.counter]]$scenario.period years.in.ref.per.files <- model.input[[modelname.counter]]$years.in.ref.per.files years.in.scn.per.files <- model.input[[modelname.counter]]$years.in.scn.per.files time.units <- model.input[[modelname.counter]]$time.units calendar <- model.input[[modelname.counter]]$calendar count.first.time.value <- model.input[[modelname.counter]]$count.first.time.value lonlat.var.name <- model.input[[modelname.counter]]$lonlat.var.name grid.filename <- file.path(model.input[[modelname.counter]]$gridfile.path, model.input[[modelname.counter]]$gridfile.filename) subregion.filename <- file.path(model.input[[modelname.counter]]$subregion.path, model.input[[modelname.counter]]$subregion.filename) if (length(subregion.filename) == 0) subregion.filename <- FALSE land.mask <- model.input[[modelname.counter]]$land.mask land.mask.name <- model.input[[modelname.counter]]$land.mask.name for (periods.counter in periods) { cat("\n-------------------------------------------------------------") cat("---------\n\n PROCESSING MODEL \"", modelname.counter, "\" FOR PERIOD \"", periods.counter, "\"\n", sep = "") period.begin <- ISOdate(strsplit(periods.counter, "-")[[1]][1], 1, 1, 0) period.end <- ISOdate(strsplit(periods.counter, "-")[[1]][2], 12, 31, 23) current.period.char = names(which(periods == periods.counter)) if (current.period.char == "reference.period") { is.refperiod <- "yes" if (!is.null(model.ref.per)) periods.counter <- model.ref.per } else { is.refperiod <- "no" if (!is.null(model.scn.per)) periods.counter <- model.scn.per } cat(" GETTING REQUIRED FILENAMES FOR PERIOD", "\n", sep = "") current.model.input <- model.input[[modelname.counter]] filenames <- GetFileNames(current.model.input, period.begin, period.end, parameter.shortname, period = current.period.char, calendar = calendar, count.first.time.value = count.first.time.value, time.units = time.units, what.timesteps = what.timesteps) cat(paste(" ", filenames, "\n", sep="")) if ( !all(is.na(filenames)) ) { data.aggr.list <- GetAggregatedSpatioTemporalData(filenames, model.name = modelname.counter, plot.subregion = user.input$plot.subregion, grid.filenames = grid.filename, subregions = subregions, parameter.name = parameter.shortname, interpolate.to.grid = FALSE, temporal.aggr = temporal.aggr, startdate = period.begin, enddate = period.end, time.units = time.units, calendar = calendar, count.first.time.value = count.first.time.value, lonlat.var.name = lonlat.var.name, what.timesteps = what.timesteps, na.rm = na.rm, area.fraction = does.area.fraction, spatial.weighting = does.spatial.weighting, use.land.mask = use.land.mask, land.mask = land.mask, land.mask.name = land.mask.name) n.of.pixels <- lapply(data.aggr.list, function(z) { lapply(z, function(x) {lapply(x, function(y) length(!is.na(y)))})}) data.aggr.list <- lapply(data.aggr.list, function(x) lapply(x$data, AggregateWeightedSubregions, weight=x$weight) ) if (sum(which(unlist(sapply(temporal.aggr, "[", "time.series")) == FALSE)) == 0) { is.time.series <- TRUE } else { is.time.series <- FALSE } model.data <- MakeModelDataFrame(modelname.counter, institute.name, rcm.name, global.model.name, gcm.run = gcm.run, is.reference.period = is.refperiod, time.step = periods.counter, subregion = names(data.aggr.list), is.corrected = is.corrected, resolution = resolution, season = sort(names(data.aggr.list[[1]])), is.time.series = is.time.series, data = data.aggr.list, parameter.name = parameter.longname, emission.scenario = emission.scenario) wux.df <- rbind(wux.df, model.data) } } } wux.df.list[[parameter.longname]] <- wux.df } wux.df <- MergeParameterDataframes(wux.df.list, parameter.names) if (!is.time.series) { wux.diff.df <- WuxDataDiff(wux.df, parameter.names) write.table(wux.diff.df, file = paste(save.as.data, "_diff.csv", sep = ""), sep=";") } cat("\n-------------------------------------------------------------------") cat("---\n") cat("\n", "SAVING DATA", "\n", sep = "") write.table(wux.df, file = paste(save.as.data, ".csv", sep = ""), sep=";") cat("\n*******************************************************************") cat("***\n") cat(" YOUR WUX DATA FRAME HAS BEEN CREATED SUCCESSFULLY :-) ") cat(" \n") cat("********************************************************************") cat("**\n") if (!is.time.series) { class(wux.df) <- append("wux.df", class(wux.df)) return(wux.diff.df) } else { class(wux.df) <- append("wux.ts.df", class(wux.df)) return(wux.df) } } ReadFromModelDictionary <- function(modelnames, modelinput = NULL){ if (is.null(modelinput)){ model.input <- InitModelDictionary() } else { cat(is.list(modelinput)) if (is.list(modelinput)) { model.input <- modelinput } else { model.input.sourced <- source(modelinput, local = TRUE) model.input <- model.input.sourced$value } if (!is.list(model.input)) stop("YOUR model.input FILE IS WRONG. BE SURE YOU HAVE SPECIFIED A LIST CALLED \"model.input\". SEE ?models2wux FOR DETAILS. ") } cmip3.sresa1b.labels <- c("cmip3-sresa1b", "CMIP3-SRESA1B") cmip3.sresa1b.modelnames <- c("bccr_bcm2_0-r1", "cccma_cgcm3_1-r1", "cccma_cgcm3_1-r2", "cccma_cgcm3_1-r3", "cccma_cgcm3_1-r4", "cccma_cgcm3_1-r5", "cccma_cgcm3_1_t63-r1", "cnrm_cm3-r1", "csiro_mk3_0-r1", "csiro_mk3_5-r1", "gfdl_cm2_0-r1", "gfdl_cm2_1-r1", "giss_aom-r1", "giss_aom-r2", "giss_model_e_h-r1", "giss_model_e_h-r2", "giss_model_e_h-r3", "giss_model_e_r-r1", "giss_model_e_r-r2", "giss_model_e_r-r3", "giss_model_e_r-r4", "giss_model_e_r-r5", "iap_fgoals1_0_g-r1", "iap_fgoals1_0_g-r2", "iap_fgoals1_0_g-r3", "ingv_echam4-r1", "inmcm3_0-r1", "ipsl_cm4-r1", "miroc3_2_hires-r1", "miroc3_2_medres-r1", "miroc3_2_medres-r2", "miroc3_2_medres-r3", "miub_echo_g-r1", "miub_echo_g-r2", "miub_echo_g-r3", "mpi_echam5-r1", "mpi_echam5-r2", "mpi_echam5-r3", "mpi_echam5-r4", "mri_cgcm2_3_2a-r1", "mri_cgcm2_3_2a-r2", "mri_cgcm2_3_2a-r3", "mri_cgcm2_3_2a-r4", "mri_cgcm2_3_2a-r5", "ncar_ccsm3_0-r1", "ncar_ccsm3_0-r2", "ncar_ccsm3_0-r3", "ncar_ccsm3_0-r5", "ncar_ccsm3_0-r6", "ncar_ccsm3_0-r7", "ncar_ccsm3_0-r9", "ukmo_hadcm3-r1", "ukmo_hadgem1-r1") cmip3.sresa2.labels <- c("cmip3-sresa2", "CMIP3-SRESA2") cmip3.sresa2.modelnames <- c("bccr_bcm2_0-sresa2-r1", "cccma_cgcm3_1-sresa2-r1", "cccma_cgcm3_1-sresa2-r2", "cccma_cgcm3_1-sresa2-r3", "cccma_cgcm3_1-sresa2-r4", "cccma_cgcm3_1-sresa2-r5", "cnrm_cm3-sresa2-r1", "csiro_mk3_0-sresa2-r1", "csiro_mk3_5-sresa2-r1", "gfdl_cm2_0-sresa2-r1", "gfdl_cm2_1-sresa2-r1", "giss_model_e_r-sresa2-r1", "ingv_echam4-sresa2-r1", "inmcm3_0-sresa2-r1", "ipsl_cm4-sresa2-r1", "miroc3_2_medres-sresa2-r1", "miroc3_2_medres-sresa2-r2", "miroc3_2_medres-sresa2-r3", "miub_echo_g-sresa2-r1", "miub_echo_g-sresa2-r2", "miub_echo_g-sresa2-r3", "mpi_echam5-sresa2-r1", "mpi_echam5-sresa2-r2", "mpi_echam5-sresa2-r3", "mri_cgcm2_3_2a-sresa2-r1", "mri_cgcm2_3_2a-sresa2-r2", "mri_cgcm2_3_2a-sresa2-r3", "mri_cgcm2_3_2a-sresa2-r4", "mri_cgcm2_3_2a-sresa2-r5", "ncar_ccsm3_0-sresa2-r1", "ncar_ccsm3_0-sresa2-r2", "ncar_ccsm3_0-sresa2-r3", "ncar_ccsm3_0-sresa2-r4", "ncar_ccsm3_0-sresa2-r5", "ukmo_hadcm3-sresa2-r1", "ukmo_hadgem1-sresa2-r1") cmip3.sresb1.labels <- c("cmip3-sresb1", "CMIP3-SRESB1") cmip3.sresb1.modelnames <- c("bccr_bcm2_0-sresb1-r1", "cccma_cgcm3_1-sresb1-r1", "cccma_cgcm3_1-sresb1-r2", "cccma_cgcm3_1-sresb1-r3", "cccma_cgcm3_1-sresb1-r4", "cccma_cgcm3_1-sresb1-r5", "cccma_cgcm3_1_t63-sresb1-r1", "cnrm_cm3-sresb1-r1", "csiro_mk3_0-sresb1-r1", "csiro_mk3_5-sresb1-r1", "gfdl_cm2_0-sresb1-r1", "gfdl_cm2_1-sresb1-r1", "giss_aom-sresb1-r1", "giss_aom-sresb1-r2", "giss_model_e_r-sresb1-r1" , "iap_fgoals1_0_g-sresb1-r1", "iap_fgoals1_0_g-sresb1-r2", "iap_fgoals1_0_g-sresb1-r3", "inmcm3_0-sresb1-r1", "ipsl_cm4-sresb1-r1", "miroc3_2_hires-sresb1-r1", "miroc3_2_medres-sresb1-r1", "miroc3_2_medres-sresb1-r2", "miroc3_2_medres-sresb1-r3", "miub_echo_g-sresb1-r1", "miub_echo_g-sresb1-r2", "miub_echo_g-sresb1-r3", "mpi_echam5-sresb1-r1", "mpi_echam5-sresb1-r2", "mpi_echam5-sresb1-r3", "mri_cgcm2_3_2a-sresb1-r1", "mri_cgcm2_3_2a-sresb1-r2", "mri_cgcm2_3_2a-sresb1-r3", "mri_cgcm2_3_2a-sresb1-r4", "mri_cgcm2_3_2a-sresb1-r5", "ncar_ccsm3_0-sresb1-r1", "ncar_ccsm3_0-sresb1-r2", "ncar_ccsm3_0-sresb1-r3", "ncar_ccsm3_0-sresb1-r4", "ncar_ccsm3_0-sresb1-r5", "ncar_ccsm3_0-sresb1-r6", "ncar_ccsm3_0-sresb1-r7", "ncar_ccsm3_0-sresb1-r9", "ukmo_hadcm3-sresb1-r1") cmip5.rcp26.labels <- c("cmip5-rcp26", "CMIP5-RCP26") cmip5.rcp26.modelnames <- c("BCC-CSM1-1-r1i1p1_rcp26", "BCC-CSM1-1-m-r1i1p1_rcp26", "BNU-ESM-r1i1p1_rcp26", "CanESM2-r1i1p1_rcp26", "CanESM2-r2i1p1_rcp26", "CanESM2-r3i1p1_rcp26", "CanESM2-r4i1p1_rcp26", "CanESM2-r5i1p1_rcp26", "CCSM4-r1i1p1_rcp26", "CCSM4-r2i1p1_rcp26", "CCSM4-r3i1p1_rcp26", "CCSM4-r4i1p1_rcp26", "CCSM4-r5i1p1_rcp26", "CCSM4-r6i1p1_rcp26", "CESM1-CAM5-r1i1p1_rcp26", "CESM1-CAM5-r2i1p1_rcp26", "CESM1-CAM5-r3i1p1_rcp26", "CNRM-CM5-r1i1p1_rcp26", "CSIRO-Mk3-6-0-r10i1p1_rcp26", "CSIRO-Mk3-6-0-r1i1p1_rcp26", "CSIRO-Mk3-6-0-r2i1p1_rcp26", "CSIRO-Mk3-6-0-r3i1p1_rcp26", "CSIRO-Mk3-6-0-r4i1p1_rcp26", "CSIRO-Mk3-6-0-r5i1p1_rcp26", "CSIRO-Mk3-6-0-r6i1p1_rcp26", "CSIRO-Mk3-6-0-r7i1p1_rcp26", "CSIRO-Mk3-6-0-r8i1p1_rcp26", "CSIRO-Mk3-6-0-r9i1p1_rcp26", "EC-EARTH-r12i1p1_rcp26", "EC-EARTH-r8i1p1_rcp26", "FGOALS-g2-r1i1p1_rcp26", "FGOALS-s2-r1i1p1_rcp26", "FIO-ESM-r1i1p1_rcp26", "FIO-ESM-r2i1p1_rcp26", "FIO-ESM-r3i1p1_rcp26", "GFDL-CM3-r1i1p1_rcp26", "GFDL-ESM2G-r1i1p1_rcp26", "GFDL-ESM2M-r1i1p1_rcp26", "GISS-E2-H-r1i1p1_rcp26", "GISS-E2-H-r1i1p2_rcp26", "GISS-E2-H-r1i1p3_rcp26", "GISS-E2-R-r1i1p1_rcp26", "GISS-E2-R-r1i1p2_rcp26", "GISS-E2-R-r1i1p3_rcp26", "HadGEM2-AO-r1i1p1_rcp26", "HadGEM2-ES-r1i1p1_rcp26", "HadGEM2-ES-r4i1p1_rcp26", "IPSL-CM5A-LR-r1i1p1_rcp26", "IPSL-CM5A-LR-r2i1p1_rcp26", "IPSL-CM5A-LR-r3i1p1_rcp26", "IPSL-CM5A-LR-r4i1p1_rcp26", "IPSL-CM5A-MR-r1i1p1_rcp26", "MIROC5-r1i1p1_rcp26", "MIROC5-r2i1p1_rcp26", "MIROC5-r3i1p1_rcp26", "MIROC-ESM-r1i1p1_rcp26", "MIROC-ESM-CHEM-r1i1p1_rcp26", "MPI-ESM-LR-r1i1p1_rcp26", "MPI-ESM-LR-r2i1p1_rcp26", "MPI-ESM-LR-r3i1p1_rcp26", "MPI-ESM-MR-r1i1p1_rcp26", "MRI-CGCM3-r1i1p1_rcp26", "NorESM1-M-r1i1p1_rcp26", "NorESM1-ME-r1i1p1_rcp26") cmip5.rcp26.shortperiods.labels <- c("cmip5-rcp26-shortperiods", "CMIP5-RCP26-SHORTPERIODS") cmip5.rcp26.shortperiods.modelnames <- c("BCC-CSM1-1-r1i1p1_rcp26", "BCC-CSM1-1-m-r1i1p1_rcp26", "BNU-ESM-r1i1p1_rcp26", "CanESM2-r1i1p1_rcp26", "CanESM2-r2i1p1_rcp26", "CanESM2-r3i1p1_rcp26", "CanESM2-r4i1p1_rcp26", "CanESM2-r5i1p1_rcp26", "CCSM4-r1i1p1_rcp26", "CCSM4-r2i1p1_rcp26", "CCSM4-r3i1p1_rcp26", "CCSM4-r4i1p1_rcp26", "CCSM4-r5i1p1_rcp26", "CCSM4-r6i1p1_rcp26", "CESM1-CAM5-r1i1p1_rcp26", "CESM1-CAM5-r2i1p1_rcp26", "CESM1-CAM5-r3i1p1_rcp26", "CNRM-CM5-r1i1p1_rcp26", "CSIRO-Mk3-6-0-r10i1p1_rcp26", "CSIRO-Mk3-6-0-r1i1p1_rcp26", "CSIRO-Mk3-6-0-r2i1p1_rcp26", "CSIRO-Mk3-6-0-r3i1p1_rcp26", "CSIRO-Mk3-6-0-r4i1p1_rcp26", "CSIRO-Mk3-6-0-r5i1p1_rcp26", "CSIRO-Mk3-6-0-r6i1p1_rcp26", "CSIRO-Mk3-6-0-r7i1p1_rcp26", "CSIRO-Mk3-6-0-r8i1p1_rcp26", "CSIRO-Mk3-6-0-r9i1p1_rcp26", "EC-EARTH-r12i1p1_rcp26", "EC-EARTH-r8i1p1_rcp26", "FGOALS-g2-r1i1p1_rcp26", "FGOALS-s2-r1i1p1_rcp26", "FIO-ESM-r1i1p1_rcp26", "FIO-ESM-r2i1p1_rcp26", "FIO-ESM-r3i1p1_rcp26", "GFDL-CM3-r1i1p1_rcp26", "GFDL-ESM2G-r1i1p1_rcp26", "GFDL-ESM2M-r1i1p1_rcp26", "GISS-E2-H-r1i1p1_rcp26", "GISS-E2-H-r1i1p2_rcp26", "GISS-E2-H-r1i1p3_rcp26", "GISS-E2-R-r1i1p1_rcp26", "GISS-E2-R-r1i1p2_rcp26", "GISS-E2-R-r1i1p3_rcp26", "HadGEM2-AO-r1i1p1_rcp26", "HadGEM2-ES-r1i1p1_rcp26", "HadGEM2-ES-r2i1p1_rcp26", "HadGEM2-ES-r3i1p1_rcp26", "HadGEM2-ES-r4i1p1_rcp26", "IPSL-CM5A-LR-r1i1p1_rcp26", "IPSL-CM5A-LR-r2i1p1_rcp26", "IPSL-CM5A-LR-r3i1p1_rcp26", "IPSL-CM5A-LR-r4i1p1_rcp26", "IPSL-CM5A-MR-r1i1p1_rcp26", "MIROC5-r1i1p1_rcp26", "MIROC5-r2i1p1_rcp26", "MIROC5-r3i1p1_rcp26", "MIROC5-r4i1p1_rcp26", "MIROC5-r5i1p1_rcp26", "MIROC-ESM-r1i1p1_rcp26", "MIROC-ESM-CHEM-r1i1p1_rcp26", "MPI-ESM-LR-r1i1p1_rcp26", "MPI-ESM-LR-r2i1p1_rcp26", "MPI-ESM-LR-r3i1p1_rcp26", "MPI-ESM-MR-r1i1p1_rcp26", "MRI-CGCM3-r1i1p1_rcp26", "NorESM1-M-r1i1p1_rcp26", "NorESM1-ME-r1i1p1_rcp26") cmip5.rcp45.labels <- c("cmip5-rcp45", "CMIP5-RCP45") cmip5.rcp45.modelnames <- c("ACCESS1-0-r1i1p1_rcp45", "ACCESS1-3-r1i1p1_rcp45", "BCC-CSM1-1-r1i1p1_rcp45", "BCC-CSM1-1-m-r1i1p1_rcp45", "BNU-ESM-r1i1p1_rcp45", "CanESM2-r1i1p1_rcp45", "CanESM2-r2i1p1_rcp45", "CanESM2-r3i1p1_rcp45", "CanESM2-r4i1p1_rcp45", "CanESM2-r5i1p1_rcp45", "CCSM4-r1i1p1_rcp45", "CCSM4-r2i1p1_rcp45", "CCSM4-r3i1p1_rcp45", "CCSM4-r4i1p1_rcp45", "CCSM4-r5i1p1_rcp45", "CCSM4-r6i1p1_rcp45", "CESM1-BGC-r1i1p1_rcp45", "CESM1-CAM5-r1i1p1_rcp45", "CESM1-CAM5-r2i1p1_rcp45", "CESM1-CAM5-r3i1p1_rcp45", "CESM1-WACCM-r2i1p1_rcp45", "CMCC-CM-r1i1p1_rcp45", "CMCC-CMS-r1i1p1_rcp45", "CNRM-CM5-r1i1p1_rcp45", "CSIRO-Mk3-6-0-r10i1p1_rcp45", "CSIRO-Mk3-6-0-r1i1p1_rcp45", "CSIRO-Mk3-6-0-r2i1p1_rcp45", "CSIRO-Mk3-6-0-r3i1p1_rcp45", "CSIRO-Mk3-6-0-r4i1p1_rcp45", "CSIRO-Mk3-6-0-r5i1p1_rcp45", "CSIRO-Mk3-6-0-r6i1p1_rcp45", "CSIRO-Mk3-6-0-r7i1p1_rcp45", "CSIRO-Mk3-6-0-r8i1p1_rcp45", "CSIRO-Mk3-6-0-r9i1p1_rcp45", "EC-EARTH-r12i1p1_rcp45", "EC-EARTH-r13i1p1_rcp45", "EC-EARTH-r14i1p1_rcp45", "EC-EARTH-r2i1p1_rcp45", "EC-EARTH-r6i1p1_rcp45", "EC-EARTH-r8i1p1_rcp45", "EC-EARTH-r9i1p1_rcp45", "FGOALS-g2-r1i1p1_rcp45", "FIO-ESM-r1i1p1_rcp45", "FIO-ESM-r2i1p1_rcp45", "FIO-ESM-r3i1p1_rcp45", "GFDL-CM3-r1i1p1_rcp45", "GFDL-ESM2G-r1i1p1_rcp45", "GFDL-ESM2M-r1i1p1_rcp45", "GISS-E2-H-r1i1p1_rcp45", "GISS-E2-H-r1i1p2_rcp45", "GISS-E2-H-r1i1p3_rcp45", "GISS-E2-H-r2i1p1_rcp45", "GISS-E2-H-r2i1p2_rcp45", "GISS-E2-H-r2i1p3_rcp45", "GISS-E2-H-r3i1p1_rcp45", "GISS-E2-H-r3i1p2_rcp45", "GISS-E2-H-r3i1p3_rcp45", "GISS-E2-H-r4i1p1_rcp45", "GISS-E2-H-r4i1p2_rcp45", "GISS-E2-H-r4i1p3_rcp45", "GISS-E2-H-r5i1p1_rcp45", "GISS-E2-H-r5i1p2_rcp45", "GISS-E2-H-r5i1p3_rcp45", "GISS-E2-H-r6i1p3_rcp45", "GISS-E2-H-CC-r1i1p1_rcp45", "GISS-E2-R-r1i1p1_rcp45", "GISS-E2-R-r1i1p2_rcp45", "GISS-E2-R-r1i1p3_rcp45", "GISS-E2-R-r2i1p1_rcp45", "GISS-E2-R-r2i1p2_rcp45", "GISS-E2-R-r2i1p3_rcp45", "GISS-E2-R-r3i1p1_rcp45", "GISS-E2-R-r3i1p2_rcp45", "GISS-E2-R-r3i1p3_rcp45", "GISS-E2-R-r4i1p1_rcp45", "GISS-E2-R-r4i1p2_rcp45", "GISS-E2-R-r4i1p3_rcp45", "GISS-E2-R-r5i1p1_rcp45", "GISS-E2-R-r5i1p2_rcp45", "GISS-E2-R-r5i1p3_rcp45", "GISS-E2-R-r6i1p1_rcp45", "GISS-E2-R-r6i1p3_rcp45", "GISS-E2-R-CC-r1i1p1_rcp45", "HadGEM2-AO-r1i1p1_rcp45", "HadGEM2-CC-r1i1p1_rcp45", "HadGEM2-ES-r1i1p1_rcp45", "HadGEM2-ES-r4i1p1_rcp45", "INM-CM4-r1i1p1_rcp45", "IPSL-CM5A-LR-r1i1p1_rcp45", "IPSL-CM5A-LR-r2i1p1_rcp45", "IPSL-CM5A-LR-r3i1p1_rcp45", "IPSL-CM5A-LR-r4i1p1_rcp45", "IPSL-CM5A-MR-r1i1p1_rcp45", "IPSL-CM5B-LR-r1i1p1_rcp45", "MIROC5-r1i1p1_rcp45", "MIROC5-r2i1p1_rcp45", "MIROC5-r3i1p1_rcp45", "MIROC-ESM-r1i1p1_rcp45", "MIROC-ESM-CHEM-r1i1p1_rcp45", "MPI-ESM-LR-r1i1p1_rcp45", "MPI-ESM-LR-r2i1p1_rcp45", "MPI-ESM-LR-r3i1p1_rcp45", "MPI-ESM-MR-r1i1p1_rcp45", "MPI-ESM-MR-r2i1p1_rcp45", "MPI-ESM-MR-r3i1p1_rcp45", "MRI-CGCM3-r1i1p1_rcp45", "NorESM1-M-r1i1p1_rcp45", "NorESM1-ME-r1i1p1_rcp45" ) cmip5.rcp45.shortperiods.labels <- c("cmip5-rcp45-shortperiods", "CMIP5-RCP45-SHORTPERIODS") cmip5.rcp45.shortperiods.modelnames <- c("ACCESS1-0-r1i1p1_rcp45", "ACCESS1-3-r1i1p1_rcp45", "BCC-CSM1-1-r1i1p1_rcp45", "BCC-CSM1-1-m-r1i1p1_rcp45", "BNU-ESM-r1i1p1_rcp45", "CanCM4-r10i1p1_rcp45", "CanCM4-r1i1p1_rcp45", "CanCM4-r2i1p1_rcp45", "CanCM4-r3i1p1_rcp45", "CanCM4-r4i1p1_rcp45", "CanCM4-r5i1p1_rcp45", "CanCM4-r6i1p1_rcp45", "CanCM4-r7i1p1_rcp45", "CanCM4-r8i1p1_rcp45", "CanCM4-r9i1p1_rcp45", "CanESM2-r1i1p1_rcp45", "CanESM2-r2i1p1_rcp45", "CanESM2-r3i1p1_rcp45", "CanESM2-r4i1p1_rcp45", "CanESM2-r5i1p1_rcp45", "CCSM4-r1i1p1_rcp45", "CCSM4-r2i1p1_rcp45", "CCSM4-r3i1p1_rcp45", "CCSM4-r4i1p1_rcp45", "CCSM4-r5i1p1_rcp45", "CCSM4-r6i1p1_rcp45", "CESM1-BGC-r1i1p1_rcp45", "CESM1-CAM5-r1i1p1_rcp45", "CESM1-CAM5-r2i1p1_rcp45", "CESM1-CAM5-r3i1p1_rcp45", "CESM1-WACCM-r2i1p1_rcp45", "CESM1-WACCM-r3i1p1_rcp45", "CESM1-WACCM-r4i1p1_rcp45", "CMCC-CM-r1i1p1_rcp45", "CMCC-CMS-r1i1p1_rcp45", "CNRM-CM5-r1i1p1_rcp45", "CSIRO-Mk3-6-0-r10i1p1_rcp45", "CSIRO-Mk3-6-0-r1i1p1_rcp45", "CSIRO-Mk3-6-0-r2i1p1_rcp45", "CSIRO-Mk3-6-0-r3i1p1_rcp45", "CSIRO-Mk3-6-0-r4i1p1_rcp45", "CSIRO-Mk3-6-0-r5i1p1_rcp45", "CSIRO-Mk3-6-0-r6i1p1_rcp45", "CSIRO-Mk3-6-0-r7i1p1_rcp45", "CSIRO-Mk3-6-0-r8i1p1_rcp45", "CSIRO-Mk3-6-0-r9i1p1_rcp45", "EC-EARTH-r12i1p1_rcp45", "EC-EARTH-r13i1p1_rcp45", "EC-EARTH-r14i1p1_rcp45", "EC-EARTH-r1i1p1_rcp45", "EC-EARTH-r2i1p1_rcp45", "EC-EARTH-r6i1p1_rcp45", "EC-EARTH-r8i1p1_rcp45", "EC-EARTH-r9i1p1_rcp45", "FGOALS-g2-r1i1p1_rcp45", "FIO-ESM-r1i1p1_rcp45", "FIO-ESM-r2i1p1_rcp45", "FIO-ESM-r3i1p1_rcp45", "GFDL-CM2-1-r10i1p1_rcp45", "GFDL-CM2-1-r1i1p1_rcp45", "GFDL-CM2-1-r2i1p1_rcp45", "GFDL-CM2-1-r3i1p1_rcp45", "GFDL-CM2-1-r4i1p1_rcp45", "GFDL-CM2-1-r5i1p1_rcp45", "GFDL-CM2-1-r6i1p1_rcp45", "GFDL-CM2-1-r7i1p1_rcp45", "GFDL-CM2-1-r8i1p1_rcp45", "GFDL-CM2-1-r9i1p1_rcp45", "GFDL-CM3-r1i1p1_rcp45", "GFDL-ESM2G-r1i1p1_rcp45", "GFDL-ESM2M-r1i1p1_rcp45", "GISS-E2-H-r1i1p1_rcp45", "GISS-E2-H-r1i1p2_rcp45", "GISS-E2-H-r1i1p3_rcp45", "GISS-E2-H-r2i1p1_rcp45", "GISS-E2-H-r2i1p2_rcp45", "GISS-E2-H-r2i1p3_rcp45", "GISS-E2-H-r3i1p1_rcp45", "GISS-E2-H-r3i1p2_rcp45", "GISS-E2-H-r3i1p3_rcp45", "GISS-E2-H-r4i1p1_rcp45", "GISS-E2-H-r4i1p2_rcp45", "GISS-E2-H-r4i1p3_rcp45", "GISS-E2-H-r5i1p1_rcp45", "GISS-E2-H-r5i1p2_rcp45", "GISS-E2-H-r5i1p3_rcp45", "GISS-E2-H-r6i1p3_rcp45", "GISS-E2-H-CC-r1i1p1_rcp45", "GISS-E2-R-r1i1p1_rcp45", "GISS-E2-R-r1i1p2_rcp45", "GISS-E2-R-r1i1p3_rcp45", "GISS-E2-R-r2i1p1_rcp45", "GISS-E2-R-r2i1p2_rcp45", "GISS-E2-R-r2i1p3_rcp45", "GISS-E2-R-r3i1p1_rcp45", "GISS-E2-R-r3i1p2_rcp45", "GISS-E2-R-r3i1p3_rcp45", "GISS-E2-R-r4i1p1_rcp45", "GISS-E2-R-r4i1p2_rcp45", "GISS-E2-R-r4i1p3_rcp45", "GISS-E2-R-r5i1p1_rcp45", "GISS-E2-R-r5i1p2_rcp45", "GISS-E2-R-r5i1p3_rcp45", "GISS-E2-R-r6i1p1_rcp45", "GISS-E2-R-r6i1p3_rcp45", "GISS-E2-R-CC-r1i1p1_rcp45", "HadCM3-r10i1p1_rcp45", "HadCM3-r1i1p1_rcp45", "HadCM3-r2i1p1_rcp45", "HadCM3-r3i1p1_rcp45", "HadCM3-r4i1p1_rcp45", "HadCM3-r5i1p1_rcp45", "HadCM3-r6i1p1_rcp45", "HadCM3-r7i1p1_rcp45", "HadCM3-r8i1p1_rcp45", "HadCM3-r9i1p1_rcp45", "HadGEM2-AO-r1i1p1_rcp45", "HadGEM2-CC-r1i1p1_rcp45", "HadGEM2-ES-r1i1p1_rcp45", "HadGEM2-ES-r2i1p1_rcp45", "HadGEM2-ES-r3i1p1_rcp45", "HadGEM2-ES-r4i1p1_rcp45", "INM-CM4-r1i1p1_rcp45", "IPSL-CM5A-LR-r1i1p1_rcp45", "IPSL-CM5A-LR-r2i1p1_rcp45", "IPSL-CM5A-LR-r3i1p1_rcp45", "IPSL-CM5A-LR-r4i1p1_rcp45", "IPSL-CM5A-MR-r1i1p1_rcp45", "IPSL-CM5B-LR-r1i1p1_rcp45", "MIROC4h-r1i1p1_rcp45", "MIROC4h-r2i1p1_rcp45", "MIROC4h-r3i1p1_rcp45", "MIROC5-r1i1p1_rcp45", "MIROC5-r2i1p1_rcp45", "MIROC5-r3i1p1_rcp45", "MIROC5-r4i1p1_rcp45", "MIROC5-r5i1p1_rcp45", "MIROC-ESM-r1i1p1_rcp45", "MIROC-ESM-CHEM-r1i1p1_rcp45", "MPI-ESM-LR-r1i1p1_rcp45", "MPI-ESM-LR-r2i1p1_rcp45", "MPI-ESM-LR-r3i1p1_rcp45", "MPI-ESM-MR-r1i1p1_rcp45", "MPI-ESM-MR-r2i1p1_rcp45", "MPI-ESM-MR-r3i1p1_rcp45", "MRI-CGCM3-r1i1p1_rcp45", "NorESM1-M-r1i1p1_rcp45", "NorESM1-ME-r1i1p1_rcp45" ) cmip5.rcp60.labels <- c("cmip5-rcp60", "CMIP5-RCP60") cmip5.rcp60.modelnames <- c("BCC-CSM1-1-r1i1p1_rcp60", "BCC-CSM1-1-m-r1i1p1_rcp60", "CCSM4-r1i1p1_rcp60", "CCSM4-r2i1p1_rcp60", "CCSM4-r3i1p1_rcp60", "CCSM4-r4i1p1_rcp60", "CCSM4-r5i1p1_rcp60", "CCSM4-r6i1p1_rcp60", "CESM1-CAM5-r1i1p1_rcp60", "CESM1-CAM5-r2i1p1_rcp60", "CESM1-CAM5-r3i1p1_rcp60", "CSIRO-Mk3-6-0-r10i1p1_rcp60", "CSIRO-Mk3-6-0-r1i1p1_rcp60", "CSIRO-Mk3-6-0-r2i1p1_rcp60", "CSIRO-Mk3-6-0-r3i1p1_rcp60", "CSIRO-Mk3-6-0-r4i1p1_rcp60", "CSIRO-Mk3-6-0-r5i1p1_rcp60", "CSIRO-Mk3-6-0-r6i1p1_rcp60", "CSIRO-Mk3-6-0-r7i1p1_rcp60", "CSIRO-Mk3-6-0-r8i1p1_rcp60", "CSIRO-Mk3-6-0-r9i1p1_rcp60", "FGOALS-s2-r1i1p1_rcp60", "FIO-ESM-r1i1p1_rcp60", "FIO-ESM-r2i1p1_rcp60", "FIO-ESM-r3i1p1_rcp60", "GFDL-CM3-r1i1p1_rcp60", "GFDL-ESM2G-r1i1p1_rcp60", "GFDL-ESM2M-r1i1p1_rcp60", "GISS-E2-H-r1i1p1_rcp60", "GISS-E2-H-r1i1p2_rcp60", "GISS-E2-H-r1i1p3_rcp60", "GISS-E2-R-r1i1p1_rcp60", "GISS-E2-R-r1i1p2_rcp60", "GISS-E2-R-r1i1p3_rcp60", "HadGEM2-AO-r1i1p1_rcp60", "HadGEM2-ES-r1i1p1_rcp60", "HadGEM2-ES-r4i1p1_rcp60", "IPSL-CM5A-LR-r1i1p1_rcp60", "IPSL-CM5A-MR-r1i1p1_rcp60", "MIROC5-r1i1p1_rcp60", "MIROC5-r2i1p1_rcp60", "MIROC5-r3i1p1_rcp60", "MIROC-ESM-r1i1p1_rcp60", "MIROC-ESM-CHEM-r1i1p1_rcp60", "MRI-CGCM3-r1i1p1_rcp60", "NorESM1-M-r1i1p1_rcp60", "NorESM1-ME-r1i1p1_rcp60") cmip5.rcp60.shortperiods.labels <- c("cmip5-rcp60-shortperiods", "CMIP5-RCP60-SHORTPERIODS") cmip5.rcp60.shortperiods.modelnames <- c("BCC-CSM1-1-r1i1p1_rcp60", "BCC-CSM1-1-m-r1i1p1_rcp60", "CCSM4-r1i1p1_rcp60", "CCSM4-r2i1p1_rcp60", "CCSM4-r3i1p1_rcp60", "CCSM4-r4i1p1_rcp60", "CCSM4-r5i1p1_rcp60", "CCSM4-r6i1p1_rcp60", "CESM1-CAM5-r1i1p1_rcp60", "CESM1-CAM5-r2i1p1_rcp60", "CESM1-CAM5-r3i1p1_rcp60", "CSIRO-Mk3-6-0-r10i1p1_rcp60", "CSIRO-Mk3-6-0-r1i1p1_rcp60", "CSIRO-Mk3-6-0-r2i1p1_rcp60", "CSIRO-Mk3-6-0-r3i1p1_rcp60", "CSIRO-Mk3-6-0-r4i1p1_rcp60", "CSIRO-Mk3-6-0-r5i1p1_rcp60", "CSIRO-Mk3-6-0-r6i1p1_rcp60", "CSIRO-Mk3-6-0-r7i1p1_rcp60", "CSIRO-Mk3-6-0-r8i1p1_rcp60", "CSIRO-Mk3-6-0-r9i1p1_rcp60", "FGOALS-s2-r1i1p1_rcp60", "FIO-ESM-r1i1p1_rcp60", "FIO-ESM-r2i1p1_rcp60", "FIO-ESM-r3i1p1_rcp60", "GFDL-CM3-r1i1p1_rcp60", "GFDL-ESM2G-r1i1p1_rcp60", "GFDL-ESM2M-r1i1p1_rcp60", "GISS-E2-H-r1i1p1_rcp60", "GISS-E2-H-r1i1p2_rcp60", "GISS-E2-H-r1i1p3_rcp60", "GISS-E2-R-r1i1p1_rcp60", "GISS-E2-R-r1i1p2_rcp60", "GISS-E2-R-r1i1p3_rcp60", "HadGEM2-AO-r1i1p1_rcp60", "HadGEM2-ES-r1i1p1_rcp60", "HadGEM2-ES-r2i1p1_rcp60", "HadGEM2-ES-r3i1p1_rcp60", "HadGEM2-ES-r4i1p1_rcp60", "IPSL-CM5A-LR-r1i1p1_rcp60", "IPSL-CM5A-MR-r1i1p1_rcp60", "MIROC5-r1i1p1_rcp60", "MIROC5-r2i1p1_rcp60", "MIROC5-r3i1p1_rcp60", "MIROC5-r4i1p1_rcp60", "MIROC5-r5i1p1_rcp60", "MIROC-ESM-r1i1p1_rcp60", "MIROC-ESM-CHEM-r1i1p1_rcp60", "MRI-CGCM3-r1i1p1_rcp60", "NorESM1-M-r1i1p1_rcp60", "NorESM1-ME-r1i1p1_rcp60") cmip5.rcp85.labels <- c("cmip5-rcp85", "CMIP5-RCP85") cmip5.rcp85.modelnames <- c("ACCESS1-0-r1i1p1_rcp85", "ACCESS1-3-r1i1p1_rcp85", "BCC-CSM1-1-r1i1p1_rcp85", "BCC-CSM1-1-m-r1i1p1_rcp85", "BNU-ESM-r1i1p1_rcp85", "CanESM2-r1i1p1_rcp85", "CanESM2-r2i1p1_rcp85", "CanESM2-r3i1p1_rcp85", "CanESM2-r4i1p1_rcp85", "CanESM2-r5i1p1_rcp85", "CCSM4-r1i1p1_rcp85", "CCSM4-r2i1p1_rcp85", "CCSM4-r3i1p1_rcp85", "CCSM4-r4i1p1_rcp85", "CCSM4-r5i1p1_rcp85", "CCSM4-r6i1p1_rcp85", "CESM1-BGC-r1i1p1_rcp85", "CESM1-CAM5-r1i1p1_rcp85", "CESM1-CAM5-r2i1p1_rcp85", "CESM1-CAM5-r3i1p1_rcp85", "CESM1-WACCM-r2i1p1_rcp85", "CMCC-CESM-r1i1p1_rcp85", "CMCC-CM-r1i1p1_rcp85", "CMCC-CMS-r1i1p1_rcp85", "CNRM-CM5-r10i1p1_rcp85", "CNRM-CM5-r1i1p1_rcp85", "CNRM-CM5-r2i1p1_rcp85", "CNRM-CM5-r4i1p1_rcp85", "CNRM-CM5-r6i1p1_rcp85", "CSIRO-Mk3-6-0-r10i1p1_rcp85", "CSIRO-Mk3-6-0-r1i1p1_rcp85", "CSIRO-Mk3-6-0-r2i1p1_rcp85", "CSIRO-Mk3-6-0-r3i1p1_rcp85", "CSIRO-Mk3-6-0-r4i1p1_rcp85", "CSIRO-Mk3-6-0-r5i1p1_rcp85", "CSIRO-Mk3-6-0-r6i1p1_rcp85", "CSIRO-Mk3-6-0-r7i1p1_rcp85", "CSIRO-Mk3-6-0-r8i1p1_rcp85", "CSIRO-Mk3-6-0-r9i1p1_rcp85", "EC-EARTH-r12i1p1_rcp85", "EC-EARTH-r13i1p1_rcp85", "EC-EARTH-r14i1p1_rcp85", "EC-EARTH-r2i1p1_rcp85", "EC-EARTH-r6i1p1_rcp85", "EC-EARTH-r8i1p1_rcp85", "EC-EARTH-r9i1p1_rcp85", "FGOALS-g2-r1i1p1_rcp85", "FIO-ESM-r1i1p1_rcp85", "FIO-ESM-r2i1p1_rcp85", "FIO-ESM-r3i1p1_rcp85", "GFDL-CM3-r1i1p1_rcp85", "GFDL-ESM2G-r1i1p1_rcp85", "GFDL-ESM2M-r1i1p1_rcp85", "GISS-E2-H-r1i1p1_rcp85", "GISS-E2-H-r1i1p2_rcp85", "GISS-E2-H-r1i1p3_rcp85", "GISS-E2-H-r2i1p1_rcp85", "GISS-E2-H-r2i1p3_rcp85", "GISS-E2-H-CC-r1i1p1_rcp85", "GISS-E2-R-r1i1p1_rcp85", "GISS-E2-R-r1i1p2_rcp85", "GISS-E2-R-r1i1p3_rcp85", "GISS-E2-R-r2i1p1_rcp85", "GISS-E2-R-r2i1p3_rcp85", "GISS-E2-R-CC-r1i1p1_rcp85", "HadGEM2-AO-r1i1p1_rcp85", "HadGEM2-CC-r1i1p1_rcp85", "HadGEM2-ES-r1i1p1_rcp85", "HadGEM2-ES-r4i1p1_rcp85", "INM-CM4-r1i1p1_rcp85", "IPSL-CM5A-LR-r1i1p1_rcp85", "IPSL-CM5A-LR-r2i1p1_rcp85", "IPSL-CM5A-LR-r3i1p1_rcp85", "IPSL-CM5A-LR-r4i1p1_rcp85", "IPSL-CM5A-MR-r1i1p1_rcp85", "IPSL-CM5B-LR-r1i1p1_rcp85", "MIROC5-r1i1p1_rcp85", "MIROC5-r2i1p1_rcp85", "MIROC5-r3i1p1_rcp85", "MIROC-ESM-r1i1p1_rcp85", "MIROC-ESM-CHEM-r1i1p1_rcp85", "MPI-ESM-LR-r1i1p1_rcp85", "MPI-ESM-LR-r2i1p1_rcp85", "MPI-ESM-LR-r3i1p1_rcp85", "MPI-ESM-MR-r1i1p1_rcp85", "MRI-CGCM3-r1i1p1_rcp85", "NorESM1-M-r1i1p1_rcp85", "NorESM1-ME-r1i1p1_rcp85", "MRI-ESM1-r1i1p1_rcp85") cmip5.rcp85.shortperiods.labels <- c("cmip5-rcp85-shortperiods", "CMIP5-RCP85-SHORTPERIODS") cmip5.rcp85.shortperiods.modelnames <- c("ACCESS1-0-r1i1p1_rcp85", "ACCESS1-3-r1i1p1_rcp85", "BCC-CSM1-1-r1i1p1_rcp85", "BCC-CSM1-1-m-r1i1p1_rcp85", "BNU-ESM-r1i1p1_rcp85", "CanESM2-r1i1p1_rcp85", "CanESM2-r2i1p1_rcp85", "CanESM2-r3i1p1_rcp85", "CanESM2-r4i1p1_rcp85", "CanESM2-r5i1p1_rcp85", "CCSM4-r1i1p1_rcp85", "CCSM4-r2i1p1_rcp85", "CCSM4-r3i1p1_rcp85", "CCSM4-r4i1p1_rcp85", "CCSM4-r5i1p1_rcp85", "CCSM4-r6i1p1_rcp85", "CESM1-BGC-r1i1p1_rcp85", "CESM1-CAM5-r1i1p1_rcp85", "CESM1-CAM5-r2i1p1_rcp85", "CESM1-CAM5-r3i1p1_rcp85", "CESM1-WACCM-r2i1p1_rcp85", "CESM1-WACCM-r3i1p1_rcp85", "CESM1-WACCM-r4i1p1_rcp85", "CMCC-CESM-r1i1p1_rcp85", "CMCC-CM-r1i1p1_rcp85", "CMCC-CMS-r1i1p1_rcp85", "CNRM-CM5-r10i1p1_rcp85", "CNRM-CM5-r1i1p1_rcp85", "CNRM-CM5-r2i1p1_rcp85", "CNRM-CM5-r4i1p1_rcp85", "CNRM-CM5-r6i1p1_rcp85", "CSIRO-Mk3-6-0-r10i1p1_rcp85", "CSIRO-Mk3-6-0-r1i1p1_rcp85", "CSIRO-Mk3-6-0-r2i1p1_rcp85", "CSIRO-Mk3-6-0-r3i1p1_rcp85", "CSIRO-Mk3-6-0-r4i1p1_rcp85", "CSIRO-Mk3-6-0-r5i1p1_rcp85", "CSIRO-Mk3-6-0-r6i1p1_rcp85", "CSIRO-Mk3-6-0-r7i1p1_rcp85", "CSIRO-Mk3-6-0-r8i1p1_rcp85", "CSIRO-Mk3-6-0-r9i1p1_rcp85", "EC-EARTH-r12i1p1_rcp85", "EC-EARTH-r13i1p1_rcp85", "EC-EARTH-r14i1p1_rcp85", "EC-EARTH-r2i1p1_rcp85", "EC-EARTH-r6i1p1_rcp85", "EC-EARTH-r8i1p1_rcp85", "EC-EARTH-r9i1p1_rcp85", "FGOALS-g2-r1i1p1_rcp85", "FIO-ESM-r1i1p1_rcp85", "FIO-ESM-r2i1p1_rcp85", "FIO-ESM-r3i1p1_rcp85", "GFDL-CM3-r1i1p1_rcp85", "GFDL-ESM2G-r1i1p1_rcp85", "GFDL-ESM2M-r1i1p1_rcp85", "GISS-E2-H-r1i1p1_rcp85", "GISS-E2-H-r1i1p2_rcp85", "GISS-E2-H-r1i1p3_rcp85", "GISS-E2-H-r2i1p1_rcp85", "GISS-E2-H-r2i1p3_rcp85", "GISS-E2-H-CC-r1i1p1_rcp85", "GISS-E2-R-r1i1p1_rcp85", "GISS-E2-R-r1i1p2_rcp85", "GISS-E2-R-r1i1p3_rcp85", "GISS-E2-R-r2i1p1_rcp85", "GISS-E2-R-r2i1p3_rcp85", "GISS-E2-R-CC-r1i1p1_rcp85", "HadGEM2-AO-r1i1p1_rcp85", "HadGEM2-CC-r1i1p1_rcp85", "HadGEM2-CC-r2i1p1_rcp85", "HadGEM2-CC-r3i1p1_rcp85", "HadGEM2-ES-r1i1p1_rcp85", "HadGEM2-ES-r2i1p1_rcp85", "HadGEM2-ES-r3i1p1_rcp85", "HadGEM2-ES-r4i1p1_rcp85", "INM-CM4-r1i1p1_rcp85", "IPSL-CM5A-LR-r1i1p1_rcp85", "IPSL-CM5A-LR-r2i1p1_rcp85", "IPSL-CM5A-LR-r3i1p1_rcp85", "IPSL-CM5A-LR-r4i1p1_rcp85", "IPSL-CM5A-MR-r1i1p1_rcp85", "IPSL-CM5B-LR-r1i1p1_rcp85", "MIROC5-r1i1p1_rcp85", "MIROC5-r2i1p1_rcp85", "MIROC5-r3i1p1_rcp85", "MIROC5-r4i1p1_rcp85", "MIROC5-r5i1p1_rcp85", "MIROC-ESM-r1i1p1_rcp85", "MIROC-ESM-CHEM-r1i1p1_rcp85", "MPI-ESM-LR-r1i1p1_rcp85", "MPI-ESM-LR-r2i1p1_rcp85", "MPI-ESM-LR-r3i1p1_rcp85", "MPI-ESM-MR-r1i1p1_rcp85", "MRI-CGCM3-r1i1p1_rcp85", "NorESM1-M-r1i1p1_rcp85", "NorESM1-ME-r1i1p1_rcp85", "MRI-ESM1-r1i1p1_rcp85") ensembles.labels <- c("ENSEMBLES", "ensembles") ensembles.modelnames <- c("METO-HC_HadRM3Q0", "METO-HC_HadRM3Q16", "METO-HC_HadRM3Q3", "ETHZ-CLM", "METNOHIRHAM_HadCM3Q0", "METNOHIRHAM_BCM", "ICTP-REGCM3", "MPI-M-REMO", "C4IRCA3", "CNRM-RM5.1", "CNRM-RM4.5", "DMI-HIRHAM5_ARPEGE", "DMI-HIRHAM5_ECHAM5", "DMI-HIRHAM5_BCM", "GKSS-CCLM4.8", "KNMI-RACMO2", "OURANOSMRCC4.2.1", "SMHIRCA_BCM", "SMHIRCA_ECHAM5-r3", "SMHIRCA_HadCM3Q3", "UCLM-PROMES", "VMGO-RRCM") ensembles.qmschoener.labels <- c("ENSEMBLES_QM_SCHOENER", "ensembles_qm_schoener") ensembles.qmschoener.modelnames <- c('METO-HC_HadRM3Q0_QM_SCHOENER', 'METO-HC_HadRM3Q16_QM_SCHOENER', 'METO-HC_HadRM3Q3_QM_SCHOENER', 'ETHZ-CLM_QM_SCHOENER', 'METNOHIRHAM_HadCM3Q0_QM_SCHOENER', 'METNOHIRHAM_BCM_QM_SCHOENER', 'ICTP-REGCM3_QM_SCHOENER', 'MPI-M-REMO_QM_SCHOENER', 'C4IRCA3_QM_SCHOENER', 'CNRM-RM5.1_QM_SCHOENER', 'CNRM-RM4.5_QM_SCHOENER', 'DMI-HIRHAM5_ARPEGE_QM_SCHOENER', 'DMI-HIRHAM5_ECHAM5_QM_SCHOENER', 'DMI-HIRHAM5_BCM_QM_SCHOENER', 'GKSS-CCLM4.8_QM_SCHOENER', 'KNMI-RACMO2_QM_SCHOENER', 'OURANOSMRCC4.2.1_QM_SCHOENER', 'SMHIRCA_BCM_QM_SCHOENER', 'SMHIRCA_ECHAM5-r3_QM_SCHOENER', 