code
stringlengths 1
13.8M
|
---|
library(hexSticker)
library(magick)
library(magrittr)
img <- image_read(here::here("man", "figures", "lasso-img.jpg"))
res <- img %>%
image_convert("png") %>%
image_resize("1080 x 200") %>%
image_fill(color = "none") %>%
image_annotate("bolasso",
size = 10,
degrees = 35,
location = "+85+147", color="black")
res <- sticker(filename = here::here("man", "figures", "logo.png"),
white_around_sticker = FALSE,
res,
package = "",
s_x = 0.97,
s_y = 1.04,
s_width = 1.7,
s_height = 14,
h_fill = "
h_color = "
save_sticker(sticker = res,
filename = here::here("man", "figures", "logo.png"))
|
qdc.zsc <- function(results) {
nstat <- results$brief$nstat
nfactors <- results$brief$nfactors
zsc <- results$zsc
if (sum(is.na(colSums(zsc)))>0) {
zsc <- results$zsc[,!is.na(colSums(zsc))>0]
nfactors <- sum(!is.na(colSums(zsc)))
}
dac <- results$qdc$dist.and.cons
names(dac) <- rownames(results$qdc)
qdc.zsc <- matrix(NA, nrow=nrow(zsc), ncol=ncol(zsc), dimnames=dimnames(zsc))
for (i in 1:nfactors) {
qdc.zsc[grep(paste0("all|f", i), dac), i] <- zsc[grep(paste0("all|f", i), dac), i]
}
if (nfactors==2) {
for (i in 1:nfactors) {
qdc.zsc[grep("Distinguishing", dac), i] <- zsc[grep("Distinguishing", dac), i]
}
}
return(qdc.zsc)
}
|
"lyme.svs.eco0.dat"
|
checkVal_fgpm <- function(env){
if (all(!is.null(env$sIn), !is.null(env$fIn))) {
if (length(unique(c(nrow(env$sIn), as.numeric(sapply(env$fIn, nrow)), length(env$sOut)))) > 1) {
stop("Inconsistent number of points. Please check that sIn, sOut and each matrix in fIn have all the same number of rows.")
}
if (!is.null(env$f_pdims)) {
if (length(env$f_pdims) != length(env$fIn)) {
stop(paste("Inconsistent number of projection dimensions. The functional input list has", length(env$fIn), "elements, but",
length(env$f_pdims), "projection dimensions were specified."))
}
}
if (!is.null(env$ls_s.hyp)) {
if (length(env$ls_s.hyp) != ncol(env$sIn)) {
stop(paste("Inconsistent number of length-scale parameters. Please check that the vector ls_s.hyp has as many elements as the number\n ",
"of columns in sIn., or leave this argument empty and the scalar length-scale parameters will be estimated from the data."))
}
}
if (!is.null(env$ls_f.hyp)) {
od <- sapply(env$fIn, ncol)
pd <- env$f_pdims
zrs <- which(pd == 0)
pd[zrs] <- od[zrs]
sumdims <- sum(sapply(seq_along(pd), function(i) if(env$f_disType[i] == "L2_bygroup") return(1) else return(pd[i])))
if (length(env$ls_f.hyp) != sumdims) {
stop(paste("Inconsistent number of length-scale parameters. Please check that the vector ls_f.hyp has as many elements as effective",
"dimensions.\n Consider checking ?fgpm for details. Yoy can also leave this argument empty and the functional length-scale",
"parameters will be\n estimated from the data."))
}
}
} else if(!is.null(env$fIn)) {
if (length(unique(c(as.numeric(sapply(env$fIn, nrow)), length(env$sOut)))) > 1) {
stop("Inconsistent number of points. Please check that sOut and each matrix in fIn have all the same number of rows.")
}
if (!is.null(env$f_pdims)) {
if (length(env$f_pdims) != length(env$fIn)) {
if (length(env$f_pdims) == 1) {
stop(paste("Inconsistent number of projection dimensions. The functional input list has", length(env$fIn), "elements, but only",
length(env$f_pdims), "projection dimension was specified."))
} else {
stop(paste("Inconsistent number of projection dimensions. The functional input list has", length(env$fIn), "elements, but",
length(env$f_pdims), "projection dimensions were specified."))
}
}
}
if (!is.null(env$ls_f.hyp)) {
od <- sapply(env$fIn, ncol)
pd <- env$f_pdims
zrs <- which(pd == 0)
pd[zrs] <- od[zrs]
sumdims <- sum(sapply(seq_along(pd), function(i) if(env$f_disType[i] == "L2_bygroup") return(1) else return(pd[i])))
if (length(env$ls_f.hyp) != sumdims) {
stop(paste("Inconsistent number of length-scale parameters. Please check that the vector ls_f.hyp has as many elements as effective",
"dimensions.\n Consider checking ?fgpm for details. Yoy can also leave this argument empty and the functional length-scale",
"parameters will be\n estimated from the data."))
}
}
} else if(!is.null(env$sIn)) {
if (nrow(env$sIn) != length(env$sOut)) {
stop("Inconsistent number of points. Please check that sIn and sOut have the same number of rows.")
}
if (!is.null(env$ls_s.hyp)) {
if (length(env$ls_s.hyp) != ncol(env$sIn)) {
stop(paste("Inconsistent number of length-scale parameters. Please check that the vector ls_s.hyp has as many elements as the number\n ",
"of columns in sIn., or leave this argument empty and the scalar length-scale parameters will be estimated from the data."))
}
}
}
if (!is.numeric(env$nugget)) {
stop("The nugget should be numeric.")
} else if (env$nugget < 0) {
stop("The nugget should be a nonnegative number.")
}
if (!is.numeric(env$n.starts)) {
stop("The argument n.starts should be numeric.")
} else if (!check.int(env$n.starts)) {
stop("The argument n.starts should be an integer value.")
} else if (env$n.starts <= 0) {
stop("The argument n.starts should be a positive integer.")
}
if (!is.numeric(env$n.presample)) {
stop("The argument n.presample should be numeric.")
} else if (!check.int(env$n.presample)) {
stop("The argument n.presample should be an integer value.")
} else if (env$n.presample <= 0) {
stop("The argument n.presample should be a positive integer.")
}
}
checkVal_pred_and_sim <- function(env){
model <- env$model
if (all(is.null(env$sIn.sm), is.null(env$fIn.sm))) {
if(!is.null(env$sIn.pr)) {sIn.ch <- env$sIn.pr; sName <- "sIn.pr"} else sIn.ch <- NULL
if(!is.null(env$fIn.pr)) {fIn.ch <- env$fIn.pr; fName <- "fIn.pr"} else fIn.ch <- NULL
taskName <- "prediction"
} else {
if(!is.null(env$sIn.sm)) {sIn.ch <- env$sIn.sm; sName <- "sIn.sm"} else sIn.ch <- NULL
if(!is.null(env$fIn.sm)) {fIn.ch <- env$fIn.sm; fName <- "fIn.sm"} else fIn.ch <- NULL
taskName <- "simulation"
}
if (model@type == "hybrid") {
if (all(is.null(sIn.ch), is.null(fIn.ch))) {
stop(paste("Invalid input. The model has both, scalar and functional inputs. Please provide valid scalar and\n ",
"functional points to proceed with the ", taskName, "."))
} else if (is.null(fIn.ch)) {
stop(paste("Inconsistent data structures. The model has both, scalar and functional inputs, but only scalar points\n ",
"for ", taskName, " were specified. Please provide also valid new functional points to proceed with the ", taskName, "."))
} else if (is.null(sIn.ch)) {
stop(paste("Inconsistent data structures. The model has both, scalar and functional inputs, but only functional points\n ",
"for ", taskName, " were specified. Please provide also valid new scalar points to proceed with the ", taskName, "."))
}
if (!all(nrow(sIn.ch) == sapply(fIn.ch, nrow))) {
stop("Inconsistent number of points. Please check that ", sName, " and each matrix in ", fName, " have all the same number of rows.")
}
} else if(model@type == "functional") {
if (all(!is.null(sIn.ch), !is.null(sIn.ch))) {
stop(paste("Inconsistent data structures. The model has only functional inputs, but also scalar points\n ",
"for ", taskName, " were specified. Please provide only new functional points to proceed with the ", taskName, "."))
}
if (!is.null(sIn.ch)) {
stop(paste("Inconsistent data structures. The model has only functional inputs, but scalar points\n ",
"for ", taskName, " were specified. Please provide new functional points instead to proceed with the ", taskName, "."))
}
if (is.null(fIn.ch)) {
stop(paste("Invalid input. The model has functional inputs. Please provide valid new functional points to proceed with\n ",
"the ", taskName, "."))
}
} else {
if (all(!is.null(sIn.ch), !is.null(fIn.ch))) {
stop(paste("Inconsistent data structures. The model has only scalar inputs, but also functional points\n ",
"for ", taskName, " were specified. Please provide only new scalar points to proceed with the ", taskName, "."))
}
if (!is.null(fIn.ch)) {
stop(paste("Inconsistent data structures. The model has only scalar inputs, but functional points\n ",
"for ", taskName, " were specified. Please provide new scalar points instead to proceed with the ", taskName, "."))
}
if (is.null(sIn.ch)) {
stop(paste("Invalid input. The model has scalar inputs. Please provide valid new scalar points to proceed with\n ",
"the ", taskName, "."))
}
}
}
check_del <- function(env) {
model <- env$model
if (any(duplicated(env$ind.dl))) {
warning("Some elements in the deletion index vector ind.dl are duplicated. Duplicates are dropped.")
env$ind.dl <- unique(env$ind.dl)
}
if (any(env$ind.dl < 1) || any(env$ind.dl > [email protected])) {
stop("Some elements in the detelion index vector ind.dl are not in [1, [email protected]]. Please check your vector.")
}
if ([email protected] - length(env$ind.dl) < 2) {
stop("The number of points to delete cannot exceed [email protected] - 2. Please check your vector.")
}
return(env$ind.dl)
}
check_subData <- function(env) {
model <- env$model
if (model@type == "hybrid") {
if (!check_nrows_mlm(env$sIn.sb, env$fIn.sb, env$sOut.sb)) {
stop("Inconsistent number of points. Please check that sIn.sb, each matrix in fIn.sb and sOut.sb have all the same number\n of rows.")
}
if (nrow(env$sIn.sb) != length(env$ind.sb)) {
stop(paste("Inconsistent number of points in your replacement index vector ind.sb. Please check that it has the same number of\n ",
"rows than sIn.sb, each matrix in fIn.sb and sOut.sb.", sep = ""))
}
} else if (model@type == "functional") {
if (!check_nrows_lm(env$fIn.sb, env$sOut.sb)) {
stop("Inconsistent number of points. Please check that each matrix in fIn.sb and sOut.sb have all the same number of rows.")
}
if (nrow(env$fIn.sb[[1]]) != length(env$ind.sb)) {
stop(paste("Inconsistent number of points in your replacement index vector ind.sb. Please check that it has the same number of\n ",
"rows than each matrix in fIn.sb and sOut.sb.", sep = ""))
}
} else {
if (!check_nrows_mm(env$sIn.sb, env$sOut.sb)) {
stop("Inconsistent number of points. Please check that sIn.sb and sOut.sb have the same number of rows.")
}
if (nrow(env$sIn.sb) != length(env$ind.sb)) {
stop(paste("Inconsistent number of points in your replacement index vector ind.sb. Please check that it has the same number of\n ",
"rows than sIn.sb and sOut.sb.", sep = ""))
}
}
if (any(env$ind.sb %% 1 != 0)) {
stop(paste(c("Replacement indices should be integer numbers. Please check the following positions of your ind.sb vector: ",
which(env$ind.sb %% 1 != 0)), sep = "", collapse = " "))
}
if (any(env$ind.dl < 1) || any(env$ind.dl > [email protected])) {
stop(paste(c("Replacement indices shuold be integers in [1, [email protected]]. Please check the following positions of your ind.sb vector: ",
which(!(env$ind.sb > 0 & env$ind.sb < [email protected]))), sep = "", collapse = " "))
}
if (anyDuplicated(env$ind.sb)) {
stop(paste(c("Replacement indices shuold be unique. Please check the following positions of your ind.sb vector: ",
which(duplicated(env$ind.sb) | duplicated(env$ind.sb, fromLast = TRUE))), sep = "", collapse = " "))
}
}
check_add <- function(env) {
model <- env$model
if (model@type == "hybrid") {
if (!check_nrows_mlm(env$sIn.nw, env$fIn.nw, env$sOut.nw)) {
stop("Inconsistent number of points. Please check that sIn.nw, each matrix in fIn.nw and sOut.nw have all the same number\n of rows.")
}
} else if (model@type == "functional") {
if (!check_nrows_lm(env$fIn.nw, env$sOut.nw)) {
stop("Inconsistent number of points. Please check that each matrix in fIn.nw and sOut.nw have all the same number of rows.")
}
} else {
if (!check_nrows_mm(env$sIn.nw, env$sOut.nw)) {
stop("Inconsistent number of points. Please check that sIn.nw and sOut.nw have the same number of rows.")
}
}
}
check_subHypers <- function(env) {
model <- env$model
if (!is.null(env$var.sb)) if (env$var.sb <= 0) stop("The variance should be a positive real number. Please check your inputs.")
if (model@type == "hybrid") {
if (!is.null(env$ls_s.sb)) {
if (length(model@kern@s_lsHyps) != length(env$ls_s.sb)) {
stop(paste("The model has ", length(model@kern@s_lsHyps), " scalar length-scale parameters, but you provided",
length(env$ls_s.sb), " instead for substitution. Please check your inputs.", sep = ""))
}
if (any(env$ls_s.sb <= 0)) stop("Length-scale parameters should be positive real numbers. Please check your ls_s.sb vector.")
}
if (!is.null(env$ls_f.sb)) {
if (length(model@kern@f_lsHyps) != length(env$ls_f.sb)) {
stop(paste("The model has ", length(model@kern@f_lsHyps), " functional length-scale parameters, but you provided",
length(env$ls_f.sb), " instead for substitution. Please check your inputs.", sep = ""))
}
if (any(env$ls_f.sb <= 0)) stop("Length-scale parameters should be positive real numbers. Please check your ls_f.sb vector.")
}
} else if (model@type == "functional") {
if (!is.null(env$ls_f.sb)) {
if (length(model@kern@f_lsHyps) != length(env$ls_f.sb)) {
stop(paste("The model has ", length(model@kern@f_lsHyps), " functional length-scale parameters, but you provided",
length(env$ls_f.sb), " instead for substitution. Please check your inputs.", sep = ""))
}
if (env$ls_f.sb <= 0) stop("Length-scale parameters should be positive real numbers. Please check your ls_f.sb vector.")
}
} else {
if (!is.null(env$ls_s.sb)) {
if (length(model@kern@s_lsHyps) != length(env$ls_s.sb)) {
stop(paste("The model has ", length(model@kern@s_lsHyps), " scalar length-scale parameters, but you provided",
length(env$ls_s.sb), " instead for substitution. Please check your inputs.", sep = ""))
}
if (env$ls_s.sb <= 0) stop("Length-scale parameters should be positive real numbers. Please check your ls_s.sb vector.")
}
}
}
check_nrows_mlm <- function(M1, L, M2){
return(all(nrow(M1) == c(sapply(L, nrow), nrow(M2))))
}
check_nrows_lm <- function(L, M){
return(all(nrow(M) == sapply(L, nrow)))
}
check_nrows_mm <- function(M1, M2){
return(nrow(M1) == nrow(M2))
}
check_duplicates_SF <- function(sBench, fBench, sCand, fCand){
bchM <- cbind(sBench, do.call(cbind, fBench))
cndM <- cbind(sCand, do.call(cbind, fCand))
if (isTRUE(all.equal(bchM, cndM))) {
ind.dp <- which(duplicated(bchM) | duplicated(bchM[nrow(bchM):1, ])[nrow(bchM):1])
} else {
ind.dp <- which(tail(duplicated(rbind(bchM, cndM)), nrow(cndM)))
}
return(ind.dp)
}
check_duplicates_F <- function(fBench, fCand){
bchM <- do.call(cbind, fBench)
cndM <- do.call(cbind, fCand)
if (isTRUE(all.equal(bchM, cndM))) {
ind.dp <- which(duplicated(bchM) | duplicated(bchM[nrow(bchM):1, ])[nrow(bchM):1])
} else {
ind.dp <- which(tail(duplicated(rbind(bchM, cndM)), nrow(cndM)))
}
return(ind.dp)
}
check_duplicates_S <- function(sBench, sCand, oCand, iCand){
bchM <- sBench
cndM <- sCand
if (isTRUE(all.equal(bchM, cndM))) {
ind.dp <- which(duplicated(bchM) | duplicated(bchM[nrow(bchM):1, ])[nrow(bchM):1])
} else {
ind.dp <- which(tail(duplicated(rbind(bchM, cndM)), nrow(cndM)))
}
return(ind.dp)
}
|
variableMetadata <- function(dataset) {
varcat <- allVariables(dataset)
extra <- crGET(shojiURL(dataset, "fragments", "table"))$metadata
extra <- mapply(function(x, i) {
x$id <- i
if (length(x$subvariables)) {
x$subvariables <- absoluteURL(
paste0(i, "/subvariables/", unlist(x$subvariables), "/"),
self(varcat)
)
}
return(x)
}, x = extra, i = names(extra), SIMPLIFY = FALSE)
names(extra) <- absoluteURL(paste0(names(extra), "/"), self(varcat))
extra <- modifyList(index(varcat), extra)
index(varcat) <- extra
return(varcat)
}
flattenVariableMetadata <- function(vm) {
ind <- index(vm)
extra <- lapply(urls(vm), function(u) {
this <- ind[[u]]
these.subs <- this$subvariables
if (!is.null(these.subs)) {
out <- structure(this$subreferences, .Names = these.subs)
out <- lapply(out, function(x) {
x$parent <- u
x$parent_alias <- this$alias
return(x)
})
return(out)
} else {
return(NULL)
}
})
index(vm) <- c(ind, unlist(extra, recursive = FALSE))
return(vm)
}
|
vtDecMap <- function(thetas, etas, prev.res=0, dec.cut=0.6) {
stopifnot(get.const()$CLSPOST %in% class(thetas));
dec.cut <- rep(dec.cut, 3)[1:3];
cur.smp <- thetas;
cur.dlt <- cur.smp[,3] + cur.smp[,4];
cur.res <- cur.smp[,2] + cur.smp[,4];
rst <- rep(0,4);
rst[1] <- mean(cur.dlt >= etas[2]);
rst[2] <- mean(cur.dlt < etas[2] & cur.res < prev.res);
rst[3] <- mean(cur.dlt < etas[1] & cur.res >= prev.res);
rst[4] <- 1 - sum(rst[1:3]);
cond.prob <- rep(0,2);
cond.prob[1] <- rst[2]/(1 - rst[1] + 1e-10);
cond.prob[2] <- rst[3]/(1 - sum(rst[1:2]) + 1e-10);
if (rst[1] > dec.cut[1]) {
region <- 1;
cond.prob[1:2] <- 0;
} else if (cond.prob[1] > dec.cut[2]) {
region <- 2;
cond.prob[2] <- 0;
} else if (cond.prob[2] > dec.cut[3]) {
region <- 3;
} else {
region <- 4;
}
rst.dec <- list(prob = rst,
region = region,
ptox = mean(cur.dlt),
pres = mean(cur.res),
cond.prob = cond.prob,
prev.res = mean(prev.res),
etas = etas,
dec.cut = dec.cut);
class(rst.dec) <- get.const()$CLSDEC;
rst.dec
}
vtInterim <- function(cur.obs.y, prev.obs.y = NULL, prev.res = NULL,
etas = c(0.1,0.3),
dec.cut = 0.65,
priors = NULL,
prob.mdl = c("NONPARA", "NONPARA+", "PARA", "PARA+"),
seed = NULL,
...) {
if (!is.null(seed)) {
old_seed <- set.seed(seed);
}
prob.mdl <- match.arg(prob.mdl);
post.smp <- vtPost(rbind(cur.obs.y), prob.mdl, priors, ...);
if (!is.null(prev.obs.y)) {
post.prev <- vtPost(rbind(prev.obs.y), prob.mdl, priors, ...);
prev.res <- apply(post.prev[,c(2,4)],1,sum);
} else if (is.null(prev.res)){
stop("Please provide either prev.obs.y or prev.res");
}
rst.dec <- vtDecMap(post.smp, etas, prev.res=prev.res, dec.cut=dec.cut);
if (!is.null(seed)) {
set.seed(old_seed);
}
rst.dec
}
plot.VTDEC <- function(x,
margin = 0.003, nms = c("TT", "NME", "SE", "UN"),
col.reg = "pink", col.prob = "blue", cex.prob = 0.9, cex.nms = 1,
...) {
f.reg <- function(x1, x2, y1, y2, labels, cols, tt = margin) {
x1 <- x1 + tt;
x2 <- x2 - tt;
y1 <- y1 + tt;
y2 <- y2 - tt;
rect(x1, y1, x2, y2, col = cols[1], lwd = 1);
text(x1+(x2-x1)/2, y1+(y2-y1)/2, labels = labels[1], col=cols[2], cex=cex.prob);
text(x1+(x2-x1)/2, y1+(y2-y1)/2, labels = labels[2], col=cols[2], cex=cex.prob, pos = 1);
text(x1+(x2-x1)/2, y2, labels = labels[3], cex=cex.nms, pos = 1);
}
etas <- x$etas;
prev.res <- round(x$prev.res,2);
probs <- x$prob * 100;
cond.prob <- x$cond.prob * 100;
col.regs <- rep("white", 4);
col.ps <- rep("black", 4);
col.regs[x$region] <- col.reg;
col.ps[x$region] <- col.prob;
par(xaxs="i", yaxs="i");
plot(NULL, xlim=c(0,1), ylim=c(0,1),
xlab="DLT Risk", ylab="Immune Response Rate",
axes=FALSE, ...);
lbls <- c(sprintf("%.2f", probs[1]), "", nms[1]);
f.reg(etas[2], 1, 0, 1, labels = lbls, cols=c(col.regs[1], col.ps[1]));
if (prev.res > 0) {
axis(2, at = prev.res);
l2 <- "";
if (0 < cond.prob[1]) {
l2 <- sprintf("(%.2f)", cond.prob[1]);
}
lbls <- c(sprintf("%.2f", probs[2]), l2, nms[2]);
f.reg(0, etas[2], 0, prev.res,
labels = lbls, cols=c(col.regs[2], col.ps[2]));
}
l2 <- "";
if (0 < cond.prob[2]) {
l2 <- sprintf("(%.2f)", cond.prob[2]);
}
lbls <- c(sprintf("%.2f", probs[3]), l2, nms[3]);
f.reg(0, etas[1], prev.res, 1,
labels = lbls, cols=c(col.regs[3], col.ps[3]));
lbls <- c(sprintf("%.2f", probs[4]), "", nms[4]);
f.reg(etas[1], etas[2], prev.res, 1,
labels = lbls, cols=c(col.regs[4], col.ps[4]));
}
vtTrack <- function(obs.all,
cex.txt = 0.9, decision = 1, max.level = NULL,
letters = c("E", "C", "S"),
colors = c("green", "yellow", "red"), height = 0.5,
end.width = 2, end.height = height, cex.roman = 0.9, cex.end = 0.9,
...) {
f.rec <- function(x, y, width, height, ys, cex.txt, margin = 0.1) {
width <- width/4;
cys <- rbind(c(0,0), c(0,1), c(1,0), c(1,1));
for (i in 1:4) {
cur.x <- x + width *(i-1);
xleft <- cur.x;
xright <- xleft + 0.5 * width;
ytop <- y;
ybottom <- ytop - 0.5 * height;
if (1 == cys[i,1]) {
r.txt <- "T";
r.col <- "gray80";
} else {
r.txt <- "NoT";
r.col <- "white";
}
rect(xleft, ybottom, xright, ytop, col=r.col, lwd=0.1);
text(xleft + 0.25 * width, ytop - 0.25 * height, labels = r.txt, cex = 0.5 * cex.txt);
xleft <- cur.x + 0.5 * width;
xright <- xleft + 0.5 * width;
ytop <- y;
ybottom <- ytop - 0.5 * height;
if (1 == cys[i,2]) {
r.txt <- "R";
r.col <- "pink";
} else {
r.txt <- "NoR";
r.col <- "white";
}
rect(xleft, ybottom, xright, ytop, col=r.col, lwd=0.1);
text(xleft + 0.25 * width, ytop - 0.25 * height, labels = r.txt, cex = 0.5 * cex.txt);
xleft <- cur.x;
xright <- xleft + width;
ytop <- y - 0.5 * height;
ybottom <- ytop - 0.5 * height;
rect(xleft, ybottom, xright, ytop, lwd=0.1);
text(xleft + 0.5 * width, ytop - 0.25 * height, labels = ys[i], cex = cex.txt);
rect(cur.x, y - height, cur.x + width, y, lwd=1);
}
}
f.arrow <- function(x, y, width, height, direction, labels = NULL) {
end.xy <- switch(direction,
"flat" = c(width, 0, 3),
"up" = c(0, height, 2),
"down" = c(0, -height, 4));
arrows(x, y, x + end.xy[1], y + end.xy[2], length = 0.1);
text(x + end.xy[1]/2, y + end.xy[2]/2,
labels = as.roman(labels), pos = end.xy[3], col = "brown", cex = cex.roman);
}
f.end <- function(x, y, width, height, letter, color) {
rect(x - 0.5*width, y - 0.5*height, x + 0.5*width, y + 0.5*height, lwd = 1);
rect(x - 0.45*width, y - 0.45*height, x + 0.45*width, y + 0.45*height,
lwd = 1, col = color);
text(x, y, labels = letter, cex = cex.end);
}
if (is.null(max.level))
max.level <- max(obs.all[,1]);
tbl.level <- table(obs.all[,1]);
x.tot <- 0;
for (i in 1:length(tbl.level)) {
x.tot <- x.tot + 4*tbl.level[i] + tbl.level[i] - 1;
}
x.tot <- x.tot - length(tbl.level) + 1;
x.max <- (x.tot + 3) * 1;
y.max <- max.level * 1;
plot(NULL, NULL, xlim=c(0, x.max), ylim=c(height/2, y.max),
axes = FALSE, xlab = "", ylab = "", ...);
box();
last.level <- 0;
cur.x <- 1;
cur.y <- 1;
inx <- 0;
for (i in 1:nrow(obs.all)) {
cur.level <- obs.all[i,1];
if (cur.level != last.level) {
last.level <- cur.level;
if (cur.level > 1) {
inx <- inx + 1;
f.arrow(cur.x + 3.5, cur.y, 0, 1-height, "up", labels = inx);
cur.x <- cur.x + 3;
cur.y <- cur.y + 1;
}
} else {
inx <- inx + 1;
f.arrow(cur.x + 4, cur.y - 0.5*height, 1, 0, "flat", labels = inx);
cur.x <- cur.x + 5;
}
f.rec(cur.x, cur.y, 4, height = height, ys = obs.all[i, 2:5], cex.txt = cex.txt);
}
inx <- inx + 1;
f.arrow(cur.x + 4, cur.y - 0.5*height, 1, 0, "flat", labels = inx);
f.end(cur.x + 5 + end.width/2, cur.y - 0.5*height, width = end.width, height = end.height,
letter = letters[decision], color = colors[decision]);
}
|
cuminyear=function(data,coldate,colnum,start=1){
a=NULL
data[colnum]=metools::col2num(data[colnum],1,1)
n=start
while(n<=nrow(data[coldate])){
if(lubridate::month(data[[coldate]][[n]])==1){a[n]=data[[colnum]][n]/data[[colnum]][n]-1}
if(lubridate::month(data[[coldate]][[n]])==2){a[n]=data[[colnum]][n]/data[[colnum]][n-1]-1}
if(lubridate::month(data[[coldate]][[n]])==3){a[n]=data[[colnum]][n]/data[[colnum]][n-2]-1}
if(lubridate::month(data[[coldate]][[n]])==4){a[n]=data[[colnum]][n]/data[[colnum]][n-3]-1}
if(lubridate::month(data[[coldate]][[n]])==5){a[n]=data[[colnum]][n]/data[[colnum]][n-4]-1}
if(lubridate::month(data[[coldate]][[n]])==6){a[n]=data[[colnum]][n]/data[[colnum]][n-5]-1}
if(lubridate::month(data[[coldate]][[n]])==7){a[n]=data[[colnum]][n]/data[[colnum]][n-6]-1}
if(lubridate::month(data[[coldate]][[n]])==8){a[n]=data[[colnum]][n]/data[[colnum]][n-7]-1}
if(lubridate::month(data[[coldate]][[n]])==9){a[n]=data[[colnum]][n]/data[[colnum]][n-8]-1}
if(lubridate::month(data[[coldate]][[n]])==10){a[n]=data[[colnum]][n]/data[[colnum]][n-9]-1}
if(lubridate::month(data[[coldate]][[n]])==11){a[n]=data[[colnum]][n]/data[[colnum]][n-10]-1}
if(lubridate::month(data[[coldate]][[n]])==12){a[n]=data[[colnum]][n]/data[[colnum]][n-11]-1}
n=n+1
}
return(a)
}
|
sim.brQCA<-function(qca.data, outcome="OUT", conditions=c(""), sim=10, ncut=2, type="crisp", inclcut = "", neg.out=FALSE, verbose=TRUE){
ptm <- proc.time()
if (all(conditions == c(""))) {
conditions <- names(qca.data[,!(names(qca.data) %in% outcome)])
}
if (inclcut == ""){
inclcut<-seq(from=.5, to = 1, by=.01)
}
pop<-dim(qca.data)[1]
rows<-sim*length(ncut)*length(inclcut)*length(pop)*2
out<-qca.data[,outcome]
qca.data<-qca.data[,!(names(qca.data) %in% outcome)]
data<-data.frame(CTH=0,CNTH=0,CPI=0,NTH=0,OUT=rep(NA,rows))
kk<-0
for (j in 1:sim) {
for (k in 1:length(inclcut)){
for (n in ncut){
kk<-kk+1
data[kk,1]<-inclcut[k]
data[kk,2]<-n
data[kk,4]<-pop
s.qca.data<-qca.data
if (type=="crisp"){
for (i in 1:length(qca.data)){
prob<-c(sum(qca.data[,i]==0)/(dim(qca.data)[1]),sum(qca.data[,i]==1)/dim(qca.data)[1])
s.qca.data[,i]<-sample(c(0,1),pop,prob=prob,replace=TRUE)}
prob<-c(sum(out==0)/(length(out)),sum(out==1)/length(out))
s.qca.data$OUT<-sample(c(0,1),pop,prob=prob,replace=TRUE)
}
if (type == "fuzzy"){
for (i in 1:length(qca.data)){
ranges<-seq(from=0.1, to=1, by=.1)
prob<-hist(qca.data[,i])[[2]]/dim(qca.data)[1]
s.qca.data[,i]<-sample(ranges,pop,prob=prob,replace=TRUE)
}
prob<-hist(out)[[2]]/length(out)
s.qca.data$OUT<-sample(ranges,pop,prob=prob,replace=TRUE)
}
parsimonious <- tryCatch(
minimize(s.qca.data, outcome=c("OUT"), n.cut=n, incl.cut=inclcut[k], include = "?", neg.out=neg.out,
conditions= c(names(s.qca.data[,!(names(s.qca.data) %in% 'OUT')])),details = TRUE, show.cases = TRUE),
error=function(e) e
)
if(!inherits(parsimonious, "error")){
data[kk,5]<-1
data[kk,3]<-0
}
if(inherits(parsimonious, "error")){
data[kk,5]<-0
data[kk,3]<-0
}
kk<-kk+1
data[kk,1]<-inclcut[k]
data[kk,2]<-n
data[kk,4]<-pop
complex <- tryCatch(
minimize(s.qca.data, outcome=c("OUT"), n.cut=n, incl.cut=inclcut[k], neg.out=neg.out,
conditions = c(names(s.qca.data[,!(names(s.qca.data) %in% 'OUT')])), details = TRUE, show.cases = TRUE),
error=function(e) e
)
if(!inherits(complex, "error")){
data[kk,5]<-1
data[kk,3]<-1
}
if(inherits(complex, "error")){
data[kk,5]<-0
data[kk,3]<-1
}
captureError<-tryCatch(truthTable(s.qca.data, outcome=c("OUT"), n.cut=n, incl.cut=inclcut[k], neg.out=neg.out,
conditions= c(names(s.qca.data[,!(names(s.qca.data) %in% 'OUT')])),details = TRUE, show.cases = TRUE)[[1]][,1], error=function(e) e)
if (verbose == T){
print(paste(round(100*kk/rows, digits=2),"% done", sep=""))
print(proc.time()-ptm)
flush.console()}
}}}
return(data)
}
|
rowDist <- function(x, method) {
MethOpts <- c("cosine", "euclidean", "maximum", "manhattan", "canberra", "binary",
"pearson", "correlation", "spearman", "kendall", "abspearson", "abscorrelation")
amapMeth <- MethOpts[-1]
method <- match.arg(method, MethOpts)
if (method %in% amapMeth) {
if (!requireNamespace("amap", quietly = TRUE)) {
stop("You need to install package amap to use this distance option")
}
distance <- amap::Dist(x, method = method)
}
if (method == "cosine") {
distance <- as.dist(1 - (x %*% t(x) / (sqrt(rowSums(x^2) %*% t(rowSums(x^2))))))
}
distance
}
|
P.units <- function(units=NULL) {
if(is.null(units)) return(get("thermo", CHNOSZ)$opt$P.units)
units <- tolower(units)
if(!units %in% c("bar","mpa")) stop("units of pressure must be either bar or MPa")
if(units=="bar") with(CHNOSZ, thermo$opt$P.units <- "bar")
if(units=="mpa") with(CHNOSZ, thermo$opt$P.units <- "MPa")
message("changed pressure units to ", get("thermo", CHNOSZ)$opt$P.units)
}
T.units <- function(units=NULL) {
if(is.null(units)) return(get("thermo", CHNOSZ)$opt$T.units)
units <- tolower(units)
if(!units %in% c("c","k")) stop("units of temperature must be either C or K")
if(units=="c") with(CHNOSZ, thermo$opt$T.units <- "C")
if(units=="k") with(CHNOSZ, thermo$opt$T.units <- "K")
message("changed temperature units to ", get("thermo", CHNOSZ)$opt$T.units)
}
E.units <- function(units=NULL) {
if(is.null(units)) return(get("thermo", CHNOSZ)$opt$E.units)
units <- tolower(units)
if(!units %in% c("cal","j")) stop("units of energy must be either cal or J")
if(units=="cal") with(CHNOSZ, thermo$opt$E.units <- "cal")
if(units=="j") with(CHNOSZ, thermo$opt$E.units <- "J")
message("changed energy units to ", get("thermo", CHNOSZ)$opt$E.units)
}
convert <- function(value, units, T=298.15,
P=1, pH=7, logaH2O=0) {
if(is.list(value) & !is.data.frame(value)) {
if(!isTRUE(value$fun %in% c("solubility", "solubilities"))) stop("'value' is a list but is not the output from solubility()")
if(!is.character(units)) stop("please specify a character argument for the destination units (e.g. ppm or logppm)")
element <- value$in.terms.of
if(is.null(element)) element <- value$balance
grams.per.mole <- mass(element)
message(paste("solubility: converting to", units, "by weight using the mass of", element))
ppfun <- function(loga, units, grams.per.mole) {
moles <- 10^loga
grams <- moles * grams.per.mole
ppx <- NULL
if(grepl("ppt", units)) ppx <- grams * 1e0
if(grepl("ppm", units)) ppx <- grams * 1e3
if(grepl("ppb", units)) ppx <- grams * 1e6
if(is.null(ppx)) stop(paste("units", units, "not available for conversion"))
if(grepl("log", units)) ppx <- log10(ppx)
ppx
}
value$loga.balance <- ppfun(value$loga.balance, units, grams.per.mole)
value$loga.equil <- lapply(value$loga.equil, ppfun, units = units, grams.per.mole = grams.per.mole)
value$fun <- paste(value$fun, units, sep = ".")
return(value)
}
if(is.null(value)) return(NULL)
if(!is.character(units)) stop(paste('convert: please specify',
'a character argument for the destination units.\n',
'possibilities include (G or logK) (C or K) (J or cal) (cm3bar or calories) (Eh or pe)\n',
'or their lowercase equivalents.\n'),call.=FALSE)
Units <- units
units <- tolower(units)
if(units %in% c('c','k')) {
CK <- 273.15
if(units=='k') value <- value + CK
if(units=='c') value <- value - CK
}
else if(units[1] %in% c('j','cal')) {
Jcal <- 4.184
if(units=='j') value <- value * Jcal
if(units=='cal') value <- value / Jcal
}
else if(units %in% c('g','logk')) {
R <- 1.9872
if(units=='logk') value <- value / (-log(10) * R * T)
if(units=='g') value <- value * (-log(10) * R * T)
}
else if(units %in% c('cm3bar','calories')) {
if(units=='cm3bar') value <- convert(value,'J') * 10
if(units=='calories') value <- convert(value,'cal') / 10
}
else if(units %in% c('eh','pe')) {
R <- 0.00831470
F <- 96.4935
if(units=='pe') value <- value * F / ( log(10) * R * T )
if(units=='eh') value <- value * ( log(10) * R * T ) / F
}
else if(units %in% c('bar','mpa')) {
barmpa <- 10
if(units=='mpa') value <- value / barmpa
if(units=='bar') value <- value * barmpa
}
else if(units %in% c('e0','logfo2')) {
supcrt.out <- suppressMessages(subcrt(c("H2O", "oxygen", "H+", "e-"), c(-1, 0.5, 2, 2), T=T, P=P, convert=FALSE))
if(units=='logfo2') value <- 2*(supcrt.out$out$logK + logaH2O + 2*pH + 2*(convert(value,'pe',T=T)))
if(units=='e0') value <- convert(( -supcrt.out$out$logK - 2*pH + value/2 - logaH2O )/2, 'Eh',T=T)
}
else cat(paste('convert: no conversion to ',Units,' found.\n',sep=''))
return(value)
}
outvert <- function(value,units) {
units <- tolower(units)
opt <- get("thermo", CHNOSZ)$opt
if(units %in% c('c','k')) {
if(units=='c' & opt$T.units=='K') return(convert(value,'k'))
if(units=='k' & opt$T.units=='C') return(convert(value,'c'))
}
if(units %in% c('j','cal')) {
if(units=='j' & opt$E.units=='Cal') return(convert(value,'cal'))
if(units=='cal' & opt$E.units=='J') return(convert(value,'j'))
}
if(units %in% c('bar','mpa')) {
if(units=='mpa' & opt$P.units=='bar') return(convert(value,'bar'))
if(units=='bar' & opt$P.units=='MPa') return(convert(value,'mpa'))
}
return(value)
}
envert <- function(value,units) {
if(!is.numeric(value[1])) return(value)
units <- tolower(units)
opt <- get("thermo", CHNOSZ)$opt
if(units %in% c('c','k','t.units')) {
if(units=='c' & opt$T.units=='K') return(convert(value,'c'))
if(units=='k' & opt$T.units=='C') return(convert(value,'k'))
}
if(units %in% c('j','cal','e.units')) {
if(units=='j' & opt$T.units=='Cal') return(convert(value,'j'))
if(units=='cal' & opt$T.units=='J') return(convert(value,'cal'))
}
if(units %in% c('bar','mpa','p.units')) {
if(units=='mpa' & opt$P.units=='bar') return(convert(value,'mpa'))
if(units=='bar' & opt$P.units=='MPa') return(convert(value,'bar'))
}
return(value)
}
|
"predict.obliqueRF" <-
function(object, newdata, type="response", proximity=F, ...)
{
if (!inherits(object, "obliqueRF"))
stop("object not of class obliqueRF")
if (is.null(object$trees)) stop("No trees in the object")
if ( object$type != "classification" )
stop("right now predict supports only (binary) classification")
typeOK=switch(type,response="ok",prob="ok",votes="ok","notok");
if(typeOK=="notok")
stop("specified type is not valid, choose one of \"prob\", \"votes\" or \"response\"; aborting...");
ntree=object$ntree;
num_classes=object$num_classes
num_samples=nrow(newdata);
newdata_class_votes<-matrix(0, num_classes, num_samples);
if(!is.matrix(newdata))
newdata<-as.matrix(newdata);
if(proximity)
proxM=matrix(NA,num_samples,ntree);
for(currTree in 1:ntree)
{
tree=object$trees[[currTree]];
node_classIdx=tree$node_class+1;
for(M in 1:num_samples)
{
curr_node=1;
for(i in 1:(tree$total_nr_nodes))
{
if(tree$node_status[curr_node]==-1)
{
newdata_class_votes[node_classIdx[curr_node],M]=
newdata_class_votes[node_classIdx[curr_node],M]+1;
if(proximity)
proxM[M,currTree]<-curr_node
break;
}
dset<-newdata[M, tree$best_vars[,curr_node]];
score=sum(tree$training_stats[,curr_node]*dset);
if(score<tree$best_split_value[curr_node])
{
curr_node=tree$treemap[1, curr_node]
}
else
{
curr_node=tree$treemap[2, curr_node];
}
}
}
}
totalVotes=ntree;
pred=c();
if(type=="response")
pred=object$class_names[1+((newdata_class_votes[2,]/totalVotes)>0.5)*1];
if(type=="prob"){
pred=t(newdata_class_votes/totalVotes);
colnames(pred)<-object$class_names
}
if(type=="votes"){
pred=t(newdata_class_votes);
colnames(pred)<-object$class_names
}
if(!proximity)
{
res<-pred;
}
else
{
node_counts<-matrix(0,num_samples,num_samples)
for(op in 1:ntree){
tabl<-table(proxM[,op])
mults<-as.numeric(names(tabl)[tabl>1])
for(mi in mults){
wh<-which(proxM[,op]==mi)
node_counts[wh, wh]<-node_counts[wh, wh] +1
}
}
node_counts<-node_counts/ntree;
res<-list( pred=pred, proximity=node_counts);
}
return(res);
}
|
mag2flux=function( mag, zero_pt=21.10, ABwave=F) {
if(!missing(ABwave))
return(10^(-0.4*(mag + 2.406 + 5*log10(ABwave))))
else
return(10^(-0.4*( mag + zero_pt)))
}
|
define_searchrequest_custom <- function(request, negate, use_uid, esearch,
handle) {
if (isTRUE(esearch)) {
esearch_string = "RETURN () "
} else {
esearch_string = NULL
}
if (isTRUE(use_uid)) {
use_uid_string = "UID "
} else {
use_uid_string = NULL
}
if (isTRUE(negate)) {
negate_string = "NOT "
} else {
negate_string = NULL
}
customrequest = paste0(use_uid_string, "SEARCH ", esearch_string, negate_string, "(", request, ")")
tryCatch({
curl::handle_setopt(
handle = handle,
customrequest = customrequest)
}, error = function(e){
stop("The connection handle is dead. Please, configure a new IMAP connection with ImapCon$new().")
