code
stringlengths 1
13.8M
|
---|
source("common.r")
png(file="earnings_monthly_by_currency.png",
width=default_width,
height=default_height,
res=120)
op <- par(mar=c(5,2,2,6), lty=0)
res <- dbGetQuery(con, "
select currency, date_trunc('month', created_at) sum_month, sum(price)
from purchases
where status = 1
group by sum_month, currency
having sum(price) > 1
order by sum_month asc
")
res$sum_month <- as.Date(res$sum_month)
res <- truncate_dates(res, "sum_month")
grouped <- tapply(res$sum, list(month=res$sum_month, currency=res$currency), identity)
grouped[is.na(grouped)] <- 0
grouped <- floor(grouped / 100)
money_cap = max(apply(grouped, 1, sum))
grouped = t(grouped)
barplot(grouped,
col=colors,
axes=FALSE,
ann=FALSE,
names=format_months(unique(res$sum_month)),
las=2)
money_axis(money_cap)
par(lty=1)
legend("topleft", names(grouped[,1]), fill=colors)
title(main="Seller earnings per month by currency") |
snpprob_from_cross <-
function(genoprobs, cross)
{
if(!("founder_geno" %in% names(cross)))
stop("cross doesn't contain founder_geno")
fg <- do.call("cbind", cross$founder_geno)
mar2drop <- colnames(fg)[colSums(fg != 1 & fg != 3) > 0 | colSums(fg==1)==0 | colSums(fg==3)==0]
cross <- drop_markers(cross, mar2drop)
chr_pr <- names(genoprobs)
chr_cross <- chr_names(cross)
chr <- chr_pr[chr_pr %in% chr_cross]
cross <- cross[,chr]
genoprobs <- genoprobs[,chr]
map <- cross$pmap
if(is.null(map)) map <- cross$gmap
sdp <- calc_sdp(t(do.call("cbind", cross$founder_geno)))
snpinfo <- data.frame(chr=rep(chr_names(cross), n_mar(cross)),
pos=unlist(map),
sdp=sdp,
snp=names(sdp))
mar2keep <- NULL
for(i in seq_along(genoprobs)) {
mar <- colnames(cross$geno[[i]])
mar <- mar[mar %in% dimnames(genoprobs)[[3]][[i]]]
if(length(mar) == 0) {
stop("No overlap between genoprobs and markers on chr ", names(genoprobs)[i])
}
map[[i]] <- map[[i]][mar]
if(inherits(genoprobs, "fst_genoprob")) {
mar2keep <- c(mar2keep, mar)
} else {
genoprobs[[i]] <- genoprobs[[i]][,,mar,drop=FALSE]
}
}
if(inherits(genoprobs, "fst_genoprob")) {
genoprobs <- subset(genoprobs, mar=mar2keep)
}
snpinfo <- index_snps(map, snpinfo)
genoprob_to_snpprob(genoprobs, snpinfo)
} |
context("test-CondBED")
test_that("Whether the function gives us the correct specified length", {
Data=rBED(n=100,Betax=1,Betay=1,rho=0.85)
Resp=CondBED(rho=0.85,Betax=1,Betay=1,x=Data[,1])
expect_length(Resp$Conditional_Statistics$x,100)}) |
set_env <- function(root = NULL, new = FALSE, dev = FALSE, ...) {
dots <- list(...)
if ("qgis_env" %in% ls(.RQGIS_cache) && new == FALSE) {
return(get("qgis_env", envir = .RQGIS_cache))
}
if (Sys.info()["sysname"] == "Windows") {
if (is.null(root)) {
cwd <- getwd()
on.exit(setwd(cwd))
osgeo <- c("C:/OSGEO4~1", "C:/OSGEO4~2")
ind <- dir.exists(osgeo)
osgeo <- osgeo[ind]
wd <- ifelse(length(osgeo) > 0, osgeo[1], "C:/")
message(sprintf("Trying to find QGIS LTR in %s", wd))
setwd(wd)
raw <- "dir /s /b | %SystemRoot%\\System32\\findstr /r"
cmd <- paste(raw, shQuote("bin\\\\qgis.bat$ | bin\\\\qgis-ltr.bat$"))
root <- shell(cmd, intern = TRUE)
if (length(root) == 0) {
stop(
"Sorry, we could not find QGIS on your C: drive. ",
"Please specify the root to your QGIS-installation ",
"manually."
)
} else if (length(root) > 2) {
stop(
"There are several QGIS installations on your system. ",
"Please choose one of them:\n",
paste(unique(gsub("\\\\bin.*", "", root)), collapse = "\n")
)
} else {
root <- gsub("\\\\bin.*", "", root[1])
}
}
root <- normalizePath(root, winslash = "/")
root <- gsub("/{1,}$", "", root)
}
if (Sys.info()["sysname"] == "Darwin") {
if (is.null(root)) {
message("Checking for homebrew osgeo4mac installation on your system. \n")
path <- suppressWarnings(
system2(
"find", c("/usr/local/Cellar", "-name", "QGIS.app"),
stdout = TRUE, stderr = TRUE
)
)
no_homebrew <- str_detect(path, "find: /usr/local")
if (is.na(no_homebrew[1])) {
message(paste0(
"Found no QGIS homebrew installation. ",
"Checking for QGIS Kyngchaos version now."
))
}
if (no_homebrew == FALSE && length(path) == 1) {
root <- path
message("Found QGIS osgeo4mac installation. Setting environment...")
}
if (length(path) >= 2) {
path1 <-
as.numeric(regmatches(path[1], gregexpr("[0-9]+", path[1]))[[1]][3])
path2 <-
as.numeric(regmatches(path[2], gregexpr("[0-9]+", path[2]))[[1]][3])
if (length(path) == 3) {
path3 <-
as.numeric(regmatches(path[3], gregexpr("[0-9]+", path[3]))[[1]][3])
}
if (dev == TRUE && path1 > path2) {
root <- path[1]
message("Found QGIS osgeo4mac DEV installation. Setting environment...")
} else if (dev == TRUE && path1 < path2) {
root <- path[2]
message("Found QGIS osgeo4mac DEV installation. Setting environment...")
} else if (dev == FALSE && path1 > path2) {
root <- path[2]
message("Found QGIS osgeo4mac LTR installation. Setting environment...")
} else if (dev == FALSE && path1 < path2) {
root <- path[1]
message("Found QGIS osgeo4mac LTR installation. Setting environment...")
}
}
if (is.null(root)) {
path <- system("find /Applications -name 'QGIS.app'", intern = TRUE)
if (length(path) > 0) {
root <- path
message("Found QGIS Kyngchaos installation. Setting environment...")
}
}
}
}
if (Sys.info()["sysname"] == "Linux") {
if (is.null(root)) {
message("Assuming that your root path is '/usr'!")
root <- "/usr"
}
}
if (Sys.info()["sysname"] == "FreeBSD") {
if (is.null(root)) {
message("Assuming that your root path is '/usr/local'!")
root <- "/usr/local"
}
}
qgis_env <- list(root = root)
qgis_env <- c(qgis_env, check_apps(root = root, dev = dev))
assign("qgis_env", qgis_env, envir = .RQGIS_cache)
if (any(grepl("/Applications", qgis_env))) {
warning(
paste0(
"We recognized that you are using the Kyngchaos QGIS binary.\n",
"Please consider installing QGIS from homebrew:",
"'https://github.com/OSGeo/homebrew-osgeo4mac'.",
" Run 'vignette(install_guide)' for installation instructions.\n",
"The Kyngchaos installation throws some warnings during ",
"processing. However, usage/outcome is not affected and you can ",
"continue using the Kyngchaos installation."
)
)
}
qgis_env
}
open_app <- function(qgis_env = set_env()) {
check_for_server()
settings <- as.list(Sys.getenv())
if (Sys.info()["sysname"] == "Windows") {
setup_win(qgis_env = qgis_env)
reset_path(settings)
} else if (Sys.info()["sysname"] == "Linux" | Sys.info()["sysname"] == "FreeBSD") {
setup_linux(qgis_env = qgis_env)
} else if (Sys.info()["sysname"] == "Darwin") {
setup_mac(qgis_env = qgis_env)
}
tmp <- try(
expr = py_run_string("app")$app,
silent = TRUE
)
if (!inherits(tmp, "try-error")) {
stop("Python QGIS application is already running.")
}
py_cmd =
paste0(
"try:\n from pyvirtualdisplay import Display\n",
" display = Display(visible=False, size=(1024, 768), color_depth=24)\n",
" display.start()\n",
"except:\n pass")
py_run_string(py_cmd)
py_run_string("import os, sys, re, webbrowser")
py_run_string("from qgis.core import *")
py_run_string("from osgeo import ogr")
py_run_string("from PyQt4.QtCore import *")
py_run_string("from PyQt4.QtGui import *")
py_run_string("from qgis.gui import *")
set_prefix <- paste0(
"QgsApplication.setPrefixPath(r'",
qgis_env$qgis_prefix_path, "', True)"
)
py_run_string(set_prefix)
py_run_string("QgsApplication.showSettings()")
py_run_string("app = QgsApplication([], True)")
py_run_string("QgsApplication.initQgis()")
code <- paste0("sys.path.append(r'", qgis_env$python_plugins, "')")
py_run_string(code)
Sys.setlocale("LC_NUMERIC", "C")
py_file <- system.file("python", "python_funs.py", package = "RQGIS")
py_run_file(py_file)
py_run_string("RQGIS = RQGIS()")
}
qgis_session_info <- function(qgis_env = set_env()) {
tmp <- try(expr = open_app(qgis_env = qgis_env), silent = TRUE)
suppressWarnings(
out <-
py_run_string("my_session_info = RQGIS.qgis_session_info()")$my_session_info
)
py_run_string(
"try:\n del(my_session_info)\nexcept:\ pass"
)
if ((Sys.info()["sysname"] == "Linux" | Sys.info()["sysname"] == "FreeBSD") &&
(out$grass6 | out$grass7)) {
cmd <- paste0(
"find /usr ! -readable -prune -o -type f ",
"-executable -iname 'grass??' -print"
)
suppressWarnings({
my_grass <- system(cmd, intern = TRUE, ignore.stderr = TRUE)
})
iter <- 15
while (length(my_grass) == 0 && iter > 0) {
suppressWarnings({
my_grass <-
try(system(cmd, intern = TRUE, ignore.stderr = TRUE), silent = TRUE)
})
}
if (length(my_grass) > 0) {
my_grass <- lapply(seq(length(my_grass)), function(i) {
version <- grep(
readLines(my_grass), pattern = "grass_version = \"",
value = TRUE
)
version <- paste(
unlist(stringr::str_extract_all(version, "\\d(\\.)?")),
collapse = ""
)
})
my_grass <- unlist(my_grass)
grass6 <- grep("6", my_grass, value = TRUE)
out$grass6 <- ifelse(length(grass6) == 0, out$grass6, grass6)
grass7 <- grep("7", my_grass, value = TRUE)
out$grass7 <- ifelse(length(grass7) == 0, out$grass7, grass7)
}
}
out = out[c("qgis_version", "gdal", "grass6", "grass7", "saga",
"supported_saga_versions")]
if (length(out$supported_saga_versions) == 1 &&
out$supported_saga_versions == "") {
out[names(out) != "supported_saga_versions"]
} else {
out
}
}
find_algorithms <- function(search_term = NULL, name_only = FALSE,
qgis_env = set_env()) {
tmp <- try(expr = open_app(qgis_env = qgis_env), silent = TRUE)
algs <- py_capture_output(py_run_string("processing.alglist()"))
algs <- gsub("\n", "', '", algs)
algs <- unlist(strsplit(algs, "', |, '"))
algs <- unlist(strsplit(algs, '", '))
algs <- gsub("\\['|'\\]|'", "", algs)
if (Sys.info()["sysname"] == "Windows") {
algs <- gsub('\\\\|"', "", shQuote(algs))
} else {
algs <- gsub('\\\\|"', "", algs)
}
algs <- algs[algs != ""]
if (!is.null(search_term)) {
algs <- grep(search_term, algs, value = TRUE)
}
if (name_only) {
algs <- gsub(".*>", "", algs)
}
algs
}
get_usage <- function(alg = NULL, intern = FALSE,
qgis_env = set_env()) {
tmp <- try(expr = open_app(qgis_env = qgis_env), silent = TRUE)
out <-
py_capture_output(py_run_string(sprintf("processing.alghelp('%s')", alg)))
out <- gsub("^\\[|\\]$|'", "", out)
out <- gsub(", ", "\n", out)
if (intern) {
out
} else {
cat(gsub("\\\\t", "\t", out))
}
}
get_options <- function(alg = "", intern = FALSE,
qgis_env = set_env()) {
tmp <- try(expr = open_app(qgis_env = qgis_env), silent = TRUE)
out <-
py_capture_output(py_run_string(
sprintf("processing.algoptions('%s')", alg)
))
out <- gsub("^\\[|\\]$|'", "", out)
out <- gsub(", ", "\n", out)
if (intern) {
out
} else {
cat(gsub("\\\\t", "\t", out))
}
}
open_help <- function(alg = "", qgis_env = set_env()) {
tmp <- try(expr = open_app(qgis_env = qgis_env), silent = TRUE)
algs <- find_algorithms(name_only = TRUE, qgis_env = qgis_env)
if (!alg %in% algs) {
stop("The specified algorithm ", alg, " does not exist.")
}
if (grepl("grass", alg)) {
open_grass_help(alg)
} else {
algName <- alg
url = py_run_string(sprintf("url = RQGIS.open_help('%s')", algName))$url
browseURL(url)
}
}
get_args_man <- function(alg = "", options = TRUE,
qgis_env = set_env()) {
tmp <- try(expr = open_app(qgis_env = qgis_env), silent = TRUE)
algs <- find_algorithms(name_only = TRUE, qgis_env = qgis_env)
if (!alg %in% algs) {
stop("The specified algorithm ", alg, " does not exist.")
}
args <- py_run_string(
sprintf(
"algorithm_params = RQGIS.get_args_man('%s')",
alg
)
)$algorithm_params
if (options && length(args$vals[args$opts]) > 0) {
args$vals[args$opts] <- "0"
msg <- paste(paste0(args$params[args$opts], ": 0"), collapse = "\n")
message(
"Choosing default values for following parameters:\n", msg, "\n",
"See get_options('", alg, "') for all available options."
)
}
py_run_string(
"try:\n del(algorithm_params)\nexcept:\ pass"
)
out <- as.list(args$vals)
names(out) <- args$params
out
}
pass_args <- function(alg, ..., params = NULL, NA_flag = -99999,
qgis_env = set_env()) {
dots <- list(...)
if (!is.null(params) && (length(dots) > 0)) {
stop(paste(
"Use either QGIS parameters as R arguments,",
"or as a parameter argument list object, but not both"
))
}
if (length(dots) > 0) {
params <- dots
}
dups <- duplicated(names(params))
if (any(dups)) {
stop(
"You have specified following parameter(s) more than once: ",
paste(names(params)[dups], collapse = ", ")
)
}
suppressMessages(
params_all <- get_args_man(alg, options = TRUE)
)
ind <- setdiff(names(params), names(params_all))
if (length(ind) > 0) {
stop(
paste(sprintf("'%s'", ind), collapse = ", "),
" is/are (an) invalid function argument(s). \n\n",
sprintf("'%s'", alg), " allows following function arguments: ",
paste(sprintf("'%s'", names(params_all)), collapse = ", ")
)
}
params_2 <- params_all
params_2[names(params)] <- params
params <- params_2
rm(params_2)
args <- py_run_string(
sprintf(
"algorithm_params = RQGIS.get_args_man('%s')",
alg
)
)$algorithm_params
ind_2 <- args$params[args$opts] %in% ind
if (any(ind_2)) {
msg <- paste(paste0(args$params[args$opts][ind_2], ": 0"), collapse = "\n")
message(
"Choosing default values for following parameters:\n", msg, "\n",
"See get_options('", alg, "') for all available options."
)
}
opts <- py_run_string(sprintf("opts = RQGIS.get_options('%s')", alg))$opts
opts <- lapply(opts, function(x) {
data.frame(name = x, number = 0:(length(x) - 1), stringsAsFactors = FALSE)
})
int <- intersect(names(params), names(opts))
ls_1 <- lapply(int, function(x) {
if (grepl("saga:", alg)) {
saga_test <- gsub("\\[\\d\\] ", "", opts[[x]]$name)
} else {
saga_test <- opts[[x]]$name
}
if (params[[x]] %in% c(opts[[x]]$name, saga_test)) {
opts[[x]][
opts[[x]]$name == params[[x]] | saga_test == params[[x]],
"number"
]
} else {
test <- suppressWarnings(try(as.numeric(params[[x]]), silent = TRUE))
if (!is.na(test)) {
if (!test %in% opts[[x]]$number) {
stop(
x, " only accepts these values: ",
paste(opts[[x]]$number, collapse = ", "),
"\nYou specified: ", test
)
}
}
params[[x]]
}
})
params[int] <- ls_1
out <- py_run_string(sprintf("out = RQGIS.get_args_man('%s')", alg))$out
params[!out$output] <- save_spatial_objects(
params = params[!out$output],
type_name = out$type_name,
NA_flag = NA_flag
)
params[out$output] <- lapply(params[out$output], function(x) {
if (basename(x) != "None" && dirname(x) == ".") {
tmp = normalizePath(getwd(), winslash = "/")
tmp = gsub("^\\\\\\\\", "//", tmp)
file.path(tmp, x)
} else if (basename(x) != "None") {
normalizePath(dirname(x), winslash = "/", mustWork = TRUE)
tmp = normalizePath(x, winslash = "/", mustWork = FALSE)
gsub("^\\\\\\\\", "//", tmp)
} else {
x
}
})
ind = out$type_name == "extent" & (params == "\"None\"" | params == "None")
if (any(ind)) {
ext <- get_extent(
params = params[!out$output],
type_name = out$type_name[!out$output]
)
params[ind] <- paste(ext, collapse = ",")
}
params <- params[names(params_all)]
check <- py_run_string(sprintf(
"check = RQGIS.check_args('%s', %s)", alg,
py_unicode(r_to_py(unlist(params)))
))$check
if (length(check) > 0) {
stop(sprintf(
"Invalid argument value '%s' for parameter '%s'\n",
check, names(check)
))
}
py_run_string(
"try:\n del(out, opts, check)\nexcept:\ pass"
)
params
}
run_qgis <- function(alg = NULL, ..., params = NULL, load_output = FALSE,
show_output_paths = TRUE, NA_flag = -99999,
qgis_env = set_env()) {
tmp <- try(expr = open_app(qgis_env = qgis_env), silent = TRUE)
if (alg == "qgis:vectorgrid") {
stop("Please use qgis:creategrid instead of qgis:vectorgrid!")
}
if (grepl("^qgis\\:selectby", alg)) {
stop(paste(
"The 'Select by' operations of QGIS are interactive.",
"Please use 'grass7:v.extract' instead."
))
}
params <- pass_args(alg, ..., params = params, NA_flag = NA_flag,
qgis_env = qgis_env)
vals <- vapply(params, function(x) {
tmp <- unlist(strsplit(as.character(x), ""))
tmp <- tmp[tmp != "\""]
tmp <- paste(tmp, collapse = "")
ifelse(grepl("True|False|None", tmp), tmp, shQuote(tmp))
}, character(1))
args <- paste(vals, collapse = ", ")
py_run_string(paste("args = ", r_to_py(args)))
py_run_string(paste0("params = ", py_unicode(r_to_py(names(params)))))
py_run_string("params = dict((x, y) for x, y in zip(params, args))")
cmd <- paste(sprintf("res = processing.runalg('%s', params)", alg))
msg <- py_capture_output(py_run_string(cmd))
if (grepl("Unable to execute algorithm|Error", msg)) {
stop(msg)
}
res <- py_run_string("res")$res
if (show_output_paths) {
print(res)
}
if (msg != "") {
message(msg)
}
py_run_string(
"try:\n del(res, args, params)\nexcept:\ pass"
)
if (load_output) {
out_names <-
py_run_string(
sprintf("out_names = RQGIS.get_args_man('%s')", alg)
)$out_names
out_names <- out_names$params[out_names$output]
py_run_string(
"try:\n del(out_names)\nexcept:\ pass"
)
params_out <- params[out_names]
out_files <- params_out[params_out != "None"]
ls_1 <- lapply(out_files, function(x) {
if (!file.exists(x)) {
stop("Unfortunately, QGIS did not produce: ", x)
}
capture.output({
test <- try(expr = read_sf(x), silent = TRUE)
})
if (inherits(test, "try-error")) {
raster(x)
} else {
test
}
})
if (length(ls_1) == 1) {
ls_1[[1]]
} else {
ls_1
}
}
} |
sobolrep <- function(model=NULL, factors, N, tail=TRUE, conf=0.95, nboot=0, nbrep=1, total=FALSE, ...) {
if (is.character(factors)) {
X.labels <- factors
d <- length(X.labels)
}
else if (factors%%1==0 & factors>0) {
d <- factors
X.labels <- paste("X", 1:d, sep = "")
}
else {
stop("invalid argument 'factors', expecting a positive integer or a character string vector (names).")
}
if (N%%1!=0 | N<=0) {
stop("invalid argument 'N', expecting a positive integer.")
}
if (conf < 0 | conf > 1) {
stop("invalid argument 'conf', expecting a value in ]0,1[.")
}
if (!is.logical(tail)) {
stop("invalid argument 'tail', expecting a boolean.")
}
if(nboot%%1!=0 | nboot<0){
stop("invalid argument 'nboot', expecting a positive integer or zero.")
}
if(!is.logical(total)){
stop("invalid argument 'total', expecting a boolean.")
}
if(N>=(d-1)^2){
if (sqrt(N)%%1==0) {
if (numbers::isPrime(sqrt(N))){
q <- sqrt(N)
}
else if (length(unique(primeFactors(sqrt(N))))==1){
q <- sqrt(N)
} else {
if (tail){
q <- numbers::previousPrime(sqrt(N))
N <- q^2
} else {
q <- numbers::nextPrime(sqrt(N))
N <- q^2
}
warning("The value entered for N is not the square of a prime number. It has been replaced by: ",paste(q^2))
}
}
if (sqrt(N)%%1!=0) {
if (tail){
q <- numbers::previousPrime(sqrt(N))
N <- q^2
} else {
q <- numbers::nextPrime(sqrt(N))
N <- q^2
}
warning("The value entered for N is not the square of a prime number. It has been replaced by: ",paste(q^2))
}
}
if(N<d^2){
q <- numbers::nextPrime(d)
N <- q^2
warning("The value entered for N is not satisfying the constraint N >= (d-1)^2. It has been replaced by: ",paste(q^2))
}
doe <- matrix(NA,nrow=N,ncol=2*d)
perm <- replicate(2*d,sample(q))
doe0a <- addelman_const(d,q,choice="U")
doe0b <- addelman_const(d,q,choice="W")
mat_rand <- matrix(runif(d*q),nrow=q,ncol=d)
for (i in 1:d) {
p1 <- perm[doe0a[,i],i]
p2 <- perm[doe0b[,i],d+i]
doe[,c(i,d+i)] <- (c(p1,p2)-mat_rand[c(p1,p2),i])/q
}
loop_index <- t(combn(d,2))
RP <- matrix(NA,nrow=N,ncol=d+nrow(loop_index))
for(ind in 1:d){
p1 <- order(doe[,ind])
p2 <- order(doe[,d+ind])
RP[,ind] <- p2[order(p1)]
}
for(ind in 1:nrow(loop_index)){
p1 <- do.call(base::order,as.data.frame(doe[,loop_index[ind,]]))
p2 <- do.call(base::order,as.data.frame(doe[,d+loop_index[ind,]]))
RP[,d+ind] <- p2[order(p1)]
}
rm(perm,doe0a,doe0b,mat_rand,p1,p2,loop_index)
X <- rbind(doe[,1:d],doe[,(d+1):(2*d)])
if(total){
perm <- replicate(d,sample(N))
doetot <- matrix(runif(N*d),nrow=N,ncol=d)
for (i in 1:d){
p1 <- perm[,i]
doetot[,i] <- (p1-doetot[p1,i])/N
}
index <- seq(1,d) + seq(0,d-1)*d
X0 <- matrix(c(rep(doe[,(d+1):(2*d)],d)),ncol=d^2)
X0[,index] <- doetot
Xtot <- matrix(X0[,c(outer(seq(1,d^2,by=d),seq(0,d-1),'+'))],ncol=d)
X <- rbind(X, Xtot)
rm(perm,doetot,p1,X0,index)
}
x <- list(model=model, factors=factors, X=X, RP=RP, N=N, order=t,
conf=conf, tail=tail, nboot=nboot, nbrep=nbrep, total=total, call=match.call())
class(x) <- "sobolrep"
if (!is.null(x$model)) {
response(x, ...)
tell(x, ...)
}
return(x)
}
repeat.sobolrep <- function(Ord, RP, mat_rep = NULL, pow_init=NULL){
new_RP <- matrix(0,ncol=ncol(RP),nrow=nrow(RP))
d <- ncol(RP)
q <- sqrt(nrow(RP))
for(ind in 1:d){
p1 <- RP[,ind]
col_Ord <- matrix(Ord[,ind],ncol=q)
new_col <- c(apply(col_Ord,2,sample))
map <- setNames(new_col,c(col_Ord))
new_RP[,ind] <- unname(map[as.character(p1)])
}
return(new_RP)
}
estim.sobolrep <- function(data, i = 1 : nrow(data), RP, d, I, ...){
res <- cpp_get_indices(data, RP, I, i, d)
out <- c(unlist(res))
return(out)
}
estimtotal.sobolrep <- function(data, i = 1 : nrow(data), ...){
ST <- cpp_get_total_indices(data, i)
return(ST)
}
tell.sobolrep <- function(x, y = NULL, ...){
id <- deparse(substitute(x))
if (! is.null(y)) {
x$y <- y
}
else if (is.null(x$y)) {
stop("y not found")
}
X2 <- x$X[(x$N+1):(2*x$N),]
Ord <- apply(X2,2,base::order)
RP <- x$RP
d <- x$factors
nbrep <- x$nbrep
total <- x$total
if(total){
fulldata <- matrix(x$y,ncol=d+2)
data <- fulldata[,1:2]
datatot <- fulldata[,2:(d+2)]
} else{
data <- matrix(x$y,ncol=2)
}
S0 <- 0
Sb <- 0
S2b <- 0
S20 <- 0
timm <- as.numeric(Sys.time())
seed_val <- ((timm-floor(timm))) * 1e8
I <- t(combn(d,2))
for(rep in 1:nbrep){
new_RP <- cbind(repeat.sobolrep(Ord,RP[,1:d]),RP[,(d+1):ncol(RP)])
if (x$nboot == 0){
indices <- data.frame(original = estim.sobolrep(data=data, RP=new_RP, d=d, I=I))
Sb <- data.frame("original"=indices[1:d,]) + Sb
S2b <- data.frame("original"=indices[(d+1):nrow(indices),]) + S2b
} else{
set.seed(seed_val)
S.boot <- boot(data=data, estim.sobolrep, R = x$nboot, RP=new_RP, d=d, I=I)
Sb <- as.matrix(S.boot$t[,1:d]) + Sb
S0 <- S.boot$t0[1:d] + S0
S2b <- as.matrix(S.boot$t[,(d+1):ncol(RP)]) + S2b
S20 <- S.boot$t0[(d+1):ncol(RP)] + S20
}
set.seed(NULL)
}
if (x$nboot == 0){
x$S <- Sb/nbrep
x$S2 <- S2b/nbrep
} else{
S.boot$t <- cbind(Sb, S2b)/x$nbrep
S.boot$t0 <- c(S0, S20)/x$nbrep
indices <- bootstats(S.boot, x$conf, "bias corrected")
x$S <- indices[1:d,]
x$S2 <- indices[(d+1):nrow(indices),]
}
if(total){
if (x$nboot == 0){
x$T <- data.frame("original"=estimtotal.sobolrep(datatot))
} else{
ST.boot <- boot(datatot, estimtotal.sobolrep, R = x$nboot)
x$T <- bootstats(ST.boot, x$conf, "bias corrected")
}
}
x$V <- var(data[,1])
rownames <- paste("X",1:d,sep="")
rownames2 <- paste("X",apply(t(combn(d,2)),1,paste,collapse=""),sep= "")
rownames(x$S) <- rownames
rownames(x$S2) <- rownames2
if(total){
rownames(x$T) <- rownames
}
assign(id, x, parent.frame())
}
print.sobolrep <- function(x, ...) {
cat("\nCall:\n", deparse(x$call), "\n", sep = "")
if(x$total){
cat("\nModel runs:", x$N*(x$factors+2), "\n")
} else{
cat("\nModel runs:", 2*x$N, "\n")
}
if (!is.null(x$y)) {
cat("\nModel variance:\n")
print(x$V)
cat("\nFirst-order indices:\n")
print(x$S)
cat("\nClosed second-order indices:\n")
print(x$S2)
if(x$total){
cat("\nTotal-effect indices:\n")
print(x$T)
}
}
}
plot.sobolrep <- function(x, ylim = c(0, 1), choice, ...) {
if (!is.null(x$y)) {
if (choice==1){
nodeplot(x$S, ylim = ylim, ...)
legend(x = "topright", legend = c("First-order indices"))
}
if (choice==2){
nodeplot(x$S2, ylim = ylim, ...)
legend(x = "topright", legend = c("Second-order indices"))
}
if (choice==3 & x$total){
nodeplot(x$T, ylim = ylim, ...)
legend(x = "topright", legend = c("Total-effect indices"))
}
}
} |
NULL
expect_true <- function(object, info = NULL, label = NULL) {
act <- quasi_label(enquo(object), label, arg = "object")
act$val <- as.vector(act$val)
expect_waldo_constant(act, TRUE, info = info)
}
expect_false <- function(object, info = NULL, label = NULL) {
act <- quasi_label(enquo(object), label, arg = "object")
act$val <- as.vector(act$val)
expect_waldo_constant(act, FALSE, info = info)
}
expect_null <- function(object, info = NULL, label = NULL) {
act <- quasi_label(enquo(object), label, arg = "object")
expect_waldo_constant(act, NULL, info = info)
}
expect_waldo_constant <- function(act, constant, info) {
comp <- waldo_compare(act$val, constant, x_arg = "actual", y_arg = "expected")
expect(
identical(act$val, constant),
sprintf(
"%s is not %s\n\n%s",
act$lab, deparse(constant),
paste0(comp, collapse = "\n\n")
),
info = info,
trace_env = caller_env()
)
invisible(act$val)
} |
renderLineChart <- function(expr, env=parent.frame(), quoted=FALSE) {
func = NULL
shiny::installExprFunction(expr, "func", env, quoted)
function() {
dataframe <- func()
mapply(function(col, name) {
values <- mapply(function(val, i) {
list(x = i, y = val)
}, col, 1:nrow(dataframe), SIMPLIFY=FALSE, USE.NAMES=FALSE)
list(key = name, values = values)
}, dataframe, names(dataframe), SIMPLIFY=FALSE, USE.NAMES=FALSE)
}
} |
ind.oneway.second <- function(m, sd, n, unbiased=TRUE, contr=NULL, sig.level=.05, digits=3){
if(length(n)==1){
n <- rep(n, length(m))
}
if(unbiased==FALSE){
sd <- ssd2sd(n,sd)
}
k <- length(m)
Xg <- sum(n*m)/sum(n)
dfb <- k - 1
dfw <- sum(n) - k
MSb <- sum(n * (m - Xg)^2)/(k-1)
MSw <- sum((n-1)*sd^2)/dfw
SSb <- dfb * MSb
SSw <- dfw * MSw
SSt <- SSb + SSw
f.value <- MSb/MSw
anova.table <- data.frame(matrix(NA,ncol=4, nrow=3))
rownames(anova.table) <- c("Between (A)", "Within", "Total")
colnames(anova.table) <- c("SS", "df", "MS", "F")
anova.table$SS <- c(SSb, SSw,SSt)
anova.table$df <- c(dfb, dfw, dfb+dfw)
anova.table$MS <- c(MSb,MSw,NA)
anova.table$F <- c(f.value, NA,NA)
class(anova.table) <- c("anova", "data.frame")
anova.table <- round(anova.table, digits)
etasq <- SSb / SSt
delta.lower <- delta.upper <- numeric(length(etasq))
delta.lower <- try(FNONCT(f.value, dfb, dfw, prob=1-sig.level/2), silent=TRUE)
delta.upper <- try(FNONCT(f.value, dfb, dfw, prob=sig.level/2), silent=TRUE)
if(is.character(delta.lower)){
delta.lower <- 0
}
etasq.lower <- delta.lower / (delta.lower + dfb + dfw + 1)
etasq.upper <- delta.upper / (delta.upper + dfb + dfw + 1)
omegasq <- (SSb - dfb * MSw)/(SSt + MSw)
sosb_L <- SSt * etasq.lower
msw_L <- (SSt - sosb_L)/dfw
omegasq.lower <- (sosb_L - (dfb*msw_L))/(SSt+msw_L)
sosb_U <- SSt * etasq.upper
msw_U <- (SSt - sosb_U)/dfw
omegasq.upper <- (sosb_U - (dfb*msw_U))/(SSt+msw_U)
omnibus.es <- round(c(etasq=etasq, etasq.lower=etasq.lower, etasq.upper=etasq.upper),
digits)
temp <- combinations(k,2)
cont1 <- matrix(0, nrow=nrow(temp),ncol=k)
cont1.lab <- rep(0,nrow(temp))
for(i in 1:nrow(temp)){
cont1[i, temp[i,1]] <- 1
cont1[i, temp[i,2]] <- -1
cont1.lab[i] <- paste(temp[i,1],"-",temp[i,2], sep="")
rownames(cont1) <- cont1.lab
}
if(!is.null(contr)){
if(is.vector(contr)){
cont1 <- t(as.matrix(contr))
}else{
cont1 <- contr
}
}
psi <- colSums(t(cont1) * as.vector(m))
SSpsi <- (psi^2)/colSums(t(cont1^2) / as.vector(n))
nmat <- matrix(n, nrow=nrow(cont1), ncol=length(n), byrow=TRUE)
psi.std <- sqrt(MSw * rowSums(cont1 ^ 2/nmat))
psi.lower <- psi + psi.std * qt(sig.level/2, dfw)
psi.upper <- psi + psi.std * qt(sig.level/2, dfw, lower.tail=FALSE)
raw.contrasts <- round(data.frame(mean.diff=psi, lower=psi.lower, upper=psi.upper, std=psi.std), digits)
rownames(raw.contrasts) <- rownames(cont1)
gpsi <- psi/sqrt(MSw)
gpsi.std <- sqrt(rowSums(cont1 ^ 2/nmat))
gpsi.lower <- gpsi + gpsi.std * qt(sig.level/2, dfw)
gpsi.upper <- gpsi + gpsi.std * qt(sig.level/2, dfw, lower.tail=FALSE)
standardized.contrasts <- round(data.frame(es=gpsi, lower=gpsi.lower, upper=gpsi.upper, std=gpsi.std), digits)
rownames(standardized.contrasts) <- rownames(cont1)
c.delta <- c(.10, .25, .4)
criterion.power <- round(power.f(sig.level=sig.level, u=dfb, n=sum(n)/k,delta=c.delta), digits)
names(criterion.power) <- c("small", "medium", "large")
output <- list(anova.table=anova.table, omnibus.es=omnibus.es, raw.contrasts=raw.contrasts, standardized.contrasts = standardized.contrasts, power=criterion.power)
return(output)
} |
rm(list=ls())
setwd("C:/Users/Tom/Documents/Kaggle/Facebook/Data")
library(data.table)
targetDate <- "23-05-2016"
blockTarget <- c("train","test")[1]
dir.create(file.path(getwd(), targetDate), showWarnings = FALSE)
distanceConstantX <- 2.5
distanceId <- which(distanceConstantX==c(1, 2.5, 4, 7, 12, 30))
xBlockSize <- c(0.2,0.25,0.5,0.4,0.5,1)[distanceId]
nbXBlocks <- 10/xBlockSize - 1
yBlockSize <- c(0.2,0.1,0.1,0.05,0.04,0.025)[distanceId]
nbYBlocks <- 10/yBlockSize - 1
nbBlocks <- nbXBlocks*nbYBlocks
if(blockTarget=="train"){
train <- readRDS(paste0("../Downsampling/",targetDate,"/summary.rds"))
} else{
train <- readRDS("train.rds")
}
targetFolder <- file.path(getwd(), targetDate, blockTarget)
dir.create(targetFolder, showWarnings = FALSE)
for(blockId in 1:nbBlocks){
cat("Processing block",blockId,"of",nbBlocks,"\n")
xStart <- xBlockSize * ((blockId-1) %% nbXBlocks)
xMin <- xStart-(xStart==0)
xMax <- xStart + 2*xBlockSize + 1e-6
yStart <- floor((blockId-1)/nbXBlocks)*yBlockSize
yMin <- yStart-(yStart==0)
yMax <- yStart + 2*yBlockSize + 1e-6
block <- train[x>xMin & x<=xMax & y>yMin & y<=yMax]
savePath <- file.path(targetFolder,
paste0(nbBlocks," - ", xStart, " - ", yStart, ".rds"))
saveRDS(block, savePath)
} |
setMethod("simulate", "yuima.multimodel",
function(object, nsim=1, seed=NULL, xinit, true.parameter,
space.discretized=FALSE, increment.W=NULL, increment.L=NULL, method="euler",
hurst, methodfGn="WoodChan",
sampling, subsampling,
...){
tmpsamp <- NULL
if(missing(sampling)){
tmpsamp <- setSampling(...)
} else {
tmpsamp <- sampling
}
tmpyuima <- setYuima(model=object, sampling=tmpsamp)
out <- simulate(tmpyuima, nsim=nsim, seed=seed, xinit=xinit,
true.parameter=true.parameter,
space.discretized=space.discretized,
increment.W=increment.W, increment.L=increment.L,
method=method,
hurst=hurst,methodfGn=methodfGn, subsampling=subsampling)
return(out)
})
aux.simulate.multimodel<-function(object, nsim, seed, xinit, true.parameter,
space.discretized, increment.W, increment.L,method,
hurst=0.5,methodfGn,
sampling, subsampling,
Initial, Terminal, n, delta,
grid, random, sdelta,
sgrid, interpolation){
if(is(object@model@measure$df,"yuima.law")&& is.null(increment.L)){
samp<- object@sampling
randomGenerator<-object@model@measure$df
if(samp@regular){
tForMeas<-samp@delta
NumbIncr<-samp@n[1]
if(missing(true.parameter)){
eval(parse(text= paste0("measureparam$",
object@[email protected]," <- tForMeas",collapse="")))
}else{
measureparam<-true.parameter[object@model@parameter@measure]
eval(parse(text= paste0("measureparam$",
object@[email protected]," <- tForMeas",collapse="")))
}
Noise<- rand(object = randomGenerator, n=NumbIncr, param=measureparam)
}else{
tForMeas<-diff(samp@grid[[1]]-samp@Initial)
my.InternalFunforLevy<-function(tForMeas,
randomGenerator,
true.parameter,object){
if(missing(true.parameter)){
eval(parse(text= paste0("measureparam$",
object@[email protected]," <- tForMeas",collapse="")))
}else{
measureparam<-true.parameter[object@model@parameter@measure]
eval(parse(text= paste0("measureparam$",
object@[email protected]," <- tForMeas",collapse="")))
}
Noise<- rand(object = randomGenerator, n=samp@n[1], param=measureparam)
}
Noise<-sapply(X=tForMeas, FUN=my.InternalFunforLevy,
randomGenerator=randomGenerator,
true.parameter=true.parameter,
object=object)
}
increment.L=Noise
if(is(object@model@measure$df,"yuima.law")&&!is.null(increment.L)){
dummy<-object
dummy@model@measure$df <- expression()
if(missing(xinit)){
res<- aux.simulate.multimodel(object=dummy, nsim, xinit=object@model@xinit ,seed, true.parameter,
space.discretized, increment.W,
increment.L = t(increment.L), method, hurst, methodfGn,
sampling=object@sampling)
}else{
res<- aux.simulate.multimodel(object=dummy, nsim, xinit, seed, true.parameter,
space.discretized, increment.W,
increment.L = increment.L, method, hurst, methodfGn,
sampling=object@sampling)
}
res@model <- object@model
if(missing(subsampling))
return(res)
return(subsampling(res, subsampling))
}
}
yuima <- object
samp <- object@sampling
if(missing(yuima)){
yuima.warn("yuima object is missing.")
return(NULL)
}
tmphurst<-yuima@model@hurst
if(!missing(hurst)){
yuima@model@hurst=hurst
}
if (is.na(yuima@model@hurst)){
yuima.warn("Specify the hurst parameter.")
return(NULL)
}
tmpsamp <- NULL
if(is.null(yuima@sampling)){
if(missing(sampling)){
tmpsamp <- setSampling(Initial = Initial,
Terminal = Terminal, n = n, delta = delta,
grid = grid, random = random, sdelta=sdelta,
sgrid=sgrid, interpolation=interpolation)
} else {
tmpsamp <- sampling
}
} else {
tmpsamp <- yuima@sampling
}
yuima@sampling <- tmpsamp
sdeModel <- yuima@model
Terminal <- yuima@sampling@Terminal[1]
n <- yuima@sampling@n[1]
r.size <- [email protected]
d.size <- [email protected]
if(missing(xinit)){
xinit <- sdeModel@xinit
} else {
if(length(xinit) != d.size){
if(length(xinit)==1){
xinit <- rep(xinit, d.size)
} else {
yuima.warn("Dimension of xinit variables missmatch.")
return(NULL)
}
}
}
xinit <- as.expression(xinit)
par.len <- length(sdeModel@parameter@all)
if(missing(true.parameter) & par.len>0){
true.parameter <- vector(par.len, mode="list")
for(i in 1:par.len)
true.parameter[[i]] <- 0
names(true.parameter) <- sdeModel@parameter@all
}
yuimaEnv <- new.env()
if(par.len>0){
for(i in 1:par.len){
pars <- sdeModel@parameter@all[i]
for(j in 1:length(true.parameter)){
if( is.na(match(pars, names(true.parameter)[j]))!=TRUE){
assign(sdeModel@parameter@all[i], true.parameter[[j]],yuimaEnv)
}
}
}
}
if(space.discretized){
if(r.size>1){
warning("Space-discretized EM cannot be used for multi-dimentional models. Use standard method.")
space.discretized <- FALSE
}
if(length([email protected])){
warning("Space-discretized EM is for only Wiener Proc. Use standard method.")
space.discretized <- FALSE
}
}
if(!missing(increment.W) & !is.null(increment.W)){
if(space.discretized == TRUE){
yuima.warn("Parameter increment must be invalid if space.discretized=TRUE.")
return(NULL)
}else if(dim(increment.W)[1] != r.size){
yuima.warn("Length of increment's row must be same as yuima@[email protected].")
return(NULL)
}else if(dim(increment.W)[2] != n){
yuima.warn("Length of increment's column must be same as sampling@n[1].")
return(NULL)
}
}
if(!missing(increment.L) & !is.null(increment.L)){
if(space.discretized == TRUE){
yuima.warn("Parameter increment must be invalid if space.discretized=TRUE.")
return(NULL)
}else if(dim(increment.L)[1] != length(yuima@[email protected][[1]]) ){
yuima.warn("Length of increment's row must be same as yuima@[email protected].")
return(NULL)
}else if(dim(increment.L)[2] != n){
yuima.warn("Length of increment's column must be same as sampling@n[1].")
return(NULL)
}
}
yuimaEnv$dL <- increment.L
if(space.discretized){
yuima@data <- space.discretized(xinit, yuima, yuimaEnv)
yuima@model@hurst<-tmphurst
return(yuima)
}
delta <- samp@delta
if(missing(increment.W) | is.null(increment.W)){
if( sdeModel@hurst!=0.5 ){
grid<-sampling2grid(yuima@sampling)
isregular<-yuima@sampling@regular
if((!isregular) || (methodfGn=="Cholesky")){
dW<-CholeskyfGn(grid, sdeModel@hurst,r.size)
yuima.warn("Cholesky method for simulating fGn has been used.")
} else {
dW<-WoodChanfGn(grid, sdeModel@hurst,r.size)
}
} else {
delta<-samp@delta
if(!is.Poisson(sdeModel)){
dW <- rnorm(n * r.size, 0, sqrt(delta))
dW <- matrix(dW, ncol=n, nrow=r.size,byrow=TRUE)
} else {
dW <- matrix(0,ncol=n,nrow=1)
}
}
} else {
dW <- increment.W
}
if(is(sdeModel,"yuima.multimodel")&&!is(sdeModel@measure$df,"yuima.law")){
if(length([email protected])==1){
if([email protected]=="CP"){
intens <- as.character(sdeModel@measure$intensity)
dens <- as.character(sdeModel@measure$df$expr)
dumCP <- setPoisson(intensity = intens, df = dens,
dimension = length([email protected][[1]]))
dummSamp <- yuima@sampling
samp <- setSampling(Initial = dummSamp@Initial,
Terminal = dummSamp@Terminal,
n = dummSamp@n)
traj <- simulate(object = dumCP,
sampling = samp,
true.parameter = true.parameter)
Incr.levy <- diff(traj@[email protected][[1]])
if(length(traj@[email protected])>1){
for(i in c(2:length(traj@[email protected]))){
Incr.levy<-cbind(Incr.levy,diff(traj@[email protected][[i]]))
}
}
}else{
dummSamp <- yuima@sampling
samp <- setSampling(Initial = dummSamp@Initial,
Terminal = dummSamp@Terminal,
n = dummSamp@n)
xinitCode <- yuima@model@xinit
dimJumpCoeff <- length(yuima@[email protected][[1]])
dumjumpCoeff <- matrix(as.character(diag(rep(1,dimJumpCoeff))),dimJumpCoeff,dimJumpCoeff)
Dumsolve.variable<-paste0("MyLevyDum",c(1:dimJumpCoeff))
if(!is(sdeModel@measure$df,"yuima.law")){
LevyMod <- setMultiModel(drift=rep("0",dimJumpCoeff),
diffusion = NULL,
jump.coeff = dumjumpCoeff,
df = as.character(sdeModel@measure$df$expr),
measure.type = [email protected],
solve.variable = Dumsolve.variable)
}else{
LevyMod <- setModel(drift=rep("0",dimJumpCoeff),
diffusion = NULL,
jump.coeff = dumjumpCoeff,
measure = sdeModel@measure,
measure.type = [email protected],
solve.variable = Dumsolve.variable)
}
yuimaLevy <- setYuima(model=LevyMod, sampling = samp)
yuimaLevy@model@dimension <- dimJumpCoeff
traj<- simCode(xinit=xinitCode,yuima = yuimaLevy, env=yuimaEnv)
Incr.levy <- diff(traj@[email protected][[1]])
if(length(traj@[email protected])>1){
for(i in c(2:length(traj@[email protected]))){
Incr.levy<-cbind(Incr.levy,diff(traj@[email protected][[i]]))
}
}
}
}else{
if(any([email protected]=="CP")){
intens <- as.character(sdeModel@measure$intensity)
dens <- as.character(sdeModel@measure$df$expr)
numbLev <- length([email protected])
posCPindex <- c(1:numbLev)[[email protected]%in%"CP"]
CPmeasureComp <- paste0(dens,"[,c(",toString(posCPindex),")]")
intens <- as.character(sdeModel@measure$intensity)
dumCP <- setPoisson(intensity = intens, df = CPmeasureComp,
dimension = length(posCPindex))
dummSamp <- yuima@sampling
samp <- setSampling(Initial = dummSamp@Initial,
Terminal = unique(dummSamp@Terminal),
n = unique(dummSamp@n))
trajCP <- simulate(object = dumCP, sampling = samp,
true.parameter = true.parameter)
dimJumpCoeff <- length(yuima@[email protected])
dumjumpCoeff <- matrix(as.character(diag(rep(1,dimJumpCoeff))),dimJumpCoeff,dimJumpCoeff)
Dumsolve.variable <- paste0("MyLevyDum",c(1:dimJumpCoeff))
dummy.measure.code <- as.character(sdeModel@measure$df$expr)
LevyMod <- setMultiModel(drift=rep("0",dimJumpCoeff),
diffusion = NULL,
jump.coeff = dumjumpCoeff,
df = dummy.measure.code,
measure.type = "code",
solve.variable = Dumsolve.variable)
yuimaLevy <- setYuima(model=LevyMod, sampling = samp)
yuimaLevy@model@dimension <- dimJumpCoeff
trajcode<- simCode(xinit=rep("0",length=dimJumpCoeff),
yuima = yuimaLevy, env=yuimaEnv)
countCP <- 0
countcode <- 0
if(yuima@[email protected][1]=="CP"){
Incr.levy <- as.matrix(as.numeric(diff(trajCP@[email protected][[1]])))
countcode <- countcode+1
}else{
if(yuima@[email protected][1]=="code"){
Incr.levy <- as.matrix(as.numeric(diff(trajcode@[email protected][[1]])))
countCP <- countCP+1
}
}
if(length(yuima@[email protected])>1){
for(i in c(2:length(yuima@[email protected]))){
if(yuima@[email protected][i]=="CP"){
Incr.levy<-cbind(Incr.levy,as.numeric(diff(trajCP@[email protected][[(i-countCP)]])))
countcode <- countcode+1
}else{
if(yuima@[email protected][i]=="code"){
Incr.levy <- cbind(Incr.levy,as.numeric(diff(trajcode@[email protected][[i]])))
countCP <- countCP+1
}
}
}
}
}
}
}
if(!is.null(increment.L))
Incr.levy<-t(increment.L)
assign("dL",t(Incr.levy),envir=yuimaEnv)
sim <- Multi.Euler(xinit,yuima,dW,env=yuimaEnv)
yuima@[email protected]<-as.list(numeric(length=length([email protected])))
for(i in 1:length(yuima@[email protected])){
yuima@[email protected][[i]]<[email protected][[i]]
index(yuima@[email protected][[i]]) <- yuima@sampling@grid[[1]]
}
yuima@[email protected] <- [email protected]
yuima@model@xinit <- xinit
yuima@model@hurst <-tmphurst
if(missing(subsampling))
return(yuima)
subsampling(yuima, subsampling)
}
simCode <- function(xinit,yuima,env){
sdeModel<-yuima@model
modelstate <- [email protected]
modeltime <- [email protected]
Terminal <- yuima@sampling@Terminal[1]
Initial <- yuima@sampling@Initial[1]
dimension <- yuima@model@dimension
dummy.val <- numeric(dimension)
if(length(xinit) != dimension)
xinit <- rep(xinit, dimension)[1:dimension]
if(length(unique(as.character(xinit)))==1 &&
is.numeric(tryCatch(eval(xinit[1],envir=env),error=function(...) FALSE))){
dX_dummy<-xinit[1]
dummy.val<-eval(dX_dummy, envir=env)
if(length(dummy.val)==1){
dummy.val<-rep(dummy.val,dimension)
}
for(i in 1:length(modelstate)){
assign(modelstate[i],dummy.val[i] ,envir=env)
}
} else {
for(i in 1:dimension){
dummy.val[i] <- eval(xinit[i], envir=env)
}
}
JP <- eval([email protected][[1]], envir=env)
mu.size <- length(JP)
dummyList<-as.list(env)
lgth.meas<-length(yuima@model@parameter@measure)
if(lgth.meas>1){
for(i in c(2:lgth.meas)){
idx.dummy<-yuima@model@parameter@measure[i]
assign(idx.dummy,as.numeric(dummyList[idx.dummy]))
}
}
if(!is(sdeModel@measure$df,"yuima.law")){
dumStringMeas <- toString(sdeModel@measure$df$expr)
dumStringMeas1 <- substr(x=dumStringMeas, start=2,stop=nchar(x = dumStringMeas))
dumStringMeas2 <- paste0("r",dumStringMeas1)
tmpMeas2 <- strsplit(x=dumStringMeas2,split="")
posMeas2 <- match("(" , tmpMeas2[[1]])[1]
dumStringMeas3 <- substr(x=dumStringMeas2, start=1,stop=(posMeas2-1))
a<-deparse(args(eval(parse(text=dumStringMeas3))))[1]
b<-gsub("^function (.+?)","(",a)
b1 <- substr(x=b,start =1, stop=(nchar(b)-1))
FinalMeasRandn<-paste0(dumStringMeas3,b1)
dummyvarMaes <- all.vars(parse(text=FinalMeasRandn))
posDum<- match(c([email protected],sdeModel@parameter@measure),dummyvarMaes)
if(length(posDum)+1!=length(dummyvarMaes)){
yuima.stop("too input variables in the random number function")
}
deltaVar <- dummyvarMaes[-posDum]
F <- suppressWarnings(parse(text=gsub("^r(.+?)\\(.+?,", "r\\1(mu.size*N_sharp,", parse(text=FinalMeasRandn), perl=TRUE)))
F.env <- new.env(parent=env)
N_sharp <- unique(yuima@sampling@n)
TrueDelta <- unique(yuima@sampling@delta)
assign(deltaVar, TrueDelta, envir=F.env)
assign("mu.size", mu.size, envir=F.env)
assign("N_sharp", N_sharp, envir=F.env)
randJ <- eval(F, envir=F.env)
randJ <- rbind(dummy.val, randJ)
}else{
TrueDelta <- unique(yuima@sampling@delta)
randJ<- env$dL
}
RANDLevy <- apply(randJ,2,cumsum)
tsX <- zoo(x=RANDLevy)
yuimaData <- setYuima(data=setData(tsX, delta=TrueDelta))
return(yuimaData)
}
Multi.Euler<-function(xinit,yuima,dW,env){
sdeModel<-yuima@model
modelstate <- [email protected]
modeltime <- [email protected]
V0 <- sdeModel@drift
V <- sdeModel@diffusion
r.size <- [email protected]
d.size <- [email protected]
Terminal <- yuima@sampling@Terminal[1]
n <- yuima@sampling@n[1]
dL <- env$dL
if(length(unique(as.character(xinit)))==1 &&
is.numeric(tryCatch(eval(xinit[1],env),error=function(...) FALSE))){
dX_dummy<-xinit[1]
dummy.val<-eval(dX_dummy, env)
if(length(dummy.val)==1){dummy.val<-rep(dummy.val,length(xinit))}
for(i in 1:length(modelstate)){
assign(modelstate[i],dummy.val[i] ,env)
}
dX<-vector(mode="numeric",length(dX_dummy))
for(i in 1:length(xinit)){
dX[i] <- dummy.val[i]
}
}else{
dX_dummy <- xinit
if(length(modelstate)==length(dX_dummy)){
for(i in 1:length(modelstate)) {
if(is.numeric(tryCatch(eval(dX_dummy[i],env),error=function(...) FALSE))){
assign(modelstate[i], eval(dX_dummy[i], env),env)
}else{
assign(modelstate[i], 0, env)
}
}
}else{
yuima.warn("the number of model states do not match the number of initial conditions")
return(NULL)
}
dX<-vector(mode="numeric",length(dX_dummy))
for(i in 1:length(dX_dummy)){
dX[i] <- eval(dX_dummy[i], env)
}
}
delta <- Terminal/n
has.drift <- sum(as.character(sdeModel@drift) != "(0)")
var.in.diff <- is.logical(any(match(unlist(lapply(sdeModel@diffusion, all.vars)), [email protected])))
p.b <- function(t, X=numeric(d.size)){
for(i in 1:length(modelstate)){
assign(modelstate[i], X[i], env)
}
assign(modeltime, t, env)
if(has.drift){
tmp <- matrix(0, d.size, r.size+1)
for(i in 1:d.size){
tmp[i,1] <- eval(V0[i], env)
for(j in 1:r.size){
tmp[i,j+1] <- eval(V[[i]][j],env)
}
}
} else {
tmp <- matrix(0, d.size, r.size)
if(!is.Poisson(sdeModel)){
for(i in 1:d.size){
for(j in 1:r.size){
tmp[i,j] <- eval(V[[i]][j],env)
}
}
}
}
return(tmp)
}
X_mat <- matrix(0, d.size, n+1)
X_mat[,1] <- dX
if(has.drift){
dW <- rbind( rep(1, n)*delta , dW)
}
if(!length([email protected])){
if(var.in.diff & (!is.Poisson(sdeModel))){
for( i in 1:n){
dX <- dX + p.b(t=i*delta, X=dX) %*% dW[, i]
X_mat[,i+1] <- dX
}
}else{
sde.tics <- seq(0, Terminal, length=(n+1))
sde.tics <- sde.tics[2:length(sde.tics)]
X_mat[, 1] <- dX
for(i in 1:length(modelstate)){
assign(modelstate[i], dX[i])
}
assign(modeltime, sde.tics)
t.size <- length(sde.tics)
if(has.drift){
pbdata <- matrix(0, d.size*(r.size+1), t.size)
for(i in 1:d.size){
pbdata[(i-1)*(r.size+1)+1, ] <- eval(V0[i], env)
for(j in 1:r.size){
pbdata[(i-1)*(r.size+1)+j+1, ] <- eval(V[[i]][j], env)
}
}
dim(pbdata)<-(c(r.size+1, d.size*t.size))
}else{
pbdata <- matrix(0, d.size*r.size, t.size)
if(!is.Poisson(sdeModel)){
for(i in 1:d.size){
for(j in 1:r.size){
pbdata[(i-1)*r.size+j, ] <- eval(V[[i]][j], env)
}
}
}
dim(pbdata)<-(c(r.size, d.size*t.size))
}
pbdata <- t(pbdata)
for( i in 1:n){
if(!is.Poisson(sdeModel))
dX <- dX + pbdata[((i-1)*d.size+1):(i*d.size), ] %*% dW[, i]
X_mat[, i+1] <- dX
}
}
tsX <- ts(data=t(X_mat), deltat=delta , start=0)
}else{
JP <- [email protected]
mu.size <- length(JP)
p.b.j <- function(t, X=numeric(d.size)){
for(i in 1:length(modelstate)){
assign(modelstate[i], X[i], env)
}
assign(modeltime, t, env)
j.size <- length(JP[[1]])
tmp <- matrix(0, mu.size, j.size)
for(i in 1:mu.size){
for(j in 1:j.size){
tmp[i,j] <- eval(JP[[i]][j],env)
}
}
return(tmp)
}
dZ <- dL
for(i in 1:n){
assign([email protected], dZ[,i], env)
if([email protected]){
dZ[,i] <- 1
}
tmp.j <- p.b.j(t=i*delta, X=dX)
dX <- dX + p.b(t=i*delta, X=dX) %*% dW[, i] +tmp.j %*% dZ[,i]
X_mat[, i+1] <- dX
}
tsX <- ts(data=t(X_mat), deltat=delta, start=0)
}
yuimaData <- setData(original.data=tsX)
return(yuimaData)
} |
segmentByGFLars <- function(Y, K, weights=defaultWeights(nrow(Y)), epsilon=1e-9, verbose=FALSE){
if (!is.matrix(Y) || !is.numeric(Y)){
stop("Argument 'Y' should be a numeric matrix.\nPlease see 'doGFLars' for using GFLars directly on a data.frame or a numeric vector")
}
if (any(is.na(Y))) {
stop("Missing values are not handled by the current implementation of group fused LARS")
}
rownames(Y) <- NULL
n <- as.numeric(nrow(Y))
p <- dim(Y)[2]
if (missing(K)) {
stop("Please provide argument 'K'")
}
if (K>=n) {
stop("Too many breakpoints are required")
}
if (is.null(weights)) {
weights <- defaultWeights(n)
}
res.meansignal <- colMeans(Y);
res.lambda <- numeric(K);
res.bkp <- numeric(K)
res.value <- list()
res.c <- matrix(NA, n-1, K);
Y <- sweep(Y, 2, colMeans(Y))
AS <- numeric(0)
c <- leftMultiplyByXt(Y=Y, w=weights, verbose=verbose)
for (ii in 1:K){
cNorm <- rowSums(c^2)
res.c[, ii] <- cNorm
bigcHat <- max(cNorm)
if (verbose) {
print(paste('optimize LARS : ', ii))
}
if (ii==1) {
AS <- which.max(cNorm)
res.bkp[ii] <- AS
}
I <- order(AS)
AS <- AS[I]
w <- leftMultiplyByInvXAtXA(n, AS, matrix(c[AS,], ncol=p), weights, verbose=verbose)
a <- multiplyXtXBySparse(n=n, ind=AS, val=w, w=weights, verbose=verbose)
a1 <- bigcHat - rowSums(a^2)
u <- a*c
a2 <- bigcHat - rowSums(u)
a3 <- bigcHat - cNorm
gammaTemp = matrix(NA, n-1, 2);
subset <- which(a1 > epsilon)
delta <- a2[subset]^2 - a1[subset]*a3[subset]
delta.neg <- subset[which(delta<0)]
delta.pos <- subset[which(delta>=0)]
gammaTemp[delta.neg, 1] <- NA;
gammaTemp[delta.pos, 1] <- (a2[delta.pos]+sqrt(delta[which(delta>=0)]))/a1[delta.pos];
gammaTemp[delta.neg, 2] <- NA;
gammaTemp[delta.pos, 2] <- (a2[delta.pos]-sqrt(delta[which(delta>=0)]))/a1[delta.pos];
subset <- which((a1 <= epsilon) & (a2 > epsilon))
gammaTemp[subset, ] = a3[subset] / (2*a2[subset])
maxg <- max(gammaTemp, na.rm=TRUE)+1;
subset <- which((a1 <= epsilon) & (a2 <= epsilon));
gammaTemp[subset, ] <- maxg;
gammaTemp[AS, ] <- maxg;
gamma <- min(gammaTemp, na.rm=TRUE)
idx <- which.min(gammaTemp)
nexttoadd <- 1 + (idx-1) %% (n-1);
res.lambda[ii] <- sqrt(bigcHat);
res.value[[ii]] <- matrix(numeric(ii*p), ncol = p)
res.value[[ii]][I,] <- gamma*w;
if (ii>1){
res.value[[ii]][1:(ii-1),] <- res.value[[ii]][1:(ii-1),] + res.value[[ii-1]];
}
if (ii<K){
AS <- c(AS,nexttoadd)
res.bkp[ii+1] <- nexttoadd;
c <- c-gamma*a;
}
}
list(
bkp=res.bkp,
lambda=res.lambda,
mean=res.meansignal,
value=res.value,
c=res.c)
} |
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
tabular2 <- function(df, ...) {
df<-data.frame(df$m,df$q,df$c,df$f,df$h)
stopifnot(is.data.frame(df))
align <- function(x) if (is.numeric(x)) "r" else "l"
col_align <- vapply(df, align, character(1))
cols <- lapply(df, format, ...)
