code
stringlengths
1
13.8M
import_RDS <- function(filePath, checkVarNames = TRUE) { rawDat <- readRDS(file = filePath) import_DF(rawDat, checkVarNames = checkVarNames) }
dist2chi <- function(X,C) { ndata = nrow(X) ncentres = nrow(C) meanX = apply(X,2,mean) meanC = apply(C,2,mean) res = matrix(0,ndata,ncentres) for (i in 1:ndata) { for (j in 1:ncentres) { res[i,j] = sum((X[i,]-C[j,])^2/(X[i,]+C[j,]))/2 } } return(res) }
NULL print.stan_nma <- function(x, ...) { if (inherits(x$network, "mlnmr_data")) type <- "ML-NMR" else type <- "NMA" cglue("A {x$trt_effects} effects {type} with a {x$likelihood} likelihood ({x$link} link).") if (x$consistency != "consistency") { if (x$consistency == "nodesplit") cglue("An inconsistency model ('{x$consistency}') was fitted, splitting the comparison {x$nodesplit[2]} vs. {x$nodesplit[1]}.") else cglue("An inconsistency model ('{x$consistency}') was fitted.") } if (!is.null(x$regression)) { cglue("Regression model: {rlang::as_label(x$regression)}.") if (!is.null(x$xbar)) { cglue("Centred covariates at the following overall mean values:") print(x$xbar) } } sf <- as.stanfit(x) dots <- list(...) include <- "pars" %in% names(dots) dots <- rlang::dots_list(x = sf, pars = c("log_lik", "resdev", "fitted_ipd", "fitted_agd_arm", "fitted_agd_contrast", "theta_bar_cum_agd_arm", "theta_bar_cum_agd_contrast", "theta2_bar_cum", "mu", "delta"), include = include, use_cache = FALSE, !!! dots, .homonyms = "last") do.call(print, dots) invisible(x) } summary.stan_nma <- function(object, ..., pars, include, probs = c(0.025, 0.25, 0.5, 0.75, 0.975) ) { if (missing(include)) { include <- !missing(pars) } else { if (!rlang::is_bool(include)) abort("`include` should be TRUE or FALSE") } if (missing(pars)) { pars <- c("log_lik", "resdev", "lp__") if (has_ipd(object$network)) pars <- c(pars, "fitted_ipd") if (has_agd_arm(object$network)) pars <- c(pars, "fitted_agd_arm") if (has_agd_contrast(object$network)) pars <- c(pars, "fitted_agd_contrast") if (inherits(object, "stan_mlnmr")) { if (has_agd_arm(object$network)) pars <- c(pars, "theta_bar_cum_agd_arm") if (has_agd_contrast(object$network)) pars <- c(pars, "theta_bar_cum_agd_contrast") } if (object$likelihood %in% c("bernoulli2", "binomial2")) { if (has_agd_arm(object$network)) pars <- c(pars, "theta2_bar_cum") } } else { if (!is.character(pars)) abort("`pars` should be a character vector") } sims <- as.array(object, pars = pars, include = include) sums <- summary_mcmc_array(sims, probs = probs) ss <- list(summary = sums, sims = sims) class(ss) <- c("nma_parameter_summary", "nma_summary") attr(ss, "xlab") <- "Parameter" attr(ss, "ylab") <- "Value" return(ss) } plot.stan_nma <- function(x, ..., pars, include, stat = "pointinterval", orientation = c("horizontal", "vertical", "y", "x"), ref_line = NA_real_) { s <- summary(x, pars = pars, include = include) p <- plot(s, ..., stat = stat, orientation = orientation, ref_line = ref_line) return(p) } plot_prior_posterior <- function(x, ..., prior = NULL, post_args = list(), prior_args = list(), overlay = c("prior", "posterior"), ref_line = NA_real_) { if (!inherits(x, "stan_nma")) abort("Not a `stan_nma` object.") priors_used <- c("intercept"[!is.null(x$priors$prior_intercept)], "trt"[!is.null(x$priors$prior_trt)], "het"[!is.null(x$priors$prior_het)], "reg"[!is.null(x$priors$prior_reg)], "aux"[!is.null(x$priors$prior_aux)]) if (is.null(prior)) { prior <- priors_used } else if (!rlang::is_character(prior) || !all(prior %in% priors_used)) { abort(paste0("`prior` should be a character vector, with elements from ", paste(priors_used, collapse = ", "))) } if (!is.list(post_args)) abort("`post_args` should be a list of arguments to pass to ggdist::stat_sample_slabinterval") if (!is.list(prior_args)) abort("`prior_args` should be a list of arguments to pass to ggdist::stat_dist_slabinterval") overlay <- rlang::arg_match(overlay) if (!is.numeric(ref_line) || !is.null(dim(ref_line))) abort("`ref_line` should be a numeric vector.") prior_dat <- vector("list", length(prior)) for (i in seq_along(prior)) { if (prior[i] %in% c("het", "aux")) trunc <- c(0, Inf) else trunc <- NULL prior_dat[[i]] <- get_tidy_prior(x$priors[[paste0("prior_", prior[i])]], trunc = trunc) %>% tibble::add_column(prior = prior[i]) } prior_dat <- dplyr::bind_rows(prior_dat) %>% dplyr::mutate(par_base = dplyr::recode(.data$prior, intercept = "mu", trt = "d", het = "tau", reg = "beta", aux = switch(x$likelihood, normal = "sigma", ordered = "cc"))) if (inherits(x, "nma_nodesplit")) { prior_dat <- dplyr::bind_rows( prior_dat, dplyr::filter(prior_dat, .data$prior == "trt") %>% dplyr::mutate(par_base = "omega") ) } pars <- unique(prior_dat$par_base) draws <- tibble::as_tibble(as.matrix(x, pars = pars)) if ("het" %in% prior) { if (x$priors$prior_het_type == "var") { draws$tausq <- draws$tau^2 draws <- dplyr::select(draws, -.data$tau) prior_dat$par_base <- dplyr::recode(prior_dat$par_base, tau = "tausq") } else if (x$priors$prior_het_type == "prec") { draws$prec <- draws$tau^-2 draws <- dplyr::select(draws, -.data$tau) prior_dat$par_base <- dplyr::recode(prior_dat$par_base, tau = "prec") } } if (x$likelihood == "ordered" && "aux" %in% prior) { l_cat <- if (has_ipd(x$network)) colnames(x$network$ipd$.r) else colnames(x$network$agd_arm$.r) n_cat <- length(l_cat) if (n_cat <= 2) { draws <- dplyr::select(draws, -dplyr::starts_with("cc[")) prior_dat <- dplyr::filter(prior_dat, prior != "aux") } else { for (i in 2:(n_cat-1)) { draws <- dplyr::mutate(draws, !! paste0("diff_cc[", l_cat[i+1], " - ", l_cat[i], "]") := !! as.symbol(paste0("cc[", l_cat[i+1], "]")) - !! as.symbol(paste0("cc[", l_cat[i], "]"))) } draws <- dplyr::select(draws, -dplyr::starts_with("cc[")) } prior_dat <- dplyr::mutate(prior_dat, par_base = dplyr::recode(.data$par_base, cc = "diff_cc")) } if (packageVersion("tidyr") >= "1.0.0") { draws <- tidyr::pivot_longer(draws, cols = dplyr::everything(), names_to = "parameter", values_to = "value") } else { draws <- tidyr::gather(draws, key = "parameter", value = "value", dplyr::everything()) } draws$par_base <- stringr::str_remove(draws$parameter, "\\[.*\\]") draws$parameter <- forcats::fct_inorder(factor(draws$parameter)) draws <- dplyr::left_join(draws, prior_dat[, c("par_base", "prior")], by = "par_base") if (rlang::has_name(prior_args, "p_limits")) { p_limits <- prior_args$p_limits prior_args <- purrr::list_modify(prior_args, p_limits = purrr::zap()) } else { p_limits <- c(0.001, 0.999) } if (rlang::has_name(prior_args, "n")) { n <- prior_args$n prior_args <- purrr::list_modify(prior_args, n = purrr::zap()) } else { n <- 501 } xseq <- dens <- vector("list", nrow(prior_dat)) for (i in seq_len(nrow(prior_dat))) { dist <- prior_dat$dist[[i]] args <- prior_dat$args[[i]] if (dist == "unif") { xseq[[i]] <- c(args$min, args$max) if (is.infinite(args$min) || is.infinite(args$max)) { dens[[i]] <- c(0, 0) } else { dens[[i]] <- dunif(xseq[[i]], min = args$min, max = args$max) } } else { lower <- eval(rlang::call2(paste0("q", dist), p = p_limits[1], !!! args)) upper <- eval(rlang::call2(paste0("q", dist), p = p_limits[2], !!! args)) xseq[[i]] <- seq(from = lower, to = upper, length.out = n) dens[[i]] <- eval(rlang::call2(paste0("d", dist), x = xseq[[i]], !!! args)) } } prior_dat <- tibble::add_column(prior_dat, xseq = xseq, dens = dens) if (getNamespaceVersion("tidyr") < "1.0.0") { prior_dat <- tidyr::unnest(prior_dat, .data$xseq, .data$dens) } else { prior_dat <- tidyr::unnest(prior_dat, c(.data$xseq, .data$dens)) } prior_dat <- dplyr::left_join(prior_dat, dplyr::distinct(draws, .data$par_base, .data$parameter), by = "par_base") xlim <- c(min(draws$value, 0), max(draws$value)) p <- ggplot2::ggplot() + ggplot2::geom_vline(xintercept = ref_line, na.rm = TRUE, colour = "grey60") + ggplot2::coord_cartesian(xlim = xlim) g_prior <- rlang::call2(ggplot2::geom_line, !!! rlang::dots_list(mapping = ggplot2::aes(x = .data$xseq, y = .data$dens), data = prior_dat, !!! prior_args, .homonyms = "last")) g_post <- rlang::call2(ggplot2::geom_histogram, !!! rlang::dots_list(mapping = ggplot2::aes_(y = ~..density.., x = ~value, group = ~parameter), data = draws, binwidth = function(x) diff(range(x)) / nclass.Sturges(x), boundary = 0, position = "identity", !!! post_args, .homonyms = "last")) if (overlay == "prior") { p <- p + eval(g_post) + eval(g_prior) } else { p <- p + eval(g_prior) + eval(g_post) } p <- p + ggplot2::facet_wrap("parameter", scales = "free") + theme_multinma() return(p) } plot_integration_error <- function(x, ..., stat = "violin", orientation = c("vertical", "horizontal", "x", "y"), show_expected_rate = TRUE) { if (!inherits(x, "stan_mlnmr")) abort("Expecting a `stan_mlnmr` object, created by fitting a ML-NMR model with numerical integration using the `nma()` function.") if (!rlang::is_bool(show_expected_rate)) abort("`show_expected_rate` must be a logical value, TRUE or FALSE.") if (!rlang::is_string(stat)) abort("`stat` should be a character string specifying the name of a ggdist stat") stat <- stringr::str_remove(stat, "^(stat_dist_|stat_|geom_)") if (violin <- stat == "violin") { stat <- "eye" } tb_geom <- tryCatch(getExportedValue("ggdist", paste0("stat_", stat)), error = function(err) { abort(paste("`stat` should be a character string specifying the name of a ggdist stat:", err, sep = "\n")) }) orientation <- rlang::arg_match(orientation) if (orientation == "x") orientation <- "vertical" else if (orientation == "y") orientation <- "horizontal" horizontal <- orientation == "horizontal" twoparbin <- x$likelihood %in% c("binomial2", "bernoulli2") ipars <- c() if (has_agd_arm(x$network)) { ipars <- c(ipars, "theta_bar_cum_agd_arm") } if (has_agd_contrast(x$network)) { ipars <- c(ipars, "theta_bar_cum_agd_contrast") } if (twoparbin) { ipars <- c(ipars, "theta2_bar_cum") } int_dat <- as.data.frame(x, pars = ipars) %>% dplyr::mutate(.draw = 1:dplyr::n()) colnames(int_dat) <- stringr::str_remove(colnames(int_dat), "_bar_cum(_agd_arm|_agd_contrast)?") n_int <- x$network$n_int rx <- "^(theta2?)\\[(.+): (.+), ([0-9]+)\\]$" if (packageVersion("tidyr") >= "1.1.0") { int_dat <- tidyr::pivot_longer(int_dat, cols = -dplyr::one_of(".draw"), names_pattern = rx, names_to = c("parameter", "study", "treatment", "n_int"), names_transform = list(n_int = as.integer), values_to = "value") } else { int_dat <- tidyr::gather(int_dat, key = "parameter", value = "value", -dplyr::one_of(".draw")) %>% tidyr::extract(.data$parameter, into = c("parameter", "study", "treatment", "n_int"), regex = rx, convert = TRUE) } int_dat$study <- factor(int_dat$study, levels = levels(x$network$studies)) int_dat$treatment <- factor(int_dat$treatment, levels = levels(x$network$treatments)) int_dat <- dplyr::left_join(dplyr::filter(int_dat, .data$n_int != max(.data$n_int)), dplyr::filter(int_dat, .data$n_int == max(.data$n_int)) %>% dplyr::rename(final_value = .data$value) %>% dplyr::select(-.data$n_int), by = c("parameter", "study", "treatment", ".draw")) %>% dplyr::mutate(diff = .data$value - .data$final_value) int_thin <- min(int_dat$n_int) if (show_expected_rate) { conv_dat <- dplyr::bind_rows( tibble::tibble(n_int = seq(1, n_int, length.out = 501), diff = n_int^-1, group = "pos"), tibble::tibble(n_int = seq(1, n_int, length.out = 501), diff = -n_int^-1, group = "neg")) } if (horizontal) { p <- ggplot2::ggplot(int_dat, ggplot2::aes(y = .data$n_int, x = .data$diff)) + ggplot2::geom_vline(xintercept = 0, colour = "grey60") + ggplot2::xlab("Estimated integration error") + ggplot2::ylab("Number of integration points") + ggplot2::coord_cartesian(xlim = range(int_dat$diff)) } else { p <- ggplot2::ggplot(int_dat, ggplot2::aes(x = .data$n_int, y = .data$diff)) + ggplot2::geom_hline(yintercept = 0, colour = "grey60") + ggplot2::ylab("Estimated integration error") + ggplot2::xlab("Number of integration points") + ggplot2::coord_cartesian(ylim = range(int_dat$diff)) } if (show_expected_rate) { p <- p + ggplot2::geom_line(ggplot2::aes(group = .data$group), data = conv_dat, colour = "grey60", linetype = 2) } v_args <- if (violin) { if (twoparbin) { list(point_interval = NULL, alpha = 0.8, slab_size = 0.5) } else { list(point_interval = NULL, slab_colour = "black", slab_size = 0.5) } } else list() if (twoparbin) { p <- p + do.call(tb_geom, args = rlang::dots_list(ggplot2::aes(colour = .data$parameter, fill = .data$parameter, slab_colour = .data$parameter), orientation = orientation, ..., !!! v_args, position = if (!horizontal) ggplot2::position_dodge(width = int_thin / 10) else "identity", .homonyms = "first")) + ggplot2::scale_colour_manual("Parameter", values = c(theta = " labels = function(x) dplyr::recode(x, theta = expression(bar(p)), theta2 = expression(bar(p)^2)), aesthetics = c("colour", "fill", "slab_colour")) } else { p <- p + do.call(tb_geom, args = rlang::dots_list(orientation = orientation, ..., !!! v_args, .homonyms = "first")) } p <- p + ggplot2::facet_wrap(~ study + treatment) + theme_multinma() return(p) } as.stanfit <- function(x, ...) { UseMethod("as.stanfit") } as.stanfit.stan_nma <- function(x, ...) { return(x[["stanfit"]]) } as.stanfit.default <- function(x, ...) { abort(glue::glue("Cannot coerce object of class '{class(x)}' to 'stanfit'.")) } as.array.stan_nma <- function(x, ..., pars, include = TRUE) { if (!rlang::is_bool(include)) abort("`include` must be TRUE or FALSE.") if (!missing(pars)) { if (!is.character(pars)) abort("`pars` must be a character vector of parameters to include (or missing).") allpars <- c(x$stanfit@sim$pars_oi, x$stanfit@sim$fnames_oi) badpars <- setdiff(pars, allpars) if (length(badpars)) abort(glue::glue("No parameter{if (length(badpars) > 1) 's' else ''} ", glue::glue_collapse(glue::double_quote(badpars), sep = ", ", last = " or "), ".")) if (include) { par_base <- stringr::str_remove(pars, "\\[.*$") } else { par_base <- setdiff(x$stanfit@sim$pars_oi, pars) } a <- as.array(as.stanfit(x), pars = par_base, ...) par_regex <- paste0("^\\Q", pars, "\\E(\\[|$)") par_select <- unique(unlist(lapply(par_regex, grep, x = dimnames(a)[[3]], perl = TRUE, invert = !include))) out <- a[ , , par_select, drop = FALSE] } else { out <- as.array(as.stanfit(x), ...) } class(out) <- c("mcmc_array", "array") return(out) } as.data.frame.stan_nma <- function(x, ..., pars, include = TRUE) { return(as.data.frame(as.matrix(x, ..., pars = pars, include = include))) } as.matrix.stan_nma <- function(x, ..., pars, include = TRUE) { a <- as.array(x, ..., pars = pars, include = include) names_a <- dimnames(a) dim_a <- dim(a) dim(a) <- c(dim_a[1] * dim_a[2], dim_a[3]) dimnames(a) <- names_a[-2] class(a) <- "matrix" return(a) } loo.stan_nma <- function(x, ...) { sf <- as.stanfit(x) return(rstan::loo(sf, ...)) } waic.stan_nma <- function(x, ...) { ll <- as.array(x, pars = "log_lik") return(loo::waic(ll, ...)) } pairs.stan_nma <- function(x, ..., pars, include = TRUE) { sf <- as.stanfit(x) post_array <- as.array(x, pars = pars, include = include) max_td <- sf@stan_args[[1]]$control$max_treedepth if (is.null(max_td)) max_td <- 10 args <- rlang::dots_list(x = post_array, np = bayesplot::nuts_params(sf), lp = bayesplot::log_posterior(sf), max_treedepth = max_td, ..., condition = bayesplot::pairs_condition(nuts = "accept_stat__"), .homonyms = "first") thm <- bayesplot::bayesplot_theme_set(theme_multinma()) out <- do.call(bayesplot::mcmc_pairs, args = args) bayesplot::bayesplot_theme_set(thm) return(out) }
soptdmaeA<-function(trt.N, blk.N, theta, nrep, strt, sary, des0, dtype, Optcrit = " ",...)UseMethod("soptdmaeA")
"ul1"
require(hopkins) X1 <- matrix(c(7,5, 3,3, 8,4, 1,2, 4,3, 7,4), ncol=2, byrow=TRUE) X2 <- matrix(c(3,3, 3,5, 5,2, 5,4, 5,6, 7,4), ncol=2, byrow=TRUE) U <- matrix(c(4,2, 3,5, 7,2), ncol=2, byrow=TRUE) if(FALSE){ plot(NA, xlim=c(0,10), ylim=c(0,10)) text(X1, labels=1:nrow(X1)) text(X1[c(1,5,6),], labels=c("W ", "W ", "W "), col="blue") text(U, labels=c("U1","U2","U3"), col="red") debugonce(hopkins) hopkins(X1, m=3, U=U) } test_that("Hopkins statistic", { set.seed(42) expect_equal(hopkins(X1, m=3, U=U), 0.75) }) test_that("japanesepines data", { jpines <- data.frame( x = c( 0.09, 0.29, 0.38, 0.39, 0.48, 0.59, 0.65, 0.67, 0.73, 0.79, 0.86, 0.89, 0.98, 0.02, 0.11, 0.42, 0.48, 0.62, 0.73, 0.89, 0.02, 0.03, 0.07, 0.52, 0.64, 0.08, 0.08, 0.12, 0.12, 0.17, 0.31, 0.32, 0.42, 0.52, 0.91, 0.94, 0.34, 0.37, 0.47, 0.52, 0.59, 0.66, 0.76, 0.73, 0.89, 0.94, 0.98, 0.97, 0.12, 0.11, 0.17, 0.21, 0.29, 0.32, 0.35, 0.39, 0.52, 0.58, 0.69, 0.77, 0.36, 0.36, 0.39, 0.43, 0.62), y = c( 0.09, 0.02, 0.03, 0.18, 0.03, 0.02, 0.16, 0.13, 0.13, 0.03, 0.13, 0.08, 0.02, 0.18, 0.31, 0.22, 0.13, 0.21, 0.23, 0.23, 0.41, 0.44, 0.42, 0.42, 0.43, 0.59, 0.63, 0.63, 0.66, 0.58, 0.53, 0.52, 0.49, 0.52, 0.52, 0.58, 0.68, 0.68, 0.67, 0.67, 0.67, 0.68, 0.66, 0.73, 0.74, 0.78, 0.79, 0.86, 0.84, 0.94, 0.95, 0.79, 0.84, 0.83, 0.86, 0.79, 0.93, 0.83, 0.93, 0.93, 0.97, 0.96, 0.96, 0.96, 0.97)) set.seed(28) expect_equal( round(hopkins(jpines, m=3, method="simple"),6), 0.313107) set.seed(28) expect_equal(round(hopkins(jpines, m=3, method="torus"), 6), 0.217831) }) test_that("Hopkins p-value", { expect_equal(hopkins.pval(0.21, 10), 0.00466205, tolerance=1e-6) expect_equal(hopkins.pval(.84, 10), 0.0004981939, tolerance=1e-6) })
gene_ave<-function(file_gene_ave, k = 1){ x <- file_gene_ave[, -k] file_gene_ave <- as.matrix(file_gene_ave) rownames(file_gene_ave) <- file_gene_ave[,k] ID<- rownames (file_gene_ave) ID <- factor(ID,levels=unique(ID)) y <- rowsum(x, ID, reorder=FALSE, na.rm=TRUE) n <- rowsum(1L-is.na(x), ID, reorder=FALSE) return(y/n) }
PsiF <- function(t,w,tol = 1e-9, maxItem=1e2) { value <- 0 convergence <- 0 for (k in 0:maxItem) { value.returned <- value item <- gamma(w)/gamma(w+k)*(w*t)^k/gamma(k+1) value <- value + item if (is.infinite(value)) { convergence <- 0 break } if (abs(item/value) < tol) { value.returned <- value convergence <- 1 break } } return(c(value.returned, k, convergence)) }
tau2h_sj2 <- function(y, se) { k <- length(y) tau2h0 <- max(0.01, tau2h_vc(y, se)$tau2h) w <- (1.0 + se^2/tau2h0)^-1 tau2h <- sum(w*(y - sum(y*w)/sum(w)))/(k - 1.0) return(list(tau2h = tau2h)) }
centroidCore<-function(v){ paramCheckResult=getEmptyParamCheckResult() initialParamCheck_centroidCore(paramCheckResult = paramCheckResult, v) A = v retVal=NULL n=getNumberOfPlayers(A) N=length(A) retVal=NULL if(!isBalancedGame(A)){ print("Game is not balanced therefore no centroid of the core can be retrieved") }else{ setVertices=coreVertices(A) centroid=colSums(setVertices)/nrow(setVertices) retVal = centroid } return(retVal) } drawCentroidCore<-function(v,holdOn=FALSE, colour = NA , label=TRUE, name = "centroid of core"){ A=v pcn=centroidCore(A); visualize(A, pointsToDraw=pcn, holdOn=holdOn, colour = colour , label=label, name = name) } initialParamCheck_centroidCore=function(paramCheckResult,v=v){ stopOnInvalidGameVector(paramCheckResult, v) }
rm(list=ls()) setwd("C:/Users/Tom/Documents/Kaggle/Santander") library(data.table) library(bit64) library(xgboost) library(stringr) submissionDate <- "27-11-2016" loadFile <- "xgboost weighted posFlanks 5, linear increase jun15 times6 back 13-0 no zeroing, exponential normalisation joint" submissionFile <- "xgboost weighted posFlanks 5, soft average nomina nom_pens linear increase jun15 times6 back 13-0 no zeroing, exponential normalisation joint" targetDate <- "12-11-2016" trainModelsFolder <- "trainTrainAll" trainAll <- grepl("TrainAll", trainModelsFolder) testFeaturesFolder <- "test" loadPredictions <- TRUE loadBaseModelPredictions <- FALSE savePredictions <- TRUE saveBaseModelPredictions <- TRUE savePredictionsBeforeNormalisation <- TRUE normalizeProdProbs <- TRUE normalizeMode <- c("additive", "linear", "exponential")[3] additiveNormalizeProds <- NULL fractionPosFlankUsers <- 0.035 expectedCountPerPosFlank <- 1.25 marginalNormalisation <- c("linear", "exponential")[2] monthsBackModels <- 0:13 monthsBackWeightDates <- rev(as.Date(paste(c(rep(2015, 9), rep(2016, 5)), str_pad(c(4:12, 1:5), 2, pad='0'), 28, sep="-"))) monthsBackModelsWeights <- rev(c(1.2, 1.3, 13, 0.1*(15:25))) weightSum <- sum(monthsBackModelsWeights) monthsBackLags <- 16:3 nominaNomPensSoftAveraging <- TRUE predictSubset <- FALSE nbLags <- length(monthsBackModelsWeights) if(nbLags != length(monthsBackModels) || nbLags != length(monthsBackLags) || nbLags != length(monthsBackWeightDates)) browser() predictionsFolder <- "Predictions" ccoNoPurchase <- FALSE zeroTargets <- NULL source("Common/exponentialNormaliser.R") monthProductWeightOverride <- NULL predictionsPath <- file.path(getwd(), "Submission", submissionDate, predictionsFolder) dir.create(predictionsPath, showWarnings = FALSE) if(saveBaseModelPredictions){ baseModelPredictionsPath <- file.path(predictionsPath, submissionFile) dir.create(baseModelPredictionsPath, showWarnings = FALSE) } if(loadPredictions){ rawPredictionsPath <- file.path(predictionsPath, paste0("prevNorm", loadFile, ".rds")) } else{ rawPredictionsPath <- file.path(predictionsPath, paste0("prevNorm", submissionFile, ".rds")) } posFlankClientsFn <- file.path(getwd(), "Feature engineering", targetDate, "positive flank clients.rds") posFlankClients <- readRDS(posFlankClientsFn) modelsBasePath <- file.path(getwd(), "First level learners", targetDate, trainModelsFolder) modelGroups <- list.dirs(modelsBasePath)[-1] nbModelGroups <- length(modelGroups) baseModelInfo <- NULL baseModels <- list() for(i in 1:nbModelGroups){ modelGroup <- modelGroups[i] slashPositions <- gregexpr("\\/", modelGroup)[[1]] modelGroupExtension <- substring(modelGroup, 1 + slashPositions[length(slashPositions)]) modelGroupFiles <- list.files(modelGroup) nbModels <- length(modelGroupFiles) monthsBack <- as.numeric(substring(gsub("Lag.*$", "", modelGroupExtension), 5)) lag <- as.numeric(gsub("^.*Lag", "", modelGroupExtension)) relativeWeightOrig <- monthsBackModelsWeights[match(monthsBack, monthsBackModels)] weightDate <- monthsBackWeightDates[match(monthsBack, monthsBackModels)] for(j in 1:nbModels){ modelInfo <- readRDS(file.path(modelGroup, modelGroupFiles[j])) targetProduct <- modelInfo$targetVar overrideId <- which(monthProductWeightOverride$product == targetProduct & monthProductWeightOverride$month == weightDate) if(length(overrideId)>0){ relativeWeight <- monthProductWeightOverride$weight[overrideId] } else{ relativeWeight <- relativeWeightOrig } baseModelInfo <- rbind(baseModelInfo, data.table( modelGroupExtension = modelGroupExtension, targetProduct = targetProduct, monthsBack = monthsBack, modelLag = lag, relativeWeight = relativeWeight) ) baseModels <- c(baseModels, list(modelInfo)) } } baseModelInfo[, modelId := 1:nrow(baseModelInfo)] uniqueBaseModels <- sort(unique(baseModelInfo$targetProduct)) for(i in 1:length(uniqueBaseModels)){ productIds <- baseModelInfo$targetProduct==uniqueBaseModels[i] productWeightSum <- baseModelInfo[productIds, sum(relativeWeight)] normalizeWeightRatio <- weightSum/productWeightSum baseModelInfo[productIds, relativeWeight := relativeWeight* normalizeWeightRatio] } if(all(is.na(baseModelInfo$modelLag))){ nbGroups <- length(unique(baseModelInfo$modelGroupExtension)) baseModelInfo$monthsBack <- 0 baseModelInfo$modelLag <- 17 baseModelInfo$relativeWeight <- 1 monthsBackLags <- rep(17, nbGroups) nbLags <- length(monthsBackLags) monthsBackModelsWeights <- rep(1, nbGroups) weightSum <- sum(monthsBackModelsWeights) } baseModelInfo <- baseModelInfo[order(monthsBack), ] baseModelNames <- unique(baseModelInfo[monthsBack==0, targetProduct]) testDataLag <- readRDS(file.path(getwd(), "Feature engineering", targetDate, testFeaturesFolder, "Lag17 features.rds")) if(predictSubset){ testDataLag <- testDataLag[1:predictFirst] } testDataPosFlank <- testDataLag$ncodpers %in% posFlankClients trainFn <- "train/Back13Lag3 features.rds" colOrderData <- readRDS(file.path(getwd(), "Feature engineering", targetDate, trainFn)) targetCols <- grep("^ind_.*_ult1$", names(colOrderData), value=TRUE) nbBaseModels <- length(targetCols) countContributions <- readRDS(file.path(getwd(), "Feature engineering", targetDate, "monthlyRelativeProductCounts.rds")) if(!trainAll){ posFlankModelInfo <- baseModelInfo[targetProduct=="hasNewProduct"] newProdPredictions <- rep(0, nrow(testDataLag)) if(nrow(posFlankModelInfo) != nbLags) browser() for(i in 1:nbLags){ cat("Generating new product predictions for lag", i, "of", nbLags, "\n") lag <- posFlankModelInfo[i, lag] weight <- posFlankModelInfo[i, relativeWeight] newProdModel <- baseModels[[posFlankModelInfo[i, modelId]]] testDataLag <- readRDS(file.path(getwd(), "Feature engineering", targetDate, testFeaturesFolder, paste0("Lag", lag, " features.rds"))) if(predictSubset){ testDataLag <- testDataLag[1:predictFirst] } predictorData <- testDataLag[, newProdModel$predictors, with=FALSE] predictorDataM <- data.matrix(predictorData) newProdPredictionsLag <- predict(newProdModel$model, predictorDataM) newProdPredictions <- newProdPredictions + newProdPredictionsLag*weight } newProdPredictions <- newProdPredictions/weightSum meanGroupPredsMayFlag <- c(mean(newProdPredictions[testDataLag$hasMay15Data==0]), mean(newProdPredictions[testDataLag$hasMay15Data==1])) meanGroupPredsPosFlank <- c(mean(newProdPredictions[!testDataPosFlank]), mean(newProdPredictions[testDataPosFlank])) expectedPosFlanks <- sum(newProdPredictions) leaderboardPosFlanks <- fractionPosFlankUsers*nrow(testDataLag) normalisedProbRatio <- leaderboardPosFlanks/expectedPosFlanks cat("Expected/leaderboard positive flank ratio", round(1/normalisedProbRatio, 2), "\n") if(marginalNormalisation == "linear"){ newProdPredictions <- newProdPredictions * normalisedProbRatio } else{ newProdPredictions <- probExponentNormaliser(newProdPredictions, normalisedProbRatio) } } else{ newProdPredictions <- rep(1, nrow(testDataLag)) } if(loadPredictions && file.exists(rawPredictionsPath)){ allPredictions <- readRDS(rawPredictionsPath) } else{ allPredictions <- NULL for(lagId in 1:nbLags){ cat("\nGenerating positive flank predictions for lag", lagId, "of", nbLags, "@", as.character(Sys.time()), "\n\n") lag <- monthsBackLags[lagId] testDataLag <- readRDS(file.path(getwd(), "Feature engineering", targetDate, testFeaturesFolder, paste0("Lag", lag, " features.rds"))) if(predictSubset){ testDataLag <- testDataLag[1:predictFirst] } for(i in 1:nbBaseModels){ targetVar <- targetCols[i] targetModelId <- baseModelInfo[targetProduct==targetVar & modelLag==lag, modelId] if(length(targetModelId)>1){ targetModelId <- targetModelId[lagId] } targetModel <- baseModels[[targetModelId]] weight <- baseModelInfo[modelId == targetModelId, relativeWeight] if(targetModel$targetVar != targetVar) browser() cat("Generating test predictions for model", i, "of", nbBaseModels, "\n") baseModelPredPath <- file.path(baseModelPredictionsPath, paste0(targetVar, " Lag ", lag, ".rds")) if(loadBaseModelPredictions && file.exists(baseModelPredPath)){ predictionsDT <- readRDS(baseModelPredPath) } else{ if(targetVar %in% zeroTargets){ predictions <- rep(0, nrow(testDataLag)) } else{ predictorData <- testDataLag[, targetModel$predictors, with=FALSE] predictorDataM <- data.matrix(predictorData) predictions <- predict(targetModel$model, predictorDataM) alreadyOwned <- is.na(testDataLag[[paste0(targetVar, "Lag1")]]) | testDataLag[[paste0(targetVar, "Lag1")]] == 1 predictionsPrevNotOwned <- predictions[!alreadyOwned] } predictions[alreadyOwned] <- 0 predictionsDT <- data.table(ncodpers = testDataLag$ncodpers, predictions = predictions, product = targetVar) } predictionsDT[, weightedPrediction := predictionsDT$predictions*weight] if(targetVar %in% allPredictions$product){ allPredictions[product==targetVar, weightedPrediction:= weightedPrediction + predictionsDT$weightedPrediction] } else{ allPredictions <- rbind(allPredictions, predictionsDT) } if(saveBaseModelPredictions && !loadBaseModelPredictions){ predictionsDT[, weightedPrediction:=NULL] saveRDS(predictionsDT, baseModelPredPath) } } } allPredictions[, prediction := weightedPrediction / weightSum] allPredictions[, weightedPrediction := NULL] allPredictions[, predictions := NULL] if(savePredictionsBeforeNormalisation){ saveRDS(allPredictions, file=rawPredictionsPath) } } if(nominaNomPensSoftAveraging){ nominaProb <- allPredictions[product == "ind_nomina_ult1", prediction] * newProdPredictions nomPensProb <- allPredictions[product == "ind_nom_pens_ult1", prediction] * newProdPredictions avIds <- nominaProb>0 & nomPensProb>0 & (nomPensProb-nominaProb < 0.1) avVals <- (nominaProb[avIds] + nomPensProb[avIds])/2 ncodpers <- unique(allPredictions$ncodpers) avNcodPers <- ncodpers[avIds] allPredictions[ncodpers %in% avNcodPers & product == "ind_nomina_ult1", prediction := avVals] allPredictions[ncodpers %in% avNcodPers & product == "ind_nom_pens_ult1", prediction := avVals] } probMultipliers <- rep(NA, nbBaseModels) if(normalizeProdProbs){ for(i in 1:nbBaseModels){ cat("Normalizing product predictions", i, "of", nbBaseModels, "\n") targetVar <- targetCols[i] alreadyOwned <- is.na(testDataLag[[paste0(targetVar, "Lag1")]]) | testDataLag[[paste0(targetVar, "Lag1")]] == 1 predictions <- allPredictions[product==targetVar, prediction] predictionsPrevNotOwned <- predictions[!alreadyOwned] if(suppressWarnings(max(predictions[alreadyOwned]))>0) browser() predictedPosFlankCount <- sum(predictionsPrevNotOwned * newProdPredictions[!alreadyOwned]) probMultiplier <- nrow(testDataLag) * fractionPosFlankUsers * expectedCountPerPosFlank * countContributions[17, i] / predictedPosFlankCount probMultipliers[i] <- probMultiplier if(is.finite(probMultiplier)){ if(normalizeMode == "additive" || targetVar %in% additiveNormalizeProds){ predictions[!alreadyOwned] <- predictions[!alreadyOwned] + (probMultiplier-1)*mean(predictions[!alreadyOwned]) } else{ if(normalizeMode == "linear"){ predictions[!alreadyOwned] <- predictions[!alreadyOwned] * probMultiplier } else{ predictions[!alreadyOwned] <- probExponentNormaliser( predictions[!alreadyOwned], probMultiplier) } } allPredictions[product==targetVar, prediction:=predictions] } } } if(ccoNoPurchase){ allPredictions[!ncodpers %in% posFlankClients & ncodpers %in% testDataLag[ind_cco_fin_ult1Lag1==0, ncodpers] & product == "ind_cco_fin_ult1", prediction := 10] } setkey(allPredictions, ncodpers) allPredictions[,order_predict := match(1:length(prediction), order(-prediction)), by=ncodpers] allPredictions <- allPredictions[order(ncodpers, -prediction), ] orderCount <- allPredictions[, .N, .(ncodpers, order_predict)] if(max(orderCount$N)>1) browser() hist(allPredictions[order_predict==1, prediction]) topPredictions <- allPredictions[order_predict==1, .N, product] topPredictions <- topPredictions[order(-N)] topPredictionsPosFlanks <- allPredictions[order_predict==1 & ncodpers %in% posFlankClients, .N, product] topPredictionsPosFlanks <- topPredictionsPosFlanks[order(-N)] productRankDelaFin <- allPredictions[product=="ind_dela_fin_ult1", .N, order_predict] productRankDelaFin <- productRankDelaFin[order(order_predict),] productRankDecoFin <- allPredictions[product=="ind_deco_fin_ult1", .N, order_predict] productRankDecoFin <- productRankDecoFin[order(order_predict),] productRankTjcrFin <- allPredictions[product=="ind_tjcr_fin_ult1", .N, order_predict] productRankTjcrFin <- productRankTjcrFin[order(order_predict),] productRankRecaFin <- allPredictions[product=="ind_reca_fin_ult1", .N, order_predict] productRankRecaFin <- productRankRecaFin[order(order_predict),] allPredictions[, totalProb := prediction * rep(newProdPredictions, each = nbBaseModels)] meanProductProbs <- allPredictions[, .(meanCondProb = mean(prediction), meanProb = mean(totalProb)), product] meanProductProbs <- meanProductProbs[order(-meanCondProb), ] productString <- paste(allPredictions[order_predict==1, product], allPredictions[order_predict==2, product], allPredictions[order_predict==3, product], allPredictions[order_predict==4, product], allPredictions[order_predict==5, product], allPredictions[order_predict==6, product], allPredictions[order_predict==7, product]) if(length(productString) != nrow(testDataLag)) browser() submission <- data.frame(ncodpers = testDataLag$ncodpers, added_products = productString) paddedSubmission <- fread("Data/sample_submission.csv") paddedSubmission[, added_products := ""] matchIds <- match(submission$ncodpers, paddedSubmission$ncodpers) paddedSubmission[matchIds, added_products := submission$added_products] write.csv(paddedSubmission, file.path(getwd(), "Submission", submissionDate, paste0(submissionFile, ".csv")), row.names = FALSE) if(savePredictions){ saveRDS(allPredictions, file=file.path(predictionsPath, paste0(submissionFile, ".rds"))) } cat("Submission file created successfully!\n", nrow(submission)," records were predicted (", round(nrow(submission)/nrow(paddedSubmission)*100,2), "%)\n", sep="")
