code
stringlengths 1
13.8M
|
---|
ci.RateD <-
function(x1, x2, e1, e2, cov.prob=0.95, BB.grdnum=2000, midp=T)
{if(x1*x2==0)
{lambda1=(x1+0.5)/(e1+1)
lambda2=(x2+0.5)/(e2+1)
delta=lambda2-lambda1
sigma=sqrt(lambda1/(e1+1)+lambda2/(e2+1))
}
if(x1*x2>0)
{lambda1=x1/e1
lambda2=x2/e2
delta=lambda2-lambda1
sigma=sqrt(lambda1/e1+lambda2/e2)
}
lower=min(delta-5*sigma, -1/e1-1/e2)
upper=max(delta+5*sigma, 1/e1+1/e2)
delta.grd=sort(unique(c(0, seq(lower, upper, length=BB.grdnum))))
BB.grdnum=length(delta.grd)
fit=prateD.exact(x1, x2, e1, e2, delta.grd, midp=midp)
pv1=fit$pv1
pv2=fit$pv2
for(j in 1:BB.grdnum)
pv1[BB.grdnum-j+1]=max(pv1[1:(BB.grdnum-j+1)]); pv2[j]=max(pv2[j:BB.grdnum])
lower=range(delta.grd[pv1>(1-cov.prob)/2 & pv2>(1-cov.prob)/2])[1]
upper=range(delta.grd[pv1>(1-cov.prob)/2 & pv2>(1-cov.prob)/2])[2]
est=delta.grd[abs(pv2-pv1)==min(abs(pv2-pv1))][1]
id0=(1:BB.grdnum)[delta.grd==0]
p=min(1, 2*min(pv1[id0], pv2[id0]))
status=1
if(min(delta.grd)==lower || max(delta.grd)==upper)
status=0
return(list(est=est, lower=lower, upper=upper, status=status, p=p))
}
|
library(knitr)
library(qsimulatR)
knitr::opts_chunk$set(fig.align='center',
comment='')
x <- qstate(nbits=2)
x
CatInBox <- qstate(nbits=1, basis=c("|dead>", "|alive>"))
CatInBox
CatInBox <- qstate(nbits=1, basis=c("|dead>", "|alive>"),
coefs=as.complex(c(1/sqrt(2), 1/sqrt(2))))
CatInBox
plot(x, qubitnames=c("bit1", "bit2"))
x <- qstate(nbits=2)
y <- H(1) * x
y
plot(y)
myGate <- function(bit) {
methods::new("sqgate", bit=as.integer(bit),
M=array(as.complex(c(1,0,0,-1)), dim=c(2,2)),
type="myGate")
}
z <- myGate(1) * y
z
truth.table(X, 1)
truth.table(CNOT, 2)
z <- CNOT(c(1,2)) * y
z
plot(z)
CX12 <- cqgate(bits=c(1L, 2L), gate=X(2L))
z <- CX12 * y
z
z <- SWAP(c(1,2)) * y
z
plot(z)
z <- SWAP(c(2,1)) * y
z
x <- H(1) *(H(2) * qstate(3))
x
y <- CCNOT(c(1,2,3)) * x
y
plot(y)
y <- CSWAP(c(1,2,3)) * x
y
plot(y)
myswap <- function(bits){
function(x){
CNOT(bits) * (CNOT(rev(bits)) * (CNOT(bits) * x))
}
}
truth.table(myswap, 2)
circuit <- myswap(1:2)
plot(circuit(qstate(2)))
res <- measure(y, 1)
summary(res)
plot(res$psi)
rv <- measure(y, 3, rep=1000)$value
hist(rv, freq=FALSE, main="Probability for Qubit 3")
filename <- paste0(tempdir(), "/circuit.py")
export2qiskit(y, filename=filename)
cat(readLines(filename), sep = '\n')
file.remove(filename)
|
get_dispatch <- function(obj) UseMethod("get_dispatch")
get_dispatch.dispatcher <- function(obj) obj[['dispatch']]
|
normalVaR <-
function(periodPercentReturns, probability = 0.95)
{
stopifnot(isUnivariate(periodPercentReturns))
R = periodPercentReturns
ans = mean(R) - qnorm(probability) * nVariance(R)
names(ans) = paste(probability, "normal VaR")
ans
}
normalVaRRatio <-
function(periodPercentReturns, probability = 0.95, nAssets = 1)
{
stopifnot(isUnivariate(periodPercentReturns))
R = periodPercentReturns
normalVaR = normalVaR(R, probability)
ans = normalVaR / nAssets
names(ans) = paste(probability, "normal VaR Ratio")
ans
}
normalRewardToVaR <-
function(periodPercentReturns, targetReturn = 0, probability = 0.95,
method = c("geometric", "arithmetic"),
scale = c("quarterly", "monthly", "weekly", "daily"), nAssets = 1)
{
stopifnot(isUnivariate(periodPercentReturns))
method = match.arg(method)
Scale = .scale(match.arg(scale))
R = periodPercentReturns
targetReturn = targetReturn * Scale
Return = annualisedReturn(R, method, scale) - targetReturn
Risk = normalVaRRatio(R, probability)
ans = Return / Risk
names(ans) = paste(probability, "Normal Reward to VaR")
ans
}
conditionalVaRRatio <-
function(periodPercentReturns, targetReturn = 0, probability = 0.95,
method = c("geometric", "arithmetic"),
scale = c("quarterly", "monthly", "weekly", "daily"))
{
stopifnot(isUnivariate(periodPercentReturns))
method = match.arg(method)
Scale = .scale(match.arg(scale))
R = periodPercentReturns
Return = annualisedReturn(R, method, scale) - targetReturn * Scale
Risk =
ans = Return / Risk
names(ans) = "Conditional VaR Ratio"
ans
}
conditionalSharpeRatio <-
function(periodPercentReturns, targetReturn = 0, probability = 0.95,
method = c("geometric", "arithmetic"),
scale = c("quarterly", "monthly", "weekly", "daily"))
{
stopifnot(isUnivariate(periodPercentReturns))
method = match.arg(method)
Scale = .scale(match.arg(scale))
R = periodPercentReturns
targetReturn = targetReturn * Scale
Return = annualisedReturn(R, method, scale) - targetReturn
Risk =
ans = Return / Risk
names(ans) = "Conditional Sharpe Ratio"
ans
}
modifiedVaR <-
function(periodPercentReturns, targetReturn = 0, probability = 0.95,
method = c("geometric", "arithmetic"),
scale = c("quarterly", "monthly", "weekly", "daily"))
{
stopifnot(isUnivariate(periodPercentReturns))
method = match.arg(method)
Scale = .scale(match.arg(scale))
R = periodPercentReturns
M = mean(R)
S = nSkewness(R)
KE = excessKurtosis(R)
V = nVariance(R)
zc = -qnorm(probability)
Return = annualisedReturn(R, method, scale) - targetReturn
Risk = M + V *
( zc + ((zc^2-1)/6)*S + ((zc^3-3*zc)/24)*KE - ((2*zc^3-5*zc)/36) * S^2 )
ans = Return / Risk
names(ans) = "Cornish Fischer VaR"
ans
}
modSharpeRatio <-
function(periodPercentReturns, targetReturn = 0, probability = 0.95,
method = c("geometric", "arithmetic"),
scale = c("quarterly", "monthly", "weekly", "daily"))
{
stopifnot(isUnivariate(periodPercentReturns))
method = match.arg(method)
Scale = .scale(match.arg(scale))
R = periodPercentReturns
Return = annualisedReturn(R, method, scale) - targetReturn * Scale
Risk = modifiedVaR(R, targetReturn, probability, method, scale)
ans = Return / Risk
names(ans) = "Modified Sharpe Ratio"
ans
}
|
extract_EAP_by_array <-function(StanS4class,
name.of.parameter
){
if (class("name.of.parameter")=="character"){
name.of.parameter <-substitute(name.of.parameter)
}
fit <- methods::as(StanS4class, "stanfit")
extract.expression.dim <- paste( "length(dim(extract(fit,par=c(name.of.parameter ))[[1]]))-1" ,sep = "")
foo.dim <- parse(text = extract.expression.dim)
dim<- eval(foo.dim)
if (dim==0) {
extract.expression <- paste( "mean (extract(fit)$",name.of.parameter, ",)" ,sep = "")
}
if (dim==1) {
extract.expression <- paste( "apply(extract(fit)$",name.of.parameter, ", MARGIN = 2, mean)" ,sep = "")
}
if (dim==2){
extract.expression <- paste( "apply(extract(fit)$",name.of.parameter, ", MARGIN = c(2,3), mean)" ,sep = "")
}
if (dim==3){
extract.expression <- paste( "apply(extract(fit)$",name.of.parameter, ", MARGIN = c(2,3,4), mean)" ,sep = "")
}
if (dim==4){
extract.expression <- paste( "apply(extract(fit)$",name.of.parameter, ", MARGIN = c(2,3,4,5), mean)" ,sep = "")
}
foo <- parse(text = extract.expression )
e<- eval(foo)
return(e)
}
extract_EAP_CI <-function(StanS4class,
parameter.name,
dimension.of.parameter,
dig=5,
summary=TRUE
){
fit <- methods::as(StanS4class, "stanfit")
C <-dimension.of.parameter
if (C==1){
EAP <- signif( as.data.frame(summary(fit)[[1]])[parameter.name,"mean"], digits = dig)
CI.lower <- signif( as.data.frame(summary(fit)[[1]])[parameter.name,"2.5%"], digits = dig)
CI.upper <- signif( as.data.frame(summary(fit)[[1]])[parameter.name,"97.5%"], digits = dig)
l<-list(
name=parameter.name,
EAP=EAP,
CI.lower=CI.lower,
CI.upper=CI.upper)
names(l) <- c( "parameter.name",
paste(parameter.name,".EAP",sep = ""),
paste(parameter.name,".CI.lower",sep = ""),
paste(parameter.name,".CI.upper",sep = "")
)
d <- as.data.frame(l)
if (summary==TRUE) print(knitr::kable(d, format = "pandoc"))
return(l)
}else
name <- paste(parameter.name,".name",sep = "")
EAP <- paste(parameter.name,".EAP",sep = "")
CI.lower <- paste(parameter.name,".CI.lower",sep = "")
CI.upper <- paste(parameter.name,".CI.upper",sep = "")
assign(name, vector())
assign(EAP, vector())
assign(CI.lower, vector())
assign(CI.upper, vector())
for (cd in 1:C) {
name[cd] <- paste(parameter.name,"[",cd,"]", sep = "")
EAP[cd] <- signif( as.data.frame(summary(fit)[[1]])[name[cd],"mean"], digits = dig)
CI.lower[cd]<- signif( as.data.frame(summary(fit)[[1]])[name[cd],"2.5%"], digits = dig)
CI.upper[cd]<- signif( as.data.frame(summary(fit)[[1]])[name[cd],"97.5%"], digits = dig)
}
l<-list(
name = name,
EAP = as.numeric(EAP),
CI.lower=as.numeric(CI.lower),
CI.upper=as.numeric(CI.upper)
)
names(l) <- c(
paste(parameter.name,".name",sep = ""),
paste(parameter.name,".EAP",sep = ""),
paste(parameter.name,".CI.lower",sep = ""),
paste(parameter.name,".CI.upper",sep = "")
)
d <- as.data.frame(l)
if (summary==TRUE) print(knitr::kable(d, format = "pandoc"))
return(l)
}
extract_estimates_MRMC <- function(StanS4class,dig=3){
C <-StanS4class@dataList$C
M <-StanS4class@dataList$M
Q <-StanS4class@dataList$Q
fit <- methods::as(StanS4class, "stanfit")
name.z <- vector()
z.EAP <- vector()
z.CI.lower<- vector()
z.CI.upper<- vector()
for (cd in 1:C) {
name.z[cd] <- paste("z[",cd,"]", sep = "")
z.EAP[cd] <- signif( as.data.frame(summary(fit)[[1]])[name.z[cd],"mean"], digits = dig)
z.CI.lower[cd]<- signif( as.data.frame(summary(fit)[[1]])[name.z[cd],"2.5%"], digits = dig)
z.CI.upper[cd]<- signif( as.data.frame(summary(fit)[[1]])[name.z[cd],"97.5%"], digits = dig)
}
dz.list <- extract_EAP_CI(StanS4class = fit, parameter.name = "dz",
dimension.of.parameter = C-1,
dig = dig, summary = FALSE)
name.dz <- dz.list$dz.name
dz.EAP <- dz.list$dz.EAP
dz.CI.lower <- dz.list$dz.CI.lower
dz.CI.upper <- dz.list$dz.CI.upper
name.mu <- array(0,dim = c(M,Q))
mu.EAP <- array(0,dim = c(M,Q))
mu.CI.lower <- array(0,dim = c(M,Q))
mu.CI.upper <- array(0,dim = c(M,Q))
for (md in 1:M) {
for (qd in 1:Q) {
name.mu[md,qd] <- paste("mu[",md,",",qd,"]", sep = "")
mu.EAP[md,qd] <- signif( as.data.frame(summary(fit)[[1]])[name.mu[md,qd],"mean"], digits = dig)
mu.CI.lower[md,qd]<- signif( as.data.frame(summary(fit)[[1]])[name.mu[md,qd],"2.5%"], digits = dig)
mu.CI.upper[md,qd]<- signif( as.data.frame(summary(fit)[[1]])[name.mu[md,qd],"97.5%"], digits = dig)
}
}
name.v <- array(0,dim = c(M,Q))
v.EAP <- array(0,dim = c(M,Q))
v.CI.lower<- array(0,dim = c(M,Q))
v.CI.upper<- array(0,dim = c(M,Q))
for (md in 1:M) {
for (qd in 1:Q) {
name.v[md,qd] <- paste("v[",md,",",qd,"]", sep = "")
v.EAP[md,qd] <- signif( as.data.frame(summary(fit)[[1]])[name.v[md,qd],"mean"], digits = dig)
v.CI.lower[md,qd]<- signif( as.data.frame(summary(fit)[[1]])[name.v[md,qd],"2.5%"], digits = dig)
v.CI.upper[md,qd]<- signif( as.data.frame(summary(fit)[[1]])[name.v[md,qd],"2.5%"], digits = dig)
}
}
name.ppp <- array(0,dim = c(C,M,Q))
ppp.EAP <- array(0,dim = c(C,M,Q))
ppp.CI.lower <- array(0,dim = c(C,M,Q))
ppp.CI.upper <- array(0,dim = c(C,M,Q))
for (cd in 1:C) {
for (md in 1:M) {
for (qd in 1:Q) {
name.ppp[cd,md,qd] <- paste("ppp[",cd,",",md,",",qd,"]", sep = "")
ppp.EAP[cd,md,qd] <- signif( as.data.frame(summary(fit)[[1]])[name.ppp[cd,md,qd],"mean"], digits = dig)
ppp.CI.lower[cd,md,qd]<- signif( as.data.frame(summary(fit)[[1]])[name.ppp[cd,md,qd],"2.5%"], digits = dig)
ppp.CI.upper[cd,md,qd]<- signif( as.data.frame(summary(fit)[[1]])[name.ppp[cd,md,qd],"2.5%"], digits = dig)
}
}
}
w.list <- extract_EAP_CI(StanS4class = fit, parameter.name = "w",dimension.of.parameter = 1,dig = dig, summary = FALSE)
name.w <- w.list$w.name
w.EAP <- w.list$w.EAP
w.CI.lower <- w.list$w.CI.lower
w.CI.upper <- w.list$w.CI.upper
dl.list <- extract_EAP_CI(StanS4class = fit, parameter.name = "dl",dimension.of.parameter = C,dig = dig, summary = FALSE)
name.dl <- dl.list$dl.name
dl.EAP <- dl.list$dl.EAP
dl.CI.lower <- dl.list$dl.CI.lower
dl.CI.upper <- dl.list$dl.CI.upper
l.list <- extract_EAP_CI(StanS4class = fit, parameter.name = "l",dimension.of.parameter = C,dig = dig, summary = FALSE)
name.l <- l.list$l.name
l.EAP <- l.list$l.EAP
l.CI.lower <- l.list$l.CI.lower
l.CI.upper <- l.list$l.CI.upper
A.list <- extract_EAP_CI(StanS4class = fit, parameter.name = "A",dimension.of.parameter = M,dig = dig, summary = FALSE)
name.A <- A.list$A.name
A.EAP <- A.list$A.EAP
A.CI.lower <- A.list$A.CI.lower
A.CI.upper <- A.list$A.CI.upper
name.AA <- array(0,dim = c(M,Q))
AA.EAP <- array(0,dim = c(M,Q))
AA.CI.lower<- array(0,dim = c(M,Q))
AA.CI.upper<- array(0,dim = c(M,Q))
for (md in 1:M) {
for (qd in 1:Q) {
name.AA[md,qd] <- paste("AA[",md,",",qd,"]", sep = "")
AA.EAP[md,qd] <- signif( as.data.frame(summary(fit)[[1]])[name.AA[md,qd],"mean"], digits = dig)
AA.CI.lower[md,qd]<- signif( as.data.frame(summary(fit)[[1]])[name.AA[md,qd],"2.5%"], digits = dig)
AA.CI.upper[md,qd]<- signif( as.data.frame(summary(fit)[[1]])[name.AA[md,qd],"2.5%"], digits = dig)
}
}
name.aa <- array(0,dim = c(M,Q))
aa.EAP <- array(0,dim = c(M,Q))
aa.CI.lower<- array(0,dim = c(M,Q))
aa.CI.upper<- array(0,dim = c(M,Q))
for (md in 1:M) {
for (qd in 1:Q) {
name.aa[md,qd] <- paste("aa[",md,",",qd,"]", sep = "")
aa.EAP[md,qd] <- signif( as.data.frame(summary(fit)[[1]])[name.aa[md,qd],"mean"], digits = dig)
aa.CI.lower[md,qd]<- signif( as.data.frame(summary(fit)[[1]])[name.aa[md,qd],"2.5%"], digits = dig)
aa.CI.upper[md,qd]<- signif( as.data.frame(summary(fit)[[1]])[name.aa[md,qd],"2.5%"], digits = dig)
}
}
name.bb <- array(0,dim = c(M,Q))
bb.EAP <- array(0,dim = c(M,Q))
bb.CI.lower<- array(0,dim = c(M,Q))
bb.CI.upper<- array(0,dim = c(M,Q))
for (md in 1:M) {
for (qd in 1:Q) {
name.bb[md,qd] <- paste("bb[",md,",",qd,"]", sep = "")
bb.EAP[md,qd] <- signif( as.data.frame(summary(fit)[[1]])[name.bb[md,qd],"mean"], digits = dig)
bb.CI.lower[md,qd]<- signif( as.data.frame(summary(fit)[[1]])[name.bb[md,qd],"2.5%"], digits = dig)
bb.CI.upper[md,qd]<- signif( as.data.frame(summary(fit)[[1]])[name.bb[md,qd],"2.5%"], digits = dig)
}
}
return(
list(
w.EAP = w.EAP,
dz.EAP = dz.EAP,
z.EAP = z.EAP,
mu.EAP = mu.EAP,
v.EAP = v.EAP,
ppp.EAP = ppp.EAP,
l.EAP = l.EAP,
dl.EAP = dl.EAP,
A.EAP = A.EAP,
AA.EAP = AA.EAP,
aa.EAP = aa.EAP,
bb.EAP = bb.EAP,
w.CI.upper = w.CI.upper,
dz.CI.upper = dz.CI.upper,
z.CI.upper = z.CI.upper,
mu.CI.upper = mu.CI.upper,
v.CI.upper = v.CI.upper,
ppp.CI.upper = ppp.CI.upper,
l.CI.upper = l.CI.upper,
dl.CI.upper = dl.CI.upper,
A.CI.upper = A.CI.upper,
AA.CI.upper = AA.CI.upper,
aa.CI.upper = aa.CI.upper,
bb.CI.upper = bb.CI.upper,
w.CI.lower = w.CI.lower,
dz.CI.lower = dz.CI.lower,
z.CI.lower = z.CI.lower,
mu.CI.lower = mu.CI.lower,
v.CI.lower = v.CI.lower,
ppp.CI.lower = ppp.CI.lower,
l.CI.lower = l.CI.lower,
dl.CI.lower = dl.CI.lower,
A.CI.lower = A.CI.lower,
AA.CI.lower = AA.CI.lower,
aa.CI.lower = aa.CI.lower,
bb.CI.lower = bb.CI.lower
))
}
extractAUC <-function(StanS4class,
dig=3,
summary=TRUE,
new.imaging.device=TRUE,
print_CI_of_AUC = TRUE
){ if(summary==TRUE){
fit <- methods::as(StanS4class, "stanfit")
if(StanS4class@studyDesign =="MRMC")
{ M <-as.integer(StanS4class@dataList$M)
AUC <- vector()
A.CI.lower<- vector()
A.CI.upper<- vector()
name <- vector()
nnname <- vector()
for (md in 1:M) {
AUC[md] <- signif( mean(rstan::extract(fit)$A[,md]), digits = dig)
name[md] <-md
nnname[md] <-paste("A[",md,"]",sep = "")
A.CI.lower[md] <- signif( as.data.frame(summary(fit)[[1]])[nnname[md],"2.5%"], digits = dig)
A.CI.upper[md] <- signif( as.data.frame(summary(fit)[[1]])[nnname[md],"97.5%"], digits = dig)
}
message(crayon::silver( "\n------------------------------"))
message(crayon::silver( "\n* The following table shows the AUCs for each modality, that is, the area under the AFROC curves."))
message(crayon::silver( "\n* The following table shows, from the left, modality ID, expected a posterior estimates and upper and lower credible interbals for AUCs."))
print(knitr::kable(data.frame(Modality=name,
AUC.EAP=AUC,
AUC.CI.lower=A.CI.lower,
AUC.CI.upper=A.CI.upper
) , align ="cccc", format="pandoc")
)
if(print_CI_of_AUC)message("\n------------------------------\n")
if(print_CI_of_AUC)message("In the Figure of AUCs, the two intervals are shown for each modality, i.e., ")
if(new.imaging.device&&print_CI_of_AUC) grDevices::dev.new()
if(print_CI_of_AUC) print( rstan::plot(methods::as(StanS4class, "stanfit"),par=nnname))
AUCs <- data.frame(Modality=name,
AUC.EAP=AUC,
AUC.CI.lower=A.CI.lower,
AUC.CI.upper=A.CI.upper )
return(
list(AUCs=AUCs
,nnname=nnname
)
)
}
if(!StanS4class@studyDesign =="MRMC"){
AUC <- signif( as.data.frame(summary(fit)[[1]])["A","mean"],
digits = dig
)
A.CI.lower <- signif( as.data.frame(summary(fit)[[1]])["A","2.5%"], digits = dig)
A.CI.upper <- signif( as.data.frame(summary(fit)[[1]])["A","97.5%"], digits = dig)
print(knitr::kable(data.frame( AUC=AUC,
lowerCI=A.CI.lower,
upperCI=A.CI.upper )
, align ="cccc", format="pandoc") )
invisible(data.frame( AUC=AUC,
A.CI.lower=A.CI.lower,
A.CI.upper=A.CI.upper )
)
}
}}
|
optimLBFGSB<-function(x=NULL,fun,lower,upper,control=list(),...){
if(is.null(x))
x <- lower + runif(length(lower)) * (upper-lower)
else
x <- x[1,]
con<-list(funEvals=100)
con[names(control)] <- control
control<-con
control$maxit <- control$funEvals
control$types <- NULL
fn <- function(x,...)fun(matrix(x,1),...)
control$funEvals <- NULL
res <- optim(par=x,fn=fn,lower=lower,upper=upper,control=control,method="L-BFGS-B",...)
list(x=NA,y=NA,xbest=matrix(res$par,1),ybest=res$value,count= res$counts[[1]] +res$counts[[2]] * 2 * length(res$par),msg=res$message)
}
|
context("testMGD")
source("test-main.R")
test_that(paste("Supported mgd approaches are:", args_default(.choices = TRUE)$.approach_mgd, collapse = ", "), {
expect_error(testMGD(res_multi_linear, .approach_mgd = "Hello World"))
})
test_that("Not providing a cSEMResults_multi object causes an error", {
expect_error(testMGD(res_single_linear))
expect_error(testMGD(res_single_linear_boot))
})
test_that(".approach_mgd = 'Klesel' does not work for nonlinear models", {
expect_error(testMGD(res_multi_nonlinear, .approach_mgd = "Klesel"))
expect_error(testMGD(res_multi_nonlinear_boot, .approach_mgd = "all"))
expect_error(testMGD(res_multi_nonlinear_2ndorder, .approach_mgd = "all"))
})
test_that(".approach_mgd = 'Sarstedt' can not be combined with .handle_inadmissibles = 'drop'", {
expect_error(
testMGD(res_multi_linear, .approach_mgd = "Sarstedt", .handle_inadmissibles = "drop")
)
expect_error(
testMGD(res_multi_nonlinear, .approach_mgd = "all", .handle_inadmissibles = "drop")
)
})
for(i in args_default(.choices = TRUE)$.approach_mgd) {
test_that(paste("testMGD works for .approach_mgd = ", i), {
expect_output(
testMGD(
.object = res_multi_linear_boot,
.approach_mgd = i,
.R_permutation = 5,
.handle_inadmissibles = "replace"
)
)
})
if(i %in% c("Chin", "Keil", "Nitzl", "Sarstedt", "Henseler"))
test_that("Chin, Keil, Nitzl and Sarstedt work for nonlinear models", {
expect_output(
testMGD(
.object = res_multi_nonlinear,
.approach_mgd = i,
.R_permutation = 5,
.R_bootstrap = 5,
.handle_inadmissibles = "replace"
)
)
expect_output(
testMGD(
.object = res_multi_nonlinear_2ndorder,
.approach_mgd = i,
.R_permutation = 5,
.R_bootstrap = 5,
.handle_inadmissibles = "replace"
)
)
})
}
test_that("testMGD() works for second order models (.approach_mgd = 'all')", {
expect_output(
testMGD(
.object = res_multi_2ndorder_boot,
.approach_mgd = "all",
.R_permutation = 5,
.handle_inadmissibles = "replace"
)
)
})
|
DIx <- function(l1, l2, details=FALSE, version = 1) {
l1 <- c(l1, rep(0, max(0, length(l2)-length(l1))))
l2 <- c(l2, rep(0, max(0, length(l1)-length(l2))))
l1 <- l1/sum(l1)
l2 <- l2/sum(l2)
pp <- getFromNamespace(".permutations", ns="HelpersMG")(v=l1, r=length(l1), n=length(l1),
set=FALSE)
p <- (mean(apply(pp, 1, function(x) {sqrt(1-(sum(x*l2)))})))
vn1 <- sum(l1 != 0)
vn2 <- sum(l2 != 0)
if (version == 2) {
vmax1 <- -sum(rep(1/vn1, vn1) * log(rep(1/vn1, vn1)))
vmax2 <- -sum(rep(1/vn2, vn2) * log(rep(1/vn2, vn2)))
p1 <- 2*vmax1+sum(l1[l1 != 0] * log(l1[l1 != 0]))
p2 <- 2*vmax2+sum(l2[l2 != 0] * log(l2[l2 != 0]))
} else {
p1 <- sum(l1[l1 != 0] * log(l1[l1 != 0]))
p2 <- sum(l2[l2 != 0] * log(l2[l2 != 0]))
}
if (details) {
return(c(Average.Edwards=p, Geometric.mean.Shannon=sqrt(p1*p2), DIx=p*sqrt(p1*p2)))
} else {
return(p*sqrt(p1*p2))
}
}
|
extract_manual <- function (x, i, j, ..., drop = TRUE, basis = 0) {
x_size <- torch_size(x)
if (is.list(x_size)) {
x_size <- lapply(x_size, function (x) ifelse(is.null(x), NA, x))
x_size <- unlist(x_size)
}
n_indices <- length(x_size)
cl <- match.call()
args <- as.list(cl)[-1]
known_args <- c("x", "i", "j", "drop", "basis")
extra_indices <- args[!names(args) %in% known_args]
if (missing(i))
i <- list(NA)
else
i <- list(validate_index(i))
if (missing(j)) {
if (n_indices > 1) j <- list(NA)
else j <- list()
} else {
j <- list(validate_index(j))
}
extra_indices <- lapply(extra_indices, evaluate_index)
indices <- c(i, j, extra_indices)
names(indices) <- NULL
if (length(indices) != n_indices) {
stop ('incorrect number of dimensions')
}
begin <- vapply(indices,
function (x) {
if (length(x) == 1 && is.na(x))
0
else
x[1] - basis
},
FUN.VALUE = 0)
end <- vapply(indices,
function (x) {
if (length(x) == 1 && is.na(x))
Inf
else
x[length(x)] - basis
},
FUN.VALUE = 0)
end <- pmin(end, x_size) + 1
print(begin)
begin_shape <- do.call('shape', as.list(begin))
end_shape <- do.call('shape', as.list(end))
stride_shape <- as.list(rep(1L, n_indices))
if (drop) {
shrink <- vapply(indices,
function (x) {
length(x) == 1 && !is.na(x)
},
FALSE)
shrink_integer <- integer_mask(shrink)
} else {
shrink_integer <- 0
}
begin_mask <- end_mask <- integer_mask(is.na(x_size))
list(begin = begin, end = end, begin_shape = begin_shape, end_shape = end_shape,
begin_mask = begin_mask, end_mask = end_mask,
stride_shape = stride_shape)
}
is.blank <- function (x) is.name(x) && as.character(x) == ''
integer_mask <- function (mask) sum(2 ^ (seq_along(mask) - 1)[mask])
evaluate_index <- function (x, validate = TRUE, n = 3) {
if (is.blank(x)) {
x <- NA
} else {
if (is.call(x) | is.name(x))
x <- eval(x, envir = parent.frame(n = n))
if (validate)
x <- validate_index(x)
}
x
}
validate_index <- function (x, base = 0) {
append <- switch (as.character(base),
`0` = " with 0-based indexing",
`1` = " with unknown dimensions")
if (!(is.numeric(x) && is.finite(x))) {
stop ("invalid index - must be numeric and finite",
append)
}
if (!(is.vector(x))) {
stop ("only vector indexing of Tensors is currently supported",
append)
}
if (any(x < 0)) {
stop ("negative indexing of Tensors is not currently supported",
append)
}
if (x[length(x)] < x[1]) {
stop ("decreasing indexing of Tensors is not currently supported",
append)
}
x
}
check_zero_based <- function (call) {
args <- as.list(call)[-1]
other_args <- c("x", "drop", "basis")
names <- names(args)
indices <- args[!names %in% other_args]
indices <- lapply(indices,
evaluate_index,
validate = FALSE,
n = 4)
contain_zero <- vapply(indices,
function (x) {
(is.atomic(x) | is.list(x)) && any(is_a_zero(x))
},
FUN.VALUE = FALSE)
default_one_based <- is.null(getOption("tensorflow.one_based_extract"))
if (any(contain_zero) & default_one_based) {
warning(paste(
"It looks like you might be using 0-based indexing to extract using `[`.",
"The rTorch package now uses 1-based (R-like) extraction by default.\n",
"You can switch to the old behavior (1-based extraction) with:",
" options(torch.one_based_extract = FALSE)\n",
"If your indexing is as you intend, you can disable this warning with:",
" options(torch.one_based_extract = TRUE)", sep = "\n"
), call. = FALSE)
}
}
is_a_zero <- function (x) {
vapply(x,
function (x) {
identical(x, 0) | identical(x, 0L)
},
FUN.VALUE = FALSE)
}
|
ebirdfreq <- function(loctype, loc, startyear = 1900,
endyear = format(Sys.Date(), "%Y"),
startmonth = 1, endmonth = 12, long = TRUE, ...) {
if (!all(c(startmonth, endmonth) %in% 1:12)) {
stop("Invalid month(s) provided (must be integer between 1 and 12)")
}
currentyear <- format(Sys.Date(), "%Y")
if (!all(c(startyear, endyear) %in% 1900:currentyear)) {
stop(paste0("Invalid year(s) provided (must be integer between 1900 and ", currentyear, ")"))
}
if (loctype == "hotspots") {
if (!grepl("^L\\d{1,8}$", loc)) stop("Invalid hotspot code")
} else if (loctype %in% c("counties", "states")) {
} else {
stop("Not a valid location type")
}
args <- list(r = loc, bmo = startmonth, emo = endmonth, byr = startyear,
eyr = endyear, personal = "false", fmt = "tsv")
url <- "http://ebird.org/ebird/barchartData"
url_full <- modify_url(url, query = args)
message(url_full)
stop(
"This function has been made temporarily defunct as you now need to be
logged into the eBird website to download frequency data, but we cannot
authenticate via the API to do so. This function will be reinstated
when the frequency data become available through the API. In the meantime,
you can paste the url above in your browser to obtain the web download of
the frequency data for the desired location and date. See
https://github.com/ropensci/rebird/issues/82 for more information."
)
ret <- GET(url, query = args, ...)
stop_for_status(ret)
asChar <- readBin(ret$content, "character")
freq <- tbl_df(read.delim(text = asChar, skip = 12,
stringsAsFactors = FALSE)[,-50])
if (loctype == "hotspots" && all(is.na(freq[, -1]))) {
warning("No observations returned, check hotspot code")
}
names(freq) <- c("comName", vapply(month.name, paste, FUN.VALUE = character(4),
1:4, sep = "-"))
if (!long) {
return(freq)
} else {
freq_long <- reshape(data.frame(freq[-1, ]), varying = 2:49, direction = "long",
v.names = "frequency", idvar = "comName",
timevar = "monthQt", times = names(freq)[2:49])
ss <- data.frame(sampleSize = unlist(freq[1, -1]))
ss$monthQt <- rownames(ss)
freq_long <- left_join(freq_long, ss, by = "monthQt")
tbl_df(freq_long)
}
}
|
run_ggquickeda <- function(data = NULL) {
if (!is.null(data) && !is.data.frame(data)) {
stop("data must be a data.frame", call. = FALSE)
}
appDir <- system.file("shinyapp", package = "ggquickeda")
if (appDir == "") {
stop("Could not find shiny app directory. Try re-installing `ggquickeda`.",
call. = FALSE)
}
if (!is.null(data)) {
.GlobalEnv$ggquickeda_initdata <- data
on.exit(rm(ggquickeda_initdata, envir = .GlobalEnv))
}
shiny::runApp(appDir, display.mode = "normal")
}
if (getRversion() >= "2.15.1") utils::globalVariables(c("ggquickeda_initdata"))
|
library(rethinking)
library(animation)
library(ellipse)
blank(bty="n",w=1.4,h=0.8)
al <- alist(
y ~ dnorm(mu,1),
mu <- a + b*x ,
a ~ dnorm(0,1),
b ~ dnorm(0,1)
)
q <- quap( al , data=list(y=1) , dofit=FALSE )
pp <- extract.prior(q)
a_link <- function(x) a + b*x
anim_prior_predictive( prior=pp , linkf=a_link , n=20 , n_to_show=3 , n_steps=20 , ylim=c(-2,2) , ylab="outcome" )
oopts = ani.options(interval = 0.03)
ani.replay()
n_points <- 10
n_points <- 0
x <- rnorm(n_points)
x <- ifelse( x > 2 , 2 , x )
x <- ifelse( x < -2 , -2 , x )
y <- rnorm(n_points, 0 + 0.7*x,0.5)
xlims <- c(-2,2)
ylims <- c(-2,2)
ellipse_hist <- list()
ani.record(reset=TRUE)
NSTEPS <- 20
for ( i in 0:n_points ) {
xmean <- mean( x[1:i] )
al <- alist(
y ~ dnorm(mu,1),
mu <- a + b*x ,
a ~ dnorm(0,1),
b ~ dnorm(0,1)
)
if ( i > 0 ) {
dati <- list( x=x[1:i] , y=y[1:i] )
q <- quap( al , data=dati , dofit=TRUE )
pp <- extract.samples(q)
} else {
q <- quap( al , data=list(y=1,x=1) , dofit=FALSE )
pp <- as.data.frame(extract.prior(q))
}
a_link <- function(x) a + b*x
the_text <- concat("n = ",i)
xseq <- seq(from=-2.2,to=2.2,length=50)
ahat <- mean(pp$a)
bhat <- mean(pp$b)
if ( i > 0 ) {
mu <- link( q , data=list(x=xseq) )
ci <- apply(mu,2,PI)
}
use_cols <- c(2, 4, 5, 6, 3)
the_pf <- function(samp,step) {
par(mfrow=c(1,2))
plot(NULL,xlim=c(-2.5,2.5),ylim=c(-2.5,2.5),bty="n",xlab="intercept",ylab="slope")
pm <- colMeans(pp)
the_contour <- list()
for ( l in c(0.5,0.8,0.95) )
the_contour[[ concat(l) ]] <- ellipse(cov(pp),centre=pm,level=l)
if ( length(ellipse_hist) > 0 & samp==1 ) {
mixf <- (NSTEPS-step)/NSTEPS
for ( l in c(0.5,0.8,0.95) ) {
the_contour[[ concat(l) ]] <- (1-mixf)*the_contour[[concat(l)]] + mixf*ellipse_hist[[concat(l)]]
}
}
thelwd <- 2
if ( samp==1 ) thelwd <- 2+3*(NSTEPS-step)/NSTEPS
for ( l in c(0.5,0.8,0.95) )
lines(the_contour[[concat(l)]],col=1,lwd=thelwd )
pb <- get("prior_blend",envir=parent.frame(n = 1))
points( pb[[1]][,step] , pb[[2]][,step] , lwd=2 , col=use_cols[1:3] , pch=16 , cex=1.6 )
plot(NULL,xlim=xlims,ylim=ylims,xlab="x value",ylab="y value",bty="n")
if ( i > 0 ) {
shade( ci , xseq )
abline( a=ahat , b=bhat , lwd=3 , col="gray" , lty=2 )
points( x[1:i] , y[1:i] , pch=1 , lwd=3 , cex=1.2 )
}
mtext(the_text)
}
if ( i==0 ) r <- NULL
n_prior_samples <- 20
r <- anim_prior_predictive( prior=pp , linkf=a_link , n=n_prior_samples , n_to_show=3 , n_steps=NSTEPS , ylim=ylims , ylab="outcome" , xlim=xlims , pf=the_pf , do_reset=FALSE , start_from=r , accel=-0.5 , vel0=1 )
for ( l in c(0.5,0.8,0.95) )
ellipse_hist[[ concat(l) ]] <- ellipse(cov(pp),centre=colMeans(pp),level=l)
}
oopts = ani.options(interval = 0.02)
ani.replay()
set.seed(12)
n_points <- 10
x <- rnorm(n_points)
x <- ifelse( x > 2 , 2 , x )
x <- ifelse( x < -2 , -2 , x )
y <- rnorm( n_points , 0 + 0.7*x - 1*x^2 , 0.5 )
x[9] <- 3
y[9] <- -1
xlims <- c(-4,5)
ylims <- c(-7,2)
ellipse_hist <- list()
ani.record(reset=TRUE)
NSTEPS <- 14
for ( i in 0:n_points ) {
al <- alist(
y ~ dnorm(mu,1),
mu <- a + b1*x + b2*x^2 ,
a ~ dnorm(0,1),
b1 ~ dnorm(0,1),
b2 ~ dnorm(0,1)
)
if ( i > 0 ) {
dati <- list( x=x[1:i] , y=y[1:i] )
q <- quap( al , data=dati , dofit=TRUE )
pp <- extract.samples(q)
} else {
q <- quap( al , data=list(y=1,x=1) , dofit=FALSE )
pp <- as.data.frame(extract.prior(q))
}
a_link <- function(x) a + b1*x + b2*x^2
the_text <- concat("n = ",i)
xseq <- seq(from=xlims[1],to=xlims[2],length=50)
ahat <- mean(pp$a)
b1hat <- mean(pp$b1)
b2hat <- mean(pp$b2)
if ( i > 0 ) {
mu <- link( q , data=list(x=xseq) )
ci <- apply(mu,2,PI)
}
the_pf <- function(samp,step) {
par(mfrow=c(1,2))
plot(NULL,xlim=c(-2.5,2.5),ylim=c(-2.5,2.5),bty="n",xlab="b1",ylab="b2")
mtext(the_text)
pm <- colMeans(pp)
the_contour <- list()
for ( l in c(0.5,0.8,0.95) )
the_contour[[ concat(l) ]] <- ellipse(cov(pp)[2:3,2:3],centre=pm[2:3],level=l)
if ( length(ellipse_hist) > 0 & samp==1 ) {
mixf <- (NSTEPS-step)/NSTEPS
for ( l in c(0.5,0.8,0.95) ) {
the_contour[[ concat(l) ]] <- (1-mixf)*the_contour[[concat(l)]] + mixf*ellipse_hist[[concat(l)]]
}
}
thelwd <- 2
if ( samp==1 ) thelwd <- 2+3*(NSTEPS-step)/NSTEPS
for ( l in c(0.5,0.8,0.95) )
lines(the_contour[[concat(l)]],col=2,lwd=thelwd )
plot(NULL,xlim=xlims,ylim=ylims,xlab="x value",ylab="y value",bty="n")
if ( i > 0 ) {
shade( ci , xseq )
points( x[1:i] , y[1:i] , pch=1 , lwd=3 , cex=1.2 )
}
mtext( "y = a + b1*x + b2*x^2" )
}
if ( i==0 ) r <- NULL
r <- anim_prior_predictive( prior=pp , linkf=a_link , n=5 , n_to_show=3 , n_steps=NSTEPS , ylim=ylims , ylab="outcome" , xlim=xlims , pf=the_pf , do_reset=FALSE , start_from=r , accel=-0.5 , vel0=1 )
for ( l in c(0.5,0.8,0.95) )
ellipse_hist[[ concat(l) ]] <- ellipse(cov(pp)[2:3,2:3],centre=colMeans(pp)[2:3],level=l)
}
oopts = ani.options(interval = 0.02)
ani.replay()
blank(bty="n",w=1.4,h=0.8)
set.seed(13)
n_points <- 10
x <- rnorm(n_points)
x <- ifelse( x > 2 , 2 , x )
x <- ifelse( x < -2 , -2 , x )
y <- rnorm( n_points , 0 + 0.7*x - 2*x^2 + 3*x^3 , 0.5 )
xlims <- range(x) + c(-1,1)*2
ylims <- range(y) + c(-1,1)*2
ellipse_hist <- list()
ani.record(reset=TRUE)
NSTEPS <- 14
for ( i in 0:n_points ) {
al <- alist(
y ~ dnorm(mu,1),
mu <- a + b1*x + b2*x^2 + b3*x^3,
a ~ dnorm(0,1),
b1 ~ dnorm(0,1),
b2 ~ dnorm(0,1),
b3 ~ dnorm(0,1)
)
if ( i > 0 ) {
dati <- list( x=x[1:i] , y=y[1:i] )
q <- quap( al , data=dati , dofit=TRUE )
pp <- extract.samples(q)
} else {
q <- quap( al , data=list(y=1,x=1) , dofit=FALSE )
pp <- as.data.frame(extract.prior(q))
}
a_link <- function(x) a + b1*x + b2*x^2 + b3*x^3
the_text <- concat("n = ",i)
xseq <- seq(from=xlims[1],to=xlims[2],length=50)
ahat <- mean(pp$a)
b1hat <- mean(pp$b1)
b2hat <- mean(pp$b2)
if ( i > 0 ) {
mu <- link( q , data=list(x=xseq) )
ci <- apply(mu,2,PI)
}
the_pf <- function(samp,step) {
par(mfrow=c(1,2))
plot(NULL,xlim=c(-2.5,2.5),ylim=c(-2.5,2.5),bty="n",xlab="b2",ylab="b3")
mtext(the_text)
pm <- colMeans(pp)
the_contour <- list()
for ( l in c(0.5,0.8,0.95) )
the_contour[[ concat(l) ]] <- ellipse(cov(pp)[3:4,3:4],centre=pm[3:4],level=l)
if ( length(ellipse_hist) > 0 & samp==1 ) {
mixf <- (NSTEPS-step)/NSTEPS
for ( l in c(0.5,0.8,0.95) ) {
the_contour[[ concat(l) ]] <- (1-mixf)*the_contour[[concat(l)]] + mixf*ellipse_hist[[concat(l)]]
}
}
thelwd <- 2
if ( samp==1 ) thelwd <- 2+3*(NSTEPS-step)/NSTEPS
for ( l in c(0.5,0.8,0.95) )
lines(the_contour[[concat(l)]],col=2,lwd=thelwd )
plot(NULL,xlim=xlims,ylim=ylims,xlab="x value",ylab="y value",bty="n")
if ( i > 0 ) {
shade( ci , xseq )
points( x[1:i] , y[1:i] , pch=1 , lwd=3 , cex=1.2 )
}
mtext( "y = a + b1*x + b2*x^2 + b3*x^3" )
}
if ( i==0 ) r <- NULL
r <- anim_prior_predictive( prior=pp , linkf=a_link , n=5 , n_to_show=3 , n_steps=NSTEPS , ylim=ylims , ylab="outcome" , xlim=xlims , pf=the_pf , do_reset=FALSE , start_from=r , accel=-0.5 , vel0=1 )
for ( l in c(0.5,0.8,0.95) )
ellipse_hist[[ concat(l) ]] <- ellipse(cov(pp)[3:4,3:4],centre=colMeans(pp)[3:4],level=l)
}
oopts = ani.options(interval = 0.03)
ani.replay()
|
setMethod("qform", "character", function(object){
object = path.expand(object)
stopifnot(file.exists(object))
slots = paste0("qto_xyz:", 1:4)
res = sapply(slots, function(key) {
fslval(object, keyword = key, verbose = FALSE)
})
convmat <- function(form){
ss <- strsplit(form, " ")
ss <- t(sapply(ss, function(x) x[x!=""]))
class(ss) <- "numeric"
return(ss)
}
res = convmat(res)
rownames(res) = NULL
return(res)
})
|
predict.indicators<-function(object, newdata = NULL, cv = FALSE, ...) {
C <- as.matrix(object$C)
nc<-nrow(C)
taxnames <-colnames(C)
if(cv) {
X <- object$X
group.vec <- object$group.vec
ng = sum(group.vec)
func <- object$func
cluster <- object$cluster
nr = nrow(X)
Astat<-matrix(0, nrow=nr, ncol=nc)
for(r in 1:nr) {
for(i in 1:nc) {
spvec = colnames(C)[C[i,]==1]
found<-sum(X[r,spvec, drop=FALSE]>0)==sum(C[i,])
if(found) {
sc.ab <-apply(X[-r,spvec, drop=FALSE],1,min)
scg = sc.ab[group.vec[-r]]
if(func=="IndVal.g") {
mg = (sum(scg)/ng)
Astat[r,i] = mg/sum(tapply(sc.ab,cluster[-r], "mean"))
} else {
Astat[r,i] = sum(scg)/sum(sc.ab)
}
}
}
}
p = apply(Astat,1,max)
names(p)<-rownames(X)
} else {
if(is.null(newdata)) newdata = object$X
if(sum(taxnames %in% colnames(newdata))<length(taxnames)) stop("Not all taxon names that form indicators could be found in compositional table.")
postaxa <- numeric(length(taxnames))
for(i in 1:length(taxnames)) postaxa[i] = which(colnames(newdata)==taxnames[i])
stat<-matrix(0, nrow=nrow(newdata), ncol=nc)
if(length(dim(object$A))==2) {
lowerCI<-matrix(0, nrow=nrow(newdata), ncol=nc)
upperCI<-matrix(0, nrow=nrow(newdata), ncol=nc)
}
for(i in 1:nc) {
ci <- as.numeric(C[i,])
found<-rowSums(newdata[,postaxa[ci==1], drop=FALSE]>0)==sum(ci)
if(length(dim(object$A))==2) {
stat[,i]<- found*object$A$stat[i]
lowerCI[,i]<- found*object$A$lowerCI[i]
upperCI[,i]<- found*object$A$upperCI[i]
}
else {
stat[,i]<- found*object$A[i]
}
}
if(length(dim(object$A))==2) {
wm = apply(lowerCI,1,which.max)
p = matrix(NA,nrow=nrow(newdata), ncol=3)
for(i in 1:length(wm)) {
p[i,] = c(stat[i,wm[i]],lowerCI[i,wm[i]], upperCI[i,wm[i]])
}
rownames(p)<-rownames(newdata)
colnames(p)<-c("Prob.", "lowerCI", "upperCI")
} else {
p = apply(stat,1,max)
names(p)<-rownames(newdata)
}
}
return(p)
}
|
cUmbrPU<-function(alpha,n, method=NA, n.mc=10000){
outp<-list()
outp$stat.name<-paste("Mack-Wolfe Peak Unknown A*(p-hat)")
if(alpha>1||alpha<0||class(alpha)!="numeric"){
cat('Error: Check alpha value! \n')
return(alpha)
}
outp$alpha<-alpha
outp$n<-n
outp$n.mc<-n.mc
N<-sum(n)
k<-length(n)
g<-rep(1:k,outp$n)
if(is.na(method)){
if(factorial(sum(outp$n))/prod(factorial(outp$n))<=10000){
method<-"Exact"
}
if(factorial(sum(outp$n))/prod(factorial(outp$n))>10000){
method<-"Monte Carlo"
}
}
outp$method<-method
cumulative.sizes<-cumsum(outp$n)
peak.picker<-function(obs.data){
tmp<-numeric(k)
for(i in 1:k){
first<-obs.data[max(1,cumulative.sizes[i-1]+1):cumulative.sizes[i]]
second<-obs.data[-(max(1,cumulative.sizes[i-1]+1):cumulative.sizes[i])]
options(warn = (-1));
tmp[i]<-(wilcox.test(first,second)$statistic-(outp$n[i]*(cumulative.sizes[k]-outp$n[i])/2))/sqrt(
outp$n[i]*(cumulative.sizes[k]-outp$n[i])*(cumulative.sizes[k]+1)/12)
options(warn = (0));
}
initial.peak<-peak<-which.max(tmp)
if(1-sum(tmp[-peak]==tmp[peak])){
return(peak)
}
for(i in (initial.peak+1):k){
if(tmp[i]==tmp[initial.peak]){
peak<-c(peak,i)
}
}
return(peak)
}
A.star.calc<-function(obs.data,peak){
N1<-cumulative.sizes[peak]
N2<-(cumulative.sizes[k]-max(0,cumulative.sizes[peak-1]))
exp.Ap<-(N1^2+N2^2-sum(outp$n^2)-outp$n[peak]^2)/4
var.Ap<-1/72*(2*(N1^3+N2^3)+3*(N1^2+N2^2)-sum(outp$n^2*(2*outp$n+3))
-outp$n[peak]^2*(2*outp$n[peak]+3)+12*outp$n[peak]*N1*N2-12*outp$n[peak]^2*cumulative.sizes[k])
U.vec<-numeric((peak*(peak-1)+(k-peak+1)*(k-peak))/2)
U.calc<-function(i,j){
wilcox.test(obs.data[g==i],obs.data[g==j])$statistic
}
count<-0
if(peak>1){
for(i in 2:peak){
for(j in 1:(i-1)) {
count<-count+1
options(warn = (-1));
U.vec[count]<-U.calc(i,j)
options(warn = (0));
}
}
}
if(peak<k){
for(i in peak:(k-1)){
for(j in (i+1):k) {
count<-count+1
options(warn = (-1));
U.vec[count]<-U.calc(i,j)
options(warn = (0));
}
}
}
(sum(U.vec)-exp.Ap)/sqrt(var.Ap)
}
PU.calc<-function(obs.data){
tmp.peak<-peak.picker(obs.data)
num.peak<-length(tmp.peak)
tmp.stat<-numeric(num.peak)
if(num.peak==1){
tmp.stat<-A.star.calc(obs.data,tmp.peak)
}
if(num.peak>1){
for(i in 1:num.peak){
tmp.stat[i]<-A.star.calc(obs.data,tmp.peak[i])
}
}
mean(tmp.stat)
}
possible.ranks<-1:N
if(outp$method=="Asymptotic"){
warning("The asymptotic distribution for this statistic is unknown!")
outp$method=="Monte Carlo"
}
if(outp$method=="Exact"){
possible.orders<-multComb(outp$n)
possible.perms<-t(apply(possible.orders,1,function(x) possible.ranks[x]))
A.stats<-apply(possible.perms,1,PU.calc)
A.tab<-table(A.stats)
A.vals<-round(as.numeric(names(A.tab)),5)
A.probs<-as.numeric(A.tab)/sum(A.tab)
A.dist<-cbind(A.vals,A.probs)
upper.tails<-cbind(rev(A.vals),cumsum(rev(A.probs)))
outp$cutoff.U<-upper.tails[max(which(upper.tails[,2]<=alpha)),1]
outp$true.alpha.U<-upper.tails[max(which(upper.tails[,2]<=alpha)),2]
}
if(outp$method=="Monte Carlo"){
mc.dist<-numeric(n.mc)
for(i in 1:n.mc){
mc.perm<-sample(possible.ranks)
mc.dist[i]<-round(PU.calc(mc.perm),10)
}
mc.values<-sort(unique(mc.dist))
mc.probs<-as.numeric(table(mc.dist))/n.mc
A.dist<-cbind(mc.values,mc.probs)
upper.tails<-cbind(rev(mc.values),cumsum(rev(mc.probs)))
outp$cutoff.U<-upper.tails[max(which(upper.tails[,2]<=alpha)),1]
outp$true.alpha.U<-upper.tails[max(which(upper.tails[,2]<=alpha)),2]
}
class(outp)<-"NSM3Ch6c"
outp
}
|
stat.cor <- function(ant, var1, var2, method = "pearson", progress = TRUE) {
id1 <- df.col.findId(ant[[1]], var1)
id2 <- df.col.findId(ant[[1]], var2)
if (progress == TRUE) {
result <- lapply(ant, function(d, id1, id2, method) {
cat(" Processing file: ", attr(d, "permutation"), "\r")
r <- cor(x = d[, id1], y = d[, id2], method = method)
return(r)
}, id1, id2, method)
}
else {
result <- lapply(ant, function(d, id1, id2, method) {
r <- cor(x = d[, id1], y = d[, id2], method = method)
return(r)
}, id1, id2, method)
}
result <- do.call("rbind", result)
attr(result, "class") <- "ant cor"
if (method == "pearson") {
attr(result, "comment") <- paste("Pearson coefficient")
attr(result, "var1") <- paste(var1)
attr(result, "var2") <- paste(var2)
}
if (method == "kendall") {
attr(result, "comment") <- paste("Kendall coefficient")
attr(result, "var1") <- paste(var1)
attr(result, "var2") <- paste(var2)
}
if (method == "spearman") {
attr(result, "comment") <- paste("Spearman coefficient")
attr(result, "var1") <- paste(var1)
attr(result, "var2") <- paste(var2)
}
cat("\n")
return(result)
}
|
voxDims <- function(directory = file.choose()) {
if (!exists(directory)) {
if (substr(directory, nchar(directory) - 3, nchar(directory)) %in% ".dcm") {
} else if (grepl("/", directory) == 1) {
} else stop("Incorrect directory name: directory specified in a character string must end with a '/'; if 'file.choose()' is used, the selected file must be a dicom image")
fname <- oro.dicom::readDICOM(directory, verbose = TRUE)
} else if (exists(directory) & (sum(names(get(directory)) %in% c("hdr", "img")) == 2)){
fname <- get(directory)
} else stop("Invalid input: 'directory' object or file location is incorrectly specified.")