'SMHIRCA_HadCM3Q3_QM_SCHOENER', 'UCLM-PROMES_QM_SCHOENER', 'VMGO-RRCM_QM_SCHOENER', 'AIT-CCLM_QM_SCHOENER', 'WEGC-CCLM_QM_SCHOENER') dictionary.names <- names(model.input) if (length(unique(dictionary.names)) != length(model.input)){ msg1 <- "MODELNAMES IN DICTIONARY MUST BE UNIQUE! " msg2 <- "THINK ABOUT A CREATIVE MODELNAME ;)" stop(msg1, msg2) } model.input[modelnames[modelnames %in% dictionary.names]] unknown.modelnames <- NULL unknown.modelnames <- modelnames[! modelnames %in% dictionary.names] known.modelnames <- modelnames[ modelnames %in% dictionary.names] match.modelnames <- match(known.modelnames,modelnames) model.list <- model.input[modelnames[match.modelnames]] if (length(unknown.modelnames) > 0) { if (any(unknown.modelnames %in% cmip3.sresa2.labels)) { model.list <- c(model.list, model.input[cmip3.sresa2.modelnames]) unknown.modelnames <- unknown.modelnames[!unknown.modelnames %in% cmip3.sresa2.labels] } if (any(unknown.modelnames %in% cmip3.sresb1.labels)) { model.list <- c(model.list, model.input[cmip3.sresb1.modelnames]) unknown.modelnames <- unknown.modelnames[!unknown.modelnames %in% cmip3.sresb1.labels] } if (any(unknown.modelnames %in% cmip3.sresa1b.labels)) { model.list <- c(model.list, model.input[cmip3.sresa1b.modelnames]) unknown.modelnames <- unknown.modelnames[!unknown.modelnames %in% cmip3.sresa1b.labels] } if (any(unknown.modelnames %in% cmip5.rcp26.labels)) { model.list <- c(model.list, model.input[cmip5.rcp26.modelnames]) unknown.modelnames <- unknown.modelnames[!unknown.modelnames %in% cmip5.rcp26.labels] } if (any(unknown.modelnames %in% cmip5.rcp26.shortperiods.labels)) { model.list <- c(model.list, model.input[cmip5.rcp26.shortperiods.modelnames]) unknown.modelnames <- unknown.modelnames[!unknown.modelnames %in% cmip5.rcp26.shortperiods.labels] } if (any(unknown.modelnames %in% cmip5.rcp45.labels)) { model.list <- c(model.list, model.input[cmip5.rcp45.modelnames]) unknown.modelnames <- unknown.modelnames[!unknown.modelnames %in% cmip5.rcp45.labels] } if (any(unknown.modelnames %in% cmip5.rcp45.shortperiods.labels)) { model.list <- c(model.list, model.input[cmip5.rcp45.shortperiods.modelnames]) unknown.modelnames <- unknown.modelnames[!unknown.modelnames %in% cmip5.rcp45.shortperiods.labels] } if (any(unknown.modelnames %in% cmip5.rcp60.labels)) { model.list <- c(model.list, model.input[cmip5.rcp60.modelnames]) unknown.modelnames <- unknown.modelnames[!unknown.modelnames %in% cmip5.rcp60.labels] } if (any(unknown.modelnames %in% cmip5.rcp60.shortperiods.labels)) { model.list <- c(model.list, model.input[cmip5.rcp60.shortperiods.modelnames]) unknown.modelnames <- unknown.modelnames[!unknown.modelnames %in% cmip5.rcp60.shortperiods.labels] } if (any(unknown.modelnames %in% cmip5.rcp85.labels)) { model.list <- c(model.list, model.input[cmip5.rcp85.modelnames]) unknown.modelnames <- unknown.modelnames[!unknown.modelnames %in% cmip5.rcp85.labels] } if (any(unknown.modelnames %in% cmip5.rcp85.shortperiods.labels)) { model.list <- c(model.list, model.input[cmip5.rcp85.shortperiods.modelnames]) unknown.modelnames <- unknown.modelnames[!unknown.modelnames %in% cmip5.rcp85.shortperiods.labels] } if (any(unknown.modelnames %in% ensembles.labels)) { model.list <- c(model.list, model.input[ensembles.modelnames]) unknown.modelnames <- unknown.modelnames[!unknown.modelnames %in% ensembles.labels] } if (any(unknown.modelnames %in% ensembles.qmschoener.labels)) { model.list <- c(model.list, model.input[ensembles.qmschoener.modelnames]) unknown.modelnames <- unknown.modelnames[!unknown.modelnames %in% ensembles.qmschoener.labels] } } if (length(unknown.modelnames) > 0) { msg1 <- paste("MODEL(S) \"", paste(unknown.modelnames, collapse="\" \""), "\" UNKNOWN\n", sep="") msg2 <- "ADD THE MODEL TO DICTIONARY FILE, " msg3 <- "OR ADD AS A NEW ENSEMBLE INTO ReadFromModelDictionary." stop(msg1, msg2, msg3) } if (any(is.na(names(model.list)))) stop("THERE IS AT LEAST ONE MODEL CALLED \"NA\" IN THE MODEL.INPUT.") if (length(model.list) == 0) stop("NO MODELS HAVE BEEN SELECTED") return(model.list) } MakeModelDataFrame <- function(model.name, institute.name, rcm.name, global.model.name, gcm.run, is.reference.period, time.step, season = "none", is.time.series, subregion = "no", is.corrected = NULL, emission.scenario = "A1B", resolution, data, parameter.name) { if (is.null(data)) stop("NO AGGREGATED DATA SPECIFIED") if (is.null(parameter.name)) stop("PARAMETER NAME NOT SPECIFIED") if (is.null(is.corrected)) is.corrected <- "no" if (is.null(resolution) || !is.null(resolution) && resolution == "") resolution <- NA if (is.null(gcm.run) || !is.null(gcm.run) && gcm.run == "") gcm.run <- NA if (is.null(rcm.name) || !is.null(rcm.name) && rcm.name == "") rcm.name <- NA emission.scenario <- emission.scenario[order(emission.scenario)] subregion <- subregion[order(subregion)] season.order <- season[order(season)] WUX.df <- list(acronym = model.name, institute = institute.name, gcm = global.model.name, gcm.run = gcm.run, rcm = rcm.name, em.scn = emission.scenario, subreg = subregion, period = time.step, ref.per = is.reference.period, season = season.order, resolution = resolution, corrected = is.corrected) WUX.df <- expand.grid(WUX.df) data.df <- reshape::melt(data) if (length(data.df) != 3) { msg1 <- "OBVIOUSLY YOU HAVE CHANGED THE AGGREGATION DIMENSION, " msg2 <- "WATCH OUT WITH MERGING IN MakeModelDataFrame" stop(msg1, msg2) } names(data.df) <- c(parameter.name, "season", "subreg") WUX.df <- merge(WUX.df, data.df) if (is.time.series) { WUX.df[["year"]] <- factor(sapply(strsplit(as.character(WUX.df[["season"]]), " "), "[", 1)) WUX.df[["season"]] <- factor(sapply(strsplit(as.character(WUX.df[["season"]]), " "), "[", 2)) season.pos <- which(names(WUX.df) == "season") year.pos <- which(names(WUX.df) == "year") WUX.df <- data.frame(WUX.df[1:(season.pos - 1)], year = WUX.df[year.pos], WUX.df[season.pos:(length(names(WUX.df)) - 1)]) } return(WUX.df) } MergeParameterDataframes <- function(wux.df.list, parameter.names) { if (any(sapply(wux.df.list, is.null))){ msg1 <- "AT LEAST ONE DATA.FRAME FOR ONE PARAMETER IS MISSING. " msg2 <- "THIS REALLY SHOULD NOT HAPPPEN." stop(msg1, msg2) } n.of.pars <- length(parameter.names) par.length <- c(1:n.of.pars) for (ii in c(1:n.of.pars)) { if (length(wux.df.list[[ii]])== 0) par.length[ii] <- 0 else par.length[ii] <- length(wux.df.list[[ii]][[1]]) } sort.indices <- sort(par.length, decreasing = TRUE, index.return = TRUE) parameter.names <- parameter.names[sort.indices$ix] par.length <- par.length[sort.indices$ix] data <- wux.df.list[[parameter.names[1]]] ii <- 2 while (ii <= n.of.pars) { if (length(wux.df.list[[parameter.names[ii]]]) == 0){ data <- cbind(data, NA) names(data)[length(data)] <- parameter.names[ii] } else { data <- merge(data, wux.df.list[[parameter.names[ii]]], all.x = TRUE) } ii <- ii + 1 } return(data) } WuxDataDiff <- function(wux.df, parameters) { sortby <- c("acronym", "period", "season") wux.df <- wux.df[order(wux.df$acronym, wux.df$period, wux.df$season),] col.noparam <- which(! names(wux.df) %in% parameters) wux.diff.df <- wux.df[wux.df[["ref.per"]] == "no", col.noparam] for (param in parameters) { diff.column <- NULL perc.column <- NULL timesteps.ref <- unique(wux.df[wux.df[["ref.per"]] == "yes", ]$period) timesteps.scn <- unique(wux.df[wux.df[["ref.per"]] == "no" , ]$period) number.of.timesteps.ref <- 1 number.of.timesteps.scn <- length(timesteps.scn) stopifnot(number.of.timesteps.ref == 1) x <- number.of.timesteps.ref / number.of.timesteps.scn if(x == round(x)){ for (scn.period in timesteps.scn) { scn <- wux.df[wux.df[["ref.per"]] == "no" & wux.df[["period"]] == scn.period , c("acronym", "season", param)] ref <- wux.df[wux.df[["ref.per"]] == "yes", c("acronym", "season", param)] diff <- scn[[param]] - ref[[param]] perc <- (scn[[param]] / ref[[param]] - 1) * 100 diff.column <- c(diff.column, diff) perc.column <- c(perc.column, perc) } } else { stop("WuxDataDiff, SOMETHING WENT SERIOUSLY WRONG") } wux.diff.df <- cbind(wux.diff.df, diff.column) diff.cols <- which(names(wux.diff.df) == "diff.column") names(wux.diff.df)[diff.cols] <- paste("delta.", param, sep="") if (param == "precipitation_amount") { wux.diff.df <- cbind(wux.diff.df, perc.column) perc.cols <- which(names(wux.diff.df) == "perc.column") names(wux.diff.df)[perc.cols] <- paste("perc.delta.", param, sep="") } } return(wux.diff.df) }
nhl_conferences<- function(){ base_url <- "https://statsapi.web.nhl.com/api/v1/conferences" full_url <- paste0(base_url) res <- httr::RETRY("GET", full_url) check_status(res) resp <- res %>% httr::content(as = "text", encoding = "UTF-8") tryCatch( expr = { conferences_df <- jsonlite::fromJSON(resp)[["conferences"]] conferences_df <- conferences_df %>% janitor::clean_names() %>% dplyr::rename(conference_id = .data$id) %>% as.data.frame() }, error = function(e) { message(glue::glue("{Sys.time()}: Invalid arguments or no conferences data available!")) }, warning = function(w) { }, finally = { } ) return(conferences_df) }
`mantel` <- function (xdis, ydis, method = "pearson", permutations = 999, strata = NULL, na.rm = FALSE, parallel = getOption("mc.cores")) { EPS <- sqrt(.Machine$double.eps) xdis <- as.dist(xdis) ydis <- as.vector(as.dist(ydis)) if (na.rm) use <- "complete.obs" else use <- "all.obs" statistic <- cor(as.vector(xdis), ydis, method = method, use = use) variant <- match.arg(method, eval(formals(cor)$method)) variant <- switch(variant, pearson = "Pearson's product-moment correlation", kendall = "Kendall's rank correlation tau", spearman = "Spearman's rank correlation rho", variant) N <- attr(xdis, "Size") permat <- getPermuteMatrix(permutations, N, strata = strata) if (ncol(permat) != N) stop(gettextf("'permutations' have %d columns, but data have %d observations", ncol(permat), N)) permutations <- nrow(permat) if (permutations) { perm <- numeric(permutations) xmat <- as.matrix(xdis) asdist <- row(xmat) > col(xmat) ptest <- function(take, ...) { permvec <- (xmat[take, take])[asdist] drop(cor(permvec, ydis, method = method, use = use)) } if (is.null(parallel)) parallel <- 1 hasClus <- inherits(parallel, "cluster") if (hasClus || parallel > 1) { if(.Platform$OS.type == "unix" && !hasClus) { perm <- do.call(rbind, mclapply(1:permutations, function(i, ...) ptest(permat[i,],...), mc.cores = parallel)) } else { if (!hasClus) { parallel <- makeCluster(parallel) } perm <- parRapply(parallel, permat, ptest) if (!hasClus) stopCluster(parallel) } } else { perm <- sapply(1:permutations, function(i, ...) ptest(permat[i,], ...)) } signif <- (sum(perm >= statistic - EPS) + 1)/(permutations + 1) } else { signif <- NA perm <- NULL } res <- list(call = match.call(), method = variant, statistic = statistic, signif = signif, perm = perm, permutations = permutations, control = attr(permat, "control")) class(res) <- "mantel" res }
test_that("LS.kalman works", { lsk <- LS.kalman(malleco, start(malleco)) expect_equal(unique(lsk$delta), 1542564) })
xformer.ckt <- function(x,dig=2){ n<- x$N[2]/x$N[1] Z2.r<-x$Zo.r+x$Zl.r Z1.r<-Z2.r/n^2 Zi.r<-x$Zs.r+Z1.r I1.p <- div.polar(x$Vs.p,polar(Zi.r)) I2.p <- mult.polar(I1.p,c(1/n,0)) V1.p <- mult.polar(I1.p,polar(Z1.r)) V2.p <- mult.polar(V1.p,c(n,0)) Vl.p<- mult.polar(I2.p,x$Zl) Il.p<- I2.p I1.conj <- c(I1.p[1],-I1.p[2]) Il.conj <- c(Il.p[1],-Il.p[2]) Ss.p <- mult.polar(x$Vs.p,I1.conj); Ss.r <- recta(Ss.p) Sx.p <- mult.polar(V1.p,I1.conj); Sx.r <- recta(Sx.p) Sl.p <- mult.polar(Vl.p,Il.conj); Sl.r <- recta(Sl.p) S1.p <- mult.polar(V1.p,I1.conj); S1.r <- recta(S1.p) ys <- list(Vs.p=x$Vs.p, Is.p=I1.p, Ss.p=Ss.p, Ss.r=Ss.r) yx <- list(n=n,Z2.r=Z2.r,Z1.r=Z1.r,I1.p=I1.p,V1.p=V1.p,I2.p=I2.p, V2.p=V2.p,S1.p=S1.p,S1.r=S1.r) yl <- list(Vl.p=Vl.p, Il.p=Il.p, Sl.p=Sl.p,Sl.r=Sl.r) lapply(ys, function(ys) ys <- round(ys,dig)) lapply(yx, function(yx) yx <- round(yx,dig)) lapply(yl, function(yl) yl <- round(yl,dig)) prntys <- paste(names(ys),"=",ys,sep="",collapse=", ") prntyx <- paste(names(yx),"=",yx,sep="",collapse=", ") prntyl <- paste(names(yl),"=",yl,sep="",collapse=", ") prnt <- c(paste("Source: ",prntys), paste("Transformer: ",prntyx), paste("Load: ",prntyl) ) cat(prnt, sep="\n") yout <- list(ys=ys,yx=yx,yl=yl,prnt=prnt) return(yout) }