smoothing_seasonality <- function(d18Oc, D47, ages, SD_d18Oc = 0.1, SD_D47 = 0.04, window = "optimize", N = 1000, p = 0.05, d18O_fun = "KimONeil97", D47_fun = "Bernasconi18", export = FALSE, export_raw = FALSE ){ if(length(unique(c(length(d18Oc), length(D47), length(ages)))) > 1){ stop("ERROR: Vectors 'd18Oc', 'D47' and 'ages' should have equal length") } Popt <- matrix(NA, ncol = 7, nrow = N) colnames(Popt) <- c("optimal sample size", "number of successful simulations", "Optimum p-value", "dOsum", "dOwin", "Dsum", "Dwin") if(length(SD_d18Oc) == 1){ SD_d18Oc <- rep(SD_d18Oc, length(d18Oc)) } if(length(SD_D47) == 1){ SD_D47 <- rep(SD_D47, length(D47)) } d18Omat <- as.data.frame(matrix(stats::rnorm(N * length(d18Oc), d18Oc, SD_d18Oc), ncol = N)) colnames(d18Omat) <- paste("Sim", seq(1, N, 1), sep = "") D47mat <- as.data.frame(matrix(stats::rnorm(N * length(D47), D47, SD_D47), ncol = N)) colnames(D47mat) <- paste("Sim", seq(1, N, 1), sep = "") if(window == "optimize"){ if(length(d18Oc) / ceiling(diff(range(ages))) < 2){ win <- seq(2, length(d18Oc), 1) }else{ win <- seq(2, length(d18Oc) / ceiling(diff(range(ages))), 1) } recond <- as.data.frame(matrix(NA, ncol = N, nrow = length(ages))) reconD <- as.data.frame(matrix(NA, ncol = N, nrow = length(ages))) colnames(recond) <- colnames(reconD) <- paste("Sim", seq(1, N, 1), sep = "") message("Optimizing moving average iteration ", "\r") for(i in 1:N){ Dwin <- vapply(win, function(x) max(TTR::runMean(D47mat[, i], x), na.rm = TRUE), 1) Dsum <- vapply(win, function(x) min(TTR::runMean(D47mat[, i], x), na.rm = TRUE), 1) dwin <- vapply(win, function(x) max(TTR::runMean(d18Omat[, i], x), na.rm = TRUE), 1) dsum <- vapply(win, function(x) min(TTR::runMean(d18Omat[, i], x), na.rm = TRUE), 1) Dwinsd <- vapply(win, function(x) TTR::runSD(D47mat[, i], x)[which.max(TTR::runMean(D47mat[, i], x))], 1) Dsumsd <- vapply(win, function(x) TTR::runSD(D47mat[, i], x)[which.min(TTR::runMean(D47mat[, i], x))], 1) dwinsd <- vapply(win, function(x) TTR::runSD(d18Omat[, i], x)[which.max(TTR::runMean(d18Omat[, i], x))], 1) dsumsd <- vapply(win, function(x) TTR::runSD(d18Omat[, i], x)[which.min(TTR::runMean(d18Omat[, i], x))], 1) SDpool <- sqrt((Dsumsd ^ 2 + Dwinsd ^ 2) / 2) T <- (Dsum - Dwin) / (SDpool * sqrt(2 / win)) Pval <- stats::pt(T, win - 1) Popt[i, ] <- c(win[which(Pval == min(Pval, na.rm = TRUE))], length(which(Pval < 0.05)), min(Pval, na.rm = TRUE), dsum[which(Pval == min(Pval, na.rm = TRUE))], dwin[which(Pval == min(Pval, na.rm = TRUE))], Dsum[which(Pval == min(Pval, na.rm = TRUE))], Dwin[which(Pval == min(Pval, na.rm = TRUE))]) shift <- round(win[which(Pval == min(Pval, na.rm = TRUE))] / 2, 0) recond[, i] <- c(TTR::runMean(d18Omat[, i], win[which(Pval == min(Pval, na.rm=TRUE))])[(shift + 1):length(d18Omat[, i])], rep(NA, shift)) reconD[, i] <- c(TTR::runMean(D47mat[, i], win[which(Pval == min(Pval, na.rm=TRUE))])[(shift + 1):length(D47mat[, i])], rep(NA, shift)) } if(export_raw == TRUE){ utils::write.csv(Popt, "Optimized_moveing average_simulations.csv") } }else if(is.numeric(window)){ shift <- round(window / 2, 0) recond <- apply(d18Omat, 2, TTR::runMean, n = window) recond <- rbind(recond[(shift + 1):nrow(recond), ], matrix(NA, ncol = ncol(recond), nrow = shift)) reconD <- apply(D47mat, 2, TTR::runMean, n = window) reconD <- rbind(reconD[(shift + 1):nrow(reconD), ], matrix(NA, ncol = ncol(reconD), nrow = shift)) }else{ stop("ERROR: Window input not supported") } month <- ceiling((ages %% 1) * 12) message("Grouping d18Oc data into monthly bins ", "\r") utils::flush.console() d18Oc_monthly <- data.frame(d18Oc_mean = vapply(1:12, function(x) mean(as.matrix(recond[which(month == x), ]), na.rm = TRUE), 1), d18Oc_median = vapply(1:12, function(x) stats::median(as.matrix(recond[which(month == x), ]), na.rm = TRUE), 1), d18Oc_SD = vapply(1:12, function(x) stats::sd(as.matrix(recond[which(month == x), ]), na.rm = TRUE), 1) ) d18Oc_monthly$d18Oc_SE <- d18Oc_monthly$d18Oc_SD / sqrt(vapply(1:12, function(x) length(as.matrix(recond[which(month == x), 1])), 1)) message("Grouping D47 data into monthly bins ", "\r") utils::flush.console() D47_monthly <- data.frame(D47_mean = vapply(1:12, function(x) mean(as.matrix(reconD[which(month == x), ]), na.rm = TRUE), 1), D47_median = vapply(1:12, function(x) stats::median(as.matrix(reconD[which(month == x), ]), na.rm = TRUE), 1), D47_SD = vapply(1:12, function(x) stats::sd(as.matrix(reconD[which(month == x), ]), na.rm = TRUE), 1) ) D47_monthly$D47_SE <- D47_monthly$D47_SD / sqrt(vapply(1:12, function(x) length(as.matrix(reconD[which(month == x), 1])), 1)) message("Grouping Temperature data into monthly bins ", "\r") utils::flush.console() if(D47_fun == "Bernasconi18"){ T_monthly <- data.frame(T_mean = vapply(1:12, function(x) mean(sqrt((0.0449 * 10 ^ 6) / (as.matrix(reconD[which(month == x), ]) - 0.167)) - 273.15, na.rm = TRUE), 1), T_median = vapply(1:12, function(x) stats::median(sqrt((0.0449 * 10 ^ 6) / (as.matrix(reconD[which(month == x), ]) - 0.167)) - 273.15, na.rm = TRUE), 1), T_SD = vapply(1:12, function(x) stats::sd(sqrt((0.0449 * 10 ^ 6) / (as.matrix(reconD[which(month == x), ]) - 0.167)) - 273.15, na.rm = TRUE), 1) ) }else if(D47_fun == "Jautzy20"){ T_monthly <- data.frame(T_mean = vapply(1:12, function(x) mean(sqrt((0.0433 * 10 ^ 6) / (as.matrix(reconD[which(month == x), ]) - 0.119 - 0.066)) - 273.15, na.rm = TRUE), 1), T_median = vapply(1:12, function(x) stats::median(sqrt((0.0433 * 10 ^ 6) / (as.matrix(reconD[which(month == x), ]) - 0.119 - 0.066)) - 273.15, na.rm = TRUE), 1), T_SD = vapply(1:12, function(x) stats::sd(sqrt((0.0433 * 10 ^ 6) / (as.matrix(reconD[which(month == x), ]) - 0.119 - 0.066)) - 273.15, na.rm = TRUE), 1) ) } T_monthly$T_SE = T_monthly$T_SD / sqrt(vapply(1:12, function(x) length(as.matrix(reconD[which(month == x), 1])), 1)) message("Grouping d18Ow data into monthly bins ", "\r") utils::flush.console() if(d18O_fun == "KimONeil97"){ if(D47_fun == "Bernasconi18"){ d18Ow_monthly <- data.frame(d18Ow_mean = vapply(1:12, function(x) mean(((as.matrix(recond[which(month == x), ]) / 1000 + 1) / exp(((18.03 * 10 ^ 3) / sqrt((0.0449 * 10 ^ 6) / (as.matrix(reconD[which(month == x), ]) - 0.167)) - 32.42) / 1000) - 1) * 1000 * 1.03092 + 30.92, na.rm = TRUE), 1), d18Ow_median = vapply(1:12, function(x) stats::median(((as.matrix(recond[which(month == x), ]) / 1000 + 1) / exp(((18.03 * 10 ^ 3) / sqrt((0.0449 * 10 ^ 6) / (as.matrix(reconD[which(month == x), ]) - 0.167)) - 32.42) / 1000) - 1) * 1000 * 1.03092 + 30.92, na.rm = TRUE), 1), d18Ow_SD = sqrt((vapply(1:12, function(x) stats::sd(((as.matrix(recond[which(month == x), ]) / 1000 + 1) / exp(((18.03 * 10 ^ 3) / sqrt((0.0449 * 10 ^ 6) / (as.matrix(reconD[which(month == x), ]) - 0.167)) - 32.42) / 1000) - 1) * 1000 * 1.03092 + 30.92, na.rm = TRUE), 1)) ^ 2 + (1.03092 * d18Oc_monthly$d18Oc_SD) ^ 2) ) }else if(D47_fun == "Jautzy20"){ d18Ow_monthly <- data.frame(d18Ow_mean = vapply(1:12, function(x) mean(((as.matrix(recond[which(month == x), ]) / 1000 + 1) / exp(((18.03 * 10 ^ 3) / sqrt((0.0433 * 10 ^ 6) / (as.matrix(reconD[which(month == x), ]) - 0.119 - 0.066)) - 32.42) / 1000) - 1) * 1000 * 1.03092 + 30.92, na.rm = TRUE), 1), d18Ow_median = vapply(1:12, function(x) stats::median(((as.matrix(recond[which(month == x), ]) / 1000 + 1) / exp(((18.03 * 10 ^ 3) / sqrt((0.0433 * 10 ^ 6) / (as.matrix(reconD[which(month == x), ]) - 0.119 - 0.066)) - 32.42) / 1000) - 1) * 1000 * 1.03092 + 30.92, na.rm = TRUE), 1), d18Ow_SD = sqrt((vapply(1:12, function(x) stats::sd(((as.matrix(recond[which(month == x), ]) / 1000 + 1) / exp(((18.03 * 10 ^ 3) / sqrt((0.0433 * 10 ^ 6) / (as.matrix(reconD[which(month == x), ]) - 0.119 - 0.066)) - 32.42) / 1000) - 1) * 1000 * 1.03092 + 30.92, na.rm = TRUE), 1)) ^ 2 + (1.03092 * d18Oc_monthly$d18Oc_SD) ^ 2) ) } }else if(d18O_fun == "GrossmanKu86"){ if(D47_fun == "Bernasconi18"){ d18Ow_monthly <- data.frame(d18Ow_mean = vapply(1:12, function(x) mean(as.matrix(recond[which(month == x), ]) + ((sqrt((0.0449 * 10 ^ 6) / (as.matrix(reconD[which(month == x), ]) - 0.167)) - 273.15) - 20.6) / 4.34 - 0.2, na.rm = TRUE), 1), d18Ow_median = vapply(1:12, function(x) stats::median(as.matrix(recond[which(month == x), ]) + ((sqrt((0.0449 * 10 ^ 6) / (as.matrix(reconD[which(month == x), ]) - 0.167)) - 273.15) - 20.6) / 4.34 - 0.2, na.rm = TRUE), 1), d18Ow_SD = sqrt((vapply(1:12, function(x) stats::sd(as.matrix(recond[which(month == x), ]) + ((sqrt((0.0449 * 10 ^ 6) / (as.matrix(reconD[which(month == x), ]) - 0.167)) - 273.15) - 20.6) / 4.34 - 0.2, na.rm = TRUE), 1)) ^ 2 + d18Oc_monthly$d18Oc_SD ^ 2) ) }else if(D47_fun == "Jautzy20"){ d18Ow_monthly <- data.frame(d18Ow_mean = vapply(1:12, function(x) mean(as.matrix(recond[which(month == x), ]) + ((sqrt((0.0433 * 10 ^ 6) / (as.matrix(reconD[which(month == x), ]) - 0.119 - 0.066)) - 273.15) - 20.6) / 4.34 - 0.2, na.rm = TRUE), 1), d18Ow_median = vapply(1:12, function(x) stats::median(as.matrix(recond[which(month == x), ]) + ((sqrt((0.0433 * 10 ^ 6) / (as.matrix(reconD[which(month == x), ]) - 0.119 - 0.066)) - 273.15) - 20.6) / 4.34 - 0.2, na.rm = TRUE), 1), d18Ow_SD = sqrt((vapply(1:12, function(x) stats::sd(as.matrix(recond[which(month == x), ]) + ((sqrt((0.0433 * 10 ^ 6) / (as.matrix(reconD[which(month == x), ]) - 0.119 - 0.066)) - 273.15) - 20.6) / 4.34 - 0.2, na.rm = TRUE), 1)) ^ 2 + d18Oc_monthly$d18Oc_SD ^ 2) ) } } d18Ow_monthly$d18Ow_SE = d18Ow_monthly$d18Ow_SD / sqrt(vapply(1:12, function(x) length(as.matrix(recond[which(month == x), 1])), 1)) monthly<-cbind(1:12, d18Oc_monthly, D47_monthly, T_monthly, d18Ow_monthly) colnames(monthly)[1] <- "month" if(export == TRUE){ utils::write.csv(monthly, paste("Monthly_moving average_results.csv")) } return(monthly) }
unload <- function(packages, msg = " Unloading %s...") { badbase <- intersect(base_packages(), packages) if (length(badbase) > 0) { packages <- setdiff(packages, badbase) warning("Will not unload base packages: ", paste(badbase, collapse = ", ")) } if ("pak" %in% packages) { packages <- setdiff(packages, "pak") warning("Will not unload pak") } badloaded <- setdiff(packages, loadedNamespaces()) if (length(badloaded) > 0) { packages <- setdiff(packages, badloaded) warning( "Will not unload packages that are load not loaded: ", paste(badloaded, collapse = ", ") ) } packages <- unload_order_topo(packages) gc() for (pkg in packages) { message(sprintf(msg, pkg)) unloadNamespace(pkg) unload_dll(pkg) } bad <- intersect(packages, loadedNamespaces()) if (length(bad) > 0) { stop( "Could not unload ", if (length(bad) == 1) "one package: " else "some packages: ", paste(bad, collapse = ", ") ) } message() invisible(packages) } needs_unload <- function(packages) { packages <- setdiff(packages, c(base_packages(), "pak")) packages <- intersect(packages, loadedNamespaces()) unload_order_topo(packages) } package_imports <- function(package, base = FALSE) { imp <- unique(names(getNamespaceInfo(package, "imports"))) if (!base) imp <- imp[! imp %in% base_packages()] imp[imp != ""] } unload_order_topo <- function(packages) { all <- setdiff(loadedNamespaces(), base_packages()) imp <- lapply_with_names(all, package_imports) imp_by <- lapply_with_names(all, function(p) { all[vlapply(imp, `%in%`, x = p)] }) revs <- packages while (length(more <- setdiff(unlist(imp_by[revs]), revs)) > 0) { revs <- c(revs, more) } imp_by <- lapply(imp_by, intersect, revs)[revs] topo <- character() while (length(topo) < length(revs)) { new <- names(imp_by)[viapply(imp_by, length) == 0] if (length(new) == 0) stop("Loop in package imports???") topo <- c(topo, new) imp_by <- lapply(imp_by, setdiff, new)[setdiff(names(imp_by), new)] } topo } unload_dll <- function(package) { pkglibs <- loaded_dlls(package) for (lib in pkglibs) { dyn.unload(lib[["path"]]) } libs <- .dynLibs() .dynLibs(libs[!(libs %in% pkglibs)]) invisible() } loaded_dlls <- function(package) { libs <- .dynLibs() matchidx <- vapply(libs, "[[", character(1), "name") == package libs[matchidx] }
normalize <- function(x) { x <- x - min(x); x/max(x); } standardize <- function(x) { x <- scale(x) z <- as.numeric(x) attr(z,"scaled:center") <- attr(x,"scaled:center") attr(z,"scaled:scale") <- attr(x,"scaled:scale") return(z) } unstandardize <- function(x) { scale <- attr(x,"scaled:scale") center <- attr(x,"scaled:center") z <- x*scale + center return( as.numeric(z) ) } htmlhelp <- function() options(help_type="html") setcran <- function(themirror="https://cloud.r-project.org/") options(repos=structure(c(CRAN=themirror))) choose.csv <- function( ... ) read.csv( file=file.choose() , ... ) fclip <- function( x , xmin=NULL , xmax=NULL ) { if ( !is.null(xmin) ) x <- ifelse( x < xmin , xmin , x ) if ( !is.null(xmax) ) x <- ifelse( x > xmax , xmax , x ) x } progbar <- function( current , min=0 , max=100 , starttime , update.interval=100 , show.rate=FALSE ) { z <- current/update.interval if ( floor(z)!=z ) return() progress <- current - min time.elapsed <- Sys.time() - starttime elapsed.units <- attr(time.elapsed,"units") f <- 1 if ( elapsed.units == "mins" ) f <- 60 if ( elapsed.units == "hours" ) f <- 60*60 if ( elapsed.units == "days" ) f <- 60*60*24 rate <- progress / ( as.numeric(time.elapsed) * f ) eta <- (max - current)/rate etamins <- floor(eta/60) etahours <- floor(etamins/60) etasecs <- floor(eta - etamins*60) if ( etahours > 0 ) etamins <- etamins - etahours*60 percentdone <- floor(current/max * 100) ETAstring <- paste( etahours , "h " , sep="" ) if ( etahours==0 & etamins>0 ) ETAstring <- paste( etamins , "m " , sep="" ) if ( etahours==0 & etamins==0 ) ETAstring <- paste( etasecs , "s " , sep="" ) Ratestring <- "" if ( show.rate==TRUE ) Ratestring <- paste( " | Rate: " , round(rate,2) , " samples/sec" , sep="" ) cat( "\r" ) cat( paste( c( current , "/" , max , " (" , percentdone , "%) | Elapsed: " , round(time.elapsed,2) , elapsed.units , " | Remaining: " , ETAstring , Ratestring ) , collapse="" ) ) } covmat <- function( m , digits=4 ) { if ( inherits(m, "data.frame") ) mcov <- cov( m ) else mcov <- vcov(m) mcor <- cov2cor( mcov ) mcov[ lower.tri(mcov) ] <- NA mcor[ lower.tri(mcor) ] <- NA result <- list( vcov=round(mcov,digits=digits) , cor=round(mcor,digits=digits) ) result } Rho <- function( model , digits=2 ) { round( cov2cor(vcov(model)) , digits ) } chainmode <- function( chain , ... ) { dd <- density(chain , ...) dd$x[which.max(dd$y)] } PIprimes <- c(0.67,0.89,0.97) HPDI <- function( samples , prob=0.89 ) { coerce.list <- c( "numeric" , "matrix" , "data.frame" , "integer" , "array" ) if ( inherits(samples, coerce.list) ) { samples <- coda::as.mcmc( samples ) } x <- sapply( prob , function(p) coda::HPDinterval( samples , prob=p ) ) n <- length(prob) result <- rep(0,n*2) for ( i in 1:n ) { low_idx <- n+1-i up_idx <- n+i result[low_idx] <- x[1,i] result[up_idx] <- x[2,i] names(result)[low_idx] <- concat("|",prob[i]) names(result)[up_idx] <- concat(prob[i],"|") } return(result) } PCI <- function( samples , prob=0.89 ) { x <- sapply( prob , function(p) { a <- (1-p)/2 quantile( samples , probs=c(a,1-a) ) } ) n <- length(prob) result <- rep(0,n*2) for ( i in 1:n ) { low_idx <- n+1-i up_idx <- n+i result[low_idx] <- x[1,i] result[up_idx] <- x[2,i] a <- (1-prob[i])/2 names(result)[low_idx] <- concat(round(a*100,0),"%") names(result)[up_idx] <- concat(round((1-a)*100,0),"%") } return(result) } PI <- PCI se <- function( model ) { sqrt( diag( vcov(model) ) ) } confint_quad <- function( model=NULL , est , se , prob=0.89 ) { if ( !is.null(model) ) { found.class <- FALSE if ( class(model)=="lm" ) { est <- coef(model) se <- summary(model)$coef[,2] found.class <- TRUE } if ( class(model)=="mle2" ) { est <- coef(model) se <- summary(model)@coef[,2] found.class <- TRUE } if ( found.class==FALSE ) { return( paste("Cannot find handler for model of class",class(model)) ) } } n <- length(est) mat <- matrix(c(rep(-1,n),rep(1,n)),nrow=n) p <- (1-prob)/2 z <- -qnorm( p ) ci <- est + mat * ( se * z ) rownames(ci) <- names(est) lowlab <- paste( format( p*100 , nsmall=1 ) , "%" , sep="" ) hilab <- paste( format( (1-p)*100 , nsmall=1 ) , "%" , sep="" ) colnames(ci) <- c( lowlab , hilab ) ci } replicate2 <- function (n, expr, interval=0.1, simplify = "array") { show_progress <- function(i) { intervaln <- floor( n * interval ) if ( floor(i/intervaln) == i/intervaln ) { cat( paste( "[" , i , "/" , n , "]\r" ) ) } } result <- sapply(1:n, eval.parent(substitute(function(i,...) { show_progress(i); expr })), simplify = simplify) cat("\n") result } mcreplicate <- function (n, expr, refresh = 0.1, mc.cores=2 ) { show_progress <- function(i) { intervaln <- floor(n * refresh) if (floor(i/intervaln) == i/intervaln) { cat(paste("[", i, "/", n, "]\r")) } } result <- simplify2array(mclapply(1:n, eval.parent(substitute(function(i, ...) { if (refresh>0) show_progress(i) expr })),mc.cores=mc.cores)) if (refresh>0) cat("\n") result } check_index <- function( x ) { y <- sort(unique(x)) n <- length(y) message( concat( "Length: ",n ) ) message( concat( "Range: ",min(y)," / ",max(y) ) ) if ( max(y) != n ) message( "Maximum index different than number of unique values" ) diffs <- sapply( 2:n , function(i) y[i] - y[i-1] ) if ( any(diffs)!=1 ) message( "At least one gap in consecutive values" ) } coerce_index <- function( ... ) { L <- list(...) if ( is.list(L[[1]]) && length(L)==1 ) L <- L[[1]] if ( length(L)==1 ) { x <- as.integer(L[[1]]) if ( any(is.na(x)) ) x <- as.integer(as.factor(as.character(L[[1]]))) return( x ) } else { vnames <- match.call() vnames <- as.character(vnames)[2:(length(L)+1)] M <- L for ( i in 1:length(L) ) M[[i]] <- as.character(L[[i]]) Mall <- M[[1]] for ( i in 2:length(L) ) Mall <- c( Mall , M[[i]] ) Mall <- unique(Mall) new_levels <- levels(as.factor(Mall)) for ( i in 1:length(L) ) { M[[i]] <- factor(M[[i]],levels=new_levels) M[[i]] <- as.integer(M[[i]]) } names(M) <- paste( vnames , "_idx" , sep="" ) return(M) } } sd2 <- function( x , na.rm=TRUE ) { sqrt( var2(x,na.rm=na.rm) ) } var2 <- function( x , na.rm=TRUE ) { mean(x^2) - mean(x)^2 } sd_pop <- sd2 var_pop <- var2 format_show <- function( x , digits ) { r <- as.data.frame(lapply( 1:length(x) , function(i) { if ( class(x[[i]])!="character" ) { if ( names(x)[i] %in% names(digits) ) round( x[[i]] , digits[names(x)[i]] ) else round(x[[i]], digits['default__'] ); } else { return(x[[i]]) } } ) ) names(r) <- names(x) rownames(r) <- rownames(x) return(r) } yn2bin <- function(x) ifelse(is.na(x),NA,ifelse(x %in% c("Yes","yes","Y","y"),1,0)) make_ukey <- function( n , m=5 , x=2 , bag=c("a","b","c","d","e","f","g","h","j", "k","m","n","p","q","r","u","w","x", "y","z",0,2,3,4,6,7,8,9) ) { y <- rep(NA,n) genkey <- function() paste( sample(bag,size=m,replace=TRUE) , collapse="" ) keydist <- function( k1 , k2 ) { as.numeric(adist( k1 , k2 )) } checkkey <- function( key , xkeys ) { dists <- sapply( xkeys , function(k) keydist( key , k ) ) if ( any( dists < x ) ) { return(FALSE) } else { return(TRUE) } } y[1] <- genkey() for ( i in 2:n ) { good <- FALSE while( !good ) { yn <- genkey() f <- checkkey( yn , y[ !is.na(y) ] ) if ( f==TRUE ) { y[i] <- yn good <- TRUE } } } return(y) }
`as.list.mefa` <- function(x, ...) { if (is.null(x$segm) || length(x$segm) == 1) { return(list(x$xtab)) } else { return(x$segm) } }
tropproj.linsp <- function(x, V) { if (is.vector(x)) x <- t(as.matrix(x)) n <- nrow(x) pcs <- nrow(V) e <- ncol(x) all_dets <- array(NA, dim = (e - pcs +1): e) all_combns <- comboGeneral(1:e, pcs) all_combns_list <- lapply(1:nrow(all_combns), function(i) { all_combns[i, ] }) all_dets[all_combns] <- unlist(lapply(all_combns_list, function(i) { tropdet(as.matrix(V[, i])) })) if (pcs == 1){ data_proj <- matrix(rep(V, n), nrow = n, byrow = T) } else{ data_proj <- matrix(0, nrow = n, ncol = e) for (i in 1:e) { all_tau <- comboGeneral(c(1:e)[-i], pcs - 1) all_tau <- lapply(1:nrow(all_tau), function(i) { all_tau[i, ] }) temp2 <- lapply(all_tau, function(tau) { all_j <- c(1:e)[-tau] temp_block <- eachrow(matrix(x[, all_j], ncol = e - pcs + 1), all_dets[rowSort(cbind(all_j, matrix(tau, ncol = length(tau), nrow = (e - pcs + 1), byrow = T)))], "-") return(rowMins(temp_block, T) + tropdet(V[, c(tau, i)])) }) temp2 <- do.call(cbind, temp2) data_proj[, i] <- rowMaxs(temp2, T) } } rownames(data_proj) <- rownames(x) colnames(data_proj) <- colnames(x) data_proj }
"are.parglo.valid" <- function(para,nowarn=FALSE) { if(! is.glo(para)) return(FALSE) if(any(is.na(para$para))) return(FALSE) A <- para$para[2] K <- para$para[3] op <- options() GO <- TRUE if(nowarn == TRUE) options(warn=-1) if(A <= 0) { warning("Parameter A is not > 0, invalid") GO <- FALSE } if(abs(K) >= 1) { warning("abs(Parameter K) is not < 1, invalid") GO <- FALSE } options(op) if(GO) return(TRUE) return(FALSE) }
par() slices <- c(10, 12,4, 16, 8) lbls <- c("US", "UK", "Australia", "Germany", "France") pie(slices, labels = lbls, main="Pie Chart of Countries") slices <- c(10, 12, 4, 16, 8) lbls <- c("US", "UK", "Australia", "Germany", "France") pct <- round(slices/sum(slices)*100) lbls <- paste(lbls, pct) lbls <- paste(lbls,"%",sep="") pie(slices,labels = lbls, col=rainbow(length(lbls)), main="Pie Chart of Countries") library(plotrix) slices <- c(10, 12, 4, 16, 8) lbls <- c("US", "UK", "Australia", "Germany", "France") pie3D(slices,labels=lbls,explode=0.1, main="Pie Chart of Countries ") mytable <- table(iris$Species) lbls <- paste(names(mytable), "\n", mytable, sep="") pie(mytable, labels = lbls, main="Pie Chart of Species\n (with sample sizes)")
git_rebase_list <- function(upstream = NULL, repo = '.'){ git_rebase(upstream = upstream, commit_changes = FALSE, repo = repo) } git_rebase_commit <- function(upstream = NULL, repo = '.'){ git_rebase(upstream = upstream, commit_changes = TRUE, repo = repo) } git_rebase <- function(upstream, commit_changes, repo){ repo <- git_open(repo) info <- git_info(repo = repo) if(!length(upstream)){ if(!length(info$upstream) || is.na(info$upstream) || !nchar(info$upstream)) stop("No upstream configured for current HEAD") git_fetch(info$remote, repo = repo) upstream <- info$upstream } df <- .Call(R_git_rebase, repo, upstream, commit_changes) if(commit_changes){ new_head <- ifelse(nrow(df) > 0, utils::tail(df$commit, 1), upstream[1]) git_branch_set_target(ref = new_head, repo = repo) inform("Resetting %s to %s", info$shorthand, new_head) } return(df) } git_reset_hard <- function(ref = "HEAD", repo = "."){ git_reset("hard", ref = ref, repo = repo) } git_reset_soft <- function(ref = "HEAD", repo = "."){ git_reset("soft", ref = ref, repo = repo) } git_reset_mixed <- function(ref = "HEAD", repo = "."){ git_reset("mixed", ref = ref, repo = repo) } git_reset <- function(type = c("soft", "hard", "mixed"), ref = "HEAD", repo = "."){ typenum <- switch(match.arg(type), soft = 1L, mixed = 2L, hard = 3L) repo <- git_open(repo) ref <- as.character(ref) .Call(R_git_reset, repo, ref, typenum) git_status(repo = repo) } git_cherry_pick <- function(commit, repo = '.'){ repo <- git_open(repo) assert_string(commit) .Call(R_git_cherry_pick, repo, commit) } git_ahead_behind <- function(upstream = NULL, ref = 'HEAD', repo = '.'){ repo <- git_open(repo) if(!length(upstream)) upstream <- git_info(repo = repo)$upstream if(!length(upstream)) stop("No upstream set or specified") .Call(R_git_ahead_behind, repo, ref, upstream) }
pconmul<-function(t,lam,thres,sige){ nume <- sum(lam * t)-thres term <- nume/sige n <- exp(1.702*term) p <- n / (1+n) }
ASMR <- function(Data.Name, CL = NULL, PeriodEnd = NULL, Period = NULL) { Data.Name <- Data.Name[!Data.Name$v005 == 0, ] Data.Name$ID <- seq.int(nrow(Data.Name)) if (is.null(CL)) { Z <- stats::qnorm(.025,lower.tail=FALSE) } else { Z <- stats::qnorm((100-CL)/200,lower.tail=FALSE) } if (is.null(Period)){Periodmsg = 84} else {Periodmsg = Period} if (is.null(PeriodEnd)){ PeriodEndy_ <- as.integer((mean(Data.Name$v008) - 1)/12)+1900 PeriodEndm_ <- round(mean(Data.Name$v008) - ((PeriodEndy_ - 1900) * 12),0) PeriodEndm_m <- round(min(Data.Name$v008) - ((PeriodEndy_ - 1900) * 12),0) PeriodEndm_x <- round(max(Data.Name$v008) - ((PeriodEndy_ - 1900) * 12),0) } else { dates <- paste(PeriodEnd, "01", sep = "-") PeriodEndm_ <- as.numeric(format(as.Date(dates), "%m")) PeriodEndy_ <- as.numeric(format(as.Date(dates), "%Y")) if (PeriodEndm_ >= round(mean(Data.Name$v008) - (((as.integer((mean(Data.Name$v008) - 1)/12)+1900) - 1900) * 12),0) & PeriodEndy_ >= as.integer((mean(Data.Name$v008) - 1)/12)+1900) message(crayon::bold("Note:", "\n", "You specified a reference period that ends after the survey fieldwork dates....."), "\n", "1. Make sure the dates in the survey are coded according to the Gregorian calendar.", "\n", "2. If the dates are coded according to the Gregorian calendar, use a proper PeriodEnd that came before the time of the survey.", "\n", "3. If the dates are not coded according to the Gregorian calendar, use a PeriodEnd according to the used calendar.") } if (is.null(PeriodEnd)){ cat("\n", crayon::white$bgBlue$bold("The current function calculated ASMR based on a reference period of"), crayon::red$bold$underline(Periodmsg), crayon::white$bold$bgBlue("months"), "\n", crayon::white$bold$bgBlue("The reference period ended at the time of the interview, in"), crayon::red$bold$underline(PeriodEndy_ + round(PeriodEndm_/12,digits=2)), "OR", crayon::red$bold$underline(month.abb[PeriodEndm_m]), "-", crayon::red$bold$underline(month.abb[PeriodEndm_x]), crayon::red$bold$underline(PeriodEndy_), "\n", crayon::white$bold$bgBlue("The average reference period is"), crayon::red$bold$underline(round((PeriodEndy_ + PeriodEndm_/12)-(Periodmsg/24), digits =2)), "\n") } else { cat("\n", crayon::white$bgBlue$bold("The current function calculated ASMR based on a reference period of"), crayon::red$bold$underline(Periodmsg), crayon::white$bold$bgBlue("months"), "\n", crayon::white$bold$bgBlue("The reference period ended in"), crayon::red$bold$underline(PeriodEndy_ + round(PeriodEndm_/12,digits=2)), "OR", crayon::red$bold$underline(month.abb[PeriodEndm_]), crayon::red$bold$underline(PeriodEndy_), "\n" , crayon::white$bold$bgBlue("The average reference period is"), crayon::red$bold$underline(round((PeriodEndy_ + PeriodEndm_/12)-(Periodmsg/24), digits =2)), "\n") } Data.Name$allwoment = 1 DeathEx <- DataPrepareM(Data.Name, PeriodEnd, Period) options(survey.lonely.psu = "adjust") dstrat <- survey::svydesign(id = ~ v021, strata = ~ v022, weights = ~ rweight, data = DeathEx) AGE <- c("15-19", "20-24", "25-29", "30-34", "35-39", "40-44", "45-49") SEX <- c(rep("FEMALES",7),rep("MALES",7)) WN <- (survey::svyby(~ exposure, by = ~ agegrp+sex, design = dstrat, survey::svytotal))$exposure asmr <- (survey::svyby(~ death, by = ~ agegrp+sex, denominator = ~ exposure, design = dstrat, survey::svyratio))[, 3] deaths <- WN*(asmr/1000) SE <- (survey::svyby(~ death, by = ~ agegrp+sex, denominator = ~ exposure, design = dstrat, survey::svyratio))[, 4] N <- stats::aggregate(DeathEx$exposure, list(DeathEx$agegrp, DeathEx$sex), sum)$x DEFT <- sqrt(survey::svyby(~ death, by = ~ agegrp+sex, denominator = ~ exposure, design = dstrat, deff = "replace", survey::svyratio)$DEff) RSE <- survey::cv(survey::svyby(~ death, by = ~ agegrp+sex, denominator = ~ exposure, design = dstrat, survey::svyratio)) LCI = asmr - (Z * SE) LCI[LCI <= 0] = 0 UCI <- asmr + (Z * SE) RESULTS <- cbind.data.frame(AGE, SEX, round(deaths, 0), round(WN, 0), round(asmr, 3), round(SE, 3), round(N, 0), round(DEFT, 3), round(RSE, 3), round(LCI, 3), round(UCI, 3), row.names = NULL) names(RESULTS) <- c("AGE", "SEX", "Deaths","Exposure_years", "ASMR", "SE", "N", "DEFT", "RSE", "LCI", "UCI") list(RESULTS) }
`%p%` <- function(e1, e2) { paste0(e1, e2) }
trinarize.kMeans <- function(vect, nstart=1, iter.max=10, dip.test=TRUE, na.rm=FALSE){ if(!is.numeric(vect)) stop("The input vector must consist of numerical values!") if (!na.rm && any(is.na(vect))) stop("Cannot binarize in the presence of NA values!") else if (na.rm) { vect <- vect[!is.na(vect)] } if (any(!is.finite(vect))) stop("Cannot binarize Inf values!") if(!is.numeric(nstart)) stop("'nstart' must be numeric!") if(nstart < 0) stop("'nstart' must be >= 0!") if(!is.numeric(iter.max)) stop("'iter.max' must be numeric!") if(iter.max < 0) stop("'iter.max' must be >= 0!") if(length(vect) < 3) stop("The input vector must have at least 3 entries!") if(length(unique(vect))==1) stop("The input vector is constant!") if (dip.test) { p.value <- dip.test(vect)$p.value } else p.value <- as.numeric(NA) km_res <- kmeans(vect, 3, nstart = nstart, iter.max = iter.max) cent <- order(km_res$centers) trinarizeddata <- km_res$cluster trinarizeddata[km_res$cluster == 1] <- which(cent ==1) trinarizeddata[km_res$cluster == 2] <- which(cent ==2) trinarizeddata[km_res$cluster == 3] <- which(cent ==3) trinarizeddata <- trinarizeddata-1 threshold1 <- (max(vect[trinarizeddata == 0]) + min(vect[trinarizeddata == 1])) / 2 threshold2 <- (max(vect[trinarizeddata == 1]) + min(vect[trinarizeddata == 2])) / 2 return(new("TrinarizationResult", originalMeasurements = vect, trinarizedMeasurements = as.integer(trinarizeddata), threshold1 = threshold1, threshold2 = threshold2, p.value = p.value, method = "k-Means")) }
layout_tbl_graph_matrix <- function(graph, circular = FALSE, sort.by = NULL) { sort.by <- enquo(sort.by) sort.by <- eval_tidy(sort.by, .N()) if (!is.null(sort.by)) { pos <- order(order(sort.by)) } else { pos <- seq_len(gorder(graph)) } nodes <- new_data_frame(list(x = pos, y = pos)) extra_data <- as_tibble(graph, active = 'nodes') warn_dropped_vars(nodes, extra_data) nodes <- cbind(nodes, extra_data[, !names(extra_data) %in% names(nodes), drop = FALSE]) nodes$circular <- FALSE nodes }
