code
stringlengths
1
13.8M
ELEFAN_GA <- function(lfq, seasonalised = FALSE, low_par = NULL, up_par = NULL, popSize = 50, maxiter = 100, run = maxiter, parallel = FALSE, pmutation = 0.1, pcrossover = 0.8, elitism = base::max(1, round(popSize*0.05)), MA = 5, addl.sqrt = FALSE, agemax = NULL, flagging.out = TRUE, seed = NULL, monitor = FALSE, plot = FALSE, plot.score = TRUE, ...){ classes <- lfq$midLengths n_classes <- length(classes) Linf_est <- classes[n_classes] low_par_ALL <- list(Linf = Linf_est * 0.5, K = 0.01, t_anchor = 0, C = 0, ts = 0) low_Linf <- ifelse("Linf" %in% names(low_par), get("Linf", low_par), get("Linf", low_par_ALL)) low_K <- ifelse("K" %in% names(low_par), get("K", low_par), get("K", low_par_ALL)) low_tanc <- ifelse("t_anchor" %in% names(low_par), get("t_anchor", low_par), get("t_anchor", low_par_ALL)) low_C <- ifelse("C" %in% names(low_par), get("C", low_par), get("C", low_par_ALL)) low_ts <- ifelse("ts" %in% names(low_par), get("ts", low_par), get("ts", low_par_ALL)) up_par_ALL <- list(Linf = Linf_est * 1.5, K = 1, t_anchor = 1, C = 1, ts = 1) up_Linf <- ifelse("Linf" %in% names(up_par), get("Linf", up_par), get("Linf", up_par_ALL)) up_K <- ifelse("K" %in% names(up_par), get("K", up_par), get("K", up_par_ALL)) up_tanc <- ifelse("t_anchor" %in% names(up_par), get("t_anchor", up_par), get("t_anchor", up_par_ALL)) up_C <- ifelse("C" %in% names(up_par), get("C", up_par), get("C", up_par_ALL)) up_ts <- ifelse("ts" %in% names(up_par), get("ts", up_par), get("ts", up_par_ALL)) lfq <- lfqRestructure(lfq, MA = MA, addl.sqrt = addl.sqrt) sofun <- function(lfq, par, agemax, flagging.out){ Lt <- lfqFitCurves(lfq, par=list(Linf=par[1], K=par[2], t_anchor=par[3], C=par[4], ts=par[5]), agemax = agemax, flagging.out = flagging.out) return(Lt$fESP) } fun <- function(lfq, par, agemax, flagging.out){ Lt <- lfqFitCurves(lfq, par=list(Linf=par[1], K=par[2], t_anchor=par[3], C = 0, ts = 0), agemax = agemax, flagging.out = flagging.out) return(Lt$fESP) } if(seasonalised){ min = c(low_Linf, low_K, low_tanc, low_C, low_ts) max = c(up_Linf, up_K, up_tanc, up_C, up_ts) writeLines("Genetic algorithm is running. This might take some time.") flush.console() fit <- GA::ga(type = "real-valued", fitness = sofun, lfq=lfq, lower = min, upper = max, agemax = agemax, flagging.out = flagging.out, popSize = popSize, maxiter = maxiter, run = run, parallel = parallel, pmutation = pmutation, pcrossover = pcrossover, elitism = elitism, seed = seed, monitor = monitor, ...) pars <- as.list(fit@solution[1,]) names(pars) <- c("Linf", "K", "t_anchor", "C", "ts") }else{ min = c(low_Linf, low_K, low_tanc) max = c(up_Linf, up_K, up_tanc) writeLines("Genetic algorithm is running. This might take some time.") flush.console() fit <- GA::ga( type = "real-valued", fitness = fun, lfq=lfq, lower = min, upper = max, agemax = agemax, flagging.out = flagging.out, popSize = popSize, maxiter = maxiter, run = run, parallel = parallel, pmutation = pmutation, pcrossover = pcrossover, elitism = elitism, seed = seed, monitor = monitor, ... ) pars <- as.list(fit@solution[1,]) names(pars) <- c("Linf", "K", "t_anchor") } if(plot.score){ GA::plot(fit) } final_res <- lfqFitCurves( lfq = lfq, par=pars, flagging.out = flagging.out, agemax = agemax) phiL <- log10(pars$K) + 2 * log10(pars$Linf) pars$phiL <- phiL lfq$ncohort <- final_res$ncohort lfq$agemax <- final_res$agemax lfq$par <- pars lfq$fESP <- fit@fitnessValue lfq$Rn_max <- fit@fitnessValue if(plot){ plot(lfq, Fname = "rcounts") Lt <- lfqFitCurves(lfq, par = lfq$pars, draw=TRUE) } return(lfq) }
NULL osf_tbl <- function(x = NULL, subclass = NULL) { if (is.list(x) && rlang::is_empty(x)) x <- NULL x <- x %||% tibble::tibble( name = character(), id = character(), meta = list() ) new_osf_tbl(x, subclass) } new_osf_tbl <- function(x, subclass = NULL) { stopifnot(inherits(x, "data.frame")) tibble::new_tibble(x, nrow = nrow(x), subclass = c(subclass, "osf_tbl")) } as_osf_tbl <- function(x, subclass = NULL) UseMethod("as_osf_tbl") as_osf_tbl.default <- function(x, subclass = NULL) abort("No methods available to coerce this object into an osf_tbl") as_osf_tbl.data.frame <- function(x, subclass = NULL) new_osf_tbl(x, subclass) as_osf_tbl.list <- function(x, subclass = NULL) { if (rlang::is_empty(x)) return(osf_tbl(subclass = subclass)) x <- unname(x) name_field <- switch(subclass, osf_tbl_node = "title", osf_tbl_file = "name", osf_tbl_user = "full_name" ) vars <- purrr::map(x, ~ list( name = .x$attributes[[name_field]], id = .x$id, meta = .x[c("attributes", "links", "relationships")] )) out <- tibble::new_tibble(purrr::transpose(vars), nrow = length(vars)) out$id <- as.character(out$id) out$name <- as.character(out$name) if (subclass == "osf_tbl_node") out$name <- html_decode(out$name) new_osf_tbl(out, subclass) } rebuild_osf_tbl <- function(x) { if (is_valid_osf_tbl(x)) { if (nrow(x) == 0) return(x) subclass <- sprintf("osf_tbl_%s", determine_entity_type(x$meta[[1]])) return(as_osf_tbl(x, subclass = subclass)) } else { tibble::new_tibble(x, nrow = nrow(x)) } }
Mammen <- function(n) { p <- (sqrt(5)+1)/(2*sqrt(5)) zmat <- rep(1,n)*(-(sqrt(5)-1)/2); u <- runif(n,0,1) zmat[u > p] <- (sqrt(5)+1)/2 return(zmat) }
PBIR1=function(t2PROGRESSION, STATUS_PROGRESSION, t2RESPONSE, STATUS_RESPONSE, time=NULL, alpha=0.95){ t2RESPONSE[STATUS_RESPONSE==0]=Inf y1=pmin(t2PROGRESSION, t2RESPONSE) d1=1*(STATUS_RESPONSE+STATUS_PROGRESSION>0) y2=t2PROGRESSION d2=STATUS_PROGRESSION fit1=survfit(Surv(y1, d1)~1) n1=length(fit1$time) fit2=survfit(Surv(y2, d2)~1) n2=length(fit2$time) tau.grd=sort(unique(c(y1, y2))) if(min(d1[y1==max(y1)])==0) taumax=min(max(y1), max(y2)) if(min(d1[y1==max(y1)])==1) taumax=max(y2) tau.grd=c(tau.grd[tau.grd<taumax], taumax) m.tau.grd=length(tau.grd) n=length(t2PROGRESSION) surv1.tot=surv2.tot=rep(NA, m.tau.grd) atrisk1.tot=atrisk2.tot=rep(NA, m.tau.grd) hazard1.tot=hazard2.tot=rep(NA, m.tau.grd) for(i in 1:m.tau.grd) {t0=tau.grd[i] if(t0>=max(y1)) t0new=max(y1) if(t0<=max(y1)) t0new=t0 id1=max((1:(n1+1))[c(0, fit1$time)<=t0new]) id2=max((1:(n2+1))[c(0, fit2$time)<=t0]) surv1.tot[i]=c(1, fit1$surv)[id1] surv2.tot[i]=c(1, fit2$surv)[id2] atrisk1.tot[i]=sum(y1>=t0new) atrisk2.tot[i]=sum(y2>=t0) hazard1.tot[i]=sum((y1==t0new)*d1)/sum(y1>=t0new) hazard2.tot[i]=sum((y2==t0)*d2)/sum(y2>=t0) } dsurv.tot=surv2.tot-surv1.tot dsd.tot=rep(NA, m.tau.grd) for(i in 1:m.tau.grd) {t0=tau.grd[i] if(t0>max(y1)) t0new=max(y1) if(t0<=max(y1)) t0new=t0 tau1=tau2=rep(0, n) for(j in 1:n) tau1[j]=(y1[j]<=t0new)*d1[j]/sum(y1>=y1[j])-sum((hazard1.tot/atrisk1.tot)[tau.grd<=min(t0new,y1[j])]) for(j in 1:n) tau2[j]=(y2[j]<=t0)*d2[j]/sum(y2>=y2[j])-sum((hazard2.tot/atrisk2.tot)[tau.grd<=min(t0,y2[j])]) tau1=surv1.tot[i]*tau1 tau2=surv2.tot[i]*tau2 dsd.tot[i]=sqrt(sum((tau1-tau2)^2)) } logd.tot=log(dsurv.tot/(1-dsurv.tot)) logsd.tot=dsd.tot/(dsurv.tot*(1-dsurv.tot)) cilogd=cbind(logd.tot-qnorm((1+alpha)/2)*logsd.tot, logd.tot+qnorm((1+alpha)/2)*logsd.tot) cid=exp(cilogd)/(1+exp(cilogd)) cid[dsurv.tot==0,]=0 cid[dsurv.tot==1,]=1 ci1=cid[,1] ci2=cid[,2] if(length(time)>0) {if(max(time)>taumax) {message("The PBIR is not identifiable at some selected time points, which are replaced by the maximum time point, where it is identifiable.") time=time[time<taumax] time=c(time, taumax) } dsurv.tot=approx(x=tau.grd, y=dsurv.tot, xout=time, method="constant", yleft=0, yright=0)$y dsd.tot=approx(x=tau.grd, y=dsd.tot, xout=time, method="constant", yleft=0, yright=0)$y ci1=approx(x=tau.grd, y=ci1, xout=time, method="constant", yleft=0, yright=0)$y ci2=approx(x=tau.grd, y=ci2, xout=time, method="constant", yleft=0, yright=0)$y tau.grd=time } res.tot=cbind(tau.grd, dsurv.tot, dsd.tot, ci1, ci2) colnames(res.tot)=c("time", "PBIR", "std", "ci-low", "ci-up") res.tot=data.frame(res.tot) return(res.tot) }
promethee123<- function(alternatives, criteria, decision_matrix, min_max, normalization_function, q_indifference, p_preference, s_curve_change, criteria_weights){ n_alt <- length(alternatives) n_crit <- length(criteria) differences <- c() for (j in 1:n_crit) { for (i in 1:n_alt) { for (h in 1:n_alt) { if (min_max[j] == "max") { value <- (decision_matrix[j,i] - decision_matrix[j,h]) } if (min_max[j] == "min") { value <- (decision_matrix[j,h] - decision_matrix[j,i]) } differences <- append(differences, value) } } } normalized <- c() x <- 1 y <- (n_alt^2) for (j in 1:n_crit) { for (i in x:y) { if (normalization_function[j] == 1){ value <- differences[i] if (value <= 0){ degree <- 0 }else{ degree <- 1 } } if (normalization_function[j] == 2){ value <- differences[i] if (value <= q_indifference[j]){ degree <- 0 }else{ degree <- 1 } } if (normalization_function[j] == 3){ value <- differences[i] if (value <= 0){ degree <- 0 } if (value > 0 && value < p_preference[j]){ degree <- value/p_preference[j] } if (value > p_preference[j]){ degree <- 1 } } if (normalization_function[j] == 4){ value <- differences[i] if (value <= q_indifference[j]){ degree <- 0 } if (value > q_indifference[j] && value < p_preference[j]){ degree <- 0.5 } if (value > p_preference[j]){ degree <- 1 } } if (normalization_function[j] == 5){ value <- differences[i] if (value <= q_indifference[j]){ degree <- 0 } if (value > q_indifference[j] && value < p_preference[j]){ degree <- ((value - q_indifference[j]) / (p_preference[j] - q_indifference[j])) } if (value >= p_preference[j]){ degree <- 1 } } if (normalization_function[j] == 6){ value <- differences[i] if (value <= 0){ degree <- 0 }else{ degree <- round((1 - (exp(1) ** ((-((x)**2))/(2*(s_curve_change[j] ** 2))))), 3) } } normalized <- append(normalized, degree) } x <- (y+1) y <- (y+(n_alt^2)) } weighted <- c() x <- 1 y <- (n_alt^2) for (j in 1:n_crit) { for (i in x:y) { value <- normalized[i]*criteria_weights[j] weighted <- append(weighted, value) } x <- (y+1) y <- (y+(n_alt^2)) } print('') print("========== Alternative Performances in Each Criterion ==========") print('') x <- 1 y <- (n_alt^2) for (j in 1:n_crit) { weighted_crit <- weighted[x:y] matrix_weighted <- matrix(weighted_crit, nrow = n_alt, ncol = n_alt, byrow = TRUE) rownames(matrix_weighted) <- alternatives colnames(matrix_weighted) <- alternatives print('') print(paste( 'Weighted Matrix relative to criterion', criteria[j] )) print(matrix_weighted) x <- (y+1) y <- (y+(n_alt^2)) } global_index <- c() for (i in 1:(n_alt^2)) { value_sum <- 0 for (h in 1:n_crit) { value <- weighted[((n_alt^2)*(h-1))+i] value_sum <- value_sum + value } value_index <- round(value_sum/n_crit, 4) global_index <- append(global_index, value_index) } matrix_global_index <- matrix(global_index, nrow = n_alt, ncol = n_alt, byrow = TRUE) colnames(matrix_global_index) <- alternatives rownames(matrix_global_index) <- alternatives print("==================== Global Index of Preference ====================") print('') print(matrix_global_index) print('') positive_flows <- c() for (i in 1:n_alt) { pos_flow <- 0 for (h in 1:n_alt) { value <- global_index[((n_alt*(i-1))+h)] pos_flow <- pos_flow + value } positive_flows <- append(positive_flows, pos_flow) } negative_flows <- c() for (i in 1:n_alt) { neg_flow <- 0 for (h in 1:n_alt) { value <- global_index[((n_alt*(h-1))+i)] neg_flow <- neg_flow + value } negative_flows <- append(negative_flows, neg_flow) } net_flows <- c() for (i in 1:n_alt) { value <- positive_flows[i] - negative_flows[i] net_flows <- append(net_flows, value) } Flows <- data.frame(alternatives, positive_flows, negative_flows, net_flows) print('') print("==================== Outranking Flows ====================") print('') print(Flows) print('') print('') print("==================== PROMETHEE I ====================") print('') for (i in 1:n_alt) { print(paste('Partial Prefernce Relation of ', alternatives[i], ":")) print("") for (h in 1:n_alt) { if (i != h){ if ((positive_flows[i] > positive_flows[h]) && (negative_flows[i] < negative_flows[h])){ print(paste(alternatives[i], " is preferable to ", alternatives[h])) } else if ((positive_flows[i] == positive_flows[h]) && (negative_flows[i] < negative_flows[h])){ print(paste(alternatives[i], " is preferable to ", alternatives[h])) } else if ((positive_flows[i] > positive_flows[h]) && (negative_flows[i] == negative_flows[h])){ print(paste(alternatives[i], " is preferable to ", alternatives[h])) } else if ((positive_flows[i] == positive_flows[h]) && (negative_flows[i] == negative_flows[h])){ print(paste(alternatives[i], " is indifferent to ", alternatives[h])) } else if ((positive_flows[i] < positive_flows[h]) && (negative_flows[i] < negative_flows[h])){ print(paste(alternatives[i], " is incompatible to ", alternatives[h])) } else if ((positive_flows[i] > positive_flows[h]) && (negative_flows[i] > negative_flows[h])){ print(paste(alternatives[i], " is incompatible to ", alternatives[h])) } else { print(paste(alternatives[i], " is not preferable to ", alternatives[h])) } } } print("") } print('') print("==================== PROMETHEE II ====================") ordering <- sort(net_flows, decreasing = TRUE) for(i in 1:n_alt){ print(paste(alternatives[match(ordering[i],net_flows)],'=',ordering[i])) } print('') print("==================== PROMETHEE III ====================") print('') stand_error <- round((sd(net_flows)/sqrt(n_alt)), 3) stand_error x_limit <- c() y_limit <- c() for (i in 1:n_alt) { x <- round((net_flows[i] - stand_error), 3) y <- round((net_flows[i] + stand_error), 3) x_limit <- append(x_limit, x) y_limit <- append(y_limit, y) } for (i in 1:n_alt) { print(paste('Prefernce Relations of ', alternatives[i], ":")) print("") for (h in 1:n_alt) { if (i != h){ if (x_limit[i] > y_limit[h]){ print(paste(alternatives[i], " is preferable to ", alternatives[h])) } else if ((x_limit[i] <= y_limit[h]) && (x_limit[h] <= y_limit[i])){ print(paste(alternatives[i], " is indifferent to ", alternatives[h])) } else { print(paste(alternatives[i], " is not preferable to ", alternatives[h])) } } } print("") } requireNamespace("ggplot2") requireNamespace("cowplot") coresAll <- c('blue', 'green', 'goldenrod', 'red', 'purple', 'chocolate', 'sienna', 'gold', 'olivedrab', 'royalblue', 'mediumpurple', 'grey', 'maroon', 'coral', 'yellowgreen', 'slategrey', 'darkviolet', 'pink', 'springgreen', 'aqua', 'salmon', 'darkseagreen', 'steelblue', 'linen', 'indigo', 'tomato', 'khaki', 'magenta', 'lightcoral', 'yellow','black') cores <- coresAll[1:n_alt] scale <- c() scale <- append(scale, negative_flows) scale <- append(scale, positive_flows) min <- (min(scale) - 0.1) max <- (max(scale) + 0.1) f_neg <- negative_flows f_pos <- positive_flows lista_fluxo_liquido <- net_flows flux_inf <- x_limit flux_sup <- y_limit alt <- alternatives df <- data.frame("y" = f_neg,"y_end"=f_pos, "x"=flux_inf, "x_end"=flux_sup, "liq"=lista_fluxo_liquido, "colors"=cores, "alt"=alt) partial = ggplot(df,aes(colour = alt)) partial <- partial + geom_segment(aes(x=1, y = min, xend=1, yend=max), color="black") + geom_segment(aes(x=2, y = min, xend=2, yend=max), color="black") for(i in 1:n_alt){ partial <- partial + geom_segment(aes(x=1, y=f_neg, xend=2, yend=f_pos), size = 1) + geom_point(aes(x=1, y = f_neg), size=1.8 ) + geom_point(aes (x=2, y = f_pos), size=1.8) + scale_colour_manual(values = cores) } partial <- partial + labs(color = "Alternatives") + ggtitle("PROMETHEE I") + theme(axis.title.x = element_blank(), axis.title.y = element_blank(), axis.text.x = element_blank(), axis.ticks.x = element_blank()) bot <- (min(ordering)-0.1) top <- (max(ordering)+0.1) total = ggplot(df,aes(colour = alt)) total <- total + geom_segment(aes(x=1, y = bot, xend=1, yend=top), color="black") for(i in 1:n_alt){ total <- total + geom_point(aes(x=1, y = lista_fluxo_liquido), size=2.2) + scale_colour_manual(values = cores) } total <- total + labs(color = "Alternatives") + ggtitle("PROMETHEE II") + theme(axis.title.x = element_blank(), axis.title.y = element_blank(), axis.text.x = element_blank(), axis.ticks.x = element_blank()) inf <- (min(flux_inf)-0.1) sup <- (max(flux_sup)+0.1) intervals = ggplot(df,aes(fill = alt)) intervals <- intervals + geom_segment(aes(x=inf, y = 1, xend=sup, yend=1), color="black") for(i in 1:n_alt){ intervals <- intervals + geom_point(aes(x=flux_inf, y = 1),shape=25,colour = "transparent", size =2.5) + geom_point(aes(x=flux_sup, y = 1),shape=24, colour = "transparent", size =2.5) + scale_fill_manual(values = cores) } intervals <- intervals + labs(fill = "Alternatives") + ggtitle("PROMETHEE III") + theme(axis.title.x = element_blank(), axis.title.y = element_blank(), axis.text.y = element_blank(), axis.ticks.y = element_blank()) ggdraw() + draw_plot(partial, x = 0, y = .5, width = .5, height = .5) + draw_plot(total, x = .5, y = .5, width = .5, height = .5) + draw_plot(intervals, x = 0, y = 0, width = 1, height = 0.5) }
