code
stringlengths
1
13.8M
appliquePonder <- function(var, pond){ res <- var * pond return (res) }
sampler.hmc.bounded <- function(f, q, fq, w, lower, upper, control) { epsilon <- control$epsilon L <- control$L m <- control$m if ( m != 1 ) stop("Varying m not allowed yet.") if ( any(upper < Inf) ) stop("Probably should not try upper yet.") q.in <- q fq.in <- fq gq <- attr(fq, "gr") p.in <- p <- rnorm(length(q), 0, 1) p <- p + epsilon * gq / 2 for (i in seq_len(L)) { q <- q + epsilon * p nok <- q < lower if ( any(nok) ) { q[nok] <- 2 * lower[nok] - q[nok] p[nok] <- -p[nok] } if ( i != L ) p <- p + epsilon * attr(f(q), "gr") } fq.out <- f(q) p <- p + epsilon * attr(fq.out, "gr") / 2 k.in <- sum(p.in^2) / 2 k.out <- sum(p^2) / 2 alpha <- exp(-fq.in - -fq.out + k.in - k.out) if ( runif(1) < alpha ) list(q, fq.out) else list(q.in, fq.in) }
context("dimCode Test") x <- maxample("animal") pop <- maxample("pop") test_that("dimension codes are correctly extracted", { expect_equivalent(dimCode(1, x), 1) expect_equivalent(dimCode(1.5, x), 1.5) expect_equivalent(dimCode(4.2, x), 0) expect_equivalent(dimCode(3.5, x, strict = FALSE), 3.5) expect_equivalent(dimCode(3.5, x, strict = TRUE), 0) expect_equivalent(dimCode("month", x), 2.2) expect_equivalent(dimCode("x", x), 1.1) expect_equivalent(dimCode("country", x), 1.3) expect_equivalent(dimCode(c("y", "year", "color"), x), c(1.2, 2.1, 3.3)) expect_equivalent(dimCode(NULL, x), NULL) expect_equivalent(dimCode("t", pop), 2) expect_equivalent(dimCode("notavail", pop), 0) }) test_that("illegal dim values are properly detected", { expect_error(dimCode("a.b", x), "separator must not be used in dimension name") getSets(pop) <- rep("same", 3) expect_error(dimCode("same", pop), "found more than once") getSets(x, fulldim = FALSE)[3] <- "species.species.color" expect_error(dimCode("species", x), "more than once") expect_error(dimCode(5, x, missing = "stop"), "illegal dimension") })
plotPost <- function(paramSampleVec, credMass = 0.95, compVal = NULL, ROPE = NULL, HDItextPlace = 0.7, showMode = FALSE, showCurve = FALSE, ...) { dots <- list(...) if(length(dots) == 1 && class(dots[[1]]) == "list") dots <- dots[[1]] defaultArgs <- list(xlab=deparse(substitute(paramSampleVec)), yaxt="n", ylab="", main="", cex.lab=1.5, cex=1.4, col="skyblue", border="white", bty="n", lwd=5, freq=FALSE, xlim=range(compVal, HDInterval::hdi(paramSampleVec, 0.99))) useArgs <- modifyList(defaultArgs, dots) breaks <- dots$breaks if (is.null(breaks)) { if (all(paramSampleVec == round(paramSampleVec))) { breaks <- seq(min(paramSampleVec), max(paramSampleVec) + 1) - 0.5 } else { by <- diff(HDInterval::hdi(paramSampleVec))/18 breaks <- unique(c( seq( from=min(paramSampleVec), to=max(paramSampleVec), by=by), max(paramSampleVec) )) } } histinfo <- hist(paramSampleVec, breaks=breaks, plot=FALSE) histinfo$xname <- useArgs$xlab oldpar <- par(xpd=TRUE) ; on.exit(par(oldpar)) if (showCurve) { densCurve <- density( paramSampleVec, adjust=2 ) selPlot <- names(useArgs) %in% c(names(as.list(args(plot.default))), names(par(no.readonly=TRUE))) plotArgs <- useArgs[selPlot] plotArgs$x <- densCurve$x plotArgs$y <- densCurve$y plotArgs$type <- "l" plotArgs$xpd <- FALSE do.call(plot, plotArgs, quote=TRUE) abline(h=0, col='grey', xpd=FALSE) if(!is.null(credMass)) { HDI <- HDInterval::hdi(densCurve, credMass, allowSplit=TRUE) ht <- attr(HDI, "height") segments(HDI[, 1], ht, HDI[, 2], ht, lwd=4, lend='butt') segments(HDI, 0, HDI, ht, lty=2) text( mean(HDI), ht, bquote(.(100*credMass) * "% HDI" ), adj=c(.5,-1.7), cex=useArgs$cex ) text( HDI, ht, bquote(.(signif(HDI, 3))), pos=3, cex=useArgs$cex ) } } else { plot.histogram.args.names <- c("freq", "density", "angle", "border", "main", "sub", "xlab", "ylab", "xlim", "ylim", "axes", "labels", "add") selPlot <- names(useArgs) %in% c(plot.histogram.args.names, names(par(no.readonly=TRUE))) plotArgs <- useArgs[selPlot] plotArgs$lwd <- 1 plotArgs$x <- histinfo do.call(plot, plotArgs, quote=TRUE) if(!is.null(credMass)) { HDI <- HDInterval::hdi( paramSampleVec, credMass ) lines(HDI, c(0,0), lwd=4, lend='butt') text( mean(HDI), 0, bquote(.(100*credMass) * "% HDI" ), adj=c(.5,-1.7), cex=useArgs$cex ) text( HDI[1], 0, bquote(.(signif(HDI[1],3))), adj=c(HDItextPlace,-0.5), cex=useArgs$cex ) text( HDI[2], 0, bquote(.(signif(HDI[2],3))), adj=c(1.0-HDItextPlace,-0.5), cex=useArgs$cex ) } } cenTendHt <- 0.9 * max(histinfo$density) if ( showMode==FALSE ) { meanParam <- mean( paramSampleVec ) text( meanParam, cenTendHt, bquote(mean==.(signif(meanParam,3))), adj=c(.5,0), cex=useArgs$cex ) } else { dres <- density( paramSampleVec ) modeParam <- dres$x[which.max(dres$y)] text( modeParam, cenTendHt, bquote(mode==.(signif(modeParam,3))), adj=c(.5,0), cex=useArgs$cex ) } if ( !is.null( compVal ) ) { cvHt <- 0.7 * max(histinfo$density) cvCol <- "darkgreen" pcgtCompVal <- round( 100 * sum( paramSampleVec > compVal ) / length( paramSampleVec ) , 1 ) pcltCompVal <- 100 - pcgtCompVal lines( c(compVal,compVal), c(0.96*cvHt,0), lty="dotted", lwd=1, col=cvCol ) text( compVal, cvHt, bquote( .(pcltCompVal)*"% < " * .(signif(compVal,3)) * " < "*.(pcgtCompVal)*"%" ), adj=c(pcltCompVal/100,0), cex=0.8*useArgs$cex, col=cvCol ) } if ( !is.null( ROPE ) ) { ROPEtextHt <- 0.55 * max(histinfo$density) ropeCol <- "darkred" pcInROPE <- ( sum( paramSampleVec > ROPE[1] & paramSampleVec < ROPE[2] ) / length( paramSampleVec ) ) lines( c(ROPE[1],ROPE[1]), c(0.96*ROPEtextHt,0), lty="dotted", lwd=2, col=ropeCol ) lines( c(ROPE[2],ROPE[2]), c(0.96*ROPEtextHt,0), lty="dotted", lwd=2, col=ropeCol) text( mean(ROPE), ROPEtextHt, bquote( .(round(100*pcInROPE))*"% in ROPE" ), adj=c(.5,0), cex=1, col=ropeCol ) } return(invisible(histinfo)) }
vg_check <- function () { vg <- system2 (command = "R", args = c ('-d "valgrind --tool=memcheck --leak-check=full"', '-f valgrind-script.R'), stdout = TRUE, stderr = TRUE) lost <- NULL types <- c ("definitely lost", "indirectly lost", "possibly lost") for (ty in types) { lost_type <- which (grepl (ty, vg)) n <- regmatches (vg [lost_type], gregexpr ("[[:digit:]]+", vg [lost_type])) lost <- c (lost, as.numeric (n [[1]] [2:3])) } if (any (lost > 0)) stop ("valgrind memory leaks detected!") return (TRUE) } if (identical (Sys.getenv ("TRAVIS"), "true")) { }
readWiki <- function(category, subcategories = TRUE, language = "en", project = "wikipedia"){ stopifnot( is.character(category), length(category) == 1, is.logical(subcategories), length(subcategories) == 1, is.character(language), length(language) == 1, is.character(project), length(project) == 1) level1pages <- WikipediR::pages_in_category( language = language, project = project, type = "page", limit = 500, properties = c("id", "title", "timestamp"), categories = category)$query$categorymembers subs <- NULL level2pages <- NULL if (subcategories){ subs <- WikipediR::pages_in_category( language = language, project = project, type = "subcat", limit = 500, properties = "title", categories = category)$query$categorymembers subs <- gsub("Category:", "", sapply(subs, function(x) x$title)) level2pages <- do.call(c, lapply(subs, function(x) WikipediR::pages_in_category( language = language, project = project, type = "page", limit = 500, properties = c("id", "title", "timestamp"), categories = x)$query$categorymembers)) } pages = c(level1pages, level2pages) message("downloading ", length(pages), " articles in the category \"", category, "\" and ", length(subs), " subcategories...") id <- sapply(pages, function(x) x$pageid) title <- sapply(pages, function(x) x$title) date <- as.Date(sapply(pages, function(x) x$timestamp)) categoryCall <- category touched <- as.Date( sapply(pages, function(x) WikipediR::page_info(language = language, project = project, page = x$title)$query$pages[[1]]$touched)) meta <- data.frame(id = as.character(id), date = date, title = title, categoryCall = categoryCall, touched = touched, stringsAsFactors = FALSE) text <- lapply(meta$title, function(x) WikipediR::page_content(language = language, project = project, page_name = x)$parse$text$`*`) names(text) <- meta$id return(textmeta(meta = meta, text = text)) }
spherical.recurrences <- function( n, normalized=FALSE ) { return( legendre.recurrences( n, normalized ) ) }
library("ggplot2") x <- seq_along(sunspot.year) y <- as.numeric(sunspot.year) m <- ggplot(data.frame(x = x, y = y), aes(x = x, y = y)) + geom_line() m ratio <- bank_slopes(x, y) m + coord_fixed(ratio = ratio) bank_slopes(x, y, method = "as")
addMinicharts <- function(map, lng, lat, chartdata = 1, time = NULL, maxValues = NULL, type = "auto", fillColor = d3.schemeCategory10[1], colorPalette = d3.schemeCategory10, width = 30, height = 30, opacity = 1, showLabels = FALSE, labelText = NULL, labelMinSize = 8, labelMaxSize = 24, labelStyle = NULL, transitionTime = 750, popup = popupArgs(), layerId = NULL, legend = TRUE, legendPosition = "topright", timeFormat = NULL, initialTime = NULL, onChange = NULL, popupOptions = NULL) { type <- match.arg(type, c("auto", "bar", "pie", "polar-area", "polar-radius")) if (is.null(layerId)) layerId <- sprintf("_minichart (%s,%s)", lng, lat) if (is.null(time)) time <- 1 if (is.null(popup$labels)) popup$labels <- colnames(chartdata) if (showLabels) { if (!is.null(labelText)) labels <- labelText else labels <- "auto" } else { labels <- "none" } options <- .preprocessArgs( required = list(lng = lng, lat = lat, layerId = layerId, time = time), optional = list(type = type, width = width, height = height, opacity = opacity, labels = labels, labelMinSize = labelMinSize, labelMaxSize = labelMaxSize, labelStyle = labelStyle, transitionTime = transitionTime, fillColor = fillColor) ) args <- .prepareJSArgs(options, chartdata, popup, onChange, initialTime = initialTime, timeFormat = timeFormat) if (is.null(maxValues)) maxValues <- args$maxValues map$dependencies <- c(map$dependencies, minichartDeps()) if(!is.null(maxValues)){ if(!is.null(args$chartdata)){ if(!(length(maxValues) == 1 | length(maxValues) == ncol(args$chartdata[[1]]))){ stop("'maxValues' should be a single number or have same length as 'data'") } } maxValues <- unname(maxValues) maxValues[maxValues == 0 | is.na(maxValues) | is.infinite(maxValues)] <- 1 } map <- invokeMethod(map, data = leaflet::getMapData(map), "addMinicharts", args$options, args$chartdata, maxValues, colorPalette, args$timeLabels, args$initialTime, args$popupArgs, args$onChange, popupOptions) if (legend && length(args$legendLab) > 0 && args$ncol > 1) { legendCol <- colorPalette[(seq_len(args$ncols)-1) %% args$ncols + 1] map <- addLegend(map, labels = args$legendLab, colors = legendCol, opacity = 1, layerId = "minichartsLegend", position = legendPosition) } map %>% expandLimits(lat, lng) } updateMinicharts <- function(map, layerId, chartdata = NULL, time = NULL, maxValues = NULL, type = NULL, fillColor = NULL, colorPalette = d3.schemeCategory10, width = NULL, height = NULL, opacity = NULL, showLabels = NULL, labelText = NULL, labelMinSize = NULL, labelMaxSize = NULL, labelStyle = NULL, transitionTime = NULL, popup = NULL, legend = TRUE, legendPosition = NULL, timeFormat = NULL, initialTime = NULL, onChange = NULL, popupOptions = NULL) { if (!is.null(type)) { type <- match.arg(type, c("auto", "bar", "pie", "polar-area", "polar-radius")) } if (is.null(time)) time <- 1 if (!is.null(chartdata) & !is.null(popup) & is.null(popup$labels)) popup$labels <- colnames(chartdata) if (is.null(showLabels)) { labels <- NULL } else { if (showLabels) { if (!is.null(labelText)) labels <- labelText else labels <- "auto" } else { labels <- "none" } } options <- .preprocessArgs( required = list(layerId = layerId, time = time), optional = list(type = type, width = width, height = height, opacity = opacity, labels = labels, labelMinSize = labelMinSize, labelMaxSize = labelMaxSize, labelStyle = labelStyle, labelText = labelText, transitionTime = transitionTime, fillColor = fillColor) ) args <- .prepareJSArgs(options, chartdata, popup, onChange, initialTime = initialTime, timeFormat = timeFormat) if(is.null(chartdata)) { args$timeLabels <- NULL } if (!is.null(args$chartdata)) { if (legend && length(args$legendLab) > 0 && args$ncols > 1) { legendCol <- colorPalette[(seq_len(args$ncols)-1) %% args$ncols + 1] map <- addLegend(map, labels = args$legendLab, colors = legendCol, opacity = 1, layerId = "minichartsLegend", position = legendPosition) } else { map <- leaflet::removeControl(map, "minichartsLegend") } } if(!is.null(maxValues)){ if(!is.null(args$chartdata)){ if(!(length(maxValues) == 1 | length(maxValues) == ncol(args$chartdata[[1]]))){ stop("'maxValues' should be a single number or have same length as 'data'") } } maxValues <- unname(maxValues) maxValues[maxValues == 0 | is.na(maxValues) | is.infinite(maxValues)] <- 1 } map %>% invokeMethod(leaflet::getMapData(map), "updateMinicharts", args$options, args$chartdata, maxValues, colorPalette, args$timeLabels, args$initialTime, args$popupArgs, args$legendLab, args$onChange, popupOptions) } removeMinicharts <- function(map, layerId) { invokeMethod(map, leaflet::getMapData(map), "removeMinicharts", layerId) } clearMinicharts <- function(map) { invokeMethod(map, leaflet::getMapData(map), "clearMinicharts") %>% leaflet::removeControl("minichartsLegend") }
library(ggplot2) this_base <- "fig03-02_area-and-volume-judgments" my_data <- data.frame( val1 = c(0.75, 2, 3, 4, 5, 5, 6, 7, 8), val2 = c(4, 6, 6, 8, 6, 5, 1, 0.5, 9), area = c(5, 8, 0.25, 4, 9, 0.5, 6, 1, 12)) p <- ggplot(my_data, aes(x = val1, y = val2, size = area)) + geom_point(shape = 21, show_guide = FALSE) + scale_size_area(max_size = 25) + scale_x_continuous(breaks = seq(2, 8, 2), limit = c(0, 9), expand = c(0, 0)) + scale_y_continuous(breaks = seq(0, 10, 2), limit = c(0, 10), expand = c(0, 0)) + ggtitle("Fig 3.2 Area and Volume Judgments") + theme_bw() + theme(panel.grid.major = element_blank(), plot.title = element_text(size = rel(1.5), face = "bold", vjust = 1.5), axis.title = element_blank()) p ggsave(paste0(this_base, ".png"), p, width = 6, height = 5)
pmclust.internal <- function(X = NULL, K = 2, MU = NULL, algorithm = .PMC.CT$algorithm.gbd, RndEM.iter = .PMC.CT$RndEM.iter, CONTROL = .PMC.CT$CONTROL, method.own.X = .PMC.CT$method.own.X, rank.own.X = .pbd_env$SPMD.CT$rank.source, comm = .pbd_env$SPMD.CT$comm){ if(! (algorithm[1] %in% .PMC.CT$algorithm.gbd)){ comm.stop("The algorithm is not supported") } if(! (method.own.X[1] %in% .PMC.CT$method.own.X)){ comm.stop("The method.own.X is not found.") } if(comm.all(is.null(X))){ } else{ convert.data(X, method.own.X[1], rank.own.X, comm) } PARAM.org <- set.global(K = K, RndEM.iter = RndEM.iter) if(! comm.all(is.null(CONTROL))){ tmp <- .pmclustEnv$CONTROL[!(names(.pmclustEnv$CONTROL) %in% names(CONTROL))] .pmclustEnv$CONTROL <- c(tmp, CONTROL) } if(! comm.all(is.null(MU))){ if(algorithm[1] != "kmeans"){ PARAM.org <- initial.em(PARAM.org, MU = MU) } else{ PARAM.org <- initial.center(PARAM.org, MU = MU) } } else{ if(algorithm[1] != "kmeans"){ PARAM.org <- initial.RndEM(PARAM.org) } else{ PARAM.org <- initial.center(PARAM.org) } } method.step <- switch(algorithm[1], "em" = em.step, "aecm" = aecm.step, "apecm" = apecm.step, "apecma" = apecma.step, "kmeans" = kmeans.step, NULL) PARAM.new <- method.step(PARAM.org) if(algorithm[1] == "kmeans"){ kmeans.update.class() } else{ em.update.class() } N.CLASS <- get.N.CLASS(K) ret <- list(algorithm = algorithm[1], param = PARAM.new, class = .pmclustEnv$CLASS.spmd, n.class = N.CLASS, check = .pmclustEnv$CHECK) ret }
knitr::opts_chunk$set( collapse = TRUE, comment = " ) library(htmltools) tags$div( class = "shiny-app-frame", tags$iframe( src = "https://andrie-de-vries.shinyapps.io/sortable_rank_list_app/", width = "100%", height = 550 ) ) knitr::read_chunk( system.file("shiny-examples/rank_list/app.R", package = "sortable") ) library(htmltools) tags$div( class = "shiny-app-frame", tags$iframe( src = "https://andrie-de-vries.shinyapps.io/sortable_bucket_list_app/", width = "100%", height = 800 ) ) knitr::read_chunk( system.file("shiny-examples/bucket_list/app.R", package = "sortable") )
add_rmd <- function(rmd, path) { no_rmd <- missing(rmd) || is.null(rmd) || is.na(rmd) no_path <- missing(path) || is.null(path) || is.na(path) if( no_rmd && no_path) stop('Either rmd or path must be specified') if(!no_rmd && !no_path) stop('Only one of app or path should be specified') if(no_path) { file <- file.path(getShinyOption('appDir'), rmd) } else { Path <- shiny::addResourcePath(basename(dirname(path)), dirname(path)) file <- file.path(path) } withMathJax(HTML(markdown::markdownToHTML(knitr::knit(file)))) }
get_F_const = function(temp_kelvin, gas_constant) { if(temp_kelvin == 0) stop("Temperature in Kelvin can not be 0.") Ea_A = 14000 Ea_B = 17000 Ea_W = 19000 Q7 = (1 / temp_kelvin - 1 / 293) / gas_constant list(Fta = exp(-Q7 * Ea_A), Ftb = exp(-Q7 * Ea_B), Ftw = exp(-Q7 * Ea_W)) } get_poly_const = function(mol_type, exchange = "HD") { match.arg(mol_type, c("poly", "oligo")) match.arg(exchange, c("HD", "DH")) if (exchange == "HD") { Ka_exponent = 1.62 Kb_exponent = 10.05 Kw_exponent = -1.5 } else { Ka_exponent = 1.4 Kb_exponent = 9.87 Kw_exponent = -1.6 } Ka_poly = (10^(Ka_exponent)) / 60 Kb_poly = (10^(Kb_exponent)) / 60 Kw_poly = (10^(Kw_exponent)) / 60 if (mol_type == "poly") { list(Ka = Ka_poly, Kb = Kb_poly, Kw = Kw_poly) } else { Kb_oligo = Kb_poly * 1.35 Ka_oligo = Ka_poly * 2.34 Kw_oligo = Kw_poly * 1.585 list(Ka = Ka_oligo, Kb = Kb_oligo, Kw = Kw_oligo) } } get_pkc <- function(temp_kelvin, gas_constant, exchange = "HD") { if(temp_kelvin == 0) stop("Temperature in Kelvin can not be 0.") match.arg(exchange, c("HD", "DH")) if (exchange == "HD") { Ea_Asp <- 1000 Asp_exponent <- -4.48 Glu_exponent <- -4.93 His_exponent <- -7.42 } else { Ea_Asp <- 960 Asp_exponent <- -3.87 Glu_exponent <- -4.33 His_exponent <- -7 } Ea_Glu <- 1083 Ea_His <- 7500 pKc_Asp <- -log10(10^(Asp_exponent)*exp(-1*Ea_Asp*((1/temp_kelvin-1/278)/gas_constant))) pKc_Glu <- -log10(10^(Glu_exponent)*exp(-1*Ea_Glu*((1/temp_kelvin-1/278)/gas_constant))) pKc_His <- -log10(10^(His_exponent)*exp(-1*Ea_His*((1/temp_kelvin - 1/278)/gas_constant))) list(asp = pKc_Asp, glu = pKc_Glu, his = pKc_His) } get_exchange_constants <- function(pH, pkc_consts, k_consts) { constants <- matrix( c(0, 0, 0, 0, -0.59, -0.32, 0.0767122542818456, 0.22, 0, 0, 0, 0, -0.90, -0.12, 0.69, 0.60, -0.58, -0.13, 0.49, 0.32, -0.54, -0.46, 0.62, 0.55, -0.74, -0.58, 0.55, 0.46, -0.22, 0.218176047120386, 0.267251569286023, 0.17, 0, 0, 0, 0, -0.6, -0.27, 0.24, 0.39, -0.47, -0.27, 0.06, 0.2, 0, 0, 0, 0, -0.91, -0.59, -0.73, -0.23, -0.57, -0.13, -0.576252727721677, -0.21, -0.56, -0.29, -0.040, 0.12, -0.64, -0.28, -0.00895484265292644, 0.11, -0.52, -0.43, -0.235859464059171, 0.0631315866300978, 0, -0.194773472023435, 0, -0.24, 0, -0.854416534276379, 0, 0.6, -0.437992277698594, -0.388518934646472, 0.37, 0.299550285605933, -0.79, -0.468073125742265, -0.0662579798400606, 0.20, -0.40, -0.44, -0.41, -0.11, -0.41, -0.37, -0.27, 0.050, -0.739022273362575, -0.30, -0.701934483299758, -0.14, 0, -1.32,0,1.62, 0, 0, -1.8, 0, 0, 0, 0, 0, 0, 0.293, 0, -0.197 ), ncol = 4, byrow = TRUE) constants[3,1] <- log10(10^(-0.9 - pH) / (10^(-pkc_consts[["asp"]]) + 10^(-pH)) + 10^(0.9 - pkc_consts[["asp"]]) / (10^(-pkc_consts[["asp"]]) + 10^(-pH))) constants[3,2] <- log10(10^(-0.12 - pH) / (10^(-pkc_consts[["asp"]]) + 10^(-pH)) + 10^(0.58 - pkc_consts[["asp"]]) / (10^(-pkc_consts[["asp"]]) + 10^(-pH))) constants[3,3] <- log10(10^(0.69 - pH) / (10^(-pkc_consts[["asp"]]) + 10^(-pH)) + 10^(-0.3 - pkc_consts[["asp"]]) / (10^(-pkc_consts[["asp"]]) + 10^(-pH))) constants[3,4] <- log10(10^(0.6 - pH) / (10^(-pkc_consts[["asp"]]) + 10^(-pH)) + 10^(-0.18 - pkc_consts[["asp"]]) / (10^(-pkc_consts[["asp"]]) + 10^(-pH))) constants[9,1] <- log10(10^(-0.6 - pH) / (10^(-pkc_consts[["glu"]]) + 10^(-pH)) + 10^(-0.9 - pkc_consts[["glu"]]) / (10^(-pkc_consts[["glu"]]) + 10^(-pH))) constants[9,2] <- log10(10^(-0.27 - pH) / (10^(-pkc_consts[["glu"]]) + 10^(-pH)) + 10^(0.31 - pkc_consts[["glu"]]) / (10^(-pkc_consts[["glu"]]) + 10^(-pH))) constants[9,3] <- log10(10^(0.24 - pH) / (10^(-pkc_consts[["glu"]]) + 10^(-pH)) + 10^(-0.51 - pkc_consts[["glu"]]) / (10^(-pkc_consts[["glu"]]) + 10^(-pH))) constants[9,4] <- log10(10^(0.39 - pH) / (10^(-pkc_consts[["glu"]]) + 10^(-pH)) + 10^(-0.15 - pkc_consts[["glu"]]) / (10^(-pkc_consts[["glu"]]) + 10^(-pH))) constants[12,1] <- log10(10^(-0.8 - pH) / (10^(-pkc_consts[["his"]]) + 10^(-pH)) + 10^(-pkc_consts[["his"]]) / (10^(-pkc_consts[["his"]]) + 10^(-pH))) constants[12,2] <- log10(10^(-0.51 - pH) / (10^(-pkc_consts[["his"]]) + 10^(-pH)) + 10^(-pkc_consts[["his"]]) / (10^(-pkc_consts[["his"]]) + 10^(-pH))) constants[12,3] <- log10(10^(0.8 - pH) / (10^(-pkc_consts[["his"]]) + 10^(-pH)) + 10^(-0.1 - pkc_consts[["his"]]) / (10^(-pkc_consts[["his"]]) + 10^(-pH))) constants[12,4] <- log10(10^(0.83 - pH) / (10^(-pkc_consts[["his"]]) + 10^(-pH)) + 10^(0.14 - pkc_consts[["his"]]) / (10^(-pkc_consts[["his"]]) + 10^(-pH))) constants[26,1] <- log10(10^(0.05 - pH) / (10^(-pkc_consts[["glu"]]) + 10^(-pH)) + 10^(0.96 - pkc_consts[["glu"]]) / (10^(-pkc_consts[["glu"]]) + 10^(-pH))) constants[27,1] <- log10(135.5 / (k_consts[["Ka"]] * 60)) constants[27,3] <- log10(2970000000 / (k_consts[["Kb"]] * 60)) constants } get_exchange_rates <- function(sequence, exchange = "HD", pH = 9, temperature = 15, mol_type = "poly", if_corr = FALSE) { assert(checkLogical(if_corr)) assert(checkChoice(mol_type, c("poly", "oligo"))) assert(checkChoice(exchange, c("HD", "DH"))) assert(checkFALSE(temperature == -273.15)) if (exchange == "HD") { pd <- pH + 0.4 * if_corr D <- 10^(-pd) OD <- 10^(pd - 15.05) } else { D <- 10 ^ (-pH) OD <- 10 ^ (pH - 14.17) } gas_constant <- 1.9858775 temp_kelvin <- temperature + 273.15 F_consts <- get_F_const(temp_kelvin, gas_constant) poly_consts <- get_poly_const(mol_type, exchange) pkc_consts <- get_pkc(temp_kelvin, gas_constant, exchange) AAs <- strsplit('ARDdNCsGEeQHILKMFPpSTWYVncma', "")[[1]] constants <- get_exchange_constants(pH, pkc_consts, poly_consts) sequence <- c("n", sequence, "c") N <- length(sequence) if (N <= 2) stop("Length of sequence must be greater than 0") kcDH = rep(0, N) for (i in 1:N) { if (i == 1 || sequence[i] == 'P' || sequence[i] == 'p' || sequence[i] == 'a') { next() } else { if (i %in% c(1, 2, N) || sequence[i] %in% c("P", "a", "p")) { Fa <- 0 Fb <- 0 } else { j <- which(AAs == sequence[i]) k <- which(AAs == sequence[i - 1]) if (i <= 3 && i + 1 == N && sequence[i - 1] != "a" && sequence[i] != "m") { Fa <- 10 ^ (constants[j, 1] + constants[k, 2] + constants[25, 2] + constants[26, 1]) Fb <- 10 ^ (constants[j, 3] + constants[k, 4] + constants[25, 4] + constants[26, 3]) } else { if (i <= 3 && sequence[i - 1] != "a") { Fa <- 10 ^ (constants[j, 1] + constants[k, 2] + constants[25, 2]) Fb <- 10 ^ (constants[j, 3] + constants[k, 4] + constants[25, 4]) } else { if (i + 1 == N && sequence[i] != "m") { Fa <- 10 ^ (constants[j, 1] + constants[k, 2] + constants[26, 1]) Fb <- 10 ^ (constants[j, 3] + constants[k, 4] + constants[26, 3]) } else { Fa <- 10^(constants[j, 1] + constants[k, 2]) Fb <- 10^(constants[j, 3] + constants[k, 4]) } } } } kcDH[i] <- Fa * poly_consts[["Ka"]] * D * F_consts[["Fta"]] + Fb * poly_consts[["Kb"]] * OD * F_consts[["Ftb"]] + Fb * poly_consts[["Kw"]] * F_consts[["Ftw"]] } } kcDH[2:(N - 1)] }
knitr::opts_chunk$set(tidy = FALSE, comment = " library(NGLVieweR) NGLVieweR("7CID") %>% addRepresentation("cartoon") benz <- " 702 -OEChem-02271511112D 9 8 0 0 0 0 0 0 0999 V2000 0.5369 0.9749 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 1.4030 0.4749 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 2.2690 0.9749 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 1.8015 0.0000 0.0000 H 0 0 0 0 0 0 0 0 0 0 0 0 1.0044 0.0000 0.0000 H 0 0 0 0 0 0 0 0 0 0 0 0 1.9590 1.5118 0.0000 H 0 0 0 0 0 0 0 0 0 0 0 0 2.8059 1.2849 0.0000 H 0 0 0 0 0 0 0 0 0 0 0 0 2.5790 0.4380 0.0000 H 0 0 0 0 0 0 0 0 0 0 0 0 0.0000 0.6649 0.0000 H 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 0 0 0 0 1 9 1 0 0 0 0 2 3 1 0 0 0 0 2 4 1 0 0 0 0 2 5 1 0 0 0 0 3 6 1 0 0 0 0 3 7 1 0 0 0 0 3 8 1 0 0 0 0 M END > <ID> 00001 > <DESCRIPTION> Solvent produced by yeast-based fermentation of sugars. $$$$ " NGLVieweR(benz, format="sdf") %>% addRepresentation("ball+stick") NGLVieweR("7CID") %>% addRepresentation("cartoon", param = list(colorScheme = "residueindex") ) %>% addRepresentation("ball+stick", param = list( sele = "233-248", colorValue = "red", colorScheme = "element" ) ) %>% addRepresentation("surface", param = list( colorValue = "white", opacity = 0.1 ) ) NGLVieweR("7CID") %>% stageParameters(backgroundColor = "white", zoomSpeed = 1) %>% addRepresentation("cartoon", param = list(name = "cartoon", colorScheme = "residueindex") ) %>% setSpin() NGLVieweR("7CID") %>% addRepresentation("cartoon") %>% addRepresentation("ball+stick", param = list( colorScheme = "element", colorValue = "yellow", sele = "20" )) %>% addRepresentation("label", param = list( sele = "20", labelType = "format", labelFormat = "[%(resname)s]%(resno)s", labelGrouping = "residue", color = "white", fontFamiliy = "sans-serif", xOffset = 1, yOffset = 0, zOffset = 0, fixedSize = TRUE, radiusType = 1, radiusSize = 1.5, showBackground = FALSE ) ) NGLVieweR("7CID") %>% addRepresentation("cartoon") %>% addRepresentation("ball+stick", param = list( colorScheme = "element", colorValue = "yellow", sele = "20" ) ) %>% addRepresentation("label", param = list( sele = "20", labelType = "format", labelFormat = "[%(resname)s]%(resno)s", labelGrouping = "residue", color = "white", xOffset = 1, fixedSize = TRUE, radiusType = 1, radiusSize = 1.5 ) ) %>% zoomMove( center = "20", zoom = "20", duration = 0, z_offSet = -20 ) NGLVieweR("3RY2") %>% addRepresentation("cartoon") %>% addRepresentation("ball+stick", param = list( name = "biotin", colorvalue = "grey", colorScheme = "element", sele = "5001" ) ) %>% addRepresentation("ball+stick", param = list( name = "interacting", colorScheme = "element", colorValue = "green", sele = "23 or 27 or 43 or 45 or 128" ) ) %>% zoomMove( center = "27:B", zoom = "27:B", z_offSet = -20 ) %>% addRepresentation("contact", param = list( name = "contact", sele = "5001 or 23 or 27 or 43 or 45 or 128", filterSele = list("23 or 27 or 45 or 128", "5001"), labelVisible = TRUE, labelFixedSize = FALSE, labelUnit = "angstrom", labelSize = 2 ) ) knitr::include_graphics("../man/figures/basic_shiny.PNG") knitr::include_graphics("../man/figures/API_shiny.PNG")
test_that("informative error on old FACTS files", { skip_paths() facts_file <- get_facts_file_example("old.facts") expect_error( run_flfll(facts_file), regexp = "version of your FACTS file" ) }) test_that("run_flfll() does not share most arg names with engines", { flfll <- names(formals(run_flfll)) x <- intersect(flfll, names(formals(run_engine_contin))) expect_equal(x, "verbose") }) test_that("run_flfll() on broken.facts", { skip_paths() facts_file <- get_facts_file_example("broken.facts") expect_error( run_flfll(facts_file = facts_file, verbose = FALSE), regexp = "failed with exit code" ) }) test_that("run_flfll() on contin.facts with default args", { skip_paths() facts_file <- get_facts_file_example("contin.facts") out <- run_flfll(facts_file = facts_file, verbose = FALSE) param_files <- get_param_files(out) expect_equal(length(param_files), 4L) expect_true(all(file.exists(param_files))) expect_true(all(grepl("nuk1_e\\.param", param_files))) }) test_that("run_flfll() on contin.facts with more args", { skip_paths() out <- run_flfll( facts_file = get_facts_file_example("contin.facts"), output_path = tempfile(), log_path = tempfile(), n_burn = 4, n_mcmc = 4, n_weeks_files = 4, n_patients_files = 4, n_mcmc_files = 4, n_mcmc_thin = 2, flfll_seed = 1, flfll_offset = 1, verbose = FALSE ) param_files <- get_param_files(out) expect_equal(length(param_files), 4L) expect_true(all(file.exists(param_files))) expect_true(all(grepl("nuk1_e\\.param", param_files))) })
brplus <- function(mdata, base.algorithm = getOption("utiml.base.algorithm", "SVM"), ..., cores = getOption("utiml.cores", 1), seed = getOption("utiml.seed", NA)) { if (!is(mdata, "mldr")) { stop("First argument must be an mldr object") } if (cores < 1) { stop("Cores must be a positive value") } brpmodel <- list(labels = rownames(mdata$labels), call = match.call()) freq <- mdata$labels$freq names(freq) <- brpmodel$labels brpmodel$freq <- sort(freq) brpmodel$initial <- br(mdata, base.algorithm, ..., cores = cores, seed = seed) labeldata <- as.data.frame(mdata$dataset[mdata$labels$index]) for (i in seq(ncol(labeldata))) { labeldata[, i] <- factor(labeldata[, i], levels=c(0, 1)) } labels <- utiml_rename(seq(mdata$measures$num.labels), brpmodel$labels) brpmodel$models <- utiml_lapply(labels, function(li) { basedata <- utiml_create_binary_data(mdata, brpmodel$labels[li], labeldata[-li]) dataset <- utiml_prepare_data(basedata, "mldBRP", mdata$name, "brplus", base.algorithm) utiml_create_model(dataset, ...) }, cores, seed) class(brpmodel) <- "BRPmodel" brpmodel } predict.BRPmodel <- function(object, newdata, strategy = c("Dyn", "Stat", "Ord", "NU"), order = list(), probability = getOption("utiml.use.probs", TRUE), ..., cores = getOption("utiml.cores", 1), seed = getOption("utiml.seed", NA)) { if (!is(object, "BRPmodel")) { stop("First argument must be an BRPmodel object") } strategy <- match.arg(strategy) labels <- object$labels if (strategy == "Ord") { if (!utiml_is_equal_sets(order, labels)) { stop("Invalid order (all labels must be on the chain)") } } if (cores < 1) { stop("Cores must be a positive value") } if (!anyNA(seed)) { set.seed(seed) } newdata <- utiml_newdata(newdata) initial.preds <- predict.BRmodel(object$initial, newdata, probability=FALSE, ..., cores=cores, seed=seed) labeldata <- as.data.frame(as.bipartition(initial.preds)) for (i in seq(ncol(labeldata))) { labeldata[, i] <- factor(labeldata[, i], levels=c(0, 1)) } if (strategy == "NU") { indices <- utiml_rename(seq_along(labels), labels) predictions <- utiml_lapply(indices, function(li) { utiml_predict_binary_model(object$models[[li]], cbind(newdata, labeldata[, -li]), ...) }, cores, seed) } else { order <- switch (strategy, Dyn = names(sort(apply(as.probability(initial.preds), 2, mean))), Stat = names(object$freq), Ord = order ) predictions <- list() for (labelname in order) { other.labels <- !labels %in% labelname model <- object$models[[labelname]] data <- cbind(newdata, labeldata[, other.labels, drop = FALSE]) predictions[[labelname]] <- utiml_predict_binary_model(model, data, ...) labeldata[, labelname] <- factor(predictions[[labelname]]$bipartition, levels=c(0, 1)) } } utiml_predict(predictions[labels], probability) } print.BRPmodel <- function(x, ...) { cat("Classifier BRplus (also called BR+)\n\nCall:\n") print(x$call) cat("\n", length(x$models), "Models (labels):\n") print(names(x$models)) }
pklogit <- function(y, auc, doses, x, theta, prob = 0.9, options = list(nchains = 4, niter = 4000, nadapt = 0.8), betapriors = c(10, 10000, 20, 10), thetaL=NULL, p0 = NULL, L = NULL, deltaAUC = NULL, CI = TRUE){ checking1 <- function(x,target,error){ sum(x>(target+error))/length(x) } f_logit <- function(v,lambda,parmt){ invlogit(-lambda[1]+lambda[2]*v)*dnorm(v,parmt[1],parmt[2]) } f2_logit <- function(v, lambda1, lambda2, parmt1, parmt2){ invlogit(-lambda1+lambda2*v)*dnorm(v,parmt1,parmt2) } num <- length(x) dose1 <- cbind(rep(1,num), log(doses[x])) mu1 <- -log(betapriors[1]) data_s <- list(N=num, auc=log(auc), dose=dose1, mu = mu1, beta0=betapriors[2]) sm_lrauc <- stanmodels$reg_auc reg1 <- sampling(sm_lrauc, data=data_s, iter=options$niter, chains=options$nchains, control = list(adapt_delta = options$nadapt)) a1 = get_posterior_mean(reg1) sampl1 <- extract(reg1) beta1 <- a1[1:2,options$nchains+1] nu <- a1[3,options$nchains+1] auc1 <- log(auc) data_s <- list(N=num,y=y,dose=auc1, beta2mean = betapriors[3], beta3mean = betapriors[4]) sm_lr <- stanmodels$logit_reg_pklogit reg2 <- sampling(sm_lr, data=data_s, iter=options$niter, chains=options$nchains, control = list(adapt_delta = options$nadapt)) a2 = get_posterior_mean(reg2) sampl2 <- extract(reg2) Beta <- a2[1:2,options$nchains+1] pstim <- NULL for (o in 1:length(doses)){ parmt = c(a1[1,options$nchains+1] + a1[2,options$nchains+1]*log(doses[o]),a1[3,options$nchains+1]) pstim <- c(pstim, integrate(f_logit,-Inf,Inf, lambda=a2[1:2,options$nchains+1], parmt=parmt)$value) } pstim_sum <- matrix(0, ncol = options$nchains*options$niter/2, nrow = length(doses)) p_sum <- NULL parmt1 = sampl1$b[,1] + sampl1$b[,2]*log(doses[1]) parmt2 = sampl1$sigma for (i in 1:ncol(pstim_sum)){ pstim_sum[1,i] <- integrate(f2_logit,-Inf, Inf, lambda1=sampl2$beta2[i], lambda2 = sampl2$beta3[i], parmt1=parmt1[i], parmt2 = parmt2[i])$value } pstop <- checking1(pstim_sum[1,], target=theta, error=0) stoptox <- (pstop >= prob) stoptrial <- stoptox if(CI == "TRUE"){ p_sum <- summary(pstim_sum[1, ]) for (o in 2:length(doses)){ parmt1 = sampl1$b[,1] + sampl1$b[,2]*log(doses[o]) parmt2 = sampl1$sigma for (i in 1:ncol(pstim_sum)){ pstim_sum[o,i] <- integrate(f2_logit,-Inf, Inf, lambda1=sampl2$beta2[i], lambda2 = sampl2$beta3[i], parmt1=parmt1[i], parmt2 = parmt2[i])$value } p_sum <- rbind(p_sum, summary(pstim_sum[o,])) } }else{ p_sum <- NULL } if (stoptrial){ newDose = NA message("The trial stopped based on the stopping rule \n \n") }else{ newDose <- order((abs(pstim-theta)))[1] } parameters <- c(beta1, nu, Beta) names(parameters) <- c("beta0", "beta1", "nu", "beta2", "beta3") list(newDose=newDose, pstim = pstim, p_sum=p_sum, parameters = parameters) }
tar_test("tar_make_future() works", { skip_if_not_installed("future") tar_script(list(tar_target(x, "x"))) tar_make_future( callr_arguments = list(show = FALSE), reporter = "silent" ) expect_equal(tar_read(x), "x") }) tar_test("tar_make_future() can use tidyselect", { skip_if_not_installed("future") tar_script( list( tar_target(y1, 1 + 1), tar_target(y2, 1 + 1), tar_target(z, y1 + y2) ) ) tar_make_future( names = starts_with("y"), reporter = "silent", callr_arguments = list(show = FALSE) ) out <- sort(list.files(file.path("_targets", "objects"))) expect_equal(out, sort(c("y1", "y2"))) }) tar_test("nontrivial globals with global environment", { skip_on_cran() skip_if_not_installed("future") skip_if_not_installed("future.callr") tar_script({ future::plan(future.callr::callr) f <- function(x) { g(x) + 1L } g <- function(x) { x + 1L } list( tar_target(x, 1), tar_target(y, f(x)) ) }) tar_make_future( reporter = "silent", callr_arguments = list(spinner = FALSE) ) expect_equal(tar_read(y), 3L) }) tar_test("nontrivial globals with non-global environment", { skip_on_cran() skip_if_not_installed("future") skip_if_not_installed("future.callr") tar_script({ future::plan(future.callr::callr) envir <- new.env(parent = globalenv()) evalq({ f <- function(x) { g(x) + 1L } g <- function(x) { x + 1L } }, envir = envir) tar_option_set(envir = envir) list( tar_target(x, 1), tar_target(y, f(x)) ) }) tar_make_future( reporter = "silent", callr_arguments = list(spinner = FALSE) ) expect_equal(tar_read(y), 3L) }) tar_test("custom script and store args", { skip_on_cran() skip_if_not_installed("future") expect_equal(tar_config_get("script"), path_script_default()) expect_equal(tar_config_get("store"), path_store_default()) tar_script( tar_target(x, TRUE), script = "example/script.R" ) tar_make_future( script = "example/script.R", store = "example/store", callr_function = NULL ) expect_false(file.exists("_targets.yaml")) expect_equal(tar_config_get("script"), path_script_default()) expect_equal(tar_config_get("store"), path_store_default()) expect_false(file.exists(path_script_default())) expect_false(file.exists(path_store_default())) expect_true(file.exists("example/script.R")) expect_true(file.exists("example/store")) expect_true(file.exists("example/store/meta/meta")) expect_true(file.exists("example/store/objects/x")) expect_equal(readRDS("example/store/objects/x"), TRUE) tar_config_set(script = "x") expect_equal(tar_config_get("script"), "x") expect_true(file.exists("_targets.yaml")) }) tar_test("custom script and store args with callr function", { skip_on_cran() skip_if_not_installed("future") expect_equal(tar_config_get("script"), path_script_default()) expect_equal(tar_config_get("store"), path_store_default()) tar_script( tar_target(x, TRUE), script = "example/script.R" ) tar_make_future( script = "example/script.R", store = "example/store", reporter = "silent" ) expect_false(file.exists("_targets.yaml")) expect_equal(tar_config_get("script"), path_script_default()) expect_equal(tar_config_get("store"), path_store_default()) expect_false(file.exists(path_script_default())) expect_false(file.exists(path_store_default())) expect_true(file.exists("example/script.R")) expect_true(file.exists("example/store")) expect_true(file.exists("example/store/meta/meta")) expect_true(file.exists("example/store/objects/x")) expect_equal(readRDS("example/store/objects/x"), TRUE) tar_config_set(script = "x") expect_equal(tar_config_get("script"), "x") expect_true(file.exists("_targets.yaml")) }) tar_test("bootstrap builder for shortcut", { skip_on_cran() tar_script({ list( tar_target(w, 1L), tar_target(x, w), tar_target(y, 1L), tar_target(z, x + y) ) }) tar_make_future(callr_function = NULL) expect_equal(tar_read(z), 2L) tar_script({ list( tar_target(w, 1L), tar_target(x, w), tar_target(y, 1L), tar_target(z, x + y + 1L) ) }) tar_make_future(names = "z", shortcut = TRUE, callr_function = NULL) expect_equal(tar_read(z), 3L) progress <- tar_progress() expect_equal(nrow(progress), 1L) expect_equal(progress$name, "z") expect_equal(progress$progress, "built") })