context("Complexity meta-features") test_that("complexity.result", { aux = complexity(Species ~ ., iris) dets <- c("C1", "C2", "ClsCoef", "Density", "F1", "F1v", "F2", "F3", "F4", "Hubs", "L1", "L2", "LSC", "N1", "N2", "N3", "T1", "T2", "T3", "T4") expect_named(aux, ls.complexity()) expect_equal(aux[dets], complexity(iris[1:4], iris[5], dets)) expect_named(complexity(Species ~ ., iris, ls.complexity()[1:3]), ls.complexity()[1:3]) }) test_that("complexity.errors",{ expect_error(complexity(iris[1:130, 1:4], iris[5])) expect_error(complexity(as.matrix(iris[, c(1,2)]), iris$Species)) expect_error(complexity(Species ~ ., iris, features=c("abc", "xdef"))) })
modetest<-function(pk,pknum, h=NULL,N=NULL,Q=NULL,bootnum=NULL,delta=NULL,nsimu=NULL,minim=NULL, type="boots",kernel="gauss", n=NULL) { run<-1 while (run<=pknum){ curlst<-pk[[run]] if (type=="boots"){ curh<-h[run] curmotes<-modetestydin(curlst,curh,N,Q,bootnum,delta,nsimu,minim,kernel) } else{ curmotes<-modetestgauss(curlst,n) } if (run==1){ if (pknum==1){ moteslist<-curmotes } else{ moteslist=list(curmotes) } } else{ moteslist=c(moteslist,list(curmotes)) } run<-run+1 } return(moteslist) }
round_to_seq <- function(x, nlevels=20, as_factor=FALSE) { y <- range(x, na.rm = TRUE, finite=TRUE) y <- seq(y[1], y[2], length.out = nlevels) y <- sapply(x, function(z) { if (is.na(z)) return(NA) y[which.min(abs(y-z))] }) if (as_factor) as.factor(y) else y } plot_diffnet2 <- function(graph, ...) UseMethod("plot_diffnet2") plot_diffnet2.diffnet <- function( graph, toa, slice = nslices(graph), ... ) { if (missing(toa)) toa <- graph$toa plot_diffnet2.default( graph = graph$graph[[slice]], toa = toa, pers = graph$meta$pers, ...) } plot_diffnet2.default <- function( graph, toa, pers = min(toa, na.rm = TRUE):max(toa, na.rm = TRUE), color.ramp = grDevices::colorRamp(viridisLite::magma(20)), layout = NULL, key.width = 0.1, key.args = list(), main = "Diffusion dynamics", add.map = NULL, diffmap.args = list(kde2d.args=list(n=100)), diffmap.alpha = .5, include.white = "first", vertex.size = "degree", minmax.relative.size = getOption("diffnet.minmax.relative.size", c(0.01, 0.04)), no.graph = FALSE, ...) { oldpar <- graphics::par(no.readonly = TRUE) on.exit(graphics::par(oldpar)) par(xpd = NA) igraph.args <- list(...) nper <- length(pers) if (length(add.map) && !(add.map %in% c("first", "last"))) stop("When -add.map- is specified it should be either \'first\' or \'last\'.") if (!length(add.map) & no.graph) stop("If -no.graph=TRUE- then you should specify some value for -add.map-.") type_1st <- toa == pers[nper] type_non <- is.na(toa) type_adopt <- which(!type_1st & !type_non) type_1st <- which(type_1st) type_non <- which(type_non) t01 <- pers t01 <- c(t01[1], t01[nper]) col <- color.ramp( (toa - t01[1])/(t01[2] - t01[1]) ) if (ncol(col) < 4) col <- cbind(col, 255) col[type_non,] <- 255 col <- rgb(col[,1], col[,2], col[,3], col[,4], maxColorValue = 255) if (!no.graph && !length(igraph.args$vertex.shape)) { igraph.args$vertex.shape <- rep("circle", nnodes(graph)) igraph.args$vertex.shape[type_non] <- "square" } add_dimnames.mat(graph) g <- igraph::graph_from_adjacency_matrix(graph, weighted = TRUE) igraph.args$layout <- if (!length(layout)) igraph::layout_nicely(g) else if (inherits(layout, "function")) layout(g) else layout igraph.args$layout <- igraph::norm_coords(igraph.args$layout) key.width <- max(0, key.width) graphics::plot.new() graphics::plot.window(xlim=c(-1,1 + 5*key.width), ylim=c(-1,1)) graphics::title(main=main) if (length(add.map)) { dm <- do.call(diffusionMap.default, c(diffmap.args, list(graph=graph, x=toa, layout = igraph.args$layout))) dmlvls <- pretty(range(dm$map$z), diffmap.args$kde2d.args$n) dmcol <- grDevices::rgb(color.ramp(seq(0,1, length.out = nper*2)), maxColorValue = 255) if (length(include.white)) if (include.white=="first") dmcol <- c("white", dmcol) else if (include.white=="last") dmcol <- c(dmcol, "white") else stop('-include.white- should be either NULL, "first" or "last".') dmcol <- grDevices::adjustcolor(grDevices::colorRampPalette(dmcol)(length(dmlvls)), alpha.f=diffmap.alpha) if (add.map=="first") graphics::.filled.contour(dm$map$x, dm$map$y, dm$map$z, levels = dmlvls, col=dmcol) } else dm <- NULL set_igraph_plotting_defaults("igraph.args") igraph.args$vertex.size <- rescale_vertex_igraph( compute_vertex_size(g, vertex.size), minmax.relative.size = minmax.relative.size ) igraph.args$vertex.color <- col if (!no.graph) do.call( what = igraph::plot.igraph, args = c(list(g),igraph.args) ) if (length(add.map) && (add.map=="last")) graphics::.filled.contour(dm$map$x, dm$map$y, dm$map$z, levels = dmlvls, col=dmcol) if (key.width > 0) { color.palette <- color.ramp(c(0,.5,1)) if (ncol(color.palette) < 4) color.palette <- cbind(color.palette, 255) color.palette <- grDevices::rgb( color.palette[,1], color.palette[,2], color.palette[,3], color.palette[,4], maxColorValue = 255) color.palette <- grDevices::colorRampPalette(color.palette, TRUE) if (!length(key.args$main)) key.args$main <- "Time of Adoption" if (!length(key.args$na.col)) key.args$na.col <- "transparent" if (!length(key.args$na.lab)) key.args$na.lab <- "Non-adopters" if (!length(key.args$border)) key.args$border <- "transparent" if (!length(key.args$tick.marks)) { toaran <- range(toa, na.rm=TRUE) key.args$tick.marks <- unique(floor(seq(toaran[1], toaran[2], length.out = 5))) } do.call( what = drawColorKey, args = c( list(toa, key.pos = c(1-key.width, 0.975, 0.05, 0.95), nlevels = 100, color.palette = color.palette(100)), key.args ) ) } invisible(list( layout = igraph.args$layout, vertex.color = col, vertex.size = igraph.args$vertex.size, vertex.shape = igraph.args$vertex.shape, diffmap = dm) ) } diffusionMap <- function(graph, ...) UseMethod("diffusionMap") diffmap <- diffusionMap weighted_var <- function(x,w) { n <- length(x) w <- w/sum(w, na.rm=TRUE)*n m <- sum(x*w/sum(w, na.rm=TRUE), na.rm=TRUE) sum((x - m)^2*w/(n-1+1e-15), na.rm=TRUE) } wvar <- weighted_var diffusionMap.default <- function( graph, x, x.adj=round_to_seq, layout=NULL, jitter.args = list(), kde2d.args = list(n=100), sharp.criter=function(x, w) { wvar(x,w) > (max(x, na.rm=TRUE) - min(x, na.rm=TRUE))^2/12 },...) { if (length(x.adj)) { if (!is.function(x.adj)) stop('-x.adj- must be a function') x <- x.adj(x) } if (!length(unlist(dimnames(graph), recursive = TRUE))) dimnames(graph) <- list(1:nnodes(graph), 1:nnodes(graph)) g <- igraph::graph_from_adjacency_matrix(graph, weighted = TRUE) coords <- if (is.function(layout)) layout(g) else if (!length(layout)) igraph::layout_nicely(g) else if (is.matrix(layout)) layout if (!length(kde2d.args$h)) kde2d.args$h <- c(MASS::bandwidth.nrd(coords[,1]), MASS::bandwidth.nrd(coords[,2])) lims <- c(range(coords[,1]), range(coords[,2])) lvls <- unique(x) nlvls <- length(unique(x)) Maps <- with(kde2d.args, list(z=array(0, dim=c(n,n,nlvls) ))) Maps$W <- Maps$z for (i in 1:nlvls) { if (is.na(lvls[i])) next dat <- coords[which(x==lvls[i]),,drop=FALSE] map <- do.call(MASS::kde2d, c(kde2d.args, list( x = dat[,1], y=dat[,2], lims=lims))) Maps$W[,,i] <- map$z Maps$z[,,i] <- map$z*lvls[i] } Map <- with(kde2d.args, list(z=matrix(0, ncol=n, nrow=n))) Map$W <- Map$z for (i in 1:kde2d.args$n) for (j in 1:kde2d.args$n) { if (sharp.criter(lvls,Maps$W[i,j,]) || sum(Maps$W[i,j,]) < 1e-30 ) { Map$z[i,j] <- sum(Maps$z[i,j,])/(sum(Maps$W[i,j,]) + 1e-15) } else { Map$z[i,j] <- sample(lvls, 1, prob=Maps$W[i,j,]) } } Map$x <- seq(lims[1], lims[2], length.out = kde2d.args$n) Map$y <- seq(lims[3], lims[4], length.out = kde2d.args$n) structure(list( coords = coords, map = with(Map, list(x=x,y=y,z=z)), h = kde2d.args$h, used_x = x ), class="diffnet_diffmap") } diffusionMap.diffnet <- function(graph, slice=nslices(graph), ...) { with(graph, diffusionMap.default(graph[[slice]], toa, ...)) } image.diffnet_diffmap <- function(x, ...) { graphics::image(x$map,...) } print.diffnet_diffmap <- function(x, ...) { cat("An object of class -diffnet_map-\n") cat(utils::str(x)) cat("Use methods -plot- and -image-.") } plot.diffnet_diffmap <- function(x, y=NULL, ...) { image.diffnet_diffmap(x, ...) }
ftm <- function(d,sampled,k){ size=dim(d)[1] n=dim(d)[3] for (i in 1:n){diag(d[,,i])<-0} unsampled=(1:size)[-sampled] sampled.matrix=matrix(1,size,size) sampled.matrix[,unsampled]<-0 sampled.matrix[unsampled,]<-0 unsampled.matrix=(sampled.matrix-1)*(-1) sampled.knowledge=d for (i in 1:n) { sampled.knowledge[,,i][(1:size)[-sampled[i]],(1:size)[-sampled[i]]]<-0 } sampled.perception=d-sampled.knowledge combined.knowledge=matrix(0,size,size) for (i in 1:n){ combined.knowledge=combined.knowledge+sampled.knowledge[,,i] } exact=combined.knowledge*sampled.matrix exact[exact<2]<-0 exact[exact>=1]<-1 contribution2perception=combined.knowledge*unsampled.matrix combined.perception=matrix(0,size,size) for (i in 1:n){ combined.perception=combined.perception+sampled.perception[,,i] } active.perception=combined.perception*unsampled.matrix inactive.perception=combined.perception*sampled.matrix inactive.perception[inactive.perception<k]<-0 inactive.perception[inactive.perception>=k]<-1 alpha.num=sum((inactive.perception-exact)==1) alpha.denom=sum(sampled.matrix-exact) alpha=alpha.num/alpha.denom beta.num=sum(inactive.perception<exact) beta.denom=(sum(exact)+0.000001) beta=beta.num/beta.denom updated.perception=active.perception+contribution2perception final.perception=updated.perception final.perception[final.perception<k]<-0 estimated=exact+final.perception estimated[estimated>=1]<-1 output=list(estimated,alpha,beta,alpha.num,alpha.denom,beta.num,beta.denom) names(output)=c("estimatedNetwork","type1Error","type2Error","type1Count","type1Instances","type2Count","type2Instances") return(output) }
`as.ts.permat` <- function(x, type = "bray", ...) { type <- match.arg(type, c("bray", "chisq")) out <- summary(x)[[type]] if (!is.ts(out)) { seqmethods <- sapply(make.commsim(), function(z) make.commsim(z)$isSeq) seqmethods <- names(seqmethods)[seqmethods] stop(gettextf("as.ts available only for sequential methods %s", paste(seqmethods, collapse=", "))) } out }
bipartition <- function(A, tol = 1e-5, maxit = 100, nonneg = TRUE, samples = 1:ncol(A), seed = NULL, verbose = FALSE, calc_dist = FALSE, diag = TRUE){ if (is(A, "sparseMatrix")) { A <- as(A, "dgCMatrix") } else if (canCoerce(A, "matrix")) { A <- as.matrix(A) } else stop("'A' was not coercible to a matrix") if(!is.numeric(seed)) seed <- 0 if(min(samples) == 0) stop("sample indices must be strictly positive") if(max(samples) > ncol(A)) stop("sample indices must be strictly less than the number of columns in 'A'") samples <- samples - 1 if(class(A) == "dgCMatrix"){ Rcpp_bipartition_sparse(A, tol, maxit, nonneg, samples, seed, verbose, calc_dist, diag) } else { Rcpp_bipartition_dense(A, tol, maxit, nonneg, samples, seed, verbose, calc_dist, diag) } }
if(FALSE) mahalanobis. <- function(x, center, cov, inverted=FALSE, ...) { x <- if(is.vector(x)) matrix(x, ncol=length(x)) else as.matrix(x) x <- t(sweep(x, 2, center)) setNames(colSums(x * if(inverted) cov%*%x else solve(cov, x, ...)), rownames(x)) } mahalanobis <- function(x, center, cov, inverted=FALSE, ...) { x <- if(is.vector(x)) matrix(x, ncol=length(x)) else as.matrix(x) if(!isFALSE(center)) x <- sweep(x, 2L, center) if(!inverted) cov <- solve(cov, ...) setNames(rowSums(x %*% cov * x), rownames(x)) }
concat.split.compact <- function(data, split.col, sep = ",", drop = FALSE, fixed = TRUE, ...) { .Deprecated("cSplit") cSplit(indt = data, splitCols = split.col, sep = sep, drop = drop, fixed = fixed, direction = "wide", ...) } NULL cSplit_e <- concat.split.expanded <- function(data, split.col, sep = ",", mode = NULL, type = "numeric", drop = FALSE, fixed = TRUE, fill = NA) { if (is.numeric(split.col)) split.col <- Names(data, split.col) if (!is.character(data[[split.col]])) a <- as.character(data[[split.col]]) else a <- data[[split.col]] if (is.null(mode)) mode = "binary" b <- strsplit(a, sep, fixed = fixed) b <- lapply(b, trim) temp1 <- switch( type, character = { temp1 <- charMat(b, fill = fill, mode = mode) colnames(temp1) <- paste(split.col, colnames(temp1), sep = "_") temp1 }, numeric = { nchars <- max(nchar(unlist(b, use.names = FALSE))) temp1 <- numMat(b, fill = fill, mode = mode) colnames(temp1) <- paste(split.col, .pad(seq_len(ncol(temp1))), sep = "_") temp1 }, stop("'type' must be either 'character' or 'numeric'")) if (isTRUE(drop)) { if (is.data.table(data)) { cbind(data, temp1)[, (split.col) := NULL][] } else { cbind(data[othernames(data, split.col)], temp1) } } else cbind(data, temp1) } NULL cSplit_l <- concat.split.list <- function(data, split.col, sep = ",", drop = FALSE, fixed = FALSE) { if (is.numeric(split.col)) split.col <- Names(data, split.col) a <- .stripWhite(data[[split.col]], sep) varname <- paste(split.col, "list", sep="_") b <- strsplit(a, sep, fixed = fixed) if (suppressWarnings(is.na(try(max(as.numeric(na.omit(unlist(b)))))))) { data[[varname]] <- I(b) } else if (!is.na(try(max(as.numeric(na.omit(unlist(b))))))) { data[[varname]] <- I(lapply(b, as.numeric)) } if (isTRUE(drop)) { if (is.data.table(data)) { data[, (split.col) := NULL][] } else { data[othernames(data, split.col)] } } else data } NULL concat.split <- function(data, split.col, sep = ",", structure = "compact", mode = NULL, type = NULL, drop = FALSE, fixed = FALSE, fill = NA, ...) { M1 <- paste( c("", "'mode' supplied but ignored.", "'mode' setting only applicable", "when structure = 'expanded'"), collapse = " ") M2 <- paste( c("", "'type' supplied but ignored.", "'type' setting only applicable", "when structure = 'expanded'"), collapse = " ") temp <- switch( structure, compact = { if (!is.null(mode)) warning(M1) if (!is.null(type)) warning(M2) cSplit(indt = data, splitCols = split.col, sep = sep, drop = drop, fixed = fixed) }, list = { if (!is.null(mode)) warning(M1) if (!is.null(type)) warning(M2) cSplit_l(data = data, split.col = split.col, sep = sep, drop = drop, fixed = fixed) }, expanded = { cSplit_e(data = data, split.col = split.col, sep = sep, mode = mode, type = type, drop = drop, fixed = fixed, fill = fill) }, stop("'structure' must be either 'compact', 'expanded', or 'list'")) temp } NULL concat.split.multiple <- function(data, split.cols, seps = ",", direction = "wide", ...) { .Deprecated("cSplit") message("This function is deprecated. Use `cSplit` instead.") cSplit(indt = data, splitCols = split.cols, sep = seps, direction = direction, ...) } NULL
extract_vars = function(f) { assert_formula(f) res = named_list(c("lhs", "rhs")) res$lhs = if (length(f) == 2L) character(0L) else all.vars(f[[2L]]) res$rhs = all.vars(f[[length(f)]]) res }
NULL which_ttf2pt1 <- function() { if (.Platform$OS.type == "unix") { bin <- "ttf2pt1" binpath <- file.path(inst_path(), "exec", .Platform$r_arch, bin) if (!file.exists(binpath)) binpath <- file.path(inst_path(), "exec", "i386", bin) } else if (.Platform$OS.type == "windows") { bin <- "ttf2pt1.exe" binpath <- file.path(inst_path(), "exec", bin) } else { stop("Unknown platform: ", .Platform$OS.type) } if (file.exists(binpath)) return(binpath) binpath <- Sys.which(bin) if (binpath == "") stop(bin, " not found in path.") else return(binpath) } inst_path <- function() { envname <- environmentName(environment(inst_path)) if (envname == "Rttf2pt1") { system.file(package = "Rttf2pt1") } else { srcfile <- attr(attr(inst_path, "srcref"), "srcfile") file.path(dirname(dirname(srcfile$filename)), "inst") } }
ttest.func <- function(x,y,s0=0, sd=NULL) { n1 <- sum(y==1) n2 <- sum(y==2) p <- nrow(x) m1 <- rowMeans(x[,y==1,drop=F]) m2 <- rowMeans(x[,y==2,drop=F]) if(is.null(sd)) { sd <- sqrt( ((n2-1) * varr(x[, y==2], meanx=m2) + (n1-1) * varr(x[, y==1], meanx=m1) )*(1/n1+1/n2)/(n1+n2-2) ) } numer <- m2 - m1 dif.obs <- (numer)/(sd + s0) return(list(tt=dif.obs,numer=numer, sd=sd)) }
wy=function(y,x,d,wx=0.1,wy_seq=seq(0.1,1,by=.1),wh=1.5, B=500,xdensity="normal",method="FM"){ space="pdf" if(wy_seq[1]==0){ stop("Error!: hy/st2 Sequence should not start with zero") } if(method!="FM" || method!="CM"){ stop("Error!: method should be either 'FM' or 'CM'") } hy=wy_seq dj=matrix(0,nrow=B,ncol=1) dist.r=matrix(0,nrow=length(hy),ncol=1) y=as.matrix(y) pb <- txtProgressBar(min = 0, max = length(hy), style = 3) p=ncol(x) n=nrow(x) for(j in 1:length(hy)){ Hy=hy[j] xy.dr =itdr(y, x, d,wx,Hy,wh,space="pdf",xdensity,method) s_d = xy.dr$eta_hat dataframe=data.frame(y,x) boost.df=dataframe[sample(nrow(x),n,replace = TRUE),] for(jj in 1:B){ boost.df=dataframe[sample(nrow(x),n,replace = TRUE),] y.boostrap=boost.df[,1] x.boostrap=boost.df[,-c(1)] xy.dr =itdr(y.boostrap, x.boostrap, d,wx,Hy,wh,space="pdf",xdensity,method) s_dj = xy.dr$eta_hat dist.dj=dsp(s_dj,s_d) dj[jj]=dist.dj$r } dist.r[j,1]=mean(dj) setTxtProgressBar(pb, j) } close(pb) disttab=data.frame(hy=wy_seq,dbar=dist.r) hy.hat=wy_seq[which.min(dist.r)] list(dis_wy=disttab,wy.hat=hy.hat) }
knitr::opts_chunk$set( collapse = TRUE, comment = " warning = F, fig.align = "center" ) devtools::load_all() library(tidyverse) library(tibbletime) tidyverse_cran_downloads tidyverse_cran_downloads_anomalized <- tidyverse_cran_downloads %>% time_decompose(count, merge = TRUE) %>% anomalize(remainder) %>% time_recompose() tidyverse_cran_downloads_anomalized %>% glimpse() tidyverse_cran_downloads_anomalized %>% plot_anomalies(ncol = 3, alpha_dots = 0.25) lubridate_daily_downloads <- tidyverse_cran_downloads %>% filter(package == "lubridate") %>% ungroup() lubridate_daily_downloads lubridate_daily_downloads_anomalized <- lubridate_daily_downloads %>% time_decompose(count) %>% anomalize(remainder) %>% time_recompose() lubridate_daily_downloads_anomalized %>% glimpse() p1 <- lubridate_daily_downloads_anomalized %>% plot_anomaly_decomposition() + ggtitle("Freq/Trend = 'auto'") p1 get_time_scale_template() p2 <- lubridate_daily_downloads %>% time_decompose(count, frequency = "auto", trend = "2 weeks") %>% anomalize(remainder) %>% plot_anomaly_decomposition() + ggtitle("Trend = 2 Weeks (Local)") p1 p2 time_scale_template() %>% mutate(trend = ifelse(time_scale == "day", "2 weeks", trend)) %>% set_time_scale_template() get_time_scale_template() p3 <- lubridate_daily_downloads %>% time_decompose(count) %>% anomalize(remainder) %>% plot_anomaly_decomposition() + ggtitle("Trend = 2 Weeks (Global)") p3 time_scale_template() %>% set_time_scale_template() get_time_scale_template() p4 <- lubridate_daily_downloads %>% time_decompose(count) %>% anomalize(remainder, alpha = 0.05, max_anoms = 0.2) %>% time_recompose() %>% plot_anomalies(time_recomposed = TRUE) + ggtitle("alpha = 0.05") p4 p5 <- lubridate_daily_downloads %>% time_decompose(count) %>% anomalize(remainder, alpha = 0.025, max_anoms = 0.2) %>% time_recompose() %>% plot_anomalies(time_recomposed = TRUE) + ggtitle("alpha = 0.025") p4 p5 p6 <- lubridate_daily_downloads %>% time_decompose(count) %>% anomalize(remainder, alpha = 0.3, max_anoms = 0.2) %>% time_recompose() %>% plot_anomalies(time_recomposed = TRUE) + ggtitle("20% Anomalies") p7 <- lubridate_daily_downloads %>% time_decompose(count) %>% anomalize(remainder, alpha = 0.3, max_anoms = 0.05) %>% time_recompose() %>% plot_anomalies(time_recomposed = TRUE) + ggtitle("5% Anomalies") p6 p7
require("dplyr", warn.conflicts = FALSE) require('base', warn.conflicts = FALSE)
context("hypothesis tests work with default arguments for different kinds of mainlm argument") htest <- c("anscombe", "bamset", "bickel", "breusch_pagan", "carapeto_holt", "cook_weisberg", "diblasi_bowman", "evans_king", "glejser", "goldfeld_quandt", "harrison_mccabe", "harvey", "honda", "horn", "li_yao", "rackauskas_zuokas", "simonoff_tsai", "szroeter", "verbyla", "white_lm", "wilcox_keselman", "zhou_etal") test_that("simple linear regression works with default arguments and gives same p-value for lm or list mainlm argument", { skip_on_cran() carslm <- lm(dist ~ speed, data = cars) carslist <- list("y" = cars$dist, "X" = cbind(1, cars$speed)) carslmpvals <- unlist(lapply(htest, function(h) do.call(what = h, args = list("mainlm" = carslm))$p.value)) carslistpvals <- unlist(lapply(htest, function(h) do.call(what = h, args = list("mainlm" = carslist))$p.value)) lapply(carslmpvals, function(x) expect_true(is.btwn01(x))) expect_equal(carslmpvals, carslistpvals) }) test_that("simple linear regression through origin works with default arguments and gives same p-value for lm or list mainlm argument", { skip_on_cran() carslm0 <- lm(dist ~ 0 + speed, data = cars) carslist0 <- list("y" = cars$dist, "X" = as.matrix(cars$speed)) carslm0pvals <- unlist(lapply(htest, function(h) do.call(what = h, args = list("mainlm" = carslm0))$p.value)) carslist0pvals <- unlist(lapply(htest, function(h) do.call(what = h, args = list("mainlm" = carslist0))$p.value)) lapply(carslm0pvals, function(x) expect_true(is.btwn01(x))) expect_equal(carslm0pvals, carslist0pvals) }) test_that("lm (list) with NA's works with default arguments", { skip_on_cran() ChickWeight2 <- rbind(ChickWeight, NA) chicklistNA <- list("y" = ChickWeight2$weight, "X" = cbind(1, ChickWeight2$Time)) lapply(htest, function(h) expect_true(is.btwn01(do.call(what = h, args = list("mainlm" = chicklistNA))$p.value))) }) test_that("multiple linear regression works with default arguments and gives same p-value for lm or list mainlm argument", { skip_on_cran() chicklm <- lm(weight ~ Time + Diet, data = ChickWeight) chicklist <- list("y" = ChickWeight$weight, "X" = stats::model.matrix(chicklm)) chicklmpvals <- unlist(lapply(htest, function(h) do.call(what = h, args = list("mainlm" = chicklm))$p.value)) chicklistpvals <- unlist(lapply(htest, function(h) do.call(what = h, args = list("mainlm" = chicklist))$p.value)) lapply(chicklmpvals, function(x) expect_true(is.btwn01(x))) expect_equal(chicklmpvals, chicklistpvals) }) htest_nosimonoff <- setdiff(htest, "simonoff_tsai") test_that("large multiple linear regression (BostonHousing) works with default arguments", { skip_on_cran() bostonlm <- lm(medv ~ crim + zn + indus + chas + nox + rm + age + dis + rad + tax + ptratio + b + lstat, data = BostonHousing) bostonlmpvals <- unlist(lapply(htest_nosimonoff, function(h) do.call(what = h, args = list("mainlm" = bostonlm))$p.value)) lapply(bostonlmpvals, function(x) expect_true(is.btwn01(x))) }) test_that("multiple linear regression through origin works with default arguments and gives same p-value for lm or list mainlm argument", { skip_on_cran() chicklm0 <- lm(weight ~ 0 + Time + Diet, data = ChickWeight) chicklist0 <- list("y" = ChickWeight$weight, "X" = stats::model.matrix(chicklm0)) chicklm0pvals <- unlist(lapply(htest, function(h) do.call(what = h, args = list("mainlm" = chicklm0))$p.value)) chicklist0pvals <- unlist(lapply(htest, function(h) do.call(what = h, args = list("mainlm" = chicklist0))$p.value)) lapply(chicklm0pvals, function(x) expect_true(is.btwn01(x))) expect_equal(chicklm0pvals, chicklist0pvals) }) test_that("multiple linear regression with random data in vectors rather than data frames works with default arguments and gives same p-value for lm or list mainlm argument", { skip_on_cran() myn <- 10 myp <- 3 myX <- matrix(data = runif(myn * myp), nrow = myn, ncol = myp) myy <- rnorm(myn, mean = rowMeans(myX), sd = rowMeans(myX)) mylm <- lm(myy ~ myX) mylist <- list("y" = myy, "X" = cbind(1, myX)) mylmpvals <- unlist(lapply(htest_nosimonoff, function(h) do.call(what = h, args = list("mainlm" = mylm))$p.value)) mylistpvals <- unlist(lapply(htest_nosimonoff, function(h) do.call(what = h, args = list("mainlm" = mylist))$p.value)) lapply(mylmpvals, function(x) expect_true(is.btwn01(x))) expect_equal(mylmpvals, mylistpvals) })
rb <- function(str) mark(str, F, '()')
test_that("NHL - Get NHL draft", { skip_on_cran() x <- nhl_draft() cols <- c( "year", "round", "pick_overall", "pick_in_round", "team_id", "team_name", "team_link", "prospect_id", "prospect_full_name", "prospect_link" ) expect_equal(colnames(x), cols) expect_s3_class(x, 'data.frame') })
NULL "SCP16"
get_linelist <- function(clean = TRUE, report_delay_only = FALSE) { deprecate_warn( when = "0.9.0", what = "covidregionaldata::get_linelist()", details = c( "Linelist no longer accessible through this package.", "The line list is now hosted at: https://global.health/" ) ) tmpdir <- tempdir() linelist <- try(csv_reader(file.path(tmpdir, "latestdata.csv"))) if (any(class(linelist) %in% "try-error")) { message("Downloading linelist") url <- "https://github.com/beoutbreakprepared/nCoV2019/raw/master/latest_data/latestdata.tar.gz" download.file(url, destfile = file.path(tmpdir, "tmp.tar.gz")) untar(file.path(tmpdir, "tmp.tar.gz"), files = "latestdata.csv", exdir = tmpdir ) linelist <- try(csv_reader(file.path(tmpdir, "latestdata.csv"))) if (any(class(linelist) %in% "try-error")) { if (nrow(linelist) == 1) { stop("Problem reading linelist") } else { stop("Problem getting linelist source") } } } if (clean | report_delay_only) { linelist <- linelist %>% mutate( date_confirm = suppressWarnings(lubridate::dmy(.data$date_confirmation)), date_onset = suppressWarnings(lubridate::dmy(.data$date_onset_symptoms)), date_admission_hospital = suppressWarnings(lubridate::dmy(.data$date_admission_hospital)), date_death_or_discharge = suppressWarnings(lubridate::dmy(.data$date_death_or_discharge)), death = ifelse(.data$outcome %in% c( "dead", "death", "died", "deceases", "Dead", "Death", "Died", "Deceased" ), TRUE, FALSE), delay_onset_report = as.integer(as.Date(.data$date_confirm) - as.Date(.data$date_onset)), delay_onset_admission = as.integer(as.Date(.data$date_admission_hospital) - as.Date(.data$date_onset)), delay_onset_death = ifelse(.data$death == TRUE, as.integer(as.Date(.data$date_death_or_discharge) - as.Date(.data$date_onset)), NA ) ) %>% select( id = .data$ID, .data$country, .data$death, .data$date_onset, .data$date_confirm, .data$date_admission_hospital, .data$date_death_or_discharge, .data$delay_onset_report, .data$delay_onset_admission, .data$delay_onset_death ) } if (report_delay_only) { linelist <- dplyr::filter( linelist, !is.na(.data$delay_onset_report) ) %>% dplyr::select( .data$id, .data$country, .data$date_onset, .data$delay_onset_report ) } message("Note: This line list covers January to June 2020. We will update when a new data source becomes available.") return(linelist) }
context("IRI computation") test_that("First test", { profile <- rnorm(10000) iri <- CalculateIRIperSegments(profile, IRI_COEF_100, 20) expect_equal(length(iri), 50) })
logregWBY <- WBYlogreg <- function(x0,y, intercept=1, const=0.5,kmax=1000,maxhalf=10) { sigmamin=0.0001 if (!is.numeric(y)) y <- as.numeric(y) if (!is.null(dim(y))) { if (ncol(y) != 1) stop("y is not onedimensional") y <- as.vector(y) } n <- length(y) x0<-as.matrix(x0) if (nrow(x0) != n) stop("Number of observations in x and y not equal") na.x <- !is.finite(rowSums(x0)) na.y <- !is.finite(y) ok <- !(na.x | na.y) if (!all(ok)) { x0 <- x0[ok, , drop = FALSE] y <- y[ok] } n <- nrow(x0) if (n == 0) stop("All observations have missing values!") p<-ncol(x0) family <- binomial() p<-dim(x0)[2] zz<-rep(0,p) for (i in 1:p) {zz[i]<-sum((x0[,i]==0)|(x0[,i]==1))} tt<-which(zz!=n) p1<-length(tt) x0=as.matrix(x0,n,p) x00<-x0[,tt] if(p1==1) {rdx<-abs(x00-median(x00))/mad(x00) wrd<-(rdx<=qnorm(.9875))} if(p1>1) { mcdx <- robustbase::covMcd(x00,alpha=.75) rdx <- mahalanobis(x00,center=mcdx$center,cov=mcdx$cov) vc<-qchisq(0.975,p) wrd<-(rdx<=vc)} if(p1==0) {wrd=1:n} if (intercept==1) {out<-glm(y[wrd]~x0[wrd,], family = family) x <- cbind(Intercept = 1, x0)} if (intercept==0) {out<-glm(y[wrd]~x0[wrd,]-1, family = family) x<-x0} gstart<-out$coeff p=ncol(x) sigmastart=1/sqrt(sum(gstart^2)) xistart=gstart*sigmastart x0v=x0 xv=x nv=n yv=y x0=x0[wrd,] y=y[wrd] x=x[wrd,] n=sum(wrd) stscores=x %*% xistart oldobj=mean(phiBY3(stscores/sigmastart,y,const)) kstep=1 jhalf=1 while (( kstep < kmax) & (jhalf<maxhalf)) { optimsig=optimize(sigmaBY3,lower=0,upper=10^3,y=y,s=stscores,c3=const) sigma1=optimsig$minimum if (sigma1<sigmamin) { print("Explosion");kstep=kmax } else { gamma1=xistart/sigma1 scores=stscores/sigma1 newobj=mean(phiBY3(scores,y,const)) oldobj=newobj gradBY3=apply((derphiBY3(scores,y,const)%*%t(rep(1,p)))*x,2,mean) h=-gradBY3+(sum(gradBY3 * xistart) *xistart) finalstep=h/sqrt(sum(h^2)) xi1=xistart+finalstep xi1=xi1/(sum(xi1^2)) scores1=(x%*%xi1)/sigma1 newobj=mean(phiBY3(scores1,y,const)) hstep=1 jhalf=1 while ((jhalf <=maxhalf) & (newobj>oldobj)) { hstep=hstep/2 xi1=xistart+finalstep*hstep xi1=xi1/sqrt(sum(xi1^2)) scores1=x%*%xi1/sigma1 newobj=mean(phiBY3(scores1,y,const)) jhalf=jhalf+1 } if ((jhalf==maxhalf+1) & (newobj>oldobj)) { } else { jhalf=1 xistart=xi1 oldobj=newobj stscores=x%*% xi1 kstep=kstep+1 } } } if (kstep == kmax) {print("No convergence") resultat=list(convergence=F,objective=0,coef=t(rep(NA,p))) resultat} else { gammaest=xistart/sigma1 stander=sterby3(x,y,const,gammaest) fitted.linear<- xv%*%gammaest fitted.linear<-pmin(fitted.linear,1e2) fitted.values<-exp(fitted.linear)/(1+exp(fitted.linear)) residual.deviances<-sign(yv-fitted.values)*sqrt(-2*(yv*log(fitted.values)+(1-yv)*log(1-fitted.values))) result <-list(convergence=TRUE,objective=oldobj, coefficients=gammaest, standard.deviation=stander,fitted.values=t(fitted.values), residual.deviances= t(residual.deviances)) result } } phiBY3=function(s,y,c3) { s=as.double(s) dev=log(1+exp(-abs(s)))+abs(s)*((y-0.5)*s<0) res=rhoBY3(dev,c3)+GBY3Fs(s,c3)+GBY3Fsm(s,c3) res } rhoBY3 <- function(t,c3) { (t*exp(-sqrt(c3))*as.numeric(t <= c3))+ (((exp(-sqrt(c3))*(2+(2*sqrt(c3))+c3))-(2*exp(-sqrt(t))*(1+sqrt(t))))*as.numeric(t >c3)) } psiBY3 <- function(t,c3) { (exp(-sqrt(c3))*as.numeric(t <= c3))+(exp(-sqrt(t))*as.numeric(t >c3)) } derpsiBY3 <- function(t,c3) { (0*as.numeric(t <= c3))+(-(exp(-sqrt(t))/(2*sqrt(t)))*as.numeric(t >c3)) } sigmaBY3<-function(sigma,s,y,c3) { mean(phiBY3(s/sigma,y,c3)) } derphiBY3=function(s,y,c3) { Fs= exp(-(log(1+exp(-abs(s)))+abs(s)*(s<0))) ds=Fs*(1-Fs) dev=log(1+exp(-abs(s)))+abs(s)*((y-0.5)*s<0) Gprim1=log(1+exp(-abs(s)))+abs(s)*(s<0) Gprim2=log(1+exp(-abs(s)))+abs(s)*(s>0) -psiBY3(dev,c3)*(y-Fs)+((psiBY3(Gprim1,c3)-psiBY3(Gprim2,c3))*ds) } der2phiBY3=function(s,y,c3) { s=as.double(s) Fs= exp(-(log(1+exp(-abs(s)))+abs(s)*(s<0))) ds=Fs*(1-Fs) dev=log(1+exp(-abs(s)))+abs(s)*((y-0.5)*s<0) Gprim1=log(1+exp(-abs(s)))+abs(s)*(s<0) Gprim2=log(1+exp(-abs(s)))+abs(s)*(s>0) der2=(derpsiBY3(dev,c3)*(Fs-y)^2)+(ds*psiBY3(dev,c3)) der2=der2+(ds*(1-2*Fs)*(psiBY3(Gprim1,c3)-psiBY3(Gprim2,c3))) der2=der2-(ds*((derpsiBY3(Gprim1,c3)*(1-Fs))+(derpsiBY3(Gprim2,c3)*Fs))) der2 } GBY3Fs <- function(s,c3) { Fs= exp(-(log(1+exp(-abs(s)))+abs(s)*(s<0))) resGinf=exp(0.25)*sqrt(pi)*(pnorm(sqrt(2)*(0.5+sqrt(-log(Fs))))-1) resGinf=(resGinf+(Fs*exp(-sqrt(-log(Fs)))))*as.numeric(s <= -log(exp(c3)-1)) resGsup=((Fs*exp(-sqrt(c3)))+(exp(0.25)*sqrt(pi)*(pnorm(sqrt(2)*(0.5+sqrt(c3)))-1)))*as.numeric(s > -log(exp(c3)-1)) resG=resGinf+resGsup resG } GBY3Fsm <- function(s,c3) { Fsm=exp(-(log(1+exp(-abs(s)))+abs(s)*(s>0))) resGinf=exp(0.25)*sqrt(pi)*(pnorm(sqrt(2)*(0.5+sqrt(-log(Fsm))))-1) resGinf=(resGinf+(Fsm*exp(-sqrt(-log(Fsm)))))*as.numeric(s >= log(exp(c3)-1)) resGsup=((Fsm*exp(-sqrt(c3)))+(exp(0.25)*sqrt(pi)*(pnorm(sqrt(2)*(0.5+sqrt(c3)))-1)))*as.numeric(s < log(exp(c3)-1)) resG=resGinf+resGsup resG } sterby3 <- function(z,y,const,estim) { n=dim(z)[[1]] p=dim(z)[[2]] argum=z %*% estim matM=matrix(data=0,nrow=p,ncol=p) for (i in 1:n) { matM=matM+(der2phiBY3(argum[i],y[i],const) * (z[i,] %*% t(z[i,]))) } matM=matM/n matMinv=solve(matM) IFsquar=matrix(data=0,nrow=p,ncol=p) for (i in 1:n) { IFsquar=IFsquar+((derphiBY3(argum[i],y[i],const))^2 * (z[i,] %*% t(z[i,]))) } IFsquar=IFsquar/n asvBY=matMinv %*% IFsquar %*% t(matMinv) sqrt(diag(asvBY))/sqrt(n) }
