code
stringlengths
1
13.8M
model.frame.gls <- function(object, ...) model.frame(formula(object), nlme::getData(object),...) model.frame.lme <- function(object, ...) object$data model.matrix.aovlist <- function(object, ...) stop(sQuote("predicted.means"), " does not support objects of class ", sQuote("aovlist")) model.matrix.gls <- function(object, ...) model.matrix(terms(object), data = nlme::getData(object), ...) model.matrix.lme <- function(object, ...) model.matrix(terms(object), data = model.frame(object), ...) terms.gls <- function(object, ...) terms(model.frame(object),...) terms.lme <- function (object, ...) { v <- object$terms if (is.null(v)) stop("no terms component") return(v) }
library(qgisprocess) qgis_configure() has_qgis() if (is_macos()) qgis_detect_macos() if (is_windows()) qgis_detect_windows() if (has_qgis()) qgis_path() if (has_qgis()) qgis_version() if (has_qgis()) cat(qgis_run()$stdout) if (has_qgis()) cat(qgis_run()$stderr) if (has_qgis()) qgis_providers() if (has_qgis()) qgis_algorithms() if (has_qgis()) qgis_algorithms()$algorithm
antoch.test=function(formula, data, chngpt.var, plot.=FALSE) { DNAME = deparse(substitute(data)) dat.1=data[order(data[[chngpt.var]]),] tmp=model.frame(formula, dat.1) y=tmp[[1]] fit=keepWarnings(glm(formula, data=dat.1, family="binomial")) if(length(fit$warning)!=0) { return (NA) } else { fit=fit$value } n = nrow(dat.1) mu.hat = expit(predict(fit)) T. = sapply (1:(n-1), function(k) { S.k.0 = sum((y-mu.hat)[1:k]) V.hat = mean(mu.hat*(1-mu.hat)) * k * (n-k) / n abs(S.k.0)/sqrt(V.hat) }) if(plot.) plot(T., type="b") T.max=max(T.) names(T.max)="Maximum statisticsZ" loglogn=log(log(n)) T1=sqrt(2*loglogn)*T.max - 2*loglogn - 1/2*log(loglogn) + 1/2*log(pi) p.value=1-exp(-2*exp(-T1)) res=list() res$statistic=T.max res$p.value=p.value res$k=which.max(T.) res$parameter=NULL res$conf.int=NULL res$estimate=NULL res$null.value=NULL res$alternative="two-sided" res$method="Antoch Change Point Test" res$data.name=DNAME class(res)=c("htest",class(res)) res }
knitr::opts_chunk$set( comment = " collapse = TRUE, cache = TRUE ) options( rlang_trace_top_env = rlang::current_env(), rlang_backtrace_on_error = "none" )
compare_biclusters <- function(bc1, bc2) { if(inherits(bc1, "biclustermd") & inherits(bc2, "biclustermd")) { P1 <- part_matrix_to_vector(bc1$P) P2 <- part_matrix_to_vector(bc2$P) Q1 <- part_matrix_to_vector(bc1$Q) Q2 <- part_matrix_to_vector(bc2$Q) P_similarity <- c( "Rand" = RRand(P1, P2)[[1]], "HA" = RRand(P1, P2)[[2]], "Jaccard" = jaccard_similarity(P1, P2) ) Q_similarity <- c( "Rand" = RRand(Q1, Q2)[[1]], "HA" = RRand(Q1, Q2)[[2]], "Jaccard" = jaccard_similarity(Q1, Q2) ) list( "P Similarity" = P_similarity, "Q Similarity" = Q_similarity ) } else if(inherits(bc1, "matrix") & inherits(bc2, "matrix")) { c( "Rand" = RRand(part_matrix_to_vector(bc1), part_matrix_to_vector(bc2))[[1]], "HA" = RRand(part_matrix_to_vector(bc1), part_matrix_to_vector(bc2))[[2]], "Jaccard" = jaccard_similarity(part_matrix_to_vector(bc1), part_matrix_to_vector(bc2)) ) } }
vaggregate <- function(.value, .group, .fun, ..., .default = NULL, .n = nlevels(.group)) { if (!is.integer(.group)) { if (is.list(.group)) { .group <- id(.group) } else { .group <- id(list(.group)) } } if (is.null(.default)) { .default <- .fun(.value[0], ...) } fun <- function(i) { if (length(i) == 0) return(.default) .fun(.value[i], ...) } indices <- split_indices(.group, .n) vapply(indices, fun, .default) } nlevels <- function(x) { n <- attr(x, "n") if (!is.null(n)) n else max(x) }
bigquestmotif<-function(mat,ns,nd,sd,alpha) { size<-4 nr<-nrow(mat) ques<- rep(FALSE,ncol(mat)) pers<- rep(FALSE,nrow(mat)) for(i in 1:ns) { ri<-sample(1:nr,1) logr<-rep(TRUE,nrow(mat)) logr[ri]<-FALSE for(j in 1:nd) { D<-sample(1:nr,sd,prob=logr) gri<-mat[ri,] griD<-c(D,ri) cS<-rowSums(t(mat[griD,])==gri) gij<-cS==length(griD) if(sum(gij)>= max(sum(ques),2)) { rri<-mat[ri,gij] rS<-colSums(t(mat[,gij])==rri) rij<-rS==sum(gij) if((sum(rij)>=(alpha*nr)) & ((sum(gij)*sum(rij))>size) ) { ques<-gij pers<-rij size <- sum(ques)*sum(pers) } } } } erg<-list(pers,ques) erg } questmotif<-function(mat,ns,nd,sd,alpha,number) { MYCALL <- match.call() x<-matrix(FALSE,nrow=nrow(mat),ncol=number) y<-matrix(FALSE,nrow=number,ncol=ncol(mat)) matstore<-mat Stop <- FALSE logr<-rep(TRUE,nrow(mat)) for(i in 1:number) { erg<-bigquestmotif(mat,ns,nd,sd,alpha) if(sum(erg[[1]])==0) { Stop <- TRUE break } else{ x[logr,i]<-erg[[1]] y[i,]<-erg[[2]] logr[logr][erg[[1]]]<-FALSE mat<-matstore[logr,] if(sum(logr)<(sd+1)) { Stop <- TRUE break } } } if(Stop) {return(BiclustResult(as.list(MYCALL),as.matrix(x[,1:(i-1)]),as.matrix(y[1:(i-1),]),(i-1),list(0))) } else{ return(BiclustResult(as.list(MYCALL),as.matrix(x),as.matrix(y),i,list(0))) } }
mcnby_ni_pp <- function(N,DEL0,N10,N01) { ppost<- ppost_singleobs(N,DEL0,N10,N01) cat(" n =",N," del0 =",DEL0," n10 =",N10," n01 =",N01, "\n", "PPOST =", ppost) }
plot_glucose <- function(df) { ggplot2::ggplot(df) + ggplot2::geom_point(data = df, ggplot2::aes(x = df$time_of_day, y = df$glucose), col = "orange", cex = 0.5) + ggplot2::geom_line(data = df, ggplot2::aes(x = df$time_of_day, y = df$glucose), col = "orange") + ggplot2::facet_grid(df$Date ~ ., scale = "fixed") + ggplot2::theme_bw() + ggplot2::ylab("Glucose Level") + ggplot2::xlab("Time of Day") + ggplot2::labs(title = "CGM data for Participant") }
source("setup.R") expect_error(BEDMatrix("NOT_FOUND"), "File not found\\.") expect_error(BEDMatrix("test-BEDMatrix.R")) for (path in c(paste0(extdataPath, "/example"), paste0(extdataPath, "/example.bed"))) { bed <- suppressMessages(BEDMatrix(path = path)) expect_equal(nrow(bed), nrow(raw)) expect_message(BEDMatrix(path = path), "Extracting number of samples and rownames from example\\.fam\\.\\.\\.") expect_error(BEDMatrix(path = standalonePath), "standalone.fam not found\\. Provide number of samples \\(n\\)\\.") bed <- suppressMessages(BEDMatrix(path = path)) expect_equal(rownames(bed), rownames(raw)) expect_message(BEDMatrix(path = path), "Extracting number of samples and rownames from example\\.fam\\.\\.\\.") bed <- suppressMessages(BEDMatrix(path = path)) expect_equal(ncol(bed), ncol(raw)) expect_message(BEDMatrix(path = path), "Extracting number of variants and colnames from example\\.bim\\.\\.\\.") expect_error(BEDMatrix(path = standalonePath), "standalone.fam not found\\. Provide number of samples \\(n\\)\\.") bed <- suppressMessages(BEDMatrix(path = path)) expect_equal(colnames(bed), colnames(raw)) expect_message(BEDMatrix(path = path), "Extracting number of variants and colnames from example\\.bim\\.\\.\\.") bed <- BEDMatrix(path = path, n = nrow(raw), p = ncol(raw)) expect_equal(dimnames(bed), list(NULL, NULL)) bed <- BEDMatrix(path = standalonePath, n = 3, p = 6) expect_equal(dimnames(bed), list(NULL, NULL)) expect_error(BEDMatrix(path = path, n = 10, p = 5), "n or p does not match the dimensions of the file\\.") }
NULL predictFailureModel = function(model, newdata) { lrn = model$learner type = lrn$type ptype = lrn$predict.type n = nrow(newdata) if (type == "classif") { levs = model$task.desc$class.levels res = if (ptype == "response") { factor(rep(NA_character_, n), levels = levs) } else { matrix(NA_real_, nrow = n, ncol = length(levs), dimnames = list(NULL, levs)) } } else if (type == "regr") { res = if (ptype == "response") { rep(NA_real_, n) } else { matrix(NA_real_, nrow = n, ncol = 2L, dimnames = list(NULL, c("response", "se"))) } } else if (type == "surv") { if (ptype == "response") { res = rep.int(NA_real_, n) } else { stop("Predict type 'prob' for survival not yet supported") } } else if (type == "costsens") { levs = model$task.desc$class.levels res = factor(rep(NA_character_, n), levels = levs) } else if (type == "cluster") { res = rep(NA_character_, n) } return(res) } print.FailureModel = function(x, ...) { print.WrappedModel(x) catf("Training failed: %s", getFailureModelMsg(x)) } isFailureModel.FailureModel = function(model) { return(TRUE) } getFailureModelMsg.FailureModel = function(model) { return(as.character(model$learner.model)) } getFailureModelDump.FailureModel = function(model) { return(model$dump) }
testthat::teardown({ unlink("iris.tsv.gz") unlink("iris2.tsv.gz") unlink("iris3.tsv.gz") } )
aftreg <- function (formula = formula(data), data = parent.frame(), na.action = getOption("na.action"), dist = "weibull", init, shape = 0, id, param = c("lifeAcc", "lifeExp"), control = list(eps = 1e-8, maxiter = 20, trace = FALSE), singular.ok = TRUE, model = FALSE, x = FALSE, y = TRUE) { param <- param[1] if (param == "survreg"){ param <- "lifeExp" warning("'survreg' is a deprecated argument value") }else if (param == "canonical"){ param <- "lifeExp" warning("'canonical' is a deprecated argument value") }else{ if (!(param %in% c("lifeAcc", "lifeExp"))){ stop(paste(param, "is not a valid parametrization.")) } } pfixed <- any(shape > 0) call <- match.call() m <- match.call(expand.dots = FALSE) temp <- c("", "formula", "data", "id", "na.action") m <- m[match(temp, names(m), nomatch = 0)] special <- "strata" Terms <- if (missing(data)) terms(formula, special) else terms(formula, special, data = data) m$formula <- Terms m[[1]] <- as.name("model.frame") m <- eval(m, parent.frame()) Y <- model.extract(m, "response") if (!inherits(Y, "Surv")) stop("Response must be a survival object") if (missing(id)) id <- 1:nrow(Y) else id <- model.extract(m, "id") offset <- attr(Terms, "offset") tt <- length(offset) offset <- if (tt == 0) rep(0, nrow(Y)) else if (tt == 1) m[[offset]] else { ff <- m[[offset[1]]] for (i in 2:tt) ff <- ff + m[[offset[i]]] ff } attr(Terms, "intercept") <- 1 strats <- attr(Terms, "specials")$strata dropx <- NULL if (length(strats)) { temp <- survival::untangle.specials(Terms, "strata", 1) dropx <- c(dropx, temp$terms) if (length(temp$vars) == 1) strata.keep <- m[[temp$vars]] else strata.keep <- strata(m[, temp$vars], shortlabel = TRUE) strats <- as.numeric(strata.keep) } if (length(dropx)) newTerms <- Terms[-dropx] else newTerms <- Terms X <- model.matrix(newTerms, m) assign <- lapply(survival::attrassign(X, newTerms)[-1], function(x) x - 1) X <- X[, -1, drop = FALSE] ncov <- NCOL(X) if (ncov){ if (length(dropx)){ covars <- names(m)[-c(1, (dropx + 1))] }else{ covars <- names(m)[-1] } isF <- logical(length(covars)) for (i in 1:length(covars)){ if (length(dropx)){ if (is.logical(m[, -(dropx + 1)][, (i + 1)])){ m[, -(dropx + 1)][, (i + 1)] <- as.factor(m[, -(dropx + 1)][, (i + 1)]) } isF[i] <- is.factor(m[, -(dropx + 1)][, (i + 1)]) }else{ if (is.logical(m[, (i + 1)])){ m[, (i + 1)] <- as.factor(m[, (i + 1)]) } isF[i] <- is.factor(m[, (i + 1)]) } } if (ant.fak <- sum(isF)){ levels <- list() index <- 0 for ( i in 1:length(covars) ){ if (isF[i]){ index <- index + 1 if (length(dropx)){ levels[[i]] <- levels(m[, -(dropx + 1)][, (i + 1)]) }else{ levels[[i]] <- levels(m[, (i + 1)]) } }else{ levels[[i]] <- NULL } } }else{ levels <- NULL } } nullModel <- ncov == 0 type <- attr(Y, "type") if (type != "right" && type != "counting") stop(paste("This model doesn't support \"", type, "\" survival data", sep = "")) if (NCOL(Y) == 2){ Y <- cbind(numeric(NROW(Y)), Y) } n.events <- sum(Y[, 3] != 0) if (n.events == 0) stop("No events; no sense in continuing!") if (missing(init)) init <- NULL if (is.list(control)){ if (is.null(control$eps)) control$eps <- 1e-8 if (is.null(control$maxiter)) control$maxiter <- 10 if (is.null(control$trace)) control$trace <- FALSE }else{ stop("control must be a list") } fit <- aftreg.fit(X, Y, dist, param, strats, offset, init, shape, id, control, pfixed) if (!is.null(fit$overlap)) return(fit$overlap) if (ncov){ fit$linear.predictors <- offset + X %*% fit$coefficients[1:ncov] fit$means <- apply(X, 2, mean) }else{ fit$linear.predictors <- offset fit$means <- NULL } if (!fit$fail){ fit$fail <- NULL }else{ out <- paste("Singular hessian; suspicious variable No. ", as.character(fit$fail), ":\n", names(coefficients)[fit$fail], " = ", as.character(fit$value), "\nTry running with fixed shape", sep = "") stop(out) } fit$convergence <- as.logical(fit$conver) fit$conver <- NULL if (is.character(fit)) { fit <- list(fail = fit) class(fit) <- "mlreg" } else if (is.null(fit$fail)){ if (!is.null(fit$coef) && any(is.na(fit$coef))) { vars <- (1:length(fit$coef))[is.na(fit$coef)] msg <- paste("X matrix deemed to be singular; variable", paste(vars, collapse = " ")) if (singular.ok) warning(msg) else stop(msg) } fit$n <- nrow(Y) fit$terms <- Terms fit$assign <- assign if (FALSE){ if (length(fit$coef) && is.null(fit$wald.test)) { nabeta <- !is.na(fit$coef) if (is.null(init)) temp <- fit$coef[nabeta] else temp <- (fit$coef - init)[nabeta] } } na.action <- attr(m, "na.action") if (length(na.action)) fit$na.action <- na.action if (model) fit$model <- m if (x) { fit$x <- X if (length(strats)) fit$strata <- strata.keep } if (y) fit$y <- Y } s.wght <- (Y[, 2] - Y[, 1]) fit$ttr <- sum(s.wght) if (ncov){ fit$isF <- isF fit$covars <- covars fit$w.means <- list() for (i in 1:length(fit$covars)){ nam <- fit$covars[i] col.m <- which(nam == names(m)) if (isF[i]){ n.lev <- length(levels[[i]]) fit$w.means[[i]] <- numeric(n.lev) for (j in 1:n.lev){ who <- m[, col.m] == levels[[i]][j] fit$w.means[[i]][j] <- sum( s.wght[who] ) / fit$ttr } }else{ fit$w.means[[i]] <- weighted.mean(m[, col.m], s.wght) } } fit$means <- colMeans(X) } fit$ttr <- sum(s.wght) fit$levels <- levels fit$formula <- formula(Terms) fit$call <- call fit$dist <- dist fit$n.events <- n.events class(fit) <- c("aftreg", "phreg") fit$param <- param if (dist == "gompertz"){ baselineMean <- numeric(fit$n.strata) for (j in 1:fit$n.strata){ scale <- exp(fit$coef[ncov + 2 * j - 1]) shape <- exp(fit$coef[ncov + 2 * j]) baselineMean[j] <- mean(rgompertz(100000, param = "canonical", scale = scale, shape = shape)) } fit$baselineMean <- baselineMean }else{ fit$baselineMean <- NULL } fit$nullModel <- nullModel fit$pfixed <- pfixed if (pfixed) fit$shape <- shape fit }
snpgrid2 <- function(nsnp, x, y, theta){ stopifnot(nargs() == 4, nsnp > 0, length(x) == length(y)) out <- .Fortran("snpgrid", n=as.integer(nsnp), x=as.integer(x), y=as.integer(y), theta=as.double(theta), k = double(1)) return(out[["k"]]) } snpgrid <- function(X, theta){ stopifnot(nargs() == 2) nid <- nrow(X) nsnp <- ncol(X) DK <- matrix(0, ncol=nid, nrow=nid) for (i in 1:(nid-1)){ DK[i,i] <- snpgrid2(nsnp, X[i,], X[i,], theta) for (j in (i+1):nid){ xy <- snpgrid2(nsnp, X[i,], X[j,], theta) DK[i,j] <- DK[j,i] <- xy } } DK[nid, nid] <- snpgrid2(nsnp, X[nid,], X[nid,], theta) return(DK) }
if (getRversion() >= "2.15.1") globalVariables(c(".")) "jagst" "lc50"
test_that("registerAppOptions works as expected", { se <- SummarizedExperiment() se <- registerAppOptions(se, factor.maxlevels=10, color.maxlevels=20) expect_identical(getAppOption("factor.maxlevels", se), 10) expect_identical(getAppOption("color.maxlevels", se), 20) expect_null(getAppOption("random", se)) expect_identical(getAppOption("random", se, default="A"), "A") expect_identical(getAllAppOptions(se), list(factor.maxlevels=10, color.maxlevels=20)) se <- registerAppOptions(se, list(factor.maxlevels=100, color.maxlevels=24)) expect_identical(getAppOption("factor.maxlevels", se), 100) expect_identical(getAppOption("color.maxlevels", se), 24) }) test_that("registerAppOptions properly appends", { se <- SummarizedExperiment() se <- registerAppOptions(se, factor.maxlevels=50) se <- registerAppOptions(se, color.maxlevels=20) se <- registerAppOptions(se, other.maxlevels=10) expect_identical(getAppOption("factor.maxlevels", se), 50) expect_identical(getAppOption("color.maxlevels", se), 20) expect_identical(getAppOption("other.maxlevels", se), 10) se <- registerAppOptions(se, color.maxlevels=10, factor.maxlevels=100) expect_identical(getAppOption("color.maxlevels", se), 10) expect_identical(getAppOption("factor.maxlevels", se), 100) expect_identical(getAppOption("other.maxlevels", se), 10) se2 <- registerAppOptions(se) expect_identical(se2, se) se2 <- registerAppOptions(se, list()) expect_identical(unname(getAllAppOptions(se2)), list()) }) test_that("registerAppOptions works with the globals", { se <- SummarizedExperiment() se <- registerAppOptions(se, factor.maxlevels=10, color.maxlevels=20) .activateAppOptionRegistry(se) expect_identical(getAppOption("factor.maxlevels"), 10) expect_identical(getAppOption("color.maxlevels"), 20) expect_null(getAppOption("random")) expect_identical(getAppOption("random", default="A"), "A") expect_identical(getAllAppOptions(), list(factor.maxlevels=10, color.maxlevels=20)) .deactivateAppOptionRegistry() expect_null(getAppOption("factor.maxlevels")) expect_null(getAppOption("color.maxlevels")) expect_identical(unname(getAllAppOptions()), list()) }) test_that("registerAppOptions works with iSEEOptions for back-compatibility's sake", { expect_null(getAppOption("panel.color")) expect_warning(iSEEOptions$set(panel.color="A")) expect_identical(getAppOption("panel.color"), "A") iSEEOptions$restore() })
tabExpand <- function(x) { srcref <- attr(x, "srcref") if (is.null(srcref)) start <- 0L else start <- srcref[5L] - 1L .Call(doTabExpand, x, start) } Rd2txt_options <- local({ opts <- list(width = 80L, minIndent = 10L, extraIndent = 4L, sectionIndent = 5L, sectionExtra = 2L, itemBullet = "* ", enumFormat = function(n) sprintf("%d. ", n), showURLs = FALSE, code_quote = TRUE, underline_titles = TRUE) function(...) { args <- list(...) if (!length(args)) return(opts) else { if (is.list(args[[1L]])) args <- args[[1L]] result <- opts[names(args)] opts[names(args)] <<- args invisible(result) } } }) transformMethod <- function(i, blocks, Rdfile) { editblock <- function(block, newtext) list(structure(newtext, Rd_tag = attr(block, "Rd_tag"), srcref = attr(block, "srcref"))) chars <- NULL char <- NULL j <- NULL findOpen <- function(i) { j <- i char <- NULL while (j < length(blocks)) { j <- j + 1L tag <- attr(blocks[[j]], "Rd_tag") if (tag == "RCODE") { chars <- strsplit(blocks[[j]], "")[[1]] parens <- cumsum( (chars == "(") - (chars == ")") ) if (any(parens > 0)) { char <- which.max(parens > 0) break } } } if (is.null(char)) stopRd(block, Rdfile, sprintf("no parenthesis following %s", blocktag)) chars <<- chars char <<- char j <<- j } findComma <- function(i) { j <- i level <- 1L char <- NULL while (j < length(blocks)) { j <- j + 1L tag <- attr(blocks[[j]], "Rd_tag") if (tag == "RCODE") { chars <- strsplit(blocks[[j]], "")[[1]] parens <- level + cumsum( (chars == "(") - (chars == ")") ) if (any(parens == 1 & chars == ",")) { char <- which.max(parens == 1 & chars == ",") break } if (any(parens == 0)) break level <- parens[length(parens)] } } if (is.null(char)) stopRd(block, Rdfile, sprintf("no comma in argument list following %s", blocktag)) chars <<- chars char <<- char j <<- j } findClose <- function(i) { j <- i level <- 1L char <- NULL while (j < length(blocks)) { j <- j + 1L tag <- attr(blocks[[j]], "Rd_tag") if (tag == "RCODE") { chars <- strsplit(blocks[[j]], "")[[1]] parens <- level + cumsum( (chars == "(") - (chars == ")") ) if (any(parens == 0)) { char <- which(parens == 0)[1] break } level <- parens[length(parens)] } } if (is.null(char)) stopRd(block, Rdfile, sprintf("no closing parenthesis following %s", blocktag)) chars <<- chars char <<- char j <<- j } rewriteBlocks <- function() c(blocks[seq_len(j-1L)], editblock(blocks[[j]], paste(chars[seq_len(char)], collapse="")), if (char < length(chars)) editblock(blocks[[j]], paste(chars[-seq_len(char)], collapse="")), if (j < length(blocks)) blocks[-seq_len(j)]) deleteBlanks <- function() { while (char < length(chars)) { if (chars[char + 1] == " ") { char <- char + 1 chars[char] <- "" } else break } char <<- char chars <<- chars } block <- blocks[[i]] blocktag <- attr(block, "Rd_tag") srcref <- attr(block, "srcref") class <- block[[2L]] generic <- as.character(block[[1L]]) default <- as.character(class) == "default" if(generic %in% c("[", "[[", "$")) { findOpen(i) chars[char] <- "" blocks <- c(blocks[seq_len(j-1L)], editblock(blocks[[j]], paste(chars[seq_len(char)], collapse="")), if (char < length(chars)) editblock(blocks[[j]], paste(chars[-seq_len(char)], collapse="")), if (j < length(blocks)) blocks[-seq_len(j)]) findComma(j) chars[char] <- generic deleteBlanks() blocks <- rewriteBlocks() findClose(j) chars[char] <- switch(generic, "[" = "]", "[[" = "]]", "$" = "") blocks[j] <- editblock(blocks[[j]], paste(chars, collapse="")) methodtype <- if (grepl("<-", blocks[[j]])) "replacement " else "" } else if(grepl(sprintf("^%s$", paste(c("\\+", "\\-", "\\*", "\\/", "\\^", "<=?", ">=?", "!=?", "==", "\\&", "\\|", "!", "\\%[[:alnum:][:punct:]]*\\%"), collapse = "|")), generic)) { findOpen(i) if (generic != "!") { chars[char] <- "" blocks <- rewriteBlocks() findComma(j) chars[char] <- paste0(" ", generic, " ") deleteBlanks() blocks <- rewriteBlocks() } else { chars[char] <- "!" blocks <- rewriteBlocks() } findClose(j) chars[char] <- "" blocks[j] <- editblock(blocks[[j]], paste(chars, collapse="")) methodtype <- "" } else { findOpen(i) chars[char] <- paste0(generic, "(") blocks <- rewriteBlocks() findClose(j) methodtype <- if (grepl("<-", blocks[[j]])) "replacement " else "" } if (blocktag == "\\S4method") { blocks <- if(nchar(class) > 50L) { cl <- paste0("'", as.character(class), "'") if(nchar(cl) > 70L) { cl <- strsplit(cl, ",")[[1L]] ncl <- length(cl) cl[-ncl] <- paste0(cl[-ncl], ",") cl[-1L] <- paste0(" ", cl[-1L]) } cl <- paste(" c( blocks[seq_len(i-1L)], list(structure(paste0(" Rd_tag="RCODE", srcref=srcref)), list(structure(cl, Rd_tag="TEXT", srcref=srcref)), list(structure("\n", Rd_tag="RCODE", srcref=srcref)), blocks[-seq_len(i)] ) } else c( blocks[seq_len(i-1L)], list(structure(paste0(" Rd_tag="RCODE", srcref=srcref)), class, list(structure("'\n", Rd_tag="RCODE", srcref=srcref)), blocks[-seq_len(i)] ) } else if (default) blocks <- c( blocks[seq_len(i-1)], list(structure(paste0(" Rd_tag="RCODE", srcref=srcref)), blocks[-seq_len(i)] ) else blocks <- c( blocks[seq_len(i-1)], list(structure(paste0(" Rd_tag="RCODE", srcref=srcref)), class, list(structure("'\n", Rd_tag="RCODE", srcref=srcref)), blocks[-seq_len(i)] ) blocks } Rd2txt <- function(Rd, out="", package = "", defines=.Platform$OS.type, stages = "render", outputEncoding = "", fragment = FALSE, options, ...) { buffer <- character() linestart <- TRUE indent <- 0L wrapping <- TRUE keepFirstIndent <- FALSE dropBlank <- FALSE haveBlanks <- 0L enumItem <- 0L inEqn <- FALSE sectionLevel <- 0 saveOpts <- Rd2txt_options() on.exit(Rd2txt_options(saveOpts)) if (!missing(options)) Rd2txt_options(options) WIDTH <- 0.9 * Rd2txt_options()$width HDR_WIDTH <- WIDTH - 2L startCapture <- function() { save <- list(buffer=buffer, linestart=linestart, indent=indent, wrapping=wrapping, keepFirstIndent=keepFirstIndent, dropBlank=dropBlank, haveBlanks=haveBlanks, enumItem=enumItem, inEqn=inEqn) buffer <<- character() linestart <<- TRUE indent <<- 0L wrapping <<- TRUE keepFirstIndent <<- FALSE dropBlank <<- FALSE haveBlanks <<- 0L enumItem <<- 0L inEqn <<- FALSE save } endCapture <- function(saved) { result <- buffer buffer <<- saved$buffer linestart <<- saved$linestart indent <<- saved$indent wrapping <<- saved$wrapping keepFirstIndent <<- saved$keepFirstIndent dropBlank <<- saved$dropBlank haveBlanks <<- saved$haveBlanks enumItem <<- saved$enumItem inEqn <<- saved$inEqn result } WriteLines <- if(outputEncoding == "UTF-8" || (outputEncoding == "" && l10n_info()[["UTF-8"]])) { function(x, con, outputEncoding, ...) writeLines(x, con, useBytes = TRUE, ...) } else { function(x, con, outputEncoding, ...) { x <- iconv(x, "UTF-8", outputEncoding, sub="byte", mark=FALSE) writeLines(x, con, useBytes = TRUE, ...) } } frmt <- function(x, justify="left", width = 0L) { justify <- match.arg(justify, c("left", "right", "centre", "none")) w <- sum(nchar(x, "width")) if(w < width && justify != "none") { excess <- width - w left <- right <- 0L if(justify == "left") right <- excess else if(justify == "right") left <- excess else if(justify == "centre") { left <- excess %/% 2 right <- excess-left } paste(c(rep_len(" ", left), x, rep_len(" ", right)), collapse = "") } else x } wrap <- function(doWrap = TRUE) if (doWrap != wrapping) { flushBuffer(); wrapping <<- doWrap } putw <- function(...) { wrap(TRUE); put(...) } putf <- function(...) { wrap(FALSE); put(...) } put <- function(...) { txt <- paste0(..., collapse="") trail <- grepl("\n$", txt) txt <- strsplit(txt, "\n", fixed = TRUE)[[1L]] if (dropBlank) { while(length(txt) && grepl("^[[:space:]]*$", txt[1L])) txt <- txt[-1L] if (length(txt)) dropBlank <<- FALSE } if(!length(txt)) return() haveBlanks <<- 0 if (linestart) buffer <<- c(buffer, txt) else if (length(buffer)) { buffer[length(buffer)] <<- paste0(buffer[length(buffer)], txt[1L]) buffer <<- c(buffer, txt[-1L]) } else buffer <<- txt linestart <<- trail } flushBuffer <- function() { if (!length(buffer)) return() if (wrapping) { if (keepFirstIndent) { first <- nchar(psub1("[^ ].*", "", buffer[1L])) keepFirstIndent <<- FALSE } else first <- indent buffer <<- c(buffer, "") blankLines <- grep("^[[:space:]]*$", buffer) result <- character() start <- 1L for (i in seq_along(blankLines)) { if (blankLines[i] > start) { result <- c(result, strwrap(paste(buffer[start:(blankLines[i]-1L)], collapse = " "), WIDTH, indent = first, exdent = indent)) first <- indent } result <- c(result, "") start <- blankLines[i]+1L } buffer <<- result[-length(result)] empty <- !nzchar(buffer) drop <- empty & c(FALSE, empty[-length(empty)]) buffer <<- buffer[!drop] } else { if (keepFirstIndent) { if (length(buffer) > 1L) buffer[-1L] <<- paste0(strrep(" ", indent), buffer[-1L]) keepFirstIndent <- FALSE } else buffer <<- paste0(strrep(" ", indent), buffer) } if (length(buffer)) WriteLines(buffer, con, outputEncoding) buffer <<- character() linestart <<- TRUE } encoding <- "unknown" li <- l10n_info() use_fancy_quotes <- (.Platform$OS.type == "windows" && ((li$codepage >= 1250 && li$codepage <= 1258) || li$codepage == 874)) || li[["UTF-8"]] if(!identical(getOption("useFancyQuotes"), FALSE) && use_fancy_quotes) { LSQM <- intToUtf8("0x2018") RSQM <- intToUtf8("0x2019") LDQM <- intToUtf8("0x201c") RDQM <- intToUtf8("0x201d") } else { LSQM <- RSQM <- "'" LDQM <- RDQM <- '"' } trim <- function(x) { x <- psub1("^\\s*", "", x) psub1("\\s*$", "", x) } txt_header <- function(header) { opts <- Rd2txt_options() header <- paste(strwrap(header, WIDTH), collapse="\n") if (opts$underline_titles) { letters <- strsplit(header, "", fixed = TRUE)[[1L]] isaln <- grep("[[:alnum:]]", letters) letters[isaln] <- paste0("_\b", letters[isaln]) paste(letters, collapse = "") } else header } unescape <- function(x) { x <- psub("(---|--)", "-", x) x } writeCode <- function(x) { txt <- as.character(x) if(inEqn) txt <- txt_eqn(txt) txt <- fsub('"\\{"', '"{"', txt) txt <- fsub("\\dots", "...", txt) put(txt) } blankLine <- function(n = 1L) { while (length(buffer) && grepl("^[[:blank:]]*$", buffer[length(buffer)])) buffer <<- buffer[-length(buffer)] flushBuffer() if (n > haveBlanks) { buffer <<- rep_len("", n - haveBlanks) flushBuffer() haveBlanks <<- n } dropBlank <<- TRUE } txt_eqn <- function(x) { x <- psub("\\\\(Alpha|Beta|Gamma|Delta|Epsilon|Zeta|Eta|Theta|Iota|Kappa|Lambda|Mu|Nu|Xi|Omicron|Pi|Rho|Sigma|Tau|Upsilon|Phi|Chi|Psi|Omega|alpha|beta|gamma|delta|epsilon|zeta|eta|theta|iota|kappa|lambda|mu|nu|xi|omicron|pi|rho|sigma|tau|upsilon|phi|chi|psi|omega|sum|prod|sqrt)", "\\1", x) x <- psub("\\\\(dots|ldots)", "...", x) x <- fsub("\\le", "<=", x) x <- fsub("\\ge", ">=", x) x <- fsub("\\infty", "Inf", x) x <- psub("\\\\(bold|strong|emph|var)\\{([^}]*)\\}", "\\2", x) x <- psub("\\\\(code|samp)\\{([^}]*)\\}", "'\\2'", x) x } writeDR <- function(block, tag) { if (length(block) > 1L) { putf(' writeCodeBlock(block, tag) blankLine(0L) putf(' } else { putf(' writeCodeBlock(block, tag) blankLine(0L) } } writeQ <- function(block, tag, quote=tag) { if (use_fancy_quotes) { if (quote == "\\sQuote") { put(LSQM); writeContent(block, tag); put(RSQM) } else { put(LDQM); writeContent(block, tag); put(RDQM) } } else { if (quote == "\\sQuote") { put("'"); writeContent(block, tag); put("'") } else { put("\""); writeContent(block,tag); put("\"") } } } writeBlock <- function(block, tag, blocktag) { switch(tag, UNKNOWN =, VERB =, RCODE = writeCode(tabExpand(block)), TEXT = if(blocktag == "\\command") putw(block) else putw(unescape(tabExpand(block))), USERMACRO =, "\\newcommand" =, "\\renewcommand" =, COMMENT = {}, LIST = writeContent(block, tag), "\\describe" = { blankLine(0L) writeContent(block, tag) blankLine() }, "\\itemize"=, "\\enumerate"= { blankLine(0L) enumItem0 <- enumItem enumItem <<- 0L indent0 <- indent opts <- Rd2txt_options() indent <<- max(opts$minIndent, indent + opts$extraIndent) dropBlank <<- TRUE writeContent(block, tag) blankLine() indent <<- indent0 enumItem <<- enumItem0 }, "\\code"=, "\\command"=, "\\env"=, "\\file"=, "\\kbd"=, "\\option"=, "\\pkg"=, "\\samp" = { opts <- Rd2txt_options() if(opts$code_quote) writeQ(block, tag, quote="\\sQuote") else writeContent(block,tag) }, "\\email" = { put("<email: ", trimws(gsub("\n", "", paste(as.character(block), collapse=""))), ">") }, "\\url" = { put("<URL: ", trimws(gsub("\n", "", paste(as.character(block), collapse=""))), ">") }, "\\href" = { opts <- Rd2txt_options() writeContent(block[[2L]], tag) if (opts$showURLs) put(" (URL: ", trimws(gsub("\n", "", paste(as.character(block[[1L]]), collapse=""))), ")") }, "\\Sexpr"= put(as.character.Rd(block, deparse=TRUE)), "\\acronym" =, "\\cite"=, "\\dfn"= , "\\special" = , "\\var" = writeContent(block, tag), "\\bold"=, "\\strong"= { put("*") writeContent(block, tag) put("*") }, "\\emph"= { put("_") writeContent(block, tag) put("_") }, "\\sQuote" =, "\\dQuote"= writeQ(block, tag) , "\\preformatted"= { putf("\n") writeCodeBlock(block, tag) }, "\\verb"= put(block), "\\linkS4class" =, "\\link" = writeContent(block, tag), "\\cr" = { flushBuffer() dropBlank <<- TRUE }, "\\dots" =, "\\ldots" = put("..."), "\\R" = put("R"), "\\enc" = { txt <- as.character(block[[1L]]) test <- iconv(txt, "UTF-8", outputEncoding, mark = FALSE) txt <- if(!is.na(test)) txt else as.character(block[[2L]]) put(txt) } , "\\eqn" = { block <- block[[length(block)]] inEqn0 <- inEqn inEqn <<- TRUE writeContent(block, tag) inEqn <<- inEqn0 }, "\\deqn" = { blankLine() block <- block[[length(block)]] save <- startCapture() inEqn <<- TRUE writeContent(block, tag) eqn <- endCapture(save) eqn <- frmt(eqn, justify="centre", width=WIDTH-indent) putf(paste(eqn, collapse="\n")) blankLine() }, "\\figure" = { blankLine() save <- startCapture() writeContent(block[[length(block)]], tag) alt <- endCapture(save) if (length(alt)) { alt <- frmt(alt, justify = "centre", width = WIDTH - indent) putf(paste(alt, collapse = "\n")) blankLine() } }, "\\tabular" = writeTabular(block), "\\subsection" = writeSection(block, tag), "\\if"=, "\\ifelse" = if (testRdConditional("text", block, Rdfile)) writeContent(block[[2L]], tag) else if (tag == "\\ifelse") writeContent(block[[3L]], tag), "\\out" = for (i in seq_along(block)) put(block[[i]]), stopRd(block, Rdfile, "Tag ", tag, " not recognized") ) } writeTabular <- function(table) { formats <- table[[1L]] content <- table[[2L]] if (length(formats) != 1L || RdTags(formats) != "TEXT") stopRd(table, Rdfile, "\\tabular format must be simple text") formats <- strsplit(formats[[1L]], "", fixed = TRUE)[[1L]] tags <- RdTags(content) entries <- list() row <- 1L col <- 1L save <- startCapture() dropBlank <<- TRUE newEntry <- function() { entries <<- c(entries, list(list(text=trim(endCapture(save)), row=row, col=col))) save <<- startCapture() dropBlank <<- TRUE } for (i in seq_along(tags)) { switch(tags[i], "\\tab" = { newEntry() col <- col + 1 if (col > length(formats)) stopRd(content[[i]], Rdfile, sprintf("too many columns for format '%s'", table[[1L]])) }, "\\cr" = { newEntry() row <- row + 1L col <- 1L }, writeBlock(content[[i]], tags[i], "\\tabular") ) } newEntry() endCapture(save) entries <- with(entries[[length(entries)]], { if (!length(text) && col == 1L) entries[-length(entries)] else entries }) rows <- entries[[length(entries)]]$row cols <- max(sapply(entries, function(e) e$col)) widths <- rep_len(0L, cols) lines <- rep_len(1L, rows) for (i in seq_along(entries)) { e <- entries[[i]] while(length(e$text) && !nzchar(e$text[length(e$text)])) { e$text <- e$text[-length(e$text)] entries[[i]] <- e } if (any(nzchar(e$text))) widths[e$col] <- max(widths[e$col], max(nchar(e$text, "w"))) lines[e$row] <- max(lines[e$row], length(e$text)) } result <- matrix("", sum(lines), cols) for (i in seq_len(cols)) result[, i] <- strrep(" ", widths[i]) firstline <- c(1L, 1L+cumsum(lines)) for (i in seq_along(entries)) { e <- entries[[i]] if(!length(e$text)) next text <- frmt(e$text, justify=formats[e$col], width=widths[e$col]) for (j in seq_along(text)) result[firstline[e$row] + j - 1L, e$col] <- text[j] } blankLine() indent0 <- indent indent <<- indent + 1L for (i in seq_len(nrow(result))) { putf(paste0(" ", result[i,], " ", collapse="")) putf("\n") } blankLine() indent <<- indent0 } writeCodeBlock <- function(blocks, blocktag) { tags <- RdTags(blocks) i <- 0 while (i < length(tags)) { i <- i + 1 block <- blocks[[i]] tag <- tags[i] switch(tag, "\\method" =, "\\S3method" =, "\\S4method" = { blocks <- transformMethod(i, blocks, Rdfile) tags <- RdTags(blocks) i <- i - 1 }, UNKNOWN =, VERB =, RCODE =, TEXT = writeCode(tabExpand(block)), "\\donttest" =, "\\special" =, "\\var" = writeCodeBlock(block, tag), "\\dots" =, "\\ldots" = put("..."), "\\dontrun"= writeDR(block, tag), USERMACRO =, "\\newcommand" =, "\\renewcommand" =, COMMENT =, "\\dontshow" =, "\\testonly" = {}, stopRd(block, Rdfile, "Tag ", tag, " not expected in code block") ) } } writeContent <- function(blocks, blocktag) { itemskip <- FALSE tags <- RdTags(blocks) for (i in seq_along(tags)) { tag <- tags[i] block <- blocks[[i]] switch(tag, "\\item" = { switch(blocktag, "\\describe"= { blankLine() save <- startCapture() dropBlank <<- TRUE writeContent(block[[1L]], tag) DLlab <- endCapture(save) indent0 <- indent opts <- Rd2txt_options() indent <<- max(opts$minIndent, indent + opts$extraIndent) keepFirstIndent <<- TRUE putw(strrep(" ", indent0), frmt(paste0(DLlab), justify="left", width=indent), " ") writeContent(block[[2L]], tag) blankLine(0L) indent <<- indent0 }, "\\value"=, "\\arguments"= { blankLine() save <- startCapture() dropBlank <<- TRUE writeContent(block[[1L]], tag) DLlab <- endCapture(save) indent0 <- indent opts <- Rd2txt_options() indent <<- max(opts$minIndent, indent + opts$extraIndent) keepFirstIndent <<- TRUE putw(frmt(paste0(DLlab, ": "), justify="right", width=indent)) writeContent(block[[2L]], tag) blankLine(0L) indent <<- indent0 }, "\\itemize" =, "\\enumerate" = { blankLine() keepFirstIndent <<- TRUE opts <- Rd2txt_options() if (blocktag == "\\itemize") label <- opts$itemBullet else { enumItem <<- enumItem + 1L label <- opts$enumFormat(enumItem) } putw(frmt(label, justify="right", width=indent)) }) itemskip <- TRUE }, { if (itemskip) { itemskip <- FALSE if (tag == "TEXT") { txt <- psub("^ ", "", as.character(tabExpand(block))) put(txt) } else writeBlock(block, tag, blocktag) } else writeBlock(block, tag, blocktag) }) } } writeSection <- function(section, tag) { if (tag %in% c("\\alias", "\\concept", "\\encoding", "\\keyword")) return() save <- c(indent, sectionLevel, keepFirstIndent, dropBlank, wrapping) blankLine(min(sectionLevel, 1L)) titlePrefix <- strrep(" ", sectionLevel) opts <- Rd2txt_options() indent <<- opts$sectionIndent + opts$sectionExtra*sectionLevel sectionLevel <<- sectionLevel + 1 keepFirstIndent <<- TRUE if (tag == "\\section" || tag == "\\subsection") { title <- .Rd_format_title(.Rd_get_text(section[[1L]])) putf(titlePrefix, txt_header(title), ":") blankLine() dropBlank <<- TRUE wrapping <<- TRUE keepFirstIndent <<- FALSE writeContent(section[[2L]], tag) } else if (tag %in% c("\\usage", "\\examples")) { putf(txt_header(sectionTitles[tag]), ":") blankLine() dropBlank <<- TRUE wrapping <<- FALSE keepFirstIndent <<- FALSE writeCodeBlock(section, tag) } else { putf(txt_header(sectionTitles[tag]), ":") blankLine() dropBlank <<- TRUE wrapping <<- TRUE keepFirstIndent <<- FALSE writeContent(section, tag) } blankLine() indent <<- save[1L] sectionLevel <<- save[2L] keepFirstIndent <<- save[3L] dropBlank <<- save[4L] wrapping <<- save[5L] } if (is.character(out)) { if(out == "") { con <- stdout() } else { con <- file(out, "wt") on.exit(close(con), add=TRUE) } } else { con <- out out <- summary(con)$description } Rd <- prepare_Rd(Rd, defines=defines, stages=stages, fragment=fragment, ...) Rdfile <- attr(Rd, "Rdfile") sections <- RdTags(Rd) if (fragment) { if (sections[1L] %in% names(sectionOrder)) for (i in seq_along(sections)) writeSection(Rd[[i]], sections[i]) else for (i in seq_along(sections)) writeBlock(Rd[[i]], sections[i], "") } else { title <- .Rd_format_title(.Rd_get_title(Rd)) name <- trim(Rd[[2L]][[1L]]) if(nzchar(package)) { left <- name mid <- if(nzchar(package)) paste0("package:", package) else "" right <- "R Documentation" if(encoding != "unknown") right <- paste0(right, "(", encoding, ")") pad <- max(HDR_WIDTH - nchar(left, "w") - nchar(mid, "w") - nchar(right, "w"), 0) pad0 <- pad %/% 2L pad1 <- strrep(" ", pad0) pad2 <- strrep(" ", pad - pad0) putf(paste0(left, pad1, mid, pad2, right, "\n\n")) } putf(txt_header(title)) blankLine() for (i in seq_along(sections)[-(1:2)]) writeSection(Rd[[i]], sections[i]) } blankLine(0L) invisible(out) }
test_that("Error when league is not supplied", { expect_error(geom_baseball()) expect_error(geom_basketball()) expect_error(geom_football()) expect_error(geom_hockey()) expect_error(geom_soccer()) })
ffmatch <- function(x, table, nomatch = NA_integer_, incomparables = NULL, trace=FALSE, ...){ stopifnot(inherits(x, "ff_vector") & inherits(table, "ff_vector")) nomatch <- as.integer(nomatch) xchunk <- chunk(x, ...) tablechunk <- chunk(table, ...) if(trace) { message(sprintf("%s, x has %s chunks, table has %s chunks", Sys.time(), length(xchunk), length(tablechunk))) } res <- ff(nomatch, length=length(x), vmode="integer") for (i in xchunk){ Log$chunk(i) xi <- x[i] unmatched <- TRUE if (trace){ message(sprintf("%s, working on x chunk %s:%s", Sys.time(), min(i), max(i))) } m <- rep(NA_integer_, sum(i)) for (j in tablechunk){ Log$chunk(j) if(trace) { message(sprintf("%s, working on table chunk %s:%s", Sys.time(), min(j), max(j))) } m[unmatched] <- fmatch(x=xi[unmatched], table=table[j], incomparables=incomparables) + min(j) - 1L unmatched <- is.na(m) if (!any(unmatched)) break } m[unmatched] <- nomatch res[i] <- m } res } ffdfmatch <- function(x, table, nomatch = NA_integer_, incomparables = NULL, trace=FALSE, ...){ stopifnot(inherits(x, "ffdf") & inherits(table, "ffdf")) nomatch <- as.integer(nomatch) xchunk <- chunk(x, ...) tablechunk <- chunk(table, ...) if(trace) { message(sprintf("%s, x has %s chunks, table has %s chunks", Sys.time(), length(xchunk), length(tablechunk))) } res <- ff(nomatch, length=nrow(x), vmode="integer") for (i in xchunk){ Log$chunk(i) xi <- x[i, , drop=FALSE] unmatched <- TRUE if (trace){ message(sprintf("%s, working on x chunk %s:%s", Sys.time(), min(i), max(i))) } m <- rep(NA_integer_, sum(i)) for (j in tablechunk){ if(trace) { message(sprintf("%s, working on table chunk %s:%s", Sys.time(), min(j), max(j))) } m[unmatched] <- fmatch(x=do.call(paste, xi[unmatched, , drop=FALSE]), table=do.call(paste, table[j, , drop=FALSE]), incomparables=incomparables) + min(j) - 1L unmatched <- is.na(m) if (!any(unmatched)) break } m[unmatched] <- nomatch res[i] <- m } res } in.default <- get(x="%in%") "%in%" <- function(x, table){ if(inherits(x, "ff_vector")){ ffmatch(x=x, table=as.ff(table), nomatch = 0L) > 0L } else if(inherits(x, "ffdf") && inherits(table, "ffdf")){ ffdfmatch(x=x, table=as.ffdf(table), nomatch = 0L) > 0L } else{ in.default(x=x, table=table) } }
setGeneric('p', function(x) standardGeneric('p'), package="gaston") setMethod('p', signature = 'bed.matrix', def = function(x) x@p) setGeneric('p<-', function(x,value) standardGeneric('p<-'), package="gaston") setReplaceMethod('p', 'bed.matrix', function(x,value) { if(length(value) != ncol(x)) stop("dimensions mismatch") x@p <- value; x} ) setGeneric('mu', function(x) standardGeneric('mu'), package="gaston") setMethod('mu', signature = 'bed.matrix', def = function(x) x@mu) setGeneric('mu<-', function(x,value) standardGeneric('mu<-'), package="gaston") setReplaceMethod('mu', 'bed.matrix', function(x,value) { if(length(value) != ncol(x)) stop("dimensions mismatch") x@mu <- value; x} ) setGeneric('sigma', function(x) standardGeneric('sigma'), package="gaston") setMethod('sigma', signature = 'bed.matrix', def = function(x) x@sigma) setGeneric('sigma<-', function(x,value) standardGeneric('sigma<-'), package="gaston") setReplaceMethod('sigma', 'bed.matrix', function(x,value) { if(length(sigma) != ncol(x)) stop("dimensions mismatch") x@sigma <- value; x} ) setGeneric('standardize', function(x) standardGeneric('standardize'), package="gaston") setMethod('standardize', signature = 'bed.matrix', def = function(x) if(x@standardize_p) "p" else if(x@standardize_mu_sigma) "mu_sigma" else "none" ) setGeneric('standardize<-', function(x,value) standardGeneric('standardize<-'), package="gaston") setReplaceMethod('standardize', 'bed.matrix', function(x,value=c("p","mu_sigma","none")) { switch(match.arg(value), p = { if(length(x@p) != ncol(x)) stop("x@p must be defined and have the appropriate length"); x@standardize_p <- TRUE; x@standardize_mu_sigma <- FALSE; } , mu_sigma = { if(length(x@mu) != ncol(x) | length(x@sigma) != ncol(x)) stop("x@mu and x@sigma must be defined and have the appropriate length"); x@standardize_p <- FALSE; x@standardize_mu_sigma <- TRUE; } , none = {x@standardize_p <- FALSE; x@standardize_mu_sigma <- FALSE;} ); x } )
NULL setMethod( f = "plot_rank", signature = signature(object = "matrix"), definition = function(object, log = NULL, facet = FALSE) { object <- object / rowSums(object) data <- prepare_rank(object) log_x <- ggplot2::scale_x_continuous(name = "Rank") log_y <- ggplot2::scale_y_continuous(name = "Frequency") if (!is.null(log)) { if (log == "x" || log == "xy" || log == "yx") log_x <- ggplot2::scale_x_log10(name = "Rank") if (log == "y" || log == "xy" || log == "yx") log_y <- ggplot2::scale_y_log10(name = "Frequency") } if (facet) { facet <- ggplot2::facet_wrap( facets = ggplot2::vars(.data$row), ncol = nrow(object) ) aes_plot <- ggplot2::aes(x = .data$x, y = .data$y) } else { facet <- NULL aes_plot <- ggplot2::aes(x = .data$x, y = .data$y, colour = .data$row) } ggplot2::ggplot(data = data, mapping = aes_plot) + ggplot2::geom_point() + ggplot2::geom_line() + log_x + log_y + facet } ) prepare_rank <- function(object) { rk <- apply( X = object, MARGIN = 1, FUN = function(x) rank(-x) ) data <- arkhe::as_long(object, factor = TRUE) data$x <- as.vector(t(rk)) data$y <- data$value data <- data[data$value > 0, ] return(data) }
"geoRdefunct" <- function() { cat("\n") cat("The following functions are no longer used in geoR:") cat("---------------------------------------------------") cat("\nolsfit: use variofit() instead") cat("\nwlsfit: use variofit() instead") cat("\nlikfit.old: use likfit() instead") cat("\n") } "olsfit" <- function(...) stop("this function is now obsolete.\nuse variofit() instead.") "wlsfit" <- function(...) stop("this function is now obsolete.\nuse variofit() instead.") "distdiag" <- function(coords) { coords <- as.matrix(coords) dimc <- dim(coords) if(dimc[2] == 1 & dimc[1] == 2) return(0) else{ if(dimc[2] != 2) stop("coords must have two columns") nc <- dimc[1] .C("distdiag", as.double(coords[,1]), as.double(coords[,2]), as.integer(nc), out = as.double(rep(0, (nc * (nc+1)/2))), PACKAGE = "geoR")$out } }
`dprime.ABX` <-function(Hits, FA, zdiff, Pc.unb, method = "diff") { Call <- match.call() if (pmatch("Hits", names(Call), 0) > 0) { if (pmatch("FA", names(Call), 0) > 0) { zdiff <- qnorm(Hits) - qnorm(FA) Pc.unb <- pnorm(zdiff/2) } else { zdiff <- qnorm(Hits) - qnorm(1-Hits) Pc.unb <- pnorm(zdiff/2) } } else { if (pmatch("zdiff", names(Call), 0) > 0) { Pc.unb <- pnorm(zdiff/2) } } if (Pc.unb < 0.5) stop("Only valid for Pc.unb > 0.5") root2 <- sqrt(2) if (method == "diff") { root6 <- sqrt(6) est.dp <- function(dp) { Pc.unb - pnorm(dp/root2)*pnorm(dp/root6) - pnorm(-dp/root2)*pnorm(-dp/root6) } dp.res <- uniroot(est.dp, interval=c(0,10)) dprime <- dp.res$root } else { if (method == "IO") { est.dp <- function(dp) { Pc.unb - pnorm(dp/root2)*pnorm(dp/2) - pnorm(-dp/root2)*pnorm(-dp/2) } dp.res <- uniroot(est.dp, interval=c(0,10)) dprime <- dp.res$root } else {stop("method not defined; must be either diff or IO") } } dprime }
perm.ds.grp <- function(df, scan, ctrlf = NULL, method = "sri", perm, progress = TRUE) { test <- check.df(df) if (test == "df ok") { result <- perm.dataStream.group(df, scan = scan, control_factor = ctrlf, method = method, perm = perm, progress = progress) attr(result, "ANT") <- "ANT data stream group sampling single matrix" attr(result, "scan") <- scan attr(result, "ctrlf") <- ctrlf attr(result, "method") <- method return(result) } if (test == "df list ok") { result <- lapply(df, perm.dataStream.group, scan = scan, control_factor = ctrlf, method = method, perm = perm, progress = progress) attr(result, "ANT") <- "ANT data stream group sampling multiple matrices" attr(result, "scan") <- scan attr(result, "ctrlf") <- ctrlf attr(result, "method") <- method return(result) } }
`summary.isomap` <- function (object, axes=4, ...) { axes <- min(axes, ncol(object$points)) out <- list() out$call <- object$call out$points <- object$points[,1:axes] out$net <- object$net n <- nrow(object$points) out$ndis <- n * (n-1) / 2 out$nnet <- nrow(object$net) class(out) <- "summary.isomap" out }
mskall<-function(cvstr="unstructured",Dep,Id,Time,m,n,data) { InD<-Dep dat1<-data dat2<-dat1[,-c(which(colnames(dat1)==c(Id)),which(colnames(dat1)==c(InD)),which(colnames(dat1)==c(Time)))][c(m:n)] dat1<-data.frame(id=dat1[,which(colnames(dat1)==c(Id))],t=dat1[,which(colnames(dat1)==c(Time))] ,y=dat1[,which(colnames(dat1)==c(InD))],dat2) dat1$y[is.na(dat1$y)]<-mean(dat1$y,na.rm=TRUE) dat1<-as.data.frame(dat1) id1<-dat1$id id2<-dat1$id[1] tm<-dat1$t[dat1$id==dat1$id[1]] id3<-length(id1[id1==id2]) f<-unique(dat1$id) if(is.null(cvstr)==T){ ustr<-matrix(dat1$y,byrow = F,nrow=length(id1)/id3,ncol=id3) sig1<-cov(ustr) }else if(cvstr=="unstructured"){ ustr<-matrix(dat1$y,byrow = F,nrow=length(id1)/id3,ncol=id3) sig1<-cov(ustr) }else if(cvstr=="compound"){ ustr<-matrix(dat1$y,byrow = F,nrow=length(id1)/id3,ncol=id3) vr<-sum(unlist(lapply(as.data.frame(ustr),function(x){var(x)}))*(length(f)-1)) sig<-vr/((nrow(ustr)-1)*ncol(ustr)) ro<-cor(ustr[,1],ustr[,2]) sig1<-(ro*matrix(1,nrow=id3,ncol=id3)+(1-ro)*diag(1,nrow=id3,ncol=id3))*sig }else if(cvstr=="AR1"){ ustr<-matrix(dat1$y,byrow = F,nrow=length(id1)/id3,ncol=id3) vr<-sum(unlist(lapply(as.data.frame(ustr),function(x){var(x)}))*(length(f)-1)) sig<-vr/((nrow(ustr)-1)*ncol(ustr)) ro<-cor(ustr[,1],ustr[,2]) sig1<-matrix(nrow=id3,ncol=id3) for(i in 1:id3){ for(j in 1:id3 ){ if(i!=j){ sig1[i,j]=sig*(ro^(max(i,j)-min(i,j)))} else{sig1[i,j]=sig} }} }else if(cvstr=="ToE"){ ustr<-matrix(dat1$y,byrow = F,nrow=length(id1)/id3,ncol=id3) vr<-sum(unlist(lapply(as.data.frame(ustr),function(x){var(x)}))*(length(f)-1)) sig<-vr/((nrow(ustr)-1)*ncol(ustr)) sig1<-matrix(nrow=id3,ncol=id3) for(i in 1:id3){ for(j in 1:id3 ){ if(i!=j){ sig1[i,j]=sig*(cor(ustr[,i],ustr[,j]))} else{sig1[i,j]=sig} } } }else if(cvstr=="independence"){ ustr<-matrix(dat1$y,byrow = F,nrow=length(id1)/id3,ncol=id3) sig1<-matrix(nrow=id3,ncol=id3) for(i in 1:id3){ for(j in 1:id3 ){ if(i==j){ sig1[i,j]=cov(ustr[,i],ustr[,j])} else{sig1[i,j]=0} } } }else if(cvstr=="markov"){ ustr<-matrix(dat1$y,byrow = F,nrow=length(id1)/id3,ncol=id3) vr<-sum(unlist(lapply(as.data.frame(ustr),function(x){var(x)}))*(length(f)-1)) sig<-vr/((nrow(ustr)-1)*ncol(ustr)) ro<-cor(ustr[,1],ustr[,2]) sig1<-matrix(nrow=id3,ncol=id3) for(i in 1:id3){ for(j in 1:id3 ){ if(i!=j){ sig1[i,j]=sig*(ro^(abs(tm[i]-tm[j])))} else{sig1[i,j]=sig} }} } ms<-function(dat){ d<-function(x){ dlt1<-c() for(j in 1:ncol(x)){ if(anyNA.data.frame(x[,j])==T){ dlt1[j]<-0 } else{ dlt1[j]<-1 } } dlt1 } dlt<-d(t(dat)) dlt1<-d(dat) if(sum(dlt)!=0){ cc<-as.matrix(t(dat)[,which(dlt==1)]) if(0%in%dlt){ nc<-as.matrix(t(dat)[,-which(dlt==1)]) ncc<-as.matrix(nc[which(dlt1==1),]) ccc<-as.matrix(cc[which(dlt1==1),]) phik<-function(u,w){ v=matrix(nrow=ncol(w),ncol=ncol(u)) for(i in 1:ncol(w)){ for(j in 1:ncol(u)){ if(identical(u[,j],w[,i])==T){ v[i,j]=1 }else{ v[i,j]=0 } } } k=list() for(j in 1:ncol(v)){ k[[j]]=which(v[,j]==1) } k} k<-phik(u=ncc,w=ccc) y1<- cc[1,] dsg=rbind(1,as.matrix(cc[-1,])) k2=list() for(j in 1:length(k)){ if(length(k[[j]])!=0){ k2[[j]]=as.matrix(dsg[,k[[j]]])%*%Ginv(as.matrix(sig1[k[[j]],k[[j]]]))%*%as.matrix(y1[k[[j]]])/length(k[[j]])} else{k2[[j]]=0}} k3=list() for(j in 1:length(k)){ if(length(k[[j]])!=0){ k3[[j]]=as.matrix(dsg[,k[[j]]])%*%Ginv(as.matrix(sig1[k[[j]],k[[j]]]))%*%t(as.matrix(dsg[,k[[j]]]))/length(k[[j]]) }else{k3[[j]]=0} } if(length(k2)!=0){ h2=Reduce("+",k2) }else{h2=0} if(length(k3)!=0){h3=Reduce("+",k3)}else{ h3=0} xy1<-as.matrix(dsg)%*%Ginv(as.matrix(sig1[which(dlt==1),which(dlt==1)]))%*%as.matrix(cc[1,])+h2 xx1<-as.matrix(dsg)%*%Ginv(as.matrix(sig1[which(dlt==1),which(dlt==1)]))%*%t(dsg)+h3 }else{ dsg=rbind(1,as.matrix(cc[-1,])) xy1<-as.matrix(dsg)%*%Ginv(as.matrix(sig1[which(dlt==1),which(dlt==1)]))%*%as.matrix(cc[1,]) xx1<-as.matrix(dsg)%*%Ginv(as.matrix(sig1[which(dlt==1),which(dlt==1)]))%*%t(dsg) }}else{xx1<-NULL;xy1<-NULL} list(xx1,xy1) } l1<-list() l2<-list() dat1<-data.frame(dat1) for(i in 1:length(unique(dat1$id))){ l1[i]<-ms(subset(dat1,dat1$id==unique(dat1$id)[i])[,-c(1,2)])[1] l2[i]<-ms(subset(dat1,dat1$id==unique(dat1$id)[i])[,-c(1,2)])[2] } l1[sapply(l1,is.null)]<-NULL l2[sapply(l2,is.null)]<-NULL xx<-Reduce("+",l1) xy<-Reduce("+",l2) n<-nrow(xx) a<-matrix(unlist(xx),nrow=n,ncol=n,byrow = T) b<-matrix(unlist(xy),nrow=n,ncol=1,byrow = T) parm<-Ginv(a)%*%b rslt<-list() name1<-which(colnames(dat1)=="id") name2<-which(colnames(dat1)=="t") name3<-which(colnames(dat1)=="y") coefficients<-c("intercept",names(dat1)[-c(name1,name2,name3)]) estimate<-parm rslt$coff<-data.frame(coefficients,estimate) fit<-cbind(1,dat1[,-c(name1,name2,name3)]) resid<-na.omit(dat1$y-as.matrix(fit)%*%parm) Aic<- nrow(na.omit(dat1))*(log(2*pi)+1+log((sum(resid^2)/nrow(na.omit(dat1)))))+((n+1)*2) rslt$aic<-Aic Bic<-nrow(na.omit(dat1))*log((sum(resid^2)/nrow(na.omit(dat1))))+n*log(nrow(na.omit(dat1))) rslt$Bic<-Bic rslt } utils::globalVariables(c("cov","var","cor","na.omit"))
png2 <- function(filename, width=480, height=480, res=144, type="png256", ...) { bitmap(file=filename, type=type, width=width/res, height=height/res, res=res, ...) }
cfba_moment <- function (model,mod2=NULL, Kcat,MW=NULL,selected_rxns=NULL,verboseMode=2,objVal=NULL, RHS=NULL,solver=SYBIL_SETTINGS("SOLVER"),medval=NULL,runFVA=FALSE,fvaRxn=NULL){ geneCol=NULL; Kcat[,2]<-as.numeric(Kcat[,2])*60*60 ; MW[,2]=as.numeric(MW[,2]); if(length(mod2)==0){ mod2=mod2irrev(model) } if(length(medval)==0) medval=median(Kcat[,2]) if(length(selected_rxns)==0) {selected_rxns=react_id(model)[gpr(model)!="" & gpr(model)!="s0001"]} print("Preparing LP ... "); prob <- sysBiolAlg(mod2, algorithm = "fba",solver=solver) n=react_num(mod2) m=met_num(mod2) colid=n+1 rowind=m+1 aux_id=1 for( g in allGenes(mod2)){ if(g!="s0001"){ geneCol=rbind(geneCol,cbind(gene=g,Col=colid)) addCols(lp = problem(prob),1) changeColsBnds(lp = problem(prob),colid,lb=0,ub=1000) colid=colid+1; }} rxnkcatRow=NULL; for (r in selected_rxns){ rl=gpr(model)[react_id(model)==r] if (rl=='( b0875 or s0001 )') rl='b0875'; if (rl=='( b1377 or b0929 or b2215 or b0241 or s0001 or b3875 or b1319 or b0957 )') rl='( b1377 or b0929 or b2215 or b0241 or b3875 or b1319 or b0957 )'; if (rl=='( s0001 or b0451 )') rl='(b0451)'; if (rl=='( s0001 or b3927 )') rl='( b3927 )'; if(rl=="(b3927 or s0001)") rl="b3927"; if(rl=="(s0001 or b0957 or b3875 or b2215 or b0241 or b1319 or b1377 or b0929)" ) rl="(b0957 or b3875 or b2215 or b0241 or b1319 or b1377 or b0929)" if(rl=="(s0001 or b0875)") rl="b0875"; if(rl=="(b0451 or s0001)") rl="b0451"; if(rl=="(b1377 or b0241 or b3875 or s0001 or b0957 or b2215 or b1319 or b0929)"){rl<-"(b1377 or b0241 or b3875 or b0957 or b2215 or b1319 or b0929)"} if(rl=="(b1377 or b2215 or b1319 or b3875 or s0001 or b0957 or b0241 or b0929)") rl="(b1377 or b2215 or b1319 or b3875 or b0957 or b0241 or b0929)"; if(rl=="(s0001 or b0451)") rl="b0451"; if(rl=="(s0001 or b3927)") rl="b3927"; if(rl=="(s0001 or b1779)") rl="b1779"; if(rl=="(b1779 or s0001)") rl="b1779"; if(rl=="(b0875 or s0001)") rl="b0875"; if (verboseMode > 2){ print(r)} if(r %in% Kcat[Kcat[,"dirxn"]==1,1]){ kval=as.numeric(Kcat[Kcat[,"dirxn"]==1 & Kcat[,1]==r,"val"]); }else{kval=medval;} if(r %in% Kcat[Kcat[,"dirxn"]==-1,1]){ rkval=as.numeric(Kcat[Kcat[,"dirxn"]==-1 & Kcat[,1]==r,"val"]); }else{rkval=medval;} if(!react_rev(model)[react_id(model)==r]){ vind=which(react_id(mod2)==r) vind_b=0 lnz=1 }else{ vind=which(react_id(mod2)==paste(r,"_f",sep="")) vind_b=which(react_id(mod2)==paste(r,"_b",sep="")) lnz=1 } rl=gsub("\\)"," ) ",rl) rl=gsub("\\("," ( ",rl) rl=gsub(" OR "," or ",rl) rl=gsub(" AND "," and ",rl) pr=lapply(strsplit(unlist(strsplit(rl," or "))," and "),function(x) gsub("[() ]","",x)) if (verboseMode > 2){ print(pr) print(length(pr[[1]])) } if( length(pr)==1) { if(length(pr[[1]])==1){ gene=pr[[1]] colind=as.numeric(geneCol[geneCol[,"gene"]==gene,"Col"]) if (verboseMode > 2){print(list(vind,colind))} addRowsToProb(lp = problem(prob), i = rowind , type = "U", lb = 0, ub = 0, cind = list(c(vind,colind)), nzval = list(c(lnz,-1*kval)) ,rnames = r ) rowind=rowind+1; rxnkcatRow = rbind(rxnkcatRow,data.frame(stringsAsFactors=FALSE,rsn=vind, rxn_id = r, dirxn=1, rowind=rowind-1,colind,kval)); if(vind_b>0){ addRowsToProb(lp = problem(prob), i = rowind , type = "U", lb = 0, ub = 0, cind = list(c(vind_b,colind)), nzval = list(c(lnz,-1*rkval)) ,rnames = paste(r,"_b",sep="") ) rowind=rowind+1; rxnkcatRow = rbind(rxnkcatRow,data.frame(stringsAsFactors=FALSE,rsn=vind_b, rxn_id = r, dirxn=-1, rowind=rowind-1,colind,kval=rkval)); } }else{ if(verboseMode>2) print(sprintf("Rxn:%s gpr: %s, straight ANDs",r,rl)); addCols(lp = problem(prob),1) aux_id=colid colid=colid+1; addRowsToProb(lp = problem(prob), i = rowind , type = "U", lb = 0, ub = 0, cind = list(c(vind,aux_id)), nzval = list(c(lnz,-1*kval)) ,rnames = r ) rowind=rowind+1; rxnkcatRow = rbind(rxnkcatRow,data.frame(stringsAsFactors=FALSE,rsn=vind, rxn_id = r, dirxn=1, rowind=rowind-1,colind=aux_id,kval)); if(react_rev(model)[react_id(model)==r]){ addRowsToProb(lp = problem(prob), i = rowind , type = "U", lb = 0, ub = 0, cind = list(c(vind_b,aux_id)), nzval = list(c(lnz,-1*rkval)) ,rnames = paste(r,"_b",sep="") ) rowind=rowind+1; rxnkcatRow = rbind(rxnkcatRow,data.frame(stringsAsFactors=FALSE,rsn=vind_b, rxn_id = r, dirxn=-1, rowind=rowind-1,colind=aux_id,kval=rkval)); } for(gene in pr[[1]]){ colind=as.numeric(geneCol[geneCol[,"gene"]==gene,"Col"]) addRowsToProb(lp = problem(prob), i = rowind , type = "U", lb = 0, ub = 0, cind = list(c(aux_id,colind)), nzval = list(c(1,-1)) ) rowind=rowind+1; } } }else{ row_vals=rep(0,colid+length(pr)) row_vals[vind]=lnz row_vals_b=rep(0,colid+length(pr)) row_vals_b[vind_b]=lnz for( p in 1:length(pr)){ if( length(pr[[p]])==1 ){ gene=pr[[p]] colind=as.numeric(geneCol[geneCol[,"gene"]==gene,"Col"]) row_vals[colind]=-1*kval rxnkcatRow = rbind(rxnkcatRow,data.frame(stringsAsFactors=FALSE,rsn=vind, rxn_id = r, dirxn=1, rowind=NA,colind=colind,kval)); if(react_rev(model)[react_id(model)==r]){ row_vals_b[colind]=-1*rkval rxnkcatRow = rbind(rxnkcatRow,data.frame(stringsAsFactors=FALSE,rsn=vind_b, rxn_id = r, dirxn=-1, rowind=NA,colind=colind,kval=rkval)); } }else{ if(verboseMode > 2) print(sprintf("Rxn:%s gpr: %s, auxiliary ANDs",r,rl)); addCols(lp = problem(prob),1) aux_id=colid colid=colid+1; row_vals[aux_id]=-1*kval rxnkcatRow = rbind(rxnkcatRow,data.frame(stringsAsFactors=FALSE,rsn=vind, rxn_id = r, dirxn=1, rowind=NA,colind=aux_id,kval)); if(react_rev(model)[react_id(model)==r]){ row_vals_b[aux_id]=-1*rkval rxnkcatRow = rbind(rxnkcatRow,data.frame(stringsAsFactors=FALSE,rsn=vind_b, rxn_id = r, dirxn=-1, rowind=NA,colind=aux_id,kval=rkval)); } for(g in pr[[p]]){ colind=as.numeric(geneCol[geneCol[,"gene"]==g,"Col"]) addRowsToProb(lp = problem(prob), i = rowind , type = "U", lb = 0, ub = 0, cind = list(c(aux_id,colind)), nzval = list(c(1,-1)) ,rnames = paste("Aux_",aux_id,sep="") ) rowind=rowind+1; } if (verboseMode > 2){ print(p)} } } addRowsToProb(lp = problem(prob), i = rowind , type = "U", lb = 0, ub = 0, cind = list(which(row_vals!=0)), nzval = list(row_vals[which(row_vals!=0)]) ,rnames = r ) rowind=rowind+1; rxnkcatRow[is.na(rxnkcatRow[,'rowind']) & rxnkcatRow[,'rxn_id']==r & rxnkcatRow[,'dirxn']==1,'rowind']=rowind-1; if(react_rev(model)[react_id(model)==r]){ addRowsToProb(lp = problem(prob), i = rowind , type = "U", lb = 0, ub = 0, cind = list(which(row_vals_b!=0)), nzval = list(row_vals_b[which(row_vals_b!=0)]) ,rnames = paste(r,"_b",sep="") ) rowind=rowind+1; rxnkcatRow[is.na(rxnkcatRow[,'rowind']) & rxnkcatRow[,'rxn_id']==r & rxnkcatRow[,'dirxn']==-1,'rowind']=rowind-1; } } } if(length(MW )>0 ){ lnz=NULL lcind=NULL if (verboseMode > 2){ print('Setting column bounds ...') } for(v in c((n+1):(colid-1))){ changeColsBnds(lp = problem(prob),v,lb=0,ub=1000) } for(g in geneCol[,"gene"]) { colind=as.numeric(geneCol[geneCol[,"gene"]==g,"Col"]) if(g %in% MW[,1]){ lnz=cbind(lnz,MW[MW[,1]==g,2]) if (verboseMode > 2){print(c(g,MW[MW[,1]==g,2]))} lcind=cbind(lcind,colind) } } if(!is.null(RHS) ){ addRowsToProb(lp = problem(prob), i = rowind , type = "U", lb = 0, ub = RHS, cind = list(lcind), nzval = list(lnz) ,rnames = "MW" ) } else { if(is.null(objVal) ){ tmp_sol = optimizeProb(mod2,solver=solver,retOptSol=FALSE); if(tmp_sol$ok!=0 || length(checkSolStat(stat=tmp_sol$stat,solver=solver))!=0 ) { if(is.na(checkSolStat(stat=tmp_sol$stat,solver=solver)[1])) print("couldn't check solution status"); stop(sprintf("Failed to calculate objective value, sol status: %s", getMeanStatus(code=tmp_sol$stat,solver=solver) )); } objVal = tmp_sol$obj; print(sprintf('Objective value to be used: %f',objVal)) } objc=getObjCoefs(problem(prob),j=c(1:n)) cind=which(objc!=0) nzval=objc[cind] addRowsToProb(lp = problem(prob), i = rowind , type = "L", lb = objVal, ub = Inf, cind = list(cind), nzval = list(nzval) ,rnames = paste("ObjC_",rowind,sep="") ) rowind=rowind+1; changeObjCoefs(lp = problem(prob),j=c(1:n),obj_coef=rep(0,n)) changeObjCoefs(lp = problem(prob),j=as.numeric(lcind),obj_coef=lnz) setObjDir(lp = problem(prob),"min") } } if (verboseMode > 2) { fname=format(Sys.time(), "moment_%Y%m%d_%H%M.lp"); print(sprintf("Writing the problem to: %s/%s...",getwd(),fname)); writeProb(lp=problem(prob), fname) if(solver=="cplexAPI"){ Nnz=NULL nr=getNumRows(problem(prob)) lp=problem(prob) for(r in c(1:nr)){ rv=cplexAPI::getRowsCPLEX(env = lp@oobj@env, lp = lp@oobj@lp, begin = r-1, end = r-1) for(cl in 1:length(rv$matind)){ Nnz=rbind(Nnz,cbind(i=r,j=rv$matind[cl],val=rv$matval[cl])) } } write.csv(file="nnz.csv",Nnz) } } print("Solving ... "); sol=optimizeProb(prob) if(sol$ok!=0 || length(checkSolStat(stat=sol$stat,solver=solver))!=0 ) { if(is.na(checkSolStat(stat=sol$stat,solver=solver)[1])) print("couldn't check solution status"); warning(sprintf("Solution is not optimal: %s", getMeanStatus(code=sol$stat,solver=solver) )); } actual_C = matrix(lnz,nrow=1) %*% matrix(sol$fluxes[lcind],ncol=1); if(!runFVA){ return(list(sol=sol,geneCol=geneCol,prob=prob,actual_C=actual_C,rxnkcatRow=rxnkcatRow)) }else{ if (verboseMode > 1) {print("Calculating FVA ...")} main_flx = sol$fluxes[1:react_num(mod2)] tol = SYBIL_SETTINGS("TOLERANCE"); bm_rxn = which(obj_coef(mod2)==1) main_sol = sol model_objVal = main_flx[bm_rxn] print(sprintf('Main sol obj rxn: %s, objVal:%f',react_id(mod2)[bm_rxn],main_flx[bm_rxn])) changeColsBnds(lp = problem(prob), bm_rxn, lb=model_objVal-tol, ub=model_objVal+tol) changeObjCoefs(lp = problem(prob),j=bm_rxn,obj_coef=0) bLP = backupProb(lp = problem(prob)) if(!is.null(fvaRxn)){intReact = fvaRxn} else{ intReact = 1:react_num(mod2)} nObj <- 2 * length(intReact) obj <- numeric(nObj) ok <- integer(nObj) stat <- integer(nObj) oppositFlx <- numeric(nObj) bmFlx <- numeric(nObj) for (i in seq(along = intReact)) { prob1=prob prob@problem@oobj = bLP@oobj bLP <- backupProb(bLP) remove(prob1) solpl <- i sol <- optimizeProb(prob, lpdir = "min", react = intReact[i], obj_coef = 1) obj[solpl] <- sol$obj ok[solpl] <- sol$ok stat[solpl] <- sol$stat bmFlx[solpl] <- sol$fluxes[bm_rxn] if (matchrev(mod2)[intReact[i]] !=0 ){ oppositFlx[solpl] <- sol$fluxes[matchrev(mod2)[intReact[i]]]; } if(sol$stat != 5){ print('bad status') } solpl <- length(intReact) + i sol <- optimizeProb(prob, lpdir = "max", react = intReact[i], obj_coef = 1) obj[solpl] <- sol$obj ok[solpl] <- sol$ok stat[solpl] <- sol$stat bmFlx[solpl] <- sol$fluxes[bm_rxn] if (matchrev(mod2)[intReact[i]] !=0 ){ oppositFlx[solpl] <- sol$fluxes[matchrev(mod2)[intReact[i]]]; } if(sol$stat != 5){ print('bad status') } } fva <- cbind (ok =ok, stat=stat, lpdir=c(rep('min',length(intReact)),rep('max',length(intReact))),fv=obj, mainFlx=main_flx[c(intReact,intReact)], oppositFlx=oppositFlx, bmFlx=bmFlx, rxns=c(intReact,intReact), rxnid=react_id(mod2)[c(intReact,intReact)], gpr=gpr(mod2)[c(intReact,intReact)],oposid=matchrev(mod2)[c(intReact,intReact)]); return(list(sol=main_sol,geneCol=geneCol,prob=prob,actual_C=actual_C,fva=fva)); } }
context("as.data.frame.dust") test_that( "FR 1: Accepts an object of class `dust`", { skip_on_cran() expect_silent( as.data.frame.dust(dust(mtcars)) ) } ) test_that( "FR 1: Accepts an object of class `dust_list`", { skip_on_cran() expect_silent( split(mtcars, mtcars$am) %>% dust() %>% as.data.frame() ) } ) test_that( "FR 1: Casts an error when passed an object not of class `dust` or `dust_list`", { skip_on_cran() expect_error( pixiedust:::as.data.frame.dust(mtcars) ) } ) test_that( "FR 1: Casts an error when passed an object not of class `dust` or `dust_list`", { skip_on_cran() expect_error( pixiedust:::as.data.frame.dust_list(mtcars) ) } ) test_that( "FR 2: Accepts a logical indicating if sprinkles should be applied.", { skip_on_cran() expect_silent( dust(mtcars) %>% as.data.frame(sprinkled = TRUE) ) } ) test_that( "FR 2: Accepts a logical indicating if sprinkles should be applied (dust_list).", { skip_on_cran() expect_silent( split(mtcars, mtcars$am) %>% dust() %>% as.data.frame(sprinkled = TRUE) ) } ) test_that( "FR 2: Casts error when `sprinkled` is not logical", { skip_on_cran() expect_error( dust(mtcars) %>% as.data.frame(sprinkled = 1) ) } ) test_that( "FR 2: Casts error when `sprinkled` is not logical (dust_list)", { skip_on_cran() expect_error( split(mtcars, mtcars$am) %>% dust() %>% as.data.frame(sprinkled = 1) ) } ) test_that( "FR 3: Return a data frame object", { skip_on_cran() fit <- lm(mpg ~ qsec + factor(am) + wt * factor(gear), data = mtcars) Dust <- dust(fit) %>% sprinkle(cols = 2:4, round = 2) %>% sprinkle(cols = 5, fn = quote(pvalString(value))) %>% sprinkle(cols = 3, font_color = " sprinkle_print_method("html") expect_true("data.frame" %in% class(as.data.frame(Dust))) } ) test_that( "FR 3: Return a data frame object when unsprinkled", { skip_on_cran() fit <- lm(mpg ~ qsec + factor(am) + wt * factor(gear), data = mtcars) Dust <- dust(fit) %>% sprinkle(cols = 2:4, round = 2) %>% sprinkle(cols = 5, fn = quote(pvalString(value))) %>% sprinkle(cols = 3, font_color = " sprinkle_print_method("html") expect_true("data.frame" %in% class(as.data.frame(Dust, sprinkled = FALSE))) } ) test_that( "FR 4: Return a list of data frames (dust_list)", { skip_on_cran() Dust <- split(mtcars, mtcars$am) %>% dust() %>% as.data.frame() dust_class <- vapply(Dust, function(x) "data.frame" %in% class(x), logical(1)) expect_true(all(dust_class)) } ) test_that( "FR 4: Return a list of data frames when unsprinkled (dust_list)", { skip_on_cran() Dust <- split(mtcars, mtcars$am) %>% dust() %>% as.data.frame(sprinkled = FALSE) dust_class <- vapply(Dust, function(x) "data.frame" %in% class(x), logical(1)) expect_true(all(dust_class)) } )
buildScoreCache.mle <- function(data.df = NULL, data.dists = NULL, max.parents = NULL, adj.vars = NULL, cor.vars = NULL, dag.banned = NULL, dag.retained = NULL, which.nodes = NULL, maxit = 100, tol = 10^-8, centre = TRUE, defn.res = NULL, dry.run = FALSE, verbose = FALSE, seed = 9062019, ncores = 1 ) { set.seed(seed) if (!is.null(which.nodes)) { data.df <- data.df[, which.nodes] data.dists <- data.dists[which.nodes] } n <- length(data.dists) nobs <- dim(data.df)[1] group.var <- NULL if (Reduce("|", names(data.dists) != names(data.dists[colnames(data.df)]))) { stop("data.dists, data.df do not have the same names or the same names' order") } data.df.lvl <- data.df if (centre && !is.null(data.dists == "gaussian")) { for (i in names(data.dists)[(data.dists == "gaussian")]) { data.df[, i] <- (data.df[, i] - mean(data.df[, i]))/sd(data.df[, i]) } } for (i in 1:n) { if (data.dists[[i]] == "binomial" & class(data.df[, i]) != "numeric") { data.df[, i] <- as.numeric(factor(data.df[, i])) - 1 } if (data.dists[[i]] == "multinomial") { data.df[, i] <- factor(data.df[, i]) } } if (!is.null(adj.vars)) { data.df.adj <- data.df data.df <- data.df[, -adj.vars] n <- n - length(adj.vars) } if (!is.null(dag.banned)) { if (is.matrix(dag.banned)) { dag.banned <- check.valid.dag(dag.m = dag.banned, data.df = data.df, is.ban.matrix = TRUE, group.var = group.var) } else { if (grepl("~", as.character(dag.banned)[1], fixed = TRUE)) { dag.banned <- formula.abn(f = dag.banned, name = colnames(data.df)) dag.banned <- check.valid.dag(dag.m = dag.banned, data.df = data.df, is.ban.matrix = TRUE, group.var = group.var) } } } else { dag.banned <- check.valid.dag(dag.m = dag.banned, data.df = data.df, is.ban.matrix = TRUE, group.var = group.var) } if (!is.null(dag.retained)) { if (is.matrix(dag.retained)) { dag.retained <- check.valid.dag(dag.m = dag.retained, data.df = data.df, is.ban.matrix = FALSE, group.var = group.var) } else { if (grepl("~", as.character(dag.retained)[1], fixed = TRUE)) { dag.retained <- formula.abn(f = dag.retained, name = colnames(data.df)) dag.retained <- check.valid.dag(dag.m = dag.retained, data.df = data.df, is.ban.matrix = FALSE, group.var = group.var) } } } else { dag.retained <- check.valid.dag(dag.m = dag.retained, data.df = data.df, is.ban.matrix = FALSE, group.var = group.var) } if (!is.null(defn.res)) { max.parents <- max(apply(defn.res[["node.defn"]], 1, sum)) } else { if (is.null(max.parents)) { max.parents <- 1 } if (is.numeric(max.parents)) { if (max.parents >= n) { max.parents <- n - 1 } } max.parent.list <- NULL if (is.list(max.parents)) { if (do.call(max, max.parents) > (n)) { stop("max.parent should be an integer or a list with a maximum possible of number of node-1 and the length of the list should not exceed the number of nodes.") } else { max.parent.list <- max.parents max.parents <- do.call(max, max.parents) } } fun.return <- function(x) { v <- rep(0, n - 1) v[x] <- 1 return(v) } node.defn <- matrix(data = as.integer(0), nrow = 1L, ncol = n) children <- 1 for (j in 1:n) { if (j != 1) { node.defn <- rbind(node.defn, matrix(data = as.integer(0), nrow = 1L, ncol = n)) children <- cbind(children, j) } for (i in 1:(max.parents)) { tmp <- t(combn(n - 1, i, FUN = fun.return, simplify = TRUE)) tmp <- t(apply(X = tmp, MARGIN = 1, FUN = function(x) append(x = x, values = 0, after = j - 1))) node.defn <- rbind(node.defn, tmp) children <- cbind(children, t(rep(j, length(tmp[, 1])))) } } colnames(node.defn) <- colnames(data.df) node.defn <- apply(node.defn, c(1, 2), function(x) { (as.integer(x)) }) children <- as.integer(children) for (i in 1:n) { for (j in 1:n) { if (dag.retained[i, j] != 0) { tmp.indices <- which(children == i & node.defn[, j] == 0) if (length(tmp.indices) != 0) { node.defn <- node.defn[-tmp.indices, ] children <- children[-tmp.indices] } } if (dag.banned[i, j] != 0) { tmp.indices <- which(children == i & node.defn[, j] == 1) if (length(tmp.indices) != 0) { node.defn <- node.defn[-tmp.indices, ] children <- children[-tmp.indices] } } } } mycache <- list(children = as.integer(children), node.defn = (node.defn)) if (!is.null(max.parent.list)) { for (z in 1:n) { tmp <- mycache[["node.defn"]][mycache[["children"]] == z, ] if (is.null(dim(tmp))) stop("Increase parents for node ",z," (due to retain)") if (any(diff(unlist(max.parents)) !=0)) stop("For method='mle', unique number of parents required") mycache[["node.defn"]][mycache[["children"]] == z, ] <- tmp[rowSums(tmp) <= unlist(max.parent.list[z]), ] } } if (!is.null(adj.vars)) { mycache$node.defn <- cbind(mycache$node.defn, matrix(data = 0, nrow = dim(mycache$node.defn)[1], ncol = length(adj.vars))) if (is.null(cor.vars)) { cor.vars <- colnames(data.df) } mycache$node.defn[mycache$children[match(cor.vars, colnames(data.df))], dim(data.df)[2]:dim(data.df.adj)] <- 1 colnames(mycache$node.defn) <- c(colnames(data.df), adj.vars) mycache$node.defn <- mycache$node.defn[, names(data.df.adj)] data.df <- data.df.adj } repetition.multi <- vector(length = n) for (i in 1:n) { if (data.dists[[i]] %in% c("binomial", "poisson", "gaussian")) { repetition.multi[i] <- 1 } else { repetition.multi[i] <- nlevels(data.df.lvl[, i]) } } if (!is.null(adj.vars)) { mycache$node.defn.multi <- mycache$node.defn.adj[, rep(1:n, repetition.multi)] data.df <- data.df.adj[, colnames(mycache$node.defn.adj)] } else { mycache$node.defn.multi <- mycache$node.defn[, rep(1:n, repetition.multi)] } data.df.multi <- NULL for (i in 1:n) { if (data.dists[[i]] %in% c("binomial", "poisson", "gaussian")) { data.df.multi <- as.data.frame(cbind(data.df.multi, data.df[, i])) colnames(data.df.multi)[length(colnames(data.df.multi))] <- colnames(data.df)[i] } else { tmp <- model.matrix(~-1 + factor(data.df.lvl[, i])) colnames(tmp) <- paste0(names(data.df.lvl)[i], levels(factor(data.df.lvl[, i]))) data.df.multi <- as.data.frame(cbind(data.df.multi, tmp)) } } } if (dry.run) { return(mycache) } out <- list() rows <- length(mycache[["children"]]) cl <- makeCluster(ncores) registerDoParallel(cl) row.num <- NULL suppressWarnings( res <- foreach( row.num = 1:rows, .combine='rbind' ) %dopar% { child <- mycache[["children"]][row.num] distribution <- data.dists[child] Y <- data.matrix(data.df[, child]) if (is.null(adj.vars)) { if ("multinomial" %in% data.dists[as.logical(mycache$node.defn[row.num, ])]) { X <- data.matrix(cbind(data.df.multi[, as.logical(mycache[["node.defn.multi"]][row.num, ])])) } else { X <- data.matrix(cbind(rep(1, length(data.df[, 1])), data.df.multi[, as.logical(mycache[["node.defn.multi"]][row.num, ])])) } } else { if ("multinomial" %in% data.dists[as.logical(mycache$node.defn.adj[row.num, ])]) { X <- data.matrix(cbind(data.df.multi[, as.logical(mycache[["node.defn.multi"]][row.num, ])])) } else { X <- data.matrix(cbind(rep(1, length(data.df[, 1])), data.df.multi[, as.logical(mycache[["node.defn.multi"]][row.num, ])])) } } num.na <- 0 Y1 <- as.numeric(as.character(Y)) R <- rank_cpp(X) r <- ncol(X) R_col <- R/r if (R_col != 1 & as.character(distribution) == "binomial") { tryCatch(fit <- irls_binomial_cpp_fast_br(A = X, b = Y1, maxit = maxit, tol = tol), error = function(e) { while (rank_cpp(X)/ncol(X) != 1) { X <- X[, -1] num.na <- num.na + 1 if (is.null(ncol(X))) X <- as.matrix(X) } fit <- irls_binomial_cpp_fast_br(A = X, b = Y1, maxit = maxit, tol = tol) }, finally = fit) } else { switch(as.character(distribution), binomial = { fit <- irls_binomial_cpp_fast_br(A = X, b = Y1, maxit = maxit, tol = tol) if (is.na(sum(fit[[1]]))) fit <- irls_binomial_cpp_fast_br(A = X, b = Y, maxit = maxit, tol = tol) }, gaussian = { suppressWarnings(fit <- irls_gaussian_cpp_fast(A = X, b = Y, maxit = maxit, tol = tol)) }, poisson = { suppressWarnings(fit <- irls_poisson_cpp_fast(A = X, b = Y, maxit = maxit, tol = tol)) }, multinomial = { Ymulti <- data.matrix(model.matrix(~-1 + data.df.lvl[, child])) p <- ncol(Ymulti) mask <- c(rep(FALSE, r + 1L), rep(c(FALSE, rep(TRUE, r)), p - 1L)) tmp <- nnet.default(x = X, y = Ymulti, mask = mask, size = 0, skip = TRUE, softmax = TRUE, rang = 0, trace = FALSE) fit <- NULL fit$loglik <- -tmp$value edf <- ifelse(length(tmp$lev) == 2L, 1, length(tmp$lev) - 1) * R fit$aic <- 2 * tmp$value + 2 * edf fit$bic <- 2 * tmp$value + edf * log(nobs) }) } c( fit$loglik, fit$aic, fit$bic, fit$bic + (1 + sum(mycache[["node.defn.multi"]][row.num, ]) - num.na) * log(n) ) } ) out[["children"]] <- mycache[["children"]] out[["node.defn"]] <- mycache$node.defn out[["mlik"]] <- as.numeric( res[,1] ) out[["error.code"]] <- list() out[["hessian.accuracy"]] <- list() out[["used.INLA"]] <- list() out[["error.code.desc"]] <- list() out[["data.df"]] <- data.df.lvl out[["data.dists"]] <- data.dists out[["max.parents"]] <- max.parents out[["dag.retained"]] <- dag.retained out[["dag.banned"]] <- dag.banned out[["group.ids"]] <- list() out[["aic"]] <- as.numeric( res[,2] ) out[["bic"]] <- as.numeric( res[,3] ) out[["mdl"]] <- as.numeric( res[,4] ) out[["method"]] <- "mle" stopCluster(cl) return(out) }