contents <- do.call("paste",
c(cols, list(sep = " \\tab ", collapse = "\\cr\n ")))
x <- paste("\\tabular{", paste(col_align, collapse = ""), "}{\n ",
contents, "\n}\n", sep = "")
cat(x)
} |
logistic_fun <- function(Dose, E0 = 0, EC50 = 50, Emax = 1, rc = 5) {
E0 + Emax / (1 + exp((EC50 - Dose) / rc))
}
logisticFun <- logistic_fun |
nnfromvertex <- function(X, what=c("dist", "which"), k=1) {
stopifnot(is.lpp(X))
what <- match.arg(what, several.ok=TRUE)
nX <- npoints(X)
nv <- nvertices(domain(X))
if(length(k) == 0)
stop("k is an empty vector")
else if(length(k) == 1) {
if(k != round(k) || k <= 0)
stop("k is not a positive integer")
} else {
if(any(k != round(k)) || any(k <= 0))
stop(paste("some entries of the vector",
sQuote("k"), "are not positive integers"))
}
k <- as.integer(k)
kmax <- max(k)
nnd <- matrix(Inf, nrow=nv, ncol=kmax)
nnw <- matrix(NA_integer_, nrow=nv, ncol=kmax)
colnames(nnd) <- colnames(nnw) <- 1:kmax
if(nX > 0) {
ii <- which(!duplicated(X))
uX <- X[ii]
coUX <- coords(uX)[, c("seg", "tp")]
coUX$lab <- ii
oo <- with(coUX, order(seg, tp))
coUXord <- coUX[oo, , drop=FALSE]
seg <- coUXord$seg
tp <- coUXord$tp
L <- domain(X)
nv <- nvertices(L)
ns <- nsegments(L)
seglen <- lengths_psp(as.psp(L))
from <- L$from
to <- L$to
huge <- sum(seglen)
tol <- max(sqrt(.Machine$double.eps), diameter(Frame(L))/2^20)
kmaxcalc <- min(nX, kmax)
z <- vnnFind(seg, tp, ns, nv, from, to, seglen, huge, tol, kmax=kmaxcalc)
vnndist <- z$vnndist
vnnwhich <- z$vnnwhich
vnnwhich <- coUXord$lab[vnnwhich]
nnd[, 1:kmaxcalc] <- vnndist
nnw[, 1:kmaxcalc] <- vnnwhich
}
nnd <- nnd[,k, drop=TRUE]
nnw <- nnw[,k, drop=TRUE]
if(identical(what, "dist")) return(nnd)
if(identical(what, "which")) return(nnw)
return(cbind(data.frame(dist=nnd), data.frame(which=nnw)))
}
vnnFind <- function(seg, tp, ns, nv, from, to, seglen, huge, tol, kmax=1) {
nX <- length(seg)
from0 <- from - 1L
to0 <- to - 1L
seg0 <- seg - 1L
if(kmax == 1) {
z <- .C(SL_Clinvwhichdist,
np = as.integer(nX),
sp = as.integer(seg0),
tp = as.double(tp),
nv = as.integer(nv),
ns = as.integer(ns),
from = as.integer(from0),
to = as.integer(to0),
seglen = as.double(seglen),
huge = as.double(huge),
tol = as.double(tol),
dist = as.double(numeric(nv)),
which = as.integer(integer(nv)),
PACKAGE="spatstat.linnet")
} else {
z <- .C(SL_linvknndist,
kmax = as.integer(kmax),
nq = as.integer(nX),
sq = as.integer(seg0),
tq = as.double(tp),
nv = as.integer(nv),
ns = as.integer(ns),
from = as.integer(from0),
to = as.integer(to0),
seglen = as.double(seglen),
huge = as.double(huge),
tol = as.double(tol),
dist = as.double(numeric(kmax * nv)),
which = as.integer(integer(kmax * nv)),
PACKAGE="spatstat.linnet")
}
vnndist <- z$dist
vnnwhich <- z$which + 1L
vnnwhich[vnnwhich == 0] <- NA
if(kmax > 1) {
vnndist <- matrix(vnndist, ncol=kmax, byrow=TRUE)
vnnwhich <- matrix(vnnwhich, ncol=kmax, byrow=TRUE)
}
return(list(vnndist=vnndist, vnnwhich=vnnwhich))
} |
is_installed <- function(..., .stop = FALSE) {
x <- c(...)
ip <- utils::installed.packages()
yn <- x %in% ip
if (sum(!yn) > 0 && .stop) {
msg <- pmsg(
"This function requires the following packages: ",
paste(x[!yn], collapse = ", "),
print = FALSE
)
stop(msg, call. = FALSE)
}
invisible(set_names(yn, x))
} |
create_temp_state_filename <- function() {
beastier::get_beastier_tempfilename(
pattern = "beast2_",
fileext = ".xml.state"
)
} |
library(uwot)
context("perplexity")
iris10_nn10 <- dist_nn(dist(iris10), k = 10)
P_symm <- matrix(c(
0.000000e+00, 0.0022956859, 0.0022079944, 0.0004763074, 4.338953e-02, 1.822079e-02, 0.002913239, 0.0413498285, 5.184416e-05, 0.004134502,
2.295686e-03, 0.0000000000, 0.0188919615, 0.0129934442, 1.089032e-03, 5.689921e-04, 0.002131646, 0.0048261793, 6.996252e-03, 0.050676976,
2.207994e-03, 0.0188919615, 0.0000000000, 0.0444964580, 2.464225e-03, 5.935835e-04, 0.040353636, 0.0027720360, 1.111298e-02, 0.013673490,
4.763074e-04, 0.0129934442, 0.0444964580, 0.0000000000, 5.466455e-04, 2.771325e-04, 0.018028275, 0.0005761904, 3.389471e-02, 0.014363302,
4.338953e-02, 0.0010890318, 0.0024642250, 0.0005466455, 0.000000e+00, 1.831834e-02, 0.006393040, 0.0329052015, 5.372241e-05, 0.002356628,
1.822079e-02, 0.0005689921, 0.0005935835, 0.0002771325, 1.831834e-02, 0.000000e+00, 0.001326343, 0.0110122168, 1.065771e-05, 0.001168212,
2.913239e-03, 0.0021316462, 0.0403536359, 0.0180282748, 6.393040e-03, 1.326343e-03, 0.000000000, 0.0059083283, 4.862680e-03, 0.002656313,
4.134983e-02, 0.0048261793, 0.0027720360, 0.0005761904, 3.290520e-02, 1.101222e-02, 0.005908328, 0.0000000000, 2.982247e-04, 0.012212476,
5.184416e-05, 0.0069962518, 0.0111129834, 0.0338947056, 5.372241e-05, 1.065771e-05, 0.004862680, 0.0002982247, 0.000000e+00, 0.004150755,
4.134502e-03, 0.0506769759, 0.0136734904, 0.0143633019, 2.356628e-03, 1.168212e-03, 0.002656313, 0.0122124758, 4.150755e-03, 0.000000000
) * 10, nrow = 10, byrow = TRUE)
res <- perplexity_similarities(
perplexity = 4, verbose = FALSE,
nn = find_nn(iris10,
k = 10, method = "fnn",
metric = "euclidean", n_threads = 0,
verbose = FALSE
)
)$matrix
expect_true(Matrix::isSymmetric(res))
expect_equal(as.matrix(res), P_symm, tol = 1e-5, check.attributes = FALSE)
Psymm9 <- matrix(
c(
0, 0.1111, 0.1112, 0.1110, 0.1116, 0.1113, 0.1112, 0.1115, 0.1106, 0.1112,
0.1111, 0, 0.1113, 0.1113, 0.1110, 0.1107, 0.1112, 0.1112, 0.1112, 0.1114,
0.1112, 0.1113, 0, 0.1113, 0.1112, 0.1106, 0.1114, 0.1112, 0.1112, 0.1113,
0.1110, 0.1113, 0.1113, 0, 0.1110, 0.1105, 0.1114, 0.1111, 0.1113, 0.1114,
0.1116, 0.1110, 0.1112, 0.1110, 0, 0.1113, 0.1113, 0.1115, 0.1106, 0.1111,
0.1113, 0.1107, 0.1106, 0.1105, 0.1113, 0, 0.1105, 0.1111, 0.1103, 0.1105,
0.1112, 0.1112, 0.1114, 0.1114, 0.1113, 0.1105, 0, 0.1113, 0.1112, 0.1112,
0.1115, 0.1112, 0.1112, 0.1111, 0.1115, 0.1111, 0.1113, 0, 0.1108, 0.1114,
0.1106, 0.1112, 0.1112, 0.1113, 0.1106, 0.1103, 0.1112, 0.1108, 0, 0.1111,
0.1112, 0.1114, 0.1113, 0.1114, 0.1111, 0.1105, 0.1112, 0.1114, 0.1111, 0
),
byrow = TRUE, nrow = 10
)
res <- perplexity_similarities(
perplexity = 9, verbose = FALSE,
nn = find_nn(iris10,
k = 10, method = "fnn",
metric = "euclidean", n_threads = 0,
verbose = FALSE
)
)$matrix
expect_true(Matrix::isSymmetric(res))
expect_equal(as.matrix(res), Psymm9, tol = 1e-4, check.attributes = FALSE)
P_symm_6nn <- matrix(c(
0, 0, 0.004227396, 0, 0.038581602, 0.016370215, 0.003972948, 0.037491042, 0, 0.007253571,
0, 0, 0.020541010, 0.01457322, 0, 0, 0, 0.008117719, 0.008608916, 0.043891243,
0.004227396, 0.020541010, 0, 0.04314614, 0.004242199, 0, 0.036275982, 0.004791681, 0.010952319, 0.015666352,
0, 0.014573224, 0.043146139, 0, 0, 0, 0.018725165, 0, 0.032811238, 0.015644628,
0.038581602, 0, 0.004242199, 0, 0, 0.016370215, 0.010365583, 0.031963895, 0, 0.003730662,
0.016370215, 0, 0, 0, 0.016370215, 0, 0.002795087, 0.011902114, 0, 0.002562369,
0.003972948, 0, 0.036275982, 0.01872517, 0.010365583, 0.002795087, 0, 0.006321792, 0.004717900, 0.003609179,
0.037491042, 0.008117719, 0.004791681, 0, 0.031963895, 0.011902114, 0.006321792, 0, 0, 0.015406444,
0, 0.008608916, 0.010952319, 0.03281124, 0, 0, 0.004717900, 0, 0, 0.004370167,
0.007253571, 0.043891243, 0.015666352, 0.01564463, 0.003730662, 0.002562369, 0.003609179, 0.015406444, 0.004370167, 0
) * 10, nrow = 10, byrow = TRUE)
res <- perplexity_similarities(
perplexity = 4, verbose = FALSE,
nn = find_nn(iris10,
k = 6, method = "fnn",
metric = "euclidean", n_threads = 0,
verbose = FALSE
)
)$matrix
expect_true(Matrix::isSymmetric(res))
expect_equal(as.matrix(res), P_symm_6nn, tol = 1e-5, check.attributes = FALSE)
P_row <- matrix(c(
0.000000e+00, 0.03254778, 0.04322171, 0.009522236, 4.179712e-01, 1.389888e-02, 0.03932256, 0.3802648571, 1.633620e-04, 0.06308741,
1.336594e-02, 0.00000000, 0.21654628, 0.163906282, 4.387114e-03, 4.819686e-08, 0.02029701, 0.0618376045, 2.029701e-02, 0.49936271,
9.381792e-04, 0.16129295, 0.00000000, 0.400023323, 9.381792e-04, 7.502536e-16, 0.29552576, 0.0143118438, 7.811162e-03, 0.11915861,
3.912338e-06, 0.09596260, 0.48990584, 0.000000000, 3.912338e-06, 1.913538e-19, 0.09596260, 0.0009992458, 1.842071e-01, 0.13295484,
4.498193e-01, 0.01739352, 0.04834632, 0.010928997, 0.000000e+00, 1.584988e-02, 0.07694327, 0.3403719404, 2.009270e-04, 0.04014584,
3.505169e-01, 0.01137979, 0.01187167, 0.005542650, 3.505169e-01, 0.000000e+00, 0.02652673, 0.2200679860, 2.131340e-04, 0.02336422,
1.894222e-02, 0.02233591, 0.51154696, 0.264602894, 5.091753e-02, 1.331050e-07, 0.00000000, 0.0834805843, 1.155348e-02, 0.03662029,
4.467317e-01, 0.03468598, 0.04112888, 0.010524562, 3.177321e-01, 1.763500e-04, 0.03468598, 0.0000000000, 1.925167e-05, 0.11431520,
8.735213e-04, 0.11962802, 0.21444851, 0.493687059, 8.735213e-04, 2.023140e-08, 0.08570012, 0.0059452421, 0.000000e+00, 0.07884399,
1.960264e-02, 0.51417681, 0.15431120, 0.154311203, 6.986716e-03, 2.081749e-08, 0.01650597, 0.1299343209, 4.171117e-03, 0.00000000
), nrow = 10, byrow = TRUE)
expected_sigmas <- c(0.3252233, 0.2679755, 0.1817380, 0.1751287, 0.3280264,
0.4861266, 0.2463306, 0.2422687, 0.3463065, 0.2411619)
resp <- calc_row_probabilities_parallel(t(iris10_nn10$dist),
perplexity = 4,
n_threads = 0,
ret_sigma = TRUE
)
res <- resp$matrix
res <- nn_to_sparse(iris10_nn10$idx, as.vector(t(res)),
self_nbr = TRUE, max_nbr_id = nrow(iris10_nn10$idx)
)
expect_equal(as.matrix(res), P_row, tol = 1e-5, check.attributes = FALSE)
expect_equal(sqrt(resp$sigma), expected_sigmas, tol = 1e-5)
res <- calc_row_probabilities_parallel(t(iris10_nn10$dist),
perplexity = 4, n_threads = 1
)$matrix
res <- nn_to_sparse(iris10_nn10$idx, as.vector(t(res)),
self_nbr = TRUE, max_nbr_id = nrow(iris10_nn10$idx)
)
expect_equal(as.matrix(res), P_row, tol = 1e-5, check.attributes = FALSE)
iris_dup <- duplicated(x2m(iris))
uiris <- iris[!iris_dup, ]
normiris <- scale(x2m(uiris), center = TRUE, scale = FALSE)
normiris <- normiris / max(abs(normiris))
Prow_iris_p150_k50_rowSums <- c(
1.064902, 1.01981, 1.022902, 1.00269, 1.058712, 0.959587, 1.020604, 1.072308, 0.918501, 1.035426,
1.010711, 1.055485, 1.00664, 0.874596, 0.840662, 0.782034, 0.960034, 1.065464, 0.91116, 1.029154,
1.016113, 1.041956, 0.94594, 1.038197, 1.010267, 1.021842, 1.064241, 1.060124, 1.058187, 1.030837,
1.03162, 1.022887, 0.938471, 0.876479, 1.042369, 1.031878, 0.992018, 1.047312, 0.93035, 1.069906,
1.057901, 0.766783, 0.954321, 1.030951, 0.977892, 1.013204, 1.025217, 1.012253, 1.028178, 1.065557,
0.84282, 1.103245, 0.981218, 0.927567, 1.190567, 1.135817, 1.11851, 0.745579, 1.074413, 0.892972,
0.717667, 1.111475, 0.84308, 1.285817, 0.884184, 0.949937, 1.078251, 1.009963, 0.930185, 0.96844,
1.107436, 1.031162, 1.161345, 1.165258, 1.076716, 1.029794, 1.008188, 1.173165, 1.26895, 0.857554,
0.919873, 0.887521, 1.015009, 1.200669, 0.958936, 0.979149, 1.070616, 0.946976, 1.019518, 0.987791,
1.007625, 1.257148, 1.038777, 0.754076, 1.078727, 1.049221, 1.098134, 1.148382, 0.74274, 1.084166,
0.819342, 1.072723, 0.958094, 1.101275, 1.036348, 0.744063, 0.689913, 0.811003, 0.896867, 0.781658,
1.162044, 1.199109, 1.110908, 0.923403, 0.831603, 1.055974, 1.167772, 0.662894, 0.653821, 0.899437,
1.003726, 0.952751, 0.705241, 1.281862, 1.039594, 0.882058, 1.306628, 1.290206, 1.09357, 0.864005,
0.824926, 0.663579, 1.063836, 1.242015, 0.843297, 0.769286, 0.907494, 1.14366, 1.252945, 1.073047,
1.022525, 0.951965, 0.977462, 0.941184, 1.050544, 1.128182, 1.230836, 0.925821, 1.158545
)
Prow_niris_p150_k50_betas <-
c(
5.885742, 5.736816, 5.197266, 5.471191, 5.71875, 5.699707, 5.451172, 6.242188, 4.727051, 5.95459,
5.53418, 6.278809, 5.412598, 3.991699, 4.12207, 4.150879, 4.842285, 6.005859, 5.578369, 5.635254,
6.838379, 5.978516, 4.450684, 7.612305, 7.321289, 6.594238, 6.863281, 6.144043, 6.030762, 6.04248,
6.217285, 6.470703, 4.745117, 4.282471, 6.104004, 5.433594, 5.414551, 5.560547, 4.568359, 6.307129,
5.703125, 4.453369, 4.664551, 7.005859, 6.844238, 5.671875, 5.775879, 5.260254, 5.626465, 5.994629,
13.903809, 19.361816, 17.199951, 10.595215, 21.495117, 19.960938, 22.048828, 6.962402, 17.828125, 9.40918,
6.223511, 18.996094, 11.31665, 26.000977, 9.661377, 15.227539, 18.856934, 12.867676, 20.546875, 9.992432,
22.505859, 16.000977, 23.277344, 24.697266, 18.488281, 16.779785, 17.730957, 23.207031, 25.374023, 8.538818,
8.724121, 8.112671, 12.005859, 23.245605, 16.113281, 19.423828, 17.885254, 19.319336, 13.402344, 11.15625,
15.037109, 24.227539, 12.86377, 6.838623, 14.530762, 14.649414, 15.500977, 20.317383, 7.972168, 14.302246,
8.755371, 19.519531, 9.589355, 18.270508, 11.995361, 4.407959, 11.406738, 6.748779, 14.204102, 6.195068,
22.625977, 21.842773, 14.548828, 17.580078, 15.902832, 15.451172, 19.606445, 3.676147, 3.610718, 18.935059,
10.456055, 18.219238, 4.096863, 26.099609, 12.159668, 8.970703, 27.116211, 26.008301, 15.51416, 11.36377,
7.287109, 4.036987, 14.57373, 25.604492, 17.268066, 5.501221, 11.135986, 19.822266, 25.111816, 14.611328,
11.272705, 15.021484, 9.565918, 9.592529, 15.895508, 22.691895, 22.258789, 13.867188, 22.583008
)
res <- perplexity_similarities(
perplexity = 50, n_threads = 0, verbose = FALSE,
ret_sigma = TRUE,
nn = find_nn(normiris,
k = 149, method = "fnn",
metric = "euclidean", n_threads = 0,
verbose = FALSE
)
)
expect_equal(Matrix::rowSums(res$matrix), Prow_iris_p150_k50_rowSums, tol = 1e-6)
expect_equal(1 / res$sigma, Prow_niris_p150_k50_betas, tol = 1e-6)
res <- perplexity_similarities(
perplexity = 50, n_threads = 1, verbose = FALSE,
nn = find_nn(normiris,
k = 149, method = "fnn",
metric = "euclidean", n_threads = 1,
verbose = FALSE
)
)$matrix
expect_equal(Matrix::rowSums(res), Prow_iris_p150_k50_rowSums, tol = 1e-6) |
eval.func.1D<-function(func,N,support=NULL,g=1,std=1,distr=FALSE,
M=NULL,sig=NULL,p=NULL,a=0.5,b=0.5,d=2)
{
if (func=="gauss"){
norma<-(2*pi)^(-1/2)
funni<-function(t){ fu<-exp(-t^2/2); return( norma*fu ) }
}
if (func=="polynomial"){
support<-c(-std,std)
norma<-(2*(1-1/(g+1)))^(-1)
funni<-function(t){ fu<-1-abs(t)^g; return( norma*fu ) }
}
if (func=="student"){
norma<-gamma((g+1)/2)/((g*pi)^(1/2)*gamma(g/2))
funni<-function(t){ fu<-(1+t^2/g)^(-(g+1)/2); return( norma*fu ) }
}
if (func=="exponential"){
norma<-1/2
funni<-function(t){ fu<-exp(-abs(t)); return( norma*fu ) }
}
if (func=="exponential"){
norma<-1/2
funni<-function(t){ fu<-exp(-abs(t)); return( norma*fu ) }
}
if (func=="mixt"){
funni<-function(t){
mixnum<-length(p)
val<-0
for (mi in 1:mixnum){
evapoint<-(t-M[mi])/sig[mi]
val<-val+p[mi]*evanor(evapoint)/sig[mi]
}
return( val )
}
}
if (func=="hat"){
normavak<-((2*pi)^d*(a^(-d)-b))^(-1)
norma<-normavak*(2*pi)^((d-1)/2)
funni<-function(t){
fu<-a^(1-d)*exp(-a^2*t^2)-b*exp(-t^2/2); return( norma*fu ) }
}
if (is.null(support)) support<-c(-1,1)
value<-matrix(0,N,1)
step<-(support[2]-support[1])/N
lowsuppo<-support[1]
if (!distr){
for (i in 1:N){
inde<-i
t<-lowsuppo+step*inde-step/2
value[i]<-funni(t/std)/std
}
}
else{
inde<-1
t<-lowsuppo+step*inde-step/2
value[1]<-step*funni(t/std)/std
for (i in 2:N){
inde<-i
t<-lowsuppo+step*inde-step/2
value[i]<-value[i-1]+step*funni(t/std)/std
}
}
index<-seq(1:N)
len<-length(index)
down<-matrix(0,len,1)
high<-matrix(0,len,1)
down[,1]<-index-1
high[,1]<-index
res<-list(
value=value,
down=down,high=high,
support=support,N=N)
return(res)
}
|
coefMer <- getS3method("coef", "merMod")
coef.rlmerMod <- function(object, ...) {
val <- coefMer(object, ...)
class(val) <- "coef.rlmerMod"
val
}
extractAIC.rlmerMod <- function(fit, scale = 0, k = 2, ...)
stop("AIC is not defined for rlmerMod objects")
family.rlmerMod <- function(object, ...) gaussian()
fitted.rlmerMod <- getS3method("fitted", "merMod")
fixef.rlmerMod <- function(object, ...)
structure(object@beta, names = dimnames(.X(object))[[2]])
getFixedFormula <- function(form) {
form[[3]] <- if (is.null(nb <- nobars(form[[3]]))) 1 else nb
form
}
formula.rlmerMod <- getS3method("formula", "merMod")
isREML.rlmerMod <- function(x, ...) .isREML(x, ...)
isGLMM.rlmerMod <- function(x, ...) FALSE
isLMM.rlmerMod <- function(x, ...) TRUE
isNLMM.rlmerMod <- function(x, ...) FALSE
logLik.rlmerMod <- function(object, REML = NULL, ...)
stop("log-likelihood is not defined for rlmerMod objects")
model.frame.rlmerMod <- getS3method("model.frame", "merMod")
model.matrix.rlmerMod <- function(object, ...) .X(object)
terms.rlmerMod <- getS3method("terms", "merMod")
.prt.resids <- function(resids, digits, title="Scaled residuals:", ...) {
cat(title,"\n")
rq <- setNames(zapsmall(quantile(resids), digits + 1L),
c("Min", "1Q", "Median", "3Q", "Max"))
print(rq, digits=digits, ...)
cat("\n")
}
.prt.call <- function(call, long=TRUE) {
if (!is.null(cc <- call$formula))
cat("Formula:", deparse(cc),"\n")
if (!is.null(cc <- call$data))
cat(" Data:", deparse(cc), "\n")
if (!is.null(cc <- call$weights))
cat("Weights:", deparse(cc), "\n")
if (!is.null(cc <- call$offset))
cat(" Offset:", deparse(cc), "\n")
if (long && length(cc <- call$control) &&
!identical((dc <- deparse(cc)), "lmerControl()"))
cat("Control:", dc, "\n")
if (!is.null(cc <- call$subset))
cat(" Subset:", deparse(asOneSidedFormula(cc)[[2]]),"\n")
}
.prt.VC <- function(varcor, digits, comp, formatter=format, ...) {
cat("Random effects:\n")
fVC <- if(missing(comp))
formatVC(varcor, digits=digits, formatter=formatter)
else
formatVC(varcor, digits=digits, formatter=formatter, comp=comp)
print(fVC, quote = FALSE, digits = digits, ...)
}
.prt.grps <- function(ngrps, nobs) {
cat(sprintf("Number of obs: %d, groups: ", nobs))
cat(paste(paste(names(ngrps), ngrps, sep = ", "), collapse = "; "))
cat("\n")
}
setMethod("show", "rlmerMod", function(object) print.rlmerMod(object))
globalVariables("forceSymmetric", add=TRUE)
vcov.rlmerMod <- getS3method("vcov", "merMod")
vcov.summary.rlmerMod <- function(object, correlation = TRUE, ...) {
if(is.null(object$vcov)) stop("logic error in summary of rlmerMod object")
object$vcov
}
VarCorrMer <- getS3method("VarCorr", "merMod")
VarCorr.rlmerMod <- function(x, ...)
{
val <- VarCorrMer(x, ...)
class(val) <- "VarCorr.rlmerMod"
val
}
VarCorr.summary.rlmerMod <- function(x, ...) x$varcor
print.VarCorr.rlmerMod <- getS3method("print", "VarCorr.merMod")
formatVC <- function(varcor, digits = max(3, getOption("digits") - 2),
comp = "Std.Dev.", formatter = format,
useScale = attr(varcor, "useSc"),
...)
{
c.nms <- c("Groups", "Name", "Variance", "Std.Dev.")
avail.c <- c.nms[-(1:2)]
if(anyNA(mcc <- pmatch(comp, avail.c)))
stop("Illegal 'comp': ", comp[is.na(mcc)])
nc <- length(colnms <- c(c.nms[1:2], (use.c <- avail.c[mcc])))
if(length(use.c) == 0)
stop("Must *either* show variances or standard deviations")
reStdDev <- c(lapply(varcor, attr, "stddev"),
if(useScale) list(Residual = unname(attr(varcor, "sc"))))
reLens <- lengths(reStdDev)
nr <- sum(reLens)
reMat <- array('', c(nr, nc), list(rep.int('', nr), colnms))
reMat[1+cumsum(reLens)-reLens, "Groups"] <- names(reLens)
reMat[,"Name"] <- c(unlist(lapply(varcor, colnames)), if(useScale) "")
if(any("Variance" == use.c))
reMat[,"Variance"] <- formatter(unlist(reStdDev)^2, digits = digits, ...)
if(any("Std.Dev." == use.c))
reMat[,"Std.Dev."] <- formatter(unlist(reStdDev), digits = digits, ...)
if (any(reLens > 1)) {
maxlen <- max(reLens)
recorr <- lapply(varcor, attr, "correlation")
corr <-
do.call(rbind,
lapply(recorr,
function(x) {
x <- as.matrix(x)
dig <- max(2, digits - 2)
cc <- format(round(x, dig), nsmall = dig)
cc[!lower.tri(cc)] <- ""
nr <- nrow(cc)
if (nr >= maxlen) return(cc)
cbind(cc, matrix("", nr, maxlen-nr))
}))[, -maxlen, drop = FALSE]
if (nrow(corr) < nrow(reMat))
corr <- rbind(corr, matrix("", nrow(reMat) - nrow(corr), ncol(corr)))
colnames(corr) <- c("Corr", rep.int("", max(0L, ncol(corr)-1L)))
cbind(reMat, corr)
} else reMat
}
weights.rlmerMod <- function(object, ...) {
object@resp$weights
}
reFormHack <- function(re.form,ReForm,REForm,REform) {
if (!missing(ReForm)) {
message(shQuote("re.form")," is now preferred to ",shQuote("ReForm"))
return(ReForm)
}
if (!missing(REForm)) {
message(shQuote("re.form")," is now preferred to ",shQuote("REForm"))
return(REForm)
}
if (!missing(REform)) {
message(shQuote("re.form")," is now preferred to ",shQuote("REform"))
return(REform)
}
re.form
}
predict.rlmerMod <- function(object, newdata=NULL,
re.form=NULL,
ReForm,
REForm,
REform,
terms=NULL, type=c("link","response"),
allow.new.levels=FALSE, na.action=na.pass, ...) {
REform <- reFormHack(re.form,ReForm,REForm,REform)
if (length(list(...)>0)) warning("unused arguments ignored")
if (isLMM(object) && !missing(type)) warning("type argument ignored for linear mixed models")
fit.na.action <- attr(object@frame,"na.action")
type <- match.arg(type)
if (!is.null(terms)) stop("terms functionality for predict not yet implemented")
form_orig <- formula(object)
if (is.null(newdata) && is.null(REform)) {
if (isLMM(object) || isNLMM(object)) {
pred <- fitted(object)
} else {
pred <- switch(type,response=object@resp$mu,
link=object@resp$eta)
}
if (!is.null(fit.na.action)) {
pred <- napredict(fit.na.action,pred)
}
return(pred)
} else {
X_orig <- getME(object, "X")
if (is.null(newdata)) {
X <- X_orig
} else {
RHS <- formula(object,fixed.only=TRUE)[-2]
Terms <- terms(object,fixed.only=TRUE)
X <- model.matrix(RHS, mfnew <- model.frame(delete.response(Terms),
newdata, na.action=na.action),
contrasts.arg=attr(X_orig,"contrasts"))
}
pred <- drop(X %*% fixef(object))
offset <- rep(0, nrow(X))
tt <- terms(object)
if (!is.null(off.num <- attr(tt, "offset"))) {
for (i in off.num) offset <- offset + eval(attr(tt,"variables")[[i + 1]], newdata)
}
if (!is.null(frOffset <- attr(object@frame,"offset")))
offset <- offset + eval(frOffset, newdata)
pred <- pred+offset
if (is.null(REform)) {
REform <- form_orig[-2]
}
if (is.language(REform)) {
na.action.name <- deparse(match.call()$na.action)
if (!is.null(newdata) && na.action.name %in% c("na.exclude","na.omit")) {
if (length(nadrop <- attr(mfnew,"na.action"))>0) {
newdata <- newdata[-nadrop,]
}
}
re <- ranef(object)
if(is.null(newdata)) rfd <- object@frame else rfd <- newdata
ReTrms <- mkReTrms(findbars(REform[[2]]), rfd)
if (!allow.new.levels && any(sapply(ReTrms$flist,function(x) any(is.na(x)))))
stop("NAs are not allowed in prediction data for grouping variables unless allow.new.levels is TRUE")
unames <- unique(sort(names(ReTrms$cnms)))
for (i in all.vars(REform[[2]])) {
newdata[[i]] <- factor(newdata[[i]])
}
Rfacs <- setNames(lapply(unames,function(x) factor(eval(parse(text=x),envir=newdata))),
unames)
new_levels <- lapply(Rfacs,function(x) levels(droplevels(factor(x))))
levelfun <- function(x,n) {
if (any(!new_levels[[n]] %in% rownames(x))) {
if (!allow.new.levels) stop("new levels detected in newdata")
newx <- as.data.frame(matrix(0,nrow=length(new_levels[[n]]),ncol=ncol(x),
dimnames=list(new_levels[[n]],names(x))))
newx[rownames(x),] <- x
x <- newx
}
if (any(!rownames(x) %in% new_levels[[n]])) {
x <- x[rownames(x) %in% new_levels[[n]],,drop=FALSE]
}
x
}
re_x <- mapply(levelfun,re,names(re),SIMPLIFY=FALSE)
re_new <- list()
if (any(!names(ReTrms$cnms) %in% names(re)))
stop("grouping factors specified in REform that were not present in original model")
for (i in seq_along(ReTrms$cnms)) {
rname <- names(ReTrms$cnms)[i]
if (any(!ReTrms$cnms[[rname]] %in% names(re[[rname]])))
stop("random effects specified in REform that were not present in original model")
re_new[[i]] <- re_x[[rname]][,ReTrms$cnms[[rname]]]
}
re_newvec <- unlist(lapply(re_new,t))
if(!is.null(newdata)) pred <- pred + drop(as.matrix(re_newvec %*% ReTrms$Zt))
}
if (isGLMM(object) && type=="response") {
pred <- object@resp$family$linkinv(pred)
}
if (is.null(newdata) && !is.null(fit.na.action)) {
pred <- napredict(fit.na.action,pred)
} else {
pred <- napredict(na.action,pred)
}
return(pred)
}
}
forceCopy <- function(x) deepcopy(x) |
getXYmat <-
function(DF,
xyTopLeft=TRUE,
relPOA=TRUE,
center=FALSE) {
if(!is.data.frame(DF)) { stop("DF must be a data frame") }
DF <- setNames(DF, tolower(names(DF)))
dfNames <- names(DF)
needsXY1 <- c("point.x", "point.y")
needsXY2 <- c("x", "y")
wantsAIM <- c("aim.x", "aim.y")
hasXY1 <- needsXY1 %in% dfNames
hasXY2 <- needsXY2 %in% dfNames
hasAIM <- wantsAIM %in% dfNames
if(!xor(all(hasXY1), all(hasXY2))) {
stop("Coordinates must be named either x, y or point.x, point.y")
}
if(("z" %in% dfNames) && ("point.z" %in% dfNames)) {
stop("Coordinates must be named either z or point.z")
}
if(!all(hasAIM) && relPOA) {
warning(c("The data frame is missing variable(s)\n",
paste(wantsAIM[!hasAIM], collapse=" "), "\n",
"Point of Aim is assumed to be in (0,0)"))
relPOA <- FALSE
}
if(all(hasXY2)) {
dfNames <- names(DF)
dfNames[dfNames %in% "x"] <- "point.x"
dfNames[dfNames %in% "y"] <- "point.y"
dfNames[dfNames %in% "z"] <- "point.z"
warning("Variables x, y were renamed to point.x, point.y")
names(DF) <- dfNames
}
centerOne <- function(x) {
x$aim.x <- mean(x$point.x)
x$aim.y <- mean(x$point.y)
if(hasName(x, "point.z")) {
x$aim.z <- mean(x$point.z)
}
x
}
DF <- if(center) {
if(hasName(DF, "series")) {
DFspl <- split(DF, DF$series, drop=TRUE)
DFL <- lapply(DFspl, centerOne)
do.call("rbind", DFL)
} else {
centerOne(DF)
}
} else {
DF
}
if(!relPOA && !center) {
DF$aim.x <- 0
DF$aim.y <- 0
if("point.z" %in% dfNames) {
DF$aim.z <- 0
}
}
if(!hasName(DF, "aim.x") || !hasName(DF, "aim.y")) {
DF$aim.x <- 0
DF$aim.y <- 0
}
x <- DF$point.x - DF$aim.x
y <- if(xyTopLeft) {
-(DF$point.y - DF$aim.y)
} else {
DF$point.y - DF$aim.y
}
z <- if("point.z" %in% dfNames) {
DF$point.z - DF$aim.z
} else {
NULL
}
return(cbind(x, y, z))
} |
fillgvp <- function(x, method = "linear", n = 4) {
if(dim(x)[1] == 0) {
stop("Dimension of data-set must be higher than 0.")
}
names <- c("glucose")
names <- match(names, names(x))
if(any(is.na(names))) {
stop("Name of data-set must be glucose.")
}
if(all(is.na(x$glucose))) {
stop("Variable glucose must be non-NA value.")
}
if(!is.numeric(x$glucose)) {
stop("Variable glucose must be numeric.")
}
if(method != "linear" && method != "cubic") {
stop("method must be linear or cubic.")
}
if(!is.numeric(n)) {
stop("n must be numeric.")
}
if(n < 0) {
stop("n must be positive values.")
}
position <- is.na(x$glucose)
na.before <- dim(x[position,])[1]
if(method == "linear") {
x$glucose <- round(na.approx(x$glucose, maxgap = n, na.rm = F), digits = 0)
} else if(method == "cubic") {
x$glucose <- round(na.spline(x$glucose, maxgap = n, na.rm = F), digits = 0)
}
position <- is.na(x$glucose)
na.after <- na.before - dim(x[position,])[1]
message(paste(na.before, "NA glucose values in dataset before filling."))
message(paste(na.after, "NA glucose values filled."))
message(paste(dim(x[position,])[1], "NA glucose values in dataset after filling."))
return(x)
} |
context("site")
test_that("rmarkdown::render_site", {
skip_on_cran()
site_dir <- tempfile()
dir.create(site_dir)
files <- c("_site.yml", "index.Rmd", "tech-docs.Rmd",
"404.md", "accessibility.md", "LICENSE.md",
"NEWS.md", "README.md", "images", "favicon")
file.copy(file.path("site", files), site_dir, recursive = TRUE)
capture.output(rmarkdown::render_site(site_dir))
html_files <- c("index.html", "tech-docs.html", "404.html",
"accessibility.html", "LICENSE.html", "NEWS.html")
html_files <- file.path(site_dir, "docs", html_files)
expect_true(all(file.exists(html_files)))
moved <- c("site_libs", "favicon", "images")
expect_true(all(file.exists(file.path(site_dir, "docs", moved))))
}) |
strangle.bls = function(S,K1,K2,r,t,sd,plot=FALSE){
all=list(S,K1,K2,r,t,sd,plot)
if(any(lapply(all,is.null)==T)) stop("Cannot input any variables as NULL.")
if(any(lapply(all,length) != 1)==T) stop("All inputs must be of length 1.")
num2=list(S,K1,K2,r,t,sd)
na.num2=num2[which(lapply(num2,is.na)==F)]
if(any(lapply(na.num2,is.numeric)==F)) stop("S, K1, K2, r, t, and sd must be numeric.")
nalist=list(S,K1,K2,r,t,sd,plot)
if(any(lapply(nalist,is.na)==T)) stop("Cannot input any variables as NA.")
stopifnot(is.logical(plot))
NA.Neg=array(c(S,K1,K2,r,t,sd))
NA.Neg.Str=c("S","K1","K2","r","t","sd")
app=apply(NA.Neg,1,is.na)
na.s=which(app==F & NA.Neg<=0)
if(length(na.s)>0) {errs=paste(NA.Neg.Str[na.s],collapse=" & ")
stop(cat("Error: '",errs, "' must be positive real number(s).\n"))}
na.s2=which(app==F & NA.Neg==Inf)
if(length(na.s2)>0) {errs=paste(NA.Neg.Str[na.s2],collapse=" & ")
stop(cat("Error: '",errs, "' cannot be infinite.\n"))}
if(K1>=K2) stop("K1 must be less than K2.")
if(K2<=S | K1>=S) stop("K2 must be > S and K1 must be < S")
d1 = (log(S/K1)+(r+sd^2/2)*t)/(sd*sqrt(t))
d2 = d1 - sd * sqrt(t)
putP = K1*exp(-r*t) * pnorm(-d2) - S*pnorm(-d1)
d1 = (log(S/K2)+(r+sd^2/2)*t)/(sd*sqrt(t))
d2 = d1 - sd * sqrt(t)
callP = S*pnorm(d1) - K2*exp(-r*t)*pnorm(d2)
stock=unique(round(seq(0,K1,length.out=6)))
stock=c(stock,round(seq(K1,K2,length.out=4)))
stock=c(stock,round(seq(K2,K2+K1,length.out=6)))
stock=unique(stock)
stock2=unique(round(c(seq(0,K1,length.out=6),seq(K2,K2+K1,length.out=6))))
payoff=rep(0,length(stock))
profit=rep(0,length(stock))
for(i in 1:length(stock)){
if(stock[i]<=K1) payoff[i]=K1-stock[i]
if(stock[i]>=K2) payoff[i]=stock[i]-K2
if(stock[i]<K2 & stock[i]>K1) payoff[i]=0
profit[i]=payoff[i]+(-callP-putP)*exp(r*t)
}
if(plot==T){
plot(stock,profit,type="l",xlab="Stock Price",main="Strangle\nPayoff and Profit",ylab="$",
ylim=c(min(profit,payoff),max(profit,payoff)),xaxt='n',yaxt='n',col="steelblue",lwd=2)
lines(stock,payoff,lty=2,lwd=2,col="firebrick")
abline(h=0,lty=2,col="gray")
y=round(seq(min(payoff,profit),max(payoff,profit),length.out=8))
axis(2,at=y,labels=y,las=2)
axis(1,at=if(K2-K1<7) stock2[-which(stock2==round(K2))] else stock2,las=2)
legend("top",c("Profit","Payoff"),lty=c(1,2),col=c("steelblue","firebrick"),lwd=c(2,2)) }
out1=data.frame(stock,payoff,profit)
names(out1)=c("Stock Price","Payoff","Profit")
out2=matrix(c(putP,callP,callP+putP),nrow=3)
rownames(out2)=c("Put (K1)","Call (K2)","Net Cost")
colnames(out2)=c("Premiums")
out=list(Payoff=out1,Premiums=out2)
return(out)
} |
library("testthat")
context("test-largeBernoulli.R")
suppressWarnings(RNGversion("3.5.0"))
test_that("Separable covariates in logistic regression", {
skip_on_cran()
set.seed(666)
simulant <- simulateCyclopsData(nstrata = 1,
ncovars = 5,
model = "logistic")
successes <- simulant$outcomes$rowId[simulant$outcomes$y == 1]
separable <- simulant$covariates[simulant$covariates$covariateId == 3 &
simulant$covariates$rowId %in% successes,]
separable$covariateId <- 6
simulant$covariates <- rbind(simulant$covariates, separable)
data <- convertToCyclopsData(simulant$outcomes, simulant$covariates, modelType = "lr",
addIntercept = TRUE)
fit <- fitCyclopsModel(data, prior = createPrior("none"))
expect_error(coef(fit), "did not converge")
separability <- getUnivariableSeparability(data)
expect_equal(sum(separability), 1.0)
scFit <- fitCyclopsModel(data, prior = createPrior("none"),
forceNewObject = TRUE,
fixedCoefficients = separability)
expect_equivalent(coef(scFit)[separability], 0.0)
separability <- is.nan(coef(fit, ignoreConvergence = TRUE))
ecFit <- fitCyclopsModel(data, prior = createPrior("none"),
forceNewObject = TRUE,
fixedCoefficients = separability)
expect_equivalent(coef(ecFit)[separability], 0.0)
nsFit <- fitCyclopsModel(data, prior = createNonSeparablePrior(),
forceNewObject = TRUE)
expect_true(is.na(coef(nsFit)[7]))
})
test_that("Separable covariates in cox regression", {
skip_on_cran()
set.seed(666)
simulant <- simulateCyclopsData(nstrata = 1,
ncovars = 5,
model = "survival")
successes <- simulant$outcomes$rowId[simulant$outcomes$y == 1]
separable <- simulant$covariates[simulant$covariates$covariateId == 3 &
simulant$covariates$rowId %in% successes,]
separable$covariateId <- 6
simulant$covariates <- rbind(simulant$covariates, separable)
data <- convertToCyclopsData(simulant$outcomes, simulant$covariates, modelType = "cox")
fit <- fitCyclopsModel(data, prior = createPrior("none"))
separability <- getUnivariableSeparability(data)
expect_equal(sum(separability), 1.0)
fit <- fitCyclopsModel(data, prior = createPrior("none"),
forceNewObject = TRUE,
fixedCoefficients = separability)
expect_equivalent(coef(fit)[separability], 0.0)
}) |
"pwr.2p.test" <-
function (h = NULL, n = NULL, sig.level = 0.05, power = NULL,
alternative = c("two.sided","less","greater"))
{
if (sum(sapply(list(h, n, power, sig.level), is.null)) !=
1)
stop("exactly one of h, n, power, and sig.level must be NULL")
if (!is.null(h) && is.character(h))
h <- cohen.ES(test="p",size=h)$effect.size
if (!is.null(n) && any(n < 1))
stop("number of observations in each group must be at least 1")
if (!is.null(sig.level) && !is.numeric(sig.level) || any(0 >
sig.level | sig.level > 1))
stop(sQuote("sig.level"), " must be numeric in [0, 1]")
if (!is.null(power) && !is.numeric(power) || any(0 > power |
power > 1))
stop(sQuote("power"), " must be numeric in [0, 1]")
alternative <- match.arg(alternative)
tside <- switch(alternative, less = 1, two.sided = 2, greater=3)
if (tside == 2 && !is.null(h))
h <- abs(h)
if (tside == 3) {
p.body <- quote({
pnorm(qnorm(sig.level, lower = FALSE) - h * sqrt(n/2),
lower = FALSE)
})
}
if (tside == 2) {
p.body <- quote({
pnorm(qnorm(sig.level/2, lower = FALSE) - h * sqrt(n/2),
lower = FALSE) + pnorm(qnorm(sig.level/2, lower = TRUE) -
h * sqrt(n/2), lower = TRUE)
})
}
if (tside ==1) {
p.body <- quote({
pnorm(qnorm(sig.level, lower = TRUE) - h * sqrt(n/2),
lower = TRUE)
})
}
if (is.null(power))
power <- eval(p.body)
else if (is.null(h)){
if(tside==2)
h <- uniroot(function(h) eval(p.body) - power, c(1e-10,10))$root
if(tside==1)
h <- uniroot(function(h) eval(p.body) - power, c(-10,5))$root
if(tside==3)
h <- uniroot(function(h) eval(p.body) - power, c(-5,10))$root
}
else if (is.null(n))
n <- uniroot(function(n) eval(p.body) - power,
c(2 + 1e-10, 1e+09))$root
else if (is.null(sig.level))
sig.level <- uniroot(function(sig.level) eval(p.body) - power,
c(1e-10, 1 - 1e-10))$root
else stop("internal error")
NOTE <- "same sample sizes"
METHOD <- "Difference of proportion power calculation for binomial distribution (arcsine transformation)"
structure(list(h = h, n = n, sig.level = sig.level, power = power,
alternative = alternative, method = METHOD, note = NOTE),
class = "power.htest")
} |
zmatrix <- function(partition, s, ps){
partition <- check_phypartition(tip_labels = colnames(ps$structure),
partition = partition)
parameters <- ps$parameters
structure_matrix <- ps$structure
T_bar <- ps$tbar
L_j <- colSums(structure_matrix * T_bar)
L_j <- L_j[match(parameters$tip_label, colnames(structure_matrix))]
if (any(row.names(partition) != colnames(structure_matrix)))
stop("Partition does not match phylogeny.")
scaling_factor <- T_bar / L_j
scaling_matrix <- diag(scaling_factor, nrow(structure_matrix))
z <- s %*% scaling_matrix
colnames(z) <- row.names(z)
new("similarity",
similarity = z,
dat_id = "phybranch",
parameters = list(transform = NA,
k = NA,
normalise = NA,
max_d = NA))
} |
set_block <- function(plate, block, what, value) {
if (! "well" %in% colnames(plate))
stop(dQuote("plate"), " data frame misses ", dQuote("well"), " column containing well IDs.")
if (what != make.names(what))
warning("Column name not syntactically correct. See ", dQuote("?make.names"), ".")
set_block_ <- function(plate, block) {
plateRows <- factor(gsub("[[:digit:]]+", "", plate$well))
plateCols <- factor(as.numeric(gsub("[[:alpha:]]+", "", plate$well)))
startWell <- sub("~.*", "", block)
endWell <- sub(".*~", "", block)
startRow <- substr(startWell, 1,1)
endRow <- substr(endWell, 1,1)
startCol <- as.numeric(substr(startWell, 2,3))
endCol <- as.numeric(substr(endWell, 2,3))
targetRows <- LETTERS[seq(which(LETTERS == startRow), which(LETTERS == endRow))]
targetCols <- seq(startCol, endCol)
plate[plateRows %in% targetRows & plateCols %in% targetCols, what] <- value
plate
}
Reduce(set_block_, block, plate)
} |
Loglogistic <- R6Class("Loglogistic",
inherit = SDistribution, lock_objects = F,
public = list(
name = "Loglogistic",
short_name = "LLogis",
description = "Loglogistic Probability Distribution.",
packages = "actuar",
initialize = function(scale = NULL, shape = NULL, rate = NULL,
decorators = NULL) {
super$initialize(
decorators = decorators,
support = PosReals$new(zero = T),
type = PosReals$new(zero = T)
)
},
mean = function(...) {
scale <- unlist(self$getParameterValue("scale"))
shape <- unlist(self$getParameterValue("shape"))
return((scale * pi / shape) / sin(pi / shape))
},
mode = function(which = "all") {
scale <- unlist(self$getParameterValue("scale"))
shape <- unlist(self$getParameterValue("shape"))
return(scale * ((shape - 1) / (shape + 1))^(1 / shape))
},
median = function() {
unlist(self$getParameterValue("scale"))
},
variance = function(...) {
scale <- unlist(self$getParameterValue("scale"))
shape <- unlist(self$getParameterValue("shape"))
shapi <- pi / shape
var <- rep(NaN, length(scale))
var[shape > 2] <- scale[shape > 2]^2 *
((2 * shapi[shape > 2]) / sin(2 * shapi[shape > 2]) - (shapi[shape > 2]^2)
/ sin(shapi[shape > 2])^2)
return(var)
},
skewness = function(...) {
scale <- unlist(self$getParameterValue("scale"))
shape <- unlist(self$getParameterValue("shape"))
shapi <- pi / shape
skew <- rep(NaN, length(scale))
s1 <- (2 * shapi[shape > 3]^3 * scale[shape > 3]^3) / sin(shapi[shape > 3])^3
s2 <- (6 * shapi[shape > 3]^2 * scale[shape > 3]^3) * (1 / sin(shapi[shape > 3])) *
(1 / sin(2 * shapi[shape > 3]))
s3 <- (3 * shapi[shape > 3] * scale[shape > 3]^3) / sin(3 * shapi[shape > 3])
skew[shape > 3] <- s1 - s2 + s3
return(skew)
},
kurtosis = function(excess = TRUE, ...) {
scale <- unlist(self$getParameterValue("scale"))
shape <- unlist(self$getParameterValue("shape"))
shapi <- pi / shape
kurtosis <- rep(NaN, length(scale))
s1 <- (3 * shapi[shape > 4]^4 * scale[shape > 4]^4) / sin(shapi[shape > 4])^4
s2 <- (12 * shapi[shape > 4]^3 * scale[shape > 4]^4) *
(1 / sin(shapi[shape > 4])^2) * (1 / sin(2 * shapi[shape > 4]))
s3 <- (12 * shapi[shape > 4]^2 * scale[shape > 4]^4) * (1 / sin(shapi[shape > 4])) *
(1 / sin(3 * shapi[shape > 4]))
s4 <- (4 * shapi[shape > 4] * scale[shape > 4]^4) * (1 / sin(4 * shapi[shape > 4]))
kurtosis[shape > 4] <- -s1 + s2 - s3 + s4
return(kurtosis)
},
pgf = function(z, ...) {
return(NaN)
}
),
private = list(
.pdf = function(x, log = FALSE) {
if (checkmate::testList(self$getParameterValue("shape"))) {
mapply(actuar::dllogis,
shape = self$getParameterValue("shape"), rate = self$getParameterValue("rate"),
MoreArgs = list(x = x, log = log)
)
} else {
actuar::dllogis(x, shape = self$getParameterValue("shape"),
rate = self$getParameterValue("rate"), log = log)
}
},
.cdf = function(x, lower.tail = TRUE, log.p = FALSE) {
if (checkmate::testList(self$getParameterValue("shape"))) {
mapply(actuar::pllogis,
shape = self$getParameterValue("shape"), rate = self$getParameterValue("rate"),
MoreArgs = list(q = x, lower.tail = lower.tail, log.p = log.p)
)
} else {
actuar::pllogis(x,
shape = self$getParameterValue("shape"), rate = self$getParameterValue("rate"),
lower.tail = lower.tail, log.p = log.p
)
}
},
.quantile = function(p, lower.tail = TRUE, log.p = FALSE) {
if (checkmate::testList(self$getParameterValue("shape"))) {
mapply(actuar::qllogis,
shape = self$getParameterValue("shape"), rate = self$getParameterValue("rate"),
MoreArgs = list(p = p, lower.tail = lower.tail, log.p = log.p)
)
} else {
actuar::qllogis(p,
shape = self$getParameterValue("shape"), rate = self$getParameterValue("rate"),
lower.tail = lower.tail, log.p = log.p
)
}
},
.rand = function(n) {
if (checkmate::testList(self$getParameterValue("shape"))) {
mapply(actuar::rllogis,
shape = self$getParameterValue("shape"), rate = self$getParameterValue("rate"),
MoreArgs = list(n = n)
)
} else {
actuar::rllogis(n, shape = self$getParameterValue("shape"),
rate = self$getParameterValue("rate"))
}
},
.traits = list(valueSupport = "continuous", variateForm = "univariate")
)
)
.distr6$distributions <- rbind(
.distr6$distributions,
data.table::data.table(
ShortName = "LLogis", ClassName = "Loglogistic",
Type = "\u211D+", ValueSupport = "continuous",
VariateForm = "univariate",
Package = "actuar", Tags = ""
)
) |
build <- function(pkg = ".", path = NULL, binary = FALSE, vignettes = TRUE,
manual = FALSE, args = NULL, quiet = FALSE, ...) {
save_all()
if (!file_exists(pkg)) {
stop("`pkg` must exist", call. = FALSE)
}
check_dots_used(action = getOption("devtools.ellipsis_action", rlang::warn))
pkgbuild::build(
path = pkg, dest_path = path, binary = binary,
vignettes = vignettes, manual = manual, args = args, quiet = quiet, ...