IFFChunk.IFF.ILBM <- function(x, ...) { if ("matrix" %in% class(x)) stop(paste("This IFF chunk interpretation is probably based on", "an ANIM DLTA chunk. It can't be converted back into an IFFChunk object.")) rasterToIFF(x, ...)@chunk.data[[1]] } IFFChunk.IFF.CMAP <- function(x, ...) { result <- colourToAmigaRaw(x, n.bytes = "3", ...) return(new("IFFChunk", chunk.type = "CMAP", chunk.data = list(result))) } IFFChunk.IFF.BMHD <- function(x, ...) { compr <- which(c("cmpNone", "cmpByteRun1") == x$Compression) - 1 if (length(compr) == 0) compr <- 0 mask <- which(c("mskNone", "mskHasMask", "mskHasTransparentColour", "mskLasso") == x$Masking) - 1 if (length(mask) == 0) mask <- 0 result <- c(.amigaIntToRaw(c(x$w, x$h), 16, F), .amigaIntToRaw(c(x$x, x$y), 16, T), .amigaIntToRaw(c(x$nPlanes, mask, compr), 8, F), as.raw(x$pad)[[1]], .amigaIntToRaw(x$transparentColour, 16, F), .amigaIntToRaw(c(x$xAspect, x$yAspect), 8, F), .amigaIntToRaw(c(x$pageWidth, x$pageHeight), 16, F)) return(new("IFFChunk", chunk.type = "BMHD", chunk.data = list(result))) } IFFChunk.IFF.CAMG <- function(x, ...) { return(.inverseViewPort(x$display.mode, x$monitor)) } IFFChunk.IFF.CRNG <- function(x, ...) { flag <- which(c("RNG_OFF", "RNG_ACTIVE", "RNG_REVERSE") == x$flags) - 1 if (length(flag) == 0) flag <- 0 dat <- c( x$padding, .amigaIntToRaw(round(x$rate*(2^14)/60), 16, F), .amigaIntToRaw(flag, 16, F), .amigaIntToRaw(c(x$low, x$high), 8, F) ) result <- new("IFFChunk", chunk.type = "CRNG", chunk.data = list(dat)) return(result) } IFFChunk.IFF.ANIM <- function(x, ...) { rasterToIFF(x, ...)@chunk.data[[1]] } IFFChunk.IFF.ANHD <- function(x, ...) { oper <- which(x$operation == c("standard", "XOR", "LongDeltaMode", "ShortDeltaMode", "GeneralDeltamode", "ByteVerticalCompression", "StereoOp5", "ShortLongVerticalDeltaMode")) - 1 if (length(oper) == 0) oper <- 0 result <- c(.amigaIntToRaw(oper, 8, F), .bitmapToRaw(x$mask, F, F), .amigaIntToRaw(c(x$w, x$h), 16, F), .amigaIntToRaw(c(x$x, x$y), 16, T), .amigaIntToRaw(c(x$abstime, x$reltime), 32, T), .amigaIntToRaw(x$interleave, 8, F), x$pad0, .bitmapToRaw(x$flags, T, T), x$pad1 ) result <- new("IFFChunk", chunk.type = "ANHD", chunk.data = list(result)) return(result) } IFFChunk.IFF.DLTA <- function(x, ...) { return(new("IFFChunk", chunk.type = "DLTA", chunk.data = list(x))) } IFFChunk.IFF.DPAN <- function(x, ...) { result <- c(.amigaIntToRaw(c(x$version, x$nframes), 16, F), .bitmapToRaw(x$flags, T, T) ) result <- new("IFFChunk", chunk.type = "DPAN", chunk.data = list(result)) return(result) } as.raster.IFFChunk <- function(x, ...) { if ([email protected] == "FORM") { result <- lapply([email protected], function(y){ if ([email protected] == "ILBM") return(as.raster(y)) if ([email protected] == "ANIM") return(interpretIFFChunk(y)) }) if (length(result) == 1) result <- result[[1]] return (result) } else if ([email protected] == "ILBM") { sub.chunks <- unlist(lapply([email protected], function(y) [email protected])) if (!("BMHD" %in% sub.chunks)) stop("No bitmap header present. Can't interpret bitmap.") if (!("BODY" %in% sub.chunks)) stop("No BODY chunk present. Can't convert the bitmap into a raster.") bm.header <- interpretIFFChunk(getIFFChunk(x, "BMHD")) if (!("CAMG" %in% sub.chunks)) { bm.vp.mode <- NULL warning("No Amiga viewport available, interpretation possibly incorrect.") } else { bm.vp.mode <- interpretIFFChunk(getIFFChunk(x, "CAMG")) bm.vp.mode <- .display.properties(bm.vp.mode$display.mode, bm.vp.mode$monitor) } bm.palette <- grDevices::gray(round(seq(0, 15, length.out = 2^bm.header$nPlanes))/15) try(bm.palette <- interpretIFFChunk(getIFFChunk(x, "CMAP")), silent = T) if (!is.null(bm.vp.mode) && bm.vp.mode$is.halfbright) { bm.palette <- c(bm.palette, substr(grDevices::adjustcolor(bm.palette, 1, 0.5, 0.5, 0.5), 1, 7)) } if (bm.header$Compression == "cmpByteRun1") { bm <- unPackBitmap(interpretIFFChunk(getIFFChunk(x, "BODY"))) } else if (bm.header$Compression == "cmpNone") { bm <- interpretIFFChunk(getIFFChunk(x, "BODY")) } else { stop("Bitmap data is compressed with unsupported algorithm.") } np <- bm.header$nPlanes if (length(bm.palette) < (2^np)) { if (bm.vp.mode$is.HAM) np <- ifelse(np == 8, 6, 5) bm.palette <- c(bm.palette, rep(" } rm(np) if (bm.header$Masking == "mskHasTransparentColour") { transparent <- bm.header$transparentColour + 1 bm.palette[transparent] <- grDevices::adjustcolor(bm.palette[transparent], alpha.f = 0) } attr.palette <- NULL if ("palette" %in% names(list(...)) && is.null(list(...)$palette)){ attr.palette <- bm.palette bm.palette <- NULL } if (bm.vp.mode$is.HAM) { result <- bitmapToRaster(bm, bm.header$w, bm.header$h, bm.header$nPlanes, NULL) if (!is.null(bm.palette)) { result <- .indexToHAMraster(result, bm.header$nPlanes, bm.palette, bm.header$transparentColour) } } else { result <- bitmapToRaster(bm, bm.header$w, bm.header$h, bm.header$nPlanes, bm.palette) } if (bm.vp.mode$is.HAM) { attributes(result)[["mode"]] <- ifelse(bm.header$nPlanes == 8, "HAM8", "HAM6") } attributes(result)[["asp"]] <- bm.vp.mode$aspect.y/bm.vp.mode$aspect.x if (!is.null(attr.palette)) attributes(result)[["palette"]] <- attr.palette return(result) } else if ([email protected] == "ANIM") { return(interpretIFFChunk(x)) } else { stop(sprintf("IFF chunk of type %s cannot be converted into a raster.", [email protected])) } } plot.IFF.ILBM <- function(x, y, ...) { if ("matrix" %in% class(x)) { pal <- grDevices::gray(seq(0, 1, length.out = max(round(abs(x))))) asp <- attributes(x)$asp x <- as.raster(apply(x, 2, function(z) pal[round(abs(z)) + 1])) attributes(x)$asp <- asp } class(x) <- "raster" if ("asp" %in% names(list(...))) graphics::plot(x, y, ...) else graphics::plot(x, y, asp = attributes(x)$asp, ...) } plot.IFF.ANIM <- function(x, y, ...) { invisible(lapply(x, plot.IFF.ILBM, ...)) } rasterToIFF <- function(x, display.mode = as.character(AmigaFFH::amiga_display_modes$DISPLAY_MODE), monitor = as.character(AmigaFFH::amiga_monitors$MONITOR_ID), anim.options, ...) { display.mode <- match.arg(display.mode) monitor <- match.arg(monitor) pars <- list(...) if (is.null(pars$depth)) pars$depth <- 3 if (is.null(pars$colour.depth)) pars$colour.depth <- "12 bit" if (grepl("EHB|EXTRAHALFBRITE", display.mode)) stop("Sorry, 'extra halfbrite' modes is currently not implemented") special.mode <- "none" if (pars$depth %in% c("HAM6", "HAM8")) { if (!grepl("HAM", display.mode)) warning("Display mode should be a HAM mode, when 'depth' is set to 'HAM6' or 'HAM8'. Display mode is corrected to 'HAM_KEY'.") display.mode <- "HAM_KEY" } if (grepl("HAM", display.mode)) { if (pars$depth %in% c("HAM6", "HAM8")) { special.mode <- pars$depth pars$colour.depth <- ifelse(special.mode == "HAM6", "12 bit", "24 bit") pars$depth <- ifelse(special.mode == "HAM6", 6, 8) } else { special.mode <- ifelse(pars$colour.depth == "24 bit", "HAM8", "HAM6") } } if (is.list(x)) { if (length(x) < 2) stop("When x is a list of rasters, it will be converted to an anim. x should have a length of at least 2.") if (any(unlist(lapply(x, function(y) !any(c("raster", "matrix") %in% class(y)) || !all(.is.colour(y)))))) stop("All elements of x should be a grDevices raster or a matrix of colours") if ("indexing" %in% names(list(...))) { x <- list(...)$indexing(x = x, length.out = ifelse(special.mode %in% c("HAM6", "HAM8"), special.mode, 2^pars$depth)) } else { x <- index.colours(x, length.out = ifelse(special.mode %in% c("HAM6", "HAM8"), special.mode, 2^pars$depth)) } pal <- attributes(x)$palette trans <- attributes(x)$transparent anhd <- lapply(1:(length(x) + 2), function(z) { anhdz <- list( operation = "ByteVerticalCompression", mask = rep(F, 8), w = dim(x[[1]])[[2]], h = dim(x[[1]])[[1]], x = 0, y = 0, abstime = z*2, reltime = 2, interleave = 0, pad0 = raw(1), flags = rep(F, 32), pad1 = raw(16) ) class(anhdz) <- "IFF.ANHD" anhdz <- IFFChunk(anhdz) anhdz }) frame1 <- .indexToBitmap(x[[1]], pars$depth, T) frame1 <- .bitmapToILBM(frame1, dim(x[[1]]), display.mode, monitor, pars$depth, pars$colour.depth, pal, trans) dpan <- list(version = 4, nframes = length(x), flags = rep(F, 32)) class(dpan) <- "IFF.DPAN" [email protected] <- c([email protected][1], anhd[[1]], [email protected][2], IFFChunk(dpan), [email protected][3:4]) frame1 <- new("IFFChunk", chunk.type = "FORM", chunk.data = list(frame1)) x <- .byteVerticalCompression(x, pars$depth) x[-1] <- lapply(2:length(x), function(y) { res <- new("IFFChunk", chunk.type = "ILBM", chunk.data = list(anhd[[y]], x[[y]])) res <- new("IFFChunk", chunk.type = "FORM", chunk.data = list(res)) return(res) }) x[[1]] <- frame1 x <- new("IFFChunk", chunk.type = "ANIM", chunk.data = x) x <- new("IFFChunk", chunk.type = "FORM", chunk.data = list(x)) return(x) } if (!any(c("raster", "matrix") %in% class(x)) || !all(.is.colour(x))) stop("x should be a raster object or a matrix of colours.") if ("depth" %in% names(list(...))) { bm <- rasterToBitmap(x, ...) } else { bm <- rasterToBitmap(x, depth = ifelse(special.mode %in% c("HAM6", "HAM8"), special.mode, pars$depth), ...) } pal <- attributes(bm)$palette transparent <- attributes(bm)$transparent ilbm <- .bitmapToILBM(bm, dim(x), display.mode, monitor, pars$depth, pars$colour.depth, pal, transparent) form <- new("IFFChunk", chunk.type = "FORM", chunk.data = list(ilbm)) return(form) } .byteVerticalDecompression <- function(dlta, w, h, interleave, use.xor, previous = NULL) { interleave[interleave == 0] <- 2 pointers <- .rawToAmigaInt(dlta[1:(16*4)], 32, F)[1:8] if (all(pointers == 0)) { if (is.null(previous) || length(previous) == 0) { result <- matrix(0, h, w) class(result) <- c("IFF.ILBM", "IFF.ANY", class(result)) return(result) } else { prev <- length(previous) - interleave + 1 prev[prev < 1] <- 1 return(previous[[prev]]) } } bitmap.layers <- which(pointers > 1) bitmap.layers <- 1:bitmap.layers[bitmap.layers == max(bitmap.layers)] bitmap.layers <- pointers[bitmap.layers] result <- lapply(1:length(bitmap.layers), function(y) { offs <- bitmap.layers[[y]] prev <- NULL if (!is.null(previous)) { prev <- length(previous) - (interleave - 1) if (prev < 1) prev <- 1 prev <- previous[[prev]] prev <- apply(prev, 2, function(z) { as.logical(floor(z/(2^(y - 1))) %% 2) }) prev <- cbind(prev, matrix(F, h, w - ncol(prev))) } if (offs == 0) { if (is.null(prev)) { return (matrix(0, h, w)) } else return(prev) } layer <- NULL for (i in 1:(w/8)) { op.count <- .rawToAmigaInt(dlta[1 + offs], 8, F) offs <- offs + 1 row.result <- matrix(F, 0, 8) if (op.count > 0) { for (j in 1:op.count) { op <- .rawToAmigaInt(dlta[1 + offs], 8, F) offs <- offs + 1 if (op == 0) { rep.count <- .rawToAmigaInt(dlta[1 + offs], 8, F) rep.dat <- matrix(rep( as.logical(.rawToBitmap(dlta[2 + offs], T, F)), rep.count ), ncol = 8, byrow = T) if (use.xor) rep.dat <- xor(prev[nrow(row.result) + 1:nrow(rep.dat), i*8 + (-7:0)], rep.dat) row.result <- rbind(row.result, rep.dat) offs <- offs + 2 } else if (op < 0x80) { if (is.null(previous) || (is.list(previous) && length(previous) == 0)) { row.result <- rbind(row.result, matrix(F, nrow = op, ncol = 8)) } else { nroff <- nrow(row.result) + 1 if (length(nroff) == 0) nroff <- 1 row.result <- rbind(row.result, prev[nroff + 0:(op - 1), i*8 + (-7:0)]) } } else { op.cor <- op - 0x80 temp <- as.logical(.rawToBitmap(dlta[(1 + offs):(offs + op.cor)], T, F)) temp <- matrix(temp, ncol = 8, byrow = T) if (use.xor) temp <- xor(prev[nrow(row.result) + 1:nrow(temp), i*8 + (-7:0)], temp) row.result <- rbind(row.result, temp) offs <- offs + op.cor } } } if (nrow(row.result) == 0 || op.count == 0) { if (is.null(previous)) { row.result <- matrix(F, ncol = 8, nrow = h) } else { row.result <- prev[1:h, i*8 + (-7:0)] } } if (is.null(dim(row.result)) || !all(dim(row.result) == c(h, 8))) stop("Could not decode the bitmap correctly. If the bitmap was encoded with the AmigaFFH package, please contact the package author to get this fixed.") layer <- cbind(layer, row.result) } layer <- apply(layer, 2, function(z) (2^(y - 1))*as.numeric(z)) return(layer) }) result <- Reduce("+", result) class(result) <- c("IFF.ILBM", "IFF.ANY", class(result)) return(result) } .byteVerticalCompression <- function(x, depth) { x <- c(x, x[1:2]) h <- dim(x[[1]])[[1]] w <- dim(x[[1]])[[2]] x <- lapply(x, function(y) cbind(y, matrix(0, nrow = h, ncol = (-w %% 16)))) wbm <- w + (-w %%16) result <- vector("list", length(x)) for (i in 2:length(x)) { prev.id <- i - 2 if (prev.id < 1) prev.id <- 1 pointers <- NULL no.change <- rep(F, 16) for (j in 1:depth) { dep.data <- NULL for (k in 1:(wbm/8)) { previous.column <- floor((x[[prev.id]][,k*8 + (-7:0)] - 1)/(2^(j - 1))) %% 2 curr.column <- floor((x[[i]][,k*8 + (-7:0)] - 1)/(2^(j - 1))) %% 2 row.similarity <- apply(previous.column == curr.column, 1, all) run.lengths <- rle(row.similarity)$lengths run.lengths <- rep(run.lengths, run.lengths) row.similarity[row.similarity & run.lengths < 3] <- F cursor <- 1 op.count <- 0 op.data <- NULL if (!all(row.similarity)) { while (cursor <= h) { if (row.similarity[[cursor]]) { skip <- which(diff(c(row.similarity[cursor:h], F)) != 0)[[1]] repskip <- floor(skip/127) op.data <- c(op.data, .amigaIntToRaw(c( rep(127, repskip), skip %% 127), 8, F)) op.count <- op.count + repskip + 1 cursor <- cursor + skip } else { dup <- c(T, duplicated(curr.column[cursor:h,, drop = F], fromLast = F)[-1]) & !row.similarity[cursor:h] dup.run.length <- rle(dup)$lengths dup.run1 <- dup.run.length[[1]] dup.run1[dup.run1 > 255] <- 255 dup.run.length <- c(1, dup.run.length[1] - 1, dup.run.length[-1]) dup.run.length <- rep(dup.run.length, dup.run.length) if (dup.run1 > 3 && length(dup) > 3 && dup[[2]]){ op.data <- c(op.data, .amigaIntToRaw(c(0, dup.run1), 8, F), .bitmapToRaw(as.logical(t(curr.column[cursor,, drop = F])), T, F)) op.count <- op.count + 1 cursor <- cursor + dup.run1 } else { skip <- which(diff(c(row.similarity[cursor:h] | c(dup.run.length[-1] > 2 & dup[-1], F), T)) != 0)[[1]] skip[skip > 127] <- 127 dat <- .bitmapToRaw(as.logical(t(curr.column[cursor:(cursor + skip - 1),, drop = F])), T, F) op.data <- c(op.data, .amigaIntToRaw(skip + 0x80, 8, F), dat) cursor <- cursor + skip op.count <- op.count + 1 } } } } dep.data <- c(dep.data, .amigaIntToRaw(op.count, 8, F), op.data) } if (all(dep.data == raw(1))) { no.change[[j]] <- T dep.data <- NULL } pointers <- c(pointers, length(dep.data)) if (!is.null(dep.data)) result[[i]] <- c(result[[i]], dep.data) } pointers <- cumsum(pointers) ptrs <- rep(0, 16) ptrs[1:length(pointers)] <- 64 + c(0 , pointers[0:(length(pointers) - 1)]) ptrs[no.change] <- 0 result[[i]] <- c( .amigaIntToRaw(ptrs, 32, F), result[[i]] ) result[[i]] <- new("IFFChunk", chunk.type = "DLTA", chunk.data = list(result[[i]])) } return(result) } .bitmapToILBM <- function(bm, dim.x, display.mode, monitor, depth, colour.depth, pal, transparent) { bm <- .bitmapToRaw(bm, T, F) bm <- matrix(bm, nrow = 2*ceiling(dim.x[[2]]/16), byrow = F) bm <- c(unlist(apply(bm, 2, packBitmap))) body <- new("IFFChunk", chunk.type = "BODY", chunk.data = list(bm)) camg <- .inverseViewPort(display.mode, monitor) disp <- .amigaViewPortModes([email protected][[1]]) disp.prop <- .display.properties(disp$display.mode, disp$monitor) BMHD <- list( w = dim.x[2], h = dim.x[1], x = 0, y = 0, nPlanes = depth, Masking = ifelse(!is.null(transparent) && !is.na(transparent), "mskHasTransparentColour", "mskNone"), Compression = "cmpByteRun1", pad = raw(1), transparentColour = ifelse(!is.null(transparent) && !is.na(transparent), transparent - 1, 0), xAspect = disp.prop$aspect.x, yAspect = disp.prop$aspect.y, pageWidth = disp.prop$screenwidth, pageHeight = disp.prop$screenheight ) class(BMHD) <- "IFF.BMHD" hdr <- IFFChunk(BMHD) class(pal) <- "IFF.CMAP" cmap <- IFFChunk(pal, colour.depth = colour.depth) ilbm <- new("IFFChunk", chunk.type = "ILBM", chunk.data = list( hdr, cmap, camg, body )) return(ilbm) } .indexToHAMraster <- function(x, depth, palette, transparentColour) { control.mask <- bitwShiftL(3, depth - 2) max_color <- ifelse(depth == 8, 255, 15) color_divisor <- ifelse(depth == 8, 1, 17) color_multi <- ifelse(depth == 8, 255/63, 1) x <- apply(x, 1, function(y) { control.flags <- 3*bitwAnd(y, control.mask)/control.mask y.shift <- (y - control.mask*control.flags/3) z <- rep(NA, length(y)) z[control.flags == 0] <- palette[y.shift[control.flags == 0] + 1] for (i in 1:length(y)) { if (is.na(z[i])) { z0 <- z[i - 1] if (length(z0) == 0) z0 <- palette[transparentColour + 1] cl <- grDevices::col2rgb(z0) z[i] <- grDevices::rgb( ifelse(control.flags[i] == 2, color_multi*y.shift[i], cl["red",]/color_divisor), ifelse(control.flags[i] == 3, color_multi*y.shift[i], cl["green",]/color_divisor), ifelse(control.flags[i] == 1, color_multi*y.shift[i], cl["blue",]/color_divisor), maxColorValue = max_color ) } } z }) as.raster(t(x)) }
remove_noise_from_matrix <- function( expression.matrix, noise.thresholds, add.threshold=TRUE, average.threshold=TRUE, remove.noisy.features=TRUE, export.csv=NULL, ... ){ if(base::length(noise.thresholds) == 1){ base::message("noise.thresholds only has 1 value, using a fixed threshold...") noise.thresholds <- base::rep(noise.thresholds, base::ncol(expression.matrix)) }else if(base::length(noise.thresholds) != base::ncol(expression.matrix)){ base::stop("noise.thresholds needs to be length 1 or ncol(expression.matrix)") } base::message("Denoising expression matrix...") expression.matrix.denoised <- expression.matrix threshold.matrix <- base::matrix(base::rep(noise.thresholds, base::nrow(expression.matrix)), ncol=base::ncol(expression.matrix), byrow = TRUE) if(remove.noisy.features){ base::message(" removing noisy genes") above.noise.threshold <- base::as.vector( base::rowSums(expression.matrix >= threshold.matrix) > 0) expression.matrix.denoised <- expression.matrix.denoised[above.noise.threshold,] threshold.matrix <- threshold.matrix[above.noise.threshold,] } if(average.threshold){ noise.thresholds.mean <- base::mean(noise.thresholds) threshold.matrix[] <- noise.thresholds.mean } threshold.matrix <- base::round(threshold.matrix) base::message(" adjusting matrix") if(!add.threshold){ expression.matrix.denoised <- base::pmax(expression.matrix.denoised, threshold.matrix) }else{ expression.matrix.denoised <- expression.matrix.denoised + threshold.matrix } if(!base::is.null(export.csv)){ utils::write.csv(expression.matrix.denoised, file=export.csv) } return(expression.matrix.denoised) }
INV <- function(w) {as.matrix(t(svd(w)$v %*% (t(svd(w)$u)/svd(w)$d)))}
is_continuous <- function(x) { n <- length(x) checks <- logical(n - 1) if (n > 1) { if (n == 2) { if (abs(x[1] - x[2]) == 1) { TRUE } else { FALSE } } else { if(x[2] - x[1] == 1) { checks[1] <- TRUE for (i in 2:(n-1)) { checks[i] <- ifelse(x[i+1] - x[i] == 1, TRUE, FALSE) } all(checks) } else { if(x[2] - x[1] == -1) { checks[1] <- TRUE for (i in 2:(n-1)) { checks[i] <- ifelse(x[i+1] - x[i] == -1, TRUE, FALSE) } all(checks) } else { FALSE } } } } else { FALSE } }
test_that("Discrete axis maps to categorical type", { g <- ggplot(mpg, aes(class, color = class)) + geom_bar() p <- ggplotly(g, dynamicTicks = "x") classes <- getLevels(mpg[["class"]]) axisActual <- with( p$x$layout$xaxis, list(type, tickmode, categoryorder, categoryarray) ) axisExpect <- list("category", "auto", "array", classes) expect_equivalent(axisActual, axisExpect) expect_equivalent( sort(sapply(p$x$data, "[[", "x")), classes ) axisActual <- with( p$x$layout$yaxis, list(type, tickmode) ) axisExpect <- list("linear", "array") expect_equivalent(axisActual, axisExpect) }) test_that("Categorical axis reflects custom scale mapping", { lims <- c("2seater", "suv") g <- ggplot(mpg, aes(class, color = class)) + geom_bar() + scale_x_discrete(limits = lims) expect_warning(p <- ggplotly(g, dynamicTicks = "x"), regexp = "non-finite values") axisActual <- with( p$x$layout$xaxis, list(type, tickmode, categoryorder, categoryarray) ) axisExpect <- list("category", "auto", "array", lims) expect_equivalent(axisActual, axisExpect) expect_equivalent( sort(sapply(p$x$data, "[[", "x")), sort(lims) ) labs <- c("small", "large") g <- ggplot(mpg, aes(class, color = class)) + geom_bar() + scale_x_discrete(limits = lims, labels = labs) expect_warning(p <- ggplotly(g, dynamicTicks = "x"), regexp = "non-finite values") axisActual <- with( p$x$layout$xaxis, list(type, tickmode, categoryorder, categoryarray) ) axisExpect <- list("category", "auto", "array", labs) expect_equivalent(axisActual, axisExpect) expect_equivalent( sort(sapply(p$x$data, "[[", "x")), sort(labs) ) }) test_that("Time axis inverse transforms correctly", { d <- data.frame( x = seq(Sys.Date(), Sys.Date() + 9, length.out = 10), y = rnorm(10) ) l <- ggplotly(ggplot(d, aes(x, y)) + geom_line(), dynamicTicks = TRUE)$x expect_length(l$data, 1) expect_equivalent(l$layout$xaxis$type, "date") expect_equivalent(l$layout$xaxis$tickmode, "auto") expect_is(l$layout$xaxis$range, "Date") expect_equivalent(l$data[[1]][["x"]], d$x) d2 <- data.frame( x = seq(Sys.time(), Sys.time() + 9000, length.out = 10), y = rnorm(10) ) l2 <- ggplotly(ggplot(d2, aes(x, y)) + geom_line(), dynamicTicks = TRUE)$x expect_length(l2$data, 1) expect_equivalent(l2$layout$xaxis$type, "date") expect_equivalent(l2$layout$xaxis$tickmode, "auto") expect_is(l2$layout$xaxis$range, "POSIXt") expect_equivalent(l2$data[[1]][["x"]], d2$x) }) test_that("Inverse maps colorbar data", { p <- ggplot(mpg, aes(hwy, manufacturer)) + stat_bin2d(aes(fill = ..density..), binwidth = c(3,1)) l <- ggplotly(p, dynamicTicks = TRUE)$x expect_length(l$data, 2) expect_true(l$data[[2]]$y %in% unique(mpg$manufacturer)) })
expected <- eval(parse(text="\"/vignettes\"")); test(id=0, code={ argv <- eval(parse(text="list(\"/home/lzhao/hg/r-instrumented/src/library/utils\", \"\", \"/home/lzhao/hg/r-instrumented/src/library/utils/vignettes\", FALSE, FALSE, TRUE, FALSE)")); .Internal(gsub(argv[[1]], argv[[2]], argv[[3]], argv[[4]], argv[[5]], argv[[6]], argv[[7]])); }, o=expected);
library(joineRML) library(survival) library(dplyr) hvd <- heart.valve %>% filter(!is.na(log.grad), !is.na(log.lvmi), num <= 50) mjoint_fit <- mjoint( formLongFixed = list("grad" = log.grad ~ time + sex + hs), formLongRandom = list("grad" = ~ 1 | num), formSurv = survival::Surv(fuyrs, status) ~ age, data = hvd, inits = list( "gamma" = c(0.1, 2.7), "beta" = c(2.5, 0.0, 0.1, 0.2) ), timeVar = "time" ) mjoint_fit2 <- mjoint( formLongFixed = list( "grad" = log.grad ~ time + sex + hs, "lvmi" = log.lvmi ~ time + sex ), formLongRandom = list( "grad" = ~ 1 | num, "lvmi" = ~ time | num ), formSurv = Surv(fuyrs, status) ~ age, data = hvd, inits = list( "gamma" = c(0.11, 1.51, 0.80), "beta" = c(2.52, 0.01, 0.03, 0.08, 4.99, 0.03, -0.20) ), timeVar = "time" ) mjoint_fit_bs_se <- bootSE(mjoint_fit, nboot = 5, safe.boot = TRUE) mjoint_fit2_bs_se <- bootSE(mjoint_fit2, nboot = 5, safe.boot = TRUE) usethis::use_data( mjoint_fit, mjoint_fit2, mjoint_fit_bs_se, mjoint_fit2_bs_se, internal = TRUE, overwrite = TRUE )
calc_RNDmin <- function(bial, populations, outgroup){ if(outgroup[1]==FALSE || length(outgroup[1])==0){ stop("This statistic needs an outgroup ! (set.outgroup)") } if(length(populations)!=2){ stop("This statistic requires 2 populations") } n1 <- length(populations[[1]]) n2 <- length(outgroup) diff <- rep(NaN, n1*n2) zz <- 1 for(xx in 1:n1){ seq1 <- bial[populations[[1]][xx],] for(yy in 1:n2){ seq2 <- bial[outgroup[yy],] diff[zz] <- sum(seq1 != seq2, na.rm=TRUE) zz <- zz + 1 } } d1O <- mean(diff, na.rm=TRUE) n1 <- length(populations[[2]]) n2 <- length(outgroup) diff <- rep(NaN, n1*n2) zz <- 1 for(xx in 1:n1){ seq1 <- bial[populations[[2]][xx],] for(yy in 1:n2){ seq2 <- bial[outgroup[yy],] diff[zz] <- sum(seq1 != seq2, na.rm=TRUE) zz <- zz + 1 } } d2O <- mean(diff, na.rm=TRUE) n1 <- length(populations[[1]]) n2 <- length(populations[[2]]) diff <- rep(NaN, n1*n2) ppp1 <- rep(NaN, n1*n2) ppp2 <- rep(NaN, n1*n2) zz <- 1 for(xx in 1:n1){ seq1 <- bial[populations[[1]][xx],] for(yy in 1:n2){ seq2 <- bial[populations[[2]][yy],] diff[zz] <- sum(seq1 != seq2, na.rm=TRUE) ppp1[zz] <- xx ppp2[zz] <- yy zz <- zz + 1 } } RNDmin <- min(diff, na.rm=TRUE)/((d1O+d2O)/2) Gmin <- min(diff, na.rm=TRUE)/mean(diff, na.rm=TRUE) return(list(RNDmin=RNDmin,Gmin=Gmin)) }
bcgam.fit <- function(y=y, xmat=xmat, shapes=shapes, zmat=zmat, nums=nums, ks=ks, sps=sps, nloop=nloop, burnin=burnin, family=family, xmatnms=xmatnms, znms=znms) { n=length(y) if(is.null(zmat)==F){ XZ=cbind(xmat,zmat) XZ_one=cbind(rep(1,n),XZ) X_one=cbind(rep(1,n),xmat) Z_one=cbind(rep(1,n),zmat) err_xz=tryCatch(solve(t(XZ)%*%XZ), error=function(e) NULL) err_xz_one=tryCatch(solve(t(XZ_one)%*%XZ_one), error=function (e) NULL) err_z_one=tryCatch(solve(t(Z_one)%*%Z_one), error=function (e) NULL) err_x_one=tryCatch(solve(t(X_one)%*%X_one), error=function (e) NULL) ind_z_one=1 if(is.null(err_xz)==T){ stop("cols of X and Z are not linearly independent")} if(is.null(err_xz_one)==T){ if(is.null(err_x_one)==T|is.null(err_z_one)==T){ if(is.null(err_x_one)==T){stop("unitary vector is in the space spanned by cols of X")}else{ind_z_one=0} } else{stop("unitary vector is in the space spanned by cols of X and Z")} } } else{ X_one=cbind(rep(1,n),xmat) err_x_one=tryCatch(solve(t(X_one)%*%X_one), error=function (e) NULL) ind_z_one=1 if(is.null(err_x_one)==T){ stop("unitary vector is in the space spanned by cols of X")} } v=1:n*0+1 nz=length(zmat)/n if(nz!=round(nz)){nz=0} if(nz==1){zmat=matrix(zmat,ncol=1)} xs<-NULL L=length(xmat)/n tt<-vector("list",L) center.delta<-vector("list",L) delta<-NULL s<-NULL m<-NULL vx<-NULL sumvx<-NULL incr<-NULL decr<-NULL pos_con<-NULL zmatb<-NULL znmsb<-NULL for(i in 1:L){ xs<-unique(sort(xmat[,i])) n1<-length(xs) if(length(ks[[i]])>1){ tt[[i]]=cbind(ks[[i]])} else{ if(nums[i]==0){k=trunc(4+n1^(1/7))} else{ if(nums[i]>0){k=nums[i]} } if(sps[i]=="Q"){ tt[[i]]<-quantile(xs, probs=seq(0,1,length=k)) } else{if(sps[i]=="E"){ xs=xmat[,i] tt[[i]]=cbind(min(xs)+(max(xs)-min(xs))*(0:(k-1))/(k-1)) }} } if(shapes[i]==1){ delta.i=monincr(xmat[,i],tt[[i]]) delta=rbind(delta,delta.i$sigma-delta.i$center.vector) m=c(m,length(delta.i$sigma)/n) center.delta[[i]]=delta.i$center.vector} if(shapes[i]==2){ delta.i=mondecr(xmat[,i],tt[[i]]) delta=rbind(delta,delta.i$sigma-delta.i$center.vector) m=c(m,length(delta.i$sigma)/n) center.delta[[i]]=delta.i$center.vector} if(shapes[i]==3){ delta.i=convex(xmat[,i],tt[[i]], pred.new=FALSE) delta=rbind( delta,delta.i$sigma-t(delta.i$x.mat%*%delta.i$center.vector) ) m=c(m,length(delta.i$sigma)/n) center.delta[[i]]=delta.i$center.vector} if(shapes[i]==4){ delta.i=concave(xmat[,i],tt[[i]], pred.new=FALSE) delta=rbind( delta,delta.i$sigma-t(delta.i$x.mat%*%delta.i$center.vector) ) m=c(m,length(delta.i$sigma)/n) center.delta[[i]]=delta.i$center.vector} if(shapes[i]==5){ delta.i=incconvex(xmat[,i],tt[[i]]) delta=rbind(delta,delta.i$sigma-delta.i$center.vector) m=c(m,length(delta.i$sigma)/n) center.delta[[i]]=delta.i$center.vector} if(shapes[i]==7){ delta.i=incconcave(xmat[,i],tt[[i]]) delta=rbind(delta,delta.i$sigma-delta.i$center.vector) m=c(m,length(delta.i$sigma)/n) center.delta[[i]]=delta.i$center.vector} if(shapes[i]==6){ delta.i=decconvex(xmat[,i],tt[[i]]) delta=rbind(delta,delta.i$sigma-delta.i$center.vector) m=c(m,length(delta.i$sigma)/n) center.delta[[i]]=delta.i$center.vector} if(shapes[i]==8){ delta.i=decconcave(xmat[,i],tt[[i]]) delta=rbind(delta,delta.i$sigma-delta.i$center.vector) m=c(m,length(delta.i$sigma)/n) center.delta[[i]]=delta.i$center.vector} if(shapes[i]==1|shapes[i]==5|shapes[i]==7){incr=c(incr,1)}else{incr=c(incr,0)} if(shapes[i]==2|shapes[i]==6|shapes[i]==8){decr=c(decr,1)}else{decr=c(decr,0)} vx=cbind(vx,xmat[,i]) if(incr[i]==0 & decr[i]==0){ pos_con=cbind(pos_con,i) zmatb=cbind(zmatb,vx[,i]) znmsb=c(znmsb, xmatnms[i]) } } if(ind_z_one==1){ zmatb=cbind(v,zmat,zmatb) znmsb=c("(Intercept)",znms, znmsb)} else{zmatb=cbind(zmat,zmatb) znmsb=c(znms, znmsb)} p=length(zmatb)/n betalpha<-NULL M<-NULL P<-NULL deltaz<-NULL tau<-NULL if(family$family=="gaussian"){ gausCode <- nimbleCode({ for (j in 1:n){ y[j] ~ dnorm(eta[j],tau) eta[j]<-inprod(betalpha[1:(M+P)],deltaz[j,1:(M+P)]) } tau ~ dgamma(0.1,0.1) sigma <- 1/sqrt(tau) for(m in 1:M){ betalpha[m] ~ dgamma(0.01,0.01) } for(k in (M+1):(M+P)){ betalpha[k] ~ dnorm(0,1.0E-4) } }) delta.dat=t(delta) z.dat=zmatb deltaz.dat=cbind(delta.dat,z.dat) gausConsts <- list(n=n,M=sum(m), P=p, deltaz=deltaz.dat) gausData <- list(y=y) beta.ini=rep(0.1,sum(m)) alpha.ini=rep(1,p) betalpha.ini=c(beta.ini,alpha.ini) tau.ini=0.1 gausInits <- list( betalpha=betalpha.ini,tau=tau.ini ) gaus <- nimbleModel(code = gausCode, name = 'gaus', constants = gausConsts, data = gausData, inits = gausInits) gausMonitor <- configureMCMC(gaus) gausMonitor$addMonitors(c('betalpha','sigma','eta')) gausMCMC <- buildMCMC(gausMonitor) Cgaus <- compileNimble(gaus) CgausMCMC <- compileNimble(gausMCMC, project = gaus) CgausMCMC$run(nloop) MCMCsamples <- as.matrix(CgausMCMC$mvSamples) } else{ if(family$family=="binomial"){ binoCode <- nimbleCode({ for (j in 1:n){ y[j]~dbern(p[j]) p[j] <- expit(eta[j]) eta[j] <- inprod(betalpha[1:(M+P)],deltaz[j,1:(M+P)]) } for(m in 1:M){ betalpha[m] ~ dgamma(0.01,0.01) } for(k in (M+1):(M+P)){ betalpha[k] ~ dnorm(0,1.0E-4) } }) delta.dat=t(delta) z.dat=zmatb deltaz.dat=cbind(delta.dat,z.dat) binoConsts <- list(n=n,M=sum(m), P=p, deltaz=deltaz.dat) binoData <- list(y=y) beta.ini=rep(0.1,sum(m)) alpha.ini=rep(1,p) betalpha.ini=c(beta.ini,alpha.ini) binoInits <- list( betalpha=betalpha.ini) bino <- nimbleModel(code = binoCode, name = 'bino', constants = binoConsts, data = binoData, inits = binoInits) binoMonitor <- configureMCMC(bino) binoMonitor$addMonitors(c('betalpha','eta')) binoMCMC <- buildMCMC(binoMonitor) Cbino <- compileNimble(bino) CbinoMCMC <- compileNimble(binoMCMC, project = bino) CbinoMCMC$run(nloop) MCMCsamples <- as.matrix(CbinoMCMC$mvSamples) } else{ if(family$family=="poisson"){ poisCode <- nimbleCode({ for (j in 1:n){ y[j]~dpois(p[j]) p[j] <- exp(eta[j]) eta[j]<-inprod(betalpha[1:(M+P)],deltaz[j,1:(M+P)]) } for(m in 1:M){ betalpha[m] ~ dgamma(0.01,0.01) } for(k in (M+1):(M+P)){ betalpha[k] ~ dnorm(0,1.0E-4) } }) delta.dat=t(delta) z.dat=zmatb deltaz.dat=cbind(delta.dat,z.dat) poisConsts <- list(n=n,M=sum(m), P=p, deltaz=deltaz.dat) poisData <- list(y=y) beta.ini=rep(0.1,sum(m)) alpha.ini=rep(1,p) betalpha.ini=c(beta.ini,alpha.ini) poisInits <- list( betalpha=betalpha.ini) pois <- nimbleModel(code = poisCode, name = 'pois', constants = poisConsts, data = poisData, inits = poisInits) poisMonitor <- configureMCMC(pois) poisMonitor$addMonitors(c('betalpha','eta')) poisMCMC <- buildMCMC(poisMonitor) Cpois <- compileNimble(pois) CpoisMCMC <- compileNimble(poisMCMC, project = pois) CpoisMCMC$run(nloop) MCMCsamples <- as.matrix(CpoisMCMC$mvSamples) } else{ stop("not valid family") } } } sims.list=MCMCsamples[(burnin+1):nloop,] delta.t=t(delta) zmat.b=zmatb bigmat <- cbind(zmat.b, delta.t) alpha.sims <- matrix( sims.list[,(sum(m)+1):(sum(m)+p)], ncol=p ) beta.sims <- matrix( sims.list[,1:sum(m)], ncol=sum(m) ) eta.sims <- matrix( sims.list[,(sum(m)+p+1):(sum(m)+p+n)], ncol=n ) coefs <- apply(sims.list[,c((sum(m)+1):(sum(m)+p), 1:sum(m))],2, mean) sd.coefs <- apply(sims.list[,c((sum(m)+1):(sum(m)+p), 1:sum(m))],2, sd) coefs.sims <- cbind(beta.sims, alpha.sims) etahat <- apply(eta.sims, 2, "mean") if(family$family=="gaussian"){ sigma.sims <- matrix( sims.list[,sum(m)+p+n+1], ncol=1 ) muhat <- etahat mu.sims <- eta.sims } if(family$family=="binomial"){ muhat <- exp(etahat)/(1+exp(etahat)) mu.sims <- exp(eta.sims)/(1+exp(eta.sims)) } if(family$family=="poisson"){ muhat <- exp(etahat) mu.sims <- exp(eta.sims) } ans <- list(alpha.sims=alpha.sims, beta.sims=beta.sims, mu.sims=mu.sims, eta.sims=eta.sims, delta=delta.t, zmat=zmat.b, znms=znmsb, bigmat=bigmat, coefs.sims=coefs.sims, coefs=coefs, sd.coefs=sd.coefs, muhat=muhat, etahat=etahat, knots=tt, ind_intercept=ind_z_one, center.delta=center.delta) if(family$family=="gaussian"){ ans$sigma.sims <- sigma.sims} ans }
geem <- function(formula, id, waves=NULL, data = parent.frame(), family = gaussian, corstr = "independence", Mv = 1, weights = NULL, corr.mat = NULL, init.beta=NULL, init.alpha=NULL, init.phi = 1, scale.fix = FALSE, nodummy = FALSE, sandwich = TRUE, useP = TRUE, maxit = 20, tol = 0.00001){ call <- match.call() famret <- getfam(family) if(inherits(famret, "family")){ LinkFun <- famret$linkfun InvLink <- famret$linkinv VarFun <- famret$variance InvLinkDeriv <- famret$mu.eta }else{ LinkFun <- famret$LinkFun VarFun <- famret$VarFun InvLink <- famret$InvLink InvLinkDeriv <- famret$InvLinkDeriv } if(scale.fix & is.null(init.phi)){ stop("If scale.fix=TRUE, then init.phi must be supplied") } useP <- as.numeric(useP) dat <- model.frame(formula, data, na.action=na.pass) nn <- dim(dat)[1] if(typeof(data) == "environment"){ id <- id weights <- weights if(is.null(call$weights)) weights <- rep(1, nn) waves <- waves } else{ if(length(call$id) == 1){ subj.col <- which(colnames(data) == call$id) if(length(subj.col) > 0){ id <- data[,subj.col] }else{ id <- eval(call$id, envir=parent.frame()) } }else if(is.null(call$id)){ id <- 1:nn } if(length(call$weights) == 1){ weights.col <- which(colnames(data) == call$weights) if(length(weights.col) > 0){ weights <- data[,weights.col] }else{ weights <- eval(call$weights, envir=parent.frame()) } }else if(is.null(call$weights)){ weights <- rep.int(1,nn) } if(length(call$waves) == 1){ waves.col <- which(colnames(data) == call$waves) if(length(waves.col) > 0){ waves <- data[,waves.col] }else{ waves <- eval(call$waves, envir=parent.frame()) } }else if(is.null(call$waves)){ waves <- NULL } } dat$id <- id dat$weights <- weights dat$waves <- waves if(!is.numeric(dat$waves) & !is.null(dat$waves)) stop("waves must be either an integer vector or NULL") na.inds <- NULL if(any(is.na(dat))){ na.inds <- which(is.na(dat), arr.ind=T) } if(!is.null(waves)){ dat <- dat[order(id, waves),] }else{ dat <- dat[order(id),] } cor.vec <- c("independence", "ar1", "exchangeable", "m-dependent", "unstructured", "fixed", "userdefined") cor.match <- charmatch(corstr, cor.vec) if(is.na(cor.match)){stop("Unsupported correlation structure")} if(!is.null(dat$waves)){ wavespl <- split(dat$waves, dat$id) idspl <- split(dat$id, dat$id) maxwave <- rep(0, length(wavespl)) incomp <- rep(0, length(wavespl)) for(i in 1:length(wavespl)){ maxwave[i] <- max(wavespl[[i]]) - min(wavespl[[i]]) + 1 if(maxwave[i] != length(wavespl[[i]])){ incomp[i] <- 1 } } if( !is.element(cor.match,c(1,3)) & (sum(incomp) > 0) & !nodummy){ dat <- dummyrows(formula, dat, incomp, maxwave, wavespl, idspl) id <- dat$id waves <- dat$waves weights <- dat$weights } } if(!is.null(na.inds)){ weights[unique(na.inds[,1])] <- 0 for(i in unique(na.inds)[,2]){ if(is.factor(dat[,i])){ dat[na.inds[,1], i] <- levels(dat[,i])[1] }else{ dat[na.inds[,1], i] <- median(dat[,i], na.rm=T) } } } includedvec <- weights>0 inclsplit <- split(includedvec, id) dropid <- NULL allobs <- T if(any(!includedvec)){ allobs <- F for(i in 1:length(unique(id))){ if(all(!inclsplit[[i]])){ dropid <- c(dropid, unique(id)[i]) } } } dropind <- c() if(is.element(cor.match, c(1,3))){ dropind <- which(weights==0) }else if(length(dropid)>0){ dropind <- which(is.element(id, dropid)) } if(length(dropind) > 0){ dat <- dat[-dropind,] includedvec <- includedvec[-dropind] weights <- weights[-dropind] id <- id[-dropind] } nn <- dim(dat)[1] K <- length(unique(id)) modterms <- terms(formula) X <- model.matrix(formula,dat) Y <- model.response(dat) offset <- model.offset(dat) p <- dim(X)[2] if(is.null(offset)){ off <- rep(0, nn) }else{ off <- offset } interceptcol <- apply(X==1, 2, all) linkOfMean <- LinkFun(mean(Y[includedvec])) - mean(off) if( any(is.infinite(linkOfMean) | is.nan(linkOfMean)) ){ stop("Infinite or NaN in the link of the mean of responses. Make sure link function makes sense for these data.") } if( any(is.infinite( VarFun(mean(Y))) | is.nan( VarFun(mean(Y)))) ){ stop("Infinite or NaN in the variance of the mean of responses. Make sure variance function makes sense for these data.") } if(is.null(init.beta)){ if(any(interceptcol)){ init.beta <- rep(0, dim(X)[2]) init.beta[which(interceptcol)] <- linkOfMean }else{ stop("Must supply an initial beta if not using an intercept.") } } includedlen <- rep(0, K) len <- rep(0,K) uniqueid <- unique(id) tmpwgt <- as.numeric(includedvec) idspl <-ifelse(tmpwgt==0, NA, id) includedlen <- as.numeric(summary(split(Y, idspl, drop=T))[,1]) len <- as.numeric(summary(split(Y, id, drop=T))[,1]) W <- Diagonal(x=weights) sqrtW <- sqrt(W) included <- Diagonal(x=(as.numeric(weights>0))) if(is.null(init.alpha)){ alpha.new <- 0.2 if(cor.match==4){ alpha.new <- 0.2^(1:Mv) }else if(cor.match==5){ alpha.new <- rep(0.2, sum(1:(max(len)-1))) }else if(cor.match==7){ alpha.new <- rep(0.2, max(unique(as.vector(corr.mat)))) } }else{ alpha.new <- init.alpha } if(is.null(init.phi)){ phi <- 1 }else{ phi <- init.phi } beta <- init.beta StdErr <- Diagonal(nn) dInvLinkdEta <- Diagonal(nn) Resid <- Diagonal(nn) if(cor.match == 1){ R.alpha.inv <- Diagonal(x = rep.int(1, nn))/phi BlockDiag <- getBlockDiag(len)$BDiag }else if(cor.match == 2){ tmp <- buildAlphaInvAR(len) a1<- tmp$a1 a2 <- tmp$a2 a3 <- tmp$a3 a4 <- tmp$a4 row.vec <- tmp$row.vec col.vec <- tmp$col.vec BlockDiag <- getBlockDiag(len)$BDiag }else if(cor.match == 3){ tmp <- getBlockDiag(len) BlockDiag <- tmp$BDiag n.vec <- vector("numeric", nn) index <- c(cumsum(len) - len, nn) for(i in 1:K){ n.vec[(index[i]+1) : index[i+1]] <- rep(includedlen[i], len[i]) } }else if(cor.match == 4){ if(Mv >= max(len)){ stop("Cannot estimate that many parameters: Mv >= max(clustersize)") } tmp <- getBlockDiag(len) BlockDiag <- tmp$BDiag row.vec <- tmp$row.vec col.vec <- tmp$col.vec R.alpha.inv <- NULL }else if(cor.match == 5){ if( max(len^2 - len)/2 > length(len)){ stop("Cannot estimate that many parameters: not enough subjects for unstructured correlation") } tmp <- getBlockDiag(len) BlockDiag <- tmp$BDiag row.vec <- tmp$row.vec col.vec <- tmp$col.vec }else if(cor.match == 6){ corr.mat <- checkFixedMat(corr.mat, len) R.alpha.inv <- as(getAlphaInvFixed(corr.mat, len), "symmetricMatrix")/phi BlockDiag <- getBlockDiag(len)$BDiag }else if(cor.match == 7){ corr.mat <- checkUserMat(corr.mat, len) tmp1 <- getUserStructure(corr.mat) corr.list <- tmp1$corr.list user.row <- tmp1$row.vec user.col <- tmp1$col.vec struct.vec <- tmp1$struct.vec tmp2 <- getBlockDiag(len) BlockDiag <- tmp2$BDiag row.vec <- tmp2$row.vec col.vec <- tmp2$col.vec }else if(cor.match == 0){ stop("Ambiguous Correlation Structure Specification") }else{ stop("Unsupported Correlation Structure") } stop <- F converged <- F count <- 0 beta.old <- beta unstable <- F phi.old <- phi while(!stop){ count <- count+1 eta <- as.vector(X %*% beta) + off mu <- InvLink(eta) diag(StdErr) <- sqrt(1/VarFun(mu)) if(!scale.fix){ phi <- updatePhi(Y, mu, VarFun, p, StdErr, included, includedlen, sqrtW, useP) } phi.new <- phi if(cor.match == 2){ alpha.new <- updateAlphaAR(Y, mu, VarFun, phi, id, len, StdErr, p, included, includedlen, includedvec, allobs, sqrtW, BlockDiag, useP) R.alpha.inv <- getAlphaInvAR(alpha.new, a1,a2,a3,a4, row.vec, col.vec)/phi }else if(cor.match == 3){ alpha.new <- updateAlphaEX(Y, mu, VarFun, phi, id, len, StdErr, Resid, p, BlockDiag, included, includedlen, sqrtW, useP) R.alpha.inv <- getAlphaInvEX(alpha.new, n.vec, BlockDiag)/phi }else if(cor.match == 4){ if(Mv==1){ alpha.new <- updateAlphaAR(Y, mu, VarFun, phi, id, len, StdErr, p, included, includedlen, includedvec, allobs, sqrtW, BlockDiag, useP) }else{ alpha.new <- updateAlphaMDEP(Y, mu, VarFun, phi, id, len, StdErr, Resid, p, BlockDiag, Mv, included, includedlen, allobs, sqrtW, useP) if(sum(len>Mv) <= p){ unstable <- T } } if(any(alpha.new >= 1)){ stop <- T warning("some estimated correlation is greater than 1, stopping.") } R.alpha.inv <- getAlphaInvMDEP(alpha.new, len, row.vec, col.vec)/phi }else if(cor.match == 5){ alpha.new <- updateAlphaUnstruc(Y, mu, VarFun, phi, id, len, StdErr, Resid, p, BlockDiag, included, includedlen, allobs, sqrtW, useP) if(any(alpha.new >= 1)){ stop <- T warning("some estimated correlation is greater than 1, stopping.") } R.alpha.inv <- getAlphaInvUnstruc(alpha.new, len, row.vec, col.vec)/phi }else if(cor.match ==6){ R.alpha.inv <- R.alpha.inv*phi.old/phi }else if(cor.match == 7){ alpha.new <- updateAlphaUser(Y, mu, phi, id, len, StdErr, Resid, p, BlockDiag, user.row, user.col, corr.list, included, includedlen, allobs, sqrtW, useP) R.alpha.inv <- getAlphaInvUser(alpha.new, len, struct.vec, user.row, user.col, row.vec, col.vec)/phi }else if(cor.match == 1){ R.alpha.inv <- Diagonal(x = rep.int(1/phi, nn)) alpha.new <- "independent" } beta.list <- updateBeta(Y, X, beta, off, InvLinkDeriv, InvLink, VarFun, R.alpha.inv, StdErr, dInvLinkdEta, tol, W, included) beta <- beta.list$beta phi.old <- phi if( max(abs((beta - beta.old)/(beta.old + .Machine$double.eps))) < tol ){converged <- T; stop <- T} if(count >= maxit){stop <- T} beta.old <- beta } biggest <- which.max(len)[1] index <- sum(len[1:biggest])-len[biggest] if(K == 1){ biggest.R.alpha.inv <- R.alpha.inv if(cor.match == 6) { biggest.R.alpha <- corr.mat*phi }else{ biggest.R.alpha <- solve(R.alpha.inv) } }else{ biggest.R.alpha.inv <- R.alpha.inv[(index+1):(index+len[biggest]) , (index+1):(index+len[biggest])] if(cor.match == 6){ biggest.R.alpha <- corr.mat[1:len[biggest] , 1:len[biggest]]*phi }else{ biggest.R.alpha <- solve(biggest.R.alpha.inv) } } eta <- as.vector(X %*% beta) + off if(sandwich){ sandvar.list <- getSandwich(Y, X, eta, id, R.alpha.inv, phi, InvLinkDeriv, InvLink, VarFun, beta.list$hess, StdErr, dInvLinkdEta, BlockDiag, W, included) }else{ sandvar.list <- list() sandvar.list$sandvar <- "no sandwich" } if(!converged){warning("Did not converge")} if(unstable){warning("Number of subjects with number of observations >= Mv is very small, some correlations are estimated with very low sample size.")} dat <- model.frame(formula, data, na.action=na.pass) X <- model.matrix(formula, dat) if(is.character(alpha.new)){alpha.new <- 0} results <- list() results$beta <- as.vector(beta) results$phi <- phi results$alpha <- alpha.new if(cor.match == 6){ results$alpha <- as.vector(triu(corr.mat, 1)[which(triu(corr.mat,1)!=0)]) } results$coefnames <- colnames(X) results$niter <- count results$converged <- converged results$naiv.var <- solve(beta.list$hess) results$var <- sandvar.list$sandvar results$call <- call results$corr <- cor.vec[cor.match] results$clusz <- len results$FunList <- famret results$X <- X results$offset <- off results$eta <- eta results$dropped <- dropid results$weights <- weights results$terms <- modterms results$y <- Y results$biggest.R.alpha <- biggest.R.alpha/phi results$formula <- formula class(results) <- "geem" return(results) } updatePhi <- function(YY, mu, VarFun, p, StdErr, included, includedlen, sqrtW, useP){ nn <- sum(includedlen) resid <- diag(StdErr %*% included %*% sqrtW %*% Diagonal(x = YY - mu)) phi <- (1/(sum(included)- useP * p))*crossprod(resid, resid) return(as.numeric(phi)) } updateBeta = function(YY, XX, beta, off, InvLinkDeriv, InvLink, VarFun, R.alpha.inv, StdErr, dInvLinkdEta, tol, W, included){ beta.new <- beta conv=F for(i in 1:10){ eta <- as.vector(XX%*%beta.new) + off diag(dInvLinkdEta) <- InvLinkDeriv(eta) mu <- InvLink(eta) diag(StdErr) <- sqrt(1/VarFun(mu)) hess <- crossprod( StdErr %*% dInvLinkdEta %*%XX, R.alpha.inv %*% W %*% StdErr %*%dInvLinkdEta %*% XX) esteq <- crossprod( StdErr %*%dInvLinkdEta %*%XX , R.alpha.inv %*% W %*% StdErr %*% as.matrix(YY - mu)) update <- solve(hess, esteq) beta.new <- beta.new + as.vector(update) } return(list(beta = beta.new, hess = hess)) } getSandwich = function(YY, XX, eta, id, R.alpha.inv, phi, InvLinkDeriv, InvLink, VarFun, hessMat, StdErr, dInvLinkdEta, BlockDiag, W, included){ diag(dInvLinkdEta) <- InvLinkDeriv(eta) mu <- InvLink(eta) diag(StdErr) <- sqrt(1/VarFun(mu)) scoreDiag <- Diagonal(x= YY - mu) BlockDiag <- scoreDiag %*% BlockDiag %*% scoreDiag numsand <- as.matrix(crossprod( StdErr %*% dInvLinkdEta %*% XX, R.alpha.inv %*% W %*% StdErr %*% BlockDiag %*% StdErr %*% W %*% R.alpha.inv %*% StdErr %*% dInvLinkdEta %*% XX)) sandvar <- t(solve(hessMat, numsand)) sandvar <- t(solve(t(hessMat), sandvar)) return(list(sandvar = sandvar, numsand = numsand)) }