print.stslist.rep <- function(x, ...) { criterion <- attr(x,"criterion") nbseq <- attr(x,"nbseq") quality <- attr(x,"Quality") cat("\n [>] criterion:",criterion,"\n") cat(" [>]", nbseq,"sequence(s) in the original data set\n") cat(" [>]", nrow(x),"representative sequence(s)\n") cat(" [>] overall quality:", round(quality*100,2),"\n\n") NextMethod(x,...) } summary.stslist.rep <- function(object, ...) { criterion <- attr(object,"criterion") nbseq <- attr(object,"nbseq") quality <- attr(object,"Quality") cat("\n [>] criterion:",criterion,"\n") cat(" [>]", nbseq,"sequence(s) in the original data set\n") cat(" [>]", nrow(object),"representative sequences\n") cat(" [>] overall quality:", quality,"\n") cat(" [>] statistics for the representative set:\n\n") print(attr(object,"Statistics"), digits=3, ...) cat("\n na: number of assigned objects\n") cat(" nb: number of objects in the neighborhood\n") cat(" SD: sum of the na distances to the representative\n") cat(" MD: mean of the na distances to the representative\n") cat(" DC: sum of the na distances to the center of the complete set\n") cat(" V: discrepancy of the subset\n") cat(" Q: quality of the representative\n") }
lands.cond.t.prop.density.polar <- function (theta, nu, zeta) { exp((nu - 1) * log(cos(theta)) - (nu/2) * log(nu) + (1 + nu) * zeta * sin(theta)) }
print.mave.dim<-function(x,...){ cat('\nCall:\n',paste(deparse(x$call),sep="\n",collapse="\n"),"\n\n",sep="") arg='central space' if(substr(x$method,1,2)!='CS') arg='central mean space' p=length(x$dir) pp=1 cv = c(x$cv0,x$cv) idx = which(!is.infinite(cv)) - 1 cat('The cross-validation is run on dimensions of',idx,'\n') while(pp<=length(idx)){ np=min(pp+10,length(idx)) cat('Dimension\t') for(i in pp:np) cat(idx[i],'\t') cat('\n') cat('CV-value\t') for(i in pp:np) cat(round(cv[idx[i]+1],2),'\t') cat('\n') pp=np+1 } cat('\n') d=which.min(cv)-1 cat('The selected dimension of ',arg,' is ',d) cat('\n\n') }
calc.pvalue <- function(x, var, test=c(upper=FALSE,lower=FALSE,twoSided=TRUE)) { a <- pnorm(x/sqrt(var)) cbind(if(test['upper']) 1 - a, if(test['lower']) a, if(test['twoSided']) 2 * ifelse(a > 0.5, 1 - a, a)) }
set_threshold <- function(x, col_name, out_name = NULL, threshold, case = '>='){ check_class(argument = x, target = 'data.frame', arg_name = 'x') check_class(argument = x[ , 1], target = c('Date', 'POSIXct') , arg_name = 'x[ , 1]') check_class(argument = c( as.matrix( x[ , -1] ) ), target = c('numeric') , arg_name = 'x[ , -1]') check_class(argument = col_name, target = 'character', arg_name = 'col_name') check_string(argument = col_name, target = colnames(x)[-1], arg_name = 'col_name') if( !is.null(out_name) ){ check_class(argument = out_name, target = 'character', arg_name = 'out_name') guess <- which( match(x = out_name, table = colnames(x) ) >= 1 ) if( length(guess) != 0){ error_message <- paste0('Please check for ', out_name, ' argument. The following strins are forbidden: ', paste( colnames(x) , collapse = ', '), '.') stop( error_message, call. = FALSE ) } check_cross(ref_arg = col_name, eval_arg = out_name, arg_names = c('col_name', 'out_name') ) } n_it <- length(col_name) check_class(argument = threshold, target = c('numeric'), arg_name = 'threshold') if( n_it > 1 & length(threshold == 1) ){ threshold <- rep(threshold, n_it) } else { check_cross(ref_arg = col_name, eval_arg = threshold, arg_names = c('col_name', 'threshold') ) } check_class(argument = case, target = c('character'), arg_name = 'case') if( n_it > 1 & length(case == 1) ){ case <- rep(case, n_it) } else { check_cross(ref_arg = col_name, eval_arg = case, arg_names = c('col_name', 'case') ) } mat_target <- x[ , col_name, drop = FALSE] %>% as.matrix() mat_thr <- mat_target for(i in 1:n_it){ if(case[i] == '>='){ pos <- which(mat_target[ , i] >= threshold[i]) mat_thr[pos, i] <- NA_real_ } else if(case[i] == '<='){ pos <- which(mat_target[ , i] <= threshold[i]) mat_thr[pos, i] <- NA_real_ } else{ stop( paste0('Only >= and <= are allowed for case argument!'), call. = FALSE) } } if( !is.null(out_name) ){ colnames(mat_thr) <- out_name df_out <- x df_out[ , out_name] <- mat_thr } else { df_out <- x df_out[ , col_name] <- mat_thr } df_out[ , -1] <- as.matrix( df_out[ , -1] ) return(df_out) }
library(ggplot2) receive_point <- function(y) { geom_point( mapping = aes(shape = shape), data = data.frame( x = 0, y = y, shape = "receive" ), size = 4 ) } return_point <- function(x, y) { geom_point( mapping = aes(shape = shape), data = data.frame( x = x, y = y, shape = "return" ), size = 3 ) } working_line <- function(x, y) { geom_line( mapping = aes(group = y, linetype = linetype), data = data.frame( x = x, y = y, linetype = "working" ), size = 2 ) } waiting_line <- function(x, y, group = y) { geom_line( mapping = aes(group = group, linetype = linetype), data = data.frame( x = x, y = y, linetype = "waiting", group = group ) ) } save_image <- function(p, file, height = 4, width = 6, ...) { p <- p + theme(aspect.ratio = 100/150) ggsave(file, p, height = height, width = NA, ...) } route_type_guide <- function( future_values = NULL, plumber_values, promise_values = NULL ) { values <- c() values[plumber_values] <- " labels <- "plumber" breaks <- plumber_values[1] if (!is.null(future_values)) { values[future_values] <- " labels <- c("plumber + future", labels) breaks <- c(future_values[1], breaks) } if (!is.null(promise_values)) { values[promise_values] <- " labels <- c("plumber + future_promise", labels) breaks <- c(promise_values[1], breaks) } scale_color_manual( name = "Route Type", values = values, labels = labels, breaks = breaks, guide = guide_legend( order = 1, override.aes = list( size = 1 ) ) ) } status_guide <- function(waiting = TRUE, promise = FALSE) { scale_linetype_manual( name = "Status", values = c( if (waiting) c(waiting = "dashed"), working = "solid" ), breaks = c(if (waiting) "waiting", "working"), labels = if (promise) c("Waiting in promise", "Working in future") else c(if (waiting) "Waiting", "Working"), guide = guide_legend( order = 3, override.aes = list( linetype = c(if (waiting) "dashed", "solid"), size = c(if (waiting) 0.5, 1.5) ) ) ) } constants <- list( labs( x = "time (s)", y = NULL ), xlim(0, 20), scale_shape_manual( name = "Execution", values = c( "startend" = "X", "receive" = "|", "return" = "circle" ), breaks = c("receive", "startend", "return"), labels = c("Receive", "Process", "Respond"), guide = guide_legend(order = 2) ), status_guide() ) p <- ggplot(mapping = aes(x = x, y = y)) + geom_point( data = data.frame(x = c(0, 0, 10, 10), y = c("a", "b", "b", "c")), color = "transparent" ) + scale_y_discrete( limits = rev(letters[1:3]), labels = c("/fast", "/slow", "/fast") ) + constants save_image(p, "images/timing-blank.png") p <- ggplot(mapping = aes(x = x, y = y, color = y)) + receive_point(letters[1:4]) + return_point( c(0, 10, 20, 20), letters[1:4] ) + working_line( x = c(0, 10, 10, 20), y = c("b", "b", "c", "c") ) + waiting_line( x = c(0, 10, 0, 20), y = c("c", "c", "d", "d") ) + route_type_guide(NULL, letters[1:4]) + scale_y_discrete( limits = rev(letters[1:4]), labels = c("/fast/4", "/slow/3", "/slow/2", "/fast/1") ) + constants save_image(p, "images/timing-plumber.png", width = 5.5) p <- ggplot(mapping = aes(x = x, y = y, color = y)) + receive_point(letters[1:4]) + return_point( c(0, 10, 10, 0), letters[1:4] ) + waiting_line( x = c(0, 0), y = c("b", "b") ) + working_line( x = c(0, 10, 0, 10), y = c("b", "b", "c", "c") ) + route_type_guide(c("b", "c"), c("a", "d")) + scale_y_discrete( limits = rev(letters[1:4]), labels = c("/fast/4", "/slow/3", "/slow/2", "/fast/1") ) + constants save_image(p, "images/timing-plumber-future.png") p <- ggplot(mapping = aes(x = x, y = y, color = y)) + receive_point(letters[2:6]) + return_point( x = c(10, 10, 20, 20, 0), y = letters[2:6] ) + working_line( x = c(0, 10, 0, 10, 10, 20, 10, 20), y = c("b", "b", "c", "c", "d", "d", "e", "e") ) + waiting_line( x = c(0, 10, 0, 10), y = c("d", "d", "e", "e") ) + route_type_guide(c("b", "c", "d", "e"), "f") + scale_y_discrete( limits = c("f", "e", "d", "c", "b"), labels = c("/fast/5", "/slow/4", "/slow/3", "/slow/2", "/slow/1") ) + constants save_image(p, "images/timing-plumber-limitation.png") future_constants <- list( scale_y_discrete( limits = rev(letters[1:7]), labels = c("/fast/7", "/slow/6", "/slow/5", "/slow/4", "/slow/3", "/slow/2", "/slow/1") ), constants[c(-2)], theme( legend.position = "right", ) ) p <- ggplot(mapping = aes(x = x, y = y, color = y)) + receive_point(letters[1:7]) + return_point( c(20, 20, 20, 20, 20, 30, 30), c("g", "a", "b", "c", "d", "e", "f") ) + waiting_line( x = c( 10, 20, 10, 20, 0, 10, 0, 10, 0, 20, 0, 20, 0, 20 ), y = rep(letters[1:7], c(2, 2, 2, 2, 2, 2, 2)), group = c( "a2", "a2", "b2", "b2", "c1", "c1", "d1", "d1", "e1", "e1", "f1", "f1", "g1", "g1" ) ) + working_line( x = c(0, 10, 0, 10, 10, 20, 10, 20, 20, 30, 20, 30), y = rep(letters[1:6], each = 2) ) + route_type_guide(letters[1:6], letters[7]) + future_constants save_image(p, "images/timing-plumber-worker_full-future.png") p <- ggplot(mapping = aes(x = x, y = y, color = y)) + receive_point(letters[1:7]) + return_point( c(0, 10, 10, 20, 20, 30, 30), c("g", "a", "b", "c", "d", "e", "f") ) + geom_line( mapping = aes(group = group, linetype = linetype), data = data.frame( x = c( 0, 10, 0, 10, 0, 20, 0, 20 ), y = rep(c("c", "d", "e", "f"), each = 2), group = c( "c1", "c1", "d1", "d1", "e1", "e1", "f1", "f1" ), linetype = "waiting" ) ) + working_line( x = c(0, 10, 0, 10, 10, 20, 10, 20, 20, 30, 20, 30), y = rep(letters[1:6], each = 2) ) + route_type_guide(promise_values = letters[1:6], plumber_values = letters[7]) + future_constants + status_guide(promise = TRUE) save_image(p, "images/timing-plumber-worker_full-promise.png", width = 6.5)
DupLambda.0<-function( alpha.1, B, Y.ia, Z.i,Z.a, Lambda.0, Lambda.1 ,p.lambda.0){ D<-nrow(B) N<-nrow(Y.ia) rbZ.a=Z.a for(each in 2:nrow(Z.i)){rbZ.a=rbind(Z.a,rbZ.a)} rbZ.i=Z.i[rep(1:nrow(Z.i), times = rep(nrow(Z.a),nrow(Z.i))), ] dnj.ia <- rbZ.a - rbZ.i A.ia <- 1 + 1 / sqrt(det(B)) * exp(- alpha.1) * exp(apply(dnj.ia, 1, function(x) x %*% B %*% x)) f1s2To.ia <- 2 * B %*% (t( dnj.ia / A.ia) %*% dnj.ia) %*% B - sum(1 / A.ia) * B solve((1 / p.lambda.0^2 * N / 2 + sum(Y.ia)) * diag(D) + f1s2To.ia) * N / 2 }
print.summary.fechner <- function(x, ...){ cat("\n") cat("number of stimuli pairs used for comparison:", length(x$pairs.used.for.comparison[, 1]), "\n") cat("\n") cat("summary of corresponding S-index values:\n") print(summary(x$pairs.used.for.comparison[, 2])) cat("\n") cat("summary of corresponding Fechnerian distance G values:\n") print(summary(x$pairs.used.for.comparison[, 3])) cat("\n") cat("Pearson correlation:", x$Pearson.correlation, "\n") cat("\n") cat("C-index:", x$C.index, "\n") cat("\n") cat("comparison level:", x$comparison.level, "\n") cat("\n") invisible(x) }
context("hm_show") path <- system.file('extdata', package = 'hydrotoolbox') cuevas <- hm_create() %>% hm_build(bureau = 'ianigla', path = path, file_name = 'ianigla_cuevas.csv', slot_name = c('tair', 'rh', 'patm', 'precip', 'wspd', 'wdir', 'kin', 'hsnow', 'tsoil'), by = 'hour', out_name = c('tair(°C)', 'rh(%)', 'patm(mbar)', 'p(mm)', 'wspd(km/hr)', 'wdir(°)', 'kin(kW/m2)', 'hsnow(cm)', 'tsoil(°C)' ) ) test_that("obj bad entry", { expect_error( hm_show(obj = cuvas) ) expect_error( hm_show(obj = 'cuevas') ) expect_error( hm_show(obj = TRUE) ) expect_error( hm_show(obj = 1:10) ) }) test_that("slot_name bad entry", { expect_error( hm_show(obj = cuevas, slot_name = c('tair', 'fill') ) ) expect_error( hm_show(obj = cuevas, slot_name = c(month.abb) ) ) expect_error( hm_show(obj = cuevas, slot_name = TRUE ) ) expect_error( hm_show(obj = cuevas, slot_name = 1:10 ) ) }) test_that("slot_name bad entry", { expect_error( hm_show(obj = cuevas, slot_name = 'rh', show = c('head', 'tail') ) ) expect_error( hm_show(obj = cuevas, slot_name = 'rh', show = 'any' ) ) expect_error( hm_show(obj = cuevas, slot_name = 'rh', show = 'any' ) ) expect_error( hm_show(obj = cuevas, slot_name = 'rh', show = TRUE ) ) expect_error( hm_show(obj = cuevas, slot_name = 'rh', show = 1:10 ) ) })
DearBeggMonotone <- function(y, u, lam = 2, maxiter = 1000, CR = 0.9, NP = NA, trace = TRUE){ n <- length(y) k <- 1 + floor(n / 2) teststat <- abs(y) / u p <- 2 * pnorm(-teststat) p0 <- p ind <- order(p) ind <- rev(ind) p <- p[ind] y <- y[ind] u <- u[ind] teststat <- teststat[ind] if (is.na(NP)){size <- 10 * (k + 2)} else {size <- NP} inipop <- matrix(runif(size * (k + 2)), ncol = k + 2, nrow = size, byrow = TRUE) for (i in 1:nrow(inipop)){inipop[i, ] <- c(sort(inipop[i, 1:k]), runif(1, -20, 20), runif(1, 0, 20))} d0 <- DEoptim::DEoptim(fn = DearBeggToMinimize, lower = c(rep(0, k), -20, 0), upper = c(rep(1, k), 20, 50), control = DEoptim.control(strategy = 2, bs = FALSE, NP = size, trace = trace, itermax = maxiter, CR = CR, F = 0.8, initialpop = inipop), y, u, lam) w <- as.numeric(d0$optim$bestmem)[1:k] theta <- as.numeric(d0$optim$bestmem)[k + 1] sigma <- as.numeric(d0$optim$bestmem)[k + 2] hij <- Hij(theta, sigma, y, u, teststat)$Hij ll.DE <- DearBeggLoglik(w, theta, sigma, y, u, hij, lam)$LL res <- list("w" = w, "theta" = theta, "sigma" = sigma, "p" = p, "y" = y, "u" = u, "loglik" = ll.DE, "DEoptim.res" = d0) return(res) }
library(dplyr) library(ggplot2) library(HTSSIP) physeq_S2D2_l padj_cutoff = 0.1 ncores = 2 physeq = physeq_S2D2_l[[1]] physeq physeq %>% sample_data %>% .$Substrate %>% table df_l2fc = HRSIP(physeq, design = ~Substrate, padj_cutoff = padj_cutoff, sparsity_threshold = c(0,0.15,0.3)) df_l2fc %>% head(n=3) df_l2fc %>% filter(padj < padj_cutoff) %>% group_by() %>% summarize(n_incorp_OTUs = OTU %>% unique %>% length) df_l2fc_s = df_l2fc %>% filter(padj < padj_cutoff) %>% mutate(Rank2 = gsub('^__', '', Rank2)) %>% group_by(Rank2) %>% summarize(n_incorp_OTUs = OTU %>% unique %>% length) %>% ungroup() ggplot(df_l2fc_s, aes(Rank2, n_incorp_OTUs)) + geom_bar(stat='identity') + labs(x='Phylum', y='Number of incorporators') + theme_bw() + theme( axis.text.x = element_text(angle=45, hjust=1) ) physeq_S2D2_l %>% length doParallel::registerDoParallel(ncores) df_l2fc = plyr::ldply(physeq_S2D2_l, HRSIP, design = ~Substrate, padj_cutoff = padj_cutoff, sparsity_threshold = c(0,0.15,0.3), .parallel=TRUE) df_l2fc %>% head(n=3) df_l2fc %>% .$.id %>% unique df_l2fc = df_l2fc %>% mutate(.id = gsub(' \\| ', '\n', .id)) df_l2fc %>% .$.id %>% unique df_l2fc %>% filter(padj < padj_cutoff) %>% group_by(.id, sparsity_threshold) %>% summarize(n_incorp_OTUs = OTU %>% unique %>% length) %>% as.data.frame df_l2fc_s = df_l2fc %>% filter(padj < padj_cutoff) %>% mutate(Rank2 = gsub('^__', '', Rank2)) %>% group_by(.id, Rank2) %>% summarize(n_incorp_OTUs = OTU %>% unique %>% length) %>% ungroup() ggplot(df_l2fc_s, aes(Rank2, n_incorp_OTUs)) + geom_bar(stat='identity') + labs(x='Phylum', y='Number of incorporators') + facet_wrap(~ .id, scales='free') + theme_bw() + theme( axis.text.x = element_text(angle=55, hjust=1) ) windows = data.frame(density_min=c(1.70, 1.72, 1.74), density_max=c(1.73, 1.75, 1.77)) windows doParallel::registerDoParallel(ncores) df_l2fc = plyr::ldply(physeq_S2D2_l, HRSIP, density_windows = windows, design = ~Substrate, padj_cutoff = padj_cutoff, sparsity_threshold = c(0,0.15,0.3), .parallel = TRUE) df_l2fc %>% head(n=3) df_l2fc %>% .$.id %>% unique df_l2fc %>% filter(padj < padj_cutoff) %>% group_by(.id, sparsity_threshold) %>% summarize(n_incorp_OTUs = OTU %>% unique %>% length) %>% as.data.frame df_l2fc_s = df_l2fc %>% mutate(.id = gsub(' \\| ', '\n', .id)) %>% filter(padj < padj_cutoff) %>% mutate(density_range = paste(density_min, density_max, sep='-')) %>% group_by(.id, sparsity_threshold, density_range) %>% summarize(n_incorp_OTUs = OTU %>% unique %>% length) ggplot(df_l2fc_s, aes(.id, n_incorp_OTUs, fill=density_range)) + geom_bar(stat='identity', position='fill') + labs(x='Control-treatment comparision', y='Fraction of incorporators') + scale_y_continuous(expand=c(0,0)) + theme_bw() + theme( axis.text.x = element_text(angle=55, hjust=1) ) df_l2fc_s = df_l2fc %>% mutate(.id = gsub(' \\| ', '\n', .id)) %>% filter(padj < padj_cutoff) %>% mutate(Rank2 = gsub('^__', '', Rank2)) %>% group_by(.id, Rank2) %>% summarize(n_incorp_OTUs = OTU %>% unique %>% length) %>% ungroup() ggplot(df_l2fc_s, aes(Rank2, n_incorp_OTUs)) + geom_bar(stat='identity') + labs(x='Phylum', y='Number of incorporators') + facet_wrap(~ .id, scales='free') + theme_bw() + theme( axis.text.x = element_text(angle=55, hjust=1) ) sessionInfo()
rareBiosphere <- function(otutab, siteInCol = TRUE, taxhead= NULL, percent=FALSE, threshold = 1, cutRatio = 100, cutPERare = 5, ...) { if(percent) stop("This function only work for OTUs with absolute reads!") if(!siteInCol){ otutab <- typeConvert(otutab= data.frame(t(otutab),stringsAsFactors = FALSE),taxhead = taxhead)} if(!is.null(taxhead)) { data <- otutab[,which(colnames(otutab) != taxhead)] tax <- otutab[,which(colnames(otutab) == taxhead)] } else data <- otutab per <- sweep(data,2,colSums(data),"/")*100 cutoff <- (which(rowMeans(per)< threshold)) rare <- per[cutoff, ] rare_count <- data[cutoff, ] rowsum = rowSums(rare_count) single = vector(mode="character", length=length(rowsum)) for (z in seq_along(rowsum)) { if (rowsum[z] ==1) single[z] = "Absolute_singleton" else if (rowsum[z] == 2) single[z] = "Doubleton" else single[z] = "Not" } len <- apply(rare, 1, function(x) sum(x>0)) mx <- apply(rare, 1, function(x) max(x)) mn <- apply(rare, 1, function(x) min(x[x>0])) for (k in seq_along(len)) { if (len[k] ==1) mn[k] = 0 else mn } ratio = rep(-1,times=length(len)) for (i in seq_along(len)) { if (len[i] == 1) next else ratio[i] = mx[i]/mn[i] } identifier = vector(mode="character", length=length(ratio)) for (i in 1:length(ratio)) { if (ratio[i] > cutRatio) identifier[i] = 'CRT' else if (ratio[i] < cutPERare) identifier[i] = 'PERare' else identifier[i] = 'OtherRare' } if(!is.null(taxhead)) {tax2 <- tax[cutoff] smy <- data.frame(max_rabund = mx, min_rabund = mn,ratio, RareType = identifier,singleton=single,taxonomy=tax2) } else { smy <- data.frame(max_rabund = mx, min_rabund = mn,ratio, RareType = identifier,singleton=single)} smy[smy$ratio == -1,'ratio'] <- 'n.a.' id.crt <- identifier[identifier == 'CRT'] sumTab = table(identifier) print(paste("Number CRT are", as.vector(sumTab["CRT"]))) print(paste("Number PERare are", as.vector(sumTab["PERare"]))) print(paste("Number OtheRare are", as.vector(sumTab["OtherRare"]))) print(paste("Number absolute singletons are", sum(smy$ratio == 'n.a.'))) print(paste("Number doubletons are", sum(len==2))) out = data.frame(rare_count, smy) output = vector("list", length = 4) output[[1]] <- smy types = c("CRT","PERare","OtherRare") nms <- c("summaryTable","CRT","PERare","otherRare") for(i in 1:length(types)) { output[[i+1]] <- out[identifier == types[i],] } names(output) <- nms return(output) }
install_load <- function (package1, ...) { packages <- c(package1, ...) assert_that(qtest(packages, "S"), msg = "One of the provided package(s) is(are) not a string. Please make sure that each packages is a string.") for (package in packages) { if (package %fin% rownames(installed.packages())) try(do.call(library, list(package))) else { install.packages(package, repos = c("https://cloud.r-project.org", "http://owi.usgs.gov/R/"), dependencies = NA, type = getOption("pkgType")) try(do.call(library, list(package))) } } }
context("Confidence intervals and p-values") test_that("The confint method 'quadratic' is consistent with the summary", { expect_equivalent( confint(fit_nw_1, parm = "parent_0", method = "quadratic"), summary(fit_nw_1)$bpar["parent_0", c("Lower", "Upper")]) expect_equivalent( confint(fit_nw_1, method = "quadratic"), summary(fit_nw_1)$bpar[, c("Lower", "Upper")]) expect_equivalent( confint(fit_nw_1, method = "quadratic", backtransform = FALSE), summary(fit_nw_1)$par[, c("Lower", "Upper")]) expect_equivalent( confint(f_1_mkin_notrans, method = "quadratic", transformed = FALSE), summary(f_1_mkin_notrans)$par[, c("Lower", "Upper")]) expect_equivalent( confint(f_1_mkin_notrans, method = "quadratic", transformed = FALSE), summary(f_1_mkin_notrans)$bpar[, c("Lower", "Upper")]) }) test_that("Quadratic confidence intervals for rate constants are comparable to values in summary.nls", { expect_equivalent( (f_1_mkin_trans$bparms.optim -coef(f_1_nls_notrans))/f_1_mkin_trans$bparms.optim, rep(0, 2), tolerance = 1e-6) expect_equivalent( (f_1_mkin_trans$par[1:2] - coef(f_1_nls_trans))/f_1_mkin_trans$par[1:2], rep(0, 2), tolerance = 1e-6) se_nls <- summary(f_1_nls_trans)$coefficients[, "Std. Error"] se_mkin <- summary(f_1_mkin_trans)$par[1:2, "Std. Error"] se_nls_notrans <- summary(f_1_nls_notrans)$coefficients[, "Std. Error"] se_mkin_notrans <- summary(f_1_mkin_notrans)$par[1:2, "Std. Error"] expect_equivalent(se_nls[2] / se_mkin[2], sqrt(8/5), tolerance = 0.01) expect_equivalent(se_nls_notrans[2] / se_mkin_notrans[2], sqrt(8/5), tolerance = 0.01) se_mkin_2 <- summary(f_2_mkin)$par[1:4, "Std. Error"] se_nls_2 <- summary(f_2_nls)$coefficients[, "Std. Error"] nobs_DFOP_par_c_parent <- nrow(subset(DFOP_par_c, name == "parent")) expect_equivalent( se_nls_2[c("lrc1", "lrc2")] / se_mkin_2[c("log_k1", "log_k2")], rep(sqrt(nobs_DFOP_par_c_parent / (nobs_DFOP_par_c_parent - 4)), 2), tolerance = 0.03) }) test_that("Likelihood profile based confidence intervals work", { f <- fits[["SFO", "FOCUS_C"]] f_nll <- function(parent_0, k_parent, sigma) { - f$ll(c(parent_0 = as.numeric(parent_0), k_parent = as.numeric(k_parent), sigma = as.numeric(sigma))) } f_mle <- stats4::mle(f_nll, start = as.list(parms(f)), nobs = nrow(FOCUS_2006_C)) ci_mkin_1_p_0.95 <- expect_message(confint(f, method = "profile", level = 0.95, cores = n_cores, quiet = FALSE), "Profiling the likelihood") msg <- capture.output(ci_mle_1_0.95 <- stats4::confint(f_mle, level = 0.95)) rel_diff_ci <- (ci_mle_1_0.95 - ci_mkin_1_p_0.95)/ci_mle_1_0.95 expect_equivalent(as.numeric(rel_diff_ci), rep(0, 6), tolerance = 1e-4) })
gbm.bfcheck <- function( samples, resvar, ZI = "CHECK", grv = NULL) { minbfbin <- 21/nrow(samples) print( paste0(" binary bag fraction must be at least ", round(minbfbin, 3), ". n = ", nrow(samples) ) ) if (ZI == "CHECK") if (sum(samples[,resvar] == 0, na.rm = TRUE) / length(samples[,resvar]) >= 0.5) ZI = TRUE else ZI = FALSE logem <- log1p(samples[,resvar]) dont <- samples[,resvar] if (ZI) {samples$grv <- logem} else {samples$grv <- dont} grv_yes <- subset(samples, grv > 0) minbfgaus <- 21/nrow(grv_yes) print( paste0("Gaussian bag fraction must be at least ", round(minbfgaus,3), ". n = ", nrow(grv_yes) ) ) return(c(minbfbin,minbfgaus)) }
context("ceac") library(dampack) test_that("ceac has all methods we'd expect", { current_methods <- as.vector(methods(class = ceac)) expected_methods <- c("plot.ceac", "summary.ceac") expect_setequal(current_methods, expected_methods) }) data("example_psa") wtp <- example_psa$wtp psa_obj <- make_psa_obj(example_psa$cost, example_psa$effectiveness, example_psa$parameters, example_psa$strategies) test_that("result has class 'ceac'", { c <- ceac(wtp, psa_obj) expect_true(inherits(c, "data.frame")) expect_true(inherits(c, "ceac")) }) test_that("handles missing strategy", { psa_missing <- make_psa_obj(example_psa$cost, example_psa$effectiveness, example_psa$parameters) c_missing <- ceac(wtp, psa_missing) expected_generic_strat <- factor(c("Strategy_1", "Strategy_2", "Strategy_3"), ordered = TRUE) obtained_generic_strat <- sort(unique(c_missing$Strategy)) expect_equal(expected_generic_strat, obtained_generic_strat) }) test_that("message is correct in summary.ceac", { c <- ceac(wtp, psa_obj) sum_df <- summary(c) expect_equal(sum_df$cost_eff_strat, c("Radio", "Chemo")) }) test_that("plot.ceac produces ggplot object", { ceac_obj <- ceac(wtp, psa_obj) gf <- plot(ceac_obj, frontier = TRUE) expect_is(gf, "ggplot") gnof <- plot(ceac_obj, frontier = FALSE) expect_is(gnof, "ggplot") custom_breaks <- plot(ceac_obj, xbreaks = seq(0, 140)) expect_is(custom_breaks, "ggplot") expect_is(plot(ceac_obj, col = "bw"), "ggplot") })
gpUpdateKernels <- function (model, X, X_u) { jitter = 1e-6 if (model$approx == "ftc") { model$K_uu = kernCompute(model$kern, X) if ((!"isSpherical" %in% names(model)) || model$isSpherical) { if ("beta" %in% names(model) && length(model$beta)>0) { model$K_uu[seq(1,length(model$K_uu),by= dim(model$K_uu)[1]+1)] = model$K_uu[seq(1,length(model$K_uu),by= dim(model$K_uu)[1]+1)] + 1/model$beta } invK = .jitCholInv(model$K_uu, silent=TRUE) model$invK_uu = invK$invM model$logDetK_uu = 2* sum( log ( diag(invK$chol) ) ) } else { model$invK_uu=list(); model$logDetK_uu=matrix(0,1,model$d) for (i in 1:model$d) { if ("beta" %in% names(model) && length(model$beta)>0) { if (dim(as.matrix(model$beta))[2] == model$d) betaAdd = model$beta[, i] else betaAdd = model$beta model$K_uu[seq(1,length(model$K_uu),by= dim(model$K_uu)[1]+1)] = model$K_uu[seq(1,length(model$K_uu),by= dim(model$K_uu)[1]+1)] + 1/betaAdd } ind = gpDataIndices(model, i) invK = .jitCholInv(model$K_uu[ind,ind], silent=TRUE) model$invK_uu[[i]] = invK$invM model$logDetK_uu[i] = 2* sum( log ( diag(invK$chol) ) ) } } } else if (model$approx %in% c("dtc", "dtcvar", "fitc", "pitc")) { model$K_uu = kernCompute(model$kern, X_u) if ((!"whiteVariance" %in% names(model$kern)) || model$kern$whiteVariance == 0) { model$K_uu = model$K_uu + diag.spam(jitter, dim(model$K_uu)[1]) } model$K_uf = kernCompute(model$kern, X_u, X) invK = .jitCholInv(model$K_uu, silent=TRUE) model$invK_uu = invK$invM model$logDetK_uu = 2* sum( log ( diag(invK$chol) ) ) } if (model$approx %in% c("dtcvar", "fitc")) model$diagK = kernDiagCompute(model$kern, X) else if (model$approx == "pitc") { if ((!"isSpherical" %in% names(model)) || model$isSpherical) { model$K=list() for (i in 1:length(model$blockEnd)) { ind = gpBlockIndices(model, i) model$K[[i]] = kernCompute(model$kern, X[ind, ,drop=FALSE]) } } else { model$K = matrix(0, length(model$blockEnd), model$d) model$K = lapply(split(model$K,row(model$K)), split, 1:model$d) for (j in 1:model$d) { for (i in 1:length(model$blockEnd)) { ind = gpDataIndices(model, j, i) model$K[[i]][[j]] = kernCompute(model$kern, X[ind, ,drop=FALSE]) } } } } model = gpUpdateAD(model, X) return (model) }
p.tfisher <- function(q,n,tau1,tau2,M=NULL,mu=NULL,sigma2=NULL, p0=NULL){ if(is.null(M)){ return((sum(pchisq(q+2*(1:n)*log(tau1/tau2),2*(1:n))*dbinom(1:n, n, tau1)) + (0<q)*dbinom(0, n, tau1))) }else{ n = length(M[1,]) if(is.null(mu)){ mu = getTFisherMean(n, tau1, tau2) } if(is.null(sigma2)){ sigma2 = getTFisherVar_v1(M, tau1, tau2) } if(is.null(p0)){ bound = qnorm(1-tau1/2) p0 = pmvnorm(lower=-rep(bound,n),upper=rep(bound,n),sigma=M)[1] } shift = -2*log(tau1/tau2) a = (mu-shift*(1-p0))^2/((1-p0)*sigma2-p0*mu^2) s = (mu/(1-p0)-shift)/a return((0<q)*p0+(1-p0)*pgamma(q-shift, shape=a, scale=s)) } }
StatArima <- ggproto("StatArima", Stat, required_aes = c("x", "y"), default_aes = aes(x = x, y = y, label = stat(arima_model)), compute_group = function(data, scales, method = c("x13", "tramoseats"), spec = NULL, frequency = NULL, message = TRUE, x_arima = NULL, y_arima = NULL, new_data = TRUE) { result <- seasonal_adjustment(data = data, method = method, spec = spec, frequency = frequency, message = message, new_data = new_data) data <- result[["data"]] sa <- result[["sa"]] arima_model <- RJDemetra::get_indicators(sa, sprintf("preprocessing.arima.%s", c("p","d","q","bp","bd","bq"))) arima_model <- paste0("ARIMA(",arima_model[[1]], ",", arima_model[[2]], ",", arima_model[[3]], ")(", arima_model[[4]], ",", arima_model[[5]], ",", arima_model[[6]], ")") data <- data[1, ] if (!is.null(x_arima)) data$x <- x_arima if (!is.null(y_arima)) data$y <- y_arima data$arima_model <- arima_model data } ) geom_arima <- function(mapping = NULL, data = NULL, stat = "arima", geom = c("text", "label"), position = "identity", ..., method = c("x13", "tramoseats"), spec = NULL, frequency = NULL, message = TRUE, x_arima = NULL, y_arima = NULL, show.legend = NA, inherit.aes = TRUE ) { geom <- match.arg(geom) if (geom == "text") { geom <- GeomText } else { geom <- GeomLabel } ggplot2::layer(data = data, mapping = mapping, stat = stat, geom = geom, position = position, show.legend = show.legend, inherit.aes = inherit.aes, params = list(method = method, spec = spec, frequency = frequency, message = message, x_arima = x_arima, y_arima = y_arima, new_data = !missing(data) || !is.null(data), ...)) }
dbQuoteLiteral_MariaDBConnection <- function(conn, x, ...) { if (inherits(x, "difftime")) return(cast_difftime(callNextMethod())) callNextMethod() } setMethod("dbQuoteLiteral", signature("MariaDBConnection"), dbQuoteLiteral_MariaDBConnection)
NULL yield_next <- function(iter) { stopifnot(is_Iterator(iter)) iter$initial$.iter <- 1L env <- list2env(iter$initial, parent = caller_env()) eval_bare(iter$result, env = env) iter$initial <- as.list(env, all.names = TRUE) iter$initial <- within(iter$initial, rm(.iter)) return(iter$initial[[iter$yield]]) } yield_more <- function(iter, more = 1L) { stopifnot(is_Iterator(iter)) vec <- vector(length = more) env <- list2env(iter$initial, parent = caller_env()) env$.iter <- 1L expr <- iter$result char <- iter$yield for (i in seq_len(more)) { eval_bare(expr, env = env) vec[[i]] <- env[[char]] env$.iter <- i } iter$initial <- as.list(env, all.names = TRUE) iter$initial <- within(iter$initial, rm(.iter)) return(vec) }
subset.varbvs <- function (x, subset, ...) { if (!is(x,"varbvs")) stop("Input argument object must be an instance of class \"varbvs\".") e <- substitute(subset) i <- which(eval(e,x,parent.frame())) if (length(i) == 0) stop("No hyperparameter settings are selected.") out <- x out$sa <- out$sa[i] out$logodds <- out$logodds[i] out$logw <- out$logw[i] out$w <- normalizelogweights(out$logw) out$mu.cov <- as.matrix(out$mu.cov[,i]) out$alpha <- as.matrix(out$alpha[,i]) out$mu <- as.matrix(out$mu[,i]) out$s <- as.matrix(out$s[,i]) out$fitted.values <- as.matrix(out$fitted.values) out$residuals <- as.matrix(out$residuals) if (!is.null(out$pve)) out$pve <- as.matrix(out$pve[,i]) if (out$family == "gaussian") out$sigma <- out$sigma[i] else if (out$family == "binomial") out$eta <- out$eta[,i] return(out) }
library(ggsolvencyii) context("fncomputegroup") testdata <- sii_z_ex1_data testdata_ggplotformat <- dplyr::rename(testdata, x = time, y = ratio, id = id, description = description , value = value ) testdata_ggplotformat <- dplyr::mutate(testdata_ggplotformat, group = id) testparams <- NULL testparams$structure = sii_structure_sf16_eng testparams$levelmax <- sii_levelmax_sf16_993 testparams$aggregatesuffix <- "_other" intresultA <- ggsolvencyii:::fn_structure_expansion(testparams) intresultB <- ggsolvencyii:::fn_structure_data_integration(expandedstructure = intresultA, data = testdata_ggplotformat) intresultB_group2 <- intresultB[intresultB$group == 2, ] testparams$maxscrvalue <- ggsolvencyii:::fn_maxscrvalue(data = testdata_ggplotformat, params = testparams) testparams$tocenter <- FALSE testparams$plotdetails <- ggsolvencyii:::fn_constructionplotdetails(structure = testparams$structure) testscales <- NULL testparams$rotationdescription <- NULL testparams$rotationdegrees <- NULL testparams$squared <- TRUE testparams$purpose <- "surface" testresultA <- ggsolvencyii:::fn_computegroup(data = intresultB_group2, scales = testscales, siiparams = testparams) testparams$purpose <- "outline" testresultB <- ggsolvencyii:::fn_computegroup(data = intresultB_group2, scales = testscales, siiparams = testparams) rm(testdata) rm(testresultA) rm(testresultB)