)
}
pkgbuild::with_debug
pkgbuild::clean_dll
pkgbuild::has_devel
pkgbuild::find_rtools |
url <- "https://github.com/oneapi-src/oneTBB/archive/refs/tags/v2021.1.1.tar.gz"
owd <- setwd("src")
unlink("tbb", recursive = TRUE)
download.file(url, destfile = basename(url), mode = "wb")
before <- list.files()
untar(basename(url))
after <- list.files()
folder <- setdiff(after, before)
print(folder)
file.rename(folder, "tbb")
unlink(basename(url)) |
NI.D5.calc2 <- function(p.vec, Se, Sp, ordering, group.mem, a,
trace = TRUE, print.time = TRUE, ...) {
start.time <- proc.time()
I <- ncol(group.mem)
joint.p <- matrix(data = rep(p.vec, times = I),
nrow = 4, ncol = I, byrow = FALSE,
dimnames = list(joint.p.row.labels(ordering),
as.character(1:I)))
save.info <- TwoDisease.Hierarchical(joint.p = joint.p,
group.mem = group.mem,
Se = Se, Sp = Sp, ordering = ordering,
a = 1:I, accuracy = TRUE)
ind.acc1.all <- save.info$Disease1$Individual
rownames(ind.acc1.all) <- ind.acc1.all[, "Individual"]
check1 <- check.all.equal(ind.acc1.all,
which(colnames(ind.acc1.all) == "PSp"))
if (is.null(check1)) {
ind.acc1 <- get.unique.index(ind.acc1.all[a,],
which(colnames(ind.acc1.all) == "PSp"),
rowlabel = a)[,-1]
} else {
ind.acc1 <- check1[,-1]
}
ind.acc2.all <- save.info$Disease2$Individual
rownames(ind.acc2.all) <- ind.acc2.all[, "Individual"]
check2 <- check.all.equal(ind.acc2.all,
which(colnames(ind.acc2.all) == "PSp"))
if (is.null(check2)) {
ind.acc2 <- get.unique.index(ind.acc2.all[a,],
which(colnames(ind.acc2.all) == "PSp"),
rowlabel = a)[,-1]
} else {
ind.acc2 <- check2[,-1]
}
acc.dis1 <- save.info$Disease1$Overall
acc.dis2 <- save.info$Disease2$Overall
save.it <- c(I, save.info$Expt, save.info$Expt / I, acc.dis1, acc.dis2)
accuracy.mat <- matrix(data = save.it[4:11],
nrow = 2, ncol = 4, byrow = TRUE,
dimnames = list("Disease" = 1:2,
c("PSe", "PSp", "PPPV", "PNPV")))
Se.display <- matrix(data = Se, nrow = 2, ncol = 5,
dimnames = list("Disease" = 1:2, "Stage" = 1:5))
Sp.display <- matrix(data = Sp, nrow = 2, ncol = 5,
dimnames = list("Disease" = 1:2, "Stage" = 1:5))
if (print.time) {
time.it(start.time)
}
list("algorithm" = "Non-informative five-stage hierarchical testing",
"prob.vec" = p.vec, "Se" = Se.display, "Sp" = Sp.display,
"Config" = list("Stage1" = save.it[1],
"Stage2" = get.pools(group.mem[2,]),
"Stage3" = get.pools(group.mem[3,]),
"Stage4" = get.pools(group.mem[4,])),
"p.mat" = joint.p, "ET" = save.it[2], "value" = save.it[3],
"Accuracy" = list("Disease 1 Individual" = ind.acc1,
"Disease 2 Individual" = ind.acc2,
"Overall" = accuracy.mat))
} |
NULL
measurementInvariance <- function(..., std.lv = FALSE, strict = FALSE,
quiet = FALSE, fit.measures = "default",
baseline.model = NULL,
method = "satorra.bentler.2001") {
.Deprecated(msg = c("The measurementInvariance function is deprecated, and",
" it will cease to be included in future versions of ",
"semTools. See help('semTools-deprecated) for details."))
lavaancfa <- function(...) { lavaan::cfa(...) }
dotdotdot <- list(...)
if (is.null(dotdotdot$model)) stop('all lavaan() and lavOptions() arguments must',
' named, including the "model=" argument.')
if (!is.null(dotdotdot$group.equal))
stop("lavaan ERROR: group.equal argument should not be used")
if (names(dotdotdot)[1] == "") names(dotdotdot)[1] <- "model"
res <- list()
configural <- dotdotdot
configural$group.equal <- ""
template <- try(do.call(lavaancfa, configural), silent = TRUE)
if (class(template) == "try-error") stop('Configural model did not converge.')
pttemplate <- parTable(template)
varnames <- unique(pttemplate$rhs[pttemplate$op == "=~"])
facnames <- unique(pttemplate$lhs[(pttemplate$op == "=~") & (pttemplate$rhs %in% varnames)])
ngroups <- max(pttemplate$group)
if (ngroups <= 1) stop("Well, the number of groups is 1. Measurement",
" invariance across 'groups' cannot be done.")
if (std.lv) {
for (i in facnames) {
pttemplate <- fixParTable(pttemplate, i, "~~", i, 1:ngroups, 1)
}
fixloadings <- which(pttemplate$op == "=~" & pttemplate$free == 0)
for (i in fixloadings) {
pttemplate <- freeParTable(pttemplate, pttemplate$lhs[i], "=~",
pttemplate$rhs[i], pttemplate$group[i])
}
dotdotdot$model <- pttemplate
res$fit.configural <- try(do.call(lavaancfa, dotdotdot), silent = TRUE)
} else {
res$fit.configural <- template
}
if (std.lv) {
findloadings <- which(pttemplate$op == "=~" & pttemplate$free != 0 & pttemplate$group == 1)
for (i in findloadings) {
pttemplate <- constrainParTable(pttemplate, pttemplate$lhs[i],
"=~", pttemplate$rhs[i], 1:ngroups)
}
for (i in facnames) {
pttemplate <- freeParTable(pttemplate, i, "~~", i, 2:ngroups)
}
dotdotdot$model <- pttemplate
res$fit.loadings <- try(do.call(lavaancfa, dotdotdot), silent = TRUE)
} else {
loadings <- dotdotdot
loadings$group.equal <- c("loadings")
res$fit.loadings <- try(do.call(lavaancfa, loadings), silent = TRUE)
}
if (std.lv) {
findintcepts <- which(pttemplate$op == "~1" & pttemplate$lhs %in% varnames &
pttemplate$free != 0 & pttemplate$group == 1)
for (i in findintcepts) {
pttemplate <- constrainParTable(pttemplate,
pttemplate$lhs[i], "~1", "", 1:ngroups)
}
for (i in facnames) {
pttemplate <- freeParTable(pttemplate, i, "~1", "", 2:ngroups)
}
dotdotdot$model <- pttemplate
res$fit.intercepts <- try(do.call(lavaancfa, dotdotdot), silent = TRUE)
} else {
intercepts <- dotdotdot
intercepts$group.equal <- c("loadings", "intercepts")
res$fit.intercepts <- try(do.call(lavaancfa, intercepts), silent = TRUE)
}
if (strict) {
if (std.lv) {
findresiduals <- which(pttemplate$op == "~~" &
pttemplate$lhs %in% varnames &
pttemplate$rhs == pttemplate$lhs &
pttemplate$free != 0 & pttemplate$group == 1)
for (i in findresiduals) {
pttemplate <- constrainParTable(pttemplate, pttemplate$lhs[i], "~~",
pttemplate$rhs[i], 1:ngroups)
}
dotdotdot$model <- pttemplate
res$fit.residuals <- try(do.call(lavaancfa, dotdotdot), silent = TRUE)
for (i in facnames) {
pttemplate <- fixParTable(pttemplate, i, "~1", "", 1:ngroups, 0)
}
dotdotdot$model <- pttemplate
res$fit.means <- try(do.call(lavaancfa, dotdotdot), silent = TRUE)
} else {
residuals <- dotdotdot
residuals$group.equal <- c("loadings", "intercepts", "residuals")
res$fit.residuals <- try(do.call(lavaancfa, residuals), silent = TRUE)
means <- dotdotdot
means$group.equal <- c("loadings", "intercepts", "residuals", "means")
res$fit.means <- try(do.call(lavaancfa, means), silent = TRUE)
}
} else {
if (std.lv) {
for (i in facnames) {
pttemplate <- fixParTable(pttemplate, i, "~1", "", 1:ngroups, 0)
}
dotdotdot$model <- pttemplate
res$fit.means <- try(do.call(lavaancfa, dotdotdot), silent = TRUE)
} else {
means <- dotdotdot
means$group.equal <- c("loadings", "intercepts", "means")
res$fit.means <- try(do.call(lavaancfa, means), silent = TRUE)
}
}
if (!quiet) printInvarianceResult(res, fit.measures, baseline.model, method)
invisible(res)
}
printInvarianceResult <- function(FIT, fit.measures, baseline.model, method) {
NAMES <- names(FIT)
nonconv <- which(sapply(FIT, class) == "try-error")
if (length(nonconv)) {
message('The following model(s) did not converge: \n', paste(NAMES[nonconv], sep = "\n"))
FIT <- FIT[-nonconv]
NAMES <- NAMES[-nonconv]
}
names(FIT) <- NULL
lavaanLavTestLRT <- function(...) lavaan::lavTestLRT(...)
TABLE <- do.call(lavaanLavTestLRT, c(FIT, list(model.names = NAMES,
method = method)))
if (length(fit.measures) == 1L && fit.measures == "default") {
if (length(lavInspect(FIT[[1]], "test")) > 1L) {
if (lavInspect(FIT[[1]], "test")[[2]]$test %in% c("satorra.bentler", "yuan.bentler")) {
fit.measures <- c("cfi.robust", "rmsea.robust")
} else fit.measures <- c("cfi.scaled", "rmsea.scaled")
} else {
fit.measures <- c("cfi", "rmsea")
}
}
if (length(fit.measures)) {
FM <- lapply(FIT, fitMeasures,
fit.measures = fit.measures, baseline.model = baseline.model)
FM.table1 <- sapply(fit.measures, function(x) sapply(FM, "[[", x))
if (length(FM) == 1L) {
FM.table1 <- rbind( rep(as.numeric(NA), length(fit.measures)), FM.table1)
}
if (length(FM) > 1L) {
FM.table2 <- rbind(as.numeric(NA),
abs(apply(FM.table1, 2, diff)))
colnames(FM.table2) <- paste(colnames(FM.table2), ".delta", sep = "")
FM.TABLE <- as.data.frame(cbind(FM.table1, FM.table2))
} else {
FM.TABLE <- as.data.frame(FM.table1)
}
rownames(FM.TABLE) <- rownames(TABLE)
class(FM.TABLE) <- c("lavaan.data.frame", "data.frame")
}
cat("\n")
cat("Measurement invariance models:\n\n")
cat(paste(paste("Model", seq_along(FIT), ":", NAMES), collapse = "\n"))
cat("\n\n")
print(TABLE)
if (length(fit.measures)) {
cat("\n\n")
cat("Fit measures:\n\n")
print(FM.TABLE)
cat("\n")
return(list(anova = TABLE, fitMeasures = FM.TABLE))
}
TABLE
} |
context("get_decon")
test_that("get_decon produces an opinionated dataset", {
skip_if_offline()
skip_on_cran()
cesR::get_decon()
expect_true(exists("decon"))
})
test_that("get_decon produces an error message if the decon object already exists", {
skip_if_offline()
skip_on_cran()
expect_error(cesR::get_decon())
}) |
svygpg <-
function(formula, design, ...) {
if( length( attr( terms.formula( formula ) , "term.labels" ) ) > 1 ) stop( "convey package functions currently only support one variable in the `formula=` argument" )
UseMethod("svygpg", design)
}
svygpg.survey.design <-
function(formula, design, sex, na.rm=FALSE,...) {
if (is.null(attr(design, "full_design"))) stop("you must run the ?convey_prep function on your linearized survey design object immediately after creating it with the svydesign() function.")
wagevar <- model.frame(formula, design$variables, na.action = na.pass)[[1]]
mf <- model.frame(sex, design$variables, na.action = na.pass)
xx <- lapply(attr(terms(sex), "variables")[-1], function(tt) model.matrix(eval(bquote(~0 + .(tt))), mf))
cols <- sapply(xx, NCOL)
sex <- matrix(nrow = NROW(xx[[1]]), ncol = sum(cols))
scols <- c(0, cumsum(cols))
for (i in 1:length(xx))sex[, scols[i] + 1:cols[i]] <- xx[[i]]
colnames(sex) <- do.call("c", lapply(xx, colnames))
sex <- as.matrix(sex)
x <- cbind(wagevar,sex)
if(na.rm){
nas<-rowSums(is.na(x))
design<-design[nas==0,]
if (length(nas) > length(design$prob)){
wagevar <- wagevar[nas == 0]
sex <- sex[nas==0,]
} else{
wagevar[nas > 0] <- 0
sex[nas > 0,] <- 0
}
}
w <- 1 / design$prob
ind <- names(design$prob)
if(na.rm){
if (length(nas) > length(design$prob)) sex <- sex[!nas,] else sex[nas] <- 0
}
col_female <- grep("female", colnames(sex))
col_male <- setdiff(1:2, col_female)
INDM <- list(value = sum(sex[, col_male]*w), lin=sex[, col_male])
INDF <- list(value = sum(sex[, col_female]*w), lin=sex[, col_female])
TM <- list(value = sum(wagevar*sex[, col_male]*w), lin=wagevar*sex[, col_male])
TF <- list(value = sum(wagevar*sex[, col_female]*w), lin=wagevar*sex[, col_female])
list_all_tot <- list(INDM=INDM,INDF=INDF,TM=TM,TF=TF)
IGPG <- contrastinf( quote( ( TM / INDM - TF / INDF ) / ( TM / INDM ) ) , list_all_tot )
infun <- IGPG$lin
rval <- IGPG$value
variance <- survey::svyrecvar(infun/design$prob, design$cluster, design$strata, design$fpc, postStrata = design$postStrata)
colnames( variance ) <- rownames( variance ) <- names( rval ) <- strsplit( as.character( formula )[[2]] , ' \\+ ' )[[1]]
class(rval) <- c( "cvystat" , "svystat" )
attr( rval , "var" ) <- variance
attr(rval, "lin") <- infun
attr( rval , "statistic" ) <- "gpg"
rval
}
svygpg.svyrep.design <-
function(formula, design, sex,na.rm=FALSE, ...) {
if (is.null(attr(design, "full_design"))) stop("you must run the ?convey_prep function on your replicate-weighted survey design object immediately after creating it with the svrepdesign() function.")
wage <- terms.formula(formula)[[2]]
df <- model.frame(design)
wage <- df[[as.character(wage)]]
if(na.rm){
nas<-is.na(wage)
design<-design[!nas,]
df <- model.frame(design)
wage <- wage[!nas]
}
ws <- weights(design, "sampling")
design <- update(design, one = rep(1, length(wage)))
mf <- model.frame(sex, design$variables, na.action = na.pass)
xx <- lapply(attr(terms(sex), "variables")[-1], function(tt) model.matrix(eval(bquote(~0 + .(tt))), mf))
cols <- sapply(xx, NCOL)
sex <- matrix(nrow = NROW(xx[[1]]), ncol = sum(cols))
scols <- c(0, cumsum(cols))
for (i in 1:length(xx)) sex[, scols[i] + 1:cols[i]] <- xx[[i]]
colnames(sex) <- do.call("c", lapply(xx, colnames))
sex <- as.matrix(sex)
ComputeGpg <-
function(earn_hour, w, sex) {
col_female <- grep("female", colnames(sex))
col_male <- setdiff(1:2, col_female)
ind_men <- sex[, col_male]
ind_fem <- sex[, col_female]
med_men <- sum(ind_men * earn_hour * w)/sum(ind_men * w)
med_fem <- sum(ind_fem * earn_hour * w)/sum(ind_fem * w)
gpg <- (med_men - med_fem)/med_men
gpg
}
rval <- ComputeGpg(earn_hour = wage, w = ws, sex = sex)
ww <- weights(design, "analysis")
qq <- apply(ww, 2, function(wi) ComputeGpg(wage, wi, sex = sex))
if(anyNA(qq))variance <- NA
else variance <- survey::svrVar(qq, design$scale, design$rscales, mse = design$mse, coef = rval)
variance <- as.matrix( variance )
colnames( variance ) <- rownames( variance ) <- names( rval ) <- strsplit( as.character( formula )[[2]] , ' \\+ ' )[[1]]
class(rval) <- c( "cvystat" , "svrepstat" )
attr(rval, "var") <- variance
attr(rval, "statistic") <- "gpg"
rval
}
svygpg.DBIsvydesign <-
function (formula, design, sex, ...){
if (!( "logical" %in% class(attr(design, "full_design"))) ){
full_design <- attr( design , "full_design" )
full_design$variables <-
cbind(
getvars(formula, attr( design , "full_design" )$db$connection, attr( design , "full_design" )$db$tablename,updates = attr( design , "full_design" )$updates, subset = attr( design , "full_design" )$subset),
getvars(sex, attr( design , "full_design" )$db$connection, attr( design , "full_design" )$db$tablename,updates = attr( design , "full_design" )$updates, subset = attr( design , "full_design" )$subset)
)
attr( design , "full_design" ) <- full_design
rm( full_design )
}
design$variables <-
cbind(
getvars(formula, design$db$connection,design$db$tablename, updates = design$updates, subset = design$subset),
getvars(sex, design$db$connection, design$db$tablename,updates = design$updates, subset = design$subset)
)
NextMethod("svygpg", design)
} |
library(testthat)
context("Testing if repo command works properly")
source("R/test_utils.R")
test_that_template("Test template creation - various options", {
wspace_dir <- get_wspace_dir()
retcode <- rsuite_run(args = c("tmpl", "start", "-n", "TestTemplate1"), wd = wspace_dir)
expect(retcode == 0, sprintf("Failed to create template in wspace directory(errcode %s)"),
retcode)
expect_true(dir.exists(file.path(wspace_dir, "TestTemplate1", "project")))
expect_true(dir.exists(file.path(wspace_dir, "TestTemplate1", "package")))
retcode <- rsuite_run(args = c("tmpl", "start", "-n", "TestTemplate2", "--prj", "--pkg"), wd = wspace_dir)
expect(retcode == 0, sprintf("Failed to create template in wspace directory(errcode %s)"),
retcode)
expect_true(dir.exists(file.path(wspace_dir, "TestTemplate2", "project")))
expect_true(dir.exists(file.path(wspace_dir, "TestTemplate2", "package")))
retcode <- rsuite_run(args = c("tmpl", "start", "-n", "TestTemplate3", "--prj"), wd = wspace_dir)
expect(retcode == 0, sprintf("Failed to create template in wspace directory(errcode %s)"),
retcode)
expect_true(dir.exists(file.path(wspace_dir, "TestTemplate3", "project")))
expect_false(dir.exists(file.path(wspace_dir, "TestTemplate3", "package")))
retcode <- rsuite_run(args = c("tmpl", "start", "-n", "TestTemplate4", "--pkg"), wd = wspace_dir)
expect(retcode == 0, sprintf("Failed to create template in wspace directory(errcode %s)"),
retcode)
expect_false(dir.exists(file.path(wspace_dir, "TestTemplate4", "project")))
expect_true(dir.exists(file.path(wspace_dir, "TestTemplate4", "package")))
}) |
residuals.flashlight <- function(object, ...) {
object <- flashlight(object, check = FALSE, ...)
response(object) - predict(object)
} |
setClass(Class = "Single.Obs.LT.Survey",
contains = "LT.Survey"
)
setMethod(
f="initialize",
signature="Single.Obs.LT.Survey",
definition=function(.Object, population, line.transect, perp.truncation){
.Object@population <- population
.Object@transect <- line.transect
[email protected] <- perp.truncation
validObject(.Object)
return(.Object)
}
)
setValidity("Single.Obs.LT.Survey",
function(object){
return(TRUE)
}
)
setMethod(
f="create.survey.results",
signature="Single.Obs.LT.Survey",
definition=function(object, dht.tables = FALSE, ...){
population <- object@population
line.transect <- try(object@transect, silent = TRUE)
if(class(line.transect) == "try-error"){
line.transect <- [email protected]
}
if(sum(population@N) >= 2000){
poss.distances <- calc.poss.detect.dists.lines.largeN(population, line.transect, perp.truncation = [email protected])
}else{
poss.distances <- calc.poss.detect.dists.lines(population, line.transect, perp.truncation = [email protected])
}
n.in.covered <- poss.distances$distance
dist.data <- simulate.detections(poss.distances, population@detectability)
dist.data <- rename.duplicates(dist.data)
all.col.names <- names(object@population@population)
cov.param.names <- all.col.names[!all.col.names %in% c("object", "x", "y", "strata", "scale.param", "shape.param")]
dist.data <- dist.data[,c("object", "transect.ID", "distance", "x", "y", cov.param.names)]
ddf.data.obj <- new(Class = "Single.Obs.DDF.Data", data = dist.data)
if(dht.tables){
region.table <- create.region.table(object, ...)
sample.table <- create.sample.table(object)
obs.table <- data.frame(object = dist.data$object, Sample.Label = dist.data$transect.ID)
obs.table <- merge(obs.table, [email protected], by = "Sample.Label")[,c("object","Sample.Label","Region.Label")]
obs.table.obj <- new(Class = "Obs.Table", data = obs.table)
return(list(ddf.data = ddf.data.obj, obs.table = obs.table.obj, sample.table = sample.table, region.table = region.table, n.in.covered = n.in.covered))
}else{
return(list(ddf.data = ddf.data.obj, n.in.covered = n.in.covered))
}
}
)
|
corrector_numeric <-
function (y, c_l, r_w, conm, cons, cha_num, rw_col, multsh)
{
warnid <- 0
y <- as.character(y)
y_1 <- unlist(strsplit(y, ""))
z_1 <- match(y_1, cha_num)
z <- which(is.na(z_1) == FALSE)
l_z <- length(z)
if (l_z == 0) {
z_2 <- y
}
else {
y_2 <- y_1
y_2[z] <- " "
y_2 <- paste(y_2, collapse = "")
y_2 <- unlist(strsplit(y_2, " "))
y_3 <- nchar(y_2)
z_2 <- as.character(y_2[which(y_3 > 0)])
z_5 <- which(z_1 > 32)
if (conm == 0 && cons == 0 && (l_z + length(z_5)) >= length(z_2)) {
z_3 <- match(c(1, length(y_1)), z)
z_3 <- z_3[!duplicated(z_3)]
z_3 <- y_1[z[z_3[!is.na(z_3)]]]
z_4 <- z[-1] - z[-l_z]
z_4 <- y_1[z[which(z_4 == 1)]]
z_3 <- c(z_3, z_4)
if(length(z_5)) {
z_5 <- cha_num[z_1[z_5]]
z_3 <- append(z_3, z_5)
z_3 <- z_3[!duplicated(z_3)]
}
if (length(z_3) > 1) {
tch <- "characters "
}
else {
tch <- "character "
}
warning(multsh, " The cell in ", rw_col[2], r_w, " and marker ", shQuote(c_l, "sh"), " contains the unexpected ", tch, paste(shQuote(z_3, "sh"), collapse = " and "),
".", call. = FALSE, noBreaks. = TRUE)
warnid <- 1
}
if ((conm >= 1 || cons >= 1)) {
if (l_z > 1) {
tch <- "characters "
}
else {
tch <- "character "
}
warning(multsh, " The cell in ", rw_col[2], r_w, " and marker ", shQuote(c_l, "sh"), " contains the unexpected ", tch, paste(shQuote(y_1[z], "sh"), collapse = " and "),
".", call. = FALSE, noBreaks. = TRUE)
warnid <- 1
if (length(z_2) > 1) {
warning(multsh, " The cell in ", rw_col[2], r_w, " and marker ", shQuote(c_l, "sh"), " contains multiple entries. In case of multiple rows (or multiple columns) data, inserting several entries in one cell is not recommended.",
call. = FALSE, noBreaks. = FALSE)
}
}
}
if (length(z_2) == 0 ) {
z_2 <- NA
}
else {
if (is.na(z_2[1]) == FALSE) {
if (nchar(z_2[1]) == 0) {
z_2 <- NA
}
else {
z_num_2 <- unlist(lapply(z_2, function(x) strsplit(x, "[.]")[[1]][1]))
z_num <- floor(as.numeric(z_2))
z_real <- as.numeric(z_2)
zerostarter <- which(nchar(z_num_2) != nchar(z_num))
n_z <- nchar(z_num)
n_z_2 <- nchar(z_2)
n0 <- z_2[zerostarter]
n1 <- z_2[n_z == 1]
n4 <- z_2[n_z >= 4]
if (length(n1) > 0 || length(n4) > 0 || length(zerostarter) > 0) {
khata <- c(n0, n1, n4)
khata <- khata[!duplicated(khata)]
warning(multsh, " The cell in ", rw_col[2], r_w, " and marker ", shQuote(c_l, "sh"), " contains an unusual entry ", paste(shQuote(khata, "sh"), collapse = " and "), ".",
call. = FALSE, noBreaks. = TRUE)
warnid <- 1
z_2 <- as.character(z_real)
}
}
}
}
z_2 <- z_2[!duplicated(z_2)]
list(z_2, warnid)
}
corrector_string <-
function (y, c_l, r_w, conm, cons, cha_string, rw_col, coding, multsh)
{
warnid <- 0
y <- as.character(y)
y_1 <- unlist(strsplit(y, ""))
z_1 <- match(y_1, cha_string)
z <- which(is.na(z_1) == FALSE)
l_z <- length(z)
if (l_z == 0) {
z_2 <- y
}
else if (length(y) == 0) {
z_2 <- NA
}
else {
y_2 <- y_1
y_2[z] <- " "
y_2 <- paste(y_2, collapse = "")
y_2 <- unlist(strsplit(y_2, " "))
y_3 <- nchar(y_2)
z_2 <- as.character(y_2[which(y_3 > 0)])
z_2 <- as.character(z_2[z_2 > 0])
z_5 <- which(z_1 > 32)
if ((l_z + length(z_5)) >= length(z_2) && conm == 0 && cons == 0) {
z_3 <- match(c(1, length(y_1)), z)
z_3 <- z_3[!duplicated(z_3)]
z_3 <- y_1[z[z_3[!is.na(z_3)]]]
z_4 <- z[-1] - z[-l_z]
z_4 <- y_1[z[which(z_4 == 1)]]
z_3 <- c(z_3, z_4)
if(length(z_5)) {
z_5 <- cha_string[z_1[z_5]]
z_3 <- append(z_3, z_5)
z_3 <- z_3[!duplicated(z_3)]
}
if (length(z_3) > 1) {
tch <- "characters "
}
else {
tch <- "character "
}
warning(multsh, " The cell in ", rw_col[2], r_w, " and marker ", shQuote(c_l, "sh"), " contains the unexpected ", tch, paste(shQuote(z_3, "sh"), collapse = " and "),
".", call. = FALSE, noBreaks. = TRUE)
warnid <- 1
}
if ((conm >= 1 || cons >= 1)) {
if (l_z > 1) {
tch <- "characters "
}
else {
tch <- "character "
}
warning(multsh, " The cell in ", rw_col[2], r_w, " and marker ", shQuote(c_l, "sh"), " contains the unexpected ", tch, paste(shQuote(y_1[z], "sh"), collapse = " and "),
".", call. = FALSE, noBreaks. = TRUE)
warnid <- 1
if (length(z_2) > 1) {
warning(multsh, " The cell in ", rw_col[2], r_w, " and marker ", shQuote(c_l, "sh"), " contains multiple entries. In case of multiple rows (or multiple columns) data, inserting several entries in one cell is not recommended.",
call. = FALSE, noBreaks. = TRUE)
warnid <- 1
}
}
}
z_2 <- z_2[!duplicated(z_2)]
if (length(z_2) == 0) {
z_2 <- NA
}
else if (length(z_2) == 1) {
if (is.na(z_2) == FALSE) {
if (nchar(z_2) == 0) {
z_2 <- NA
}
}
}
if (is.element(coding, c('1let', 'iupac', '4let')) == T) {
lz <- length(z_2)
z_2 <- unlist(strsplit(as.character(z_2), ""))
if (length(z_2) > lz) {
if (coding == '1let') {
mol <- "amino acids: "
}
else {
mol <- "SNPs: "
}
warning(multsh, " The cell in ", rw_col[2], r_w, " and marker ", shQuote(c_l, "sh"), " contains consecutive ", mol, shQuote(y, "sh"), ".",
call. = FALSE, noBreaks. = TRUE)
}
}
list(z_2, warnid)
} |
mtsframe <- function(dates, Y)
UseMethod("mtsframe")
mtsframe.default <- function(dates, Y) {
Y = as.matrix(Y)
n <- dim(Y)[1]; D <- dim(Y)[2]
if(inherits(dates, "Date")==T){dates = as.Date(dates)} else {dates = dates}
outputs <- list(dates = dates, Y = Y, n=n, D=D, call = match.call())
class(outputs) <- "mtsframe"
return(outputs)
}
plot.mtsframe <- function(x, time.format="%m-%y", col = NULL, lty = NULL, main = NULL, type = NULL, pch = NULL, lwd = NULL,
ylab = NULL,xlab = NULL, ylim = NULL, xlim = NULL,cex.lab=NULL, cex.axis=NULL,cex.main=NULL, ...) {
matplot(x$dates, x$Y,
main = if(is.null(main)){''} else {main},
col = if(is.null(col)){'black'} else {col},
lty = if(is.null(lty)){1} else {lty},
pch = if(is.null(pch)){1} else {pch},
lwd = if(is.null(lwd)){1} else {lwd},
type = if(is.null(type)){'l'} else {type},
xlab = if(is.null(xlab)){'Time'} else {xlab},
ylab = if(is.null(ylab)){''} else {ylab},
ylim = if(is.null(ylim)){ c(min(x$Y), max(x$Y)) } else {ylim},
xlim = if(is.null(xlim)){c(min(x$dates),max(x$dates))} else {xlim},
cex.lab = if(is.null(cex.lab)){1} else {cex.lab},
cex.axis = if(is.null(cex.axis)){1} else {cex.axis},
cex.main = if(is.null(cex.main)){1} else {cex.main},
xaxt="n")
if(inherits(x$dates, "Date")==T){ timelabels<-format(x$dates,time.format) ; axis(1,at=x$dates,labels=timelabels,cex.axis = if(is.null(cex.axis)){1} else {cex.axis})} else { axis(1,at=x$dates,cex.axis = if(is.null(cex.axis)){1} else {cex.axis}) }
} |
latticeCombineGrid <- function(trellis.list,
between = list(y = 0.3, x = 0.3),
as.table = TRUE,
...) {
stopifnot(
requireNamespace("lattice"),
requireNamespace("latticeExtra")
)
outLayout <- function(x, y, ...) {
update(c(x, y, ...), between = between, as.table = as.table)
}
out <- suppressWarnings(Reduce(outLayout, trellis.list))
dots = list(...)
if (length(dots) > 0) {
out <- do.call(update, args = append(list(object = out), dots))
}
return(out)
} |
cluster_se_glm <- function(model, cluster){
if (class(cluster) == "factor") {
cluster <- droplevels(cluster)
}
if (nrow(model.matrix(model)) != length(cluster)) {
stop("check your data: cluster variable has different N than model - you may have observations with missing data")
}
M <- length(unique(cluster))
N <- length(cluster)
K <- model$rank
dfc <- (M/(M - 1)) * ((N - 1)/(N - K))
uj <- apply(estfun(model), 2, function(x) tapply(x, cluster, sum))
rcse.cov <- dfc * sandwich(model, meat. = crossprod(uj)/N)
return(rcse.cov)
}
clean.names <- function(str) {
x <- strsplit(str,":")[[1]]
x <- gsub("[\\p{P}\\p{S}\\p{Z}]","",x,perl=T)
paste(x,collapse=":")
}
clean.names <- Vectorize(clean.names,vectorize.args=("str"),USE.NAMES = F)
amce <- function(formula, data, design="uniform", respondent.varying = NULL, subset=NULL, respondent.id=NULL, cluster=TRUE, na.ignore=FALSE, weights=NULL, baselines = NULL) {
formula_user <- formula
formula_char_user <- all.vars(formula)
user_names <- list()
user_levels <- list()
for (char in formula_char_user) {
user_names[[clean.names(char)]] <- char
if (class(data[[char]]) == "factor") {
old_names <- names(user_levels)
user_levels <- c(user_levels,levels(data[[char]]))
new_names <- sapply(clean.names(levels(data[[char]])),function(x) paste(clean.names(char),x,sep=""))
names(user_levels) <- c(old_names,new_names)
}
}
formula_char <- clean.names(formula_char_user)
if(length(unique(formula_char)) != length(formula_char)) {
stop("Error: Variable names must be unique when whitespace and meta-characters are removed. Please rename.")
}
y_var <- clean.names(formula_char_user[1])
orig_effects <- clean.names(attr(terms(formula_user),"term.labels"))
orig_effects <- c(sort(orig_effects[!grepl(":",orig_effects)]), orig_effects[grepl(":",orig_effects)])
vars_plus <- paste(orig_effects,collapse = " + ")
form <- formula(paste(c(y_var,vars_plus),collapse = " ~ "))
orig_effects <- attr(terms(form),"term.labels")
full_terms <- attr(terms(formula(paste(y_var,paste(sapply(orig_effects,function(x) gsub(":","*",x)),collapse=" + "),sep=" ~ "))),"term.labels")
missing_terms <- full_terms[!is.element(full_terms,orig_effects)]
if (length(missing_terms > 0)) {
orig_effects <- c(orig_effects,missing_terms)
warning("Missing base terms for interactions added to formula")
}
orig_effects <- c(sort(orig_effects[!grepl(":",orig_effects)]), orig_effects[grepl(":",orig_effects)])
vars_plus <- paste(orig_effects,collapse = " + ")
form <- formula(paste(c(y_var,vars_plus),collapse = "~"))
orig_effects <- clean.names(attr(terms(form),"term.labels"))
unique_vars <- clean.names(rownames(attr(terms(form),"factor"))[-1])
respondent_vars <- clean.names(respondent.varying)
profile_vars <- unique_vars[!is.element(unique_vars,respondent_vars)]
if (length(respondent_vars) > 0) {
profile_effects <- unlist(sapply(orig_effects,USE.NAMES = F,function(x) {
y <- strsplit(x,":")[[1]]
if (!any(is.element(y,respondent_vars))) x
}))
resp_only <- unlist(sapply(orig_effects,USE.NAMES = F, function(x) {
y <- strsplit(x,":")[[1]]
if(any(is.element(y,respondent_vars))) x
}))
resp_mod <- unlist(sapply(resp_only,USE.NAMES = F,function(x) {
y <- strsplit(x,":")[[1]]
vars <- y[!is.element(y,respondent_vars)]
if (length(vars) > 0) paste(vars,collapse = ":")
}))
resp_effects <- c(resp_mod,resp_only)
} else {
profile_effects <- orig_effects
resp_effects <- NULL
}
if (!is.null(respondent.id)) respondent.id <- clean.names(respondent.id)
if (!is.null(weights)) weights <- clean.names(weights)
if (!is.null(baselines)) {
names(baselines) <- clean.names(names(baselines))
baselines <- lapply(baselines,function(x) clean.names(x))
}
colnames(data) <- clean.names(colnames(data))
var_to_check_levels <- unique(c(formula_char_user, respondent_vars, profile_vars, profile_effects, orig_effects))
for (var in var_to_check_levels) {
if (class(data[[var]]) == "factor") {
clean.labels <- clean.names(levels(data[[var]]))
if (length(unique(clean.labels)) != length(clean.labels)) {
stop (paste("Error: levels of variable", var, "are not unique when whitespace and meta-characters are removed. Please rename."))
}
data[[var]] <- factor(data[[var]],levels=levels(data[[var]]), labels=clean.names(levels(data[[var]])))
}
}
for(var in formula_char) {
if(!(var %in% colnames(data))) {
stop(paste("Error:", var, "not in 'data'"))
}
}
for (var in profile_vars) {
if (class(data[[var]]) != "factor") {
data[[var]] <- as.factor(data[[var]])
warning(paste(c("Warning: ",var," changed to factor"),collapse=""))
}
}
if(na.ignore == FALSE){
for(variab in formula_char){
if (sum(is.na(data[[variab]])) != 0 ){
stop(paste("Error:", variab, "has missing values in 'data'"))
}
}
}
if (!is.null(respondent_vars)) {
for (var in respondent_vars) {
found <- 0
for (formulavars in formula_char) {
if (var == formulavars) {
found <- 1
}
}
if (found == 0) {
stop(paste("Error:", var, "is specified in respondent.varying, but is not in the formula"))
}
}
}
if (!is.numeric(data[[y_var]]) & !is.integer(data[[y_var]])) {
stop(paste("Error:", y_var, "is not numeric or integer"))
}
if (!is.null(baselines)) {
for(var in names(baselines)) {
if(!(baselines[[var]] %in% data[[var]])) {
stop(paste("Error: user supplied baseline",baselines[[var]],"is not a level of",var))
}
}
}
if(is.null(respondent.id) & cluster == TRUE) {
warning("respondent.id is NULL - setting cluster to FALSE. Please specify a respondent.id variable if you want to estimate clustered standard errors")
cluster <- FALSE
}
if (cluster == TRUE) {
if (is.null(respondent.id)) {
stop('Error: Must specify a respondent.id if cluster = TRUE')
} else if (!(respondent.id %in% colnames(data))) {
stop('Error: respondent.id not in data')
}
}
if(!is.null(weights)) {
if (!weights %in% colnames(data)) {
stop('Error: weights not in data')
}
if(length(unique(data[[weights]])) == 1) {
weights <- NULL
}
}
if (class(design) == "conjointDesign") {
names(dimnames(design$J)) <- clean.names(names(dimnames(design$J)))
dimnames(design$J) <- lapply(dimnames(design$J),function(x) clean.names(x))
names(design$depend) <- clean.names(names(design$depend))
design$depend <- lapply(design$depend,function(x) clean.names(x))
for (eff in profile_vars) {
if (!(eff %in% names(dimnames(design$J)))) {
stop(paste("Error:", eff, "not in 'design' object"))
}
}
for (eff in names(dimnames(design$J))) {
if (!(eff %in% colnames(data))){
stop(paste("Error: attribute", eff, "in 'design' object is not in 'data'"))
} else {
for (lev in clean.names(levels(as.factor(data[[eff]])))) {
if (!(lev %in% dimnames(design$J)[[eff]])) {
stop(paste("Error: factor level", lev, "of attribute", eff, "not in 'design' object"))
}
}
}
}
depend_to_check <- NULL
for (var in names(design$depend)) {
depend_to_check <- c(depend_to_check,design$depend[[var]])
}
depend_to_check <- depend_to_check[!depend_to_check %in% var_to_check_levels]
for (var in depend_to_check){
if (class(data[[var]]) == "factor") {
clean.labels <- clean.names(levels(data[[var]]))
if (length(unique(clean.labels)) != length(clean.labels)) {
stop (paste("Error: levels of variable", var, "used as a dependency, are not unique when whitespace and meta-characters are removed. Please rename."))
}
data[[var]] <- factor(data[[var]],levels=levels(data[[var]]), labels=clean.names(levels(data[[var]])))
}
}
} else if (design == "uniform") {
design <- list()
design.dim <- vector(length=length(profile_vars))
dim_list <- list()
for (i in 1:length(profile_vars)) {
dim_list[[i]] <- levels(factor(data[[profile_vars[i]]]))
design.dim[i] <- length(dim_list[[i]])
}
names(dim_list) <- profile_vars
design$J <- array(1/prod(design.dim), dim=design.dim, dimnames=dim_list)
design$depend <- compute_dependencies(design$J)
} else {
stop("Design object must be a valid character string 'uniform' or a conjointDesign object")
}
if (is.null(subset)) {
data <- data
} else {
if (class(subset) == "logical") {
if (length(subset) == nrow(data)) {
data <- subset(data, subset)
} else {
warning("Warning: invalid argument to 'subset' - must be the same length as the number of rows in data")
}
} else {
warning("Warning: invalid argument to 'subset' - must be a logical")
}
}
if (!is.null(baselines)) {
for (var in names(baselines)) {
data[[var]] <- factor(data[[var]])
data[[var]] <- relevel(data[[var]], baselines[[var]])
}
}
if(any(profile_vars %in% names(design$depend))) {
depend_vars <- c()
for(eff in profile_vars[profile_vars %in% names(design$depend)]) {
inter <- c()
eff_all <- grep(paste(c(":",eff,"(?!_)","|",eff,":(?<!_)"),collapse=""),
orig_effects,value=T,perl=T)
if (length(eff_all) > 0) {
eff_all <- sapply(strsplit(eff_all,":"),function(x) paste(sort(x),collapse="*"))
}
eff_all <- c(eff,eff_all)
inter <- sapply(eff_all,USE.NAMES = F,function(x) {
T_r <- design$depend[[eff]]
for (t in T_r){
data[[t]] <- as.factor(data[[t]])
}
T_r_d <- c(x,T_r)
paste(T_r_d,collapse="*")
})
depend_vars <- c(depend_vars,inter)
}
depend_vars <- unique(depend_vars)
form_full <- formula(paste(c(form,depend_vars),collapse = " + "))
} else {
form_full <- form
}
all_run_vars <- attr(terms(form_full),"term.labels")
all_run_vars <- c(sort(all_run_vars[!grepl(":",all_run_vars)]), all_run_vars[grepl(":",all_run_vars)])
vars_plus <- paste(all_run_vars,collapse = " + ")
form_full<- formula(paste(c(y_var,vars_plus),collapse = "~"))
all_run_vars <- attr(terms(form_full),"term.labels")
if (length(respondent_vars) > 0) {
prof_only <- unlist(sapply(all_run_vars,function(x) {
y <- clean.names(strsplit(x,":")[[1]])
if(!any(is.element(y,respondent_vars))) x
}))
prof_only_plus <- paste(prof_only,collapse = " + ")
form_prof <- paste(all.vars(form_full)[1],prof_only_plus,sep=" ~ ")
form_prof <- formula(form_prof)
} else {
form_prof <- form_full
}
all_prof <- clean.names(attr(terms(form_prof),"term.labels"))
all_run_vars <- clean.names(all_run_vars)
if (any(!is.element(all_prof,all_run_vars))) {
warning("Warning: mismatch of term names between full formula and profile formula")
}
if (is.null(weights)) {
lin.mod.prof <- lm(form_prof, data=data)
if (length(respondent_vars) > 0) {
lin.mod.full <- lm(form_full, data=data)
} else {
lin.mod.full <- NULL
}
} else {
if (cluster) {
out.design <- svydesign(ids = data[[respondent.id]], weights = data[[weights]], data=data)
} else {
out.design <- svydesign(ids = ~0, weights = data[[weights]], data=data)
}
lin.mod.prof <- svyglm(form_prof, data=data, design = out.design)
if (length(respondent_vars) > 0) {
lin.mod.full <- svyglm(form_full, data=data, design = out.design)
} else {
lin.mod.full <- NULL
}
}
sample_size_prof <- length(lin.mod.prof$residuals)
if (length(respondent.varying) > 0) {
sample_size_full <- length(lin.mod.full$residuals)
} else {
sample_size_full <- NULL
}
if (is.null(weights) & cluster == TRUE) {
vcov_mat_prof <- cluster_se_glm(lin.mod.prof, data[[respondent.id]])
if (length(respondent.varying) > 0) {
vcov_mat_full <- cluster_se_glm(lin.mod.full, data[[respondent.id]])
} else {
vcov_mat_full <- NULL
}
} else if (!is.null(weights)) {
vcov_mat_prof <- vcov(lin.mod.prof)
if (length(respondent_vars) > 0) {
vcov_mat_full <- vcov(lin.mod.full)
} else {
vcov_mat_full <- NULL
}
} else {
vcov_mat_prof <- vcovHC(lin.mod.prof,type="HC2")
if (length(respondent.varying) > 0) {
vcov_mat_full <- vcovHC(lin.mod.full,type="HC2")
} else {
vcov_mat_full <- NULL
}
}
fix.vcov <- function(varprob,vcov) {
if (!requireNamespace("Matrix", quietly = TRUE)){
stop("Matrix package needed for this function to work. Please install it.",
call. = FALSE)
}
varprob2 <- Matrix(varprob,sparse=TRUE)
vcov2 <- Matrix(vcov,sparse=TRUE)
fix1 <- varprob2 %*% vcov2 + t(varprob2 %*% vcov2) + vcov2
vcov_vector <- matrix(as.vector(vcov2),ncol=1,nrow=length(as.vector(vcov2)))
weighted_covs <- kronecker(varprob2,varprob2) %*% vcov_vector
weighted_covs <- matrix(weighted_covs,nrow=nrow(vcov), ncol=ncol(vcov))
fix2 <- fix1 + weighted_covs
out <- matrix(fix2,ncol=ncol(vcov),nrow=nrow(vcov))
colnames(out) <- rownames(out) <- rownames(vcov)
return(out)
}
J_baseline <- NULL
J_effect <- NULL
J_call <- Quote(design$J[])
J_call <- J_call[c(1, 2, rep(3, length(dim(design$J))))]
warn_i <- 0
estimates <- list()
profile_effects <- c(sort(profile_effects[!grepl(":",profile_effects)]), profile_effects[grepl(":",profile_effects)])
covariance_list <- list()
varprob_mat <- matrix(0,nrow(vcov_mat_prof),ncol(vcov_mat_prof))
colnames(varprob_mat) <- rownames(varprob_mat) <- colnames(vcov_mat_prof)
for(i in 1:length(profile_effects)) {
substrings <- strsplit(profile_effects[i], "[:*]", perl=TRUE)[[1]]
all_levels <- list()
all_levels_coefs <- list()
for(effect in substrings) {
all_levels[[effect]] <- levels(data[[effect]])[-1]
all_levels_coefs[[effect]] <- sapply(all_levels[[effect]], function(x) {
paste(c(effect,x), collapse="")
})
}
levels <- expand.grid(all_levels, stringsAsFactors = FALSE)
levels <- cbind(apply(levels,1,function(x) paste(x,collapse=":")),levels)
colnames(levels) <- c("name",substrings)
coefs <- expand.grid(all_levels_coefs, stringsAsFactors = FALSE)
coefs <- apply(coefs,1,function(x) paste(x,collapse=":"))
results <- matrix(nrow=2, ncol = nrow(levels))
if (length(substrings) > 1) {
rownames(results) <- c("ACIE", "Std. Error")
} else {
rownames(results) <- c("AMCE", "Std. Error")
}
colnames(results) <- coefs
results[2,] <- NA
all_depends <- unlist(sapply(all_prof,USE.NAMES = F,function(x) {
y <- strsplit(x,":")[[1]]
if (all(is.element(substrings,y))) x
}))
all_depends <- all_depends[-is.element(all_depends,profile_effects[i])]
for(j in 1:nrow(levels)) {
effect_level_coef <- coefs[j]
initial_beta <- coefficients(lin.mod.prof)[effect_level_coef]
if (!is.na(initial_beta) & length(substrings) > 1) {
for (effect1 in substrings) {
effect_base1 <- levels(data[[effect1]])[1]
base.subset <- data[which(data[[effect1]] == effect_base1),]
for(effect in substrings[!(substrings %in% effect1)]) {
base.subset <- base.subset[which(base.subset[[effect]] == as.character(levels[j,effect])),]
}
if (nrow(base.subset) == 0) {
initial_beta <- NA
warn_i <- warn_i + 1
}
}
}
if (!is.na(initial_beta) & length(all_depends) > 0) {
J_effect_call <- J_base_call <- J_call
for(effect in substrings) {
base <- levels(data[[effect]])[1]
effect_index <- which(names(dimnames(design$J)) == effect)
J_base_call[effect_index + 2] <- base
level <- levels[j,effect]
J_effect_call[effect_index + 2] <- level
}
eval(call("<-", Quote(J_baseline), J_base_call))
eval(call("<-", Quote(J_effect), J_effect_call))
for(k in 1:length(all_depends)) {
depend <- all_depends[[k]]
substrings_d <- strsplit(depend,":")[[1]]
substrings_d <- substrings_d[!is.element(substrings_d,substrings)]
all_depend_coefs <- list()
for (sub in substrings_d) {
all_depend_coefs[[sub]] <- sapply(levels(data[[sub]]), function(x) paste(c(sub,x),collapse=""))
}
all_depend_levels <- expand.grid(all_depend_coefs)
substrings_l <- strsplit(effect_level_coef,":")[[1]]
for (l in length(substrings_l):1) {
all_depend_levels <- cbind(rep(substrings_l[l], nrow(all_depend_levels)), all_depend_levels)
}
colnames(all_depend_levels)[1:length(substrings_l)] <- substrings
all_depend_levels <- all_depend_levels[sort(colnames(all_depend_levels))]
all_depend_level_coefs <- apply(all_depend_levels, 1, function(x) paste(x,collapse=":"))
if (!(is.null(dim(J_baseline)))){
baseline_support <- apply(J_baseline,substrings_d,sum)
} else {
baseline_support <- J_baseline
}
baseline_support[baseline_support != 0] <- 1
if (!is.null(dim(J_effect))) {
joint_prob <- apply(J_effect, substrings_d, sum)*baseline_support
} else {
joint_prob <- J_effect*baseline_support
}
joint_prob <- as.vector(joint_prob)
names(joint_prob) <- all_depend_level_coefs
all_depend_level_coefs <- all_depend_level_coefs[!is.na(lin.mod.prof$coefficients[all_depend_level_coefs])]
varprob_mat[effect_level_coef,all_depend_level_coefs] <- as.numeric(joint_prob[all_depend_level_coefs])/as.numeric(sum(joint_prob))
if (length(all_depend_level_coefs)) {
var_prob <- joint_prob[all_depend_level_coefs]
var_prob <- as.numeric(var_prob)/as.numeric(sum(joint_prob))
depend_betas <- lin.mod.prof$coefficients[all_depend_level_coefs]
initial_beta <- sum(initial_beta,var_prob*depend_betas,na.rm=T)
}
}
}
results[1,j] <- initial_beta
}
estimates[[profile_effects[i]]] <- results
}
vcov_prof <- suppressMessages(fix.vcov(varprob_mat,vcov_mat_prof))
for (i in 1:length(estimates)) {
coef_names <- colnames(estimates[[i]])
variances <- sqrt(diag(vcov_prof)[coef_names])
estimates[[i]][2,] <- ifelse(is.na(estimates[[i]][1,]),NA,variances)
}
profile_effects_plus <- paste(profile_effects,collapse=" + ")
profile_effects_form <- formula(paste(c(y_var,profile_effects_plus),collapse = " ~ "))
profile_effects_terms <- colnames(model.matrix(profile_effects_form,data))
profile_effects_terms <- profile_effects_terms[profile_effects_terms %in% colnames(vcov_mat_prof)]
vcov_prof <- vcov_prof[profile_effects_terms,profile_effects_terms]
if (length(respondent_vars) > 0) {
conditional.estimates <- list()
resp_effects <- c(sort(resp_effects[!grepl(":",resp_effects)]), resp_effects[grepl(":",resp_effects)])
covariance_list <- list()
varprob_mat <- matrix(0,nrow(vcov_mat_full),ncol(vcov_mat_full))
colnames(varprob_mat) <- rownames(varprob_mat) <- colnames(vcov_mat_full)
for (i in 1:length(resp_effects)) {
substrings <- strsplit(resp_effects[i], "[:*]", perl=TRUE)[[1]]
all_levels <- list()
all_levels_coefs <- list()
for(effect in substrings) {
if (class(data[[effect]]) != "factor") {
all_levels[[effect]] <- effect
all_levels_coefs[[effect]] <- effect
} else {
all_levels[[effect]] <- levels(data[[effect]])[-1]
all_levels_coefs[[effect]] <- sapply(all_levels[[effect]],
function(x) {
paste(c(effect,x), collapse="")
})
}
}
levels <- expand.grid(all_levels, stringsAsFactors = FALSE)
levels <- cbind(apply(levels,1,function(x) paste(x,collapse=":")),levels)
colnames(levels) <- c("name",substrings)
coefs <- expand.grid(all_levels_coefs, stringsAsFactors = FALSE)
coefs <- apply(coefs,1,function(x) paste(x,collapse=":"))
results <- matrix(nrow=2, ncol = nrow(levels))
rownames(results) <- c("Conditional Estimate", "Std. Error")
colnames(results) <- coefs
results[2,] <- NA
if (any(substrings %in% profile_vars)) {
all_depends <- unlist(sapply(all_run_vars,USE.NAMES = F,function(x) {
y <- strsplit(x,":")[[1]]
if (all(is.element(substrings,y))) x
}))
all_depends <- all_depends[!is.element(all_depends,resp_effects[i])]
resp.other <- respondent_vars[!is.element(respondent_vars,substrings)]
all_depends <- unlist(sapply(all_depends,function(x) {
sub_depends <- strsplit(x,":")[[1]]
if (all(!is.element(sub_depends,resp.other))) x
}))
} else {
all_depends <- c()
}
for(j in 1:nrow(levels)) {
effect_level_coef <- coefs[j]
initial_beta <- coefficients(lin.mod.full)[effect_level_coef]
if (!is.na(initial_beta)) {
for (effect1 in substrings[substrings %in% profile_vars]) {
effect_base1 <- levels(data[[effect1]])[1]
base.subset <- data[which(data[[effect1]] == effect_base1),]
for(effect in substrings[substrings %in% profile_vars][!(substrings[substrings %in% profile_vars] %in% effect1)]) {
base.subset <- base.subset[which(base.subset[[effect]] == as.character(levels[j,effect])),]
}
if (nrow(base.subset) == 0) {
initial_beta <- NA
warn_i <- warn_i + 1
}
}
}
if (!is.na(initial_beta) & length(all_depends) > 0) {
J_effect_call <- J_base_call <- J_call
for(effect in substrings[substrings %in% profile_vars]) {
base <- levels(data[[effect]])[1]
effect_index <- which(names(dimnames(design$J)) == effect)
J_base_call[effect_index + 2] <- base
level <- levels[j,effect]
J_effect_call[effect_index + 2] <- level
}
eval(call("<-", Quote(J_baseline), J_base_call))
eval(call("<-", Quote(J_effect), J_effect_call))
for(k in 1:length(all_depends)) {
depend <- all_depends[[k]]
substrings_d <- strsplit(depend,":")[[1]]
substrings_d <- substrings_d[!is.element(substrings_d,substrings)]
all_depend_coefs <- list()
for (sub in substrings_d) {
all_depend_coefs[[sub]] <- sapply(levels(data[[sub]]), function(x) paste(c(sub,x),collapse=""))
}
all_depend_levels <- expand.grid(all_depend_coefs)
substrings_l <- strsplit(effect_level_coef,":")[[1]]
for (l in length(substrings_l):1) {
all_depend_levels <- cbind(rep(substrings_l[l], nrow(all_depend_levels)), all_depend_levels)
}
colnames(all_depend_levels)[1:length(substrings_l)] <- substrings
all_depend_levels <- all_depend_levels[sort(colnames(all_depend_levels))]
all_depend_level_coefs <- apply(all_depend_levels, 1, function(x) paste(x,collapse=":"))
if (!(is.null(dim(J_baseline)))) {
baseline_support <- apply(J_baseline,substrings_d,sum)
} else {
baseline_support <- J_baseline
}
baseline_support[baseline_support != 0] <- 1
if (!is.null(dim(J_effect))) {
joint_prob <- apply(J_effect, substrings_d, sum)*baseline_support
} else {
joint_prob <- J_effect*baseline_support
}
joint_prob <- as.vector(joint_prob)
names(joint_prob) <- all_depend_level_coefs
all_depend_level_coefs <- all_depend_level_coefs[!is.na(lin.mod.full$coefficients[all_depend_level_coefs])]
varprob_mat[effect_level_coef,all_depend_level_coefs] <- as.numeric(joint_prob[all_depend_level_coefs])/as.numeric(sum(joint_prob))
if (length(all_depend_level_coefs)) {
var_prob <- joint_prob[all_depend_level_coefs]
var_prob <- as.numeric(var_prob)/as.numeric(sum(joint_prob))
depend_betas <- lin.mod.full$coefficients[all_depend_level_coefs]
initial_beta <- sum(initial_beta,var_prob*depend_betas, na.rm=T)
}
}
}
results[1,j] <- initial_beta
}
conditional.estimates[[resp_effects[i]]] <- results
}
vcov_resp <- suppressMessages(fix.vcov(varprob_mat,vcov_mat_full))
for (i in 1:length(conditional.estimates)) {
coef_names <- colnames(conditional.estimates[[i]])
variances <- sqrt(diag(vcov_resp)[coef_names])
conditional.estimates[[i]][2,] <- ifelse(is.na(conditional.estimates[[i]][1,]), NA, variances)
}
resp_effects_plus <- paste(resp_effects,collapse=" + ")
resp_effects_form <- formula(paste(c(y_var,resp_effects_plus),collapse = " ~ "))
resp_effects_terms <- colnames(model.matrix(resp_effects_form,data))
resp_effects_terms <- resp_effects_terms[resp_effects_terms %in% colnames(vcov_mat_full)]
vcov_resp <- vcov_resp[resp_effects_terms,resp_effects_terms]
}
output <- list()
class(output) <- c("amce")
output$estimates <- estimates
output$attributes <- dimnames(design$J)
output$vcov.prof <- vcov_prof
output$samplesize_prof <- sample_size_prof
output$formula <- form
if (warn_i > 0) {
warning(paste("Warning: ",warn_i," interaction levels lacked support at baseline, effects undefined unless alternative baseline is provided."))