pixelArea <- as.numeric(strsplit(fname$hdr[[1]]$value[fname$hdr[[1]]$name %in% "PixelSpacing"], " ")[[1]][1])^2
thick <- unique(oro.dicom::extractHeader(fname$hdr, "SliceThickness"))
returnDat <- data.frame(pixelArea.mm2 = pixelArea, thickness.mm = thick)
returnDat
}
|
rp.select <- function(rp.object,
percentile=90
) {
if(!methods::is(rp.object,"ResponsePatterns"))
stop("The object is not of class ResponsePatterns")
percentile <- round(percentile)
if(percentile < 0 | percentile > 99)
stop("percentile must be a number between 0 and 99")
indices <- cbind(c(1:[email protected]),rp.object@indices)
indices <- indices[indices$percentile >= percentile,]
indices <- indices[order(indices$percentile, decreasing=TRUE),]
selected.rows <- indices[,1]
rp.object@indices <- indices[,-1]
rp.object@coefficients <- as.data.frame(rp.object@coefficients[selected.rows,])
if(nrow(rp.object@data)!=0 & ncol(rp.object@data)!=0) {
rp.object@data <- as.data.frame(rp.object@data[selected.rows,])
}
[email protected] <- nrow(indices)
rp.object@id = rp.object@id[selected.rows]
rp.object@percentile = percentile
return(rp.object)
}
|
MPinverse <-
function(Matrix)
{
EPS <- 100*(.Machine$double.eps)
U <- eigen(Matrix)$vectors
D <- eigen(Matrix)$values
Dmatrix <- diag(length(D))
Dmatrix[which(Dmatrix>0)] <- 1/D
Dmatrix[which(abs(Dmatrix)>(1/EPS))] <- 0
A <- U%*%Dmatrix%*%t(U)
return(A)
}
|
"mfa" <- function (X, option = c("lambda1", "inertia", "uniform", "internal"),
scannf = TRUE, nf = 3)
{
if (!inherits(X, "ktab"))
stop("object 'ktab' expected")
if (option[1] == "internal") {
if (is.null(X$tabw)) {
warning("Internal weights not found: uniform weigths are used")
option <- "uniform"
}
}
lw <- X$lw
cw <- X$cw
sepan <- sepan(X, nf = 4)
nbloc <- length(sepan$blo)
indicablo <- factor(rep(1:nbloc, sepan$blo))
rank.fac <- factor(rep(1:nbloc, sepan$rank))
ncw <- NULL
tab.names <- names(X)[1:nbloc]
auxinames <- ktab.util.names(X)
option <- match.arg(option)
if (option == "lambda1") {
for (i in 1:nbloc) {
ncw <- c(ncw, rep(1/sepan$Eig[rank.fac == i][1],
sepan$blo[i]))
}
}
else if (option == "inertia") {
for (i in 1:nbloc) {
ncw <- c(ncw, rep(1/sum(sepan$Eig[rank.fac == i]),
sepan$blo[i]))
}
}
else if (option == "uniform")
ncw <- rep(1, sum(sepan$blo))
else if (option == "internal")
ncw <- rep(X$tabw, sepan$blo)
ncw <- cw * ncw
tab <- X[[1]]
for (i in 2:nbloc) {
tab <- cbind.data.frame(tab, X[[i]])
}
names(tab) <- auxinames$col
anaco <- as.dudi(tab, col.w = ncw, row.w = lw, nf = nf, scannf = scannf,
call = match.call(), type = "mfa")
nf <- anaco$nf
afm <- list()
afm$tab.names <- names(X)[1:nbloc]
afm$blo <- X$blo
afm$TL <- X$TL
afm$TC <- X$TC
afm$T4 <- X$T4
afm$tab <- anaco$tab
afm$eig <- anaco$eig
afm$rank <- anaco$rank
afm$li <- anaco$li
afm$l1 <- anaco$l1
afm$nf <- anaco$nf
afm$lw <- anaco$lw
afm$cw <- anaco$cw
afm$co <- anaco$co
afm$c1 <- anaco$c1
projiner <- function(xk, qk, d, z) {
w7 <- t(as.matrix(xk) * d) %*% as.matrix(z)
iner <- apply(w7 * w7 * qk, 2, sum)
return(iner)
}
link <- matrix(0, nbloc, nf)
for (k in 1:nbloc) {
xk <- X[[k]]
q <- ncw[indicablo == k]
link[k, ] <- projiner(xk, q, lw, anaco$l1)
}
link <- as.data.frame(link)
names(link) <- paste("Comp", 1:nf, sep = "")
row.names(link) <- tab.names
afm$link <- link
w <- matrix(0, nbloc * 4, nf)
i1 <- 0
i2 <- 0
matl1 <- as.matrix(afm$l1)
for (k in 1:nbloc) {
i1 <- i2 + 1
i2 <- i2 + 4
tab <- as.matrix(sepan$L1[sepan$TL[, 1] == levels(sepan$TL[,1])[k], ])
if (ncol(tab) > 4)
tab <- tab[, 1:4]
if (ncol(tab) < 4)
tab <- cbind(tab, matrix(0, nrow(tab), 4 - ncol(tab)))
tab <- t(tab * lw) %*% matl1
for (i in 1:min(nf, 4)) {
if (tab[i, i] < 0) {
for (j in 1:nf) tab[i, j] <- -tab[i, j]
}
}
w[i1:i2, ] <- tab
}
w <- data.frame(w)
names(w) <- paste("Comp", 1:nf, sep = "")
row.names(w) <- auxinames$tab
afm$T4comp <- w
w <- matrix(0, nrow(sepan$TL), ncol = nf)
i1 <- 0
i2 <- 0
for (k in 1:nbloc) {
i1 <- i2 + 1
i2 <- i2 + length(lw)
qk <- ncw[indicablo == k]
xk <- as.matrix(X[[k]])
w[i1:i2, ] <- (xk %*% (qk * t(xk))) %*% (matl1 * lw)
}
w <- data.frame(w)
row.names(w) <- auxinames$row
names(w) <- paste("Fac", 1:nf, sep = "")
afm$lisup <- w
afm$tabw <- X$tabw
afm$call <- match.call()
class(afm) <- c("mfa", "list")
return(afm)
}
"plot.mfa" <- function (x, xax = 1, yax = 2, option.plot = 1:4, ...) {
if (!inherits(x, "mfa"))
stop("Object of type 'mfa' expected")
nf <- x$nf
if (xax > nf)
stop("Non convenient xax")
if (yax > nf)
stop("Non convenient yax")
opar <- par(mar = par("mar"), mfrow = par("mfrow"), xpd = par("xpd"))
on.exit(par(opar))
mfrow <- n2mfrow(length(option.plot))
par(mfrow = mfrow)
for (j in option.plot) {
if (j == 1) {
coolig <- x$lisup[, c(xax, yax)]
s.class(coolig, fac = as.factor(x$TL[, 2]),
label = row.names(x$li), cellipse = 0, sub = "Row projection",
csub = 1.5)
add.scatter.eig(x$eig, x$nf, xax, yax, posi = "topleft",
ratio = 1/5)
}
if (j == 2) {
coocol <- x$co[, c(xax, yax)]
s.arrow(coocol, sub = "Col projection", csub = 1.5)
add.scatter.eig(x$eig, x$nf, xax, yax, posi = "topleft",
ratio = 1/5)
}
if (j == 3) {
s.corcircle(x$T4comp[x$T4[, 2] == levels(x$T4[,2])[1], ],
fullcircle = FALSE, sub = "Component projection", possub = "topright",
csub = 1.5)
add.scatter.eig(x$eig, x$nf, xax, yax, posi = "bottomleft",
ratio = 1/5)
}
if (j == 4) {
plot(x$link[, c(xax, yax)])
scatterutil.grid(0)
title(main = "Link")
par(xpd = TRUE)
scatterutil.eti(x$link[, xax], x$link[, yax],
label = row.names(x$link), clabel = 1)
}
if (j == 5) {
scatterutil.eigen(x$eig, wsel = 1:x$nf, sub = "Eigen values",
csub = 2, possub = "topright")
}
}
}
"print.mfa" <- function (x, ...) {
if (!inherits(x, "mfa"))
stop("non convenient data")
cat("Multiple Factorial Analysis\n")
cat(paste("list of class", class(x)))
cat("\n$call: ")
print(x$call)
cat("$nf:", x$nf, "axis-components saved\n\n")
sumry <- array("", c(6, 4), list(1:6, c("vector", "length",
"mode", "content")))
sumry[1, ] <- c("$tab.names", length(x$tab.names), mode(x$tab.names),
"tab names")
sumry[2, ] <- c("$blo", length(x$blo), mode(x$blo), "column number")
sumry[3, ] <- c("$rank", length(x$rank), mode(x$rank),
"tab rank")
sumry[4, ] <- c("$eig", length(x$eig), mode(x$eig), "eigen values")
sumry[5, ] <- c("$lw", length(x$lw), mode(x$lw), "row weights")
sumry[6, ] <- c("$tabw", length(x$tabw), mode(x$tabw),
"array weights")
print(sumry, quote = FALSE)
cat("\n")
sumry <- array("", c(11, 4), list(1:11, c("data.frame", "nrow",
"ncol", "content")))
sumry[1, ] <- c("$tab", nrow(x$tab), ncol(x$tab), "modified array")
sumry[2, ] <- c("$li", nrow(x$li), ncol(x$li), "row coordinates")
sumry[3, ] <- c("$l1", nrow(x$l1), ncol(x$l1), "row normed scores")
sumry[4, ] <- c("$co", nrow(x$co), ncol(x$co), "column coordinates")
sumry[5, ] <- c("$c1", nrow(x$c1), ncol(x$c1), "column normed scores")
sumry[6, ] <- c("$lisup", nrow(x$lisup), ncol(x$lisup),
"row coordinates from each table")
sumry[7, ] <- c("$TL", nrow(x$TL), ncol(x$TL), "factors for li l1")
sumry[8, ] <- c("$TC", nrow(x$TC), ncol(x$TC), "factors for co c1")
sumry[9, ] <- c("$T4", nrow(x$T4), ncol(x$T4), "factors for T4comp")
sumry[10, ] <- c("$T4comp", nrow(x$T4comp), ncol(x$T4comp),
"component projection")
sumry[11, ] <- c("$link", nrow(x$link), ncol(x$link),
"link array-total")
print(sumry, quote = FALSE)
cat("other elements: ")
if (length(names(x)) > 19)
cat(names(x)[20:(length(mfa))], "\n")
else cat("NULL\n")
}
"summary.mfa" <- function (object, ...) {
if (!inherits(object, "mfa"))
stop("non convenient data")
cat("Multiple Factorial Analysis\n")
cat("rows:", nrow(object$tab), "columns:", ncol(object$tab))
l0 <- length(object$eig)
cat("\n\n$eig:", l0, "eigen values\n")
cat(signif(object$eig, 4)[1:(min(5, l0))])
if (l0 > 5)
cat(" ...\n")
else cat("\n")
}
|
summary.fg <-
function(object, sign.level=0.05, ...){
if (class(object)!="fg") {stop("Object needs to be of class \"fg\"")}
p.val <- function(perm,obsv){
return(min((sum(perm>=obsv))/(sum(is.na(perm)==FALSE))*2,(sum(perm<=obsv))/(sum(is.na(perm)==FALSE))*2,1))
}
fail <- function(perm){
return(sum(is.na(perm))/length(perm)*100)
}
if(object$pairwise==FALSE){
c.table <- cbind(object$scales,object$c.list[[1]][1]-sapply(object$c.list,mean,na.rm = TRUE),object$c.list[[1]][1]-sapply(object$c.list,quantile,probs=0.025,na.rm = TRUE),object$c.list[[1]][1]-sapply(object$c.list,quantile,na.rm = TRUE,probs=0.975),sapply(object$c.list,p.val,obsv=object$c.list[[1]][1]),sapply(object$c.list,fail))
c.table <- cbind(c.table,c.table[,5]<=sign.level)
colnames(c.table) <- c("cell_size","mean","lower_limit", "upper_limit", "P_value", "% failures","Reject H0")
rownames(c.table) <- rep("",dim(c.table)[1])
}else if(object$correlate==FALSE & object$pairwise==TRUE){
m.table <- cbind(object$scales,object$m.list[[1]][1],sapply(object$m.list,mean,na.rm = TRUE),sapply(object$m.list,quantile,probs=0.025,na.rm = TRUE),sapply(object$m.list,quantile,na.rm = TRUE,probs=0.975),sapply(object$m.list,p.val,obsv=object$m.list[[1]][1]),sapply(object$m.list,fail))
m.table <- cbind(m.table,m.table[,6]<=sign.level)
colnames(m.table) <- c("cell_size","observed","mean","lower_limit", "upper_limit", "P_value", "% failures","Reject H0")
rownames(m.table) <- rep("",dim(m.table)[1])
v.table <- cbind(object$scales,object$v.list[[1]][1],sapply(object$v.list,mean,na.rm = TRUE),sapply(object$v.list,quantile,probs=0.025,na.rm = TRUE),sapply(object$v.list,quantile,na.rm = TRUE,probs=0.975),sapply(object$v.list,p.val,obsv=object$v.list[[1]][1]),sapply(object$v.list,fail))
v.table <- cbind(v.table,v.table[,6]<=sign.level)
colnames(v.table) <- c("cell_size","observed","mean","lower_limit", "upper_limit", "P_value", "% failures","Reject H0")
rownames(v.table) <- rep("",dim(v.table)[1])
}else{
c.table <- cbind(object$scales,object$c.list[[1]][1],sapply(object$c.list,mean,na.rm = TRUE),sapply(object$c.list,quantile,probs=0.025,na.rm = TRUE),sapply(object$c.list,quantile,na.rm = TRUE,probs=0.975),sapply(object$c.list,p.val,obsv=object$c.list[[1]][1]),sapply(object$c.list,fail))
c.table <- cbind(c.table,c.table[,6]<=sign.level)
colnames(c.table) <- c("cell_size","observed","mean","lower_limit", "upper_limit", "P_value", "% failures","Reject H0")
rownames(c.table) <- rep("",dim(c.table)[1])
}
cat("\n")
cat("=====================================","\n")
cat(" Floating Grid Permutation Technique","\n")
cat("=====================================","\n")
cat("\n")
cat(paste("Number of scales:",length(object$scales)),"\n")
cat(paste("Number of iterations per scale:",object$iter),"\n")
if(object$pairwise==FALSE){
cat("\n")
cat("---------------------------------------------------------","\n")
cat(" Results for univariate analyses, unexplained Moran's I:","\n")
cat("---------------------------------------------------------","\n")
cat("\n")
print(c.table, row.names=FALSE)
cat("----------------------------------------------------------------------------","\n")
cat(paste(" NOTE: Rejection of H0 based on alpha =",sign.level),"\n")
cat("\n")
}else if(object$correlate==FALSE){
cat("\n")
cat("------------------------------------------","\n")
cat(" Results for multivariate analyses, mean:","\n")
cat("------------------------------------------","\n")
cat("\n")
print(m.table, row.names=FALSE)
cat("\n")
cat(" Results for multivariate analyses, variance:","\n")
cat("----------------------------------------------","\n")
cat("\n")
print(v.table, row.names=FALSE)
cat("----------------------------------------------------------------------------","\n")
cat(paste(" NOTE: Rejection of H0 based on alpha =",sign.level),"\n")
cat("\n")
}else{
cat("\n")
cat("-----------------------------------","\n")
cat(" Results for multivariate analyses,",object$correlate,"correlation:","\n")
cat("-----------------------------------","\n")
cat("\n")
print(c.table, row.names=FALSE)
cat("----------------------------------------------------------------------------","\n")
cat(paste(" NOTE: Rejection of H0 based on alpha =",sign.level),"\n")
cat("\n")
}
}
|
automl_leaderboard <- function(object) {
UseMethod("automl_leaderboard")
}
automl_leaderboard.workflow <- function(object) {
get_leaderboard(object)
}
automl_leaderboard.model_fit <- function(object) {
get_leaderboard(object)
}
automl_leaderboard.model_spec <- function(object) {
msg <- "No leaderboard found. Make sure you have fitted (trained) your parsnip or workflow model with the `fit()` function."
rlang::abort(msg)
}
automl_leaderboard.default <- function(object) {
rlang::abort(stringr::str_glue("This function is designed for `automl_reg()` models. The `object` provided has class: {class(object)[1]}"))
}
automl_update_model <- function(object, model_id) {
if (rlang::is_missing(object)) rlang::abort("`object` is missing. Please provide a valid `automl_reg()` object.")
if (rlang::is_missing(model_id)) rlang::abort("`model_id` is missing. Please provide a valid H2O Model ID.")
UseMethod("automl_update_model")
}
automl_update_model.workflow <- function(object, model_id) {
change_h2o_model(object, model_id)
}
automl_update_model.model_fit <- function(object, model_id) {
change_h2o_model(object, model_id)
}
automl_update_model.model_spec <- function(object, model_id) {
msg <- "No leaderboard found. Make sure you have fitted (trained) your parsnip or workflow model with the `fit()` function."
rlang::abort(msg)
}
automl_update_model.default <- function(object, model_id) {
rlang::abort(stringr::str_glue("This function is designed for `automl_reg()` models. The `object` provided has class: {class(object)[1]}"))
}
|
expected <- eval(parse(text="c(0.00086580086580088, 0.00259740259740261, 0.00519480519480521, 0.00865800865800867, 0.012987012987013, 0.0181818181818182, 0.0242424242424242, 0.0303030303030303, 0.0363636363636363, 0.0424242424242424, 0.0484848484848484, 0.0536796536796536, 0.058008658008658, 0.0614718614718614, 0.064069264069264, 0.0649350649350649, 0.064069264069264, 0.0614718614718614, 0.058008658008658, 0.0536796536796536, 0.0484848484848485, 0.0424242424242424, 0.0363636363636363, 0.0303030303030303, 0.0242424242424242, 0.0181818181818182, 0.012987012987013, 0.00865800865800867, 0.00519480519480521, 0.00259740259740261, 0.000865800865800882)"));
test(id=0, code={
argv <- eval(parse(text="list(c(0.00086580086580088+0i, 0.00259740259740261+0i, 0.00519480519480521+0i, 0.00865800865800867+0i, 0.012987012987013+0i, 0.0181818181818182+0i, 0.0242424242424242+0i, 0.0303030303030303+0i, 0.0363636363636363+0i, 0.0424242424242424+0i, 0.0484848484848484+0i, 0.0536796536796536+0i, 0.058008658008658+0i, 0.0614718614718614+0i, 0.064069264069264+0i, 0.0649350649350649+0i, 0.064069264069264+0i, 0.0614718614718614+0i, 0.058008658008658+0i, 0.0536796536796536+0i, 0.0484848484848485+0i, 0.0424242424242424+0i, 0.0363636363636363+0i, 0.0303030303030303+0i, 0.0242424242424242+0i, 0.0181818181818182+0i, 0.012987012987013+0i, 0.00865800865800867+0i, 0.00519480519480521+0i, 0.00259740259740261+0i, 0.000865800865800882+0i))"));
do.call(`Re`, argv);
}, o=expected);
|
require(testthat)
require(PortfolioAnalytics)
options(in_test=TRUE)
source(system.file("demo/DEMO.R", package="quantstrat"))
qty = book$PORTFOLIO$STOCK[,"Order.Qty"]
price = book$PORTFOLIO$STOCK[,"Order.Price"]
type = book$PORTFOLIO$STOCK[,"Order.Type"]
side = book$PORTFOLIO$STOCK[,"Order.Side"]
status = book$PORTFOLIO$STOCK[,"Order.Status"]
fees = book$PORTFOLIO$STOCK[,"Txn.Fees"]
rule = book$PORTFOLIO$STOCK[,"Rule"]
context("DEMO order book is consistent ")
test_that("The first entry is 100",
{ expect_that(as.character(qty[2]) =="100", is_true()) })
test_that("The first exit is all",
{ expect_that(as.character(qty[3]) =="all", is_true()) })
test_that("The first entry price is 88.9",
{ expect_that(as.character(price[2]) =="88.9", is_true()) })
test_that("The first exit price is 87.42",
{ expect_that(as.character(price[3]) =="87.42", is_true()) })
test_that("The first trade is a market order",
{ expect_that(as.character(type[2]) =="market", is_true()) })
test_that("The first trade is entered long",
{ expect_that(as.character(side[2]) =="long", is_true()) })
test_that("The last trade is closed",
{ expect_that(as.character(status[20]) =="closed", is_true()) })
test_that("The first trade has no transaction fees",
{ expect_that(as.character(fees[2]) =="0", is_true()) })
test_that("The first transaction is an enter long",
{ expect_that(as.character(rule[2]) =="EnterLONG", is_true()) })
test_that("The second transaction is an exit long",
{ expect_that(as.character(rule[3]) =="ExitLONG", is_true()) })
context("DEMO trade statistics are consistent ")
test_that("Num.Txns is 19",
{ expect_that(stats$Num.Txns , equals(19)) })
test_that("Num.Trades is 9",
{ expect_that(stats$Num.Trades , equals(9)) })
test_that("Net.Trading.PL is -36",
{ expect_that(stats$Net.Trading.PL, equals(-36)) })
test_that("Avg.Trade.PL is -4",
{ expect_that(stats$Avg.Trade.PL, equals(-4)) })
test_that("Med.Trade.PL is 6",
{ expect_that(stats$Med.Trade.PL, equals(6)) })
test_that("Largest.Winnner is 581",
{ expect_that(stats$Largest.Winner, equals(581)) })
test_that("Largest.Loser is -1064",
{ expect_that(stats$Largest.Loser, equals(-1064)) })
test_that("Gross.Profits is 1425",
{ expect_that(stats$Gross.Profits, equals(1425)) })
test_that("Gross.Losses is -1461",
{ expect_that(stats$Gross.Losses, equals(-1461)) })
test_that("Std.Dev.Trade.PL is 477.7599",
{ expect_equal(stats$Std.Dev.Trade.PL, 477.7599, .0001) })
test_that("Percent.Positive is 55.55556",
{ expect_equal(stats$Percent.Positive, 55.55556, .0001) })
test_that("Percent.Negative is 44.44444",
{ expect_equal(stats$Percent.Negative, 44.44444, .0001) })
test_that("Profit.Factor is 0.9753593",
{ expect_equal(stats$Profit.Factor, 0.9753593, .0001) })
test_that("Avg.Win.Trade is 285",
{ expect_that(stats$Avg.Win.Trade, equals(285)) })
test_that("Med.Win.Trade is 221",
{ expect_that(stats$Med.Win.Trade, equals(221)) })
test_that("Avg.Losing.Trade is -365.25",
{ expect_that(stats$Avg.Losing.Trade, equals(-365.25)) })
test_that("Med.Losing.Trade is -159.5",
{ expect_that(stats$Med.Losing.Trade, equals(-159.5)) })
test_that("Avg.Daily.PL is -4",
{ expect_that(stats$Avg.Daily.PL, equals(-4)) })
test_that("Med.Daily.PL is 6",
{ expect_that(stats$Med.Daily.PL, equals(6)) })
test_that("Std.Dev.Daily.PL is 477.7599",
{ expect_equal(stats$Std.Dev.Daily.PL, 477.7599, .0001) })
test_that("Max.Drawdown is -1789",
{ expect_that(stats$Max.Drawdown, equals(-1789)) })
test_that("Profit.to.Max.Draw is -0.02012297",
{ expect_equal(stats$Profit.to.Max.Draw, -0.02012297, .0001) })
test_that("Avg.WinLoss.Ratio is 0.7802875",
{ expect_equal(stats$Avg.WinLoss.Ratio, 0.7802875, .0001) })
test_that("Med.WinLoss.Ratio is 1.38558",
{ expect_equal(stats$Med.WinLoss.Ratio , 1.38558, .0001) })
test_that("Max.Equity is 390",
{ expect_that(stats$Max.Equity , equals(390)) })
test_that("Min.Equity is -1539",
{ expect_equal(stats$Min.Equity , -1539, .0001) })
test_that("End.Equity is -36",
{ expect_equal(stats$End.Equity , -36, .0001) })
context("DEMO portfolio returns are consistent ")
test_that("min return is -0.00597",
{ expect_equal(min(rets), -0.00597, .0001) })
test_that("max return is 0.0092",
{ expect_equal(min(rets),0.0092, .0001) })
test_that("skewness of returns is 0.234199",
{ expect_equal(min(rets), 0.234199, .0001) })
test_that("kurtosis of returns is 5.04833",
{ expect_equal(min(rets), 5.04833, .0001) })
|
print.tosANYN <-
function (x, ...)
{
cat("Class 'tosANYN' : Stationarity Object for Arbitrary Length Data :\n")
cat(" ~~~~~~~ : List with", length(x), "components with names\n")
cat(" ", names(x), "\n\n")
cat("\nsummary(.):\n----------\n")
summary.tosANYN(x)
}
|
con.Rrss<-function(X,Y,m,r=1,type="l",sets=FALSE,concomitant=FALSE,alpha){
if (is.vector(X)){
if (is.vector(Y)){
if (length(X)==length(Y)){
if ((alpha<0.5)&(alpha>=0)) {
data=matrix(ncol=2,nrow=length(X))
data.x=X
data.y=Y
sample.x=sample.y=numeric()
set.xy=data.frame(X,Y)
set.x=set.y=matrix(nrow=(m*r),ncol=m)
rss=sample.x=sample.y=numeric()
A<-matrix(0,nrow=(m*r),ncol=(m*2))
a=1
b=0
k=floor(m*alpha)
if (type=="l"){
if (k>0){
for (j in 1:r){
for (i in 1:k){
A=set.xy[sample(nrow(set.xy),size=m,replace=TRUE),]
sample.x[a]=A[sort.list(A[,2]),][k+1,1]
sample.y[a]=A[sort.list(A[,2]),][k+1,2]
set.x[i+b,]=A[sort.list(A[,2]),]$X
set.y[i+b,]=A[sort.list(A[,2]),]$Y
a=a+1
}
for (i in (k+1):(m-k)){
A=set.xy[sample(nrow(set.xy),size=m,replace=TRUE),]
sample.x[a]=A[sort.list(A[,2]),][i,1]
sample.y[a]=A[sort.list(A[,2]),][i,2]
set.x[i+b,]=A[sort.list(A[,2]),]$X
set.y[i+b,]=A[sort.list(A[,2]),]$Y
a=a+1
}
for (i in (m-k+1):m){
A=set.xy[sample(nrow(set.xy),size=m,replace=TRUE),]
sample.x[a]=A[sort.list(A[,2]),][(m-k),1]
sample.y[a]=A[sort.list(A[,2]),][(m-k),2]
set.x[i+b,]=A[sort.list(A[,2]),]$X
set.y[i+b,]=A[sort.list(A[,2]),]$Y
a=a+1
}
b=b+m
}
}else {
for (j in 1:r){
for (i in 1:m){
A=set.xy[sample(nrow(set.xy),size=m,replace=TRUE),]
sample.x[a]=A[sort.list(A[,2]),][i,1]
sample.y[a]=A[sort.list(A[,2]),][i,2]
set.x[i+b,]=A[sort.list(A[,2]),]$X
set.y[i+b,]=A[sort.list(A[,2]),]$Y
a=a+1
}
b=b+m
}
}
}else if (type=="tb"){
if (k>0){
for (j in 1:r){
for (i in 1:k){
A=set.xy[sample(nrow(set.xy),size=m,replace=TRUE),]
sample.x[a]=A[sort.list(A[,2]),][1,1]
sample.y[a]=A[sort.list(A[,2]),][1,2]
set.x[i+b,]=A[sort.list(A[,2]),]$X
set.y[i+b,]=A[sort.list(A[,2]),]$Y
a=a+1
}
for (i in (k+1):(m-k)){
A=set.xy[sample(nrow(set.xy),size=m,replace=TRUE),]
sample.x[a]=A[sort.list(A[,2]),][i,1]
sample.y[a]=A[sort.list(A[,2]),][i,2]
set.x[i+b,]=A[sort.list(A[,2]),]$X
set.y[i+b,]=A[sort.list(A[,2]),]$Y
a=a+1
}
for (i in (m-k+1):m){
A=set.xy[sample(nrow(set.xy),size=m,replace=TRUE),]
sample.x[a]=A[sort.list(A[,2]),][m,1]
sample.y[a]=A[sort.list(A[,2]),][m,2]
set.x[i+b,]=A[sort.list(A[,2]),]$X
set.y[i+b,]=A[sort.list(A[,2]),]$Y
a=a+1
}
b=b+m
}
}else {
for (j in 1:r){
for (i in 1:(m)){
A=set.xy[sample(nrow(set.xy),size=m,replace=TRUE),]
sample.x[a]=A[sort.list(A[,2]),][i,1]
sample.y[a]=A[sort.list(A[,2]),][i,2]
set.x[i+b,]=A[sort.list(A[,2]),]$X
set.y[i+b,]=A[sort.list(A[,2]),]$Y
a=a+1
}
b=b+m
}
}
}else if (type=="re"){
if (m%%2==0){
for (j in 1:r){
for (i in 1:(m/2)){
A=set.xy[sample(nrow(set.xy),size=m,replace=TRUE),]
sample.x[a]=A[sort.list(A[,2]),][k+1,1]
sample.y[a]=A[sort.list(A[,2]),][k+1,2]
set.x[i+b,]=A[sort.list(A[,2]),]$X
set.y[i+b,]=A[sort.list(A[,2]),]$Y
a=a+1
}
for (i in ((m/2)+1):m){
A=set.xy[sample(nrow(set.xy),size=m,replace=TRUE),]
sample.x[a]=A[sort.list(A[,2]),][m-k,1]
sample.y[a]=A[sort.list(A[,2]),][m-k,2]
set.x[i+b,]=A[sort.list(A[,2]),]$X
set.y[i+b,]=A[sort.list(A[,2]),]$Y
a=a+1
}
b=b+m
}
}else {
for (j in 1:r){
for (i in 1:((m-1)/2)){
A=set.xy[sample(nrow(set.xy),size=m,replace=TRUE),]
sample.x[a]=A[sort.list(A[,2]),][k+1,1]
sample.y[a]=A[sort.list(A[,2]),][k+1,2]
set.x[i+b,]=A[sort.list(A[,2]),]$X
set.y[i+b,]=A[sort.list(A[,2]),]$Y
a=a+1
}
A=set.xy[sample(nrow(set.xy),size=m,replace=TRUE),]
sample.x[a]=A[sort.list(A[,2]),][(m+1)/2,1]
sample.y[a]=A[sort.list(A[,2]),][(m+1)/2,2]
set.x[a,]=A[sort.list(A[,2]),]$X
set.y[a,]=A[sort.list(A[,2]),]$Y
a=a+1
for (i in ((m+3)/2):m){
A=set.xy[sample(nrow(set.xy),size=m,replace=TRUE),]
sample.x[a]=A[sort.list(A[,2]),][m-k,1]
sample.y[a]=A[sort.list(A[,2]),][m-k,2]
set.x[i+b,]=A[sort.list(A[,2]),]$X
set.y[i+b,]=A[sort.list(A[,2]),]$Y
a=a+1
}
b=b+m
}
}
}
sample.x=matrix(sample.x,ncol=m,nrow=r,byrow=T)
cn=rn=numeric()
for (i in 1:r){
rn[i]=paste("r","=",i)
}
for (i in 1:m){
cn[i]=paste("m","=",i)
}
rownames(sample.x)=rn
colnames(sample.x)=cn
sample.y=matrix(sample.y,ncol=m,nrow=r,byrow=T)
rownames(sample.y)=rn
colnames(sample.y)=cn
if (concomitant==T){
if (sets==T){
return(list(corr.coef=cor(X,Y),var.of.interest=set.x,concomitant.var.=set.y,sample.x=sample.x,sample.y=sample.y))
}else {
return(list(sample.x=sample.x,sample.y=sample.y))
}
}else {
if (sets==T){
return(list(corr.coef=cor(X,Y),var.of.interest=set.x,sample.x=sample.x))
}else {
return(list(sample.x=sample.x))
}
}
}else stop("alpha is out of bound",call.=F)
}else stop("X and Y must be in same length",call.=F)
}else stop("Y must be a vector!",call.=F)
}else stop("X must be a vector!",call.=F)
}
|
"csie"
"csig"
"csip"
"csiv"
"igicr"
"iip32"
"iip64"
"iipsc"
"iis32"
"iis64"
"iitc"
"ipipipc"
"isc"
|
Mixt.fit <- function(X, k = 1:3, init.par = NULL, cov.model = "all", theta.model = "all", density, ncores = 1, verbose = FALSE, ret.all = FALSE) {
if (!is.matrix(X)) {
base::stop("Provided data are not in a matrix format.")
}
if (any(cov.model == "all")) {
model.c <- c("EII", "VII", "EEI", "VEI", "EVI", "VVI", "EEE", "VEE", "EVE", "EEV", "VVE", "VEV", "EVV", "VVV")
} else {
model.c <- cov.model
}
if (any(theta.model == "all")) {
model.t <- c("E", "V")
} else {
model.t <- theta.model
}
model <- expand.grid(model.c, model.t)
tot <- as.numeric(nrow(model))
l <- NULL
oper <- vector(mode = "list", length = length(k))
if (density == "MSEN") {
for (t in 1:length(k)) {
if (verbose == TRUE) {
if (length(k) == 1) {
print(paste("Fitting Parsimonious Multivariate Sen Mixtures with k =", k))
} else {
print(paste("Fitting Parsimonious Multivariate Sen Mixtures with k =", k[t]))
}
}
cluster <- snow::makeCluster(ncores, type = "SOCK")
doSNOW::registerDoSNOW(cluster)
pb <- utils::txtProgressBar(max = tot, style = 3)
progress <- function(n) utils::setTxtProgressBar(pb, n)
opts <- list(progress = progress)
oper[[t]] <- foreach::foreach(l = 1:tot, .export = c("Mix_Sen"), .combine = "comb", .multicombine = TRUE, .init = list(list()), .options.snow = opts) %dopar% {
res <- tryCatch(Mix_Sen(X = X, k = k[t], init.par = init.par[[t]], model = as.character(model[l, 1]), theta.model = as.character(model[l, 2]), verbose = FALSE), error = function(e) {
NA
})
list(res)
}
snow::stopCluster(cluster)
foreach::registerDoSEQ()
close(pb)
}
}
if (density == "MTIN") {
for (t in 1:length(k)) {
if (verbose == TRUE) {
if (length(k) == 1) {
print(paste("Fitting Parsimonious Multivariate Tin Mixtures with k =", k))
} else {
print(paste("Fitting Parsimonious Multivariate Tin Mixtures with k =", k[t]))
}
}
cluster <- snow::makeCluster(ncores, type = "SOCK")
doSNOW::registerDoSNOW(cluster)
pb <- utils::txtProgressBar(max = tot, style = 3)
progress <- function(n) utils::setTxtProgressBar(pb, n)
opts <- list(progress = progress)
oper[[t]] <- foreach::foreach(l = 1:tot, .export = c("Mix_Tin"), .combine = "comb", .multicombine = TRUE, .init = list(list()), .options.snow = opts) %dopar% {
res <- tryCatch(Mix_Tin(X = X, k = k[t], init.par = init.par[[t]], model = as.character(model[l, 1]), theta.model = as.character(model[l, 2]), verbose = FALSE), error = function(e) {
NA
})
list(res)
}
snow::stopCluster(cluster)
foreach::registerDoSEQ()
close(pb)
}
}
BICres <- array(NA, dim = c(tot, 1, length(k)))
ICLres <- array(NA, dim = c(tot, 1, length(k)))
for (t in 1:length(k)) {
for (m in 1:tot) {
if (length(oper[[t]][[1]][[m]]) > 1) {
if (oper[[t]][[1]][[m]][["mark"]] == 0 & oper[[t]][[1]][[m]][["check"]] == 1) {
BICres[m, 1, t] <- oper[[t]][[1]][[m]][["BIC"]]
ICLres[m, 1, t] <- oper[[t]][[1]][[m]][["ICL"]]
} else {
oper[[t]][[1]][[m]] <- NA
}
} else {
BICres[m, 1, t] <- NA
ICLres[m, 1, t] <- NA
}
}
}
df <- data.frame(matrix(NA, nrow = 2, ncol = 3), row.names = c("BIC", "ICL"))
colnames(df) <- c("Model", "Value", "G")
complete.model <- cbind(rep(as.character(model$Var1), length(k)), rep(as.character(model$Var2), length(k)))
df[1, 1] <- paste(complete.model[which.min(BICres), 1], complete.model[which.min(BICres), 2], sep = "-")
df[1, 2] <- min(BICres, na.rm = TRUE)
if (length(k) == 1) {
df[1, 3] <- k
} else {
df[1, 3] <- k[which(BICres == min(BICres, na.rm = TRUE), arr.ind = TRUE)[1, 3]]
}
df[2, 1] <- paste(complete.model[which.min(ICLres), 1], complete.model[which.min(ICLres), 2], sep = "-")
df[2, 2] <- min(ICLres, na.rm = TRUE)
if (length(k) == 1) {
df[2, 3] <- k
} else {
df[2, 3] <- k[which(ICLres == min(ICLres, na.rm = TRUE), arr.ind = TRUE)[1, 3]]
}
b.w1 <- substr(df[1, 1], 1, 3)
b.w2 <- substr(df[1, 1], 5, 5)
i.w1 <- substr(df[2, 1], 1, 3)
i.w2 <- substr(df[2, 1], 5, 5)
if (length(k) == 1) {
for (b in 1:length(oper[[1]][[1]])) {
tryCatch(if (b.w1 == oper[[1]][[1]][[b]][[2]] & b.w2 == oper[[1]][[1]][[b]][[3]]) {
BicWin <- oper[[1]][[1]][[b]]
}, error = function(e) {})
}
for (i in 1:length(oper[[1]][[1]])) {
tryCatch(if (i.w1 == oper[[1]][[1]][[i]][[2]] & i.w2 == oper[[1]][[1]][[i]][[3]]) {
IclWin <- oper[[1]][[1]][[i]]
}, error = function(e) {})
}
} else {
slb <- which(BICres == min(BICres, na.rm = TRUE), arr.ind = TRUE)[1, 3]
sli <- which(ICLres == min(ICLres, na.rm = TRUE), arr.ind = TRUE)[1, 3]
for (b in 1:length(oper[[slb]][[1]])) {
tryCatch(if (b.w1 == oper[[slb]][[1]][[b]][[2]] & b.w2 == oper[[slb]][[1]][[b]][[3]]) {
BicWin <- oper[[slb]][[1]][[b]]
}, error = function(e) {})
}
for (i in 1:length(oper[[sli]][[1]])) {
tryCatch(if (i.w1 == oper[[sli]][[1]][[i]][[2]] & i.w2 == oper[[sli]][[1]][[i]][[3]]) {
IclWin <- oper[[sli]][[1]][[i]]
}, error = function(e) {})
}
}
if (ret.all == FALSE) {
return(list(BicWin = BicWin, IclWin = IclWin, Summary = df))
} else {
return(list(all.models = oper, BicWin = BicWin, IclWin = IclWin, Summary = df))
}
}
|
`print.summary.isomap` <-
function (x, ...)
{
cat("\nCall:\n")
cat(deparse(x$call), "\n\n")
cat("Points:\n")
print(x$points, ...)
cat("\nRetained dissimilarities between points:\n")
print(t(x$net), ...)
cat("\nRetained", x$nnet, "of", x$ndis, "dissimilarities\n")
invisible(x)
}
|
NULL
sso_info <- function(sso) {
sso_check(sso)
sso_name <- deparse(substitute(sso))
has_notes <-
sso@user_model_info != "Use this space to store notes about your model"
has_code <-
sso@model_code != "Use this space to store your model code"
cat(
sso_name,
"---------------------",
paste("Model name:", sso@model_name),
paste("Parameters:", length(sso@param_names)),
paste("Parameter groups:", length(names(sso@param_dims))),
paste("Chains:", sso@n_chain),
paste("Iterations:", sso@n_iter),
paste("Warmup:", sso@n_warmup),
paste("Has model code:", has_code),
paste("Has user notes:", has_notes),
sep = "\n"
)
}
model_code <- function(sso, code = NULL) {
sso_check(sso)
validate_model_code(code)
if (is.null(code))
return(slot(sso, "model_code"))
slot(sso, "model_code") <- code
message(
paste0(
"Successfully added code.",
"\nYou can view the code in the",
"ShinyStan GUI on the 'Model Code' page."
)
)
sso
}
validate_model_code <- function(code) {
if (is.null(code) || is.character(code)) {
invisible(TRUE)
} else {
stop("Model code should be NULL or a string", call. = FALSE)
}
}
notes <- function(sso, note = NULL, replace = FALSE) {
sso_check(sso)
if (is.null(note))
return(slot(sso, "user_model_info"))
if (!is.character(note) || !isTRUE(length(note) == 1))
stop("'note' should be a single string")
slot(sso, "user_model_info") <- if (replace)
note else c(slot(sso, "user_model_info"), paste0("\n\n", note))
message(
paste(
"Successfully added note.",
"\nYou can view the notes in the",
"ShinyStan GUI on the 'Notepad' page."
)
)
sso
}
model_name <- function(sso, name = NULL) {
sso_check(sso)
if (is.null(name))
return(slot(sso, "model_name"))
if (!is.character(name) || !isTRUE(length(name) == 1))
stop("'name' should be a single string")
slot(sso, "model_name") <- name
message(paste("Successfully changed model name to", name))
sso
}
rename_model <- function(sso, new_model_name) {
.Deprecated("model_name()")
model_name(sso, new_model_name)
}
|
library(prabclus)
data(kykladspecreg)
data(nb)
set.seed(1234)
x <- prabinit(prabmatrix=kykladspecreg, neighborhood=nb)
print(prabclust(x))
data(tetragonula)
ta <- alleleconvert(strmatrix=tetragonula[1:50,])
tai <- alleleinit(allelematrix=ta)
print(prabclust(tai))
data(veronica)
vei <- prabinit(prabmatrix=veronica[1:50,],distance="jaccard")
print(prabclust(vei,mdsmethod="kruskal",mdsdim=3))
options(digits=3)
data(kykladspecreg)
data(nb)
set.seed(1234)
x <- prabinit(prabmatrix=kykladspecreg, neighborhood=nb)
xc <- prabclust(x)
crmatrix(x,xc)
crmatrix(x,xc, percentages=TRUE)
options(digits=4)
data(veronica)
vei <- prabinit(prabmatrix=veronica[1:50,],distance="jaccard")
ppv <- prabclust(vei)
veloci <- prabinit(prabmatrix=veronica[1:50,],rows.are.species=FALSE)
velociclust <- prabclust(veloci,nnk=0)
lociplots(ppv,velociclust$clustering,veloci,lcluster=3)
|
run_solver = function(x, method, ...) {
assertClass(x, "tsp_instance")
assertChoice(method, choices = get_solvers())
if (method %in% c("nearest_insertion",
"farthest_insertion",
"cheapest_insertion",
"arbitrary_insertion",
"nn",
"repetitive_nn",
"concorde",
"linkern")) {
solve_TSP(as_TSP(x), method = method, control = list(...))
} else if(method == "2-opt") {
fast_two_opt(x)
}
}
get_solvers = function() {
c(
"nearest_insertion",
"farthest_insertion",
"cheapest_insertion",
"arbitrary_insertion",
"nn",
"repetitive_nn",
"2-opt",
"concorde",
"linkern"
)
}
fast_two_opt = function(x, initial_tour) {
dists = as.matrix(x$dists)
if (missing(initial_tour))
initial_tour = sample(1:number_of_cities(x))
res = .Call(do_fast_two_opt, dists, initial_tour)
TOUR(x = res[[1]], method = "2-opt", tsp = as_TSP(x))
}
|
if (interactive()) {
library(shiny)
library(shinyWidgets)
ui <- fluidPage(
br(),
pickerInput(
inputId = "p1",
label = "Default",
multiple = TRUE,
choices = rownames(mtcars),
selected = rownames(mtcars)[1:5]
),
br(),
pickerInput(
inputId = "p1b",
label = "Default with | separator",
multiple = TRUE,
choices = rownames(mtcars),
selected = rownames(mtcars)[1:5],
options = list(`multiple-separator` = " | ")
),
br(),
pickerInput(
inputId = "p2",
label = "Static",
multiple = TRUE,
choices = rownames(mtcars),
selected = rownames(mtcars)[1:5],
options = list(`selected-text-format`= "static",
title = "Won't change")
),
br(),
pickerInput(
inputId = "p3",
label = "Count",
multiple = TRUE,
choices = rownames(mtcars),
selected = rownames(mtcars)[1:5],
options = list(`selected-text-format`= "count")
),
br(),
pickerInput(
inputId = "p3",
label = "Customize count",
multiple = TRUE,
choices = rownames(mtcars),
selected = rownames(mtcars)[1:5],
options = list(
`selected-text-format`= "count",
`count-selected-text` = "{0} models choosed (on a total of {1})"
)
)
)
server <- function(input, output, session) {
}
shinyApp(ui = ui, server = server)
}
|
mk_hypercube_graph <- function(n,sep="") {
mk_binary_graph(n,sep,delta=1)
}
mk_binary_graph <- function(n,sep="",delta=1,test=`==`) {
binary <- function(x,n){
ans <- rep(0,n)
y <- NULL
while (x != 0){
y <- c(y,x %% 2)
x <- x %/% 2
}
if (length(y) !=0)
ans[1:length(y)] <- y
return(ans)
}
nodeid <- NULL
if (length(n) !=1) {
nodeid <- n
n <- length(nodeid)
}
nnodes <- 2^n
id <- sapply(0:(2^n -1),binary,n)
if (is.null(nodeid)){
nnames <- apply(id,2, function(x) do.call("paste",as.list(c(x,sep=sep))))
idnames <- as.data.frame(id)
}
else {
nnames <- c("0", apply(id[,-1],2,
function(x) do.call("paste",as.list(c(nodeid[as.logical(rev(x))],sep=sep)))))
idnames <- c(list(NULL),lapply(2:ncol(id), function(i) nodeid[as.logical(id[,i])]))
}
g <- new("graphNEL", nodes=nnames)
for (i in 1:(length(nnames)-1)){
x <- nnames[i]
for (j in (i+1):length(nnames)) {
y <- nnames[j]
diff <- id[,i] - id[,j]
if (all(diff>=0) | all(diff <=0)){
if(test(sum(abs(diff)),delta))
g <-addEdge(x,y,g)
}
}
}
nodeDataDefaults(g, "id") <- "id"
nodeData(g,nodes(g),"id") <- idnames
return(g)
}
mk_line_graph <- function(g,sep="-"){
nodesg <- nodes(g)
e <- edgeMatrix(g,duplicates=FALSE)
idnames <- lapply(1:ncol(e), function(i) nodesg[e[,i]])
e <- matrix(nodesg[e],ncol=2,byrow=TRUE)
ledges <- NULL
lnode_names <- apply(e,1, function(z) do.call("paste",as.list(c(z,sep=sep))))
nlnodes <- length(lnode_names)
for (i in 1:(nlnodes-1)) {
a <- e[i,]
for (j in 2:nlnodes){
b <- e[j,]
if (length(intersect(a,b)) ==1)
ledges <- rbind(ledges,lnode_names[c(i,j)])
}
}
newg <- new("graphNEL", nodes=lnode_names)
newg <- addEdge(ledges[,1],ledges[,2],newg)
nodeDataDefaults(newg, "id") <- "id"
nodeData(newg,nodes(newg),"id") <- idnames
return(newg)
}
kspace_graph <- function(n,m, link=NULL,sep="-"){
nid <- NULL
if (length(n) !=1) {
nid <- n
n <- length(n)
}
knodes <- combn(n, m)
if (is.null(nid)){
knode_names <- apply(knodes, 2,function(z) do.call("paste",as.list(c(z,sep=sep))))
idnames <- lapply(1:ncol(knodes), function(i) knodes[,i])
}
else {
knode_names <- apply(knodes, 2,function(z) do.call("paste",as.list(c(nid[z],sep=sep))))
idnames <- lapply(1:ncol(knodes), function(i) nid[knodes[,i]])
}
if (is.null(link))
newg <- mk_complete_graph(knode_names)
else {
nknodes <- length(knode_names)
ed <- NULL
for (i in 1:(nknodes-1)) {
a <- knodes[,i]
for (j in 2:nknodes){
b <- knodes[,j]
if (length(intersect(a,b)) ==link)
ed <- rbind(ed,knode_names[c(i,j)])
}
}
newg <- new("graphNEL", nodes=knode_names)
newg <- addEdge(ed[,1],ed[,2],newg)
}
nodeDataDefaults(newg, "id") <- "id"
nodeData(newg,nodes(newg),"id") <- idnames
return(newg)
}
graph_product <- function(g,h, type="cartesian",sep="-"){
g1 <- nodes(g)
h1 <- nodes(h)
k1 <- cbind(rep(g1,times=length(h1)),rep(h1,each=length(g1)))
n <- apply(k1,1, function(z) do.call("paste",as.list(c(z,sep=sep))))
idnames <- as.data.frame(t(k1),stringsAsFactors=F)
ed <- NULL
if (type=="cartesian") {
for (i in 1:(length(n) -1))
for (j in (i+1):length(n))
if (((k1[i,1]== k1[j,1]) && isAdjacent(h, k1[i,2],k1[j,2]) ) ||
((k1[i,2]== k1[j,2]) && isAdjacent(g, k1[i,1],k1[j,1]) ))
ed <- rbind(ed, n[c(i,j)])
}
else if (type=="tensor"){
for (i in 1:(length(n) -1))
for (j in (i+1):length(n))
if (isAdjacent(g, k1[i,1],k1[j,1]) && isAdjacent(h, k1[i,2],k1[j,2])) ed <- rbind(ed, n[c(i,j)])
}
else if (type=="strong"){
for (i in 1:(length(n) -1))
for (j in (i+1):length(n))
if ((((k1[i,1]== k1[j,1]) || isAdjacent(g, k1[i,1],k1[j,1])) &&
isAdjacent(h, k1[i,2],k1[j,2])) ||
(((k1[i,2]== k1[j,2]) || isAdjacent(h, k1[i,2],k1[j,2])) &&
isAdjacent(g, k1[i,1],k1[j,1])))
ed <- rbind(ed, n[c(i,j)])
}
newg <- new("graphNEL", nodes=n)
newg <- addEdge(ed[,1],ed[,2],newg)
nodeDataDefaults(newg, "id") <- "id"
nodeData(newg,nodes(newg),"id") <- idnames
return(newg)
}
graph_compose <- function(g,h,sep="-"){
g1 <- nodes(g)
h1 <- nodes(h)
k1 <- cbind(rep(g1,times=length(h1)),rep(h1,each=length(g1)))
n <- apply(k1,1, function(z) do.call("paste",as.list(c(z,sep=sep))))
ed <- NULL
for (i in 1:(length(n) -1)){
for (j in (i+1):length(n))
if (((k1[i,1]== k1[j,1]) && isAdjacent(h, k1[i,2],k1[j,2]) ) ||
isAdjacent(g, k1[i,1],k1[j,1]))
ed <- rbind(ed, n[c(i,j)])
}
newg <- new("graphNEL", nodes=n)
newg <- addEdge(ed[,1],ed[,2],newg)
return(newg)
}
knn_graph <- function(g,k=2) {
nod <- nodes(g)
modeg <- edgemode(g)
edgemode(g) <- "directed"
for (i in 1:length(nod)){
n <- nod[i]
a <- edges(g,n)[[1]]
b <- edgeWeights(g,n)[[1]]
if (length(b) > k){
o <- order(b)[-(1:k)]
g <- removeEdge(n,a[o],g)
}
}
edgemode(g) <- modeg
return(g)
}
dn_graph <- function(g,d=1, test=`<=`) {
e <- edgeMatrix(g,duplicates=FALSE)
ew <- eWV(g,e)
e <- matrix(nodes(g)[e],ncol=2,byrow=TRUE)
x <- test(ew,d)
return(ftM2graphNEL(e[x,],ew[x],edgemode="undirected"))
}
graph_sum <- function(g,h, combineWeight=`+`) {
eg <- edgeMatrix(g,duplicates=FALSE)
wg <- eWV(g,eg)
eh <- edgeMatrix(h,duplicates=FALSE)
wh <- eWV(h,eh)
m <- match(lapply(1:ncol(eg), function(i) eg[,i]),lapply(1:ncol(eh), function(i) eh[,i]))
m <- na.omit(cbind(1:ncol(eg), m))
eg <- matrix(nodes(g)[eg],ncol=2,byrow=TRUE)
eh <- matrix(nodes(h)[eh],ncol=2,byrow=TRUE)
e <- rbind(eg,eh[-m[,2],])
wg[m[,1]] <- combineWeight(wg[m[,1]], wh[m[,2]])
ew <- c(wg,wh[-m[,2]])
return(ftM2graphNEL(e,ew,edgemode="undirected"))
}
bipartite_graph <- function(n1,n2){
f <- matrix(nrow=length(n1)*length(n2),ncol=2)
f[,1] <- n1
f[,2] <- rep(n2, each=length(n1))
return(ftM2graphNEL(f, edgemode="undirected"))
}
iterated_line_graph <- function(g,sep="-"){
enum1 <- edgeMatrix(g,duplicates=FALSE)
ed1 <- NULL
nnodes1 <- ncol(enum1)
for (i in 1:(nnodes1-1)) {
a <- enum1[,i]
for (j in 2:nnodes1){
b <- enum1[,j]
if (length(intersect(a,b)) ==1)
ed1 <- cbind(ed1,c(i,j))
}
}
enum2 <- ed1
nnodes2 <- ncol(enum2)
rnodes <- as.vector(enum1[,enum2])
rnodes <- matrix(rnodes,nrow=4)
rnodesl <- list(NULL)
rnodesp <- vector("numeric",length=ncol(rnodes))
nnodes <- 0
for (j in 1: nnodes2) {
nj <- sort(unique(rnodes[,j]))
pj <- which(sapply(rnodesl, function(x) (length(x) == length(nj)) && all(x==nj)))
if (length(pj)==1)
rnodesp[j] <- pj
else {
nnodes <- nnodes+1
rnodesp[j] <- nnodes
rnodesl[[nnodes]] <- nj
}
}
ed2 <- NULL
for (i in 1:(nnodes2-1)) {
a <- enum2[,i]
for (j in 2:nnodes2){
b <- enum2[,j]
if (length(intersect(a,b)) ==1 && rnodesp[i] != rnodesp[j])
ed2 <- cbind(ed2,rnodesp[c(i,j)])
}
}
ed2 <- t(unique(t(apply(ed2,2,sort))))
lnode_names <- sapply(rnodesl, function(x) do.call("paste",as.list(c(nodes(g)[x],sep=sep))))
newg <- new("graphNEL", nodes=lnode_names)
newg <- addEdge(lnode_names[ed2[1,]],lnode_names[ed2[2,]],newg)
return(newg)
}
|
tidy.LDA <- function(x, matrix = c("beta", "gamma"), log = FALSE, ...) {
tidy_topicmodels(x = x, matrix = matrix, log = log, ...)
}
tidy.CTM <- function(x, matrix = c("beta", "gamma"), log = FALSE, ...) {
tidy_topicmodels(x = x, matrix = matrix, log = log, ...)
}
tidy_topicmodels <- function(x, matrix = c("beta", "gamma"), log = FALSE, ...) {
matrix <- match.arg(matrix)
if (matrix == "gamma") {
mat <- x@gamma
} else {
mat <- x@beta
}
ret <- reshape2::melt(mat) %>%
tibble::as_tibble()
if (matrix == "beta") {
ret <- transmute(ret, topic = Var1, term = x@terms[Var2], beta = value)
} else {
ret <- transmute(ret, document = Var1, topic = Var2, gamma = value)
if (!is.null(x@documents)) {
ret$document <- x@documents[ret$document]
}
}
if (matrix == "beta" && !log) {
ret[[matrix]] <- exp(ret[[matrix]])
} else if (matrix == "gamma" && log) {
ret[[matrix]] <- log(ret[[matrix]])
}
ret
}
augment.LDA <- function(x, data, ...) {
augment_topicmodels(x, data, ...)
}
augment.CTM <- function(x, data, ...) {
augment_topicmodels(x, data, ...)