make.exptrans <- function() { exptrans.fun <- function(times,y,p,more) { y = exp(y) x = more$fn(times,y,p,more$more) return(x) } exptrans.dfdx <- function(times,y,p,more) { y = exp(y) x = more$dfdx(times,y,p,more$more) for(i in 1:dim(x)[2]){ for(j in 1:dim(x)[3]){ x[,i,j] = x[,i,j]*y[,j] } } return(x) } exptrans.dfdp <- function(times,y,p,more) { y = exp(y) x = more$dfdp(times,y,p,more$more) return(x) } exptrans.d2fdx2 <- function(times,y,p,more) { x1 = exptrans.dfdx(times,y,p,more) y = exp(y) x = more$d2fdx2(times,y,p,more$more) for(i in 1:dim(x)[2]){ for(j in 1:dim(x)[3]){ for(k in 1:dim(x)[4]){ x[,i,j,k] = x[,i,j,k]*y[,j]*y[,k] } x[,i,j,j] = x[,i,j,j] + x1[,i,j] } } return(x) } exptrans.d2fdxdp <- function(times,y,p,more) { y = exp(y) x = more$d2fdxdp(times,y,p,more$more) for(i in 1:dim(x)[2]){ for(j in 1:dim(x)[3]){ for(k in 1:dim(x)[4]){ x[,i,j,k] = x[,i,j,k]*y[,j] } } } return(x) } more = list(fn = exptrans.fun, dfdx = exptrans.dfdx, dfdp = exptrans.dfdp, d2fdx2 = exptrans.d2fdx2, d2fdxdp = exptrans.d2fdxdp, extras = NULL) }
popMprojHigh <- read.delim(file='popMprojHigh.txt', comment.char='
print.model_performance <- function(x, ...) { cat("Measures for: ", x$type) cat(paste0("\n", substr(paste0(names(x$measures), " "), 1, 11), ": ", sapply(x$measures, prettyNum))) cat("\n\nResiduals:\n") print(quantile(x$residuals$diff, seq(0, 1, 0.1))) }
context("test-ets.R") forecast_fit <- USAccDeaths %>% forecast::ets() test_that("Automatic ETS selection", { fable_fit <- USAccDeaths_tbl %>% model(ets = ETS(value)) expect_equivalent( tidy(fable_fit$ets[[1]]$fit)$estimate, c(coef(forecast_fit), -sum(coef(forecast_fit)[-(1:3)])) ) expect_equal( tidy(model(UKLungDeaths[1:24, ], ETS(mdeaths)))$estimate, c(1, 2134), tolerance = 0.5 ) }) test_that("Manual ETS selection", { fable_fit <- USAccDeaths_tbl %>% model(ets = ETS(value ~ error("A") + trend("N") + season("A"))) expect_equivalent( tidy(fable_fit$ets[[1]]$fit)$estimate, c(coef(forecast_fit), -sum(coef(forecast_fit)[-(1:3)])) ) expect_identical( model_sum(fable_fit$ets[[1]]), "ETS(A,N,A)" ) fable_fc <- fable_fit %>% forecast() forecast_fc <- forecast_fit %>% forecast::forecast() expect_equivalent( fc_mean(fable_fc$value), unclass(forecast_fc$mean) ) fable_fit %>% generate(USAccDeaths_tbl) fable_fit %>% generate(USAccDeaths_tbl %>% dplyr::mutate(index = index + 72)) expect_identical( tidy(refit(fable_fit, USAccDeaths_tbl))$estimate == tidy(fable_fit)$estimate, c(rep(TRUE, 2), rep(FALSE, 13)) ) expect_identical( tidy(refit(fable_fit, USAccDeaths_tbl, reinitialise = FALSE))$estimate, tidy(fable_fit)$estimate ) cmp <- components(fable_fit) expect_identical( tidy(fable_fit)$estimate[3:14], c(cmp$level[12], cmp$season[12:2]) ) expect_s3_class( cmp, "dcmp_ts" ) expect_output( report(fable_fit), "sigma\\^2: 85667.86" ) aug <- augment(fable_fit) expect_equal( aug$value, aug$.fitted + aug$.resid ) coef <- USAccDeaths_tbl %>% model(ETS(value ~ error("A") + season("A", gamma = 0.0001) + trend("Ad", alpha = 0.5, beta = 0.006, phi = 0.975))) %>% tidy() expect_identical( coef$estimate[1:4], c(0.5, 0.006, 0.0001, 0.975) ) expect_identical( coef$term, c("alpha", "beta", "gamma", "phi", "l[0]", "b[0]", sprintf("s[%i]", 0:-11)) ) }) test_that("ETS with bad inputs", { expect_warning( USAccDeaths_tbl %>% model(ETS(value ~ error("A") + error("A"))), "Only one special of each type is allowed for ETS" ) expect_warning( USAccDeaths_tbl %>% model(ETS(value ~ trend(alpha = 1.5))), "Inconsistent parameter boundaries" ) expect_warning( USAccDeaths_tbl %>% model(ETS(value ~ error("A") + trend("A", alpha = 0.2, beta = 0.5) + season("N"))), "Parameters out of range" ) expect_warning( UKLungDeaths %>% model(ETS(vars(mdeaths, fdeaths))), "Only univariate responses are supported by ETS" ) UK_missing <- UKLungDeaths UK_missing[["mdeaths"]][3:5] <- NA expect_warning( UK_missing %>% model(ETS(mdeaths)), "ETS does not support missing values" ) expect_warning( UKLungDeaths %>% model(ETS(mdeaths ~ trend("M") + season("A"))), "No valid ETS models have been allowed" ) expect_warning( UKLungDeaths[1:2, ] %>% model(ETS(mdeaths)), "Not enough data to estimate this ETS model" ) }) test_that("Multiplicative ETS models", { fable_fit <- USAccDeaths_tbl %>% model(ets = ETS(value ~ error("M") + trend("N") + season("N"))) expect_true( is.constant(fc_mean(forecast(fable_fit)$value)) ) expect_s3_class( USAccDeaths_tbl %>% model(ets = ETS(value ~ error("M") + trend("A") + season("M"))) %>% forecast(), "fbl_ts" ) expect_s3_class( USAccDeaths_tbl %>% model(ets = ETS(value ~ error("M") + trend("M") + season("M"))) %>% forecast(times = 5), "fbl_ts" ) })
pairdepb <- function(y, groups, blocks, tr = 0.2, nboot = 599, ...){ cols1 <- deparse(substitute(y)) cols2 <- deparse(substitute(groups)) cols3 <- deparse(substitute(blocks)) dat <- data.frame(y, groups, blocks) colnames(dat) <- c(cols1, cols2, cols3) cl <- match.call() x <- reshape(dat, idvar = cols3, timevar = cols2, direction = "wide")[-1] grp <- c(1:length(x)) alpha=.05 grp=0 if(is.data.frame(x)) x <- as.matrix(x) if(!is.list(x) && !is.matrix(x))stop("Data must be stored in a matrix or in list mode.") if(is.list(x)){ if(sum(grp)==0)grp<-c(1:length(x)) mat<-matrix(0,length(x[[1]]),length(grp)) for (j in 1:length(grp))mat[,j]<-x[[grp[j]]] } if(is.matrix(x)){ if(sum(grp)==0)grp<-c(1:ncol(x)) mat<-x[,grp] } if(sum(is.na(mat)>=1))stop("Missing values are not allowed.") J<-ncol(mat) connum<-(J^2-J)/2 bvec<-matrix(0,connum,nboot) data<-matrix(sample(nrow(mat),size=nrow(mat)*nboot,replace=TRUE),nrow=nboot) xcen<-matrix(0,nrow(mat),ncol(mat)) for (j in 1:J)xcen[,j]<-mat[,j]-mean(mat[,j],tr) it<-0 for (j in 1:J){ for (k in 1:J){ if(j<k){ it<-it+1 bvec[it,]<-apply(data,1,tsub,xcen[,j],xcen[,k],tr) }}} bvec<-abs(bvec) icrit<-round((1-alpha)*nboot) critvec<-apply(bvec,2,max) critvec<-sort(critvec) crit<-critvec[icrit] psihat<-matrix(0,connum,5) dimnames(psihat)<-list(NULL,c("Group","Group","psihat","ci.lower","ci.upper")) test<-matrix(NA,connum,4) dimnames(test)<-list(NULL,c("Group","Group","test","se")) it<-0 for (j in 1:J){ for (k in 1:J){ if(j<k){ it<-it+1 estse<-yuend(mat[,j],mat[,k])$se dif<-mean(mat[,j],tr)-mean(mat[,k],tr) psihat[it,1]<-grp[j] psihat[it,2]<-grp[k] psihat[it,3]<-dif psihat[it,4]<-dif-crit*estse psihat[it,5]<-dif+crit*estse test[it,1]<-grp[j] test[it,2]<-grp[k] test[it,3]<-yuend(mat[,j],mat[,k])$test test[it,4]<-estse }}} fnames <- as.character(unique(groups)) psihat1 <- cbind(psihat, test[,3], crit) result <- list(comp = psihat1, fnames = fnames, call = cl) class(result) <- "mcp1" result }
guide_stringlegend <- function( title = waiver(), title.position = NULL, title.theme = NULL, title.hjust = NULL, title.vjust = NULL, label.theme = NULL, label.hjust = NULL, label.vjust = NULL, family = NULL, face = NULL, size = NULL, spacing.x = NULL, spacing.y = NULL, spacing = NULL, default.units = "pt", direction = NULL, nrow = NULL, ncol = NULL, byrow = FALSE, reverse = FALSE, order = 0, ... ) { if (!is.null(spacing.x) & !is.unit(spacing.x)) { spacing.x <- unit(spacing.x, default.units) } if (!is.null(spacing.y) & !is.unit(spacing.y)) { spacing.y <- unit(spacing.y, default.units) } if (!is.null(spacing) & !is.unit(spacing)) { spacing <- unit(spacing, default.units) } spacing.x <- spacing.x %||% spacing spacing.y <- spacing.y %||% spacing structure( list( title = title, title.position = title.position, title.theme = title.theme, title.hjust = title.hjust, title.vjust = title.vjust, label.theme = label.theme, label.hjust = label.hjust, label.vjust = label.vjust, label.family = family, label.face = face, label.size = size, label.spacing.x = spacing.x, label.spacing.y = spacing.y, direction = direction, nrow = nrow, ncol = ncol, byrow = byrow, reverse = reverse, order = order, available_aes = c("colour", "fill"), ..., name = "stringlegend" ), class = c("guide", "stringlegend", "legend") ) } guide_gengrob.stringlegend <- function(guide, theme) { nbreak <- nrow(guide$key) if (!is.null(guide$nrow) && !is.null(guide$ncol) && guide$nrow * guide$ncol < nbreak) { stop("`nrow` * `ncol` need to be larger than the number of breaks.") } if (is.null(guide$nrow) && is.null(guide$ncol)) { if (guide$direction == "horizontal") { guide$nrow <- ceiling(nbreak / 5) } else { guide$ncol <- ceiling(nbreak / 20) } } legend.nrow <- guide$nrow %||% ceiling(nbreak / guide$ncol) legend.ncol <- guide$ncol %||% ceiling(nbreak / guide$nrow) legend.dim <- c(legend.nrow, legend.ncol) title <- render_legend_title(guide, theme) default_gap <- 0.5 * unit(title$fontsize, "pt") hgap <- width_cm(theme$legend.spacing.x %||% default_gap) vgap <- height_cm(theme$legend.spacing.y %||% default_gap) xgap <- width_cm(guide$label.spacing.x %||% default_gap) ygap <- height_cm(guide$label.spacing.y %||% default_gap) labels <- render_stringlegend_labels(guide, theme, legend.dim, nbreak) if (guide$byrow) { vps <- .int$new_data_frame(list( R = ceiling(seq(nbreak) / legend.ncol), C = (seq(nbreak) - 1) %% legend.ncol + 1 )) } else { vps <- arrayInd(seq(nbreak), legend.dim) vps <- .int$new_data_frame(list(R = vps[, 1], C = vps[, 2])) } vps <- transform(vps, label.row = R * 2 - 1, label.col = C * 2 - 1) widths <- head(.int$interleave(labels$width, xgap), -1) heights <- head(.int$interleave(labels$height, ygap), -1) switch( guide$title.position, "top" = { widths <- c(widths, max(0, title$width - sum(widths))) heights <- c(title$height, vgap, heights) vps <- transform(vps, label.row = label.row + 2) vps.title.row <- 1; vps.title.col <- 1:length(widths) }, "bottom" = { widths <- c(widths, max(0, title$width - sum(widths))) heights <- c(heights, vgap, title$height) vps.title.row <- length(heights); vps.title.col <- 1:length(widths) }, "left" = { widths <- c(title$width, hgap, widths) heights <- c(heights, max(0, title$height - sum(heights))) vps <- transform(vps, label.col = label.col + 2) vps.title.row <- 1:length(heights); vps.title.col <- 1 }, "right" = { widths <- c(widths, hgap, title$width) heights <- c(heights, max(0, title$height - sum(heights))) vps.title.row <- 1:length(heights); vps.title.col <- length(widths) } ) background <- element_render(theme, "legend.background") padding <- convertUnit(theme$legend.margin %||% margin(), "cm", valueOnly = TRUE) widths <- c(padding[4], widths, padding[2]) heights <- c(padding[1], heights, padding[3]) gt <- gtable(widths = unit(widths, "cm"), heights = unit(heights, "cm")) gt <- gtable_add_grob(gt, background, name = "background", clip = "off", t = 1, r = -1, b = -1, l = 1) gt <- gtable_add_grob( gt, .int$justify_grobs( title$grob, hjust = title$hjust, vjust = title$vjust, int_angle = title$theme$angle, debug = title$theme$debug ), name = "title", clip = "off", t = 1 + min(vps.title.row), r = 1 + max(vps.title.col), b = 1 + max(vps.title.row), l = 1 + min(vps.title.col) ) gt <- gtable_add_grob( gt, .int$justify_grobs( labels$grob, hjust = labels$hjust, vjust = labels$vjust, int_angle = labels$theme$angle, debug = labels$theme$debug ), name = paste("label", vps$label.row, vps$label.col, sep = "-"), clip = "off", t = 1 + vps$label.row, r = 1 + vps$label.col, b = 1 + vps$label.row, l = 1 + vps$label.col ) gt } render_stringlegend_labels <- function(guide, theme, dim, n) { label.theme <- guide$label.theme %||% calc_element("legend.text", theme) key_nrow <- nrow(guide$key) if (is.null(guide$key$.label)) { grob <- rep(list(zeroGrob()), key_nrow) hjust <- vjust <- NULL } else { just_defaults <- list(hjust = 0, vjust = 0.5) if (just_defaults$hjust == 0 && any(is.expression(guide$key$.label))) { just_defaults$hjust <- 1 } if (is.null(guide$label.theme$hjust) && is.null(theme$legend.text$hjust)) { label.theme$hjust <- NULL } if (is.null(guide$label.theme$vjust) && is.null(theme$legend.text$vjust)) { label.theme$vjust <- NULL } hjust <- guide$label.hjust %||% theme$legend.text.align %||% label.theme$hjust %||% just_defaults$hjust vjust <- guide$label.vjust %||% label.theme$vjust %||% just_defaults$vjust colour <- guide$key$fill %||% guide$key$colour %||% "black" face <- guide$label.face %||% label.theme$face family <- guide$label.family %||% label.theme$family size <- guide$label.size %||% label.theme$size grob <- lapply(seq_len(key_nrow), function(i, ...) { g <- element_grob( element = label.theme, label = guide$key$.label[[i]], colour = colour[[i]], face = face, family = family, size = size, hjust = hjust, vjust = vjust, margin_x = TRUE, margin_y = TRUE ) g$name <- grobName(g, "guide.label") g }) } widths <- width_cm(grob) heights <- height_cm(grob) blanks <- rep(0, prod(dim) - n) widths <- apply( matrix(c(widths, blanks), dim[1], dim[2], byrow = guide$byrow), 2, max ) heights <- apply( matrix(c(heights, blanks), dim[1], dim[2], byrow = guide$byrow), 1, max ) list(grob = grob, width = widths, height = heights, hjust = hjust, vjust = vjust, theme = label.theme) } render_legend_title <- function(guide, theme) { title.theme <- guide$title.theme %||% calc_element("legend.title", theme) hjust <- guide$title.hjust %||% theme$legend.title.align %||% title.theme$hjust %||% 0 vjust <- guide$title.vjust %||% title.theme$vjust %||% 0.5 grob <- element_grob( title.theme, label = guide$title, hjust = hjust, vjust = vjust, margin_x = TRUE, margin_y = TRUE ) grob$name <- grobName(grob, "guide.title") width <- width_cm(grob) height <- height_cm(grob) fontsize <- title.theme$size %||% calc_element("legend.title", theme)$xize %||% calc_element("text", theme)$size %||% 11 list(grob = grob, width = width, height = height, fontsize = fontsize, hjust = hjust, vjust = vjust, theme = title.theme) } utils::globalVariables(c("C", "R", "label.row", "label.col")) height_cm <- function(x) { if (is.grob(x)) { convertHeight(grobHeight(x), "cm", TRUE) } else if (is.unit(x)) { convertHeight(x, "cm", TRUE) } else if (is.list(x)) { vapply(x, height_cm, numeric(1)) } else { rlang::abort("Unknown input") } } width_cm <- function(x) { if (is.grob(x)) { convertWidth(grobWidth(x), "cm", TRUE) } else if (is.unit(x)) { convertWidth(x, "cm", TRUE) } else if (is.list(x)) { vapply(x, width_cm, numeric(1)) } else { rlang::abort("Unknown input") } }
cadence.predict <- function(x, fit) { if(!is.matrix(x)) stop("\"x\" must be a matrix") if("W1" %in% names(fit)) fit <- list(fit=fit) pred <- list() for(i in seq_along(fit)){ nh <- names(fit)[i] hidden.fcn <- attr(fit[[nh]], "hidden.fcn") distribution <- attr(fit[[nh]], "distribution") x.center <- attr(fit[[nh]], "x.center") x.scale <- attr(fit[[nh]], "x.scale") if(attr(fit[[nh]], "stationary")) x <- x[,1,drop=FALSE] x.pred <- sweep(x, 2, x.center, "-") x.pred <- sweep(x.pred, 2, x.scale, "/") pred[[nh]] <- cadence.evaluate(x.pred, fit[[nh]]$W1, fit[[nh]]$W2, hidden.fcn, distribution) } if(i==1) pred <- pred[[1]] pred }
supportsExpat <- function() { @SUPPORTS_EXPAT@ } supportsLibxml <- function() { @SUPPORTS_LIBXML@ } ADD_XML_OUTPUT_BUFFER = @ADD_XML_OUTPUT_BUFFER@ > 0
test_that("special cases are correct", { expect_equal(str_split(NA, "")[[1]], NA_character_) expect_equal(str_split(character(), ""), list()) }) test_that("str_split functions as expected", { expect_equal( str_split(c("bab", "cac", "dadad"), "a"), list(c("b", "b"), c("c", "c"), c("d", "d", "d")) ) }) test_that("str_split() can split by special patterns", { expect_equal(str_split("ab", ""), list(c("a", "b"))) expect_equal(str_split("this that.", boundary("word")), list(c("this", "that"))) expect_equal(str_split("a-b", fixed("-")), list(c("a", "b"))) expect_equal(str_split("aXb", coll("X", ignore_case = TRUE)), list(c("a", "b"))) }) test_that("str_split() can control maximum number of splits", { expect_equal( str_split(c("a", "a-b"), n = 1, "-"), list("a", "a-b") ) expect_equal( str_split(c("a", "a-b"), n = 3, "-"), list("a", c("a", "b")) ) }) test_that("str_split() checks its inputs", { expect_snapshot(error = TRUE, { str_split(letters[1:3], letters[1:2]) str_split("x", 1) str_split("x", "x", n = 0) }) }) test_that("str_split_1 takes string and returns character vector", { expect_equal(str_split_1("abc", ""), c("a", "b", "c")) expect_snapshot_error(str_split_1(letters, "")) }) test_that("str_split_fixed pads with NA", { expect_equal( str_split_fixed(c("a", "a-b"), "-", 1), cbind(c("a", "a-b"))) expect_equal( str_split_fixed(c("a", "a-b"), "-", 2), cbind(c("a", "a"), c(NA, "b")) ) expect_equal( str_split_fixed(c("a", "a-b"), "-", 3), cbind(c("a", "a"), c(NA, "b"), c(NA, NA)) ) }) test_that("str_split_fixed check its inputs", { expect_snapshot(str_split_fixed("x", "x", 0), error = TRUE) }) test_that("str_split_i returns NA for absent components", { expect_equal(str_split_i(c("a", "b-c"), "-", 1), c("a", "b")) expect_equal(str_split_i(c("a", "b-c"), "-", 2), c(NA, "c")) expect_equal(str_split_i(c("a", "b-c"), "-", 3), c(NA_character_, NA)) }) test_that("str_split_i check its inputs", { expect_snapshot(str_split_i("x", "x", 0), error = TRUE) })
cor.table <- function (x, cor.method = c("pearson","spearman"), cor.type = c("standard", "contrast")) { cor.method <- match.arg(cor.method) cor.type <- match.arg(cor.type) if (identical(cor.type, "standard")) { concorr <- list() concorr$r <- cor(x, method = cor.method) concorr$df <- dim(x)[1] - 2 } else { concorr <- list() concorr$r <- cor(rbind(x, x * -1), method = cor.method) concorr$df <- length(x[, 1]) - 1 } t <- concorr$r * sqrt(concorr$df/(1 - concorr$r^2)) concorr$P <- 2*pt(t, concorr$df) concorr$P[concorr$r>0]<-2*pt(t[concorr$r>0], concorr$df,lower.tail=FALSE) concorr }
zip.reg <- function(target, dataset, wei = NULL, lgy = NULL) { n <- length(target) oop <- options(warn = -1) on.exit( options(oop) ) if ( NCOL(dataset) == 0 ) { if ( is.null(wei) ) { mod <- Rfast::zip.mle(target) lam <- mod$param[1] prop <- mod$param[2] res <- list(be = lam, prop = prop, loglik = mod$loglik, est = (1 - prop) * lam) } else { mod <- zipmle.wei(target, wei) res <- list(be = mod$lam, prop = mod$prop, loglik = mod$loglik) } } else { x <- model.matrix(target ~ ., as.data.frame(dataset) ) poia <- which(target == 0) n0 <- length(poia) ; n1 <- n - n0 target1 <- target[ -poia ] if ( is.null(wei) ) { mod <- glm.fit(x[-poia, ], target1, family = poisson(log) ) p1 <- ( n0 - sum( exp( - mod$fitted.values ) ) ) / n g1 <- log( p1 / ( 1 - p1 ) ) pa <- c( g1, mod$coefficients) pa[is.na(pa)] <- rnorm( sum(is.na(pa)) ) lik <- nlm( regzip, pa, y1 = target1, x = x, n1 = n1, poia = poia, iterlim = 10000 ) lik2 <- optim( lik$estimate, regzip, y1 = target1, x = x, n1 = n1, poia = poia, control = list(maxit = 10000) ) if ( is.null(lgy) ) lgy <- sum( lgamma(target1 + 1) ) } else { wei <- wei / sum(wei) w0 <- wei[poia] ; w1 <- wei[-poia] mod <- glm.fit(x[-poia, ], target1, family = poisson(log), weights = w1 ) p1 <- ( n0 - sum( exp( - mod$fitted.values ) ) ) / n g1 <- log( p1 / ( 1 - p1 ) ) pa <- c( g1, mod$coefficients) pa[is.na(pa)] <- rnorm( sum(is.na(pa)) ) lik <- nlm( regzipwei, pa, y1 = target1, x = x, n1 = n1, w1 = w1, w0 = w0, iterlim = 10000 ) lik2 <- optim( lik$estimate, regzipwei, y1 = target1, x = x, n1 = n1, w1 = w1, w0 = w0, control = list(maxit = 10000) ) if ( is.null(lgy) ) lgy <- sum( w1 * lgamma(target1 + 1) ) } prop <- exp(lik2$par[1]) / ( 1 + exp(lik2$par[1]) ) res <- list(be = lik2$par[-1], prop = prop, loglik = -lik2$value - lgy) } res }
ChaoSpecies <- function(data, datatype = c("abundance","abundance_freq_count", "incidence_freq", "incidence_freq_count", "incidence_raw"), k = 10, conf = 0.95) { if (is.matrix(data) == T || is.data.frame(data) == T){ if(datatype != "incidence_raw"){ if (ncol(data) == 1){ data <- data[, 1] } else { data <- data[1, ] } } else{ t <- ncol(data) dat <- rowSums(data) dat <- as.integer(dat) t_infreq <- sum(colSums(data[which(dat<k),])>=1) data <- dat data <- c(t_infreq, t , data) } } if(datatype == "abundance_freq_count"){ data <- as.integer(data) length4b <- length(data) data <- rep(data[seq(1,length4b,2)],data[seq(2,length4b,2)]) names(data) <- paste("x",1:length(data),sep="") datatype <- "abundance" } if (datatype == "incidence_freq_count"){ t <- as.integer(data[1]) data <- data[-c(1)] data <- as.integer(data) lengthdat <- length(data) data <- rep(data[seq(1,lengthdat,2)],data[seq(2,lengthdat,2)]) data <- c(t,data) names(data) <- c("T", paste("y",1:(length(data)-1),sep="")) datatype <- "incidence_freq" } method <- "all" if (k != round(k) || k < 0) stop("Error: The cutoff t to define less abundant species must be non-negative integer!") if (is.numeric(conf) == FALSE || conf > 1 || conf < 0) stop("Error: confidence level must be a numerical value between 0 and 1, e.g. 0.95") if (datatype == "abundance"){ f <- function(i, data){length(data[which(data == i)])} if (f(1, data) == sum(data)){ stop("Error: The information of data is not enough.")} z <- (list(Basic_data_information = basicAbun(data, k)[[1]], Rare_species_group = RareSpeciesGroup(data, k), Species_table = round(SpecAbunOut(data, method, k, conf), 3))) } else if (datatype == "incidence_raw"){ dat <- data[-1]; Q <- function(i, data){length(data[which(data == i)])} if (Q(1, dat) == sum(dat)){ stop("Error: The information of data is not enough.")} z <- (list(Basic_data_information = basicInci(data[-1], k)[[1]], Infreq_species_group = InfreqSpeciesGroup(data[-1], k), Species_table = round(SpecInciOut_raw(data, method, k, conf),3))) } else if (datatype == "incidence_freq"){ dat <- data[-1]; Q <- function(i, data){length(data[which(data == i)])} if (Q(1, dat) == sum(dat)){ stop("Error: The information of data is not enough.")} z <- (list(Basic_data_information = basicInci(data, k)[[1]], Infreq_species_group = InfreqSpeciesGroup(data, k), Species_table = round(SpecInciOut(data, method, k, conf),3))) } else{ stop("Error: The data type is wrong.") } class(z) <- c("ChaoSpecies") z } ChaoShared <- function(data, datatype = c("abundance", "incidence_freq", "incidence_raw"), units, se = TRUE, nboot = 200, conf = 0.95) { method <- "all" if (se == TRUE) { if (nboot < 1) nboot <- 1 if (nboot == 1) cat("Warning: When \"nboot\" =" ,nboot, ", the bootstrap s.e. and confidence interval can't be calculated.", "\n\n") } if (is.numeric(conf) == FALSE || conf > 1 || conf < 0) { cat("Warning: \"conf\"(confidence level) must be a numerical value between 0 and 1, e.g. 0.95.", "\n") cat(" We use \"conf\" = 0.95 to calculate!", "\n\n") conf <- 0.95 } datatype <- match.arg(datatype) if (datatype == "abundance") { if(class(data)=="list"){data <-cbind(data[[1]],data[[2]]) } x1 <- data[, 1] x2 <- data[, 2] Basic <- BasicFun(x1, x2, nboot, datatype) output <- ChaoShared.Ind(x1, x2, method, nboot, conf, se) colnames(output) <- c("Estimate", "s.e.", paste(conf*100,"%Lower",sep=""), paste(conf*100,"%Upper",sep="")) } if (datatype == "incidence_freq") { if(class(data)=="list"){data <-cbind(data[[1]],data[[2]]) } y1 <- data[, 1] y2 <- data[, 2] Basic <- BasicFun(y1, y2, B=nboot, datatype) output <- ChaoShared.Sam(y1, y2, method, conf, se) colnames(output) <- c("Estimate", "s.e.", paste(conf*100,"%Lower",sep=""), paste(conf*100,"%Upper",sep="")) } if (datatype=="incidence_raw"){ t = units if(ncol(data) != sum(t)) stop("Number of columns does not euqal to the sum of key in sampling units") dat <- matrix(0, ncol = length(t), nrow = nrow(data)) n <- 0 for(i in 1:length(t)){ dat[, i] <- as.integer(rowSums(data[,(n+1):(n+t[i])] ) ) n <- n+t[i] } t <- as.integer(t) dat <- apply(dat, MARGIN = 2, as.integer) dat <- data.frame(rbind(t, dat),row.names = NULL) y1 <- dat[,1] y2 <- dat[,2] datatype = "incidence_freq" Basic <- BasicFun(y1, y2, B=nboot, datatype) output <- ChaoShared.Sam(y1, y2, method, conf, se) colnames(output) <- c("Estimate", "s.e.", paste(conf*100,"%Lower",sep=""), paste(conf*100,"%Upper",sep="")) } out <- list(Basic_data_information=Basic, Estimation_results=output) class(out) <- c("ChaoShared") return(out) } Diversity=function(data, datatype=c("abundance","abundance_freq_count", "incidence_freq", "incidence_freq_count", "incidence_raw"), q=NULL) { if (is.matrix(data) == T || is.data.frame(data) == T){ if(datatype != "incidence_raw"){ if (ncol(data) == 1){ data <- data[, 1] } else { data <- as.vector(data[1, ]) } } else{ t <- ncol(data) dat <- rowSums(data) dat <- as.integer(dat) data <- c(t , dat) } } X <- data if(datatype == "abundance_freq_count"){ data <- as.integer(data) length4b <- length(data) data <- rep(data[seq(1,length4b,2)],data[seq(2,length4b,2)]) names(data) <- paste("x",1:length(data),sep="") datatype <- "abundance" X <- data } if(datatype=="abundance"){ type="abundance" if(!is.vector(X)) X <- as.numeric(unlist(c(X))) BASIC.DATA <- matrix(round(c(sum(X), sum(X>0), 1-sum(X==1)/sum(X), CV.Ind(X)),3), ncol = 1) nickname <- matrix(c("n", "D", "C", "CV"), ncol = 1) BASIC.DATA <- cbind(nickname, BASIC.DATA) colnames(BASIC.DATA) <- c("Variable", "Value") rownames(BASIC.DATA) <- c(" Sample size", " Number of observed species", " Estimated sample coverage", " Estimated CV") BASIC.DATA <- data.frame(BASIC.DATA) table0 <- matrix(0,5,4) table0[1,]=c(Chao1(X)[-5]) table0[2,]=c(Chao1_bc(X)) table0[3,]=round(SpecAbuniChao1(X, k=10, conf=0.95)[1,],1) table0[4,]=round(c(SpecAbunAce(X)),1) table0[5,]=round(c(SpecAbunAce1(X)),1) colnames(table0) <- c("Estimate", "s.e.", paste(Chao1(X)[5]*100,"%Lower", sep=""), paste(Chao1(X)[5]*100,"%Upper", sep="")) rownames(table0) <- c(" Chao1 (Chao, 1984)"," Chao1-bc ", " iChao1"," ACE (Chao & Lee, 1992)", " ACE-1 (Chao & Lee, 1992)") SHANNON=Shannon_index(X) table1=round(SHANNON[c(1:5),],3) table1=table1[-2,] colnames(table1) <- c("Estimate", "s.e.", paste("95%Lower"), paste("95%Upper")) rownames(table1) <- c(" MLE"," Jackknife", " Chao & Shen"," Chao et al. (2013)") table1_exp=round(SHANNON[c(6:10),],3) table1_exp=table1_exp[-2,] colnames(table1_exp) <- c("Estimate", "s.e.", paste("95%Lower"), paste("95%Upper")) rownames(table1_exp) <- c(" MLE"," Jackknife", " Chao & Shen"," Chao et al. (2013)") table2=round(Simpson_index(X)[c(1:2),],5) colnames(table2) <- c("Estimate", "s.e.", paste("95%Lower"), paste("95%Upper")) rownames(table2) <- c(" MVUE"," MLE") table2_recip=round(Simpson_index(X)[c(3:4),],5) colnames(table2_recip) <- c("Estimate", "s.e.", paste("95%Lower"), paste("95%Upper")) rownames(table2_recip) <- c(" MVUE"," MLE") if(is.null(q)){Hill <- reshapeChaoHill(ChaoHill(X, datatype = "abundance", q=NULL, from=0, to=3, interval=0.25, B=50, conf=0.95))} if(!is.null(q)){Hill <- reshapeChaoHill(ChaoHill(X, datatype = "abundance", q=q, from=0, to=3, interval=0.25, B=50, conf=0.95))} q_length<-length(Hill[,1])/2 Chao.LCL <- Hill[(q_length+1):(2*q_length),3] - 1.96*Hill[(q_length+1):(2*q_length),4] Chao.UCL <- Hill[(q_length+1):(2*q_length),3] + 1.96*Hill[(q_length+1):(2*q_length),4] Emperical.LCL <- Hill[1:q_length,3] - 1.96*Hill[1:q_length,4] Emperical.UCL <- Hill[1:q_length,3] + 1.96*Hill[1:q_length,4] Hill<-cbind(Hill[1:q_length,1],Hill[(q_length+1):(2*q_length),3],Chao.LCL,Chao.UCL,Hill[1:q_length,3],Emperical.LCL,Emperical.UCL) Hill<-round(Hill,3) Hill <- data.frame(Hill) colnames(Hill)<-c("q","ChaoJost","95%Lower","95%Upper","Empirical","95%Lower","95%Upper") q_hill <- nrow(Hill) rownames(Hill) <- paste(" ",1:q_hill) z <- list("datatype"= type,"Basic_data"=BASIC.DATA,"Species_richness"=table0, "Shannon_index"=table1,"Shannon_diversity"=table1_exp, "Simpson_index"=table2,"Simpson_diversity"=table2_recip, "Hill_numbers"= Hill) } if(datatype == "incidence_freq_count"){ t <- as.integer(data[1]) data <- data[-c(1)] data <- as.integer(data) lengthdat <- length(data) data <- rep(data[seq(1,lengthdat,2)],data[seq(2,lengthdat,2)]) data <- c(t,data) names(data) <- c("T", paste("y",1:(length(data)-1),sep="")) datatype <- "incidence_freq" X <- data } if(datatype=="incidence_freq"){ if(!is.vector(X)) X <- as.numeric(unlist(c(X))) type="incidence" U<-sum(X[-1]) D<-sum(X[-1]>0) T<-X[1] C<-Chat.Sam(X,T) CV_squre<-max( D/C*T/(T-1)*sum(X[-1]*(X[-1]-1))/U^2-1, 0) CV<-CV_squre^0.5 BASIC.DATA <- matrix(round(c(D,T,U, C, CV),3), ncol = 1) nickname <- matrix(c("D", "T","U", "C", "CV"), ncol = 1) BASIC.DATA <- cbind(nickname, BASIC.DATA) colnames(BASIC.DATA) <- c("Variable", "Value") rownames(BASIC.DATA) <- c(" Number of observed species", " Number of Sampling units"," Total number of incidences", " Estimated sample coverage", " Estimated CV") BASIC.DATA <- data.frame(BASIC.DATA) table0=SpecInci(X, k=10, conf=0.95) rownames(table0) <- c(" Chao2 (Chao, 1987)"," Chao2-bc ", " iChao2"," ICE (Lee & Chao, 1994)", " ICE-1 (Lee & Chao, 1994)") SHANNON=Shannon_Inci_index(X) table1=round(SHANNON[c(1,4),],3) colnames(table1) <- c("Estimate", "s.e.", paste("95%Lower"), paste("95%Upper")) rownames(table1) <- c(" MLE"," Chao et al. (2013)") table1_exp=round(SHANNON[c(5,8),],3) colnames(table1_exp) <- c("Estimate", "s.e.", paste("95%Lower"), paste("95%Upper")) rownames(table1_exp) <- c(" MLE"," Chao et al. (2013)") SIMPSON=Simpson_Inci_index(X) table2=round(SIMPSON[c(1:2),],5) colnames(table2) <- c("Estimate", "s.e.", paste("95%Lower"), paste("95%Upper")) rownames(table2) <- c(" MVUE"," MLE") table2_recip=round(SIMPSON[c(3:4),],5) colnames(table2_recip) <- c("Estimate", "s.e.", paste("95%Lower"), paste("95%Upper")) rownames(table2_recip) <- c(" MVUE"," MLE") if(is.null(q)){Hill <- reshapeChaoHill(ChaoHill(X, datatype = "incidence_freq", q=NULL, from=0, to=3, interval=0.25, B=50, conf=0.95))} if(!is.null(q)){Hill <- reshapeChaoHill(ChaoHill(X, datatype = "incidence_freq", q=q, from=0, to=3, interval=0.25, B=50, conf=0.95))} q_length<-length(Hill[,1])/2 Chao.LCL <- Hill[(q_length+1):(2*q_length),3] - 1.96*Hill[(q_length+1):(2*q_length),4] Chao.UCL <- Hill[(q_length+1):(2*q_length),3] + 1.96*Hill[(q_length+1):(2*q_length),4] Emperical.LCL <- Hill[1:q_length,3] - 1.96*Hill[1:q_length,4] Emperical.UCL <- Hill[1:q_length,3] + 1.96*Hill[1:q_length,4] Hill<-cbind(Hill[1:q_length,1],Hill[(q_length+1):(2*q_length),3],Chao.LCL,Chao.UCL,Hill[1:q_length,3],Emperical.LCL,Emperical.UCL) Hill<-round(Hill,3) Hill <- data.frame(Hill) colnames(Hill)<-c("q","ChaoJost","95%Lower","95%Upper","Empirical","95%Lower","95%Upper") q_hill <- nrow(Hill) rownames(Hill) <- paste(" ",1:q_hill) z <- list("datatype"= type,"Basic_data"=BASIC.DATA,"Species_richness"=table0, "Shannon_index"=table1,"Shannon_diversity"=table1_exp, "Simpson_index"=table2,"Simpson_diversity"=table2_recip, "Hill_numbers"= Hill) } if(datatype=="incidence_raw"){ type="incidence" datatype = "incidence_freq" U<-sum(X[-1]) D<-sum(X[-1]>0) T<-X[1] C<-Chat.Sam(X,T) CV_squre<-max( D/C*T/(T-1)*sum(X[-1]*(X[-1]-1))/U^2-1, 0) CV<-CV_squre^0.5 BASIC.DATA <- matrix(round(c(D,T,U, C, CV),3), ncol = 1) nickname <- matrix(c("D", "T","U", "C", "CV"), ncol = 1) BASIC.DATA <- cbind(nickname, BASIC.DATA) colnames(BASIC.DATA) <- c("Variable", "Value") rownames(BASIC.DATA) <- c(" Number of observed species", " Number of Sampling units"," Total number of incidences", " Estimated sample coverage", " Estimated CV") BASIC.DATA <- data.frame(BASIC.DATA) table0=SpecInci(X, k=10, conf=0.95) rownames(table0) <- c(" Chao2 (Chao, 1987)"," Chao2-bc ", " iChao2"," ICE (Lee & Chao, 1994)", " ICE-1 (Lee & Chao, 1994)") SHANNON=Shannon_Inci_index(X) table1=round(SHANNON[c(1,4),],3) colnames(table1) <- c("Estimate", "s.e.", paste("95%Lower"), paste("95%Upper")) rownames(table1) <- c(" MLE"," Chao et al. (2013)") table1_exp=round(SHANNON[c(5,8),],3) colnames(table1_exp) <- c("Estimate", "s.e.", paste("95%Lower"), paste("95%Upper")) rownames(table1_exp) <- c(" MLE"," Chao et al. (2013)") SIMPSON=Simpson_Inci_index(X) table2=round(SIMPSON[c(1:2),],5) colnames(table2) <- c("Estimate", "s.e.", paste("95%Lower"), paste("95%Upper")) rownames(table2) <- c(" MVUE"," MLE") table2_recip=round(SIMPSON[c(3:4),],5) colnames(table2_recip) <- c("Estimate", "s.e.", paste("95%Lower"), paste("95%Upper")) rownames(table2_recip) <- c(" MVUE"," MLE") if(is.null(q)){Hill <- reshapeChaoHill(ChaoHill(X, datatype = "incidence", q=NULL, from=0, to=3, interval=0.25, B=50, conf=0.95))} if(!is.null(q)){Hill <- reshapeChaoHill(ChaoHill(X, datatype = "incidence", q=q, from=0, to=3, interval=0.25, B=50, conf=0.95))} q_length<-length(Hill[,1])/2 Chao.LCL <- Hill[(q_length+1):(2*q_length),3] - 1.96*Hill[(q_length+1):(2*q_length),4] Chao.UCL <- Hill[(q_length+1):(2*q_length),3] + 1.96*Hill[(q_length+1):(2*q_length),4] Emperical.LCL <- Hill[1:q_length,3] - 1.96*Hill[1:q_length,4] Emperical.UCL <- Hill[1:q_length,3] + 1.96*Hill[1:q_length,4] Hill<-cbind(Hill[1:q_length,1],Hill[(q_length+1):(2*q_length),3],Chao.LCL,Chao.UCL,Hill[1:q_length,3],Emperical.LCL,Emperical.UCL) Hill<-round(Hill,3) Hill <- data.frame(Hill) colnames(Hill)<-c("q","ChaoJost","95%Lower","95%Upper","Empirical","95%Lower","95%Upper") q_hill <- nrow(Hill) rownames(Hill) <- paste(" ",1:q_hill) z <- list("datatype"= type,"Basic_data"=BASIC.DATA,"Species_richness"=table0, "Shannon_index"=table1,"Shannon_diversity"=table1_exp, "Simpson_index"=table2,"Simpson_diversity"=table2_recip, "Hill_numbers"= Hill) } class(z) <- c("spadeDiv") return(z) } SimilarityPair=function(X, datatype = c("abundance","incidence_freq", "incidence_raw"), units,nboot=200) { if(datatype=="abundance") { if(class(X)=="list"){X <- do.call(cbind,X)} type <- "abundance" info1 <- c("S.total"=sum(rowSums(X)>0), "n1"=sum(X[,1]), "n2"=sum(X[,2]), "D1"=sum(X[,1]>0), "D2"=sum(X[,2]>0), "D12"=sum(X[,1]>0 & X[,2]>0), "nboot"=nboot) info2 <- c("f[11]"=sum(X[,1]==1 & X[,2]==1), "f[1+]"=sum(X[,1]==1 & X[,2]>0), "f[+1]"=sum(X[,1]>0 & X[,2]==1), "f[2+]"=sum(X[,1]==2 & X[,2]>0), "f[+2]"=sum(X[,1]>0 & X[,2]==2),"f[22]"=sum(X[,1]==2 & X[,2]==2)) info <- c(info1, info2) plus_CI <-function(x){ if(x[1] >= 1) x[1] <- 1 if(x[1] <= 0) x[1] <- 0 c(x, max(0,x[1]-1.96*x[2]), min(1,x[1]+1.96*x[2])) } temp <- list() weight <- c(sum(X[,1])/(sum(X[,1])+sum(X[,2])), sum(X[,2])/(sum(X[,1])+sum(X[,2]))) weight <- - sum(weight*log(weight)) / log(2) mat <- Jaccard_Sorensen_Abundance_equ(datatype,X[, 1],X[, 2], nboot)[, c(1, 2)] mat <- cbind(mat, mat[, 1]-1.96*mat[, 2], mat[, 1]+1.96*mat[, 2]) MLE_Jaccard <- mat[1, ] Est_Jaccard <- mat[2, ] MLE_Sorensen <- mat[3, ] Est_Sorensen <- mat[4, ] mat2 <- Two_Horn_equ(X[,1], X[,2], method="all", weight="unequal", nboot = nboot) MLE_Ee_Horn <- mat2$mle MLE_Ee_Horn <- plus_CI(c(MLE_Ee_Horn[1],MLE_Ee_Horn[2])) Est_Ee_Horn <- mat2$est MLE_Ee_U12 <- plus_CI(c(weight*MLE_Ee_Horn[1],MLE_Ee_Horn[2])) Est_Ee_U12 <- plus_CI(c(weight*Est_Ee_Horn[1],Est_Ee_Horn[2])) mat3 <- Two_BC_equ(X[, 1],X[, 2], datatype="abundance", nboot) MLE_Ee_Braycurtis <- mat3$mle Est_Ee_Braycurtis <- mat3$est mat4 <- SimilarityTwo(X,2,nboot,method="unequal weight") MLE_Ee_C22 <- mat4$CqN[1, ] Est_Ee_C22 <- mat4$CqN[2, ] MLE_Ee_U22 <- mat4$UqN[1, ] Est_Ee_U22 <- mat4$UqN[2, ] mat5 <- Two_Horn_equ(X[,1], X[,2], method="all", weight="equal", nboot = nboot) MLE_ew_Horn <- mat5$mle Est_ew_Horn <- mat5$est mat6 <- SimilarityTwo(X,2,nboot,method="equal weight") MLE_ew_C22 <- mat6$CqN[1, ] Est_ew_C22 <- mat6$CqN[2, ] MLE_ew_U22 <- mat6$UqN[1, ] Est_ew_U22 <- mat6$UqN[2, ] MLE_ew_ChaoSoresen <- mat[11,] Est_ew_ChaoSoresen <- mat[12, ] MLE_ew_ChaoJaccard <- mat[9, ] Est_ew_ChaoJaccard <- mat[10, ] temp[[1]] <- rbind(MLE_Sorensen, MLE_Jaccard) rownames(temp[[1]]) <- c("C02(q=0,Sorensen)","U02(q=0,Jaccard)") temp[[2]] <- rbind(MLE_ew_Horn, MLE_ew_C22, MLE_ew_U22, MLE_ew_ChaoJaccard, MLE_ew_ChaoSoresen) rownames(temp[[2]]) <- c("C12=U12(q=1,Horn)","C22(q=2,Morisita)","U22(q=2,Regional overlap)", "ChaoJaccard","ChaoSorensen") temp[[3]] <- t(as.matrix(MLE_Ee_Horn)) rownames(temp[[3]]) <- c("Horn size weighted(q=1)") temp[[4]] <- rbind(MLE_Ee_U12, MLE_Ee_C22, MLE_Ee_U22, MLE_Ee_Braycurtis) rownames(temp[[4]]) <- c("C12=U12(q=1)","C22(Morisita)", "U22(Regional overlap)","Bray-Curtis") temp[[5]] <- rbind(Est_Sorensen, Est_Jaccard) rownames(temp[[5]]) <- c("C02(q=0,Sorensen)","U02(q=0,Jaccard)") temp[[6]] <- rbind(Est_ew_Horn, Est_ew_C22, Est_ew_U22, Est_ew_ChaoJaccard, Est_ew_ChaoSoresen) rownames(temp[[6]]) <- c("C12=U12(q=1,Horn)","C22(q=2,Morisita)","U22(q=2,Regional overlap)", "ChaoJaccard","ChaoSorensen") temp[[7]] <- t(as.matrix(Est_Ee_Horn)) rownames(temp[[7]]) <- c("Horn size weighted(q=1)") temp[[8]] <- rbind(Est_Ee_U12, Est_Ee_C22, Est_Ee_U22, Est_Ee_Braycurtis) temp <- lapply(temp, FUN = function(x){ colnames(x) <- c("Estimate", "s.e.", "95%.LCL", "95%.UCL") return(x) }) rownames(temp[[8]]) <- c("C12=U12(q=1)","C22(Morisita)", "U22(Regional overlap)","Bray-Curtis") z <- list("datatype"=type,"info"=info, "Empirical_richness"=temp[[1]], "Empirical_relative"=temp[[2]], "Empirical_WtRelative"=temp[[3]], "Empirical_absolute"=temp[[4]], "estimated_richness"=temp[[5]], "estimated_relative"=temp[[6]], "estimated_WtRelative"=temp[[7]], "estimated_absolute"=temp[[8]]) } if(datatype=="incidence_raw"){ data <- X t = units if(ncol(data) != sum(t)) stop("Number of columns does not euqal to the sum of key in sampling units") dat <- matrix(0, ncol = length(t), nrow = nrow(data)) n <- 0 for(i in 1:length(t)){ dat[, i] <- as.integer(rowSums(data[,(n+1):(n+t[i])] ) ) n <- n+t[i] } t <- as.integer(t) dat <- apply(dat, MARGIN = 2, as.integer) dat <- data.frame(rbind(t, dat),row.names = NULL) y1 <- dat[,1] y2 <- dat[,2] X <- cbind(y1, y2) type <- "incidence_freq" X <- as.data.frame(X) } if(datatype=="incidence_freq") type <- "incidence_freq" if(datatype=="incidence_freq" | type == "incidence_freq") { if(class(X)=="list"){X <- do.call(cbind,X)} no.assemblage=length(X[1,]) Y=X[-1,] type="incidence" info1 <- c("S.total"=sum(rowSums(Y)>0), "T1"=X[1,1], "T2"=X[1,2], "U1"=sum(Y[,1]), "U2"=sum(Y[,2]), "D1"=sum(Y[,1]>0), "D2"=sum(Y[,2]>0), "D12"=sum(Y[,1]>0 & Y[,2]>0), "nboot"=nboot) info2 <- c("Q[11]"=sum(Y[,1]==1 & Y[,2]==1), "Q[1+]"=sum(Y[,1]==1 & Y[,2]>0), "Q[+1]"=sum(Y[,1]>0 & Y[,2]==1), "Q[2+]"=sum(Y[,1]==2 & Y[,2]>0), "Q[+2]"=sum(Y[,1]>0 & Y[,2]==2), "Q[22]"=sum(Y[,1]==2 & Y[,2]==2)) info <- c(info1, info2) plus_CI <-function(x){ if(x[1] >= 1) x[1] <- 1 if(x[1] <= 0) x[1] <- 0 c(x, max(0,x[1]-1.96*x[2]), min(1,x[1]+1.96*x[2])) } temp <- list() weight <- c(sum(Y[,1])/(sum(Y[,1])+sum(Y[,2])), sum(Y[,2])/(sum(Y[,1])+sum(Y[,2]))) weight <- - sum(weight*log(weight)) / log(2) mat <- Jaccard_Sorensen_Abundance_equ(datatype="incidence",X[, 1],X[, 2], nboot)[, c(1, 2)] mat <- cbind(mat, mat[, 1]-1.96*mat[, 2], mat[, 1]+1.96*mat[, 2]) MLE_Jaccard <- mat[1, ] Est_Jaccard <- mat[2, ] MLE_Sorensen <- mat[3, ] Est_Sorensen <- mat[4, ] mat2 <- Two_Horn_equ(X[,1], X[,2], datatype = "incidence", method="all", weight="unequal", nboot) MLE_Ee_Horn <- mat2$mle MLE_Ee_Horn <- plus_CI(c(MLE_Ee_Horn[1],MLE_Ee_Horn[2])) Est_Ee_Horn <- mat2$est MLE_Ee_U12 <- plus_CI(c(weight*MLE_Ee_Horn[1],MLE_Ee_Horn[2])) Est_Ee_U12 <- plus_CI(c(weight*Est_Ee_Horn[1],Est_Ee_Horn[2])) mat3 <- C2N_ee_se_inc(X, nboot) MLE_Ee_C22 <- plus_CI(mat3[1,]) Est_Ee_C22 <- plus_CI(mat3[3,]) MLE_Ee_U22 <- plus_CI(mat3[2,]) Est_Ee_U22 <- plus_CI(mat3[4,]) mat4 <- Two_Horn_equ(X[,1], X[,2], datatype = "incidence", method="all", weight="equal", nboot) MLE_ew_Horn <- mat4$mle Est_ew_Horn <- mat4$est mat5 <- SimilarityTwo(X, 2, nboot, method="equal weight", datatype="incidence") MLE_ew_C22 <- mat5$CqN[1, ] Est_ew_C22 <- mat5$CqN[2, ] MLE_ew_U22 <- mat5$UqN[1, ] Est_ew_U22 <- mat5$UqN[2, ] MLE_ew_ChaoSoresen <- mat[11,] Est_ew_ChaoSoresen <- mat[12, ] MLE_ew_ChaoJaccard <- mat[9, ] Est_ew_ChaoJaccard <- mat[10, ] mat5 <- Two_BC_equ(X[, 1],X[, 2], datatype="incidence", nboot) MLE_Ee_Braycurtis <- mat5$mle Est_Ee_Braycurtis <- mat5$est temp[[1]] <- rbind(MLE_Sorensen, MLE_Jaccard) rownames(temp[[1]]) <- c("C02(q=0,Sorensen)","U02(q=0,Jaccard)") temp[[2]] <- rbind(MLE_ew_Horn, MLE_ew_C22, MLE_ew_U22, MLE_ew_ChaoJaccard, MLE_ew_ChaoSoresen) rownames(temp[[2]]) <- c("C12=U12(q=1,Horn)","C22(q=2,Morisita)","U22(q=2,Regional overlap)", "ChaoJaccard","ChaoSorensen") temp[[3]] <- t(as.matrix(MLE_Ee_Horn)) rownames(temp[[3]]) <- c("Horn size weighted(q=1)") temp[[4]] <- rbind(MLE_Ee_U12, MLE_Ee_C22, MLE_Ee_U22, MLE_Ee_Braycurtis) rownames(temp[[4]]) <- c("C12=U12(q=1)","C22(Morisita)", "U22(Regional overlap)","Bray-Curtis") temp[[5]] <- rbind(Est_Sorensen, Est_Jaccard) rownames(temp[[5]]) <- c("C02(q=0,Sorensen)","U02(q=0,Jaccard)") temp[[6]] <- rbind(Est_ew_Horn, Est_ew_C22, Est_ew_U22, Est_ew_ChaoJaccard, Est_ew_ChaoSoresen) rownames(temp[[6]]) <- c("C12=U12(q=1,Horn)","C22(q=2,Morisita)","U22(q=2,Regional overlap)", "ChaoJaccard","ChaoSorensen") temp[[7]] <- t(as.matrix(Est_Ee_Horn)) rownames(temp[[7]]) <- c("Horn size weighted(q=1)") temp[[8]] <- rbind(Est_Ee_U12, Est_Ee_C22, Est_Ee_U22, Est_Ee_Braycurtis) rownames(temp[[8]]) <- c("C12=U12(q=1)","C22(Morisita)", "U22(Regional overlap)","Bray-Curtis") temp <- lapply(temp, FUN = function(x){ colnames(x) <- c("Estimate", "s.e.", "95%.LCL", "95%.UCL") return(x) }) z <- list("datatype"=type,"info"=info, "Empirical_richness"=temp[[1]], "Empirical_relative"=temp[[2]], "Empirical_WtRelative"=temp[[3]], "Empirical_absolute"=temp[[4]], "estimated_richness"=temp[[5]], "estimated_relative"=temp[[6]], "estimated_WtRelative"=temp[[7]], "estimated_absolute"=temp[[8]]) } class(z) <- c("spadeTwo") return(z) } SimilarityMult=function(X,datatype=c("abundance","incidence_freq", "incidence_raw"),units,q=2,nboot=200,goal="relative") { method <- goal if(datatype=="abundance"){ if(class(X)=="list"){X <- do.call(cbind,X)} type <- "abundance" N <- no.community <- ncol(X) temp <- c("N"=ncol(X), "S.total"=sum(rowSums(X)>0)) n <- apply(X,2,sum) D <- apply(X,2,function(x)sum(x>0)) if(N > 2){ temp1 <- temp2 <- rep(0, N*(N-1)/2) k <- 1 for(i in 1:(N-1)){ for(j in (i+1):N){ temp1[k] <- paste('D',i,j,sep="") temp2[k] <- sum(X[,i]>0 & X[,j]>0) k <- k + 1 } } } names(temp2) <- temp1 names(n) <- paste('n',1:N, sep="") names(D) <- paste('D',1:N, sep="") info <- c(temp, n, D, temp2) if(N == 3) info <- c(temp, n, D, temp2, D123=sum(X[,1]>0 & X[,2]>0 & X[,3]>0)) info <- c(info, nboot=nboot) temp <- list() plus_CI <-function(x){ if(x[1] >= 1) x[1] <- 1 if(x[1] <= 0) x[1] <- 0 c(x, max(0,x[1]-1.96*x[2]), min(1,x[1]+1.96*x[2])) } n <- apply(X = X, MARGIN = 2, FUN = sum) weight <- n/sum(n) weight <- - sum(weight*log(weight)) / log(N) mat <- SimilarityMul(X, 0, nboot, method ="unequal weight") MLE_Jaccard <- mat$UqN[1, ] Est_Jaccard <- mat$UqN[2, ] MLE_Sorensen <- mat$CqN[1, ] Est_Sorensen <- mat$CqN[2, ] mat2 <- Horn_Multi_equ(X, datatype="abundance", nboot, method=c("unequal")) MLE_Ee_Horn <- mat2$mle Est_Ee_Horn <- mat2$est Est_Ee_U12 <- plus_CI(c(weight*Est_Ee_Horn[1], Est_Ee_Horn[2])) MLE_Ee_U12 <- plus_CI(c(weight*MLE_Ee_Horn[1], MLE_Ee_Horn[2])) mat3 <- BC_equ(X, datatype="abundance", nboot) MLE_Ee_Braycurtis <- mat3$mle Est_Ee_Braycurtis <- mat3$est mat4 <- SimilarityMul(X,2,nboot,method="unequal weight") MLE_Ee_C22 <- mat4$CqN[1, ] Est_Ee_C22 <- mat4$CqN[2, ] MLE_Ee_U22 <- mat4$UqN[1, ] Est_Ee_U22 <- mat4$UqN[2, ] mat5 <- Horn_Multi_equ(X, datatype="abundance", nboot, method=c("equal")) MLE_ew_Horn <- mat5$mle Est_ew_Horn <- mat5$est mat6 <- SimilarityMul(X,2,nboot,method="equal weight") MLE_ew_C22 <- mat6$CqN[1, ] Est_ew_C22 <- mat6$CqN[2, ] MLE_ew_U22 <- mat6$UqN[1, ] Est_ew_U22 <- mat6$UqN[2, ] temp[[1]] <- rbind(MLE_Sorensen, MLE_Jaccard) rownames(temp[[1]]) <- c("C0N(q=0,Sorensen)","U0N(q=0,Jaccard)") temp[[2]] <- rbind(MLE_ew_Horn, MLE_ew_C22, MLE_ew_U22) rownames(temp[[2]]) <- c("C1N=U1N(q=1,Horn)","C2N(q=2,Morisita)","U2N(q=2,Regional overlap)") temp[[3]] <- t(as.matrix(MLE_Ee_Horn)) rownames(temp[[3]]) <- c("Horn size weighted(q=1)") temp[[4]] <- rbind(MLE_Ee_U12, MLE_Ee_C22, MLE_Ee_U22, MLE_Ee_Braycurtis) rownames(temp[[4]]) <- c("C1N=U1N(q=1)","C2N(Morisita)", "U2N(Regional overlap)","Bray-Curtis") temp[[5]] <- rbind(Est_Sorensen, Est_Jaccard) rownames(temp[[5]]) <- c("C0N(q=0,Sorensen)","U0N(q=0,Jaccard)") temp[[6]] <- rbind(Est_ew_Horn, Est_ew_C22, Est_ew_U22) rownames(temp[[6]]) <- c("C1N=U1N(q=1,Horn)","C2N(q=2,Morisita)","U2N(q=2,Regional overlap)") temp[[7]] <- t(as.matrix(Est_Ee_Horn)) rownames(temp[[7]]) <- c("Horn size weighted(q=1)") temp[[8]] <- rbind(Est_Ee_U12, Est_Ee_C22, Est_Ee_U22, Est_Ee_Braycurtis) rownames(temp[[8]]) <- c("C1N=U1N(q=1)","C2N(Morisita)", "U2N(Regional overlap)","Bray-Curtis") temp <- lapply(temp, FUN = function(x){ colnames(x) <- c("Estimate", "s.e.", "95%.LCL", "95%.UCL") return(x) }) if(q == 0){ temp_PC <- rep(0, N*(N-1)/2) C02=matrix(0,choose(no.community,2),4) U02=matrix(0,choose(no.community,2),4) C_SM_1=matrix(1,N,N) C_SM_2=matrix(1,N,N) k=1 for(i in 1:(N-1)){ for(j in (i+1):N){ mat <- Cq2_est_equ(X[,c(i,j)], q, nboot, method='equal effort') C02[k,] <- mat[1, ] U02[k,] <- mat[2, ] temp_PC[k] <- paste("C",q,"2(",i,",",j,")", sep="") C_SM_1[i,j] <- C_SM_1[j,i] <- C02[k,1] C_SM_2[i,j] <- C_SM_2[j,i] <- U02[k,1] k <- k+1 } } Cqn_PC <- list("C02"=C02, "U02"=U02) C_SM <- list("C02"=C_SM_1, "U02"=C_SM_2) } if(q == 1 & method=="relative"){ temp_PC <- rep(0, N*(N-1)/2) C12=matrix(0,choose(no.community,2),4) Horn=matrix(0,choose(no.community,2),4) C_SM_1=matrix(1,N,N) C_SM_2=matrix(1,N,N) k=1 for(i in 1:(N-1)){ for(j in (i+1):N){ C12[k,] <- Cq2_est_equ(X[,c(i,j)], q, nboot, method='equal weight')[1, ] Horn[k,] <- Cq2_est_equ(X[,c(i,j)], q, nboot, method='equal effort')[2, ] temp_PC[k] <- paste("C",q,"2(",i,",",j,")", sep="") C_SM_1[i,j] <- C_SM_1[j,i] <- C12[k,1] C_SM_2[i,j] <- C_SM_2[j,i] <- Horn[k,1] k <- k+1 } } Cqn_PC <- list("C12"=C12, "Horn"=Horn) C_SM <- list("C12"=C_SM_1, "Horn"=C_SM_2) } if(q == 1 & method=="absolute"){ temp_PC <- rep(0, N*(N-1)/2) k=1 C_SM_1=matrix(1,N,N) C12=matrix(0,choose(no.community,2),4) for(i in 1:(N-1)){ for(j in (i+1):N){ C12[k,] <- Cq2_est_equ(X[,c(i,j)], q, nboot, method='equal effort')[1, ] temp_PC[k] <- paste("C",q,"2(",i,",",j,")", sep="") C_SM_1[i,j] <- C_SM_1[j,i] <- C12[k,1] k <- k+1 } } Cqn_PC <- list("C12"=C12) C_SM <- list("C12"=C_SM_1) } if(q == 2){ temp_PC <- rep(0, N*(N-1)/2) if(method=="absolute") method2 <- 'equal effort' if(method=="relative") method2 <- 'equal weight' C22=matrix(0,choose(no.community,2),4) U22=matrix(0,choose(no.community,2),4) C_SM_1=matrix(1,N,N) C_SM_2=matrix(1,N,N) k=1 for(i in 1:(N-1)){ for(j in (i+1):N){ mat <- Cq2_est_equ(X[,c(i,j)], q, nboot, method=method2) C22[k,] <- mat[1, ] U22[k,] <- mat[2, ] temp_PC[k] <- paste("C",q,"2(",i,",",j,")", sep="") C_SM_1[i,j] <- C_SM_1[j,i] <- C22[k,1] C_SM_2[i,j] <- C_SM_2[j,i] <- U22[k,1] k <- k+1 } } Cqn_PC <- list("C22"=C22, "U22"=U22) C_SM <- list("C22"=C_SM_1,"U22"=C_SM_2) } Cqn_PC <- lapply(Cqn_PC, function(x){ colnames(x) <- c("Estimate", "s.e.", "95%.LCL", "95%.UCL") ; rownames(x) <- temp_PC return(x) }) z <- list("datatype"=datatype,"info"=info, "Empirical_richness"=temp[[1]], "Empirical_relative"=temp[[2]], "Empirical_WtRelative"=temp[[3]], "Empirical_absolute"=temp[[4]], "estimated_richness"=temp[[5]], "estimated_relative"=temp[[6]], "estimated_WtRelative"=temp[[7]], "estimated_absolute"=temp[[8]], "pairwise"=Cqn_PC, "similarity.matrix"=C_SM, "goal"=method, "q"=q) } if(datatype == "incidence_raw"){ data <- X t = units if(ncol(data) != sum(t)) stop("Number of columns does not euqal to the sum of key in sampling units") dat <- matrix(0, ncol = length(t), nrow = nrow(data)) n <- 0 for(i in 1:length(t)){ dat[, i] <- as.integer(rowSums(data[,(n+1):(n+t[i])] ) ) n <- n+t[i] } t <- as.integer(t) dat <- apply(dat, MARGIN = 2, as.integer) X <- data.frame(rbind(t, dat),row.names = NULL) if(ncol(X) <= 2) stop("Multiple Commumity measures is only for the data which has three community or more") type = "incidence_freq" } if(datatype=="incidence_freq") type <- "incidence_freq" if(datatype=="incidence_freq" | type == "incidence_freq"){ if(class(X)=="list"){X <- do.call(cbind,X)} type <- "incidence" Y <- X X <- X[-1,] t <- as.vector(Y[1,]) N <- no.community <- ncol(X) temp <- c("N"=ncol(X), "S.total"=sum(rowSums(X)>0)) n <- apply(X,2,sum) D <- apply(X,2,function(x)sum(x>0)) if(N > 2){ temp1 <- temp2 <- rep(0, N*(N-1)/2) k <- 1 for(i in 1:(N-1)){ for(j in (i+1):N){ temp1[k] <- paste('D',i,j,sep="") temp2[k] <- sum(X[,i]>0 & X[,j]>0) k <- k + 1 } } } names(temp2) <- temp1 names(t) <- paste('T',1:N, sep="") names(n) <- paste('u',1:N, sep="") names(D) <- paste('D',1:N, sep="") info <- c(temp, t, n, D, temp2) if(N == 3) info <- c(temp, t, n, D, temp2, D123=sum(X[,1]>0 & X[,2]>0 & X[,3]>0)) info <- unlist(c(info, nboot=nboot)) temp <- list() plus_CI <-function(x){ if(x[1] >= 1) x[1] <- 1 if(x[1] <= 0) x[1] <- 0 c(x, max(0,x[1]-1.96*x[2]), min(1,x[1]+1.96*x[2])) } n <- apply(X = X, MARGIN = 2, FUN = sum) weight <- n/sum(n) weight <- - sum(weight*log(weight)) / log(N) mat <- SimilarityMul(Y, 0, nboot, method ="unequal weight", datatype="incidence") MLE_Jaccard <- mat$UqN[1, ] Est_Jaccard <- mat$UqN[2, ] MLE_Sorensen <- mat$CqN[1, ] Est_Sorensen <- mat$CqN[2, ] mat2 <- Horn_Multi_equ(Y, datatype="incidence", nboot, method=c("unequal")) MLE_Ee_Horn <- mat2$mle Est_Ee_Horn <- mat2$est Est_Ee_U12 <- plus_CI(c(weight*Est_Ee_Horn[1], Est_Ee_Horn[2])) MLE_Ee_U12 <- plus_CI(c(weight*MLE_Ee_Horn[1], MLE_Ee_Horn[2])) mat3 <- BC_equ(Y, datatype="incidence", nboot) MLE_Ee_Braycurtis <- mat3$mle Est_Ee_Braycurtis <- mat3$est mat4 <- C2N_ee_se_inc(Y, nboot) MLE_Ee_C22 <- plus_CI(mat4[1, ]) Est_Ee_C22 <- plus_CI(mat4[3, ]) MLE_Ee_U22 <- plus_CI(mat4[2, ]) Est_Ee_U22 <- plus_CI(mat4[4, ]) mat5 <- Horn_Multi_equ(Y, datatype="incidence", nboot, method=c("equal")) MLE_ew_Horn <- mat5$mle Est_ew_Horn <- mat5$est mat6 <- SimilarityMul(Y, 2, nboot, datatype = "incidence", method="equal weight") MLE_ew_C22 <- mat6$CqN[1, ] Est_ew_C22 <- mat6$CqN[2, ] MLE_ew_U22 <- mat6$UqN[1, ] Est_ew_U22 <- mat6$UqN[2, ] temp[[1]] <- rbind(MLE_Sorensen, MLE_Jaccard) rownames(temp[[1]]) <- c("C0N(q=0,Sorensen)","U0N(q=0,Jaccard)") temp[[2]] <- rbind(MLE_ew_Horn, MLE_ew_C22, MLE_ew_U22) rownames(temp[[2]]) <- c("C1N=U1N(q=1,Horn)","C2N(q=2,Morisita)","U2N(q=2,Regional overlap)") temp[[3]] <- t(as.matrix(MLE_Ee_Horn)) rownames(temp[[3]]) <- c("Horn size weighted(q=1)") temp[[4]] <- rbind(MLE_Ee_U12, MLE_Ee_C22, MLE_Ee_U22, MLE_Ee_Braycurtis) rownames(temp[[4]]) <- c("C1N=U1N(q=1)","C2N(Morisita)", "U2N(Regional overlap)","Bray-Curtis") temp[[5]] <- rbind(Est_Sorensen, Est_Jaccard) rownames(temp[[5]]) <- c("C0N(q=0,Sorensen)","U0N(q=0,Jaccard)") temp[[6]] <- rbind(Est_ew_Horn, Est_ew_C22, Est_ew_U22) rownames(temp[[6]]) <- c("C1N=U1N(q=1,Horn)","C2N(q=2,Morisita)","U2N(q=2,Regional overlap)") temp[[7]] <- t(as.matrix(Est_Ee_Horn)) rownames(temp[[7]]) <- c("Horn size weighted(q=1)") temp[[8]] <- rbind(Est_Ee_U12, Est_Ee_C22, Est_Ee_U22, Est_Ee_Braycurtis) rownames(temp[[8]]) <- c("C1N=U1N(q=1)","C2N(Morisita)", "U2N(Regional overlap)","Bray-Curtis") temp <- lapply(temp, FUN = function(x){ colnames(x) <- c("Estimate", "s.e.", "95%.LCL", "95%.UCL") return(x) }) if(q == 0){ temp_PC <- rep(0, N*(N-1)/2) C02=matrix(0,choose(no.community,2),4) U02=matrix(0,choose(no.community,2),4) C_SM_1=matrix(1,N,N) C_SM_2=matrix(1,N,N) k=1 for(i in 1:(N-1)){ for(j in (i+1):N){ mat <- Cq2_est_equ(Y[,c(i,j)], q, nboot,datatype="incidence", method='equal effort') C02[k,] <- mat[1, ] U02[k,] <- mat[2, ] temp_PC[k] <- paste("C",q,"2(",i,",",j,")", sep="") C_SM_1[i,j] <- C_SM_1[j,i] <- C02[k,1] C_SM_2[i,j] <- C_SM_2[j,i] <- U02[k,1] k <- k+1 } } Cqn_PC <- list("C02"=C02, "U02"=U02) C_SM <- list("C02"=C_SM_1, "U02"=C_SM_2) } if(q == 1 & method=="relative"){ temp_PC <- rep(0, N*(N-1)/2) C12=matrix(0,choose(no.community,2),4) Horn=matrix(0,choose(no.community,2),4) C_SM_1=matrix(1,N,N) C_SM_2=matrix(1,N,N) k=1 for(i in 1:(N-1)){ for(j in (i+1):N){ C12[k,] <- Cq2_est_equ(Y[,c(i,j)], q, nboot,datatype="incidence", method='equal weight')[1, ] Horn[k,] <- Cq2_est_equ(Y[,c(i,j)], q, nboot,datatype="incidence", method='equal effort')[2, ] temp_PC[k] <- paste("C",q,"2(",i,",",j,")", sep="") C_SM_1[i,j] <- C_SM_1[j,i] <- C12[k,1] C_SM_2[i,j] <- C_SM_2[j,i] <- Horn[k,1] k <- k+1 } } Cqn_PC <- list("C12"=C12, "Horn"=Horn) C_SM <- list("C12"=C_SM_1, "Horn"=C_SM_2) } if(q == 1 & method=="absolute"){ temp_PC <- rep(0, N*(N-1)/2) k=1 C_SM_1=matrix(1,N,N) C12=matrix(0,choose(no.community,2),4) for(i in 1:(N-1)){ for(j in (i+1):N){ C12[k,] <- Cq2_est_equ(Y[,c(i,j)], q, nboot,datatype="incidence", method='equal effort')[1, ] temp_PC[k] <- paste("C",q,"2(",i,",",j,")", sep="") C_SM_1[i,j] <- C_SM_1[j,i] <- C12[k,1] k <- k+1 } } Cqn_PC <- list("C12"=C12) C_SM <- list("C12"=C_SM_1) } if(q == 2){ temp_PC <- rep(0, N*(N-1)/2) if(method=="absolute") method2 <- 'equal effort' if(method=="relative") method2 <- 'equal weight' C22=matrix(0,choose(no.community,2),4) U22=matrix(0,choose(no.community,2),4) C_SM_1=matrix(1,N,N) C_SM_2=matrix(1,N,N) k=1 for(i in 1:(N-1)){ for(j in (i+1):N){ mat <- Cq2_est_equ(Y[,c(i,j)], q, nboot,datatype="incidence", method=method2) C22[k,] <- mat[1, ] U22[k,] <- mat[2, ] temp_PC[k] <- paste("C",q,"2(",i,",",j,")", sep="") C_SM_1[i,j] <- C_SM_1[j,i] <- C22[k,1] C_SM_2[i,j] <- C_SM_2[j,i] <- U22[k,1] k <- k+1 } } Cqn_PC <- list("C22"=C22, "U22"=U22) C_SM <- list("C22"=C_SM_1,"U22"=C_SM_2) } Cqn_PC <- lapply(Cqn_PC, function(x){ colnames(x) <- c("Estimate", "s.e.", "95%.LCL", "95%.UCL") ; rownames(x) <- temp_PC return(x) }) z <- list("datatype"=datatype,"info"=info, "Empirical_richness"=temp[[1]], "Empirical_relative"=temp[[2]], "Empirical_WtRelative"=temp[[3]], "Empirical_absolute"=temp[[4]], "estimated_richness"=temp[[5]], "estimated_relative"=temp[[6]], "estimated_WtRelative"=temp[[7]], "estimated_absolute"=temp[[8]], "pairwise"=Cqn_PC, "similarity.matrix"=C_SM, "goal"=method, "q"=q) } class(z) <- c("spadeMult") z } Genetics=function(X,q=2,nboot=200) { type <- "abundance" N <- no.community <- ncol(X) temp <- c("N"=ncol(X), "S.total"=sum(rowSums(X)>0)) n <- apply(X,2,sum) D <- apply(X,2,function(x)sum(x>0)) if(N > 2){ temp1 <- temp2 <- rep(0, N*(N-1)/2) k <- 1 for(i in 1:(N-1)){ for(j in (i+1):N){ temp1[k] <- paste('D',i,j,sep="") temp2[k] <- sum(X[,i]>0 & X[,j]>0) k <- k + 1 } } } names(temp2) <- temp1 names(n) <- paste('n',1:N, sep="") names(D) <- paste('D',1:N, sep="") info <- c(temp, n, D, temp2) if(N == 3) info <- c(temp, n, D, temp2, D123=sum(X[,1]>0 & X[,2]>0 & X[,3]>0)) info <- c(info, nboot=nboot) temp <- list() n <- apply(X = X, MARGIN = 2, FUN = sum) weight <- n/sum(n) weight <- - sum(weight*log(weight)) / log(N) plus_CI <-function(x){ if(x[1] >= 1) x[1] <- 1 if(x[1] <= 0) x[1] <- 0 c(x, max(0,x[1]-1.96*x[2]), min(1,x[1]+1.96*x[2])) } mat2 <- GST_se_equ(X,nboot) MLE_ew_Gst <- mat2[1, ] Est_ew_Gst <- mat2[2, ] mat <- SimilarityMul(X,0,nboot,method="unequal weight") MLE_Jaccard <- plus_CI(c(1-mat$UqN[1, 1],mat$UqN[1, 2])) Est_Jaccard <- plus_CI(c(1-mat$UqN[2, 1],mat$UqN[2, 2])) MLE_Sorensen <- plus_CI(c(1-mat$CqN[1, 1],mat$CqN[1, 2])) Est_Sorensen <- plus_CI(c(1-mat$CqN[2, 1],mat$CqN[2, 2])) mat3 <- Horn_Multi_equ(X, datatype="abundance", nboot, method=c("unequal")) MLE_Ee_Horn <- mat3$mle MLE_Ee_Horn <- plus_CI(c(1-MLE_Ee_Horn[1],MLE_Ee_Horn[2])) Est_Ee_Horn <- mat3$est Est_Ee_Horn <- plus_CI(c(1-Est_Ee_Horn[1],Est_Ee_Horn[2])) mat4 <- SimilarityMul(X,2,nboot,method="equal weight") mat5 <- Horn_Multi_equ(X, datatype="abundance", nboot, method=c("equal")) MLE_ew_Horn <- mat5$mle Est_ew_Horn <- mat5$est MLE_ew_Horn <- plus_CI(c(1-MLE_ew_Horn[1],MLE_ew_Horn[2])) Est_ew_Horn <- plus_CI(c(1-Est_ew_Horn[1],Est_ew_Horn[2])) MLE_ew_C22 <- plus_CI(c(1-mat4$CqN[1, 1],mat4$CqN[1, 2])) Est_ew_C22 <- plus_CI(c(1-mat4$CqN[2, 1],mat4$CqN[2, 2])) MLE_ew_U22 <- plus_CI(c(1-mat4$UqN[1, 1],mat4$UqN[1, 2])) Est_ew_U22 <- plus_CI(c(1-mat4$UqN[2, 1],mat4$UqN[2, 2])) temp[[1]] <- rbind(MLE_Sorensen, MLE_Jaccard) rownames(temp[[1]]) <- c("1-C0N(q=0,Sorensen)","1-U0N(q=0,Jaccard)") temp[[2]] <- rbind(MLE_ew_Horn, MLE_ew_C22, MLE_ew_U22,MLE_ew_Gst) rownames(temp[[2]]) <- c("1-C1N=1-U1N(q=1,Horn)","1-C2N(q=2,Morisita)","1-U2N(q=2,Regional overlap)","Gst") temp[[3]] <- t(as.matrix(MLE_Ee_Horn)) rownames(temp[[3]]) <- c("Horn size weighted(q=1)") temp[[4]] <- rbind(Est_Sorensen, Est_Jaccard) rownames(temp[[4]]) <- c("1-C0N(q=0,Sorensen)","1-U0N(q=0,Jaccard)") temp[[5]] <- rbind(Est_ew_Horn, Est_ew_C22, Est_ew_U22, Est_ew_Gst) rownames(temp[[5]]) <- c("1-C1N=1-U1N(q=1,Horn)","1-C2N(q=2,Morisita)","1-U2N(q=2,Regional overlap)","Gst") temp[[6]] <- t(as.matrix(Est_Ee_Horn)) rownames(temp[[6]]) <- c("Horn size weighted(q=1)") temp <- lapply(temp, FUN = function(x){ colnames(x) <- c("Estimate", "s.e.", "95%.LCL", "95%.UCL") return(x) }) if(q == 0){ temp_PC <- rep(0, N*(N-1)/2) C02=matrix(0,choose(no.community,2),4) U02=matrix(0,choose(no.community,2),4) C_SM_1=matrix(1,N,N) C_SM_2=matrix(1,N,N) k=1 for(i in 1:(N-1)){ for(j in (i+1):N){ if(sum( X[,i]>0 & X[,j]>0)==0){ mat <- rbind(c(0, 0), c(0 ,0)) }else{ mat <- Cq2_est_equ(X[,c(i,j)], q, nboot, method='equal effort') } C02[k,] <- plus_CI(c(1-mat[1, 1],mat[1, 2])) U02[k,] <- plus_CI(c(1-mat[2, 1],mat[2, 2])) temp_PC[k] <- paste("1-C",q,"2(",i,",",j,")", sep="") C_SM_1[i,j] <- C_SM_1[j,i] <- C02[k,1] C_SM_2[i,j] <- C_SM_2[j,i] <- U02[k,1] k <- k+1 } } Cqn_PC <- list("C02"=C02, "U02"=U02) C_SM <- list("C02"=C_SM_1, "U02"=C_SM_2) } if(q == 1){ temp_PC <- rep(0, N*(N-1)/2) C12=matrix(0,choose(no.community,2),4) Horn=matrix(0,choose(no.community,2),4) C_SM_1=matrix(0,N,N) C_SM_2=matrix(0,N,N) k=1 for(i in 1:(N-1)){ for(j in (i+1):N){ mat <- Cq2_est_equ(X[,c(i,j)], q, nboot, method='equal weight') mat2 <- Cq2_est_equ(X[,c(i,j)], q, nboot, method='equal effort') C12[k,] <- plus_CI(c(1-mat[1, 1],mat[1, 2])) Horn[k,] <- plus_CI(c(1-mat2[2, 1],mat2[2, 2])) temp_PC[k] <- paste("1-C",q,"2(",i,",",j,")", sep="") C_SM_1[i,j] <- C_SM_1[j,i] <- C12[k,1] C_SM_2[i,j] <- C_SM_2[j,i] <- Horn[k,1] k <- k+1 } } Cqn_PC <- list("C12"=C12, "Horn"=Horn) C_SM <- list("C12"=C_SM_1, "Horn"=C_SM_2) } if(q == 2){ temp_PC <- rep(0, N*(N-1)/2) C22=matrix(0,choose(no.community,2),4) U22=matrix(0,choose(no.community,2),4) C_SM_1=matrix(0,N,N) C_SM_2=matrix(0,N,N) k=1 for(i in 1:(N-1)){ for(j in (i+1):N){ mat <- Cq2_est_equ(X[,c(i,j)], q, nboot, method='equal weight') C22[k,] <- plus_CI(c(1-mat[1, 1],mat[1, 2])) U22[k,] <- plus_CI(c(1-mat[2, 1],mat[2, 2])) temp_PC[k] <- paste("1-C",q,"2(",i,",",j,")", sep="") C_SM_1[i,j] <- C_SM_1[j,i] <- C22[k,1] C_SM_2[i,j] <- C_SM_2[j,i] <- U22[k,1] k <- k+1 } } Cqn_PC <- list("C22"=C22, "U22"=U22) C_SM <- list("C22"=C_SM_1,"U22"=C_SM_2) } Cqn_PC <- lapply(Cqn_PC, function(x){ colnames(x) <- c("Estimate", "s.e.", "95%.LCL", "95%.UCL") ; rownames(x) <- temp_PC return(x) }) z <- list("info"=info, "Empirical_richness"=temp[[1]], "Empirical_relative"=temp[[2]], "Empirical_WtRelative"=temp[[3]], "estimated_richness"=temp[[4]], "estimated_relative"=temp[[5]], "estimated_WtRelative"=temp[[6]], "pairwise"=Cqn_PC, "dissimilarity_matrix"=C_SM, "q"=q) class(z) <- c("spadeGenetic") z }
`printMEC` <- function(x, digits = max(3, getOption("digits") - 3), ...) { cat("Plane 1: ") print.default(format(c(x$F$az, x$F$dip), digits = digits), print.gap = 2, quote = FALSE) cat("Plane 2: ") print.default(format(c(x$G$az, x$G$dip), digits = digits), print.gap = 2, quote = FALSE) cat("Vector 1: ") print.default(format(c(x$U$az, x$U$dip), digits = digits), print.gap = 2, quote = FALSE) cat("Vector 2: ") print.default(format(c(x$V$az, x$V$dip), digits = digits), print.gap = 2, quote = FALSE) cat("P-axis: ") print.default(format(c(x$P$az, x$P$dip), digits = digits), print.gap = 2, quote = FALSE) cat("T-axis: ") print.default(format(c(x$T$az, x$T$dip), digits = digits), print.gap = 2, quote = FALSE) cat("\n") }
zls <- setRefClass("Zelig-ls", contains = "Zelig") zls$methods( initialize = function() { callSuper() .self$name <- "ls" .self$year <- 2007 .self$category <- "continuous" .self$description <- "Least Squares Regression for Continuous Dependent Variables" .self$packageauthors <- "R Core Team" .self$fn <- quote(stats::lm) .self$outcome <- "continous" .self$wrapper <- "ls" .self$acceptweights <- TRUE } ) zls$methods( zelig = function(formula, data, ..., weights = NULL, by = NULL, bootstrap = FALSE) { .self$zelig.call <- match.call(expand.dots = TRUE) .self$model.call <- .self$zelig.call callSuper(formula = formula, data = data, ..., weights = weights, by = by, bootstrap = bootstrap) rse <- lapply(.self$zelig.out$z.out, (function(x) vcovHC(x, type = "HC0"))) rse.se <- sqrt(diag(rse[[1]])) est.se <- sqrt(diag(.self$get_vcov()[[1]])) quickGim <- any( est.se > 1.5*rse.se | rse.se > 1.5*est.se ) .self$test.statistics<- list(robust.se = rse, gim.criteria = quickGim) } ) zls$methods( param = function(z.out, method="mvn") { if(identical(method,"mvn")){ return(list(simparam = mvrnorm(.self$num, coef(z.out), vcov(z.out)), simalpha = rep( summary(z.out)$sigma, .self$num) ) ) } else if(identical(method,"point")){ return(list(simparam = t(as.matrix(coef(z.out))), simalpha=summary(z.out)$sigma)) } else { stop("param called with method argument of undefined type.") } } ) zls$methods( qi = function(simparam, mm) { ev <- simparam$simparam %*% t(mm) pv <- as.matrix(rnorm(n=length(ev), mean=ev, sd=simparam$simalpha), nrow=length(ev), ncol=1) return(list(ev = ev, pv = pv)) } ) zls$methods( gim = function(B=50, B2=50) { ll.normal.bsIM <- function(par,y,X,sigma){ beta <- par[1:length(X)] sigma2 <- sigma -1/2 * (sum(log(sigma2) + (y -(X%*%beta))^2/sigma2)) } getVb<-function(Dboot){ Dbar <- matrix(apply(Dboot,2,mean),nrow=B, ncol=length(Dhat), byrow=TRUE) Diff <- Dboot - Dbar Vb <- (t(Diff) %*% Diff) / (nrow(Dboot)-1) return(Vb) } getSigma<-function(lm.obj){ return(sum(lm.obj$residuals^2)/(nrow(model.matrix(lm.obj))-ncol(model.matrix(lm.obj)))) } D.est<-function(formula,data){ lm1 <- lm(formula,data, y=TRUE) mm <- model.matrix(lm1) y <- lm1$y sigma <- getSigma(lm1) grad <- apply(cbind(y,mm),1,function(x) numericGradient(ll.normal.bsIM, lm1$coefficients, y=x[1], X=x[2:length(x)], sigma=sigma)) meat <- grad%*%t(grad) bread <- -solve(vcov(lm1)) Dhat <- nrow(mm)^(-1/2)* as.vector(diag(meat + bread)) return(Dhat) } D.est.vb<-function(formula,data){ lm1 <- lm(formula,data, y=TRUE) mm <- model.matrix(lm1) y <- lm1$y sigma <- getSigma(lm1) grad <- apply(cbind(y,mm),1,function(x) numericGradient(ll.normal.bsIM, lm1$coefficients, y=x[1], X=x[2:length(x)], sigma=sigma)) meat <- grad%*%t(grad) bread <- -solve(vcov(lm1)) Dhat <- nrow(mm)^(-1/2)* as.vector(diag(meat + bread)) muB<-lm1$fitted.values DB <- matrix(NA, nrow=B2, ncol=length(Dhat)) for(j in 1:B2){ yB2 <- rnorm(nrow(data), muB, sqrt(sigma)) lm1B2 <- lm(yB2 ~ mm-1) sigmaB2 <- getSigma(lm1B2) grad <- apply(cbind(yB2,model.matrix(lm1B2)),1,function(x) numericGradient(ll.normal.bsIM, lm1B2$coefficients, y=x[1], X=x[2:length(x)], sigma=sigmaB2)) meat <- grad%*%t(grad) bread <- -solve(vcov(lm1B2)) DB[j,] <- nrow(mm)^(-1/2)*diag((meat + bread)) } Vb <- getVb(DB) T<- t(Dhat)%*%solve(Vb)%*%Dhat return(list(Dhat=Dhat,T=T)) } Dhat <- D.est(formula=.self$formula, data=.self$data) lm1 <- lm(formula=.self$formula, data=.self$data) mu <- lm1$fitted.values sigma <- getSigma(lm1) n <- length(mu) yname <- all.vars(.self$formula[[2]]) Dboot <- matrix(NA, nrow=B, ncol=length(Dhat)) bootdata<-data for(i in 1:B){ yB <- rnorm(n, mu, sqrt(sigma)) bootdata[yname] <- yB result <- D.est.vb(formula=.self$formula, data=bootdata) Dboot[i,] <- result$Dhat T[i] <- result$T } Vb <- getVb(Dboot) omega <- t(Dhat) %*% solve(Vb) %*% Dhat pb = (B+1-sum(T< as.numeric(omega)))/(B+1) .self$test.statistics$gim <- list(stat=omega, pval=pb) gimreference <- bibentry( bibtype="Article", title = "How Robust Standard Errors Expose Methodological Problems They Do Not Fix, and What to Do About It", author = c( person("Gary", "King"), person("Margret E.", "Roberts") ), journal = "Political Analysis", year = 2014, pages = "1-21", url = "http://j.mp/InK5jU") .self$refs <- c(.self$refs, gimreference) } ) zls$methods( mcfun = function(x, b0=0, b1=1, alpha=1, sim=TRUE){ y <- b0 + b1*x + sim * rnorm(n=length(x), sd=alpha) return(y) } )