}
if (length(respondent.varying) > 0) {
output$cond.estimates <- conditional.estimates
output$vcov.resp <- vcov_resp
output$samplesize_full <- sample_size_full
output$cond.formula <- resp_effects_form
}
output$baselines <- list()
output$continuous <- list()
for (k in unique_vars) {
if (class(data[[k]]) == "factor") {
output$baselines[[k]] <- levels(data[[k]])[1]
} else if (class(data[[k]]) == "numeric") {
output$continuous[[k]] <- quantile(model.matrix(form,data)[,k], probs=c(0.25,0.5,0.75), na.rm=T)
}
}
if (!is.null(respondent.id)) {
output$numrespondents <- length(unique(data[[respondent.id]]))
} else {
output$numrespondents <- NULL
}
if (!is.null(respondent.varying)) {
output$respondent.varying <- respondent_vars
} else {
output$respondent.varying <- NULL
}
if (!is.null(weights)) {
output$weights <- subset(data, select = weights)
} else {
output$weights <- NULL
}
output$user.names <- user_names
output$user.levels <- user_levels
output$data <- data
return(output)
}
get.conditional.effects <- function(object, conditional.levels, current.effect, current.level, mod.var) {
amce_obj <- object
cond.data <- amce_obj$data
for (var in names(amce_obj$baselines)) {
cond.data[[var]] <- amce_obj$baselines[[var]]
}
for (var in names(conditional.levels)) {
cond.data[[var]] <- conditional.levels[[var]][1]
}
cond.data[[current.effect]] <- current.level
orig.levels <- sapply(all.vars(amce_obj$cond.formula)[-1] [all.vars(amce_obj$cond.formula)[-1] %in% names(amce_obj$baselines)], function(x) levels(amce_obj$data[[x]]), simplify=F)
cond.base <- unlist(sapply(amce_obj$respondent.varying,USE.NAMES = F, function(x) colnames(amce_obj$cond.estimates[[x]])))
cond.beta <- c(0,do.call(cbind,amce_obj$cond.estimates)[1,])
estimates.vector <- c()
error.vector <- c()
names.vector <- c()
cov.ij <- function(var1,var2) {
out <- pred_mat[var1]*pred_mat[var2]*amce_obj$vcov.resp[var1,var2]
return(out)
}
cov.ij <- Vectorize(cov.ij,vectorize.args = c("var1","var2"))
na.multiply <- function(x,y) {
vec <- c(x,y)
if (any(is.na(vec)) && vec[!is.na(vec)] == 0) {
out <- 0
} else {
out <- x*y
}
}
na.multiply <- Vectorize(na.multiply,vectorize.args = c("x","y"))
mod_vars <- strsplit(mod.var,":")[[1]]
for (mod_coef in colnames(amce_obj$cond.estimates[[mod.var]])) {
mod_coefs <- strsplit(mod_coef,":")[[1]]
for (x in 1:length(mod_coefs)) {
mod_lev <- sub(mod_vars[x],"",mod_coefs[x])
cond.data[[mod_vars[x]]] <- mod_lev
}
pred_mat <- model.matrix(amce_obj$cond.formula,cond.data,xlev = orig.levels)
turn_off <- rep(1,ncol(pred_mat))
names(turn_off) <- colnames(pred_mat)
turn_off[cond.base] <- 0
pred_mat <- pred_mat[1,]*turn_off
if (!any(is.na(cond.beta))) {
pred_val <- sum(pred_mat*cond.beta)
} else {
pred_val <- sum(na.multiply(pred_mat,cond.beta))
}
if (!is.na(pred_val)) {
vars <- colnames(amce_obj$vcov.resp)[2:ncol(amce_obj$vcov.resp)]
all_cov <- outer(vars,vars,FUN= function(x,y) cov.ij(x,y))
pred_se <- sqrt(sum(all_cov))
} else {
pred_se <- NA
}
estimates.vector <- c(estimates.vector,pred_val)
error.vector <- c(error.vector,pred_se)
names.vector <- c(names.vector,mod_coef)
}
names(estimates.vector) <- names(error.vector) <- names.vector
out <- rbind(estimates.vector,error.vector)
return(out)
}
summary.amce <- function(object, covariate.values=NULL, ...) {
amce_obj <- object
summary_results <- list()
header <- c("Attribute", "Level", "Estimate", "Std. Err", "z value", "Pr(>|z|)", " ")
if (!is.null(covariate.values)) {
names(covariate.values) <- clean.names(names(covariate.values))
for (i in 1:length(covariate.values)) {
if (!names(covariate.values)[i] %in% amce_obj$respondent.varying) {
stop(paste(c("Error: variable",names(covariate.values)[i],"is not a respondent-varying characteristic in AMCE object."),collapse=" "))
}
if (names(covariate.values)[i] %in% names(amce_obj$baselines)) {
covariate.values[[i]] <- clean.names(covariate.values[[i]])
if (any(!covariate.values[[i]] %in% levels(amce_obj$data[[names(covariate.values)[i]]]))) {
stop(paste("Error: some level(s) of variable",names(covariate.values)[i],"do not appear in data."))
}
if (is.null(names(covariate.values[[i]]))) {
cov.names <- sapply(covariate.values[[i]],function(x) paste(names(covariate.values)[i],x,sep=""))
names(covariate.values[[i]]) <- sapply(cov.names,USE.NAMES = F, function(x) amce_obj$user.levels[x])
}
}
}
}
all_prof <- names(amce_obj$estimates)
all_amce <- grep(":",all_prof,value=T,invert=T)
all_acie <- grep(":",all_prof,value=T,invert=F)
namce <- sum(sapply(all_amce,function(x) length(unlist(amce_obj$estimates[[x]]))/2))
summary_results[["amce"]] <- matrix(nrow= namce, ncol=length(header))
colnames(summary_results[["amce"]]) <- header
summary_results[["amce"]] <- as.data.frame(summary_results[["amce"]])
amce_i <- 1
if (length(all_acie) > 0) {
nacie <- sum(sapply(all_acie,function(x) length(unlist(amce_obj$estimates[[x]]))/2))
summary_results[["acie"]] <- matrix(nrow= nacie, ncol=length(header))
colnames(summary_results[["acie"]]) <- header
summary_results[["acie"]] <- as.data.frame(summary_results[["acie"]])
acie_i <- 1
}
baselines_amce <- c()
baselines_acie <- c()
names_amce <- c()
names_acie <- c()
for (effect in all_prof) {
variates <- strsplit(effect, ":")[[1]]
lev_list <- c()
print_names <- c()
for (var in variates) {
lev_list <- c(lev_list, amce_obj$user.levels[[clean.names(paste0(var,amce_obj$baselines[[var]]))]])
print_names <- c(print_names,amce_obj$user.names[[var]])
}
print_level <- paste(lev_list,sep="",collapse=":")
print_effect <- paste(print_names,sep="",collapse=":")
if (grepl(":",effect)) {
entry_name <- "acie"
baselines_acie <- c(baselines_acie,print_level)
names_acie <- c(names_acie,print_effect)
index <- acie_i
} else {
entry_name <- "amce"
baselines_amce <- c(baselines_amce,print_level)
names_amce <- c(names_amce, print_effect)
index <- amce_i
}
for (p in 1:ncol(amce_obj$estimates[[effect]])) {
variate_levels <- strsplit(colnames(amce_obj$estimates[[effect]])[p],":")[[1]]
lev_list <- c()
for (lev in variate_levels) {
lev_list <- c(lev_list, amce_obj$user.levels[[lev]])
}
print_level <- paste(lev_list,sep="",collapse=":")
summary_results[[entry_name]][index,1] <- print_effect
summary_results[[entry_name]][index,2] <- print_level
summary_results[[entry_name]][index,3] <- amce_obj$estimates[[effect]][1,p]
summary_results[[entry_name]][index,4] <- amce_obj$estimates[[effect]][2,p]
zscr <- amce_obj$estimates[[effect]][1,p]/amce_obj$estimates[[effect]][2,p]
summary_results[[entry_name]][index,5] <- zscr
pval <- 2*pnorm(-abs(zscr))
summary_results[[entry_name]][index,6] <- pval
if (!is.na(pval)) {
if (pval < .001) {
summary_results[[entry_name]][index,7] <- "***"
} else if (pval < .01) {
summary_results[[entry_name]][index,7] <- "**"
} else if (pval < .05) {
summary_results[[entry_name]][index,7] <- "*"
} else {
summary_results[[entry_name]][index,7] <- ""
}
} else {
summary_results[[entry_name]][index,7] <- ""
}
index <- index + 1
}
if (grepl(":",effect)) {
acie_i <- index
} else {
amce_i <- index
}
}
summary_results[["amce"]] <- as.data.frame(summary_results[["amce"]])
summary_results[["baselines_amce"]] <- data.frame("Attribute" = names_amce, "Level" = baselines_amce)
if (grepl(":",effect)) {
summary_results[["acie"]] <- as.data.frame(summary_results[["acie"]])
summary_results[["baselines_acie"]] <- data.frame("Attribute" = names_acie, "Level" = baselines_acie)
}
if (length(amce_obj$cond.estimates) > 0) {
if (is.null(covariate.values)) covariate.values <- list()
if (any(!amce_obj$respondent.varying %in% names(covariate.values))) {
for (var in amce_obj$respondent.varying[!amce_obj$respondent.varying %in% names(covariate.values)]) {
if (var %in% names(amce_obj$baselines)) {
cov.vals <- colnames(amce_obj$cond.estimates[[var]])
covariate.values[[var]] <- sub(var,"",cov.vals)
covariate.values[[var]] <- c(amce_obj$baselines[[var]],covariate.values[[var]])
cov.vals <- c(paste(var,amce_obj$baselines[[var]],sep=""),cov.vals)
names(covariate.values[[var]]) <- sapply(cov.vals, USE.NAMES = F, function(x) amce_obj$user.levels[[x]])
} else {
covariate.values[[var]] <- amce_obj$continuous[[var]]
}
}
}
tab_name_amce <- c()
tab_var_amce <- c()
tab_val_amce <- c()
tab_name_acie <- c()
tab_var_acie <- c()
tab_val_acie <- c()
for (effect in amce_obj$respondent.varying) {
print_effect <- amce_obj$user.names[[effect]]
all_req_vars <- attr(terms(amce_obj$formula),"term.labels")
all_resp <- unlist(sapply(all_req_vars,function(x) {
y <- strsplit(x,":")[[1]]
if (any(y == effect)) x
}))
all_mod <- unlist(sapply(all_resp,function(x) {
subs <- strsplit(x,":")[[1]]
subs <- subs[is.element(subs,all_prof)]
if (length(subs) > 0) paste(subs,collapse=":")
}))
all_mod <- unique(all_mod)
if (length(all_mod) == 0) {
stop(paste(c("respondent characteristic",effect,"not interacted with profile attributes, no interpretation"),collapse=" "))
}
mod_amce <- grep(":",all_mod,value = T,invert = T)
mod_acie <- grep(":",all_mod,value = T,invert = F)
namce <- sum(sapply(mod_amce,function(x) length(unlist(amce_obj$estimates[[x]]))/2))
if (length(mod_acie) > 0) {
nacie <- sum(sapply(mod_acie,function(x) length(unlist(amce_obj$estimates[[x]]))/2))
}
for (i in 1:length(covariate.values[[effect]])) {
cond_lev <- covariate.values[[effect]][i]
if (!is.null(names(covariate.values[[effect]]))) {
print_cond_lev <- names(covariate.values[[effect]])[i]
} else {
print_cond_lev <- covariate.values[[effect]][i]
}
entry_name_amce <- paste(c(effect,i,"amce"),collapse="")
summary_results[[entry_name_amce]] <- matrix(NA,nrow = namce, ncol=length(header))
colnames(summary_results[[entry_name_amce]]) <- header
summary_results[[entry_name_amce]] <- as.data.frame(summary_results[[entry_name_amce]])
amce_i <- 1
tab_name_amce <- c(tab_name_amce,entry_name_amce)
tab_var_amce <- c(tab_var_amce, effect)
tab_val_amce <- c(tab_val_amce, print_cond_lev)
if (length(mod_acie) > 0) {
entry_name_acie <- paste(c(effect,i,"acie"),collapse="")
summary_results[[entry_name_acie]] <- matrix(NA,nrow= nacie, ncol=length(header))
colnames(summary_results[[entry_name_acie]]) <- header
summary_results[[entry_name_acie]] <- as.data.frame(summary_results[[entry_name_acie]])
acie_i <- 1
tab_name_acie <- c(tab_name_acie,entry_name_acie)
tab_var_acie <- c(tab_var_acie, effect)
tab_val_acie <- c(tab_val_acie, print_cond_lev)
}
for (mod_var in all_mod) {
mod_vars <- strsplit(mod_var, ":")[[1]]
print_vars <- c()
for (var in mod_vars) {
print_vars <- c(print_vars,amce_obj$user.names[[var]])
}
print_mod_var <- paste(c(print_vars),collapse=":")
if (grepl(":",mod_var)) {
entry_name <- entry_name_acie
index <- acie_i
} else {
entry_name <- entry_name_amce
index <- amce_i
}
cond.effects <- get.conditional.effects(amce_obj,covariate.values,effect,cond_lev,mod_var)
for (p in 1:ncol(amce_obj$cond.estimates[[mod_var]])) {
mod_coef <- colnames(amce_obj$cond.estimates[[mod_var]])[p]
mod_coefs <- strsplit(mod_coef, ":")[[1]]
print_levs <- c()
for (v in 1:length(mod_coefs)) {
print_levs <- c(print_levs, amce_obj$user.levels[[mod_coefs[v]]])
}
print_mod_level <- paste(print_levs,sep="",collapse=":")
cond_beta <- cond.effects[1,mod_coef]
cond_se <- cond.effects[2,mod_coef]
if (!is.na(cond_beta)) {
zscr <- cond_beta/cond_se
pval <- 2*pnorm(-abs(zscr))
} else {
zscr <- pval <- NA
}
summary_results[[entry_name]][index,1] <- print_mod_var
summary_results[[entry_name]][index,2] <- print_mod_level
summary_results[[entry_name]][index,3] <- cond_beta
summary_results[[entry_name]][index,4] <- cond_se
summary_results[[entry_name]][index,5] <- zscr
summary_results[[entry_name]][index,6] <- pval
if (!is.na(cond_beta)) {
if (pval < .001) {
summary_results[[entry_name]][index,7] <- "***"
} else if (pval < .01) {
summary_results[[entry_name]][index,7] <- "**"
} else if (pval < .05) {
summary_results[[entry_name]][index,7] <- "*"
} else {
summary_results[[entry_name]][index,7] <- ""
}
} else {
summary_results[[entry_name]][index,7] <- ""
}
index <- index + 1
}
if (grepl(":",effect)) {
acie_i <- index
} else {
amce_i <- index
}
}
summary_results[[entry_name_amce]] <- as.data.frame(summary_results[[entry_name_amce]])
if (length(mod_acie) > 0) {
summary_results[[entry_name_acie]] <- as.data.frame(summary_results[[entry_name_acie]])
}
}
}
summary_results[["table_values_amce"]] <- data.frame("Table Name" = tab_name_amce, "Level Name" = tab_var_amce, "Level Value" = tab_val_amce)
summary_results[["table_values_amce"]] <- apply(summary_results[["table_values_amce"]],c(1,2),function(x) as.character(x))
summary_results[["table_values_acie"]] <- data.frame("Table Name" = tab_name_acie, "Level Name" = tab_var_acie, "Level Value" = tab_val_acie)
summary_results[["table_values_acie"]] <- apply(summary_results[["table_values_acie"]],c(1,2),function(x) as.character(x))
} else {
summary_results[["table_values_amce"]] <- NULL
summary_results[["table_values_acie"]] <- NULL
}
summary_results[["samplesize_estimates"]] <- amce_obj$samplesize_prof
if (!is.null(amce_obj$samplesize_full)) {
summary_results[["samplesize_resp"]] <- amce_obj$samplesize_full
} else {
summary_results[["samplesize_resp"]] <- NULL
}
if (!is.null(amce_obj$numrespondents)) {
summary_results[["respondents"]] <- amce_obj$numrespondents
} else {
summary_results[["respondents"]] <- NULL
}
class(summary_results) <- c("summary.amce")
return(summary_results)
}
print.summary.amce <- function(x, digits=5, ...) {
summary_result <- x
cat("------------------------------------------\n")
cat("Average Marginal Component Effects (AMCE):\n")
cat("------------------------------------------\n")
print(summary_result$amce, digits=digits, row.names=F)
cat("---\n")
cat(paste("Number of Obs. = ", summary_result$samplesize_estimates, sep=""))
cat("\n")
cat("---\n")
if (!is.null(summary_result$respondents)) {
cat(paste("Number of Respondents = ", summary_result$respondents, sep=""))
cat("\n")
cat("---\n")
}
if (!is.null(summary_result$table_values_amce)) {
if (nrow(summary_result$table_values_amce) > 0) {
all.vars <- unique(summary_result$table_values_amce[,2])
for (i in 1:nrow(summary_result$table_values_amce)) {
print.lev <- paste(c("Conditional AMCE's ","(", summary_result$table_values_amce[i,2], " = ", summary_result$table_values_amce[i,3]), collapse="")
if (length(all.vars) > 1) {
this.var <- summary_result$table_values_amce[i,2]
other.vars <- all.vars[!is.element(all.vars,this.var)]
for (x in other.vars) {
lev <- summary_result$table_values_amce[summary_result$table_values_amce[ ,"Level.Name"] == x, "Level.Value"][1]
print.lev <- paste(c(print.lev,"; ",x," = ",lev),collapse="")
}
}
print.lev <- paste(c(print.lev,"):\n"),collapse="")
cat("------------------------------------------------------------\n")
cat(print.lev)
cat("------------------------------------------------------------\n")
print(summary_result[[summary_result$table_values_amce[i,1]]], digits=digits, row.names=F)
cat("---\n")
cat(paste("Number of Obs. = ", summary_result$samplesize_resp, sep=""))
cat("\n")
if (!is.null(summary_result$respondents)) {
cat(paste("Number of Respondents = ", summary_result$respondents, sep=""))
cat("\n")
}
cat("---\n")
cat("Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05")
cat("\n")
cat("\n")
}
}
}
cat("Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05")
cat("\n")
cat("\n")
cat("--------------------\n")
cat("AMCE Baseline Levels:\n")
cat("--------------------\n")
print(summary_result$baselines_amce, row.names=F)
cat("\n")
cat("\n")
if (!is.null(summary_result$acie)) {
cat("---------------------------------------------\n")
cat("Average Component Interaction Effects (ACIE):\n")
cat("---------------------------------------------\n")
print(summary_result$acie, digits=digits, row.names=F)
cat("---\n")
cat(paste("Number of Obs. = ", summary_result$samplesize_estimates, sep=""))
cat("\n")
if (!is.null(summary_result$respondents)) {
cat(paste("Number of Respondents = ", summary_result$respondents, sep=""))
cat("\n")
}
}
if (!is.null(summary_result$table_values_acie)) {
if (nrow(summary_result$table_values_acie) > 0) {
for (i in 1:nrow(summary_result$table_values_acie)) {
cat("------------------------------------------------------------\n")
cat(paste(c("Conditional ACIE's","(",summary_result$table_values_acie[i,2],"=", summary_result$table_values_acie[i,3],"):\n"),collapse=" "))
cat("------------------------------------------------------------\n")
print(summary_result[[summary_result$table_values_acie[i,1]]], digits=digits, row.names=F)
cat("---\n")
cat(paste("Number of Obs. = ", summary_result$samplesize_resp, sep=""))
cat("\n")
if (!is.null(summary_result$respondents)) {
cat(paste("Number of Respondents = ", summary_result$respondents, sep=""))
cat("\n")
}
cat("---\n")
cat("Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05")
cat("\n")
cat("\n")
}
}
}
if (!is.null(summary_result$acie)) {
cat("---\n")
cat("Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05")
cat("\n")
cat("\n")
cat("--------------------\n")
cat("ACIE Baseline Levels:\n")
cat("--------------------\n")
print(summary_result$baselines_acie, row.names=F)
cat("\n")
cat("\n")
}
}
plot.amce <- function(x, main="", xlab="Change in E[Y]", ci=.95, colors=NULL, xlim=NULL, breaks=NULL, labels=NULL, attribute.names = NULL, level.names = NULL, label.baseline = TRUE, text.size=11, text.color = "black", point.size = .5, dodge.size=0.9, plot.theme = NULL, plot.display = "all", facet.names = NULL, facet.levels = NULL, group.order = NULL,font.family = NULL,...) {
amce_obj <- x
ylim <- xlim
pe <- NULL
se <- NULL
group <- NULL
lower <- NULL
upper <- NULL
var <- NULL
printvar <- NULL
facet <- NULL
raw_attributes <- names(amce_obj$estimates)
raw_levels <- lapply(amce_obj$estimates,colnames)
for (effect in names(raw_levels)) {
effect_elements <- strsplit(effect, ":")[[1]]
baseline_interactions <- c()
for (elem in effect_elements) {
base_coef <- paste(c(elem,amce_obj$baselines[[elem]]),collapse="")
baseline_interactions <- c(baseline_interactions,base_coef)
}
interaction_str <- paste(baseline_interactions,sep="",collapse=":")
raw_levels[[effect]] <- c(interaction_str, raw_levels[[effect]])
}
if (ci < 1 & ci > 0) {
zscr <- qnorm(1- ((1-ci)/2))
} else {
cat("Invalid confidence interval -- Defaulting to 95%")
zscr <- qnorm(1- ((1-.95)/2))
}
if (!is.null(attribute.names)) {
attribute.names <- unique(attribute.names)
if (length(attribute.names) != length(raw_attributes)) {
cat(paste("Error: The number of unique elements in attribute.names ", length(attribute.names), " does not match the attributes in amce object for which estimates were obtained: ", paste(raw_attributes,collapse=", "), "\n", sep=""))
cat("Defaulting attribute.names to attribute names in AMCE object\n")
attribute.names <- NULL
}
}
if (!is.null(level.names)) {
names(level.names) <- clean.names(names(level.names))
for (name in names(level.names)) {
if (name %in% names(raw_levels)) {
if (length(level.names[[name]]) != length(raw_levels[[name]])) {
cat(paste("Error: level.names lengths do not match levels for attribute ", name, "\n",sep=""))
cat(paste("Defaulting level.names for attribute ", name, " to level names in AMCE object", "\n",sep=""))
level.names[[name]] <- NULL
}
} else {
cat(paste("Error: level.names entry ",name," not in AMCE object. Removing level.names for attribute.","\n",sep=""))
level.names[[name]] <- NULL
}
}
}
if (is.null(attribute.names)) {
attribute.names <- c()
for (attr in names(amce_obj$estimates)) {
attr_split <- strsplit(attr,":")[[1]]
attr_lookup <- paste(unlist(sapply(attr_split,function(x) amce_obj$user.names[x])), collapse=":")
attribute.names <- c(attribute.names,attr_lookup)
}
}
if (is.null(level.names)) level.names <- list()
if (any(!names(raw_levels) %in% names(level.names))) {
for (attr in names(raw_levels)[!names(raw_levels) %in% names(level.names)]) {
attr_split <- strsplit(raw_levels[[attr]],":")
level.names[[attr]] <- unlist(lapply(attr_split,function(x) paste(sapply(x,function(y) amce_obj$user.levels[y]),collapse=":")))
}
}
plot.display.opts <- c("all","unconditional","interaction")
if (!is.element(plot.display,plot.display.opts)) {
stop(paste(c("Error-- plot.display must be once of: ",paste(plot.display.opts,collapse=", ")),collapse=" "))
}
if (!is.null(facet.names)) {
facet.names <- clean.names(facet.names)
} else if (!is.null(facet.levels)) {
facet.names <- clean.names(names(facet.levels))
}
if (!is.null(facet.names)) {
facet.names.check <- c()
for (facet.name in facet.names) {
if (grepl(":",facet.name)) stop("Error-- cannot facet by interaction in current version.")
if (!facet.name %in% names(amce_obj$estimates) & !facet.name %in% names(amce_obj$cond.estimates)) {
stop(paste(c("Error-- cannot find facet name",facet.name,"in AMCE object output."),collapse=" "))
} else {
facet.names.check <- c(facet.names.check,facet.name)
}
}
facet.names <- facet.names.check
}
if ((is.null(facet.names)) & (length(amce_obj$respondent.varying) > 0) & (plot.display != "unconditional")) {
facet.names <- amce_obj$respondent.varying
}
if (is.null(facet.names) & plot.display == "interaction") {
warning("Warning: no facet name or respondent varying characteristic provided to calculate conditional estimates. Will display unconditional only")
plot.display <- "unconditional"
}
if(plot.display == "unconditional" & !is.null(facet.names)) {
warning("Warning-- plot display is set to unconditional, facet names will be ignored")
facet.names <- NULL
facet.levels <- NULL
}
if (!is.null(facet.levels)) {
names(facet.levels) <- clean.names(names(facet.levels))
for (facet.name in names(facet.levels)) {
if (facet.name %in% names(amce_obj$baselines)) {
facet.levels[[facet.name]] <- clean.names(facet.levels[[facet.name]])
if (facet.name %in% names(amce_obj$estimates) && is.element(amce_obj$baselines[[facet.name]],facet.levels[[facet.name]])) {
stop (paste(c("Error: Facet level \"",as.character(amce_obj$baselines[[facet.name]]), "\" is the baseline level of a profile varying attribute. Please provide alternative facet level or use defaults."), collapse=""))
}
if (is.null(names(facet.levels[[facet.name]]))) {
fac.levs <- sapply(facet.levels[[facet.name]],function(x) paste(facet.name,x,sep=""))
names(facet.levels[[facet.name]]) <- sapply(fac.levs, USE.NAMES = F, function(x) amce_obj$user.levels[[x]])
}
} else if (is.null(names(facet.levels[[facet.name]]))) {
names(facet.levels[[facet.name]]) <- as.character(facet.levels[[facet.name]])
}
}
}
if (is.null(facet.levels)) facet.levels <- list()
if (any(!facet.names %in% names(facet.levels))) {
for (facet.name in facet.names[!facet.names %in% names(facet.levels)]) {
if (facet.name %in% names(amce_obj$baselines)) {
if (facet.name %in% names(amce_obj$estimates)) {
fac.levs <- colnames(amce_obj$estimates[[facet.name]])
} else {
fac.levs <- colnames(amce_obj$cond.estimates[[facet.name]])
}
facet.levels[[facet.name]] <- sub(facet.name,"",fac.levs)
facet.levels[[facet.name]] <- c(amce_obj$baselines[[facet.name]], facet.levels[[facet.name]])
fac.levs <- c(paste(facet.name,amce_obj$baselines[[facet.name]],sep=""),fac.levs)
names(facet.levels[[facet.name]]) <- sapply(fac.levs, USE.NAMES = F,function(x) amce_obj$user.levels[[x]])
} else if (facet.name %in% names(amce_obj$continuous)) {
facet.levels[[facet.name]] <- amce_obj$continuous[[facet.name]]
}
}
}
covariate.values <- list()
for (var in names(facet.levels)) {
if (var %in% amce_obj$respondent.varying) {
covariate.values[[var]] <- facet.levels[[var]]
}
}
d <- data.frame(pe=c(), se=c(), upper=c(), lower=c(), var=c(), printvar = c(), group=c(), facet=c())
if (plot.display != "interaction") {
if (plot.display == "all") {
uncond.facet.name <- "Unconditional"
} else {
uncond.facet.name <- NA
}
if (plot.display == "all" && !is.null(facet.names)) {
attr_remove <- c()
for (facet.name in facet.names[!is.element(facet.names, amce_obj$respondent.varying)]) {
attr_remove1 <- raw_attributes[grepl(":",raw_attributes)]
attr_remove1 <- attr_remove1[grepl(facet.name,attr_remove1)]
attr_remove <- c(attr_remove,attr_remove1)
}
raw_attributes <- raw_attributes[!is.element(raw_attributes,attr_remove)]
}
for (i in 1:length(raw_attributes)) {
attr_name <- raw_attributes[i]
print_attr_name <- attribute.names[which(names(amce_obj$estimates) == raw_attributes[i])]
d_head <- data.frame(pe=NA, se=NA, upper=NA, lower=NA, var= attr_name, printvar=paste(print_attr_name, ":", sep=""), group="<NA>",facet=uncond.facet.name)
d <- rbind(d,d_head)
for (j in 1:length(raw_levels[[attr_name]])) {
level_name <- raw_levels[[attr_name]][j]
print_level_name <- level.names[[attr_name]][j]
if (j == 1) {
if (label.baseline) {
print_level_name <- paste("(Baseline = ",print_level_name,")",sep="")
}
d_lev <- data.frame(pe=NA, se=NA, upper=NA, lower=NA, var=level_name, printvar=paste(" ", print_level_name,sep=""), group=print_attr_name, facet=uncond.facet.name)
} else {
val_pe <- amce_obj$estimates[[attr_name]][1,level_name]
val_se <- amce_obj$estimates[[attr_name]][2,level_name]
upper_bnd <- val_pe + zscr*val_se
lower_bnd <- val_pe - zscr*val_se
d_lev <- data.frame(pe=val_pe, se=val_se, upper=upper_bnd, lower=lower_bnd, var=level_name, printvar=paste(" ", print_level_name,sep=""), group=print_attr_name, facet=uncond.facet.name)
}
d <- rbind(d,d_lev)
}
}
}
if (plot.display != "unconditional" & !is.null(facet.names)) {
for (facet.name in facet.names) {
print_facet_name <- amce_obj$user.names[[facet.name]]
all_req_vars <- attr(terms(amce_obj$formula),"term.labels")
all_mod <- unlist(sapply(all_req_vars,function(x) {
y <- strsplit(x,":")[[1]]
if (any(y == facet.name)) x
}))
all_mod <- unlist(sapply(all_mod,function(x) {
subs <- strsplit(x,":")[[1]]
subs <- subs[is.element(subs,names(amce_obj$estimates))]
subs <- subs[subs != facet.name]
if (length(subs) > 0) paste(subs,collapse=":")
}))
if (length(all_mod) == 0) {
stop(paste(c("Error: Facet variable",facet.name,"not interacted with profile attributes"),collapse=" "))
}
all_mod <- unique(all_mod)
if (is.element(facet.name,names(amce_obj$estimates))) {
facet.start <- 2
} else {
facet.start <- 1
}
for (k in facet.start:length(facet.levels[[facet.name]])) {
facet_lev <- facet.levels[[facet.name]][k]
if (is.element(facet.name,names(amce_obj$estimates))) {
print_facet_level <- paste(c("ACIE", paste(c(print_facet_name, names(facet.levels[[facet.name]])[k]), collapse = " = ")), collapse = "\n")
} else {
print_facet_level <- paste(c("Conditional on",paste(c(print_facet_name, names(facet.levels[[facet.name]])[k]), collapse = " = ")), collapse = "\n")
}
for (mod_var in all_mod) {
print_attr_name <- attribute.names[which(names(amce_obj$estimates) == mod_var)]
d_head <- data.frame(pe=NA, se=NA, upper=NA, lower=NA,var=mod_var, printvar=paste(print_attr_name, ":", sep=""), group="<NA>", facet=print_facet_level)
d <- rbind(d, d_head)
if (facet.name %in% names(amce_obj$estimates)) {
inter_coef <- paste(sort(c(mod_var,facet.name)),collapse = ":")
estimate.source <- amce_obj$estimates[[inter_coef]]
estimate.source <- estimate.source[,grep(paste0(facet.name, facet_lev), colnames(estimate.source))]
} else {
estimate.source <- get.conditional.effects(amce_obj, covariate.values, facet.name, facet_lev, mod_var)
}
mod_vars <- strsplit(mod_var,":")[[1]]
for (p in 1:length(raw_levels[[mod_var]])) {
mod_coef <- raw_levels[[mod_var]][p]
mod_coefs <- strsplit(mod_coef,":")[[1]]
for (lev in 1:length(mod_coefs)) {
mod_lev <- sub(mod_vars[lev],"",mod_coefs[lev])
}
print_level_name <- level.names[[mod_var]][p]
if (p == 1) {
if (label.baseline) {
print_level_name <- paste("(Baseline = ",print_level_name,")",sep="")
}
d_lev <- data.frame(pe=NA, se=NA, upper=NA, lower=NA, var = mod_coef, printvar=paste(" ", print_level_name,sep=""), group=print_attr_name, facet= print_facet_level)
} else {
val_pe <- estimate.source[1,p-1]
if (!is.na(val_pe)) {
val_se <- estimate.source[2,p-1]
upper_bnd <- val_pe + zscr*val_se
lower_bnd <- val_pe - zscr*val_se
} else {
val_se <- upper_bnd <- lower_bnd <- NA
}
d_lev <- data.frame(pe=val_pe, se=val_se, upper=upper_bnd, lower=lower_bnd, var = mod_coef, printvar=paste(" ", print_level_name,sep=""), group=print_attr_name, facet=print_facet_level)
}
d <- rbind(d, d_lev)
}
}
}
}
} else {
d <- d[,-which(colnames(d) == "facet")]
}
if (is.null(ylim)) {
max_upper <- max(d$upper, na.rm=T) + .05
min_lower <- min(d$lower, na.rm=T) - .05
ylim <- c(min_lower, max_upper)
d[is.na(d)] <- max_upper + 100
} else {
d[is.na(d)] <- max(ylim) + 100
}
d$group[d$group == "<NA>"] <- NA
if(!is.null(facet.names)) d$facet[d$facet == "<NA>"] <- NA
d$var <- factor(d$var,levels=unique(d$var)[length(d$var):1])
if (!is.null(facet.names)) {
d$facet <- factor(d$facet,levels=unique(d$facet))
}
if (!is.null(group.order)){
n.row <- length(unique(as.character(d$var)))
order.var <- vector("character", length = n.row)
i <- 1
while (i<n.row){
for (j in group.order){
order.var[i] <- unique(as.character(d$var[d$var==gsub(" ","",j)]))
i <- i+1
temp.d <- d
temp.d$group <- gsub(" ","",temp.d$group)
temp.d <- subset(temp.d, group==gsub(" ","",j))
temp.var <- unique((as.character(temp.d$var)))
order.var[i:(i+length(temp.var)-1)] <- temp.var
i <- i+length(temp.var)
}
}
order.var <- rev(order.var)
order.df <- data.frame(order.var, 1:length(order.var))
colnames(order.df) <- c("var", "order")
d$var <- factor(d$var, levels=order.var)
d <- merge(d, order.df, by.x="var", by.y="var", suffixes=c("",""))
}
p = ggplot(d, aes(y=pe, x=var, colour=group))
p = p + coord_flip(ylim = ylim)
p = p + geom_hline(yintercept = 0,size=.5,colour="black",linetype="dotted")
p = p + geom_pointrange(aes(ymin=lower,ymax=upper),position=position_dodge(width=dodge.size),size=point.size)
if (!is.null(facet.names)) {
p = p + facet_wrap(~ facet)
}
if (is.null(breaks) & is.null(labels)) {
p = p + scale_y_continuous(name=xlab)
} else if (is.null(breaks) & !is.null(labels)) {
p = p + scale_y_continuous(name=xlab, labels=labels)
} else if (!is.null(breaks) & is.null(labels)) {
p = p + scale_y_continuous(name=xlab, breaks=breaks)
} else if (!is.null(breaks) & !is.null(labels)) {
p = p + scale_y_continuous(name=xlab, breaks=breaks, labels=labels)
}
if (!is.null(group.order)){
fix.xlabs.df <- d[!duplicated(d$var),]
fix.xlabs <- fix.xlabs.df[order(-fix.xlabs.df$order),]$printvar
} else {
fix.xlabs <- as.character(d$printvar)[!duplicated(d$var)]
}
p = p + scale_x_discrete(name="",labels=fix.xlabs[length(fix.xlabs):1])
if (!is.null(main)) {
if (main != "") {
p = p + ggtitle(main)
}
}
if (is.null(colors)) {
p = p + scale_colour_discrete(" ")
} else if (is.vector(colors)) {
cPal <- rep(colors, ceiling(length(unique(d$group))/length(colors)))
p = p + scale_colour_manual(values=cPal)
} else {
cat("Error: 'colors' must be a vector. Using default colors\n")
p = p + scale_colour_discrete(" ")
}
if (is.null(plot.theme)){
theme_bw1 <- function(base_size = text.size, base_family = "") {
theme_grey(base_size = base_size, base_family = base_family) %+replace%
theme(axis.text.x = element_text(size = base_size*.9, colour = text.color, hjust = .5 , vjust=1),axis.text.y = element_text(size = base_size, colour = text.color, hjust = 0 , vjust=.5,family=font.family), axis.ticks = element_line(colour = "grey50"),axis.title.y = element_text(size = base_size,angle=90,vjust=.01,hjust=.1,family=font.family),plot.title = element_text(face = "bold",family=font.family),legend.position = "none")
}
p = p + theme_bw1()
print(p)
} else if (is.null(class(plot.theme))) {
cat("Error: 'plot.theme' is not a valid ggplot theme object. Using default theme\n")
theme_bw1 <- function(base_size = text.size, base_family = "") {
theme_grey(base_size = base_size, base_family = base_family) %+replace%
theme(axis.text.x = element_text(size = base_size*.9, colour = text.color, hjust = .5 , vjust=1),axis.text.y = element_text(size = base_size, colour = text.color, hjust = 0 , vjust=.5,family=font.family), axis.ticks = element_line(colour = "grey50"),axis.title.y = element_text(size = base_size,angle=90,vjust=.01,hjust=.1,family=font.family),plot.title = element_text(face = "bold",family=font.family),legend.position = "none")
}
p = p + theme_bw1()
print(p)
} else if (class(plot.theme)[1] != "theme") {
cat("Error: 'plot.theme' is not a valid ggplot theme object. Using default theme\n")
theme_bw1 <- function(base_size = text.size, base_family = "") {
theme_grey(base_size = base_size, base_family = base_family) %+replace%
theme(axis.text.x = element_text(size = base_size*.9, colour = text.color, hjust = .5 , vjust=1),axis.text.y = element_text(size = base_size, colour = text.color, hjust = 0 , vjust=.5,family=font.family), axis.ticks = element_line(colour = "grey50"),axis.title.y = element_text(size = base_size,angle=90,vjust=.01,hjust=.1,family=font.family),plot.title = element_text(face = "bold",family=font.family),legend.position = "none")
}
p = p + theme_bw1()
print(p)
} else {
p = p + plot.theme
print(p)
}
if (length(covariate.values) > 1) {
resp.message <- c("Note:")
for (this.var in names(covariate.values)) {
resp.message <- paste(c(resp.message," For AMCE and ACIE conditional on ",this.var,", "),collapse="")
other.vars <- names(covariate.values)[names(covariate.values) != this.var]
other.levels <- c()
for (var in other.vars) {
other.levels <- c(other.levels,paste(c(var," will be held at level \"",names(covariate.values[[var]])[1],"\""),collapse = ""))
}
other.levels <- paste(other.levels,collapse = ", and ")
resp.message <- c(resp.message,other.levels,".")
resp.message <- paste(resp.message,collapse = "")
}
cat(resp.message,"\n")
}
}
compute_dependencies <- function(J, tol=1e-14){
attribute_names <- names(dimnames(J))
if (length(attribute_names) == 1){
dependency_list <- list()
dependency_list[[attribute_names[1]]] <- c()
return(dependency_list)
}else{
dependency_list <- list()
for (k in attribute_names){
dependency_list[[k]] <- c()
}
for (i in 1:(length(attribute_names)-1)){
for(j in (i+1):length(attribute_names)){
attr1 <- attribute_names[i]
attr2 <- attribute_names[j]
cross_tab <- apply(J, c(attr1,attr2), sum)
sums <- apply(cross_tab, 1, sum)
cross_tab_std <- cross_tab/sums
is_equal = TRUE
r_1 <- cross_tab_std[1,]
if (nrow(cross_tab_std) > 1){
for (m in 2:nrow(cross_tab_std)){
if (any(as.vector(r_1) - as.vector(cross_tab_std[m,]) > tol)){
is_equal <- FALSE
}
}
}
if (!is_equal){
dependency_list[[attr1]] <- c(dependency_list[[attr1]], attr2)
dependency_list[[attr2]] <- c(dependency_list[[attr2]], attr1)
}
}
}
return(dependency_list)
}
}
makeDesign <- function(type="file", J=NULL, filename=NULL, attribute.levels = NULL, constraints=NULL, level.probs=NULL, tol=1e-14){
design.obj <- NULL
if (type == 'file'){
if (is.null(filename)){
cat("Error: Must provide a valid filename argument for type = 'file'\n")
stop()
}
connection <- file(filename, open="r")
file_lines <- readLines(connection)
close(connection)
attr_index <- which(file_lines == "Attributes")
weight_index <- which(file_lines == "Weights")
restriction_index <- which(file_lines == "Restrictions")
attributes <- file_lines[(attr_index+1):(weight_index-1)]
weight <- file_lines[(weight_index+1):(restriction_index-1)]
if (restriction_index+1 != length(file_lines)){
constr <- file_lines[(restriction_index+1):length(file_lines)]
}else{
constr <- NULL
}
attribute.levels <- list()
for (attrstr in attributes){
attributename <- strsplit(attrstr, ":")[[1]][1]
levels <- strsplit(strsplit(attrstr, ":")[[1]][2], ",")[[1]]
attribute.levels[[attributename]] <- levels
}
level.probs <- list()
for (probstr in weight){
attributename <- strsplit(probstr, ":")[[1]][1]
weights <- strsplit(strsplit(probstr, ":")[[1]][2], ",")[[1]]
level.probs[[attributename]] <- as.numeric(weights)
}
if (is.null(constr) != TRUE){
constraints <- list()
for (i in 1:length(constr)){
allconstraints <- strsplit(constr[i], ";")[[1]]
constraints[[i]] <- list()
for (m in allconstraints){
attributename <- strsplit(m, ":")[[1]][1]
constrained_levels <- strsplit(strsplit(m, ":")[[1]][2], ",")[[1]]
constraints[[i]][[attributename]] <- constrained_levels
}
}
}else{
constraints <- NULL
}
}
if (type == 'array'){
if (sum(J) != 1){
cat("Error: Profile assignment probability array invalid: Does not sum to 1\n")
}else{
design.obj$J <- J
design.obj$dependence <- compute_dependencies(J)
}
}else if (type == 'constraints' | type == 'file'){
if (is.null(attribute.levels) | is.list(attribute.levels) != TRUE){
cat("Error: Must provide a valid list() object in attribute.levels argument for type = 'constraints'\n")
}
dimensions <- c()
for (attr in names(attribute.levels)){
dimensions <- c(dimensions, length(attribute.levels[[attr]]))
}
J_mat <- array(NA, dim=dimensions, dimnames = attribute.levels)
for (cstr in constraints){
constraint_names <- names(cstr)
select_call <- Quote(J_mat[])
select_call <- select_call[c(1, 2, rep(3, length(dim(J_mat))))]
for (f in 1:length(constraint_names)){
name <- constraint_names[f]
index <- which(names(dimnames(J_mat)) == name)
select_call[index+2] <- cstr[f]
}
eval(call("<-", select_call, 0))
}
if (is.null(level.probs)){
cell_prob <- 1/sum(is.na(J_mat))
J_mat[is.na(J_mat)] <- cell_prob
}else{
for (attr in names(level.probs)){
level.probs[[attr]] <- level.probs[[attr]]/sum(level.probs[[attr]])
}
for (attr in names(level.probs)){
if (is.null(names(level.probs[[attr]]))){
names(level.probs[[attr]]) <- attribute.levels[[attr]]
}
}
unconstrained_probs <- J_mat
unconstrained_probs[TRUE] <- 1
for (attr in names(dimnames(J_mat))){
for (level in attribute.levels[[attr]]){
marg_prob <- level.probs[[attr]][[level]]
select_call <- Quote(unconstrained_probs[])
select_call <- select_call[c(1, 2, rep(3, length(dim(J_mat))))]
index <- which(names(dimnames(J_mat)) == attr)
select_call[index+2] <- level
eval(call("<-", select_call, eval(call("*",select_call, marg_prob))))
}
}
missing_prob <- sum(unconstrained_probs[is.na(J_mat)==FALSE])
increase_prob <- unconstrained_probs*1/(1-missing_prob)
J_mat[is.na(J_mat)] <- increase_prob[is.na(J_mat)]
}
design.obj$J <- J_mat
design.obj$dependence <- compute_dependencies(J_mat, tol)
}else{
cat("Invalid type argument: Must be either 'file', 'array', or 'constraints")
}
class(design.obj) <- "conjointDesign"
return(design.obj)
}
re.escape <- function(strings){
vals <- c("\\\\", "\\[", "\\]", "\\(", "\\)",
"\\{", "\\}", "\\^", "\\$","\\*",
"\\+", "\\?", "\\.", "\\|")
replace.vals <- paste0("\\\\", vals)
for(i in seq_along(vals)){
strings <- gsub(vals[i], replace.vals[i], strings)
}
strings
}
read.qualtrics <- function(filename,responses=NULL,covariates = NULL,respondentID = NULL,letter="F",new.format = FALSE,ranks = NULL){
qualtrics_results <- read.csv(filename, stringsAsFactors=F)
if (new.format) {
new.format.test <- grepl("ImportId",qualtrics_results[2,1])
if (new.format==new.format.test) {
print("New qualtrics format detected.")
qualtrics_results <- qualtrics_results[-2,]
} else {
stop("You indicate the data is of new qualtrics format, but it seems to be in old format.")
return (NULL)
}
}
if (!new.format) {
new.format.test <- grepl("ImportId",qualtrics_results[2,1])
if (new.format==new.format.test) {
print("Old qualtrics format detected.")
} else {
stop("You indicate the data is of old qualtrics format, but it seems to be in new format.")
return (NULL)
}
}
var_names <- as.character(qualtrics_results[1,])
q_names <- colnames(qualtrics_results)
qualtrics_data <- qualtrics_results[2:nrow(qualtrics_results),]
colnames(qualtrics_data) <- var_names
respondent_index <- 1:nrow(qualtrics_data)
attr_regexp <- paste(c("^",letter,"-[0-9]+-[0-9]+(?!-)"),collapse="")
attr_name_cols <- grep(attr_regexp, var_names, perl=TRUE)
qualtrics_data[attr_name_cols] <- lapply(qualtrics_data[attr_name_cols], function (x) sub("\\s+$", "", x))
attr_name_matrix <- matrix(unlist(strsplit(var_names[attr_name_cols],"-")),nrow=3,ncol=length(attr_name_cols))
colnames(attr_name_matrix) <- var_names[attr_name_cols]
attr_name_matrix <- attr_name_matrix[2:nrow(attr_name_matrix),]
attr_name_matrix <- as.data.frame(t(attr_name_matrix))
num_tasks <-unique(as.integer(attr_name_matrix[,1]))
level_regexp <- paste(c("^",letter,"-[0-9]+-[0-9]+-[0-9]+"),collapse="")
level_name_cols <- grep(level_regexp, var_names, perl=TRUE)
num_profiles <- length(unique(do.call(rbind,strsplit(var_names[level_name_cols],"-"))[,3]))
level_name_matrix <- matrix(unlist(strsplit(var_names[level_name_cols],"-")),nrow=4,ncol=length(level_name_cols))
colnames(level_name_matrix) <- var_names[level_name_cols]
level_name_matrix <- level_name_matrix[2:nrow(level_name_matrix),]
level_name_matrix <- as.data.frame(t(level_name_matrix))
all_attr <- c()
for (attr_vec in attr_name_cols) {
all_attr <- c(all_attr,qualtrics_data[,attr_vec])
}
all_attr <- gsub(pattern = "\\s+$", replacement = "", all_attr)
unique_attr <- unique(all_attr)[nchar(unique(all_attr)) != 0]
unique_attr <- unique_attr[!is.na(unique_attr)]
if (is.null(responses) & is.null(ranks)) {
stop("Either responses or ranks must be non-NULL")
return(NULL)
}
if (!is.null(responses) && length(num_tasks) != length(responses)) {
stop("Error: Number of response columns doesn't equal number of tasks in data")
return(NULL)
}
if (!is.null(ranks) && length(num_tasks) != length(ranks)/num_profiles) {
stop("Error: Number of rank columns doesn't equal number of tasks times number of profiles in data")
return(NULL)
}
if (length(attr_name_cols) == 0) {
stop("Error: Cannot find any columns designating attributes and levels. Please make sure the input file originated from a Qualtrics survey designed using the Conjoint SDT")
return(NULL)
}
for (attr_column in attr_name_cols) {
if (is.null(unique(qualtrics_data[,attr_column]))) {
stop(paste("Error, attribute column ", var_names[attr_column], " has no attribute names - recommend deleting this column"))
} else if (unique(qualtrics_data[,attr_column])[1] == "" & length(unique(qualtrics_data[,attr_column])) == 1) {
stop(paste("Error, attribute column ", var_names[attr_column], " has no attribute names - recommend deleting this column"))
}
}
for (lev_column in level_name_cols) {
if (is.null(unique(qualtrics_data[,lev_column]))) {
stop(paste("Error, level column ", var_names[lev_column], " has no attribute names - recommend deleting this column"))
} else if (unique(qualtrics_data[,lev_column])[1] == "" & length(unique(qualtrics_data[,lev_column])) == 1) {
stop(paste("Error, level column ", var_names[lev_column], " has no attribute names - recommend deleting this column"))
}
}
if (!is.null(respondentID)){
respondent_index <- qualtrics_data[,which(q_names %in% respondentID)]
}else{
respondent_index <- 1:nrow(qualtrics_data)
}
if (is.character(responses[1])){
response_vars <- which(q_names %in% responses)
}else{
response_vars <- responses
}
if (sum(grepl("[\\'\"]",unique(all_attr)))>0){
stop(paste("Error, attribute name has special characters. Some special characters are reserved for this function (if cjoint>v2.0.6) for the purpose of efficiency. If you still want to display special character in your plot, use the argument attribute.names in the plot function. See manual for more details."))
} else {
if (sum(grepl("^attribute_[0-9]+$",unique(all_attr)))>0) {
stop (paste("Error, attribute_[0-9]+ is reserved for the function."))
}
if (sum(grepl("^selected_[0-9]+-[0-9]+$",unique(all_attr)))>0) {
stop (paste("Error, selected_[0-9]+-[0-9]+ is reserved for the function."))