mle.wrappedcauchy <- function(x, mu=NULL, rho=NULL, tol = 1e-015, max.iter = 100, control.circular=list()) { if (tol <= 0) stop("'tol' must be positive") x <- na.omit(x) if (length(x)==0) { warning("No observations (at least after removing missing values)") return(NULL) } if (is.circular(x)) { datacircularp <- circularp(x) } else if (is.circular(mu)) { datacircularp <- circularp(mu) } else { datacircularp <- list(type="angles", units="radians", template="none", modulo="asis", zero=0, rotation="counter") } dc <- control.circular if (is.null(dc$type)) dc$type <- datacircularp$type if (is.null(dc$units)) dc$units <- datacircularp$units if (is.null(dc$template)) dc$template <- datacircularp$template if (is.null(dc$modulo)) dc$modulo <- datacircularp$modulo if (is.null(dc$zero)) dc$zero <- datacircularp$zero if (is.null(dc$rotation)) dc$rotation <- datacircularp$rotation x <- conversion.circular(x, units="radians", zero=0, rotation="counter", modulo="2pi") attr(x, "class") <- attr(x, "circularp") <- NULL if (!is.null(mu)) { mu <- conversion.circular(mu, units="radians", zero=0, rotation="counter", modulo="2pi") attr(mu, "class") <- attr(mu, "circularp") <- NULL } res <- MlewrappedcauchyRad(x, mu, rho, tol, max.iter) mu <- conversion.circular(circular(res[1]), dc$units, dc$type, dc$template, dc$modulo, dc$zero, dc$rotation) result <- list() result$call <- match.call() result$mu <- mu result$rho <- res[2] result$est.mu <- res[3] result$est.rho <- res[4] result$convergence <- TRUE if (!is.na(res[5]) && res[5] > max.iter) { result$convergence <- FALSE } class(result) <- "mle.wrappedcauchy" return(result) } MlewrappedcauchyRad <- function(x, mu, rho, tol, max.iter) { n <- length(x) est.mu <- FALSE if (is.null(mu)) { mu <- MeanCircularRad(x) est.mu <- TRUE } est.rho <- FALSE if (is.null(rho)) { rho <- RhoCircularRad(x) est.rho <- TRUE } if (rho < 0 | rho > 1) stop("'rho' must be between 0 and 1") if (est.mu) { if (est.rho) { mu1.old <- (2 * rho * cos(mu))/(1 + rho^2) mu2.old <- (2 * rho * sin(mu))/(1 + rho^2) w.old <- 1/(1 - mu1.old * cos(x) - mu2.old * sin(x)) flag <- TRUE iter <- 0 while (flag & iter <= max.iter) { iter <- iter + 1 mu1.new <- sum(w.old * cos(x))/sum(w.old) mu2.new <- sum(w.old * sin(x))/sum(w.old) diff1 <- abs(mu1.new - mu1.old) diff2 <- abs(mu2.new - mu2.old) if ((diff1 < tol) && (diff2 < tol)) flag <- FALSE else { mu1.old <- mu1.new mu2.old <- mu2.new w.old <- 1/(1 - mu1.old * cos(x) - mu2.old * sin(x)) } } mu.const <- sqrt(mu1.new^2 + mu2.new^2) mu <- atan2(mu2.new, mu1.new) %% (2 * pi) rho <- (1 - sqrt(1 - mu.const^2))/mu.const } else { score <- function(x, data, rho) { sum(sin(data-x)/(1+rho^2-2*rho*cos(data-x))) } res <- uniroot(f=score, lower=mu-pi/2, upper=mu+pi/2, data=x, rho=rho, tol=tol) mu <- res$root iter <- NA } } else { if (est.rho) { wt <- function(x, mu, rho) { ((1-rho^2)*(1+rho^2-2*rho*cos(x-mu)))^(-1) } diff <- 1+tol iter <- 0 rho.old <- rho while (diff >= tol & iter <= max.iter) { iter <- iter + 1 w <- wt(x, mu, rho) sumw <- sum(w) sumwcos <- w%*%cos(x-mu) rho <- (sumw - sqrt(sumw^2 - sumwcos^2))/sumwcos diff <- abs(rho - rho.old) rho.old <- rho } } } result <- c(mu, rho, est.mu, est.rho, iter) return(result) } print.mle.wrappedcauchy <- function(x, digits = max(3, getOption("digits") - 3), ...) { cat("\nCall:\n",deparse(x$call),"\n\n",sep="") cat("mu: ") cat(format(x$mu, digits=digits), "\n") cat("\n") cat("rho: ") cat(format(x$rho, digits=digits), "\n") cat("\n") if (!x$est.mu) cat("mu is known\n") if (!x$est.rho) cat("rho is known\n") if (!x$convergence) cat("\n The convergence is not achieved after the prescribed number of iterations \n") invisible(x) }
report_miss <- function(x, col_name = 'all'){ check_class(argument = x, target = 'data.frame', arg_name = 'x') check_class(argument = x[ , 1], target = c('Date', 'POSIXct'), arg_name = 'x[ , 1]') check_class(argument = c( as.matrix( x[ , -1] ) ), target = 'numeric', arg_name = 'x[ , -1]') check_class(argument = col_name, target = 'character', arg_name = 'col_name') if(col_name[1] != 'all'){ check_string(argument = col_name, target = colnames(x)[-1], arg_name = 'col_name') } check_length(argument = col_name, max_allow = length( colnames(x)[-1] ), arg_name = 'col_name') all_names <- colnames(x)[-1] if(col_name[1] == 'all'){ col_name <- all_names } col_pos <- match(x = col_name, table = all_names) + 1 n_it <- length(col_pos) out_list <- list() for(i in 1:n_it){ na_pos <- which( is.na( x[ , col_pos[i] ] ) ) contiguous <- c( 1, diff(na_pos) ) first_pos <- which(contiguous > 1) if( length(contiguous) == 1 ){ start_pos <- na_pos[1] end_pos <- na_pos[1] } else { start_pos <- c( na_pos[1], na_pos[first_pos] ) end_pos <- c( na_pos[first_pos - 1], na_pos[ length(na_pos) ] ) } first_date <- c( x[start_pos, 1], NA_character_ ) last_date <- c( x[end_pos, 1], NA_character_) delta_t <- end_pos - start_pos + 1 delta_t <- c( delta_t, sum(delta_t) ) out_table <- data.frame(first = first_date, last = last_date, time_steps = delta_t) out_list[[ col_name[i] ]] <- out_table rm(na_pos, contiguous, first_pos, start_pos, end_pos, first_date, last_date, delta_t, out_table) } return(out_list) }
test_that("trem_delete throws errors - no client", { expect_error( trem_post(path = "members", body = list(email = "[email protected]", name = "Example Person", role = "MEMBER"), ), regexp = "Tremendous API Client required.") }) test_that("trem_delete works", { skip_on_cran() skip_on_travis() test_client <- trem_client_new(api_key = NULL, sandbox = TRUE) trem_post(test_client, path = "invoices", body = list(po_number = "from-testthat-invoice-id", amount = 50) ) current_invoices <- trem_get(test_client, "invoices") my_invoice_id <- current_invoices$invoices[which(current_invoices$invoices$po_number == "from-testthat-invoice-id"), "id"] vcr::use_cassette("trem-delete", { deleteClient <- trem_delete(test_client, paste0("invoices/", my_invoice_id)) }, match_requests_on = "method" ) new_invoices <- trem_get(test_client, "invoices") expect_type(deleteClient, "list") expect_named(deleteClient, "invoice") expect_type(deleteClient$invoice, "list") expect_named(deleteClient$invoice, c("id", "po_number", "amount", "status")) expect_type(deleteClient$invoice$id, "character") expect_type(deleteClient$invoice$po_number, "character") expect_type(deleteClient$invoice$amount, "double") expect_equal(deleteClient$invoice$status, "DELETED") expect_false(deleteClient$invoice$id %in% new_invoices$invoices$id) on.exit(trem_delete(test_client, paste0("invoices/", my_invoice_id)), add = TRUE) })
add_cumulative_yield <- function(data, dates = Date, values = Value, groups = STATION_NUMBER, station_number, basin_area, water_year_start = 1, months = 1:12){ if (missing(data)) { data <- NULL } if (missing(station_number)) { station_number <- NULL } if (missing(basin_area)) { basin_area <- NA } water_year_checks(water_year_start) months_checks(months) flow_data <- flowdata_import(data = data, station_number = station_number) orig_cols <- names(flow_data) orig_groups <- dplyr::group_vars(flow_data) flow_data <- format_all_cols(data = flow_data, dates = as.character(substitute(dates)), values = as.character(substitute(values)), groups = as.character(substitute(groups))) flow_data <- add_basin_area(flow_data, basin_area = basin_area) flow_data$Basin_Area_sqkm_temp <- flow_data$Basin_Area_sqkm flow_data_temp <- analysis_prep(data = flow_data, water_year_start = water_year_start) flow_data_temp <- dplyr::filter(flow_data_temp, Month %in% months) cumsum_na <- function(x) { if (any(is.na(x))) { return(rep(NA, length(x))) } else { cumsum(x) } } flow_data_temp <- dplyr::ungroup(flow_data_temp) flow_data_temp <- dplyr::mutate(dplyr::group_by(flow_data_temp, STATION_NUMBER, WaterYear, .add = TRUE), Cumul_Yield_mm = cumsum_na(Value) * 86400 / (Basin_Area_sqkm_temp * 1000)) flow_data_temp <- dplyr::ungroup(flow_data_temp) flow_data_temp <- dplyr::select(flow_data_temp, STATION_NUMBER, Date, Cumul_Yield_mm) if("Cumul_Yield_mm" %in% orig_cols){ flow_data <- merge(flow_data, flow_data_temp, by = c("STATION_NUMBER", "Date"), all.x = TRUE) flow_data$Cumul_Yield_mm <- flow_data$Cumul_Yield_mm.y flow_data <- dplyr::select(flow_data, -Cumul_Yield_mm.y, -Cumul_Yield_mm.x) } else { flow_data <- merge(flow_data, flow_data_temp, by = c("STATION_NUMBER", "Date"), all.x = TRUE) } names(flow_data)[names(flow_data) == "STATION_NUMBER"] <- as.character(substitute(groups)) names(flow_data)[names(flow_data) == "Date"] <- as.character(substitute(dates)) names(flow_data)[names(flow_data) == "Value"] <- as.character(substitute(values)) if("Cumul_Yield_mm" %in% orig_cols){ flow_data <- flow_data[,c(orig_cols)] } else { flow_data <- flow_data[,c(orig_cols, paste("Cumul_Yield_mm"))] } flow_data <- dplyr::group_by_at(flow_data, dplyr::vars(orig_groups)) dplyr::as_tibble(flow_data) }
scanmeasure <- function(X, ...){ UseMethod("scanmeasure") } scanmeasure.ppp <- function(X, r, ..., method=c("counts", "fft")) { method <- match.arg(method) check.1.real(r) R <- as.rectangle(as.owin(X)) M <- as.mask(R, ...) W <- grow.mask(M, r) switch(method, counts = { dimyx <- W$dim xr <- W$xrange yr <- W$yrange nr <- dimyx[1] nc <- dimyx[2] n <- npoints(X) zz <- .C(SC_scantrans, x=as.double(X$x), y=as.double(X$y), n=as.integer(n), xmin=as.double(xr[1]), ymin=as.double(yr[1]), xmax=as.double(xr[2]), ymax=as.double(yr[2]), nr=as.integer(nr), nc=as.integer(nc), R=as.double(r), counts=as.integer(numeric(prod(dimyx))), PACKAGE="spatstat.core") zzz <- matrix(zz$counts, nrow=dimyx[1], ncol=dimyx[2], byrow=TRUE) Z <- im(zzz, xrange=xr, yrange=yr, unitname=unitname(X)) }, fft = { sigma <- with(W, unique(c(xstep, ystep))) Y <- density(X, ..., sigma=sigma) Z <- scanmeasure(Y, r) Z <- eval.im(as.integer(round(Z))) }) return(Z) } scanmeasure.im <- function(X, r, ...) { D <- disc(radius=r) eps <- with(X, c(xstep,ystep)) if(any(eps >= 2 * r)) return(eval.im(X * pi * r^2)) D <- as.im(as.mask(D, eps=eps)) Z <- imcov(X, D) return(Z) } scanPoisLRTS <- function(nZ, nG, muZ, muG, alternative) { nZco <- nG - nZ muZco <- muG - muZ nlogn <- function(n, a) ifelse(n == 0, 0, n * log(n/a)) ll <- nlogn(nZ, muZ) + nlogn(nZco, muZco) - nlogn(nG, muG) criterion <- (nZ * muZco - muZ * nZco) switch(alternative, less={ ll[criterion > 0] <- 0 }, greater={ ll[criterion < 0] <- 0 }, two.sided={}) return(2 * ll) } scanBinomLRTS <- function(nZ, nG, muZ, muG, alternative) { nZco <- nG - nZ muZco <- muG - muZ nlogn <- function(n, a) ifelse(n == 0, 0, n * log(n/a)) logbin <- function(k, n) { nlogn(k, n) + nlogn(n-k, n) } ll <- logbin(nZ, muZ) + logbin(nZco, muZco) - logbin(nG, muG) criterion <- (nZ * muZco - muZ * nZco) switch(alternative, less={ ll[criterion > 0] <- 0 }, greater={ ll[criterion < 0] <- 0 }, two.sided={}) return(2 * ll) } scanLRTS <- function(X, r, ..., method=c("poisson", "binomial"), baseline=NULL, case=2, alternative=c("greater", "less", "two.sided"), saveopt = FALSE, Xmask=NULL) { stopifnot(is.ppp(X)) stopifnot(check.nvector(r)) method <- match.arg(method) alternative <- match.arg(alternative) if(is.null(Xmask)) Xmask <- as.mask(as.owin(X), ...) switch(method, poisson={ Y <- X if(is.null(baseline)) { mu <- as.im(Xmask, value=1) } else if(is.ppm(baseline)) { if(is.marked(baseline)) stop("baseline is a marked point process: not supported") mu <- predict(baseline, locations=Xmask) } else if(is.im(baseline) || is.function(baseline)) { mu <- as.im(baseline, W=Xmask) } else stop(paste("baseline should be", "a pixel image, a function, or a fitted model")) nG <- npoints(Y) }, binomial={ stopifnot(is.multitype(X)) lev <- levels(marks(X)) if(length(lev) != 2) warning("X should usually be a bivariate (2-type) point pattern") if(!is.null(baseline)) stop("baseline is not supported in the binomial case") if(is.character(case) && !(case %in% lev)) stop(paste("Unrecognised label for cases:", sQuote(case))) if(is.numeric(case) && !(case %in% seq_along(lev))) stop(paste("Undefined level:", case)) Y <- split(X)[[case]] nG <- npoints(Y) mu <- unmark(X) }) Y$window <- Xmask nr <- length(r) lrts <- vector(mode="list", length=nr) for(i in 1:nr) { ri <- r[i] nZ <- scanmeasure(Y, ri) muZ <- scanmeasure(mu, ri) if(!compatible.im(nZ, muZ)) { ha <- harmonise.im(nZ, muZ) nZ <- ha[[1]] muZ <- ha[[2]] } switch(method, poisson = { muG <- integral.im(mu) lrts[[i]] <- eval.im(scanPoisLRTS(nZ, nG, muZ, muG, alternative)) }, binomial = { muG <- npoints(mu) lrts[[i]] <- eval.im(scanBinomLRTS(nZ, nG, muZ, muG, alternative)) }) } if(length(lrts) == 1) { result <- lrts[[1]] } else { result <- im.apply(lrts, max) if(saveopt) attr(result, "iopt") <- im.apply(lrts, which.max) } return(result) } scan.test <- function(X, r, ..., method=c("poisson", "binomial"), nsim = 19, baseline=NULL, case = 2, alternative=c("greater", "less", "two.sided"), verbose=TRUE) { dataname <- short.deparse(substitute(X)) stopifnot(is.ppp(X)) method <- match.arg(method) alternative <- match.arg(alternative) stopifnot(is.numeric(r)) check.1.real(nsim) if(!(round(nsim) == nsim && nsim > 1)) stop("nsim should be an integer > 1") regionname <- paste("circles of radius", if(length(r) == 1) r else paste("between", min(r), "and", max(r))) obsLRTS <- scanLRTS(X=X, r=r, method=method, alternative=alternative, baseline=baseline, case=case, ..., saveopt=TRUE) obs <- max(obsLRTS) sim <- numeric(nsim) switch(method, binomial={ methodname <- c("Spatial scan test", "Null hypothesis: constant relative risk", paste("Candidate cluster regions:", regionname), "Likelihood: binomial", paste("Monte Carlo p-value based on", nsim, "simulations")) lev <- levels(marks(X)) names(lev) <- lev casename <- lev[case] counted <- paste("points with mark", sQuote(casename), "inside cluster region") simexpr <- expression(rlabel(X)) }, poisson={ counted <- paste("points inside cluster region") X <- unmark(X) Xwin <- as.owin(X) Xmask <- as.mask(Xwin, ...) if(is.null(baseline)) { nullname <- "Complete Spatial Randomness (CSR)" lambda <- intensity(X) simexpr <- expression(runifpoispp(lambda, Xwin)) dont.complain.about(lambda) } else if(is.ppm(baseline)) { nullname <- baseline$callstring rmhstuff <- rmh(baseline, preponly=TRUE, verbose=FALSE) simexpr <- expression(rmhEngine(rmhstuff)) dont.complain.about(rmhstuff) } else if(is.im(baseline) || is.function(baseline)) { nullname <- "Poisson process with intensity proportional to baseline" base <- as.im(baseline, W=Xmask) alpha <- npoints(X)/integral.im(base) lambda <- eval.im(alpha * base) simexpr <- expression(rpoispp(lambda)) dont.complain.about(lambda) } else stop(paste("baseline should be", "a pixel image, a function, or a fitted model")) methodname <- c("Spatial scan test", paste("Null hypothesis:", nullname), paste("Candidate cluster regions:", regionname), "Likelihood: Poisson", paste("Monte Carlo p-value based on", nsim, "simulations")) }) if(verbose) { cat("Simulating...") pstate <- list() } for(i in 1:nsim) { if(verbose) pstate <- progressreport(i, nsim, state=pstate) Xsim <- eval(simexpr) simLRTS <- scanLRTS(X=Xsim, r=r, method=method, alternative=alternative, baseline=baseline, case=case, ...) sim[i] <- max(simLRTS) } pval <- mean(c(sim,obs) >= obs, na.rm=TRUE) names(obs) <- "maxLRTS" nm.alternative <- switch(alternative, greater="Excess of", less="Deficit of", two.sided="Two-sided: excess or deficit of", stop("Unknown alternative")) nm.alternative <- paste(nm.alternative, counted) result <- list(statistic = obs, p.value = pval, alternative = nm.alternative, method = methodname, data.name = dataname) class(result) <- c("scan.test", "htest") attr(result, "obsLRTS") <- obsLRTS attr(result, "X") <- X attr(result, "r") <- r return(result) } plot.scan.test <- function(x, ..., what=c("statistic", "radius"), do.window=TRUE) { xname <- short.deparse(substitute(x)) what <- match.arg(what) Z <- as.im(x, what=what) dont.complain.about(Z) do.call(plot, resolve.defaults(list(x=quote(Z)), list(...), list(main=xname))) if(do.window) { X <- attr(x, "X") plot(as.owin(X), add=TRUE, invert=TRUE) } invisible(NULL) } as.im.scan.test <- function(X, ..., what=c("statistic", "radius")) { Y <- attr(X, "obsLRTS") what <- match.arg(what) if(what == "radius") { iopt <- attr(Y, "iopt") r <- attr(X, "r") Y <- eval.im(r[iopt]) } return(as.im(Y, ...)) }
cj_anova <- function( data, formula, id = NULL, weights = NULL, by = NULL, ... ) { stopifnot(inherits(formula, "formula")) stopifnot(length(formula) > 2L) stopifnot(attr(terms(formula), "response") == 1L) by_vars <- all.vars(stats::update(by, 0 ~ . )) formula_reduced <- formula formula_full <- update(formula, reformulate(paste0("(.) * ", by_vars))) if (inherits(data, "data.frame") && is.null(weights)) { svy_design <- NULL estimates_full <- stats::glm(formula_full, data = data, ...) estimates_reduced <- stats::glm(formula_reduced, data = data, ...) } else if (inherits(data, "data.frame")) { stop("cj_anova() currently does not support 'weights'") } else if (inherits(data, "survey.design")) { stop("cj_anova() currently does not support 'weights'") } else { stop("'data' is not a 'data.frame' or 'survey.design' object") } anova(estimates_reduced, estimates_full, test = "F") }
rdigitsBFOS <- function(n, eta=0.25, alpha=NULL, silent=FALSE) { stopifnot(eta>0.01 && eta <= 0.5) z <- rep(c(1,1,1,0,1,1,1,0,0,1,0,0,1,0,1,0,1,1,1,0,1,1,0,1,1,0,1,1,0,1,1,1, 0,1,0,1,1,0,1,0,1,1,1,1,0,1,1,1,1,1,0,1,0,0,1,0,1,1,1,1,1,1,1,1,1, 1,1,0,1,1),n) if (is.null(alpha)) { alpha <- (-0.00014393510482067046 + eta*(0.3743903928013429 + eta*(0.003068677095495819 + eta*0.003068677095495819))) } else { stopifnot(alpha>0 && alpha <= 0.2) eta <- (-0.00018468194429807232 + alpha*(2.7140277221213913 - alpha*(0.876012944101314 + alpha*2.51929256972748))) } m <- matrix((z + ifelse(runif(length(z)) > alpha, 0, 1))%%2, byrow=TRUE, ncol=7) colnames(m) <- paste0("x", 1:7) ans<-cbind(as.data.frame.matrix(m), digit=rep(factor(0:9),n)) title <- paste("Electronic Digit Recognition Problem, alpha =", round(alpha, 5), "BayesRate =", round(eta, 5)) if(!silent) { cat(title, fill=TRUE) } attr(ans, "title") <- title ans }
library(tidyverse) library(gganimate) library(ggthemes) set.seed(32322) df <- data.frame(Control = c(rep("Control",300),rep("Treatment",300)), Time=rep(c(rep("Before",150),rep("After",150)),2), Group = rep(c(rep("Group A",75),rep("Group B",75)),4), GroupTime=rep(c(rep("Group A Before",75),rep("Group B Before",75), rep("Group A After",75),rep("Group B After",75)),2)) %>% mutate(Y = 2+.5*(Control=="Treatment")+.5*(Time=="After") + .2*(Control=="Treatment")*(Time=="After")+ .4*(GroupTime=="Group B After" & Control == "Treatment")+ 2.6*(Group=="Group B")+ rnorm(600)/4,state="1", xaxisTime = (Time == "Before") + 2*(Time == "After") + (runif(600)-.5)*.95) %>% group_by(Control,GroupTime) %>% mutate(mean_Y=mean(Y)) %>% ungroup() df$Time <- factor(df$Time,levels=c("Before","After")) dfseg <- df %>% group_by(Control,GroupTime) %>% summarize(mean_Y = mean(mean_Y)) %>% ungroup() diffA <- filter(dfseg,GroupTime=='Group A After',Control=='Control')$mean_Y[1] - filter(dfseg,GroupTime=='Group A Before',Control=='Control')$mean_Y[1] diffB <- filter(dfseg,GroupTime=='Group B After',Control=='Control')$mean_Y[1] - filter(dfseg,GroupTime=='Group B Before',Control=='Control')$mean_Y[1] DIDA <- filter(dfseg,GroupTime=='Group A After',Control=='Treatment')$mean_Y[1] - filter(dfseg,GroupTime=='Group A Before',Control=='Treatment')$mean_Y[1] - diffA dffull <- rbind( df %>% mutate(state='1. Start with raw data.'), df %>% mutate(state='2. See how Y is explained by Treatment, Time and/or Group.'), df %>% mutate(Y = mean_Y,state="3. Keep only what's explained by Treatment, Time, and/or Group."), df %>% mutate(Y = mean_Y,state="4. See how Control changed over Time in each Group."), df %>% mutate(Y = mean_Y - (Time=='After')*ifelse(Group=="Group A",diffA,diffB), state="5. Remove the Before/After difference in each groups."), df %>% mutate(Y = mean_Y - (Time=='After')*ifelse(Group=="Group A",diffA,diffB), state='6. The remaining Before/After difference is the diff-in-diff in each Group.'), df %>% mutate(Y = mean_Y - (Time=='After')*ifelse(Group=="Group A",diffA,diffB) - (Time=='After' & Control == "Treatment")*DIDA, state='7. Remove the difference-in-difference effect from Group A.'), df %>% mutate(Y = mean_Y - (Time=='After')*ifelse(Group=="Group A",diffA,diffB) - (Time=='After' & Control == "Treatment")*DIDA, state='8. The remaining Before/After in Group B is the diff-in-diff-in-diff.') ) p <- ggplot(dffull,aes(y=Y,x=xaxisTime,color=as.factor(Control)))+geom_point()+ guides(color=guide_legend(title="Group"))+ geom_vline(aes(xintercept=1.5),linetype='dashed')+ geom_hline(aes(yintercept=4),col='black',size=1)+ scale_color_colorblind()+ scale_x_continuous( breaks = c(1, 2), label = c("Before Treatment", "After Treatment") )+xlab("Time")+ scale_y_continuous( breaks = c(2.5, 5.5), label = c("Y for Group A", "Y for Group B") )+ylab("")+ theme(axis.text.y=element_text(angle=90,hjust=.5,size=14), axis.text.x=element_text(size=14), legend.text=element_text(size=14))+ geom_segment(aes(x=ifelse(state %in% c('2. See how Y is explained by Treatment, Time and/or Group.',"3. Keep only what's explained by Treatment, Time, and/or Group."), .5,NA), xend=1.5,y=filter(dfseg,GroupTime=='Group A Before',Control=='Control')$mean_Y[1], yend=filter(dfseg,GroupTime=='Group A Before',Control=='Control')$mean_Y[1]),size=1,color='black')+ geom_segment(aes(x=ifelse(state %in% c('2. See how Y is explained by Treatment, Time and/or Group.',"3. Keep only what's explained by Treatment, Time, and/or Group."), .5,NA), xend=1.5,y=filter(dfseg,GroupTime=='Group A Before',Control=='Treatment')$mean_Y[1], yend=filter(dfseg,GroupTime=='Group A Before',Control=='Treatment')$mean_Y[1]),size=1,color=" geom_segment(aes(x=ifelse(state %in% c('2. See how Y is explained by Treatment, Time and/or Group.',"3. Keep only what's explained by Treatment, Time, and/or Group."), 1.5,NA), xend=2.5,y=filter(dfseg,GroupTime=='Group A After',Control=='Control')$mean_Y[1], yend=filter(dfseg,GroupTime=='Group A After',Control=='Control')$mean_Y[1]),size=1,color='black')+ geom_segment(aes(x=ifelse(state %in% c('2. See how Y is explained by Treatment, Time and/or Group.',"3. Keep only what's explained by Treatment, Time, and/or Group."), 1.5,NA), xend=2.5,y=filter(dfseg,GroupTime=='Group A After',Control=='Treatment')$mean_Y[1], yend=filter(dfseg,GroupTime=='Group A After',Control=='Treatment')$mean_Y[1]),size=1,color=" geom_segment(aes(x=ifelse(state %in% c('2. See how Y is explained by Treatment, Time and/or Group.',"3. Keep only what's explained by Treatment, Time, and/or Group."), .5,NA), xend=1.5,y=filter(dfseg,GroupTime=='Group B Before',Control=='Control')$mean_Y[1], yend=filter(dfseg,GroupTime=='Group B Before',Control=='Control')$mean_Y[1]),size=1,color='black')+ geom_segment(aes(x=ifelse(state %in% c('2. See how Y is explained by Treatment, Time and/or Group.',"3. Keep only what's explained by Treatment, Time, and/or Group."), .5,NA), xend=1.5,y=filter(dfseg,GroupTime=='Group B Before',Control=='Treatment')$mean_Y[1], yend=filter(dfseg,GroupTime=='Group B Before',Control=='Treatment')$mean_Y[1]),size=1,color=" geom_segment(aes(x=ifelse(state %in% c('2. See how Y is explained by Treatment, Time and/or Group.',"3. Keep only what's explained by Treatment, Time, and/or Group."), 1.5,NA), xend=2.5,y=filter(dfseg,GroupTime=='Group B After',Control=='Control')$mean_Y[1], yend=filter(dfseg,GroupTime=='Group B After',Control=='Control')$mean_Y[1]),size=1,color='black')+ geom_segment(aes(x=ifelse(state %in% c('2. See how Y is explained by Treatment, Time and/or Group.',"3. Keep only what's explained by Treatment, Time, and/or Group."), 1.5,NA), xend=2.5,y=filter(dfseg,GroupTime=='Group B After',Control=='Treatment')$mean_Y[1], yend=filter(dfseg,GroupTime=='Group B After',Control=='Treatment')$mean_Y[1]),size=1,color=" geom_segment(aes(x=1.5,xend=1.5, y=ifelse(state=="4. See how Control changed over Time in each Group.", filter(dfseg,GroupTime=='Group B Before',Control=='Control')$mean_Y[1]+diffB, ifelse(state=="5. Remove the Before/After difference in each groups.", filter(dfseg,GroupTime=='Group B Before',Control=='Control')$mean_Y[1],NA)), yend=filter(dfseg,GroupTime=='Group B Before',Control=='Control')$mean_Y[1]),size=1.5,color='blue')+ geom_segment(aes(x=1.5,xend=1.5, y=ifelse(state=="4. See how Control changed over Time in each Group.", filter(dfseg,GroupTime=='Group A Before',Control=='Control')$mean_Y[1]+diffA, ifelse(state=="5. Remove the Before/After difference in each groups.", filter(dfseg,GroupTime=='Group A Before',Control=='Control')$mean_Y[1],NA)), yend=filter(dfseg,GroupTime=='Group A Before',Control=='Control')$mean_Y[1]),size=1.5,color='blue')+ geom_segment(aes(x=1.5,xend=1.5, y=ifelse(state=='6. The remaining Before/After difference is the diff-in-diff in each Group.', filter(dfseg,GroupTime=='Group A After',Control=='Treatment')$mean_Y[1]-diffA, ifelse(state=='7. Remove the difference-in-difference effect from Group A.', filter(dfseg,GroupTime=='Group A Before',Control=='Treatment')$mean_Y[1],NA)), yend=filter(dfseg,GroupTime=='Group A Before',Control=='Treatment')$mean_Y[1]),size=1.5,color='blue')+ geom_segment(aes(x=1.5,xend=1.5, y=ifelse(state=='8. The remaining Before/After in Group B is the diff-in-diff-in-diff.', filter(dfseg,GroupTime=='Group B After',Control=='Treatment')$mean_Y[1]-diffA-DIDA,NA), yend=filter(dfseg,GroupTime=='Group B Before',Control=='Treatment')$mean_Y[1]),size=1.5,color='blue')+ labs(title = 'The Difference-in-Difference-in-Difference Effect of Treatment \n{next_state}')+ transition_states(state,transition_length=c(6,16,6,16,6,16,16,6),state_length=c(50,22,12,22,30,50,50,50),wrap=FALSE)+ ease_aes('sine-in-out')+ exit_fade()+enter_fade() animate(p,nframes=250)
print.SK <- function(x, digits=2L, ...) { cat('Results\n') print(x$out$Result, ...) cat('\nSig.level\n', x$out$Sig.level) cat('\n\nStatistics\n') print(x$stat, digits=digits, ...) cat('\n\nClusters\n') cc <- x$clus i <- 0 while(i < length(cc)){ i <- i+1 cat(paste(' gro <- strsplit(cc[[i]],',') cat(gro[[1]][1],sep='\n',fill=TRUE,labels = "{G1}:") cat(gro[[1]][2],sep='\n',fill=TRUE,labels = "{G2}:") } }