.newgroup <- function(name,values,index) { g <- new('.group',name=name) if (!is.null(values)) { if ((length(values) != length(index)) || !is.list(index)) stop('group values and index list are not match') g@values <- data.frame(indexID=1:length(values),values=values) g@indices <- index } else if (!is.null(index) && is.list(index) && !is.null(names(index))) { g@values <- data.frame(indexID=1:length(index),values=names(index)) g@indices <- index } g } .updateGroup <- function(x,tbl,sp=NULL) { if (is.vector(tbl)) { id <- as.numeric(tbl[1]) g1 <- tbl[2] g2 <- tbl[3] } else { id <- as.numeric(tbl[,1]) g1 <- tbl[,2] g2 <- tbl[,3] } gr <- .getGroupNames(x) for (g in gr) { for (i in seq_along(id)) { if (g1[i] %in% names(x@groups[[g]]@indices)) { if (id[i] %in% .getGroupIndex(x,g1[i])) { x@groups[[g]]@indices[[g1[i]]] <- x@groups[[g]]@indices[[g1[i]]][-which(x@groups[[g]]@indices[[g1[i]]] == id[i])] x@groups[[g]]@indices[[g2[i]]] <- c(x@groups[[g]]@indices[[g2[i]]] , id[i]) } } } } x } .getSpeciesNames <- function(d,n=NULL) { if (is.null(n)) [email protected] else [email protected][[email protected] %in% n] } .getGroupLevels <- function(d,g=NULL) { if (!is.null(g)) { g <- g[1] if (!g %in% .getGroupNames(d)) stop(paste('group',g,'does not exist!')) as.character(d@groups[[g]]@values[,2]) } } .getSpeciesDF <- function(d,sp,id) { if (missing(sp)) sp <- [email protected][1] o <- list() for (s in sp) { o[[s]] <- data.frame(rID=id,value=NA) if (d@species[[s]]@type == 'Presence-Absence') { o[[s]][id %in% d@species[[s]]@presence,2] <- 1 o[[s]][id %in% d@species[[s]]@absence,2] <- 0 } else if (d@species[[s]]@type == 'Presence-Only') { o[[s]][id %in% d@species[[s]]@presence,2] <- 1 } else if (d@species[[s]]@type == 'Abundance') { o[[s]][id %in% d@species[[s]]@abundance$rID,2] <- sapply(id[id %in% d@species[[s]]@abundance$rID],function(x) {d@species[[s]]@abundance[d@species[[s]]@abundance$rID == x,2]}) } else if (d@species[[s]]@type == 'Absence-Only!') { o[[s]][id %in% d@species[[s]]@absence,2] <- 0 } else if (d@species[[s]]@type == 'Abundance-constant!') { o[[s]][id %in% d@species[[s]]@abundance$rID,2] <- d@species[[s]]@abundance[1,2] } } o } .getSpeciesIndex <- function(d,sp=NULL) { id <- c() sp <- .getSpeciesNames(d,sp) for (i in seq_along(sp)) { id <- c(id,d@species[[sp[i]]]@presence,d@species[[sp[i]]]@absence,d@species[[sp[i]]]@abundance[,1],d@species[[sp[i]]]@background,d@species[[sp[i]]]@Multinomial[,1]) } sort(unique(id)) } .getGroupIndex=function(d,g=NULL) { if (!is.null(g)) { id <- c() for (gg in g) { gl <- unlist(lapply(unlist(strsplit(gg,':')),.trim)) if (length(gl) > 1) { if (!gl[1] %in% .getGroupNames(d)) stop(paste('group',gl[1],'does not exist!')) if (!gl[2] %in% .getGroupNames(d,TRUE)) stop(paste('group level',gl[2],'does not exist!')) id <- c(id,d@groups[[gl[1]]]@indices[[gl[2]]]) } else { if (!gl %in% c(.getGroupNames(d),.getGroupNames(d,TRUE))) stop(paste(gl,' is neither a group nor a group level!')) if (gl %in% .getGroupNames(d)) { for (gv in d@groups[[gl]]@values[,2]) id <- c(id,d@groups[[gl]]@indices[[gv]]) } else { for (gn in .getGroupNames(d)) { if (gl %in% d@groups[[gn]]@values[,2]) id <- c(id,d@groups[[gn]]@indices[[gl]]) } } } } unique(id) } } .getTimeIndex <- function(d,t=NULL) { if (!is.null(t)) { id <- c() for (gg in t) { gl <- unlist(lapply(unlist(strsplit(gg,':')),.trim)) if (length(gl) > 1) { if (!gl[1] %in% .getGroupNames(d)) stop(paste('group',gl[1],'does not exist!')) if (!gl[2] %in% .getGroupNames(d,TRUE)) stop(paste('group level',gl[2],'does not exist!')) id <- c(id,d@groups[[gl[1]]]@indices[[gl[2]]]) } else { if (!gl %in% c(.getGroupNames(d),.getGroupNames(d,TRUE))) stop(paste(gl,' is neither a group nor a group level!')) if (gl %in% .getGroupNames(d)) { for (gv in d@groups[[gl]]@values[,2]) id <- c(id,d@groups[[gl]]@indices[[gv]]) } else { for (gn in .getGroupNames(d)) { if (gl %in% d@groups[[gn]]@values[,2]) id <- c(id,d@groups[[gn]]@indices[[gl]]) } } } } unique(id) } } .getIndex <- function(d,sp=NULL,groups=NULL,time=NULL) { id1 <- id2 <- NULL if (is.null(sp)) id1 <- d@features$rID else { id1 <- .getSpeciesIndex(d,sp) } if (!is.null(groups)) { id2 <- .getGroupIndex(d,groups) } if (is.null(id2)) id1 else id1[id1 %in% id2] } .getGroupNames <- function(d,levels=FALSE) { if (levels) { if (!is.null(names(d@groups))) { nn <- c() for (n in names(d@groups)) nn <- c(nn,as.character(d@groups[[n]]@values[,2])) nn } else NULL } else names(d@groups) } .newGroup <- function(d,name,values=NULL,index=NULL) { d@groups[[name]] <- .newgroup(name,values,index) d } if (!isGeneric('.addLog<-')) { setGeneric('.addLog<-', function(d,value) standardGeneric('.addLog<-')) } setReplaceMethod('.addLog','sdmdata', function(d,value) { d@errorLog <- c(d@errorLog,value) d } ) .isBinomial <- function(x) { if (is.numeric(x)) { u <- unique(x) if (length(u) > 2) return(FALSE) else if (length(u) == 2) return(all(sort(u) == c(0,1)) | all(sort(u) == c(-1,1))) else return(u == 1) } else if (is.logical(x)) return(TRUE) else { x <- as.character(x) u <- unique(x) if (length(u) > 2) return(FALSE) else if (length(u) == 2) return(all(sort(u) == c('0','1')) | all(sort(u) == c('-1','1'))) else return(u == '1') } } .speciesType <- function(x) { u <- unique(x) if (is.numeric(x)) { if (length(u) > 2) return('Abundance') else if (length(u) == 2) { if ((all(sort(u) == c(0,1)) || all(sort(u) == c(-1,1)))) return('Presence-Absence') else return('Abundance') } else { if (u == 1) return('Presence-Only') else if (u == 0 || u == -1) return('Absence-Only!') else return('Abundance_constant!') } } else if (is.logical(x)) { if (length(u) == 2) return('Presence-Absence') else { if (u) return('Presence-Only') else return('Absence-Only!') } } else { x <- as.character(x) u <- unique(x) if (length(u) > 2) return('Presence-Only') else if (length(u) == 2) { if (all(sort(u) == c('0','1')) || all(sort(u) == c('-1','1'))) return('Presence-Absence') else return('Presence-Only') } else return('Presence-Only') } } .varExist <-function(data,vars) { all(vars %in% names(data)) } .getSpecies <- function(data,nsp,bg=FALSE,id.train=NULL,id.test=NULL) { species <- list() for (n in nsp) { if (!is.null(id.test)) { typ1 <- .speciesType(data[id.train,n]) typ2 <- .speciesType(data[id.test,n]) if (typ1 == typ2) typ <- typ1 else stop('train and test data have different type (for example, one maybe presence-only while the other is presence-absence)!') } else typ <- .speciesType(data[,n]) if (typ == 'Presence-Absence') { species[[n]] <- new('.species.data') species[[n]]@name <- n w <- as.numeric(data[,n]) species[[n]]@presence <- data$rID[which(w == 1)] if (bg) { species[[n]]@background <- data$rID[which(w %in% c(0,-1))] species[[n]]@type <- 'Presence-Background' } else { species[[n]]@absence <- data$rID[which(w %in% c(0,-1))] species[[n]]@type <- typ } } else if (typ == 'Presence-Only') { if (is.numeric(data[,n]) || is.logical(data[,n])) { species[[n]] <- new('.species.data') species[[n]]@name <- n species[[n]]@presence <- data$rID species[[n]]@type <- typ } else { w <- as.character(data[,n]) u <- unique(w) if ('0' %in% u) { u <- u[u != '0'] bg <- data$rID[which(w == '0')] } else bg <- NULL for (uu in u) { species[[uu]] <- new('.species.data') species[[uu]]@name <- uu species[[uu]]@presence <- data$rID[which(w == uu)] species[[uu]]@type <- typ } if (!is.null(bg)) { for (uu in u) { species[[uu]]@background <- bg species[[uu]]@type <- 'Presence-Background' } } } } else if (typ == 'Abundance') { species[[n]] <- new('.species.data') species[[n]]@name <- n species[[n]]@abundance <- data.frame(rID=data$rID,abundance=data[,n]) species[[n]]@type <- typ } else if (typ == 'Abundance_constant!') { species[[n]] <- new('.species.data') species[[n]]@name <- n species[[n]]@abundance <- data.frame(rID=data$rID,abundance=data[,n]) species[[n]]@type <- typ warning(paste('for species',n,', the variance in abundance data is ZERO!')) } else if (typ == 'Multinomial') { species[[n]] <- new('.species.data') species[[n]]@name <- n species[[n]]@multinomial <- data.frame(rID=data$rID,name=data[,n]) species[[n]]@type <- typ } else if (typ == 'Absence-Only!') { species[[n]] <- new('.species.data') species[[n]]@name <- n if (bg) { species[[n]]@background <- data$rID species[[n]]@type <- 'Background' } else { species[[n]]@absence <- data$rID species[[n]]@type <- typ } warning(paste('for species',n,', there is no presence record (all values are 0 or absence)!')) } } species } .dataClean <- function(x,nsp,ANY=TRUE) { rm.na <-0; rm.duplicate <- 0 w <- nrow(x) x <- unique(x) if (nrow(x) < w) rm.duplicate <- w - nrow(x) w <- nrow(x) if (!missing(nsp)) { if (length(nsp) > 1) ww <- which(apply(x[,which(colnames(x) %in% nsp)],1,function(x){any(is.na(x))})) else ww <- which(is.na(x[,which(colnames(x) %in% nsp)])) if (length(ww) > 0) { x <- x[-ww,] rm.na <- w - nrow(x) } } else { if (ANY) ww <- which(apply(x,1,function(x){any(is.na(x))})) else ww <- which(apply(x,1,function(x){all(is.na(x))})) if (length(ww) > 0) { x <- x[-ww,] rm.na <- w - nrow(x) } } list(x,c(na=rm.na,duplicate=rm.duplicate)) } .colNumber <- function(d,n) { unlist(lapply(n,function(x) which(colnames(d) == x))) } .char2time <- function(d,...) { if (length(list(...)) > 0) { tst <- try(as.POSIXct(d[1],...),silent=TRUE) if (!inherits(tst, "try-error") && !is.na(tst)) return(as.POSIXct(d,...)) else { tst <- try(as.POSIXct(d[1]),silent=TRUE) if (!inherits(tst, "try-error") && !is.na(tst)) return(as.POSIXct(d)) else { tst <- try(as.Date(d[1],...),silent=TRUE) if (!inherits(tst, "try-error") && !is.na(tst)) return(as.Date(d,...)) else { tst <- try(as.Date(d[1]),silent=TRUE) if (!inherits(tst, "try-error") && !is.na(tst)) return(as.Date(d)) else return(NA) } } } } else { tst <- try(as.POSIXct(d[1]),silent=TRUE) if (!inherits(tst, "try-error") && !is.na(tst)) return(as.POSIXct(d)) else { tst <- try(as.Date(d[1]),silent=TRUE) if (!inherits(tst, "try-error") && !is.na(tst)) return(as.Date(d)) else return(NA) } } } .where <- function(f, x) { vapply(x, f, logical(1)) } .int.to.numeric <- function(data) { w <- which(unlist(lapply(data,is.integer))) if (length(w) > 0) { for (i in w) data[,i] <- as.numeric(data[,i]) } data } .which.is.coords <- function(n) { nxy <- NULL w <- tolower(n) %in% c('x','y','coords.x1','coords.x2','coords.x','coords.y','lon','long','longitude','lat','latitude') if (any(w)) { nxy <- n[w] if (length(nxy) == 2) { nxy <- c(nxy[tolower(nxy) %in% c('x','coords.x1','coords.x','lon','long','longitude')],nxy[tolower(nxy) %in% c('y','coords.x2','coords.y','lat','latitude')]) } else nxy <- NULL } nxy } .normalize <- function(x,except=NULL) { w <- !.where(is.factor,x) if (!is.null(except)) { w[except] <- FALSE } if (any(w)) { xx <- x for (i in seq_along(w)) { if (w[i]) { xx[,i] <- xx[,i] - mean(xx[,i],na.rm=TRUE) if (sd(x[,i],na.rm=TRUE) != 0) xx[,i] <- xx[,i] / sd(x[,i],na.rm=TRUE) } } } xx } .speciesDetect <- function(data) { nsp <- nxy <- nFact <- nf <- nt <- NULL w <- which(unlist(lapply(data,.isBinomial))) if (length(w) == 0) { stop ('No species variable is detected, spcify the species variable in the formula or use an appropriate data structure...') } else { varNames <- colnames(data) nsp <- varNames[w] if (length(varNames) > length(nsp)) { nf <- varNames[-w] w <- which(unlist(lapply(data[,nf],function(x) class(x) %in% c("POSIXct","POSIXt","Date","yearmon","yearqtr")))) if (length(w) > 0) { nt <- nf[w] nf <- .excludeVector(nf,nt) } w <- which(unlist(lapply(data[,nf],function(x) class(x) %in% c('character','factor')))) if (length(w) > 0) { nFact <- nf[w] nf <- .excludeVector(nf,nFact) } } w <- tolower(varNames) %in% c('lon','long','longitude') if (any(w) && length(which(w) == 1)) { nx <- varNames[w] w <- tolower(varNames) %in% c('lat','latitude') if (any(w) && length(which(w) == 1)) nxy <- c(nx,varNames[w]) } } list(nsp=nsp,nf=nf,nFact=nFact,nxy=nxy,nt=nt) } .createSdmdata <- function(train,formula=NULL,test,bg=NULL,crs=NULL,author=NULL,website=NULL,citation=NULL,help=NULL,description=NULL,date=NULL,license=NULL) { if (missing(test)) test <- NULL nFact <- nf <- nxy <- nsp <- ng <- nt <- ni <- NULL if (is.null(formula)) { nnFact <- nnf <- nnxy <- nnt <- NULL w <- .speciesDetect(train) if (!is.null(w$nFact)) { nFact <- w$nFact nnFact <- paste(paste('f(',w$nFact,')',sep=''),collapse='+') } if (!is.null(w$nf)) { nf <- w$nf nnf <- paste(w$nf,collapse='+') } if (!is.null(w$nxy)) { nxy <- w$nxy nnxy <- paste(paste('coords(',paste(w$nxy,collapse='+'),')',sep=''),collapse='+') } if (!is.null(w$nt)) { nt <- w$nt nnt <- paste(paste('time(',w$nt,')',sep=''),collapse='+') } formula <- as.formula(paste(paste(w$nsp,collapse="+"),'~',paste(c(nnf,nnFact,nnxy,nnt),collapse='+')),env = parent.frame()) } exf <- .exFormula(formula,train) nall <- c(exf@vars@names,exf@species) if (!.varExist(train,nall)) stop('one or more specified variables in the formula do not exist in the train data!') nsp <- exf@species d <- new('sdmdata') d@sdmFormula <- exf w <- .dataClean(train) if (any(w[[2]] > 0)) { train <- w[[1]] ww <- c() if (w[[2]][1] > 0) .addLog(d) <- paste(w[[2]][1],'records with NA from the train data are removed') if (w[[2]][2] > 0) .addLog(d) <- paste(w[[2]][2],'duplicarted records from the train data are removed') } train$rID <- 1:nrow(train) train <- .int.to.numeric(train) if (!is.null(bg)) { w <- which(nsp %in% colnames(bg)) if (length(w) > 0) { for (nnsp in nsp[w]) bg[,nnsp] <- 0 } w <- which(!nsp %in% colnames(bg)) if (length(w) > 0) { nnsp <- nsp[w] nnsp <- matrix(0,nrow=nrow(bg),ncol=length(nnsp)) colnames(nnsp) <- nsp[w] bg <- cbind(bg,nnsp) } bg <- as.data.frame(bg) if (!.varExist(data.frame(bg),nall)) stop('one or more predictor variables do not exist in the background data!') w <- .dataClean(bg) if (any(w[[2]] > 0)) { bg <- w[[1]] ww <- c() if (w[[2]][1] > 0) .addLog(d) <- paste(w[[2]][1],'records with NA from the background data are removed') if (w[[2]][2] > 0) .addLog(d) <- paste(w[[2]][2],'duplicarted records from the background data are removed') } for (n in nsp) { if (is.factor(train[,n]) || is.character(train[,n])) { train[,n] <- as.character(train[,n]) bg[,n] <- as.character(bg[,n]) } } bg$rID <- (nrow(train)+1):(nrow(bg)+nrow(train)) train <- rbind(train[,c('rID',nall)],bg[,c('rID',nall)]) bg <- bg$rID } if (!is.null(test)) { if (!.varExist(test,nall)) stop('one or more specified variables in the formula does not exist in the test data!') w <- .dataClean(test) if (any(w[[2]] > 0)) { test <- w[[1]] ww <- c() if (w[[2]][1] > 0) .addLog(d) <- paste(w[[2]][1],'records with NA from the test data are removed') if (w[[2]][2] > 0) .addLog(d) <- paste(w[[2]][2],'duplicarted records from the test data are removed') } test$rID <- (nrow(train)+1):(nrow(test)+nrow(train)) if (!is.null(bg)) { w <- unlist(lapply(nsp,function(x) .speciesType(test[,x]))) w <- unique(w) if (length(w) > 1) stop(paste('Independent test data has different types of records including',paste(w,collapse=', '))) else if (w == "Presence-Only") { d <- .newGroup(d,'training',index=list(train=train$rID,test=c(test$rID,bg))) cat('WARNING:\n Independent test dataset contains only presence records, so, background data (pseuso-absences) are used as Absence in the dataset!