}
augment_topicmodels <- function(x, data, ...) {
word_assignments <- x@wordassignments
rownames(word_assignments) <- x@documents
colnames(word_assignments) <- x@terms
ret <- tidy.simple_triplet_matrix(word_assignments)
colnames(ret) <- c("document", "term", ".topic")
if (!missing(data)) {
if (inherits(data, "simple_triplet_matrix")) {
data <- tidy(data)
} else if (!inherits(data, "data.frame") &&
!(all(c("document", "term") %in% colnames(data)))) {
stop(
"data argument must either be a simple_triplet_matrix (such as ",
"a DocumentTermMatrix) or a table with document and term columns"
)
}
ret <- left_join(data, ret, by = c("document", "term"))
}
ret
}
glance.LDA <- function(x, ...) {
ret <- tibble(iter = x@iter, terms = x@n)
if (!is.null(x@alpha)) {
ret$alpha <- x@alpha
}
ret
}
glance.CTM <- function(x, ...) {
tibble(iter = x@iter, terms = x@n)
}
generics::augment
|
context("tsvreq_classic_methods")
test_that("test the set methods",{
set.seed(101)
X<-matrix(runif(1000),10,100)
h<-tsvreq_classic(X)
expect_error(set_ts(h,3),"Error in set_ts: tsvreq_classic slots should not be changed individually")
expect_error(set_com(h,3),"Error in set_com: tsvreq_classic slots should not be changed individually")
expect_error(set_comnull(h,2),"Error in set_comnull: tsvreq_classic slots should not be changed individually")
expect_error(set_tsvr(h,12),"Error in set_tsvr: tsvreq_classic slots should not be changed individually")
expect_error(set_wts(h,12),"Error in set_wts: tsvreq_classic slots should not be changed individually")
})
test_that("test the get methods",{
set.seed(102)
X<-matrix(runif(1000),10,100)
h<-tsvreq_classic(X)
expect_equal(get_ts(h),h$ts)
expect_equal(get_com(h),h$com)
expect_equal(get_comnull(h),h$comnull)
expect_equal(get_tsvr(h),h$tsvr)
expect_equal(get_wts(h),h$wts)
})
test_that("test the summary method",{
set.seed(101)
X<-matrix(runif(10*20)+1,10,20)
inp<-tsvreq_classic(X)
out<-summary(inp)
expect_s3_class(out,"summary_tsvr")
expect_s3_class(out,"list")
expect_equal(names(out),c("class","ts_start","ts_end","ts_length","com_length","comnull_length","tsvr_length","wts_length"))
expect_equal(out$class,"tsvreq_classic")
expect_equal(out$ts_start,inp$ts[1])
expect_equal(out$ts_end,inp$ts[length(inp$ts)])
expect_equal(out$ts_length,length(inp$ts))
expect_equal(out$com_length,length(inp$ts))
expect_equal(out$comnull_length,length(inp$ts))
expect_equal(out$tsvr_length,length(inp$ts))
expect_equal(out$wts_length,length(inp$ts))
})
test_that("test the print method",{
set.seed(101)
X<-matrix(runif(10*20)+1,10,20)
inp<-tsvreq_classic(X)
expect_known_output(print(inp),"../vals/print_tsvreq_classic_testval_01.txt",print=TRUE,update=FALSE)
})
test_that("test the plot method",{
X<-matrix(runif(10*100),10,100)
inp<-tsvreq_classic(X)
Test_plot_tsvreq_classic<-function(){plot(inp)}
expect_doppelganger(title="Test-plot-tsvreq-classic",fig=Test_plot_tsvreq_classic)
})
|
rbind.mask <- function (...) {
dropduplicates <- TRUE
allargs <- list(...)
spacing <- attr(allargs[[1]],'spacing')
area <- attr(allargs[[1]], 'area')
check <- function (x) {
if (!is(x,'mask'))
stop ("arguments must be mask objects")
if (attr(x,'spacing') != spacing)
stop ("arguments must have same 'spacing' attribute")
if (attr(x,'area') != area)
stop ("arguments must have same area attribute")
}
sapply (allargs, check)
temp <- rbind.data.frame(...)
class(temp) <- c('mask', 'data.frame')
tempcov <- lapply(allargs, covariates)
covariates(temp) <- do.call(rbind, tempcov)
if (dropduplicates) {
dupl <- duplicated(temp)
droppedrows <- sum(dupl)
if (droppedrows>0) {
covariates(temp) <- covariates(temp)[!dupl,]
temp <- temp[!dupl,]
warning (droppedrows, " duplicate points dropped from mask")
}
}
attr(temp,'type') <- 'rbind'
attr(temp,'meanSD') <- getMeanSD(temp)
attr(temp,'area') <- area
attr(temp,'spacing') <- spacing
xl <- range(temp$x) + spacing/2 * c(-1,1)
yl <- range(temp$y) + spacing/2 * c(-1,1)
attr(temp,'boundingbox') <- expand.grid(x=xl,y=yl)[c(1,2,4,3),]
temp
}
|
nlmixrGill83 <- function(what, args, envir = parent.frame(),
which, gillRtol = sqrt(.Machine$double.eps), gillK = 10L, gillStep = 2, gillFtol = 0) {
if (missing(which)) {
which <- rep(TRUE, length(args))
}
return(nlmixrGill83_(what, args, envir, which,
gillRtol = sqrt(.Machine$double.eps), gillK = 10L, gillStep = 2, gillFtol = 0
))
}
.nlmixrGradInfo <- new.env(parent = emptyenv())
nlmixrGradFun <- function(what, envir = parent.frame(), which, thetaNames,
gillRtol = sqrt(.Machine$double.eps), gillK = 10L, gillStep = 2, gillFtol = 0,
useColor = crayon::has_color(),
printNcol = floor((getOption("width") - 23) / 12),
print = 1) {
.md5 <- digest::digest(list(what, gillRtol, gillK, gillStep, gillFtol))
.nlmixrGradInfo[["printNcol"]] <- printNcol
.nlmixrGradInfo[["useColor"]] <- useColor
.nlmixrGradInfo[["isRstudio"]] <- (Sys.getenv("RSTUDIO") == "1")
.nlmixrGradInfo[["print"]] <- print
if (!missing(which)) {
.nlmixrGradInfo[[paste0(.md5, ".w")]] <- which
}
if (!missing(thetaNames)) {
.nlmixrGradInfo[["thetaNames"]] <- thetaNames
}
.nlmixrGradInfo[[paste0(.md5, ".n")]] <- 0L
.nlmixrGradInfo[[paste0(.md5, ".f")]] <- what
.nlmixrGradInfo[[paste0(.md5, ".e")]] <- envir
.nlmixrGradInfo[[paste0(.md5, ".rtol")]] <- gillRtol
.nlmixrGradInfo[[paste0(.md5, ".k")]] <- gillK
.nlmixrGradInfo[[paste0(.md5, ".s")]] <- gillStep
.nlmixrGradInfo[[paste0(.md5, ".ftol")]] <- gillFtol
.eval <- eval(parse(text = paste0("function(theta){
nlmixrEval_(theta, \"", .md5, "\");
}")))
.grad <- eval(parse(text = paste0("function(theta){
nlmixrGrad_(theta, \"", .md5, "\");
}")))
.hist <- eval(parse(text = paste0("function(){
nlmixrParHist_(md5=\"", .md5, "\");
}")))
.unscaled <- eval(parse(text = paste0("function(theta){
nlmixrUnscaled_(theta,md5=\"", .md5, "\");
}")))
return(list(eval = .eval, grad = .grad, hist = .hist, unscaled = .unscaled))
}
nlmixrHess <- function(par, fn, ..., envir = parent.frame()) {
.gill <- nlmixrGill83(fn, par, envir = envir, ...)
return(nlmixrHess_(par, fn, envir, .gill))
}
|
mimicCenPlotMark<-function(squareness, xMark, yMark,
defCenStyleCol,
listOfdfMarkPosCenStyle,
chrWidth, specialChrWidth,
yfactor
,n,
lwd.mimicCen,listOfdfChromSize,
circularPlot,
y,
markLabelSize,
separFactor,
labelSpacing,
circleCenter,circleCenterY,radius,
ylistTransChr,rotation,labelOutwards,
yMarkLine,xMarkRightLine,xMarkLeftLine,
x,
cenFormat="triangle"
,pts
) {
if (squareness <= 20) {
roundedX<-list()
roundedY<-list()
for (s in 1:length(yMark) ) {
corr_index<-which(names(listOfdfChromSize) %in% names(listOfdfMarkPosCenStyle)[[s]] )
if(attr(listOfdfChromSize[[corr_index]],"ytitle")=="cM"){
chrWidth2 <-specialChrWidth
} else {
chrWidth2 <- chrWidth
}
r2 <- chrWidth2/(squareness*2)
xyCoords<-mapXYCenMimic(1 , (length(yMark[[s]]) ) ,
yMark[[s]],
xMark[[s]],
yfactor,r2,
pts,
cenFormat)
roundedX[[s]]<-xyCoords$roundedX
roundedY[[s]]<-xyCoords$roundedY
attr(roundedY[[s]],"spname") <- attr(yMark[[s]],"spname")
attr(roundedX[[s]],"spname") <- attr(xMark[[s]],"spname")
}
names(roundedY)<-names(yMark)
xMark<-roundedX
yMark<-roundedY
}
if(circularPlot==FALSE) {
lapply(1:length(xMark), function(w) mapply(function(x,y,z)
graphics::polygon(
x=x,
y=y,
col = defCenStyleCol
,lwd = 0.05
,border = defCenStyleCol
),
x=xMark[[w]],
y=yMark[[w]]
,z=listOfdfMarkPosCenStyle[[w]]$markName
)
)
lapply(1:length(xMarkLeftLine), function(w) mapply(function(x,y,z)
graphics::lines(
x=x,
y=y,
col = defCenStyleCol
,lwd = lwd.mimicCen,
),
x=xMarkLeftLine[[w]],
y=yMarkLine[[w]]
,z=listOfdfMarkPosCenStyle[[w]]$markName
)
)
lapply(1:length(xMarkRightLine), function(w) mapply(function(x,y,z)
graphics::lines(
x=x,
y=y,
col = defCenStyleCol
,lwd = lwd.mimicCen,
),
x=xMarkRightLine[[w]],
y=yMarkLine[[w]]
,z=listOfdfMarkPosCenStyle[[w]]$markName
)
)
} else {
xlistNew <- xHortoVer(xMark)
yMarkPer <- markMapPer(yMark,y)
ylistTransMark <- transyListMark(yMarkPer, ylistTransChr)
circleMapsMarks <- applyMapCircle(radius,circleCenter,circleCenterY,separFactor
,ylistTransMark,xlistNew,n,0,chrWidth,rotation=rotation)
drawCenStyle(circleMapsMarks,defCenStyleCol,lwd.mimicCen)
xlistNew<-xHortoVer(xMarkLeftLine)
yMarkPer <- markMapPer(yMarkLine,y)
ylistTransMark <- transyListMark(yMarkPer, ylistTransChr)
circleMapsMarks <- applyMapCircle(radius,circleCenter,circleCenterY,separFactor, ylistTransMark,xlistNew,n,0,chrWidth,rotation=rotation)
drawPlotMarkLine(circleMapsMarks,defCenStyleCol,lwd.mimicCen)
xlistNew<-xHortoVerDots(xMarkRightLine,x)
yMarkPer <- markMapPer(yMarkLine,y)
ylistTransMark <- transyListMark(yMarkPer, ylistTransChr)
circleMapsMarks <- applyMapCircle(radius,circleCenter,circleCenterY,separFactor, ylistTransMark,xlistNew,n,0,chrWidth,rotation=rotation)
drawPlotMarkLine(circleMapsMarks,defCenStyleCol,lwd.mimicCen)
}
}
mimicCenPlotMarkInside<-function(pattern,bannedMarkName,squareness, xMarkCenStyleBody, yMarkCenStyleBody,
defCenStyleCol,
dfMarkColorInt,
listOfdfMarkPosCenStyle,
chrWidth, specialChrWidth,
yfactor,n,
lwd.mimicCen,listOfdfChromSize,
circularPlot,
y,
markLabelSize,
separFactor,
labelSpacing,
circleCenter,circleCenterY,radius,
ylistTransChr,rotation,labelOutwards,
yMarkLine,xMarkRightLine,xMarkLeftLine,
x,
lwd.chr,
legend,
cenFormat="triangle"
,pts) {
if(squareness <= 20 ) {
roundedXInside<-list()
roundedYInside<-list()
for (s in 1:length(yMarkCenStyleBody) ) {
corr_index<-which(names(listOfdfChromSize) %in% names(listOfdfMarkPosCenStyle)[[s]] )
if(attr(listOfdfChromSize[[corr_index]],"ytitle")=="cM"){
chrWidth2 <-specialChrWidth
} else {
chrWidth2 <- chrWidth
}
r2 <- chrWidth2/(squareness*2)
xyCoords<-mapXYCenMimicInside(1,
length(yMarkCenStyleBody[[s]]),
yMarkCenStyleBody[[s]],
xMarkCenStyleBody[[s]],
yfactor,
r2,
pts,
cenFormat)
roundedXInside[[s]]<-xyCoords$roundedX
roundedYInside[[s]]<-xyCoords$roundedY
attr(roundedYInside[[s]],"spname") <- attr(yMarkCenStyleBody[[s]],"spname")
attr(roundedXInside[[s]],"spname") <- attr(xMarkCenStyleBody[[s]],"spname")
}
names(roundedYInside)<-names(yMarkCenStyleBody)
xMarkCenStyleBody<-roundedXInside
yMarkCenStyleBody<-roundedYInside
}
if(circularPlot==FALSE) {
lapply(1:length(yMarkCenStyleBody), function(m)
mapply(function(x,y,z)
graphics::polygon(
x=x,
y=y,
col = dfMarkColorInt$markColor[match(z, dfMarkColorInt$markName)] ,
lwd= lwd.chr,
border= dfMarkColorInt$markBorderColor[match(z, dfMarkColorInt$markName)]
),
x=xMarkCenStyleBody[[m]],
y=yMarkCenStyleBody[[m]],
z=listOfdfMarkPosCenStyle[[m]]$markName
)
)
} else {
xlistNew <- xHortoVer(xMarkCenStyleBody)
yMarkPer <- markMapPer(yMarkCenStyleBody,y)
ylistTransMark <- transyListMark(yMarkPer, ylistTransChr)
circleMapsMarks <- applyMapCircle(radius,circleCenter,circleCenterY,separFactor
,ylistTransMark,xlistNew,n,0,chrWidth,rotation=rotation)
drawPlotMark(circleMapsMarks,dfMarkColorInt,listOfdfMarkPosCenStyle,lwd.chr)
if(legend=="inline"){
circleMapsMarksLabelMimicCen <- applyMapCircle(radius,circleCenter,circleCenterY,separFactor
,ylistTransMark,xlistNew,n,
labelSpacing ,chrWidth, rotation=rotation)
circLabelMark(bannedMarkName,circleMapsMarksLabelMimicCen,listOfdfMarkPosCenStyle
, markLabelSize,pattern,labelOutwards,circleCenter,circleCenterY)
}
}
}
|
HierarchyFix <- function(hierarchy, hierarchyVarNames = c(mapsFrom = "mapsFrom", mapsTo = "mapsTo", sign = "sign", level = "level"), autoLevel = TRUE) {
h <- FixHierarchy(hierarchy, hierarchyVarNames)
if (autoLevel)
h <- AutoLevel(h)
h
}
HierarchyCompute <- function(data, hierarchies, valueVar,
colVar = NULL,
rowSelect = NULL, colSelect = NULL,
select = NULL,
inputInOutput = FALSE, output = "data.frame",
autoLevel = TRUE, unionComplement = FALSE, constantsInOutput = NULL,
hierarchyVarNames = c(mapsFrom = "mapsFrom", mapsTo = "mapsTo", sign = "sign", level = "level"),
selectionByMultiplicationLimit = 10^7, colNotInDataWarning = TRUE, useMatrixToDataFrame = TRUE,
handleDuplicated = "sum", asInput = FALSE, verbose = FALSE, reOrder = FALSE,
reduceData = TRUE, makeRownames = NULL) {
if(length(colVar)){
sysCall <- sys.call()
sysCall[[1]] <- as.name("HierarchyCompute2")
parentFrame = parent.frame()
return(eval(sysCall, envir=parentFrame))
}
if(!(handleDuplicated %in% c("sum", "sumByAggregate", "sumWithWarning", "stop", "single", "singleWithWarning")))
stop("invalid 'handleDuplicated' argument")
if(is.null(makeRownames))
makeRownames <- output %in% c("dataDummyHierarchyWithCodeFrame", "dataDummyHierarchyQuick", "dataDummyHierarchy", "matrixComponents")
if(hasArg(valueVar)){
nValueVar = length(valueVar)
} else {
nValueVar = 1L
}
if(output=="dataDummyHierarchyWithCodeFrame" | output=="dataDummyHierarchyQuick"){
reduceData <- FALSE
}
if(asInput){
reduceData <- FALSE
if(handleDuplicated !="sum")
stop("'handleDuplicated' must be 'sum' when 'asInput'")
}
noRowGroupsWhenNoColVar <- !(handleDuplicated !="sum")
removeEmpty <- FALSE
if(!is.null(rowSelect ))
if(is.character(rowSelect))
if(length(rowSelect)==1)
if(rowSelect=="removeEmpty"){
removeEmpty <- TRUE
rowSelect <- NULL
}
nHier <- length(hierarchies)
inputInOutput <- rep_len(inputInOutput, nHier)
autoLevel <- rep_len(autoLevel, nHier)
unionComplement <- rep_len(unionComplement, nHier)
gf <- GetFirstStringInList(hierarchies)
if (any(!(gf %in% c("", "rowFactor", "colFactor")))) {
stop(paste("Wrong input: ", paste(gf[!(gf %in% c("", "rowFactor", "colFactor"))], collapse =", ") ))
}
colInd <- which(gf == "colFactor")
if (length(colInd) > 1) {
stop("Only a single colVar allowed in this implementation")
}
colVar <- names(hierarchies)[colInd]
if (length(colInd) == 0) {
noColVar <- TRUE
colSelect <- NULL
} else {
noColVar <- FALSE
if (is.list(colSelect)) {
colSelect <- colSelect[[colVar]]
if (is.null(colSelect))
stop("Wrong colSelect input")
}
}
if (!noColVar & asInput)
stop("asInput only possible when no colFactor")
if (noColVar)
hierarchyInd <- seq_len(nHier) else hierarchyInd <- seq_len(nHier)[-colInd]
hierarchyNames <- names(hierarchies)[hierarchyInd]
selectOrder <- NULL
if (!is.null(select)) {
if ((!is.null(rowSelect)) | (!is.null(colSelect)))
stop("With non-NULL select, rowSelect and colSelect must be NULL")
if (noColVar) {
rowSelect <- select
} else {
colSelect <- as.character(select[, colVar])
colSelInt <- as.integer(factor(colSelect))
colSelect <- unique(colSelect)
rgSelect <- RowGroups(CharacterDataFrame(select[, hierarchyNames, drop=FALSE]), returnGroups = TRUE)
selectOrder <- matrix(NaN, NROW(rgSelect$groups), length(colSelect))
selectOrder[cbind(rgSelect$idx, colSelInt)] <- seq_len(NROW(select))
selectOrder <- order(as.vector(selectOrder))[seq_len(NROW(select))]
rowSelect <- rgSelect$groups
rm(rgSelect)
}
inputColnamesRowSelect <- colnames(rowSelect)
} else {
if (!is.null(rowSelect)) {
inputColnamesRowSelect <- colnames(rowSelect)
rowSelect <- CharacterDataFrame(unique(rowSelect[, hierarchyNames, drop = FALSE]))
}
}
dummyHierarchies <- vector("list", nHier)
dataDummyHierarchies <- vector("list", nHier)
codeFrames <- vector("list", nHier)
names(dummyHierarchies) <- names(hierarchies)
names(dataDummyHierarchies) <- names(hierarchies)
names(codeFrames) <- names(hierarchies)
if (!is.null(rowSelect)) {
inputInOutput[] <- FALSE
}
for (i in seq_len(nHier)) {
if (is.list(hierarchies[[i]])) {
hierarchies[[i]] <- FixHierarchy(hierarchies[[i]], hierarchyVarNames)
if (autoLevel[i])
hierarchies[[i]] <- AutoLevel(hierarchies[[i]])
hierarchies[i] <- AddMapsInput(hierarchies[i], data)
if (!is.null(rowSelect)) {
hierarchies[i] <- AddNonExistingCode(hierarchies[i], rowSelect, inputInOutput[i])
mapsInput <- attr(hierarchies[[i]], "mapsInput")
keepCodes <- attr(hierarchies[[i]], "keepCodes")
hierarchies[[i]] <- AutoLevel(hierarchies[[i]])
attr(hierarchies[[i]], "mapsInput") <- mapsInput
attr(hierarchies[[i]], "keepCodes") <- keepCodes
}
dummyHierarchies[[i]] <- DummyHierarchy(mapsFrom = hierarchies[[i]]$mapsFrom, mapsTo = hierarchies[[i]]$mapsTo, mapsInput = attr(hierarchies[[i]], "mapsInput"),
keepCodes = attr(hierarchies[[i]], "keepCodes"), sign = hierarchies[[i]]$sign,
level = hierarchies[[i]]$level, inputInOutput = inputInOutput[i], unionComplement = unionComplement[i],
reOrder = reOrder)
} else {
if (hierarchies[[i]] == "rowFactor") {
dummyHierarchies[[i]] <- fac2sparse(sort(factor(unique(data[, names(hierarchies)[i], drop = TRUE]))))
colnames(dummyHierarchies[[i]]) <- rownames(dummyHierarchies[[i]])
}
}
}
if (output == "dummyHierarchies")
return(dummyHierarchies)
if(verbose){
cat(" [ HierarchyCompute initial calculations.")
flush.console()}
if (!is.null(rowSelect)) {
for (i in hierarchyInd) {
iRows <- rownames(dummyHierarchies[[i]]) %in% rowSelect[, names(hierarchies)[i], drop=TRUE]
dummyHierarchies[[i]] <- dummyHierarchies[[i]][iRows, , drop = FALSE]
}
}
if (!is.null(colSelect)) {
datacolvar <- as.character(data[, colVar, drop = TRUE])
colSelect <- unique(as.character(colSelect))
colNotInData <- colSelect[!(colSelect %in% datacolvar)]
if (length(colNotInData) > 0) {
rowsData <- which(datacolvar %in% colSelect)
if (length(rowsData) == 0) {
if (colNotInDataWarning)
warning(paste("No items in colSelect in data[,'", colVar, "']. Only zeros produced: ", paste(colNotInData, collapse = ", "), sep = ""))
rowsData <- c(rep(1, length(colNotInData)))
} else {
if (colNotInDataWarning)
warning(paste("Items in colSelect not in data[,'", colVar, "'] set to zero: ", paste(colNotInData, collapse = ", "), sep = ""))
rowsData <- c(rep(rowsData[1], length(colNotInData)), rowsData)
}
datacolvar <- datacolvar[rowsData]
datacolvar[seq_len(length(colNotInData))] <- colNotInData
data <- data[rowsData, , drop = FALSE]
data[, colVar] <- datacolvar
data[seq_len(length(colNotInData)), valueVar] <- 0L
} else {
rowsData <- datacolvar %in% colSelect
data <- data[rowsData, , drop = FALSE]
}
}
rownames(data) <- NULL
if (reduceData)
data <- ReduceDataByDummyHierarchiesAndValue(data, dummyHierarchies, valueVar, colVar)
if(verbose){
cat(".")
flush.console()}
if(noColVar & noRowGroupsWhenNoColVar){
rowGroups <- list(idx = seq_len(NROW(data)), groups = data[, hierarchyNames, drop = FALSE])
} else {
rowGroups <- RowGroups(data[, hierarchyNames, drop = FALSE], returnGroups = TRUE)
}
if(verbose){
cat(".")
flush.console()}
for (i in hierarchyInd) {
dataDummyHierarchies[[i]] <- DataDummyHierarchy(as.character(rowGroups$groups[names(hierarchies)[i]][[1]]), dummyHierarchies[[i]])
codeFrames[[i]] <- data.frame(a = factor(rownames(dummyHierarchies[[i]])))
names(codeFrames[[i]]) <- names(codeFrames[i])
}
if(verbose){
cat("]")
flush.console()}
runCrossDataDummyHierarchies <- is.null(rowSelect)
if (!is.null(rowSelect)) {
selectionByMultiplication <- (as.numeric(dim(rowGroups$groups)[1]) * as.numeric(NROW(rowSelect))) < selectionByMultiplicationLimit
}
if (runCrossDataDummyHierarchies) {
if(output=="dataDummyHierarchyQuick")
codeFrames <- NULL
k <- CrossDataDummyHierarchies(dataDummyHierarchies = dataDummyHierarchies[hierarchyInd], codeFrames = codeFrames[hierarchyInd], makeDimnames = makeRownames,
useMatrixToDataFrame = useMatrixToDataFrame, removeEmpty = removeEmpty, verbose = verbose, reOrder = reOrder)
if(output=="dataDummyHierarchyQuick" | output=="dataDummyHierarchyWithCodeFrame") {
if(output=="dataDummyHierarchyWithCodeFrame"){
k$codeFrame <- CharacterDataFrame(k$codeFrame)
}
return(k)
}
} else {
k <- list(dataDummyHierarchy = NULL, codeFrame = rowSelect)
if (!selectionByMultiplication) {
k <- ReductionCrossDataDummyHierarchies(dataDummyHierarchies[hierarchyInd], codeFrames = codeFrames[hierarchyInd], codeFrame = k[[2]],
makeDimnames = makeRownames, useMatrixToDataFrame = useMatrixToDataFrame, verbose = verbose)
} else {
k[[1]] <- SelectionCrossDataDummyHierarchy(dataDummyHierarchies[hierarchyInd], k$codeFrame, verbose = verbose)
}
}
if(makeRownames){
if( is.null(rownames(k$dataDummyHierarchy) )){
rownames(k$dataDummyHierarchy) <- apply(k$codeFrame, 1, paste, collapse = ":")
}
}
if(output=="dataDummyHierarchyQuick")
return(k$dataDummyHierarchy)
if(output=="dataDummyHierarchyWithCodeFrame"){
k$codeFrame <- CharacterDataFrame(k$codeFrame)
return(k)
}
readyValueMatrix <- FALSE
if (noColVar) {
valueMatrix <- Matrix(0, dim(rowGroups$groups)[1], nValueVar)
colnames(valueMatrix) <- colnames(data[1, valueVar, drop = FALSE])
if(handleDuplicated !="single")
if( NROW(valueMatrix) != NROW(data)){
if(handleDuplicated =="singleWithWarning"){
warning("Duplicated rows in input. By matrix subsetting one of the is used.")
} else {
if(handleDuplicated =="stop")
stop("Duplicated rows in input ('handleDuplicated=stop').")
if(handleDuplicated %in% c("sum", "sumByAggregate","sumWithWarning")){
if(handleDuplicated == "sumWithWarning")
warning("Duplicated rows in input summed ('handleDuplicated=sumWithWarning').")
if(verbose){
cat(" [ aggregate..")
flush.console()}
aggData <- aggregate(data[, valueVar, drop = FALSE], by = list(idx69_3h4_6kd = rowGroups$idx), FUN = sum)
if(verbose){
cat(".")
flush.console()}
if(nValueVar>1)
valueMatrix[aggData$idx69_3h4_6kd, valueVar] <- as.matrix(aggData[, valueVar])
else
valueMatrix[aggData$idx69_3h4_6kd, valueVar] <- aggData[, valueVar]
rm(aggData)
if(verbose){
cat("]")
flush.console()}
readyValueMatrix <- TRUE
}
}
}
if(!readyValueMatrix){
if (nValueVar>1){
valueMatrix[rowGroups$idx, ] <- as.matrix(data[, valueVar])
} else {
valueMatrix[rowGroups$idx, 1] <- data[, valueVar, drop = TRUE]
}
}
} else {
colData <- factor(data[, colVar, drop = TRUE])
integerColData <- as.integer(colData)
nCol <- max(integerColData, 0L)
valueMatrix <- Matrix(0, dim(rowGroups$groups)[1], nCol*nValueVar)
colnames(valueMatrix) <- rep(levels(colData), nValueVar)
idx_integerColData <- cbind(idx = rowGroups$idx, integerColData = integerColData)
if(handleDuplicated !="single")
if(anyDuplicated(idx_integerColData)){
if(handleDuplicated =="singleWithWarning"){
warning("Duplicated rows in input. By matrix subsetting one of the is used.")
} else {
if(handleDuplicated =="stop")
stop("Duplicated rows in input ('handleDuplicated=stop').")
if(handleDuplicated %in% c("sum", "sumByAggregate","sumWithWarning")){
if(handleDuplicated == "sumWithWarning")
warning("Duplicated rows in input summed ('handleDuplicated=sumWithWarning').")
if(verbose){
cat(" [ aggregate..")
flush.console()}
aggData <- aggregate(data[, valueVar, drop = FALSE],
by = list(idx69_3h4_6kd = rowGroups$idx, integerColData7y9_56 = integerColData), FUN = sum)
if(verbose){
cat(".")
flush.console()}
mIntegerColData <- rep(aggData$integerColData7y9_56, nValueVar) + rep(nCol * SeqInc(0, nValueVar - 1), each = nrow(aggData))
if(nValueVar>1)
valueMatrix[cbind(aggData$idx69_3h4_6kd, mIntegerColData)] <- as.vector(as.matrix(aggData[, valueVar]))
else
valueMatrix[cbind(aggData$idx69_3h4_6kd, mIntegerColData)] <- aggData[, valueVar]
rm(aggData)
if(verbose){
cat("]")
flush.console()}
readyValueMatrix <- TRUE
}
}
}
if(!readyValueMatrix){
if (nValueVar>1){
mIntegerColData = rep(integerColData, nValueVar) + rep(nCol*SeqInc(0,nValueVar-1),each = length(integerColData))
valueMatrix[cbind(idx = rowGroups$idx, mIntegerColData = mIntegerColData)] <- as.vector(as.matrix(data[, valueVar]))
} else {
valueMatrix[idx_integerColData] <- data[, valueVar, drop = TRUE]
}
}
}
rownames(valueMatrix) <- NULL
if ((!is.null(rowSelect)) & runCrossDataDummyHierarchies) {
rg <- RowGroups(rbind(CharacterDataFrame(k$codeFrame), rowSelect))
rg1 <- rg[seq_len(dim(k$codeFrame)[1])]
rg2 <- rg[-seq_len(dim(k$codeFrame)[1])]
selectedRows <- match(rg2, rg1)
} else {
selectedRows <- NULL
}
if (is.null(selectedRows)) {
outputMatrix <- Mult(k[[1]], valueMatrix)
xCrossCode <- k$codeFrame
} else {
outputMatrix <- Mult(k[[1]][selectedRows, , drop = FALSE], valueMatrix)
xCrossCode <- k$codeFrame[selectedRows, , drop = FALSE]
}
xCrossCode <- CharacterDataFrame(xCrossCode)
rownames(xCrossCode) <- NULL
hierarchyNamesForOutput <- NULL
if ((!is.null(rowSelect)) & is.null(hierarchyNamesForOutput)) {
hierarchyNamesForOutput <- inputColnamesRowSelect
}
if (!is.null(hierarchyNamesForOutput)) {
macol <- match(hierarchyNamesForOutput, colnames(xCrossCode))
macol <- macol[!is.na(macol)]
xCrossCode <- xCrossCode[, macol, drop = FALSE]
}
if (output == "outputMatrix") {
if(verbose){
cat("\n")
flush.console()}
return(outputMatrix)
}
if (output == "dataDummyHierarchy") {
if(verbose){
cat("\n")
flush.console()}
if (is.null(selectedRows)) {
return(k[[1]])
} else {
return(k[[1]][selectedRows, , drop = FALSE])
}
}
if (output == "valueMatrix") {
if(verbose){
cat("\n")
flush.console()}
return(valueMatrix)
}
if (output == "fromCrossCode") {
if(verbose){
cat("\n")
flush.console()}
return(rowGroups$groups)
}
if (output == "crossCode" | output == "toCrossCode") {
if(verbose){
cat("\n")
flush.console()}
return(xCrossCode)
}
if (output == "outputMatrixWithCrossCode") {
if(verbose){
cat("\n")
flush.console()}
return(list(outputMatrix = outputMatrix, xCrossCode = xCrossCode))
}
if (output == "matrixComponents") {
if(verbose){
cat("\n")
flush.console()}
if (is.null(selectedRows)) {
return(list(dataDummyHierarchy = k[[1]], valueMatrix = valueMatrix, fromCrossCode = rowGroups$groups, toCrossCode = xCrossCode))
} else {
return(list(dataDummyHierarchy = k[[1]][selectedRows, , drop = FALSE], valueMatrix = valueMatrix, fromCrossCode = rowGroups$groups, toCrossCode = xCrossCode))
}
}
if(verbose){
cat(" [ output='data.frame'...")
flush.console()}
x <- as.matrix(outputMatrix)
if(ncol(x) == 0){
colnamesX <- character(0)
}
else{
colnamesX <- colnames(x)
}
dimX1 <- dim(x)[1]
if(nValueVar>1){
if(!noColVar){
colnamesX <- colnamesX[seq_len(nCol)]
x <- matrix(x, ncol = nValueVar)
colnames(x) <- valueVar
z <- as.data.frame(x)
} else {
z <- as.data.frame(x)
}
} else {
z <- data.frame(a = as.vector(x), stringsAsFactors = FALSE)
names(z) <- valueVar
}
if (noColVar) {
colDataSelected <- xCrossCode[, integer(0)]
} else {
colDataSelected <- data.frame(a = rep(colnamesX, times = 1, each = dimX1), stringsAsFactors = FALSE)
names(colDataSelected) <- colVar
}
if (nrow(colDataSelected) == 0) {
xCrossCode <- xCrossCode[integer(0), , drop = FALSE]
if (!is.null(constantsInOutput))
constantsInOutput <- constantsInOutput[integer(0), , drop = FALSE]
}
if (!is.null(constantsInOutput))
w <- cbind(constantsInOutput, colDataSelected, xCrossCode, z) else w <- cbind(colDataSelected, xCrossCode, z)
if (!is.null(selectOrder)) {
w <- w[selectOrder, , drop = FALSE]
}
rownames(w) <- NULL
if(verbose){
cat("]\n")
flush.console()}
w
}
AddMapsInput <- function(hierarchies, data = NULL) {
for (i in length(hierarchies)) {
if (is.list(hierarchies[[i]])) {
mapsInput <- as.character(hierarchies[[i]]$mapsFrom)[!(as.character(hierarchies[[i]]$mapsFrom) %in% as.character(hierarchies[[i]]$mapsTo))]
if (!is.null(data))
mapsInput <- c(mapsInput, as.character(unique(data[, names(hierarchies)[i], drop = TRUE])))
mapsInput <- as.character(sort(as.factor(unique(mapsInput))))
if (any(mapsInput %in% as.character(hierarchies[[i]]$mapsTo))) {
stop(paste(names(hierarchies)[i], "codes in mapsTo already in input data:", paste(mapsInput[mapsInput %in% as.character(hierarchies[[i]]$mapsTo)], collapse = ", ")))
}
attr(hierarchies[[i]], "mapsInput") <- mapsInput
}
}
hierarchies
}
AddNonExistingCode <- function(hierarchies, rowSelect = NULL, inputInOutput = TRUE) {
if (is.null(rowSelect))
return(hierarchies)
for (i in length(hierarchies)) {
if (is.list(hierarchies[[i]])) {
mapsInput <- attr(hierarchies[[i]], "mapsInput")
allCodes <- unique(c(as.character(mapsInput), hierarchies[[i]]$mapsTo))
uniqueRowSelect <- unique(rowSelect[, names(hierarchies)[i], drop = TRUE])
newCodes <- uniqueRowSelect[!(uniqueRowSelect %in% allCodes)]
if (length(newCodes) > 0) {
hierarchyExtra <- hierarchies[[i]][rep(1, (length(newCodes))), , drop = FALSE]
hierarchyExtra$mapsTo <- newCodes
hierarchyExtra$mapsFrom <- "N_oNEX_istIn_gCOd_e"
hierarchyExtra$level <- 1L
hierarchies[[i]] <- rbind(hierarchies[[i]], hierarchyExtra)
mapsInput <- c(mapsInput, "N_oNEX_istIn_gCOd_e")
}
if (!inputInOutput) {
keepCodes <- uniqueRowSelect[uniqueRowSelect %in% as.character(mapsInput)]
} else keepCodes <- uniqueRowSelect[integer(0)]
attr(hierarchies[[i]], "mapsInput") <- mapsInput
attr(hierarchies[[i]], "keepCodes") <- keepCodes
}
}
hierarchies
}
CrossDataDummyHierarchies <- function(dataDummyHierarchies, codeFrames = NULL, makeDimnames = FALSE, useMatrixToDataFrame = TRUE,
removeEmpty = FALSE, verbose = FALSE, reOrder = FALSE) {
if(reOrder)
CrossDataDummyHierarchyHere = CrossDataDummyHierarchyReOrder
else
CrossDataDummyHierarchyHere =CrossDataDummyHierarchy
if(verbose){
if(removeEmpty)
cat(" [ KhatriRaoRemoveEmpty...")
else
cat(" [ KhatriRao...")
flush.console()
}
if (is.null(codeFrames))
useCodeFrames <- FALSE else useCodeFrames <- !any(sapply(codeFrames, is.null))
n <- length(dataDummyHierarchies)
if(removeEmpty){
for(i in seq_len(n)){
rowNonZero <- RowNonZero(dataDummyHierarchies[[i]])
dataDummyHierarchies[[i]] <- dataDummyHierarchies[[i]][rowNonZero, ,drop=FALSE]
if (useCodeFrames)
codeFrames[[i]] <- codeFrames[[i]][rowNonZero, ,drop=FALSE]
}
}
if (useCodeFrames) {
for (i in seq_len(n)){
if(i==1)
z <- CrossDataDummyHierarchyHere(dataDummyHierarchy1 = dataDummyHierarchies[[1]], codeFrame1 = codeFrames[[1]], makeDimnames = makeDimnames, useMatrixToDataFrame = useMatrixToDataFrame)
else
z <- CrossDataDummyHierarchyHere(z[[1]], dataDummyHierarchies[[i]], z[[2]], codeFrames[[i]], makeDimnames = makeDimnames, useMatrixToDataFrame = useMatrixToDataFrame)
if(removeEmpty){
rowNonZero <- RowNonZero(z[[1]])
z[[1]] <- z[[1]][rowNonZero, , drop = FALSE]
z[[2]] <- z[[2]][rowNonZero, , drop = FALSE]
}
}
} else {
for (i in seq_len(n)){
if(i==1)
z <- CrossDataDummyHierarchyHere(dataDummyHierarchy1 = dataDummyHierarchies[[1]], makeDimnames = makeDimnames, useMatrixToDataFrame = useMatrixToDataFrame)
else
z <- CrossDataDummyHierarchyHere(z, dataDummyHierarchies[[i]], makeDimnames = makeDimnames, useMatrixToDataFrame = useMatrixToDataFrame)
if(removeEmpty){
rowNonZero <- RowNonZero(z)
z <- z[rowNonZero, , drop = FALSE]
}
}
}
if(verbose){
cat("]")
flush.console()}
z
}
RowNonZero <- function(x){
rowSums(x!=0) > 0
}
ReductionCrossDataDummyHierarchies <- function(dataDummyHierarchies, codeFrames = NULL, makeDimnames = FALSE, codeFrame = NULL,
useMatrixToDataFrame = TRUE, verbose = FALSE) {
if(verbose){
cat(" [ ReductionKhatriRao...")
flush.console()}
if (is.null(codeFrames))
useCodeFrames <- FALSE else useCodeFrames <- !any(sapply(codeFrames, is.null))
n <- length(dataDummyHierarchies)
if (useCodeFrames) {
varNames <- names(dataDummyHierarchies)
z <- CrossDataDummyHierarchy(dataDummyHierarchy1 = dataDummyHierarchies[[1]], codeFrame1 = codeFrames[[1]], makeDimnames = makeDimnames, useMatrixToDataFrame = useMatrixToDataFrame)
selecti <- z[[2]][, 1, drop = TRUE] %in% codeFrame[, 1, drop = TRUE]
z[[1]] <- z[[1]][selecti, , drop = FALSE]
z[[2]] <- z[[2]][selecti, , drop = FALSE]
for (i in matlabColon(2, n)) {
z <- CrossDataDummyHierarchy(z[[1]], dataDummyHierarchies[[i]], z[[2]], codeFrames[[i]], makeDimnames = makeDimnames, useMatrixToDataFrame = useMatrixToDataFrame)
if(i == n) {
selecti <- Match(codeFrame[, seq_len(i)], z[[2]])
} else {
selecti <- Match(unique(codeFrame[, seq_len(i)]), z[[2]])
}
if (anyNA(selecti)) {
selecti <- selecti[!is.na(selecti)]
warning("Not all rowSelect possible. Row removed")
}
z[[1]] <- z[[1]][selecti, , drop = FALSE]
z[[2]] <- z[[2]][selecti, , drop = FALSE]
}
} else {
z <- CrossDataDummyHierarchy(dataDummyHierarchy1 = dataDummyHierarchies[[1]], makeDimnames = makeDimnames, useMatrixToDataFrame = useMatrixToDataFrame)
for (i in matlabColon(2, n)) z <- CrossDataDummyHierarchy(z, dataDummyHierarchies[[i]], makeDimnames = makeDimnames, useMatrixToDataFrame = useMatrixToDataFrame)
}
if(verbose){
cat("]")
flush.console()}
z
}
SelectionDataDummyHierarchy <- function(dataDummyHierarchy, codeVector) {
x <- factor(codeVector, levels = rownames(dataDummyHierarchy))
xInteger <- as.integer(x)
naxInteger <- is.na(xInteger)
if (any(naxInteger)) {
dataDummyHierarchy <- rbind(dataDummyHierarchy, 0)
xInteger[naxInteger] <- NROW(dataDummyHierarchy)
}
m <- dataDummyHierarchy[xInteger, , drop = FALSE]
rownames(m) <- names(codeVector)
m
}
SelectionCrossDataDummyHierarchy <- function(dataDummyHierarchies, codeFrame, verbose = FALSE) {
if(verbose){
cat(" [ SelectionByMultiplication...")
flush.console()}
n <- length(dataDummyHierarchies)
if (n == 0)
return(dataDummyHierarchies)
z <- SelectionDataDummyHierarchy(dataDummyHierarchies[[1]], codeFrame[, names(dataDummyHierarchies)[1],drop = TRUE])
for (i in matlabColon(2, n)) {
z <- z * SelectionDataDummyHierarchy(dataDummyHierarchies[[i]], codeFrame[, names(dataDummyHierarchies)[i],drop = TRUE])
}
if(verbose){
cat("]")
flush.console()}
z
}
FixHierarchy <- function(hi, hierarchyVarNames = c(mapsFrom = "from", mapsTo = "to", sign = "sign", level = "level")) {
ma <- match(names(hi), hierarchyVarNames)
wma <- which(!is.na(ma))
ma <- ma[wma]
hi <- hi[, wma, drop = FALSE]
names(hierarchyVarNames[ma])
colnames(hi) <- names(hierarchyVarNames[ma])
sig <- suppressWarnings(as.integer(hi$sign))
if (anyNA(sig))
hi$sign <- 2L * as.integer(hi$sign == "+") - 1L else hi$sign <- sig
hi
}
AutoLevel <- function(x) {
mapsFrom <- as.character(x$mapsFrom)
mapsTo <- as.character(x$mapsTo)
sign <- x$sign
if (any(mapsFrom == mapsTo)) {
sel <- !(mapsFrom == mapsTo)
mapsFrom <- mapsFrom[sel]
mapsTo <- mapsTo[sel]
sign <- sign[sel]
warning("hierarchy rows where mapsFrom==mapsTo removed")
}
mapsInput <- mapsFrom[!(mapsFrom %in% mapsTo)]
level <- rep(0L, length(mapsFrom))
mapsNow <- as.character(mapsInput)
i <- 0
sumLevel0 <- sum(level == 0)
while (sumLevel0 > 0) {
i <- i + 1
level[(mapsFrom %in% mapsNow) & level == 0] <- i
uniquei <- unique(mapsTo[level == i])
for (l in uniquei) {
mTl <- mapsTo == l
if (any(!(unique(mapsFrom[mTl]) %in% mapsNow)))
level[mTl] <- 0
}
mapsNow <- unique(c(mapsNow, unique(mapsTo[level == i])))
sumLevel0old <- sumLevel0
sumLevel0 <- sum(level == 0)
if (sumLevel0 == sumLevel0old) {
sumLevel0 <- 0
li <- paste(paste(mapsFrom[level == 0], mapsTo[level == 0], sep = "->"), collapse = ", ")
warning(paste("AutoLevel had problems:", li))
}
}
data.frame(mapsFrom = mapsFrom, mapsTo = mapsTo, sign = sign, level = level, stringsAsFactors = FALSE)
}
DummyHierarchy <- function(mapsFrom, mapsTo, sign, level, mapsInput = NULL, inputInOutput = FALSE, keepCodes = mapsFrom[integer(0)], unionComplement = FALSE, reOrder = FALSE) {
mapsFrom <- as.character(mapsFrom)
mapsTo <- as.character(mapsTo)
if (is.null(mapsInput))
mapsInput <- mapsFrom[!(mapsFrom %in% mapsTo)]
mapsInput <- sort(as.factor(unique(mapsInput)))
m <- Matrix::t(fac2sparse(mapsInput))
rownames(m) <- as.character(mapsInput)
dropInput <- rownames(m)
if (length(keepCodes) > 0)
dropInput <- dropInput[!(dropInput %in% keepCodes)]
nInput <- dim(m)[1]
for (i in unique(sort(level))) {
ri <- (level == i)
mapsToi <- factor(mapsTo[ri])
mapsFromi <- factor(mapsFrom[ri], levels = rownames(m))
if (anyNA(mapsFromi)) {
warning("Problematic hierarchy specification")
}
mNew <- Matrix(0, NROW(m), length(levels(mapsToi)), dimnames = list(levels(mapsFromi), levels(mapsToi)))
mNew[cbind(as.integer(mapsFromi), as.integer(mapsToi))] <- sign[ri]
if(reOrder){
if (unionComplement)
m <- rbind(CrossprodUnionComplement(mNew, m),m)
else m <- rbind(Mult_crossprod(mNew, m),m)
} else {
if (unionComplement)
m <- rbind(m, CrossprodUnionComplement(mNew, m))
else m <- rbind(m, Mult_crossprod(mNew, m))
}
}
if (!inputInOutput & length(dropInput) > 0) {
keepRows <- rownames(m)[!(rownames(m) %in% dropInput)]
m <- m[keepRows, , drop = FALSE]
}
m
}
DummyHierarchies <- function(hierarchies, data = NULL, inputInOutput = FALSE, unionComplement = FALSE, reOrder = FALSE) {
n <- length(hierarchies)
inputInOutput <- rep_len(inputInOutput, n)
unionComplement <- rep_len(unionComplement, n)
reOrder <- rep_len(reOrder, n)
for (i in seq_len(n)) {
if (!is.null(data)) {
hierarchies[i] <- AddMapsInput(hierarchies[i], data)
}
hierarchies[[i]] <- DummyHierarchy(mapsFrom = hierarchies[[i]]$mapsFrom,
mapsTo = hierarchies[[i]]$mapsTo,
mapsInput = attr(hierarchies[[i]], "mapsInput"),
keepCodes = attr(hierarchies[[i]], "keepCodes"),
sign = hierarchies[[i]]$sign,
level = hierarchies[[i]]$level,
inputInOutput = inputInOutput[i],
unionComplement = unionComplement[i],
reOrder = reOrder[i])
}
hierarchies
}
DataDummyHierarchy <- function(dataVector, dummyHierarchy) {
x <- factor(dataVector, levels = colnames(dummyHierarchy))
m <- dummyHierarchy[, as.integer(x), drop = FALSE]
colnames(m) <- names(dataVector)
m
}
CrossDataDummyHierarchy <- function(dataDummyHierarchy1, dataDummyHierarchy2 = NULL, codeFrame1 = NULL, codeFrame2 = NULL, makeDimnames = FALSE, useMatrixToDataFrame = TRUE) {
if (is.null(dataDummyHierarchy2)) {
if (is.null(codeFrame1))
return(dataDummyHierarchy1) else return(list(dataDummyHierarchy = dataDummyHierarchy1, codeFrame = codeFrame1))
}
if (is.null(codeFrame1) | is.null(codeFrame2))
return(KhatriRao(dataDummyHierarchy2, dataDummyHierarchy1, make.dimnames = makeDimnames))
return(list(dataDummyHierarchy = KhatriRao(dataDummyHierarchy2, dataDummyHierarchy1, make.dimnames = makeDimnames), codeFrame = CrossCodeFrames(codeFrame1, codeFrame2, useMatrixToDataFrame = useMatrixToDataFrame)))
}
ReduceDataByDummyHierarchiesAndValue <- function(data, dummyHierarchies, valueVar, colVar) {
if (length(valueVar)>1){
sel <- rowSums(abs(data[, valueVar])) != 0
} else {
sel <- data[, valueVar, drop = TRUE] != 0
}
for (i in seq_len(length(dummyHierarchies))) {
if (!is.null(dummyHierarchies[[i]])) {
keepCodes <- colnames(dummyHierarchies[[i]])[colSums(abs(dummyHierarchies[[i]])) != 0]
sel <- sel & (data[, names(dummyHierarchies)[i], drop = TRUE] %in% keepCodes)
}
}
if (length(colVar) > 0) {
setTRUE <- match(unique(data[, colVar, drop = TRUE]), data[, colVar, drop = TRUE])
sel[setTRUE] <- TRUE
}
data[sel, , drop = FALSE]
}
CrossprodUnionComplement <- function(x, y) {
yPlus <- y
yMinus <- y
yPlus[y < 0] <- 0
yMinus[y > 0] <- 0
zPlus <- Mult_crossprod(x, yPlus)
zMinus <- Mult_crossprod(x, yMinus)
zPlus[zPlus > 1] <- 1
z <- zPlus + zMinus
z[z < 0] <- 0
z
}
GetFirstStringInList <- function(x) {
if (!is.list(x))
stop("list needed")
z <- rep("", length(x))
for (i in seq_len(length(x))) {
if (is.character(x[[i]]))
z[i] <- x[[i]][1]
}
z
}
KhatriRaoReOrder = function(x,y,make.dimnames = FALSE){
a <- nrow(x)
b <- nrow(y)
r <- rep(b*SeqInc(0,a-1),b) + rep(seq_len(b),each=a)
KhatriRao(x, y, make.dimnames = make.dimnames)[r, ,drop=FALSE]
}
CrossDataDummyHierarchyReOrder <- function(dataDummyHierarchy1, dataDummyHierarchy2 = NULL, codeFrame1 = NULL, codeFrame2 = NULL, makeDimnames = FALSE, useMatrixToDataFrame = TRUE) {
if (is.null(dataDummyHierarchy2)) {
if (is.null(codeFrame1))
return(dataDummyHierarchy1) else return(list(dataDummyHierarchy = dataDummyHierarchy1, codeFrame = codeFrame1))
}
if (is.null(codeFrame1) | is.null(codeFrame2))
return(KhatriRaoReOrder(dataDummyHierarchy2, dataDummyHierarchy1, make.dimnames = makeDimnames))
return(list(dataDummyHierarchy = KhatriRaoReOrder(dataDummyHierarchy2, dataDummyHierarchy1, make.dimnames = makeDimnames),
codeFrame = CrossCodeFramesReOrder(codeFrame1, codeFrame2, useMatrixToDataFrame = useMatrixToDataFrame)))
}
CrossCodeFramesAReOrder <- function(codeFrame1, codeFrame2) {
n1 <- NROW(codeFrame1)
n2 <- NROW(codeFrame2)
r1 <- rep(seq_len(n1), times = 1, each = n2)
rownames(codeFrame1) <- NULL
print(cbind(codeFrame1[r1, , drop = FALSE], codeFrame2))
cbind(codeFrame1[r1, , drop = FALSE], codeFrame2)
}
CrossCodeFramesReOrder <- function(codeFrame1, codeFrame2, useMatrixToDataFrame = TRUE) {
if (!useMatrixToDataFrame)
return(CrossCodeFramesAReOrder(codeFrame1, codeFrame2))
n1 <- NROW(codeFrame1)
n2 <- NROW(codeFrame2)
codeFrame1 <- DataFrameToMatrix(codeFrame1)
codeFrame2 <- DataFrameToMatrix(codeFrame2)
rownames(codeFrame1) <- NULL
rownames(codeFrame2) <- NULL
r1 <- rep(seq_len(n1), times = 1, each = n2)
r2 <- rep(seq_len(n2), times = n1, each = 1)
z <- cbind(codeFrame1[r1, , drop = FALSE], codeFrame2[r2, , drop = FALSE])
attr(z, "namesDF") <- c(attr(codeFrame1, "namesDF"), attr(codeFrame2, "namesDF"))
attr(z, "classDF") <- c(attr(codeFrame1, "classDF"), attr(codeFrame2, "classDF"))
attr(z, "levelsDF") <- c(attr(codeFrame1, "levelsDF"), attr(codeFrame2, "levelsDF"))
MatrixToDataFrame(z)
}
|
sar_monod <- function(data, start = NULL,
grid_start = "partial", grid_n = NULL,
normaTest = "none", homoTest =
"none", homoCor = "spearman", verb = TRUE){
if (!(is.matrix(data) | is.data.frame(data)))
stop('data must be a matrix or dataframe')
if (is.matrix(data)) data <- as.data.frame(data)
if (anyNA(data)) stop('NAs present in data')
normaTest <- match.arg(normaTest, c('none', 'shapiro', 'kolmo',
'lillie'))
homoTest <- match.arg(homoTest, c('none', 'cor.area',
'cor.fitted'))
if (homoTest != 'none'){
homoCor <- match.arg(homoCor, c('spearman', 'pearson',
'kendall'))
}
if (!(grid_start %in% c('none', 'partial', 'exhaustive'))){
stop('grid_start should be one of none, partial or exhaustive')
}
if (grid_start == 'exhaustive'){
if (!is.numeric(grid_n))
stop('grid_n should be numeric if grid_start == exhaustive')
}
if (!is.logical(verb)){
stop('verb should be logical')
}
data <- data[order(data[,1]),]
colnames(data) <- c('A','S')
xr <- range(data$S)/mean(data$S)
if (isTRUE(all.equal(xr[1], xr[2]))) {
if (data$S[1] == 0){
warning('All richness values are zero: parameter estimates of',
' non-linear models should be interpreted with caution')
} else{
warning('All richness values identical')
}}
model <- list(
name=c("Monod"),
formula=expression(S==d/(1+c*A^(-1))),
exp=expression(d/(1+c*A^(-1))),
shape="convex",
asymp=function(pars)pars["d"],
parLim = c("Rplus","Rplus"),
custStart=function(data)c(stats::quantile(data$A,c(0.25)),max(data$S)),
init=function(data){
if(any(data$S==0)){data=data[data$S!=0,]}
d=as.double(max(data$A)+max(data$S)/4)
c=data[[1]]*(d/data$S - 1)
c(d,stats::quantile(c,c(0.25)))
}
)
model <- compmod(model)
fit <- get_fit(model = model, data = data, start = start,
grid_start = grid_start, grid_n = grid_n, algo = 'Nelder-Mead',
normaTest = normaTest, homoTest = homoTest,
homoCor = homoCor, verb = verb)
if(is.na(fit$value)){
return(list(value = NA))
}else{
obs <- obs_shape(fit, verb = verb)
fit$observed_shape <- obs$fitShape
fit$asymptote <- obs$asymp
fit$neg_check <- any(fit$calculated < 0)
class(fit) <- 'sars'
attr(fit, 'type') <- 'fit'
return(fit)
}
}
|
library(lingtypology)
context("Tests for iso.lang function")
df <- data.frame(my_langs = c("Adyghe", "Udi"), stringsAsFactors = FALSE)
test_that("iso.lang", {
expect_equal(iso.lang("Adyghe"), c(Adyghe = "ady"))
expect_equal(iso.lang(c("Adyghe", "Udi")), c(Adyghe = "ady", Udi = "udi"))
expect_equal(iso.lang(df), c(my_langs1 = "ady", my_langs2 = "udi"))
})
|
ps2pdf <- function(filename, path=NULL, opts=NULL, ..., force=FALSE, verbose=FALSE) {
pathname <- Arguments$getReadablePathname(filename, path=path, mustExist=TRUE)
opts <- Arguments$getCharacters(opts)
opts <- paste(opts, collapse=" ")
force <- Arguments$getLogical(force)
verbose <- Arguments$getVerbose(verbose)
if (verbose) {
pushState(verbose)
on.exit(popState(verbose))
}
verbose && enter(verbose, "ps2pdf")
verbose && cat(verbose, "PS pathname: ", pathname)
filename <- basename(pathname)
path <- dirname(pathname)
filename2 <- gsub("[.]ps", ".pdf", filename)
pathname2 <- Arguments$getWritablePathname(filename2, path=path)
verbose && cat(verbose, "PDF pathname: ", pathname2)
isUpToDate <- FALSE
if (!force && isFile(pathname2)) {
date <- file.info(pathname)$mtime
verbose && cat(verbose, "Source file modified on: ", date)
outDate <- file.info(pathname2)$mtime
verbose && cat(verbose, "Output file modified on: ", outDate)
if (is.finite(date) && is.finite(outDate)) {
isUpToDate <- (outDate >= date)
}
verbose && printf(verbose, "Output file is %sup to date.\n", ifelse(isUpToDate, "", "not "))
}
if (!isUpToDate || !isFile(pathname2)) {
verbose && enter(verbose, "Calling ps2pdf")
opwd <- getwd()
on.exit(setwd(opwd))
setwd(path)
verbose && cat(verbose, "Working directory: ", getwd())
verbose && cat(verbose, "Filename: ", filename)
cmd <- sprintf("ps2pdf %s %s", opts, filename)
system(cmd)
verbose && exit(verbose)
}
pathname2 <- Arguments$getReadablePathname(pathname2, mustExist=TRUE)
verbose && exit(verbose)
invisible(pathname2)
}
|
mixtureProbs <- function(m, getCI=FALSE, alpha = 0.95){
if(!is.momentuHMM(m) & !is.momentuHierHMM(m))
stop("'m' must be a momentuHMM or momentuHierHMM object")
m <- delta_bc(m)
if(is.null(m$mod$hessian) | inherits(m$mod$Sigma,"error")) getCI <- FALSE
nbAnimals <- length(unique(m$data$ID))
mixtures <- m$conditions$mixtures
if(mixtures==1) getCI <- FALSE
quantSup<-qnorm(1-(1-alpha)/2)
est <- se <- lower <- upper <- matrix(NA,nbAnimals,mixtures)
colnames(est) <- colnames(se) <- colnames(lower) <- colnames(upper) <- paste0("mix",1:mixtures)
rownames(est) <- rownames(se) <- rownames(lower) <- rownames(upper) <- paste0("ID:",unique(m$data$ID))
for(k in 1:nbAnimals){
ind <- which(m$data$ID==unique(m$data$ID)[k])
tmp <- m
tmp$data <- m$data[ind,]
tmp$covsDelta <- m$covsDelta[k,,drop=FALSE]
tmp$covsPi <- m$covsPi[k,,drop=FALSE]
tmp$conditions$knownStates <- rep(NA,nrow(tmp$data))
tmp$conditions$fullDM <- lapply(m$conditions$fullDM,function(y) matrix(mapply(function(x){if(length(x)>1){return(x[ind])} else {return(x)}},y,SIMPLIFY = TRUE),nrow(y),ncol(y),dimnames=dimnames(y)))
est[k,] <- get_mixProbs(tmp$mod$wpar,mod=tmp,mixture=1:mixtures)
if(getCI){
cat("\rComputing SEs and ",alpha*100,"% CIs for individual ",unique(m$data$ID)[k],"... ",sep="")
for(mix in 1:mixtures){
dN<-t(tryCatch(numDeriv::grad(get_mixProbs,tmp$mod$wpar,mod=tmp,mixture=mix),error=function(e) NA))
se[k,mix] <- sqrt(dN %*% m$mod$Sigma %*% t(dN))
lower[k,mix] <- 1/(1+exp(-(log(est[k,mix]/(1-est[k,mix]))-quantSup*(1/(est[k,mix]-est[k,mix]^2))*se[k,mix])))
upper[k,mix] <- 1/(1+exp(-(log(est[k,mix]/(1-est[k,mix]))+quantSup*(1/(est[k,mix]-est[k,mix]^2))*se[k,mix])))
}
}
}
if(getCI) {
cat("DONE\n")
out <- list(est=est,se=se,lower=lower,upper=upper)
} else out <- est
return(out)
}
get_mixProbs <- function(optPar,mod,mixture){
dist <- mod$conditions$dist
nbStates <- length(mod$stateNames)
data <- mod$data
mixtures <- mod$conditions$mixtures
formula <- mod$conditions$formula
knownStates <- mod$conditions$knownStates
newForm <- newFormulas(formula,nbStates,mod$conditions$betaRef,hierarchical = TRUE)
formulaStates <- newForm$formulaStates
newformula <- newForm$newformula
recharge <- newForm$recharge
covs <- stats::model.matrix(newformula,data)
nbCovs <- ncol(covs)-1
if(!is.null(recharge)){
reForm <- formatRecharge(nbStates,formula,mod$conditions$betaRef,data=data)
formulaStates <- reForm$formulaStates
newformula <- reForm$newformula
recharge <- reForm$recharge
hierRecharge <- reForm$hierRecharge
newdata <- reForm$newdata
g0covs <- reForm$g0covs
nbG0covs <- ncol(g0covs)-1
recovs <- reForm$recovs
nbRecovs <- ncol(recovs)-1
covs <- reForm$covs
nbCovs <- ncol(covs)-1
recovsCol <- get_all_vars(recharge$theta,data)
if(!all(names(recovsCol) %in% names(data))){
recovsCol <- recovsCol[,names(recovsCol) %in% names(data),drop=FALSE]
}
g0covsCol <- get_all_vars(recharge$g0,data)
if(!all(names(g0covsCol) %in% names(data))){
g0covsCol <- g0covsCol[,names(g0covsCol) %in% names(data),drop=FALSE]
}
} else {
nbRecovs <- 0
nbG0covs <- 0
g0covs <- g0covsCol <- NULL
recovs <- recovsCol <- NULL
newdata <- NULL
}
distnames<-names(dist)
nbCovs <- ncol(covs)-1
if(!is.null(recovs)) {
nbRecovs <- ncol(recovs)-1
nbG0covs <- ncol(g0covs)-1
} else nbRecovs <- nbG0covs <- 0
ncmean <- get_ncmean(distnames,mod$conditions$fullDM,mod$conditions$circularAngleMean,nbStates)
nc <- ncmean$nc
meanind <- ncmean$meanind
consensus <- vector('list',length(distnames))
names(consensus) <- distnames
for(i in distnames){
consensus[[i]] <- (dist[[i]]=="vmConsensus")
}
dist <- lapply(dist,function(x) gsub("Consensus","",x))
dist <- lapply(dist,function(x) ifelse(grepl("cat",x),"cat",x))
wpar <- expandPar(optPar,mod$conditions$optInd,mod$mod$estimate,mod$conditions$wparIndex,mod$conditions$betaCons,mod$conditions$deltaCons,nbStates,ncol(mod$covsDelta)-1,mod$conditions$stationary,nbCovs,nbRecovs+nbG0covs,mixtures,ncol(mod$covsPi)-1)
par <- w2n(wpar,mod$conditions$bounds,lapply(mod$conditions$fullDM,function(x) nrow(x)/nbStates),nbStates,nbCovs,mod$conditions$estAngleMean,mod$conditions$circularAngleMean,consensus,mod$conditions$stationary,mod$conditions$fullDM,mod$conditions$DMind,nrow(mod$data),dist,mod$conditions$Bndind,nc,meanind,mod$covsDelta,mod$conditions$workBounds,mod$covsPi)
if(nbRecovs){
for(i in 1:length(unique(data$ID))){
idInd <- which(data$ID==unique(data$ID)[i])
if(inherits(data,"hierarchical")) {
recLevels <- length(recharge)
recLevelNames <- names(recharge)
rechargeNames <- paste0("recharge",gsub("level","",recLevelNames))
colInd <- lapply(recLevelNames,function(x) which(grepl(paste0("I((level == \"",gsub("level","",x),"\")"),colnames(recovs),fixed=TRUE)))
} else {
recLevels <- 1
rechargeNames <- "recharge"
colInd <- list(1:ncol(recovs))
}
for(iLevel in 1:recLevels){
g0 <- par$g0 %*% t(g0covs[(i-1)*recLevels+iLevel,,drop=FALSE])
theta <- par$theta
covs[idInd,grepl(rechargeNames[iLevel],colnames(covs))] <- cumsum(c(g0,theta[colInd[[iLevel]]]%*%t(recovs[idInd[-length(idInd)],colInd[[iLevel]]])))
}
}
}
if(is.null(knownStates)) knownStates <- -1
else knownStates[which(is.na(knownStates))] <- 0
if(any(unlist(lapply(dist,is.null)))){
par[which(unlist(lapply(dist,is.null)))]<-matrix(NA)
}
if(mod$conditions$stationary)
par$delta <- c(NA)
if(nbStates==1) {
par$beta <- matrix(NA)
par$delta <- c(NA)
par[distnames] <- lapply(par[distnames],as.matrix)
}
nbCovsDelta <- ncol(mod$covsDelta)-1
beta <- par$beta
delta <- par$delta
pie <- par[["pi"]]
pInd <- which(mapply(function(x) isTRUE(all.equal(x,0)), pie))
if (length(pInd)) {
pie[pInd] <- 1e-100
pie[-pInd] <- pie[-pInd] - (1e-100 * length(pInd))/(ncol(pie) - length(pInd))
}
par[["pi"]] <- matrix(1,1,1)
mixProbs <- lnum <- la <- numeric(mixtures)
for(mix in 1:mixtures){
par$beta <- beta[(mix-1)*(nbCovs+1)+1:(nbCovs+1),,drop=FALSE]
if(!mod$conditions$stationary) par$delta <- delta[mix,,drop=FALSE]
la[mix] <- nLogLike_rcpp(nbStates,as.matrix(covs),data,names(dist),dist,
par,
1,mod$conditions$zeroInflation,mod$conditions$oneInflation,mod$conditions$stationary,knownStates,mod$conditions$betaRef,1)
if(!is.null(mod$prior)) la[mix] <- la[mix] - mod$prior(wpar)
c <- max(-la[mix]+log(pie[mix]))
lnum[mix] <- c + log(sum(exp(-la[mix]+log(pie[mix])-c)))
}
c <- max(lnum)
mixProbs <- exp(lnum - c - log(sum(exp(lnum-c))))
return(mixProbs[mixture])
}
|
".onAttach"<-
function(...)