})
return(c(handle = handle, customrequest = customrequest))
}
|
length.rpqueue <- function(x) {
return(length(x$l) + length(x$r))
}
|
context("utils-data-sampler")
test_that("sampler's lenght", {
x <- torch_randn(1000, 10)
y <- torch_randn(1000)
data <- tensor_dataset(x, y)
sampler <- SequentialSampler$new(data)
expect_length(sampler, 1000)
sampler <- RandomSampler$new(data, num_samples = 10)
expect_length(sampler, 10)
sampler <- RandomSampler$new(data)
expect_length(sampler, 1000)
batch <- BatchSampler$new(sampler = sampler, batch_size = 32, drop_last = TRUE)
expect_length(batch, 1000 %/% 32)
batch <- BatchSampler$new(sampler = sampler, batch_size = 32, drop_last = FALSE)
expect_length(batch, 1000 %/% 32 + 1)
batch <- BatchSampler$new(sampler = sampler, batch_size = 100, drop_last = FALSE)
expect_length(batch, 10)
batch <- BatchSampler$new(sampler = sampler, batch_size = 1000, drop_last = FALSE)
expect_length(batch, 1)
batch <- BatchSampler$new(sampler = sampler, batch_size = 1001, drop_last = FALSE)
expect_length(batch, 1)
batch <- BatchSampler$new(sampler = sampler, batch_size = 1001, drop_last = TRUE)
expect_length(batch, 0)
})
test_that("Random sampler, replacement = TRUE", {
x <- torch_randn(2, 10)
y <- torch_randn(2)
data <- tensor_dataset(x, y)
x <- RandomSampler$new(data, replacement = TRUE)
it <- x$.iter()
for (i in 1:length(x)) {
k <- it()
expect_true(k <= 2 && k >= 1)
}
expect_equal(it(), coro::exhausted())
})
test_that("Batch sampler", {
x <- torch_randn(100, 10)
y <- torch_randn(2)
data <- tensor_dataset(x, y)
r <- RandomSampler$new(data, replacement = FALSE)
x <- BatchSampler$new(r, 32, TRUE)
it <- x$.iter()
expect_length(it(), 32)
expect_length(it(), 32)
expect_length(it(), 32)
expect_equal(it(), coro::exhausted())
})
|
rate_adjustment<-function(data = data){
rate <- function(T,temp_cmin,temp_cmax,ro){ro*T*(T-temp_cmin)*(temp_cmax-T)/(((temp_cmin+temp_cmax+sqrt((temp_cmin+temp_cmax)^2-
3*temp_cmin*temp_cmax))/3)*(((temp_cmin+temp_cmax+sqrt((temp_cmin+temp_cmax)^2-3*temp_cmin*temp_cmax))/3)-temp_cmin)*
(temp_cmax-((temp_cmin+temp_cmax+sqrt((temp_cmin+temp_cmax)^2-3*temp_cmin*temp_cmax))/3)))}
m <- nls2(data$R~rate(data$TA,temp_cmin,temp_cmax,ro),data=data,start=list(temp_cmin=10,temp_cmax=30,ro=0.2))
temp_cmin<- coefficients(m)[1]
temp_cmax<- coefficients(m)[2]
ro<-coefficients(m)[3]
Top<- (temp_cmin+temp_cmax+sqrt((temp_cmin+temp_cmax)^2-3*temp_cmin*temp_cmax))/3
s<- seq(temp_cmin,temp_cmax)
r<- ro*s*(s-temp_cmin)*(temp_cmax-s)/(((temp_cmin+temp_cmax+sqrt((temp_cmin+temp_cmax)^2-
3*temp_cmin*temp_cmax))/3)*(((temp_cmin+temp_cmax+sqrt((temp_cmin+temp_cmax)^2-
3*temp_cmin*temp_cmax))/3)-temp_cmin)*(temp_cmax-((temp_cmin+temp_cmax+
sqrt((temp_cmin+temp_cmax)^2-3*temp_cmin*temp_cmax))/3)))
plot(s,r,xlab="Temperature", ylab="r(T)",
main="Intrinsic growth rate", xlim = c(temp_cmin, temp_cmax),
ylim = c(0, ro), type="l",lty=c(1),cex.axis=1.5,
tcl=-0.7,las=0, cex.main=2,bty="n",cex=1.5,lwd=2,cex.lab=1.5,lwd.ticks=2)
par(new=TRUE)
plot(data$TA,data$R,xlab = "",ylab = "", xlim = c(temp_cmin, temp_cmax), ylim = c(0, ro), axes=FALSE,lwd=2)
axis(side=1,at=c(-20,100),col="black",lwd=3)
axis(side=2,at=c(-20,100),col="black",lwd=3)
as.list(c(temp_cmin,temp_cmax,ro))
}
|
library(raster)
library(usethis)
nlcd_bbox = extent(c(1249650, 1270000, 1246800, 1260000))
nlcd_filepath = "your_path"
augusta_nlcd = crop(raster(nlcd_filepath), nlcd_bbox)
plot(augusta_nlcd)
usethis::use_data(augusta_nlcd)
ccilc_bbox = extent(c(22.23, 23.5, 52.8, 53.83))
ccilc_filepath = "your_path"
podlasie_ccilc = crop(raster(ccilc_filepath, band = 24), ccilc_bbox)
plot(podlasie_ccilc)
usethis::use_data(podlasie_ccilc)
|
interlayer_callnextinterlayer <- function(next.interlayers, LL.params, LL.function.sum, ...){
all.other.args <- list(...)
interlayer.call.args <- list(next.interlayers = next.interlayers[-1],
LL.params = LL.params,
LL.function.sum = LL.function.sum)
interlayer.call.args <- modifyList(interlayer.call.args, all.other.args)
return(do.call(what = next.interlayers[[1]], args = interlayer.call.args))
}
|
context("wbt_quantiles")
test_that("Transforms raster values into quantiles", {
skip_on_cran()
skip_if_not(check_whitebox_binary())
dem <- system.file("extdata", "DEM.tif", package = "whitebox")
ret <- wbt_quantiles(input = dem, output = "output.tif")
expect_match(ret, "Elapsed Time")
})
|
html_coefs <- function(x){
coefs <- coef(summary(x))
Signif <- symnum(coefs[, 'Pr(>|z|)'], corr = FALSE, na = FALSE,
cutpoints = c(0, 0.001, 0.01, 0.05, 0.1, 1),
symbols = c("***", "**", "*", ".", " "), legend = FALSE)
df <- data.frame(Name = rownames(coefs), Value = coefs[, 'Estimate'], Level = Signif)
rownames(df) <- NULL
a <- print(xtable(df), type = "html", html.table.attributes = "class = 'table table-condensed'", include.rownames = FALSE, include.colnames = FALSE, print.results = FALSE)
a <- gsub(' \\*\\*\\* ', '<span class="label label-table label-primary">0.1%</span>', a)
a <- gsub(' \\*\\* ', '<span class="label label-table label-info">1%</span>', a)
a <- gsub(' \\* ', '<span class="label label-table label-mint">5%</span>', a)
a <- gsub(' \\. ', '<span class="label label-table label-default">10%</span>', a)
a
}
html_stats <- function(x, digits = 5){
x <- summary(x)
class(x) <- "seas"
z <- list()
if (!is.null(x$spc$seats)){
z <- c(z, list(c("Adjustment", "SEATS")))
}
if (!is.null(x$spc$x11)){
z <- c(z, list(c("Adjustment", "X11")))
}
z <- c(z, list(
c("ARIMA", x$model$arima$model),
c("Obs.", formatC(nobs(x), format = "d")),
c("Transform", x$transform.function),
c("AICc", formatC(unname(seasonal::udg(x, "aicc")), digits = digits)),
c("BIC", formatC(BIC(x), digits = digits))
)
)
df <- data.frame(do.call(rbind, z))
a <- print(xtable(df), type = "html", html.table.attributes = "class = 'table table-condensed'", include.rownames = FALSE, include.colnames = FALSE, print.results = FALSE)
a
}
html_tests <- function(x, digits = 4){
x <- summary(x)
z <- list()
qsv <- x$qsv
qsstars <- symnum(as.numeric(qsv['p-val']),
corr = FALSE, na = FALSE, legend = FALSE,
cutpoints = c(0, 0.001, 0.01, 0.05, 0.1, 1),
symbols = c("***", "**", "*", ".", " "))
z <- c(z, list(c("QS (H0: no seasonality in final series)", formatC(as.numeric(qsv['qs']), digits = digits), qsstars)))
if (!is.null(x$resid)){
bltest <- Box.test(x$resid, lag = 24, type = "Ljung")
blstars <- symnum(bltest$p.value,
corr = FALSE, na = FALSE, legend = FALSE,
cutpoints = c(0, 0.001, 0.01, 0.05, 0.1, 1),
symbols = c("***", "**", "*", ".", " "))
z <- c(z, list(c("Box-Ljung (H0: no residual autocorrelation)",
formatC(bltest$statistic, digits = digits), blstars)))
swtest <- shapiro.test(x$resid)
swstars <- symnum(swtest$p.value,
corr = FALSE, na = FALSE, legend = FALSE,
cutpoints = c(0, 0.001, 0.01, 0.05, 0.1, 1),
symbols = c("***", "**", "*", ".", " "))
z <- c(z, list(c("Shapiro (H0: normal distr. of residuals)", formatC(swtest$statistic, digits = digits), swstars)))
}
df <- data.frame(do.call(rbind, z))
a <- print(xtable(df), type = "html", html.table.attributes = "class = 'table table-condensed'", include.rownames = FALSE, include.colnames = FALSE, print.results = FALSE)
a <- gsub(' \\*\\*\\* ', '<span class="label label-table label-error">0.1%</span>', a)
a <- gsub(' \\*\\* ', '<span class="label label-table label-error">1%</span>', a)
a <- gsub(' \\* ', '<span class="label label-table label-warning">5%</span>', a)
a <- gsub(' \\. ', '<span class="label label-table label-default">10%</span>', a)
a <- gsub('\\(', '<br><small class="text-muted">', a)
a <- gsub('\\)', '</small>', a)
a
}
|
testthat::test_that("a minimal LimeSurvey TSV file can be imported", {
lsrv <-
limonaid::ls_read_tsv(
system.file(
"extdata",
"export-of-survey-with-one-question-as-tsv.txt",
package = "limonaid"
)
);
limonaid::ls_tsv_get_rows(lsrv, class = "S");
limonaid::ls_tsv_get_rows(lsrv, class = "SL")['name']
testthat::expect_equal(nrow(lsrv), 72);
})
testthat::test_that("a minimal LimeSurvey TSV file in two languages can be imported", {
lsrv <-
limonaid::ls_read_tsv(
system.file(
"extdata",
"export-of-en-and-nl-survey-with-one-question-as-tsv.txt",
package = "limonaid"
)
);
limonaid::ls_tsv_get_rows(lsrv, class = "S");
limonaid::ls_tsv_get_rows(lsrv, class = "SL")
testthat::expect_equal(nrow(lsrv), 96);
})
testthat::test_that("a more extensive LimeSurvey TSV file can be imported", {
lsrv <-
limonaid::ls_read_tsv(
system.file(
"extdata",
"export-of-minimal-survey-as-tsv.txt",
package = "limonaid"
)
);
limonaid::ls_tsv_get_rows(lsrv, class = "S");
limonaid::ls_tsv_get_rows(lsrv, class = "SL")['name']
limonaid::ls_tsv_get_rows(lsrv, name = "nrOfDMQs")
testthat::expect_equal(nrow(lsrv), 312);
})
dontRun <- expression({
yourCOVID19riskPath <-
"B:/Data/ABC/your-risk.com/your-covid-19-risk/operationalizations/limesurvey/during-development";
lsrv <-
limonaid::ls_read_tsv(
file.path(yourCOVID19riskPath,
"test-of-survey-with-hidden-equation.txt")
);
limonaid::ls_tsv_get_rows(lsrv, class = "Q");
})
|
bed.matrix.split.genomic.region = function( x, changeID=TRUE, genomic.region=NULL, split.pattern="," )
{
if (is.null(genomic.region) & !("genomic.region" %in% colnames(x@snps))) stop("genomic.region should be provided or already in x@snps")
if (!is.null(genomic.region)){
if(nrow(x@snps)!=length(genomic.region)) stop("genomic.region should have the same length as the number of markers in x")
if("genomic.region" %in% colnames(x@snps)) warning("genomic.region was already in x@snps, x@snps will be replaced.\n")
x@snps$genomic.region=genomic.region
}
if(is.factor(x@snps$genomic.region)) x@snps$genomic.region <- as.character(x@snps$genomic.region)
genomic.region.split = strsplit(x@snps$genomic.region, split.pattern)
n.genomic.regions = sapply(genomic.region.split,length)
if (!any(n.genomic.regions>1))
warning("no any marker is annotated to multiple genomic regions")
nn = unlist(mapply( 1:length(n.genomic.regions) , FUN=rep , n.genomic.regions ))
bim = x@snps[nn,] ; row.names(bim)=NULL
bim$genomic.region = factor(unlist(genomic.region.split), levels = unique(unlist(genomic.region.split)))
if (changeID) { bim$id = paste(bim$chr,bim$pos,bim$A1,bim$A2,bim$genomic.region,sep=":") }
y = as.bed.matrix( x=gaston::as.matrix(x)[,nn] , fam=x@ped , bim=bim )
return(y)
}
|
expected <- eval(parse(text="structure(list(trace = 0, fnscale = 1, parscale = 1, ndeps = 0.001, maxit = 100L, abstol = -Inf, reltol = 1.49011611938477e-08, alpha = 1, beta = 0.5, gamma = 2, REPORT = 10, type = 1, lmm = 5, factr = 1e+07, pgtol = 0, tmax = 10, temp = 10), .Names = c(\"trace\", \"fnscale\", \"parscale\", \"ndeps\", \"maxit\", \"abstol\", \"reltol\", \"alpha\", \"beta\", \"gamma\", \"REPORT\", \"type\", \"lmm\", \"factr\", \"pgtol\", \"tmax\", \"temp\"))"));
test(id=0, code={
argv <- eval(parse(text="list(trace = 0, fnscale = 1, parscale = 1, ndeps = 0.001, maxit = 100L, abstol = -Inf, reltol = 1.49011611938477e-08, alpha = 1, beta = 0.5, gamma = 2, REPORT = 10, type = 1, lmm = 5, factr = 1e+07, pgtol = 0, tmax = 10, temp = 10)"));
do.call(`list`, argv);
}, o=expected);
|
sim.GeometricAvg <- function(zm, q.ga,...){
results <- q.ga(zm,...)
if(length(results)==7){
zm <- results[[5]]
Y <- results[[7]]
}
else{
Y <- results[[1]]
}
cv.matrix = c()
expectations = c()
prodSt <- results[[4]]
bs_asian_geom_results <- BS_Asian_geom(...)
ti <- bs_asian_geom_results[[2]]
d = length(ti)
Z<-exp(-bs_asian_geom_results[[3]]*ti[d])*pmax(prodSt^(1/d)-bs_asian_geom_results[[4]],0)
cv.matrix <- cbind(Z, cv.matrix)
expectations <- c(bs_asian_geom_results[[1]], expectations)
lm.matrix <- cbind(Y, cv.matrix)
model <- lm(lm.matrix[,1]~.,
data = data.frame(lm.matrix[,-1]))
coeffs <- model$coefficients[-1]
Y = Y - (coeffs*(Z - expectations))
if(length(results)==7){
Y <- Y * results[[6]]
results[[6]] <- 1
}
results[[1]] <- Y
return(results)
}
|
get_s_to_ns <- function(Alist, Blist, seeds, nonseeds,
perm = seq(sum(seeds))) {
nns <- nrow(nonseeds)
ns <- nrow(seeds)
pmat <- Matrix::Diagonal(nns, )[perm, ]
s_to_ns <- function(A,B){
Asn <- A[seeds$A,nonseeds$A]
Ans <- A[nonseeds$A,seeds$A]
Bsn <- B[seeds$B,nonseeds$B] %*% t(pmat)
Bns <- pmat %*% B[nonseeds$B,seeds$B]
tcrossprod(Ans, Bns) + crossprod(Asn, Bsn)
}
if (!is(Alist, "list")){
return(s_to_ns(Alist, Blist))
}
nc <- length(Alist)
s2ns <- Matrix(0, nrow = nns, ncol = nns)
for (ch in 1:nc){
s2ns <- s2ns + s_to_ns(Alist[[ch]], Blist[[ch]])
gc()
}
s2ns
}
|
as_grain <- function(x) {
stopifnot(inherits(x, "bnc_bn"))
if (is.null(x$.grain)) {
compile_grain(params(x))
}
else {
x$.grain
}
}
compute_grain_log_joint <- function(grain, dataset, class) {
if (!requireNamespace("gRain", quietly = TRUE)) {
stop("gRain needed for this function to work. Please install it.",
call. = FALSE)
}
stopifnot(is_grain_compiled(grain))
check_dataset(dataset)
stopifnot(nrow(dataset) > 0)
if (class %in% colnames(dataset)) {
dataset <- dataset[, setdiff(colnames(dataset), class), drop = FALSE]
}
cp <- t(apply(dataset, 1, compute_grain_log_joint_instance, grain, class))
rownames(cp) <- NULL
cp
}
compute_grain_log_joint_instance <- function(instance, grain, class) {
if (!requireNamespace("gRain", quietly = TRUE)) {
stop("gRain needed for this function to work. Please install it.",
call. = FALSE)
}
stopifnot(is.character(instance))
instance <- instance[!is.na(instance)]
vars <- intersect(names(instance), grain_nodes(grain))
instance <- instance[vars]
check_class(class)
stopifnot(!(class %in% vars))
if (length(instance) > 0) {
grain <- gRain::setEvidence(grain, nodes = vars, states = instance)
}
cp <- gRain::querygrain(grain, nodes = class, normalize = TRUE)[[class]]
cp <- log(cp)
if (length(vars) > 0) {
cp <- cp + log(gRain::pEvidence(grain))
}
cp
}
compile_grain <- function(cpts) {
if (!requireNamespace("gRain", quietly = TRUE)) {
stop("gRain needed for this function to work. Please install it.",
call. = FALSE)
}
if (!requireNamespace("gRbase", quietly = TRUE)) {
stop("gRbase needed for this function to work. Please install it.",
call. = FALSE)
}
stopifnot(is.list(cpts))
pcpts <- lapply(cpts, gRbase::as.parray, normalize = "none", smooth = 0)
all_eq <- mapply(equivalent_num, cpts, pcpts, SIMPLIFY = TRUE)
stopifnot(vapply(all_eq, isTRUE, FUN.VALUE = logical(1)))
gRain::grain.CPTspec(gRain::compileCPT(pcpts))
}
is_grain_compiled <- function(g) {
if (!requireNamespace("gRain", quietly = TRUE)) {
stop("gRain needed for this function to work. Please install it.",
call. = FALSE)
}
inherits(g, "grain") && g$isCompiled
}
grain_nodes <- function(g) {
g$universe$nodes
}
|
volcano <- function(x, ...){
UseMethod("volcano")
}
volcano.default <- function(x, pval, effect0 = 0, sig.level = 0.05,
effect.low = NULL, effect.high = NULL,
color.low = "
xlab = "effect size", ylab = "-log10(p value)",
title = "Volcano Plot", alpha = 1, shape = 19, ...){
effect <- x
stopifnot(is.numeric(effect), is.numeric(pval))
stopifnot(all(pval > 0), all(pval <= 1))
stopifnot(length(effect0) == 1)
stopifnot(length(sig.level) == 1)
stopifnot(sig.level > 0, sig.level < 1)
if(!is.null(effect.low) & !is.null(effect.high))
stopifnot(length(effect.low) == 1, length(effect.high) == 1,
effect.low < effect.high)
stopifnot(length(color.low) == 1, length(color.high) == 1)
if(!is.null(effect.low)){
low <- effect < effect.low & pval < sig.level
}else{
low <- logical(length(effect))
}
if(!is.null(effect.high)){
high <- effect > effect.high & pval < sig.level
}else{
high <- logical(length(effect))
}
effect.color <- ifelse(low, "low", "normal")
effect.color[high] <- "high"
effect.color <- factor(effect.color, levels = c("low", "normal", "high"))
effect.color <- factor(effect.color)
DF <- data.frame(effect = effect, pval = pval, col = effect.color)
if(is.null(effect.low) & is.null(effect.high)){
gg <- ggplot(DF, aes(x = effect, y = pval)) +
geom_point(alpha = alpha, shape = shape) + scale_y_neglog10() +
geom_vline(xintercept = effect0) +
geom_vline(xintercept = c(effect.low, effect.high),
color = c(color.low, color.high)) +
geom_hline(yintercept = sig.level) +
labs(x = xlab, y = ylab) +
ggtitle(title)
}else{
gg <- ggplot(DF, aes(x = effect, y = pval, color = col)) +
geom_point(alpha = alpha, shape = shape) + scale_y_neglog10() +
scale_color_manual(values = c("low" = color.low,
"normal" = "black",
"high" = color.high)) +
geom_vline(xintercept = effect0) +
geom_vline(xintercept = c(effect.low, effect.high),
color = c(color.low, color.high)) +
geom_hline(yintercept = sig.level) +
labs(x = xlab, y = ylab) +
ggtitle(title)
}
gg
}
|
.zpss_mle <- function(par, values, freq, truncated = TRUE) {
alpha <- par[1]
lambda <- par[2]
probs <- .panjerRecursion(max(values), alpha, lambda)
if (truncated) {
probs <- (probs) / (1 - probs[1])
probs <- probs[-1]
return(- (sum(freq * log(probs[values]))))
}
return(- (sum(freq * log(probs[values+1]))))
}
zipfpssFit <- function(data, init_alpha = NULL, init_lambda = NULL, level=0.95, isTruncated = FALSE, ...){
Call <- match.call()
if(is.null(init_alpha) || is.null(init_lambda)){
if(isTruncated){
model <- 'zt_zipfpss'
} else {
model <- 'zipfpss'
}
initValues <- getInitialValues(data, model = model)
init_alpha <- initValues$init_alpha
init_lambda <- initValues$init_lambda
}
if(!is.numeric(init_alpha) || !is.numeric(init_lambda)){
stop('Wrong intial values for the parameters.')
}
tryCatch({
res <- stats::optim(par = c(init_alpha, init_lambda), .zpss_mle,
values = as.numeric(as.character(data[, 1])),
freq = as.numeric(data[, 2]),
truncated = isTruncated, hessian = TRUE, ...)
estAlpha <- as.numeric(res$par[1])
estLambda <- as.numeric(res$par[2])
paramSD <- sqrt(diag(solve(res$hessian)))
paramsCI <- .getConfidenceIntervals(paramSD, estAlpha, estLambda, level)
structure(class = "zipfpssR", list(alphaHat = estAlpha,
lambdaHat = estLambda,
alphaSD = paramSD[1],
lambdaSD = paramSD[2],
alphaCI = c(paramsCI[1,1],paramsCI[1,2]),
lambdaCI = c(paramsCI[2,1],paramsCI[2,2]),
logLikelihood = -res$value,
hessian = res$hessian,
call = Call))
}, error = function(e){
print(c('Error', e))
})
}
residuals.zipfpssR <- function(object, isTruncated = FALSE, ...){
dataMatrix <- get(as.character(object[['call']]$data))
dataMatrix[,1] <- as.numeric(as.character(dataMatrix[,1]))
dataMatrix[,2] <-as.numeric(as.character(dataMatrix[,2]))
fitted.values <- fitted(object, isTruncated)
residual.values <- dataMatrix[, 2] - fitted.values
return(residual.values)
}
fitted.zipfpssR <- function(object, isTruncated = FALSE, ...) {
dataMatrix <- get(as.character(object[['call']]$data))
dataMatrix[,1] <- as.numeric(as.character(dataMatrix[,1]))
dataMatrix[,2] <-as.numeric(as.character(dataMatrix[,2]))
N <- sum(dataMatrix[, 2])
fitted.values <- N*sapply(dataMatrix[,1], dzipfpss,
alpha = object[['alphaHat']], lambda = object[['lambdaHat']],
isTruncated = isTruncated)
return(fitted.values)
}
coef.zipfpssR <- function(object, ...){
estimation <- matrix(nrow = 2, ncol = 4)
estimation[1, ] <- c(object[['alphaHat']], object[['alphaSD']], object[['alphaCI']][1], object[['alphaCI']][2])
estimation[2, ] <- c(object[['lambdaHat']], object[['lambdaSD']], object[['lambdaCI']][1], object[['lambdaCI']][2])
colnames(estimation) <- c("MLE", "Std. Dev.", paste0("Inf. ", "95% CI"),
paste0("Sup. ", "95% CI"))
rownames(estimation) <- c("alpha", "lambda")
estimation
}
plot.zipfpssR <- function(x, isTruncated = FALSE, ...){
dataMatrix <- get(as.character(x[['call']]$data))
dataMatrix[,1] <- as.numeric(as.character(dataMatrix[,1]))
dataMatrix[,2] <-as.numeric(as.character(dataMatrix[,2]))
graphics::plot(dataMatrix[,1], dataMatrix[,2], log="xy",
xlab="Observation", ylab="Frequency",
main="Fitting Zipf-PSS Distribution", ...)
graphics::lines(dataMatrix[,1], fitted(x, isTruncated), col="blue")
graphics::legend("topright", legend = c('Observations', 'Zipf-PSS Distribution'),
col=c('black', 'blue'), pch=c(21,NA),
lty=c(NA, 1), lwd=c(NA, 2))
}
print.zipfpssR <- function(x, ...){
cat('Call:\n')
print(x[['call']])
cat('\n')
cat('Initial Values:\n')
cat(sprintf('Alpha: %s\n', format(eval(x[['call']]$init_alpha), digits = 3)))
cat(sprintf('Lambda: %s\n', format(eval(x[['call']]$init_lambda), digits = 3)))
cat('\n')
cat('Coefficients:\n')
print(coef(x))
cat('\n')
cat('Metrics:\n')
cat(sprintf('Log-likelihood: %s\n', logLik(x)))
cat(sprintf('AIC: %s\n', AIC(x)))
cat(sprintf('BIC: %s\n', BIC(x)))
}
summary.zipfpssR <- function(object, isTruncated = FALSE, ...){
print(object)
cat('\n')
cat('Fitted values:\n')
print(fitted(object, isTruncated))
}
logLik.zipfpssR <- function(object, ...){
if(!is.na(object[['logLikelihood']]) || !is.null(object[['logLikelihood']])){
return(object[['logLikelihood']])
}
return(NA)
}
AIC.zipfpssR <- function(object, ...){
aic <- .get_AIC(object[['logLikelihood']], 2)
return(aic)
}
BIC.zipfpssR <- function(object, ...){
dataMatrix <- get(as.character(object[['call']]$data))
dataMatrix[,1] <- as.numeric(as.character(dataMatrix[,1]))
dataMatrix[,2] <-as.numeric(as.character(dataMatrix[,2]))
bic <- .get_BIC(object[['logLikelihood']], 2, sum(dataMatrix[, 2]))
return(bic)
}
|
context("RequestPattern")
test_that("RequestPattern: structure is correct", {
expect_is(RequestPattern, "R6ClassGenerator")
aa <- RequestPattern$new(method = "get", uri = "https://httpbin.org/get")
expect_is(aa, "RequestPattern")
expect_null(aa$body_pattern)
expect_null(aa$headers_pattern)
expect_is(aa$clone, "function")
expect_is(aa$initialize, "function")
expect_is(aa$matches, "function")
expect_is(aa$method_pattern, "MethodPattern")
expect_is(aa$to_s, "function")
expect_is(aa$uri_pattern, "UriPattern")
})
test_that("RequestPattern: behaves as expected", {
aa <- RequestPattern$new(method = "get", uri = "https://httpbin.org/get")
rs1 <- RequestSignature$new(method = "get", uri = "https://httpbin.org/get")
rs2 <- RequestSignature$new(method = "post", uri = "https://httpbin.org/get")
rs3 <- RequestSignature$new(
method = "get",
uri = "https:/httpbin.org/get",
options = list(headers = list(`User-Agent` = "foobar", stuff = "things"))
)
expect_true(aa$matches(rs1))
expect_false(aa$matches(rs2))
expect_false(aa$matches(rs3))
expect_is(aa$to_s(), "character")
expect_match(aa$to_s(), "GET")
expect_match(aa$to_s(), "httpbin.org/get")
})
test_that("RequestPattern: uri_regex", {
x <- RequestPattern$new(method = "get", uri_regex = ".+ossref.org")
expect_is(x$uri_pattern, "UriPattern")
expect_equal(x$uri_pattern$to_s(), "https?://.+ossref.org")
expect_equal(x$to_s(), "GET https?://.+ossref.org")
})
test_that("RequestPattern fails well", {
expect_error(RequestPattern$new(), "one of uri or uri_regex is required")
x <- RequestPattern$new(method = "get", uri = "https://httpbin.org/get")
expect_error(x$matches(), "argument \"request_signature\" is missing")
expect_error(x$matches("adfadf"),
"request_signature must be of class RequestSignature")
})
context("MethodPattern")
test_that("MethodPattern: structure is correct", {
expect_is(MethodPattern, "R6ClassGenerator")
aa <- MethodPattern$new(pattern = "get")
expect_is(aa, "MethodPattern")
expect_is(aa$pattern, "character")
expect_equal(aa$pattern, "get")
expect_true(aa$matches(method = "get"))
expect_false(aa$matches(method = "post"))
expect_error(
expect_is(aa$matches(), "function"),
"argument \"method\" is missing"
)
})
context("HeadersPattern")
test_that("HeadersPattern: structure is correct", {
expect_is(HeadersPattern, "R6ClassGenerator")
aa <- HeadersPattern$new(pattern = list(a = 5))
expect_is(aa, "HeadersPattern")
expect_is(aa$pattern, "list")
expect_named(aa$pattern, "a")
expect_true(aa$matches(headers = list(a = 5)))
expect_false(aa$matches(headers = list(a = 6)))
expect_false(aa$matches(list()))
bb <- HeadersPattern$new(pattern = list())
expect_true(bb$matches(list()))
expect_error(
expect_is(aa$matches(), "function"),
"argument \"headers\" is missing"
)
expect_equal(aa$to_s(), "a=5")
})
context("BodyPattern")
test_that("BodyPattern: structure is correct", {
expect_is(BodyPattern, "R6ClassGenerator")
bb <- RequestSignature$new(
method = "get",
uri = "https:/httpbin.org/get",
options = list(
body = list(foo = "bar", a = 5)
)
)
aa <- BodyPattern$new(pattern = list(foo = "bar"))
expect_is(aa, "BodyPattern")
expect_is(aa$pattern, "list")
expect_named(aa$pattern, "foo")
expect_false(aa$matches(bb$body))
aaa <- BodyPattern$new(pattern = list(foo = "bar", a = 5))
expect_true(aaa$matches(bb$body))
bb <- BodyPattern$new(pattern = list())
expect_true(bb$matches(list()))
expect_error(
aa$matches(),
"argument \"body\" is missing"
)
expect_equal(aa$to_s(), list(foo = "bar"))
})
context("UriPattern")
test_that("UriPattern: structure is correct", {
expect_is(UriPattern, "R6ClassGenerator")
aa <- UriPattern$new(pattern = "http://foobar.com")
expect_is(aa, "UriPattern")
expect_is(aa$pattern, "character")
expect_false(aa$regex)
expect_match(aa$pattern, "foobar")
expect_true(aa$matches("http://foobar.com"))
expect_true(aa$matches("http://foobar.com/"))
expect_error(
expect_is(aa$matches(), "function"),
"argument \"uri\" is missing"
)
z <- UriPattern$new(regex_pattern = ".+ample\\..")