gaussian.MVCARar2 <- function(formula, data=NULL, W, burnin, n.sample, thin=1, prior.mean.beta=NULL, prior.var.beta=NULL, prior.nu2=NULL, prior.Sigma.df=NULL, prior.Sigma.scale=NULL, rho.S=NULL, rho.T=NULL, verbose=TRUE) { a <- common.verbose(verbose) frame.results <- common.frame.MVST(formula, data, "gaussian") NK <- frame.results$n p <- frame.results$p X <- frame.results$X X.standardised <- frame.results$X.standardised X.sd <- frame.results$X.sd X.mean <- frame.results$X.mean X.indicator <- frame.results$X.indicator offset <- frame.results$offset Y <- frame.results$Y N.all <- length(Y) J <- ncol(Y) which.miss <- frame.results$which.miss n.miss <- N.all - sum(which.miss) Y.DA <- Y if(n.miss>0) { miss.locator <- array(NA, c(n.miss, 2)) colnames(miss.locator) <- c("row", "column") locations <- which(which.miss==0) miss.locator[ ,1] <- ceiling(locations/J) miss.locator[ ,2] <- locations - (miss.locator[ ,1]-1) * J }else {} if(!is.matrix(W)) stop("W is not a matrix.", call.=FALSE) K <- nrow(W) N <- NK / K if(ceiling(N)!= floor(N)) stop("The number of data points in Y divided by the number of rows in W is not a whole number.", call.=FALSE) if(is.null(rho.S)) { rho <- runif(1) fix.rho.S <- FALSE }else { rho <- rho.S fix.rho.S <- TRUE } if(!is.numeric(rho)) stop("rho.S is fixed but is not numeric.", call.=FALSE) if(rho<0 ) stop("rho.S is outside the range [0, 1].", call.=FALSE) if(rho>1 ) stop("rho.S is outside the range [0, 1].", call.=FALSE) if(is.null(rho.T)) { alpha <- c(runif(1), runif(1)) fix.rho.T <- FALSE }else { alpha <- rho.T fix.rho.T <- TRUE } if(!is.numeric(alpha)) stop("rho.T is fixed but is not numeric.", call.=FALSE) if(length(alpha)!=2) stop("rho.T is fixed but is not of length 2.", call.=FALSE) if(is.null(prior.mean.beta)) prior.mean.beta <- rep(0, p) if(is.null(prior.var.beta)) prior.var.beta <- rep(100000, p) if(is.null(prior.Sigma.df)) prior.Sigma.df <- J+1 if(is.null(prior.Sigma.scale)) prior.Sigma.scale <- diag(rep(1/1000,J)) if(is.null(prior.nu2)) prior.nu2 <- c(1, 0.01) prior.beta.check(prior.mean.beta, prior.var.beta, p) common.prior.varmat.check(prior.Sigma.scale, J) prior.var.check(prior.nu2) common.burnin.nsample.thin.check(burnin, n.sample, thin) beta <- array(NA, c(p, J)) nu2 <- rep(NA, J) for(i in 1:J) { mod.glm <- lm(Y[ ,i]~X.standardised-1, offset=offset[ ,i]) beta.mean <- mod.glm$coefficients beta.sd <- sqrt(diag(summary(mod.glm)$cov.unscaled)) * summary(mod.glm)$sigma beta[ ,i] <- rnorm(n=p, mean=beta.mean, sd=beta.sd) nu2[i] <- runif(1, var(mod.glm$residuals)*0.5, var(mod.glm$residuals)) } res.temp <- Y - X.standardised %*% beta - offset res.sd <- sd(res.temp, na.rm=TRUE)/5 phi.vec <- rnorm(n=N.all, mean=0, sd=res.sd) phi <- matrix(phi.vec, ncol=J, byrow=TRUE) Sigma <- cov(phi) Sigma.inv <- solve(Sigma) regression <- X.standardised %*% beta fitted <- regression + phi + offset n.keep <- floor((n.sample - burnin)/thin) samples.beta <- array(NA, c(n.keep, J*p)) samples.nu2 <- array(NA, c(n.keep, J)) samples.phi <- array(NA, c(n.keep, N.all)) samples.Sigma <- array(NA, c(n.keep, J, J)) if(!fix.rho.S) samples.rho <- array(NA, c(n.keep, 1)) if(!fix.rho.T) samples.alpha <- array(NA, c(n.keep, 2)) samples.loglike <- array(NA, c(n.keep, N.all)) samples.fitted <- array(NA, c(n.keep, N.all)) if(n.miss>0) samples.Y <- array(NA, c(n.keep, n.miss)) accept <- rep(0,4) accept.all <- rep(0,4) proposal.sd.phi <- 0.1 proposal.sd.rho <- 0.02 Sigma.post.df <- prior.Sigma.df + K * N nu2.posterior.shape <- prior.nu2[1] + 0.5 * K * N W.quants <- common.Wcheckformat.leroux(W) W <- W.quants$W W.triplet <- W.quants$W.triplet n.triplet <- W.quants$n.triplet W.triplet.sum <- W.quants$W.triplet.sum n.neighbours <- W.quants$n.neighbours W.begfin <- W.quants$W.begfin Wstar <- diag(apply(W,1,sum)) - W Q <- rho * Wstar + diag(rep(1-rho,K)) if(!fix.rho.S) { Wstar.eigen <- eigen(Wstar) Wstar.val <- Wstar.eigen$values det.Q <- sum(log((rho * Wstar.val + (1-rho)))) }else {} W.list<- mat2listw(W) W.nb <- W.list$neighbours W.islands <- n.comp.nb(W.nb) islands <- W.islands$comp.id n.islands <- max(W.islands$nc) if(rho==1 & alpha[1]==2 & alpha[2]==-1) { Sigma.post.df <- prior.Sigma.df + ((N-2) * (K-n.islands))/2 }else if(rho==1) { Sigma.post.df <- prior.Sigma.df + (N * (K-n.islands))/2 }else if(alpha[1]==2 & alpha[2]==-1) { Sigma.post.df <- prior.Sigma.df + ((N-2) * K)/2 }else {} data.precision <- t(X.standardised) %*% X.standardised if(length(prior.var.beta)==1) { prior.precision.beta <- 1 / prior.var.beta }else { prior.precision.beta <- solve(diag(prior.var.beta)) } if(verbose) { cat("Generating", n.keep, "post burnin and thinned (if requested) samples.\n", sep = " ") progressBar <- txtProgressBar(style = 3) percentage.points<-round((1:100/100)*n.sample) }else { percentage.points<-round((1:100/100)*n.sample) } for(j in 1:n.sample) { if(n.miss>0) { Y.DA[miss.locator] <- rnorm(n=n.miss, mean=fitted[miss.locator], sd=sqrt(nu2[miss.locator[ ,2]])) }else {} fitted.current <- regression + phi + offset nu2.posterior.scale <- prior.nu2[2] + 0.5 * apply((Y.DA - fitted.current)^2, 2, sum) nu2 <- 1 / rgamma(J, nu2.posterior.shape, scale=(1/nu2.posterior.scale)) for(r in 1:J) { fc.precision <- prior.precision.beta + data.precision / nu2[r] fc.var <- solve(fc.precision) fc.temp1 <- t(((Y.DA[, r] - phi[ , r] - offset[ , r]) %*% X.standardised) / nu2[r]) + prior.precision.beta %*% prior.mean.beta fc.mean <- fc.var %*% fc.temp1 chol.var <- t(chol(fc.var)) beta[ ,r] <- fc.mean + chol.var %*% rnorm(p) } regression <- X.standardised %*% beta den.offset <- rho * W.triplet.sum + 1 - rho phi.offset <- Y.DA - regression - offset Chol.Sigma <- t(chol(proposal.sd.phi*Sigma)) z.mat <- matrix(rnorm(n=N.all, mean=0, sd=1), nrow=J, ncol=NK) innovations <- t(Chol.Sigma %*% z.mat) temp1 <- gaussianmvar2carupdateRW(W.triplet, W.begfin, W.triplet.sum, K, N, J, phi, alpha[1], alpha[2], rho, Sigma.inv, nu2, innovations, phi.offset, den.offset) phi <- temp1[[1]] for(r in 1:J) { phi[ ,r] <- phi[ ,r] - mean(phi[ ,r]) } accept[1] <- accept[1] + temp1[[2]] accept[2] <- accept[2] + NK Sigma.post.scale <- prior.Sigma.scale + t(phi[1:K, ]) %*% Q %*% phi[1:K, ] + t(phi[(K+1):(2*K), ]) %*% Q %*% phi[(K+1):(2*K), ] for(t in 3:N) { phit <- phi[((t-1)*K+1):(t*K), ] phitminus1 <- phi[((t-2)*K+1):((t-1)*K), ] phitminus2 <- phi[((t-3)*K+1):((t-2)*K), ] temp1 <- phit - alpha[1] * phitminus1 - alpha[2] * phitminus2 Sigma.post.scale <- Sigma.post.scale + t(temp1) %*% Q %*% temp1 } Sigma <- riwish(Sigma.post.df, Sigma.post.scale) Sigma.inv <- solve(Sigma) if(!fix.rho.T) { temp <- MVSTrhoTAR2compute(W.triplet, W.triplet.sum, n.triplet, den.offset, K, N, J, phi, rho, Sigma.inv) alpha.precision <- matrix(c(temp[[1]], temp[[2]], temp[[2]], temp[[3]]), nrow=2, ncol=2) alpha.var <- solve(alpha.precision) alpha.mean <- rep(NA, 2) alpha.mean[2] <- (temp[[1]] * temp[[5]] - temp[[2]] * temp[[4]]) / (temp[[1]] * temp[[3]] - temp[[2]]^2) alpha.mean[1] <- (temp[[5]] - temp[[3]] * alpha.mean[2]) / temp[[2]] alpha <- mvrnorm(n=1, mu=alpha.mean, Sigma=alpha.var) }else {} if(!fix.rho.S) { proposal.rho <- rtruncnorm(n=1, a=0, b=1, mean=rho, sd=proposal.sd.rho) proposal.Q <- proposal.rho * Wstar + diag(rep(1-proposal.rho), K) proposal.det.Q <- sum(log((proposal.rho * Wstar.val + (1-proposal.rho)))) proposal.den.offset <- proposal.rho * W.triplet.sum + 1 - proposal.rho temp1.QF <- MVSTrhoSAR2compute(W.triplet, W.triplet.sum, n.triplet, den.offset, K, N, J, phi, rho, alpha[1], alpha[2], Sigma.inv) temp2.QF <- MVSTrhoSAR2compute(W.triplet, W.triplet.sum, n.triplet, proposal.den.offset, K, N, J, phi, proposal.rho, alpha[1], alpha[2], Sigma.inv) logprob.current <- 0.5 * J * N * det.Q - 0.5 * temp1.QF logprob.proposal <- 0.5 * J * N * proposal.det.Q - 0.5 * temp2.QF hastings <- log(dtruncnorm(x=rho, a=0, b=1, mean=proposal.rho, sd=proposal.sd.rho)) - log(dtruncnorm(x=proposal.rho, a=0, b=1, mean=rho, sd=proposal.sd.rho)) prob <- exp(logprob.proposal - logprob.current + hastings) if(prob > runif(1)) { rho <- proposal.rho det.Q <- proposal.det.Q Q <- proposal.Q accept[3] <- accept[3] + 1 }else {} accept[4] <- accept[4] + 1 }else {} fitted <- regression + phi + offset loglike <- dnorm(x=as.numeric(t(Y)), mean=as.numeric(t(fitted)), sd=rep(sqrt(nu2), K*N), log=TRUE) if(j > burnin & (j-burnin)%%thin==0) { ele <- (j - burnin) / thin samples.beta[ele, ] <- as.numeric(beta) samples.nu2[ele, ] <- nu2 samples.phi[ele, ] <- as.numeric(t(phi)) samples.Sigma[ele, , ] <- Sigma if(!fix.rho.S) samples.rho[ele, ] <- rho if(!fix.rho.T) samples.alpha[ele, ] <- alpha samples.loglike[ele, ] <- loglike samples.fitted[ele, ] <- as.numeric(t(fitted)) if(n.miss>0) samples.Y[ele, ] <- Y.DA[miss.locator] }else {} k <- j/100 if(ceiling(k)==floor(k)) { proposal.sd.phi <- common.accceptrates1(accept[1:2], proposal.sd.phi, 40, 50) if(!fix.rho.S) { proposal.sd.rho <- common.accceptrates2(accept[3:4], proposal.sd.rho, 40, 50, 0.5) } accept.all <- accept.all + accept accept <- c(0,0,0,0) }else {} if(j %in% percentage.points & verbose) { setTxtProgressBar(progressBar, j/n.sample) } } if(verbose) { cat("\nSummarising results.") close(progressBar) }else {} accept.beta <- 100 accept.phi <- 100 * accept.all[1] / accept.all[2] if(!fix.rho.S) { accept.rho <- 100 * accept.all[3] / accept.all[4] }else { accept.rho <- NA } accept.Sigma <- 100 if(!fix.rho.T) { accept.alpha <- 100 }else { accept.alpha <- NA } accept.final <- c(accept.beta, accept.phi, accept.rho, accept.Sigma, accept.alpha) names(accept.final) <- c("beta", "phi", "rho.S", "Sigma", "rho.T") mean.beta <- matrix(apply(samples.beta, 2, mean), nrow=p, ncol=J, byrow=F) mean.phi <- matrix(apply(samples.phi, 2, mean), nrow=NK, ncol=J, byrow=T) fitted.mean <- X.standardised %*% mean.beta + mean.phi + offset nu2.mean <- apply(samples.nu2,2,mean) deviance.fitted <- -2 * sum(dnorm(as.numeric(t(Y)), mean = as.numeric(t(fitted.mean)), sd=rep(sqrt(nu2.mean), K*N), log = TRUE), na.rm=TRUE) modelfit <- common.modelfit(samples.loglike, deviance.fitted) samples.beta.orig <- samples.beta for(r in 1:J) { samples.beta.orig[ ,((r-1)*p+1):(r*p)] <- common.betatransform(samples.beta[ ,((r-1)*p+1):(r*p) ], X.indicator, X.mean, X.sd, p, FALSE) } samples.beta.orig <- mcmc(samples.beta.orig) summary.beta <- t(apply(samples.beta.orig, 2, quantile, c(0.5, 0.025, 0.975))) summary.beta <- cbind(summary.beta, rep(n.keep, p), rep(accept.beta,p), effectiveSize(samples.beta.orig), geweke.diag(samples.beta.orig)$z) col.name <- rep(NA, p*(J-1)) if(is.null(colnames(Y))) { for(r in 1:J) { col.name[((r-1)*p+1):(r*p)] <- paste("Variable ", r, " - ", colnames(X), sep="") } }else { for(r in 1:J) { col.name[((r-1)*p+1):(r*p)] <- paste(colnames(Y)[r], " - ", colnames(X), sep="") } } rownames(summary.beta) <- col.name colnames(summary.beta) <- c("Median", "2.5%", "97.5%", "n.sample", "% accept", "n.effective", "Geweke.diag") summary.hyper <- array(NA, c((2*J+3) ,7)) summary.hyper[1:J, 1:3] <-t(apply(samples.nu2, 2, quantile, c(0.5, 0.025, 0.975))) summary.hyper[1:J, 4] <- rep(n.keep, J) summary.hyper[1:J, 5] <- rep(100, J) summary.hyper[1:J, 6] <- apply(samples.nu2, 2, effectiveSize) summary.hyper[1:J, 7] <- geweke.diag(samples.nu2)$z summary.hyper[(J+1):(2*J), 1] <- diag(apply(samples.Sigma, c(2,3), quantile, c(0.5))) summary.hyper[(J+1):(2*J), 2] <- diag(apply(samples.Sigma, c(2,3), quantile, c(0.025))) summary.hyper[(J+1):(2*J), 3] <- diag(apply(samples.Sigma, c(2,3), quantile, c(0.975))) summary.hyper[(J+1):(2*J), 4] <- rep(n.keep, J) summary.hyper[(J+1):(2*J), 5] <- rep(100, J) summary.hyper[(J+1):(2*J), 6] <- diag(apply(samples.Sigma, c(2,3), effectiveSize)) for(r in 1:J) { summary.hyper[J+r, 7] <- geweke.diag(samples.Sigma[ ,r,r])$z } if(!fix.rho.S) { summary.hyper[(2*J+1), 1:3] <- quantile(samples.rho, c(0.5, 0.025, 0.975)) summary.hyper[(2*J+1), 4:5] <- c(n.keep, accept.rho) summary.hyper[(2*J+1), 6:7] <- c(effectiveSize(samples.rho), geweke.diag(samples.rho)$z) }else { summary.hyper[(2*J+1), 1:3] <- c(rho, rho, rho) summary.hyper[(2*J+1), 4:5] <- rep(NA, 2) summary.hyper[(2*J+1), 6:7] <- rep(NA, 2) } if(!fix.rho.T) { summary.hyper[(2*J+2), 1:3] <- quantile(samples.alpha[ ,1], c(0.5, 0.025, 0.975)) summary.hyper[(2*J+2), 4:5] <- c(n.keep, accept.alpha) summary.hyper[(2*J+2), 6:7] <- c(effectiveSize(samples.alpha[ ,1]), geweke.diag(samples.alpha[ ,1])$z) summary.hyper[(2*J+3), 1:3] <- quantile(samples.alpha[ ,2], c(0.5, 0.025, 0.975)) summary.hyper[(2*J+3), 4:5] <- c(n.keep, accept.alpha) summary.hyper[(2*J+3), 6:7] <- c(effectiveSize(samples.alpha[ ,2]), geweke.diag(samples.alpha[ ,2])$z) }else { summary.hyper[(2*J+2), 1:3] <- c(alpha[1], alpha[1], alpha[1]) summary.hyper[(2*J+2), 4:5] <- rep(NA, 2) summary.hyper[(2*J+2), 6:7] <- rep(NA, 2) summary.hyper[(2*J+3), 1:3] <- c(alpha[2], alpha[2], alpha[2]) summary.hyper[(2*J+3), 4:5] <- rep(NA, 2) summary.hyper[(2*J+3), 6:7] <- rep(NA, 2) } summary.results <- rbind(summary.beta, summary.hyper) rownames(summary.results)[((J*p)+1): nrow(summary.results)] <- c(paste(rep("nu2",J), 1:J, sep=""), paste(rep("Sigma",J), 1:J, 1:J, sep=""), "rho.S", "rho1.T", "rho2.T") summary.results[ , 1:3] <- round(summary.results[ , 1:3], 4) summary.results[ , 4:7] <- round(summary.results[ , 4:7], 1) fitted.values <- matrix(apply(samples.fitted, 2, mean), nrow=NK, ncol=J, byrow=T) response.residuals <- Y - fitted.values nu.mat <- matrix(rep(sqrt(nu2.mean), N*K), nrow=N*K, byrow=T) pearson.residuals <- response.residuals / nu.mat residuals <- list(response=response.residuals, pearson=pearson.residuals) model.string <- c("Likelihood model - Gaussian (identity link function)", "\nRandom effects model - Multivariate Autoregressive order 2 CAR model\n") if(fix.rho.S & fix.rho.T) { samples.rhoext <- NA }else if(fix.rho.S & !fix.rho.T) { samples.rhoext <- samples.alpha colnames(samples.rhoext) <- c("rho1.T", "rho2.T") }else if(!fix.rho.S & fix.rho.T) { samples.rhoext <- samples.rho names(samples.rhoext) <- "rho.S" }else { samples.rhoext <- cbind(samples.rho, samples.alpha) colnames(samples.rhoext) <- c("rho.S", "rho1.T", "rho2.T") } if(n.miss==0) samples.Y = NA samples <- list(beta=samples.beta.orig, phi=mcmc(samples.phi), Sigma=samples.Sigma, nu2=mcmc(samples.nu2), rho=mcmc(samples.rhoext), fitted=mcmc(samples.fitted), Y=mcmc(samples.Y)) results <- list(summary.results=summary.results, samples=samples, fitted.values=fitted.values, residuals=residuals, modelfit=modelfit, accept=accept.final, localised.structure=NULL, formula=formula, model=model.string, X=X) class(results) <- "CARBayesST" if(verbose) { b<-proc.time() cat("Finished in ", round(b[3]-a[3], 1), "seconds.\n") }else {} return(results) }
DF2 <- rbind(DF, DF[7:8,, drop=FALSE])
ModifyInputFile <- function( ParamID, newvalue, filename, row, col.ini, col.fin, decimals, verbose=TRUE) { if (!file.exists(filename)) stop( paste("Invalid argument: the file '", filename, "' doesn't exist!", sep="") ) lines <- readLines(filename) myline <- lines[row] L.trg <- col.fin - col.ini + 1 newvalue.stg <- as.character(round(newvalue, decimals)) L <- nchar(newvalue.stg) if (L < L.trg) newvalue.stg <- format(newvalue, justify="right", width=L.trg, nsmall=decimals) if (L > L.trg) { nexp <- 2 if (abs(newvalue) >= 1E100) nexp <- 3 dig <- max(decimals-(L - L.trg)-3-nexp, 0) suppressWarnings( newvalue.stg <- formatC(newvalue, width=L.trg, format="E", digits=dig) ) } substr(myline, col.ini, col.fin) <- newvalue.stg lines[row] <- myline writeLines(lines, filename) if (verbose) message( paste("[", ParamID, ": '", round(newvalue,5), "' was successfully put into '", basename(filename), "']", sep="") ) }
unknown <- function() { quote(unknown()) } is_unknown <- function(x) { if(length(x) == 1) return(is_unknown_val(x)) map_lgl(x, is_unknown_val) } is_unknown_val <- function(x) isTRUE(all.equal(x, quote(unknown()))) has_unknowns <- function(object) { if (inherits(object, "param")) return(has_unknowns_val(object)) map_lgl(object, has_unknowns_val) } has_unknowns_val <- function(object) { if (all(is.na(object))) { return(FALSE) } if (any(names(object) == "range")) { rng_check <- any(is_unknown(object$range)) } else { rng_check <- FALSE } val_check <- any(is_unknown(object$values)) any(rng_check) | any(val_check) } check_for_unknowns <- function(x, label = "") { err_txt <- paste0("Unknowns not allowed in `", label, "`.") if (length(x) == 1 && is_unknown(x)) rlang::abort(err_txt) is_ukn <- map_lgl(x, is_unknown) if (any(is_ukn)) rlang::abort(err_txt) invisible(TRUE) }
SLTCA <- function(k = 20,dat,num_class,id,time,num_obs,features,Y_dist,covx,ipw,stop,tol=0.005,max=50,varest=TRUE,balanced=TRUE,MSC='EQIC',verbose=TRUE){ requireNamespace("Matrix") requireNamespace("VGAM") requireNamespace("geepack") IC = Inf if(MSC == 'AQIC'){ for (i in 1:k){ if(verbose) cat('random initialization',i,'\n') sol <- pointest(dat,num_class,id,time,num_obs,features,Y_dist,covx,ipw,stop,tol,max,varest,balanced,verbose) if (sol$qic[[1]] < IC){ best_sol <- sol IC = sol$qic[[1]] } } }else if (MSC == 'BQIC'){ for (i in 1:k){ if(verbose) cat('random initialization',i,'\n') sol <- pointest(dat,num_class,id,time,num_obs,features,Y_dist,covx,ipw,stop,tol,max,varest,balanced,verbose) if (sol$qic[[2]] < IC){ best_sol <- sol IC = sol$qic[[2]] } } }else if (MSC == 'EQIC'){ for (i in 1:k){ if (verbose) cat('random initialization',i,'\n') sol <- pointest(dat,num_class,id,time,num_obs,features,Y_dist,covx,ipw,stop,tol,max,varest,balanced,verbose) if (sol$qic[[3]] < IC){ best_sol <- sol IC = sol$qic[[3]] } } }else{ print('Error: MSC undefined.') } return(best_sol) }
DIMEplot <- function(x){ dime=x$dime dime_data=x$dime_data DIME.plot.fit(dime_data,dime) }
require(OpenMx) data1 <- mxData(matrix(1, dimnames = list('a', 'a')), type="cov", numObs=100) data2 <- mxData(matrix(2, dimnames = list('a', 'a')), type="cov", numObs=100) S1 <- mxMatrix("Full", 1.5, free=TRUE, nrow=1, ncol=1, labels="parameter", name="S") S2 <- mxMatrix("Full", 1.5, free=TRUE, nrow=1, ncol=1, labels="parameter", name="S") matrixA <- mxMatrix("Zero", nrow=1, ncol=1, name="A") matrixF <- mxMatrix("Iden", nrow=1, name="F", dimnames = list('a', 'a')) objective <- mxExpectationRAM("A", "S", "F") model1<-mxModel("first", matrixA, S1, matrixF, objective, data1, mxFitFunctionML()) model2<-mxModel("second", matrixA, S2, matrixF, objective, data2, mxFitFunctionML()) output1<-mxRun(model1, suppressWarnings=TRUE) output2<-mxRun(model2, suppressWarnings=TRUE) alg<-mxAlgebra(first.objective + second.objective, name="alg") obj <- mxFitFunctionAlgebra("alg") model <- mxModel("both", alg, obj, model1, model2) output<-mxRun(model, suppressWarnings=TRUE) print(output1$output$estimate) print(output2$output$estimate) print(output$output$estimate) omxCheckCloseEnough(output1$output$estimate, .99 * c(1), 0.001) omxCheckCloseEnough(output2$output$estimate, .99 * c(2), 0.001) omxCheckCloseEnough(output$output$estimate, .99 * c(1.5), 0.001)
library(drfit) data(XY) rXY <- drfit(XY,logit=TRUE,weibull=TRUE,chooseone=FALSE) print(rXY,digits=5)
'.con.skeleton' <- function() { obj <- list(driver=NA_character_ ,samples=NA_integer_,lines=NA_integer_,bands=NA_integer_ ,datatype=NA_integer_,interleave=NA_character_,byteorder=NA_integer_ ,endian=NA_character_,swap=NA_integer_,signed=NA ,offset=NA_integer_,wkt=FALSE,nodata=NA_real_,mode="raw" ,sizeof=NA_integer_,indexC=NA_integer_,indexR=NA_integer_,indexZ=NA_integer_ ,posC=NA_integer_,posR=NA_integer_,posZ=NA_integer_ ,fname=NA_character_,connection=NA_character_ ,compress=0L,seek=NA,handle=NA) class(obj) <- c("ursaConnection") obj } '.is.con' <- function(obj) inherits(obj,"ursaConnection") '.ursa_connection'<- function(x) { if (.is.con(x)) return(x) if (is.ursa(x)) return(x$con) return(NULL) } 'print.ursaConnection' <- function(x,...) str(x,...) 'seek.ursaConnection' <- function(con,where=NA,origin="start",rw="",...) { if ((1)||(con$seek)) return(seek(con$handle,where=round(where),origin=origin,rw=rw,...)) stop("Reopenning is needed here, but it seems that connection doesn't support seek") F <- con$handle if (isOpen(F)) { close(F) con$handle <- with(con,do.call(connection,list(fname,"rb"))) } readBin(con$handle,raw(),n=as.integer(where)) where }
power.4 <- function(cost.model = TRUE, expr = NULL, constraint = NULL, sig.level = 0.05, two.tailed = TRUE, d = NULL, power = NULL, m = NULL, n = NULL, J = NULL, K = NULL, L = NULL, p = NULL, icc2 = NULL, icc3 = NULL, icc4 = NULL, r12 = NULL, r22 = NULL, r32 = NULL, r42 = NULL, q = NULL, c1 = NULL, c2 = NULL, c3 = NULL, c4 = NULL, c1t = NULL, c2t = NULL, c3t = NULL, c4t = NULL, dlim = NULL, powerlim = NULL, Llim = NULL, mlim = NULL, rounded = TRUE) { funName <- "power.4" designType <- "four-level CRTs" if (cost.model == TRUE) { if (sum(sapply(list(m, d, power), is.null)) != 1) stop("exactly one of 'm', 'd', and 'power' must be NULL when cost.model is TRUE") if (!is.null(L)) stop("'L' must be NULL when cost.model is TRUE") } else { if (sum(sapply(list(L, d, power), is.null)) != 1) stop("exactly one of 'L', 'd', and 'power' must be NULL when cost.model is FALSE") if (!is.null(m)) stop("'m' must be NULL when cost.model is FALSE") } if (!is.null(expr)) { if (expr$funName != "od.4") { stop("'expr' can only be NULL or the return from the function of 'od.4'") } else { if (sum(sapply(list(icc2, icc3, icc4, r12, r22, r32, r42, c1, c2, c3, c4, c1t, c2t, c3t, c4t, n, J, K, p), function(x) {!is.null(x)})) >= 1) stop("parameters of 'icc2', 'icc3', 'icc4', 'r12', 'r22', 'r32', 'r42', 'c1', 'c2', 'c3', 'c4', 'c1t', 'c2t', 'c3t', 'c4t', 'n', 'J', 'K', and 'p' have been specified in expr of 'od.4'") icc2 <- expr$par$icc2 icc3 <- expr$par$icc3 icc4 <- expr$par$icc4 r12 <- expr$par$r12 r22 <- expr$par$r22 r32 <- expr$par$r32 r42 <- expr$par$r42 c1 <- expr$par$c1 c2 <- expr$par$c2 c3 <- expr$par$c3 c4 <- expr$par$c4 c1t <- expr$par$c1t c2t <- expr$par$c2t c3t <- expr$par$c3t c4t <- expr$par$c4t if (rounded == TRUE) { n <- round(expr$out$n, 0) J <- round(expr$out$J, 0) K <- round(expr$out$K, 0) p <- round(expr$out$p, 2) } else { n <- expr$out$n J <- expr$out$J K <- expr$out$K p <- expr$out$p } } } else { if (!is.null(constraint)) stop("'constraint' must be NULL when 'expr' is NULL") } NumberCheck <- function(x) {!is.null(x) && !is.numeric(x)} if (!is.null(constraint) && !is.list(constraint)) stop("'constraint' must be in list format (e.g., constraint = list(p = 0.5, K = 20))") if (length(constraint) > 4) stop("'constraint' must be limited to 'n', 'J', 'K', and/or 'p'") if (!is.null(constraint$n)) { if(NumberCheck(constraint$n) || constraint$n <= 0) stop("constrained 'n' must be numeric with n > 0") n <- constraint$n } if (!is.null(constraint$J)) { if(NumberCheck(constraint$J) || constraint$J <= 0) stop("constrained 'J' must be numeric with J > 0") J <- constraint$J } if (!is.null(constraint$K)) { if(NumberCheck(constraint$K) || constraint$K <= 0) stop("constrained 'K' must be numeric with K > 0") K <- constraint$K } if (!is.null(constraint$p)) { if(NumberCheck(constraint$p) || any (0 >= constraint$p | constraint$p >= 1)) stop("constrained 'p' must be numeric in (0, 1)") p <- constraint$p } if (sum(sapply(list(icc2, icc3, icc4, p, power, sig.level), function(x) { NumberCheck(x) || any(0 > x | x >= 1) })) >= 1) stop("'icc2', 'icc3', 'icc4', 'p', 'power', and 'sig.level' must be numeric in (0, 1)") if (sum(sapply(list(r12, r22, r32, r42), function(x) { NumberCheck(x) || any(0 > x | x >= 1) })) >= 1) stop("'r12', 'r22', 'r32', and 'r42' must be numeric in [0, 1)") if (cost.model == TRUE){ if (sum(sapply(list(c1, c2, c3, c4, c1t, c2t, c3t, c4t), function(x) { NumberCheck(x) || x < 0})) >= 1) stop("'c1', 'c2', 'c3', 'c4', 'c1t', 'c2t', 'c3t', 'c4t' must be numeric in [0, Inf)") if (NumberCheck(m)) stop("'m' must be numeric in [0, Inf)") } if (NumberCheck(q) | q < 0) stop("'q' must be numeric with q >= 0") if (NumberCheck(n) || n <= 0) stop("'n' must be numeric with n > 0") if (NumberCheck(J) || J <= 0) stop("'J' must be numeric with J > 0") if (NumberCheck(K) || K <= 0) stop("'K' must be numeric with K > 0") if (NumberCheck(d) || any(0 > d | d > 5)) stop("'d' must be numeric in [0, 5], please transfer negative effect size to positive one if needed") par <- list(cost.model = cost.model, sig.level = sig.level, two.tailed = two.tailed, d = d, icc2 = icc2, icc3 = icc3, icc4 = icc4, r12 = r12, r22 = r22, r32 = r32, r42 = r42, c1 = c1, c2 = c2, c3 = c3, c4 = c4, c1t = c1t, c2t = c2t, c3t = c3t, c4t = c4t, n = n, J = J, K = K, L = L, p = p, q = q, m = m, power = power) tside <- ifelse(two.tailed == TRUE, 2, 1) if (cost.model == TRUE) { if (two.tailed == TRUE) { pwr.expr <- quote({ L <- m / ((1 - p) * (c1 * n * J * K + c2 * J * K + c3 * K + c4) + p * (c1t * n * J * K + c2t * J * K + c3t * K + c4t)); lambda <- d * sqrt(p * (1 - p) * m / ((1 - p) * (c1 * n * J * K + c2 * J * K + c3 * K + c4) + p * (c1t * n * J * K + c2t * J * K + c3t * K + c4t))) / sqrt(icc4 * (1 - r42) + icc3 * (1 - r32) / K + icc2 * (1 - r22) / (J * K ) + (1 - icc2 - icc3 - icc4) * (1 - r12) / (n * J * K)); 1 - pt(qt(1 - sig.level / tside, df = L - q - 2) , df = L - q - 2, lambda) + pt(qt(sig.level / tside, df = L - q - 2), df = L - q - 2, lambda) }) } else { pwr.expr <- quote({ L <- m / ((1 - p) * (c1 * n * J * K + c2 * J * K + c3 * K + c4) + p * (c1t * n * J * K + c2t * J * K + c3t * K + c4t)); lambda <- d * sqrt(p * (1 - p) * m / ((1 - p) * (c1 * n * J * K + c2 * J * K + c3 * K + c4) + p * (c1t * n * J * K + c2t * J * K + c3t * K + c4t))) / sqrt(icc4 * (1 - r42) + icc3 * (1 - r32) / K + icc2 * (1 - r22) / (J * K ) + (1 - icc2 - icc3 - icc4) * (1 - r12) / (n * J * K)); 1 - pt(qt(1 - sig.level / tside, df = L - q - 2), df = L - q - 2, lambda) }) } } else { if (two.tailed == TRUE) { pwr.expr <- quote({ lambda <- d * sqrt(p * (1 - p) * L) / sqrt(icc4 * (1 - r42) + icc3 * (1 - r32) / K + icc2 * (1 - r22) / (J * K ) + (1 - icc2 - icc3 - icc4) * (1 - r12) / (n * J * K)); 1 - pt(qt(1 - sig.level / tside, df = L - q - 2), df = L - q - 2, lambda) + pt(qt(sig.level / tside, df = L - q - 2), df = L - q - 2, lambda) }) } else { pwr.expr <- quote({ lambda <- d * sqrt(p * (1 - p) * L) / sqrt(icc4 * (1 - r42) + icc3 * (1 - r32) / K + icc2 * (1 - r22) / (J * K ) + (1 - icc2 - icc3 - icc4) * (1 - r12) / (n * J * K)); 1 - pt(qt(1 - sig.level / tside, df = L - q - 2), df = L - q - 2, lambda) }) } } limFun <- function(x, y) { if (!is.null(x) && length(x) == 2 && is.numeric(x)) {x} else {y} } Llim <- limFun(x = Llim, y = c(4, 1e+10)) powerlim <- limFun(x = powerlim, y = c(1e-10, 1 - 1e-10)) dlim <- limFun(x = dlim, y = c(0, 5)) if(cost.model == TRUE) { if (is.null(power)) { out <- list(power = eval(pwr.expr)) } else if (is.null(m)) { Lcost <- ((1 - p) * (c1 * n * J * K + c2 * J * K + c3 * K + c4) + p * (c1t * n * J * K + c2t * J * K + c3t * K + c4t)) mlim <- limFun(x = mlim, y = c(Llim[1] * Lcost, Llim[2] * Lcost)) out <- list(m = stats::uniroot(function(m) eval(pwr.expr) - power, mlim)$root) out <- c(out, list(L = out$m / ((1 - p) * (c1 * n * J * K + c2 * J * K + c3 * K + c4) + p * (c1t * n * J * K + c2t * J * K + c3t * K + c4t)))) } else if (is.null(d)) { out <- list(d = stats::uniroot(function(d) eval(pwr.expr) - power, dlim)$root) } } else { if (is.null(power)) { out <- list(power = eval(pwr.expr)) } else if (is.null(L)) { out <- list(L = stats::uniroot(function(L) eval(pwr.expr) - power, Llim)$root) } else if (is.null(d)) { out <- list(d = stats::uniroot(function(d) eval(pwr.expr) - power, dlim)$root) } } power.out <- list(funName = funName, designType = designType, par = par, out = out) return(power.out) }
library(RSQLite) temp_dir <- tempdir() test_that("The `x_write_disk()` and `x_read_disk()` functions works as expected", { agent <- create_agent(tbl = small_table) %>% rows_distinct() %>% interrogate() expect_length(agent$extracts, 1) expect_equal(names(agent$extracts), "1") expect_equal( names(agent$extracts[[1]]), c("date_time", "date", "a", "b", "c", "d", "e", "f") ) expect_s3_class( agent %>% unclass() %>% .$validation_set %>% .$tbl_checked %>% .[[1]] %>% .[[1]], "tbl_df" ) agent %>% x_write_disk(filename = "agent_test_1", path = temp_dir) expect_true("agent_test_1" %in% list.files(path = temp_dir)) agent_test_1 <- x_read_disk(filename = file.path(temp_dir, "agent_test_1")) expect_s3_class(agent_test_1, "ptblank_agent") expect_s3_class(agent_test_1, "has_intel") expect_null(agent_test_1$tbl) agent_test_1 <- agent_test_1 %>% set_tbl(small_table) expect_s3_class(agent_test_1$tbl, "tbl_df") expect_type(agent_test_1$extracts, "list") expect_identical(agent_test_1$extracts, list()) expect_null( agent_test_1 %>% unclass() %>% .$validation_set %>% .$tbl_checked %>% .[[1]] ) agent %>% x_write_disk(filename = "agent_test_2", path = temp_dir, keep_tbl = TRUE) expect_true("agent_test_2" %in% list.files(path = temp_dir)) agent_test_2 <- x_read_disk(filename = file.path(temp_dir, "agent_test_2")) expect_s3_class(agent_test_2, "ptblank_agent") expect_s3_class(agent_test_2, "has_intel") expect_s3_class(agent_test_2$tbl, "tbl_df") expect_equivalent(agent_test_2$tbl, small_table) expect_type(agent_test_2$extracts, "list") expect_identical(agent_test_2$extracts, list()) agent <- create_agent(tbl = small_table_sqlite()) %>% rows_distinct() %>% interrogate() agent %>% x_write_disk(filename = "agent_test_3", path = temp_dir) expect_true("agent_test_3" %in% list.files(path = temp_dir)) agent_test_3 <- x_read_disk(filename = file.path(temp_dir, "agent_test_3")) expect_s3_class(agent_test_3, "ptblank_agent") expect_s3_class(agent_test_3, "has_intel") expect_null(agent_test_3$tbl) agent_test_3 <- agent_test_3 %>% set_tbl(small_table_sqlite()) expect_s3_class(agent_test_3$tbl, "tbl_dbi") expect_type(agent_test_3$extracts, "list") expect_identical(agent_test_3$extracts, list()) expect_warning( agent %>% x_write_disk(filename = "agent_test_4", path = temp_dir, keep_tbl = TRUE) ) expect_true("agent_test_4" %in% list.files(path = temp_dir)) agent_test_4 <- x_read_disk(filename = file.path(temp_dir, "agent_test_4")) expect_s3_class(agent_test_4, "ptblank_agent") expect_s3_class(agent_test_4, "has_intel") expect_null(agent_test_4$tbl) expect_type(agent_test_4$extracts, "list") expect_identical(agent_test_4$extracts, list()) agent_test_4 <- agent_test_4 %>% set_tbl(tbl = small_table) expect_s3_class(agent_test_4$tbl, "tbl_df") expect_equivalent(agent_test_4$tbl, small_table) expect_equal(agent_test_4$tbl_name, "small_table_sqlite()") expect_equal(agent_test_4$db_tbl_name, NA_character_) expect_equal(agent_test_4$tbl_src, "tbl_df") expect_equal(agent_test_4$tbl_src_details, NA_character_) agent_test_4 <- agent_test_4 %>% remove_tbl() expect_null(agent_test_4$tbl) agent_test_4 <- small_table %>% set_tbl(x = agent_test_4, tbl = .) expect_s3_class(agent_test_4$tbl, "tbl_df") expect_equivalent(agent_test_4$tbl, small_table) expect_equal(agent_test_4$tbl_name, "small_table_sqlite()") expect_equal(agent_test_4$db_tbl_name, NA_character_) expect_equal(agent_test_4$tbl_src, "tbl_df") expect_equal(agent_test_4$tbl_src_details, NA_character_) agent_test_4 <- agent_test_4 %>% remove_tbl() %>% set_tbl(tbl = ~ small_table) expect_null(agent_test_4$tbl) expect_true(rlang::is_formula(agent_test_4$read_fn)) expect_true(rlang::is_bare_formula(agent_test_4$read_fn)) agent_test_4 <- agent_test_4 %>% remove_tbl() expect_null(agent_test_4$tbl) expect_null(agent_test_4$read_fn) }) test_that("The `set_tbl()` function works as expected", { agent <- create_agent(tbl = specifications) expect_s3_class(agent$tbl, "tbl_df") expect_equivalent(agent$tbl, specifications) expect_null(agent$read_fn) expect_equal(agent$tbl_name, "specifications") expect_match(agent$label, "\\[.*?\\]") expect_equal(agent$col_names, colnames(specifications)) agent_replace_1 <- agent %>% set_tbl(tbl = game_revenue) expect_s3_class(agent_replace_1$tbl, "tbl_df") expect_equivalent(agent_replace_1$tbl, game_revenue) expect_null(agent_replace_1$read_fn) expect_equal(agent_replace_1$tbl_name, "specifications") expect_equal(agent_replace_1$label, agent$label) expect_equal(agent_replace_1$col_names, colnames(game_revenue)) agent_replace_2 <- agent %>% set_tbl( tbl = game_revenue, tbl_name = "game_revenue", label = "Checking the game revenue table." ) expect_s3_class(agent_replace_2$tbl, "tbl_df") expect_equivalent(agent_replace_2$tbl, game_revenue) expect_null(agent_replace_2$read_fn) expect_equal(agent_replace_2$tbl_name, "game_revenue") expect_match(agent_replace_2$label, "Checking the game revenue table.") expect_equal(agent_replace_2$col_names, colnames(game_revenue)) agent_replace_3 <- agent %>% set_tbl( tbl = ~ pointblank::game_revenue, tbl_name = "game_revenue", label = "Checking the game revenue table." ) expect_null(agent_replace_3$tbl) expect_true(rlang::is_formula(agent_replace_3$read_fn)) expect_true(rlang::is_bare_formula(agent_replace_3$read_fn)) expect_equal(agent_replace_3$tbl_name, "game_revenue") expect_match(agent_replace_3$label, "Checking the game revenue table.") expect_equal(agent_replace_3$col_names, colnames(game_revenue)) })
psimplex <- function (q, mu, sig) { ll<-length(q) pp<-rep(0,ll) dsimp <- function(x){1/sqrt(2*pi*sig^2*(x*(1-x))^3)*exp(-1/2/sig^2*(x-mu)^2/(x*(1-x)*mu^2*(1-mu)^2))} for (i in 1:ll) { if (sig < 0.001 | (1-mu)*sig < 0.01) {pp[i] <- psimplex.norm(q[i], mu, sig)} else { tem<-integrate(Vectorize(dsimp), lower=0, upper=q[i]) pp[i]<-tem$value } } return(pp) }
tidy.htest <- function(x, ...) { ret <- x[c("estimate", "statistic", "p.value", "parameter")] if (length(ret$estimate) > 1) { names(ret$estimate) <- paste0("estimate", seq_along(ret$estimate)) ret <- c(ret$estimate, ret) ret$estimate <- NULL if (x$method %in% c("Welch Two Sample t-test", " Two Sample t-test")) { ret <- c(estimate = ret$estimate1 - ret$estimate2, ret) } } if (length(x$parameter) > 1) { ret$parameter <- NULL if (is.null(names(x$parameter))) { warning("Multiple unnamed parameters in hypothesis test; dropping them") } else { np <- names(x$parameter) np <- stringr::str_replace(np, "num df", "num.df") np <- stringr::str_replace(np, "denom df", "den.df") names(x$parameter) <- np message( "Multiple parameters; naming those columns ", paste(np, collapse = ", ") ) ret <- append(ret, x$parameter, after = 1) } } ret <- purrr::compact(ret) if (!is.null(x$conf.int)) { ret <- c(ret, conf.low = x$conf.int[1], conf.high = x$conf.int[2]) } if (!is.null(x$method)) { ret <- c(ret, method = trimws(as.character(x$method))) } if (!is.null(x$alternative)) { ret <- c(ret, alternative = as.character(x$alternative)) } as_tibble(ret) } glance.htest <- function(x, ...) tidy(x) augment.htest <- function(x, ...) { if (all(c("observed", "expected", "residuals", "stdres") %in% names(x))) { return(augment_chisq_test(x, ...)) } stop( "Augment is only defined for chi squared hypothesis tests.", call. = FALSE ) } augment_chisq_test <- function(x, ...) { d <- length(dimnames(as.table(x$observed))) ret <- as.data.frame(as.table(x$observed)) names(ret)[d + 1] <- ".observed" ret <- cbind( ret, .prop = as.data.frame(prop.table(as.table(x$observed)))[[d + 1]] ) if (d == 2) { ret <- cbind( ret, .row.prop = as.data.frame(prop.table(as.table(x$observed), 1))[[d + 1]] ) ret <- cbind( ret, .col.prop = as.data.frame(prop.table(as.table(x$observed), 2))[[d + 1]] ) } ret <- cbind(ret, .expected = as.data.frame(as.table(x$expected))[[d + 1]]) ret <- cbind(ret, .resid = as.data.frame(as.table(x$residuals))[[d + 1]]) ret <- cbind(ret, .std.resid = as.data.frame(as.table(x$stdres))[[d + 1]]) as_tibble(ret) } tidy.pairwise.htest <- function(x, ...) { tibble(group1 = rownames(x$p.value)) %>% cbind(x$p.value) %>% pivot_longer( cols = c(dplyr::everything(), -group1), names_to = "group2", values_to = "p.value" ) %>% stats::na.omit() %>% as_tibble() } tidy.power.htest <- function(x, ...) { cols <- purrr::compact(x[c("n", "delta", "sd", "sig.level", "power", "p1", "p2")]) as_tibble(cols) }
local({ dependencies <- c( "fortunes", "stringr", "sos", "XLConnect", "reshape2", "ggplot2", "foreign" ) for (pkg in dependencies) { if (!require(pkg, character.only = TRUE)) install.packages(pkg) } }) list.files(here::here("inst")) local({ source(here::here("inst/cleanscripts.R"), local = TRUE) source(here::here("inst/chapters.R"), local = TRUE) .generateChapters() }) devtools::load_all() devtools::document() devtools::check_man() devtools::test() devtools::run_examples(run = FALSE) devtools::check() covr::package_coverage() library(foreach) oldwd <- getwd() foreach( ch = paste0("ch", 1:20), .errorhandling = "pass", .combine = c ) %do% { system.time(devtools::dev_example(ch))[[3]] } sapply( paste0("ch", 1:20), function(ch) { system.time(devtools::dev_example(ch))[[3]] } ) setwd(oldwd) devtools::dev_example("ch1") devtools::run_examples("rfordummies", fresh = TRUE, start = "ch7") devtools::run_examples("rfordummies", fresh = TRUE) tools::showNonASCIIfile("rfordummies/inst/scripts/2-clean/ch13.R") tools::showNonASCII showPDFmanual <- function(package, lib.loc = NULL) { path <- find.package(package, lib.loc) system(paste( shQuote(file.path(R.home("bin"), "R")), "CMD", "Rd2pdf", shQuote(path) )) } showPDFmanual("rfordummies")
loon_defaultSerialaxesSettings_args <- function() { list( titleFontsize = 18, parallelXlim = c(-0.1, 1.12), parallelYlim = c(-0.1, 1.12), radialXlim = c(-0.2, 1.2), radialYlim = c(-0.2, 1.2), radius = 0.2, guidesBackground = loon::l_getOption("canvas_bg_guides"), lineColor1 = loon::l_getOption("background"), lineColor2 = loon::l_getOption("foreground"), guideLineWidth = 2, labelFontsize = 9, linewidthDefault = 1, radiusOffset = 0.1, margins = rep(0,4) ) }
context("Aus pop qtr") test_that("Returns correct values", { skip("Slight differences temporarily") expect_equal(aus_pop_qtr("2016-Q1"), 24122701) expect_gte(aus_pop_qtr("2018-Q1"), 24122701) expect_gte(aus_pop_qtr("2018-Q4"), 25e6) expect_equivalent(grattan:::aust_pop_by_age_yearqtr, aus_pop_qtr_age(tbl = TRUE)) expect_equal(aus_pop_qtr_age(age = 1)[1:139], c(226775L, 228838L, 230676L, 232589L, 233901L, 235023L, 236046L, 237097L, 238209L, 239285L, 240219L, 241246L, 241007L, 240648L, 240264L, 239865L, 240552L, 241269L, 241865L, 242597L, 242144L, 241668L, 241309L, 241123L, 242094L, 242863L, 243728L, 244292L, 245486L, 246449L, 247244L, 247817L, 248769L, 249652L, 250492L, 251302L, 252949L, 254438L, 256051L, 257523L, 258352L, 258949L, 259498L, 259878L, 259595L, 259090L, 258538L, 257688L, 257979L, 258087L, 258236L, 258426L, 258483L, 258180L, 257992L, 258057L, 258215L, 258393L, 258260L, 258399L, 257840L, 257119L, 256177L, 255188L, 255039L, 254899L, 254705L, 254452L, 253480L, 252544L, 251516L, 250579L, 250989L, 251449L, 251866L, 252358L, 252563L, 252868L, 253285L, 253737L, 253484L, 253209L, 252893L, 252634L, 252156L, 251629L, 251016L, 250356L, 250391L, 250477L, 250464L, 250613L, 251432L, 252241L, 253063L, 253896L, 255230L, 256526L, 257695L, 258624L, 261571L, 264477L, 267518L, 270527L, 274659L, 278285L, 281747L, 284625L, 286620L, 288335L, 290044L, 291342L, 292237L, 292749L, 293227L, 293410L, 294011L, 294311L, 294550L, 294616L, 294397L, 293969L, 293637L, 293110L, 296848L, 300623L, 304219L, 307681L, 308917L, 309894L, 310986L, 311858L, 310855L, 309617L, 308503L, 307228L, 307658L, 307941L, 308384L), tol = 5000, scale = 1) expect_equal(aus_pop_qtr_age(date = as.Date("2015-01-01")), c(309617L, 312599L, 306541L, 303699L, 305330L, 303537L, 300446L, 297943L, 293234L, 286061L, 282031L, 279984L, 281517L, 284300L, 285830L, 287508L, 291708L, 299841L, 311240L, 318711L, 321363L, 327558L, 338210L, 348732L, 350418L, 347623L, 348155L, 351251L, 354769L, 354764L, 353178L, 347888L, 339953L, 330734L, 320947L, 314057L, 310080L, 309487L, 311774L, 317426L, 324486L, 334968L, 344388L, 337275L, 325377L, 316584L, 306372L, 302143L, 302689L, 307728L, 313202L, 314544L, 313673L, 307614L, 299841L, 293950L, 286990L, 281536L, 275374L, 266933L, 261028L, 254757L, 248233L, 243826L, 237515L, 234429L, 239057L, 224090L, 200610L, 191115L, 176760L, 165396L, 157278L, 147678L, 140354L, 132014L, 124122L, 117245L, 109200L, 100965L, 94738L, 89194L, 85082L, 80922L, 74057L, 66857L, 59752L, 52432L, 45257L, 38161L, 31289L, 25353L, 20199L, 15161L, 10386L, 6943L, 5041L, 3669L, 2590L, 4130L), tol = 10e3, scale = 1) }) test_that("Multiple unordered", { expect_equal(aus_pop_qtr_age(date = as.Date(c("2015-12-01", "2013-12-01", "2014-12-01")), age = c(2, 1, 3)), c(311984, 309894, 306541), tol = 5000, scale = 1) }) test_that("Rolls work as expected", { expect_equal(aus_pop_qtr_age(date = as.Date("2015-01-01")), aus_pop_qtr_age(date = as.Date("2015-01-02"), roll = TRUE)) }) test_that("Error handling", { expect_error(aus_pop_qtr("2016 Q0"), "Entry 1 was not in the correct form") expect_error(aus_pop_qtr(c("2016 Q0", "2016-Q2", "19999")), "Entries 1 and 3 were not in the correct form") expect_error(aus_pop_qtr(c("2016 Q0", "2016-Q-", "19999")), "There were 2 other bad entries.") expect_error(aus_pop_qtr(c("2016 Q0", "2016 q1")), "Entries 1 and 2 were not in the correct form") expect_error(aus_pop_qtr_age(age = "45")) expect_error(aus_pop_qtr_age(age = 101)) expect_error(aus_pop_qtr_age(age = -99)) expect_warning(aus_pop_qtr_age(date = as.Date("2099-01-01"), age = 1, roll = TRUE, roll.beyond = FALSE)) expect_warning(aus_pop_qtr("2050-Q1", allow.projections = FALSE), regexp = "Using an earlier date than specified") expect_error(aus_pop_qtr_age(age = 50:52, date = rep(as.Date("2015-01-01"), 2)), regexp = "`date` and `age` can only have different lengths when the smaller length is 1.", fixed = TRUE) expect_error(aus_pop_qtr_age(age = 50:51, date = rep(as.Date("2015-01-01"), 3)), regexp = "`date` and `age` can only have different lengths when the smaller length is 1.", fixed = TRUE) })
Read.PeakList<-function(mSetObj=NA, foldername="upload"){ mSetObj <- .get.mSet(mSetObj); if(.on.public.web){ dyn.load(.getDynLoadPath()); } msg <- c("The uploaded files are peak lists and intensities data."); files<-dir(foldername, pattern=".[Cc][Ss][Vv]$", recursive=T, full.names=TRUE) if (length(files) == 0) { AddErrMsg("No peak list files (.csv) were found."); return(0); } snames <- gsub("\\.[^.]*$", "", basename(files)); msg<-c(msg, paste("A total of ", length(files), "samples were found.")); sclass <- gsub("^\\.$", "sample", dirname(files)); scomp <- strsplit(substr(sclass, 1, min(nchar(sclass))), "", fixed=TRUE); scomp <- matrix(c(scomp, recursive = TRUE), ncol = length(scomp)); i <- 1 while(all(scomp[i,1] == scomp[i,-1]) && i < nrow(scomp)){ i <- i + 1; } i <- min(i, tail(c(0, which(scomp[1:i,1] == .Platform$file.sep)), n = 1) + 1) if (i > 1 && i <= nrow(scomp)){ sclass <- substr(sclass, i, max(nchar(sclass))) } sclass <- as.factor(sclass); if(length(levels(sclass))<2){ AddErrMsg("You must provide classes labels (at least two classes)!"); return(0); } if(min(table(sclass)) < 3){ AddErrMsg("At least three replicates are required in each group!"); return(0); } if(length(unique(snames))!=length(snames)){ AddErrMsg("Duplcate sample names are not allowed!"); dup.nm <- paste(snames[duplicated(snames)], collapse=" "); AddErrMsg("Duplicate sample names are not allowed!"); AddErrMsg(dup.nm); return(0); } samp.num<-seq(1:length(snames)); names(samp.num)<-snames; pks<- .readDataTable(files[1]); if(class(pks) == "try-error") { AddErrMsg("The CSV file is not formatted correctly!"); return(0); }; pks <- as.matrix(pks); n.col<-ncol(pks); if(n.col==2){ add=TRUE; }else if(n.col==3){ add=FALSE; }else{ AddErrMsg("The peak list file can only contain 2 or 3 columns."); return(0); } all.peaks<-NULL; for(i in 1:length(files)){ print(files[i]); pks<- as.matrix(.readDataTable(files[i])); if(ncol(pks)!=n.col){ AddErrMsg("The number of columns in each file are not the same!"); return(0); } if(add){ pks<-cbind(pks[,1], 1000, pks[,2],samp.num[i]); }else{ pks<-cbind(pks,samp.num[i]); } all.peaks<-rbind(all.peaks, pks); } all.peaks <- apply(all.peaks, 2, as.numeric); gd.inx <- complete.cases(all.peaks); all.peaks <- all.peaks[gd.inx,] if(sum(!gd.inx) > 0){ msg<-c(msg, paste("<font color='red'>A total of", sum(!gd.inx), "peaks were excluded due to non-numeric values. </font>" )); } msg<-c(msg, paste("These samples contain a total of ", dim(all.peaks)[1], "peaks," )); msg<-c(msg, paste("with an average of ", round(dim(all.peaks)[1]/length(files), 1), "peaks per sample" )); colnames(all.peaks)<-c("mz","rt","int","sample"); peakSet<-list( peaks = all.peaks, ncol = n.col, sampclass = sclass, sampnames = snames ); qs::qsave(peakSet, "peakSet.qs"); mSetObj$msgSet$read.msg <- msg; return(.set.mSet(mSetObj)); } Read.mzTab <- function(mSetObj=NA, filename, identifier = "name") { mSetObj <- .get.mSet(mSetObj); msg <- NULL; ncol <- max(stats::na.omit(utils::count.fields(file=filename, sep = "\t"))) mztab.table = utils::read.table(file=filename, header=FALSE, row.names=NULL, dec = ".", fill = TRUE, col.names = paste0("V", seq_len(ncol)), sep="\t", na.strings="null", quote = "", stringsAsFactors = FALSE) if(sum(sapply(c("MTD", "SMH", "SML"), grepl, unique(mztab.table$V1))) == 3){ msg <- ("mzTab format ok!") }else{ AddErrMsg("Invalid mzTab format! Make sure mzTab file has been validated!") return(0) } metadata <- mztab.table[startsWith(as.character(mztab.table$V1), "MTD"),] variables <- metadata[grepl("study_variable", metadata$V2),] if(length(variables) < 1){ AddErrMsg("Invalid mzTab format! Make sure mzTab file has been validated!") return(0) } variables.groups <- unique(gsub("-.*", "", variables$V2)) group.names <- metadata$V3[match(variables.groups, metadata$V2)] variables.list <- vector("list", length=length(variables.groups)) names(variables.list) <- variables.groups for(i in 1:length(variables.groups)){ group2match <- gsub("\\[", "\\\\[", variables.groups[i]) group2match <- gsub("\\]", "\\\\]", group2match) all.info <- variables[grepl(group2match, variables$V2),] assay.refs <- all.info$V3[grepl("assay_refs", all.info$V2)] variables.list[i] <- assay.refs } smh <- mztab.table[startsWith(as.character(mztab.table$V1), "SMH"),,drop=FALSE] sml <- mztab.table[startsWith(as.character(mztab.table$V1), "SML"),,drop=FALSE] if(nrow(sml) < 1){ AddErrMsg("Invalid mzTab format! Make sure mzTab file has been validated!") return(0) } sml.data.frame <- data.frame(sml, stringsAsFactors = FALSE) colnames(sml.data.frame) <- as.character(smh[1,]) if(sum(is.null(sml.data.frame$chemical_name))/length(sml.data.frame$chemical_name) > 0.1) { msg <- c(msg, "Too many missing chemical names, will use theoretical neutral mass instead!") identifier <- "mass" }else if(sum(is.null(sml.data.frame$theoretical_neutral_mass))/length(sml.data.frame$theoretical_neutral_mass) > 0.1){ msg <- c(msg, "Too many missing m/z, will use mzTab SML_ID instead!") identifier <- "sml_id" }else if(sum(is.na(sml.data.frame$theoretical_neutral_mass))/length(sml.data.frame$theoretical_neutral_mass) > 0.1){ msg <- c(msg, "Too many missing m/z, will use mzTab SML_ID instead!") identifier <- "sml_id" } if(identifier == "name"){ id.og <- id <- sml.data.frame$chemical_name dup.id <- paste(sml.data.frame$chemical_name, sml.data.frame$adduct_ions, sep="_") id[which(duplicated(id, fromLast = TRUE) | duplicated(id))] <- dup.id[which(duplicated(id, fromLast = TRUE) | duplicated(id))] }else if(identifier == "mass"){ id.og <- id <- round(as.numeric(sml.data.frame$theoretical_neutral_mass), 5) dup.id <- paste( round(as.numeric(sml.data.frame$theoretical_neutral_mass), 5), sml.data.frame$adduct_ions, sep="_") id[which(duplicated(id, fromLast = TRUE) | duplicated(id))] <- dup.id[which(duplicated(id, fromLast = TRUE) | duplicated(id))] }else{ id <- sml.data.frame$SML_ID; } if(sum(duplicated(id)) > 1){ id <- paste(id.og, sml.data.frame$SML_ID, sep="_") } assay_data <- trimws(unlist( lapply(variables.list, function(x) strsplit(x, "\\|")) )) assay_data <- paste("abundance_", assay_data, sep="") assay_df <- sml.data.frame[,match(assay_data, colnames(sml.data.frame))] assay_table <- cbind.data.frame(Sample=id, assay_df, stringsAsFactors = FALSE) samples <- colnames(assay_table)[-1] samples_base <- gsub("abundance_", "", samples) variables.list <- lapply(variables.list, function(x) trimws(unlist(strsplit(x, "\\|")))) samples2groups <- vector(length = length(samples_base)) for(i in 1:length(samples_base)){ samples2groups[i] <- group.names[sapply(variables.list, function(x) samples_base[i] %in% x)] } blank.inx <- grepl("blank", samples2groups, ignore.case = TRUE) if(sum(blank.inx) > 0){ samples2groups <- samples2groups[!blank.inx] assay_table <- cbind.data.frame(Sample=id, assay_df[,!blank.inx], stringsAsFactors = FALSE) } assay_table_all <- rbind.data.frame(c("Group", samples2groups), assay_table) colnames(assay_table_all) <- gsub("\\[|\\]", "", colnames(assay_table_all)) fast.write.csv(assay_table_all, "mzTab_parsed.csv", row.names = F) mSetObj$dataSet$cls.type <- "disc"; mSetObj$dataSet$format <- "colu"; dat <- assay_table_all msg <- c(msg, "Samples are in columns and features in rows."); var.nms <- dat[-1,1]; dat[,1] <- NULL; smpl.nms <- colnames(dat); cls.lbl <- unname(unlist(dat[1,])); conc <- t(dat[-1,]); mSetObj$dataSet$type.cls.lbl <- class(cls.lbl); dat <- NULL; msg <- c(msg, "The uploaded file is in the mzTab format."); empty.inx <- is.na(smpl.nms) | smpl.nms == "" if(sum(empty.inx) > 0){ msg <- c(msg, paste("<font color=\"red\">", sum(empty.inx), "empty rows</font> were detected and excluded from your data.")); smpl.nms <- smpl.nms[!empty.inx]; cls.lbl <- cls.lbl[!empty.inx]; conc <- conc[!empty.inx, ]; } empty.inx <- is.na(cls.lbl) | cls.lbl == "" if(sum(empty.inx) > 0){ if(mSetObj$analSet$type != "roc"){ msg <- c(msg, paste("<font color=\"red\">", sum(empty.inx), "empty labels</font> were detected and excluded from your data.")); smpl.nms <- smpl.nms[!empty.inx]; cls.lbl <- cls.lbl[!empty.inx]; conc <- conc[!empty.inx, ]; }else{ cls.lbl[is.na(cls.lbl)] <- ""; msg <- c(msg, paste("<font color=\"orange\">", sum(empty.inx), "new samples</font> were detected from your data.")); } } if(length(unique(smpl.nms))!=length(smpl.nms)){ dup.nm <- paste(smpl.nms[duplicated(smpl.nms)], collapse=" "); AddErrMsg("Duplicate sample names are not allowed!"); AddErrMsg(dup.nm); return(0); } empty.inx <- is.na(var.nms) | var.nms == ""; if(sum(empty.inx) > 0){ msg <- c(msg, paste("<font color=\"red\">", sum(empty.inx), "empty features</font> were detected and excluded from your data.")); var.nms <- var.nms[!empty.inx]; conc <- conc[,!empty.inx]; } if(length(unique(var.nms))!=length(var.nms)){ dup.nm <- paste(var.nms[duplicated(var.nms)], collapse=" "); AddErrMsg("Duplicate feature names are not allowed!"); AddErrMsg(dup.nm); return(0); } if(sum(is.na(iconv(smpl.nms)))>0){ na.inx <- is.na(iconv(smpl.nms)); nms <- paste(smpl.nms[na.inx], collapse="; "); AddErrMsg(paste("No special letters (i.e. Latin, Greek) are allowed in sample names!", nms, collapse=" ")); return(0); } if(sum(is.na(iconv(var.nms)))>0){ na.inx <- is.na(iconv(var.nms)); nms <- paste(var.nms[na.inx], collapse="; "); AddErrMsg(paste("No special letters (i.e. Latin, Greek) are allowed in feature names!", nms, collapse=" ")); return(0); } url.smp.nms <- CleanNames(smpl.nms); names(url.smp.nms) <- smpl.nms; url.var.nms <- CleanNames(var.nms); names(url.var.nms) <- var.nms; cls.lbl <- ClearStrings(as.vector(cls.lbl)); rownames(conc) <- smpl.nms; colnames(conc) <- var.nms; qs::qsave(conc, file="data_orig.qs"); if(min(table(cls.lbl)) < 3){ AddErrMsg(paste ("A total of", length(levels(as.factor(cls.lbl))), "groups found with", length(smpl.nms), "samples.")); AddErrMsg("At least three replicates are required in each group!"); AddErrMsg("Or maybe you forgot to specify the data format?"); return(0); } if(length(unique(cls.lbl)) == 1){ AddErrMsg("At least two groups are required for statistical analysis!"); return(0); } mSetObj$dataSet$orig.cls <- mSetObj$dataSet$cls <- as.factor(as.character(cls.lbl)); mSetObj$dataSet$mumType <- "table"; mSetObj$dataSet$url.var.nms <- url.var.nms; mSetObj$dataSet$url.smp.nms <- url.smp.nms; mSetObj$msgSet$read.msg <- c(msg, paste("The uploaded data file contains ", nrow(conc), " (samples) by ", ncol(conc), " (", tolower(GetVariableLabel(mSetObj$dataSet$type)), ") data matrix.", sep="")); return(.set.mSet(mSetObj)); } GroupPeakList <- function(mSetObj=NA, mzwid = 0.25, bw = 30, minfrac = 0.5, minsamp = 1, max = 50) { mSetObj <- .get.mSet(mSetObj); peakSet <- qs::qread("peakSet.qs"); samples <- peakSet$sampnames; classlabel <- peakSet$sampclass; classnames <- levels(classlabel) classlabel <- as.vector(unclass(classlabel)) classnum <- integer(max(classlabel)) for (i in seq(along = classnum)){ classnum[i] <- sum(classlabel == i) } peakmat <- peakSet$peaks; porder <- order(peakmat[,"mz"]); peakmat <- peakmat[porder,,drop=F] rownames(peakmat) <- NULL retrange <- range(peakmat[,"rt"]) minpeakmat <- min(classnum)/2 mass <- seq(peakmat[1,"mz"], peakmat[nrow(peakmat),"mz"] + mzwid, by = mzwid/2) masspos <- findEqualGreaterM(peakmat[,"mz"], mass) groupmat <- matrix(nrow = 512, ncol = 7 + length(classnum)) groupindex <- vector("list", 512) endidx <- 0 num <- 0 gcount <- integer(length(classnum)) for (i in seq(length = length(mass)-2)) { startidx <- masspos[i] endidx <- masspos[i+2]-1 if (endidx - startidx + 1 < minpeakmat) next speakmat <- peakmat[startidx:endidx,,drop=FALSE] den <- density(speakmat[,"rt"], bw, from = retrange[1]-3*bw, to = retrange[2]+3*bw) maxden <- max(den$y) deny <- den$y gmat <- matrix(nrow = 5, ncol = 2+length(classnum)) snum <- 0 while (deny[maxy <- which.max(deny)] > maxden/20 && snum < max) { grange <- descendMin(deny, maxy) deny[grange[1]:grange[2]] <- 0 gidx <- which(speakmat[,"rt"] >= den$x[grange[1]] & speakmat[,"rt"] <= den$x[grange[2]]) gnum <- classlabel[unique(speakmat[gidx,"sample"])] for (j in seq(along = gcount)) gcount[j] <- sum(gnum == j) if (! any(gcount >= classnum*minfrac & gcount >= minsamp)) next snum <- snum + 1 num <- num + 1 if (num > nrow(groupmat)) { groupmat <- rbind(groupmat, matrix(nrow = nrow(groupmat), ncol = ncol(groupmat))) groupindex <- c(groupindex, vector("list", length(groupindex))) } groupmat[num, 1] <- median(speakmat[gidx, "mz"]) groupmat[num, 2:3] <- range(speakmat[gidx, "mz"]) groupmat[num, 4] <- median(speakmat[gidx, "rt"]) groupmat[num, 5:6] <- range(speakmat[gidx, "rt"]) groupmat[num, 7] <- length(gidx) groupmat[num, 7+seq(along = gcount)] <- gcount groupindex[[num]] <- sort(porder[(startidx:endidx)[gidx]]) } } colnames(groupmat) <- c("mzmed", "mzmin", "mzmax", "rtmed", "rtmin", "rtmax", "npeaks", classnames) groupmat <- groupmat[seq(length = num),] groupindex <- groupindex[seq(length = num)] numsamp <- rowSums(groupmat[,(match("npeaks", colnames(groupmat))+1):ncol(groupmat),drop=FALSE]) uorder <- order(-numsamp, groupmat[,"npeaks"]) uindex <- rectUnique(groupmat[,c("mzmin","mzmax","rtmin","rtmax"),drop=FALSE],uorder) peakSet$groups <- groupmat[uindex,]; peakSet$groupidx<- groupindex[uindex]; qs::qsave(peakSet, "peakSet.qs"); return(.set.mSet(mSetObj)); } SetPeakList.GroupValues <- function(mSetObj=NA) { mSetObj <- .get.mSet(mSetObj); peakSet <- qs::qread("peakSet.qs"); msg <- mSetObj$msgSet$peakMsg; peakmat <- peakSet$peaks; groupmat <- peakSet$groups; groupindex <- peakSet$groupidx; sampnum <- seq(length = length(peakSet$sampnames)) intcol <- match("int", colnames(peakmat)) sampcol <- match("sample", colnames(peakmat)) values <- matrix(nrow = length(groupindex), ncol = length(sampnum)) for (i in seq(along = groupindex)) { for(m in sampnum){ samp.inx<-which(peakmat[groupindex[[i]], sampcol]==m) if(length(samp.inx)>0){ values[i, m] <- sum(peakmat[groupindex[[i]][samp.inx], intcol]); }else{ values[i, m] <- NA; } } } msg<-c(msg, paste("A total of", length(groupindex), "peak groups were formed. ")); msg<-c(msg, paste("Peaks of the same group were summed if they are from one sample. ")); msg<-c(msg, paste("Peaks appearing in less than half of all samples in each group were ignored.")); colnames(values) <- peakSet$sampnames; if(peakSet$ncol==2){ rownames(values) <- paste(round(groupmat[,paste("mz", "med", sep="")],5)); }else{ rownames(values) <- paste(round(groupmat[,paste("mz", "med", sep="")],5), "/", round(groupmat[,paste("rt", "med", sep="")],2), sep=""); mSetObj$dataSet$three.col <- TRUE; } qs::qsave(t(values), file="data_orig.qs"); mSetObj$msgSet$proc.msg <- msg mSetObj$dataSet$orig.cls <- as.factor(peakSet$sampclass); mSetObj$dataSet$type.cls.lbl <- class(peakSet$sampclass); return(.set.mSet(mSetObj)); } descendMin <- function(y, istart = which.max(y)) { if (!is.double(y)) y <- as.double(y) unlist(.C("DescendMin", y, length(y), as.integer(istart-1), ilower = integer(1), iupper = integer(1))[4:5]) + 1 } findEqualGreaterM <- function(x, values) { if (!is.double(x)) x <- as.double(x) if (!is.double(values)) values <- as.double(values) .C("FindEqualGreaterM", x, length(x), values, length(values), index = integer(length(values)))$index + 1 } rectUnique <- function(m, order = seq(length = nrow(m)), xdiff = 0, ydiff = 0) { nr <- nrow(m) nc <- ncol(m) if (!is.double(m)) m <- as.double(m) .C("RectUnique", m, as.integer(order-1), nr, nc, as.double(xdiff), as.double(ydiff), logical(nrow(m)))[[7]] }
library(devtools) dev_mode(on = TRUE) lapply(list("utils", "db", "settings", "visualization", "modules/priors", "modules/meta.analysis", "modules/uncertainty", "modules/data.land", "modules/data.atmosphere", "modules/assim.batch", "modules/assim.sequential", "models/ed", "models/sipnet", "models/biocro", "all"), function(x) install(x, quick = TRUE, local = TRUE, quiet = TRUE))
getRiceParam <- function(xy, level=0.95, doRob=FALSE, type=c("LiZhangDai", "MOM")) { UseMethod("getRiceParam") } getRiceParam.data.frame <- function(xy, level=0.95, doRob=FALSE, type=c("LiZhangDai", "MOM")) { xy <- getXYmat(xy) NextMethod("getRiceParam") } getRiceParam.default <- function(xy, level=0.95, doRob=FALSE, type=c("LiZhangDai", "MOM")) { xy <- as.matrix(xy) p <- ncol(xy) if(!is.numeric(xy)) { stop("xy must be numeric") } if(!(p %in% (1:3))) { stop("x must be (n x 1/2/3)-matrix") } type <- match.arg(type) haveRob <- if(nrow(xy) < 4L) { if(doRob) { warning("We need >= 4 points for robust estimations") } FALSE } else { rob <- robustbase::covMcd(xy, cor=FALSE) TRUE } ctr <- if(doRob && haveRob) { rob[["center"]] } else { colMeans(xy) } sigmaHat <- getRayParam(xy=xy, level=level, doRob=doRob)[["sigma"]] N <- nrow(xy) bias <- (p/N)*sigmaHat["sigma"]^2 ce <- sum(ctr^2) - bias nuSqHat <- if(type == "MOM") { max(ce, 0) } else if(type == "LiZhangDai") { max(ce, (1/(bias+1)) * sum(ctr^2)) } nuHat <- (1/c4(p*N+1))*sqrt(nuSqHat) MSD <- getMSDfromRice(nu=nuHat, sigma=sigmaHat["sigma"]) return(list(nu=setNames(nuHat, NULL), sigma=sigmaHat, MR=setNames(MSD$mean, NULL), RSD=setNames(MSD$sd, NULL))) } LaguerreHalf <- function(x) { a <- -x/2 bI0 <- exp(log(besselI(a, nu=0, expon.scaled=TRUE)) + a) bI1 <- exp(log(besselI(a, nu=1, expon.scaled=TRUE)) + a) exp(x/2) * ((1-x)*bI0 - x*bI1) } doubleFactorial <- function(x, log=FALSE) { y <- (x + 1)/2 lDF <- lgamma(2*y) - (lgamma(y) + (y-1) * log(2)) if(log) { lDF } else { exp(lDF) } } getMSDfromRice <- function(nu, sigma) { is.na(nu) <- (nu < 0) | !is.finite(nu) is.na(sigma) <- (sigma <= 0) | !is.finite(sigma) argL <- recycle(nu, sigma) nu <- argL[[1]] sigma <- argL[[2]] L05 <- LaguerreHalf(-0.5 * nu^2 / sigma^2) rMean <- sigma * sqrt(pi/2) * L05 rVar <- 2*sigma^2 + nu^2 - (pi * sigma^2 / 2) * L05^2 s2nr <- nu/sigma idxS2NR52 <- s2nr > 52 rMean[idxS2NR52] <- nu[idxS2NR52] + sigma[idxS2NR52]^2/(2*nu[idxS2NR52]) rVar[idxS2NR52] <- sigma[idxS2NR52]^2 - sigma[idxS2NR52]^4/(2*nu[idxS2NR52]^2) return(list(mean=rMean, sd=sqrt(rVar))) } dRice <- function(x, nu, sigma) { is.na(x) <- is.nan(x) is.na(nu) <- (nu < 0) | !is.finite(nu) is.na(sigma) <- (sigma <= 0) | !is.finite(sigma) argL <- recycle(x, nu, sigma) x <- argL[[1]] nu <- argL[[2]] sigma <- argL[[3]] dens <- numeric(length(x)) keep <- which((x >= 0) | !is.finite(x)) if(length(keep) < 1L) { return(dens) } lfac1 <- log(x[keep]) - 2*log(sigma[keep]) lfac2 <- -(x[keep]^2 + nu[keep]^2) / (2*sigma[keep]^2) bArg <- abs(x[keep] * nu[keep] / sigma[keep]^2) lfac3 <- log(besselI(bArg, nu=0, expon.scaled=TRUE)) + bArg res <- exp(lfac1+lfac2+lfac3) dens[keep] <- ifelse(is.nan(res), 0, res) s2nr <- nu/sigma rMSD <- getMSDfromRice(nu, sigma) keepS2NR24 <- keep[keep %in% which(s2nr > 24)] keepS2NR52 <- keep[keep %in% which(s2nr > 52)] dens[keepS2NR24] <- dnorm(x[keepS2NR24], mean=rMSD$mean[keepS2NR24], sd=rMSD$sd[keepS2NR24]) dens[keepS2NR52] <- dnorm(x[keepS2NR52], mean=nu[keepS2NR52], sd=sigma[keepS2NR52]) return(dens) } pRice <- function(q, nu, sigma, lower.tail=TRUE) { is.na(nu) <- (nu < 0) | !is.finite(nu) is.na(sigma) <- (sigma <= 0) | !is.finite(sigma) argL <- recycle(q, nu, sigma) q <- argL[[1]] nu <- argL[[2]] sigma <- argL[[3]] pp <- numeric(length(q)) keep <- which((q >= 0) | !is.finite(q)) aQ <- nu/sigma bQ <- q/sigma pp[keep] <- marcumQ(aQ[keep], bQ[keep], nu=1, lower.tail=lower.tail) if(lower.tail) { pp[which(q == -Inf)] <- 0 pp[which(q == Inf)] <- 1 } else { pp[which(q < 0)] <- 1 pp[which(q == Inf)] <- 0 } s2nr <- nu/sigma rMSD <- getMSDfromRice(nu, sigma) keepS2NR24 <- keep[keep %in% which(s2nr > 24)] keepS2NR52 <- keep[keep %in% which(s2nr > 52)] pp[keepS2NR24] <- pnorm(q[keepS2NR24], mean=rMSD$mean[keepS2NR24], sd=rMSD$sd[keepS2NR24], lower.tail=lower.tail) pp[keepS2NR52] <- pnorm(q[keepS2NR52], mean=nu[keepS2NR52], sd=sigma[keepS2NR52], lower.tail=lower.tail) return(pp) } qRice <- function(p, nu, sigma, lower.tail=TRUE) { is.na(nu) <- (nu < 0) | !is.finite(nu) is.na(sigma) <- (sigma <= 0) | !is.finite(sigma) args <- recycle(p, nu, sigma) p <- args[[1]] nu <- args[[2]] sigma <- args[[3]] keep <- which((p >= 0) & (p < 1)) qq <- sqrt(qchisq(p, df=2, ncp=(nu/sigma)^2)) * sigma s2nr <- nu/sigma rMSD <- getMSDfromRice(nu, sigma) keepS2NR24 <- keep[keep %in% which(s2nr > 24)] keepS2NR52 <- keep[keep %in% which(s2nr > 52)] qq[keepS2NR24] <- qnorm(p[keepS2NR24], mean=rMSD$mean[keepS2NR24], sd=rMSD$sd[keepS2NR24], lower.tail=lower.tail) qq[keepS2NR52] <- qnorm(p[keepS2NR52], mean=nu[keepS2NR52], sd=sigma[keepS2NR52], lower.tail=lower.tail) return(qq) } rRice <- function(n, nu, sigma, method=c("eigen", "chol", "cdf")) { is.na(nu) <- (nu < 0) | !is.finite(nu) is.na(sigma) <- (sigma <= 0) | !is.finite(sigma) method <- match.arg(method) n <- if(length(n) > 1) { length(n) } else { n } nu <- nu[1] sigma <- sigma[1] rn <- if(method == "eigen") { X <- matrix(rnorm(n*2), nrow=n) xy <- X %*% diag(rep(sigma, 2)) xyMove <- sweep(xy, 2, nu, FUN="+") sqrt(rowSums(xyMove^2)) } else if(method == "chol") { covMat <- diag(rep(sigma^2, 2)) CF <- chol(covMat, pivot=TRUE) idx <- order(attr(CF, "pivot")) CFord <- CF[, idx] xy <- matrix(rnorm(n*2), nrow=n) %*% CFord xyMove <- sweep(xy, 2, nu, FUN="+") sqrt(rowSums(xyMove^2)) } else if(method == "cdf") { u <- runif(n) sqrt(qchisq(u, df=2, ncp=(nu/sigma)^2)) * sigma } return(rn) }
cut.pts <- function(cov, circ = TRUE, .n.reg) { hobj <- graphics::hist(cov, breaks = "FD", plot = FALSE) brks <- hobj$breaks cnts <- hobj$counts id.cand <- which(cnts == 0) if (length(id.cand) > 0) { loc.cut <- c() if (circ & brks[1] <= 0 & brks[length(brks)] >= 360) { if (length(id.cand) == 1) loc.cut <- (brks[id.cand] + brks[id.cand + 1])/2 else { id.diff <- diff(id.cand) n.cons <- rle(id.diff) vals <- n.cons$values lens <- n.cons$lengths if (any(vals == 1)) { id.pos <- which(lens == max(lens[which(vals == 1)])) if (id.pos == 1) id.rng <- c(id.cand[1], id.cand[sum(lens[1:(id.pos)]) + 1]) else id.rng <- id.cand[c(sum(lens[1:(id.pos - 1)]), sum(lens[1:(id.pos)])) + 1] } else id.rng <- rep(id.cand[1], 2) loc.cut <- (brks[id.rng[1]] + brks[(id.rng[2] + 1)])/2 } cov[which(cov < loc.cut)] <- cov[which(cov < loc.cut)] + 360 } gmm <- mixtools::normalmixEM(cov, k = .n.reg, verb = FALSE) if(length(which(gmm$posterior[, 1] > gmm$posterior[, 2])) > 0 & length(which(gmm$posterior[, 1] < gmm$posterior[, 2])) > 0) { if (gmm$mu[1] < gmm$mu[2]) id.clust <- which(gmm$posterior[, 1] > gmm$posterior[, 2]) else id.clust <- which(gmm$posterior[, 1] < gmm$posterior[, 2]) bnd1 <- max(cov[id.clust]) bnd2 <- min(cov[-id.clust]) loc.cut <- c(loc.cut, ((bnd1 + bnd2)/2)) } if (circ & any(loc.cut > 360)) loc.cut[which(loc.cut > 360)] <- loc.cut[which(loc.cut > 360)] - 360 loc.cut <- sort(loc.cut) loc.cut <- c(brks[1], loc.cut, brks[length(brks)]) return(loc.cut) } else { return(NA) } }
expected <- eval(parse(text="TRUE")); test(id=0, code={ argv <- eval(parse(text="list(structure(c(TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, TRUE), .Names = c(\"1\", \"2\", \"3\", \"4\", \"5\", \"6\", \"7\", \"8\")))")); do.call(`is.atomic`, argv); }, o=expected);
quadvaraux <- function(Z){ if ((is.numeric(Z)==FALSE)||(is.matrix(Z)==FALSE)){ stop("Message from quadvaraux.R: Z is not of valid type")} Nl <- dim(Z)[1] Ml <- Nl-1 Nc <- dim(Z)[2] Mc <- Nc-1 V2 <- rep(0,2) for (m in 1:2){ K <- floor(Ml/2^(m-1)) i2 <- 1:Nc j1 <- seq(from=(2*2^(m-1)+1), to=(2^(m-1)*K+1), by=2^(m-1)) j2 <- seq(from=(2^(m-1)+1), to=(2^(m-1)*(K-1)+1), by=2^(m-1)) j3 <- seq(from=1, to=(2^(m-1)*(K-2)+1), by=2^(m-1)) Delta21 <- Z[j1,i2]-2*Z[j2,i2]+Z[j3,i2] j4 <- 1:(K-1) K <- floor(Mc/2^(m-1)) j1 <- seq(from=(2*2^(m-1)+1), to=(2^(m-1)*K+1), by=2^(m-1)) j2 <- seq(from=(2^(m-1)+1), to=(2^(m-1)*(K-1)+1), by=2^(m-1)) j3 <- seq(from=1, to=(2^(m-1)*(K-2)+1), by=2^(m-1)) Delta2 <- Delta21[j4,j1]- 2*Delta21[j4,j2]+Delta21[j4,j3] V2[m] <- sum(sum((Delta2)^2)) } H <- log(V2[2]/V2[1])/(2*log(2))+1 return(H)}
library(twitteR) hilton.tweets=searchTwitter('@hilton',n=1500) hilton.tweets=searchTwitter('@narendramodi',n=15) hilton.tweets length(hilton.tweets) class(hilton.tweets) tweet=hilton.tweets[[1]] class(tweet) tweet$getScreenName() tweet$getText() library("plyr") hilton.text=laply(hilton.tweets,function(t)t$getText()) length(hilton.text) head(hilton.text,5) hu.liu.pos=scan('/Users/marcinkulakowski/Downloads/r/positive-words.txt',what='character',comment.char=';') hu.liu.neg=scan('/Users/marcinkulakowski/Downloads/r/negative-words.txt',what='character',comment.char=';') pos.words=c(hu.liu.pos,'upgrade') neg.words=c(hu.liu.neg,'wtf','wait','waiting','epicfail','mechanical') sample=c("You'reawesomeandIloveyou","Ihateandhateandhate.Soangry.Die!","Impressedandamazed:youarepeerlessinyourachievementofunparalleledmediocrity.") score.sentiment = function(sentences, pos.words, neg.words, .progress='none') { require(plyr) require(stringr) scores = laply(sentences, function(sentence, pos.words, neg.words) { sentence = gsub('[[:punct:]]', '', sentence) sentence = gsub('[[:cntrl:]]', '', sentence) sentence = gsub('\\d+', '', sentence) sentence = tolower(sentence) word.list = str_split(sentence, '\\s+') words = unlist(word.list) pos.matches = match(words, pos.words) neg.matches = match(words, neg.words) pos.matches = !is.na(pos.matches) neg.matches = !is.na(neg.matches) score = sum(pos.matches) - sum(neg.matches) return(score) }, pos.words, neg.words, .progress=.progress ) scores.df = data.frame(score=scores, text=sentences) return(scores.df) } > result=score.sentiment(sample,pos.words,neg.words) > class(result) [1] "data.frame" > result$score [1] 0 0 0 > hilton.scores=score.sentiment(hilton.text,pos.words,neg.words,.progress='text') > hilton.scores$hotel='Hilton' > hilton.scores$code='HL' > hist(hilton.scores$score) > library("ggplot2") > qplot(hilton.scores$score) intercontinental.tweets=searchTwitter('@intercontinental',n=1500) class(tweet) intercontinental.text=laply(intercontinental.tweets,function(t)t$getText()) intercontinental.scores=score.sentiment(intercontinental.text,pos.words,neg.words,.progress='text') intercontinental.scores$hotel='Intercontinental' intercontinental.scores$code='IC' wyndham.tweets=searchTwitter('@wyndham',n=1500) class(tweet) wyndham.text=laply(wyndham.tweets,function(t)t$getText()) wyndham.scores=score.sentiment(wyndham.text,pos.words,neg.words,.progress='text') wyndham.scores$hotel='Wyndham' wyndham.scores$code='WY' marriott.tweets=searchTwitter('@marriott',n=1500) class(tweet) marriott.text=laply(marriott.tweets,function(t)t$getText()) marriott.scores=score.sentiment(marriott.text,pos.words,neg.words,.progress='text') marriott.scores$hotel='Marriott' marriott.scores$code='MI' bestwestern.tweets=searchTwitter('@bestwestern',n=1500) class(tweet) bestwestern.text=laply(bestwestern.tweets,function(t)t$getText()) bestwestern.scores=score.sentiment(bestwestern.text,pos.words,neg.words,.progress='text') bestwestern.scores$hotel='Bestwestern' bestwestern.scores$code='BW' starwood.tweets=searchTwitter('@starwood',n=1500) class(tweet) starwood.text=laply(starwood.tweets,function(t)t$getText()) starwood.scores=score.sentiment(starwood.text,pos.words,neg.words,.progress='text') starwood.scores$hotel='Starwood' starwood.scores$code='SW' hyatt.tweets=searchTwitter('@hyatt',n=1500) class(tweet) hyatt.text=laply(hyatt.tweets,function(t)t$getText()) hyatt.scores=score.sentiment(hyatt.text,pos.words,neg.words,.progress='text') hyatt.scores$hotel='Hyatt' hyatt.scores$code='HY' > all.scores=rbind(intercontinental.scores,wyndham.scores,hilton.scores,marriott.scores,bestwestern.scores,starwood.scores,hyatt.scores) > ggplot(data=all.scores)+ geom_bar(mapping=aes(x=score,fill=hotel),binwidth=1)+ facet_grid(hotel~.)+ theme_bw()+scale_fill_brewer() > all.scores$very.pos=as.numeric(all.scores$score>=2) > all.scores$very.neg=as.numeric(all.scores$score twitter.df=ddply(all.scores,c('hotel','code'),summarise,pos.count=sum(very.pos),neg.count=sum(very.neg)) > twitter.df$all.count=twitter.df$pos.count+twitter.df$neg.count > twitter.df$score=round(100*twitter.df$pos.count/twitter.df$all.count) > install.packages("doBy") > library("doBy") > orderBy(~-score,twitter.df) hotel code pos.count neg.count all.count score 1 Bestwestern BW 6 0 6 100 5 Starwood SW 7 0 7 100 6 Wyndham WY 2 0 2 100 3 Hyatt HY 7 1 8 88 2 Hilton HL 15 3 18 83 4 Marriott MI 13 4 17 76 > install.packages("XML") > library(XML) > acsi.url='http://www.theacsi.org/index.php?option=com_content&view=article&id=147&catid=&Itemid=212&i=Hotels' > acsi.df=readHTMLTable(acsi.url,header=T,which=1,stringsAsFactors=F) > acsi.df=acsi.df[,c(1,18)] > head(acsi.df,1) > colnames(acsi.df)=c('hotel','score') > acsi.df$score=as.numeric(acsi.df$score) > View(acsi.df)
"Earthquakes"
PST.setlayout <- function(nplot, prows, pcols, withlegend, axes, legend.prop=NA) { if (withlegend==TRUE) withlegend <- "auto" if (is.na(pcols)) pcols <- min(nplot,2) if (is.na(prows)) prows <- ceiling(nplot/pcols) pheight <- 1 pwidth <- 1 widths <- rep(pwidth/pcols,pcols) heights <- rep(pheight/prows,prows) layrow <- prows laycol <- pcols laymat <- matrix(1:(layrow*laycol), nrow=layrow, ncol=laycol, byrow=TRUE) axisp <- 0 legpos=NULL freecells <- (prows*pcols)-nplot if (withlegend=="auto") { if (freecells==0) { if (is.na(legend.prop)) legend.prop <- 0.15 layrow <- layrow+1 pheight <- pheight-legend.prop heights <- rep(pheight/prows,prows) heights <- c(heights,legend.prop) widths <- rep(pwidth/laycol,laycol) legpos="bottom" laymat <- rbind(laymat, rep(nplot+1,ncol(laymat))) } else { legpos="center" heights <- rep(pheight/prows,prows) widths <- rep(pwidth/laycol,laycol) } } else if (withlegend=="right") { if (is.na(legend.prop)) legend.prop <- 0.25 laycol <- laycol+1 pwidth <- pwidth-legend.prop legpos="center" widths <- rep(pwidth/pcols,pcols) widths <- c(widths, legend.prop) heights <- rep(pheight/prows,prows) laymat <- cbind(laymat, rep(nplot+1,nrow(laymat))) } if (axes=="bottom") { for (nc in 1:ncol(laymat)) axisp <- c(axisp, max(laymat[laymat[,nc]<=nplot,nc])) } else if (axes=="all") axisp <- 1:nplot laylist <- list(laymat=laymat, widths=widths, heights=heights, axisp=axisp, legpos=legpos) return(laylist) }
cat("\014") rm(list = ls()) setwd("~/git/of_dollars_and_data") source(file.path(paste0(getwd(),"/header.R"))) library(scales) library(readxl) library(lubridate) library(ggrepel) library(gganimate) library(tidylog) library(tidyverse) folder_name <- "0160_bottom_length" out_path <- paste0(exportdir, folder_name) dir.create(file.path(paste0(out_path)), showWarnings = FALSE) raw <- read.csv(paste0(importdir, "0160_dow_bottom_length/ycharts_dji_data.csv"), skip = 1, col.names = c("date","index_dow")) %>% mutate(date = as.Date(substr(date, 1, 10), format = "%Y-%m-%d")) %>% select(date, index_dow) %>% arrange(date) %>% filter(date <= "2020-12-31") first_year <- min(year(raw$date)) df <- raw %>% arrange(desc(date)) absolute_minumum <- 10^8 for(i in 1:nrow(df)){ current_p <- df[i, "index_dow"] if (current_p < absolute_minumum){ df[i, "low_watermark"] <- current_p absolute_minumum <- current_p } else{ df[i, "low_watermark"] <- absolute_minumum } } df <- df %>% arrange(date) daily_cash <- 1 for(i in 1:nrow(df)){ if(i == 1){ df[i, "value_dca"] <- daily_cash df[i, "value_ab_cash"] <- daily_cash df[i, "value_ab_vest"] <- 0 df[i, "avg_dca"] <- NA df[i, "avg_ab"] <- NA } else{ ret <- df[i, "index_dow"]/df[(i-1), "index_dow"] df[i, "avg_dca"] <- mean(df[1:i, "index_dow"], na.rm = TRUE) df[i, "avg_ab"] <- mean(df[1:i, "low_watermark"], na.rm = TRUE) df[i, "value_dca"] <- (df[(i-1), "value_dca"] + daily_cash) * ret if(df[(i-1), "index_dow"] > df[(i-1), "low_watermark"]){ df[i, "value_ab_cash"] <- df[(i-1), "value_ab_cash"] + daily_cash df[i, "value_ab_vest"] <- df[(i-1), "value_ab_vest"] * ret } else{ df[i, "ab_purchase"] <- 1 df[i, "value_ab_vest"] <- (df[(i-1), "value_ab_vest"] + df[(i-1), "value_ab_cash"] + daily_cash) * ret df[i, "value_ab_cash"] <- 0 } } df[i, "value_ab"] <- df[i, "value_ab_cash"] + df[i, "value_ab_vest"] df[i, "pct_ab_over_dca"] <- df[i, "value_ab"]/df[i, "value_dca"] } summary <- df %>% arrange(date) %>% mutate(lower_future = ifelse(low_watermark < index_dow, 1, 0), lag_days_to_bottom = lag(value_ab_cash)) bottoms <- summary %>% filter(value_ab_cash == 0) n_bottoms <- nrow(bottoms) to_plot <- df %>% select(date, index_dow, low_watermark) %>% gather(-date, key=key, value=value) file_path <- paste0(out_path, "/dow_lower_watermark_ycharts.jpeg") source_string <- "Source: YCharts, 1970-2019 (OfDollarsAndData.com)" plot <- ggplot(to_plot, aes(x=date, y=value, col = key)) + geom_line() + scale_y_continuous(label = comma, trans = log10_trans()) + scale_color_manual(guide = FALSE, values = c("black", "red")) + of_dollars_and_data_theme + ggtitle(paste0("Dow Index and Low Watermark")) + labs(x="Date", y="Index Value", caption = paste0(source_string)) ggsave(file_path, plot, width = 15, height = 12, units = "cm") to_plot <- df %>% select(date, index_dow, low_watermark) %>% gather(-date, key=key, value=value) file_path <- paste0(out_path, "/dow_lower_watermark_buys_ycharts.jpeg") source_string <- "Source: YCharts, 1970-2019 (OfDollarsAndData.com)" plot <- ggplot(to_plot, aes(x=date, y=value, col = key)) + geom_line() + geom_point(data = select(bottoms, date, low_watermark), aes(x=date, y=low_watermark), col = "blue", size = 1) + scale_y_continuous(label = comma, trans = log10_trans()) + scale_color_manual(guide = FALSE, values = c("black", "red")) + of_dollars_and_data_theme + ggtitle(paste0("Dow Index and Low Watermark")) + labs(x="Date", y="Index Value", caption = paste0(source_string)) ggsave(file_path, plot, width = 15, height = 12, units = "cm") to_plot <- df %>% select(date, value_dca, value_ab) %>% rename(`DCA` = value_dca, `Absolute-Bottom` = value_ab) %>% gather(-date, key=key, value=value) final_diff <- df[nrow(df), "value_ab"] - df[nrow(df), "value_dca"] final_diff_pct <- df[nrow(df), "value_ab"]/df[nrow(df), "value_dca"] - 1 text_labels <- data.frame(date = c(as.Date("2014-07-01"), as.Date("2014-07-01")), value = c(df[nrow(df), "value_ab"] + 2000, 60000), key = c("Absolute-Bottom", "DCA"), label = c(paste0("Absolute Bottom\n+$", formatC(final_diff, digits = 0, format = "f", big.mark = ","), "\n(+", round(100*final_diff_pct, 1), "%)"), "DCA") ) file_path <- paste0(out_path, "/dow_dca_vs_ab_ycharts.jpeg") source_string <- "Source: YCharts, 1970-2019 (OfDollarsAndData.com)" plot <- ggplot(to_plot, aes(x=date, y=value, col = key)) + geom_line() + geom_text_repel(data = text_labels, aes(x = date, y = value, col = key, label = text_labels$label, family = "my_font"), size = 3, segment.colour = "transparent", max.iter = 1 ) + scale_y_continuous(label = dollar) + scale_color_manual(values = c("red", "blue"), guide = FALSE) + of_dollars_and_data_theme + ggtitle(paste0("DCA vs. Absolute-Bottom Buying Strategy")) + labs(x="Date", y="Portfolio Value", caption = paste0(source_string)) ggsave(file_path, plot, width = 15, height = 12, units = "cm") to_plot <- df %>% select(date, avg_dca, avg_ab) %>% rename(DCA = avg_dca, `Absolute-Bottom` = avg_ab) %>% gather(-date, key=key, value=value) file_path <- paste0(out_path, "/avg_price_dca_vs_ab_ycharts.jpeg") source_string <- "Source: YCharts, 1970-2019 (OfDollarsAndData.com)" plot <- ggplot(to_plot, aes(x=date, y=value, col = key)) + geom_line() + scale_y_continuous(label = comma, trans = log10_trans()) + scale_color_manual(values = c("red", "blue")) + of_dollars_and_data_theme + theme(legend.position = "bottom", legend.title = element_blank()) + ggtitle(paste0("Average Purchase Prices\nDCA vs. Absolute-Bottom Buying Strategy")) + labs(x="Date", y="Average Index Value", caption = paste0(source_string)) ggsave(file_path, plot, width = 15, height = 12, units = "cm") print(paste0(round(100*mean(summary$lower_future), 1), "% of days will see a lower value in the future.")) print(paste0("There are only ", n_bottoms, " absolute bottoms (", round(100*(n_bottoms/nrow(summary)), 1), "% of all days) since ", first_year, ".")) print(paste0("The average number of days before a bottom is ", mean(df$value_ab_cash), ".")) print(paste0("The median number of days before a bottom is ", quantile(df$value_ab_cash, probs = 0.5), "."))