{
packageStartupMessage("NORMT3: Evaluates erf, erfc, Faddeeva functions and Gaussian/T sum densities")
packageStartupMessage("Copyright: Guy Nason 2005-2012")
}
|
test3Gwbwa <- function(X,freq,verbose=TRUE,rounding=3){
k = ncol(X)
res = group_data(X,freq)
his = res[,1:k]
eff = res[,k+1]
nh = nrow(his)
a = max(his)
kplusun = k + 1
table_wbwa = data.frame(occasion = rep(NA,a*(k-2)),site = rep(NA,a*(k-2)),stat = rep(NA,a*(k-2)), df = rep(NA,a*(k-2)), p_val = rep(NA,a*(k-2)), test_perf = rep(FALSE,a*(k-2)))
where_in_table_wbwa = 0
for (i in 2:(k-1)){
for (l in 1:a){
where_in_table_wbwa = where_in_table_wbwa + 1
fisheroupas = 0
fisherWBWA = 0
masque = (his[,i]==l)
batch = his[masque,]
if (length(batch)==0){
table_wbwa[where_in_table_wbwa,1] = i
table_wbwa[where_in_table_wbwa,2] = l
table_wbwa[where_in_table_wbwa,3] = 0
table_wbwa[where_in_table_wbwa,4] = 0
table_wbwa[where_in_table_wbwa,5] = 0
table_wbwa[where_in_table_wbwa,6] = 'None'
next
}
batcheff = eff[masque]
res = group_data_gen(batch,batcheff,(i+1):k)
batchpost = res[,1:ncol(res)-1]
batcheffpost = res[,ncol(res)]
if (i!=2){
tt = t(apply(batchpost[,1:(i-1)],1,rev))
eante = apply(tt!=0,1,which.max)
eante = i - eante
} else {
eante = rep(1,nrow(batchpost))
}
if (i!=(k-1)){
epost = apply(batchpost[,(i+1):k]!=0,1,which.max)
} else {
epost = rep(1,nrow(batchpost))
}
j = 0
ind = (k-i)*a+1
table = matrix(0,nrow=a+1,ncol=ind)
cpt = matrix(0,nrow=a+1,ncol=1)
while (j<nrow(batchpost)){
j=j+1
date = epost[j]
site = batchpost[j,i+date]
if (site==0){
col = ind
} else{
col = (date-1)*a+site
}
if (j==1){
cold = col
} else if (col!=cold){
table[,cold] = cpt
cpt = matrix(0,nrow=a+1,ncol=1)
cold = col
}
tempo = batchpost[j,eante[j]] + 1
if (site==0){
cpt[tempo] = cpt[tempo] + batcheffpost[j] * (batcheffpost[j]>0)
} else {
cpt[tempo]=cpt[tempo]+abs(batcheffpost[j])
}
}
table[,cold] = cpt
compoWBWA = table
compoWBWA = compoWBWA[-1,]
colWBWA = ncol(compoWBWA)
compoWBWA = compoWBWA[,-colWBWA]
for (j in 1:((colWBWA-1)/a-1)){
if (((colWBWA-1)/a-1)<1) break
compoWBWA[,1:a] = compoWBWA[,1:a] + compoWBWA[,(a+1):(2*a)]
compoWBWA = compoWBWA[,-((a+1):(2*a))]
}
expvalWBWA = expval_table(compoWBWA)
ind1 = apply(expvalWBWA,2,min)
ind2 = apply(expvalWBWA,2,which.min)
ncol = which.min(ind1)
nline = ind2[ncol]
vec_direction = c(ncol,nline)
while (expvalWBWA[nline,ncol]<2){
if (sum(compoWBWA[nline,])/ncol(compoWBWA) > sum(compoWBWA[,ncol])/nrow(compoWBWA)){
pooldim = 1
} else {
pooldim = 2
}
flag = which(dim(compoWBWA)==2)
if (length(flag)==1){
pooldim = flag
} else if (length(flag)==2){
fisherWBWA = 1
break
}
marge = apply(t(compoWBWA),pooldim,sum)
marge[vec_direction[pooldim]] = max(marge) + 1
ind1 = min(marge)
ind2 = which.min(marge)
if (pooldim==1){
compoWBWA[,ncol] = compoWBWA[,ncol] + compoWBWA[,ind2]
compoWBWA = compoWBWA[,-ind2]
} else {
compoWBWA[nline,] = compoWBWA[nline,] + compoWBWA[ind2,]
compoWBWA = compoWBWA[-ind2,]
}
expvalWBWA = expval_table(compoWBWA)
ind1 = apply(expvalWBWA,2,min)
ind2 = apply(expvalWBWA,2,which.min)
ncol = which.min(ind1)
nline = ind2[ncol]
vec_direction = c(ncol,nline)
}
if (fisherWBWA == 1){
fish = stats::fisher.test(compoWBWA)
pvalfish = fish$p.value
zeros_rows = (apply(compoWBWA,1,sum)==0)
zeros_cols = (apply(compoWBWA,2,sum)==0)
if (sum(!zeros_rows)+sum(!zeros_cols)==0){
dffish = 0
} else {
dffish = (sum(!zeros_rows)-1)*(sum(!zeros_cols)-1)
}
stafish = stats::qchisq(1-pvalfish, dffish)
table_wbwa[where_in_table_wbwa,1] = i
table_wbwa[where_in_table_wbwa,2] = l
table_wbwa[where_in_table_wbwa,3] = stafish
table_wbwa[where_in_table_wbwa,4] = dffish
table_wbwa[where_in_table_wbwa,5] = pvalfish
table_wbwa[where_in_table_wbwa,6] = 'Fisher'
} else {
old.warn <- options()$warn
options(warn = -1)
chi2 = stats::chisq.test(compoWBWA,correct=F)
options(warn = old.warn)
pvalchi2 = chi2$p.value
dfchi2 = chi2$parameter
stachi2 = chi2$statistic
table_wbwa[where_in_table_wbwa,1] = i
table_wbwa[where_in_table_wbwa,2] = l
table_wbwa[where_in_table_wbwa,3] = stachi2
table_wbwa[where_in_table_wbwa,4] = dfchi2
table_wbwa[where_in_table_wbwa,5] = pvalchi2
table_wbwa[where_in_table_wbwa,6] = 'Chi-square'
}
}
}
stat = sum(as.numeric(table_wbwa[,3]))
stat = round(stat,rounding)
dof = sum(as.numeric(table_wbwa[,4]))
pval = 1 - stats::pchisq(stat,dof)
pval = round(pval,rounding)
if (verbose==TRUE) return(list(test3Gwbwa=c(stat=stat,df=dof,p_val=pval),details=table_wbwa))
if (verbose==FALSE) return(list(test3Gwbwa=c(stat=stat,df=dof,p_val=pval)))
}
|
library(OpenMx)
mxOption(NULL, "Default optimizer", "SLSQP")
if (mxOption(NULL, 'Default optimizer') != "SLSQP") stop("SKIP")
resVars <- mxPath( from=c("x1","x2","x3","x4","x5"), arrows=2,
free=TRUE, values = 1,
labels=c("residual","residual","residual","residual","residual") )
latVars <- mxPath( from=c("intercept","slope"), arrows=2, connect="unique.pairs",
free=c(TRUE,FALSE,TRUE), values=c(1,0,1), labels=c("vari","cov","vars"))
intLoads <- mxPath( from="intercept", to=c("x1","x2","x3","x4","x5"), arrows=1,
free=FALSE, values=1 )
sloLoads <- mxPath( from="slope", to=c("x1","x2","x3","x4","x5"), arrows=1,
free=FALSE, values=seq(-2,2) )
manMeans <- mxPath( from="one", to=c("x1","x2","x3","x4","x5"), arrows=1,
free=FALSE, values=0)
latMeans <- mxPath( from="one", to=c("intercept", "slope"), arrows=1,
free=FALSE, values=0, labels=c("meani","means") )
growthCurveModel <- mxModel("Linear Growth Curve Model Path Specification",
type="RAM",
manifestVars=c("x1","x2","x3","x4","x5"),
latentVars=c("intercept","slope"),
resVars, latVars, intLoads, sloLoads,
manMeans, latMeans)
result <- expand.grid(rep=1:25000, adj=c(TRUE,FALSE), trueSvar=c(0,.3,.6),
interval=c(.95),
lbound=NA, val=NA, ubound=NA, retries=NA)
if (0) {
load("/tmp/lgc-sim.rda")
}
bounds <- c('lbound','ubound')
for (rx in 1:nrow(result)) {
set.seed(result[rx,'rep'])
true.svar <- result[rx,'trueSvar']
ci.adj <- result[rx,'adj']
growthCurveModel$S$values['slope','slope'] <- true.svar
dset <- mxGenerateData(growthCurveModel, nrows = 150)
m1 <- mxModel(growthCurveModel,
mxData(cov(dset), 'cov', colMeans(dset), nrow(dset)))
m1$S$values['slope','slope'] <- .5
if (ci.adj) {
m1$S$lbound['slope','slope'] <- 0
} else {
m1$S$lbound['slope','slope'] <- NA
}
m1 <- mxModel(m1, mxCI('vars', boundAdj = ci.adj, interval=result[rx,'interval']))
plan <- mxComputeSequence(list(
GD=mxComputeGradientDescent(),
CI=mxComputeConfidenceInterval(
fitfunction="fitfunction",
constraintType='ineq',
plan=mxComputeTryHard(
maxRetries=50L, scale=.05,
plan=mxComputeGradientDescent(nudgeZeroStarts = FALSE,
maxMajorIter = 150L)))))
m1 <- mxModel(m1, plan)
m1 <- try(mxRun(m1, intervals=TRUE, suppressWarnings=TRUE, silent=TRUE))
if (is(m1, "try-error")) {
print(paste("optimizer failed on", rx))
next
}
detail <- m1$compute$steps[['CI']]$output$detail
ci <- m1$output$confidenceIntervals
result[rx,bounds] <- ci[1,bounds]
result[rx,'val'] <- ci[1,'estimate']
result[rx,'retries'] <- m1$compute$steps[['CI']]$plan$debug$retries
if (rx %% 1000 == 0) {
print(rx)
save(result, file="/tmp/lgc-sim.rda")
}
}
result$region <- NA
result[result[,'lbound'] <= result[,'trueSvar'] &
result[,'trueSvar'] <= result[,'ubound'],'region'] <- 'M'
result[result[,'lbound'] > result[,'trueSvar'], 'region'] <- 'L'
result[result[,'ubound'] < result[,'trueSvar'], 'region'] <- 'U'
library(plyr)
resultSummary <- ddply(result, .(adj, trueSvar, interval), function(sim) {
c(M=sum(sim$region == 'M'), L=sum(sim$region== 'L'), U=sum(sim$region=='U')) /
nrow(sim)
})
print(resultSummary)
if(0) {
save(resultSummary, file="~/vcu/ci/lgc-sim.rda")
}
if(0) {
lgc.sim <- result
save(lgc.sim, file="~/vcu/ci/lgc-sim.rda")
}
|
source("ESEUR_config.r")
par(mar=MAR_default-c(2.7, 2.7, 0, 0.8))
pal_col=rainbow(3)
draw_circle=function(x, y, rad)
{
angles<-seq(0, 2*pi, by=0.01)
xt<-x+cos(angles)*rad
yt<-y+sin(angles)*rad
polygon(xt, yt, border="grey", col="grey")
}
three_circles=function(x, y, col_str="white")
{
xs=x-c_rad*2.5
xe=x+c_rad*2.5
ys=y-c_rad*2.5
ye=y+c_rad*2.5
polygon(c(xs-0.5, xe+0.5, xe+0.5, xs-0.5, xs-0.5), c(ye, ye, ys-1, ys-1, ye),
border="white", col=col_str)
draw_circle(x, y, c_rad)
draw_circle(x-0.5, y-1, c_rad)
draw_circle(x+0.5, y-1, c_rad)
}
triange_line=function(y, cb)
{
three_circles(1, y, ifelse(!cb, "white", "pale green"))
three_circles(1+1*tri_xoff, y, ifelse(cb, "white", "pale green"))
three_circles(1+2*tri_xoff, y, ifelse(!cb, "white", "pale green"))
}
intervention=function(from, to, x, y)
{
n1_x=1+x*tri_xoff
n1_y=1+y*tri_yoff
x_node=c(0, -0.5, 0.5)
y_node=c(0, -1, -1)
x_from_off=ifelse(from+to == 5, ifelse(from==2, c_rad, -c_rad), 0)
x_to_off=-x_from_off
y_from_off=ifelse(from+to == 5, 0, ifelse(from==1, -c_rad, c_rad))
y_to_off=-y_from_off
arrows(n1_x+x_node[from]+x_from_off, n1_y+y_node[from]+y_from_off,
n1_x+x_node[to]+x_to_off, n1_y+y_node[to]+y_to_off,
length=0.05)
}
c_rad=0.1
tri_xoff=1.7
tri_yoff=1.6
plot(0, type="n", bty="n",
xaxs="i", yaxs="i",
xaxt="n", yaxt="n",
xlim=c(0.3, 5.2), ylim=c(-0.2, 4.4),
xlab="", ylab="")
triange_line(1, 0)
triange_line(1+1*tri_yoff, 1)
triange_line(1+2*tri_yoff, 0)
intervention(3, 2, 0, 0)
intervention(3, 1, 0, 1)
intervention(1, 2, 0, 2)
intervention(1, 3, 1, 0)
intervention(3, 2, 1, 0)
intervention(2, 1, 1, 2)
intervention(1, 3, 1, 2)
intervention(3, 2, 2, 0)
intervention(3, 1, 2, 0)
intervention(2, 1, 2, 1)
intervention(2, 3, 2, 1)
intervention(1, 2, 2, 2)
intervention(1, 3, 2, 2)
intervention(3, 2, 2, 2)
|
ez_ui = function(data) {
miniUI::miniPage(
miniUI::gadgetTitleBar("ezplot"),
miniUI::miniContentPanel(
shiny::fillRow(
flex = c(1,3),
shiny::column(
width = 12,
shiny::selectInput(
"selected_data",
"Select data",
choices = c(
if (is.null(data)) NULL else "ez_app(data)",
"ansett",
"aus_livestock",
"aus_production",
"aus_retail",
"gafa_stock",
"global_economy",
"hh_budget",
"nyc_bikes",
"olympic_running",
"PBS",
"pelt",
"vic_elec"
),
width = "100%"
),
shiny::selectInput("geom",
"Select chart type",
c("line", "bar", "area", "pie", "waterfall"),
width = "100%"),
shiny::uiOutput("select_x"),
shiny::uiOutput("select_y"),
shiny::uiOutput("select_group"),
shiny::uiOutput("select_facet_x"),
shiny::uiOutput("select_facet_y")
),
shiny::tabsetPanel(
shiny::tabPanel(
"Chart",
shiny::fillCol(
shiny::br(),
shiny::plotOutput("plot", height = "600"))
),
shiny::tabPanel(
"Data",
shiny::br(),
DT::dataTableOutput("data_table")
)
)
)
)
)
}
|
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
fig.path = "man/figures/vignette_cv_custom_fn-",
dpi = 92,
fig.retina = 2
)
library(cvms)
library(groupdata2)
library(dplyr)
library(knitr)
library(e1071)
set.seed(1)
data <- participant.scores
data$diagnosis <- factor(data$diagnosis)
data <- fold(
data,
k = 3,
cat_col = "diagnosis",
id_col = "participant",
num_fold_cols = 5,
parallel = FALSE
)
data <- data %>%
dplyr::arrange(participant)
data %>% head(12) %>% kable()
data %>%
dplyr::count(.folds_1, diagnosis) %>%
kable()
data %>%
dplyr::count(.folds_1, participant) %>%
kable()
test_set <- data %>%
dplyr::filter(.folds_1 == 3)
train_set <- data %>%
dplyr::filter(.folds_1 != 3)
svm_model <- e1071::svm(
formula = score ~ diagnosis + age + session,
data = train_set,
kernel = "linear",
cost = 10,
type = "eps-regression"
)
predicted_scores <- predict(
svm_model,
newdata = test_set,
allow.new.levels = TRUE)
predicted_scores
test_set[["predicted score"]] <- predicted_scores
evaluate(
data = test_set,
target_col = "score",
prediction_cols = "predicted score",
type = "gaussian"
)
svm_model_fn <- function(train_data, formula, hyperparameters) {
e1071::svm(
formula = formula,
data = train_data,
kernel = "linear",
cost = 10,
type = "eps-regression"
)
}
m0 <- svm_model_fn(train_data = train_set,
formula = score ~ diagnosis + age + session)
m0
svm_predict_fn <- function(test_data, model, formula, hyperparameters, train_data) {
predict(object = model,
newdata = test_data,
allow.new.levels = TRUE)
}
svm_predict_fn(test_data = test_set, model = m0)
cv_1 <- cross_validate_fn(
data = data,
formulas = c("score ~ diagnosis + age + session",
"score ~ diagnosis + age",
"score ~ diagnosis"),
type = "gaussian",
model_fn = svm_model_fn,
predict_fn = svm_predict_fn,
fold_cols = paste0(".folds_", 1:5),
parallel = FALSE
)
cv_1
svm_model_fn <- function(train_data, formula, hyperparameters) {
if (!"kernel" %in% names(hyperparameters))
stop("'hyperparameters' must include 'kernel'")
if (!"cost" %in% names(hyperparameters))
stop("'hyperparameters' must include 'cost'")
e1071::svm(
formula = formula,
data = train_data,
kernel = hyperparameters[["kernel"]],
cost = hyperparameters[["cost"]],
scale = FALSE,
type = "eps-regression"
)
}
svm_model_fn(
train_data = train_set,
formula = score ~ diagnosis + age + session,
hyperparameters = list(
"kernel" = "linear",
"cost" = 5
)
)
svm_model_fn <- function(train_data, formula, hyperparameters) {
hyperparameters <- update_hyperparameters(
kernel = "radial",
hyperparameters = hyperparameters,
required = "cost"
)
e1071::svm(
formula = formula,
data = train_data,
kernel = hyperparameters[["kernel"]],
cost = hyperparameters[["cost"]],
type = "eps-regression"
)
}
hparams <- list(
"kernel" = c("linear", "radial"),
"cost" = c(1, 5, 10)
)
hparams <- list(
".n" = 4,
"kernel" = c("linear", "radial"),
"cost" = c(1, 5, 10)
)
df_hparams <- data.frame(
"kernel" = c("linear", "radial", "radial"),
"cost" = c(10, 1, 10)
)
df_hparams
set.seed(1)
cv_2 <- cross_validate_fn(
data = data,
formulas = c("score ~ diagnosis + age + session",
"score ~ diagnosis"),
type = "gaussian",
model_fn = svm_model_fn,
predict_fn = svm_predict_fn,
hyperparameters = hparams,
fold_cols = paste0(".folds_", 1:5)
)
cv_2
cv_2 %>%
dplyr::mutate(`Model ID` = 1:nrow(cv_2)) %>%
dplyr::arrange(RMSE) %>%
select_definitions(additional_includes = c("RMSE", "Model ID")) %>%
kable()
cv_2$Results[[1]] %>% kable()
cv_2$Predictions[[1]] %>% head(10) %>% kable()
preprocess_fn <- function(train_data, test_data, formula, hyperparameters) {
mean_age <- mean(train_data[["age"]])
sd_age <- sd(train_data[["age"]])
train_data[["age"]] <- (train_data[["age"]] - mean_age) / sd_age
test_data[["age"]] <- (test_data[["age"]] - mean_age) / sd_age
preprocess_parameters <- data.frame(
"Measure" = c("Mean", "SD"),
"age" = c(mean_age, sd_age)
)
list("train" = train_data,
"test" = test_data,
"parameters" = preprocess_parameters)
}
prepped <- preprocess_fn(train_data = train_set, test_data = test_set)
prepped$train %>% head(5) %>% kable()
prepped$parameters %>% kable()
cv_3 <- cross_validate_fn(
data = data,
formulas = c("score ~ diagnosis + age + session",
"score ~ diagnosis"),
type = "gaussian",
model_fn = svm_model_fn,
predict_fn = svm_predict_fn,
preprocess_fn = preprocess_fn,
hyperparameters = list(
"kernel" = "linear",
"cost" = 1
),
fold_cols = paste0(".folds_", 1:5)
)
cv_3
cv_3$Preprocess[[1]] %>% head(10) %>% kable()
preprocess_functions("standardize")
clf_svm_model_fn <- function(train_data, formula, hyperparameters) {
hyperparameters <- update_hyperparameters(
kernel = "radial",
cost = 1,
hyperparameters = hyperparameters
)
e1071::svm(
formula = formula,
data = train_data,
kernel = hyperparameters[["kernel"]],
cost = hyperparameters[["cost"]],
type = "C-classification",
probability = TRUE
)
}
m1 <- clf_svm_model_fn(train_data = data, formula = diagnosis ~ score,
hyperparameters = list("kernel" = "linear"))
m1
bnml_svm_predict_fn <- function(test_data, model, formula, hyperparameters, train_data) {
predictions <- predict(
object = model,
newdata = test_data,
allow.new.levels = TRUE,
probability = TRUE
)
probabilities <- dplyr::as_tibble(attr(predictions, "probabilities"))
probabilities[[2]]
}
p1 <- bnml_svm_predict_fn(test_data = data, model = m1)
p1
cv_4 <- cross_validate_fn(
data = data,
formulas = c("diagnosis ~ score",
"diagnosis ~ age"),
type = "binomial",
model_fn = clf_svm_model_fn,
predict_fn = bnml_svm_predict_fn,
hyperparameters = list(
"kernel" = c("linear", "radial"),
"cost" = c(1, 5, 10)
),
fold_cols = paste0(".folds_", 1:5)
)
cv_4
cv_4 %>%
dplyr::mutate(`Model ID` = 1:nrow(cv_4)) %>%
dplyr::arrange(dplyr::desc(`Balanced Accuracy`)) %>%
select_definitions(additional_includes = c("Balanced Accuracy", "F1", "MCC", "Model ID")) %>%
kable()
set.seed(1)
data_mc <- musicians
data_mc[["ID"]] <- as.factor(data_mc[["ID"]])
data_mc <- fold(
data = data_mc,
k = 5,
cat_col = "Class",
num_col = "Age",
num_fold_cols = 5
)
data_mc %>% head(10) %>% kable()
mc_svm_predict_fn <- function(test_data, model, formula, hyperparameters, train_data) {
predictions <- predict(
object = model,
newdata = test_data,
allow.new.levels = TRUE,
probability = TRUE
)
probabilities <- dplyr::as_tibble(attr(predictions, "probabilities"))
probabilities
}
cv_5 <- cross_validate_fn(
data = data_mc,
formulas = c("Class ~ Age + Height",
"Class ~ Age + Height + Bass + Guitar + Keys + Vocals"),
type = "multinomial",
model_fn = clf_svm_model_fn,
predict_fn = mc_svm_predict_fn,
hyperparameters = list(
"kernel" = c("linear", "radial"),
"cost" = c(1, 5, 10)
),
fold_cols = paste0(".folds_", 1:5)
)
cv_5
cv_5 %>%
dplyr::mutate(`Model ID` = 1:nrow(cv_5)) %>%
dplyr::arrange(dplyr::desc(`Balanced Accuracy`)) %>%
select_definitions(additional_includes = c(
"Balanced Accuracy", "F1", "Model ID")) %>%
kable()
cv_5$`Class Level Results`[[11]]
cv_5$Results[[11]]
cv_5$`Confusion Matrix`[[11]]
overall_confusion_matrix <- cv_5$`Confusion Matrix`[[11]] %>%
dplyr::group_by(Prediction, Target) %>%
dplyr::summarise(N = sum(N))
overall_confusion_matrix %>% kable()
plot_confusion_matrix(overall_confusion_matrix, add_sums = TRUE)
|
avg152T1 <- readANALYZE(file.path(system.file("anlz", package="oro.nifti"),
"avg152T1"))
image(avg152T1)
orthographic(avg152T1)
|
collection_ml <- function(xyz, wavelength=632.8, omega = c(40, 50)*pi/180,
psi=0,
epsilon = c(1.5^2, epsAg(wavelength)$epsilon,
1.0^2, 1.0^2),
thickness = c(0, 50, 10, 0),
maxEval = 3000, reqAbsError = 0.0,
tol=1e-04, progress=FALSE){
k0 <- 2*pi/wavelength
I <- cpp_field_collection(xyz, k0, psi, omega, epsilon, thickness,
as.integer(maxEval), as.double(reqAbsError),
tol, progress)
I
}
|
resetDummyProvider()
verbose <- 0
test_that("testthat", {
expect_error(
provider <- DummyProvider()
,NA)
expect_error(
container <- DummyWorkerContainer()
,NA)
expect_error(
generalDockerClusterTest(
cloudProvider = provider,
workerContainer = container,
workerNumber = 5,
testReconnect = TRUE,
verbose = verbose)
,NA)
})
|
setConstructorS3("AbstractCBS", function(fit=list(), sampleName=fit$sampleName, ...) {
if (!is.null(sampleName)) {
sampleName <- Arguments$getCharacter(sampleName)
}
fit$sampleName <- sampleName
extend(fit, "AbstractCBS")
})
setMethodS3("print", "AbstractCBS", function(x, ...) {
fit <- x
segs <- getSegments(fit, simplify=TRUE, ...)
print(segs)
}, protected=TRUE)
setMethodS3("all.equal", "AbstractCBS", function(target, current, check.attributes=FALSE, ...) {
args <- list(...)
drop <- integer(0L)
for (kk in seq_along(args)) {
if (identical(args[[kk]], target)) drop <- c(drop, kk)
if (identical(args[[kk]], current)) drop <- c(drop, kk)
}
if (length(drop) > 0L) {
args <- args[-drop]
str(args)
}
args <- list(...)
res <- all.equal(class(target), class(current))
if (!isTRUE(res)) {
return(res)
}
dataT <- getLocusData(target)
dataC <- getLocusData(current)
res <- all.equal(dataT, dataC, check.attributes=check.attributes)
if (!isTRUE(res)) {
attr(res, "what") <- "getLocusData()"
return(res)
}
dataT <- getSegments(target)
dataC <- getSegments(current)
res <- all.equal(dataT, dataC, check.attributes=check.attributes)
if (!isTRUE(res)) {
attr(res, "what") <- "getSegments()"
return(res)
}
fieldsT <- names(target)
fieldsC <- names(current)
res <- all.equal(fieldsT, fieldsC, check.attributes=check.attributes)
if (!isTRUE(res)) {
attr(res, "what") <- "names"
return(res)
}
for (key in fieldsT) {
dataT <- target[[key]]
dataC <- current[[key]]
res <- all.equal(dataT, dataC, check.attributes=check.attributes)
if (!isTRUE(res)) {
attr(res, "what") <- sprintf("[[\"%s\"]]", key)
return(res)
}
}
return(TRUE)
}, protected=TRUE)
setMethodS3("save", "AbstractCBS", function(this, ...) {
action <- Sys.getenv("R_PSCBS_SAVE_LOAD_DEPRECATED", "defunct")
action <- match.arg(action, choices = c("deprecated", "defunct"))
fcn <- switch(action, deprecated = .Deprecated, defunct = .Defunct)
fcn(msg = sprintf("save() for %s is %s. It is recommended to use saveRDS() from the 'base' package. If you need backward compatibility with save(), use R.utils::saveObject().", class(this)[1], action), package = .packageName)
saveObject(this, ...)
})
setMethodS3("load", "AbstractCBS", function(static, ...) {
action <- Sys.getenv("R_PSCBS_SAVE_LOAD_DEPRECATED", "defunct")
action <- match.arg(action, choices = c("deprecated", "defunct"))
fcn <- switch(action, deprecated = .Deprecated, defunct = .Defunct)
fcn(msg = sprintf("%s$load() is %s. It is recommended to use readRDS() from the 'base' package instead. If you need backward compatibility with load(), use R.utils::loadObject().", class(static)[1], action), package = .packageName)
object <- loadObject(...)
if (!inherits(object, "AbstractCBS")) {
if (inherits(object, "CBS")) {
class(object) <- c(class(object), "AbstractCBS")
warning("Added 'AbstractCBS' to the class hierarchy of the loaded ", class(object)[1], " object.")
} else if (inherits(object, "PairedPSCBS")) {
class(object) <- c(class(object), "AbstractCBS")
warning("Added 'AbstractCBS' to the class hierarchy of the loaded ", class(object)[1], " object.")
}
}
if (!inherits(object, class(static)[1])) {
stop("Loaded an object from file, but it does not inherit from ",
class(static)[1], " as expected: ", hpaste(class(object)))
}
object
}, static=TRUE)
setMethodS3("getSampleName", "AbstractCBS", function(fit, ...) {
name <- fit$sampleName
if (is.null(name)) {
name <- NA_character_
}
name
}, protected=TRUE)
setMethodS3("sampleName", "AbstractCBS", function(fit, ...) {
getSampleName(fit)
}, protected=TRUE)
setMethodS3("setSampleName", "AbstractCBS", function(fit, name, ...) {
name <- Arguments$getCharacter(name)
fit$sampleName <- name
invisible(fit)
}, protected=TRUE)
setMethodS3("sampleName<-", "AbstractCBS", function(x, value) {
setSampleName(x, value)
}, protected=TRUE, addVarArgs=FALSE)
"sampleName<-" <- function(x, value) {
UseMethod("sampleName<-")
}
setMethodS3("getLocusData", "AbstractCBS", abstract=TRUE)
setMethodS3("setLocusData", "AbstractCBS", function(fit, loci, ...) {
loci <- Arguments$getInstanceOf(loci, "data.frame")
nbrOfLoci <- nbrOfLoci(fit)
if (nrow(loci) != nbrOfLoci) {
stop("Cannot set locus-level data. The number of loci to be set differ from the existing number of loci: ", nrow(loci), " != ", nbrOfLoci)
}
fit$data <- loci
invisible(fit)
}, protected=TRUE)
setMethodS3("getLocusSignalNames", "AbstractCBS", abstract=TRUE, protected=TRUE)
setMethodS3("getSegmentTrackPrefixes", "AbstractCBS", abstract=TRUE, protected=TRUE)
setMethodS3("nbrOfLoci", "AbstractCBS", function(fit, splitters=FALSE, ...) {
data <- getLocusData(fit, splitters=splitters, ...)
nrow(data)
})
setMethodS3("getSegments", "AbstractCBS", abstract=TRUE)
setMethodS3("setSegments", "AbstractCBS", function(fit, segments, splitters=TRUE, ...) {
segments <- Arguments$getInstanceOf(segments, "data.frame")
nbrOfSegs <- nbrOfSegments(fit, splitters=splitters, ...)
if (nrow(segments) != nbrOfSegs) {
stop("Cannot set segments. The number of segments to be set differ from the existing number of segments: ", nrow(segments), " != ", nbrOfSegs)
}
fit$output <- segments
invisible(fit)
}, protected=TRUE)
setMethodS3("getChangePoints", "AbstractCBS", abstract=TRUE)
setMethodS3("resetSegments", "AbstractCBS", function(fit, ...) {
segs <- getSegments(fit, splitters=TRUE)
names <- colnames(segs)
excl <- NULL
idxs <- grep("_[0-9.]*[%]$", names)
excl <- c(excl, idxs)
idxs <- grep("Call$", names)
excl <- c(excl, idxs)
excl <- unique(excl)
if (length(excl) > 0L) {
segs <- segs[,-excl]
}
fit <- setSegments(fit, segs, splitters=TRUE)
invisible(fit)
}, protected=TRUE)
setMethodS3("nbrOfSegments", "AbstractCBS", function(this, splitters=FALSE, ...) {
nrow(getSegments(this, splitters=splitters, ...))
})
setMethodS3("nbrOfChangePoints", "AbstractCBS", function(fit, ignoreGaps=FALSE, dropEmptySegments=TRUE, ...) {
segs <- getSegments(fit, splitters=TRUE, addGaps=!ignoreGaps)
if (dropEmptySegments) {
prefix <- getSegmentTrackPrefixes(fit)
keys <- sapply(prefix, FUN=function(x) {
toCamelCase(paste(c(x, "nbr of loci"), collapse=" "))
})
counts <- as.matrix(segs[,keys])
counts <- rowSums(counts, na.rm=TRUE)
segs$chromosome[counts == 0L] <- NA
}
sum(!is.na(diff(segs$chromosome)))
})
setMethodS3("as.data.frame", "AbstractCBS", function(x, ...) {
getSegments(x, ...)
}, protected=TRUE)
setMethodS3("getChromosomes", "AbstractCBS", function(this, ...) {
segs <- getSegments(this, ...)
chromosomes <- sort(unique(segs$chromosome), na.last=TRUE)
if (length(chromosomes) > 1) {
chromosomes <- chromosomes[!is.na(chromosomes)]
}
chromosomes
})
setMethodS3("nbrOfChromosomes", "AbstractCBS", function(this, ...) {
length(getChromosomes(this, ...))
})
setMethodS3("getSegmentSizes", "AbstractCBS", function(fit, by=c("length", "count"), ...) {
by <- match.arg(by)
if (by == "length") {
prefix <- getSegmentTrackPrefixes(fit)[1]
keys <- toCamelCase(paste(prefix, " ", c("start", "end")))
} else if (by == "count") {
keys <- "nbrOfLoci"
}
data <- getSegments(fit, ...)[,keys]
if (by == "length") {
res <- data[[2L]]-data[[1L]]+1L
} else if (by == "count") {
res <- data[[1L]]
}
res
})
setMethodS3("extractCNs", "AbstractCBS", abstract=TRUE)
setMethodS3("sampleCNs", "AbstractCBS", function(fit, size=NULL, ...) {
data <- extractCNs(fit, ...)
if (!is.null(size)) {
sizes <- getSegmentSizes(fit, ...)
.stop_if_not(length(sizes) == nrow(data))
idxs <- sample(nrow(data), size=size, replace=TRUE, prob=sizes)
data <- data[idxs,,drop=FALSE]
}
data
})
setMethodS3("updateMeans", "AbstractCBS", abstract=TRUE, protected=TRUE)
setMethodS3("getMeanEstimators", "AbstractCBS", function(fit, which=NULL, default=mean, ...) {
estList <- fit$params$meanEstimators
if (is.null(estList)) {
estList <- list()
}
if (is.null(which)) which <- names(estList)
for (key in which) {
fcn <- estList[[key]]
if (is.null(fcn)) {
fcn <- default
} else if (is.character(fcn)) {
fcn <- get(fcn, mode="function")
}
estList[[key]] <- fcn
}
estList
}, protected=TRUE)
setMethodS3("setMeanEstimators", "AbstractCBS", function(fit, ...) {
estList <- fit$params$meanEstimators
if (is.null(estList)) {
estList <- list()
}
args <- list(...)
if (length(args) == 0L) {
return(invisible(fit))
}
keys <- names(args)
if (is.null(keys)) {
stop("Estimators arguments must be named.")
}
for (key in keys) {
fcn <- args[[key]]
if (is.function(fcn)) {
} else if (is.character(fcn)) {
if (!exists(fcn, mode="function")) {
stop(sprintf("No such '%s' estimator function: %s", key, fcn))
}
} else {
stop(sprintf("Estimator argument '%s' must be a function or character string: %s", key, mode(fcn)))
}
estList[[key]] <- fcn
}
fit$params$meanEstimators <- estList
invisible(fit)
}, protected=TRUE)
setMethodS3("resegment", "AbstractCBS", abstract=TRUE, protected=TRUE)
setMethodS3("getChromosomeRanges", "AbstractCBS", abstract=TRUE, protected=TRUE)
setMethodS3("getChromosomeOffsets", "AbstractCBS", function(fit, resolution=1e6, ...) {
if (!is.null(resolution)) {
resolution <- Arguments$getDouble(resolution, range=c(1,Inf))
}
data <- getChromosomeRanges(fit, ...)
splits <- data[,"start"] + data[,"length"]
if (!is.null(resolution)) {
splits <- ceiling(splits / resolution)
splits <- resolution * splits
}
offsets <- c(0L, cumsum(splits))
names(offsets) <- c(rownames(data), NA)
offsets
}, protected=TRUE)
setMethodS3("ploidy", "AbstractCBS", function(fit, ...) {
ploidy <- fit$params$ploidy
if (is.null(ploidy)) ploidy <- 2L
ploidy
})
setMethodS3("ploidy<-", "AbstractCBS", function(fit, value) {
fit <- setPloidy(fit, ploidy=value, update=TRUE)
invisible(fit)
})
"ploidy<-" <- function(fit, value) {
UseMethod("ploidy<-")
}
setMethodS3("setPloidy", "AbstractCBS", function(fit, ploidy=2L, update=TRUE, ...) {
ploidy <- Arguments$getInteger(ploidy, range=c(1,Inf))
if (update) {
oldPloidy <- ploidy(fit)
scale <- ploidy / oldPloidy
if (scale != 1) {
fit <- adjustPloidyScale(fit, scale=scale, ...)
}
}
fit$params$ploidy <- ploidy
invisible(fit)
}, protected=TRUE)
setMethodS3("adjustPloidyScale", "AbstractCBS", abstract=TRUE)
setMethodS3("normalizeTotalCNs", "AbstractCBS", abstract=TRUE)
|
batch <- function(config = list()) {
paws.compute::batch(config)
}
ec2 <- function(config = list()) {
paws.compute::ec2(config)
}
ec2instanceconnect <- function(config = list()) {
paws.compute::ec2instanceconnect(config)
}
ecr <- function(config = list()) {
paws.compute::ecr(config)
}
ecs <- function(config = list()) {
paws.compute::ecs(config)
}
eks <- function(config = list()) {
paws.compute::eks(config)
}
elasticbeanstalk <- function(config = list()) {
paws.compute::elasticbeanstalk(config)
}
lambda <- function(config = list()) {
paws.compute::lambda(config)
}
lightsail <- function(config = list()) {
paws.compute::lightsail(config)
}
serverlessapplicationrepository <- function(config = list()) {
paws.compute::serverlessapplicationrepository(config)
}
backup <- function(config = list()) {
paws.storage::backup(config)
}
dlm <- function(config = list()) {
paws.storage::dlm(config)
}
efs <- function(config = list()) {
paws.storage::efs(config)
}
fsx <- function(config = list()) {
paws.storage::fsx(config)
}
glacier <- function(config = list()) {
paws.storage::glacier(config)
}
s3 <- function(config = list()) {
paws.storage::s3(config)
}
s3control <- function(config = list()) {
paws.storage::s3control(config)
}
storagegateway <- function(config = list()) {
paws.storage::storagegateway(config)
}
dax <- function(config = list()) {
paws.database::dax(config)
}
docdb <- function(config = list()) {
paws.database::docdb(config)
}
dynamodb <- function(config = list()) {
paws.database::dynamodb(config)
}
dynamodbstreams <- function(config = list()) {
paws.database::dynamodbstreams(config)
}
elasticache <- function(config = list()) {
paws.database::elasticache(config)
}
neptune <- function(config = list()) {
paws.database::neptune(config)
}
rds <- function(config = list()) {
paws.database::rds(config)
}
rdsdataservice <- function(config = list()) {
paws.database::rdsdataservice(config)
}
redshift <- function(config = list()) {
paws.database::redshift(config)
}
simpledb <- function(config = list()) {
paws.database::simpledb(config)
}
apigateway <- function(config = list()) {
paws.networking::apigateway(config)
}
apigatewaymanagementapi <- function(config = list()) {
paws.networking::apigatewaymanagementapi(config)
}
apigatewayv2 <- function(config = list()) {
paws.networking::apigatewayv2(config)
}
appmesh <- function(config = list()) {
paws.networking::appmesh(config)
}
cloudfront <- function(config = list()) {
paws.networking::cloudfront(config)
}
directconnect <- function(config = list()) {
paws.networking::directconnect(config)
}
elb <- function(config = list()) {
paws.networking::elb(config)
}
elbv2 <- function(config = list()) {
paws.networking::elbv2(config)
}
globalaccelerator <- function(config = list()) {
paws.networking::globalaccelerator(config)
}
route53 <- function(config = list()) {
paws.networking::route53(config)
}
route53domains <- function(config = list()) {
paws.networking::route53domains(config)
}
route53resolver <- function(config = list()) {
paws.networking::route53resolver(config)
}
servicediscovery <- function(config = list()) {
paws.networking::servicediscovery(config)
}
cloud9 <- function(config = list()) {
paws.developer.tools::cloud9(config)
}
codebuild <- function(config = list()) {
paws.developer.tools::codebuild(config)
}
codecommit <- function(config = list()) {
paws.developer.tools::codecommit(config)
}
codedeploy <- function(config = list()) {
paws.developer.tools::codedeploy(config)
}
codepipeline <- function(config = list()) {
paws.developer.tools::codepipeline(config)
}
codestar <- function(config = list()) {
paws.developer.tools::codestar(config)
}
xray <- function(config = list()) {
paws.developer.tools::xray(config)
}
applicationautoscaling <- function(config = list()) {
paws.management::applicationautoscaling(config)
}
applicationinsights <- function(config = list()) {
paws.management::applicationinsights(config)
}
autoscaling <- function(config = list()) {
paws.management::autoscaling(config)
}
autoscalingplans <- function(config = list()) {
paws.management::autoscalingplans(config)
}
cloudformation <- function(config = list()) {
paws.management::cloudformation(config)
}
cloudtrail <- function(config = list()) {
paws.management::cloudtrail(config)
}
cloudwatch <- function(config = list()) {
paws.management::cloudwatch(config)
}
cloudwatchevents <- function(config = list()) {
paws.management::cloudwatchevents(config)
}
cloudwatchlogs <- function(config = list()) {
paws.management::cloudwatchlogs(config)
}
configservice <- function(config = list()) {
paws.management::configservice(config)
}
health <- function(config = list()) {
paws.management::health(config)
}
licensemanager <- function(config = list()) {
paws.management::licensemanager(config)
}
opsworks <- function(config = list()) {
paws.management::opsworks(config)
}
opsworkscm <- function(config = list()) {
paws.management::opsworkscm(config)
}
organizations <- function(config = list()) {
paws.management::organizations(config)
}
pi <- function(config = list()) {
paws.management::pi(config)
}
resourcegroups <- function(config = list()) {
paws.management::resourcegroups(config)
}
resourcegroupstaggingapi <- function(config = list()) {
paws.management::resourcegroupstaggingapi(config)
}
servicecatalog <- function(config = list()) {
paws.management::servicecatalog(config)
}
servicequotas <- function(config = list()) {
paws.management::servicequotas(config)
}
ssm <- function(config = list()) {
paws.management::ssm(config)
}
support <- function(config = list()) {
paws.management::support(config)
}
comprehend <- function(config = list()) {
paws.machine.learning::comprehend(config)
}
comprehendmedical <- function(config = list()) {
paws.machine.learning::comprehendmedical(config)
}
lexmodelbuildingservice <- function(config = list()) {
paws.machine.learning::lexmodelbuildingservice(config)
}
lexruntimeservice <- function(config = list()) {
paws.machine.learning::lexruntimeservice(config)
}
machinelearning <- function(config = list()) {
paws.machine.learning::machinelearning(config)
}
personalize <- function(config = list()) {
paws.machine.learning::personalize(config)
}
personalizeevents <- function(config = list()) {
paws.machine.learning::personalizeevents(config)
}
personalizeruntime <- function(config = list()) {
paws.machine.learning::personalizeruntime(config)
}
polly <- function(config = list()) {
paws.machine.learning::polly(config)
}
rekognition <- function(config = list()) {
paws.machine.learning::rekognition(config)
}
sagemaker <- function(config = list()) {
paws.machine.learning::sagemaker(config)
}
sagemakerruntime <- function(config = list()) {
paws.machine.learning::sagemakerruntime(config)
}
textract <- function(config = list()) {
paws.machine.learning::textract(config)
}
transcribeservice <- function(config = list()) {
paws.machine.learning::transcribeservice(config)
}
translate <- function(config = list()) {
paws.machine.learning::translate(config)
}
athena <- function(config = list()) {
paws.analytics::athena(config)
}
cloudsearch <- function(config = list()) {
paws.analytics::cloudsearch(config)
}
cloudsearchdomain <- function(config = list()) {
paws.analytics::cloudsearchdomain(config)
}
datapipeline <- function(config = list()) {
paws.analytics::datapipeline(config)
}
elasticsearchservice <- function(config = list()) {
paws.analytics::elasticsearchservice(config)
}
emr <- function(config = list()) {
paws.analytics::emr(config)
}
firehose <- function(config = list()) {
paws.analytics::firehose(config)
}
glue <- function(config = list()) {
paws.analytics::glue(config)
}
kafka <- function(config = list()) {
paws.analytics::kafka(config)
}
kinesis <- function(config = list()) {
paws.analytics::kinesis(config)
}
kinesisanalytics <- function(config = list()) {
paws.analytics::kinesisanalytics(config)
}
kinesisanalyticsv2 <- function(config = list()) {
paws.analytics::kinesisanalyticsv2(config)
}
mturk <- function(config = list()) {
paws.analytics::mturk(config)
}
quicksight <- function(config = list()) {
paws.analytics::quicksight(config)
}
acm <- function(config = list()) {
paws.security.identity::acm(config)
}
acmpca <- function(config = list()) {
paws.security.identity::acmpca(config)
}
clouddirectory <- function(config = list()) {
paws.security.identity::clouddirectory(config)
}
cloudhsm <- function(config = list()) {
paws.security.identity::cloudhsm(config)
}
cloudhsmv2 <- function(config = list()) {
paws.security.identity::cloudhsmv2(config)
}
cognitoidentity <- function(config = list()) {
paws.security.identity::cognitoidentity(config)
}
cognitoidentityprovider <- function(config = list()) {
paws.security.identity::cognitoidentityprovider(config)
}
cognitosync <- function(config = list()) {
paws.security.identity::cognitosync(config)
}
directoryservice <- function(config = list()) {
paws.security.identity::directoryservice(config)
}
fms <- function(config = list()) {
paws.security.identity::fms(config)
}
guardduty <- function(config = list()) {
paws.security.identity::guardduty(config)
}
iam <- function(config = list()) {
paws.security.identity::iam(config)
}
inspector <- function(config = list()) {
paws.security.identity::inspector(config)
}
kms <- function(config = list()) {
paws.security.identity::kms(config)
}
macie <- function(config = list()) {
paws.security.identity::macie(config)
}
ram <- function(config = list()) {
paws.security.identity::ram(config)
}
secretsmanager <- function(config = list()) {
paws.security.identity::secretsmanager(config)
}
securityhub <- function(config = list()) {
paws.security.identity::securityhub(config)
}
shield <- function(config = list()) {
paws.security.identity::shield(config)
}
sts <- function(config = list()) {
paws.security.identity::sts(config)
}
sso <- function(config = list()) {
paws.security.identity::sso(config)
}
waf <- function(config = list()) {
paws.security.identity::waf(config)
}
wafregional <- function(config = list()) {
paws.security.identity::wafregional(config)
}
eventbridge <- function(config = list()) {
paws.application.integration::eventbridge(config)
}
mq <- function(config = list()) {
paws.application.integration::mq(config)
}
sfn <- function(config = list()) {
paws.application.integration::sfn(config)
}
sns <- function(config = list()) {
paws.application.integration::sns(config)
}
sqs <- function(config = list()) {
paws.application.integration::sqs(config)
}
swf <- function(config = list()) {
paws.application.integration::swf(config)
}
budgets <- function(config = list()) {
paws.cost.management::budgets(config)
}
costandusagereportservice <- function(config = list()) {
paws.cost.management::costandusagereportservice(config)
}
costexplorer <- function(config = list()) {
paws.cost.management::costexplorer(config)
}
marketplacecommerceanalytics <- function(config = list()) {
paws.cost.management::marketplacecommerceanalytics(config)
}
marketplaceentitlementservice <- function(config = list()) {
paws.cost.management::marketplaceentitlementservice(config)
}
marketplacemetering <- function(config = list()) {
paws.cost.management::marketplacemetering(config)
}
pricing <- function(config = list()) {
paws.cost.management::pricing(config)
}
connect <- function(config = list()) {
paws.customer.engagement::connect(config)
}
pinpoint <- function(config = list()) {
paws.customer.engagement::pinpoint(config)
}
pinpointemail <- function(config = list()) {
paws.customer.engagement::pinpointemail(config)
}
pinpointsmsvoice <- function(config = list()) {
paws.customer.engagement::pinpointsmsvoice(config)
}
ses <- function(config = list()) {
paws.customer.engagement::ses(config)
}
appstream <- function(config = list()) {
paws.end.user.computing::appstream(config)
}
workdocs <- function(config = list()) {
paws.end.user.computing::workdocs(config)
}
worklink <- function(config = list()) {
paws.end.user.computing::worklink(config)
}
workspaces <- function(config = list()) {
paws.end.user.computing::workspaces(config)
}
|
xsplineTangent.s1neg.s2neg.A0.A3.y <- function(px0, px1, px2, px3, py0, py1, py2, py3, s1, s2, t) {
((((-t) * ((-t) * ((-t) * (-t) * (-s1) - ((-t) + (-t)) *
(-2 * (-s1) - (-t) * (-s1))) - (2 * (-s1) + (-t) * (-t) *
(-2 * (-s1) - (-t) * (-s1)))) - ((-s1) + (-t) * (2 * (-s1) +
(-t) * (-t) * (-2 * (-s1) - (-t) * (-s1))))) * py0 - ((1 -
t) * ((1 - t) * ((1 - t) * ((1 - t) * (4 - 5 * (-s2)) + (14 *
(-s2) - 11 + (1 - t) * (4 - 5 * (-s2)))) + (8 - 12 * (-s2) +
(1 - t) * (14 * (-s2) - 11 + (1 - t) * (4 - 5 * (-s2))))) +
(2 * (-s2) + (1 - t) * (8 - 12 * (-s2) + (1 - t) * (14 *
(-s2) - 11 + (1 - t) * (4 - 5 * (-s2)))))) + ((-s2) +
(1 - t) * (2 * (-s2) + (1 - t) * (8 - 12 * (-s2) + (1 - t) *
(14 * (-s2) - 11 + (1 - t) * (4 - 5 * (-s2))))))) * py1 +
(((-s1) + t * (2 * (-s1) + t * (8 - 12 * (-s1) + t * (14 *
(-s1) - 11 + t * (4 - 5 * (-s1)))))) + t * ((2 * (-s1) +
t * (8 - 12 * (-s1) + t * (14 * (-s1) - 11 + t * (4 -
5 * (-s1))))) + t * ((8 - 12 * (-s1) + t * (14 *
(-s1) - 11 + t * (4 - 5 * (-s1)))) + t * ((14 * (-s1) -
11 + t * (4 - 5 * (-s1))) + t * (4 - 5 * (-s1)))))) *
py2 + (((-s2) + (t - 1) * (2 * (-s2) + (t - 1) * (t -
1) * (-2 * (-s2) - (t - 1) * (-s2)))) + (t - 1) * ((2 * (-s2) +
(t - 1) * (t - 1) * (-2 * (-s2) - (t - 1) * (-s2))) + (t -
1) * (((t - 1) + (t - 1)) * (-2 * (-s2) - (t - 1) * (-s2)) -
(t - 1) * (t - 1) * (-s2)))) * py3)/((-t) * ((-s1) + (-t) *
(2 * (-s1) + (-t) * (-t) * (-2 * (-s1) - (-t) * (-s1)))) +
(1 - t) * ((-s2) + (1 - t) * (2 * (-s2) + (1 - t) * (8 -
12 * (-s2) + (1 - t) * (14 * (-s2) - 11 + (1 - t) * (4 -
5 * (-s2)))))) + t * ((-s1) + t * (2 * (-s1) + t * (8 -
12 * (-s1) + t * (14 * (-s1) - 11 + t * (4 - 5 * (-s1)))))) +
(t - 1) * ((-s2) + (t - 1) * (2 * (-s2) + (t - 1) * (t -
1) * (-2 * (-s2) - (t - 1) * (-s2))))) - ((-t) * ((-s1) +
(-t) * (2 * (-s1) + (-t) * (-t) * (-2 * (-s1) - (-t) * (-s1)))) *
py0 + (1 - t) * ((-s2) + (1 - t) * (2 * (-s2) + (1 - t) *
(8 - 12 * (-s2) + (1 - t) * (14 * (-s2) - 11 + (1 - t) *
(4 - 5 * (-s2)))))) * py1 + t * ((-s1) + t * (2 * (-s1) +
t * (8 - 12 * (-s1) + t * (14 * (-s1) - 11 + t * (4 - 5 *
(-s1)))))) * py2 + (t - 1) * ((-s2) + (t - 1) * (2 *
(-s2) + (t - 1) * (t - 1) * (-2 * (-s2) - (t - 1) * (-s2)))) *
py3) * ((-t) * ((-t) * ((-t) * (-t) * (-s1) - ((-t) + (-t)) *
(-2 * (-s1) - (-t) * (-s1))) - (2 * (-s1) + (-t) * (-t) *
(-2 * (-s1) - (-t) * (-s1)))) - ((-s1) + (-t) * (2 * (-s1) +
(-t) * (-t) * (-2 * (-s1) - (-t) * (-s1)))) - ((1 - t) *
((1 - t) * ((1 - t) * ((1 - t) * (4 - 5 * (-s2)) + (14 *
(-s2) - 11 + (1 - t) * (4 - 5 * (-s2)))) + (8 - 12 *
(-s2) + (1 - t) * (14 * (-s2) - 11 + (1 - t) * (4 - 5 *
(-s2))))) + (2 * (-s2) + (1 - t) * (8 - 12 * (-s2) +
(1 - t) * (14 * (-s2) - 11 + (1 - t) * (4 - 5 * (-s2)))))) +
((-s2) + (1 - t) * (2 * (-s2) + (1 - t) * (8 - 12 * (-s2) +
(1 - t) * (14 * (-s2) - 11 + (1 - t) * (4 - 5 * (-s2))))))) +
(((-s1) + t * (2 * (-s1) + t * (8 - 12 * (-s1) + t * (14 *
(-s1) - 11 + t * (4 - 5 * (-s1)))))) + t * ((2 * (-s1) +
t * (8 - 12 * (-s1) + t * (14 * (-s1) - 11 + t * (4 -
5 * (-s1))))) + t * ((8 - 12 * (-s1) + t * (14 *
(-s1) - 11 + t * (4 - 5 * (-s1)))) + t * ((14 * (-s1) -
11 + t * (4 - 5 * (-s1))) + t * (4 - 5 * (-s1)))))) +
(((-s2) + (t - 1) * (2 * (-s2) + (t - 1) * (t - 1) * (-2 *
(-s2) - (t - 1) * (-s2)))) + (t - 1) * ((2 * (-s2) +
(t - 1) * (t - 1) * (-2 * (-s2) - (t - 1) * (-s2))) +
(t - 1) * (((t - 1) + (t - 1)) * (-2 * (-s2) - (t - 1) *
(-s2)) - (t - 1) * (t - 1) * (-s2)))))/((-t) * ((-s1) +
(-t) * (2 * (-s1) + (-t) * (-t) * (-2 * (-s1) - (-t) * (-s1)))) +
(1 - t) * ((-s2) + (1 - t) * (2 * (-s2) + (1 - t) * (8 -
12 * (-s2) + (1 - t) * (14 * (-s2) - 11 + (1 - t) * (4 -
5 * (-s2)))))) + t * ((-s1) + t * (2 * (-s1) + t * (8 -
12 * (-s1) + t * (14 * (-s1) - 11 + t * (4 - 5 * (-s1)))))) +
(t - 1) * ((-s2) + (t - 1) * (2 * (-s2) + (t - 1) * (t -
1) * (-2 * (-s2) - (t - 1) * (-s2)))))^2)
}
|
.dt_has_built_key <- "_has_built"
dt_has_built_get <- function(data) {
dt__get(data, .dt_has_built_key)
}
dt_has_built_set <- function(data, value) {
dt__set(data, .dt_has_built_key, value)
}
dt_has_built_init <- function(data) {
dt_has_built_set(data = data, value = FALSE)
}
dt_has_built <- function(data) {
isTRUE(dt_has_built_get(data = data))
}
dt_has_built_assert <- function(data) {
if (!dt_has_built(data = data)) {
stop("The build hasn't occurred; must call `build_data()` before retrieving.")