expect_is(z, "UriPattern")
expect_is(z$pattern, "character")
expect_true(z$regex)
expect_true(z$matches("http://sample.org"))
expect_true(z$matches("http://example.com"))
expect_false(z$matches("http://tramples.net"))
z <- UriPattern$new(pattern = "http://foobar.com")
expect_equal(z$pattern, "http://foobar.com")
z$add_query_params(list(pizza = "cheese", cheese = "cheddar"))
expect_equal(z$pattern, "http://foobar.com?pizza=cheese&cheese=cheddar")
z <- UriPattern$new(pattern = "http://foobar.com?pizza=cheese&cheese=cheddar")
expect_equal(z$pattern, "http://foobar.com?pizza=cheese&cheese=cheddar")
expect_false(z$matches("http://foobar.com?pizza=cheese&cheese=cheddar"))
z$add_query_params()
expect_true(z$matches("http://foobar.com?pizza=cheese&cheese=cheddar"))
z <- UriPattern$new(pattern = "foobar.com")
expect_equal(z$pattern, "http://foobar.com")
expect_true(z$matches("http://foobar.com"))
expect_false(z$matches("https://foobar.com"))
z <- UriPattern$new(regex_pattern = "https://x.com/.+/order?fruit=apple")
z$add_query_params()
expect_is(z, "UriPattern")
expect_is(z$pattern, "character")
expect_true(z$regex)
expect_true(z$matches("https://x.com/a/order?fruit=apple"))
expect_true(z$matches("https://x.com/b/order?fruit=apple"))
expect_false(z$matches("https://x.com/a?fruit=apple"))
})
|
NULL
NULL
"cocktails"
globalVariables(c('cocktails','votes','rating','cocktail','proportion','url','short_ingredient','unit',
'cocktail_id','coamount','amt',
'deno','deno2','rhoval',
'sum_cova','n','rat','tot_ingr','tot_has_ingr','tot_am','ncocktails',
'tstat','page_src','tst',
'has_or_must','has_and_must','has_not_must',
'matches_name','ingr_class','description',
'isfl',
'match_re_ing',
'has_ing','bad_ing',
'ck_ok',
'pct_amt',
'tot_amt','has_both','Other',
'ingredient','coingredient','cova','wts'))
my_ui <- function(page_title='Drink Schnauzer') {
utils::data("cocktails", package="cocktailApp")
indat <- cocktails
normo <- indat %>%
dplyr::group_by(short_ingredient) %>%
dplyr::summarize(tot_am=sum(proportion,na.rm=TRUE)) %>%
dplyr::ungroup() %>%
dplyr::mutate(ingr_class=cut(tot_am,breaks=c(-1,0,10,100,1000),
labels=c('garnish','uncommon-spirit','common-spirit','base-spirit'))) %>%
dplyr::arrange(tot_am,short_ingredient) %>%
dplyr::mutate(ingr_class=forcats::fct_rev(ingr_class)) %>%
dplyr::arrange(ingr_class,short_ingredient)
ingr <- (split(normo$short_ingredient,normo$ingr_class))
sources <- indat %>%
dplyr::select(url) %>%
dplyr::mutate(url=gsub('^http://(www.)?(.+).com/.+$','\\2',url)) %>%
dplyr::distinct(url)
all_source <- unique(sources$url)
if (!is.null(page_title)) {
tp_bits <- titlePanel(page_title)
} else {
tp_bits <- tagList()
}
shinyUI(
fluidPage(theme=shinytheme("spacelab"),
tags$head(
tags$script(src='test.js'),
tags$style(".table .alignRight {color: black; text-align:right;}"),
tags$link(rel="stylesheet", type="text/css", href="style.css")
),
tp_bits,
sidebarLayout(
position="left",
sidebarPanel(
width=2,
selectInput("must_have_ing","Must Have:",choices=ingr,selected=c(),multiple=TRUE),
selectInput("logical_sense","Join by:",choices=c('OR','AND'),selected='OR',multiple=FALSE),
selectInput("must_not_have_ing","Must Not Have:",choices=ingr,selected=c(),multiple=TRUE),
selectInput("from_sources","Sources:",choices=all_source,selected=all_source[grepl('diffords|kindred',all_source)],multiple=TRUE),
textInput("name_regex","Name Regex:",value='',placeholder='^sazerac'),
textInput("ing_regex","Ingredient Regex:",value='',placeholder='^[Cc]hartreus'),
helpText('Select for random cocktails:'),
checkboxInput("hobsons","Hobson's Choice!",value=FALSE),
hr(),
sliderInput("max_ingr","Maximum Ingredients:",sep='',min=1,max=20,value=6),
sliderInput("max_other_ingr","Maximum Unlisted Ingredients:",sep='',min=1,max=20,value=6),
sliderInput("min_rating","Minimum Rating",min=1,max=5,value=3.5,step=0.5),
sliderInput("min_tstat","Minimum T-Stat",min=1,max=100,value=2,step=0.25),
sliderInput("t_zero","T-Stat Zero",min=1,max=5,value=2.5,step=0.25),
hr(),
helpText('data scraped from the web'),
bookmarkButton('bookmark',title='bookmark page'),
hr()
),
mainPanel(
width=9,
tabsetPanel(
tabPanel('drinks',
helpText('Select rows from this table to see the recipe below',
'and also in the plot tab.'),
DT::dataTableOutput('drinks_table'),
hr(),
helpText('Ingredients Table:'),
tableOutput('ingredients_table')
),
tabPanel('ternary',
helpText('A ternary plot based on the first two Must Have ingredients selected.'),
plotOutput('selected_ingredients_tern_plot',height='100%',width='100%')
),
tabPanel('plots',
helpText('A bar plot of ingredients in the selected cocktails.',
'If nothing appears here, select rows of the table in the "drinks" tab to populate.'),
plotOutput('selected_ingredients_bar_plot')
),
tabPanel('other',
helpText('This is not well tested, but here one should find a table of common co-ingredients.',
'If you have selected ingredients in the "Must Have" input, other ingredients which',
'commonly co-occur should appear in this table.'),
DT::dataTableOutput('suggestions_table')
)
)
)
)
)
)
}
.applylink <- function(title,url) {
as.character(a(title,href=url,target="_blank"))
}
applylink <- function(title,url) {
as.character(mapply(.applylink,title,url))
}
.add_id <- function(recipe_df) {
subs <- recipe_df %>%
dplyr::distinct(cocktail,url) %>%
tibble::rowid_to_column(var='cocktail_id')
recipe_df %>%
dplyr::left_join(subs,by=c('cocktail','url'))
}
.distill_info <- function(recipe_df) {
cocktail_df <- recipe_df %>%
dplyr::mutate(isfl=(unit=='fl oz')) %>%
dplyr::group_by(cocktail_id) %>%
dplyr::summarize(cocktail=dplyr::first(cocktail),
rating=dplyr::first(rating),
votes=dplyr::first(votes),
url=dplyr::first(url),
tot_ingr=sum(isfl)) %>%
dplyr::ungroup() %>%
mutate(votes=as.numeric(votes)) %>%
dplyr::mutate(page_src=gsub('^http://(www.)?(.+).com/.+$','\\2',url))
}
.gen_both <- function(raw_dat=NULL) {
if (missing(raw_dat) || is.null(raw_dat)) {
utils::data("cocktails", package="cocktailApp")
raw_dat <- cocktails
}
recipe_df <- raw_dat %>%
.add_id()
cocktail_df <- recipe_df %>%
.distill_info()
list(recipe=recipe_df %>% dplyr::select(-cocktail,-rating,-votes,-url),cocktail=cocktail_df)
}
.filter_ingredients <- function(both,name_regex,must_have_ing,must_not_have_ing,
ing_regex='',logical_sense=c('AND','OR'),extra_ids=NULL) {
logical_sense <- match.arg(logical_sense)
if (nzchar(name_regex)) {
match_name <- both$cocktail %>%
dplyr::distinct(cocktail,cocktail_id) %>%
dplyr::filter(grepl(pattern=name_regex,x=cocktail,ignore.case=TRUE,perl=TRUE,fixed=FALSE)) %>%
dplyr::distinct(cocktail_id) %>%
dplyr::mutate(matches_name=nzchar(name_regex))
} else {
match_name <- tibble::tribble(~cocktail_id,~matches_name)
}
if (!is.null(extra_ids)) {
more_match <- both$cocktail %>%
dplyr::filter(cocktail_id %in% extra_ids) %>%
dplyr::select(cocktail_id) %>%
dplyr::mutate(matches_name=TRUE)
match_name <- match_name %>% rbind(more_match)
}
ok_by_ing <- both$recipe %>%
dplyr::mutate(bad_ing=(short_ingredient %in% must_not_have_ing))
if (nzchar(ing_regex)) {
ok_by_ing <- ok_by_ing %>%
dplyr::mutate(match_re_ing=grepl(pattern=ing_regex,x=short_ingredient,ignore.case=TRUE,perl=TRUE,fixed=FALSE))
} else {
ok_by_ing <- ok_by_ing %>%
dplyr::mutate(match_re_ing=FALSE)
}
if ((length(must_have_ing) > 0) || nzchar(ing_regex)) {
if ((logical_sense=='AND') && (length(must_have_ing) > 1)) {
ok_by_ing <- ok_by_ing %>%
dplyr::group_by(cocktail_id) %>%
dplyr::summarize(ck_ok = (all(must_have_ing %in% short_ingredient) | any(match_re_ing)) & !any(bad_ing)) %>%
dplyr::ungroup()
} else {
ok_by_ing <- ok_by_ing %>%
dplyr::mutate(has_ing=(short_ingredient %in% must_have_ing)) %>%
dplyr::group_by(cocktail_id) %>%
dplyr::summarize(ck_ok=any(has_ing | match_re_ing) & !any(bad_ing)) %>%
dplyr::ungroup()
}
} else {
ok_by_ing <- tibble::tribble(~cocktail_id,~ck_ok)
}
new_recipe <- match_name %>%
dplyr::left_join(both$recipe,by='cocktail_id') %>%
dplyr::select(-matches_name) %>%
rbind(ok_by_ing %>%
dplyr::filter(ck_ok) %>%
dplyr::select(-ck_ok) %>%
dplyr::left_join(both$recipe,by='cocktail_id'))
new_cocktail <- both$cocktail %>%
dplyr::right_join(new_recipe %>% dplyr::distinct(cocktail_id),by='cocktail_id')
list(recipe=new_recipe,cocktail=new_cocktail)
}
.filter_num_ingredients <- function(both,must_have_ing,min_rating,max_ingr,max_other_ingr) {
tot_has <- both$recipe %>%
dplyr::group_by(cocktail_id) %>%
dplyr::summarize(tot_has_ingr=sum(short_ingredient %in% must_have_ing)) %>%
dplyr::ungroup()
new_cocktail <- both$cocktail %>%
dplyr::filter(rating >= min_rating,
tot_ingr <= max_ingr) %>%
dplyr::left_join(tot_has,by='cocktail_id') %>%
dplyr::filter(tot_ingr <= max_other_ingr + tot_has_ingr) %>%
dplyr::select(-tot_has_ingr)
new_recipe <- both$recipe %>%
dplyr::right_join(new_cocktail %>% select(cocktail_id),by='cocktail_id')
list(recipe=new_recipe,cocktail=new_cocktail)
}
.filter_tstat <- function(both,min_t=2,t_zero=2.5,miss_votes=20,t_digits=2) {
new_cocktail <- both$cocktail %>%
dplyr::mutate(tstat=signif((rating - t_zero) * sqrt(coalesce(votes,miss_votes)),t_digits)) %>%
dplyr::filter(tstat >= min_t)
new_recipe <- both$recipe %>%
dplyr::right_join(new_cocktail %>% select(cocktail_id),by='cocktail_id')
list(recipe=new_recipe,cocktail=new_cocktail)
}
.filter_src <- function(both,from_sources) {
new_cocktail <- both$cocktail %>%
dplyr::filter(page_src %in% from_sources)
new_recipe <- both$recipe %>%
dplyr::right_join(new_cocktail %>% select(cocktail_id),by='cocktail_id')
list(recipe=new_recipe,cocktail=new_cocktail)
}
.add_description <- function(both) {
descdat <- both$recipe %>%
dplyr::filter(unit=='fl oz') %>%
dplyr::arrange(dplyr::desc(amt)) %>%
dplyr::group_by(cocktail_id) %>%
dplyr::summarize(description=paste0(paste0(short_ingredient,collapse=', '),'.')) %>%
dplyr::ungroup()
new_cocktail <- both$cocktail %>%
dplyr::left_join(descdat,by=c('cocktail_id'))
list(recipe=both$recipe,cocktail=new_cocktail)
}
.merge_both <- function(both) {
both$recipe %>%
dplyr::left_join(both$cocktail,by='cocktail_id') %>%
dplyr::select(cocktail,rating,amt,unit,ingredient,everything()) %>%
dplyr::arrange(dplyr::desc(rating),cocktail,dplyr::desc(as.numeric(unit=='fl oz')),dplyr::desc(amt))
}
.drinks_table <- function(both) {
otdat <- both$cocktail %>%
dplyr::mutate(cocktail=applylink(cocktail,url)) %>%
dplyr::select(rating,tstat,cocktail,description)
}
.coingredients <- function(recipe_df) {
sub_df <- recipe_df %>%
dplyr::select(short_ingredient,cocktail_id,rating,proportion)
coing <- sub_df %>%
dplyr::filter(!is.na(proportion)) %>%
dplyr::mutate(rating=coalesce(rating,1)) %>%
dplyr::inner_join(sub_df %>%
dplyr::rename(coingredient=short_ingredient,coamount=proportion),by=c('cocktail_id','rating')) %>%
dplyr::mutate(cova=proportion * coamount) %>%
dplyr::mutate(wts=rating) %>%
dplyr::group_by(short_ingredient,coingredient) %>%
dplyr::summarize(sum_cova=sum(cova*wts,na.rm=TRUE),
sum_wts=sum(wts,na.rm=TRUE),
ncocktails=n()) %>%
dplyr::ungroup() %>%
dplyr::arrange(dplyr::desc(ncocktails))
}
.ingredient_rho <- function(recipe_df) {
coing <- .coingredients(recipe_df)
diagv <- coing %>%
dplyr::filter(short_ingredient==coingredient) %>%
dplyr::mutate(deno=sqrt(sum_cova))
rhov <- coing %>%
dplyr::left_join(diagv %>% select(short_ingredient,deno),by='short_ingredient') %>%
dplyr::left_join(diagv %>% select(coingredient,deno) %>% rename(deno2=deno),by='coingredient') %>%
dplyr::mutate(rhoval=sum_cova / (deno * deno2)) %>%
dplyr::filter(!is.na(rhoval)) %>%
dplyr::select(short_ingredient,coingredient,ncocktails,rhoval) %>%
dplyr::filter(ncocktails > 2) %>%
dplyr::arrange(dplyr::desc(rhoval))
}
.prepare_ternary <- function(both,two_ing) {
stopifnot(length(two_ing) > 1)
stopifnot(all(c('cocktail_id','cocktail','rating','page_src') %in% colnames(both$cocktail)))
stopifnot(all(c('cocktail_id','unit','short_ingredient','proportion') %in% colnames(both$recipe)))
bycols <- both$recipe %>%
dplyr::filter(unit=='fl oz',
short_ingredient %in% two_ing) %>%
dplyr::group_by(cocktail_id,short_ingredient) %>%
dplyr::summarize(tot_amt=sum(proportion,na.rm=TRUE)) %>%
dplyr::ungroup() %>%
dplyr::rename(proportion=tot_amt) %>%
dplyr::group_by(cocktail_id) %>%
dplyr::mutate(has_both=length(proportion) > 1,
Other=1 - sum(proportion)) %>%
dplyr::ungroup() %>%
dplyr::filter(has_both)
. <- NULL
retv <- bycols %>%
tidyr::spread(key=short_ingredient,value=proportion,fill=0) %>%
setNames(gsub('\\s','_',names(.))) %>%
dplyr::left_join(both$cocktail %>% select(cocktail_id,cocktail,rating,page_src),by='cocktail_id')
}
.make_bar_plot <- function(both_df) {
ph <- both_df %>%
dplyr::filter(unit=='fl oz') %>%
dplyr::arrange(dplyr::desc(rating)) %>%
mutate(pct_amt=100*proportion) %>%
ggplot(aes(ingredient,pct_amt,fill=cocktail)) +
geom_col(position='dodge') +
coord_flip() +
labs(y='amount (%)',
x='ingredient',
title='selected drinks')
}
.make_ggtern_plot <- function(tern_df,preing) {
ing <- gsub('\\s','_',preing)
ph <- tern_df %>%
ggtern::ggtern(ggplot2::aes_string(x=ing[1],y=ing[2],z='Other',
shape='page_src',label='cocktail',color='rating')) +
ggplot2::geom_point(aes(size=rating),alpha=0.5) +
ggtern::Llab(preing[1]) + ggtern::Tlab(preing[2]) +
ggplot2::geom_text(hjust='inward',vjust='inward') +
ggplot2::guides(shape=guide_legend(title='source'))
ph
}
my_server <- function(input, output, session) {
get_both <- reactive({
utils::data("cocktails", package="cocktailApp")
both <- .gen_both(cocktails)
})
get_ing_rho <- reactive({
both <- get_both()
recipe_df <- both$recipe %>%
left_join(both$cocktail,by='cocktail_id')
rhov <- .ingredient_rho(recipe_df)
})
suggested_ingr <- reactive({
retv <- get_ing_rho() %>%
rename(ingredient=short_ingredient) %>%
dplyr::filter(ingredient %in% input$must_have_ing,ingredient != coingredient,ncocktails > 5) %>%
dplyr::arrange(dplyr::desc(rhoval))
})
filter_ingr <- reactive({
.filter_ingredients(both=get_both(),name_regex=input$name_regex,extra_ids=hobsons_choice$ids,
must_have_ing=input$must_have_ing,
must_not_have_ing=input$must_not_have_ing,
ing_regex=input$ing_regex,
logical_sense=input$logical_sense)
})
filter_num_ingr <- reactive({
.filter_num_ingredients(both=filter_ingr(),must_have_ing=input$must_have_ing,
min_rating=input$min_rating,max_ingr=input$max_ingr,
max_other_ingr=input$max_other_ingr)
})
filter_tstat <- reactive({
.filter_tstat(both=filter_num_ingr(),min_t=input$min_tstat,t_zero=input$t_zero)
})
filter_src <- reactive({
.filter_src(both=filter_tstat(),from_sources=input$from_sources)
})
final_both <- reactive({
.add_description(both=filter_src())
})
final_merged <- reactive({
.merge_both(both=final_both())
})
selectable <- reactive({
})
selected_drinks <- reactive({
both <- final_both()
drinks <- both$cocktail
selrows <- input$drinks_table_rows_selected
otdat <- both$recipe %>%
dplyr::inner_join(drinks[selrows,] %>%
dplyr::select(cocktail_id,cocktail,rating),by='cocktail_id')
otdat
})
hobsons_choice <- reactiveValues(ids=NULL)
observeEvent(input$hobsons,{
if (input$hobsons) {
both <- .filter_num_ingredients(both=get_both(),must_have_ing=c(),
min_rating=input$min_rating,max_ingr=input$max_ingr,
max_other_ingr=input$max_other_ingr)
both <- .filter_tstat(both=both,min_t=input$min_tstat,t_zero=input$t_zero)
both <- .filter_src(both=both,from_sources=input$from_sources)
eligible <- both$cocktail %>%
distinct(cocktail_id) %>%
sample_n(size=5,replace=FALSE)
hobsons_choice$ids <- eligible$cocktail_id
} else {
hobsons_choice$ids <- NULL
}
})
output$drinks_table <- DT::renderDataTable({
otdat <- .drinks_table(both=final_both())
DT::datatable(otdat,caption='Matching cocktails. Click on a row to populate the ingredients table below.',
escape=FALSE,rownames=FALSE,
options=list(order=list(list(1,'desc'),list(0,'desc'),list(2,'asc')),
paging=TRUE,
pageLength=15))
},
server=TRUE)
output$suggestions_table <- DT::renderDataTable({
selco <- suggested_ingr()
DT::datatable(selco, caption='Coingredients.',
escape=FALSE, rownames=FALSE,
options=list(paging=TRUE,
pageLength=20)) %>%
DT::formatRound(columns=c('rhoval'),digits=2)
},
server=TRUE)
output$selected_ingredients_bar_plot <- renderPlot({
ph <- selected_drinks() %>% .make_bar_plot()
ph
})
output$ingredients_table <- renderTable({
retv <- selected_drinks() %>% dplyr::select(cocktail,amt,unit,ingredient)
},striped=TRUE,width='100%')
output$selected_ingredients_tern_plot <- renderPlot({
shiny::validate(shiny::need(length(input$must_have_ing) > 1,'Must select 2 or more must have ingredients.'))
preing <- input$must_have_ing[1:2]
tern_df <- .prepare_ternary(both=final_both(),two_ing=preing)
shiny::validate(shiny::need(nrow(tern_df) > 0,paste('No cocktails found with both',preing[1],'and',preing[2])))
ph <- .make_ggtern_plot(tern_df,preing=preing)
print(ph)
NULL
},height=900,width=1300)
setBookmarkExclude(c('bookmark',
'drinks_table_cell_clicked',
'drinks_table_row_last_clicked'))
observeEvent(input$bookmark,{ session$doBookmark() })
}
cocktailApp <- function(page_title='Drink Schnauzer',enableBookmarking='url') {
shinyApp(ui=function(request){ my_ui(page_title=page_title) },
server=my_server,
enableBookmarking=enableBookmarking)
}
|
test_that("Test Rosenbrock Banana optimization with objective and gradient in separate functions.", {
x0 <- c( -1.2, 1 )
opts <- list( "algorithm" = "NLOPT_LD_LBFGS",
"xtol_rel" = 1.0e-8,
"print_level" = 0 )
eval_f <- function(x) {
return( 100 * (x[2] - x[1] * x[1])^2 + (1 - x[1])^2 )
}
eval_grad_f <- function(x) {
return( c( -400 * x[1] * (x[2] - x[1] * x[1]) - 2 * (1 - x[1]),
200 * (x[2] - x[1] * x[1])) )
}
res <- nloptr(
x0 = x0,
eval_f = eval_f,
eval_grad_f = eval_grad_f,
opts = opts )
expect_equal(res$objective, 0.0)
expect_equal(res$solution, c(1.0, 1.0))
} )
test_that("Test Rosenbrock Banana optimization with objective and gradient in the same function.", {
x0 <- c( -1.2, 1 )
opts <- list( "algorithm" = "NLOPT_LD_LBFGS",
"xtol_rel" = 1.0e-8,
"print_level" = 0 )
eval_f_list <- function(x) {
return( list( "objective" = 100 * (x[2] - x[1] * x[1])^2 + (1 - x[1])^2,
"gradient" = c( -400 * x[1] * (x[2] - x[1] * x[1]) - 2 * (1 - x[1]),
200 * (x[2] - x[1] * x[1])) ) )
}
res <- nloptr(
x0 = x0,
eval_f = eval_f_list,
opts = opts )
expect_equal(res$objective, 0.0)
expect_equal(res$solution, c(1.0, 1.0))
} )
|
rnucDiag <- function(DNAbin, sppVector, n = 100){
lsv <- length(sppVector)
psv <- table(sppVector)/lsv
rss <- replicate(n, sample(1:length(unique(sppVector)), lsv, replace = TRUE, prob = psv), simplify = FALSE)
rnd <- lapply(rss, function(xx) unlist(sapply(nucDiag(DNAbin, xx), length)))
rndOrd <- sapply(rnd, function(xx) xx[order(names(xx))])
rssNum <- sapply(rss, table)
NndNss <- tapply(unlist(rndOrd), unlist(rssNum), function(xx) xx)
rndFreq <- lapply(NndNss, table)
rmin <- sapply(rnd, min)
rmean <- sapply(rnd, mean)
rmedian <- sapply(rnd, median)
rmax <- sapply(rnd, max)
list(min = rmin, mean = rmean, median = rmedian, max = rmax, rndFreq = rndFreq)
}
|
gni_parse <- function(names, ...) {
names <- paste0(names, collapse = "|")
cli <- crul::HttpClient$new(paste0(gni_base(), "parsers.json"),
headers = tx_ual, opts = list(...))
tt <- cli$get(query = list(names = names))
tt$raise_for_status()
out <- jsonlite::fromJSON(tt$parse("UTF-8"), FALSE)
dt2df(lapply(out, gni_parser), idcol = FALSE)
}
gni_parser <- function(x) {
positions_names <- vapply(x$scientificName$positions, function(y)
paste("position_", y[[1]], sep = ""), "", USE.NAMES = FALSE)
nums <- vapply(x$scientificName$positions, function(y) y[[2]], 1,
USE.NAMES = FALSE)
pv <- data.frame(as.list(setNames(nums, positions_names)),
stringsAsFactors = FALSE)
singles <- data.frame(x$scientificName[c("verbatim","canonical",
"normalized","hybrid","parsed")], stringsAsFactors = FALSE)
details_ <- x$scientificName$details[[1]]
details_ <- details_[!names(details_) %in% 'status']
details <- dt2df(Map(function(x, y) data.frame(y, x,
stringsAsFactors = FALSE), details_, names(details_)),
idcol = FALSE)[,-3]
details2 <- as.data.frame(t(data.frame(details[,2])))
names(details2) <- details[,1]
row.names(details2) <- NULL
data.frame(details2, singles, pv, stringsAsFactors = FALSE)
}
|
filter_raw_data<-function(raw_data=NULL,filter_table=NULL,date_filter=FALSE){
.datatable.aware=TRUE
if (is.null(raw_data)) {
data_out<-NULL
} else if (is.null(filter_table)){
data_out<-raw_data
} else {
ft<-time<-NULL
if (date_filter){
data.table::setnames(raw_data,colnames(raw_data),tolower(colnames(raw_data)))
if ("time_period" %in% colnames(raw_data)){data.table::setnames(raw_data,"time_period","time")}
if ("obstime" %in% colnames(raw_data)){data.table::setnames(raw_data,"obstime","time")}
raw_data$ft<-as.character(raw_data$time)
raw_data[grepl("^\\d{4}$",time),ft:=paste0(time,"-01-01")]
raw_data[grepl("[M]\\d\\d$",time),ft:=paste0(gsub('[M]',"-",time),"-01")]
raw_data[grepl("[MD]",ft),ft:=gsub('[MD]',"-",ft)]
raw_data[grepl("Q",time),ft:=paste0(substr(time,1,4),"-",lapply(substr(time,6,6),function(x){if (x<"4"){"0"}else{""}}),as.character((as.numeric(substr(time,6,6))-1)*3+1),"-01")]
raw_data[grepl("S",time),ft:=paste0(substr(time,1,4),"-0",as.character((as.numeric(substr(time,6,6))-1)*6+1),"-01")]
data_out<-data.table::rbindlist(lapply(1:nrow(filter_table),function (x){raw_data[(ft>=filter_table$sd[x] & ft<=filter_table$ed[x])]}))
data_out<-data_out[,!'ft'][]
}else{
filter_table<-unique(filter_table[,c("concept","code")])
data.table::setnames(raw_data,colnames(raw_data),toupper(colnames(raw_data)))
concepts<-unique(filter_table$concept)
data_out<-raw_data[eval(parse(text=paste(lapply(concepts,function(concept){
paste("(",paste0(filter_table$concept[filter_table$concept==concept],"==",'"',filter_table$code[filter_table$concept==concept],'"',collapse=" | "),")")
}),collapse=" & ")))][]
data.table::setnames(data_out,colnames(data_out),tolower(colnames(data_out)))
}
}
data_out[]
}
|
library(FLLat)
data(simaCGH)
result.pve <- FLLat.PVE(simaCGH,J.seq=1:(ncol(simaCGH)/2))
plot(result.pve)
result.bic <- FLLat.BIC(simaCGH,J=5)
result.bic$lam1
result.bic$lam2
plot(result.bic$opt.FLLat)
plot(result.bic$opt.FLLat,type="weights")
set.seed(1364)
result.fdr <- FLLat.FDR(simaCGH,result.bic$opt.FLLat)
result.fdr$thresh.control
plot(result.fdr)
tr.dat <- simaCGH[,1:15]
tst.dat <- simaCGH[,16:20]
result.tr <- FLLat(tr.dat,J=5,lam1=1,lam2=9)
tst.pred <- predict(result.tr,newY=tst.dat)
plot(tst.dat[,1],xlab="Probe",ylab="Y")
lines(tst.pred$pred.Y[,1],col="red",lwd=3)
|
min_cut <- function(x, min.size = length(x)/10){
x.na <- x[is.na(x) == FALSE]
p.x <- cumsum(prop.table(table(x.na)))
t.x <- cumsum(table(x.na))
bm <- cbind(table(x.na),t.x)
dif <- vector(length = nrow(bm))
for (i in 2:length(dif)) dif[i] <- bm[i,2] - bm[i-1,2]
dif[1] <- bm[1, 2]
bm <- cbind(bm, dif)
group <- vector(length = nrow(bm))
g <- 1
collect <- 0
for (i in 1:nrow(bm)){
if (dif[i] >= min.size | collect >= min.size-1){
group[i] <- g
g <- g + 1
collect <- 0
}else{
group[i] <- g
collect <- collect + dif[i]
}
}
x.group <- vector(length = length(x))
group.levels <- as.numeric(levels(as.factor(group)))
values <- as.numeric(rownames(bm))
levs <- vector()
for (i in 1:length(group.levels)){
g <- group.levels[i]
val <- values[group == g]
g <- paste(min(val), ":", max(val), sep = "")
x.group[x %in% val] <- g
levs <- c(levs, paste(min(val), ":", max(val), sep = ""))
}
x.group[is.na(x)] <- NA
factor(x.group, labels = levs, ordered = TRUE)
}
cowboy_cut <- function(x, top.share = 0.10, bottom.share = 0.10, missing = "Missing"){
x[x %in% missing] <- NA
x <- droplevels(x)
x <- as.ordered(x)
x <- as.numeric(x)
x.top <- x
x.bottom <- x
x.top[is.na(x)] <- -Inf
x.bottom[is.na(x)] <- Inf
top <- quantile(x.top, probs = seq(0, 1, by = top.share), na.rm = TRUE, type = 3) %>% tail(2) %>% head(1)
bottom <- quantile(x.bottom, probs = seq(0, 1, by = bottom.share), na.rm = TRUE, type = 3) %>% head(2) %>% tail(1)
mid <- x[x != 0 & x < top] %>% quantile(probs = seq(0, 1, by = 0.33), type = 3, na.rm = TRUE)
mid <- mid[-1]
mid <- mid[-3]
breaks <- c(-Inf, bottom, mid, top, Inf)
o <- x %>% as.numeric() %>% cut(breaks = unique(breaks), include.lowest = TRUE)
levels(o) <- paste0(1:nlevels(o), "/", nlevels(o))
o %>% fct_explicit_na(na_level = "Missing")
}
export <- function(object, file = "export.csv", dim = 1:5) {
if (is.matrix(object) == TRUE|is.data.frame(object) == TRUE){
write.csv(object, file, fileEncoding = "UTF-8")}
if ((class(object) == "tab.variable") == TRUE){
ll <- length(object)
nam <- names(object)
a <- object[[1]]
coln <- ncol(a)
line <- c(rep("", coln))
line2 <- c(rep("", coln))
a <- rbind(line, a, line2)
for (i in 2:ll){
line <- c(rep("", coln))
line2 <- c(rep("", coln))
a <- rbind(a,line, object[[i]], line2)
line2 <- c(rep("", coln))
}
rownames(a)[rownames(a) == "line"] <- nam
rownames(a)[rownames(a) == "line2"] <- ""
out <- a
write.csv(out, file, fileEncoding = "UTF-8")
}
if ((class(object) == "soc.mca") == TRUE){
coord.mod <- object$coord.mod[,dim]
coord.sup <- object$coord.sup[,dim]
coord.ind <- object$coord.ind[,dim]
names.mod <- object$names.mod
names.sup <- object$names.sup
names.ind <- object$names.ind
coord <- round(rbind(coord.mod, coord.sup, coord.ind), 2)
names <- c(names.mod, names.sup, names.ind)
rownames(coord) <- names
ctr.mod <- object$ctr.mod[,dim]
ctr.sup <- matrix(nrow = nrow(coord.sup), ncol = ncol(coord.sup))
ctr.ind <- object$ctr.ind[,dim]
ctr <- round(1000*rbind(ctr.mod, ctr.sup, ctr.ind))
cor.mod <- round(100*object$cor.mod[,dim], 1)
cor.sup <- matrix(nrow = nrow(coord.sup), ncol = ncol(coord.sup))
cor.ind <- matrix(nrow = nrow(coord.ind), ncol = ncol(coord.ind))
cor <- rbind(cor.mod, cor.sup, cor.ind)
out <- cbind(coord, ctr, cor)
colnames(out) <- c(paste("Coord:", dim), paste("Ctr:", dim), paste("Cor:", dim))
write.csv(out, file, fileEncoding = "UTF-8")
}
}
invert <- function(x, dim = 1) {
x$coord.mod[,dim] <- x$coord.mod[,dim] * -1
x$coord.all[, dim] <- x$coord.all[, dim] * -1
x$coord.ind[,dim] <- x$coord.ind[,dim] * -1
x$coord.sup[,dim] <- x$coord.sup[,dim] * -1
return(x)
}
to.MCA <- function(object, active, dim = 1:5) {
rownames(active) <- object$names.ind
rownames(object$coord.ind) <- object$names.ind
var <- list(coord = object$coord.mod[,dim],
cos2 = object$cor.mod[,dim],
contrib = object$ctr.mod[,dim])
ind <- list(coord = object$coord.ind[,dim],
cos2 = object$cor.ind[,dim],
contrib = object$ctr.ind[,dim])
call <- list(marge.col = object$mass.mod,
marge.row = 1/object$n.ind,
row.w = rep(1, object$n.ind),
X = active,
ind.sup = NULL)
eig <- matrix(0, nrow = length(dim), ncol = 3)
rownames(eig) <- paste("dim ", dim, sep="")
colnames(eig) <- c("eigenvalue", "percentage of variance", "cumulative percentage of variance")
eig[,1] <- object$eigen[dim]
eig[,2] <- eig[,1]/sum(object$eigen) *100
eig[,3] <- cumsum(eig[,2])
res <- list(eig=eig, var=var, ind=ind, call=call)
class(res) <- c("MCA", "list")
return(res)
}
barycenter <- function(object, mods = NULL, dim = 1){
new.coord <- sum(object$mass.mod[mods] * object$coord.mod[mods, dim]) / sum(object$mass.mod[mods])
new.coord
}
mca.eigen.check <- function(active, passive = "Missing"){
get.eigen <- function(x, y, passive = "Missing"){
d <- data.frame(x, y)
r <- soc.mca(d, passive = passive)
burt <- t(r$indicator.matrix.active) %*% r$indicator.matrix.active
burt.s <- burt / diag(burt)
diag(burt.s) <- 0
max(burt.s)
o <- c("First eigen" = r$eigen[1], "Passive categories" = length(r$names.passive), "Max overlap (%)" = max(burt.s))
o
}
comb <- active %>% colnames() %>% combn(., 2, simplify = T) %>% t() %>% as_tibble()
colnames(comb) <- c("x", "y")
values <- purrr::map2_df(.x = comb$x, .y = comb$y, ~get.eigen(x = active[[.x]], y = active[[.y]], passive = passive))
o <- bind_cols(comb, values)
o
}
|
test_that("can pack multiple columns", {
df <- tibble(a1 = 1, a2 = 2, b1 = 1, b2 = 2)
out <- df %>% pack(a = c(a1, a2), b = c(b1, b2))
expect_named(out, c("a", "b"))
expect_equal(out$a, df[c("a1", "a2")])
expect_equal(out$b, df[c("b1", "b2")])
})
test_that("packing no columns returns input", {
df <- tibble(a1 = 1, a2 = 2, b1 = 1, b2 = 2)
expect_equal(pack(df), df)
})
test_that("can strip outer names from inner names", {
df <- tibble(ax = 1, ay = 2)
out <- pack(df, a = c(ax, ay), .names_sep = "")
expect_named(out$a, c("x", "y"))
})
test_that("all inputs must be named", {
df <- tibble(a1 = 1, a2 = 2, b1 = 1, b2 = 2)
expect_snapshot({
(expect_error(pack(df, a = c(a1, a2), c(b1, b2))))
(expect_error(pack(df, c(a1, a2), c(b1, b2))))
})
})
test_that("grouping is preserved", {
df <- tibble(g1 = 1, g2 = 1, g3 = 1)
out <- df %>% dplyr::group_by(g1, g2) %>% pack(g = c(g2, g3))
expect_equal(dplyr::group_vars(out), "g1")
})
test_that("grouping is preserved", {
df <- tibble(g = 1, x = tibble(y = 1))
out <- df %>% dplyr::group_by(g) %>% unpack(x)
expect_equal(dplyr::group_vars(out), "g")
})
test_that("non-df-cols are skipped (
df <- tibble(x = 1:2, y = tibble(a = 1:2, b = 1:2))
expect_identical(unpack(df, x), df)
expect_identical(unpack(df, everything()), unpack(df, y))
})
test_that("empty columns that aren't data frames aren't unpacked (
df <- tibble(x = integer())
expect_identical(unpack(df, x), df)
})
test_that("df-cols are directly unpacked", {
df <- tibble(x = 1:3, y = tibble(a = 1:3, b = 3:1))
out <- df %>% unpack(y)
expect_named(out, c("x", "a", "b"))
expect_equal(out[c("a", "b")], df$y)
})
test_that("can unpack 0-col dataframe", {
df <- tibble(x = 1:3, y = tibble(.rows = 3))
out <- df %>% unpack(y)
expect_named(out, c("x"))
})
test_that("can unpack 0-row dataframe", {
df <- tibble(x = integer(), y = tibble(a = integer()))
out <- df %>% unpack(y)
expect_named(out, c("x", "a"))
})
test_that("can choose to add separtor", {
df <- tibble(x = 1, y = tibble(a = 2), z = tibble(a = 3))
out <- df %>% unpack(c(y, z), names_sep = "_")
expect_named(out, c("x", "y_a", "z_a"))
})
test_that("can unpack 1-row but 0-col dataframe (
df <- tibble(x = tibble(.rows = 1))
expect_identical(unpack(df, x), tibble::new_tibble(list(), nrow = 1L))
})
|
dbGetInfo_MariaDBConnection <- function(dbObj, what = "", ...) {
connection_info(dbObj@ptr)
}
setMethod("dbGetInfo", "MariaDBConnection", dbGetInfo_MariaDBConnection)
|
utils::globalVariables(c('ID','Distance','Model','id'))
distances.plot <- function(tmatch, caliper=.25, label=FALSE) {
tpsa <- attr(tmatch, 'triangle.psa')
tmatch$id <- row.names(tmatch)
tmp <- melt(tmatch[,c('id','D.m1','D.m2','D.m3')], id.vars=1)
names(tmp) <- c('ID','Model','Distance')
l <- (sd(tpsa$ps1, na.rm=TRUE) + sd(tpsa$ps2, na.rm=TRUE) + sd(tpsa$ps3, na.rm=TRUE))
stdev <- sapply(tpsa[,c('ps1','ps2','ps3')], sd, na.rm=TRUE)
cat(paste("Standard deviations of propensity scores: ",
paste(prettyNum(stdev, digits=2), collapse=' + '),
" = ", prettyNum(l, digits=2), '\n', sep='' ))
sddf <- data.frame(Model=c('1','2','3'), cumsum=caliper * 1:3)
levels(tmp$Model) <- levels(sddf$Model)
p <- ggplot(tmp, aes(x=ID, y=Distance)) +
geom_bar(aes(fill=Model), stat='identity', width=1) + coord_flip() +
geom_hline(data=sddf, aes(yintercept=cumsum, color=Model), linetype=2) +
theme(axis.text.y=element_blank()) +
xlab(NULL) + xlim(tmatch[order(tmatch$Dtotal),'id'])
if(label & length(which(tmatch$Dtotal > 3 * (min(caliper)))) > 0) {
p <- p + geom_text(data=tmatch[tmatch$Dtotal > 3 * (min(caliper)),],
aes(x=id, y=0, label=id),
size=3, hjust=1)
}
for(i in seq_along(caliper)) {
cat(paste("Percentage of matches exceding a distance of ",
prettyNum(caliper[i], digits=2),
" (caliper = ", caliper[i], "): ",
prettyNum(length(which(tmatch$Dtotal > 3 * caliper[i])) /
length(tmatch$Dtotal) * 100, digits=2), '%\n',
sep=''))
}
return(p)
}
|
library(blastula)
library(glue)
seb_image <-
add_image(
"tests/manual_tests/young_adult_male.jpg",
alt = "Seb himself",
align = "center"
)
company_logo <-
add_image(
"tests/manual_tests/msms_logo.png",
alt = "msms logo",
width = "50%",
align = "center"
)
email <-
compose_email(
body = md(glue("
{seb_image}
Sebastian Génin has just joined Our Team! We are thrilled like \\
you would not believe at this outcome. Do you know Seb? If you don't, \\
well, you'll want to because he is quite an interesting person and \\
he can talk about virtually any topic. One hell of a conversationalist, \\
you might say.
Sebastian will be joining the `2+2=5` team (now relocating in between the \\
*Accountaholics* and the *Product Pushers* on 9). He'll help in doing the \\
(nearly) impossible, which is what this fine team is generally known for. \\
If you're in the general vicinity, please stop over and say 'Yo, Seb!'
—R.M.D. \\
")),
footer = md(glue("
{company_logo}
Multi-Systems Merchant Services<br>
2703 Hoffman Avenue, 8th Fl.<br>
New York, New York 10013<br>
917-882-8946<br>
")))
email
|
rgammapois <-
function(n, p, r){
choosefrom <- 0:10000
probs <- exp(lgamma(r+choosefrom)-lgamma(choosefrom+1)-lgamma(r)+choosefrom*log(p)+r*log(1-p))
mysample <- sample(x=choosefrom, size=n, replace=T, prob=probs)
return(mysample)
}
|
test_that("set_repaired_names()", {
x <- set_names(1:3, letters[1:3])
expect_equal(set_repaired_names(x), x)
expect_tibble_error(set_repaired_names(1, repair_hint = FALSE), error_column_names_cannot_be_empty(1, repair_hint = FALSE))
})
test_that("repaired_names()", {
expect_equal(repaired_names(letters[1:3], repair_hint = FALSE), letters[1:3])
expect_tibble_error(repaired_names(c(""), repair_hint = FALSE), error_column_names_cannot_be_empty(1, repair_hint = FALSE))
expect_tibble_error(repaired_names(c("..1"), repair_hint = FALSE), error_column_names_cannot_be_dot_dot(1, repair_hint = FALSE))
expect_tibble_error(repaired_names(c("a", "a"), repair_hint = FALSE), error_column_names_must_be_unique("a", repair_hint = FALSE))
expect_equal(repaired_names(c("a", "a"), .name_repair = "minimal"), c("a", "a"))
})
test_that("output test", {
skip_if_not_installed("vctrs", "0.3.8.9001")
expect_snapshot_with_error({
repaired_names(letters[1:3], repair_hint = FALSE)
repaired_names("", repair_hint = FALSE)
repaired_names("", repair_hint = TRUE)
repaired_names(c("a", "a"), repair_hint = FALSE)
repaired_names("..1", repair_hint = FALSE)
repaired_names(c("a", "a"), repair_hint = FALSE, .name_repair = "universal")
repaired_names(c("a", "a"), repair_hint = FALSE, .name_repair = "universal", quiet = TRUE)
repaired_names(c("if"), repair_hint = FALSE, .name_repair = "universal")
})
})
|
summary.sem <- function(object, ...) {
ans <- NULL
ans$call <- object$call
ans$nclasses <- object$n.classes
ans$formula <- object$formula
if (!is.null(object$lambda)) {
ans$trafo <- "Box-Cox"
ans$lambda <- object$lambda
}
if (all(inherits(object, which = TRUE, c("sem", "lm")))) {
ans$multipR <- round(object$r2, 4)
ans$adjR <- round(object$adj.r2, 4)
if (is.null(object$se)) {
ans$coefficients <- cbind(object$coef)
dimnames(ans$coefficients) <- list(
names(object$coef),
c("Estimate")
)
} else if (!is.null(object$se)) {
ans$coefficients <- cbind(object$coef, object$se, object$ci)
dimnames(ans$coefficients) <- list(
names(object$coef),
c("Estimate", "Std. Error", "Lower 95%-level", "Upper 95%-level")
)
}
} else if (all(inherits(object, which = TRUE, c("sem", "lme")))) {
ans$marginalR2 <- round(object$r2m, 4)
ans$conditionalR2 <- round(object$r2c, 4)
if (dim(object$VaCov)[1] == 1) {
randomIntercept <- strsplit(as.character(object$formula[[3]][3]), "\\|")[[1]][2]
randomIntercept <- strsplit(randomIntercept, ")")
randomIntercept <- trimws(randomIntercept, "l")
ans$random <- data.frame(
Groups = c(randomIntercept, "Residual"),
Name = c("(Intercept)", ""),
Variance = c(
as.numeric(object$VaCov),
as.numeric(object$sigmae)^2
),
Std.Dev. = c(
sqrt(as.numeric(object$VaCov)),
object$sigmae
)
)
rownames(ans$random) <- c()
} else if (dim(object$VaCov)[1] == 2) {
randomIntercept <- strsplit(as.character(object$formula[[3]][3]), "\\|")[[1]][2]
randomIntercept <- strsplit(randomIntercept, ")")
randomIntercept <- trimws(randomIntercept, "l")
ans$random <- data.frame(
Groups = c(
randomIntercept,
rownames(object$VaCov)[2],
"Residual"
),
Name = c("(Intercept)", "", ""),
Variance = c(
as.numeric(object$VaCov[1, 1]),
as.numeric(object$VaCov[2, 2]),
as.numeric(object$sigmae)^2
),
Std.Dev. = c(
sqrt(as.numeric(as.numeric(object$VaCov[1, 1]))),
sqrt(as.numeric(as.numeric(object$VaCov[2, 2]))),
object$sigmae
)
)
rownames(ans$random) <- c()
}
if (is.null(object$se)) {
ans$coefficients <- cbind(object$coef)
dimnames(ans$coefficients) <- list(
names(object$coef),
c("Estimate")
)
} else if (!is.null(object$se)) {
ans$coefficients <- cbind(object$coef, object$se, object$ci)
dimnames(ans$coefficients) <- list(
names(object$coef),
c("Estimate", "Std. Error", "Lower 95%-level", "Upper 95%-level")
)
}
}
class(ans) <- "summary.sem"
ans
}
print.summary.sem <- function(x, ...) {
cat("Call:\n")
print(x$call)
cat("\n")
if (!is.null(x$random)) {
cat("Random effects:\n")
print(x$random)
cat("\n")
}
cat("Fixed effects:\n")
print(x$coefficients)
cat("\n")
if (!is.null(x$multipR)) {
cat("Multiple R-squared: ", x$multipR, "Adjusted R-squared: ", x$adjR)
} else if (!is.null(x$marginalR2)) {
cat("Marginal R-squared: ", x$marginalR2, "Conditional R-squared: ", x$conditionalR2)
}
cat("\n")
if (!is.null(x$trafo)) {
cat("Lambda of the Box-Cox transformation: ", x$lambda)
}
cat("\n")
cat(paste0(
"Variable ", x$formula[2], " is divided into ",
x$nclasses, " intervals.\n"
))
}
|
write.output<-function(input,location,flip=FALSE){
outlist <- list()
if(!is.logical(flip))stop('flip needs to be TRUE/FALSE')
if(missing(location)){location<- FALSE}
sample<-unique(input[,"ID"])
if(location != FALSE && is.character(location)){
pdf(file=paste(location,"/",sample,".pdf",sep=""),height=210/25.4,width=297/25.4,paper="A4r")
} else if((location != FALSE && !is.character(location)) ){
stop("Please provide a character string containing a path to an output folder.")