ChiSquareTail <- function(U, df, xlim = c(0, 10), col = fadeColor("black", "22"), axes = TRUE, ...) { x <- c(0, seq(xlim[1], xlim[2] + 3, length.out = 300)) y <- c(0, stats::dchisq(x[-1], df)) graphics::plot(x, y, type = "l", axes = FALSE, xlim = xlim) graphics::abline(h = 0) if (axes) { axis(1) } these <- which(x >= U) X <- x[c(these[1], these, rev(these)[1])] Y <- c(0, y[these], 0) graphics::polygon(X, Y, col = col) }
set_window = function(width = 6, height = 4.5, kill = TRUE, noRStudioGD = TRUE) { if (kill) graphics.off() dev.new(width = width, height = height, noRStudioGD) set_panels(1, 1) }
aggregation.misclass <- function (full.data = NULL, response, x, model, cplx = NULL, type = c("apparent", "noinf"), fullsample.attr = NULL, ...) { data <- as.data.frame(x) data$response <- response if (class(model)[1] == "penfit") { probs <- predict(model, data = data, penalized = x, ...) } else { if(class(model)[1] == "glm") { probs <- predict(model, newdata = data, penalized = x, , type = "response", ...) } else { probs <- predict(model, data = data, type = "response", ...) } } type <- match.arg(type) if (type == "apparent") { mr <- sum(abs(round(probs) - response))/length(response) } if (type == "noinf") { mr <- mean(abs((matrix(response, length(response), length(response), byrow = TRUE) - round(probs)))) } mr }
ClusProc0 <- function(signal,signal.mean,Num,threshold,thresMAF,cut,itermax,thres_sil){ seed<- sample(c(1:1000000),1) set.seed(seed) pX <- as.matrix(signal) S <- dim(pX)[1] clusRes <- rep(NA,S) del <- list() mu <- list() kcl <- kmeans(pX,Num,nstart=10) KX <- data.frame(X=pX,Kn=kcl$cluster) for(i in 1:Num){ mu[[i]] <- apply(as.matrix(KX[KX$Kn==i,c(1:cut)]),2,mean) del[[i]] <- cov(as.matrix(KX[KX$Kn==i,c(1:cut)])) } alpha=rep(1/Num,Num) iter <- 0 logLold <- Inf pin <- matrix(NA,S,Num) M=rep(NA,Num) LDdel=rep(NA,Num) while(1){ iter=iter+1 for(i in 1:S) for(n in 1:Num) pin[i,n] <- 1/(2*pi*det(del[[n]]))*exp(-1/2*(pX[i,]-mu[[n]])%*%solve(del[[n]])%*%as.matrix(pX[i,]-mu[[n]]))*alpha[n] for(i in 1:S) clusRes[i] <- which(pin[i,]==max(pin[i,])) for(i in 1:Num) alpha[i] <- mean(clusRes==i) Sdata <- data.frame(pX=pX,clusRes=clusRes) for(i in 1:Num){ mu[[i]] <- apply(as.matrix(Sdata[Sdata$clusRes==i,c(1:cut)]),2,mean) del[[i]] <- cov(as.matrix(Sdata[Sdata$clusRes==i,c(1:cut)])) LDdel[i] <- log(det(del[[i]])) M[i] <- sum(Sdata$clusRes==i) } sum <- 0 for(i in 1:S) sum <- sum+(pX[i,]-mu[[clusRes[i]]])%*%solve(del[[clusRes[i]]])%*%as.matrix(pX[i,]-mu[[clusRes[i]]]) logL <- -1/2*(sum(M*LDdel)+sum) if(abs(logL-logLold)<threshold) break if(iter>itermax) break logLold <- logL } logL <- logL-1/2*S*cut*log(2*pi) cat("The logliklihood for signal model is ",logL," when clustering number is ",Num,'.\n',sep='') Sdata$clusRes <- Sdata$clusRes+Num old.order.mean <- as.matrix(tapply(signal.mean,Sdata$clusRes,mean)) old.order.id <- (Num+1):(2*Num) mid <- sort(old.order.mean,index.return=TRUE)$ix for(i in 1:Num) Sdata[Sdata$clusRes==old.order.id[mid[i]],]$clusRes <- i rownames(Sdata) <- rownames(signal.mean) sil <- silWidth(Sdata,thres_sil=thres_sil,thres_MAF=thresMAF) return(list(logL=logL,sil=sil)) } ClusProc <- function(signal,N=2:6,varSelection=c('PC1','RAW','PC.9','MEAN'),threshold=1e-05,itermax=8,adjust=TRUE,thresMAF=0.01,scale=FALSE,thresSil=0.01){ varSelection <- match.arg(varSelection) sX0 <- as.matrix(signal) if(scale) sX <- scale(sX0) else sX <- sX0 cut <- 1 if(varSelection=='PC.9'){ prop <- 0.9 pca <- princomp(sX) sds <- pca$sdev vars <- sds^2 varprop <- vars/sum(vars) cumvars <- as.vector(cumsum(varprop)) while(cumvars[cut]<prop) cut=cut+1 if(cut>1) cat("The first ",cut,' principal components are used.\n',sep='') else cat("The first principal component is used.\n",sep='') Invcov <- matrix(0,nrow=cut,ncol=cut) diag(Invcov) <- 1/vars[1:cut] comptable <- data.frame(sdev=pca$sdev,vars=vars,cumu=cumvars) coef <- pca$loadings[,1:cut] pX <- sX%*%coef } if(varSelection=='RAW') { pX <- sX cut <- ncol(pX) cat("The raw intensity measurement is used.\n",sep='') } if(varSelection=='MEAN'){ pX <- apply(sX,1,mean) cat("The mean of the intensity measurement is used.\n",sep='') } if(varSelection=='PC1'){ cat("The first principal component is used.\n",sep='') pX <- prcomp(sX)$x[,1] } signal.mean <- as.matrix(apply(sX0,1,mean)) rownames(signal.mean) <- rownames(sX0) if(1%in%N) stop('The assigned clustering number must be larger than 1.') res <- list() for(i in 1:length(N)){ Num <- N[i] res[[i]] <- ClusProc0(signal=pX,signal.mean=signal.mean,Num=Num,threshold=threshold,thresMAF=thresMAF,cut=cut,itermax=itermax,thres_sil=thresSil) } Nlen <- length(N) silR <- rep(NA,Nlen) for(i in 1:Nlen) if(adjust) silR[i] <- res[[i]]$sil$adjusted$silMean.adjust else silR[i] <- res[[i]]$sil$unadjusted$silMean if(adjust) { N <- rep(NA,Nlen) for(i in 1:Nlen) N[i] <- res[[i]]$sil$adjusted$clusNum.adjust } n <- which(silR==max(silR)) clusNum <- N[n] logL <- res[[n]]$logL sil <- res[[n]]$sil resfinal <- list(clusNum=clusNum,silWidth=sil,signal=signal,adjust=adjust) class(resfinal) <- 'clust' return(resfinal) } print.clust <- function(x, ...) { adjust <- x$adjust if(adjust) res <- data.frame(clusNum.adjust=x$silWidth$adjusted$clusNum.adjust,silMean.adjust=round(x$silWidth$adjusted$silMean.adjust,4)) else res <- data.frame(clusNum=x$silWidth$unadjusted$clusNum,silMean=round(x$silWidth$unadjusted$silMean,4)) print(res,quote=FALSE,row.names=FALSE) }
expected <- eval(parse(text="TRUE")); test(id=0, code={ argv <- eval(parse(text="list(structure(1, .Tsp = c(1, 1, 1), class = \"ts\"))")); do.call(`is.finite`, argv); }, o=expected);
graph1_m_DEA <- function(input, output, mseries, B, RTS = "crs", ORIENTATION = "in", check = c(1), col = c("black"), print = TRUE) { input <- as.data.frame(input) output <- as.data.frame(output) meff <- matrix(0, nrow = length(mseries), ncol = length(check)) for (m in 1:length(mseries)) { if (print == TRUE) { sprintf("The code is now computing the Robust DEA scores for m = %s", mseries[m]) } DEA <- robust_DEA(input, output, m = mseries[m], B, RTS= RTS, ORIENTATION= ORIENTATION)$eff for(l in 1:length(check)) { meff[m,l] <- length(DEA[DEA>check[l]])/nrow(output) } } plot(x=mseries, y=meff[,1], type = "b", lwd = 2, main = "Percentage of super-efficient units", xlab = c("m"), ylab = c("Percentage of super-efficient units"), ylim=c(0, max(meff[,1])) ) for(l in 2:length(check)) { graphics::lines(x=mseries, y=meff[,l], type = "b", lwd = 2, col = col[l]) } legend("topright", legend = check, col = col, lwd = 2) legend }
context("portable") test_that("initialization", { AC <- R6Class("AC", portable = TRUE, public = list( x = 1, initialize = function(x, y) { self$x <- self$getx() + x private$y <- y }, getx = function() self$x, gety = function() private$y ), private = list( y = 2 ) ) A <- AC$new(2, 3) expect_identical(A$x, 3) expect_identical(A$gety(), 3) AC <- R6Class("AC", portable = TRUE, public = list(x = 1)) expect_error(AC$new(3)) }) test_that("empty members and methods are allowed", { AC <- R6Class("AC", portable = TRUE) expect_no_error(AC$new()) }) test_that("Private members are private, and self/private environments", { AC <- R6Class("AC", portable = TRUE, public = list( x = 1, gety = function() private$y, getx = function() self$x, getx2 = function() private$getx_priv(), getself = function() self, getprivate = function() private ), private = list( y = 2, getx_priv = function() self$x ) ) A <- AC$new() expect_identical(A$getself(), A) expect_identical(parent.env(A), emptyenv()) private_bind_env <- A$getprivate() expect_identical(ls(private_bind_env), c("getx_priv", "y")) expect_identical(parent.env(private_bind_env), emptyenv()) eval_env <- environment(A$getx) expect_identical(parent.env(eval_env), environment()) expect_identical(eval_env$self, A) expect_identical(eval_env$private, A$getprivate()) expect_identical(eval_env, environment(A$getprivate()$getx_priv)) expect_identical(A$x, 1) expect_null(A$y) expect_null(A$getx_foo) expect_identical(A$gety(), 2) expect_identical(A$getx(), 1) expect_identical(A$getx2(), 1) }) test_that("Private methods exist even when no private fields", { AC <- R6Class("AC", portable = TRUE, public = list( x = 1, getx = function() self$x, getx2 = function() private$getx_priv(), getself = function() self, getprivate = function() private ), private = list( getx_priv = function() self$x ) ) A <- AC$new() private_bind_env <- A$getprivate() expect_identical(ls(private_bind_env), "getx_priv") expect_identical(parent.env(private_bind_env), emptyenv()) }) test_that("Active bindings work", { AC <- R6Class("AC", portable = TRUE, public = list( x = 5 ), active = list( x2 = function(value) { if (missing(value)) return(self$x * 2) else self$x <- value/2 }, sqrt_of_x = function(value) { if (!missing(value)) stop("Sorry this is a read-only variable.") else { if (self$x < 0) stop("The requested value is not available.") else sqrt(self$x) } } ) ) A <- AC$new() expect_identical(A$x2, 10) A$x <- 20 expect_identical(A$x2, 40) A$x2 <- 60 expect_identical(A$x2, 60) expect_identical(A$x, 30) A$x <- -2 expect_error(A$sqrt_of_x) muted_print <- function(x) capture.output(print(x)) expect_no_error(muted_print(A)) }) test_that("Locking works", { AC <- R6Class("AC", portable = FALSE, public = list(x = 1, getx = function() self$x), private = list(y = 2, gety = function() self$y), lock_objects = TRUE ) A <- AC$new() expect_no_error(A$x <- 5) expect_identical(A$x, 5) expect_no_error(A$private$y <- 5) expect_identical(A$private$y, 5) expect_error(A$getx <- function() 1) expect_error(A$gety <- function() 2) expect_error(A$z <- 1) expect_error(A$private$z <- 1) AC <- R6Class("AC", portable = FALSE, public = list(x = 1, getx = function() x), private = list(y = 2, gety = function() y), lock_objects = FALSE ) A <- AC$new() expect_no_error(A$x <- 5) expect_identical(A$x, 5) expect_no_error(A$private$y <- 5) expect_identical(A$private$y, 5) expect_error(A$getx <- function() 1) expect_error(A$private$gety <- function() 2) expect_no_error(A$z <- 1) expect_identical(A$z, 1) expect_no_error(A$private$z <- 1) expect_identical(A$private$z, 1) })
qqextcoeff <- function(fitted, estim = "ST", marge = "emp", xlab = "Semi-Empirical", ylab = "Model", ...){ if (!any("maxstab" %in% class(fitted))) stop("This functin is only available for 'maxstab' objects") data <- fitted$data coord <- fitted$coord ext.coeff <- fitted$ext.coeff if (fitted$iso){ dist <- distance(coord) exco.mod <- ext.coeff(dist) } else { dist <- distance(coord, vec = TRUE) exco.mod <- apply(dist, 1, ext.coeff) } exco.emp <- fitextcoeff(data, coord, plot = FALSE, estim = estim, marge = marge)$ext.coeff[,"ext.coeff"] plot(exco.emp, exco.mod, xlab = xlab, ylab = ylab, ...) abline(0, 1) } qqgev <- function(fitted, xlab, ylab, ...){ data <- fitted$data n.site <- ncol(data) gev.param <- t(apply(data, 2, gevmle)) pred <- predict(fitted) if (missing(xlab)) xlab <- c(expression(mu[MLE]), expression(sigma[MLE]), expression(xi[MLE])) if (missing(ylab)) ylab <- c(expression(mu[Model]), expression(sigma[Model]), expression(xi[Model])) op <- par(mfrow=c(1,3)) on.exit(par(op)) if (length(unique(pred[,"loc"])) != 1){ xlim <- ylim <- range(c(gev.param[,"loc"], pred[,"loc"])) plot(gev.param[,"loc"], pred[,"loc"], xlab = xlab[1], ylab = ylab[1], ..., xlim = xlim, ylim = ylim) abline(0, 1) } else{ hist(gev.param[,"loc"], xlab = xlab[1], main = "") axis(3, at = pred[1, "loc"], labels = ylab[1]) } if (length(unique(pred[,"scale"])) !=1){ xlim <- ylim <- range(c(gev.param[,"scale"], pred[,"scale"])) plot(gev.param[,"scale"], pred[,"scale"], xlab = xlab[2], ylab = ylab[2], ..., xlim = xlim, ylim = ylim) abline(0, 1) } else{ hist(gev.param[,"scale"], xlab = xlab[2], main = "") axis(3, at = pred[1, "scale"], labels = ylab[2]) } if (length(unique(pred[,"shape"])) != 1){ xlim <- ylim <- range(c(gev.param[,"shape"], pred[,"shape"])) plot(gev.param[,"shape"], pred[,"shape"], xlab = xlab[3], ylab = ylab[3], ..., xlim = xlim, ylim = ylim) abline(0, 1) } else{ hist(gev.param[,"shape"], xlab = xlab[3], main = "") axis(3, at = pred[1, "shape"], labels = ylab[3]) } } plot.copula <- function(x, ..., sites){ n.site <- ncol(x$data) n.obs <- nrow(x$data) if (missing(sites)) sites <- sample(1:n.site, 4) else if (length(sites) != 4) stop("'sites' must have length 4") op <- par(no.readonly = TRUE) layout(matrix(c(1,6,7,9,13,2,8,10,5,5,3,11,5,5,12,4), 4)) par(mar = c(4,4,1,0.5)) on.exit(par(op)) gev.param <- predict(x, std.err = FALSE)[sites, c("loc", "scale", "shape")] for (i in 1:4){ boot <- matrix(NA, nrow = 1000, ncol = n.obs) loc <- gev.param[i,1] scale <- gev.param[i,2] shape <- gev.param[i,3] probs <- 1:n.obs / (n.obs + 1) for (j in 1:1000) boot[j,] <- sort(rgev(n.obs, loc, scale, shape)) ci <- apply(boot, 2, quantile, c(0.025, 0.975)) matplot(1 / (1 - probs), t(ci), pch ="-", col = 1, xlab = "Return Period", ylab = "Return level", log = "x") fun <- function(T) qgev(1 - 1/T, loc, scale, shape) curve(fun, from = 1.001, to = 100, add = TRUE) points(1 / (1 - probs), sort(x$data[,sites[i]])) } fmadogram(x$data, x$coord, which = "ext", col = "lightgrey") fmadogram(fitted = x, which = "ext", add = TRUE, n.bins = n.site) model <- x$model DoF <- x$par["DoF"] nugget <- x$par["nugget"] range <- x$par["range"] smooth <- x$par["smooth"] sim.copula <- rcopula(n.obs * 1000, x$coord[sites,], x$copula, x$cov.mod, nugget = nugget, range = range, smooth = smooth, DoF = DoF) sim.copula <- array(log(sim.copula), c(n.obs, 1000, 4)) gumb <- log(apply(x$data[,sites], 2, gev2frech, emp = TRUE)) for (i in 1:3){ for (j in (i+1):4){ pair.max <- sort(apply(gumb[,c(i, j)], 1, max)) sim.pair.max <- apply(pmax(sim.copula[,,i], sim.copula[,,j]), 2, sort) dummy <- rowMeans(sim.pair.max) ci <- apply(sim.pair.max, 1, quantile, c(0.025, 0.975)) matplot(dummy, t(ci), pch = "-", col = 1, , xlab = "Model", ylab = "Observed") points(dummy, pair.max) abline(0, 1) h <- distance(x$coord[sites[c(i,j)],]) legend("bottomright", paste("h =", round(h, 2)), bty = "n") } } block.max <- sort(apply(gumb, 1, max)) sim.block.max <- sim.copula[,,1] for (i in 2:4) sim.block.max <- pmax(sim.block.max, sim.copula[,,i]) sim.block.max <- apply(sim.block.max, 2, sort) dummy <- rowMeans(sim.block.max) ci <- apply(sim.block.max, 1, quantile, c(0.025, 0.975)) matplot(dummy, t(ci), pch = "-", col = 1, xlab = "Model", ylab = "Observed") points(dummy, block.max) abline(0, 1) plot(x$coord, type = "n") points(x$coord[-sites,]) points(x$coord[sites,], pch = c("1", "2", "3", "4"), col = "blue") } plot.maxstab <- function(x, ..., sites){ n.site <- ncol(x$data) if (missing(sites)) sites <- sample(1:n.site, 4) else if (length(sites) != 4) stop("'sites' must have length 4") op <- par(no.readonly = TRUE) layout(matrix(c(1,6,7,9,13,2,8,10,5,5,3,11,5,5,12,4), 4)) par(mar = c(4,4,1,0.5)) on.exit(par(op)) gev.param <- predict(x, std.err = FALSE)[sites, c("loc", "scale", "shape")] for (i in 1:4){ n.obs <- length(na.omit(x$data[,sites[i]])) boot <- matrix(NA, nrow = 1000, ncol = n.obs) loc <- gev.param[i,1] scale <- gev.param[i,2] shape <- gev.param[i,3] probs <- 1:n.obs / (n.obs + 1) boot <- matrix(rgev(n.obs * 1000, loc, scale, shape), nrow = 1000, ncol = n.obs) boot <- apply(boot, 1, sort) ci <- apply(boot, 1, quantile, prob = c(0.025, 0.975)) matplot(1 / (1 - probs), t(ci), pch = "-", col = 1, xlab = "Return Period", ylab = "Return level", log = "x") fun <- function(T) qgev(1 - 1/T, loc, scale, shape) curve(fun, from = 1.001, to = 100, add = TRUE) points(1 / (1 - probs), sort(x$data[,sites[i]])) } fmadogram(x$data, x$coord, which = "ext", col = "lightgrey") fmadogram(fitted = x, which = "ext", add = TRUE, n.bins = n.site) n.obs <- nrow(x$data[,sites]) model <- x$model notimplemented <- FALSE if (model == "Smith"){ cov11 <- x$par["cov11"] cov12 <- x$par["cov12"] cov22 <- x$par["cov22"] sim.maxstab <- rmaxstab(n.obs * 1000, x$coord[sites,], "gauss", cov11 = cov11, cov12 = cov12, cov22 = cov22) } else if (model == "Schlather"){ nugget <- x$par["nugget"] range <- x$par["range"] smooth <- x$par["smooth"] sim.maxstab <- rmaxstab(n.obs * 1000, x$coord[sites,], x$cov.mod, nugget = nugget, range = range, smooth = smooth) } else if (model == "Geometric"){ sigma2 <- x$par["sigma2"] nugget <- x$par["nugget"] range <- x$par["range"] smooth <- x$par["smooth"] cov.mod <- paste("g", x$cov.mod, sep = "") sim.maxstab <- rmaxstab(n.obs * 1000, x$coord[sites,], cov.mod, sigma2 = sigma2, nugget = nugget, range = range, smooth = smooth) } else if (model == "Brown-Resnick"){ range <- x$par["range"] smooth <- x$par["smooth"] sim.maxstab <- rmaxstab(n.obs * 1000, x$coord[sites,], "brown", range = range, smooth = smooth) } else if (model == "Extremal-t"){ DoF <- x$par["DoF"] nugget <- x$par["nugget"] range <- x$par["range"] smooth <- x$par["smooth"] cov.mod <- paste("t", x$cov.mod, sep = "") sim.maxstab <- rmaxstab(n.obs * 1000, x$coord[sites,], cov.mod, DoF = DoF, nugget = nugget, range = range, smooth = smooth) } if (notimplemented){ for (i in 1:7){ plot(0, 0, type = "n", bty = "n", axes = FALSE, xlab = "", ylab = "") text(0, 0, "Not implemented") } } else { sim.maxstab <- array(log(sim.maxstab), c(n.obs, 1000, 4)) for (i in 1:4){ idx.na <- which(is.na(x$data[,sites[i]])) sim.maxstab[idx.na,,i] <- NA } gumb <- log(apply(x$data[,sites], 2, gev2frech, emp = TRUE)) for (i in 1:3){ for (j in (i+1):4){ pair.max <- sort(apply(gumb[,c(i, j)], 1, max)) sim.pair.max <- apply(pmax(sim.maxstab[,,i], sim.maxstab[,,j]), 2, sort) dummy <- rowMeans(sim.pair.max) ci <- apply(sim.pair.max, 1, quantile, c(0.025, 0.975)) matplot(dummy, t(ci), pch = "-", col = 1, , xlab = "Model", ylab = "Observed") points(dummy, pair.max) abline(0, 1) h <- distance(x$coord[sites[c(i,j)],]) legend("bottomright", paste("h =", round(h, 2)), bty = "n") } } block.max <- sort(apply(gumb, 1, max, na.rm = TRUE)) sim.block.max <- sim.maxstab[,,1] for (i in 2:4) sim.block.max <- pmax(sim.block.max, sim.maxstab[,,i], na.rm = TRUE) sim.block.max <- apply(sim.block.max, 2, sort, na.last = NA) dummy <- rowMeans(sim.block.max) ci <- apply(sim.block.max, 1, quantile, c(0.025, 0.975)) matplot(dummy, t(ci), pch = "-", col = 1, xlab = "Model", ylab = "Observed") points(dummy, block.max) abline(0, 1) } plot(x$coord, type = "n") points(x$coord[-sites,]) points(x$coord[sites,], pch = c("1", "2", "3", "4"), col = "blue") } .qqmaxtupple <- function(fitted, tupple.size = 2, n.plots = 6){ n.obs <- nrow(fitted$data) n.site <- ncol(fitted$data) model <- fitted$model tupples <- apply(replicate(n.plots, sample(n.site, tupple.size)), 2, sort) sites <- unique(as.numeric(tupples)) coord <- fitted$coord[sites,] if (model == "Smith"){ cov11 <- fitted$par["cov11"] cov12 <- fitted$par["cov12"] cov22 <- fitted$par["cov22"] sim.maxstab <- rmaxstab(n.obs * 1000, coord, "gauss", cov11 = cov11, cov12 = cov12, cov22 = cov22) } else if (model == "Schlather"){ nugget <- fitted$par["nugget"] range <- fitted$par["range"] smooth <- fitted$par["smooth"] sim.maxstab <- rmaxstab(n.obs * 1000, coord, fitted$cov.mod, nugget = nugget, range = range, smooth = smooth) } else if (model == "Geometric"){ sigma2 <- fitted$par["sigma2"] nugget <- fitted$par["nugget"] range <- fitted$par["range"] smooth <- fitted$par["smooth"] cov.mod <- paste("g", fitted$cov.mod, sep = "") sim.maxstab <- rmaxstab(n.obs * 1000, coord, cov.mod, sigma2 = sigma2, nugget = nugget, range = range, smooth = smooth) } else if (model == "Brown-Resnick"){ range <- fitted$par["range"] smooth <- fitted$par["smooth"] sim.maxstab <- rmaxstab(n.obs * 1000, coord, "brown", range = range, smooth = smooth) } else if (model == "Extremal-t"){ DoF <- fitted$par["DoF"] nugget <- fitted$par["nugget"] range <- fitted$par["range"] smooth <- fitted$par["smooth"] cov.mod <- paste("t", fitted$cov.mod, sep = "") sim.maxstab <- rmaxstab(n.obs * 1000, coord, cov.mod, DoF = DoF, nugget = nugget, range = range, smooth = smooth) } sim.maxstab <- array(log(sim.maxstab), c(n.obs, 1000, length(sites))) for (i in 1:length(sites)){ idx.na <- which(is.na(fitted$data[,sites[i]])) sim.maxstab[idx.na,,i] <- NA } gumb <- log(apply(fitted$data[,sites], 2, gev2frech, emp = TRUE)) for (i in 1:n.plots){ tupple <- tupples[,i] idx <- order(unique(c(tupple, tupples[,-i]))) tupple.max <- sort(apply(gumb[,idx], 1, max)) sim.tupple.max <- apply(apply(sim.maxstab[,,idx], c(1,2), max), 2, sort) dummy <- rowMeans(sim.tupple.max) ci <- apply(sim.tupple.max, 1, quantile, c(0.025, 0.975)) matplot(dummy, t(ci), pch = "-", col = 1, , xlab = "Model", ylab = "Observed") points(dummy, tupple.max) abline(0, 1) legend("bottomright", paste(c("Stations: ", sort(tupple)), collapse = " "), bty = "n") } }
read_pfile <- function(fname, n_ref_scans = NULL, verbose, extra) { fbytes <- file.size(fname) hdr <- read_pfile_header(fname) if (!is.null(n_ref_scans)) hdr$rhuser19 <- n_ref_scans con <- file(fname, "rb") seek(con, hdr$off_data) endian <- "little" Npts <- (fbytes - hdr$off_data) / 4 raw_pts <- readBin(con, "int", n = Npts, size = 4, endian = endian) close(con) coils <- 0 for (n in seq(1, 8, 2)) { if ((hdr$rcv[n] != 0) || (hdr$rcv[n + 1] != 0)) { coils <- coils + 1 + hdr$rcv[n + 1] - hdr$rcv[n] } } if (coils == 0) coils <- 1 expt_pts <- coils * (hdr$nframes * hdr$nechoes + hdr$nechoes) * hdr$frame_size * 2 if (expt_pts != Npts) { warning("Unexpected number of data points.") cat(paste("Expecting :", Npts, "points based on file size.\n")) cat(paste("Expecting :", expt_pts, "points based on header information.\n")) cat(paste("Coils :", coils, "\n")) cat(paste("nframes :", hdr$nframes, "\n")) cat(paste("nechoes :", hdr$nechoes), "\n") cat(paste("frame_size :", hdr$frame_size), "\n") cat(paste("w_frames :", hdr$rhuser19), "\n") cat(paste("Header rev. :", hdr$hdr_rev), "\n") } if (verbose) { cat(paste("Expecting :", Npts, "points based on file size.\n")) cat(paste("Expecting :", expt_pts, "points based on header information.\n")) cat(paste("Coils :", coils, "\n")) cat(paste("nframes :", hdr$nframes, "\n")) cat(paste("nechoes :", hdr$nechoes), "\n") cat(paste("frame_size :", hdr$frame_size), "\n") cat(paste("w_frames :", hdr$rhuser19), "\n") cat(paste("Header rev. :", hdr$hdr_rev), "\n\n") } data <- raw_pts[c(TRUE, FALSE)] + 1i * raw_pts[c(FALSE, TRUE)] dyns <- hdr$nechoes * hdr$nframes + hdr$nechoes data <- array(data, dim = c(hdr$frame_size, dyns, coils, 1, 1, 1, 1)) data <- aperm(data, c(7,6,5,4,2,3,1)) rem <- seq(from = 1, to = dyns, by = dyns / hdr$nechoes) data <- data[,,,,-rem,,,drop = FALSE] res <- c(NA, NA, NA, NA, 1, NA, 1 / hdr$spec_width) freq_domain <- rep(FALSE, 7) ref <- def_ref() nuc <- def_nuc() meta <- list(EchoTime = hdr$te) mrs_data <- mrs_data(data = data, ft = hdr$ps_mps_freq / 10, resolution = res, ref = ref, nuc = nuc, freq_domain = freq_domain, affine = NULL, meta = meta, extra = extra) if (hdr$rhuser19 > 0) { wref_inds <- rep(FALSE, Ndyns(mrs_data) / hdr$nechoes) wref_inds[1:hdr$rhuser] <- TRUE wref_inds <- rep(wref_inds, hdr$nechoes) ref_mrs <- get_dyns(mrs_data, which(wref_inds)) metab_mrs <- get_dyns(mrs_data, which(!wref_inds)) } else { ref_mrs <- NA metab_mrs <- mrs_data } list(metab = metab_mrs, ref = ref_mrs) } read_pfile_header <- function(fname) { endian <- "little" vars <- get_pfile_vars() con <- file(fname, "rb") vars$hdr_rev <- readBin(con, "numeric", size = 4, endian = endian) loc <- get_pfile_dict(vars$hdr_rev, con) seek(con, loc$off_data) vars$off_data <- readBin(con, "int", size = 4, endian = endian) seek(con, loc$nechoes) vars$nechoes <- readBin(con, "int", size = 2, endian = endian) seek(con, loc$nframes) vars$nframes <- readBin(con, "int", size = 2, endian = endian) seek(con, loc$frame_size) vars$frame_size <- readBin(con, "int", size = 2, signed = FALSE, endian = endian) seek(con, loc$rcv) vars$rcv <- readBin(con, "int", n = 8, size = 2, endian = endian) seek(con, loc$rhuser19) vars$rhuser19 <- readBin(con, "numeric", size = 4, endian = endian) seek(con, loc$spec_width) vars$spec_width <- readBin(con, "numeric", size = 4, endian = endian) seek(con, loc$csi_dims) vars$csi_dims <- readBin(con, "int", size = 2, endian = endian) seek(con, loc$xcsi) vars$xcsi <- readBin(con, "int", size = 2, endian = endian) seek(con, loc$ycsi) vars$ycsi <- readBin(con, "int", size = 2, endian = endian) seek(con, loc$zcsi) vars$zcsi <- readBin(con, "int", size = 2, endian = endian) seek(con, loc$ps_mps_freq) ps_mps_freq_bits <- intToBits(readBin(con, "int", size = 4, endian = endian)) vars$ps_mps_freq <- sum(2^.subset(0:31, as.logical(ps_mps_freq_bits))) seek(con, loc$te) vars$te <- readBin(con, "int", size = 4, endian = endian) / 1e6 close(con) vars } get_pfile_vars <- function() { vars <- vector(mode = "list", length = 14) names(vars) <- c("hdr_rev", "off_data", "nechoes", "nframes", "frame_size", "rcv", "rhuser19", "spec_width", "csi_dims", "xcsi", "ycsi", "zcsi", "ps_mps_freq", "te") vars } get_pfile_dict <- function(hdr_rev, con) { loc <- get_pfile_vars() if (floor(hdr_rev) > 25) { loc$hdr_rev <- 0 loc$off_data <- 4 loc$nechoes <- 146 loc$nframes <- 150 loc$frame_size <- 156 loc$rcv <- 264 loc$rhuser19 <- 356 loc$spec_width <- 432 loc$csi_dims <- 436 loc$xcsi <- 438 loc$ycsi <- 440 loc$zcsi <- 442 loc$ps_mps_freq <- 488 loc$te <- 1148 } else if ((floor(hdr_rev) > 11) && (floor(hdr_rev) < 25)) { loc$hdr_rev <- 0 loc$off_data <- 1468 loc$nechoes <- 70 loc$nframes <- 74 loc$frame_size <- 80 loc$rcv <- 200 loc$rhuser19 <- 292 loc$spec_width <- 368 loc$csi_dims <- 372 loc$xcsi <- 374 loc$ycsi <- 376 loc$zcsi <- 378 loc$ps_mps_freq <- 424 loc$te <- 1212 } else { close(con) stop(paste("Error, pfile version not supported :", hdr_rev)) } loc }
dataRep <- function(formula, data, subset, na.action) { call <- match.call() nact <- NULL y <- match.call(expand.dots=FALSE) if(missing(na.action)) y$na.action <- na.delete y[[1]] <- as.name("model.frame") X <- eval(y, sys.parent()) nact <- attr(X,"na.action") n <- nrow(X) nam <- names(X) p <- length(nam) types <- character(p) parms <- character(p) pctl <- vector('list',p) margfreq <- vector('list',p) Xu <- vector('list',p) for(j in 1:p) { namj <- nam[j] xj <- X[[j]] if(is.character(xj)) xj <- as.factor(xj) if(is.factor(xj)) { parms[[j]] <- paste(levels(xj),collapse=' ') types[j] <- 'exact categorical' } else if(inherits(xj,'roundN')) { atr <- attributes(xj) nam[j] <- atr$name types[j] <- 'round' parms[j] <- paste('to nearest',format(atr$tolerance)) if(length(w <- atr$clip)) parms[j] <- paste(parms[j],', clipped to [', paste(format(w),collapse=','),']',sep='') pctl[[j]] <- atr$percentiles } else { types[j] <- 'exact numeric' parms[j] <- '' pctl[[j]] <- quantile(xj, seq(0,1,by=.01)) } margfreq[[j]] <- table(xj) Xu[[j]] <- sort(unique(xj)) X[[j]] <- xj } names(types) <- names(parms) <- names(pctl) <- names(margfreq) <- names(Xu) <- nam Xu <- expand.grid(Xu) m <- nrow(Xu) count <- integer(m) for(i in 1:m) { matches <- rep(TRUE,n) for(j in 1:p) matches <- matches & (as.character(X[[j]]) == as.character(Xu[[j]][i])) count[i] <- sum(matches) } if(any(count==0)) { s <- count > 0 Xu <- Xu[s,] count <- count[s] m <- sum(s) } structure(list(call=call, formula=formula, n=n, names=nam, types=types, parms=parms, margfreq=margfreq, percentiles=pctl, X=Xu, count=count, na.action=nact), class='dataRep') } roundN <- function(x, tol=1, clip=NULL) { pct <- quantile(x, seq(0,1,by=.01), na.rm=TRUE) name <- deparse(substitute(x)) lab <- attr(x, 'label') if(!length(lab)) lab <- name if(!missing(clip)) x <- pmin(pmax(x,clip[1]),clip[2]) structure(as.single(tol*round(x/tol)), tolerance=tol, clip=clip, percentiles=pct, name=name, label=lab, class='roundN') } as.data.frame.roundN <- as.data.frame.vector '[.roundN' <- function(x, i, ...) { atr <- attributes(x) x <- unclass(x)[i] attributes(x) <- atr x } print.dataRep <- function(x, long=FALSE, ...) { cat("\n") cat("Data Representativeness n=",x$n,"\n\n", sep='') dput(x$call) cat("\n") if(length(z <- x$na.action)) naprint(z) specs <- data.frame(Type=x$types, Parameters=x$parms, row.names=x$names) cat('Specifications for Matching\n\n') print.data.frame(specs) X <- x$X if(long) { X$Frequency <- x$count cat('\nUnique Combinations of Descriptor Variables\n\n') print.data.frame(X) } else cat('\n',nrow(X), 'unique combinations of variable values were found.\n\n') invisible() } predict.dataRep <- function(object, newdata, ...) { n <- object$n count <- object$count if(missing(newdata)) return(count) pctl <- object$percentiles margfreq <- object$margfreq p <- length(margfreq) m <- nrow(newdata) nam <- object$names types <- object$types X <- object$X Xn <- model.frame(object$formula, newdata, na.action=na.keep) names(Xn) <- nam worst.margfreq <- rep(1e8, m) pct <- matrix(NA, m, p, dimnames=list(row.names(Xn),nam)) for(j in 1:p) { xj <- Xn[[j]] freq <- margfreq[[nam[j]]][as.character(xj)] freq[is.na(freq)] <- 0 pct[,j] <- if(types[j]=='exact categorical') 100*freq/n else approx(pctl[[nam[j]]], seq(0,100,by=1), xout=newdata[[nam[j]]], rule=2)$y worst.margfreq <- pmin(worst.margfreq, freq) } cnt <- integer(m) for(i in 1:m) { matches <- rep(TRUE,nrow(X)) for(j in 1:p) { matches <- matches & (as.character(X[[j]]) == as.character(Xn[[j]][i])) } s <- sum(matches) if(s > 1) warning('more than one match to original data combinations') cnt[i] <- if(s) count[matches] else 0 } if(any(cnt > worst.margfreq)) warning('program logic error') structure(list(count=cnt, percentiles=pct, worst.margfreq=worst.margfreq, newdata=newdata), class='predict.dataRep') } print.predict.dataRep <- function(x, prdata=TRUE, prpct=TRUE, ...) { if(prdata) { dat <- x$newdata dat$Frequency <- x$count dat$Marginal.Freq <- x$worst.margfreq cat('\nDescriptor Variable Values, Estimated Frequency in Original Dataset,\nand Minimum Marginal Frequency for any Variable\n\n') print.data.frame(dat) } else { cat('\nFrequency in Original Dataset\n\n') print(x$count) cat('\nMinimum Marginal Frequency for any Variable\n\n') print(x$worst.margfreq) } if(prpct) { cat('\n\nPercentiles for Continuous Descriptor Variables,\nPercentage in Category for Categorical Variables\n\n') print(round(x$percentiles)) } invisible() }
msm.emm.fit <- function(f, qdata, intvals, expnms, emmvar, emmvars, rr=TRUE, main=TRUE, degree=1, id=NULL, weights, bayes=FALSE, MCsize=nrow(qdata), hasintercept=TRUE, ...){ newform <- terms(f, data = qdata) nobs = nrow(qdata) thecall <- match.call(expand.dots = FALSE) names(thecall) <- gsub("qdata", "data", names(thecall)) names(thecall) <- gsub("f", "formula", names(thecall)) m <- match(c("formula", "data", "weights", "offset"), names(thecall), 0L) hasweights = ifelse("weights" %in% names(thecall), TRUE, FALSE) thecall <- thecall[c(1L, m)] thecall$drop.unused.levels <- TRUE thecall[[1L]] <- quote(stats::model.frame) thecalle <- eval(thecall, parent.frame()) if(hasweights){ qdata$weights <- as.vector(model.weights(thecalle)) } else qdata$weights = rep(1, nobs) if(is.null(id)) { id <- "id__" qdata$id__ <- seq_len(dim(qdata)[1]) } nidx = which(!(names(qdata) %in% id)) if(!bayes) fit <- glm(newform, data = qdata, weights=weights, ...) if(bayes){ requireNamespace("arm") fit <- bayesglm(f, data = qdata[,nidx,drop=FALSE], weights=weights, ...) } if(fit$family$family %in% c("gaussian", "poisson")) rr=FALSE if(is.null(intvals)){ intvals <- (seq_len(length(table(qdata[expnms[1]])))) - 1 } predit <- function(idx, newdata){ newdata[,expnms] <- idx suppressWarnings(predict(fit, newdata=newdata, type='response')) } if(MCsize==nrow(qdata)){ newdata <- qdata }else{ newids <- data.frame(temp=sort(sample(unique(qdata[,id, drop=TRUE]), MCsize, replace = TRUE ))) names(newids) <- id newdata <- merge(qdata,newids, by=id, all.x=FALSE, all.y=TRUE)[seq_len(MCsize),] } predmat = lapply(intvals, predit, newdata=newdata) msmdat <- data.frame( cbind( Ya = do.call(c,predmat), psi = rep(intvals, each=MCsize), weights = rep(newdata$weights, times=length(intvals)) ) ) msmdat[,emmvars] <- newdata[,emmvars] polydat <- as.data.frame(poly(msmdat$psi, degree=degree, raw=TRUE)) newexpnms <- paste0("psi",1:degree) names(polydat) <- newexpnms msmdat <- cbind(msmdat, polydat) msmf <- paste0("Ya ~ ", ifelse(hasintercept, "1 +", "-1 +"), paste0(c(newexpnms, emmvars), collapse = "+")) msmform <- .intmaker(as.formula(msmf), expnms = newexpnms, emmvars = emmvars) class(msmform) <- "formula" newterms <- terms(msmform) nterms = length(attr(newterms, "term.labels")) nterms = nterms + attr(newterms, "intercept") if(bayes){ if(!rr) suppressWarnings(msmfit <- bayesglm(msmform, data=msmdat, weights=weights, x=TRUE, ...)) if(rr) suppressWarnings(msmfit <- bayesglm(msmform, data=msmdat, family=binomial(link='log'), start=rep(-0.0001, nterms), weights=weights, x=TRUE)) } if(!bayes){ if(!rr) suppressWarnings(msmfit <- glm(msmform, data=msmdat, weights=weights, x=TRUE, ...)) if(rr) suppressWarnings(msmfit <- glm(msmform, data=msmdat, family=binomial(link='log'), start=rep(-0.0001, nterms), weights=weights, x=TRUE)) } res <- list(fit=fit, msmfit=msmfit) if(main) { res$Ya <- msmdat$Ya res$Yamsm <- as.numeric(predict(msmfit, type='response')) res$Yamsml <- as.numeric(predict(msmfit, type="link")) res$A <- msmdat$psi res[[emmvar]] <- do.call(c, lapply(intvals, function(x) newdata[,emmvar])) } newtermlabels <- attr(newterms, "term.labels") for(emmv in emmvars){ newtermlabels <- gsub(paste0("psi([0-9]):", emmv), paste0(emmv,":","mixture", "^\\1"), newtermlabels) } newtermlabels <- gsub("\\^1", "", newtermlabels) attr(res, "term.labels") <- newtermlabels res } qgcomp.emm.boot <- function( f, data, expnms=NULL, emmvar="", q=4, breaks=NULL, id=NULL, weights, alpha=0.05, B=200, rr=TRUE, degree=1, seed=NULL, bayes=FALSE, MCsize=nrow(data), parallel=FALSE, parplan = FALSE, errcheck=FALSE, ...){ oldq = NULL if(is.null(seed)) seed = round(runif(1, min=0, max=1e8)) if(errcheck){ if (is.null(expnms)) { stop("'expnms' must be specified explicitly\n") } if (is.null(emmvar)) { stop("'emmvar' must be specified explicitly\n") } } allemmvals<- unique(data[,emmvar]) emmlev <- length(allemmvals) zdata = zproc(data[,emmvar], znm = emmvar) emmvars = names(zdata) data = cbind(data, zdata) data = data[,unique(names(data)),drop=FALSE] if(errcheck){ } originalform <- terms(f, data = data) hasintercept = as.logical(attr(originalform, "intercept")) (f <- .intmaker(f,expnms,emmvars)) newform <- terms(f, data = data) addedterms <- setdiff(attr(newform, "term.labels"), attr(originalform, "term.labels")) addedmain <- setdiff(addedterms, grep(":",addedterms, value = TRUE)) addedints <- setdiff(addedterms, addedmain) addedintsl <- lapply(emmvars, function(x) grep(x, addedints, value = TRUE)) addedintsord = addedints class(newform) <- "formula" nobs = nrow(data) origcall <- thecall <- match.call(expand.dots = FALSE) names(thecall) <- gsub("f", "formula", names(thecall)) m <- match(c("formula", "data", "weights", "offset"), names(thecall), 0L) hasweights = ifelse("weights" %in% names(thecall), TRUE, FALSE) thecall <- thecall[c(1L, m)] thecall$drop.unused.levels <- TRUE thecall[[1L]] <- quote(stats::model.frame) thecalle <- eval(thecall, parent.frame()) if(hasweights){ data$weights <- as.vector(model.weights(thecalle)) } else data$weights = rep(1, nobs) if (is.null(expnms)) { expnms <- attr(newform, "term.labels") message("Including all model terms as exposures of interest\n") } lin = .intchecknames(expnms) if(!lin) stop("Model appears to be non-linear and I'm having trouble parsing it: please use `expnms` parameter to define the variables making up the exposure") if (!is.null(q) & !is.null(breaks)){ oldq = q q <- NULL } if (!is.null(q) | !is.null(breaks)){ ql <- qgcomp::quantize(data, expnms, q, breaks) qdata <- ql$data br <- ql$breaks if(is.null(q)){ nvals <- length(br[[1]])-1 } else{ nvals <- q } intvals <- (seq_len(nvals))-1 } else { qdata <- data[unique(names(data)),] nvals = length(table(unlist(data[,expnms]))) if(nvals < 10){ message("\nNote: using all possible values of exposure as the intervention values\n") p = length(expnms) intvals <- as.numeric(names(table(unlist(data[,expnms])))) br <- lapply(seq_len(p), function(x) c(-1e16, intvals[2:nvals]-1e-16, 1e16)) }else{ message("\nNote: using quantiles of all exposures combined in order to set proposed intervention values for overall effect (25th, 50th, 75th %ile) You can ensure this is valid by scaling all variables in expnms to have similar ranges.") intvals = as.numeric(quantile(unlist(data[,expnms]), c(.25, .5, .75))) br <- NULL } } if(is.null(id)) { id <- "id__" qdata$id__ <- seq_len(dim(qdata)[1]) } msmfit <- msm.emm.fit(newform, qdata, intvals, emmvar=emmvar, emmvars=emmvars, expnms=expnms, rr, main=TRUE,degree=degree, id=id, weights, bayes, MCsize=MCsize, ...) msmcoefnames <- attr(msmfit, "term.labels") estb <- as.numeric(msmfit$msmfit$coefficients) nobs <- dim(qdata)[1] nids <- length(unique(qdata[,id, drop=TRUE])) starttime = Sys.time() psi.emm.only <- function(i=1, f=f, qdata=qdata, intvals=intvals, emmvar=emmvar, emmvars=emmvars, expnms=expnms, rr=rr, degree=degree, nids=nids, id=id, weights,MCsize=MCsize, ...){ if(i==2 & !parallel){ timeiter = as.numeric(Sys.time() - starttime) if((timeiter*B/60)>0.5) message(paste0("Expected time to finish: ", round(B*timeiter/60, 2), " minutes \n")) } bootids <- data.frame(temp=sort(sample(unique(qdata[,id, drop=TRUE]), nids, replace = TRUE ))) names(bootids) <- id qdata_ <- merge(qdata,bootids, by=id, all.x=FALSE, all.y=TRUE) ft = msm.emm.fit(f, qdata_, intvals=intvals, expnms=expnms, emmvar=emmvar, emmvars=emmvars, rr, main=FALSE, degree, id, weights=weights, bayes, MCsize=MCsize, ...) yhatty = data.frame(yhat=predict(ft$msmfit), psi=ft$msmfit$data[,"psi"]) as.numeric( c( with(yhatty, tapply(yhat, psi, mean)), ft$msmfit$coefficients ) ) } set.seed(seed) if(parallel){ if (parplan) { oplan <- future::plan(strategy = future::multisession) on.exit(future::plan(oplan), add = TRUE) } bootsamps <- future.apply::future_lapply(X=seq_len(B), FUN=psi.emm.only,f=f, qdata=qdata, intvals=intvals, emmvar=emmvar, emmvars=emmvars, expnms=expnms, rr=rr, degree=degree, nids=nids, id=id, weights=qdata$weights,MCsize=MCsize, future.seed=TRUE, ...) }else{ bootsamps <- lapply(X=seq_len(B), FUN=psi.emm.only,f=f, qdata=qdata, intvals=intvals, emmvar=emmvar, emmvars=emmvars, expnms=expnms, rr=rr, degree=degree, nids=nids, id=id, weights=weights, MCsize=MCsize, ...) } bootsamps = do.call("cbind", bootsamps) hatidx = seq_len(length(intvals)) hats = t(bootsamps[hatidx,]) cov.yhat = cov(hats) bootsamps = bootsamps[-hatidx,] seb <- apply(bootsamps, 1, sd) covmat.coef <- cov(t(bootsamps)) colnames(covmat.coef) <- rownames(covmat.coef) <- names(estb) <- c("(Intercept)", msmcoefnames) tstat <- estb / seb df <- nobs - length(attr(terms(f, data = data), "term.labels")) - 1 - degree pval <- 2 - 2 * pt(abs(tstat), df = df) pvalz <- 2 - 2 * pnorm(abs(tstat)) ci <- cbind(estb + seb * qnorm(alpha / 2), estb + seb * qnorm(1 - alpha / 2)) if (!is.null(oldq)){ q = oldq } psidx = 1:(hasintercept+1) qx <- qdata[, expnms] res <- .qgcompemm_object( qx = qx, fit = msmfit$fit, msmfit = msmfit$msmfit, psi = estb[-1], var.psi = seb[-1] ^ 2, covmat.psi=covmat.coef["psi1", "psi1"], covmat.psiint=covmat.coef[grep("mixture", colnames(covmat.coef)), grep("mixture", colnames(covmat.coef))], ci = ci[-1,], coef = estb, var.coef = seb ^ 2, covmat.coef=covmat.coef, ci.coef = ci, expnms=expnms, intterms = addedintsord, q=q, breaks=br, degree=degree, pos.psi = NULL, neg.psi = NULL, pos.weights = NULL, neg.weights = NULL, pos.size = NULL,neg.size = NULL, bootstrap=TRUE, y.expected=msmfit$Ya, y.expectedmsm=msmfit$Yamsm, index=msmfit$A, emmvar.msm = msmfit[[emmvar]], bootsamps = bootsamps, cov.yhat=cov.yhat, alpha=alpha, call=origcall, emmlev = emmlev ) if(msmfit$fit$family$family=='gaussian'){ res$tstat <- tstat res$df <- df res$pval <- pval } if(msmfit$fit$family$family %in% c('binomial', 'poisson')){ res$zstat <- tstat res$pval <- pvalz } res }