loon_reactive.l_hist <- function(loon.grob, output.grob, linkingInfo, buttons, position, selectBy, linkingGroup, input, colorList, tabPanelName, outputInfo) { plotBrush <- input$plotBrush plotClick <- input$plotClick loonWidgetsInfo <- outputInfo$loonWidgetsInfo pull <- input[[paste0(tabPanelName, "pull")]] initialDisplay <- is.null(output.grob) if(!initialDisplay && (input[["navBarPage"]] != tabPanelName || pull > buttons["pull"])) { if(pull > buttons["pull"]) { buttons["pull"] <- pull linkingGroup <- isolate(input[[paste0(tabPanelName, "linkingGroup")]]) } if(linkingGroup != "none") { linkedInfo <- linkingInfo[[linkingGroup]] order <- match(loonWidgetsInfo$linkingKey, linkedInfo$linkingKey) modifiedLinkingInfo <- set_linkingInfo( loon.grob = loon.grob, output.grob = output.grob, linkedInfo = linkedInfo, linkedStates = input[[paste0(tabPanelName, "linkedStates")]], tabPanelName = tabPanelName, order = order, loonWidgetsInfo = loonWidgetsInfo ) selected <- linkedInfo$selected brushId <- which(selected) selectByColor <- linkedInfo$selectByColor loonWidgetsInfo <- modifiedLinkingInfo$loonWidgetsInfo output.grob <- modifiedLinkingInfo$output.grob } else { brushId <- outputInfo$brushId selectByColor <- outputInfo$selectByColor } } else { output.grob <- loon.grob loonColor <- loonWidgetsInfo$loonColor plotAxes1 <- input[[paste0(tabPanelName, "plotAxes1")]] plotAxes2 <- input[[paste0(tabPanelName, "plotAxes2")]] plotShow <- input[[paste0(tabPanelName, "plotShow")]] swapInShiny <- "swap" %in% plotAxes1 swapInLoon <- loonWidgetsInfo$swapInLoon loonWidgetsInfo$swapInShiny <- swapInShiny yshows <- input[[paste0(tabPanelName, "yshows")]] loonWidgetsInfo$yshows <- yshows rangeChangedBydensity <- FALSE origin <- input[[paste0(tabPanelName, "origin")]] - 1e-8 loonWidgetsInfo$origin <- origin if(abs(buttons["origin"] - origin) > 1e-6) { if(yshows == "density") rangeChangedBydensity <- TRUE buttons["origin"] <- origin } binwidth <- input[[paste0(tabPanelName, "binwidth")]] loonWidgetsInfo$binwidth <- binwidth if(abs(buttons["binwidth"] - binwidth) > 1e-6) { if(yshows == "density") rangeChangedBydensity <- TRUE buttons["binwidth"] <- binwidth } showStackedColors <- "stackedColors" %in% plotShow loonWidgetsInfo$showStackedColors <- showStackedColors showOutlines <- "outlines" %in% plotShow loonWidgetsInfo$showOutlines <- showOutlines colorFill <- loonWidgetsInfo$colorFill colorOutline <- loonWidgetsInfo$colorOutline color <- loonWidgetsInfo$color N <- loonWidgetsInfo$N modifyReactive <- input[[paste0(tabPanelName, "modifyReactive")]] if (modifyReactive > buttons["reactive"]) { buttons["reactive"] <- modifyReactive loonWidgetsInfo$active <- rep(TRUE, N) } active <- loonWidgetsInfo$active binInfo <- get_binInfo(data = loonWidgetsInfo$x, origin = origin, active = active, binwidth = binwidth, yshows = yshows) binId <- binInfo$binId binX <- binInfo$binX binHeight <- binInfo$binHeight binxy <- get_binxy(binX = binX, binId = binId, binwidth = binwidth, yshows = yshows, color = color, n = N) scaleToPlot <- input[[paste0(tabPanelName, "scaleToPlot")]] scaleToWorld <- input[[paste0(tabPanelName, "scaleToWorld")]] scaleToLayer <- input[[paste0(tabPanelName, "scaleToLayer")]] sliderxlim <- input[[paste0(tabPanelName, "xlim")]] sliderylim <- input[[paste0(tabPanelName, "ylim")]] plotViewXlim <- grDevices::extendrange(c(binxy$xmin, binxy$xmax)) plotViewYlim <- grDevices::extendrange(c(binxy$ymin, binxy$ymax)) loonWidgetsInfo$plotViewXlim <- plotViewXlim loonWidgetsInfo$plotViewYlim <- plotViewYlim currentLayerName <- input[[paste0(tabPanelName, "layer")]] newLayerLabel <- isolate(input[[paste0(tabPanelName, "newLayerLabel")]]) layerSet <- input[[paste0(tabPanelName, "layerSet")]] if(layerSet > buttons["layerSet"]) { buttons["layerSet"] <- layerSet if(newLayerLabel == "") { message("no valid label") layers <- loonWidgetsInfo$layers layersName <- names(layers) currentLayer <- layers[which(layersName == currentLayerName)] } else { layers <- loonWidgetsInfo$layers layersName <- names(layers) whichLayerIsEdited <- which(layersName == currentLayerName) layersName[whichLayerIsEdited] <- newLayerLabel names(layers) <- layersName loonWidgetsInfo$layers <- layers currentLayer <- layers[whichLayerIsEdited] } } else { layers <- loonWidgetsInfo$layers layersName <- names(layers) currentLayer <- layers[which(layersName == currentLayerName)] } layerMinus <- input[[paste0(tabPanelName, "layerMinus")]] if(layerMinus > buttons["layerMinus"]) { buttons["layerMinus"] <- layerMinus loon.grob <- grid::setGrob( gTree = loon.grob, gPath = currentLayer, newGrob = nullGrob(name = currentLayer) ) output.grob <- grid::setGrob( gTree = loon.grob, gPath = currentLayer, newGrob = nullGrob(name = currentLayer) ) worldView <-get_worldViewPort(loon.grob = loon.grob, parent = "histogram", parentExcluded = TRUE) if(swapInLoon) { layerYlim <- worldView$xlim layerXlim <- worldView$ylim } else { layerXlim <- worldView$xlim layerYlim <- worldView$ylim } loonWidgetsInfo$layerXlim <- layerXlim loonWidgetsInfo$layerYlim <- layerYlim } worldViewXlim <- range(c(plotViewXlim, loonWidgetsInfo$layerXlim)) worldViewYlim <- range(c(plotViewYlim, loonWidgetsInfo$layerYlim)) if(swapInLoon != swapInShiny) { output.grob <- swap_layer_grob(output.grob, parent = "histogram") } if(swapInShiny) { xlabel <- loonWidgetsInfo$ylabel ylabel <- loonWidgetsInfo$xlabel if(scaleToPlot > buttons["plot"] || rangeChangedBydensity) { if(scaleToPlot > buttons["plot"]) buttons["plot"] <- scaleToPlot ylim <- plotViewXlim xlim <- plotViewYlim } else if(scaleToWorld > buttons["world"]) { buttons["world"] <- scaleToWorld ylim <- worldViewXlim xlim <- worldViewYlim } else if(scaleToLayer > buttons["scaleToLayer"] && length(currentLayer) > 0) { buttons["scaleToLayer"] <- scaleToLayer if(currentLayer == "histogram") { xlim <- loonWidgetsInfo$plotViewYlim ylim <- loonWidgetsInfo$plotViewXlim } else { layerLimits <- get_layer_worldView(loon.grob, layer = currentLayer) xlim <- layerLimits$ylim ylim <- layerLimits$xlim } } else { ylim <- sliderxlim xlim <- sliderylim } } else { xlabel <- loonWidgetsInfo$xlabel ylabel <- loonWidgetsInfo$ylabel if(scaleToPlot > buttons["plot"] || rangeChangedBydensity) { if(scaleToPlot > buttons["plot"]) buttons["plot"] <- scaleToPlot xlim <- plotViewXlim ylim <- plotViewYlim } else if(scaleToWorld > buttons["world"]) { buttons["world"] <- scaleToWorld xlim <- worldViewXlim ylim <- worldViewYlim } else if (scaleToLayer > buttons["scaleToLayer"] && length(currentLayer) > 0) { buttons["scaleToLayer"] <- scaleToLayer if(currentLayer == "histogram") { xlim <- loonWidgetsInfo$plotViewXlim ylim <- loonWidgetsInfo$plotViewYlim } else { layerLimits <- get_layer_worldView(loon.grob, layer = currentLayer) xlim <- layerLimits$xlim ylim <- layerLimits$ylim } } else { xlim <- sliderxlim ylim <- sliderylim } } loonWidgetsInfo$xlim <- xlim loonWidgetsInfo$ylim <- ylim xaxis <- grid.pretty(xlim) yaxis <- grid.pretty(ylim) title <- loonWidgetsInfo$title loonMargins <- loonWidgetsInfo$loonDefaultMargins margins <- rep(0, 4) if("scales" %in% plotAxes1) { output.grob <- set_scales_grob(loon.grob = output.grob, xaxis = xaxis, yaxis = yaxis) margins <- margins + loonMargins$scalesMargins loonWidgetsInfo$showScales <- TRUE } else { output.grob <- grid::setGrob( gTree = output.grob, gPath = "axes", newGrob = nullGrob(name = "axes") ) loonWidgetsInfo$showScales <- FALSE } if("labels" %in% plotAxes2) { if(yshows == "density") { if(swapInShiny) { xlabel <- "Density" } else { ylabel <- "Density" } } else { if(swapInShiny) { xlabel <- "Frequency" } else { ylabel <- "Frequency" } } output.grob <- set_labelsGrob( loon.grob = output.grob, showScales = loonWidgetsInfo$showScales, xlabel = xlabel, ylabel = ylabel, title = title ) if(is.null(xlabel) || xlabel == "") loonMargins$labelMargins[1] <- loonMargins$minimumMargins[1] if(is.null(ylabel) || ylabel == "") loonMargins$labelMargins[2] <- loonMargins$minimumMargins[2] if(is.null(title) || title == "") loonMargins$labelMargins[3] <- loonMargins$minimumMargins[3] margins <- margins + loonMargins$labelMargins loonWidgetsInfo$showLabels <- TRUE } else { output.grob <- grid::setGrob( gTree = output.grob, gPath = "labels", newGrob = nullGrob(name = "labels") ) loonWidgetsInfo$showLabels <- FALSE } if(loonWidgetsInfo$showLabels | loonWidgetsInfo$showScales) margins <- apply(cbind(margins, loonMargins$minimumMargins), 1, max) if("guides" %in% plotAxes2) { output.grob <- set_guidesGrob(loon.grob = output.grob, xaxis = xaxis, yaxis = yaxis, loonColor = loonColor) loonWidgetsInfo$showGuides <- TRUE } else { output.grob <- grid::setGrob( gTree = output.grob, gPath = "guides", newGrob = nullGrob(name = "guides") ) loonWidgetsInfo$showGuides <- FALSE } output.grob <- set_viewPort_grob( loon.grob = output.grob, margins = margins, xlim = xlim, ylim = ylim ) output.grob <- set_boundaryGrob(loon.grob = output.grob, margins = margins, loonColor = loonColor) vp <- grid::vpStack( grid::plotViewport(margins = margins, name = "plotViewport"), grid::dataViewport(xscale = xlim, yscale = ylim, name = "dataViewport") ) brushId <- if(initialDisplay) { outputInfo$brushId } else { if(is.null(plotBrush) && is.null(plotClick)) { outputInfo$brushId } else { if(!is.null(position)) get_brushId( loon.grob = output.grob, coord = binxy, swapInShiny = swapInShiny, position = position, brushInfo = plotBrush, vp = vp, clickInfo = plotClick ) } } loonWidgetsInfo$offset <- get_offset(vp = vp, l = plotBrush$domain$left %||% plotClick$domain$left %||% -0.04, r = plotBrush$domain$right %||% plotClick$domain$right %||% 1.04, b = plotBrush$domain$bottom %||% plotClick$domain$bottom %||% -0.04, t = plotBrush$domain$top %||% plotClick$domain$top %||% 1.04) selectDynamic <- input[[paste0(tabPanelName, "selectDynamic")]] sticky <- input[[paste0(tabPanelName, "sticky")]] selectByColor <- input[[paste0(tabPanelName, "selectByColor")]] if(sticky == "off") { if(!is.null(selectByColor)) { loonWidgetsInfo$lastSelection <- if(!is.null(plotBrush) || !is.null(plotClick)) brushId else integer(0) brushId <- which(color %in% selectByColor) } else { if(!is.null(outputInfo$selectByColor)) brushId <- loonWidgetsInfo$lastSelection } if("deselect" == selectDynamic) { if(!is.null(plotBrush) || !is.null(plotClick)) brushId <- integer(0) } } else { if(!is.null(selectByColor)) { whichIsSelected <- union(which(color %in% selectByColor), which(loonWidgetsInfo$selected)) } else { whichIsSelected <- which(loonWidgetsInfo$selected) } if("invert" == selectDynamic) { if(is.null(plotBrush)) { brushId <- whichIsSelected } else { brushId <- union(setdiff(whichIsSelected, brushId), setdiff(brushId, whichIsSelected)) } } else if("deselect" == selectDynamic) { if(is.null(plotBrush)) { brushId <- whichIsSelected } else { brushId <- setdiff(whichIsSelected, brushId) } } else { if(is.null(plotBrush)) { brushId <- whichIsSelected } else { brushId <- union(whichIsSelected, brushId) } } } selectStaticAll <- input[[paste0(tabPanelName, "selectStaticAll")]] selectStaticNone <- input[[paste0(tabPanelName, "selectStaticNone")]] selectStaticInvert <- input[[paste0(tabPanelName, "selectStaticInvert")]] if(selectStaticAll > buttons["all"]) { buttons["all"] <- selectStaticAll brushId <- seq(N) } else if(selectStaticNone > buttons["none"]) { buttons["none"] <- selectStaticNone brushId <- integer(0) } else if(selectStaticInvert > buttons["invert"]) { buttons["invert"] <- selectStaticInvert brushId <- setdiff(seq(N), brushId) } else NULL loonWidgetsInfo$selected <- rep(FALSE, N) loonWidgetsInfo$selected[brushId] <- TRUE colorApply <- input[[paste0(tabPanelName, "colorApply")]] colorListButtons <- setNames( lapply(colorList, function(col) input[[paste0(tabPanelName, col)]]), colorList ) colorPicker <- isolate(input[[paste0(tabPanelName, "colorPicker")]]) if(colorApply > buttons["colorApply"]) { buttons["colorApply"] <- colorApply color[brushId] <- colorPicker loonWidgetsInfo$color <- color } for(col in colorList) { if(colorListButtons[[col]] > buttons[col]) { buttons[col] <- colorListButtons[[col]] color[brushId] <- col loonWidgetsInfo$color <- color } } modifyDeactive <- input[[paste0(tabPanelName, "modifyDeactive")]] if(modifyDeactive > buttons["deactive"]) { buttons["deactive"] <- modifyDeactive if(length(brushId) > 0) { active[brushId] <- FALSE loonWidgetsInfo$active <- active binInfo <- get_binInfo(data = loonWidgetsInfo$x, origin = origin, active = active, binwidth = binwidth, yshows = yshows) binId <- binInfo$binId binX <- binInfo$binX binHeight <- binInfo$binHeight binxy <- get_binxy(binX = binX, binId = binId, binwidth = binwidth, yshows = yshows, color = color, n = sum(active)) plotViewXlim <- grDevices::extendrange(c(binxy$xmin, binxy$xmax)) plotViewYlim <- grDevices::extendrange(c(binxy$ymin, binxy$ymax)) loonWidgetsInfo$plotViewXlim <- plotViewXlim loonWidgetsInfo$plotViewYlim <- plotViewYlim } } whichIsDeactive <- which(!active) output.grob <- get_hist_grob(loon.grob = output.grob, yshows = yshows, binId = binId, binX = binX, binHeight = binHeight, binwidth = binwidth, n = N, swapAxes = swapInShiny, showStackedColors = showStackedColors, showOutlines = showOutlines, color = color, colorFill = colorFill, colorOutline = colorOutline) output.grob <- highlight_selected_bin_grob(loon.grob = output.grob, yshows = yshows, active = active, selected = loonWidgetsInfo$selected, binId = binId, binX = binX, binHeight = binHeight, binwidth = binwidth, n = N, swapAxes = swapInShiny, showStackedColors = showStackedColors, showOutlines = showOutlines, color = color, colorFill = colorFill, colorOutline = colorOutline, loonColor = loonColor) layerUp <- input[[paste0(tabPanelName, "layerUp")]] layerDown <- input[[paste0(tabPanelName, "layerDown")]] layerVisible <- input[[paste0(tabPanelName, "layerVisible")]] layerInvisible <- input[[paste0(tabPanelName, "layerInvisible")]] layerPlus <- input[[paste0(tabPanelName, "layerPlus")]] if(layerUp > buttons["layerUp"]) { buttons["layerUp"] <- layerUp loon.grob <- move_layerUp_grob(loon.grob = loon.grob, currentLayer = currentLayer, parent = "l_hist_layers") output.grob <- move_layerUp_grob(loon.grob = output.grob, currentLayer = currentLayer, parent = "l_hist_layers") } if(layerDown > buttons["layerDown"]) { buttons["layerDown"] <- layerDown loon.grob <- move_layerDown_grob(loon.grob = loon.grob, currentLayer = currentLayer, parent = "l_hist_layers") output.grob <- move_layerDown_grob(loon.grob = output.grob, currentLayer = currentLayer, parent = "l_hist_layers") } if(layerVisible > buttons["layerVisible"]) { buttons["layerVisible"] <- layerVisible loon.grob <- move_layerVisible_grob(loon.grob = loon.grob, currentLayer = currentLayer) output.grob <- move_layerVisible_grob(loon.grob = output.grob, currentLayer = currentLayer) } if(layerInvisible > buttons["layerInvisible"]) { buttons["layerInvisible"] <- layerInvisible loon.grob <- move_layerInvisible_grob(loon.grob = loon.grob, currentLayer = currentLayer) output.grob <- move_layerInvisible_grob(loon.grob = output.grob, currentLayer = currentLayer) } if(layerPlus > buttons["layerPlus"]) { buttons["layerPlus"] <- layerPlus message("adding layers has not been inplemented so far") } push <- input[[paste0(tabPanelName, "push")]] if(push > buttons["push"]) { buttons["push"] <- push linkingGroup <- isolate(input[[paste0(tabPanelName, "linkingGroup")]]) } else { newLinkingGroup <- isolate(input[[paste0(tabPanelName, "linkingGroup")]]) if(newLinkingGroup == "none") linkingGroup <- newLinkingGroup else NULL } linkingInfo <- update_linkingInfo(loon.grob, tabPanelName = tabPanelName, linkingInfo = linkingInfo, linkingGroup = linkingGroup, linkingKey = loonWidgetsInfo$linkingKey, selected = loonWidgetsInfo$selected, color = loonWidgetsInfo$color, active = loonWidgetsInfo$active, selectByColor = selectByColor, linkedStates = input[[paste0(tabPanelName, "linkedStates")]]) } list( output.grob = output.grob, loon.grob = loon.grob, outputInfo = list( brushId = brushId, selectByColor = selectByColor, linkingGroup = linkingGroup, linkingInfo = linkingInfo, loonWidgetsInfo = loonWidgetsInfo, buttons = buttons ) ) }
NULL the <- new.env(parent = emptyenv()) as_lookup <- function(x, envir = parent.frame(), ...) { UseMethod("as_lookup") } as_lookup.lookup <- function(x, envir = parent.frame(), ...) { x } as_lookup.character <- function(x, envir = parent.frame(), ...) { res <- list() tryCatch({ res[c("package", "name")] <- parse_name(x) res$def <- get(res$name, envir = res$package %||% envir, mode = "function") res$package <- res$package %||% function_package(res$def) res$type <- typeof(res$def) res$visible <- is_visible(res$name) }, error = function(e) NULL) class(res) <- "lookup" res } as_lookup.getAnywhere <- function(x, ...) { lapply(which(!x$dups), function(idx) { package <- sub("^registered S3 method for [^ ]+ from namespace (\\w+):?.*", "\\1", x$where[[idx]]) package <- sub("^namespace:", "", package) package <- sub("^package:", "", package) def <- x$objs[[idx]] structure( list( package = package, name = x$name, def = def, type = typeof(def), visible = x$visible[[idx]]), class = "lookup") }) } function_package <- function(x) { if (is.primitive(x)) { return("base") } e <- topenv(environment(x)) nme <- environmentName(e) if (!nzchar(nme)) { stop("Could not find associated package", call. = FALSE) } nme } find_fun_name <- function(x, env) { for (name in ls(env, all.names = TRUE)) { if (name == ".Last.value") { next } if (exists(name, envir = env) && identical(x, get(name, envir = env))) { return(name) } } stop("Function does not exist in ", bq(capture.output(print.default(env))), call. = FALSE) } as_lookup.function <- function(x, envir = environment(x), name = substitute(x)) { res <- list(def = x) tryCatch({ res$package <- function_package(res$def) env <- topenv(envir) res$name <- find_fun_name(x, env) res$type <- typeof(res$def) res$visible <- is_visible(res$name)}, error = function(e) NULL) class(res) <- "lookup" res } as_lookup.MethodDefinition <- function(x, envir = environment(x), name = substitute(x)) { res <- list(def = x) res$package <- function_package(res$def) res$name <- x@generic res$type <- typeof(res$def) if (!is(res$def, "genericFunction")) { res$signature <- methodSignatureMatrix(x) } res$visible <- TRUE class(res) <- "lookup" res } lookup <- function(x, name = substitute(x), envir = environment(x) %||% baseenv(), all = FALSE, ...) { fun <- as_lookup(x, envir = envir, name = name) if (is.null(fun$type)) { return(fun$def) } if (fun$type %in% c("builtin", "special")) { fun$internal <- list(lookup_function(fun$name, type = "internal")) } else { fun$internal <- lapply(call_names(fun$def, type = ".Internal", subset = c(2, 1)), lookup_function, type = "internal") fun$external <- lapply(call_names(fun$def, type = ".External", subset = c(2)), lookup_function, type = "external", package = fun$package) fun$ccall <- lapply(call_names(fun$def, type = c(".C", ".Call", ".Call2"), subset = c(2)), lookup_function, type = "call", package = fun$package) } if (uses_rcpp(fun$package)) { rcpp_exports <- rcpp_exports(fun$package) fun$ccall <- c(fun$ccall, lapply(call_names(fun$def, type = rcpp_exports, subset = c(1)), lookup_function, type = "rcpp", package = fun$package)) } if (isS4(fun$def)) { if (is(fun$def, "genericFunction")) { fun$type <- append(fun$type, "S4 generic", 0) fun$S4_methods <- lookup_S4_methods(fun, envir = envir, all = all) } else { fun$type <- append(fun$type, "S4 method") } } else { if (is_s3_method(fun$name, env = envir)) { fun$type <- append(fun$type, "S3 method", 0) } if (is_s3_generic(fun$name, env = envir)) { fun$type <- append(fun$type, "S3 generic", 0) fun$S3_methods <- lookup_S3_methods(fun, envir = envir, all = all) if (.isMethodsDispatchOn()) { fun$S4_methods <- lookup_S4_methods(fun, envir = envir, all = all) } } } the$last_lookup <- fun fun } loaded_functions <- memoise(function(envs = loadedNamespaces()) { fnames <- lapply(envs, function(e) ls(envir = asNamespace(e), all.names = TRUE)) data.frame(name = unlist(fnames), package = rep.int(envs, lengths(fnames)), stringsAsFactors = FALSE) }) print.function <- function(x, ...) print.lookup(lookup(x, ...)) setMethod("show", "genericFunction", function(object) print(lookup(object))) parse_name <- function(x) { split <- strsplit(x, ":::?")[[1]] if (length(split) == 2) { list(package = split[[1]], name = split[[2]]) } else { list(package = NULL, name = split[[1]]) } } `%==%` <- function(x, y) { identical(x, as.name(y)) } lookup_S3_methods <- function(f, envir = parent.frame(), all = FALSE, ...) { S3_methods <- suppressWarnings(.S3methods(f$name, envir = envir)) if (length(S3_methods) == 0) { return() } res <- flatten_list(lapply(S3_methods, function(name) as_lookup(getAnywhere(name))), "lookup") pkgs <- vapply(res, `[[`, character(1), "package") nms <- vapply(res, `[[`, character(1), "name") visible <- vapply(res, `[[`, logical(1), "visible") funs <- paste0(pkgs, ifelse(visible, "::", ":::"), nms) res <- method_dialog(funs, res, "S3") lapply(res, lookup) } lookup_S4_methods <- function(f, envir = parent.frame(), all = FALSE, ...) { S4_methods <- .S4methods(f$name) if (length(S4_methods) == 0) { return() } info <- attr(S4_methods, "info") signatures <- strsplit(sub(paste0("^", escape(f$name), ",", "(.*)-method$"), "\\1", S4_methods), ",") res <- Map(getMethod, f$name, signatures) missing_pkg <- !nzchar(info$from) info$from[missing_pkg] <- lapply(res[missing_pkg], function(x) getNamespaceName(topenv(environment(x)))) funs <- paste0(info$from, ifelse(info$visible, "::", ":::"), info$generic, "(", lapply(signatures, paste0, collapse = ", "), ")") res <- method_dialog(funs, res, "S4") lapply(res, lookup) } globalVariables("View", "lookup") print.lookup <- local({ level <- 0 function(x, ..., envir = parent.frame(), highlight = !in_rstudio() && crayon::has_color(), in_console = getOption("lookup.in_console", rstudioapi::isAvailable())) { force(x) force(highlight) if (in_completion_function() || !is.list(x) || is.null(x$type)) { cat(highlight_output(base::print.function(x), language = "r", highlight), sep = "\n") return(invisible(x)) } level <<- level + 1 on.exit(level <<- level - 1) str <- capture.output(type = "output", { colons <- if (x$visible) "::" else ":::" name <- paste0(bold(x$package, colons, x$name, sep = ""), " [", paste(collapse = ", ", x$type), "]") filename <- utils::getSrcFilename(x$def) if (length(filename) > 0) { ref <- utils::getSrcref(x$def) name <- paste0(name, " ", crayon::blue(filename, " } cat(name, "\n") if (!is.null(x$signature)) { cat("getMethod(\"", x$name, "\", c(", paste0(collapse = ", ", "\"", x$signature[1, ], "\""), "))\n", sep = "") } def <- if (isS4(x$def)) { [email protected] } else { x$def } if (isTRUE(in_console)) { View(def, title = name) } else { cat(highlight_output(base::print.function(def), language = "r", highlight), sep = "\n") } lapply(x[["internal"]], print, envir = envir, highlight = highlight, in_console = in_console) lapply(x[["external"]], print, envir = envir, highlight = highlight, in_console = in_console) lapply(x[["ccall"]], print, envir = envir, highlight = highlight, in_console = in_console) lapply(x[["S3_methods"]], print, envir = envir, highlight = highlight, in_console = in_console) lapply(x[["S4_methods"]], print, envir = envir, highlight = highlight, in_console = in_console) invisible() }) if (level == 1 && should_page(str)) { page_str(str) } else if (!isTRUE(in_console)) { cat(str, sep = "\n") } invisible(x) } }) escape <- function(x) { chars <- c("*", ".", "?", "^", "+", "$", "|", "(", ")", "[", "]", "{", "}", "\\") gsub(paste0("([\\", paste0(collapse = "\\", chars), "])"), "\\\\\\1", x, perl = TRUE) } highlight_output <- function(code, language = "r", color = TRUE) { out <- capture.output(force(code)) if (isTRUE(color)) { if (language == "c++") { language <- "c" } highlight_string(out, language = language) } else { out } } attached_functions <- memoise(function(sp = search()) { fnames <- lapply(seq_along(sp), ls) data.frame(name = unlist(fnames), package = rep.int(sub("package:", "", sp, fixed = TRUE), lengths(fnames)), stringsAsFactors = FALSE) }) is_visible <- function(x) { funs <- attached_functions() any(funs$name == x) } print.getAnywhere <- function(x, ...) { package <- grepl("^package:", x$where) namespace <- grepl("^namespace:", x$where) defs <- x$objs[namespace] name <- if (any(package)) { paste0(sub("package:", "", x$where[package]), "::", x$name) } else if (any(namespace)) { paste0(sub("namespace:", "", x$where[namespace]), ":::", x$name) } else { x$name } cat(bold(name), "\n") lapply(defs, print) invisible() } source_url <- function(x, ...) UseMethod("source_url") source_url.lookup <- function(x = the$last_lookup, ...) { stopifnot(inherits(x, "lookup")) links <- character() for (nme in c("internal", "external", "ccall", "S3_methods", "S4_methods")) { links <- append(links, vapply(x[[nme]], source_url, character(1))) } links } source_url.compiled <- function(x, ...) { if (x$remote_type == "local") { x$url } else { paste0(x$url, " } } lookup_browse <- function(x = the$last_lookup) { stopifnot(inherits(x, "lookup")) browseURL(tail(source_url(x), n = 1)) }
PrintModelList <-function (operators=FALSE, internal=FALSE, newstyle=TRUE) { stopifnot(internal <=2, internal >=0, operators<=1, operators>=0) .C(C_PrintModelList, as.integer(internal), as.integer(operators), as.integer(newstyle)) invisible() } showManpages <- function(path="/home/schlather/svn/RandomFields/RandomFields/man") { files <- dir(path) result <- character(length(files)) for (i in 1:length(files)) { cat("\n\n\n\n\n") system(paste("grep \"\\examples\" -A 10000 ", path, "/", files[i], sep="")) result[i] <- readline(files[i]) } result <- cbind(files, result) result <- result[result[, 2]!= "", ] result[result[, 2]=="t", 2] <- "To Do" result[result[, 2]=="s", 2] <- "dontshow" return(result) } compareVersions <- function(path = "~/svn", package="RandomFields", subpaths=c("cran", package)) { path <- paste(path, package, subpaths[1], sep="/") l <- list(list(subpath=paste(path, package, subpaths[2], "R", sep="/"), pattern="*R"), list(subpath=paste0(path, package, subpaths[2], "/src", sep="/"), pattern="*\\.h"), list(subpath = paste0(path, package, subpaths[2], "/src", sep="/"), pattern = "*\\.cc")) for (i in 1:length(l)) { subpath <- l[[i]]$subpath pattern <- l[[i]]$pattern files <- dir(path=subpath, pattern=pattern) for (f in files) { cmd <- paste("diff ", path, "/", subpath, "/", f, " ", subpath,"/", f, sep="") Print(cmd) system(cmd) } } } jpegORpdf <- function(graphics=NULL) { GD <- getOption("device") ispdf <- is.logical(all.equal(GD, "pdf")) isjpg <- is.logical(all.equal(GD, "jpeg")) if (!ispdf && !isjpg) { ispdf <- is.function(GD) && is.logical(all.equal(args(pdf), args(GD))) isjpg <- is.function(GD) && is.logical(all.equal(args(jpeg), args(GD))) } if (is.null(graphics)) graphics <- RFoptions()$graphics file <- graphics$file if (file != "") { f <- strsplit(file, "\\.")[[1]] ext <- tolower(f[length(f)]) is_pdf <- ext == "pdf" is_jpg <- ext == "jpeg" || ext == "jpg" if (is_pdf || is_jpg) graphics$file <- paste(f[-length(f)], sep=".") if (ispdf || isjpg) { if ((is_pdf && isjpg) || (is_jpg && ispdf)) stop("'extension' does not fit given device") } else { ispdf <- is_pdf isjpg <- is_jpg } } if (ispdf) GD <- pdf else if (isjpg) GD <- jpeg graphics$ispdf <- ispdf graphics$isjpg <- isjpg graphics$ext <- c(".pdf", ".jpg")[isjpg + 1] graphics$GD <- GD return(graphics) } ScreenDevice <- function(height, width) { graphics <- jpegORpdf() if (graphics$ispdf || graphics$isjpg) { if (graphics$filenumber == 99999) stop("number of pictures exceeds max. number of pictures") file <- graphics$file if (file != "") { if (!graphics$onefile) { file <- paste(file, formatC(format="d", flag="0", graphics$filenumber, width=5), graphics$ext, sep="") RFoptions(graphics.filenumber = graphics$filenumber + 1) } else file <- paste(file, graphics$ext, sep="") if (graphics$ispdf) graphics$GD(height=height, width=width, onefile=FALSE, file=file) else if (graphics$isjpg) graphics$GD(height=height, width=width, file=file, units="in", res=graphics$resolution) else stop("device not recognized by 'RandomFields'") return() } else { if (graphics$isjpg) stop("'file' in 'RFoptions' not set.") } } args <- names(as.list(args(graphics$GD))) if (all(c("width", "height") %in% args) && ( !any(c("file", "filename") %in% args)) || graphics$ispdf) { graphics$GD(height=height, width=width) return() } if (RFoptions()$internal$warn_aspect_ratio) { RFoptions(warn_aspect_ratio = FALSE) cat("The graphical device does not seem to be a standard screen device. Hence the\naspect ratio might not be correct. (This message appears only one per session.)") } } ArrangeDevice <- function(graphics, figs, dh=2.8, h.outer=1.2, dw = 2.5, w.outer=0.7) { H <- curH <- graphics$height curW <- graphics$width if (is.finite(H) && H>0) { if (is.na(graphics$width) || graphics$width<=0.0) { H <- H * pmin(1, graphics$increase_upto[1] / figs[1], graphics$increase_upto[2] / figs[2]) DH <- H * dh / (dh + h.outer) HO <- H - DH curH <- figs[1] * DH + HO W <- H * (dw + w.outer) / (dh + h.outer) DW <- W * dw / (dw + w.outer) WO <- W - DW curW <- figs[2] * DW + WO } graphics <- jpegORpdf(graphics) jpg_pdf <- graphics$isjpg || graphics$ispdf if (is.na(graphics$always_open_device)) { open <- interactive() || jpg_pdf RFoptions(graphics.always_open_device = open) } else open <- graphics$always_open_device if (length(dev.list()) > 0 && open) { close <- graphics$always_close_device if (is.na(close)) close <- jpg_pdf if (close) dev.off() } if (open) { ScreenDevice(height=curH, width=curW) } } else warning("device could not be opened as 'height' (=", H, ") is not positive.") if (graphics$split_screen) { if (length(dev.list()) > 0 && any(par()$mfcol != 1)) par(mfcol=c(1,1)) } else { if (any(figs != 1) && length(dev.list()) > 0) par(mfcol=figs) } return(c(curH, curW)) } ShowInstallErrors <- function(dir, pkgs) for (i in 1:length(pkgs)) { cat(pkgs[i], "\n") for (f in c("00install.out", "00check.log")) system(paste("grep [eE][rR][rR][oO][rR] ", dir, "/", pkgs[i], ".Rcheck/", f, sep="")) } StartExample <- function(reduced = TRUE, save.seed=TRUE) { if (save.seed) { RFopt <- RFoptions() assign("RandomFields_options", envir=.RandomFields.env, RFopt) } if (!interactive()) { REDUCED <- reduced RFoptions(examples_reduced = REDUCED) } } FinalizeExample <- function() { if (!interactive()) { close.screen(all.screens = TRUE) n <- length(dev.list()) - 2 if (n > 0) { for (i in 1:n) { dev.off() } } } options <- get("RandomFields_options", envir=.RandomFields.env) options$examples_reduced <- FALSE RFoptions(LIST = options) } checkExamples <- function(exclude=NULL, include=1:length(.fct.list), ask=FALSE, echo=TRUE, halt=FALSE, ignore.all=FALSE, path=package, package="RandomFields", read.rd.files=TRUE, local = TRUE, libpath = NULL, single.runs = FALSE) { .exclude <- exclude .ask <- ask .echo <- echo .halt <- halt .ignore.all <- ignore.all .package <- package .path <- path .local <- local useDynLib <- importClassesFrom <- import <- importFrom <- exportClasses <- importMethodsFrom <- exportMethods <- S3method <- function(...) NULL .env <- new.env() stopifnot(is.na(RFoptions()$basic$seed)) exportPattern <- function(p) { if (p == "^R\\.") p <- "^R." all.pattern <- p %in% c("^[^\\.]", "^[^.]", ".") | get("all.pattern", .env) if (!.ignore.all) assign("all.pattern", all.pattern, .env) if (all.pattern) return(NULL) stopifnot(nchar(p)==3, substr(p,1,1)=="^") assign("p", c(get("p", .env), substring(p, 2)), .env) } export <- function(...) { dots <- match.call(expand.dots = FALSE)$... z <-deparse(substitute(...)) if (length(dots) && !all(sapply(dots, function(x) is.symbol(x) || is.character(x)))) stop("... must contain names or character strings") z <- sapply(dots, as.character) cat("export", z, "\n") assign("export", c(get("export", .env), z), .env) } import <- importClassesFrom <- importMethodsFrom <- importFrom <- useDynLib <- exportClasses <- S3method <- exportMethods <- function(...) { dots <- match.call(expand.dots = FALSE)$... } assign("export", NULL, .env) assign("all.pattern", FALSE, .env) assign("p", NULL, .env) cat("'source' causes problems in valgrind") .content <- readLines(paste(.path, "NAMESPACE", sep="/"), -1) eval(parse(text = .content)) cat("\tend source\n") if (is.logical(read.rd.files) && !read.rd.files) { .package.env <- parent.env(.GlobalEnv) while (attr(.package.env, "name") != paste("package:", .package, sep="")) { .package.env <- parent.env(.package.env) } .orig.fct.list <- ls(envir=.package.env) .ok <- (get("all.pattern", .env) | substr(.orig.fct.list, 1, 1) %in% get("p", .env) | .orig.fct.list %in% get("export", .env)) .fct.list <- .orig.fct.list[.ok] } else { if (is.logical(read.rd.files)) .path <- paste("./", .path, "/man", sep="") else .path <- read.rd.files .files <- dir(.path, pattern="d$") .fct.list <- character(length(.files)) for (i in 1:length(.files)) { .fn <- paste(.path, .files[i], sep="/") .content <- readLines(.fn, n = 2) if (substr(.content[1], 1, 5) != "\\name" && (substr(.content[1], 1, 1) != "%" || substr(.content[2], 1, 5) != "\\name")) stop(.files[i], " does not start with '\\name' -- what at least in 2018 has caused problems in valgrind") .content <- scan(.fn, what=character(), quiet=TRUE) .content <- strsplit(.content, "alias\\{") .content <- .content[which(lapply(.content, length) > 1)][[1]][2] .fct.list[i] <- strsplit(strsplit(.content,"\\}")[[1]][1], ",")[[1]][1] } } .include <- if (is.numeric(include)) include else 1:99999 .include.name <- include RFoptions(graphics.close_screen = TRUE, graphics.split_screen = TRUE) .RFopt <- RFoptions() .not_working_no <- .not_working <- NULL .included.fl <- .fct.list[.include] .not.isna <- !is.na(.included.fl) .include <- .include[.not.isna] .included.fl <- .included.fl[.not.isna] .max.fct.list <- max(.included.fl) if (single.runs) { file.in <- "example..R" file.out <- "example..Rout" if (file.exists(file.out)) file.remove(file.out) } if (is.character(.include.name)) { .include.name <- sapply(strsplit(.include.name, ".Rd"), function(x) x[1]) } ENVIR <- new.env() .allwarnings <- list() for (.idx in .include) { if (is.character(.include.name) && !(.fct.list[.idx] %in% .include.name)) next try(repeat dev.off(), silent=TRUE) if (.idx %in% .exclude) next cat("\n\n\n\n\n", .idx, " ", .package, ":", .fct.list[.idx], " (total=", length(.fct.list), ") \n", sep="") RFoptions(LIST=.RFopt) .C(C_ResetWarnings, as.integer(FALSE)) if (.echo) cat(.idx, "") .tryok <- TRUE if (single.runs) { txt <- paste("library(", package,", ", libpath, "); example(", .fct.list[.idx], ", ask =", .ask, ", echo =", .echo, ")", sep="") write(file=file.in, txt) command <- paste("R < ", file.in, ">>", file.out) } else { .res <- try(do.call(utils::example, list(.fct.list[.idx], ask=.ask, echo=.echo, local=.local))) w <- warnings() .allwarnings <- c(.allwarnings, list(c("Help page ", .idx)), w) print(w) if (is(.res, "try-error")) { if (.halt) { stop("\n\n\t***** ",.fct.list[.idx], " (", .idx, " out of ", max(.include), "). has failed. *****\n\n") } else { .not_working_no <- c(.not_working_no, .idx) .not_working <- c(.not_working, .fct.list[.idx]) .tryok <- FALSE } } RFoptions(storing = FALSE) cat("****** '", .fct.list[.idx], "' (", .idx, ") done. ******\n") if (.tryok && !is.na(RFoptions()$basic$seed)) { Print(.not_working, paste(.not_working_no, collapse=", "), RFoptions()$basic$seed) stop("seed not NA: ", .fct.list[.idx]) } } } Print(.not_working, paste(.not_working_no, collapse=", ")) .ret <- list(.not_working, .not_working_no) names(.ret) <- c(.package, "") return(.ret) } maintainers.machine <- function() .Call(C_maintainers_machine)