test_that("Can use add_rank_list", { z <- add_rank_list(text = "missing", labels = NULL, input_id = NULL) expect_s3_class(z, "add_rank_list") }) test_that("Can create bucket_list", { z <- bucket_list( header = "This is a bucket list. You can drag items between the lists.", add_rank_list( text = "Drag from here", labels = c("a", "bb", "ccc") ), add_rank_list( text = "to here", labels = NULL, input_id = "input_to" ) ) expect_s3_class(z, "bucket_list") expect_error( bucket_list( add_rank_list( text = "Drag from here", labels = c("a", "bb", "ccc") ), add_rank_list( text = "to here", labels = NULL ) ), "must be NULL or a string" ) z <- bucket_list( header = NA, add_rank_list( text = "Drag from here", labels = c("a", "bb", "ccc") ), add_rank_list( text = "to here", labels = NULL ) ) expect_s3_class(z, "bucket_list") })
SemiparChangePoint<-function(x, alternative = c("one.change", "epidemic"), adj.Wn = FALSE, tol=1.0e-7, maxit=50,trace=FALSE,... ) { nc<-0; n<-0 alternative <- match.arg(alternative) ifelse(alternative == "epidemic", nc<-2, nc<-1) alpha.hat<-0; if(!is.matrix(x)) x<-as.matrix(x) if(is.matrix(x)){ n<-nrow(x) r<-ncol(x) } if(is.vector(x)){ n<-length(x); r<-1 x<-matrix(x,n,1) } if(nc ==1 ){ ll<-NULL ll[1]<--n*log(n); ll[n+1]<-ll[1] } else{ ll<-matrix(0,n+1,n+1) ll[1,n+1]<--n*log(n) for(i in 1:(n+1)){ ll[i,i]<--n*log(n); } } Beta<-NULL; z0<-NULL beta.hat<-NULL BETA<-NULL lik.temp<--n*log(n); k.hat<-n; m.hat<-n Vn<-0; Wn<-0; it<-0 Sn<-0; ind<-NULL; cnt<-0 for(k in (nc == 1):(n-1)){ for(m in ((nc == 1)*n + (nc == 2)*(k+1)):(n-(k == 0))){ it<-it+1 k1<-k+1; m1<-m+1; nm<-n-m mk<-m-k; if(k > 0) z0[1:k]<-rep(0,k) if(m < n) z0[m1:n]<-rep(0, nm) z0[k1:m]<-rep(1, mk) z.glm<-glm(formula = z0 ~ x, family = binomial, control = glm.control(tol, maxit, trace)) Beta<-coef(z.glm) rho<-(k+nm)/mk ALPHA<-Beta[1]+log(rho); BETA<-as.vector(Beta[2:(r+1)]) temp1<-sum(log(mk*exp(ALPHA+x%*%BETA)+(k+nm))) temp2<-sum(ALPHA+as.matrix(x[k1:m,])%*%BETA) if(nc ==1){ ll[k+1]<--temp1+temp2; if(ll[k+1]==-Inf){ cnt<-cnt+1 ind[cnt]=k+1 } if((ll[k+1]>lik.temp)||(ll[k+1]>=lik.temp && k<k.hat)){ lik.temp<-ll[k+1] k.hat<-k alpha.hat<-ALPHA beta.hat<-Beta[2:(r+1)] } } else{ ll[k+1,m+1]<--temp1+temp2; ll[m+1,k+1]<-ll[k+1,m+1] if((ll[k+1,m+1]>lik.temp)||(ll[k+1,m+1]>=lik.temp && m-k>m.hat-k.hat)){ lik.temp<-ll[k+1,m+1] k.hat<-k; m.hat<-m; alpha.hat<-ALPHA beta.hat<-Beta[2:(r+1)] } Lambda<-(ll[k+1,m+1]-ll[1,1]) Vn<-Vn+2*(6*(n-m+k)*(m-k)-1)*Lambda/(3*n^4) if(Lambda==-Inf) Lambda<-0 ctemp<-max((m-k)*(n-m+k)*Lambda,(m+1-k)*(n-m+k-1)*Lambda,(m-k-1)*(n-m+k+1)*Lambda) if(Wn<2*ctemp/(n*n)){ Wn<-2*ctemp/(n*n) } } } } if(nc==1){ Sn<-2*(lik.temp-ll[1]) if(cnt>0) ll<-replace(ll,ind,rep(min(ll[ll!=-Inf]),cnt)) return (list(k.hat = k.hat, ll = ll, Sn = Sn, alpha.hat = alpha.hat, beta.hat = beta.hat)) } if(nc==2) { Sn<-2*(lik.temp-ll[1,n+1]) if(adj.Wn && r == 1) Wn <- Wn*(1+0.155/sqrt(n)+0.24/n) list(k.hat = k.hat, m.hat = m.hat, ll = ll, Sn = Sn, Vn = Vn, Wn = Wn, alpha.hat = alpha.hat, beta.hat = beta.hat) } }
library(knitr) opts_chunk$set(fig.width = 12) library(DCLEAR) library(phangorn) library(tidyverse) library(ape) m = 30 acell = as.integer(rep(1,m)) mu_d = 0.1 d = 3 n_s = 5 p_d = 0.05 nmstrings = c( '0', '-', LETTERS[1:n_s] ) sim_tree = list() sim_tree[[1]] = acell k = 2 while(k < 2^d) { mother_cell = sim_tree[[k%/%2]] mu_loc = runif(m) < mu_d mutation_cites = (mother_cell == 1) & mu_loc n_mut = sum(mutation_cites) if (n_mut > 0) { mother_cell[mutation_cites] = as.integer(sample(n_s, n_mut, replace = T)+2) } dropout_cites = runif(m) < p_d if (sum(dropout_cites) > 2 ) { dropout_between = sample(which(dropout_cites), 2 ) mother_cell[dropout_between[1]:dropout_between[2]] = as.integer(2) } sim_tree[[k]] = mother_cell k = k+1 } 1:7 %>% map(~paste(nmstrings[sim_tree[[.]]], collapse="")) set.seed(1) mu_d1 = c( 30, 20, 10, 5, 5, 1, 0.01, 0.001) mu_d1 = mu_d1/sum(mu_d1) simn = 100 m = 200 mu_d = 0.03 d = 12 p_d = 0.005 sD = sim_seqdata(sim_n = simn, m = m, mu_d = mu_d, d = d, n_s = length(mu_d1), outcome_prob = mu_d1, p_d = p_d ) sD$seqs class(sD$tree) distH = dist.hamming(sD$seqs) TreeNJ = NJ(distH) TreeFM = fastme.ols(distH) print( RF.dist(TreeNJ, sD$tree, normalize = TRUE) ) print( RF.dist(TreeFM, sD$tree, normalize = TRUE) ) InfoW = -log(mu_d1) InfoW[1:2] = 1 InfoW[3:7] = 4.5 dist_wh1 = WH(sD$seqs, InfoW) TreeNJ_wh1 = NJ(dist_wh1) TreeFM_wh1 = fastme.ols(dist_wh1) print( RF.dist(TreeNJ_wh1, sD$tree, normalize = TRUE) ) print( RF.dist(TreeFM_wh1, sD$tree, normalize = TRUE) ) InfoW = -log(mu_d1) InfoW[1] = 1 InfoW[2] = 12 InfoW[3:7] = 3 dist_wh2 = WH(sD$seqs, InfoW, dropout=TRUE) TreeNJ_wh2 = NJ(dist_wh2) TreeFM_wh2 = fastme.ols(dist_wh2) print( RF.dist(TreeNJ_wh2, sD$tree, normalize = TRUE) ) print( RF.dist(TreeFM_wh2, sD$tree, normalize = TRUE) )
library(tinytest) library(tiledb) isOldWindows <- Sys.info()[["sysname"]] == "Windows" && grepl('Windows Server 2008', osVersion) if (isOldWindows) exit_file("skip this file on old Windows releases") ctx <- tiledb_ctx(limitTileDBCores()) dim <- tiledb_dim("foo", c(1, 100)) expect_true(is(dim, "tiledb_dim")) expect_error(tiledb_dim("foo")) expect_error(tiledb_dim("foo", c(100L, 1L), type = "INT32")) expect_error(tiledb_dim("foo", c(1, 100), type = "INVALID")) dim <- tiledb_dim("foo", c(1, 100)) expect_equal(tiledb::datatype(dim), "FLOAT64") dim <- tiledb_dim("foo", c(1.0, 100.0)) expect_equal(tiledb::datatype(dim), "FLOAT64") dim <- tiledb_dim("foo", c(1L, 100L)) expect_equal(tiledb::datatype(dim), "INT32") dim <- tiledb_dim("foo", c(1L, 100L)) expect_equal(tiledb::name(dim), "foo") dim <- tiledb_dim("", c(1L, 100L)) expect_equal(tiledb::name(dim), "") dim <- tiledb_dim("foo", c(1L, 100L), tile=10L, type="INT32") expect_equal(tiledb::tile(dim), 10L) dim <- tiledb_dim("foo", c(1L, 100L), type = "INT32") expect_equal(tiledb::tile(dim), 100L) dim <- tiledb_dim("foo", c(1L, 1L), type = "INT32") expect_equal(tiledb::tile(dim), 1L) dim <- tiledb_dim("foo", c(1.1, 11.9), type = "FLOAT64") expect_equal(tiledb::tile(dim), 11.9 - 1.1) dim <- tiledb_dim("", c(1L, 100L)) expect_true(is.anonymous(dim)) dim <- tiledb_dim("foo", c(1L, 100L)) expect_false(is.anonymous(dim)) dim <- tiledb_dim("", c(1L, 100L), type = "INT32") expect_equal(tiledb::datatype(dim), "INT32") dim <- tiledb_dim("", c(1, 100), type = "FLOAT64") expect_equal(tiledb::datatype(dim), "FLOAT64") t d <- tiledb_dim("", c(-1L, 100L)) expect_equal(dim(d), 102L) if (tiledb_version(TRUE) < "2.1.0") exit_file("Needs TileDB 2.1.* or later") suppressMessages({ library(nanotime) library(bit64) }) atttype <- "INT32" intmax <- .Machine$integer.max uri <- tempfile() dimtypes <- c("ASCII", "INT8", "UINT8", "INT16", "UINT16", "INT32", "UINT32", "INT64", "UINT64", "FLOAT32", "FLOAT64", "DATETIME_YEAR", "DATETIME_MONTH", "DATETIME_WEEK", "DATETIME_DAY", "DATETIME_HR", "DATETIME_MIN", "DATETIME_SEC", "DATETIME_MS", "DATETIME_US", "DATETIME_NS", "DATETIME_PS", "DATETIME_FS", "DATETIME_AS" ) for (dtype in dimtypes) { if (tiledb_vfs_is_dir(uri)) { tiledb_vfs_remove_dir(uri) } dom <- switch(dtype, "ASCII" = NULL, "INT8" =, "UINT8" = c(1L, 100L), "INT16" =, "UINT16" =, "UINT32" =, "INT32" = c(1L, 10000L), "INT64" =, "UINT64" = c(as.integer64(1), as.integer64(1000)), "FLOAT32" =, "FLOAT64" = c(1, 1000), "DATETIME_YEAR" =, "DATETIME_MONTH" =, "DATETIME_WEEK" =, "DATETIME_DAY" = c(-intmax, intmax), "DATETIME_HR" =, "DATETIME_MIN" =, "DATETIME_SEC" =, "DATETIME_MS" =, "DATETIME_US" =, "DATETIME_NS" =, "DATETIME_PS" =, "DATETIME_FS" =, "DATETIME_AS" = c(-5e18, 5e18) ) tile <- switch(dtype, "ASCII" = NULL, "UINT8" = , "INT8" = 100L, "INT32" = , "UINT32" = 1000L, "UINT64" =, "INT64" = as.integer64(1000), 1000) domain <- tiledb_domain(tiledb_dim("row", dom, tile, dtype)) attrib <- tiledb_attr("attr", type = "INT32") schema <- tiledb_array_schema(domain, attrib, sparse=TRUE) tiledb_array_create(uri, schema) arr <- tiledb_array(uri, as.data.frame=TRUE) dvec <- switch(dtype, "ASCII" = LETTERS[1:5], "INT8" =, "UINT8" =, "INT16" =, "UINT16" =, "UINT32" =, "INT32" = 1:5, "INT64" =, "UINT64" = as.integer64(1:5), "FLOAT32" =, "FLOAT64" = as.numeric(1:5), "DATETIME_YEAR" = c(as.Date("2020-01-01"), as.Date("2021-01-01"), as.Date("2022-01-01"), as.Date("2023-01-01"), as.Date("2024-01-01")), "DATETIME_MONTH" = c(as.Date("2020-01-01"), as.Date("2020-02-01"), as.Date("2020-03-01"), as.Date("2020-04-01"), as.Date("2020-05-01")), "DATETIME_WEEK" = c(as.Date("2020-01-01"), as.Date("2020-01-08"), as.Date("2020-01-15"), as.Date("2020-01-22"), as.Date("2020-01-29")), "DATETIME_DAY" = as.Date("2020-01-01") + 0:4, "DATETIME_HR" = as.POSIXct("2020-01-01 00:00:00") + (0:4)*3600, "DATETIME_MIN" = as.POSIXct("2020-01-01 00:00:00") + (0:4)*3600, "DATETIME_SEC" = as.POSIXct("2020-01-01 00:00:00") + (0:4)*3600, "DATETIME_MS" = as.POSIXct("2000-01-01 00:00:00") + (0:4)*3600 + rep(0.001,5), "DATETIME_US" = as.POSIXct("2000-01-01 00:00:00") + (0:4)*3600 + rep(0.00001,5), "DATETIME_NS" =, "DATETIME_PS" =, "DATETIME_FS" =, "DATETIME_AS" = as.nanotime("1970-01-01T00:00:00.000000001+00:00") + (0:4)*1e9 ) avec <- 10^(1:5) data <- data.frame(row = dvec, attr = avec, stringsAsFactors=FALSE) arr[] <- data arr2 <- tiledb_array(uri, as.data.frame=TRUE) readdata <- arr2[] if (dtype == "ASCII" && getRversion() < '4.0.0') readdata$row <- as.character(readdata$row) if (dtype == "UINT64") readdata[,1] <- as.integer64(readdata[,1]) expect_equivalent(data, readdata) if (grepl("^DATETIME", dtype)) { expect_false(class(readdata) == "integer64") expect_false(datetimes_as_int64(arr2)) datetimes_as_int64(arr2) <- TRUE expect_true(datetimes_as_int64(arr2)) expect_true(class(arr2[][,"row"]) == "integer64") } arr3 <- tiledb_array(uri, as.data.frame=TRUE) if (dtype %in% c("DATETIME_YEAR", "DATETIME_MONTH", "DATETIME_WEEK", "DATETIME_DAY")) { scaleDate <- function(val, dtype) { val <- switch(dtype, "DATETIME_YEAR" = as.numeric(strftime(val, "%Y")) - 1970, "DATETIME_MONTH" = 12*(as.numeric(strftime(val, "%Y")) - 1970) + as.numeric(strftime(val, "%m")) - 1, "DATETIME_WEEK" = as.numeric(val)/7, "DATETIME_DAY" = as.numeric(val)) } selected_ranges(arr3) <- list(cbind(as.integer64(scaleDate(data[2, "row"], dtype)), as.integer64(scaleDate(data[4, "row"], dtype)))) } else if (dtype %in% c("DATETIME_HR", "DATETIME_MIN", "DATETIME_SEC", "DATETIME_MS", "DATETIME_US")) { scaleDatetime <- function(val, dtype) { val <- switch(dtype, "DATETIME_HR" = as.numeric(val)/3600, "DATETIME_MIN" = as.numeric(val)/60, "DATETIME_SEC" = as.numeric(val), "DATETIME_MS" = as.numeric(val) * 1e3, "DATETIME_US" = as.numeric(val) * 1e6 ) } selected_ranges(arr3) <- list(cbind(as.integer64(scaleDatetime(data[2, "row"], dtype)), as.integer64(scaleDatetime(data[4, "row"], dtype)))) } else if (dtype %in% c("DATETIME_NS", "DATETIME_PS", "DATETIME_FS", "DATETIME_AS")) { scaleDatetime <- function(val, dtype) { val <- switch(dtype, "DATETIME_NS" = as.integer64(val), "DATETIME_PS" = as.integer64(val) * 1e3, "DATETIME_FS" = as.integer64(val) * 1e6, "DATETIME_AS" = as.integer64(val) * 1e9 ) } selected_ranges(arr3) <- list(cbind(as.integer64(scaleDatetime(data[2, "row"], dtype)), as.integer64(scaleDatetime(data[4, "row"], dtype)))) } else { selected_ranges(arr3) <- list(cbind(data[2, "row"], data[4, "row"])) } readdata <- arr3[] if (dtype == "ASCII" && getRversion() < '4.0.0') readdata$row <- as.character(readdata$row) if (dtype == "UINT64") readdata[,1] <- as.integer64(readdata[,1]) expect_equivalent(data[2:4,], readdata, info=dtype) expect_equal(NROW(readdata), 3L) }
gestMultiple <- function(data, idvar, timevar, Yn, An, Cn = NA, outcomemodels, propensitymodel, censoringmodel = NULL, type, EfmVar = NA, cutoff = NA, ...) { if (!is.data.frame(data)) (stop("Either no data set has been given, or it is not in a data frame.")) if (is.na(EfmVar) && type %in% c(2, 4)) (stop("Type 2 or 4 is specified but argument EfmVar not specified.")) if (!is.na(EfmVar) && !is.numeric(data[, EfmVar]) && type %in% c(2, 4)) (stop("Effect modification is only supported for a continuous covariate, or binary covariate written as an as.numeric() 0,1 vector")) if (!is.na(Cn) == TRUE && !is.numeric(data[, Cn])) (stop("A censoring indicator must be written as an as.numeric() 0,1 vector, with 1 indicating censoring.")) if (!is.null(censoringmodel)) (warning("Variables included in censoringmodel should ideally be included in propensitymodel else propensity scores may be invalid.")) if (!is.factor(data[, Yn]) && !is.numeric(data[, Yn])) (stop("Outcome Yn must be an as.numeric() continuous variable, or if binary, an as.numeric() 0 1 variable.")) if (!is.factor(data[, Yn]) && !is.numeric(data[, Yn])) (stop("Exposure An must be either an as.factor() categorical variable, or an as.numeric() variable. If Binary, it must be set either as a two category as.factor() variable or a numeric 0 1 variable.")) Ybin <- FALSE Abin <- FALSE Acat <- FALSE if (setequal(unique(data[, Yn][!is.na(data[, Yn])]), c(0, 1)) && is.numeric(data[, Yn])) (Ybin <- TRUE) if (setequal(unique(data[, An][!is.na(data[, An])]), c(0, 1)) && is.numeric(data[, An])) (Abin <- TRUE) if (is.factor(data[, An])) (Acat <- TRUE) if (!is.numeric(data[, timevar])) (stop("timevar must be as as.numeric() variable starting at 1")) if (is.na(min(data[, idvar]))) (stop("idvar must not contain any missing values")) if (min(data[, timevar]) != 1) (stop("timevar must be as as.numeric() variable starting at 1. It must also not contain any missing values")) if (nrow(data) != (length(unique(data[, idvar])) * max(data[, timevar]))) (stop("There must a a row entry for each individual at each time period. For those with entries missing or censored at a time point, add rows of missing values except for the time and id variable. Consider using the function FormatData.")) T <- max(data[, timevar]) if (is.na(cutoff) == TRUE) { cutoff <- T } data$int <- 1 lmp <- formula(propensitymodel) if (Acat == TRUE) { modp <- multinom(lmp, data = data) } else if (Abin == TRUE) { modp <- glm(lmp, family = "binomial", data = data) } else { modp <- glm(lmp, family = "gaussian", data = data) } if (Acat == TRUE) { props <- predict(modp, type = "probs", newdata = data) if (nlevels(data[, An]) == 2) { data$prs <- props } else { data$prs <- props[, -1] } } else { props <- predict(modp, type = "response", newdata = data) data$prs <- props } cps <- NA if (is.na(Cn)) { data$w <- 1 } else { lmc <- formula(censoringmodel) modc <- glm(lmc, family = "binomial", data = data) cps <- 1 - predict(modc, type = "response", newdata = data) data$cps <- cps data[, paste(Cn, "0", sep = "")] <- as.integer(!data[, Cn]) data$cprod <- data$cps data[is.na(data$cprod) == TRUE, "cprod"] <- 1 data$w <- data[, paste(Cn, "0", sep = "")] / data$cps } data$H <- data[, Yn] dc <- data dc$cntstep <- 1 dcom <- data[complete.cases(data), ] for (i in 2:cutoff) { d2 <- data[data[, timevar] %in% seq(1, T - (i - 1), by = 1), ] d2$cntstep <- i dc <- rbind(dc, d2) } dc <- dc[order(dc[, idvar], dc[, timevar]), ] if (type == 1) { z <- c("int") timevarying <- FALSE } else if (type == 2) { z <- c("int", EfmVar) timevarying <- FALSE } else if (type == 3) { z <- c("int") timevarying <- TRUE } else if (type == 4) { z <- c("int", EfmVar) timevarying <- TRUE } par1 <- paste(eval(An), eval(z), sep = ":") par1[par1 == paste(eval(An), "int", sep = ":")] <- paste(eval(An)) par2 <- paste("prs", eval(z), sep = ":") par2[par2 == paste("prs", "int", sep = ":")] <- paste("prs") if (Ybin == TRUE) { family <- Gamma(link = "log") } else { family <- gaussian } for (i in 1:length(outcomemodels)) { outcomemodels[[i]] <- formula(outcomemodels[[i]]) termlabs <- attr(terms(outcomemodels[[i]]), which = "term.labels") if (identical(as.numeric(length(which(termlabs == An))), 0)) { stop("Every formula in outcomemodels must have an An term") } if (type %in% c(2, 4)) { if (identical(as.numeric(length(which(termlabs == paste(An, EfmVar, sep = ":")))), 0)) { stop("For types 2 and 4. Every formula in outcomemodels must have an An term, Efm term, and an An:Efm term. The An term must appear before any EfmVar term in each formula in outcomemodels. Or there must be an An*EfmVar term") } if (!identical(as.numeric(length(which(termlabs == EfmVar))), 0) && which(termlabs == EfmVar) < which(termlabs == An)) (stop("For types 2 and 4. Every formula in outcomemodels must have an An term, Efm term, and an An:Efm term. The An term must appear before any EfmVar term in each formula in outcomemodels. Or there must be an An*EfmVar term")) } outcomemodels[[i]] <- reformulate(c(termlabs, par2), response = "H") } if (timevarying == FALSE) { lmy <- outcomemodels[[1]] out <- summary(geem(terms(lmy), family = family, id = dcom[, idvar], data = dcom, weights = dcom$w)) if (Acat == TRUE) { nam1 <- paste(An, levels(data[, An])[-1], sep = "") nam2 <- apply(expand.grid(nam1, z[-1]), 1, paste, collapse = ":") Acoef <- c(nam1, nam2) psi0 <- out$beta[match(Acoef, out$coefnames)] names(psi0) <- Acoef psicat <- as.list(NULL) for (l in 2:nlevels(data[, An])) { psicat[[l]] <- psi0[grep(levels(data[, An])[l], Acoef)] } psicat[[1]] <- rep(0, length(psicat[[2]])) } else { psi <- out$beta[match(par1, out$coefnames)] names(psi) <- par1 } if (Acat == TRUE) { i <- 2 while (i <= cutoff && i <= T) { j <- 1 dc$psiZA <- 0 while (j <= (i - 1)) { if (length(z) == 1) { for (l in 1:nlevels(dc[, An])) { dc[dc$cntstep == j & dc[, An] == levels(dc[, An])[l] & !is.na(dc[, An]), "psiZA"] <- psicat[[l]] } } else { for (l in 1:nlevels(dc[, An])) { dc[dc$cntstep == j & dc[, An] == levels(dc[, An])[l] & !is.na(dc[, An]), "psiZA"] <- rowSums( sweep(dc[dc$cntstep == j & dc[, An] == levels(dc[, An])[l] & !is.na(dc[, An]), z], 2, psicat[[l]], "*") ) } } j <- j + 1 } j <- 2 while (j <= i) { for (k in 1:(T - (j - 1))) { if (is.na(Cn) == FALSE) { dc[dc$cntstep == j & dc[, timevar] == k, "cprod"] <- dc[dc$cntstep == (j - 1) & dc[, timevar] == k, "cps"] * dc[dc$cntstep == (j - 1) & dc[, timevar] == (k + 1), "cprod"] dc[dc$cntstep == j & dc[, timevar] == k, "w"] <- data[data[, timevar] == (k + j - 1), paste(Cn, "0", sep = "")] / dc[dc$cntstep == j & dc[, timevar] == k, "cprod"] } if (Ybin == FALSE) { dc[dc$cntstep == j & dc[, timevar] == k, "H"] <- dc[dc$cntstep == (j - 1) & dc[, timevar] == (k + 1), "H"] - dc[dc$cntstep == (j - 1) & dc[, timevar] == (k + 1), "psiZA"] } if (Ybin == TRUE) { dc[dc$cntstep == j & dc[, timevar] == k, "H"] <- dc[dc$cntstep == (j - 1) & dc[, timevar] == (k + 1), "H"] * exp(-dc[dc$cntstep == (j - 1) & dc[, timevar] == (k + 1), "psiZA"]) } } j <- j + 1 } dt <- dc[dc$cntstep %in% seq(1, i, by = 1), ] dtcom <- dt[complete.cases(dt), ] lmH <- outcomemodels[[i]] out <- summary(geem(terms(lmH), family = family, id = dtcom[, idvar], data = dtcom, weights = dtcom$w)) psi0 <- out$beta[match(Acoef, out$coefnames)] names(psi0) <- Acoef psicat <- as.list(NULL) for (l in 2:nlevels(data[, An])) { psicat[[l]] <- psi0[grep(levels(data[, An])[l], Acoef)] } psicat[[1]] <- rep(0, length(psicat[[2]])) i <- i + 1 } results <- list(psi = unlist(psicat[-1]), Data = as_tibble(data[, !names(data) %in% c("H", "psiZA")]), PropensitySummary = summary(data$prs), CensoringSummary = summary(cps)) class(results) <- "Results" return(results) } else { i <- 2 while (i <= cutoff && i <= T) { j <- 2 while (j <= i) { for (k in 1:(T - (j - 1))) { if (is.na(Cn) == FALSE) { dc[dc$cntstep == j & dc[, timevar] == k, "cprod"] <- dc[dc$cntstep == (j - 1) & dc[, timevar] == k, "cps"] * dc[dc$cntstep == (j - 1) & dc[, timevar] == (k + 1), "cprod"] dc[dc$cntstep == j & dc[, timevar] == k, "w"] <- data[data[, timevar] == (k + j - 1), paste(Cn, "0", sep = "")] / dc[dc$cntstep == j & dc[, timevar] == k, "cprod"] } if (Ybin == FALSE) { if (length(z) == 1) { dc[dc$cntstep == j & dc[, timevar] == k, "H"] <- dc[dc$cntstep == (j - 1) & dc[, timevar] == (k + 1), "H"] - dc[dc$cntstep == (j - 1) & dc[, timevar] == (k + 1), An] * psi * data[data[, timevar] == (k + 1), z] } else { dc[dc$cntstep == j & dc[, timevar] == k, "H"] <- dc[dc$cntstep == (j - 1) & dc[, timevar] == (k + 1), "H"] - rowSums(dc[dc$cntstep == (j - 1) & dc[, timevar] == (k + 1), An] * sweep(dc[dc$cntstep == (j - 1) & dc[, timevar] == (k + 1), z], 2, psi, "*")) } } if (Ybin == TRUE) { if (length(z) == 1) { dc[dc$cntstep == j & dc[, timevar] == k, "H"] <- dc[dc$cntstep == (j - 1) & dc[, timevar] == (k + 1), "H"] * exp(dc[dc$cntstep == (j - 1) & dc[, timevar] == (k + 1), An] * -psi * data[data[, timevar] == (k + 1), z]) } else { dc[dc$cntstep == j & dc[, timevar] == k, "H"] <- dc[dc$cntstep == (j - 1) & dc[, timevar] == (k + 1), "H"] * exp(-rowSums(dc[dc$cntstep == (j - 1) & dc[, timevar] == (k + 1), An] * sweep(dc[dc$cntstep == (j - 1) & dc[, timevar] == (k + 1), z], 2, psi, "*"))) } } } j <- j + 1 } dt <- dc[dc$cntstep %in% seq(1, i, by = 1), ] dtcom <- dt[complete.cases(dt), ] lmH <- outcomemodels[[i]] out <- summary(geem(terms(lmH), family = family, id = dtcom[, idvar], data = dtcom, weights = dtcom$w)) psi <- out$beta[match(par1, out$coefnames)] names(psi) <- par1 i <- i + 1 } results <- list(psi = psi, Data = as_tibble(data[, !names(data) %in% c("H")]), PropensitySummary = summary(data$prs), CensoringSummary = summary(cps)) class(results) <- "Results" return(results) } } else if (timevarying == TRUE) { if (Acat == TRUE) { lmy <- outcomemodels[[1]] out <- summary(geem(terms(lmy), family = family, id = dcom[, idvar], data = dcom, weights = dcom$w)) nam1 <- paste(An, levels(data[, An])[-1], sep = "") nam2 <- apply(expand.grid(nam1, z[-1]), 1, paste, collapse = ":") Acoef <- c(nam1, nam2) psi0 <- out$beta[match(Acoef, out$coefnames)] names(psi0) <- Acoef psicatlist <- as.list(NULL) psicatresult <- as.list(NULL) psicat <- as.list(NULL) for (l in 2:nlevels(data[, An])) { psicat[[l]] <- psi0[grep(levels(data[, An])[l], Acoef)] } psicat[[1]] <- rep(0, length(psicat[[2]])) psicatlist[[1]] <- psicat psicatresult[[1]] <- psicat[-1] i <- 2 while (i <= cutoff && i <= T) { j <- 1 dc$psiZA <- 0 while (j <= (i - 1)) { if (length(z) == 1) { for (l in 1:nlevels(dc[, An])) { dc[dc$cntstep == j & dc[, An] == levels(dc[, An])[l] & !is.na(dc[, An]), "psiZA"] <- psicatlist[[j]][[l]] } } else { for (l in 1:nlevels(dc[, An])) { dc[dc$cntstep == j & dc[, An] == levels(dc[, An])[l] & !is.na(dc[, An]), "psiZA"] <- rowSums( sweep(dc[dc$cntstep == j & dc[, An] == levels(dc[, An])[l] & !is.na(dc[, An]), z], 2, psicatlist[[j]][[l]], "*") ) } } j <- j + 1 } j <- 2 while (j <= i) { for (k in 1:(T - (j - 1))) { if (is.na(Cn) == FALSE) { dc[dc$cntstep == j & dc[, timevar] == k, "cprod"] <- dc[dc$cntstep == (j - 1) & dc[, timevar] == k, "cps"] * dc[dc$cntstep == (j - 1) & dc[, timevar] == (k + 1), "cprod"] dc[dc$cntstep == j & dc[, timevar] == k, "w"] <- data[data[, timevar] == (k + j - 1), paste(Cn, "0", sep = "")] / dc[dc$cntstep == j & dc[, timevar] == k, "cprod"] } if (Ybin == FALSE) { dc[dc$cntstep == j & dc[, timevar] == k, "H"] <- dc[dc$cntstep == (j - 1) & dc[, timevar] == (k + 1), "H"] - dc[dc$cntstep == (j - 1) & dc[, timevar] == (k + 1), "psiZA"] } if (Ybin == TRUE) { dc[dc$cntstep == j & dc[, timevar] == k, "H"] <- dc[dc$cntstep == (j - 1) & dc[, timevar] == (k + 1), "H"] * exp(-dc[dc$cntstep == (j - 1) & dc[, timevar] == (k + 1), "psiZA"]) } } j <- j + 1 } dt <- dc[dc$cntstep %in% i, ] dtcom <- dt[complete.cases(dt), ] lmH <- outcomemodels[[i]] out <- summary(geem(terms(lmH), family = family, id = dtcom[, idvar], data = dtcom, weights = dtcom$w)) psi0 <- out$beta[match(Acoef, out$coefnames)] names(psi0) <- Acoef psicat <- as.list(NULL) for (l in 2:nlevels(data[, An])) { psicat[[l]] <- psi0[grep(levels(data[, An])[l], Acoef)] } psicat[[1]] <- rep(0, length(psicat[[2]])) psicatlist[[i]] <- psicat psicatresult[[i]] <- psicat[-1] i <- i + 1 } nam <- as.vector(NULL) for (p in 1:cutoff) { nam[p] <- paste("c=", p, sep = "") } names(psicatresult) <- nam results <- list(psi = unlist(psicatresult), Data = as_tibble(data[, !names(data) %in% c("H", "psiZA")]), PropensitySummary = summary(data$prs), CensoringSummary = summary(cps)) class(results) <- "Results" return(results) } else { lmy <- outcomemodels[[1]] out <- summary(geem(terms(lmy), family = family, id = dcom[, idvar], data = dcom, weights = dcom$w)) psi <- out$beta[match(par1, out$coefnames)] names(psi) <- par1 psilist <- as.list(NULL) psilist[[1]] <- psi i <- 2 while (i <= cutoff && i <= T) { j <- 2 while (j <= i) { for (k in 1:(T - (j - 1))) { if (is.na(Cn) == FALSE) { dc[dc$cntstep == j & dc[, timevar] == k, "cprod"] <- dc[dc$cntstep == (j - 1) & dc[, timevar] == k, "cps"] * dc[dc$cntstep == (j - 1) & dc[, timevar] == (k + 1), "cprod"] dc[dc$cntstep == j & dc[, timevar] == k, "w"] <- data[data[, timevar] == (k + j - 1), paste(Cn, "0", sep = "")] / dc[dc$cntstep == j & dc[, timevar] == k, "cprod"] } if (Ybin == FALSE) { if (length(z) == 1) { dc[dc$cntstep == j & dc[, timevar] == k, "H"] <- dc[dc$cntstep == (j - 1) & dc[, timevar] == (k + 1), "H"] - dc[dc$cntstep == (j - 1) & dc[, timevar] == (k + 1), An] * psilist[[j - 1]] * data[data[, timevar] == (k + 1), z] } else { dc[dc$cntstep == j & dc[, timevar] == k, "H"] <- dc[dc$cntstep == (j - 1) & dc[, timevar] == (k + 1), "H"] - rowSums(dc[dc$cntstep == (j - 1) & dc[, timevar] == (k + 1), An] * sweep(dc[dc$cntstep == (j - 1) & dc[, timevar] == (k + 1), z], 2, psilist[[j - 1]], "*")) } } if (Ybin == TRUE) { if (length(z) == 1) { dc[dc$cntstep == j & dc[, timevar] == k, "H"] <- dc[dc$cntstep == (j - 1) & dc[, timevar] == (k + 1), "H"] * exp(dc[dc$cntstep == (j - 1) & dc[, timevar] == (k + 1), An] * -psilist[[j - 1]] * data[data[, timevar] == (k + 1), z]) } else { dc[dc$cntstep == j & dc[, timevar] == k, "H"] <- dc[dc$cntstep == (j - 1) & dc[, timevar] == (k + 1), "H"] * exp(-rowSums(dc[dc$cntstep == (j - 1) & dc[, timevar] == (k + 1), An] * sweep(dc[dc$cntstep == (j - 1) & dc[, timevar] == (k + 1), z], 2, psilist[[j - 1]], "*"))) } } } j <- j + 1 } dt <- dc[dc$cntstep %in% i, ] dtcom <- dt[complete.cases(dt), ] lmH <- outcomemodels[[i]] out <- summary(geem(terms(lmH, keep.order = T), family = family, id = dtcom[, idvar], data = dtcom, weights = dtcom$w)) psi <- out$beta[match(par1, out$coefnames)] names(psi) <- par1 psilist[[i]] <- psi i <- i + 1 } nam <- as.vector(NULL) for (p in 1:cutoff) { nam[p] <- paste("c=", p, sep = "") } names(psilist) <- nam results <- list(psi = unlist(psilist), Data = as_tibble(data[, !names(data) %in% c("H")]), PropensitySummary = summary(data$prs), CensoringSummary = summary(cps)) class(results) <- "Results" return(results) } } }
library(plm) data("Produc", package = "plm") fd_plm <- plm(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp, data = Produc, model = "fd") fd_plm2 <- plm(log(gsp) ~ 0 + log(pcap) + log(pc) + log(emp) + unemp, data = Produc, model = "fd") fd_pggls <- pggls(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp, data = Produc, model = "fd") fd_pggls2 <- pggls(log(gsp) ~ 0 + log(pcap) + log(pc) + log(emp) + unemp, data = Produc, model = "fd") summary(fd_plm) summary(fd_plm2) summary(fd_pggls) summary(fd_pggls2) vcovHC(fd_plm) vcovHC(fd_plm2)
library(dplyr) context("default engines") test_that('check default engines', { expect_equal(boost_tree()$engine, "xgboost") expect_equal(decision_tree()$engine, "rpart") expect_equal(linear_reg()$engine, "lm") expect_equal(logistic_reg()$engine, "glm") expect_equal(mars()$engine, "earth") expect_equal(mlp()$engine, "nnet") expect_equal(multinom_reg()$engine, "nnet") expect_equal(nearest_neighbor()$engine, "kknn") expect_equal(proportional_hazards()$engine, "survival") expect_equal(rand_forest()$engine, "ranger") expect_equal(survival_reg()$engine, "survival") expect_equal(svm_linear()$engine, "LiblineaR") expect_equal(svm_poly()$engine, "kernlab") expect_equal(svm_rbf()$engine, "kernlab") })
knitr::opts_chunk$set( collapse = TRUE, comment = " ) library(naijR) map_ng() map_ng("Nigeria") map_ng(lgas()) map_ng(states(gpz = "sw"), show.text = TRUE, col = 4) kk <- "Kebbi" map_ng(kk, col = 6, fill = TRUE, title = paste(kk, "State")) ss <- states() numStates <- length(ss) vv <- sample(LETTERS[1:5], numStates, TRUE) dd <- data.frame(state = ss, var = vv, stringsAsFactors = FALSE) head(dd) map_ng(data = dd, x = var, show.text = FALSE) map_ng(region = ss, x = vv, col = "red", show.text = FALSE) map_ng(region = ss, x = var) nn <- runif(numStates, max = 100) bb <- c(0, 40, 60, 100) map_ng(region = ss, x = nn, breaks = bb, col = 'YlOrRd', show.text = FALSE) map_ng( region = ss, x = nn, breaks = bb, categories = c("Low", "Medium", "High"), col = 3L, show.text = FALSE ) x <- c(3.000, 4.000, 6.000, 5.993, 5.444, 6.345, 5.744) y <- c(8.000, 9.000, 9.300, 10.432, 8.472, 6.889, 9.654) map_ng("Nigeria", x = x, y = y) map_ng("Kwara", x = x, y = y)
SPU_Var <- function(gamma, n1, n2, cov){ p <- dim(cov)[1] if(gamma == 1){ var <- (1/n1 + 1/n2)*(t(rep(1, p)) %*% cov %*% rep(1, p)) var <- as.numeric(var) }else{ P1 <- SPU_E(2*gamma, n1, n2, cov) P2 <- -(SPU_E(gamma, n1, n2, cov))^2 c_d <- c_and_d(gamma, gamma) n.case <- dim(c_d)[1] P3 <- 0 diags <- diag(cov) p <- length(diags) mat1 <- matrix(rep(diags, p), p, p, byrow = FALSE) mat2 <- matrix(rep(diags, p), p, p, byrow = TRUE) for(i in 1:n.case){ c1 <- c_d$c1[i] c2 <- c_d$c2[i] c3 <- c_d$c3[i] d1 <- c_d$d1[i] d2 <- c_d$d2[i] d3 <- c_d$d3[i] mat <- mat1^(c1 + d1)*mat2^(c2 + d2)*cov^(c3 + d3) diag(mat) <- 0 N <- (factorial(gamma))^2*sum(mat) D <- (n1^(c1 + c2 + c3)*n2^(d1 + d2 + d3)*factorial(c1)*factorial(c2)* factorial(d1)*factorial(d2)*factorial(c3)*factorial(d3)* 2^(c1 + c2 + d1 + d2)) P3 <- P3 + N/D } var <- P1 + P2 + P3 } return(var) }