correlation.limits <- function(n.P, n.B, n.C, lambda.vec=NULL, prop.vec=NULL, coef.mat=NULL) { validation.bin(n.B, prop.vec) if (missing(n.P) == TRUE && !is.null(lambda.vec)) { stop("Number of Poisson variables is not specified!") } else if (n.P > 0 && is.null(lambda.vec)) { stop("Lambda vector is not specified while n.P > 0!") } else if (!is.null(lambda.vec)) { if(n.P == 0) { stop("Lambda vector is specified while n.P=0!") } else if (n.P > 0 && (length(lambda.vec) != n.P)) { stop("Length of lambda vector does not match the number of Poisson variables! \n") } else errorCount1=0 for (i in 1:length(lambda.vec)){ if(lambda.vec[i] <= 0) { cat("\n Lambda for Poisson variable",i,"must be greater than '0'!","\n") errorCount1 = errorCount1 + 1 cat("\n") } } if (errorCount1 > 0) { stop("Range violation occurred in the lambda vector!") } } if (missing(n.C) == TRUE && !is.null(coef.mat)) { stop("Number of continuous variables is not specified!") } else if (n.C > 0 && is.null(coef.mat)) { stop("Coefficient matrix is not specified while n.C> 0!") } else if (!is.null(coef.mat)) { if(n.C == 0) { stop("Coefficient matrix is specified while n.C=0!") } else if (n.C > 0 && (ncol(coef.mat) != n.C)) { stop("Dimension of coefficient matrix does not match the number of continuous variables! \n") } } if(!is.null(lambda.vec)) { samples=1e+05 xmat1=sapply(1:length(lambda.vec),function(i) rpois(samples,lambda.vec[i])) sxmat=apply(xmat1,2,sort) upp.lim.p=cor(sxmat)[col(cor(sxmat)) > row(cor(sxmat))] rsxmat=apply(sxmat,2,rev) low.lim.p=cor(sxmat,rsxmat)[col(cor(sxmat,rsxmat)) < row(cor(sxmat,rsxmat))] sugcormat.p=diag(1,n.P) sugcormat.p[lower.tri(sugcormat.p)]=low.lim.p sugcormat.p[upper.tri(sugcormat.p)]=upp.lim.p } if(!is.null(prop.vec)) { q.vec=(1-prop.vec) a=unlist(sapply(2:n.B , function(i) sapply(1:(i-1), function(j) -sqrt((prop.vec[i]*prop.vec[j])/(q.vec[i]*q.vec[j])) ))) b=unlist(sapply(2:n.B , function(i) sapply(1:(i-1), function(j) -sqrt((q.vec[i]*q.vec[j])/(prop.vec[i]*prop.vec[j])) ))) low.lim.b=apply(cbind(a,b),1,max) c=unlist(sapply(2:n.B , function(i) sapply(1:(i-1), function(j) sqrt((prop.vec[i]*q.vec[j])/(q.vec[i]*prop.vec[j])) ))) d=unlist(sapply(2:n.B , function(i) sapply(1:(i-1), function(j) sqrt((q.vec[i]*prop.vec[j])/(prop.vec[i]*q.vec[j])) ))) upp.lim.b=apply(cbind(c,d),1,min) samples = 1e+05 xmat2=sapply(1:length(prop.vec),function(i) rbinom(samples,1,prop.vec[i])) sugcormat.b=diag(1,n.B) sugcormat.b[lower.tri(sugcormat.b)]=low.lim.b sugcormat.b[upper.tri(sugcormat.b)]=upp.lim.b } if(!is.null(coef.mat)) { samples = 1e+05 xmat3=matrix(NA, nrow=samples, ncol=n.C) for (i in 1:n.C){ x=as.vector(rnorm(samples)) xx=cbind(1,x,x^2,x^3) xmat3[,i]=xx%*%coef.mat[,i] } sxmat=apply(xmat3,2,sort) upp.lim.n=cor(sxmat)[col(cor(sxmat)) > row(cor(sxmat))] rsxmat=apply(sxmat,2,rev) low.lim.n=cor(sxmat,rsxmat)[col(cor(sxmat,rsxmat)) < row(cor(sxmat,rsxmat))] sugcormat.n=diag(1,n.C) sugcormat.n[lower.tri(sugcormat.n)]=low.lim.n sugcormat.n[upper.tri(sugcormat.n)]=upp.lim.n } if(!is.null(lambda.vec) && is.null(prop.vec) && is.null(coef.mat) ) { sugcormat=sugcormat.p diag(sugcormat)=NA } else if(is.null(lambda.vec) && !is.null(prop.vec) && is.null(coef.mat) ) { sugcormat=sugcormat.b diag(sugcormat)=NA } else if(is.null(lambda.vec) && is.null(prop.vec) && !is.null(coef.mat) ) { sugcormat=sugcormat.n diag(sugcormat)=NA } else if(!is.null(lambda.vec) && !is.null(prop.vec) && is.null(coef.mat)) { xmat=cbind(xmat1,xmat2) sxmat=apply(xmat,2,sort) upp.lim=cor(sxmat)[col(cor(sxmat)) > row(cor(sxmat))] rsxmat=apply(sxmat,2,rev) low.lim=cor(sxmat,rsxmat)[col(cor(sxmat,rsxmat)) < row(cor(sxmat,rsxmat))] sugcormat=diag(1,(n.P+n.B)) sugcormat[lower.tri(sugcormat)]=low.lim sugcormat[upper.tri(sugcormat)]=upp.lim sugcormat[(n.P+1):(n.P+n.B),(n.P+1):(n.P+n.B)]=sugcormat.b diag(sugcormat)=NA } else if(!is.null(lambda.vec) && is.null(prop.vec) && !is.null(coef.mat)) { xmat=cbind(xmat1,xmat3) sxmat=apply(xmat,2,sort) upp.lim=cor(sxmat)[col(cor(sxmat)) > row(cor(sxmat))] rsxmat=apply(sxmat,2,rev) low.lim=cor(sxmat,rsxmat)[col(cor(sxmat,rsxmat)) < row(cor(sxmat,rsxmat))] sugcormat=diag(1,(n.P+n.C)) sugcormat[lower.tri(sugcormat)]=low.lim sugcormat[upper.tri(sugcormat)]=upp.lim diag(sugcormat)=NA } else if(is.null(lambda.vec) && !is.null(prop.vec) && !is.null(coef.mat)) { xmat=cbind(xmat2,xmat3) sxmat=apply(xmat,2,sort) upp.lim=cor(sxmat)[col(cor(sxmat)) > row(cor(sxmat))] rsxmat=apply(sxmat,2,rev) low.lim=cor(sxmat,rsxmat)[col(cor(sxmat,rsxmat)) < row(cor(sxmat,rsxmat))] sugcormat=diag(1,(n.B+n.C)) sugcormat[lower.tri(sugcormat)]=low.lim sugcormat[upper.tri(sugcormat)]=upp.lim sugcormat[1:n.B,1:n.B]=sugcormat.b diag(sugcormat)=NA } else if(!is.null(lambda.vec) && !is.null(prop.vec) && !is.null(coef.mat)) { xmat=cbind(xmat1,xmat2,xmat3) sxmat=apply(xmat,2,sort) upp.lim=cor(sxmat)[col(cor(sxmat)) > row(cor(sxmat))] rsxmat=apply(sxmat,2,rev) low.lim=cor(sxmat,rsxmat)[col(cor(sxmat,rsxmat)) < row(cor(sxmat,rsxmat))] sugcormat=diag(1,(n.P+n.B+n.C)) sugcormat[lower.tri(sugcormat)]=low.lim sugcormat[upper.tri(sugcormat)]=upp.lim sugcormat[(n.P+1):(n.P+n.B),(n.P+1):(n.P+n.B)]=sugcormat.b diag(sugcormat)=NA } limits.corr.mat=sugcormat return(limits.corr.mat) }
gb_classifier <- function(form, distribution, data.train, n.trees, interaction.depth, n.minobsinnode, shrinkage, verbose = c(TRUE, FALSE)) { if (isTRUE(verbose == TRUE)) { out <- gbm::gbm(formula = form, distribution = distribution, data = data.train, n.trees = n.trees, interaction.depth = interaction.depth, n.minobsinnode = n.minobsinnode, shrinkage = shrinkage, train.fraction = 1, n.cores = 1) } else { out <- suppressMessages(suppressWarnings( gbm::gbm(formula = form, distribution = distribution, data = data.train, n.trees = n.trees, interaction.depth = interaction.depth, n.minobsinnode = n.minobsinnode, shrinkage = shrinkage, train.fraction = 1, n.cores = 1) )) } return(out) } gb_classifier_update <- function(object, n.new.trees, verbose = c(TRUE, FALSE)) { if (isTRUE(verbose == TRUE)) { out <- gbm::gbm.more(object = object, n.new.trees = n.new.trees) } else { out <- suppressMessages(suppressWarnings( gbm::gbm.more(object = object, n.new.trees = n.new.trees) )) } return(out) }
RejectAssignment <- RejectAssignments <- reject <- function (assignments, feedback, verbose = getOption('pyMTurkR.verbose', TRUE)){ GetClient() if (is.factor(assignments)) { assignments <- as.character(assignments) } if (is.factor(feedback)) { feedback <- as.character(feedback) } for (i in 1:length(feedback)) { if (!is.null(feedback[i]) && nchar(feedback[i]) > 1024) stop("Feedback ", i, " is too long (1024 char max)") } if (length(feedback) == 1) { feedback <- rep(feedback[1], length(assignments)) } else if (!length(feedback) == length(assignments)) { stop("Number of feedback is not 1 nor length(assignments)") } Assignments <- emptydf(0, 3, c("AssignmentId", "Feedback", "Valid")) for (i in 1:length(assignments)){ response <- try(pyMTurkR$Client$reject_assignment( AssignmentId = assignments[i], RequesterFeedback = feedback[i] ), silent = !verbose) if (class(response) == "try-error") { valid <- FALSE if (verbose) { warning(i, ": Invalid request for assignment ",assignments[i]) } } else { valid <- TRUE if (verbose) { message(i, ": Assignment (", assignments[i], ") Rejected") } } Assignments <- rbind(Assignments, data.frame(AssignmentId = assignments[i], Feedback = feedback[i], Valid = valid)) } message(sum(Assignments$Valid), " Assignments Rejected") return(Assignments) }
populateCopierVector <- function(fxnPtr, Robject, vecName, dll) { vecPtr <- eval(call('.Call', nimbleUserNamespace$sessionSpecificDll$getModelObjectPtr, fxnPtr, vecName)) copierVectorObject <- Robject[[vecName]] fromPtr <- eval(call('.Call', nimbleUserNamespace$sessionSpecificDll$getModelObjectPtr, fxnPtr, copierVectorObject[[1]])) toPtr <- eval(call('.Call', nimbleUserNamespace$sessionSpecificDll$getModelObjectPtr, fxnPtr, copierVectorObject[[2]])) eval(call('.Call', nimbleUserNamespace$sessionSpecificDll$populateCopierVector, vecPtr, fromPtr, toPtr, as.integer(copierVectorObject[[3]]), as.integer(copierVectorObject[[4]]))) } populateManyModelVarMapAccess <- function(fxnPtr, Robject, manyAccessName, dll) { manyAccessPtr = eval(call('.Call', nimbleUserNamespace$sessionSpecificDll$getModelObjectPtr, fxnPtr, manyAccessName)) cModel <- Robject[[manyAccessName]][[1]]$CobjectInterface if(is(cModel, 'uninitializedField')) stop('Compiled C++ model not available; please include the model in your compilation call (or compile it in advance).', call. = FALSE) mapInfo <- makeMapInfoFromAccessorVectorFaster(Robject[[manyAccessName]]) if(length(mapInfo[[1]]) > 0) { eval(call('.Call', nimbleUserNamespace$sessionSpecificDll$populateValueMapAccessorsFromNodeNames, manyAccessPtr, mapInfo[[1]], mapInfo[[2]], cModel$.basePtr)) } } populateManyModelValuesMapAccess <- function(fxnPtr, Robject, manyAccessName, dll){ manyAccessPtr = eval(call('.Call', nimbleUserNamespace$sessionSpecificDll$getModelObjectPtr, fxnPtr, manyAccessName)) cModelValues <- Robject[[manyAccessName]][[1]]$CobjectInterface mapInfo <- makeMapInfoFromAccessorVectorFaster(Robject[[manyAccessName]]) eval(call('.Call', nimbleUserNamespace$sessionSpecificDll$populateValueMapAccessorsFromNodeNames, manyAccessPtr, mapInfo[[1]], mapInfo[[2]], cModelValues$extptr)) } getNamedObjected <- function(objectPtr, fieldName, dll) eval(call('.Call', nimbleUserNamespace$sessionSpecificDll$getModelObjectPtr, objectPtr, fieldName)) populateNodeFxnVecNew <- function(fxnPtr, Robject, fxnVecName, dll){ fxnVecPtr <- getNamedObjected(fxnPtr, fxnVecName, dll = dll) indexingInfo <- Robject[[fxnVecName]]$indexingInfo declIDs <- indexingInfo$declIDs rowIndices <- indexingInfo$unrolledIndicesMatrixRows if(is.null(Robject[[fxnVecName]]$model$CobjectInterface) || inherits(Robject[[fxnVecName]]$model$CobjectInterface, 'uninitializedField')) stop("populateNodeFxnVecNew: error in accessing compiled model; perhaps you did not compile the model used by your nimbleFunction along with or before this compilation of the nimbleFunction?") numberedPtrs <- Robject[[fxnVecName]]$model$CobjectInterface$.nodeFxnPointers_byDeclID$.ptr eval(call('.Call', nimbleUserNamespace$sessionSpecificDll$populateNodeFxnVectorNew_byDeclID, fxnVecPtr, as.integer(declIDs), numberedPtrs, as.integer(rowIndices))) } populateIndexedNodeInfoTable <- function(fxnPtr, Robject, indexedNodeInfoTableName, dll) { iNITptr <- getNamedObjected(fxnPtr, indexedNodeInfoTableName, dll = dll) iNITcontent <- Robject[[indexedNodeInfoTableName]]$unrolledIndicesMatrix eval(call('.Call', nimbleUserNamespace$sessionSpecificDll$populateIndexedNodeInfoTable, iNITptr, iNITcontent)) } numberedObjects <- setRefClass('numberedObjects', fields = c('.ptr' = 'ANY', dll = 'ANY'), methods = list( initialize = function(dll){ dll <<- dll .ptr <<- newNumberedObjects(dll) }, finalize = function() { nimbleInternalFunctions$nimbleFinalize(.ptr) }, getSize = function(){ getSize_NumberedObjects(.ptr, dll) }, resize = function(size){ resize_NumberedObjects(.ptr, size, dll) } ) ) setMethod('[', 'numberedObjects', function(x, i){ getNumberedObject(x$.ptr, i, x$dll) }) setMethod('[<-', 'numberedObjects', function(x, i, value){ assignNumberedObject(x$.ptr, i, value, x$dll) return(x) }) newNumberedObjects <- function(dll){ ans <- eval(call('.Call', nimbleUserNamespace$sessionSpecificDll$newNumberedObjects)) eval(call('.Call',nimbleUserNamespace$sessionSpecificDll$register_numberedObjects_Finalizer, ans, dll[['handle']], "numberedObjects")) ans } getSize_NumberedObjects <- function(numberedObject, dll){ eval(call('.Call', nimbleUserNamespace$sessionSpecificDll$getSizeNumberedObjects, numberedObject)) } resize_NumberedObjects <- function(numberedObject, size, dll){ nil <- eval(call('.Call', nimbleUserNamespace$sessionSpecificDll$resizeNumberedObjects, numberedObject, as.integer(size)) ) } assignNumberedObject <- function(numberedObject, index, val, dll){ if(!is(val, 'externalptr')) stop('Attempting to assign a val which is not an externalptr to a NumberedObjects') if(index < 1 || index > getSize_NumberedObjects(numberedObject, dll) ) stop('Invalid index') nil <- eval(call('.Call', getNativeSymbolInfo('setNumberedObject', nimbleUserNamespace$sessionSpecificDll), numberedObject, as.integer(index), val)) } getNumberedObject <- function(numberedObject, index, dll){ if(index < 1 || index > getSize_NumberedObjects(numberedObject, dll) ) stop('Invalid index') eval(call('.Call', nimbleUserNamespace$sessionSpecificDll$getNumberedObject, numberedObject, as.integer(index))) }
context("all_subsets") test_that("all subsets selection output matches the expected result", { model <- lm(y ~ x1 + x2 + x3 + x4, data = cement) k <- ols_step_all_possible(model) pred_exp <- c( "x4", "x2", "x1", "x3", "x1 x2", "x1 x4", "x3 x4", "x2 x3", "x2 x4", "x1 x3", "x1 x2 x4", "x1 x2 x3", "x1 x3 x4", "x2 x3 x4", "x1 x2 x3 x4" ) expect_equal(k$mindex, c(1:15)) expect_equivalent(k$predictors, pred_exp) }) test_that("output from all subsets regression is as expected", { x <- cat("Index N Predictors R-Square Adj. R-Square Mallow's Cp 1 1 1 disp 0.7183433 0.7089548 4.443792 2 2 1 hp 0.6024373 0.5891853 17.794906 3 3 2 disp hp 0.7482402 0.7308774 3.000000") model <- lm(mpg ~ disp + hp, data = mtcars) expect_output(print(ols_step_all_possible(model)), x) }) test_that("all possible regression betas are as expected", { model <- lm(mpg ~ disp + hp + wt, data = mtcars) k <- ols_step_all_possible_betas(model) is_dt <- is.data.table(k) k_class <- class(k) if(!is_dt) { k <- data.table(k) } actual <- k[, list(beta = mean(beta)), by = predictor] if(!is_dt) { class(actual) <- k_class } predictor <- c("(Intercept)", "disp", "hp", "wt") beta <- c(33.85901073, -0.02255579, -0.03899945, -4.09350456) expected <- data.frame(predictor, beta) expect_equivalent(actual$predictor, expected$predictor) expect_equivalent(actual$beta, expected$beta) })
randomRescaledEventMoves <- function(events,boundaries,countOnly=F){ chrlengths<-boundaries[,"end"]-boundaries[,"start"]+1 chrfrac<-(events[,"end"]-events[,"start"]+1)/ chrlengths[match(events[,"chrom"],boundaries[,"chrom"])] chrstart<-cumsum(chrlengths)-chrlengths+1 newchrom<-sample(unique(events[,"chrom"]),size=nrow(events),replace=T) newstart<-chrstart[newchrom]+ floor((1-chrfrac)*runif(nrow(events))* chrlengths[match(newchrom,boundaries[,"chrom"])]) if(countOnly)return() newend<-newstart+ pmax(0,round(chrfrac*chrlengths[match(newchrom,boundaries[,"chrom"])])-1) return(matrix(ncol=3,data=c(newstart,newend,newchrom),dimnames=list(NULL, c("start","end","chrom")))) }
invErf <- function(x) { if ( sum(x >= 1) > 0 | sum(x <= -1) > 0 ) stop("Argument must be between -1 and 1") return(qnorm((1+x)/2)/sqrt(2)); }
test_that("Credentials are accepted and a db is created", { skip_unless_socket_available() expect_error(SocketClass$new(host, port = 1984L, "admin", "denied")) expect_type(SocketClass$new("localhost", port = 1984L, "admin", "admin"), "environment") Session <- BasexClient$new("localhost", 1984L, username = "admin", password = "admin") Session$set_intercept(TRUE)$Execute("drop DB TestDB") Session$Execute("Open TestDB") Opened <- Session$get_success() if (!Opened) { Session$Create("TestDB") Session$Add("Test.xml", "<Line_1 line='1'>Content 1</Line_1>") Session$Add("Test.xml", "<Line_2 line='2'>Content 2</Line_2>") Session$Add("Test.xml", "<Line_3 line='3'>Content 3</Line_3>") Session$Add("Books", "<book title='XQuery' author='Walmsley'/>") Add_Book <- "let $book := <book title='Advanced R' author='Wickham'/> return insert node $book as last into collection('TestDB/Books')" Query_obj <- Session$Query(Add_Book) Query_obj$queryObject$ExecuteQuery() } Session$Execute("Close") Session$restore_intercept() expect_equal(Session$get_intercept(), FALSE) rm(Session) })
NULL tf_v2 <- function() { package_version(tf_version()) >= "1.14" } .globals <- new.env(parent = emptyenv()) .globals$tensorboard <- NULL .onLoad <- function(libname, pkgname) { tensorflow_python <- Sys.getenv("TENSORFLOW_PYTHON", unset = NA) if (!is.na(tensorflow_python)) Sys.setenv(RETICULATE_PYTHON = tensorflow_python) cpp_log_opt <- getOption("tensorflow.core.cpp_min_log_level") if (!is.null(cpp_log_opt)) Sys.setenv(TF_CPP_MIN_LOG_LEVEL = max(min(cpp_log_opt, 1), 0)) tf <<- import("tensorflow", delay_load = list( priority = 5, environment = "r-reticulate", on_load = function() { register_suppress_warnings_handler(list( suppress = function() { if (tf_v2()) { tf_logger <- tf$get_logger() logging <- reticulate::import("logging") old_verbosity <- tf_logger$level tf_logger$setLevel(logging$ERROR) old_verbosity } else { old_verbosity <- tf$logging$get_verbosity() tf$logging$set_verbosity(tf$logging$ERROR) old_verbosity } }, restore = function(context) { if (tf_v2()) { tf_logger <- tf$get_logger() tf_logger$setLevel(context) } else { tf$logging$set_verbosity(context) } } )) register_tf_help_handler() tryCatch(tf$python$util$deprecation$silence()$`__enter__`(), error = function(e) NULL) emit <- get("packageStartupMessage") emit("Loaded Tensorflow version ", tf$version$VERSION) } , on_error = function(e) { stop(tf_config_error_message(), call. = FALSE) } )) reticulate::register_class_filter(function(classes) { if (any(c("tensorflow.python.ops.variables.Variable", "tensorflow.python.framework.ops.Tensor", "tensorflow.python.ops.ragged.ragged_tensor.RaggedTensor") %in% classes)) { c("tensorflow.tensor", classes) } else { classes } }) } tf_config <- function() { have_tensorflow <- py_module_available("tensorflow") config <- py_config() if (have_tensorflow) { if (reticulate::py_has_attr(tf, "version")) version_raw <- tf$version$VERSION else version_raw <- tf$VERSION tfv <- strsplit(version_raw, ".", fixed = TRUE)[[1]] version <- package_version(paste(tfv[[1]], tfv[[2]], sep = ".")) structure(class = "tensorflow_config", list( available = TRUE, version = version, version_str = version_raw, location = config$required_module_path, python = config$python, python_version = config$version )) } else { structure(class = "tensorflow_config", list( available = FALSE, python_versions = config$python_versions, error_message = tf_config_error_message() )) } } tf_version <- function() { config <- tf_config() if (config$available) config$version else NULL } print.tensorflow_config <- function(x, ...) { if (x$available) { aliased <- function(path) sub(Sys.getenv("HOME"), "~", path) cat("TensorFlow v", x$version_str, " (", aliased(x$location), ")\n", sep = "") cat("Python v", x$python_version, " (", aliased(x$python), ")\n", sep = "") } else { cat(x$error_message, "\n") } } tf_gpu_configured <- function(verbose=TRUE) { res <- tryCatch({ tf$test$is_gpu_available() }, error = function(e) { warning("Can not determine if GPU is configured.", call. = FALSE); NA }) if (!is.na(verbose) && is.logical(verbose) &&verbose) { tryCatch({ cat(paste("TensorFlow built with CUDA: ", tf$test$is_built_with_cuda()), "\n"); cat(paste("GPU device name: ", tf$test$gpu_device_name(), collapse = "\n")) }, error = function(e) {}) } res } tf_config_error_message <- function() { message <- "Valid installation of TensorFlow not found." config <- py_config() if (!is.null(config)) { if (length(config$python_versions) > 0) { message <- paste0(message, "\n\nPython environments searched for 'tensorflow' package:\n") python_versions <- paste0(" ", normalizePath(config$python_versions, mustWork = FALSE), collapse = "\n") message <- paste0(message, python_versions, sep = "\n") } } python_error <- tryCatch({ import("tensorflow") list(message = NULL) }, error = function(e) { on.exit(py_clear_last_error()) py_last_error() }) message <- paste0(message, "\nPython exception encountered:\n ", python_error$message, "\n") message <- paste0(message, "\nYou can install TensorFlow using the install_tensorflow() function.\n") message }
.plotfun <- function(x, y, type, xlab, ylab, main, plot, add, ... ) { if (plot & add) { called <- tryCatch( {par(new = TRUE); TRUE}, warning = function(x) FALSE) if (!called) { warning("Both \'plot\' and \'add\' are TRUE, \'add\' is set to FALSE: the results are plotted in a separate plot.") add <- FALSE } else { warning("Both \'plot\' and \'add\' are TRUE, \'plot\' is set to FALSE: the results are added to an existing plot.") plot <- FALSE } } if (plot | add) { if ( plot ) { plot(x, y, type = type, xlab = xlab, ylab = ylab, main = main, ...) } else { lines(x, y, ...) } } } .checkInput <- function (data, gamma, scale, DT, pos = TRUE, gammapos = TRUE, scalepos = TRUE, DTpos = TRUE, r = 1) { if (!is.numeric(data)) { stop("data should be a numeric vector.") } n <- length(data) if (n == 1) { stop("We need at least two data points.") } if (pos) { if (min(data) <= 0) { stop("data can only contain strictly positive values.") } } if (!missing(gamma)) { if (!is.numeric(gamma)) { stop("gamma should be a numeric vector.") } if (gammapos & min(gamma, na.rm = TRUE) <= 0) { stop("gamma can only contain strictly positive values.") } if (!(length(gamma) %in% c(n - 2, n - 1, n) + (r - 1) )) { stop(paste0("gamma should have length ", n - 2, ", ", n - 1, " or ", n, ".")) } } if (!missing(scale)) { if (!is.numeric(scale)) { stop("scale should be a numeric vector.") } if (scalepos & min(scale, na.rm = TRUE) <= 0) { stop("scale can only contain strictly positive values.") } if (!(length(scale) %in% c(n - 2, n - 1, n))) { stop(paste("scale should have length", n - 2, ",", n - 1, "or", n)) } } if (!missing(gamma) & !missing(scale)) { if (length(gamma) != length(scale)) { stop("gamma and scale should have the same length.") } } if (!missing(DT)) { if (!is.numeric(DT)) { stop("DT should be a numeric vector.") } if (DTpos) { if (min(DT, na.rm = TRUE) < 0) { stop("DT can only contain positive values.") } } if (length(DT) != 1 & length(DT) != (n - r)) { stop(paste("DT should have length 1 or length", n - r)) } } } .checkProb <- function(p, l = 1) { if (length(p) != l) { stop(paste0("p should be a numeric of length ", l, ".")) } if (is.numeric(p)) { if (p < 0 | p > 1) { stop("p should be between 0 and 1.") } } else { stop("p should be numeric.") } } .checkCensored <- function(censored, n) { if (length(censored) != 1) { if (n != length(censored)) { stop("data and censored should have the same length.") } } else { censored <- rep(censored, n) } if (!is.logical(censored)) { if (!all(censored == 1 | censored == 0)) { stop("censored should be a logical vector.") } else { censored <- as.logical(censored) } } if (all(censored)) { stop("Not all data points can be censored.") } return(censored) } .output <- function(x, plot, add) { if (plot || add) { return(invisible(x)) } else { return(x) } }
knitr::opts_chunk$set( collapse = TRUE, comment = " ) library(gaussplotR) data(gaussplot_sample_data) samp_dat <- gaussplot_sample_data[,1:3] gauss_fit_cir_user <- fit_gaussian_2D(samp_dat, constrain_amplitude = TRUE, method = "circular", user_init = c(25.72529, -2.5, 1.7, 1.3, 1.6), print_initial_params = TRUE) gauss_fit_cir_user gauss_fit_cir <- fit_gaussian_2D(samp_dat, method = "circular") gauss_fit_cir
isStrictlyNegativeIntegerOrNanOrInfVectorOrNull <- function(argument, default = NULL, stopIfNot = FALSE, n = NA, message = NULL, argumentName = NULL) { checkarg(argument, "N", default = default, stopIfNot = stopIfNot, nullAllowed = TRUE, n = NA, zeroAllowed = FALSE, negativeAllowed = TRUE, positiveAllowed = FALSE, nonIntegerAllowed = FALSE, naAllowed = FALSE, nanAllowed = TRUE, infAllowed = TRUE, message = message, argumentName = argumentName) }
add_gml_mids <- function(data, keep, init = "sidea-all-joiners") { if (init %nin% c("sidea-all-joiners", "sidea-with-joiners", "sidea-orig")) { stop("init must be one of 'sidea-all-joiners', 'sidea-with-joiners', or 'sidea-orig'. You may have mispelled something. This argument applies only to state-year or leader-year analyses.") } if (length(attributes(data)$ps_data_type) > 0 && attributes(data)$ps_data_type == "dyad_year") { if (!all(i <- c("ccode1", "ccode2") %in% colnames(data))) { stop("add_gml_mids() merges on two Correlates of War codes (ccode1, ccode2), which your data don't have right now. Make sure to run create_dyadyears() at the top of the pipe. You'll want the default option, which returns Correlates of War codes.") } else { if (nrow(data %>% filter(.data$ccode1 > .data$ccode2)) == 0) { message("Dyadic data are non-directed and initiation variables make no sense in this context.") if (missing(keep)) { gml_mid_ddydisps %>% select(everything()) -> dirdisp } else { gml_mid_ddydisps %>% select(one_of("ccode1", "ccode2", "year", "gmlmidonset", "gmlmidongoing", keep)) -> dirdisp } dirdisp %>% left_join(data, .) %>% mutate_at(vars("gmlmidonset", "gmlmidongoing"), ~ifelse(is.na(.) & between(.data$year, 1816, 2010), 0, .)) -> data } else { if (init == "sidea-orig") { gml_mid_ddydisps %>% mutate(init1 = ifelse(.data$sidea1 == 1 & .data$orig1 == 1, 1, 0), init2 = ifelse(.data$sidea2 == 1 & .data$orig2 == 1, 1, 0)) -> hold_this } else if (init == "sidea-with-joiners") { gml_mid_ddydisps %>% mutate(init1 = ifelse(.data$sidea1 == 1 | (.data$orig1 == 0 & .data$sidea1 == 1), 1, 0), init2 = ifelse(.data$sidea2 == 1 | (.data$orig2 == 0 & .data$sidea2 == 1), 1, 0)) -> hold_this } else if (init == "sidea-all-joiners") { gml_mid_ddydisps %>% mutate(init1 = ifelse(.data$sidea1 == 1 | (.data$orig1 == 0), 1, 0), init2 = ifelse(.data$sidea2 == 1 | (.data$orig2 == 0), 1, 0) ) -> hold_this } if (missing(keep)) { hold_this %>% select(everything()) -> dirdisp } else { hold_this %>% select(one_of("ccode1", "ccode2", "year", "gmlmidonset", "gmlmidongoing", "init1", "init2", "sidea1", "sidea2", "orig1", "orig2", keep)) -> dirdisp } dirdisp %>% left_join(data, .) %>% mutate_at(vars("gmlmidonset", "gmlmidongoing"), ~ifelse(is.na(.) & between(.data$year, 1816, 2010), 0, .)) -> data } message("add_gml_mids() IMPORTANT MESSAGE: By default, this function whittles dispute-year data into dyad-year data by first selecting on unique onsets. Thereafter, where duplicates remain, it whittles dispute-year data into dyad-year data in the following order: 1) retaining highest `fatality`, 2) retaining highest `hostlev`, 3) retaining highest estimated `mindur`, 4) retaining reciprocated over non-reciprocated observations, 5) retaining the observation with the lowest start month, and, where duplicates still remained (and they don't), 6) forcibly dropping all duplicates for observations that are otherwise very similar.\nSee: http://svmiller.com/peacesciencer/articles/coerce-dispute-year-dyad-year.html") return(data) } } else if (length(attributes(data)$ps_data_type) > 0 && attributes(data)$ps_data_type == "state_year") { if (!all(i <- c("ccode") %in% colnames(data))) { stop("add_gml_mids() for leader-year data merges on Correlates of War state codes (ccode), which you don't have.") } gml_part %>% filter(.data$allmiss_leader_start == 0 & .data$allmiss_leader_end == 0) %>% rowwise() %>% mutate(year = list(seq(.data$styear, .data$endyear)), gmlmidonset = list(ifelse(.data$year == min(.data$year), 1, 0))) %>% unnest(c(.data$year, .data$gmlmidonset)) %>% mutate(gmlmidongoing = 1) -> hold_this if (init == "sidea-orig") { hold_this %>% mutate(gmlmidongoing_init = ifelse(.data$gmlmidongoing == 1 & (.data$sidea == 1 & .data$orig == 1), 1, 0), gmlmidonset_init = ifelse(.data$gmlmidonset == 1 & .data$gmlmidongoing_init == 1, 1, 0)) %>% select(.data$dispnum:.data$ccode, .data$year, .data$gmlmidonset:ncol(.)) -> hold_this } else if (init == "sidea-with-joiners") { hold_this %>% mutate(gmlmidongoing_init = ifelse(.data$gmlmidongoing == 1 & (.data$sidea == 1 | ( .data$orig == 0 & .data$sidea == 1)), 1, 0), gmlmidonset_init = ifelse(.data$gmlmidonset == 1 & .data$gmlmidongoing_init == 1, 1, 0)) %>% select(.data$dispnum:.data$ccode, .data$year, .data$gmlmidonset:ncol(.)) -> hold_this } else if (init == "sidea-all-joiners") { hold_this %>% mutate(gmlmidongoing_init = ifelse(.data$gmlmidongoing == 1 & (.data$sidea == 1 | ( .data$orig == 0)), 1, 0), gmlmidonset_init = ifelse(.data$gmlmidonset == 1 & .data$gmlmidongoing_init == 1, 1, 0)) %>% select(.data$dispnum:.data$ccode, .data$year, .data$gmlmidonset:ncol(.)) -> hold_this } hold_this %>% group_by(.data$ccode, .data$year) %>% summarize(gmlmidongoing = sum(.data$gmlmidongoing), gmlmidonset = sum(.data$gmlmidonset), gmlmidongoing_init = sum(.data$gmlmidongoing_init), gmlmidonset_init = sum(.data$gmlmidonset_init)) %>% mutate_at(vars(c(.data$gmlmidongoing, .data$gmlmidonset, .data$gmlmidongoing_init, .data$gmlmidonset_init)), ~ifelse(. >= 1, 1, 0)) %>% ungroup() -> hold_this data %>% left_join(., hold_this) -> data data %>% mutate_at(vars(c(.data$gmlmidongoing, .data$gmlmidonset, .data$gmlmidongoing_init, .data$gmlmidonset_init)), ~ifelse(is.na(.), 0, .)) -> data } else if (length(attributes(data)$ps_data_type) > 0 && attributes(data)$ps_data_type == "leader_year") { if (!all(i <- c("ccode") %in% colnames(data))) { stop("add_gml_mids() for leader-year data merges on Correlates of War state codes (ccode), which you don't have.") } leaderdays <- create_leaderdays(standardize = "cow") gml_part %>% filter(.data$allmiss_leader_start == 0 & .data$allmiss_leader_end == 0) %>% mutate(stdate = as.Date(paste0(.data$styear,"/", .data$stmon,"/", .data$dummy_stday)), enddate = as.Date(paste0(.data$endyear,"/", .data$endmon,"/", .data$dummy_endday))) %>% rowwise() %>% mutate(date = list(seq(.data$stdate, .data$enddate, by = "1 day")), gmlmidonset = list(ifelse(date == min(.data$date), 1, 0))) %>% unnest(c(.data$date, .data$gmlmidonset)) %>% mutate(gmlmidongoing = 1) %>% select(.data$dispnum:.data$ccode, .data$obsid_start, .data$sidea, .data$orig, .data$date, .data$gmlmidongoing, .data$gmlmidonset) %>% left_join(leaderdays, .) -> hold_this if (init == "sidea-orig") { hold_this %>% mutate(gmlmidongoing_init = ifelse(.data$gmlmidongoing == 1 & .data$obsid_start == .data$obsid & (.data$sidea == 1 & .data$orig == 1), 1, 0), gmlmidonset_init = ifelse(.data$gmlmidonset == 1 & .data$gmlmidongoing_init == 1, 1, 0)) -> hold_this } else if (init == "sidea-with-joiners") { hold_this %>% mutate(gmlmidongoing_init = ifelse(.data$gmlmidongoing == 1 & .data$obsid_start == .data$obsid & (.data$sidea == 1 | ( .data$orig == 0 & .data$sidea == 1 )), 1, 0), gmlmidonset_init = ifelse(.data$gmlmidonset == 1 & .data$gmlmidongoing_init == 1, 1, 0)) -> hold_this } else if (init == "sidea-all-joiners") { hold_this %>% mutate(gmlmidongoing_init = ifelse(.data$gmlmidongoing == 1 & .data$obsid_start == .data$obsid & (.data$sidea == 1 | (.data$orig == 0)), 1, 0), gmlmidonset_init = ifelse(.data$gmlmidonset == 1 & .data$gmlmidongoing_init == 1, 1, 0)) -> hold_this } hold_this %>% mutate(year = .pshf_year(.data$date)) %>% group_by(.data$obsid, .data$year) %>% summarize(gmlmidongoing = sum(.data$gmlmidongoing, na.rm=T), gmlmidonset = sum(.data$gmlmidonset, na.rm=T), gmlmidongoing_init = sum(.data$gmlmidongoing_init, na.rm=T), gmlmidonset_init = sum(.data$gmlmidonset_init, na.rm=T)) %>% ungroup() -> hold_this hold_this %>% mutate_at(vars("gmlmidongoing", "gmlmidonset", "gmlmidongoing_init", "gmlmidonset_init"), ~ifelse(.data$year >= 2011, NA, .)) %>% mutate_at(vars("gmlmidongoing", "gmlmidonset", "gmlmidongoing_init", "gmlmidonset_init"), ~ifelse(. >= 1, 1, 0)) -> hold_this data %>% left_join(., hold_this) -> data } else if (length(attributes(data)$ps_data_type) > 0 && attributes(data)$ps_data_type == "leader_dyad_year") { if (!all(i <- c("ccode1", "ccode2") %in% colnames(data))) { stop("add_gml_mids() merges on two Correlates of War codes (ccode1, ccode2), which your data don't have right now. Make sure to run create_leaderdyadyears(system='cow') at the top of the pipe.") } if (nrow(data %>% filter(.data$ccode1 > .data$ccode2)) == 0) { message("The leader-dyadic data are non-directed and initiation variables make no sense in this context.") data %>% left_join(., gml_mid_ddlydisps) -> hold_this hold_this %>% mutate_at(vars("gmlmidonset", "gmlmidongoing"), ~ifelse(is.na(.) & between(.data$year, 1816, 2010), 0, .)) -> data } else { data %>% left_join(., gml_mid_ddlydisps) -> hold_this if (init == "sidea-orig") { hold_this %>% mutate(gmlmidongoing_init = ifelse(.data$gmlmidongoing == 1 & .data$obsid_start1 == .data$obsid1 & (.data$sidea1 == 1 & .data$orig1 == 1), 1, 0), gmlmidonset_init = ifelse(.data$gmlmidonset == 1 & .data$gmlmidongoing_init == 1, 1, 0)) -> hold_this } else if (init == "sidea-with-joiners") { hold_this %>% mutate(gmlmidongoing_init = ifelse(.data$gmlmidongoing == 1 & .data$obsid_start1 == .data$obsid1 & (.data$sidea1 == 1 | ( .data$orig1 == 0 & .data$sidea1 == 1 )), 1, 0), gmlmidonset_init = ifelse(.data$gmlmidonset == 1 & .data$gmlmidongoing_init == 1, 1, 0)) -> hold_this } else if (init == "sidea-all-joiners") { hold_this %>% mutate(gmlmidongoing_init = ifelse(.data$gmlmidongoing == 1 & .data$obsid_start1 == .data$obsid1 & (.data$sidea1 == 1 | (.data$orig1 == 0)), 1, 0), gmlmidonset_init = ifelse(.data$gmlmidonset == 1 & .data$gmlmidongoing_init == 1, 1, 0)) -> hold_this } hold_this %>% mutate_at(vars("gmlmidonset", "gmlmidongoing", "gmlmidonset_init", "gmlmidongoing_init"), ~ifelse(is.na(.) & !(is.na(obsid1) & is.na(obsid2)) & between(.data$year, 1816, 2010), 0, .)) -> data } } else { stop("add_gml_mids() requires a data/tibble with attributes$ps_data_type of state_year, leader_year, or dyad_year. Try running create_dyadyears(), create_leaderyears(), or create_stateyears() at the start of the pipe.") } return(data) }
library(titrationCurves) wb_sa(eqpt = TRUE, main = "Titration of WB w/ SA") wb_sa(pka = 7, col = "blue", overlay = TRUE) wb1 = wb_sa(pka = 8) wb2 = wb_sa(pka = 6) head(wb1) plot(wb1, ylim = c(0, 12), xlim = c(0, 80), type = "l", col = "blue", lwd = 2, xlab = "volume of titrant in mL") lines(wb2, col = "green", lwd = 2) abline(v = 50, col = "red", lty = 2) legend(x = "topright", legend = c("pKa = 8", "pKa = 6"), col = c("blue", "green"), lty = 1, lwd = 2) metal_edta(eqpt = TRUE) metal_edta(logkf = 6, col = "blue", overlay = TRUE) redox_titration(eqpt = TRUE) redox_titration(pot.analyte = 0.5, pot.titrant = 1.5, col = "blue", overlay = TRUE) ppt_mixture(eqpt = TRUE) ppt_mixture(pksp1 = 12, pksp2 = 8, col = "blue", overlay = TRUE) wbd = derivative(wb1) str(wbd) plot(wbd$first_deriv, xlim = c(48, 52), col = "blue", type = "l", lwd = 2, xlab = "volume of titrant in mL", ylab = "first derivative") abline(v = 50, col = "red", lty = 2) triwa_sb(conc.acid = 0.0400, conc.base = 0.120, pka1 = 3.128, pka2 = 4.761, pka3 = 6.396, col = "blue", eqpt = TRUE) wa_sb(pka = 8, pkw = 20, col = "blue", eqpt = TRUE) wa_sb(pka = 8, col = "green", overlay = TRUE) legend(x = "topleft", legend = c("non-aqueous", "aqueous"), col = c("blue", "green"), lty = 1, lwd = 2) metal_edta(col = "blue", eqpt = TRUE) metal_edta(ph = 7, col = "green", overlay = TRUE) legend(x = "topleft", legend = c("pH = 10", "pH = 7"), col = c("blue", "green"), lty = 1, lwd =2) metal_edta(conc.metal = 0.0500, conc.edta = 0.025, vol.metal = 25.0, alpha.metal = 0.00415, logkf = 18.80, col = "blue", eqpt = TRUE) metal_edta(conc.metal = 0.0500, conc.edta = 0.0250, vol.metal = 25.0, alpha.metal = 4.63e-10, logkf = 18.80, col = "green", overlay = TRUE) legend(x = "topleft", legend = c(expression(paste("0.0010 M N", H[3])), expression(paste("0.10 M N", H[3]))), col = c("blue", "green"), lty = 1, lwd = 2) redox_titration(pot.analyte = 0.154, elec.analyte = 2, pot.titrant = 1.72, col = "blue", eqpt = TRUE) redox_titration(pot.analyte = 0.771, pot.titrant = 1.51, elec.titrant = 5, col = "black", eqpt = TRUE) redox_titration(pot.analyte = 0.771, pot.titrant = 1.415, elec.titrant = 5, col = "blue", overlay =TRUE) redox_titration(pot.analyte = 0.771, pot.titrant = 1.321, elec.titrant = 5, col = "green", overlay = TRUE) legend(x = "topleft", legend = c("pH = 0", "pH = 1", "ph = 2"), col = c("black", "blue", "green"), lty = 1, lwd = 2) p.a = ppt_analyte(eqpt = TRUE) p.t = ppt_titrant(overlay = TRUE) plot(p.a, col = "blue", type = "l", lwd = 2, xlim = c(0,50), ylim = c(0,15), xlab = "volume of titrant (mL)", ylab = "pAg or pI") lines(p.t, col = "green", lwd = 2) legend(x = "left", legend = c("pAg", "pI"), col = c("blue", "green"), lty = 1, lwd = 2) ppt_mixture(col = "blue", eqpt = TRUE)