source("incl/start.R") getOption2 <- parallelly:::getOption2 getEnvVar2 <- parallelly:::getEnvVar2 options(parallelly.some.option = NULL) options(parallelly.some.option = NULL) Sys.unsetenv("R_FUTURE_SOME_ENVVAR") Sys.unsetenv("R_PARALLELLY_SOME_ENVVAR") message("*** Options and environment variables ...") showall <- function() { utils::str(list( future.some.setting = getOption("future.some.setting", NULL), parallelly.some.setting = getOption("parallelly.some.setting", NULL), R_FUTURE_SOME_SETTING = Sys.getenv("R_FUTURE_SOME_SETTING", ""), R_PARALLELLY_SOME_SETTING = Sys.getenv("R_PARALLELLY_SOME_SETTING", "") )) } for (what in c("option", "envvar")) { if (what == "option") { setvalue <- function(name, value) { name <- sprintf("%s.some.setting", tolower(name)) if (is.null(value)) { args <- list(NULL) } else { args <- as.list(value) } names(args) <- name do.call(options, args = args) class(args) <- "option" args } } else if (what == "envvar") { setvalue <- function(name, value) { name <- sprintf("R_%s_SOME_SETTING", toupper(name)) if (is.null(value)) { Sys.unsetenv(name) args <- list(NULL) names(args) <- name } else { args <- as.list(value) names(args) <- name do.call(Sys.setenv, args = args) } class(args) <- "envvar" args } } for (name in c("future", "parallelly")) { for (value0 in list(NULL, TRUE)) { args <- setvalue(name, value0) stopifnot(inherits(args, what)) showall() if (is.null(value0)) { message("- getOption2()") value <- getOption2("future.some.setting", NA) stopifnot(is.na(value)) value <- getOption2("parallelly.some.setting", NA) stopifnot(is.na(value)) message("- getEnvVar2()") value <- getEnvVar2("R_FUTURE_SOME_ENVVAR", NA) stopifnot(is.na(value)) value <- getEnvVar2("R_PARALLELLY_SOME_ENVVAR", NA) stopifnot(is.na(value)) } else if (isTRUE(value0)) { if (what == "option") { message("- getOption2()") value1 <- getOption2("future.some.setting", NA) stopifnot(isTRUE(value1)) value2 <- getOption2("parallelly.some.setting", NA) stopifnot(isTRUE(value2)) } else if (what == "envvar") { message("- getEnvVar2()") value1 <- getEnvVar2("R_FUTURE_SOME_SETTING", NA) stopifnot(value1 == "TRUE") value2 <- getEnvVar2("R_PARALLELLY_SOME_SETTING", NA) stopifnot(value2 == "TRUE") } stopifnot(identical(value1, value2)) } args <- setvalue(name, NULL) stopifnot(inherits(args, what), is.null(args[[1]])) } } } message("*** Options and environment variables ... DONE") source("incl/end.R")
ring_matrix <- function(nr_max, nc, type, environment = TRUE) { type <- match.arg(type, names(ring:::sizes)) if (environment) { buf <- ring::ring_buffer_env(nr_max) } else { buf <- ring::ring_buffer_bytes_typed(nr_max, type, nc) } ret <- list(buf = buf, nr_max = as.integer(nr_max), nc = as.integer(nc), type = type, environment = environment) class(ret) <- "ring_matrix" ret } ring_matrix_push <- function(buffer, data, check = TRUE, ...) { if (check) { ring_matrix_compatible(buffer, data) } if (buffer$environment) { if (is.matrix(data)) { for (i in seq_len(nrow(data))) { buffer$buf$push(data[i, ], FALSE) } } else { buffer$buf$push(data, FALSE) } } else { buffer$buf$push(if (is.matrix(data)) t(data) else data) } } ring_matrix_compatible <- function(x, data) { if (storage.mode(data) != x$type) { stop("Expected storage.mode of ", x$type) } if (is.matrix(data)) { if (ncol(data) != x$nc) { stop(sprintf("Expected a matrix of '%d' columns", x$nc)) } } else { if (length(data) != x$nc) { stop(sprintf("Expected a matrix of '%d' columns", x$nc)) } } TRUE } ring_matrix_get <- function(x, i = NULL) { if (is.null(i)) { dat <- x$buf$read(x$buf$used()) if (x$environment) { if (length(dat) == 0L) { dat <- create[[x$type]]() } else { dat <- unlist(dat) } } ret <- matrix(dat, ncol = x$nc, byrow = TRUE) } else { len <- x$buf$used() i <- ring_vector_index(i, len) ret <- matrix(create[[x$type]](length(i) * x$nc), length(i), x$nc) for (j in seq_along(i)) { k <- i[[j]] ret[j, ] <- if (k <= len) x$buf$tail_offset(k - 1L) else NA } } if (!is.null(x$colnames)) { colnames(ret) <- x$colnames } ret } push.ring_matrix <- ring_matrix_push dim.ring_matrix <- function(x, ...) { c(x$buf$used(), x$nc) } head.ring_matrix <- function(x, n = 6L, ...) { head.matrix(x, n, ...) } tail.ring_matrix <- function(x, n = 6L, ...) { tail.matrix(x, n, FALSE, ...) } `[.ring_matrix` <- function(x, i, j, ..., drop = TRUE) { if (missing(i)) { if (missing(j)) { ring_matrix_get(x, NULL) } else { ring_matrix_get(x, NULL)[, j, drop = drop] } } else if (is.matrix(i)) { if (!missing(j)) { stop("subscript out of bounds") } j <- sort(unique(i[, 1L])) ring_matrix_get(x, j)[cbind(match(i[, 1L], j), i[, 2L])] } else { ring_matrix_get(x, i)[, j, drop = drop] } } dimnames.ring_matrix <- function(x, ...) { if (is.null(x$colnames)) { NULL } else { list(NULL, x$colnames) } } `dimnames<-.ring_matrix` <- function(x, value) { if (is.null(value)) { x$colnames <- NULL } else if (!is.list(value) || length(value) != 2L) { stop("Invalid input for dimnames") } else { if (!is.null(value[[1L]])) { stop("Cannot set rownames of a ring matrix") } val <- value[[2L]] if (!is.null(val) && length(val) != x$nc) { stop("Invalid length dimnames") } x$colnames <- val } x } as.matrix.ring_matrix <- function(x, ...) { ring_matrix_get(x, NULL) } cbind.ring_matrix <- function(...) { stop("It is not possible to cbind() ring_matrices (use as.matrix first?)") } rbind.ring_matrix <- function(...) { if (!inherits(..1, "ring_matrix")) { args <- list(...) i <- vapply(args, inherits, logical(1), "ring_matrix") args[i] <- lapply(args[i], as.matrix) eval(as.call(c(quote(rbind), args))) } else { x <- ..1 args <- list(...)[-1] lapply(args, ring_matrix_compatible, x = x) for (m in args) { ring_matrix_push(x, m) } x } } length.ring_matrix <- function(x) { x$buf$used() * x$nc } registerS3method("[", "ring_matrix", `[.ring_matrix`, environment()) registerS3method("dim", "ring_matrix", dim.ring_matrix, environment()) registerS3method("dimnames", "ring_matrix", dimnames.ring_matrix, environment()) registerS3method("dimnames<-", "ring_matrix", `dimnames<-.ring_matrix`, environment()) registerS3method("as.matrix", "ring_matrix", cbind.ring_matrix, environment()) registerS3method("cbind", "ring_matrix", cbind.ring_matrix, environment()) registerS3method("rbind", "ring_matrix", rbind.ring_matrix, environment())
?outer outer(1:4, 4:6) 1:4 %o% 4:6 outer(1:4, 4:6, FUN=paste) x=1:4 ; y=4:6 ; z=c(10,11,12) x;y;z outer(x,y, FUN='*') outer(x,y, FUN=paste) outer(x,y, FUN='+') outer(x,y, FUN='-') x;y outer(x,-y, FUN=paste) outer(x,y, FUN='-') outer(x,y, FUN='^') outer(x,rep('^',3),y, FUN=paste0) outer(x,y, FUN='/') z =
context("unnest_sentences_") test_that("correct ouput class and str", { df <- data.frame(doc_id = 1:3, text = c("Testing the system. Second sentence for you.", "System testing the tidy documents df.", "Documents will be parsed and lexranked."), stringsAsFactors = FALSE) test_result <- unnest_sentences_(df, "out", "text") expect_equal(dim(test_result), c(4,3)) expect_true(is.data.frame(test_result)) expect_equal(names(test_result), c("doc_id","sent_id","out")) test_result <- unnest_sentences_(df, "out", "text", drop=FALSE) expect_equal(dim(test_result), c(4,4)) expect_equal(names(test_result), c("doc_id","text","sent_id","out")) }) test_that("test input checking", { df <- data.frame(doc_id = 1:3, text = c("Testing the system. Second sentence for you.", "System testing the tidy documents df.", "Documents will be parsed and lexranked."), stringsAsFactors = FALSE) expect_error(unnest_sentences_(df, "out", "fake")) expect_error(unnest_sentences_(NULL, "out", "text")) expect_error(unnest_sentences_(df, "out", "text", drop = NULL)) expect_error(unnest_sentences(df, "out", "text", doc_id = "fake")) expect_warning(unnest_sentences_(df, "out", "text", output_id=c("test","test2"))) }) test_that("output value", { df <- data.frame(doc_id = 1:3, text = c("Testing the system. Second sentence for you.", "System testing the tidy documents df.", "Documents will be parsed and lexranked."), stringsAsFactors = FALSE) test_result <- unnest_sentences_(df, "out", "text") expected_result <- data.frame(doc_id = c(1L, 1L, 2L, 3L), sent_id = c(1L, 2L, 1L, 1L), out = c("Testing the system.", "Second sentence for you.", "System testing the tidy documents df.", "Documents will be parsed and lexranked."), stringsAsFactors = FALSE) expect_equal(test_result, expected_result) df <- data.frame(doc_id = c(1,1,3), text = c("Testing the system. Second sentence for you.", "System testing the tidy documents df.", "Documents will be parsed and lexranked."), stringsAsFactors = FALSE) test_result <- unnest_sentences_(df, "out", "text", doc_id = "doc_id") expected_result <- data.frame(doc_id = c(1L, 1L, 1L, 3L), sent_id = c(1L, 2L, 3L, 1L), out = c("Testing the system.", "Second sentence for you.", "System testing the tidy documents df.", "Documents will be parsed and lexranked."), stringsAsFactors = FALSE) expect_equal(test_result, expected_result) })
simulate.transectHolder <- function(object, nsim = 1, seed = NULL, ...) { if (!is.null(seed)) set.seed(seed) distances <- c() while(length(distances) < nsim) { unfiltered <- do.call(object$rng, as.list(c(10*nsim, object$parameters))) filter <- runif(10*nsim, 0, max(unfiltered)) distances <- c(distances, unfiltered[unfiltered > filter]) } distances <- distances[1:nsim] angles <- runif(nsim, 0, 2*pi) return(data.frame(distances = distances, angles = angles, x = cos(angles) * distances, y = sin(angles) * distances)) }
ParseTotalEffects <- function(OutFile,FileName,Directry){ z1=which(match(OutFile,"Total")==1)[seq(1,length(which(match(OutFile,"Total")==1)),2)] z=(mapply(seq,z1-5,z1+10)) AllNameTotTotIndList=OutFile[z[1:nrow(z),]] P1=seq(10,length(AllNameTotTotIndList),16) PT=as.numeric(AllNameTotTotIndList[P1]) Summs<-CreateSummaryMats(FileName=FileName,OutputSE=FALSE,OutputPVal=TRUE,Directry=Directry,OutputFinalMat=FALSE) o=c() for(i in 1:length(Summs[[1]])){ o=c(o,rep(Summs[[1]][i],length(Summs[[2]][[i]]))) } M=matrix(c(o,unlist(Summs[[2]])),nrow=length(o)) Mn=cbind(M[,2],rep("to",length(M[,2])),M[,1]) Mn<-Mn P2=Mn PD=unlist(Summs[[3]]) I1=seq(3,length(AllNameTotTotIndList),16) I2=rep(0,length(I1)*3) I2[which(mod(seq(1,length(I2)),3)==0)-0]=I1+2 I2[which(mod(seq(1,length(I2)),3)==0)-1]=I1+1 I2[which(mod(seq(1,length(I2)),3)==0)-2]=I1 INDNameMat=matrix(AllNameTotTotIndList[I2],byrow=TRUE,ncol=3) PI1=seq(16,length(AllNameTotTotIndList),16) PTI=as.numeric(AllNameTotTotIndList[PI1]) EntireF=c("TotalPVals"=list(PT),"INDPVals"=list(PTI),"INDNames"=list(INDNameMat),"DirectPVals"=list(PD),"DirectNames"=list(P2)) return(EntireF)}
test_that("fredr() aliases fredr_series_observations()", { skip_if_no_key() expect_identical( fredr(series_id = "GNPCA", limit = 2), fredr_series_observations(series_id = "GNPCA", limit = 2) ) }) test_that("fredr_series_observations() works", { skip_if_no_key() series <- fredr_series_observations(series_id = "GNPCA", limit = 20L) expect_s3_class(series, c("tbl_df", "tbl", "data.frame")) expect_s3_class(series$date, "Date") expect_type(series$series_id, "character") expect_type(series$value, "double") expect_s3_class(series$realtime_start, "Date") expect_s3_class(series$realtime_end, "Date") expect_true(ncol(series) == 5) expect_true(nrow(series) == 20) }) test_that("fredr_series_observations() properly returns zero row tibble", { skip_if_no_key() series <- fredr::fredr_series_observations( series_id = "GNPCA", observation_start = as.Date("2050-01-01") ) expect_s3_class(series, c("tbl_df", "tbl", "data.frame")) expect_s3_class(series$date, "Date") expect_type(series$series_id, "character") expect_type(series$value, "double") expect_s3_class(series$realtime_start, "Date") expect_s3_class(series$realtime_end, "Date") expect_true(ncol(series) == 5) expect_true(nrow(series) == 0) }) test_that("fredr_series_observations() throws errors for bad parameters", { expect_error(fredr_series_observations()) expect_error(fredr_series_observations(foo = "bar")) expect_error(fredr_series_observations(series_id = 1)) expect_error(fredr_series_observations(series_id = c("a", "b"))) }) test_that("vintage_dates parameter accepts a vector of dates", { skip_if_no_key() vintage_dates <- as.Date(c("2001-07-25", "2001-07-28")) result <- fredr_series_observations( series_id = "GDPC1", observation_start = as.Date("2000-01-01"), observation_end = as.Date("2000-01-01"), vintage_dates = vintage_dates ) expect_realtime_start <- as.Date(c("2001-07-25", "2001-07-27")) expect_realtime_end <- as.Date(c("2001-07-26", "2001-07-28")) expect_identical(nrow(result), 2L) expect_identical(result$realtime_start, expect_realtime_start) expect_identical(result$realtime_end, expect_realtime_end) }) test_that("validate_series_id() throws proper errors", { expect_error(validate_series_id(NULL)) expect_error(validate_series_id(1)) expect_error(validate_series_id(c("a", "b"))) })
library("GeneNet") data("arth800") summary(arth800.expr) plot(arth800.expr, 1:9) panel.cor = function(x, y, digits=2, prefix="", cex.cor) { usr = par("usr"); on.exit(par(usr)) par(usr = c(0, 1, 0, 1)) r = abs(cor(x, y)) txt = format(c(r, 0.123456789), digits=digits)[1] txt = paste(prefix, txt, sep="") if(missing(cex.cor)) cex = 0.8/strwidth(txt) text(0.5, 0.5, txt, cex = cex * r) } pairs(arth800.expr[,1:9], lower.panel=panel.smooth, upper.panel=panel.cor) pcor.dyn = ggm.estimate.pcor(arth800.expr, method = "dynamic") arth.edges = network.test.edges(pcor.dyn,direct=TRUE) dim(arth.edges) arth.net = extract.network(arth.edges, method.ggm="number", cutoff.ggm=150) library("graph") node.labels = as.character(1:ncol(arth800.expr)) gr = network.make.graph( arth.net, node.labels, drop.singles=TRUE) num.nodes(gr) edge.info(gr)$weight table( edge.info(gr)$dir ) sort(node.degree(gr), decreasing=TRUE)[1:10] arth800.descr[570] arth800.descr[81] arth800.descr[558] arth800.descr[539] arth800.descr[783] library("Rgraphviz") globalAttrs = list() globalAttrs$edge = list(color = "black", lty = "solid", lwd = 1, arrowsize=1) globalAttrs$node = list(fillcolor = gray(.95), shape = "ellipse", fixedsize = FALSE) nodeAttrs = list() nodeAttrs$fillcolor = c('570' = "red", "81" = "red") edi = edge.info(gr) edgeAttrs = list() edgeAttrs$dir = edi$dir cutoff = quantile(abs(edi$weight), c(0.2, 0.8)) edgeAttrs$lty = ifelse(edi$weight < 0, "dotted", "solid") edgeAttrs$color = ifelse( abs(edi$weight <= cutoff[1]), "grey", "black") edgeAttrs$lwd = ifelse(abs(edi$weight >= cutoff[2]), 2, 1) plot(gr, attrs = globalAttrs, nodeAttrs = nodeAttrs, edgeAttrs = edgeAttrs, "fdp")
con2.vals <- function(x, y, n, j, k) { a <- con2.parms(x, y, n, j, k, 1, 1) nr <- nrow(a$theta) est <- a$theta[nr, ] b <- con2.est(x[j], x[k], est) eta <- c(b$eta1, b$eta2) beta <- c(b$a0, b$a1, b$b0, b$b1, b$b2, b$c0, b$c1) tau <- c(x[j], x[k]) list(eta = eta, beta = beta, tau = tau) }
rbwATE <- function(treatment, data, baseline_x, base_weights, max_iter = 200, print_level = 1, tol = 1e-6) { cl <- match.call() if(missing(treatment)) stop("'treatment' must be provided.") treatment <- ensym(treatment) if(missing(data)) stop("'data' must be provided.") if(!is.data.frame(data)) stop("'data' must be a data frame.") n <- nrow(data) if(missing(base_weights)){ bweights <- rep(1, n) } else{ bweights <- eval_tidy(enquo(base_weights), data) if(length(bweights) != n) stop("'base_weights' must have the same length as 'data'.") } if(!missing(baseline_x)) { nl <- as.list(seq_along(data)) names(nl) <- names(data) vars <- eval_tidy(enexpr(baseline_x), nl) xnames <- names(data)[vars] xform <- paste("~", paste(xnames, collapse = "+")) x <- model.matrix(eval_tidy(parse_expr(xform)), data)[, -1, drop = FALSE] xmodels <- apply(x, 2, function(y) lm(y ~ 1, weights = bweights)) xnames <- names(xmodels) } else { stop("Baseline confounders are not provided.") } a_mat <- eval_tidy(quo(model.matrix(~ !!treatment, data))) a <- `colnames<-`(a_mat[, -1, drop = FALSE], colnames(a_mat)[-1]) if(nrow(a) != n) stop("'treatment' must have the same length as 'data'.") res_prods_xa <- Reduce(cbind, mapply(rmat, xmodels, xnames, MoreArgs = list(a = a), SIMPLIFY = FALSE)) res_prods <- res_prods_xa res_prods_indep <- pivot(res_prods) C <- as.matrix(res_prods_indep) eb_out <- eb2(C = C, M = rep(0, ncol(C)), Q = bweights/sum(bweights), max_iter = max_iter, print_level = print_level, tol = tol) weights <- eb_out$W list(weights = weights, constraints = res_prods_indep, eb_out = eb_out, call = cl) }
context("Test implementation of chebyshev distance ...") P <- 1:10 / sum(1:10) Q <- 20:29 / sum(20:29) V <- -10:10 W <- -20:0 test_dist_matrix <- function(x, FUN) { dist.fun <- match.fun(FUN) res.dist.matrix <- matrix(NA_real_, nrow(x), nrow(x)) for (i in 1:nrow(x)) { for (j in 1:nrow(x)) { res.dist.matrix[i, j] <- dist.fun(x[i, ], x[j, ]) } } return(res.dist.matrix[lower.tri(res.dist.matrix, diag = FALSE)]) } test_that("distance(method = 'chebyshev') computes the correct distance value.", { expect_equal(as.vector(philentropy::distance(rbind(P, Q), method = "chebyshev")), max(abs((P) - (Q)))) expect_equal(as.vector(philentropy::distance(rbind(P, Q), method = "chebyshev")), as.vector(stats::dist(base::rbind(P, Q), method = "maximum"))) distMat <- rbind(rep(0.2, 5), rep(0.1, 5), c(5, 1, 7, 9, 5)) dist.vals <- distance(distMat, method = "chebyshev") expect_equal(dist.vals[lower.tri(dist.vals, diag = FALSE)], as.vector(dist(distMat, method = "maximum"))) }) test_that("Correct chebyshev distance is computed when vectors contain 0 values ...", { P1 <- c(1,0) P2 <- c(0.5, 0.5) Q1 <- c(0.5,0.5) Q2 <- c(1,0) expect_equal(as.vector(philentropy::distance(rbind(P1, Q1), method = "chebyshev")), as.vector(stats::dist(base::rbind(P1, Q1), method = "maximum"))) expect_equal(as.vector(philentropy::distance(rbind(P2, Q2), method = "chebyshev")), as.vector(stats::dist(base::rbind(P2, Q2), method = "maximum"))) })
file_summary_ui <- function(id) { ns <- NS(id) tagList( selectInput( ns("file_to_summarize"), label = "Choose file to view", choices = "" ), tabsetPanel( tabPanel( "File Overview", plotOutput(ns("datafilevisdat")) ), tabPanel( "File Details", br(), reactable::reactableOutput(ns("data_details")) ) ) ) } file_summary_server <- function(input, output, session, file_data) { inputs <- reactiveVal(c()) observe({ non_null <- vapply( file_data(), function(x) !is.null(x), logical(1) ) inputs(names(which(non_null))) updateSelectInput( session, "file_to_summarize", label = "Choose file to view", choices = inputs() ) }) observeEvent(input$file_to_summarize, { if (input$file_to_summarize != "") { output$datafilevisdat <- renderPlot({ visualize_data_types(file_data()[[input$file_to_summarize]]) }) file_summary <- data_summary(file_data()[[input$file_to_summarize]]) column_defs <- get_column_definitions(file_summary) output$data_details <- reactable::renderReactable({ reactable::reactable( file_summary, highlight = TRUE, searchable = TRUE, resizable = TRUE, columns = column_defs ) }) } }) } visualize_data_types <- function(data) { if (!inherits(data, "tbl_df") && !inherits(data, "data.frame")) { return(NULL) } visdat::vis_dat(data) + ggplot2::theme(text = ggplot2::element_text(size = 16)) } data_summary <- function(data) { if (!inherits(data, "tbl_df") && !inherits(data, "data.frame") || nrow(data) == 0) { return(NULL) } data_sum <- tibble::as_tibble(skimr::skim(data)) desired_cols <- c( "skim_variable", "skim_type", "n_missing", "complete_rate", "character.n_unique", "numeric.mean", "numeric.sd", "numeric.hist" ) data_sum <- data_sum[, names(data_sum) %in% desired_cols] data_sum <- tibble::add_column(data_sum, value_occurrence = NA) for (var in data_sum$skim_variable) { var_col <- which(names(data) == var) val_summary <- summarize_values(data[[var_col]]) data_sum$value_occurrence[data_sum$skim_variable == var] <- val_summary } data_sum } summarize_values <- function(values) { if (all(purrr::map_lgl(values, function(x) { is.na(x) || is.null(x) })) ) { return(NA) } glue::glue_collapse( purrr::imap_chr(table(values), ~ glue::glue("{.y} ({.x})")), sep = ", " ) } get_column_definitions <- function(data) { columns <- list( skim_variable = reactable::colDef( name = "Variable", width = 125 ), skim_type = reactable::colDef( name = "Type", width = 80 ), n_missing = reactable::colDef( name = "Missing", maxWidth = 60, align = "center" ), complete_rate = reactable::colDef( name = "% Complete", maxWidth = 90, align = "center", cell = function(value) { percentage <- value * 100 format(percentage, digits = 3) } ) ) types <- unique(data$skim_type) if ("character" %in% types) { columns$character.n_unique <- reactable::colDef( name = "Unique", maxWidth = 70, align = "center", cell = function(value) { if (is.na(value)) { "-" } else { format(value, digits = 3) } } ) } if ("numeric" %in% types) { columns$numeric.mean <- reactable::colDef( name = "Mean", maxWidth = 60, align = "center", cell = function(value) { if (is.na(value)) { "-" } else { format(value, digits = 3) } } ) columns$numeric.sd <- reactable::colDef( name = "\U3C3", maxWidth = 60, align = "center", cell = function(value) { if (is.na(value)) { "-" } else { format(value, digits = 3) } } ) columns$numeric.hist <- reactable::colDef( name = "Histogram", maxWidth = 80, align = "center" ) } columns$value_occurrence <- reactable::colDef( name = "Value ( cell = function(value) { if (!is.na(value) && nchar(value) > 40) { return(glue::glue("{substr(value, 1, 40)}...")) } else { return(value) } }, details = function(index) { value <- data[index, "value_occurrence"] if (!is.na(value) && nchar(value) > 40) { return(htmltools::div( glue::glue("{value[[1]]}"), width = 12, class = "detailbox" )) } else { return(NULL) } } ) columns }
.build_address <- function(data, end_slug, end_slugs, address_parts, return_message = T) { if (return_message) { glue("Building location for {end_slug}") %>% message() } parts <- address_parts[address_parts %>% str_detect(end_slug)] remove_parts <- end_slugs[!end_slugs %in% end_slug] %>% str_c(collapse = "|") if (!end_slug %>% str_detect("Mailing|Alternate|Alt") & remove_parts != "") { parts <- parts %>% str_remove_all(remove_parts) } parts <- parts[parts %>% str_detect(end_slug)] new_col <- glue("location{end_slug}") %>% as.character() if (data %>% hasName(new_col)) { return(data) } city_state <- glue("cityState{end_slug}") %>% as.character() address <- parts[parts %>% str_detect("addressStreet|address_street")] if (length(address) > 0) { address <- address[[1]] } address1 <- parts[parts %>% str_detect("addressStreet1|address_street_1")] if (length(address1) > 0) { address1 <- address1[[1]] } address2 <- parts[parts %>% str_detect("addressStreet2|address_street_2")] if (length(address2) > 0) { address2 <- address2[[1]] } city <- parts[parts %>% str_detect("city|City")] if (length(city) > 0) { city <- city[[1]] } state <- parts[parts %>% str_detect("state|State")] if (length(state) > 0) { state <- state[[1]] } zip <- parts[parts %>% str_detect("zip")] zip <- zip[!zip %>% str_detect("zipcode4|zip4")] if (length(zip) > 0) { zip <- zip[[1]] } country <- parts[parts %>% str_detect("country")] if (length(country) > 0) { country <- country[[1]] } df_locs <- data %>% select(one_of(address, address1, address2, city, state, zip, country)) %>% distinct() if (length(city) + length(state) == 2) { df_locs <- df_locs %>% unite(!!sym(city_state), city, state, sep = ", ", , remove = F) %>% filter(!!sym(city_state) != "NA, NA") df_locs <- df_locs %>% mutate_if(is.character, list(function(x) { x %>% coalesce("") })) %>% unite( !!sym(new_col), c(address, city_state, zip, country), sep = " ", remove = F ) %>% mutate_at(new_col, str_squish) %>% mutate_if(is.character, list(function(x) { case_when(x == "" ~ NA_character_, TRUE ~ x) })) } else { df_locs <- df_locs %>% mutate_if(is.character, list(function(x) { x %>% coalesce("") })) %>% unite( !!sym(new_col), c(address, city, state, zip, country), sep = " ", remove = F ) %>% mutate_at(new_col, str_squish) %>% mutate_if(is.character, list(function(x) { case_when(x == "" ~ NA_character_, TRUE ~ x) })) } join_cols <- names(df_locs)[names(df_locs) %in% names(data)] data <- data %>% left_join(df_locs, by = join_cols) data } build_address <- function(data, address_search_slugs = c("^address", "^streetAddress", "^city", "^state", "^codeState", "^codeCountry", "^country", "^zipcode"), include_snake_versions = T, part_threshold = 3, snake_names = F, return_message = T) { if (include_snake_versions) { clean_n <- address_search_slugs %>% make_clean_names() clean_n <- glue("^{clean_n}") %>% as.character() address_search_slugs <- c(address_search_slugs,clean_n) %>% unique() } address_slugs <- str_c(address_search_slugs, collapse = "|") address_parts <- data %>% select(matches(address_slugs)) %>% names() if (length(address_parts) == 0) { return(data) } end_slugs <- tibble(part = address_parts %>% str_remove_all(address_slugs)) %>% count(part, sort = T) %>% filter(n >= part_threshold) %>% pull(part) end_slugs %>% walk(function(x) { data <<- .build_address( data = data, end_slug = x, end_slugs = end_slugs, address_parts = address_parts, return_message = return_message ) }) if (snake_names) { data <- data %>% clean_names() } data } munge_tbl <- function(data, snake_names = F, unformat = F, convert_case = T, amount_digits = 2, include_address = T) { data <- data %>% mutate_if(is.character, list(function(x) { x %>% str_squish() })) %>% mutate_if(is.character, list(function(x) { case_when(x == "" ~ NA_character_, TRUE ~ x) })) is_has <- data %>% select_if(is.character) %>% dplyr::select(dplyr::matches("^is|^has")) %>% names() if (length(is_has) > 0) { data <- data %>% mutate_at(is_has, list(function(x){ case_when(x %in% c("Y", "YES", "TRUE", "1") ~ TRUE, TRUE ~ FALSE) })) } to_num <- data %>% select_if(is.character) %>% select(matches("amount|price|value|ratio|count[A-Z]|number|shares")) %>% select(-matches("country|county")) %>% names() if (length(to_num) > 0) { data <- data %>% mutate_at(to_num, readr::parse_number) } if (convert_case) { upper_cols <- data %>% select_if(is.character) %>% select(-matches("^url")) %>% names() data <- data %>% mutate_at(upper_cols, str_to_upper) } if (!unformat) { pct_names <- data %>% select_if(is.numeric) %>% select(matches("^percent|^pct")) %>% names() count_names <- data %>% select_if(is.numeric) %>% select(matches("^count|^number")) %>% names() amt_names <- data %>% select_if(is.numeric) %>% select(matches("^amount|^amt|^price|^earnings")) %>% names() if (length(pct_names) > 0) { data <- data %>% mutate_at(pct_names, list(function(x){ x %>% percent(digits = 2) })) } if (length(amt_names) > 0) { data <- data %>% mutate_at(pct_names, list(function(x){ x %>% currency(digits = amount_digits) })) } if (length(count_names) > 0) { data <- data %>% mutate_at(count_names, list(function(x){ x %>% comma(digits = 0) })) } } if (include_address) { data <- data %>% build_address() } if (snake_names) { data <- data %>% janitor::clean_names() } if (unformat) { data <- data %>% mutate_if(is.numeric, as.numeric) } data } .get_cik_url_df <- function(cik = 1138621) { slugs <- c( 'general', 'filings', 'private', 'fundraising', 'traders', 'clevel', 'mda', 'owners', 'subsidiaries' ) url_json <- list('http://rankandfiled.com/data/filer/', cik, '/', slugs) %>% purrr::invoke(paste0, .) url_df <- dplyr::tibble( nameTable = c( 'General', 'Filings', 'Private', 'Fundraising', 'Traders', 'C Level', 'MDA', 'Owners', 'Subsidiaries' ), urlJSON = url_json ) return(url_df) } .parse_json_general_filing <- function(url = "http://rankandfiled.com/data/filer/1468327/general", nest_data = TRUE, return_message = TRUE) { if (!url %>% httr::url_ok() %>% suppressWarnings()) { return(tibble()) } data <- url %>% jsonlite::fromJSON(simplifyDataFrame = TRUE) %>% data.frame(stringsAsFactors = FALSE) %>% as_tibble() is_company <- 'company' %in% names(data) is_insider <- 'insider' %in% names(data) is_fund <- 'fund' %in% names(data) data <- data %>% .resolve_name_df() cik <- url %>% str_replace_all('http://rankandfiled.com/data/filer/', '') %>% str_replace_all('\\/general', '') %>% as.numeric() data <- data %>% mutate(idCIK = cik) if (!'nameEntity' %in% names(data)) { if (is_company) { ticker <- data$company company_name_df <- ticker %>% .parse_company_general_safe() %>% suppressWarnings() has_rows <- company_name_df %>% nrow > 0 if (has_rows) { return(company_name_df) } else { entity_name <- NA } } if (is_insider) { insider_df <- .parse_json_general_insider(cik = cik, return_message = return_message) %>% mutate(nameEntity = nameEntity %>% str_to_upper()) return(insider_df) } if (is_fund) { fund_df <- .parse_json_fund_general(cik = cik, return_message = return_message) %>% mutate(nameEntity = nameEntity %>% str_to_upper()) return(fund_df) } data <- data %>% mutate(nameEntity = entity_name, idTicker = ticker) %>% select(-dplyr::matches("company")) } data <- data %>% select(-dplyr::matches("object")) %>% mutate_at(.vars = data %>% select(dplyr::matches("idCIK|idIRS")) %>% names(), as.numeric) %>% mutate(urlJSONGeneral = url, nameEntity = nameEntity %>% stringr::str_to_upper()) has_address <- names(data) %in% c('addressStreet1Entity', 'stateEntity', 'cityEntity', 'zipcodeEntity') %>% sum() == 4 if (has_address) { data <- data %>% mutate( addressEntity = list( addressStreet1Entity, ' ', cityEntity, ' ', stateEntity, ', ', zipcodeEntity ) %>% purrr::invoke(paste0, .) ) %>% select(idCIK, dplyr::matches("nameEntity"), addressEntity, everything()) } if ('detailsOwnedBy' %in% names(data)) { data <- data %>% dplyr::rename(detailsOwns = detailsOwnedBy) } if ('detailsOwns' %in% names(data)) { detail_df <- seq_along(data$detailsOwns) %>% future_map_dfr(function(x) { detail_value <- data$detailsOwns[[x]] if (detail_value %>% is.na()) { df <- tibble(idRow = x, nameCompanyOwns = NA) if (nest_data) { df <- df %>% nest(-idRow, .key = dataCompaniesOwns) } return(df) } values <- detail_value %>% str_replace('\\|', '') %>% str_split('\\|') %>% flatten_chr() df_data <- tibble(value = values) %>% tidyr::separate(value, into = c('idTickerOwns', 'other'), sep = '\\:') %>% tidyr::separate(other, into = c('nameCompanyOwns', 'other'), sep = '\\_') %>% tidyr::separate(other, into = c('roleOwner', 'dateOwner'), sep = '\\ mutate(nameCompanyOwns = nameCompanyOwns %>% str_to_upper(), idRow = x) %>% gather(item, value, -idRow, na.rm = TRUE) %>% group_by(item) %>% mutate(count = 1:n() - 1) %>% ungroup() %>% arrange((count)) %>% mutate(item = ifelse(count == 0, item, paste0(item, count))) %>% select(-count) column_order <- c('idRow', df_data$item) df_data <- df_data %>% spread(item, value) %>% select(one_of(column_order)) }) %>% suppressWarnings() detail_df <- detail_df %>% mutate_at(.vars = detail_df %>% select(dplyr::matches("date")) %>% names(), funs(. %>% ymd())) %>% suppressWarnings() if (nest_data) { detail_df <- detail_df %>% nest(-idRow, .key = dataCompaniesOwns) } data <- data %>% mutate(idRow = 1:n()) %>% select(-detailsOwns) %>% left_join(detail_df) %>% select(-idRow) %>% suppressMessages() } data <- data %>% select( nameEntity, idCIK, dplyr::matches("typeCategory"), dplyr::matches("idtypeCompany"), everything() ) if (return_message) { list("Parsed: ", url) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } return(data) } .parse_json_filings <- function(url = "http://rankandfiled.com/data/filer/1138621/filings", return_message = TRUE) { if (!url %>% httr::url_ok() %>% suppressWarnings()) { return(tibble()) } cik <- url %>% str_replace_all('http://rankandfiled.com/data/filer/|/filings', '') %>% as.numeric() json_data <- url %>% jsonlite::fromJSON(simplifyDataFrame = TRUE) %>% data.frame(stringsAsFactors = FALSE) %>% as_tibble() %>% tidyr::separate( filings, sep = '\\*', into = c( 'dateFiling', 'codeFiling', 'typeForm', 'baseIndex', 'detailOffering', 'slugSEC', 'idSECSlug' ) ) %>% mutate( dateFiling = dateFiling %>% as.numeric() %>% lubridate::ymd, idCIK = cik, urlJSONFilings = url, urlSEC = ifelse( slugSEC == "None", NA, list( "https://www.sec.gov/Archives/edgar/data/", idCIK, '/', slugSEC ) %>% purrr::invoke(paste0, .) ), pageSlug = idSECSlug %>% str_replace_all('\\-',''), urlSECFilingDirectory = ifelse( idSECSlug %>% str_detect('\\-'), list( "https://www.sec.gov/Archives/edgar/data/", idCIK, '/', pageSlug, '/', idSECSlug, '-index.htm' ) %>% purrr::reduce(paste0), NA ) ) %>% select(-dplyr::matches("^X")) %>% suppressMessages() %>% select(-c(slugSEC, pageSlug)) %>% select(idCIK, dateFiling, everything()) if (return_message) { list("Parsed: ", url) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } return(json_data) } .parse_json_private <- function(url = "http://rankandfiled.com/data/filer/1438171/private", nest_data = TRUE, return_message = TRUE) { if (!url %>% httr::url_ok() %>% suppressWarnings()) { return(tibble()) } json_data <- url %>% jsonlite::fromJSON() options(scipen = 9999) status_df <- json_data$status_history %>% flatten_df() %>% mutate(date = date %>% lubridate::ymd()) offering_history_class_df <- json_data$offering_history %>% future_map_dfr(class) %>% gather(column, type) %>% mutate(idName = 1:n()) offering_data <- json_data$offering_history %>% select(offering_history_class_df %>% filter(!type == 'list') %>% .$idName) offering_data <- offering_data %>% as_tibble() %>% mutate_all(funs(. %>% str_replace('\\|', ''))) offering_data <- offering_data %>% .resolve_name_df() %>% resolve_names_to_upper() if (offering_data %>% ncol >= 9) { offering_data <- offering_data %>% separate_column(column_name = 'idExemption') %>% separate_column(column_name = 'dateAmmended') %>% separate_column(column_name = 'amountFindersFee') %>% separate_column(column_name = 'countInvestors') %>% separate_column(column_name = 'countInvestorsNonAccredited') %>% separate_column(column_name = 'amountOffered') %>% separate_column(column_name = 'amountRemaining') %>% separate_column(column_name = 'amountSold') offering_data <- offering_data %>% mutate_at(.vars = offering_data %>% select(dplyr::matches("^is")) %>% names, funs(. %>% as.logical())) %>% mutate_at(.vars = offering_data %>% select(dplyr::matches("^amount|^count|^idCIK")) %>% names, funs(. %>% as.numeric())) %>% mutate_at(.vars = offering_data %>% select(dplyr::matches("^date")) %>% names, funs(. %>% lubridate::ymd())) %>% mutate_at(.vars = offering_data %>% select(dplyr::matches("^amount")) %>% names, funs(. %>% formattable::currency(digits = 0))) %>% mutate_at(.vars = offering_data %>% select(dplyr::matches("^count")) %>% names, funs(. %>% formattable::comma(digits = 0))) %>% mutate_if(is.numeric, as.numeric) } else { offering_data <- offering_data %>% mutate_at(.vars = offering_data %>% select(dplyr::matches("^amount|^count|^idCIK")) %>% names, funs(. %>% as.numeric())) %>% mutate_at(.vars = offering_data %>% select(dplyr::matches("^date")) %>% names, funs(. %>% lubridate::ymd())) } has_relations <- '_related_people' %in% names(json_data$offering_history) if (has_relations) { relation_df <- 1:(json_data$offering_history$amended %>% length()) %>% future_map_dfr(function(x) { if (!json_data$offering_history$`_related_people`[[x]] %>% purrr::is_null()) { relation_data <- json_data$offering_history$`_related_people`[[x]] %>% mutate( name = ifelse( name %>% substr(1, 3) %>% str_detect('\\-'), name %>% str_replace_all('\\-', '') %>% str_trim, name %>% str_trim ) ) %>% tidyr::unite(nameRelation, name, relation, sep = '-') %>% .$nameRelation %>% paste0(collapse = '&') } else { relation_data <- NA } tibble(nameRelation = relation_data) }) %>% resolve_names_to_upper() relation_df <- 1:nrow(relation_df) %>% future_map_dfr(function(x) { person_title <- relation_df$nameRelation[[x]] %>% str_split('\\&') %>% flatten_chr() %>% str_to_upper() %>% str_trim() df <- tibble(idRow = x, person_title) %>% tidyr::separate( person_title, sep = '\\-', into = c('nameRelatedParty', 'titleRelatedParty') ) %>% mutate(countItem = 1:n() - 1) %>% gather(item, value, -c(idRow, countItem)) %>% arrange(countItem) df <- df %>% mutate(item = ifelse(countItem == 0, item, item %>% paste0(countItem))) %>% select(-countItem) column_order <- c('idRow', df$item) df <- df %>% spread(item, value) %>% select(one_of(column_order)) if (nest_data) { df <- df %>% nest(-idRow, .key = dataRelations) } return(df) }) offering_data <- offering_data %>% mutate(idRow = 1:n()) %>% left_join(relation_df) %>% suppressMessages() %>% select(-idRow) } has_brokers <- '_brokers' %in% names(json_data$offering_history) if (has_brokers) { broker_df <- 1:(json_data$offering_history$amended %>% length()) %>% map_dfr(function(x) { empty_value <- json_data$offering_history$`_brokers`[[x]] %>% length() ==0 if (empty_value) { broker_crd <- NA } else { broker_crd <- json_data$offering_history$`_brokers`[[x]] %>% tidyr::unite(nameBrokerCRD, name, crd, sep = '&') %>% .$nameBrokerCRD %>% paste0(collapse = ' | ') } tibble(nameBrokerCRD = broker_crd) }) %>% resolve_names_to_upper() broker_df <- 1:nrow(broker_df) %>% future_map_dfr(function(x) { broker_crd <- broker_df$nameBrokerCRD[[x]] %>% str_split('\\|') %>% flatten_chr() %>% str_to_upper() %>% str_trim() if (broker_crd %>% is.na() %>% sum() > 0) { df <- tibble( idRow = x, nameBroker = "NONE", idCRDBroker = NA ) if (nest_data) { df <- df %>% nest(-idRow, .key = dataBrokers) } return(tibble()) } df <- tibble(idRow = x, broker_crd) %>% tidyr::separate(broker_crd, sep = '\\&', into = c('nameBroker', 'idCRDBroker')) %>% mutate(countItem = 1:n() - 1) %>% gather(item, value, -c(idRow, countItem)) %>% arrange(countItem) %>% mutate(item = ifelse(countItem == 0, item, item %>% paste0(countItem))) %>% select(-countItem) column_order <- c('idRow', df$item) df <- df %>% spread(item, value) %>% select(one_of(column_order)) df <- df %>% mutate_at(df %>% select(dplyr::matches("idCRD")) %>% names(), funs(. %>% as.numeric())) %>% resolve_names_to_upper() if (nest_data) { df <- df %>% nest(-idRow, .key = dataBrokers) } return(df) }) offering_data <- offering_data %>% mutate(idRow = 1:n()) %>% left_join(broker_df) %>% suppressMessages() %>% select(-idRow) } if ('date' %in% names(status_df)) { initial_date <- status_df$date } else { initial_date <- NA } if ('entity_type' %in% names(status_df)) { typeEntity <- status_df$entity_type } else { typeEntity <- NA } if ('jurisdiction' %in% names(status_df)) { jurisdiction <- status_df$jurisdiction } else { jurisdiction <- NA } if ('over_five' %in% names(status_df)) { has_five <- status_df$over_five } else { has_five <- FALSE } offering_data <- offering_data %>% mutate( dateInitialFiling = initial_date, typeEntity = typeEntity, locationJurisdiction = jurisdiction, hasOver5FileFilings = has_five, urlJSONFilings = url ) %>% select( idCIK, dateInitialFiling, typeEntity, locationJurisdiction, hasOver5FileFilings, dplyr::matches("nameIndustry"), dplyr::matches("typeFund"), dplyr::matches("^is"), dplyr::matches("^amount"), dplyr::matches("^count"), everything() ) %>% resolve_names_to_upper() %>% select(which(colMeans(is.na(.)) < 1)) if (return_message) { list("Parsed: ", url) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } return(offering_data) } .parse_json_fundraising <- function(url = "http://rankandfiled.com/data/filer/1138621/fundraising", nest_data = TRUE, return_message = TRUE) { if (!url %>% httr::url_ok() %>% suppressWarnings()) { return(tibble()) } json_data <- url %>% jsonlite::fromJSON() fundraising_df <- json_data$results %>% as_tibble() %>% purrr::set_names(c( 'idCIKs', 'nameCompanies', 'isCIKFiler', 'namePerson', 'offeringsValues' )) %>% mutate( idPerson = 1:n(), idCIK = url %>% str_replace_all('http://rankandfiled.com/data/filer/|/fundraising', '') %>% as.numeric(), namePerson = namePerson %>% str_replace_all('\\-', '') %>% stringr::str_to_upper() %>% str_trim(), urlJSONFundraising = url ) %>% suppressWarnings() company_name_df <- seq_along(fundraising_df$nameCompanies) %>% future_map_dfr(function(x) { company_name_data <- fundraising_df$nameCompanies[[x]] company_name_data <- company_name_data %>% str_split('\\*') %>% flatten_chr() %>% str_to_upper() df <- tibble(value = company_name_data) %>% mutate(item = 'nameCompanyFundraisingRelated') %>% mutate(countRow = 1:n()) %>% mutate( countRow = countRow - 1, item = ifelse(countRow == 0, item, item %>% paste0(countRow)), idPerson = x ) %>% select(-countRow) col_order <- c('idPerson', df$item) df <- df %>% spread(item, value) %>% select(one_of(col_order)) %>% resolve_names_to_upper() if (nest_data) { df <- df %>% nest(-idPerson, .key = dataCompaniesRelated) } return(df) }) offering_value_df <- seq_along(fundraising_df$offeringsValues) %>% future_map_dfr(function(x) { offering_value_data <- fundraising_df$offeringsValues[[x]] offering_value_data <- offering_value_data %>% str_split('\\*') %>% flatten_chr() df <- tibble(offering = offering_value_data) %>% tidyr::separate( offering, into = c( 'idCIKRelatedCompanyFundraising', 'idIndustryRelatedCompanyFundRaising', 'amountRaisedRelatedCompanyFundRaising' ), sep = '\\|' ) %>% mutate(countRow = 1:n()) %>% gather(item, value, -countRow) %>% mutate( countRow = countRow - 1, value = value %>% as.numeric(), item = ifelse(countRow == 0, item, item %>% paste0(countRow)), idPerson = x ) %>% select(-countRow) col_order <- c('idPerson', df$item) df <- df %>% spread(item, value) %>% select(one_of(col_order)) %>% resolve_names_to_upper() if (nest_data) { df <- df %>% nest(-idPerson, .key = dataOfferingValues) } return(df) }) fundraising_df <- fundraising_df %>% left_join(company_name_df) %>% left_join(offering_value_df) %>% select(-c(idCIKs, nameCompanies, idPerson, offeringsValues)) %>% select(idCIK, namePerson, isCIKFiler, everything()) %>% suppressMessages() %>% suppressWarnings() if (return_message) { list("Parsed: ", url) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } return(fundraising_df) } .parse_json_traders <- function(url = "http://rankandfiled.com/data/filer/1326801/traders", return_message = TRUE) { if (!url %>% httr::url_ok() %>% suppressWarnings()) { return(tibble()) } json_data <- url %>% jsonlite::fromJSON() options(scipen = 9999) cik <- url %>% str_replace_all('http://rankandfiled.com/data/filer/|/traders', '') %>% as.numeric() traders <- json_data$owners$count df <- json_data$owners$owners %>% as_tibble() %>% purrr::set_names(c('nameEntityTrader', 'idCIKTrader', 'titleEntityTrader')) %>% mutate( nameEntityTrader = nameEntityTrader %>% str_to_upper(), idCIKTrader = idCIKTrader %>% as.numeric(), idCIK = cik ) %>% select(idCIK, everything()) %>% mutate(countTraders = traders) %>% resolve_names_to_upper() if (return_message) { list("Parsed: ", url) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } return(df) } .parse_json_clevel <- function(url = "http://rankandfiled.com/data/filer/1326801/clevel", return_message = TRUE) { if (!url %>% httr::url_ok() %>% suppressWarnings()) { return(tibble()) } json_data <- url %>% jsonlite::fromJSON() options(scipen = 9999) cik <- url %>% str_replace_all('http://rankandfiled.com/data/filer/|/clevel', '') %>% as.numeric() clevel_df <- json_data$clevel %>% as_tibble() %>% tidyr::separate( value, into = c( "idCIKCSuite", "nameEntityCSuite", "dateStartCSuite", "dateEndCSuite", "nameCSuiteRole", 'codeCSuiteRole' ), sep = '\\*' ) %>% mutate( idCIKCSuite = idCIKCSuite %>% as.numeric(), nameEntityCSuite = nameEntityCSuite %>% str_to_upper(), idCIK = cik, dateStartCSuite = dateStartCSuite %>% lubridate::ymd(), dateEndCSuite = dateEndCSuite %>% lubridate::ymd() ) %>% select(idCIK, idCIKCSuite, nameEntityCSuite, codeCSuiteRole, everything()) %>% mutate(isActiveCSuite = ifelse(dateEndCSuite %>% is.na(), TRUE, FALSE)) %>% resolve_names_to_upper() if (return_message) { list("Parsed: ", url) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } return(clevel_df) } .parse_json_mda <- function(url = "http://rankandfiled.com/data/filer/1326801/mda", return_message = TRUE) { if (!url %>% httr::url_ok() %>% suppressWarnings()) { return(tibble()) } json_data <- url %>% jsonlite::fromJSON() options(scipen = 9999) cik <- url %>% str_replace_all('http://rankandfiled.com/data/filer/|/mda', '') %>% as.numeric() data <- json_data$results$matrix %>% as_tibble() names(data) <- json_data$results$dates %>% lubridate::ymd() words <- json_data$results$words data <- data %>% mutate(nameWord = words) %>% gather(date10K, countWord, -nameWord) %>% mutate(date10K = date10K %>% lubridate::ymd(), idCIK = cik) %>% select(idCIK, date10K, nameWord, countWord) %>% arrange(desc(date10K)) %>% resolve_names_to_upper() if (return_message) { list("Parsed: ", url) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } return(data) } .parse_json_owners <- function(url = "http://rankandfiled.com/data/filer/1326801/owners", nest_data = TRUE, return_message = TRUE) { if (!url %>% httr::url_ok() %>% suppressWarnings()) { return(tibble()) } json_data <- url %>% jsonlite::fromJSON() cik <- url %>% str_replace_all('http://rankandfiled.com/data/filer/|/owners', '') %>% as.numeric() general_df <- tibble(idCIK = cik, idCIKOwned = json_data$insiders$cik %>% as.numeric()) has_filer <- 'filer' %in% names(json_data$insiders) if (has_filer) { filing_df <- json_data$insiders$filer %>% as_tibble() filing_df <- filing_df %>% .resolve_name_df() filing_df <- filing_df %>% mutate_at(.vars = filing_df %>% select(dplyr::matches("nameEntity")) %>% names(), funs(. %>% str_to_upper())) %>% resolve_names_to_upper() if ('name' %in% names(filing_df)) { filing_df <- filing_df %>% select(-name) } if ('sic' %in% names(filing_df)) { filing_df <- filing_df %>% dplyr::rename(idSIC = sic) %>% mutate(idSIC = idSIC %>% as.numeric()) } names(filing_df) <- names(filing_df) %>% str_replace('OwnedBy', '') %>% paste0('Owner') if ('detailsOwner' %in% names(filing_df)) { detail_df <- seq_along(filing_df$detailsOwner) %>% future_map_dfr(function(x) { detail_value <- filing_df$detailsOwner[[x]] if (detail_value %>% is.na()) { df <- tibble(idRow = x, nameCompanyOwned = NA) if (nest_data) { df <- df %>% nest(-idRow, .key = dataCompaniesOwned) } return(df) } values <- detail_value %>% str_replace('\\|', '') %>% str_split('\\|') %>% flatten_chr() df_data <- tibble(value = values) %>% tidyr::separate(value, into = c('idTickerOwned', 'other'), sep = '\\:') %>% tidyr::separate(other, into = c('nameCompanyOwned', 'other'), sep = '\\_') %>% tidyr::separate(other, into = c('roleOwned', 'dateOwned'), sep = '\\ mutate(nameCompanyOwned = nameCompanyOwned %>% str_to_upper(), idRow = x) %>% gather(item, value, -idRow, na.rm = TRUE) %>% group_by(item) %>% mutate(count = 1:n() - 1) %>% ungroup() %>% arrange((count)) %>% mutate(item = ifelse(count == 0, item, paste0(item, count))) %>% select(-count) column_order <- c('idRow', df_data$item) df_data <- df_data %>% spread(item, value) %>% select(one_of(column_order)) %>% resolve_names_to_upper() if (nest_data) { df_data <- df_data %>% nest(-idRow, .key = dataCompaniesOwned) } return(df_data) }) %>% suppressWarnings() detail_df <- detail_df %>% mutate_at(.vars = detail_df %>% select(dplyr::matches("date")) %>% names(), funs(. %>% ymd())) %>% suppressWarnings() filing_df <- filing_df %>% mutate(idRow = 1:n()) %>% select(-detailsOwner) %>% left_join(detail_df) %>% select(-idRow) %>% suppressMessages() } general_df <- general_df %>% bind_cols(filing_df) } has_companies <- 'companies' %in% names(json_data$insiders) if (has_companies) { company_df <- 1:nrow(general_df) %>% future_map_dfr(function(x) { has_no_data <- json_data$insiders$companies[[x]] %>% nrow() == 0 if (has_no_data) { df <- tibble(idRow = x, nameFiler = NA) if (nest_data) { df <- df %>% nest(idRow, .key = dataInsiderCompaniesOwned) } } company_df <- json_data$insiders$companies[[x]] %>% as_tibble() %>% .resolve_name_df() %>% mutate(idRow = x) %>% mutate(nameFiler = nameFiler %>% str_to_upper()) if ('sic' %in% names(company_df)) { company_df <- company_df %>% dplyr::rename(idSICCompanyOwned = sic) %>% mutate(idSICCompanyOwned = idSICCompanyOwned %>% as.numeric()) } df_data <- company_df %>% gather(item, value, -c(nameFiler, idRow)) %>% group_by(item) %>% mutate(count = 1:n() - 1) %>% ungroup() %>% arrange((count)) %>% mutate(item = ifelse(count == 0, item, paste0(item, count))) %>% select(-count) column_order <- c('idRow', 'nameFiler', df_data$item) df_data <- df_data %>% spread(item, value) %>% select(one_of(column_order)) %>% resolve_names_to_upper() if (nest_data) { df_data <- df_data %>% nest(-idRow, .key = dataInsiderCompaniesOwned) } return(df_data) }) company_df <- company_df %>% mutate_at(.vars = company_df %>% select(dplyr::matches("date")) %>% names(), funs(. %>% lubridate::ymd())) %>% mutate_at(.vars = company_df %>% select(dplyr::matches("idCIK")) %>% names(), .funs = as.numeric) %>% mutate_at( .vars = company_df %>% select(dplyr::matches("nameCompany")) %>% names(), .funs = stringr::str_to_upper ) general_df <- general_df %>% mutate(idRow = 1:n()) %>% left_join(company_df %>% select(-dplyr::matches("idCIKOwned"))) %>% select(-idRow) %>% suppressMessages() } if (return_message) { list("Parsed: ", url) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } general_df <- general_df %>% select(idCIK, idCIKOwned, nameEntityOwner, dplyr::matches("nameFiler"), everything()) %>% resolve_names_to_upper() return(general_df) } .parse_json_public_filers <- function(url = "http://rankandfiled.com/data/filer/1680780/all?start=0", return_message = TRUE) { if (!url %>% httr::url_ok() %>% suppressWarnings()) { return(tibble()) } json_data <- url %>% jsonlite::fromJSON() options(scipen = 9999) cik <- url %>% str_replace_all('http://rankandfiled.com/data/filer/|/all', '') %>% str_split('\\?') %>% flatten_chr() %>% .[[1]] %>% as.numeric() filing_df <- json_data$filings %>% as_tibble() filing_df <- filing_df %>% separate( value, into = c( "idRF", "idForm", "detailForm", "typeReport", "typeFiling", "slugSEC", "idSECSlug", "dateFiling", "X9" ), sep = '\\*' ) %>% select(-dplyr::matches("X")) %>% suppressMessages() %>% suppressWarnings() filing_df <- filing_df %>% mutate( idCIK = cik, pageSlug = idSECSlug %>% str_replace_all('\\-',''), urlSECFilingDirectory = ifelse( idSECSlug %>% str_detect('\\-'), list( "https://www.sec.gov/Archives/edgar/data/", idCIK, '/', pageSlug, '/', idSECSlug, '-index.htm' ) %>% purrr::reduce(paste0), NA ), urlSEC = ifelse( slugSEC == "None", NA, list( "https://www.sec.gov/Archives/edgar/data/", idCIK, '/', slugSEC ) %>% purrr::invoke(paste0, .) ) ) %>% select(-pageSlug) %>% suppressWarnings() filing_df <- filing_df %>% mutate( typeFiling = typeFiling %>% str_to_upper(), dateFiling = dateFiling %>% as.numeric() %>% lubridate::ymd(), detailForm = ifelse(detailForm == '', NA, detailForm), typeReport = ifelse(typeReport == '', NA, typeReport), is13FFiling = (urlSEC %>% str_detect("xslForm13F")) & (typeFiling == "HOLDINGS") ) %>% tidyr::fill(dateFiling) %>% tidyr::fill(detailForm) %>% select(-slugSEC) %>% left_join(dictionary_sec_form_codes()) %>% tidyr::fill(nameForm) %>% select(idCIK, idRF, idForm, nameForm, everything()) %>% suppressMessages() %>% suppressWarnings() %>% resolve_names_to_upper() if (return_message) { list("Parsed: ", url) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } return(filing_df) } .parse_json_subsidiaries <- function(url = "http://rankandfiled.com/data/filer/34088/subsidiaries", return_message = TRUE) { if (!url %>% httr::url_ok() %>% suppressWarnings()) { return(tibble()) } options(scipen = 9999) name_df <- tibble( nameRF = c( "cik", "country", "first_filed", "last_filed", "name", "percent" ), nameActual = c( 'idCIK', 'locationOrganizationSubsidiary', 'dateFirstFiled', 'dateLastFiled', 'nameSubsidiary', 'pctSubsidiaryOwned' ) ) %>% mutate(idRow = 1:n()) data <- url %>% jsonlite::fromJSON() %>% .$subsidiaries %>% as_tibble() rf_names <- data %>% names() has_missing_names <- rf_names[!rf_names %in% name_df$nameRF] %>% length() > 0 if (has_missing_names) { df_has <- data %>% select(one_of(rf_names[rf_names %in% name_df$nameRF])) has_names <- names(df_has) %>% map_chr(function(x) { name_df %>% filter(nameRF == x) %>% filter(idRow == min(idRow)) %>% .$nameActual }) df_has <- df_has %>% purrr::set_names(has_names) data <- df_has %>% bind_cols(data %>% select(one_of(rf_names[!rf_names %in% name_df$nameRF]))) data <- data %>% mutate_at(.vars = data %>% select( dplyr::matches( "idCIK|idMidas|idIRS|^count|^price|^amount|^ratio|^pct|idMDA|^dateiso|idRF|price|amount|^year" ) ) %>% names, funs(. %>% as.character() %>% readr::parse_number())) %>% suppressWarnings() return(data) } actual_names <- names(data) %>% map_chr(function(x) { name_df %>% filter(nameRF == x) %>% filter(idRow == min(idRow)) %>% .$nameActual }) data <- data %>% purrr::set_names(actual_names) data <- data %>% mutate( idCIK = idCIK %>% as.numeric(), nameSubsidiary = nameSubsidiary %>% str_to_upper(), locationOrganizationSubsidiary = locationOrganizationSubsidiary %>% str_to_upper() ) has_pct <- 'pctSubsidiaryOwned' %in% names(data) if (has_pct) { data <- data %>% mutate( pctSubsidiaryOwned = pctSubsidiaryOwned %>% as.numeric(), pctSubsidiaryOwned = pctSubsidiaryOwned / 100 ) } data <- data %>% mutate_at(.vars = data %>% select(dplyr::matches("date")) %>% names(), funs(. %>% lubridate::ymd())) data <- data %>% filter(!locationOrganizationSubsidiary %>% is.na()) %>% resolve_names_to_upper() if (return_message) { list("Parsed: ", url) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } return(data) } .parse_cik_filings <- function(cik = 1527559, return_message = TRUE) { general_url <- list('http://rankandfiled.com/data/filer/', cik, '/general') %>% purrr::invoke(paste0, .) data_js <- general_url %>% jsonlite::fromJSON() %>% data.frame(stringsAsFactors = FALSE) is_public_company <- 'company' %in% (data_js %>% names()) is_insider <- 'insider' %in% (data_js %>% names()) if (is_public_company) { company_df <- general_url %>% jsonlite::fromJSON() %>% data.frame(stringsAsFactors = FALSE) %>% as_tibble() general_df <- .parse_company_general_safe(ticker = company_df$company) } if (is_insider) { general_df <- .parse_json_general_insider(cik = cik) } is_private_filer <- (!is_public_company) & (!is_insider) if (is_private_filer) { general_df <- general_url %>% .parse_json_general_filing() } filing_pages <- general_df$countFilings %/% 50 if (filing_pages > 0) { filing_urls <- list( 'http://rankandfiled.com/data/filer/', cik, '/all?start=', seq(0, by = 50, length.out = filing_pages) ) %>% purrr::invoke(paste0, .) } if (filing_pages == 0) { filing_urls <- list('http://rankandfiled.com/data/filer/', cik, '/all?start=0') %>% purrr::invoke(paste0, .) } .parse_json_public_filers_safe <- purrr::possibly(.parse_json_public_filers, NULL) .all_filings <- filing_urls %>% future_map_dfr(function(x) { .parse_json_public_filers_safe(url = x, return_message = return_message) }) %>% distinct() %>% suppressWarnings() entity <- general_df$nameEntity %>% str_to_upper() .all_filings <- .all_filings %>% mutate(nameEntity = entity) %>% select(idCIK, nameEntity, dateFiling, dplyr::matches("idRF"), everything()) if ('typeReport' %in% names(.all_filings)) { report_dict_df <- dictionary_sec_filing_codes() report_df <- .all_filings %>% mutate(idRow = 1:n()) %>% select(typeReport, idRow) %>% filter(!typeReport %>% is.na()) report_df <- 1:nrow(report_df) %>% future_map_dfr(function(x) { is_none <- report_df$typeReport[[x]] == 'None' if (is_none) { return(tibble( idRow = report_df$idRow[[x]], idFormType = 'None', nameFormType = NA )) } row_df <- report_df %>% slice(x) reports <- row_df$typeReport %>% str_split('\\|') %>% flatten_chr() item_df <- tibble(idFormType = reports, idRow = row_df$idRow) %>% left_join(report_dict_df) %>% gather(item, value, -idRow) %>% group_by(item) %>% mutate(countItems = 1:n() - 1) %>% ungroup() %>% mutate(item = ifelse(countItems == 0, item, paste0(item, countItems))) %>% arrange(countItems) %>% select(-countItems) %>% suppressMessages() col_order <- c('idRow', item_df$item) item_df <- item_df %>% spread(item, value) %>% select(one_of(col_order)) return(item_df) }) .all_filings <- .all_filings %>% mutate(idRow = 1:n()) %>% dplyr::rename(typesReport = typeReport) %>% left_join(report_df) %>% suppressMessages() %>% select(-idRow) } if (return_message) { list( "Parsed ", .all_filings %>% nrow() %>% formattable::comma(digits = 0), ' SEC Filings for ', entity ) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } .all_filings <- .all_filings %>% resolve_names_to_upper() return(.all_filings) } .parse_cik_data <- function(cik = 899689, nest_data = TRUE, tables = NULL, return_message = TRUE) { url_df <- cik %>% .get_cik_url_df() table_options <- c( 'General', 'CIK Filings', 'Filings', 'Private Offerings', 'Related Parties', 'Traders', 'C Level', 'MDA', 'Owners', 'Insider Trades', 'Trades', 'Subsidiaries' ) null_tables <- length(tables) == 0 if (null_tables) { tables <- c( 'General', 'CIK Filings', 'Filings', 'Private Offerings', 'Related Parties', 'Traders', 'C Level', 'MDA', 'Owners', 'Insider Trades', 'Trades', 'Subsidiaries' ) } missing_tables <- (tables %>% str_to_upper()) %in% (table_options %>% str_to_upper()) %>% sum() == 0 if (missing_tables) { stop(list( "Sorry Tables Can Only Be:", '\n', paste0(table_options, collapse = '\n') ) %>% purrr::invoke(paste0, .)) } table_options <- table_options %>% str_to_upper() tables <- tables %>% str_to_upper() if (!'GENERAL' %in% tables) { tables <- tables %>% append('GENERAL') } has_general <- 'general' %>% str_to_upper() %>% str_detect(tables) %>% sum() > 0 has_filings <- 'filings' %>% str_to_upper() %>% str_detect(tables) %>% sum() > 0 has_cik_filings <- 'cik filings' %>% str_to_upper() %>% str_detect(tables) %>% sum() > 0 has_private <- 'private offerings' %>% str_to_upper() %>% str_detect(tables) %>% sum() > 0 has_related <- 'related parties' %>% str_to_upper() %>% str_detect(tables) %>% sum() > 0 has_traders <- 'traders' %>% str_to_upper() %>% str_detect(tables) %>% sum() > 0 has_clevel <- 'c level' %>% str_to_upper() %>% str_detect(tables) %>% sum() > 0 has_mda <- 'mda' %>% str_to_upper() %>% str_detect(tables) %>% sum() > 0 has_owners <- 'owners' %>% str_to_upper() %>% str_detect(tables) %>% sum() > 0 has_insider_trades <- 'insider trades' %>% str_to_upper() %>% str_detect(tables) %>% sum() > 0 has_subs <- 'subsidiaries' %>% str_to_upper() %>% str_detect(tables) %>% sum() > 0 if (has_general) { .parse_json_general_filing_safe <- purrr::possibly(.parse_json_general_filing, tibble()) general_df <- url_df$urlJSON[[1]] %>% .parse_json_general_filing(nest_data = nest_data, return_message = return_message) %>% mutate(nameEntity = nameEntity %>% str_to_upper()) %>% as_tibble() if (general_df %>% nrow() == 0) { general_df <- tibble(idCIK = cik, nameEntity = NA) } } else { general_df <- tibble(idCIK = cik) } if (has_filings) { .parse_json_filings_safe <- purrr::possibly(.parse_json_filings, tibble()) filing_df <- url_df$urlJSON[[2]] %>% .parse_json_filings_safe(return_message = return_message) %>% mutate_if(is_character, str_to_upper) has_rows <- filing_df %>% nrow() > 0 if (has_rows) { filing_df <- filing_df %>% left_join(general_df %>% select(idCIK, nameEntity)) %>% select(nameEntity, idCIK, everything()) %>% suppressMessages() } } else { filing_df <- tibble(idCIK = cik) } if (has_private) { .parse_json_private_safe <- purrr::possibly(.parse_json_private, tibble()) private_df <- url_df$urlJSON[[3]] %>% .parse_json_private_safe(nest_data = nest_data, return_message = return_message) has_rows <- private_df %>% nrow() > 0 if (has_rows) { private_df <- private_df %>% left_join(general_df %>% select(idCIK, nameEntity)) %>% select(nameEntity, idCIK, everything()) %>% suppressMessages() } } else { private_df <- tibble(idCIK = cik) } if (has_related) { .parse_json_fundraising_safe <- purrr::possibly(.parse_json_fundraising, tibble()) fundraising_df <- url_df$urlJSON[[4]] %>% .parse_json_fundraising_safe(nest_data = nest_data, return_message = return_message) has_rows <- fundraising_df %>% nrow() > 0 if (has_rows) { fundraising_df <- fundraising_df %>% left_join(general_df %>% select(idCIK, nameEntity)) %>% select(nameEntity, idCIK, everything()) %>% suppressMessages() } } else { fundraising_df <- tibble(idCIK = cik) } if (has_traders) { .parse_json_traders_safe <- purrr::possibly(.parse_json_traders, tibble()) traders_df <- url_df$urlJSON[[5]] %>% .parse_json_traders_safe(return_message = return_message) has_rows <- traders_df %>% nrow() > 0 if (has_rows) { traders_df <- traders_df %>% left_join(general_df %>% select(idCIK, nameEntity)) %>% select(nameEntity, idCIK, everything()) %>% suppressMessages() } } else { traders_df <- tibble(idCIK = cik) } if (has_clevel) { .parse_json_clevel_safe <- purrr::possibly(.parse_json_clevel, tibble()) clevel_df <- url_df$urlJSON[[6]] %>% .parse_json_clevel_safe(return_message = return_message) has_rows <- clevel_df %>% nrow() > 0 if (has_rows) { clevel_df <- clevel_df %>% left_join(general_df %>% select(idCIK, nameEntity)) %>% select(nameEntity, idCIK, everything()) %>% suppressMessages() } } else { clevel_df <- tibble(idCIK = cik) } if (has_mda) { .parse_json_mda_safe <- purrr::possibly(.parse_json_mda, tibble()) mda_df <- url_df$urlJSON[[7]] %>% .parse_json_mda_safe(return_message = return_message) has_rows <- mda_df %>% nrow() > 0 if (has_rows) { mda_df <- mda_df %>% left_join(general_df %>% select(idCIK, nameEntity)) %>% select(nameEntity, idCIK, everything()) %>% suppressMessages() } } else { mda_df <- tibble(idCIK = cik) } if (has_owners) { .parse_json_owners_safe <- purrr::possibly(.parse_json_owners, tibble()) owners_df <- url_df$urlJSON[[8]] %>% .parse_json_owners_safe(nest_data = nest_data, return_message = return_message) if ('idTypeFilerOwner' %in% names(owners_df)) { owners_df <- owners_df %>% left_join(.filer_type_df()) %>% select(idCIK:nameEntityOwner, typeFilerOwner, everything()) %>% suppressMessages() } has_rows <- owners_df %>% nrow() > 0 if (has_rows) { owners_df <- owners_df %>% left_join(general_df %>% select(idCIK, nameEntity)) %>% select(nameEntity, idCIK, everything()) %>% select(-dplyr::matches("dateiso")) %>% suppressMessages() } } else { owners_df <- tibble(idCIK = cik) } if (has_cik_filings) { .parse_cik_filings_safe <- purrr::possibly(.parse_cik_filings, tibble()) cik_filing_df <- .parse_cik_filings_safe(cik = cik, return_message = return_message) } else { cik_filing_df <- tibble(idCIK = cik) } if (has_insider_trades) { parse_insider_trades_safe <- purrr::possibly(.parse_insider_trades, tibble()) insider_trade_df <- parse_insider_trades_safe(cik = cik, nest_data = nest_data, return_message = return_message) has_rows <- insider_trade_df %>% nrow() > 0 if (has_rows) { insider_trade_df <- insider_trade_df %>% left_join(general_df %>% select(idCIK, nameEntity)) %>% select(nameEntity, idCIK, everything()) %>% suppressMessages() } } else { insider_trade_df <- tibble(idCIK = cik) } if (has_subs) { .parse_json_subsidiaries_safe <- purrr::possibly(.parse_json_subsidiaries, tibble()) sub_df <- url_df$urlJSON[[9]] %>% .parse_json_subsidiaries(return_message = return_message) has_rows <- sub_df %>% nrow() > 0 if (has_rows) { sub_df <- sub_df %>% left_join(general_df %>% select(idCIK, nameEntity)) %>% select(nameEntity, idCIK, everything()) %>% suppressMessages() } } else { sub_df <- tibble(idCIK = cik) } if ('nameEntity' %in% names(general_df)) { nameEntity <- general_df$nameEntity %>% str_to_upper() } else { nameEntity <- NA } all_data <- tibble( idCIK = cik, nameEntity, nameTable = c( 'General', 'CIK Filings', 'Filings', 'Private Offerings', 'Related Parties', 'Traders', 'C Level', 'MDA', 'Owners', 'Insider Trades', 'Subsidiaries' ), dataTable = list( general_df, cik_filing_df, filing_df, private_df, fundraising_df, traders_df, clevel_df, mda_df, owners_df, insider_trade_df, sub_df ) ) if (return_message) { list("\nParsed SEC Private Filing Data for CIK: ", cik, ' - ', nameEntity, "\n") %>% purrr::invoke(paste0, .) %>% cat(fill = T) } all_data <- all_data %>% mutate(countCols = dataTable %>% purrr::map_dbl(ncol)) %>% filter(countCols > 1) %>% suppressWarnings() %>% select(-dplyr::matches("countCols") ) all_data } sec_filer <- function(entity_names = NULL, tickers = NULL, ciks = NULL, tables = NULL, nest_data = FALSE, parse_all_filing_url_data = FALSE, parse_xbrl = FALSE, parse_subsidiaries = FALSE, parse_13F = FALSE, parse_asset_files = FALSE, parse_small_offerings = FALSE, parse_complete_text_filings = FALSE, parse_form_d = FALSE, parse_form_3_4s = FALSE, assign_to_environment = TRUE, return_message = TRUE) { has_entities <- (('entity_names' %>% exists()) & (!entity_names %>% purrr::is_null())) has_ciks <- (('ciks' %>% exists()) & (!ciks %>% purrr::is_null())) has_tickers <- (('tickers' %>% exists()) & (!tickers %>% purrr::is_null())) has_nothing <- ((!has_ciks) & (!has_entities) & (!has_tickers)) has_tables <- (!tables %>% purrr::is_null()) if (has_nothing) { stop("Please enter a CIK, ticker, or an entity name") } all_ciks <- c() if (has_entities) { sec_filing_entities_safe <- purrr::possibly(sec_filing_entities, tibble()) search_df <- entity_names %>% sec_filing_entities_safe(return_message = return_message) has_rows <- search_df %>% nrow() > 0 if (has_rows) { search_ciks <- search_df %>% .$idCIK all_ciks <- all_ciks %>% append(search_ciks) } } if (has_ciks) { all_ciks <- all_ciks %>% append(ciks) } .parse_cik_data_safe <- possibly(.parse_cik_data, NULL) if (all_ciks %>% length() > 0) { all_data <- all_ciks %>% sort() %>% future_map_dfr(function(x) { .parse_cik_data_safe( tables = tables, nest_data = nest_data, cik = x, return_message = return_message ) }) %>% mutate( urlRankAndFiled = list('http://rankandfiled.com/ ) %>% select(idCIK, nameEntity, urlRankAndFiled, nameTable, dataTable) %>% distinct() %>% suppressWarnings() } if (has_tickers) { .parse_ticker_data_safe <- purrr::possibly(.parse_ticker_data, tibble()) table_exists <- 'all_data' %>% exists() if (table_exists) { all_ticker_data <- tickers %>% future_map_dfr(function(x) { .parse_ticker_data( ticker = x, nest_data = nest_data, tables = tables, return_message = return_message ) }) %>% suppressWarnings() all_data <- all_data %>% bind_rows(all_ticker_data) } else { all_data <- tickers %>% future_map_dfr(function(x) { .parse_ticker_data_safe(ticker = x, tables = tables, return_message = return_message) }) %>% suppressWarnings() } } if (has_tables) { table_options <- c( 'General', 'CIK Filings', 'Filings', 'Private Offerings', 'Related Parties', 'Traders', 'C Level', 'MDA', 'Owners', 'Insider Trades', 'Trades' ) table_names <- tables %>% str_to_lower() %>% paste0(collapse = "|") wrong_table <- table_options %>% str_to_lower() %>% str_count(table_names) %>% sum() == 0 if (wrong_table) { stop("Sorry tables can only be:\n" %>% paste0(paste0(table_options, collapse = '\n'))) } all_data <- all_data %>% mutate(table = nameTable %>% str_to_lower()) %>% filter(table %>% str_detect(table_names)) %>% select(-table) } if (!'all_data' %>% exists()) { return(tibble()) } missing_ciks <- all_ciks[!all_ciks %in% all_data$idCIK] %>% length() > 0 if (missing_ciks) { list("Missing ", all_ciks[!all_ciks %in% all_data$idCIK] %>% paste(collapse = ', ')) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } all_data <- all_data %>% select(-dplyr::matches("urlRankAndFiled")) has_filings <- c('CIK Filings', 'Filings') %in% all_data$nameTable %>% sum() > 0 if (has_filings) { filing_df <- all_data %>% filter(nameTable %in% c('Filings', 'CIK Filings')) %>% select(dataTable) %>% unnest() %>% distinct() filing_df <- filing_df %>% mutate_at(filing_df %>% select(dplyr::matches("^url")) %>% names(), funs(. %>% str_to_lower())) filing_df <- filing_df %>% mutate_at(filing_df %>% select(dplyr::matches("url^[A-Z]")) %>% names(), funs(. %>% str_replace_all('archives', 'Archives'))) filing_df <- filing_df %>% mutate( urlSECFilingDirectory = urlSECFilingDirectory %>% gsub('archives', 'Archives', .), urlSEC = urlSEC %>% gsub('archives', 'Archives', .) ) has_subsidiaries <- (filing_df %>% filter(typeFiling == "SUBSIDIARIES OF THE REGISTRANT") %>% nrow() > 0) & (parse_subsidiaries) if (has_subsidiaries) { parse_sec_subsidiary_url_safe <- purrr::possibly(.parse_sec_subsidiary_url, tibble()) has_list <- filing_df %>% filter(typeFiling == "LIST OF SUBSIDIARIES") %>% nrow() > 0 sub_url_df <- filing_df %>% filter( typeFiling %in% c( "SUBSIDIARIES OF THE REGISTRANT", "SUBSIDIARIES OF HOLDING COMPANY" ) ) %>% select(dateFiling, nameEntity, urlSEC) %>% distinct() if (has_list) { sub_url_list_df <- filing_df %>% filter( typeFiling %>% str_detect( "LIST OF SUBSIDIARIES|LIST OF SIGNIFICANT SUBSIDIARIES|LIST OF SIGNIFCANT" ) ) %>% select(dateFiling, nameEntity, urlSEC) %>% distinct() if ('sub_url_df' %>% exists()) { sub_url_df <- sub_url_list_df %>% bind_rows(sub_url_df) } else { sub_url_df <- sub_url_list_df } } sub_df <- sub_url_df %>% arrange(dateFiling) %>% .$urlSEC %>% future_map_dfr(function(x) { parse_sec_subsidiary_url_safe(url = x, return_message = return_message) }) %>% suppressWarnings() if (sub_df %>% nrow() > 0) { sub_df <- sub_df %>% select(-dplyr::matches("X|date")) %>% filter( !nameSubsidiary %in% c( '(I)', '(II)', '(III)', '(IV)', '(V)', '(VI)', '(VII)', '(VIII)', '(IX)', '(X)', 'PART A' ) ) %>% left_join(sub_url_df) %>% select(idCIK, dateFiling, everything()) %>% suppressMessages() %>% distinct() active_date_df <- sub_df %>% group_by(nameSubsidiary) %>% summarise( dateFirstFiled = min(dateFiling, na.rm = TRUE), dateLastFiled = max(dateFiling, na.rm = TRUE), isActiveSubsidiary = ifelse( dateLastFiled == sub_df$dateFiling %>% max(na.rm = TRUE), TRUE, FALSE ) ) %>% ungroup() sub_df <- sub_df %>% left_join(active_date_df) %>% left_join(sub_url_df) %>% suppressMessages() sub_df <- sub_df %>% mutate(nameSubsidiaryRF = nameSubsidiary %>% str_replace_all('\\,|\\.', '')) %>% select(idCIK, nameEntity, dateFiling, everything()) %>% suppressMessages() has_sub_df <- 'Subsidiaries' %in% all_data$nameTable if (has_sub_df) { ad_sub_df <- all_data %>% filter(nameTable == 'Subsidiaries') %>% select(dataTable) %>% unnest() if ('pctSubsidiaryOwned' %in% names(ad_sub_df)) { sub_df <- sub_df %>% left_join( ad_sub_df %>% select(nameSubsidiaryRF = nameSubsidiary, pctSubsidiaryOwned) %>% distinct() ) %>% suppressMessages() %>% select(-nameSubsidiaryRF) } if (nest_data) { sub_df <- sub_df %>% nest(-c(dateFiling, idCIK, nameEntity), .key = dataSubsidiaries) } a_sub_df <- sub_df %>% group_by(idCIK, nameEntity) %>% nest(-c(idCIK, nameEntity), .key = dataTable) %>% ungroup() %>% mutate(nameTable = 'Subsidiaries') all_data <- all_data %>% filter(!nameTable == 'Subsidiaries') %>% bind_rows(a_sub_df) } else { if (nest_data) { sub_df <- sub_df %>% nest(-c(dateFiling, idCIK, nameEntity), .key = dataSubsidiaries) } a_sub_df <- sub_df %>% group_by(idCIK, nameEntity) %>% nest(-c(idCIK, nameEntity), .key = dataTable) %>% ungroup() %>% mutate(nameTable = 'Subsidiaries') all_data <- all_data %>% filter(!nameTable == 'Subsidiaries') %>% bind_rows(a_sub_df) } } } parse_for_tables_rf_safe <- purrr::possibly(.parse_for_tables_rf, tibble()) tables_edgar <- parse_for_tables_rf_safe( filing_df = filing_df, parse_complete_text_filings = parse_complete_text_filings, parse_form_d = parse_form_d, parse_13F = parse_13F, parse_small_offerings = parse_small_offerings, parse_form_3_4s = parse_form_3_4s, parse_asset_files = parse_asset_files, parse_xbrl = parse_xbrl ) has_edgar_tables <- tables_edgar %>% nrow() > 0 if (has_edgar_tables) { all_data <- all_data %>% nest(-nameTable, .key = dataTable) %>% bind_rows(tables_edgar) } } if (assign_to_environment) { table_name_df <- all_data %>% select(nameTable) %>% distinct() %>% mutate( nameDF = list('dataFiler', nameTable %>% str_replace_all('\\ ', '')) %>% purrr::invoke(paste0, .) ) 1:nrow(table_name_df) %>% walk(function(x) { df_name <- table_name_df %>% slice(x) %>% .$nameDF df_name %>% cat(fill = T) df_data <- all_data %>% filter(nameTable == table_name_df$nameTable[[x]]) %>% select(dplyr::matches(c('idCIK|nameEntity|dataTable'))) %>% unnest() %>% suppressWarnings() %>% remove_duplicate_columns() has_unnest2 <- names(df_data) %>% str_detect('data') %>% sum(na.rm = TRUE) > 1 if (has_unnest2) { base_names <- df_data %>% remove_duplicate_columns() %>% dplyr::select(-dplyr::matches("data")) %>% names() df_data_names <- names(df_data)[names(df_data) %>% str_detect('data')] for (x in seq_along(df_data_names)) { df_data_name <- df_data_names[[x]] table <- df_data %>% select(one_of(c(base_names, df_data_name))) %>% remove_duplicate_columns() is_null_col <- table[,df_data_name] %>% magrittr::extract2(1) %>% map_lgl(is_null) table <- table %>% mutate(is_null_col) %>% filter(!is_null_col) %>% unnest() %>% remove_duplicate_columns() %>% select(which(colMeans(is.na(.)) < 1)) %>% select(-dplyr::matches('is_null_col')) %>% distinct() df_table_name <- list(df_name, df_data_name %>% str_replace_all('data', '')) %>% purrr::reduce(paste0) assign(x = df_table_name, eval(table), envir = .GlobalEnv) } } else { has_unnest <- df_data %>% names() %>% str_detect('data') %>% sum(na.rm = TRUE) > 0 if (has_unnest) { if (df_name %>% str_detect("General")) { table <- df_data %>% remove_duplicate_columns() %>% select(-dplyr::matches("data")) %>% select(which(colMeans(is.na(.)) < 1)) %>% distinct() assign(x = df_name, eval(table), envir = .GlobalEnv) } if (df_name %in% 'dataFilerTextFilings') { table <- df_data %>% unnest() %>% select(which(colMeans(is.na(.)) < 1)) %>% tidy_column_formats() %>% distinct() assign(x = df_name, eval(table), envir = .GlobalEnv) } if (df_name %in% 'dataFilerFilingDirectories') { table <- df_data %>% select(-dplyr::matches('data')) %>% filter(!idCIK %>% is.na()) %>% select(which(colMeans(is.na(.)) < 1)) %>% distinct() assign(x = df_name, eval(table), envir = .GlobalEnv) } other <- (!df_name %>% str_detect("General")) & (!df_name %in% c('dataFilerFilingDirectories', 'dataFilerTextFilings')) if (other) { df_data <- df_data %>% remove_duplicate_columns() %>% unnest() select_cols <- tibble(nameData = names(df_data)) %>% mutate(idColumn = 1:n()) %>% group_by(nameData) %>% mutate(countColumn = 1:n()) %>% ungroup() %>% filter(countColumn == min(countColumn)) %>% .$idColumn df_data <- df_data[, select_cols] table <- df_data %>% select(which(colMeans(is.na(.)) < 1)) %>% distinct() assign(x = df_name, eval(table), envir = .GlobalEnv) } } else { table <- df_data %>% select(which(colMeans(is.na(.)) < 1)) %>% distinct() assign(x = df_name, eval(table), envir = .GlobalEnv) } } }) } return(all_data) } .parse_json_general_insider <- function(cik = 1354879, nest_data = TRUE, return_message = TRUE) { url <- list('http://rankandfiled.com/data/insider/', cik, '/general') %>% purrr::invoke(paste0, .) if (!url %>% httr::url_ok()) { return(tibble()) } data <- url %>% jsonlite::fromJSON() %>% .[['insider']] general_cols <- data %>% future_map_dfr(class) %>% gather(item, value) %>% filter(!value %>% str_detect(c('list', 'data.frame'))) %>% .$item %>% suppressWarnings() general_df <- data %>% data.frame(stringsAsFactors = FALSE) %>% dplyr::select(one_of(general_cols)) %>% .resolve_name_df() %>% distinct() has_filer <- 'filer' %in% names(data) if (has_filer) { filing_df <- data$filer %>% flatten_df() %>% .resolve_name_df() if ('name' %in% names(filing_df)) { filing_df <- filing_df %>% select(-name) } if ('detailsOwnedBy' %in% names(filing_df)) { filing_df <- filing_df %>% dplyr::rename(detailsOwns = detailsOwnedBy) } if ('detailsOwns' %in% names(filing_df)) { detail_df <- seq_along(filing_df$detailsOwns) %>% future_map_dfr(function(x) { detail_value <- filing_df$detailsOwns[[x]] if (detail_value %>% is.na()) { df <- tibble(idRow = x, nameCompanyOwns = NA) if (nest_data) { df <- df %>% nest(-idRow, .key = dataInsiderCompanies) } return(df) } values <- detail_value %>% str_replace('\\|', '') %>% str_split('\\|') %>% flatten_chr() df_data <- tibble(value = values) %>% tidyr::separate(value, into = c('idTickerOwns', 'other'), sep = '\\:') %>% tidyr::separate(other, into = c('nameCompanyOwns', 'other'), sep = '\\_') %>% tidyr::separate(other, into = c('roleOwner', 'dateOwner'), sep = '\\ mutate(nameCompanyOwns = nameCompanyOwns %>% str_to_upper(), idRow = x) %>% gather(item, value, -idRow, na.rm = TRUE) %>% group_by(item) %>% mutate(count = 1:n() - 1) %>% ungroup() %>% arrange((count)) %>% mutate(item = ifelse(count == 0, item, paste0(item, count))) %>% select(-count) column_order <- c('idRow', df_data$item) df_data <- df_data %>% spread(item, value) %>% select(one_of(column_order)) if (nest_data) { df_data <- df_data %>% nest(-idRow, .key = dataInsiderCompanies) } return(df_data) }) %>% suppressWarnings() detail_df <- detail_df %>% mutate_at(.vars = detail_df %>% select(dplyr::matches("date")) %>% names(), funs(. %>% ymd())) %>% suppressWarnings() filing_df <- filing_df %>% mutate(idRow = 1:n()) %>% select(-detailsOwns) %>% left_join(detail_df) %>% select(-idRow) %>% suppressMessages() } general_df <- general_df %>% left_join(filing_df) %>% suppressMessages() } has_companies <- 'companies' %in% names(data) if (has_companies) { companies_df <- data$companies %>% as_tibble() %>% .resolve_name_df() company_name_df <- companies_df %>% select(-dplyr::matches("status_history")) %>% gather(item, value, -c(idCIK, nameFiler)) %>% group_by(item) %>% mutate(countItem = 1:n() - 1) %>% ungroup() %>% mutate(item = ifelse(countItem == 0, item, item %>% paste0(countItem))) %>% select(-countItem) %>% suppressWarnings() %>% suppressMessages() col_order <- c('idCIK', 'nameFiler', company_name_df$item) company_name_df <- company_name_df %>% spread(item, value) %>% select(one_of(col_order)) company_name_df <- company_name_df %>% mutate_at(company_name_df %>% select(dplyr::matches("idCIK")) %>% names(), funs(. %>% as.numeric())) companies_df <- companies_df %>% mutate(idRow = 1:n()) if ('status_history' %in% names(companies_df)) { status_df <- seq_along(companies_df$status_history) %>% future_map_dfr(function(x) { df <- companies_df$status_history[[x]] %>% as_tibble() %>% mutate(idRow = x) %>% select(-dplyr::matches("other|pair_id")) %>% gather(item, value, -idRow) %>% left_join(tibble( item = c('date', 'officer', 'title', 'ten_percent', 'director'), nameItem = c( 'dateAppointment', 'isOfficer', 'titleOfficer', 'is10PercentOwner', 'isDirector' ) )) %>% select(-item) %>% group_by(nameItem) %>% mutate(countItem = 1:n() - 1) %>% ungroup() %>% mutate(item = ifelse(countItem == 0, nameItem, nameItem %>% paste0(countItem))) %>% select(idRow, item, value) %>% spread(item, value) %>% suppressMessages() %>% suppressWarnings() return(df) }) status_df <- status_df %>% mutate_at(status_df %>% select(dplyr::matches("date")) %>% names(), funs(. %>% lubridate::ymd())) %>% mutate_at(status_df %>% select(dplyr::matches("is")) %>% names(), funs(. %>% as.logical())) %>% mutate_at(status_df %>% select(dplyr::matches("date")) %>% names(), funs(. %>% as.character())) companies_df <- companies_df %>% select(-dplyr::matches("status")) %>% left_join(status_df) %>% suppressWarnings() %>% suppressMessages() %>% gather(item, value, -c(idCIK, nameFiler, idRow)) %>% group_by(item, idRow) %>% mutate(countItem = 1:n() - 1) %>% ungroup() %>% mutate(item = ifelse(countItem == 0, item, item %>% paste0(countItem))) %>% select(-countItem) %>% suppressWarnings() col_order <- c('idCIK', 'nameFiler', companies_df$item) companies_df <- companies_df %>% spread(item, value) %>% select(one_of(col_order)) %>% suppressWarnings() companies_df <- companies_df %>% mutate_at(status_df %>% select(dplyr::matches("date")) %>% names(), funs(. %>% lubridate::ymd())) %>% mutate_at(status_df %>% select(dplyr::matches("^is|^has")) %>% names(), funs(. %>% as.logical())) } else { companies_df <- company_name_df } if (nest_data) { companies_df <- companies_df %>% mutate(idRow = 1:n()) %>% nest(-c(idRow, idCIK), .key = dataDetailsCompaniesOwned) %>% as_tibble() } general_df <- general_df %>% mutate(idRow = 1:n()) %>% left_join(companies_df) %>% select(-idRow) %>% suppressMessages() } general_df <- general_df %>% mutate(urlJSONGeneral = url) if ('typeCompany' %in% names(general_df)) { general_df <- general_df %>% dplyr::rename(typeFiler = typeCompany) } if (return_message) { list("Parsed: ", url) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } return(general_df) } .parse_insider_trade_json_url <- function(url = "http://rankandfiled.com/data/insider/1070844/trades?start=0", return_message = TRUE) { if (!url %>% httr::url_ok()) { return(tibble()) } json_data <- url %>% jsonlite::fromJSON() options(scipen = 9999) cik <- url %>% str_replace_all('http://rankandfiled.com/data/insider/|/trades', '') %>% str_split('\\?') %>% flatten_chr() %>% .