\n') } else d <- .newGroup(d,'training',index=list(train=train$rID,test=test$rID)) } else d <- .newGroup(d,'training',index=list(train=train$rID,test=test$rID)) test <- .int.to.numeric(test) } else { d <- .newGroup(d,'training',index=list(train=train$rID)) } if (is.null(nf) & is.null(nFact)) { nf <- exf@vars@names w <- .where(is.factor,train[,nf]) | .where(is.character,train[,nf]) if (any(w)) nFact <- nf[w] if (!is.null([email protected])) { w <- unlist(lapply([email protected],class)) if ('.factor' %in% w) { ww <- [email protected][w == '.factor'] if (length(ww) > 0) { for (i in seq_along(ww)) { w <- as.character(ww[[i]]@x) w <- .excludeVector(w,'+') nFact <- unique(c(nFact,w)) } } } } nf <- .excludeVector(nf,nFact) if (!is.null([email protected])) { w <- unlist(lapply([email protected],class)) if (".coord.vars" %in% w) nxy <- [email protected][[which(w == ".coord.vars")]]@xy if (".grouping" %in% w) { ng <- c() ww <- [email protected][which(w == ".grouping")] for (i in seq_along(ww)) ng <- c(ng,ww[[i]]@group.var) nf <- .excludeVector(nf,ng) nFact <- .excludeVector(nFact,ng) } if ('.time' %in% w) { nt <- c() ww <- [email protected][which(w == ".time")] for (i in seq_along(ww)) nt <- c(nt,as.character(ww[[i]]@terms[[1]])) nf <- .excludeVector(nf,nt) nFact <- .excludeVector(nFact,nt) } if ('.Info' %in% w) { ni <- c() ww <- [email protected][which(w == ".Info")] for (i in seq_along(ww)) ni <- c(ni,ww[[i]]@names) nf <- .excludeVector(nf,ni) nFact <- .excludeVector(nFact,ni) } } else { w <- !colnames(train) %in% c(nall,'rID') if (any(w)) { nxy <- .which.is.coords(colnames(train)[w]) if (!is.null(test) && !.varExist(test,nxy)) nxy <- NULL ww <- unlist(lapply(which(w),function(x) class(train[,x]))) %in% c("POSIXct","POSIXt","Date","yearmon","yearqtr") if (any(ww)) { nt <- colnames(train)[w[which(ww)]] nf <- .excludeVector(nf,nt) nFact <- .excludeVector(nFact,nt) } } } nf <- .excludeVector(nf,nxy) nFact <- .excludeVector(nFact,nxy) } nall <- c(nsp,nf,nFact,nxy,ng,ni,nt,'rID') if (!is.null(test)) { train <- rbind(train[,nall],test[,nall]) rm(test) species <- .getSpecies(train,nsp,bg=!is.null(bg),id.train = d@groups$training@indices$train,id.test = d@groups$training@indices$test) } else { train <- train[,nall] species <- .getSpecies(train,nsp,bg=!is.null(bg)) } if (!is.null(ng)) { for (n in ng) { ww <- as.character(train[,n]) u <- unique(ww) if (length(u) == 1) warning(paste('the grouping variable',n,'is ignored; it is constant!')) else { w <- list() for (uu in u) { w[[uu]] <- train$rID[which(ww == uu)] } d <- .newGroup(d,n,index=w) } } } if (!is.null(c(nxy,ni,nt,website,help,description,date,license)) || !is.null(c(citation,author))) { d@info <- new('.info') if (!is.null(nxy)) { d@info@coords <- as.matrix(train[,c('rID',nxy)]) if (!is.null(crs) && inherits(crs,'CRS')) d@info@crs <- crs } if (!is.null(ni)) d@info@info <- train[,c('rID',ni)] if (!is.null(nt)) { dt <- data.frame(rID=train$rID) for (n in nt) { if ((class(train[,n]) %in% c("POSIXct","POSIXt","Date","yearmon","yearqtr"))[1]) { dt <- cbind(dt,train[,n]) } else { w <- unlist(lapply([email protected],class)) w <- [email protected][which(w == ".time")] w <- w[[which(unlist(lapply(w,function(x) x@terms[[1]] == n)))]] if (length(w@terms) > 1 && is.null(names(w@terms)) && length(names(w@terms)) == length(w@terms)) { w <- do.call(.char2time,c(list(d=train[,n]),w@terms[2:length(w@terms)])) if ((class(w) %in% c("POSIXct","POSIXt","Date","yearmon","yearqtr"))[1]) dt[,n] <- w else warning(paste('a time-based format is not detected for variable',n,", so it is IGNORED; it must have a detectable character format, or being one of time-based classes including: 'POSIXct', 'POSIXt', 'Date', 'yearmon','yearqtr'")) } else { w <- .char2time(train[,n]) if ((class(w) %in% c("POSIXct","POSIXt","Date","yearmon","yearqtr"))[1]) dt[,n] <- w else warning(paste('a time-based format is not detected for variable',n,", so it is IGNORED; it must have a detectable character format, or being one of time-based classes including: 'POSIXct', 'POSIXt', 'Date', 'yearmon','yearqtr'")) } } } if (ncol(train) > 1) d@info@time <- dt } if (!is.null(c(website,help,description,date,license)) || !is.null(c(citation,author))) { d@info@metadata <- .newMetadata(authors=author,web=website,cit=citation,desc=description,date=date,license=license,help=help) } } [email protected] <- c(nf,nFact) if (!is.null(nFact)) d@factors <- nFact d@species <- species [email protected] <- names(species) for (n in nFact) train[,n] <- factor(train[,n]) if (!is.null([email protected])) d@features <- train[,c('rID',nf,nFact)] d } .Extract <- function(x,cells,factors) { n <- names(x) if (length(factors) == 1) { x2 <- values(x[[factors]])[cells] } else x2 <- values(x[[factors]])[cells,] if (length(n) > length(factors)) { x1 <- x[[-factors]][cells] d <- data.frame(x1,x2) colnames(d) <- c(n[-factors],n[factors]) } else { d <- data.frame(x2) colnames(d) <- n[factors] } for (i in 1:length(factors)) d[,i] <- factor(d[,i]) return(d ) } .pseudo_gRandom <- function(preds,n=1000,p=NULL) { s <- sampleRandom(preds,n,cells=TRUE,xy=TRUE) if (!is.null(p) && ncol(p) == 2) { p.cells <- cellFromXY(preds,p) if (length(p.cells) > 0) { s <- s[which(!s[,'cell'] %in% p.cells),] } } s[,-1] } .pseudo_eRandom <- function(preds,n=1000,p=NULL) { } .pseudo_gDist <- function(preds,n=1000,p=NULL) { } .pseudo_eDist <- function(preds,n=1000,p=NULL) { } .pseudo <- function(preds,n=1000,method='gRandom',p=NULL) { if (method == 'gRandom') .pseudo_gRandom(preds,n=n,p=p) else if (method == 'eRandom') .pseudo_eRandom(preds,n=n,p=p) else if (method == 'gDist') .pseudo_gDist(preds,n=n,p=p) else if (method == 'eDist') .pseudo_eDist(preds,n=n,p=p) } if (!isGeneric("sdmData")) { setGeneric("sdmData", function(formula, train, test, predictors,bg, filename, crs,...) standardGeneric("sdmData")) } setMethod('sdmData', signature(train='data.frame',predictors='missing'), function(formula,train,test=NULL,predictors,bg=NULL,filename=NULL,crs=NULL,...) { if(missing(test)) test <- NULL if(missing(filename)) filename <- NULL if(missing(crs)) crs <- NULL if(missing(formula)) formula <- NULL if(missing(bg)) bg <- NULL if (!.sdmOptions$getOption('sdmLoaded')) .addMethods() dot <- list(...) n <- tolower(names(dot)) for (i in seq_along(n)) { if (any(!is.na(pmatch(c("aut"),n[i])))) n[i] <- 'author' else if (any(!is.na(pmatch(c("web"),n[i])))) n[i] <- 'website' else if (any(!is.na(pmatch(c("cit"),n[i])))) n[i] <- 'citation' else if (any(!is.na(pmatch(c("hel"),n[i])))) n[i] <- 'help' else if (any(!is.na(pmatch(c("des"),n[i])))) n[i] <- 'description' else if (any(!is.na(pmatch(c("dat"),n[i])))) n[i] <- 'date' else if (any(!is.na(pmatch(c("lic"),n[i])))) n[i] <- 'license' } names(dot) <- n author <- dot[['author']] website <- dot[['website']] citation <- dot[['citation']] help <- dot[['help']] description <- dot[['description']] date <- dot[['date']] license <- dot[['license']] .createSdmdata(train = train, formula = formula, test = test,bg=bg,crs = crs,author=author,website=website,citation=citation,help=help,description=description,date=date,license=license) } ) setMethod('sdmData', signature(formula='data.frame',train='formula',predictors='missing'), function(formula,train,test=NULL,predictors,bg=NULL,filename=NULL,crs=NULL,...) { if(missing(test)) test <- NULL if(missing(filename)) filename <- NULL if(missing(crs)) crs <- NULL if(missing(bg)) bg <- NULL sdmData(formula=train, train=formula,test=test,bg=bg,filename=filename,crs=crs,...) } ) setMethod('sdmData', signature(formula='data.frame',train='missing',predictors='missing'), function(formula,train,test=NULL,predictors,bg=NULL,filename=NULL,crs=NULL,...) { if(missing(test)) test <- NULL if(missing(filename)) filename <- NULL if(missing(crs)) crs <- NULL if(missing(bg)) bg <- NULL sdmData(train=formula,test=test,bg=bg,filename=filename,crs=crs,...) } ) setMethod('sdmData', signature(train='SpatialPoints',predictors='missing'), function(formula,train,test=NULL,predictors,bg=NULL,filename=NULL,crs=NULL,...) { if(missing(test)) test <- NULL if(missing(filename)) filename <- NULL if(missing(crs)) crs <- NULL if(missing(bg)) bg <- NULL if (!.sdmOptions$getOption('sdmLoaded')) .addMethods() nxy <- coordnames(train) if (!is.null(test)) { if (class(train) == class(test)) { nxyt <- coordnames(test) if (as.character(class(test) == 'SpatialPoints')) test <- data.frame(SPECIES=rep(1,length(test)),as(test,'data.frame')) else test <- as(test,'data.frame') if (all(nxy != nxyt)) { colnames(test)[unlist(lapply(nxyt,function(x) which(colnames(test) ==x)))] <- nxy } } } if (!is.na(proj4string(train))) crs <- CRS(proj4string(train)) if (as.character(class(train) == 'SpatialPoints')) train <- data.frame(SPECIES=rep(1,length(train)),as(train,'data.frame')) else train <- as(train,'data.frame') if (!missing(formula)) { if (!all(nxy %in% all.vars(formula))) { if ('.' %in% all.vars(formula)) { ww <- .exFormula(formula,train) nw <- .excludeVector(colnames(train),c(ww@species,nxy)) if (length(nw) > 0) { w <- as.character(.exFormula(formula,train,FALSE)@species) if (length(w) == 0) formula[[2]] <- terms.formula(formula,data=train[,nw])[[2]] else { formula[[3]] <- terms.formula(formula,data=train[,nw])[[3]] if (colnames(train)[1] == 'SPECIES') { colnames(train)[1] <- w[1] if (!is.null(test) && colnames(test)[1] == 'SPECIES') colnames(test)[1] <- w[1] } } } } formula <- update(formula,as.formula(paste('~ . + coods(',paste(nxy,collapse='+'),')',sep=''))) } } else formula <- as.formula(paste('~ . + coods(',paste(nxy,collapse='+'),')',sep='')) dot <- list(...) n <- tolower(names(dot)) for (i in seq_along(n)) { if (any(!is.na(pmatch(c("aut"),n[i])))) n[i] <- 'author' else if (any(!is.na(pmatch(c("web"),n[i])))) n[i] <- 'website' else if (any(!is.na(pmatch(c("cit"),n[i])))) n[i] <- 'citation' else if (any(!is.na(pmatch(c("hel"),n[i])))) n[i] <- 'help' else if (any(!is.na(pmatch(c("des"),n[i])))) n[i] <- 'description' else if (any(!is.na(pmatch(c("dat"),n[i])))) n[i] <- 'date' else if (any(!is.na(pmatch(c("lic"),n[i])))) n[i] <- 'license' } names(dot) <- n author <- dot[['author']] website <- dot[['website']] citation <- dot[['citation']] help <- dot[['help']] description <- dot[['description']] date <- dot[['date']] license <- dot[['license']] .createSdmdata(train = train, formula = formula, test = test,bg=bg,crs = crs,author=author,website=website,citation=citation,help=help,description=description,date=date,license=license) } ) setMethod('sdmData', signature(train='SpatialPoints',predictors='Raster'), function(formula,train,test=NULL,predictors,bg=NULL,filename=NULL,crs=NULL,...) { if(missing(test)) test <- NULL if(missing(filename)) filename <- NULL if(missing(crs)) crs <- NULL if(missing(bg)) bg <- NULL if (!.sdmOptions$getOption('sdmLoaded')) .addMethods() testc <- as.character(class(test)) trainc <- as.character(class(train)) trainSP <-NULL errLog <- list() nxy <- coordnames(train)[1:2] wF <- is.factor(predictors) if (!is.null(test)) { if (inherits(test,'SpatialPoints')) { nxyt <- coordnames(test) if (testc == 'SpatialPointsDataFrame') test <- as(test,'data.frame') else test <- data.frame(coordinates(test)) if (all(nxy != nxyt)) { colnames(test)[unlist(lapply(nxyt,function(x) which(colnames(test) ==x)))] <- nxy } } else if (!is.data.frame(test)) stop('test data should be a data.frame or in the same class as the train data!') if (nxy[1] %in% colnames(test) & nxy[2] %in% colnames(test)) { cells <- cellFromXY(predictors,test[,nxy]) cNA <- is.na(cells) if (any(cNA)) { if (all(cNA)) stop('Test dataset has no overlap with the predictors...!') wNA <- which(cNA) test <- test[-wNA,] cells <- cells[-wNA] errLog <- c(errLog,paste(length(wNA),'records were removed from the test dataset because of no overlap with the predictors.')) rm(wNA) } rm(cNA) if (!any(wF)) test.p <- data.frame(predictors[cells]) else test.p <- .Extract(predictors,cells,which(wF)) rm(cells) colnames(test.p) <- names(predictors) w <- colnames(test) %in% colnames(test.p) if (any(w)) { test <- test[,colnames(test)[!w]] errLog <- c(errLog,paste('WARNING: The variables',colnames(test)[w],'were removed from the test dataset as they exist in the predictors as well.')) } } else stop('the coordinate names in the train and test datasets do not match!') } if (!is.na(proj4string(train))) crs <- CRS(proj4string(train)) if (trainc == 'SpatialPointsDataFrame') train <- as(train,'data.frame') else train <- coordinates(train) cells <- cellFromXY(predictors,train[,nxy]) cNA <- is.na(cells) if (any(cNA)) { if (all(cNA)) stop('Train data has no overlap with the predictors...!') wNA <- which(cNA) train <- train[-wNA,] cells <- cells[-wNA] errLog <- c(errLog,paste(length(wNA),'records were removed from the train dataset as they had no overlap with the predictors.')) } rm(cNA) if (!any(wF)) train.p <- data.frame(predictors[cells]) else train.p <- .Extract(predictors,cells,which(wF)) rm(cells) colnames(train.p) <- names(predictors) w <- colnames(train) %in% colnames(train.p) if (any(w)) { train <- train[,colnames(train)[!w]] errLog <- c(errLog,paste('WARNING: The variables',colnames(train)[w],'were removed from the train dataset as they exist in the predictors as well.')) } if (trainc == 'SpatialPointsDataFrame') { train <- data.frame(train,train.p) rm(train.p) if (!is.null(test)) { test <- data.frame(test,test.p) rm(test.p) } if (!missing(formula)) { if (!all(nxy %in% all.vars(formula))) { if ('.' %in% all.vars(formula)) { ww <- .exFormula(formula,train) nw <- .excludeVector(colnames(train),c(ww@species,nxy)) w <- as.character(.exFormula(formula,train,FALSE)@species) if (length(w) == 0) formula[[2]] <- terms.formula(formula,data=train[,nw])[[2]] else formula[[3]] <- terms.formula(formula,data=train[,nw])[[3]] } formula <- update(formula,as.formula(paste('~ . + coods(',paste(nxy,collapse='+'),')',sep=''))) } } else formula <- as.formula(paste('~ . + coods(',paste(nxy,collapse='+'),')',sep='')) } else { if (!missing(formula)) { ww <- as.character(.exFormula(formula,train.p,FALSE)@species) if (length(ww) > 1) { warning('While SpatialPoints can be used for only 1 species, more names are defined in the formula! The first name is considered!') errLog <- c(errLog,'WARNING: While SpatialPoints can be used for only 1 species, more names are defined in the formula! The first name is considered!') w <- ww[1] } else if (length(ww) == 0) w <- 'SPECIES' if (!all(nxy %in% all.vars(formula))) { if ('.' %in% all.vars(formula)) { if (length(ww) == 