test_that("Archive", { a = Archive$new(PS_2D, FUN_2D_CODOMAIN) expect_output(print(a), "Archive") expect_equal(a$n_evals, 0) expect_equal(a$cols_x, c("x1", "x2")) expect_equal(a$cols_y, c("y")) xdt = data.table(x1 = 0, x2 = 1) xss_trafoed = list(list(x1 = 0, x2 = 1)) ydt = data.table(y = 1) a$add_evals(xdt, xss_trafoed, ydt) expect_equal(a$n_evals, 1) expect_equal(a$data$x_domain, xss_trafoed) adt = as.data.table(a) expect_data_table(adt, nrows = 1) expect_names(colnames(adt), identical.to = c("x1", "x2", "y", "timestamp", "batch_nr", "x_domain_x1", "x_domain_x2")) a$clear() expect_data_table(a$data, nrows = 0) adt = as.data.table(a) expect_data_table(adt, nrows = 0) a$add_evals(xdt, NULL, ydt) adt = as.data.table(a) expect_data_table(adt, nrows = 1) expect_names(colnames(adt), identical.to = c("x1", "x2", "y", "timestamp", "batch_nr")) }) test_that("Archive best works", { a = Archive$new(PS_2D, FUN_2D_CODOMAIN) xdt = data.table(x1 = c(0, 0.5), x2 = c(1, 1)) xss_trafoed = list(list(x1 = c(0, 0.5), x2 = c(1, 1))) ydt = data.table(y = c(1, 0.25)) a$add_evals(xdt, xss_trafoed, ydt) expect_equal(a$best()$y, 0.25) xdt = data.table(x1 = 1, x2 = 1) xss_trafoed = list(list(x1 = 1, x2 = 1)) ydt = data.table(y = 2) a$add_evals(xdt, xss_trafoed, ydt) expect_equal(a$best(batch = 2)$batch_nr, 2L) a = Archive$new(PS_2D, FUN_2D_2D_CODOMAIN) xdt = data.table(x1 = c(-1, -1, -1), x2 = c(1, 0, -1)) xss_trafoed = list(list(x1 = -1, x2 = 1), list(x1 = -1, x2 = 0), list(x1 = -1, x2 = 1)) ydt = data.table(y1 = c(1, 1, 1), y2 = c(-1, 0, -1)) a$add_evals(xdt, xss_trafoed, ydt) expect_equal(a$best()$y2, 0) }) test_that("Archive on 1D problem works", { a = Archive$new(PS_1D, FUN_1D_CODOMAIN) xdt = data.table(x = 1) xss_trafoed = list(list(x = 1)) ydt = data.table(y = 1) a$add_evals(xdt, xss_trafoed, ydt) expect_equal(a$n_evals, 1) expect_equal(a$data$x_domain, xss_trafoed) expect_list(a$data$x_domain[[1]]) xdt = data.table(x = 2) expect_error(a$add_evals(xdt, transpose_list(xdt), ydt), "Element 1 is not") }) test_that("Unnest columns", { a = Archive$new(PS_2D, FUN_2D_CODOMAIN) xdt = data.table(x1 = 0, x2 = 1) xss_trafoed = list(list(x1 = 1, x2 = 2)) ydt = data.table(y = 1) a$add_evals(xdt, xss_trafoed, ydt) adt = as.data.table(a) expect_names(colnames(adt), identical.to = c("x1", "x2", "y", "timestamp", "batch_nr", "x_domain_x1", "x_domain_x2")) expect_equal(adt$x_domain_x1, 1) expect_equal(adt$x_domain_x2, 2) xdt = data.table(x1 = 0.5, x2 = 2) expect_error(a$add_evals(xdt, xss_trafoed, ydt), "Element 1 is not") }) test_that("NAs in ydt throw an error", { a = Archive$new(PS_1D, FUN_1D_CODOMAIN) xdt = data.table(x = 1) xss_trafoed = list(list(x = 1)) ydt = data.table(y = NA) expect_error(a$add_evals(xdt, xss_trafoed, ydt), "Contains missing values") }) test_that("start_time is set by Optimizer", { inst = MAKE_INST() expect_null(inst$archive$start_time) optimizer = OptimizerRandomSearch$new() time = Sys.time() optimizer$optimize(inst) expect_equal(inst$archive$start_time, time, tolerance = 0.5) }) test_that("check_values flag works", { a = Archive$new(PS_2D, FUN_2D_CODOMAIN, check_values = FALSE) xdt = data.table(x1 = c(0, 2), x2 = c(1, 1)) xss_trafoed = list(list(x1 = c(0, 0.5), x2 = c(1, 1))) ydt = data.table(y = c(1, 0.25)) a$add_evals(xdt, xss_trafoed, ydt) a = Archive$new(PS_2D, FUN_2D_CODOMAIN, check_values = TRUE) xdt = data.table(x1 = c(0, 2), x2 = c(1, 1)) xss_trafoed = list(list(x1 = c(0, 0.5), x2 = c(1, 1))) ydt = data.table(y = c(1, 0.25)) expect_error(a$add_evals(xdt, xss_trafoed, ydt), "x1: Element 1 is not <= 1.", fixed = TRUE) }) test_that("deep clone works", { a1 = Archive$new(PS_2D, FUN_2D_CODOMAIN) xdt = data.table(x1 = 0, x2 = 1) xss_trafoed = list(list(x1 = 0, x2 = 1)) ydt = data.table(y = 1) a1$add_evals(xdt, xss_trafoed, ydt) a2 = a1$clone(deep = TRUE) expect_different_address(a1$data, a2$data) expect_different_address(a1$search_space, a2$search_space) expect_different_address(a1$codomain, a2$codomain) })
fitted.ellipsesummarylist <- function(object,...){ g <- object thenames <- g$Boot.Estimates[,1:(which(colnames(g$Boot.Estimates)=="b.x")-1)] thelengths <- lapply(g$models, function(x) length(x$pred.x)) rowvec <- mapply(function(x,y) rep(x,each=y),1:length(thelengths),y=thelengths) thenames <- thenames[rowvec,] thefittedx<-lapply(g$models,function (x) x$pred.x) thefittedx <- unlist(thefittedx) thefittedy<-lapply(g$models,function (x) x$pred.y) thefittedy <- unlist(thefittedy) data.frame(thenames,"input"=thefittedx,"output"=thefittedy) }
select_folder_int <- function(self, name, mute, retries) { check_args(name = name, mute = mute, retries = retries) retries <- as.integer(retries) folder <- adjust_folder_name(name) url <- self$con_params$url h <- self$con_handle tryCatch({ curl::handle_setopt(h, customrequest = paste0('SELECT ', folder)) }, error = function(e){ stop("The connection handle is dead. Please, configure a new IMAP connection with configure_imap().") }) response <- tryCatch({ curl::curl_fetch_memory(url, handle = h) }, error = function(e){ response_error_handling(e$message[1]) }) if(is.null(response)){ count_retries = 0 while (is.null(response) && count_retries < retries) { count_retries = count_retries + 1 response <- tryCatch({ curl::curl_fetch_memory(url, handle = h) }, error = function(e){ response_error_handling(e$message[1]) }) } if (is.null(response)) { stop('Request error: the server returned an error.') } else { if (!mute) { if (self$con_params$verbose) { Sys.sleep(0.01) } cat(paste0("\n::mRpostman: ", '"', name, '"', " selected.\n")) } } } else { if (!mute) { if (self$con_params$verbose) { Sys.sleep(0.01) } cat(paste0("\n::mRpostman: ", '"', name, '"', " selected.\n")) } } invisible(name) }
plot_ppsurv <- function(data, dist, time = "time", censor = "censor") { fit <- fit_data(data, dist, time, censor) data <- data[order(data[[time]], -data[[censor]]),] n_all <- nrow(data) data$rank <- as.numeric(rownames(data)) data$rev_rank <- rev(data$rank) data <- data[data[[censor]] == 1, ] n <- nrow(data) adj_rank <- 0 for (i in 1:nrow(data)) { adj_rank <- (data$rev_rank[i] * adj_rank + (n_all + 1)) / (data$rev_rank[i] + 1) data$adj_rank[i] <- adj_rank } pfunc <- match.fun(paste("p", dist, sep = "")) z <- c() Fz <- c() for (i in 1:length(data[[time]])) { Fz <- c(Fz, (data$adj_rank[i] - 0.3) / (n_all + 0.4)) args <- c(q = data[[time]][i], fit$estimate) args <- split(unname(args), names(args)) z <- c(z, do.call(pfunc, args) * 100) } line <- seq(0, 100, length.out = length(z)) Fz <- Fz * 100 df <- data.frame(Fz, z, line) p <- ggplot(df, aes(x = Fz, y = z)) + geom_point() + geom_line(aes(x = line, y = line)) + scale_x_continuous(name = "Sample") + scale_y_continuous(name = "Theoretical") + expand_limits(x = c(0, 100), y = c(0, 100)) + ggtitle(paste(dist, "probability plot")) + theme(axis.text.x = element_text(size = rel(1.5)), axis.text.y = element_text(size = rel(1.5)), axis.title.y = element_text(size = rel(1.5)), axis.title.x = element_text(size = rel(1.5)), plot.title = element_text(size = rel(2))) plot(p) }
context("median regression fit: single mediator, no covariates") library("robmed", quietly = TRUE) n <- 250 a <- c <- 0.2 b <- 0 seed <- 20190201 set.seed(seed) X <- rnorm(n) M <- a * X + rnorm(n) Y <- b * M + c * X + rnorm(n) test_data <- data.frame(X, Y, M) foo <- fit_mediation(test_data, x = "X", y = "Y", m = "M", method = "regression", robust = "median") bar <- summary(foo) test_that("output has correct structure", { expect_s3_class(foo, "reg_fit_mediation") expect_s3_class(foo, "fit_mediation") expect_s3_class(foo$fit_mx, "rq") expect_s3_class(foo$fit_ymx, "rq") expect_null(foo$fit_yx) }) test_that("arguments are correctly passed", { expect_identical(foo$x, "X") expect_identical(foo$y, "Y") expect_identical(foo$m, "M") expect_identical(foo$covariates, character()) expect_identical(foo$robust, "median") expect_identical(foo$family, "gaussian") expect_null(foo$control) expect_false(foo$contrast) }) test_that("dimensions are correct", { expect_length(foo$a, 1L) expect_length(foo$b, 1L) expect_length(foo$direct, 1L) expect_length(foo$total, 1L) expect_length(foo$ab, 1L) expect_length(coef(foo$fit_mx), 2L) expect_length(coef(foo$fit_ymx), 3L) expect_identical(dim(foo$data), c(as.integer(n), 3L)) }) test_that("values of coefficients are correct", { expect_equivalent(foo$a, coef(foo$fit_mx)["X"]) expect_equivalent(foo$b, coef(foo$fit_ymx)["M"]) expect_equivalent(foo$direct, coef(foo$fit_ymx)["X"]) expect_equivalent(foo$total, foo$a * foo$b + foo$direct) expect_equivalent(foo$ab, foo$a * foo$b) }) test_that("output of coef() method has correct attributes", { coefficients <- coef(foo) expect_length(coefficients, 5L) expect_named(coefficients, c("a", "b", "Direct", "Total", "ab")) }) test_that("coef() method returns correct values of coefficients", { expect_equivalent(coef(foo, parm = "a"), foo$a) expect_equivalent(coef(foo, parm = "b"), foo$b) expect_equivalent(coef(foo, parm = "Direct"), foo$direct) expect_equivalent(coef(foo, parm = "Total"), foo$total) expect_equivalent(coef(foo, parm = "ab"), foo$ab) }) test_that("summary returns original object", { expect_identical(foo, bar) }) test_that("object returned by setup_xxx_plot() has correct structure", { expect_error(setup_ellipse_plot(foo)) expect_error(setup_weight_plot(foo)) }) fit_f1 <- fit_mediation(Y ~ m(M) + X, data = test_data, method = "regression", robust = "median") fit_f2 <- fit_mediation(Y ~ m(M) + X, method = "regression", robust = "median") med <- m(M) fit_f3 <- fit_mediation(Y ~ med + X, data = test_data, method = "regression", robust = "median") test_that("formula interface works correctly", { expect_equal(fit_f1, foo) expect_equal(fit_f2, foo) expect_equal(fit_f3, foo) })
.sRGB_to_XYZ <- matrix( data = c(0.4124564, 0.3575761, 0.1804375, 0.2126729, 0.7151522, 0.0721750, 0.0193339, 0.1191920, 0.9503041), nrow = 3, ncol = 3, byrow = TRUE ) .XYZ_to_sRGB <- matrix( data = c(3.2404542, -1.5371385, -0.4985314, -0.9692660, 1.8760108, 0.0415560, 0.0556434, -0.2040259, 1.0572252), nrow = 3, ncol = 3, byrow = TRUE ) .XYZ_to_LMS <- matrix( data = c(0.4002, 0.7076, -0.0808, -0.2263, 1.1653, 0.0457, 0.0000, 0.0000, 0.9182), nrow = 3, ncol = 3, byrow = TRUE ) source("./data-raw/schemes_FabioCrameri.R") source("./data-raw/schemes_PaulTol.R") source("./data-raw/schemes_OkabeIto.R") source("./data-raw/schemes_science.R") .schemes <- c(schemes_crameri2020, schemes_tol2018, schemes_okabe2008, schemes_science) usethis::use_data(.schemes, .sRGB_to_XYZ, .XYZ_to_sRGB, .XYZ_to_LMS, internal = TRUE, overwrite = TRUE)
blatentModel <- R6::R6Class( classname = "blatentModel", public = list( attributeAnalyses = NULL, chain = NULL, data = NULL, dataParameterSummary = NULL, estimatedLatentVariables = NULL, informationCriteria = NULL, logLikelihoods = NULL, options = NULL, parameterSummary = NULL, PPMC = NULL, specs = NULL, variables = NULL, analyzeCategoricalStructuralModel = function(type = c("loglinear", "tetrachoric"), correct = .01){ if (self$specs$nCategoricalLatents != 0){ if (self$options$parallel){ cl = parallel::makeCluster(self$options$nCores, outfile="", setup_strategy = "sequential") parallel::clusterExport( cl = cl, varlist = c("self", "type", "correct"), envir = environment() ) self$attributeAnalyses$chain = parallel::parLapply( cl = cl, X = 1:length(self$chain), fun = chainAttributeAnalysis, model = self, type = type, correct = correct ) parallel::stopCluster(cl = cl) } else { self$attributeAnalyses$chain = lapply( X = 1:length(self$chain), FUN = chainAttributeAnalysis, model = self, type = type, correct = correct ) } self$attributeAnalyses$summary = chainSummary(chain = self$attributeAnalyses$chain, HDPIntervalValue = self$options$HDPIntervalValue) self$attributeAnalyses$summary = as.data.frame(self$attributeAnalyses$summary[,1:11]) } }, calculateLogLikelihoods = function(force = FALSE){ if(!private$likelihoodsCalculated | force){ self$logLikelihoods = list() self$logLikelihoods$routines = list() self$logLikelihoods$marginal = matrix(data = NA, nrow = self$options$nSampled*self$options$nChains, ncol = self$specs$nUnits) self$logLikelihoods$conditional = matrix(data = NA, nrow = self$options$nSampled*self$options$nChains, ncol = self$specs$nUnits) if (self$specs$nLatentVariables == 0){ self$logLikelihoods$routines$calculateMarginalLogLikelihood = logLikelihoodObservedOnly self$logLikelihoods$type = "" } else { self$logLikelihoods$type = "Marginal " if (self$specs$nJointVariables == 0){ self$specs$attributeProfile = matrix(data = NA, nrow = 2^self$specs$nLatents, ncol = self$specs$nLatents) for (profile in 1:2^self$specs$nLatents){ self$specs$attributeProfile[profile, ] = dec2bin(decimal_number = profile-1, nattributes = self$specs$nLatents, basevector = rep(2, self$specs$nLatents)) } colnames(self$specs$attributeProfile) = self$specs$latentVariables self$specs$attributeProfile = as.data.frame(self$specs$attributeProfile) self$logLikelihoods$routines$calculateMarginalLogLikelihood = logLikelihoodMarginalLatentCategoricalUnivariate } else { if (self$specs$nJointVariables == 1){ self$specs$attributeProfile = as.data.frame(self$variables[[self$specs$jointVariables[1]]]$attributeProfile) self$logLikelihoods$routines$calculateMarginalLogLikelihood = logLikelihoodMarginalLatentCategoricalJoint } } } for (chain in 1:length(self$chain)){ for (iter in 1:nrow(self$chain[[chain]])){ self$movePosteriorToVariableBeta(chain =chain, iteration = iter) self$logLikelihoods$marginal[(chain-1)*self$options$nSampled+iter,] = self$logLikelihoods$routines$calculateMarginalLogLikelihood( specs = self$specs, variables = self$variables, data = self$data) } } private$likelihoodsCalculated = TRUE } invisible(self) }, createParameterSummary = function(){ nChains = length(self$chain) if (class(self$chain) == "list"){ modelChain = lapply(X = self$chain, FUN = function(x) return(x[,self$specs$parameters$paramNames[which(self$specs$parameters$paramTypes == "model")]])) if (nChains > 1){ stackedModelChain = coda::mcmc(do.call("rbind", lapply( X = modelChain, FUN = function(x) return(as.matrix(x)) ))) modelChain = coda::mcmc.list(lapply(X = modelChain, FUN = coda::mcmc)) } else { modelChain = self$chain[[1]][,self$specs$parameters$paramNames[which(self$specs$parameters$paramTypes == "model")]] stackedModelChain = modelChain modelChain = coda::mcmc(modelChain) stackedModelChain = coda::mcmc(modelChain) } } chainSummary = summary(modelChain) chainSummary = cbind(chainSummary$statistics, chainSummary$quantiles) HPDIval = self$options$HDPIntervalValue HDPI = coda::HPDinterval(stackedModelChain, prob = HPDIval) colnames(HDPI) = c(paste0("lowerHDPI", HPDIval), paste0("upperHDPI95", HPDIval)) chainSummary = cbind(chainSummary, HDPI) if (nChains > 1){ convergenceDiagnostics = coda::gelman.diag(modelChain, multivariate = FALSE) colnames(convergenceDiagnostics$psrf) = c("PSRF", "PSRF Upper C.I.") chainSummary = cbind(chainSummary, convergenceDiagnostics$psrf) } else { convergenceDiagnostics = coda::heidel.diag(modelChain) temp = convergenceDiagnostics[, c(3,4)] colnames(temp) = c("Heidel.Diag p-value", "Heidel.Diag Htest") chainSummary = cbind(chainSummary, temp) } self$parameterSummary = chainSummary invisible(self) }, initialize = function(data, specs, options, chain, variables) { self$data = data self$specs = specs self$options = options self$chain = chain self$variables = variables }, movePosteriorMeanToVariableBeta = function(){ if (is.null(self$parameterSummary)) self$createParameterSummary() self$variables = lapply( X = self$variables, FUN = function(x) { paramVals = self$parameterSummary[which(rownames(self$parameterSummary) %in% x$paramNames), 1] evalThis = paste0("self$", self$specs$parameters$paramLocation[which(self$specs$parameters$paramNames %in% x$paramNames)], "=", paramVals[x$paramNames]) eval(parse(text=evalThis)) return(x) } ) invisible(self) }, movePosteriorToVariableBeta = function(chain, iteration){ if (chain <= length(self$chain) & iteration <= nrow(self$chain[[chain]])){ self$variables = lapply( X = self$variables, FUN = function(x, chain, iteration) { paramVals = self$chain[[chain]][iteration, which(colnames(self$chain[[chain]]) %in% x$paramNames)] evalThis = paste0("self$", self$specs$parameters$paramLocation[which(self$specs$parameters$paramNames %in% x$paramNames)], "=", paramVals[x$paramNames]) eval(parse(text=evalThis)) return(x) }, chain = chain, iteration = iteration ) } else { stop("self$movePosteriorToVariableBeta: chain or iteration number exceeds values in self.") } invisible(self) }, latentEstimates = function(...){ if (!private$latentEstimatesCalculated){ if (self$specs$nCategoricalLatents > 0){ allCategoricalLVProfiles = matrix(data = NA, nrow = 2^self$specs$nCategoricalLatents, ncol = self$specs$nCategoricalLatents) colnames(allCategoricalLVProfiles) = self$specs$latentVariables for (profile in 1:nrow(allCategoricalLVProfiles)){ allCategoricalLVProfiles[profile,] = dec2bin(decimal_number = profile-1, nattributes = ncol(allCategoricalLVProfiles), basevector = rep(2, ncol(allCategoricalLVProfiles))) } rownames(allCategoricalLVProfiles) = paste0("profile", apply( X = allCategoricalLVProfiles, MARGIN = 1, FUN = function(x) return(paste(x, collapse = "")) )) temp = lapply( X = 1:self$specs$nUnits, FUN = private$getCategoricalLatentEstimates, profileMatrix = allCategoricalLVProfiles ) self$estimatedLatentVariables = do.call("rbind", temp) } private$latentEstimatesCalculated = TRUE } invisible(self) }, prepareData = function(...){ for (variable in 1:length(self$variables)){ self$data = self$variables[[variable]]$prepareData(data = self$data) self$specs$underlyingVariables = c(self$specs$underlyingVariables, self$variables[[variable]]$underlyingVariables) } invisible(self) }, summary = function(numDigits = 3L, ...) { num.format <- paste("%", max(8L, numDigits + 5L), ".", numDigits, "f", sep = "") char.format <- paste("%", max(8L, numDigits + 5L), "s", sep = "") headings = paste0(sprintf(char.format, c(" ")), collapse = "") cat(paste0("\nblatent (version ", packageVersion("blatent"), ") Analysis Summary\n")) cat(paste0(rep("-", 80), collapse = "")) cat("\nAnalysis Specs:") cat("\n") preamble = paste0(" ", "Algorithm", collapse = "") paramVals = paste0(sprintf(char.format, self$options$estimator), collapse = "") buffer = paste0(rep(" ", 80 - nchar(preamble) - nchar(paramVals)), collapse = "") cat(paste0(preamble, buffer, paramVals, collapse = "")) cat("\n") preamble = paste0(" ", "Number of Model Parameters", collapse = "") paramVals = paste0(sprintf(char.format, length(which(self$specs$parameters$paramTypes == "model"))), collapse = "") buffer = paste0(rep(" ", 80 - nchar(preamble) - nchar(paramVals)), collapse = "") cat(paste0(preamble, buffer, paramVals, collapse = "")) cat("\n") preamble = paste0(" ", "Number of Observations", collapse = "") paramVals = paste0(sprintf(char.format, length(self$specs$unitList)), collapse = "") buffer = paste0(rep(" ", 80 - nchar(preamble) - nchar(paramVals)), collapse = "") cat(paste0(preamble, buffer, paramVals, collapse = "")) cat("\n") cat(paste0(rep("-", 80), collapse = "")) cat("\n") cat("Convergence Diagnostics:") cat("\n") if (self$options$nChains > 1) { preamble = paste0(" ", "Maximum Univariate PSRF of Model Parameters:", collapse = "") paramVals = paste0(sprintf(num.format, max(self$parameterSummary[,"PSRF"])), collapse = "") buffer = paste0(rep(" ", 80 - nchar(preamble) - nchar(paramVals)), collapse = "") cat(paste0(preamble, buffer, paramVals, collapse = "")) cat("\n") } else { preamble = paste0(" ", "Minimum Heidel.Diag p-value of Model Parameters:", collapse = "") paramVals = paste0(sprintf(num.format, min(self$parameterSummary[,"Heidel.Diag p-value"])), collapse = "") buffer = paste0(rep(" ", 80 - nchar(preamble) - nchar(paramVals)), collapse = "") cat(paste0(preamble, buffer, paramVals, collapse = "")) cat("\n") } cat(paste0(rep("-", 80), collapse = "")) if (self$options$calculateDIC | self$options$calculateWAIC){ cat("\nInformation Criteria:") headings = paste0(sprintf(char.format, c(" ")), collapse = "") if (self$options$calculateDIC & !is.null(self$informationCriteria$DIC)){ cat("\n") preamble = paste0(" ", "DIC", collapse = "") buffer = paste0(rep(" ", 80 - nchar(preamble) - nchar(headings)), collapse = "") cat(paste0(preamble, buffer, headings)) cat("\n") preamble = paste0(" ", self$logLikelihoods$type, "DIC", collapse = "") paramVals = paste0(sprintf(num.format, self$informationCriteria$DIC$DIC), collapse = "") buffer = paste0(rep(" ", 80 - nchar(preamble) - nchar(paramVals)), collapse = "") cat(paste0(preamble, buffer, paramVals, collapse = "")) cat("\n") preamble = paste0(" ", self$logLikelihoods$type, "DIC Effective Number of Parameters", collapse = "") paramVals = paste0(sprintf(num.format, self$informationCriteria$DIC$p_D), collapse = "") buffer = paste0(rep(" ", 80 - nchar(preamble) - nchar(paramVals)), collapse = "") cat(paste0(preamble, buffer, paramVals, collapse = "")) cat("\n") } headings = paste0(sprintf(char.format, c(" ")), collapse = "") if (self$options$calculateWAIC & !is.null(self$informationCriteria$WAIC)){ preamble = paste0(" ", "WAIC", collapse = "") buffer = paste0(rep(" ", 80 - nchar(preamble) - nchar(headings)), collapse = "") cat(paste0(preamble, buffer, headings)) cat("\n") preamble = paste0(" ", self$logLikelihoods$type, "WAIC (Deviance metric: -2*WAIC)", collapse = "") paramVals = paste0(sprintf(num.format, -2*self$informationCriteria$WAIC$WAIC), collapse = "") buffer = paste0(rep(" ", 80 - nchar(preamble) - nchar(headings)), collapse = "") cat(paste0(preamble, buffer, paramVals, collapse = "")) cat("\n") preamble = paste0(" ", self$logLikelihoods$type, "WAIC Effective Number of Parameters", collapse = "") paramVals = paste0(sprintf(num.format, self$informationCriteria$WAIC$p_WAIC), collapse = "") buffer = paste0(rep(" ", 80 - nchar(preamble) - nchar(paramVals)), collapse = "") cat(paste0(preamble, buffer, paramVals, collapse = "")) cat("\n") } cat(paste0(rep("-", 80), collapse = "")) } if (self$options$posteriorPredictiveChecks$estimatePPMC & !is.null(self$PPMC)){ cat("\nPosterior Predictive Model Check Summary: \n") for (ppmc in 1:length(self$PPMC)){ if (!names(self$PPMC)[[ppmc]] %in% c("univariate", "bivariate")) { cat(self$PPMC[[ppmc]]$summaryMessage) cat("\n") } } for (ppmc in 1:length(self$PPMC)){ if (names(self$PPMC)[[ppmc]] %in% c("univariate", "bivariate")) { cat(self$PPMC[[ppmc]]$summaryMessage) cat("\n") } } cat(paste0(rep("-", 80), collapse = "")) } cat("\nParameter Estimates:") if (self$options$nChains > 1) { headings = paste0(sprintf(char.format, c( "Mean", "SD", "LowHPDI", "UpHDPI", "PSRF" )), collapse = "") } else if (self$options$nChains == 1) { headings = paste0(sprintf(char.format, c( "Mean", "SD", "LowHPDI", "UpHDPI", "HDPV" )), collapse = "") } cat("\n") for (variable in names(self$variables)) { cat(paste0(rep("-", 80), collapse = "")) cat("\n") preamble = paste0(variable, ":", collapse = "") buffer = paste0(rep(" ", 80 - nchar(preamble) - nchar(headings)), collapse = "") cat(paste0(preamble, buffer, headings)) cat("\n") for (param in self$variables[[variable]]$paramNames) { csRow = which(rownames(self$parameterSummary) == param) preamble = paste0(" ", param, collapse = "") buffer = paste0(rep(" ", 80 - nchar(preamble) - nchar(headings)), collapse = "") if (self$options$nChains > 1) { paramVals = paste0(sprintf(num.format, self$parameterSummary[csRow, c("Mean", "SD", "lowerHDPI0.95", "upperHDPI950.95", "PSRF")]), collapse = "") } else if (self$options$nChains == 1) { paramVals = paste0(sprintf(num.format, self$parameterSummary[csRow, c("Mean", "SD", "lowerHDPI0.95", "upperHDPI950.95", "Heidel.Diag p-value")]), collapse = "") } cat(paste0(preamble, buffer, paramVals, collapse = "")) cat("\n") } } } ), private = list( latentEstimatesCalculated = FALSE, likelihoodsCalculated = FALSE, getCategoricalLatentEstimates = function(obs, profileMatrix){ lvcols = which(colnames(self$chain[[1]]) %in% paste0(obs, ".",self$specs$latentVariables)) if (length(lvcols) == 0) return(NULL) temp = lapply(X = self$chain, FUN = function(x) return(x[,lvcols])) latentData = do.call("rbind", temp) marginalMeans = apply(X = latentData, MARGIN = 2, FUN = mean) latentData = cbind(latentData, apply(X = latentData, MARGIN = 1, FUN = bin2dec, nattributes = ncol(latentData), basevector = rep(2, ncol(latentData)))+1) colnames(latentData)[ncol(latentData)] = "clvProfile" nProfiles = 2^self$specs$nCategoricalLatents eapProfile = table(factor(latentData[,"clvProfile"], levels = 1:nProfiles))/nrow(latentData) result = cbind(t(marginalMeans), t(eapProfile)) colnames(result) = c(paste0(self$specs$latentVariables, ".EAP.marginal"), paste0(rownames(profileMatrix), ".EAP.joint")) rownames(result) = obs result = cbind(result, t(round(marginalMeans)), t(as.numeric(which.max(eapProfile)))) colnames(result)[(ncol(result)-length(marginalMeans)):ncol(result)] = c(paste0(self$specs$latentVariables, ".MAP.marginal"),"profileNumber.MAP") result = cbind(result, t(profileMatrix[which.max(eapProfile),])) colnames(result)[(ncol(result)-length(marginalMeans)+1):ncol(result)] = paste0(self$specs$latentVariables, ".MAP.joint") result = as.data.frame(result) result = cbind(t(obs), result) colnames(result)[1] = "observation" return(result) } ), )
"BinMatInput_reps"
NULL stat_overlay_normal_density <- function(mapping = NULL, data = NULL, geom = "line", position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ...) { if(is.null(mapping)){ mapping <- ggplot2::aes(y = NULL) }else{ mapping["y"] <- list(NULL) } layer( stat = StatOverlayNormalDensity, data = data, mapping = mapping, geom = geom, position = position, show.legend = show.legend, inherit.aes = inherit.aes, params = list(na.rm = na.rm, ...) ) } StatOverlayNormalDensity<- ggproto("StatOverlayNormalDensity", Stat, required_aes = c("x"), compute_group = function(data, scales) { x <- data$x .mean <- mean(x, na.rm = TRUE) .sd <- stats::sd(x, na.rm = TRUE) probability.points <- stats::ppoints(length(x[!(is.na(x))])) res.density <- stats::density(stats::qnorm(probability.points, .mean, .sd)) res.density <- data.frame(x = res.density$x, y = res.density$y) res.density } )
pl.hsdgg <- function(x,l = 1, bin = 30){ x <- x varname <- names(x) n <- length(varname) ..density.. <- NULL plots <- list() for(i in 1:n){ plots[[i]] <- ggplot(x, aes_string(x = varname[i])) + geom_histogram(aes(y = ..density..), binwidth = bin, colour = "black") + geom_density(alpha = .2) + ggtitle(paste("Fig.",as.character(i+l-1), "Histogram of", varname[i])) + theme(plot.title = element_text(hjust = 0.5)) + labs(y = "Frequency", x = varname[i]) } marrangeGrob(plots, nrow = 2, ncol = 2) }
stepper <- function(rschedule) { function(n) { n <- vec_cast(n, integer(), x_arg = "n") new_stepper(n = n, rschedule = rschedule) } } `%s+%` <- function(x, y) { vec_arith("+", x, y) } `%s-%` <- function(x, y) { vec_arith("-", x, y) } workdays <- function(n, since = "1900-01-01", until = "2100-01-01") { rschedule <- weekly(since = since, until = until) rschedule <- recur_on_weekends(rschedule) workdays_stepper <- stepper(rschedule) workdays_stepper(n) } new_stepper <- function(n = integer(), rschedule = daily()) { if (!is_integer(n)) { abort("`n` must be an integer.") } validate_rschedule(rschedule, x_arg = "rschedule") new_vctr( .data = n, rschedule = rschedule, class = "almanac_stepper", inherit_base_type = FALSE ) } vec_ptype_abbr.almanac_stepper <- function(x, ...) { "stepper" } vec_ptype_full.almanac_stepper <- function(x, ...) { "stepper" } NULL vec_arith.almanac_stepper <- function(op, x, y, ...) { UseMethod("vec_arith.almanac_stepper", y) } vec_arith.almanac_stepper.default <- function(op, x, y, ...) { stop_incompatible_op(op, x, y) } vec_arith.almanac_stepper.MISSING <- function(op, x, y, ...) { switch( op, `+` = plus_stepper_missing(x), `-` = minus_stepper_missing(x), stop_incompatible_op(op, x, y) ) } plus_stepper_missing <- function(x) { x } minus_stepper_missing <- function(x) { rschedule <- stepper_rschedule(x) x <- unclass(x) x <- -x new_stepper(x, rschedule) } vec_arith.almanac_stepper.Date <- function(op, x, y, ...) { switch( op, `+` = plus_stepper_date(x, y), stop_incompatible_op(op, x, y) ) } plus_stepper_date <- function(x, y) { rschedule <- stepper_rschedule(x) n <- unclass(x) alma_step(y, n, rschedule) } vec_arith.Date.almanac_stepper <- function(op, x, y, ...) { switch( op, `+` = plus_date_stepper(x, y), `-` = minus_date_stepper(x, y), stop_incompatible_op(op, x, y) ) } plus_date_stepper <- function(x, y) { rschedule <- stepper_rschedule(y) n <- unclass(y) alma_step(x, n, rschedule) } minus_date_stepper <- function(x, y) { rschedule <- stepper_rschedule(y) n <- unclass(y) n <- -n alma_step(x, n, rschedule) } vec_ptype2.almanac_stepper.almanac_stepper <- function(x, y, ..., x_arg = "", y_arg = "") { if (!stepper_identical_rschedules(x, y)) { details <- "Steppers must have identical rschedules to be coercible." stop_incompatible_type(x, y, x_arg = x_arg, y_arg = y_arg, details = details) } new_stepper(rschedule = stepper_rschedule(x)) } vec_cast.almanac_stepper.almanac_stepper <- function(x, to, ..., x_arg = "", to_arg = "") { if (!stepper_identical_rschedules(x, to)) { details <- "Steppers must have identical rschedules to be coercible." stop_incompatible_cast(x, to, x_arg = x_arg, to_arg = to_arg, details = details) } x } stepper_rschedule <- function(x) { attr(x, "rschedule", exact = TRUE) } stepper_identical_rschedules <- function(x, y) { identical(stepper_rschedule(x), stepper_rschedule(y)) }
Initialization <- function(x, y, svr.eps= 1,kernel.function = radial.kernel, param.kernel = 1){ eps <- svr.eps w0 <- optimize(loss, quantile(y, c(0,1)), y = y, eps = eps)$minimum Center <- (which(abs(y - w0) < eps)) Right <- (which((y - w0) > eps)) Left <- (which((y - w0) < -eps)) Left.cp <- Left Right.cp <- Right Elbow.R <- Elbow.L <- NULL K <- kernel.function(x, x, param.kernel = param.kernel) gx <- apply(K[,Right, drop = F], 1, sum) - apply(K[,Left, drop = F], 1, sum) lambda1 <- (outer(gx[Left], gx[Right], "-")) / (outer(y[Left], y[Right], "-") + 2 * eps) lambda2 <- (outer(gx[Left], gx[Center], "-")) / (outer(y[Left], y[Center], "-")) lambda3 <- (outer(gx[Right], gx[Center], "-")) / (outer(y[Right], y[Center], "-")) lambda4 <- (outer(gx[Center], gx[Center], "-")) / (outer(y[Center], y[Center], "-") + 2 * eps) max.lambda1 <- lambda1[which.max(lambda1)] max.lambda2 <- lambda2[which.max(lambda2)] max.lambda3 <- lambda3[which.max(lambda3)] max.lambda4 <- lambda4[which.max(lambda4)] max.lambda <- c(max.lambda1, max.lambda2, max.lambda3, max.lambda4) sel.case <- which.max(max.lambda) lambda0 <- max.lambda[sel.case] if (sel.case == 1) { temp <- lambda1 } else if (sel.case == 2) { temp <- lambda2 } else if (sel.case == 3) { temp <- lambda3 } else if (sel.case == 4) { temp <- lambda4 } else step() i1 <- row(matrix(0, nrow(temp), ncol(temp)))[which.max(temp)] i2 <- col(matrix(0, nrow(temp), ncol(temp)))[which.max(temp)] if (sel.case == 1) { Elbow.L <- Left[i1] Elbow.R <- Right[i2] Left <- setdiff(Left, Elbow.L) Right <- setdiff(Right, Elbow.R) } else if (sel.case == 2) { Elbow.L <- Left[i1] Elbow.L <- c(Elbow.L, Center[i2]) Center <- setdiff(Center, Center[i2]) Left <- setdiff(Left, Left[i1]) } else if (sel.case == 3) { Elbow.R <- Right[i1] Elbow.R <- c(Elbow.R, Center[i2]) Center <- setdiff(Center, Center[i2]) Right <- setdiff(Right, Right[i1]) } else if (sel.case == 4) { Elbow.L <- Center[i1] Elbow.R <- Center[i2] Center <- setdiff(Center, c(Elbow.L, Elbow.R)) } else step() if(length(Elbow.R)==0){ Elbow.R <- integer(0) }else if(length(Elbow.L) == 0){ Elbow.L <- integer(0) } theta0 <- c(y[Elbow.L] - gx[Elbow.L]/lambda0 + eps, y[Elbow.R] - gx[Elbow.R]/lambda0 - eps) theta0 <- mean(theta0) theta <- rep(0, length(y)) if(sel.case==1) { theta[c(Right,Elbow.R)] <- 1 theta[c(Left, Elbow.L)] <- -1 }else if(sel.case==2) { theta[c(Right)] <- 1 theta[c(Left, Left.cp[i1])] <- -1 }else if(sel.case==3) { theta[c(Right, Right.cp[i1])] <- 1 theta[c(Left)] <- -1 }else if(sel.case==4) { theta[c(Right)] <- 1 theta[c(Left)] <- -1 }else step() list(Elbow.L = Elbow.L, Elbow.R=Elbow.R, Center=Center, Right=Right, Left=Left, lambda0=lambda0, case.of.lambda = paste("case :",sel.case), theta0=theta0, theta = theta) }
load(file="sleep_imp.Rdata") M <- cor(sleep_imp3) library(corrplot) col4 <- colorRampPalette(c(" " corrplot(M, method = "color", col = col4(20), cl.length = 21, order = "AOE", addCoef.col = "green") library(car) vif(lm(Sleep ~ BodyWgt + BrainWgt + Span + Gest + Pred + Exp + Danger, data = sleep_imp3)) cars <- mtcars[, 1:7] pairs(cars, panel = panel.smooth) panel.cor <- function(x, y, digits = 2, prefix = "", cex.cor, ...) { usr <- par("usr"); on.exit(par(usr)) par(usr = c(0, 1, 0, 1)) r <- abs(cor(x, y, method = "spearman")) txt <- format(c(r, 0.123456789), digits=digits)[1] txt <- paste(prefix, txt, sep = "") if(missing(cex.cor)) cex.cor <- 0.8/strwidth(txt) text(0.5, 0.5, txt, cex = cex.cor * r) } pairs(cars, , panel = panel.smooth, lower.panel = panel.cor) library(lattice) splom(cars) library(GGally) ggpairs(cars, upper = list(continuous = "density", combo = "box"), lower = list(continuous = "points", combo = "dot")) library(mgcv) summary(gam(mpg ~ s(hp) + s(qsec), data = cars)) Sparrows <- read.table(file = "SparrowsElphick.txt", header = TRUE) I1 <- Sparrows$SpeciesCode == 1 & Sparrows$Sex != "0" & Sparrows$wingcrd < 65 Wing1 <- Sparrows$wingcrd[I1] Wei1 <- Sparrows$wt[I1] Mon1 <- factor(Sparrows$Month[I1]) Sex1<- factor(Sparrows$Sex[I1]) fMonth1 <- factor(Mon1,levels = c(5, 6, 7, 8, 9), labels=c("May", "Jun", "Jul", "Aug", "Sep")) fSex1 <- factor(Sex1, levels = c(4, 5), labels=c("Male","Female")) coplot(Wei1 ~ Wing1 | fMonth1 * fSex1, ylab = "Weight (g)", xlab = "Wing length (mm)", panel = function(x, y, ...) { tmp <- lm(y ~ x, na.action = na.omit) abline(tmp) points(x, y) }) df <-data.frame(weight = Wei1, length = Wing1, sex = fSex1, month = fMonth1) df1 <- df[df$month != "May" & df$month != "Sep", ] M1 <- lm(weight ~ length*month*sex, data = df1) DT <- anova(M1) library(stargazer) stargazer(M1, type = "html", out = "M1.doc") stargazer(DT, type = "html", out = "DT.doc", summary = FALSE) Waders <- read.table(file = "wader.txt", header = TRUE) Time <- seq(1, 25) par(mfrow = c(2, 2), mar = c(5, 4, 3, 2)) plot(Time, Waders$C.fuscicolis, type = "l", xlab = "Время (2 недели)", ylab = "C. fuscicollis abundance") acf(Waders$C.fuscicolis, main = "C. fuscicollis ACF") plot(Time, Waders$L.dominicanus, type = "l", xlab = "Время (2 недели)", ylab = "L. dominicanus abundance") acf(Waders$L.dominicanus, main = "L. dominicanus ACF") tomato <- data.frame(weight = c(1.5, 1.9, 1.3, 1.5, 2.4, 1.5, 1.5, 1.2, 1.2, 2.1, 2.9, 1.6, 1.9, 1.6, 0.8, 1.15, 0.9, 1.6), trt = rep(c("Water", "Nutrient", "Nutrient+24D"), c(6, 6, 6))) levels(tomato$trt) tomato$trt <- relevel(tomato$trt, ref = "Water") levels(tomato$trt) M <- lm(weight ~ trt, data = tomato) summary(M) tapply(tomato$weight, tomato$trt, mean) anova(M) model.matrix(M) M <- lm(count ~ spray, data = InsectSprays) summary(M) str(M) M.res <- M$residuals M.fit <- M$fitted.values plot(M1.fit, M1.res, pch = 19, col = 4, xlab = "Предсказанные значения", ylab = "Остатки") cor.test(fitted(M2), InsectSprays$count) shapiro.test(resid(M)) library(car) set.seed(202) dat = data.frame(Group = rep(c("A", "B", "C"), each = 1000), Value = c( rnorm(n=1000, mean=5, sd=1.2), rnorm(n=1000, mean=7, sd=1.5), rnorm(n=1000, mean=15, sd=2) )) library(ggplot2) p1 = ggplot(dat, aes(x = Value, fill = Group)) + geom_density(alpha = 0.6) + xlab("Значение") + ylab("Плотность вероятности") p2 = ggplot(dat, aes(x = Value)) + geom_density(alpha = 0.6, fill = "blue") + xlab("Значение") + ylab("Плотность вероятности") multiplot <- function(..., plotlist=NULL, cols) { require(grid) plots <- c(list(...), plotlist) numPlots = length(plots) plotCols = cols plotRows = ceiling(numPlots/plotCols) grid.newpage() pushViewport(viewport(layout = grid.layout(plotRows, plotCols))) vplayout <- function(x, y) viewport(layout.pos.row = x, layout.pos.col = y) for (i in 1:numPlots) { curRow = ceiling(i/plotCols) curCol = (i-1) %% plotCols + 1 print(plots[[i]], vp = vplayout(curRow, curCol )) } } multiplot(p1, p2, cols = 2) ggplot(InsectSprays, aes(x = count)) + geom_histogram() + facet_wrap(~spray) + xlab("Число насекомых") + ylab("Частота") ggplot(InsectSprays, aes(sample = count)) + stat_qq() + facet_wrap(~spray, scales = "free_y") + xlab("Ожидаемые квантили") + ylab("Наблюдаемые значения") M <- lm(count ~ spray, data = InsectSprays) InsectSprays$resids = resid(M) p3 = ggplot(InsectSprays, aes(x = resids)) + geom_histogram(aes(y=..density..)) + geom_density(color = "red") + xlab("Остатки") + ylab("Плотность вероятности") p4 = ggplot(InsectSprays, aes(sample = resids)) + stat_qq() + xlab("Ожидаемые квантили") + ylab("Наблюдаемые значения") multiplot(p3, p4, cols = 2) set.seed(202) ggplot(InsectSprays, aes(x = spray, y = count)) + geom_boxplot() + geom_jitter(alpha = 0.5) + xlab("Инсектицид") + ylab("Число выживших насекомых") InsectSprays$fit = fitted(M) ggplot(InsectSprays, aes(x = fit, y = resids)) + geom_point() + xlab("Предсказанные значения") + ylab("Остатки") leveneTest(InsectSprays$count, InsectSprays$spray) M.log <- lm(log(count + 1) ~ spray, data = InsectSprays) shapiro.test(resid(M.log)) leveneTest(log(InsectSprays$count + 1), InsectSprays$spray) kruskal.test(count ~ spray, data = InsectSprays) library(HSAUR2) data(weightgain) M2 <- lm(weightgain ~ type*source, data = weightgain) summary(M2) anova(M2) M3 <- lm(weightgain ~ source*type, data = weightgain) anova(M3) weightgain2 <- weightgain[-c(1:6, 34:40), ] M4 <- lm(weightgain ~ type*source, data = weightgain2) summary(M4) M5 <- lm(weightgain ~ source*type, data = weightgain2) summary(M5) anova(M4) anova(M5) plot.design(weightgain2) boxplot(count ~ spray, data = InsectSprays, col = "coral", xlab = "Инсектицид", ylab = "Число выживших насекомых") contrasts(InsectSprays$spray) <- contr.sum(n = 6) contrasts(InsectSprays$spray) M3 <- lm(count ~ spray, data = InsectSprays) summary(M3) with(InsectSprays, mean(tapply(count, spray, mean))) contrasts(InsectSprays$spray) <- contr.helmert(n = 6) contrasts(InsectSprays$spray) mat <- contrasts(InsectSprays$spray) sum(mat[, 1]*mat[, 2]) M4 <- lm(count ~ spray, data = InsectSprays) summary(M4) con1 <- c(1, 1, 1, -1, -1, -1) con2 <- c(1, 1, -1, -1, -1, 1) con.matrix <- cbind(con1, con2) con.matrix contrasts(InsectSprays$spray) <- con.matrix summary(M5, split = list(spray = list("Первые три против остальных" = 1, "ABF против CDE" = 2))) p.adjust(c(0.01, 0.02, 0.005), method = "bonferroni") alpha <- 0.05 p.adjust(c(0.01, 0.02, 0.005), method = "bonferroni") < alpha p.adjust(c(0.01, 0.02, 0.005), method = "holm") alpha <- 0.05 p.adjust(c(0.01, 0.02, 0.005), method = "holm") < alpha pvals <- c(0.0001, 0.0004, 0.0019, 0.0095, 0.0201, 0.0278, 0.0298, 0.0344, 0.0459, 0.3240, 0.4262, 0.5719, 0.6528, 0.7590, 1.000) p.adjust(pvals, method = "BH") p.adjust(pvals, "BY") waterbodies <- data.frame(Water = rep(c("Grayson", "Beaver", "Angler", "Appletree", "Rock"), each = 6), Sr = c(28.2, 33.2, 36.4, 34.6, 29.1, 31.0, 39.6, 40.8, 37.9, 37.1, 43.6, 42.4, 46.3, 42.1, 43.5, 48.8, 43.7, 40.1, 41.0, 44.1, 46.4, 40.2, 38.6, 36.3, 56.3, 54.1, 59.4, 62.7, 60.0, 57.3) ) M <- aov(Sr ~ Water, data = waterbodies) summary(M) TukeyHSD(M) par(mar = c(4.5, 8, 4.5, 4.5)) plot(TukeyHSD(M), las = 1) M <- lm(Sr ~ Water, data = waterbodies) summary(M) coef(M) vcov(M) library(multcomp) glht(M, linfct = mcp(Water = "Tukey")) glht(M, linfct = mcp(Water = c( "Rock - Angler = 0", "Grayson - Appletree = 0", "Grayson - Beaver = 0")) ) contr <- rbind("Rock - Angler" = c(-1, 0, 0, 0, 1), "Grayson - Appletree" = c(0, -1, 0, 1, 0), "Grayson - Beaver" = c(0, 0, -1, 1, 0) ) contr glht(M, linfct = mcp(Water = contr)) summary(glht(M, linfct = mcp(Water = "Tukey"))) mult <- glht(M, linfct = mcp(Water = contr)) confint(mult, level = 0.95) plot(confint(mult, level = 0.95))