[[1]] %>% as.numeric() trade_df <- json_data$trades %>% as_tibble() %>% dplyr::rename(dateTrade = date) %>% mutate(dateTrade = dateTrade %>% lubridate::ymd()) count_columns <- trade_df$trade %>% map_dbl(function(x) { x %>% str_count('\\*') }) %>% max() + 1 column_names <- list("X", 1:count_columns) %>% purrr::invoke(paste0, .) trade_df <- trade_df %>% separate(trade, column_names, sep = '\\*') %>% suppressWarnings() trade_df_names <- c( 'dateTrade', "idCIK", "idCIKOwns", "idInsiderType", "countSharesOwned", "descriptionOption", "idTypeInsiderTransaction", "amountPrice", "countShares", "idInsiderTransaction", "X10", "detailOwnershipIndirect", "priceExcercised", "dateOptionExcercisable", "dateOptionExpiry", "countSharesOptions", "typeSecurityOption", "X17" ) trade_df <- trade_df %>% purrr::set_names((trade_df_names)[1:ncol(trade_df)]) %>% select(-dplyr::matches("X")) trade_df <- trade_df %>% mutate_at(.vars = trade_df %>% select(dplyr::matches("date")) %>% names(), .funs = lubridate::ymd) %>% mutate_at(.vars = trade_df %>% select(dplyr::matches("idCIK|count|amount|price")) %>% names(), funs(. %>% as.character() %>% readr::parse_number())) %>% left_join(tibble( idInsiderType = c("D", "ND"), typeInsider = c("Director", "Non-Director") )) %>% left_join(get_insider_code_df()) %>% left_join( tibble( idTypeInsiderTransaction = c("A", "D", "None"), typeInsiderTransaction = c('Purchase', 'Sale', 'None'), isBought = c(TRUE, FALSE, NA) ) ) %>% suppressMessages() %>% suppressWarnings() trade_df <- trade_df %>% mutate( countShares = ifelse(isBought == T, countShares, -countShares), amountTransaction = countShares * amountPrice, urlJSON = url ) if (return_message) { list("Parsed: ", url) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } return(trade_df) } .parse_insider_trades <- function(cik = 1070844, nest_data = TRUE, return_message = TRUE) { url_general <- list('http://rankandfiled.com/data/insider/', cik, '/general') %>% purrr::invoke(paste0, .) general_df <- .parse_json_general_insider(cik = cik, nest_data = nest_data, return_message = TRUE) cik <- general_df$idCIK insider <- general_df$nameEntity %>% str_to_upper() count_trades <- general_df$countTrades %/% 50 trade_urls <- list( 'http://rankandfiled.com/data/insider/', cik, '/trades?start=', seq(0, by = 50, length.out = count_trades) ) %>% purrr::invoke(paste0, .) parse_insider_trade_json_url_safe <- purrr::possibly(.parse_insider_trade_json_url, tibble()) all_data <- trade_urls %>% future_map_dfr(function(x) { .parse_insider_trade_json_url(url = x, return_message = return_message) }) %>% distinct() ciks_owned <- all_data$idCIKOwns %>% unique() company_urls_general <- list('http://rankandfiled.com/data/filer/', ciks_owned, '/general') %>% purrr::invoke(paste0, .) owned_company_df <- company_urls_general %>% future_map_dfr(function(x) { .parse_json_general_filing(url = x, return_message = TRUE, nest_data = nest_data) }) owned_df <- owned_company_df %>% select(dplyr::matches('idCIK|nameEntity|idTicker')) %>% select(-dplyr::matches("idCIKOwnedBy")) names(owned_df) <- names(owned_df) %>% paste0('Owns') all_data <- all_data %>% mutate(nameInsider = insider) %>% left_join(owned_df) %>% select( dateTrade, nameInsider, idCIK, nameEntityOwns, dplyr::matches('idCIKOwns|idTickerOwns'), everything() ) %>% suppressWarnings() %>% suppressMessages() all_data <- all_data %>% mutate_at(.vars = all_data %>% select(dplyr::matches("amount|price")) %>% names(), funs(. %>% formattable::currency(digits = 2))) %>% mutate_at(.vars = all_data %>% select(dplyr::matches("count")) %>% names(), funs(. %>% formattable::comma(digits = 0))) %>% mutate_if(is.numeric, as.numeric) if (return_message) { list( "Parsed ", all_data %>% nrow() %>% formattable::comma(digits = 0), ' insider transactions for ', insider ) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } return(all_data) } .parse_insider_filings <- function(cik = 1070844, nest_data = TRUE, return_message = TRUE) { general_df <- .parse_json_general_insider(cik = cik, nest_data = nest_data, return_messag = TRUE) cik <- general_df$idCIK insider <- general_df$nameEntity %>% str_to_upper() count_filings <- general_df$countFilings %/% 50 filing_urls <- list( 'http://rankandfiled.com/data/filer/', cik, '/all?start=', seq(0, by = 50, length.out = count_filings) ) %>% purrr::invoke(paste0, .) .parse_json_public_filers_safe <- purrr::possibly(.parse_json_public_filers, NULL) .all_filings <- filing_urls %>% future_map_dfr(function(x) { .parse_json_public_filers_safe(url = x, return_message = return_message) }) %>% distinct() %>% suppressWarnings() %>% mutate(nameInsider = insider) %>% select(idCIK, nameInsider, everything()) if (return_message) { list("Parsed ", .all_filings %>% nrow(), ' SEC Filings for ', insider) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } return(.all_filings) } .generate_fund_general_url <- function(cik = 1034621) { glue("http://rankandfiled.com/data/fund/{cik}/general") %>% as.character() } .parse_json_fund_general <- function(cik = 1034621, return_message = TRUE) { url <- cik %>% .generate_fund_general_url() if (!url %>% httr::url_ok() %>% suppressWarnings()) { return(tibble()) } json_data <- url %>% jsonlite::fromJSON() general_cols <- json_data %>% future_map_dfr(class) %>% gather(item, value) %>% filter(!value %in% (c('list', 'data.frame'))) %>% .$item %>% suppressWarnings() general_df <- json_data %>% data.frame(stringsAsFactors = FALSE) %>% dplyr::select(one_of(general_cols)) %>% .resolve_name_df() %>% distinct() %>% select(-dplyr::matches("descriptionClasses")) has_funds <- 'funds' %in% names(json_data) if (has_funds) { general_df <- general_df %>% left_join(json_data$funds %>% .resolve_name_df() %>% mutate(idCIK = cik)) %>% suppressMessages() } has_filer <- 'filer' %in% names(json_data) if (has_filer) { filer_df <- json_data$filer %>% as_tibble() filer_df <- filer_df %>% .resolve_name_df() if (!'idCIK' %in% names(filer_df)) { filer_df <- filer_df %>% mutate(idCIK = cik) } if ('name' %in% names(filer_df)) { filer_df <- filer_df %>% mutate(nameEntity = nameEntity %>% stringr::str_to_upper()) %>% select(-name) } filer_df <- filer_df %>% mutate_at(filer_df %>% select(dplyr::matches("idRF|idCIK")) %>% names(), funs(. %>% as.numeric())) merge_cols <- c('idCIKFiler', 'idRow', names(filer_df)[!names(filer_df) %in% names(general_df)]) general_df <- general_df %>% mutate(idRow = 1:n()) %>% left_join( filer_df %>% mutate(idRow = 1:n()) %>% dplyr::rename(idCIKFiler = idCIK) %>% select(one_of(merge_cols)) ) %>% select(-dplyr::matches("^object|idRow")) %>% distinct() %>% suppressMessages() } general_df <- general_df %>% select(idCIK, nameEntity, dplyr::matches("name"), dplyr::matches("id"), everything()) if (return_message) { list("Parsed: ", url) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } return(general_df) } .parse_for_tables_rf <- function(filing_df, parse_complete_text_filings = TRUE, parse_form_d = TRUE, parse_13F = TRUE, parse_small_offerings = TRUE, parse_form_3_4s = TRUE, parse_asset_files = TRUE, parse_xbrl = TRUE, nest_data = TRUE, return_message = TRUE) { all_tables <- tibble() parse_all_filings <- c( parse_complete_text_filings, parse_form_d, parse_13F, parse_small_offerings, parse_form_3_4s, parse_asset_files, parse_xbrl ) %>% sum() > 0 parse_form_data_safe <- purrr::possibly(.parse_form_data, tibble()) if (parse_all_filings) { if (!'typeFile' %in% names(filing_df)) { filing_df <- filing_df %>% mutate(typeFile = ifelse(urlSECFilingDirectory %>% str_detect('htm'), 'html', NA)) } search_df <- filing_df %>% select(dateFiling, dplyr::matches("typeFile"), dplyr::matches("idForm"), urlSECFilingDirectory) %>% distinct() %>% filter(!urlSECFilingDirectory %>% is.na()) %>% distinct() df_all_filing_urls <- search_df$urlSECFilingDirectory %>% unique() %>% future_map_dfr(function(x){ .parse_sec_filing_index(urls = x) }) df_all_filing_urls <- df_all_filing_urls %>% mutate(isForm3_4 = ifelse(typeForm %in% c("3", "4") & typeFile == "xml", TRUE, FALSE)) df_urls <- df_all_filing_urls %>% mutate(nameTable = 'Filing Directories') %>% nest(-nameTable, .key = dataTable) all_tables <- all_tables %>% bind_rows(df_urls) if (parse_complete_text_filings) { if (!'urlTextFilingFull' %in% names(df_all_filing_urls)) { df_all_filing_urls <- df_all_filing_urls %>% mutate(urlTextFilingFull = urlSECFilingDirectory %>% str_replace_all("-index.htm", ".txt")) } urls <- df_all_filing_urls$urlTextFilingFull %>% unique() sec_complete_filings_safe <- purrr::possibly(.sec_complete_filings, tibble()) all_text_df <- .sec_complete_filings(urls = urls) all_tables <- all_tables %>% bind_rows(tibble( nameTable = 'Text Filings', dataTable = list(all_text_df %>% nest(-c(idCIK), .key = dataFilings)) )) } if (parse_form_d) { df_form_ds <- df_all_filing_urls %>% parse_form_data_safe(filter_parameter = 'isFormD') all_tables <- all_tables %>% bind_rows(tibble( nameTable = 'FormDs', dataTable = list(df_form_ds) )) } if (parse_13F) { df_13F <- df_all_filing_urls %>% parse_form_data_safe(filter_parameter = 'is13FFiling') all_tables <- all_tables %>% bind_rows(tibble(nameTable = '13Fs', dataTable = list(df_13F))) } if (parse_small_offerings) { df_small_offerings <- df_all_filing_urls %>% parse_form_data_safe(filter_parameter = 'hasSmallOfferingData') all_tables <- all_tables %>% bind_rows(tibble( nameTable = 'Small Offerings', dataTable = list(df_small_offerings) )) } if (parse_form_3_4s) { df_form3_4 <- df_all_filing_urls %>% parse_form_data_safe(filter_parameter = 'isForm3_4') all_tables <- all_tables %>% bind_rows(tibble( nameTable = 'Form 3 and 4', dataTable = list(df_form3_4) )) } if (parse_asset_files) { df_assets <- df_all_filing_urls %>% parse_form_data_safe(filter_parameter = 'hasAssetFile') all_tables <- all_tables %>% bind_rows(tibble(nameTable = 'Asset Data', dataTable = list(df_assets))) } if (parse_xbrl) { df_xbrl <- df_all_filing_urls %>% parse_form_data_safe(filter_parameter = 'isXBRLInstanceFile') all_tables <- all_tables %>% bind_rows(tibble(nameTable = 'XBRL', dataTable = list(df_xbrl))) } } all_tables <- all_tables %>% mutate(countCols = dataTable %>% map_dbl(ncol)) %>% filter(countCols > 0) %>% select(-countCols) return(all_tables) } .get_most_recent_rf_id <- function(url = "http://rankandfiled.com/data/latest") { json_data <- url %>% jsonlite::fromJSON() json_data$filings$id %>% as.numeric() %>% max() } .parse_filing_stream <- function(url = "http://rankandfiled.com/data/latest?group=ALL&filer=All", nest_data = TRUE, return_message = TRUE) { json_data <- url %>% jsonlite::fromJSON() options(scipen = 9999) filing_class_df <- json_data$filings %>% future_map_dfr(class) %>% gather(column, type) %>% mutate(idName = 1:n()) general_df <- json_data$filings %>% select(filing_class_df %>% filter(!type %in% c('list', 'data.frame')) %>% .$idName) general_df <- general_df %>% as_tibble() %>% mutate_all(funs(. %>% str_replace('\\|', ''))) general_df <- general_df %>% .resolve_name_df() %>% distinct() general_df <- general_df %>% mutate_at(general_df %>% select(dplyr::matches("^datetime[A-Z]")) %>% names(), funs(. %>% lubridate::ymd_hms())) %>% mutate_at(general_df %>% select(dplyr::matches("dateFiled")) %>% names(), funs(. %>% lubridate::ymd())) %>% mutate_at(general_df %>% select(dplyr::matches("idRF|idCIK")) %>% names(), funs(. %>% as.numeric())) %>% mutate_at(general_df %>% select(dplyr::matches("^is|^has")) %>% names(), funs(. %>% as.logical())) %>% mutate_at(general_df %>% select(dplyr::matches("^description|^type")) %>% names(), funs(. %>% stringr::str_to_upper())) %>% mutate(urlSEC = ifelse( slugSEC == "None", NA, list( "https://www.sec.gov/Archives/edgar/data/", idCIK, '/', slugSEC ) %>% purrr::invoke(paste0, .) )) if ('idFormType' %in% names(general_df)) { general_df %>% left_join(dictionary_sec_filing_codes()) %>% suppressMessages() } has_filer <- 'filer' %in% names(json_data$filings) if (has_filer) { filer_df <- json_data$filings$filer %>% as_tibble() filer_df <- filer_df %>% .resolve_name_df() if ('name' %in% names(filer_df)) { filer_df <- filer_df %>% dplyr::rename(nameLegal = name) %>% mutate(nameEntity = nameEntity %>% stringr::str_to_upper()) } filer_df <- filer_df %>% mutate_at(filer_df %>% select(dplyr::matches("idRF|idCIK")) %>% names(), funs(. %>% as.numeric())) %>% mutate_at(filer_df %>% select(dplyr::matches("^name|^industry|^typeFund|^details")) %>% names(), funs(. %>% stringr::str_to_upper())) if ('detailsOwnedBy' %in% names(filer_df)) { filer_df <- filer_df %>% dplyr::rename(detailsOwns = detailsOwnedBy) filer_df <- filer_df %>% mutate(idRow = 1:n(), detailsOwns = detailsOwns %>% str_replace("\\|", '')) owns_df <- 1:nrow(filer_df) %>% future_map_dfr(function(x) { owns <- filer_df$detailsOwns[[x]] %>% str_split("\\|") %>% flatten_chr() df <- tibble(idRow = x, owns) %>% tidyr::separate(owns, into = c('idTickerOwns', 'owns'), sep = '\\:') %>% tidyr::separate(owns, into = c('nameCompanyOwns', 'owns'), sep = '\\_') %>% tidyr::separate( owns, into = c('typeOwnerOwns', 'dateOwnershipOwns'), sep = '\\ ) %>% mutate(countItem = 1:n() - 1) %>% mutate( nameCompanyOwns = nameCompanyOwns %>% str_to_upper(), idTickerOwns = idTickerOwns %>% str_to_upper() ) %>% gather(item, value, -c(idRow, countItem)) %>% mutate(value = ifelse(value == '', NA, value)) %>% mutate(item = ifelse(countItem == 0, item, item %>% paste0(countItem))) %>% arrange(countItem) %>% select(-countItem) col_order <- c('idRow', df$item) df <- df %>% spread(item, value) %>% select(one_of(col_order)) df <- df %>% mutate_at(df %>% select(dplyr::matches("date")) %>% names(), funs(. %>% lubridate::ymd())) if (nest_data) { df <- df %>% nest(-idRow, .key = dataCompaniesOwns) } return(df) }) %>% suppressWarnings() filer_df <- filer_df %>% left_join(owns_df) %>% select(-idRow) %>% suppressMessages() } general_df <- general_df %>% mutate(idRow = 1:n()) %>% left_join( filer_df %>% mutate(idRow = 1:n()) %>% dplyr::rename(idCIKFiler = idCIK) %>% select(one_of( c('idCIKFiler', 'idRow'), names(filer_df)[!names(filer_df) %in% names(general_df)] )) ) %>% select(-dplyr::matches("^object|idRow")) %>% distinct() %>% suppressMessages() } has_offerings <- 'offerings' %in% names(json_data$filings) if (has_offerings) { general_df <- general_df %>% mutate(idRow = 1:n()) offering_df <- 1:nrow(general_df) %>% future_map_dfr(function(x) { offering <- json_data$filings$offerings[[x]] has_no_data <- length(offering) == 0 if (has_no_data) { return(tibble(idRow = x)) } has_no_rows <- offering %>% nrow() == 0 if (has_no_rows) { return(tibble(idRow = x)) } offering_long <- offering %>% .resolve_name_df() %>% mutate(idRow = x) %>% gather(item, value, -idRow) %>% group_by(item) %>% mutate(countItem = 1:n() - 1) %>% ungroup() %>% mutate(item = ifelse(countItem == 0, item, item %>% paste0(countItem))) %>% arrange(countItem) %>% select(-countItem) col_order <- offering_long$item offering <- offering_long %>% spread(item, value) %>% select(one_of(c('idRow', col_order))) offering <- offering %>% mutate_at(offering %>% select(dplyr::matches("^count[A-Z]|^amount")) %>% names(), funs(. %>% as.numeric())) %>% mutate_at(offering %>% select(dplyr::matches("^date")) %>% names(), funs(. %>% lubridate::ymd())) if (nest_data) { offering <- offering %>% nest(-idRow, .key = dataOfferings) } return(offering) }) %>% select(idRow, everything()) offering_df <- offering_df %>% mutate_at(dplyr::matches("^nameIndustry"), funs(. %>% str_to_upper())) general_df <- general_df %>% mutate(idRow = 1:n()) %>% select(-dplyr::matches("nameIndustry")) %>% left_join(offering_df) %>% select(-idRow) %>% suppressWarnings() %>% suppressMessages() if ('nameIndustry' %in% names(general_df)) { general_df <- general_df %>% dplyr::rename(nameIndustryOffering = nameIndustry) } } has_trades <- 'trades' %in% names(json_data$filings) if (has_trades) { general_df <- general_df %>% mutate(idRow = 1:n()) trade_df <- 1:nrow(general_df) %>% future_map_dfr(function(x) { trades <- json_data$filings$trades[[x]] has_no_data <- length(trades) == 0 if (has_no_data) { return(tibble(idRow = x)) } has_no_rows <- trades %>% nrow() == 0 if (has_no_rows) { return(tibble(idRow = x)) } trades <- trades %>% .resolve_name_df() %>% mutate(idRow = x) %>% dplyr::rename(idInsiderTransaction = codeTransaction) trades <- trades %>% mutate_at(.vars = trades %>% select(dplyr::matches("amount|count")) %>% names, funs(. %>% as.numeric())) %>% left_join(get_insider_code_df()) %>% suppressWarnings() %>% suppressMessages() if ('amountPrice' %in% names(trades)) { if (!'isBought' %in% names(trades)) { trades <- trades %>% mutate(isBought = FALSE) } trades <- trades %>% mutate( isBought = ifelse(isBought %>% is.na(), FALSE, TRUE), countShares = ifelse(isBought == T, countShares, -countShares), amountTransaction = countShares * amountPrice ) } trades_long <- trades %>% gather(item, value, -idRow) %>% group_by(item) %>% mutate(countItem = 1:n() - 1) %>% ungroup %>% mutate(item = ifelse(countItem == 0, item, item %>% paste0(countItem))) %>% arrange(countItem) %>% select(-countItem) col_order <- trades_long$item trades <- trades_long %>% spread(item, value) %>% select(one_of(c('idRow', col_order))) trades <- trades %>% mutate_at(trades %>% select(dplyr::matches("^count[A-Z]|^amount")) %>% names(), funs(. %>% as.numeric())) %>% mutate_at(trades %>% select(dplyr::matches("^date")) %>% names(), funs(. %>% lubridate::ymd())) if (nest_data) { trades <- trades %>% nest(-idRow, .key = dataTrades) } return(trades) }) %>% select(idRow, everything()) names(trade_df)[names(trade_df) %>% str_detect('dateFiling')] <- trade_df %>% select(dplyr::matches("dateFiling")) %>% names() %>% str_replace_all("dateFiling", 'dateFilingInsider') general_df <- general_df %>% mutate(idRow = 1:n()) %>% select(-dplyr::matches("nameIndustry")) %>% left_join(trade_df %>% select(-dplyr::matches("idTicker")), by = 'idRow') %>% select(-idRow) %>% suppressWarnings() %>% suppressMessages() } general_df <- general_df %>% mutate_at(.vars = general_df %>% select(dplyr::matches("nameEntity")) %>% names(), funs(. %>% str_to_upper())) %>% suppressWarnings() %>% ungroup() %>% select(-dplyr::matches("^object[A-Z]|^slug|dateiso")) %>% select(idCIK, nameEntity, dplyr::matches("name"), dplyr::matches("id"), everything()) if (return_message) { list("Parsed: ", url) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } general_df } .sec_filing_stream <- function(filers = 'All', filing_name = 'Registrations', nest_data = TRUE, return_message = TRUE) { both_all <- filers == 'All' & filing_name == 'All' if (both_all) { rf_id <- .get_most_recent_rf_id() start <- rf_id - 3500 rf_ds <- seq(start, rf_id, by = 30) urls <- list('http://rankandfiled.com/data/latest?id=', rf_ds) %>% purrr::invoke(paste0, .) parse_filing_stream_safe <- purrr::possibly(.parse_filing_stream, tibble()) data <- urls %>% future_map_dfr(function(x) { parse_filing_stream_safe(url = x, nest_data = nest_data) }) %>% distinct() %>% select( idRF, idCIK, dplyr::matches("nameEntity"), dplyr::matches("idTicker"), dplyr::matches("dateFiled"), dplyr::matches("datetimeFiled"), dplyr::matches("^name"), dplyr::matches("^date"), dplyr::matches("^id"), dplyr::matches("^type"), dplyr::matches("^description"), everything() ) %>% mutate( urlRankAndFiled = list('http://rankandfiled.com/ purrr::invoke(paste0, .) ) } else { filer_names <- c('All', 'Corporate Insider', 'Companies', 'Investment Company') %>% str_to_upper() filing_names <- c( 'Annual Reports', 'Quarterly Reports', 'Current Reports', 'Other Reports', 'Registrations', 'Private Offerings', 'Ownership', 'Prospectuses', 'Exemptions', 'Withdrawals', 'Correspondence', 'Proxy Statements', 'Confidential', 'All' ) %>% str_to_upper() no_filers <- !filers %>% str_to_upper() %in% filer_names if (no_filers) { stop( list( "Filers can only be:\n", filer_names %>% stringr::str_to_title() %>% paste0(collapse = '\n') ) %>% purrr::invoke(paste0, .) ) } no_filing_names <- !filing_name %>% str_to_upper() %in% filing_names if (no_filing_names) { stop( list( "Filing names can only be:\n", filing_names %>% stringr::str_to_title() %>% paste0(collapse = '\n') ) %>% purrr::invoke(paste0, .) ) } .filer_type_df <- tibble( codeFiler = c('All', 'insider', 'company', 'inv_co'), nameFiler = filer_names ) slug_filer <- .filer_type_df %>% filter(nameFiler == filers %>% str_to_upper()) %>% .$codeFiler filing_name_df <- tibble( codeFiling = c( "A", "Q", "CR", "R", "REG", "REGX", "O", "P", "X", "W", "SEC", "PROXY", "CT", "ALL" ), nameFiling = filing_names ) slug_type <- filing_name_df %>% filter(nameFiling == filing_name %>% str_to_upper()) %>% .$codeFiling mr_id <- .get_most_recent_rf_id() url_json <- list( 'http://rankandfiled.com/data/latest?id=', mr_id, '&group=', slug_type, '&filer=', slug_filer ) %>% purrr::invoke(paste0, .) data <- url_json %>% .parse_filing_stream() %>% select( idRF, idCIK, dplyr::matches("nameEntity"), dplyr::matches("idTicker"), dplyr::matches("dateFiled"), dplyr::matches("datetimeFiled"), dplyr::matches("^name"), dplyr::matches("^date"), dplyr::matches("^id"), dplyr::matches("^type"), dplyr::matches("^description"), everything() ) %>% mutate( urlRankAndFiled = list('http://rankandfiled.com/ purrr::invoke(paste0, .) ) } if (return_message) { list("\nParsed Most Recent filings for ", filers, ' Filers\n', filing_name, ' Form Type\n') %>% purrr::invoke(paste0, .) %>% cat(fill = T) } return(data) } sec_filing_streams_rf <- function(filers = c('All', 'Corporate Insider', 'Companies', 'Investment Company'), filing_names = c( 'All', 'Annual Reports', 'Quarterly Reports', 'Current Reports', 'Other Reports', 'Registrations', 'Private Offerings', 'Ownership', 'Prospectuses', 'Exemptions', 'Withdrawals', 'Correspondence', 'Proxy Statements', 'Confidential' ), nest_data = TRUE, return_message = TRUE) { type_df <- expand.grid( nameFiler = filers, nameFiling = filing_names, stringsAsFactors = FALSE ) %>% as_tibble() sec_filing_stream_safe <- purrr::possibly(.sec_filing_stream, NULL) all_data <- 1:nrow(type_df) %>% future_map_dfr(function(x) { sec_filing_stream_safe( filers = type_df$nameFiler[[x]], filing_name = type_df$nameFiling[[x]], nest_data = nest_data, return_message = return_message ) }) %>% distinct() %>% mutate(idRow = 1:n()) %>% group_by(idRF) %>% filter(idRow == min(idRow)) %>% ungroup() %>% select(-idRow) all_data <- all_data %>% select(-dplyr::matches("dateiso")) %>% mutate_at(all_data %>% select(dplyr::matches("^name|^description|^industry|^typeEntity")) %>% names(), funs(. %>% stringr::str_to_upper())) return(all_data) } .generate_ticker_general_url <- function(ticker = "FB") { glue("http://rankandfiled.com/data/company/{ticker}/general") %>% as.character() } .parse_json_public_general <- function(url = "http://rankandfiled.com/data/company/BX/general", nest_data = TRUE, return_message = TRUE) { if (!url %>% httr::url_ok()) { return(tibble()) } json_data <- url %>% jsonlite::fromJSON() ticker <- url %>% str_replace("http://rankandfiled.com/data/company/", '') %>% str_split('\\/') %>% flatten_chr() %>% .[[1]] general_class_df <- json_data %>% future_map_dfr(class) %>% gather(column, type) %>% mutate(idName = 1:n()) general_df <- json_data[general_class_df %>% filter(!type %in% c('list', 'data.frame')) %>% .$idName] %>% flatten_df() %>% .resolve_name_df() %>% select(-dplyr::matches("idTicker")) %>% mutate(idTicker = ticker) has_market <- 'market' %in% names(json_data) if (has_market) { general_df <- general_df %>% bind_cols(json_data$market %>% flatten_df() %>% .resolve_name_df() %>% select(-dplyr::matches("codeExchange"))) if ('amountEquityMarketCap' %in% names(general_df)) { general_df <- general_df %>% mutate(amountEquityMarketCap = amountEquityMarketCap %>% formattable::currency(digits = 0)) } if ('nameIndustry' %in% names(general_df)) { has_semi <- general_df$nameIndustry %>% str_detect('\\:') if (has_semi) { general_df <- general_df %>% tidyr::separate( nameIndustry, into = c('nameIndustry', 'nameSubIndustry'), sep = '\\: ' ) %>% suppressWarnings() } } general_df <- general_df %>% mutate_if(is_character, str_to_upper) } has_snap_shot <- 'snapshot' %in% names(json_data) if (has_snap_shot) { snap_shot_df <- json_data$snapshot %>% as_tibble() if ('ebitda' %in% names(snap_shot_df)) { snap_shot_df <- snap_shot_df %>% mutate(digitEBITDA = ebitda %>% substr( start = (ebitda %>% nchar()) , stop = ebitda %>% nchar() )) } snap_shot_df <- snap_shot_df %>% .resolve_name_df() %>% select(-dplyr::matches("amountEquityMarketCap")) if ('digitEBITDA' %in% names(snap_shot_df)) { snap_shot_df <- snap_shot_df %>% mutate( amountEBITDA = ifelse( digitEBITDA == "B", amountEBITDA * 1000000000, amountEBITDA * 1000000 ) ) %>% select(-digitEBITDA) } snap_shot_df <- snap_shot_df %>% mutate_at(.vars = snap_shot_df %>% select(dplyr::matches("price|amount")) %>% names, funs(. %>% currency(digits = 2))) %>% mutate_at(.vars = snap_shot_df %>% select(dplyr::matches("amountEBITDA")) %>% names, funs(. %>% currency(digits = 0))) general_df <- general_df %>% bind_cols(snap_shot_df) } has_filer <- (( 'filer' %in% names(json_data) & json_data$filer %>% as_tibble() %>% ncol > 2 )) if (has_filer) { filer_df <- json_data$filer %>% as_tibble() filer_df <- filer_df %>% .resolve_name_df() if ('detailsOwnedBy' %in% names(filer_df)) { filer_df <- filer_df %>% dplyr::rename(detailsOwns = detailsOwnedBy) filer_df <- filer_df %>% mutate(idRow = 1:n(), detailsOwns = detailsOwns %>% str_replace("\\|", '')) owns_df <- 1:nrow(filer_df) %>% future_map_dfr(function(x) { owns <- filer_df$detailsOwns[[x]] %>% str_split("\\|") %>% flatten_chr() df <- tibble(idRow = x, owns) %>% tidyr::separate(owns, into = c('idTickerOwns', 'owns'), sep = '\\:') %>% tidyr::separate(owns, into = c('nameCompanyOwns', 'owns'), sep = '\\_') %>% tidyr::separate( owns, into = c('typeOwnerOwns', 'dateOwnershipOwns'), sep = '\\ ) %>% mutate(countItem = 1:n() - 1) %>% mutate( nameCompanyOwns = nameCompanyOwns %>% str_to_upper(), idTickerOwns = idTickerOwns %>% str_to_upper() ) %>% gather(item, value, -c(idRow, countItem)) %>% mutate(value = ifelse(value == '', NA, value)) %>% mutate(item = ifelse(countItem == 0, item, item %>% paste0(countItem))) %>% arrange(countItem) %>% select(-countItem) col_order <- c('idRow', df$item) df <- df %>% spread(item, value) %>% select(one_of(col_order)) df <- df %>% mutate_at(df %>% select(dplyr::matches("date")) %>% names(), funs(. %>% lubridate::ymd())) if (nest_data) { df <- df %>% nest(-idRow, .key = dataCompaniesOwns) } return(df) }) %>% suppressWarnings() filer_df <- filer_df %>% left_join(owns_df) %>% select(-idRow) %>% suppressMessages() } filer_df <- filer_df %>% mutate_at(filer_df %>% select(dplyr::matches("nameEntity")) %>% names(), funs(. %>% stringr::str_to_upper())) %>% select( dplyr::matches("nameEntity"), dplyr::matches("^id"), dplyr::matches("industry"), dplyr::matches("name"), dplyr::matches("type"), everything() ) %>% select(-dplyr::matches("object")) if ('addressStreet1Entity' %in% names(filer_df)) { filer_df <- filer_df %>% mutate( addressEntity = list( addressStreet1Entity, ' ', cityEntity, ' ', stateEntity, ', ', zipcodeEntity ) %>% purrr::invoke(paste0, .) ) %>% select(nameEntity, addressEntity, everything()) } filer_cols <- names(filer_df)[!names(filer_df) %in% names(general_df)] general_df <- general_df %>% bind_cols(filer_df %>% select(one_of(filer_cols))) %>% select(idCIK, dplyr::matches("nameEntity"), everything()) %>% select(-dplyr::matches("detailsOwns")) } if ('detailsOwns' %in% names(general_df)) { detail_df <- seq_along(general_df$detailsOwns) %>% future_map_dfr(function(x) { detail_value <- general_df$detailsOwns[[x]] if (detail_value %>% is.na()) { df <- tibble(idRow = x, nameCompanyOwns = NA) if (nest_data) { df <- df %>% nest(-idRow, .key = dataCompaniesOwns) } return(df) } values <- detail_value %>% str_replace('\\|', '') %>% str_split('\\|') %>% flatten_chr() df_data <- tibble(value = values) %>% tidyr::separate(value, into = c('idTickerOwns', 'other'), sep = '\\:') %>% tidyr::separate(other, into = c('nameCompanyOwns', 'other'), sep = '\\_') %>% tidyr::separate(other, into = c('roleOwner', 'dateOwner'), sep = '\\ mutate(nameCompanyOwns = nameCompanyOwns %>% str_to_upper(), idRow = x) %>% gather(item, value, -idRow, na.rm = TRUE) %>% group_by(item) %>% mutate(value = ifelse(value == '', NA, value), count = 1:n() - 1) %>% ungroup() %>% arrange((count)) %>% mutate(item = ifelse(count == 0, item, paste0(item, count))) %>% select(-count) column_order <- c('idRow', df_data$item) df_data <- df_data %>% spread(item, value) %>% select(one_of(column_order)) if (nest_data) { df_data <- df_data %>% nest(-idRow, .key = dataCompaniesOwns) } return(df_data) }) %>% suppressWarnings() detail_df <- detail_df %>% mutate_at(.vars = detail_df %>% select(dplyr::matches("date")) %>% names(), funs(. %>% ymd())) %>% suppressWarnings() general_df <- general_df %>% mutate(idRow = 1:n()) %>% select(-detailsOwns) %>% left_join(detail_df) %>% select(-idRow) %>% suppressMessages() } general_df <- general_df %>% mutate( urlTickerRankandFiled = list('http://rankandfiled.com/ urlJSON = url ) if (return_message) { list("Parsed: ", url) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } return(general_df) } .parse_company_general <- function(ticker = "FB", nest_data = TRUE, return_message = TRUE) { options(warn = -1) data <- .generate_ticker_general_url(ticker = ticker) %>% .parse_json_public_general(nest_data = nest_data, return_message = return_message) if ('nameEntity' %in% names(data)) { data <- data %>% mutate(nameCompany = nameEntity) %>% select(idCIK, idTicker, nameEntity, nameCompany, everything()) %>% select(-dplyr::matches("dateiso")) } else { df_name <- list('http://rankandfiled.com/data/filer/', data$idCIK, '/general') %>% purrr::invoke(paste0, .) %>% .parse_json_general_filing() entity <- df_name$nameEntity data <- data %>% mutate(nameEntity = entity, nameCompany = nameEntity) %>% select(idCIK, idTicker, nameEntity, nameCompany, everything()) %>% select(-dplyr::matches("dateiso")) } data <- data %>% resolve_names_to_upper() return(data) } .parse_company_general_safe <- purrr::possibly(.parse_company_general, tibble()) .parse_json_trades <- function(url = "http://rankandfiled.com/data/filer/1326801/trades?start=0", return_message = TRUE) { if (!url %>% httr::url_ok() %>% suppressWarnings()) { return(tibble()) } json_data <- url %>% jsonlite::fromJSON() options(scipen = 9999) cik <- url %>% str_replace_all('http://rankandfiled.com/data/filer/|/trades', '') %>% str_split('\\?') %>% flatten_chr() %>% .[[1]] %>% as.numeric() trade_df <- json_data$trades %>% as_tibble() %>% dplyr::rename(dateTrade = date) %>% mutate(dateTrade = dateTrade %>% lubridate::ymd()) trade_df <- trade_df %>% separate( trade, into = c( "idCIKOwner", "idCIK", "idInsiderType", "countSharesOwned", "descriptionOption", "idTypeInsiderTransaction", "amountPrice", "countShares", "idInsiderTransaction", "X10", "detailOwnershipIndirect", "priceExcercised", "dateOptionExcercisable", "dateOptionExpiry", "countSharesOptions", "typeSecurityOption", "X17" ), sep = '\\*' ) %>% suppressWarnings() %>% select(-dplyr::matches("X")) trade_df <- trade_df %>% mutate_at(.vars = trade_df %>% select(dplyr::matches("date")) %>% names(), .funs = lubridate::ymd) %>% mutate_at(.vars = trade_df %>% select(dplyr::matches("idCIK|count|amount|price")) %>% names(), funs(. %>% as.character() %>% readr::parse_number())) %>% left_join(tibble( idInsiderType = c("D", "ND"), typeInsider = c("Director", "Non-Director") )) %>% left_join(get_insider_code_df()) %>% left_join( tibble( idTypeInsiderTransaction = c("A", "D", "None"), typeInsiderTransaction = c('Purchase', 'Sale', 'None'), isBought = c(TRUE, FALSE, NA) ) ) %>% suppressMessages() trade_df <- trade_df %>% mutate( countShares = ifelse(isBought == T, countShares, -countShares), amountTransaction = countShares * amountPrice, urlJSON = url ) has_indirect_owner <- trade_df$detailOwnershipIndirect %>% str_count("By") %>% sum() > 0 if (has_indirect_owner) { trade_df <- trade_df %>% tidyr::separate( detailOwnershipIndirect, into = c('remove', "nameOwnerIndirect"), remove = FALSE, sep = 'By ' ) %>% mutate(nameOwnerIndirect = nameOwnerIndirect %>% str_trim() %>% str_to_upper()) %>% select(-remove) %>% suppressWarnings() } if (return_message) { list("Parsed: ", url) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } return(trade_df) } .parse_trades <- function(ticker = "FB", nest_data = TRUE, return_message = TRUE) { general_df <- .parse_company_general_safe(ticker = ticker, nest_data) cik <- general_df$idCIK trader_url <- list("http://rankandfiled.com/data/filer/", cik, '/traders') %>% purrr::invoke(paste0, .) count_trades <- .parse_json_traders(url = trader_url) %>% .$countTraders %>% unique() %/% 50 trade_urls <- list( 'http://rankandfiled.com/data/filer/', cik, '/trades?start=', seq(0, by = 50, length.out = count_trades) ) %>% purrr::invoke(paste0, .) .parse_json_trades_safe <- purrr::possibly(.parse_json_trades, NULL) all_trades <- trade_urls %>% future_map_dfr(function(x) { .parse_json_trades_safe(url = x, return_message = return_message) }) %>% distinct() %>% suppressWarnings() owners_df <- list("http://rankandfiled.com/data/filer/", cik, '/owners') %>% purrr::invoke(paste0, .) %>% .parse_json_owners(nest_data = nest_data) entity <- general_df$nameEntity all_trades <- all_trades %>% left_join(owners_df %>% select(idCIKOwner = idCIKOwned, nameEntityOwner) %>% distinct()) %>% suppressMessages() entity_name <- general_df$nameEntity all_trades <- all_trades %>% mutate(nameEntity = entity_name, idTicker = ticker) %>% select(idCIK, nameEntity, idTicker, dateTrade, idCIKOwner, nameEntityOwner, everything()) %>% suppressWarnings() %>% suppressMessages() all_trades <- all_trades %>% mutate_at(.vars = all_trades %>% select(dplyr::matches("count")) %>% names, funs(. %>% formattable::comma(digits = 0))) %>% mutate_at(.vars = all_trades %>% select(dplyr::matches("amount|price")) %>% names, funs(. %>% formattable::currency(digits = 2))) %>% select(idCIK:countShares, amountTransaction, everything()) %>% resolve_names_to_upper() if (return_message) { list("Parsed ", all_trades %>% nrow(), ' trades for ', entity) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } return(all_trades) } .parse_public_filings <- function(ticker = "FB", return_message = TRUE) { general_df <- .parse_company_general_safe(ticker = ticker) cik <- general_df$idCIK filing_pages <- general_df$countFilings %/% 50 filing_urls <- list( 'http://rankandfiled.com/data/filer/', cik, '/all?start=', seq(0, by = 50, length.out = filing_pages) ) %>% purrr::invoke(paste0, .) .parse_json_public_filers_safe <- purrr::possibly(.parse_json_public_filers, NULL) .all_filings <- filing_urls %>% future_map_dfr(function(x) { .parse_json_public_filers_safe(url = x, return_message = return_message) }) %>% distinct() %>% suppressWarnings() entity <- general_df$nameEntity .all_filings <- .all_filings %>% mutate(idTicker = ticker, nameCompany = entity, nameEntity = entity) %>% select(idCIK, idTicker, nameEntity, nameCompany, dateFiling, idRF, everything()) if (return_message) { list("Parsed ", .all_filings %>% nrow(), ' SEC Filings for ', entity) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } return(.all_filings) } .parse_ticker_data <- function(ticker = "VNO", nest_data = TRUE, tables = NULL, return_message = TRUE) { if (length(tables) == 0) { tables <- c( 'General', 'CIK Filings', 'Filings', 'Private Offerings', 'Related Parties', 'Traders', 'C Level', 'MDA', 'Owners', 'Insider Trades', 'Trades', 'Subsidiaries' ) } ticker <- ticker %>% str_to_upper() .parse_company_general_safe <- purrr::possibly(.parse_company_general, NULL) .parse_trades_safe <- purrr::possibly(.parse_trades, NULL) .parse_public_filings_safe <- purrr::possibly(.parse_public_filings, NULL) general <- .parse_company_general_safe(ticker = ticker, nest_data = nest_data, return_message = return_message) %>% suppressWarnings() has_trades <- "TRADES" %>% str_detect(tables %>% str_to_upper()) %>% sum() > 0 if (has_trades) { trades <- .parse_trades_safe(ticker = ticker, nest_data = nest_data, return_message = return_message) %>% suppressWarnings() } else { trades <- tibble(idTicker = ticker) } cik_data <- general$idCIK %>% .parse_cik_data(tables = tables, nest_data = nest_data, return_message = return_message) if ('General' %in% cik_data$nameTable) { cik_data <- cik_data %>% filter(!nameTable == 'General') } all_data <- tibble( nameEntity = general$nameEntity, idCIK = general$idCIK, nameTable = c('Company Profile', 'Insider Trades'), dataTable = list(general, trades) ) %>% bind_rows(cik_data) %>% mutate(countCols = dataTable %>% map_dbl(ncol)) %>% filter(countCols > 1) %>% select(-countCols) if (return_message) { list("Acquired all data for ", all_data$nameEntity %>% unique()) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } return(all_data) } us_public_companies <- function(merge_type = NULL, return_message = TRUE) { no_merge <- (!'merge_type' %>% exists()) | (merge_type %>% purrr::is_null()) if (no_merge) { merge_type <- 'MATCH' } json_data <- "http://rankandfiled.com/data/public_companies" %>% jsonlite::fromJSON() company_data <- tibble(df = json_data$result$data %>% str_split(pattern = '\\|') %>% flatten_chr()) %>% tidyr::separate( df, sep = '\\*', into = c("X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9") ) %>% mutate_at( .vars = c("X5", "X6", "X7", "X8", "X9"), funs(. %>% as.character() %>% readr::parse_number()) ) %>% purrr::set_names( c( 'idTicker', 'idExchange', 'codeLocationBusiness', 'codeLocationIncorporation', 'idSector', 'amountEquityMarketCap', 'priceOpen', 'price52WeekLow', 'price52WeekHigh' ) ) %>% left_join(tibble( idSector = 1:12, nameSector = c( 'Finance', 'Capital Goods', 'Technology', 'Transportation', 'Consumer Services', 'Health Care', 'Consumer Durables', 'Public Utilities', 'Miscellaneous', 'Basic Industries', 'Energy', 'Consumer Non Durables' ) )) %>% suppressMessages() %>% left_join(tibble( idExchange = c('N', 'Q', 'A'), nameExchange = c('NYSE', 'NASDAQ', 'NYSE ARCA') )) %>% mutate( amountEquityMarketCap = ifelse( idTicker == 'BRK-A', amountEquityMarketCap * 100000000000, amountEquityMarketCap ), codeLocationBusiness = ifelse( codeLocationBusiness == '', codeLocationIncorporation, codeLocationBusiness ), codeLocationIncorporation = ifelse(codeLocationIncorporation == '', NA, codeLocationIncorporation), countSharesOutstanding = ifelse(priceOpen > 0, (( amountEquityMarketCap / priceOpen )), NA), pct52WeekHigh = ifelse(priceOpen > 0, (( priceOpen / price52WeekHigh )), NA), pct52WeekLow = ifelse(priceOpen > 0, (( priceOpen / price52WeekLow )), NA), amountEquityMarketCap = (amountEquityMarketCap), urlTickerRankandFiled = list('http://rankandfiled.com/ ) %>% select(idTicker:idSector, nameSector, everything()) %>% suppressMessages() countries <- location_codes() company_data <- company_data %>% left_join( countries %>% dplyr::rename( codeLocationBusiness = codeLocation, nameLocationBusiness = nameLocation ) ) %>% left_join( countries %>% dplyr::rename( codeLocationIncorporation = codeLocation, nameLocationIncorporation = nameLocation ) ) %>% suppressMessages() company_data <- company_data %>% filter(priceOpen > 0) %>% filter(!priceOpen %>% is.na()) %>% group_by(idTicker, nameSector) %>% filter(amountEquityMarketCap == max(amountEquityMarketCap, na.rm = TRUE)) %>% ungroup() %>% arrange(idTicker) ticker_count_df <- company_data %>% count(idTicker, sort = TRUE) fine_tickers <- ticker_count_df %>% filter(n < 2) %>% .$idTicker fine_df <- company_data %>% filter(idTicker %in% (fine_tickers)) dup_count_df <- ticker_count_df %>% filter(n > 1) dup_df <- company_data %>% filter(idTicker %in% dup_count_df$idTicker) %>% arrange(idTicker) dup_general_df <- dup_count_df$idTicker %>% future_map_dfr(function(x) { .parse_company_general_safe(ticker = x) }) %>% arrange(idTicker) dup_df <- dup_general_df %>% select(idTicker, nameLocationBusiness = stateEntity, nameSector) %>% left_join(countries %>% dplyr::rename(nameLocationBusiness = nameLocation)) %>% dplyr::rename(codeLocationBusiness = codeLocation) %>% left_join(dup_df) %>% suppressMessages() company_data <- fine_df %>% bind_rows(dup_df) %>% arrange(idTicker) is_merge_all <- merge_type %>% str_to_upper() == 'ALL' is_match <- merge_type %>% str_to_upper() == 'MATCH' if (is_merge_all) { general_data <- company_data$idTicker %>% unique() %>% future_map_dfr(function(x) { .parse_company_general_safe(ticker = x, return_message = return_message) }) %>% suppressWarnings() company_data <- company_data %>% inner_join(general_data %>% select(-one_of( c( "idExchange", "nameSector", "amountEquityMarketCap", "priceOpen", "price52WeekLow", "price52WeekHigh", "urlTickerRankandFiled" ) ))) %>% dplyr::rename(nameCompany = nameEntity) %>% select(idTicker, nameCompany, idCIK, idSector, nameSector, nameExchange, everything()) if (return_message) { list( "Acquired data for ", company_data %>% nrow() %>% formattable::comma(digits = 0), ' US stocks with a combined market capitalization of ', company_data$amountEquityMarketCap %>% sum(na.rm = TRUE) %>% formattable::currency(digits = 0) ) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } return(company_data) } if (is_match) { all_tickers <- rf_us_tickers() company_data <- company_data %>% left_join( all_tickers %>% filter(!urlTickerRankandFiled %>% is.na()) %>% select( idTicker, idCIK, nameCompany, codeLocationBusiness, idSIC, classificationSIC ) ) %>% suppressMessages() count_df <- company_data %>% count(idTicker, sort = TRUE) dup_tickers <- count_df %>% filter(n > 1) %>% .$idTicker %>% unique() fine_df <- company_data %>% filter(!idTicker %in% dup_tickers) dup_df <- company_data %>% filter(idTicker %in% dup_tickers) .parse_company_general_safe <- purrr::possibly(.parse_company_general, tibble) dup_general_df <- dup_tickers %>% future_map_dfr(function(x) { .parse_company_general_safe(ticker = x) }) %>% arrange(idTicker) %>% suppressWarnings() dup_df <- dup_df %>% select(-c(nameCompany, idCIK, idSIC, classificationSIC)) %>% distinct() %>% left_join(dup_general_df %>% select(idTicker, idCIK, nameCompany = nameEntity)) %>% left_join(all_tickers %>% select(idCIK, idSIC, classificationSIC)) %>% suppressWarnings() %>% suppressMessages() company_data <- fine_df %>% bind_rows(dup_df) %>% distinct() match_df <- company_data %>% filter(!nameCompany %>% is.na()) missing_name_df <- company_data %>% filter(nameCompany %>% is.na()) %>% select(-c(nameCompany, idCIK)) %>% inner_join(all_tickers %>% select(idTicker, nameCompany, idCIK)) %>% suppressMessages() count_df <- missing_name_df %>% count(idTicker, sort = TRUE) dup_tickers <- count_df %>% filter(n > 1) %>% .$idTicker %>% unique() fine_df <- missing_name_df %>% filter(!idTicker %in% dup_tickers) dup_df <- missing_name_df %>% filter(idTicker %in% dup_tickers) dup_general_df <- dup_tickers %>% future_map_dfr(function(x) { .parse_company_general_safe(ticker = x) }) %>% arrange(idTicker) %>% suppressWarnings() dup_df <- dup_df %>% select(-c(nameCompany, idCIK)) %>% distinct() %>% left_join(dup_general_df %>% select(idTicker, nameCompany = nameEntity, idCIK)) %>% suppressMessages() missing_name_df <- fine_df %>% bind_rows(dup_df) %>% select(-c(idSIC, classificationSIC)) %>% left_join(all_tickers %>% select(idCIK, idSIC, classificationSIC)) %>% suppressMessages() company_data <- match_df %>% bind_rows(missing_name_df) %>% arrange(desc(amountEquityMarketCap)) %>% select( idCIK, idTicker, nameCompany, idExchange, idSector, nameSector, idSIC, classificationSIC, everything() ) company_data <- company_data %>% mutate_at( company_data %>% select(dplyr::matches("price")) %>% names(), funs(. %>% formattable::currency(digits = 2)) ) %>% mutate_at( company_data %>% select(dplyr::matches("amount")) %>% names(), funs(. %>% formattable::currency(digits = 0)) ) %>% mutate_at( company_data %>% select(dplyr::matches("pct")) %>% names(), funs(. %>% formattable::percent(digits = 2)) ) if (return_message) { list( "Acquired data for ", company_data %>% nrow() %>% formattable::comma(digits = 0), ' US Stocks with a combined market capitalization of ', company_data$amountEquityMarketCap %>% sum(na.rm = TRUE) %>% formattable::currency(digits = 0) ) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } company_data <- company_data %>% resolve_names_to_upper() return(company_data) } } .parse_sec_url_for_cik <- function(url) { url %>% str_replace_all("https://www.sec.gov/Archives/edgar/data/", '') %>% str_split('\\/') %>% flatten_chr() %>% .[[1]] %>% as.numeric() } .get_loc_df <- function() { tibble( nameLocation = c( "AFGHANISTAN", "ALAND ISLANDS", "ALBANIA", "ALGERIA", "AMERICAN SAMOA", "ANDORRA", "ANGOLA", "ANGUILLA", "ANTARCTICA", "ANTIGUA AND BARBUDA", "ARGENTINA", "ARMENIA", "ARUBA", "AUSTRALIA", "AUSTRIA", "AUSTRIA-HUNGARY", "AZERBAIJAN", "BADEN", "BAHAMAS", "BAHRAIN", "BANGLADESH", "BARBADOS", "BAVARIA", "BELARUS", "BELGIUM", "BELIZE", "BENIN", "BERMUDA", "BHUTAN", "BOLIVIA, PLURINATIONAL STATE OF", "BONAIRE, SINT EUSTATIUS AND SABA", "BOSNIA AND HERZEGOVINA", "BOTSWANA", "BOUVET ISLAND", "BRAZIL", "BRITISH INDIAN OCEAN TERRITORY", "BRUNEI DARUSSALAM", "BULGARIA", "BURKINA FASO", "BURUNDI", "CAMBODIA", "CAMEROON", "CANADA", "CABO VERDE", "CAYMAN ISLANDS", "CENTRAL AFRICAN REPUBLIC", "CHAD", "CHILE", "CHINA", "CHRISTMAS ISLAND", "COCOS (KEELING) ISLANDS", "COLOMBIA", "COMOROS", "CONGO, THE DEMOCRATIC REPUBLIC OF THE", "CONGO", "COOK ISLANDS", "COSTA RICA", "COTE D'IVOIRE", "CROATIA", "CUBA", "CURACAO", "CYPRUS", "CZECH REPUBLIC", "CZECHOSLOVAKIA", "DENMARK", "DJIBOUTI", "DOMINICA", "DOMINICAN REPUBLIC", "ECUADOR", "EGYPT", "EL SALVADOR", "EQUATORIAL GUINEA", "ERITREA", "ESTONIA", "ETHIOPIA", "FALKLAND ISLANDS (MALVINAS)", "FAROE ISLANDS", "FIJI", "FINLAND", "FRANCE", "FRENCH GUIANA", "FRENCH POLYNESIA", "FRENCH SOUTHERN TERRITORIES", "GABON", "GAMBIA", "GEORGIA", "GERMAN DEMOCRATIC REPUBLIC", "FEDERAL REPUBLIC OF GERMANY", "GERMANY", "GHANA", "GIBRALTAR", "GREECE", "GREENLAND", "GRENADA", "GUADELOUPE", "GUAM", "GUATEMALA", "GUERNSEY", "GUINEA", "GUINEA-BISSAU", "GUYANA", "HAITI", "HANOVER", "HEARD ISLAND AND MCDONALD ISLANDS", "HESSE ELECTORAL", "HESSE GRAND DUCAL", "HOLY SEE (VATICAN CITY STATE)", "HONDURAS", "HONG KONG", "HUNGARY", "ICELAND", "INDIA", "INDONESIA", "IRAN, ISLAMIC REPUBLIC OF", "IRAQ", "IRELAND", "ISLE OF MAN", "ISRAEL", "ITALY", "JAMAICA", "JAPAN", "JERSEY", "JORDAN", "KAZAKHSTAN", "KENYA", "KIRIBATI", "KOREA", "KOREA, DEMOCRATIC PEOPLE'S REPUBLIC OF", "KOREA, REPUBLIC OF", "KOSOVO", "KUWAIT", "KYRGYZSTAN", "LAO PEOPLE'S DEMOCRATIC REPUBLIC", "LATVIA", "LEBANON", "LESOTHO", "LIBERIA", "LIBYA", "LIECHTENSTEIN", "LITHUANIA", "LUXEMBOURG", "MACAO", "MACEDONIA, THE FORMER YUGOSLAV REPUBLIC OF", "MADAGASCAR", "MALAWI", "MALAYSIA", "MALDIVES", "MALI", "MALTA", "MARSHALL ISLANDS", "MARTINIQUE", "MAURITANIA", "MAURITIUS", "MAYOTTE", "MECKLENBURG SCHWERIN", "MEXICO", "MICRONESIA, FEDERATED STATES OF", "MODENA", "MOLDOVA, REPUBLIC OF", "MONACO", "MONGOLIA", "MONTENEGRO", "MONTSERRAT", "MOROCCO", "MOZAMBIQUE", "MYANMAR", "NAMIBIA", "NAURU", "NEPAL", "NETHERLANDS", "NETHERLANDS ANTILLES", "NEW CALEDONIA", "NEW ZEALAND", "NICARAGUA", "NIGER", "NIGERIA", "NIUE", "NORFOLK ISLAND", "NORTHERN MARIANA ISLANDS", "NORWAY", "OMAN", "PAKISTAN", "PALAU", "PALESTINE, STATE OF", "PANAMA", "PAPUA NEW GUINEA", "PARAGUAY", "PARMA", "PERU", "PHILIPPINES", "PITCAIRN", "POLAND", "PORTUGAL", "PUERTO RICO", "QATAR", "REPUBLIC OF VIETNAM", "REUNION", "ROMANIA", "RUSSIAN FEDERATION", "RWANDA", "SAINT BARTHELEMY", "SAINT HELENA, ASCENSION AND TRISTAN DA CUNHA", "SAINT KITTS AND NEVIS", "SAINT LUCIA", "SAINT MARTIN (FRENCH PART)", "SAINT PIERRE AND MIQUELON", "SAINT VINCENT AND THE GRENADINES", "SAMOA", "SAN MARINO", "SAO TOME AND PRINCIPE", "SAUDI ARABIA", "SAXONY", "SENEGAL", "SERBIA", "SEYCHELLES", "SIERRA LEONE", "SINGAPORE", "SINT MAARTEN (DUTCH PART)", "SLOVAKIA", "SLOVENIA", "SOLOMON ISLANDS", "SOMALIA", "SOUTH AFRICA", "SOUTH GEORGIA AND THE SOUTH SANDWICH ISLANDS", "SOUTH SUDAN", "SPAIN", "SRI LANKA", "SUDAN", "SURINAME", "SVALBARD AND JAN MAYEN", "SWAZILAND", "SWEDEN", "SWITZERLAND", "SYRIAN ARAB REPUBLIC", "TAIWAN, PROVINCE OF CHINA", "TAJIKISTAN", "TANZANIA, UNITED REPUBLIC OF", "THAILAND", "TIMOR-LESTE", "TOGO", "TOKELAU", "TONGA", "TRINIDAD AND TOBAGO", "TUNISIA", "TURKEY", "TURKMENISTAN", "TURKS AND CAICOS ISLANDS", "TUSCANY", "TUVALU", "TWO SICILIES", "UGANDA", "UKRAINE", "UNITED ARAB EMIRATES", "UNITED KINGDOM", "UNITED STATES", "UNITED STATES MINOR OUTLYING ISLANDS", "URUGUAY", "UZBEKISTAN", "VANUATU", "VENEZUELA, BOLIVARIAN REPUBLIC OF", "VIET NAM", "VIRGIN ISLANDS, BRITISH", "VIRGIN ISLANDS, U.S.", "WALLIS AND FUTUNA", "WESTERN SAHARA", "WUERTTEMBURG", "YEMEN", "YEMEN ARAB REPUBLIC", "YEMEN PEOPLE'S REPUBLIC", "YUGOSLAVIA", "ZAMBIA", "ZANZIBAR", "ZIMBABWE", "ALABAMA", "ALASKA", "ARIZONA", "ARKANSAS", "CALIFORNIA", "COLORADO", "CONNECTICUT", "DELAWARE", "FLORIDA", "GEORGIA", "HAWAII", "IDAHO", "ILLINOIS", "INDIANA", "IOWA", "KANSAS", "KENTUCKY", "LOUISIANA", "MAINE", "MARYLAND", "MASSACHUSETTS", "MICHIGAN", "MINNESOTA", "MISSISSIPPI", "MISSOURI", "MONTANA", "NEBRASKA", "NEVADA", "NEW HAMPSHIRE", "NEW JERSEY", "NEW MEXICO", "NEW YORK", "NORTH CAROLINA", "NORTH DAKOTA", "OHIO", "OKLAHOMA", "OREGON", "PENNSYLVANIA", "RHODE ISLAND", "SOUTH CAROLINA", "SOUTH DAKOTA", "TENNESSEE", "TEXAS", "UTAH", "VERMONT", "VIRGINIA", "WASHINGTON", "WEST VIRGINIA", "WISCONSIN", "WYOMING", "DISTRICT OF COLUMBIA", "ENGLAND", "BRITISH VIRGIN ISLANDS", "NETHERLAND ANTILLES", "RUSSIA", "SOUTH KOREA", 'TAIWAN', "VENEZUELA", 'CHANNEL ISLANDS' ) ) } .parse_page_sub_multi_item_html <- function(page) { locations <- .get_loc_df() %>% .$nameLocation subsidiaries <- page %>% html_nodes('td div') %>% html_text() %>% str_replace_all('\u0095 |\u0096|\u0095\n', '') %>% str_trim() subsidiaries <- subsidiaries[!subsidiaries == ''] data_nodes <- page %>% html_nodes('td') %>% html_text() %>% str_replace_all('\u0095 |\u0096|\u0095\n', '') %>% str_trim() %>% str_to_upper() data_nodes <- data_nodes[!data_nodes == ''] location_items <- data_nodes[data_nodes %in% locations] pct_vals <- tibble(value = data_nodes) %>% filter(!value %>% str_detect("\\([(1-9)]\\)")) %>% mutate(pctSubsidiaryOwned = value %>% as.numeric()) %>% filter(!pctSubsidiaryOwned %>% is.na()) %>% slice(seq_along(subsidiaries)) %>% .$pctSubsidiaryOwned / 100 %>% suppressWarnings() %>% suppressMessages() all_data <- tibble( nameSubsidiary = subsidiaries, nameLocationSubsidiary = location_items, pctSubsidiaryOwned = pct_vals ) %>% mutate(nameSubsidiary = nameSubsidiary %>% str_to_upper()) return(all_data) } .parse_page_subsidiary_table_html <- function(page, numbers = 1:10, hit_terms = c( "Organized", "STATE OR|STATE OF|JURISDICTION OF|JURISDICTION OF INCORPORATION OR ORGANIZATION|JURISDICTION|JURISDICTION OF INCORPORATION OR\nORGANIZATION", "NAME|ORGANIZED UNDER THE LAWS OF", 'STATE OF ORGANIZATION', 'STATE OR COUNTRY OF ORGANIZATION', 'NAME OF SUBSIDIARY', 'NAME', 'ENTITY NAME', 'the laws of', 'Percentage of voting', 'securities owned by', 'immediate parent', 'CERTAIN INTERMEDIARY SUBSIDIARIES', 'Note:', 'Organized', 'Under the', 'Laws of', 'OWNED BY', 'IMMEDIATE', 'PARENT', "OWNS", "CERTAIN INTERMEDIARY SUBSIDIARIES", 'PERCENTAGE', 'OF VOTING', 'SECURITIES' )) { is_ib1 <- page %>% html_nodes('b font') %>% html_text() %>% length() > 0 if (is_ib1) { items_bold <- page %>% html_nodes('b font') %>% html_text() %>% str_to_upper() %>% str_replace_all('\n', ' ') items_bold <- stringi::stri_trans_general(items_bold, "Latin-ASCII") items_bold <- items_bold %>% str_split('\\-') %>% flatten_chr() %>% str_trim() } else { items_bold <- page %>% html_nodes('b') %>% html_text() %>% str_to_upper() %>% str_replace_all('\n', ' ') %>% stringi::stri_trans_general("Latin-ASCII") items_bold <- items_bold %>% str_split('\\-') %>% flatten_chr() %>% str_trim() %>% unique() } has_date <- items_bold %>% grep(month.name %>% str_to_upper() %>% paste(collapse = '|'), .) %>% length > 0 if (has_date) { date_data <- items_bold[items_bold %>% grep(month.name %>% str_to_upper() %>% paste(collapse = '|'), .)] %>% lubridate::mdy() } else { date_data <- NA } hit_terms <- hit_terms %>% append(items_bold) %>% str_to_upper() %>% unique() %>% append(list('(', letters, ')') %>% purrr::invoke(paste0, .)) %>% paste0(collapse = '|') hit_terms_in <- hit_terms %>% str_split('\\|') %>% flatten_chr() locations <- .get_loc_df() %>% .$nameLocation all_data <- numbers %>% future_map_dfr(function(x) { css_selector <- paste0('td:nth-child(', x, ')') has_length <- page %>% html_nodes(css_selector) %>% length() > 0 if (has_length) { item <- paste0("X" , x) value <- page %>% html_nodes(css_selector) %>% html_text() %>% str_trim() tibble(item, value) } }) %>% mutate( value = value %>% str_to_upper() %>% str_replace_all('\n ', ' ') %>% str_replace_all('\u0096 ', '') ) %>% filter(!value == '') has_loc_key <- all_data %>% filter(value %in% locations) %>% nrow() > 0 if (has_loc_key) { loc_cols <- all_data %>% filter(value %in% locations) %>% .$item %>% unique() if (loc_cols %>% length == 1) { loc_col <- loc_cols[[1]] } } has_pct <- all_data %>% filter(value %>% str_detect("PERCENT")) %>% .$item %>% unique() %>% length() > 0 if (has_pct) { pct_col <- all_data %>% filter(value %>% str_detect("PERCENT")) %>% .$item %>% unique() } else { pct_col <- NA } is_whack <- pct_col[[1]] %in% loc_cols if (is_whack) { all_data <- page %>% .parse_page_sub_multi_item_html() %>% mutate(dateSubsidiaryAsOf = date_data) return(all_data) } all_data <- all_data %>% filter(!value %in% items_bold) %>% filter(!value %>% str_detect(paste0(items_bold %>% unique(), collapse = '|'))) %>% filter(!value %in% hit_terms_in) %>% filter(!value %>% str_detect(hit_terms)) count_df <- all_data %>% count(item, sort = T) %>% arrange(item) %>% spread(item, n) off_one <- (count_df[, 2] %>% extract2(1)) - (count_df[, 1] %>% extract2(1)) == 1 min_item <- count_df %>% gather(item, value) %>% filter(value == min(value)) %>% .$item change_pct <- has_pct & (pct_col == min_item) %>% sum() > 0 if (change_pct) { pct_col <- names(count_df)[[3]] } if (off_one) { df <- all_data$item %>% unique() %>% future_map_dfr(function(x) { has_data <- all_data %>% filter(item == x) %>% filter(!value %>% is.na()) %>% filter(!value == '') %>% nrow() if (has_data) { all_data %>% filter(item == x) %>% filter(!value %>% is.na()) %>% filter(!value == '') %>% filter(!value %>% str_detect(hit_terms)) %>% mutate(idSubsidiary = 1:n()) } }) %>% filter(!value %>% str_detect(hit_terms)) %>% spread(item, value) if (change_pct) { df <- df %>% select(-one_of(min_item)) } } if (!off_one) { has_property <- items_bold %>% str_detect('PROPERTY') %>% sum() > 0 if (has_property) { tables <- page %>% html_table(fill = T) df <- seq_along(tables) %>% future_map_dfr(function(x) { table_df <- tables[[x]] %>% data.frame(stringsAsFactors = FALSE) %>% as_tibble() column_df <- table_df %>% slice(1) %>% gather(column, value) %>% mutate(idColumn = 1:n()) %>% filter(!value %>% is.na()) %>% left_join(tibble( value = c( "PROPERTY", "ENTITIES", "STATE OF FORMATION", "DATE OF FORMATION", " ", 'General Information:' ), nameItem = c( 'nameProperty', 'nameSubsidiary', 'locationOrganizationSubsidiary', 'dateSubsidiaryFormed', 'locationOrganizationSubsidiary', 'nameSubsidiary' ) )) %>% suppressMessages() two_col <- column_df %>% nrow() == 2 if (two_col) { column_df$nameItem[[2]] <- 'locationOrganizationSubsidiary' } columns_keep <- column_df$idColumn table_df <- table_df <- table_df %>% select(columns_keep) %>% slice(-1) %>% purrr::set_names(column_df$nameItem) table_df <- table_df %>% mutate_all(funs(. %>% str_trim() %>% str_to_upper())) %>% mutate(nameSubsidiary = ifelse(nameSubsidiary == '', NA, nameSubsidiary)) %>% filter(!nameSubsidiary %>% is.na()) if (two_col) { table_df <- table_df %>% tidyr::separate( locationOrganizationSubsidiary, into = c( 'locationOrganizationSubsidiary', 'dateSubsidiaryFormed' ), sep = 'FORMED' ) %>% suppressWarnings() %>% mutate(locationOrganizationSubsidiary = locationOrganizationSubsidiary %>% str_replace_all('\\,', '')) %>% mutate_all(funs(. %>% str_replace('\n', '') %>% str_trim())) } if ('nameProperty' %in% names(table_df)) { table_df <- table_df %>% mutate(nameProperty = ifelse(nameProperty == '', NA, nameProperty)) %>% mutate_all(funs(. %>% str_replace('\n|\n |\n ', '') %>% str_trim())) %>% mutate_all(funs(. %>% str_replace('\n', '') %>% str_trim())) %>% mutate_all(funs(. %>% str_replace(' ', ' ') %>% str_trim())) %>% fill(nameProperty) } return(table_df) }) if ('dateSubsidiaryFormed' %in% names(df)) { df <- df %>% mutate(dateSubsidiaryFormed = dateSubsidiaryFormed %>% lubridate::mdy()) } df <- df %>% mutate(idCIK = cik, urlSEC = url) %>% select(idCIK, nameSubsidiary, everything()) %>% mutate( locationOrganizationSubsidiary = locationOrganizationSubsidiary %>% str_replace_all( 'A |LIMITED LIABILITY COMPANY|CORPORATION|LIMITED PARTNERSHIP' ) %>% str_trim() ) return(df) } if (!has_property) { df <- all_data %>% mutate(value = ifelse(value == '', NA, value)) %>% filter(!value %>% is.na()) %>% group_by(item) %>% mutate(idSubsidiary = 1:n()) %>% spread(item, value) %>% filter(!X1 == '') %>% mutate(idSubsidiary = 1:n()) %>% gather(item, value, -c(X1, idSubsidiary)) %>% ungroup() %>% filter(!value %>% str_detect(hit_terms)) %>% spread(item, value) } } df <- df %>% dplyr::rename(nameSubsidiary = X1) %>% tidyr::separate(nameSubsidiary, sep = '\\(', into = c('nameSubsidiary', 'remove')) %>% select(-dplyr::matches("remove")) %>% mutate(nameSubsidiary = nameSubsidiary %>% str_trim()) %>% suppressWarnings() %>% select(-dplyr::matches("idSubsidiary")) if (has_pct) { names(df)[names(df) %>% grep(pct_col, .)] <- 'pctSubsidiaryOwned' df <- df %>% mutate_at(df %>% select(dplyr::matches('pct')) %>% names(), funs(. %>% as.numeric() / 100)) %>% suppressWarnings() } if (has_loc_key) { names(df)[names(df) %>% grep(loc_col, .)] <- 'locationOrganizationSubsidiary' } df <- df %>% select(-dplyr::matches("X")) return(df) } .parse_sec_subsidiary_url_html <- function(url = "https://www.sec.gov/Archives/edgar/data/34088/000003408816000065/xomexhibit21.htm", return_message = TRUE) { cik <- url %>% .parse_sec_url_for_cik() page <- url %>% read_html() is_zero <- page %>% html_nodes(paste0('td:nth-child(', 1, ')')) %>% length() == 0 locations <- .get_loc_df() %>% .$nameLocation if (is_zero) { data <- page %>% html_nodes('font') %>% html_text() %>% str_replace_all('\\ ', ' ') data <- data[!data == ''] is_parenth <- data %>% str_detect('\\(') %>% sum() / length(data) > .25 if (is_parenth) { data <- data[data %>% str_detect('\\(')] df <- tibble(data) %>% separate( data, sep = '\\(', into = c('nameSubsidiary', 'locationOrganizationSubsidiary') ) %>% separate( locationOrganizationSubsidiary, sep = '\\)', into = c('locationOrganizationSubsidiary', 'remove') ) %>% select(-remove) %>% mutate_all(funs(. %>% str_trim() %>% str_to_upper())) %>% mutate(idCIK = cik, urlSEC = url) %>% select(-dplyr::matches("idSubsidiary")) if (return_message) { list("Parsed: ", url) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } return(df) } is_nested <- page %>% html_nodes('b font') %>% html_text() %>% length() > 2 if (is_nested) { locations_raw <- page %>% html_nodes('b font') %>% html_text() %>% str_replace_all('\\:', '') %>% str_to_upper() locations <- locations_raw[!locations_raw %>% str_detect('EXHIBIT|SUBSIDIARY|SUBSIDIARIES')] data <- data[data %>% nchar() > 3] %>% str_to_upper() df <- tibble(nameSubsidiary = data) %>% mutate(idRow = 1:n()) .loc_df <- tibble(nameSubsidiary = locations) %>% inner_join(df %>% select(idRow, nameSubsidiary)) %>% mutate(idRow = idRow + 1) %>% select(locationOrganizationSubsidiary = nameSubsidiary, idRow) %>% suppressMessages() df <- df %>% filter(!nameSubsidiary %>% str_detect('SUBSIDIARY|SUBSIDIARIES')) %>% filter(!nameSubsidiary %>% str_detect(paste0(locations_raw, collapse = '|'))) %>% suppressWarnings() df <- df %>% left_join(.loc_df) %>% fill(locationOrganizationSubsidiary) %>% mutate(urlSEC = url, idCIK = cik) %>% select(idCIK, nameSubsidiary, locationOrganizationSubsidiary, everything()) %>% select(-idRow) %>% suppressMessages() %>% select(-dplyr::matches("idSubsidiary")) if (return_message) { list("Parsed: ", url) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } return(df) } } is_font_table <- page %>% html_nodes('b') %>% html_text() %>% length() == 0 if (is_font_table) { all_data <- 1:10 %>% future_map_dfr(function(x) { css_selector <- paste0('td:nth-child(', x, ')') has_length <- page %>% html_nodes(css_selector) %>% length() > 0 if (has_length) { item <- paste0("X" , x) value <- page %>% html_nodes(css_selector) %>% html_text() %>% str_trim() tibble(item, value) } }) %>% mutate( value = value %>% str_to_upper() %>% str_replace_all('\n ', ' ') %>% str_replace_all('\u0096 ', '') ) %>% filter(!value == '') has_loc_key <- all_data %>% filter(value %in% locations) %>% nrow() > 0 if (has_loc_key) { loc_col <- all_data %>% filter(value %in% locations) %>% .$item %>% unique() } hit_terms_in <- c( "Organized", "STATE OR|STATE OF|JURISDICTION OF|JURISDICTION OF INCORPORATION OR ORGANIZATION|JURISDICTION|JURISDICTION OF INCORPORATION OR\nORGANIZATION", "NAME|ORGANIZED UNDER THE LAWS OF", 'STATE OF ORGANIZATION', 'STATE OR COUNTRY OF ORGANIZATION', 'NAME OF SUBSIDIARY', 'NAME', 'ENTITY NAME', 'the laws of', 'Percentage of voting', 'securities owned by', 'immediate parent', 'CERTAIN INTERMEDIARY SUBSIDIARIES', 'PERCENT OWNED' ) hit_terms <- hit_terms %>% str_to_upper() %>% paste0(collapse = '|') hit_terms_in <- hit_terms %>% str_split('\\|') %>% flatten_chr() has_pct_col <- all_data %>% filter(value %in% "100") %>% nrow() > 0 | (all_data %>% filter(value %>% str_detect('PERCENT')) %>% nrow() > 0) if (has_pct_col) { pct_col <- all_data %>% filter((value %in% "100") | (value %>% str_detect("PERCENT"))) %>% .$item %>% unique() %>% .[[1]] } all_data <- all_data %>% filter(!value %in% hit_terms_in) %>% filter(!value %>% str_detect(hit_terms)) %>% filter(!value == '') %>% mutate(valueNC = value %>% nchar()) %>% filter(!value %>% str_detect("PERCENT")) if (!has_pct_col) { all_data <- all_data %>% filter(valueNC > 3) } all_data <- all_data %>% select(-valueNC) %>% group_by(item) %>% mutate(idSubsidiary = 1:n()) %>% spread(item, value) %>% ungroup() %>% dplyr::rename(nameSubsidiary = X1) if (has_loc_key) { names(all_data)[names(all_data) %in% loc_col] <- 'locationOrganizationSubsidiary' } if (has_pct_col) { names(all_data)[names(all_data) %in% pct_col] <- 'pctSubsidiaryOwned' all_data <- all_data %>% mutate(pctSubsidiaryOwned = pctSubsidiaryOwned %>% as.numeric() / 100) } all_data <- all_data %>% mutate(idCIK = cik, dateSubsidiaryAsOf = NA, urlSEC = url) %>% select(-dplyr::matches("idSubsidiary|^X")) if (return_message) { list("Parsed: ", url) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } return(all_data) } df <- page %>% .parse_page_subsidiary_table_html() %>% suppressWarnings() df <- df %>% filter(!nameSubsidiary == '') %>% mutate(idCIK = cik, urlSEC = url) %>% select(-dplyr::matches("idSubsidiary")) %>% select(idCIK, everything()) if (return_message) { list("Parsed: ", url) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } return(df %>% select(-dplyr::matches("idSubsidiary"))) } .parse_sec_subsidiary_url_text <- function(url = "https://www.sec.gov/Archives/edgar/data/899689/000104746903007996/a2104897zex-21.txt", return_message = TRUE) { cik <- url %>% .parse_sec_url_for_cik() data <- url %>% read_lines() data <- data[!data == ''] has_s <- data %>% str_detect("<S>") %>% sum() > 0 if (has_s) { data <- data[(data %>% grep("<S>", .) %>% .[[1]] + 1):length(data)] } data <- data[!data %>% str_detect("STATE OF|NAME OF|---|NAME OF SUBSIDIARY|ORGANIZED UNDER|THE LAWS OF|<")] data <- data[data %>% nchar() > 3] df <- seq_along(data) %>% future_map_dfr(function(x) { item <- data[[x]] items <- item %>% str_replace_all('\\ ', '\\:') %>% str_split('\\:') %>% flatten_chr() %>% str_trim() %>% str_to_upper() items <- items[!items == ''] if (items %>% length() == 1) { return(tibble()) } two_items <- items %>% length() == 2 if (two_items) { table_data <- tibble( idSubsidiary = x, nameSubsidiary = items[[1]], locationOrganizationSubsidiary = items[[2]] ) } three_items <- items %>% length() == 3 if (three_items) { table_data <- tibble( idSubsidiary = x, nameSubsidiary = items[[1]], locationOrganizationSubsidiary = items[[2]], pctSubsidiaryOwned = items[[3]] %>% as.numeric() / 100 ) } table_data <- table_data %>% mutate( isChildSubsidiary = ifelse(nameSubsidiary %>% substr(1, 1) == "-", TRUE, FALSE), nameSubsidiary = nameSubsidiary %>% str_replace('\\-', '') %>% str_trim() ) return(table_data) }) %>% mutate(idCIK = cik, urlSEC = url) %>% select(-dplyr::matches("idSubsidiary")) %>% select(idCIK, nameSubsidiary, locationOrganizationSubsidiary, everything()) %>% filter(!nameSubsidiary %in% c('NAME', 'ORGANIZED UNDER')) df <- df %>% filter(!nameSubsidiary == '') if (return_message) { list("Parsed: ", url) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } return(df) } .parse_sec_subsidiary_url <- function(url = "https://www.sec.gov/Archives/edgar/data/34088/000003408816000065/xomexhibit21.htm", return_message = TRUE) { is_text <- url %>% str_detect("txt") is_html <- url %>% str_detect("html|htm") parse_sec_subsidiary_url_text_safe <- purrr::possibly(.parse_sec_subsidiary_url_text, tibble()) parse_sec_subsidiary_url_html_safe <- purrr::possibly(.parse_sec_subsidiary_url_html, tibble()) if (is_text) { data <- url %>% parse_sec_subsidiary_url_text_safe() } if (is_html) { data <- url %>% parse_sec_subsidiary_url_html_safe() } return(data) } .parse_full_form_names <- function(sec_names) { df_names <- seq_along(sec_names) %>% future_map_dfr(function(x) { sec_name <- sec_names[[x]] name_pieces <- sec_name %>% str_replace_all('\\.value|\\.item', '') pieces <- name_pieces %>% str_split('\\.') %>% flatten_chr() pieces_no_num <- pieces[!pieces %>% str_detect("[0-9]")] peice_length <- pieces_no_num %>% length() is_street <- pieces %>% str_detect("street1|street2|Street1|Street2") %>% sum(na.rm = T) > 0 name_item <- pieces_no_num[length(pieces_no_num)] if (sec_name %>% str_detect('filingManager')) { name_item <- pieces %>% paste0(collapse = '') df <- tibble(nameSECFull = sec_name, nameSEC = name_item) return(df) } if (is_street) { name_item <- pieces[pieces %>% str_detect("street1|street2|Street1|Street2")] } is_sig <- name_pieces %>% str_detect('signature') & peice_length == 1 is_footnote <- sec_name %>% str_detect('footnote') is_issuer <- sec_name %>% str_detect('\\issuer.[A-Z]') is_federal <- sec_name %>% str_detect(pattern = "federalExemptionsExclusions") if (is_federal) { df <- tibble( nameSECFull = sec_name, nameTable = pieces[[1]], nameSEC = name_item ) return(df) } if (is_issuer) { items <- sec_name %>% str_split('\\.') %>% flatten_chr() countItem <- pieces[2] %>% as.character() %>% readr::parse_number() %>% suppressWarnings() name_item <- items[length(items)] df <- tibble( nameSECFull = sec_name, nameTable = 'issuer', countItem, nameSEC = name_item ) return(df) } if (is_footnote) { if (pieces %>% length() == 1) { countItem <- 0 item <- pieces[[1]] } else { item <- pieces[[1]] countItem <- pieces[2] %>%as.character() %>% readr::parse_number() %>% suppressWarnings() } return(tibble(nameTable = 'footnotes', nameSECFull = sec_name, nameSEC = item, countItem)) } if (is_sig) { df <- tibble(nameTable = 'signatures', nameSECFull = sec_name, nameSEC = name_item) return(df) } if (peice_length == 1) { df <- tibble(nameSECFull = sec_name, nameSEC = name_item) return(df) } piece_count <- length(pieces) if (piece_count == 1) { df <- tibble(nameSECFull = sec_name, nameSEC = sec_name) return(df) } if (piece_count == 2 &!is_footnote) { df <- tibble(nameSECFull = sec_name, nameTable = pieces[[1]] , nameSEC = name_item) return(df) } if (piece_count > 2) { countItem <- pieces[2] %>%as.character() %>% readr::parse_number() %>% suppressWarnings() df <- tibble( nameSECFull = sec_name, nameTable = pieces[[1]] , countItem, nameSEC = name_item ) return(df) } }) %>% filter(!nameSEC == '') df_dictionary <- .sec_form_title_df() has_missing_names <- df_names$nameSEC[!df_names$nameSEC %in% df_dictionary$nameSEC] %>% length() > 0 if (has_missing_names) { missing <- df_names$nameSEC[!df_names$nameSEC %in% df_dictionary$nameSEC] %>% unique() missing_names <- missing %>% paste0(collapse = '\n') stop(list("Missing:\n", missing_names) %>% purrr::reduce(paste0)) } df_names <- df_names %>% left_join(df_dictionary) %>% suppressWarnings() %>% suppressMessages() if (!'nameTable' %in% names(df_names)) { df_names <- df_names %>% mutate(nameTable = 'asset') } df_names <- df_names %>% select(nameTable, nameSECFull, nameSEC, nameActual, everything()) %>% mutate(nameTable = nameTable %>% str_replace('Id',''), nameTable = ifelse(nameTable %in% c('issuerCredentials','securitiesIssued'), NA, nameTable)) %>% suppressWarnings() %>% suppressMessages() } .parse_xml_tables <- function(url = "https://www.sec.gov/Archives/edgar/data/61004/000114036117000046/doc1.xml"){ page <- url %>% xml2::read_xml() tables <- page %>% xml_contents() %>% xml_name() %>% unique() data <- seq_along(tables) %>% future_map_dfr(function(x){ table <- tables[[x]] if (table %in% c('headerData', 'formData')) { form_tables <- page %>% xml_contents() %>% xml_name() table_loc <- table %>% grep(form_tables) xml_nodes <- page %>% xml_contents() %>% .[[table_loc]] } if (table %in% c('infoTable' , 'assets')) { xml_nodes <- page %>% xml_contents() } if (table == 'comment') { value <- page %>% xml_contents() %>% xml_text() df <- tibble(idTable = x, nameSECFull = table, value) return(df) } tables_special <- c('headerData', 'formData', 'infoTable', 'assets') if (!table %in% tables_special) { value_search <- list('//', table) %>% purrr::reduce(paste0) xml_nodes <- page %>% xml_contents() %>% xml_find_all(value_search) } if (xml_nodes %>% length() > 100) { list("Be patient there are ", xml_nodes %>% length() %>% formattable::comma(digits = 0), ' nodes to parse') %>% purrr::reduce(paste0) %>% cat(fill = T) } value_list <- xml_nodes %>% as_list() value_list <- value_list[value_list %>% future_map(length) %>% flatten_dbl() > 0] json_data <- value_list %>% jsonlite::toJSON(force = FALSE, dataframe = 'values') %>% jsonlite::fromJSON(simplifyDataFrame = TRUE, flatten = TRUE) wrong_output <- json_data %>% class() == 'array' if (wrong_output) { item <- xml_nodes %>% xml_name() value <- xml_nodes %>% xml_text() json_data <- tibble(item, value) %>% spread(item, value) } if (json_data %>% length() == 0) { return(tibble()) } if ('summaryInfo' %in% names(json_data)) { json_data <- seq_along(json_data) %>% map( function(x){ js_d <- json_data[x] if ('summaryInfo' %in% names(js_d)) { if (js_d$summaryInfo$clarificationResponses %>% length() == 0) { js_d$summaryInfo$clarificationResponses <- NULL } } return(js_d) }) %>% flatten() json_data <- json_data[json_data %>% future_map(function(x){data.frame(x, stringsAsFactors = F)} %>% nrow()) > 0] } json_data <- json_data %>% data.frame(stringsAsFactors = FALSE) %>% as_tibble() %>% mutate_all(as.character) %>% mutate(idTable = x) %>% gather(nameSECFull, value, -idTable) %>% arrange(idTable) return(json_data) }) data <- data %>% mutate(isList = value %>% str_detect('list')) %>% filter(!isList) %>% select(-isList) %>% mutate( nameSECFull = nameSECFull %>% str_replace_all( "filerInfo.flags.|filerInfo.filer.|coverPage.|.filer.|\\flags.|filer.credentials.", '' ), nameSECFull = nameSECFull %>% str_replace_all('filerInfo.|issuerCredentials.', '') ) rm(tables) rm(page) rm(url) return(data) } .parse_sec_form <- function(url = "https://www.sec.gov/Archives/edgar/data/61004/000114036117000046/doc1.xml", return_message = TRUE) { data <- .parse_xml_tables(url = url) if (!'nameSECFull' %in% names(data)) { data <- data %>% mutate(nameSECFull = nameSEC) } cik <- url %>% str_replace_all('https://www.sec.gov/Archives/edgar/data/', '') %>% str_split('/') %>% flatten_chr() %>% .[[1]] %>% as.character() %>% readr::parse_number() %>% suppressMessages() df_title <- .sec_form_title_df() is_13FInfo <- url %>% str_detect('form13fInfoTable.xml|infotable.xml') sec_names <- data$nameSECFull %>% unique() df_names <- .parse_full_form_names(sec_names = sec_names) df_names <- df_names %>% mutate(nameTable = ifelse( nameSECFull %>% str_detect("issuerAddress"), "issuerAddress", nameTable), nameTable = ifelse( nameSECFull %>% str_detect("reportingOwner"), "reportingOwner", nameTable) ) %>% mutate(nameTable = ifelse(nameSECFull %>% str_detect("issuerInfo."), 'issuerInfo', nameTable), nameTable = ifelse(nameSECFull %>% str_detect("securitiesIssued."), 'securitiesIssued', nameTable), nameTable = ifelse(nameSECFull %>% str_detect("summaryInfo."), 'summaryInfo', nameTable), nameTable = ifelse(nameSECFull %>% str_detect("^comment[A-Z]"), 'Comments', nameTable) ) if (is_13FInfo) { df_names <- df_names %>% mutate(nameTable = 'holdingsInformation') } if (!'nameSEC' %in% names(data)) { data <- data %>% mutate(nameSEC = nameSECFull) } data <- data %>% select(-nameSEC) %>% left_join(df_names) %>% mutate(nameActual = ifelse(nameSECFull == "X.1.A.A.", 'idForm', nameActual)) %>% suppressMessages() if ('countItem' %in% names(data)) { data <- data %>% select(nameTable, countItem, nameSECFull, nameActual, everything()) %>% mutate(countItem = countItem - 1) %>% suppressMessages() } if ('property' %in% data$nameTable) { data <- data %>% mutate(nameTable = ifelse(nameTable %>% is.na(), 'Asset', nameTable)) } has_metadata <- data %>% filter(nameTable %>% is.na()) %>% nrow() > 0 if (has_metadata) { df_metadata <- data %>% filter(nameTable %>% is.na()) %>% select(nameActual, value) %>% group_by(nameActual) %>% mutate(countItem = 1:n() - 1) %>% arrange(countItem) %>% ungroup() %>% filter(!nameActual %>% str_detect('idCCC')) %>% mutate(nameActual = ifelse(countItem == 0, nameActual, nameActual %>% paste0(countItem))) %>% select(-countItem) col_order <- df_metadata$nameActual df_metadata <- df_metadata %>% spread(nameActual, value) %>% select(one_of(col_order)) %>% mutate(urlSECFiling = url) %>% .resolve_form_columns() } else { df_metadata <- tibble(idCIKFiler = cik, urlSECFiling = url) } tables <- data %>% filter(!nameTable %>% is.na()) %>% .$nameTable %>% unique() data <- seq_along(tables) %>% future_map(function(x) { table <- tables[[x]] table_name <- list('data', table %>% substr(1, 1) %>% str_to_upper(), table %>% substr(2, nchar(table))) %>% purrr::reduce(paste0) table_df <- data %>% filter(nameTable == table) %>% select(dplyr::matches("countItem"), nameActual, value) %>% select(which(colMeans(is.na(.)) < 1)) %>% group_by(nameActual) %>% mutate(countItem = 1:n() - 1) %>% ungroup() has_counts <- table_df$countItem %>% max(na.rm = TRUE) > 0 if (has_counts) { table_df <- table_df %>% arrange(countItem) col_order <- c('countItem', table_df$nameActual) table_df <- table_df %>% spread(nameActual, value) %>% select(one_of(col_order)) %>% mutate(urlSECFiling = url) %>% .resolve_form_columns() table_df <- table_df %>% nest(-urlSECFiling, .key = data) } else { table_df <- table_df %>% select(-countItem) col_order <- c(table_df$nameActual) table_df <- table_df %>% spread(nameActual, value) %>% select(one_of(col_order)) %>% .resolve_form_columns() %>% mutate(urlSECFiling = url) table_df <- table_df %>% nest(-urlSECFiling, .key = data) } names(table_df)[[2]] <- table_name df_metadata <- df_metadata %>% left_join(table_df) %>% suppressMessages() }) %>% reduce(left_join) %>% suppressMessages() if (return_message) { list("Parsed: ", url) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } rm(df_metadata) return(data) } .parse_form_data <- function(.all_filings, filter_parameter = 'isXBRLInstanceFile', return_message = TRUE) { df_search <- .all_filings %>% filter_(.dots = filter_parameter) if (filter_parameter == 'isXBRLInstanceFile') { if (df_search %>% nrow() == 0) { return(tibble()) } parse_xbrl_filer_url_safe <- purrr::possibly(.parse_xbrl_filer_url, tibble()) all_data <- df_search$urlSECFiling %>% unique() %>% future_map_dfr(function(x) { .parse_xbrl_filer_url(url = x, return_message = return_message) }) all_data <- all_data %>% select(-dplyr::matches("idCIK1|nameFiler1")) %>% left_join(df_search %>% select(idForm, idAccession, nameFile, dateFiling, urlSECFiling)) %>% select( dplyr::matches("idCIK"), dplyr::matches("name[Entity]|name[Filer]"), dateFiling, idForm, idAccession, nameFile, everything() ) %>% suppressMessages() return(all_data) } if (filter_parameter == 'isFormD') { if ('idForm' %in% names(df_search)){ df_search <- df_search %>% filter(!idForm %>% str_detect("10")) } } if (df_search %>% nrow() == 0) { return(tibble()) } all_data <- df_search$urlSECFiling %>% unique() %>% future_map_dfr(function(x) { .parse_sec_form(url = x, return_message = return_message) }) all_data <- all_data %>% select(-dplyr::matches("idCIK1|nameFiler1")) %>% left_join(df_search %>% select(dplyr::matches("idForm"), dplyr::matches("idAccession"), dplyr::matches("nameFile"), dplyr::matches("dateFiling"), urlSECFiling)) %>% select( dplyr::matches("idCIK"), dplyr::matches("name[Entity]|name[Filer]"), dateFiling, dplyr::matches("idForm"), dplyr::matches("idAccession"), dplyr::matches("nameFile"), everything() ) %>% suppressMessages() if (filter_parameter == 'hasAssetFile') { if('dataComments' %in% names(all_data)) { df_comments <- all_data %>% select(idCIKFiler, idAccession, dataComments) %>% mutate(isNULL = dataComments %>% map_lgl(is_null)) %>% filter(!isNULL) %>% distinct() %>% select(-isNULL) all_data <- all_data %>% select(-dataComments) %>% mutate(isNULL = dataAsset %>% map_lgl(is_null)) %>% filter(!isNULL) %>% filter(!nameFile == "ASSET RELATED DOCUMENT") %>% distinct() %>% select(-isNULL) %>% left_join(df_comments) %>% suppressMessages() } } return(all_data) } .parse_xbrl_filer_url <- function(url = "https://www.sec.gov/Archives/edgar/data/1037540/000165642316000023/bxp-20160930.xml", return_message = TRUE) { options(stringsAsFactors = FALSE, scipen = 999999) cik <- url %>% str_split('data/') %>% flatten_chr() %>% .[[2]] %>% str_split('/') %>% flatten_chr() %>% .