}
years<-unique(input[,"YEAR"])
for(u in c(1:length(years)) ){
data_year<-input[which(input[,"YEAR"]==years[u]),]
year<-years[u]
if(flip==FALSE){
plot(data_year[,"XCAL"],data_year[,"YCAL"],ylab="Rel. Y-coordinates (micron)",
ylim=c(0-max(data_year[,"YCAL"],na.rm=TRUE)*0.01,max(data_year[,"YCAL"],na.rm=TRUE)),
main=paste(sample," - ",as.character(year)," - Rows: ",max(data_year[,"ROW"],na.rm=TRUE),sep=""),xlab="Rel. X-coordinates (micron)",pch=16,cex=0.2,col="white")}
if(flip==TRUE){
plot(data_year[,"XCAL"],data_year[,"YCAL"],ylab="Rel. Y-coordinates (micron)",
ylim=c(max(data_year[,"YCAL"],na.rm=TRUE),0-max(data_year[,"YCAL"],na.rm=TRUE)*0.01),
main=paste(sample," - ",as.character(year)," - Rows: ",max(data_year[,"ROW"],na.rm=TRUE),sep=""),xlab="Rel. X-coordinates (micron)",pch=16,cex=0.2,col="white")
}
data_year[,"SQRLENGTH"] <-sqrt(data_year[,"CA"])
nrcells<-nrow(data_year)
rows<-max(unique(data_year[,"ROW"])[which(is.na(unique(data_year[,"ROW"]))==FALSE)])
col_code<-rep(c("
for(i in c(1:nrcells)){
length<-data_year[i,"SQRLENGTH"]/2
x <-data_year[i,"XCAL"]
y <-data_year[i,"YCAL"]
x_cor<-c((x-length),(x+length),(x+length),(x-length))
y_cor<-c((y+length),(y+length),(y-length),(y-length))
if(is.na(data_year[i,"ROW"])==TRUE){
polygon(x_cor,y_cor)
}else{
polygon(x_cor,y_cor,col=col_code[data_year[i,"ROW"]])
}
if(is.na(data_year[i,"ROW"])==FALSE){
label_point<-data_year[i,"POSITION"]
text(x,y,label=label_point,col='black',cex=0.5)
}else{
next
}
}
first_cells<-data_year[which(data_year[,"POSITION"]==1),]
for(i in c(1:nrow(first_cells))){
x<-first_cells[i,"XCAL"]
y<-first_cells[i,"YCAL"]
length<-first_cells[i,"SQRLENGTH"]/1.2
label_point<-first_cells[i,"ROW"]
text(x,y-length,label=label_point,col='black',cex=0.8,font=2)
}
a<-which(colnames(data_year)=="SQRLENGTH")
data_year<-data_year[,-a]
name<-paste(sample,"-",as.character(year),sep="")
assign(name,data_year)
}
if(length(years)==1){
output_all_years<-get(paste(sample,"-",as.character(years[1]),sep=""))
}else{
output_all_years<-get(paste(sample,"-",as.character(years[1]),sep=""))
for(t in c(2:(length(years)))){
output_all_years<-rbind(output_all_years,get(paste(sample,"-",as.character(years[t]),sep="")))
}
}
if(location != FALSE){
location <- sub("\\/*$","", location)
write.table(output_all_years,file=paste(location,"/",sample,"_output.txt",sep=""),row.names=FALSE,sep="\t")
invisible(dev.off())
} else {
return(output_all_years)
}
}
|
context("Bound Water Environments")
load(file="vanddraabe_DataForTesting.rda")
test_that("the correct normalized Bvalues are returned", {
Bvalues <- seq(from = 10, to = 75, by = 5)
nBvalues.answer <- c(-1.553797192, -1.31475147, -1.075705748,
-0.8366600265, -0.5976143047, -0.3585685828,
-0.1195228609, 0.1195228609, 0.3585685828,
0.5976143047, 0.8366600265, 1.075705748,
1.31475147, 1.553797192)
expect_equal(NormalizedBvalue(Bvalues), nBvalues.answer)
})
test_that("the correct mobility values are returned", {
Bvalues <- seq(from=10, to=75, by=5)
set.seed(13)
occupancy <- sample(c(0.90, 0.95, 1.0), 14, replace = TRUE)
mobility.answer <- c(0.2235294118, 0.3725490196, 0.4705882353,
0.6209150327, 0.7058823529, 0.8235294118,
0.9934640523, 1.0058823529, 1.2418300654,
1.2941176471, 1.3411764706, 1.4529411765,
1.5647058824, 1.862745098)
expect_equal(Mobility(Bvalues, occupancy), mobility.answer)
})
test_that("the correct calculated Bvalues are returned", {
expect_equal(calcBvalue(rmsfValue=0.25), 4.9348022005446789962)
expect_equal(calcBvalue(rmsfValue=0.50), 19.739208802178715985)
expect_equal(calcBvalue(rmsfValue=0.75), 44.413219804902112742)
expect_equal(calcBvalue(rmsfValue=1.00), 78.956835208714863938)
expect_equal(calcBvalue(rmsfValue=1.25), 123.37005501361697668)
})
test_that("the correct nearby hydration fraction values (sum, mean, sd) are returned", {
names.res.nearby.atoms <- c("ARG CA", "PRO CB", "SER C", "PHE CB", "PHE CG",
"PHE CZ", "CYS CA", "CYS O", "GLY C", "ALA C")
cNHF.answer <- list(ahp.sum = 0.852,
ahp.mu = 0.0852,
ahp.sd = 0.1518550478)
expect_equal(calcNearbyHydrationFraction(names.res.nearby.atoms), cNHF.answer)
})
test_that("the correct number of hydrogen bonds are returned", {
distances <- PDB.1hai.h2o.prot.dists[3, ]
set.oi.idc <- prot.idc
nearby.atoms.idc <- Nearby(distances, set.idc = prot.idc, radius = 3.6)
names.atoms <- PDB.1hai.aoi.clean$elety[prot.idc]
numHydroBonds.answer <- 4
expect_equal(calcNumHydrogenBonds(distances,
nearby.atoms.idc,
names.atoms,
set.oi.idc),
numHydroBonds.answer)
})
test_that("the correct environment quality values are returned", {
distances <- PDB.1hai.h2o.prot.dists[3, ]
set.oi.idc <- prot.idc
structure <- PDB.1hai.aoi.clean
quality.answer <- list(o.sum = 9,
o.mu = 1,
o.sd = 0,
b.exp.sum = 273.5600000000,
b.exp.mu = 30.3955555556,
b.exp.sd = 12.7242466487,
mobility.sum = 0,
mobility.mu = as.numeric(NA),
mobility.sd = as.numeric(NA),
nBvalue.sum = 0,
nBvalue.mu = as.numeric(NA),
nBvalue.sd = as.numeric(NA))
expect_equal(BoundWaterEnvironment.quality(distances,
set.oi.idc,
structure,
radius = 3.6),
quality.answer)
})
|
getTargets <- function(data, effects)
{
f <- unpackData(data)
effects <- effects[effects$include,]
pData <- .Call(C_setupData, PACKAGE=pkgname,
list(as.integer(f$observations)),
list(f$nodeSets))
ans <- reg.finalizer(pData, clearData, onexit = FALSE)
ans<- .Call(C_OneMode, PACKAGE=pkgname,
pData, list(f$nets))
ans<- .Call(C_Behavior, PACKAGE=pkgname, pData,
list(f$behavs))
ans<-.Call(C_ConstantCovariates, PACKAGE=pkgname,
pData, list(f$cCovars))
ans<-.Call(C_ChangingCovariates,PACKAGE=pkgname,
pData,list(f$vCovars))
ans<-.Call(C_DyadicCovariates,PACKAGE=pkgname,
pData,list(f$dycCovars))
ans<-.Call(C_ChangingDyadicCovariates,PACKAGE=pkgname,
pData, list(f$dyvCovars))
storage.mode(effects$parm) <- 'integer'
storage.mode(effects$group) <- 'integer'
storage.mode(effects$period) <- 'integer'
effects$effectPtr <- NA
myeffects <- split(effects, effects$name)
ans<- .Call(C_effects, PACKAGE=pkgname,
pData, myeffects)
pModel <- ans[[1]][[1]]
for (i in 1:length(ans[[2]]))
{
effectPtr <- ans[[2]][[i]]
myeffects[[i]]$effectPtr <- effectPtr
}
ans <- .Call(C_getTargets, PACKAGE=pkgname,
pData, pModel, myeffects,
NULL, returnActorStatistics=FALSE,
returnStaticChangeContributions=FALSE)
ans
}
actorTargets <- function(data, effects, x, behaviorName, wave,
imputedData = NULL,
rate = FALSE)
{
depvarsNo <- length(data$depvars)
behNo <- c(1:depvarsNo)[names(data$depvars) == behaviorName]
beh <- data$depvars[[behNo]][,1,]
n <- dim(data$depvars[[behNo]])[1]
waves <- dim(data$depvars[[behNo]])[3]
effects <- effects[effects$include,]
effects$setting <- rep("", nrow(effects))
effects <- effects[effects$name==behaviorName,]
effects <- effects[!effects$basicRate,]
noEff <- dim(effects)[1]
ans2 <- array(rep(NA, n*noEff), dim=c(n,noEff))
w <- wave
vars <- data$depvars
if (!is.null(imputedData))
{
vars[[behNo]][,,w] <- imputedData
beh[,w] <- imputedData
}
for (j in 1:n)
{
if (rate)
{
data$depvars[[behNo]][,1,] <- beh
data$depvars[[behNo]][,1,c(1:waves)[-w]] <- NA
data$depvars[[behNo]][j,1,(w+1):waves] <- rep(1,waves-w)
data$depvars[[behNo]][j,1,1:w] <- rep(0,w)
} else {
for (k in 1:depvarsNo)
{
data$depvars[[k]][,,1] <- vars[[k]][,,waves]
data$depvars[[k]][,,2:waves] <- vars[[k]][,,1:(waves-1)]
}
data$depvars[[behNo]][,1,c(1:waves)[-(w+1)]] <- NA
data$depvars[[behNo]][j,1,c(1:waves)[-(w+1)]] <-
rep(0,waves-1)
}
f <- unpackData(data,x)
pData <- .Call(C_setupData, PACKAGE=pkgname,
list(as.integer(f$observations)),
list(f$nodeSets))
ans <- reg.finalizer(pData, clearData, onexit = FALSE)
ans<- .Call(C_OneMode, PACKAGE=pkgname,
pData, list(f$nets))
ans<- .Call(C_Behavior, PACKAGE=pkgname, pData,
list(f$behavs))
ans<-.Call(C_ConstantCovariates, PACKAGE=pkgname,
pData, list(f$cCovars))
ans<-.Call(C_ChangingCovariates,PACKAGE=pkgname,
pData,list(f$vCovars))
ans<-.Call(C_DyadicCovariates,PACKAGE=pkgname,
pData,list(f$dycCovars))
ans<-.Call(C_ChangingDyadicCovariates,PACKAGE=pkgname,
pData, list(f$dyvCovars))
storage.mode(effects$parm) <- 'integer'
storage.mode(effects$group) <- 'integer'
storage.mode(effects$period) <- 'integer'
effects$effectPtr <- NA
myeffects <- split(effects, effects$name)
ans<- .Call(C_effects, PACKAGE=pkgname,
pData, myeffects)
pModel <- ans[[1]][[1]]
for (i in 1:length(ans[[2]]))
{
effectPtr <- ans[[2]][[i]]
myeffects[[i]]$effectPtr <- effectPtr
}
ans <- .Call(C_getTargets, PACKAGE=pkgname,
pData, pModel, myeffects, NULL, returnActorStatistics=FALSE,
returnStaticChangeContributions=FALSE)
ans2[j,] <- ans[,w]
}
list(effects=effects$effectName,effectType=effects$type, targets=ans2)
}
|
mod <-
logistic_reg(mixture = 1/3) %>%
set_engine("glmnet", nlambda = 10)
|
library(neo4r)
con <- neo4j_api$new(
url = "http://localhost:7474",
user = "neo4j",
password = "neo4j"
)
call_neo4j("CREATE CONSTRAINT ON (al:Band) ASSERT al.name IS UNIQUE;", con)
call_neo4j("CREATE CONSTRAINT ON (al:City) ASSERT al.name IS UNIQUE;", con)
call_neo4j("CREATE CONSTRAINT ON (al:record) ASSERT al.name IS UNIQUE;", con)
call_neo4j("CREATE CONSTRAINT ON (al:artist) ASSERT al.name IS UNIQUE;", con)
call_neo4j("MERGE (ancient:Band {name: 'Ancient', formed: 1992})
MERGE (acturus:Band {name: 'Arcturus', formed: 1991})
MERGE (burzum:Band {name: 'Burzum', formed: 1991})
MERGE (carpathianforest:Band {name: 'Carpathian Forest', formed: 1990})
MERGE (darkthrone:Band {name: 'Darkthrone', formed: 1986})
MERGE (emperor:Band {name: 'Emperor', formed: 1986})
MERGE (enslaved:Band {name: 'Enslaved', formed: 1991})
MERGE (gorgoroth:Band {name: 'Gorgoroth', formed: 1992})
MERGE (hades:Band {name: 'Hades', formed: 1992})
MERGE (immortal:Band {name: 'Immortal', formed: 1991})
MERGE (mayhem:Band {name: 'Mayhem', formed: 1984})
MERGE (satyricon:Band {name: 'Satyricon', formed: 1984})
MERGE (taake:Band {name: 'Taake', formed: 1993})
MERGE (bergen:City {name: 'Bergen'})
MERGE (oslo:City {name: 'Oslo'})
MERGE (sandnes:City {name: 'Sandnes'})
MERGE (rogaland:City {name: 'Rogaland'})
MERGE (deathcrush:record {name: 'Deathcrush', release: 1987})
MERGE (freezingmoon:record {name: 'Freezing Moon', release: 1987})
MERGE (carnage:record {name: 'Carnage', release: 1990})
MERGE (liveinleipzig:record {name: 'Live in Leipzig', release: 1990})
MERGE (demoi:record {name: 'Demo I', release: 1991})
MERGE (ablaze:record {name: 'A Blaze in the Northern Sky', release: 1991})
MERGE (immortal_rec:record {name: 'Immortal', release: 1991})
MERGE (demoii:record {name: 'Demo I', release: 1991})
MERGE (nema:record {name: 'Nema', release: 1991})
MERGE (burzum_rec:record {name: 'Burzum', release: 1992})
MERGE (detsom:record {name: 'Det som engang var', release: 1992})
MERGE (diabolical:record {name: 'Diabolical Fullmoon Mysticism', release: 1992})
MERGE (wrath:record {name: 'Wrath of the Tyrant', release: 1992})
MERGE (all_evil:record {name: 'All Evil', release: 1992})
MERGE (yggdrasill:record {name: 'Yggdrasill', release: 1992})
MERGE (funeral_moon:record {name: 'Under a Funeral Moon', release: 1992})
MERGE (aske:record {name: 'Aske', release: 1992})
MERGE (bloodlust:record {name: 'Bloodlust & Perversion', release: 1992})
MERGE (hvis:record {name: 'Hvis lyset tar oss', release: 1992})
MERGE (demys:record {name: 'De Mysteriis Dom Sathanas', release: 1992})
MERGE (hordanes:record {name: 'Hordanes Land', release: 1992})
MERGE (emperor_rec:record {name: 'Emperor', release: 1992})
MERGE (as_the_shadow:record {name: 'As the Shadows Rise', release: 1992})
MERGE (filosofem:record {name: 'Filosofem', release: 1993})
MERGE (theforest:record {name: 'The Forest Is My Throne', release: 1993})
MERGE (viking:record {name: 'Vikingligr Veldi', release: 1993})
MERGE (journey:record {name: 'Journey Through the Cold', release: 1993})
MERGE (moors:record {name: 'Moors of Svarttjern', release: 1993})
MERGE (asorcery:record {name: 'A Sorcery Written in Blood', release: 1993})
MERGE (inthenightside:record {name: 'In the Nightside Eclipse', release: 1993})
MERGE (darkmed:record {name: 'Dark Medieval Times', release: 1993})
MERGE (pureho:record {name: 'Pure Holocaust', release: 1993})
MERGE (trans:record {name: 'Transilvanian Hunger', release: 1993})
MERGE (euronymous:artist {name: 'Euronymous', born: 1968})
MERGE (vikernes:artist {name: 'Vikernes', born: 1973})
MERGE (fenriz:artist {name: 'Fenriz', born: 1971})
MERGE (gaahl:artist {name: 'Gaahl', born: 1975})
MERGE (euronymous)-[:PLAYED_IN]->(mayhem)
MERGE (vikernes)-[:PLAYED_IN]->(burzum)
MERGE (fenriz)-[:PLAYED_IN]->(Darkthrone)
MERGE (gaahl)-[:PLAYED_IN]->(gorgoroth)
MERGE (ancient)-[:IS_FROM]->(bergen)
MERGE (acturus)-[:IS_FROM]->(oslo)
MERGE (burzum)-[:IS_FROM]->(bergen)
MERGE (carpathianforest)-[:IS_FROM]->(rogaland)
MERGE (emperor)-[:IS_FROM]->(sandnes)
MERGE (enslaved)-[:IS_FROM]->(rogaland)
MERGE (gorgoroth)-[:IS_FROM]->(bergen)
MERGE (hades)-[:IS_FROM]->(bergen)
MERGE (immortal)-[:IS_FROM]->(bergen)
MERGE (mayhem)-[:IS_FROM]->(oslo)
MERGE (satyricon)-[:IS_FROM]->(oslo)
MERGE (taake)-[:IS_FROM]->(bergen)
MERGE (deathcrush)-[:WAS_RECORDED]->(mayhem)
MERGE (freezingmoon)-[:WAS_RECORDED]->(mayhem)
MERGE (carnage)-[:WAS_RECORDED]->(mayhem)
MERGE (liveinleipzig)-[:WAS_RECORDED]->(mayhem)
MERGE (demys)-[:WAS_RECORDED]->(mayhem)
MERGE (demoi)-[:WAS_RECORDED]->(burzum)
MERGE (demoii)-[:WAS_RECORDED]->(burzum)
MERGE (burzum_rec)-[:WAS_RECORDED]->(burzum)
MERGE (detsom)-[:WAS_RECORDED]->(burzum)
MERGE (aske)-[:WAS_RECORDED]->(burzum)
MERGE (hvis)-[:WAS_RECORDED]->(burzum)
MERGE (filosofem)-[:WAS_RECORDED]->(burzum)
MERGE (ablaze)-[:WAS_RECORDED]->(darkthrone)
MERGE (funeral_moon)-[:WAS_RECORDED]->(darkthrone)
MERGE (trans)-[:WAS_RECORDED]->(darkthrone)
MERGE (immortal_rec)-[:WAS_RECORDED]->(immortal)
MERGE (diabolical)-[:WAS_RECORDED]->(immortal)
MERGE (pureho)-[:WAS_RECORDED]->(immortal)
MERGE (nema)-[:WAS_RECORDED]->(enslaved)
MERGE (yggdrasill)-[:WAS_RECORDED]->(enslaved)
MERGE (hordanes)-[:WAS_RECORDED]->(enslaved)
MERGE (viking)-[:WAS_RECORDED]->(enslaved)
MERGE (wrath)-[:WAS_RECORDED]->(emperor)
MERGE (all_evil)-[:WAS_RECORDED]->(satyricon)
MERGE (theforest)-[:WAS_RECORDED]->(satyricon)
MERGE (darkmed)-[:WAS_RECORDED]->(satyricon)
MERGE (bloodlust)-[:WAS_RECORDED]->(carpathianforest)
MERGE (journey)-[:WAS_RECORDED]->(carpathianforest)
MERGE (moors)-[:WAS_RECORDED]->(carpathianforest)
MERGE (emperor_rec)-[:WAS_RECORDED]->(emperor)
MERGE (as_the_shadow)-[:WAS_RECORDED]->(emperor)
MERGE (inthenightside)-[:WAS_RECORDED]->(emperor)
MERGE (asorcery)-[:WAS_RECORDED]->(gorgoroth)", con)
|
observe({
updateSelectInput(session, inputId = "resp_bivar",
choices = names(final_split$train))
updateSelectInput(session, inputId = "var_bivar",
choices = names(final_split$train))
updateSelectInput(session, inputId = "resp_woe",
choices = names(final_split$train))
updateSelectInput(session, inputId = "var_woe",
choices = names(final_split$train))
updateSelectInput(session, inputId = "resp_woe2",
choices = names(final_split$train))
updateSelectInput(session, inputId = "var_woe2",
choices = names(final_split$train))
updateSelectInput(session, inputId = "resp_segdist",
choices = names(final_split$train))
updateSelectInput(session, inputId = "var_segdist",
choices = names(final_split$train))
updateSelectInput(session, inputId = "resp_2wayseg",
choices = names(final_split$train))
updateSelectInput(session, inputId = "var1_2wayseg",
choices = names(final_split$train))
updateSelectInput(session, inputId = "var2_2wayseg",
choices = names(final_split$train))
})
bivar <- eventReactive(input$submit_bivar, {
blorr::blr_bivariate_analysis(data = final_split$train,
response = input$resp_bivar, input$var_bivar)
})
woe_iv <- eventReactive(input$submit_woe, {
blorr::blr_woe_iv(data = final_split$train,
predictor = input$var_woe, response = input$resp_woe)
})
woe_iv_2 <- eventReactive(input$submit_woe2, {
blorr::blr_woe_iv_stats(data = final_split$train,
response = input$resp_woe2, input$var_woe2)
})
seg_dist <- eventReactive(input$submit_segdist, {
blorr::blr_segment_dist(data = final_split$train,
response = !! sym(as.character(input$resp_segdist)),
predictor = !! sym(as.character(input$var_segdist)))
})
twowayseg <- eventReactive(input$submit_2wayseg, {
blorr::blr_segment_twoway(data = final_split$train,
response = input$resp_2wayseg, variable_1 = input$var1_2wayseg,
variable_2 = input$var2_2wayseg)
})
output$bivar_out <- renderPrint({
bivar()
})
output$woe_out <- renderPrint({
woe_iv()
})
output$woe2_out <- renderPrint({
woe_iv_2()
})
output$segdist_out <- renderPrint({
seg_dist()
})
output$segdist_plot <- renderPlot({
plot(seg_dist())
})
output$twowayseg_out <- renderPrint({
twowayseg()
})
|
bayesCox <- function(formula, data, grid = NULL, out = NULL,
model = c("TimeIndep", "TimeVarying", "Dynamic"),
base.prior = list(),
coef.prior = list(),
gibbs = list(),
control = list(),
...)
{
Call <- match.call()
model <- match.arg(model)
base.prior <- do.call("bp_fun", base.prior)
coef.prior <- do.call("cp_fun", coef.prior)
if (model == "TimeIndep") {
if (base.prior$type == "Gamma" && coef.prior$type == "Normal")
id <- 11
if (base.prior$type == "GammaProcess" &&
coef.prior$type == "Normal")
id <- 12
} else if (model == "TimeVarying") {
if (base.prior$type == "Gamma" && coef.prior$type == "AR1")
id <- 21
if (base.prior$type == "Gamma" && coef.prior$type == "HAR1")
id <- 22
if (base.prior$type == "GammaProcess" &&
coef.prior$type == "AR1")
id <- 23
if (base.prior$type == "GammaProcess" &&
coef.prior$type == "HAR1")
id <- 24
} else if (model == "Dynamic") {
if (base.prior$type == "Gamma" && coef.prior$type == "AR1")
id <- 31
if (base.prior$type == "Gamma" && coef.prior$type == "HAR1")
id <- 32
if (base.prior$type == "Const" && coef.prior$type == "AR1")
id <- 33
if (base.prior$type == "Const" && coef.prior$type == "HAR1")
id <- 34
if (base.prior$type == "GammaProcess" &&
coef.prior$type == "AR1")
id <- 35
if (base.prior$type == "GammaProcess" &&
coef.prior$type == "HAR1")
id <- 36
} else
stop("Invalid 'model' specified.")
gibbs <- do.call("gibbs_fun", gibbs)
control <- do.call("control_bfun", control)
mf <- model.frame(formula, data)
mt <- attr(mf, "terms")
mm <- model.matrix(formula, data)
LRX <- cbind(mf[, 1L][, seq_len(2L)], mm[, - 1L])
eventIdx <- mf[, 1L][, 3L]
tmpIdx <- eventIdx == 2
LRX[tmpIdx, 1L] <- 0
tmpIdx <- eventIdx == 0
LRX[tmpIdx, 2L] <- Inf
tmpIdx <- eventIdx == 1
exactTimes <- LRX[tmpIdx, 2L] <- LRX[tmpIdx, 1L]
cov.names <- colnames(mm)[- 1L]
if (is.null(grid)) {
charNum <- as.character(LRX[, seq_len(2)])
tmpList <- strsplit(charNum, "\\.")
sigMax <- max(sapply(tmpList, function(a) {
if (length(a) > 1)
return(nchar(a[2L]))
0
}))
roundPow <- 10 ^ min(sigMax, 2)
left_ <- floor(LRX[, "time1"] * roundPow) / roundPow
right_ <- ceiling(LRX[, "time2"] * roundPow) / roundPow
finiteRight <- right_[! (is.infinite(right_) | is.na(right_))]
grid <- unique(c(left_, finiteRight))
}
grid <- grid[! (is.na(grid) | is.infinite(grid))]
grid <- grid[! grid <= 0]
if (length(exactTimes) > 0) {
grid <- unique(c(grid, exactTimes))
}
if (all(tmpIdx <- is.infinite(LRX[, "time2"]))) {
stop("Subjects are all right censored.")
}
finiteRight <- max(LRX[! tmpIdx, "time2"])
if (max(grid) < finiteRight) {
warning("The grid was expanded to cover all the finite endpoint ",
"of censoring intervals.")
grid <- unique(c(grid, finiteRight))
}
grid <- sort(unique(grid))
toLeft <- stats::stepfun(grid, c(0, grid))
toRight <- stats::stepfun(grid, c(grid, Inf))
LRX[, "time1"] <- toLeft(LRX[, "time1"])
LRX[, "time2"] <- toRight(LRX[, "time2"])
LRX[is.infinite(LRX[, 2L]), 2L] <- max(grid[length(grid)], 999)
LRX[is.na(LRX[, 2L]), 2L] <- max(grid[length(grid)], 999)
if (control$intercept) {
LRX <- cbind(LRX[, seq_len(2L)], 1, LRX[, - seq_len(2L)])
cov.names <- c("intercept", cov.names)
}
colnames(LRX) <- c("L", "R", cov.names)
if (save_mcmc <- is.null(out)) {
out <- sprintf("%s.txt", tempfile())
}
K <- length(grid)
nBeta <- length(cov.names)
lambda <- rep(0, K)
beta <- if (model == "TimeIndep") {
rep(0, nBeta)
} else {
rep(0, nBeta * K)
}
nu <- rep(0, nBeta)
jump <- rep(0, nBeta * K)
res <- .C("bayesCox",
as.double(LRX),
as.integer(nrow(LRX)),
as.integer(ncol(LRX) - 2),
as.double(grid),
as.integer(length(grid)),
as.character(out),
as.integer(id),
as.double(base.prior$hyper[[1]]),
as.double(base.prior$hyper[[2]]),
as.double(coef.prior$hyper[[1]]),
as.double(coef.prior$hyper[[2]]),
as.integer(gibbs$iter),
as.integer(gibbs$burn),
as.integer(gibbs$thin),
as.integer(gibbs$verbose),
as.integer(gibbs$nReport),
as.double(control$a0),
as.double(control$eps0),
lambda = as.double(lambda),
beta = as.double(beta),
nu = as.double(nu),
jump = as.integer(jump),
LPML = as.double(0),
DHat = as.double(0),
DBar = as.double(0),
pD = as.double(0),
DIC = as.double(0))
if (model != "TimeIndep")
res$beta <- matrix(res$beta, K, nBeta)
if (coef.prior$type != "HAR1")
res$nu <- NULL
if (model == "Dynamic") {
res$jump <- matrix(res$jump, K, nBeta)
} else {
res$jump <- NULL
}
if (save_mcmc) {
mcmc_list <- read_bayesCox(out, gibbs$burn, gibbs$thin)
out <- NULL
} else {
mcmc_list <- NULL
}
structure(list(
call = Call,
formula = formula,
grid = grid,
out = out,
model = model,
LRX = LRX,
base.prior = base.prior,
coef.prior = coef.prior,
gibbs = gibbs,
control = control,
xlevels = .getXlevels(mt, mf),
N = nrow(LRX),
K = K,
nBeta = nBeta,
cov.names = cov.names,
mcmc = mcmc_list,
est = list(lambda = res$lambda,
beta = res$beta,
nu = res$nu,
jump = res$jump),
measure = list(LPML = res$LPML,
DHat = res$DHat,
DBar = res$DBar,
pD = res$pD,
DIC = res$DIC)
), class = "bayesCox")
}
Gamma_fun <- function(shape = 0.1, rate = 0.1)
{
list(shape = shape, rate = rate)
}
Const_fun <- function(value = 1)
{
list(value = value, value = value)
}
GammaProcess_fun <- function(mean = 0.1, ctrl = 1)
{
list(mean = mean, ctrl = ctrl)
}
bp_fun <- function(type = c("Gamma", "Const", "GammaProcess"), ...)
{
type <- match.arg(type)
hyper <- if (type == "Gamma") {
Gamma_fun(...)
} else if (type == "Const") {
Const_fun(...)
} else if (type == "GammaProcess") {
GammaProcess_fun(...)
}
list(type = type, hyper = hyper)
}
Normal_fun <- function(mean = 0, sd = 1)
{
list(mean = mean, sd = sd)
}
AR1_fun <- function(sd = 1)
{
list(sd = sd, sd = sd)
}
HAR1_fun <- function(shape = 2, scale = 1)
{
list(shape = shape, scale = scale)
}
cp_fun <- function(type = c("Normal", "AR1", "HAR1"), ...)
{
type <- match.arg(type)
hyper <- if (type == "Normal") {
Normal_fun(...)
} else if (type == "AR1") {
AR1_fun(...)
} else if (type == "HAR1") {
HAR1_fun(...)
}
list(type = type, hyper = hyper)
}
gibbs_fun <- function(iter = 3000, burn = 500, thin = 1,
verbose = TRUE, nReport = 100)
{
list(iter = as.integer(iter),
burn = as.integer(burn),
thin = as.integer(thin),
verbose = verbose,
nReport = as.integer(nReport))
}
control_bfun <- function(intercept = FALSE, a0 = 100, eps0 = 1)
{
list(intercept = intercept, a0 = a0, eps0 = eps0)
}
|
library(dplyr)
library(ggplot2)
N <- 50
I <- 120
d <- read.csv(file='input/data-lda.txt')
d_cast <- d %>% group_by(PersonID) %>% summarise(n=n()) %>% ungroup()
p <- ggplot(data=d_cast, aes(x=n)) +
theme_bw(base_size=18) +
geom_bar(color='grey5', fill='grey80') +
scale_x_continuous(breaks=seq(10,40,10), limits=c(10,40)) +
labs(x='count by PersonID', y='count')
ggsave(file='output/fig11-6-left.png', plot=p, dpi=300, w=4, h=3)
d_cast <- d %>% group_by(ItemID) %>% summarise(n=n()) %>% ungroup()
p <- ggplot(data=d_cast, aes(x=n)) +
theme_bw(base_size=18) +
geom_bar(color='grey5', fill='grey80') +
labs(x='count by ItemID', y='count')
ggsave(file='output/fig11-6-right.png', plot=p, dpi=300, w=4, h=3)
|
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
library(anovir)
sy_time <- c(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23)
sy_Suninf <- c(1,0.988,0.988,0.969,0.951,0.941,0.934,0.929,0.92,0.913,0.906,0.903,0.896,0.889,0.88,0.875,0.875,0.868,0.858,0.846,0.842,0.837,0.837,0.831)
sy_Sobsinf <- c(1,0.979,0.966,0.942,0.915,0.902,0.887,0.875,0.869,0.859,0.841,0.81,0.788,0.747,0.732,0.696,0.68,0.652,0.616,0.6,0.584,0.574,0.561,0.545)
sy_surv <- data.frame(sy_time, sy_Suninf, sy_Sobsinf)
plot(sy_surv[, 1], sy_surv[, 2],
type = 's', col = 'black', xlab = 'time (days)', ylab = 'Survival',
xlim = c(0, 23), ylim = c(0, 1),
main = 'Cumulative survival',
axes = FALSE
)
lines(sy_surv[, 3], type = 's', col = 'red')
axis(side = 1, seq(0, 28, by = 7))
axis(side = 2, seq(0, 1.1, by = 0.2))
legend("bottomleft", c("Uninfected", "Infected"), lty = c(1, 1), col = c(1, 2))
sy_times <- c(1,3,4,5,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,23,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,7,21,22,23,7,14,21,22,23)
sy_censor <- c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1)
sy_inf <- c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,1,1,1,1,1)
sy_fq <- c(5,8,8,4,3,2,4,3,3,1,3,3,4,2,3,4,5,2,2,1,7,4,8,9,4,5,4,2,3,6,10,7,13,5,11,5,9,11,5,5,3,4,2,3,4,205,143,6,7,4,103,66)
data_sy <- data.frame(sy_times, sy_inf, sy_censor, sy_fq)
data_sy$fq <- data_sy$sy_fq
head(data_sy)
m01_prep_function <- function(a1, b1, a2, b2){
nll_basic(
a1, b1, a2, b2,
data = data_sy,
time = sy_times,
censor = sy_censor,
infected_treatment = sy_inf,
d1 = 'Weibull', d2 = 'Weibull')
}
m01 <- mle2(m01_prep_function,
start = list(a1 = 3, b1 = 0.5, a2 = 3, b2 = 0.5)
)
summary(m01)
m02 <- mle2(m01_prep_function,
start = list(a1 = 4.8, a2 = 3.6, b2 = 0.6),
fixed = list(b1 = 1.0)
)
summary(m02)
AICc(m01, m02, nobs = 753)
|
knitr::opts_chunk$set(comment = "
library(metan)
inspect(data_ge)
ge_details(data_ge,
env = ENV,
gen = GEN,
resp = everything())
ge_plot(data_ge, GEN, ENV, GY)
mge <- ge_means(data_ge,
env = ENV,
gen = GEN,
resp = everything())
get_model_data(mge) %>% round_cols()
get_model_data(mge, what = "env_means") %>% round_cols()
get_model_data(mge, what = "gen_means") %>% round_cols()
ammi_model <- performs_ammi(data_ge, ENV, GEN, REP, resp = c(GY, HM))
waas_index <- waas(data_ge, ENV, GEN, REP, GY, verbose = FALSE)
a <- plot_scores(ammi_model)
b <- plot_scores(ammi_model,
type = 2,
second = "PC3")
c <- plot_scores(ammi_model,
type = 2,
polygon = TRUE,
col.gen = "black",
col.env = "gray70",
col.segm.env = "gray70",
axis.expand = 1.5)
arrange_ggplot(a, b, c, tag_levels = "a", ncol = 1)
predicted <- predict(ammi_model, naxis = c(4, 6))
predicted %>%
subset(TRAIT == "GY") %>%
make_mat(GEN, ENV, YpredAMMI) %>%
round_cols()
model2 <- gamem_met(data_ge, ENV, GEN, REP, everything())
plot(model2, which = c(1, 2, 7), ncol = 1)
plot(model2, type = "re", nrow = 3)
get_model_data(model2) %>% round_cols(digits = 3)
library(ggplot2)
d <- plot_blup(model2)
e <- plot_blup(model2,
prob = 0.1,
col.shape = c("gray20", "gray80")) +
coord_flip()
arrange_ggplot(d, e, tag_levels = list(c("d", "e")), ncol = 1)
get_model_data(model2, what = "blupge") %>%
round_cols()
model3 <- waasb(data_ge, ENV, GEN, REP, everything(), verbose = FALSE)
get_model_data(model3, what = "WAASB") %>%
round_cols()
index <- blup_indexes(model3)
get_model_data(index) %>% round_cols()
gge_model <- gge(data_ge, ENV, GEN, GY)
f <- plot(gge_model)
g <- plot(gge_model, type = 2)
arrange_ggplot(e, f, tag_levels = list(c("e", "f")), ncol = 1)
stat_ge <- ge_stats(data_ge, ENV, GEN, REP, GY)
get_model_data(stat_ge) %>%
round_cols()
|
b_success_rate <- function(r,
s,
priors=NULL,
warmup=1000,
iter=2000,
chains=4,
seed=NULL,
refresh=NULL,
control=NULL,
suppress_warnings=TRUE) {
if (chains > 1) {
options(mc.cores = parallel::detectCores())
}
n <- length(r)
m <- length(unique(s))
p_ids <- rep(0, 2)
p_values <- rep(0, 4)
df_pars <- data.frame(par=c("p", "tau"), index=c(1, 2))
if (!is.null(priors)) {
for (p in priors) {
par <- p[[1]]
prior <- p[[2]]
id <- 0
par_id <- df_pars[df_pars$par==par,]
if (nrow(par_id) > 0) {
id <- par_id$index
} else {
wrong_prior <- "Provided an unknown parameter for prior, use \"p\" or \"tau\"."
warning(wrong_prior)
return()
}
p_ids[id] <- get_prior_id(prior)
if (p_ids[id] == 0) {
wrong_prior <- "Provided an unknown prior family, use \"uniform\", \"normal\", \"gamma\" or \"beta\"."
warning(wrong_prior)
return()
}
if (length(prior@pars) != 2) {
wrong_pars <- "Incorrect prior parameters, provide a vector of 2 numerical values."
warning(wrong_pars)
return()
}
p_values[2*id-1] <- prior@pars[1]
p_values[2*id] <- prior@pars[2]
}
}
stan_data <- list(n=n,
m=m,
r=r,
s=s,
p_ids = p_ids,
p_values = p_values)
if (is.null(seed)) {
seed <- sample.int(.Machine$integer.max, 1)
}
if (is.null(refresh)) {
refresh <- max(iter/10, 1)
}
if (suppress_warnings) {
fit <- suppressWarnings(sampling(stanmodels$success_rate,
data=stan_data,
iter=iter,
warmup=warmup,
chains=chains,
seed=seed,
refresh=refresh,
control=control))
} else {
fit <- sampling(stanmodels$success_rate,
data=stan_data,
iter=iter,
warmup=warmup,
chains=chains,
seed=seed,
refresh=refresh,
control=control)
}
extract_raw <- extract(fit, permuted=FALSE)
i <- 1
p0 <- extract_raw[, 1, i]
i <- i + 1
tau <- extract_raw[, 1, i]
i <- i + 1
j <- i + m - 1
p <- extract_raw[, 1, i:j]
i <- i + m
lp__ <- extract_raw[, 1, i]
extract <- list(p0=p0,
tau=tau,
p=p,
lp__=lp__)
out <- success_rate_class(extract=extract, data=stan_data, fit=fit)
return(out)
}
|
compRejectionFraction<-function(bkgLevel,respLevel,numCats,pretestP,anovaP,
showProgress=FALSE,
numTrialsPerCat=10,numCells=1000) {
totPreselected<-0
totRejected<-0
totTrials<-numCats*numTrialsPerCat
catLabels<-factor(rep(1:numCats,numTrialsPerCat))
for (i in 1:numCells) {
if (showProgress) print(i)
bkgCnts<-rpois(totTrials,bkgLevel)
respCnts<-rpois(totTrials,respLevel)
presel<-FALSE
for (j in 1:numCats) {
catSel<-catLabels==levels(catLabels)[j]
pVal<-t.test(bkgCnts,respCnts[catSel],alternative='two.sided')$p.value
if (pVal<pretestP) {
presel<-TRUE
break
}
}
if (presel) {
totPreselected<-totPreselected+1
mod<-glm(respCnts~catLabels)
pVal<-anova(mod,test='F')$"Pr(>F)"[2]
if (pVal<anovaP) totRejected<-totRejected+1
}
}
list( exclusionFrac=1-(totPreselected/numCells),
rejectionFrac=totRejected/totPreselected )
}
|
convert_color = function(color, as_hex = FALSE) {
if(inherits(color,"character")) {
color = as.vector(grDevices::col2rgb(color))/255
}
if(as_hex) {
paste0("
} else {
color
}
}
rescale = function(vals, to=c(0,1)) {
range_vals = range(vals[!is.infinite(vals)],na.rm=TRUE)
vals = (vals-range_vals[1])/(range_vals[2]-range_vals[1])
(vals + to[1]) * (t[2]-t[1])
}
get_file_type = function(file) {
if(is.character(file)) {
if(tools::file_ext(file) == "png") {
imagetype = "png"
} else {
imagetype = "jpg"
}
} else if (length(dim(file)) == 3) {
imagetype = "array"
} else if (length(dim(file)) == 2) {
imagetype = "matrix"
} else {
stop("`",file,"` not recognized class (png, jpeg, array, matrix).")