}
}
|
lisrelMatrix <- function(object, matrix, group = 1, type = "est")
{
if (!"lisrel"%in%class(object)) stop("Input must be a 'lisrel' object.")
if (missing(matrix))
{
matrix <- names(object$matrices)[sapply(lapply(object$matrices,sapply,length),function(x)all(x>0))]
} else {
matrix[grepl("lamb?d?a?.?x",matrix,ignore.case=TRUE)] <- "LX"
matrix[grepl("lamb?d?a?.?y",matrix,ignore.case=TRUE)] <- "LY"
matrix[grepl("phi",matrix,ignore.case=TRUE)] <- "PH"
matrix[grepl("the?t?a?.?(y|eps)",matrix,ignore.case=TRUE)] <- "TE"
matrix[grepl("the?t?a?.?(x|del)",matrix,ignore.case=TRUE)] <- "TD"
matrix[grepl("gamm?a?",matrix,ignore.case=TRUE)] <- "GA"
matrix[grepl("psi",matrix,ignore.case=TRUE)] <- "PS"
matrix[grepl("bet?a?",matrix,ignore.case=TRUE)] <- "BE"
matrix[grepl("tau.?x",matrix,ignore.case=TRUE)] <- "TX"
matrix[grepl("tau.?y",matrix,ignore.case=TRUE)] <- "TY"
matrix[grepl("alp?h?a?",matrix,ignore.case=TRUE)] <- "AL"
matrix[grepl("kap?p?a?",matrix,ignore.case=TRUE)] <- "KA"
if (any(grepl("lam?",matrix,ignore.case=TRUE)))
{
if (length(object$matrices$LX[[1]]) == 0 & length(object$matrices$LY[[1]]) > 0)
{
matrix[grepl("lam?",matrix,ignore.case=TRUE)] <- "LY"
} else if (length(object$matrices$LX[[1]]) > 0 & length(object$matrices$LY[[1]])==0)
{
matrix[grepl("lam?",matrix,ignore.case=TRUE)] <- "LX"
} else stop(paste("Matrix",grep("lam?",matrix,value=TRUE,ignore.case=TRUE),"could not be interpreted."))
}
if (any(grepl("tau",matrix,ignore.case=TRUE)))
{
if (length(object$matrices$TX[[1]]) == 0 & length(object$matrices$TY[[1]]) > 0)
{
matrix[grepl("tau",matrix,ignore.case=TRUE)] <- "TY"
} else if (length(object$matrices$TX[[1]]) > 0 & length(object$matrices$TY[[1]])==0)
{
matrix[grepl("tau",matrix,ignore.case=TRUE)] <- "TX"
} else stop(paste("Matrix",grep("tau",matrix,value=TRUE,ignore.case=TRUE),"could not be interpreted."))
}
if (any(grepl("thet?a?",matrix,ignore.case=TRUE)))
{
if (length(object$matrices$TD[[1]]) == 0 & length(object$matrices$TE[[1]]) > 0)
{
matrix[grepl("thet?a?",matrix,ignore.case=TRUE)] <- "TE"
} else if (length(object$matrices$TD[[1]]) > 0 & length(object$matrices$TE[[1]])==0)
{
matrix[grepl("thet?a?",matrix,ignore.case=TRUE)] <- "TD"
} else stop(paste("Matrix",grep("thet?a?",matrix,value=TRUE,ignore.case=TRUE),"could not be interpreted."))
}
}
Res <- lapply(object$matrices[matrix],function(x)x[[group]][[type]])
if (length(Res)==1) Res <- Res[[1]]
return(Res)
}
|
library(deSolve)
LVmod0D <- function(Time, State, Pars) {
with(as.list(c(State, Pars)), {
IngestC <- rI * P * C
GrowthP <- rG * P * (1 - P/K)
MortC <- rM * C
dP <- GrowthP - IngestC
dC <- IngestC * AE - MortC
return(list(c(dP, dC)))
})
}
pars <- c(rI = 0.2,
rG = 1.0,
rM = 0.2 ,
AE = 0.5,
K = 10)
yini <- c(P = 1, C = 2)
times <- seq(0, 200, by = 1)
nrun <- 1
print(system.time(
for (i in 1:nrun)
out <- lsoda(func = LVmod0D, y = yini, parms = pars, times = times)
)/nrun)
print(system.time(
for (i in 1:nrun)
out <- lsode(func = LVmod0D, y = yini, parms = pars, times = times)
)/nrun)
print(system.time(
for (i in 1:nrun)
out <- vode(func = LVmod0D, y = yini, parms = pars, times = times)
)/nrun)
print(system.time(
for (i in 1:nrun)
out <- daspk(func = LVmod0D, y = yini, parms = pars, times = times)
)/nrun)
print(system.time(
for (i in 1:nrun)
out <- lsodes(func = LVmod0D, y = yini, parms = pars, times = times)
)/nrun)
matplot(out[,"time"], out[,2:3], type = "l", xlab = "time", ylab = "Conc",
main = "Lotka-Volterra", lwd = 2)
legend("topright", c("prey", "predator"), col =1:2, lty = 1:2)
rootfun <- function(Time, State, Pars) {
dstate <- unlist(LVmod0D(Time, State, Pars))
root <- sum(abs(dstate)) - 1e-4
}
print(system.time(
for (i in 1:nrun)
out <- lsodar(func = LVmod0D, y = yini, parms = pars,
times = times, rootfun = rootfun)
)/nrun)
matplot(out[,"time"],out[,2:3], type = "l", xlab = "time", ylab = "Conc",
main = "Lotka-Volterra with root", lwd = 2)
LVmod1D <- function (time, state, parms, N, Da, dx) {
with (as.list(parms), {
P <- state[1:N]
C <- state[-(1:N)]
FluxP <- -Da * diff(c(P[1], P, P[N]))/dx
FluxC <- -Da * diff(c(C[1], C, C[N]))/dx
IngestC <- rI * P * C
GrowthP <- rG * P * (1- P/K)
MortC <- rM * C
dP <- -diff(FluxP)/dx + GrowthP - IngestC
dC <- -diff(FluxC)/dx + IngestC * AE - MortC
return(list(c(dP, dC)))
})
}
R <- 20
N <- 1000
dx <- R/N
Da <- 0.05
yini <- rep(0, 2*N)
yini[500:501] <- yini[1500:1501] <- 10
times <-seq(0, 200, by = 1)
print(system.time(
for (i in 1:nrun)
out <- ode.1D(y = yini, times = times, func = LVmod1D, parms = pars,
nspec = 2, N = N, dx = dx, Da = Da)
)/nrun)
print(system.time(
for (i in 1:nrun)
out <- ode.1D(y = yini, times = times, func = LVmod1D, parms = pars,
nspec = 2, N = N, dx = dx, Da = Da, method = "vode")
)/nrun)
print(system.time(
for (i in 1:nrun)
out <- ode.1D(y = yini, times = times, func = LVmod1D, parms = pars,
nspec = 2, N = N, dx = dx, Da = Da, method = "lsoda")
)/nrun)
print(system.time(
for (i in 1:nrun)
out <- ode.1D(y = yini, times = times, func = LVmod1D, parms = pars,
nspec = 2, N = N, dx = dx, Da = Da, method = "lsodes")
)/nrun)
image(out, which = 1, grid = seq(0, R, length=N),
xlab = "Time, days", ylab = "Distance, m", main = "Prey density")
LVmod2D <- function (time, state, parms, N, Da, dx, dy) {
P <- matrix(nr = N, nc = N, state[1:NN])
C <- matrix(nr = N, nc = N, state[-(1:NN)])
with (as.list(parms), {
dP <- rG*P *(1 - P/K) - rI*P*C
dC <- rI*P*C*AE - rM*C
zero <- numeric(N)
FluxP <- rbind(zero, -Da*(P[-1,] - P[-N,])/dx, zero)
FluxC <- rbind(zero, -Da*(C[-1,] - C[-N,])/dx, zero)
dP <- dP - (FluxP[-1,] - FluxP[-(N+1),])/dx
dC <- dC - (FluxC[-1,] - FluxC[-(N+1),])/dx
FluxP <- cbind(zero, -Da*(P[,-1] - P[,-N])/dy, zero)
FluxC <- cbind(zero, -Da*(C[,-1] - C[,-N])/dy, zero)
dP <- dP - (FluxP[,-1] - FluxP[,-(N+1)])/dy
dC <- dC - (FluxC[,-1] - FluxC[,-(N+1)])/dy
return(list(c(as.vector(dP), as.vector(dC))))
})
}
R <- 20
N <- 50
dx <- R/N
dy <- R/N
Da <- 0.05
NN <- N*N
yini <- rep(0, 2*N*N)
cc <- c((NN/2):(NN/2+1)+N/2, (NN/2):(NN/2+1)-N/2)
yini[cc] <- yini[NN+cc] <- 10
times <- seq(0, 200, by = 1)
print(system.time(
for (i in 1:nrun)
out <- ode.2D(y = yini, times = times, func = LVmod2D,
parms = pars, ynames = FALSE, dimens = c(N, N),
N = N, dx = dx, dy = dy, Da = Da, lrw = 440000)
)/nrun)
Col<- colorRampPalette(c("
"
par(mfrow=c(2,2))
par(oma=c(0,0,2,0))
xx <- seq(0, R, dx)
yy <- seq(0, R, dy)
image(x = xx, y = yy, z = matrix(nr = N, nc = N, out[1,-1]), zlim = c(0,10),
col = Col(100), main = "initial", xlab = "x", ylab = "y")
image(x = xx, y = yy, z = matrix(nr = N, nc = N, out[21,-1]), zlim = c(0,10),
col = Col(100), main = "20 days", xlab = "x", ylab = "y")
image(x = xx, y = yy, z = matrix(nr = N, nc = N, out[31,-1]), zlim = c(0,10),
col = Col(100), main = "30 days", xlab = "x", ylab = "y")
image(x = xx, y = yy, z = matrix(nr = N, nc = N, out[41,-1]), zlim = c(0,10),
col = Col(100), main = "40 days", xlab = "x", ylab = "y")
mtext(side = 3, outer = TRUE, cex = 1.25,
"Lotka-Volterra Prey concentration on 2-D grid")
Res_DAE <- function (t, y, yprime, pars, K) {
with (as.list(c(y, yprime, pars)), {
res1 <- -dD - dA + prod
res2 <- -dB + dA - r*B
eq <- K*D - A*B
return(list(c(res1, res2, eq),
CONC = A + B + D))
})
}
times <- seq(0, 100, by = 2)
pars <- c(r = 1, prod = 0.1)
K <- 1
yini <- c(A = 2, B = 3, D = 2*3/K)
dyini <- c(dA = 0, dB = 0, dD = 0)
DAE <- daspk(y = yini, dy = dyini, times = times, res = Res_DAE,
parms = pars, atol = 1e-10, rtol = 1e-10, K = 1)
plot(DAE, main = c(paste("[",colnames(DAE)[2:4],"]"),"total conc"),
xlab = "time", lwd = 2, ylab = "conc", type = "l")
mtext(outer=TRUE, side=3, "DAE chemical model",cex=1.25)
|
cpCommunitySizeDistribution <- function(list.of.communities, color.line = "
test.power.law = FALSE){
if (length(list.of.communities) == 0) {
stop("No communities. Thus, no size distribution is plotted.")
}
if (length(list.of.communities) > 0) {
size_communities <- c()
for (i in 1:length(list.of.communities)) {
size_communities[i] <- length(list.of.communities[[i]])
}
size_freq <- as.data.frame(table(size_communities))
names(size_freq) <- c("size","frequency")
size_freq[, c(1:2)] <- lapply(size_freq[, c(1:2)], as.character)
size_freq[, c(1:2)] <- lapply(size_freq[, c(1:2)], as.numeric)
graphics::plot(1,type='n',xlim=c(1,max(size_freq$size)),ylim=c(0,max(size_freq$frequency)),
xlab='Community Size', ylab='Frequency', cex.lab = 1.5, cex.axis = 1.5)
graphics::grid(col = "lightgray", lty = "solid")
graphics::points(x = size_freq$size, y = size_freq$frequency, col = color.line,
pch = 16, cex = 1.5)
graphics::lines(x = size_freq$size, y = size_freq$frequency, col = color.line, lwd = 3)
if (test.power.law == FALSE) {
invisible(list(size.distribution = size_freq))
} else {
size_vector <- rep(size_freq$size, size_freq$frequency)
fit_pl <- igraph::fit_power_law(size_vector, xmin = min(size_vector),
implementation = "plfit")
invisible(list(size.distribution = size_freq,
fit.power.law = fit_pl))
}
}
}
|
lav_mvnorm_cluster_implied22l <- function(Lp = NULL,
implied = NULL,
Mu.W = NULL,
Mu.B = NULL,
Sigma.W = NULL,
Sigma.B = NULL) {
if(!is.null(implied)) {
Sigma.W <- implied$cov[[1]]
Mu.W <- implied$mean[[1]]
Sigma.B <- implied$cov[[2]]
Mu.B <- implied$mean[[2]]
}
between.idx <- Lp$between.idx[[2]]
within.idx <- Lp$within.idx[[2]]
both.idx <- Lp$both.idx[[2]]
ov.idx <- Lp$ov.idx
p.tilde <- length( unique(c(ov.idx[[1]], ov.idx[[2]])) )
Sigma.W.tilde <- matrix(0, p.tilde, p.tilde)
Sigma.W.tilde[ ov.idx[[1]], ov.idx[[1]] ] <- Sigma.W
Sigma.B.tilde <- matrix(0, p.tilde, p.tilde)
Sigma.B.tilde[ ov.idx[[2]], ov.idx[[2]] ] <- Sigma.B
Mu.W.tilde <- numeric( p.tilde )
Mu.W.tilde[ ov.idx[[1]] ] <- Mu.W
Mu.B.tilde <- numeric( p.tilde )
Mu.B.tilde[ ov.idx[[2]] ] <- Mu.B
Mu.WB.tilde <- numeric( p.tilde )
Mu.WB.tilde[ within.idx ] <- Mu.W.tilde[ within.idx ]
Mu.WB.tilde[ both.idx ] <- ( Mu.B.tilde[ both.idx ] +
Mu.W.tilde[ both.idx ] )
if(length(within.idx) > 0L) {
Mu.B.tilde[within.idx] <- 0
}
if(length(between.idx) > 0L) {
mu.z <- Mu.B.tilde[ between.idx ]
mu.y <- Mu.WB.tilde[-between.idx ]
mu.w <- Mu.W.tilde[ -between.idx ]
mu.b <- Mu.B.tilde[ -between.idx ]
sigma.zz <- Sigma.B.tilde[ between.idx, between.idx, drop = FALSE]
sigma.yz <- Sigma.B.tilde[-between.idx, between.idx, drop = FALSE]
sigma.b <- Sigma.B.tilde[-between.idx,-between.idx, drop = FALSE]
sigma.w <- Sigma.W.tilde[-between.idx,-between.idx, drop = FALSE]
} else {
mu.z <- numeric(0L)
mu.y <- Mu.WB.tilde
mu.w <- Mu.W.tilde
mu.b <- Mu.B.tilde
sigma.zz <- matrix(0, 0L, 0L)
sigma.yz <- matrix(0, nrow(Sigma.B.tilde), 0L)
sigma.b <- Sigma.B.tilde
sigma.w <- Sigma.W.tilde
}
list(sigma.w = sigma.w, sigma.b = sigma.b, sigma.zz = sigma.zz,
sigma.yz = sigma.yz, mu.z = mu.z, mu.y = mu.y, mu.w = mu.w,
mu.b = mu.b)
}
lav_mvnorm_cluster_2l2implied <- function(Lp,
sigma.w = NULL,
sigma.b = NULL,
sigma.zz = NULL,
sigma.yz = NULL,
mu.z = NULL,
mu.y = NULL,
mu.w = NULL,
mu.b = NULL) {
between.idx <- Lp$between.idx[[2]]
within.idx <- Lp$within.idx[[2]]
ov.idx <- Lp$ov.idx
p.tilde <- length( unique(c(ov.idx[[1]], ov.idx[[2]])) )
if(!is.null(mu.y)) {
mu.b <- mu.y
mu.w.tilde <- numeric( p.tilde )
mu.w.tilde[ ov.idx[[1]] ] <- mu.y
mu.w <- mu.w.tilde[ ov.idx[[1]] ]
}
Mu.W.tilde <- numeric( p.tilde )
Mu.W.tilde[ ov.idx[[1]] ] <- mu.w
Mu.W <- Mu.W.tilde[ ov.idx[[1]] ]
Mu.B.tilde <- numeric(p.tilde)
Mu.B.tilde[ ov.idx[[1]] ] <- mu.b
Mu.B.tilde[ between.idx ] <- mu.z
if(length(within.idx) > 0) {
Mu.B.tilde[within.idx] <- 0
}
Mu.B <- Mu.B.tilde[ ov.idx[[2]] ]
Sigma.W <- sigma.w
Sigma.B.tilde <- matrix(0, p.tilde, p.tilde)
Sigma.B.tilde[ ov.idx[[1]], ov.idx[[1]] ] <- sigma.b
Sigma.B.tilde[ ov.idx[[1]], between.idx ] <- sigma.yz
Sigma.B.tilde[ between.idx, ov.idx[[1]] ] <- t(sigma.yz)
Sigma.B.tilde[ between.idx, between.idx ] <- sigma.zz
Sigma.B <- Sigma.B.tilde[ ov.idx[[2]], ov.idx[[2]], drop = FALSE ]
list(Mu.W = Mu.W, Mu.B = Mu.B, Sigma.W = Sigma.W, Sigma.B = Sigma.B)
}
lav_mvnorm_cluster_loglik_samplestats_2l <- function(YLp = NULL,
Lp = NULL,
Mu.W = NULL,
Sigma.W = NULL,
Mu.B = NULL,
Sigma.B = NULL,
Sinv.method = "eigen",
log2pi = FALSE,
minus.two = TRUE) {
out <- lav_mvnorm_cluster_implied22l(Lp = Lp, Mu.W = Mu.W, Mu.B = Mu.B,
Sigma.W = Sigma.W, Sigma.B = Sigma.B)
mu.y <- out$mu.y; mu.z <- out$mu.z
sigma.w <- out$sigma.w; sigma.b <- out$sigma.b
sigma.zz <- out$sigma.zz; sigma.yz <- out$sigma.yz
nclusters <- Lp$nclusters[[2]]
cluster.size <- Lp$cluster.size[[2]]
between.idx <- Lp$between.idx[[2]]
cluster.sizes <- Lp$cluster.sizes[[2]]
ncluster.sizes <- Lp$ncluster.sizes[[2]]
cluster.size.ns <- Lp$cluster.size.ns[[2]]
if(length(between.idx) > 0L) {
S.PW <- YLp[[2]]$Sigma.W[-between.idx, -between.idx, drop = FALSE]
} else {
S.PW <- YLp[[2]]$Sigma.W
}
cov.d <- YLp[[2]]$cov.d
mean.d <- YLp[[2]]$mean.d
sigma.w.inv <- lav_matrix_symmetric_inverse(S = sigma.w,
logdet = TRUE, Sinv.method = Sinv.method)
sigma.w.logdet <- attr(sigma.w.inv, "logdet")
attr(sigma.w.inv, "logdet") <- NULL
if(length(between.idx) > 0L) {
sigma.zz.inv <- lav_matrix_symmetric_inverse(S = sigma.zz,
logdet = TRUE, Sinv.method = Sinv.method)
sigma.zz.logdet <- attr(sigma.zz.inv, "logdet")
attr(sigma.zz.inv, "logdet") <- NULL
sigma.yz.zi <- sigma.yz %*% sigma.zz.inv
sigma.zi.zy <- t(sigma.yz.zi)
sigma.b.z <- sigma.b - sigma.yz %*% sigma.zi.zy
} else {
sigma.zz.logdet <- 0
sigma.b.z <- sigma.b
}
L <- numeric(ncluster.sizes)
B <- numeric(ncluster.sizes)
for(clz in seq_len(ncluster.sizes)) {
nj <- cluster.sizes[clz]
Y2Yc <- (cov.d[[clz]] + tcrossprod(mean.d[[clz]] - c(mu.z, mu.y)))
if(length(between.idx) > 0L) {
b.idx <- seq_len(length(Lp$between.idx[[2]]))
Y2Yc.zz <- Y2Yc[ b.idx, b.idx, drop = FALSE]
Y2Yc.yz <- Y2Yc[-b.idx, b.idx, drop = FALSE]
Y2Yc.yy <- Y2Yc[-b.idx,-b.idx, drop = FALSE]
} else {
Y2Yc.yy <- Y2Yc
}
sigma.j <- (nj * sigma.b.z) + sigma.w
sigma.j.inv <- lav_matrix_symmetric_inverse(S = sigma.j,
logdet = TRUE, Sinv.method = Sinv.method)
sigma.j.logdet <- attr(sigma.j.inv, "logdet")
attr(sigma.j.inv, "logdet") <- NULL
if(is.na(sigma.j.logdet)) {
}
L[clz] <- (sigma.zz.logdet + sigma.j.logdet)
if(length(between.idx) > 0L) {
sigma.ji.yz.zi <- sigma.j.inv %*% sigma.yz.zi
Vinv.11 <- sigma.zz.inv + nj*(sigma.zi.zy %*% sigma.ji.yz.zi)
q.zz <- sum(Vinv.11 * Y2Yc.zz)
q.yz <- - nj * sum(sigma.ji.yz.zi * Y2Yc.yz)
} else {
q.zz <- q.yz <- 0
}
q.yyc <- -nj * sum(sigma.j.inv * Y2Yc.yy )
B[clz] <- q.zz + 2*q.yz - q.yyc
}
q.W <- sum(cluster.size - 1) * sum(sigma.w.inv * S.PW)
L.W <- sum(cluster.size - 1) * sigma.w.logdet
loglik <- sum(L * cluster.size.ns) + sum(B * cluster.size.ns) + q.W + L.W
if(!minus.two) {
loglik <- loglik / (-2)
}
if(log2pi) {
LOG.2PI <- log(2 * pi)
nWithin <- length(c(Lp$both.idx[[2]], Lp$within.idx[[2]]))
nBetween <- length(Lp$between.idx[[2]])
P <- Lp$nclusters[[1]]*nWithin + Lp$nclusters[[2]]*nBetween
constant <- -(P * LOG.2PI)/2
loglik <- loglik + constant
}
if(length(unlist(Lp$ov.x.idx)) > 0L && log2pi && !minus.two) {
loglik <- loglik - YLp[[2]]$loglik.x
}
loglik
}
lav_mvnorm_cluster_dlogl_2l_samplestats <- function(YLp = NULL,
Lp = NULL,
Mu.W = NULL,
Sigma.W = NULL,
Mu.B = NULL,
Sigma.B = NULL,
return.list = FALSE,
Sinv.method = "eigen") {
out <- lav_mvnorm_cluster_implied22l(Lp = Lp, Mu.W = Mu.W, Mu.B = Mu.B,
Sigma.W = Sigma.W, Sigma.B = Sigma.B)
mu.y <- out$mu.y; mu.z <- out$mu.z
sigma.w <- out$sigma.w; sigma.b <- out$sigma.b
sigma.zz <- out$sigma.zz; sigma.yz <- out$sigma.yz
nclusters <- Lp$nclusters[[2]]
cluster.size <- Lp$cluster.size[[2]]
cluster.sizes <- Lp$cluster.sizes[[2]]
cluster.idx <- Lp$cluster.idx[[2]]
between.idx <- Lp$between.idx[[2]]
ncluster.sizes <- Lp$ncluster.sizes[[2]]
cluster.size.ns <- Lp$cluster.size.ns[[2]]
if(length(between.idx) > 0L) {
S.PW <- YLp[[2]]$Sigma.W[-between.idx, -between.idx, drop = FALSE]
} else {
S.PW <- YLp[[2]]$Sigma.W
}
cov.d <- YLp[[2]]$cov.d
mean.d <- YLp[[2]]$mean.d
sigma.w.inv <- lav_matrix_symmetric_inverse(S = sigma.w,
logdet = FALSE, Sinv.method = Sinv.method)
G.muy <- matrix(0, ncluster.sizes, length(mu.y))
G.Sigma.w <- matrix(0, ncluster.sizes, length(lav_matrix_vech(sigma.w)))
G.Sigma.b <- matrix(0, ncluster.sizes, length(lav_matrix_vech(sigma.b)))
if(length(between.idx) > 0L) {
G.muz <- matrix(0, ncluster.sizes, length(mu.z))
G.Sigma.zz <- matrix(0, ncluster.sizes,
length(lav_matrix_vech(sigma.zz)))
G.Sigma.yz <- matrix(0, ncluster.sizes, length(lav_matrix_vec(sigma.yz)))
sigma.zz.inv <- lav_matrix_symmetric_inverse(S = sigma.zz,
logdet = FALSE, Sinv.method = Sinv.method)
sigma.yz.zi <- sigma.yz %*% sigma.zz.inv
sigma.zi.zy <- t(sigma.yz.zi)
sigma.b.z <- sigma.b - sigma.yz %*% sigma.zi.zy
for(clz in seq_len(ncluster.sizes)) {
nj <- cluster.sizes[clz]
b.idx <- seq_len(length(Lp$between.idx[[2]]))
zyc <- mean.d[[clz]] - c(mu.z, mu.y)
yc <- zyc[-b.idx]
zc <- zyc[ b.idx]
Y2Yc <- (cov.d[[clz]] + tcrossprod(mean.d[[clz]] - c(mu.z, mu.y)))
b.idx <- seq_len(length(Lp$between.idx[[2]]))
Y2Yc.zz <- Y2Yc[ b.idx, b.idx, drop = FALSE]
Y2Yc.yz <- Y2Yc[-b.idx, b.idx, drop = FALSE]
Y2Yc.yy <- Y2Yc[-b.idx,-b.idx, drop = FALSE]
sigma.j <- (nj * sigma.b.z) + sigma.w
sigma.j.inv <- lav_matrix_symmetric_inverse(S = sigma.j,
logdet = FALSE, Sinv.method = Sinv.method)
sigma.ji.yz.zi <- sigma.j.inv %*% sigma.yz.zi
sigma.zi.zy.ji <- t(sigma.ji.yz.zi)
jYZj <- nj * ( sigma.j.inv %*%
(sigma.yz.zi %*% Y2Yc.zz %*% t(sigma.yz.zi)
- Y2Yc.yz %*% t(sigma.yz.zi)
- t(Y2Yc.yz %*% t(sigma.yz.zi)) + Y2Yc.yy)
%*% sigma.j.inv )
Z1 <- Y2Yc.zz %*% t(sigma.ji.yz.zi) %*% sigma.yz
YZ1 <- t(Y2Yc.yz) %*% sigma.j.inv %*% sigma.yz
G.muz[clz,] <- -2 * as.numeric(
(sigma.zz.inv + nj*(sigma.zi.zy.ji %*% sigma.yz.zi)) %*% zc
-nj*sigma.zi.zy.ji %*% yc)
G.muy[clz,] <- 2*nj * as.numeric(zc %*% sigma.zi.zy.ji -
yc %*% sigma.j.inv)
g.sigma.w <- sigma.j.inv - jYZj
tmp <- g.sigma.w*2; diag(tmp) <- diag(g.sigma.w)
G.Sigma.w[clz,] <- lav_matrix_vech(tmp)
g.sigma.b <- nj * (sigma.j.inv - jYZj)
tmp <- g.sigma.b*2; diag(tmp) <- diag(g.sigma.b)
G.Sigma.b[clz,] <- lav_matrix_vech(tmp)
g.sigma.zz <- ( sigma.zz.inv + nj * sigma.zz.inv %*% (
t(sigma.yz) %*% (sigma.j.inv - jYZj) %*% sigma.yz
-(1/nj * Y2Yc.zz + t(Z1) + Z1 - t(YZ1) - YZ1) ) %*%
sigma.zz.inv )
tmp <- g.sigma.zz*2; diag(tmp) <- diag(g.sigma.zz)
G.Sigma.zz[clz,] <- lav_matrix_vech(tmp)
g.sigma.yz <- 2 * nj * (
(sigma.j.inv %*%
(sigma.yz.zi %*% Y2Yc.zz - sigma.yz - Y2Yc.yz)
+ jYZj %*% sigma.yz) %*% sigma.zz.inv )
G.Sigma.yz[clz,] <- lav_matrix_vec(g.sigma.yz)
}
d.mu.y <- colSums(G.muy * cluster.size.ns)
d.sigma.w1 <- lav_matrix_vech_reverse(colSums(G.Sigma.w *
cluster.size.ns))
d.sigma.b <- lav_matrix_vech_reverse(colSums(G.Sigma.b *
cluster.size.ns))
d.mu.z <- colSums(G.muz * cluster.size.ns)
d.sigma.zz <- lav_matrix_vech_reverse(colSums(G.Sigma.zz *
cluster.size.ns))
d.sigma.yz <- matrix(colSums(G.Sigma.yz * cluster.size.ns),
nrow(sigma.yz), ncol(sigma.yz))
}
else {
for(clz in seq_len(ncluster.sizes)) {
nj <- cluster.sizes[clz]
yc <- mean.d[[clz]] - mu.y
Y2Yc.yy <- (cov.d[[clz]] + tcrossprod(mean.d[[clz]] - mu.y))
sigma.j <- (nj * sigma.b) + sigma.w
sigma.j.inv <- lav_matrix_symmetric_inverse(S = sigma.j,
logdet = FALSE, Sinv.method = Sinv.method)
jYYj <- nj * sigma.j.inv %*% Y2Yc.yy %*% sigma.j.inv
G.muy[clz,] <- -2*nj * as.numeric(yc %*% sigma.j.inv)
g.sigma.w <- sigma.j.inv - jYYj
tmp <- g.sigma.w*2; diag(tmp) <- diag(g.sigma.w)
G.Sigma.w[clz,] <- lav_matrix_vech(tmp)
g.sigma.b <- nj * (sigma.j.inv - jYYj)
tmp <- g.sigma.b*2; diag(tmp) <- diag(g.sigma.b)
G.Sigma.b[clz,] <- lav_matrix_vech(tmp)
}
d.mu.y <- colSums(G.muy * cluster.size.ns)
d.sigma.w1 <- lav_matrix_vech_reverse(colSums(G.Sigma.w *
cluster.size.ns))
d.sigma.b <- lav_matrix_vech_reverse(colSums(G.Sigma.b *
cluster.size.ns))
d.mu.z <- numeric(0L)
d.sigma.zz <- matrix(0, 0L, 0L)
d.sigma.yz <- matrix(0, 0L, 0L)
}
d.sigma.w2 <- (Lp$nclusters[[1]] - nclusters) * ( sigma.w.inv
- sigma.w.inv %*% S.PW %*% sigma.w.inv )
tmp <- d.sigma.w2*2; diag(tmp) <- diag(d.sigma.w2)
d.sigma.w2 <- tmp
d.sigma.w <- d.sigma.w1 + d.sigma.w2
dout <- lav_mvnorm_cluster_2l2implied(Lp = Lp,
sigma.w = d.sigma.w, sigma.b = d.sigma.b,
sigma.yz = d.sigma.yz, sigma.zz = d.sigma.zz,
mu.y = d.mu.y, mu.z = d.mu.z)
if(return.list) {
out <- dout
} else {
out <- c(dout$Mu.W, lav_matrix_vech(dout$Sigma.W),
dout$Mu.B, lav_matrix_vech(dout$Sigma.B))
}
out
}
lav_mvnorm_cluster_scores_2l <- function(Y1 = NULL,
YLp = NULL,
Lp = NULL,
Mu.W = NULL,
Sigma.W = NULL,
Mu.B = NULL,
Sigma.B = NULL,
Sinv.method = "eigen") {
out <- lav_mvnorm_cluster_implied22l(Lp = Lp, Mu.W = Mu.W, Mu.B = Mu.B,
Sigma.W = Sigma.W, Sigma.B = Sigma.B)
mu.y <- out$mu.y; mu.z <- out$mu.z
sigma.w <- out$sigma.w; sigma.b <- out$sigma.b
sigma.zz <- out$sigma.zz; sigma.yz <- out$sigma.yz
nclusters <- Lp$nclusters[[2]]
cluster.size <- Lp$cluster.size[[2]]
cluster.idx <- Lp$cluster.idx[[2]]
between.idx <- Lp$between.idx[[2]]
if(length(between.idx) > 0L) {
Y1w <- Y1[,-Lp$between.idx[[2]], drop = FALSE]
} else {
Y1w <- Y1
}
Y1w.cm <- t( t(Y1w) - mu.y )
Y2 <- YLp[[2]]$Y2
mu.b <- numeric(ncol(Y2))
if(length(between.idx) > 0L) {
mu.b[-Lp$between.idx[[2]]] <- mu.y
mu.b[ Lp$between.idx[[2]]] <- mu.z
} else {
mu.b <- mu.y
}
Y2.cm <- t( t(Y2) - mu.b )
sigma.w.inv <- lav_matrix_symmetric_inverse(S = sigma.w,
logdet = FALSE, Sinv.method = Sinv.method)
G.muy <- matrix(0, nclusters, length(mu.y))
G.Sigma.w <- matrix(0, nclusters, length(lav_matrix_vech(sigma.w)))
G.Sigma.b <- matrix(0, nclusters, length(lav_matrix_vech(sigma.b)))
G.muz <- matrix(0, nclusters, length(mu.z))
G.Sigma.zz <- matrix(0, nclusters, length(lav_matrix_vech(sigma.zz)))
G.Sigma.yz <- matrix(0, nclusters, length(lav_matrix_vec(sigma.yz)))
if(length(between.idx) > 0L) {
sigma.zz.inv <- lav_matrix_symmetric_inverse(S = sigma.zz,
logdet = FALSE, Sinv.method = Sinv.method)
sigma.yz.zi <- sigma.yz %*% sigma.zz.inv
sigma.zi.zy <- t(sigma.yz.zi)
sigma.b.z <- sigma.b - sigma.yz %*% sigma.zi.zy
for(cl in seq_len(nclusters)) {
nj <- cluster.size[cl]
Y1m <- Y1w.cm[cluster.idx == cl,, drop = FALSE]
yc <- Y2.cm[cl,-Lp$between.idx[[2]]]
zc <- Y2.cm[cl, Lp$between.idx[[2]]]
Y2Yc <- tcrossprod(Y2.cm[cl,])
Y2Yc.zz <- Y2Yc[Lp$between.idx[[2]],
Lp$between.idx[[2]], drop = FALSE]
Y2Yc.yz <- Y2Yc[-Lp$between.idx[[2]],
Lp$between.idx[[2]], drop = FALSE]
Y2Yc.yy <- Y2Yc[-Lp$between.idx[[2]],
-Lp$between.idx[[2]], drop = FALSE]
sigma.j <- (nj * sigma.b.z) + sigma.w
sigma.j.inv <- lav_matrix_symmetric_inverse(S = sigma.j,
logdet = FALSE, Sinv.method = Sinv.method)
sigma.ji.yz.zi <- sigma.j.inv %*% sigma.yz.zi
sigma.zi.zy.ji <- t(sigma.ji.yz.zi)
jYZj <- nj * ( sigma.j.inv %*%
(sigma.yz.zi %*% Y2Yc.zz %*% t(sigma.yz.zi)
- Y2Yc.yz %*% t(sigma.yz.zi)
- t(Y2Yc.yz %*% t(sigma.yz.zi)) + Y2Yc.yy)
%*% sigma.j.inv )
Z1 <- Y2Yc.zz %*% t(sigma.ji.yz.zi) %*% sigma.yz
YZ1 <- t(Y2Yc.yz) %*% sigma.j.inv %*% sigma.yz
G.muz[cl,] <- -2 * as.numeric(
(sigma.zz.inv + nj*(sigma.zi.zy.ji %*% sigma.yz.zi)) %*% zc
-nj*sigma.zi.zy.ji %*% yc)
G.muy[cl,] <- 2*nj * as.numeric(zc %*% sigma.zi.zy.ji -
yc %*% sigma.j.inv)
g.sigma.w <- ( (nj-1) * sigma.w.inv
- sigma.w.inv %*% (crossprod(Y1m) - nj*Y2Yc.yy) %*% sigma.w.inv
+ sigma.j.inv - jYZj )
tmp <- g.sigma.w*2; diag(tmp) <- diag(g.sigma.w)
G.Sigma.w[cl,] <- lav_matrix_vech(tmp)
g.sigma.b <- nj * (sigma.j.inv - jYZj)
tmp <- g.sigma.b*2; diag(tmp) <- diag(g.sigma.b)
G.Sigma.b[cl,] <- lav_matrix_vech(tmp)
g.sigma.zz <- ( sigma.zz.inv + nj * sigma.zz.inv %*% (
t(sigma.yz) %*% (sigma.j.inv - jYZj) %*% sigma.yz
-(1/nj * Y2Yc.zz + t(Z1) + Z1 - t(YZ1) - YZ1) ) %*%
sigma.zz.inv )
tmp <- g.sigma.zz*2; diag(tmp) <- diag(g.sigma.zz)
G.Sigma.zz[cl,] <- lav_matrix_vech(tmp)
g.sigma.yz <- 2 * nj * (
(sigma.j.inv %*%
(sigma.yz.zi %*% Y2Yc.zz - sigma.yz - Y2Yc.yz)
+ jYZj %*% sigma.yz) %*% sigma.zz.inv )
G.Sigma.yz[cl,] <- lav_matrix_vec(g.sigma.yz)
}
}
else {
for(cl in seq_len(nclusters)) {
nj <- cluster.size[cl]
Y1m <- Y1w.cm[cluster.idx == cl,, drop = FALSE]
yc <- Y2.cm[cl,]
Y2Yc.yy <- tcrossprod(Y2.cm[cl,])
sigma.j <- (nj * sigma.b) + sigma.w
sigma.j.inv <- lav_matrix_symmetric_inverse(S = sigma.j,
logdet = FALSE, Sinv.method = Sinv.method)
jYYj <- nj * sigma.j.inv %*% Y2Yc.yy %*% sigma.j.inv
G.muy[cl,] <- -2*nj * as.numeric(yc %*% sigma.j.inv)
g.sigma.w <- ( (nj-1) * sigma.w.inv
- sigma.w.inv %*% (crossprod(Y1m) - nj*Y2Yc.yy) %*% sigma.w.inv
+ sigma.j.inv - jYYj )
tmp <- g.sigma.w*2; diag(tmp) <- diag(g.sigma.w)
G.Sigma.w[cl,] <- lav_matrix_vech(tmp)
g.sigma.b <- nj * (sigma.j.inv - jYYj)
tmp <- g.sigma.b*2; diag(tmp) <- diag(g.sigma.b)
G.Sigma.b[cl,] <- lav_matrix_vech(tmp)
}
}
ov.idx <- Lp$ov.idx
p.tilde <- length( unique(c(ov.idx[[1]], ov.idx[[2]])) )
Mu.W.tilde <- matrix(0, nclusters, p.tilde)
Mu.W.tilde[, ov.idx[[1]] ] <- G.muy
Mu.W.tilde[, Lp$both.idx[[2]] ] <- 0
Mu.W <- Mu.W.tilde[, ov.idx[[1]], drop = FALSE]
Mu.B.tilde <- matrix(0, nclusters, p.tilde)
Mu.B.tilde[, ov.idx[[1]] ] <- G.muy
if(length(between.idx) > 0L) {
Mu.B.tilde[, between.idx ] <- G.muz
}
Mu.B <- Mu.B.tilde[, ov.idx[[2]], drop = FALSE]
Sigma.W <- G.Sigma.w
if(length(between.idx) > 0L) {
p.tilde.star <- p.tilde*(p.tilde+1)/2
B.tilde <- lav_matrix_vech_reverse(seq_len(p.tilde.star))
Sigma.B.tilde <- matrix(0, nclusters, p.tilde.star)
col.idx <- lav_matrix_vech( B.tilde[ ov.idx[[1]], ov.idx[[1]],
drop = FALSE ] )
Sigma.B.tilde[ , col.idx ] <- G.Sigma.b
col.idx <- lav_matrix_vec( B.tilde[ ov.idx[[1]], between.idx,
drop = FALSE ] )
Sigma.B.tilde[ , col.idx ] <- G.Sigma.yz
col.idx <- lav_matrix_vech( B.tilde[ between.idx, between.idx,
drop = FALSE ] )
Sigma.B.tilde[ , col.idx ] <- G.Sigma.zz
col.idx <- lav_matrix_vech( B.tilde[ ov.idx[[2]], ov.idx[[2]],
drop = FALSE ] )
Sigma.B <- Sigma.B.tilde[ , col.idx, drop = FALSE ]
} else {
p.tilde.star <- p.tilde*(p.tilde+1)/2
B.tilde <- lav_matrix_vech_reverse(seq_len(p.tilde.star))
Sigma.B.tilde <- matrix(0, nclusters, p.tilde.star)
col.idx <- lav_matrix_vech( B.tilde[ ov.idx[[1]], ov.idx[[1]],
drop = FALSE ] )
Sigma.B.tilde[ , col.idx ] <- G.Sigma.b
col.idx <- lav_matrix_vech( B.tilde[ ov.idx[[2]], ov.idx[[2]],
drop = FALSE ] )
Sigma.B <- Sigma.B.tilde[ , col.idx, drop = FALSE ]
}
SCORES <- cbind(Mu.W, Sigma.W, Mu.B, Sigma.B)
SCORES
}
lav_mvnorm_cluster_information_firstorder <- function(Y1 = NULL,
YLp = NULL,
Lp = NULL,
Mu.W = NULL,
Sigma.W = NULL,
Mu.B = NULL,
Sigma.B = NULL,
x.idx = NULL,
divide.by.two = FALSE,
Sinv.method = "eigen") {
N <- NROW(Y1)
SCORES <- lav_mvnorm_cluster_scores_2l(Y1 = Y1,
YLp = YLp,
Lp = Lp,
Mu.W = Mu.W,
Sigma.W = Sigma.W,
Mu.B = Mu.B,
Sigma.B = Sigma.B,
Sinv.method = Sinv.method)
if(divide.by.two) {
SCORES <- SCORES / 2
}
information <- crossprod(SCORES)/Lp$nclusters[[2]]
if(length(x.idx) > 0L) {
nw <- length(as.vector(Mu.W))
nw.star <- nw*(nw+1)/2
nb <- length(as.vector(Mu.B))
ov.idx <- Lp$ov.idx
x.idx.w <- which(ov.idx[[1]] %in% x.idx)
if(length(x.idx.w) > 0L) {
xw.idx <- c(x.idx.w,
nw + lav_matrix_vech_which_idx(n = nw, idx = x.idx.w))
} else {
xw.idx <- integer(0L)
}
x.idx.b <- which(ov.idx[[2]] %in% x.idx)
if(length(x.idx.b) > 0L) {
xb.idx <- c(x.idx.b,
nb + lav_matrix_vech_which_idx(n = nb, idx = x.idx.b))
} else {
xb.idx <- integer(0L)
}
all.idx <- c(xw.idx, nw + nw.star + xb.idx)
information[all.idx, ] <- 0
information[, all.idx] <- 0
}
information
}
lav_mvnorm_cluster_information_expected <- function(Lp = NULL,
Mu.W = NULL,
Sigma.W = NULL,
Mu.B = NULL,
Sigma.B = NULL,
x.idx = integer(0L),
Sinv.method = "eigen") {
out <- lav_mvnorm_cluster_implied22l(Lp = Lp,
Mu.W = Mu.W, Mu.B = Mu.B,
Sigma.W = Sigma.W, Sigma.B = Sigma.B)
mu.y <- out$mu.y; mu.z <- out$mu.z
sigma.w <- out$sigma.w; sigma.b <- out$sigma.b
sigma.zz <- out$sigma.zz; sigma.yz <- out$sigma.yz
ov.idx <- Lp$ov.idx
nw <- length(ov.idx[[1]])
nb <- length(ov.idx[[2]])
p.tilde <- length( unique(c(ov.idx[[1]], ov.idx[[2]])) )
p.tilde.star <- p.tilde*(p.tilde+1)/2
npar <- p.tilde + p.tilde.star
B.tilde <- lav_matrix_vech_reverse(seq_len(p.tilde.star))
w.idx <- lav_matrix_vech( B.tilde[ ov.idx[[1]], ov.idx[[1]], drop = FALSE] )
b.idx <- lav_matrix_vech( B.tilde[ ov.idx[[2]], ov.idx[[2]], drop = FALSE] )
Delta.W.tilde <- matrix(0, npar, npar)
Delta.B.tilde <- matrix(0, npar, npar)
Delta.W.tilde[c(ov.idx[[1]], w.idx + p.tilde),
c(ov.idx[[1]], w.idx + p.tilde)] <- diag( nw + nw*(nw+1)/2 )
Delta.B.tilde[c(ov.idx[[2]], b.idx + p.tilde),
c(ov.idx[[2]], b.idx + p.tilde)] <- diag( nb + nb*(nb+1)/2 )
Delta.W.tilde <- cbind(Delta.W.tilde, matrix(0, npar, npar))
Delta.B.tilde <- cbind(matrix(0, npar, npar), Delta.B.tilde)
nobs <- Lp$nclusters[[1]]
nclusters <- Lp$nclusters[[2]]
cluster.size <- Lp$cluster.size[[2]]
cluster.sizes <- Lp$cluster.sizes[[2]]
ncluster.sizes <- Lp$ncluster.sizes[[2]]
n.s <- Lp$cluster.size.ns[[2]]
between.idx <- Lp$between.idx[[2]]
information.j <- matrix(0, npar*2, npar*2)
for(clz in seq_len(ncluster.sizes)) {
nj <- cluster.sizes[clz]
Delta.j <- Delta.B.tilde + 1/nj * Delta.W.tilde
sigma.j <- sigma.w + nj * sigma.b
if(length(between.idx) > 0L) {
omega.j <- matrix(0, p.tilde, p.tilde)
omega.j[-between.idx, -between.idx] <- 1/nj * sigma.j
omega.j[-between.idx, between.idx] <- sigma.yz
omega.j[ between.idx, -between.idx] <- t(sigma.yz)
omega.j[ between.idx, between.idx] <- sigma.zz
} else {
omega.j <- 1/nj * sigma.j
}
omega.j.inv <- solve(omega.j)
I11.j <- omega.j.inv
I22.j <- 0.5 * lav_matrix_duplication_pre_post(omega.j.inv %x% omega.j.inv)
I.j <- lav_matrix_bdiag(I11.j, I22.j)
info.j <- t(Delta.j) %*% I.j %*% Delta.j
information.j <- information.j + n.s[clz]*info.j
}
Sigma.W.inv <- lav_matrix_symmetric_inverse(S = Sigma.W, logdet = FALSE,
Sinv.method = Sinv.method)
Sigma.W.inv.tilde <- matrix(0, p.tilde, p.tilde)
Sigma.W.inv.tilde[ ov.idx[[1]], ov.idx[[1]] ] <- Sigma.W.inv
I11.w <- Sigma.W.inv.tilde
I22.w <- 0.5 * lav_matrix_duplication_pre_post(Sigma.W.inv.tilde %x% Sigma.W.inv.tilde)
I.w <- lav_matrix_bdiag(I11.w, I22.w)
information.w <- (nobs - nclusters) *
( t(Delta.W.tilde) %*% I.w %*% Delta.W.tilde )
information.tilde <- 1/Lp$nclusters[[2]] * (information.w + information.j)
information.tilde[Lp$both.idx[[2]],] <- 0
information.tilde[,Lp$both.idx[[2]]] <- 0
if(length(x.idx) > 0L) {
xw.idx <- c(x.idx,
p.tilde + lav_matrix_vech_which_idx(n = p.tilde, idx = x.idx))
xb.idx <- npar + xw.idx
all.idx <- c(xw.idx, xb.idx)
information.tilde[all.idx, ] <- 0
information.tilde[, all.idx] <- 0
}
ok.idx <- c(ov.idx[[1]],
w.idx + p.tilde,
npar + ov.idx[[2]],
npar + b.idx + p.tilde)
information <- information.tilde[ok.idx, ok.idx]
information
}
lav_mvnorm_cluster_information_expected_delta <- function(Lp = NULL,
Delta = NULL,
Mu.W = NULL,
Sigma.W = NULL,
Mu.B = NULL,
Sigma.B = NULL,
Sinv.method = "eigen") {
out <- lav_mvnorm_cluster_implied22l(Lp = Lp,
Mu.W = Mu.W, Mu.B = Mu.B,
Sigma.W = Sigma.W, Sigma.B = Sigma.B)
mu.y <- out$mu.y; mu.z <- out$mu.z
sigma.w <- out$sigma.w; sigma.b <- out$sigma.b
sigma.zz <- out$sigma.zz; sigma.yz <- out$sigma.yz
npar <- NCOL(Delta)
ov.idx <- Lp$ov.idx
nw <- length(ov.idx[[1]])
nw.star <- nw*(nw+1)/2
nb <- length(ov.idx[[2]])
Delta.W <- Delta[1:(nw + nw.star),,drop = FALSE]
Delta.B <- Delta[-(1:(nw + nw.star)),,drop = FALSE]
p.tilde <- length( unique(c(ov.idx[[1]], ov.idx[[2]])) )
p.tilde.star <- p.tilde*(p.tilde+1)/2
Delta.W.tilde.Mu <- matrix(0, p.tilde, npar)
Delta.W.tilde.Sigma <- matrix(0, p.tilde.star, npar)
Delta.B.tilde.Mu <- matrix(0, p.tilde, npar)
Delta.B.tilde.Sigma <- matrix(0, p.tilde.star, npar)
Delta.W.tilde.Mu[ov.idx[[1]],] <- Delta.W[1:nw,]
Delta.B.tilde.Mu[ov.idx[[2]],] <- Delta.B[1:nb,]
Delta.B.tilde.Mu[ Lp$both.idx[[2]], ] <-
( Delta.B.tilde.Mu[ Lp$both.idx[[2]], ] +
Delta.W.tilde.Mu[ Lp$both.idx[[2]], ] )
Delta.W.tilde.Mu[Lp$both.idx[[2]], ] <- 0
B.tilde <- lav_matrix_vech_reverse(seq_len(p.tilde.star))
w.idx <- lav_matrix_vech( B.tilde[ ov.idx[[1]], ov.idx[[1]], drop = FALSE] )
b.idx <- lav_matrix_vech( B.tilde[ ov.idx[[2]], ov.idx[[2]], drop = FALSE] )
Delta.W.tilde.Sigma[w.idx,] <- Delta.W[-(1:nw),]
Delta.B.tilde.Sigma[b.idx,] <- Delta.B[-(1:nb),]
Delta.W.tilde <- rbind(Delta.W.tilde.Mu, Delta.W.tilde.Sigma)
Delta.B.tilde <- rbind(Delta.B.tilde.Mu, Delta.B.tilde.Sigma)
nobs <- Lp$nclusters[[1]]
nclusters <- Lp$nclusters[[2]]
cluster.size <- Lp$cluster.size[[2]]
cluster.sizes <- Lp$cluster.sizes[[2]]
ncluster.sizes <- Lp$ncluster.sizes[[2]]
n.s <- Lp$cluster.size.ns[[2]]
between.idx <- Lp$between.idx[[2]]
information.j <- matrix(0, npar, npar)
for(clz in seq_len(ncluster.sizes)) {
nj <- cluster.sizes[clz]
Delta.j <- Delta.B.tilde + 1/nj * Delta.W.tilde
sigma.j <- sigma.w + nj * sigma.b
if(length(between.idx) > 0L) {
omega.j <- matrix(0, p.tilde, p.tilde)
omega.j[-between.idx, -between.idx] <- 1/nj * sigma.j
omega.j[-between.idx, between.idx] <- sigma.yz
omega.j[ between.idx, -between.idx] <- t(sigma.yz)
omega.j[ between.idx, between.idx] <- sigma.zz
} else {
omega.j <- 1/nj * sigma.j
}
omega.j.inv <- solve(omega.j)
I11.j <- omega.j.inv
I22.j <- 0.5 * lav_matrix_duplication_pre_post(omega.j.inv %x% omega.j.inv)
I.j <- lav_matrix_bdiag(I11.j, I22.j)
info.j <- t(Delta.j) %*% I.j %*% Delta.j
information.j <- information.j + n.s[clz]*info.j
}
Sigma.W.inv <- lav_matrix_symmetric_inverse(S = sigma.w, logdet = FALSE,
Sinv.method = Sinv.method)
I11.w <- Sigma.W.inv
I22.w <- 0.5 * lav_matrix_duplication_pre_post(Sigma.W.inv %x% Sigma.W.inv)
I.w <- lav_matrix_bdiag(I11.w, I22.w)
I.w[Lp$both.idx[[2]],] <- 0
I.w[,Lp$both.idx[[2]]] <- 0
information.w <- (nobs - nclusters) * ( t(Delta.W) %*% I.w %*% Delta.W )
information <- 1/Lp$nclusters[[2]] * (information.w + information.j)
information
}
lav_mvnorm_cluster_information_observed <- function(Lp = NULL,
YLp = NULL,
Mu.W = NULL,
Sigma.W = NULL,
Mu.B = NULL,
Sigma.B = NULL,
x.idx = integer(0L),
Sinv.method = "eigen") {
nobs <- Lp$nclusters[[1]]
nw <- length(as.vector(Mu.W))
nw.star <- nw*(nw+1)/2
nb <- length(as.vector(Mu.B))
nb.star <- nb*(nb+1)/2
ov.idx <- Lp$ov.idx
p.tilde <- length( unique(c(ov.idx[[1]], ov.idx[[2]])) )
Mu.W.tilde <- numeric(p.tilde)
Mu.W.tilde[ ov.idx[[1]] ] <- Mu.W
GRAD <- function(x) {
Mu.W.tilde2 <- numeric(p.tilde)
Mu.W.tilde2[ ov.idx[[1]] ] <- x[1:nw]
Mu.W.tilde2[ Lp$both.idx[[2]] ] <- Mu.W.tilde[ Lp$both.idx[[2]] ]
Mu.W2 <- Mu.W.tilde2[ ov.idx[[1]] ]
Sigma.W2 <- lav_matrix_vech_reverse( x[nw + 1:nw.star] )
Mu.B2 <- x[nw + nw.star + 1:nb]
Sigma.B2 <- lav_matrix_vech_reverse( x[nw + nw.star + nb + 1:nb.star] )
dx <- lav_mvnorm_cluster_dlogl_2l_samplestats(YLp = YLp,
Lp = Lp, Mu.W = Mu.W2, Sigma.W = Sigma.W2,
Mu.B = Mu.B2, Sigma.B = Sigma.B2,
return.list = FALSE,
Sinv.method = Sinv.method)
-1/2 * dx
}
start.x <- c(as.vector(Mu.W), lav_matrix_vech(Sigma.W),
as.vector(Mu.B), lav_matrix_vech(Sigma.B))
information <- -1 * numDeriv::jacobian(func = GRAD, x = start.x)
information <- information / Lp$nclusters[[2]]
if(length(x.idx) > 0L) {
x.idx.w <- which(ov.idx[[1]] %in% x.idx)
if(length(x.idx.w) > 0L) {
xw.idx <- c(x.idx.w,
nw + lav_matrix_vech_which_idx(n = nw, idx = x.idx.w))
} else {
xw.idx <- integer(0L)
}
x.idx.b <- which(ov.idx[[2]] %in% x.idx)
if(length(x.idx.b) > 0L) {
xb.idx <- c(x.idx.b,
nb + lav_matrix_vech_which_idx(n = nb, idx = x.idx.b))
} else {
xb.idx <- integer(0L)
}
all.idx <- c(xw.idx, nw + nw.star + xb.idx)
information[all.idx, ] <- 0
information[, all.idx] <- 0
}
information
}
lav_mvnorm_cluster_em_sat <- function(YLp = NULL,
Lp = NULL,
verbose = TRUE,
tol = 1e-04,
max.iter = 5000,
min.variance = 1e-05) {
between.idx <- Lp$between.idx[[2]]
within.idx <- Lp$within.idx[[2]]
Y2 <- YLp[[2]]$Y2
ov.idx <- Lp$ov.idx
Sigma.W <- diag( length(ov.idx[[1]]) )
Sigma.B <- diag( length(ov.idx[[2]]) )
Mu.W <- numeric( length(ov.idx[[1]]) )
Mu.B <- numeric( length(ov.idx[[2]]) )
fx <- lav_mvnorm_cluster_loglik_samplestats_2l(YLp = YLp, Lp = Lp,
Mu.W = Mu.W, Sigma.W = Sigma.W,
Mu.B = Mu.B, Sigma.B = Sigma.B,
Sinv.method = "eigen", log2pi = TRUE, minus.two = FALSE)
if(verbose) {
cat("EM iter:", sprintf("%3d", 0),
" fx =", sprintf("%17.10f", fx),
"\n")
}
out <- lav_mvnorm_cluster_implied22l(Lp = Lp,
Mu.W = Mu.W, Sigma.W = Sigma.W, Mu.B = Mu.B, Sigma.B = Sigma.B)
mu.y <- out$mu.y; mu.z <- out$mu.z; mu.w <- out$mu.w; mu.b <- out$mu.b
sigma.w <- out$sigma.w; sigma.b <- out$sigma.b
sigma.zz <- out$sigma.zz; sigma.yz <- out$sigma.yz
if(length(between.idx) > 0L) {
Z <- Y2[, between.idx, drop = FALSE]
mu.z <- colMeans(Z, na.rm = TRUE)
sigma.zz <- cov(Z, use = "pairwise.complete.obs") * (Lp$nclusters[[2]] - 1L)/Lp$nclusters[[2]]
}
fx.old <- fx
for(i in 1:max.iter) {
estep <- lav_mvnorm_cluster_em_estepb(
YLp = YLp,
Lp = Lp,
sigma.w = sigma.w,
sigma.b = sigma.b,
mu.w = mu.w,
mu.b = mu.b,
sigma.yz = sigma.yz,
sigma.zz = sigma.zz,
mu.z = mu.z)
sigma.w <- estep$sigma.w
sigma.b <- estep$sigma.b
sigma.yz <- estep$sigma.yz
mu.w <- estep$mu.w
mu.b <- estep$mu.b
implied2 <- lav_mvnorm_cluster_2l2implied(Lp = Lp,
sigma.w = estep$sigma.w, sigma.b = estep$sigma.b,
sigma.zz = sigma.zz, sigma.yz = estep$sigma.yz,
mu.z = mu.z,
mu.y = NULL, mu.w = estep$mu.w, mu.b = estep$mu.b)
Sigma.W <- implied2$Sigma.W
zero.var <- which(diag(Sigma.W) < min.variance)
if(length(zero.var) > 0L) {
Sigma.W[,zero.var] <- sigma.w[,zero.var] <- 0
Sigma.W[zero.var,] <- sigma.w[zero.var,] <- 0
diag(Sigma.W)[zero.var] <- diag(sigma.w)[zero.var] <- min.variance
}
fx <- lav_mvnorm_cluster_loglik_samplestats_2l(YLp = YLp,
Lp = Lp, Mu.W = implied2$Mu.W, Sigma.W = Sigma.W,
Mu.B = implied2$Mu.B, Sigma.B = implied2$Sigma.B,
Sinv.method = "eigen", log2pi = TRUE, minus.two = FALSE)
fx.delta <- fx - fx.old
if(verbose) {
cat("EM iter:", sprintf("%3d", i),
" fx =", sprintf("%17.10f", fx),
" fx.delta =", sprintf("%9.8f", fx.delta),
"\n")
}
if(fx.delta < tol) {
break
} else {
fx.old <- fx
}
}
list(Sigma.W = implied2$Sigma.W, Sigma.B = implied2$Sigma.B,
Mu.W = implied2$Mu.W, Mu.B = implied2$Mu.B, logl = fx)
}
lav_mvnorm_cluster_em_h0 <- function(lavsamplestats = NULL,
lavdata = NULL,
lavimplied = NULL,
lavpartable = NULL,
lavmodel = NULL,
lavoptions = NULL,
verbose = FALSE,
verbose.x = FALSE,
fx.tol = 1e-08,
dx.tol = 1e-05,
max.iter = 5000,
mstep.iter.max = 10000L,
mstep.rel.tol = 1e-10) {
stopifnot(lavdata@ngroups == 1L)
Lp <- lavdata@Lp[[1]]
ov.names.l <- [email protected][[1]]
Y1 <- lavdata@X[[1]]
YLp <- lavsamplestats@YLp[[1]]
between.idx <- Lp$between.idx[[2]]
Y2 <- YLp[[2]]$Y2
x.current <- lav_model_get_parameters(lavmodel)
if(is.null(lavimplied)) {
lavimplied <- lav_model_implied(lavmodel)
}
fx <- lav_mvnorm_cluster_loglik_samplestats_2l(YLp = YLp, Lp = Lp,
Mu.W = lavimplied$mean[[1]], Sigma.W = lavimplied$cov[[1]],
Mu.B = lavimplied$mean[[2]], Sigma.B = lavimplied$cov[[2]],
Sinv.method = "eigen", log2pi = TRUE, minus.two = FALSE)
if(verbose) {
cat("EM iter:", sprintf("%3d", 0),
" fx =", sprintf("%17.10f", fx),
"\n")
}
out <- lav_mvnorm_cluster_implied22l(Lp = Lp,
Mu.W = lavimplied$mean[[1]], Sigma.W = lavimplied$cov[[1]],
Mu.B = lavimplied$mean[[2]], Sigma.B = lavimplied$cov[[2]])
mu.y <- out$mu.y; mu.z <- out$mu.z; mu.w <- out$mu.w; mu.b <- out$mu.b
sigma.w <- out$sigma.w; sigma.b <- out$sigma.b
sigma.zz <- out$sigma.zz; sigma.yz <- out$sigma.yz
if(length(between.idx) > 0L) {
Z <- Y2[, between.idx, drop = FALSE]
mu.z <- colMeans(Y2)[between.idx]
sigma.zz <- cov(Z) * (Lp$nclusters[[2]] - 1L)/Lp$nclusters[[2]]
}
fx.old <- fx
fx2.old <- 0
REL <- numeric( max.iter )
for(i in 1:max.iter) {
estep <- lav_mvnorm_cluster_em_estepb(YLp = YLp,
Lp = Lp,
sigma.w = sigma.w,
sigma.b = sigma.b,
mu.w = mu.w,
mu.b = mu.b,
sigma.yz = sigma.yz,
sigma.zz = sigma.zz,
mu.z = mu.z)
implied <- lav_mvnorm_cluster_2l2implied(Lp = Lp,
sigma.w = estep$sigma.w, sigma.b = estep$sigma.b,
sigma.zz = sigma.zz, sigma.yz = estep$sigma.yz,
mu.z = mu.z,
mu.y = NULL, mu.w = estep$mu.w, mu.b = estep$mu.b)
rownames(implied$Sigma.W) <- ov.names.l[[1]]
rownames(implied$Sigma.B) <- ov.names.l[[2]]
local.partable <- lavpartable
local.partable$group <- NULL
level.idx <- which(names(local.partable) == "level")
names(local.partable)[level.idx] <- "group"
local.partable$est <- NULL