[[1]] %>% as.numeric() td <- tempdir() tf <- tempfile(tmpdir = td, fileext = ".xml") url %>% curl::curl_download(destfile = tf) doc <- tf %>% XBRL::xbrlParse() df_fct <- XBRL::xbrlProcessFacts(doc) %>% as_tibble() df_fct <- df_fct %>% mutate( isNumber = ifelse(!fact %>% as.character() %>% readr::parse_number() %>% is.na(), TRUE, FALSE), amountFact = ifelse(isNumber == TRUE, fact %>% as.character() %>% readr::parse_number(), NA) ) %>% separate(elementId, c('codeElement', 'nameElement'), sep = '\\_', remove = FALSE) %>% suppressWarnings() df_cts <- XBRL::xbrlProcessContexts(doc) %>% as_tibble() df_unt <- XBRL::xbrlProcessUnits(doc) %>% as_tibble() df_sch <- XBRL::xbrlGetSchemaName(doc) %>% as_tibble() df_footnotes <- XBRL::xbrlProcessFootnotes(doc) %>% as_tibble() XBRL::xbrlFree(doc) url_xsd <- url %>% str_replace(".xml", ".xsd") url_xsd %>% curl_download(destfile = tf) docS <- tf %>% XBRL::xbrlParse() df_rls <- docS %>% XBRL::xbrlProcessRoles() %>% as_tibble() url_cal <- url %>% str_replace(".xml", "_cal.xml") if (httr::url_ok(url_cal) %>% suppressWarnings()){ url_cal %>% curl_download(destfile = tf) docS <- tf %>% XBRL::xbrlParse() df_calcs <- docS %>% XBRL::xbrlProcessArcs(arcType = 'calculation') %>% as_tibble() } else { df_calcs <- tibble() } url_def <- url %>% str_replace(".xml", "_def.xml") url_def %>% curl_download(destfile = tf) docS <- tf %>% XBRL::xbrlParse() df_defs <- docS %>% XBRL::xbrlProcessArcs(arcType = 'definition') %>% as_tibble() url_lab <- url %>% str_replace(".xml", "_lab.xml") url_lab %>% curl_download(destfile = tf) docS <- tf %>% XBRL::xbrlParse() df_labels <- docS %>% XBRL::xbrlProcessLabels() %>% as_tibble() url_pre <- url %>% str_replace(".xml", "_pre.xml") url_pre %>% curl_download(destfile = tf) docS <- tf %>% XBRL::xbrlParse() tf %>% unlink() data <- tibble( idCIK = cik, urlSECFiling = url, dataFacts = list(df_fct), dataContexts = list(df_cts), dataUnits = list(df_unt), dataFootnotes = list(df_footnotes), dataRoles = list(df_rls), dataCalculations = list(df_calcs) , dataDefinitions = list(df_defs), dataLabel = list(df_labels) ) td %>% unlink() tf %>% unlink() if (return_message) { list("Parsed: ", url) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } return(data) } .sec_form_title_df <- function() { tibble( nameSEC = c( "conversionOrExercisePrice", "deemedExecutionDate", "directOrIndirectOwnership", "documentType", "equitySwapInvolved", "exerciseDate", "expirationDate", "footnote", "isDirector", "isOfficer", "isOther", "issuerCik", "issuerName", "issuerTradingSymbol", "isTenPercentOwner", "natureOfOwnership", "noSecuritiesOwned", "notSubjectToSection16", "officerTitle", "otherText", "periodOfReport", "postTransactionAmountsOwnedFollowingTransaction", "remarks", "rptOwnerCik", "rptOwnerCity", "rptOwnerName", "rptOwnerState", "rptOwnerStateDescription", "rptOwnerStreet1", "rptOwnerStreet2", "rptOwnerZipCode", "schemaVersion", "securityTitle", "sharesOwnedFollowingTransaction", "signatureDate", "signatureName", "transactionAcquiredDisposedCode", "transactionCode", "transactionDate", "transactionFormType", "transactionPricePerShare", "transactionShares", "transactionTimeliness", "transactionTotalValue", "underlyingSecurityShares", "underlyingSecurityTitle", "clarificationOfResponse", "isBusinessCombinationTransaction", "cik", "moreThanOneYear", "previousName", "edgarPreviousNameList", "entityName", "entityType", "entityTypeOtherDesc", "federalExemptionsExclusions", "industryGroupType", "investmentFundType", "investmentFundInfo", "hasNonAccreditedInvestors", "numberNonAccreditedInvestors", "totalNumberAlreadyInvested", "city", "stateOrCountry", "stateOrCountryDescription", "street1", "street2", "zipCode", "issuerPhoneNumber", "issuerPreviousNameList", "jurisdictionOfInc", "overFiveYears", "yearOfInc", "withinFiveYears", "yetToBeFormed", "aggregateNetAssetValueRange", "revenueRange", "minimumInvestmentAccepted", "totalAmountSold", "totalOfferingAmount", "totalRemaining", "firstName", "lastName", "middleName", "relationship", "relationshipClarification", "dollarAmount", "isEstimate", "associatedBDCRDNumber", "associatedBDName", "foreignSolicitation", "recipientCRDNumber", "recipientName", "description", "state", "statesOfSolicitationList", "authorizedRepresentative", "nameOfSigner", "signatureTitle", "submissionType", "testOrLive", "dateOfFirstSale", "yetToOccur", "isAmendment", "descriptionOfOtherType", "isDebtType", "isEquityType", "isMineralPropertyType", "isOptionToAcquireType", "isOtherType", "isPooledInvestmentFundType", "isSecurityToBeAcquiredType", "isTenantInCommonType", 'notSubjectToSection16', 'rptOwnerStreet1', 'rptOwnerStreet2', "liveTestFlag", "confirmingCopyFlag", "returnCopyFlag", "overrideInternetFlag", "ccc", "reportCalendarOrQuarter", "filingManagername", "filingManageraddressstreet1", "filingManageraddressstreet2", "filingManageraddresscity", "filingManageraddressstateOrCountry", 'filingManagerstateOrCountryDescription', "filingManageraddresszipCode", "reportType", "form13FFileNumber", "provideInfoForInstruction5", "name", "title", "phone", "signature", "otherIncludedManagersCount", "tableEntryTotal", "tableValueTotal", "isConfidentialOmitted", "nameOfIssuer", "titleOfClass", "cusip", "value", "investmentDiscretion", "otherManager", "putCall", "sshPrnamt", "sshPrnamtType", "Sole", "Shared", "None", "offeringFileNumber", "sinceLastFiling", "jurisdictionOrganization", "yearIncorporation", "sicCode", "irsNum", "fullTimeEmployees", "partTimeEmployees", "phoneNumber", "connectionName", "industryGroup", "cashEquivalents", "investmentSecurities", "accountsReceivable", "propertyPlantEquipment", "totalAssets", "accountsPayable", "longTermDebt", "totalLiabilities", "totalStockholderEquity", "totalLiabilitiesAndEquity", "totalRevenues", "costAndExpensesApplToRevenues", "depreciationAndAmortization", "netIncome", "earningsPerShareBasic", "earningsPerShareDiluted", "nameAuditor", "commonEquityClassName", "outstandingCommonEquity", "commonCusipEquity", "publiclyTradedCommonEquity", "preferredEquityClassName", "outstandingPreferredEquity", "preferredCusipEquity", "publiclyTradedPreferredEquity", "debtSecuritiesClassName", "outstandingDebtSecurities", "cusipDebtSecurities", "publiclyTradedDebtSecurities", "certifyIfTrue", "certifyIfNotDisqualified", "summaryInfo", "financialStatementAuditStatus", "securitiesOfferedTypes", "offerDelayedContinuousFlag", "offeringYearFlag", "offeringAfterQualifFlag", "offeringBestEffortsFlag", "solicitationProposedOfferingFlag", "resaleSecuritiesAffiliatesFlag", "securitiesOffered", "outstandingSecurities", "pricePerSecurity", "issuerAggregateOffering", "securityHolderAggegate", "qualificationOfferingAggregate", "concurrentOfferingAggregate", "totalAggregateOffering", "underwritersServiceProviderName", "underwritersFees", "auditorServiceProviderName", "auditorFees", "legalServiceProviderName", "legalFees", "promotersServiceProviderName", "promotersFees", "brokerDealerCrdNumber", "estimatedNetAmount", "clarificationResponses", "jurisdictionsOfSecOfferedSame", "issueJuridicationSecuritiesOffering", "dealersJuridicationSecuritiesOffering", "securitiesIssuerName", "securitiesIssuerTitle", "securitiesIssuedTotalAmount", "securitiesPrincipalHolderAmount", "securitiesIssuedAggregateAmount", "securitiesActExcemption", "certifyIfBadActor", "salesCommissionsServiceProviderName", "salesCommissionsServiceProviderFees", "jurisdictionsOfSecOfferedNone", "ifUnregsiteredNone", "blueSkyServiceProviderName", "blueSkyFees", 'indicateTier1Tier2Offering', 'X.1.A.A.', 'X.1.A.A.', 'aggregateConsiderationBasis', 'findersFeesServiceProviderName' , 'finderFeesFee', 'loans', 'propertyAndEquipment', 'deposits', 'totalInterestIncome', 'totalInterestExpenses', 'securitiesOfferedOtherDesc', 'comment', "assetTypeNumber", "assetNumber", "assetGroupNumber", "reportPeriodBeginningDate", "reportPeriodEndDate", "issuerName", "originalIssuanceDate", "originalSecurityAmount", "originalSecurityTermNumber", "securityMaturityDate", "originalAmortizationTermNumber", "originalInterestRatePercentage", "accrualTypeCode", "interestRateTypeCode", "originalInterestOnlyTermNumber", "firstPaymentDate", "underwritingIndicator", "securityTitleName", "denominationNumber", "currencyName", "trusteeName", "secFileNumber", "cik", "callableIndicator", "paymentFrequencyCode", "zeroCouponIndicator", "assetAddedIndicator", "assetModifiedIndicator", "reportPeriodBeginningAssetBalanceAmount", "reportPeriodBeginningScheduledAssetBalanceAmount", "reportPeriodScheduledPaymentAmount", "reportPeriodInterestRatePercentage", "totalActualPaidAmount", "actualInterestCollectionPercentage", "actualPrincipalCollectedAmount", "actualOtherCollectionAmount", "otherPrincipalAdjustmentAmount", "otherInterestAdjustmentAmount", "scheduledInterestAmount", "scheduledPrincipalAmount", "endReportingPeriodActualBalanceAmount", "endReportingPeriodScheduledBalanceAmount", "servicingFeePercentage", "servicingFlatFeeAmount", "zeroBalanceCode", "zeroBalanceEffectiveDate", "remainingTermToMaturityNumber", "currentDelinquentStatusNumber", "paymentPastDueDaysNumber", "paymentPastDueNumber", "nextReportPeriodPaymentDueAmount", "nextDueDate", "primaryLoanServicerName", "mostRecentServicingTransferReceivedDate", "assetSubjectToDemandIndicator", "statusAssetSubjectToDemandCode", "repurchaseAmount", "demandResolutionDate", "repurchaserName", "repurchaseReplacementReasonCode", "reportPeriodBeginDate", "originalLoanPurposeCode", "originatorName", "originalLoanAmount", "originalLoanMaturityDate", "originalInterestRateTypeCode", "originalLienPositionCode", "mostRecentJuniorLoanBalanceAmount", "mostRecentJuniorLoanBalanceDate", "mostRecentSeniorLoanAmount", "mostRecentSeniorLoanAmountDate", "loanTypeMostSeniorLienCode", "mostSeniorLienHybridPeriodNumber", "mostSeniorLienNegativeAmortizationLimitPercentage", "mostSeniorLienOriginationDate", "prepaymentPenaltyIndicator", "negativeAmortizationIndicator", "modificationIndicator", "modificationNumber", "mortgageInsuranceRequirementIndicator", "balloonIndicator", "coveredHighCostCode", "servicerHazardInsuranceCode", "refinanceCashOutAmount", "totalOriginationDiscountAmount", "brokerIndicator", "channelCode", "nationalMortgageLicenseSystemCompanyNumber", "buyDownNumber", "loanDelinquencyAdvanceNumber", "originationARMIndexCode", "armMarginPercentage", "fullyIndexedRatePercentage", "initialFixedRatePeriodHybridARMNumber", "initialInterestRateDecreasePercentage", "initialInterestRateIncreasePercentage", "indexLookbackNumber", "subsequentInterestRateResetNumber", "lifetimeRateCeilingPercentage", "lifetimeRateFloorPercentage", "subsequentInterestRateDecreasePercentage", "subsequentInterestRateIncreasePercentage", "subsequentPaymentResetNumber", "armRoundCode", "armRoundPercentage", "optionArmIndicator", "paymentMethodAfterRecastCode", "initialMinimumPaymentAmount", "convertibleIndicator", "HELOCIndicator", "HELOCDrawNumber", "prepaymentPenaltyCalculationCode", "prepaymentPenaltyTypeCode", "prepaymentPenaltyTotalTermNumber", "prepaymentPenaltyHardTermNumber", "negativeAmortizationLimitAmount", "negativeAmortizationInitialRecastNumber", "negativeAmortizationSubsequentRecastNumber", "negativeAmortizationBalanceAmount", "initialFixedPaymentNumber", "initialPaymentCapPercentage", "subsequentPaymentCapPercentage", "initialMinimumPaymentResetNumber", "subsequentMinimumPaymentResetNumber", "minimumPaymentAmount", "geographicalLocation", "occupancyStatusCode", "mostRecentOccupancyStatusCode", "propertyTypeCode", "mostRecentPropertyValueAmount", "mostRecentPropertyValueTypeCode", "mostRecentPropertyValueDate", "mostRecentAVMModelCode", "mostRecentAVMConfidenceNumber", "originalCLTVPercentage", "originalLTVPercentage", "originalObligorNumber", "originalObligorCreditScoreNumber", "originalObligorCreditScoreType", "mostRecentObligorCreditScoreNumber", "mostRecentObligorCreditScoreType", "mostRecentObligorCreditScoreDate", "obligorIncomeVerificationLevelCode", "IRSForm4506TIndicator", "originatorFrontEndDTIPercentage", "originatorBackEndDTIPercentage", "obligorEmploymentVerificationCode", "obligorEmploymentLengthCode", "obligorAssetVerificationCode", "originalPledgedAssetsAmount", "qualificationMethodCode", "mortgageInsuranceCompanyName", "mortgageInsuranceCoveragePercentage", "poolInsuranceCompanyName", "poolInsuranceStopLossPercentage", "mortgageInsuranceCoverageTypeCode", "modificationIndicatorReportingPeriod", "nextPaymentDueDate", "advancingMethodCode", "servicingAdvanceMethodologyCode", "stopPrincipalInterestAdvancingDate", "reportingPeriodBeginningLoanBalanceAmount", "reportingPeriodBeginningScheduledLoanBalanceAmount", "nextReportingPeriodPaymentDueAmount", "reportingPeriodInterestRatePercentage", "nextInterestRatePercentage", "otherAssessedUncollectedServicerFeeamount", "otherServicingFeeRetainedByServicerAmount", "reportingPeriodEndActualBalanceAmount", "reportingPeriodEndScheduledBalanceAmount", "reportingPeriodScheduledPaymentAmount", "actualInterestCollectedAmount", "actualOtherCollectedAmount", "paidThroughDate", "interestPaidThroughDate", "paidFullAmount", "servicerAdvancedPrincipalAmount", "servicerAdvancedRepaidPrincipalAmount", "servicerAdvancedCumulativePrincipalAmount", "servicerAdvanceInterestAmount", "servicerAdvanceRepaidInterestAmount", "servicerAdvanceCumulativeInterestAmount", "servicerAdvanceTaxesInsuranceAmount", "servicerAdvanceRepaidTaxesInsuranceAmount", "servicerAdvanceCumulativeTaxesInsuranceAmount", "servicerAdvanceCorporateAmount", "servicerAdvanceRepaidCorporateAmount", "servicerAdvanceCumulativeCorporateAmount", "mostRecentTwelveMonthHistoryCode", "nextResetRatePercentage", "nextPaymentChangeDate", "nextInterestRateChangeDate", "nextResetPaymentAmount", "exercisedArmConversionOptionIndicator", "primaryServicerName", "masterServicerName", "specialServicerName", "subServicerName", "assetSubjectDemandIndicator", "assetSubjectDemandStatusCode", "repurchaseReplacementCode", "chargeOffPrincipalAmount", "chargeOffInterestAmount", "lossMitigationTypeCode", "mostRecentLoanModificationEventCode", "mostRecentLoanModificationEffectiveDate", "postModificationMaturityDate", "postModificationInterestRateTypeCode", "postModificationAmortizationTypeCode", "postModificationInterestPercentage", "postModificationFirstPaymentDate", "postModificationLoanBalanceAmount", "postModificationPrincipalInterestPaymentAmount", "totalCapAmount", "incomeVerificationIndicatorAtModification", "modificationFrontEndDebtToIncomePercentage", "modificationBackEndDebtToIncomePercentage", "totalDeferredAmount", "forgivenPrincipalCumulativeAmount", "forgivenPrincipalReportingPeriodAmount", "forgivenInterestCumulativeAmount", "forgivenInterestReportingPeriodAmount", "actualEndingBalanceTotalDebtAmount", "scheduledEndingBalanceTotalDebtAmount", "postModificationARMCode", "postModificationARMIndexCode", "postModificationMarginPercentage", "postModificationInterestResetNumber", "postModificationNextResetDate", "postModificationIndexLookbackNumber", "postModificationARMRoundingCode", "postModificationARMRoundingPercentage", "postModificationInitialMinimumPayment", "postModificationNextPaymentAdjustmentDate", "postModificationARMPaymentRecastFrequency", "postModificationLifetimeFloorPercentage", "postModificationLifetimeCeilingPercentage", "postModificationInitialInterestRateIncreasePercentage", "postModificationInitialInterestRateDecreasePercentage", "postModificationSubsequentInterestIncreasePercentage", "postModificationSubsequentInterestRateDecreasePercentage", "postModificationPaymentCapPercentage", "postModificationPaymentMethodAfterRecastCode", "postModificationARMInterestRateTeaserNumber", "postModificationARMPaymentTeaserNumber", "postModificationARMNegativeAmortizationIndicator", "postModificationARMNegativeAmortizationCapPercentage", "postModificationInterestOnlyTermNumber", "postModificationInterestOnlyLastPaymentDate", "postModificationBalloonAmount", "postModificationInterestRateStepIndicator", "postModificationStepInterestPercentage", "postModificationStepDate", "postModificationStepPrincipalInterestPaymentAmount", "postModificationStepNumber", "postModificationMaximumFutureStepAgreementPercentage", "postModificationMaximumStepAgreementRateDate", "nonInterestBearingDeferredPrincipalCumulativeAmount", "nonInterestBearingDeferredPrincipalReportingPeriodAmount", "recoveryDeferredPrincipalReportingPeriodAmount", "nonInterestBearingDeferredPaidFullAmount", "nonInterestBearingDeferredInterestFeeReportingPeriodAmount", "nonInterestBearingDeferredInterestFeeCumulativeAmount", "recoveryDeferredInterestFeeReportingPeriodAmount", "mostRecentForbearancePlanOrTrialModificationStartDate", "mostRecentForbearancePlanOrTrialModificationScheduledEndDate", "mostRecentTrialModificationViolatedDate", "mostRecentRepaymentPlanStartDate", "mostRecentRepaymentPlanScheduledEndDate", "mostRecentRepaymentPlanViolatedDate", "shortSaleAcceptedOfferAmount", "mostRecentLossMitigationExitDate", "mostRecentLossMitigationExitCode", "attorneyReferralDate", "foreclosureDelayReasonCode", "foreclosureExitDate", "foreclosureExitReasonCode", "noticeOfIntentDate", "mostRecentAcceptedREOOfferAmount", "mostRecentAcceptedREOOfferDate", "grossLiquidationProceedsAmount", "netSalesProceedsAmount", "reportingPeriodLossPassedToIssuingEntityAmount", "cumulativeTotalLossPassedToIssuingEntityAmount", "subsequentRecoveryAmount", "evictionIndicator", "reoExitDate", "reoExitReasonCode", "UPBLiquidationAmount", "servicingFeesClaimedAmount", "servicerAdvanceReimbursedPrincipalAmount", "servicerAdvanceReimbursedInterestAmount", "servicerAdvanceReimbursedTaxesInsuranceAmount", "servicerAdvanceReimbursedCorporateAmount", "REOManagementFeesAmount", "cashKeyDeedAmount", "performanceIncentiveFeesAmount", "mortgageInsuranceClaimFiledDate", "mortgageInsuranceClaimAmount", "mortgageInsuranceClaimPaidDate", "mortgageInsuranceClaimPaidAmount", "mortgageInsuranceClaimDeniedRescindedDate", "marketableTitleTransferDate", "nonPayStatusCode", "reportingActionCode", "GroupID", "reportingPeriodBeginningDate", "reportingPeriodEndDate", "originationDate", "originalTermLoanNumber", "maturityDate", "interestRateSecuritizationPercentage", "interestAccrualMethodCode", "firstLoanPaymentDueDate", "lienPositionSecuritizationCode", "loanStructureCode", "paymentTypeCode", "periodicPrincipalAndInterestPaymentSecuritizationAmount", "scheduledPrincipalBalanceSecuritizationAmount", "NumberPropertiesSecuritization", "NumberProperties", "graceDaysAllowedNumber", "interestOnlyIndicator", "prepaymentPremiumIndicator", "modifiedIndicator", "armIndexCode", "firstRateAdjustmentDate", "firstPaymentAdjustmentDate", "armMarginNumber", "lifetimeRateCapPercentage", "periodicRateIncreaseLimitPercentage", "periodicRateDecreaseLimitPercentage", "periodicPaymentAdjustmentMaximumAmount", "periodicPaymentAdjustmentMaximumPercent", "rateResetFrequencyCode", "paymentResetFrequencyCode", "indexLookbackDaysNumber", "prepaymentLockOutEndDate", "yieldMaintenanceEndDate", "prepaymentPremiumsEndDate", "maximumNegativeAmortizationAllowedPercentage", "maximumNegativeAmortizationAllowedAmount", "negativeAmortizationDeferredInterestCapAmount", "deferredInterestCumulativeAmount", "deferredInterestCollectedAmount", "property", "reportPeriodModificationIndicator", "reportPeriodBeginningScheduleLoanBalanceAmount", "totalScheduledPrincipalInterestDueAmount", "servicerTrusteeFeeRatePercentage", "unscheduledPrincipalCollectedAmount", "reportPeriodEndActualBalanceAmount", "reportPeriodEndScheduledLoanBalanceAmount", "hyperAmortizingDate", "servicingAdvanceMethodCode", "nonRecoverabilityIndicator", "totalPrincipalInterestAdvancedOutstandingAmount", "totalTaxesInsuranceAdvancesOutstandingAmount", "otherExpensesAdvancedOutstandingAmount", "paymentStatusLoanCode", "armIndexRatePercentage", "nextInterestRateChangeAdjustmentDate", "nextPaymentAdjustmentDate", "mostRecentSpecialServicerTransferDate", "mostRecentMasterServicerReturnDate", "realizedLossToTrustAmount", "liquidationPrepaymentCode", "liquidationPrepaymentDate", "prepaymentPremiumYieldMaintenanceReceivedAmount", "workoutStrategyCode", "lastModificationDate", "modificationCode", "postModificationPaymentAmount", "postModificationAmortizationPeriodAmount", "propertyName", "propertyAddress", "propertyCity", "propertyState", "propertyZip", "propertyCounty", "netRentableSquareFeetNumber", "netRentableSquareFeetSecuritizationNumber", "unitsBedsRoomsNumber", "unitsBedsRoomsSecuritizationNumber", "yearBuiltNumber", "yearLastRenovated", "valuationSecuritizationAmount", "valuationSourceSecuritizationCode", "valuationSecuritizationDate", "mostRecentValuationAmount", "mostRecentValuationDate", "mostRecentValuationSourceCode", "physicalOccupancySecuritizationPercentage", "mostRecentPhysicalOccupancyPercentage", "propertyStatusCode", "defeasanceOptionStartDate", "DefeasedStatusCode", "largestTenant", "squareFeetLargestTenantNumber", "leaseExpirationLargestTenantDate", "secondLargestTenant", "squareFeetSecondLargestTenantNumber", "leaseExpirationSecondLargestTenantDate", "thirdLargestTenant", "squareFeetThirdLargestTenantNumber", "leaseExpirationThirdLargestTenantDate", "financialsSecuritizationDate", "mostRecentFinancialsStartDate", "mostRecentFinancialsEndDate", "revenueSecuritizationAmount", "mostRecentRevenueAmount", "operatingExpensesSecuritizationAmount", "operatingExpensesAmount", "netOperatingIncomeSecuritizationAmount", "mostRecentNetOperatingIncomeAmount", "netCashFlowFlowSecuritizationAmount", "mostRecentNetCashFlowAmount", "netOperatingIncomeNetCashFlowSecuritizationCode", "netOperatingIncomeNetCashFlowCode", "mostRecentDebtServiceAmount", "debtServiceCoverageNetOperatingIncomeSecuritizationPercentage", "mostRecentDebtServiceCoverageNetOperatingIncomePercentage", "debtServiceCoverageNetCashFlowSecuritizationPercentage", "mostRecentDebtServiceCoverageNetCashFlowpercentage", "debtServiceCoverageSecuritizationCode", "mostRecentDebtServiceCoverageCode", "mostRecentAnnualLeaseRolloverReviewDate", "reportingPeriodEndingDate", "originalLoanTerm", "loanMaturityDate", "interestCalculationTypeCode", "originalFirstPaymentDate", "gracePeriodNumber", "subvented", "vehicleManufacturerName", "vehicleModelName", "vehicleNewUsedCode", "vehicleModelYear", "vehicleTypeCode", "vehicleValueAmount", "vehicleValueSourceCode", "obligorCreditScoreType", "obligorCreditScore", "coObligorIndicator", "paymentToIncomePercentage", "obligorGeographicLocation", "reportingPeriodModificationIndicator", "nextReportingPeriodPaymentAmountDue", "otherServicerFeeRetainedByServicer", "otherAssessedUncollectedServicerFeeAmount", "reportingPeriodActualEndBalanceAmount", "totalActualAmountPaid", "servicerAdvancedAmount", "currentDelinquencyStatus", "chargedoffPrincipalAmount", "recoveredAmount", "modificationTypeCode", "paymentExtendedNumber", "repossessedIndicator", "repossessedProceedsAmount", "reportingPeriodBeginDate", "acquisitionCost", "originalLeaseTermNumber", "scheduledTerminationDate", "gracePeriod", "baseResidualValue", "baseResidualSourceCode", "contractResidualValue", "lesseeCreditScoreType", "lesseeCreditScore", "lesseeIncomeVerificationLevelCode", "lesseeEmploymentVerificationCode", "coLesseePresentIndicator", "lesseeGeographicLocation", "remainingTermNumber", "reportingPeriodSecuritizationValueAmount", "securitizationDiscountRate", "otherLeaseLevelServicingFeesRetainedAmount", "reportingPeriodEndingActualBalanceAmount", "reportingPeriodEndActualSecuritizationAmount", "primaryLeaseServicerName", "DemandResolutionDate", "repurchaseOrReplacementReasonCode", "chargedOffAmount", "leaseExtended", "terminationIndicator", "excessFeeAmount", "liquidationProceedsAmount", "commentNumber", "commentColumn", "commentDescription", 'previousAccessionNumber', 'itemNumber', 'fieldName', 'notes' ), nameActual = c( "priceExerciseConversion", "dateDeemedExecution", "codeOwnershipDirectIndirect", "idDocument", "isEquitySwapInvolved", "dateExercised", "dateExpiration", "descriptionFootnote", "isDirector", "isOfficer", "isOther", "idCIKIssuer", "nameIssuer", "idTickerIssuer", "isTenPercentOwner", "descriptionNatureOfOwnership", "isNoSecuritiesOwned", "isNotSubjectToSection16", "titleOfficer", "descriptionOtherText", "dateReport", "countSharesOwnedPostTransaction", "descriptionRemarks", "idCIKOwner", "cityOwenr", "nameOwner", "stateOwner", "descriptionStateOwner", "addressStreet1Owner", "addressStreet2Owner", "zipcodeOwner", "idSchema", "titleSecurity", "countSharesOwnedPostTransaction", "dateSignature", "nameSignature", "codeTransactionAcquiredDisposed", "codeTransaction", "dateTransaction", "idFormTransaction", "pricePerShareTransaction", "countSharesTransaction", "idCodeTimelinessTransaction", "amountTransaction", "countSharesUnderlying", "titleSecurityUnderlying", "descriptionResponse", "isBusinessCombinationTransaction", "idCIK", "isMoreThanOneYear", "nameEntityPrevius", "listNameEntityPreviousEDGAR", "nameEntity", "typeEntity", "descriptionEntityTypeOther", "idFederalExemptionsExclusions", "typeIndustryGroup", "typeInvestmentFund", "descriptionInvestmentFund", "hasNonAccreditedInvestors", "countInvestorsNonAccredited", "countInvestorsActive", "cityEntity", "stateEntity", "descriptionStateEntity", "addressStreet1Entity", "addressStreet2Entity", "zipcodeEntity", "phoneNumberEntity", "listIssuerPreviousName", "jurisdictionOfInc", "isOverFiveYearsOld", "hasYearOfInc", "isFormedWithinFiveYears", "isYetToBeFormed", "rangeAgregateNetAssetValue", "rangeRevenue", "amountInvestmentMinimum", "amountSoldTotal", "amountOfferingTotal", "amountRemaining", "nameFirst", "nameLast", "nameMiddle", "relationshipEntity", "descriptionRelationship", "amountDollars", "isEstimate", "idCRDBroker", "nameBroker", "isForeignSolicitation", "idCRDRecipient", "nameRecipient", "stateDescription", "state", "listStatesSolicitation", "isAuthorizedRepresentative", "nameSignatory", "titleSignatory", "idForm", "codeTestOrLive", "dateFirstSale", "isYetToOccur", "isAmendment", "descriptionOtherType", "isDebtType", "isEquityType", "isMineralPropertyType", "isOptionToAcquireType", "isOtherType", "isPooledInvestmentFundType", "isSecurityToBeAcquiredType", "isTenantInCommonType", 'isNotSubjectToSection16', 'addressStreet1Owner', 'addressStreet2Owner', "isLiveTestFlag", "isConfirmingCopyFlag", "isReturnCopyFlag", "isOverrideInternetFlag", "idCCC", "dateReportCalendarOrQuarter", "nameFilingManager", "addressStreet1FilingManager", "addressStreet2FilingManager", "cityFilingManager", "stateFilingManager", 'descriptionStateFilingManager', "zipcodeFilingManager", "typeReport", "idSEC", "codeProvideInfoForInstruction5", "nameEntity", "titleEntity", "phoneEntity", "signatureEntity", "countOtherIncludedManagers", "countTableEntries", "amountValueHoldings", "isConfidentialOmitted", "nameIssuer", "classSecurities", "idCUSIP", "valueSecurities", "typeInvestmentDiscretion", "descriptionOtherManager", "codePutCall", "countSharesPrincipal", "codeSharesPrincipal", "countSharesVotingSole", "countSharesVotingShared", "countSharesVotingNone", "idSEC", "isSinceLastFiling", "codeJurisdictionOrganization", "yearIncorporation", "idSIC", "idIRS", "countEmployeesFullTime", "countEmployeesPartTime", "phoneEntity", "nameConnection", "nameIndustry", "amountCashEquivalents", "amountInvestmentSecurities", "amountAccountsReceivable", "amountPropertyPlantEquipment", "amountAssetsTotal", "amountAccountsPayable", "amountLongTermDebt", "amountLiabilitiesTotal", "amountStockholderEquityTotal", "amountLiabilitiesAndEquityTotal", "amountRevenuesTotal", "amountCostAndExpensesOfRevenue", "amountDepreciationAndAmortization", "amountNetIncome", "pershareEarningsBasic", "pershareEarningsDiluted", "nameAuditor", "nameCommonEquityClass", "amountCommonEquityOutstanding", "idCUSIPCommonEquity", "isCommonEquityPublic", "namePreferredEquityClass", "amountPreferredEquityOutstanding", "idCusipPreferrdEquity", "isdPreferredEquityPublic", "nameDebtSecuritiesClass", "amountOutstandingDebtSecurities", "idCUSIPDebtSecurities", "isDebtSecuritiesPublic", "isCertifyIfTrue", "isCertifyIfNotDisqualified", "codeTier1Tier2Offering", "codeFinancialStatementAuditStatus", "codeSecuritiesOfferedTypes", "codeOfferDelayedContinuous", "codeOfferingYearFlag", "codeOfferingAfterQualifFlag", "codeOfferingBestEffortsFlag", "codeSolicitationProposedOfferingFlag", "codeResaleSecuritiesAffiliates", "countSecuritiesOffered", "countSecuritiesOutstanding", "persharePrice", "amountOfferingIssuer", "amountOfferingExistingShareholdersSelling", "amountOfferingSold12MonthQualifiedOffering", "amountOfferingSoldConcurrent", "amountOfferingTotal", "nameUnderwritr", "amountUnderwritersFees", "nameAuditor", "amountAuditorFees", "nameLegal", "amountLegalFees", "namePromoter", "amountPromotersFees", "idCRDBroker", "amountOfferringProceedsNet", "descriptionResponse", "isJurisdictionsOfSecOfferedSame", "locatonJuridicationSecuritiesOffering", "locationDealersJuridicationSecuritiesOffering", "nameSecuritiesIssuer", "titleSecuritiesOffered", "amountSecuritiesIssued", "amountSecuritiesPrincipalHolder", "amountSecuritiesIssuedTotal", "nameSecuritiesActExemption", "isBadActor", "nameSalesCommissionsServiceProvider", "amountSalesCommissionsFees", "isJurisdictionsSecuritiesOfferingNone", "isUnRegisteredNone", "nameBlueSkyServiceProvider", "amountBlueSkyFees", 'isTier1Tier2Offering', 'idForm', 'idForm', 'amountOfferingConsiderationBasis', 'nameFindersFeeProvider' , 'amountFindersFee', 'amountLoans', 'amountPropertyAndEquipment', 'amountDeposits', 'amountInterestIncomeTotal', 'amountInterestExpenseTotal', 'descriptionOtherSecuritiesOffered', 'commentFiling', "numberAssetType", "numberAsset", "numberAssetGroup", "dateReportPeriodBeginning", "dateReportPeriodEnd", "nameIssuer", "dateOriginalIssuance", "amountOriginalSecurity", "numberOriginalSecurityTerm", "dateSecurityMaturity", "numberOriginalAmortizationTerm", "percentageOriginalInterestRate", "codeAccrualType", "codeInterestRateType", "numberOriginalInterestOnlyTerm", "dateFirstPayment", "hasUnderwriting", "nameSecurityTitle", "numberDenomination", "nameCurrency", "nameTrustee", "numberSecFile", "idCIK", "hasCallable", "codePaymentFrequency", "hasZeroCoupon", "hasAssetAdded", "hasAssetModified", "amountReportPeriodBeginningAssetBalance", "amountReportPeriodBeginningScheduledAssetBalance", "amountReportPeriodScheduledPayment", "percentageReportPeriodInterestRate", "amountTotalActualPaid", "percentageActualInterestCollection", "amountActualPrincipalCollected", "amountActualOtherCollection", "amountOtherPrincipalAdjustment", "amountOtherInterestAdjustment", "amountScheduledInterest", "amountScheduledPrincipal", "amountEndReportingPeriodActualBalance", "amountEndReportingPeriodScheduledBalance", "percentageServicingFee", "amountServicingFlatFee", "codeZeroBalance", "dateZeroBalanceEffective", "numberRemainingTermToMaturity", "numberCurrentDelinquentStatus", "numberPaymentPastDueDays", "numberPaymentPastDue", "amountNextReportPeriodPaymentDue", "dateNextDue", "namePrimaryLoanServicer", "dateMostRecentServicingTransferReceived", "hasAssetSubjectToDemand", "codeStatusAssetSubjectToDemand", "amountRepurchase", "dateDemandResolution", "nameRepurchaser", "codeRepurchaseReplacementReason", "dateReportPeriodBegin", "codeOriginalLoanPurpose", "nameOriginator", "amountOriginalLoan", "dateOriginalLoanMaturity", "codeOriginalInterestRateType", "codeOriginalLienPosition", "amountMostRecentJuniorLoanBalance", "dateMostRecentJuniorLoanBalance", "amountMostRecentSeniorLoan", "dateMostRecentSeniorLoanAmount", "codeLoanTypeMostSeniorLien", "numberMostSeniorLienHybridPeriod", "percentageMostSeniorLienNegativeAmortizationLimit", "dateMostSeniorLienOrigination", "hasPrepaymentPenalty", "hasNegativeAmortization", "hasModification", "numberModification", "hasMortgageInsuranceRequirement", "hasBalloon", "codeCoveredHighCost", "codeServicerHazardInsurance", "amountRefinanceCashOut", "amountTotalOriginationDiscount", "hasBroker", "codeChannel", "numberNationalMortgageLicenseSystemCompany", "numberBuyDown", "numberLoanDelinquencyAdvance", "codeOriginationARMIndex", "percentageArmMargin", "percentageFullyIndexedRate", "numberInitialFixedRatePeriodHybridARM", "percentageInitialInterestRateDecrease", "percentageInitialInterestRateIncrease", "numberIndexLookback", "numberSubsequentInterestRateReset", "percentageLifetimeRateCeiling", "percentageLifetimeRateFloor", "percentageSubsequentInterestRateDecrease", "percentageSubsequentInterestRateIncrease", "numberSubsequentPaymentReset", "codeArmRound", "percentageArmRound", "hasOptionArm", "codePaymentMethodAfterRecast", "amountInitialMinimumPayment", "hasConvertible", "hasHELOC", "numberHELOCDraw", "codePrepaymentPenaltyCalculation", "codePrepaymentPenaltyType", "numberPrepaymentPenaltyTotalTerm", "numberPrepaymentPenaltyHardTerm", "amountNegativeAmortizationLimit", "numberNegativeAmortizationInitialRecast", "numberNegativeAmortizationSubsequentRecast", "amountNegativeAmortizationBalance", "numberInitialFixedPayment", "percentageInitialPaymentCap", "percentageSubsequentPaymentCap", "numberInitialMinimumPaymentReset", "numberSubsequentMinimumPaymentReset", "amountMinimumPayment", "locationGeographical", "codeOccupancyStatus", "codeMostRecentOccupancyStatus", "codePropertyType", "amountMostRecentPropertyValue", "codeMostRecentPropertyValueType", "dateMostRecentPropertyValue", "codeMostRecentAVMModel", "numberMostRecentAVMConfidence", "percentageOriginalCLTV", "percentageOriginalLTV", "numberOriginalObligor", "numberOriginalObligorCreditScore", "typeOriginalObligorCreditScore", "numberMostRecentObligorCreditScore", "typeMostRecentObligorCreditScore", "dateMostRecentObligorCreditScore", "codeObligorIncomeVerificationLevel", "hasIRSForm4506T", "percentageOriginatorFrontEndDTI", "percentageOriginatorBackEndDTI", "codeObligorEmploymentVerification", "codeObligorEmploymentLength", "codeObligorAssetVerification", "amountOriginalPledgedAssets", "codeQualificationMethod", "nameMortgageInsuranceCompany", "percentageMortgageInsuranceCoverage", "namePoolInsuranceCompany", "percentagePoolInsuranceStopLoss", "codeMortgageInsuranceCoverageType", "periodModificationHasReporting", "dateNextPaymentDue", "codeAdvancingMethod", "codeServicingAdvanceMethodology", "dateStopPrincipalInterestAdvancing", "amountReportingPeriodBeginningLoanBalance", "amountReportingPeriodBeginningScheduledLoanBalance", "amountNextReportingPeriodPaymentDue", "percentageReportingPeriodInterestRate", "percentageNextInterestRate", "feeamountOtherAssessedUncollectedServicer", "amountOtherServicingFeeRetainedByServicer", "amountReportingPeriodEndActualBalance", "amountReportingPeriodEndScheduledBalance", "amountReportingPeriodScheduledPayment", "amountActualInterestCollected", "amountActualOtherCollected", "datePaidThrough", "dateInterestPaidThrough", "amountPaidFull", "amountServicerAdvancedPrincipal", "amountServicerAdvancedRepaidPrincipal", "amountServicerAdvancedCumulativePrincipal", "amountServicerAdvanceInterest", "amountServicerAdvanceRepaidInterest", "amountServicerAdvanceCumulativeInterest", "amountServicerAdvanceTaxesInsurance", "amountServicerAdvanceRepaidTaxesInsurance", "amountServicerAdvanceCumulativeTaxesInsurance", "amountServicerAdvanceCorporate", "amountServicerAdvanceRepaidCorporate", "amountServicerAdvanceCumulativeCorporate", "codeMostRecentTwelveMonthHistory", "percentageNextResetRate", "dateNextPaymentChange", "dateNextInterestRateChange", "amountNextResetPayment", "hasExercisedArmConversionOption", "namePrimaryServicer", "nameMasterServicer", "nameSpecialServicer", "nameSubServicer", "hasAssetSubjectDemand", "codeAssetSubjectDemandStatus", "codeRepurchaseReplacement", "amountChargeOffPrincipal", "amountChargeOffInterest", "codeLossMitigationType", "codeMostRecentLoanModificationEvent", "dateMostRecentLoanModificationEffective", "datePostModificationMaturity", "codePostModificationInterestRateType", "codePostModificationAmortizationType", "percentagePostModificationInterest", "datePostModificationFirstPayment", "amountPostModificationLoanBalance", "amountPostModificationPrincipalInterestPayment", "amountTotalCap", "modificationIncomeVerificationHasAt", "percentageModificationFrontEndDebtToIncome", "percentageModificationBackEndDebtToIncome", "amountTotalDeferred", "amountForgivenPrincipalCumulative", "amountForgivenPrincipalReportingPeriod", "amountForgivenInterestCumulative", "amountForgivenInterestReportingPeriod", "amountActualEndingBalanceTotalDebt", "amountScheduledEndingBalanceTotalDebt", "codePostModificationARM", "codePostModificationARMIndex", "percentagePostModificationMargin", "numberPostModificationInterestReset", "datePostModificationNextReset", "numberPostModificationIndexLookback", "codePostModificationARMRounding", "percentagePostModificationARMRounding", "paymentPostModificationInitialMinimum", "datePostModificationNextPaymentAdjustment", "frequencyPostModificationARMPaymentRecast", "percentagePostModificationLifetimeFloor", "percentagePostModificationLifetimeCeiling", "percentagePostModificationInitialInterestRateIncrease", "percentagePostModificationInitialInterestRateDecrease", "percentagePostModificationSubsequentInterestIncrease", "percentagePostModificationSubsequentInterestRateDecrease", "percentagePostModificationPaymentCap", "codePostModificationPaymentMethodAfterRecast", "numberPostModificationARMInterestRateTeaser", "numberPostModificationARMPaymentTeaser", "hasPostModificationARMNegativeAmortization", "percentagePostModificationARMNegativeAmortizationCap", "numberPostModificationInterestOnlyTerm", "datePostModificationInterestOnlyLastPayment", "amountPostModificationBalloon", "hasPostModificationInterestRateStep", "percentagePostModificationStepInterest", "datePostModificationStep", "amountPostModificationStepPrincipalInterestPayment", "numberPostModificationStep", "percentagePostModificationMaximumFutureStepAgreement", "datePostModificationMaximumStepAgreementRate", "amountNonInterestBearingDeferredPrincipalCumulative", "amountNonInterestBearingDeferredPrincipalReportingPeriod", "amountRecoveryDeferredPrincipalReportingPeriod", "amountNonInterestBearingDeferredPaidFull", "amountNonInterestBearingDeferredInterestFeeReportingPeriod", "amountNonInterestBearingDeferredInterestFeeCumulative", "amountRecoveryDeferredInterestFeeReportingPeriod", "dateMostRecentForbearancePlanOrTrialModificationStart", "dateMostRecentForbearancePlanOrTrialModificationScheduledEnd", "dateMostRecentTrialModificationViolated", "dateMostRecentRepaymentPlanStart", "dateMostRecentRepaymentPlanScheduledEnd", "dateMostRecentRepaymentPlanViolated", "amountShortSaleAcceptedOffer", "dateMostRecentLossMitigationExit", "codeMostRecentLossMitigationExit", "dateAttorneyReferral", "codeForeclosureDelayReason", "dateForeclosureExit", "codeForeclosureExitReason", "dateNoticeOfIntent", "amountMostRecentAcceptedREOOffer", "dateMostRecentAcceptedREOOffer", "amountGrossLiquidationProceeds", "amountNetSalesProceeds", "amountReportingPeriodLossPassedToIssuingEntity", "amountCumulativeTotalLossPassedToIssuingEntity", "amountSubsequentRecovery", "hasEviction", "dateReoExit", "codeReoExitReason", "amountUPBLiquidation", "amountServicingFeesClaimed", "amountServicerAdvanceReimbursedPrincipal", "amountServicerAdvanceReimbursedInterest", "amountServicerAdvanceReimbursedTaxesInsurance", "amountServicerAdvanceReimbursedCorporate", "amountREOManagementFees", "amountCashKeyDeed", "amountPerformanceIncentiveFees", "dateMortgageInsuranceClaimFiled", "amountMortgageInsuranceClaim", "dateMortgageInsuranceClaimPaid", "amountMortgageInsuranceClaimPaid", "dateMortgageInsuranceClaimDeniedRescinded", "dateMarketableTitleTransfer", "codeNonPayStatus", "codeReportingAction", "idGroup", "dateReportingPeriodBeginning", "dateReportingPeriodEnd", "dateOrigination", "numberOriginalTermLoan", "dateMaturity", "percentageInterestRateSecuritization", "codeInterestAccrualMethod", "dateFirstLoanPaymentDue", "codeLienPositionSecuritization", "codeLoanStructure", "codePaymentType", "amountPeriodicPrincipalAndInterestPaymentSecuritization", "amountScheduledPrincipalBalanceSecuritization", "securitizationNumberProperties", "propertiesNumber", "numberGraceDaysAllowed", "hasInterestOnly", "hasPrepaymentPremium", "hasModified", "codeArmIndex", "dateFirstRateAdjustment", "dateFirstPaymentAdjustment", "numberArmMargin", "percentageLifetimeRateCap", "percentagePeriodicRateIncreaseLimit", "percentagePeriodicRateDecreaseLimit", "amountPeriodicPaymentAdjustmentMaximum", "percentPeriodicPaymentAdjustmentMaximum", "codeRateResetFrequency", "codePaymentResetFrequency", "numberIndexLookbackDays", "datePrepaymentLockOutEnd", "dateYieldMaintenanceEnd", "datePrepaymentPremiumsEnd", "percentageMaximumNegativeAmortizationAllowed", "amountMaximumNegativeAmortizationAllowed", "amountNegativeAmortizationDeferredInterestCap", "amountDeferredInterestCumulative", "amountDeferredInterestCollected", "propertyProperty", "hasReportPeriodModification", "amountReportPeriodBeginningScheduleLoanBalance", "amountTotalScheduledPrincipalInterestDue", "percentageServicerTrusteeFeeRate", "amountUnscheduledPrincipalCollected", "amountReportPeriodEndActualBalance", "amountReportPeriodEndScheduledLoanBalance", "dateHyperAmortizing", "codeServicingAdvanceMethod", "hasNonRecoverability", "amountTotalPrincipalInterestAdvancedOutstanding", "amountTotalTaxesInsuranceAdvancesOutstanding", "amountOtherExpensesAdvancedOutstanding", "codePaymentStatusLoan", "percentageArmIndexRate", "dateNextInterestRateChangeAdjustment", "dateNextPaymentAdjustment", "dateMostRecentSpecialServicerTransfer", "dateMostRecentMasterServicerReturn", "amountRealizedLossToTrust", "codeLiquidationPrepayment", "dateLiquidationPrepayment", "amountPrepaymentPremiumYieldMaintenanceReceived", "codeWorkoutStrategy", "dateLastModification", "codeModification", "amountPostModificationPayment", "amountPostModificationAmortizationPeriod", "nameProperty", "addressProperty", "cityProperty", "stateProperty", "zipcodeProperty", "countyProperty", "numberNetRentableSquareFeet", "numberNetRentableSquareFeetSecuritization", "numberUnitsBedsRooms", "numberUnitsBedsRoomsSecuritization", "yearBuilt", "yearLastRenovated", "amountValuationSecuritization", "codeValuationSourceSecuritization", "dateValuationSecuritization", "amountMostRecentValuation", "dateMostRecentValuation", "codeMostRecentValuationSource", "percentagePhysicalOccupancySecuritization", "percentageMostRecentPhysicalOccupancy", "codePropertyStatus", "dateDefeasanceOptionStart", "codeDefeasedStatus", "tenantLargest", "numberSquareFeetLargestTenant", "dateLeaseExpirationLargestTenant", "tenantSecondLargest", "numberSquareFeetSecondLargestTenant", "dateLeaseExpirationSecondLargestTenant", "tenantThirdLargest", "numberSquareFeetThirdLargestTenant", "dateLeaseExpirationThirdLargestTenant", "dateFinancialsSecuritization", "dateMostRecentFinancialsStart", "dateMostRecentFinancialsEnd", "amountRevenueSecuritization", "amountMostRecentRevenue", "amountOperatingExpensesSecuritization", "amountOperatingExpenses", "amountNetOperatingIncomeSecuritization", "amountMostRecentNetOperatingIncome", "amountNetCashFlowFlowSecuritization", "amountMostRecentNetCashFlow", "codeNetOperatingIncomeNetCashFlowSecuritization", "codeNetOperatingIncomeNetCashFlow", "amountMostRecentDebtService", "percentageDebtServiceCoverageNetOperatingIncomeSecuritization", "percentageMostRecentDebtServiceCoverageNetOperatingIncome", "percentageDebtServiceCoverageNetCashFlowSecuritization", "percentageMostRecentDebtServiceCoverageNetCash", "codeDebtServiceCoverageSecuritization", "codeMostRecentDebtServiceCoverage", "dateMostRecentAnnualLeaseRolloverReview", "dateReportingPeriodEnding", "termOriginalLoan", "dateLoanMaturity", "codeInterestCalculationType", "dateOriginalFirstPayment", "numberGracePeriod", "subventedSubvented", "nameVehicleManufacturer", "nameVehicleModel", "codeVehicleNewUsed", "yearVehicleModel", "codeVehicleType", "amountVehicleValue", "codeVehicleValueSource", "typeObligorCreditScore", "scoreObligorCredit", "hasCoObligor", "percentagePaymentToIncome", "locationObligorGeographic", "hasReportingPeriodModification", "amountPaymentDueNextReportingPeriod", "servicerOtherServicerFeeRetainedBy", "amountOtherAssessedUncollectedServicerFee", "amountReportingPeriodActualEndBalance", "amountPaidTotalActual", "amountServicerAdvanced", "isDelinquent", "amountChargedoffPrincipal", "amountRecovered", "codeModificationType", "numberPaymentExtended", "hasRepossessed", "amountRepossessedProceeds", "dateReportingPeriodBegin", "costAcquisition", "numberOriginalLeaseTerm", "dateScheduledTermination", "periodGrace", "valueBaseResidual", "codeBaseResidualSource", "valueContractResidual", "typeLesseeCreditScore", "scoreLesseeCredit", "codeLesseeIncomeVerificationLevel", "codeLesseeEmploymentVerification", "hasCoLesseePresent", "locationLesseeGeographic", "numberRemainingTerm", "amountReportingPeriodSecuritizationValue", "rateSecuritizationDiscount", "amountOtherLeaseLevelServicingFeesRetained", "amountReportingPeriodEndingActualBalance", "amountReportingPeriodEndActualSecuritization", "namePrimaryLeaseServicer", "dateDemandResolution", "codeRepurchaseOrReplacementReason", "amountChargedOff", "extendedLease", "hasTermination", "amountExcessFee", "amountLiquidationProceeds", "detailNumberComment", "columnComment", "descriptionComment", 'idAccessionPrevious', 'numberItem', 'nameField', 'descriptionNotes' ) )} .filer_type_df <- function() { tibble( idTypeFilerOwner = c( 'insider', 'private' , 'broker_dealer', 'transfer_agent', 'ia', 'msd', 'bank', 'inv_co' ), typeFilerOwner = c( 'Insider', 'Private Placement', 'Broker Dealer', 'Transfer Agent', 'Investment Advisor', 'Bank', 'Municipal Securities Dealer', 'Investment Company' ) ) %>% mutate_all(str_to_upper) } dictionary_form_d_categories <- function() { category_df <- dplyr::tibble( idIndustry = 1:35, nameIndustry = c( "AGRICULTURE", "AIRLINES AND AIRPORTS", "BIOTECHNOLOGY", "BUSINESS SERVICES", "COAL MINING", "COMMERCIAL REAL ESTATE", "COMMERCIAL BANKING", "COMPUTERS", "CONSTRUCTION", "ELECTRIC UTILITIES", "ENERGY CONSERVATION", "ENVIORNMENTAL SERVICES", "HEALTH INSURANCE", "HOSPITALS AND PHYSICIANS", "INSURANCE", "INVESTING", "INVESTMENT BANKING", "LODGING AND CONVETION", "MANUFACTURING", "OIL AND GAS", "OTHER", "OTHER BANKING AND FINANCIAL SERVICES", "OTHER ENERGY", "OTHER HEALTH CARE", "OTHER REAL ESTATE", "OTHER TECHNOLOGY", "OTHER TRAVEL", "PHARMACEUTICALS", "POOLED INVESTMENT FUND", "REITS AND FINANCE", "RESIDENTIAL REAL ESTATE", "RESTAURANTS", "RETAIL", "TELECOMMUNICATIONS", "TRAVEL AND TOURISM" ), codeIndustryParent = c( "OTHER", "TRAVEL", "HEALTH", "OTHER", "ENERGY", "REAL", "FINANCE", "TECH", "REAL", "ENERGY", "ENERGY", "ENERGY", "HEALTH", "HEALTH", "FINANCE", "FINANCE", "FINANCE", "TRAVEL", "OTHER", "ENERGY", "OTHER", "FINANCE", "ENERGY", "HEALTH", "REAL", "TECH", "TRAVEL", "HEALTH", "FINANCE", "REAL", "REAL", "OTHER", "OTHER", "TECH", "TRAVEL" ), nameIndustryParent = c( "OTHER", "TRAVEL AND LEISURE", "HEALTHCARE", "OTHER", "ENERGY", "REAL ESTATE", "FINANCIAL", "TECHNOLOGY", "REAL ESTATE", "ENERGY", "ENERGY", "ENERGY", "HEALTHCARE", "HEALTHCARE", "FINANCIAL", "FINANCIAL", "FINANCIAL", "TRAVEL AND LEISURE", "OTHER", "ENERGY", "OTHER", "FINANCIAL", "ENERGY", "HEALTHCARE", "REAL ESTATE", "TECHNOLOGY", "TRAVEL AND LEISURE", "HEALTHCARE", "FINANCIAL", "REAL ESTATE", "REAL ESTATE", "OTHER", "OTHER", "TECHNOLOGY", "TRAVEL AND LEISURE" ) ) return(category_df) } .insider_code_df <- function() { insider_df <- tibble( idInsiderTransaction = c( "A", "C", "D", "F", "G", "H", "I", "J", "K", "L", "M", "NONE", "O", "P", "S", "U", "V", "W", "X", "Z" ), nameInsiderTransaction = c( "AWARD", "CONVEYANCE", "DISPOSITION TO ISSUER", "PAYMENT WITH SECURITIES", "GIFT", "EXPIRATION OF LONG DERIVATIVE POSITION", "DISCRETIONARY TRANSACTION", "OTHER", "EQUITY SWAP OR SIMILAR", "SMALL ACQUISITIONS", "EXEMPT", NA, "OTM EXERCISE", "PURCHASE", "SALE", "MERGER AND ACQUISITION", "REPORTED EARLY", "WILL OR LAWS OF DESCENT", "ITM OR ATM EXERCISE", "DEPOSIT INTO/WITHDRAWAL FROM VOTING TRUST" ), idTypeInsiderTransaction = c( "A", "D", "D", "D", "D", NA, NA, NA, NA, "A", "A", NA, "A", "A", "D", NA, NA, "D", "A", "D" ) ) return(insider_df) } dictionary_sec_filing_codes <- function() { tibble( idFormType = c( "1.01", "1.02", "1.03", "1.04", "2.01", "2.02", "2.03", "2.04", "2.05", "2.06", "3.01", "3.02", "3.03", "4.01", "4.02", "5.01", "5.02", "5.03", "5.04", "5.05", "5.06", "5.07", "5.08", "6.01", "6.02", "6.03", "6.04", "6.05", "7.01", "8.01", "9.01" ), nameFormType = c( "Entry into a Material Definitive Agreement", "Termination of a Material Definitive Agreement", "Bankruptcy or Receivership", "Mine Safety Reporting of Shutdowns and Patterns of Violations", "Completion of Acquisition or Disposition of Assets", "Results of Operations and Financial Condition", "Creation of a Direct Financial Obligation or an Obligation under an Off-Balance Sheet Arrangement of a Registrant", "Triggering Events That Accelerate or Increase a Direct Financial Obligation or an Obligation under an Off-Balance Sheet Arrangement", "Costs Associated with Exit or Disposal Activities", "Material Impairments", "Notice of Delisting or Failure to Satisfy a Continued Listing Rule or Standard; Transfer of Listing", "Unregistered Sales of Equity Securities", "Material Modification to Rights of Security Holders", "Changes in Registrant's Certifying Accountant", "Non-Reliance on Previously Issued Financial Statements or a Related Audit Report or Completed Interim Review", "Changes in Control of Registrant", "Departure of Directors or Certain Officers; Election of Directors; Appointment of Certain Officers; Compensatory Arrangements of Certain Officers", "Amendments to Articles of Incorporation or Bylaws; Change in Fiscal Year", "Temporary Suspension of Trading Under Registrant's Employee Benefit Plans", "Amendments to the Registrant's Code of Ethics, or Waiver of a Provision of the Code of Ethics", "Change in Shell Company Status", "Submission of Matters to a Vote of Security Holders", "Shareholder Director Nominations", "ABS Informational and Computational Material", "Change of Servicer or Trustee", "Change in Credit Enhancement or Other External Support", "Failure to Make a Required Distribution", "Securities Act Updating Disclosure", "Regulation FD Disclosure", "Other Events", "Financial Statements and Exhibits" ) %>% stringr::str_to_upper() ) } dictionary_sec_form_codes <- function() { tibble( idForm = c( "R", "A", "Q", "CR", "REG", "REGX", "O", "P", "X", "W", "SEC", "PROXY", "CT", "IS", "CO", "T" ), nameForm = c( "Other Report", "Annual Report", "Quarterly Report", "Current Report", "Registration", "Private Offering", "Ownership", "Prospectus", "Exemption", "Withdrawal", "SEC Correspondence", "Proxy Statement", "Confidential Treatment", "Initial Statement", "Change in Ownership", "Trades" ) %>% stringr::str_to_upper() ) } .company_type_df <- function() { tibble( idCompanyType = c( "ic", "i", "ia", "bd", "m", "t", "b", "c", "p", "etf", "mmf", "mf", "uit", "cef" ), nameCompanyType = c( "Investment Company", "Insider", "Investment Adviser", "Broker-dealer", "Municipal Securities Dealer", "Transfer Agent", "Bank", "Company", "Private Issuer", "ETF", "Money Market Fund", "Mutual Fund", "UIT", "Closed-end Fund" ) ) } dictionary_sec_rules <- function() { tibble( idRule = c( "06", "3C", "3C.7", "3C.1", "06b", "04", "46", "04.1", "04.2", "04.3", "05", "3C.6", "3C.5", "06c", "4a5", "3C.11", "3C.2", "3C.3", "3C.9", "3C.10", "3C.4", "3C.12", "3C.", "3C.14", "3" ), nameRule = c( "Rule 506", "Investment Company Act Section 3c", "Investment Company Act Section 3c", "Investment Company Act Section 3c", "Rule 506b", "Rule 504", "Rule 506c", "Rule 504b(1)(i)", "Rule 504b(1)(ii)", "Rule 504b(1)(iii)", "Rule 505", "Investment Company Act Section 3c", "Investment Company Act Section 3c", "Rule 506c", "Securities Act Section 4(a)(5)", "Investment Company Act Section 3c", "Investment Company Act Section 3c", "Investment Company Act Section 3c", "Investment Company Act Section 3c", "Investment Company Act Section 3c", "Investment Company Act Section 3c", "Investment Company Act Section 3c", "Investment Company Act Section 3c", "Investment Company Act Section 3c", "Investment Company Act Section 3c" ) ) %>% mutate_all(str_to_upper) } .parse_full_form_names <- function(sec_names) { df_names <- seq_along(sec_names) %>% future_map_dfr(function(x) { sec_name <- sec_names[[x]] name_pieces <- sec_name %>% str_replace_all('\\.value|\\.item', '') pieces <- name_pieces %>% str_split('\\.') %>% flatten_chr() pieces_no_num <- pieces[!pieces %>% str_detect("[0-9]")] peice_length <- pieces_no_num %>% length() is_street <- pieces %>% str_detect("street1|street2|Street1|Street2") %>% sum(na.rm = T) > 0 name_item <- pieces_no_num[length(pieces_no_num)] if (sec_name %>% str_detect('filingManager')) { name_item <- pieces %>% paste0(collapse = '') df <- tibble(nameSECFull = sec_name, nameSEC = name_item) return(df) } if (is_street) { name_item <- pieces[pieces %>% str_detect("street1|street2|Street1|Street2")] } is_sig <- name_pieces %>% str_detect('signature') & peice_length == 1 is_footnote <- sec_name %>% str_detect('footnote') is_issuer <- sec_name %>% str_detect('\\issuer.[A-Z]') is_federal <- sec_name %>% str_detect(pattern = "federalExemptionsExclusions") if (is_federal) { df <- tibble( nameSECFull = sec_name, nameTable = pieces[[1]], nameSEC = name_item ) return(df) } if (is_issuer) { items <- sec_name %>% str_split('\\.') %>% flatten_chr() countItem <- pieces[2] %>% as.character() %>% readr::parse_number() %>% suppressWarnings() name_item <- items[length(items)] df <- tibble( nameSECFull = sec_name, nameTable = 'issuer', countItem, nameSEC = name_item ) return(df) } if (is_footnote) { if (pieces %>% length() == 1) { countItem <- 0 item <- pieces[[1]] } else { item <- pieces[[1]] countItem <- pieces[2] %>% as.character() %>% readr::parse_number() %>% suppressWarnings() } return(tibble(nameTable = 'footnotes', nameSECFull = sec_name, nameSEC = item, countItem)) } if (is_sig) { df <- tibble(nameTable = 'signatures', nameSECFull = sec_name, nameSEC = name_item) return(df) } if (peice_length == 1) { df <- tibble(nameSECFull = sec_name, nameSEC = name_item) return(df) } piece_count <- length(pieces) if (piece_count == 1) { df <- tibble(nameSECFull = sec_name, nameSEC = sec_name) return(df) } if (piece_count == 2 &!is_footnote) { df <- tibble(nameSECFull = sec_name, nameTable = pieces[[1]] , nameSEC = name_item) return(df) } if (piece_count > 2) { countItem <- pieces[2] %>% as.character() %>% readr::parse_number() %>% suppressWarnings() df <- tibble( nameSECFull = sec_name, nameTable = pieces[[1]] , countItem, nameSEC = name_item ) return(df) } }) %>% filter(!nameSEC == '') df_dictionary <- .sec_form_title_df() has_missing_names <- df_names$nameSEC[!df_names$nameSEC %in% df_dictionary$nameSEC] %>% length() > 0 if (has_missing_names) { missing <- df_names$nameSEC[!df_names$nameSEC %in% df_dictionary$nameSEC] %>% unique() missing_names <- missing %>% paste0(collapse = '\n') stop(list("Missing:\n", missing_names) %>% purrr::reduce(paste0)) } df_names <- df_names %>% left_join(df_dictionary) %>% suppressWarnings() %>% suppressMessages() if (!'nameTable' %in% names(df_names)) { df_names <- df_names %>% mutate(nameTable = 'asset') } df_names <- df_names %>% select(nameTable, nameSECFull, nameSEC, nameActual, everything()) %>% mutate(nameTable = nameTable %>% str_replace('Id',''), nameTable = ifelse(nameTable %in% c('issuerCredentials','securitiesIssued'), NA, nameTable)) %>% suppressWarnings() %>% suppressMessages() } .parse_xml_tables <- function(url = "https://www.sec.gov/Archives/edgar/data/61004/000114036117000046/doc1.xml"){ page <- url %>% xml2::read_xml() tables <- page %>% xml_contents() %>% xml_name() %>% unique() data <- seq_along(tables) %>% future_map_dfr(function(x){ table <- tables[[x]] if (table %in% c('headerData', 'formData')) { form_tables <- page %>% xml_contents() %>% xml_name() table_loc <- table %>% grep(form_tables) xml_nodes <- page %>% xml_contents() %>% .[[table_loc]] } if (table %in% c('infoTable' , 'assets')) { xml_nodes <- page %>% xml_contents() } if (table == 'comment') { value <- page %>% xml_contents() %>% xml_text() df <- tibble(idTable = x, nameSECFull = table, value) return(df) } tables_special <- c('headerData', 'formData', 'infoTable', 'assets') if (!table %in% tables_special) { value_search <- list('//', table) %>% purrr::reduce(paste0) xml_nodes <- page %>% xml_contents() %>% xml_find_all(value_search) } if (xml_nodes %>% length() > 100) { list("Be patient there are ", xml_nodes %>% length() %>% formattable::comma(digits = 0), ' nodes to parse') %>% purrr::reduce(paste0) %>% cat(fill = T) } value_list <- xml_nodes %>% as_list() value_list <- value_list[value_list %>% future_map(length) %>% flatten_dbl() > 0] json_data <- value_list %>% jsonlite::toJSON(force = FALSE, dataframe = 'values') %>% jsonlite::fromJSON(simplifyDataFrame = TRUE, flatten = TRUE) wrong_output <- json_data %>% class() == 'array' if (wrong_output) { item <- xml_nodes %>% xml_name() value <- xml_nodes %>% xml_text() json_data <- tibble(item, value) %>% spread(item, value) } if (json_data %>% length() == 0) { return(tibble()) } if ('summaryInfo' %in% names(json_data)) { json_data <- seq_along(json_data) %>% map( function(x){ js_d <- json_data[x] if ('summaryInfo' %in% names(js_d)) { if (js_d$summaryInfo$clarificationResponses %>% length() == 0) { js_d$summaryInfo$clarificationResponses <- NULL } } return(js_d) }) %>% flatten() json_data <- json_data[json_data %>% future_map(function(x){data.frame(x, stringsAsFactors = F)} %>% nrow()) > 0] } json_data <- json_data %>% data.frame(stringsAsFactors = FALSE) %>% as_tibble() %>% mutate_all(as.character) %>% mutate(idTable = x) %>% gather(nameSECFull, value, -idTable) %>% arrange(idTable) return(json_data) }) data <- data %>% mutate(isList = value %>% str_detect('list')) %>% filter(!isList) %>% select(-isList) %>% mutate( nameSECFull = nameSECFull %>% str_replace_all( "filerInfo.flags.|filerInfo.filer.|coverPage.|.filer.|\\flags.|filer.credentials.", '' ), nameSECFull = nameSECFull %>% str_replace_all('filerInfo.|issuerCredentials.', '') ) rm(tables) rm(page) rm(url) return(data) } .parse_sec_form <- function(url = "https://www.sec.gov/Archives/edgar/data/61004/000114036117000046/doc1.xml", return_message = TRUE) { data <- .parse_xml_tables(url = url) if (!'nameSECFull' %in% names(data)) { data <- data %>% mutate(nameSECFull = nameSEC) } cik <- url %>% str_replace_all('https://www.sec.gov/Archives/edgar/data/', '') %>% str_split('/') %>% flatten_chr() %>% .[[1]] %>% as.character() %>% readr::parse_number() %>% suppressMessages() df_title <- .sec_form_title_df() is_13FInfo <- url %>% str_detect('form13fInfoTable.xml|infotable.xml') sec_names <- data$nameSECFull %>% unique() df_names <- .parse_full_form_names(sec_names = sec_names) df_names <- df_names %>% mutate(nameTable = ifelse( nameSECFull %>% str_detect("issuerAddress"), "issuerAddress", nameTable), nameTable = ifelse( nameSECFull %>% str_detect("reportingOwner"), "reportingOwner", nameTable) ) %>% mutate(nameTable = ifelse(nameSECFull %>% str_detect("issuerInfo."), 'issuerInfo', nameTable), nameTable = ifelse(nameSECFull %>% str_detect("securitiesIssued."), 'securitiesIssued', nameTable), nameTable = ifelse(nameSECFull %>% str_detect("summaryInfo."), 'summaryInfo', nameTable), nameTable = ifelse(nameSECFull %>% str_detect("^comment[A-Z]"), 'Comments', nameTable) ) if (is_13FInfo) { df_names <- df_names %>% mutate(nameTable = 'holdingsInformation') } if (!'nameSEC' %in% names(data)) { data <- data %>% mutate(nameSEC = nameSECFull) } data <- data %>% select(-nameSEC) %>% left_join(df_names) %>% mutate(nameActual = ifelse(nameSECFull == "X.1.A.A.", 'idForm', nameActual)) %>% suppressMessages() if ('countItem' %in% names(data)) { data <- data %>% select(nameTable, countItem, nameSECFull, nameActual, everything()) %>% mutate(countItem = countItem - 1) %>% suppressMessages() } if ('property' %in% data$nameTable) { data <- data %>% mutate(nameTable = ifelse(nameTable %>% is.na(), 'Asset', nameTable)) } has_metadata <- data %>% filter(nameTable %>% is.na()) %>% nrow() > 0 if (has_metadata) { df_metadata <- data %>% filter(nameTable %>% is.na()) %>% select(nameActual, value) %>% group_by(nameActual) %>% mutate(countItem = 1:n() - 1) %>% arrange(countItem) %>% ungroup() %>% filter(!nameActual %>% str_detect('idCCC')) %>% mutate(nameActual = ifelse(countItem == 0, nameActual, nameActual %>% paste0(countItem))) %>% select(-countItem) col_order <- df_metadata$nameActual df_metadata <- df_metadata %>% spread(nameActual, value) %>% select(one_of(col_order)) %>% mutate(urlSECFiling = url) %>% .resolve_form_columns() } else { df_metadata <- tibble(idCIKFiler = cik, urlSECFiling = url) } tables <- data %>% filter(!nameTable %>% is.na()) %>% .$nameTable %>% unique() data <- seq_along(tables) %>% future_map(function(x) { table <- tables[[x]] table_name <- list('data', table %>% substr(1, 1) %>% str_to_upper(), table %>% substr(2, nchar(table))) %>% purrr::reduce(paste0) table_df <- data %>% filter(nameTable == table) %>% select(dplyr::matches("countItem"), nameActual, value) %>% select(which(colMeans(is.na(.)) < 1)) %>% group_by(nameActual) %>% mutate(countItem = 1:n() - 1) %>% ungroup() has_counts <- table_df$countItem %>% max(na.rm = TRUE) > 0 if (has_counts) { table_df <- table_df %>% arrange(countItem) col_order <- c('countItem', table_df$nameActual) table_df <- table_df %>% spread(nameActual, value) %>% select(one_of(col_order)) %>% mutate(urlSECFiling = url) %>% .resolve_form_columns() table_df <- table_df %>% nest(-urlSECFiling, .key = data) } else { table_df <- table_df %>% select(-countItem) col_order <- c(table_df$nameActual) table_df <- table_df %>% spread(nameActual, value) %>% select(one_of(col_order)) %>% .resolve_form_columns() %>% mutate(urlSECFiling = url) table_df <- table_df %>% nest(-urlSECFiling, .key = data) } names(table_df)[[2]] <- table_name df_metadata <- df_metadata %>% left_join(table_df) %>% suppressMessages() }) %>% reduce(left_join) %>% suppressMessages() rm(df_metadata) return(data) } .parse_form_data <- function(.all_filings, filter_parameter = 'isXBRLInstanceFile', return_message = TRUE) { df_search <- .all_filings %>% filter_(.dots = filter_parameter) if (filter_parameter == 'isXBRLInstanceFile') { if (df_search %>% nrow() == 0) { return(tibble()) } parse_xbrl_filer_url_safe <- purrr::possibly(.parse_xbrl_filer_url, tibble()) all_data <- df_search$urlSECFiling %>% unique() %>% future_map_dfr(function(x) { .parse_xbrl_filer_url(url = x, return_message = return_message) }) all_data <- all_data %>% select(-dplyr::matches("idCIK1|nameFiler1")) %>% left_join(df_search %>% select(dplyr::matches("idForm"), dplyr::matches("idAccession"), dplyr::matches("nameFile"), dateFiling, urlSECFiling)) %>% select( dplyr::matches("idCIK"), dplyr::matches("name[Entity]|name[Filer]"), dateFiling, dplyr::matches("idForm"), dplyr::matches("idAccession"), dplyr::matches("nameFile"), everything() ) %>% suppressMessages() return(all_data) } if (filter_parameter == 'is13FFiling') { urls_df <- df_search %>% select(urlSECFiling, urlSECFilingDirectory) df_13f_urls <- 1:nrow(urls_df) %>% future_map_dfr(function(x){ row_df <- urls_df %>% slice(x) url <- row_df$urlSECFiling urlSECFilingDirectory <- row_df$urlSECFilingDirectory parts <- url %>% str_replace_all("https://www.sec.gov/Archives/edgar/data/", '') %>% str_split('\\/') %>% flatten_chr() idCIKFiler <- parts[[1]] %>% as.numeric() slugAccession <- parts[[2]] isPrimary <- parts[[3]] %>% str_detect("primary") tibble(idCIKFiler, slugAccession, isPrimary, urlSECFiling = url, urlSECFilingDirectory) }) slugs <- df_13f_urls$slugAccession %>% unique() df_13fs <- seq_along(slugs) %>% future_map_dfr(function(x){ slug <- slugs[[x]] df_period <- df_13f_urls %>% filter(slugAccession == slug) if (df_period %>% nrow() == 2) { primary_url <- df_period %>% filter(isPrimary) %>% .$urlSECFiling df_primary <- .parse_sec_form(url = primary_url, return_message = return_message) %>% mutate(urlSECFiling = primary_url) df_primary <- df_primary %>% left_join(df_13f_urls) %>% suppressWarnings() no_primary_url <- df_period %>% filter(!isPrimary) %>% .$urlSECFiling urlSECFilingDirectory <- df_period %>% filter(!isPrimary) %>% .$urlSECFilingDirectory df_primary_no <- .parse_sec_form(url = no_primary_url, return_message = return_message) %>% mutate(urlSECFiling = no_primary_url) data <- df_primary %>% select(-dplyr::matches("urlSECFiling")) %>% left_join(df_primary_no %>% select(-dplyr::matches("urlSECFiling"))) %>% mutate(urlSECFilingDirectory = urlSECFilingDirectory) %>% suppressMessages() return(data) } else { period_url <- df_period$urlFiling urlSECFilingDirectory <- df_period$urlSECFilingDirectory data <- .parse_sec_form(url = period_url, return_message = return_message) %>% mutate(urlFiling = period_url) %>% left_join(df_period) %>% mutate(urlSECFilingDirectory = urlSECFilingDirectory) return(data) } }) df_13fs <- df_13fs %>% left_join(urls_df) %>% left_join(df_search %>% select(dateFiling, datePeriodReport, datetimeAccepted, urlSECFilingDirectory, dplyr::matches("urlTextFilingFull"))) %>% select(-dplyr::matches("slugAcession")) %>% select(dplyr::matches("idCIKFiler"), dplyr::matches("nameFilingManager"), everything()) %>% select(dateFiling, everything()) %>% suppressMessages() return(df_13fs) } if (filter_parameter == 'isFormD') { if ('idForm' %in% names(df_search)){ df_search <- df_search %>% filter(!idForm %>% str_detect("10")) } } if (df_search %>% nrow() == 0) { return(tibble()) } parse_sec_form_safe <- purrr::possibly(.parse_sec_form, tibble()) all_data <- df_search$urlSECFiling %>% unique() %>% future_map_dfr(function(x) { parse_sec_form_safe(url = x, return_message = return_message) }) if (all_data %>% nrow() == 0) { return(all_data) } all_data <- all_data %>% select(-dplyr::matches("idCIK1|nameFiler1")) %>% left_join(df_search %>% select(dplyr::matches("idForm"), dplyr::matches("idAccession"), dplyr::matches("nameFile"), dateFiling, urlSECFiling)) %>% select( dplyr::matches("idCIK"), dplyr::matches("name[Entity]|name[Filer]"), dateFiling, dplyr::matches("idForm"), dplyr::matches("idAccession"), dplyr::matches("nameFile"), everything() ) %>% suppressMessages() if (filter_parameter == 'hasAssetFile') { if('dataComments' %in% names(all_data)) { df_comments <- all_data %>% select(idCIKFiler, dplyr::matches("idAccession"), dplyr::matches("dataComments")) %>% mutate(isNULL = dataComments %>% map_lgl(is_null)) %>% filter(!isNULL) %>% distinct() %>% select(-isNULL) all_data <- all_data %>% select(-dataComments) %>% mutate(isNULL = dataAsset %>% map_lgl(is_null)) %>% filter(!isNULL) %>% filter(!nameFile == "ASSET RELATED DOCUMENT") %>% distinct() %>% select(-isNULL) %>% left_join(df_comments) %>% suppressMessages() } } all_data <- all_data %>% select(which(colMeans(is.na(.)) < 1)) return(all_data) } .parse_sec_filing_index <- function(urls, return_message = TRUE) { df <- tibble() success <- function(res) { if (return_message) { list("Parsing: ", res$url) %>% purrr::reduce(paste0) %>% cat(fill = T) } page <- res$content %>% read_html() not_503 <- !res$status_code == 503 cik <- res$url %>% str_split('data/') %>% flatten_chr() %>% .[[2]] %>% str_split('/') %>% flatten_chr() %>% .[[1]] %>% as.numeric() if (not_503){ values <- page %>% html_nodes('.info') %>% html_text() if (length(values) == 0) { return(tibble()) } items <- page %>% html_nodes('.infoHead') %>% html_text() all_items <- items %>% map_chr(function(x) { is_zero <- x %>% str_count('\\ ') == 0 if (x == 'Accepted') { return("datetimeAccepted") } if (x == 'Documents') { return('countDocuments') } if (x == "items") { return('descriptionItems') } if (is_zero) { return('item' %>% paste0(x)) } if (x == "Period of Report") { return("datePeriodReport") } if (x == "429 Reference" | x %>% str_detect("Reference")) { return("reference429") } name_items <- x %>% str_split('\\ ') %>% flatten_chr() first <- name_items[name_items %>% length()] %>% str_to_lower() end <- name_items[1:(name_items %>% length() - 1)] %>% paste0(collapse = '') %>% str_to_title() final_name <- list(first, end) %>% purrr::invoke(paste0, .) return(final_name) }) search_url <- res$url df_metadata <- tibble(item = all_items, value = values) %>% mutate(urlSECFilingDirectory = search_url) %>% spread(item, value) df_metadata <- df_metadata %>% mutate_at(df_metadata %>% select(dplyr::matches('count')) %>% names(), funs(. %>% as.numeric())) %>% mutate_at( df_metadata %>% select(dplyr::matches('^date[A-Z]')) %>% select(-dplyr::matches("datetime")) %>% names(), funs(. %>% lubridate::ymd()) ) %>% mutate_at( df_metadata %>% select(dplyr::matches('^datetime')) %>% select(-dplyr::matches("datetime")) %>% names(), funs(. %>% lubridate::ymd_hms()) ) urlSECFiling <- page %>% html_nodes(' html_attr('href') %>% paste0('https://www.sec.gov', .) namehref <- page %>% html_nodes(' html_text() files <- page %>% html_nodes(' html_text() %>% str_to_upper() wrong_length <- !(namehref %>% length() == files %>% length()) if (wrong_length) { namehref <- namehref[namehref %>% str_detect("\\.")] urlSECFiling <- urlSECFiling[2:length(urlSECFiling)] } files <- files %>% str_trim() types_form <- page %>% html_nodes('td:nth-child(4)') %>% html_text() %>% str_trim() types_form[types_form == ''] <- NA types_form <- types_form[seq_along(files)] files[files == ''] <- NA search_url <- res$url data <- tibble( nameFile = files, nameHref = namehref, typeForm = types_form, urlSECFiling ) %>% mutate( isXML = nameHref %>% str_detect("xml"), isForm3_4 = nameHref %>% str_detect('doc3.xml|doc4.xml'), isFormD = ifelse( isXML & typeForm %in% c("D", "D/A"), TRUE, FALSE ), is13FFiling = ifelse( isXML& typeForm %>% str_detect("13F-HR|INFORMATION TABLE"), TRUE, FALSE ), hasSmallOfferingData = ifelse(isXML & typeForm %>% str_detect("1-A|1-A/A"), TRUE, FALSE), hasSmallOfferingData = ifelse(typeForm == "C" & isXML, TRUE, hasSmallOfferingData), hasAssetFile = typeForm %>% str_detect("EX-102|EX-103") ) %>% tidyr::separate(nameHref, into = c('nameHREF', 'typeFile'), sep = '\\.') %>% mutate(urlSECFilingDirectory = search_url) %>% mutate( nameFile = ifelse(nameFile == '', NA, nameFile %>% str_to_upper()), isCompleteTextFiling = nameFile %>% str_detect("COMPLETE SUBMISSION"), isXBRLInstanceFile = ifelse(nameFile %>% str_detect("XBRL INSTANCE"), TRUE, FALSE), isImage = ifelse(typeFile %in% c('jpg', 'gif', 'tiff', 'png'), TRUE, FALSE), isPDF = ifelse(typeFile %in% c('pdf'), TRUE, FALSE) ) data <- data %>% left_join(df_metadata) %>% mutate(idCIK = cik) %>% select(idCIK, dplyr::matches("date"), dplyr::matches("count"), everything()) %>% suppressWarnings() %>% suppressMessages() } else { search_url <- res$url data <- tibble(idCIK = cik, urlSECFilingDirectory = search_url) } df <<- df %>% bind_rows(data) } failure <- function(msg){ tibble() } urls %>% walk(function(x){ curl_fetch_multi(url = x, success, failure) }) multi_run() df } .all_filings <- function(urls, return_message = TRUE) { df_filings <- urls %>% future_map_dfr(function(x){ .parse_sec_filing_index(urls = x, return_message = return_message) }) return(df_filings) } .all_filing_urls <- function(data, nest_data = TRUE, return_message = TRUE) { if (!'urlSECFilingDirectory' %in% names(data)) { stop("urlSECFilingDirectory needs to be in the data fields") } if (!'idAccession' %in% names(data)) { df_accession <- data$urlSECFilingDirectory %>% unique() %>% future_map_dfr(function(x){ urlSECFilingDirectory <- x idAccession <- x %>% str_replace_all('https://www.sec.gov/Archives/edgar/data/', '') %>% str_split('\\/') %>% flatten_chr() %>% { .[length(.)] %>% str_replace_all('-index.htm', '') } tibble(idAccession, urlSECFilingDirectory) }) data <- data %>% left_join(df_accession) %>% suppressMessages() } data <- data %>% select(-dplyr::matches("hasAssetFile|isFormD|is13F|isForm3_4|hasSmallOfferingData")) %>% filter(typeFile %>% str_detect("htm")) %>% group_by(idAccession) %>% mutate(countAccension = 1:n()) %>% filter(countAccension == max(countAccension)) %>% ungroup() %>% arrange(dateFiling) urls <- data$urlSECFilingDirectory df_all_filings <- .all_filings(urls = urls, return_message = return_message) df_all_filings <- df_all_filings %>% left_join(data %>% select(urlSECFilingDirectory, countAccension, idAccession)) %>% suppressMessages() if (nest_data) { df_all_filings <- df_all_filings %>% nest(-c(idAccession, countAccension, urlSECFilingDirectory), .key = dataFilings) } df_all_filings } .header_names <- function() { tibble( nameSEC = c( "ACCEPTANCE-DATETIME", "ACCESSION NUMBER", "CONFORMED SUBMISSION TYPE", "PUBLIC DOCUMENT COUNT", "FILED AS OF DATE", "DATE AS OF CHANGE", "COMPANY CONFORMED NAME", "CENTRAL INDEX KEY", "STANDARD INDUSTRIAL CLASSIFICATION", "IRS NUMBER", "STATE OF INCORPORATION", "FISCAL YEAR END", "FORM TYPE", "SEC ACT", "SEC FILE NUMBER", "FILM NUMBER", "STREET 1", "CITY", "STATE", "ZIP", "BUSINESS PHONE", "FORMER CONFORMED NAME", "DATE OF NAME CHANGE", "STREET 2", "CONFORMED PERIOD OF REPORT", "ITEM INFORMATION" ), nameActual = c( "datetimeAccepted", "idAccession", "idForm", "countPublicDocuments", "dateFiling", "dateFilingChange", "nameCompany", "idCIK", "nameCodeSIC", "idIRS", "stateIncorporation", "monthdayFiscalYearEnd", "typeForm", "idSECAct", "idSEC", "idFilm", "addressStreet1", "city", "state", "zipcode", "telephone", "nameCompanyFormer", "dateNameChange", 'addressStreet2', 'dateReportPeriod', 'descriptionItem' ) ) } .section_names <- function() { tibble(nameSectionSEC = c(NA, "SUBJECT COMPANY", "FILED BY", 'ISSUER', 'REPORTING-OWNER'), nameSectionActual = c('', '', 'FilingEntity', 'Issuer', 'ownerReporting') ) } .parent_names <- function() { tibble(nameParentSEC = c(NA, "COMPANY DATA", "FILING VALUES", "BUSINESS ADDRESS", "MAIL ADDRESS", "FORMER COMPANY"), nameParentActual = c('', '', '', 'Business', 'Mailing', '')) } .parse_text_headers <- function(text_blob){ header_start <- text_blob %>% grep("<SEC-HEADER>",.) + 1 header_end <- text_blob %>% grep("</SEC-HEADER>",.) - 1 header_text <- text_blob[header_start:header_end] header_text <- header_text %>% str_replace_all('\\<','') %>% str_replace_all('\\>',':') df_headers <- tibble(text = header_text) %>% tidyr::separate(col = text, into = c('nameSEC', 'value'), sep = '\\:') %>% mutate(value = value %>% str_replace_all("\t", '')) %>% mutate(idRow = 1:n()) df_parents <- df_headers %>% filter(value == '') %>% mutate(idRow = idRow + 1) %>% dplyr::rename(nameParentSEC = nameSEC) %>% select(-value) df_section <- df_parents %>% filter(nameParentSEC %in% c("SUBJECT COMPANY", "FILED BY")) %>% select(nameSectionSEC = nameParentSEC, idRow) %>% mutate(idRow = idRow + 1) df_parents <- df_parents %>% filter(!nameParentSEC %in% c("SUBJECT COMPANY", "FILED BY")) %>% left_join(df_section) %>% fill(nameSectionSEC) %>% select(nameSectionSEC, nameParentSEC, idRow) %>% suppressMessages() data <- df_headers %>% filter(!value == '') %>% left_join(df_parents) %>% select(idRow, nameSectionSEC, nameParentSEC, everything()) %>% tidyr::fill(nameSectionSEC) %>% tidyr::fill(nameParentSEC) %>% select(-idRow) %>% distinct() %>% suppressWarnings() %>% suppressMessages() df_parents <- .parent_names() df_names <- .header_names() df_sections <- .section_names() has_missing_names <- data$nameSEC[!data$nameSEC %in% df_names$nameSEC] %>% length() > 0 if (has_missing_names) { df_missing <- data$nameSEC[!data$nameSEC %in% df_names$nameSEC] %>% unique() %>% future_map_dfr(function(x){ parts <- x %>% str_replace_all('\\-', ' ') %>% str_split('\\ ') %>% flatten_chr() first <- parts[length(parts)] %>% str_to_lower() is_cik <- first %>% str_detect('cik') %>% sum(na.rm = TRUE) > 0 if (is_cik) { first <- 'idCIK' } other <- list(parts[1:(length(parts) - 1)] %>% str_to_title) %>% purrr::reduce(paste0) %>% paste0(collapse = '') actual <- list(first,other) %>% purrr::reduce(paste0) tibble(nameSEC = x, nameActual = actual) }) df_names <- df_names %>% bind_rows(df_missing) } data <- data %>% left_join(df_parents) %>% left_join(df_sections) %>% left_join(df_names) %>% mutate(nameParentActual = ifelse(nameParentActual %>% is.na(), '', nameParentActual)) %>% suppressMessages() %>% unite(nameItem, nameActual, nameParentActual, nameSectionActual, sep = '') %>% select(nameItem, value) %>% suppressWarnings() %>% group_by(nameItem) %>% mutate(countItem = 1:n() - 1) %>% ungroup() %>% mutate(nameItem = ifelse(countItem == 0, nameItem, paste0(nameItem, countItem))) %>% suppressMessages() %>% select(-countItem) col_order <- data$nameItem data <- data %>% spread(nameItem, value) %>% select(one_of(col_order)) data <- data %>% mutate_at(data %>% select(dplyr::matches("datetime")) %>% names(), funs(. %>% lubridate::ymd_hms())) %>% mutate_at(data %>% select(dplyr::matches("^date[A-Z]")) %>% select(-dplyr::matches("datetime")) %>% names(), funs(. %>% lubridate::ymd())) %>% mutate_at(data %>% select(dplyr::matches("idCIK|count|monthdayFiscalYearEnd")) %>% names(), funs(. %>% as.numeric())) %>% mutate_at(data %>% select(dplyr::matches("name[A-Z]|type[A-Z]|description|class")) %>% names(), funs(. %>% stringr::str_to_upper())) if ('nameCodeSIC' %in% names(data)) { data <- data %>% separate(nameCodeSIC, into = c('nameIndustry', 'idSIC'), sep = '\\[') %>% mutate(nameIndustry = nameIndustry %>% str_trim() %>% str_to_upper(), idSIC = idSIC %>% as.character() %>% readr::parse_number()) %>% suppressWarnings() } return(data) } .parse_for_text <- function(text_blob) { text_start <- text_blob %>% grep("<TEXT>",.) %>% .[[1]] + 1 text_end <- text_blob %>% grep("</TEXT>",.) text_end <- text_end %>% max() - 1 df_text <- tibble(textRow = text_blob[text_start:text_end]) %>% mutate(idRow = 1:n()) %>% select(idRow, everything()) return(df_text) } .parse_text_filing <- function(url = "https://www.sec.gov/Archives/edgar/data/732712/000119312517025716/0001193125-17-025716.txt") { text_blob <- url %>% readr::read_lines() %>% { .[!. == ''] %>% str_trim() } has_html <- text_blob %>% str_count("<HTML>") %>% sum(na.rm = TRUE) > 0 has_xml <- text_blob %>% str_count("<XML>") %>% sum(na.rm = TRUE) > 0 df_headers <- .parse_text_headers(text_blob = text_blob) df_text <- .parse_for_text(text_blob = text_blob) %>% mutate(idAccession = df_headers$idAccession) %>% nest(-idAccession, .key = textFiling) data <- df_headers %>% left_join(df_text) %>% mutate(urlSECFiling = url, hasHTML = has_html, hasXML = has_xml) %>% select(dplyr::matches("idCIK"), dplyr::matches("dateFiling"), idAccession, dplyr::matches("idForm"), dplyr::matches("nameCompany"), everything()) return(data) } .sec_complete_filings <- function(urls = c("https://www.sec.gov/Archives/edgar/data/732712/000119312517030264/0001193125-17-030264.txt", "https://www.sec.gov/Archives/edgar/data/732712/000161159317000024/0001611593-17-000024.txt", "https://www.sec.gov/Archives/edgar/data/1629703/000161159317000025/0001611593-17-000025.txt", "https://www.sec.gov/Archives/edgar/data/1284999/000161159317000014/0001611593-17-000014.txt"), return_message = TRUE) { df <- tibble() success <- function(res) { url <- res$url if (return_message) { list("Parsing: ", url, "\n") %>% purrr::reduce(paste0) %>% cat(fill = T) } data <- .parse_text_filing(url = url) df <<- df %>% bind_rows(data) } failure <- function(msg) { tibble() } urls %>% walk(function(x) { curl_fetch_multi(url = x, success, failure) }) multi_run() df } .parse_xbrl_filer_url <- function(url = "https://www.sec.gov/Archives/edgar/data/1037540/000165642316000023/bxp-20160930.xml", return_message = TRUE) { options(stringsAsFactors = FALSE, scipen = 999999) cik <- url %>% str_split('data/') %>% flatten_chr() %>% .[[2]] %>% str_split('/') %>% flatten_chr() %>% .