}
}
colnames(qualtrics_data)[which(q_names %in% covariates)] <- covariates
out_data_set_cols <- c(which(q_names %in% respondentID),
which(q_names %in% covariates),
(attr_name_cols),
(level_name_cols)
)
out_data_dataset <- qualtrics_data[,out_data_set_cols]
if (!is.null(respondentID)){
id_var_name <- colnames(out_data_dataset)[which(q_names %in% respondentID)]
} else {
out_data_dataset <- cbind(out_data_dataset, respondent_index)
id_var_name <- "respondent_index"
}
num_tasks <- unique(as.integer(attr_name_matrix[,1]))
num_profiles <- as.integer(unique(level_name_matrix[,2]))
num_attr <- unique(as.integer(attr_name_matrix[,2]))
attr_regexp <- paste(c("^",letter,"-[0-9]+-[0-9]+$"),collapse="")
temp.col.index <- grep(attr_regexp,colnames(out_data_dataset), perl=TRUE)
colnames(out_data_dataset)[temp.col.index] <- gsub("-","_",colnames(out_data_dataset)[temp.col.index])
level_regexp <- paste(c("^",letter,"-[0-9]+-[0-9]+-[0-9]+$"),collapse="")
temp.col.index <- grep(level_regexp,colnames(out_data_dataset), perl=TRUE)
colnames(out_data_dataset)[temp.col.index] <- gsub("-","_",colnames(out_data_dataset)[temp.col.index])
for (i in num_attr){
temp.cmd <- paste0("out_data_dataset['attribute_",i,"']<-","out_data_dataset['",letter,"_1_",i,"']")
eval(parse(text=temp.cmd))
}
temp_regexp <- paste(c("^",letter,"_[0-9]+_[0-9]+$"),collapse="")
temp.col.index <- grep(temp_regexp,colnames(out_data_dataset), perl=TRUE)
out_data_dataset <- out_data_dataset[,-temp.col.index]
test.selected <- sum(!unique(unlist(qualtrics_data[,response_vars])) %in% c("",num_profiles))==0
if (!test.selected){
stop(paste0("Responses can only take values among (",paste(num_profiles, collapse = ","),")"))
return (NULL)
}
if (is.null(ranks)){
for (i in num_tasks){
temp.cmd <- paste0("temp.selected","<-","qualtrics_data[,",response_vars[i],"]")
eval(parse(text=temp.cmd))
for (j in num_profiles){
temp.cmd <- paste0("out_data_dataset$'selected_",j,"-",i,"'<-","ifelse(temp.selected==j,1,0)")
eval(parse(text=temp.cmd))
temp.cmd <- paste0("out_data_dataset$'selected_",j,"-",i,"'[temp.selected","=='']","<-","''")
eval(parse(text=temp.cmd))
}
}
} else {
ranks_col <- which(q_names %in% ranks)
for (i in num_tasks){
for (j in num_profiles){
temp.cmd <- paste0("out_data_dataset$'selected_",j,"-",i,"'<-","qualtrics_data[,",ranks_col[(i-1)*length(num_profiles)+j],"]")
eval(parse(text=temp.cmd))
}
}
}
trim <- function (x) gsub("^\\s+|\\s+$", "", x)
for (i in num_attr){
temp.cmd <- paste0("out_data_dataset","<-subset(out_data_dataset, attribute_",i,"!='')")
eval(parse(text=temp.cmd))
temp.cmd <- paste0("out_data_dataset['attribute_",i,"'] <- ","trim(out_data_dataset$'attribute_",i,"')")
eval(parse(text=temp.cmd))
}
attribute_var_names <- unique(unlist(out_data_dataset[,grep("attribute_[0-9]+$", colnames(out_data_dataset))]))
attribute_var_names_label <- gsub(" ",".", attribute_var_names)
for (i in num_tasks){
for (j in num_profiles){
for (r in 1:length(attribute_var_names)){
temp.cmd <- paste0("out_data_dataset['",attribute_var_names[r],"_",j,"-",i,"']<-''")
eval(parse(text=temp.cmd))
temp.cmd <- paste0("out_data_dataset['",attribute_var_names[r],".rowpos_",j,"-",i,"']<-''")
eval(parse(text=temp.cmd))
}
}
}
for (i in num_tasks){
for (j in num_profiles){
for (k in num_attr){
for (r in attribute_var_names){
temp.cmd <- paste0("out_data_dataset['",r,"_",j,"-",i,"']",
"[out_data_dataset['attribute_",k,"']=='",r,
"']<-out_data_dataset['",letter,"_",i,"_",j,"_",k,
"'][out_data_dataset['attribute_",k,"']=='",r,"']")
eval(parse(text=temp.cmd))
temp.cmd <- paste0("out_data_dataset['",r,".rowpos","_",j,"-",i,"'",
"][out_data_dataset['attribute_",k,"']=='",r,
"']<-k")
eval(parse(text=temp.cmd))
}
}
}
}
temp_regexp <- paste(c("^",letter,"_[0-9]+_[0-9]+_[0-9]+$"),collapse="")
temp.col.index <- grep(temp_regexp,colnames(out_data_dataset), perl=TRUE)
out_data_dataset <- out_data_dataset[,-temp.col.index]
regex.temp <- paste0("^attribute","_[0-9]+","$")
out_data_dataset <- out_data_dataset[,-grep(regex.temp, colnames(out_data_dataset))]
regex.temp <- paste(paste0("^",re.escape(attribute_var_names),"_[0-9]+-[0-9]+","$"),collapse="|")
regex.temp.2 <- paste(paste0("^",re.escape(attribute_var_names),".rowpos_[0-9]+-[0-9]+","$"),collapse="|")
varying.temp <- colnames(out_data_dataset)[grep(regex.temp, colnames(out_data_dataset))]
varying.temp.2 <- colnames(out_data_dataset)[grep(regex.temp.2, colnames(out_data_dataset))]
varying.temp.3 <- colnames(out_data_dataset)[grep("^selected_[0-9]+-[0-9]+$", colnames(out_data_dataset))]
varying.temp <- c(varying.temp, varying.temp.2, varying.temp.3)
v.names.temp <- unique(gsub("-[0-9]+$","",varying.temp))
v.names.temp <- v.names.temp[order(v.names.temp)]
varying.temp <- paste0(rep(v.names.temp, length(num_tasks)),"-",
rep(num_tasks, each=length(v.names.temp)))
out_data_dataset <- reshape(out_data_dataset,
idvar = id_var_name,
varying = varying.temp,
sep = "-",
timevar = "task",
times = num_tasks,
v.names = v.names.temp,
new.row.names = 1:(length(num_tasks)*nrow(out_data_dataset)),
direction = "long")
regex.temp <- paste(paste0("^",re.escape(attribute_var_names),"_[0-9]+","$"), collapse="|")
regex.temp.2 <- paste(paste0("^",re.escape(attribute_var_names),".rowpos_[0-9]+","$"), collapse="|")
varying.temp <- colnames(out_data_dataset)[grep(regex.temp, colnames(out_data_dataset))]
varying.temp.2 <- colnames(out_data_dataset)[grep(regex.temp.2, colnames(out_data_dataset))]
varying.temp.3 <- colnames(out_data_dataset)[grep("^selected_[0-9]+$", colnames(out_data_dataset))]
varying.temp <- c(varying.temp, varying.temp.2, varying.temp.3)
v.names.temp <- unique(gsub("_[0-9]+$","",varying.temp))
v.names.temp <- v.names.temp[order(v.names.temp)]
varying.temp <- paste0(rep(v.names.temp, length(num_profiles)),"_",
rep(num_profiles, each=length(v.names.temp)))
out_data_dataset <- reshape(out_data_dataset,
idvar = id_var_name,
varying = varying.temp,
sep = "_",
timevar = "profile",
times = num_profiles,
v.names = v.names.temp,
new.row.names = 1:(length(num_profiles)*nrow(out_data_dataset)),
direction = "long")
colnames(out_data_dataset)<- gsub(" ",".",colnames(out_data_dataset))
for (m in attribute_var_names_label){
out_data_dataset[[m]] <- as.factor(out_data_dataset[[m]])
}
colnames(out_data_dataset)[which(colnames(out_data_dataset)==id_var_name)] <- "respondent"
out_data_dataset$respondentIndex <- as.factor(out_data_dataset$respondent)
out_data_dataset$respondentIndex <- as.integer(out_data_dataset$respondentIndex)
out_data_dataset$selected <- as.integer(out_data_dataset$selected)
out_data_dataset$task <- as.integer(out_data_dataset$task)
out_data_dataset$profile <- as.integer(out_data_dataset$profile)
return(out_data_dataset)
}
read.with.qualtRics <- function(filename,responses=NULL,covariates = NULL,respondentID = NULL,letter="F",new.format = FALSE,ranks = NULL){
qualtrics_results <- filename
replace.regexp <- paste0("^",letter,".[0-9]+.[0-9]+$")
replace.col <- grep(replace.regexp, colnames(filename))
colnames(qualtrics_results)[replace.col] <-
gsub("[.]","-",colnames(qualtrics_results)[replace.col])
replace.regexp <- paste0("^",letter,".[0-9]+.[0-9]+.[0-9]+$")
replace.col <- grep(replace.regexp, colnames(filename))
colnames(qualtrics_results)[replace.col] <-
gsub("[.]","-",colnames(qualtrics_results)[replace.col])
var_names <- as.character(qualtrics_results[1,])
q_names <- colnames(qualtrics_results)
qualtrics_data <- qualtrics_results[2:nrow(qualtrics_results),]
colnames(qualtrics_data) <- var_names
respondent_index <- 1:nrow(qualtrics_data)
attr_regexp <- paste(c("^",letter,"-[0-9]+-[0-9]+(?!-)"),collapse="")
attr_name_cols <- grep(attr_regexp, var_names, perl=TRUE)
qualtrics_data[attr_name_cols] <- lapply(qualtrics_data[attr_name_cols], function (x) sub("\\s+$", "", x))
attr_name_matrix <- matrix(unlist(strsplit(var_names[attr_name_cols],"-")),nrow=3,ncol=length(attr_name_cols))
colnames(attr_name_matrix) <- var_names[attr_name_cols]
attr_name_matrix <- attr_name_matrix[2:nrow(attr_name_matrix),]
attr_name_matrix <- as.data.frame(t(attr_name_matrix))
num_tasks <-unique(as.integer(attr_name_matrix[,1]))
level_regexp <- paste(c("^",letter,"-[0-9]+-[0-9]+-[0-9]+"),collapse="")
level_name_cols <- grep(level_regexp, var_names, perl=TRUE)
num_profiles <- length(unique(do.call(rbind,strsplit(var_names[level_name_cols],"-"))[,3]))
level_name_matrix <- matrix(unlist(strsplit(var_names[level_name_cols],"-")),nrow=4,ncol=length(level_name_cols))
colnames(level_name_matrix) <- var_names[level_name_cols]
level_name_matrix <- level_name_matrix[2:nrow(level_name_matrix),]
level_name_matrix <- as.data.frame(t(level_name_matrix))
all_attr <- c()
for (attr_vec in attr_name_cols) {
all_attr <- c(all_attr,qualtrics_data[,attr_vec])
}
all_attr <- gsub(pattern = "\\s+$", replacement = "", all_attr)
unique_attr <- unique(all_attr)[nchar(unique(all_attr)) != 0]
unique_attr <- unique_attr[!is.na(unique_attr)]
if (is.null(responses) & is.null(ranks)) {
stop("Either responses or ranks must be non-NULL")
return(NULL)
}
if (!is.null(responses) && length(num_tasks) != length(responses)) {
stop("Error: Number of response columns doesn't equal number of tasks in data")
return(NULL)
}
if (!is.null(ranks) && length(num_tasks) != length(ranks)/num_profiles) {
stop("Error: Number of rank columns doesn't equal number of tasks times number of profiles in data")
return(NULL)
}
if (length(attr_name_cols) == 0) {
stop("Error: Cannot find any columns designating attributes and levels. Please make sure the input file originated from a Qualtrics survey designed using the Conjoint SDT")
return(NULL)
}
for (attr_column in attr_name_cols) {
if (is.null(unique(qualtrics_data[,attr_column]))) {
stop(paste("Error, attribute column ", var_names[attr_column], " has no attribute names - recommend deleting this column"))
} else if (unique(qualtrics_data[,attr_column])[1] == "" & length(unique(qualtrics_data[,attr_column])) == 1) {
stop(paste("Error, attribute column ", var_names[attr_column], " has no attribute names - recommend deleting this column"))
}
}
for (lev_column in level_name_cols) {
if (is.null(unique(qualtrics_data[,lev_column]))) {
stop(paste("Error, level column ", var_names[lev_column], " has no attribute names - recommend deleting this column"))
} else if (unique(qualtrics_data[,lev_column])[1] == "" & length(unique(qualtrics_data[,lev_column])) == 1) {
stop(paste("Error, level column ", var_names[lev_column], " has no attribute names - recommend deleting this column"))
}
}
if (!is.null(respondentID)){
respondent_index <- qualtrics_data[,which(q_names %in% respondentID)]
}else{
respondent_index <- 1:nrow(qualtrics_data)
}
if (is.character(responses[1])){
response_vars <- which(q_names %in% responses)
}else{
response_vars <- responses
}
if (sum(grepl("[\\'\"]",unique(all_attr)))>0){
stop(paste("Error, attribute name has special characters. Some special characters are reserved for this function (if cjoint>v2.0.6) for the purpose of efficiency. If you still want to display special character in your plot, use the argument attribute.names in the plot function. See manual for more details."))
} else {
if (sum(grepl("^attribute_[0-9]+$",unique(all_attr)))>0) {
stop (paste("Error, attribute_[0-9]+ is reserved for the function."))
}
if (sum(grepl("^selected_[0-9]+-[0-9]+$",unique(all_attr)))>0) {
stop (paste("Error, selected_[0-9]+-[0-9]+ is reserved for the function."))
}
}
colnames(qualtrics_data)[which(q_names %in% covariates)] <- covariates
out_data_set_cols <- c(which(q_names %in% respondentID),
which(q_names %in% covariates),
(attr_name_cols),
(level_name_cols)
)
out_data_dataset <- qualtrics_data[,out_data_set_cols]
if (!is.null(respondentID)){
id_var_name <- colnames(out_data_dataset)[which(q_names %in% respondentID)]
} else {
out_data_dataset <- cbind(out_data_dataset, respondent_index)
id_var_name <- "respondent_index"
}
num_tasks <- unique(as.integer(attr_name_matrix[,1]))
num_profiles <- as.integer(unique(level_name_matrix[,2]))
num_attr <- unique(as.integer(attr_name_matrix[,2]))
attr_regexp <- paste(c("^",letter,"-[0-9]+-[0-9]+$"),collapse="")
temp.col.index <- grep(attr_regexp,colnames(out_data_dataset), perl=TRUE)
colnames(out_data_dataset)[temp.col.index] <- gsub("-","_",colnames(out_data_dataset)[temp.col.index])
level_regexp <- paste(c("^",letter,"-[0-9]+-[0-9]+-[0-9]+$"),collapse="")
temp.col.index <- grep(level_regexp,colnames(out_data_dataset), perl=TRUE)
colnames(out_data_dataset)[temp.col.index] <- gsub("-","_",colnames(out_data_dataset)[temp.col.index])
for (i in num_attr){
temp.cmd <- paste0("out_data_dataset['attribute_",i,"']<-","out_data_dataset['",letter,"_1_",i,"']")
eval(parse(text=temp.cmd))
}
temp_regexp <- paste(c("^",letter,"_[0-9]+_[0-9]+$"),collapse="")
temp.col.index <- grep(temp_regexp,colnames(out_data_dataset), perl=TRUE)
out_data_dataset <- out_data_dataset[,-temp.col.index]
test.selected <- sum(!unique(unlist(qualtrics_data[,response_vars])) %in% c("",num_profiles))==0
if (!test.selected){
stop(paste0("Responses can only take values among (",paste(num_profiles, collapse = ","),")"))
return (NULL)
}
if (is.null(ranks)){
for (i in num_tasks){
temp.cmd <- paste0("temp.selected","<-","qualtrics_data[,",response_vars[i],"]")
eval(parse(text=temp.cmd))
for (j in num_profiles){
temp.cmd <- paste0("out_data_dataset$'selected_",j,"-",i,"'<-","ifelse(temp.selected==j,1,0)")
eval(parse(text=temp.cmd))
temp.cmd <- paste0("out_data_dataset$'selected_",j,"-",i,"'[temp.selected","=='']","<-","''")
eval(parse(text=temp.cmd))
}
}
} else {
ranks_col <- which(q_names %in% ranks)
for (i in num_tasks){
for (j in num_profiles){
temp.cmd <- paste0("out_data_dataset$'selected_",j,"-",i,"'<-","qualtrics_data[,",ranks_col[(i-1)*length(num_profiles)+j],"]")
eval(parse(text=temp.cmd))
}
}
}
trim <- function (x) gsub("^\\s+|\\s+$", "", x)
for (i in num_attr){
temp.cmd <- paste0("out_data_dataset","<-subset(out_data_dataset, attribute_",i,"!='')")
eval(parse(text=temp.cmd))
temp.cmd <- paste0("out_data_dataset['attribute_",i,"'] <- ","trim(out_data_dataset$'attribute_",i,"')")
eval(parse(text=temp.cmd))
}
attribute_var_names <- unique(unlist(out_data_dataset[,grep("attribute_[0-9]+$", colnames(out_data_dataset))]))
attribute_var_names_label <- gsub(" ",".", attribute_var_names)
for (i in num_tasks){
for (j in num_profiles){
for (r in 1:length(attribute_var_names)){
temp.cmd <- paste0("out_data_dataset['",attribute_var_names[r],"_",j,"-",i,"']<-''")
eval(parse(text=temp.cmd))
temp.cmd <- paste0("out_data_dataset['",attribute_var_names[r],".rowpos_",j,"-",i,"']<-''")
eval(parse(text=temp.cmd))
}
}
}
for (i in num_tasks){
for (j in num_profiles){
for (k in num_attr){
for (r in attribute_var_names){
temp.cmd <- paste0("out_data_dataset['",r,"_",j,"-",i,"']",
"[out_data_dataset['attribute_",k,"']=='",r,
"']<-out_data_dataset['",letter,"_",i,"_",j,"_",k,
"'][out_data_dataset['attribute_",k,"']=='",r,"']")
eval(parse(text=temp.cmd))
temp.cmd <- paste0("out_data_dataset['",r,".rowpos","_",j,"-",i,"'",
"][out_data_dataset['attribute_",k,"']=='",r,
"']<-k")
eval(parse(text=temp.cmd))
}
}
}
}
temp_regexp <- paste(c("^",letter,"_[0-9]+_[0-9]+_[0-9]+$"),collapse="")
temp.col.index <- grep(temp_regexp,colnames(out_data_dataset), perl=TRUE)
out_data_dataset <- out_data_dataset[,-temp.col.index]
regex.temp <- paste0("^attribute","_[0-9]+","$")
out_data_dataset <- out_data_dataset[,-grep(regex.temp, colnames(out_data_dataset))]
regex.temp <- paste(paste0("^",re.escape(attribute_var_names),"_[0-9]+-[0-9]+","$"),collapse="|")
regex.temp.2 <- paste(paste0("^",re.escape(attribute_var_names),".rowpos_[0-9]+-[0-9]+","$"),collapse="|")
varying.temp <- colnames(out_data_dataset)[grep(regex.temp, colnames(out_data_dataset))]
varying.temp.2 <- colnames(out_data_dataset)[grep(regex.temp.2, colnames(out_data_dataset))]
varying.temp.3 <- colnames(out_data_dataset)[grep("^selected_[0-9]+-[0-9]+$", colnames(out_data_dataset))]
varying.temp <- c(varying.temp, varying.temp.2, varying.temp.3)
v.names.temp <- unique(gsub("-[0-9]+$","",varying.temp))
v.names.temp <- v.names.temp[order(v.names.temp)]
varying.temp <- paste0(rep(v.names.temp, length(num_tasks)),"-",
rep(num_tasks, each=length(v.names.temp)))
out_data_dataset <- reshape(out_data_dataset,
idvar = id_var_name,
varying = varying.temp,
sep = "-",
timevar = "task",
times = num_tasks,
v.names = v.names.temp,
new.row.names = 1:(length(num_tasks)*nrow(out_data_dataset)),
direction = "long")
regex.temp <- paste(paste0("^",re.escape(attribute_var_names),"_[0-9]+","$"), collapse="|")
regex.temp.2 <- paste(paste0("^",re.escape(attribute_var_names),".rowpos_[0-9]+","$"), collapse="|")
varying.temp <- colnames(out_data_dataset)[grep(regex.temp, colnames(out_data_dataset))]
varying.temp.2 <- colnames(out_data_dataset)[grep(regex.temp.2, colnames(out_data_dataset))]
varying.temp.3 <- colnames(out_data_dataset)[grep("^selected_[0-9]+$", colnames(out_data_dataset))]
varying.temp <- c(varying.temp, varying.temp.2, varying.temp.3)
v.names.temp <- unique(gsub("_[0-9]+$","",varying.temp))
v.names.temp <- v.names.temp[order(v.names.temp)]
varying.temp <- paste0(rep(v.names.temp, length(num_profiles)),"_",
rep(num_profiles, each=length(v.names.temp)))
out_data_dataset <- reshape(out_data_dataset,
idvar = id_var_name,
varying = varying.temp,
sep = "_",
timevar = "profile",
times = num_profiles,
v.names = v.names.temp,
new.row.names = 1:(length(num_profiles)*nrow(out_data_dataset)),
direction = "long")
colnames(out_data_dataset)<- gsub(" ",".",colnames(out_data_dataset))
for (m in attribute_var_names_label){
out_data_dataset[[m]] <- as.factor(out_data_dataset[[m]])
}
colnames(out_data_dataset)[which(colnames(out_data_dataset)==id_var_name)] <- "respondent"
out_data_dataset$respondentIndex <- as.factor(out_data_dataset$respondent)
out_data_dataset$respondentIndex <- as.integer(out_data_dataset$respondentIndex)
out_data_dataset$selected <- as.integer(out_data_dataset$selected)
out_data_dataset$task <- as.integer(out_data_dataset$task)
out_data_dataset$profile <- as.integer(out_data_dataset$profile)
return(out_data_dataset)
} |
lsdm_est_logist_2pl <- function( y, theta, wgt_theta, method="L-BFGS-B",
b0=NULL, a0=NULL)
{
y <- as.numeric(y)
dist_irf_val <- function(x){
a <- x[2]
b <- x[1]
irf_est <- stats::plogis(a*(theta-b))
diff_irf <- y - irf_est
val <- sum( diff_irf^2 * wgt_theta )
return(val)
}
dist_irf_grad <- function(x){
grad <- rep(0,2)
a <- x[2]
b <- x[1]
irf_est <- stats::plogis(a*(theta-b))
diff_irf <- y - irf_est
der1 <- 2*diff_irf*irf_est*(1-irf_est)*wgt_theta
grad[1] <- sum( der1*a )
grad[2] <- -sum( der1*(theta-b) )
return(grad)
}
if (is.null(b0)){
b0 <- theta[ which.min( abs(y-0.5) ) ]
par0 <- c(b0, 1)
} else {
par0 <- c( b0, a0)
}
res <- stats::optim( par=par0, fn=dist_irf_val, gr=dist_irf_grad, method=method)
res <- c( res$par, sqrt(res$value) )
return(res)
} |
local_lifecycle_quiet <- function(frame = caller_env()) {
local_options(lifecycle_verbosity = "quiet", .frame = frame)
} |
summary.mlnormal <- function( object, digits=4, file=NULL, ...)
{
CDM::osink( file=file, suffix=paste0( "__SUMMARY.Rout") )
cat("-----------------------------------------------------------------\n")
sirt::sirt_summary_print_package_rsession(pack="LAM")
cat( "Date of Analysis:", paste( object$s2 ), "\n" )
cat("Computation Time:", print(object$s2 - object$s1), "\n\n")
sirt::sirt_summary_print_call(CALL=object$CALL)
cat( object$descriptions["des_method"], "\n\n")
if ( object$REML & ! ( object$vcov_REML ) ){
cat(" * Standard errors for random effects are not properly calculated! \n")
cat(" * Use vcov=TRUE as an argument in 'mlnormal' if valid standard errors\n")
cat(" for random effects parameters are requested.\n\n")
}
cat("-----------------------------------------------------------------\n")
cat( "Number of observations=", object$ic$N, "\n" )
cat( "Number of clusters=", object$ic$G, "\n\n" )
cat( "Number of iterations=", object$iter, "\n\n" )
cat( "Deviance=", round( object$deviance, 2 ), "\n" )
cat( paste0( object$descriptions["log_like_verbose"]
, "=" ), round( object$ic$loglike, 2 ), "\n" )
if ( object$posterior_obj$display_posterior ){
cat( "Log prior=",
round( object$posterior_obj$log_prior, 2 ), "\n" )
cat( "Log posterior=",
round( object$posterior_obj$log_posterior, 2 ), "\n" )
}
cat("\n")
cat( "Number of estimated parameters=", object$ic$np, "\n" )
cat( " Number of estimated beta parameters=", object$ic$np.beta,
"\n" )
cat( " Number of estimated theta parameters=", object$ic$np.theta,
"\n\n" )
if ( ! object$REML ){
cat( "AIC=", round( object$ic$AIC, 1 ), " | penalty=",
round( object$ic$AIC - object$ic$deviance,2 ),
" | AIC=-2*LL + 2*p \n" )
}
cat("-----------------------------------------------------------------\n")
cat("Beta Parameters\n")
excl <- c("parm","prior")
obji <- object$beta_summary
mlnormal_summary_round_helper(obji, digits=digits, exclude=excl, print=TRUE)
cat("-----------------------------------------------------------------\n")
cat("Theta Parameters\n")
obji <- object$theta_summary
mlnormal_summary_round_helper(obji, digits=digits, exclude=excl, print=TRUE)
CDM::csink( file=file )
} |
source("setup.R")
expect_error(detect_file_enc(NULL))
expect_error(detect_file_enc(NA))
expect_equal(detect_file_enc(NA_character_), NA_character_)
expect_equal(detect_file_enc(character(0)), character(0))
expect_equal(detect_file_enc(""), NA_character_)
expect_equal(detect_file_enc("no-exists"), NA_character_)
expect_warning(detect_file_enc(""), "Can not open file ''")
expect_warning(detect_file_enc("no-exists"), "Can not open file 'no-exists'")
tmp <- tempfile()
x <- as.raw(sample(0:255, 50))
writeBin(x, tmp)
expect_equivalent(detect_file_enc(tmp), NA_character_)
unlink(tmp)
if (skip_os()) {
exit_file("Skip tests on current OS")
}
res <- detect_file_enc(ex_files)
expect_true(is.character(res))
expect_true(all(!is.na(res)))
expect_equal(length(res), length(ex_files))
expect_equivalent(res, ex_encs) |
context("Checking r_sample_logical")
test_that("r_sample_logical ...",{
}) |
precartogramR <- function(data, method=c("gsm", "gn", "dcn",
"GastnerSeguyMore", "GastnerNewman",
"DougenikChrismanNiemeyer"),
gridpower2=8:11, pf=1.5, verbose=FALSE) {
method <- match.arg(method)
if (method=="DougenikChrismanNiemeyer") method <- "dcn"
if (method=="GastnerNewman") method <- "gn"
if (method=="GastnerSeguyMore") method <- "gsm"
if (!inherits(data, "sf")) stop(paste(deparse(substitute((data))),"not inherits from sf class"))
if (is.na(sf::st_crs(data))) {
warning("No coordinate reference system !\n Function proceeds assuming planar coordinates\n Remarks:\n 1. This function use planar coordinates to calculate areas and thus does not give correct answers for longitude/latitude data\n 2. Setting coordinate reference system could be a good idea, see sf::st_crs")
} else {
if (sf::st_is_longlat(data)) stop(paste(deparse(substitute((data))),"is an unprojected map.\n This function use planar coordinates to calculate areas and thus does not give correct answers for longitude/latitude data:\n => Use \"st_transform()\" to transform longitude/latitude coordinates to another coordinate system."))
}
if (method=="dcn") {
return(dist_between_vertices(data))
} else {
return(grid_analysis(data, gridpower2, pf, verbose))
}
} |
survMC <- function(m,n,Time,Event,chains,adapt,iter,data)
{
if(Time!="OS"){
names(data)[names(data) == Time] <- "OS"
}
if(Event!="Death"){
names(data)[names(data) == Event] <- "Death"
}
data<-data[order(data$OS),]
var1 <- colnames(data)
nr <- nrow(data)
data1 <- subset(data, Death == 1)
u <- unique(data1$OS)
if ((data$Death[nrow(data)])==0){
u1<-c(u,data$OS[nrow(data)])
} else {
u1 <- u
}
u2 <- sort(u1)
t.len<-(length(u2)-1)
model_jags <- "
data{
for(i in 1:N) {
for(j in 1:T) {
Y[i,j] <- step(obs.t[i] - t[j] + eps)
dN[i, j] <- Y[i, j] * step(t[j + 1] - obs.t[i] - eps) * fail[i]
}
}
}
model{
for(i in 1:N){
betax[i,1] <- 0
for(k in 2:(p+1)){
betax[i,k] <- betax[i,k-1] + beta[k-1]*x[i,k-1]
}
}
for(j in 1:T) {
for(i in 1:N) {
dN[i, j] ~ dpois(Idt[i, j])
Idt[i, j] <- Y[i, j] * exp(betax[i,p+1]) * dL0[j]
}
dL0[j] ~ dgamma(mu[j], c)
mu[j] <- dL0.star[j] * c
}
c <- 0.001
r <- 0.1
for (j in 1 : T) {
dL0.star[j] <- r * (t[j + 1] - t[j])
}
for(k in 1:p){
beta[k] ~ dnorm(0.0,0.000001)
}
}"
params <- c("beta","dL0")
inits <- function(){list( beta = rep(0,p), dL0 = rep(0.0001,bigt))}
x2 <- rep(0,nrow(data))
q <- matrix(nrow=0,ncol=5)
s <- matrix(nrow=0,ncol=2)
di <- matrix(nrow=0,ncol=1)
for(i in m:n){
x1 <- data[(1:nrow(data)),i]
x = t(rbind(x1,x2))
datafi <- list(x=x,obs.t=data$OS,t=u2,T=t.len,N=nrow(data),fail=data$Death,eps=1E-10,p=2)
jags <- jags.model(textConnection(model_jags),
data = datafi,
n.chains = chains,
n.adapt = adapt)
samps <- coda.samples(jags, params, n.iter=iter)
s1 <- summary(samps)
stats <- s1$statistics[1,c(1:2)]
s <- rbind(s,stats)
quan <- s1$quantiles[1,]
q <- rbind(q,quan)
d = dic.samples(jags, n.iter=iter)
meandeviance <- round(sum(d$deviance),2)
di <- rbind(di,meandeviance)
}
results <- cbind(s,q)
expresults <- exp(results)
Variables <- names(data)[m:n]
expresults <- data.frame(Variables,expresults,di)
colnames(expresults)<-c("Variable","Posterior Means","SD","2.5%","25%","50%","75%","97.5%","DIC")
rownames(expresults) <- NULL
return(expresults)
}
utils::globalVariables(c("Death","N","step","obs.t","eps","fail","x1","dL0","p","bigt")) |
expected <- eval(parse(text="c(\"unknown\", \"unknown\", \"unknown\", \"unknown\", \"unknown\", \"unknown\", \"unknown\", \"unknown\")"));
test(id=0, code={
argv <- eval(parse(text="list(c(\"* Edit the help file skeletons in 'man', possibly combining help files for multiple functions.\", \"* Edit the exports in 'NAMESPACE', and add necessary imports.\", \"* Put any C/C++/Fortran code in 'src'.\", \"* If you have compiled code, add a useDynLib() directive to 'NAMESPACE'.\", \"* Run R CMD build to build the package tarball.\", \"* Run R CMD check to check the package tarball.\", \"\", \"Read \\\"Writing R Extensions\\\" for more information.\"))"));
.Internal(`Encoding`(argv[[1]]));
}, o=expected); |
NULL
.einfo <- setRefClass(
Class = "einfo",
contains = "eutil",
methods = list(
initialize = function(method = "GET", ...) {
callSuper()
perform_query(method = method, ...)
if (no_errors()) {
errors$check_errors(.self)
}
},
show_xml = function() {
if (is.null(database())) {
cat("List of Entrez databases\n")
methods::show(xmlValue("/eInfoResult/DbList/DbName"))
} else {
cat(sprintf("Overview over the Entrez database %s.\n",
sQuote(xmlValue("/eInfoResult/DbInfo/MenuName"))))
x <- get_content("parsed")
nm <- names(x)
fnm <- ellipsize(paste0(names(x$Fields), collapse = "; "), offset = 10)
lnm <- ellipsize(paste0(names(x$Links), collapse = "; "), offset = 9)
showme <- sprintf(" %s: %s", nm, c(vapply(x[1:6], as.character, ""),
fnm, lnm))
cat(showme, sep = "\n")
}
},
show_json = function() {
methods::show(get_content("json"))
},
show = function() {
cat("Object of class", sQuote(eutil()), "\n")
if (no_errors()) {
switch(retmode(), xml = show_xml(), json = show_json())
} else {
methods::show(get_error())
}
}
)
)
parse_einfo <- function(object) {
retmode <- object$retmode()
if (retmode == "xml") {
x <- object$get_content("xml")
if (is.null(object$database())) {
xvalue(x, "/eInfoResult/DbList/DbName")
} else {
list(
dbName = xvalue(x, "/eInfoResult/DbInfo/DbName"),
MenuName = xvalue(x, "/eInfoResult/DbInfo/MenuName"),
Description = xvalue(x, "/eInfoResult/DbInfo/Description"),
DbBuild = xvalue(x, "/eInfoResult/DbInfo/DbBuild"),
Count = xvalue(x, "/eInfoResult/DbInfo/Count", "integer"),
LastUpdate = xvalue(x, "/eInfoResult/DbInfo/LastUpdate", "POSIXlt"),
Fields = extract_df(x, "/eInfoResult/DbInfo/FieldList/Field/"),
Links = extract_df(x, "/eInfoResult/DbInfo/LinkList/Link/")
)
}
} else if (retmode == "json") {
jsonlite::fromJSON(object$get_content("json"))
}
}
extract_df <- function(x, path) {
nm <- unique(xname(x, paste0(path, "child::node()")))
if (!all(is.na(nm))) {
nodes <- xset(x, paste0(path, "*"))
list <- split(vapply(nodes, XML::xmlValue, ""), nm)
tibble::as_tibble(list, validate = TRUE)[, nm]
} else {
tibble::tibble()
}
}
einfo <- function(db = NULL, version = "2.0", retmode = "xml") {
retmode <- match.arg(retmode, c("xml", "json"))
assertthat::assert_that(is.null(db) || assertthat::is.string(db))
if (!is.null(db)) {
assertthat::assert_that(is.null(version) || version == "2.0")
} else {
version <- NULL
}
.einfo(method = "GET", db = db, version = version, retmode = retmode)
}
setMethod("content", "einfo", function(x, as = NULL) {
callNextMethod(x = x, as = as)
})
setMethod("[", c(x = "einfo", i = "ANY", j = "missing"), function(x, i, j) {
content(x, as = "parsed")[i]
})
setMethod("[[", "einfo", function(x, i) {
content(x, as = "parsed")[[i]]
}) |
xlsx.reader <- function(data.file, filename, workbook.name)
{
.require.package('readxl')
sheets <- readxl::excel_sheets(filename)
for (sheet.name in sheets)
{
variable.name <- paste(workbook.name, clean.variable.name(sheet.name), sep = ".")
tryCatch(assign(variable.name,
data.frame(readxl::read_excel(filename,
sheet = sheet.name)),
envir = .TargetEnv),
error = function(e)
{
warning(paste("The worksheet", sheet.name, "didn't load correctly."))
})
}
} |
run_tests <- length(strsplit(packageDescription("fwildclusterboot")$Version, "\\.")[[1]]) > 3
run_tests <- FALSE
if(run_tests){
library(fwildclusterboot)
library(data.table)
library(tinytest)
library(RStata)
options("RStata.StataVersion" = 16)
options("RStata.StataPath" = "\"C:\\Program Files\\Stata16\\StataIC-64\"")
tol <- 0.01
save_test_data_to <- "c:/Users/alexa/Dropbox/fwildclusterboot/"
save_data <- paste0(save_test_data_to, "voters.csv")
set.seed(2)
data1 <<- fwildclusterboot:::create_data(N = 1000, N_G1 = 20, icc1 = 0.01, N_G2 = 10, icc2 = 0.01, numb_fe1 = 10, numb_fe2 = 10, seed = 1234)
fwrite(data1, save_data)
lm_fit <- lm(proposition_vote ~ treatment + ideology1 + log_income + Q1_immigration + Q2_defense,
data = data1)
boot_lm1 <- suppressWarnings(
boottest(
object = lm_fit,
clustid = "group_id1",
bootcluster = c("group_id1", "Q1_immigration"),
B = 99999,
seed = 911,
param = "treatment",
conf_int = FALSE,
sign_level = 0.05, nthreads = 4
)
)
test_1 <- "
clear
import delimited c:/Users/alexa/Dropbox/fwildclusterboot/voters.csv
set seed 1
quietly reg proposition_vote treatment ideology1 log_income i.q1_immigration i.q2_defense, cluster(group_id1)
boottest treatment, reps(99999) cluster(group_id1 ) bootcluster(group_id1 q1_immigration) nograph
gen p_val = r(p)
//gen conf_int = r(CI)
"
res <- RStata::stata(test_1, data.out = TRUE)
stata_p_val <- unique(res$p_val)
expect_equal(boot_lm1$p_val, stata_p_val, tol = tol)
boot_lm2 <-
suppressWarnings(
boottest(
object = lm_fit,
clustid = "group_id1",
bootcluster = c("group_id1", "Q1_immigration"),
B = 99999,
seed = 911,
param = "treatment",
conf_int = FALSE,
sign_level = 0.10
))
test_2 <- "
clear
import delimited c:/Users/alexa/Dropbox/fwildclusterboot/voters.csv
set seed 1
quietly reg proposition_vote treatment ideology1 log_income i.q1_immigration i.q2_defense, cluster(group_id1)
boottest treatment, reps(99999) cluster(group_id1 ) bootcluster(group_id1 q1_immigration) nograph level(90)
gen p_val = r(p)
//gen conf_int = r(CI)
"
res <- RStata::stata(test_2, data.out = TRUE)
stata_p_val <- unique(res$p_val)
expect_equal(boot_lm2$p_val, stata_p_val, tol = tol)
test_3 <- "
clear
import delimited c:/Users/alexa/Dropbox/fwildclusterboot/voters.csv
set seed 1
quietly reg proposition_vote treatment ideology1 log_income i.q1_immigration i.q2_defense, cluster(group_id2)
boottest treatment = 0.05, reps(99999) cluster(group_id1 ) bootcluster(group_id1 q1_immigration) nograph level(90)
gen p_val = r(p)
//gen conf_int = r(CI)
"
boot_lm3 <-
suppressWarnings(
boottest(
object = lm_fit,
clustid = "group_id1",
bootcluster = c("group_id1", "Q1_immigration"),
B = 99999,
seed = 911,
param = "treatment",
conf_int = FALSE,
sign_level = 0.10,
beta0 = 0.05
))
res <- RStata::stata(test_3, data.out = TRUE)
stata_p_val <- unique(res$p_val)
expect_equal(boot_lm3$p_val, stata_p_val, tol = tol)
boot_lm7 <-
suppressWarnings(
boottest(
object = lm_fit,
clustid = "group_id1",
bootcluster = c("group_id1", "Q1_immigration","Q2_defense"),
B = 99999,
seed = 911,
param = "treatment",
conf_int = FALSE,
sign_level = 0.10,
type = "rademacher",
impose_null = FALSE
))
test_7 <- "
clear
import delimited c:/Users/alexa/Dropbox/fwildclusterboot/voters.csv
set seed 1
quietly reg proposition_vote treatment ideology1 log_income i.q1_immigration i.q2_defense, cluster(group_id1)
boottest treatment, reps(99999) cluster(group_id1 ) bootcluster(group_id1 q1_immigration q2_defense) nograph level(90) weighttype(rademacher) nonull
gen p_val = r(p)
//gen conf_int = r(CI)
"
res <- RStata::stata(test_7, data.out = TRUE)
stata_p_val <- unique(res$p_val)
expect_equal(boot_lm7$p_val, stata_p_val, tol= tol)
skip_test <- TRUE
if(skip_test){
boot_lm8 <-
suppressWarnings(
boottest(
object = lm_fit,
clustid = c("group_id1", "group_id2"),
bootcluster = c("group_id1", "Q1_immigration"),
B = 199999,
seed = 911,
param = "treatment",
conf_int = FALSE,
sign_level = 0.05,
type = "rademacher",
impose_null = FALSE
))
test_8 <- "
clear
import delimited c:/Users/alexa/Dropbox/fwildclusterboot/voters.csv
set seed 1
quietly reg proposition_vote treatment ideology1 log_income i.q1_immigration i.q2_defense, cluster(group_id1)
boottest treatment, reps(199999) cluster(group_id1 group_id2) bootcluster(group_id1 q1_immigration) nograph level(95) weighttype(rademacher) nonull
gen p_val = r(p)
//gen conf_int = r(CI)
"
res <- RStata::stata(test_8, data.out = TRUE)
stata_p_val <- unique(res$p_val)
expect_equal(boot_lm8$p_val, stata_p_val, tol= tol)
boot_lm9 <-
suppressWarnings(
boottest(
object = lm_fit,
clustid = c("group_id1", "group_id2"),
bootcluster = c("group_id1", "Q2_defense"),
B = 199999,
seed = 911,
param = "treatment",
conf_int = FALSE,
sign_level = 0.05,
type = "rademacher",
impose_null = FALSE
))
test_9 <- "
clear
import delimited c:/Users/alexa/Dropbox/fwildclusterboot/voters.csv
set seed 1
quietly reg proposition_vote treatment ideology1 log_income i.q1_immigration i.q2_defense, cluster(group_id1)
boottest treatment, reps(199999) cluster(group_id1 group_id2) bootcluster(group_id1 q2_defense) nograph level(95) weighttype(rademacher) nonull
gen p_val = r(p)
//gen conf_int = r(CI)
"
res <- RStata::stata(test_9, data.out = TRUE)
stata_p_val <- unique(res$p_val)
expect_equal(boot_lm9$p_val, stata_p_val, tol= tol)
boot_lm10 <-
suppressWarnings(
boottest(
object = lm_fit,
clustid = c("group_id1", "group_id2"),
bootcluster = c("group_id1", "Q1_immigration", "Q2_defense"),
B = 99999,
seed = 911,
param = "treatment",
conf_int = FALSE,
sign_level = 0.10,
type = "rademacher",
impose_null = FALSE
))
test_10 <- "
clear
import delimited c:/Users/alexa/Dropbox/fwildclusterboot/voters.csv
set seed 1
quietly reg proposition_vote treatment ideology1 log_income i.q1_immigration i.q2_defense, cluster(group_id1)
boottest treatment, reps(99999) cluster(group_id1 group_id2) bootcluster(group_id1 q1_immigration q2_defense) nograph level(90) weighttype(rademacher) nonull
gen p_val = r(p)
//gen conf_int = r(CI)
"
res <- RStata::stata(test_10, data.out = TRUE)
stata_p_val <- unique(res$p_val)
expect_equal(boot_lm10$p_val, stata_p_val, tol= tol)
}
} |
dpareto2 <-
function(x, scale = 1, shape = 1)
{
d <- (shape*scale^shape)/((x + scale)^(shape + 1))
d[x <= 0] <- 0
d
} |
wilcoxTestTargetY <- function(Y, predictedOnlyX, predictedXE, verbose, ...){
residOnlyX <- abs(Y - predictedOnlyX)
residXE <- abs(Y - predictedXE)
diffResid <- residOnlyX-residXE
testResult <- wilcox.test(diffResid, alternative="greater")
pvalue <- testResult$p.value
if(verbose)
cat(paste("\nTest statistc: ", testResult$statistic))
if(verbose)
cat(paste("\np-value: ", pvalue))
list(pvalue = pvalue)
} |
perm_distribution <- function(x, y, type, randomization = FALSE, n.rep = 10000) {
stopifnot("'x' is missing." = !missing(x))
stopifnot("'y' is missing." = !missing(y))
stopifnot("'type' is missing." = !missing(type))
checkmate::assert_numeric(x, min.len = 5, finite = TRUE, any.missing = FALSE, null.ok = FALSE)
checkmate::assert_numeric(y, min.len = 5, finite = TRUE, any.missing = FALSE, null.ok = FALSE)
checkmate::assert_choice(type, choices = c("HL11", "HL12", "HL21", "HL22", "MED1", "MED2"), null.ok = FALSE)
checkmate::assert_flag(randomization, na.ok = FALSE, null.ok = FALSE)
checkmate::assert_count(n.rep, na.ok = FALSE, positive = TRUE, null.ok = FALSE)
m <- length(x)
n <- length(y)
if (randomization & (n.rep > choose(m + n, m))) {
stop (paste0("'n.rep' may not be larger than ", choose(m + n, m), ", the number of all splits."))
}
if (!randomization) {
complete <- c(x, y)
splits <- gtools::combinations((m + n), m, 1:(m + n))
distribution <- apply(splits, 1, function(s) rob_perm_statistic(x = complete[s], y = complete[-s], type = type)$statistic)
} else if (randomization) {
splits <- replicate(n.rep, sample(c(x, y)))
distribution <- apply(splits, 2, function(s) rob_perm_statistic(x = s[1:m], y = s[(m + 1):(m + n)], type)$statistic)
}
return(distribution)
}
m_est_perm_distribution <- function(x, y, psi, k, randomization = FALSE, n.rep = 10000) {
stopifnot("'x' is missing." = !missing(x))
stopifnot("'y' is missing." = !missing(y))
stopifnot("'psi' is missing." = !missing(psi))
stopifnot("'k' is missing." = !missing(k))
checkmate::assert_numeric(x, min.len = 5, finite = TRUE, any.missing = FALSE, null.ok = FALSE)
checkmate::assert_numeric(y, min.len = 5, finite = TRUE, any.missing = FALSE, null.ok = FALSE)
checkmate::assert_choice(psi, choices = c("huber", "hampel", "bisquare"), null.ok = FALSE)
checkmate::assert_numeric(k, lower = 0, len = ifelse(psi == "hampel", 3, 1), finite = TRUE, any.missing = FALSE, null.ok = FALSE)
checkmate::assert_flag(randomization, na.ok = FALSE, null.ok = FALSE)
checkmate::assert_count(n.rep, na.ok = FALSE, positive = TRUE, null.ok = FALSE)
m <- length(x)
n <- length(y)
if (randomization & (n.rep > choose(m + n, m))) {
stop (paste0("'n.rep' may not be larger than ", choose(m + n, m), ", the number of all splits."))
}
if (!randomization) {
complete <- c(x, y)
splits <- gtools::combinations((m + n), m, 1:(m + n))
distribution <- apply(splits, 1, function(s) m_test_statistic(x = complete[s], y = complete[-s],
psi = psi, k = k)$statistic)
} else if (randomization) {
splits <- replicate(n.rep, sample(c(x, y)))
distribution <- apply(splits, 2, function(s) m_test_statistic(x = s[1:m], y = s[(m + 1):(m + n)], psi = psi, k = k)$statistic)
}
return(distribution)
}
calc_perm_p_value <- function(statistic, distribution, m, n, randomization, n.rep, alternative) {
stopifnot("'statistic' is missing." = !missing(statistic))
stopifnot("'distribution' is missing." = !missing(distribution))
stopifnot("'m' is missing." = !missing(m))
stopifnot("'n' is missing." = !missing(n))
stopifnot("'randomization' is missing." = !missing(randomization))
stopifnot("'n.rep' is missing." = !missing(n.rep))
stopifnot("'alternative' is missing." = !missing(alternative))
checkmate::assert_number(statistic, na.ok = FALSE, finite = TRUE, null.ok = FALSE)
checkmate::assert_numeric(distribution, finite = FALSE, any.missing = TRUE, null.ok = FALSE)
checkmate::assert_count(m, na.ok = FALSE, positive = TRUE, null.ok = FALSE)
checkmate::assert_count(n, na.ok = FALSE, positive = TRUE, null.ok = FALSE)
checkmate::assert_flag(randomization, na.ok = FALSE, null.ok = FALSE)
checkmate::assert_count(n.rep, na.ok = FALSE, positive = TRUE, null.ok = FALSE)
checkmate::assert_choice(alternative, choices = c("two.sided", "greater", "less"), null.ok = FALSE)
if (randomization & (n.rep > choose(m + n, m))) {
stop (paste0("'n.rep' should not be larger than ", choose(m + n, m), ", the number of all splits."))
}
A <- switch(alternative,
two.sided = sum(abs(distribution) >= abs(statistic), na.rm = TRUE),
greater = sum(distribution >= statistic, na.rm = TRUE),
less = sum(distribution <= statistic, na.rm = TRUE)
)
if (randomization & (A > n.rep)) {
stop (paste0("'n.rep' needs to be at least as large as the number of observations
which are at least as extreme as the observed value ", statistic,
" of the test statistic."))
}
if (randomization) {
p.value <- statmod::permp(A, nperm = n.rep, n1 = m, n2 = n, twosided = (alternative == "two.sided"), method = "auto")
} else if (!randomization) {
p.value <- A / choose(m + n, m)
}
return(p.value)
} |
get_block_attributes <- function(source, block_key, host = .host.)
{
downlo <- basicTextGatherer()
if (curlPerform(url = paste0(host, '//', source, '.', block_key, '.header'),
writefunction = downlo[[1]],
customrequest = 'GET') != 0) stop ('Http error status.')
rexi <- '^([[:alnum:]]+):([0-9]+)*$'
rexh <- '^([[:alnum:]]+):([0-9a-f]+)*$'
ss <- strsplit(downlo$value(), '\n')[[1]]
if (any(!grepl(rexh, ss))) stop ('Unexpected format.')
ix <- which(grepl(rexi, ss))
vv <- as.numeric(gsub(rexi, '\\2', ss[ix]))
names(vv) <- gsub(rexi, '\\1', ss[ix])
ll <- as.list(vv)
ss <- ss[-ix]
vv <- gsub(rexh, '\\2', ss)
names(vv) <- gsub(rexh, '\\1', ss)
c(ll, as.list(vv))
} |
dwplot <- function(x,
ci = .95,
dodge_size = .4,
vars_order = NULL,
show_intercept = FALSE,
margins = FALSE,
model_name = "model",
model_order = NULL,
style = c("dotwhisker", "distribution"),
by_2sd = FALSE,
vline = NULL,
dot_args = list(size = 1.2),
whisker_args = list(size = .5),
dist_args = list(alpha = .5),
line_args = list(alpha = .75, size = 1),
...) {
if (length(style) > 1)
style <- style[[1]]
if (!style %in% c("dotwhisker", "distribution"))
stop("style must be dotwhisker or distribution")
df <- dw_tidy(x, ci, by_2sd, margins, ...)
if (!show_intercept)
df <-
df %>% filter(!grepl("^\\(Intercept\\)$|^\\w+\\|\\w+$", term))
estimate <-
model <-
conf.low <-
conf.high <- term <- std.error <- n <- loc <- dens <- NULL
n_vars <- length(unique(df$term))
dodge_size <- dodge_size
if (model_name %in% names(df)) {
dfmod <- df[[model_name]]
n_models <- length(unique(dfmod))
l_models <- if(is.null(model_order)) unique(dfmod) else model_order
df[[model_name]] <- factor(dfmod, levels = rev(l_models))
} else {
if (length(df$term) == n_vars) {
df[[model_name]] <- factor("one")
n_models <- 1
} else {
stop(
"Please add a variable named '",
model_name,
"' to distinguish different models"
)
}
}
mod_names <- unique(df[[model_name]])
if (!is.null(vars_order)) {
df$term <- factor(df$term, levels = vars_order)
df <- df[order(df$term),] %>% filter(!is.na(term))
}
if (n_models > 1) {
df <- add_NAs(df, n_models, mod_names)
}
var_names <- unique(df$term)
df <- df %>%
mutate(y_ind = n_vars - as.numeric(factor(term, levels = var_names)) + 1)
y_ind <- df$y_ind
if (style == "distribution") {
if (nrow(df) > n_models * n_vars) {
df <- df %>%
select(-n,-loc,-dens) %>%
distinct()
}
df1 <- purrr::map_dfr(1:101, function(x)
df) %>%
arrange(term, model) %>%
group_by(term, model) %>%
dplyr::mutate(
n = 1:dplyr::n(),
loc = estimate - 3 * std.error + (6 * std.error) /
100 * (n - 1),
dens = dnorm(loc, mean = estimate, sd = std.error) + y_ind
) %>%
filter(!is.na(estimate))
p <- ggplot(data = df) +
vline +
geom_dwdist(df1 = df1,
line_args = line_args,
dist_args = dist_args) +
scale_y_continuous(breaks = unique(df$y_ind), labels = var_names) +
guides(color = guide_legend(reverse = TRUE),
fill = guide_legend(reverse = TRUE)) +
ylab("") + xlab("")
} else {
point_args0 <- list(na.rm = TRUE)
point_args <- c(point_args0, dot_args)
segment_args0 <- list(na.rm = TRUE)
segment_args <- c(segment_args0, whisker_args)
p <- ggplot(data = df) +
vline +
geom_dw(
df = df,
point_args = point_args,
segment_args = segment_args,
dodge_size = dodge_size
) +
guides(color = guide_legend(reverse = TRUE)) +
ylab("") + xlab("")
}
if (n_models == 1) {
p <- p + theme(legend.position = "none")
}
p$args <- list(
dodge_size = dodge_size,
vars_order = vars_order,
show_intercept = show_intercept,
model_name = model_name,
model_order = model_order,
style = style,
by_2sd = FALSE,
vline = vline,
dot_args = dot_args,
whisker_args = whisker_args,
dist_args = dist_args,
line_args = line_args,
list(...)