0) formula[[2]] <- terms.formula(formula,data=train.p)[[2]] else formula[[3]] <- terms.formula(formula,data=train.p)[[3]] } formula <- update(formula,as.formula(paste('~ . + coods(',paste(nxy,collapse='+'),')',sep=''))) } } else { formula <- as.formula(paste('SPECIES ~ . + coods(',paste(nxy,collapse='+'),')',sep='')) w <- 'SPECIES' } train <- data.frame(SPECIES=rep(1,nrow(train)),train) colnames(train)[1] <- w train <- data.frame(train,train.p) rm(train.p) if (!is.null(test)) { test <- data.frame(SPECIES=rep(1,nrow(test)),test,test.p) colnames(test)[1] <- w rm(test.p) } } if (!is.null(bg)) { if (inherits(bg,'list')) { nbg <- names(bg) nbg <- .pmatch(nbg,c('n','method','remove')) if ('n' %in% nbg) n <- bg[['n']] else n <- 1000 if ('method' %in% nbg) { if (.pmatch(bg[['method']],c('gRandom','random','rnd')) %in% c('gRandom','random','rnd')) { m <- 'gRandom' } else if (.pmatch(bg[['method']],c('eRandom','envrandom','ernd')) %in% c('eRandom','envrandom','ernd')) { m <- 'eRandom' } else if (.pmatch(bg[['method']],c('gDistance','geo')) %in% c('gDistance','geo')) { m <- 'gDist' } else if (.pmatch(bg[['method']],c('eDistance','environ','envDist')) %in% c('eDistance','environ','envDist')) { m <- 'eDist' } } else m <- 'gRandom' if ('remove' %in% nbg && is.logical(bg[['remove']])) r <- bg[['remove']] else r <- FALSE bg <- .pseudo(predictors,n=n,method = m,p = if (r) train[,nxy] else NULL) colnames(bg)[1:2] <- nxy } else if (is.numeric(bg)) { bg <- .pseudo(predictors,n=bg,method = 'gRandom',p = NULL) colnames(bg)[1:2] <- nxy } else if (!is.data.frame(bg)) bg <- NULL } dot <- list(...) n <- tolower(names(dot)) for (i in seq_along(n)) { if (any(!is.na(pmatch(c("aut"),n[i])))) n[i] <- 'author' else if (any(!is.na(pmatch(c("web"),n[i])))) n[i] <- 'website' else if (any(!is.na(pmatch(c("cit"),n[i])))) n[i] <- 'citation' else if (any(!is.na(pmatch(c("hel"),n[i])))) n[i] <- 'help' else if (any(!is.na(pmatch(c("des"),n[i])))) n[i] <- 'description' else if (any(!is.na(pmatch(c("dat"),n[i])))) n[i] <- 'date' else if (any(!is.na(pmatch(c("lic"),n[i])))) n[i] <- 'license' } names(dot) <- n author <- dot[['author']] website <- dot[['website']] citation <- dot[['citation']] help <- dot[['help']] description <- dot[['description']] date <- dot[['date']] license <- dot[['license']] d <- .createSdmdata(train = train, formula = formula, test = test,bg=bg,crs = crs,author=author,website=website,citation=citation,help=help,description=description,date=date,license=license) if (length(errLog) > 0) { for (i in seq_along(errLog)) .addLog(d) <- errLog[[i]] } d } )
expect_traces <- function(gg, n.traces, name) { stopifnot(is.numeric(n.traces)) L <- expect_doppelganger_built(gg, paste0("rect-", name)) all.traces <- L$data no.data <- sapply(all.traces, function(tr) { is.null(tr[["x"]]) && is.null(tr[["y"]]) }) has.data <- all.traces[!no.data] expect_equivalent(length(has.data), n.traces) list(data=has.data, layout=L$layout) } df <- data.frame( x = sample(10, 20, replace = TRUE), y = sample(10, 20, replace = TRUE) ) gg <- ggplot(df, aes(xmin = x, xmax = x + 1, ymin = y, ymax = y + 2)) + geom_rect() test_that('geom_rect becomes 1 trace with mode="lines" fill="toself"', { info <- expect_traces(gg, 1, "black") tr <- info$data[[1]] expect_identical(tr$fill, "toself") expect_identical(tr$type, "scatter") expect_identical(tr$mode, "lines") for(xy in c("x", "y")) { expect_true(anyNA(tr[[xy]])) } }) df4 <- data.frame( x = 1:4, status = c("cool", "not", "not", "cool") ) gg4 <- ggplot(df4, aes(xmin = x, xmax = x + 0.5, ymin = 0, ymax = 1)) + geom_rect() test_that('trace contains NA back to 1st rect', { info <- expect_traces(gg4, 1, "black4") tr <- info$data[[1]] expect_identical(tr$fill, "toself") expect_identical(tr$type, "scatter") expect_identical(tr$mode, "lines") expected.x <- c(1, 1, 1.5, 1.5, 1, NA, 2, 2, 2.5, 2.5, 2, NA, 3, 3, 3.5, 3.5, 3, NA, 4, 4, 4.5, 4.5, 4) expect_equivalent(tr$x, expected.x) expected.y <- c(0, 1, 1, 0, 0, NA, 0, 1, 1, 0, 0, NA, 0, 1, 1, 0, 0, NA, 0, 1, 1, 0, 0) expect_equivalent(tr$y, expected.y) }) rect.color <- ggplot(df4, aes(xmin = x, xmax = x + 0.5, ymin = 0, ymax = 1)) + geom_rect(aes(color = status), fill="grey") test_that('rect color', { info <- expect_traces(rect.color, 2, "color") traces.by.name <- list() for(tr in info$data){ expect_true(tr$fillcolor == toRGB("grey")) expect_true(tr$fill == "toself") expect_equivalent(tr$y, c(0, 1, 1, 0, 0, NA, 0, 1, 1, 0, 0)) traces.by.name[[tr$name]] <- tr } expect_equivalent( traces.by.name[[1]]$x, c(1, 1, 1.5, 1.5, 1, NA, 4, 4, 4.5, 4.5, 4) ) expect_equivalent( traces.by.name[[2]]$x,c(2, 2, 2.5, 2.5, 2, NA, 3, 3, 3.5, 3.5, 3) ) expect_false( traces.by.name[[1]]$line$color == traces.by.name[[2]]$line$color ) }) rect.fill <- ggplot(df4, aes(xmin = x, xmax = x + 0.5, ymin = 0, ymax = 1)) + geom_rect(aes(fill = status)) test_that('rect color', { info <- expect_traces(rect.fill, 2, "fill") traces.by.name <- list() for(tr in info$data){ expect_true(tr$line$color == "transparent") expect_true(tr$fill == "toself") expect_equivalent(tr$y, c(0, 1, 1, 0, 0, NA, 0, 1, 1, 0, 0)) traces.by.name[[tr$name]] <- tr } expect_equivalent( traces.by.name[[1]]$x, c(1, 1, 1.5, 1.5, 1, NA, 4, 4, 4.5, 4.5, 4) ) expect_equivalent( traces.by.name[[2]]$x, c(2, 2, 2.5, 2.5, 2, NA, 3, 3, 3.5, 3.5, 3) ) expect_false( traces.by.name[[1]]$fillcolor == traces.by.name[[2]]$fillcolor ) }) rect.fill.color <- ggplot(df4, aes(xmin = x, xmax = x + 0.5, ymin = 0, ymax = 1)) + geom_rect(aes(fill = status), color="black") test_that('rect aes(fill) with constant color', { info <- expect_traces(rect.fill.color, 2, "fill-color") traces.by.name <- list() for(tr in info$data){ expect_true(tr$line$color == toRGB("black")) expect_true(tr$fill == "toself") expect_equivalent( tr$y, c(0, 1, 1, 0, 0, NA, 0, 1, 1, 0, 0) ) traces.by.name[[tr$name]] <- tr } expect_equivalent( traces.by.name[[1]]$x, c(1, 1, 1.5, 1.5, 1, NA, 4, 4, 4.5, 4.5, 4) ) expect_equivalent( traces.by.name[[2]]$x, c(2, 2, 2.5, 2.5, 2, NA, 3, 3, 3.5, 3.5, 3) ) expect_false( traces.by.name[[1]]$fillcolor == traces.by.name[[2]]$fillcolor ) }) p <- ggplot(data = data.frame(x1 = 1, x2 = 2, y1 = 1, y2 = 2)) + geom_rect(aes(xmin = x1, xmax = x2, ymin = y1, ymax = y2), fill = " test_that('Specifying alpha in hex color code works', { info <- expect_traces(p, 1, "fill-hex-alpha") expect_match(info$data[[1]]$fillcolor, "rgba\\(0,0,0,0\\.0[6]+") })
context("basic HMM functions in AIL") test_that("AIL nalleles works", { expect_equal(nalleles("ail"), 2) }) test_that("AIL check_geno works", { for(i in 0:5) expect_true(test_check_geno("ail", i, TRUE, FALSE, FALSE, c(20, 0))) for(i in 1:3) expect_true(test_check_geno("ail", i, FALSE, FALSE, FALSE, c(20, 0))) for(i in c(-1, 6)) expect_false(test_check_geno("ail", i, TRUE, FALSE, FALSE, c(20, 0))) for(i in c(0, 4)) expect_false(test_check_geno("ail", i, FALSE, FALSE, FALSE, c(20, 0))) for(dir in 0:2) { for(i in 0:5) expect_true(test_check_geno("ail", i, TRUE, TRUE, TRUE, c(20, dir))) for(i in 1:3) expect_true(test_check_geno("ail", i, FALSE, TRUE, TRUE, c(20, dir))) for(i in c(-1, 6)) expect_false(test_check_geno("ail", i, TRUE, TRUE, TRUE, c(20, dir))) for(i in c(0, 4:6)) expect_false(test_check_geno("ail", i, FALSE, TRUE, TRUE, c(20, dir))) for(i in 0:5) expect_true(test_check_geno("ail", i, TRUE, TRUE, FALSE, c(20, dir))) for(i in c(4,5)) expect_true(test_check_geno("ail", i, FALSE, TRUE, FALSE, c(20, dir))) for(i in c(-1, 6)) expect_false(test_check_geno("ail", i, TRUE, TRUE, FALSE, c(20, dir))) for(i in c(0:3, 6)) expect_false(test_check_geno("ail", i, FALSE, TRUE, FALSE, c(20, dir))) } }) test_that("AIL n_gen works", { expect_equal(test_ngen("ail", FALSE), 3) expect_equal(test_ngen("ail", TRUE), 5) }) test_that("AIL possible_gen works", { expect_equal(test_possible_gen("ail", FALSE, FALSE, c(20,0)), 1:3) for(dir in 0:2) { expect_equal(test_possible_gen("ail", TRUE, TRUE, c(20,dir)), 1:3) expect_equal(test_possible_gen("ail", TRUE, FALSE, c(20,dir)), 4:5) } }) test_that("AIL init works", { for(n_gen in c(3,9,12,15)) { expect_equal(test_init("ail", 1, FALSE, FALSE, c(n_gen, 0)), log(0.25)) expect_equal(test_init("ail", 2, FALSE, FALSE, c(n_gen, 0)), log(0.5)) expect_equal(test_init("ail", 3, FALSE, FALSE, c(n_gen, 0)), log(0.25)) expect_equal(test_init("ail", 1, TRUE, TRUE, c(n_gen, 2)), log(0.25)) expect_equal(test_init("ail", 2, TRUE, TRUE, c(n_gen, 2)), log(0.5)) expect_equal(test_init("ail", 3, TRUE, TRUE, c(n_gen, 2)), log(0.25)) expect_equal(test_init("ail", 4, TRUE, FALSE, c(n_gen, 2)), log(0.5)) expect_equal(test_init("ail", 5, TRUE, FALSE, c(n_gen, 2)), log(0.5)) } for(n_gen in c(3,9,12,15)) { fprob <- (2/3) + (1/3)*(-1/2)^n_gen mprob <- (2/3) + (1/3)*(-1/2)^(n_gen-1) expect_equal(test_init("ail", 1, TRUE, TRUE, c(n_gen, 0)), log(fprob^2)) expect_equal(test_init("ail", 2, TRUE, TRUE, c(n_gen, 0)), log(2*fprob*(1-fprob))) expect_equal(test_init("ail", 3, TRUE, TRUE, c(n_gen, 0)), log((1-fprob)^2)) expect_equal(test_init("ail", 4, TRUE, FALSE, c(n_gen, 0)), log(mprob)) expect_equal(test_init("ail", 5, TRUE, FALSE, c(n_gen, 0)), log(1-mprob)) expect_equal(test_init("ail", 3, TRUE, TRUE, c(n_gen, 1)), log(fprob^2)) expect_equal(test_init("ail", 2, TRUE, TRUE, c(n_gen, 1)), log(2*fprob*(1-fprob))) expect_equal(test_init("ail", 1, TRUE, TRUE, c(n_gen, 1)), log((1-fprob)^2)) expect_equal(test_init("ail", 5, TRUE, FALSE, c(n_gen, 1)), log(mprob)) expect_equal(test_init("ail", 4, TRUE, FALSE, c(n_gen, 1)), log(1-mprob)) } }) test_that("AIL emit works", { eps <- 0.01 for(i in 1:3) expect_equal(test_emit("ail", 0, i, eps, integer(0), FALSE, FALSE, c(20,0)), 0) expect_equal(test_emit("ail", 1, 1, eps, integer(0), FALSE, FALSE, c(20,0)), log(1-eps)) expect_equal(test_emit("ail", 2, 1, eps, integer(0), FALSE, FALSE, c(20,0)), log(eps/2)) expect_equal(test_emit("ail", 3, 1, eps, integer(0), FALSE, FALSE, c(20,0)), log(eps/2)) expect_equal(test_emit("ail", 4, 1, eps, integer(0), FALSE, FALSE, c(20,0)), log(1-eps/2)) expect_equal(test_emit("ail", 5, 1, eps, integer(0), FALSE, FALSE, c(20,0)), log(eps)) expect_equal(test_emit("ail", 1, 2, eps, integer(0), FALSE, FALSE, c(20,0)), log(eps/2)) expect_equal(test_emit("ail", 2, 2, eps, integer(0), FALSE, FALSE, c(20,0)), log(1-eps)) expect_equal(test_emit("ail", 3, 2, eps, integer(0), FALSE, FALSE, c(20,0)), log(eps/2)) expect_equal(test_emit("ail", 4, 2, eps, integer(0), FALSE, FALSE, c(20,0)), log(1-eps/2)) expect_equal(test_emit("ail", 5, 2, eps, integer(0), FALSE, FALSE, c(20,0)), log(1-eps/2)) expect_equal(test_emit("ail", 1, 3, eps, integer(0), FALSE, FALSE, c(20,0)), log(eps/2)) expect_equal(test_emit("ail", 2, 3, eps, integer(0), FALSE, FALSE, c(20,0)), log(eps/2)) expect_equal(test_emit("ail", 3, 3, eps, integer(0), FALSE, FALSE, c(20,0)), log(1-eps)) expect_equal(test_emit("ail", 4, 3, eps, integer(0), FALSE, FALSE, c(20,0)), log(eps)) expect_equal(test_emit("ail", 5, 3, eps, integer(0), FALSE, FALSE, c(20,0)), log(1-eps/2)) for(i in 1:3) expect_equal(test_emit("ail", 0, i, eps, integer(0), TRUE, TRUE, c(20,0)), 0) expect_equal(test_emit("ail", 1, 1, eps, integer(0), TRUE, TRUE, c(20,0)), log(1-eps)) expect_equal(test_emit("ail", 2, 1, eps, integer(0), TRUE, TRUE, c(20,0)), log(eps/2)) expect_equal(test_emit("ail", 3, 1, eps, integer(0), TRUE, TRUE, c(20,0)), log(eps/2)) expect_equal(test_emit("ail", 4, 1, eps, integer(0), TRUE, TRUE, c(20,0)), log(1-eps/2)) expect_equal(test_emit("ail", 5, 1, eps, integer(0), TRUE, TRUE, c(20,0)), log(eps)) expect_equal(test_emit("ail", 1, 2, eps, integer(0), TRUE, TRUE, c(20,0)), log(eps/2)) expect_equal(test_emit("ail", 2, 2, eps, integer(0), TRUE, TRUE, c(20,0)), log(1-eps)) expect_equal(test_emit("ail", 3, 2, eps, integer(0), TRUE, TRUE, c(20,0)), log(eps/2)) expect_equal(test_emit("ail", 4, 2, eps, integer(0), TRUE, TRUE, c(20,0)), log(1-eps/2)) expect_equal(test_emit("ail", 5, 2, eps, integer(0), TRUE, TRUE, c(20,0)), log(1-eps/2)) expect_equal(test_emit("ail", 1, 3, eps, integer(0), TRUE, TRUE, c(20,0)), log(eps/2)) expect_equal(test_emit("ail", 2, 3, eps, integer(0), TRUE, TRUE, c(20,0)), log(eps/2)) expect_equal(test_emit("ail", 3, 3, eps, integer(0), TRUE, TRUE, c(20,0)), log(1-eps)) expect_equal(test_emit("ail", 4, 3, eps, integer(0), TRUE, TRUE, c(20,0)), log(eps)) expect_equal(test_emit("ail", 5, 3, eps, integer(0), TRUE, TRUE, c(20,0)), log(1-eps/2)) for(i in 4:5) expect_equal(test_emit("ail", 0, i, eps, integer(0), TRUE, FALSE, c(20,0)), 0) expect_equal(test_emit("ail", 1, 4, eps, integer(0), TRUE, FALSE, c(20,0)), log(1-eps)) expect_equal(test_emit("ail", 2, 4, eps, integer(0), TRUE, FALSE, c(20,0)), 0) expect_equal(test_emit("ail", 3, 4, eps, integer(0), TRUE, FALSE, c(20,0)), log(eps)) expect_equal(test_emit("ail", 4, 4, eps, integer(0), TRUE, FALSE, c(20,0)), log(1-eps)) expect_equal(test_emit("ail", 5, 4, eps, integer(0), TRUE, FALSE, c(20,0)), log(eps)) expect_equal(test_emit("ail", 1, 5, eps, integer(0), TRUE, FALSE, c(20,0)), log(eps)) expect_equal(test_emit("ail", 2, 5, eps, integer(0), TRUE, FALSE, c(20,0)), 0) expect_equal(test_emit("ail", 3, 5, eps, integer(0), TRUE, FALSE, c(20,0)), log(1-eps)) expect_equal(test_emit("ail", 4, 5, eps, integer(0), TRUE, FALSE, c(20,0)), log(eps)) expect_equal(test_emit("ail", 5, 5, eps, integer(0), TRUE, FALSE, c(20,0)), log(1-eps)) }) test_that("AIL step works", { for(rf in c(0.01, 0.0001)) { for(ngen in c(3, 9, 12, 15)) { R <- 1 - 2*( 0.25*(1 + (1-2*rf)*(1-rf)^(ngen-2))) expect_equal(test_step("ail", 1, 1, rf, FALSE, FALSE, c(ngen, 0)), log((1-R)^2)) expect_equal(test_step("ail", 1, 2, rf, FALSE, FALSE, c(ngen, 0)), log(2*R*(1-R))) expect_equal(test_step("ail", 1, 3, rf, FALSE, FALSE, c(ngen, 0)), log(R^2)) expect_equal(test_step("ail", 2, 1, rf, FALSE, FALSE, c(ngen, 0)), log(R*(1-R))) expect_equal(test_step("ail", 2, 2, rf, FALSE, FALSE, c(ngen, 0)), log((1-R)^2+R^2)) expect_equal(test_step("ail", 2, 3, rf, FALSE, FALSE, c(ngen, 0)), log(R*(1-R))) expect_equal(test_step("ail", 3, 