[[1]] %>% as.numeric() td <- tempdir() tf <- tempfile(tmpdir = td, fileext = ".xml") url %>% curl::curl_download(destfile = tf) doc <- tf %>% XBRL::xbrlParse() df_fct <- XBRL::xbrlProcessFacts(doc) %>% as_tibble() df_fct <- df_fct %>% mutate( isNumber = ifelse(!fact %>% readr::parse_number() %>% is.na(), TRUE, FALSE), amountFact = ifelse(isNumber == TRUE, fact %>%as.character() %>% readr::parse_number(), NA) ) %>% separate(elementId, c('codeElement', 'nameElement'), sep = '\\_', remove = FALSE) %>% suppressWarnings() df_cts <- XBRL::xbrlProcessContexts(doc) %>% as_tibble() df_unt <- XBRL::xbrlProcessUnits(doc) %>% as_tibble() df_sch <- XBRL::xbrlGetSchemaName(doc) %>% as_tibble() df_footnotes <- XBRL::xbrlProcessFootnotes(doc) %>% as_tibble() XBRL::xbrlFree(doc) url_xsd <- url %>% str_replace(".xml", ".xsd") url_xsd %>% curl_download(destfile = tf) docS <- tf %>% XBRL::xbrlParse() df_rls <- docS %>% XBRL::xbrlProcessRoles() %>% as_tibble() url_cal <- url %>% str_replace(".xml", "_cal.xml") if (suppressWarnings(httr::url_ok(url_cal))){ url_cal %>% curl_download(destfile = tf) docS <- tf %>% XBRL::xbrlParse() df_calcs <- docS %>% XBRL::xbrlProcessArcs(arcType = 'calculation') %>% as_tibble() } else { df_calcs <- tibble() } url_def <- url %>% str_replace(".xml", "_def.xml") url_def %>% curl_download(destfile = tf) docS <- tf %>% XBRL::xbrlParse() df_defs <- docS %>% XBRL::xbrlProcessArcs(arcType = 'definition') %>% as_tibble() url_lab <- url %>% str_replace(".xml", "_lab.xml") url_lab %>% curl_download(destfile = tf) docS <- tf %>% XBRL::xbrlParse() df_labels <- docS %>% XBRL::xbrlProcessLabels() %>% as_tibble() url_pre <- url %>% str_replace(".xml", "_pre.xml") url_pre %>% curl_download(destfile = tf) docS <- tf %>% XBRL::xbrlParse() tf %>% unlink() data <- tibble( idCIK = cik, urlSECFiling = url, dataFacts = list(df_fct), dataContexts = list(df_cts), dataUnits = list(df_unt), dataFootnotes = list(df_footnotes), dataRoles = list(df_rls), dataCalculations = list(df_calcs) , dataDefinitions = list(df_defs), dataLabel = list(df_labels) ) td %>% unlink() tf %>% unlink() return(data) } .sec_form_title_df <- function() { tibble( nameSEC = c( "conversionOrExercisePrice", "deemedExecutionDate", "directOrIndirectOwnership", "documentType", "equitySwapInvolved", "exerciseDate", "expirationDate", "footnote", "isDirector", "isOfficer", "isOther", "issuerCik", "issuerName", "issuerTradingSymbol", "isTenPercentOwner", "natureOfOwnership", "noSecuritiesOwned", "notSubjectToSection16", "officerTitle", "otherText", "periodOfReport", "postTransactionAmountsOwnedFollowingTransaction", "remarks", "rptOwnerCik", "rptOwnerCity", "rptOwnerName", "rptOwnerState", "rptOwnerStateDescription", "rptOwnerStreet1", "rptOwnerStreet2", "rptOwnerZipCode", "schemaVersion", "securityTitle", "sharesOwnedFollowingTransaction", "signatureDate", "signatureName", "transactionAcquiredDisposedCode", "transactionCode", "transactionDate", "transactionFormType", "transactionPricePerShare", "transactionShares", "transactionTimeliness", "transactionTotalValue", "underlyingSecurityShares", "underlyingSecurityTitle", "clarificationOfResponse", "isBusinessCombinationTransaction", "cik", "moreThanOneYear", "previousName", "edgarPreviousNameList", "entityName", "entityType", "entityTypeOtherDesc", "federalExemptionsExclusions", "industryGroupType", "investmentFundType", "investmentFundInfo", "hasNonAccreditedInvestors", "numberNonAccreditedInvestors", "totalNumberAlreadyInvested", "city", "stateOrCountry", "stateOrCountryDescription", "street1", "street2", "zipCode", "issuerPhoneNumber", "issuerPreviousNameList", "jurisdictionOfInc", "overFiveYears", "yearOfInc", "withinFiveYears", "yetToBeFormed", "aggregateNetAssetValueRange", "revenueRange", "minimumInvestmentAccepted", "totalAmountSold", "totalOfferingAmount", "totalRemaining", "firstName", "lastName", "middleName", "relationship", "relationshipClarification", "dollarAmount", "isEstimate", "associatedBDCRDNumber", "associatedBDName", "foreignSolicitation", "recipientCRDNumber", "recipientName", "description", "state", "statesOfSolicitationList", "authorizedRepresentative", "nameOfSigner", "signatureTitle", "submissionType", "testOrLive", "dateOfFirstSale", "yetToOccur", "isAmendment", "descriptionOfOtherType", "isDebtType", "isEquityType", "isMineralPropertyType", "isOptionToAcquireType", "isOtherType", "isPooledInvestmentFundType", "isSecurityToBeAcquiredType", "isTenantInCommonType", 'notSubjectToSection16', 'rptOwnerStreet1', 'rptOwnerStreet2', "liveTestFlag", "confirmingCopyFlag", "returnCopyFlag", "overrideInternetFlag", "ccc", "reportCalendarOrQuarter", "filingManagername", "filingManageraddressstreet1", "filingManageraddressstreet2", "filingManageraddresscity", "filingManageraddressstateOrCountry", 'filingManagerstateOrCountryDescription', "filingManageraddresszipCode", "reportType", "form13FFileNumber", "provideInfoForInstruction5", "name", "title", "phone", "signature", "otherIncludedManagersCount", "tableEntryTotal", "tableValueTotal", "isConfidentialOmitted", "nameOfIssuer", "titleOfClass", "cusip", "value", "investmentDiscretion", "otherManager", "putCall", "sshPrnamt", "sshPrnamtType", "Sole", "Shared", "None", "offeringFileNumber", "sinceLastFiling", "jurisdictionOrganization", "yearIncorporation", "sicCode", "irsNum", "fullTimeEmployees", "partTimeEmployees", "phoneNumber", "connectionName", "industryGroup", "cashEquivalents", "investmentSecurities", "accountsReceivable", "propertyPlantEquipment", "totalAssets", "accountsPayable", "longTermDebt", "totalLiabilities", "totalStockholderEquity", "totalLiabilitiesAndEquity", "totalRevenues", "costAndExpensesApplToRevenues", "depreciationAndAmortization", "netIncome", "earningsPerShareBasic", "earningsPerShareDiluted", "nameAuditor", "commonEquityClassName", "outstandingCommonEquity", "commonCusipEquity", "publiclyTradedCommonEquity", "preferredEquityClassName", "outstandingPreferredEquity", "preferredCusipEquity", "publiclyTradedPreferredEquity", "debtSecuritiesClassName", "outstandingDebtSecurities", "cusipDebtSecurities", "publiclyTradedDebtSecurities", "certifyIfTrue", "certifyIfNotDisqualified", "summaryInfo", "financialStatementAuditStatus", "securitiesOfferedTypes", "offerDelayedContinuousFlag", "offeringYearFlag", "offeringAfterQualifFlag", "offeringBestEffortsFlag", "solicitationProposedOfferingFlag", "resaleSecuritiesAffiliatesFlag", "securitiesOffered", "outstandingSecurities", "pricePerSecurity", "issuerAggregateOffering", "securityHolderAggegate", "qualificationOfferingAggregate", "concurrentOfferingAggregate", "totalAggregateOffering", "underwritersServiceProviderName", "underwritersFees", "auditorServiceProviderName", "auditorFees", "legalServiceProviderName", "legalFees", "promotersServiceProviderName", "promotersFees", "brokerDealerCrdNumber", "estimatedNetAmount", "clarificationResponses", "jurisdictionsOfSecOfferedSame", "issueJuridicationSecuritiesOffering", "dealersJuridicationSecuritiesOffering", "securitiesIssuerName", "securitiesIssuerTitle", "securitiesIssuedTotalAmount", "securitiesPrincipalHolderAmount", "securitiesIssuedAggregateAmount", "securitiesActExcemption", "certifyIfBadActor", "salesCommissionsServiceProviderName", "salesCommissionsServiceProviderFees", "jurisdictionsOfSecOfferedNone", "ifUnregsiteredNone", "blueSkyServiceProviderName", "blueSkyFees", 'indicateTier1Tier2Offering', 'X.1.A.A.', 'X.1.A.A.', 'aggregateConsiderationBasis', 'findersFeesServiceProviderName' , 'finderFeesFee', 'loans', 'propertyAndEquipment', 'deposits', 'totalInterestIncome', 'totalInterestExpenses', 'securitiesOfferedOtherDesc', 'comment', "assetTypeNumber", "assetNumber", "assetGroupNumber", "reportPeriodBeginningDate", "reportPeriodEndDate", "issuerName", "originalIssuanceDate", "originalSecurityAmount", "originalSecurityTermNumber", "securityMaturityDate", "originalAmortizationTermNumber", "originalInterestRatePercentage", "accrualTypeCode", "interestRateTypeCode", "originalInterestOnlyTermNumber", "firstPaymentDate", "underwritingIndicator", "securityTitleName", "denominationNumber", "currencyName", "trusteeName", "secFileNumber", "cik", "callableIndicator", "paymentFrequencyCode", "zeroCouponIndicator", "assetAddedIndicator", "assetModifiedIndicator", "reportPeriodBeginningAssetBalanceAmount", "reportPeriodBeginningScheduledAssetBalanceAmount", "reportPeriodScheduledPaymentAmount", "reportPeriodInterestRatePercentage", "totalActualPaidAmount", "actualInterestCollectionPercentage", "actualPrincipalCollectedAmount", "actualOtherCollectionAmount", "otherPrincipalAdjustmentAmount", "otherInterestAdjustmentAmount", "scheduledInterestAmount", "scheduledPrincipalAmount", "endReportingPeriodActualBalanceAmount", "endReportingPeriodScheduledBalanceAmount", "servicingFeePercentage", "servicingFlatFeeAmount", "zeroBalanceCode", "zeroBalanceEffectiveDate", "remainingTermToMaturityNumber", "currentDelinquentStatusNumber", "paymentPastDueDaysNumber", "paymentPastDueNumber", "nextReportPeriodPaymentDueAmount", "nextDueDate", "primaryLoanServicerName", "mostRecentServicingTransferReceivedDate", "assetSubjectToDemandIndicator", "statusAssetSubjectToDemandCode", "repurchaseAmount", "demandResolutionDate", "repurchaserName", "repurchaseReplacementReasonCode", "reportPeriodBeginDate", "originalLoanPurposeCode", "originatorName", "originalLoanAmount", "originalLoanMaturityDate", "originalInterestRateTypeCode", "originalLienPositionCode", "mostRecentJuniorLoanBalanceAmount", "mostRecentJuniorLoanBalanceDate", "mostRecentSeniorLoanAmount", "mostRecentSeniorLoanAmountDate", "loanTypeMostSeniorLienCode", "mostSeniorLienHybridPeriodNumber", "mostSeniorLienNegativeAmortizationLimitPercentage", "mostSeniorLienOriginationDate", "prepaymentPenaltyIndicator", "negativeAmortizationIndicator", "modificationIndicator", "modificationNumber", "mortgageInsuranceRequirementIndicator", "balloonIndicator", "coveredHighCostCode", "servicerHazardInsuranceCode", "refinanceCashOutAmount", "totalOriginationDiscountAmount", "brokerIndicator", "channelCode", "nationalMortgageLicenseSystemCompanyNumber", "buyDownNumber", "loanDelinquencyAdvanceNumber", "originationARMIndexCode", "armMarginPercentage", "fullyIndexedRatePercentage", "initialFixedRatePeriodHybridARMNumber", "initialInterestRateDecreasePercentage", "initialInterestRateIncreasePercentage", "indexLookbackNumber", "subsequentInterestRateResetNumber", "lifetimeRateCeilingPercentage", "lifetimeRateFloorPercentage", "subsequentInterestRateDecreasePercentage", "subsequentInterestRateIncreasePercentage", "subsequentPaymentResetNumber", "armRoundCode", "armRoundPercentage", "optionArmIndicator", "paymentMethodAfterRecastCode", "initialMinimumPaymentAmount", "convertibleIndicator", "HELOCIndicator", "HELOCDrawNumber", "prepaymentPenaltyCalculationCode", "prepaymentPenaltyTypeCode", "prepaymentPenaltyTotalTermNumber", "prepaymentPenaltyHardTermNumber", "negativeAmortizationLimitAmount", "negativeAmortizationInitialRecastNumber", "negativeAmortizationSubsequentRecastNumber", "negativeAmortizationBalanceAmount", "initialFixedPaymentNumber", "initialPaymentCapPercentage", "subsequentPaymentCapPercentage", "initialMinimumPaymentResetNumber", "subsequentMinimumPaymentResetNumber", "minimumPaymentAmount", "geographicalLocation", "occupancyStatusCode", "mostRecentOccupancyStatusCode", "propertyTypeCode", "mostRecentPropertyValueAmount", "mostRecentPropertyValueTypeCode", "mostRecentPropertyValueDate", "mostRecentAVMModelCode", "mostRecentAVMConfidenceNumber", "originalCLTVPercentage", "originalLTVPercentage", "originalObligorNumber", "originalObligorCreditScoreNumber", "originalObligorCreditScoreType", "mostRecentObligorCreditScoreNumber", "mostRecentObligorCreditScoreType", "mostRecentObligorCreditScoreDate", "obligorIncomeVerificationLevelCode", "IRSForm4506TIndicator", "originatorFrontEndDTIPercentage", "originatorBackEndDTIPercentage", "obligorEmploymentVerificationCode", "obligorEmploymentLengthCode", "obligorAssetVerificationCode", "originalPledgedAssetsAmount", "qualificationMethodCode", "mortgageInsuranceCompanyName", "mortgageInsuranceCoveragePercentage", "poolInsuranceCompanyName", "poolInsuranceStopLossPercentage", "mortgageInsuranceCoverageTypeCode", "modificationIndicatorReportingPeriod", "nextPaymentDueDate", "advancingMethodCode", "servicingAdvanceMethodologyCode", "stopPrincipalInterestAdvancingDate", "reportingPeriodBeginningLoanBalanceAmount", "reportingPeriodBeginningScheduledLoanBalanceAmount", "nextReportingPeriodPaymentDueAmount", "reportingPeriodInterestRatePercentage", "nextInterestRatePercentage", "otherAssessedUncollectedServicerFeeamount", "otherServicingFeeRetainedByServicerAmount", "reportingPeriodEndActualBalanceAmount", "reportingPeriodEndScheduledBalanceAmount", "reportingPeriodScheduledPaymentAmount", "actualInterestCollectedAmount", "actualOtherCollectedAmount", "paidThroughDate", "interestPaidThroughDate", "paidFullAmount", "servicerAdvancedPrincipalAmount", "servicerAdvancedRepaidPrincipalAmount", "servicerAdvancedCumulativePrincipalAmount", "servicerAdvanceInterestAmount", "servicerAdvanceRepaidInterestAmount", "servicerAdvanceCumulativeInterestAmount", "servicerAdvanceTaxesInsuranceAmount", "servicerAdvanceRepaidTaxesInsuranceAmount", "servicerAdvanceCumulativeTaxesInsuranceAmount", "servicerAdvanceCorporateAmount", "servicerAdvanceRepaidCorporateAmount", "servicerAdvanceCumulativeCorporateAmount", "mostRecentTwelveMonthHistoryCode", "nextResetRatePercentage", "nextPaymentChangeDate", "nextInterestRateChangeDate", "nextResetPaymentAmount", "exercisedArmConversionOptionIndicator", "primaryServicerName", "masterServicerName", "specialServicerName", "subServicerName", "assetSubjectDemandIndicator", "assetSubjectDemandStatusCode", "repurchaseReplacementCode", "chargeOffPrincipalAmount", "chargeOffInterestAmount", "lossMitigationTypeCode", "mostRecentLoanModificationEventCode", "mostRecentLoanModificationEffectiveDate", "postModificationMaturityDate", "postModificationInterestRateTypeCode", "postModificationAmortizationTypeCode", "postModificationInterestPercentage", "postModificationFirstPaymentDate", "postModificationLoanBalanceAmount", "postModificationPrincipalInterestPaymentAmount", "totalCapAmount", "incomeVerificationIndicatorAtModification", "modificationFrontEndDebtToIncomePercentage", "modificationBackEndDebtToIncomePercentage", "totalDeferredAmount", "forgivenPrincipalCumulativeAmount", "forgivenPrincipalReportingPeriodAmount", "forgivenInterestCumulativeAmount", "forgivenInterestReportingPeriodAmount", "actualEndingBalanceTotalDebtAmount", "scheduledEndingBalanceTotalDebtAmount", "postModificationARMCode", "postModificationARMIndexCode", "postModificationMarginPercentage", "postModificationInterestResetNumber", "postModificationNextResetDate", "postModificationIndexLookbackNumber", "postModificationARMRoundingCode", "postModificationARMRoundingPercentage", "postModificationInitialMinimumPayment", "postModificationNextPaymentAdjustmentDate", "postModificationARMPaymentRecastFrequency", "postModificationLifetimeFloorPercentage", "postModificationLifetimeCeilingPercentage", "postModificationInitialInterestRateIncreasePercentage", "postModificationInitialInterestRateDecreasePercentage", "postModificationSubsequentInterestIncreasePercentage", "postModificationSubsequentInterestRateDecreasePercentage", "postModificationPaymentCapPercentage", "postModificationPaymentMethodAfterRecastCode", "postModificationARMInterestRateTeaserNumber", "postModificationARMPaymentTeaserNumber", "postModificationARMNegativeAmortizationIndicator", "postModificationARMNegativeAmortizationCapPercentage", "postModificationInterestOnlyTermNumber", "postModificationInterestOnlyLastPaymentDate", "postModificationBalloonAmount", "postModificationInterestRateStepIndicator", "postModificationStepInterestPercentage", "postModificationStepDate", "postModificationStepPrincipalInterestPaymentAmount", "postModificationStepNumber", "postModificationMaximumFutureStepAgreementPercentage", "postModificationMaximumStepAgreementRateDate", "nonInterestBearingDeferredPrincipalCumulativeAmount", "nonInterestBearingDeferredPrincipalReportingPeriodAmount", "recoveryDeferredPrincipalReportingPeriodAmount", "nonInterestBearingDeferredPaidFullAmount", "nonInterestBearingDeferredInterestFeeReportingPeriodAmount", "nonInterestBearingDeferredInterestFeeCumulativeAmount", "recoveryDeferredInterestFeeReportingPeriodAmount", "mostRecentForbearancePlanOrTrialModificationStartDate", "mostRecentForbearancePlanOrTrialModificationScheduledEndDate", "mostRecentTrialModificationViolatedDate", "mostRecentRepaymentPlanStartDate", "mostRecentRepaymentPlanScheduledEndDate", "mostRecentRepaymentPlanViolatedDate", "shortSaleAcceptedOfferAmount", "mostRecentLossMitigationExitDate", "mostRecentLossMitigationExitCode", "attorneyReferralDate", "foreclosureDelayReasonCode", "foreclosureExitDate", "foreclosureExitReasonCode", "noticeOfIntentDate", "mostRecentAcceptedREOOfferAmount", "mostRecentAcceptedREOOfferDate", "grossLiquidationProceedsAmount", "netSalesProceedsAmount", "reportingPeriodLossPassedToIssuingEntityAmount", "cumulativeTotalLossPassedToIssuingEntityAmount", "subsequentRecoveryAmount", "evictionIndicator", "reoExitDate", "reoExitReasonCode", "UPBLiquidationAmount", "servicingFeesClaimedAmount", "servicerAdvanceReimbursedPrincipalAmount", "servicerAdvanceReimbursedInterestAmount", "servicerAdvanceReimbursedTaxesInsuranceAmount", "servicerAdvanceReimbursedCorporateAmount", "REOManagementFeesAmount", "cashKeyDeedAmount", "performanceIncentiveFeesAmount", "mortgageInsuranceClaimFiledDate", "mortgageInsuranceClaimAmount", "mortgageInsuranceClaimPaidDate", "mortgageInsuranceClaimPaidAmount", "mortgageInsuranceClaimDeniedRescindedDate", "marketableTitleTransferDate", "nonPayStatusCode", "reportingActionCode", "GroupID", "reportingPeriodBeginningDate", "reportingPeriodEndDate", "originationDate", "originalTermLoanNumber", "maturityDate", "interestRateSecuritizationPercentage", "interestAccrualMethodCode", "firstLoanPaymentDueDate", "lienPositionSecuritizationCode", "loanStructureCode", "paymentTypeCode", "periodicPrincipalAndInterestPaymentSecuritizationAmount", "scheduledPrincipalBalanceSecuritizationAmount", "NumberPropertiesSecuritization", "NumberProperties", "graceDaysAllowedNumber", "interestOnlyIndicator", "prepaymentPremiumIndicator", "modifiedIndicator", "armIndexCode", "firstRateAdjustmentDate", "firstPaymentAdjustmentDate", "armMarginNumber", "lifetimeRateCapPercentage", "periodicRateIncreaseLimitPercentage", "periodicRateDecreaseLimitPercentage", "periodicPaymentAdjustmentMaximumAmount", "periodicPaymentAdjustmentMaximumPercent", "rateResetFrequencyCode", "paymentResetFrequencyCode", "indexLookbackDaysNumber", "prepaymentLockOutEndDate", "yieldMaintenanceEndDate", "prepaymentPremiumsEndDate", "maximumNegativeAmortizationAllowedPercentage", "maximumNegativeAmortizationAllowedAmount", "negativeAmortizationDeferredInterestCapAmount", "deferredInterestCumulativeAmount", "deferredInterestCollectedAmount", "property", "reportPeriodModificationIndicator", "reportPeriodBeginningScheduleLoanBalanceAmount", "totalScheduledPrincipalInterestDueAmount", "servicerTrusteeFeeRatePercentage", "unscheduledPrincipalCollectedAmount", "reportPeriodEndActualBalanceAmount", "reportPeriodEndScheduledLoanBalanceAmount", "hyperAmortizingDate", "servicingAdvanceMethodCode", "nonRecoverabilityIndicator", "totalPrincipalInterestAdvancedOutstandingAmount", "totalTaxesInsuranceAdvancesOutstandingAmount", "otherExpensesAdvancedOutstandingAmount", "paymentStatusLoanCode", "armIndexRatePercentage", "nextInterestRateChangeAdjustmentDate", "nextPaymentAdjustmentDate", "mostRecentSpecialServicerTransferDate", "mostRecentMasterServicerReturnDate", "realizedLossToTrustAmount", "liquidationPrepaymentCode", "liquidationPrepaymentDate", "prepaymentPremiumYieldMaintenanceReceivedAmount", "workoutStrategyCode", "lastModificationDate", "modificationCode", "postModificationPaymentAmount", "postModificationAmortizationPeriodAmount", "propertyName", "propertyAddress", "propertyCity", "propertyState", "propertyZip", "propertyCounty", "netRentableSquareFeetNumber", "netRentableSquareFeetSecuritizationNumber", "unitsBedsRoomsNumber", "unitsBedsRoomsSecuritizationNumber", "yearBuiltNumber", "yearLastRenovated", "valuationSecuritizationAmount", "valuationSourceSecuritizationCode", "valuationSecuritizationDate", "mostRecentValuationAmount", "mostRecentValuationDate", "mostRecentValuationSourceCode", "physicalOccupancySecuritizationPercentage", "mostRecentPhysicalOccupancyPercentage", "propertyStatusCode", "defeasanceOptionStartDate", "DefeasedStatusCode", "largestTenant", "squareFeetLargestTenantNumber", "leaseExpirationLargestTenantDate", "secondLargestTenant", "squareFeetSecondLargestTenantNumber", "leaseExpirationSecondLargestTenantDate", "thirdLargestTenant", "squareFeetThirdLargestTenantNumber", "leaseExpirationThirdLargestTenantDate", "financialsSecuritizationDate", "mostRecentFinancialsStartDate", "mostRecentFinancialsEndDate", "revenueSecuritizationAmount", "mostRecentRevenueAmount", "operatingExpensesSecuritizationAmount", "operatingExpensesAmount", "netOperatingIncomeSecuritizationAmount", "mostRecentNetOperatingIncomeAmount", "netCashFlowFlowSecuritizationAmount", "mostRecentNetCashFlowAmount", "netOperatingIncomeNetCashFlowSecuritizationCode", "netOperatingIncomeNetCashFlowCode", "mostRecentDebtServiceAmount", "debtServiceCoverageNetOperatingIncomeSecuritizationPercentage", "mostRecentDebtServiceCoverageNetOperatingIncomePercentage", "debtServiceCoverageNetCashFlowSecuritizationPercentage", "mostRecentDebtServiceCoverageNetCashFlowpercentage", "debtServiceCoverageSecuritizationCode", "mostRecentDebtServiceCoverageCode", "mostRecentAnnualLeaseRolloverReviewDate", "reportingPeriodEndingDate", "originalLoanTerm", "loanMaturityDate", "interestCalculationTypeCode", "originalFirstPaymentDate", "gracePeriodNumber", "subvented", "vehicleManufacturerName", "vehicleModelName", "vehicleNewUsedCode", "vehicleModelYear", "vehicleTypeCode", "vehicleValueAmount", "vehicleValueSourceCode", "obligorCreditScoreType", "obligorCreditScore", "coObligorIndicator", "paymentToIncomePercentage", "obligorGeographicLocation", "reportingPeriodModificationIndicator", "nextReportingPeriodPaymentAmountDue", "otherServicerFeeRetainedByServicer", "otherAssessedUncollectedServicerFeeAmount", "reportingPeriodActualEndBalanceAmount", "totalActualAmountPaid", "servicerAdvancedAmount", "currentDelinquencyStatus", "chargedoffPrincipalAmount", "recoveredAmount", "modificationTypeCode", "paymentExtendedNumber", "repossessedIndicator", "repossessedProceedsAmount", "reportingPeriodBeginDate", "acquisitionCost", "originalLeaseTermNumber", "scheduledTerminationDate", "gracePeriod", "baseResidualValue", "baseResidualSourceCode", "contractResidualValue", "lesseeCreditScoreType", "lesseeCreditScore", "lesseeIncomeVerificationLevelCode", "lesseeEmploymentVerificationCode", "coLesseePresentIndicator", "lesseeGeographicLocation", "remainingTermNumber", "reportingPeriodSecuritizationValueAmount", "securitizationDiscountRate", "otherLeaseLevelServicingFeesRetainedAmount", "reportingPeriodEndingActualBalanceAmount", "reportingPeriodEndActualSecuritizationAmount", "primaryLeaseServicerName", "DemandResolutionDate", "repurchaseOrReplacementReasonCode", "chargedOffAmount", "leaseExtended", "terminationIndicator", "excessFeeAmount", "liquidationProceedsAmount", "commentNumber", "commentColumn", "commentDescription", 'previousAccessionNumber', 'itemNumber', 'fieldName', 'notes', 'sequenceNumber', "amendmentNo", "amendmentType", "confDeniedExpired", 'additionalInformation', 'fileNumber' ), nameActual = c( "priceExerciseConversion", "dateDeemedExecution", "codeOwnershipDirectIndirect", "idDocument", "isEquitySwapInvolved", "dateExercised", "dateExpiration", "descriptionFootnote", "isDirector", "isOfficer", "isOther", "idCIKIssuer", "nameIssuer", "idTickerIssuer", "isTenPercentOwner", "descriptionNatureOfOwnership", "isNoSecuritiesOwned", "isNotSubjectToSection16", "titleOfficer", "descriptionOtherText", "dateReport", "countSharesOwnedPostTransaction", "descriptionRemarks", "idCIKOwner", "cityOwenr", "nameOwner", "stateOwner", "descriptionStateOwner", "addressStreet1Owner", "addressStreet2Owner", "zipcodeOwner", "idSchema", "titleSecurity", "countSharesOwnedPostTransaction", "dateSignature", "nameSignature", "codeTransactionAcquiredDisposed", "codeTransaction", "dateTransaction", "idFormTransaction", "pricePerShareTransaction", "countSharesTransaction", "idCodeTimelinessTransaction", "amountTransaction", "countSharesUnderlying", "titleSecurityUnderlying", "descriptionResponse", "isBusinessCombinationTransaction", "idCIK", "isMoreThanOneYear", "nameEntityPrevius", "listNameEntityPreviousEDGAR", "nameEntity", "typeEntity", "descriptionEntityTypeOther", "idFederalExemptionsExclusions", "typeIndustryGroup", "typeInvestmentFund", "descriptionInvestmentFund", "hasNonAccreditedInvestors", "countInvestorsNonAccredited", "countInvestorsActive", "cityEntity", "stateEntity", "descriptionStateEntity", "addressStreet1Entity", "addressStreet2Entity", "zipcodeEntity", "phoneNumberEntity", "listIssuerPreviousName", "jurisdictionOfInc", "isOverFiveYearsOld", "hasYearOfInc", "isFormedWithinFiveYears", "isYetToBeFormed", "rangeAgregateNetAssetValue", "rangeRevenue", "amountInvestmentMinimum", "amountSoldTotal", "amountOfferingTotal", "amountRemaining", "nameFirst", "nameLast", "nameMiddle", "relationshipEntity", "descriptionRelationship", "amountDollars", "isEstimate", "idCRDBroker", "nameBroker", "isForeignSolicitation", "idCRDRecipient", "nameRecipient", "stateDescription", "state", "listStatesSolicitation", "isAuthorizedRepresentative", "nameSignatory", "titleSignatory", "idForm", "codeTestOrLive", "dateFirstSale", "isYetToOccur", "isAmendment", "descriptionOtherType", "isDebtType", "isEquityType", "isMineralPropertyType", "isOptionToAcquireType", "isOtherType", "isPooledInvestmentFundType", "isSecurityToBeAcquiredType", "isTenantInCommonType", 'isNotSubjectToSection16', 'addressStreet1Owner', 'addressStreet2Owner', "isLiveTestFlag", "isConfirmingCopyFlag", "isReturnCopyFlag", "isOverrideInternetFlag", "idCCC", "dateReportCalendarOrQuarter", "nameFilingManager", "addressStreet1FilingManager", "addressStreet2FilingManager", "cityFilingManager", "stateFilingManager", 'descriptionStateFilingManager', "zipcodeFilingManager", "typeReport", "idSEC", "codeProvideInfoForInstruction5", "nameEntity", "titleEntity", "phoneEntity", "signatureEntity", "countOtherIncludedManagers", "countTableEntries", "amountValueHoldings", "isConfidentialOmitted", "nameIssuer", "classSecurities", "idCUSIP", "valueSecurities", "typeInvestmentDiscretion", "descriptionOtherManager", "codePutCall", "countSharesPrincipal", "codeSharesPrincipal", "countSharesVotingSole", "countSharesVotingShared", "countSharesVotingNone", "idSEC", "isSinceLastFiling", "codeJurisdictionOrganization", "yearIncorporation", "idSIC", "idIRS", "countEmployeesFullTime", "countEmployeesPartTime", "phoneEntity", "nameConnection", "nameIndustry", "amountCashEquivalents", "amountInvestmentSecurities", "amountAccountsReceivable", "amountPropertyPlantEquipment", "amountAssetsTotal", "amountAccountsPayable", "amountLongTermDebt", "amountLiabilitiesTotal", "amountStockholderEquityTotal", "amountLiabilitiesAndEquityTotal", "amountRevenuesTotal", "amountCostAndExpensesOfRevenue", "amountDepreciationAndAmortization", "amountNetIncome", "pershareEarningsBasic", "pershareEarningsDiluted", "nameAuditor", "nameCommonEquityClass", "amountCommonEquityOutstanding", "idCUSIPCommonEquity", "isCommonEquityPublic", "namePreferredEquityClass", "amountPreferredEquityOutstanding", "idCusipPreferrdEquity", "isdPreferredEquityPublic", "nameDebtSecuritiesClass", "amountOutstandingDebtSecurities", "idCUSIPDebtSecurities", "isDebtSecuritiesPublic", "isCertifyIfTrue", "isCertifyIfNotDisqualified", "codeTier1Tier2Offering", "codeFinancialStatementAuditStatus", "codeSecuritiesOfferedTypes", "codeOfferDelayedContinuous", "codeOfferingYearFlag", "codeOfferingAfterQualifFlag", "codeOfferingBestEffortsFlag", "codeSolicitationProposedOfferingFlag", "codeResaleSecuritiesAffiliates", "countSecuritiesOffered", "countSecuritiesOutstanding", "persharePrice", "amountOfferingIssuer", "amountOfferingExistingShareholdersSelling", "amountOfferingSold12MonthQualifiedOffering", "amountOfferingSoldConcurrent", "amountOfferingTotal", "nameUnderwritr", "amountUnderwritersFees", "nameAuditor", "amountAuditorFees", "nameLegal", "amountLegalFees", "namePromoter", "amountPromotersFees", "idCRDBroker", "amountOfferringProceedsNet", "descriptionResponse", "isJurisdictionsOfSecOfferedSame", "locatonJuridicationSecuritiesOffering", "locationDealersJuridicationSecuritiesOffering", "nameSecuritiesIssuer", "titleSecuritiesOffered", "amountSecuritiesIssued", "amountSecuritiesPrincipalHolder", "amountSecuritiesIssuedTotal", "nameSecuritiesActExemption", "isBadActor", "nameSalesCommissionsServiceProvider", "amountSalesCommissionsFees", "isJurisdictionsSecuritiesOfferingNone", "isUnRegisteredNone", "nameBlueSkyServiceProvider", "amountBlueSkyFees", 'isTier1Tier2Offering', 'idForm', 'idForm', 'amountOfferingConsiderationBasis', 'nameFindersFeeProvider' , 'amountFindersFee', 'amountLoans', 'amountPropertyAndEquipment', 'amountDeposits', 'amountInterestIncomeTotal', 'amountInterestExpenseTotal', 'descriptionOtherSecuritiesOffered', 'commentFiling', "numberAssetType", "numberAsset", "numberAssetGroup", "dateReportPeriodBeginning", "dateReportPeriodEnd", "nameIssuer", "dateOriginalIssuance", "amountOriginalSecurity", "numberOriginalSecurityTerm", "dateSecurityMaturity", "numberOriginalAmortizationTerm", "percentageOriginalInterestRate", "codeAccrualType", "codeInterestRateType", "numberOriginalInterestOnlyTerm", "dateFirstPayment", "hasUnderwriting", "nameSecurityTitle", "numberDenomination", "nameCurrency", "nameTrustee", "numberSecFile", "idCIK", "hasCallable", "codePaymentFrequency", "hasZeroCoupon", "hasAssetAdded", "hasAssetModified", "amountReportPeriodBeginningAssetBalance", "amountReportPeriodBeginningScheduledAssetBalance", "amountReportPeriodScheduledPayment", "percentageReportPeriodInterestRate", "amountTotalActualPaid", "percentageActualInterestCollection", "amountActualPrincipalCollected", "amountActualOtherCollection", "amountOtherPrincipalAdjustment", "amountOtherInterestAdjustment", "amountScheduledInterest", "amountScheduledPrincipal", "amountEndReportingPeriodActualBalance", "amountEndReportingPeriodScheduledBalance", "percentageServicingFee", "amountServicingFlatFee", "codeZeroBalance", "dateZeroBalanceEffective", "numberRemainingTermToMaturity", "numberCurrentDelinquentStatus", "numberPaymentPastDueDays", "numberPaymentPastDue", "amountNextReportPeriodPaymentDue", "dateNextDue", "namePrimaryLoanServicer", "dateMostRecentServicingTransferReceived", "hasAssetSubjectToDemand", "codeStatusAssetSubjectToDemand", "amountRepurchase", "dateDemandResolution", "nameRepurchaser", "codeRepurchaseReplacementReason", "dateReportPeriodBegin", "codeOriginalLoanPurpose", "nameOriginator", "amountOriginalLoan", "dateOriginalLoanMaturity", "codeOriginalInterestRateType", "codeOriginalLienPosition", "amountMostRecentJuniorLoanBalance", "dateMostRecentJuniorLoanBalance", "amountMostRecentSeniorLoan", "dateMostRecentSeniorLoanAmount", "codeLoanTypeMostSeniorLien", "numberMostSeniorLienHybridPeriod", "percentageMostSeniorLienNegativeAmortizationLimit", "dateMostSeniorLienOrigination", "hasPrepaymentPenalty", "hasNegativeAmortization", "hasModification", "numberModification", "hasMortgageInsuranceRequirement", "hasBalloon", "codeCoveredHighCost", "codeServicerHazardInsurance", "amountRefinanceCashOut", "amountTotalOriginationDiscount", "hasBroker", "codeChannel", "numberNationalMortgageLicenseSystemCompany", "numberBuyDown", "numberLoanDelinquencyAdvance", "codeOriginationARMIndex", "percentageArmMargin", "percentageFullyIndexedRate", "numberInitialFixedRatePeriodHybridARM", "percentageInitialInterestRateDecrease", "percentageInitialInterestRateIncrease", "numberIndexLookback", "numberSubsequentInterestRateReset", "percentageLifetimeRateCeiling", "percentageLifetimeRateFloor", "percentageSubsequentInterestRateDecrease", "percentageSubsequentInterestRateIncrease", "numberSubsequentPaymentReset", "codeArmRound", "percentageArmRound", "hasOptionArm", "codePaymentMethodAfterRecast", "amountInitialMinimumPayment", "hasConvertible", "hasHELOC", "numberHELOCDraw", "codePrepaymentPenaltyCalculation", "codePrepaymentPenaltyType", "numberPrepaymentPenaltyTotalTerm", "numberPrepaymentPenaltyHardTerm", "amountNegativeAmortizationLimit", "numberNegativeAmortizationInitialRecast", "numberNegativeAmortizationSubsequentRecast", "amountNegativeAmortizationBalance", "numberInitialFixedPayment", "percentageInitialPaymentCap", "percentageSubsequentPaymentCap", "numberInitialMinimumPaymentReset", "numberSubsequentMinimumPaymentReset", "amountMinimumPayment", "locationGeographical", "codeOccupancyStatus", "codeMostRecentOccupancyStatus", "codePropertyType", "amountMostRecentPropertyValue", "codeMostRecentPropertyValueType", "dateMostRecentPropertyValue", "codeMostRecentAVMModel", "numberMostRecentAVMConfidence", "percentageOriginalCLTV", "percentageOriginalLTV", "numberOriginalObligor", "numberOriginalObligorCreditScore", "typeOriginalObligorCreditScore", "numberMostRecentObligorCreditScore", "typeMostRecentObligorCreditScore", "dateMostRecentObligorCreditScore", "codeObligorIncomeVerificationLevel", "hasIRSForm4506T", "percentageOriginatorFrontEndDTI", "percentageOriginatorBackEndDTI", "codeObligorEmploymentVerification", "codeObligorEmploymentLength", "codeObligorAssetVerification", "amountOriginalPledgedAssets", "codeQualificationMethod", "nameMortgageInsuranceCompany", "percentageMortgageInsuranceCoverage", "namePoolInsuranceCompany", "percentagePoolInsuranceStopLoss", "codeMortgageInsuranceCoverageType", "periodModificationHasReporting", "dateNextPaymentDue", "codeAdvancingMethod", "codeServicingAdvanceMethodology", "dateStopPrincipalInterestAdvancing", "amountReportingPeriodBeginningLoanBalance", "amountReportingPeriodBeginningScheduledLoanBalance", "amountNextReportingPeriodPaymentDue", "percentageReportingPeriodInterestRate", "percentageNextInterestRate", "feeamountOtherAssessedUncollectedServicer", "amountOtherServicingFeeRetainedByServicer", "amountReportingPeriodEndActualBalance", "amountReportingPeriodEndScheduledBalance", "amountReportingPeriodScheduledPayment", "amountActualInterestCollected", "amountActualOtherCollected", "datePaidThrough", "dateInterestPaidThrough", "amountPaidFull", "amountServicerAdvancedPrincipal", "amountServicerAdvancedRepaidPrincipal", "amountServicerAdvancedCumulativePrincipal", "amountServicerAdvanceInterest", "amountServicerAdvanceRepaidInterest", "amountServicerAdvanceCumulativeInterest", "amountServicerAdvanceTaxesInsurance", "amountServicerAdvanceRepaidTaxesInsurance", "amountServicerAdvanceCumulativeTaxesInsurance", "amountServicerAdvanceCorporate", "amountServicerAdvanceRepaidCorporate", "amountServicerAdvanceCumulativeCorporate", "codeMostRecentTwelveMonthHistory", "percentageNextResetRate", "dateNextPaymentChange", "dateNextInterestRateChange", "amountNextResetPayment", "hasExercisedArmConversionOption", "namePrimaryServicer", "nameMasterServicer", "nameSpecialServicer", "nameSubServicer", "hasAssetSubjectDemand", "codeAssetSubjectDemandStatus", "codeRepurchaseReplacement", "amountChargeOffPrincipal", "amountChargeOffInterest", "codeLossMitigationType", "codeMostRecentLoanModificationEvent", "dateMostRecentLoanModificationEffective", "datePostModificationMaturity", "codePostModificationInterestRateType", "codePostModificationAmortizationType", "percentagePostModificationInterest", "datePostModificationFirstPayment", "amountPostModificationLoanBalance", "amountPostModificationPrincipalInterestPayment", "amountTotalCap", "modificationIncomeVerificationHasAt", "percentageModificationFrontEndDebtToIncome", "percentageModificationBackEndDebtToIncome", "amountTotalDeferred", "amountForgivenPrincipalCumulative", "amountForgivenPrincipalReportingPeriod", "amountForgivenInterestCumulative", "amountForgivenInterestReportingPeriod", "amountActualEndingBalanceTotalDebt", "amountScheduledEndingBalanceTotalDebt", "codePostModificationARM", "codePostModificationARMIndex", "percentagePostModificationMargin", "numberPostModificationInterestReset", "datePostModificationNextReset", "numberPostModificationIndexLookback", "codePostModificationARMRounding", "percentagePostModificationARMRounding", "paymentPostModificationInitialMinimum", "datePostModificationNextPaymentAdjustment", "frequencyPostModificationARMPaymentRecast", "percentagePostModificationLifetimeFloor", "percentagePostModificationLifetimeCeiling", "percentagePostModificationInitialInterestRateIncrease", "percentagePostModificationInitialInterestRateDecrease", "percentagePostModificationSubsequentInterestIncrease", "percentagePostModificationSubsequentInterestRateDecrease", "percentagePostModificationPaymentCap", "codePostModificationPaymentMethodAfterRecast", "numberPostModificationARMInterestRateTeaser", "numberPostModificationARMPaymentTeaser", "hasPostModificationARMNegativeAmortization", "percentagePostModificationARMNegativeAmortizationCap", "numberPostModificationInterestOnlyTerm", "datePostModificationInterestOnlyLastPayment", "amountPostModificationBalloon", "hasPostModificationInterestRateStep", "percentagePostModificationStepInterest", "datePostModificationStep", "amountPostModificationStepPrincipalInterestPayment", "numberPostModificationStep", "percentagePostModificationMaximumFutureStepAgreement", "datePostModificationMaximumStepAgreementRate", "amountNonInterestBearingDeferredPrincipalCumulative", "amountNonInterestBearingDeferredPrincipalReportingPeriod", "amountRecoveryDeferredPrincipalReportingPeriod", "amountNonInterestBearingDeferredPaidFull", "amountNonInterestBearingDeferredInterestFeeReportingPeriod", "amountNonInterestBearingDeferredInterestFeeCumulative", "amountRecoveryDeferredInterestFeeReportingPeriod", "dateMostRecentForbearancePlanOrTrialModificationStart", "dateMostRecentForbearancePlanOrTrialModificationScheduledEnd", "dateMostRecentTrialModificationViolated", "dateMostRecentRepaymentPlanStart", "dateMostRecentRepaymentPlanScheduledEnd", "dateMostRecentRepaymentPlanViolated", "amountShortSaleAcceptedOffer", "dateMostRecentLossMitigationExit", "codeMostRecentLossMitigationExit", "dateAttorneyReferral", "codeForeclosureDelayReason", "dateForeclosureExit", "codeForeclosureExitReason", "dateNoticeOfIntent", "amountMostRecentAcceptedREOOffer", "dateMostRecentAcceptedREOOffer", "amountGrossLiquidationProceeds", "amountNetSalesProceeds", "amountReportingPeriodLossPassedToIssuingEntity", "amountCumulativeTotalLossPassedToIssuingEntity", "amountSubsequentRecovery", "hasEviction", "dateReoExit", "codeReoExitReason", "amountUPBLiquidation", "amountServicingFeesClaimed", "amountServicerAdvanceReimbursedPrincipal", "amountServicerAdvanceReimbursedInterest", "amountServicerAdvanceReimbursedTaxesInsurance", "amountServicerAdvanceReimbursedCorporate", "amountREOManagementFees", "amountCashKeyDeed", "amountPerformanceIncentiveFees", "dateMortgageInsuranceClaimFiled", "amountMortgageInsuranceClaim", "dateMortgageInsuranceClaimPaid", "amountMortgageInsuranceClaimPaid", "dateMortgageInsuranceClaimDeniedRescinded", "dateMarketableTitleTransfer", "codeNonPayStatus", "codeReportingAction", "idGroup", "dateReportingPeriodBeginning", "dateReportingPeriodEnd", "dateOrigination", "numberOriginalTermLoan", "dateMaturity", "percentageInterestRateSecuritization", "codeInterestAccrualMethod", "dateFirstLoanPaymentDue", "codeLienPositionSecuritization", "codeLoanStructure", "codePaymentType", "amountPeriodicPrincipalAndInterestPaymentSecuritization", "amountScheduledPrincipalBalanceSecuritization", "securitizationNumberProperties", "propertiesNumber", "numberGraceDaysAllowed", "hasInterestOnly", "hasPrepaymentPremium", "hasModified", "codeArmIndex", "dateFirstRateAdjustment", "dateFirstPaymentAdjustment", "numberArmMargin", "percentageLifetimeRateCap", "percentagePeriodicRateIncreaseLimit", "percentagePeriodicRateDecreaseLimit", "amountPeriodicPaymentAdjustmentMaximum", "percentPeriodicPaymentAdjustmentMaximum", "codeRateResetFrequency", "codePaymentResetFrequency", "numberIndexLookbackDays", "datePrepaymentLockOutEnd", "dateYieldMaintenanceEnd", "datePrepaymentPremiumsEnd", "percentageMaximumNegativeAmortizationAllowed", "amountMaximumNegativeAmortizationAllowed", "amountNegativeAmortizationDeferredInterestCap", "amountDeferredInterestCumulative", "amountDeferredInterestCollected", "propertyProperty", "hasReportPeriodModification", "amountReportPeriodBeginningScheduleLoanBalance", "amountTotalScheduledPrincipalInterestDue", "percentageServicerTrusteeFeeRate", "amountUnscheduledPrincipalCollected", "amountReportPeriodEndActualBalance", "amountReportPeriodEndScheduledLoanBalance", "dateHyperAmortizing", "codeServicingAdvanceMethod", "hasNonRecoverability", "amountTotalPrincipalInterestAdvancedOutstanding", "amountTotalTaxesInsuranceAdvancesOutstanding", "amountOtherExpensesAdvancedOutstanding", "codePaymentStatusLoan", "percentageArmIndexRate", "dateNextInterestRateChangeAdjustment", "dateNextPaymentAdjustment", "dateMostRecentSpecialServicerTransfer", "dateMostRecentMasterServicerReturn", "amountRealizedLossToTrust", "codeLiquidationPrepayment", "dateLiquidationPrepayment", "amountPrepaymentPremiumYieldMaintenanceReceived", "codeWorkoutStrategy", "dateLastModification", "codeModification", "amountPostModificationPayment", "amountPostModificationAmortizationPeriod", "nameProperty", "addressProperty", "cityProperty", "stateProperty", "zipcodeProperty", "countyProperty", "numberNetRentableSquareFeet", "numberNetRentableSquareFeetSecuritization", "numberUnitsBedsRooms", "numberUnitsBedsRoomsSecuritization", "yearBuilt", "yearLastRenovated", "amountValuationSecuritization", "codeValuationSourceSecuritization", "dateValuationSecuritization", "amountMostRecentValuation", "dateMostRecentValuation", "codeMostRecentValuationSource", "percentagePhysicalOccupancySecuritization", "percentageMostRecentPhysicalOccupancy", "codePropertyStatus", "dateDefeasanceOptionStart", "codeDefeasedStatus", "tenantLargest", "numberSquareFeetLargestTenant", "dateLeaseExpirationLargestTenant", "tenantSecondLargest", "numberSquareFeetSecondLargestTenant", "dateLeaseExpirationSecondLargestTenant", "tenantThirdLargest", "numberSquareFeetThirdLargestTenant", "dateLeaseExpirationThirdLargestTenant", "dateFinancialsSecuritization", "dateMostRecentFinancialsStart", "dateMostRecentFinancialsEnd", "amountRevenueSecuritization", "amountMostRecentRevenue", "amountOperatingExpensesSecuritization", "amountOperatingExpenses", "amountNetOperatingIncomeSecuritization", "amountMostRecentNetOperatingIncome", "amountNetCashFlowFlowSecuritization", "amountMostRecentNetCashFlow", "codeNetOperatingIncomeNetCashFlowSecuritization", "codeNetOperatingIncomeNetCashFlow", "amountMostRecentDebtService", "percentageDebtServiceCoverageNetOperatingIncomeSecuritization", "percentageMostRecentDebtServiceCoverageNetOperatingIncome", "percentageDebtServiceCoverageNetCashFlowSecuritization", "percentageMostRecentDebtServiceCoverageNetCash", "codeDebtServiceCoverageSecuritization", "codeMostRecentDebtServiceCoverage", "dateMostRecentAnnualLeaseRolloverReview", "dateReportingPeriodEnding", "termOriginalLoan", "dateLoanMaturity", "codeInterestCalculationType", "dateOriginalFirstPayment", "numberGracePeriod", "subventedSubvented", "nameVehicleManufacturer", "nameVehicleModel", "codeVehicleNewUsed", "yearVehicleModel", "codeVehicleType", "amountVehicleValue", "codeVehicleValueSource", "typeObligorCreditScore", "scoreObligorCredit", "hasCoObligor", "percentagePaymentToIncome", "locationObligorGeographic", "hasReportingPeriodModification", "amountPaymentDueNextReportingPeriod", "servicerOtherServicerFeeRetainedBy", "amountOtherAssessedUncollectedServicerFee", "amountReportingPeriodActualEndBalance", "amountPaidTotalActual", "amountServicerAdvanced", "isDelinquent", "amountChargedoffPrincipal", "amountRecovered", "codeModificationType", "numberPaymentExtended", "hasRepossessed", "amountRepossessedProceeds", "dateReportingPeriodBegin", "costAcquisition", "numberOriginalLeaseTerm", "dateScheduledTermination", "periodGrace", "valueBaseResidual", "codeBaseResidualSource", "valueContractResidual", "typeLesseeCreditScore", "scoreLesseeCredit", "codeLesseeIncomeVerificationLevel", "codeLesseeEmploymentVerification", "hasCoLesseePresent", "locationLesseeGeographic", "numberRemainingTerm", "amountReportingPeriodSecuritizationValue", "rateSecuritizationDiscount", "amountOtherLeaseLevelServicingFeesRetained", "amountReportingPeriodEndingActualBalance", "amountReportingPeriodEndActualSecuritization", "namePrimaryLeaseServicer", "dateDemandResolution", "codeRepurchaseOrReplacementReason", "amountChargedOff", "extendedLease", "hasTermination", "amountExcessFee", "amountLiquidationProceeds", "detailNumberComment", "columnComment", "descriptionComment", 'idAccessionPrevious', 'numberItem', 'nameField', 'descriptionNotes', 'idSequence', "numberAmendment", "typeAmendmentType", "confDeniedExpired", 'descriptionInformationAdditional', 'numberFile' ) )} .filer_type_df <- function() { tibble( idTypeFilerOwner = c( 'insider', 'private' , 'broker_dealer', 'transfer_agent', 'ia', 'msd', 'bank', 'inv_co' ), typeFilerOwner = c( 'Insider', 'Private Placement', 'Broker Dealer', 'Transfer Agent', 'Investment Advisor', 'Bank', 'Municipal Securities Dealer', 'Investment Company' ) ) %>% mutate_all(str_to_upper) } dictionary_form_d_categories <- function() { category_df <- dplyr::tibble( idIndustry = 1:35, nameIndustry = c( "AGRICULTURE", "AIRLINES AND AIRPORTS", "BIOTECHNOLOGY", "BUSINESS SERVICES", "COAL MINING", "COMMERCIAL REAL ESTATE", "COMMERCIAL BANKING", "COMPUTERS", "CONSTRUCTION", "ELECTRIC UTILITIES", "ENERGY CONSERVATION", "ENVIORNMENTAL SERVICES", "HEALTH INSURANCE", "HOSPITALS AND PHYSICIANS", "INSURANCE", "INVESTING", "INVESTMENT BANKING", "LODGING AND CONVETION", "MANUFACTURING", "OIL AND GAS", "OTHER", "OTHER BANKING AND FINANCIAL SERVICES", "OTHER ENERGY", "OTHER HEALTH CARE", "OTHER REAL ESTATE", "OTHER TECHNOLOGY", "OTHER TRAVEL", "PHARMACEUTICALS", "POOLED INVESTMENT FUND", "REITS AND FINANCE", "RESIDENTIAL REAL ESTATE", "RESTAURANTS", "RETAIL", "TELECOMMUNICATIONS", "TRAVEL AND TOURISM" ), codeIndustryParent = c( "OTHER", "TRAVEL", "HEALTH", "OTHER", "ENERGY", "REAL", "FINANCE", "TECH", "REAL", "ENERGY", "ENERGY", "ENERGY", "HEALTH", "HEALTH", "FINANCE", "FINANCE", "FINANCE", "TRAVEL", "OTHER", "ENERGY", "OTHER", "FINANCE", "ENERGY", "HEALTH", "REAL", "TECH", "TRAVEL", "HEALTH", "FINANCE", "REAL", "REAL", "OTHER", "OTHER", "TECH", "TRAVEL" ), nameIndustryParent = c( "OTHER", "TRAVEL AND LEISURE", "HEALTHCARE", "OTHER", "ENERGY", "REAL ESTATE", "FINANCIAL", "TECHNOLOGY", "REAL ESTATE", "ENERGY", "ENERGY", "ENERGY", "HEALTHCARE", "HEALTHCARE", "FINANCIAL", "FINANCIAL", "FINANCIAL", "TRAVEL AND LEISURE", "OTHER", "ENERGY", "OTHER", "FINANCIAL", "ENERGY", "HEALTHCARE", "REAL ESTATE", "TECHNOLOGY", "TRAVEL AND LEISURE", "HEALTHCARE", "FINANCIAL", "REAL ESTATE", "REAL ESTATE", "OTHER", "OTHER", "TECHNOLOGY", "TRAVEL AND LEISURE" ) ) return(category_df) } .insider_code_df <- function() { insider_df <- tibble( idInsiderTransaction = c( "A", "C", "D", "F", "G", "H", "I", "J", "K", "L", "M", "NONE", "O", "P", "S", "U", "V", "W", "X", "Z" ), nameInsiderTransaction = c( "AWARD", "CONVEYANCE", "DISPOSITION TO ISSUER", "PAYMENT WITH SECURITIES", "GIFT", "EXPIRATION OF LONG DERIVATIVE POSITION", "DISCRETIONARY TRANSACTION", "OTHER", "EQUITY SWAP OR SIMILAR", "SMALL ACQUISITIONS", "EXEMPT", NA, "OTM EXERCISE", "PURCHASE", "SALE", "MERGER AND ACQUISITION", "REPORTED EARLY", "WILL OR LAWS OF DESCENT", "ITM OR ATM EXERCISE", "DEPOSIT INTO/WITHDRAWAL FROM VOTING TRUST" ), idTypeInsiderTransaction = c( "A", "D", "D", "D", "D", NA, NA, NA, NA, "A", "A", NA, "A", "A", "D", NA, NA, "D", "A", "D" ) ) return(insider_df) } dictionary_sec_filing_codes <- function() { tibble( idFormType = c( "1.01", "1.02", "1.03", "1.04", "2.01", "2.02", "2.03", "2.04", "2.05", "2.06", "3.01", "3.02", "3.03", "4.01", "4.02", "5.01", "5.02", "5.03", "5.04", "5.05", "5.06", "5.07", "5.08", "6.01", "6.02", "6.03", "6.04", "6.05", "7.01", "8.01", "9.01" ), nameFormType = c( "Entry into a Material Definitive Agreement", "Termination of a Material Definitive Agreement", "Bankruptcy or Receivership", "Mine Safety Reporting of Shutdowns and Patterns of Violations", "Completion of Acquisition or Disposition of Assets", "Results of Operations and Financial Condition", "Creation of a Direct Financial Obligation or an Obligation under an Off-Balance Sheet Arrangement of a Registrant", "Triggering Events That Accelerate or Increase a Direct Financial Obligation or an Obligation under an Off-Balance Sheet Arrangement", "Costs Associated with Exit or Disposal Activities", "Material Impairments", "Notice of Delisting or Failure to Satisfy a Continued Listing Rule or Standard; Transfer of Listing", "Unregistered Sales of Equity Securities", "Material Modification to Rights of Security Holders", "Changes in Registrant's Certifying Accountant", "Non-Reliance on Previously Issued Financial Statements or a Related Audit Report or Completed Interim Review", "Changes in Control of Registrant", "Departure of Directors or Certain Officers; Election of Directors; Appointment of Certain Officers; Compensatory Arrangements of Certain Officers", "Amendments to Articles of Incorporation or Bylaws; Change in Fiscal Year", "Temporary Suspension of Trading Under Registrant's Employee Benefit Plans", "Amendments to the Registrant's Code of Ethics, or Waiver of a Provision of the Code of Ethics", "Change in Shell Company Status", "Submission of Matters to a Vote of Security Holders", "Shareholder Director Nominations", "ABS Informational and Computational Material", "Change of Servicer or Trustee", "Change in Credit Enhancement or Other External Support", "Failure to Make a Required Distribution", "Securities Act Updating Disclosure", "Regulation FD Disclosure", "Other Events", "Financial Statements and Exhibits" ) %>% stringr::str_to_upper() ) } dictionary_sec_form_codes <- function() { tibble( idForm = c( "R", "A", "Q", "CR", "REG", "REGX", "O", "P", "X", "W", "SEC", "PROXY", "CT", "IS", "CO", "T" ), nameForm = c( "Other Report", "Annual Report", "Quarterly Report", "Current Report", "Registration", "Private Offering", "Ownership", "Prospectus", "Exemption", "Withdrawal", "SEC Correspondence", "Proxy Statement", "Confidential Treatment", "Initial Statement", "Change in Ownership", "Trades" ) %>% stringr::str_to_upper() ) } .company_type_df <- function() { tibble( idCompanyType = c( "ic", "i", "ia", "bd", "m", "t", "b", "c", "p", "etf", "mmf", "mf", "uit", "cef" ), nameCompanyType = c( "Investment Company", "Insider", "Investment Adviser", "Broker-dealer", "Municipal Securities Dealer", "Transfer Agent", "Bank", "Company", "Private Issuer", "ETF", "Money Market Fund", "Mutual Fund", "UIT", "Closed-end Fund" ) ) } dictionary_sec_rules <- function() { tibble( idRule = c( "06", "3C", "3C.7", "3C.1", "06b", "04", "46", "04.1", "04.2", "04.3", "05", "3C.6", "3C.5", "06c", "4a5", "3C.11", "3C.2", "3C.3", "3C.9", "3C.10", "3C.4", "3C.12", "3C.", "3C.14", "3" ), nameRule = c( "Rule 506", "Investment Company Act Section 3c", "Investment Company Act Section 3c", "Investment Company Act Section 3c", "Rule 506b", "Rule 504", "Rule 506c", "Rule 504b(1)(i)", "Rule 504b(1)(ii)", "Rule 504b(1)(iii)", "Rule 505", "Investment Company Act Section 3c", "Investment Company Act Section 3c", "Rule 506c", "Securities Act Section 4(a)(5)", "Investment Company Act Section 3c", "Investment Company Act Section 3c", "Investment Company Act Section 3c", "Investment Company Act Section 3c", "Investment Company Act Section 3c", "Investment Company Act Section 3c", "Investment Company Act Section 3c", "Investment Company Act Section 3c", "Investment Company Act Section 3c", "Investment Company Act Section 3c" ) ) %>% mutate_all(str_to_upper) } edgar_tickers <- function(include_ticker_information = F, join_sic = T, snake_names = F, return_message = T) { json_data <- "https://www.sec.gov/data/company_tickers.json" %>% jsonlite::fromJSON(simplifyDataFrame = TRUE, flatten = F) data <- seq_along(json_data) %>% map_dfr(function(x) { json_data[[x]] %>% flatten_dfr() }) %>% setNames(c('idCIK', 'idTicker', "nameCompany")) %>% distinct() %>% mutate(nameCompany = nameCompany %>% str_to_upper()) if (include_ticker_information) { "\n\nAcquiring ticker information\n\n" %>% cat(fill = T) sec_tickers_info_safe <- possibly(sec_tickers_info, tibble()) df_tickers <- sec_tickers_info(tickers = data$idTicker, return_message = return_message, join_sic = join_sic, unformat = T, snake_names = F, convert_case = T, include_address = T) df_tickers <- df_tickers %>% rename(nameCompanyTicker = nameCompany, idCIKTicker = idCIK) data <- data %>% left_join( df_tickers, by = "idTicker" ) } data <- data %>% munge_tbl(snake_names = snake_names) data } .cik_filing_count <- function(cik = 886982, return_message = TRUE) { code_cik <- cik %>% pad_cik() url <- list("https://www.sec.gov/cgi-bin/srch-edgar?text=CIK%3D", code_cik,'&first=1994&last=', Sys.Date() %>% lubridate::year() %>% as.numeric() ) %>% purrr::reduce(paste0) page <- url %>% read_html() no_data <- page %>% html_nodes(css = 'p+ b') %>% html_text() %>% length() == 0 if (no_data) { return(tibble(idCIK = cik)) } filings <- page %>% html_nodes(css = 'p+ b') %>% html_text() %>% as.character() %>% readr::parse_number() pages <- ceiling(filings/100) df <- tibble(idCIK = cik, countFilings = filings, countPages = pages) %>% mutate(isMultiSearch = pages > 20) if (return_message) { list("CIK: ", cik, " has ", filings %>% formattable::comma(digits = 0), ' Filings') %>% purrr::reduce(paste0) %>% cat(fill = T) } df } cik_filing_counts <- function(cik, return_message = T) { .cik_filing_count_safe <- possibly(.cik_filing_count, tibble()) cik %>% future_map_dfr(function(x){ .cik_filing_count_safe(cik = x, return_message = return_message) }) } .sic_filing_count <- function(sic = 800, return_message = TRUE) { code_sic <- sic %>% pad_sic() url <- list("https://www.sec.gov/cgi-bin/srch-edgar?text=ASSIGNED-SIC%3D", code_sic,'&first=1994&last=', Sys.Date() %>% lubridate::year() %>% as.numeric() ) %>% purrr::reduce(paste0) page <- url %>% read_html() no_data <- page %>% html_nodes(css = 'p+ b') %>% html_text() %>% length() == 0 if (no_data) { return(tibble(idCIK = cik)) } filings <- page %>% html_nodes(css = 'p+ b') %>% html_text() %>% as.character() %>% readr::parse_number() pages <- ceiling(filings/100) df <- tibble(idSIC = sic, countFilings = filings, countPages = pages) %>% mutate(isMultiSearch = pages > 20) if (return_message) { list("SIC: ", sic, " has ", filings %>% formattable::comma(digits = 0), ' Filings') %>% purrr::reduce(paste0) %>% cat(fill = T) } df } sic_filing_count <- function(sic = NULL, join_sic = T, snake_names = F, use_all_sice_codes = F, return_message = T, unformat = F) { if (use_all_sice_codes) { sic <- dictionary_sic_codes() %>% pull(idSIC) } if (length(sic) == 0) { "Enter SIC Codes" } .sic_filing_count_safe <- possibly(.sic_filing_count, tibble()) data <- sic %>% future_map_dfr(function(x){ .sic_filing_count_safe(sic = x, return_message = return_message) }) if (join_sic) { data <- data %>% left_join(dictionary_sic_codes(), by = "idSIC") } data <- data %>% munge_tbl(snake_names = snake_names, unformat = F) data } .resolve_form_columns <- function(data) { data %>% mutate_if(is.character, funs(ifelse(. %in% c('_', "NULL"), NA, .))) %>% mutate_at(data %>% select( dplyr::matches( "^name|^description|^idDay|^type|^title|^description|^code|^address|^city|^state|^relationship" ) ) %>% names(), funs(. %>% str_to_upper())) %>% mutate_at(data %>% select( dplyr::matches("^price|^count|^amount|^value|^idCIK|^yearIncorporation|^idSIC|^pershare|^number|^percent|^term|^pct|^score|^year") ) %>% names(), funs(. %>% as.character() %>% readr::parse_number())) %>% mutate_at(data %>% select(dplyr::matches("^is|^has")) %>% names(), funs( ifelse( . %in% c('true', 'false'), . %>% as.logical(), . %>% as.numeric() %>% as.logical() ) )) %>% mutate_at(data %>% select(dplyr::matches("^date")) %>% names(), funs(. %>% lubridate::ymd())) %>% mutate_at(data %>% select(dplyr::matches("^amountValueHoldings|^valueSecurities")) %>% names(), funs(. * 1000)) %>% suppressWarnings() %>% suppressMessages() %>% select(which(colMeans(is.na(.)) < 1)) } dictionary_sic_codes <- memoise::memoise(function() { page <- "https://www.sec.gov/info/edgar/siccodes.htm" %>% read_html() page %>% html_table(fill = T) %>% first() %>% as_tibble() %>% setNames(c("idSIC", "nameOfficeAD", "nameIndustry")) %>% munge_tbl(convert_case = T) }) dictionary_sec_forms <- function() { page <- "https://www.sec.gov/forms" %>% read_html() forms <- page %>% html_nodes('.release-number-content') %>% html_text() %>% str_trim() %>% str_to_upper() %>% str_replace_all('NUMBER:', '') form_names <- page %>% html_nodes('.views-field-field-display-title a') %>% html_text() %>% str_to_upper() %>% str_trim() %>% str_replace_all('\r|\n|\u0092|\u0097', '') %>% str_replace_all('(PDF)', '') %>% str_replace_all('\\(', '') %>% str_replace_all('\\)', '') %>% str_trim() url_description_form <- page %>% html_nodes('.views-field-field-display-title a') %>% html_attr('href') %>% paste0('https://www.sec.gov', .) date_updated <- page %>% html_nodes('.datetime') %>% html_text() %>% list("01-", .) %>% purrr::reduce(paste0) %>% lubridate::dmy() sec_ids <- page %>% html_nodes('.list-page-detail-content') %>% html_text() %>% str_trim() %>% str_replace_all('SEC Number:', '') %>% str_trim() sec_ids[sec_ids == ''] <- NA reference <- page %>% html_nodes('td.views-field-term-node-tid') %>% html_text() %>% str_trim() %>% str_to_upper() %>% str_replace_all('\\TOPIC(S):','') %>% str_split('\\:') %>% future_map(function(x){ x %>% str_split('\\:') %>% purrr::flatten_chr() %>% .[[2]] }) %>% purrr::flatten_chr() data <- tibble( idForm = forms, nameForm = form_names, urlFormDescription = url_description_form, dateFormUpdate = date_updated, idSECNumber = sec_ids, referenceForm = reference ) %>% arrange(desc(dateFormUpdate)) data } parse_for_tables <- function(all_data, table_name_initial = "All Filings", parse_all_filings = TRUE, parse_complete_text_filings = TRUE, parse_form_d = TRUE, parse_13F = TRUE, parse_small_offerings = TRUE, parse_form_3_4s = TRUE, parse_asset_files = TRUE, parse_xbrl = TRUE, assign_to_environment = FALSE, nest_data = TRUE, return_message = TRUE) { all_tables <- tibble() parse_form_data_safe <- purrr::possibly(.parse_form_data, tibble()) parse_all_filings <- c( parse_complete_text_filings, parse_form_d, parse_13F, parse_small_offerings, parse_form_3_4s, parse_asset_files, parse_xbrl ) %>% sum() > 0 if ('termSearch' %in% names(all_data)) { df_general <- all_data %>% select(termSearch, countFilings) %>% distinct() all_tables <- all_tables %>% bind_rows(tibble(nameTable = 'Summary', dataTable = list(df_general))) all_data <- all_data %>% select(-c(termSearch, countFilings)) } else { all_tables <- all_tables %>% bind_rows(tibble(nameTable = 'Summary', dataTable = list(tibble()))) } if (parse_all_filings) { all_data <- all_data %>% select(-dplyr::matches( "hasAssetFile|isFormD|is13F|isForm3_4|hasSmallOfferingData" )) %>% distinct() if (!'typeFile' %in% names(all_data)) { all_data <- all_data %>% mutate(typeFile = ifelse(urlSECFilingDirectory %>% str_detect('htm'), 'html', NA)) } search_df <- all_data %>% select(dateFiling, dplyr::matches("typeFile"), dplyr::matches("idForm"), urlSECFilingDirectory) %>% distinct() df_all_filings <- search_df$urlSECFilingDirectory %>% unique() %>% future_map_dfr(function(x){ .parse_sec_filing_index(urls = x) }) df_all_filings <- df_all_filings %>% nest(-c(idCIK, urlSECFilingDirectory, dplyr::matches("idAccession")), .key = dataFilings) all_data <- all_data %>% select(-dplyr::matches("dataFilings")) %>% left_join(df_all_filings %>% select(-one_of(c('idCIK', 'idAccession')))) %>% mutate(hasNoFilings = dataFilings %>% map_lgl(is_null)) %>% suppressMessages() all_tables <- all_tables %>% bind_rows(tibble(nameTable = table_name_initial, dataTable = list(all_data))) .all_filings <- all_data %>% filter(!hasNoFilings) %>% select(idCIK:typeFile, dataFilings) if (!'idCIKFiler' %in% names(.all_filings)) { .all_filings <- .all_filings %>% dplyr::rename(idCIKFiler = idCIK) } if (!'typeFileFiler' %in% names(.all_filings)) { .all_filings <- .all_filings %>% dplyr::rename(typeFileFiler = typeFile) } .all_filings <- .all_filings %>% select(dplyr::matches("idCIK|data")) %>% unnest() %>% distinct() all_tables <- all_tables %>% bind_rows(tibble(nameTable = 'All Filing URLS', dataTable = list(.all_filings))) if (parse_complete_text_filings) { if (!'urlTextFilingFull' %in% names(all_data)) { all_data <- all_data %>% mutate(urlTextFilingFull = urlSECFilingDirectory %>% str_replace_all("-index.htm", ".txt")) } urls <- all_data$urlTextFilingFull %>% unique() sec_complete_filings_safe <- purrr::possibly(.sec_complete_filings, tibble()) all_text_df <- .sec_complete_filings(urls = urls) all_tables <- all_tables %>% bind_rows(tibble(nameTable = 'Text Filings', dataTable = list(all_text_df))) } if (parse_form_d) { df_form_ds <- .all_filings %>% parse_form_data_safe(filter_parameter = 'isFormD') all_tables <- all_tables %>% bind_rows(tibble(nameTable = 'FormDs', dataTable = list(df_form_ds))) } if (parse_13F) { df_13F <- .all_filings %>% parse_form_data_safe(filter_parameter = 'is13FFiling') all_tables <- all_tables %>% bind_rows(tibble(nameTable = '13Fs', dataTable = list(df_13F))) } if (parse_small_offerings) { df_small_offerings <- .all_filings %>% parse_form_data_safe(filter_parameter = 'hasSmallOfferingData') all_tables <- all_tables %>% bind_rows(tibble( nameTable = 'Small Offerings', dataTable = list(df_small_offerings) )) } if (parse_form_3_4s) { df_form3_4 <- .all_filings %>% parse_form_data_safe(filter_parameter = 'isForm3_4') all_tables <- all_tables %>% bind_rows(tibble(nameTable = 'Form 3 and 4', dataTable = list(df_form3_4))) } if (parse_asset_files) { df_assets <- .all_filings %>% .parse_form_data(filter_parameter = 'hasAssetFile') all_tables <- all_tables %>% bind_rows(tibble(nameTable = 'Asset Data', dataTable = list(df_assets))) } if (parse_xbrl) { df_xbrl <- .all_filings %>% parse_form_data_safe(filter_parameter = 'isXBRLInstanceFile') all_tables <- all_tables %>% bind_rows(tibble(nameTable = 'XBRL', dataTable = list(df_xbrl))) } } else { all_tables <- all_tables %>% bind_rows(tibble(nameTable = 'TermsFilings', dataTable = list(all_data))) } all_tables <- all_tables %>% mutate(countCols = dataTable %>% map_dbl(ncol)) %>% filter(countCols > 0) %>% select(-countCols) if (assign_to_environment) { table_name_df <- all_tables %>% select(nameTable) %>% distinct() %>% mutate( nameDF = list('data', nameTable %>% str_replace_all('\\ ', ''), 'EDGAR') %>% purrr::invoke(paste0, .) ) 1:nrow(table_name_df) %>% walk(function(x) { df_data <- all_tables %>% slice(x) %>% select(dataTable) %>% unnest() df_name <- table_name_df %>% slice(x) %>% .$nameDF df_data <- df_data %>% mutate_at(.vars = df_data %>% select(dplyr::matches("^amount|^price|^value")) %>% names(), funs(. %>% formattable::currency(digits = 2))) %>% mutate_at( .vars = df_data %>% select(dplyr::matches("^count[A-Z]|^number")) %>% select(-dplyr::matches("country")) %>% names(), funs(. %>% as.numeric() %>% formattable::comma(digits = 0)) ) %>% mutate_at( .vars = df_data %>% select(dplyr::matches("^percent|^pct")) %>% select(-dplyr::matches("country")) %>% names(), funs(. %>% as.numeric() %>% formattable::percent(digits = 0)) ) %>% select(which(colMeans(is.na(.)) < 1)) %>% tidy_column_formats() assign(x = df_name, eval(df_data), envir = .GlobalEnv) }) } return(all_tables) } .generate_ft_search_urls <- function(search_term = c('"Rockwood Capital"'), return_message = TRUE) { term <- search_term %>% URLencode() base_url <- list("https://searchwww.sec.gov/EDGARFSClient/jsp/EDGAR_MainAccess.jsp?search_text=", term, "&sort=Date&startDoc=0&numResults=100&isAdv=true&formType=1&fromDate=mm/dd/yyyy&toDate=mm/dd/yyyy&stemming=true") %>% purrr::reduce(paste0) page <- base_url %>% read_html() page_total <- page %>% html_nodes(' html_text() %>% as.character() %>% readr::parse_number() %>% max(na.rm = TRUE) length_out <- ceiling(page_total/100) times <- seq(0,by = 100, length.out = length_out) urls <- list("https://searchwww.sec.gov/EDGARFSClient/jsp/EDGAR_MainAccess.jsp?search_text=", term, "&sort=Date&startDoc=", times,"&numResults=100&isAdv=true&formType=1&fromDate=mm/dd/yyyy&toDate=mm/dd/yyyy&stemming=true") %>% purrr::reduce(paste0) if (return_message) { glue("Found SEC free text urls for {search_term}") %>% cat() } tibble(termSearch = search_term, urlSECSearch = urls) } .parse_ft_filing_page <- function(urls, return_message = TRUE) { df <- tibble() success <- function(res) { if (return_message) { list("Parsing: ", res$url) %>% purrr::reduce(paste0) %>% cat(fill = T) } page <- res$content %>% read_html() search_url <- res$url dates <- page %>% html_nodes('i.blue') %>% html_text() %>% lubridate::mdy() search_items <- page %>% html_nodes('.infoBorder+ tr td+ td html_text() %>% str_trim() %>% str_to_upper() urlFiling <- page %>% html_nodes('.infoBorder+ tr td+ td html_attr('href') %>% str_replace_all("javascript:opennew",'') %>% str_replace_all("'|\\(",'') %>% map_chr(function(x){ x %>% str_split('\\,') %>% flatten_chr() %>% .[[1]] }) ciks <- urlFiling %>% map_dbl(function(x){ x %>% str_replace_all('http://www.sec.gov/Archives/edgar/data/','') %>% str_split('/') %>% flatten_chr() %>% .[[1]] %>% as.character() %>% readr::parse_number() }) text <- page %>% html_nodes('.small') %>% html_text() %>% str_to_upper() data <- tibble( dateFiling = dates[seq_along(ciks)], idCIKFiler = ciks, nameFilerFilingExhibit = search_items, descriptionText = text[seq_along(ciks)], urlSECFiling = urlFiling ) %>% tidyr::separate(nameFilerFilingExhibit, sep = '\\ FOR ', into = c('exhibitFiling', 'nameFiler'), remove = FALSE) %>% tidyr::separate(exhibitFiling, sep = '\\ OF ', into = c('idExhibit', 'idForm'), remove = TRUE) %>% suppressWarnings() data <- data %>% mutate(idForm = ifelse(idForm %>% is.na(), idExhibit, idForm), idExhibit = ifelse(idForm == idExhibit, NA, idExhibit), urlSECSearch = search_url) %>% select(dateFiling, idCIKFiler, nameFiler, idForm, idExhibit, everything()) %>% suppressWarnings() %>% suppressMessages() df <<- df %>% bind_rows(data) } failure <- function(msg){ tibble() } urls %>% walk(function(x){ curl_fetch_multi(url = x, success, failure) }) multi_run() df } edgar_ft_terms <- function(search_terms = c('"Jared Kushner"', '"EJF Capital"', '"Blackstone Real Estate"'), include_counts = F, nest_data = FALSE, return_message = TRUE) { .generate_ft_search_urls_safe <- purrr::possibly(.generate_ft_search_urls, tibble()) df_urls <- search_terms %>% future_map_dfr(function(x) { .generate_ft_search_urls_safe(search_term = x) }) all_data <- .parse_ft_filing_page(urls = df_urls$urlSECSearch, return_message = return_message) %>% left_join(df_urls) %>% select(termSearch, everything()) %>% suppressMessages() %>% arrange(desc(termSearch), desc(dateFiling)) %>% find_target_filings() if (include_counts) { .cik_filing_count_safe <- purrr::possibly(.cik_filing_count, tibble()) df_counts <- all_data %>% pull(idCIKFiler) %>% unique() %>% future_map_dfr(function(x){ .cik_filing_count_safe(cik = x) }) all_data <- all_data %>% left_join(df_counts %>% dplyr::rename(idCIKFiler = idCIK) %>% select(idCIKFiler, countFilings)) %>% select(termSearch:idCIKFiler, countFilings, everything()) %>% suppressMessages() %>% arrange(dateFiling, termSearch) } if (return_message) { results <- all_data %>% group_by(termSearch) %>% count(termSearch) %>% mutate(n = n %>% formattable::comma(digits = 0)) %>% unite(termMessage, termSearch, n, sep = ': ') %>% .$termMessage list( "\nSEC free text search filing mentions in the last 4 years:\n", results %>% paste0(collapse = '\n') ) %>% purrr::reduce(paste0) %>% cat(fill = T) } if (nest_data) { all_data <- all_data %>% nest(-c(termSearch), .key = dataFilings) } return(all_data) } .sec_parameter_df <- function() { tibble( nameParameter = c( "Company Name", "Company CIK", "Public Document Count", "Accession Number", "Form Type", "Period", "Filing Date", "Company Name Confirmed", "CIK", "SIC", "IRS Number", "State of Incorporation", "Fiscal Year End", "Form Type Exact", "SEC Act", "File Number", "Business Address", "Mailing Address", "Former Company Name", "Date of Company Name Change", "Company", "form" ), slugParameter = c( "company-name", "company-cik", "Public-Document-Count", "Accession-Number", "type", "period", "Filing-Date", "Company-Name-Confirmed", "cik", "ASSIGNED-SIC", "irs-number", "STATE-OF-INCORPORATION", "Fiscal-Year-End", "Form-Type", "Act", "File-Number", "Business-Address", "Mailing-Address", "FORMER-CONFORMED-NAME", "DATE-CHANGED", 'company-name', "type" ) ) } .parse_boolean_search_page <- function(urls, return_message = TRUE) { df <- tibble() success <- function(res){ if (return_message) { list("Parsing: ", res$url, "\n") %>% purrr::reduce(paste0) %>% cat(fill = T) } page <- res$content %>% read_html() use_url <- page %>% html_nodes('div td:nth-child(2) a') %>% html_text() %>% str_to_upper() %>% length() == 0 if (use_url) { page <- res$url %>% read_html() } entities <- page %>% html_nodes('div td:nth-child(2) a') %>% html_text() %>% str_to_upper() stems <- page %>% html_nodes('div td:nth-child(2) a') %>% html_attr('href') if (stems %>% length() > 0 ) { data <- seq_along(stems) %>% future_map_dfr(function(x){ stem <- stems[[x]] url_filing <- 'https://www.sec.gov' %>% paste0(stem) items <- stem %>% str_replace_all('/Archives/edgar/data/','') %>% str_split('/') %>% flatten_chr() cik <- items[[1]] %>% as.numeric() accession <- items[length(items)] is_html <- accession %>% str_detect(".htm|.html") tibble(idRow = x, idCIK = cik, isHTML = is_html, slugAccension = accession, urlSECFilingDirectory = url_filing) }) } else { data <- tibble(idRow = x, idCIK = NA) } form <- page %>% html_nodes('td:nth-child(4)') %>% html_text() %>% str_to_upper() if (!length(form) == nrow(data)) { form <- form[2:length(form)] } date_filing <- page %>% html_nodes('td:nth-child(5)') %>% html_text() %>% lubridate::mdy() file_size <- page %>% html_nodes('td:nth-child(6)') %>% html_text() %>% as.character() %>% readr::parse_number() data <- data %>% mutate( nameEntityLegal = entities, idForm = form, dateFiling = date_filing, sizeFile = file_size ) %>% resolve_legal_name() %>% select(-idRow) %>% select(dateFiling, idCIK, nameEntity, idForm, everything()) %>% find_target_filings() search_url <- res$url data <- data %>% separate(slugAccension, sep = '\\.', into = c('idAccession', 'typeFile'), extra = "merge", fill = "right" ) %>% mutate(idAccession = idAccession %>% str_replace_all('-index', '')) %>% separate( idAccession, into = c('idCIKFilerSubmission', 'codeYear', 'countFilerYearFilings'), sep = '\\-', remove = FALSE ) %>% mutate_at( c('idCIKFilerSubmission', 'codeYear', 'countFilerYearFilings'), funs(. %>% as.character() %>% readr::parse_number()) ) %>% suppressMessages() %>% suppressWarnings() %>% mutate( urlSECSearch = search_url, isSameFiler = ifelse(idCIK == idCIKFilerSubmission, TRUE, FALSE), urlTextFilingFull = ifelse( typeFile %>% str_detect('htm'), urlSECFilingDirectory %>% str_replace_all("-index.htm", ".txt"), urlSECFilingDirectory ) ) df <<- df %>% bind_rows(data) } failure <- function(msg){ tibble() } urls %>% walk(function(x){ curl_fetch_multi(url = x, success, failure) }) multi_run() df } .generate_edgar_search_url <- function(search_term = '"Corona Virus"', parameter = NULL, year_start = NULL, year_end = NULL, page_start = 0) { if (length(search_term) == 0) { stop("Please enter a search term") } base <- 'https://www.sec.gov/cgi-bin/srch-edgar?text=' is_non_numeric <- class(search_term) != "numeric" if (is_non_numeric) { term <- search_term %>% URLencode() } else { term <- search_term } term <- term %>% str_replace_all('\\=', '%3D') has_parameter <- length(parameter) > 0 if (has_parameter) { df_params <- .sec_parameter_df() %>% mutate_all(str_to_lower) parameter <- parameter %>% str_to_lower() wrong_param <- !parameter %in% df_params$nameParameter if (wrong_param) { stop( list( "SEC boolean search parameters can only be\n", paste0(df_params$nameParameter, collapse = '\n') ) %>% purrr::reduce(paste0) ) } param_slug <- df_params %>% filter(nameParameter == parameter) %>% .$slugParameter if (parameter %>% str_to_lower() %in% c('cik', 'company cik')) { term <- term %>% pad_cik() } if (parameter %>% str_to_lower() %>% str_detect('date')) { term <- term <- lubridate::ymd() %>% as.character() %>% str_replace_all('\\-', '') } if (parameter %>% str_to_lower() == 'sic') { term <- term %>% pad_sic() } slug_term <- list(param_slug, '%3D', term) %>% purrr::reduce(paste0) } else { slug_term <- term } if (length(year_start) == 0) { year_start <- 1994 } if (length(year_end) == 0) { year_end <- Sys.Date() %>% lubridate::year() %>% as.numeric() } url <- list(base, slug_term, '&start=', page_start, '&count=100', '&first=', year_start, '&last=', year_end) %>% purrr::reduce(paste0) url } .generate_search_term_urls <- function(search_term = c('"Rockwood Capital"'), parameter = NULL, year_start = NULL, year_end = NULL){ url <- .generate_edgar_search_url( search_term = search_term, parameter = parameter, year_start = year_start, year_end = year_end, page_start = 0 ) page <- url %>% read_html() filings <- page %>% html_nodes(css = 'p+ b') %>% html_text() %>% as.character() %>% readr::parse_number() if (length(parameter) == 0){ search_message <- search_term } else { search_message <- list(parameter, ' = ', search_term) %>% purrr::reduce(paste0) } pages <- ceiling(filings / 100) list('\n',filings %>% formattable::comma(digits = 0), " total filings for search term: ", search_message, ' to parse' ) %>% purrr::reduce(paste0) %>% cat(fill = T) page_count <- seq(0, by = 100, length.out = pages) if (page_count %>% length() == 0) { page_count <- 0 } urls <- page_count %>% map_chr(function(x) { .generate_edgar_search_url( search_term = search_term, parameter = parameter, year_start = year_start, year_end = year_end, page_start = x ) }) rm(page) df_urls <- tibble(termSearch = search_term, countFilings = filings, urlSECSearch = urls) return(df_urls) } .sec_search_term <- function(search_term = "Boston Properties", parameter = NULL, year_start = NULL, year_end = NULL, return_message = TRUE){ url_df <- .generate_search_term_urls( search_term = search_term, parameter = parameter, year_start = year_start, year_end = year_end ) urls <- url_df$urlSECSearch all_data <- .parse_boolean_search_page(urls = urls) all_data <- all_data %>% left_join(url_df, by = "urlSECSearch") %>% suppressMessages() %>% select(termSearch, countFilings, everything()) if (return_message) { list( "\nFound ", all_data %>% nrow() %>% formattable::comma(digits = 0), ' SEC filings for ', search_term, '\n' ) %>% purrr::reduce(paste0) %>% cat(fill = T) } all_data <- all_data %>% arrange(desc(dateFiling)) all_data } edgar_search_terms <- function(search_terms = NULL, parameter = NULL, year_start = NULL, year_end = NULL, table_name_initial = "All Filings", parse_all_filings = TRUE, parse_complete_text_filings = FALSE, parse_form_d = FALSE, parse_13F = FALSE, parse_small_offerings = FALSE, parse_form_3_4s = FALSE, parse_asset_files = FALSE, parse_xbrl = FALSE, assign_to_environment = TRUE, nest_data = TRUE, return_message = TRUE) { sec_search_term_safe <- purrr::possibly(.sec_search_term, tibble()) all_data <- search_terms %>% future_map_dfr(function(x) { sec_search_term_safe( search_term = x, parameter = parameter, year_start = year_start, year_end = year_end ) }) %>% dplyr::select(-dplyr::matches("urlSECSearch")) %>% distinct() if (all_data %>% nrow() == 0) { return(tibble()) } parse_for_tables_safe <- purrr::possibly(parse_for_tables, tibble()) all_tables <- parse_for_tables_safe( all_data = all_data, table_name_initial = table_name_initial, parse_all_filings = parse_all_filings, parse_complete_text_filings = parse_complete_text_filings, parse_form_d = parse_form_d, parse_13F = parse_13F, parse_small_offerings = parse_small_offerings, parse_form_3_4s = parse_form_3_4s, parse_asset_files = parse_asset_files, parse_xbrl = parse_xbrl, nest_data = nest_data, return_message = return_message ) if (all_tables %>% nrow() == 0) { return(all_data) } all_tables <- all_tables %>% bind_rows(tibble(nameTable = 'Search Filings', dataTable = list(all_data))) if (assign_to_environment) { table_name_df <- all_tables %>% select(nameTable) %>% distinct() %>% mutate( nameDF = list('dataFiler', nameTable %>% str_replace_all('\\ ', '')) %>% purrr::invoke(paste0, .) ) 1:nrow(table_name_df) %>% walk(function(x) { df_name <- table_name_df %>% slice(x) %>% .$nameDF df_data <- all_tables %>% filter(nameTable == table_name_df$nameTable[[x]]) %>% select(dplyr::matches(c('idCIK|nameEntity|dataTable'))) %>% unnest() %>% suppressWarnings() has_unnest <- names(df_data) %>% str_detect('data') %>% sum(na.rm = TRUE) > 1 if (has_unnest) { base_names <- df_data %>% select(-dplyr::matches("data")) %>% names() df_data_names <- names(df_data)[names(df_data) %>% str_detect('data')] for (df_data_name in df_data_names) { table <- df_data %>% select(one_of(c(base_names, df_data_name))) %>% unnest() %>% select(which( colMeans(is.na(.)) < 1 )) df_table_name <- list(df_name, df_data_name %>% str_replace_all('data', '')) %>% purrr::reduce(paste0) assign(x = df_table_name, eval(table), envir = .GlobalEnv) } } else { has_unnest <- df_data %>% names() %>% str_detect('data') %>% sum(na.rm = TRUE) > 0 if (has_unnest) { df_data <- df_data %>% unnest() select_cols <- tibble(nameData = names(df_data)) %>% mutate(idColumn = 1:n()) %>% group_by(nameData) %>% mutate(countColumn = 1:n()) %>% ungroup() %>% filter(countColumn == min(countColumn)) %>% .