visualisation_recipe.easycor_test <- function(x, show_data = "point", show_text = "subtitle", smooth = NULL, point = NULL, text = NULL, labs = NULL, ...) { data <- attributes(x)$data subtitle <- NULL title <- NULL if (!is.null(show_text) && show_text == "subtitle") subtitle <- cor_text(x, ...) if (!is.null(show_text) && show_text == "title") title <- cor_text(x, ...) layers <- .see_scatter(data, cor_results = x, x = x$Parameter1, y = x$Parameter2, show_data = show_data, show_text = show_text, smooth = smooth, point = point, text = text, labs = labs, title = title, subtitle = subtitle, ... ) if (!is.null(show_text) && show_text != FALSE && show_text %in% c("text", "label")) { x$label <- cor_text(x, ...) x$label_x <- max(data[[x$Parameter1]], na.rm = TRUE) x$label_y <- max(data[[x$Parameter2]], na.rm = TRUE) + 0.05 * diff(range(data[[x$Parameter2]], na.rm = TRUE)) l <- paste0("l", length(layers) + 1) layers[[l]] <- list( geom = show_text, data = x, hjust = 1, aes = list( label = "label", x = "label_x", y = "label_y" ) ) if (!is.null(text)) layers[[l]] <- utils::modifyList(layers[[l]], text) } class(layers) <- c("visualisation_recipe", "see_visualisation_recipe", class(layers)) attr(layers, "data") <- data layers } .see_scatter <- function(data, cor_results, x, y, show_data = "point", show_text = "text", smooth = NULL, point = NULL, text = NULL, labs = NULL, title = NULL, subtitle = NULL, type = show_data, ...) { layers <- list() if (!missing(type)) { show_data <- type } l <- 1 layers[[paste0("l", l)]] <- list( geom = "smooth", data = data, method = "lm", aes = list( x = x, y = y ) ) if (!is.null(smooth)) { layers[[paste0("l", l)]] <- utils::modifyList(layers[[paste0("l", l)]], smooth) } l <- l + 1 layers[[paste0("l", l)]] <- list( geom = show_data, data = data, aes = list( x = x, y = y ) ) if (!is.null(point)) { layers[[paste0("l", l)]] <- utils::modifyList(layers[[paste0("l", l)]], point) } l <- l + 1 layers[[paste0("l", l)]] <- list(geom = "labs", subtitle = subtitle, title = title) if (!is.null(labs)) { layers[[paste0("l", l)]] <- utils::modifyList(layers[[paste0("l", l)]], labs) } layers }
.dot_internals <- c(".subset", ".subset2", ".getRequiredPackages", ".getRequiredPackages2", ".isMethodsDispatchOn", ".row_names_info", ".set_row_names", ".ArgsEnv", ".genericArgsEnv", ".TAOCP1997init", ".gt", ".gtn", ".primTrace", ".primUntrace", ".POSIXct", ".POSIXlt", ".cache_class", ".Firstlib_as_onload", ".methodsNamespace", ".popath", ".mapply", ".detach", ".maskedMsg") apropos <- function (what, where = FALSE, ignore.case = TRUE, mode = "any") { stopifnot(is.character(what)) x <- character(0L) check.mode <- mode != "any" for (i in seq_along(sp <- search())) { li <- if(ignore.case) grep(what, ls(pos = i, all.names = TRUE), ignore.case = TRUE, value = TRUE) else ls(pos = i, pattern = what, all.names = TRUE) li <- grep("^[.](__|C_|F_)", li, invert = TRUE, value = TRUE) if(sp[i] == "package:base") li <- li[! li %in% .dot_internals] if(length(li)) { if(check.mode) li <- li[sapply(li, exists, where = i, mode = mode, inherits = FALSE)] x <- c(x, if(where) structure(li, names = rep.int(i, length(li))) else li) } } sort(x) } find <- function(what, mode = "any", numeric = FALSE, simple.words=TRUE) { stopifnot(is.character(what)) if(length(what) > 1L) { warning("elements of 'what' after the first will be ignored") what <- what[1L] } len.s <- length(sp <- search()) ind <- logical(len.s) check.mode <- mode != "any" for (i in 1L:len.s) { if(simple.words) { found <- what %in% ls(pos = i, all.names = TRUE) if(found && check.mode) found <- exists(what, where = i, mode = mode, inherits=FALSE) ind[i] <- found } else { li <- ls(pos = i, pattern = what, all.names = TRUE) li <- grep("^[.](__|C_|F_)", li, invert = TRUE, value = TRUE) if(sp[i] == "package:base") li <- li[! li %in% .dot_internals] ll <- length(li) if(ll > 0 && check.mode) { mode.ok <- sapply(li, exists, where = i, mode = mode, inherits = FALSE) ll <- sum(mode.ok) if(ll >= 2) warning(sprintf(ngettext(ll, "%d occurrence in %s", "%d occurrences in %s"), ll, sp[i]), domain = NA) } ind[i] <- ll > 0L } } if(numeric) structure(which(ind), names=sp[ind]) else sp[ind] }
docurl = "https://docs.google.com/spreadsheets/d/" sheeturl = paste0("1QogGSuEab5SZyZIw1Q8h-0yrBNs1Z_eEBJG7oRESW5k","/edit sheetname = "560796239" fullurl = paste0(docurl, sheeturl, sheetname) fullurl df = as.data.frame(gsheet::gsheet2tbl(fullurl, skip=2)) summary(df) str(df) colcs1 = c('numeric','character', NA,NA,'character', 'character', 'character', 'character' ,'numeric', 'numeric', 'character','factor', 'character', 'numeric','numeric' ,'numeric', 'factor') length(colcs1) auctiondata = read.csv('./Data/AuctionsData - set1.csv', skip=2) dim(auctiondata) str(auctiondata) names(ag2b) gb1 = ggplot(data = ag2b, aes(x = "", y = saleprice, fill = auchouse )) gb2 = geom_bar(stat = "identity", position = position_fill()) gb3 = geom_text(aes(label = awcat), position = position_fill(vjust = 0.5)) gb4 = coord_polar(theta = "y") gb5 = facet_wrap(~ auchouse) gb6 = theme(axis.title.x = element_blank(), axis.title.y = element_blank()) gb7 = theme(legend.position='bottom') gb8 = guides(fill=guide_legend(nrow=2,byrow=TRUE)) gb1+gb2+gb3 + gb4 + gb5 + gb6 + gb7 + gb8 + gb4 + ga5
cat("\014") rm(list = ls()) setwd("~/git/of_dollars_and_data") source(file.path(paste0(getwd(),"/header.R"))) library(dplyr) library(ggplot2) library(tidyr) library(scales) library(grid) library(gridExtra) library(gtable) library(RColorBrewer) library(stringr) library(ggrepel) library(BenfordTests) my_palette <- c(" nyse_fundamentals <- readRDS(paste0(localdir, "0018_nyse_fundamentals.Rds")) vars_to_test <- c("Accounts.Payable", "Accounts.Receivable", "Capital.Expenditures", "Cash.and.Cash.Equivalents", "Depreciation", "Earnings.Before.Interest.and.Tax", "Goodwill", "Gross.Profit", "Income.Tax", "Net.Income", "Operating.Income", "Total.Assets", "Total.Equity", "Total.Revenue") vars_shortname <- c("accounts_payable", "accounts_receivable", "capex", "cash", "depreciation", "ebit", "goodwill", "gross_profit", "income_tax", "net_income", "operating_income", "tot_assets", "tot_equity", "tot_revenue") nyse_fundamentals[, "Capital.Expenditures"] <- abs(nyse_fundamentals[, "Capital.Expenditures"]) nyse_fundamentals <- as.data.frame(apply(nyse_fundamentals[, vars_to_test], 2, function(x) {ifelse(x < 0, 0, x)})) vars_df <- as.data.frame(cbind(vars_to_test, vars_shortname)) benford_digits <- data.frame(leading_digit = as.character(seq(1,9)), stringsAsFactors = FALSE) create_bedford_counts <- function(df, name_df){ var_string <- paste0(name_df[,1]) temp <- select_(df, var_string) temp[, var_string] <- as.character(temp[, var_string]) temp["leading_digit"] <- gsub("(\\d).*", "\\1", temp[, var_string]) temp <- temp %>% inner_join(benford_digits) temp <- temp %>% group_by(leading_digit) %>% summarise(count = n()) %>% mutate(benford_count = nrow(temp) * log10(1 + 1/(as.numeric(leading_digit))), n_obs = nrow(temp)) %>% select(leading_digit, n_obs, count, benford_count) temp["shortname"] <- name_df[,2] return(temp) } for (i in 1:nrow(vars_df)){ string <- as.character(vars_df[i,1]) print(string) if (i == 1){ benford_stats <- create_bedford_counts(nyse_fundamentals, vars_df[i, ]) benford_stats[1:9,"p_value"] <- ks.benftest(nyse_fundamentals[, string])$p.value } else { new_stats <- create_bedford_counts(nyse_fundamentals, vars_df[i, ]) new_stats[1:9,"p_value"] <- ks.benftest(nyse_fundamentals[, string])$p.value benford_stats <- bind_rows(benford_stats, new_stats) } sname <- vars_df[i,2] to_plot <- filter(benford_stats, shortname == sname) %>% mutate(pct = count/n_obs, benford_pct = benford_count/n_obs) file_path = paste0(exportdir, "0018_nyse_benford_plots/benford-", sname,".jpeg") p_value <- round(min(to_plot$p_value)*100, 2) if (p_value == 0){ p_value <- "less than 0.01" } plot <- ggplot(data = to_plot, aes(x = leading_digit, y = pct)) + geom_bar(stat = "identity", col = "black", fill = "black") + geom_point(data = to_plot, aes(x = leading_digit, y = benford_pct), col = "red", size = 5) + geom_text_repel(data = filter(to_plot, leading_digit == "1"), aes(x = leading_digit, y = (benford_pct*0.75)), label = "Actual Percentage", col = "black", family = "my_font", nudge_y = 0.05, nudge_x = 2.2) + geom_text_repel(data = filter(to_plot, leading_digit == "5"), aes(x = leading_digit, y = benford_pct), label = "Expected Percentage\nUnder Benford's Law", col = "red", family = "my_font", nudge_y = 0.1, nudge_x = 1) + scale_color_manual(values = my_palette, guide = FALSE) + scale_y_continuous(label = percent) + of_dollars_and_data_theme + labs(x = "Leading Digit" , y = "Percentage of Total") + ggtitle(paste0("Actual Percentages vs. Benford's Law\n", string)) source_string <- "Source: NYSE data from Kaggle, 2010 - 2016 (OfDollarsAndData.com)" note_string <- paste0("Note: The probability of seeing this result is ", p_value, "%, when running a KS test.") my_gtable <- ggplot_gtable(ggplot_build(plot)) source_grob <- textGrob(source_string, x = (unit(0.5, "strwidth", source_string) + unit(0.2, "inches")), y = unit(0.1, "inches"), gp =gpar(fontfamily = "my_font", fontsize = 8)) note_grob <- textGrob(note_string, x = (unit(0.5, "strwidth", note_string) + unit(0.2, "inches")), y = unit(0.15, "inches"), gp =gpar(fontfamily = "my_font", fontsize = 8)) my_gtable <- arrangeGrob(my_gtable, bottom = source_grob) my_gtable <- arrangeGrob(my_gtable, bottom = note_grob) ggsave(file_path, my_gtable, width = 15, height = 12, units = "cm") }
team_stats_per_game <- function(df1){ for(i in 3:ncol(df1)){ if(i==5 || i==8 || i==11 || i==14){ df1[i] <- round(df1[i],3) } else{ df1[i] <- round(df1[i] / df1[1],2) } } names(df1) <- c("G","MP","FG","FGA","FG%","3P","3PA","3P%","2P","2PA","2P%","FT","FTA","FT%", "ORB","DRB","TRB","AST","STL","BLK","TOV","PF","PTS","+/-") return(df1) }
library(checkargs) context("isStrictlyNegativeNumberOrInfScalar") test_that("isStrictlyNegativeNumberOrInfScalar works for all arguments", { expect_identical(isStrictlyNegativeNumberOrInfScalar(NULL, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeNumberOrInfScalar(TRUE, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeNumberOrInfScalar(FALSE, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeNumberOrInfScalar(NA, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeNumberOrInfScalar(0, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeNumberOrInfScalar(-1, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isStrictlyNegativeNumberOrInfScalar(-0.1, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isStrictlyNegativeNumberOrInfScalar(0.1, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeNumberOrInfScalar(1, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeNumberOrInfScalar(NaN, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeNumberOrInfScalar(-Inf, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isStrictlyNegativeNumberOrInfScalar(Inf, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeNumberOrInfScalar("", stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeNumberOrInfScalar("X", stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeNumberOrInfScalar(c(TRUE, FALSE), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeNumberOrInfScalar(c(FALSE, TRUE), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeNumberOrInfScalar(c(NA, NA), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeNumberOrInfScalar(c(0, 0), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeNumberOrInfScalar(c(-1, -2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeNumberOrInfScalar(c(-0.1, -0.2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeNumberOrInfScalar(c(0.1, 0.2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeNumberOrInfScalar(c(1, 2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeNumberOrInfScalar(c(NaN, NaN), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeNumberOrInfScalar(c(-Inf, -Inf), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeNumberOrInfScalar(c(Inf, Inf), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeNumberOrInfScalar(c("", "X"), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeNumberOrInfScalar(c("X", "Y"), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_error(isStrictlyNegativeNumberOrInfScalar(NULL, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeNumberOrInfScalar(TRUE, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeNumberOrInfScalar(FALSE, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeNumberOrInfScalar(NA, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeNumberOrInfScalar(0, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_identical(isStrictlyNegativeNumberOrInfScalar(-1, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_identical(isStrictlyNegativeNumberOrInfScalar(-0.1, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_error(isStrictlyNegativeNumberOrInfScalar(0.1, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeNumberOrInfScalar(1, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeNumberOrInfScalar(NaN, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_identical(isStrictlyNegativeNumberOrInfScalar(-Inf, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_error(isStrictlyNegativeNumberOrInfScalar(Inf, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeNumberOrInfScalar("", stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeNumberOrInfScalar("X", stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeNumberOrInfScalar(c(TRUE, FALSE), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeNumberOrInfScalar(c(FALSE, TRUE), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeNumberOrInfScalar(c(NA, NA), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeNumberOrInfScalar(c(0, 0), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeNumberOrInfScalar(c(-1, -2), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeNumberOrInfScalar(c(-0.1, -0.2), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeNumberOrInfScalar(c(0.1, 0.2), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeNumberOrInfScalar(c(1, 2), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeNumberOrInfScalar(c(NaN, NaN), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeNumberOrInfScalar(c(-Inf, -Inf), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeNumberOrInfScalar(c(Inf, Inf), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeNumberOrInfScalar(c("", "X"), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeNumberOrInfScalar(c("X", "Y"), stopIfNot = TRUE, message = NULL, argumentName = NULL)) })
BayesMDei4cov <- function(formula, covariate, total, data, lambda1 = 2, lambda2 = 4, covariateprior = NULL, tune.dr = NULL, tune.beta = NULL, tune.gamma = NULL, tune.delta = NULL, start.dr = NULL, start.betas = NULL, start.gamma = NULL, start.delta = NULL, sample = 1000, thin = 1, burnin = 1000, verbose = 0, ret.beta = 'r', ret.mcmc = TRUE, usrfun = NULL, ...){ if(thin < 1){stop('thin must be positive integer')} if(sample < 1){stop('thin must be positive integer')} if(burnin < 0){stop('burnin must be non-negative integer')} DD <- model.frame(formula, data) countParty <- countGroup <- propParty <- propGroup <- FALSE checkGroups <- round(apply(DD[[2]], 1, sum), 3) checkParties <- round(apply(DD[[1]], 1, sum), 3) if(all(DD[[1]] %% 1 == 0) & all(DD[[1]] >= 0)){countParty <- TRUE} else if(all(0 <= DD[[1]] & DD[[1]] <= 1)){ if(all(checkParties == 1)){propParty <- TRUE}else{ stop("column marginals are proportions that do not sum to 1 - please respecify data")}} else stop("column marginals are neither counts nor proportions - please respecify data") if(all(DD[[2]] %% 1 == 0) & all(DD[[2]] >= 0)){countGroup <- TRUE} else if(all(0 <= DD[[2]] & DD[[2]] <= 1)){ if(all(checkGroups == 1)){propGroup <- TRUE}else{ stop("row marginals are proportions that do not sum to 1 - please respecify data")}} else stop("row marginals are neither counts nor proportions - please respecify data") if((propParty | propGroup) & is.null(total)){ stop("one or both marginals are proportions - 'total' must be provided")} if(propParty & !is.null(total)){ DD[[1]] <- DD[[1]] * total warning("column margnials are proportions - multiplying by unit size")} if(propGroup & !is.null(total)){ DD[[2]] <- DD[[2]] * total warning("row margnials are proportions - multiplying by unit size")} checkGroups <- round(apply(DD[[2]], 1, sum), 1) checkParties <- round(apply(DD[[1]], 1, sum), 1) if(identical(checkParties, checkGroups) == FALSE){ stop("row and column totals unequal in some units - please respecify data")} Groups <- DD[[2]] TT <- t(DD[[1]]) XX <- t(Groups/apply(Groups,1,sum)) group.names <- colnames(Groups) party.names <- rownames(TT) RR <- t(Groups) CC <- model.frame(covariate, data) ZZ <- as.matrix(CC) NG <- nrow(XX) NP <- nrow(TT) Precincts <- nrow(DD) if(is.null(start.dr)){ start.dr <- matrix(rgamma(NG, lambda1, lambda2), NG)} if(min(start.dr) <= 0){stop("inadmissable starting values for dr")} if(is.null(start.betas)){ start.betas <- array(NA, dim= c(NG, NP, Precincts)) for(i in 1:Precincts){ start.betas[,,i] <- rdirichlet(NG, rep(1,NP))} } if(identical(round(apply(start.betas, c(1,3), sum),10),matrix(1,NG, Precincts))!=TRUE){stop("inadmissable starting values for beta")} if(is.null(start.gamma)){ start.gamma <- cbind(matrix(rnorm(NG*(NP-1)), NG, NP-1),0)} if(identical(start.gamma[,NP], rep(0,NG))!=TRUE){stop("final column of 'start.gamma' must be zero")} if(is.null(start.delta)){ start.delta <- cbind(matrix(rnorm(NG*(NP-1)), NG, NP-1),0)} if(identical(start.delta[,NP], rep(0,NG))!=TRUE){stop("final column of 'start.delta' must be zero")} usrenv <- environment(fun = usrfun) usrlen <- length(as.numeric(usrfun(list(start.dr, start.betas, start.gamma, start.delta, TT, RR)))) if(is.null(tune.dr)){ tune.dr <- rep(2,NG)} if(is.null(tune.beta)){ tune.beta <- array(rep(.05, NG*(NP-1)*Precincts), c(NG, NP-1, Precincts))} if(is.null(tune.gamma)){ tune.gamma <- matrix(.25, NG, NP-1)} if(is.null(tune.delta)){ tune.delta <- matrix(.25, NG, NP-1)} if(identical(length(tune.dr), NG)!=TRUE) {stop("'tune.dr' has incorrect dimensions")} if(identical(as.numeric(dim(tune.beta)), c(NG, NP-1, Precincts))!=TRUE) {stop("'tune.beta' has incorrect dimensions")} if(identical(as.numeric(dim(tune.gamma)), c(NG, NP-1))!=TRUE) {stop("'tune.gamma' has incorrect dimensions")} if(identical(as.numeric(dim(tune.delta)), c(NG, NP-1))!=TRUE) {stop("'tune.delta' has incorrect dimensions")} if(is.null(covariateprior)){ covprior <- 0 delmean <- gammean <- rep(0, NG*(NP-1)) delsd <- gamsd <- rep(1, NG*(NP-1)) }else{ covprior <- 1 delmean <- covariateprior[[1]] delsd <- covariateprior[[2]] gammean <- covariateprior[[3]] gamsd <- covariateprior[[4]] if(identical(as.numeric(dim(delmean)), c(NG, NP-1))!=TRUE) {stop("matrix of prior means for delta has incorrect dimensions")} if(identical(as.numeric(dim(delsd)), c(NG, NP-1))!=TRUE) {stop("matrix of prior sd for delta has incorrect dimensions")} if(identical(as.numeric(dim(gammean)), c(NG, NP-1))!=TRUE) {stop("matrix of prior means for gamma has incorrect dimensions")} if(identical(as.numeric(dim(gamsd)), c(NG, NP-1))!=TRUE) {stop("matrix of prior sd for gamma has incorrect dimensions")} if(min(gamsd)<=0) {stop("prior sd for gamma must be > 0")} if(min(gamsd)<=0) {stop("prior sd for delta must be > 0")} } beta.names <- paste(paste(paste(group.names,matrix(rep(party.names, NG),NG,NP, byrow=T) ,sep="."), matrix(rep(1:Precincts,NG*NP),NG*NP, Precincts, byrow=TRUE),sep="."), ".txt.gz", sep="") if(ret.beta == 's'){touch.betas(beta.names) ret.beta <- 2} if(ret.beta == 'd'){ret.beta <- 1} if(ret.beta == 'r'){ret.beta <- 0} if(is.numeric(ret.beta)==FALSE){stop("incorrect option for ret.beta")} output <- .Call("rbycei_fcn4", as.numeric(start.dr), as.numeric(start.betas), as.numeric(start.gamma), as.numeric(start.delta), as.numeric(TT), as.numeric(XX), as.numeric(ZZ), as.numeric(tune.dr), as.numeric(tune.beta), as.numeric(tune.gamma), as.numeric(tune.delta), as.integer(NG), as.integer(NP), as.integer(Precincts), as.numeric(lambda1), as.numeric(lambda2), as.integer(covprior), as.numeric(delmean), as.numeric(delsd), as.numeric(gammean), as.numeric(gamsd), as.integer(sample), as.integer(thin), as.integer(burnin), as.integer(verbose), as.integer(ret.beta), as.numeric(RR), usrfun, usrenv, as.integer(usrlen), as.character(beta.names) ) if(ret.beta==0){names(output) <- c("Dr", "Beta","Gamma","Delta", "dr.acc","beta.acc", "gamma.acc", "delta.acc","cell.count", "usrfun")} else{names(output) <- c("Dr","Gamma","Delta", "dr.acc","beta.acc", "gamma.acc", "delta.acc","cell.count", "usrfun")} if(ret.mcmc){ colnames(output$Dr) <- paste("dr", group.names, sep=".") output$Dr <- coda::mcmc(output$Dr, thin=thin) colnames(output$cell.count) <- paste("ccount",matrix(rep(group.names, NP),NG,NP) ,matrix(rep(party.names, NG),NG,NP, byrow=T) ,sep=".") output$cell.count <- coda::mcmc(output$cell.count, thin=thin) colnames(output$Gamma) <- paste("gamma",matrix(rep(group.names, (NP-1)),NG,NP-1) ,matrix(rep(party.names[1:(NP-1)], NG),NG,NP-1, byrow=T) ,sep=".") output$Gamma <- coda::mcmc(output$Gamma, thin=thin) colnames(output$Delta) <- paste("delta",matrix(rep(group.names, (NP-1)),NG,NP-1) ,matrix(rep(party.names[1:(NP-1)], NG),NG,NP-1, byrow=T) ,sep=".") output$Delta <- coda::mcmc(output$Delta, thin=thin) if(ret.beta==0){ colnames(output$Beta) <- paste(paste("beta", group.names,matrix(rep(party.names, NG),NG,NP, byrow=T) ,sep="."), matrix(rep(1:Precincts,NG*NP),NG*NP, Precincts, byrow=TRUE),sep=".") output$Beta <- coda::mcmc(output$Beta, thin=thin) } }else{ output$Dr <- t(output$Dr) dimnames(output$Dr) <- list(paste("dr", group.names, sep="."), 1:sample) output$cell.count <- array(t(output$cell.count), c(NG, NP, sample)) dimnames(output$cell.count) <- list(group.names, party.names, 1:sample) output$Gamma <- array(t(output$Gamma), c(NG, NP-1, sample)) dimnames(output$Gamma) <- list(group.names, party.names[1:(NP-1)], 1:sample) output$Delta <- array(t(output$Delta), c(NG, NP-1,sample)) dimnames(output$Delta) <- list(group.names, party.names[1:(NP-1)], 1:sample) if(ret.beta==0){ output$Beta <- array(t(output$Beta), c(NG, NP, Precincts, sample)) dimnames(output$Beta) <- list(group.names, party.names, 1:Precincts, 1:sample) } } return(output) }
print.logistf <- function(x, ...) { print(x$call) cat("Model fitted by", x$method) cat("\nConfidence intervals and p-values by", paste(unique(x$method.ci), sep="/"), "\n\n") cat("Coefficients:\n") out <- x$coefficients print(out) LL <- -2 * (x$loglik['null']-x$loglik['full']) cat("\nLikelihood ratio test=", LL, " on ", x$df, " df, p=", 1 - pchisq(LL, x$df), ", n=", x$n, "\n\n", sep = "") invisible(x) }
interpolateWithinGrid2D <- function(grid_string, x, y, default_z){ parts = strsplit(grid_string,split=",",fixed=TRUE); x_values = as.numeric(strsplit(parts[[1]][1],split=" ",fixed=TRUE)[[1]]); y_values = as.numeric(strsplit(parts[[1]][2],split=" ",fixed=TRUE)[[1]]); z_values = as.numeric(strsplit(parts[[1]][3],split=" ",fixed=TRUE)[[1]]); NX = length(x_values); NY = length(y_values); NZ = length(z_values); if(length(z_values)!=NX*NY){ cat(sprintf("ERROR parsing grid string: NX=%d, NY=%d but NZ=%d != NX*NY=%d\n",NX,NY,NZ,NX*NY)); return(0); } EPSILON = 1e-5; if((!isInRange(x_values[1],x_values[NX],x,EPSILON)) || (!isInRange(y_values[1],y_values[NY],y,EPSILON))) return(default_z); x_du = x + abs(x)*EPSILON; x_dd = x - abs(x)*EPSILON; y_du = y + abs(y)*EPSILON; y_dd = y - abs(y)*EPSILON; for(xi in 2:NX){ if(x_values[xi-1]<=x_du && x_values[xi]>=x_dd){ xi2 = xi; break; } } for(yi in 2:NY){ if(y_values[yi-1]<=y_du && y_values[yi]>=y_dd){ yi2 = yi; break; } } x1 = x_values[xi2-1]; x2 = x_values[xi2]; y1 = y_values[yi2-1]; y2 = y_values[yi2]; z11 = z_values[(xi2-2)*NY + (yi2-1)]; z12 = z_values[(xi2-2)*NY + yi2]; z21 = z_values[(xi2-1)*NY + (yi2-1)]; z22 = z_values[(xi2-1)*NY + yi2]; tz1 = z11*(x2-x)/(x2-x1) + z21*(x-x1)/(x2-x1); tz2 = z12*(x2-x)/(x2-x1) + z22*(x-x1)/(x2-x1); z = tz1*(y2-y)/(y2-y1) + tz2*(y-y1)/(y2-y1); return(z); }
rhub::check(".", "ubuntu-rchk", check_args="--no-manual --no-vignettes")
grid_positions<-function(n,m){ G1<-expand.grid(n:1,1:m) G2<-cbind(G1[,2],G1[,1]) G2<-G2-0.5 G2[,1]<-G2[,1]/m G2[,2]<-G2[,2]/n return(G2) }
library(sommer) data(DT_yatesoats) DT <- DT_yatesoats DT$row <- as.numeric(as.character(DT$row)) DT$col <- as.numeric(as.character(DT$col)) DT$R <- as.factor(DT$row) DT$C <- as.factor(DT$col) m1.sommer <- mmer(Y~1+V+spl2Db(col,row, nsegments = c(14,21), degree = c(3,3), penaltyord = c(2,2), what = "base"), random = ~R+C+spl2Db(col,row, nsegments = c(14,21), degree = c(3,3), penaltyord = c(2,2), what="bits"), data=DT, tolpar = 1e-6, verbose = FALSE) summary(m1.sommer)$varcomp m2.sommer <- mmer(Y~1+V, random = ~R+C+spl2Da(col,row, nsegments = c(14,21), degree = c(3,3), penaltyord = c(2,2)), data=DT, tolpar = 1e-6, verbose = FALSE) summary(m1.sommer)$varcomp DT2 <- rbind(DT,DT) DT2$Y <- DT2$Y + rnorm(length(DT2$Y)) DT2$trial <- c(rep("A",nrow(DT)),rep("B",nrow(DT))) head(DT2) m3.sommer <- mmer(Y~1+V, random = ~vs(ds(trial),R)+vs(ds(trial),C)+ spl2Da(col,row, nsegments = c(14,21), degree = c(3,3), penaltyord = c(2,2), at.var = trial), rcov = ~vs(ds(trial),units), data=DT2, tolpar = 1e-6, verbose = FALSE) summary(m3.sommer)$varcomp
gstream = function(distM, L, N0, k, statistics=c("all","o","w","g","m"), n0=0.3*L, n1=0.7*L, ARL=10000,alpha=0.05,skew.corr=TRUE,asymp=FALSE){ r1 = list() n0 = ceiling(n0) n1 = floor(n1) if(n0<2){ cat("Note: Starting index has been set to n0 = 2 as the graph-based statistics are not well-defined for t<2. \n") n0=2 } if(n1>(L-2)){ cat("Note: Ending index has been set to n1 =", L-2, " as the graph-based statistics are not well-defined for t>",L-2,". \n") n1=L-2 } if(N0<L){ stop("Warning: Please adjust either N0 or L. The number of historical observations (N0) must be at least L. \n") } N = dim(distM)[1] r1$scanZ = getscanZ(distM,N0,L,N,k,n0,n1,statistics) r1$b = getb(distM,ARL,alpha,N0,n0,n1,L,k,statistics,skew.corr,dif=1e-10, nIterMax=100,asymp) if (length(which(!is.na(match(c("o","ori","original","all"),statistics))))>0){ r1$tauhat$ori = which(r1$scanZ$ori>r1$b$ori) } if (length(which(!is.na(match(c("w","weighted","all"),statistics))))>0){ r1$tauhat$weighted = which(r1$scanZ$weighted>r1$b$weighted) } if (length(which(!is.na(match(c("m","max","all"),statistics))))>0){ r1$tauhat$max.type = which(r1$scanZ$max.type>r1$b$max.type) } if (length(which(!is.na(match(c("g","generalized","all"),statistics))))>0){ r1$tauhat$generalized = which(r1$scanZ$generalized>r1$b$generalized) } return(r1) } getZL = function(distM, k = 1){ L = dim(distM)[1] A = matrix(0,L,k) for (i in 1:L){ A[i,] = (sort(distM[i,1:L], index.return=T)$ix)[1:k] } temp = table(A) id = as.numeric(row.names(temp)) deg = rep(0,L) deg[id] = temp deg.sumsq = sum(deg^2) cn = sum((deg-k)^2)/L/k count = 0 for (i in 1:L){ ids = A[i,] count = count + length(which(A[ids,]==i)) } vn = count/L/k ts = 1:(L-1) q = (L-ts-1)/(L-2) p = (ts-1)/(L-2) EX1L = 2*k*(ts)*(ts-1)/(L-1) EX2L = 2*k*(L-ts)*(L-ts-1)/(L-1) EX = 4*k*ts*(L-ts)/(L-1) config1 = (2*k*L + 2*k*L*vn) config2 = (3*k^2*L + deg.sumsq -2*k*L -2*k*L*vn) config3 = (4*L^2*k^2 + 4*k*L + 4*k*L*vn - 12*k^2*L - 4*deg.sumsq) f11 = 2*(ts)*(ts-1)/L/(L-1) f21 = 4*(ts)*(ts-1)*(ts-2)/L/(L-1)/(L-2) f31 = (ts)*(ts-1)*(ts-2)*(ts-3)/L/(L-1)/(L-2)/(L-3) f12 = 2*(L-ts)*(L-ts-1)/L/(L-1) f22 = 4*(L-ts)*(L-ts-1)*(L-ts-2)/L/(L-1)/(L-2) f32 = (L-ts)*(L-ts-1)*(L-ts-2)*(L-ts-3)/L/(L-1)/(L-2)/(L-3) h = 4*(ts-1)*(L-ts-1)/((L-2)*(L-3)) VX = EX*(h*(1+vn-2*k/(L-1))+(1-h)*cn) var1 = config1*f11 + config2*f21 + config3*f31 - EX1L^2 var2 = config1*f12 + config2*f22 + config3*f32 - EX2L^2 v12 = config3*((ts)*(ts-1)*(L-ts)*(L-ts-1))/(L*(L-1)*(L-2)*(L-3)) - EX1L*EX2L X = X1 = X2 = rep(0,L-1) for (t in 1:(L-1)){ X2[t] = 2*(length(which(A[(t+1):L,]>t))) X1[t] = 2*(length(which(A[1:t,]<=t))) X[t] = 2*(length(which(A[1:t,]>t))+length(which(A[(t+1):L,]<=t))) } Rw = q*X1 + p*X2 ERw = q*EX1L + p*EX2L varRw = q^2*var1 + p^2*var2 + 2*p*q*v12 Zw = (Rw - ERw)/sqrt(varRw) Zdiff = ((X1-X2)-(EX1L-EX2L))/sqrt(var1+var2-2*v12) S = Zw^2 + Zdiff^2 M = apply(cbind(abs(Zdiff),Zw),1,max) Z = (EX-X)/sqrt(VX) list(R=X,R1= X1, R2 = X2, Rw = Rw, Z1 = (X1-EX1L)/sqrt(var1) , Z2 = (X2-EX2L)/sqrt(var2), Zdiff = Zdiff, Zw = Zw, S = S, M =M, Z=Z ) } getscanZ = function(distM,N0,L,N,k,n0,n1,statistics="all"){ maxZ = maxZw = maxS = maxM = rep((N0+1):N) for (n in (N0+1):N){ tests = getZL(distM[(n-L+1):n,(n-L+1):n],k) maxZ[n-N0] = max(tests$Z[n0:n1]) maxZw[n-N0] = max(tests$Zw[n0:n1]) maxS[n-N0] = max(tests$S[n0:n1]) maxM[n-N0] = max(tests$M[n0:n1]) } scanZ = list() if (length(which(!is.na(match(c("o","ori","original","all"),statistics))))>0){ scanZ$ori = maxZ } if (length(which(!is.na(match(c("w","weighted","all"),statistics))))>0){ scanZ$weighted = maxZw } if (length(which(!is.na(match(c("m","max","g","generalized","all"),statistics))))>0){ scanZ$max.type = maxM } if (length(which(!is.na(match(c("g","generalized","all"),statistics))))>0){ scanZ$generalized = maxS } return(scanZ) } gb_quantities = function(distM,N0,k){ psum = qsum = psumk = qsumk = psumk1 = qsumk1 = psumk2 = qsumk2 = pLk1 = qLk1 = deg.sum3.n = aaa1.n = aaa2.n = daa.n = dda.n = rep(0,1) psumk_hao = qsumk_hao = rep(0,1) n = N0 An = matrix(0,n,k+2) for (i in 1:n){ An[i,] = (sort(distM[i,1:n], index.return=T)$ix)[1:(k+2)] } temp = table(An[,1:k]) id = as.numeric(row.names(temp)) deg = rep(0,n) deg[id] = temp deg.sumsq = sum(deg^2) deg.sum3 = sum(deg^3) count = daa = dda = aaa1 = aaa2 = 0 for (i in 1:n){ ids = An[i,1:k] count = count + length(which(An[ids,1:k]==i)) daa = daa + deg[i]*length(which(An[ids,1:k]==i)) dda = dda + deg[i]*sum(deg[ids]) for (j in ids){ u = An[j,1:k] aaa1 = aaa1 + length(which(An[u,1:k]==i)) aaa2 = aaa2 + length(which(!is.na(match(ids,u)))) } } psum = count/n qsum = deg.sumsq/n-k deg.sum3.n = deg.sum3 aaa1.n = aaa1 aaa2.n = aaa2 daa.n = daa dda.n = dda count1 = count2 = count3 = count4 = count5 = count6 = count7 = count8 = 0 for (i in 1:n){ ids = An[i,k] count1 = count1 + length(which(An[ids,1:k]==i)) count2 = count2 + length(which(An[-i,1:k]==ids)) ids1 = An[i,k+1] count3 = count3 + length(which(An[ids1,1:k]==i)) count4 = count4 + length(which(An[-i,1:k]==ids1)) count7 = count7 + length(which(An[ids1,k+1]==i)) count8 = count8 + length(which(An[-i,k+1]==ids1)) ids2 = An[i,k+2] count5 = count5 + length(which(An[ids2,1:k]==i)) count6 = count6 + length(which(An[-i,1:k]==ids2)) } psumk = count1/n qsumk = count2/n psumk1 = count3/n qsumk1 = count4/n psumk2 = count5/n qsumk2 = count6/n pLk1 = count7/n qLk1 = count8/n list(psum=psum,qsum=qsum, psumk1=psumk1, qsumk1=qsumk1, psumk2=psumk2, qsumk2=qsumk2, pLk1=pLk1, qLk1=qLk1, psumk = psumk, qsumk=qsumk, deg.sumsq = deg.sumsq, deg.sum3.n= deg.sum3.n, aaa1.n=aaa1.n, aaa2.n=aaa2.n, daa.n=daa.n, dda.n=dda.n) } Nu = function(x){ y = x/2 (1/y)*(pnorm(y)-0.5)/(y*pnorm(y) + dnorm(y)) } C1_Z = function(x, L, k, psum,qsum){ ((16*(k + 2*psum - psum)*(2*L- 2*x - 1)*(x^2 - x))/(L^3 - 6*L^2 + 11*L - 6) - (16*k^2*x^2*(L- x))/(L - 1)^2 + (16*k^2*x*(L- x)^2)/(L - 1)^2 + (4*x*(3*k^2 + k + 2*qsum - qsum)*(3*L^2 - 10*L*x - 3*L + 8*x^2 + 2*x + 2))/(L^3 - 6*L^2 + 11*L - 6) + (16*L*k^2*x*(3*L*x - L^2 + L - 2*x^2 - 2*x + 1))/((L - 1)*(L - 2)*(L - 3)))/(4*((k^2*(((((-x+ 1)*(4*L - 4*x - 4))/((L - 2)*(L - 3)) + 1)*(k + qsum - k^2))/k + ((-x+ 1)*(4*L - 4*x - 4)*(k + psum - L*k - L*psum + 2*k^2))/(k*(L - 1)*(L - 2)*(L - 3)))^2*x^2*(L- x)^2)/(L - 1)^2)^(1/2)) - (((16*k^2*(((((-x+ 1)*(4*L - 4*x - 4))/((L - 2)*(L - 3)) + 1)*(k - k^2 + qsum))/k + ((-x+ 1)*(4*L - 4*x - 4)*(k + psum - L*k - L*psum + 2*k^2))/(k*(L - 1)*(L - 2)*(L - 3)))^2*x^2*(L- x))/(L - 1)^2 - (16*k^2*(((((-x+ 1)*(4*L - 4*x - 4))/((L - 2)*(L - 3)) + 1)*(k - k^2 + qsum))/k + ((-x+ 1)*(4*L - 4*x - 4)*(k + psum - L*k - L*psum + 2*k^2))/(k*(L - 1)*(L - 2)*(L - 3)))^2*x*(L- x)^2)/(L - 1)^2 + (64*k*(((((-x+ 1)*(4*L - 4*x - 4))/((L - 2)*(L - 3)) + 1)*(k - k^2 + qsum))/k + ((-x+ 1)*(4*L - 4*x - 4)*(k + psum - L*k - L*psum + 2*k^2))/(k*(L - 1)*(L - 2)*(L - 3)))*x^2*(L- 2*x)*(L- x)^2*(psum - qsum - L*psum + L*qsum - L*k^2 + 3*k^2))/((L - 1)^2*(L^3 - 6*L^2 + 11*L - 6)))*(L*((4*x*(L- x))/(L*(L - 1)) - (16*(L- x)*(L - x - 1)*(x^2 - x))/(L*(L - 1)*(L - 2)*(L - 3)))*(3*k^2 + k + 2*qsum - qsum) + (16*(k + 2*psum - psum)*(x^2 - x)*(L^2 - 2*L*x - L + x^2 + x))/(L^3 - 6*L^2 + 11*L - 6) - (16*k^2*x^2*(L- x)^2)/(L - 1)^2 + (16*L*k^2*(L- x)*(L - x - 1)*(x^2 - x))/((L - 1)*(L - 2)*(L - 3))))/(128*((k^2*(((((-x+ 1)*(4*L - 4*x - 4))/((L - 2)*(L - 3)) + 1)*(k + qsum - k^2))/k + ((-x+ 1)*(4*L - 4*x - 4)*(k + psum - L*k - L*psum + 2*k^2))/(k*(L - 1)*(L - 2)*(L - 3)))^2*x^2*(L- x)^2)/(L - 1)^2)^(3/2)) } C2_Z = function(x, L, k, psum, qsum, psumk, qsumk){ ((((4*x*(L - x))/(L*(L - 1)) - (16*(L - x)*(L - x - 1)*(x^2 - x))/(L*(L - 1)*(L - 2)*(L - 3)))*(2*k + 4*qsum - 2*qsum - 7*L*k - 8*L*qsum + 7*L*qsum - 2*L*qsumk - 9*L*k^2 + 3*L^2*k + 2*L^2*qsum - 3*L^2*qsum + 2*L^2*qsumk + 6*k^2 + 3*L^2*k^2))/(L^2 - 3*L + 2) + L*(3*k^2 + k + 2*qsum - qsum)*((4*(L^2 - 2*L*x - 2*L + x^2 + 2*x))/(L*(L - 1)*(L - 2)) - (4*x*(L - x))/(L^2*(L - 1)) + (4*x*(L - x))/(L*(L - 1)^2*(L - 2)) + (16*(-x + 1)*(L^2 - 3*L*x - L + 2*x^2 + x))/(L*(L - 1)*(L - 2)*(L - 3)) - (16*(4*L^2 - 12*L + 6)*(L - x)*(L - x - 1)*(x^2 - x))/(L^2*(L - 1)^2*(L - 2)^2*(L - 3)^2)) + (16*k^2*x^2*(L - x))/(L - 1)^2 - (16*k^2*x*(L - x)^2)/(L - 1)^2 - (16*(k + 2*psum - psum)*(-x + 1)*(L^6 - 3*L^5*x - 7*L^5 + 2*L^4*x^2 + 23*L^4*x + 17*L^4 - 20*L^3*x^2 - 55*L^3*x - 17*L^3 + 4*L^2*x^3 + 50*L^2*x^2 + 47*L^2*x + 6*L^2 - 12*L*x^3 - 36*L*x^2 - 12*L*x + 6*x^3 + 6*x^2))/(L*(11*L - 6*L^2 + L^3 - 6)^2) + (16*(x^2 - x)*(L^2 - 2*L*x - L + x^2 + x)*(2*k + 4*psum - 2*psum - 7*L*k - 10*L*psum + 7*L*psum - 2*L*psumk + 3*L^2*k + 4*L^2*psum - 3*L^2*psum + 2*L^2*psumk))/(L*(L^2 - 3*L + 2)*(L^3 - 6*L^2 + 11*L - 6)) - (16*L*k^2*(-x + 1)*(L^2 - 3*L*x - L + 2*x^2 + x))/((L - 1)*(L - 2)*(L - 3)) + (16*k^2*(4*L^2 - 12*L + 6)*(L - x)*(L - x - 1)*(x^2 - x))/((L - 1)^2*(L - 2)^2*(L - 3)^2))/(4*((k^2*(((((-x + 1)*(4*L - 4*x - 4))/((L - 2)*(L - 3)) + 1)*(k + qsum - k^2))/k + ((-x + 1)*(4*L - 4*x - 4)*(k + psum - L*k - L*psum + 2*k^2))/(k*(L - 1)*(L - 2)*(L - 3)))^2*x^2*(L - x)^2)/(L - 1)^2)^(1/2)) + (((16*k^2*(((((-x + 1)*(4*L - 4*x - 4))/((L - 2)*(L - 3)) + 1)*(k - k^2 + qsum))/k + ((-x + 1)*(4*L - 4*x - 4)*(k + psum - L*k - L*psum + 2*k^2))/(k*(L - 1)*(L - 2)*(L - 3)))^2*x^2*(L - x))/(L - 1)^2 - (16*k^2*(((((-x + 1)*(4*L - 4*x - 4))/((L - 2)*(L - 3)) + 1)*(k - k^2 + qsum))/k + ((-x + 1)*(4*L - 4*x - 4)*(k + psum - L*k - L*psum + 2*k^2))/(k*(L - 1)*(L - 2)*(L - 3)))^2*x*(L - x)^2)/(L - 1)^2 + (64*k*(((((-x + 1)*(4*L - 4*x - 4))/((L - 2)*(L - 3)) + 1)*(k - k^2 + qsum))/k + ((-x + 1)*(4*L - 4*x - 4)*(k + psum - L*k - L*psum + 2*k^2))/(k*(L - 1)*(L - 2)*(L - 3)))*x^2*(L - 2*x)*(L - x)^2*(psum - qsum - L*psum + L*qsum - L*k^2 + 3*k^2))/((L - 1)^2*(L^3 - 6*L^2 + 11*L - 6)))*(L*((4*x*(L - x))/(L*(L - 1)) - (16*(L - x)*(L - x - 1)*(x^2 - x))/(L*(L - 1)*(L - 2)*(L - 3)))*(3*k^2 + k + 2*qsum - qsum) + (16*(k + 2*psum - psum)*(x^2 - x)*(L^2 - 2*L*x - L + x^2 + x))/(L^3 - 6*L^2 + 11*L - 6) - (16*k^2*x^2*(L - x)^2)/(L - 1)^2 + (16*L*k^2*(L - x)*(L - x - 1)*(x^2 - x))/((L - 1)*(L - 2)*(L - 3))))/(128*((k^2*(((((-x + 1)*(4*L - 4*x - 4))/((L - 2)*(L - 3)) + 1)*(k + qsum - k^2))/k + ((-x + 1)*(4*L - 4*x - 4)*(k + psum - L*k - L*psum + 2*k^2))/(k*(L - 1)*(L - 2)*(L - 3)))^2*x^2*(L - x)^2)/(L - 1)^2)^(3/2)) } C1_w_asy = function(x){ 1/(2*x*(1-x)) } C2_w_asy = function(x,k,psum,psumk1){ (x^2-x+1)/(x*(1-x)) - (2*k*psumk1)/(k+psum) } C1_d_asy = function(x){ 1/(x*(1-x)) } C2_d_asy = function(x,k,qsum,qsumk1){ (10*qsum-4*k*qsumk1-(6*k^2-10*k))/(2*(qsum-k^2+k)) - 1/(2*x*(1-x)) } C1_w = function(x,L,k,psum,qsum){ if(k==1){ result=-(x^2*(x - 1)^2*(2*x^2 - 2*L*x + L)*(L^2 - 2*L*x - L + x^2 + x)^2*(3*k + 2*psum + qsum - 4*L*k - 3*L*psum - L*qsum - L*k^2 + L^2*k + L^2*psum + 3*k^2)^2*(2*psum - 4*L + qsum - 3*L*psum - L*qsum - L*k^2 + L^2*psum + L^2 + 3*k^2 + 3))/(2*(L - 1)^5*(L - 2)^6*(L - 3)^3*((x^2*(x - 1)^2*(L^2 - 2*L*x - L + x^2 + x)^2*(3*k + 2*psum + qsum - 4*L*k - 3*L*psum - L*qsum - L*k^2 + L^2*k + L^2*psum + 3*k^2)^2)/((L - 3)^2*(L^2 - 3*L + 2)^4))^(3/2)) } if(k==5){ result= -(x^2*(x - 1)^2*(2*x^2 - 2*L*x + L)*(L^2 - 2*L*x - L + x^2 + x)^2*(3*k + 2*psum + qsum - 4*L*k - 3*L*psum - L*qsum - L*k^2 + L^2*k + L^2*psum + 3*k^2)^2*(2*psum - 20*L + qsum - 3*L*psum - L*qsum - L*k^2 + L^2*psum + 5*L^2 + 3*k^2 + 15))/(2*(L - 1)^5*(L - 2)^6*(L - 3)^3*((x^2*(x - 1)^2*(L^2 - 2*L*x - L + x^2 + x)^2*(3*k + 2*psum + qsum - 4*L*k - 3*L*psum - L*qsum - L*k^2 + L^2*k + L^2*psum + 3*k^2)^2)/((L - 3)^2*(L^2 - 3*L + 2)^4))^(3/2)) } else{ result = -(x^2*(x - 1)^2*(2*x^2 - 2*L*x + L)*(L^2 - 2*L*x - L + x^2 + x)^2*(3*k + 2*psum + qsum - 4*L*k - 3*L*psum - L*qsum - L*k^2 + L^2*k + L^2*psum + 3*k^2)^3)/(2*(L - 1)^5*(L - 2)^6*(L - 3)^3*((x^2*(x - 1)^2*(L^2 - 2*L*x - L + x^2 + x)^2*(3*k + 2*psum + qsum - 4*L*k - 3*L*psum - L*qsum - L*k^2 + L^2*k + L^2*psum + 3*k^2)^2)/((L - 3)^2*(L^2 - 3*L + 2)^4))^(3/2)) } return(result) } C2_w = function(x,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2,qsumk2){ if(k==1){ num=- ((x - L + 1)*(36*L - 72*x + 72*k^2*x^2 + 72*k^2*x^3 + 24*L*psum + 12*L*qsum + 66*L*x - 48*psum*x - 24*qsum*x + 36*L*k^2 - 74*L^2*psum + 85*L^3*psum - 45*L^4*psum + 11*L^5*psum - L^6*psum - 31*L^2*qsum + 27*L^3*qsum - 9*L^4*qsum + L^5*qsum - 312*L*x^2 + 88*L^2*x - 36*L*x^3 - 169*L^3*x + 96*L^4*x - 23*L^5*x + 2*L^6*x - 72*k^2*x + 88*psum*x^2 + 8*psum*x^3 - 48*psumk1*x^2 + 48*psumk1*x^3 - 16*psumk2*x^2 + 16*psumk2*x^3 + 56*qsum*x^2 - 8*qsum*x^3 - 16*qsumk1*x^2 + 16*qsumk1*x^3 - 4*qsumk2*x^2 + 4*qsumk2*x^3 - 105*L^2 + 112*L^3 - 54*L^4 + 12*L^5 - L^6 - 69*L^2*k^2 + 43*L^3*k^2 - 11*L^4*k^2 + L^5*k^2 + 144*x^2 + 313*L^2*x^2 + 33*L^2*x^3 - 153*L^3*x^2 - 10*L^3*x^3 + 35*L^4*x^2 + L^4*x^3 - 3*L^5*x^2 - 210*L*k^2*x^2 + 52*L^2*k^2*x - 66*L*k^2*x^3 - 64*L^3*k^2*x + 20*L^4*k^2*x - 2*L^5*k^2*x + 245*L^2*psum*x^2 + 33*L^2*psum*x^3 - 133*L^3*psum*x^2 - 10*L^3*psum*x^3 + 33*L^4*psum*x^2 + L^4*psum*x^3 - 3*L^5*psum*x^2 + 30*L^2*psumk1*x^2 + 70*L^2*psumk1*x^3 + 14*L^2*psumk2*x^2 - 50*L^3*psumk1*x^2 + 14*L^2*psumk2*x^3 - 20*L^3*psumk1*x^3 - 12*L^3*psumk2*x^2 + 18*L^4*psumk1*x^2 - 2*L^3*psumk2*x^3 + 2*L^4*psumk1*x^3 + 2*L^4*psumk2*x^2 - 2*L^5*psumk1*x^2 + 68*L^2*qsum*x^2 - 20*L^3*qsum*x^2 + 2*L^4*qsum*x^2 + 14*L^2*qsumk1*x^2 + 14*L^2*qsumk1*x^3 + 4*L^2*qsumk2*x^2 - 12*L^3*qsumk1*x^2 + 2*L^2*qsumk2*x^3 - 2*L^3*qsumk1*x^3 - 2*L^3*qsumk2*x^2 + 2*L^4*qsumk1*x^2 + 60*L*psum*x + 48*L*psumk1*x + 16*L*psumk2*x + 6*L*qsum*x + 16*L*qsumk1*x + 4*L*qsumk2*x + 152*L^2*k^2*x^2 + 20*L^2*k^2*x^3 - 42*L^3*k^2*x^2 - 2*L^3*k^2*x^3 + 4*L^4*k^2*x^2 + 66*L*k^2*x - 218*L*psum*x^2 + 40*L^2*psum*x - 38*L*psum*x^3 - 117*L^3*psum*x + 78*L^4*psum*x - 21*L^5*psum*x + 2*L^6*psum*x + 52*L*psumk1*x^2 - 100*L^2*psumk1*x - 100*L*psumk1*x^3 + 12*L*psumk2*x^2 - 28*L^2*psumk2*x + 70*L^3*psumk1*x - 28*L*psumk2*x^3 + 14*L^3*psumk2*x - 20*L^4*psumk1*x - 2*L^4*psumk2*x + 2*L^5*psumk1*x - 94*L*qsum*x^2 + 48*L^2*qsum*x + 2*L*qsum*x^3 - 52*L^3*qsum*x + 18*L^4*qsum*x - 2*L^5*qsum*x + 12*L*qsumk1*x^2 - 28*L^2*qsumk1*x - 28*L*qsumk1*x^3 + 2*L*qsumk2*x^2 - 6*L^2*qsumk2*x + 14*L^3*qsumk1*x - 6*L*qsumk2*x^3 + 2*L^3*qsumk2*x - 2*L^4*qsumk1*x))/((L - 2)^3*(L - 4)*(L^2 - 4*L + 3)^2*((x^2*(x - 1)^2*(x - L - 2*L*x + L^2 + x^2)^2*(3*k + 2*psum + qsum - 4*L*k - 3*L*psum - L*qsum - L*k^2 + L^2*k + L^2*psum + 3*k^2)^2)/((L - 3)^2*(L^2 - 3*L + 2)^4))^(1/2)) - (x^2*(x - 1)^2*(L^2 - 2*L*x - L + x^2 + x)^2*(2*L^2*x - L^2 - 6*L*x^2 + 2*L*x + L + 4*x^3 - 2*x)*(3*k + 2*psum + qsum - 4*L*k - 3*L*psum - L*qsum - L*k^2 + L^2*k + L^2*psum + 3*k^2)^2*(2*psum - 4*L + qsum - 3*L*psum - L*qsum - L*k^2 + L^2*psum + L^2 + 3*k^2 + 3))/(2*(L - 3)^3*(L^2 - 3*L + 2)^6*((x^2*(x - 1)^2*(x - L - 2*L*x + L^2 + x^2)^2*(3*k + 2*psum + qsum - 4*L*k - 3*L*psum - L*qsum - L*k^2 + L^2*k + L^2*psum + 3*k^2)^2)/((L - 3)^2*(L^2 - 3*L + 2)^4))^(3/2)) den=1 part2=0 } if(k==5){ num=((x - L + 1)*(75600*L - 151200*x + 30240*k^2*x^2 + 30240*k^2*x^3 + 10080*L*psum + 5040*L*qsum + 196740*L*x - 20160*psum*x - 10080*qsum*x + 15120*L*k^2 - 34956*L^2*psum + 48188*L^3*psum - 34305*L^4*psum + 13857*L^5*psum - 3282*L^6*psum + 450*L^7*psum - 33*L^8*psum + L^9*psum - 14958*L^2*qsum + 16615*L^3*qsum - 8845*L^4*qsum + 2506*L^5*qsum - 388*L^6*qsum + 31*L^7*qsum - L^8*qsum - 771480*L*x^2 + 123450*L^2*x - 75600*L*x^3 - 418250*L^3*x + 347605*L^4*x - 145120*L^5*x + 34290*L^6*x - 4640*L^7*x + 335*L^8*x - 10*L^9*x - 30240*k^2*x + 36960*psum*x^2 + 3360*psum*x^3 - 47040*psumk1*x^2 + 47040*psumk1*x^3 - 14400*psumk2*x^2 + 14400*psumk2*x^3 + 23520*qsum*x^2 - 3360*qsum*x^3 - 6720*qsumk1*x^2 + 6720*qsumk1*x^3 - 1800*qsumk2*x^2 + 1800*qsumk2*x^3 - 249570*L^2 + 324015*L^3 - 215750*L^4 + 81815*L^5 - 18350*L^6 + 2405*L^7 - 170*L^8 + 5*L^9 - 34794*L^2*k^2 + 30009*L^3*k^2 - 13141*L^4*k^2 + 3222*L^5*k^2 - 448*L^6*k^2 + 33*L^7*k^2 - L^8*k^2 + 302400*x^2 + 925350*L^2*x^2 + 98370*L^2*x^3 - 609605*L^3*x^2 - 51675*L^3*x^3 + 233495*L^4*x^2 + 14030*L^4*x^3 - 53130*L^5*x^2 - 2080*L^5*x^3 + 7060*L^6*x^2 + 160*L^6*x^3 - 505*L^7*x^2 - 5*L^7*x^3 + 15*L^8*x^2 - 99828*L*k^2*x^2 + 9570*L^2*k^2*x - 39348*L*k^2*x^3 - 33736*L^3*k^2*x + 19838*L^4*k^2*x - 5548*L^5*k^2*x + 830*L^6*k^2*x - 64*L^7*k^2*x + 2*L^8*k^2*x + 140076*L^2*psum*x^2 + 20176*L^2*psum*x^3 - 100385*L^3*psum*x^2 - 10387*L^3*psum*x^3 + 41021*L^4*psum*x^2 + 2808*L^4*psum*x^3 - 9792*L^5*psum*x^2 - 416*L^5*psum*x^3 + 1348*L^6*psum*x^2 + 32*L^6*psum*x^3 - 99*L^7*psum*x^2 - L^7*psum*x^3 + 3*L^8*psum*x^2 - 8800*L^2*psumk1*x^2 + 137880*L^2*psumk1*x^3 - 600*L^2*psumk2*x^2 - 63210*L^3*psumk1*x^2 + 38880*L^2*psumk2*x^3 - 74670*L^3*psumk1*x^3 - 19470*L^3*psumk2*x^2 + 52530*L^4*psumk1*x^2 - 19410*L^3*psumk2*x^3 + 22140*L^4*psumk1*x^3 + 14400*L^4*psumk2*x^2 - 18540*L^5*psumk1*x^2 + 5010*L^4*psumk2*x^3 - 3600*L^5*psumk1*x^3 - 4380*L^5*psumk2*x^2 + 3300*L^6*psumk1*x^2 - 630*L^5*psumk2*x^3 + 300*L^6*psumk1*x^3 + 600*L^6*psumk2*x^2 - 290*L^7*psumk1*x^2 + 30*L^6*psumk2*x^3 - 10*L^7*psumk1*x^3 - 30*L^7*psumk2*x^2 + 10*L^8*psumk1*x^2 + 44994*L^2*qsum*x^2 - 502*L^2*qsum*x^3 - 21536*L^3*qsum*x^2 + 52*L^3*qsum*x^3 + 5678*L^4*qsum*x^2 - 2*L^4*qsum*x^3 - 834*L^5*qsum*x^2 + 64*L^6*qsum*x^2 - 2*L^7*qsum*x^2 + 280*L^2*qsumk1*x^2 + 17200*L^2*qsumk1*x^3 + 270*L^2*qsumk2*x^2 - 8990*L^3*qsumk1*x^2 + 4290*L^2*qsumk2*x^3 - 8210*L^3*qsumk1*x^3 - 2400*L^3*qsumk2*x^2 + 6220*L^4*qsumk1*x^2 - 1890*L^3*qsumk2*x^3 + 1990*L^4*qsumk1*x^3 + 1500*L^4*qsumk2*x^2 - 1760*L^5*qsumk1*x^2 + 390*L^4*qsumk2*x^3 - 230*L^5*qsumk1*x^3 - 360*L^5*qsumk2*x^2 + 220*L^6*qsumk1*x^2 - 30*L^5*qsumk2*x^3 + 10*L^6*qsumk1*x^3 + 30*L^6*qsumk2*x^2 - 10*L^7*qsumk1*x^2 + 32952*L*psum*x + 47040*L*psumk1*x + 14400*L*psumk2*x + 6396*L*qsum*x + 6720*L*qsumk1*x + 1800*L*qsumk2*x + 99366*L^2*k^2*x^2 + 20670*L^2*k^2*x^3 - 46952*L^3*k^2*x^2 - 5612*L^3*k^2*x^3 + 12056*L^4*k^2*x^2 + 832*L^4*k^2*x^3 - 1728*L^5*k^2*x^2 - 64*L^5*k^2*x^3 + 130*L^6*k^2*x^2 + 2*L^6*k^2*x^3 - 4*L^7*k^2*x^2 + 39348*L*k^2*x - 105772*L*psum*x^2 + 6036*L^2*psum*x - 17252*L*psum*x^3 - 54214*L^3*psum*x + 52495*L^4*psum*x - 24070*L^5*psum*x + 6084*L^6*psum*x - 866*L^7*psum*x + 65*L^8*psum*x - 2*L^9*psum*x + 82040*L*psumk1*x^2 - 129080*L^2*psumk1*x - 129080*L*psumk1*x^3 + 23880*L*psumk2*x^2 - 38280*L^2*psumk2*x + 137880*L^3*psumk1*x - 38280*L*psumk2*x^3 + 38880*L^3*psumk2*x - 74670*L^4*psumk1*x - 19410*L^4*psumk2*x + 22140*L^5*psumk1*x + 5010*L^5*psumk2*x - 3600*L^6*psumk1*x - 630*L^6*psumk2*x + 300*L^7*psumk1*x + 30*L^7*psumk2*x - 10*L^8*psumk1*x - 48524*L*qsum*x^2 + 18654*L^2*qsum*x + 2132*L*qsum*x^3 - 29436*L^3*qsum*x + 17026*L^4*qsum*x - 4954*L^5*qsum*x + 774*L^6*qsum*x - 62*L^7*qsum*x + 2*L^8*qsum*x + 10760*L*qsumk1*x^2 - 17480*L^2*qsumk1*x - 17480*L*qsumk1*x^3 + 2760*L*qsumk2*x^2 - 4560*L^2*qsumk2*x + 17200*L^3*qsumk1*x - 4560*L*qsumk2*x^3 + 4290*L^3*qsumk2*x - 8210*L^4*qsumk1*x - 1890*L^4*qsumk2*x + 1990*L^5*qsumk1*x + 390*L^5*qsumk2*x - 230*L^6*qsumk1*x - 30*L^6*qsumk2*x + 10*L^7*qsumk1*x)) den=((L - 2)^3*(L^2 - 4*L + 3)^2*(L^4 - 26*L^3 + 251*L^2 - 1066*L + 1680)*((x^2*(x - 1)^2*(x - L - 2*L*x + L^2 + x^2)^2*(3*k + 2*psum + qsum - 4*L*k - 3*L*psum - L*qsum - L*k^2 + L^2*k + L^2*psum + 3*k^2)^2)/((L - 3)^2*(L^2 - 3*L + 2)^4))^(1/2)) part2 = (x^2*(x - 1)^2*(L^2 - 2*L*x - L + x^2 + x)^2*(2*L^2*x - L^2 - 6*L*x^2 + 2*L*x + L + 4*x^3 - 2*x)*(3*k + 2*psum + qsum - 4*L*k - 3*L*psum - L*qsum - L*k^2 + L^2*k + L^2*psum + 3*k^2)^2*(2*psum - 20*L + qsum - 3*L*psum - L*qsum - L*k^2 + L^2*psum + 5*L^2 + 3*k^2 + 15))/(2*(L - 3)^3*(L^2 - 3*L + 2)^6*((x^2*(x - 1)^2*(x - L - 2*L*x + L^2 + x^2)^2*(3*k + 2*psum + qsum - 4*L*k - 3*L*psum - L*qsum - L*k^2 + L^2*k + L^2*psum + 3*k^2)^2)/((L - 3)^2*(L^2 - 3*L + 2)^4))^(3/2)) }else{ num = - ((x - L + 1)*(18*k*x - 18*k^2*x^3 - 9*L*k - 6*L*psum - 3*L*qsum - 18*k^2*x^2 + 12*psum*x + 6*qsum*x - 9*L*k^2 + 24*L^2*k - 22*L^3*k + 8*L^4*k - L^5*k + 17*L^2*psum - 17*L^3*psum + 7*L^4*psum - L^5*psum + 7*L^2*qsum - 5*L^3*qsum + L^4*qsum - 36*k*x^2 + 18*k^2*x + 2*psum*x^2 - 26*psum*x^3 - 12*psumk*x^2 + 12*psumk*x^3 + 4*qsum*x^2 - 16*qsum*x^3 - 6*qsumk*x^2 + 6*qsumk*x^3 + 15*L^2*k^2 - 7*L^3*k^2 + L^4*k^2 + 48*L*k^2*x^2 - 61*L^2*k*x^2 - 16*L^2*k^2*x + 12*L*k^2*x^3 - 6*L^2*k*x^3 + 23*L^3*k*x^2 + 12*L^3*k^2*x + L^3*k*x^3 - 3*L^4*k*x^2 - 2*L^4*k^2*x - 67*L^2*psum*x^2 - 20*L^2*psum*x^3 + 33*L^3*psum*x^2 + 3*L^3*psum*x^3 - 5*L^4*psum*x^2 + 10*L^2*psumk*x^2 + 12*L^2*psumk*x^3 - 10*L^3*psumk*x^2 - 2*L^3*psumk*x^3 + 2*L^4*psumk*x^2 - 26*L^2*qsum*x^2 - 4*L^2*qsum*x^3 + 6*L^3*qsum*x^2 + 6*L^2*qsumk*x^2 + 2*L^2*qsumk*x^3 - 2*L^3*qsumk*x^2 - 12*L*k*x - 36*L*psum*x + 12*L*psumk*x - 18*L*qsum*x + 6*L*qsumk*x - 26*L^2*k^2*x^2 - 2*L^2*k^2*x^3 + 4*L^3*k^2*x^2 + 69*L*k*x^2 - 12*L*k^2*x - 25*L^2*k*x + 9*L*k*x^3 + 36*L^3*k*x - 15*L^4*k*x + 2*L^5*k*x + 41*L*psum*x^2 + 19*L^2*psum*x + 41*L*psum*x^3 + 12*L^3*psum*x - 11*L^4*psum*x + 2*L^5*psum*x + 10*L*psumk*x^2 - 22*L^2*psumk*x - 22*L*psumk*x^3 + 12*L^3*psumk*x - 2*L^4*psumk*x + 20*L*qsum*x^2 + 6*L^2*qsum*x + 18*L*qsum*x^3 + 6*L^3*qsum*x - 2*L^4*qsum*x + 2*L*qsumk*x^2 - 8*L^2*qsumk*x - 8*L*qsumk*x^3 + 2*L^3*qsumk*x)) den =((L - 2)^3*(L^2 - 4*L + 3)^2*((x^2*(x - 1)^2*(x - L - 2*L*x + L^2 + x^2)^2*(3*k + 2*psum + qsum - 4*L*k - 3*L*psum - L*qsum - L*k^2 + L^2*k + L^2*psum + 3*k^2)^2)/((L - 3)^2*(L^2 - 3*L + 2)^4))^(1/2)) part2 = (x^2*(x - 1)^2*(L^2 - 2*L*x - L + x^2 + x)^2*(2*L^2*x - L^2 - 6*L*x^2 + 2*L*x + L + 4*x^3 - 2*x)*(3*k + 2*psum + qsum - 4*L*k - 3*L*psum - L*qsum - L*k^2 + L^2*k + L^2*psum + 3*k^2)^3)/(2*(L - 3)^3*(L^2 - 3*L + 2)^6*((x^2*(x - 1)^2*(x - L - 2*L*x + L^2 + x^2)^2*(3*k + 2*psum + qsum - 4*L*k - 3*L*psum - L*qsum - L*k^2 + L^2*k + L^2*psum + 3*k^2)^2)/((L - 3)^2*(L^2 - 3*L + 2)^4))^(3/2)) } return(num/den - part2) } C1_d = function(x,L,k,qsum){ if(k==1){ result = (L*x^2*(L - x)^2*(- k^2 + k + qsum)^2*(- k^2 + qsum + 1))/(2*(L - 1)^3*((x^2*(L - x)^2*(- k^2 + k + qsum)^2)/(L - 1)^2)^(3/2)) } if(k==5){ result = (L*x^2*(L - x)^2*(- k^2 + k + qsum)^2*(- k^2 + qsum + 5))/(2*(L - 1)^3*((x^2*(L - x)^2*(- k^2 + k + qsum)^2)/(L - 1)^2)^(3/2)) } else{ result = (L*x^2*(L - x)^2*(- k^2 + k + qsum)^3)/(2*(L - 1)^3*((x^2*(L - x)^2*(- k^2 + k + qsum)^2)/(L - 1)^2)^(3/2)) } return(result) } C2_d = function(x,L,k,psum,qsum,qsumk,psumk1,qsumk1,psumk2,qsumk2){ if(k==1){ result=-(x^2*(L - x)^2*(- k^2 + k + qsum)^2*(48*k^2*x^2 + 144*L*x - 12*L^2*qsum + 19*L^3*qsum - 8*L^4*qsum + L^5*qsum + 204*L*x^2 - 204*L^2*x + 82*L^3*x - 10*L^4*x - 144*qsum*x^2 + 32*qsumk1*x^2 + 8*qsumk2*x^2 - 12*L^2 + 19*L^3 - 8*L^4 + L^5 + 12*L^2*k^2 - 19*L^3*k^2 + 8*L^4*k^2 - L^5*k^2 - 144*x^2 - 82*L^2*x^2 + 10*L^3*x^2 - 100*L*k^2*x^2 + 100*L^2*k^2*x - 46*L^3*k^2*x + 6*L^4*k^2*x - 82*L^2*qsum*x^2 + 10*L^3*qsum*x^2 + 28*L^2*qsumk1*x^2 + 4*L^2*qsumk2*x^2 - 4*L^3*qsumk1*x^2 + 144*L*qsum*x - 32*L*qsumk1*x - 8*L*qsumk2*x + 46*L^2*k^2*x^2 - 6*L^3*k^2*x^2 - 48*L*k^2*x + 204*L*qsum*x^2 - 204*L^2*qsum*x + 82*L^3*qsum*x - 10*L^4*qsum*x - 56*L*qsumk1*x^2 + 56*L^2*qsumk1*x - 12*L*qsumk2*x^2 + 12*L^2*qsumk2*x - 28*L^3*qsumk1*x - 4*L^3*qsumk2*x + 4*L^4*qsumk1*x))/(2*(L - 1)^4*(L^3 - 9*L^2 + 26*L - 24)*((x^2*(L - x)^2*(- k^2 + k + qsum)^2)/(L - 1)^2)^(3/2)) } if(k==5){ result=-(x^2*(L - x)^2*(- k^2 + k + qsum)^2*(6720*k^2*x^2 + 100800*L*x - 1680*L^2*qsum + 2746*L^3*qsum - 1317*L^4*qsum + 277*L^5*qsum - 27*L^6*qsum + L^7*qsum + 147960*L*x^2 - 147960*L^2*x + 68360*L^3*x - 14110*L^4*x + 1360*L^5*x - 50*L^6*x - 20160*qsum*x^2 + 4480*qsumk1*x^2 + 1200*qsumk2*x^2 - 8400*L^2 + 13730*L^3 - 6585*L^4 + 1385*L^5 - 135*L^6 + 5*L^7 + 1680*L^2*k^2 - 2746*L^3*k^2 + 1317*L^4*k^2 - 277*L^5*k^2 + 27*L^6*k^2 - L^7*k^2 - 100800*x^2 - 68360*L^2*x^2 + 14110*L^3*x^2 - 1360*L^4*x^2 + 50*L^5*x^2 - 14344*L*k^2*x^2 + 14344*L^2*k^2*x - 7400*L^3*k^2*x + 1610*L^4*k^2*x - 160*L^5*k^2*x + 6*L^6*k^2*x - 13672*L^2*qsum*x^2 + 2822*L^3*qsum*x^2 - 272*L^4*qsum*x^2 + 10*L^5*qsum*x^2 + 8080*L^2*qsumk1*x^2 + 1980*L^2*qsumk2*x^2 - 2780*L^3*qsumk1*x^2 - 600*L^3*qsumk2*x^2 + 400*L^4*qsumk1*x^2 + 60*L^4*qsumk2*x^2 - 20*L^5*qsumk1*x^2 + 20160*L*qsum*x - 4480*L*qsumk1*x - 1200*L*qsumk2*x + 7400*L^2*k^2*x^2 - 1610*L^3*k^2*x^2 + 160*L^4*k^2*x^2 - 6*L^5*k^2*x^2 - 6720*L*k^2*x + 29592*L*qsum*x^2 - 29592*L^2*qsum*x + 13672*L^3*qsum*x - 2822*L^4*qsum*x + 272*L^5*qsum*x - 10*L^6*qsum*x - 10160*L*qsumk1*x^2 + 10160*L^2*qsumk1*x - 2640*L*qsumk2*x^2 + 2640*L^2*qsumk2*x - 8080*L^3*qsumk1*x - 1980*L^3*qsumk2*x + 2780*L^4*qsumk1*x + 600*L^4*qsumk2*x - 400*L^5*qsumk1*x - 60*L^5*qsumk2*x + 20*L^6*qsumk1*x))/(2*(L - 1)^4*((x^2*(L - x)^2*(- k^2 + k + qsum)^2)/(L - 1)^2)^(3/2)*(L^5 - 28*L^4 + 303*L^3 - 1568*L^2 + 3812*L - 3360)) } else{ result = -(x^2*(L - x)^2*(- k^2 + k + qsum)^2*(4*k^2*x^2 - L^2*k + L^3*k - L^2*qsum + L^3*qsum - 12*k*x^2 - 4*qsumk*x^2 + L^2*k^2 - L^3*k^2 - 6*L*k^2*x^2 + 6*L^2*k^2*x + 12*L*k*x + 4*L*qsumk*x + 10*L*k*x^2 - 4*L*k^2*x - 10*L^2*k*x + 2*L*qsum*x^2 - 2*L^2*qsum*x + 4*L*qsumk*x^2 - 4*L^2*qsumk*x))/(2*(L - 1)^4*(L - 2)*((x^2*(L - x)^2*(- k^2 + k + qsum)^2)/(L - 1)^2)^(3/2)) } return(result) } T3.lambda = function(b, n0, n1, L, k, psum, qsum, psumk, qsumk){ C3 = C1_Z(n0:n1,L,k,psum,qsum) C4 = C2_Z(n0:n1,L,k,psum,qsum,psumk,qsumk) dnorm(b)*b^3*sum(C3*C4*Nu(sqrt(2*C3*b^2))*Nu(sqrt(2*C4*b^2))) } T3.lambdaZw = function(b,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2,qsumk2,asymp){ if(asymp==TRUE){ C1 = C1_w_asy((n0:n1)/L) C2 = C2_w_asy((n0:n1)/L,k,psum,psumk1) C2[C2<0] = 0.00000001 } if(asymp==FALSE){ C1 = C1_w(n0:n1,L,k,psum,qsum) C2 = C2_w(n0:n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1, psumk2,qsumk2) C2[C2<0] = 0.00000001 } dnorm(b)*b^3*sum(C1*C2*Nu(sqrt(2*C1*b^2))*Nu(sqrt(2*C2*b^2))) } T3.lambdaZdiff = function(b,n0,n1,L,k,psum,qsum,qsumk,psumk1,qsumk1,psumk2,qsumk2,asymp){ if(asymp==TRUE){ C1 = C1_d_asy((n0:n1)/L) C2 = C2_d_asy((n0:n1)/L,k,qsum,qsumk1) C2[C2<0] = 0.00000001 } if(asymp==FALSE){ C1 =C1_d(n0:n1,L,k,qsum) C2 =C2_d(n0:n1,L,k,psum,qsum,qsumk,psumk1,qsumk1,psumk2,qsumk2) C2[C2<0] = 0.00000001 } nu1 = Nu(sqrt(2*C1*b^2)) nu2 = Nu(sqrt(2*C2*b^2)) nu1[is.na(nu1)]=0 nu2[is.na(nu2)]=0 dnorm(b)*b^3*sum(C1*C2*Nu(sqrt(2*C1*b^2))*Nu(sqrt(2*C2*b^2))) } T3.lambdaM = function(D,b,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2, qsumk2,asymp){ pval_Zd = T3.lambdaZdiff(b,n0,n1,L,k,psum,qsum,qsumk,psumk1,qsumk1,psumk2, qsumk2,asymp) pval_Zw = T3.lambdaZw(b,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2,qsumk2,asymp) return(1-(1-D*2*pval_Zd)*(1-D*pval_Zw)) } T3.lambdaS = function(b,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2,qsumk2,asymp){ integrand = function(t,w){ if(asymp==TRUE){ C1w = C1_w_asy(t/L) C2w = C2_w_asy(t/L,k,psum,psumk1) C1d =C1_d_asy(t/L) C2d = C2_d_asy(t/L,k,qsum,qsumk1) C1d[C1d<0]=0 C2d[C2d<0]=0 C1w[C1w<0]=0 C2w[C2w<0]=0 } if(asymp==FALSE){ C1w = C1_w(t,L,k,psum,qsum) C2w = C2_w(t,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2,qsumk2) C1d =C1_d(t,L,k,qsum) C2d = C2_d(t,L,k,psum,qsum,qsumk,psumk1,qsumk1, psumk2 ,qsumk2) C1d[C1d<0]=0 C2d[C2d<0]=0 C1w[C1w<0]=0 C2w[C2w<0]=0 } nu1 = Nu(sqrt(2*b*(C1d*cos(w)^2+C1w*sin(w)^2))) nu2 = Nu(sqrt(2*b*(C2d*cos(w)^2+C2w*sin(w)^2))) (4*(C1d*cos(w)^2+C1w*sin(w)^2)*(C2d*cos(w)^2+C2w*sin(w)^2)*b^2*nu1*nu2)/(2*pi) } integrand0 = function(t) {integrate(integrand,0,2*pi,t=t,subdivisions=3000, stop.on.error=FALSE)$value} result=Vectorize(integrand0) dchisq(b,2)*integrate(result, n0, n1, subdivisions=3000, stop.on.error=FALSE)$value } EX3_new.f = function(t, n, k, psum, deg.sumsq, deg.sum3, daa, dda, aaa1, aaa2){ x1 = 2*k*n+6*k*n*psum/k x2 = 3*k^2*n+deg.sumsq+2*k*n*psum+2*daa-x1 x3 = 4*k^2*n^2*(1+psum/k)-4*(3*k^2*n+deg.sumsq+2*k^2*n*psum/k+2*daa)+2*(2*k*n+6*k*n*psum/k) x4 = 4*k^3*n+3*k*deg.sumsq+deg.sum3-3*(3*k^2*n+deg.sumsq+2*k^2*n*psum/k+2*daa)+2*(2*k*n+6*k*n*psum/k) x5 = 4*k^3*n+2*k*deg.sumsq+2*dda-2*(3*k^2*n+deg.sumsq+2*k^2*n*psum/k+2*daa)+x1-2*aaa1-6*aaa2 x6 = 2*aaa1+6*aaa2 x7 = 2*k*n*(3*k^2*n+deg.sumsq)-4*k^2*n^2*(1+psum/k) - 4*(4*k^3*n+2*k*deg.sumsq+2*dda-(3*k^2*n+deg.sumsq+2*k^2*n*psum/k+2*daa))-2*(4*k^3*n+3*k*deg.sumsq+deg.sum3-(3*k^2*n+deg.sumsq+2*k^2*n*psum/k+2*daa))+ 4*((3*k^2*n+deg.sumsq+2*k^2*n*psum/k+2*daa)-(2*k*n+6*k*n*psum/k))+2*x6 x8 = 8*k^3*n^3-4*x1-24*x2-6*x3-8*x4-24*x5-8*x6-12*x7 p1 = t*(t-1)/n/(n-1) p2 = t*(t-1)*(t-2)/n/(n-1)/(n-2) p3 = t*(t-1)*(t-2)*(t-3)/(n*(n-1)*(n-2)*(n-3)) p4 = p5 = t*(t-1)*(t-2)*(t-3)/(n*(n-1)*(n-2)*(n-3)) p6 = p2 p7 = t*(t-1)*(t-2)*(t-3)*(t-4)/(n*(n-1)*(n-2)*(n-3)*(n-4)) p8 = t*(t-1)*(t-2)*(t-3)*(t-4)*(t-5)/(n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5)) q1 = (n-t)*(n-t-1)/n/(n-1) q2 = (n-t)*(n-t-1)*(n-t-2)/n/(n-1)/(n-2) q3 = (n-t)*(n-t-1)*(n-t-2)*(n-t-3)/(n*(n-1)*(n-2)*(n-3)) q4 = q5 = q3 q6 = q2 q7 = (n-t)*(n-t-1)*(n-t-2)*(n-t-3)*(n-t-4)/(n*(n-1)*(n-2)*(n-3)*(n-4)) q8 = (n-t)*(n-t-1)*(n-t-2)*(n-t-3)*(n-t-4)*(n-t-5)/(n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5)) A11 = 4*x1*p1 + 24*x2*p2 + 6*x3*p3 + 8*x4*p4 + 24*x5*p5 + 8*x6*p6 + 12*x7*p7 + x8*p8 A12 = 2*x3*t*(t-1)*(n-t)*(n-t-1)/(n*(n-1)*(n-2)*(n-3)) + 4*x7*t*(t-1)*(t-2)*(n-t)*(n-t-1)/(n*(n-1)*(n-2)*(n-3)*(n-4)) + x8*t*(t-1)*(t-2)*(t-3)*(n-t)*(n-t-1)/(n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5)) A21 = 2*x3*t*(t-1)*(n-t)*(n-t-1)/(n*(n-1)*(n-2)*(n-3)) + 4*x7*(n-t)*(n-t-1)*(n-t-2)*(t)*(t-1)/(n*(n-1)*(n-2)*(n-3)*(n-4)) + x8*(n-t)*(n-t-1)*(n-t-2)*(n-t-3)*(t)*(t-1)/(n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5)) A22 = 4*x1*q1 + 24*x2*q2 + 6*x3*q3 + 8*x4*q4 + 24*x5*q5 + 8*x6*q6 + 12*x7*q7 + x8*q8 q = (n-t-1)/(n-2) p = (t-1)/(n-2) ERw3 = q^3*A11 + 3*q^2*p*A12 + 3*q*p^2*A21 + p^3*A22 ERd3 = A11 - 3*A12 + 3*A21 - A22 list(A11=A11, A12=A12, A21=A21, A22=A22, ERw3=ERw3, ERd3=ERd3) } EX3.f = function(n, t, k, vn, deg.sumsq, deg.sum3, daa, dda, aaa1, aaa2){ x1 = 2*k*n+6*k*n*vn x2 = 3*k^2*n+deg.sumsq+2*k^2*n*vn+2*daa-x1 x3 = 4*k^2*n^2*(1+vn)-4*(3*k^2*n+deg.sumsq+2*k^2*n*vn+2*daa)+2*(2*k*n+6*k*n*vn) x4 = 4*k^3*n+3*k*deg.sumsq+deg.sum3-3*(3*k^2*n+deg.sumsq+2*k^2*n*vn+2*daa)+2*(2*k*n+6*k*n*vn) x5 = 4*k^3*n+2*k*deg.sumsq+2*dda-2*(3*k^2*n+deg.sumsq+2*k^2*n*vn+2*daa)+x1-2*aaa1-6*aaa2 x6 = 2*aaa1+6*aaa2 x7 = 2*k*n*(3*k^2*n+deg.sumsq)-4*k^2*n^2*(1+vn) - 4*(4*k^3*n+2*k*deg.sumsq+2*dda-(3*k^2*n+deg.sumsq+2*k^2*n*vn+2*daa))-2*(4*k^3*n+3*k*deg.sumsq+deg.sum3-(3*k^2*n+deg.sumsq+2*k^2*n*vn+2*daa))+ 4*((3*k^2*n+deg.sumsq+2*k^2*n*vn+2*daa)-(2*k*n+6*k*n*vn))+2*x6 x8 = 8*k^3*n^3-4*x1-24*x2-6*x3-8*x4-24*x5-8*x6-12*x7 p1 = 2*t*(n-t)/n/(n-1) p2 = p1/2 p3 = 4*t*(t-1)*(n-t)*(n-t-1)/(n*(n-1)*(n-2)*(n-3)) p4 = t*(n-t)*((n-t-1)*(n-t-2)+(t-1)*(t-2))/(n*(n-1)*(n-2)*(n-3)) p5 = p7 = p3/2 p8 = 8*t*(t-1)*(t-2)*(n-t)*(n-t-1)*(n-t-2)/(n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5)) 4*x1*p1 + 24*x2*p2 + 6*x3*p3 + 8*x4*p4 + 24*x5*p5 + 12*x7*p7 + x8*p8 } ERw = function(n,t,k){ q=(n-t-1)/(n-2) p=(t-1)/(n-2) ER1 = 2*k*t*(t-1)/(n-1) ER2 = 2*k*(n-t)*(n-t-1)/(n-1) result = q*ER1 + p*ER2 return(result) } ERd = function(n,t,k){ result = 2*k*t*(t-1)/(n-1)- 2*k*(n-t)*(n-t-1)/(n-1) return(result) } varRw = function(n,t,k,psum,deg.sumsq){ vn= psum/k config1 = (2*k*n + 2*k*n*vn) config2 = (3*k^2*n + deg.sumsq -2*k*n -2*k*n*vn) config3 = (4*n^2*k^2 + 4*k*n + 4*k*n*vn - 12*k^2*n - 4*deg.sumsq) f11 = 2*(t)*(t-1)/n/(n-1) f21 = 4*(t)*(t-1)*(t-2)/n/(n-1)/(n-2) f31 = (t)*(t-1)*(t-2)*(t-3)/n/(n-1)/(n-2)/(n-3) V1 = config1*f11 + config2*f21 + config3*f31 - (2*k*t*(t-1)/(n-1))^2 f12 = 2*(n-t)*(n-t-1)/n/(n-1) f22 = 4*(n-t)*(n-t-1)*(n-t-2)/n/(n-1)/(n-2) f32 = (n-t)*(n-t-1)*(n-t-2)*(n-t-3)/n/(n-1)/(n-2)/(n-3) V2 = config1*f12 + config2*f22 + config3*f32 - (2*k*(n-t)*(n-t-1)/(n-1))^2 P3 = (t*(t-1)*(n-t)*(n-t-1))/(n*(n-1)*(n-2)*(n-3)) V12 = config3*P3 - (2*k*t*(t-1)/(n-1))*(2*k*(n-t)*(n-t-1)/(n-1)) q=(n-t-1)/(n-2) p=(t-1)/(n-2) result = q^2*V1 + p^2*V2 + 2*p*q*V12 return(result) } varRd = function(n,t,k,psum,deg.sumsq){ vn= psum/k config1 = (2*k*n + 2*k*n*vn) config2 = (3*k^2*n + deg.sumsq -2*k*n -2*k*n*vn) config3 = (4*n^2*k^2 + 4*k*n + 4*k*n*vn - 12*k^2*n - 4*deg.sumsq) f11 = 2*(t)*(t-1)/n/(n-1) f21 = 4*(t)*(t-1)*(t-2)/n/(n-1)/(n-2) f31 = (t)*(t-1)*(t-2)*(t-3)/n/(n-1)/(n-2)/(n-3) V1 = config1*f11 + config2*f21 + config3*f31 - (2*k*t*(t-1)/(n-1))^2 f12 = 2*(n-t)*(n-t-1)/n/(n-1) f22 = 4*(n-t)*(n-t-1)*(n-t-2)/n/(n-1)/(n-2) f32 = (n-t)*(n-t-1)*(n-t-2)*(n-t-3)/n/(n-1)/(n-2)/(n-3) V2 = config1*f12 + config2*f22 + config3*f32 - (2*k*(n-t)*(n-t-1)/(n-1))^2 P3 = (t*(t-1)*(n-t)*(n-t-1))/(n*(n-1)*(n-2)*(n-3)) V12 = config3*P3 - (2*k*t*(t-1)/(n-1))*(2*k*(n-t)*(n-t-1)/(n-1)) result = V1 + V2 - 2*V12 return(result) } varR = function(n,t,k,psum,qsum){ vn=psum/k cn=(qsum+k-k^2)/k h = 4*(t-1)*(n-t-1)/(n-2)/(n-3) 4*k*t*(n-t)/(n-1)*(h*(1+vn-2*k/(n-1))+(1-h)*cn) } T3.skewed.lambda = function(b, n0, n1, L, k, psum, qsum, psumk, qsumk, deg.sumsq, deg.sum3, aaa1, aaa2, daa, dda){ C3 = C1_Z(n0:n1,L,k,psum,qsum) C4 = C2_Z(n0:n1,L,k,psum,qsum,psumk,qsumk) n = L ts = 1:(n-1) vn=psum/k EX = 4*k*ts*(n-ts)/(n-1) EX2 = 4*k*(1+vn)*2*ts*(n-ts)/(n-1) + 4*(3*k^2*n+deg.sumsq-2*k*n*(1+vn))*ts*(n-ts)/n/(n-1) + (4*k^2*n^2-4*(3*k^2*n+deg.sumsq)+4*k*n*(1+vn))*4*ts*(ts-1)*(n-ts)*(n-ts-1)/(n*(n-1)*(n-2)*(n-3)) EX3 = EX3.f(n,ts,k,vn, deg.sumsq,deg.sum3,daa,dda,aaa1,aaa2) VX = EX2-EX^2 gamma = -(EX3-3*EX*VX-EX^3)/(VX^(3/2)) theta = rep(0,n-1) pos = which(1+2*gamma*b>0) theta[pos] = (sqrt((1+2*gamma*b)[pos])-1)/gamma[pos] S = (1+gamma*theta)^(-1/2)*exp((b-theta)^2/2 + gamma*theta^3/6) nn = n-length(pos) if (nn>0.75*n){ print("Not enough points for extrapolation!") return(0) } if (nn>=2*n0){ neg = which(1+2*gamma*b<=0) dif = neg[2:nn]-neg[1:(nn-1)] id1 = which.max(dif) if (nn<n){ id2 = id1 + ceiling(0.02*n) id3 = id2 + ceiling(0.02*n) inc = (S[id3]-S[id2])/(id3-id2) S[id2:1] = S[id2+1]-inc*(1:id2) S[(n-id2):(n-1)] = S[id2:1] }else{ ymax = S[ceiling(n/2)] id = id1+0.05*n a = (ymax-S[id])/(id-n/2)^2 S[1:id] = ymax-a*((1:id)-n/2)^2 S[(n-id):(n-1)] = S[id:1] } neg2 = which(S<0) S[neg2] = 0 } dnorm(b)*b^3*sum(S[(n-n0):(n-n1)]*C3*C4*Nu(sqrt(2*C3*b^2))*Nu(sqrt(2*C4*b^2))) } T3.skewed.lambdaZw = function(b,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1, psumk2, qsumk2, deg.sumsq,deg.sum3, aaa1,aaa2,daa,dda){ C1 = C1_w(n0:n1,L,k,psum,qsum) C2 = C2_w(n0:n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1, psumk2,qsumk2 ) n = L ts = 1:(n-1) C2[C2<0] = 0.00000001 EX = ERw(L,ts,k) EX3 = EX3_new.f(ts, L, k, psum, deg.sumsq, deg.sum3, daa, dda, aaa1, aaa2)$ERw3 VX = varRw(L,ts,k,psum,deg.sumsq) gamma = (EX3-3*EX*VX-EX^3)/(VX^(3/2)) theta = rep(0,n-1) pos = which(1+2*gamma*b>0) theta[pos] = (sqrt((1+2*gamma*b)[pos])-1)/gamma[pos] S = (1+gamma*theta)^(-1/2)*exp((b-theta)^2/2 + gamma*theta^3/6) nn = n-length(pos) if (nn>0.75*n){ print("Not enough points for extrapolation!") return(0) } if (nn>=(n0-1)+(n-n0)){ neg = which(1+2*gamma*b<=0) dif = neg[2:nn]-neg[1:(nn-1)] id1 = which.max(dif) id2 = id1 + ceiling(0.03*n) id3 = id2 + ceiling(0.09*n) inc = (S[id3]-S[id2])/ceiling(0.09*n) S[id2:1] = S[id2+1]-inc*(1:id2) S[(n/2+1):n] = S[(n/2):1] neg2 = which(S<0) S[neg2] = 0 } dnorm(b)*b^3*sum(S[(n-n0):(n-n1)]*C1*C2*Nu(sqrt(2*C1*b^2))*Nu(sqrt(2*C2*b^2))) } T3.skewed.lambdaZd = function(b,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2, qsumk2,deg.sumsq,deg.sum3,aaa1,aaa2,daa,dda){ C1 = C1_d(n0:n1,L,k,qsum) C2 = C2_d(n0:n1,L,k,psum,qsum,qsumk,psumk1,qsumk1,psumk2,qsumk2) C1[C1<0] = 0.0001 C2[C2<0] = 0.0001 n = L ts = 1:(n-1) EX = ERd(L,ts,k) EX3 = EX3_new.f(ts, L, k, psum, deg.sumsq, deg.sum3, daa, dda, aaa1, aaa2)$ERd3 VX = varRd(L,ts,k,psum,deg.sumsq) gamma = (EX3-3*EX*VX-EX^3)/(VX^(3/2)) theta = rep(0,n-1) pos = which(1+2*gamma*b>0) theta[pos] = (sqrt((1+2*gamma*b)[pos])-1)/gamma[pos] S = (1+gamma*theta)^(-1/2)*exp((b-theta)^2/2 + gamma*theta^3/6) S[n/2]=S[n/2-1] nn = n-length(pos) nn.l = ceiling(n/2)-length(which(1+2*gamma[1:ceiling(n/2)]*b>0)) nn.r = ceiling(n/2)-length(which(1+2*gamma[ceiling(n/2+1):n]*b>0)) if (nn>0.75*n){ print("Not enough points for extrapolation!") return(0) } if (nn.r>=(n-n1)){ neg = which(1+2*gamma[ceiling(n/2+1):(n-1)]*b<=0) id1 = neg[1]+ceiling(n/2)-1 id2 = id1 - ceiling(0.06*n) id3 = id2 - ceiling(0.06*n) inc = (S[id3]-S[id2])/(id3-id2) S[id2:n] = S[id2]+inc*((id2:n)-id2)+inc^2*((id2:n)-id2)+inc^3*((id2:n)-id2) if(n0<=0.15*200){ S[S<0]=0 } } dnorm(b)*b^3*sum(S[(n-n0):(n-n1)]*C1*C2*Nu(sqrt(2*C1*b^2))*Nu(sqrt(2*C2*b^2))) } T3.skewed.lambdaM = function(D,b,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2, qsumk2,deg.sumsq,deg.sum3, aaa1,aaa2,daa,dda){ pval_Zd = T3.skewed.lambdaZd(b,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2, qsumk2,deg.sumsq,deg.sum3, aaa1,aaa2,daa,dda) pval_Zw = T3.skewed.lambdaZw(b,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2, qsumk2,deg.sumsq,deg.sum3, aaa1,aaa2,daa,dda) return(1-(1-D*2*pval_Zd)*(1-D*pval_Zw)) } getbZ = function(ARL,alpha,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2,qsumk2,deg.sumsq,deg.sum3, aaa1,aaa2,daa,dda,bmin=3,bmax=5,skew.corr=FALSE,dif=1e-10, nIterMax=100){ m0=ARL*alpha if(skew.corr==FALSE){ pm = T3.lambda(bmin,n0,n1,L,k,psum,qsum,psumk,qsumk)*m0 while (pm<alpha){ bmin = bmin-1 pm = T3.lambda(bmin,n0,n1,L,k,psum,qsum,psumk,qsumk)*m0 } pM = T3.lambda(bmax,n0,n1,L,k,psum,qsum,psumk,qsumk)*m0 while (pM>alpha){ bmax = bmax+1 pM = T3.lambda(bmax,n0,n1,L,k,psum,qsum,psumk,qsumk)*m0 } b = (bmin+bmax)/2 p = T3.lambda(b,n0,n1,L,k,psum,qsum,psumk,qsumk)*m0 nIter = 1 while (abs(p-alpha)>dif && nIter<nIterMax){ if (p<alpha){ bmax = b }else{ bmin = b } b = (bmin+bmax)/2 p = T3.lambda(b,n0,n1,L,k,psum,qsum,psumk,qsumk)*m0 nIter = nIter + 1 } return(b) }else{ pm = T3.skewed.lambda(bmin,n0, n1, L, k, psum, qsum, psumk, qsumk, deg.sumsq, deg.sum3, aaa1,aaa2, daa, dda)*m0 while (pm<alpha){ bmin = bmin-1 pm = T3.skewed.lambda(bmin,n0, n1, L, k, psum, qsum, psumk, qsumk, deg.sumsq, deg.sum3, aaa1, aaa2, daa, dda)*m0 } pM = T3.skewed.lambda(bmax,n0, n1, L, k, psum, qsum, psumk, qsumk, deg.sumsq, deg.sum3, aaa1,aaa2, daa, dda)*m0 while (pM>alpha){ bmax = bmax+1 pM = T3.skewed.lambda(bmax,n0, n1, L, k, psum, qsum, psumk, qsumk, deg.sumsq, deg.sum3, aaa1,aaa2, daa, dda)*m0 } b = (bmin+bmax)/2 p = T3.skewed.lambda(b,n0, n1, L, k, psum, qsum, psumk, qsumk, deg.sumsq, deg.sum3, aaa1,aaa2, daa, dda)*m0 nIter = 1 while (abs(p-alpha)>dif && nIter<nIterMax){ if (p<alpha){ bmax = b }else{ bmin = b } b = (bmin+bmax)/2 p = T3.skewed.lambda(b,n0, n1, L, k, psum, qsum, psumk, qsumk, deg.sumsq, deg.sum3, aaa1,aaa2, daa, dda)*m0 nIter = nIter + 1 } return(b) } } getbZw = function(ARL,alpha,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2,qsumk2,deg.sumsq,deg.sum3, aaa1,aaa2,daa,dda, bmin=3,bmax=5,skew.corr=FALSE,dif=1e-10, nIterMax=100,asymp){ m0=ARL*alpha if(skew.corr==FALSE){ pm = T3.lambdaZw(bmin,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2,qsumk2,asymp)*m0 while (pm<alpha){ bmin = bmin-1 pm = T3.lambdaZw(bmin,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2,qsumk2,asymp)*m0 } pM = T3.lambdaZw(bmax,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2,qsumk2,asymp)*m0 while (pM>alpha){ bmax = bmax+1 pM = T3.lambdaZw(bmax,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2,qsumk2,asymp)*m0 } b = (bmin+bmax)/2 p = T3.lambdaZw(b,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2,qsumk2,asymp)*m0 nIter = 1 while (abs(p-alpha)>dif && nIter<nIterMax){ if (p<alpha){ bmax = b }else{ bmin = b } b = (bmin+bmax)/2 p = T3.lambdaZw(b,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2,qsumk2,asymp)*m0 nIter = nIter + 1 } return(b) }else{ pm = T3.skewed.lambdaZw(bmin,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1, psumk2, qsumk2, deg.sumsq,deg.sum3, aaa1,aaa2,daa,dda)*m0 while (pm<alpha){ bmin = bmin-1 pm = T3.skewed.lambdaZw(bmin,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1, psumk2, qsumk2, deg.sumsq,deg.sum3, aaa1,aaa2,daa,dda)*m0 } pM = T3.skewed.lambdaZw(bmax,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1, psumk2, qsumk2, deg.sumsq,deg.sum3, aaa1,aaa2,daa,dda)*m0 while (pM>alpha){ bmax = bmax+1 pM = T3.skewed.lambdaZw(bmax,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1, psumk2, qsumk2, deg.sumsq,deg.sum3, aaa1,aaa2,daa,dda)*m0 } b = (bmin+bmax)/2 p = T3.skewed.lambdaZw(b,n0,n1,L,k,psum,qsum,psumk1,psumk,qsumk,qsumk1, psumk2, qsumk2, deg.sumsq,deg.sum3, aaa1,aaa2,daa,dda)*m0 nIter = 1 while (abs(p-alpha)>dif && nIter<nIterMax){ if (p<alpha){ bmax = b }else{ bmin = b } b = (bmin+bmax)/2 p = T3.skewed.lambdaZw(b,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1, psumk2, qsumk2, deg.sumsq,deg.sum3, aaa1,aaa2,daa,dda)*m0 nIter = nIter + 1 } return(b) } } getbS = function(ARL,alpha,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2,qsumk2,deg.sumsq,deg.sum3, aaa1,aaa2,daa,dda,bmin=3,bmax=5,skew.corr=FALSE,dif=1e-10, nIterMax=100,asymp){ m0=ARL*alpha pm = T3.lambdaS(bmin,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2,qsumk2,asymp)*m0 while (pm<alpha){ bmin = bmin-1 pm = T3.lambdaS(bmin,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2,qsumk2,asymp)*m0 } pM = T3.lambdaS(bmax,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2,qsumk2,asymp)*m0 while (pM>alpha){ bmax = bmax+1 pM = T3.lambdaS(bmax,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2,qsumk2,asymp)*m0 } b = (bmin+bmax)/2 p = T3.lambdaS(b,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2,qsumk2,asymp)*m0 nIter = 1 while (abs(p-alpha)>dif && nIter<nIterMax){ if (p<alpha){ bmax = b }else{ bmin = b } b = (bmin+bmax)/2 p = T3.lambdaS(b,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2,qsumk2,asymp)*m0 nIter = nIter + 1 } b } getbM = function(ARL,alpha,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2,qsumk2,deg.sumsq,deg.sum3, aaa1,aaa2,daa,dda,bmin=3,bmax=21,skew.corr=FALSE,dif=1e-10, nIterMax=100,asymp){ m0=ARL*alpha if(skew.corr==FALSE){ pm = T3.lambdaM(m0,bmin,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2, qsumk2,asymp) while (pm<alpha){ bmin = bmin-1 pm = T3.lambdaM(m0,bmin,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2, qsumk2,asymp) } pM = T3.lambdaM(m0,bmax,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2, qsumk2,asymp) while (pM>alpha){ bmax = bmax+1 pM = T3.lambdaM(m0,bmax,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2, qsumk2,asymp) } b = (bmin+bmax)/2 p = T3.lambdaM(m0,b,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2, qsumk2,asymp) nIter = 1 while (abs(p-alpha)>dif && nIter<nIterMax){ if (p<alpha){ bmax = b }else{ bmin = b } b = (bmin+bmax)/2 p = T3.lambdaM(m0,b,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2, qsumk2,asymp) nIter = nIter + 1 } return(b) }else{ pm = T3.skewed.lambdaM(m0,bmin,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2, qsumk2,deg.sumsq,deg.sum3, aaa1,aaa2,daa,dda) while (pm<alpha){ bmin = bmin-1 pm = T3.skewed.lambdaM(m0,bmin,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2, qsumk2,deg.sumsq,deg.sum3, aaa1,aaa2,daa,dda) } pM = T3.skewed.lambdaM(m0,bmax,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2, qsumk2,deg.sumsq,deg.sum3, aaa1,aaa2,daa,dda) while (pM>alpha){ bmax = bmax+1 pM = T3.skewed.lambdaM(m0,bmax,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2, qsumk2,deg.sumsq,deg.sum3, aaa1,aaa2,daa,dda) } b = (bmin+bmax)/2 p = T3.skewed.lambdaM(m0,b,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2, qsumk2,deg.sumsq,deg.sum3, aaa1,aaa2,daa,dda) nIter = 1 while (abs(p-alpha)>dif && nIter<nIterMax){ if (p<alpha){ bmax = b }else{ bmin = b } b = (bmin+bmax)/2 p = T3.skewed.lambdaM(m0,b,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2, qsumk2,deg.sumsq,deg.sum3, aaa1,aaa2,daa,dda) nIter = nIter + 1 } return(b) } } getb = function(distM,ARL,alpha,N0,n0,n1,L,k,statistics,skew.corr,dif=1e-10, nIterMax=100,asymp){ quantities = gb_quantities(distM,N0,k) psum = quantities$psum qsum = quantities$qsum psumk = quantities$psumk qsumk = quantities$qsumk psumk1 = quantities$psumk1 qsumk1 = quantities$qsumk1 psumk2 = quantities$psumk2 qsumk2 = quantities$qsumk2 deg.sumsq = quantities$deg.sumsq deg.sum3 = quantities$deg.sum3.n aaa1 = quantities$aaa1.n aaa2 = quantities$aaa2.n dda = quantities$dda.n daa = quantities$daa.n output=list() if (skew.corr==FALSE){ if (length(which(!is.na(match(c("o","ori","original","all"), statistics))))>0){ output$ori = getbZ(ARL,alpha,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2,qsumk2,deg.sumsq,deg.sum3, aaa1,aaa2,daa,dda,bmin=3,bmax=5,skew.corr=FALSE,dif=1e-10, nIterMax=100) } if (length(which(!is.na(match(c("w","weighted","all"), statistics))))>0){ output$weighted = getbZw(ARL,alpha,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2,qsumk2,deg.sumsq,deg.sum3, aaa1,aaa2,daa,dda, bmin=3,bmax=5,skew.corr=FALSE,dif=1e-10, nIterMax=100,asymp) } if (length(which(!is.na(match(c("m","max","all"), statistics))))>0){ output$max.type = getbM(ARL,alpha,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2,qsumk2,deg.sumsq,deg.sum3, aaa1,aaa2,daa,dda,bmin=7,bmax=21,skew.corr=FALSE,dif=1e-10, nIterMax=100,asymp) } if (length(which(!is.na(match(c("g","generalized","all"), statistics))))>0){ output$generalized = getbS(ARL,alpha,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2,qsumk2,deg.sumsq,deg.sum3, aaa1,aaa2,daa,dda,bmin=20,bmax=30,skew.corr=FALSE,dif=1e-10, nIterMax=100,asymp) } return(output) } if (length(which(!is.na(match(c("o","ori","original","all"), statistics))))>0){ output$ori = getbZ(ARL,alpha,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2,qsumk2,deg.sumsq,deg.sum3, aaa1,aaa2,daa,dda,bmin=3,bmax=5,skew.corr=TRUE) } if (length(which(!is.na(match(c("w","weighted","all"), statistics))))>0){ output$weighted = getbZw(ARL,alpha,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2,qsumk2,deg.sumsq,deg.sum3, aaa1,aaa2,daa,dda,bmin=3,bmax=5,skew.corr=TRUE,dif=1e-10, nIterMax=100,asymp) } if (length(which(!is.na(match(c("m","max","all"), statistics))))>0){ output$max.type = getbM(ARL,alpha,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2,qsumk2,deg.sumsq,deg.sum3, aaa1,aaa2,daa,dda,bmin=8,bmax=20,skew.corr=TRUE,dif=1e-10, nIterMax=100,asymp) } if (length(which(!is.na(match(c("g","generalized","all"), statistics))))>0){ output$generalized = getbS(ARL,alpha,n0,n1,L,k,psum,qsum,psumk,qsumk,psumk1,qsumk1,psumk2,qsumk2,deg.sumsq,deg.sum3, aaa1,aaa2,daa,dda,bmin=20,bmax=30,skew.corr=TRUE,dif=1e-10, nIterMax=100,asymp) } return(output) }
test_that("Testing multivariate distributions", { skip_on_cran() expect_true(all.equal(rowSums(rmnom(5000, 50, c(2/10, 5/10, 3/10))), rep(50, 5000))) expect_true(all.equal(rowSums(rdirichlet(5000, c(2/10, 5/10, 3/10))), rep(1.0, 5000))) xx <- expand.grid(0:20, 0:20, 0:20) expect_equal(sum(ddirmnom(xx[rowSums(xx) == 20,], 20, c(2, 5, 3))), 1) expect_equal(sum(dmnom(xx[rowSums(xx) == 20,], 20, c(2/10, 5/10, 3/10))), 1) expect_equal(sum(dmvhyper(xx[rowSums(xx) == 35,], c(20, 20, 20), 35)), 1) p <- c(4, 5, 1, 6, 2) expect_equal(prop.table(colSums(rmnom(1e5, 100, p/sum(p)))), p/sum(p), tolerance = 1e-2) expect_equal(as.numeric(prop.table(table(rcat(1e5, p/sum(p))))), p/sum(p), tolerance = 1e-2) expect_equal(prop.table(colSums(rdirichlet(1e5, p))), p/sum(p), tolerance = 1e-2) expect_equal(prop.table(colSums(rdirmnom(1e5, 100, p))), p/sum(p), tolerance = 1e-2) n <- c(11, 24, 43, 7, 56) expect_equal(prop.table(colSums(rmvhyper(1e5, n, 100))), n/sum(n), tolerance = 1e-2) }) test_that("Evaluate wrong parameters first", { expect_warning(expect_true(is.nan(dbvpois(-1, -1, -1, 1, 1)))) expect_warning(expect_true(is.nan(ddirichlet(c(2, 2), c(-1, 0.5))))) expect_warning(expect_true(is.nan(ddirmnom(c(-1, 1, 1), 1.5, c(1, 1, 1))))) expect_warning(expect_true(is.nan(dmnom(c(-1, 1, 1), 1.5, c(1/3, 1/3, 1/3))))) expect_warning(expect_true(is.nan(dmvhyper(c(-1, 2, 2), c(2,3,4), -5)))) }) test_that("Check if rmnom and rdirmnom deal with underflow ( skip_on_cran() expect_false(anyNA(rmnom(5000, 100, c(0.504115095275327, 2.669522645838e-39, 0, 2.58539638831141, 0)))) expect_false(anyNA(rdirmnom(5000, 100, c(1.480592e+00, 1.394943e-03, 4.529932e-06, 3.263573e+00, 4.554952e-06)))) p <- c(0, 0, 1, 0, 2.77053929981958e-18) expect_false(anyNA(rmnom(5000, 100, p))) expect_false(anyNA(rdirmnom(5000, 100, p + 1e-5))) })
require(tcltk) || stop("tcltk support is absent") require(graphics); require(stats) local({ have_ttk <- as.character(tcl("info", "tclversion")) >= "8.5" if(have_ttk) { tkbutton <- ttkbutton tkframe <- ttkframe tklabel <- ttklabel tkradiobutton <- ttkradiobutton } y <- NULL xlim <- NULL size <- tclVar(50) dist <- tclVar(1) kernel<- tclVar("gaussian") bw <- tclVar(1) bw.sav <- 1 replot <- function(...) { if (is.null(y)) return() bw.sav <<- b <- as.numeric(tclObj(bw)) k <- as.character(tclObj(kernel)) sz <- as.numeric(tclObj(size)) eval(substitute(plot(density(y, bw=b, kernel=k),xlim=xlim))) points(y,rep(0,sz)) } replot.maybe <- function(...) { if (as.numeric(tclObj(bw)) != bw.sav) replot() } regen <- function(...) { if (tclvalue(dist)=="1") y<<-rnorm(as.numeric(tclObj(size))) else y<<-rexp(as.numeric(tclObj(size))) xlim <<- range(y) + c(-2,2) replot() } grDevices::devAskNewPage(FALSE) tclServiceMode(FALSE) base <- tktoplevel() tkwm.title(base, "Density") spec.frm <- tkframe(base,borderwidth=2) left.frm <- tkframe(spec.frm) right.frm <- tkframe(spec.frm) frame1 <- tkframe(left.frm, relief="groove", borderwidth=2) tkpack(tklabel(frame1, text="Distribution")) tkpack(tkradiobutton(frame1, command=regen, text="Normal", value=1, variable=dist), anchor="w") tkpack(tkradiobutton(frame1, command=regen, text="Exponential", value=2, variable=dist), anchor="w") frame2 <- tkframe(left.frm, relief="groove", borderwidth=2) tkpack(tklabel(frame2, text="Kernel")) for ( i in c("gaussian", "epanechnikov", "rectangular", "triangular", "cosine") ) { tmp <- tkradiobutton(frame2, command=replot, text=i, value=i, variable=kernel) tkpack(tmp, anchor="w") } frame3 <-tkframe(right.frm, relief="groove", borderwidth=2) tkpack(tklabel(frame3, text="Sample size")) for ( i in c(50,100,200,300) ) { tmp <- tkradiobutton(frame3, command=regen, text=i,value=i,variable=size) tkpack(tmp, anchor="w") } frame4 <-tkframe(right.frm, relief="groove", borderwidth=2) tkpack(tklabel (frame4, text="Bandwidth")) tkpack(tkscale(frame4, command=replot.maybe, from=0.05, to=2.00, showvalue=FALSE, variable=bw, resolution=0.05, orient="horiz")) tkpack(frame1, frame2, fill="x") tkpack(frame3, frame4, fill="x") tkpack(left.frm, right.frm,side="left", anchor="n") q.but <- tkbutton(base,text="Quit", command=function() tkdestroy(base)) tkpack(spec.frm, q.but) tclServiceMode(TRUE) cat("******************************************************\n", "The source for this demo can be found in the file:\n", file.path(system.file(package = "tcltk"), "demo", "tkdensity.R"), "\n******************************************************\n") regen() })
NULL prior_pred <- function(model, verbose = TRUE, quiet = FALSE, refresh = 0, STREAM = get_stream(), ...) { check_type(model, "lgpmodel") if (quiet) verbose <- FALSE log_progress("Sampling from parameter prior...", verbose) stan_fit <- sample_param_prior( model, verbose = verbose, quiet = quiet, refresh = refresh, ... ) log_progress("Drawing from GP priors conditional on parameters...", verbose) f_draws <- draw_f_prior(model, stan_fit, verbose, STREAM) log_progress("Drawing from prior predictive distribution...", verbose) draw_prior_pred(model, stan_fit, f_draws, verbose) } sample_param_prior <- function(model, verbose = TRUE, quiet = FALSE, ...) { check_type(model, "lgpmodel") if (quiet) verbose <- FALSE object <- dollar(stanmodels, "parameter_prior") data <- model@stan_input rstan::sampling( object = object, data = data, check_data = TRUE, ... ) } draw_prior_pred <- function(model, stan_fit, f_draws, verbose) { f_sum_draws <- dollar(f_draws, "f_draws") c_hat <- get_chat(model) h <- map_f_to_h(model, f_sum_draws, c_hat, reduce = NULL) pred_draws <- new("Prediction", f_comp = dollar(f_draws, "f_draws_comp"), f = f_sum_draws, h = h, x = dollar(f_draws, "x"), extrapolated = FALSE ) y_draws <- draw_pred.subroutine(model, stan_fit, pred_draws) list( y_draws = y_draws, pred_draws = pred_draws, param_draws = stan_fit ) } draw_f_prior <- function(model, stan_fit, verbose, STREAM) { kc <- create_kernel_computer(model, stan_fit, NULL, NULL, NULL, FALSE, STREAM) input <- kc@input K_input <- kc@K_input S <- num_paramsets(kc) P <- num_evalpoints(kc) J <- num_components(kc) comp_names <- component_names(kc) delta <- dollar(input, "delta") f_draws_comp <- array(0.0, c(S, P, J)) f_draws <- array(0.0, c(S, P)) progbar <- verbose && S > 1 pb <- progbar_setup(L = S) hdr <- dollar(pb, "header") idx_print <- dollar(pb, "idx_print") log_progress(hdr, progbar) for (idx in seq_len(S)) { K_prior <- kernel_all(K_input, input, idx, kc@STREAM) f_i <- draw_gp_components(K_prior, delta) f_draws_comp[idx, , ] <- f_i f_draws[idx, ] <- rowSums(f_i) if (progbar) progbar_print(idx, idx_print) } log_progress(" ", progbar) f_draws_comp <- aperm(f_draws_comp, c(3, 1, 2)) out <- list( f_draws_comp = arr3_to_list(f_draws_comp, comp_names), f_draws = f_draws, x = get_data(model) ) return(out) } draw_gp_components <- function(K, delta) { N <- nrow(K[[1]]) J <- length(K) mu0 <- rep(0.0, N) f_draws <- matrix(0.0, N, J) for (j in seq_len(J)) { Sigma <- K[[j]] + delta * diag(N) f_draws[, j] <- MASS::mvrnorm(n = 1, mu = mu0, Sigma = Sigma) } return(f_draws) }
dmjd2ut <- function(dmjd, tz='UTC') { jd <- trunc(dmjd) + 2400000.5 ymd <- jd2ymd(jd) ymd <- as.numeric(unlist(strsplit(as.character(ymd), '[-: ]'))) len <- length(ymd) yr <- ymd[seq(1, len, by=3)] mo <- ymd[seq(2, len, by=3)] dy <- ymd[seq(3, len, by=3)] dayfrac <- dmjd%%1 hr <- dayfrac*24 min <- (hr%%1)*60 ds <- getOption('digits.secs') if(is.null(ds)) ds <- 0 sec <- round((min%%1)*60, ds) out <- ISOdatetime(yr, mo, dy, trunc(hr), trunc(min), sec, 'UTC') attr(out, 'tzone') <- tz out }