bivariateNormal <- function(rho=0, layout=c(3,3), lwd=.2, angle=c(22.5, 67.5, 112.5, 337.5, 157.5, 292.5, 247.5, 202.5), col.regions=trellis.par.get("regions")$col, ...) { x <- seq(-2, 2, length=33) y <- x fxy <- 1/(2*pi*sqrt(1-rho^2)) * exp(-.5/(1-rho^2) * outer(x^2, y^2, "+") - 2*rho*outer(x,y,"*")) n.angle <- length(angle) Angle <- rep(angle, rep(length(fxy), n.angle)) Viewing.Angle <- ordered(Angle, angle) wireframe(rep(fxy, n.angle) ~ rep(x[row(fxy)], n.angle) * rep(y[col(fxy)], n.angle) | Viewing.Angle, r=rho, layout=layout, lwd=lwd, ..., panel = function(x, y, subscripts, z, angle, ...) { w <- unique(angle[subscripts]) panel.wireframe(x=x, y=y, subscripts=subscripts, z=z, screen = list(z = w, x = -60, y = 0), ...) }, angle = Angle, strip = strip.custom(strip.names = TRUE, style = "1", sep=": "), skip = c(FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE), drape = TRUE, distance = 0.3, main = as.expression(substitute("Bivariate Normal, " * rho == r, c(alist(rho=rho), list(r=rho)))), xlab = list("x", cex = 0.6), ylab = list("y", cex = 0.6), zlab = list("f(x,y)", cex = 0.6)) }
augment.mixpoissonreg <- function(x, data = stats::model.frame(x), newdata = NULL, type.predict = c("response", "link", "precision", "variance"), type.residuals = c("pearson", "score"), se_fit = FALSE, conf_int = TRUE, pred_int = FALSE, ...) { .index <- .resid <- .resfit <- NULL type.predict <- rlang::arg_match(type.predict) type.residuals <- rlang::arg_match(type.residuals) if(is.null(newdata)){ newdata = stats::model.frame(x) res <- stats::residuals(x, type = type.residuals) } else{ res <- NULL } df <- as_tibble(newdata) pred <- stats::predict(x, newdata = newdata, type = type.predict, se.fit = se_fit) if(se_fit){ df$.fitted <- pred$fit %>% unname() df$.se.fit <- pred$se.fit %>% unname() } else{ df$.fitted <- pred %>% unname() } if(conf_int){ conf_int <- stats::predict(x, newdata = newdata, type = type.predict, interval = "confidence") df$.fittedlwrconf <- conf_int[, "lwr"] %>% unname() df$.fitteduprconf <- conf_int[, "upr"] %>% unname() } if(pred_int){ pred_int <- stats::predict(x, newdata = newdata, type = "response", interval = "prediction", ...) df$.fittedlwrpred <- pred_int[, "lwr"] %>% unname() df$.fitteduprpred <-pred_int[, "upr"] %>% unname() } if(!is.null(res)){ df$.resid <- res df$.resfit <- stats::residuals(x, type = x$residualname) df$.hat <- stats::hatvalues(x, parameters = "mean") %>% unname() df$.cooksd <- stats::cooks.distance(x, type = "CD", hat = "mean") %>% unname() df$.gencooksd <- stats::cooks.distance(x, type = "GCD", hat = "mean") %>% unname() env <- x$envelope if (!is.null(env)) { df$.index <- 1:nrow(df) temp_tbl <- tibble(.resfit = df$.resfit, .index = df$.index) temp_tbl <- temp_tbl %>% dplyr::arrange(.resfit) temp_tbl$.lwrenv <- env[3,] temp_tbl$.mdnenv <- env[2,] temp_tbl$.uprenv = env[1,] df <- dplyr::left_join(df, temp_tbl, by = c(".index", ".resfit")) %>% select(-.index) } } df } glance.mixpoissonreg <- function(x, ...){ tibble(efron.pseudo.r2 = as.numeric(x$efron.pseudo.r2), df.null = x$df.null, logLik = as.numeric(stats::logLik(x)), AIC = stats::AIC(x), BIC = stats::BIC(x), df.residual = stats::df.residual(x), nobs = stats::nobs(x), model.type = x$modeltype, est.method = x$estimation_method) } tidy.mixpoissonreg <- function(x, conf.int = FALSE, conf.level = 0.95, ...){ join_term <- NULL retmean <- as_tibble(summary(x)$coefficients$mean, rownames = "term") colnames(retmean) <- c("term", "estimate", "std.error", "statistic", "p.value") retmean <- retmean %>% add_column(component = "mean", .before = "term") retprec <- as_tibble(summary(x)$coefficients$precision, rownames = "term") colnames(retprec) <- c("term", "estimate", "std.error", "statistic", "p.value") retprec <- retprec %>% add_column(component = "precision", .before = "term") ret <- dplyr::bind_rows(retmean,retprec) if (conf.int) { ret$join_term <- names(stats::coef(x, parameters = "all")) ci <- as_tibble(stats::confint(x, level = conf.level), rownames = "term") names(ci) <- c("join_term", "conf.low", "conf.high") ret <- dplyr::left_join(ret, ci, by = "join_term") %>% select(-join_term) } ret } autoplot.mixpoissonreg <- function(object, which = c(1,2,5,6), title = list("Residuals vs Obs. number", "Normal Q-Q", "Cook's distance", "Generalized Cook's distance", "Cook's dist vs Generalized Cook's dist", "Response vs Fitted means"), title.bold = FALSE, title.size = NULL, title.colour = NULL, label.repel = TRUE, x.axis.col = NULL, y.axis.col = NULL, x.axis.size = NULL, y.axis.size = NULL, cook.plot.type = "linerange", cook.plot.pointshape = NULL, nrow = NULL, ncol = NULL, qqline = TRUE, ask = prod(graphics::par("mfcol")) < length(which) && grDevices::dev.interactive(), include.modeltype = TRUE, include.residualtype = FALSE, sub.caption = NULL, sub.caption.col = NULL, sub.caption.size = NULL, sub.caption.face = NULL, sub.caption.hjust = 0.5, env_alpha = 0.5, env_fill = "grey70", gpar_sub.caption = list(fontface = "bold"), colour = " shape = NULL, label = TRUE, label.label = NULL, label.colour = " label.alpha = NULL, label.size = NULL, label.angle = NULL, label.family = NULL, label.fontface = NULL, label.lineheight = NULL, label.hjust = NULL, label.vjust = NULL, label.n = 3, ad.colour = " p1 <- p2 <- p3 <- p4 <- p5 <- p6 <- NULL .resid <- .cooksd <- .gencooksd <- .obs <- .fitted <-.lwrenv <- .uprenv <- .mdnenv <- NULL if (is.null(sub.caption)) { cal <- object$call if (!is.na(m.f <- match("formula", names(cal)))) { cal <- cal[c(1, m.f)] names(cal)[2L] <- "" } cc <- deparse(cal, 80) nc <- nchar(cc[1L], "c") abbr <- length(cc) > 1 || nc > 75 sub.caption <- if (abbr) paste(substr(cc[1L], 1L, min(75L, nc)), "...") else cc[1L] } plot.data <- augment(object, type.residuals = object$residualname, type.predict = "response") n <- stats::nobs(object) plot.data$.index <- 1:n if(is.null(label.label)){ plot.data$.label <- rownames(plot.data) } else{ plot.data$.label <- as.vector(label.label) } if(is.null(object$y)){ y = object$residuals + object$fitted.values } else{ y = object$y } if(2 %in% which){ ylim <- range(plot.data$.resid, na.rm = TRUE) ylim[2L] <- ylim[2L] + diff(ylim) * 0.075 qx <- stats::qqnorm(plot.data$.resid, ylim = ylim, plot.it = FALSE)$x plot.data$.qqx <- qx qprobs <- c(0.25, 0.75) qy <- stats::quantile(plot.data$.resid, probs = qprobs, names = FALSE, type = 7, na.rm = TRUE) qx <- stats::qnorm(qprobs) slope <- diff(qy)/diff(qx) int <- qy[1L] - slope * qx[1L] } plot.data$.obs <- as.vector(y) plot_label <- function (p, data, x = NULL, y = NULL, label = TRUE, label.label = "rownames", label.colour = NULL, label.alpha = NULL, label.size = NULL, label.angle = NULL, label.family = NULL, label.fontface = NULL, label.lineheight = NULL, label.hjust = NULL, label.vjust = NULL, label.repel = FALSE, label.show.legend = NA) { if (!is.data.frame(data)) { stop(paste0("Unsupported class: ", class(data))) } if (!missing(label.colour) && !is.null(label.colour) && missing(label)) { label <- TRUE } if (label || label.repel) { if (is.null(label.colour)) { label.colour <- " } if (label.repel) { textfunc <- ggrepel::geom_text_repel } else { textfunc <- ggplot2::geom_text } p <- p + geom_factory(textfunc, data, x = x, y = y, label = ".label", colour = label.colour, alpha = label.alpha, size = label.size, angle = label.angle, family = label.family, fontface = label.fontface, lineheight = label.lineheight, hjust = label.hjust, vjust = label.vjust, show.legend = label.show.legend) } p } flatten <- function (df) { ismatrix <- vapply(df, is.matrix, logical(1)) if (any(ismatrix)) { return(data.frame(c(df[!ismatrix], do.call(data.frame, df[ismatrix])), stringsAsFactors = FALSE)) } else { return(df) } } geom_factory <- function (geomfunc, data = NULL, ...) { mapping <- list() option <- list() columns <- colnames(data) for (key in names(list(...))) { value <- list(...)[[key]] if (is.null(value)) { } else if (value %in% columns) { mapping[[key]] <- value } else { option[[key]] <- value } } if (!is.null(data)) { option[["data"]] <- data } option[["mapping"]] <- do.call(ggplot2::aes_string, mapping) return(do.call(geomfunc, option)) } if (is.logical(shape) && !shape) { if (missing(label)) { label <- TRUE } if (missing(label.n)) { label.n <- nrow(plot.data) } } dev_ask <- is.null(nrow) & is.null(ncol) if(dev_ask){ if (ask) { oask <- grDevices::devAskNewPage(TRUE) on.exit(grDevices::devAskNewPage(oask)) } } plot.data <- flatten(plot.data) if(any(c(1,2) %in% which)){ residualname <- paste0(toupper(substring(object$residualname, 1, 1)), substring(object$residualname, 2)) } if (label.n > 0L) { if (any(c(1,2,6) %in% which)) { r.data <- dplyr::arrange(plot.data, dplyr::desc(abs(.resid))) r.data <- utils::head(r.data, label.n) } if (3 %in% which) { cd.data <- dplyr::arrange(plot.data, dplyr::desc(abs(.cooksd))) cd.data <- utils::head(cd.data, label.n) } if (4 %in% which){ gcd.data <- dplyr::arrange(plot.data, dplyr::desc(abs(.gencooksd))) gcd.data <- utils::head(gcd.data, label.n) } if(5 %in% which){ cdgcd.data <- dplyr::arrange(plot.data, dplyr::desc((.gencooksd/sum(.gencooksd))^2 + (.cooksd/sum(.cooksd))^2)) cdgcd.data <- utils::head(cdgcd.data, label.n) } if(6 %in% which){ respobs.data <- dplyr::arrange(plot.data, dplyr::desc(abs(.obs - .fitted))) respobs.data <- utils::head(respobs.data, label.n) } } .decorate.label <- function(p, data) { if (label & label.n > 0) { p <- plot_label(p = p, data = data, label = label, label.label = ".label", label.colour = label.colour, label.alpha = label.alpha, label.size = label.size, label.angle = label.angle, label.family = label.family, label.fontface = label.fontface, label.lineheight = label.lineheight, label.hjust = label.hjust, label.vjust = label.vjust, label.repel = label.repel) } p } .decorate.plot <- function(p, xlab = NULL, ylab = NULL, title = NULL) { if(title.bold){ p + ggplot2::xlab(xlab) + ggplot2::ylab(ylab) + ggplot2::ggtitle(title) + theme(plot.title = element_text(size = title.size, face = "bold", colour = title.colour)) } else{ p + ggplot2::xlab(xlab) + ggplot2::ylab(ylab) + ggplot2::ggtitle(title) + theme(plot.title = element_text(size = title.size, colour = title.colour)) } } if (1 %in% which) { if(include.residualtype){ title[[1]] = paste(residualname, title[[1]]) } ylab <- paste0(residualname, " residuals") if(include.modeltype){ title[[1]] <- paste0(title[[1]], " - ", object$modeltype, " Regression") } t1 <- title[[1]] mapping <- ggplot2::aes_string(x = ".index", y = ".resid") p1 <- ggplot2::ggplot(data = plot.data, mapping = mapping) if (!is.logical(shape) || shape) { p1 <- p1 + geom_factory(geom_point, plot.data, colour = colour, size = size, linetype = linetype, alpha = alpha, fill = fill, shape = shape) } p1 <- p1 + ggplot2::geom_hline(yintercept = 0L, linetype = ad.linetype, size = ad.size, colour = ad.colour) p1 <- .decorate.label(p1, r.data) xlab = "Obs. number" p1 <- .decorate.plot(p1, xlab = xlab, ylab = ylab, title = t1) + theme(axis.title.x = element_text(colour = x.axis.col, size = x.axis.size), axis.title.y = element_text(colour = y.axis.col, size = y.axis.size)) if(dev_ask){ p1 <- p1 + labs(caption = sub.caption) + theme(plot.caption = element_text(color = sub.caption.col, face = sub.caption.face, size = sub.caption.size, hjust = sub.caption.hjust)) print(p1) } } if(2 %in% which){ env <- object$envelope if (!is.null(env)) { title[[2]] <- paste0(title[[2]]," with simulated envelopes") } if(include.modeltype){ title[[2]] <- paste0(title[[2]], " - ", object$modeltype, " Regression") } t2 <- title[[2]] mapping <- ggplot2::aes_string(x = ".qqx", y = ".resid") p2 <- ggplot2::ggplot(data = plot.data, mapping = mapping) if(qqline & is.null(env)){ p2 <- p2 + ggplot2::geom_abline(intercept = int, slope = slope, linetype = ad.linetype, size = ad.size, colour = ad.colour) } if(!is.null(env)){ p2 <- p2 + ggplot2::geom_ribbon(aes(ymin=.lwrenv, ymax=.uprenv), alpha=env_alpha, fill = env_fill) p2 <- p2 + ggplot2::geom_line(aes(y = .mdnenv), linetype = ad.linetype, size = ad.size, colour = ad.colour) } if (!is.logical(shape) || shape) { p2 <- p2 + geom_factory(geom_point, plot.data, colour = colour, size = size, linetype = linetype, alpha = alpha, fill = fill, shape = shape) } ylab <- paste0(residualname, " residuals") xlab = "Theoretical Quantiles" p2 <- .decorate.label(p2, r.data) p2 <- .decorate.plot(p2, xlab = xlab, ylab = ylab, title = t2) + theme(axis.title.x = element_text(colour = x.axis.col, size = x.axis.size), axis.title.y = element_text(colour = y.axis.col, size = y.axis.size)) if(dev_ask){ p2 <- p2 + labs(caption = sub.caption) + theme(plot.caption = element_text(color = sub.caption.col, face = sub.caption.face, size = sub.caption.size, hjust = sub.caption.hjust)) print(p2) } } if(3 %in% which){ if(include.modeltype){ title[[3]] <- paste0(title[[3]], " - ", object$modeltype, " Regression") } t3 <- title[[3]] mapping <- ggplot2::aes_string(x = ".index", y = ".cooksd", ymin = 0, ymax = ".cooksd") p3 <- ggplot2::ggplot(data = plot.data, mapping = mapping) if (!is.logical(shape) || shape) { if(cook.plot.type == "linerange"){ p3 <- p3 + geom_factory(geom_linerange, plot.data, colour = colour, size = size, linetype = linetype, alpha = alpha, fill = fill, shape = shape) } else if(cook.plot.type == "points"){ p3 <- p3 + geom_factory(geom_point, plot.data, colour = colour, size = size, linetype = linetype, alpha = alpha, fill = fill, shape = cook.plot.pointshape) } } p3 <- .decorate.label(p3, cd.data) xlab = "Obs. Number" p3 <- .decorate.plot(p3, xlab = xlab, ylab = "Cook's distance", title = t3) + theme(axis.title.x = element_text(colour = x.axis.col, size = x.axis.size), axis.title.y = element_text(colour = y.axis.col, size = y.axis.size)) if(dev_ask){ p3 <- p3 + labs(caption = sub.caption) + theme(plot.caption = element_text(color = sub.caption.col, face = sub.caption.face, size = sub.caption.size, hjust = sub.caption.hjust)) print(p3) } } if(4 %in% which){ if(include.modeltype){ title[[4]] <- paste0(title[[4]], " - ", object$modeltype, " Regression") } t4 <- title[[4]] mapping <- ggplot2::aes_string(x = ".index", y = ".gencooksd", ymin = 0, ymax = ".gencooksd") p4 <- ggplot2::ggplot(data = plot.data, mapping = mapping) if (!is.logical(shape) || shape) { if(cook.plot.type == "linerange"){ p4 <- p4 + geom_factory(geom_linerange, plot.data, colour = colour, size = size, linetype = linetype, alpha = alpha, fill = fill, shape = shape) } else if(cook.plot.type == "points"){ p4 <- p4 + geom_factory(geom_point, plot.data, colour = colour, size = size, linetype = linetype, alpha = alpha, fill = fill, shape = cook.plot.pointshape) } } p4 <- .decorate.label(p4, gcd.data) xlab = "Obs. Number" p4 <- .decorate.plot(p4, xlab = xlab, ylab = "Generalized Cook's distance", title = t4) + theme(axis.title.x = element_text(colour = x.axis.col, size = x.axis.size), axis.title.y = element_text(colour = y.axis.col, size = y.axis.size)) if(dev_ask){ p4 <- p4 + labs(caption = sub.caption) + theme(plot.caption = element_text(color = sub.caption.col, face = sub.caption.face, size = sub.caption.size, hjust = sub.caption.hjust)) print(p4) } } if (5 %in% which) { if(include.modeltype){ title[[5]] <- paste0(title[[5]], " - ", object$modeltype, " Regression") } t5 <- title[[5]] mapping <- ggplot2::aes_string(x = ".gencooksd", y = ".cooksd") p5 <- ggplot2::ggplot(data = plot.data, mapping = mapping) if (!is.logical(shape) || shape) { p5 <- p5 + geom_factory(geom_point, plot.data, colour = colour, size = size, linetype = linetype, alpha = alpha, fill = fill, shape = shape) } p5 <- p5 + ggplot2::geom_hline(yintercept = 0L, linetype = ad.linetype, size = ad.size, colour = ad.colour) p5 <- .decorate.label(p5, cdgcd.data) xlab = "Generalized Cook's distance" p5 <- .decorate.plot(p5, xlab = xlab, ylab = "Cook's distance", title = t5) + theme(axis.title.x = element_text(colour = x.axis.col, size = x.axis.size), axis.title.y = element_text(colour = y.axis.col, size = y.axis.size)) if(dev_ask){ p5 <- p5 + labs(caption = sub.caption) + theme(plot.caption = element_text(color = sub.caption.col, face = sub.caption.face, size = sub.caption.size, hjust = sub.caption.hjust)) print(p5) } } if (6 %in% which) { if(include.modeltype){ title[[6]] <- paste0(title[[6]], " - ", object$modeltype, " Regression") } t6 <- title[[6]] mapping <- ggplot2::aes_string(x = ".fitted", y = ".obs") p6 <- ggplot2::ggplot(data = plot.data, mapping = mapping) if (!is.logical(shape) || shape) { p6 <- p6 + geom_factory(geom_point, plot.data, colour = colour, size = size, linetype = linetype, alpha = alpha, fill = fill, shape = shape) } p6 <- p6 + ggplot2::geom_abline(intercept = 0L, slope = 1L, linetype = ad.linetype, size = ad.size, colour = ad.colour) p6 <- .decorate.label(p6, respobs.data) xlab = "Predicted values" p6 <- .decorate.plot(p6, xlab = xlab, ylab = "Response values", title = t6) + theme(axis.title.x = element_text(colour = x.axis.col, size = x.axis.size), axis.title.y = element_text(colour = y.axis.col, size = y.axis.size)) if(dev_ask){ p6 <- p6 + labs(caption = sub.caption) + theme(plot.caption = element_text(color = sub.caption.col, face = sub.caption.face, size = sub.caption.size, hjust = sub.caption.hjust)) print(p6) } } if(!dev_ask){ grDevices::devAskNewPage(ask = FALSE) plot.list <- list(p1, p2, p3, p4, p5, p6)[which] gpar_multi <- do.call(grid::gpar, gpar_sub.caption) title_multi <- grid::textGrob(sub.caption, gp=gpar_multi) gridExtra::grid.arrange(grobs = plot.list, top = title_multi, nrow = nrow, ncol = ncol) grDevices::devAskNewPage(ask = grDevices::dev.interactive()) } else{ invisible() } } tidy_local_influence.mixpoissonreg <- function(model, perturbation = c("case_weights", "hidden_variable", "mean_explanatory", "precision_explanatory", "simultaneous_explanatory"), curvature = c("conformal", "normal"), direction = c("canonical", "max.eigen"), parameters = c("all", "mean", "precision"), mean.covariates = NULL, precision.covariates = NULL, ...){ loc_infl <- suppressWarnings(local_influence(model, perturbation = perturbation, curvature = curvature, direction = direction, parameters = parameters, mean.covariates = mean.covariates, precision.covariates = precision.covariates)) tidy_loc_infl <- tibble(.rows = stats::nobs(model)) for(pert in perturbation){ tidy_loc_infl = tidy_loc_infl %>% add_column(!!pert := loc_infl[[pert]]) } tidy_loc_infl } local_influence_benchmarks.mixpoissonreg <- function(model, perturbation = c("case_weights", "hidden_variable", "mean_explanatory", "precision_explanatory", "simultaneous_explanatory"), curvature = c("conformal", "normal"), direction = c("canonical", "max.eigen"), parameters = c("all", "mean", "precision"), mean.covariates = NULL, precision.covariates = NULL, ...){ loc_infl <- local_influence(model, perturbation = perturbation, curvature = curvature, direction = direction, parameters = parameters, mean.covariates = mean.covariates, precision.covariates = precision.covariates) benchmarks <- c() for(pert in perturbation){ benchmarks <- c(benchmarks, attr(loc_infl[[pert]], "benchmark")) } benchmarks <- matrix(benchmarks, nrow = 1) colnames(benchmarks) <- perturbation benchmarks_tbl <- as_tibble(benchmarks) benchmarks_tbl } local_influence_autoplot.mixpoissonreg <- function(model, which = c(1,2,3,4), title = list("Case Weights Perturbation", "Hidden Variable Perturbation", "Mean Explanatory Perturbation", "Precision Explanatory Perturbation", "Simultaneous Explanatory Perturbation"), title.size = NULL, title.bold = FALSE, title.colour = NULL, x.axis.col = NULL, y.axis.col = NULL, x.axis.size = NULL, y.axis.size = NULL, type.plot = "linerange", curvature = c("conformal", "normal"), direction = c("canonical", "max.eigen"), parameters = c("all", "mean", "precision"), mean.covariates = NULL, precision.covariates = NULL, label.repel = TRUE, nrow = NULL, ncol = NULL, ask = prod(graphics::par("mfcol")) < length(which) && grDevices::dev.interactive(), include.modeltype = TRUE, sub.caption = NULL, sub.caption.col = NULL, sub.caption.size = NULL, sub.caption.face = NULL, sub.caption.hjust = 0.5, gpar_sub.caption = list(fontface = "bold"), detect.influential = TRUE, n.influential = 5, draw.benchmark = FALSE, colour = " shape = NULL, label = TRUE, label.label = NULL, label.colour = " label.alpha = NULL, label.size = NULL, label.angle = NULL, label.family = NULL, label.fontface = NULL, label.lineheight = NULL, label.hjust = NULL, label.vjust = NULL, ad.colour = " p <- list() tmp <- NULL p[[1]] <- p[[2]] <- p[[3]] <- p[[4]] <- p[[5]] <- NULL n_beta = length(model$coefficients$mean) n_alpha = length(model$coefficients$precision) if(model$intercept[1] & n_beta == 1 & any(c(3,5)%in% which)){ warning("Removing mean explanatory and simultaneous explanatory perturbations since there is only the intercept for the mean.") which <- setdiff(which, c(3,5)) } if(model$intercept[2] & n_alpha == 1 & any(c(4,5)%in% which)){ warning("Removing precision explanatory and simultaneous explanatory perturbations since there is only the intercept for the precision parameter.") which <- setdiff(which, c(4,5)) } if (is.null(sub.caption)) { cal <- model$call if (!is.na(m.f <- match("formula", names(cal)))) { cal <- cal[c(1, m.f)] names(cal)[2L] <- "" } cc <- deparse(cal, 80) nc <- nchar(cc[1L], "c") abbr <- length(cc) > 1 || nc > 75 sub.caption <- if (abbr) paste(substr(cc[1L], 1L, min(75L, nc)), "...") else cc[1L] } direction <- rlang::arg_match(direction) curvature <- rlang::arg_match(curvature) pert <- c("case_weights", "hidden_variable", "mean_explanatory", "precision_explanatory", "simultaneous_explanatory") plot.data <- tidy_local_influence(model, perturbation = pert[which], curvature = curvature, direction = direction, parameters = parameters, mean.covariates = mean.covariates, precision.covariates = precision.covariates) n <- stats::nobs(model) plot.data$.index <- 1:n if(is.null(label.label)){ plot.data$.label <- rownames(plot.data) } else{ plot.data$.label <- as.vector(label.label) } plot_label_influential <- function (p, data, x = NULL, y = NULL, label = TRUE, label.label = "rownames", label.colour = NULL, label.alpha = NULL, label.size = NULL, label.angle = NULL, label.family = NULL, label.fontface = NULL, label.lineheight = NULL, label.hjust = NULL, label.vjust = NULL, label.repel = FALSE, label.show.legend = NA) { if (!is.data.frame(data)) { stop(paste0("Unsupported class: ", class(data))) } if (!missing(label.colour) && !is.null(label.colour) && missing(label)) { label <- TRUE } if (label || label.repel) { if (is.null(label.colour)) { label.colour <- " } if (label.repel) { textfunc <- ggrepel::geom_text_repel } else { textfunc <- ggplot2::geom_text } p <- p + geom_factory_influential(textfunc, data, x = x, y = y, label = ".label", colour = label.colour, alpha = label.alpha, size = label.size, angle = label.angle, family = label.family, fontface = label.fontface, lineheight = label.lineheight, hjust = label.hjust, vjust = label.vjust, show.legend = label.show.legend) } p } flatten <- function (df) { ismatrix <- vapply(df, is.matrix, logical(1)) if (any(ismatrix)) { return(data.frame(c(df[!ismatrix], do.call(data.frame, df[ismatrix])), stringsAsFactors = FALSE)) } else { return(df) } } geom_factory_influential <- function (geomfunc, data = NULL, ...) { mapping <- list() option <- list() columns <- colnames(data) for (key in names(list(...))) { value <- list(...)[[key]] if (is.null(value)) { } else if (value %in% columns) { mapping[[key]] <- value } else { option[[key]] <- value } } if (!is.null(data)) { option[["data"]] <- data } option[["mapping"]] <- do.call(ggplot2::aes_string, mapping) return(do.call(geomfunc, option)) } if (is.logical(shape) && !shape) { if (missing(label)) { label <- TRUE } if (missing(n.influential)) { n.influential <- nrow(plot.data) } } dev_ask <- is.null(nrow) & is.null(ncol) if(dev_ask){ if (ask) { oask <- grDevices::devAskNewPage(TRUE) on.exit(grDevices::devAskNewPage(oask)) } } plot.data <- flatten(plot.data) if (detect.influential) { bm <- local_influence_benchmarks(model, perturbation = pert[which], curvature = curvature, direction = direction, parameters = parameters, mean.covariates = mean.covariates, precision.covariates = precision.covariates) p.data <- list() for(i in 1:length(pert)){ if(i %in% which){ p.data[[i]] <- plot.data %>% dplyr::mutate(tmp = !!as.name(pert[[i]]), tmp = abs(tmp)) %>% dplyr::arrange(dplyr::desc(tmp)) if(!is.na(bm[[pert[[i]]]])){ p.data[[i]] <- p.data[[i]] %>% dplyr::filter(tmp > bm[[pert[[i]]]]) } p.data[[i]] <- utils::head(p.data[[i]], n.influential) %>% dplyr::select(-tmp) } } } .decorate.label.influential <- function(p, data) { if (label & n.influential > 0) { p <- plot_label_influential(p = p, data = data, label = label, label.label = ".label", label.colour = label.colour, label.alpha = label.alpha, label.size = label.size, label.angle = label.angle, label.family = label.family, label.fontface = label.fontface, label.lineheight = label.lineheight, label.hjust = label.hjust, label.vjust = label.vjust, label.repel = label.repel) } p } .decorate.plot <- function(p, xlab = NULL, ylab = NULL, title = NULL) { if(title.bold){ p + ggplot2::xlab(xlab) + ggplot2::ylab(ylab) + ggplot2::ggtitle(title) + theme(plot.title = element_text(size = title.size, face = "bold", colour = title.colour)) } else{ p + ggplot2::xlab(xlab) + ggplot2::ylab(ylab) + ggplot2::ggtitle(title) + theme(plot.title = element_text(size = title.size, colour = title.colour)) } } ylab_infl <- switch(curvature, "conformal" = { yl <- switch(direction, "canonical" = "Total Local Influence (Conformal)", "max.eigen" = "Largest Curvature Direction (Conformal)") yl }, "normal" = { yl <- switch(direction, "canonical" = "Total Local Influence (Normal)", "max.eigen" = "Largest Curvature Direction (Normal)") } ) for(i in 1:length(pert)){ if(i %in% which){ if(include.modeltype){ title[[i]] <- paste0(title[[i]], " - ", model$modeltype, " Regression") } t <- title[[i]] mapping <- ggplot2::aes_string(x = ".index", y = pert[[i]], ymin = 0, ymax = pert[[i]]) p[[i]] <- ggplot2::ggplot(data = plot.data, mapping = mapping) if (!is.logical(shape) || shape) { if(type.plot == "linerange"){ p[[i]] <- p[[i]] + geom_factory_influential(geom_linerange, plot.data, colour = colour, size = size, linetype = linetype, alpha = alpha, fill = fill, shape = shape) } else if(type.plot == "points"){ p[[i]] <- p[[i]] + geom_factory_influential(geom_point, plot.data, colour = colour, size = size, linetype = linetype, alpha = alpha, fill = fill, shape = shape) } } if(detect.influential){ p[[i]] <- .decorate.label.influential(p[[i]], p.data[[i]]) } xlab = "Obs. Number" p[[i]] <- .decorate.plot(p[[i]], xlab = xlab, ylab = ylab_infl, title = t) + theme(axis.title.x = element_text(colour = x.axis.col, size = x.axis.size), axis.title.y = element_text(colour = y.axis.col, size = y.axis.size)) bm_i <- bm[[pert[[i]]]] if(draw.benchmark){ if(!is.na(bm_i)){ p[[i]] <- p[[i]] + ggplot2::geom_abline(intercept = bm_i, slope = 0, linetype = ad.linetype, size = ad.size, colour = ad.colour) } } if(dev_ask){ p[[i]] <- p[[i]] + labs(caption = sub.caption) + theme(plot.caption = element_text(color = sub.caption.col, face = sub.caption.face, size = sub.caption.size, hjust = sub.caption.hjust)) print(p[[i]]) } } } if(!dev_ask){ grDevices::devAskNewPage(ask = FALSE) plot.list <- lapply(which, function(i){p[[i]]}) gpar_multi <- do.call(grid::gpar, gpar_sub.caption) title_multi <- grid::textGrob(sub.caption, gp=gpar_multi) gridExtra::grid.arrange(grobs = plot.list, top = title_multi, nrow = nrow, ncol = ncol) grDevices::devAskNewPage(ask = grDevices::dev.interactive()) } else{ invisible() } } local_influence_autoplot <- function(model, ...){ UseMethod("local_influence_autoplot", model) } tidy_local_influence <- function(model, ...){ UseMethod("tidy_local_influence", model) } local_influence_benchmarks <- function(model, ...){ UseMethod("local_influence_benchmarks", model) }
nosof88oat <- function(dta, xtdo = FALSE) { res1 <- c( dta$c2acc[dta$cond == 1 & dta$stim == 2], dta$c2acc[dta$cond == 2 & dta$stim == 2]) res2 <- c( dta$c2acc[dta$cond == 1 & dta$stim == 7], dta$c2acc[dta$cond == 3 & dta$stim == 7]) res3 <- c( dta$c2acc[dta$cond == 1 & dta$stim == 4], dta$c2acc[dta$cond == 2 & dta$stim == 4]) res4 <- c( dta$c2acc[dta$cond == 1 & dta$stim == 9], dta$c2acc[dta$cond == 3 & dta$stim == 9]) pred <- cbind(res1,res2,res3,res4) colnames(pred) <- c('2','7','4','9') rownames(pred) <- c('B','E') oat <- TRUE if(pred[1,1] >= pred[2,1]) oat <- FALSE if(pred[1,2] >= pred[2,2]) oat <- FALSE if(pred[1,3] >= pred[2,3]) oat <- FALSE if(pred[1,4] >= pred[2,4]) oat <- FALSE if(xtdo) ret <- pred else ret <- oat return(ret) }
library(testthat) test_that("K_S test works as expected, compared to the default ks test",{ for (i in 1:10){ x <- stats::runif(1000, 0, 1) y <- stats::runif(1000, 0, 1) ks_og <- ks.test(x, y, alternative = "two.sided") new_ks <- ks_test(x, y, thresh = 0) expect_equivalent(ks_og$statistic, new_ks$statistic) expect_equivalent(ks_og$p.value, new_ks$p.value, tolerance = 1e-4) expect_equal(ks_og$data.name, new_ks$data.name) } }) test_that("K_S with equal weights equal ks with no weights",{ for (i in 1:10){ x <- stats::runif(1000, 0, 1) y <- stats::runif(1000, 0, 1) ks <- ks_test(x, y) ks_weights <- ks_test(x, y, w_x = rep(.5, 1000), w_y = rep(906, 1000)) expect_equivalent(ks$statistic, ks_weights$statistic) expect_equivalent(ks$p.value, ks_weights$p.value) expect_equal(ks$data.name, ks_weights$data.name) } })
test_that("tx_new captures all and only new clients", { expect_identical( tx_new( ndr_example, lubridate::ymd("2020-10-01"), lubridate::ymd("2020-12-31") ), ndr_example %>% dplyr::filter(dplyr::between( art_start_date, lubridate::ymd("2020-10-01"), lubridate::ymd("2020-12-31") )) ) })