local.partable$se <- NULL
free.idx <- which(lavpartable$free > 0L)
local.partable$ustart[ free.idx ] <- x.current
local.fit <- lavaan(local.partable,
sample.cov = list(within = implied$Sigma.W,
between = implied$Sigma.B),
sample.mean = list(within = implied$Mu.W,
between = implied$Mu.B),
sample.nobs = Lp$nclusters,
sample.cov.rescale = FALSE,
control = list(iter.max = mstep.iter.max,
rel.tol = mstep.rel.tol),
fixed.x = any(lavpartable$exo == 1L),
estimator = "ML",
warn = FALSE,
check.start = FALSE,
check.post = FALSE,
check.gradient = FALSE,
check.vcov = FALSE,
baseline = FALSE,
h1 = FALSE,
se = "none",
test = "none")
implied2 <- local.fit@implied
fx <- lav_mvnorm_cluster_loglik_samplestats_2l(YLp = YLp,
Lp = Lp, Mu.W = implied2$mean[[1]], Sigma.W = implied2$cov[[1]],
Mu.B = implied2$mean[[2]], Sigma.B = implied2$cov[[2]],
Sinv.method = "eigen", log2pi = TRUE, minus.two = FALSE)
fx.delta <- fx - fx.old
lavmodel <- lav_model_set_parameters(lavmodel, x = local.fit@optim$x)
dx <- lav_model_gradient(lavmodel, lavdata = lavdata,
lavsamplestats = lavsamplestats)
max.dx <- max(abs(dx))
if(verbose) {
cat("EM iter:", sprintf("%3d", i),
" fx =", sprintf("%17.10f", fx),
" fx.delta =", sprintf("%9.8f", fx.delta),
" mstep.iter =", sprintf("%3d",
lavInspect(local.fit, "iterations")),
" max.dx = ", sprintf("%9.8f", max.dx),
"\n")
}
if(fx.delta < fx.tol) {
if(verbose) {
cat("EM stopping rule reached: fx.delta < ", fx.tol, "\n")
}
break
} else {
fx.old <- fx
x.current <- local.fit@optim$x
if(verbose.x) {
print(round(x.current, 3))
}
}
if(max.dx < dx.tol) {
if(verbose) {
cat("EM stopping rule reached: max.dx < ", dx.tol, "\n")
}
break
}
out <- lav_mvnorm_cluster_implied22l(Lp = Lp,
Mu.W = implied2$mean[[1]], Sigma.W = implied2$cov[[1]],
Mu.B = implied2$mean[[2]], Sigma.B = implied2$cov[[2]])
mu.y <- out$mu.y; mu.z <- out$mu.z; mu.w <- out$mu.w; mu.b <- out$mu.b
sigma.w <- out$sigma.w; sigma.b <- out$sigma.b
sigma.zz <- out$sigma.zz; sigma.yz <- out$sigma.yz
}
x <- local.fit@optim$x
if(i < max.iter) {
attr(x, "converged") <- TRUE
attr(x, "warn.txt") <- ""
} else {
attr(x, "converged") <- FALSE
attr(x, "warn.txt") <- paste("maxmimum number of iterations (",
max.iter, ") ",
"was reached without convergence.\n",
sep = "")
}
attr(x, "iterations") <- i
attr(x, "control") <- list(em.iter.max = max.iter,
em.fx.tol = fx.tol,
em.dx.tol = dx.tol)
attr(fx, "fx.group") <- fx
attr(x, "fx") <- fx
x
}
lav_mvnorm_cluster_em_estep_ranef <- function(
YLp = NULL,
Lp = NULL,
sigma.w = NULL,
sigma.b = NULL,
sigma.yz = NULL,
sigma.zz = NULL,
mu.z = NULL,
mu.w = NULL,
mu.b = NULL,
se = FALSE) {
nobs <- Lp$nclusters[[1]]
nclusters <- Lp$nclusters[[2]]
cluster.size <- Lp$cluster.size[[2]]
between.idx <- Lp$between.idx[[2]]
Y2 <- YLp[[2]]$Y2
nvar.y <- ncol(sigma.w)
nvar.z <- ncol(sigma.zz)
MB.j <- matrix(0, nrow = nclusters, ncol = nvar.y)
SE.j <- matrix(0, nrow = nclusters, ncol = nvar.y)
mu.y <- mu.w + mu.b
if(length(between.idx) > 0L) {
sigma.1 <- cbind(sigma.yz, sigma.b)
mu <- c(mu.z, mu.y)
} else {
sigma.1 <- sigma.b
mu <- mu.y
}
for(cl in seq_len(nclusters)) {
nj <- cluster.size[cl]
if(length(between.idx) > 0L) {
b.j <- c(Y2[cl, between.idx],
Y2[cl,-between.idx])
ybar.j <- Y2[cl,-between.idx]
} else {
ybar.j <- b.j <- Y2[cl,]
}
sigma.j <- sigma.w + nj*sigma.b
if(length(between.idx) > 0L) {
omega.j <- rbind( cbind(sigma.zz, t(sigma.yz)),
cbind(sigma.yz, 1/nj * sigma.j) )
} else {
omega.j <- 1/nj * sigma.j
}
omega.j.inv <- solve(omega.j)
Ev <- as.numeric(mu.b + (sigma.1 %*% omega.j.inv %*% (b.j - mu)))
MB.j[cl,] <- Ev
if(se) {
Covv <- sigma.b - (sigma.1 %*% omega.j.inv %*% t(sigma.1))
Covv <- (Covv + t(Covv))/2
Covv.diag <- diag(Covv)
nonzero.idx <- which(Covv.diag > 0)
SE.j[cl,] <- numeric( length(Covv.diag) )
SE.j[cl, nonzero.idx] <- sqrt(Covv.diag[nonzero.idx])
}
}
if(se) {
attr(MB.j, "se") <- SE.j
}
MB.j
}
lav_mvnorm_cluster_em_estep <- function(
YLp = NULL,
Lp = NULL,
sigma.w = NULL,
sigma.b = NULL,
sigma.yz = NULL,
sigma.zz = NULL,
mu.z = NULL,
mu.w = NULL,
mu.b = NULL) {
nobs <- Lp$nclusters[[1]]
nclusters <- Lp$nclusters[[2]]
cluster.size <- Lp$cluster.size[[2]]
cluster.idx <- Lp$cluster.idx[[2]]
within.idx <- Lp$within.idx[[2]]
between.idx <- Lp$between.idx[[2]]
both.idx <- Lp$both.idx[[2]]
Y2 <- YLp[[2]]$Y2
Y1Y1 <- YLp[[2]]$Y1Y1
nvar.y <- ncol(sigma.w)
nvar.z <- ncol(sigma.zz)
CW2.j <- matrix(0, nrow = nvar.y, ncol = nvar.y)
CB.j <- matrix(0, nrow = nvar.y, ncol = nvar.y)
MW.j <- matrix(0, nrow = nclusters, ncol = nvar.y)
MB.j <- matrix(0, nrow = nclusters, ncol = nvar.y)
ZY.j <- matrix(0, nrow = nvar.z, ncol = nvar.y)
mu.y <- mu.w + mu.b
if(length(between.idx) > 0L) {
sigma.1 <- cbind(sigma.yz, sigma.b)
mu <- c(mu.z, mu.y)
Y1Y1 <- Y1Y1[-between.idx, -between.idx, drop = FALSE]
} else {
sigma.1 <- sigma.b
mu <- mu.y
}
for(cl in seq_len(nclusters)) {
nj <- cluster.size[cl]
if(length(between.idx) > 0L) {
b.j <- c(Y2[cl, between.idx],
Y2[cl,-between.idx])
ybar.j <- Y2[cl,-between.idx]
} else {
ybar.j <- b.j <- Y2[cl,]
}
sigma.j <- sigma.w + nj*sigma.b
if(length(between.idx) > 0L) {
omega.j <- rbind( cbind(sigma.zz, t(sigma.yz)),
cbind(sigma.yz, 1/nj * sigma.j) )
} else {
omega.j <- 1/nj * sigma.j
}
omega.j.inv <- solve(omega.j)
Ev <- as.numeric(mu.b + (sigma.1 %*% omega.j.inv %*% (b.j - mu)))
Covv <- sigma.b - (sigma.1 %*% omega.j.inv %*% t(sigma.1))
Covv <- (Covv + t(Covv))/2
Evv <- Covv + tcrossprod(Ev)
MW.j[cl,] <- ybar.j - Ev
MB.j[cl,] <- Ev
CW2.j <- CW2.j + nj * (Evv - tcrossprod(ybar.j, Ev)
- tcrossprod(Ev, ybar.j))
CB.j <- CB.j + Evv
if(length(between.idx) > 0L) {
ZY.j <- ZY.j + tcrossprod(Y2[cl,between.idx], Ev)
}
}
M.w <- 1/nobs * colSums(MW.j * cluster.size)
M.b <- 1/nclusters * colSums(MB.j)
C.b <- 1/nclusters * CB.j
C.w <- 1/nobs * (Y1Y1 + CW2.j)
if(length(between.idx) > 0L) {
A <- 1/nclusters * ZY.j - tcrossprod(mu.z, M.b)
}
sigma.w <- C.w - tcrossprod(M.w)
sigma.b <- C.b - tcrossprod(M.b)
mu.w <- M.w
mu.b <- M.b
if(length(between.idx) > 0L) {
sigma.yz <- t(A)
}
list(sigma.w = sigma.w, sigma.b = sigma.b, mu.w = mu.w, mu.b = mu.b,
sigma.yz = sigma.yz, sigma.zz = sigma.zz, mu.z = mu.z)
}
lav_mvnorm_cluster_em_estepb <- function(
YLp = NULL,
Lp = NULL,
sigma.w = NULL,
sigma.b = NULL,
sigma.yz = NULL,
sigma.zz = NULL,
mu.z = NULL,
mu.w = NULL,
mu.b = NULL) {
nobs <- Lp$nclusters[[1]]
nclusters <- Lp$nclusters[[2]]
cluster.size <- Lp$cluster.size[[2]]
cluster.idx <- Lp$cluster.idx[[2]]
between.idx <- Lp$between.idx[[2]]
cluster.sizes <- Lp$cluster.sizes[[2]]
ncluster.sizes <- Lp$ncluster.sizes[[2]]
n.s <- Lp$cluster.size.ns[[2]]
Y2 <- YLp[[2]]$Y2
Y1Y1 <- YLp[[2]]$Y1Y1
nvar.y <- ncol(sigma.w)
nvar.z <- ncol(sigma.zz)
mu.y <- mu.w + mu.b
if(length(between.idx) > 0L) {
sigma.1 <- cbind(sigma.yz, sigma.b)
mu <- c(mu.z, mu.y)
Y1Y1 <- Y1Y1[-between.idx, -between.idx, drop = FALSE]
} else {
sigma.1 <- sigma.b
mu <- mu.y
}
CW2.s <- matrix(0, nrow = nvar.y, ncol = nvar.y)
CB.s <- matrix(0, nrow = nvar.y, ncol = nvar.y)
MW.s <- matrix(0, nrow = ncluster.sizes, ncol = nvar.y)
MB.s <- matrix(0, nrow = ncluster.sizes, ncol = nvar.y)
ZY.s <- matrix(0, nvar.z, nvar.y)
for(clz in seq_len(ncluster.sizes)) {
nj <- cluster.sizes[clz]
if(length(between.idx) > 0L) {
b.j <- cbind(Y2[cluster.size == nj, between.idx, drop = FALSE],
Y2[cluster.size == nj,-between.idx, drop = FALSE])
ybar.j <- Y2[cluster.size == nj, -between.idx, drop = FALSE]
} else {
ybar.j <- b.j <- Y2[cluster.size == nj, , drop = FALSE]
}
sigma.j <- sigma.w + nj*sigma.b
if(length(between.idx) > 0L) {
omega.j <- rbind( cbind(sigma.zz, t(sigma.yz)),
cbind(sigma.yz, 1/nj * sigma.j) )
} else {
omega.j <- 1/nj * sigma.j
}
omega.j.inv <- solve(omega.j)
sigma.1.j.inv <- sigma.1 %*% omega.j.inv
b.jc <- t( t(b.j) - mu )
tmp <- b.jc %*% t(sigma.1.j.inv)
Ev <- t(t(tmp) + mu.b)
Covv <- n.s[clz]*(sigma.b - (sigma.1.j.inv %*% t(sigma.1)))
Covv <- (Covv + t(Covv))/2
Evv <- Covv + crossprod(Ev)
MW.s[clz,] <- nj * colSums(ybar.j - Ev)
MB.s[clz,] <- colSums(Ev)
CW2.s <- CW2.s + nj * (Evv - crossprod(ybar.j, Ev)
- crossprod(Ev, ybar.j))
CB.s <- CB.s + Evv
if(length(between.idx) > 0L) {
ZY.s <- ZY.s + crossprod(Y2[cluster.size == nj, between.idx,
drop = FALSE], Ev)
}
}
M.ws <- 1/nobs * colSums(MW.s)
M.bs <- 1/nclusters * colSums(MB.s)
C.bs <- 1/nclusters * CB.s
C.ws <- 1/nobs * (Y1Y1 + CW2.s)
if(length(between.idx) > 0L) {
As <- 1/nclusters * ZY.s - tcrossprod(mu.z, M.bs)
}
sigma.w <- C.ws - tcrossprod(M.ws)
sigma.b <- C.bs - tcrossprod(M.bs)
mu.w <- M.ws
mu.b <- M.bs
if(length(between.idx) > 0L) {
sigma.yz <- t(As)
}
list(sigma.w = sigma.w, sigma.b = sigma.b, mu.w = mu.w, mu.b = mu.b,
sigma.yz = sigma.yz, sigma.zz = sigma.zz, mu.z = mu.z)
}
|
fastkmed <- function(distdata, ncluster, iterate = 10, init = NULL) {
if(any(is.na(distdata))) stop("Cannot handle missing values!")
if((is.matrix(distdata)||inherits(distdata, "dist"))==FALSE)
stop("The distdata must be a matrix or a dist object!")
if(is.matrix(distdata)==TRUE) {
nr <- nrow(distdata)
nc <- ncol(distdata)
if (nc!=nr) stop("The distdata is not an x n distance matrix!")
}
if(inherits(distdata, "dist")) distdata <- as.matrix(distdata)
if(is.null(rownames(distdata))==TRUE) rownames(distdata) <- 1:nrow(distdata)
n <- nrow(distdata)
index <- 1:n
if (is.null(init) == TRUE) {
distsum <- colSums(distdata/sum(distdata))
names(distsum) <- index
iduniq <- as.numeric(names(distsum [!duplicated(distsum)]))
distuniq <- unique(distsum)
names(distuniq) <- iduniq
sorted_object <- as.numeric(names(sort(distuniq)))
medoid_init <- sorted_object[1:ncluster]
if (sum(!is.na(medoid_init)) < ncluster)
stop("An empty cluster is present, change the number of clusters or initial medoids")
} else {
if (ncluster != length(init))
stop("The initial medoids must equal to the number of clusters")
if (sum(is.na(init)) > 0)
stop("The initial medoids consist of NA")
medoid_init <- init
}
dist_0 <- distdata[,medoid_init, drop = FALSE]
for (i in 1:ncluster) {
dist_0[names(dist_0[,i]) == colnames(dist_0)[i], i] <- -1
}
member_0 <- apply(dist_0, 1, which.min)
E0 <- sum(apply(dist_0, 1, min))
if (length(unique(member_0)) != ncluster)
stop("An empty cluster is present, change the number of clusters or initial medoids")
row_0 <- row_1 <- medoid_0 <- medoid_1 <- numeric(ncluster)
for (i in 1:ncluster) {
row_0[i] <- which.min(rowSums(distdata[member_0==i,member_0==i, drop = FALSE]))
medoid_0[i] <- index[member_0==i][row_0[i]]
}
dist_1 <- distdata[,medoid_0, drop = FALSE]
for (i in 1:ncluster) {
dist_1[names(dist_1[,i]) == colnames(dist_1)[i], i] <- -1
}
member_1 <- apply(dist_1, 1, which.min)
E1 <- sum(apply(dist_1, 1, min))
for (i in 1:ncluster) {
row_1[i] <- which.min(rowSums(distdata[member_1==i,member_1==i, drop = FALSE]))
medoid_1[i] <- index[member_1==i][row_1[i]]
}
if (sum(sort(medoid_0) != sort(medoid_1))!=0) {
x <- 1
medoid <- vector("list", iterate)
E <- numeric(iterate)
repeat {
dist_0 <- dist_1
member_0 <- member_1
E0 <- E1
row_0 <- row_1
medoid_0 <- medoid_1
dist_1 <- distdata[,medoid_0, drop = FALSE]
for (i in 1:ncluster) {
dist_1[names(dist_1[,i]) == colnames(dist_1)[i], i] <- -1
}
member_1 <- apply(dist_1, 1, which.min)
for (i in 1:ncluster) {
row_1[i] <- which.min(rowSums(distdata[member_1==i,member_1==i, drop = FALSE]))
medoid_1[i] <- index[member_1==i][row_1[i]]
}
E1 <- sum(apply(dist_1, 1, min))
medoid[[x]] <- medoid_1
E[x] <- E1
if (x == iterate || sum(sort(medoid_0) != sort(medoid_1))==0) { break }
x <- x + 1
}
medoid <- do.call(rbind, medoid)
E <- E[1:x]
index_E <- which.min(E)
medoid_2 <- medoid[index_E,]
dist_2 <- distdata[,medoid_2, drop = FALSE]
for (i in 1:ncluster) {
dist_2[names(dist_2[,i]) == colnames(dist_2)[i], i] <- -1
}
member_2 <- apply(dist_2, 1, which.min)
E2 <- sum(apply(dist_2, 1, min))
names(member_2) <- rownames(distdata)
result <- list(cluster = member_2, medoid = medoid_2, minimum_distance = E2)
}
else {
dist_2 <- distdata[,medoid_1, drop = FALSE]
member_1 <- apply(dist_2, 1, which.min)
E2 <- sum(apply(dist_2, 1, min))
result <- list(cluster = member_1, medoid = medoid_1, minimum_distance = E2)
}
return(result)
}
|
"%contains%" <- function(x, y) all(y %in% x)
rep_along <- function(x, y) {
if (length(y) == 0) return(NULL)
rep(x, length(y))
}
row_heights <- function(m){
do.call(grid::unit.c, apply(m, 1, function(l)
1.1*max(do.call(grid::unit.c, lapply(l, grid::grobHeight)))))
}
col_widths <- function(m){
do.call(grid::unit.c, apply(m, 2, function(l)
1.1*max(do.call(grid::unit.c, lapply(l, grid::grobWidth)))))
}
rep_ifshort <- function(x, n, nc, nr, rep_mode){
if(length(x) >= n){
return(x[1:n])
} else {
if (rep_mode=="row"){
return(rep(rep(x, length.out=nr), length.out=n))
} else if (rep_mode=="col") {
return(as.vector(matrix(rep(rep(x, length.out=nc), length.out=n), byrow=TRUE, nrow=nr)))
} else {
stop(paste0("Unsupported value '", rep_mode,"' of rep_mode. Choose 'col' or 'row'"))
}
}
}
breaks_scale <- function(d, d_min=NULL, d_max=NULL, breaks=10){
if (is.null(d_min)){
d_min = min(d)
}
if (is.null(d_max)){
d_max = max(d)
}
if (d_min == d_max){
if (d_min != 0){
d <- d/d_max
} else {
d <- d
}
} else {
d <- (d-d_min)/(d_max - d_min)
}
if (length(breaks)==1){
breaks <- seq(from=0, to=1, length.out=breaks+1)
} else {
breaks <- (breaks-d_min)/(d_max-d_min)
}
dint <- cut(d, labels=F, breaks=breaks, left.open=TRUE)
dint <- (breaks[dint] + breaks[dint+1])/2
dint[is.na(dint)] <- 0
dcut <- matrix(dint, nrow=nrow(d), byrow=F)
dcut <- dcut/max(dcut)
dcut
}
extract_breadth_first <- function(lst, n){
sapply(lst, `[`, n)
}
extract_strwidth_max_label <- function(labels, fontsize, unit="inches"){
label_max <- labels[which(nchar(labels)==max(nchar(labels)))[1]]
label_max_width <- strwidth(label_max, font=1, cex=fontsize/12, units=unit, ps=par(ps=12))
unit(label_max_width, unit)
}
extract_strheight_max_label <- function(labels, fontsize, unit="inches"){
label_max <- labels[which(nchar(labels)==max(nchar(labels)))[1]]
label_max_height <- strheight(label_max, font=1, cex=fontsize/12, units=unit, ps=par(ps=12))
unit(label_max_height, unit)
}
get_value_from_unit <- function(x){
as.numeric(gsub("[a-zA-Z]+", "", as.character(x)))
}
get_unit_from_unit <- function(x) {
as.character(gsub("[0-9\\.]+", "", as.character(x)))
}
convert_unit <- function(x, to, from=NULL){
if (!is.unit(x) & is.null(from)){
stop("if unit is not specified, x has to be a grid::unit object")
} else if (is.unit(x)){
value <- get_value_from_unit(x)
from <- get_unit_from_unit(x)
} else {
value <- x
}
convert_to_cm <- list("cm"=1, "centimetre"=1, "centimeter"=1, "mm"=0.1, "in"=2.54, "inch"=2.54, "inches"=2.54,
"points"=2.54/72.27, "picas"=12*2.54/72.27)
value*convert_to_cm[[from]]/convert_to_cm[[to]]
}
|
NULL
observed <- function(o, ...) UseMethod("observed")
observed.data.frame <- function(o, x, yobs, pred=NULL, blq=NULL, lloq=-Inf, alq=NULL, uloq=Inf, ...) {
data <- o
x <- rlang::eval_tidy(rlang::enquo(x), data)
yobs <- rlang::eval_tidy(rlang::enquo(yobs), data)
pred <- rlang::eval_tidy(rlang::enquo(pred), data)
lloq <- rlang::eval_tidy(rlang::enquo(lloq), data)
uloq <- rlang::eval_tidy(rlang::enquo(uloq), data)
blq <- rlang::eval_tidy(rlang::enquo(blq), data)
alq <- rlang::eval_tidy(rlang::enquo(alq), data)
obs <- data.table(x, y=yobs, blq, lloq, alq, uloq)
o <- structure(list(data=data), class="tidyvpcobj")
o <- update(o, obs=obs, pred=pred)
censoring(o)
}
simulated <- function(o, ...) UseMethod("simulated")
simulated.tidyvpcobj <- function(o, data, ysim, ...) {
ysim <- rlang::eval_tidy(rlang::enquo(ysim), data)
obs <- o$obs
x <- obs$x
nrep <- length(ysim)/nrow(obs)
repl <- rep(1:nrep, each=nrow(obs))
sim <- data.table(x, y=ysim, repl)
update(o, sim=sim)
}
censoring <- function(o, ...) UseMethod("censoring")
censoring.tidyvpcobj <- function(o, blq, lloq, alq, uloq, data=o$data, ...) {
if (missing(blq)) {
blq <- o$obs$blq
} else {
blq <- rlang::eval_tidy(rlang::enquo(blq), data)
}
if (missing(lloq)) {
lloq <- o$obs$lloq
} else {
lloq <- rlang::eval_tidy(rlang::enquo(lloq), data)
}
if (missing(alq)) {
alq <- o$obs$alq
} else {
alq <- rlang::eval_tidy(rlang::enquo(alq), data)
}
if (missing(uloq)) {
uloq <- o$obs$uloq
} else {
uloq <- rlang::eval_tidy(rlang::enquo(uloq), data)
}
if (is.null(blq)) {
blq <- FALSE
}
if (!is.logical(blq)) {
stop("blq must be of type logical")
}
if (any(is.na(blq))) {
stop("blq cannot contain missing values")
}
if (is.null(lloq)) {
if (any(blq)) {
stop("No lloq specified for blq")
}
lloq <- -Inf
}
if (!is.numeric(lloq)) {
stop("lloq must be of type numeric")
}
if (any(blq & (is.na(lloq) | lloq == -Inf))) {
stop("No lloq specified for blq")
}
if (is.null(alq)) {
alq <- FALSE
}
if (!is.logical(alq)) {
stop("alq must be of type logical")
}
if (any(is.na(alq))) {
stop("alq cannot contain missing values")
}
if (is.null(uloq)) {
if (any(alq)) {
stop("No uloq specified for alq")
}
uloq <- Inf
}
if (!is.numeric(uloq)) {
stop("uloq must be of type numeric")
}
if (any(alq & (is.na(uloq) | uloq == Inf))) {
stop("No uloq specified for alq")
}
.blq <- blq
.lloq <- lloq
.alq <- alq
.uloq <- uloq
o$obs[, blq := rep(.blq, len=.N)]
o$obs[, lloq := rep(.lloq, len=.N)]
o$obs[, alq := rep(.alq, len=.N)]
o$obs[, uloq := rep(.uloq, len=.N)]
update(o, censoring=TRUE)
}
stratify <- function(o, ...) UseMethod("stratify")
stratify.tidyvpcobj <- function(o, formula, data=o$data, ...) {
if (!inherits(formula, "formula")) {
stop("Expecting a formula")
}
flist <- as.list(formula)
if (length(flist) == 3) {
lhs <- as.call(c(flist[[1]], flist[[2]]))
rhs <- as.call(c(flist[[1]], flist[[3]]))
if (flist[[2]] == as.symbol(".")) {
lhsmf <- NULL
} else {
lhsmf <- as.data.table(model.frame(lhs, data))
}
if (flist[[3]] == as.symbol(".")) {
rhsmf <- NULL
} else {
rhsmf <- as.data.table(model.frame(rhs, data))
}
if (is.null(lhsmf) && is.null(rhsmf)) {
stop("Invalid stratification formula: no variables specified")
}
strat <- cbind(lhsmf, rhsmf)
} else {
strat <- as.data.table(model.frame(formula, data))
}
reserved.names <- c("x", "y", "ypc", "pred", "blq", "lloq", "repl", "bin", "xbin", "qname", "lo", "md", "hi",
"nobs", "xmedian", "xmean", "xmin", "xmax", "xmid", "xleft", "xright", "xcenter")
if (any(names(strat) %in% reserved.names)) {
stop(paste0("The names of used for stratification must not include: ",
paste0(reserved.names, collapse=", ")))
}
o$obs[, names(strat) := strat]
strat.split <- split(o$obs, strat)
strat.split <- strat.split[lapply(strat.split,NROW)>0]
update(o, strat=strat, strat.split = strat.split, strat.formula=formula)
}
binning <- function(o, ...) UseMethod("binning")
binning.tidyvpcobj <- function(o, bin, data=o$data, xbin="xmedian", centers, breaks, nbins, altx, stratum=NULL, by.strata=TRUE, ...) {
keep <- i <- NULL
. <- list
xbin <- rlang::eval_tidy(rlang::enquo(xbin), data)
if (is.numeric(xbin)) {
if (length(xbin) != nrow(o$obs)) {
stop("A numeric xbin be of length equal to the number of observations")
}
bin <- xbin
} else {
if (missing(bin) && !missing(centers)) {
bin <- "centers"
} else if (missing(bin) && !missing(breaks)) {
bin <- "breaks"
} else {
bin <- rlang::eval_tidy(rlang::enquo(bin), data)
}
}
if (missing(altx)) {
x <- o$obs$x
} else {
x <- rlang::eval_tidy(rlang::enquo(altx), data)
}
if (!missing(nbins)) {
nbins <- rlang::eval_tidy(rlang::enquo(nbins), data)
if (is.numeric(nbins) && !is.null(o$strat) && (length(nbins) == nrow(o$strat))) {
nbins <- data.table(nbins)[, .(nbins=unique(nbins)), by=o$strat]
}
}
args <- lapply(rlang::enquos(...), rlang::eval_tidy, data=data)
by.strata <- isTRUE(by.strata)
if (!is.null(stratum)) {
if (!is.list(stratum)) {
stop("stratum must be a list, data.frame or data.table")
}
if (is.null(o$strat)) {
stop("No stratification has been specified")
}
if (!by.strata) {
stop("by.strata must be TRUE when stratum is specified")
}
filter <- copy(o$strat)[, keep := F]
filter[as.data.table(stratum), keep := T, on=names(stratum)]
filter <- filter$keep
} else {
filter <- rep(T, nrow(o$obs))
}
if (is.numeric(xbin)) {
if (length(xbin) != nrow(o$obs)) {
stop("A numeric xbin be of length equal to the number of observations")
}
bin <- xbin
} else if (is.character(bin) && length(bin) == 1) {
known.classInt.styles <- c("fixed", "sd", "equal", "pretty", "quantile",
"kmeans", "hclust", "bclust", "fisher", "jenks", "dpih")
if (bin == "centers") {
if (missing(centers)) {
stop("centers must be specified to use this binning method")
}
if (!by.strata && is.data.frame(centers)) {
stop("by.strata must be TRUE when centers is a data.frame")
}
bin <- nearest(centers)
} else if (bin == "breaks") {
if (missing(breaks)) {
stop("breaks must be specified to use this binning method")
}
if (!by.strata && is.data.frame(breaks)) {
stop("by.strata must be TRUE when breaks is a data.frame")
}
bin <- cut_at(breaks)
} else if (bin == "ntile") {
if (missing(nbins)) {
stop("nbins must be specified to use this binning method")
}
bin <- bin_by_ntile(nbins)
} else if (bin == "eqcut") {
if (missing(nbins)) {
stop("nbins must be specified to use this binning method")
}
bin <- bin_by_eqcut(nbins)
} else if (bin == "pam") {
if (missing(nbins)) {
stop("nbins must be specified to use this binning method")
}
bin <- bin_by_pam(nbins)
} else if (bin %in% known.classInt.styles) {
if (missing(nbins)) {
nbins <- NULL
}
bin <- bin_by_classInt(bin, nbins)
} else {
stop(sprintf("Unknown binning method: %s", bin))
}
}
if (is.function(bin)) {
xdat <- data.table(i=1:nrow(o$obs), x=x)
if (any(is.na(xdat[filter]$x))) {
warning("x contains missing values, which could affect binning")
}
if (any(is.infinite(xdat[filter]$x))) {
warning("x contains non-finite values, which could affect binning")
}
if (by.strata && !is.null(o$strat)) {
sdat <- copy(o$strat)
temp <- xdat[filter, .(i=i, j=do.call(bin, c(list(x), args, .BY))), by=sdat[filter]]
j <- temp[order(i), j]
} else {
j <- xdat[filter, do.call(bin, c(list(x), args))]
}
if (length(j) != sum(filter)) {
stop("The binning function did not return the right number of elements")
}
} else if (length(bin) == nrow(o$obs)) {
j <- bin[filter]
} else {
stop("Incorrect binning specification")
}
o$obs[filter, bin := as.factor(j)]
bin <- o$obs$bin
if (!is.null(o$strat)) {
stratbin <- data.table(o$strat, bin)
} else {
stratbin <- data.table(bin)
}
o <- update(o, .stratbin=stratbin, bin.by.strata=by.strata)
if (is.numeric(xbin)) {
xbin <- data.table(xbin=xbin)[, .(xbin = unique(xbin)), by=stratbin]
} else if (is.character(xbin) && length(xbin) == 1) {
bi <- bininfo(o)
xbin <- data.table(bi[, names(stratbin), with=FALSE], xbin=bi[[xbin]])
} else if (is.function(xbin)) {
xbin <- data.table(x=x)[, .(xbin = xbin(x)), by=stratbin]
} else {
stop("Invalid xbin")
}
vpc.method <- list(method = "binning")
update(o, xbin=xbin, vpc.method = vpc.method)
}
binless <- function(o, ...) UseMethod("binless")
binless.tidyvpcobj <- function(o, optimize = TRUE, optimization.interval = c(0,7), loess.ypc = FALSE, lambda = NULL, span = NULL, sp = NULL, ...) {
if(class(o) != "tidyvpcobj") {
stop("No tidyvpcobj found, observed(...) %>% simulated(...) must be called prior to binless()")
}
if(!optimize){
if(is.null(lambda) && is.null(sp)) {
stop("Set optimize = TRUE if no lambda or sp arguments specified")
}
}
if(!is.null(sp)){
if(optimize){
optimize <- FALSE
}
sp <- lapply(sp, function(x)
x <- c(sp = x))
}
if(loess.ypc && is.null(o$predcor)) {
stop("Use predcorrect() before binless() in order to use LOESS prediction corrected")
}
if(!is.null(span) && !loess.ypc) {
stop("Set loess.ypc = TRUE and optimize = FALSE if setting span smoothing parameter for LOESS prediction corrected")
}
method <- list(method = "binless",
optimize = optimize,
optimization.interval = optimization.interval,
loess.ypc = loess.ypc,
lambda = lambda,
span = span,
sp = sp)
update(o, vpc.method = method)
}
predcorrect <- function(o, ...) UseMethod("predcorrect")
predcorrect.tidyvpcobj <- function(o, pred, data=o$data, ..., log=FALSE) {
ypc <- y <- NULL
if (missing(pred)) {
pred <- o$pred
} else {
pred <- rlang::eval_tidy(rlang::enquo(pred), data)
}
if (is.null(pred)) {
stop("No pred specified")
}
stratbin <- o$.stratbin
mpred <- data.table(stratbin, pred)
mpred <- mpred[, mpred := median(pred), by=stratbin]
mpred <- mpred$mpred
if (log) {
o$obs[, ypc := (mpred - pred) + y]
o$sim[, ypc := (mpred - pred) + y]
} else {
o$obs[, ypc := (mpred/pred)*y]
o$sim[, ypc := (mpred/pred)*y]
}
update(o, predcor=TRUE, predcor.log=log, pred=pred )
}
nopredcorrect <- function(o, ...) UseMethod("nopredcorrect")
nopredcorrect.tidyvpcobj <- function(o, ...) {
update(o, predcor=FALSE)
}
vpcstats <- function(o, ...) UseMethod("vpcstats")
vpcstats.tidyvpcobj <- function(o, vpc.type =c("continuous", "categorical"), qpred=c(0.05, 0.5, 0.95), ..., conf.level=0.95, quantile.type=7) {
type <- match.arg(vpc.type)
method <- o$vpc.method
stopifnot(method$method %in% c("binless", "binning"))
stopifnot(length(qpred) == 3)
repl <- ypc <- y <- x <- blq <- lloq <- alq <- uloq <- NULL
. <- list
qconf <- c(0, 0.5, 1) + c(1, 0, -1)*(1 - conf.level)/2
obs <- o$obs
sim <- o$sim
predcor <- o$predcor
stratbin <- o$.stratbin
xbin <- o$xbin
strat <- o$strat
if(method$method == "binless" && type == "continuous"){
o <- binlessaugment(o, qpred = qpred, interval = method$optimization.interval, loess.ypc = method$loess.ypc)
o <- binlessfit(o, conf.level = conf.level, llam.quant = method$lambda, span = method$span)
}
if(type == "categorical"){
if(.isCensored(obs)){
stop("Censoring not supported for categorical vpc")
}
ylvls <- sort(unique(obs$y))
if(method$method == "binless"){
xobs <- obs$x
xsim <- sim$x
sp <- method$sp
.stratrepl <- data.table(strat, sim[, .(repl)])
obs <- obs[, fastDummies::dummy_columns(obs, select_columns = "y")]
setnames(obs, paste0("y_", ylvls), paste0("prob", ylvls))
pobs <- melt(obs, id.vars = c(names(strat), "x"),
measure.vars = paste0("prob", ylvls),
variable.name = "pname", value.name = "y")
pobs.split <- split(pobs, by = c(names(strat),"pname"), sorted = TRUE)
pobs.split <- pobs.split[lapply(pobs.split, nrow)>1]
if(method$optimize){
sp_opt <- list()
for(i in seq_along(pobs.split)){
sp_opt[[i]] <- pobs.split[[i]][, .(sp = optimize(.gam_optimize,
y = y,
x = x,
data = pobs.split[[i]],
interval = method$optimization.interval)$minimum)]
}
names(sp_opt) <- names(pobs.split)
method$sp <- sp_opt
for(i in seq_along(pobs.split)){
pobs.split[[i]][, y := .fitcatgam(y, x, sp = sp_opt[[i]]$sp)]
}
} else {
sp_opt <- method$sp
if(length(sp_opt) != length(pobs.split)){
stop(paste0("`incorrect number of elements specified to `sp` argument in `binless()` function, specify a list of length ", length(pobs.split), " in the following order: \n",
paste0(names(pobs.split), collapse = "\n"), "\n",
"Note: Do not specify a value for strata where not data is available."))
}
for(i in seq_along(pobs.split)){
pobs.split[[i]][, y := .fitcatgam(y, x, sp = sp_opt[[i]])]
}
}
pobs <- rbindlist(pobs.split)
if(!is.null(strat)){
sim <- sim[, c(names(strat)) := rep(strat, len = .N), by = .(repl)]
}
sim <- sim[, fastDummies::dummy_columns(sim, select_columns = "y")]
setnames(sim, paste0("y_", ylvls), paste0("prob", ylvls))
psim <- melt(sim, id.vars = c(names(.stratrepl), "x"),
measure.vars = paste0("prob", ylvls),
variable.name = "pname", value.name = "y")
psim$y <- as.double(psim$y)
psim.split <- split(psim, by = c(names(strat),"pname"), sorted = TRUE)
psim.split <- psim.split[lapply(psim.split, nrow)>1]
if(method$optimize){
for(i in seq_along(psim.split)){
psim.split[[i]][, y := .fitcatgam(y, x, sp = sp_opt[[i]]$sp), by = list(repl)]
}
} else {
for(i in seq_along(psim.split)){
psim.split[[i]][, y := .fitcatgam(y, x, sp = sp_opt[[i]]), by = repl]
}
}
psim <- rbindlist(psim.split)
.stratbinquant <- psim[, !c("repl", "y")]
ppsim <- psim[, .(lo=quantile(y,probs=qconf[[1]], type=quantile.type),
md=median(y),
hi=quantile(y,probs=qconf[[3]], type=quantile.type)), by = .stratbinquant]
stats <- unique(pobs[ppsim, on=names(.stratbinquant)])
setkeyv(stats, c(names(strat), "x"))
} else {
if (is.null(stratbin)) {
stop("Need to specify binning before calling vpcstats.")
}
if (any(is.na(stratbin$bin))) {
warning("There are bins missing. Has binning been specified for all strata?", call.=F)
}
.stratbinrepl <- data.table(stratbin, sim[, .(repl)])
obs <- obs[, fastDummies::dummy_columns(obs, select_columns = "y")]
pobs <- obs[, lapply(.SD, mean, na.rm=TRUE), by=stratbin, .SDcols=paste0("y_", ylvls)]
setnames(pobs, paste0("y_", ylvls), paste0("prob", ylvls))
pobs <- melt(pobs, id.vars = names(stratbin),
measure.vars = paste0("prob", ylvls),
variable.name = "pname", value.name = "y")
sim <- sim[, fastDummies::dummy_columns(sim, select_columns = "y")]
psim <- sim[, lapply(.SD, mean, na.rm=TRUE), by=.stratbinrepl, .SDcols=paste0("y_", ylvls)]
setnames(psim, paste0("y_", ylvls), paste0("prob", ylvls))
psim <- melt(psim, id.vars = names(.stratbinrepl),
measure.vars = paste0("prob", ylvls),
variable.name = "pname", value.name = "y")
.stratbinquant <- psim[, !c("repl", "y")]
qconf <- c(0, 0.5, 1) + c(1, 0, -1)*(1 - conf.level)/2
ppsim <- psim[, .(lo=quantile(y,probs=qconf[[1]], type=quantile.type),
md=median(y),
hi=quantile(y,probs=qconf[[3]], type=quantile.type)), by = .stratbinquant]
stats <- pobs[ppsim, on=names(.stratbinquant)]
stats <- xbin[stats, on=names(stratbin)]
setkeyv(stats, c(names(o$strat), "xbin"))
}
update(o, stats=stats, conf.level=conf.level, vpc.type = type, vpc.method = method)
} else {
if(method$method == "binless") {
.binlessvpcstats(o, qpred=qpred, conf.level=conf.level, quantile.type=quantile.type, vpc.type = type, vpc.method = method)
} else {
if (is.null(stratbin)) {
stop("Need to specify binning before calling vpcstats.")
}
if (any(is.na(stratbin$bin))) {
warning("There are bins missing. Has binning been specified for all strata?", call.=F)
}
.stratbinrepl <- data.table(stratbin, sim[, .(repl)])
myquant1 <- function(y, probs, qname=paste0("q", probs), type=quantile.type, blq=FALSE, alq=FALSE) {
if (is.null(blq)) blq <- FALSE
if (is.null(alq)) alq <- FALSE
blq <- rep(blq, len=length(y))
alq <- rep(alq, len=length(y))
y <- ifelse(blq, -Inf, ifelse(alq, Inf, y))
y <- quantile(y, probs=probs, type=type, names=FALSE, na.rm=TRUE)
y[y == -Inf] <- NA
y[y == Inf] <- NA
qname <- factor(qname, levels=unique(qname))
data.frame(qname, y)
}
myquant2 <- function(y, probs, qname=paste0("q", probs), type=quantile.type) {
y <- quantile(y, probs=probs, type=type, names=FALSE, na.rm=TRUE)
setNames(as.list(y), qname)
}
if (isTRUE(predcor)) {
qobs <- obs[, myquant1(ypc, probs=qpred, blq=blq, alq=alq), by=stratbin]
qsim <- sim[, myquant1(ypc, probs=qpred, blq=FALSE, alq=FALSE), by=.stratbinrepl]
} else {
qobs <- obs[, myquant1(y, probs=qpred, blq=blq, alq=alq), by=stratbin]
qsim <- sim[, myquant1(y, probs=qpred, blq=FALSE, alq=FALSE), by=.stratbinrepl]
}
.stratbinquant <- qsim[, !c("repl", "y")]
qconf <- c(0, 0.5, 1) + c(1, 0, -1)*(1 - conf.level)/2
qqsim <- qsim[, myquant2(y, probs=qconf, qname=c("lo", "md", "hi")), by=.stratbinquant]
stats <- qobs[qqsim, on=names(.stratbinquant)]
stats <- xbin[stats, on=names(stratbin)]
setkeyv(stats, c(names(o$strat), "xbin"))
if (!is.null(obs$blq) && any(obs$blq)) {
sim[, lloq := rep(obs$lloq, len=.N)]
sim[, blq := (y < lloq)]
pctblqobs <- obs[, .(y=100*mean(blq)), by=stratbin]
pctblqsim <- sim[, .(y=100*mean(blq)), by=.stratbinrepl]
.stratbinpctblq <- pctblqsim[, !c("repl", "y")]
qpctblqsim <- pctblqsim[, myquant2(y, probs=qconf, qname=c("lo", "md", "hi")), by=.stratbinpctblq]
pctblq <- pctblqobs[qpctblqsim, on=names(.stratbinpctblq)]
pctblq <- xbin[pctblq, on=names(stratbin)]
setkeyv(pctblq, c(names(o$strat), "xbin"))
} else {
pctblq <- NULL
}
if (!is.null(obs$alq) && any(obs$alq)) {
sim[, uloq := rep(obs$uloq, len=.N)]
sim[, alq := (y > uloq)]
pctalqobs <- obs[, .(y=100*mean(alq)), by=stratbin]
pctalqsim <- sim[, .(y=100*mean(alq)), by=.stratbinrepl]
.stratbinpctalq <- pctalqsim[, !c("repl", "y")]
qpctalqsim <- pctalqsim[, myquant2(y, probs=qconf, qname=c("lo", "md", "hi")), by=.stratbinpctalq]
pctalq <- pctalqobs[qpctalqsim, on=names(.stratbinpctalq)]
pctalq <- xbin[pctalq, on=names(stratbin)]
setkeyv(pctalq, c(names(o$strat), "xbin"))
} else {
pctalq <- NULL
}
update(o, stats=stats, pctblq=pctblq, pctalq=pctalq, conf.level=conf.level, vpc.type = type)
}
}
}
update.tidyvpcobj <- function(object, ...) {
args <- list(...)
for (i in names(args)) {
object[[i]] <- args[[i, exact=TRUE]]
}
object
}
print.tidyvpcobj <- function(x, ...) {
if (!is.null(x$sim)) {
nrep <- nrow(x$sim)/nrow(x$obs)
if (isTRUE(x$predcor)) {
cat("Prediction corrected ")
}
cat(sprintf("VPC with %d replicates", nrep), "\n")
}
cat(sprintf("Stratified by: %s", paste0(names(x$strat), collapse=", ")), "\n")
if (!is.null(x$stats)) {
print(x$stats)
}
invisible(x)
}
.binlessvpcstats <- function(o, qpred=c(0.05, 0.5, 0.95), ..., conf.level=0.95, quantile.type=7, vpc.type){
y <- x <- blq <- fit <- . <- repl <- cprop <- rqssmed <- llam.med <- c.rqssmed <- NULL
obs.fits <- o$rqss.obs.fits
sim.fits <- o$rqss.sim.fits
obs <- o$obs
sim <- o$sim
predcor <- o$predcor
xbinless <- o$obs$x
if(!is.null(o$strat)) {
stratx <- obs.fits[, list(x, o$strat)]
x.binless <- c("x", "qname", names(o$strat))
} else {
x.binless <- c("x", "qname")
}
qpred <- o$qpred
conf.level <- o$conf.level
qconf <- c(0, 0.5, 1) + c(1, 0, -1)*(1 - conf.level)/2
if(!is.null(obs$blq) && any(obs$blq)) {
if(!is.null(o$strat)) {
stratlloq <- c(names(o$strat), "lloq")
lloq <- obs[, stratlloq, with = FALSE]
lloq <- unique(lloq)
obs.fits <- obs.fits[lloq, on = names(o$strat)]
} else {
obs.fits[, lloq := rep(obs$lloq, len=.N)]
}
obs.fits[, blq := ifelse(fit < lloq, TRUE, FALSE)]
}
obs.fits <- setnames(obs.fits[, lapply(.SD, median), by = x.binless], "fit", "y")
sim.fits <- setnames(sim.fits, c("fit", "fit.lb", "fit.ub"), c("md", "lo", "hi"))
if(!is.null(obs$blq) && any(obs$blq)) {
obs.fits[, blq := ifelse(y < lloq, TRUE, FALSE)]
obs.fits[, y := ifelse(blq == TRUE, NA, y)]
}
if (!is.null(o$strat)) {
stats <- obs.fits[sim.fits, on = c("x", "qname", names(o$strat))]
} else {
stats <- obs.fits[sim.fits, on = c("x", "qname")]
}
if (!is.null(obs$blq) && any(obs$blq)) {
if(is.null(o$strat)) {
sim[, lloq := rep(obs$lloq, len=.N)]
sim[, blq := (y < lloq)]
setorder(obs, cols = x)
cprop.obs <- obs[, cprop := cumsum(blq) / 1:length(blq)]
sic.cprop <- function(llam) {
a <- AIC(
rqss(
cprop ~
qss(x, lambda=exp(llam)),
tau=0.5, na.action=na.exclude, data = cprop.obs
),
k=-1
)
}
llam.med.cprop <- optimize(sic.cprop, interval=c(0, 7))$min
med.obs.cprop <- rqss(
cprop ~ qss(x, lambda=exp(llam.med.cprop)),
tau=0.50, data = cprop.obs
)
cprop.obs$med <- fitted(med.obs.cprop)
setorder(sim, repl, x)[, cprop := cumsum(blq) / 1:length(blq), by=list(repl)]
suppressWarnings(sim[, rqssmed := fitted(rqss(cprop ~ qss(x, lambda = exp(llam.med.cprop)),
tau = 0.5, na.action = na.exclude, .SD)), by = .(repl)])
u.x <- unique(cprop.obs$x)
med.obs.cprop <- tapply(cprop.obs$med, cprop.obs$x, median)
med.sims.blq <- tapply(sim$rqssmed, sim$x, median)
med.sims.blq.lb <- tapply(sim$rqssmed, sim$x, quantile, probs=c(qconf[[1]]))
med.sims.blq.ub <- tapply(sim$rqssmed, sim$x, quantile, probs=c(qconf[[3]]))
pctblq <- data.table(cbind(u.x,med.obs.cprop, med.sims.blq.lb, med.sims.blq, med.sims.blq.ub))
setnames(pctblq, c("x", "y", "lo", "md", "hi"))
} else {
strat <- o$strat
strat.split <- split(obs, strat)
strat.split <- strat.split[lapply(strat.split,NROW)>0]
x.strat <- c("x", names(strat))
sim[, lloq := rep(obs$lloq, len=.N), by = names(strat)]
sim[, blq := (y < lloq)]
stratx.binless <- obs[, list(x, o$strat)]
stratxrepl <- data.table(stratx.binless, sim[, .(repl)])
strat.split.sim <- split(sim, strat)
strat.split.sim <- strat.split.sim[lapply(strat.split.sim,NROW)>0]
sic.strat.cprop <- function(llam){
a <- AIC(
rqss(
cprop ~
qss(x, lambda=exp(llam)),
tau=.5, na.action=na.exclude, data = strat.split[[i]]
),
k=-1
)
}
llam.strat.med.cprop <- vector("list", length(strat.split))
for (i in seq_along(strat.split)) {
setorder(strat.split[[i]], cols = x)
strat.split[[i]] <- strat.split[[i]][, cprop := cumsum(blq) / 1:length(blq)]
llam.strat.med.cprop[[i]] <- strat.split[[i]][, .(llam.med = optimize(sic.strat.cprop, interval=c(0, 7))$min)][,.(med = unlist(llam.med))]
strat.split[[i]][, c.rqssmed := fitted(rqss(cprop ~ qss(x, lambda = exp(llam.strat.med.cprop[[i]][[1]])),tau= .5, na.action = na.exclude, data = strat.split[[i]]))]
}
obs.cprop <- rbindlist(strat.split)
obs.cprop <- setnames(obs.cprop[, lapply(.SD, median, na.rm = TRUE), by = x.strat, .SDcols = "c.rqssmed"], "c.rqssmed", "y")
for (i in seq_along(strat.split.sim)) {
setorder(strat.split.sim[[i]], cols = repl, x)
strat.split.sim[[i]] <- strat.split.sim[[i]][, cprop := cumsum(blq) / 1:length(blq), by = .(repl)]
strat.split.sim[[i]][, c.rqssmed := fitted(rqss(cprop ~ qss(x, lambda = exp(llam.strat.med.cprop[[i]][[1]])),tau= .5, na.action = na.exclude, .SD)), by = .(repl)]
}
sim.cprop <- rbindlist(strat.split.sim)
sim.med <- setnames(sim.cprop[, lapply(.SD, median, na.rm = TRUE), by = x.strat, .SDcols = "c.rqssmed"], "c.rqssmed", "md")
sim.lb <- setnames(sim.cprop[, lapply(.SD, quantile, probs = qconf[[1]]), by = x.strat, .SDcols = "c.rqssmed"], "c.rqssmed", "lo")
sim.ub <- setnames(sim.cprop[, lapply(.SD, quantile, probs = qconf[[3]]), by = x.strat, .SDcols = "c.rqssmed"], "c.rqssmed", "hi")
pctblq <- obs.cprop[sim.med, on = x.strat]
pctblq <- pctblq[sim.lb, on = x.strat]
pctblq <- pctblq[sim.ub, on = x.strat]
}
} else {
pctblq <- NULL
}
update(o, stats = stats, pctblq = pctblq, vpc.type = vpc.type)
}
bininfo <- function(o, ...) UseMethod("bininfo")
bininfo.tidyvpcobj <- function(o, by.strata=o$bin.by.strata, ...) {
x <- xmin <- xmax <- bin <- NULL
f1 <- function(x) {
nobs <- sum(!is.na(x))
xmedian <- median(x, na.rm=TRUE)
xmean <- mean(x, na.rm=TRUE)
xmin <- min(x, na.rm=TRUE)
xmax <- max(x, na.rm=TRUE)
xmid <- 0.5*(xmin + xmax)
data.table(nobs, xmedian, xmean, xmin, xmax, xmid)
}
f2 <- function(xmin, xmax) {
xmin <- c(xmin, xmax[length(xmax)])
xmax <- c(xmin[1], xmax)
breaks <- 0.5*(xmin + xmax)
xleft <- breaks[-length(breaks)]
xright <- breaks[-1]
xcenter <- 0.5*(xleft + xright)
data.table(xleft, xright, xcenter)
}
if (by.strata && !is.null(o$strat)) {
bi <- o$obs[, f1(x), by=o$.stratbin]
setkeyv(bi, c(names(o$strat), "xmin"))
bi[, c(.SD, f2(xmin, xmax)), by=names(o$strat)]
} else {
bi <- o$obs[, f1(x), by=bin]
setkeyv(bi, "xmin")
bi <- cbind(bi, bi[, f2(xmin, xmax)])
bi <- bi[unique(o$.stratbin), on="bin"]
setkeyv(bi, "xmin")
bi[, c(names(o$.stratbin), setdiff(names(bi), names(o$.stratbin))), with=FALSE]
}
}
NULL
cut_at <- function(breaks) {
breaks <- .check_breaks(breaks)
function(x, ..., right=FALSE) {
breaks <- .resolve_breaks(breaks, ...)
breaks <- sort(unique(breaks))
if (min(x) < min(breaks)) {
breaks <- c(min(x), breaks)
}
if (max(x) > max(breaks)) {
breaks <- c(breaks, max(x))
}
as.character(cut(x, breaks, include.lowest=TRUE, right=right))
}
}
nearest <- function(centers) {
centers <- .check_centers(centers)
function(x, ...) {
centers <- .resolve_centers(centers, ...)
centers <- sort(unique(centers))
dist <- function(a, b) abs(a - b)
d <- outer(x, centers, dist)
m <- apply(d, 1, which.min)
centers[m]
}
}
bin_by_ntile <- function(nbins) {
nbins <- .check_nbins(nbins)
function(x, ...) {
nbins <- .resolve_nbins(nbins, ...)
len <- sum(!is.na(x))
r <- rank(x, ties.method="first", na.last="keep")
as.integer(floor(nbins*(r - 1)/len + 1))
}
}
bin_by_eqcut <- function(nbins) {
nbins <- .check_nbins(nbins)
function(x, ..., quantile.type=7) {
nbins <- .resolve_nbins(nbins, ...)
breaks <- quantile(x, probs=seq.int(nbins - 1)/nbins, na.rm=TRUE, type=quantile.type)
cut_at(breaks)(x)
}
}
bin_by_pam <- function(nbins) {
has_cluster <- requireNamespace("cluster", quietly=TRUE)
if (!has_cluster) {
stop("Package 'cluster' is required to use the binning method. Please install it.")