mnis_additional_utility <- function(query) { got <- mnis_query(query) mem <- purrr::discard(got$Members$Member, is.null) names(mem) <- janitor::make_clean_names(names(mem)) mem }
rmultivariate_normal = function( n , mean , cov ) { svd = base::svd(cov) S = svd$u %*% base::diag(base::sqrt(svd$d)) %*% base::t(svd$u) n_dim = length(mean) X = base::matrix( stats::rnorm(n*n_dim) , nrow = n , ncol = n_dim ) X = base::t(base::apply( X , 1 , function(x) { mean + S %*% x } )) return(X) }
test_that("as.multiPhylo()", { expect_equal(structure(list(BalancedTree(8), PectinateTree(8)), class = 'multiPhylo'), as.multiPhylo(list(BalancedTree(8), PectinateTree(8)))) expect_equal(structure(list(BalancedTree(8)), class = 'multiPhylo'), as.multiPhylo(BalancedTree(8))) char <- MatrixToPhyDat(matrix(c(1,1,1,0,0,0), ncol = 1, dimnames = list(letters[1:6], NULL))) expect_equal(ape::read.tree(text = '((a, b, c), (d, e, f));'), as.multiPhylo(char)[[1]]) char2 <- MatrixToPhyDat(matrix(c(1,1,1,0,0,0, 0,1,1,1,1,'?', 0,0,1,1,'-',2, 0,1,1,1,1,'?'), ncol = 4, dimnames = list(letters[1:6], NULL))) mpChar2 <- as.multiPhylo(char2) expect_equal(ape::read.tree(text = '((a, b, c), (d, e, f));'), mpChar2[[1]]) expect_equal(ape::read.tree(text = '(b, c, d, e);'), mpChar2[[2]]) expect_equal(ape::read.tree(text = '((a, b), (c, d));'), mpChar2[[3]]) expect_equal(mpChar2[[2]], mpChar2[[4]]) mpSplits <- as.Splits(PectinateTree(letters[1:6])) expect_true(all.equal(structure(list( '9' = ape::read.tree(text = '((a, b), (c, d, e, f));'), '10' = ape::read.tree(text = '((a, b, c), (d, e, f));'), '11' = ape::read.tree(text = '((a, b, c, d), (e, f));')), class = 'multiPhylo'), as.multiPhylo(mpSplits))) })
source("ESEUR_config.r") ly=read.csv(paste0(ESEUR_dir, "ecosystems/lang-year.csv.xz"), as.is=TRUE) plot(ly$Year, ly$Languages, type="l", col=point_col, xaxs="i", yaxs="i", xlim=c(1949, 2000), ylim=c(0, 320), xlab="Year", ylab="New languages\n")
.start_menzel <- function(df, est.prev, species){ years <- unique(df$year) Mp <- switch(species, "Larix decidua" = list(TbCD=7, TbH=3, a=1372, b=-246), "Picea abies (frueh)" = list(TbCD=9, TbH=4, a=1848, b=-317), "Picea abies (spaet)" = list(TbCD=9, TbH=5, a=1616, b=-274), "Picea abies (noerdl.)" = list(TbCD=9, TbH=4, a=2084, b=-350), "Picea omorika" = list(TbCD=7, TbH=3, a=2833, b=-484), "Pinus sylvestris" = list(TbCD=9, TbH=5, a=1395, b=-223), "Betula pubescens" = list(TbCD=9, TbH=5, a=1438, b=-261), "Quercus robur" = list(TbCD=9, TbH=4, a=1748, b=-298), "Quercus petraea" = list(TbCD=9, TbH=3, a=1741, b=-282), "Fagus sylvatica" = list(TbCD=9, TbH=6, a=1922, b=-348)) CDNovDec <- utils::stack(tapply(df[(df$month >= 11 & df$Tavg <= Mp$TbCD), "Tavg"], df[(df$month >= 11 & df$Tavg <= Mp$TbCD), "year"], FUN=length)) CDNovDec$ind <- as.integer(levels(CDNovDec$ind)) + 1 names(CDNovDec) <- c("CDprev", "year") if(est.prev == 0){ df <- df[df$year != years[1], ] } else { CDNovDec <- rbind(c(mean(CDNovDec$CDprev[1:est.prev]), years[1]), CDNovDec) } df$CD <- ifelse(df$Tavg <= Mp$TbCD, 1, 0) ChillDays <- utils::stack(tapply(df$CD, df$year, FUN=cumsum)) names(ChillDays) <- c("CDcumsum", "year") ChillDays <- merge(ChillDays, CDNovDec, by="year", all.x=TRUE) df$CD <- ChillDays$CDprev + ChillDays$CDcumsum rm(ChillDays, CDNovDec) df$TCrit <- ifelse(df$CD > 0, Mp$a + Mp$b * log(df$CD), Mp$a) df$HeatSum <- ifelse(df$month >= 2 & df$Tavg > Mp$TbH, df$Tavg - Mp$TbH, 0) df$HeatSum <- utils::stack(tapply(df$HeatSum, df$year, FUN=cumsum))$values df$start <- df$HeatSum >= df$TCrit start <- utils::stack(tapply(df$DOY[df$start], df$year[df$start], FUN=min))$values return(start) } .start_std_meteo <- function(df, Tmin=5){ df$period <- ifelse(df$Tavg > Tmin, 1, 0) start <- tapply(df$period, df$year, FUN=function(x){ sixer <- as.numeric(stats::filter(x, rep(1, 6), sides=1)) doy <- which(!is.na(sixer) & sixer == 6) ifelse(length(doy) == 0, NA, min(doy)) }) return(as.vector(start)) } .start_ribes <- function(df){ df[df$DOY < 49 | df$Tavg < 0, 'Tavg'] <- 0 start <- tapply(df$Tavg, df$year, FUN=function(x){ x <- cumsum(x) min(which(x > 164)) }) return(as.vector(start)) }
test_that("early stopping with patience = 1", { fit_with_callback <- function(cb, epochs = 25) { model <- get_model() dl <- get_dl() suppressMessages({ expect_message({ mod <- model %>% setup( loss = torch::nn_mse_loss(), optimizer = torch::optim_adam, ) %>% set_hparams(input_size = 10, output_size = 1) %>% fit(dl, verbose = TRUE, epochs = epochs, callbacks = list(cb)) }) }) mod } mod <- fit_with_callback(luz_callback_early_stopping( monitor = "train_loss", patience = 1, min_delta = 100 )) expect_equal(nrow(get_metrics(mod)), 2) mod <- fit_with_callback(luz_callback_early_stopping( monitor = "train_loss", patience = 2, min_delta = 100 )) expect_equal(nrow(get_metrics(mod)), 3) mod <- fit_with_callback(epochs = c(5, 25), luz_callback_early_stopping( monitor = "train_loss", patience = 2, min_delta = 100 )) expect_equal(nrow(get_metrics(mod)), 5) mod <- fit_with_callback(epochs = c(1, 25), luz_callback_early_stopping( monitor = "train_loss", patience = 1, baseline = 0 )) expect_equal(nrow(get_metrics(mod)), 1) }) test_that("early stopping", { torch::torch_manual_seed(1) set.seed(1) model <- get_model() dl <- get_dl() mod <- model %>% setup( loss = torch::nn_mse_loss(), optimizer = torch::optim_adam, ) expect_snapshot({ expect_message({ output <- mod %>% set_hparams(input_size = 10, output_size = 1) %>% fit(dl, verbose = TRUE, epochs = 25, callbacks = list( luz_callback_early_stopping(monitor = "train_loss", patience = 1, min_delta = 0.02) )) }) }) expect_snapshot({ expect_message({ output <- mod %>% set_hparams(input_size = 10, output_size = 1) %>% fit(dl, verbose = TRUE, epochs = 25, callbacks = list( luz_callback_early_stopping(monitor = "train_loss", patience = 5, baseline = 0.001) )) }) }) x <- 0 output <- mod %>% set_hparams(input_size = 10, output_size = 1) %>% fit(dl, verbose = FALSE, epochs = 25, callbacks = list( luz_callback_early_stopping(monitor = "train_loss", patience = 5, baseline = 0.001), luz_callback(on_early_stopping = function() { x <<- 1 })() )) expect_equal(x, 1) mod <- model %>% setup( loss = torch::nn_mse_loss(), optimizer = torch::optim_adam, metrics = luz_metric_mae() ) expect_snapshot({ expect_message({ output <- mod %>% set_hparams(input_size = 10, output_size = 1) %>% fit(dl, verbose = TRUE, epochs = 25, callbacks = list( luz_callback_early_stopping(monitor = "train_mae", patience = 2, baseline = 0.91, min_delta = 0.01) )) }) }) }) test_that("model checkpoint callback works", { torch::torch_manual_seed(1) set.seed(1) model <- get_model() dl <- get_dl() mod <- model %>% setup( loss = torch::nn_mse_loss(), optimizer = torch::optim_adam, ) tmp <- tempfile(fileext = "/") output <- mod %>% set_hparams(input_size = 10, output_size = 1) %>% fit(dl, verbose = FALSE, epochs = 5, callbacks = list( luz_callback_model_checkpoint(path = tmp, monitor = "train_loss", save_best_only = FALSE) )) files <- fs::dir_ls(tmp) expect_length(files, 5) tmp <- tempfile(fileext = "/") output <- mod %>% set_hparams(input_size = 10, output_size = 1) %>% fit(dl, verbose = FALSE, epochs = 10, callbacks = list( luz_callback_model_checkpoint(path = tmp, monitor = "train_loss", save_best_only = TRUE) )) files <- fs::dir_ls(tmp) expect_length(files, 10) torch::torch_manual_seed(2) set.seed(2) model <- get_model() dl <- get_dl() mod <- model %>% setup( loss = torch::nn_mse_loss(), optimizer = torch::optim_adam, ) tmp <- tempfile(fileext = "/") output <- mod %>% set_hparams(input_size = 10, output_size = 1) %>% fit(dl, verbose = FALSE, epochs = 5, callbacks = list( luz_callback_model_checkpoint(path = tmp, monitor = "train_loss", save_best_only = TRUE) )) files <- fs::dir_ls(tmp) expect_length(files, 5) }) test_that("early stopping + csv logger", { model <- get_model() dl <- get_dl() tmp <- tempfile(fileext = ".csv") cb <- list( luz_callback_early_stopping(min_delta = 100, monitor = "train_loss"), luz_callback_csv_logger(tmp) ) suppressMessages({ expect_message({ mod <- model %>% setup( loss = torch::nn_mse_loss(), optimizer = torch::optim_adam, ) %>% set_hparams(input_size = 10, output_size = 1) %>% fit(dl, verbose = TRUE, epochs = 25, callbacks = cb) }) }) expect_equal(nrow(read.csv(tmp)), nrow(get_metrics(mod))) })
inzplot.lm <- function(x, which = c( "residual", "scale", "leverage", "cooks", "normal", "hist" ), show.bootstraps = TRUE, label.id = 3L, col.smooth = "orangered", col.bs = "lightgreen", cook.levels = c(0.5, 1), col.cook = "pink", ..., bs.fits = NULL, env = parent.frame() ) { if (which[1] == "marginal") { terms <- x$terms vars <- attr(terms, "term.labels") vars <- vars[attr(terms, "dataClasses")[vars] == "numeric"] f <- as.formula(paste("~", paste(vars, collapse = " + "))) p <- car::marginalModelPlots(x, f, ...) return(invisible(p)) } short.title <- length(which) > 1L if (show.bootstraps && is.null(bs.fits)) bs.fits <- generate_bootstraps(x, env) ps <- lapply(which, function(w) { switch(w, "residual" = , "scale" = , "leverage" = .inzplot_lm_scatter(x, w, show.bootstraps, label.id, col.smooth, col.bs, cook.levels, col.cook, short.title, ..., bs.fits = bs.fits, env = env ), "cooks" = .inzplot_lm_cooks(x, label.id, short.title, ..., env = env), "normal" = .inzplot_lm_normqq(x, show.bootstraps, label.id, short.title, ..., bs.fits = bs.fits, env = env), "hist" = .inzplot_lm_hist(x, show.bootstraps, short.title, ..., env = env) ) } ) p <- patchwork::wrap_plots(ps) grDevices::dev.hold() on.exit(grDevices::dev.flush()) suppressWarnings(print(p)) invisible(p) } .inzplot_lm_scatter <- function(x, which, show.bootstraps, label.id, col.smooth, col.bs, cook.levels, col.cook, short.title, ..., bs.fits, env) { HEX_THRESHOLD <- 1e5 d_fun <- function(x, which, label.id = 0L, is.bs = FALSE) { if (label.id > 0L) iid <- seq_len(label.id) labs <- character(nrow(x$model)) switch(which, "residual" = { r <- residuals(x) if (label.id > 0L) { l <- sort.list(abs(r), decreasing = TRUE)[iid] labs[l] <- names(r)[l] } data.frame(x = predict(x), y = r, lab = labs) }, "scale" = { r <- residuals(x) s <- sqrt(deviance(x) / df.residual(x)) hii <- lm.influence(x, do.coef = FALSE)$hat rs <- dropInf(r / (s * sqrt(1 - hii)), hii) if (label.id > 0L) { l <- sort.list(abs(r), decreasing = TRUE)[iid] labs[l] <- names(r)[l] } data.frame(x = predict(x), y = sqrt(abs(rs)), lab = labs) }, "leverage" = { rp <- residuals(x, "pearson") hii <- lm.influence(x, do.coef = FALSE)$hat s <- sqrt(deviance(x) / df.residual(x)) rsp <- dropInf(rp / (s * sqrt(1 - hii)), hii) xx <- ifelse(hii > 1, NA, hii) cook <- cooks.distance(x, sd = s, res = residuals(x)) if (label.id > 0L) { l <- order(-cook)[iid] labs[l] <- names(rp)[l] } d <- data.frame(x = xx, y = rsp, lab = labs) if (!is.bs && length(cook.levels)) { r.hat <- range(hii, na.rm = TRUE) attr(d, "r.hat") <- r.hat } d } ) } d <- d_fun(x, which, label.id = label.id) if (show.bootstraps && is.null(bs.fits)) bs.fits <- generate_bootstraps(x, env) title <- switch(which, "residual" = "Residuals vs Fitted Values", "scale" = "Scale-location plot", "leverage" = "Residuals vs Leverage" ) if (short.title) { subtitle <- waiver() } else { subtitle <- sprintf("Linear model: %s", utils::capture.output(x$call$formula) ) if (show.bootstraps) { title <- sprintf( "**%s** with <span style='color:%s'>fitted</span> and <span style='color:%s'>bootstrap</span> smoothers", title, col.smooth, col.bs ) } else { title <- sprintf( "**%s** with fitted smoother", title ) } if (which == "leverage" && !is.null(attr(d, "r.hat"))) { title <- sprintf("%s, and <span style='color:%s'>Cook's contours</span>", title, col.cook ) } } USE_HEX <- nrow(d) > HEX_THRESHOLD XL <- extendrange(range(d$x, na.rm = TRUE)) YL <- extendrange(range(d$y, na.rm = TRUE), f = 0.08) p <- ggplot(d, aes_(~x, ~y)) yax2 <- NULL if (which == "leverage" && !is.null(attr(d, "r.hat"))) { px <- length(coef(x)) r.hat <- attr(d, "r.hat") hh <- seq.int(min(r.hat[1L], r.hat[2L] / 100), XL[2], length.out = 101) yax2 <- numeric() for (crit in cook.levels) { cl.h <- sqrt(crit * px * (1 - hh) / hh) yax2 <- c(yax2, structure(cl.h[length(cl.h)] * c(1, -1), .Names = c(crit, crit)) ) dx <- data.frame(x = hh, y = cl.h) p <- p + geom_path(lty = 2, col = col.cook, data = dx, na.rm = TRUE) + geom_path(aes_(y = ~-y), lty = 2, col = col.cook, data = dx, na.rm = TRUE) + geom_vline(xintercept = XL[2]) } yax2 <- yax2[dplyr::between(yax2, YL[1], YL[2])] } if (USE_HEX) { p <- p + geom_hex() + scale_fill_gradient(low = "gray80", high = "black") + labs(fill = "Count") } else { p <- p + geom_point() } p <- p + geom_hline(yintercept = 0, lty = 3) + scale_x_continuous( switch(which, "residual" = "Fitted values", "scale" = "Fitted values", "leverage" = "Leverage" ) ) + scale_y_continuous( switch(which, "residual" = "Residuals", "scale" = expression(sqrt(abs("Standardized residuals"))), "leverage" = "Residuals" ), sec.axis = if (!is.null(yax2) && length(yax2)) { sec_axis( trans = ~., name = NULL, breaks = yax2, labels = names(yax2) ) } else waiver() ) + ggtitle(title, subtitle = subtitle) + theme_classic() + theme( plot.title.position = ifelse(short.title, "panel", "plot"), plot.title = element_markdown(size = ifelse(short.title, 11, 12)) ) + coord_cartesian(xlim = XL, ylim = YL, expand = FALSE) if (label.id > 0L && !is.null(d$lab)) { p <- p + geom_text_repel(aes_(label = ~lab), data = d[d$lab != "", ] ) } if (show.bootstraps) { bs.data <- do.call( rbind, lapply(seq_along(bs.fits), function(i) { di <- cbind( d_fun(bs.fits[[i]], which = which, is.bs = TRUE), bs.index = i ) si <- loess(y ~ x, data = di) o <- order(si$x) data.frame(x = si$x[o], y = si$fitted[o], bs.index = i) } ) ) p <- p + geom_path( aes_(group = ~bs.index), data = bs.data, colour = col.bs ) } p <- p + geom_smooth( method = "loess", formula = y ~ x, colour = col.smooth, se = FALSE, na.rm = TRUE ) p } .inzplot_lm_cooks <- function(x, label.id, short.title, ..., env) { cdx <- cooks.distance(x) show.mx <- order(-cdx)[1:3] d <- data.frame( obs_n = seq_along(cdx), cooks_distance = cdx ) co <- order(-cdx)[1:3] d$lab <- as.character(d$obs_n) XL <- extendrange(c(0L, nrow(d))) YL <- c(0, max(cdx) * 1.08) ggplot(d, aes_(~obs_n, ~cooks_distance)) + geom_segment(aes_(xend = ~obs_n, y = 0, yend = ~cooks_distance)) + geom_text(aes_(label = ~lab), data = d[co, ], nudge_y = 0.02 * YL[2] ) + scale_x_continuous("Observation number", limits = XL ) + scale_y_continuous("Cook's Distance", limits = YL ) + ggtitle( ifelse(short.title, "Cook's Distance", "**Cook's Distance** of ordered observations"), subtitle = if (short.title) waiver () else { sprintf("Linear model: %s", utils::capture.output(x$call$formula) ) } ) + theme_classic() + theme( plot.title.position = ifelse(short.title, "panel", "plot"), plot.title = element_markdown(size = ifelse(short.title, 11, 12)) ) + coord_cartesian(expand = FALSE) } .inzplot_lm_normqq <- function(x, show.bootstraps, label.id, short.title, ..., bs.fits = NULL, env = env) { r <- residuals(x) s <- sqrt(deviance(x) / df.residual(x)) hii <- lm.influence(x, do.coef = FALSE)$hat rs <- dropInf(r / (s * sqrt(1 - hii)), hii) iid <- 1:3L labs <- character(nrow(x$model)) l <- sort.list(abs(rs), decreasing = TRUE)[iid] labs[l] <- names(r)[l] qq <- normCheck(rs, plot = FALSE) d <- data.frame(x = qq$x, y = qq$y, lab = labs) stest <- shapiro.test(rs) sp <- stest$p.value sres <- sprintf("Shapiro Wilk normality test: W = %s, P-value %s %s", round(stest$statistic, 4), ifelse(sp < 1e-4, "<", "="), max(round(stest$p.value, 3), 1e-4) ) p <- ggplot(d, aes_(~x, ~y)) + geom_abline(slope = 1, intercept = 0) if (short.title) { title <- "Normal Q-Q" subtitle <- waiver() } else { title <- "**Normal Q-Q** of residuals" subtitle <- sprintf( "Linear model: %s<br>%s", utils::capture.output(x$call$formula), sres ) } if (show.bootstraps) { colz <- iNZightPlots::inzpalette("rainbow")(10L) for (i in 1:10) { qqx <- normCheck(rnorm(length(rs)), plot = FALSE) dx <- data.frame(x = qqx$x, y = qqx$y) p <- p + geom_point( colour = colz[i], data = dx, pch = 4L ) } if (!short.title) { tx <- c("boo", "tst", "rap", " No", "rma", "l e", "rro", "rs") tc <- paste0("<span style='color:", colz[1:8], "'>", tx, "</span>", collapse = "") title <- sprintf("%s with a sample of %s", title, tc) } } p <- p + geom_point() + geom_text_repel(aes_(label = ~lab), data = d[d$lab != "", ], direction = "x" ) + ggtitle(title, subtitle = subtitle) + scale_x_continuous("Theoretical quantiles") + scale_y_continuous("Standardized residuals") + theme_classic() + theme( plot.title.position = ifelse(short.title, "panel", "plot"), plot.title = element_markdown(size = ifelse(short.title, 11, 12)), plot.subtitle = element_markdown(lineheight = 1.5) ) } .inzplot_lm_hist <- function(x, short.title, ..., env = env) { d <- data.frame(x = residuals(x)) mx <- mean(d$x, na.rm = TRUE) sx <- sd(d$x, na.rm = TRUE) rx <- range(d$x, na.rm = TRUE) h <- hist(d$x, plot = FALSE) xmin <- min(rx[1], mx - 3.5 * sx, h$breaks[1]) xmax <- max(rx[2], mx + 3.5 * sx, h$breaks[length(h$breaks)]) ymax <- max(h$density, dnorm(mx, mx, sx)) * 1.05 d2 <- data.frame(x = seq(xmin, xmax, length.out = 1001)) d2$y <- dnorm(d2$x, mx, sx) dd <- data.frame(x = h$mids, y = h$density) curve.col <- "orangered" if (short.title) { title <- "Histogram" subtitle <- waiver() } else { title <- sprintf( "**Histogram of residuals** with <span style='color: %s'>Normal density curve</span>", curve.col ) subtitle <- sprintf( "Linear model: %s", utils::capture.output(x$call$formula) ) } ggplot(dd, aes_(~x, ~y)) + geom_col( width = diff(h$breaks), fill = "light blue", colour = "black" ) + geom_path(aes_(y = ~y), data = d2, colour = curve.col, linetype = 2, size = 1.2 ) + coord_cartesian(expand = FALSE) + scale_x_continuous("Residuals", limits = extendrange(range(d$x)) ) + scale_y_continuous("Density", limits = function(l) c(l[1], l[2] * 1.04) ) + ggtitle(title, subtitle = subtitle) + theme_classic() + theme( plot.title.position = ifelse(short.title, "panel", "plot"), plot.title = element_markdown(size = ifelse(short.title, 11, 12)), plot.subtitle = element_markdown(lineheight = 1.5) ) } dropInf <- function(x, h) { if (any(isInf <- h >= 1)) { x[isInf] <- NaN } x }
fun_convert <- function(mutation_file, organism) { Hugo_Symbol <- NULL Protein_Change <- NULL Start_Position <- NULL End_Position <- NULL Variant_Type <- NULL Reference <- NULL Tumor_Seq <- NULL Mut_type <- NULL Chr <- NULL Start <- NULL End <- NULL Ref <- NULL Alt <- NULL Alt_length_1 <- NULL Alt_length_2 <- NULL PRE_ins <- NULL PRE_del <- NULL Alt_ins <- NULL Alt_del <- NULL Alt_snv <- NULL Ref_ins <- NULL Ref_del <- NULL Ref_snv <- NULL Neighbor_start_1 <- NULL Neighbor_end_1 <- NULL Neighbor_start_2 <- NULL Neighbor_end_2 <- NULL Pre_Neighbor <- NULL Alt_indel <- NULL POST_ins <- NULL Post_Neighbor <- NULL Alt_length <- NULL Ref_indel <- NULL Pos <- NULL df_mutation <- read.xlsx(mutation_file, sheet = 1) ref_genome <- fun_load_genome(organism) fun_genome <- function(x, y) { r <- NULL for (i in seq_len(length(x))) { r <- c(r, as.character(ref_genome[[x[i]]][y[i]])) } return(r) } fun_genome_2 <- function(x, y, z) { r <- NULL for (i in seq_len(length(x))) { r <- c(r, as.character(ref_genome[[x[i]]][y[i]:z[i]])) } return(r) } df_mutation <- df_mutation %>% mutate( Gene = Hugo_Symbol, HGVS.p = Protein_Change, Pos = Start_Position, Start = Start_Position, End = End_Position, Mut_type = Variant_Type, Ref = Reference, Alt = Tumor_Seq) df_mutation <- df_mutation %>% dplyr::mutate( Mut_type = tolower(Mut_type)) df_mutation <- df_mutation %>% dplyr::mutate( PRE_del = fun_genome(Chr, as.integer(Start) - 1), PRE_ins = fun_genome(Chr, as.integer(Start)), POST_ins = fun_genome(Chr, as.integer(End)), Alt_length_1 = nchar(Ref), Alt_length_2 = nchar(Alt)) df_mutation <- df_mutation %>% dplyr::mutate( Mut_type = ifelse(Mut_type == "snp", "snv", Mut_type)) df_mutation <- df_mutation %>% dplyr::mutate( Alt_length = (((Alt_length_1 - Alt_length_2) + abs(Alt_length_1 - Alt_length_2)) / 2) + Alt_length_2, Ref_ins = ifelse(Mut_type == "ins", PRE_ins, ""), Ref_del = ifelse(Mut_type == "del", paste(PRE_del, Ref, sep = ""), ""), Ref_snv = ifelse(Mut_type == "snv", Ref, ""), Alt_ins = ifelse(Mut_type == "ins", paste(PRE_ins, Alt, sep = ""), ""), Alt_del = ifelse(Mut_type == "del", PRE_del, ""), Alt_snv = ifelse(Mut_type == "snv", Alt, "")) df_mutation <- df_mutation %>% dplyr::mutate( Alt_indel = paste(Alt_ins, Alt_del, Alt_snv, sep = ""), Ref_indel = paste(Ref_ins, Ref_del, Ref_snv, sep = "")) df_mutation <- df_mutation %>% dplyr::mutate( Neighbor_start_1 = as.integer(Start) - 20, Neighbor_end_1 = as.integer(Start) - 1, Neighbor_start_2 = as.integer(End) + 1, Neighbor_end_2 = as.integer(End) + 20) df_mutation <- df_mutation %>% dplyr::mutate( Pre_Neighbor = fun_genome_2(Chr, Neighbor_start_1, Neighbor_end_1), Post_Neighbor = fun_genome_2(Chr, Neighbor_start_2, Neighbor_end_2)) df_mutation <- df_mutation %>% dplyr::mutate( Neighborhood_sequence = ifelse( Mut_type == "ins", paste(Pre_Neighbor, Alt_indel, POST_ins, str_sub(Post_Neighbor, 1, 19), sep = ""), ifelse( Mut_type == "del", paste(Pre_Neighbor, Post_Neighbor, sep = ""), paste(Pre_Neighbor, Alt, Post_Neighbor, sep = "")))) df_mutation <- df_mutation %>% dplyr::mutate( Mut_type = paste(Alt_length, "-", Mut_type, sep = ""), Ref = Ref_indel, Alt = Alt_indel, Pos = ifelse(str_detect(Mut_type, pattern = "del"), Pos - 1, Pos) ) df_mutation <- df_mutation %>% dplyr::select( -PRE_del, -PRE_ins, -POST_ins, -Alt_length_1, -Alt_length_2, -Alt_length, -Ref_ins, -Ref_del, -Ref_snv, -Alt_ins, -Alt_del, -Alt_snv, -Alt_indel, -Ref_indel, -Neighbor_start_1, -Neighbor_start_2, -Neighbor_end_1, -Neighbor_end_2, -Pre_Neighbor, -Post_Neighbor, -Hugo_Symbol, -Start_Position, -End_Position, -Variant_Type, -Reference, -Tumor_Seq, -Protein_Change, -Start, -End) return(df_mutation) } NULL
if (requiet("testthat") && requiet("insight") && requiet("stats") && requiet("parameters")) { .runThisTest <- Sys.getenv("RunAllinsightTests") == "yes" if (packageVersion("parameters") >= "0.14.0") { test_that("standardize_names works", { set.seed(123) lm_mod <- lm(wt ~ mpg, mtcars) x <- as.data.frame(parameters::model_parameters(lm_mod)) expect_equal( names(standardize_names(x, style = "broom")), c( "term", "estimate", "std.error", "conf.level", "conf.low", "conf.high", "statistic", "df.error", "p.value" ) ) expect_equal( names(standardize_names(x, style = "easystats")), c( "Parameter", "Coefficient", "SE", "CI", "CI_low", "CI_high", "Statistic", "df", "p" ) ) aov_mod <- aov(wt ~ mpg, mtcars) y <- as.data.frame(parameters::model_parameters(aov_mod)) expect_equal( names(standardize_names(y, style = "broom")), c("term", "sumsq", "df", "meansq", "statistic", "p.value") ) }) z <- as.data.frame(parameters::model_parameters(t.test(1:10, y = c(7:20)))) chi <- as.data.frame(parameters::model_parameters(chisq.test(matrix(c(12, 5, 7, 7), ncol = 2)))) } }
decrypt <- function(input, output = NULL, passphrase = NULL, verbosity = 1) { if (missing(input)) { stop("Check the input argument, it seems to be missing. There's nothing to decrypt.") } if (!file.exists(input)) { stop("Check the input argument, the file name doesn't exist. There's nothing to decrypt.") } if (is.null(output)) { output <- gsub(".gpg|.asc", "", input) } if (file.exists(output)) { stop("Check the output argument, the file name is already in use! The decrypted file may already exist, or you need to specify a new output file name.") } if (.Platform$OS.type == "unix") { tty <- "--no-tty" } else{ tty <- NULL } if (!(verbosity %in% c(0, 1, 2, 3)) || length(verbosity %in% c(0, 1, 2, 3)) == 0) { stop("Check the verbosity argument. You've used an invalid value.") } verbosity <- switch( as.character(verbosity), "0" = "--quiet", "1" = NULL, "2" = "--verbose", "3" = "--verbose --verbose" ) if (is.null(passphrase)) { command <- "gpg" system2.args <- c("--output", output, "--decrypt", verbosity, input) } else{ command <- "echo" system2.args <- c( paste(passphrase, "|", sep = ""), "gpg", "--passphrase-fd 0", "--batch", tty, "--output", output, "--decrypt", verbosity, input ) } if (.Platform$OS.type == "unix") { what <- "system2" args <- list(command = command, args = system2.args) } else { what <- "shell" args <- list(cmd = paste(command, paste(system2.args, collapse = " "), collapse = " " ) ) } do.call(what = what, args = args) }
x_Obj = function(D,model){ D_om = orth_D(D,model,'om') D_test = orth_D(D_om,model,'test'); D_om_ = c2m(D_om) df_D_om = c2df(D_om) df_D_test = c2df(D_test) linregEst_ =linregEst(c2m(D),D_om_) Beta_D = linregEst_$BetaU VmodelDivS_D = linregEst_$VmodelDivS VextraDivS1_D = linregEst_$VextraDivS1 xObj2 = linregStart(D_om_) xObj1 = list(df_error = nrow(xObj2$Umodel) - ncol(xObj2$Umodel), D=D, D_test = D_test, D_om = D_om, df_D_om = df_D_om, df_D_test = df_D_test, Beta_D = Beta_D, VmodelDivS_D = VmodelDivS_D, VextraDivS1_D = VextraDivS1_D, termNames = attr(model,"dimnames")[[1]] ) c(xObj1,xObj2) } orth_D = function(D,model,method){ Dorth = vector("list",nrow(model)) if(length(D)!= nrow(model)) return(Dorth) for(i in 1:nrow(model)){ d = D[[i]] d_adj = d[,numeric(0)] for(j in 1:nrow(model)){ switch(method, test = {if(min( model[j,] - model[i,]) < 0 ) d_adj = cbind(d_adj,D[[j]])}, om = {if( (min( model[j,] - model[i,]) < 0 ) & (max( model[j,] - model[i,]) <= 0) ) d_adj = cbind(d_adj,D[[j]])}) } Dorth[[i]] = adjust(d,d_adj) } Dorth }
get_Brier_score <- function(actual, predicted){ n <- length(actual) n_1 <- length(actual==1) n_0 <- length(actual==0) sum <- 0 sum_0 <- 0 sum_1 <- 0 for (i in seq(1,n,1)){ diff <- abs((predicted[i]-actual[i]))^2 sum <- sum+diff if(actual[i]==0){ sum_0 <- sum_0+diff } else if(actual[i]==1){ sum_1 <- sum_1+diff } } return(list(brier=sum/n, brier_1=sum_1/n_1, brier_0=sum_0/n_0)) }
mvTqmc <- function(l, u, Sig, df, n = 1e5){ d <- length(l) if (length(u) != d | d != sqrt(length(Sig)) | any(l > u)) { stop("l, u, and Sig have to match in dimension with u>l") } if(d == 1L){ return(list(prob = pt(q = u/sqrt(Sig[1]), df = df) - pt(q = l/sqrt(Sig[1]), df = df), err = NA, relErr = NA, upbnd = NA)) } out <- cholperm(Sig, l, u) D <- diag(out$L) if (any(D < 1e-10)) { warning("Method may fail as covariance matrix is singular!") } L <- out$L/D - diag(d) u <- out$u/D l <- out$l/D x0 <- rep(0, 2*d) x0[2*d] <- sqrt(df) x0[d] <- log(x0[2*d]) solvneq <- nleqslv::nleqslv(x = x0, fn = gradpsiT, L = L, l = l, u = u, nu = df, global = "pwldog", method = "Broyden") soln <- solvneq$x exitflag <- solvneq$termcd if(!(exitflag %in% c(1,2)) || !all.equal(solvneq$fvec, rep(0, length(x0)))){ warning('Did not find a solution to the nonlinear system in `mvTqmc`!') } soln[d] <- exp(soln[d]) x <- soln[1:d] mu <- soln[(d+1):length(soln)] p <- rep(0, 12) for(i in 1:12){ p[i] <- mvtprqmc(ceiling(n/12), L = L, l = l, u = u, nu = df, mu = mu) } est.prob <- mean(p) est.relErr <- sd(p)/(sqrt(12) * est.prob) est.upbnd <- psyT(x = x, L = L, l = l, u = u, nu = df, mu = mu) if(est.upbnd < -743){ warning('Natural log of probability is less than -743, yielding 0 after exponentiation!') } est.upbnd <- exp(est.upbnd) list(prob = est.prob, relErr = est.relErr, upbnd = est.upbnd) }
print.to.file <- function(dirname, funcname, data, filename) { user <- system('whoami', intern = T); out.filename <- 'data-df.tsv'; date <- as.character(Sys.Date()); numeric.data <- c(); num.numeric <- 0; num.factor <- 0; num.integer <- 0; num.rows <- 0; num.cols <- 0; if (is.null(filename)) { filename <- 'None'; } if (class(data) == 'list') { num.numeric <- length(data); numeric.data <- unlist(data); num.rows <- length(data[[1]]); num.cols <- length(data); } else if (class(data) == 'numeric') { num.numeric <- 1; numeric.data <- data; num.rows <- length(data); num.cols <- 1; } else if (class(data) == 'data.frame' || class(data) == 'matrix') { num.rows <- nrow(data); num.cols <- ncol(data); for (i in 1:num.cols) { if (class(data[, i]) == 'numeric') { num.numeric <- num.numeric + 1; numeric.data <- c(numeric.data, data[, i]); } else if (class(data[, i]) == 'integer') { num.integer <- num.integer + 1; } else if (class(data[, i]) == 'factor') { num.factor <- num.factor + 1; } } } df.to.add <- NULL; if (num.numeric == 0) { df.to.add <- data.frame(user = c(user), filename = c(filename), date = date, func.name = c(funcname), data.type = c(class(data)), nrow = num.rows, ncol = num.cols, numeric = c(num.numeric), factor = c(num.factor), integer = c(num.integer), max = c(0), min = c(0), median = c(0)); } else { df.to.add <- data.frame(user = c(user), filename = c(filename), date = date, func.name = c(funcname), data.type = c(class(data)), nrow = num.rows, ncol = num.cols, numeric = c(num.numeric), factor = c(num.factor), integer = c(num.integer), max = c(max(numeric.data, na.rm = T)), min = c(min(numeric.data, na.rm = T)), median = c(median(numeric.data, na.rm = T))); } if (!is.null(df.to.add)) { if (!file.exists(paste(dirname, out.filename, sep = '/'))) { write.table(df.to.add, paste(dirname, out.filename, sep = '/'), sep = '\t', row.names = F, col.names = T); } else { datainfo.dataframe <- read.table(paste(dirname, out.filename, sep = '/'), header = T, fill = T); index = -1; for(i in 1:nrow(datainfo.dataframe)) { if(datainfo.dataframe[i,]$user == user && datainfo.dataframe[i,]$filename == filename && datainfo.dataframe[i,]$date == date) { index = i; } } if (index != -1) { datainfo.dataframe[index, ] <- df.to.add; write.table(datainfo.dataframe, paste(dirname, out.filename, sep = '/'), sep = '\t', row.names = F, col.names = T); } else { write.table(df.to.add, paste(dirname, out.filename, sep = '/'), sep = '\t', row.names = F, col.names = F, append = T); } } } }