1, rf, FALSE, FALSE, c(ngen, 0)), log(R^2)) expect_equal(test_step("ail", 3, 2, rf, FALSE, FALSE, c(ngen, 0)), log(2*R*(1-R))) expect_equal(test_step("ail", 3, 3, rf, FALSE, FALSE, c(ngen, 0)), log((1-R)^2)) } } for(rf in c(0.01, 0.0001)) { for(ngen in c(3, 9, 12, 15)) { z <- sqrt((1-rf)*(9-rf)) w <- (1 - rf + z)/4 y <- (1 - rf - z)/4 mR <- 1 - 0.25*(2 + (1-2*rf)*(w^(ngen-2) + y^(ngen-2)) + (3 - 5*rf + 2*rf^2)/z*(w^(ngen-2) - y^(ngen-2))) fR <- 1 - 0.25*(2 + (1-2*rf)*(w^(ngen-2) + y^(ngen-2)) + (3 - 6*rf + rf^2)/z*(w^(ngen-2) - y^(ngen-2))) expect_equal(test_step("ail", 1, 1, rf, TRUE, TRUE, c(ngen, 2)), log((1-fR)^2)) expect_equal(test_step("ail", 1, 2, rf, TRUE, TRUE, c(ngen, 2)), log(2*fR*(1-fR))) expect_equal(test_step("ail", 1, 3, rf, TRUE, TRUE, c(ngen, 2)), log(fR^2)) expect_equal(test_step("ail", 2, 1, rf, TRUE, TRUE, c(ngen, 2)), log(fR*(1-fR))) expect_equal(test_step("ail", 2, 2, rf, TRUE, TRUE, c(ngen, 2)), log((1-fR)^2+fR^2)) expect_equal(test_step("ail", 2, 3, rf, TRUE, TRUE, c(ngen, 2)), log(fR*(1-fR))) expect_equal(test_step("ail", 3, 1, rf, TRUE, TRUE, c(ngen, 2)), log(fR^2)) expect_equal(test_step("ail", 3, 2, rf, TRUE, TRUE, c(ngen, 2)), log(2*fR*(1-fR))) expect_equal(test_step("ail", 3, 3, rf, TRUE, TRUE, c(ngen, 2)), log((1-fR)^2)) expect_equal(test_step("ail", 4, 4, rf, TRUE, FALSE, c(ngen, 2)), log(1-mR)) expect_equal(test_step("ail", 4, 5, rf, TRUE, FALSE, c(ngen, 2)), log(mR)) expect_equal(test_step("ail", 5, 4, rf, TRUE, FALSE, c(ngen, 2)), log(mR)) expect_equal(test_step("ail", 5, 5, rf, TRUE, FALSE, c(ngen, 2)), log(1-mR)) } } calc_q <- function(n_gen) 2/3 + (1/3)*(-1/2)^n_gen calc_p11 <- function(n_gen, rf) { if(n_gen == 1) return(c(1, 0.5)) last <- calc_p11(n_gen-1, rf) z <- c((1-rf)*last[2] + rf*calc_q(n_gen-2)*calc_q(n_gen-3), 0.5*last[1] + (1-rf)/2*last[2] + (rf/2)*calc_q(n_gen-2)*calc_q(n_gen-3)) z } for(rf in c(0.01, 0.0001)) { for(ngen in c(3, 9, 12, 15)) { qf <- calc_q(ngen) qm <- calc_q(ngen-1) p11 <- calc_p11(ngen, rf) m11 <- p11[1] f11 <- p11[2] m1to1 <- m11/qm m1to2 <- 1 - m1to1 m2to1 <- (qm - m11)/(1-qm) m2to2 <- 1 - m2to1 f1to1 <- f11/qf f1to2 <- 1 - f1to1 f2to1 <- (qf - f11)/(1-qf) f2to2 <- 1 - f2to1 expect_equal(test_step("ail", 1, 1, rf, TRUE, TRUE, c(ngen, 0)), log(f1to1^2)) expect_equal(test_step("ail", 1, 2, rf, TRUE, TRUE, c(ngen, 0)), log(2*f1to1*f1to2)) expect_equal(test_step("ail", 1, 3, rf, TRUE, TRUE, c(ngen, 0)), log(f1to2^2)) expect_equal(test_step("ail", 2, 1, rf, TRUE, TRUE, c(ngen, 0)), log(f1to1*f2to1)) expect_equal(test_step("ail", 2, 2, rf, TRUE, TRUE, c(ngen, 0)), log(f2to1*f1to2 + f1to1*f2to2)) expect_equal(test_step("ail", 2, 3, rf, TRUE, TRUE, c(ngen, 0)), log(f1to2*f2to2)) expect_equal(test_step("ail", 3, 1, rf, TRUE, TRUE, c(ngen, 0)), log(f2to1^2)) expect_equal(test_step("ail", 3, 2, rf, TRUE, TRUE, c(ngen, 0)), log(2*f2to2*f2to1)) expect_equal(test_step("ail", 3, 3, rf, TRUE, TRUE, c(ngen, 0)), log(f2to2^2)) expect_equal(test_step("ail", 4, 4, rf, TRUE, FALSE, c(ngen, 0)), log(m1to1)) expect_equal(test_step("ail", 4, 5, rf, TRUE, FALSE, c(ngen, 0)), log(m1to2)) expect_equal(test_step("ail", 5, 4, rf, TRUE, FALSE, c(ngen, 0)), log(m2to1)) expect_equal(test_step("ail", 5, 5, rf, TRUE, FALSE, c(ngen, 0)), log(m2to2)) expect_equal(test_step("ail", 1, 1, rf, TRUE, TRUE, c(ngen, 1)), log(f2to2^2)) expect_equal(test_step("ail", 1, 2, rf, TRUE, TRUE, c(ngen, 1)), log(2*f2to2*f2to1)) expect_equal(test_step("ail", 1, 3, rf, TRUE, TRUE, c(ngen, 1)), log(f2to1^2)) expect_equal(test_step("ail", 2, 1, rf, TRUE, TRUE, c(ngen, 1)), log(f2to2*f1to2)) expect_equal(test_step("ail", 2, 2, rf, TRUE, TRUE, c(ngen, 1)), log(f1to2*f2to1 + f1to1*f2to2)) expect_equal(test_step("ail", 2, 3, rf, TRUE, TRUE, c(ngen, 1)), log(f2to1*f1to1)) expect_equal(test_step("ail", 3, 1, rf, TRUE, TRUE, c(ngen, 1)), log(f1to2^2)) expect_equal(test_step("ail", 3, 2, rf, TRUE, TRUE, c(ngen, 1)), log(2*f1to1*f1to2)) expect_equal(test_step("ail", 3, 3, rf, TRUE, TRUE, c(ngen, 1)), log(f1to1^2)) expect_equal(test_step("ail", 4, 4, rf, TRUE, FALSE, c(ngen, 1)), log(m2to2)) expect_equal(test_step("ail", 4, 5, rf, TRUE, FALSE, c(ngen, 1)), log(m2to1)) expect_equal(test_step("ail", 5, 4, rf, TRUE, FALSE, c(ngen, 1)), log(m1to2)) expect_equal(test_step("ail", 5, 5, rf, TRUE, FALSE, c(ngen, 1)), log(m1to1)) } } }) test_that("geno_names works", { expect_equal(geno_names("ail", c("B", "R"), FALSE), c("BB", "BR", "RR")) expect_equal(geno_names("ail", c("B", "R"), TRUE), c("BB", "BR", "RR", "BY", "RY")) }) test_that("nrec works", { expected <- rbind(c(0,1,2), c(1,0,1), c(2,1,0)) for(i in 1:3) for(j in 1:3) { expect_equal(test_nrec("ail", i, j, FALSE, FALSE, 0), expected[i,j]) expect_equal(test_nrec("ail", i, j, TRUE, TRUE, 0), expected[i,j]) expect_equal(test_nrec("ail", i, j, TRUE, TRUE, 0), expected[i,j]) } expected <- rbind(c(0,1), c(1,0)) for(i in 1:2) for(j in 1:2) expect_equal(test_nrec("ail", i+3, j+3, TRUE, FALSE, 0), expected[i,j]) })
coef.rem <- function(object,...){ par <- coef(object$mr) row.names(par) <- paste("mr :",row.names(coef(object$mr))) if(!is.null(coef(object$ds)$exponent)){ rn <- row.names(par) par <- rbind(par,coef(object$ds)$exponent) row.names(par) <- c(rn, paste("ds expon:", row.names(coef(object$ds)$exponent))) } rn <- row.names(par) ds.scale <- coef(object$ds)$scale if(!is.null(ds.scale)){ par <- rbind(par,coef(object$ds)$scale) row.names(par) <- c(rn,paste("ds scale:", row.names(coef(object$ds)$scale))) } if(!is.null(coef(object$ds)$adjustment)){ rn <- row.names(par) par <- rbind(par,coef(object$ds)$adjustment) row.names(par) <- c(rn, paste("ds adjust:", row.names(coef(object$ds)$adjustment))) } return(par) }
summoning_bells <- function(hansard_id = NULL, rundown_id = NULL, section_code = NULL, lang = "en", from = '1900-01-01', to = Sys.Date(), floor = FALSE, n = 1000, extra_param = NULL, count = FALSE, verbose = TRUE) { query <- "SummoningBells?$select=MeetingDate,SectionCode,RundownID,HansardID,HansardFileURL" filter_args <- {} if (!is.null(hansard_id)) { filter_args <- c(filter_args, .generate_filter("HansardID", hansard_id)) } if (!is.null(rundown_id)) { filter_args <- c(filter_args, .generate_filter("RundownID", rundown_id)) } if (!is.null(section_code)) { filter_args <- c(filter_args, .generate_filter("SectionCode", section_code)) } if (is.null(hansard_id) & is.null(hansard_id)) { lang <- tolower(lang) if (floor) { filter_args <- c(filter_args, "HansardType eq 'Floor'") } else if (lang == "en") { filter_args <- c(filter_args, "HansardType eq 'English'") } else if (lang == "zh") { filter_args <- c(filter_args, "HansardType eq 'Chinese'") } } from <- as.Date(from) to <- as.Date(to) filter_args <- c(filter_args, paste0("MeetingDate ge datetime\'", from, "\' and MeetingDate le datetime\'", to, "\'")) query <- paste0(query, "&$filter=", paste(filter_args, collapse = " and ")) if (!is.null(extra_param)) { query <- paste0(query, extra_param) } legco_api("hansard", query, n, count, verbose) } legco_summoning_bells <- summoning_bells
cases.suf.dcn <- function(results, outcome, sol=1, ...) { dots <- list(...) if(length(dots) != 0){ if ("neg.out" %in% names(dots)){print("Argument neg.out is deprecated. The negated outcome is identified automatically from the minimize solution.")} if ("use.tilde" %in% names(dots)){print("Argument use.tilde is deprecated. The usage of the tilde is identified automatically from the minimize solution.")} } if(length(grep("~",outcome)) > 0){ outcome<-outcome[grep("~",outcome)] outcome<-gsub('\\~', '', outcome) outcome<-unlist(outcome)} outcome <- toupper(outcome) X <- pimdata(results=results, outcome=outcome, sol=sol) y <- X[,"out", drop=FALSE] names(y) <- outcome aux <- function(i) { fil <- (X[,i] > 0.5) & (y < 0.5) Z <- data.frame(x=X[fil, i], y=y[fil], s=rep(FALSE, sum(fil)), Term=rep(colnames(X)[i], sum(fil)), Cases=rownames(X)[fil]) s <- (1 - (Z$x-Z$y) + (1-Z$x)) suppressWarnings(Z$s[s==min(s)] <- TRUE) Z$Sd <- s colnames(Z)[1:3] <- c('TermMembership', outcome, 'MostDevCons') Z<-Z[, c(5, 4, 1, 2, 6, 3)] Z[,c(3:5)] <- round(Z[,c(3:5)], digits = 3) return(Z[order(Z$Sd),]) } R <- do.call(rbind, lapply(1:(ncol(X)-1), aux)) R <- R[order(R$Term,R$Sd,R$TermMembership),] names(R)[names(R)==outcome]<- "Outcome" names(R)[names(R)=="Sd"]<- "Best" M<-list() M[[1]] <- list(title="Deviant Consistency Cases", results=R[R$Term!='solution_formula', ]) class(M) <- 'matchessuf' return(M) } cases.suf.dcv <- function(results, outcome, sol=1, ...) { dots <- list(...) if(length(dots) != 0){ if ("neg.out" %in% names(dots)){print("Argument neg.out is deprecated. The negated outcome is identified automatically from the minimize solution.")} if ("use.tilde" %in% names(dots)){print("Argument use.tilde is deprecated. The usage of the tilde is identified automatically from the minimize solution.")} } if(length(grep("~",outcome)) > 0){ outcome<-outcome[grep("~",outcome)] outcome<-gsub('\\~', '', outcome) outcome<-unlist(outcome)} outcome <- toupper(outcome) X <- pimdata(results=results, outcome=outcome, sol=sol) y <- X[,"out", drop=FALSE] names(y) <- outcome CS <- results$tt$recoded.data CS <- CS[, -which(colnames(CS)==outcome)] TS <- CS TS[TS<0.50]<-1-TS[TS<0.50] CS[CS<0.50]<-0 CS[CS>0.50]<-1 CS["TT_row_membership"]<-do.call(pmin,TS) CS["TT_row_membership"] <- round(CS["TT_row_membership"], digits = 3) aux <- function(i) { fil <- (X[,i] < 0.5) & (y > 0.5) Z <- data.frame(x=X[fil, i], y=y[fil], s=rep(FALSE, sum(fil)), Term=rep(colnames(X)[i], sum(fil)), Case=rownames(X)[fil], ttr=CS[rownames(X)[fil],"TT_row_membership"]) s <- (1-Z$ttr) suppressWarnings(Z$s[s==min(s)] <- TRUE) Z$Sd <- s colnames(Z)[1:3] <- c('TermMembership', outcome, 'Most_deviant') return(Z[, c(5, 4, 1, 2, 7, 3)]) } R <- do.call(rbind, lapply(1:(ncol(X)-1), aux)) R <- R[R$Term=='solution_formula', c('Case', 'TermMembership', outcome,"Sd")] names(R)[2] <- 'SolMembership' R[,2:4] <- round(R[,2:4], digits = 3) Z <- merge(x=R, y=CS, by.x='Case', by.y='row.names') names(Z)[5:(ncol(Z)-1)] <- paste('TT_', names(Z)[5:(ncol(Z)-1)], sep='') O <-subset(Z,select=3) Z <-Z[,-c(3)] Z$Outcome <- O sortnames<-names(Z)[4:(ncol(Z)-2)] Z <- Z[do.call("order", c(Z[sortnames], Z["Sd"])), ] names(Z$Outcome)<- "Outcome" names(Z)[names(Z)=="Sd"]<- "Best" ttsplit <- aggregate(Z$Best,by=Z[sortnames],min, drop=FALSE) Z$MostDevCov <- FALSE for (n in 1:nrow(Z)){ for (s in 1:nrow(ttsplit)){ if(all(ttsplit[s,sortnames] == Z[n,sortnames]) & ttsplit[s,"x"] == Z[n, "Best"]){Z[n,"MostDevCov"] <- TRUE} }} Z$ConsTT <- FALSE for (n in 1:nrow(Z)){ if(Z[n,"TT_row_membership"] <= Z[n,"Outcome"]){Z[n,"ConsTT"] <- TRUE} } Z <- Z[do.call("order", c(Z[sortnames], 1-Z["ConsTT"], Z["Best"])), ] Z <- cbind(Z[,c(1,2)], Z[sortnames],Z["TT_row_membership"], Z["Outcome"],Z["Best"], Z["MostDevCov"],Z["ConsTT"]) M <- list() M[[1]] <- list(title="Deviant Coverage Cases", results=Z) class(M) <- 'matchessuf' return(M) } cases.suf.iir <- function(results, outcome, sol=1, ...) { dots <- list(...) if(length(dots) != 0){ if ("neg.out" %in% names(dots)){print("Argument neg.out is deprecated. The negated outcome is identified automatically from the minimize solution.")} if ("use.tilde" %in% names(dots)){print("Argument use.tilde is deprecated. The usage of the tilde is identified automatically from the minimize solution.")} } if(length(grep("~",outcome)) > 0){ outcome<-outcome[grep("~",outcome)] outcome<-gsub('\\~', '', outcome) outcome<-unlist(outcome)} outcome <- toupper(outcome) X <- pimdata(results=results, outcome=outcome, sol=sol) y <- X[,"out", drop=FALSE] names(y) <- outcome CS <- results$tt$recoded.data CS <- CS[, -which(colnames(CS)==outcome)] TS <- CS TS[TS<0.50]<-1-TS[TS<0.50] CS[CS<0.50]<-0 CS[CS>0.50]<-1 CS["TT_row_membership"]<-do.call(pmin,TS) CS["TT_row_membership"] <- round(CS["TT_row_membership"], digits = 3) aux <- function(i) { fil <- (X[,i] < 0.5) & (y < 0.5) Z <- data.frame(x=X[fil, i], y=y[fil], s=rep(FALSE, sum(fil)), term=rep(colnames(X)[i], sum(fil)), Case=rownames(X)[fil]) s <- 1 - (Z$x-Z$y)/Z$x suppressWarnings(Z$s[s==min(s)] <- TRUE) Z$Sd <- s colnames(Z)[1:3] <- c('term_membership', outcome, 'most_deviant') return(Z[, c(5, 4, 1, 2, 6, 3)]) } R <- do.call(rbind, lapply(1:(ncol(X)-1), aux)) R <- R[R$term=='solution_formula', c('Case', 'term_membership', outcome)] names(R)[2] <- 'Solution_membership' R[,c(2:3)] <- round(R[,c(2:3)], digits = 3) Z <- merge(x=R, y=CS, by.x='Case', by.y='row.names') names(Z)[4:(ncol(Z)-1)] <- paste('TT_', names(Z)[4:(ncol(Z)-1)], sep='') O <-subset(Z,select=3) Z <-Z[,-c(3)] Z$Outcome <- O sortnames<-names(Z)[3:(ncol(Z)-2)] Z <- Z[do.call("order", Z[sortnames]), ] names(Z$Outcome)<- "Outcome" M <- list() M[[1]] <- list(title="Individually Irrelevant Cases", results=Z) class(M) <- 'matchessuf' return(M) } cases.suf.typ.fct <- function(results, outcome, term=1, sol=1, max_pairs=5, ...) { dots <- list(...) if(length(dots) != 0){ if ("neg.out" %in% names(dots)){print("Argument neg.out is deprecated. The negated outcome is identified automatically from the minimize solution.")} if ("use.tilde" %in% names(dots)){print("Argument use.tilde is deprecated. The usage of the tilde is identified automatically from the minimize solution.")} } if(length(grep("~",outcome)) > 0){ outcome<-outcome[grep("~",outcome)] outcome<-gsub('\\~', '', outcome) outcome<-unlist(outcome)} outcome <- toupper(outcome) PD <- pimdata(results=results, outcome=outcome, sol=sol) if (term>(ncol(PD)-2)){stop("The term selected does not exist for the chosen model of the solution. Check the solution again and pick another term or change the model using the argument sol.")