}
nbins <- .check_nbins(nbins)
function(x, ...) {
nbins <- .resolve_nbins(nbins, ...)
centers <- sort(cluster::pam(x, nbins)$medoids)
nearest(centers)(x)
}
}
bin_by_classInt <- function(style, nbins=NULL) {
has_classInt <- requireNamespace("classInt", quietly=TRUE)
if (!has_classInt) {
stop("Package 'classInt' is required to use the binning method. Please install it.")
}
style <- style
if (!is.null(nbins)) {
nbins <- .check_nbins(nbins)
}
function(x, ...) {
args <- list(var=x, style=style)
if (!is.null(nbins)) {
nbins <- .resolve_nbins(nbins, ...)
args$n <- nbins
}
args <- c(args, list(...))
if (style %in% c("kmeans", "hclust", "dpih")) {
args1 <- args[intersect(names(args), methods::formalArgs(classInt::classIntervals))]
args2 <- if (style == "kmeans") {
args[intersect(names(args), methods::formalArgs(stats::kmeans))]
} else if (style == "hclust") {
args[intersect(names(args), methods::formalArgs(stats::hclust))]
} else if (style == "dpih") {
has_KernSmooth <- requireNamespace("KernSmooth", quietly=TRUE)
if (!has_KernSmooth) {
stop("Package 'KernSmooth' is required to use the binning method. Please install it.")
}
args[intersect(names(args), methods::formalArgs(KernSmooth::dpih))]
} else {
list()
}
args <- c(args1, args2)
}
args <- args[!duplicated(args)]
breaks <- do.call(classInt::classIntervals, args)$brks
cut_at(breaks)(x)
}
}
check_order <- function(obs, sim, tol=1e-5) {
if (nrow(sim) %% nrow(obs) != 0) {
stop("Rows in sim is not a multiple of rows in obs")
}
if (is.numeric(obs[[1]])) obs[[1]] <- as.numeric(obs[[1]])
if (is.numeric(sim[[1]])) sim[[1]] <- as.numeric(sim[[1]])
if (is.factor(obs[[1]])) obs[[1]] <- as.character(obs[[1]])
if (is.factor(sim[[1]])) sim[[1]] <- as.character(sim[[1]])
if (!identical(rep(obs[[1]], len=nrow(sim)), sim[[1]])) {
stop("ID columns are not identical")
}
if (!all(abs(rep(obs[[2]], len=nrow(sim)) - sim[[2]]) < tol)) {
stop("Time columns are not equal")
}
nrow(sim) / nrow(obs)
}
.check_centers <- function(centers) {
if (is.data.frame(centers)) {
centers <- as.data.table(centers)
if (is.null(centers$centers)) {
stop("centers data.frame must contain column centers")
}
if (any(is.na(centers$centers))) {
stop("centers cannot contain missing values")
}
keycols <- setdiff(names(centers), "centers")
setkeyv(centers, keycols)
} else if (is.numeric(centers)) {
if (any(is.na(centers))) {
stop("centers cannot contain missing values")
}
} else {
stop("centers must be a numeric vector or data.frame")
}
centers
}
.resolve_centers <- function(centers, ...) {
if (is.data.table(centers)) {
keycols <- key(centers)
key <- as.data.table(list(...)[keycols])
centers <- unique(centers[key]$centers)
}
if (is.null(centers) || !is.numeric(centers) || any(is.na(centers))) {
stop("invalid centers")
}
centers
}
.check_breaks <- function(breaks) {
if (is.data.frame(breaks)) {
breaks <- as.data.table(breaks)
if (is.null(breaks$breaks)) {
stop("breaks data.frame must contain column breaks")
}
if (any(is.na(breaks$breaks))) {
stop("breaks cannot contain missing values")
}
keycols <- setdiff(names(breaks), "breaks")
setkeyv(breaks, keycols)
} else if (is.numeric(breaks)) {
if (any(is.na(breaks))) {
stop("breaks cannot contain missing values")
}
} else {
stop("breaks must be a numeric vector or data.frame")
}
breaks
}
.resolve_breaks <- function(breaks, ...) {
if (is.data.table(breaks)) {
keycols <- key(breaks)
key <- as.data.table(list(...)[keycols])
breaks <- breaks[key]$breaks
}
if (is.null(breaks) || !is.numeric(breaks) || any(is.na(breaks))) {
stop("invalid breaks")
}
breaks
}
.check_nbins <- function(nbins) {
if (is.data.frame(nbins)) {
nbins <- as.data.table(nbins)
if (is.null(nbins$nbins)) {
stop("nbins data.frame must contain column nbins")
}
if (any(is.na(nbins$nbins))) {
stop("nbins cannot contain missing values")
}
keycols <- setdiff(names(nbins), "nbins")
setkeyv(nbins, keycols)
} else if (is.numeric(nbins) && length(nbins) == 1) {
if (any(is.na(nbins))) {
stop("nbins cannot contain missing values")
}
} else {
stop("nbins must be a numeric vector of length 1 or data.frame")
}
nbins
}
.resolve_nbins <- function(nbins, ...) {
if (is.data.table(nbins)) {
keycols <- key(nbins)
key <- as.data.table(list(...)[keycols])
nbins <- unique(nbins[key]$nbins)
}
if (is.null(nbins) || !(is.numeric(nbins) && length(nbins) == 1 && !is.na(nbins))) {
stop("nbins must be uniquely determined")
}
nbins
}
binlessaugment <- function(o, qpred = c(0.05, 0.50, 0.95), interval = c(0,7), loess.ypc = FALSE, ...) {
l.ypc <- strat.split <- y <- NULL
qpred <- sort(qpred)
obs <- o$obs
log <- o$predcor.log
if(!is.null(o$strat.split)){
strat.split <- o$strat.split
}
environment(.autoloess) <- environment()
if (loess.ypc) {
if (!is.null(o$strat)) {
pred <- o$pred
obs <- cbind(obs, pred)
strat <- o$strat
strat.split <- split(obs, strat)
strat.split <- strat.split[lapply(strat.split,NROW)>0]
loess.mod.strat <- vector("list", length(strat.split))
names(loess.mod.strat) <- names(strat.split)
if(isTRUE(o$predcor.log)) {
for (i in seq_along(strat.split)) {
loess.mod.strat[[i]] <- .autoloess(loess(pred ~ x, span = .5, data = strat.split[[i]]))
strat.split[[i]][, lpred := fitted(loess(pred ~ x, span = loess.mod.strat[[i]]$span, na.action = na.exclude))]
strat.split[[i]][, l.ypc := (lpred - pred) + y]
}
} else {
for (i in seq_along(strat.split)) {
loess.mod.strat[[i]] <- .autoloess(loess(pred ~ x, span = .5, data = strat.split[[i]]))
strat.split[[i]][, lpred := fitted(loess(pred ~ x, span = loess.mod.strat[[i]]$span, na.action = na.exclude))]
strat.split[[i]][, l.ypc := (lpred/pred) * y]
}
}
span <- .getspan(loess.mod.strat)
} else {
pred <- o$pred
obs <- cbind(obs, pred)
loess.mod <- .autoloess(loess(pred ~ x, span = .5, data = obs))
lpred <- fitted(loess.mod$fit)
span <- loess.mod$span
if (isTRUE(o$predcor.log)) {
obs[, l.ypc := (lpred - pred) + y]
} else {
obs[, l.ypc := (lpred/pred) * y]
}
}
}
if(!loess.ypc && !is.null(o$strat)) {
strat <- o$strat
strat.split <- split(obs, strat)
strat.split <- strat.split[lapply(strat.split,NROW)>0]
}
.sic.strat.ypc <- function(llam, quant) {
a <- AIC(
rqss(
l.ypc ~
qss(x, lambda=exp(llam)),
tau=quant, na.action=na.exclude, data = strat.split[[i]]
),
k=-1
)
}
.sic.strat <- function(llam, quant){
a <- AIC(
rqss(
y ~
qss(x, lambda=exp(llam)),
tau=quant, na.action=na.exclude, data = strat.split[[i]]
),
k=-1
)
}
.sic.ypc <- function(llam, quant){
a <- AIC(
rqss(
l.ypc ~
qss(x, lambda=exp(llam)),
tau=quant, na.action=na.exclude, data = obs
),
k=-1
)
}
.sic <- function(llam, quant){
a <- AIC(
rqss(
y ~
qss(x, lambda=exp(llam)),
tau=quant, na.action=na.exclude, data = obs
),
k=-1
)
}
if(loess.ypc) {
if(!is.null(o$strat)){
llamoptimize <- .sic.strat.ypc
} else {
llamoptimize <- .sic.ypc
}
}
if(!loess.ypc) {
span <- NULL
if(!is.null(o$strat)) {
llamoptimize <- .sic.strat
} else {
llamoptimize <- .sic
}
}
environment(llamoptimize) <- environment()
. <- list
if(!is.null(o$strat.split)) {
llam.strat.lo <- vector("list", length(strat.split))
llam.strat.med <- vector("list", length(strat.split))
llam.strat.hi <- vector("list", length(strat.split))
for (i in seq_along(strat.split)) {
llam.strat.lo[[i]] <- strat.split[[i]][, .(llam.lo = optimize(llamoptimize, quant = qpred[1], interval = interval)$min)][,.(lo = unlist(llam.lo))]
names(llam.strat.lo) <- names(strat.split)
setnames(llam.strat.lo[[i]], paste0("q", qpred[1]))
llam.strat.med[[i]] <- strat.split[[i]][, .(llam.med = optimize(llamoptimize, quant = qpred[2], interval = interval)$min)][,.(med = unlist(llam.med))]
names(llam.strat.med) <- names(strat.split)
setnames(llam.strat.med[[i]], paste0("q", qpred[2]))
llam.strat.hi[[i]] <- strat.split[[i]][, .(llam.hi = optimize(llamoptimize, quant = qpred[3], interval = interval)$min)][,.(hi = unlist(llam.hi))]
names(llam.strat.hi) <- names(strat.split)
setnames(llam.strat.hi[[i]], paste0("q", qpred[3]))
}
llam.qpred <- cbind(list(llam.strat.lo, llam.strat.med, llam.strat.hi))
names(llam.qpred) <- paste0("q", qpred)
} else {
llam.lo <- obs[, .(llam.lo = optimize(llamoptimize, quant = qpred[1], interval = interval)$min)]
llam.med <- obs[, .(llam.med = optimize(llamoptimize, quant = qpred[2], interval = interval)$min)]
llam.hi <- obs[, .(llam.hi = optimize(llamoptimize, quant = qpred[3], interval = interval)$min)]
llam.qpred <- c(llam.lo, llam.med, llam.hi)
names(llam.qpred) <- paste0("q", qpred)
llam.qpred <- unlist(llam.qpred)
}
update(o, llam.qpred = llam.qpred, span = span, qpred = qpred, loess.ypc = loess.ypc)
}
binlessfit <- function(o, conf.level = .95, llam.quant = NULL, span = NULL, ...){
y <- l.ypc <- repl <- NULL
. <- list
qpred <- o$qpred
qnames <- paste0("q", as.character(qpred))
qconf <- c(0, 0.5, 1) + c(1, 0, -1)*(1 - conf.level)/2
obs <- o$obs
sim <- o$sim
if(isTRUE(o$loess.ypc)) {
pred <- o$pred
obs <- cbind(obs, pred)
sim[, pred := rep(pred, len=.N), by = .(repl)]
if(is.null(span)) {
span <- o$span
}
}
getllam <- function(qnames, userllam, stratlev) {
userllam <- as.data.frame(userllam)
userllam <- userllam[, order(names(userllam))]
llam.list <- vector("list", length(qnames))
names(llam.list) <- qnames
if(stratlev == 2) {
for (i in seq_along(llam.list)) {
llam.list[[i]] <- list(lambda = userllam[i, 1], lambda = userllam[i,2])
}
}
if(stratlev == 3) {
for (i in seq_along(llam.list)) {
llam.list[[i]] <- list(lambda = userllam[i, 1], lambda = userllam[i,2], lambda = userllam[i,3])
}
}
if(stratlev == 4) {
for (i in seq_along(llam.list)) {
llam.list[[i]] <- list(lambda = userllam[i, 1], lambda = userllam[i,2], lambda = userllam[i,3], lambda = userllam[i,4])
}
}
if(stratlev == 5) {
for (i in seq_along(llam.list)) {
llam.list[[i]] <- list(lambda = userllam[i, 1], lambda = userllam[i,2], lambda = userllam[i,3], lambda = userllam[i,4], lambda = userllam[i,5])
}
}
names(llam.list[[1]]) <- names(o$strat.split)
names(llam.list[[2]]) <- names(o$strat.split)
names(llam.list[[3]]) <- names(o$strat.split)
return(llam.list)
}
if(is.null(llam.quant)) {
if(is.null(o$llam.qpred)) {
stop("Must specify llambda for binlessfit. Include binlessaugment() before running binlessfit() for optimized llambda values using AIC.")
} else {
llam.qpred <- o$llam.qpred
}
} else if(!is.null(llam.quant) && !is.null(o$strat)) {
stratlev <- lapply(o$strat, unique)
stratlev <- length(stratlev[[1]])
llam.qpred <- getllam(qnames, llam.quant, stratlev)
} else {
llam.qpred <- llam.quant
}
if(is.null(span)) {
if(!is.null(o$span) && isTRUE(o$loess.ypc)) {
span <- o$span
} else {
span <- o$span
}
}
if(!is.null(o$strat)) {
strat <- o$strat
strat.split <- split(obs, strat)
strat.split <- strat.split[lapply(strat.split,NROW)>0]
x.strat <- c("x", names(strat))
sim.strat <- sim[, c(names(strat)) := rep(strat, len = .N), by = .(repl)]
strat.split.sim <- split(sim, strat)
strat.split.sim <- strat.split.sim[lapply(strat.split.sim,NROW)>0]
}
if(isTRUE(o$loess.ypc) && !is.null(o$strat)) {
if(isTRUE(o$predcor.log)) {
for(i in seq_along(strat.split)) {
strat.split[[i]][, l.ypc := y + (fitted(loess(pred ~ x, span = span[[i]], na.action = na.exclude, .SD)) - pred)]
}
} else {
for(i in seq_along(strat.split)) {
strat.split[[i]][, l.ypc := y * (fitted(loess(pred ~ x, span = span[[i]], na.action = na.exclude, .SD)) / pred)]
}
}
obs <- rbindlist(strat.split)
o <- update(o, obs = obs)
}
if(isTRUE(o$loess.ypc) && is.null(o$strat)) {
if(isTRUE(o$predcor.log)) {
obs[, l.ypc := y + (fitted(loess(pred ~ x, span = span, na.action = na.exclude, .SD)) - pred)]
} else {
obs[, l.ypc := y * (fitted(loess(pred ~ x, span = span, na.action = na.exclude, .SD)) / pred)]
}
o <- update(o, obs = obs)
}
if (is.null(o$strat)) {
if (isTRUE(o$loess.ypc)) {
rqss.obs.fits <- .fitobs(obs, llam.qpred, qpred, l.ypc = TRUE)
if(isTRUE(o$predcor.log)) {
rqss.sim.fits <- .fitsim(sim, llam.qpred, span, qpred, qconf, l.ypc = TRUE, log = TRUE)
} else {
rqss.sim.fits <- .fitsim(sim, llam.qpred, span, qpred, qconf, l.ypc = TRUE)
}
} else {
rqss.obs.fits <- .fitobs(obs, llam.qpred, qpred)
rqss.sim.fits <- .fitsim(sim, llam.qpred, qpred = qpred, qconf= qconf)
}
}
if(!is.null(o$strat)){
if(isTRUE(o$loess.ypc)){
if(isTRUE(o$predcor.log)) {
rqss.obs.fits <- .fitobs.strat(strat.split = strat.split, x.strat = x.strat, llam.qpred = llam.qpred, qpred = qpred, l.ypc = TRUE)
rqss.sim.fits <- .fitsim.strat(strat.split.sim = strat.split.sim, x.strat = x.strat, llam.qpred = llam.qpred, span = span, qpred = qpred, qconf = qconf, l.ypc = TRUE, log = TRUE)
} else {
rqss.obs.fits <- .fitobs.strat(strat.split = strat.split, x.strat = x.strat, llam.qpred = llam.qpred, qpred = qpred, l.ypc = TRUE)
rqss.sim.fits <- .fitsim.strat(strat.split.sim = strat.split.sim, x.strat = x.strat, llam.qpred = llam.qpred, span = span, qpred = qpred, qconf = qconf, l.ypc = TRUE)
}
} else {
rqss.obs.fits <- .fitobs.strat(strat.split = strat.split, x.strat = x.strat, llam.qpred = llam.qpred, qpred = qpred)
rqss.sim.fits <- .fitsim.strat(strat.split.sim = strat.split.sim, x.strat = x.strat, llam.qpred = llam.qpred, qpred = qpred, qconf = qconf)
}
}
update(o, rqss.obs.fits = rqss.obs.fits, rqss.sim.fits = rqss.sim.fits, llam.qpred = llam.qpred, span = span, conf.level = conf.level)
}
.gam_optimize <- function(sp, y, x, data){
suppressWarnings(
AIC(gam(y ~ s(x, k = 1), sp = sp, family = "binomial", data = data))
)
}
.fitcatgam <- function(y, x, sp){
suppressWarnings(
fitted(gam(y ~ s(x, k = 1), family = "binomial", sp = c(sp)))
)
}
.fitobs <- function(obs, llam.qpred, qpred, l.ypc = FALSE) {
rqsslo <- rqssmed <- rqsshi <- NULL
qnames <- paste0("q", as.character(qpred))
if(l.ypc) {
obs[, rqsslo := fitted(rqss(l.ypc ~ qss(x, lambda = exp(llam.qpred[[1]])), tau = qpred[1], na.action = na.exclude, data = obs))]
obs[, rqssmed := fitted(rqss(l.ypc ~ qss(x, lambda = exp(llam.qpred[[2]])), tau = qpred[2], na.action = na.exclude, data = obs))]
obs[, rqsshi := fitted(rqss(l.ypc ~ qss(x, lambda = exp(llam.qpred[[3]])), tau = qpred[3], na.action = na.exclude, data = obs))]
setnames(obs, c("rqsslo", "rqssmed", "rqsshi"), qnames)
obs.fits <- melt(obs, id.vars = "x", measure.vars = qnames)
obs.fits <- setnames(obs.fits, c("variable", "value"), c("qname", "fit"))
} else {
obs[, rqsslo := fitted(rqss(y ~ qss(x, lambda = exp(llam.qpred[[1]])), tau = qpred[1], na.action = na.exclude, data = obs))]
obs[, rqssmed := fitted(rqss(y ~ qss(x, lambda = exp(llam.qpred[[2]])), tau = qpred[2], na.action = na.exclude, data = obs))]
obs[, rqsshi := fitted(rqss(y ~ qss(x, lambda = exp(llam.qpred[[3]])), tau = qpred[3], na.action = na.exclude, data = obs))]
setnames(obs, c("rqsslo", "rqssmed", "rqsshi"), qnames)
obs.fits <- melt(obs, id.vars = "x", measure.vars = qnames)
obs.fits <- setnames(obs.fits, c("variable", "value"), c("qname", "fit"))
}
return(obs.fits)
}
.fitobs.strat <- function(strat.split, x.strat, llam.qpred, qpred, l.ypc = FALSE) {
rqsslo <- rqssmed <- rqsshi <- NULL
qnames <- paste0("q", as.character(qpred))
if(l.ypc) {
for (i in seq_along(strat.split)) {
strat.split[[i]][, rqsslo := fitted(rqss(l.ypc ~ qss(x, lambda = exp(llam.qpred[[1]][[i]][[1]])),tau= qpred[1], na.action = na.exclude, data = strat.split[[i]]))]
strat.split[[i]][, rqssmed := fitted(rqss(l.ypc ~ qss(x, lambda = exp(llam.qpred[[2]][[i]][[1]])),tau= qpred[2], na.action = na.exclude, data = strat.split[[i]]))]
strat.split[[i]][, rqsshi := fitted(rqss(l.ypc ~ qss(x, lambda = exp(llam.qpred[[3]][[i]][[1]])),tau= qpred[3], na.action = na.exclude, data = strat.split[[i]]))]
}
} else {
for (i in seq_along(strat.split)) {
strat.split[[i]][, rqsslo := fitted(rqss(y ~ qss(x, lambda = exp(llam.qpred[[1]][[i]][[1]])),tau= qpred[1], na.action = na.exclude, data = strat.split[[i]]))]
strat.split[[i]][, rqssmed := fitted(rqss(y ~ qss(x, lambda = exp(llam.qpred[[2]][[i]][[1]])),tau= qpred[2], na.action = na.exclude, data = strat.split[[i]]))]
strat.split[[i]][, rqsshi := fitted(rqss(y ~ qss(x, lambda = exp(llam.qpred[[3]][[i]][[1]])),tau= qpred[3], na.action = na.exclude, data = strat.split[[i]]))]
}
}
strat.obs.fits <- rbindlist(strat.split)
strat.obs.fits <- setnames(strat.obs.fits, c("rqsslo", "rqssmed", "rqsshi"), qnames)
strat.obs.fits <- melt(strat.obs.fits, id.vars = x.strat, measure.vars = qnames)
strat.obs.fits <- setnames(strat.obs.fits, c("variable", "value"), c("qname", "fit"))
}
.fitsim <- function(sim, llam.qpred, span = NULL, qpred, qconf, l.ypc = FALSE, log = FALSE) {
. <- list
rqsslo <- rqssmed <- rqsshi <- y <- pred <- repl <- NULL
qnames <- paste0("q", as.character(qpred))
if(l.ypc) {
if(log) {
sim[, l.ypc := y + (fitted(loess(pred ~ x, span = span, na.action = na.exclude, .SD)) - pred), by = .(repl)]
} else {
sim[, l.ypc := y * (fitted(loess(pred ~ x, span = span, na.action = na.exclude, .SD)) / pred), by = .(repl)]
}
suppressWarnings(sim[, rqsslo := fitted(rqss(l.ypc ~ qss(x, lambda = exp(llam.qpred[[1]])),
tau = qpred[1], na.action = na.exclude, .SD)), by = .(repl)])
suppressWarnings(sim[, rqssmed := fitted(rqss(l.ypc ~ qss(x, lambda = exp(llam.qpred[[2]])),
tau = qpred[2], na.action = na.exclude, .SD)), by = .(repl)])
suppressWarnings(sim[, rqsshi := fitted(rqss(l.ypc ~ qss(x, lambda = exp(llam.qpred[[3]])),
tau = qpred[3], na.action = na.exclude, .SD)), by = .(repl)])
setnames(sim, c("rqsslo", "rqssmed", "rqsshi"), qnames)
} else {
suppressWarnings(sim[, rqsslo := fitted(rqss(y ~ qss(x, lambda = exp(llam.qpred[[1]])),
tau = qpred[1], na.action = na.exclude, .SD)), by = .(repl)])
suppressWarnings(sim[, rqssmed := fitted(rqss(y ~ qss(x, lambda = exp(llam.qpred[[2]])),
tau = qpred[2], na.action = na.exclude, .SD)), by = .(repl)])
suppressWarnings(sim[, rqsshi := fitted(rqss(y ~ qss(x, lambda = exp(llam.qpred[[3]])),
tau = qpred[3], na.action = na.exclude, .SD)), by = .(repl)])
setnames(sim, c("rqsslo", "rqssmed", "rqsshi"), qnames)
}
sim.lb <- sim[, lapply(.SD, quantile, probs = qconf[[1]]), by = "x"]
sim.lb <- setnames(melt(sim.lb, id.vars = "x", measure.vars = qnames), c("x", "qname", "fit.lb"))
sim.ub <- sim[, lapply(.SD, quantile, probs = qconf[[3]]), by = "x"]
sim.ub <- setnames(melt(sim.ub, id.vars = "x", measure.vars = qnames), c("x", "qname", "fit.ub"))
sim <- sim[, lapply(.SD, median, na.rm = TRUE), by = "x"]
sim <- setnames(melt(sim, id.vars = "x", measure.vars = qnames), c("x", "qname", "fit"))
sim <- sim[sim.lb, on = c("x", "qname")]
sim <- sim[sim.ub, on = c("x", "qname")]
}
.fitsim.strat <- function(strat.split.sim, x.strat, llam.qpred, span = NULL, qpred, qconf, l.ypc = FALSE, log = FALSE) {
. <- list
rqsslo <- rqssmed <- rqsshi <- y <- pred <- repl <- NULL
qnames <- paste0("q", as.character(qpred))
if(l.ypc) {
if(log) {
for (i in seq_along(strat.split.sim)) {
strat.split.sim[[i]][, l.ypc := y + (fitted(loess(pred ~ x, span = span[[i]], na.action = na.exclude, .SD)) - pred), by = .(repl)]
suppressWarnings(strat.split.sim[[i]][, rqsslo := fitted(rqss(l.ypc ~ qss(x, lambda = exp(llam.qpred[[1]][[i]][[1]])),
tau = qpred[1], na.action = na.exclude, .SD)), by = .(repl)][,.(fit.lo = unlist(rqsslo))])
suppressWarnings(strat.split.sim[[i]][, rqssmed := fitted(rqss(l.ypc ~ qss(x, lambda = exp(llam.qpred[[2]][[i]][[1]])),
tau = qpred[2], na.action = na.exclude, .SD)), by = .(repl)][,.(fit.med = unlist(rqssmed))])
suppressWarnings(strat.split.sim[[i]][, rqsshi := fitted(rqss(l.ypc ~ qss(x, lambda = exp(llam.qpred[[3]][[i]][[1]])),
tau = qpred[3], na.action = na.exclude, .SD)), by = .(repl)][,.(fit.hi = unlist(rqsshi))])
}
} else {
for (i in seq_along(strat.split.sim)) {
strat.split.sim[[i]][, l.ypc := y * (fitted(loess(pred ~ x, span = span[[i]], na.action = na.exclude, .SD)) / pred), by = .(repl)]
suppressWarnings(strat.split.sim[[i]][, rqsslo := fitted(rqss(l.ypc ~ qss(x, lambda = exp(llam.qpred[[1]][[i]][[1]])),
tau = qpred[1], na.action = na.exclude, .SD)), by = .(repl)][,.(fit.lo = unlist(rqsslo))])
suppressWarnings(strat.split.sim[[i]][, rqssmed := fitted(rqss(l.ypc ~ qss(x, lambda = exp(llam.qpred[[2]][[i]][[1]])),
tau = qpred[2], na.action = na.exclude, .SD)), by = .(repl)][,.(fit.med = unlist(rqssmed))])
suppressWarnings(strat.split.sim[[i]][, rqsshi := fitted(rqss(l.ypc ~ qss(x, lambda = exp(llam.qpred[[3]][[i]][[1]])),
tau = qpred[3], na.action = na.exclude, .SD)), by = .(repl)][,.(fit.hi = unlist(rqsshi))])
}
}
} else {
for (i in seq_along(strat.split.sim)) {
suppressWarnings(strat.split.sim[[i]][, rqsslo := fitted(rqss(y ~ qss(x, lambda = exp(llam.qpred[[1]][[i]][[1]])),
tau = qpred[1], na.action = na.exclude, .SD)), by = .(repl)][,.(fit.lo = unlist(rqsslo))])
suppressWarnings(strat.split.sim[[i]][, rqssmed := fitted(rqss(y ~ qss(x, lambda = exp(llam.qpred[[2]][[i]][[1]])),
tau = qpred[2], na.action = na.exclude, .SD)), by = .(repl)][,.(fit.med = unlist(rqssmed))])
suppressWarnings(strat.split.sim[[i]][, rqsshi := fitted(rqss(y ~ qss(x, lambda = exp(llam.qpred[[3]][[i]][[1]])),
tau = qpred[3], na.action = na.exclude, .SD)), by = .(repl)][,.(fit.hi = unlist(rqsshi))])
}
}
sim <- rbindlist(strat.split.sim)
setnames(sim, c("rqsslo", "rqssmed", "rqsshi"), qnames)
sim.lb <- sim[, lapply(.SD, quantile, probs = qconf[[1]]), by = x.strat, .SDcols = qnames]
sim.lb <- setnames(melt(sim.lb, id.vars = x.strat, measure.vars = qnames), c("variable", "value"), c("qname", "fit.lb"))
sim.ub <- sim[, lapply(.SD, quantile, probs = qconf[[3]]), by = x.strat, .SDcols = qnames]
sim.ub <- setnames(melt(sim.ub, id.vars = x.strat, measure.vars = qnames), c("variable", "value"), c("qname", "fit.ub"))
sim <- sim[, lapply(.SD, median, na.rm = TRUE), by = x.strat, .SDcols = qnames]
sim <- setnames(melt(sim, id.vars = x.strat, measure.vars = qnames), c("variable", "value"), c("qname", "fit"))
sim <- sim[sim.lb, on = c(x.strat, "qname")]
sim <- sim[sim.ub, on = c(x.strat, "qname")]
}
.aicc.loess <- function(fit){
stopifnot(inherits(fit, 'loess'))
n <- fit$n
trace <- fit$trace.hat
sigma2 <- sum(resid(fit) ^ 2) / (n - 1)
return(log(sigma2) + 1 + (2 * (trace + 1)) / (n - trace - 2))
}
.autoloess <- function(fit, span=c(.1, .9), ...){
stopifnot(inherits(fit, 'loess'))
f <- function(span) .aicc.loess(update(fit, span=span))
opt.fit <- update(fit, span=optimize(f, span)$minimum)
opt.span <- optimize(f, span)$minimum
return(list(fit=opt.fit, span=opt.span))
}
.getspan <- function(x) {
span <- vector("list", length(x))
for (i in seq_along(x)) {
span[[i]] <- x[[i]]$span
}
names(span) <- names(x)
return(span)
}
.getfitted <- function(x) {
fits <- vector("list", length(x))
for (i in seq_along(x)) {
fits[[i]] <- as.data.table(x[[i]]$loess[[1]]$fit$fitted)
fits[[i]] <- setnames(fits[[i]], "fitted")
}
names(fits) <- names(x)
return(fits)
}
.getfit <- function(x) {
fit <- vector("list", length(x))
for (i in seq_along(x)) {
fit[[i]] <- x[[i]]$loess[[1]]$fit
}
names(fit) <- names(x)
return(fit)
}
.isCensored <- function(obs) {
if(!is.null(obs$blq) && any(obs$blq)){
ret <- TRUE
} else if (!is.null(obs$alq) && any(obs$alq)){
ret <- TRUE
} else {
ret <- FALSE
}
ret
}
|
"check.monotonicity" <-
function(X, minvi = .03, minsize = default.minsize){
X <- check.data(X)
N <- nrow(X)
J <- ncol(X)
m <- max(X) + 1
default.minsize <- ifelse(N > 500, floor(N/10), floor(N/5))
default.minsize <- ifelse(N <= 250, floor(N/3), default.minsize)
default.minsize <- ifelse(N < 150, 50, default.minsize)
if (N < minsize) stop("Sample size less than Minsize")
if (minsize > N/2) stop("Minsize value is too high")
R <- as.matrix(X) %*% (matrix(1,J,J) - diag(J))
results <- list()
I.labels <- dimnames(X)[[2]]
if(length(I.labels)==0) I.labels <- paste("C",1:ncol(X))
for (j in 1:J){
violation.matrix <- matrix(0,nrow=m,ncol=10)
dimnames(violation.matrix) <- list(c(paste("P(X >=",1:(m-1),")",sep=""),"Total"), dimnames(violation.matrix)[[2]] <- c("
results[[j]] <- list()
results[[j]][1] <- I.labels[j]
sorted.R <- sort(R[,j])
group <- max(which(sorted.R==sorted.R[minsize]))
repeat{
if(N - max(group) < minsize)break
group <- c(group,max(which(sorted.R==sorted.R[minsize+max(group)])))
}
group <- group[-length(group)]
summary.matrix <- matrix(nrow = length(group)+1,ncol = 4 + 2* m)
dimnames(summary.matrix)[[2]] <- c("Group", "Lo Score", "Hi Score", "N", paste("F",0:(m-1)), "Mean", paste("P(X >=",1:(m-1),")",sep=""))
summary.matrix[,1] <- 1:nrow(summary.matrix)
summary.matrix[,4] <- c(group,N) - c(0,group)
group <- c(sorted.R[group],max(sorted.R))
L <- length(group)
summary.matrix[,3] <- group
summary.matrix[,2] <- c(min(sorted.R),group[-L]+1)
member <- apply(1 - outer(R[,j], group, "<="),1,sum) + 1
for (i in 1:L){
Ni <- summary.matrix[i,4]
freq <- tabulate(X[member==i,j]+1,m)
summary.matrix[i,5:(m+4)] <- freq
summary.matrix[i,m+5] <- sum(freq * min(X):max(X)) / Ni
cum.freq <- rev(cumsum(rev(freq))/Ni)
summary.matrix[i,(m+6):(2*m+4)] <- cum.freq[2:m]
}
results[[j]][[2]] <- summary.matrix
nac <- rep(0,m-1)
for (i in 1:(m-1)) nac[i] <- sum(matrix(rep(summary.matrix[,5 + m + i] > 1e-10,L),L,L,byrow=FALSE) * matrix(rep(summary.matrix[,5 + m + i] < .999999999999,L),L,L,TRUE) * upper.tri(matrix(,L,L)))
violation.matrix[1:(m-1),1] <- nac
violation.matrix[m,1] <- sum(nac)
freq <- summary.matrix[,5:(m+4)]
for (i in 1:(m-1)){
V <- outer(summary.matrix[,(m+5+i)],summary.matrix[,(m+5+i)],"-")
V[row(V) <= col(V)] <- 0
V[V >= -minvi] <- 0
violation.matrix[i,2] <- sum(ceiling(abs(V)))
violation.matrix[i,4] <- max(abs(V))
if(violation.matrix[i,4] > minvi){
violation.matrix[i,5] <- sum(abs(V))
freqd <- cbind(apply(as.matrix(freq[,1:i]),1,sum), apply(as.matrix(freq[,(i+1):m]),1,sum))
Z <- abs(sign(-V) * 2 * (sqrt(outer(freqd[,2]+1,freqd[,1]+1)) - sqrt(outer(freqd[,1],freqd[,2]))) /
sqrt(outer(freqd[,2],freqd[,1],"+") + outer(freqd[,1],freqd[,2],"+") - 1))
violation.matrix[i,7] <- max(Z)
violation.matrix[i,8] <- min(col(Z)[Z==max(Z)])
violation.matrix[i,9] <- min(row(Z)[Z==max(Z)])
violation.matrix[i,10] <- sum(sign(Z[Z > 1.6449]))
}
}
violation.matrix[m,2] <- sum(violation.matrix[1:(m-1),2])
violation.matrix[1:m,3] <- violation.matrix[1:m,2]/violation.matrix[1:m,1]
violation.matrix[m,4] <- max(violation.matrix[1:(m-1),4])
violation.matrix[m,5] <- sum(violation.matrix[1:(m-1),5])
violation.matrix[1:m,6] <- violation.matrix[1:m,5]/violation.matrix[1:m,1]
violation.matrix[m,7] <- max(violation.matrix[1:(m-1),7])
violation.matrix[m,10] <- sum(violation.matrix[1:(m-1),10])
results[[j]][[3]] <- violation.matrix
results[[j]][[4]] <- paste("Minsize = ",minsize," Minvi = ",minvi,sep="")
}
Hi <- coefHTiny(X)$Hi
monotonicity.list <- list(results = results, I.labels = I.labels, Hi = Hi, m = m, X = X)
class(monotonicity.list) <- "monotonicity.class"
return(monotonicity.list)
}
|
set.seed(100)
n <- 180
x <- sample(1:100, n, replace = TRUE)
x[70:90] <- sample(110:115, 21, replace = TRUE)
x[25] <- 200
x[150] <- 170
df <- data.frame(timestamp = 1:n, value = x)
result <- CpPewma(
data = df$value,
n.train = 5,
alpha0 = 0.8,
beta = 0.1,
l = 3
)
res <- cbind(df, result)
PlotDetections(res, title = "PEWMA ANOMALY DETECTOR")
|
preprocessInputs <- function(data.x, data.z) {
nc <- ncol(data.x)
if( nc != 3L ) stop("data.x must include {ID, time, delta}.")
ncz <- ncol(data.z)
if( ncz < 3L ) stop("data.z must include {ID, time, measurement}.")
if( !is.integer(data.z[,1L]) ) {
data.z[,1L] <- as.integer(round(data.z[,1L],0))
message("Patient IDs in data.z were coerced to integer.\n")
}
if( !is.integer(data.x[,1L]) ) {
data.x[,1L] <- as.integer(round(data.x[,1L],0))
message("Patient IDs in data.x were coerced to integer.\n")
}
rmRow <- apply(data.z, 1, function(x){all(is.na(x))})
data.z <- data.z[!rmRow,]
tst <- is.na(data.z)
data.z[tst] <- 0.0
tst <- is.na(data.x[,2L])
data.x <- data.x[!tst,]
if( any(data.z[,2L] < {-1.5e-8}) ) {
stop("Time is negative in data.z.")
}
if( any(data.x[,2L] < {-1.5e-8}) ) {
stop("Time is negative in data.x.")
}
return(list(data.x = data.x,
data.z = data.z))
}
|
rlv=function(inpt, krnl){
inpt_chk=ncol(rbind(dim(inpt)))
if (length(inpt_chk)==0) {
l=length(inpt)+2*krnl
imgn0= rep(0,l)
imgn1=imgn0
imgn1[(krnl+1):(l-krnl)]=inpt
rolv=imgn0
for (i in (krnl+1):(length(imgn0)-krnl)) {
ssp0 <- imgn1[(i-(0.5*(krnl-1))):(i+(0.5*(krnl-1)))]
ssp0a <- imgn1[(i-1):i]
ssp0b <- imgn1[i:(i+1)]
if (krnl>1) {vrn0=sd(ssp0)*sd(ssp0)
}
if (krnl==1) {vrn0a=sd(ssp0a)*sd(ssp0a)
vrn0b=sd(ssp0b)*sd(ssp0b)
vrn0=max(vrn0a, vrn0b)
}
rolv[i]=vrn0
}
rolVariance=rolv[(krnl+1):(length(rolv)-krnl)]
} else if (length(inpt_chk)==1 & inpt_chk==2) {
l=nrow(inpt)+2*krnl
w=ncol(inpt)+2*krnl
imgn0= matrix(rep(0,l*w),nrow=l)
imgn1=imgn0
imgn1[(krnl+1):(l-krnl), (krnl+1):(w-krnl)]=inpt
rolv=imgn0
for (i in (krnl+1):(nrow(imgn0)-krnl)) {
for (j in (krnl+1):(ncol(imgn0)-krnl)) {
ssp0 <- imgn1[(i-(0.5*(krnl-1))):(i+(0.5*(krnl-1))), (j-(0.5*(krnl-1))):(j+(0.5*(krnl-1)))]
ssp0a <- imgn1[(i-1):i, j:(j+1)]
ssp0b <- imgn1[(i-1):i, (j-1):j]
ssp0c <- imgn1[i:(i+1), (j-1):j]
ssp0d <- imgn1[i:(i+1), j:(j+1)]
if (krnl>1) {vrn0=sd(ssp0)*sd(ssp0)
}
if (krnl==1) {vrn0a=sd(ssp0a)*sd(ssp0a)
vrn0b=sd(ssp0b)*sd(ssp0b)
vrn0c=sd(ssp0c)*sd(ssp0c)
vrn0d=sd(ssp0d)*sd(ssp0d)
vrn0=max(vrn0a, vrn0b, vrn0c, vrn0d)
}
rolv[i,j]=vrn0
}
}
rolVariance=rolv[(krnl+1):(nrow(rolv)-krnl), (krnl+1):(ncol(rolv)-krnl)]
} else if (length(inpt_chk)==1 & inpt_chk==3) {
l=nrow(inpt)+2*krnl
w=ncol(inpt)+2*krnl
h=2*krnl+length(inpt)/(nrow(inpt)*ncol(inpt))
imgn0= array(rep(0,l*w*h),dim=c(l, w, h))
imgn1=imgn0
imgn1[(krnl+1):(l-krnl), (krnl+1):(w-krnl), (krnl+1):(h-krnl)]=inpt
rolv=imgn0
for (i in (krnl+1):(l-krnl)) {
for (j in (krnl+1):(w-krnl)) {
for (k in (krnl+1):(h-krnl)) {
ssp0 <- imgn1[(i-(0.5*(krnl-1))):(i+(0.5*(krnl-1))), (j-(0.5*(krnl-1))):(j+(0.5*(krnl-1))), (k-(0.5*(krnl-1))):(k+(0.5*(krnl-1)))]
ssp0a <- imgn1[(i-1):i, (j-1):j, (k-1):k]
ssp0b <- imgn1[(i-1):i, (j-1):j, k:(k+1)]
ssp0c <- imgn1[(i-1):i, j:(j+1), (k-1):k]
ssp0d <- imgn1[(i-1):i, j:(j+1), k:(k+1)]
ssp0e <- imgn1[i:(i+1), (j-1):j, (k-1):k]
ssp0f <- imgn1[i:(i+1), (j-1):j, k:(k+1)]
ssp0g <- imgn1[i:(i+1), j:(j+1), (k-1):k]
ssp0h <- imgn1[i:(i+1), j:(j+1), k:(k+1)]
if (krnl>1) {vrn0=sd(ssp0)*sd(ssp0)
}
if (krnl==1) {vrn0a=sd(ssp0a)*sd(ssp0a)
vrn0b=sd(ssp0b)*sd(ssp0b)
vrn0c=sd(ssp0c)*sd(ssp0c)
vrn0d=sd(ssp0d)*sd(ssp0d)
vrn0e=sd(ssp0e)*sd(ssp0e)
vrn0f=sd(ssp0f)*sd(ssp0f)
vrn0g=sd(ssp0g)*sd(ssp0g)
vrn0h=sd(ssp0h)*sd(ssp0h)
vrn0=max(vrn0a, vrn0b, vrn0c, vrn0d, vrn0e, vrn0f, vrn0g, vrn0h)
}
rolv[i,j,k]=vrn0
}
}
}
rolVariance=rolv[(krnl+1):(l-krnl), (krnl+1):(w-krnl), (krnl+1):(h-krnl)]
}
return(rolVariance)
}
|
remove_query_string <- function(session = shiny::getDefaultReactiveDomain(), mode = "replace") {
shiny::updateQueryString(
"?",
mode = mode,
session = session
)
}
get_cookie <- function(cookie_string, name) {
cookies <- strsplit(cookie_string , split = "; ", fixed = TRUE)
tibble::tibble(cookie = unlist(cookies)) %>%
tidyr::separate(.data$cookie, into = c("key", "value"), sep = "=", extra = "merge") %>%
dplyr::filter(.data$key == name) %>%
dplyr::pull("value")
}
send_invite_checkbox <- function(ns, app_url) {
if (!is.null(app_url) && !is.na(app_url) && app_url != "") {
email_invite_checkbox <- shinyWidgets::prettyCheckbox(
ns("send_invite_email"),
"Send Invite Email?",
value = FALSE,
status = "primary"
)
} else {
email_invite_checkbox <- tags$div(
tags$span(
shinyjs::disabled(shinyWidgets::prettyCheckbox(
ns("send_invite_email"),
"Send Invite Email?",
value = FALSE,
status = "primary",
inline = TRUE
))
),
tags$span(
style = "display: inline-block; margin-left: -15px;",
id = ns("checkbox_question"),
icon("question-circle"),
`data-toggle` = "tooltip",
`data-placement`= "top",
title = "You must set the App URL to send email invites. Go to https://dashboard.polished.tech to set your app URL."
)
)
}
email_invite_checkbox
}
polished_toast_options <- list(
positionClass = "toast-top-center",
showDuration = 1000,
newestOnTop = TRUE
)
is_valid_email <- function(x) {
grepl("^\\s*[A-Z0-9._%+-]+@[A-Z0-9.-]+\\.[A-Z]{2,}\\s*$", as.character(x), ignore.case=TRUE)
}
is_email_registered <- function(email) {
user_res <- httr::GET(
paste0(getOption("polished")$api_url, "/users"),
query = list(
email = email
),
httr::authenticate(
user = get_api_key(),
password = ""
)
)
user_res_content <- jsonlite::fromJSON(
httr::content(user_res, "text", encoding = "UTF-8")
)
if (!identical(httr::status_code(user_res), 200L)) {
print(user_res_content)
stop("error checking user registration", .call = FALSE)
}
if (isTRUE(user_res_content$is_password_set)) {
out <- TRUE
} else {
out <- FALSE
}
out
}
|
test_that("get_fun", {
expect_equal(get_fun(plu_ral), plu_ral)
expect_equal(get_fun("plu_ral"), plu_ral)
expect_equal(get_fun(plu::ral), plu::ral)
expect_equal(get_fun("plu::ral"), plu::ral)
})
test_that("get_fun with anonymous function", {
expect_equal(get_fun(function(x) {x + 1}), function(x) {x + 1})
})
test_that("get_fun with NULL", {
expect_equal(get_fun(NULL), identity)
expect_equal(get_fun(NULL, plu_ral), plu_ral)
expect_equal(get_fun(NULL, "plu_ral"), plu_ral)
expect_equal(get_fun(NULL, plu::ral), plu::ral)
expect_equal(get_fun(NULL, "plu::ral"), plu::ral)
})
test_that("errors", {
expect_error(get_fun(NULL, FALSE))
expect_error(get_fun(plu_not_real_fun), "plu_not_real_fun")
expect_error(get_fun("plu_not_real_fun"), "plu_not_real_fun")
expect_error(get_fun(plu::not_real_fun), "plu::not_real_fun")
expect_error(get_fun("plu::not_real_fun"), "plu::not_real_fun")
expect_error(get_fun(NULL, plu_not_real_fun), "plu_not_real_fun")
expect_error(get_fun(NULL, "plu_not_real_fun"), "plu_not_real_fun")
expect_error(get_fun(NULL, plu::not_real_fun), "plu::not_real_fun")
expect_error(get_fun(NULL, "plu::not_real_fun"), "plu::not_real_fun")
})
|
r_prec<-function(r,nlow, nhigh, ci=.95, by=1)
{
result <- data.frame(matrix(ncol = 5))
colnames(result) <- c("n","r","LL","UL","Precision")
for(n in seq(nlow,nhigh, by)){
a<-MBESS::ci.cc(r, n, ci)
ll<-a[1]
ul<-a[3]
precision<-round((as.numeric(ul)-(as.numeric(ll))),4)
ll<-round(as.numeric(ll),4)
ul<-round(as.numeric(ul),4)
result[n, 1]<-n
result[n, 2]<-r
result[n, 3]<-ll
result[n, 4]<-ul
result[n, 5]<-precision}
output<-na.omit(result)
rownames(output)<- c()
output}
|
tfromw <- function(w, s = 1, prior = "laplace", bayesfac = FALSE, a = 0.5) {
pr <- substring(prior, 1, 1)
if(bayesfac) {
z <- 1/w - 2
if(pr == "l"){
if(length(w)>=length(s)) {
zz <- z
} else { zz <- rep(z, length(s)) }
tt <- vecbinsolv(zz, beta.laplace, 0, 10, s = s, a = a)
}
if(pr == "c")
tt <- vecbinsolv(z, beta.cauchy, 0, 10)
}
else {
z <- 0
if(pr == "l"){
zz <- rep(0, max(length(s), length(w)))
tt <- vecbinsolv(zz, laplace.threshzero, 0, s*(25+s*a),
s = s, w = w, a = a)
}
if(pr == "c")
tt <- vecbinsolv(z, cauchy.threshzero, 0, 10, w = w)
}
return(tt)
}
|
test_that("PredictionDataRegr", {
task = tsk("mtcars")
learner = lrn("regr.featureless", predict_type = "se")
p = learner$train(task)$predict(task)
pdata = p$data
expect_s3_class(pdata, "PredictionDataRegr")
expect_integer(pdata$row_ids, any.missing = FALSE)
expect_numeric(pdata$truth, any.missing = FALSE)
expect_numeric(pdata$response, any.missing = FALSE)
expect_numeric(pdata$se, any.missing = FALSE)
expect_s3_class(c(pdata, pdata), "PredictionDataRegr")
expect_prediction(as_prediction(pdata))
expect_equal(as.data.table(p), as.data.table(as_prediction(pdata)))
pdata = filter_prediction_data(pdata, row_ids = 1:3)
expect_set_equal(pdata$row_ids, 1:3)
expect_numeric(pdata$truth, len = 3)
expect_numeric(pdata$response, len = 3)
})
|
call_azcopy <- function(..., env=NULL, silent=getOption("azure_storage_azcopy_silent", FALSE))
{
silent <- as.logical(silent)
args <- as.character(unlist(list(...)))
invisible(processx::run(get_azcopy_path(), args, env=env, echo_cmd=!silent, echo=!silent, error_on_status=!silent))
}
call_azcopy_from_storage <- function(object, ...)
{
if(!requireNamespace("processx", quietly=TRUE))
stop("The processx package must be installed to use azcopy", call.=FALSE)
auth <- azcopy_auth(object)
if(auth$login)
on.exit(call_azcopy("logout", silent=TRUE))
invisible(call_azcopy(..., env=auth$env))
}
azcopy_upload <- function(container, src, dest, ...)
{
opts <- azcopy_upload_opts(container, ...)
dest_uri <- httr::parse_url(container$endpoint$url)
dest_uri$path <- gsub("//", "/", file.path(container$name, dest))
dest <- azcopy_add_sas(container$endpoint, httr::build_url(dest_uri))
call_azcopy_from_storage(container$endpoint, "copy", src, dest, opts)
}
azcopy_upload_opts <- function(container, ...)
{
UseMethod("azcopy_upload_opts")
}
azcopy_upload_opts.blob_container <- function(container, type="BlockBlob", blocksize=2^24, recursive=FALSE,
lease=NULL, put_md5=FALSE, ...)
{
if(!is.null(lease))
warning("azcopy does not support blob leasing at this time", call.=FALSE)
c("--blob-type", type, "--block-size-mb", sprintf("%.0f", blocksize/1048576), if(recursive) "--recursive",
if(put_md5) "--put-md5")
}
azcopy_upload_opts.file_share <- function(container, blocksize=2^22, recursive=FALSE, put_md5=FALSE, ...)
{
c("--block-size-mb", sprintf("%.0f", blocksize/1048576), if(recursive) "--recursive",
if(put_md5) "--put-md5")
}
azcopy_upload_opts.adls_filesystem <- function(container, blocksize=2^24, recursive=FALSE, lease=NULL,
put_md5=FALSE, ...)
{
if(!is.null(lease))
warning("azcopy does not support blob leasing at this time", call.=FALSE)
c("--block-size-mb", sprintf("%.0f", blocksize/1048576), if(recursive) "--recursive",
if(put_md5) "--put-md5")
}
azcopy_download <- function(container, src, dest, ...)
{
opts <- azcopy_download_opts(container, ...)
src_uri <- httr::parse_url(container$endpoint$url)
src_uri$path <- gsub("//", "/", file.path(container$name, src))
src <- azcopy_add_sas(container$endpoint, httr::build_url(src_uri))
call_azcopy_from_storage(container$endpoint, "copy", src, dest, opts)
}
azcopy_download_opts <- function(container, ...)
{
UseMethod("azcopy_download_opts")
}
azcopy_download_opts.blob_container <- function(container, overwrite=FALSE, recursive=FALSE, check_md5=FALSE, ...)
{
c(paste0("--overwrite=", tolower(as.character(overwrite))), if(recursive) "--recursive",
if(check_md5) c("--check-md5", "FailIfDifferent"))
}
azcopy_download_opts.file_share <- function(container, overwrite=FALSE, recursive=FALSE, check_md5=FALSE, ...)