classif.gkam=function(formula,data, weights = "equal", family = binomial(), par.metric = NULL,par.np=NULL, offset=NULL,prob=0.5,type= "1vsall", control = NULL,...){ if (is.null(control)) control =list(maxit = 100,epsilon = 0.001, trace = FALSE, inverse="solve") C<-match.call() a<-list() mf <- match.call(expand.dots = FALSE) m <- match(c("formula","family","data","weigths","par.metric","par.np","offset","control"), names(mf),0L) tf <- terms.formula(formula) terms <- attr(tf, "term.labels") nt <- length(terms) if (attr(tf, "response") > 0) { response <- as.character(attr(tf, "variables")[2]) pf <- rf <- paste(response, "~", sep = "") } else pf <- rf <- "~" newy<-y<-data$df[[response]] nobs <- if (is.matrix(y)) nrow(y) else length(y) if (!is.factor(y)) y<-as.factor(y) n<-length(y) newdata<-data ny<-levels(y) probs<-ngroup<-nlevels(y) prob.group<-array(NA,dim=c(n,ngroup)) colnames(prob.group)<-ny if (is.character(weights)) { weights<-weights4class(y,type=weights) } else { if (length(weights)!=n) stop("length weights != length response") } if (ngroup==2) { newy<-ifelse(y==ny[1],0,1) newdata$df[[response]]<-newy a[[1]]<-fregre.gkam(formula,family=family,data=newdata,weights=weights,par.metric=par.metric, par.np=par.np,offset=offset,control=control) out2glm <- classif2groups(a,y,prob,ny) } else { a<-list() if (type == "majority"){ cvot<-combn(ngroup,2) nvot<-ncol(cvot) votos<-matrix(0,n,ngroup) colnames(votos) <- ny class(data)<-c("ldata","list") b0<-list() for (ivot in 1:nvot) { ind1 <- y==ny[cvot[1,ivot]] ind2 <- y==ny[cvot[2,ivot]] i2a2 <- ind1 | ind2 newy<-rep(NA,n) newy[ind1 ]<- 1 newy[ind2 ]<- 0 newdata<-data newdata$df[response] <- newy newdata<-subset(newdata,i2a2) class(newdata)<-c("list") a[[ivot]]<-fregre.gkam(formula,family=family,data=newdata , weigths=weights[i2a2], par.metric=par.metric ,par.np=par.np,offset=offset,control=control,...) prob.log <- a[[ivot]]$fitted.values > prob votos[i2a2, cvot[1,ivot]] <- votos[i2a2, cvot[1,ivot]] + as.numeric(prob.log) votos[i2a2, cvot[2,ivot]] <- votos[i2a2, cvot[2,ivot]] + as.numeric(!prob.log) } out2glm<-classifKgroups(y,votos,ny) } else { prob.group<-array(NA,dim=c(n,ngroup)) colnames(prob.group)<-ny for (i in 1:ngroup) { igroup <- y==ny[i] newy<-ifelse(igroup, 1, 0) weights0 <- weights newdata$df[response]<-newy a[[i]]<-fregre.gkam(formula,family=family,data=newdata,weigths=weights0 ,par.metric=par.metric,par.np=par.np ,offset=offset,control=control,...) prob.group[,i]<-a[[i]]$fitted.values } out2glm<-classifKgroups(y,prob.group,ny) } } yest <- out2glm$yest prob.group <- out2glm$prob.group max.prob=mean(yest==y) output<-list(formula=formula,data=data,group=y,group.est=yest, prob.classification=out2glm$prob1,prob.group=prob.group,C=C, m=m,max.prob=max.prob,fit=a,prob = prob,type=type) class(output) <- "classif" return(output) }
find_chaos <- function(data, window_length, skip_window, skip_test01 = 1, test01_thresh = 0.05, find_thresh = 20) { test01_res = test_chaos01_mw(data, window_length, skip_window, skip_test01, test01_thresh) chaos_borders <- find_chaotic_borders(test01_res) chaos_borders_final <- optimize_chaos(find_thresh, test01_thresh, chaos_borders, test01_res, data, skip_window, window_length, skip_test01) return(do.call(cbind, chaos_borders_final)) } find_chaotic_borders <- function(test01_res) { test01res_ <- test01_res$test01_res left_borders_temp <- vector(mode = "numeric", length = 0) right_borders_temp <- vector(mode = "numeric", length = 0) if (test01res_[1] == 1) { left_borders_temp <- 1 } for (a in 1:(length(test01res_) - 1)) { if (test01res_[a] == 1 & test01res_[a + 1] < 1) { right_borders_temp <- c(right_borders_temp, a) } else if (test01res_[a] < 1 & test01res_[a + 1] == 1) { left_borders_temp <- c(left_borders_temp, a + 1) } } if (test01res_[length(test01res_) - 1] == 1 & test01res_[length(test01res_)] == 1) { right_borders_temp <- c(right_borders_temp, length(test01res_)) } else if (test01res_[length(test01res_) - 1] < 1 & test01res_[length(test01res_)] == 1) { right_borders_temp <- c(right_borders_temp, length(test01res_)) } return(list(left_borders_temp, right_borders_temp)) } optimize_chaos <- function(find_thresh, test01_thresh = 0.05, chaos_borders_temp, test01_res, data, skip_window, window_length, skip_test01) { if ((length(chaos_borders_temp[[1]]) == 0) && (length(chaos_borders_temp[[2]]) == 0)) { chaos_borders_final <- chaos_borders_temp } else { if ((chaos_borders_temp[[1]][1] == 1) && (chaos_borders_temp[[2]][1] == length(test01_res$test01_res))) { chaos_borders_final <- c(1, length(data)) } else { chaos_borders_final <- optimize_chaos_run(find_thresh, test01_thresh, chaos_borders_temp, data, skip_window, window_length, skip_test01) } } return(chaos_borders_final) } optimize_chaos_run <- function(find_thresh, test01_thresh = 0.05, chaos_borders_temp, data, skip_window, window_length, skip_test01) { right_borders_final <- vector(mode = "numeric", length = 0) left_borders_final <- vector(mode = "numeric", length = 0) length_of_data = length(data) intervals_middles <- seq(1, length(data) - window_length, skip_window) + round(window_length/2) if (chaos_borders_temp[[1]][1] == 1) { left_borders_final <- 1 reg_int2check <- c(intervals_middles[chaos_borders_temp[[2]][1]], intervals_middles[chaos_borders_temp[[2]][1] + 1]) middle <- round((reg_int2check[2] + reg_int2check[1])/2) interval <- c(round(middle - window_length/2), round(middle + window_length/2)) size_interval <- reg_int2check[2] - reg_int2check[1] while (size_interval > find_thresh) { test_series <- data[seq(interval[1], interval[2], skip_test01)] res <- Chaos01::testChaos01(test_series, c.gen = "equal", par = "seq") if (res > (1 - test01_thresh)) { reg_int2check <- c(middle, reg_int2check[2]) } else { reg_int2check <- c(reg_int2check[1], middle) } middle <- round((reg_int2check[2] + reg_int2check[1])/2) interval <- c(round(middle - window_length/2), round(middle + window_length/2)) size_interval <- reg_int2check[2] - reg_int2check[1] } right_borders_final <- reg_int2check[2] } if (chaos_borders_temp[[1]][1] == 1) { aa <- 2 } else { aa <- 1 } if (chaos_borders_temp[[2]][length(chaos_borders_temp[[2]])] == length(intervals_middles)) { bb <- length(chaos_borders_temp[[2]]) - 1 } else { bb <- length(chaos_borders_temp[[2]]) } while (aa <= bb) { reg_int2check <- c(intervals_middles[chaos_borders_temp[[2]][aa]], intervals_middles[chaos_borders_temp[[2]][aa] + 1]) middle <- round((reg_int2check[2] + reg_int2check[1])/2) interval <- c(round(middle - window_length/2), round(middle + window_length/2)) size_interval <- reg_int2check[2] - reg_int2check[1] while (size_interval > find_thresh) { test_series <- data[seq(interval[1], interval[2], skip_test01)] res <- Chaos01::testChaos01(test_series, c.gen = "equal", par = "seq") if (res > (1 - test01_thresh)) { reg_int2check <- c(middle, reg_int2check[2]) } else { reg_int2check <- c(reg_int2check[1], middle) } middle <- round((reg_int2check[2] + reg_int2check[1])/2) interval <- c(round(middle - window_length/2), round(middle + window_length/2)) size_interval <- reg_int2check[2] - reg_int2check[1] } right_borders_final <- c(right_borders_final, reg_int2check[2]) reg_int2check <- c(intervals_middles[chaos_borders_temp[[1]][aa] - 1], intervals_middles[chaos_borders_temp[[1]][aa]]) middle <- round((reg_int2check[2] + reg_int2check[1])/2) interval <- c(round(middle - window_length/2), round(middle + window_length/2)) size_interval <- reg_int2check[2] - reg_int2check[1] while (size_interval > find_thresh) { test_series <- data[seq(interval[1], interval[2], skip_test01)] res <- Chaos01::testChaos01(test_series, c.gen = "equal", par = "seq") if (res < (1 - test01_thresh)) { reg_int2check <- c(middle, reg_int2check[2]) } else { reg_int2check <- c(reg_int2check[1], middle) } middle <- round((reg_int2check[2] + reg_int2check[1])/2) interval <- c(round(middle - window_length/2), round(middle + window_length/2)) size_interval <- reg_int2check[2] - reg_int2check[1] } left_borders_final <- c(left_borders_final, reg_int2check[1]) aa = aa + 1 } if (chaos_borders_temp[[2]][length(chaos_borders_temp[[2]])] == length(intervals_middles)) { right_borders_final <- c(right_borders_final, length_of_data) reg_int2check <- c(intervals_middles[chaos_borders_temp[[1]][length(chaos_borders_temp[[1]])] - 1], intervals_middles[chaos_borders_temp[[1]][length(chaos_borders_temp[[1]])]]) middle <- round((reg_int2check[2] + reg_int2check[1])/2) interval <- c(round(middle - window_length/2), round(middle + window_length/2)) size_interval <- reg_int2check[2] - reg_int2check[1] while (size_interval > find_thresh) { test_series <- data[seq(interval[1], interval[2], skip_test01)] res <- Chaos01::testChaos01(test_series, c.gen = "equal", par = "seq") if (res < (1 - test01_thresh)) { reg_int2check <- c(middle, reg_int2check[2]) } else { reg_int2check <- c(reg_int2check[1], middle) } middle <- round((reg_int2check[2] + reg_int2check[1])/2) interval <- c(round(middle - window_length/2), round(middle + window_length/2)) size_interval <- reg_int2check[2] - reg_int2check[1] } left_borders_final <- c(left_borders_final, reg_int2check[1]) } return(list(left_borders_final, right_borders_final)) }
if (requiet("testthat") && requiet("parameters") && requiet("mice")) { data("nhanes2") imp <- mice(nhanes2, printFlag = FALSE) fit <- with(data = imp, exp = lm(bmi ~ age + hyp + chl)) mp1 <- model_parameters(fit) mp2 <- summary(pool(fit)) test_that("param", { expect_equal(mp1$Parameter, as.vector(mp2$term)) }) test_that("coef", { expect_equal(mp1$Coefficient, mp2$estimate, tolerance = 1e-3) }) test_that("se", { expect_equal(mp1$SE, mp2$std.error, tolerance = 1e-3) }) }
context("wdpa_fetch") test_that("country name", { skip_on_cran() skip_if_not(curl::has_internet()) skip_on_github_workflow("Windows") x <- suppressWarnings(wdpa_fetch("Liechtenstein", wait = TRUE)) expect_is(x, "sf") expect_true(all(x$ISO3 == "LIE")) }) test_that("ISO3", { skip_on_cran() skip_if_not(curl::has_internet()) skip_on_github_workflow("Windows") x <- suppressWarnings(wdpa_fetch("LIE", wait = TRUE, verbose = TRUE)) expect_is(x, "sf") expect_true(all(x$ISO3 == "LIE")) }) test_that("global", { skip_on_cran() skip_if_not(curl::has_internet()) skip_if_local_and_slow_internet() skip_on_github_workflow("Windows") skip_on_github_workflow("Mac OSX") x <- suppressWarnings(wdpa_fetch( "global", wait = TRUE, n = 5, verbose = TRUE)) expect_is(x, "sf") }) test_that("polygon and point data", { skip_on_cran() skip_if_not(curl::has_internet()) skip_if_local_and_slow_internet() skip_on_github_workflow("Windows") skip_on_github_workflow("Mac OSX") x <- suppressWarnings(wdpa_fetch("USA", wait = TRUE)) expect_is(x, "sf") expect_true(any(vapply( sf::st_geometry(x), inherits, logical(1), c("POLYGON", "MULTIPOLYGON") ))) expect_true(any(vapply( sf::st_geometry(x), inherits, logical(1), c("POINT", "MULTIPOINT") ))) }) test_that("cache", { skip_on_cran() skip_if_not(curl::has_internet()) skip_on_github_workflow("Windows") x <- wdpa_fetch("MHL", wait = TRUE, force = TRUE) Sys.sleep(2) y <- wdpa_fetch("MHL", wait = TRUE, force = FALSE) expect_is(x, "sf") expect_equal(x, y) })
setup({ vcr_test_configuration() }) params <- c( "record", "match_requests_on", "serialize_with", "persist_with", "preserve_exact_body_bytes" ) test_that("default cassette options match default config", { on.exit({ unlink(vcr_files()) }) vcr_configure( warn_on_empty_cassette = FALSE ) config <- VCRConfig$new() cas1 <- sw(use_cassette("default-use", {})) expect_identical( config$as_list()[params], cas1$cassette_opts[params] ) cas2 <- insert_cassette("default-insert") eject_cassette() expect_identical( config$as_list()[params], cas2$cassette_opts[params] ) }) test_that("cassettes inherit configured options", { on.exit({ unlink(vcr_files()) vcr_test_configuration() }) vcr_configure( record = "none", match_requests_on = "body", preserve_exact_body_bytes = TRUE, warn_on_empty_cassette = FALSE ) cas1 <- sw(use_cassette("configured-use", {})) expect_match(cas1$record, "none") expect_setequal(cas1$match_requests_on, "body") expect_true(cas1$preserve_exact_body_bytes) cas2 <- insert_cassette("configured-insert") eject_cassette() expect_match(cas2$record, "none") expect_setequal(cas2$match_requests_on, "body") expect_true(cas2$preserve_exact_body_bytes) }) test_that("cassettes can override configured options", { on.exit({ unlink(vcr_files()) vcr_test_configuration() }) vcr_configure( record = "none", match_requests_on = "body", preserve_exact_body_bytes = TRUE, warn_on_empty_cassette = FALSE ) cas1 <- sw(use_cassette("overridden-use", {}, record = "new_episodes", match_requests_on = "query", preserve_exact_body_bytes = FALSE )) expect_match(cas1$record, "new_episodes") expect_setequal(cas1$match_requests_on, "query") expect_false(cas1$preserve_exact_body_bytes) cas2 <- insert_cassette("overridden-insert", record = "new_episodes", match_requests_on = "query", preserve_exact_body_bytes = FALSE ) eject_cassette() expect_match(cas2$record, "new_episodes") expect_setequal(cas2$match_requests_on, "query") expect_false(cas2$preserve_exact_body_bytes) })
test_that("Bibliographies are correctly read ", { empty_bib <- dplyr::tribble( ~TITLE, ~AUTHOR, ~JOURNAL, ~BIBTEXKEY, ~YEAR, ~DOI ) expect_error(drop_name(bib = empty_bib, cite_key = "Eschrich1983"), "is empty") bib_path <- system.file("testdata", "sample.bib", package = "namedropR") expect_error(drop_name(bib = "wrong_file_path", cite_key = "Eschrich1983"), "file not found") expect_error(drop_name(bib = 123), "Inappropriate type of bibliography") expect_error(drop_name(cite_key = "Eschrich1983"), "No bibliography") good_bib <- system.file("testdata", "good.bib", package = "namedropR") expect_message( expect_message( drop_name(bib = good_bib, cite_key = "Eschrich1983"), "Years coerced to string format." ), "Bibliography file successfully read." ) }) test_that("compact mode returns a correct file path", { slim_bib <- dplyr::tribble( ~TITLE, ~AUTHOR, ~JOURNAL, ~BIBTEXKEY, ~DATE, "Some 2022", c("Alice", "Bob", "Charlie"), "Journal of Unnecessary R Packages", "Alice2022", "2022" ) expect_equal( drop_name(bib = slim_bib, cite_key = "Alice2022", output_dir = tempdir(), style = "compact"), paste0(tempdir(), "/Alice2022.html") ) }) test_that("biblatex files produce an output", { bib_tbl <- dplyr::tribble( ~TITLE, ~AUTHOR, ~JOURNALTITLE, ~BIBTEXKEY, ~DATE, ~URL, "Some 2022", c("Alice", "Bob", "Charlie"), "Journal of Unnecessary R Packages", "Alice2022", "2022", "https://en.wikipedia.org" ) expect_equal( drop_name(bib = bib_tbl, cite_key = "Alice2022", output_dir = tempdir()), paste0(tempdir(), "/Alice2022.html") ) bib_tbl2 <- dplyr::tribble( ~TITLE, ~AUTHOR, ~JOURNALTITLE, ~BIBTEXKEY, ~DATE, ~YEAR, ~URL, "Some 2022", c("Alice", "Bob", "Charlie"), "Journal of Unnecessary R Packages", "Alice2022", "2022-01-01", NA, "https://en.wikipedia.org", "Some 2023", c("Alice", "Bob", "Charlie"), "Journal of Unnecessary R Packages", "Alice2023", NA, "2023", "https://en.wikipedia.org" ) expect_equal( suppressMessages(drop_name(bib = bib_tbl2, output_dir = tempdir())), c( paste0(tempdir(), "/Alice2022.html"), paste0(tempdir(), "/Alice2023.html") ) ) }) test_that("missing DOI and URL columns are properly handled", { slim_bib <- dplyr::tribble( ~TITLE, ~AUTHOR, ~JOURNAL, ~BIBTEXKEY, ~DATE, "Some 2022", c("Alice", "Bob", "Charlie"), "Journal of Unnecessary R Packages", "Alice2022", "2022" ) expect_equal( drop_name(bib = slim_bib, cite_key = "Alice2022", output_dir = tempdir()), paste0(tempdir(), "/Alice2022.html") ) }) test_that("all required columns are enforced", { missing_cols <- dplyr::tribble( ~TITLE, ~JOURNAL, ~BIBTEXKEY, ~YEAR, ~DOI, "One", "Three", "Four", "2021", "Six" ) expect_error(drop_name(missing_cols, cite_key = "Four")) }) test_that("bulk operations work properly", { bulk_data <- dplyr::tribble( ~TITLE, ~AUTHOR, ~JOURNAL, ~BIBTEXKEY, ~YEAR, ~DOI, "Title1", c("Alice1", "Bob1", "Charlie1"), "JoURP1", "Alice2021", "2021", "someDOI1", "Title2", c("Alice2", "Bob2", "Charlie2"), "JoURP2", "Alice2022", "2022", "someDOI2", "Title3", c("Alice3", "Bob3", "Charlie3"), "JoURP3", "Alice2023", "2023", "someDOI3", "Title4", c("Alice4", "Bob4", "Charlie4"), "JoURP4", "Alice2024", "2024", "someDOI4" ) bulk_res1 <- evaluate_promise(drop_name(bib = bulk_data, output_dir = tempdir())) expect_equal(length(bulk_res1$result), 4) expect_message(drop_name(bib = bulk_data, output_dir = tempdir()), "No cite_key specified.") bulk_res2 <- evaluate_promise(drop_name(bib = bulk_data, cite_key = c("Alice2021", "Alice2023"), output_dir = tempdir())) expect_equal(length(bulk_res2$result), 2) bulk_res3 <- evaluate_promise(drop_name(bib = bulk_data, cite_key = c("Alice2022", "Alice2024", "Bob2019"), output_dir = tempdir())) expect_equal(length(bulk_res3$result), 2) expect_true(bulk_res3$warnings == "The following cite_key items were not found in the provided library: Bob2019") bulk_res4 <- evaluate_promise(drop_name(bib = bulk_data, cite_key = c("Bob1", "Bob2", "Bob3"), output_dir = tempdir())) expect_equal(bulk_res4$warnings[2], "No reference matches the given cite_keys. Please check that citation key(s) are correct.") expect_error(drop_name(bib = bulk_data, cite_key = c(1, 1, 2, 3, 5, 8), output_dir = tempdir()), "cite_key must be of type 'caracter'") bulk_data_dup <- dplyr::tribble( ~TITLE, ~AUTHOR, ~JOURNAL, ~BIBTEXKEY, ~YEAR, ~DOI, "Title1", c("Alice1", "Bob1", "Charlie1"), "JoURP1", "Alice2021", "2021", "someDOI1", "Title1", c("Alice2", "Bob2", "Charlie2"), "JoURP1", "Alice2021", "2021", "someDOI3", ) expect_warning(drop_name(bib = bulk_data_dup, cite_key = "Alice2021", output_dir = tempdir()), "BIBTEX keys are not unique") }) test_that("output_dir is properly checked and/or created", { sample_data <- dplyr::tribble( ~TITLE, ~AUTHOR, ~JOURNAL, ~BIBTEXKEY, ~YEAR, ~DOI, "Title1", c("Alice1", "Bob1", "Charlie1"), "JoURP1", "Alice2021", "2021", "someDOI1", ) expect_error(drop_name(bib = sample_data, output_dir = TRUE)) expect_error(drop_name(bib = sample_data, output_dir = 5)) }) test_that("use_xaringan is properly checked", { sample_data <- dplyr::tribble( ~TITLE, ~AUTHOR, ~JOURNAL, ~BIBTEXKEY, ~YEAR, ~DOI, "Title1", c("Alice1", "Bob1", "Charlie1"), "JoURP1", "Alice2021", "2021", "someDOI1", ) expect_error(drop_name(bib = sample_data, use_xaringan = 987)) }) test_that("use_xaringan creates the correct folders (qr/ in working dir)", { sample_data <- dplyr::tribble( ~TITLE, ~AUTHOR, ~JOURNAL, ~BIBTEXKEY, ~YEAR, ~DOI, "Title1", c("Alice1", "Bob1", "Charlie1"), "JoURP1", "Alice2021", "2021", "someDOI1", ) unlink(here::here("visual_citations"), recursive = TRUE) unlink(here::here("qr"), recursive = TRUE) drop_name(bib = sample_data, export_as = "html", cite_key = "Alice2021", use_xaringan = TRUE) expect_true(dir.exists(here::here("visual_citations"))) expect_true(dir.exists(here::here("qr"))) unlink(here::here("visual_citations"), recursive = TRUE) unlink(here::here("qr"), recursive = TRUE) drop_name(bib = sample_data, export_as = "html_full", cite_key = "Alice2021", use_xaringan = TRUE) expect_true(dir.exists(here::here("visual_citations"))) expect_true(dir.exists(here::here("qr"))) unlink(here::here("visual_citations"), recursive = TRUE) unlink(here::here("qr"), recursive = TRUE) })
SDMXAttribute <- function(xmlObj, namespaces){ messageNs <- findNamespace(namespaces, "message") strNs <- findNamespace(namespaces, "structure") sdmxVersion <- version.SDMXSchema(xmlDoc(xmlObj), namespaces) VERSION.21 <- sdmxVersion == "2.1" conceptRef = xmlGetAttr(xmlObj, "conceptRef") if(is.null(conceptRef)) conceptRef <- as.character(NA) conceptVersion = xmlGetAttr(xmlObj, "conceptVersion") if(is.null(conceptVersion)) conceptVersion <- as.character(NA) conceptAgency = xmlGetAttr(xmlObj, "conceptAgency") if(is.null(conceptAgency)) conceptAgency <- as.character(NA) conceptSchemeRef = xmlGetAttr(xmlObj, "conceptSchemeRef") if(is.null(conceptSchemeRef)) conceptSchemeRef <- as.character(NA) conceptSchemeAgency = xmlGetAttr(xmlObj, "conceptSchemeAgency") if(is.null(conceptSchemeAgency)) conceptSchemeAgency <- as.character(NA) codelist = xmlGetAttr(xmlObj, "codelist") if(is.null(codelist)) codelist <- as.character(NA) codelistVersion = xmlGetAttr(xmlObj, "codelistVersion") if(is.null(codelistVersion)) codelistVersion <- as.character(NA) codelistAgency = xmlGetAttr(xmlObj, "codelistAgency") if(is.null(codelistAgency)) codelistAgency <- as.character(NA) attachmentLevel = xmlGetAttr(xmlObj, "attachmentLevel") if(is.null(attachmentLevel)) attachmentLevel <- as.character(NA) assignmentStatus = xmlGetAttr(xmlObj, "assignmentStatus") if(is.null(assignmentStatus)) assignmentStatus <- as.character(NA) isTimeFormat = xmlGetAttr(xmlObj, "isTimeFormat") if(is.null(isTimeFormat)){ isTimeFormat <- FALSE }else{ isTimeFormat <- as.logical(isTimeFormat) } crossSectionalAttachDataset = xmlGetAttr(xmlObj, "crossSectionalAttachDataset") if(is.null(crossSectionalAttachDataset)){ crossSectionalAttachDataset <- NA }else{ crossSectionalAttachDataset <- as.logical(crossSectionalAttachDataset) } crossSectionalAttachGroup = xmlGetAttr(xmlObj, "crossSectionalAttachGroup") if(is.null(crossSectionalAttachGroup)){ crossSectionalAttachGroup <- NA }else{ crossSectionalAttachGroup <- as.logical(crossSectionalAttachGroup) } crossSectionalAttachSection = xmlGetAttr(xmlObj, "crossSectionalAttachSection") if(is.null(crossSectionalAttachSection)){ crossSectionalAttachSection <- NA }else{ crossSectionalAttachSection <- as.logical(crossSectionalAttachSection) } crossSectionalAttachObservation = xmlGetAttr(xmlObj, "crossSectionalAttachObservation") if(is.null(crossSectionalAttachObservation)){ crossSectionalAttachObservation <- NA }else{ crossSectionalAttachObservation <- as.logical(crossSectionalAttachObservation) } isEntityAttribute = xmlGetAttr(xmlObj, "isEntityAttribute") if(is.null(isEntityAttribute)){ isEntityAttribute <- FALSE }else{ isEntityAttribute <- as.logical(isEntityAttribute) } isNonObservationTimeAttribute = xmlGetAttr(xmlObj, "isNonObservationTimeAttribute") if(is.null(isNonObservationTimeAttribute)){ isNonObservationTimeAttribute <- FALSE }else{ isNonObservationTimeAttribute <- as.logical(isNonObservationTimeAttribute) } isCountAttribute = xmlGetAttr(xmlObj, "isCountAttribute") if(is.null(isCountAttribute)){ isCountAttribute <- FALSE }else{ isCountAttribute <- as.logical(isCountAttribute) } isFrequencyAttribute = xmlGetAttr(xmlObj, "isFrequencyAttribute") if(is.null(isFrequencyAttribute)){ isFrequencyAttribute <- FALSE }else{ isFrequencyAttribute <- as.logical(isFrequencyAttribute) } isIdentityAttribute = xmlGetAttr(xmlObj, "isIdentityAttribute") if(is.null(isIdentityAttribute)){ isIdentityAttribute <- FALSE }else{ isIdentityAttribute <- as.logical(isIdentityAttribute) } obj<- new("SDMXAttribute", conceptRef = conceptRef, conceptVersion = conceptVersion, conceptAgency = conceptAgency, conceptSchemeRef = conceptSchemeRef, conceptSchemeAgency = conceptSchemeAgency, codelist = codelist, codelistVersion = codelistVersion, codelistAgency = codelistAgency, attachmentLevel = attachmentLevel, assignmentStatus = assignmentStatus, isTimeFormat = isTimeFormat, crossSectionalAttachDataset = crossSectionalAttachDataset, crossSectionalAttachGroup = crossSectionalAttachGroup, crossSectionalAttachSection = crossSectionalAttachSection, crossSectionalAttachObservation = crossSectionalAttachObservation, isEntityAttribute = isEntityAttribute, isNonObservationTimeAttribute = isNonObservationTimeAttribute, isCountAttribute = isCountAttribute, isFrequencyAttribute = isFrequencyAttribute, isIdentityAttribute = isIdentityAttribute ) }
"Interaction2wtRcmdr" <- function() { if (length(grep("HH", search()))==0) stop("Please attach the HH directory.") initializeDialog(title=gettextRcmdr("Interaction twoway table")) groupBox <- variableListBox(top, Factors(), title=gettextRcmdr("Factors (pick two or more)"), selectmode="multiple") responseBox <- variableListBox(top, Numeric(), title=gettextRcmdr("Response Variable (pick one)")) onOK <- function() { groups <- getSelection(groupBox) response <- getSelection(responseBox) closeDialog() if (2 > length(groups)) { errorCondition(recall=Interaction2wtRcmdr, message=gettextRcmdr("Select at least two factors.")) return() } if (0 == length(response)) { errorCondition(recall=Interaction2wtRcmdr, message=gettextRcmdr("No response variable selected.")) return() } .activeDataSet <- ActiveDataSet() i2wt.command <- paste("interaction2wt(", response, " ~ ", paste(groups, collapse=' + '), ", data=", .activeDataSet, if ("1" == tclvalue(simpleVariable)) ", simple=TRUE", ')', sep="") doItAndPrint(i2wt.command) activateMenus() tkfocus(CommanderWindow()) } optionsFrame <- tkframe(top) buttonsFrame <- tkframe(top) OKCancelHelp(helpSubject="interaction2wt") tkgrid(getFrame(groupBox), getFrame(responseBox), sticky="nw") simpleVariable <- tclVar("0") simpleFrame <- tkframe(top) simpleCheckBox <- tkcheckbutton(simpleFrame, variable=simpleVariable) tkgrid(tklabel(simpleFrame, text=gettextRcmdr("Simple Effects")), simpleCheckBox, sticky="w") tkgrid(simpleFrame, sticky="w") tkgrid(optionsFrame, columnspan=2, sticky="w") tkgrid(buttonsFrame, columnspan=2, sticky="w") dialogSuffix(rows=3, columns=2) }
setClassUnion("characterOrNULL", c("character", "NULL")) setClassUnion("sdcProblemOrNULL", c("sdcProblem", "NULL")) setClassUnion("listOrNull", c("list", "NULL")) tau_BatchObj <- setClass("tau_BatchObj", slots = c( path = "characterOrNULL", id = "characterOrNULL", logbook = "characterOrNULL", microdata = "characterOrNULL", metadata = "characterOrNULL", table = "characterOrNULL", safetyrules = "characterOrNULL", readInput = "characterOrNULL", solver = "listOrNull", suppress = "characterOrNULL", writetable = "characterOrNULL", is_table = "logical", obj = "sdcProblemOrNULL" ), prototype = list( path = NULL, id = NULL, logbook = NULL, microdata = NULL, metadata = NULL, table = NULL, safetyrules = NULL, readInput = NULL, solver = NULL, suppress = NULL, writetable = NULL, is_table = FALSE, obj = NULL ), validity = function(object) { if (length(object@is_table) != 1) { stop("length(is_table) != 1\n") } if (!is.null(object@solver)) { if (object@solver$solver == "CPLEX" && !file.exists(object@solver$license)) { stop("No valid licensefile given!\n") } } return(TRUE) } ) setGeneric( name = "setPath", def = function(obj, f) { standardGeneric("setPath") } ) setGeneric( name = "setId", def = function(obj, f) { standardGeneric("setId") } ) setGeneric( name = "setLogbook", def = function(obj, f) { standardGeneric("setLogbook") } ) setGeneric( name = "setMicrodata", def = function(obj, f) { standardGeneric("setMicrodata") } ) setGeneric( name = "setMetadata", def = function(obj, f) { standardGeneric("setMetadata") } ) setGeneric( name = "setTable", def = function(obj, f) { standardGeneric("setTable") } ) setGeneric( name = "setSafetyrules", def = function(obj, f) { standardGeneric("setSafetyrules") } ) setGeneric( name = "setReadInput", def = function(obj, f) { standardGeneric("setReadInput") } ) setGeneric( name = "setSolver", def = function(obj, f) { standardGeneric("setSolver") } ) setGeneric( name = "setSuppress", def = function(obj, f) { standardGeneric("setSuppress") } ) setGeneric( name = "setWritetable", def = function(obj, f) { standardGeneric("setWritetable") } ) setGeneric( name = "setIs_table", def = function(obj, f) { standardGeneric("setIs_table") } ) setGeneric( name = "setObj", def = function(obj, f) { standardGeneric("setObj") } ) setMethod( f = "setPath", signature = "tau_BatchObj", definition = function(obj, f) { obj@path <- f validObject(obj) return(obj) } ) setMethod( f = "setId", signature = "tau_BatchObj", definition = function(obj, f) { obj@id <- f validObject(obj) return(obj) } ) setMethod( f = "setLogbook", signature = "tau_BatchObj", definition = function(obj, f) { obj@logbook <- f validObject(obj) return(obj) } ) setMethod( f = "setMicrodata", signature = "tau_BatchObj", definition = function(obj, f) { obj@microdata <- f validObject(obj) return(obj) } ) setMethod( f = "setMetadata", signature = "tau_BatchObj", definition = function(obj, f) { obj@metadata <- f validObject(obj) return(obj) } ) setMethod( f = "setTable", signature = "tau_BatchObj", definition = function(obj, f) { obj@table <- f validObject(obj) return(obj) } ) setMethod( f = "setSafetyrules", signature = "tau_BatchObj", definition = function(obj, f) { obj@safetyrules <- f validObject(obj) return(obj) } ) setMethod( f = "setReadInput", signature = "tau_BatchObj", definition = function(obj, f) { obj@readInput <- f validObject(obj) return(obj) } ) setMethod( f = "setSolver", signature = "tau_BatchObj", definition = function(obj, f) { obj@solver <- f validObject(obj) return(obj) } ) setMethod( f = "setSuppress", signature = "tau_BatchObj", definition = function(obj, f) { obj@suppress <- f validObject(obj) return(obj) } ) setMethod( f = "setWritetable", signature = "tau_BatchObj", definition = function(obj, f) { obj@writetable <- f validObject(obj) return(obj) } ) setMethod( f = "setIs_table", signature = "tau_BatchObj", definition = function(obj, f) { obj@is_table <- f validObject(obj) return(obj) } ) setMethod( f = "setObj", signature = "tau_BatchObj", definition = function(obj, f) { obj@obj <- f validObject(obj) return(obj) } ) setGeneric( name = "writeBatchFile", def = function(obj) { standardGeneric("writeBatchFile") } ) setMethod( f = "writeBatchFile", signature = c("tau_BatchObj"), definition = function(obj) { is_table <- obj@is_table path <- obj@path cmds <- list() cmds <- append(cmds, "//This batch file was generated by sdcTable") cmds <- append(cmds, paste("//Date:", Sys.time())) cmds <- append(cmds, "//") f_log <- normalizePath( file.path(path, obj@logbook), winslash = "/", mustWork = FALSE ) f_data <- normalizePath( file.path(path, obj@microdata), winslash = "/", mustWork = TRUE ) f_metadata <- normalizePath( file.path(path, obj@metadata), winslash = "/", mustWork = TRUE ) cmds <- append(cmds, paste("<LOGBOOK>", dQuote(f_log))) if (is_table) { cmds <- append(cmds, paste("<OPENTABLEDATA>", dQuote(f_data))) } else { cmds <- append(cmds, paste("<OPENMICRODATA>", dQuote(f_data))) } cmds <- append(cmds, paste("<OPENMETADATA>", dQuote(f_metadata))) cmds <- append(cmds, paste("<SPECIFYTABLE>", obj@table)) cmds <- append(cmds, paste("<SAFETYRULE>", obj@safetyrules)) cmds <- append(cmds, obj@readInput) solver <- slot(obj, "solver")$solver if (solver == "CPLEX") { f_license <- normalizePath( slot(obj, "solver")$license, winslash = "/", mustWork = TRUE ) cmds <- append(cmds, paste0("<SOLVER> ", solver, ",", dQuote(f_license))) } else { cmds <- append(cmds, paste("<SOLVER>", solver)) } cmds <- append(cmds, paste("<SUPPRESS>", obj@suppress)) cmds <- append(cmds, paste("<WRITETABLE>", obj@writetable)) f_batch <- generateStandardizedNames( path = obj@path, lab = paste0("batch_", obj@id), ext = ".arb" ) cmds <- unlist(cmds) cmds[length(cmds)] <- paste0(cmds[length(cmds)], "\r") cat(cmds, sep = "\r\n", file = f_batch) invisible(f_batch) } )
createNote <- function(labTitle = NULL, pady = c(10, 10)) { tcltk::tkgrid(tcltk::tklabel(KTSEnv$subPanR4C1, text = labTitle, font = KTSEnv$KTSFonts$explain, foreground = "blue"), padx = c(2, 2), pady = pady, sticky = "nw", columnspan = 2) }