"%||%" <- function(a, b) { if (!is.null(a)) a else b } in_data <- function(data, variable) { length(intersect(names(data), variable)) > 0 } parse_product_formula <- getFromNamespace("parse_product_formula", "productplots") product <- function(...) { rlang::exprs(...) } stat_mosaic <- function(mapping = NULL, data = NULL, geom = "mosaic", position = "identity", na.rm = FALSE, divider = mosaic(), show.legend = NA, inherit.aes = TRUE, offset = 0.01, ...) { if (!is.null(mapping$y)) { stop("stat_mosaic() must not be used with a y aesthetic.", call. = FALSE) } else mapping$y <- structure(1L, class = "productlist") aes_x <- mapping$x if (!is.null(aes_x)) { aes_x <- rlang::eval_tidy(mapping$x) var_x <- paste0("x__", as.character(aes_x)) } aes_fill <- mapping$fill var_fill <- "" if (!is.null(aes_fill)) { aes_fill <- rlang::quo_text(mapping$fill) var_fill <- paste0("x__fill__", aes_fill) if (aes_fill %in% as.character(aes_x)) { idx <- which(aes_x == aes_fill) var_x[idx] <- var_fill } else { mapping[[var_fill]] <- mapping$fill } } aes_alpha <- mapping$alpha var_alpha <- "" if (!is.null(aes_alpha)) { aes_alpha <- rlang::quo_text(mapping$alpha) var_alpha <- paste0("x__alpha__", aes_alpha) if (aes_alpha %in% as.character(aes_x)) { idx <- which(aes_x == aes_alpha) var_x[idx] <- var_alpha } else { mapping[[var_alpha]] <- mapping$alpha } } if (!is.null(aes_x)) { mapping$x <- structure(1L, class = "productlist") for (i in seq_along(var_x)) { mapping[[var_x[i]]] <- aes_x[[i]] } } aes_conds <- mapping$conds if (!is.null(aes_conds)) { aes_conds <- rlang::eval_tidy(mapping$conds) mapping$conds <- structure(1L, class = "productlist") var_conds <- paste0("conds", seq_along(aes_conds), "__", as.character(aes_conds)) for (i in seq_along(var_conds)) { mapping[[var_conds[i]]] <- aes_conds[[i]] } } ggplot2::layer( data = data, mapping = mapping, stat = StatMosaic, geom = geom, position = position, show.legend = show.legend, inherit.aes = inherit.aes, check.aes = FALSE, params = list( na.rm = na.rm, divider = divider, offset = offset, ... ) ) } StatMosaic <- ggplot2::ggproto( "StatMosaic", ggplot2::Stat, non_missing_aes = "weight", setup_params = function(data, params) { params }, setup_data = function(data, params) { data }, compute_panel = function(self, data, scales, na.rm=FALSE, divider, offset) { vars <- names(data)[grep("x__", names(data))] conds <- names(data)[grep("conds[0-9]+__", names(data))] if (length(vars) == 0) formula <- "1" else formula <- paste(vars, collapse="+") formula <- paste("weight~", formula) if (length(conds) > 0) formula <- paste(formula, paste(conds, collapse="+"), sep="|") df <- data if (!in_data(df, "weight")) { df$weight <- 1 } res <- prodcalc(df, formula=as.formula(formula), divider = divider, cascade=0, scale_max = TRUE, na.rm = na.rm, offset = offset) prs <- parse_product_formula(as.formula(formula)) p <- length(c(prs$marg, prs$cond)) if (is.function(divider)) divider <- divider(p) dflist <- list(data=subset(res, level==max(res$level)), formula=as.formula(formula), divider=divider) scx <- productplots::scale_x_product(dflist) scy <- productplots::scale_y_product(dflist) res <- dplyr::rename(res, xmin=l, xmax=r, ymin=b, ymax=t) res <- subset(res, level==max(res$level)) cols <- c(prs$marg, prs$cond) if (length(cols) > 1) { df <- res[,cols] df <- tidyr::unite_(df, "label", cols, sep="\n") res$label <- df$label } else res$label <- as.character(res[,cols]) res$x <- list(scale=scx) if (!is.null(scales$y)) { if ("ScaleContinuousProduct" %in% class(scales$y)) res$y <- list(scale=scy) } fill_idx <- grep("x__fill", names(data)) if (length(fill_idx) > 0) { fill_res_idx <- grep("x__fill", names(res)) res$fill <- res[[fill_res_idx]] } alpha_idx <- grep("x__alpha", names(data)) if (length(alpha_idx) > 0) { alpha_res_idx <- grep("x__alpha", names(res)) res$alpha <- res[[alpha_res_idx]] } res$group <- 1 res$PANEL <- unique(data$PANEL) res } )
context("Test Poisson") test_that("Predict", { y <- as.factor(c("Ham", "Ham", "Spam", "Spam", "Spam")) x <- matrix( c(2, 3, 2, 1, 2, 5, 3, 4, 2, 4, 0, 1, 3, 1, 0, 3, 4, 4, 3, 5), nrow = 5, ncol = 4, dimnames = list(NULL, c("wo", "mo", "bo", "so"))) df <- as.data.frame(x) mod <- fnb.poisson(x, y) df_mod <- fnb.poisson(df, y) predictions <- predict(mod, x, type = "raw") risky_predictions <- predict(mod, x, type = "raw", check=FALSE) df_predictions <- predict(df_mod, df, type = "raw") expect_equal(sum(round(abs(predictions-df_predictions), digits = 12)), 0) expect_equal(sum(round(abs(predictions-risky_predictions), digits = 12)), 0) classification <- predict(mod, x, type = "class") expect_equal(as.factor(mod$levels[max.col(predictions)]), classification) expect_warning(predict(mod, x[,1:3], type = "raw")) dropped_predictions <- predict(mod, x[,1:3], type = "raw", silent = TRUE) dropped_x <- x[,1:3] mod <- fnb.poisson(dropped_x, y) alt_predictions <- predict(mod, x, type = "raw", silent=TRUE) expect_equal(sum(round(abs(dropped_predictions-alt_predictions), digits = 12)), 0) mod <- fnb.poisson(x, y) predictions <- predict(mod, x, type = "raw") x <- cbind(x, x[,1, drop=FALSE]) colnames(x)[5] <- "womo" new_predictions <- predict(mod, x, type = "raw", silent=TRUE) expect_equal(sum(round(abs(predictions-new_predictions), digits = 12)), 0) all_new_columns_predictions <- predict(mod, x[,5,drop=FALSE], type="raw", silent = TRUE) predictions <- matrix( c(2/5,2/5,2/5,2/5,2/5, 3/5,3/5,3/5,3/5,3/5), nrow = 5, ncol = 2 ) expect_equal(sum(round(abs(predictions-all_new_columns_predictions), digits = 12)), 0) }) test_that("Standard 3 classes", { y <- as.factor(c("Ham", "Ham", "Spam", "Spam", "Spam")) x <- matrix( c(2, 3, 2, 1, 2, 5, 3, 4, 2, 4, 0, 1, 3, 1, 0, 3, 4, 4, 3, 5), nrow = 5, ncol = 4, dimnames = list(NULL, c("wo", "mo", "bo", "so"))) actuals <- matrix( c( 0.67913774, 0.3208623, 0.41976782, 0.5802322, 0.07526245, 0.9247376, 0.23443299, 0.7655670, 0.57454707, 0.4254529 ), nrow = 5, ncol = 2, byrow=TRUE, dimnames = list(NULL, c("Ham", "Spam")) ) mod <- fnb.poisson(x, y, priors = c(2/5, 3/5)) predictions <- predict(mod, x, type="raw") expect_equal(sum(round(abs(predictions-actuals), digits = 7)), 0) sparse_mod <- fnb.poisson(Matrix(x, sparse = TRUE), y, priors = c(2/5, 3/5)) sparse_cast_mod <- fnb.poisson(x, y, sparse = TRUE, priors = c(2/5, 3/5)) sparse_predictions <- predict(sparse_mod, x, type = "raw") sparse_cast_predictions <- predict(sparse_cast_mod, x, type = "raw") expect_equal(sum(round(abs(predictions-sparse_predictions), digits = 12)), 0) expect_equal(sum(round(abs(predictions-sparse_cast_predictions), digits = 12)), 0) }) test_that("Single column",{ y <- as.factor(c( "Spam", "Spam", "Ham", "Ham", "Ham")) x <- matrix( c(2, 3, 2, 1, 2), nrow = 5, ncol = 1, dimnames = list(NULL, c("ho")) ) actuals_ho_only <- matrix( c( 0.6053645, 0.3946355, 0.5056005, 0.4943995, 0.6053645, 0.3946355, 0.6970593, 0.3029407, 0.6053645, 0.3946355 ), nrow = 5, ncol = 2, byrow = TRUE, dimnames = list(NULL, c("Ham", "Spam")) ) mod <- fnb.poisson(x[, 1, drop=FALSE], y) predictions <- predict(mod, x[, 1, drop=FALSE], type="raw") expect_equal(sum(round(abs(predictions-actuals_ho_only), digits = 7)), 0) sparse_mod <- fnb.poisson(Matrix(x[, 1, drop=FALSE], sparse = TRUE), y) sparse_cast_mod <- fnb.poisson(x[, 1, drop=FALSE], y, sparse = TRUE) sparse_predictions <- predict(sparse_mod, x[, 1, drop=FALSE], type = "raw") sparse_cast_predictions <- predict(sparse_cast_mod, x[, 1, drop=FALSE], type = "raw") expect_equal(sum(round(abs(predictions-sparse_predictions), digits = 12)), 0) expect_equal(sum(round(abs(predictions-sparse_cast_predictions), digits = 12)), 0) })
NULL glmnet <- function(x, ...) UseMethod("glmnet") glmnet.default <- function(x, y, ...) { cl <- match.call() cl[[1]] <- quote(glmnet::glmnet) obj <- glmnet::glmnet(x, y, ...) obj$call <- cl obj } glmnet.formula <- function(formula, data, family=c("gaussian", "binomial", "poisson", "multinomial", "cox", "mgaussian"), alpha=1, ..., weights=NULL, offset=NULL, subset=NULL, na.action=getOption("na.action"), drop.unused.levels=FALSE, xlev=NULL, sparse=FALSE, use.model.frame=FALSE, relax=FALSE) { cl <- match.call(expand.dots=FALSE) cl[[1]] <- if(use.model.frame) makeModelComponentsMF else makeModelComponents xy <- eval.parent(cl) if(is.character(family)) family <- match.arg(family) else { if(utils::packageVersion("glmnet") < package_version("4.0.0")) stop("Enhanced family argument requires glmnet version 4.0 or higher", call.=FALSE) if(is.function(family)) family <- family() else if(!inherits(family, "family")) stop("Invalid family argument; must be either character, function or family object") } model <- glmnet::glmnet(xy$x, y=xy$y, family=family, weights=xy$weights, offset=xy$offset, alpha=alpha, ...) model$call <- match.call() model$call[[1]] <- parse(text="glmnetUtils:::glmnet.formula")[[1]] model$terms <- xy$terms model$xlev <- xy$xlev model$alpha <- alpha model$sparse <- sparse model$use.model.frame <- use.model.frame model$na.action <- na.action if(relax) { if(utils::packageVersion("glmnet") < package_version("3.0.0")) stop("Relaxed fit requires glmnet version 3.0 or higher", call.=FALSE) model <- glmnet::relax.glmnet(model, xy$x, family=family, weights=xy$weights, offset=xy$offset, alpha=alpha, ..., check.args=FALSE) class(model) <- c("relaxed.formula", class(model)) } else class(model) <- c("glmnet.formula", class(model)) model } predict.glmnet.formula <- function(object, newdata, offset=NULL, na.action=na.pass, ...) { if(!inherits(object, "glmnet.formula")) stop("invalid glmnet.formula object") cl <- match.call(expand.dots=FALSE) cl$formula <- delete.response(object$terms) cl$data <- cl$newdata cl$newdata <- NULL cl$xlev <- object$xlev cl[[1]] <- if(object$use.model.frame) makeModelComponentsMF else makeModelComponents xy <- eval.parent(cl) x <- xy$x offset <- xy$offset class(object) <- class(object)[-1] predict(object, x, offset=offset, ...) } coef.glmnet.formula <- function(object, ...) { if(!inherits(object, "glmnet.formula")) stop("invalid glmnet.formula object") class(object) <- class(object)[-1] coef(object, ...) } print.glmnet.formula <- function(x, digits=max(3, getOption("digits") - 3), print.deviance.ratios=FALSE, ...) { cat("Call:\n") dput(x$call) cat("\nModel fitting options:") cat("\n Sparse model matrix:", x$sparse) cat("\n Use model.frame:", x$use.model.frame) cat("\n Alpha:", x$alpha) cat("\n Lambda summary:\n") print(summary(x$lambda)) if(print.deviance.ratios) { cat("\nDeviance ratios:\n") print(cbind(Df=x$df, `%Dev`=signif(x$dev.ratio, digits), Lambda=signif(x$lambda, digits))) } cat("\n") invisible(x) } print.relaxed.formula <- function(x, digits=max(3, getOption("digits") - 3), print.deviance.ratios=FALSE, ...) { print.glmnet.formula(x) cat("Relaxed fit in component $relaxed\n") invisible(x) } predict.relaxed.formula <- function(object, newdata, offset=NULL, na.action=na.pass, ...) { if(!inherits(object, "relaxed.formula")) stop("invalid relaxed.formula object") cl <- match.call(expand.dots=FALSE) cl$formula <- delete.response(object$terms) cl$data <- cl$newdata cl$newdata <- NULL cl$xlev <- object$xlev cl[[1]] <- if(object$use.model.frame) makeModelComponentsMF else makeModelComponents xy <- eval.parent(cl) x <- xy$x offset <- xy$offset class(object) <- class(object)[-1] predict(object, x, offset=offset, ...) } coef.relaxed.formula <- function(object, ...) { if(!inherits(object, "relaxed.formula")) stop("invalid relaxed.formula object") class(object) <- class(object)[-1] coef(object, ...) }
batch <- function(x) x@batch moving <- function(x) x@moving setGeneric("knobs", function(x,y,...) standardGeneric("knobs")) setMethod("knobs", c("mrgmod", "missing"), function(x,...) { input <- list(...) if(is.element("time", names(input))) stop("time cannot be a knob", call.=FALSE) has.amt <- is.element("amt", names(input)) if(!has.amt) { input <- input[!is.element(names(input),c("ii","amt","rate","addl","ss","cmt"))] } p <- pars(x) keep <- is.element(names(input),c(p,c("ii","amt","rate","addl","ss","cmt"))) toupdate <- input[!keep] input <- input[keep] whatkn <- names(input) aremoving <- whatkn[sapply(input, length)>1] if(any(is.element(c("addl","ss","cmt"), aremoving))) stop("addl, cmt, and ss can have only one level",call.=FALSE) if(any(duplicated(aremoving))) stop("Duplicate knobs were found.", call.=FALSE) if(length(input)==0) stop("No valid knobs found.", call.=FALSE) data <- do.call("expand.ev", input) x <- do.call("update", c(list(x),toupdate,list(strict=FALSE))) if(has.amt) { x <- x %>% data_set(data) } else { x <- x %>% idata_set(data) } out <- x %>% obsonly %>% mrgsim(carry.out="",recsort=3) request <- out@request outn <- out@outnames out <- out %>% as.data.frame out <- out[,unique(setdiff(names(out),whatkn)),drop=FALSE] data <- data[,unique(c("ID",whatkn)),drop=FALSE] out <- dplyr::left_join(out,data, by="ID") new("batch_mrgsims", data=as.data.frame(out), mod=x, batch=data, knobs=whatkn, request=request, moving=aremoving, outnames=outn, input=input) }) setMethod("knobs", c("mrgmod", "batch_mrgsims"), function(x,y,...) { input <- merge(y@input, list(...), open=TRUE) do.call("knobs", c(list(x),input)) }) setMethod("as.data.frame","batch_mrgsims", function(x,row.names=NULL, optional=FALSE,...) { as.data.frame(x@data, row.names,optional,...) }) setMethod("knobs", "batch_mrgsims", function(x,...) { x@knobs }) setMethod("show", "batch_mrgsims", function(object) { cat("Model: ", model(mod(object)),"\n") cat("Batch (head): \n") print(head(object@batch,n=3)) mov <- object@moving if(all(mov == "")) mov <- "none" cat("[",mov, "]\n\n") cat("Head:\n") print(head(object@data,n=5)) mov <- object@moving if(all(mov =="")) mov <- "none" cat("[", mov, "]") return(invisible(NULL)) }) setMethod("plot", c("batch_mrgsims","missing"), function(x,yval=variables(x),auto.key=list(),mincol=3,...) { new_plot_knobs(x,yval,auto.key,mincol,...) }) new_plot_knobs <- function(x,yval,auto.key,mincol,...) { m <- moving(x) ny <- length(yval) y1 <- ny==1 nm <- length(m) yval <- paste(yval, collapse="+") form <- paste0(yval,"~time") df <- as.data.frame(x) keep <- 1 if(nm >= 2) { form <- paste0(form, "|", m[2]) df[,m[2]] <- factor(df[,m[2]],labels=paste0(m[2]," ",sort(unique(df[,m[2]])))) keep <- 2 } if(ny==1 & nm >=3) { form <- paste0(form, "*", m[3]) df[,m[3]] <- factor(df[,m[3]],labels=paste0(m[3]," ",sort(unique(df[,m[3]])))) keep <- 3 } if(ny > 1 & nm >=2) keep <- 2 grval <- factor(df[,m[1]], labels=paste0(m[1]," ",sort(unique(df[,m[1]])))) if(nm > keep) { kp <- unique(df[,m[c(1:keep)],drop=FALSE]) dr <- unique(df[1,m[c((keep+1):nm)],drop=FALSE]) retain <- cbind(kp,dr) df <- dplyr::inner_join(df,retain, by=names(retain)) message("Dropping knobs: ", paste(names(dr),collapse=",")) } x@data <- as.data.frame(df) x@moving <- m[1:keep] if(identical(auto.key,list())) { auto.key <- list(columns = min(nlevels(grval),mincol)) } plot(x,as.formula(form),..., groups=grval,auto.key=auto.key) } setMethod("plot", c("batch_mrgsims","formula"), function(x,y, show.grid=TRUE, lwd=2, type="l", yval=variables(x), auto.key=list(columns=1), scales=list(y=list(relation='free')), ...) { requireNamespace("lattice", quietly=TRUE) if(y[[3]] == '.') { yval <- all.vars(y[[2]]) return(plot(x,yval=as.character(yval), show.grid=show.grid, lwd=lwd, type=type, auto.key=auto.key, scales=scales,...)) } data <- as.data.frame(x) lattice::xyplot(y, data=data, type=type, scales=scales, drop.unused.levels=TRUE, lwd=lwd,auto.key=auto.key, panel=function(...) { if(show.grid) lattice::panel.grid(h=-1,v=-1) lattice::panel.xyplot(...) }, ...) })
NULL appflow <- function(config = list()) { svc <- .appflow$operations svc <- set_config(svc, config) return(svc) } .appflow <- list() .appflow$operations <- list() .appflow$metadata <- list( service_name = "appflow", endpoints = list("*" = list(endpoint = "appflow.{region}.amazonaws.com", global = FALSE), "cn-*" = list(endpoint = "appflow.{region}.amazonaws.com.cn", global = FALSE), "us-iso-*" = list(endpoint = "appflow.{region}.c2s.ic.gov", global = FALSE), "us-isob-*" = list(endpoint = "appflow.{region}.sc2s.sgov.gov", global = FALSE)), service_id = "Appflow", api_version = "2020-08-23", signing_name = "appflow", json_version = "1.1", target_prefix = "" ) .appflow$service <- function(config = list()) { handlers <- new_handlers("restjson", "v4") new_service(.appflow$metadata, handlers, config) }
ezDesign <- function( data , x , y , row = NULL , col = NULL , cell_border_size = 10 ){ if(inherits(data, "tbl_df")) { data <- as.data.frame(data) } args_to_check = c('x','y','row','col') args = as.list(match.call()[-1]) for(i in 1:length(args)){ arg_name = names(args)[i] if(arg_name%in%args_to_check){ if(is.symbol(args[[i]])){ code = paste(arg_name,'=.(',as.character(args[[i]]),')',sep='') eval(parse(text=code)) }else{ if(is.language(args[[i]])){ arg_vals = as.character(args[[i]]) arg_vals = arg_vals[2:length(arg_vals)] arg_vals = paste(arg_vals,collapse=',') code = paste(arg_name,'=.(',arg_vals,')',sep='') eval(parse(text=code)) } } } } counts = ddply( .data = data , .variables = structure(as.list(c(x,y,row,col)),class = 'quoted') , .fun = function(z){ to_return = data.frame( Count = nrow(z) ) return(to_return) } ) y_lab = names(counts)[names(counts)==y] x_lab = names(counts)[names(counts)==x] names(counts)[names(counts)==y] = 'y' names(counts)[names(counts)==x] = 'x' if(!is.numeric(counts$x)){ counts$x = factor(counts$x) x_vals = as.character(levels(counts$x)) }else{ x_vals = as.character(sort(unique(counts$x))) } counts$x = as.numeric(factor(counts$x)) if(!is.numeric(counts$y)){ counts$y = factor(counts$y) y_vals = as.character(levels(counts$y)) }else{ y_vals = as.character(sort(unique(counts$y))) } counts$y = as.numeric(factor(counts$y)) if(length(unique(counts$y))>length(unique(counts$x))){ cell_border_size = cell_border_size/length(unique(counts$y)) }else{ cell_border_size = cell_border_size/length(unique(counts$x)) } if(!is.null(row)){ if(!is.factor(counts[,names(counts)==row])){ counts[,names(counts)==row] = factor(counts[,names(counts)==row]) } levels(counts[,names(counts)==row]) = paste( names(counts)[names(counts)==row] , levels(counts[,names(counts)==row]) , sep = ' = ' ) names(counts)[names(counts)==row] = 'row' } if(!is.null(col)){ if(!is.factor(counts[,names(counts)==col])){ counts[,names(counts)==col] = factor(counts[,names(counts)==col]) } levels(counts[,names(counts)==col]) = paste( names(counts)[names(counts)==col] , levels(counts[,names(counts)==col]) , sep = ' = ' ) names(counts)[names(counts)==col] = 'col' } counts$ymin = counts$y-.5 counts$ymax = counts$y+.5 counts$xmin = counts$x-.5 counts$xmax = counts$x+.5 p = ggplot( data = counts ,aes_string( ymin = 'ymin' , ymax = 'ymax' , xmin = 'xmin' , xmax = 'xmax' , fill = 'Count' ) )+ geom_rect()+ labs(x=x_lab,y=y_lab) p = p + theme( panel.grid.major = element_blank() , panel.grid.minor = element_blank() , legend.background = element_rect(colour='transparent',fill='transparent') ) if(max(counts$Count)==min(counts$Count)){ p = p + scale_fill_gradient( high = muted('blue') , low = muted('red') , limit = c(0,max(counts$Count)) , breaks = max(counts$Count) ) }else{ p = p + scale_fill_gradient( high = muted('blue') , low = muted('red') , limit = c(min(counts$Count),max(counts$Count)) , breaks = c(min(counts$Count),max(counts$Count)) ) } if(cell_border_size>0){ p = p + geom_rect( size = cell_border_size , colour = 'grey90' , show.legend = FALSE ) } p = p + scale_x_continuous( breaks = sort(unique(counts$x)) , labels = x_vals ) p = p + scale_y_continuous( breaks = sort(unique(counts$y)) , labels = y_vals ) if(!is.null(row)){ if(!is.null(col)){ p = p + facet_grid(row~col) } else{ p = p + facet_grid(row~.) } }else{ if(!is.null(col)){ p = p + facet_grid(.~col) } } return(p) }
ITNhistdegdist<-function(gs){ net <- cbind(igraph::get.edgelist(gs, names=FALSE),igraph:: E(gs)$weight) net <- tnet::as.tnet(net, type="weighted one-mode tnet") WeightDegOut<-tnet::degree_w(net,measure=c("degree","output"), type="out") WeightDegIn<-tnet::degree_w(net,measure=c("degree","output"), type="in") WeightDegAll<-tnet::degree_w(net,measure=c("degree","output"), type="all") Dout<-WeightDegOut[,2] Din<-WeightDegIn[,2] Dall<-Din+Dout plotdata<-cbind(Dout,Din,Dall) plotdata<-as.data.frame(plotdata) colnames(plotdata)<-c("Dout","Din","Dall") OUTplot<-ggplot2::ggplot(data=plotdata, ggplot2::aes(Dout)) + ggplot2::geom_histogram(fill="darkblue", alpha = 1,position = 'stack', stat = 'bin', binwidth = 1) + ggplot2::labs(title="Out Degree Distribution") + ggplot2::labs(x="Out Degree", y="Frquency")+ ggplot2::theme_gray() INplot<-ggplot2::ggplot(data=plotdata, ggplot2::aes(Din)) + ggplot2::geom_histogram(fill="darkblue", alpha = 1,position = 'stack', stat = 'bin', binwidth = 1) + ggplot2::labs(title="In Degree Distribution") + ggplot2::labs(x="In Degree", y="Frquency")+ ggplot2::theme_gray() ALLplot<-ggplot2::ggplot(plotdata, ggplot2::aes(Dall)) + ggplot2::geom_histogram(fill="darkblue", alpha = 1,position = 'stack', stat = 'bin', binwidth = 1) + ggplot2::labs(title="Degree Distribution") + ggplot2::labs(x="Degree", y="Frquency")+ ggplot2::theme_gray() cowplot::plot_grid(INplot,OUTplot,ALLplot,labels=c("A","B","C"),ncol=2) }
set.seed(1) if(.Platform$OS.type == "windows") options(pager = "console") pdf("reg-examples-1.pdf", encoding = "ISOLatin1.enc") example(Cstack_info, run.donttest = TRUE) example(DateTimeClasses, run.donttest = TRUE) example(Dates, run.donttest = TRUE) example(Ops.Date, run.donttest = TRUE) example(Random, run.donttest = TRUE) example(Sys.getpid, run.donttest = TRUE) example(Sys.sleep, run.donttest = TRUE) example(Sys.time, run.donttest = TRUE) example(as.POSIXlt, run.donttest = TRUE) example(difftime, run.donttest = TRUE) example(format.Date, run.donttest = TRUE) example(Reduce, run.donttest = TRUE) example(gc, run.donttest = TRUE) example(memory.profile, run.donttest = TRUE) paste("Today is", date()) trunc(Sys.time(), "day") example(srcref, run.donttest = TRUE) example(strptime, run.donttest = TRUE) example(sys.parent, run.donttest = TRUE) example(system.time, run.donttest = TRUE) example(tempfile, run.donttest = TRUE) example(weekdays, run.donttest = TRUE) library(help = "splines") if(require("microbenchmark")) { x <- c(NaN, 1:10000) print(microbenchmark(any(is.na(x)), anyNA(x))) } else { x <- c(NaN, 1e6) nSim <- 2^13 print(rbind(is.na = system.time(replicate(nSim, any(is.na(x)))), anyNA = system.time(replicate(nSim, anyNA(x))))) } example(news, run.donttest = TRUE) example(sessionInfo, run.donttest = TRUE) example(JohnsonJohnson, run.donttest = TRUE) example(ability.cov, run.donttest = TRUE) example(npk, run.donttest = TRUE) example(grSoftVersion, run.donttest = TRUE) if(.Platform$OS.type == "windows") { example(windowsFonts, run.donttest = TRUE) } else { example(X11Fonts, run.donttest = TRUE) example(quartzFonts, run.donttest = TRUE) } library(tools) example(Rdutils, run.donttest = TRUE) example(fileutils, run.donttest = TRUE) example(parseLatex, run.donttest = TRUE) example(loadRdMacros, run.donttest = TRUE) gVigns <- pkgVignettes("grid") str(gVigns) vind <- system.file(package = "grid", "doc", "index.html") if(nzchar(vind)) { `%=f=%` <- function(a, b) normalizePath(a) == normalizePath(b) with(gVigns, stopifnot(engines == "utils::Sweave", pkgdir %=f=% system.file(package="grid"), dir %=f=% system.file(package = "grid", "doc"), (n. <- length(docs)) >= 12, n. == length(names), n. == length(engines), length(msg) == 0) ) stopifnot("grid" %in% gVigns$names, inherits(gVigns, "pkgVignettes")) } example(icuSetCollate, run.donttest = TRUE) proc.time()
getirt <- function(x, ...) UseMethod("getirt") getirt.est_irt <- function(x, what, ...){ rst <- switch(what, estimates = x$estimates, par.est = x$par.est, se.est = x$se.est, pos.par = x$pos.par, covariance = x$covariance, loglikelihood = x$loglikelihood, aic = x$aic, bic = x$bic, group.par = x$group.par, weights = x$weights, data = x$data, ncase = x$ncase, nitem = x$nitem, Etol = x$Etol, MaxE = x$MaxE, aprior = x$aprior, bprior = x$bprior, gprior = x$gprior, npar.est = x$npar.est, niter = x$niter, maxpar.diff = x$maxpar.diff, EMtime = x$EMtime, SEtime = x$SEtime, TotalTime = x$TotalTime, test.1 = x$test.1, test.2 = x$test.2, var.note = x$var.note, fipc = x$fipc, fipc.method = x$fipc.method, fix.loc = x$fix.loc, stop(sprintf("Could not extract element \'%s\'", what), call.=FALSE) ) rst } getirt.est_item <- function(x, what, ...){ rst <- switch(what, estimates = x$estimates, par.est = x$par.est, se.est = x$se.est, pos.par = x$pos.par, covariance = x$covariance, loglikelihood = x$loglikelihood, group.par = x$group.par, data = x$data, score = x$score, scale.D = x$scale.D, convergence = x$convergence, nitem = x$nitem, deleted.item = x$deleted.item, npar.est = x$npar.est, n.response = x$n.response, TotalTime = x$TotalTime, stop(sprintf("Could not extract element \'%s\'", what), call.=FALSE) ) rst }
create_test_bbt_run_output <- function() { anthus_aco_trees <- c( ape::read.tree(text = "((A:2, B:2):1, C:3);"), ape::read.tree(text = "((A:1, B:1):2, C:3);") ) estimates <- data.frame( Sample = c(0, 1000), posterior = c(-1.1, -2.2), likelihood = c(-3.3, -4.4), prior = c(-5.5, -6.6), treeLikelihood = c(-7.7, -8.8), TreeHeight = c(2.5, 2.8), YuleModel = c(0.5, 0.6), birthRate = c(0.1, 0.2) ) operators <- data.frame( operator = c( "treeScaler.t:test-alignment_to_beast_posterior", "treeRootScaler.t:test-alignment_to_beast_posterior" ), p = c(0.4, 0.6), accept = c(1, 2), reject = c(3, 4), acceptFC = c(5, 6), rejectFC = c(7, 8), rejectIv = c(9, 10), rejectOp = c(11, 12) ) output <- babette::create_test_ns_output() list( estimates = estimates, anthus_aco_trees = anthus_aco_trees, operators = operators, output = output ) }
library(OpenMx) demo(GrowthMixtureModel_MatrixRaw) trials <- 10 parNames <- names(omxGetParameters(gmm)) input <- matrix(NA, trials, length(parNames)) dimnames(input) <- list(c(1: trials), c(parNames)) output <- matrix(NA, trials, length(parNames)) dimnames(output) <- list(c(1: trials), c(parNames)) fit <- matrix(NA, trials, 5) dimnames(fit) <- list(c(1: trials), c("Minus2LL", "Status", "Iterations", "pclass1", "time")) input[,"p1"] <- runif(trials, 0.1, 0.9) input[,"p1"] <- input[,"p1"]/(1-input[,"p1"]) v <- c("vari1", "vars1", "vari2", "vars2", "residual") input[,v] <- runif(trials*5, 0, 10) m <- c("meani1", "means1", "meani2", "means2") input[,m] <- runif(trials*4, -5, 5) r <- runif(trials*2, -0.9, 0.9) scale <- c( sqrt(input[,"vari1"]*input[,"vars1"]), sqrt(input[,"vari2"]*input[,"vars2"])) input[,c("cov1", "cov2")] <- r * scale for (i in 1: trials){ temp1 <- omxSetParameters(gmm, labels=parNames, values=input[i,] ) temp1 <- mxModel(name=paste("Starting Values Set", i), temp1) temp2 <- mxRun(temp1, unsafe=TRUE, suppressWarnings=TRUE) output[i,] <- omxGetParameters(temp2) fit[i,] <- c( temp2$output$Minus2LogLikelihood, temp2$output$status[[1]], temp2$output$iterations, round(temp2$expectation$output$weights[1], 4), temp2$output$wallTime ) } fit table(round(fit[,1], 3), fit[,2]) makeModel <- function(modelNumber){ temp <- mxModel(gmm, independent=TRUE, name=paste("Iteration", modelNumber, sep="")) temp <- omxSetParameters(temp, labels=parNames, values=input[modelNumber,]) return(temp) } mySubs <- lapply(1:trials, makeModel) topModel <- mxModel("Top", mySubs) results <- mxRun(topModel, suppressWarnings=TRUE) fitStats <- function(model){ retval <- c( model$output$Minus2LogLikelihood, model$output$status[[1]], model$output$iterations, round(model$expectation$output$weights[1], 4) ) return(retval) } resultsFit <- t(omxSapply(results$submodels, fitStats)) sum(fit[,5]) results$output$wallTime
structure(list(url = "http://localhost:8086/api/v2/query?org=bonitoo", status_code = 404L, headers = structure(list(`content-type` = "application/json; charset=utf-8", vary = "Accept-Encoding", `x-platform-error-code` = "not found", date = "Tue, 15 Jun 2021 08:53:14 GMT", `transfer-encoding` = "chunked"), class = c("insensitive", "list")), all_headers = list(list(status = 404L, version = "HTTP/1.1", headers = structure(list(`content-type` = "application/json; charset=utf-8", vary = "Accept-Encoding", `x-platform-error-code` = "not found", date = "Tue, 15 Jun 2021 08:53:14 GMT", `transfer-encoding` = "chunked"), class = c("insensitive", "list")))), cookies = structure(list(domain = logical(0), flag = logical(0), path = logical(0), secure = logical(0), expiration = structure(numeric(0), class = c("POSIXct", "POSIXt")), name = logical(0), value = logical(0)), row.names = integer(0), class = "data.frame"), content = charToRaw("{\"code\":\"not found\",\"message\":\"failed to initialize execute state: could not find bucket \\\"no-bucket\\\"\"}"), date = structure(1623747194, class = c("POSIXct", "POSIXt" ), tzone = "GMT"), times = c(redirect = 0, namelookup = 0.00201, connect = 0.0021, pretransfer = 0.002189, starttransfer = 0.012402, total = 0.012458)), class = "response")
knitr::opts_chunk$set(echo = TRUE) library(GlmSimulatoR) library(ggplot2) library(cplm, quietly = TRUE) set.seed(1) simdata <- simulate_tweedie(weight = .2, ancillary = 1.15, link = "log") ggplot(simdata, aes(x = Y)) + geom_histogram(bins = 30) glmModel <- cpglm(Y ~ X1, data =simdata, link = "log") summary(glmModel)
print.altf3 <- function(x, ...) { cat("Forecast quality measures: ") cat("\n") print(x$summary,quote=FALSE) cat("\n") }
wflow_rename <- function(files, to, message = NULL, git = TRUE, dry_run = FALSE, project = ".") { files <- process_input_files(files, files_only = FALSE, convert_to_relative_paths = TRUE) assert_is_character(to) if (length(to) != length(files)) stop("to must be a character vector of filenames the same length as files") to <- relative(to) if (is.null(message)) { message <- deparse(sys.call()) message <- paste(message, collapse = "\n") } else if (is.character(message)) { message <- create_newlines(message) } else { stop("message must be NULL or a character vector") } assert_is_flag(git) assert_is_flag(dry_run) check_wd_exists() assert_is_single_directory(project) project <- absolute(project) p <- wflow_paths(project = project) use_git <- !is.na(p$git) && git if (!is.na(p$git)) { r <- git2r::repository(path = p$git) } if (use_git && !dry_run) { check_git_config(project, "`wflow_rename` with `git = TRUE`") check_staged_changes(project, "`wflow_rename` with `git = TRUE`") } files_ext <- tools::file_ext(files) rmd <- which(files_ext %in% c("Rmd", "rmd") & absolute(files) == absolute(file.path(p$analysis, basename(files)))) for (i in rmd) { html1 <- to_html(files[i], outdir = p$docs) html2 <- to_html(to[i], outdir = p$docs) if (fs::file_exists(html1)) { files <- c(files, html1) to <- c(to, html2) } if (p$docs == ".") { dir_figs_docs1 <- file.path("figure", basename(files[i])) dir_figs_docs2 <- file.path("figure", basename(to[i])) } else { dir_figs_docs1 <- file.path(p$docs, "figure", basename(files[i])) dir_figs_docs2 <- file.path(p$docs, "figure", basename(to[i])) } if (fs::dir_exists(dir_figs_docs1)) { files <- c(files, dir_figs_docs1) to <- c(to, dir_figs_docs2) } } is_dir <- fs::dir_exists(files) dirs_from <- files[is_dir] dirs_to <- to[is_dir] files <- files[!is_dir] to <- to[!is_dir] for (i in seq_along(dirs_from)) { d_files_from <- list.files(path = dirs_from[i], all.files = TRUE, full.names = TRUE, recursive = TRUE) d_files_to <- stringr::str_replace(d_files_from, dirs_from[i], dirs_to[i]) files <- c(files, d_files_from) to <- c(to, d_files_to) } if (!is.na(p$git)) { files_committed <- relative(get_committed_files(r)) logical_files_git <- files %in% files_committed files_to_commit <- c(files[logical_files_git], to[logical_files_git]) } else { files_to_commit <- NA_character_ } if (!dry_run) { lapply(to, function(x) { fs::dir_create(dirname(x)) }) fs::file_move(path = files, new_path = to) lapply(dirs_from, unlink, recursive = TRUE) } if (use_git && !dry_run && length(files_to_commit) > 0) { git2r_add(r, files_to_commit) git2r::commit(r, message = message) commit <- git2r::commits(r, n = 1)[[1]] } else { commit <- NA } o <- list(files = files, to = to, message = message, git = git, dry_run = dry_run, commit = commit, files_git = relative(files_to_commit)) class(o) <- "wflow_rename" return(o) } print.wflow_rename <- function(x, ...) { cat("Summary from wflow_rename\n\n") if (x$dry_run) { cat(wrap("The following file(s) would be renamed:"), "\n\n") } else { cat(wrap("The following files(s) were renamed:"), "\n\n") } cat(sprintf("%s -> %s", x$files, x$to), sep = "\n") if (length(x$files_git) > 0 && !all(is.na(x$files_git)) && x$git) { if (x$dry_run) { cat("\n", wrap("The following file(s) would be included in the Git commit:"), "\n\n", sep = "") } else { cat("\n", wrap(sprintf( "The following file(s) were included in Git commit %s:", stringr::str_sub(x$commit$sha, start = 1, end = 7))), "\n\n", sep = "") } cat(x$files_git, sep = "\n") cat("\ncommit message:\n") cat(x$message) cat("\n") } return(invisible(x)) }