)
return(p)
}
dw_tidy <- function(x, ci, by_2sd, margins,...) {
estimate <- model <- std.error <- conf.high <- conf.low <- NULL
AME <- SE <- lower <- p <- upper <- z <- NULL
get_dat <- function(x) {
tryCatch(
as.data.frame(model.matrix(x)),
error = function(e)
model.frame(x)
)
}
mk_model <- function(x) {
if (all(!is.na(suppressWarnings(as.numeric(x))))) {
paste("Model", x)
} else
x
}
if (!is.data.frame(x)) {
if (!inherits(x, "list")) {
if(margins){
df <- margins::margins(x) %>%
summary(level = ci) %>%
rename(term = factor,
estimate = AME,
std.error = SE,
conf.low = lower,
conf.high = upper,
statistic = z,
p.value = p)
}else{
df <- standardize_names(parameters(x, ci, conf.int = TRUE, ...), style = "broom")
}
if (by_2sd) {
df <- df %>% by_2sd(get_dat(x))
}
} else {
if (by_2sd) {
df <- purrr::map_dfr(x, .id = "model",
function(x) {
if(margins){
df <- margins::margins(x) %>%
summary(level = ci) %>%
rename(term = factor,
estimate = AME,
std.error = SE,
conf.low = lower,
conf.high = upper,
statistic = z,
p.value = p)
}else{
df <- standardize_names(parameters(x, ci, conf.int = TRUE, ...), style = "broom")
}
dotwhisker::by_2sd(df, dataset = get_dat(x))
}) %>%
mutate(model = mk_model(model))
} else {
df <- purrr::map_dfr(x, .id = "model",
function(x) {
if(margins){
df <- margins::margins(x) %>%
summary(level = ci) %>%
rename(term = factor,
estimate = AME,
std.error = SE,
conf.low = lower,
conf.high = upper,
statistic = z,
p.value = p)
}else{
df <- standardize_names(parameters(x, ci, conf.int = TRUE, ...), style = "broom")
}
}) %>%
mutate(model = if_else(
!is.na(suppressWarnings(as.numeric(
model
))),
paste("Model", model),
model
))
}
}
} else {
df <- x
if ((!"conf.low" %in% names(df)) ||
(!"conf.high" %in% names(df))) {
if ("std.error" %in% names(df)) {
df <- transform(
df,
conf.low = estimate - stats::qnorm(1 - (1 - ci) /
2) * std.error,
conf.high = estimate + stats::qnorm(1 - (1 - ci) /
2) * std.error
)
} else {
df <- transform(df,
conf.low = NA,
conf.high = NA)
}
}
}
return(df)
}
add_NAs <-
function(df = df,
n_models = n_models,
mod_names = mod_names,
model_name = "model") {
term <- model <- NULL
if (!is.factor(df$term)) {
df$term <- factor(df$term, levels = unique(df$term))
}
if (!is.factor(dfmod <- df[[model_name]])) {
df[[model_name]] <- factor(dfmod, levels = unique(dfmod))
}
for (i in seq(n_models)) {
m <-
df %>% filter(model == factor(mod_names[[i]], levels = mod_names))
not_in <- setdiff(unique(df$term), m$term)
for (j in seq(not_in)) {
t <- data.frame(
term = factor(not_in[j], levels = levels(df$term)),
model = factor(mod_names[[i]], levels = mod_names)
)
if ("submodel" %in% names(m)) {
t$submodel <- m$submodel[1]
}
if ("submodel" %in% names(m)) {
m <- full_join(m, t, by = c("term", "model", "submodel"))
} else {
m <- full_join(m, t, by = c("term", "model"))
}
}
if (i == 1) {
dft <- m %>% arrange(term)
} else {
dft <- bind_rows(dft, m %>% arrange(term))
}
}
df <- dft
df$estimate <- as.numeric(df$estimate)
if ("std.error" %in% names(df)) {
df$std.error <- as.numeric(df$std.error)
}
if ("conf.high" %in% names(df)) {
df$conf.high <- as.numeric(df$conf.high)
}
if ("conf.low" %in% names(df)) {
df$conf.low <- as.numeric(df$conf.low)
}
return(df)
}
geom_dwdist <- function(data = NULL, df1, line_args, dist_args) {
loc <-
dens <- model <- term <- y_ind <- conf.high <- conf.low <- NULL
l1 <- layer(
data = df1,
mapping = aes(
x = loc,
y = dens,
group = interaction(model, term),
color = model,
fill = model
),
stat = "identity",
position = "identity",
geom = GeomPolygon,
params = dist_args
)
l2 <- layer(
data = data,
mapping = aes(
y = y_ind,
xmin = conf.low,
xmax = conf.high,
color = model
),
stat = "identity",
position = "identity",
geom = ggstance::GeomLinerangeh,
show.legend = FALSE,
params = line_args
)
return(list(l1, l2))
}
geom_dw <- function(df, point_args, segment_args, dodge_size) {
loc <-
dens <-
model <- term <- y_ind <- conf.high <- conf.low <- estimate <- NULL
point_arguments <-
tryCatch({
added_point_aes <- point_args[names(point_args) == ""][[1]]
point_mapping <-
modifyList(
aes(
y = stats::reorder(term, y_ind),
x = estimate,
group = interaction(model, term),
color = model
),
added_point_aes
)
point_arguments <- point_args[names(point_args) != ""]
list(point_mapping, point_arguments)
},
error = function(e) {
point_mapping <-
aes(
y = stats::reorder(term, y_ind),
x = estimate,
group = interaction(model, term),
color = model
)
return(list(point_mapping, point_args))
})
segment_arguments <-
tryCatch({
added_segment_aes <- segment_args[names(segment_args) == ""][[1]]
segment_mapping <-
modifyList(
aes(
y = stats::reorder(term, y_ind),
xmin = conf.low,
xmax = conf.high,
group = interaction(model, term),
color = model
),
added_segment_aes
)
segment_arguments <- segment_args[names(segment_args) != ""]
list(segment_mapping, segment_arguments)
},
error = function(e) {
segment_mapping <-
aes(
y = stats::reorder(term, y_ind),
xmin = conf.low,
xmax = conf.high,
group = interaction(model, term),
color = model
)
return(list(segment_mapping, segment_args))
})
l1 <- layer(
data = df,
mapping = point_arguments[[1]],
stat = "identity",
position = ggstance::position_dodgev(height = dodge_size),
geom = "point",
params = point_arguments[[2]]
)
l2 <- layer(
data = df,
mapping = segment_arguments[[1]],
stat = "identity",
position = ggstance::position_dodgev(height = dodge_size),
geom = ggstance::GeomLinerangeh,
show.legend = FALSE,
params = segment_arguments[[2]]
)
return(list(l2, l1))
}
dw_plot <- dwplot |
demRegression <-
function(path=getwd(), filename='demRegression', png=FALSE, gif=FALSE) {
noiseLevel = 0.2
noiseVar = noiseLevel^2
options = gpOptions(); options$kern$comp = list('rbf','white')
l=9; x = as.matrix(seq(-1, 1, length=l))
trueKern = kernCreate(x, 'rbf')
K = kernCompute(trueKern, x) + diag(dim(x)[1])*noiseVar
yTrue = gaussSamp(Sigma=K, numSamps=1)
steps = 2^c(round(log2(l-1)):0); s=0
indTrain=list(); length(indTrain)=length(steps)
indTrain = lapply(indTrain, function(x) x=(seq(1,l,by=steps[(s<<-s+1)])))
graphics.off()
figNo = 1
for (i in 1:length(indTrain)) {
if (i > 0) {
yTrain = as.matrix(yTrue[indTrain[[i]]])
xTrain = as.matrix(x[indTrain[[i]]])
kern = kernCreate(x, 'rbf')
kern$inverseWidth = 5
xTest = as.matrix(seq(-2, 2, length=200))
Kx = kernCompute(kern, xTest, xTrain)
Ktrain = kernCompute(kern, xTrain)
invKtrain = .jitCholInv(Ktrain + diag(dim(Ktrain)[1])*noiseVar, silent=TRUE)$invM
yPred = Kx %*% invKtrain %*% yTrain
yVar = kernDiagCompute(kern, xTest) - rowSums(Kx %*% invKtrain * Kx)
model = gpCreate(dim(xTrain)[2], dim(yTrain)[2], xTrain, yTrain, options)
dev.new(); plot.new()
gpPlot(model, xTest, yPred, yVar, ylim=c(-3,3), col='black')
zeroAxes()
pathfilename = paste(path,'/',filename,'_', figNo, '.eps', sep='')
if (png) {
dev.copy2eps(file = pathfilename)
system(paste('eps2png ', pathfilename, sep=''))
}
figNo = figNo + 1
} else {
xTest = as.matrix(seq(-2, 2, length=200))
kern = kernCreate(xTest, 'rbf')
kern$inverseWidth = 5
yPred = array(0,dim(xTest))
yVar = kernDiagCompute(kern, xTest)
plot(xTest, yPred, col='blue', lwd=.5)
zeroAxes()
pathfilename = paste(path,'/',filename,'_', figNo, '.eps', sep='')
if (png) {
dev.copy2eps(file = pathfilename)
system(paste('eps2png ', pathfilename, sep=''))
}
figNo = figNo + 1
}
if (i < length(indTrain)) {
dev.new(); plot.new()
gpPlot(model, xTest, yPred, yVar, ylim=c(-3,3), col='black')
if (i < 1) diffs = indTrain[[i+1]]
else diffs = setdiff(indTrain[[i+1]], indTrain[[i]])
newx = x[diffs]; newy = yTrue[diffs]
points(newx, newy, pch = 4, cex = 1.5, lwd=3, col='blue')
pathfilename = paste(path,'/',filename,'_', figNo, '.eps', sep='')
if (png) {
dev.copy2eps(file = pathfilename)
system(paste('eps2png ', pathfilename, sep=''))
}
figNo = figNo + 1
}
}
if (gif)
system(paste('convert -delay 80 ',path,'/',filename,'*.png ', path,'/',filename,'.gif', sep=''))
} |
shinyML_regression <- function(data = data,y,framework = "h2o", share_app = FALSE,port = NULL){
set.seed(123)
if(!(framework %in% c("h2o","spark"))){stop("framework must be selected between h2o or spark")}
data <- data.table(data)
colnames(data) <- gsub("\\.","_",colnames(data))
y <- gsub("\\.","_",y)
if (!(y %in% colnames(data))){
stop("y must match one data input variable")
}
if (!(eval(parse(text = paste0("class(data$",y,")"))) == "numeric")){
stop("y column class must be numeric")
}
x <- setdiff(colnames(data),y)
if (nrow(data) > 1000000) {
stop("Input dataset must not exceed one million rows")
}
options(dplyr.summarise.inform=F)
model <- reactiveValues()
train_1 <- reactiveValues()
test_1 <- reactiveValues()
test_2 <- reactiveValues()
v_neural <- reactiveValues(type_model = NA)
v_grad <- reactiveValues(type_model = NA)
v_glm <- reactiveValues(type_model = NA)
v_decision_tree <- reactiveValues(type_model = NA)
v_random <- reactiveValues(type_model = NA)
v_auto_ml <- reactiveValues(type_model = NA)
parameter <- reactiveValues()
time_gbm <- data.table()
time_random_forest <- data.table()
time_glm <- data.table()
time_decision_tree <- data.table()
time_neural_network <- data.table()
time_auto_ml <- data.table()
importance_gbm <- data.table()
importance_decision_tree <- data.table()
importance_random_forest <- data.table()
importance_neural_network <- data.table()
scaled_importance <- NULL
variable <- NULL
Predicted_value <- NULL
Model <- NULL
`.` <- NULL
`MAPE(%)` <- NULL
Counter <- NULL
feature <- NULL
importance <- NULL
fit <- NULL
prediction <- NULL
`..density..` <- NULL
argonNav <- argonDashNavbar(
argonDropNav(
title = HTML(paste0("shiny<font color='orange'>ML</font>")),
src = "https://www.zupimages.net/up/20/39/ql8k.jpg",
orientation = "left"
)
)
argonFooter <- argonDashFooter(
copyrights = "@shinyML, 2020",
src = "https://jeanbertinr.github.io/shinyMLpackage/",
argonFooterMenu(
argonFooterItem("GitHub", src = "https://github.com/JeanBertinR/shinyML"),
argonFooterItem("CRAN", src = "https://cran.r-project.org/web/packages/shinyML/index.html")
)
)
dashheader_framework <- argonDashHeader(
gradient = TRUE,
color = "danger",
separator = FALSE,
argonRow(
argonColumn(width = "20%",
argonInfoCard(value = "Regression",gradient = TRUE,width = 12,
title = "Machine learning task",
icon = icon("chart-bar"),
icon_background = "red",
background_color = "lightblue"
)
),
argonColumn(width = "20%",uiOutput("framework_used")),
argonColumn(width = "20%",uiOutput("framework_memory")),
argonColumn(width = "20%",uiOutput("framework_cpu")),
argonColumn(width = "20%",uiOutput("dataset_infoCard"))
)
)
dashheader_explore_input <- argonDashHeader(
gradient = FALSE,
color = "info",
separator = FALSE,
div(align = "center",
argonButton(
name = HTML("<font size='+1'> Explore input data </font>"),
status = "info",
icon = icon("chart-area"),
size = "lg",
toggle_modal = TRUE,
modal_id = "modal_exlore_input_data"
),
argonModal(
id = "modal_exlore_input_data",
title = HTML("<b>EXPLORE INPUT DATA</b>"),
status = "info",
gradient = TRUE,
br(),
HTML("<b>Before running machine learning models, it can be useful to inspect each variable distribution and have an insight of dependencies between explicative variables.</b>"),
br(),br(),
icon("tools"),icon("tools"),icon("tools"),
br(),br(),
HTML("This section allows to plot variation of each variable as a function of another, to check classes of explicative variables, to plot histograms of each distribution and show correlation matrix between all variables.<br><br>
Please note that this section can be used to determine if some variable are strongly correlated to another and eventually removed from the training phase.")
)
),
br(),
argonRow(
argonColumn(width = 9,
argonCard(width = 12,
hover_lift = TRUE,
shadow = TRUE,
argonTabSet(width = 12,
id = "tab_input_data",
card_wrapper = TRUE,
horizontal = TRUE,
circle = FALSE,
size = "sm",
iconList = list(argonIcon("cloud-upload-96"), argonIcon("bell-55"), argonIcon("calendar-grid-58"),argonIcon("calendar-grid-58")),
argonTab(tabName = "Explore dataset",
active = TRUE,
argonRow(
argonColumn(width = 6,div(align = "center",uiOutput("X_axis_explore_dataset"))),
argonColumn(width = 6,div(align = "center",selectInput(inputId = "y_variable_input_curve",label = "Y-axis variable",choices = colnames(data),selected = y)))
),
br(),
br(),
br(),
withSpinner(plotlyOutput("explore_dataset_chart",width = "100%",height = "120%"))
),
argonTab(tabName = "Variables Summary",
active = FALSE,
fluidRow(
argonColumn(width = 4,
br(),
br(),
withSpinner(DTOutput("variables_class_input", height = "100%", width = "100%"))
),
argonColumn(width = 8,
div(align = "center",
radioButtons(inputId = "input_var_graph_type",label = "",choices = c("Histogram","Boxplot","Autocorrelation"),selected = "Histogram",inline = T)
),
div(align = "center",uiOutput("message_autocorrelation")),
withSpinner(plotlyOutput("variable_boxplot", height = "100%", width = "100%")))
)
),
argonTab(tabName = "Correlation matrix",
active = FALSE,
withSpinner(plotlyOutput("correlation_matrix", height = "100%", width = "100%"))
)
)
)
),
argonColumn(width = 3,
argonCard(width = 12,src = NULL,hover_lift = T,shadow = TRUE,
div(align = "center",
argonColumn(width = 6,uiOutput("Time_series_checkbox")),
argonColumn(width = 6,uiOutput("time_series_column")),
uiOutput("Variables_input_selection"),
uiOutput("slider_time_series_train"),
uiOutput("slider_time_series_test"),
uiOutput("slider_percentage"),
uiOutput("message_nrow_train_dataset")
)
)
)
)
)
dashheader_explore_results <- argonDashHeader(gradient = TRUE,
color = "primary",
separator = FALSE,
div(align = "center",
argonButton(
name = HTML("<font size='+1'> Explore results</font>"),
status = "primary",
icon = icon("list-ol"),
size = "lg",
toggle_modal = TRUE,
modal_id = "modal_explore_results"
),
argonModal(
id = "modal_explore_results",
title = HTML("<b>EXPLORE RESULTS</b>"),
status = "primary",
gradient = TRUE,
br(),
HTML("<b>Once machine learning models have been lauched, this section can be used to compare their performances on the testing dataset</b>"),
br(),br(),
icon("tools"),icon("tools"),icon("tools"),
br(),br(),
HTML("You can check confusion matrices to get classification results for each model or have an overview of error metric in 'Compare models performances' tab.<br><br>
Please note that feature importances of each model are available in the corresponding tab.")
)
),
br(),
argonRow(
argonCard(width = 12,
title = "Predictions on test period",
src = NULL,
hover_lift = TRUE,
shadow = TRUE,
icon = icon("cogs"),
status = "danger",
argonTabSet(
width = 12,
id = "results_models",
card_wrapper = TRUE,
horizontal = TRUE,
circle = FALSE,
size = "sm",
iconList = list(argonIcon("cloud-upload-96"), argonIcon("bell-55"), argonIcon("calendar-grid-58"),argonIcon("calendar-grid-58")),
argonTab(
tabName = "Result charts on test period",
active = TRUE,
withSpinner(dygraphOutput("output_curve", width = "100%")),
br(),
div(align = "center",
switchInput(label = "Bar chart mode",inputId = "bar_chart_mode",value = TRUE)
)
),
argonTab(
tabName = "Compare models performances",
active = FALSE,
div(align = "center",
br(),
br(),
uiOutput("message_compare_models_performances")
),
withSpinner(DTOutput("score_table"))
),
argonTab(tabName = "Feature importance",
active = FALSE,
div(align = "center",
br(),
br(),
uiOutput("message_feature_importance"),
uiOutput("feature_importance_glm_message")),
withSpinner(plotlyOutput("feature_importance",height = "100%"))
),
argonTab(tabName = "Table of results",
active = FALSE,
withSpinner(DTOutput("table_of_results"))
)
),
br(),
br()
)
)
)
if(framework == "h2o"){
Sys.setenv(http_proxy="")
Sys.setenv(http_proxy_user="")
Sys.setenv(https_proxy_user="")
h2o.init()
h2o::h2o.no_progress()
cluster_status <- h2o.clusterStatus()
dashheader_select_parameters <- argonDashHeader(gradient = TRUE,
color = "default",
separator = FALSE,
div(align = "center",
argonButton(
name = HTML("<font size='+1'> Configure parameters and run models</font>"),
status = "default",
icon = icon("tools"),
size = "lg",
toggle_modal = TRUE,
modal_id = "modal_configure_parameters"
),
argonModal(
id = "modal_configure_parameters",
title = HTML("<b>CONFIGURE PARAMETERS</b>"),
status = "default",
gradient = TRUE,
br(),
HTML("<b>Compare different machine learning techniques with your own hyper-parameters configuration.</b>"),
br(),br(),
icon("tools"),icon("tools"),icon("tools"),
br(),br(),
HTML("You are free to select hyper-parameters configuration for each machine learning model using different cursors.<br><br>
Each model can be lauched separately by cliking to the corresponding button; you can also launch all models simultaneously using 'Run all models!'button<br><br>
Please note that autoML algorithm will automatically find the best algorithm to suit your regression task:
the user will be informed of the machine learning technique used and know which hyper-parameters should be configured.
")
)
),
br(),
argonRow(
argonColumn(width = 6,div(align = "center",uiOutput("h2o_cluster_mem"))),
argonColumn(width = 6,div(align = "center",uiOutput("h2o_cpu")))
),
argonRow(
argonCard(width = 3,
icon = icon("sliders"),
status = "success",
title = "Generalized linear regression",
div(align = "center",
argonRow(
argonColumn(width = 6,
radioButtons(label = "Family",inputId = "glm_family",choices = c("gaussian","poisson", "gamma","tweedie"),selected = "gaussian")
),
argonColumn(width = 6,
radioButtons(label = "Link",inputId = "glm_link",choices = c("identity","log"),selected = "identity"),
switchInput(label = "Intercept term",inputId = "intercept_term_glm",value = TRUE,width = "auto")
)
),
sliderInput(label = "Lambda",inputId = "reg_param_glm",min = 0,max = 10,value = 0),
sliderInput(label = "Alpha (0:Ridge <-> 1:Lasso)",inputId = "alpha_param_glm",min = 0,max = 1,value = 0.5),
sliderInput(label = "Maximum iteraions",inputId = "max_iter_glm",min = 50,max = 300,value = 100),
actionButton("run_glm","Run glm",style = 'color:white; background-color:green; padding:4px; font-size:120%',icon = icon("cogs",lib = "font-awesome"))
)
),
argonCard(width = 3,
icon = icon("sliders"),
status = "danger",
title = "Random Forest",
div(align = "center",
sliderInput(label = "Number of trees",min = 1,max = 100, inputId = "num_tree_random_forest",value = 50),
sliderInput(label = "Subsampling rate",min = 0.1,max = 1, inputId = "subsampling_rate_random_forest",value = 0.6),
sliderInput(label = "Max depth",min = 1,max = 50, inputId = "max_depth_random_forest",value = 20),
sliderInput(label = "Number of bins",min = 2,max = 100, inputId = "n_bins_random_forest",value = 20),
actionButton("run_random_forest","Run random forest",style = 'color:white; background-color:red; padding:4px; font-size:120%',icon = icon("cogs",lib = "font-awesome"))
)
),
argonCard(width = 3,
icon = icon("sliders"),
status = "primary",
title = "Neural network",
div(align = "center",
argonRow(
argonColumn(width = 6,
radioButtons(label = "Activation function",inputId = "activation_neural_net",choices = c( "Rectifier", "Maxout","Tanh", "RectifierWithDropout", "MaxoutWithDropout","TanhWithDropout"),selected = "Rectifier")
),
argonColumn(width = 6,
radioButtons(label = "Loss function",inputId = "loss_neural_net",choices = c("Automatic", "Quadratic", "Huber", "Absolute", "Quantile"),selected = "Automatic")
)
),
textInput(label = "Hidden layers",inputId = "hidden_neural_net",value = "c(200,200)"),
sliderInput(label = "Epochs",min = 10,max = 100, inputId = "epochs_neural_net",value = 10),
sliderInput(label = "Learning rate",min = 0.001,max = 0.1, inputId = "rate_neural_net",value = 0.005),
actionButton("run_neural_network","Run neural network",style = 'color:white; background-color:darkblue; padding:4px; font-size:120%',icon = icon("cogs",lib = "font-awesome"))
)
),
argonCard(width = 3,
icon = icon("sliders"),
status = "warning",
title = "Gradient boosting",
div(align = "center",
sliderInput(label = "Max depth",min = 1,max = 20, inputId = "max_depth_gbm",value = 5),
sliderInput(label = "Number of trees",min = 1,max = 100, inputId = "n_trees_gbm",value = 50),
sliderInput(label = "Sample rate",min = 0.1,max = 1, inputId = "sample_rate_gbm",value = 1),
sliderInput(label = "Learn rate",min = 0.1,max = 1, inputId = "learn_rate_gbm",value = 0.1),
actionButton("run_gradient_boosting","Run gradient boosting",style = 'color:white; background-color:orange; padding:4px; font-size:120%',icon = icon("cogs",lib = "font-awesome"))
)
)
),
argonRow(
argonColumn(width = 6,
argonCard(width = 12,
icon = icon("cogs"),
status = "warning",
title = "Compare all models",
div(align = "center",
argonH1("Click this button to run all model simultaneously",display = 4),
argonH1(HTML("<small><i> The four models will be runed with the parameters selected above</i></small>"),display = 4),
br(),
br(),
actionBttn(label = "Run all models !",inputId = "train_all",color = "primary", icon = icon("cogs",lib = "font-awesome")),
br()
)
)
),
argonColumn(width = 6,
argonCard(width = 12,icon = icon("cogs"),status = "warning", title = "Auto Machine Learning",
div(align = "center",
prettyCheckboxGroup(
inputId = "auto_ml_autorized_models",
label = HTML("<b>Authorized searching</b>"),
choices = c("DRF", "GLM", "XGBoost", "GBM", "DeepLearning"),
selected = c("DRF", "GLM", "XGBoost", "GBM", "DeepLearning"),
icon = icon("check-square-o"),
status = "primary",
inline = TRUE,
outline = TRUE,
animation = "jelly"
),
br(),
knobInput(inputId = "run_time_auto_ml",label = HTML("<b>Max running time (in seconds)</b>"),value = 15,min = 10,max = 60,
displayPrevious = TRUE, lineCap = "round",fgColor = "
),
actionButton("run_auto_ml","Run auto ML",style = 'color:white; background-color:red; padding:4px; font-size:120%',icon = icon("cogs",lib = "font-awesome"))
)
)
)
)
)
}
else if(framework == "spark"){
if (nrow(spark_installed_versions()) == 0){spark_install()}
sc <- spark_connect(master = "local")
config_spark<- spark_session_config(sc)
dashheader_select_parameters <- argonDashHeader(gradient = TRUE,
color = "default",
separator = FALSE,
div(align = "center",
argonButton(
name = HTML("<font size='+1'> Configure parameters and run models</font>"),
status = "default",
icon = icon("tools"),
size = "lg",
toggle_modal = TRUE,
modal_id = "modal_configure_parameters"
),
argonModal(
id = "modal_configure_parameters",
title = HTML("<b>CONFIGURE PARAMETERS</b>"),
status = "default",
gradient = TRUE,
br(),
HTML("<b>Compare different machine learning techniques with your own hyper-parameters configuration.</b>"),
br(),br(),
icon("tools"),icon("tools"),icon("tools"),
br(),br(),
HTML("You are free to select hyper-parameters configuration for each machine learning model using different cursors.<br><br>
Each model can be lauched separately by cliking to the corresponding button; you can also launch all models simultaneously using 'Run all models!'button<br><br>
Please note that autoML algorithm will automatically find the best algorithm to suit your regression task:
the user will be informed of the machine learning technique used and know which hyper-parameters should be configured.
")
)
),
br(),
argonRow(
argonColumn(width = 6,div(align = "center",uiOutput("spark_cluster_mem"))),
argonColumn(width = 6,div(align = "center",uiOutput("spark_cpu")))
),
argonRow(
argonCard(width = 3,
icon = icon("sliders"),
status = "success",
title = "Generalized linear regression",
div(align = "center",
argonRow(
argonColumn(width = 6,
radioButtons(label = "Family",inputId = "glm_family",choices = c("gaussian","Gamma","poisson"),selected = "gaussian")
),
argonColumn(width = 6,
radioButtons(label = "Link",inputId = "glm_link",choices = c("identity","log"),selected = "identity"),
switchInput(label = "Intercept term",inputId = "intercept_term_glm",value = TRUE,width = "auto")
)
),
sliderInput(label = "Lambda",inputId = "reg_param_glm",min = 0,max = 10,value = 0),
sliderInput(label = "Alpha (0:Ridge <-> 1:Lasso)",inputId = "alpha_param_glm",min = 0,max = 1,value = 0.5),
sliderInput(label = "Maximum iteraions",inputId = "max_iter_glm",min = 50,max = 300,value = 100),
actionButton("run_glm","Run glm",style = 'color:white; background-color:green; padding:4px; font-size:120%',icon = icon("cogs",lib = "font-awesome"))
)
),
argonCard(width = 3,
icon = icon("sliders"),
status = "danger",
title = "Random Forest",
div(align = "center",
sliderInput(label = "Number of trees",min = 1,max = 100, inputId = "num_tree_random_forest",value = 50),
sliderInput(label = "Subsampling rate",min = 0.1,max = 1, inputId = "subsampling_rate_random_forest",value = 1),
sliderInput(label = "Max depth",min = 1,max = 50, inputId = "max_depth_random_forest",value = 20),
sliderInput(label = "Number of bins",min = 2,max = 100, inputId = "n_bins_random_forest",value = 20),
actionButton("run_random_forest","Run random forest",style = 'color:white; background-color:red; padding:4px; font-size:120%',icon = icon("cogs",lib = "font-awesome"))
)
),
argonCard(width = 3,
icon = icon("sliders"),
status = "primary",
title = "Decision tree",
div(align = "center",
argonRow(
argonColumn(
sliderInput(label = "Max depth",inputId = "max_depth_decision_tree",min = 1,max = 30,value = 20),
sliderInput(label = "Max bins",inputId = "max_bins_decision_tree",min = 2,max = 60,value = 32),
sliderInput(label = "Min instance per node",inputId = "min_instance_decision_tree",min = 1,max = 10,value = 1),
actionButton("run_decision_tree","Run decision tree regression",style = 'color:white; background-color:darkblue; padding:4px; font-size:120%',icon = icon("cogs",lib = "font-awesome"))
)
)
)
),
argonCard(width = 3,
icon = icon("sliders"),
status = "warning",
title = "Gradient boosting",
div(align = "center",
sliderInput(label = "Step size",min = 0,max = 1, inputId = "step_size_gbm",value = 0.1),
sliderInput(label = "Subsampling rate",min = 0.1,max = 1, inputId = "subsampling_rate_gbm",value = 1),
sliderInput(label = "Max depth",min = 1,max = 30, inputId = "max_depth_gbm",value = 20),
actionButton("run_gradient_boosting","Run gradient boosting",style = 'color:white; background-color:orange; padding:4px; font-size:120%',icon = icon("cogs",lib = "font-awesome"))
)
)
),
argonRow(
argonColumn(width = 12,
center = T,
argonCard(width = 12,
icon = icon("cogs"),
status = "warning",
title = "Compare all models",
div(align = "center",
argonH1("Click this button to run all model simultaneously",display = 4),
argonH1(HTML("<small><i> The four models will be runed with the parameters selected above</i></small>"),display = 4),
br(),
br(),
actionBttn(label = "Run all models !",inputId = "train_all",color = "primary", icon = icon("cogs",lib = "font-awesome")),
br()
)
)
)
)
)
}
argonHeader <- argonColumn(width = "100%",
dashheader_framework,
dashheader_explore_input ,
dashheader_select_parameters,
dashheader_explore_results
)
server = function(session,input, output) {
dates_variable_list <- reactive({
dates_columns_list <- c()
for (i in colnames(data)){
if (is.Date(eval(parse(text = paste0("data$",i)))) | is.POSIXct(eval(parse(text = paste0("data$",i))))){
dates_columns_list <- c(dates_columns_list,i)
}
}
dates_columns_list
})
output$Time_series_checkbox <- renderUI({
if (length(dates_variable_list()) >= 1){value = TRUE}
else {value = FALSE}
awesomeCheckbox("checkbox_time_series", "Time series",status = "primary",value = value)
})
observe({
if (length(dates_variable_list()) == 0){
shinyjs::hideElement("Time_series_checkbox")
}
})
observe({
req(!is.null(input$checkbox_time_series))
if (input$checkbox_time_series == TRUE){
req(!is.null(input$time_serie_select_column))
test_1$date <- eval(parse(text = paste0("mean(as.Date(data$",input$time_serie_select_column,"))")))
test_2$date <- eval(parse(text = paste0("max(as.Date(data$",input$time_serie_select_column,"))")))
}
})
output$framework_used <- renderUI({
if (framework == "h2o"){selected_framework <- "H2O"}
else if (framework == "spark"){selected_framework <- "Spark"}
argonInfoCard(
value = selected_framework,gradient = TRUE,width = 12,
title = "Selected framework",
icon = icon("atom"),
icon_background = "orange",
background_color = "lightblue"
)
})
output$framework_memory <- renderUI({
if (framework == "h2o"){
used_memory <- paste(round(as.numeric(cluster_status$free_mem)/1024**3,2), "GB", sep = "")
title <- "H2O Cluster Total Memory"
}
else if (framework == "spark"){
used_memory <- paste(gsub("g","GB",config_spark$spark.driver.memory), sep = "")
title <-"Spark Cluster Total Memory"
}
argonInfoCard(
value = used_memory ,
title = title,
gradient = TRUE,width = 12,
icon = icon("server"),
icon_background = "yellow",
background_color = "lightblue"
)
})
output$framework_cpu <- renderUI({
if (framework == "h2o"){cpu_number <- cluster_status$num_cpus}
else if (framework == "spark"){cpu_number <- config_spark$spark.sql.shuffle.partitions}
argonInfoCard(
value = cpu_number,gradient = TRUE,width = 12,
title = "Number of CPUs in Use",
icon = icon("microchip"),
icon_background = "green",
background_color = "lightblue"
)
})
output$dataset_infoCard <- renderUI({
argonInfoCard(
value = paste0(nrow(data)," rows x ",ncol(data)," columns"),
gradient = TRUE,width = 12,
title = "Your dataset",
icon = icon("image"),
icon_background = "blue",
background_color = "lightblue"
)
})
output$message_nrow_train_dataset <- renderUI({
req(!is.null(input$checkbox_time_series))
req(!is.null(table_forecast()[["data_train"]]))
if (input$checkbox_time_series == TRUE){
number_rows_datatest <- nrow(eval(parse(text = paste0("data[",input$time_serie_select_column," >= input$train_selector[1],][",input$time_serie_select_column," <= input$train_selector[2],]"))))
}
else if (input$checkbox_time_series == FALSE){
number_rows_datatest <- nrow(table_forecast()[["data_train"]])
}
argonBadge(text = HTML(paste0("<big><big>Training dataset contains <b>",number_rows_datatest,"</b> rows</big></big>")),status = "success")
})
output$message_autocorrelation <- renderUI({
points_serie <-eval(parse(text = paste0("data[,",colnames(data)[input$variables_class_input_rows_selected],"]")))
if (input$input_var_graph_type %in% c("Histogram","Autocorrelation") & !is.numeric(points_serie)){
argonH1("Only available for numerical variables",display = 4)
}
})
observeEvent(input$run_glm,{
train_1$date <- input$train_selector[1]
test_1$date <- input$test_selector[1]
test_2$date <- input$test_selector[2]
model$train_variables <- input$input_variables
v_grad$type_model <- NA
v_neural$type_model <- NA
v_random$type_model <- NA
v_decision_tree$type_model <- NA
v_auto_ml$type_model <- NA
v_glm$type_model <- "ml_generalized_linear_regression"
parameter$family_glm <- input$glm_family
parameter$glm_link <- input$glm_link
parameter$intercept_term_glm <- input$intercept_term_glm
parameter$reg_param_glm <- input$reg_param_glm
parameter$alpha_param_glm <- input$alpha_param_glm
parameter$max_iter_glm <- input$max_iter_glm
})
observeEvent(input$run_random_forest,{
train_1$date <- input$train_selector[1]
test_1$date <- input$test_selector[1]
test_2$date <- input$test_selector[2]
model$train_variables <- input$input_variables
v_grad$type_model <- NA
v_neural$type_model <- NA
v_glm$type_model <- NA
v_auto_ml$type_model <- NA
v_decision_tree$type_model <- NA
v_random$type_model <- "ml_random_forest"
parameter$num_tree_random_forest <- input$num_tree_random_forest
parameter$subsampling_rate_random_forest <- input$subsampling_rate_random_forest
parameter$max_depth_random_forest <- input$max_depth_random_forest
parameter$n_bins_random_forest <- input$n_bins_random_forest
})
observeEvent(input$run_gradient_boosting,{
train_1$date <- input$train_selector[1]
test_1$date <- input$test_selector[1]
test_2$date <- input$test_selector[2]
model$train_variables <- input$input_variables
v_grad$type_model <- "ml_gradient_boosted_trees"
v_neural$type_model <- NA
v_glm$type_model <- NA
v_random$type_model <- NA
v_auto_ml$type_model <- NA
v_decision_tree$type_model <- NA
parameter$sample_rate_gbm <- input$sample_rate_gbm
parameter$n_trees_gbm <- input$n_trees_gbm
parameter$max_depth_gbm <- input$max_depth_gbm
parameter$learn_rate_gbm <- input$learn_rate_gbm
parameter$step_size_gbm <- input$step_size_gbm
parameter$subsampling_rate_gbm <- input$subsampling_rate_gbm
})
output$slider_time_series_train <- renderUI({
req(!is.null(input$checkbox_time_series))
req(!is.null(input$time_serie_select_column))
if (input$checkbox_time_series == TRUE){
sliderInput("train_selector", "Choose train period:",
min = eval(parse(text = paste0("min(data$",input$time_serie_select_column,")"))),
max = eval(parse(text = paste0("max(data$",input$time_serie_select_column,")"))),
value = eval(parse(text = paste0("c(min(data$",input$time_serie_select_column,"),mean(data$",input$time_serie_select_column,"))"))))
}
})
output$slider_time_series_test <- renderUI({
req(!is.null(input$checkbox_time_series))
req(!is.null(input$time_serie_select_column))
if (input$checkbox_time_series == TRUE){
sliderInput("test_selector", "Choose test period:",
min = eval(parse(text = paste0("min(data$",input$time_serie_select_column,")"))),
max = eval(parse(text = paste0("max(data$",input$time_serie_select_column,")"))),
value = eval(parse(text = paste0("c(mean(data$",input$time_serie_select_column,"),max(data$",input$time_serie_select_column,"))"))))
}
})
output$slider_percentage <- renderUI({
req(!is.null(input$checkbox_time_series))
if (input$checkbox_time_series == FALSE){
selectInput(label = "Train/ Test splitting",inputId = "percentage_selector",choices = paste0(c(50:99),"%"),selected = 70,multiple = FALSE)
}
})
output$time_series_column <- renderUI({
req(!is.null(input$checkbox_time_series))
if (input$checkbox_time_series == TRUE){
selectInput(inputId = "time_serie_select_column",label = "Date column",choices = dates_variable_list(),multiple = FALSE)
}
})
output$Variables_input_selection<- renderUI({
req(!is.null(input$checkbox_time_series))
variable_input_list <- x[!(x %in% dates_variable_list())]
selectInput( inputId = "input_variables",label = "Input variables: ",choices = x,multiple = TRUE,selected = variable_input_list)
})
output$X_axis_explore_dataset <- renderUI({
req(!is.null(input$checkbox_time_series))
if (input$checkbox_time_series == TRUE){
req(!is.null(input$time_serie_select_column))
selected_column <- input$time_serie_select_column
}
else {selected_column <- colnames(data)[1]}
selectInput(inputId = "x_variable_input_curve",label = "X-axis variable",choices = colnames(data),selected = selected_column)
})
output$variables_class_input <- renderDT({
table_classes <- data.table()
for (i in 1:ncol(data)){
table_classes <- rbind(table_classes,
data.frame(Variable = colnames(data)[i],
Class = class(eval(parse(text = paste0("data$",colnames(data)[i]))))
)
)
}
datatable(table_classes,options = list(pageLength =10,searching = FALSE,lengthChange = FALSE),selection = list(mode = "single",selected = c(1))
)
})
output$variable_boxplot <- renderPlotly({
par("mar")
par(mar=c(1,1,1,1))
column_name <- colnames(data)[input$variables_class_input_rows_selected]
points_serie <-eval(parse(text = paste0("data[,",column_name,"]")))
if (input$input_var_graph_type == "Histogram"){
req(is.numeric(points_serie))
ggplotly(
ggplot(data = data,aes(x = eval(parse(text = column_name)),fill = column_name))+
xlab(column_name)+
geom_histogram(aes(y=..density..), colour="black", fill="
geom_density(alpha = 0.4,size = 1.3) +
scale_fill_manual(values="
theme_bw(),tooltip = "density"
) %>% hide_legend()
}
else if (input$input_var_graph_type == "Boxplot"){
plot_ly(x = points_serie,type = "box",name = column_name)
}
else if (input$input_var_graph_type == "Autocorrelation"){
req(is.numeric(points_serie))
acf_object <- acf(points_serie,lag.max = 100)
data_acf <- cbind(acf_object$lag,acf_object$acf) %>% as.data.table() %>% setnames(c("Lag","ACF"))
plot_ly(x = data_acf$Lag, y = data_acf$ACF, type = "bar")
}
})
output$explore_dataset_chart <- renderPlotly({
req(!is.null(input$checkbox_time_series))
req(!is.null(input$x_variable_input_curve))
req(!is.null(input$y_variable_input_curve))
if (input$checkbox_time_series == TRUE){
data_train_chart <- eval(parse(text = paste0("data[",input$time_serie_select_column," >= input$train_selector[1],][",input$time_serie_select_column," <= input$train_selector[2],]")))
data_test_chart <- eval(parse(text = paste0("data[",input$time_serie_select_column," > input$test_selector[1],][",input$time_serie_select_column," <= input$test_selector[2],]")))
}
else if (input$checkbox_time_series == FALSE){
req(!is.null(table_forecast()[["data_train"]]))
data_train_chart <- table_forecast()[["data_train"]]
data_test_chart <- table_forecast()[["data_test"]]
}
plot_ly(data = data_train_chart, x = eval(parse(text = paste0("data_train_chart$",input$x_variable_input_curve))),
y = eval(parse(text = paste0("data_train_chart$",input$y_variable_input_curve))),
type = "scatter",mode = "markers",
name = "Training dataset") %>%
add_trace(x = eval(parse(text = paste0("data_test_chart$",input$x_variable_input_curve))),
y = eval(parse(text = paste0("data_test_chart$",input$y_variable_input_curve))),
type = "scatter",mode = "markers",
name = "Testing dataset") %>%
layout(xaxis = list(title = input$x_variable_input_curve), yaxis = list(title = input$y_variable_input_curve),legend = list(orientation = "h",xanchor = "center",x = 0.5,y= 1.2))
})
output$correlation_matrix <- renderPlotly({
data_correlation <- as.matrix(select_if(data, is.numeric))
plot_ly(x = colnames(data_correlation) , y = colnames(data_correlation), z =cor(data_correlation) ,type = "heatmap", source = "heatplot")
})
output$output_curve <- renderDygraph({
req(!is.null(input$checkbox_time_series))
if (input$checkbox_time_series == TRUE){
req(!is.null(input$time_serie_select_column))
data_output_curve <- table_forecast()[['results']] %>% select(-input$input_variables)
}
else if (input$checkbox_time_series == FALSE){
data_output_curve <- table_forecast()[['results']] %>%
select(-c(setdiff(colnames(data),y))) %>%
mutate(Counter = row_number()) %>%
select(Counter,everything())
}
output_dygraph <- dygraph(data = data_output_curve ,main = "Prediction results on test period",width = "100%",height = "150%") %>%
dyAxis("x",valueRange = c(0,nrow(data))) %>%
dyAxis("y",valueRange = c(0,1.5 * max(eval(parse(text =paste0("table_forecast()[['results']]$",y)))))) %>%
dyOptions(animatedZooms = TRUE,fillGraph = T,drawPoints = TRUE, pointSize = 2)
if (input$bar_chart_mode == TRUE){
output_dygraph <- output_dygraph %>% dyBarChart()
}
output_dygraph %>% dyLegend(width = 800)
})
output$score_table <- renderDT({
req(ncol(table_forecast()[['results']]) > ncol(data))
req(!is.null(input$checkbox_time_series))
if (input$checkbox_time_series == TRUE){
req(!is.null(input$time_serie_select_column))
performance_table <- eval(parse(text = paste0("table_forecast()[['results']] %>%
gather(key = Model,value = Predicted_value,-",input$time_serie_select_column,",-y) %>%
as.data.table()")))
}
else if (input$checkbox_time_series == FALSE){
performance_table <- table_forecast()[['results']] %>%
select(-c(setdiff(colnames(data),y))) %>%
gather(key = Model,value = Predicted_value,-y) %>%
as.data.table()
}
performance_table <- performance_table %>%
group_by(Model) %>%
summarise(`MAPE(%)` = round(100 * mean(abs((Predicted_value - eval(parse(text = y)))/eval(parse(text = y))),na.rm = TRUE),1),
RMSE = round(sqrt(mean((Predicted_value - eval(parse(text = y)))**2)),2))
if (nrow(table_forecast()[['traning_time']]) != 0){
performance_table <- performance_table %>% merge(.,table_forecast()[['traning_time']],by = "Model")
}
datatable(
performance_table %>% arrange(`MAPE(%)`) %>% as.data.table()
, extensions = 'Buttons', options = list(dom = 'Bfrtip',buttons = c('csv', 'excel', 'pdf', 'print'))
)
})
output$feature_importance <- renderPlotly({
if (nrow(table_forecast()[['table_importance']]) != 0){
if (framework == 'h2o'){
ggplotly(
ggplot(data = table_forecast()[['table_importance']])+
geom_bar(aes(x = reorder(`variable`,scaled_importance),y = scaled_importance,fill = `model`),stat = "identity",width = 0.3)+
facet_wrap( model ~ .)+
coord_flip()+
xlab("")+
ylab("")+
theme(legend.position="none")
)
}
else if (framework == 'spark'){
ggplotly(
ggplot(data = table_forecast()[['table_importance']])+
geom_bar(aes(x = reorder(`feature`,importance),y = importance,fill = `model`),stat = "identity",width = 0.3)+
facet_wrap( model ~ .)+
coord_flip()+
xlab("")+
ylab("")+
theme(legend.position="none")
)
}
}
})
output$table_of_results <- renderDT({
datatable(
table_forecast()[['results']],
extensions = 'Buttons', options = list(dom = 'Bfrtip',buttons = c('csv', 'excel', 'pdf', 'print'))
)
},server = FALSE)
observeEvent(input$train_selector,{
updateSliderInput(session,'test_selector',
value= c(input$train_selector[2],input$test_selector[2]) )
})
observeEvent(input$test_selector,{
updateSliderInput(session,'train_selector',
value= c(input$train_selector[1],input$test_selector[1]) )
})
output$feature_importance_glm_message <- renderUI({
if (!is.na(v_glm$type_model) & is.na(v_random$type_model) & is.na(v_neural$type_model) & is.na(v_decision_tree$type_model) & is.na(v_grad$type_model) & is.na(v_auto_ml$type_model)){
sendSweetAlert(
session = session,
title = "Sorry ...",
text = "Feature importance not available for generalized regression method !",
type = "error"
)
argonH1("Feature importance not available for generalized regression method",display = 4)
}
})
output$message_compare_models_performances <- renderUI({
if (ncol(table_forecast()[['results']]) <= ncol(data)){
sendSweetAlert(
session = session,
title = "",
text = "Please run at least one algorithm to check model performances !",
type = "error"
)
argonH1("Please run at least one algorithm to check model performances !",display = 4)
}
})
output$message_feature_importance <- renderUI({
if (ncol(table_forecast()[['results']]) <= ncol(data)){
sendSweetAlert(
session = session,
title = "",
text = "Please run at least one algorithm to check features importances !",
type = "error"
)
argonH1("Please run at least one algorithm to check features importances !",display = 4)
}
})
observe({
if (ncol(table_forecast()[['results']]) == ncol(data) + 4){
sendSweetAlert(
session = session,
title = "The four machine learning models have been trained !",
text = "Click ok to see results",
type = "success"
)
}
})
if(framework == "h2o"){
observeEvent(input$train_all,{
train_1$date <- input$train_selector[1]
test_1$date <- input$test_selector[1]
test_2$date <- input$test_selector[2]
model$train_variables <- input$input_variables
v_neural$type_model <- "ml_neural_network"
v_grad$type_model <- "ml_gradient_boosted_trees"
v_glm$type_model <- "ml_generalized_linear_regression"
v_random$type_model <- "ml_random_forest"
v_auto_ml$type_model <- NA
parameter$family_glm <- input$glm_family
parameter$glm_link <- input$glm_link
parameter$intercept_term_glm <- input$intercept_term_glm
parameter$reg_param_glm <- input$reg_param_glm
parameter$alpha_param_glm <- input$alpha_param_glm
parameter$max_iter_glm <- input$max_iter_glm
parameter$num_tree_random_forest <- input$num_tree_random_forest
parameter$subsampling_rate_random_forest <- input$subsampling_rate_random_forest
parameter$max_depth_random_forest <- input$max_depth_random_forest
parameter$n_bins_random_forest <- input$n_bins_random_forest
parameter$sample_rate_gbm <- input$sample_rate_gbm
parameter$n_trees_gbm <- input$n_trees_gbm
parameter$max_depth_gbm <- input$max_depth_gbm
parameter$learn_rate_gbm <- input$learn_rate_gbm
parameter$hidden_neural_net <- input$hidden_neural_net
parameter$epochs_neural_net <- input$epochs_neural_net
parameter$activation_neural_net <- input$activation_neural_net
parameter$loss_neural_net <- input$loss_neural_net
parameter$rate_neural_net <- input$rate_neural_net
})
observeEvent(input$run_neural_network,{
train_1$date <- input$train_selector[1]
test_1$date <- input$test_selector[1]
test_2$date <- input$test_selector[2]
model$train_variables <- input$input_variables
v_neural$type_model <- "ml_neural_network"
v_grad$type_model <- NA
v_glm$type_model <- NA
v_random$type_model <- NA
v_auto_ml$type_model <- NA
parameter$hidden_neural_net <- input$hidden_neural_net
parameter$epochs_neural_net <- input$epochs_neural_net
parameter$activation_neural_net <- input$activation_neural_net
parameter$loss_neural_net <- input$loss_neural_net
parameter$rate_neural_net <- input$rate_neural_net
})
observeEvent(input$run_auto_ml,{
train_1$date <- input$train_selector[1]
test_1$date <- input$test_selector[1]
test_2$date <- input$test_selector[2]
model$train_variables <- input$input_variables
v_grad$type_model <- NA
v_neural$type_model <- NA
v_glm$type_model <- NA
v_random$type_model <- NA
v_auto_ml$type_model <- "ml_auto"
parameter$run_time_auto_ml <- input$run_time_auto_ml
parameter$auto_ml_autorized_models <- input$auto_ml_autorized_models
})
data_train_not_time_serie <- reactive({
data %>% sample_frac(as.numeric(as.character(gsub("%","",input$percentage_selector)))*0.01)
})
table_forecast <- reactive({
req(!is.null(input$checkbox_time_series))
if (input$checkbox_time_series == TRUE){
req(!is.null(test_1$date))
data_train <- data.table()
data_test <- data.table()
data_results <- eval(parse(text = paste0("data[",input$time_serie_select_column,">'",test_1$date,"',][",input$time_serie_select_column,"< '",test_2$date,"',]")))
}
else if (input$checkbox_time_series == FALSE){
req(!is.null(input$percentage_selector))
data_train <- data_train_not_time_serie()
data_test <- data %>% anti_join(data_train,by = colnames(data))
data_results <- data_test
}
table_results <- data_results
dl_auto_ml <- NA
var_input_list <- c()
for (i in 1:length(model$train_variables)){
var_input_list <- c(var_input_list,model$train_variables[i])
}
if (length(var_input_list) != 0){
if (input$checkbox_time_series == TRUE){
data_h2o_train <- as.h2o(eval(parse(text = paste0("data[",input$time_serie_select_column,"<='",test_1$date,"',][",input$time_serie_select_column,">='",train_1$date,"',][, !'",input$time_serie_select_column,"']"))))
data_h2o_test <- as.h2o(eval(parse(text = paste0("data[",input$time_serie_select_column,">'",test_1$date,"',][",input$time_serie_select_column,"< '",test_2$date,"',][, !'",input$time_serie_select_column,"']"))))
}
else if (input$checkbox_time_series == FALSE){
if (length(dates_variable_list()) >= 1){
data_train <- eval(parse(text = paste0("data_train[, !'",dates_variable_list()[1] ,"']")))
data_test <- eval(parse(text = paste0("data_test[, !'",dates_variable_list()[1],"']")))
}
data_h2o_train <- as.h2o(data_train)
data_h2o_test <- as.h2o(data_test)
}
if (!is.na(v_glm$type_model) & v_glm$type_model == "ml_generalized_linear_regression"){
t1 <- Sys.time()
fit <- h2o.glm(x = as.character(var_input_list),
y = y,
training_frame = data_h2o_train,
family = parameter$family_glm,
link = parameter$glm_link,
intercept = parameter$intercept_term_glm,
lambda = parameter$reg_param_glm,
alpha = parameter$alpha_param_glm,
max_iterations = parameter$max_iter_glm,
seed = 123
)
t2 <- Sys.time()
time_glm <- data.frame(`Training time` = paste0(round(t2 - t1,1)," seconds"), Model = "Generalized linear regression")
table_glm <- h2o.predict(fit,data_h2o_test) %>% as.data.table() %>% mutate(predict = round(predict,3)) %>% rename(`Generalized linear regression` = predict)
table_results <- cbind(data_results,table_glm)%>% as.data.table()
}
if (!is.na(v_random$type_model) & v_random$type_model == "ml_random_forest"){
t1 <- Sys.time()
fit <- h2o.randomForest(x = as.character(var_input_list),
y = y,
training_frame = data_h2o_train,
ntrees = parameter$num_tree_random_forest,
sample_rate = parameter$subsampling_rate_random_forest,
max_depth = parameter$max_depth_random_forest,
nbins = parameter$n_bins_random_forest,
seed = 123
)
t2 <- Sys.time()
time_random_forest <- data.frame(`Training time` = paste0(round(t2 - t1,1)," seconds"), Model = "Random forest")
importance_random_forest <- h2o.varimp(fit) %>% as.data.table() %>% select(`variable`,scaled_importance) %>% mutate(model = "Random forest")
table_random_forest<- h2o.predict(fit,data_h2o_test) %>% as.data.table() %>% mutate(predict = round(predict,3)) %>% rename(`Random forest` = predict)
table_results <- cbind(data_results,table_random_forest)%>% as.data.table()
}
if (!is.na(v_neural$type_model) & v_neural$type_model == "ml_neural_network"){
t1 <- Sys.time()
fit <- h2o.deeplearning(x = as.character(var_input_list),
y = y,
training_frame = data_h2o_train,
activation = parameter$activation_neural_net,
loss = parameter$loss_neural_net,
hidden = eval(parse(text = parameter$hidden_neural_net)) ,
epochs = parameter$epochs_neural_net,
rate = parameter$rate_neural_net,
reproducible = T,
seed = 123
)
t2 <- Sys.time()
time_neural_network <- data.frame(`Training time` = paste0(round(t2 - t1,1)," seconds"), Model = "Neural network")
importance_neural_network <- h2o.varimp(fit) %>% as.data.table() %>% select(`variable`,scaled_importance) %>% mutate(model = "Neural network")
table_neural_network <- h2o.predict(fit,data_h2o_test) %>% as.data.table() %>% mutate(predict = round(predict,3)) %>% rename(`Neural network` = predict)
table_results <- cbind(data_results,table_neural_network)%>% as.data.table()
}
if (!is.na(v_grad$type_model) & v_grad$type_model == "ml_gradient_boosted_trees"){
t1 <- Sys.time()
fit <- h2o.gbm(x = as.character(var_input_list),
y = y,
training_frame = data_h2o_train,
sample_rate = parameter$sample_rate_gbm,
ntrees = parameter$n_trees_gbm,
max_depth = parameter$max_depth_gbm,
learn_rate = parameter$learn_rate_gbm,
min_rows = 2,
seed = 123
)
t2 <- Sys.time()
time_gbm <- data.frame(`Training time` = paste0(round(t2 - t1,1)," seconds"), Model = "Gradient boosted trees")
importance_gbm <- h2o.varimp(fit) %>% as.data.table() %>% select(`variable`,scaled_importance) %>% mutate(model = "Gradient boosted trees")
table_gradient_boosting <- h2o.predict(fit,data_h2o_test) %>% as.data.table() %>% mutate(predict = round(predict,3)) %>% rename(`Gradient boosted trees` = predict)
table_results <- cbind(data_results,table_gradient_boosting)%>% as.data.table()
}
if (!is.na(v_auto_ml$type_model) & v_auto_ml$type_model == "ml_auto"){
req(!is.null(parameter$auto_ml_autorized_models))
dl_auto_ml <- h2o.automl(x = as.character(var_input_list),
include_algos = parameter$auto_ml_autorized_models,
y = y,
training_frame = data_h2o_train,
max_runtime_secs = parameter$run_time_auto_ml,
seed = 123
)
time_auto_ml <- data.frame(`Training time` = paste0(parameter$run_time_auto_ml," seconds"), Model = "Auto ML")
table_auto_ml<- h2o.predict(dl_auto_ml,data_h2o_test) %>% as.data.table() %>% mutate(predict = round(predict,3)) %>% rename(`Auto ML` = predict)
table_results <- cbind(data_results,table_auto_ml)%>% as.data.table()
}
if (!is.na(v_neural$type_model) & !is.na(v_grad$type_model) & !is.na(v_glm$type_model) & !is.na(v_random$type_model)){
table_results <- cbind(data_results,table_glm,table_random_forest,table_neural_network,table_gradient_boosting)%>% as.data.table()
}
}
table_training_time <- rbind(time_gbm,time_random_forest,time_glm,time_neural_network,time_auto_ml)
table_importance <- rbind(importance_gbm,importance_random_forest,importance_neural_network) %>% as.data.table()
list(data_train = data_train, data_test = data_test, traning_time = table_training_time, table_importance = table_importance, results = table_results,auto_ml_model = dl_auto_ml)
})
observeEvent(input$run_auto_ml,{
if (is.null(parameter$auto_ml_autorized_models)){
sendSweetAlert(session = session, title = "Warning !",
text = "Please authorize at least one model family to perform auto ML",
type = "warning"
)
}
})
observe({
if("Auto ML" %in% colnames(table_forecast()[['results']])){
list <- c(HTML(paste0("<b>Selected model:</b> ",table_forecast()[['auto_ml_model']]@leader@algorithm)))
for (i in 1:ncol(table_forecast()[['auto_ml_model']]@leader@model$model_summary)){
list <- rbind(list,HTML(paste0("<b>",colnames(table_forecast()[['auto_ml_model']]@leader@model$model_summary[i]),":</b> ",
table_forecast()[['auto_ml_model']]@leader@model$model_summary[i])))
}
sendSweetAlert(
session = session,
title = "Auto ML algorithm succeed!",
text = HTML(paste0(
"<br>",
list)),
type = "success",
html = TRUE
)
}
})
}
else if(framework == "spark"){
observeEvent(input$train_all,{
test_1$date <- input$test_selector[1]
test_2$date <- input$test_selector[2]
model$train_variables <- input$input_variables
v_decision_tree$type_model <- "ml_decision_tree"
v_glm$type_model <- "ml_generalized_linear_regression"
v_grad$type_model <- "ml_gradient_boosted_trees"
v_random$type_model <- "ml_random_forest"
parameter$step_size_gbm <- input$step_size_gbm
parameter$subsampling_rate_gbm <- input$subsampling_rate_gbm
parameter$max_depth_gbm <- input$max_depth_gbm
parameter$num_tree_random_forest <- input$num_tree_random_forest
parameter$subsampling_rate_random_forest <- input$subsampling_rate_random_forest
parameter$max_depth_random_forest <- input$max_depth_random_forest
parameter$family_glm <- input$glm_family
parameter$link_glm <- input$glm_link
parameter$intercept_term_glm <- input$intercept_term_glm
parameter$reg_param_glm <- input$reg_param_glm
parameter$max_iter_glm <- input$max_iter_glm
parameter$max_depth_decision_tree <- input$max_depth_decision_tree
parameter$max_bins_decision_tree <- input$max_bins_decision_tree
parameter$min_instance_decision_tree <- input$min_instance_decision_tree
})
observeEvent(input$run_decision_tree,{
test_1$date <- input$test_selector[1]
test_2$date <- input$test_selector[2]
model$train_variables <- input$input_variables
parameter$max_depth_decision_tree <- input$max_depth_decision_tree
parameter$max_bins_decision_tree <- input$max_bins_decision_tree
parameter$min_instance_decision_tree <- input$min_instance_decision_tree
v_decision_tree$type_model <- "ml_decision_tree"
v_glm$type_model <- NA
v_grad$type_model <- NA
v_random$type_model <- NA
})
data_train_not_time_serie <- reactive({
data %>% sample_frac(as.numeric(as.character(gsub("%","",input$percentage_selector)))*0.01)
})
table_forecast <- reactive({
req(!is.null(input$checkbox_time_series))
if (input$checkbox_time_series == TRUE){
req(!is.null(test_1$date))
req(!is.null(test_2$date))
data_train <- data.table()
data_test <- data.table()
data_results <- eval(parse(text = paste0("data[",input$time_serie_select_column,">'",test_1$date,"',][",input$time_serie_select_column,"< '",test_2$date,"',]")))
}
else if (input$checkbox_time_series == FALSE){
req(!is.null(input$percentage_selector))
data_train <- data_train_not_time_serie()
data_test <- data %>% anti_join(data_train, by = colnames(data))
data_results <- data_test
}
table_results <- data_results
var_input_list <- ""
for (i in 1:length(model$train_variables)){var_input_list <- paste0(var_input_list,"+",model$train_variables[i])}
var_input_list <- ifelse(startsWith(var_input_list,"+"),substr(var_input_list,2,nchar(var_input_list)),var_input_list)
if (var_input_list != "+"){
if (input$checkbox_time_series == TRUE){
data_spark_train <- eval(parse(text = paste0("data[",input$time_serie_select_column,"<='",test_1$date,"',]")))
data_spark_test <- eval(parse(text = paste0("data[",input$time_serie_select_column,">'",test_1$date,"',][",input$time_serie_select_column,"< '",test_2$date,"',]")))
}
else if (input$checkbox_time_series == FALSE){
data_spark_train <- data_train
data_spark_test <- data_test
}
data_spark_train <- copy_to(sc, data_spark_train, "data_spark_train", overwrite = TRUE)
data_spark_test <- copy_to(sc, data_spark_test, "data_spark_test", overwrite = TRUE)
if (!is.na(v_glm$type_model) & v_glm$type_model == "ml_generalized_linear_regression"){
t1 <- Sys.time()
eval(parse(text = paste0("fit <- data_spark_train %>% ml_generalized_linear_regression(", y ," ~ " ,var_input_list ,
",family = ", parameter$family_glm,
",link =",parameter$link_glm,
",fit_intercept =",parameter$intercept_term_glm,
",reg_param =",parameter$reg_param_glm,
",max_iter =",parameter$max_iter_glm,
")")))
t2 <- Sys.time()
time_glm <- data.frame(`Training time` = paste0(round(t2 - t1,1)," seconds"), Model = "Generalized linear regression")
table_ml_glm <- ml_predict(fit,data_spark_test) %>% select(prediction)%>% mutate(prediction = round(prediction,3)) %>%
rename(`Generalized linear regression` = prediction) %>% as.data.table()
table_results <- cbind(data_results,table_ml_glm) %>% as.data.table()
}
if (!is.na(v_grad$type_model) & v_grad$type_model == "ml_gradient_boosted_trees"){
t1 <- Sys.time()
eval(parse(text = paste0("fit <- data_spark_train %>% ml_gradient_boosted_trees(", y ," ~ " ,var_input_list ,
",step_size =",parameter$step_size_gbm,
",subsampling_rate =",parameter$subsampling_rate_gbm,
",max_depth =",parameter$max_depth_gbm,
" )")))
t2 <- Sys.time()
time_gbm <- data.frame(`Training time` = paste0(round(t2 - t1,1)," seconds"), Model = "Gradient boosted trees")
importance_gbm <- ml_feature_importances(fit) %>% mutate(model = "Gradient boosted trees")
table_ml_gradient_boosted <- ml_predict(fit,data_spark_test) %>% select(prediction) %>% mutate(prediction = round(prediction,3)) %>%
rename(`Gradient boosted trees` = prediction) %>% as.data.table()
table_results <- cbind(data_results,table_ml_gradient_boosted) %>% as.data.table()
}
if (!is.na(v_random$type_model) & v_random$type_model == "ml_random_forest"){
t1 <- Sys.time()
eval(parse(text = paste0("fit <- data_spark_train %>% ml_random_forest(", y ," ~ " ,var_input_list ,
",num_trees =",parameter$num_tree_random_forest,
",subsampling_rate =",parameter$subsampling_rate_random_forest,
",max_depth =",parameter$max_depth_random_forest,
")")))
t2 <- Sys.time()
time_random_forest <- data.frame(`Training time` = paste0(round(t2 - t1,1)," seconds"), Model = "Random forest")
importance_random_forest <- ml_feature_importances(fit) %>% mutate(model = "Random forest")
table_ml_random_forest <- ml_predict(fit,data_spark_test) %>% select(prediction)%>% mutate(prediction = round(prediction,3)) %>%
rename(`Random forest` = prediction) %>% as.data.table()
table_results <- cbind(data_results,table_ml_random_forest) %>% as.data.table()
}
if (!is.na(v_decision_tree$type_model) & v_decision_tree$type_model == "ml_decision_tree"){
t1 <- Sys.time()
eval(parse(text = paste0("fit <- data_spark_train %>% ml_decision_tree(", y ," ~ " ,var_input_list ,
",max_depth =",parameter$max_depth_decision_tree,
",max_bins =",parameter$max_bins_decision_tree,
",min_instances_per_node =",parameter$min_instance_decision_tree,
")")))
t2 <- Sys.time()
time_decision_tree <- data.frame(`Training time` = paste0(round(t2 - t1,1)," seconds"), Model = "Decision tree")
importance_decision_tree <- ml_feature_importances(fit) %>% mutate(model = "Decision tree")
table_ml_decision_tree <- ml_predict(fit,data_spark_test) %>% select(prediction)%>% mutate(prediction = round(prediction,3)) %>%
rename(`Decision tree` = prediction) %>% as.data.table()
table_results <- cbind(data_results,table_ml_decision_tree) %>% as.data.table()
}
if (!is.na(v_decision_tree$type_model) & !is.na(v_grad$type_model) & !is.na(v_glm$type_model) & !is.na(v_random$type_model))
table_results <- cbind(data_results,table_ml_gradient_boosted,table_ml_random_forest,table_ml_glm,table_ml_decision_tree) %>%
as.data.table()
}
table_training_time <- rbind(time_gbm,time_random_forest,time_glm,time_decision_tree)
table_importance <- rbind(importance_gbm,importance_random_forest,importance_decision_tree) %>% as.data.table()
list(data_train = data_train, data_test = data_test, traning_time = table_training_time, table_importance = table_importance, results = table_results)
})
}
}
app <- shiny::shinyApp(
ui = argonDashPage(
useShinyjs(),
title = "shinyML_regression",
author = "Jean",
description = "Use of shinyML_regression function",
navbar = argonNav,
header = argonHeader,
footer = argonFooter
),
server = server
)
if (share_app == TRUE){
if(is.null(port)){stop("Please choose a port to share dashboard")}
else if (nchar(port) != 4) {stop("Incorrect format of port")}
else if (nchar(port) == 4){
ip_adress <- gsub(".*? ([[:digit:]])", "\\1", system("ipconfig", intern=TRUE)[grep("IPv4", system("ipconfig", intern=TRUE))])[2]
message("Forecast dashboard shared on LAN at ",ip_adress,":",port)
runApp(app,host = "0.0.0.0",port = port,quiet = TRUE,launch.browser = TRUE)
}
}
else {runApp(app,quiet = TRUE,launch.browser = TRUE)}
} |
`dimnames.mefa` <-
function (x)
{
out <- list(samp = rownames(x$xtab),
taxa = colnames(x$xtab),
segm = names(x$segm))
if (is.null(out$segm))
out$segm <- "undefined"
return(out)
} |
MARSSresiduals.tt1 <- function(object, method = c("SS"), normalize = FALSE, silent = FALSE, fun.kf = c("MARSSkfas", "MARSSkfss")) {
MLEobj <- object
if (missing(fun.kf)) {
fun.kf <- MLEobj$fun.kf
} else {
MLEobj$fun.kf <- fun.kf
}
method <- match.arg(method)
model.dims <- attr(MLEobj$marss, "model.dims")
TT <- model.dims[["x"]][2]
m <- model.dims[["x"]][1]
n <- model.dims[["y"]][1]
y <- MLEobj$marss$data
et <- st.et <- mar.st.et <- bchol.st.et <- matrix(NA, n + m, TT)
model.et <- matrix(NA, n, TT)
model.var.et <- array(0, dim = c(n, n, TT))
var.et <- array(0, dim = c(n + m, n + m, TT))
msg <- NULL
time.varying <- is.timevarying(MLEobj)
kf <- MARSSkf(MLEobj)
Kt.ok <- TRUE
if (MLEobj$fun.kf == "MARSSkfas") {
Kt <- try(MARSSkfss(MLEobj), silent = TRUE)
if (inherits(Kt, "try-error") || !Kt$ok) {
Kt <- array(0, dim = c(m, n, TT))
Kt.ok <- FALSE
} else {
Kt <- Kt$Kt
}
kf$Kt <- Kt
}
Ey <- MARSShatyt(MLEobj, only.kem = FALSE)
Rt <- parmat(MLEobj, "R", t = 1)$R
Ht <- parmat(MLEobj, "H", t = 1)$H
Rt <- Ht %*% tcrossprod(Rt, Ht)
Zt <- parmat(MLEobj, "Z", t = 1)$Z
Qtp <- parmat(MLEobj, "Q", t = 2)$Q
if (method == "SS") {
model.et <- Ey$ytt - fitted(MLEobj, type = "ytt1", output = "matrix")
et[1:n, ] <- model.et
cov.et <- matrix(0, n, m)
for (t in 1:TT) {
if (time.varying$R) Rt <- parmat(MLEobj, "R", t = t)$R
if (time.varying$H) Ht <- parmat(MLEobj, "H", t = t)$H
if (time.varying$R || time.varying$H) Rt <- Ht %*% tcrossprod(Rt, Ht)
if (time.varying$Z) Zt <- parmat(MLEobj, "Z", t = t)$Z
model.var.et[, , t] <- Rt + tcrossprod(Zt %*% kf$Vtt1[, , t], Zt)
}
for (t in 1:TT) {
if (t < TT) {
Ktp <- sub3D(kf$Kt, t = t + 1)
et[(n + 1):(n + m), t] <- Ktp %*% model.et[, t + 1]
tmpvar.state.et <- tcrossprod(Ktp %*% model.var.et[, , t + 1], Ktp)
} else {
tmpvar.state.et <- matrix(0, m, m)
}
var.et[1:n, , t] <- cbind(model.var.et[, , t], cov.et)
var.et[(n + 1):(n + m), , t] <- cbind(t(cov.et), tmpvar.state.et)
if (normalize) {
Qpinv <- matrix(0, m, n + m)
Rinv <- matrix(0, n, n + m)
if (t < TT) {
if (time.varying$Q) Qtp <- parmat(MLEobj, "Q", t = t + 1)$Q
Qpinv[, (n + 1):(n + m)] <- psolve(t(pchol(Qtp)))
}
Rinv[, 1:n] <- psolve(t(pchol(Rt)))
RQinv <- rbind(Rinv, Qpinv)
et[, t] <- RQinv %*% et[, t]
var.et[, , t] <- tcrossprod(RQinv %*% var.et[, , t], RQinv)
}
}
}
for (t in 1:TT) {
tmpvar <- sub3D(var.et, t = t)
resids <- et[, t, drop = FALSE]
is.miss <- c(is.na(y[, t]), rep(FALSE, m))
resids[is.miss] <- 0
tmpvar[abs(tmpvar) < sqrt(.Machine$double.eps)] <- 0
tmpvarinv <- try(psolve(makediag(takediag(tmpvar))), silent = TRUE)
if (inherits(tmpvarinv, "try-error")) {
mar.st.et[, t] <- NA
msg <- c(msg, paste('MARSSresiduals.tt1 warning: the diagonal matrix of the variance of the residuals at t =", t, "is not invertible. NAs returned for mar.residuals at t =", t, "\n'))
} else {
mar.st.et[, t] <- sqrt(tmpvarinv) %*% resids
mar.st.et[is.miss, t] <- NA
}
tmpchol <- try(pchol(tmpvar[(n + 1):(n + m), (n + 1):(n + m), drop = FALSE]), silent = TRUE)
if (inherits(tmpchol, "try-error")) {
bchol.st.et[(n + 1):(n + m), t] <- NA
msg <- c(msg, paste("MARSSresiduals.tT warning: the variance of the state residuals at t =", t, "is not invertible. NAs returned for bchol.std.residuals at t =", t, ". See MARSSinfo(\"residvarinv\")\n"))
} else {
tmpcholinv <- try(psolve(t(tmpchol)), silent = TRUE)
if (inherits(tmpcholinv, "try-error")) {
bchol.st.et[(n + 1):(n + m), t] <- NA
msg <- c(msg, paste("MARSSresiduals.tT warning: the variance of the state residuals at t =", t, "is not invertible. NAs returned for bchol.std.residuals at t =", t, ". See MARSSinfo('residvarinv')\n"))
} else {
bchol.st.et[(n + 1):(n + m), t] <- tmpcholinv %*% resids[(n + 1):(n + m), 1, drop = FALSE]
}
}
tmpchol <- try(pchol(tmpvar), silent = TRUE)
if (inherits(tmpchol, "try-error")) {
st.et[, t] <- NA
msg <- c(msg, paste("MARSSresiduals.tt1 warning: the variance of the residuals at t =", t, "is not invertible. NAs returned for std.residuals at t =", t, ". See MARSSinfo(\"residvarinv\")\n"))
next
}
tmpcholinv <- try(psolve(t(tmpchol)), silent = TRUE)
if (inherits(tmpcholinv, "try-error")) {
st.et[, t] <- NA
msg <- c(msg, paste("MARSSresiduals.tt1 warning: the variance of the residuals at t =", t, "is not invertible. NAs returned for std.residuals at t =", t, ". See MARSSinfo('residvarinv')\n"))
next
}
st.et[, t] <- tmpcholinv %*% resids
st.et[is.miss, t] <- NA
}
bchol.st.et[1:n, ] <- st.et[1:n, ]
et[(n + 1):(n + m), TT] <- NA
var.et[, (n + 1):(n + m), TT] <- NA
var.et[(n + 1):(n + m), , TT] <- NA
st.et[, TT] <- NA
mar.st.et[(n + 1):(n + m), TT] <- NA
E.obs.v <- et[1:n, , drop = FALSE]
var.obs.v <- array(0, dim = c(n, n, TT))
for (t in 1:TT) var.obs.v[, , t] <- Ey$Ott1[, , t] - tcrossprod(Ey$ytt1[, t])
model.et <- et[1:n, , drop = FALSE]
model.et[is.na(y)] <- NA
et[1:n, ] <- model.et
Y.names <- attr(MLEobj$model, "Y.names")
X.names <- attr(MLEobj$model, "X.names")
rownames(et) <- rownames(st.et) <- rownames(mar.st.et) <- rownames(bchol.st.et) <- rownames(var.et) <- colnames(var.et) <- c(Y.names, X.names)
rownames(E.obs.v) <- Y.names
rownames(var.obs.v) <- colnames(var.obs.v) <- Y.names
if (!is.null(msg) && object[["control"]][["trace"]] >= 0 & !silent) cat("MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.\n")
if (!Kt.ok) {
et[(n + 1):(n + m), ] <- NA
var.et[(n + 1):(n + m), (n + 1):(n + m), ] <- NA
st.et[(n + 1):(n + m), ] <- NA
mar.st.et[(n + 1):(n + m), ] <- NA
bchol.st.et[(n + 1):(n + m), ] <- NA
}
ret <- list(
model.residuals = et[1:n, , drop = FALSE],
state.residuals = et[(n + 1):(n + m), , drop = FALSE],
residuals = et,
var.residuals = var.et,
std.residuals = st.et,
mar.residuals = mar.st.et,
bchol.residuals = bchol.st.et,
E.obs.residuals = E.obs.v,
var.obs.residuals = var.obs.v,
msg = msg
)
return(ret)
} |
pslide_index <- function(.l,
.i,
.f,
...,
.before = 0L,
.after = 0L,
.complete = FALSE) {
pslide_index_impl(
.l,
.i,
.f,
...,
.before = .before,
.after = .after,
.complete = .complete,
.ptype = list(),
.constrain = FALSE,
.atomic = FALSE
)
}
pslide_index_vec <- function(.l,
.i,
.f,
...,
.before = 0L,
.after = 0L,
.complete = FALSE,
.ptype = NULL) {
out <- pslide_index_impl(
.l,
.i,
.f,
...,
.before = .before,
.after = .after,
.complete = .complete,
.ptype = list(),
.constrain = FALSE,
.atomic = TRUE
)
vec_simplify(out, .ptype)
}
pslide_index_vec_direct <- function(.l,
.i,
.f,
...,
.before,
.after,
.complete,
.ptype) {
pslide_index_impl(
.l,
.i,
.f,
...,
.before = .before,
.after = .after,
.complete = .complete,
.ptype = .ptype,
.constrain = TRUE,
.atomic = TRUE
)
}
pslide_index_dbl <- function(.l,
.i,
.f,
...,
.before = 0L,
.after = 0L,
.complete = FALSE) {
pslide_index_vec_direct(
.l,
.i,
.f,
...,
.before = .before,
.after = .after,
.complete = .complete,
.ptype = double()
)
}
pslide_index_int <- function(.l,
.i,
.f,
...,
.before = 0L,
.after = 0L,
.complete = FALSE) {
pslide_index_vec_direct(
.l,
.i,
.f,
...,
.before = .before,
.after = .after,
.complete = .complete,
.ptype = integer()
)
}
pslide_index_lgl <- function(.l,
.i,
.f,
...,
.before = 0L,
.after = 0L,
.complete = FALSE) {
pslide_index_vec_direct(
.l,
.i,
.f,
...,
.before = .before,
.after = .after,
.complete = .complete,
.ptype = logical()
)
}
pslide_index_chr <- function(.l,
.i,
.f,
...,
.before = 0L,
.after = 0L,
.complete = FALSE) {
pslide_index_vec_direct(
.l,
.i,
.f,
...,
.before = .before,
.after = .after,
.complete = .complete,
.ptype = character()
)
}
pslide_index_dfr <- function(.l,
.i,
.f,
...,
.before = 0L,
.after = 0L,
.complete = FALSE,
.names_to = rlang::zap(),
.name_repair = c("unique", "universal", "check_unique")) {
out <- pslide_index(
.l,
.i,
.f,
...,
.before = .before,
.after = .after,
.complete = .complete
)
vec_rbind(!!!out, .names_to = .names_to, .name_repair = .name_repair)
}
pslide_index_dfc <- function(.l,
.i,
.f,
...,
.before = 0L,
.after = 0L,
.complete = FALSE,
.size = NULL,
.name_repair = c("unique", "universal", "check_unique", "minimal")) {
out <- pslide_index(
.l,
.i,
.f,
...,
.before = .before,
.after = .after,
.complete = .complete
)
vec_cbind(!!!out, .size = .size, .name_repair = .name_repair)
}
pslide_index_impl <- function(.l,
.i,
.f,
...,
.before,
.after,
.complete,
.ptype,
.constrain,
.atomic) {
check_is_list(.l)
lapply(.l, vec_assert)
.f <- as_function(.f)
.l <- vec_recycle_common(!!!.l)
type <- vec_size(.l)
slicers <- lapply(
seq_len(type),
function(x) {
expr(.l[[!!x]])
}
)
names(slicers) <- names(.l)
f_call <- expr(.f(!!! slicers, ...))