} nterm <- colnames(PD[term]) DT <- results$tt$initial.data DT1 <- data.frame(matrix(NA,ncol=0,nrow=nrow(DT))) row.names(DT1)<-row.names(DT) tl <- gsub('\\s', '', nterm) tl <- strsplit(tl, '\\*') tn <- unique(unlist(tl)) t_neg<-character(0) t_pre<-character(0) if(length(grep("~",tn)) > 0){ t_neg<-tn[grep("~",tn)] t_neg<-gsub('\\~', '', t_neg) t_neg<-unlist(t_neg) t_pre<-tn[!tn %in% tn[grep("~",tn)]] } else {t_pre<- toupper(tn)} if (length(t_pre) > 0) { DT1[t_pre] <- DT[t_pre] colnames(DT1[t_pre])<-toupper(colnames(DT1[t_pre])) } if (length(t_neg) > 0) { DT1[t_neg] <- 1 - DT[t_neg] colnames(DT1[t_neg])<-tolower(colnames(DT1[t_neg])) } Y <- PD[,"out", drop=FALSE] names(Y) <- outcome if (length(tn)==1) { fct <- paste("Typical Cases - Focal Conjunct", tn[1], sep = " ") X <-DT1[toupper(tn[1])] typical <-(X>0.5) & (Y>0.5) & (X<=Y) ty <- rownames(DT1)[typical] consfc <-(X<=Y) cfc <- rownames(DT1)[consfc] if (identical(ty, character(0))) {M[[i]] <-list(title=fct, results="no typical cases")} else { Z <- data.frame( x <- X[ty,toupper(tn[1])], y <- Y[ty,outcome], s=rep(FALSE)) row.names(Z) <- ty s <- (2*abs(Z$y-Z$x) + (1-Z$x)) suppressWarnings(Z$s[s==min(s)] <- TRUE) Z$St <- s colnames(Z)[1:3] <- c('Suff.Term/Focal Conjunct', outcome, 'MostTyp') Z<-Z[, c( 1, 2, 4, 3)] Z <- Z[order(Z$St),] PDU <- as.data.frame(PD[ty,-c(ncol(PD), ncol(PD)-1, term)], row.names = ty) Z$UniqCov <- TRUE if (ncol(PDU)>1) { PDU <- apply(PDU, 1, function(x) sum(x>0.5)) for (j in ty) { if (PDU[j]==0) {Z[j,"UniqCov"] <- TRUE} else {Z[j,"UniqCov"] <- FALSE}}} else { if (ncol(PDU)==1) { for (j in ty) { if (PDU[j,]<=0.5) {Z[j,"UniqCov"] <- TRUE} else {Z[j,"UniqCov"] <- FALSE}} } } names(Z)[names(Z)==outcome]<- "Outcome" names(Z)[names(Z)=="St"]<- "Best" Z$Rank <- "-" Z$ConsFC <- FALSE for (h in 1:nrow(Z)){ if (rownames(Z)[h] %in% cfc){Z$ConsFC[h] <- TRUE} } Z <- Z[order(1-Z$ConsFC,1-Z$UniqCov, Z$Best),] Z <- Z[1:(min(c(nrow(Z), max_pairs))), ] Z <- Z[, c(1, 2, 5, 3, 4, 6, 7)] M <- list() M[[1]] <- list(title=fct, results=Z) } } else { M <- list() for (i in (1:length(tn))) { fct <- paste("Typical Cases - Focal Conjunct", tn[i], sep = " ") if(length(grep("~",tn)) > 0){tnn<-unlist(gsub('\\~', '', tn))} else{tnn<-tn} X <- DT1[toupper(tnn[i])] cct<- tnn[-grep(tnn[i], tnn)] cct<- toupper(cct) CCDT<-DT1[cct] if(ncol(CCDT)>1){ a<-do.call(pmin, CCDT[,]) CCDT1<-data.frame(a) row.names(CCDT1)<-row.names(CCDT)} else{ CCDT1<-CCDT names(CCDT1)[1]<-"a"} CCDT$termm<-pmin(CCDT1$a,X[,]) typical <-(CCDT$termm>0.5) & (Y>0.5) & (CCDT$termm<=Y) typ1 <- (X < CCDT1$a) typ2 <- (X >= CCDT1$a) ty <- rownames(DT1)[typical] ty1 <- rownames(DT1)[typical & typ1] ty2 <- rownames(DT1)[typical & typ2] consfc <-(X<=Y) cfc <- rownames(DT1)[consfc] if (identical(ty, character(0))) {M[[i]] <-list(title=fct, results="no typical cases")} else { Z <- data.frame( "x" = X[ty,toupper(tnn[i])], "y" = Y[ty,outcome], "cctm" = CCDT1[ty,"a"], "termm" = CCDT[ty,"termm"], "s" = rep(FALSE)) row.names(Z) <- ty s <- (2*abs(Z$y-Z$x) + (1-Z$termm)) suppressWarnings(Z$s[s==min(s)] <- TRUE) Z$St <- s colnames(Z) <- c('FocalConj', outcome, 'CompConj','Term', 'MostTypFC','Best') Z<-Z[, c( 1, 3, 4, 2, 6, 5)] Z$Rank <- NA Z[ty1,7] <- 1 Z[ty2,7] <- 2 Z <- Z[order(Z$Rank, Z$Best),] PDU <- PD[ty,-c(ncol(PD), ncol(PD)-1, term), drop = FALSE] PDU <- apply(PDU, 1, function(x) sum(x>0.5)) Z$UniqCov <- TRUE for (j in ty) { if (PDU[j]==0) {Z[j,"UniqCov"] <- TRUE} else {Z[j,"UniqCov"] <- FALSE}} Z<-Z[, c( 1, 4, 2, 3, 5, 6, 8, 7)] Z$ConsFC <- FALSE for (h in 1:nrow(Z)){ if (rownames(Z)[h] %in% cfc){Z$ConsFC[h] <- TRUE} } Z <- Z[order(Z$Rank, 1-Z$ConsFC, 1-Z$UniqCov, Z$Best),] Z[,c(1:5,8)] <- round(Z[,c(1:5,8)], digits=3) names(Z)[names(Z)==outcome]<- "Outcome" Z$MostTypTerm <- FALSE mtt <- cases.suf.typ.most(results = results, outcome = outcome, sol = sol) mtt <- mtt[[1]]$results mttc <- mtt[mtt$term==colnames(PD)[term],"case"] for (h in 1:nrow(Z)){ if (rownames(Z)[h] %in% mttc){Z$MostTypTerm[h] <- TRUE} } Z <- Z[1:(min(c(nrow(Z), max_pairs))), ] Z <- Z[, c(1, 2, 3, 4, 7, 5, 6, 8, 9, 10)] M[[i]] <- list(title=fct, results=Z) } } } class(M) <- 'matchessuf' return(M)} cases.suf.typ.most <- function(results, outcome, sol=1, ...) { dots <- list(...) if(length(dots) != 0){ if ("neg.out" %in% names(dots)){print("Argument neg.out is deprecated. The negated outcome is identified automatically from the minimize solution.")} if ("use.tilde" %in% names(dots)){print("Argument use.tilde is deprecated. The usage of the tilde is identified automatically from the minimize solution.")} } R <- cases.suf.typ(results, outcome, sol) R <- R[[1]]$results M <- list() M[[1]] <- list(title="Most Typical Cases", results=R[R$MostTyp, ]) class(M) <- 'matchessuf' return(M) } cases.suf.typ <- function(results, outcome, sol=1, ...) { dots <- list(...) if(length(dots) != 0){ if ("neg.out" %in% names(dots)){print("Argument neg.out is deprecated. The negated outcome is identified automatically from the minimize solution.")} if ("use.tilde" %in% names(dots)){print("Argument use.tilde is deprecated. The usage of the tilde is identified automatically from the minimize solution.")} } if(length(grep("~",outcome)) > 0){ outcome<-outcome[grep("~",outcome)] outcome<-gsub('\\~', '', outcome) outcome<-unlist(outcome)} outcome <- toupper(outcome) X <- pimdata(results=results, outcome=outcome, sol=sol) y <- X[,"out", drop=FALSE] names(y) <- outcome aux <- function(i) { fil <- (X[,i] > 0.5) & (y > 0.5) & (X[,i] <= y) Z <- data.frame(x=X[fil, i], y=y[fil], s=rep(FALSE, sum(fil)), term=rep(colnames(X)[i], sum(fil)), case=rownames(X)[fil]) s <- (2*(Z$y-Z$x) + (1-Z$x)) suppressWarnings(Z$s[s==min(s)] <- TRUE) Z$St <- s colnames(Z)[1:3] <- c('term_membership', outcome, 'MostTyp') Z<-Z[, c(5, 4, 1, 2, 6, 3)] return(Z[order(Z$St),]) } R <- do.call(rbind, lapply(1:(ncol(X)-1), aux)) R <- R[R$term!='solution_formula', ] cases <- unique(R$case) su <- vapply(cases, function(i) sum(R[R$case==i,3]>0.5), FUN.VALUE=numeric(1)) R$UniqCov <- R$case %in% cases[su==1] R <- R[order(R$term,-R$UniqCov, R$St, R$term_membership),] names(R)[names(R)==outcome]<- "Outcome" names(R)[names(R)=="St"]<-"Best" R <- R[, c(1, 2, 3, 4, 7, 5, 6)] M <- list() M[[1]] <- list(title="Typical Cases", results=R) class(M) <- 'matchessuf' return(M) } cases.suf.typ.unique <- function(results, outcome, sol=1, ...) { dots <- list(...) if(length(dots) != 0){ if ("neg.out" %in% names(dots)){print("Argument neg.out is deprecated. The negated outcome is identified automatically from the minimize solution.")} if ("use.tilde" %in% names(dots)){print("Argument use.tilde is deprecated. The usage of the tilde is identified automatically from the minimize solution.")} } R <- cases.suf.typ(results, outcome, sol) R <- R[[1]]$results M<-list() M[[1]] <- list(title="Uniquely Covered Typical Cases", results=R[R$UniqCov, ]) class(M) <- 'matchessuf' return(M) }
knitr::opts_chunk$set(comment = " library(donut) set.seed(20092019) x1 <- runif(100, 0, 2 * pi) x2 <- runif(100, 0, 3) DATA <- data.frame(x1, x2) got_RANN <- requireNamespace("RANN", quietly = TRUE) library(RANN) ranges1 <- c(0, 2 * pi) query1 <- rbind(c(6, 1.3), c(2 * pi, 3), c(3, 1.5), c(4, 0)) res1 <- nnt(DATA, query1, k = 8, torus = 1, ranges = ranges1) plot(res1, ylim = c(0, 3)) res1$nn.dists res1$nn.idx ranges <- rbind(c(0, 2 * pi), c(0, 3)) query <- rbind(c(6, 1.3), c(2 * pi, 3), c(3, 1.5), c(4, 0)) res2 <- nnt(DATA, query, k = 8, torus = 1:2, ranges = ranges) plot(res2) got_nabor <- requireNamespace("nabor", quietly = TRUE) library(nabor) ranges <- rbind(c(0, 2 * pi), c(0, 3)) query <- rbind(c(6, 1.3), c(2 * pi, 3), c(3, 1.5), c(4, 0)) res2 <- nnt(DATA, query, k = 8, fn = nabor::knn, torus = 1:2, ranges = ranges) plot(res2)
rm_sdt_calc_probs_gpcm_rcpp <- function(a.item, tau.item, Qmatrix, theta.k, VV, K, TP, eps=0, use_log=FALSE, as_vector=FALSE) { K1 <- K+1 prob_dim <- c(VV, K1, TP) res <- sirt_rcpp_rm_sdt_calc_probs_gpcm( a=a.item, tau=tau.item, theta_k=theta.k, VV=VV, K1=K1, TP=TP, eps=eps, use_log=use_log ) if ( ! as_vector ){ res <- array(res, dim=prob_dim) } return(res) }
mf_get_leg_pos <- function(x, n = 1) { if (is.null(grDevices::dev.list())) { bb <- sf::st_bbox(x) } else { p <- par("usr") bb <- sf::st_bbox(c( xmin = p[1], ymin = p[3], xmax = p[2], ymax = p[4] ), crs = sf::st_crs(x) ) } g <- sf::st_make_grid(x = sf::st_as_sfc(bb), n = c(3, 3), crs = sf::st_crs(x)) y <- sf::st_union(sf::st_convex_hull(sf::st_geometry(x))) z <- sf::st_intersects(g, y) ind <- which(unlist(lapply(z, length)) == 0) if (n == 1) { if (length(ind) > 0) { pos <- max(ind) } else { pos <- which.min(sf::st_area(sf::st_intersection(g, y))) } } if (n == 2) { pos <- c(NA, NA) if (length(ind) > 1) { pos <- sort(ind, decreasing = TRUE)[1:2] } else { if (length(ind) == 1) { ii <- rep(NA, 9) names(ii) <- 1:9 ii[ind] <- 0 couv <- sf::st_area(sf::st_intersection(g, y)) ii[is.na(ii)] <- couv pos <- as.numeric(names(sort(ii)[1:2])) } else { couv <- sf::st_area(sf::st_intersection(g, y)) names(couv) <- 1:9 pos <- as.numeric(names(sort(couv)[1:2])) } } } tpos <- c( "bottomleft1", "bottom", "bottomright1", "left", "center", "right", "topleft", "top", "topright" ) return(tpos[pos]) }
ACP.calculator <- function(CTSR.VI, ACP.table, ACT.table = NULL, allow.negative = FALSE, allowneg.retest = FALSE) { if (class(CTSR.VI) != "ts") { stop("CTSR.VI Not a time series object")} if (length(CTSR.VI) != dim(ACP.table)[2]) { stop("ACP.table size does not match CTSR.VI")} if ((!is.null(ACT.table)) && (dim(ACT.table)[2] != dim(ACP.table)[2])) { stop("ACT.table size does not match CTSR.VI") } yst <- start(CTSR.VI)[1] mst <- start(CTSR.VI)[2] linreg <- function(CTSR.VI, ACP.N, ACT.N = NULL, simple = TRUE) { if (sd(ACP.table[n, ]) == 0) { if (is.null(ACT.N)) { return(c(0, -1))}else{return(0) } }else{ if (is.null(ACT.N)) { fit <- lm(CTSR.VI ~ ACP.N) R.Rval <- summary(fit)$r.square R.slpe <- as.numeric(coef(fit)[2]) if (simple) { return(c(R.Rval, R.slpe)) } R.pval <- glance(fit)$p.value R.intr <- as.numeric(coef(fit)[1]) R.Tcoef <- NaN t.sig <- TRUE }else{ fit <- lm(CTSR.VI ~ ACP.N + ACT.N) R.Rval <- summary(fit)$r.square R.slpe <- as.numeric(coef(fit)[2]) if (simple) { return(c(R.Rval, R.slpe)) } R.pval <- glance(fit)$p.value R.intr <- as.numeric(coef(fit)[1]) R.slpe <- as.numeric(coef(fit)[2]) R.Tcoef <- as.numeric(coef(fit)[3]) t.sig <- (coef(summary(fit))["ACT.N","Pr(>|t|)"] < 0.05) } R.BH <- NaN R.SC <- NaN R.SCT <- NaN return(structure(list(lm.sum = c(R.slpe, R.Tcoef, R.intr, R.pval, R.Rval, R.BH, R.SC, R.SCT), temp.sig = t.sig))) }} while (TRUE) { len <- dim(ACP.table)[2] if (is.null(ACT.table)) { lines <- dim(ACP.table)[1] }else{ lines <- dim(ACP.table)[1]*dim(ACT.table)[1] } m <- matrix(nrow = (lines), ncol = 2) colnames(m) <- c("R^2.Value", "slope") if (is.null(ACT.table)) { rownames(m) <- rownames(ACP.table) }else{ rn.names <- NULL for (rnm in rownames(ACP.table)) { rnms <- cbind(rnm, rownames(ACT.table)) rmx <- paste(rnms[,1] , rnms[,2], sep = ":") rn.names <- c(rn.names, rmx)} rownames(m) <- rn.names } for (n in 1:dim(ACP.table)[1]) { if (is.null(ACT.table)) { m[n, ] <- linreg(CTSR.VI, ACP.table[n, ]) }else{ for (nx in 1:dim(ACT.table)[1]) { rn.loop <- paste(rownames(ACP.table)[n], rownames(ACT.table)[nx], sep = ":") m[rn.loop, ] <- linreg(CTSR.VI, ACP.table[n, ], ACT.table[nx,]) }} } if (allow.negative) { mx <- m }else{ mx <- matrix(m[m[, "slope"] > 0,], ncol = 2) colnames(mx) <- c("R^2.Value", "slope") rownames(mx) <- rownames(m[m[, "slope"] > 0,]) } if (dim(mx)[1] <= 2 || allow.negative) { max.line <- which.max(m[, "R^2.Value"]) fulname <- rownames(m)[max.line] if (is.null(ACT.table)) { sum.res <- linreg(CTSR.VI, ACP.table[fulname, ], simple = FALSE) suma <- sum.res$lm.sum precip.nm <- fulname CTSR.ATM <- NULL t.osp <- NaN t.acp <- NaN } else { part.nm <- strsplit(fulname, "\\:")[[1]] precip.nm <- part.nm[1] sum.res <- linreg(CTSR.VI, ACP.table[precip.nm, ], ACT.table[part.nm[2],], simple = FALSE) suma <- sum.res$lm.sum CTSR.ATM <- ts(ACT.table[part.nm[2], ], start = c(yst, mst), frequency = 12) Tnmsplit <- strsplit(part.nm[2], "\\-")[[1]] t.osp <- as.numeric(Tnmsplit[1]) t.acp <- as.numeric(Tnmsplit[2]) } if (!sum.res$temp.sig) { ACT.table = NULL allow.negative = allowneg.retest }else{ CTSR.ARF <- ts(ACP.table[precip.nm, ], start = c(yst, mst), frequency = 12) nmsplit <- strsplit(precip.nm, "\\-")[[1]] osp <- as.numeric(nmsplit[1]) acp <- as.numeric(nmsplit[2]) return(structure(list( summary = suma, CTSR.precip = CTSR.ARF, CTSR.tmp = CTSR.ATM,CTSR.osp = osp, CTSR.acp = acp, CTSR.tosp = t.osp, CTSR.tacp = t.acp)) ) } }else{ max.line <- which.max(mx[, "R^2.Value"]) fulname <- rownames(mx)[max.line] if (is.null(ACT.table)) { rfx <- ACP.table[m[, "slope"] > 0,] sum.res <- linreg(CTSR.VI, ACP.table[fulname, ], simple = FALSE) suma <- sum.res$lm.sum CTSR.ARF <- ts(rfx[max.line, ], start = c(yst, mst), frequency = 12) namestr <- rownames(rfx)[max.line] nmsplit <- strsplit(namestr, "\\-")[[1]] osp <- as.numeric(nmsplit[1]) acp <- as.numeric(nmsplit[2]) precip.nm <- fulname CTSR.ATM <- NULL t.osp <- NaN t.acp <- NaN } else { part.nm <- strsplit(fulname, "\\:")[[1]] precip.nm <- part.nm[1] sum.res <- linreg(CTSR.VI, ACP.table[precip.nm, ], ACT.table[part.nm[2],], simple = FALSE) suma <- sum.res$lm.sum nmsplit <- strsplit(precip.nm, "\\-")[[1]] osp <- as.numeric(nmsplit[1]) acp <- as.numeric(nmsplit[2]) CTSR.ATM <- ts(ACT.table[part.nm[2], ], start = c(yst, mst), frequency = 12) CTSR.ARF <- ts(ACP.table[precip.nm, ], start = c(yst, mst), frequency = 12) Tnmsplit <- strsplit(part.nm[2], "\\-")[[1]] t.osp <- as.numeric(Tnmsplit[1]) t.acp <- as.numeric(Tnmsplit[2]) } if (!sum.res$temp.sig) { ACT.table = NULL allow.negative = allowneg.retest }else { return(structure(list( summary = suma, CTSR.precip = CTSR.ARF, CTSR.tmp = CTSR.ATM,CTSR.osp = osp, CTSR.acp = acp, CTSR.tosp = t.osp, CTSR.tacp = t.acp)) ) } } } browser() }
eject_cassette <- function(cassette = NULL, options = list(), skip_no_unused_interactions_assertion = NULL) { on.exit(webmockr::webmockr_disable_net_connect(), add=TRUE) if (is.null(cassette)) { cas <- current_cassette() if (length(cas) == 0) stp("no cassette in use currently") } else { if (!cassette_exists(cassette)) stp("cassette '", cassette, "' not found") cas <- cassettes(FALSE)[[cassette]] if (is.null(cas)) stp("cassette '", cassette, "' not found") } cas$eject() }