}
}
fliplr = function(x) {
if(length(dim(x)) == 2) {
x[,ncol(x):1]
} else {
x[,ncol(x):1,]
}
}
flipud = function(x) {
if(length(dim(x)) == 2) {
x[nrow(x):1,]
} else {
x[nrow(x):1,,]
}
}
|
test_that("cdb_id works correctly", {
id1 <- cdb_id(Compadre, c("SpeciesAuthor", "MatrixPopulation"))
expect_type(id1, "integer")
expect_length(id1, nrow(Compadre@data))
id2 <- cdb_id(Compadre, "Family")
expect_type(id2, "integer")
expect_length(id2, nrow(Compadre@data))
expect_true(length(unique(id2)) == length(unique(Compadre@data$Family)))
})
test_that("cdb_id warns and fails gracefully", {
expect_error(cdb_id(Compadre@data))
expect_error(cdb_id(Compadre, c("SpeciesAuthor", "blah")))
})
|
asc2s <- function(k=12, x=rep(95, times=2), dir=2,
r=(x[dir]-3)^(seq(k)/k)) {
k <- length(r <- unique(round(r)))
return(switch(dir,
rbind(r=r+1,
x1=2, x2=r+2,
y1=2, y2=x[2]-1),
rbind(r=r+1,
x1=2, x2=x[1]-1,
y1=2, y2=r+2)))
}
asc3s <- function(k=12, x=rep(95, times=3), dir=3,
r=(x[dir]-3)^(seq(k)/k)) {
k <- length(r <- unique(round(r)))
return(switch(dir,
rbind(r=r+1,
x1=2, x2=r+2,
y1=2, y2=x[2]-1,
z1=2, z2=x[3]-1),
rbind(r=r+1,
x1=2, x2=x[1]-1,
y1=2, y2=r+2,
z1=2, z2=x[3]-1),
rbind(r=r+1,
x1=2, x2=x[1]-1,
y1=2, y2=x[2]-1,
z1=2, z2=r+2)))
}
|
ArcList2Cmat <- function(nodes, arcs, directed = TRUE) {
n <- length(nodes)
Cmat <- matrix(nrow = n, ncol = n)
Cmat[, ] <- Inf
for (i in 1:nrow(Cmat)) {
Cmat[i, i] <- NA
}
for (i in 1:nrow(arcs)) {
Cmat[arcs[i, 1], arcs[i, 2]] <- arcs[i, 3]
}
if (!directed) {
for (i in 1:nrow(arcs)) {
Cmat[arcs[i, 2], arcs[i, 1]] <- arcs[i, 3]
}
}
return(Cmat)
}
|
do_oauth <- function(app = do_app, reauth = FALSE) {
if (exists("auth_config", envir = cache) && !reauth) {
return(cache$auth_config)
}
pat <- Sys.getenv("DO_PAT", "")
if (!identical(pat, "")) {
auth_config <- httr::add_headers(Authorization = paste0("Bearer ", pat))
} else if (!interactive()) {
stop("In non-interactive environments, please set DO_PAT env to a DO",
" access token (https://cloud.digitalocean.com/settings/api/tokens)",
call. = FALSE)
} else {
endpt <- httr::oauth_endpoint(
NULL, "authorize", "token",
base_url = "https://cloud.digitalocean.com/v1/oauth")
token <- httr::oauth2.0_token(endpt, app, scope = c("read", "write"),
cache = !reauth)
auth_config <- httr::config(token = token)
}
cache$auth_config <- auth_config
auth_config
}
cache <- new.env(parent = emptyenv())
do_app <- httr::oauth_app(
"Rstats",
"6d5dbd8599989781ea6ca1fd7cd25a6a55a9f746afbeabb8834b8d5269751749",
"b771ae783b65aae96bec459b1bdeb023810d318a6f73019a1fb0abf7dc01bc24"
)
|
options(na.action=na.exclude)
options(contrasts=c('contr.treatment', 'contr.poly'))
library(survival)
fit0 <- coxph(Surv(time, status) ~ ph.ecog + age, lung)
fit1 <- coxph(Surv(time, status) ~ ph.ecog + pspline(age,3), lung)
fit2 <- coxph(Surv(time, status) ~ ph.ecog + pspline(age,4), lung)
fit3 <- coxph(Surv(time, status) ~ ph.ecog + pspline(age,8), lung)
fit4 <- coxph(Surv(time, status) ~ ph.ecog + pspline(wt.loss,3), lung)
fit5 <-coxph(Surv(time, status) ~ ph.ecog + pspline(age,3) +
pspline(wt.loss,3), lung)
fit1
fit2
fit3
fit4
fit5
rm(fit1, fit2, fit3, fit4, fit5)
|
test_that("empty input returns a list, but after the index size check", {
expect_equal(pslide_index(list(integer(), integer()), integer(), ~.x), list())
expect_equal(pslide_index(list(integer(), 1), integer(), ~.x), list())
expect_equal(pslide_index(list(1, integer()), integer(), ~.x), list())
expect_error(pslide_index(list(integer(), integer()), 1, ~.x), class = "slider_error_index_incompatible_size")
})
test_that("completely empty input returns a list", {
expect_equal(pslide_index(list(), integer(), ~.x), list())
})
test_that("pslide_index() forces arguments in the same way as base R / pmap()", {
f_slide <- pslide_index(list(1:2, 1:2, 1:2), 1:2, function(i, j, k) function(x) x + i + j + k)
f_base <- mapply(function(i, j, k) function(x) x + i + j + k, 1:2, 1:2, 1:2)
expect_equal(f_slide[[1]](0), f_base[[1]](0))
expect_equal(f_slide[[2]](0), f_base[[2]](0))
})
|
ghelp <- function(item = c("GENERAL", "SELECT", "SPECIES", "KEYWORD"),
file = c("HELP", "HELP_WIN"), socket = autosocket(),
catresult = TRUE){
item <- item[1]
file <- file[1]
if(!(file %in% c("HELP", "HELP_WIN"))) stop("Wrong file agument")
request <- paste("ghelp&file=", file, "&item=", item, sep = "")
writeLines(request, socket, sep = "\n")
answerFromServer <- readLines(socket)
if(length(answerFromServer) == 0){
warning("Empty answer from server")
return(NA)
}
answerFromServer[1] <- unlist(strsplit(answerFromServer[1], split = "&"))[2]
if(catresult) cat(answerFromServer, sep = "\n")
invisible(answerFromServer)
}
|
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
knitr::include_graphics("figures/workflow.png")
library(bulkAnalyseR)
counts.in <- system.file("extdata", "expression_matrix.csv", package = "bulkAnalyseR")
exp <- as.matrix(read.csv(counts.in, row.names = 1))
head(exp)
meta <- data.frame(
srr = colnames(exp),
timepoint = rep(c("0h", "12h", "36h"), each = 2)
)
exp.proc <- preprocessExpressionMatrix(exp, output.plot = TRUE)
knitr::include_graphics("figures/ScreenShot.png")
knitr::include_graphics("figures/JSI.png")
knitr::include_graphics("figures/PCA.png")
knitr::include_graphics("figures/MA_QC.png")
knitr::include_graphics("figures/DE.png")
knitr::include_graphics("figures/VolcanoPlot.png")
knitr::include_graphics("figures/MAPlot.png")
knitr::include_graphics("figures/PCA_DE.png")
knitr::include_graphics("figures/ExpressionHeatmap.png")
knitr::include_graphics("figures/Enrichment.png")
knitr::include_graphics("figures/ExpressionPatterns.png")
knitr::include_graphics("figures/ExpressionPatternsLinePlot.png")
knitr::include_graphics("figures/ExpressionPatternsHeatmap.png")
knitr::include_graphics("figures/CrossPlot.png")
knitr::include_graphics("figures/GRN.png")
|
if ("package:dendextendRcpp" %in% search()) {
detach("package:dendextendRcpp")
return_dendextendRcpp <- TRUE
} else {
return_dendextendRcpp <- FALSE
}
detach("package:dendextend")
suppressWarnings(require(ape, quietly = TRUE))
suppressPackageStartupMessages(library(dendextend))
if (return_dendextendRcpp) suppressPackageStartupMessages(library(dendextendRcpp))
rm(return_dendextendRcpp)
context("Rotate a tree around its hinges")
test_that("Rotate a dendrogram", {
hc <- hclust(dist(USArrests[1:3, ]), "ave")
dend <- as.dendrogram(hc)
expect_equal(rev(labels(dend)), labels(rotate(dend, 3:1)))
expect_equal(rev(labels(dend)), labels(rotate(dend, rev(labels(dend)))))
})
test_that("Rotate a dendrogram (but not exactly to what we asked for)", {
hc <- hclust(dist(USArrests[1:3, ]), "ave")
dend <- as.dendrogram(hc)
new_order <- c(3, 1, 2)
expect_false(all(labels(dend)[new_order] == labels(rotate(dend, new_order))))
expect_false(all(labels(dend)[new_order] == labels(rotate(dend, labels(dend)[new_order]))))
})
test_that("Rotate a dendrogram - works with either numeric or character", {
hc <- hclust(dist(USArrests[1:3, ]), "ave")
dend <- as.dendrogram(hc)
new_order <- c(2, 3, 1)
expect_equivalent(rotate(dend, new_order), rotate(dend, labels(dend)[new_order]))
expect_equivalent(
labels(rotate(dend, new_order)),
labels(rotate(dend, labels(dend)[new_order]))
)
})
test_that("Rotate hclust", {
hc <- hclust(dist(USArrests[1:3, ]), "ave")
expect_equal(rev(labels(hc)), labels(rotate(hc, 3:1)))
expect_equal(rev(labels(hc)), labels(rotate(hc, rev(labels(hc)))))
})
test_that("Rotate a hclust (but not exactly to what we asked for)", {
hc <- hclust(dist(USArrests[1:3, ]), "ave")
new_order <- c(3, 1, 2)
expect_false(all(labels(hc)[new_order] == labels(rotate(hc, new_order))))
expect_false(all(labels(hc)[new_order] == labels(rotate(hc, labels(hc)[new_order]))))
})
|
npqcmstest <- function(formula,
data = NULL,
subset,
xdat,
ydat,
model = stop(paste(sQuote("model")," has not been provided")),
tau = 0.5,
distribution = c("bootstrap", "asymptotic"),
bwydat = c("y","varepsilon"),
boot.method=c("iid","wild","wild-rademacher"),
boot.num = 399,
pivot = TRUE,
density.weighted = TRUE,
random.seed = 42,
...) {
pcall = paste(deparse(model$call),collapse="")
if(length(grep("model = TRUE", pcall)) == 0)
stop(paste(sQuote("model")," is missing components ",
sQuote("model"),
".\nTo fix this please invoke ",
sQuote("rq"),
" with ", sQuote("model=TRUE"),
".\nSee help for further info.",
sep=""))
if(tau <=0 | tau >=1) stop("tau must lie in (0,1)")
if(boot.num < 9) stop("number of bootstrap replications must be >= 9")
miss.xy = c(missing(xdat),missing(ydat))
miss.f = missing(formula)
if (any(miss.xy) && !all(miss.xy))
stop("one of, but not both, xdat and ydat was specified")
else if(all(miss.xy) & miss.f)
stop("xdat, and ydat, are missing, and no formula is specified.")
else if(all(miss.xy) & !miss.f){
mf <- eval(parse(text=paste("model.frame(formula = formula, data = data,",
ifelse(missing(subset),"","subset = subset,"),
"na.action = na.omit)")))
ydat <- model.response(mf)
xdat <- mf[, attr(attr(mf, "terms"),"term.labels"), drop = FALSE]
na.index <- unclass(attr(xdat,"na.action"))
} else if(!miss.f){
stop(paste("A formula was specified along with xdat and ydat.\n",
"Please see the documentation on proper interface usage."))
} else {
xdat = toFrame(xdat)
goodrows = 1:dim(xdat)[1]
rows.omit = attr(na.omit(data.frame(xdat,ydat)), "na.action")
goodrows[rows.omit] = 0
if (all(goodrows==0))
stop("Data has no rows without NAs")
xdat = xdat[goodrows,,drop = FALSE]
ydat = ydat[goodrows]
na.index = which(goodrows==0)
}
if(exists(".Random.seed", .GlobalEnv)) {
save.seed <- get(".Random.seed", .GlobalEnv)
exists.seed = TRUE
} else {
exists.seed = FALSE
}
set.seed(random.seed)
distribution = match.arg(distribution)
boot.method = match.arg(boot.method)
bwydat = match.arg(bwydat)
model.resid <- residuals(model, type = "response")
n = length(model.resid)
console <- newLineConsole()
console <- printPush("Bandwidth selection", console)
if(bwydat == "y") {
bw <- npregbw(xdat=xdat, ydat=model$y, ...)
} else if(bwydat == "varepsilon"){
varepsilon <- ifelse(model.resid<=0,1-tau,-tau)
bw <- npregbw(xdat=xdat, ydat=varepsilon, ...)
}
console <- printPop(console)
fhat <- 1
prodh <- if (bw$ncon == 0) 1.0
else
prod(bw$bw[bw$icon])
if (!density.weighted)
fhat <- npksum(txdat = xdat,
bws = bw$bw, leave.one.out = TRUE,
bandwidth.divide = FALSE,...)$ksum/(n*prodh)
if(min(fhat) == 0)
stop(paste(sep="","\nAttempt to divide by zero density.",
"\nYou can try re-running the test with `density.weighted=TRUE'\n"))
In <- function(xdat, model.resid, bw) {
n <- length(model.resid)
varepsilon <- ifelse(model.resid<=0,1-tau,-tau)
return( sum(varepsilon*npksum(txdat=xdat,
tydat=varepsilon,
bws=bw$bw,
leave.one.out=TRUE,
bandwidth.divide=TRUE,...)$ksum/fhat)/n^2 )
}
Omega.hat <- function(xdat, model.resid, bw) {
n <- length(model.resid)
varepsilon <- ifelse(model.resid<=0,1-tau,-tau)
return( 2*prod(bw$bw[bw$icon])*
sum(varepsilon^2*
npksum(txdat=xdat,
tydat=varepsilon^2,
bws=bw$bw,
leave.one.out=TRUE,
kernel.pow=2,
bandwidth.divide=TRUE,...)$ksum/fhat^2)/n^2 )
}
Jn <- function(xdat, model.resid, bw) {
n <- length(model.resid)
n*sqrt(prodh)*In(xdat, model.resid, bw)/sqrt(Omega.hat(xdat, model.resid, bw))
}
yhat <- fitted(model)
boot.wild <- function(model.resid) {
a <- -0.6180339887499
P.a <-0.72360679774998
b <- 1.6180339887499
y.star <- yhat + (model.resid-mean(model.resid))*
ifelse(rbinom(length(model.resid),1,P.a)==1,a,b)+
mean(model.resid)
suppressWarnings(resid <- residuals(rq(y.star~ model$x - 1, tau=tau), type = "response"))
return(if (pivot) Jn(xdat, resid, bw)
else In(xdat, resid, bw))
}
boot.wild.rademacher <- function(model.resid) {
a <- -1
P.a <- 0.5
b <- 1
y.star <- yhat + (model.resid-mean(model.resid))*
ifelse(rbinom(length(model.resid),1,P.a)==1,a,b)+
mean(model.resid)
suppressWarnings(resid <- residuals(rq(y.star~ model$x - 1, tau=tau), type = "response"))
return(if (pivot) Jn(xdat, resid, bw)
else In(xdat, resid, bw))
}
boot.iid <- function(model.resid) {
y.star <- yhat + sample(model.resid, replace=TRUE)
suppressWarnings(resid <- residuals(rq(y.star~ model$x - 1, tau=tau), type = "response"))
return(if (pivot) Jn(xdat, resid, bw)
else In(xdat, resid, bw))
}
if(distribution == "bootstrap"){
Sn.bootstrap <- numeric(boot.num)
for(ii in 1:boot.num) {
console <- printPush(paste(sep="", "Bootstrap replication ",
ii, "/", boot.num, "..."), console)
if(boot.method == "iid"){
Sn.bootstrap[ii] <- boot.iid(model.resid)
} else if(boot.method == "wild"){
Sn.bootstrap[ii] <- boot.wild(model.resid)
} else if(boot.method == "wild-rademacher"){
Sn.bootstrap[ii] <- boot.wild.rademacher(model.resid)
}
console <- printPop(console)
}
Sn.bootstrap <- sort(Sn.bootstrap)
cat("\n")
}
tIn = In(xdat, model.resid, bw)
to.h = Omega.hat(xdat, model.resid, bw)
s.d =
if (pivot) 1.0
else sqrt(to.h/prodh)/n
if(distribution == "asymptotic") {
tJn = list(
Jn = n*sqrt(prodh)*tIn/sqrt(to.h),
In = tIn,
Omega.hat = to.h,
q.90=qnorm(p = .90, sd = s.d),
q.95=qnorm(p = .95, sd = s.d),
q.99=qnorm(p = .99, sd = s.d),
bw = bw,
Jn.bootstrap = NA,
In.bootstrap = NA,
pivot = pivot)
Sn = if (pivot) tJn$Jn else tIn
tJn$P <- (1-pnorm(Sn, sd = s.d))
} else {
tJn = list(
Jn = n*sqrt(prodh)*tIn/sqrt(to.h),
In = tIn,
Omega.hat = to.h,
q.90=Sn.bootstrap[ceiling(0.90*boot.num)],
q.95=Sn.bootstrap[ceiling(0.95*boot.num)],
q.99=Sn.bootstrap[ceiling(0.99*boot.num)],
bw=bw,
Jn.bootstrap = if(pivot) Sn.bootstrap else NA,
In.bootstrap = if(pivot) NA else Sn.bootstrap,
pivot = pivot
)
Sn = if (pivot) tJn$Jn else tIn
tJn$P <- mean(ifelse(Sn.bootstrap > Sn, 1, 0))
}
if(exists.seed) assign(".Random.seed", save.seed, .GlobalEnv)
cmstest(Jn = tJn$Jn,
In = tJn$In,
Omega.hat = tJn$Omega.hat,
sd = s.d,
q.90 = tJn$q.90,
q.95 = tJn$q.95,
q.99 = tJn$q.99,
P = tJn$P,
bws = bw,
distribution = distribution,
Jn.bootstrap = tJn$Jn.bootstrap,
In.bootstrap = tJn$In.bootstrap,
pivot = pivot,
model = model,
boot.method = boot.method,
boot.num = boot.num,
na.index = na.index)
}
|
suppressPackageStartupMessages(library("argparse"))
parser = ArgumentParser()
parser$add_argument("--infercnv_obj", help="infercnv_obj file", required=TRUE, nargs=1)
parser$add_argument("--scale", help="scale", action='store_true', default=FALSE)
parser$add_argument("--subtract", help="subtract", action='store_true', default=FALSE)
parser$add_argument("--smooth", help="smooth", action='store_true', default=TRUE)
parser$add_argument("--show_tumor", help="show tumor instead of normal", action='store_true', default=FALSE)
parser$add_argument("--output", help="name of output png file", required=TRUE)
args = parser$parse_args()
library(infercnv)
library(tidyverse)
library(futile.logger)
infercnv_obj_file = args$infercnv_obj
infercnv_obj = readRDS(infercnv_obj_file)
if (! infercnv:::has_reference_cells(infercnv_obj)) {
stop("Error, cannot tune parameters without reference 'normal' cells defined")
}
if (args$scale) {
infercnv_obj <- infercnv:::scale_infercnv_expr(infercnv_obj)
}
if (args$subtract) {
infercnv_obj <- subtract_ref_expr_from_obs(infercnv_obj, inv_log=FALSE)
}
if (args$smooth) {
infercnv_obj <- smooth_by_chromosome(infercnv_obj, window_length=101, smooth_ends=TRUE)
}
if (args$show_tumor) {
expr_vals <- [email protected][, unlist(infercnv_obj@observation_grouped_cell_indices)]
} else {
expr_vals <- [email protected][, unlist(infercnv_obj@reference_grouped_cell_indices)]
}
mu = mean(expr_vals)
sigma = sd(expr_vals)
data.want = data.frame(vals=as.numeric(expr_vals))
mean_delta = infercnv:::determine_mean_delta_via_Z(sigma, p=0.05)
KS_delta = infercnv:::get_HoneyBADGER_setGexpDev(gexp.sd=sigma, alpha=0.05)
png(args$output)
message("plotting ncells distribution")
message("mean delta: ", mean_delta)
message("KS_delta: ", KS_delta)
p = data.want %>% ggplot(aes(vals)) +
geom_density(alpha=0.3)
p = p +
stat_function(fun=dnorm, color='black', args=list('mean'=mu,'sd'=sigma))
p = p +
stat_function(fun=dnorm, color='blue', args=list('mean'=mu-mean_delta,'sd'=sigma)) +
stat_function(fun=dnorm, color='blue', args=list('mean'=mu+mean_delta,'sd'=sigma))
p = p +
stat_function(fun=dnorm, color='magenta', args=list('mean'=mu-KS_delta,'sd'=sigma)) +
stat_function(fun=dnorm, color='magenta', args=list('mean'=mu+KS_delta,'sd'=sigma))
plot(p)
|
print.drop.test <- function (x, digits = max(5, .Options$digits - 2), ...) {
cat("\nDrop in Dispersion Test\n")
y <- c(x$F, x$p.value)
names(y) <- c("F-Statistic", "p-value")
print(format(y, digits = digits), quote = FALSE)
}
|
adjustCounts = function(sc,clusters=NULL,method=c('subtraction','soupOnly','multinomial'),roundToInt=FALSE,verbose=1,tol=1e-3,pCut=0.01,...){
method = match.arg(method)
if(!is(sc,'SoupChannel'))
stop("sc must be an object of type SoupChannel")
if(!'rho' %in% colnames(sc$metaData))
stop("Contamination fractions must have already been calculated/set.")
if(is.null(clusters)){
if('clusters' %in% colnames(sc$metaData)){
clusters = setNames(as.character(sc$metaData$clusters),rownames(sc$metaData))
}else{
warning("Clustering data not found. Adjusting counts at cell level. You will almost certainly get better results if you cluster data first.")
clusters=FALSE
}
}
if(clusters[1]!=FALSE){
if(!all(colnames(sc$toc) %in% names(clusters)))
stop("Invalid cluster specification. clusters must be a named vector with all column names in the table of counts appearing.")
s = split(colnames(sc$toc),clusters[colnames(sc$toc)])
tmp = sc
tmp$toc = do.call(cbind,lapply(s,function(e) rowSums(sc$toc[,e,drop=FALSE])))
tmp$toc = Matrix(tmp$toc,sparse=TRUE)
tmp$metaData = data.frame(nUMIs = sapply(s,function(e) sum(sc$metaData[e,'nUMIs'])),
rho = sapply(s,function(e) sum(sc$metaData[e,'rho']*sc$metaData[e,'nUMIs'])/sum(sc$metaData[e,'nUMIs'])))
out = adjustCounts(tmp,clusters=FALSE,method=method,roundToInt=FALSE,verbose=verbose,tol=tol,pCut=pCut)
out = tmp$toc - out
out = expandClusters(out,sc$toc,clusters,sc$metaData$nUMIs*sc$metaData$rho,verbose=verbose,...)
out = sc$toc - out
}else{
if(method=='multinomial'){
if(verbose>1)
message("Initialising with subtraction method.")
fitInit = sc$toc - adjustCounts(sc,clusters=FALSE,method='subtraction',roundToInt=TRUE)
ps = sc$soupProfile$est
out = list()
if(verbose>0){
message(sprintf("Fitting multinomial distribution to %d cells/clusters.",ncol(sc$toc)))
pb=initProgBar(1,ncol(sc$toc))
}
for(i in seq(ncol(sc$toc))){
if(verbose>0)
setTxtProgressBar(pb,i)
tgtN = round(sc$metaData$rho[i]*sc$metaData$nUMIs[i])
lims = sc$toc[,i]
fit = fitInit[,i]
while(TRUE){
increasable = fit<lims
decreasable = fit>0
delInc = log(ps[increasable]) - log(fit[increasable]+1)
delDec = -log(ps[decreasable]) +log(fit[decreasable])
wInc = wIncAll = which(increasable)[which(delInc==max(delInc))]
wDec = wDecAll = which(decreasable)[which(delDec==max(delDec))]
nInc = length(wIncAll)
nDec = length(wDecAll)
if(nInc>1)
wInc = sample(wIncAll,1)
if(nDec>1)
wDec = sample(wDecAll,1)
curN = sum(fit)
if(curN<tgtN){
if(verbose>2)
message(sprintf("
fit[wInc] = fit[wInc]+1
}else if(curN>tgtN){
if(verbose>2)
message(sprintf("
fit[wDec] = fit[wDec]-1
}else{
delTot = max(delInc)+max(delDec)
if(verbose>2)
message(sprintf("
if(delTot==0){
fit[wDecAll] = fit[wDecAll]-1
zeroBucket = unique(c(wIncAll,wDecAll))
fit[zeroBucket] = fit[zeroBucket] + length(wDecAll)/length(zeroBucket)
if(verbose>2)
message(sprintf("Ambiguous final configuration. Shared %d reads between %d equally likely options",length(wDecAll),length(zeroBucket)))
break
}else if(delTot<0){
if(verbose>2)
message("Unique final configuration.")
break
}else{
fit[wInc] = fit[wInc]+1
fit[wDec] = fit[wDec]-1
}
}
}
out[[i]]=fit
}
if(verbose>0)
close(pb)
out = do.call(cbind,out)
out = as(out,'dgTMatrix')
rownames(out) = rownames(sc$toc)
colnames(out) = colnames(sc$toc)
out = sc$toc - out
}else if(method=='soupOnly'){
if(verbose>0)
message("Identifying and removing genes likely to be pure contamination in each cell.")
out = as(sc$toc,'dgTMatrix')
if(verbose>1)
message("Calculating probability of each gene being soup")
p = ppois(out@x-1,sc$metaData$nUMIs[out@j+1]*sc$soupProfile$est[out@i+1]*sc$metaData$rho[out@j+1],lower.tail=FALSE)
o = order(-(out@j+1),p,decreasing=TRUE)
if(verbose>1)
message("Calculating probability of the next count being soup")
s = split(o,out@j[o]+1)
rTot = unlist(lapply(s,function(e) cumsum(out@x[e])),use.names=FALSE)
pSoup = ppois(rTot-out@x[o]-1,sc$metaData$nUMIs[out@j[o]+1]*sc$metaData$rho[out@j[o]+1],lower.tail=FALSE)
if(verbose>1)
message("Filtering table of counts")
pp = p[o]*pSoup
q = pchisq(-2*log(pp),4,lower.tail=FALSE)
w = which(q<pCut)
dropped = data.frame(cell=colnames(out)[out@j[o[-w]]+1],
gene=rownames(out)[out@i[o[-w]]+1],
cnt = out@x[o[-w]])
if(verbose>2){
message(sprintf("Most removed genes are:"))
x = sort(table(dropped$gene)/ncol(out),decreasing=TRUE)
print(x[seq_len(min(length(x),100))])
}
out = sparseMatrix(i=out@i[o[w]]+1,
j=out@j[o[w]]+1,
x=out@x[o[w]],
dims=dim(out),
dimnames=dimnames(out),
giveCsparse=FALSE)
}else if(method=='subtraction'){
out = as(sc$toc,'dgTMatrix')
expSoupCnts = sc$metaData$nUMIs * sc$metaData$rho
soupFrac = sc$soupProfile$est
out = out - do.call(cbind,lapply(seq(ncol(out)),function(e) alloc(expSoupCnts[e],out[,e],soupFrac)))
out = as(out,'dgTMatrix')
w = which(out@x>0)
out = sparseMatrix(i=out@i[w]+1,
j=out@j[w]+1,
x=out@x[w],
dims=dim(out),
dimnames=dimnames(out),
giveCsparse=FALSE)
}else{
stop("Impossible!")
}
}
if(roundToInt){
if(verbose>1)
message("Rounding to integers.")
out@x = floor(out@x)+rbinom(length(out@x),1,out@x-floor(out@x))
}
return(out)
}
|
train <- read.csv("train.csv", header = TRUE)
test <- read.csv("test.csv", header = TRUE)
test.survived <- data.frame(survived = rep("None", nrow(test)), test[,])
data.combined <- rbind(train, test.survived)
str(data.combined)
data.combined$survived <- as.factor(data.combined$survived)
data.combined$pclass <- as.factor(data.combined$pclass)
table(data.combined$survived)
table(data.combined$pclass)
library(ggplot2)
train$pclass <- as.factor(train$pclass)
ggplot(train, aes(x = pclass, fill = factor(survived))) +
geom_bar() +
xlab("Pclass") +
ylab("Total Count") +
labs(fill = "Survived")
head(as.character(train$name))
length(unique(as.character(data.combined$name)))
dup.names <- as.character(data.combined[which(duplicated(as.character(data.combined$name))), "name"])
data.combined[which(data.combined$name %in% dup.names),]
library(stringr)
misses <- data.combined[which(str_detect(data.combined$name, "Miss.")),]
misses[1:5,]
mrses <- data.combined[which(str_detect(data.combined$name, "Mrs.")), ]
mrses[1:5,]
males <- data.combined[which(data.combined$sex == "male"), ]
males[1:5,]
extractTitle <- function(name) {
name <- as.character(name)
if (length(grep("Miss.", name)) > 0) {
return ("Miss.")
} else if (length(grep("Master.", name)) > 0) {
return ("Master.")
} else if (length(grep("Mrs.", name)) > 0) {
return ("Mrs.")
} else if (length(grep("Mr.", name)) > 0) {
return ("Mr.")
} else {
return ("Other")
}
}
titles <- NULL
for (i in 1:nrow(data.combined)) {
titles <- c(titles, extractTitle(data.combined[i,"name"]))
}
data.combined$title <- as.factor(titles)
ggplot(data.combined[1:891,], aes(x = title, fill = survived)) +
geom_bar() +
facet_wrap(~pclass) +
ggtitle("Pclass") +
xlab("Title") +
ylab("Total Count") +
labs(fill = "Survived")
|
riverbuilder = function(filename, directory, overwrite){
if(!file.exists(filename))
stop("File specified was not found.")
if(directory == '' || typeof(directory) != "character" || !dir.exists(directory))
{
print("Empty or invalid argument for the directory parameter. Writing to a temporary location.")
directory = tempdir()
}
file_outputs = c(
"CenterlineCurvature.png",
"ValleySection.png",
"GCS.png",
"LongitudinalProfile.png",
"Planform.png",
"BoundaryPoints.csv",
"Data.csv",
"CartesianCoordinates.csv",
"CenterlineCurvature.csv",
"ValleySection.csv",
"GCS.csv",
"LongitudinalProfile.csv",
"Planform.csv"
)
graph_names = c(
"Centerline Curvature",
"Cross Section",
"Geometric Covariance Structures",
"Longitudinal Profile",
"Planform"
)
river_properties = c(
"Meandering Centerline Function",
"Centerline Curvature Function",
"Bankfull Width Function",
"Thalweg Elevation Function",
"Left Floodplain Function",
"Right Floodplain Function",
"Cross-Sectional Shape"
)
function_types = c(
"SIN_SQ",
"SIN",
"COS",
"LINE",
"PERL"
)
crossSectionalShapes = c(
"SU",
"AU",
"TZ"
)
for(i in seq(from=1, to=length(file_outputs), by=1))
{
coordinate_file = paste(directory, "/", file_outputs[i], sep="")
if(file.exists(coordinate_file))
{
if(overwrite)
file.remove(coordinate_file)
else
stop(paste("One or more output files already exist(s) in '", directory, "'. Program exit.", sep=""))
}
}
random = function()
{
Zr <<- (Ar * Zr + Cr) %% Mr
return(Zr / Mr - 0.5)
}
evaluateNumerical = function(input)
{
if(grepl("PI", input))
{
if(input == "PI")
return(pi)
else
{
if(typeof(input) != "character")
input = as.character(input)
length = length(strsplit(input, "")[[1]])
a = b = ""
j = 1
if(substring(input, 1, 2) == "PI")
{
a = "1"
j = j + 3
}
else
{
while(substring(input, j, j) != "*")
{
a = paste(a, substring(input, j, j), sep="")
j = j + 1
}
j = j + 4
}
if(j > length)
b = "1"
else
b = paste(b, substring(input, j, length), sep="")
return(as.double(a) * pi / as.double(b))
}
}
else
return(as.double(input))
}
storeFunction = function(variable, input)
{
if(grepl(river_properties[1], variable))
Mc_functions <<- rbind(Mc_functions, input)
else if(grepl(river_properties[2], variable))
{
if(XS_shape == crossSectionalShapes[2] && nrow(Cs_functions) == 1)
{
if(input[1] != function_types[2])
stop("Please provide a sine function for the AU cross-sectional shape. Program exit.")
else
input[1] = "NA"
}
Cs_functions <<- rbind(Cs_functions, input)
}
else if(grepl(river_properties[3], variable))
Wbf_functions <<- rbind(Wbf_functions, input)
else if(grepl(river_properties[4], variable))
Zt_functions <<- rbind(Zt_functions, input)
else if(grepl(river_properties[5], variable))
LeftFP_functions <<- rbind(LeftFP_functions, input)
else if(grepl(river_properties[6], variable))
RightFP_functions <<- rbind(RightFP_functions, input)
}
evaluateFunctions = function(functions, ivs, key)
{
output = 0
for(i in seq(from=2, to=nrow(functions), by=1))
output = output + computeFunction(functions[i,], ivs, key)
return(output)
}
computeFunction = function(fun, iv, key)
{
output = 0
if(grepl(function_types[1], fun[1]))
output = evaluateNumerical(fun[2])*(sin(evaluateNumerical(fun[3])*iv[1] + evaluateNumerical(fun[4])))**2
else if(grepl(function_types[2], fun[1]))
output = evaluateNumerical(fun[2])*sin(evaluateNumerical(fun[3])*iv[1] + evaluateNumerical(fun[4]))
else if(grepl(function_types[3], fun[1]))
output = evaluateNumerical(fun[2])*cos(evaluateNumerical(fun[3])*iv[1] + evaluateNumerical(fun[4]))
else if(grepl(function_types[4], fun[1]))
output = evaluateNumerical(fun[2])*iv[2] + evaluateNumerical(fun[3])
else if(grepl(function_types[5], fun[1]))
{
ra = ga
rb = gb
if(!is.null(perlins[[key]]))
{
ra = perlins[[key]][1]
rb = perlins[[key]][2]
}
if(iv[3] %% evaluateNumerical(fun[3]) < 1)
{
ra = rb
rb = random()
output = 2*ra*evaluateNumerical(fun[2])
}
else
{
output = interpolate(ra, rb,
(iv[3] %% evaluateNumerical(fun[3]))/evaluateNumerical(fun[3]))*evaluateNumerical(fun[2])*2
}
perlins[[key]] <<- rbind(c(ra, rb))
}
return(output)
}
isFunction = function(input)
{
for(i in seq(from=1, to=length(function_types), by=1))
if(grepl(function_types[i], input))
return(TRUE)
return(FALSE)
}
isMatched = function(f1, f2)
{
for(i in seq(from=1, to=length(function_types), by=1))
if(grepl(function_types[i], f1) && grepl(function_types[i], f2))
return(TRUE)
return(FALSE)
}
isDefined = function(input)
{
return(!is.null(userDefinedFunctions[[input]]))
}
standardize = function(x, m, sd)
{
if(sd == 0)
return(0)
else
return( (x-m)/sd )
}
interpolate = function(pa, pb, px)
{
ft = px * pi
f = (1 - cos(ft)) * 0.5
return(pa * (1 - f) + pb * f)
}
crossSection = function(type, i, j)
{
output = 0
if(type == crossSectionalShapes[1])
output = topsofBank[i] - bankfullDepths[i]*sqrt((1-(n_xs[i,j]/n_xs[i,1])**2))
else if(type == crossSectionalShapes[2])
{
if(bankfullWidths[i] != 0)
{
if(centerlineCurvatures[i] > 0)
output = topsofBank[i]-((4*bankfullDepths[i]*(((bankfullWidths[i]/2)-n_xs[i,j])/bankfullWidths[i])^k_s[i])
* (1-(((bankfullWidths[i]/2)-n_xs[i,j])/bankfullWidths[i])^k_s[i]))
else
output = topsofBank[i]-((4*bankfullDepths[i]*((1-((bankfullWidths[i]/2-n_xs[i,j])/bankfullWidths[i]))^k_s[i]))
* (1-((1-(bankfullWidths[i]/2-n_xs[i,j])/bankfullWidths[i])^k_s[i])))
}
}
else if(type == crossSectionalShapes[3])
{
if(base < 0 || base > ChannelXSPoints)
stop("Invalid trapezoidal base length. Program exit.")
inc = 0
if(base %% 2 == 0)
{
partition = base/2
inc = 1
}
else
partition = ceiling(base/2)
if(j == 1 || j == ChannelXSPoints)
output = topsofBank[i]
else if((j >= 2 && j <= floor(ChannelXSPoints/2)-partition) || j > floor(ChannelXSPoints/2)+partition+inc)
{
deltaX = n_xs[i,j]-n_xs[i,j-1]
deltaY = -bankfullDepths[i]/((ChannelXSPoints/2) - (base/2))
if(j > floor(ChannelXSPoints/2)+partition+inc)
deltaY = -deltaY
xs_slope = deltaY/deltaX
output = topsofBank[i] - (ChannelXSPoints/(ChannelXSPoints-base))*bankfullDepths[i] + xs_slope*(n_xs[i,j])
}
else if(j >= floor(ChannelXSPoints/2)-partition+1 && j <= floor(ChannelXSPoints/2)+partition+inc)
output = topsofBank[i] - bankfullDepths[i]
}
else
stop("Invalid input for cross-sectional shape. Program exit.")
return(output)
}
parameters = c()
userDefinedFunctions = c()
userDefinedDepth = TRUE
Mc_functions = data.frame(matrix(ncol=6))
Cs_functions = data.frame(matrix(ncol=6))
Wbf_functions = data.frame(matrix(ncol=6))
Zt_functions = data.frame(matrix(ncol=6))
LeftFP_functions = data.frame(matrix(ncol=6))
RightFP_functions = data.frame(matrix(ncol=6))
XS_shape = ""
base = 0
perlins = c()
fergusons = c()
k1 = c()
print(paste("Generating SRV files in", directory, "..."))
inputs = read.table(filename, sep="=", header=FALSE, colClasses = c("character"))
for(i in seq(from=1, to=length(inputs$V2), by=1))
{
col1 = (inputs$V1)[i]
col2 = (inputs$V2)[i]
input = col2
input = strsplit(input, split="[(), ]")[[1]]
input = input[nchar(input)>0]
if(isFunction(col1))
{
if(isMatched(col1, col2) && !isDefined(col1) && grepl("[0-9]", col1))
userDefinedFunctions[[col1]] = input
else
stop("A user-defined function has an invalid name, values, or was defined more than once. Program exit.")
}
else if(!isFunction(col1) && isFunction(col2))
{
if(grepl("(,)", col2))
storeFunction(col1, input)
else
{
if(isDefined(col2))
{
input = userDefinedFunctions[[col2]]
storeFunction(col1, input)
}
else
stop("Attempted to assign with an undefined function. Program exit.")
}
}
else if(grepl("(,)", col2))
stop("Attempted to assign with values but no specific function. Program exit.")
else if(grepl(river_properties[7], col1))
{
if(grepl(crossSectionalShapes[3], col2))
{
if(length(input) != 2 || grepl("[A-z]", input[2]) || grepl("[[:punct:]]", input[2]))
stop("Invalid input for trapezoidal cross section. Program exit.")
XS_shape = input[1]
base = as.double(input[2])
}
else
XS_shape = col2
}
else
{
if(grepl("Hbf", col1))
{
input = strsplit(col1, ",")[[1]][2]
if(grepl("B", input))
userDefinedDepth = FALSE
}
parameters = c(parameters, evaluateNumerical(col2))
}
}
datum = parameters[1]
length = parameters[2]
XResolution = length/parameters[3]
ChannelXSPoints = parameters[4]
valleySlope = parameters[5]
criticalShieldsStress = parameters[6]
bankfullWidth = parameters[7]
bankfullWidthMin = parameters[8]
bankfullDepth = parameters[9]
medianSedimentSize = parameters[10]
FPWidth = parameters[11]
outerFPEdgeHeight = parameters[12]
terraceWidth = parameters[13]
outerTerraceEdgeHeight = parameters[14]
boundaryWidth = parameters[15]
increments = c()
xrads = c()
xms = c()
channelMeanders = c()
scms = c(0)
dscms = c()
scms_r = c()
dxcmds = c()
dycmds = c()
thalwegs = c()
thalwegsNoSlope = c()
topsofBank = c()
bankfullDepths = c()
wbf_pfs = c()
bankfullWidths = c()
bankfullWidths_L = c()
bankfullWidths_R = c()
centerlineCurvature_pfs = c()
firstDerivatives = rep(0, XResolution)
secondDerivatives = rep(0, XResolution)
centerlineCurvatures = c()
yRightWaves = c()
yLeftWaves = c()
yRightToe = c()
zRightToe = c()
yRightTop = c()
zRightTop = c()
yLeftToe = c()
zLeftToe = c()
yLeftTop = c()
zLeftTop = c()
b_s = c()
k_s = c()
h_n = matrix(nrow=XResolution, ncol=ChannelXSPoints)
n_xs = matrix(nrow=XResolution, ncol=ChannelXSPoints)
bankPoints = matrix(nrow=XResolution, ncol=ChannelXSPoints)
xShifts = matrix(nrow=XResolution, ncol=ChannelXSPoints)
Wbf_stds = c()
Zt_stds = c()
CV_WZ = c()
CV_ZC = c()
disturbedDx = c(0)
disturbedDy = c(0)
disturbedThetas = c()
disturbedX = c(0)
disturbedY = c(0)
fergusonY = c(0, 0.25)
dxi = length/XResolution
dxr = (dxi/length)*2*pi
confinementRatio = bankfullWidth/(FPWidth+terraceWidth+bankfullWidth)
ks = 6.1*medianSedimentSize
n = 0.034*(ks^(1/6))
positiveGCS = 0
negativeGCS = 0
posPercentGCS = 0
negPercentGCS = 0
ki = -1
incr = 1/floor(ChannelXSPoints/2)
Mr = 4294967296
Ar = 1664525
Cr = 1
Zr = floor(runif(1)*Mr)
ga = random()
gb = random()
while(ki < 1+incr)
{
k1 = c(k1, round(ki, digits=5))
ki = ki + incr
}
if(ChannelXSPoints %% 2 == 0)
k1 = k1[abs(k1) > 0]
if(bankfullWidthMin > bankfullWidth)
stop("Minimum bankfull width is greater than base bankfull width. Program exit.")
print("Computing river properties...")
for(i in seq(from=1, to=XResolution, by=1))
{
increments = c(increments, i-1)
xrads = c(xrads, (i-1)*dxr)
xms = c(xms, (increments[i]/XResolution)*length)
channelMeanders = c(channelMeanders, evaluateFunctions(Mc_functions, c(xrads[i], xms[i], increments[i]), "M"))
if(i >= 2)
{
if(i == 2)
dscms = c(dscms, sqrt((channelMeanders[i]-channelMeanders[i-1])**2 + (xms[i]-xms[i-1])**2))
dscms = c(dscms, sqrt((channelMeanders[i]-channelMeanders[i-1])**2 + (xms[i]-xms[i-1])**2))
scms = c(scms, scms[i-1] + dscms[i])
}
scms_r = c(scms_r, 2*pi*scms[i]/length)
yRightWaves = c(yRightWaves, evaluateFunctions(RightFP_functions, c(xrads[i], xms[i], increments[i]), "R"))
yLeftWaves = c(yLeftWaves, evaluateFunctions(LeftFP_functions, c(xrads[i], xms[i], increments[i]), "L"))
wbf_pfs = c(wbf_pfs, evaluateFunctions(Wbf_functions, c(scms_r[i], xms[i], increments[i]), "W"))
if(wbf_pfs[i]*bankfullWidth+bankfullWidth >= bankfullWidthMin)
bankfullWidths = c(bankfullWidths, wbf_pfs[i]*bankfullWidth + bankfullWidth)
else
bankfullWidths = c(bankfullWidths, bankfullWidthMin)
bankfullWidths_L = c(bankfullWidths_L, -bankfullWidths[i]/2)
bankfullWidths_R = c(bankfullWidths_R, bankfullWidths[i]/2)
centerlineCurvature_pfs = c(centerlineCurvature_pfs, evaluateFunctions(Cs_functions, c(scms_r[i], xms[i], increments[i]), "E"))
if(XS_shape == crossSectionalShapes[2])
{
firstDerivatives[i] = as.double(Cs_functions[2,2])*cos(as.double(Cs_functions[2,3])*scms_r[i] + as.double(Cs_functions[2,4]))
secondDerivatives[i] = as.double(Cs_functions[2,2])*(-sin(as.double(Cs_functions[2,3])*scms_r[i] + as.double(Cs_functions[2,4])))
}
if(i == 1)
{
centerlineCurvatures = c(centerlineCurvatures, centerlineCurvature_pfs[i])
}
else
{
if(length(dxcmds) == 0)
dxcmds = c(dxcmds, (xms[i]-xms[i-1])/dscms[i-1])
if(length(dycmds) == 0)
dycmds = c(dycmds, (channelMeanders[i]-channelMeanders[i-1])/dscms[i-1])
dxcmds = c(dxcmds, (xms[i]-xms[i-1])/dscms[i])
dycmds = c(dycmds, (channelMeanders[i]-channelMeanders[i-1])/dscms[i])
centerlineCurvatures = c(centerlineCurvatures, centerlineCurvature_pfs[i]+secondDerivatives[i]/((1 + (firstDerivatives[i])**2)**(3/2)))
}
}
maxCenterlineCurvature = abs(centerlineCurvatures)[which.max(abs(centerlineCurvatures))]*1.2
disturbedAmp = 110*pi/180
disturbedMeander = scms[length(scms)]
ds = 1
for(i in seq(from=1, to=XResolution, by=1))
{
if(centerlineCurvatures[i] < 0)
b_s = c(b_s, (0.5*(1-((abs(centerlineCurvatures[i]))/maxCenterlineCurvature))))
else if(centerlineCurvatures[i] > 0)
b_s = c(b_s, (0.5*(1+((centerlineCurvatures[i])/maxCenterlineCurvature))))
else if(centerlineCurvatures[i] == 0)
b_s = c(b_s, 0.5)
if(centerlineCurvatures[i] < 0)
k_s = c(k_s, (-log(2)/log(b_s[i])))
else
k_s = c(k_s, (-log(2)/log(1-b_s[i])))
disturbedThetas = c(disturbedThetas, disturbedAmp*sin(2*pi*scms[i]/disturbedMeander))
if(i != 1)
{
disturbedDx = c(disturbedDx, ds*cos(disturbedThetas[i]))
disturbedDy = c(disturbedDy, ds*sin(disturbedThetas[i]))
disturbedX = c(disturbedX, disturbedX[i-1]+disturbedDx[i])
disturbedY = c(disturbedY, disturbedY[i-1]+disturbedDy[i])
}
}
sinuosity = scms[length(scms)]/xms[length(xms)]
channelSlope = ((XResolution*sum(scms*centerlineCurvatures)-sum(scms)*sum(centerlineCurvatures))/
(XResolution*sum(scms**2)-(sum(scms))**2)) + (valleySlope/sinuosity)
channelIntercept = ((sum(centerlineCurvatures)*sum((scms**2))-sum(scms)*sum(scms*centerlineCurvatures))/
(XResolution*sum(scms**2)-(sum(scms))**2))
disturbedY = (disturbedY - disturbedY[which.max(disturbedY)]/2)
if(!userDefinedDepth)
bankfullDepth = (165*medianSedimentSize*criticalShieldsStress)/channelSlope
widthToDepthRatio = bankfullWidth/bankfullDepth
Wbf_a1 = as.double(Wbf_functions[2,2])
Zt_a1 = as.double(Zt_functions[2,2])
Zt_f1 = as.double(Zt_functions[2,3])
wr = bankfullWidth*Wbf_a1+bankfullWidth
wp = -bankfullWidth*Wbf_a1+bankfullWidth
hres = 2*bankfullDepth*Zt_a1-(pi*bankfullWidth*valleySlope/Zt_f1)
hr = hres/((wr/wp)-1)
for(i in seq(from=1, to=XResolution, by=1))
{
thalwegs = c(thalwegs, (bankfullDepth*(evaluateFunctions(Zt_functions, c(scms_r[i], xms[i], increments[i]), "T") + bankfullDepth)) + scms[i]*channelSlope + datum)
if(i == 1)
thalwegsNoSlope = c(thalwegsNoSlope, thalwegs[i])
else
thalwegsNoSlope = c(thalwegsNoSlope, thalwegs[i]-(scms[i]-scms[1])*channelSlope)
}
for(i in seq(from=1, to=XResolution, by=1))
{
if(i == 1)
topsofBank = c(topsofBank, thalwegsNoSlope[which.max(thalwegsNoSlope)] + bankfullDepth)
else
topsofBank = c(topsofBank, topsofBank[i-1]+(scms[i]-scms[i-1])*valleySlope)
bankfullDepths = c(bankfullDepths, topsofBank[i] - thalwegs[i])
for(j in seq(from=1, to=ChannelXSPoints, by=1))
{
n_xs[i,j] = k1[j]*bankfullWidths[i]/2
bankPoints[i,j] = channelMeanders[i] + n_xs[i,j]*dxcmds[i]
xShifts[i,j] = xms[i] - n_xs[i,j]*dycmds[i]
h_n[i,j] = crossSection(XS_shape, i, j)
}
}
maxLength = which(bankPoints == max(bankPoints), arr.ind = TRUE)
minLength = which(bankPoints == min(bankPoints), arr.ind = TRUE)
maxRow = maxLength[1,1]
maxCol = maxLength[1,2]
minRow = minLength[1,1]
minCol = minLength[1,2]
maxRightBank = bankPoints[maxRow, maxCol]
minLeftBank = bankPoints[minRow, minCol]
maxRightToe = yRightWaves[which.max(yRightWaves)]
minLeftToe = yLeftWaves[which.min(yLeftWaves)]
minRightToe = yRightWaves[which.min(yRightWaves)]
maxLeftToe = yLeftWaves[which.max(yLeftWaves)]
for(i in seq(from=1, to=XResolution, by=1))
{
yRightToe = c(yRightToe, yRightWaves[i] + FPWidth/2 + maxRightBank - minRightToe)
yLeftToe = c(yLeftToe, -yLeftWaves[i] - FPWidth/2 + minLeftBank + minLeftToe)
zRightToe = c(zRightToe, topsofBank[i] + outerFPEdgeHeight)
zLeftToe = c(zLeftToe, zRightToe[i])
yRightTop = c(yRightTop, yRightToe[i] + terraceWidth/2)
yLeftTop = c(yLeftTop, yLeftToe[i] - terraceWidth/2)
zRightTop = c(zRightTop, zRightToe[i] + outerTerraceEdgeHeight)
zLeftTop = c(zLeftTop, zRightTop[i])
standardizedDepth = standardize(bankfullDepths[i], mean(bankfullDepths), sd(bankfullDepths))
standardizedWidth = standardize(bankfullWidths[i], mean(bankfullWidths), sd(bankfullWidths))
Wbf_stds = c(Wbf_stds, standardizedWidth)
Zt_stds = c(Zt_stds, standardize(thalwegsNoSlope[i], mean(thalwegsNoSlope), sd(thalwegsNoSlope)))
CV_WZ = c(CV_WZ, Wbf_stds[i]*Zt_stds[i])
CV_ZC = c(CV_ZC, Zt_stds[i]*standardize(centerlineCurvatures[i], mean(centerlineCurvatures), sd(centerlineCurvatures)))
currentGCS = standardizedDepth*standardizedWidth
if(currentGCS > 0)
positiveGCS = positiveGCS + 1
else if(currentGCS < 0)
negativeGCS = negativeGCS + 1
}
if(positiveGCS != 0 || negativeGCS != 0)
{
negPercentGCS = 100*negativeGCS/(negativeGCS+positiveGCS)
posPercentGCS = 100*positiveGCS/(negativeGCS+positiveGCS)
}
print("Computations complete.")