slide_index_common(
x = .l,
i = .i,
f_call = f_call,
before = .before,
after = .after,
complete = .complete,
ptype = .ptype,
constrain = .constrain,
atomic = .atomic,
env = environment(),
type = type
)
} |
test_that("tbl and src classes include connection class", {
mf <- memdb_frame(x = 1, y = 2)
expect_true(inherits(mf, "tbl_SQLiteConnection"))
expect_true(inherits(mf$src, "src_SQLiteConnection"))
}) |
context("mlllogis")
set.seed(313)
small_data <- actuar::rllogis(100, 2, 3)
tiny_data <- actuar::rllogis(10, 1, 1)
expect_error(mlllogis(c(tiny_data, NA)))
expect_error(mlllogis(c(tiny_data, 0)))
expect_error(mlllogis(c(tiny_data, -1)))
obj_1 <- mllogis(log(tiny_data))
obj_2 <- mlllogis(tiny_data)
expect_equal(
unname(obj_1[1]),
unname(-log(obj_2)[2])
)
expect_equal(
unname(obj_1[2]),
unname(1 / obj_2[1])
)
expect_equal(
coef(mlllogis(small_data)),
coef(mlllogis(c(small_data, NA), na.rm = TRUE))
)
est <- mlllogis(small_data, na.rm = TRUE)
expect_equal(
sum(actuar::dllogis(small_data, est[1], est[2], log = TRUE)),
attr(est, "logLik")
)
expect_equal(attr(est, "model"), "Loglogistic")
expect_equal(class(est), "univariateML")
expect_equal(names(est), c("shape", "rate")) |
med2way <- function(formula, data, ...){
if (missing(data)) {
mf <- model.frame(formula)
} else {
mf <- model.frame(formula, data)
}
cl <- match.call()
J <- nlevels(mf[,2])
K <- nlevels(mf[,3])
p <- J*K
grp <- c(1:p)
alpha <- .05
x <- as.matrix(mf)
lev.col <- 2:3
var.col <- 1
temp <- selby2(x,lev.col,var.col)
x <- temp$x
x <- lapply(x, as.numeric)
if(p!=length(x)){
print("Warning: The number of groups in your data is not equal to JK")
}
xbar<-0
h<-0
d<-0
R<-0
W<-0
d<-0
r<-0
w<-0
nuhat<-0
omegahat<-0
DROW<-0
DCOL<-0
xtil<-matrix(0,J,K)
aval<-matrix(0,J,K)
for (j in 1:p){
xbar[j]<-median(x[[grp[j]]])
h[j]<-length(x[[grp[j]]])
d[j]<-msmedse(x[[grp[j]]], sewarn=FALSE)^2
}
d<-matrix(d,J,K,byrow=T)
xbar<-matrix(xbar,J,K,byrow=T)
h<-matrix(h,J,K,byrow=T)
for(j in 1:J){
R[j]<-sum(xbar[j,])
nuhat[j]<-(sum(d[j,]))^2/sum(d[j,]^2/(h[j,]-1))
r[j]<-1/sum(d[j,])
DROW[j]<-sum(1/d[j,])
}
for(k in 1:K){
W[k]<-sum(xbar[,k])
omegahat[k]<-(sum(d[,k]))^2/sum(d[,k]^2/(h[,k]-1))
w[k]<-1/sum(d[,k])
DCOL[k]<-sum(1/d[,k])
}
D<-1/d
for(j in 1:J){
for(k in 1:K){
xtil[j,k]<-sum(D[,k]*xbar[,k]/DCOL[k])+sum(D[j,]*xbar[j,]/DROW[j])-
sum(D*xbar/sum(D))
aval[j,k]<-(1-D[j,k]*(1/sum(D[j,])+1/sum(D[,k])-1/sum(D)))^2/(h[j,k]-3)
}
}
Rhat<-sum(r*R)/sum(r)
What<-sum(w*W)/sum(w)
Ba<-sum((1-r/sum(r))^2/nuhat)
Bb<-sum((1-w/sum(w))^2/omegahat)
Va<-sum(r*(R-Rhat)^2)/((J-1)*(1+2*(J-2)*Ba/(J^2-1)))
Vb<-sum(w*(W-What)^2)/((K-1)*(1+2*(K-2)*Bb/(K^2-1)))
sig.A<-1-pf(Va,J-1,9999999)
sig.B<-1-pf(Vb,K-1,9999999)
Vab<-sum(D*(xbar-xtil)^2)
dfinter<-(J-1)*(K-1)
sig.AB<-1-pchisq(Vab,dfinter)
result <- list(Qa=Va, A.p.value=sig.A, Qb=Vb, B.p.value=sig.B, Qab=Vab, AB.p.value=sig.AB, call = cl,
varnames = colnames(mf), dim = c(J,K))
class(result) <- c("t2way")
result
} |
NULL
`%agele%` <- function(e1, e2) {
stopifnot(identical(length(e2), 2L))
stopifnot(!anyNA(e2))
all(e1 >= min(e2) & e1 <= max(e2))
}
`%agel%` <- function(e1, e2) {
stopifnot(identical(length(e2), 2L))
stopifnot(!anyNA(e2))
all(e1 >= min(e2) & e1 < max(e2))
}
`%agle%` <- function(e1, e2) {
stopifnot(identical(length(e2), 2L))
stopifnot(!anyNA(e2))
all(e1 > min(e2) & e1 <= max(e2))
}
`%agl%` <- function(e1, e2) {
stopifnot(identical(length(e2), 2L))
stopifnot(!anyNA(e2))
all(e1 > min(e2) & e1 < max(e2))
}
`%age%` <- function(e1, e2) {all(e1 >= e2)}
`%ag%` <- function(e1, e2) {all(e1 > e2)}
`%ale%` <- function(e1, e2) {all(e1 <= e2)}
`%al%` <- function(e1, e2) {all(e1 < e2)}
`%ain%` <- function(e1, e2) {all(e1 %in% e2)}
`%a!in%` <- function(e1, e2) {all(e1 %!in% e2)}
`%anin%` <- `%a!in%`
`%a==%` <- function(e1, e2) {all(e1 == e2)}
`%a!=%` <- function(e1, e2) {all(e1 != e2)}
`%ac%` <- function(e1, e2) {
all(e1 %c% e2)
}
`%ae%` <- function(e1, e2) {
all(e1 %e% e2)
} |
insideAreaGridCell <- function(sfobject, rdx.u, xc, yc, dx, dy) {
cell.df <- data.frame()
for (i in 1:length(xc)) {
temp <- rbind(
c(xc[i] - dx, yc[i] - dy), c(xc[i], yc[i] - dy),
c(xc[i], yc[i]), c(xc[i] - dx, yc[i]),
c(xc[i] - dx, yc[i] - dy)
)
sfcell <- st_sf(st_sfc(st_polygon(list(temp)), crs = st_crs(sfobject)))
tempsf <- st_intersection(sfobject, sfcell)
cell.df <- rbind(cell.df, cbind(
cellID = rdx.u[i],
featureArea = as.numeric(st_area(tempsf)),
featureID = tempsf$id
))
}
return(cell.df)
} |
setGeneric("fitKinetics", function(obj) standardGeneric("fitKinetics"))
setMethod("fitKinetics", "Bli", function(obj) {
t <- obj@traces[, 1]
traces <- obj@traces[, 2:ncol(obj@traces)]
tExp <- obj@tExp
tAss <- tExp[2] - tExp[1]
lig <- obj@lig
kOn0 <- obj@kOn0
kOff0 <- obj@kOff0
if ((length(kOn0) * length(kOff0)) == 0)
stop("no intial kOn0 and kOff0: input or estimate!")
if (length(lig) != ncol(traces))
stop("the trace number mis-match ligand concentrations")
totRange <- which(t >= tExp[1])
tTot <- t[totRange]
dTot <- traces[totRange, ]
t <- tTot - tExp[1]
rMax0 <- min(dTot)
x = rep(lig, each = length(tTot))
t = rep(t, length(lig))
y = unlist(dTot)
temp = rep(0, length(lig))
dLig = matrix(0, nrow = length(y), ncol = length(lig))
iNum <- 1:length(lig)
for (i in iNum) {
temp1 = temp
temp1[i] = 1
dLig[, i] = rep(temp1, each = length(tTot))
}
mA = mD = rep(0, length(t))
mA[which(t < tAss)] = 1
mD[which(t > tAss)] = 1
dfTot = data.frame(y, t, x, dLig, mA, mD)
colnames(dfTot)[4:(3 + length(lig))] = paste("dLig", iNum, sep = "")
startLst = c(rMax0, kOn0, kOff0, rep(0, 4 * length(lig)))
names(startLst) <- c("rMax", "kOn", "kOff", paste("sa", iNum, sep = ""), paste("sd",
iNum, sep = ""), paste("ja", iNum, sep = ""), paste("jd", iNum, sep = ""))
fmla <- "y ~ mA*(rMax/(1+(kOff/kOn/x))*(1-1/exp((kOn*x+kOff)*t))+"
fmla <- paste(fmla, paste(paste(paste("dLig", iNum, sep = ""), paste(paste("ja",
iNum, sep = ""), paste(paste("sa", iNum, sep = ""), "t", sep = "*"), sep = "+"),
sep = "*("), collapse = ")+"), collapse = "")
fmla <- paste(fmla, ")) + mD*( rMax/(1+(kOff/kOn/x))*(1-1/exp((kOn*x+kOff)*tAss))/exp(kOff*(t-tAss))+",
collapse = "")
fmla <- paste(fmla, paste(paste(paste("dLig", iNum, sep = ""), paste(paste("jd",
iNum, sep = ""), paste(paste("sd", iNum, sep = ""), "(t-tAss)", sep = "*"),
sep = "+"), sep = "*("), collapse = ")+"), "))", collapse = "")
fmla <- as.formula(fmla)
modTot <- nls(fmla, data = dfTot, start = startLst, trace = TRUE)
obj@kinetics <- modTot
obj@status[5] <- TRUE
return(obj)
}) |
read_pubmed_jats <- function(jats_file, topic = NULL) {
mirna_file <- xml2::read_xml(jats_file)
node_articles <- xml2::xml_find_all(mirna_file, "//PubmedArticle")
df <- data.frame("PMID" = integer(),
"Year" = integer(),
"Title" = character(),
"Abstract" = character(),
"Language" = character(),
"Type" = character(),
stringsAsFactors = FALSE)
df <- dplyr::as_tibble(df)
for (i in sequence(length(node_articles))) {
node_abstr <- node_articles[i]
pmid <- xml2::xml_find_all(node_abstr, ".//PMID") %>%
xml2::xml_text() %>%
as.numeric()
year <- xml2::xml_find_first(node_abstr, ".//Year") %>%
xml2::xml_text() %>%
as.numeric()
title <- xml2::xml_find_all(node_abstr, ".//ArticleTitle") %>%
xml2::xml_text()
abstr <- xml2::xml_find_all(node_abstr, ".//Abstract") %>%
xml2::xml_text()
lang <- xml2::xml_find_all(node_abstr, ".//Language") %>%
xml2::xml_text()
type <- xml2::xml_find_all(node_abstr, ".//PublicationType") %>%
xml2::xml_text()
df[i, "PMID"] <- pmid[1]
df[i, "Year"] <- year[1]
df[i, "Title"] <- title[1]
df[i, "Abstract"] <- abstr[1]
df[i, "Language"][[1]] <- list(lang)
df[i, "Type"][[1]] <- list(type)
}
df$Topic <- topic
return(df)
}
read_pubmed <- function(pubmed_file, topic = NULL) {
. = NULL
df <- suppressMessages(readr::read_fwf(pubmed_file))
df <- df %>%
dplyr::rename("Term" = 1,
"Content" = 2) %>%
mutate(Term = stringr::str_replace_all(Term, "-", ""),
Term = stringr::str_trim(Term),
Term = ifelse(Term == "", NA, Term),
Term = zoo::na.locf(Term))
terms_interest <- c("PMID", "DP", "TI", "AB", "LA", "PT")
df <- dplyr::filter(df, Term %in% terms_interest)
indices_pubmed <- which(df$Term == "PMID")
abstract_names <- stringr::str_c("Abstract_", seq_along(indices_pubmed))
df[indices_pubmed, "Abstract_no"] <- abstract_names
df <- df %>%
mutate(Abstract_no = zoo::na.locf(Abstract_no)) %>%
{suppressWarnings(tidyr::pivot_wider(., names_from = Term,
values_from = Content))} %>%
mutate(AB = purrr::map(AB, ~ stringr::str_c(.x, collapse = " "))) %>%
mutate(TI = purrr::map(TI, ~ stringr::str_c(.x, collapse = " "))) %>%
mutate(LA = purrr::map(LA, ~ stringr::str_c(.x, collapse = ""))) %>%
{suppressWarnings(tidyr::unnest(., PMID, DP, AB, TI, LA, keep_empty = TRUE))} %>%
mutate(Year = substr(DP, 1, 4)) %>%
dplyr::select(PMID, Year, TI, AB, LA, PT) %>%
mutate(PT = purrr::map(PT,~ stringr::str_c(.x))) %>%
dplyr::rename(Title = TI,
Abstract = AB,
Language = LA,
Type = PT) %>%
{suppressWarnings(mutate(.,PMID = as.double(PMID),
Year = as.double(Year)))}
df$Topic <- topic
return(df)
}
save_excel <- function(...,
excel_file = "miRetrieve_data.xlsx") {
openxlsx::write.xlsx(x = list(...),
file = excel_file)
}
save_plot <- function(plot_file,
width = NULL,
height = NULL,
units = "in",
dpi = 300,
device = NULL) {
if(is.null(width)) {
width <- par("din")[1]
}
if(is.null(height)) {
height <- par("din")[2]
}
ggsave(filename = plot_file,
width = width,
height = height,
units = units,
dpi = dpi,
device = device)
} |
setClass("A", representation("numeric"))
a <- new("A")
setMethod("Logic", c("A", "A"), function(e1, e2) FALSE)
res0 <- a & a
setMethod("Logic", c("A", "A"), function(e1, e2) TRUE)
stopifnot(a & a)
removeMethod("Logic", c("A", "A"))
stopifnot(logical() == a & a)
removeClass("A")
if(require(Matrix)) {
sm <- selectMethod("-", c("dgCMatrix", "numeric"))
s2 <- selectMethod("-", c("dtCMatrix", "numeric"))
stopifnot(sm@generic == "Arith", s2@generic == "Arith")
}
setGeneric("f1", signature=c("a"),
function(..., a) standardGeneric("f1"))
setMethod("f1", c(a="ANY"), function(..., a) list(a=a, ...))
setMethod("f1", c(a="missing"), function(..., a) callGeneric(a=1, ...))
f2 <- function(b,c,d, a) {
if (missing(a))
f1(b=b, c=c, d=d)
else
f1(a=a, b=b, c=c, d=d)
}
stopifnot(identical(c(1,2,3,4), as.vector(unlist(f1(2,3,4)))))
stopifnot(identical(c(1,2,3,4), as.vector(unlist(f2(2,3,4)))))
Hide <- setClass("Hide", slots = c(data = "vector"), contains = "vector")
unhide <- function(obj)
obj@data
setGeneric("%p%", function(e1, e2) e1 + e2, group = "Ops2")
setGeneric("%gt%", function(e1, e2) e1 > e2, group = "Ops2")
setGroupGeneric("Ops2", function(e1,e2)NULL, knownMembers = c("%p%","%gt%"))
setMethod("Ops2", c("Hide", "Hide"),
function(e1, e2) {
e1 <- unhide(e1)
e2 <- unhide(e2)
callGeneric()
})
setMethod("Ops2", c("Hide", "vector"),
function(e1, e2) {
e1 <- unhide(e1)
callGeneric()
})
setMethod("Ops2", c("vector", "Hide"),
function(e1, e2) {
e2 <- unhide(e2)
callGeneric()
})
h1 <- Hide(data = 1:10)
h2 <- Hide(data = (1:10)*.5+ 0.5)
stopifnot(all.equal(h1%p%h2, h1@data + h2@data))
stopifnot(all.equal(h1 %gt% h2, h1@data > h2@data))
removeClass("Hide")
for(g in c("f1", "%p%", "%gt%", "Ops2"))
removeGeneric(g) |
data("jags_logit")
test_that("Simple model runs with mcmcTab", {
object <- mcmcTab(jags_logit,
ci = c(0.025, 0.975),
pars = NULL,
Pr = FALSE,
ROPE = NULL)
value <- object[2, 2]
check_against <- c(0.527)
expect_equal(round(as.numeric(value), 2), round(check_against, 2))
})
test_that("mcmcTab works with different input types", {
expect_equal(mcmcTab(jags_logit)[1,3], 0.09)
expect_equal(mcmcTab(coda::as.mcmc(jags_logit))[2,3], 0.166)
})
test_that("pars subsetting works", {
data("jags_logit")
object <- mcmcTab(jags_logit,
ci = c(0.025, 0.975),
pars = "b",
Pr = FALSE,
ROPE = NULL,
regex = TRUE)
expect_equal(
object$Variable,
factor(c(sprintf("b[%s]", 1:3)))
)
object <- mcmcTab(jags_logit,
ci = c(0.025, 0.975),
pars = c("b\\[1\\]", "b\\[2\\]"),
Pr = FALSE,
ROPE = NULL,
regex = TRUE)
expect_equal(
object$Variable,
factor(c(sprintf("b[%s]", 1:2)))
)
object <- mcmcTab(jags_logit,
ci = c(0.025, 0.975),
pars = c("b[1]", "b[3]"),
Pr = FALSE,
ROPE = NULL)
expect_equal(
object$Variable,
factor(c(sprintf("b[%s]", c(1, 3))))
)
})
test_that("ROPE argument works", {
expect_message(
object <- mcmcTab(jags_logit, pars = "b", ROPE = c(0, 1), regex = TRUE),
"This table contains an estimate for parameter"
)
expect_equal(
object$PrOutROPE,
c(0, 0.002, 0.011)
)
expect_error(
object <- mcmcTab(jags_logit, ROPE = 0),
"Invalid ROPE argument"
)
})
pkgs_win <- c("rjags", "R2WinBUGS")
if (!all(sapply(pkgs_win, require, quietly = TRUE, character.only = TRUE))) {
data(LINE, package = "rjags")
LINE$recompile()
bugs_model <- rjags::coda.samples(LINE, c("alpha", "beta", "sigma"),
n.iter = 1000)
bugs_model <- R2WinBUGS::as.bugs.array(sims.array = as.array(bugs_model))
test_that("mcmcTab works with bugs", {
expect_equal(mcmcTab(bugs_model)[1,2], 1.031)
})
} |
NULL
check <- function(
pkg = "."
) {
devtools::check(
pkg = pkg,
manual = FALSE,
run_dont_test = FALSE
)
}
check_fast <- function(
pkg = "."
) {
devtools::check(
pkg = pkg,
manual = FALSE,
run_dont_test = FALSE,
build_args = c("--no-build-vignettes"),
args = c("--ignore-vignettes")
)
}
check_faster <- function(
pkg = "."
) {
devtools::check(
pkg = pkg,
manual = FALSE,
run_dont_test = FALSE,
build_args = c("--no-build-vignettes"),
args = c("--ignore-vignettes", "--no-examples")
)
}
check_fastest <- function(
pkg = "."
) {
devtools::check(
pkg = pkg,
manual = FALSE,
run_dont_test = FALSE,
build_args = c("--no-build-vignettes"),
args = c("--ignore-vignettes", "--no-tests",
"--no-examples")
)
}
check_slow <- function(
pkg = "."
) {
devtools::check(
pkg = pkg,
manual = TRUE,
run_dont_test = TRUE,
)
}
check_slower <- function(
pkg = "."
) {
devtools::check(
pkg = pkg,
manual = TRUE,
run_dont_test = TRUE,
args = c("--run-dontrun")
)
}
check_slowest <- function(
pkg = "."
) {
devtools::check(
pkg = pkg,
manual = TRUE,
run_dont_test = TRUE,
args = c("--run-dontrun", "--use-gct")
)
} |
NULL
fhplot<- function(Ce, theta){
.Deprecated("fhanalysis")
x <- log10(1-theta)
y <- log10(theta/Ce)
fit22 <- lm(y~x)
plot(y~x, xlab="ce", ylab="theta", main="Flory Huggins Analysis")
abline(fit22, col="black")
} |
library(hamcrest)
expected <- structure(list(x = c(-2.17792306908218, -2.1347958795954, -2.09166869010863,
-2.04854150062185, -2.00541431113508, -1.9622871216483, -1.91915993216152,
-1.87603274267475, -1.83290555318797, -1.7897783637012, -1.74665117421442,
-1.70352398472764, -1.66039679524087, -1.61726960575409, -1.57414241626732,
-1.53101522678054, -1.48788803729376, -1.44476084780699, -1.40163365832021,
-1.35850646883344, -1.31537927934666, -1.27225208985989, -1.22912490037311,
-1.18599771088633, -1.14287052139956, -1.09974333191278, -1.05661614242601,
-1.01348895293923, -0.970361763452454, -0.927234573965678, -0.884107384478902,
-0.840980194992126, -0.79785300550535, -0.754725816018574, -0.711598626531798,
-0.668471437045022, -0.625344247558246, -0.58221705807147, -0.539089868584694,
-0.495962679097918, -0.452835489611142, -0.409708300124366, -0.36658111063759,
-0.323453921150814, -0.280326731664038, -0.237199542177262, -0.194072352690486,
-0.150945163203711, -0.107817973716934, -0.0646907842301587,
-0.0215635947433825, 0.0215635947433932, 0.0646907842301694,
0.107817973716945, 0.150945163203721, 0.194072352690497, 0.237199542177273,
0.280326731664049, 0.323453921150825, 0.366581110637601, 0.409708300124377,
0.452835489611153, 0.495962679097929, 0.539089868584705, 0.58221705807148,
0.625344247558256, 0.668471437045032, 0.711598626531808, 0.754725816018584,
0.79785300550536, 0.840980194992136, 0.884107384478912, 0.927234573965688,
0.970361763452464, 1.01348895293924, 1.05661614242602, 1.09974333191279,
1.14287052139957, 1.18599771088634, 1.22912490037312, 1.2722520898599,
1.31537927934667, 1.35850646883345, 1.40163365832022, 1.444760847807,
1.48788803729378, 1.53101522678055, 1.57414241626733, 1.6172696057541,
1.66039679524088, 1.70352398472766, 1.74665117421443, 1.78977836370121,
1.83290555318798, 1.87603274267476, 1.91915993216154, 1.96228712164831,
2.00541431113509, 2.04854150062186, 2.09166869010864, 2.13479587959541,
2.17792306908219), y = c(0.0837786659629955, 0.0991726432001737,
0.113575653162038, 0.127006994127686, 0.139485964376218, 0.151031862186732,
0.161663985838327, 0.171401633610103, 0.180264103781157, 0.18827069463059,
0.195440704437499, 0.201793431480984, 0.207348174040144, 0.212124230394078,
0.216140898821884, 0.219417477602661, 0.221973265015509, 0.223827559339526,
0.224999658853812, 0.225508861837464, 0.225374466569582, 0.224615771329266,
0.223252074395612, 0.221302674047722, 0.218786868564693, 0.215723956225626,
0.212133235309618, 0.208034004095768, 0.203445560863176, 0.198387203890939,
0.192878231458158, 0.18693794184393, 0.180585633327356, 0.173840604187533,
0.166722152703562, 0.15924957715454, 0.151442175819567, 0.143319246977741,
0.134900088908162, 0.126203999889927, 0.117250278202137, 0.108058222123891,
0.0986471299342862, 0.0890362999124227, 0.079245030337399, 0.069292619488314,
0.0591983656442669, 0.0489815670843564, 0.0386615220876814, 0.0282575289333409,
0.0177888859004337, 0.00727489126805892, -0.00326515668468487,
-0.0138119596786984, -0.0243462194348828, -0.0348486376741394,
-0.0452999161173691, -0.0556807564854732, -0.0659718604993526,
-0.0761539298799083, -0.0862076663480414, -0.0961137716246534,
-0.105852947430645, -0.115405895486918, -0.124753317514372, -0.133875915233909,
-0.142754390366429, -0.151369444632836, -0.159701779754029, -0.167732097450909,
-0.175441099444377, -0.182809487455334, -0.189817963204683, -0.196447228413322,
-0.202677984802155, -0.208490934092081, -0.213866778004002, -0.21878621825882,
-0.223229956577434, -0.227178694680747, -0.230613134289658, -0.233513977125071,
-0.235861924907885, -0.237637679359001, -0.238821942199321, -0.239395415149745,
-0.239338799931176, -0.238632798264513, -0.237258111870658, -0.235195442470512,
-0.232425491784977, -0.228928961534952, -0.22468655344134, -0.219678969225042,
-0.213886910606958, -0.207291079307989, -0.199872177049038, -0.191610905551004,
-0.182487966534789, -0.172484061721294, -0.16157989283142, -0.149756161586068
)), .Names = c("x", "y"))
assertThat(stats:::spline(x=c(-0.873569134615088, 0.110812912299157, -0.260967400401453,
0.770208081875476, -1.44999890874045, -1.7047809048894, 0.499187842050876,
0.338091656804207, -0.417284139389022, 1.7047809048894, -0.499187842050876,
0.417284139389022, 0.987230991990176, -0.584589857059473, 1.26496924488415,
2.17792306908219, 0.0368705326620802, -0.987230991990176, 0.584589857059473,
0.674489750196082, -0.185367017289597, 1.11533735773379, -2.17792306908218,
1.44999890874045, -0.338091656804207, -0.110812912299157, 0.260967400401453,
-1.11533735773379, -0.0368705326620803, -1.26496924488415, 0.873569134615088,
-0.770208081875476, -0.674489750196082, 0.185367017289597),y=structure(c(0.191465786179708, -0.0145441318070686, 0.0747962795196774,
-0.162620345655999, 0.223639125476708, 0.201619667641865, -0.106574023381159,
-0.0694409308783482, 0.109689330027232, -0.232333960154808, 0.126863467960568,
-0.0879590361669838, -0.198932911276963, 0.143774036552627, -0.230070082035199,
-0.149756161586068, 0.00353594454344365, 0.20529735446124, -0.125261251276442,
-0.143972859126161, 0.0571453269671675, -0.215699249400361, 0.0837786659629955,
-0.238924565906323, 0.0923194916468324, 0.0393811253742007, -0.0510308559179646,
0.216893381672356, 0.0215106633993303, 0.224427414221871, -0.181041490059821,
0.176305978996573, 0.160312902241177, -0.0327321939651579), .Names = c("1",
"2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13",
"14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24",
"25", "26", "27", "28", "29", "30", "31", "32", "33", "34")))
, identicalTo( expected, tol = 1e-6 ) ) |
summary.Mtabs <-
function(object,...,range=NULL) {
o.Mt<- object
test<- is.null(range)
if(test == TRUE) range<- c(1,ncol(o.Mt$centroids))
print(t(o.Mt$centroids[,range[1]:range[2]]),quote=FALSE)
} |
suppressPackageStartupMessages(library(dplyr))
data("usz_13c")
data = usz_13c %>%
dplyr::filter( patient_id %in%
c("norm_001", "norm_002", "norm_004", "norm_007", "pat_004", "pat_012", "pat_023")) %>%
cleanup_data()
fit = nls_fit(data)
cm = comment(fit$data)
test_that("Result with default parameters is tbl_df with required columns",{
cf = coef_by_group(fit)
expect_is(cf, "tbl_df")
expect_is(cf, "coef_by_group")
expect_identical(ncol(cf), 7L)
expect_equal(names(cf), c("parameter", "method", "group", "estimate", "conf.low",
"conf.high", "diff_group"))
expect_identical(nrow(cf), 36L)
expect_identical(unique(cf$diff_group), c("a", "c", "b", "bc", "ab"))
expect_equal(unique(cf$group),
c("liquid_normal", "liquid_patient", "solid_normal", "solid_patient"))
expect_equal(comment(cf), cm)
})
digs = function(x){
nchar(stringr::str_replace_all(paste(abs(x)), "[0\\.]",""))
}
test_that("Options digits is served",{
options(digits = 4)
cf = coef_by_group(fit)
expect_is(cf, "tbl_df")
expect_lte(digs(cf[[1,"estimate"]]) ,4L)
})
test_that("Fit must be of class breathtestfit",{
expect_error(coef_by_group(NULL))
})
test_that("nlme_fit can be used to compute coefficients for multiple records in one group",{
data = cleanup_data(simulate_breathtest_data(4))
fit = nlme_fit(data)
cf = coef_by_group(fit)
expect_is(cf, "tbl_df")
expect_identical(ncol(cf), 7L)
expect_equal(unique(cf$group), "A")
expect_equal(unique(cf$diff_group), "a")
expect_equal(names(cf), c("parameter", "method", "group", "estimate", "conf.low",
"conf.high", "diff_group"))
})
test_that("nlme_fit can be used to compute coefficients for multiple groups",{
skip_on_cran()
fit = nlme_fit(data)
cf = coef_by_group(fit)
expect_is(cf, "tbl_df")
expect_identical(ncol(cf), 7L)
expect_equal(names(cf), c("parameter", "method", "group", "estimate", "conf.low",
"conf.high", "diff_group"))
})
test_that("Fit of a single curve returns valid data", {
data = usz_13c %>%
dplyr::filter( patient_id == "pat_001") %>%
cleanup_data()
comment(data) = "comment"
options(digits = 4)
fit = nls_fit(data)
cf = coef_by_group(fit)
expect_identical(ncol(cf), 7L)
expect_identical(nrow(cf), 9L)
expect_equal(cf$conf.low, rep(NA, 9L))
expect_equal(cf$conf.high, rep(NA, 9L))
expect_equal(comment(cf), "comment")
expect_lte(digs(cf[[1,"estimate"]]) ,4L)
}) |
computeTrend <- function(jk2, tv, repFunOut, fun) {
jk2_all <- do.call("rbind", jk2)
jk2_bind<- jk2_all
jk2_bind<- check1(jk2=jk2, jk2_bind=jk2_bind, jk2_all=jk2_all, tv=tv)
if(identical(fun, "mean")) {
jk2_bind<- jk2_bind[jk2_bind[["parameter"]] %in% c("mean", "sd"), ]
}
if ( fun == "glm" ) {
jk2_bind<- jk2_bind[which(!jk2_bind[,"parameter"] %in% c("Nvalid", "Ncases", "R2", "R2nagel")),]
}
jk2_bind<- jk2_bind[jk2_bind[["coefficient"]] %in% c("est", "se"), ]
jk2_wide<- reshape2::dcast ( jk2_bind, as.formula ( paste ( " ... ~ coefficient + ", tv ,sep="") ) )
lev <- unique(jk2_bind[[tv]])
le <- check2(repFunOut=repFunOut, jk2=jk2_bind, fun=fun)
vgl <- combinat::combn(names(jk2),2, simplify=FALSE)
adds<- lapply( 1:length(vgl), FUN = function ( comp) {
jk2_wide[,paste0("est_trend_",vgl[[comp]][1],".vs.",vgl[[comp]][2])] <- jk2_wide[,paste("est_",vgl[[comp]][2],sep="")] - jk2_wide[,paste("est_",vgl[[comp]][1],sep="")]
years.c <- unlist(apply(le, MARGIN = 1, FUN = function (zeile) {paste(c(zeile[["trendLevel1"]], zeile[["trendLevel2"]]), collapse="_")}))
le.years<- le[which(years.c == paste(sort(vgl[[comp]]), collapse="_")),]
jk2_wide<- merge(jk2_wide, le.years[,-na.omit(match(c("trendLevel1", "trendLevel2", "domain"), colnames(le.years)))], by = c("parameter", "depVar"), all = TRUE)
miss <- which(is.na(jk2_wide[,"le"]))
if ( length(miss)>0){
warning(paste0("Found ",length(miss)," missing linking errors for dependent variable '",unique(jk2_wide[,"depVar"]),"' and parameter(s) '",paste(unique(jk2_wide[which(is.na(jk2_wide[,"le"])),"parameter"])),"'. Assume linking error of 0 for these cases."))
jk2_wide[which(is.na(jk2_wide[,"le"])),"le"] <- 0
}
jk2_wide[,paste0("se_trend_", vgl[[comp]][1],".vs.",vgl[[comp]][2])] <- sqrt(jk2_wide[, paste("se_",vgl[[comp]][2],sep="")]^2 + jk2_wide[, paste("se_",vgl[[comp]][2],sep="")]^2 + jk2_wide[, "le"]^2)
jk2_wide[,paste0("sig_trend_", vgl[[comp]][1],".vs.",vgl[[comp]][2])]<- 2*pnorm(abs(jk2_wide[, paste0("est_trend_",vgl[[comp]][1],".vs.",vgl[[comp]][2])]/jk2_wide[, paste0("se_trend_", vgl[[comp]][1],".vs.",vgl[[comp]][2])]), lower.tail=FALSE)
existSD <- "sd" %in% jk2_bind[,"parameter"]
es <- character(0)
if(fun == "mean" && !existSD && comp == 1) {message("Cannot find standard deviations in output. Skip computation of effect sizes.")}
if ( fun == "mean" && existSD) {
jk2_wide[, paste0("es_trend_", vgl[[comp]][1],".vs.",vgl[[comp]][2])] <- NA
jk2_wideS<- jk2_wide[!jk2_wide[, "comparison"] %in% c("crossDiff_of_groupDiff", "groupDiff") | is.na(jk2_wide[, "comparison"]), ]
tabs <- table(jk2_wideS[,c("parameter", "group")])
if ( !all ( tabs == 1) ) {
message("Cannot find standard deviations of following groups: \n",print_and_capture(tabs, 5),"\nSkip computation of effect sizes.")
} else {
jk2_wideS<- jk2_wideS[with(jk2_wideS, order(parameter, group)),]
pooledSD <- sqrt(0.5 * (jk2_wideS[jk2_wideS[, "parameter"] == "sd", paste("est_",vgl[[comp]][1], sep="")]^2 + jk2_wideS[jk2_wideS[, "parameter"] == "sd", paste("est_",vgl[[comp]][2], sep="")]^2))
jk2_wideS[jk2_wideS[, "parameter"] == "mean", paste0("es_trend_", vgl[[comp]][1],".vs.",vgl[[comp]][2])] <- jk2_wideS[jk2_wideS[, "parameter"] == "mean", paste0("est_trend_", vgl[[comp]][1],".vs.",vgl[[comp]][2])] / pooledSD
es <- c(es, paste0("es_trend_", vgl[[comp]][1],".vs.",vgl[[comp]][2]))
jk2_wide <- unique(rbind(jk2_wide, jk2_wideS))
}
}
jk2_add <- reshape2::melt ( jk2_wide, measure.vars = c(paste("est", unique(unlist(vgl)), sep="_"), paste("se", unique(unlist(vgl)), sep="_"), paste0("est_trend_",vgl[[comp]][1],".vs.",vgl[[comp]][2]), paste0("se_trend_",vgl[[comp]][1],".vs.",vgl[[comp]][2]), paste0("sig_trend_",vgl[[comp]][1],".vs.",vgl[[comp]][2]), es), na.rm = FALSE)
jk2_add <- jk2_add[!is.na(jk2_add[, "value"]), ]
zusatz <- data.frame ( eatTools::halveString (string = as.character(jk2_add[,"variable"]), pattern = "_", first = TRUE ), stringsAsFactors = FALSE)
colnames(zusatz) <- c("coefficient", tv)
jk2_add <- data.frame ( jk2_add[,-match("variable", colnames(jk2_add))], zusatz, stringsAsFactors = FALSE)
return(jk2_add[, names(jk2_all)])})
jk2 <- unique(rbind(jk2_all, do.call("rbind", adds)))
return(jk2) }
check1 <- function(jk2, jk2_bind, jk2_all, tv) {
vgl <- combinat::combn(1:length(jk2),2, simplify=FALSE)
chks<- sapply(vgl, FUN = function ( x ) { length(unique(jk2[[x[1]]]$group)) != length(unique(jk2[[x[2]]]$group)) || suppressWarnings(!all(sort(unique(jk2[[x[1]]]$group)) == sort(unique(jk2[[x[1]]]$group))))})
if(sum(chks)>0) {
weg <- unique(unlist(lapply(vgl, FUN = function ( v ) {
uneven1 <- setdiff(unique(jk2[[v[1]]]$group), unique(jk2[[v[2]]]$group))
uneven2 <- setdiff(unique(jk2[[v[2]]]$group), unique(jk2[[v[1]]]$group))
if(length(uneven1) > 0) {cat("Categories", uneven1, "are missing in year", jk2[[2]][1, tv] ,". \n")}
if(length(uneven2) > 0) {cat("Categories", uneven2, "are missing in year", jk2[[1]][1, tv] ,". \n")}
weg1 <- which( jk2_all$group %in% c(uneven1, uneven2))
return(weg1)})))
if ( length(weg)>0) {
jk2_bind <- jk2_all[-weg,]
}
}
return(jk2_bind)}
check2 <- function(repFunOut, jk2, fun){
wdf <- attr(repFunOut[["le"]], "linkingErrorFrame")
if(is.null(wdf)) {
return(repFunOut[["le"]])
} else {
allV <- list(trendLevel1 = "trendLevel1", trendLevel2 = "trendLevel2", parameter = "parameter", linkingError="linkingError", depVar = "depVar")
allN <- lapply(allV, FUN=function(ii) {eatTools::existsBackgroundVariables(dat = repFunOut[["le"]], variable=ii, warnIfMissing = TRUE)})
le <- repFunOut[["le"]]
dv <- unique(jk2[,"depVar"])
stopifnot(length(dv)==1)
if(!dv %in% le[,"depVar"]) {stop(paste0("Cannot found dependent variable '",dv,"' in 'depVar' column of linking error data.frame 'linkErr'."))}
le <- le[which(le[,"depVar"] == dv),]
le1 <- le[,c("parameter", "trendLevel1", "trendLevel2")]
if(nrow(le1) != nrow(unique(le1))) {stop("Linking error data.frame 'linkErr' is not unique in 'parameter', 'trendLevel1', 'trendLevel2'. Probable cause: 'linkErr' contains linking errors of multiple competence domains?")}
add <- setdiff(unique(jk2[,"parameter"]), unique(le[,"parameter"]))
if ( length(add)>0) { warning(paste0("No linking errors for parameters '",paste(add, collapse="', '"),"'. Linking errors for these parameters will be defaulted to 0."))}
years <- sort(unique (jk2[,repFunOut[["allNam"]][["trend"]]]))
combs <- combinat::combn(x=years, m=2, simplify=FALSE)
exist <- unique(plyr::alply(le, .margins = 1, .fun = function (zeile) {sort(c(zeile[["trendLevel1"]], zeile[["trendLevel2"]]))}))
drin <- combs %in% exist
if(!all(drin)) {stop(paste0("Data contains combination of years '",paste(combs[!drin], collapse="', '"), "' which are not included in linking error data.frame 'linkErr'."))}
colnames(le) <- car::recode(colnames(le), "'linkingError'='le'")
return(le)
}} |
rstpoint <- function(n, f, W = NULL, correction = 1.5, maxpass = 50) {
if(!inherits(f,"stim")&&!inherits(f,"stden")) stop("'f' must be of class 'stim' or 'stden'")
if(inherits(f,"stden")){
g <- list(v=f$z,tlay=f$tgrid,a=abind(lapply(f$z,as.matrix),along=3))
f <- g
}
if(is.null(W)) W <- as.polygonal(Window(f$v[[1]]))
if(!is.owin(W)) stop("'W' must be of spatstat class 'owin'")
if(is.null(intersect.owin(Window(f$v[[1]]),W,fatal=FALSE))) stop("'W' must overlap the spatial domain of 'f'")
nacc <- 0
dummyim <- f$v[[1]]
dummyim[] <- 1
xacc <- yacc <- tacc <- c()
ngen <- ceiling(n*correction)
tlay <- f$tlay
tstep <- tlay[2]-tlay[1]
tgrid <- seq(min(tlay)-0.5*tstep,max(tlay)+0.5*tstep,length=length(tlay)+1)
pass <- 0
while(nacc<n&&pass<maxpass) {
cand <- rimpoly(ngen,dummyim,W)
cand.t.raw <- runif(ngen,min(tgrid),max(tgrid))
cand.t.int <- findInterval(cand.t.raw,tgrid,all.inside=TRUE)
cand.dens <- rep(NA,ngen)
ut <- unique(cand.t.int)
for(i in 1:length(ut)){
cand.ti <- which(cand.t.int==ut[i])
cand.dens[cand.ti] <- safelookup(f$v[[ut[i]]],cand[cand.ti])
}
cand.probs <- cand.dens/max(f$a,na.rm=TRUE)
cand.acc <- which(runif(ngen)<cand.probs)
xacc <- c(xacc,cand$x[cand.acc])
yacc <- c(yacc,cand$y[cand.acc])
tacc <- c(tacc,cand.t.raw[cand.acc])
nacc <- nacc + length(cand.acc)
pass <- pass + 1
}
if(nacc<n) warning(paste("'maxpass' reached with only",nacc,"points accepted"))
result <- ppp(c(),c(),window=W)
if(nacc>0){
accs <- 1:min(n,nacc)
result <- ppp(x=xacc[accs],yacc[accs],marks=tacc[accs],window=W)
}
return(result)
} |
IBCF <- function(object, dec = 4) {
if (!inherits(object, 'CrossValidation')) stop("This function only works for objects of class 'CrossValidation'")
time.init <- proc.time()[3]
nIL <- ncol(object$DataSet) - 1
Y_avr <- matrix(0, ncol = nIL, nrow = nrow(object$DataSet))
Ind_all <- Y_avr
NPartitions <- length(object$CrossValidation_list)
predicted <- vector('list', NPartitions)
names(predicted) <- paste0('Partition', 1:NPartitions)
results <- data.frame()
for (j in seq_len(NPartitions)) {
Part <- object$CrossValidation_list[[j]]
pos.NA <- which(Part == 2, arr.ind = TRUE)
pos.NA[, 2] <- c(pos.NA[, 2]) + 1
pos.No_NA <- which(Part == 1, arr.ind = TRUE)
if (length(pos.NA) == 0) {
stop('An error ocurred with the CrossValidation data')
}
Data.trn <- object$DataSet
Data.trn[pos.NA] <- NA
rows.Na <- which(apply(Data.trn, 1, function(x) any(is.na(x))) == TRUE)
Means_trn <- apply(Data.trn[, -c(1)], 2, mean, na.rm = TRUE)
SDs_trn <- apply(Data.trn[, -c(1)], 2, sd, na.rm = TRUE)
Scaled_Col <- scale(Data.trn[, -c(1)])
Means_trn_Row <- apply(Scaled_Col, 1, mean, na.rm = TRUE)
SDs_trn_Row <- apply(Scaled_Col, 1, sd, na.rm = TRUE)
if (any(is.na(SDs_trn_Row))) {
Data.trn_scaled <- data.frame(ID = as.character(Data.trn[, c(1)]), Scaled_Col)
} else {
Scaled_Row <- t(scale(t(Scaled_Col)))
Data.trn_scaled <- data.frame(ID = as.character(Data.trn[, c(1)]), Scaled_Row)
}
Hybrids.New <- Data.trn_scaled
Hybrids.New[, 2:ncol(Data.trn_scaled)] <- NA
ratings <- Data.trn_scaled
x <- ratings[, 2:(ncol(ratings))]
x[is.na(x)] <- 0
item_sim <- lsa::cosine(as.matrix((x)))
for (i in seq_len(length(rows.Na))) {
pos <- rows.Na[i]
ratings[pos, 2:ncol(ratings)] <- rec_itm_for_geno(pos, item_sim, ratings[,2:ncol(ratings)])
}
All.Pred <- data.matrix(ratings[,-1])
if (any(is.na(SDs_trn_Row))) {
All.Pred_O <- sapply(seq_len(ncol(All.Pred)), function(i) (All.Pred[,i]*SDs_trn[i] + Means_trn[i]))
} else {
All.Pred_O_Row <- t(sapply(seq_len(nrow(All.Pred)), function(i) (All.Pred[i,]*SDs_trn_Row[i] + Means_trn_Row[i])) )
All.Pred_O <- sapply(seq_len(ncol(All.Pred_O_Row)), function(i) (All.Pred_O_Row[,i]*SDs_trn[i] + Means_trn[i]))
}
colnames(All.Pred_O) <- colnames(Data.trn_scaled[,-c(1)])
All.Pred_O[pos.No_NA] <- NA
All.Pred_O_tst <- All.Pred_O[rows.Na, ]
predicted[[paste0('Partition', j)]] <- c(All.Pred_O)
pos.No_NA[,2] <- pos.No_NA[,2] + 1
DataSet_tst <- object$DataSet
DataSet_tst[pos.No_NA] <- NA
DataSet_tst <- DataSet_tst[rows.Na, ]
Data.Obs_tst <- getTidyForm(DataSet_tst)
posTST <- which(complete.cases(Data.Obs_tst) == TRUE)
YYY <- All.Pred_O
Ind <- is.na(YYY)
YYY[Ind] <- 0
Y_avr <- Y_avr + YYY
Ind <- !(Ind)
Ind_all <- Ind_all + Ind
results <- rbind(results, data.frame(Position = posTST,
Partition = j,
Environment = Data.Obs_tst$Env[posTST],
Trait = Data.Obs_tst$Trait[posTST],
Observed = round(Data.Obs_tst$Response[posTST],dec),
Predicted = round(c(All.Pred_O_tst[which(!is.na(All.Pred_O_tst))]), dec)))
}
Y_avr <- Y_avr/Ind_all
Yhat_Obs_pred <- data.frame(object$DataSet, Y_avr)
colnames(Yhat_Obs_pred) <- c(colnames(object$DataSet), paste0(colnames(Y_avr),'.predicted'))
out <- list(NPartitions = NPartitions,
predictions_Summary = results,
observed = getTidyForm(object$DataSet)$Response,
yHat = Y_avr,
predicted_Partition = predicted,
Data.Obs_Pred = Yhat_Obs_pred,
executionTime = proc.time()[3] - time.init)
class(out) <- 'IBCF'
return(out)
} |
get_jmodel <- function(x, workspace,
userdefined = NULL,
progress_bar = TRUE){
UseMethod("get_jmodel", x)
}
get_jmodel.workspace <- function(x, workspace,
userdefined = NULL,
progress_bar = TRUE){
multiprocessings <- get_all_objects(x)
nb_mp <- length(multiprocessings)
result <- lapply(1:nb_mp, function(i){
if (progress_bar)
cat(sprintf("Multiprocessing %i on %i:\n", i, nb_mp))
get_jmodel(multiprocessings[[i]],
workspace = x, userdefined = userdefined,
progress_bar = progress_bar)
})
names(result) <- names(multiprocessings)
result
}
get_jmodel.multiprocessing <- function(x, workspace,
userdefined = NULL,
progress_bar = TRUE){
all_sa_objects <- get_all_objects(x)
nb_sa_objs <- length(all_sa_objects)
if (progress_bar)
pb <- txtProgressBar(min = 0, max = nb_sa_objs, style = 3)
result <- lapply(1:nb_sa_objs, function(i){
res <- get_jmodel(all_sa_objects[[i]],
workspace = workspace, userdefined = userdefined)
if (progress_bar)
setTxtProgressBar(pb, i)
res
})
names(result) <- names(all_sa_objects)
if (progress_bar)
close(pb)
result
}
get_jmodel.sa_item <- function(x, workspace,
userdefined = NULL,
progress_bar = TRUE){
jspec <- get_jspec(x)
jresult <- sa_results(x)
if(is.null(jresult))
return(NULL)
if (.jinstanceof(jspec, "jdr/spec/x13/X13Spec")) {
jresult <- new(Class = "X13_java", internal = jresult)
}else{
jresult <- new(Class = "TramoSeats_java", internal = jresult)
}
dictionary <- .jcall(workspace, "Ljdr/spec/ts/Utility$Dictionary;", "dictionary")
jSA(result = jresult, spec = jspec, dictionary = dictionary)
} |
"beta0" <-
0
"beta" <-
0
"q" <-
0.5
"phi" <-
structure(c(0.5, 0.5, 0.5, 0.5), .Dim = as.integer(c(2, 2))) |
kendallSeasonalTrendTest.formula <-
function (y, data = NULL, subset, na.action = na.pass, ...)