print.compare_performance <- function(x, digits = 3, ...) { table_caption <- c(" formatted_table <- format(x = x, digits = digits, format = "text", ...) if ("Performance_Score" %in% colnames(formatted_table)) { footer <- c(sprintf("\nModel %s (of class %s) performed best with an overall performance score of %s.", formatted_table$Model[1], formatted_table$Type[1], formatted_table$Performance_Score[1]), "yellow") } else { footer <- NULL } cat(insight::export_table(x = formatted_table, digits = digits, format = "text", caption = table_caption, footer = footer, ...)) invisible(x) } print.performance_model <- function(x, digits = 3, ...) { formatted_table <- format(x = x, digits = digits, format = "text", ...) cat(insight::export_table(x = formatted_table, digits = digits, format = "text", caption = c(" invisible(x) } print.check_outliers <- function(x, ...) { outliers <- which(x) if (length(outliers) >= 1) { o <- paste0(" (cases ", paste0(outliers, collapse = ", "), ")") insight::print_color(sprintf("Warning: %i outliers detected%s.\n", length(outliers), o), "red") } else { insight::print_color("OK: No outliers detected.\n", "green") } invisible(x) } print.check_model <- function(x, ...) { insight::check_if_installed("see", "for model diagnositic plots") NextMethod() } print.check_distribution <- function(x, ...) { insight::print_color(" x1 <- x[order(x$p_Residuals, decreasing = TRUE)[1:3], c(1, 2)] x1 <- x1[x1$p_Residuals > 0, ] x1$p_Residuals <- sprintf("%g%%", round(100 * x1$p_Residuals)) colnames(x1) <- c("Distribution", "Probability") insight::print_color("Predicted Distribution of Residuals\n\n", "red") print.data.frame(x1, row.names = FALSE, ...) x2 <- x[order(x$p_Response, decreasing = TRUE)[1:3], c(1, 3)] x2 <- x2[x2$p_Response > 0, ] x2$p_Response <- sprintf("%g%%", round(100 * x2$p_Response)) colnames(x2) <- c("Distribution", "Probability") insight::print_color("\nPredicted Distribution of Response\n\n", "red") print.data.frame(x2, row.names = FALSE, ...) invisible(x) } print.check_distribution_numeric <- function(x, ...) { insight::print_color(" x1 <- x[order(x$p_Vector, decreasing = TRUE)[1:3], c(1, 2)] x1 <- x1[x1$p_Vector > 0, ] x1$p_Vector <- sprintf("%g%%", round(100 * x1$p_Vector)) colnames(x1) <- c("Distribution", "Probability") print.data.frame(x1, row.names = FALSE, ...) invisible(x) } print.performance_roc <- function(x, ...) { if (length(unique(x$Model)) == 1) { cat(sprintf("AUC: %.2f%%\n", 100 * bayestestR::area_under_curve(x$Specificity, x$Sensitivity))) } else { insight::print_color(" dat <- split(x, f = x$Model) max_space <- max(nchar(x$Model)) for (i in 1:length(dat)) { cat(sprintf( " %*s: %.2f%%\n", max_space, names(dat)[i], 100 * bayestestR::area_under_curve(dat[[i]]$Specificity, dat[[i]]$Sensitivity) )) } } invisible(x) } print.item_difficulty <- function(x, ...) { spaces <- max(nchar(x$item)) insight::print_color(" insight::print_color(sprintf(" %*s ideal\n", spaces + 10, "difficulty"), "red") for (i in 1:length(x$item)) { cat(sprintf(" %*s %.2f %.2f\n", spaces, x$item[i], x$difficulty[i], x$ideal[i])) } invisible(x) } print.performance_pcp <- function(x, digits = 2, ...) { insight::print_color(" cat(sprintf(" Full model: %.2f%% [%.2f%% - %.2f%%]\n", 100 * x$pcp_model, 100 * x$model_ci_low, 100 * x$model_ci_high)) cat(sprintf(" Null model: %.2f%% [%.2f%% - %.2f%%]\n", 100 * x$pcp_m0, 100 * x$null_ci_low, 100 * x$null_ci_high)) insight::print_color("\n v1 <- sprintf("%.3f", x$lrt_chisq) v2 <- sprintf("%.3f", x$lrt_df_error) v3 <- sprintf("%.3f", x$lrt_p) space <- max(nchar(c(v1, v2))) cat(sprintf(" Chi-squared: %*s\n", space, v1)) cat(sprintf(" df: %*s\n", space, v2)) cat(sprintf(" p-value: %*s\n\n", space, v3)) invisible(x) } print.looic <- function(x, digits = 2, ...) { insight::print_color(" out <- paste0(c( sprintf(" LOOIC: %.*f [%.*f]", digits, x$LOOIC, digits, x$LOOIC_SE), sprintf(" ELPD: %.*f [%.*f]", digits, x$ELPD, digits, x$ELPD_SE) ), collapse = "\n" ) cat(out) cat("\n") invisible(x) } print.r2_generic <- function(x, digits = 3, ...) { model_type <- attr(x, "model_type") if (!is.null(model_type)) { insight::print_color(sprintf(" } if (all(c("R2_adjusted", "R2_within_adjusted") %in% names(x))) { out <- paste0(c( sprintf(" R2: %.*f", digits, x$R2), sprintf(" adj. R2: %.*f", digits, x$R2_adjusted), sprintf(" within R2: %.*f", digits, x$R2_within), sprintf(" adj. within R2: %.*f", digits, x$R2_within_adjusted) ), collapse = "\n" ) } else if ("R2_adjusted" %in% names(x)) { out <- paste0(c( sprintf(" R2: %.*f", digits, x$R2), sprintf(" adj. R2: %.*f", digits, x$R2_adjusted) ), collapse = "\n" ) } else { out <- sprintf(" %s: %.*f", names(x$R2), digits, x$R2) } cat(out) cat("\n") invisible(x) } print.r2_pseudo <- function(x, digits = 3, ...) { model_type <- attr(x, "model_type") if (!is.null(model_type)) { insight::print_color(sprintf(" } cat(sprintf(" %s: %.*f\n", names(x[[1]]), digits, x[[1]])) invisible(x) } print.r2_mlm <- function(x, digits = 3, ...) { model_type <- attr(x, "model_type") if (!is.null(model_type)) { insight::print_color(sprintf(" } else { insight::print_color(" } for (i in names(x)) { insight::print_color(sprintf(" out <- paste0(c( sprintf(" R2: %.*f", digits, x[[i]]$R2), sprintf(" adj. R2: %.*f", digits, x[[i]]$R2_adjusted) ), collapse = "\n" ) cat(out) cat("\n\n") } invisible(x) } print.r2_nakagawa <- function(x, digits = 3, ...) { model_type <- attr(x, "model_type") if (is.null(model_type)) { insight::print_color(" } else { insight::print_color(" } out <- paste0(c( sprintf(" Conditional R2: %.*f", digits, x$R2_conditional), sprintf(" Marginal R2: %.*f", digits, x$R2_marginal) ), collapse = "\n" ) cat(out) cat("\n") invisible(x) } print.r2_bayes <- function(x, digits = 3, ...) { insight::print_color(" r2_ci <- insight::format_ci( attributes(x)$CI$R2_Bayes$CI_low, attributes(x)$CI$R2_Bayes$CI_high, ci = attributes(x)$CI$R2_Bayes$CI, digits = digits ) out <- sprintf(" Conditional R2: %.*f (%s)", digits, x$R2_Bayes, r2_ci) if ("R2_Bayes_marginal" %in% names(x)) { r2_marginal_ci <- insight::format_ci( attributes(x)$CI$R2_Bayes_marginal$CI_low, attributes(x)$CI$R2_Bayes_marginal$CI_high, ci = attributes(x)$CI$R2_Bayes_marginal$CI, digits = digits ) out <- paste0(c(out, sprintf(" Marginal R2: %.*f (%s)", digits, x$R2_Bayes_marginal, r2_marginal_ci)), collapse = "\n") } cat(out) cat("\n") invisible(x) } print.r2_loo <- function(x, digits = 3, ...) { insight::print_color(" r2_ci <- insight::format_ci( attributes(x)$CI$R2_loo$CI_low, attributes(x)$CI$R2_loo$CI_high, ci = attributes(x)$CI$R2_loo$CI, digits = digits ) out <- sprintf(" Conditional R2: %.*f (%s)", digits, x$R2_loo, r2_ci) if ("R2_loo_marginal" %in% names(x)) { r2_marginal_ci <- insight::format_ci( attributes(x)$CI$R2_loo_marginal$CI_low, attributes(x)$CI$R2_loo_marginal$CI_high, ci = attributes(x)$CI$R2_loo_marginal$CI, digits = digits ) out <- paste0(c(out, sprintf(" Marginal R2: %.*f (%s)", digits, x$R2_loo_marginal, r2_marginal_ci)), collapse = "\n") } cat(out) cat("\n") invisible(x) } print.icc <- function(x, digits = 3, ...) { insight::print_color(" out <- paste0(c( sprintf(" Adjusted ICC: %.*f", digits, x$ICC_adjusted), sprintf(" Conditional ICC: %.*f", digits, x$ICC_conditional) ), collapse = "\n" ) cat(out) cat("\n") invisible(x) } print.icc_by_group <- function(x, digits = 3, ...) { insight::print_color(" cat(insight::export_table(x, digits = digits)) invisible(x) } print.r2_nakagawa_by_group <- function(x, digits = 3, ...) { insight::print_color(" cat(insight::export_table(x, digits = digits)) cat("\n") invisible(x) } print.check_zi <- function(x, ...) { insight::print_color(" cat(sprintf(" Observed zeros: %i\n", x$observed.zeros)) cat(sprintf(" Predicted zeros: %i\n", x$predicted.zeros)) cat(sprintf(" Ratio: %.2f\n\n", x$ratio)) lower <- 1 - x$tolerance upper <- 1 + x$tolerance if (x$ratio < lower) { message("Model is underfitting zeros (probable zero-inflation).") } else if (x$ratio > upper) { message("Model is overfitting zeros.") } else { message(insight::format_message("Model seems ok, ratio of observed and predicted zeros is within the tolerance range.")) } invisible(x) } print.check_overdisp <- function(x, digits = 3, ...) { orig_x <- x x$dispersion_ratio <- sprintf("%.*f", digits, x$dispersion_ratio) x$chisq_statistic <- sprintf("%.*f", digits, x$chisq_statistic) x$p_value <- pval <- round(x$p_value, digits = digits) if (x$p_value < .001) x$p_value <- "< 0.001" maxlen <- max( nchar(x$dispersion_ratio), nchar(x$chisq_statistic), nchar(x$p_value) ) insight::print_color(" cat(sprintf(" dispersion ratio = %s\n", format(x$dispersion_ratio, justify = "right", width = maxlen))) cat(sprintf(" Pearson's Chi-Squared = %s\n", format(x$chisq_statistic, justify = "right", width = maxlen))) cat(sprintf(" p-value = %s\n\n", format(x$p_value, justify = "right", width = maxlen))) if (pval > 0.05) { message("No overdispersion detected.") } else { message("Overdispersion detected.") } invisible(orig_x) } print.icc_decomposed <- function(x, digits = 2, ...) { cat(" reform <- attr(x, "re.form", exact = TRUE) if (is.null(reform)) { reform <- "all random effects" } else { reform <- .safe_deparse(reform) } cat(sprintf("Conditioned on: %s\n\n", reform)) prob <- attr(x, "ci", exact = TRUE) cat(insight::print_color(" icc.val <- sprintf("%.*f", digits, x$ICC_decomposed) ci.icc.lo <- sprintf("%.*f", digits, x$ICC_CI[1]) ci.icc.hi <- sprintf("%.*f", digits, x$ICC_CI[2]) cat(sprintf( "Ratio: %s CI %i%%: [%s %s]\n", icc.val, as.integer(round(prob * 100)), ci.icc.lo, ci.icc.hi )) cat(insight::print_color("\n null.model <- sprintf("%.*f", digits, attr(x, "var_rand_intercept", exact = TRUE)) ci.null <- attr(x, "ci.var_rand_intercept", exact = TRUE) ci.null.lo <- sprintf("%.*f", digits, ci.null$CI_low) ci.null.hi <- sprintf("%.*f", digits, ci.null$CI_high) full.model <- sprintf("%.*f", digits, attr(x, "var_total", exact = TRUE)) ci.full <- attr(x, "ci.var_total", exact = TRUE) ci.full.lo <- sprintf("%.*f", digits, ci.full$CI_low) ci.full.hi <- sprintf("%.*f", digits, ci.full$CI_high) ml <- max(nchar(null.model), nchar(full.model)) ml.ci <- max(nchar(ci.full.lo), nchar(ci.null.lo)) mh.ci <- max(nchar(ci.full.hi), nchar(ci.null.hi)) cat(sprintf( "Conditioned on fixed effects: %*s CI %i%%: [%*s %*s]\n", ml, null.model, as.integer(round(prob * 100)), ml.ci, ci.null.lo, mh.ci, ci.null.hi )) cat(sprintf( "Conditioned on rand. effects: %*s CI %i%%: [%*s %*s]\n", ml, full.model, as.integer(round(prob * 100)), ml.ci, ci.full.lo, mh.ci, ci.full.hi )) cat(insight::print_color("\n res <- sprintf("%.*f", digits, attr(x, "var_residual", exact = TRUE)) ci.res <- attr(x, "ci.var_residual", exact = TRUE) ci.res.lo <- sprintf("%.*f", digits, ci.res$CI_low) ci.res.hi <- sprintf("%.*f", digits, ci.res$CI_high) cat(sprintf( "Difference: %s CI %i%%: [%s %s]\n", res, as.integer(round(prob * 100)), ci.res.lo, ci.res.hi )) invisible(x) } print.binned_residuals <- function(x, ...) { insight::check_if_installed("see", "to plot binned residuals") NextMethod() } print.performance_hosmer <- function(x, ...) { insight::print_color(" v1 <- sprintf("%.3f", x$chisq) v2 <- sprintf("%i ", x$df) v3 <- sprintf("%.3f", x$p.value) space <- max(nchar(c(v1, v2, v3))) cat(sprintf(" Chi-squared: %*s\n", space, v1)) cat(sprintf(" df: %*s\n", space, v2)) cat(sprintf(" p-value: %*s\n\n", space, v3)) if (x$p.value >= 0.05) { message("Summary: model seems to fit well.") } else { message("Summary: model does not fit well.") } invisible(x) } print.performance_accuracy <- function(x, ...) { insight::print_color(" cat(sprintf("Accuracy: %.2f%%\n", 100 * x$Accuracy)) cat(sprintf(" SE: %.2f%%-points\n", 100 * x$SE)) cat(sprintf(" Method: %s\n", x$Method)) invisible(x) } print.performance_score <- function(x, ...) { insight::print_color(" results <- format( c( sprintf("%.4f", x$logarithmic), sprintf("%.4f", x$quadratic), sprintf("%.4f", x$spherical) ), justify = "right" ) cat(sprintf("logarithmic: %s\n", results[1])) cat(sprintf(" quadratic: %s\n", results[2])) cat(sprintf(" spherical: %s\n", results[3])) invisible(x) } print.check_collinearity <- function(x, ...) { insight::print_color(" if ("Component" %in% colnames(x)) { comp <- split(x, x$Component) for (i in 1:length(comp)) { cat(paste0("\n* ", comp[[i]]$Component[1], " component:\n")) .print_collinearity(comp[[i]][, 1:3]) } } else { .print_collinearity(x) } invisible(x) } .print_collinearity <- function(x) { vifs <- x$VIF x$Tolerance <- 1 / x$VIF x$VIF <- sprintf("%.2f", x$VIF) x$SE_factor <- sprintf("%.2f", x$SE_factor) x$Tolerance <- sprintf("%.2f", x$Tolerance) colnames(x)[3] <- "Increased SE" low_corr <- which(vifs < 5) if (length(low_corr)) { cat("\n") insight::print_color("Low Correlation\n\n", "green") print.data.frame(x[low_corr, ], row.names = FALSE) } mid_corr <- which(vifs >= 5 & vifs < 10) if (length(mid_corr)) { cat("\n") insight::print_color("Moderate Correlation\n\n", "yellow") print.data.frame(x[mid_corr, ], row.names = FALSE) } high_corr <- which(vifs >= 10) if (length(high_corr)) { cat("\n") insight::print_color("High Correlation\n\n", "red") print.data.frame(x[high_corr, ], row.names = FALSE) } } print.test_likelihoodratio <- function(x, digits = 2, ...) { if ("LogLik" %in% names(x)) { best <- which.max(x$LogLik) footer <- c(sprintf("\nModel '%s' seems to have the best model fit.\n", x$Model[best]), "yellow") } else { footer <- NULL } x$p <- insight::format_p(x$p, name = NULL) cat(insight::export_table( x, digits = digits, caption = c(" footer = footer )) invisible(x) } print.check_itemscale <- function(x, digits = 2, ...) { insight::print_color(" cat(insight::export_table( lapply(1:length(x), function(i) { out <- x[[i]] attr(out, "table_caption") <- c(sprintf("\nComponent %i", i), "red") attr(out, "table_footer") <- c(sprintf( "\nMean inter-item-correlation = %.3f Cronbach's alpha = %.3f", attributes(out)$item_intercorrelation, attributes(out)$cronbachs_alpha ), "yellow") out }), digits = digits, format = "text", missing = "<NA>", zap_small = TRUE )) }
try_with_timeout <- function(test_fn, tlimit = 30, defaultvalue = "TimedOut") { results <- tryCatch(expr = evalWithTimeout(test_fn, timeout = tlimit), TimeoutException = function(ex) defaultvalue) if(is(results, "TimedOut")){ return( defaultvalue ) } else { results } }
context("meteo") test_that("search for multi-monitor data", { skip_on_cran() skip_on_ci() skip_if_government_down() monitors <- c("ASN00003003", "ASM00094299") search_a <- meteo_pull_monitors(monitors) search_b <- meteo_pull_monitors(monitors, var = "PRCP") expect_is(search_a, "data.frame") expect_is(search_a$prcp, "numeric") }) test_that("determine monitors' data coverage", { skip_on_cran() skip_on_ci() skip_if_government_down() monitors <- c("ASN00003003", "ASM00094299") search_a <- meteo_pull_monitors(monitors) obs_covr <- meteo_coverage(search_a) expect_is(obs_covr, "list") expect_is(obs_covr[[1]]$start_date, "Date") expect_is(obs_covr[[1]]$total_obs, "integer") expect_is(obs_covr[[1]]$prcp, "numeric") expect_equal(NROW(obs_covr[[1]]), length(monitors)) expect_is(obs_covr[[2]]$date, "Date") expect_is(obs_covr[[2]]$id, "character") expect_is(obs_covr[[2]]$prcp, "numeric") })
tii <- function(object) { object <- as.annual(object) return(sum(log(object$precipitation[2:nrow(object)]/object$precipitation[(1:(nrow(object)-1))]))/(nrow(object)-1)) }
fit_sbm_geobiased_const = function( trees, tip_latitudes, tip_longitudes, radius, reference_latitudes = NULL, reference_longitudes = NULL, only_basal_tip_pairs = FALSE, only_distant_tip_pairs = FALSE, min_MRCA_time = 0, max_MRCA_age = Inf, max_phylodistance = Inf, min_diffusivity = NULL, max_diffusivity = NULL, rarefaction = 0.1, Nsims = 100, max_iterations = 100, Nbootstraps = 0, NQQ = 0, Nthreads = 1, include_simulations = FALSE, SBM_PD_functor = NULL, verbose = FALSE, verbose_prefix = ""){ if("phylo" %in% class(trees)){ trees = list(trees) Ntrees = 1 if(!(("list" %in% class(tip_latitudes)) && (length(tip_latitudes)==1))){ tip_latitudes = list(tip_latitudes) } if(!(("list" %in% class(tip_longitudes)) && (length(tip_longitudes)==1))){ tip_longitudes = list(tip_longitudes) } }else if("list" %in% class(trees)){ Ntrees = length(trees) if("list" %in% class(tip_latitudes)){ if(length(tip_latitudes)!=Ntrees) return(list(success=FALSE,error=sprintf("Input list of tip_latitudes has length %d, but should be of length %d (number of trees)",length(tip_latitudes),Ntrees))) }else if("numeric" %in% class(tip_latitudes)){ if(Ntrees!=1) return(list(success=FALSE,error=sprintf("Input tip_latitudes was given as a single vector, but expected a list of %d vectors (number of trees)",Ntrees))) if(length(tip_latitudes)!=length(trees[[1]]$tip.label)) return(list(success=FALSE,error=sprintf("Input tip_latitudes was given as a single vector of length %d, but expected length %d (number of tips in the input tree)",length(tip_latitudes),length(trees[[1]]$tip.label)))) tip_latitudes = list(tip_latitudes) } if("list" %in% class(tip_longitudes)){ if(length(tip_longitudes)!=Ntrees) return(list(success=FALSE,error=sprintf("Input list of tip_longitudes has length %d, but should be of length %d (number of trees)",length(tip_longitudes),Ntrees))) }else if("numeric" %in% class(tip_longitudes)){ if(Ntrees!=1) return(list(success=FALSE,error=sprintf("Input tip_longitudes was given as a single vector, but expected a list of %d vectors (number of trees)",Ntrees))) if(length(tip_longitudes)!=length(trees[[1]]$tip.label)) return(list(success=FALSE,error=sprintf("ERROR: Input tip_longitudes was given as a single vector of length %d, but expected length %d (number of tips in the input tree)",length(tip_longitudes),length(trees[[1]]$tip.label)))) tip_longitudes = list(tip_longitudes) } }else{ return(list(success=FALSE,error=sprintf("Unknown data format '%s' for input trees[]: Expected a list of phylo trees or a single phylo tree",class(trees)[1]))) } Nsims = max(2,Nsims) max_iterations = max(1,max_iterations) rarefaction = max(0,min(1,rarefaction)) if(is.null(reference_latitudes) || is.null(reference_longitudes)){ reference_latitudes = unlist(tip_latitudes) reference_longitudes = unlist(tip_longitudes) } if(verbose) cat(sprintf("%sFitting basic birth-death models to %d trees..\n",verbose_prefix,Ntrees)) BD_lambdas = rep(NA,Ntrees) BD_mus = rep(NA,Ntrees) BD_rhos = rep(NA,Ntrees) for(tr in seq_len(Ntrees)){ if(length(trees[[tr]]$tip.label)<=4) next BDfit = castor::fit_hbd_model_on_grid( tree = trees[[tr]], const_lambda = TRUE, const_mu = TRUE, guess_rho0 = rarefaction, min_rho0 = 0.0001*rarefaction, condition = "auto", Ntrials = 100, Nthreads = Nthreads) if(!BDfit$success) next BD_rhos[tr] = min(rarefaction,(if(BDfit$fitted_lambda<=BDfit$fitted_mu) 1 else BDfit$fitted_rho/(1-BDfit$fitted_mu/BDfit$fitted_lambda))) BD_lambdas[tr] = max(0,BDfit$fitted_lambda * BDfit$fitted_rho / BD_rhos[tr]) BD_mus[tr] = max(0,BD_lambdas[tr] - (BDfit$fitted_lambda - BDfit$fitted_mu)) } successfull_BD_fits = which(is.finite(BD_lambdas)) if(length(successfull_BD_fits)==0) return(list(success=FALSE, error=sprintf("BD model fitting failed for all %d trees",Ntrees))) if(length(successfull_BD_fits)<Ntrees){ if(verbose) cat(sprintf("%s WARNING: Ignoring %d out of %d trees for which BD model fitting failed\n",verbose_prefix,Ntrees-length(successfull_BD_fits),Ntrees)) BD_lambdas = BD_lambdas[successfull_BD_fits] BD_mus = BD_mus[successfull_BD_fits] BD_rhos = BD_rhos[successfull_BD_fits] trees = trees[successfull_BD_fits] tip_latitudes = tip_latitudes[successfull_BD_fits] tip_longitudes = tip_longitudes[successfull_BD_fits] Ntrees = length(successfull_BD_fits) } if(verbose) cat(sprintf("%s Note: Congruents of fitted models have mean lambda = %g, mu = %g, r = %g, rho = %g\n",verbose_prefix,mean(BD_lambdas),mean(BD_mus),mean(BD_lambdas-BD_mus),mean(BD_rhos))) if(verbose) cat(sprintf("%sFitting diffusivity without any correction..\n",verbose_prefix)) fit0 = fit_sbm_const( trees = trees, tip_latitudes = tip_latitudes, tip_longitudes = tip_longitudes, radius = radius, only_basal_tip_pairs = only_basal_tip_pairs, only_distant_tip_pairs = only_distant_tip_pairs, min_MRCA_time = min_MRCA_time, max_MRCA_age = max_MRCA_age, max_phylodistance = max_phylodistance, min_diffusivity = min_diffusivity, max_diffusivity = max_diffusivity, Nbootstraps = Nbootstraps, NQQ = 0, SBM_PD_functor = SBM_PD_functor) if(!fit0$success) return(list(success=FALSE, error=sprintf("Could not fit SBM model in first round: %s",fit0$error))) if(verbose) cat(sprintf("%s Fitted diffusivity: %g\n",verbose_prefix,fit0$diffusivity)) root_ages = sapply(seq_len(Ntrees), FUN=function(tr) get_tree_span(trees[[tr]])$max_distance) correction_factor = 1 all_correction_factors = rep(NA,min(1000,max_iterations)) all_diffusivity_estimates = rep(NA,min(1000,max_iterations)) Niterations = 0 stopping_criterion = NULL sims = vector(mode="list", Ntrees) Nsims_per_tree = numeric(Ntrees) tile_counts = NULL tile_latitudes = NULL tile_longitudes = NULL converged = FALSE for(i in seq_len(max_iterations)){ if(verbose) cat(sprintf("%sIteration %d\n",verbose_prefix,i)) if(verbose) cat(sprintf("%s Simulating %d replicate SBM models for each input tree (with D=%g)..\n",verbose_prefix,Nsims,fit0$diffusivity * correction_factor)) for(tr in seq_len(Ntrees)){ sims[[tr]] = simulate_geobiased_sbm(Nsims = Nsims, Ntips = length(trees[[tr]]$tip.label), radius = radius, diffusivity = fit0$diffusivity * correction_factor, lambda = BD_lambdas[tr], mu = BD_mus[tr], rarefaction = BD_rhos[tr], crown_age = root_ages[tr], Nthreads = Nthreads, omit_failed_sims = TRUE, reference_latitudes = reference_latitudes, reference_longitudes = reference_longitudes, tile_counts = tile_counts, tile_latitudes = tile_latitudes, tile_longitudes = tile_longitudes) if(!sims[[tr]]$success) return(list(success=FALSE, error=sprintf("Iteration %d failed for tree Nsims_per_tree[tr] = length(sims[[tr]]$sims) if(is.null(tile_counts)){ tile_counts = sims[[tr]]$tile_counts tile_latitudes = sims[[tr]]$tile_latitudes tile_longitudes = sims[[tr]]$tile_longitudes } if(length(sims[[tr]]$sims)==0){ sims[[tr]]$success = FALSE next } } trees_with_valid_sims = which(sapply(seq_len(Ntrees), FUN=function(tr) sims[[tr]]$success)) if(length(trees_with_valid_sims)==0) return(list(success=FALSE, error=sprintf("Iteration %d failed: Simulations failed completely for all trees",i))) aux_fit_SBM_to_simulation = function(r){ sim_trees = lapply(trees_with_valid_sims, FUN=function(tr) sims[[tr]]$sims[[1+(r-1) %% Nsims_per_tree[tr]]]$tree) sim_latitudes = lapply(trees_with_valid_sims, FUN=function(tr) sims[[tr]]$sims[[1+(r-1) %% Nsims_per_tree[tr]]]$latitudes) sim_longitudes = lapply(trees_with_valid_sims, FUN=function(tr) sims[[tr]]$sims[[1+(r-1) %% Nsims_per_tree[tr]]]$longitudes) sim_fit = fit_sbm_const(trees = sim_trees, tip_latitudes = sim_latitudes, tip_longitudes = sim_longitudes, radius = radius, only_basal_tip_pairs = only_basal_tip_pairs, only_distant_tip_pairs = only_distant_tip_pairs, min_MRCA_time = min_MRCA_time, max_MRCA_age = max_MRCA_age, max_phylodistance = max_phylodistance, SBM_PD_functor = SBM_PD_functor) return(if(sim_fit$success) sim_fit$diffusivity else NA) } if((Nsims>1) && (Nthreads>1) && (.Platform$OS.type!="windows")){ if(verbose) cat(sprintf("%s Fitting SBM diffusivity to %d simulations (parallelized)..\n",verbose_prefix,Nsims)) sim_fit_diffusivities = unlist(parallel::mclapply( seq_len(Nsims), FUN = function(r){ aux_fit_SBM_to_simulation(r) }, mc.cores = min(Nthreads, Nsims), mc.preschedule = TRUE, mc.cleanup = TRUE)) }else{ if(verbose) cat(sprintf("%s Fitting SBM diffusivity to %d simulations (sequentially)..\n",verbose_prefix,Nsims)) sim_fit_diffusivities = rep(NA, Nsims) for(r in seq_len(Nsims)){ sim_fit_diffusivities[r] = aux_fit_SBM_to_simulation(r) } } valid_fits = which(is.finite(sim_fit_diffusivities)) if(length(valid_fits)==0) return(list(success=FALSE, error=sprintf("Iteration %d failed: Could not fit SBM to any of the simulated datasets",i))) if(length(valid_fits)==1) return(list(success=FALSE, error=sprintf("Iteration %d failed: Could only fit SBM to one of the simulated datasets, but need at least 2 successful sims",i))) sim_fit_diffusivities = sim_fit_diffusivities[valid_fits] if(length(sim_fit_diffusivities)>=5) sim_fit_diffusivities = remove_outliers(X=sim_fit_diffusivities, outlier_prob=0.1) if(length(sim_fit_diffusivities)<2) return(list(success=FALSE, error=sprintf("Iteration %d failed: Nearly all sim-fitted diffusivities were filtered out as 'outliers'.",i))) mean_sim_fit_diffusivity = exp(mean(log(sim_fit_diffusivities))) se_sim_fit_log_diffusivity = sd(log(sim_fit_diffusivities))/sqrt(length(sim_fit_diffusivities)) all_correction_factors[i] = correction_factor all_diffusivity_estimates[i] = mean_sim_fit_diffusivity Niterations = Niterations + 1 if(verbose) cat(sprintf("%s Geometric-mean diffusivity fitted to sims: %g (standard error of mean log-D %g)\n",verbose_prefix,mean_sim_fit_diffusivity,se_sim_fit_log_diffusivity)) if((abs(log(fit0$diffusivity)-log(mean_sim_fit_diffusivity))<min(se_sim_fit_log_diffusivity,0.1)) && (i>1) && (abs(log(correction_factor/all_correction_factors[i-1]))<0.1)){ if(verbose) cat(sprintf("%s Achieved approximate convergence at iteration %d: true estimated diffusivity = %g\n",verbose_prefix,i,fit0$diffusivity*correction_factor)) stopping_criterion = sprintf("Achieved approximate convergence at iteration %d (relative difference to uncorrected fit: %g)",i,abs(fit0$diffusivity-mean_sim_fit_diffusivity)/fit0$diffusivity) converged = TRUE break } if(i<=2){ correction_factor = correction_factor * fit0$diffusivity/mean_sim_fit_diffusivity }else{ aboves = which(all_diffusivity_estimates-fit0$diffusivity>=0) belows = which(all_diffusivity_estimates-fit0$diffusivity<=0) if((length(aboves)>0) && (length(belows)>0)){ left = belows[which.min(fit0$diffusivity-all_diffusivity_estimates[belows])] right = aboves[which.min(all_diffusivity_estimates[aboves]-fit0$diffusivity)] if((i!=left) && (i!=right)){ if((all_diffusivity_estimates[i]-fit0$diffusivity) * (all_diffusivity_estimates[left]-fit0$diffusivity)<0){ right = i }else{ left = i } } }else{ left = i-1 right = i } correction_factor = exp(log(all_correction_factors[left]) + (log(fit0$diffusivity)-log(all_diffusivity_estimates[left])) * (log(all_correction_factors[right])-log(all_correction_factors[left]))/(log(all_diffusivity_estimates[right])-log(all_diffusivity_estimates[left]))) } if(verbose) cat(sprintf("%s Estimated correction factor: %g\n",verbose_prefix,correction_factor)) if(!is.finite(correction_factor)) return(list( success = FALSE, error = sprintf("Sequence diverged (correction factor non-finite)"), Niterations = Niterations, uncorrected_fit_diffusivity = fit0$diffusivity, all_correction_factors = all_correction_factors[seq_len(Niterations)], all_diffusivity_estimates = all_diffusivity_estimates[seq_len(Niterations)])) } if(!converged) return(list(success=FALSE, error="Failed to converge", Nlat = sims[[1]]$Nlat, Nlon = sims[[1]]$Nlon, uncorrected_fit_diffusivity = fit0$diffusivity, Ncontrasts = fit0$Ncontrasts, Ntrees = Ntrees)) true_diffusivity = fit0$diffusivity * correction_factor if(NQQ>0){ sim_geodistances = numeric(NQQ * fit0$Ncontrasts) next_g = 1 for(tr in 1:Ntrees){ tip_pairs = fit0$tip_pairs_per_tree[[tr]] if(length(tip_pairs)>0){ for(q in 1:NQQ){ sim = castor::simulate_sbm(tree = trees[[tr]], radius = radius, diffusivity = true_diffusivity, root_latitude = NULL, root_longitude = NULL) if(!sim$success) return(list(success=FALSE, error=sprintf("Calculation of QQ failed at simulation %d for tree %d: Could not simulate SBM for the fitted model: %s",q,tr,sim$error), diffusivity=true_diffusivity)); sim_geodistances[next_g + c(1:nrow(tip_pairs))] = radius * geodesic_angles(sim$tip_latitudes[tip_pairs[,1]],sim$tip_longitudes[tip_pairs[,1]],sim$tip_latitudes[tip_pairs[,2]],sim$tip_longitudes[tip_pairs[,2]]) next_g = next_g + nrow(tip_pairs) } } } probs = seq_len(fit0$Ncontrasts)/fit0$Ncontrasts QQplot = cbind(quantile(fit0$geodistances, probs=probs, na.rm=TRUE, type=8), quantile(sim_geodistances, probs=probs, na.rm=TRUE, type=8)) } return(list(success = TRUE, Nlat = sims[[1]]$Nlat, Nlon = sims[[1]]$Nlon, diffusivity = true_diffusivity, correction_factor = correction_factor, Niterations = Niterations, stopping_criterion = stopping_criterion, uncorrected_fit_diffusivity = fit0$diffusivity, last_sim_fit_diffusivity = mean_sim_fit_diffusivity, all_correction_factors = all_correction_factors[seq_len(Niterations)], all_diffusivity_estimates = all_diffusivity_estimates[seq_len(Niterations)], Ntrees = Ntrees, lambda = BD_lambdas, mu = BD_mus, rarefaction = rarefaction, Ncontrasts = fit0$Ncontrasts, standard_error = fit0$standard_error * correction_factor, CI50lower = fit0$CI50lower * correction_factor, CI50upper = fit0$CI50upper * correction_factor, CI95lower = fit0$CI95lower * correction_factor, CI95upper = fit0$CI95upper * correction_factor, QQplot = (if(NQQ>0) QQplot else NULL), simulations = (if(include_simulations) sims else NULL), SBM_PD_functor = fit0$SBM_PD_functor)) }
"fun.fmkl.mm.min" <- function(coef, data) { L3 <- coef[1] L4 <- coef[2] aa <- fun.moments(data) v1 <- fun.fmklb(L3, L4, 1) v2 <- fun.fmklb(L3, L4, 2) v3 <- fun.fmklb(L3, L4, 3) v4 <- fun.fmklb(L3, L4, 4) g3 <- (v3 - 3 * v2 * v1 + 2 * v1^3) * (v2 - v1^2)^(-3/2) g4 <- (v4 - 4 * v1 * v3 + 6 * v1^2 * v2 - 3 * v1^4) * (v2 - v1^2)^(-2) abs(g3 - aa$a3) + abs(g4 - aa$a4) }
set.seed(123) n <- 10 cgnp_pair <- sample_correlated_gnp_pair(n = n, corr = 0.7, p = 0.2) g1 <- cgnp_pair$graph1 g2 <- cgnp_pair$graph2 lcc1 <- largest_common_cc(g1, g2, min_degree = 1) lcc3 <- largest_common_cc(g1, g2, min_degree = 3) test_that("largest cc w. min_degree", { expect_length(lcc1, 3) expect_equal(sum(lcc1$keep), 4) expect_length(lcc1$keep, n) expect_length(lcc3, 3) expect_equal(sum(lcc3$keep), 2) expect_length(lcc3$keep, n) }) set.seed(123) g <- igraph::sample_gnp(100, .01) lcc <- largest_cc(g) test_that("largest cc", { expect_length(lcc, 2) expect_equal(sum(lcc$keep), 46) expect_length(lcc$keep, 100) })
trans_province <- function(province, lang="zh") { lang <- match.arg(lang, c("zh", "en")) prov_cities <- jsonlite::fromJSON(system.file('provinces_and_cities.json', package="nCov2019")) oversea <- readRDS(system.file('oversea_province_translate.rds', package="nCov2019")) prov_cities <- rbind(prov_cities[,1:2],oversea) if (lang == "zh") { load(system.file("ncovEnv.rda", package="nCov2019")) ncovEnv <- get("ncovEnv") setup_province <- get("setup_province", envir = ncovEnv) province <- setup_province(province) res <- prov_cities$province_name_en[match(province, prov_cities$province_name_zh)] } else { res <- prov_cities$province_name_zh[match(province, prov_cities$province_name_en)] } return(res) } trans_city <- function(city, lang="zh") { lang <- match.arg(lang, c("zh", "en")) prov_cities <- jsonlite::fromJSON(system.file('provinces_and_cities.json', package="nCov2019")) city_df <- unique(dplyr::bind_rows(prov_cities$cities)) if (lang == "zh") { load(system.file("ncovEnv.rda", package="nCov2019")) ncovEnv <- get("ncovEnv") setup_city <- get("setup_city", envir = ncovEnv) city <- setup_city(city) res <- city_df$city_name_en[match(city, city_df$city_name_zh)] } else { res <- city_df$city_name_zh[match(city, city_df$city_name_en)] } return(res) }
SimEF=function (n, p, vn.int, v.boundaryE, v.boundaryF, nsim, eff.stop) { vn.an <- c(vn.int, n) n.an <- length(vn.an) nposE <- nstopE <- rep(0, n.an) nstopF <- rep(0, n.an) n.inconclus <- 0 v.critE <- v.boundaryE[vn.an] v.critF <- v.boundaryF[vn.an] vsim.npat <- rep(n, nsim) for (i in 1:nsim) { stopF <- stopE <- 0 posE.last <- 0 response <- rbinom(size = 1, prob = p, n = n) response.cum <- cumsum(response) for (j in 1:n.an) { npat <- vn.an[j] if (response.cum[npat] >= (v.critE[j] - 0.5)) { nposE[j] <- nposE[j] + 1 if (j == n.an) posE.last <- 1 if (eff.stop == 'y') { vsim.npat[i] <- npat stopE <- 1 nstopE[j] <- nstopE[j] + 1 } } if (response.cum[npat] <= (v.critF[j] + 0.5)) { stopF <- 1 vsim.npat[i] <- npat nstopF[j] <- nstopF[j] + 1 } if ((j == n.an) && (posE.last + stopF == 0)) n.inconclus <- n.inconclus + 1 if (((stopE == 1) && (eff.stop == 'y')) || (stopF == 1)) break } } prob.eff <- round(nposE/nsim, digits = 4) prob.effstop <- round(nstopE/nsim, digits = 4) prob.futilstop <- round(nstopF/nsim, digits = 4) prob.effstop.cum <- round(cumsum(prob.effstop), digits = 4) prob.futilstop.cum <- round(cumsum(prob.futilstop), digits = 4) mean.npat <- round(mean(vsim.npat), digits = 1) prob.inconclus <- round(n.inconclus/nsim, digits = 4) if (eff.stop == 'y') { return(list(prob.effstop, prob.effstop.cum, prob.futilstop, prob.futilstop.cum, mean.npat, prob.inconclus)) } else { return(list(prob.eff, prob.futilstop, prob.futilstop.cum, mean.npat, prob.inconclus)) } }
mon_num_below <- function(var, thld = 0, infile, outfile, nc34 = 4, overwrite = FALSE, verbose = FALSE, nc = NULL) { mon_num_wrapper(2, var, thld, infile, outfile, nc34, overwrite, verbose, nc = nc) }
random_force <- structure(list( xmin = NULL, xmax = NULL, ymin = NULL, ymax = NULL ), class = c('random_force', 'force')) print.random_force <- function(x, ...) { cat('Random Force:\n') cat('* A force that modifies the velocity randomly at each step\n') } train_force.random_force <- function(force, particles, xmin = -1, xmax = 1, ymin = -1, ymax = 1, ...) { force <- NextMethod() force$xmin <- xmin force$xmax <- xmax force$ymin <- ymin force$ymax <- ymax force } retrain_force.random_force <- function(force, particles, ...) { dots <- quos(...) particle_hash <- digest(particles) new_particles <- particle_hash != force$particle_hash force$particle_hash <- particle_hash nodes <- as_tibble(particles, active = 'nodes') force <- update_quo(force, 'include', dots, nodes, new_particles, TRUE) force <- update_unquo(force, 'xmin', dots) force <- update_unquo(force, 'xmax', dots) force <- update_unquo(force, 'ymin', dots) force <- update_unquo(force, 'ymax', dots) force } apply_force.random_force <- function(force, particles, pos, vel, alpha, ...) { vel[, 1] <- vel[, 1] + runif(nrow(vel), force$xmin, force$xmax) * alpha vel[, 2] <- vel[, 2] + runif(nrow(vel), force$ymin, force$ymax) * alpha list(position = pos, velocity = vel) }
ISODigitalTransferOptions <- R6Class("ISODigitalTransferOptions", inherit = ISOAbstractObject, private = list( xmlElement = "MD_DigitalTransferOptions", xmlNamespacePrefix = "GMD" ), public = list( unitsOfDistribution = NULL, transferSize = NULL, onLine = list(), offLine = list(), initialize = function(xml = NULL){ super$initialize(xml = xml) }, setUnitsOfDistribution = function(unit){ self$unitsOfDistribution = unit }, setTransferSize = function(transferSize){ self$transferSize = as.numeric(transferSize) }, addOnlineResource = function(onlineResource){ if(!is(onlineResource, "ISOOnlineResource")){ stop("The argument should be a 'ISOOnlineResource' object") } return(self$addListElement("onLine", onlineResource)) }, setOnlineResource = function(onlineResource){ self$onLine <- list() return(self$addOnlineResource(onlineResource)) }, delOnlineResource = function(onlineResource){ if(!is(onlineResource, "ISOOnlineResource")){ stop("The argument should be a 'ISOOnlineResource' object") } return(self$delListElement("onLine", onlineResource)) }, addOfflineResource = function(offlineResource){ if(!is(offlineResource, "ISOMedium")){ stop("The argument should be a 'ISOMedium' object") } return(self$addListElement("offLine", offlineResource)) }, setOfflineResource = function(offlineResource){ self$offLine <- list() return(self$addOfflineResource(offlineResource)) }, delOfflineResource = function(offlineResource){ if(!is(offlineResource, "ISOMedium")){ stop("The argument should be a 'ISOMedium' object") } return(self$delListElement("offLine", offlineResource)) } ) )
logdmultinom <- function (x, size, prob) { lgamma(size + 1) + sum(x * log(prob) - lgamma(x + 1)) }
pxweb_metadata <- function(x){ if(is.null(x$title)) { x$title <- NA } checkmate::assert_names(names(x), must.include = "variables") for(i in seq_along(x$variables)){ if(all(c("values", "valueTexts") %in% names(x$variables[[i]]))){ checkmate::assert_names(names(x$variables[[i]]), must.include = c("values", "valueTexts")) x$variables[[i]]$values <- unlist(x$variables[[i]]$values) x$variables[[i]]$valueTexts <- unlist(x$variables[[i]]$valueTexts) } if(is.null(x$variables[[i]]$elimination)) x$variables[[i]]$elimination <- FALSE if(is.null(x$variables[[i]]$time)) x$variables[[i]]$time <- FALSE } class(x) <- c("pxweb_metadata", "list") assert_pxweb_metadata(x) x } assert_pxweb_metadata <- function(x){ checkmate::assert_class(x, c("pxweb_metadata", "list")) checkmate::assert_names(names(x), must.include = c("title", "variables")) checkmate::assert_string(x$title, na.ok = TRUE) for(i in seq_along(x$variables)){ checkmate::assert_names(names(x$variables[[i]]), must.include = c("code", "text", "elimination", "time"), .var.name = paste0("names(x$variables[[", i, "]])")) checkmate::assert_string(x$variables[[i]]$code, .var.name = paste0("x$variables[[", i, "]]$code")) checkmate::assert_string(x$variables[[i]]$text, .var.name = paste0("x$variables[[", i, "]]$text")) if(!is.null(x$variables[[i]]$values)){ checkmate::assert_character(x$variables[[i]]$values, .var.name = paste0("x$variables[[", i, "]]$values")) checkmate::assert_character(x$variables[[i]]$valueTexts, len = length(unlist(x$variables[[i]]$values)) , .var.name = paste0("x$variables[[", i, "]]$valueTexts")) } checkmate::assert_flag(x$variables[[i]]$time, .var.name = paste0("x$variables[[", i, "]]$time")) checkmate::assert_flag(x$variables[[i]]$elimination, .var.name = paste0("x$variables[[", i, "]]$elimination")) } } print.pxweb_metadata <- function(x, ...){ cat("PXWEB METADATA\n") cat(x$title, "\n") cat("variables:\n") for(i in seq_along(x$variables)){ cat(" [[", i ,"]] ", x$variables[[i]]$code,": ", x$variables[[i]]$text, "\n", sep = "") } } pxweb_metadata_elimination <- function(pxmd){ checkmate::assert_class(pxmd, "pxweb_metadata") res <- unlist(lapply(pxmd$variables,function(x) x$elimination)) names(res) <- unlist(lapply(pxmd$variables,function(x) x$code)) res } pxweb_metadata_time <- function(pxmd){ checkmate::assert_class(pxmd, "pxweb_metadata") res <- unlist(lapply(pxmd$variables,function(x) x$time)) names(res) <- unlist(lapply(pxmd$variables,function(x) x$code)) res } pxweb_metadata_dim <- function(pxmd){ checkmate::assert_class(pxmd, "pxweb_metadata") dim_res <- numeric(length(pxmd$variables)) for(i in seq_along(pxmd$variables)){ names(dim_res)[i] <- pxmd$variables[[i]]$code dim_res[i] <- length(pxmd$variables[[i]]$values) } dim_res }
simple_function <- function(a, b) { x <- b + 1 a + x }
OurConf <- function(samples = 100, n = 30, mu = 0, sigma = 1, conf.level = 0.95) { alpha <- 1 - conf.level CL <- conf.level * 100 n <- round(n) N <- round(samples) if (N <= 0 || n <= 1) { stop("Number of random samples and sample size must both be at least 2") } if (!missing(conf.level) && (length(conf.level) != 1 || !is.finite(conf.level) || conf.level <= 0 || conf.level >= 1)) { stop("'conf.level' must be a single number between 0 and 1") } if (sigma <= 0) { stop("Variance must be a positive value") } junk <- rnorm(N * n, mu, sigma) jmat <- matrix(junk, N, n) xbar <- apply(jmat, 1, mean) ll <- xbar - qnorm(1 - alpha / 2) * sigma / sqrt(n) ul <- xbar + qnorm(1 - alpha / 2) * sigma / sqrt(n) notin <- sum((ll > mu) + (ul < mu)) percentage <- round((1 - notin / N) * 100, 2) data <- data.frame(xbar = xbar, ll = ll, ul = ul) data$samplenumb <- factor(as.integer(rownames(data))) data$correct <- "Includes" data$correct[data$ul < mu] <- "Low" data$correct[data$ll > mu] <- "High" bestfit <- function(NN = N) { list( scale_y_continuous(limits = c((mu - 2 * sigma), (mu + 2 * sigma))), if (NN >= 51) { scale_x_discrete(breaks = seq(0, 500, 10)) } ) } p <- ggplot(data, aes(y = xbar, x = samplenumb)) + geom_point() + geom_hline(yintercept = mu) + geom_errorbar(aes(ymin = ll, ymax = ul, color = correct), width = 0.3) + labs( title = bquote(.(N) ~ "random samples with" ~ .(CL) * "% confidence intervals where" ~ mu ~ "=" ~ .(mu) ~ "and" ~ sigma ~ "=" ~ .(sigma)), subtitle = bquote("Note:" ~ .(percentage) * "% of the confidence intervals contain" ~ mu ~ "=" ~ .(mu)), y = expression("Sample mean" ~ (bar(X))), x = paste0("Random samples of size = ", n), caption = ("modified from the CIsim function in package BSDA") ) + bestfit() + guides(color = guide_legend(title = NULL)) + theme_bw() print(p) cat(percentage, "% of the confidence intervals contain Mu =", mu, ".", "\n") }