Graph_yRightTop = c(round(yRightToe[XResolution/2], digits=3), round(yRightTop[XResolution/2], digits=3))
Graph_zRightTop = c(round(zRightToe[XResolution/2], digits=3), round(zRightTop[XResolution/2], digits=3))
Graph_yLeftTop = c(round(yLeftToe[XResolution/2], digits=3), round(yLeftTop[XResolution/2], digits=3))
Graph_zLeftTop = c(round(zLeftToe[XResolution/2], digits=3), round(zLeftTop[XResolution/2], digits=3))
Graph_yRightToe = c(round(n_xs[XResolution/2, ChannelXSPoints], digits=3), round(yRightToe[XResolution/2], digits=3))
Graph_zRightToe = c(round(h_n[XResolution/2, ChannelXSPoints], digits=3), round(zRightToe[XResolution/2], digits=3))
Graph_yLeftToe = c(round(n_xs[XResolution/2, 1], digits=3), round(yLeftToe[XResolution/2], digits=3))
Graph_zLeftToe = c(round(h_n[XResolution/2, 1], digits=3), round(zLeftToe[XResolution/2], digits=3))
Graph_yRightBoundary = c(round(yRightTop[XResolution/2], digits=3), round(yRightTop[XResolution/2]+boundaryWidth, digits=3))
Graph_zRightBoundary = c(round(zRightTop[XResolution/2], digits=3), round(zRightTop[XResolution/2], digits=3))
Graph_yLeftBoundary = c(round(yLeftTop[XResolution/2], digits=3), round(yLeftTop[XResolution/2]-boundaryWidth, digits=3))
Graph_zLeftBoundary = c(round(zLeftTop[XResolution/2], digits=3), round(zLeftTop[XResolution/2], digits=3))
png(filename=file.path(directory, file_outputs[1]), 10, 7.5, "in", res=100)
plot(main = "Centerline Curvature", round(scms, digits=3), round(centerlineCurvatures, digits=3),
ylim = range(centerlineCurvatures[which.min(centerlineCurvatures)]-0.05,centerlineCurvatures[which.max(centerlineCurvatures)]+0.05),
col = "darkblue", xlab = "S (meters)", ylab = "Elevation (meters)", cex = 0.75)
lines(round(scms, digits=3), round(centerlineCurvatures, digits=3),
col = "darkblue")
dev.off()
print(paste(file_outputs[1], "generated."))
png(filename=file.path(directory, file_outputs[2]), 10, 7.5, "in", res=100)
plot(main = "Valley Section", round(n_xs[XResolution/2,], digits=3), round(h_n[XResolution/2,], digits=3),
xlim = range(yLeftTop[which.min(yLeftTop)]-boundaryWidth, yRightTop[which.max(yRightTop)]+boundaryWidth),
ylim = range(h_n[XResolution/2,which.min(h_n[XResolution/2,])],
zRightTop[which.max(zRightTop)]),
col = "darkblue", xlab = "Y (meters)", ylab = "Elevation (meters)", cex = 0.75)
lines(round(n_xs[XResolution/2,], digits=3), round(h_n[XResolution/2,], digits=3),
col = "darkblue", lwd = 4)
points(yRightToe[XResolution/2], zRightToe[XResolution/2], col = "chocolate4")
lines(Graph_yRightToe, Graph_zRightToe, col = "chocolate4", lwd = 4)
points(yLeftToe[XResolution/2], zLeftToe[XResolution/2], col = "chocolate4")
lines(Graph_yLeftToe, Graph_zLeftToe, col = "chocolate4", lwd = 4)
points(yRightTop[XResolution/2], zRightTop[XResolution/2], col = "black")
lines(Graph_yRightTop, Graph_zRightTop, col = "black", lwd = 4)
points(yLeftTop[XResolution/2], zLeftTop[XResolution/2], col = "black")
lines(Graph_yLeftTop, Graph_zLeftTop, col = "black", lwd = 4)
points(yRightTop[XResolution/2]+boundaryWidth, zRightTop[XResolution/2], col = "darkorchid4")
lines(Graph_yRightBoundary, Graph_zRightBoundary, col = "darkorchid4", lwd = 4)
points(yLeftTop[XResolution/2]-boundaryWidth, zLeftTop[XResolution/2], col = "darkorchid4")
lines(Graph_yLeftBoundary, Graph_zLeftBoundary, col = "darkorchid4", lwd = 4)
par(xpd = TRUE)
legend("topright", inset = c(0, -0.13), c("Boundaries", "Terrace", "Floodplain", "Channel"),
lty = c(1,1,1,1), lwd = c(4,4,4,4), col = c("darkorchid4", "black", "chocolate4", "darkblue"), cex = 0.75)
dev.off()
print(paste(file_outputs[2], "generated."))
png(filename=file.path(directory, file_outputs[3]), 10, 7.5, "in", res=100)
plot(main = "Geometric Covariance Structures", round(xms, digits=3), round(CV_WZ, digits=3),
ylim = range(min(CV_WZ[which.min(CV_WZ)]-0.5, CV_ZC[which.min(CV_ZC)]-0.5),max(CV_WZ[which.max(CV_WZ)]+0.5, CV_ZC[which.max(CV_ZC)]+0.5)),
col = "forestgreen", xlab = "X (meters)", ylab = "Geometric Covariance", cex = 0.75)
lines(round(xms, digits=3), round(CV_WZ, digits=3),
col = "forestgreen")
par(new = TRUE)
plot(round(xms, digits=3), round(CV_ZC, digits=3),
ylim = range(min(CV_WZ[which.min(CV_WZ)]-0.5, CV_ZC[which.min(CV_ZC)]-0.5),max(CV_WZ[which.max(CV_WZ)]+0.5, CV_ZC[which.max(CV_ZC)]+0.5)),
col = "darkred", axes = FALSE, xlab = "", ylab = "", cex = 0.75)
lines(round(xms, digits=3), round(CV_ZC, digits=3),
col = "darkred")
par(xpd = TRUE)
legend("topright", inset = c(0, -0.11), c("C(Wbf*Zt)", "C(Zt*Cs)"),
lty = c(1,1), lwd = c(4,4), col = c("forestgreen", "darkred"), cex = 1)
dev.off()
print(paste(file_outputs[3], "generated."))
png(filename=file.path(directory, file_outputs[4]), 10, 7.5, units = "in", res=100)
plot(main = "Longitudinal Profile", round(xms, digits=3), round(zRightTop, digits=3),
ylim = range(thalwegs[which.min(thalwegs)]-5,zRightTop[which.max(zRightTop)]+5),
col = "black", xlab = "X (meters)", ylab = "Elevation (meters)", cex = 0.75)
lines(round(xms, digits=3), round(zRightTop, digits=3),
col = "black")
par(new = TRUE)
plot(round(xms, digits=3), round(zRightToe, digits=3),
ylim = range(thalwegs[which.min(thalwegs)]-5,zRightTop[which.max(zRightTop)]+5),
col = "chocolate4", axes = FALSE, xlab = "", ylab = "", cex = 0.75)
lines(round(xms, digits=3), round(zRightToe, digits=3),
col = "chocolate4")
par(new = TRUE)
plot(round(xms, digits=3), round(topsofBank, digits=3),
ylim = range(thalwegs[which.min(thalwegs)]-5,zRightTop[which.max(zRightTop)]+5),
col = "chartreuse4", axes = FALSE, xlab = "", ylab = "", cex = 0.75)
lines(round(xms, digits=3), round(topsofBank, digits=3),
col = "chartreuse4")
par(new = TRUE)
plot(round(xms, digits=3), round(thalwegs, digits=3),
ylim = range(thalwegs[which.min(thalwegs)]-5,zRightTop[which.max(zRightTop)]+5),
col = "dimgray", axes = FALSE, xlab = "", ylab = "", cex = 0.75)
lines(round(xms, digits=3), round(thalwegs, digits=3),
col = "dimgray")
par(xpd = TRUE)
legend("topright", inset = c(0, -0.13), c("Valley Top", "Valley Floor", "Bank Top", "Thalweg Elevation"),
lty = c(1,1,1,1), lwd = c(4,4,4,4), col = c("black", "chocolate4", "chartreuse4", "dimgray"), cex = 0.75)
dev.off()
print(paste(file_outputs[4], "generated."))
png(filename=file.path(directory, file_outputs[5]), 10, 7.5, units = "in", res=100)
plot(main = "Planform", round(xms, digits=3), round(channelMeanders, digits=3),
ylim = range((yLeftTop[which.min(yLeftTop)]-5),(yRightTop[which.max(yRightTop)]+5)),
col = "darkblue", xlab = "X (meters)", ylab = "Y (meters)", cex = 0.75)
lines(round(xms, digits=3), round(channelMeanders, digits=3),
col = "darkblue")
par(new = TRUE)
plot(round(xms, digits=3), round(bankPoints[,ChannelXSPoints], digits=3),
ylim = range((yLeftTop[which.min(yLeftTop)]-5),(yRightTop[which.max(yRightTop)]+5)),
col = "chartreuse4", axes = FALSE, xlab = "", ylab = "", cex = 0.75)
lines(round(xms, digits=3), round(bankPoints[,ChannelXSPoints], digits=3),
col = "chartreuse4")
par(new = TRUE)
plot(round(xms, digits=3), round(bankPoints[,1], digits=3),
ylim = range((yLeftTop[which.min(yLeftTop)]-5),(yRightTop[which.max(yRightTop)]+5)),
col = "chartreuse4", axes = FALSE, xlab = "", ylab = "", cex = 0.75)
lines(round(xms, digits=3), round(bankPoints[,1], digits=3),
col = "chartreuse4")
par(new = TRUE)
plot(round(xms, digits=3), round(yRightToe, digits=3),
ylim = range((yLeftTop[which.min(yLeftTop)]-5),(yRightTop[which.max(yRightTop)]+5)),
col = "chocolate4", axes = FALSE, xlab = "", ylab = "", cex = 0.75)
lines(round(xms, digits=3), round(yRightToe, digits=3),
col = "chocolate4")
par(new = TRUE)
plot(round(xms, digits=3), round(yLeftToe, digits=3),
ylim = range((yLeftTop[which.min(yLeftTop)]-5),(yRightTop[which.max(yRightTop)]+5)),
col = "chocolate4", axes = FALSE, xlab = "", ylab = "", cex = 0.75)
lines(round(xms, digits=3), round(yLeftToe, digits=3),
col = "chocolate4")
par(new = TRUE)
plot(round(xms, digits=3), round(yRightTop, digits=3),
ylim = range((yLeftTop[which.min(yLeftTop)]-5),(yRightTop[which.max(yRightTop)]+5)),
col = "black", axes = FALSE, xlab = "", ylab = "", cex = 0.75)
lines(round(xms, digits=3), round(yRightTop, digits=3),
col = "black")
par(new = TRUE)
plot(round(xms, digits=3), round(yLeftTop, digits=3),
ylim = range((yLeftTop[which.min(yLeftTop)]-5),(yRightTop[which.max(yRightTop)]+5)),
col = "black", axes = FALSE, xlab = "", ylab = "", cex = 0.75)
lines(round(xms, digits=3), round(yLeftTop, digits=3),
col = "black")
par(xpd = TRUE)
legend("topright", inset = c(0, -0.13), c("Channel Meander", "Channel Banks", "Valley Floors", "Valley Tops"),
lty = c(1,1,1,1), lwd = c(4,4,4,4), col = c("darkblue", "chartreuse4", "chocolate4", "black"), cex = 0.75)
dev.off()
print(paste(file_outputs[5], "generated."))
values = data.frame(matrix(nrow=17, ncol=1), stringsAsFactors=FALSE)
values[1,1] = XResolution*(ChannelXSPoints+2)
values[2,1] = XResolution*ChannelXSPoints
values[3,1] = XResolution*(ChannelXSPoints+5)
values[4,1] = XResolution*(ChannelXSPoints-1)
values[5,1] = 0
values[6,1] = XResolution*(ChannelXSPoints+4)
values[7,1] = XResolution*(ChannelXSPoints+1)
values[8,1] = XResolution*(ChannelXSPoints+3)
values[9,1] = XResolution*(ChannelXSPoints+4)-1
values[10,1] = XResolution*(ChannelXSPoints+2)-1
values[11,1] = XResolution*(ChannelXSPoints+5)-1
values[12,1] = XResolution-1
values[13,1] = XResolution*ChannelXSPoints-1
values[14,1] = XResolution*(ChannelXSPoints+6)-1
values[15,1] = XResolution*(ChannelXSPoints+1)-1
values[16,1] = XResolution*(ChannelXSPoints+3)-1
values[17,1] = XResolution*(ChannelXSPoints+2)
write.table(values, file = file.path(directory, file_outputs[6]),
append = FALSE, row.names = FALSE, col.names = FALSE, quote = FALSE)
print(paste(file_outputs[6], "generated."))
values = data.frame(matrix(nrow=14, ncol=1), stringsAsFactors=FALSE)
rownames(values) = c("Coefficient of Variation (Wbf):", "Standard Deviation (Wbf):", "Average (Wbf):",
"Coefficient of Variation (Hbf):", "Standard Deviation (Hbf):", "Average (Hbf):",
"wr:", "wp:", "hres:", "hr:", "GCS (-):", "GCS (+):", "Sinuosity:", "Channel Slope:")
values[1,1] = c(round(sd(bankfullWidths)/mean(bankfullWidths), digits=3))
values[2,1] = c(round(sd(bankfullWidths), digits=3))
values[3,1] = c(round(mean(bankfullWidths), digits=3))
values[4,1] = c(round(sd(bankfullDepths)/mean(bankfullDepths), digits=3))
values[5,1] = c(round(sd(bankfullDepths), digits=3))
values[6,1] = c(round(mean(bankfullDepths), digits=3))
values[7,1] = c(round(wr, digits=3))
values[8,1] = c(round(wp, digits=3))
values[9,1] = c(round(hres, digits=3))
values[10,1] = c(round(hr, digits=3))
values[11,1] = c(paste(as.character(round(negPercentGCS, digits=3)), "%", sep=""))
values[12,1] = c(paste(as.character(round(posPercentGCS, digits=3)), "%", sep=""))
values[13,1] = c(round(sinuosity, digits=3))
values[14,1] = c(round(channelSlope, digits=5))
write.table(values, file = file.path(directory, file_outputs[7]),
append = FALSE, col.names = FALSE, sep = "\t", quote = FALSE)
print(paste(file_outputs[7], "generated."))
header1 = data.frame("X,Y,Z")
header2 = data.frame("X,Y")
header3 = data.frame("X,Z")
header4 = data.frame("Y,Z")
firstSet = data.frame(rbind(c(format(round(xShifts[1,1], 6), nsmall=6),
format(round(bankPoints[1,1], 6), nsmall=6), format(round(h_n[1,1], 6), nsmall=6))))
points = data.frame()
for(j in seq(from=1, to=ChannelXSPoints, by=1))
for(i in seq(from=1, to=XResolution, by=1))
if(i != 1 || j != 1)
points = rbind(points, c(round(xShifts[i,j], digits=3), round(bankPoints[i,j], digits=3), round(h_n[i,j], digits=3)))
for(i in seq(from=1, to=XResolution, by=1))
points = rbind(points, c(round(xms[i], digits=3), round(yRightTop[i], digits=3), round(zRightTop[i], digits=3)))
for(i in seq(from=1, to=XResolution, by=1))
points = rbind(points, c(round(xms[i], digits=3), round(yLeftTop[i], digits=3), round(zLeftTop[i], digits=3)))
for(i in seq(from=1, to=XResolution, by=1))
points = rbind(points, c(round(xms[i], digits=3), round(boundaryWidth + yRightTop[which.max(yRightTop)], digits=3), round(zRightTop[i], digits=3)))
for(i in seq(from=1, to=XResolution, by=1))
points = rbind(points, c(round(xms[i], digits=3), round(-boundaryWidth - yRightTop[which.max(yRightTop)], digits=3), round(zRightTop[i], digits=3)))
for(i in seq(from=1, to=XResolution, by=1))
points = rbind(points, c(round(xms[i], digits=3), round(yLeftToe[i], digits=3), round(zLeftToe[i], digits=3)))
for(i in seq(from=1, to=XResolution, by=1))
points = rbind(points, c(round(xms[i], digits=3), round(yRightToe[i], digits=3), round(zRightToe[i], digits=3)))
write.table(header1, file=file.path(directory, file_outputs[8]), row.names=FALSE, col.names=FALSE, quote=FALSE, append=TRUE)
write.table(firstSet, file=file.path(directory, file_outputs[8]), row.names=FALSE, col.names=FALSE, quote=FALSE, sep=",", append=TRUE)
write.table(points, file=file.path(directory, file_outputs[8]), row.names=FALSE, col.names=FALSE, sep= ",", append=TRUE)
print(paste(file_outputs[8], "generated."))
points = data.frame()
for(i in seq(from=1, to=XResolution, by=1))
points = rbind(points, c(round(scms[i], digits=3), round(centerlineCurvatures[i], digits=3)))
write.table(header2, file=file.path(directory, file_outputs[9]), row.names=FALSE, col.names=FALSE, quote=FALSE, append=TRUE)
write.table(points, file=file.path(directory, file_outputs[9]), row.names=FALSE, col.names=FALSE, sep= ",", append=TRUE)
print(paste(file_outputs[9], "generated."))
points = data.frame()
for(i in seq(from=1, to=ChannelXSPoints, by=1))
points = rbind(points, c(round(n_xs[XResolution/2,i], digits=3), round(h_n[XResolution/2,i], digits=3)))
points = rbind(points, c(round(yRightTop[XResolution/2]+boundaryWidth, digits=3), round(zRightTop[XResolution/2], digits=3)))
points = rbind(points, c(round(yLeftTop[XResolution/2]-boundaryWidth, digits=3), round(zLeftTop[XResolution/2], digits=3)))
points = rbind(points, c(round(yRightTop[XResolution/2], digits=3), round(zRightTop[XResolution/2], digits=3)))
points = rbind(points, c(round(yRightToe[XResolution/2], digits=3), round(zRightToe[XResolution/2], digits=3)))
points = rbind(points, c(round(yLeftTop[XResolution/2], digits=3), round(zLeftTop[XResolution/2], digits=3)))
points = rbind(points, c(round(yLeftToe[XResolution/2], digits=3), round(zLeftToe[XResolution/2], digits=3)))
write.table(header4, file=file.path(directory, file_outputs[10]), row.names=FALSE, col.names=FALSE, quote=FALSE, append=TRUE)
write.table(points, file=file.path(directory, file_outputs[10]), row.names=FALSE, col.names=FALSE, sep= ",", append=TRUE)
print(paste(file_outputs[10], "generated."))
points = data.frame()
for(i in seq(from=1, to=XResolution, by=1))
points = rbind(points, c(round(xms[i], digits=3), round(CV_WZ[i], digits=3)))
for(i in seq(from=1, to=XResolution, by=1))
points = rbind(points, c(round(xms[i], digits=3), round(CV_ZC[i], digits=3)))
write.table(header2, file=file.path(directory, file_outputs[11]), row.names=FALSE, col.names=FALSE, quote=FALSE, append=TRUE)
write.table(points, file=file.path(directory, file_outputs[11]), row.names=FALSE, col.names=FALSE, sep= ",", append=TRUE)
print(paste(file_outputs[11], "generated."))
points = data.frame()
for(i in seq(from=1, to=XResolution, by=1))
points = rbind(points, c(round(xms[i], digits=3), round(zRightTop[i], digits=3)))
for(i in seq(from=1, to=XResolution, by=1))
points = rbind(points, c(round(xms[i], digits=3), round(zRightToe[i], digits=3)))
for(i in seq(from=1, to=XResolution, by=1))
points = rbind(points, c(round(xms[i], digits=3), round(thalwegs[i], digits=3)))
for(i in seq(from=1, to=XResolution, by=1))
points = rbind(points, c(round(xms[i], digits=3), round(topsofBank[i], digits=3)))
write.table(header3, file=file.path(directory, file_outputs[12]), row.names=FALSE, col.names=FALSE, quote=FALSE, append=TRUE)
write.table(points, file=file.path(directory, file_outputs[12]), row.names=FALSE, col.names=FALSE, sep= ",", append=TRUE)
print(paste(file_outputs[12], "generated."))
points = data.frame()
for(i in seq(from=1, to=XResolution, by=1))
points = rbind(points, c(round(xms[i], digits=3), round(channelMeanders[i], digits=3)))
for(i in seq(from=1, to=XResolution, by=1))
points = rbind(points, c(round(xms[i], digits=3), round(bankPoints[i,ChannelXSPoints], digits=3)))
for(i in seq(from=1, to=XResolution, by=1))
points = rbind(points, c(round(xms[i], digits=3), round(bankPoints[i,1], digits=3)))
for(i in seq(from=1, to=XResolution, by=1))
points = rbind(points, c(round(xms[i], digits=3), round(yRightTop[i], digits=3)))
for(i in seq(from=1, to=XResolution, by=1))
points = rbind(points, c(round(xms[i], digits=3), round(yLeftTop[i], digits=3)))
for(i in seq(from=1, to=XResolution, by=1))
points = rbind(points, c(round(xms[i], digits=3), round(yRightToe[i], digits=3)))
for(i in seq(from=1, to=XResolution, by=1))
points = rbind(points, c(round(xms[i], digits=3), round(yLeftToe[i], digits=3)))
write.table(header2, file=file.path(directory, file_outputs[13]), row.names=FALSE, col.names=FALSE, quote=FALSE, append=TRUE)
write.table(points, file=file.path(directory, file_outputs[13]), row.names=FALSE, col.names=FALSE, sep= ",", append=TRUE)
print(paste(file_outputs[13], "generated."))
print("Done.")
}
|
expected <- eval(parse(text="structure(list(sec = 59.7693939208984, min = 47L, hour = 18L, mday = 17L, mon = 2L, year = 114L, wday = 1L, yday = 75L, isdst = 0L), .Names = c(\"sec\", \"min\", \"hour\", \"mday\", \"mon\", \"year\", \"wday\", \"yday\", \"isdst\"), class = c(\"POSIXlt\", \"POSIXt\"), tzone = \"GMT\")"));
test(id=0, code={
argv <- eval(parse(text="list(structure(list(sec = 59.7693939208984, min = 47L, hour = 18L, mday = 17L, mon = 2L, year = 114L, wday = 1L, yday = 75L, isdst = 0L), .Names = c(\"sec\", \"min\", \"hour\", \"mday\", \"mon\", \"year\", \"wday\", \"yday\", \"isdst\"), class = c(\"POSIXlt\", \"POSIXt\"), tzone = \"GMT\"))"));
do.call(`invisible`, argv);
}, o=expected);
|
simqOTOR <-
function(temps, n0, Nn, Ah, An, ff, ae,
hr, outfile=NULL, plot=TRUE) {
UseMethod("simqOTOR")
}
simqOTOR.default <-
function(temps, n0, Nn, Ah, An, ff, ae,
hr, outfile=NULL, plot=TRUE) {
stopifnot(is.numeric(temps), all(temps>0),
length(n0)==1L, n0>0,
length(Nn)==1L, is.numeric(Nn), Nn>0, Nn>=n0,
length(Ah)==1L, is.numeric(Ah), Ah>0,
length(An)==1L, is.numeric(An), An>0,
length(ff)==1L, is.numeric(ff), ff>0,
length(ae)==1L, is.numeric(ae), ae>0,
length(hr)==1L, is.numeric(hr), hr>0,
is.null(outfile) || is.character(outfile),
length(plot)==1L, is.logical(plot))
if (!is.null(outfile)) {
if (length(outfile)!=1L)
stop("Error: outfile should be an one-element vector!")
}
nt <- length(temps)
vecy <- double(nt)
info <- -100
res <- .Fortran("qeOTOR", as.integer(nt), as.double(temps),
as.double(n0), as.double(Nn), as.double(Ah),
as.double(An), as.double(ff), as.double(ae),
as.double(hr), vecy=as.double(vecy),
info=as.integer(info), PACKAGE="tgcd")
if(res$info!=2L) {
stop("Error: fail in solving ordinary equation!")
}
kbz = 8.617385e-05
tout <- temps
yout <- ff*(res$vecy)^2L*exp(-ae/kbz/temps)*Ah/
(Ah*res$vecy+An*(Nn-res$vecy))/hr
calShape <- function(x, y) {
ny <- length(y)
maxloc <- which.max(y)
hmaxval <- max(y)/2.0
Tm <- x[maxloc]
T1 <- approx(x=y[1L:maxloc], y=x[1L:maxloc], xout=hmaxval)$y
T2 <- approx(x=y[maxloc:ny], y=x[maxloc:ny], xout=hmaxval)$y
d1 <- Tm-T1
d2 <- T2-Tm
thw <- T2-T1
sf <- d2/thw
return( c("T1"=T1, "T2"=T2, "Tm"=Tm, "d1"=d1,
"d2"=d2, "thw"=thw, "sf"=sf) )
}
sp <- try(calShape(tout, yout), silent=TRUE)
if (plot==TRUE) {
opar <- par("mfrow", "mar")
on.exit(par(opar))
layout(cbind(c(rep(1,13), 2, rep(3,6)),
c(rep(1,13), 2, rep(3,6))))
par(mar=c(0,5.1,3.1,1.1))
plot(tout, yout, type="l", lwd=5, col="skyblue3",
ylab="TL Intensity (counts)", las=0, lab=c(7,7,9),
xaxt="n", xaxs="r", yaxs="r", cex.lab=2.0, cex.axis=1.5)
box(lwd=2L)
XaxisCentral <- median(axTicks(side=1L))
if (class(sp)=="try-error") {
legend(ifelse(tout[which.max(yout)] > XaxisCentral, "topleft",
"topright"), legend=c(paste("n0: ",
format(n0,digits=3,scientific=TRUE)," (1/cm^3)",sep=""),
paste("ae: ",round(ae,2L)," (eV)",sep=""),
paste("ff: ",format(ff,digits=3,scientific=TRUE)," (1/s)",sep=""),
paste("hr: ",round(hr,2L)," (K/s)",sep=""),
paste("Ah: ",format(Ah,digits=3,scientific=TRUE)," (cm^3/s)",sep=""),
paste("An: ",format(An,digits=3,scientific=TRUE)," (cm^3/s)",sep="")),
yjust=2, ncol=1, cex=2.0, bty="n", pt.bg="white")
} else {
legend(ifelse(tout[which.max(yout)] > XaxisCentral, "topleft",
"topright"), legend=c(paste("n0: ",
format(n0,digits=3,scientific=TRUE)," (1/cm^3)",sep=""),
paste("ae: ",round(ae,2L)," (eV)",sep=""),
paste("ff: ",format(ff,digits=3,scientific=TRUE)," (1/s)",sep=""),
paste("hr: ",round(hr,2L)," (K/s)",sep=""),
paste("Ah: ",format(Ah,digits=3,scientific=TRUE)," (cm^3/s)",sep=""),
paste("An: ",format(An,digits=3,scientific=TRUE)," (cm^3/s)",sep=""),
paste("sf: ",round(sp["sf"],2L),sep="")),
yjust=2, ncol=1, cex=2.0, bty="n", pt.bg="white")
}
par(mar=c(0,5.1,0,1.1))
plot(c(0,0), type="n", xaxt="n", yaxt="n", xlab="n", ylab="")
par(mar=c(5.1, 5.1, 0, 1.1))
plot(tout, res$vecy, type="l", xlab = "Temperature(K)",
ylab="Concentration", las=0, lab=c(7,7,9), xaxs="r", yaxs="i",
ylim=c(-0.1*n0, 1.1*n0), col="grey", lwd=5, cex.lab=2.0, cex.axis=1.5)
box(lwd=2L)
}
if (class(sp)=="try-error") sp <- NULL
if (!is.null(outfile)) {
PeakSig <- cbind(tout, yout, res$vecy)
colnames(PeakSig) <- c("temps","tl", "n")
write.csv(PeakSig, file=paste(outfile, ".csv", sep=""))
}
return(invisible(list("temps"=tout, "tl"=yout, "n"=res$vecy, "sp"=sp)))
}
|
epi.ssstrataestb <- function (strata.n, strata.Py, epsilon, error = "relative",
nfractional = FALSE, conf.level = 0.95)
{
N. <- 1 - ((1 - conf.level) / 2)
z <- qnorm(N., mean = 0, sd = 1)
epsilon.r <- ifelse(error == "relative", epsilon, epsilon / strata.Py)
N <- sum(strata.n)
mean <- sum(strata.n * strata.Py) / N
strata.var = (strata.Py * (1 - strata.Py))
phi <- (strata.n * sqrt(strata.var)) / sum(strata.n * sqrt(strata.var))
sigma.bx <- sum((strata.n^2 * strata.var) / ((phi) * (mean^2)))
sigma.bxd <- sum((strata.n * strata.var) / mean^2)
if(nfractional == TRUE){
total.sample <- ((z^2/N^2) * sigma.bx) / ((epsilon.r^2) + ((z^2/N^2) * sigma.bxd))
strata.sample <- strata.n * (total.sample / N)
}
if(nfractional == FALSE){
total.sample <- ceiling(((z^2/N^2) * sigma.bx) / ((epsilon.r^2) + ((z^2/N^2) * sigma.bxd)))
strata.sample <- ceiling(strata.n * (total.sample / N))
}
result.01 <- c(strata.sample)
result.02 <- c(total.sample)
result.03 <- cbind(mean = mean, sigma.bx = sigma.bx, sigma.bxd = sigma.bxd, phi = phi)
rval <- list(strata.sample = result.01, total.sample = result.02, stats = result.03)
return(rval)
}
|
npudist <-
function(bws, ...){
args <- list(...)
if (!missing(bws)){
if (is.recursive(bws)){
if (!is.null(bws$formula) && is.null(args$tdat))
UseMethod("npudist",bws$formula)
else if (!is.null(bws$call) && is.null(args$tdat))
UseMethod("npudist",bws$call)
else if (!is.call(bws))
UseMethod("npudist",bws)
else
UseMethod("npudist",NULL)
} else {
UseMethod("npudist", NULL)
}
} else {
UseMethod("npudist", NULL)
}
}
npudist.formula <-
function(bws, data = NULL, newdata = NULL, ...){
tt <- terms(bws)
m <- match(c("formula", "data", "subset", "na.action"),
names(bws$call), nomatch = 0)
tmf <- bws$call[c(1,m)]
tmf[[1]] <- as.name("model.frame")
tmf[["formula"]] <- tt
umf <- tmf <- eval(tmf, envir = environment(tt))
tdat <- tmf[, attr(attr(tmf, "terms"),"term.labels"), drop = FALSE]
if ((has.eval <- !is.null(newdata))) {
umf <- emf <- model.frame(tt, data = newdata)
edat <- emf[, attr(attr(emf, "terms"),"term.labels"), drop = FALSE]
}
ev <- eval(parse(text=paste("npudist(tdat = tdat,",
ifelse(has.eval,"edat = edat,",""), "bws = bws, ...)")))
ev$omit <- attr(umf,"na.action")
ev$rows.omit <- as.vector(ev$omit)
ev$nobs.omit <- length(ev$rows.omit)
ev$dist <- napredict(ev$omit, ev$dist)
ev$derr <- napredict(ev$omit, ev$derr)
return(ev)
}
npudist.call <-
function(bws, ...) {
npudist(tdat = eval(bws$call[["dat"]], environment(bws$call)),
bws = bws, ...)
}
npudist.dbandwidth <-
function(bws,
tdat = stop("invoked without training data 'tdat'"),
edat, ...){
no.e = missing(edat)
tdat = toFrame(tdat)
if (!no.e)
edat = toFrame(edat)
if (!(no.e || tdat %~% edat ))
stop("tdat and edat are not similar data frames!")
if (length(bws$bw) != length(tdat))
stop("length of bandwidth vector does not match number of columns of 'tdat'")
ccon = unlist(lapply(as.data.frame(tdat[,bws$icon]),class))
if ((any(bws$icon) && !all((ccon == class(integer(0))) | (ccon == class(numeric(0))))) ||
(any(bws$iord) && !all(unlist(lapply(as.data.frame(tdat[,bws$iord]),class)) ==
class(ordered(0)))) ||
(any(bws$iuno) && !all(unlist(lapply(as.data.frame(tdat[,bws$iuno]),class)) ==
class(factor(0)))))
stop("supplied bandwidths do not match 'tdat' in type")
tdat = na.omit(tdat)
rows.omit <- unclass(na.action(tdat))
if (!no.e){
edat = na.omit(edat)
rows.omit <- unclass(na.action(edat))
}
tnrow = nrow(tdat)
enrow = ifelse(no.e,tnrow,nrow(edat))
tdat <- adjustLevels(tdat, bws$xdati)
if (!no.e)
edat <- adjustLevels(edat, bws$xdati, allowNewCells = TRUE)
if(no.e)
teval <- tdat
else
teval <- edat
tdat = toMatrix(tdat)
tuno = tdat[, bws$iuno, drop = FALSE]
tcon = tdat[, bws$icon, drop = FALSE]
tord = tdat[, bws$iord, drop = FALSE]
if (!no.e){
edat = toMatrix(edat)
euno = edat[, bws$iuno, drop = FALSE]
econ = edat[, bws$icon, drop = FALSE]
eord = edat[, bws$iord, drop = FALSE]
} else {
euno = data.frame()
eord = data.frame()
econ = data.frame()
}
myopti = list(
num_obs_train = tnrow,
num_obs_eval = enrow,
num_uno = bws$nuno,
num_ord = bws$nord,
num_con = bws$ncon,
int_LARGE_SF = ifelse(bws$scaling, SF_NORMAL, SF_ARB),
BANDWIDTH_den_extern = switch(bws$type,
fixed = BW_FIXED,
generalized_nn = BW_GEN_NN,
adaptive_nn = BW_ADAP_NN),
int_MINIMIZE_IO=ifelse(options('np.messages'), IO_MIN_FALSE, IO_MIN_TRUE),
ckerneval = switch(bws$ckertype,
gaussian = CKER_GAUSS + bws$ckerorder/2 - 1,
epanechnikov = CKER_EPAN + bws$ckerorder/2 - 1,
uniform = CKER_UNI,
"truncated gaussian" = CKER_TGAUSS),
ukerneval = switch(bws$ukertype,
aitchisonaitken = UKER_AIT,
liracine = UKER_LR),
okerneval = switch(bws$okertype,
wangvanryzin = OKER_WANG,
liracine = OKER_NLR),
no.e = no.e,
mcv.numRow = attr(bws$xmcv, "num.row"),
densOrDist = NP_DO_DIST,
old.dist = FALSE,
int_do_tree = ifelse(options('np.tree'), DO_TREE_YES, DO_TREE_NO))
myout=
.C("np_density", as.double(tuno), as.double(tord), as.double(tcon),
as.double(euno), as.double(eord), as.double(econ),
as.double(c(bws$bw[bws$icon],bws$bw[bws$iuno],bws$bw[bws$iord])),
as.double(bws$xmcv), as.double(attr(bws$xmcv, "pad.num")),
as.double(bws$nconfac), as.double(bws$ncatfac), as.double(bws$sdev),
as.integer(myopti),
dist = double(enrow),
derr = double(enrow),
log_likelihood = double(1),
PACKAGE="np" )[c("dist","derr", "log_likelihood")]
ev <- npdistribution(bws=bws, eval=teval, dist = myout$dist,
derr = myout$derr, ntrain = tnrow, trainiseval = no.e,
rows.omit = rows.omit)
return(ev)
}
npudist.default <- function(bws, tdat, ...){
sc <- sys.call()
sc.names <- names(sc)
bws.named <- any(sc.names == "bws")
tdat.named <- any(sc.names == "tdat")
no.bws <- missing(bws)
no.tdat <- missing(tdat)
if(tdat.named)
tdat <- toFrame(tdat)
sc.bw <- sc
sc.bw[[1]] <- quote(npudistbw)
if(bws.named){
sc.bw$bandwidth.compute <- FALSE
}
ostxy <- c('tdat')
nstxy <- c('dat')
m.txy <- match(ostxy, names(sc.bw), nomatch = 0)
if(any(m.txy > 0)) {
names(sc.bw)[m.txy] <- nstxy[m.txy > 0]
}
tbw <- eval.parent(sc.bw)
eval(parse(text=paste("npudist(bws = tbw",
ifelse(no.tdat, "",
ifelse(tdat.named, ",tdat = tdat",",tdat")),
",...)")))
}
|
`weighted.median` <-
function(y, w)
{
ox <- order(y)
y <- y[ox]
w <-w[ox]
k <- 1
low <- cumsum(c(0,w))
up <- sum(w)-low
df <- low-up
repeat {
if (df[k] < 0) k<-k+1
else if (df[k] == 0) return((w[k]*y[k]+w[k-1]*y[k-1])/(w[k]+w[k-1]))
else return(y[k-1])
}
}
|
mat_pw_gst <- function(x, pop_names = NULL){
if (inherits(x, "genind")){
tmp <- tempfile(fileext = ".txt")
genind_to_genepop(x, output = tmp)
mat_gst <- diveRsity::diffCalc(infile = tmp,
outfile = NULL,
fst = TRUE,
pairwise = TRUE)
mat_gst <- mat_gst$pairwise$Gst
pop_names <- x@pop[order(as.character(x@pop))]
pop_names <- as.character(pop_names[-which(duplicated(pop_names))])
row.names(mat_gst) <- colnames(mat_gst) <- pop_names
} else if (inherits(x, "character")){
mat_gst <- diveRsity::diffCalc(infile = x,
outfile = NULL,
fst = TRUE,
pairwise = TRUE)
mat_gst <- mat_gst$pairwise$Gst
if (is.vector(pop_names)){
if(length(pop_names) != nrow(mat_gst)){
stop(paste("'pop_names' must have ",
length(row.names(mat_gst)), " elements, it has ",
length(pop_names),sep=""))
}
if(any(duplicated(pop_names))){
stop("At least one population appears twice in 'pop_names'.")