$idColumn df_data <- df_data[, select_cols] table <- df_data %>% select(which( colMeans(is.na(.)) < 1 )) assign(x = df_name, eval(table), envir = .GlobalEnv) } else { table <- df_data %>% select(which( colMeans(is.na(.)) < 1 )) assign(x = df_name, eval(table), envir = .GlobalEnv) } } }) } return(all_tables) } .parse_most_recent_filing_form_page <- function(url = "https://www.sec.gov/cgi-bin/current?q1=0&q2=6&q3=10-D", return_message = F) { page <- url %>% read_html() data <- page %>% html_nodes(css = 'td pre') %>% html_text() %>% str_replace_all('Date Filed Form CIK Code Company Name','') %>% read_table(col_names = FALSE) %>% purrr::set_names(c('dateFiling', 'idForm', 'idCIK', 'nameFiler')) %>% mutate(nameFiler = nameFiler %>% str_to_upper()) %>% suppressWarnings() %>% suppressMessages() urls <- page %>% html_nodes('pre a') %>% html_attr('href') %>% paste0('https://www.sec.gov',.) data_match <- urls %>% length() / 2 == (nrow(data)) if (data_match) { data <- data %>% mutate(idRow = 1:n()) %>% left_join( tibble(urlCIKFiler = urls[c(FALSE,TRUE)] %>% paste0('&start=0&count=100'), urlSECFilingDirectory = urls[c(FALSE, TRUE)]) %>% mutate(idRow = 1:n()) ) %>% suppressWarnings() %>% suppressMessages() } if (return_message) { list("Parsed: ", url) %>% purrr::invoke(paste0, .) %>% cat(fill = T)} data } .parse_most_recent_stream <- function(url = "https://www.sec.gov/cgi-bin/browse-edgar?company=&CIK=&type=&owner=include&count=100&action=getcurrent", return_message = TRUE) { page <- url %>% xml2::read_html() url_directory <- page %>% html_nodes('a+ table td:nth-child(2) a:nth-child(1)') %>% html_attr(name = 'href') %>% paste0('https://www.sec.gov', .) urlTextFilingFull <- page %>% html_nodes('div a+ a') %>% html_attr(name = 'href') %>% paste0('https://www.sec.gov', .) forms <- page %>% html_nodes('a+ table td:nth-child(1)') %>% html_text() %>% str_trim() forms <- forms[!forms == ''] url_directory <- page %>% html_nodes('a+ table td:nth-child(2) a:nth-child(1)') %>% html_attr('href') %>% paste0('https://www.sec.gov',.) filing_descriptions <- page %>% html_nodes('.small') %>% html_text() %>% str_trim() df_descriptions <- seq_along(filing_descriptions) %>% future_map_dfr(function(x){ description <- filing_descriptions[[x]] %>% str_to_upper() has_act <- description %>% str_detect("ACT:") if (has_act) { items <- description %>% str_split("ACCESSION NUMBER: ") %>% flatten_chr() %>% str_replace_all('\n','') filing_description <- items[[1]] items <- items[[2]] %>% str_split('ACT:') %>% flatten_chr() %>% str_trim() accession <- items[1] items <- items[[2]] %>% str_split("SIZE:") %>% flatten_chr() %>% str_trim() df <- tibble(idRow = x, descriptionFiling = filing_description, idAccession = accession, idSECAct = items[[1]], descriptionFileSize = items[[2]]) return(df) } items <- description %>% str_split("ACCESSION NUMBER: ") %>% flatten_chr() %>% str_replace_all('\n','') filing_description <- items[[1]] items <- items[[2]] %>% str_split('SIZE:') %>% flatten_chr() %>% str_trim() df <- tibble(idRow = x, descriptionFiling = filing_description, idAccession = items[[1]], descriptionFileSize = items[[2]]) return(df) }) filer_description <- page %>% html_nodes('td:nth-child(3) a') %>% html_text() df_filers <- seq_along(filer_description) %>% future_map_dfr(function(x){ filer <- filer_description[[x]] %>% str_to_upper() is_messed <- filer %>% str_count("\\(") > 2 if (!is_messed) { values <- filer %>% str_split('\\(') %>% flatten_chr() %>% str_replace_all('[\\)]','') %>% str_trim() df <- tibble(idRow = x, item = c('nameEntityLegal', 'idCIK', 'typeSECEntity'), value = values) %>% spread(item, value) %>% mutate(idCIK = idCIK %>% as.numeric()) df <- df %>% resolve_legal_name() %>% select(idCIK, nameEntity, everything()) return(df) } if (is_messed) { values <- filer %>% str_split('\\(') %>% flatten_chr() %>% str_replace_all('[\\)]','') %>% str_trim() values <- c(list(values[1], values[2]) %>% purrr::reduce(paste), values[3], values[4]) df <- tibble(idRow = x, item = c('nameEntityLegal', 'idCIK', 'typeSECEntity'), value = values) %>% spread(item, value) %>% mutate(idCIK = idCIK %>% as.numeric()) df <- df %>% resolve_legal_name() %>% select(idCIK, nameEntity, everything()) return(df) } }) url_cik_filer <- page %>% html_nodes('td:nth-child(3) a') %>% html_attr('href') %>% paste0('https://www.sec.gov',.) %>% paste0(., '&start=0') datetime_accepted <- page %>% html_nodes(css = '.small+ td') %>% html_text() %>% lubridate::ymd_hms() date_filed <- page %>% html_nodes('td:nth-child(5)') %>% html_text() %>% lubridate::ymd() file_film <- page %>% html_nodes('td:nth-child(6)') %>% html_text() df_films <- seq_along(file_film) %>% future_map_dfr(function(x){ parts <- file_film[[x]] %>% str_split('\n') %>% flatten_chr() tibble( idRow = x, idFile = parts[[1]] %>% stringr::str_trim(), idSECFiling = parts[[2]] %>% as.numeric() ) %>% mutate( urlSECFile = list( "https://www.sec.gov/cgi-bin/browse-edgar?action=getcompany&filenum=", idFile, '&owner=include&count=100000' ) %>% purrr::reduce(paste0) ) }) data <- df_filers %>% left_join(df_descriptions, by = "idRow") %>% select(-idRow) %>% mutate(urlTextFilingFull, dateFiling = date_filed, datetimeAccepted = datetime_accepted, idForm = forms, urlSECFilingDirectory = url_directory, urlCIKFIler = url_cik_filer, urlSearch = url) %>% select(idForm, everything()) %>% find_target_filings() if (df_films %>% nrow() == data %>% nrow()) { data <- data %>% mutate(idRow = 1:n()) %>% left_join(df_films, by = "idRow") %>% select(-idRow) } if(return_message) { list("Parsed: ", url) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } data <- data %>% mutate_at( data %>% select_if(is.character) %>% select(-dplyr::matches("url")) %>% names(), funs(ifelse(. == '', NA, .) %>% str_to_upper()) ) if ('descriptionFileSize' %in% names(data)) { data <- data %>% mutate( typeFileDocument = descriptionFileSize %>% map_chr(stringi::stri_extract_last_boundaries), sizeFile = readr::parse_number(as.character(descriptionFileSize)), sizeFileBytes = ifelse(typeFileDocument == "MB", sizeFile * 1024, 1048576 * sizeFile) ) %>% select(-c(typeFileDocument, descriptionFileSize, sizeFile)) } return(data) } .get_most_recent_filing_urls <- function(filing_type = NULL, pages_out = 20) { start_pages <- seq(0, by = 100, length.out = pages_out) if ('dfEnd' %>% exists()) { eval(rm(dfEnd)) } if (length(filing_type) == 0) { slug_filing <- '' } else { if (filing_type %>% str_to_lower() == 'all') { slug_filing <- '' } else { slug_filing <- filing_type } } urls <- list('https://www.sec.gov/cgi-bin/browse-edgar?action=getcurrent&datea=&dateb=&company=&type=',slug_filing, '&SIC=&State=&Country=&CIK=&owner=include&accno=&start=', start_pages, '&count=100') %>% purrr::reduce(paste0) is_on <- TRUE for (url in urls) { if (!is_on) { invisible() } if('dfEnd' %>% exists()) { invisible() } else { df_end <- .guess_page_ongoing(url = url, override = FALSE) is_over_zero <- df_end %>% length() > 0 if (is_over_zero) { assign('dfEnd', eval(df_end), envir = .GlobalEnv) assign('is_on', eval(FALSE), envir = .GlobalEnv) rm(is_over_zero) } } } still_none <- df_end %>% length() == 0 if (still_none) { df_end <- urls %>% future_map_dfr(function(x){ .guess_page_ongoing(url = x, override = TRUE) }) df_end <- df_end %>% slice(nrow(df_end)) } if ('countPage' %in% names(df_end)) { df_end <- df_end %>% dplyr::rename(countStart = countPage) } if (df_end$countStart < 0) { df_end <- df_end %>% mutate(countStart = 0) } if (slug_filing == '') { df_end <- df_end %>% mutate(countStart = 2000) } length_actual_pages <- ceiling(df_end$countStart/100) length_actual <- seq(0, by = 100, length.out = length_actual_pages) urls <- list('https://www.sec.gov/cgi-bin/browse-edgar?action=getcurrent&datea=&dateb=&company=&type=',slug_filing, '&SIC=&State=&Country=&CIK=&owner=include&accno=&start=', length_actual, '&count=100') %>% purrr::reduce(paste0) df_mr_urls <- tibble(urlPageFiling = urls) %>% mutate(countPage = 1:n()) if (length(filing_type) > 0) { df_mr_urls <- df_mr_urls %>% mutate(idForm = filing_type) %>% select(idForm, everything()) } if('dfEnd' %>% exists()){ rm(list = c('dfEnd'), pos = ".GlobalEnv") } return(df_mr_urls) } .sec_filing_most_recent <- function(filing_type = NULL, return_message = TRUE) { get_most_recent_filing_urls_safe <- purrr::possibly(.get_most_recent_filing_urls, tibble()) url_df <- get_most_recent_filing_urls_safe(filing_type = filing_type) if (length(filing_type) == 0) { filing_name <- 'all' } else { filing_name <- filing_type } parse_most_recent_stream_safe <- purrr::possibly(.parse_most_recent_stream, tibble()) all_data <- url_df$urlPageFiling %>% future_map_dfr(function(x){ parse_most_recent_stream_safe(url = x, return_message = return_message) }) %>% mutate(idFormName = filing_name) %>% select(idFormName, everything()) if (return_message) { list("\nReturned ", all_data %>% nrow() %>% formattable::comma(digits = 0), ' of the most recent filings from ', filing_type, ' forms\n') %>% purrr::reduce(paste0) %>% cat(fill = T) } return(all_data) } edgar_recent_filings <- function(forms = c("All", "10-D", "10-K"), table_name_initial = "Recent Filings", parse_all_filings = TRUE, parse_form_d = FALSE, parse_complete_text_filings = FALSE, parse_13F = FALSE, parse_small_offerings = FALSE, parse_form_3_4s = FALSE, parse_asset_files = FALSE, parse_xbrl = FALSE, assign_to_environment = TRUE, nest_data = FALSE, return_message = TRUE) { sec_filing_most_recent_safe <- purrr::possibly(.sec_filing_most_recent, tibble()) all_data <- forms %>% future_map_dfr(function(x) { x %>% message() .sec_filing_most_recent(filing_type = x, return_message = return_message) }) %>% select(dplyr::matches("dateFiling"), idCIK, nameEntity, idForm, everything()) all_data <- all_data %>% select(-dplyr::matches("datetimeAccepted|^is[A-Z]|^has[A-Z]|is13FFiling")) %>% parse_for_tables( table_name_initial = table_name_initial, parse_all_filings = parse_all_filings, parse_complete_text_filings = parse_complete_text_filings, parse_form_d = parse_form_d, parse_13F = parse_13F, parse_small_offerings = parse_small_offerings, parse_form_3_4s = parse_form_3_4s, parse_asset_files = parse_asset_files, parse_xbrl = parse_xbrl, assign_to_environment = assign_to_environment, nest_data = nest_data, return_message = return_message ) return(all_data) } .get_year_index_urls <- function(url = "https://www.sec.gov/Archives/edgar/daily-index/2016/") { yearData <- url %>% str_replace_all('https://www.sec.gov/Archives/edgar/daily-index|/','') %>% as.character() %>% readr::parse_number() page <- url %>% read_html() quarters <- page %>% html_nodes('td a') %>% html_attr('href') %>% str_replace_all('\\QTR|/','') %>% as.character() %>% readr::parse_number() urls <- page %>% html_nodes('td a') %>% html_attr('href') %>% list(url, .) %>% purrr::reduce(paste0) url_df <- tibble(idQuarter =quarters, yearData, urlQuarter = urls) return(url_df) } .parse_quarter_urls <- function(url = "https://www.sec.gov/Archives/edgar/daily-index/2012/QTR4/", index_type = 'master', return_message = TRUE) { page <- url %>% read_html() slugs <- page %>% html_nodes('td a') %>% html_attr('href') slugs <- slugs[!slugs %>% str_detect("xml")] urls <- list(url, slugs) %>% purrr::reduce(paste0) df_urls <- tibble(slugs, urlSECIndex = urls) %>% tidyr::separate(slugs, into = c('typeIndex', 'dateData', 'remove'), sep = '\\.') if (df_urls$dateData[[1]] %>% lubridate::ymd() %>% is.na()) { df_urls <- df_urls %>% mutate(dateIndex = dateData %>% lubridate::mdy()) %>% select(-c(remove)) %>% mutate(urlQuarter = url) } else { df_urls <- df_urls %>% mutate(dateIndex = dateData %>% lubridate::ymd()) %>% select(-c(remove)) %>% mutate(urlQuarter = url) } if (length(index_type) == 0) { df_urls <- df_urls %>% filter(typeIndex == 'master') } else { df_urls <- df_urls %>% filter(typeIndex == index_type) } if (return_message) { list("Parsed: ", url) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } return(df_urls) } .parse_index_filing_page <- function(url = "https://www.sec.gov/Archives/edgar/daily-index/1994/QTR3/company.070194.idx", return_message = TRUE) { start_skip <- url %>% read_lines() %>% grep('------', .) url_slug <- url %>% str_split('\\/') %>% flatten_chr() %>% .[length(.)] %>% str_replace_all('\\.idx', '') %>% str_split('\\.') %>% flatten_chr() index_type <- url_slug[[1]] index_date <- url_slug[[2]] %>% as.numeric() %>% lubridate::ymd() %>% suppressMessages() if (index_date %>% is.na()) { index_date <- url_slug[[2]] %>% as.numeric() %>% lubridate::mdy() } df <- url %>% readr::read_table(skip = start_skip, col_names = FALSE, progress = FALSE) %>% suppressMessages() %>% suppressWarnings() if (df %>% ncol() == 1) { df <- df %>% separate(X1, sep = '\\|', c( 'idCIK', 'nameEntityLegal', 'idForm', 'dateFiling', 'slugAccension' )) df <- df %>% mutate(idCIK = idCIK %>% as.numeric()) %>% mutate(nameEntity = nameEntityLegal %>% str_to_upper() %>% str_replace_all('\\.|\\,', '') %>% str_trim(), dateIndex = index_date, typeIndex = index_type) %>% separate(nameEntity, sep = '\\ /', into = c('nameEntity', 'idLocationEntity')) %>% mutate( dateFiling = dateFiling %>% lubridate::ymd(), idLocationEntity = idLocationEntity %>% str_replace_all('\\/', '') %>% str_trim() ) %>% suppressWarnings() %>% suppressMessages() %>% mutate( urlSECFilingText = list("https://www.sec.gov/Archives/", slugAccension) %>% purrr::reduce(paste0), urlSECFilingDirectory = urlSECFilingText %>% str_replace_all(".txt", '-index.html') ) %>% select(nameEntity, idLocationEntity, everything()) %>% suppressWarnings() df <- df %>% mutate( dataAccension = slugAccension %>% str_replace_all('edgar/data/|.txt', ''), urlSECIndex = url ) %>% tidyr::separate(dataAccension, sep = '\\/', into = c('remove', 'idAccession')) %>% select(-remove) %>% tidyr::separate( idAccession, into = c('idCIKFiler', 'codeYear', 'countFilerYearFilings'), remove = FALSE, sep = '\\-' ) %>% mutate_at( c('idCIKFiler', 'codeYear', 'countFilerYearFilings'), funs(. %>% as.numeric()) ) %>% mutate(hasDifferentSECFiler = ifelse(!idCIK == idCIKFiler, TRUE, FALSE)) %>% select( typeIndex, dateIndex, dateFiling, idCIK, nameEntity, idForm, idAccession, countFilerYearFilings, hasDifferentSECFiler, everything() ) %>% suppressWarnings() %>% suppressMessages() if (return_message) { list("Parsed: ", url) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } return(df) } is_form <- index_type == 'form' if (is_form) { if (df %>% ncol() == 6) { df <- df %>% tidyr::unite(X2, X2, X3, sep = ' ') } df <- df %>% purrr::set_names(c( 'idForm', 'nameEntityLegal', 'idCIK', 'dateFiling', 'slugAccension' )) } if (!is_form) { if (df %>% ncol() == 6) { df <- df %>% tidyr::unite(X1, X1, X2, sep = ' ') } df <- df %>% purrr::set_names(c( 'nameEntityLegal', 'idForm', 'idCIK', 'dateFiling', 'slugAccension' )) } df <- df %>% mutate(nameEntity = nameEntityLegal %>% str_to_upper() %>% str_replace_all('\\.|\\,', '') %>% str_trim(), dateIndex = index_date, typeIndex = index_type) %>% separate(nameEntity, sep = '\\ /', into = c('nameEntity', 'idLocationEntity')) %>% mutate( dateFiling = dateFiling %>% lubridate::ymd(), idLocationEntity = idLocationEntity %>% str_replace_all('\\/', '') %>% str_trim() ) %>% suppressWarnings() %>% suppressMessages() is_http <- df$slugAccension %>% str_count('\\.htm') %>% sum() / nrow(df) > .5 if (is_http) { df <- df %>% dplyr::rename(urlSECFilingDirectory = slugAccension) %>% select( typeIndex, dateIndex, dateFiling, idCIK, nameEntity, everything()) if (return_message) { list("Parsed: ", url) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } return(df) } df <- df %>% mutate( urlSECFilingText = list("https://www.sec.gov/Archives/", slugAccension) %>% purrr::reduce(paste0), urlSECFilingDirectory = urlSECFilingText %>% str_replace_all(".txt", '-index.html') ) %>% select(nameEntity, idLocationEntity, everything()) %>% suppressWarnings() df <- df %>% mutate( dataAccension = slugAccension %>% str_replace_all('edgar/data/|.txt', ''), urlSECIndex = url ) %>% tidyr::separate(dataAccension, sep = '\\/', into = c('remove', 'idAccession')) %>% select(-remove) %>% tidyr::separate( idAccession, into = c('idCIKFiler', 'codeYear', 'countFilerYearFilings'), remove = FALSE, sep = '\\-' ) %>% mutate_at( c('idCIKFiler', 'codeYear', 'countFilerYearFilings'), funs(. %>% as.numeric()) ) %>% mutate(hasDifferentSECFiler = ifelse(!idCIK == idCIKFiler, TRUE, FALSE)) %>% select( typeIndex, dateIndex, dateFiling, idCIK, nameEntity, idAccession, countFilerYearFilings, hasDifferentSECFiler, everything() ) %>% suppressWarnings() %>% suppressMessages() if (return_message) { list("Parsed: ", url) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } return(df) } .get_years_page_urls <- function(years = 1994:2017, index_type = 'master', return_message = TRUE) { wrong_years <- (years < 1993) %>% as.numeric() %>% sum(na.rm = TRUE) > 0 if (wrong_years) { stop("Years to search start in 1994") } urls <- list('https://www.sec.gov/Archives/edgar/daily-index/', years, '/') %>% purrr::reduce(paste0) df_urls <- urls %>% future_map_dfr(function(x) { .get_year_index_urls(url = x) }) all_url_df <- df_urls$urlQuarter %>% future_map_dfr(function(x) { .parse_quarter_urls(url = x, index_type = index_type, return_message = return_message) }) %>% suppressWarnings() all_url_df <- all_url_df %>% left_join(df_urls) %>% select(yearData, idQuarter, everything()) %>% suppressMessages() %>% select(-dateData) return(all_url_df) } edgar_filing_streams <- function(start_date = "2017-02-15", end_date = Sys.Date(), only_most_recent_data = FALSE, index_type = 'master', table_name_initial = "Filing Logs", parse_all_filings = FALSE, parse_complete_text_filings = FALSE, parse_form_d = FALSE, parse_13F = FALSE, parse_small_offerings = FALSE, parse_form_3_4s = FALSE, parse_asset_files = FALSE, parse_xbrl = FALSE, assign_to_environment = TRUE, nest_data = TRUE, return_message = TRUE) { start_date <- start_date %>% lubridate::ymd() end_date <- end_date %>% lubridate::ymd() start_year <- lubridate::year(start_date) end_year <- end_date %>% lubridate::year() search_years <- start_year:end_year if (only_most_recent_data) { search_years <- Sys.Date() %>% lubridate::year() df_urls <- .get_years_page_urls(years = search_years, index_type = index_type, return_message = return_message) urls <- df_urls %>% slice(nrow(df_urls)) %>% .$urlSECIndex } if (!only_most_recent_data) { df_urls <- .get_years_page_urls(years = search_years, index_type = index_type, return_message = return_message) urls <- df_urls %>% filter(dateIndex >= start_date) %>% filter(dateIndex <= end_date) %>% .$urlSECIndex } parse_index_filing_page_safe <- purrr::possibly(.parse_index_filing_page, tibble()) all_data <- seq_along(urls) %>% future_map_dfr(function(x) { parse_index_filing_page_safe(url = urls[[x]], return_message = return_message) }) all_data <- all_data %>% left_join(df_urls %>% select(urlSECIndex, yearData, idQuarter)) %>% select(yearData, idQuarter, dateIndex, everything()) all_data <- all_data %>% mutate_at(all_data %>% select(dplyr::matches("count")) %>% names(), funs(. %>% formattable::comma(digits = 0))) %>% select(-dplyr::matches("slugAccension")) if (return_message) { list( "Parsed ", all_data %>% nrow() %>% formattable::comma(digits = 0), " SEC filings from ", all_data$dateIndex %>% min(na.rm = T), ' to ', all_data$dateIndex %>% max(na.rm = TRUE) ) %>% purrr::reduce(paste0) %>% cat(fill = T) } all_data <- all_data %>% parse_for_tables( table_name_initial = table_name_initial, parse_all_filings = parse_all_filings, parse_form_d = parse_form_d, parse_13F = parse_13F, parse_small_offerings = parse_small_offerings, parse_form_3_4s = parse_form_3_4s, parse_asset_files = parse_asset_files, parse_xbrl = parse_xbrl, nest_data = nest_data, return_message = return_message ) all_data } .guess_page_ongoing <- function(url = "https://www.sec.gov/cgi-bin/browse-edgar?action=getcompany&CIK=1184765&type=&dateb=&owner=include&start=0&count=100", override = FALSE) { page <- url %>% read_html() page_count <- url %>% str_split('start=') %>% flatten_chr() %>% .[[2]] %>% str_split('&') %>% flatten_chr() %>% .[[1]] %>% as.character() %>% readr::parse_number() items <- page %>% html_nodes('input') %>% html_attr('value') %>% str_to_upper() %>% unique() if (items %>% length() == 0){ return(invisible()) } no_page <- page %>% html_nodes('h1') %>% html_text() %>% str_to_lower() == 'invalid parameter' no_page <- no_page %>% length() > 0 is_end <- !items %>% str_detect("NEXT 100") %>% sum(na.rm = T) > 0 if (is_end & (!no_page)) { return(tibble(isEnd = TRUE, countStart = page_count)) } if (!override) { if (!is_end) { return(tibble()) } } else { return(tibble(countStart = page_count)) } tibble(isEnd = is_end, countPage = page_count -100) } .parse_search_page <- function(urls = "https://www.sec.gov/cgi-bin/browse-edgar?action=getcompany&company=Bank&owner=exclude&match=&start=500&count=100&hidefilings=0", return_message = TRUE) { df <- tibble() success <- function(res){ if (return_message) { list("Parsing: ", res$url, "\n") %>% purrr::reduce(paste0) %>% cat(fill = T) } page <- res$content %>% read_html() cik <- page %>% html_nodes('td:nth-child(1) a') %>% html_text() %>% as.numeric() entities <- page %>% html_nodes('td:nth-child(2)') %>% html_text() %>% str_to_upper() locations <- page %>% html_nodes('td:nth-child(3)') %>% html_text() %>% str_to_title() %>% str_trim() locations[locations == ''] <- NA data <- tibble( idCIK = cik, nameEntityLegal = entities, codeLocationBusiness = locations ) %>% mutate(codeLocationBusiness = codeLocationBusiness %>% str_to_upper()) %>% separate(nameEntityLegal, into = c('nameEntityLegal', 'sic'), sep = 'SIC: ') %>% separate(sic, into = c('idSIC', 'nameIndustry'), sep = '-') %>% mutate( idSIC = idSIC %>% str_trim() %>% as.numeric(), nameIndustry = nameIndustry %>% str_trim() ) %>% suppressWarnings() %>% suppressMessages() %>% select(which(colMeans(is.na(.)) < 1)) %>% mutate(nameEntity = nameEntityLegal %>% str_to_upper() %>% str_replace_all('\\.|\\,', '') %>% str_trim()) %>% select(idCIK, nameEntity, everything()) %>% separate(nameEntity, sep = '\\ /', into = c('nameEntity', 'idLocationEntity')) %>% mutate( nameEntity = nameEntity %>% gsub('/', '', .), idLocationEntity = idLocationEntity %>% str_replace_all('\\/', '') %>% str_trim() ) %>% suppressWarnings() %>% suppressMessages() %>% select(-dplyr::matches("idLocationEntity")) df <<- df %>% bind_rows(data) } failure <- function(msg){ tibble() } urls %>% walk(function(x) { curl_fetch_multi(url = x, success, failure) }) multi_run() df } .parse_search_page_length <- function(search_term = "BREA", pages_out = 5) { term <- search_term %>% URLencode() start_pages <- seq(0, by = 100, length.out = pages_out) if ('dfEnd' %>% exists()) { eval(rm(dfEnd)) } urls <- list('https://www.sec.gov/cgi-bin/browse-edgar?action=getcompany&company=',term, '&type=&dateb=&owner=include&start=', start_pages, '&count=100') %>% purrr::reduce(paste0) is_on <- TRUE for (url in urls) { if (!is_on) { invisible() } if('dfEnd' %>% exists()) { invisible() } else { df_end <- .guess_page_ongoing(url = url, override = FALSE) is_over_zero <- df_end %>% length() > 0 if (is_over_zero) { assign('dfEnd', eval(df_end), envir = .GlobalEnv) assign('is_on', eval(FALSE), envir = .GlobalEnv) rm(is_over_zero) } } } still_none <- df_end %>% length() == 0 if (still_none) { df_end <- urls %>% future_map_dfr(function(x){ .guess_page_ongoing(url = x, override = TRUE) }) df_end <- df_end %>% slice(nrow(df_end)) } if (df_end %>% ncol() == 0) { df_end <- tibble(countStart = 0) } length_actual_pages <- ceiling(df_end$countStart/100) length_actual <- seq(0, by = 100, length.out = length_actual_pages) urls <- list('https://www.sec.gov/cgi-bin/browse-edgar?action=getcompany&company=',term, '&type=&dateb=&owner=include&start=', length_actual, '&count=100') %>% purrr::reduce(paste0) df_filing_urls <- tibble(nameSearch = search_term, urlCIKPageFiling = urls) %>% mutate(countPage = 1:n()) if('dfEnd' %>% exists()){ rm(list = c('dfEnd'), pos = ".GlobalEnv") } if ('is_on' %>% exists()) { rm(list = c('is_on'), pos = ".GlobalEnv") } return(df_filing_urls) } .entity_ciks <- function(search_term = "BREA", return_message = TRUE) { url_df <- .parse_search_page_length(search_term = search_term) data <- url_df$urlCIKPageFiling %>% future_map_dfr(function(x) { .parse_search_page(url = x, return_message = FALSE) }) %>% mutate(nameSearch = search_term) %>% select(nameSearch, everything()) if (return_message) { list("Returned ", nrow(data) %>% formattable::comma(digits = 0), ' SEC registered entities for the term ', search_term) %>% purrr::reduce(paste0) %>% cat(fill = T) } return(data) } edgar_entities_cik <- function(search_names, nest_data = FALSE, return_message = TRUE) { .sec_entity_safe <- purrr::possibly(.entity_ciks, tibble()) all_data <- search_names %>% future_map_dfr(function(x) { .sec_entity_safe(search_term = x, return_message = return_message) }) %>% select(which(colMeans(is.na(.)) < 1)) if (data %>% hasName("nameEntity")) { all_data <- all_data %>% mutate(nameEntity = nameEntityLegal %>% str_to_upper() %>% str_replace_all('\\.|\\,', '') %>% str_trim()) } all_data <- all_data %>% select(-dplyr::matches("idLocationEntity")) %>% separate(nameEntity, sep = '\\ /', into = c('nameEntity', 'idLocationEntity')) %>% mutate(idLocationEntity = idLocationEntity %>% str_replace_all('\\/', '') %>% str_trim()) %>% select(nameSearch, idCIK, nameEntity, everything()) all_data <- all_data %>% separate(nameEntity, sep = 'FORMERLY: ', c('nameEntity', 'nameEntityFormer')) %>% dplyr::select(which(colMeans(is.na(.)) < 1)) if (nest_data) { all_data <- all_data %>% nest(-c(nameSearch), .key = dataSearch) } } .extract_info <- function(page, css_node) { page %>% html_nodes(css = css_node) %>% html_text() } .parse_city_state <- function(x = "MENLO PARK CA 94025") { parts <- x %>% str_split('\\ ') %>% flatten_chr() over_2 <- parts %>% length() > 2 if (over_2) { zipcode <- parts[parts %>% length()] state_city <- parts[!parts %in% c(zipcode)] state <- state_city[length(state_city)] city <- state_city[!state_city %in% state] %>% str_c(collapse = ' ') data <- tibble( cityCompany = city, stateCompany = state, zipcodeCompany = zipcode ) return(data) } tibble() } .generate_url <- function(ticker = "FB") { glue::glue("https://www.sec.gov/cgi-bin/browse-edgar?CIK={ticker}&owner=exclude&action=getcompany&Find=Search") } .parse_company_info <- function(url = "https://www.sec.gov/cgi-bin/browse-edgar?CIK=FB&owner=exclude&action=getcompany&Find=Search") { page <- url %>% read_html() name_parts <- page %>% .extract_info(css_node = '.companyName') %>% str_split('\\ CIK') %>% flatten_chr() if (length(name_parts) == 0) { stop("Invalid company symbol") } company_name <- name_parts[[1]] cik <- page %>% .extract_info(".companyName a") %>% str_split("\\(") %>% flatten_chr() %>% str_trim() %>% .[[1]] SIC <- page %>% .extract_info(".identInfo acronym+ a") %>% as.character() %>% readr::parse_number() street.address <- page %>% .extract_info(".mailer:nth-child(1) .mailerAddress:nth-child(1)") city.state.raw <- page %>% .extract_info(".mailer:nth-child(1) .mailerAddress+ .mailerAddress") %>% str_trim() city.state <- sub("\\s+$", "", city.state.raw) city.state <- gsub("\n", "", city.state) if (length(city.state) == 2) { street.address <- paste(street.address, city.state[1]) city.state <- city.state[2] } df_city_state <- city.state %>% .parse_city_state() %>% mutate(addressStreetCompany = street.address) %>% dplyr::select(addressStreetCompany, everything()) company.details <- page %>% .extract_info(".identInfo") fiscal.year.end <- gsub("^.*Fiscal Year End: ", "", company.details) %>% substr(1, 4) if (fiscal.year.end == "SIC:") { fiscal.year.end <- NA } state <- gsub("^.*State location: ", "", company.details) %>% substr(1, 2) state.inc <- gsub("^.*State of Inc.: ", "", company.details) %>% substr(1, 2) if (state.inc == "SI") { state.inc <- NA } data <- tibble( nameCompany = company_name, slugCIK = cik, idCIK = readr::parse_number(as.character(cik)), idSIC = SIC, stateIncorporated = state.inc, monthDayFiscalYearEnd = fiscal.year.end ) %>% bind_cols(df_city_state) data } .parse_company_pages <- function(urls, return_message = TRUE) { df <- tibble() success <- function(res) { parse_company_info_safe <- purrr::possibly(.parse_company_info, tibble()) data <- .parse_company_info(url = res$url) df <<- df %>% bind_rows(data) } failure <- function(msg) { cat(sprintf("Fail: %s (%s)\n", res$url, msg)) } urls %>% walk(function(x) { curl_fetch_multi(url = x, success, failure) }) multi_run() df } .sec_ticker_info <- function(ticker = "VNO", return_message = TRUE) { if (return_message) { glue::glue("Acquiring company information for {ticker}") %>% cat(fill = T) } .parse_company_pages_safe <- purrr::possibly(.parse_company_pages, tibble()) url <- ticker %>% .generate_url() data <- url %>% .parse_company_pages_safe() %>% mutate(idTicker = ticker) %>% dplyr::select(idTicker, everything()) %>% mutate_if(is.character, str_to_upper) data } sec_tickers_info <- function(tickers = c("VNO", "NVDA", "FB"), join_sic = T, snake_names = F, unformat = F, convert_case = T, amount_digits = 2, include_address = T, return_message = TRUE) { all_data <- tickers %>% future_map_dfr(function(x) { .sec_ticker_info(ticker = x, return_message = return_message) }) %>% dplyr::select(which(colMeans(is.na(.)) < 1)) if (join_sic) { all_data <- all_data %>% left_join(dictionary_sic_codes(), by = "idSIC") } all_data %>% munge_tbl( snake_names = snake_names, unformat = unformat, convert_case = convert_case, amount_digits = amount_digits, include_address = include_address ) all_data } .sec_filer_name_page_df <- function(){ tibble( nameSEC = c("dateFiled", "filingHREF", "formName", "type", "XBRLREF"), nameActual = c( "dateFiling", "urlSECFilingDirectory", "nameForm", "idForm", "urlXBRL" ) ) } .guess_page_ongoing <- function(url = "https://www.sec.gov/cgi-bin/browse-edgar?action=getcompany&CIK=1184765&type=&dateb=&owner=include&start=0&count=100", override = FALSE) { page <- url %>% read_html() page_count <- url %>% str_split('count=') %>% flatten_chr() %>% .[[2]] %>% str_split('&') %>% flatten_chr() %>% .[[1]] %>% as.character() %>% readr::parse_number() items <- page %>% html_nodes('input') %>% html_attr('value') %>% str_to_upper() %>% unique() if (items %>% length() == 0){ return(invisible()) } no_page <- page %>% html_nodes('h1') %>% html_text() %>% str_to_lower() == 'invalid parameter' no_page <- no_page %>% length() > 0 is_end <- !items %>% str_detect("NEXT 100") %>% sum(na.rm = T) > 0 if (is_end & (!no_page)) { return(tibble(isEnd = TRUE, countStart = page_count)) } if (!override) { if (!is_end) { return(tibble()) } } else { return(tibble(countStart = page_count)) } tibble(isEnd = is_end, countPage = page_count -100) } .cik_filer_page_urls <- function(cik = 1184765, pages_out = 20) { start_pages <- seq(0, by = 100, length.out = pages_out) if ('dfEnd' %>% exists()) { eval(rm(dfEnd)) } urls <- list('https://www.sec.gov/cgi-bin/browse-edgar?action=getcompany&CIK=',cik, '&type=&dateb=&owner=include&start=', start_pages, '&count=100') %>% purrr::reduce(paste0) is_on <- TRUE for (url in urls) { if (!is_on) { invisible() } if('dfEnd' %>% exists()) { invisible() } else { df_end <- .guess_page_ongoing(url = url, override = FALSE) is_over_zero <- df_end %>% length() > 0 if (is_over_zero) { assign('dfEnd', eval(df_end), envir = .GlobalEnv) assign('is_on', eval(FALSE), envir = .GlobalEnv) rm(is_over_zero) } } } still_none <- df_end %>% length() == 0 if (still_none) { df_end <- urls %>% future_map_dfr(function(x){ .guess_page_ongoing(url = x, override = TRUE) }) df_end <- df_end %>% slice(nrow(df_end)) } length_actual_pages <- ceiling(df_end$countStart/100) length_actual <- seq(0, by = 100, length.out = length_actual_pages) urls <- list('https://www.sec.gov/cgi-bin/browse-edgar?action=getcompany&CIK=',cik, '&type=&dateb=&owner=include&start=', length_actual, '&count=100', '&output=xml') %>% purrr::reduce(paste0) df_filing_urls <- tibble(idCIK = cik, urlCIKPageFiling = urls) %>% mutate(countPage = 1:n()) if('dfEnd' %>% exists()){ rm(list = c('dfEnd'), pos = ".GlobalEnv") } return(df_filing_urls) } .parse_cik_filer_page <- function(url = "https://www.sec.gov/cgi-bin/browse-edgar?action=getcompany&CIK=899689&type=&dateb=&owner=include&start=600&count=100&output=xml", return_message = TRUE) { page <- url %>% read_xml() xml_nodes <- page %>% xml_contents() %>% .[[2]] filing_count <- xml_nodes %>% xml_contents() %>% xml_name() df_page_items <- seq_along(filing_count) %>% future_map_dfr(function(x) { xml_node <- xml_nodes %>% xml_contents() %>% .[[x]] items <- xml_node %>% xml_children() %>% xml_name() values <- xml_node %>% xml_children() %>% xml_text() return(tibble( countPageFiling = x, nameSEC = items, value = values )) }) %>% left_join(.sec_filer_name_page_df()) %>% suppressWarnings() %>% suppressMessages() %>% select(-nameSEC) df_page_items <- df_page_items %>% spread(nameActual, value) %>% .resolve_form_columns() %>% mutate(urlCIKPageFiling = url) df_page_items <- df_page_items %>% find_target_filings() if (return_message) { list("Parsed: ", url) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } return(df_page_items) } .df_general_name_df <- function() { tibble(nameSEC = c("CIK", "CIKHREF", "Location", "SIC", "SICDescription", "SICHREF", "businessAddresscity", "businessAddressphoneNumber", "businessAddressstate", "businessAddressstreet", "businessAddresszipCode", "fiscalYearEnd", "mailingAddresscity", "mailingAddressstate", "mailingAddressstreet", "mailingAddresszipCode", "name", "stateOfIncorporation", "businessAddressstreet2", "mailingAddressstreet2", 'formerNames', 'businessAddress', 'formerNamedate', 'formerNamename', 'mailingAddress'), nameActual = c("idCIK", "urlCIKFiling", "locationEntity", "idSICEntity", "nameIndustry", "urlSICMembers", "cityAddressBusiness", "phoneAddressBusiness", "stateAddressBusiness", "addressStreet1Business", "zipcodeBusiness", "periodFiscalYearEnd", "cityAddressMailing", "stateAddressMailing", "addressStreet1Mailing", "zipcodeMailing", "nameEntity", "stateIncorporation", "addressStreet2Mailing", "addressStreet2Business", 'nameEntity', 'addressBusiness', 'dateFormerName', 'nameEntity', 'addressMailing') ) } .parse_cik_filer_general_info <- function(url = "https://www.sec.gov/cgi-bin/browse-edgar?action=getcompany&CIK=1326801&type=&dateb=&owner=include&start=0&count=100&output=xml") { page <- url %>% read_xml() xml_nodes <- page %>% xml_contents() %>% .[[1]] items <- xml_nodes %>% xml_children() %>% xml_name() df_names <- .df_general_name_df() df_general <- seq_along(items) %>% future_map_dfr(function(x){ xml_node <- xml_nodes %>% xml_contents() %>% .[[x]] item <- items[[x]] xml_search <- list('//', item, '/value') %>% purrr::reduce(paste0) value <- xml_node %>% xml_find_all(xml_search) %>% xml_text() no_val <- value %>% length() == 0 if (item == 'formerNames') { value_search <- list('//', item) %>% purrr::reduce(paste0) item_parent <- xml_node %>% xml_find_all(value_search) %>% xml_children() %>% xml_name() items <- xml_node %>% xml_find_all(value_search) %>% xml_children() %>% xml_children() %>% xml_name() values <- xml_node %>% xml_find_all(value_search) %>% xml_children() %>% xml_children() %>% xml_text() df <- tibble( countItem = x, itemParent = item_parent[seq_along(item)], nameSEC = items, value = values ) %>% unite(nameSEC, itemParent, nameSEC, sep = '') return(df) } if (item == 'name') { value_search <- list('//', item) %>% purrr::reduce(paste0) items <- xml_node %>% xml_find_all(value_search) %>% xml_name() items <- items[length(items)] values <- xml_node %>% xml_find_all(value_search) %>% xml_text() values <- values[length(values)] df <- tibble( countItem = x, nameSEC = items, value = values ) return(df) } if (no_val) { value_search <- list('//', item) %>% purrr::reduce(paste0) has_children <- xml_node %>% xml_find_all(value_search) %>% xml_children() %>% xml_length() %>% length() > 1 if (has_children) { has_more_children <- xml_node %>% xml_find_all(value_search) %>% xml_children() %>% xml_children() %>% xml_length() %>% length() > 1 if (has_more_children) { item_parent <- xml_node %>% xml_find_all(value_search) %>% xml_children() %>% xml_name() items <- xml_node %>% xml_find_all(value_search) %>% xml_children() %>% xml_children() %>% xml_name() values <- xml_node %>% xml_find_all(value_search) %>% xml_children() %>% xml_children() %>% xml_text() df <- tibble( countItem = x, itemParent = item_parent[seq_along(item)], nameSEC = items, value = values ) %>% unite(nameSEC, itemParent, nameSEC, sep = '') return(df) } item_parent <- xml_node %>% xml_find_all(value_search) %>% xml_name() item <- xml_node %>% xml_find_all(value_search) %>% xml_children() %>% xml_name() values <- xml_node %>% xml_find_all(value_search) %>% xml_children() %>% xml_text() df <- tibble( countItem = x, itemParent = item_parent, nameSEC = item, value = values ) %>% unite(nameSEC, itemParent, nameSEC, sep = '') return(df) } if (!has_children) { values <- xml_node %>% xml_find_all(value_search) %>% xml_text() } df <- tibble( countItem = x, nameSEC = item, value = values ) return(df) } nameSEC <- xml_node %>% xml_find_all(list('//', item) %>% purrr::reduce(paste0)) %>% xml_name() tibble(idRow = countRow, nameSEC, value = value) }) df_general <- df_general %>% left_join(df_names) %>% suppressMessages() missing_names <- df_general$nameSEC[!df_general$nameSEC %in% df_names$nameSEC] %>% length() >0 if (missing_names) { missing_n <- df_general$nameSEC[!df_general$nameSEC %in% df_names$nameSEC] stop(list("Missing ", missing_n) %>% purrr::reduce(paste0)) } df_general <- df_general %>% select(-c(nameSEC,countItem)) %>% group_by(nameActual) %>% mutate(idRow = 1:n()) %>% filter(idRow == min(idRow)) %>% ungroup() %>% suppressMessages() col_order <- df_general$nameActual df_general <- df_general %>% spread(nameActual, value) %>% select(one_of(col_order)) %>% dplyr::rename(nameEntityLegal = nameEntity) %>% mutate(nameEntity = nameEntityLegal %>% str_to_upper() %>% str_replace_all('\\.|\\,', '') %>% str_trim()) %>% separate(nameEntity, sep = '\\ /', into = c('nameEntity', 'idLocationEntity')) %>% mutate( idLocationEntity = idLocationEntity %>% str_replace_all('\\/', '') %>% str_trim() ) %>% select(nameEntity, everything()) %>% suppressWarnings() %>% suppressMessages() return(df_general) } .cik_filer_filings <- function(cik = 899689) { df_urls <- .cik_filer_page_urls(cik = cik) %>% suppressWarnings() %>% suppressMessages() parse_cik_filer_page_safe <- purrr::possibly(.parse_cik_filer_page, tibble()) df_filings <- df_urls$urlCIKPageFiling %>% future_map_dfr(function(x) { parse_cik_filer_page_safe(url = x) }) %>% mutate(idCIK = cik) %>% select(idCIK, everything()) df_general <- df_urls$urlCIKPageFiling[[1]] %>% .parse_cik_filer_general_info() %>% mutate_all(funs(ifelse(. == '', NA, .))) %>% .resolve_form_columns() %>% select(which(colMeans(is.na(.)) < 1)) df_filings <- df_filings %>% left_join(df_general %>% select(idCIK, nameEntity)) %>% suppressMessages() df_filings <- df_filings %>% select(-countPageFiling) %>% arrange(dateFiling) %>% mutate(countFilingEntity = 1:n()) %>% arrange(desc(dateFiling)) %>% select(countFilingEntity, idCIK, nameEntity, everything()) if ('urlXBRL' %in% names(df_filings)) { df_filings <- df_filings %>% mutate(hasXBRL = ifelse(!urlXBRL %>% is.na(), TRUE, FALSE)) } df_filings } .sic_filer_page_urls <- function(sic = 6798, pages_out = 20) { start_pages <- seq(0, by = 100, length.out = pages_out) if ('dfEnd' %>% exists()) { eval(rm(dfEnd)) } urls <- list('https://www.sec.gov/cgi-bin/browse-edgar?action=getcompany&SIC=',sic, '&type=&dateb=&owner=include&start=', start_pages, '&count=100') %>% purrr::reduce(paste0) is_on <- TRUE for (url in urls) { if (!is_on) { invisible() } if('dfEnd' %>% exists()) { invisible() } else { df_end <- .guess_page_ongoing(url = url, override = FALSE) is_over_zero <- df_end %>% length() > 0 if (is_over_zero) { assign('dfEnd', eval(df_end), envir = .GlobalEnv) assign('is_on', eval(FALSE), envir = .GlobalEnv) rm(is_over_zero) } } } still_none <- df_end %>% length() == 0 if (still_none) { df_end <- tibble(countStart = 0) } length_actual_pages <- ceiling(df_end$countStart/100) length_actual <- seq(0, by = 100, length.out = length_actual_pages) urls <- list('https://www.sec.gov/cgi-bin/browse-edgar?action=getcompany&SIC=',sic, '&type=&dateb=&owner=include&start=', length_actual, '&count=100', '&output=xml') %>% purrr::reduce(paste0) df_sic_urls <- tibble(idSIC = sic, urlSICPageFiling = urls) %>% mutate(countPage = 1:n()) if('dfEnd' %>% exists()){ rm(list = c('dfEnd'), pos = ".GlobalEnv") } return(df_sic_urls) } .sic_code_filer <- function(sic = 6798, return_message = TRUE) { sic_filer_page_urls_safe <- purrr::possibly(.sic_filer_page_urls, tibble()) url_df <- sic_filer_page_urls_safe(sic = sic) parse_search_page_safe <- purrr::possibly(.parse_search_page, tibble()) all_data <- url_df$urlSICPageFiling %>% future_map_dfr(function(x){ parse_search_page_safe(url = x, return_message = return_message) }) %>% mutate(idSIC = sic) %>% select(idSIC, everything()) if (return_message) { list('\nReturned ', all_data %>% nrow() %>% formattable::comma(digits = 0), ' SEC registered entities for SIC industry code ', sic,'\n') %>% purrr::reduce(paste0) %>% cat(fill = T) } return(all_data) } edgar_sic_filers <- function(sic_codes = NULL, merge_names = TRUE, return_message = TRUE, nest_data = FALSE) { if (length(sic_codes) == 0) { stop("Please enter SIC codes to search") } sic_code_filer_safe <- purrr::possibly(.sic_code_filer, tibble()) all_data <- sic_codes %>% future_map_dfr(function(x){ sic_code_filer_safe(sic = x, return_message = return_message) }) if (merge_names) { if (!'dataSICCodes' %>% exists()) { assign(x = 'dataSICCodes', value = eval(dictionary_sic_codes()), envir = .GlobalEnv) } all_data <- all_data %>% left_join( dataSICCodes %>% select(-nameOfficeAD) ) %>% select(idSIC, nameIndustry, everything()) %>% suppressMessages() } return(all_data) } .parse_sec_url_for_cik <- function(url) { url %>% str_replace_all("https://www.sec.gov/Archives/edgar/data/", '') %>% str_split('\\/') %>% flatten_chr() %>% .[[1]] %>% as.numeric() } .loc_df <- function() { tibble( nameLocation = c( "AFGHANISTAN", "ALAND ISLANDS", "ALBANIA", "ALGERIA", "AMERICAN SAMOA", "ANDORRA", "ANGOLA", "ANGUILLA", "ANTARCTICA", "ANTIGUA AND BARBUDA", "ARGENTINA", "ARMENIA", "ARUBA", "AUSTRALIA", "AUSTRIA", "AUSTRIA-HUNGARY", "AZERBAIJAN", "BADEN", "BAHAMAS", "BAHRAIN", "BANGLADESH", "BARBADOS", "BAVARIA", "BELARUS", "BELGIUM", "BELIZE", "BENIN", "BERMUDA", "BHUTAN", "BOLIVIA, PLURINATIONAL STATE OF", "BONAIRE, SINT EUSTATIUS AND SABA", "BOSNIA AND HERZEGOVINA", "BOTSWANA", "BOUVET ISLAND", "BRAZIL", "BRITISH INDIAN OCEAN TERRITORY", "BRUNEI DARUSSALAM", "BULGARIA", "BURKINA FASO", "BURUNDI", "CAMBODIA", "CAMEROON", "CANADA", "CABO VERDE", "CAYMAN ISLANDS", "CENTRAL AFRICAN REPUBLIC", "CHAD", "CHILE", "CHINA", "CHRISTMAS ISLAND", "COCOS (KEELING) ISLANDS", "COLOMBIA", "COMOROS", "CONGO, THE DEMOCRATIC REPUBLIC OF THE", "CONGO", "COOK ISLANDS", "COSTA RICA", "COTE D'IVOIRE", "CROATIA", "CUBA", "CURACAO", "CYPRUS", "CZECH REPUBLIC", "CZECHOSLOVAKIA", "DENMARK", "DJIBOUTI", "DOMINICA", "DOMINICAN REPUBLIC", "ECUADOR", "EGYPT", "EL SALVADOR", "EQUATORIAL GUINEA", "ERITREA", "ESTONIA", "ETHIOPIA", "FALKLAND ISLANDS (MALVINAS)", "FAROE ISLANDS", "FIJI", "FINLAND", "FRANCE", "FRENCH GUIANA", "FRENCH POLYNESIA", "FRENCH SOUTHERN TERRITORIES", "GABON", "GAMBIA", "GEORGIA", "GERMAN DEMOCRATIC REPUBLIC", "FEDERAL REPUBLIC OF GERMANY", "GERMANY", "GHANA", "GIBRALTAR", "GREECE", "GREENLAND", "GRENADA", "GUADELOUPE", "GUAM", "GUATEMALA", "GUERNSEY", "GUINEA", "GUINEA-BISSAU", "GUYANA", "HAITI", "HANOVER", "HEARD ISLAND AND MCDONALD ISLANDS", "HESSE ELECTORAL", "HESSE GRAND DUCAL", "HOLY SEE (VATICAN CITY STATE)", "HONDURAS", "HONG KONG", "HUNGARY", "ICELAND", "INDIA", "INDONESIA", "IRAN, ISLAMIC REPUBLIC OF", "IRAQ", "IRELAND", "ISLE OF MAN", "ISRAEL", "ITALY", "JAMAICA", "JAPAN", "JERSEY", "JORDAN", "KAZAKHSTAN", "KENYA", "KIRIBATI", "KOREA", "KOREA, DEMOCRATIC PEOPLE'S REPUBLIC OF", "KOREA, REPUBLIC OF", "KOSOVO", "KUWAIT", "KYRGYZSTAN", "LAO PEOPLE'S DEMOCRATIC REPUBLIC", "LATVIA", "LEBANON", "LESOTHO", "LIBERIA", "LIBYA", "LIECHTENSTEIN", "LITHUANIA", "LUXEMBOURG", "MACAO", "MACEDONIA, THE FORMER YUGOSLAV REPUBLIC OF", "MADAGASCAR", "MALAWI", "MALAYSIA", "MALDIVES", "MALI", "MALTA", "MARSHALL ISLANDS", "MARTINIQUE", "MAURITANIA", "MAURITIUS", "MAYOTTE", "MECKLENBURG SCHWERIN", "MEXICO", "MICRONESIA, FEDERATED STATES OF", "MODENA", "MOLDOVA, REPUBLIC OF", "MONACO", "MONGOLIA", "MONTENEGRO", "MONTSERRAT", "MOROCCO", "MOZAMBIQUE", "MYANMAR", "NAMIBIA", "NAURU", "NEPAL", "NETHERLANDS", "NETHERLANDS ANTILLES", "NEW CALEDONIA", "NEW ZEALAND", "NICARAGUA", "NIGER", "NIGERIA", "NIUE", "NORFOLK ISLAND", "NORTHERN MARIANA ISLANDS", "NORWAY", "OMAN", "PAKISTAN", "PALAU", "PALESTINE, STATE OF", "PANAMA", "PAPUA NEW GUINEA", "PARAGUAY", "PARMA", "PERU", "PHILIPPINES", "PITCAIRN", "POLAND", "PORTUGAL", "PUERTO RICO", "QATAR", "REPUBLIC OF VIETNAM", "REUNION", "ROMANIA", "RUSSIAN FEDERATION", "RWANDA", "SAINT BARTHELEMY", "SAINT HELENA, ASCENSION AND TRISTAN DA CUNHA", "SAINT KITTS AND NEVIS", "SAINT LUCIA", "SAINT MARTIN (FRENCH PART)", "SAINT PIERRE AND MIQUELON", "SAINT VINCENT AND THE GRENADINES", "SAMOA", "SAN MARINO", "SAO TOME AND PRINCIPE", "SAUDI ARABIA", "SAXONY", "SENEGAL", "SERBIA", "SEYCHELLES", "SIERRA LEONE", "SINGAPORE", "SINT MAARTEN (DUTCH PART)", "SLOVAKIA", "SLOVENIA", "SOLOMON ISLANDS", "SOMALIA", "SOUTH AFRICA", "SOUTH GEORGIA AND THE SOUTH SANDWICH ISLANDS", "SOUTH SUDAN", "SPAIN", "SRI LANKA", "SUDAN", "SURINAME", "SVALBARD AND JAN MAYEN", "SWAZILAND", "SWEDEN", "SWITZERLAND", "SYRIAN ARAB REPUBLIC", "TAIWAN, PROVINCE OF CHINA", "TAJIKISTAN", "TANZANIA, UNITED REPUBLIC OF", "THAILAND", "TIMOR-LESTE", "TOGO", "TOKELAU", "TONGA", "TRINIDAD AND TOBAGO", "TUNISIA", "TURKEY", "TURKMENISTAN", "TURKS AND CAICOS ISLANDS", "TUSCANY", "TUVALU", "TWO SICILIES", "UGANDA", "UKRAINE", "UNITED ARAB EMIRATES", "UNITED KINGDOM", "UNITED STATES", "UNITED STATES MINOR OUTLYING ISLANDS", "URUGUAY", "UZBEKISTAN", "VANUATU", "VENEZUELA, BOLIVARIAN REPUBLIC OF", "VIET NAM", "VIRGIN ISLANDS, BRITISH", "VIRGIN ISLANDS, U.S.", "WALLIS AND FUTUNA", "WESTERN SAHARA", "WUERTTEMBURG", "YEMEN", "YEMEN ARAB REPUBLIC", "YEMEN PEOPLE'S REPUBLIC", "YUGOSLAVIA", "ZAMBIA", "ZANZIBAR", "ZIMBABWE", "ALABAMA", "ALASKA", "ARIZONA", "ARKANSAS", "CALIFORNIA", "COLORADO", "CONNECTICUT", "DELAWARE", "FLORIDA", "GEORGIA", "HAWAII", "IDAHO", "ILLINOIS", "INDIANA", "IOWA", "KANSAS", "KENTUCKY", "LOUISIANA", "MAINE", "MARYLAND", "MASSACHUSETTS", "MICHIGAN", "MINNESOTA", "MISSISSIPPI", "MISSOURI", "MONTANA", "NEBRASKA", "NEVADA", "NEW HAMPSHIRE", "NEW JERSEY", "NEW MEXICO", "NEW YORK", "NORTH CAROLINA", "NORTH DAKOTA", "OHIO", "OKLAHOMA", "OREGON", "PENNSYLVANIA", "RHODE ISLAND", "SOUTH CAROLINA", "SOUTH DAKOTA", "TENNESSEE", "TEXAS", "UTAH", "VERMONT", "VIRGINIA", "WASHINGTON", "WEST VIRGINIA", "WISCONSIN", "WYOMING", "DISTRICT OF COLUMBIA", "ENGLAND", "BRITISH VIRGIN ISLANDS", "NETHERLAND ANTILLES", "RUSSIA", "SOUTH KOREA", 'TAIWAN', "VENEZUELA", 'CHANNEL ISLANDS' ) ) } .parse_page_sub_multi_item_html <- function(page) { locations <- .loc_df() %>% .$nameLocation subsidiaries <- page %>% html_nodes('td div') %>% html_text() %>% str_replace_all('\u0095 |\u0096|\u0095\n', '') %>% str_trim() subsidiaries <- subsidiaries[!subsidiaries == ''] data_nodes <- page %>% html_nodes('td') %>% html_text() %>% str_replace_all('\u0095 |\u0096|\u0095\n', '') %>% str_trim() %>% str_to_upper() data_nodes <- data_nodes[!data_nodes == ''] location_items <- data_nodes[data_nodes %in% locations] pct_vals <- tibble(value = data_nodes) %>% filter(!value %>% str_detect("\\([(1-9)]\\)")) %>% mutate(pctSubsidiaryOwned = value %>% as.numeric()) %>% filter(!pctSubsidiaryOwned %>% is.na()) %>% slice(seq_along(subsidiaries)) %>% .$pctSubsidiaryOwned / 100 %>% suppressWarnings() %>% suppressMessages() all_data <- tibble( nameSubsidiary = subsidiaries, nameLocationSubsidiary = location_items, pctSubsidiaryOwned = pct_vals ) %>% mutate(nameSubsidiary = nameSubsidiary %>% str_to_upper()) return(all_data) } .parse_page_subsidiary_table_html <- function(page, numbers = 1:10, hit_terms = c( "Organized", "STATE OR|STATE OF|JURISDICTION OF|JURISDICTION OF INCORPORATION OR ORGANIZATION|JURISDICTION|JURISDICTION OF INCORPORATION OR\nORGANIZATION", "NAME|ORGANIZED UNDER THE LAWS OF", 'STATE OF ORGANIZATION', 'STATE OR COUNTRY OF ORGANIZATION', 'NAME OF SUBSIDIARY', 'NAME', 'ENTITY NAME', 'the laws of', 'Percentage of voting', 'securities owned by', 'immediate parent', 'CERTAIN INTERMEDIARY SUBSIDIARIES', 'Note:', 'Organized', 'Under the', 'Laws of', 'OWNED BY', 'IMMEDIATE', 'PARENT', "OWNS", "CERTAIN INTERMEDIARY SUBSIDIARIES", 'PERCENTAGE', 'OF VOTING', 'SECURITIES' )) { is_ib1 <- page %>% html_nodes('b font') %>% html_text() %>% length() > 0 if (is_ib1) { items_bold <- page %>% html_nodes('b font') %>% html_text() %>% str_to_upper() %>% str_replace_all('\n', ' ') %>% stringi::stri_trans_general("Latin-ASCII") str_split('\\-') %>% flatten_chr() %>% str_trim() } else { items_bold <- page %>% html_nodes('b') %>% html_text() %>% str_to_upper() %>% str_replace_all('\n', ' ') %>% stringi::stri_trans_general("Latin-ASCII") %>% str_split('\\-') %>% flatten_chr() %>% str_trim() %>% unique() } has_date <- items_bold %>% grep(month.name %>% str_to_upper() %>% paste(collapse = '|'), .) %>% length > 0 if (has_date) { date_data <- items_bold[items_bold %>% grep(month.name %>% str_to_upper() %>% paste(collapse = '|'), .)] %>% lubridate::mdy() } else { date_data <- NA } hit_terms <- hit_terms %>% append(items_bold) %>% str_to_upper() %>% unique() %>% append(list('(', letters, ')') %>% purrr::invoke(paste0, .)) %>% paste0(collapse = '|') hit_terms_in <- hit_terms %>% str_split('\\|') %>% flatten_chr() locations <- .loc_df() %>% .$nameLocation all_data <- numbers %>% future_map_dfr(function(x) { css_selector <- paste0('td:nth-child(', x, ')') has_length <- page %>% html_nodes(css_selector) %>% length() > 0 if (has_length) { item <- paste0("X" , x) value <- page %>% html_nodes(css_selector) %>% html_text() %>% str_trim() tibble(item, value) } }) %>% mutate( value = value %>% str_to_upper() %>% str_replace_all('\n ', ' ') %>% str_replace_all('\u0096 ', '') ) %>% filter(!value == '') has_loc_key <- all_data %>% filter(value %in% locations) %>% nrow() > 0 if (has_loc_key) { loc_cols <- all_data %>% filter(value %in% locations) %>% .$item %>% unique() if (loc_cols %>% length == 1) { loc_col <- loc_cols[[1]] } } has_pct <- all_data %>% filter(value %>% str_detect("PERCENT")) %>% .$item %>% unique() %>% length() > 0 if (has_pct) { pct_col <- all_data %>% filter(value %>% str_detect("PERCENT")) %>% .$item %>% unique() } else { pct_col <- NA } is_whack <- pct_col[[1]] %in% loc_cols if (is_whack) { all_data <- page %>% .parse_page_sub_multi_item_html() %>% mutate(dateSubsidiaryAsOf = date_data) return(all_data) } all_data <- all_data %>% filter(!value %in% items_bold) %>% filter(!value %>% str_detect(paste0(items_bold %>% unique(), collapse = '|'))) %>% filter(!value %in% hit_terms_in) %>% filter(!value %>% str_detect(hit_terms)) count_df <- all_data %>% count(item, sort = T) %>% arrange(item) %>% spread(item, n) off_one <- (count_df[, 2] %>% extract2(1)) - (count_df[, 1] %>% extract2(1)) == 1 min_item <- count_df %>% gather(item, value) %>% filter(value == min(value)) %>% .$item change_pct <- has_pct & (pct_col == min_item) %>% sum() > 0 if (change_pct) { pct_col <- names(count_df)[[3]] } if (off_one) { df <- all_data$item %>% unique() %>% future_map_dfr(function(x) { has_data <- all_data %>% filter(item == x) %>% filter(!value %>% is.na()) %>% filter(!value == '') %>% nrow() if (has_data) { all_data %>% filter(item == x) %>% filter(!value %>% is.na()) %>% filter(!value == '') %>% filter(!value %>% str_detect(hit_terms)) %>% mutate(idSubsidiary = 1:n()) } }) %>% filter(!value %>% str_detect(hit_terms)) %>% spread(item, value) if (change_pct) { df <- df %>% select(-one_of(min_item)) } } if (!off_one) { has_property <- items_bold %>% str_detect('PROPERTY') %>% sum() > 0 if (has_property) { tables <- page %>% html_table(fill = T) df <- seq_along(tables) %>% future_map_dfr(function(x) { table_df <- tables[[x]] %>% data.frame(stringsAsFactors = FALSE) %>% as_tibble() column_df <- table_df %>% slice(1) %>% gather(column, value) %>% mutate(idColumn = 1:n()) %>% filter(!value %>% is.na()) %>% left_join(tibble( value = c( "PROPERTY", "ENTITIES", "STATE OF FORMATION", "DATE OF FORMATION", " ", 'General Information:' ), nameItem = c( 'nameProperty', 'nameSubsidiary', 'locationOrganizationSubsidiary', 'dateSubsidiaryFormed', 'locationOrganizationSubsidiary', 'nameSubsidiary' ) )) %>% suppressMessages() two_col <- column_df %>% nrow() == 2 if (two_col) { column_df$nameItem[[2]] <- 'locationOrganizationSubsidiary' } columns_keep <- column_df$idColumn table_df <- table_df <- table_df %>% select(columns_keep) %>% slice(-1) %>% purrr::set_names(column_df$nameItem) table_df <- table_df %>% mutate_all(funs(. %>% str_trim() %>% str_to_upper())) %>% mutate(nameSubsidiary = ifelse(nameSubsidiary == '', NA, nameSubsidiary)) %>% filter(!nameSubsidiary %>% is.na()) if (two_col) { table_df <- table_df %>% tidyr::separate( locationOrganizationSubsidiary, into = c( 'locationOrganizationSubsidiary', 'dateSubsidiaryFormed' ), sep = 'FORMED' ) %>% suppressWarnings() %>% mutate(locationOrganizationSubsidiary = locationOrganizationSubsidiary %>% str_replace_all('\\,', '')) %>% mutate_all(funs(. %>% str_replace('\n', '') %>% str_trim())) } if ('nameProperty' %in% names(table_df)) { table_df <- table_df %>% mutate(nameProperty = ifelse(nameProperty == '', NA, nameProperty)) %>% mutate_all(funs(. %>% str_replace('\n|\n |\n ', '') %>% str_trim())) %>% mutate_all(funs(. %>% str_replace('\n', '') %>% str_trim())) %>% mutate_all(funs(. %>% str_replace(' ', ' ') %>% str_trim())) %>% fill(nameProperty) } return(table_df) }) if ('dateSubsidiaryFormed' %in% names(df)) { df <- df %>% mutate(dateSubsidiaryFormed = dateSubsidiaryFormed %>% lubridate::mdy()) } df <- df %>% mutate(idCIK = cik, urlSEC = url) %>% select(idCIK, nameSubsidiary, everything()) %>% mutate( locationOrganizationSubsidiary = locationOrganizationSubsidiary %>% str_replace_all( 'A |LIMITED LIABILITY COMPANY|CORPORATION|LIMITED PARTNERSHIP' ) %>% str_trim() ) return(df) } if (!has_property) { df <- all_data %>% mutate(value = ifelse(value == '', NA, value)) %>% filter(!value %>% is.na()) %>% group_by(item) %>% mutate(idSubsidiary = 1:n()) %>% spread(item, value) %>% filter(!X1 == '') %>% mutate(idSubsidiary = 1:n()) %>% gather(item, value, -c(X1, idSubsidiary)) %>% ungroup() %>% filter(!value %>% str_detect(hit_terms)) %>% spread(item, value) } } df <- df %>% dplyr::rename(nameSubsidiary = X1) %>% tidyr::separate(nameSubsidiary, sep = '\\(', into = c('nameSubsidiary', 'remove')) %>% select(-dplyr::matches("remove")) %>% mutate(nameSubsidiary = nameSubsidiary %>% str_trim()) %>% suppressWarnings() %>% select(-dplyr::matches("idSubsidiary")) if (has_pct) { names(df)[names(df) %>% grep(pct_col, .)] <- 'pctSubsidiaryOwned' df <- df %>% mutate_at(df %>% select(dplyr::matches('pct')) %>% names(), funs(. %>% as.numeric() / 100)) %>% suppressWarnings() } if (has_loc_key) { names(df)[names(df) %>% grep(loc_col, .)] <- 'locationOrganizationSubsidiary' } df <- df %>% select(-dplyr::matches("X")) return(df) } .parse_sec_subsidiary_url_html <- function(url = "https://www.sec.gov/Archives/edgar/data/34088/000003408816000065/xomexhibit21.htm", return_message = TRUE) { cik <- url %>% .parse_sec_url_for_cik() page <- url %>% read_html() is_zero <- page %>% html_nodes(paste0('td:nth-child(', 1, ')')) %>% length() == 0 locations <- .loc_df() %>% .$nameLocation if (is_zero) { data <- page %>% html_nodes('font') %>% html_text() %>% str_replace_all('\\ ', ' ') data <- data[!data == ''] is_parenth <- data %>% str_detect('\\(') %>% sum() / length(data) > .25 if (is_parenth) { data <- data[data %>% str_detect('\\(')] df <- tibble(data) %>% separate( data, sep = '\\(', into = c('nameSubsidiary', 'locationOrganizationSubsidiary') ) %>% separate( locationOrganizationSubsidiary, sep = '\\)', into = c('locationOrganizationSubsidiary', 'remove') ) %>% select(-remove) %>% mutate_all(funs(. %>% str_trim() %>% str_to_upper())) %>% mutate(idCIK = cik, urlSEC = url) %>% select(-dplyr::matches("idSubsidiary")) if (return_message) { list("Parsed: ", url) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } return(df) } is_nested <- page %>% html_nodes('b font') %>% html_text() %>% length() > 2 if (is_nested) { locations_raw <- page %>% html_nodes('b font') %>% html_text() %>% str_replace_all('\\:', '') %>% str_to_upper() locations <- locations_raw[!locations_raw %>% str_detect('EXHIBIT|SUBSIDIARY|SUBSIDIARIES')] data <- data[data %>% nchar() > 3] %>% str_to_upper() df <- tibble(nameSubsidiary = data) %>% mutate(idRow = 1:n()) .loc_df <- tibble(nameSubsidiary = locations) %>% inner_join(df %>% select(idRow, nameSubsidiary)) %>% mutate(idRow = idRow + 1) %>% select(locationOrganizationSubsidiary = nameSubsidiary, idRow) %>% suppressMessages() df <- df %>% filter(!nameSubsidiary %>% str_detect('SUBSIDIARY|SUBSIDIARIES')) %>% filter(!nameSubsidiary %>% str_detect(paste0(locations_raw, collapse = '|'))) %>% suppressWarnings() df <- df %>% left_join(.loc_df) %>% fill(locationOrganizationSubsidiary) %>% mutate(urlSEC = url, idCIK = cik) %>% select(idCIK, nameSubsidiary, locationOrganizationSubsidiary, everything()) %>% select(-idRow) %>% suppressMessages() %>% select(-dplyr::matches("idSubsidiary")) if (return_message) { list("Parsed: ", url) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } return(df) } } is_font_table <- page %>% html_nodes('b') %>% html_text() %>% length() == 0 if (is_font_table) { all_data <- 1:10 %>% future_map_dfr(function(x) { css_selector <- paste0('td:nth-child(', x, ')') has_length <- page %>% html_nodes(css_selector) %>% length() > 0 if (has_length) { item <- paste0("X" , x) value <- page %>% html_nodes(css_selector) %>% html_text() %>% str_trim() tibble(item, value) } }) %>% mutate( value = value %>% str_to_upper() %>% str_replace_all('\n ', ' ') %>% str_replace_all('\u0096 ', '') ) %>% filter(!value == '') has_loc_key <- all_data %>% filter(value %in% locations) %>% nrow() > 0 if (has_loc_key) { loc_col <- all_data %>% filter(value %in% locations) %>% .$item %>% unique() } hit_terms_in <- c( "Organized", "STATE OR|STATE OF|JURISDICTION OF|JURISDICTION OF INCORPORATION OR ORGANIZATION|JURISDICTION|JURISDICTION OF INCORPORATION OR\nORGANIZATION", "NAME|ORGANIZED UNDER THE LAWS OF", 'STATE OF ORGANIZATION', 'STATE OR COUNTRY OF ORGANIZATION', 'NAME OF SUBSIDIARY', 'NAME', 'ENTITY NAME', 'the laws of', 'Percentage of voting', 'securities owned by', 'immediate parent', 'CERTAIN INTERMEDIARY SUBSIDIARIES', 'PERCENT OWNED' ) hit_terms <- hit_terms %>% str_to_upper() %>% paste0(collapse = '|') hit_terms_in <- hit_terms %>% str_split('\\|') %>% flatten_chr() has_pct_col <- all_data %>% filter(value %in% "100") %>% nrow() > 0 | (all_data %>% filter(value %>% str_detect('PERCENT')) %>% nrow() > 0) if (has_pct_col) { pct_col <- all_data %>% filter((value %in% "100") | (value %>% str_detect("PERCENT"))) %>% .$item %>% unique() %>% .[[1]] } all_data <- all_data %>% filter(!value %in% hit_terms_in) %>% filter(!value %>% str_detect(hit_terms)) %>% filter(!value == '') %>% mutate(valueNC = value %>% nchar()) %>% filter(!value %>% str_detect("PERCENT")) if (!has_pct_col) { all_data <- all_data %>% filter(valueNC > 3) } all_data <- all_data %>% select(-valueNC) %>% group_by(item) %>% mutate(idSubsidiary = 1:n()) %>% spread(item, value) %>% ungroup() %>% dplyr::rename(nameSubsidiary = X1) if (has_loc_key) { names(all_data)[names(all_data) %in% loc_col] <- 'locationOrganizationSubsidiary' } if (has_pct_col) { names(all_data)[names(all_data) %in% pct_col] <- 'pctSubsidiaryOwned' all_data <- all_data %>% mutate(pctSubsidiaryOwned = pctSubsidiaryOwned %>% as.numeric() / 100) } all_data <- all_data %>% mutate(idCIK = cik, dateSubsidiaryAsOf = NA, urlSEC = url) %>% select(-dplyr::matches("idSubsidiary|^X")) if (return_message) { list("Parsed: ", url) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } return(all_data) } df <- page %>% .parse_page_subsidiary_table_html() %>% suppressWarnings() df <- df %>% filter(!nameSubsidiary == '') %>% mutate(idCIK = cik, urlSEC = url) %>% select(-dplyr::matches("idSubsidiary")) %>% select(idCIK, everything()) if (return_message) { list("Parsed: ", url) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } return(df %>% select(-dplyr::matches("idSubsidiary"))) } .parse_sec_subsidiary_url_text <- function(url = "https://www.sec.gov/Archives/edgar/data/899689/000104746903007996/a2104897zex-21.txt", return_message = TRUE) { cik <- url %>% .parse_sec_url_for_cik() data <- url %>% read_lines() data <- data[!data == ''] has_s <- data %>% str_detect("<S>") %>% sum() > 0 if (has_s) { data <- data[(data %>% grep("<S>", .) %>% .[[1]] + 1):length(data)] } data <- data[!data %>% str_detect("STATE OF|NAME OF|---|NAME OF SUBSIDIARY|ORGANIZED UNDER|THE LAWS OF|<")] data <- data[data %>% nchar() > 3] df <- seq_along(data) %>% future_map_dfr(function(x) { item <- data[[x]] items <- item %>% str_replace_all('\\ ', '\\:') %>% str_split('\\:') %>% flatten_chr() %>% str_trim() %>% str_to_upper() items <- items[!items == ''] if (items %>% length() == 1) { return(tibble()) } two_items <- items %>% length() == 2 if (two_items) { table_data <- tibble( idSubsidiary = x, nameSubsidiary = items[[1]], locationOrganizationSubsidiary = items[[2]] ) } three_items <- items %>% length() == 3 if (three_items) { table_data <- tibble( idSubsidiary = x, nameSubsidiary = items[[1]], locationOrganizationSubsidiary = items[[2]], pctSubsidiaryOwned = items[[3]] %>% as.numeric() / 100 ) } table_data <- table_data %>% mutate( isChildSubsidiary = ifelse(nameSubsidiary %>% substr(1, 1) == "-", TRUE, FALSE), nameSubsidiary = nameSubsidiary %>% str_replace('\\-', '') %>% str_trim() ) return(table_data) }) %>% mutate(idCIK = cik, urlSEC = url) %>% select(-dplyr::matches("idSubsidiary")) %>% select(idCIK, nameSubsidiary, locationOrganizationSubsidiary, everything()) %>% filter(!nameSubsidiary %in% c('NAME', 'ORGANIZED UNDER')) df <- df %>% filter(!nameSubsidiary == '') if (return_message) { list("Parsed: ", url) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } return(df) } .parse_sec_subsidiary_url <- function(url = "https://www.sec.gov/Archives/edgar/data/34088/000003408816000065/xomexhibit21.htm", return_message = TRUE) { is_text <- url %>% str_detect("txt") is_html <- url %>% str_detect("html|htm") parse_sec_subsidiary_url_text_safe <- purrr::possibly(.parse_sec_subsidiary_url_text, tibble()) parse_sec_subsidiary_url_html_safe <- purrr::possibly(.parse_sec_subsidiary_url_html, tibble()) if (is_text) { data <- url %>% parse_sec_subsidiary_url_text_safe() } if (is_html) { data <- url %>% parse_sec_subsidiary_url_html_safe() } data }
context("check_TF") test_that("check_TF", { expect_null(check_TF(TRUE)) expect_null(check_TF(FALSE)) mustBe <- NA expect_error(check_TF(mustBe), '`mustBe = NA` but must be TRUE or FALSE. Change `mustBe` to be TRUE or FALSE.') mustBe <- 1 expect_error(check_TF(mustBe), '`mustBe` was type double but must be logical. Change `mustBe` to be TRUE or FALSE.') mustBe <- c(TRUE, FALSE) expect_error(check_TF(mustBe), '`mustBe` had length 2 but must be length-one. Change `mustBe` to be TRUE or FALSE.') }) test_that("check_num1", { expect_null(check_num1(1L)) expect_null(check_num1(1)) mm <- 1:5 expect_error(check_num1(mm), "`mm` had length 5 but must be length-one.", fixed = TRUE) mm <- "mm" expect_error(check_num1(mm), "`mm` was type character", fixed = TRUE) mm <- NA_real_ expect_error(check_num1(mm), "`mm = NA` but must be a non-missing numeric.", fixed = TRUE) })
ribbon3D <- function(x = seq(0, 1, length.out = nrow(z)), y = seq(0, 1, length.out = ncol(z)), z, ..., colvar = z, phi = 40, theta = 40, col = NULL, NAcol = "white", breaks = NULL, border = NA, facets = TRUE, colkey = NULL, resfac = 1, image = FALSE, contour = FALSE, panel.first = NULL, clim = NULL, clab = NULL, bty = "b", lighting = FALSE, shade = NA, ltheta = -135, lphi = 0, space = 0.4, along = "x", curtain = FALSE, add = FALSE, plot = TRUE) { plist <- initplist(add) if (any(space > 0.9)) stop("'space' too large, should be smaller than or equal to 0.9") else if (any(space < 0.1)) stop("'space' cannot be smaller than 0.1") space <- rep(space, length.out = 2) if (length(grep("x", along)) == 0 & length(grep("y", along)) == 0) stop ("'along' should contain at least one of 'x' or 'y'") if (! is.vector(x) & length(dim(x)) != 1) stop("'x' should be a vector") if (! is.vector(y) & length(dim(y)) != 1) stop("'y' should be a vector") if (length(x) != nrow(z)) stop("'x' should be of length = nrow(z)") if (length(y) != ncol(z)) stop("'y' should be of length = ncol(z)") if (any(resfac != 1)) { res <- changeres(resfac, x, y, z, colvar) x <- res$x ; y <- res$y ; z <- res$z colvar <- res$colvar } rx <- range(x) ry <- range(y) if (length(grep("x", along)) > 0) { dY <- 0.5*(1 - space[2]) * diff(y) dY <- c(dY[1], dY, dY[length(dY)]) ry <- ry + c(- dY[1], dY[length(dY)]) } if (length(grep("y", along)) > 0) { dX <- 0.5*(1 - space[1]) * diff(x) dX <- c(dX[1], dX, dX[length(dX)]) rx <- rx + c(- dX[1], dX[length(dX)]) } dot <- splitdotpersp(list(...), bty, lighting, rx, ry, z, plist = plist, shade, lphi, ltheta, breaks = breaks) if (! is.matrix(x) & all(diff(x) < 0)) { if (is.null(dot$persp$xlim)) dot$persp$xlim <- rev(range(x)) x <- rev(x) if (ispresent(colvar)) colvar <- colvar[nrow(colvar):1, ] z <- z[nrow(z):1, ] } if (! is.matrix(y) & all(diff(y) < 0)) { if (is.null(dot$persp$ylim)) dot$persp$ylim <- rev(range(y)) y <- rev(y) if (ispresent(colvar)) colvar <- colvar[, (ncol(colvar):1)] z <- z[, (ncol(z):1)] } image <- check.args(image) contour <- check.args(contour) if (contour$add) cv <- colvar if (is.null(col) & is.null(breaks)) col <- jet.col(100) else if (is.null(col)) col <- jet.col(length(breaks)-1) breaks <- check.breaks(breaks,col) CC <- check.colvar.2(colvar, z, col, clim, dot$alpha) colvar <- CC$colvar col <- CC$col if (ispresent(colvar)) { if (is.null(clim)) clim <- range(colvar, na.rm = TRUE) if (dot$clog) { colvar <- log(colvar) clim <- log(clim) } iscolkey <- is.colkey(colkey, col) if (iscolkey) colkey <- check.colkey(colkey) } else iscolkey <- FALSE rx <- range(x) ry <- range(y) if (is.null(plist)) { do.call("perspbox", c(alist(x = range(x), y = range(y), z = range(z, na.rm = TRUE), phi = phi, theta = theta, plot = plot, colkey = colkey, col = col), dot$persp)) plist <- getplist() } if (is.function(panel.first)) panel.first(plist$mat) shade <- dot$shade$shade if (is.null(dot$shade$shade)) dot$shade$shade <- NA Nx <- dim(z) [1] Ny <- dim(z) [2] lwd <- dot$points$lwd if (is.null(lwd)) lwd <- 1 lty <- dot$points$lty if (is.null(lty)) lty <- 1 Poly <- list(x = NULL, y = NULL, col = NULL, border = NULL, lwd = NULL, lty = NULL, img = NULL, alpha = NULL, proj = NULL) zmin <- min(plist$zlim[1], min(z, na.rm = TRUE)) if (curtain & zmin == min(z, na.rm = TRUE)) zmin <- as.double(zmin - diff(range(plist$zlim)) * 1e-6) if (length(grep("x", along)) > 0) { X <- cbind(x, x) for (i in 1 : Ny) { ind <- length(Poly$col) + 1 Y <- cbind(rep(y[i]+dY[i+1], Nx), rep(y[i]-dY[i], Nx)) Poly <- add.poly(Poly, X, Y, cbind(z[,i], z[,i]), colvar[,i], col, NAcol, breaks, clim, facets, border) if (curtain) { Poly <- add.poly(Poly, X, cbind(rep(y[i]-dY[i], Nx), rep(y[i]-dY[i], Nx)), cbind(rep(zmin, Nx), z[,i]), colvar[,i], col, NAcol, breaks, clim, facets, border) Poly <- add.poly(Poly, X, cbind(rep(y[i]+dY[i+1], Nx), rep(y[i]+dY[i+1], Nx)), cbind(rep(zmin, Nx), z[,i]), colvar[,i], col, NAcol, breaks, clim, facets, border) ye1 <- y[i]-dY[i] ye2 <- y[i]+dY[i+1] Poly <- list(x = cbind(Poly$x, c(x[1], x[1], x[1], x[1], NA)), y = cbind(Poly$y, c(ye1, ye2, ye2, ye1, NA)), z = cbind(Poly$z, c(zmin, zmin, z[1,i], z[1,i], NA)), col = c(Poly$col, Poly$col[ind]), border = c(Poly$border, Poly$border[ind]), img = Poly$img) ind <- length(Poly$col) Poly <- list(x = cbind(Poly$x, c(x[Nx], x[Nx], x[Nx], x[Nx], NA)), y = cbind(Poly$y, c(ye1, ye2, ye2, ye1, NA)), z = cbind(Poly$z, c(zmin, zmin, z[Nx,i], z[Nx,i], NA)), col = c(Poly$col, Poly$col[ind]), border = c(Poly$border, Poly$border[ind]), img = Poly$img) } } } if (length(grep("y", along)) > 0) { Y <- cbind(y, y) for (i in 1 : Nx) { ind <- length(Poly$col) + 1 X <- cbind(rep(x[i]+dX[i+1], Ny), rep(x[i]-dX[i], Ny)) Poly <- add.poly(Poly, X, Y, cbind(z[i,], z[i,]), colvar[i,], col, NAcol, breaks, clim, facets, border) if (curtain) { Poly <- add.poly(Poly, cbind(rep(x[i]-dX[i], Ny), rep(x[i]-dX[i], Ny)), Y, cbind(rep(zmin, Ny), z[i,]), colvar[i,], col, NAcol, breaks, clim, facets, border) Poly <- add.poly(Poly, cbind(rep(x[i]+dX[i+1], Ny), rep(x[i]+dX[i+1], Ny)), Y, cbind(rep(zmin, Ny), z[i,]), colvar[i,], col, NAcol, breaks, clim, facets, border) xe1 <- x[i]-dX[i] xe2 <- x[i]+dX[i+1] Poly <- list(x = cbind(Poly$x, c(xe1, xe2, xe2, xe1, NA)), y = cbind(Poly$y, c(y[1], y[1], y[1], y[1], NA)), z = cbind(Poly$z, c(zmin, zmin, z[i,1], z[i,1], NA)), col = c(Poly$col, Poly$col[ind]), border = c(Poly$border, Poly$border[ind]), img = Poly$img) ind <- length(Poly$col) Poly <- list(x = cbind(Poly$x, c(xe1, xe2, xe2, xe1, NA)), y = cbind(Poly$y, c(y[Ny], y[Ny], y[Ny], y[Ny], NA)), z = cbind(Poly$z, c(zmin, zmin, z[i,Ny], z[i,Ny], NA)), col = c(Poly$col, Poly$col[ind]), border = c(Poly$border, Poly$border[ind]), img = Poly$img) } } } alpha <- dot$alpha; if (is.null(alpha)) alpha <- NA Poly$alpha <- rep(alpha, length.out = length(Poly$col)) if (! dot$shade$type == "none") Poly <- color3D(Poly, plist$scalefac, dot$shade, lighting) Poly$proj <- project(colMeans(Poly$x, na.rm = TRUE), colMeans(Poly$y, na.rm = TRUE), colMeans(Poly$z, na.rm = TRUE), plist) Poly$lwd <- rep(lwd , length.out = length(Poly$col)) Poly$lty <- rep(lty , length.out = length(Poly$col)) Poly$isimg <- rep(0 , length.out = length(Poly$col)) class(Poly) <- "poly" if (image$add) Poly <- XYimage (Poly, image, x, y, z, plist, col, breaks = breaks) if (contour$add) segm <- contourfunc(contour, x, y, z, plist, cv, clim) else segm <- NULL if (iscolkey) plist <- plistcolkey(plist, colkey, col, clim, clab, dot$clog, type = "ribbon3D", breaks = breaks) plist <- plot.struct.3D(plist, poly = Poly, segm = segm, plot = plot) setplist(plist) invisible(plist$mat) }
nse_stock_most_traded <- function(clean_names = TRUE) { url <- "https://www1.nseindia.com/products/dynaContent/equities/equities/json/mostActiveMonthly.json" url %>% nse_base() %>% nse_format_num(1, 2:6) %>% nse_format(1, 2:6) -> result if (clean_names) { names(result) <- c("security", "share_turnover", "traded_quantity", "no_of_trades", "avg_daily_turnonver", "turnover") } result } NULL nse_stock_year_high <- function(clean_names = TRUE) { url <- "https://www1.nseindia.com/products/dynaContent/equities/equities/json/online52NewHigh.json" result <- nse_stock_year_base(url) if (clean_names) { names(result) <- c("symbol", "symbol_desc", "date", "new_high", "year", "last_traded_price", "prev_high", "prev_close", "change", "percent_change") } result } nse_stock_year_low <- function(clean_names = TRUE) { url <- "https://www1.nseindia.com/products/dynaContent/equities/equities/json/online52NewLow.json" result <- nse_stock_year_base(url) if (clean_names) { names(result) <- c("symbol", "symbol_desc", "date", "new_low", "year", "last_traded_price", "prev_low", "prev_close", "change", "percent_change") } result } nse_stock_code <- function(clean_names = TRUE) { url <- "https://www1.nseindia.com/content/equities/EQUITY_L.csv" url %>% utils::read.csv() %>% magrittr::extract(., 1:2) %>% lapply(as.character) %>% as.data.frame() -> result if (clean_names) { names(result) <- c("symbol", "company") } result } nse_stock_valid <- function(stock_code) { valid_stock <- nse_stock_code()[[1]] toupper(stock_code) %in% valid_stock } NULL nse_stock_top_gainers <- function(clean_names = TRUE) { url <- "https://www1.nseindia.com/live_market/dynaContent/live_analysis/gainers/niftyGainers1.json" nse_fo_base(url, clean_names) } nse_stock_top_losers <- function(clean_names = TRUE) { url <- "https://www1.nseindia.com/live_market/dynaContent/live_analysis/losers/niftyLosers1.json" nse_fo_base(url, clean_names) } nse_stock_quote <- function(stock_code, source = c("yahoo", "rediff")) { source_type <- match.arg(source) if (nse_stock_valid(stock_code)) { is_spec <- grepl("[-&]", stock_code) if (is_spec) { pos_spec <- regexpr("[-&]", stock_code) pos_sym <- substr(stock_code, pos_spec, pos_spec) split_code <- unlist(strsplit(stock_code, pos_sym)) stock_code <- paste0(split_code[1], "%", charToRaw(pos_sym), split_code[2]) } if (source_type == "yahoo") { nse_stock_quote_yahoo(stock_code) } else { nse_stock_quote_rediff(stock_code) } } else { stop("Please check the stock code. \n Use nse_stock_code() to fetch stock symbol from NSE \n and nse_stock_valid() to check if stock code is valid. ", call. = FALSE) } }
tar_prune <- function( callr_function = callr::r, callr_arguments = targets::callr_args_default(callr_function), envir = parent.frame(), script = targets::tar_config_get("script"), store = targets::tar_config_get("store") ) { force(envir) tar_assert_callr_function(callr_function) tar_assert_list(callr_arguments) path_scratch_del(store) out <- callr_outer( targets_function = tar_prune_inner, targets_arguments = list(path_store = store), callr_function = callr_function, callr_arguments = callr_arguments, envir = envir, script = script, store = store, fun = "tar_prune" ) invisible(out) } tar_prune_inner <- function(pipeline, path_store) { tar_assert_store(path_store) names <- pipeline_get_names(pipeline) meta <- meta_init(path_store = path_store) data <- meta$database$read_condensed_data() imports <- data$name[data$type %in% c("function", "object")] children <- unlist(data$children[data$name %in% names]) children <- unique(children[!is.na(children)]) keep <- c(names, children, imports) discard <- setdiff(data$name, keep) dynamic_files <- data$name[data$format == "file"] discard <- setdiff(discard, dynamic_files) data <- as_data_frame(data)[data$name %in% keep, ] meta$database$overwrite_storage(data) unlink(file.path(path_objects_dir(path_store), discard), recursive = TRUE) invisible() }
str_order <- function(x, decreasing = FALSE, na_last = TRUE, locale = "en", numeric = FALSE, ...) { opts <- stri_opts_collator(locale, numeric = numeric, ...) stri_order(x, decreasing = decreasing, na_last = na_last, opts_collator = opts ) } str_rank <- function(x, locale = "en", numeric = FALSE, ...) { opts <- stri_opts_collator(locale, numeric = numeric, ...) stri_rank(x, opts_collator = opts ) } str_sort <- function(x, decreasing = FALSE, na_last = TRUE, locale = "en", numeric = FALSE, ...) { opts <- stri_opts_collator(locale, numeric = numeric, ...) stri_sort(x, decreasing = decreasing, na_last = na_last, opts_collator = opts ) }
adapt_parameters <- function(data=stop("Datasets is mandatory for this function"), parameters=stop("Set of parameters is mandatory for this function")) { x <- names(parameters) x <- gsub("^Max_", "", x) x <- gsub("^Peak_", "", x) x <- gsub("^Min_", "", x) x <- gsub("^MinB_", "", x) x <- gsub("^MinE_", "", x) y <- names(data) y <- c(y, "Peak", "Length", "LengthB", "LengthE", "Begin", "End", "Phi", "Delta", "Alpha", "Beta", "Tau", "PMin", "PMinB", "PMinE", "Phi1", "Delta1", "Alpha1", "Beta1", "Tau1", "Phi2", "Delta2", "Alpha2", "Beta2", "Tau2", "Theta") parred <- NULL for (i in 1:length(y)) { parred <- c(parred, parameters[x==y[i]]) } return(parred) }
d2r <- function(deg) pi/180 * deg
getMCerror <- function(object, n.chains, SDpc=FALSE) { mcmcOutput::getMCE(x=object, pc=SDpc, bad=NA, sort=FALSE) }
recombination_bin <- function(X, M, recpars) { if (!assertthat::has_name(recpars, "minchange")) recpars$minchange <- TRUE assertthat::assert_that(is.matrix(X), is.numeric(X), is.matrix(M), is.numeric(M), assertthat::are_equal(dim(X), dim(M)), assertthat::has_name(recpars, "cr"), is.numeric(recpars$cr), is_within(recpars$cr, 0, 1), assertthat::is.flag(recpars$minchange)) R <- randM(X) < recpars$cr if (recpars$minchange){ indx <- which(rowSums(R) == 0) cor.mat <- cbind(indx, sample.int(n = ncol(X), size = length(indx), replace = TRUE)) R[cor.mat[,1],cor.mat[,2]] <- TRUE } return(R*M + (1 - R)*X) }
.runThisTest <- Sys.getenv("RunAllggeffectsTests") == "yes" if (.runThisTest) { if (suppressWarnings( require("testthat") && require("rstanarm") && require("ggeffects") )) { x <- rnorm(30, 0) b <- runif(2) s <- ifelse(diag(2) == 0, 0.23, 1) er <- cbind(rnorm(30, 0, s), rnorm(30, 0, s)) y <- apply(t(b), 2, `*`, x) + er d <- data.frame(y1 = y[,1], y2 = y[,2], x) d$group <- sample(c("a", "b", "c"), size = nrow(d), replace = TRUE) m1 <- suppressWarnings(rstanarm::stan_mvmer( list( y1 ~ x + (1 | group), y2 ~ x + (1 | group) ), data = d, chains = 2, iter = 500, refresh = 0 )) m2 <- suppressWarnings(rstanarm::stan_glm(y1 ~ x, data = d, chains = 2, iter = 500, refresh = 0)) test_that("ggpredict, rstanarm-ppd", { expect_s3_class(ggpredict(m1, ppd = TRUE), "ggalleffects") expect_s3_class(ggpredict(m1, "x", ppd = TRUE), "data.frame") expect_s3_class(ggpredict(m2, ppd = TRUE), "ggalleffects") expect_s3_class(ggpredict(m2, "x", ppd = TRUE), "data.frame") }) test_that("ggpredict, rstanarm-ppd", { expect_error(ggpredict(m1, ppd = FALSE)) expect_error(ggpredict(m1, "x", ppd = FALSE)) expect_s3_class(ggpredict(m2, ppd = FALSE), "ggalleffects") expect_s3_class(ggpredict(m2, "x", ppd = FALSE), "data.frame") }) } }
html_document_base <- function(theme = NULL, self_contained = TRUE, lib_dir = NULL, mathjax = "default", pandoc_args = NULL, template = "default", dependency_resolver = NULL, copy_resources = FALSE, extra_dependencies = NULL, css = NULL, bootstrap_compatible = FALSE, ...) { if (is.null(dependency_resolver)) dependency_resolver <- html_dependency_resolver args <- c() if (self_contained) { if (copy_resources) stop("Local resource copying is incompatible with self-contained documents.") validate_self_contained(mathjax) args <- c(args, "--self-contained") } args <- c(args, pandoc_args) preserved_chunks <- character() output_dir <- "" theme <- resolve_theme(theme) old_theme <- NULL pre_knit <- function(input, ...) { if (is_bs_theme(theme)) { for (f in css) theme <<- bslib::bs_add_rules(theme, xfun::read_utf8(f)) css <<- NULL old_theme <<- bslib::bs_global_set(theme) } } post_knit <- function(metadata, input_file, runtime, ...) {} on_exit <- function() { if (is_bs_theme(theme)) bslib::bs_global_set(old_theme) } pre_processor <- function(metadata, input_file, runtime, knit_meta, files_dir, output_dir) { args <- c() if (is.null(lib_dir)) lib_dir <<- files_dir output_dir <<- output_dir if (!is.null(theme)) { theme_arg <- if (is.list(theme)) "bootstrap" else theme args <- c(args, pandoc_variable_arg("theme", theme_arg)) } for (f in css) { if (grepl("\\.s[ac]ss$", f)) { if (!xfun::loadable("sass")) { stop2("Using `.sass` or `.scss` file in `css` argument requires the sass package.") } f <- sass::sass( sass::sass_file(f), output = sass::output_template( basename = xfun::sans_ext(basename(f)), dirname = "sass", path = lib_dir ), options = sass::sass_options(output_style = "compressed") ) f <- normalized_relative_to(output_dir, f) } args <- c(args, "--css", pandoc_path_arg(f, backslash = FALSE)) } format_deps <- list() format_deps <- append(format_deps, html_dependency_header_attrs()) if (!is.null(theme)) { format_deps <- append(format_deps, list(html_dependency_jquery())) if (is_bs_theme(theme)) { theme <- bslib::bs_global_get() } bootstrap_deps <- if (is_bs_theme(theme) && is_shiny(runtime, metadata[["server"]])) { list(shiny_bootstrap_lib(theme)) } else { bootstrap_dependencies(theme) } format_deps <- append(format_deps, htmltools::resolveDependencies(bootstrap_deps)) } else if (isTRUE(bootstrap_compatible) && is_shiny(runtime, metadata[["server"]])) { format_deps <- append(format_deps, bootstrap_dependencies("bootstrap")) } format_deps <- append(format_deps, extra_dependencies) extras <- html_extras_for_document(knit_meta, runtime, dependency_resolver, format_deps) args <- c(args, pandoc_html_extras_args(extras, self_contained, lib_dir, output_dir)) args <- c(args, pandoc_mathjax_args(mathjax, template, self_contained, lib_dir, output_dir)) preserved_chunks <<- extract_preserve_chunks(input_file) args } intermediates_generator <- function(original_input, intermediates_dir) { copy_render_intermediates(original_input, intermediates_dir, !self_contained) } post_processor <- function(metadata, input_file, output_file, clean, verbose) { output_str <- read_utf8(output_file) s1 <- '<span class="sc">|</span><span class="er">&gt;</span>' s2 <- '<span class="ot">=</span><span class="er">&gt;</span>' if ((length(preserved_chunks) == 0 && !isTRUE(copy_resources) && self_contained) && !length(c(grep(s1, output_str, fixed = TRUE), grep(s2, output_str, fixed = TRUE)))) return(output_file) if (length(preserved_chunks) > 0) { for (i in names(preserved_chunks)) { output_str <- gsub(paste0("<p>", i, "</p>"), i, output_str, fixed = TRUE, useBytes = TRUE) output_str <- gsub(paste0(' id="[^"]*?', i, '[^"]*?" '), ' ', output_str, useBytes = TRUE) } output_str <- restorePreserveChunks(output_str, preserved_chunks) } if (copy_resources) { output_str <- copy_html_resources(one_string(output_str), lib_dir, output_dir) } else if (!self_contained) { image_relative <- function(img_src, src) { in_file <- utils::URLdecode(src) if (grepl('^[.][.]', in_file)) return(img_src) if (length(in_file) && file.exists(in_file)) { img_src <- sub( src, utils::URLencode(normalized_relative_to(output_dir, in_file)), img_src, fixed = TRUE) } img_src } output_str <- process_images(output_str, image_relative) } output_str <- gsub(s1, '<span class="sc">|&gt;</span>', output_str, fixed = TRUE) output_str <- gsub(s2, '<span class="ot">=&gt;</span>', output_str, fixed = TRUE) write_utf8(output_str, output_file) output_file } if (!is.null(theme)) { bs3 <- identical("3", theme_version(theme)) args <- c(args, pandoc_variable_arg("bs3", bs3)) } output_format( knitr = NULL, pandoc = pandoc_options( to = "html", from = NULL, args = args, lua_filters = pkg_file_lua(c("pagebreak.lua", "latex-div.lua")) ), keep_md = FALSE, clean_supporting = FALSE, pre_knit = pre_knit, post_knit = post_knit, on_exit = on_exit, pre_processor = pre_processor, intermediates_generator = intermediates_generator, post_processor = post_processor ) } extract_preserve_chunks <- function(input_file, extract = extractPreserveChunks) { input_str <- read_utf8(input_file) preserve <- extract(input_str) if (!identical(preserve$value, input_str)) write_utf8(preserve$value, input_file) preserve$chunks }
context("summary.pcadata") test_that("correct info about class structure", { data = read.morphodata("../testFiles/samplePlnaMatica.txt") pcaRes = pca.calc(data) output = capture.output(summary(pcaRes)) expect_equal(output[1], "Object of class 'pcadata'; storing results of principal component analysis") })
context("latex table structure") test_that("white spaces are protected", { ft <- flextable(data.frame(x = "")) ft <- delete_part(ft, part = "header") ft <- mk_par(ft, 1, 1, as_paragraph("foo", " ", "bar")) str <- flextable:::latex_str(ft) expect_true(grepl("{\\ }", str, fixed = TRUE)) })
subdata<- function(xx,sg){ m<-nrow(xx) data<-xx[with(xx,order(Gene)),] gm<-table(data$Gene) gm<-gm[gm>0] gn<-length(gm) gg<-rep(0,m) a<-0 for(i in seq(gn)){ for(j in seq(gm[i])){ a<-a+1 gg[a]<-gm[i] } } data<-cbind(as.data.frame(data),gg) if(sg==1){ x<-subset(data,data$gg==1) }else{ x<-subset(data,data$gg>1) } nc<-ncol(x) x<-x[,-nc] return(x) }
fred_category <- function(..., key=NULL){ if (is.null(key)) key <- .use_default_key() ids <- as.character(Reduce(c, list(...))) .loop_general_rbind(ids, .fred_category, key, "") } fred_category_children <- function(..., key=NULL, realtime_start=NULL, realtime_end=NULL){ if (is.null(key)) key <- .use_default_key() realtime <- .real_parse(realtime_start, realtime_end) ids <- as.character(Reduce(c, list(...))) .loop_general_rbind(ids, .fred_category_children, key, realtime) } fred_category_related <- function(..., key=NULL, realtime_start=NULL, realtime_end=NULL){ if (is.null(key)) key <- .use_default_key() realtime <- .real_parse(realtime_start, realtime_end) ids <- as.character(Reduce(c, list(...))) .loop_general_rbind(ids, .fred_category_related, key, realtime) } fred_category_series <- function(..., key=NULL, args = list()){ if (is.null(key)) key <- .use_default_key() other <- .args_parse(args) ids <- as.character(Reduce(c, list(...))) .loop_general_rbind(ids, .fred_category_series, key, other) } fred_category_tags <- function(..., key=NULL, args = list()){ if (is.null(key)) key <- .use_default_key() other <- .args_parse(args) ids <- as.character(Reduce(c, list(...))) .loop_general_rbind(ids, .fred_category_tags, key, other) } fred_category_related_tags <- function(..., key=NULL, args = list()){ if (is.null(key)) key <- .use_default_key() other <- .args_parse(args) ids <- as.character(Reduce(c, list(...))) .loop_general_rbind(ids, .fred_category_related_tags, key, other) }
NULL if (getRversion() >= "2.15.1") utils::globalVariables(c("."))
"difshannonbio" <- function(dat1,dat2,R=1000,probs=c(0.025,0.975)){ myboot1<-boot(dat1,function(dat1,i) shannonbio(dat1[i,]),R=R) myboot2<-boot(dat2,function(dat1,i) shannonbio(dat1[i,]),R=R) differ<-myboot1$t-myboot2$t x<-quantile(differ[,1],probs=probs) y<-quantile(differ[,2],probs=probs) return(list(deltaH=x,deltaJ=y)) }