{
c(paste0("--overwrite=", tolower(as.character(overwrite))), if(recursive) "--recursive",
if(check_md5) c("--check-md5", "FailIfDifferent"))
}
azcopy_download_opts.adls_filesystem <- function(container, overwrite=FALSE, recursive=FALSE, check_md5=FALSE, ...)
{
c(paste0("--overwrite=", tolower(as.character(overwrite))), if(recursive) "--recursive",
if(check_md5) c("--check-md5", "FailIfDifferent"))
}
|
rm(list=ls())
require("optimr")
sfactor <- 4.0
sbt.f<-function(x){
nn <- length(x)
y <- sfactor^(0:(nn - 1))
sum((x - y)^2)
}
sbt.g<-function(x){
nn <- length(x)
y <- sfactor^(0:(nn - 1))
gg<-2.0*(x - y)
}
n<-4
lower<-rep(0,n)
upper<-lower
bdmsk<-rep(1,n)
y <- sfactor^(0:(n - 1))
upper <- 0.8*y
xx <- lower + 0.1*(lower + upper)
cat("Rvmmin \n\n")
abtrvm <- optimr(xx, sbt.f, sbt.g, lower, upper, method="Rvmmin", control=list(trace=1))
print(abtrvm)
alb<-optimr(xx, sbt.f, sbt.g, lower=lower, upper=upper, method="L-BFGS-B", control=list(trace=1))
print(alb)
sabtrvm <- optimr(xx, sbt.f, sbt.g, lower, upper, method="Rvmmin", control=list(trace=1, parscale=c(1,4,16,32)))
print(sabtrvm)
salb<-optimr(xx, sbt.f, sbt.g, lower=lower, upper=upper, method="L-BFGS-B", control=list(trace=1, parscale=c(1,4,16,32)))
print(salb)
alkkt <- optextras::kktchk(alb$par, sbt.f, sbt.g, hess=NULL, upper=upper, lower=lower, control=list(trace=1))
print(alkkt)
salkkt <- optextras::kktchk(salb$par, sbt.f, sbt.g, hess=NULL, upper=upper, lower=lower, control=list(trace=1))
print(salkkt)
aallbd <- opm(xx, sbt.f, sbt.g, lower=lower, upper=upper, method="ALL", control=list(trace=0))
print(aallbd)
saallbd <- opm(xx, sbt.f, sbt.g, lower=lower, upper=upper, method="ALL", control=list(trace=0, parscale=c(1,4,16,32)))
print(saallbd)
|
test_that("select_vpfiles() returns error on incorrect parameters", {
})
|
`dsxaveraging` <-
function(...,w=NULL,maxfocals=10000000){
x=list(...)
if (is.null(w)){
w=matrix(1,length(x));
}
w=w/sum(w)
erg=x[[1]];
acc=maxfocals^(1/length(x))
lbs=list();
ubs=list();
ms=list();
for (i in 1:length(x)){
if(length(x[[i]])[1]>acc){
x[[i]]=dsred(x[[i]],1/acc);
}
lbs=c(lbs,list(x[[i]][,1]))
ubs=c(ubs,list(x[[i]][,2]))
ms=c(ms,list(x[[i]][,3]))
}
tmplo=expand.grid(lbs)
tmphi=expand.grid(ubs)
tmpms=expand.grid(ms)
erg=matrix(0,dim(tmplo)[1],3)
erg[,3]=1
for (i in 1:length(x)){
erg[,1]=erg[,1]+w[i]*tmplo[,i]
erg[,2]=erg[,2]+w[i]*tmphi[,i]
erg[,3]=erg[,3]*tmpms[,i]
}
erg=dsnorm(erg)$ds;
}
|
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
fig.width = 8,
fig.height = 6,
fig.align = "center"
)
library(dfoliatR)
knitr::kable(dmj_h[1:10, 1:10])
knitr::kable(head(dmj_nh, 10))
dmj_defol <- defoliate_trees(host_tree = dmj_h, nonhost_chron = dmj_nh,
duration_years = 8, max_reduction = -1.28, list_output = FALSE)
knitr::kable(head(dmj_defol, 10))
plot(dmj_defol)
knitr::kable(head(defol_stats(dmj_defol), 10))
dmj_obr <- outbreak(dmj_defol, filter_perc = 25, filter_min_series = 3)
knitr::kable(head(dmj_obr, 10))
plot_outbreak(dmj_obr)
dmj_obr_stats <- outbreak_stats(dmj_obr)
knitr::kable(dmj_obr_stats)
dmj_interv <- diff(dmj_obr_stats$start)
dmj_interv
mean(dmj_interv)
median(dmj_interv)
|
"_PACKAGE"
release_bullets <- function() {
c(
"Check that 'test/widget.html' responds to mouse clicks"
)
}
in_pkgdown <- function() {
identical(Sys.getenv("IN_PKGDOWN"), "true")
}
local_envvar_pkgdown <- function(pkg, scope = parent.frame()) {
withr::local_envvar(
IN_PKGDOWN = "true",
LANGUAGE = pkg$lang,
.local_envir = scope
)
}
local_pkgdown_site <- function(path = NULL, meta = NULL, env = parent.frame()) {
if (is.null(path)) {
path <- withr::local_tempdir(.local_envir = env)
desc <- desc::desc("!new")
desc$set("Package", "testpackage")
desc$set("Title", "A test package")
desc$write(file = file.path(path, "DESCRIPTION"))
}
if (is.character(meta)) {
meta <- yaml::yaml.load(meta)
} else if (is.null(meta)) {
meta <- list()
}
pkg <- as_pkgdown(path, meta)
clean_up <- function(path) {
if (!fs::dir_exists(path)) {
return()
}
fs::dir_delete(path)
}
if (pkg$development$in_dev) {
withr::defer(clean_up(path_dir(pkg$dst_path)), envir = env)
} else {
withr::defer(clean_up(pkg$dst_path), envir = env)
}
pkg
}
|
find_housekeeping <- function(data, id_colname, count_column) {
data <- data[unlist(lapply(c("Endogenous", "Housekeeping"), grep, x = data[["CodeClass"]])), ]
nested_data_df <- tidyr::nest(dplyr::group_by(.data = data, get(id_colname)))
colnames(nested_data_df)[1] <- id_colname
ratios <- lapply(
X = nested_data_df[["data"]],
count_column = count_column,
FUN = function(.data, count_column) {
.data <- .data[, c("Name", count_column)]
sample_means <- mean(.data[[count_column]])
ratios <- log2(.data[[count_column]] / sample_means)
names(ratios) <- .data[["Name"]]
ratios
}
)
ratios <- do.call("cbind", ratios)
ratios_sd <- apply(X = ratios, MARGIN = 1, FUN = stats::sd, na.rm = TRUE)
ratios_sd <- sort(ratios_sd, decreasing = FALSE)
utils::head(names(ratios_sd), 5)
}
|
orderList <- function(mylist, colindx=1, decreasing=TRUE)
{
if(decreasing==TRUE){
yt<-as.data.frame(mylist)
maxM <- yt[order(yt[,colindx], decreasing=TRUE),]
}
if(decreasing==FALSE){
yt<-as.data.frame(mylist)
maxM <- yt[order(yt[,colindx], decreasing=FALSE),]
}
return(maxM)
}
|
pluck <- function(x, name, type) {
if (missing(type)) {
lapply(x, "[[", name)
} else {
vapply(x, "[[", name, FUN.VALUE = type)
}
}
pluck_names <- function(x, y) {
strtrim(strxt(x, paste0(names(y), collapse = "|"))[[1]])
}
strxt <- function(string, pattern) {
regmatches(string, gregexpr(pattern, string))
}
strtrim <- function(str) gsub("^\\s+|\\s+$", "", str)
assert <- function(x, y) {
if (!is.null(x)) {
if (!inherits(x, y)) {
stop(deparse(substitute(x)), " must be of class ",
paste0(y, collapse = ", "), call. = FALSE)
}
}
}
parse_eval <- function(x, y, messy = FALSE) {
strg <- if (messy) paste0(x, tolower(y), "_messy") else paste0(x, tolower(y))
res <- tryCatch(
eval(parse(text = strg)),
error = function(E) E
)
if (inherits(res, "error")) {
NULL
} else {
res
}
}
rep_licate <- function(n, expr, type) {
vapply(integer(n), eval.parent(substitute(function(...) expr)), type)
}
has_probs <- function(x) {
is.list(x) && is.numeric(x[[1]])
}
check4pkg <- function(x) {
if (!requireNamespace(x, quietly = TRUE)) {
stop("Please install ", x, call. = FALSE)
} else {
invisible(TRUE)
}
}
`%||%` <- function(x, y) if (is.null(x)) y else x
|
convert.angle <- function(x, from = c("degrees", "radians"), to = c("radians", "degrees")) {
from <- match.arg(from)
to <- match.arg(to)
x <- switch(from,
degrees = x,
radians = x * 180 / pi
)
result <- switch(to,
degrees = x,
radians = x * pi / 180
)
as.numeric(result)
}
|
test_that("ci_IQR works", {
x <- 1:24
expect_equal(ci_IQR(x)$estimate, IQR(x))
expect_equal(ci_IQR(x, R = 449, seed = 1)$interval, c(7.50000, 16.96167), tolerance = 0.001)
expect_equal(ci_IQR(x, R = 449, seed = 1)$interval[2],
ci_IQR(x, R = 449, seed = 1, probs = c(0, 0.975))$interval[2])
expect_equal(ci_IQR(x, R = 449, seed = 1, boot_type = "perc")$interval[1],
ci_IQR(x, R = 449, seed = 1, boot_type = "perc", probs = c(0.025, 1))$interval[1])
expect_equal(ci_IQR(x, R = 449, seed = 1, boot_type = "norm")$interval[1],
ci_IQR(x, R = 449, seed = 1, probs = c(0.025, 1), boot_type = "norm")$interval[1])
})
test_that("ci_mad works", {
x <- 1:25
expect_equal(ci_mad(x, R = 449)$estimate, mad(x))
expect_equal(ci_mad(x, R = 449, constant = 1)$estimate, mad(x, constant = 1))
expect_equal(ci_mad(x, R = 449, seed = 1)$interval, c(4.4478, 11.8608), tolerance = 0.001)
expect_equal(ci_mad(x, R = 449, seed = 1)$interval[2],
ci_mad(x, R = 449, seed = 1, probs = c(0, 0.975))$interval[2])
expect_equal(ci_mad(x, R = 449, seed = 1, boot_type = "perc")$interval[1],
ci_mad(x, R = 449, seed = 1, boot_type = "perc", probs = c(0.025, 1))$interval[1])
expect_equal(ci_mad(x, R = 449, seed = 1, boot_type = "norm")$interval[1],
ci_mad(x, R = 449, seed = 1, probs = c(0.025, 1), boot_type = "norm")$interval[1])
})
test_that("ci_skewness works", {
x <- 1:24
expect_equal(ci_skewness(x, R = 449)$estimate, skewness(x))
expect_equal(ci_skewness(x, R = 449, seed = 1)$interval, c(-0.6166888, 0.5460267), tolerance = 0.001)
expect_equal(ci_skewness(x, R = 449, seed = 1)$interval[2],
ci_skewness(x, R = 449, seed = 1, probs = c(0, 0.975))$interval[2])
expect_equal(ci_skewness(x, R = 449, seed = 1, boot_type = "perc")$interval[1],
ci_skewness(x, R = 449, seed = 1, boot_type = "perc", probs = c(0.025, 1))$interval[1])
expect_equal(ci_skewness(x, R = 449, seed = 1, boot_type = "norm")$interval[1],
ci_skewness(x, R = 449, seed = 1, probs = c(0.025, 1), boot_type = "norm")$interval[1])
})
test_that("ci_kurtosis works", {
x <- 1:20
expect_equal(ci_kurtosis(x, R = 449)$estimate, kurtosis(x))
expect_equal(ci_kurtosis(x, R = 449, seed = 1)$interval, c(1.354071, 2.476172), tolerance = 0.001)
expect_equal(ci_kurtosis(x, R = 449, seed = 1)$interval[2],
ci_kurtosis(x, R = 449, seed = 1, probs = c(0, 0.975))$interval[2])
expect_equal(ci_kurtosis(x, R = 449, seed = 1, boot_type = "perc")$interval[1],
ci_kurtosis(x, R = 449, seed = 1, boot_type = "perc", probs = c(0.025, 1))$interval[1])
expect_equal(ci_kurtosis(x, R = 449, seed = 1, boot_type = "norm")$interval[1],
ci_kurtosis(x, R = 449, seed = 1, probs = c(0.025, 1), boot_type = "norm")$interval[1])
})
test_that("ci_quantile_diff works", {
x <- 1:70
y <- 1:20
expect_equal(ci_quantile_diff(x, y, R = 99, seed = 1, q = 0.2)$estimate,
quantile(x, 0.2, names = FALSE) - quantile(y, 0.2, names = FALSE))
expect_equal(ci_quantile_diff(x, y, R = 99, seed = 1)$interval, c(15.99780, 35.41227), tolerance = 0.001)
expect_equal(ci_quantile_diff(x, y, R = 99, seed = 1)$interval >
ci_quantile_diff(x, y, R = 99, seed = 1, q = 0.25)$interval, c(TRUE, TRUE))
expect_equal(ci_quantile_diff(x, y, R = 99, seed = 1, probs = c(0.1, 0.9))$interval <
ci_quantile_diff(x, y, R = 99, seed = 1, probs = c(0.1, 0.9),
q = 0.75)$interval, c(TRUE, TRUE))
expect_equal(ci_quantile_diff(x, y, R = 99, seed = 1)$interval[2],
ci_quantile_diff(x, y, R = 99, seed = 1, probs = c(0, 0.975))$interval[2])
expect_equal(ci_quantile_diff(x, y, R = 99, seed = 1, boot_type = "perc")$interval[1],
ci_quantile_diff(x, y, R = 99, seed = 1, boot_type = "perc", probs = c(0.025, 1))$interval[1])
expect_equal(ci_quantile_diff(x, y, R = 99, seed = 1, boot_type = "norm")$interval[1],
ci_quantile_diff(x, y, R = 99, seed = 1, probs = c(0.025, 1), boot_type = "norm")$interval[1])
})
test_that("ci_median_diff works", {
set.seed(1)
x <- runif(10)
y <- runif(10)
expect_equal(ci_median_diff(x, y, R = 499, seed = 1, probs = c(0.2, 0.8))$estimate,
median(x) - median(y))
expect_equal(ci_median_diff(x, y, R = 499, seed = 1)$interval,
ci_quantile_diff(x, y, R = 499, seed = 1)$interval)
expect_equal(ci_median_diff(x, y, R = 499, seed = 1, boot_type = "perc")$interval,
ci_quantile_diff(x, y, R = 499, seed = 1, boot_type = "perc")$interval)
})
|
to_weekly <- function(x, incl_forecast=T, forecast_length=365, diff=T, dayofweek=5) {
if(!any(class(x)=="xts")) {stop("x needs to be of class xts")}
a <- x[format(as.POSIXlt(zoo::index(x), format = "%m/%d/%Y", origin = as.Date("1970-01-01 00:00.00 UTC")),
"%w") == as.character(dayofweek)]
if (!incl_forecast) {
TheDate <- xts::last(as.Date(zoo::index(x), format = "%m/%d/%Y", origin = as.Date("1970-01-01 00:00.00 UTC"))) -
as.numeric(forecast_length)
a <- a[paste("/", TheDate, sep = "")]
}
if (diff) {data_comp <- diff(a)} else {data_comp <- a}
return(data_comp)
}
|
graph.bar <-function(x, col=1, nb.plot=15,xmax=NULL, beside=TRUE, xlab=NULL, ...)
{
out <- data.frame(x$tSI[,col],x$mSI[,col])
rownames(out) <- rownames(x$tSI)
if(is.null(xlab)){xlab=colnames(x$tSI)[col]}
out <- out[rev(order(out[,1])),]
outgraph <- out[rev(1:min(nb.plot,nrow(out))),]
if (is.null(xmax)==TRUE){
xmax <- 1.1*max(outgraph)
} else {
if (xmax>1) {xmax=1}
}
outnames <- rownames(outgraph)
outnames <- gsub("([ ])","",outnames)
if(beside==FALSE){
outgraph.2 <- rbind(outgraph[,2],outgraph[,1]-outgraph[,2])
invisible(
barplot(outgraph.2,
horiz=TRUE,
names.arg=outnames,
beside=beside,
las=2,
xlim=c(0,xmax),
xlab=xlab,
...))
} else {
outgraph.2 <- rbind(outgraph[,1],outgraph[,2])
invisible(
barplot(outgraph.2,
horiz=TRUE,
names.arg=outnames,
beside=beside,
las=2,
xlim=c(0,xmax),
xlab=xlab,
...))
}
}
|
library(ggplot2)
library(grid)
library(gridExtra)
library(ddpcr)
plotWithLabel <- function(p, label) {
labelFont <- gpar(col="black", fontsize=20, fontfamily="Times Roman", fontface="bold")
arrangeGrob(p, top = textGrob(label,
x = unit(0, "npc"),
y = unit(1, "npc"),
just = c("left","top"),
gp = labelFont))
}
plate <- new_plate(data_files = "inst/vignettes-supp/vignette_data_B06_Amplitude.csv") %>% subset("b6") %>%
`plate_data<-`(plate_data(.) %>% dplyr::filter(FAM < 11000))
full <- plate_data(plate)
ndrops <- nrow(full)
top1 <- full %>% dplyr::arrange(desc(HEX)) %>% utils::head(ndrops/100)
p <- ggplot(full, aes(HEX, FAM)) +
geom_point(alpha = 0.2, size = 2) + theme_classic(15)
line <- stats::quantile(full$HEX, .75) + 5*IQR(full$HEX)
pline <- p + geom_vline(xintercept = line, linetype = 2)
p1 <- pline
p2 <- ggplot(full, aes(HEX, FAM)) +
geom_point(colour = "white") + theme_classic(15) +
geom_point(data = top1, alpha = 0.3, size = 2)
line <- stats::quantile(top1$HEX, .75) + 5*IQR(top1$HEX)
p2 <- p2 + geom_vline(xintercept = line, linetype = 2)
p3 <- p + geom_vline(xintercept = line, linetype = 2) +
geom_point(data = top1 %>% dplyr::filter(HEX > 10000),
alpha = 0.7, size = 2, colour = "red")
p1 <- plotWithLabel(p1, "A")
p2 <- plotWithLabel(p2, "B")
p3 <- plotWithLabel(p3, "C")
png(file.path("inst", "vignettes-supp", "outliers.png"), width = 1000, height = 300)
grid.arrange(p1, p2, p3, ncol = 3)
dev.off()
plate <- new_plate(data_files = "inst/vignettes-supp/vignette_data_B06_Amplitude.csv") %>% subset("b6") %>%
`plate_data<-`(plate_data(.) %>% dplyr::filter(FAM < 11000, HEX < 10000))
full <- plate_data(plate)
quiet( mixmdl <- mixtools::normalmixEM(full$FAM, k = 2) )
smaller_comp <- mixmdl$mu %>% which.min
cutoff <- mixmdl$mu[smaller_comp] + params(plate, 'REMOVE_EMPTY', 'CUTOFF_SD') * mixmdl$sigma[smaller_comp]
p <- ggplot(full, aes(HEX, FAM)) +
geom_point(alpha = 0.2, size = 2) + theme_classic(15)
pline <- p + geom_hline(yintercept = mixmdl$mu) +
geom_hline(yintercept = cutoff, linetype = 2)
p1 <- ggExtra::ggMarginal(pline, margins = "y")
p2 <- ggplot(full %>% dplyr::filter(FAM > cutoff), aes(HEX, FAM)) +
geom_point(alpha = 0.2, size = 2) + theme_classic(15) +
geom_hline(yintercept = cutoff, linetype = 2) +
geom_point(data = full %>% dplyr::filter(FAM < cutoff),
colour = "red", alpha=0.2, size = 2)
p2 <- ggExtra::ggMarginal(p2, margins = "y", colour = "transparent")
p1 <- plotWithLabel(p1, "A")
p2 <- plotWithLabel(p2, "B")
png(file.path("inst", "vignettes-supp", "empty.png"), width = 700, height = 300)
grid.arrange(p1, p2, ncol = 2)
dev.off()
plate <- new_plate(data_files = "inst/vignettes-supp/vignette_data_B06_Amplitude.csv",
type = plate_types$fam_positive_pnpp) %>%
subset("b6") %>%
`plate_data<-`(plate_data(.) %>% dplyr::filter(FAM < 11000, HEX < 10000))
full_orig <- plate_data(plate)
quiet( mixmdl <- mixtools::normalmixEM(full_orig$FAM, k = 2) )
smaller_comp <- mixmdl$mu %>% which.min
cutoff <- mixmdl$mu[smaller_comp] + params(plate, 'REMOVE_EMPTY', 'CUTOFF_SD') * mixmdl$sigma[smaller_comp]
full <- full_orig %>% dplyr::filter(FAM >= cutoff)
mixmdl <- mixtools::normalmixEM(full$FAM, k = 2)
larger_comp <- mixmdl$mu %>% which.max
filled_border <-
mixmdl$mu[larger_comp] -
(mixmdl$sigma[larger_comp] *
params(plate, 'CLASSIFY', 'CLUSTERS_BORDERS_NUM_SD'))
p <- ggplot(full, aes(HEX, FAM)) +
geom_point(alpha = 0.2, size = 2) + theme_classic(15) +
geom_point(data = full_orig, colour = "transparent") +
geom_hline(yintercept = mixmdl$mu[larger_comp]) +
geom_hline(yintercept = filled_border, linetype = 2)
p1 <- ggExtra::ggMarginal(p, xparams = list(colour = "transparent"))
full <- full %>% dplyr::filter(FAM >= filled_border)
if (utils::packageVersion("ggplot2") > "2.2.1") {
range <- ggplot_build(p)$layout$panel_scales_x[[1]]$range$range
} else {
range <- ggplot_build(p)$layout$panel_scales$x[[1]]$range$range
}
dens_smooth <- stats::density(full$HEX)
maxima_idx <- local_maxima(dens_smooth$y)
minima_idx <- local_minima(dens_smooth$y)
left_peak <- dens_smooth$x[maxima_idx][1]
minimas <- dens_smooth$x[minima_idx]
negative_border <- minimas[which(minimas > left_peak) %>% min]
p <- ggplot(full, aes(HEX, FAM)) +
geom_point(alpha = 0.2, size = 2) + theme_classic(15) +
geom_point(data = full_orig, colour = "transparent") +
scale_x_continuous(limits = range) +
geom_vline(xintercept = negative_border, linetype = 2) +
geom_vline(xintercept = dens_smooth$x[maxima_idx])
p2 <- ggExtra::ggMarginal(p, yparams = list(colour = "transparent"))
plate <- new_plate(data_files = "inst/vignettes-supp/vignette_data_B06_Amplitude.csv") %>% subset("b6") %>%
`plate_data<-`(plate_data(.) %>% dplyr::filter(FAM < 11000, HEX < 10000))
full <- plate_data(plate)
full$colour <- "black"
full[full$HEX > negative_border, ]$colour <- "green3"
full[full$HEX <= negative_border, ]$colour <- "purple"
full[full$FAM <= filled_border, ]$colour <- "blue"
full[full$FAM <= cutoff, ]$colour <- "black"
p <- ggplot(full, aes(HEX, FAM)) +
geom_point(alpha = 0.3, size = 2, colour = full$colour) + theme_classic(15) +
geom_hline(yintercept = c(cutoff, filled_border), linetype = 2, alpha = 0.5) +
geom_vline(xintercept = negative_border, linetype = 2, alpha = 0.5)
p3 <- ggExtra::ggMarginal(p, colour = "transparent")
p1 <- plotWithLabel(p1, "A")
p2 <- plotWithLabel(p2, "B")
p3 <- plotWithLabel(p3, "C")
png(file.path("inst", "vignettes-supp", "gating.png"), width = 1000, height = 300)
grid.arrange(p1, p2, p3, ncol = 3)
dev.off()
|
setMethod("ncol<-", signature('BasicRaster', 'numeric'),
function(x, ..., value) {
dim(x) <- c(nrow(x), value)
return(x)
}
)
setMethod("nrow<-", signature('BasicRaster', 'numeric'),
function(x, ..., value) {
dim(x) <- c(value, ncol(x))
return(x)
}
)
setMethod("xmin<-", signature('Extent', 'numeric'),
function(x, ..., value) {
x@xmin <- value
return(x)
}
)
setMethod("xmax<-", signature('Extent', 'numeric'),
function(x, ..., value) {
x@xmax <- value
return(x)
}
)
setMethod("ymin<-", signature('Extent', 'numeric'),
function(x, ..., value) {
x@ymin <- value
return(x)
}
)
setMethod("ymax<-", signature('Extent', 'numeric'),
function(x, ..., value) {
x@ymax <- value
return(x)
}
)
setMethod("xmin<-", signature('BasicRaster', 'numeric'),
function(x, ..., value) {
x@extent@xmin <- value
return(x)
}
)
setMethod("xmax<-", signature('BasicRaster', 'numeric'),
function(x, ..., value) {
x@extent@xmax <- value
return(x)
}
)
setMethod("ymin<-", signature('BasicRaster', 'numeric'),
function(x, ..., value) {
x@extent@ymin <- value
return(x)
}
)
setMethod("ymax<-", signature('BasicRaster', 'numeric'),
function(x, ..., value) {
x@extent@ymax <- value
return(x)
}
)
|
iterativeKmeans=function(x,minimum=2,maximum=10,choice=0.5)
{
n=length(x)
if(minimum<2)
{
stop("Error: clustering must divide data in at least 2 clusters (minimum must value at least 2)")
}
if(maximum>=n)
{
stop("Error: clustering must divide data in as much as n-1 clusters (maximum value at max is length(x)-1)")
}
if(maximum<minimum)
{
stop("Error: maximum value must be greater than minimum")
}
numClusterings=maximum-minimum+1;
k=minimum
ss=c()
while(k<=maximum)
{
ss=c(ss,mean(kmeans(x,k,iter.max=20)$withinss))
k=k+1
}
diferencias=diff(ss)
md=mean(diferencias)
optimo=1
for(i in 1:length(diferencias))
{
if(diferencias[i]>md)
{
optimo=i
break
}
}
optimo=optimo+minimum-1
kmeans(x,optimo,iter.max=20)
}
|
context("Check LDA_TS functions")
data(rodents)
lda_data <- rodents$document_term_table
document_covariate_table <- rodents$document_covariate_table
mod0 <- LDA_TS(rodents,
topics = 2, nseeds = 1, formulas = ~ 1, nchangepoints = 0,
timename = "newmoon",
control = list(nit = 10))
mod1 <- LDA_TS(rodents,
topics = 2, nseeds = 1, formulas = ~ 1, nchangepoints = 1,
timename = "newmoon",
control = list(nit = 50))
test_that("LDA_TS on 0 changepoints", {
expect_is(mod0, "LDA_TS")
expect_equal(length(names(mod0)), 4)
expect_is(mod0[[4]], "TS_fit")
})
test_that("LDA_TS on 1 changepoints", {
expect_is(mod1, "LDA_TS")
expect_equal(length(names(mod1)), 4)
expect_is(mod1[[4]], "TS_fit")
})
test_that("check print on LDA_TS", {
expect_output(print(mod1))
})
test_that("Check LDA_TS_controls_list", {
expect_is(LDA_TS_control(), "list")
expect_equal(length(LDA_TS_control()), 3)
})
test_that("Check conform_LDA_TS_data", {
expect_is(conform_LDA_TS_data(rodents), "list")
expect_is(conform_LDA_TS_data(rodents[[1]]), "list")
expect_message(conform_LDA_TS_data(rodents[[1]]))
expect_error(conform_LDA_TS_data(list(term1 = 1, term2 = 2)))
expect_is(conform_LDA_TS_data(list(term = rodents[[1]])), "list")
expect_message(conform_LDA_TS_data(list(term = rodents[[1]])))
expect_error(conform_LDA_TS_data(list(term = rodents[[1]], covariate1 = 1,
covariate2 = 2)))
expect_error(conform_LDA_TS_data("ok"))
})
test_that("Check package_LDA_TS", {
topics <- 2
nseeds <- 1
formulas <- ~ 1
nchangepoints <- 1
weights <- document_weights(lda_data)
timename <- "newmoon"
control <- LDA_TS_control(nit = 50)
LDAs <- LDA_set(lda_data, topics, nseeds,
control$LDA_set_control)
sel_LDA <- select_LDA(LDAs, control$LDA_set_control)
TSs <- TS_on_LDA(sel_LDA, document_covariate_table, formulas, nchangepoints,
timename, weights, control$TS_control)
sel_TSs <- select_TS(TSs, control$TS_control)
expect_is(package_LDA_TS(LDAs, sel_LDA, TSs, sel_TSs), "LDA_TS")
expect_equal(length(package_LDA_TS(LDAs, sel_LDA, TSs, sel_TSs)), 4)
expect_error(package_LDA_TS())
expect_error(package_LDA_TS("ok", sel_LDA, TSs, sel_TSs))
expect_error(package_LDA_TS(LDAs, "ok", TSs, sel_TSs))
expect_error(package_LDA_TS(LDAs, sel_LDA, "ok", sel_TSs))
expect_error(package_LDA_TS(LDAs, sel_LDA, TSs, "ok"))
})
|
.bridge.sampler.warp3 <- function(
samples_4_fit,
samples_4_iter,
neff,
log_posterior,
...,
data,
lb, ub,
transTypes,
param_types,
cores,
repetitions,
packages,
varlist,
envir,
rcppFile,
maxiter,
silent,
verbose,
r0,
tol1,
tol2) {
if (is.null(neff))
neff <- nrow(samples_4_iter)
n_post <- nrow(samples_4_iter)
m <- apply(samples_4_fit, 2, mean)
V_tmp <- cov(samples_4_fit)
V <- as.matrix(nearPD(V_tmp)$mat)
L <- t(chol(V))
q12 <- dmvnorm((samples_4_iter - matrix(m, nrow = n_post, ncol = length(m), byrow = TRUE)) %*%
t(solve(L)), sigma = diag(ncol(samples_4_fit)), log = TRUE)
q22 <- vector(mode = "list", length = repetitions)
gen_samples <- vector(mode = "list", length = repetitions)
for (i in seq_len(repetitions)) {
gen_samples[[i]] <- rmvnorm(n_post, sigma = diag(ncol(samples_4_fit)))
colnames(gen_samples[[i]]) <- colnames(samples_4_iter)
q22[[i]] <- dmvnorm(gen_samples[[i]], sigma = diag(ncol(samples_4_fit)), log = TRUE)
}
e <- as.brob( exp(1) )
q21 <- vector(mode = "list", length = repetitions)
if (cores == 1) {
q11 <- log(e^(apply(.invTransform2Real(samples_4_iter, lb, ub, param_types), 1, log_posterior,
data = data,...) + .logJacobian(samples_4_iter, transTypes, lb, ub)) +
e^(apply(.invTransform2Real(matrix(2*m, nrow = n_post, ncol = length(m), byrow = TRUE) -
samples_4_iter, lb, ub, param_types), 1, log_posterior, data = data, ...) +
.logJacobian(matrix(2*m, nrow = n_post, ncol = length(m), byrow = TRUE) -
samples_4_iter, transTypes, lb, ub)))
for (i in seq_len(repetitions)) {
q21[[i]] <- log(e^(apply(.invTransform2Real(matrix(m, nrow = n_post, ncol = length(m), byrow = TRUE) -
gen_samples[[i]] %*% t(L), lb, ub, param_types), 1, log_posterior, data = data, ...) +
.logJacobian(matrix(m, nrow = n_post, ncol = length(m), byrow = TRUE) -
gen_samples[[i]] %*% t(L), transTypes, lb, ub)) +
e^(apply(.invTransform2Real(matrix(m, nrow = n_post, ncol = length(m), byrow = TRUE) +
gen_samples[[i]] %*% t(L), lb, ub, param_types), 1, log_posterior, data = data, ...) +
.logJacobian(matrix(m, nrow = n_post, ncol = length(m), byrow = TRUE) +
gen_samples[[i]] %*% t(L), transTypes, lb, ub)))
}
} else if (cores > 1) {
if ( .Platform$OS.type == "unix") {
split1a <- .split_matrix(matrix=.invTransform2Real(samples_4_iter, lb, ub, param_types), cores=cores)
split1b <- .split_matrix(matrix=.invTransform2Real(
matrix(2*m, nrow = n_post, ncol = length(m), byrow = TRUE) - samples_4_iter, lb, ub, param_types
), cores=cores)
q11a <- parallel::mclapply(split1a, FUN =
function(x) apply(x, 1, log_posterior, data = data, ...),
mc.preschedule = FALSE,
mc.cores = cores)
q11b <- parallel::mclapply(split1b, FUN =
function(x) apply(x, 1, log_posterior, data = data, ...),
mc.preschedule = FALSE,
mc.cores = cores)
q11 <- log(e^(unlist(q11a) + .logJacobian(samples_4_iter, transTypes, lb, ub)) +
e^(unlist(q11b) +
.logJacobian(matrix(2*m, nrow = n_post, ncol = length(m), byrow = TRUE) -
samples_4_iter, transTypes, lb, ub)))
for (i in seq_len(repetitions)) {
tmp_mat2 <- gen_samples[[i]] %*% t(L)
split2a <- .split_matrix(matrix=.invTransform2Real(
matrix(m, nrow = n_post, ncol = length(m), byrow = TRUE) - tmp_mat2, lb, ub, param_types
), cores=cores)
split2b <- .split_matrix(matrix=.invTransform2Real(
matrix(m, nrow = n_post, ncol = length(m), byrow = TRUE) + tmp_mat2, lb, ub, param_types
), cores=cores)
q21a <- parallel::mclapply(split2a, FUN =
function(x) apply(x, 1, log_posterior, data = data, ...),
mc.preschedule = FALSE,
mc.cores = cores)
q21b <- parallel::mclapply(split2b, FUN =
function(x) apply(x, 1, log_posterior, data = data, ...),
mc.preschedule = FALSE,
mc.cores = cores)
q21[[i]] <- log(e^(unlist(q21a) +
.logJacobian(matrix(m, nrow = n_post, ncol = length(m), byrow = TRUE) -
tmp_mat2, transTypes, lb, ub)) +
e^(unlist(q21b) +
.logJacobian(matrix(m, nrow = n_post, ncol = length(m), byrow = TRUE) +
tmp_mat2, transTypes, lb, ub)))
}
} else {
cl <- parallel::makeCluster(cores, useXDR = FALSE)
sapply(packages, function(x) parallel::clusterCall(cl = cl, "require", package = x, character.only = TRUE))
parallel::clusterExport(cl = cl, varlist = varlist, envir = envir)
if ( ! is.null(rcppFile)) {
parallel::clusterExport(cl = cl, varlist = "rcppFile", envir = parent.frame())
parallel::clusterCall(cl = cl, "require", package = "Rcpp", character.only = TRUE)
parallel::clusterEvalQ(cl = cl, Rcpp::sourceCpp(file = rcppFile))
} else if (is.character(log_posterior)) {
parallel::clusterExport(cl = cl, varlist = log_posterior, envir = envir)
}
q11 <- log(e^(parallel::parRapply(cl = cl, x = .invTransform2Real(samples_4_iter, lb, ub, param_types),
log_posterior, data = data, ...) +
.logJacobian(samples_4_iter, transTypes, lb, ub)) +
e^(parallel::parRapply(cl = cl,
x = .invTransform2Real(matrix(2*m, nrow = n_post,
ncol = length(m), byrow = TRUE) -
samples_4_iter, lb, ub, param_types),
log_posterior, data = data, ...) +
.logJacobian(matrix(2*m, nrow = n_post, ncol = length(m), byrow = TRUE) -
samples_4_iter, transTypes, lb, ub)))
for (i in seq_len(repetitions)) {
q21[[i]] <- log(e^(parallel::parRapply(cl = cl,
x = .invTransform2Real(matrix(m, nrow = n_post,
ncol = length(m), byrow = TRUE) -
gen_samples[[i]] %*% t(L), lb, ub, param_types),
log_posterior, data = data, ...) +
.logJacobian(matrix(m, nrow = n_post, ncol = length(m), byrow = TRUE) -
gen_samples[[i]] %*% t(L), transTypes, lb, ub)) +
e^(parallel::parRapply(cl = cl,
x = .invTransform2Real(matrix(m, nrow = n_post,
ncol = length(m),byrow = TRUE) +
gen_samples[[i]] %*% t(L), lb, ub, param_types),
log_posterior, data = data, ...) +
.logJacobian(matrix(m, nrow = n_post, ncol = length(m), byrow = TRUE) +
gen_samples[[i]] %*% t(L), transTypes, lb, ub)))
}
parallel::stopCluster(cl)
}
}
if (any(is.infinite(q11))) {
warning(sum(is.infinite(q11)), " of the ", length(q11)," log_prob() evaluations on the warp-transformed posterior draws produced -Inf/Inf.", call. = FALSE)
}
for (i in seq_len(repetitions)) {
if (any(is.infinite(q21[[i]]))) {
warning(sum(is.infinite(q21[[i]])), " of the ", length(q21[[i]])," log_prob() evaluations on the warp-transformed proposal draws produced -Inf/Inf.", call. = FALSE)
}
}
if (any(is.na(q11))) {
warning(sum(is.na(q11)), " evaluation(s) of log_prob() on the warp-transformed posterior draws produced NA and have been replaced by -Inf.", call. = FALSE)
q11[is.na(q11)] <- -Inf
}
for (i in seq_len(repetitions)) {
if (any(is.na(q21[[i]]))) {
warning(sum(is.na(q21[[i]])), " evaluation(s) of log_prob() on the warp-transformed proposal draws produced NA nd have been replaced by -Inf.", call. = FALSE)
q21[[i]][is.na(q21[[i]])] <- -Inf
}
}
if(verbose) {
print("summary(q12): (log_dens of proposal for posterior samples)")
print(summary(q12))
print("summary(q22): (log_dens of proposal for generated samples)")
print(lapply(q22, summary))
print("summary(q11): (log_dens of posterior for posterior samples)")
print(summary(q11))
print("summary(q21): (log_dens of posterior for generated samples)")
print(lapply(q21, summary))
}
logml <- numeric(repetitions)
niter <- numeric(repetitions)
for (i in seq_len(repetitions)) {
tmp <- .run.iterative.scheme(q11 = q11, q12 = q12, q21 = q21[[i]], q22 = q22[[i]],
r0 = r0, tol = tol1, L = L, method = "warp3",
maxiter = maxiter, silent = silent,
criterion = "r", neff = neff)
if (is.na(tmp$logml) & !is.null(tmp$r_vals)) {
warning("logml could not be estimated within maxiter, rerunning with adjusted starting value. \nEstimate might be more variable than usual.", call. = FALSE)
lr <- length(tmp$r_vals)
r0_2 <- sqrt(tmp$r_vals[[lr - 1]] * tmp$r_vals[[lr]])
tmp <- .run.iterative.scheme(q11 = q11, q12 = q12, q21 = q21[[i]], q22 = q22[[i]],
r0 = r0_2, tol = tol2, L = L, method = "warp3",
maxiter = maxiter, silent = silent,
criterion = "logml", neff = neff)
tmp$niter <- maxiter + tmp$niter
}
logml[i] <- tmp$logml
niter[i] <- tmp$niter
if (niter[i] == maxiter)
warning("logml could not be estimated within maxiter, returning NA.", call. = FALSE)
}
if (repetitions == 1) {
out <- list(logml = logml, niter = niter, method = "warp3", q11 = q11,
q12 = q12, q21 = q21[[1]], q22 = q22[[1]])
class(out) <- "bridge"
} else if (repetitions > 1) {
out <- list(logml = logml, niter = niter, method = "warp3", repetitions = repetitions)
class(out) <- "bridge_list"
}
return(out)
}
|
pubtator_tables <- function(){
c(
"chemical" = "chemical2pubtator",
"disease" = "disease2pubtator",
"gene" = "gene2pubtator",
"mutation" = "mutation2pubtator",
"species" = "species2pubtator"
)
}
|
parini <- function(d, x, k, n, guess, lapses, psyfun) {
calculate_parini <- function(d, x, k, n, guess, lapses, psyfun) {
ntrials <- unique(d[[n]])
yq <- d[[k]] / d[[n]]
if (is.numeric(guess) && is.numeric(lapses)) {
gue <- guess
lap <- lapses
}
if (is.logical(guess) && is.logical(lapses)) {
if (guess && lapses) {
gue <- min(yq)
lap <- 1 - max(yq)
}
}
if (is.logical(guess) && is.numeric(lapses)) {
lap <- lapses
if (guess) gue <- min(yq)
if (!guess) gue <- 0
}
if (is.numeric(guess) && is.logical(lapses)) {
gue <- guess
if (lapses) lap <- 1 - max(yq)
if (!lapses) lap <- 0
}
y01 <- (yq - gue) / (1 - gue - lap)
datp <- data.frame(x = d[[x]], y01)
datp <- datp %>%
mutate(y01 = ifelse(y01 == 1, 1 - 1 / (2 * ntrials), y01)) %>%
mutate(y01 = ifelse(y01 == 0, 1 / (2 * ntrials), y01))
dat <- filter(datp, y01 > 0, y01 <1)
dat$z <- qnorm(dat$y01)
coef <- lm(z~x, data = dat)$coefficients
if (coef[[2]] == 0) {
p1 <- median(dat$x)
p2 <- (1 - gue - lap) / (max(dat$x)-min(dat$x))
}
else {
p1 <- -coef[[1]] / coef[[2]]
p2 <- 1 / coef[[2]]
}
if (psyfun == 'logistic_fun') p2 <- 1 / p2
if (psyfun == 'weibull_fun') p2 <- 1 / p2
if (is.numeric(guess) && is.numeric(lapses)) para <- c(p1, p2)
if (is.logical(guess) && is.logical(lapses)) {
if (guess && lapses) para <- c(p1, p2, gue, lap)
if (!guess && !lapses) para <- c(p1, p2)
}
if (is.logical(guess) && is.numeric(lapses)) {
if (guess) para <- c(p1, p2, gue)
if (!guess) para <- c(p1, p2)
}
if (is.numeric(guess) && is.logical(lapses)) {
if (lapses) para <- c(p1, p2, lap)
if (!lapses) para <- c(p1, p2)
}
data.frame(paran = paste0('p', seq(1, length(para))), par = para)
}
d %>% do(calculate_parini(., x, k, n, guess, lapses, psyfun))
}
|
new_list_end_node <- function() {
structure(list(), class = c("list_end_node", "node", "list"))
}
new_setmap_end_node <- function() {
structure(list(), class = c("setmap_end_node", "node"))
}
new_set_node <- function(x) {
structure(list(
type = "set",
value = x
), class = c("set_node", "node"))
}
new_vector_end_node <- function() {
structure(list(), class = c("vector_end_node", "node"))
}
new_r_symbol <- function(value) {
stopifnot(startsWith(value, "r/"))
structure(value, class = c("r_name"))
}
new_symbol_node <- function(value) {
as.symbol(value)
}
new_keyword_node <- function(value) {
structure(as.character(value), class = c("keyword_node", "node", "character"))
}
new_symbolic_value_node <- function(value) {
value <- match.arg(value, c("
switch(
value,
`
`
`
)
}
default_print <- function(x, ...) {
cat(format(x, ...), "\n")
}
format.keyword_node <- function(x, ...) {
x
}
print.keyword_node <- default_print
|
test_that("create_APCsummary", {
testthat::skip_if_not_installed("mgcv")
library(mgcv)
data(travel)
model <- gam(mainTrip_distance ~ te(period, age) +
household_size + residence_region,
data = travel)
model_list <- list("Model A" = model,
"Model B" = model)
apc_range <- list("age" = 30:60,
"period" = 1980:2000,
"cohort" = 1930:1970)
res <- create_APCsummary(model_list, dat = travel, digits = 4,
apc_range = apc_range)
expect_s3_class(res, "knitr_kable")
expect_error(create_APCsummary(model))
tab <- APCtools:::create_oneAPCsummaryTable(model, dat = travel, apc_range = apc_range)
expect_s3_class(tab, "data.frame")
expect_identical(tab$effect, c("age","period","cohort"))
})
test_that("create_modelSummary", {
testthat::skip_if_not_installed("mgcv")
library(mgcv)
data(travel)
model <- bam(mainTrip_distance ~ te(period, age) + household_size +
residence_region, data = travel)
model_logLink <- gam(mainTrip_distance ~ te(period, age) +
s(household_income) + household_size +
residence_region,
family = Gamma(link = "log"), data = travel)
model_list <- list("Model A" = model,
"Model B" = model_logLink)
res <- create_modelSummary(model_list, digits = 4)
expect_length(res, 2)
expect_s3_class(res[[1]], "knitr_kable")
expect_s3_class(res[[2]], "knitr_kable")
tab1 <- APCtools:::extract_summary_linearEffects(model)
tab2 <- APCtools:::extract_summary_linearEffects(model_logLink)
expect_s3_class(tab1, "data.frame")
expect_s3_class(tab2, "data.frame")
expect_identical(colnames(tab1)[1:3], c("param","coef","se"))
expect_identical(colnames(tab2)[1:3], c("param","coef","se"))
})
|
base.learners = list(
makeLearner("classif.ksvm"),
makeLearner("classif.randomForest"),
makeLearner("classif.gbm")
)
mplexer = makeModelMultiplexer(base.learners)
par.set = makeModelMultiplexerParamSet(mplexer,
classif.randomForest = makeParamSet(
makeIntegerParam("ntree", lower = 10, upper = 500),
makeIntegerParam("mtry", lower = 1, upper = 20)
),
classif.gbm = makeParamSet(
makeIntegerParam("n.trees", lower = 100L, upper = 5000L),
makeIntegerParam("interaction.depth", lower = 1L, upper = 4L),
makeNumericParam("shrinkage", lower = 1e-5, upper = 1e-1)
),
classif.ksvm = makeParamSet(
makeNumericParam("C", lower = -12, upper = 12, trafo = function(x) 2^x),
makeNumericParam("sigma", lower = -12, upper = 12, trafo = function(x) 2^x)
)
)
|
permRQ = function(target, dataset, xIndex, csIndex, wei = NULL, univariateModels=NULL, hash = FALSE, stat_hash=NULL,
pvalue_hash=NULL, threshold = 0.05, R = 999) {
pvalue = log(1)
stat = 0;
csIndex[which(is.na(csIndex))] = 0;
thres <- threshold * R + 1
if( hash ) {
csIndex2 = csIndex[which(csIndex!=0)]
csIndex2 = sort(csIndex2)
xcs = c(xIndex,csIndex2)
key = paste(as.character(xcs) , collapse=" ");
if(is.null(stat_hash[key]) == FALSE) {
stat = stat_hash[key];
pvalue = pvalue_hash[key];
results <- list(pvalue = pvalue, stat = stat, stat_hash=stat_hash, pvalue_hash=pvalue_hash);
return(results);
}
}
if ( !is.na( match(xIndex, csIndex) ) ) {
if( hash ) {
stat_hash[key] <- 0;
pvalue_hash[key] <- 1;
}
results <- list(pvalue = 1, stat = 0, stat_hash=stat_hash, pvalue_hash=pvalue_hash);
return(results);
}
if ( any(xIndex < 0) || any(csIndex < 0) ) {
message(paste("error in testIndRQ : wrong input of xIndex or csIndex"))
results <- list(pvalue = pvalue, stat = stat, stat_hash=stat_hash, pvalue_hash=pvalue_hash);
return(results);
}
xIndex = unique(xIndex);
csIndex = unique(csIndex);
x = dataset[ , xIndex];
cs = dataset[ , csIndex];
if ( length(cs) != 0 ) {
if ( is.null(dim(cs)[2]) ) {
if (identical(x, cs) ) {
if ( hash ) {
stat_hash[key] <- 0;
pvalue_hash[key] <- 1;
}
results <- list(pvalue = 1, stat = 0, stat_hash=stat_hash, pvalue_hash=pvalue_hash);
return(results);
}
} else {
for (col in 1:dim(cs)[2]) {
if (identical(x, cs[, col]) ) {
if ( hash ) {
stat_hash[key] <- 0;
pvalue_hash[key] <- 1;
}
results <- list(pvalue = 1, stat = 0, stat_hash=stat_hash, pvalue_hash=pvalue_hash);
return(results);
}
}
}
}
res <- tryCatch(
{
if (length(cs) == 0) {
fit1 = quantreg::rq(target ~ 1, weights = wei)
fit2 = quantreg::rq(target ~ x, weights = wei)
mod = anova(fit1, fit2, test = "rank")
stat = as.numeric( mod[[1]][3] )
step <- 0
j <- 1
n <- length(target)
while (j <= R & step < thres ) {
xb <- sample(x, n)
bit2 = quantreg::rq(target ~ xb, weights = wei )
ww = anova(fit1, bit2, test = "rank")
step <- step + ( as.numeric( ww[[1]][3] ) > stat )
j <- j + 1
}
pvalue <- log( (step + 1) / (R + 1) )
} else {
fit1 = quantreg::rq( target ~ cs, weights = wei )
fit2 = quantreg::rq( target ~ cs + x, weights = wei )
mod = anova(fit1, fit2, test = "rank")
stat = as.numeric( mod[[1]][3] )
step <- 0
j <- 1
n <- length(target)
while (j <= R & step < thres ) {
xb <- sample(x, n)
bit2 = quantreg::rq(target ~ cs + xb, weights = wei )
ww = anova(fit1, bit2, test = "rank")
step <- step + ( as.numeric( ww[[1]][3] ) > stat )
j <- j + 1
}
pvalue <- log( (step + 1) / (R + 1) )
}
if ( is.na(pvalue) || is.na(stat) ) {
pvalue = log(1)
stat = 0;
} else {
if ( hash ) {
stat_hash[key] <- stat;
pvalue_hash[key] <- pvalue;
}
}
results <- list(pvalue = pvalue, stat = stat, stat_hash=stat_hash, pvalue_hash=pvalue_hash);
return(results);
},
error=function(cond) {
pvalue = log(1)
stat = 0;
results <- list(pvalue = pvalue, stat = stat, stat_hash=stat_hash, pvalue_hash=pvalue_hash);
return(results);
},
finally={}
)
return(res);
}
|
library(portfolio)
load("matchit.test.RData")
data(assay)
x <- assay
x <- assay[assay$country == "USA", c("symbol", "name", "sector", "liq", "on.fl")]
all.stocks <- c("76143", "18027", "14730", "6961", "6930", "69571", "71262",
"21266", "7308", "11746", "27043", "37495", "74206", "79463", "2923", "8267",
"33105", "26322", "68150", "71570", "22101", "19167", "39252", "13776",
"83265", "71301", "7631", "29780", "3604", "28225")
x <- x[all.stocks,]
for(i in names(x)){
if(is.factor(x[[i]])){
x[[i]] <- as.character(x[[i]])
}
}
test <- portfolio:::.matchit(on.fl ~ sector + liq, data = x)
stopifnot(
all.equal(dimnames(test)[1], dimnames(truth)[1]),
all(mapply(all.equal, test, truth))
)
x.sub <- x[2:15,]
test.3 <- portfolio:::.matchit(on.fl ~ sector + liq, data = x.sub)
stopifnot(
all.equal(dimnames(test.3)[1], dimnames(truth.3)[1]),
all.equal(test.3[1,], truth.3[1,])
)
test <- portfolio:::.matchit(on.fl ~ sector, data = x, method = "greedy", exact = "sector")
test <- test[sort(row.names(test)), , drop = FALSE]
stopifnot(all.equal(test, truth.4),
all.equal(table(x$sector[x$on.fl]), table(x[test,"sector"]))
)
set.seed(1)
x$foo.1 <- c("a","a","b")
x$foo.2 <- c("a","b")
test <- portfolio:::.matchit(treat.var = "on.fl", data = x, method = "random", n.matches = 10, exact = c("foo.1","foo.2"))
x.treat <- x[x$on.fl,]
for(i in 1:ncol(test)){
x.matched <- x[test[,1],]
stopifnot(all.equal(table(x.treat$foo.1, x.treat$foo.2),
table(x.matched$foo.1, x.matched$foo.2)))
}
x <- portfolio:::.data.prep(treat.var = "on.fl", c("sector", "country"), x)
stopifnot(is.factor(assay$sector),
is.factor(assay$country))
|
x <- sample(1:150)
data(iris)
iris2 <- iris[x, ]
iris2[1,"Sepal.Length"] <- iris2[1:3, "Sepal.Width"] <- NA
out <- simputation::impute_median(iris2, . ~ Species)
m.Sepal.Length <- tapply(iris2$Sepal.Length, iris2$Species, median, na.rm=TRUE)
expect_equivalent(out[1,"Sepal.Length"], m.Sepal.Length[out[1,"Species"]])
m.Sepal.Width <- tapply(iris2$Sepal.Width, iris2$Species, median, na.rm=TRUE)
expect_equivalent(out[1:3,"Sepal.Width"], as.vector(m.Sepal.Width[out[1:3,"Species"]]))
|
global_filter_elem <- function(type,
segmentId = NULL,
dateRange = NULL,
id = NULL) {
if (!is.null(segmentId) && is.na(segmentId)) segmentId <- NULL
if (!is.null(dateRange) && is.na(dateRange)) dateRange <- NULL
if (type == "daterange" && is.null(dateRange)) stop("Missing daterange in global filter element", call. = FALSE)
if (type == "segment" && is.null(segmentId)) stop("Missing segment ID in global filter element", call. = FALSE)
if (is.null(segmentId) && is.null(dateRange)) stop("No content for global filter element", call. = FALSE)
if (!is.null(segmentId) && !is.null(dateRange)) stop("Only one of segmentId or dateRange may be specified in global filter element", call. = FALSE)
purrr::compact(list(
id = id,
type = type,
segmentId = segmentId,
dateRange = dateRange
))
}
global_filter <- function(type,
segmentId = NULL,
dateRange = NULL) {
items <- purrr::compact(list(type = type, segmentId = segmentId, dateRange = dateRange))
purrr::pmap(items, global_filter_elem)
}
req_settings <- function(limit,
page,
nonesBehavior,
...) {
assertthat::assert_that(
is.numeric(limit),
is.numeric(page),
is.character(nonesBehavior),
nonesBehavior %in% c("return-nones", "exclude-nones")
)
list(
limit = limit,
page = page,
nonesBehavior = nonesBehavior,
...
)
}
metric_elem <- function(id,
columnId,
filters = NULL,
sort = NULL) {
assertthat::assert_that(
is.character(id),
is.character(columnId)
)
if (!is.null(filters)) {
assertthat::assert_that(
is.character(filters)
)
filters <- I(filters)
}
if (!is.null(sort)) {
if (is.na(sort)) sort <- NULL
else sort <- match.arg(sort, c("asc", "desc"))
}
purrr::compact(list(
id = id,
columnId = columnId,
filters = filters,
sort = sort
))
}
metric_elems <- function(id,
columnId,
filters = NULL,
sort = NULL) {
if (!is.null(filters) & length(filters) > 1 & !is.list(filters)) {
id_len <- length(id)
filters <- list(filters)[rep(1, id_len)]
}
elems <- purrr::compact(list(
id = id,
columnId = columnId,
filters = filters,
sort = sort
))
purrr::pmap(elems, metric_elem)
}
metric_filters <- function(type,
dimension = NULL,
itemId = NULL,
dateRange = NULL,
segmentId = NULL) {
if (length(dimension) != length(itemId)) {
stop("Mismatch between dimensions and itemIds in metric filter")
}
stopifnot(length(dateRange) <= 1)
stopifnot(length(type) == length(c(dimension, dateRange, segmentId)))
dr <- data.frame(
id = type[type == "dateRange"],
type = type[type == "dateRange"],
dateRange = dateRange
)
dims <- data.frame(
id = dimension,
type = type[type == "breakdown"],
dimension = dimension,
itemId = itemId
)
segs <- data.frame(
id = segmentId,
type = type[type == "segment"],
segmentId = segmentId
)
dplyr::bind_rows(dr, dims, segs)
}
metric_container <- function(metrics,
metricIds,
sort,
dimensions = NULL,
itemIds = NULL,
segmentIds = NULL,
dateRange = NULL) {
sort <- na_fill_vec(sort, len = length(metrics))
metrics[!is_calculated_metric(metrics)] <- paste("metrics",
metrics[!is_calculated_metric(metrics)],
sep = "/")
if (!is.null(dimensions)) {
dimensions <- paste("variables", dimensions, sep = "/")
}
filter_segids <- unique(unlist(segmentIds))
filter_segids <- filter_segids[!is.na(filter_segids)]
type <- c(
rep("dateRange", length(dateRange)),
rep("breakdown", length(dimensions)),
rep("segment", length(filter_segids))
)
met_filters <- metric_filters(
type = type,
dimension = dimensions,
itemId = itemIds,
segmentId = filter_segids,
dateRange = dateRange
)
if (!is.null(segmentIds)) {
stopifnot(length(metrics) == length(segmentIds))
filter_ids <- purrr::map2(metrics, segmentIds, function(met, seg) {
met_filters[met_filters$type %in% c("breakdown", "dateRange") | met_filters$segmentId %in% seg, "id"]
})
} else {
filter_ids <- list(met_filters$id)
}
mets <- metric_elems(id = metrics,
columnId = metricIds,
filters = filter_ids,
sort = sort)
list(
metrics = mets,
metricFilters = met_filters
)
}
make_request <- function(rsid,
global_filter,
dimension,
settings,
metric_container,
search = NULL) {
purrr::compact(list(
rsid = rsid,
globalFilters = global_filter,
metricContainer = metric_container,
dimension = dimension,
settings = settings,
search = search
))
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.