}
}
row.names(mat_gst) <- colnames(mat_gst) <- pop_names
} else {
stop("Input value x must be either a 'genind' object or a
character string.")
}
makeSymm <- function(m) {
m[upper.tri(m)] <- t(m)[upper.tri(m)]
return(m)
}
if(all(row.names(mat_gst) == colnames(mat_gst))){
mat_gst <- makeSymm(mat_gst)
} else {
stop("An error occured while making the matrix symmetric.")
}
diag(mat_gst) <- rep(0, length(diag(mat_gst)))
mat_gst[mat_gst < 0] <- 0
return(mat_gst)
}
|
targets::tar_test("tar_jags_rep_dic()", {
skip_if_not_installed("rjags")
skip_if_not_installed("R2jags")
skip_on_cran()
skip_if_not_installed("dplyr")
tar_jags_example_file(path = "a.jags")
tar_jags_example_file(path = "b.jags")
targets::tar_script({
list(
tar_jags_rep_dic(
model,
jags_files = c(x = "a.jags", y = "b.jags"),
data = tar_jags_example_data(),
parameters.to.save = "beta",
stdout = R.utils::nullfile(),
stderr = R.utils::nullfile(),
refresh = 0,
n.iter = 2e3,
n.burnin = 1e3,
n.thin = 1,
n.chains = 4,
batches = 2,
reps = 2,
combine = TRUE
)
)
})
out <- targets::tar_manifest(callr_function = NULL)
expect_equal(nrow(out), 9L)
out <- targets::tar_network(callr_function = NULL, targets_only = TRUE)$edges
out <- dplyr::arrange(out, from, to)
rownames(out) <- NULL
exp <- tibble::tribble(
~from, ~to,
"model_data", "model_x",
"model_file_x", "model_lines_x",
"model_lines_x", "model_x",
"model_batch", "model_data",
"model_data", "model_y",
"model_lines_y", "model_y",
"model_file_y", "model_lines_y",
"model_x", "model",
"model_y", "model"
)
exp <- dplyr::arrange(exp, from, to)
rownames(exp) <- NULL
expect_equal(out, exp)
capture.output(suppressWarnings(targets::tar_make(callr_function = NULL)))
meta <- tar_meta(starts_with("model_data_"))
expect_equal(nrow(meta), 2L)
expect_equal(targets::tar_read(model_file_x), "a.jags")
expect_equal(targets::tar_read(model_file_y), "b.jags")
out <- targets::tar_read(model_data)
expect_equal(length(out), 2L)
out <- out[[2]]
expect_equal(length(out), 2L)
out <- out[[2]]
expect_true(is.list(out))
expect_equal(length(out), 4L)
expect_equal(out$n, 10L)
expect_equal(length(out$x), 10L)
expect_equal(length(out$y), 10L)
expect_true(is.numeric(out$x))
expect_true(is.numeric(out$y))
out1 <- targets::tar_read(model_x)
out2 <- targets::tar_read(model_y)
out <- targets::tar_read(model)
expect_true("dic" %in% colnames(out))
expect_equal(sort(unique(out$.file)), sort(unique(c("a.jags", "b.jags"))))
expect_equal(sort(unique(out$.name)), sort(unique(c("x", "y"))))
expect_equal(dplyr::bind_rows(out1, out2), out)
expect_true(tibble::is_tibble(out1))
expect_true(tibble::is_tibble(out2))
expect_equal(length(unique(table(out1$.rep))), 1L)
expect_equal(length(unique(table(out2$.rep))), 1L)
expect_equal(length(table(out1$.rep)), 4L)
expect_equal(length(table(out2$.rep)), 4L)
expect_equal(nrow(out1), 4L)
expect_equal(nrow(out2), 4L)
expect_equal(targets::tar_outdated(callr_function = NULL), character(0))
write("", file = "b.jags", append = TRUE)
out <- targets::tar_outdated(callr_function = NULL)
exp <- c("model_file_y", "model_lines_y", "model_y", "model")
expect_equal(sort(out), sort(exp))
targets::tar_script({
list(
tar_jags_rep_dic(
model,
jags_files = c(x = "a.jags", y = "b.jags"),
data = c(tar_jags_example_data()),
parameters.to.save = "beta",
stdout = R.utils::nullfile(),
stderr = R.utils::nullfile(),
refresh = 0,
n.iter = 2e3,
n.burnin = 1e3,
n.thin = 1,
n.chains = 4,
batches = 2,
reps = 2,
combine = TRUE
)
)
})
out <- targets::tar_outdated(callr_function = NULL)
exp <- c(
"model_file_y",
"model_lines_y",
"model_y",
"model",
"model_x",
"model_data"
)
expect_equal(sort(out), sort(exp))
})
targets::tar_test("tar_jags_rep_dic() errors correctly if no JAGS file", {
skip_if_not_installed("rjags")
skip_if_not_installed("R2jags")
expect_error(
tar_jags_rep_dic(
model,
jags_files = c(x = "a.jags", y = "b.jags"),
data = c(tar_jags_example_data()),
parameters.to.save = "beta",
stdout = R.utils::nullfile(),
stderr = R.utils::nullfile(),
refresh = 0,
n.iter = 2e3,
n.burnin = 1e3,
n.thin = 1,
n.chains = 4,
batches = 2,
reps = 2,
combine = TRUE
),
class = "tar_condition_validate"
)
})
|
SamplerUnif = R6Class("SamplerUnif", inherit = SamplerHierarchical,
public = list(
initialize = function(param_set) {
assert_param_set(param_set, must_bounded = TRUE, no_deps = FALSE, no_untyped = TRUE)
samplers = lapply(param_set$params, Sampler1DUnif$new)
super$initialize(param_set, samplers)
}
)
)
|
CorrHetSNSol <- function(Nres,SNres,CvCase,Conf,Xscld,Xmean,Xsd,XsdOutPrd,grouping,Mxt,lglikdif,limlnk2,OptCntrl,getvcov=TRUE,bordertol=1e-2,maxsk=0.99527)
{
GetvcovHetD <- function(Res)
{
HoMxtparnam <- paste("mu_",Xnames,"_",grplvls[1],sep="")
for (g in 2:k) HoMxtparnam <- c(HoMxtparnam,paste("mu_",Xnames,"_",grplvls[g],sep=""))
for (i in 1:p) HoMxtparnam <- c(HoMxtparnam,paste("Sigma_",Xnames[i],"_",Xnames[i:p],sep=""))
HoMxtparnam <- c(HoMxtparnam,paste("gamma1_",Xnames,sep=""))
npar <- SKnpar(Conf,p,p/2,Ngrps=k)
grpModMat <- model.matrix(~ grouping)
Gmat <- model.matrix(~ grplvls)
InFData <- try( sn.infoMv( dp=list(beta=as.matrix(rbind(Res$ksi[1,],Res$beta2k)),Omega=Res$Omega,alpha=Res$alpha), y=Xscld, x=grpModMat ) )
if ( is.null(InFData) || class(InFData)[1] == "try-error" || is.null(InFData$asyvar.cp) ) {
return( list(mleCPvcov=NULL,muEse=NULL,SigmaEse=NULL,gamma1Ese=NULL,status="Invalid") )
}
if (Conf==1) {
betavcov <- InFData$asyvar.cp
nSpar <- p*(p+1)/2
} else {
nparC1 <- (k+1)*p + p*(p+1)/2
parind <- c(1:(k*p),(k*p)+SigCind(Conf,p/2),(nparC1-p+1):nparC1)
nSpar <- length(parind) - (k+1)*p
betavcov <- Safepdsolve(InFData$info.cp[parind,parind],maxlnk2=limlnk2,scale=TRUE)
}
if ( !is.null(betavcov) )
{
mleCPvcov <- matrix(nrow=npar,ncol=npar)
muind <- 1:(p*k)
nmugind <- NULL
for (g in 1:k) nmugind <- c(nmugind,(0:(p-1))*k+g)
Sind <- p*k + 1:nSpar
gamma1ind <- p*k + nSpar + 1:p
Sgamma1ind <- c(Sind,gamma1ind)
M <- kronecker(diag(p),Gmat)
mleCPvcov[muind,muind] <- (M %*% betavcov[muind,muind] %*% t(M))[nmugind,nmugind]
mleCPvcov[muind,Sgamma1ind] <- (M %*% betavcov[muind,Sgamma1ind])[nmugind,]
mleCPvcov[Sgamma1ind,muind] <- t(mleCPvcov[muind,Sgamma1ind])
mleCPvcov[Sgamma1ind,Sgamma1ind] <- betavcov[Sgamma1ind,Sgamma1ind]
if (Conf==1) {
rownames(mleCPvcov) <- colnames(mleCPvcov) <- HoMxtparnam
} else {
rownames(mleCPvcov) <- colnames(mleCPvcov) <- HoMxtparnam[parind]
}
} else {
mleCPvcov <- NULL
}
if (is.null(mleCPvcov)) return( list(mleCPvcov=NULL,muEse=NULL,SigmaEse=NULL,gamma1Ese=NULL) )
mleCPvcov <- mleCPvcov * SNVCovscaling(Conf,p,Xsd,k=k)
CPStderr <- sqrt(diag(mleCPvcov))
muEse <- matrix(CPStderr[1:(k*p)],nrow=k,ncol=p,byrow=TRUE)
gammaind <- (npar-p+1):npar
gamma1Ese <- CPStderr[gammaind]
SigmaEse <- matrix(nrow=p,ncol=p)
cnt <- k*p
for (j1 in 1:p) for (j2 in j1:p)
{
if (FreePar(q,j1,j2,Conf))
{
cnt <- cnt+1
SigmaEse[j1,j2] <- SigmaEse[j2,j1] <- CPStderr[cnt]
}
}
names(gamma1Ese) <- rownames(SigmaEse) <- colnames(SigmaEse) <- Xnames
rownames(muEse) <- grplvls
colnames(muEse) <- Xnames
list(mleCPvcov=mleCPvcov,muEse=muEse,SigmaEse=SigmaEse,gamma1Ese=gamma1Ese,status="Regular")
}
GetvcovSingD <- function(Res)
{
SngDparnam <- paste("mu_",Xnames,sep="")
for (i in 1:p) SngDparnam <- c(SngDparnam,paste("Sigma_",Xnames[i],"_",Xnames[i:p],sep=""))
SngDparnam <- c(SngDparnam,paste("gamma1_",Xnames,sep=""))
npar <- SKnpar(Conf,p,p/2)
InFData <- try( sn.infoMv( dp=list(xi=Res$ksi,Omega=Res$Omega,alpha=Res$alpha), y=Xscld, x=matrix(1,nrow=n,ncol=1) ) )
if ( is.null(InFData) || class(InFData)[1] == "try-error" || is.null(InFData$asyvar.cp) ) {
return( list(mleCPvcov=NULL,muEse=NULL,SigmaEse=NULL,gamma1Ese=NULL,status="Invalid") )
}
if (Conf==1) {
mleCPvcov <- InFData$asyvar.cp
rownames(mleCPvcov) <- colnames(mleCPvcov) <- SngDparnam
} else {
nparC1 <- 2*p + p*(p+1)/2
parind <- c(1:p,p+SigCind(Conf,p/2),(nparC1-p+1):nparC1)
mleCPvcov <- Safepdsolve(InFData$info.cp[parind,parind],maxlnk2=limlnk2,scale=TRUE)
if ( !is.null(mleCPvcov) ) { rownames(mleCPvcov) <- colnames(mleCPvcov) <- SngDparnam[parind] }
}
if (is.null(mleCPvcov)) return( list(mleCPvcov=NULL,muEse=NULL,SigmaEse=NULL,gamma1Ese=NULL) )
mleCPvcov <- mleCPvcov * SNVCovscaling(Conf,p,Xsd,k=k)
CPStderr <- sqrt(diag(mleCPvcov))
muEse <- CPStderr[1:p]
gammaind <- (npar-p+1):npar
gamma1Ese <- CPStderr[gammaind]
SigmaEse <- matrix(nrow=p,ncol=p)
cnt <- k*p
for (j1 in 1:p) for (j2 in j1:p)
{
if (FreePar(q,j1,j2,Conf))
{
cnt <- cnt+1
SigmaEse[j1,j2] <- SigmaEse[j2,j1] <- CPStderr[cnt]
}
}
names(gamma1Ese) <- rownames(SigmaEse) <- colnames(SigmaEse) <- names(muEse) <- Xnames
list(mleCPvcov=mleCPvcov,muEse=muEse,SigmaEse=SigmaEse,gamma1Ese=gamma1Ese,status="Regular")
}
p <- ncol(Xscld)
q <- p/2
n <- nrow(Xscld)
grplvls <- levels(grouping)
k <- length(grplvls)
n1scvct <- rep(1,n)
Xnames <- names(Xmean)
zmu <- scale(Nres@mleNmuE,center=Xmean,scale=Xsd)
displcmnt <- -Xmean
sclfactor <- 1./Xsd
NewSNres <- list()
if (Mxt=="Hom" || Mxt=="Loc") {
zmug1 <- zmu[1,]
if (k>2) {
beta2k <- scale(zmu[-1,],center=zmug1,scale=FALSE)
} else {
beta2k <- zmu[-1,] - zmug1
}
zSigma <- Nres@CovConfCases[[CvCase]]$mleSigE/XsdOutPrd
if (Conf==1) {
DP <- cnvCPtoDP(p,zmu[1,],zSigma,rep(0.,p),limlnk2=limlnk2)
newpar <- c(DP$ksi,beta2k,DP$alpha/DP$omega)
SNStdDtRes <- SNCnf1MaxLik(Xscld,initpar=newpar,grouping=grouping,limlnk2=limlnk2,OptCntrl=OptCntrl)
} else {
SigmaSrpar <- GetCovPar(zSigma,Conf,test=FALSE)
newpar <- c(zmug1,beta2k,SigmaSrpar,rep(0.,p))
SNStdDtRes <- SNCMaxLik(Xscld,Config=Conf,initpar=newpar,grouping=grouping,limlnk2=limlnk2,OptCntrl=OptCntrl)
}
NewSNres$muE <- scale( scale(SNStdDtRes$mu,center=FALSE,scale=sclfactor),center=displcmnt,scale=FALSE )
NewSNres$ksiE <- scale( scale(SNStdDtRes$ksi,center=FALSE,scale=sclfactor),center=displcmnt,scale=FALSE )
attr(NewSNres$muE,"scaled:center") <- attr(NewSNres$ksiE,"scaled:center") <-
attr(NewSNres$muE,"scaled:scale") <- attr(NewSNres$ksiE,"scaled:scale") <- NULL
NewSNres$SigmaE <- XsdOutPrd*SNStdDtRes$Sigma
NewSNres$gamma1E <- SNStdDtRes$gamma1
NewSNres$OmegaE <- XsdOutPrd*SNStdDtRes$Omega
NewSNres$alphaE <- SNStdDtRes$alpha
NewSNres$logLik <- SNStdDtRes$lnLik + lglikdif
colnames(NewSNres$muE) <- colnames(NewSNres$ksiE) <- Xnames
rownames(NewSNres$muE) <- rownames(NewSNres$ksiE) <- grplvls
if ( !is.null(NewSNres$gamma1E) && !is.null(NewSNres$alphaE) && !is.null(NewSNres$SigmaE) && !is.null(NewSNres$OmegaE) )
{
names(NewSNres$gamma1E) <- names(NewSNres$alphaE) <-
dimnames(NewSNres$SigmaE)[[1]] <- dimnames(NewSNres$SigmaE)[[2]] <-
dimnames(NewSNres$OmegaE)[[1]] <- dimnames(NewSNres$OmegaE)[[2]] <- Xnames
}
} else if (Mxt=="Het" || Mxt=="Gen") {
NewSNres$muE <- matrix(nrow=k,ncol=p)
NewSNres$gamma1E <- matrix(nrow=k,ncol=p)
NewSNres$ksiE <- matrix(nrow=k,ncol=p)
NewSNres$alphaE <- matrix(nrow=k,ncol=p)
nparbyg <- SKnpar(Conf,p,q)
anams <- list(Xnames,Xnames,grplvls)
mnams <- list(grplvls,Xnames)
NewSNres$SigmaE <- array(dim=c(p,p,k),dimnames=anams)
NewSNres$OmegaE <- array(dim=c(p,p,k),dimnames=anams)
NewSNres$logLik <- 0.
if (getvcov) {
NewSNres$status <- "Regular"
NewSNres$mleCPvcov <- array(dim=c(nparbyg,nparbyg,k),dimnames=list(NULL,NULL,grplvls))
NewSNres$muEse <- matrix(nrow=k,ncol=p,dimnames=mnams)
NewSNres$SigmaEse <- array(dim=c(p,p,k),dimnames=anams)
NewSNres$gamma1Ese <- matrix(nrow=k,ncol=p,dimnames=mnams)
} else {
NewSNres$status <- "OnHold"
NewSNres$mleCPvcov <- NewSNres$muEse <- NewSNres$SigmaEse <- NewSNres$gamma1Ese <- NULL
}
for (g in 1:k) {
Xscldg <- Xscld[grouping==grplvls[g],]
zSigma <- Nres@CovConfCases[[CvCase]]$mleSigE[,,g]/XsdOutPrd
if (Conf==1) {
DP <- cnvCPtoDP(p,zmu[g,],zSigma,rep(0.,p),limlnk2=limlnk2)
newpar <- c(DP$ksi,DP$alpha/DP$omega)
SNStdDtRes <- SNCnf1MaxLik(Xscldg,initpar=newpar,grouping=NULL,limlnk2=limlnk2,OptCntrl=OptCntrl)
} else {
SigmaSrpar <- GetCovPar(zSigma,Conf,test=FALSE)
newpar <- c(zmu[g,],SigmaSrpar,rep(0.,p))
SNStdDtRes <- SNCMaxLik(Xscldg,Config=Conf,initpar=newpar,grouping=NULL,limlnk2=limlnk2,OptCntrl=OptCntrl)
}
NewSNres$muE[g,] <- SNStdDtRes$mu/sclfactor-displcmnt
NewSNres$ksiE[g,] <- SNStdDtRes$ksi/sclfactor-displcmnt
NewSNres$SigmaE[,,g] <- XsdOutPrd*SNStdDtRes$Sigma
NewSNres$gamma1E[g,] <- SNStdDtRes$gamma1
NewSNres$OmegaE[,,g] <- XsdOutPrd*SNStdDtRes$Omega
if (!is.null(SNStdDtRes$alpha)) NewSNres$alphaE[g,] <- SNStdDtRes$alpha
NewSNres$logLik <- NewSNres$logLik + SNStdDtRes$lnLik
if (getvcov) {
if ( (!is.null(SNStdDtRes$c2) && SNStdDtRes$c2 > bordertol) || (maxsk-max(abs(SNStdDtRes$gamma1)) < bordertol) )
{
vcovl <- GetvcovSingD(SNStdDtRes)
if (!is.null(vcovl$muEse)) NewSNres$muEse[g,] <- vcovl$muEse
if (!is.null(vcovl$gamma1Ese))NewSNres$gamma1Ese[g,] <- vcovl$gamma1Ese
if (!is.null(vcovl$SigmaEse)) NewSNres$SigmaEse[,,g] <- vcovl$SigmaEse
if (!is.null(vcovl$mleCPvcov)) {
NewSNres$mleCPvcov[,,g] <- vcovl$mleCPvcov
if (g==1) dimnames(NewSNres$mleCPvcov)[[1]] <- dimnames(NewSNres$mleCPvcov)[[2]] <- rownames(NewSNres$mleCPvcov)
}
} else {
NewSNres$status <- "Onborder"
}
}
}
NewSNres$logLik <- NewSNres$logLik + lglikdif
colnames(NewSNres$muE) <- colnames(NewSNres$ksiE) <- Xnames
rownames(NewSNres$muE) <- rownames(NewSNres$ksiE) <- grplvls
if ( !is.null(NewSNres$gamma1E) && !is.null(NewSNres$alphaE) && !is.null(NewSNres$SigmaE) && !is.null(NewSNres$OmegaE) )
{
names(NewSNres$gamma1E) <- names(NewSNres$alphaE) <-
dimnames(NewSNres$SigmaE)[[1]] <- dimnames(NewSNres$SigmaE)[[2]] <-
dimnames(NewSNres$OmegaE)[[1]] <- dimnames(NewSNres$OmegaE)[[2]] <- Xnames
dimnames(NewSNres$SigmaE)[[3]] <- dimnames(NewSNres$OmegaE)[[3]] <- grplvls
}
}
NewSNres
}
|
buildDepots = function(n.depots, cluster.centers, distances) {
n.cluster = nrow(cluster.centers)
depot.1.idx = sample(seq(n.cluster), 1L)
depot.coordinates = cluster.centers[depot.1.idx, , drop = FALSE]
if (n.depots == 2L) {
depot.2.idx = distances$max.distance.idx[depot.1.idx]
depot.coordinates = rbind(depot.coordinates, cluster.centers[depot.2.idx, , drop = FALSE])
}
return(depot.coordinates)
}
|
hypotestBAF1x<-function(x,n,th0,a1,b1)
{
if (missing(x)) stop("'x' is missing")
if (missing(n)) stop("'n' is missing")
if (missing(th0)) stop("'th0' is missing")
if (missing(a1)) stop("'a1' is missing")
if (missing(b1)) stop("'b1' is missing")
if ((class(x) != "integer") & (class(x) != "numeric") || length(x) >1|| x>n || x<0 ) stop("'x' has to be between 0 and n")
if ((class(n) != "integer") & (class(n) != "numeric") || length(n) >1|| n<0 ) stop("'n' has to be greater or equal to 0")
if ((class(th0) != "integer") & (class(th0) != "numeric") || length(th0) >1|| th0>1 || th0<=0 ) stop("'th0' has to be between 0 and 1")
if ((class(a1) != "integer") & (class(a1) != "numeric") || length(a1) >1|| a1<=0 ) stop("'a1' has to be greater than 0")
if ((class(b1) != "integer") & (class(b1) != "numeric") || length(b1) >1|| b1<=0 ) stop("'b1' has to be greater than 0")
BaFa01=(beta(a1,b1)/beta(x+a1,n-x+b1))*(th0^x)*((1-th0)^(n-x))
rdf=data.frame(x,BaFa01)
ndf1=subset(rdf,(BaFa01<3 & BaFa01 >= 1))
ndf2=subset(rdf,(BaFa01<20 & BaFa01 >= 3))
ndf3=subset(rdf,(BaFa01<150 & BaFa01 >= 20))
ndf4=subset(rdf,(BaFa01>=150))
ndf5=subset(rdf,(BaFa01<1 & BaFa01 >= 1/3))
ndf6=subset(rdf,(BaFa01<1/3 & BaFa01 >= 1/20))
ndf7=subset(rdf,(BaFa01<1/20 & BaFa01 >= 1/150))
ndf8=subset(rdf,(BaFa01<1/150))
if(length(ndf1$x)>0){
ndf1$Interpretation="Evidence against H1 is not worth more than a bare mention"}
if(length(ndf2$x)>0){
ndf2$Interpretation="Evidence against H1 is positive"}
if(length(ndf3$x)>0){
ndf3$Interpretation="Evidence against H1 is strong"}
if(length(ndf4$x)>0){
ndf4$Interpretation="Evidence against H1 is very strong"}
if(length(ndf5$x)>0){
ndf5$Interpretation="Evidence against H0 is not worth more than a bare mention"}
if(length(ndf6$x)>0){
ndf6$Interpretation="Evidence against H0 is positive"}
if(length(ndf7$x)>0){
ndf7$Interpretation="Evidence against H0 is strong"}
if(length(ndf8$x)>0){
ndf8$Interpretation="Evidence against H0 is very strong"}
cbdf=rbind(ndf1,ndf2,ndf3,ndf4,ndf5,ndf6,ndf7,ndf8)
ndf=cbdf[order(cbdf$x),]
row.names(ndf)<-NULL
return(ndf)
}
hypotestBAF2x<-function(x,n,th0,a1,b1)
{
if (missing(x)) stop("'x' is missing")
if (missing(n)) stop("'n' is missing")
if (missing(th0)) stop("'th0' is missing")
if (missing(a1)) stop("'a1' is missing")
if (missing(b1)) stop("'b1' is missing")
if ((class(x) != "integer") & (class(x) != "numeric") || length(x) >1|| x>n || x<0 ) stop("'x' has to be between 0 and n")
if ((class(n) != "integer") & (class(n) != "numeric") || length(n) >1|| n<0 ) stop("'n' has to be greater or equal to 0")
if ((class(th0) != "integer") & (class(th0) != "numeric") || length(th0) >1|| th0>1 || th0<=0 ) stop("'th0' has to be between 0 and 1")
if ((class(a1) != "integer") & (class(a1) != "numeric") || length(a1) >1|| a1<=0 ) stop("'a1' has to be greater than 0")
if ((class(b1) != "integer") & (class(b1) != "numeric") || length(b1) >1|| b1<=0 ) stop("'b1' has to be greater than 0")
bet1=function(p) dbeta(p,shape1=a1,shape2=b1)
bet2=function(p) dbeta(p,shape1=x+a1,shape2=n-x+b1)
t1=integrate(bet1,th0,1)$value
t2=integrate(bet2,th0,1)$value
BaFa01=(t1/t2)*(th0^x)*((1-th0)^(n-x))
rdf=data.frame(x,BaFa01)
ndf1=subset(rdf,(BaFa01<3 & BaFa01 >= 1))
ndf2=subset(rdf,(BaFa01<20 & BaFa01 >= 3))
ndf3=subset(rdf,(BaFa01<150 & BaFa01 >= 20))
ndf4=subset(rdf,(BaFa01>=150))
ndf5=subset(rdf,(BaFa01<1 & BaFa01 >= 1/3))
ndf6=subset(rdf,(BaFa01<1/3 & BaFa01 >= 1/20))
ndf7=subset(rdf,(BaFa01<1/20 & BaFa01 >= 1/150))
ndf8=subset(rdf,(BaFa01<1/150))
if(length(ndf1$x)>0){
ndf1$Interpretation="Evidence against H1 is not worth more than a bare mention"}
if(length(ndf2$x)>0){
ndf2$Interpretation="Evidence against H1 is positive"}
if(length(ndf3$x)>0){
ndf3$Interpretation="Evidence against H1 is strong"}
if(length(ndf4$x)>0){
ndf4$Interpretation="Evidence against H1 is very strong"}
if(length(ndf5$x)>0){
ndf5$Interpretation="Evidence against H0 is not worth more than a bare mention"}
if(length(ndf6$x)>0){
ndf6$Interpretation="Evidence against H0 is positive"}
if(length(ndf7$x)>0){
ndf7$Interpretation="Evidence against H0 is strong"}
if(length(ndf8$x)>0){
ndf8$Interpretation="Evidence against H0 is very strong"}
cbdf=rbind(ndf1,ndf2,ndf3,ndf4,ndf5,ndf6,ndf7,ndf8)
ndf=cbdf[order(cbdf$x),]
row.names(ndf)<-NULL
return(ndf)
}
hypotestBAF3x<-function(x,n,th0,a1,b1)
{
if (missing(x)) stop("'x' is missing")
if (missing(n)) stop("'n' is missing")
if (missing(th0)) stop("'th0' is missing")
if (missing(a1)) stop("'a1' is missing")
if (missing(b1)) stop("'b1' is missing")
if ((class(x) != "integer") & (class(x) != "numeric") || length(x) >1|| x>n || x<0 ) stop("'x' has to be between 0 and n")
if ((class(n) != "integer") & (class(n) != "numeric") || length(n) >1|| n<0 ) stop("'n' has to be greater or equal to 0")
if ((class(th0) != "integer") & (class(th0) != "numeric") || length(th0) >1|| th0>1 || th0<=0 ) stop("'th0' has to be between 0 and 1")
if ((class(a1) != "integer") & (class(a1) != "numeric") || length(a1) >1|| a1<=0 ) stop("'a1' has to be greater than 0")
if ((class(b1) != "integer") & (class(b1) != "numeric") || length(b1) >1|| b1<=0 ) stop("'b1' has to be greater than 0")
bet1=function(p) dbeta(p,shape1=a1,shape2=b1)
bet2=function(p) dbeta(p,shape1=x+a1,shape2=n-x+b1)
t1=integrate(bet1,0,th0)$value
t2=integrate(bet2,0,th0)$value
BaFa01=(t1/t2)*(th0^x)*((1-th0)^(n-x))
rdf=data.frame(x,BaFa01)
ndf1=subset(rdf,(BaFa01<3 & BaFa01 >= 1))
ndf2=subset(rdf,(BaFa01<20 & BaFa01 >= 3))
ndf3=subset(rdf,(BaFa01<150 & BaFa01 >= 20))
ndf4=subset(rdf,(BaFa01>=150))
ndf5=subset(rdf,(BaFa01<1 & BaFa01 >= 1/3))
ndf6=subset(rdf,(BaFa01<1/3 & BaFa01 >= 1/20))
ndf7=subset(rdf,(BaFa01<1/20 & BaFa01 >= 1/150))
ndf8=subset(rdf,(BaFa01<1/150))
if(length(ndf1$x)>0){
ndf1$Interpretation="Evidence against H1 is not worth more than a bare mention"}
if(length(ndf2$x)>0){
ndf2$Interpretation="Evidence against H1 is positive"}
if(length(ndf3$x)>0){
ndf3$Interpretation="Evidence against H1 is strong"}
if(length(ndf4$x)>0){
ndf4$Interpretation="Evidence against H1 is very strong"}
if(length(ndf5$x)>0){
ndf5$Interpretation="Evidence against H0 is not worth more than a bare mention"}
if(length(ndf6$x)>0){
ndf6$Interpretation="Evidence against H0 is positive"}
if(length(ndf7$x)>0){
ndf7$Interpretation="Evidence against H0 is strong"}
if(length(ndf8$x)>0){
ndf8$Interpretation="Evidence against H0 is very strong"}
cbdf=rbind(ndf1,ndf2,ndf3,ndf4,ndf5,ndf6,ndf7,ndf8)
ndf=cbdf[order(cbdf$x),]
row.names(ndf)<-NULL
return(ndf)
}
hypotestBAF4x<-function(x,n,th0,a0,b0,a1,b1)
{
if (missing(x)) stop("'x' is missing")
if (missing(n)) stop("'n' is missing")
if (missing(th0)) stop("'th0' is missing")
if (missing(a0)) stop("'a0' is missing")
if (missing(b0)) stop("'b0' is missing")
if (missing(a1)) stop("'a1' is missing")
if (missing(b1)) stop("'b1' is missing")
if ((class(x) != "integer") & (class(x) != "numeric") || length(x) >1|| x>n || x<0) stop("'x' has to be between 0 and n")
if ((class(n) != "integer") & (class(n) != "numeric") || length(n) >1|| n<0 ) stop("'n' has to be greater or equal to 0")
if ((class(th0) != "integer") & (class(th0) != "numeric") || length(th0) >1|| th0>1 || th0<=0 ) stop("'th0' has to be between 0 and 1")
if ((class(a0) != "integer") & (class(a0) != "numeric") || length(a0) >1|| a0<=0 ) stop("'a0' has to be greater than 0")
if ((class(b0) != "integer") & (class(b0) != "numeric") || length(b0) >1|| b0<=0 ) stop("'b0' has to be greater than 0")
if ((class(a1) != "integer") & (class(a1) != "numeric") || length(a1) >1|| a1<=0 ) stop("'a1' has to be greater than 0")
if ((class(b1) != "integer") & (class(b1) != "numeric") || length(b1) >1|| b1<=0 ) stop("'b1' has to be greater than 0")
bet0=function(p) dbeta(p,shape1=a0,shape2=b0)
bet01=function(p) dbeta(p,shape1=x+a0,shape2=n-x+b0)
bet1=function(p) dbeta(p,shape1=a1,shape2=b1)
bet11=function(p) dbeta(p,shape1=x+a1,shape2=n-x+b1)
t0=integrate(bet0,0,th0)$value
t1=integrate(bet1,th0,1)$value
t01=integrate(bet01,0,th0)$value
t11=integrate(bet11,th0,1)$value
BaFa01=t01*t1/(t0*t11)
rdf=data.frame(x,BaFa01)
ndf1=subset(rdf,(BaFa01<3 & BaFa01 >= 1))
ndf2=subset(rdf,(BaFa01<20 & BaFa01 >= 3))
ndf3=subset(rdf,(BaFa01<150 & BaFa01 >= 20))
ndf4=subset(rdf,(BaFa01>=150))
ndf5=subset(rdf,(BaFa01<1 & BaFa01 >= 1/3))
ndf6=subset(rdf,(BaFa01<1/3 & BaFa01 >= 1/20))
ndf7=subset(rdf,(BaFa01<1/20 & BaFa01 >= 1/150))
ndf8=subset(rdf,(BaFa01<1/150))
if(length(ndf1$x)>0){
ndf1$Interpretation="Evidence against H1 is not worth more than a bare mention"}
if(length(ndf2$x)>0){
ndf2$Interpretation="Evidence against H1 is positive"}
if(length(ndf3$x)>0){
ndf3$Interpretation="Evidence against H1 is strong"}
if(length(ndf4$x)>0){
ndf4$Interpretation="Evidence against H1 is very strong"}
if(length(ndf5$x)>0){
ndf5$Interpretation="Evidence against H0 is not worth more than a bare mention"}
if(length(ndf6$x)>0){
ndf6$Interpretation="Evidence against H0 is positive"}
if(length(ndf7$x)>0){
ndf7$Interpretation="Evidence against H0 is strong"}
if(length(ndf8$x)>0){
ndf8$Interpretation="Evidence against H0 is very strong"}
cbdf=rbind(ndf1,ndf2,ndf3,ndf4,ndf5,ndf6,ndf7,ndf8)
ndf=cbdf[order(cbdf$x),]
row.names(ndf)<-NULL
return(ndf)
}
hypotestBAF5x<-function(x,n,th0,a0,b0,a1,b1)
{
if (missing(x)) stop("'x' is missing")
if (missing(th0)) stop("'th0' is missing")
if (missing(a0)) stop("'a0' is missing")
if (missing(b0)) stop("'b0' is missing")
if (missing(a1)) stop("'a1' is missing")
if (missing(b1)) stop("'b1' is missing")
if ((class(x) != "integer") & (class(x) != "numeric") || length(x) >1||x>n || x<0) stop("'x' has to be between 0 and n")
if ((class(n) != "integer") & (class(n) != "numeric") || length(n) >1|| n<0 ) stop("'n' has to be greater or equal to 0")
if ((class(th0) != "integer") & (class(th0) != "numeric") || length(th0) >1|| th0>1 || th0<=0 ) stop("'th0' has to be between 0 and 1")
if ((class(a0) != "integer") & (class(a0) != "numeric") || length(a0) >1|| a0<=0 ) stop("'a0' has to be greater than 0")
if ((class(b0) != "integer") & (class(b0) != "numeric") || length(b0) >1|| b0<=0 ) stop("'b0' has to be greater than 0")
if ((class(a1) != "integer") & (class(a1) != "numeric") || length(a1) >1|| a1<=0 ) stop("'a1' has to be greater than 0")
if ((class(b1) != "integer") & (class(b1) != "numeric") || length(b1) >1|| b1<=0 ) stop("'b1' has to be greater than 0")
bet0=function(p) dbeta(p,shape1=a0,shape2=b0)
bet01=function(p) dbeta(p,shape1=x+a0,shape2=n-x+b0)
bet1=function(p) dbeta(p,shape1=a1,shape2=b1)
bet11=function(p) dbeta(p,shape1=x+a1,shape2=n-x+b1)
t0=integrate(bet0,th0,1)$value
t1=integrate(bet1,0,th0)$value
t01=integrate(bet01,th0,1)$value
t11=integrate(bet11,0,th0)$value
BaFa01=t01*t1/(t0*t11)
rdf=data.frame(x,BaFa01)
ndf1=subset(rdf,(BaFa01<3 & BaFa01 >= 1))
ndf2=subset(rdf,(BaFa01<20 & BaFa01 >= 3))
ndf3=subset(rdf,(BaFa01<150 & BaFa01 >= 20))
ndf4=subset(rdf,(BaFa01>=150))
ndf5=subset(rdf,(BaFa01<1 & BaFa01 >= 1/3))
ndf6=subset(rdf,(BaFa01<1/3 & BaFa01 >= 1/20))
ndf7=subset(rdf,(BaFa01<1/20 & BaFa01 >= 1/150))
ndf8=subset(rdf,(BaFa01<1/150))
if(length(ndf1$x)>0){
ndf1$Interpretation="Evidence against H1 is not worth more than a bare mention"}
if(length(ndf2$x)>0){
ndf2$Interpretation="Evidence against H1 is positive"}
if(length(ndf3$x)>0){
ndf3$Interpretation="Evidence against H1 is strong"}
if(length(ndf4$x)>0){
ndf4$Interpretation="Evidence against H1 is very strong"}
if(length(ndf5$x)>0){
ndf5$Interpretation="Evidence against H0 is not worth more than a bare mention"}
if(length(ndf6$x)>0){
ndf6$Interpretation="Evidence against H0 is positive"}
if(length(ndf7$x)>0){
ndf7$Interpretation="Evidence against H0 is strong"}
if(length(ndf8$x)>0){
ndf8$Interpretation="Evidence against H0 is very strong"}
cbdf=rbind(ndf1,ndf2,ndf3,ndf4,ndf5,ndf6,ndf7,ndf8)
ndf=cbdf[order(cbdf$x),]
row.names(ndf)<-NULL
return(ndf)
}
hypotestBAF6x<-function(x,n,th1,a1,b1,th2,a2,b2)
{
if (missing(x)) stop("'x' is missing")
if (missing(n)) stop("'n' is missing")
if (missing(th1)) stop("'th1' is missing")
if (missing(a1)) stop("'a1' is missing")
if (missing(b1)) stop("'b1' is missing")
if (missing(th2)) stop("'th2' is missing")
if (missing(a2)) stop("'a2' is missing")
if (missing(b2)) stop("'b2' is missing")
if ((class(x) != "integer") & (class(x) != "numeric") || length(x) >1||x>n || x<0) stop("'x' has to be between 0 and n")
if ((class(n) != "integer") & (class(n) != "numeric") || length(n) >1|| n<0 ) stop("'n' has to be greater or equal to 0")
if ((class(th1) != "integer") & (class(th1) != "numeric") || length(th1) >1|| th1<0 ) stop("'th1' has to be greater than 0")
if ((class(a1) != "integer") & (class(a1) != "numeric") || length(a1) >1|| a1<=0 ) stop("'a1' has to be greater than 0")
if ((class(b1) != "integer") & (class(b1) != "numeric") || length(b1) >1|| b1<=0 ) stop("'b1' has to be greater than 0")
if ((class(th2) != "integer") & (class(th2) != "numeric") || length(th2) >1|| th2<0 ) stop("'th2' has to be greater than 0")
if ((class(a2) != "integer") & (class(a2) != "numeric") || length(a2) >1|| a2<=0 ) stop("'a2' has to be greater than 0")
if ((class(b2) != "integer") & (class(b2) != "numeric") || length(b2) >1|| b2<=0 ) stop("'b2' has to be greater than 0")
bet1=function(p) dbeta(p,shape1=x+a1,shape2=n-x+b1)
bet2=function(p) dbeta(p,shape1=x+a2,shape2=n-x+b2)
t1=integrate(bet1,0,th1)$value
t2=integrate(bet2,th2,1)$value
BaFa01=t1/t2
rdf=data.frame(x,BaFa01)
ndf1=subset(rdf,(BaFa01<3 & BaFa01 >= 1))
ndf2=subset(rdf,(BaFa01<20 & BaFa01 >= 3))
ndf3=subset(rdf,(BaFa01<150 & BaFa01 >= 20))
ndf4=subset(rdf,(BaFa01>=150))
ndf5=subset(rdf,(BaFa01<1 & BaFa01 >= 1/3))
ndf6=subset(rdf,(BaFa01<1/3 & BaFa01 >= 1/20))
ndf7=subset(rdf,(BaFa01<1/20 & BaFa01 >= 1/150))
ndf8=subset(rdf,(BaFa01<1/150))
if(length(ndf1$x)>0){
ndf1$Interpretation="Evidence against H1 is not worth more than a bare mention"}
if(length(ndf2$x)>0){
ndf2$Interpretation="Evidence against H1 is positive"}
if(length(ndf3$x)>0){
ndf3$Interpretation="Evidence against H1 is strong"}
if(length(ndf4$x)>0){
ndf4$Interpretation="Evidence against H1 is very strong"}
if(length(ndf5$x)>0){
ndf5$Interpretation="Evidence against H0 is not worth more than a bare mention"}
if(length(ndf6$x)>0){
ndf6$Interpretation="Evidence against H0 is positive"}
if(length(ndf7$x)>0){
ndf7$Interpretation="Evidence against H0 is strong"}
if(length(ndf8$x)>0){
ndf8$Interpretation="Evidence against H0 is very strong"}
cbdf=rbind(ndf1,ndf2,ndf3,ndf4,ndf5,ndf6,ndf7,ndf8)
ndf=cbdf[order(cbdf$x),]
row.names(ndf)<-NULL
return(ndf)
}
|
jagsBayesianModel <- function (model = NULL, ... ) {
arguments <- list(...)
if (is.null(model))
return(jagsTwoBaselinesFull(...))
else if (model == "oneBaseline")
return(jagsOneBaseline(...))
else if (model == "twoBaselines")
return(jagsTwoBaselines(...))
else if (model == "twoBaselinesFull")
return(jagsTwoBaselinesFull(...))