{
if (missing(y) || (length(y) != 3L))
stop("formula missing or incorrect")
m <- match.call(expand.dots = FALSE)
if (is.matrix(eval(m$data, parent.frame())))
m$data <- as.data.frame(data)
m$... <- NULL
m$formula <- m$y
m$y <- NULL
m$na.action <- na.action
requireNamespace("stats", quietly = TRUE)
m[[1L]] <- as.name("model.frame")
mf <- eval(m, parent.frame())
ncol.mf <- ncol(mf)
if (ncol.mf != 3)
stop("Incorrect formula; it must be of the form y ~ season + year")
response <- attr(attr(mf, "terms"), "response")
season <- (1:ncol.mf)[-response][1]
year <- (1:ncol.mf)[-c(response, season)]
arg.list <- list(y = mf[, response], season = mf[, season],
year = mf[, year])
names.mf <- names(mf)
names.list <- list(data.name = names.mf[response], season.name = names.mf[season],
year.name = names.mf[year])
dot.list <- list(...)
match.vec <- pmatch(names(dot.list), c("data.name", "season.name",
"year.name"), nomatch = 0)
if (length(match.vec) == 0 || all(match.vec == 0))
arg.list <- c(arg.list, names.list, dot.list)
else arg.list <- c(arg.list, names.list[-match.vec], dot.list)
if (!missing(data))
arg.list$parent.of.data <- deparse(substitute(data))
if (!missing(subset))
arg.list$subset.expression <- deparse(substitute(subset))
do.call(kendallSeasonalTrendTest.default, arg.list)
} |
context("joinRtData")
testthat::test_that("Test that joinRtData runs without error in dry run mode when used with summaryWidget", {
testthat::skip_on_cran()
subnational <- national <- list("Cases" = readInEpiNow2(
path = "https://raw.githubusercontent.com/epiforecasts/covid-rt-estimates/master/subnational/italy/cases/summary",
region_var = "region"))
national <- list("Cases" = readInEpiNow2(
path = "https://raw.githubusercontent.com/epiforecasts/covid-rt-estimates/master/national/cases/summary",
region_var = "country"),
regions = "Italy")
out <- list()
out$Cases <- joinRtData(subnational$Cases, national$Cases)
testthat::expect_true(summaryWidget(rtData = out,
dryRun = TRUE))
}) |
const.b1<-2
const.b2<-2
const.b3<-2
const.b.vec<-c(const.b1, const.b2, const.b3)
"paraEst.v" <-
function(X, paraIni, memSubjects, maxFlag=TRUE, thrshPostProb=0.50,
geneNames=NULL, ITMAX=100, eps=1.0e-03, quiet=TRUE)
{
checkPara.v(paraIni, eps)
sumb<-sum(const.b.vec, na.rm=TRUE)
const.b1.b2<-c(const.b1, const.b2)
n<-ncol(X)
nc<-sum(memSubjects==1, na.rm=TRUE)
nn<-sum(memSubjects==0, na.rm=TRUE)
if(nc>=n){
stop("Number of cases >= Total number of patients!\n")
}
if(nn>=n){
stop("Number of controls >= Total number of patients!\n")
}
Psi.m<-paraIni
nGenes<-nrow(X)
xcMat<-X[,memSubjects==1,drop=FALSE]
xnMat<-X[,memSubjects==0,drop=FALSE]
xcTxc<-apply(xcMat, 1, function(x) {sum(x^2, na.rm=TRUE)})
xcT1<-apply(xcMat, 1, function(x) {sum(x, na.rm=TRUE)})
xnTxn<-apply(xnMat, 1, function(x) {sum(x^2, na.rm=TRUE)})
xnT1<-apply(xnMat, 1, function(x) {sum(x, na.rm=TRUE)})
loop<-0
while(1)
{
if(!quiet)
{
cat("************\n")
cat("loop=", loop, "\n")
}
wiMat<-t(apply(X, 1, wiFun.v, Psi.m=Psi.m, memSubjects=memSubjects, eps=eps))
w1<-as.numeric(wiMat[,1])
w2<-as.numeric(wiMat[,2])
w3<-as.numeric(wiMat[,3])
sumw1<-sum(w1, na.rm=TRUE)
sumw2<-sum(w2, na.rm=TRUE)
sumw3<-sum(w3, na.rm=TRUE)
if(!quiet)
{
cat("sumw1=", sumw1, " sumw2=", sumw2, " sumw3=", sumw3, "\n")
}
sumw1xcTxc<-sum(w1*xcTxc, na.rm=TRUE)
sumw1xcT1<-sum(w1*xcT1, na.rm=TRUE)
sumw1xcT1.sq<-sum(w1*xcT1^2, na.rm=TRUE)
sumw1xnTxn<-sum(w1*xnTxn, na.rm=TRUE)
sumw1xnT1<-sum(w1*xnT1, na.rm=TRUE)
sumw1xnT1.sq<-sum(w1*xnT1^2, na.rm=TRUE)
sumw2xcTxc<-sum(w2*xcTxc, na.rm=TRUE)
sumw2xcT1<-sum(w2*xcT1, na.rm=TRUE)
sumw2xcT1.sq<-sum(w2*xcT1^2, na.rm=TRUE)
sumw2xnTxn<-sum(w2*xnTxn, na.rm=TRUE)
sumw2xnT1<-sum(w2*xnT1, na.rm=TRUE)
sumw2xnT1.sq<-sum(w2*xnT1^2, na.rm=TRUE)
sumw3xcTxc<-sum(w3*xcTxc, na.rm=TRUE)
sumw3xcT1<-sum(w3*xcT1, na.rm=TRUE)
sumw3xcT1.sq<-sum(w3*xcT1^2, na.rm=TRUE)
sumw3xnTxn<-sum(w3*xnTxn, na.rm=TRUE)
sumw3xnT1<-sum(w3*xnT1, na.rm=TRUE)
sumw3xnT1.sq<-sum(w3*xnT1^2, na.rm=TRUE)
piVec.new<-(c(sumw1, sumw2)+const.b1.b2-1)/(nGenes+sumb-3)
names(piVec.new)<-c("pi.1", "pi.2")
thetaIni<-Psi.m[-c(1:2)]
nTheta<-length(thetaIni)
lower<-rep(-Inf, nTheta)
upper<-rep(Inf, nTheta)
res<-optim(par=thetaIni, fn=negQFunc.v,
nc=nc, nn=nn, n=n, xcMat=xcMat, xnMat=xnMat,
xcTxc=xcTxc, xnTxn=xnTxn,
sumw1=sumw1, sumw2=sumw2, sumw3=sumw3,
sumw1xcTxc=sumw1xcTxc, sumw1xcT1=sumw1xcT1, sumw1xcT1.sq=sumw1xcT1.sq,
sumw1xnTxn=sumw1xnTxn, sumw1xnT1=sumw1xnT1, sumw1xnT1.sq=sumw1xnT1.sq,
sumw2xcTxc=sumw2xcTxc, sumw2xcT1=sumw2xcT1, sumw2xcT1.sq=sumw2xcT1.sq,
sumw2xnTxn=sumw2xnTxn, sumw2xnT1=sumw2xnT1, sumw2xnT1.sq=sumw2xnT1.sq,
sumw3xcTxc=sumw3xcTxc, sumw3xcT1=sumw3xcT1, sumw3xcT1.sq=sumw3xcT1.sq,
sumw3xnTxn=sumw3xnTxn, sumw3xnT1=sumw3xnT1, sumw3xnT1.sq=sumw3xnT1.sq,
method = "L-BFGS-B",
lower = lower, upper = upper)
if(res$convergence)
{
cat("convergence=", res$convergence, "\n")
cat("message=", res$message, "\n")
cat("number of calls to fn and gr>>\n"); print(res$counts); cat("\n");
cat("thetaIni>>\n"); print(thetaIni); cat("\n");
}
negQ<-res$value
theta<-res$par
Psi.m.new<-c(piVec.new, theta)
names(Psi.m.new)<-paraNamesRP
if(!quiet)
{
cat("-negQ = ", -negQ, "\n")
cat("Psi.m.new>>\n"); print(round(Psi.m.new,3)); cat("\n")
}
err.len<-sum(abs(Psi.m.new-Psi.m)<eps, na.rm=TRUE)
if(err.len==length(Psi.m))
{
Psi.m<-Psi.m.new
break
}
Psi.m<-Psi.m.new
loop<-loop+1
if(loop>ITMAX)
{ cat("*********************\n")
cat("Warning! Number of looping (= ", loop,
") exceeds ITMAX (=", ITMAX, ")!\n")
cat("EM algorithm did not converge!\n")
cat("*********************\n")
break
}
}
if(!quiet)
{ cat("Total iterations for EM algorithm=", loop, "\n") }
memMat<-t(apply(X, 1, wiFun.v, Psi.m=Psi.m, memSubjects=memSubjects, eps=eps))
colnames(memMat)<-c("cluster1", "cluster2", "cluster3")
rownames(memMat)<-geneNames
memGenes<-apply(memMat, 1, maxPosFun.v, maxFlag=maxFlag,
thrshPostProb=thrshPostProb)
sumw1<-mean(memMat[,1], na.rm=TRUE)
sumw2<-mean(memMat[,2], na.rm=TRUE)
sumw3<-mean(memMat[,3], na.rm=TRUE)
sumw1xcTxc<-sum(w1*xcTxc, na.rm=TRUE)
sumw1xcT1<-sum(w1*xcT1, na.rm=TRUE)
sumw1xcT1.sq<-sum(w1*xcT1^2, na.rm=TRUE)
sumw1xnTxn<-sum(w1*xnTxn, na.rm=TRUE)
sumw1xnT1<-sum(w1*xnT1, na.rm=TRUE)
sumw1xnT1.sq<-sum(w1*xnT1^2, na.rm=TRUE)
sumw2xcTxc<-sum(w2*xcTxc, na.rm=TRUE)
sumw2xcT1<-sum(w2*xcT1, na.rm=TRUE)
sumw2xcT1.sq<-sum(w2*xcT1^2, na.rm=TRUE)
sumw2xnTxn<-sum(w2*xnTxn, na.rm=TRUE)
sumw2xnT1<-sum(w2*xnT1, na.rm=TRUE)
sumw2xnT1.sq<-sum(w2*xnT1^2, na.rm=TRUE)
sumw3xcTxc<-sum(w3*xcTxc, na.rm=TRUE)
sumw3xcT1<-sum(w3*xcT1, na.rm=TRUE)
sumw3xcT1.sq<-sum(w3*xcT1^2, na.rm=TRUE)
sumw3xnTxn<-sum(w3*xnTxn, na.rm=TRUE)
sumw3xnT1<-sum(w3*xnT1, na.rm=TRUE)
sumw3xnT1.sq<-sum(w3*xnT1^2, na.rm=TRUE)
llkh<- -negQFunc.v(Psi.m[-c(1:2)], X, nc, nn, n,
xcMat, xnMat, xcTxc, xnTxn,
sumw1, sumw2, sumw3,
sumw1xcTxc, sumw1xcT1, sumw1xcT1.sq,
sumw1xnTxn, sumw1xnT1, sumw1xnT1.sq,
sumw2xcTxc, sumw2xcT1, sumw2xcT1.sq,
sumw2xnTxn, sumw2xnT1, sumw2xnT1.sq,
sumw3xcTxc, sumw3xcT1, sumw3xcT1.sq,
sumw3xnTxn, sumw3xnT1, sumw3xnT1.sq)
memGenes2<-rep(1, nGenes)
memGenes2[memGenes==2]<-0
if(sum(is.null(geneNames), na.rm=TRUE))
{
geneNames<-paste("gene", 1:nGenes, sep="")
}
names(Psi.m)<-paraNamesRP
names(memGenes)<-geneNames
names(memGenes2)<-geneNames
invisible(list(para=Psi.m, llkh=llkh, memGenes=memGenes,
memGenes2=memGenes2, memMat=memMat, loop=loop))
}
maxPosFun.v<-function(x, maxFlag=TRUE, thrshPostProb=0.50)
{
if(maxFlag)
{ pos<-which(x==max(x, na.rm=TRUE))
pos<-pos[1]
return(pos)
}
pos<-which(x>thrshPostProb)
len<-length(pos)
if(len==0)
{
return(2)
}
pos<-which(x==max(x, na.rm=TRUE))
return(pos)
} |
test_that("test ceteris_paribus_cutoff with plot", {
cpc <- ceteris_paribus_cutoff(fobject, subgroup = "African_American")
expect_equal(cpc$subgroup, "African_American")
expect_equal(cpc$cumulated, FALSE)
metrics_used <- (unique(as.character(cpc$cutoff_data$metric)))
expect_equal(sort(metrics_used), sort(fairness_check_metrics()))
cpc <- ceteris_paribus_cutoff(fobject, subgroup = "African_American", cumulated = TRUE)
expect_equal(cpc$cumulated, TRUE)
cpc <- ceteris_paribus_cutoff(fobject, subgroup = "African_American", cumulated = TRUE)
plt <- plot(cpc)
expect_equal(plt$labels$subtitle, "Based on African_American and cumulated")
expect_s3_class(plt, "ggplot")
cpc <- ceteris_paribus_cutoff(fobject, subgroup = "African_American")
plt <- plot(cpc)
expect_s3_class(plt, "ggplot")
}) |
yadirAuth <- function(Login = getOption("ryandexdirect.user"), NewUser = FALSE, TokenPath = yadirTokenPath()) {
if (!dir.exists(TokenPath)) {
dir.create(TokenPath)
}
if ( is.null(Login) && ! is.null(getOption("ryandexdirect.user") ) ) {
Login <- getOption("ryandexdirect.user")
}
TokenPath <- gsub(pattern = '\\\\',
replacement = '/',
x = TokenPath)
if (NewUser == FALSE && file.exists(paste0(paste0(TokenPath, "/", Login, ".yadirAuth.RData")))) {
message("Load token from ", paste0(paste0(TokenPath, "/", Login, ".yadirAuth.RData")))
load(paste0(TokenPath, "/", Login, ".yadirAuth.RData"))
if (as.numeric(token$expire_at - Sys.time(), units = "days") < 30) {
message("Auto refresh token")
token_raw <- httr::POST("https://oauth.yandex.ru/token", body = list(grant_type="refresh_token",
refresh_token = token$refresh_token,
client_id = "365a2d0a675c462d90ac145d4f5948cc",
client_secret = "f2074f4c312449fab9681942edaa5360"), encode = "form")
if (!is.null(token$error_description)) {
stop(paste0(token$error, ": ", token$error_description))
}
token <- content(token_raw)
token$expire_at <- Sys.time() + as.numeric(token$expires_in, units = "secs")
class(token) <- "yadir_token"
save(token, file = paste0(TokenPath, "/", Login, ".yadirAuth.RData"))
message("Token saved in file ", paste0(TokenPath, "/", Login, ".yadirAuth.RData"))
return(token)
} else {
message("Token expire in ", round(as.numeric(token$expire_at - Sys.time(), units = "days"), 0), " days")
return(token)
}
}
if ( ! interactive() ) {
stop(paste0("Function yadirAuth does not find the ", Login, ".yadirAuth.RData file in ",TokenPath,". You must run this script in interactive mode in RStudio or RGui and go through the authorization process for create ", Login,".yadirAuth.RData file, and using him between R session in batch mode. For more details see realise https://github.com/selesnow/ryandexdirect/releases/tag/3.0.0. For more details about R modes see https://www.r-bloggers.com/batch-processing-vs-interactive-sessions/") )
} else {
browseURL(paste0("https://oauth.yandex.ru/authorize?response_type=code&client_id=365a2d0a675c462d90ac145d4f5948cc&redirect_uri=https://selesnow.github.io/ryandexdirect/getToken/get_code.html&force_confirm=", as.integer(NewUser), ifelse(is.null(Login), "", paste0("&login_hint=", Login))))
temp_code <- readline(prompt = "Enter authorize code:")
while(nchar(temp_code) != 7) {
message("The verification code entered by you is not 7-digit, try to enter the code again.")
temp_code <- readline(prompt = "Enter authorize code:")
}
}
token_raw <- httr::POST("https://oauth.yandex.ru/token", body = list(grant_type="authorization_code",
code = temp_code,
client_id = "365a2d0a675c462d90ac145d4f5948cc",
client_secret = "f2074f4c312449fab9681942edaa5360"), encode = "form")
token <- content(token_raw)
token$expire_at <- Sys.time() + as.numeric(token$expires_in, units = "secs")
class(token) <- "yadir_token"
if (!is.null(token$error_description)) {
stop(paste0(token$error, ": ", token$error_description))
}
message("Do you want save API credential in local file (",paste0(TokenPath, "/", Login, ".yadirAuth.RData"),"), for use it between R sessions?")
ans <- readline("y / n (recomedation - y): ")
if ( tolower(ans) %in% c("y", "yes", "ok", "save") ) {
save(token, file = paste0(TokenPath, "/", Login, ".yadirAuth.RData"))
message("Token saved in file ", paste0(TokenPath, "/", Login, ".yadirAuth.RData"))
}
return(token)
} |
Vlocate<-function(Ldat,EQ,vel,
distwt = 10,
lambdareg =100,
REG = TRUE,
WTS = TRUE,
STOPPING = TRUE,
tolx = 0.1,
toly = 0.1,
tolz = 0.5,
RESMAX = c(.4,.5),
maxITER = c(7, 5, 7, 4),
PLOT=FALSE)
{
BADSOLUTION = FALSE
Ksolutions = vector(mode="list")
MLAT = median(Ldat$lat)
MLON = median(Ldat$lon)
proj = GEOmap::setPROJ(type=2, LAT0=MLAT, LON0=MLON)
XY = GEOmap::GLOB.XY(Ldat$lat, Ldat$lon, proj)
Ldat$x = XY$x
Ldat$y = XY$y
if(is.na(EQ$lat))
{
cat("Guess at first arrival station", sep="\n" )
wstart = which.min(Ldat$sec)
EQ = list(lat=Ldat$lat[wstart], lon=Ldat$lon[wstart], z=6, t=Ldat$sec[wstart]-1)
EQ$x = XY$x[wstart]
EQ$y = XY$y[wstart]
}else{
eqxy = GEOmap::GLOB.XY(EQ$lat, EQ$lon, proj)
EQ$x = eqxy$x
EQ$y = eqxy$y
}
if( !checkLOCATEinput(Ldat, EQ) ) { cat(' Vlocate has bad/missing data.\n') ; return(NULL) }
AQ = XYlocate(Ldat,EQ,vel,
maxITER = maxITER[1],
distwt = distwt,
lambdareg =lambdareg ,
FIXZ =TRUE,
REG = REG,
WTS = WTS,
STOPPING = STOPPING,
RESMAX = c(0,0),
tolx = tolx,
toly = toly ,
tolz = tolz, PLOT=PLOT)
Ksolutions[[1]] = AQ$guesses
if(is.null(AQ$EQ))
{
return(list(EQ=NULL ))
}
eqLL = GEOmap::XY.GLOB(AQ$EQ$x, AQ$EQ$y, proj)
AQ$EQ$lat = eqLL$lat
AQ$EQ$lon = eqLL$lon
EQ = AQ$EQ
AQ = XYlocate(Ldat,EQ,vel,
maxITER = maxITER[2],
distwt = distwt,
lambdareg =lambdareg ,
FIXZ =FALSE,
REG = REG,
WTS = WTS,
STOPPING = STOPPING,
RESMAX =RESMAX ,
tolx = tolx,
toly = toly ,
tolz = tolz, PLOT=PLOT)
Ksolutions[[2]] = AQ$guesses
if(is.null(AQ$EQ))
{
return(list(EQ=NULL ))
}
eqLL = GEOmap::XY.GLOB(AQ$EQ$x, AQ$EQ$y, proj)
AQ$EQ$lat = eqLL$lat
AQ$EQ$lon = eqLL$lon
EQ = AQ$EQ
AQ = XYlocate(Ldat,EQ,vel,
maxITER = maxITER[3],
distwt = distwt,
lambdareg =lambdareg ,
FIXZ = FALSE,
REG = REG,
WTS = WTS,
STOPPING = STOPPING,
RESMAX = c(0,0),
tolx = tolx,
toly = toly ,
tolz = tolz, PLOT=PLOT)
Ksolutions[[3]] = AQ$guesses
if(is.null(AQ$EQ))
{
return(list(EQ=NULL ))
}
eqLL = GEOmap::XY.GLOB(AQ$EQ$x, AQ$EQ$y, proj)
AQ$EQ$lat = eqLL$lat
AQ$EQ$lon = eqLL$lon
EQ = AQ$EQ
KITS = AQ$its
if(BADSOLUTION)
{
AQ = XYlocate(Ldat,EQ,vel,
maxITER = maxITER[4],
distwt = distwt,
lambdareg =2*lambdareg ,
FIXZ=FALSE,
REG = REG,
WTS = WTS,
STOPPING = STOPPING,
tolx = tolx,
toly = toly ,
tolz = tolz, PLOT=PLOT)
eqLL = GEOmap::XY.GLOB(AQ$EQ$x, AQ$EQ$y, proj)
AQ$EQ$lat = eqLL$lat
AQ$EQ$lon = eqLL$lon
EQ = AQ$EQ
Ksolutions[[4]] = AQ$guesses
}
wup = eqwrapup(Ldat, EQ, vel, distwt=distwt, verbose=FALSE)
return(list(EQ=EQ, ERR=wup, its=AQ$its , proj=proj, Ksolutions=Ksolutions ))
} |
add_colored_str <- function(text = "",
color = c(51, 122, 183),
alpha = 255,
bgcolor = NULL,
bgalpha = 51,
fontsize = 1,
bold = FALSE,
it = FALSE
) {
fontsize = suppressWarnings(as.numeric(fontsize))
if (is.null(text) | (!is.character(text))) {
text <- ""
warning("text should be a string")
}
colorrgb = mtb_color2rgb( color, alpha, outalpha=TRUE )
colorrgb[4] = colorrgb[4]/255
colorstr <- paste( "color: rgba(", paste(colorrgb, collapse = ","),"); ",sep="")
if( !is.null(bgcolor) ){
bgcolorrgb = mtb_color2rgb( bgcolor, bgalpha, outalpha=TRUE )
bgcolorrgb[4] = bgcolorrgb[4]/255
bgcolorstr <- paste( "background-color: rgba(", paste(bgcolorrgb, collapse = ","),"); ",sep="")
}else{bgcolorstr=""}
if( !(length(fontsize)==1) | is.na(fontsize) ){
fontsize <- 1
} else {
fontsize <- min(max(fontsize, 0.5), 5)
}
fontwtstr = ifelse(bold==TRUE, "font-weight: bold;", "")
fontwtstr = paste(fontwtstr, ifelse(it==TRUE, "font-style: italic;", ""), sep="")
text <- mtb_cleanupstr(text)
htmltools::tags$span(
htmltools::HTML(text),
style = paste(
bgcolorstr, colorstr, fontwtstr,
"margin: 3px auto 3px auto; font-size:", paste(floor(100 * fontsize), "%", sep=""),sep=""
)
)
}
add_colored_box = function(
type = 'blue-default',
label = '',
info = 'place details here using info option',
bgcolor = NULL,
width = 0.5,
halign = 'c',
top = FALSE
){
if( is.null(type) ){type="blue-default"}else{type=as.character(type)}
if( !is.character(type)|length(type)!=1){ type="blue-default"; warning('Type should be a string.')}
if( is.null(label) ){label=""}else{label=as.character(label)}
if( !is.character(label)|length(label)!=1){ label=""; warning('Label should be a string.')}
if( is.null(info) ){info = ""}else{info=as.character(info)}
if( !is.character(info)|length(info)!=1 ){ info = ""; warning('Info should be a string.')}
info = mtb_cleanupstr(info)
width = as.numeric(width)
if( length(width)!=1 ){ width = 0.5 }
if( width > 0.95 ){ width = 0.95 }
if( width < 0.25 ){ width = 0.25 }
if( is.null(halign) ){ halign=''; warning('halign should be either c or r')}
if( !is.character(halign) | !(halign=='c'|halign=='r') ){ halign=''; warning('halign should be either c or r')}
if( halign == 'r' ){ width = min(width, 0.35); alignstr = 'position: absolute; right:0;'}else{alignstr=''}
if( !is.logical(top) ){ top = FALSE; warning('top should be either TRUE or FALSE') }
if( top ){ alignstr = paste(alignstr, 'top:0;')}
lsttype = c('blue-default', 'blue-info','gray-info','green-reminder', 'yellow-warning','red-stop')
typestr = c('&
if(length(typestr)==0){typestr=''}
if(label==""){ label = c('Note', 'Note', 'Note', 'Reminder', 'Warning', 'Stop')[lsttype==type]; if(length(label)==0) label="" }
if( is.null(bgcolor) ){
bgcolor = rbind( c(51, 122, 183), c(60,110,230), rep(110,3), c(110,230,60), c(230,200,60), c(230,110,60))[lsttype==type, ]
if(length(bgcolor)==0){bgcolor=rep(120,3)}
}
if( !is.null(bgcolor) ){ bgcolorrgb = mtb_color2rgb( bgcolor )[1:3] }else{bgcolorrgb=rep(120,3)}
htmltools::tags$div(htmltools::HTML(paste("<b> <span style='font-size:110%;'>", typestr, "</span><i>", label, "</i></b>", htmltools::tags$div(htmltools::HTML(info), style='background-color: rgba(255,255,255,0.75); padding: 10px 20px 10px 20px; border-radius: 0px 0px 5px 0px;'))),
style=paste( alignstr, "background-color: rgba(", paste(bgcolorrgb, collapse=','), ", 0.2); margin: 3px auto 3px auto; width:", paste(floor(100*width),"%", sep=""), "; border-width: 0px 0px 0px 3px; border-color: rgba(", paste(bgcolorrgb, collapse=','), ",1); border-style: solid; padding: 1px 1px 1px 0px; border-radius: 0px 0px 5px 0px;"))
} |
expected <- eval(parse(text="c(1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3)"));
test(id=0, code={
argv <- eval(parse(text="list(list(c(TRUE, TRUE), c(TRUE, TRUE), c(TRUE, TRUE), c(TRUE, TRUE), c(1, 2, 3)), TRUE, TRUE)"));
.Internal(unlist(argv[[1]], argv[[2]], argv[[3]]));
}, o=expected); |
test_that("X_valid_user functions work as expected", {
expect_true(is.character(check_valid_user(21)))
expect_true(is.character(check_valid_user(21)))
expect_true(is.character(check_valid_user(NA_character_)))
expect_true(is.character(check_valid_user("")))
expect_true(is.character(check_valid_user(NULL)))
expect_true(is.character(check_valid_user("notauser")))
expect_true(check_valid_user("uQiRzpo4DXghDmr9QzzfQu27cmVRsG"))
expect_false(test_valid_user(21))
expect_false(test_valid_user(NA_character_))
expect_false(test_valid_user(""))
expect_false(test_valid_user(NULL))
expect_false(test_valid_user("notauser"))
expect_true(test_valid_user("uQiRzpo4DXghDmr9QzzfQu27cmVRsG"))
expect_false(
test_valid_user(
c("uQiRzpo4DXghDmr9QzzfQu27cmVRsG", "uQiRzpo4DXghDmr9QzzfQu27cmVRsG")
)
)
expect_error(assert_valid_user(21))
expect_error(assert_valid_user(NA_character_))
expect_error(assert_valid_user(""))
expect_error(assert_valid_user(NULL))
expect_error(assert_valid_user("notauser"))
expect_error(
assert_valid_user(
c("uQiRzpo4DXghDmr9QzzfQu27cmVRsG", "uQiRzpo4DXghDmr9QzzfQu27cmVRsG")
)
)
})
test_that("X_valid_group functions work as expected", {
expect_true(is.character(check_valid_group(21)))
expect_true(is.character(check_valid_group(21)))
expect_true(is.character(check_valid_group(NA_character_)))
expect_true(is.character(check_valid_group("")))
expect_true(is.character(check_valid_group(NULL)))
expect_true(is.character(check_valid_group("notagroup")))
expect_true(check_valid_group("gznej3rKEVAvPUxu9vvNnqpmZpokzF"))
expect_false(test_valid_group(21))
expect_false(test_valid_group(NA_character_))
expect_false(test_valid_group(""))
expect_false(test_valid_group(NULL))
expect_false(test_valid_group("notagroup"))
expect_true(test_valid_group("gznej3rKEVAvPUxu9vvNnqpmZpokzF"))
expect_false(
test_valid_group(
c("gznej3rKEVAvPUxu9vvNnqpmZpokzF", "gznej3rKEVAvPUxu9vvNnqpmZpokzF")
)
)
expect_error(assert_valid_group(21))
expect_error(assert_valid_group(NA_character_))
expect_error(assert_valid_group(""))
expect_error(assert_valid_group(NULL))
expect_error(assert_valid_group("notagroup"))
expect_error(
assert_valid_group(
c("gznej3rKEVAvPUxu9vvNnqpmZpokzF", "gznej3rKEVAvPUxu9vvNnqpmZpokzF")
)
)
}) |
suppressMessages(library("circular"))
angles <- circular(c(70, 80, 80, 85, 85, 90, 95, 95, 5, 5, 15, 55, 55, 65, 105, 120, 340), units="degrees", template="geographics")
group <- factor(c(rep("control", 8), rep("experimental", 9)))
homeDir <- 40
xn <- angles
wallraff.test(xn, group)
wallraff.test(xn, group, ref=homeDir)
wallraff.test(xn, as.factor(group), ref=homeDir)
xl <- split(xn, group)
wallraff.test(xl, ref=homeDir)
wallraff.test(xl)
xl <- split(xn, group)
names(xl) <- NULL
wallraff.test(xl)
xd <- data.frame(group=group, angles=angles)
wallraff.test(angles ~ group, xd) |
vif.rma <- function(x, btt, intercept=FALSE, table=FALSE, digits, ...) {
mstyle <- .get.mstyle("crayon" %in% .packages())
.chkclass(class(x), must="rma", notav=c("robust.rma", "rma.uni.selmodel"))
vif.loc <- TRUE
vif.scale <- TRUE
if (inherits(x, "rma.ls")) {
if (x$int.only)
vif.loc <- FALSE
if (x$Z.int.only)
vif.scale <- FALSE
if (!vif.loc && !vif.scale)
stop(mstyle$stop("VIF not applicable for intercept-only models."))
} else {
if (x$int.only)
stop(mstyle$stop("VIF not applicable for intercept-only models."))
}
if (missing(digits)) {
digits <- .get.digits(xdigits=x$digits, dmiss=TRUE)
} else {
digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE)
}
ddd <- list(...)
.chkdots(ddd, c("att"))
if (vif.loc) {
vcov <- vcov(x)
if (inherits(x, "rma.ls"))
vcov <- vcov$beta
if (missing(btt) || is.null(btt)) {
if (x$intercept && !intercept)
vcov <- vcov[-1,-1,drop=FALSE]
rb <- cov2cor(vcov)
vif <- try(diag(chol2inv(chol(rb))), silent=TRUE)
if (inherits(vif, "try-error"))
stop(mstyle$stop("Cannot invert var-cov matrix to compute VIFs."))
if (x$intercept && !intercept && table)
vif <- c(NA, vif)
if (table) {
tab <- coef(summary(x))
if (inherits(x, "rma.ls"))
tab <- tab$beta
vif <- cbind(tab, vif=vif, sif=sqrt(vif))
} else {
names(vif) <- rownames(vcov)
}
res <- list(vif=vif, digits=digits, table=table, test=x$test)
} else {
btt <- .set.btt(btt, x$p, x$int.incl, colnames(x$X))
if (x$intercept && !intercept) {
vcov <- vcov[-1,-1,drop=FALSE]
btt <- btt - 1
if (any(btt < 1))
warning(mstyle$warning("Intercept term not included in GVIF computation."), call.=FALSE)
btt <- btt[btt > 0]
}
m <- length(btt)
rb <- cov2cor(vcov)
detrv <- det(rb)
gvif <- det(as.matrix(rb[btt,btt])) * det(as.matrix(rb[-btt,-btt])) / detrv
gsif <- gvif^(1/(2*m))
if (x$intercept && !intercept)
btt <- btt + 1
res <- list(gvif=gvif, gsif=gsif, btt=btt, m=m, digits=digits)
}
class(res) <- "vif.rma"
} else {
res <- NULL
}
if (inherits(x, "rma.ls") && vif.scale) {
res.loc <- res
vcov <- vcov(x)$alpha
if (is.null(ddd$att)) {
if (x$Z.intercept && !intercept)
vcov <- vcov[-1,-1,drop=FALSE]
rb <- cov2cor(vcov)
vif <- try(diag(chol2inv(chol(rb))), silent=TRUE)
if (inherits(vif, "try-error"))
stop(mstyle$stop("Cannot invert var-cov matrix to compute VIFs for the scale model."))
if (x$Z.intercept && !intercept && table)
vif <- c(NA, vif)
if (table) {
tab <- coef(summary(x))$alpha
vif <- cbind(tab, vif=vif, sif=sqrt(vif))
} else {
names(vif) <- rownames(vcov)
}
res.scale <- list(vif=vif, digits=digits, table=table, test=x$test)
} else {
att <- .set.btt(ddd$att, x$q, x$Z.int.incl, colnames(x$Z))
if (x$Z.intercept && !intercept) {
vcov <- vcov[-1,-1,drop=FALSE]
att <- att - 1
if (any(att < 1))
warning(mstyle$warning("Intercept term not included in GVIF computation."), call.=FALSE)
att <- att[att > 0]
}
m <- length(att)
rb <- cov2cor(vcov)
detrv <- det(rb)
gvif <- det(as.matrix(rb[att,att])) * det(as.matrix(rb[-att,-att])) / detrv
gsif <- gvif^(1/(2*m))
if (x$Z.intercept && !intercept)
att <- att + 1
res.scale <- list(gvif=gvif, gsif=gsif, btt=att, m=m, digits=digits)
}
class(res.scale) <- "vif.rma"
if (vif.loc) {
if (vif.scale) {
res <- list(beta=res.loc, alpha=res.scale)
} else {
res <- res.loc
}
} else {
res <- res.scale
}
}
return(res)
} |
IRT.RISE <- function( mod_p, mod_np, use_probs=TRUE )
{
p1 <- IRT.irfprob(mod_p)
probs <- aperm( p1, perm=c(3,1,2) )
pi.k <- attr(p1, "prob.theta")
n.ik <- IRT.expectedCounts(mod_np)
n.ik <- aperm(n.ik, perm=c(3,1,2,4))
p2 <- aperm( IRT.irfprob(mod_np), perm=c(3,1,2) )
if (use_probs){
n.ik[,,,1] <- p2
}
fmod <- CDM::IRT_RMSD_calc_rmsd( n.ik=n.ik, pi.k=pi.k, probs=probs )
res <- fmod$RMSD
return(res)
} |
tidy_add_reference_rows <- function(
x, no_reference_row = NULL,
model = tidy_get_model(x),
quiet = FALSE
) {
if (is.null(model)) {
stop("'model' is not provided. You need to pass it or to use 'tidy_and_attach()'.")
}
if (inherits(model, "aov")) {
return(x %>% dplyr::mutate(reference_row = NA))
}
if ("header_row" %in% names(x)) {
stop("`tidy_add_reference_rows()` cannot be applied after `tidy_add_header_rows().`")
}
if ("reference_row" %in% names(x)) {
if (!quiet)
cli_alert_danger("{.code tidy_add_reference_rows()} has already been applied. x has been returned unchanged.")
return(x)
}
.attributes <- .save_attributes(x)
if ("label" %in% names(x)) {
if (!quiet)
cli_alert_info(paste0(
"tidy_add_reference_rows() has been applied after tidy_add_term_labels().\n",
"You should consider applying tidy_add_reference_rows() first."
))
}
if ("n_obs" %in% names(x)) {
if (!quiet)
cli_alert_info(paste0(
"{.code tidy_add_reference_rows()} has been applied after {.code tidy_add_n()}.\n",
"You should consider applying {.code tidy_add_reference_rows()} first."
))
}
if (!"contrasts" %in% names(x)) {
x <- x %>% tidy_add_contrasts(model = model)
}
no_reference_row <- .select_to_varnames({{ no_reference_row }}, var_info = x, arg_name = "no_reference_row")
terms_levels <- model_list_terms_levels(model)
if (!is.null(terms_levels))
terms_levels <- terms_levels %>%
dplyr::filter(
.data$variable %in% unique(stats::na.omit(x$variable)) &
!.data$variable %in% no_reference_row
)
if (is.null(terms_levels) || nrow(terms_levels) == 0)
return(
x %>%
dplyr::mutate(reference_row = NA) %>%
tidy_attach_model(model)
)
terms_levels <- terms_levels %>%
dplyr::group_by(.data$variable) %>%
dplyr::mutate(rank = 1:dplyr::n())
has_var_label <- "var_label" %in% names(x)
if (!has_var_label) {
x$var_label <- NA_character_
}
x <- x %>%
dplyr::mutate(
reference_row = dplyr::if_else(
.data$variable %in% unique(terms_levels$variable),
FALSE,
NA
),
rank = 1:dplyr::n()
)
group <- NULL
if ("component" %in% names(x))
group <- "component"
if ("y.level" %in% names(x) & inherits(model, "multinom"))
group <- "y.level"
if (!is.null(group)) x$.group_by_var <- x[[group]]
else x$.group_by_var <- ""
ref_rows <- terms_levels %>%
dplyr::filter(.data$reference) %>%
dplyr::mutate(reference_row = TRUE) %>%
dplyr::select(.data$term, .data$variable, .data$label, .data$reference_row, .data$rank)
if (!"label" %in% names(x))
ref_rows <- ref_rows %>% dplyr::select(-.data$label)
tmp <- x
if (!"effect" %in% names(x))
tmp$effect <- NA_character_
var_summary <- tmp %>%
dplyr::group_by(.data$.group_by_var, .data$variable) %>%
dplyr::summarise(
var_class = dplyr::first(.data$var_class),
var_type = dplyr::first(.data$var_type),
var_label = dplyr::first(.data$var_label),
var_nlevels = dplyr::first(.data$var_nlevels),
effect = dplyr::first(.data$effect),
contrasts = dplyr::first(.data$contrasts),
contrasts_type = dplyr::first(.data$contrasts_type),
var_min_rank = min(.data$rank),
var_max_rank = min(.data$rank),
.groups = "drop_last"
)
ref_rows <- ref_rows %>%
dplyr::left_join(
var_summary,
by = "variable"
) %>%
dplyr::mutate(
rank = .data$var_min_rank -1.25 + .data$rank,
rank = dplyr::if_else(
.data$rank > .data$var_max_rank,
.data$rank - .5,
.data$rank
)
) %>%
dplyr::select(-.data$var_min_rank, -.data$var_max_rank)
if (!"effect" %in% names(x))
ref_rows <- ref_rows %>% dplyr::select(-.data$effect)
x <- x %>%
dplyr::bind_rows(ref_rows)
if (!is.null(group))
x[[group]] <- x$.group_by_var
x <- x %>% dplyr::select(-.data$.group_by_var)
if (!has_var_label) {
x <- x %>% dplyr::select(-.data$var_label)
}
x %>%
dplyr::arrange(.data$rank) %>%
dplyr::select(-.data$rank) %>%
tidy_attach_model(model = model, .attributes = .attributes)
} |
context("Building Query Parameters")
test_that("Query parameter types can be assigned appropriately",
{
params <- list(foo="hi",
bar=1L,
baz=FALSE,
quux=1.1,
dt=as.Date('2019-01-01'))
types <- AzureKusto:::build_param_list(params)
expect_equal(
types,
"(foo:string, bar:int, baz:bool, quux:real, dt:datetime)")
})
test_that("build_request_body without params gives expected result",
{
body <- AzureKusto:::build_request_body("Samples", "StormEvents | take 5")
expect_null(body$properties$Parameters)
expect_equal(body$db, "Samples")
expect_equal(body$csl, "StormEvents | take 5")
})
test_that("build_request_body with params gives expected result",
{
params <- list(
foo="hi",
bar=1L,
baz=FALSE,
quux=1.1
)
body <- AzureKusto:::build_request_body("Samples",
"MyFunction(foo, bar, baz, quux)",
query_parameters=params)
expect_equal(body$properties$Parameters$foo, "hi")
expect_equal(body$db, "Samples")
expect_equal(body$csl, "declare query_parameters (foo:string, bar:int, baz:bool, quux:real) ; MyFunction(foo, bar, baz, quux)")
}) |
library(wkb)
library(sp)
context("Conversion from WKB LineString representations")
l1 <- data.frame(x = c(1, 2), y = c(3, 2))
l2 <- data.frame(x = c(1,2), y = c(1, 1.5))
Sl1 <- Line(l1)
Sl2 <- Line(l2)
S1 <- Lines(list(Sl1), ID = "1")
S2 <- Lines(list(Sl2), ID = "2")
refobj <- SpatialLines(list(S1, S2))
refwkb <- I(list(
as.raw(c(0x01, 0x02, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0xf0, 0x3f, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x08, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40)),
as.raw(c(0x01, 0x02, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0xf0, 0x3f, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0xf0, 0x3f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xf8, 0x3f))
))
refwkbbe <- I(list(
as.raw(c(0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x02, 0x3f, 0xf0,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x08, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00)),
as.raw(c(0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x02, 0x3f, 0xf0,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x3f, 0xf0, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x3f, 0xf8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00))
))
test_that("little-endian WKB LineString representation converts to SpatialLines object", {
obj <- readWKB(refwkb)
expect_equal(obj, refobj)
})
test_that("big-endian WKB LineString representation converts to SpatialLines object", {
obj <- readWKB(refwkbbe)
expect_equal(obj, refobj)
}) |
ce.simnormal.Init.MeanVar.BIC <-
function(N, init.locs, data, h, L0, L, M, Melite, eps, a, b, var.init){
new_para <- rbind(init.locs, rep(var.init, N))
k<-0
repeat
{
k<-k+1
ch<-array(0,dim=c(M,N+2))
ch[,1]<-c(1)
ch[,N+2]<-c(L+1)
ch[,(2:(N+1))]<-apply(new_para,2,normrand,L0,L,M)
ch<-t(apply(ch,1,sort))
LL.full <- apply(ch, 1, llhood.MeanVarNormal, data, h)
BIC.val <- apply(as.data.frame(LL.full), 1, BIC.MeanVarNormal, N, L)
ch <- cbind(ch, LL.full, BIC.val)
ch <- ch[order(ch[, (N + 4)], decreasing = FALSE), ]
melitesmpl<-ch[1:Melite,]
new_par_n<-array(0,dim=c(2,N))
new_par_n[1,]<-apply(as.matrix(melitesmpl[,(2:(N+1))]),2,mean)
new_par_n[2,]<-apply(as.matrix(melitesmpl[,(2:(N+1))]),2,sd)
new_para[1,] <- a*new_par_n[1,] + (1-a)*new_para[1,]
new_para[2,] <- b*new_par_n[2,] + (1-b)*new_para[2,]
mad<-apply(as.matrix(melitesmpl[,(2:(N+1))]),2,mad)
if(max(mad)<=eps){break}
}
return(list(loci=ch[1,(1:(N+2))], BIC.Val = melitesmpl[1, (N + 4)][[1]], LogLike = melitesmpl[1, (N + 3)][[1]]))
} |
read_bib2tib = function(file){
if (!is.character(file)) {
stop("Invalid file path: Non-character supplied.", call. = FALSE)
}
if (grepl("http://|https://|www.", file)) {
tryCatch(
{ GET(file) },
error = function(e) {
stop("Invalid URL: File is not readable.", call. = FALSE)
}
)
} else {
if (as.numeric(file.access(file, mode = 4)) != 0) {
stop("Invalid file path: File is not readable.", call. = FALSE)
}
}
bib = readLines(file,encoding = "UTF-8")
bib <- str_replace_all(bib, "[^[:graph:]]", " ")
temp = grep("^( {0,})@Comment{jabref-meta: databaseType:bibtex;}( {0,})$",bib,perl =T)
if(!rlang::is_empty(temp)){
warning('This file is exported from "JabRef" and we will automatically remove the "JabRef" tag.
tag: @Comment{jabref-meta: databaseType:bibtex;}')
bib[temp] = ""
}
rm(temp)
from <- which(str_extract(bib, "[:graph:]") == "@")
to <- c(from[-1] - 1, length(bib))
if (!length(from)) {
return(NULL)
}
itemslist <- mapply(
function(x, y) return(bib[x:y]),
x = from,
y = to - 1,
SIMPLIFY = FALSE
)
item_tib = tibble::enframe(itemslist,name = "sitenum", value = "value")
item_tib$rawchar = NA
item_tib$rawchar = map(item_tib$value, function(x){
str_trim(x,side = 'both')
})
item_tib$rawchar = map(item_tib$rawchar, function(x){
gsub('[ \t]{2,}',' ',x)
})
len = map(item_tib$rawchar, function(x){
max(grep('\\}',x))
})
dupl = sum(sapply(len, is.infinite))
if (dupl > 0) {
message("Some BibTeX entries may have been dropped.
The results may not be correct.
Check the. Bib file to make sure that each entry starts with '@' and ends with '}'")
}
item_tib$rawchar = map2(item_tib$rawchar, len, function(x,y){
x[1:y]
})
item_tib$rawchar = map(item_tib$rawchar, function(x){
gsub('(^,?)(.*?)(,?$)','\\2',x)
})
item_tib$rawchar = map(item_tib$rawchar, function(x){
x[which(x !='')]
})
len = map(item_tib$rawchar, function(x){
max(grep('\\}',x))
})
item_tib$rawchar = map2(item_tib$rawchar, len, function(x,y){
x[y]=gsub('\\}$','',x[y]);x
})
item_tib$rawchar = map(item_tib$rawchar, function(x){
x[which(x !='')]
})
item_tib$keybib = NA
item_tib$keybib = purrr::map_chr(item_tib$rawchar,
function(x) {
temp = str_extract(x[1], "(?<=\\{)[^,]+")
str_trim(temp, side = "both")
}
)
temp = NULL
temp = unlist(map(item_tib$keybib, function(x)!is.na(x)))
temp = item_tib$keybib[temp]
if(any(duplicated(temp))){
s = paste0(temp[duplicated(temp)],collapse = '\n')
s = paste0('Duplicate key in uploaded Bib file\n',s)
warning(s)
}
rm(temp)
item_tib$typebib = NA
item_tib$typebib = purrr::map_chr(item_tib$rawchar,
function(x) {
temp = str_extract(x[1], "(?<=@)[^\\{]+")
str_trim(temp, side = "both")
})
item_tib$typebib = purrr::map_chr(item_tib$typebib , toupper)
items = map(item_tib$rawchar,function(x){
str_split(x[-1],'[ ]*=[ ]*', n = 2, simplify = T)
})
items = map(items,function(x){
x[,1] = toupper(x[,1]);x
})
items = map(items,function(x){
for(i in seq_len(1)){
x[,2] = gsub('^(\\")(.*?)(\\")$',"\\2",x[,2])
}
x
})
items = map(items,function(x){
for(i in seq_len(5)){
x[,2] = gsub('^(\\{)(.*?)(\\})$',"\\2",x[,2])
}
x
})
categories_field = unlist(map(items,function(x)x[,1]))
for (ii in categories_field) {
item_tib[[ii]] = NA
item_tib[[ii]] = map_chr(items,function(x){
temp = which(x[,1] == ii)
ifelse(!is_empty(temp),x[temp[1],2], NA)
})
}
item_tib$AUTHOR = gsub('([\u4e00-\u9fa5])(\\}){1,}([ ]{1,})(and)([ ]{1,})(\\{){1,}([\u4e00-\u9fa5])','\\1 and \\7', item_tib$AUTHOR)
return(item_tib)
} |
context("PredictionClust")
test_that("Construction", {
task = tsk("usarrests")
p = PredictionClust$new(row_ids = task$row_ids, partition = rep.int(1L, nrow(task$data())))
expect_prediction(p)
expect_prediction_clust(p)
expect_prediction(c(p, p))
})
test_that("Internally constructed Prediction", {
task = tsk("usarrests")
lrn = mlr_learners$get("clust.featureless")
lrn$param_set$values = list(num_clusters = 1L)
p = lrn$train(task)$predict(task)
expect_prediction(p)
expect_prediction_clust(p)
}) |
score.univregs <- function(target, dataset, test) {
univariateModels <- list();
dm <- dim(dataset)
rows <- dm[1]
cols <- dm[2]
if ( identical(test, testIndBeta) ) {
mod <- Rfast::score.betaregs(target, dataset, logged = TRUE )
univariateModels$stat <- mod[, 1]
univariateModels$pvalue <- mod[, 2]
} else if ( identical(test, testIndNB) ) {
mod <- Rfast::score.negbinregs(target, dataset, logged = TRUE )
univariateModels$stat <- mod[, 1]
univariateModels$pvalue <- mod[, 2]
} else if ( identical(test, testIndPois) ) {
mod <- Rfast::score.glms(target, dataset, oiko = "poisson", logged = TRUE )
univariateModels$stat <- mod[, 1]
univariateModels$pvalue <- mod[, 2]
} else if ( identical(test, testIndLogistic) ) {
mod <- Rfast::score.glms(target, dataset, oiko = "binomial", logged = TRUE)
univariateModels$stat <- mod[, 1]
univariateModels$pvalue <- mod[, 2]
} else if ( identical(test, testIndMultinom) ) {
mod <- Rfast::score.multinomregs(target, dataset, logged = TRUE)
univariateModels$stat <- mod[, 1]
univariateModels$pvalue <- mod[, 2]
} else if ( identical(test, testIndGamma) ) {
mod <- Rfast::score.gammaregs(target, dataset, logged = TRUE)
univariateModels$stat <- mod[, 1]
univariateModels$pvalue <- mod[, 2]
} else if ( identical(test, censIndWR) ) {
mod <- Rfast::score.weibregs(target, dataset, logged = TRUE )
univariateModels$stat <- mod[, 1]
univariateModels$pvalue <- mod[, 2]
} else univariateModels <- NULL
if ( !is.null(univariateModels) ) {
id <- which( is.na(univariateModels$stat) )
univariateModels$stat[id] <- 0
univariateModels$pvalue[id] <- 1
}
univariateModels
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.