}
|
load_package <- function (package1, ...) {
packages <- c(package1, ...)
assert_that(qtest(packages, "S"), msg = "One of the provided package(s) is(are) not a string. Please make sure that each packages is a string.")
for (package in packages) {
try(do.call(library, list(package)))
}
}
|
SpatialLinesDataFrame = function(sl, data, match.ID = TRUE) {
if (is.character(match.ID)) {
row.names(data) = data[, match.ID[1]]
match.ID = TRUE
}
if (match.ID) {
Sl_IDs <- sapply(slot(sl, "lines"), function(x) slot(x, "ID"))
data_IDs <- row.names(data)
mtch <- match(Sl_IDs, data_IDs)
if (any(is.na(mtch)))
stop("row.names of data and Lines IDs do not match")
if (length(unique(mtch)) != length(Sl_IDs))
stop("row.names of data and Lines IDs do not match")
data <- data[mtch, , drop=FALSE]
}
if (nrow(data) != length(sl@lines))
stop("length of data.frame does not match number of Lines elements")
new("SpatialLinesDataFrame", sl, data = data)
}
names.SpatialLinesDataFrame = function(x) names(x@data)
"names<-.SpatialLinesDataFrame" = function(x,value) { checkNames(value); names(x@data)<-value; x }
as.data.frame.SpatialLinesDataFrame = function(x, row.names, optional, ...) x@data
setMethod("addAttrToGeom", signature(x = "SpatialLines", y = "data.frame"),
function(x, y, match.ID, ...)
SpatialLinesDataFrame(x, y, match.ID = match.ID, ...)
)
setAs("SpatialLinesDataFrame", "SpatialMultiPointsDataFrame",
function(from)
SpatialMultiPointsDataFrame(as(geometry(from), "SpatialMultiPoints"), from@data)
)
setAs("SpatialLinesDataFrame", "data.frame", function(from)
as.data.frame.SpatialLinesDataFrame(from))
row.names.SpatialLinesDataFrame <- function(x) {
sapply(slot(x, "lines"), slot, "ID")
}
"row.names<-.SpatialLinesDataFrame" <- function(x, value) {
spChFIDs(x, value)
}
setMethod("[", c("SpatialLinesDataFrame", "ANY", "ANY"), function(x, i, j, ... , drop = TRUE) {
missing.i = missing(i)
missing.j = missing(j)
nargs = nargs()
if (missing.i && missing.j) {
i = TRUE
j = TRUE
} else if (missing.j && !missing.i) {
if (nargs == 2) {
j = i
i = TRUE
} else {
j = TRUE
}
} else if (missing.i && !missing.j)
i = TRUE
if (is.matrix(i))
stop("matrix argument not supported in SpatialLinesDataFrame selection")
if (is(i, "Spatial"))
i = !is.na(over(x, geometry(i)))
if (is.logical(i)) {
if (length(i) == 1 && i)
i = 1:length(x@lines)
else
i <- which(i)
} else if (is.character(i)) {
i <- match(i, row.names(x))
}
if (any(is.na(i)))
stop("NAs not permitted in row index")
x@lines = x@lines[i]
x@data = x@data[i, j, ..., drop = FALSE]
if (length(x@lines) > 0)
x@bbox = .bboxSls(x@lines)
x
})
lines.SpatialLinesDataFrame = function(x, y = NULL, ...)
lines(as(x, "SpatialLines"), ...)
setAs("SpatialLinesDataFrame", "SpatialPointsDataFrame", function(from) {
spp = as(as(from, "SpatialLines"), "SpatialPointsDataFrame")
dfl = from@data[spp$Lines.NR, , drop = FALSE]
spp@data = cbind(dfl, spp@data)
spp
}
)
dim.SpatialLinesDataFrame = function(x) dim(x@data)
setMethod("split", "SpatialLinesDataFrame", split.data.frame)
print.SpatialLinesDataFrame = function(x, ..., digits = getOption("digits"),
asWKT = .asWKT)
print(data.frame(asWKTSpatialLines(x, digits), x@data),..., digits = digits)
setMethod("geometry", "SpatialLinesDataFrame",
function(obj) as(obj, "SpatialLines"))
length.SpatialLinesDataFrame = function(x) { length(x@lines) }
|
Cal_grpWTs <-
function(P, Q, G, R, gmax, PQ.grps)
{
PP=P
QQ=Q
GG=G
RR=R
ggmax=gmax
PQgrps=as.vector(t(PQ.grps))
grpWTs=rep(0, GG*RR)
Gcounts=rep(0,GG)
Rcounts=rep(0,RR)
junk=.C("Cal_grpWTs",
as.integer(PP),
as.integer(QQ),
as.integer(GG),
as.integer(RR),
as.integer(ggmax),
as.integer(PQgrps),
grpWTs=as.double(grpWTs),
as.integer(Gcounts),
as.integer(Rcounts)
)
grpWTs.result=matrix(junk$grpWTs, nrow=GG, byrow=T)
return(list(grpWTs=grpWTs.result))
}
|
mtcars
women
library('knitr')
knitr::kable(head(mtcars))
|
is.variable <- function(x) inherits(x, "CrunchVariable")
is.Numeric <- function(x) inherits(x, "NumericVariable")
is.Categorical <- function(x) inherits(x, "CategoricalVariable")
is.Text <- function(x) inherits(x, "TextVariable")
is.Datetime <- function(x) inherits(x, "DatetimeVariable")
is.Multiple <- function(x) inherits(x, "MultipleResponseVariable")
is.MR <- is.Multiple
is.MultipleResponse <- is.Multiple
is.CA <- function(x) {
return(identical(class(x), class(CategoricalArrayVariable())))
}
is.CategoricalArray <- is.CA
is.NumericArray <- function(x) inherits(x, "NumericArrayVariable")
is.Array <- function(x) inherits(x, "ArrayVariable")
has.categories <- function(x) {
if (!is.character(x)) {
x <- type(x)
}
return(x %in% c("categorical_array", "multiple_response", "categorical"))
}
is.subvariable <- function(x) {
grepl("subvariables", self(x))
}
CASTABLE_TYPES <- c("numeric", "text", "categorical")
NULL
setMethod("type", "CrunchVariable", function(x) type(tuple(x)))
setMethod("type", "VariableEntity", function(x) x@body$type)
setMethod("types", "list", function(x) {
vapply(x, type, character(1), USE.NAMES = FALSE)
})
castVariable <- function(x, value) {
if (!(type(x) %in% CASTABLE_TYPES)) {
halt("Cannot change the type of a ", class(x), " by type<-")
}
if (!(value %in% CASTABLE_TYPES)) {
halt(
dQuote(value), " is not a Crunch variable type that can be assigned.",
" Valid types are ", serialPaste(dQuote(CASTABLE_TYPES))
)
}
if (type(x) != value) {
crPOST(shojiURL(x, "views", "cast"), body = toJSON(list(cast_as = value)))
x <- refresh(x)
}
invisible(x)
}
setMethod("type<-", "CrunchVariable", castVariable)
|
plot.Predict.Treat.T0T1.ContCont <- function(x, Xlab, Main, alpha=0.05, Cex.Legend=1, ...){
Object <- x
if (missing(Xlab)) {Xlab <- expression(paste(Delta, "T"[j], "|S"[j]))}
if (missing(Main)) {Main=" "}
min_T0T1 <- min(Object$T0T1)
max_T0T1 <- max(Object$T0T1)
crit_val <- qnorm(c(alpha/2), mean=0, sd=1, lower.tail=FALSE)
if (class(Object)=="Predict.Treat.T0T1.ContCont") {
user_req_SD_Delta.T_givenS <- sqrt(Object$Var_Delta.T_S)
Pred_T <- Object$Pred_T
x <- ((seq(-4,4,length=1000)*user_req_SD_Delta.T_givenS))*1 + Pred_T
hx <- dnorm(x, Pred_T, user_req_SD_Delta.T_givenS)
plot(x=x, y=(hx*crit_val), type="l", xlab=Xlab, ylab="", main=Main, lwd=2, col=2, ...)
abline(v = Pred_T, lty=2)
SD_hier <- user_req_SD_Delta.T_givenS
col_hier <- 2
x1 <- Pred_T - (SD_hier * crit_val)
x2 <- Pred_T + (SD_hier * crit_val)
sam <- cbind(x, hx)
y1 <- sam[,2][which.min(abs(sam[,1]-x1))]
y2 <- sam[,2][which.min(abs(sam[,1]-x2))]
segments(x0 = x1, y0 = 0, x1 = x1, y1 = y1, col=col_hier, lwd=2, lty=2)
segments(x0 = x2, y0 = 0, x1 = x2, y1 = y2, col=col_hier, lwd=2, lty=2)
legend("topright", inset=.05, legend=c(bquote(paste(rho[T0T1], "="~.(Object$T0T1))), expression()),
lwd=2, col=c(2), cex=Cex.Legend)
}
}
|
pampe <-
function(time.pretr, time.tr, treated, controls = "All", data, nbest=1, nvmax=length(controls), select="AICc", placebos=FALSE){
intercept=TRUE
if (length(treated) != 1){
stop("You can only have one treated unit.")
}
if (length(c(time.pretr, time.tr)) > nrow(data)){
stop("Treatment period has exceeded the data.")
}
if (length(which(is.na(data)))>0){
stop("There are missing values in the data. Pampe does not allow for unbalanced data at this point.")
}
if (class(treated) == "numeric"){
treated <- colnames(data)[treated]
}
if(is.null(rownames(data))){
rownames(data) <- 1:nrow(data)
}
if(is.null(colnames(data))){
colnames(data) <- 1:ncol(data)
}
if(controls[1]!="All"){
controls <- which(colnames(data) %in% controls)
}
if (controls[1]=="All"){
controls <- -which(colnames(data)==treated)
if (nvmax==length(controls)){
if (ncol(data[,controls])+3>=length(time.pretr)){
nvmax <- length(time.pretr)-4
}
if (ncol(data[,controls])+3<length(time.pretr)){
nvmax <- ncol(data[,controls])
}
}
}
if (length(controls)!=1){
if (class(controls)=="character"){
controls <- which(colnames(data) %in% controls)
}
}
if (class(time.pretr)=="character"){
}
if (class(time.tr)=="character"){
}
if (nvmax+3>=length(time.pretr)){
stop("You have selected too many controls. Please change the 'nvmax' setting.")
}
treated.original <- treated
possible.ctrls.all <- colnames(data)[controls]
select.models <- invisible(regsubsets(x=data[time.pretr, controls], y=data[time.pretr, c(treated)], names=colnames(data[,controls]), intercept=intercept, nbest=nbest, nvmax=nvmax, matrix.logical=TRUE, really.big=TRUE))
select.criteria <- invisible(regsubsets2aic(x=data[time.pretr, controls], y=data[time.pretr, c(treated)], z=select.models))
controls <- unlist(strsplit(select.criteria[which.min(select.criteria[,select]),'model'], split=" + ", fixed=TRUE))
fmla <- paste(paste("`", treated, "`", sep=""), " ~ ", paste(paste("`", controls, "`", sep=""), collapse= "+"))
ols <- invisible(lm(fmla, data=data[time.pretr,]))
results <- (cbind(matrix(data=1,ncol=1,nrow=nrow(data)), as.matrix(subset(data, select=controls))) %*% as.matrix(ols$coefficients))[c(time.pretr, time.tr),]
tr.effect <- matrix(NA, nrow=length(c(time.pretr, time.tr)), ncol=1)
tr.effect[,1] <- as.matrix(data[,treated])[c(time.pretr, time.tr),]-results
results <- cbind(as.matrix(data[,treated])[c(time.pretr, time.tr),], results)
colnames(results) <- c("Actual", "Counterfactual")
mspe <- matrix(NA, ncol=1, nrow=1)
mspe[1,1] <- sum((tr.effect[(time.pretr-min(time.pretr)+1),1])^2)
controls.estim <- controls
tr.effect1 <- tr.effect
mspe1 <- mspe
if (("All" %in% placebos)==TRUE | ("Both" %in% placebos)==TRUE){
placebos <- c("controls", "time")}
if (("controls" %in% placebos)==TRUE) {
tr.effect <- cbind(tr.effect1, matrix(NA, nrow=length(c(time.pretr, time.tr)), ncol=(length(possible.ctrls.all))))
colnames(tr.effect) <- c(treated, possible.ctrls.all)
rownames(tr.effect) <- rownames(data)[c(time.pretr, time.tr)]
mspe <- cbind(mspe1, matrix(NA, ncol=(length(possible.ctrls.all)), nrow=1))
colnames(mspe) <- c(treated, possible.ctrls.all)
rownames(mspe) <- 'mspe'
placebo.r2 <- vector()
for(i in 1:(length(possible.ctrls.all))) {
treated <- possible.ctrls.all[i]
possible.ctrls <- possible.ctrls.all[-i]
select.models <- regsubsets(x=data[time.pretr, possible.ctrls], y=data[time.pretr, treated], names=colnames(data[,possible.ctrls]), intercept=intercept, nbest=nbest, nvmax=nvmax, matrix.logical=TRUE, really.big=TRUE)
select.criteria <- regsubsets2aic(x=data[time.pretr, possible.ctrls], y=data[time.pretr, treated], z=select.models)
controls <- unlist(strsplit(select.criteria[which.min(select.criteria[,select]),'model'], split=" + ", fixed=TRUE))
fmla <- paste(paste("`", treated, "`", sep=""), " ~ ", paste(paste("`", controls, "`", sep=""), collapse= "+"))
temp.placebo <- lm(fmla, data=data[time.pretr,])
placebo.r2[i] <- summary(temp.placebo)$r.squared
tr.effect[,(i+1)] <- as.matrix(data[,treated])[c(time.pretr, time.tr),]-(cbind(matrix(data=1,ncol=1,nrow=nrow(data)), as.matrix(subset(data, select=controls))) %*% as.matrix(temp.placebo$coefficients))[c(time.pretr, time.tr),]
}
for(i in 1:length(possible.ctrls.all)) {
mspe[1,(i+1)] <- sum(tr.effect[(time.pretr-min(time.pretr)+1),i+1]^2)
}
tr.effect.ctrl <- tr.effect
mspe.ctrl <- mspe
}
if (("time" %in% placebos)==TRUE) {
time.pretr.original <- time.pretr
time.tr.original <- time.tr
nvmax.user <- nvmax
placebo.r2 <- vector()
time.reassign <- ceiling(mean(time.pretr)):(max(time.pretr)-1)
possible.ctrls <- possible.ctrls.all
treated <- treated.original
tr.effect <- cbind(tr.effect1, matrix(NA, nrow=length(c(time.pretr, time.tr)), ncol=(length(time.reassign))))
colnames(tr.effect) <- c(rownames(data)[time.tr[1]], rownames(data)[time.reassign+1])
rownames(tr.effect) <- rownames(data)[c(time.pretr, time.tr)]
mspe <- cbind(mspe1, matrix(NA, ncol=(length(time.reassign)), nrow=1))
colnames(mspe) <- c(rownames(data)[time.tr[1]], rownames(data)[time.reassign+1])
rownames(mspe) <- 'mspe'
for(i in 1:length(time.reassign)) {
time.pretr <- time.pretr[1]:time.reassign[i]
time.tr <- (time.reassign[i]+1):time.tr[length(time.tr)]
if (length(possible.ctrls)+3>=length(time.pretr)){
nvmax = length(time.pretr) - 3
}
select.models <- regsubsets(x=data[time.pretr, possible.ctrls], y=data[time.pretr, treated], names=colnames(data[,possible.ctrls]), intercept=intercept, nbest=nbest, nvmax=nvmax, matrix.logical=TRUE, really.big=TRUE)
select.criteria <- regsubsets2aic(x=data[time.pretr, possible.ctrls], y=data[time.pretr, treated], z=select.models)
controls <- unlist(strsplit(select.criteria[which.min(select.criteria[,select]),'model'], split=" + ", fixed=TRUE))
fmla <- paste(paste("`", treated, "`", sep=""), " ~ ", paste(paste("`", controls, "`", sep=""), collapse= "+"))
temp.placebo <- lm(fmla, data=data[time.pretr,])
placebo.r2[i] <- summary(temp.placebo)$r.squared
tr.effect[,(i+1)] <- as.matrix(data[,treated])[c(time.pretr, time.tr),]-(cbind(matrix(data=1,ncol=1,nrow=nrow(data)), as.matrix(subset(data, select=controls))) %*% as.matrix(temp.placebo$coefficients))[c(time.pretr, time.tr),]
nvmax = nvmax.user
time.tr <- time.tr.original
time.pretr <- time.pretr.original
}
for(i in 1:length(time.reassign)) {
mspe[1,(i+1)] <- sum(tr.effect[(time.pretr-min(time.pretr)+1),i+1]^2)
}
tr.effect.time <- tr.effect
mspe.time <- mspe
}
if (FALSE %in% placebos){
result <- list(controls=controls, model=ols, counterfactual=results, data=data)
class(result) <- "pampe"
return(result) }
if (("controls" %in% placebos)==TRUE&length(placebos)==1) {
result <-list(controls=controls.estim, model=ols, counterfactual=results,placebo.ctrl=list(mspe=mspe.ctrl, tr.effect=tr.effect.ctrl), data=data)
class(result) <- "pampe"
return(result)
}
if (("time" %in% placebos)==TRUE&length(placebos)==1) {
result <- list(controls=controls.estim, model=ols, counterfactual=results,placebo.time=list(mspe=mspe.time, tr.effect=tr.effect.time), data=data)
class(result) <- "pampe"
return(result)
}
if (length(placebos)==2) {
result <- list(controls=controls.estim, model=ols, counterfactual=results,placebo.ctrl=list(mspe=mspe.ctrl, tr.effect=tr.effect.ctrl), placebo.time=list(mspe=mspe.time, tr.effect=tr.effect.time), data=data)
class(result) <- "pampe"
return(result)}
}
|
test_that("orphanMetabolites function: output class is wrong", {
expect_true(is.vector(
orphanMetabolites(reactionList = "2 A[c] + 3 B[c] => 5 D[c]", actingAs = "product")
))
expect_true(is.vector(
orphanMetabolites(reactionList = "2 5-A[c] + 3 B[c] <=> 5 3D[c]", actingAs = "product")
))
expect_true(is.vector(
orphanMetabolites(reactionList = "2 A[c] + 3 B[c] => 5 D[c]", actingAs = "reactant")
))
expect_true(is.vector(
orphanMetabolites(reactionList = "2 5-A[c] + 3 B[c] <=> 5 3D[c]", actingAs = "reactant")
))
})
test_that("orphanProducts function: output value is wrong", {
expect_equal(
orphanMetabolites(reactionList = "2 A[c] + 3 B[c] => 5 D[c]", actingAs = "product"),
c("D[c]")
)
expect_equivalent(
orphanMetabolites("2 5-A[c] + 3 B[c] <=> 5 3D[c]", actingAs = "product"),
c("3D[c]", "5-A[c]", "B[c]")
)
expect_equal(
orphanMetabolites(reactionList = "2 A[c] + 3 B[c] => 5 D[c]", actingAs = "reactant"),
c("A[c]", "B[c]")
)
expect_equivalent(
orphanMetabolites(reactionList = "2 5-A[c] + 3 B[c] <=> 5 3D[c]", actingAs = "reactant"),
c("3D[c]", "5-A[c]", "B[c]")
)
})
|
set.seed(123)
theta <- c(0, 5, 3.5)
N <- 100
T <- 1
x <- 10
Z <- rnorm(N)
Dt <- 1/N
A <- theta[3]*sqrt(Dt)*Z
P <- (1-theta[2]*Dt)^(0:(N-1))
X0 <- x
X <- sapply(2:(N+1), function(x) X0*(1-theta[2]*Dt)^(x-1) +
A[1:(x-1)] %*% P[(x-1):1])
Y <- ts(c(X0,X),start=0, deltat=1/N)
plot(Y)
|
render_plot <- function(Object, Class, Stock=NULL, RMD=NULL, nsamp=3, nsim=200, nyears=50,
proyears=28, output_file=NULL, output_dir=getwd(),
quiet=TRUE, tabs=TRUE, title=NULL, date=NULL,
plotPars=NULL, open=TRUE, dev=FALSE, parallel=TRUE) {
SampCpars <- list()
if (!requireNamespace("knitr", quietly = TRUE)) {
stop("Package \"knitr\" needed for this function to work. Please install it.",
call. = FALSE)
}
if (!requireNamespace("rmarkdown", quietly = TRUE)) {
stop("Package \"rmarkdown\" needed for this function to work. Please install it.",
call. = FALSE)
}
if (is.null(plotPars)) plotPars <- list(breaks=10, col="darkgray", axes=FALSE,
cex.main=1, lwd=2)
if (class(Object) == "OM") {
nsim <- Object@nsim
nyears <- Object@nyears
proyears <- Object@proyears
SampCpars <- if(length(Object@cpars)>0) SampCpars <- SampleCpars(Object@cpars, nsim, silent=TRUE)
set.seed(Object@seed)
Stock <- SubOM(Object, "Stock")
}
if (Class == "Stock") {
if (is.null(title)) title <- "Stock Object Plots"
Pars <- list()
Pars$Stock <- SampleStockPars(Object, nsim, nyears, proyears, SampCpars,
msg=FALSE)
name <- Object@Name
name <- gsub(' ', '_', name)
name <- gsub(':', '_', name)
Pars$Name <- gsub(" ", "_", name)
} else if (Class == "Fleet") {
if (is.null(title)) title <- "Fleet Object Plots"
if (class(Stock)!="Stock")
stop("Must provide object of class 'Stock'", call. = FALSE)
StockPars <- SampleStockPars(Stock, nsim, nyears, proyears, SampCpars,
msg=FALSE)
FleetPars <- SampleFleetPars(Object, StockPars, nsim, nyears, proyears,
SampCpars, msg=FALSE)
Pars <- list()
Pars$Stock <- StockPars
Pars$Fleet <- FleetPars
Pars$Name <- gsub(" ", "_", Object@Name)
Pars$CurrentYr <- Object@CurrentYr
Pars$MPA <- Object@MPA
} else if (Class == "Obs") {
if (is.null(title)) title <- "Obs Object Plots"
ObsPars <- SampleObsPars(Object, nsim, cpars=SampCpars, nyears=nyears, proyears=proyears)
BMSY_B0bias <- array(rlnorm(nsim,
mconv(1, Object@BMSY_B0biascv), sdconv(1, Object@BMSY_B0biascv)),
dim = c(nsim))
ObsPars$BMSY_B0bias <- BMSY_B0bias
Pars <- list()
Pars$Obs <- ObsPars
} else if (Class == "Imp") {
if (is.null(title)) title <- "Imp Object Plots"
ImpPars <- SampleImpPars(Object, nsim, cpars=SampCpars, nyears=nyears, proyears=proyears)
Pars <- list()
Pars$Imp <- ImpPars
} else if (Class == "OM") {
if (is.null(title)) title <- "OM Object Plots"
message("Sampling Stock, Fleet, Obs, and Imp parameters")
if (!parallel) dopar <- FALSE
if (nsim>=48 & parallel) dopar <- TRUE
if (nsim<48& parallel) dopar <- FALSE
message("Running Historical Simulations")
Hist <- Simulate(Object, silent=TRUE, parallel = dopar)
Pars <- list(Stock=Hist@SampPars$Stock,
Fleet=Hist@SampPars$Fleet,
Obs=Hist@SampPars$Obs,
Imp=Hist@SampPars$Imp)
Pars$Hist <- Hist
Pars$Name <- "OM"
Pars$MPA <- Object@MPA
Pars$CurrentYr <- Object@CurrentYr
} else if (Class == "Hist") {
Pars <- list()
Pars$Hist <- Object
Pars$CurrentYr <- Object@OMPars$CurrentYr[1]
nyears <- length(Object@Data@Year)
if (is.null(title)) title <- "Historical Simulations"
} else {
stop("Object must be class 'Stock', 'Fleet', 'Obs', or 'Imp'", call.=FALSE)
}
if (Class !="Hist" & Class !="OM") {
name <- Object@Name
name <- gsub(' ', '_', name)
name <- gsub(':', '_', name)
Pars$Name <- gsub(" ", "_", name)
}
its <- sample(1:nsim, nsamp)
Params <- list(
title = title,
Pars = Pars,
plotPars=plotPars,
tabs = tabs,
its = its,
nyears=nyears,
proyears=proyears,
date=NULL
)
outname <- paste0("_", RMD, ".html")
if (Class !="Hist" & Class !="OM") {
if (is.null(output_file)) output_file <- paste0(Pars$Name, outname)
} else {
if (is.null(output_file)) output_file <- paste0(RMD, ".html")
}
message("Rendering HTML file")
RMD <- paste0(RMD, ".Rmd")
if (dev) {
input <- file.path('inst/Rmd', Class, RMD)
} else {
input <- file.path(system.file(package = 'MSEtool'),'Rmd', Class, RMD)
}
knitr::knit_meta(class=NULL, clean = TRUE)
rend <- try(rmarkdown::render(input, params=Params,
output_file=output_file,
output_dir=output_dir,
quiet=quiet), silent=TRUE)
if (class(rend) == "try-error") {
print(rend)
} else {
message("Rendered ", output_file, " in ", output_dir)
if (open) utils::browseURL(file.path(output_dir, output_file))
}
}
plot.character <- function(x, Object, ...) {
plot.pars(x, Object, ...)
}
plot.pars <- function(x, Object, Stock=NULL, nsamp=3, nsim=200, nyears=50,
proyears=28, output_file=NULL, output_dir=getwd(),
quiet=TRUE, tabs=TRUE, title=NULL, date=NULL,
plotPars =NULL, html=FALSE, open=TRUE, dev=FALSE, ...) {
StockDF <- data.frame(chr=c("M",
"Growth",
"Maturity",
"Recruitment",
"Spatial",
"Depletion"),
Class="Stock",
stringsAsFactors = FALSE)
FleetDF <- data.frame(chr=c("Effort",
"Catchability",
"MPA",
"Selectivity"),
Class="Fleet",
stringsAsFactors = FALSE)
DF <- dplyr::bind_rows(StockDF, FleetDF)
if (!x %in% DF[,1])
stop("Invalid argument. Valid arguments are: ", paste0(DF[,1], sep=" "), call.=FALSE)
Class <- DF$Class[match(x, DF[,1])]
if (class(Object) !="OM" & class(Object) != Class & class(Object)!="Hist")
stop("Incorrect class object for this parameter", call.=FALSE)
if (x == "M") x <- "NaturalMortality"
if (!html) {
fun <- paste0('plot.', x)
if (Class=='Stock')
do.call(fun, list(Object=Object, nsamp=nsamp, plotPars=plotPars, ...))
if (Class=='Fleet')
do.call(fun, list(Object=Object, Stock=Stock, nsamp=nsamp, plotPars=plotPars, ...))
} else {
render_plot(Object=Object, Class=Class, Stock=Stock, RMD=x, nsamp=nsamp, nsim=nsim,
nyears=nyears, proyears=proyears,
output_file=output_file, output_dir=output_dir, quiet=quiet,
tabs=tabs, title=title, date=date,
plotPars=plotPars, open=open, dev=dev)
}
}
plot.Stock <- function(x, nsamp=3, nsim=200, nyears=50,
proyears=28, output_file=NULL, output_dir=getwd(),
quiet=TRUE, tabs=TRUE, title=NULL, date=NULL,
plotPars =NULL, open=TRUE, dev=FALSE, ...){
render_plot(Object=x, Class="Stock", RMD='Stock', nsamp=nsamp, nsim=nsim,
nyears=nyears, proyears=proyears,
output_file=output_file, output_dir=output_dir, quiet=quiet,
tabs=tabs, title=title, date=date,
plotPars=plotPars, open=open, dev=dev)
}
plot.Fleet <- function(x, Stock=NULL, nsamp=3, nsim=200, nyears=50,
proyears=28, output_file=NULL, output_dir=getwd(),
quiet=TRUE, tabs=TRUE, title=NULL, date=NULL,
plotPars =NULL, open=TRUE, dev=FALSE, ...){
if (class(Stock) !="Stock" & class(x) !="OM")
stop("Must provide object of class 'Stock'")
render_plot(Object=x, Class="Fleet", Stock=Stock, RMD='Fleet', nsamp=nsamp, nsim=nsim,
nyears=nyears, proyears=proyears,
output_file=output_file, output_dir=output_dir, quiet=quiet,
tabs=tabs, title=title, date=date,
plotPars=plotPars, open=open, dev=dev)
}
plot.Obs <- function(x, nsamp=3, nsim=200, nyears=50,
proyears=28, output_file=NULL, output_dir=getwd(),
quiet=TRUE, tabs=TRUE, title=NULL, date=NULL,
plotPars =NULL, open=TRUE, dev=FALSE, ...){
render_plot(Object=x, Class="Obs", Stock=NULL, RMD='Obs', nsamp=nsamp, nsim=nsim,
nyears=nyears, proyears=proyears,
output_file=output_file, output_dir=output_dir, quiet=quiet,
tabs=tabs, title=title, date=date,
plotPars=plotPars, open=open, dev=dev)
}
plot.Imp <- function(x, nsamp=3, nsim=200, nyears=50,
proyears=28, output_file=NULL, output_dir=getwd(),
quiet=TRUE, tabs=TRUE, title=NULL, date=NULL,
plotPars =NULL, open=TRUE, dev=FALSE, ...){
render_plot(Object=x, Class="Imp", Stock=NULL, RMD='Imp', nsamp=nsamp, nsim=nsim,
nyears=nyears, proyears=proyears,
output_file=output_file, output_dir=output_dir, quiet=quiet,
tabs=tabs, title=title, date=date,
plotPars=plotPars, open=open, dev=dev)
}
plot.Hist <- function(x, nsamp=3, nsim=200, nyears=50,
proyears=28, output_file=NULL, output_dir=getwd(),
quiet=TRUE, tabs=TRUE, title=NULL, date=NULL,
plotPars =NULL, open=TRUE, dev=FALSE, ...) {
render_plot(Object=x, Class="Hist", Stock=NULL, RMD='Hist', nsamp=nsamp, nsim=nsim,
nyears=nyears, proyears=proyears,
output_file=output_file, output_dir=output_dir, quiet=quiet,
tabs=tabs, title=title, date=date,
plotPars=plotPars, open=open, dev=dev)
}
plot.OM <- function(x, nsamp=3, nsim=200, nyears=50,
proyears=28, output_file=NULL, output_dir=getwd(),
quiet=TRUE, tabs=TRUE, title=NULL, date=NULL,
plotPars =NULL, open=TRUE, dev=FALSE, ...) {
render_plot(Object=x, Class="OM", Stock=NULL, RMD='OM', nsamp=nsamp, nsim=nsim,
nyears=nyears, proyears=proyears,
output_file=output_file, output_dir=output_dir, quiet=quiet,
tabs=tabs, title=title, date=date,
plotPars=plotPars, open=open, dev=dev)
}
hist2 <- function(x, col, axes=FALSE, main="", breaks=10,cex.main=1) {
if (mean(x) == x[1]) {
plot(mean(x)*c(0.9,1.1),c(0,1000),col="white",axes=F,main=main,xlab="",ylab="")
axis(1)
abline(v=mean(x),col=col,lwd=2)
} else {
col="dark grey"
hist(x, border='white',xlab="",col=col,axes=axes,main=main,breaks=breaks, ylab="")
}
}
|
LOCAL <- identical(Sys.getenv("LOCAL"), "TRUE")
knitr::opts_chunk$set(purl = LOCAL)
NOT_CRAN <- identical(tolower(Sys.getenv("NOT_CRAN")), "TRUE")
knitr::opts_chunk$set(purl = NOT_CRAN)
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
SAVE_GRAPHS=FALSE
|
"isMicrosoftRClient" <- function()
{
returnVal <- FALSE
if (identical(.Platform$OS.type, "windows")) {
clientRegEntry <- try(utils::readRegistry(file.path("SOFTWARE", "Microsoft", "R Client", fsep="\\"), "HLM"),
silent=TRUE)
if (!inherits(clientRegEntry, "try-error"))
{
returnVal <- TRUE
}
}
returnVal
}
|
word_document <- function(toc = FALSE,
toc_depth = 3,
number_sections = FALSE,
fig_width = 5,
fig_height = 4,
fig_caption = TRUE,
df_print = "default",
highlight = "default",
reference_docx = "default",
keep_md = FALSE,
md_extensions = NULL,
pandoc_args = NULL) {
knitr <- knitr_options(
opts_chunk = list(dev = 'png',
dpi = 96,
fig.width = fig_width,
fig.height = fig_height)
)
args <- c()
args <- c(args, pandoc_toc_args(toc, toc_depth))
lua_filters <- pkg_file_lua("pagebreak.lua")
if (number_sections) {
if (pandoc_available("2.10.1")) {
args <- c(args, "--number-sections")
} else {
lua_filters <- c(lua_filters, pkg_file_lua("number-sections.lua"))
}
}
if (!is.null(highlight))
highlight <- match.arg(highlight, highlighters())
args <- c(args, pandoc_highlight_args(highlight))
args <- c(args, reference_doc_args("docx", reference_docx))
args <- c(args, pandoc_args)
saved_files_dir <- NULL
pre_processor <- function(metadata, input_file, runtime, knit_meta, files_dir, output_dir) {
saved_files_dir <<- files_dir
NULL
}
intermediates_generator <- function(...) {
reference_intermediates_generator(saved_files_dir, ..., reference_docx)
}
output_format(
knitr = knitr,
pandoc = pandoc_options(to = "docx",
from = from_rmarkdown(fig_caption, md_extensions),
args = args,
lua_filters = lua_filters),
keep_md = keep_md,
df_print = df_print,
pre_processor = pre_processor,
intermediates_generator = intermediates_generator
)
}
reference_doc_args <- function(type, doc) {
if (is.null(doc) || identical(doc, "default")) return()
c(paste0("--reference-", if (pandoc2.0()) "doc" else {
match.arg(type, c("docx", "odt", "doc"))
}), pandoc_path_arg(doc))
}
|
make_tapnet <- function(tree_low,
tree_high,
networks,
abun_low = NULL,
abun_high = NULL,
traits_low = NULL,
traits_high = NULL,
npems_lat = NULL,
use.all.pems=FALSE
) {
if (! (("phylo" %in% class(tree_low)) | "phylo" %in% class(tree_high) )) {
stop("'tree_low' and 'tree_high' must be of class 'phylo'.
See the documentation of package 'ape' on how to convert phylogenetic trees to this format.")
}
if (!is.list(networks)) networks <- list(networks)
mat_check <- sapply(networks, is.matrix)
if (any(mat_check == FALSE)) stop("All elements of 'networks' must be matrices.")
for (i in 1:length(networks)) {
if (is.null(rownames(networks[[i]])) | is.null(colnames(networks[[i]]))) {
stop("All interaction networks must have species identities as row and column names.")
}
}
spec_lower <- sort(unique(unlist(lapply(networks, rownames))))
spec_higher <- sort(unique(unlist(lapply(networks, colnames))))
if (!all(spec_lower %in% tree_low$tip.label) | !all(spec_higher %in% tree_high$tip.label)) {
stop("All species in the interaction networks must appear in their respective phylogeny.
Please make sure that species names match.")
}
for (i in 1:length(networks)) {
networks[[i]] <- networks[[i]][order(rownames(networks[[i]])), order(colnames(networks[[i]]))]
}
if (!is.null(abun_low)) {
if (!is.list(abun_low)) abun_low <- list(abun_low)
num_check <- sapply(abun_low, is.numeric)
if (any(num_check == F)) stop("All elements of 'abun_low' must be numeric vectors.")
if (length(networks) != length(abun_low)) stop("Some networks have missing lower level abundances.")
for (i in 1:length(networks)) {
abun_low[[i]] <- abun_low[[i]][order(names(abun_low[[i]]))]
if (!all(rownames(networks[[i]]) == names(abun_low[[i]]))) stop("Some lower trophic level species have missing abundances.")
}
} else {
warning("No abundances for lower trophic level were provided. Using marginal totals instead.")
}
if (!is.null(abun_high)) {
if (!is.list(abun_high)) abun_high <- list(abun_high)
num_check <- sapply(abun_high, is.numeric)
if (any(num_check == F)) stop("All elements of 'abun_high' must be numeric vectors.")
if (length(networks) != length(abun_high)) stop("Some networks have missing higher level abundances.")
for (i in 1:length(networks)) {
abun_high[[i]] <- abun_high[[i]][order(names(abun_high[[i]]))]
if (!all(colnames(networks[[i]]) == names(abun_high[[i]]))) stop("Some higher trophic level species have missing abundances.")
}
} else {
warning("No abundances for higher trophic level were provided. Using marginal totals instead.")
}
if (!is.null(traits_low) | !is.null(traits_high)) {
if (is.null(traits_low) | is.null(traits_high)) {
stop("Trait data must be supplied for both trophic levels.")
}
if (!is.matrix(traits_low) | !is.matrix(traits_high)) {
stop("'traits_low' and 'traits_high' must be matrices.")
}
if (ncol(traits_low) != ncol(traits_high)) {
stop("Numbers of traits of lower and higher trophic level must be equal.")
}
if (!all(spec_lower %in% rownames(traits_low))) stop("Some lower level species have missing trait data.")
if (!all(spec_higher %in% rownames(traits_high))) stop("Some higher level species have missing trait data.")
}
trees <- list(low = tree_low, high = tree_high)
traits_all <- list(low = traits_low, high = traits_high)
if (is.null(abun_low)) {
abun_low <- lapply(networks, rowSums)
}
if (is.null(abun_high)) {
abun_high <- lapply(networks, colSums)
}
webs <- list()
for (i in 1:length(networks)) {
webs[[i]] <- list()
webs[[i]]$web <- networks[[i]]
if (use.all.pems == FALSE){
pems_web_low <- select_relevant_pems(tree_low, rownames(networks[[i]]))
} else {
pems_web_low <- pems_from_tree(tree_low)
}
pems_web_low <- pems_web_low[order(rownames(pems_web_low)),]
if (use.all.pems == FALSE){
pems_web_high <- select_relevant_pems(tree_high, colnames(networks[[i]]))
} else {
pems_web_high <- pems_from_tree(tree_high)
}
pems_web_high <- pems_web_high[order(rownames(pems_web_high)),]
if (!is.null(npems_lat)) {
if (npems_lat > ncol(pems_web_low)) {
warning(paste("For web no.", i, ", only", ncol(pems_web_low) , "PEMs will be used for the lower trophic level latent trait,\n since this network only has", nrow(webs[[i]]$web), "lower trophic level species."))
} else {
pems_web_low <- pems_web_low[, 1:npems_lat, drop = F]
}
if (npems_lat > ncol(pems_web_high)) {
warning(paste("For web no.", i, ", only", ncol(pems_web_high) , "PEMs will be used for the higher trophic level latent trait,\n since this network only has", ncol(webs[[i]]$web), "higher trophic level species."))
} else {
pems_web_high <- pems_web_high[, 1:npems_lat, drop = F]
}
}
webs[[i]]$pems <- list(low = pems_web_low, high = pems_web_high)
webs[[i]]$abuns <- list(low = abun_low[[i]], high = abun_high[[i]])
}
if (is.null(traits_low)) {
for (i in 1:length(networks)) webs[[i]]$traits <- NULL
} else {
for (i in 1:length(networks)) {
traits_web_low <- traits_low[which(rownames(traits_low) %in% rownames(networks[[i]])), , drop = F]
traits_web_low <- traits_web_low[order(rownames(traits_web_low)), , drop = F]
traits_web_high <- traits_high[which(rownames(traits_high) %in% colnames(networks[[i]])), , drop = F]
traits_web_high <- traits_web_high[order(rownames(traits_web_high)), , drop = F]
webs[[i]]$traits <- list(low = traits_web_low, high = traits_web_high)
}
}
out <- list(trees = trees, traits_all = traits_all, networks = webs)
class(out) <- "tapnet"
return(out)
}
|
Fpa <- function(Flim, sigmaF)
{
Flim * exp(-1.645*sigmaF)
}
|
setMethod("show",
signature = "powerLongSurv",
definition =
function(object){
cat(object@title,"\n", object@subtitle,"\n")
cat("Covariance matrix SigmaTheta :\n")
print(object@SigmaTheta)
cat("Measurement times: ", "t[1:",length(object@t),"]=", object@t, "\n",
"Subject proportions: ", "p[1:",length(object@p),"]=",object@p, "\n",
"Number of subjects (N): ",object@N, "\n",
"Number of events (nevents): ",object@nevents, "\n",
"Percent censored (censr): ", object@censr, "\n",
"Median survival time (tmedian): ", object@tmedian, "\n",
"Mean follow-up time (meantf): ", object@meantf, "\n",
"Trajectory effect (beta): ", object@beta, "\n",
"Type I Error (alpha): ", object@alpha, "\n",
"Power (power): ", object@power, "\n")
}
)
|
convertgen <- function(input_geno, type = c("hmp1", "hmp2", "num"),
missingrate = 0.05, impute = TRUE) {
if (type == "num") {
genotype <- as.matrix(input_geno)
gen_missingrate <- apply(genotype, 1, function(x) {
rate <- length(which(is.na(x)))/ncol(genotype)
return(rate)
})
num_filter <- which(gen_missingrate <= missingrate)
gen_filter <- genotype[num_filter, ]
gen <- apply(gen_filter, 2, function(x) {
x1 <- as.numeric(x)
return(x1)
})
if (impute) {
gene1 <- apply(gen, 1, function(x) {
x[which(is.na(x))] <- mean(x, na.rm = TRUE)
return(x)
})
} else {
gene1 <- t(gen)
}
}
if (type != "num") {
input_geno[input_geno == "N"] = NA
input_geno[input_geno == "NN"] = NA
genotype <- input_geno[, -c(1:11)]
gen_missingrate <- apply(genotype, 1, function(x) {
rate <- length(which(is.na(x)))/ncol(genotype)
return(rate)
})
num_filter <- which(gen_missingrate <= missingrate)
gen_filter <- genotype[num_filter, ]
map <- input_geno[num_filter, c(1:4)]
x1 <- substr(map[, 2], 1, 1)
x2 <- substr(map[, 2], 3, 3)
aa <- paste(x1, x1, sep = "")
bb <- paste(x2, x2, sep = "")
cc <- paste(x1, x2, sep = "")
if (type == "hmp1") {
gen <- apply(gen_filter, 2, function(x) {
x[x == x1] <- 1
x[x == x2] <- -1
x[x %in% c("R", "Y", "S", "W", "K", "M")] <- 0
x1 <- as.numeric(x)
return(x1)
})
}
if (type == "hmp2") {
gen <- apply(gen_filter, 2, function(x) {
x[x == aa] <- 1
x[x == bb] <- -1
x[x == cc] <- 0
x1 <- as.numeric(x)
return(x1)
})
}
if (impute) {
gene1 <- apply(gen, 1, function(x) {
x[which(is.na(x))] <- mean(x, na.rm = TRUE)
return(x)
})
} else {
gene1 <- t(gen)
}
}
return(gene1)
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.