activities <- data.frame( id = 1:17, name = paste("a", as.character(1:17), sep=""), duration = c(1,2,2,4,3,3,3,2,1,1,2,1,1,1,1,2,1) ) relations <- data.frame( from = c(1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 5, 6, 7, 8, 9, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15), to = c(2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 11, 11, 12, 13, 14, 15, 16, 17, 16, 17, 16, 17, 16, 17, 16, 17) ) vanhoucke2014_project_1 <- function() { schedule <- Schedule$new(activities, relations) schedule$title <- "Project 1: Cost Information System" schedule$reference <- "VANHOUCKE, Mario. Integrated project management and control: first comes the theory, then the practice. Gent: Springer, 2014, p. 6" schedule } test_that("Creating a ONE activity schedule with ZERO duration", { activities <- data.frame( id = 1, name = "A", duration = 0 ) schedule <- Schedule$new(activities) schedule$title <- "A project" schedule$reference <- "From criticalpath" activities <- schedule$activities expect_equal(schedule$duration, 0) expect_equal(activities$ES[1], 0) expect_equal(activities$EF[1], 0) expect_equal(activities$LS[1], 0) expect_equal(activities$LF[1], 0) expect_true(activities$critical[1]) }) test_that("Creating a schedule with ONE activity", { activities <- data.frame( id = 1, name = "A", duration = 3 ) schedule <- Schedule$new(activities) schedule$title <- "A project" schedule$reference <- "From criticalpath" activities <- schedule$activities expect_equal(schedule$duration, 3) expect_equal(activities$ES[1], 0) expect_equal(activities$EF[1], 3) expect_equal(activities$LS[1], 0) expect_equal(activities$LF[1], 3) expect_true(activities$critical[1]) }) test_that("Creating a schedule only with activities list, without relations", { activities <- data.frame( id = c( 1, 2, 3), name = c("A", "B", "C"), duration = c( 3, 2, 4) ) schedule <- Schedule$new(activities) schedule$title <- "A project" schedule$reference <- "From criticalpath" activities <- schedule$activities expect_equal(schedule$duration, 4) expect_equal(activities$ES[1], 0) expect_equal(activities$EF[1], 3) expect_equal(activities$LS[1], 1) expect_equal(activities$LF[1], 4) expect_false(activities$critical[1]) expect_equal(activities$ES[2], 0) expect_equal(activities$EF[2], 2) expect_equal(activities$LS[2], 2) expect_equal(activities$LF[2], 4) expect_false(activities$critical[2]) expect_equal(activities$ES[3], 0) expect_equal(activities$EF[3], 4) expect_equal(activities$LS[3], 0) expect_equal(activities$LF[3], 4) expect_true(activities$critical[3]) }) test_that("Schedule duration is 11", { schedule <- vanhoucke2014_project_1() expect_equal(schedule$duration, 11) }) test_that("Schedule critical activities are identified", { schedule <- vanhoucke2014_project_1() activities <- schedule$activities critical_activities <- paste0(activities$id[activities$critical], collapse=",") expected <- paste0(c(1, 2, 4, 11, 16), collapse = ",") expect_equal(critical_activities, expected) }) test_that("Schedule NON critical activities are identified", { schedule <- vanhoucke2014_project_1() activities <- schedule$activities non_critical_activities <- paste0(activities$id[!activities$critical], collapse=",") expected <- paste0(c(3, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17), collapse = ",") expect_equal(non_critical_activities, expected) }) test_that("Early Start and Early Finish are correct!", { schedule <- vanhoucke2014_project_1() act <- schedule$activities expect_equal(act$ES[1], 0) expect_equal(act$EF[1], 1) expect_equal(act$ES[2], 1) expect_equal(act$EF[2], 3) expect_equal(act$ES[3], 1) expect_equal(act$EF[3], 3) expect_equal(act$ES[4], 3) expect_equal(act$EF[4], 7) expect_equal(act$ES[5], 3) expect_equal(act$EF[5], 6) expect_equal(act$ES[6], 3) expect_equal(act$EF[6], 6) expect_equal(act$ES[7], 3) expect_equal(act$EF[7], 6) expect_equal(act$ES[8], 3) expect_equal(act$EF[8], 5) expect_equal(act$ES[9], 3) expect_equal(act$EF[9], 4) expect_equal(act$ES[10], 3) expect_equal(act$EF[10], 4) expect_equal(act$ES[11], 7) expect_equal(act$EF[11], 9) expect_equal(act$ES[12], 6) expect_equal(act$EF[12], 7) expect_equal(act$ES[13], 5) expect_equal(act$EF[13], 6) expect_equal(act$ES[14], 4) expect_equal(act$EF[14], 5) expect_equal(act$ES[15], 4) expect_equal(act$EF[15], 5) expect_equal(act$ES[16], 9) expect_equal(act$EF[16], 11) expect_equal(act$ES[17], 9) expect_equal(act$EF[17], 10) }) test_that("Late Start and Late Finish are correct!", { schedule <- vanhoucke2014_project_1() act <- schedule$activities expect_equal(act$LS[1], 0) expect_equal(act$LF[1], 1) expect_equal(act$LS[2], 1) expect_equal(act$LF[2], 3) expect_equal(act$LS[3], 3) expect_equal(act$LF[3], 5) expect_equal(act$LS[4], 3) expect_equal(act$LF[4], 7) expect_equal(act$LS[5], 4) expect_equal(act$LF[5], 7) expect_equal(act$LS[6], 4) expect_equal(act$LF[6], 7) expect_equal(act$LS[7], 5) expect_equal(act$LF[7], 8) expect_equal(act$LS[8], 6) expect_equal(act$LF[8], 8) expect_equal(act$LS[9], 7) expect_equal(act$LF[9], 8) expect_equal(act$LS[10], 7) expect_equal(act$LF[10], 8) expect_equal(act$LS[11], 7) expect_equal(act$LF[11], 9) expect_equal(act$LS[12], 8) expect_equal(act$LF[12], 9) expect_equal(act$LS[13], 8) expect_equal(act$LF[13], 9) expect_equal(act$LS[14], 8) expect_equal(act$LF[14], 9) expect_equal(act$LS[15], 8) expect_equal(act$LF[15], 9) expect_equal(act$LS[16], 9) expect_equal(act$LF[16], 11) expect_equal(act$LS[17], 10) expect_equal(act$LF[17], 11) }) test_that("Brings the activities data frame by default!", { schedule <- vanhoucke2014_project_1() actual <- schedule$activities expected <- activities expect_equal(actual$id, expected$id) }) test_that("Brings the activities data frame!", { schedule <- vanhoucke2014_project_1() actual <- schedule$activities expected <- activities expect_equal(actual$id, expected$id) }) test_that("Brings the relations data frame!", { schedule <- vanhoucke2014_project_1() actual <- schedule$relations expected <- relations expect_equal(actual$from, expected$from) expect_equal(actual$to, expected$to) })
mdmb_optim <- function(optimizer, par, fn, gr=NULL, method="L-BFGS-B", lower=NULL, upper=NULL, maxiter=300, control=NULL, h=1e-5) { control <- mdmb_optim_control(optimizer=optimizer, control=control, maxiter=maxiter) if (optimizer=="optim"){ mod1 <- stats::optim( par=par, fn=fn, gr=gr, method=method, hessian=TRUE, lower=lower, upper=upper, control=control) mod1$iter <- mod1$counts['function'] } if (optimizer=="nlminb"){ mod1 <- stats::nlminb(start=par, objective=fn, gradient=gr, lower=lower, upper=upper, control=control) mod1$value <- mod1$objective mod1$hessian <- CDM::numerical_gradient(par=mod1$par, FUN=gr, h=h) mod1$iter <- mod1$iterations } if (!is.null(gr)){ mod1$grad_par <- gr(mod1$par) } mod1$optimizer <- optimizer mod1$converged <- mod1$convergence==0 return(mod1) }
setGeneric(name = 'plot_hydroMet', def = function(obj, slot_name, col_number, interactive = FALSE, line_type = NULL, line_color = 'dodgerblue', x_lab = 'Date', y_lab = 'y', title_lab = NULL, legend_lab = NULL, double_yaxis = NULL, list_extra = NULL, from = NULL, to = NULL, scatter = NULL) { standardGeneric('plot_hydroMet') }) setMethod(f = 'plot_hydroMet', signature = 'hydroMet_BDHI', definition = function(obj, slot_name, col_number, interactive = FALSE, line_type = NULL, line_color = 'dodgerblue', x_lab = 'Date', y_lab = 'y', title_lab = NULL, legend_lab = NULL, double_yaxis = NULL, list_extra = NULL, from = NULL, to = NULL) { n_slot_name <- length(slot_name) if( is.character(slot_name) == FALSE ){ return('slot_name argument must be of class character') } aux <- match(x = slot_name, table = slotNames('hydroMet_BDHI')[1:13]) if( is.na( sum(aux) ) == TRUE ){ return('Unless one of the slot_name arguments is incorrect') } rm(aux) col_position <- Reduce(f = c, x = col_number) n_col_number <- length( col_position ) if(n_slot_name == 1){ if( is.numeric(col_number) == FALSE ){ return('col_number argument must be of class numeric') } } else { if( is.list(col_number) == FALSE ){ return('col_number must be of list class') } if( is.numeric(Reduce(f = c, x = col_number) ) == FALSE ){ return('Each list element should contain numeric vectors') } } col_position <- as.integer(col_position) if(length( which(col_position <= 1) ) >= 1){ return('col_number arguments to plot must be >= 1') } if( is.logical(interactive) == FALSE){ return('interactive must be either TRUE or FALSE') } if( length(interactive) > 1 ){ return('interactive accepts a single value') } n_line_type <- length(line_type) if(n_line_type == 0) { if(interactive == FALSE){ line_type <- rep('solid', n_col_number) } else{ line_type <- rep('lines', n_col_number) } } else { if( n_line_type != n_col_number ){ return('line_type must have the same length as col_number') } if(interactive == FALSE){ valid_line_type <- c('solid', 'twodash', 'longdash', 'dotted', 'dotdash', 'dashed', 'blank') correspondencia <- match(x = line_type, table = valid_line_type) if( is.na( sum(correspondencia) ) == TRUE ){ aux_var <- line_type[ which(is.na(correspondencia) ) ] return( paste0(aux_var, ' ', 'is not a valid line_type for ggplot2 graph') ) } } else { valid_line_type <- c('lines', 'lines+markers', 'markers') correspondencia <- match(x = line_type, table = valid_line_type) if( is.na( sum(correspondencia) ) == TRUE ){ aux_var <- line_type[ which(is.na(correspondencia) ) ] return( paste0(aux_var, ' ', 'is not a valid line_type for plotly graph') ) } } } n_line_color <- length(line_color) if( n_line_color != n_col_number ){ return('line_color must be of the same length as col_number') } if( is.character(line_color) == FALSE ){ return('line_color must be of character class') } if( is.character(x_lab) == FALSE ){ return('x_lab must be of class character') } if( length(x_lab) != 1){ return('x_lab must be of length one') } if( is.character(y_lab) == FALSE ){ return('y_lab must be of class character') } if( is.null(double_yaxis) == TRUE){ if( length(y_lab) != 1){ return('y_lab must be of length one') } } else { if( length(y_lab) != 2){ return('y_lab must be of length two') } } if( is.null(title_lab) == FALSE){ if( is.character(title_lab) == FALSE ){ return('title_lab argument must be of character class') } if( length(title_lab) != 1 ){ return('title_lab length must be one') } } if( is.null(legend_lab) == FALSE ){ n_legend_lab <- length(legend_lab) if( is.character(legend_lab) == FALSE ){ return('legend_lab must be of class character') } if( n_col_number != n_legend_lab){ return('You must provide as many legend_lab strings as line plots') } } if( is.null(double_yaxis) == FALSE){ n_double_yaxis <- length(double_yaxis) if( is.numeric(double_yaxis) == FALSE){ return('double_axis argument must be of numeric class') } if( interactive == FALSE){ if( n_double_yaxis != 2 ){ return('In interactive = FALSE double_yaxis arguments only allows a numeric vector of length two') } } else { if(n_double_yaxis != n_col_number){ return('double_yaxis numeric vector argument must be of the same length as col_number') } } target_nums <- c(1, 2) match_nums <- match(x = double_yaxis, table = target_nums) if( is.na( sum(match_nums) ) == TRUE ){ return('Only 1 and 2 are allow as arguments in double_yaxis') } } if( is.null(list_extra) == FALSE ){ if( interactive == FALSE){ if( is.list(list_extra) == FALSE){ return('list_extra argument must be of list class') } } else { print('list_extra argument does not make sense if interactive = TRUE') } } if( is.null(from) == FALSE){ if( is.character(from) == FALSE & is.POSIXct(from) == FALSE){ return('from must be of class character or POSIXct') } if( length(from) != 1){ return('from must be of length one') } } if( is.null(to) == FALSE){ if( is.character(to) == FALSE & is.POSIXct(from) == FALSE){ return('to must be of class character or POSIXct') } if( length(to) != 1){ return('to must be of length one') } } Date <- value <- NULL all_slots <- get_hydroMet(obj = obj, name = slot_name) target_max_col <- sapply(X = all_slots, FUN = ncol) if(n_slot_name == 1){ if(max(col_number) > target_max_col){ return('Unless one of the col_number does not exist in the slot') } } else { for(i in 1:n_slot_name){ aux_col_num <- col_number[[i]] if(max(aux_col_num) > target_max_col[i]){ return( paste0('Unless one of the col_number (', slot_name[i], ') does not exist in the slot') ) } } } N_all_slots <- length(all_slots) if(N_all_slots > 1){ unidades <- rep(NA_character_, N_all_slots) paso_tpo <- rep(NA_character_, N_all_slots) for(i in 1:N_all_slots){ unidades[i] <- units( diff.Date( all_slots[[i]][ , 1] ) ) paso_tpo[i] <- length(unique( diff.Date( all_slots[[i]][ , 1] ) ) ) } if( length( unique(unidades)) != 1 ){ return('the variables must have the same temporal resolution') } if( unique(paso_tpo) != 1 ){ return('the variables must have the same temporal resolution') } } if(N_all_slots > 1){ df_plot <- all_slots[[1]][ , c(1, col_number[[1]] )] for(i in 2:N_all_slots){ df_aux <- all_slots[[i]][ , c(1, col_number[[i]] )] df_plot <- merge(df_plot, df_aux, all = TRUE) } } else { df_plot <- all_slots[[1]][ , c(1, col_number)] } if( is.null(from) == FALSE & is.null(to) == FALSE){ df_plot <- subset(df_plot, subset = Date >= from & Date <= to) } else if( is.null(from) == FALSE ) { df_plot <- subset(df_plot, subset = Date >= from) } else if( is.null(to) == FALSE) { df_plot <- subset(df_plot, subset = Date <= to) } if( interactive == FALSE ){ if( is.null(double_yaxis) == TRUE){ N_plot <- nrow(df_plot) N_var <- ncol(df_plot) - 1 if( is.null(legend_lab) == FALSE ){ tipo_linea <- list() color_linea <- list() leyen_linea <- list() for(i in 1:N_var){ tipo_linea[[i]] <- rep(line_type[i], N_plot) color_linea[[i]] <- rep(line_color[i], N_plot) leyen_linea[[i]] <- rep(legend_lab[i], N_plot) } linea <- c(sapply(X = tipo_linea, '[')) color <- c(sapply(X = color_linea, '[')) leyen <- c(sapply(X = leyen_linea, '[')) df_plot2 <- melt(data = df_plot, id.vars = 'Date') df_plot2 <- cbind(df_plot2, linea, color, leyen) } else { tipo_linea <- list() color_linea <- list() for(i in 1:N_var){ tipo_linea[[i]] <- rep(line_type[i], N_plot) color_linea[[i]] <- rep(line_color[i], N_plot) } linea <- c(sapply(X = tipo_linea, '[')) color <- c(sapply(X = color_linea, '[')) df_plot2 <- melt(data = df_plot, id.vars = 'Date') leyen <- df_plot2$variable df_plot2 <- cbind(df_plot2, linea, color, leyen) } ggout <- ggplot(data = df_plot2, aes(x = Date, y = value, color = leyen) ) + geom_line(aes(linetype = leyen) ) + scale_color_manual(values = line_color) + scale_linetype_manual(values = line_type) + theme(legend.title = element_blank()) + ggtitle(label = title_lab) + xlab(x_lab) + ylab(y_lab) if( is.null(list_extra) == FALSE){ ggout <- ggout + Reduce(f = c, x = list_extra) } return(ggout) } else { main_pos <- which(double_yaxis == 1) + 1 seco_pos <- which(double_yaxis == 2) + 1 y1 <- colnames(df_plot)[main_pos[1]] y2 <- colnames(df_plot)[seco_pos[1]] y1_plot <- colnames(df_plot)[main_pos] y2_plot <- colnames(df_plot)[seco_pos] m_plot <- as.matrix(x = df_plot[ , -1]) a <- range(df_plot[[y1]], na.rm = TRUE) b <- range(df_plot[[y2]], na.rm = TRUE) scale_factor <- diff(a)/diff(b) m_plot[ , (seco_pos - 1)] <- ( (m_plot[ , (seco_pos - 1)] - b[1]) * scale_factor) + a[1] trans <- ~ ((. - a[1]) / scale_factor) + b[1] df_plot2 <- data.frame(df_plot[ , 1], m_plot) colnames(df_plot2) <- colnames(df_plot) ggout <- ggplot(df_plot2) + geom_line(aes_string('Date', y1_plot), col = line_color[ (main_pos - 1) ], lty = line_type[ (main_pos - 1) ] ) + geom_line(aes_string('Date', y2_plot), col = line_color[ (seco_pos - 1) ], lty = line_type[ (seco_pos - 1) ] ) + ggtitle(label = title_lab) + xlab(x_lab) + ylab(y_lab[1]) + scale_y_continuous(sec.axis = sec_axis(trans = trans, name = y_lab[2])) if( is.null(list_extra) == FALSE){ ggout <- ggout + Reduce(f = c, x = list_extra) } return(ggout) } } else { if( is.null(double_yaxis) == TRUE ){ ppout <- plot_ly(df_plot, x = ~Date) N_plots <- ncol(df_plot) - 1 for(i in 1:N_plots){ ppout <- ppout %>% add_trace(y = df_plot[ , (i + 1)], name = legend_lab[i], type = 'scatter', mode = line_type[i], color = I(line_color[i]) ) } ppout <- ppout %>% layout(title = title_lab, xaxis = list(title = x_lab), yaxis = list(title = y_lab) ) return(ppout) } else { ppout <- plot_ly(df_plot, x = ~Date) N_plots <- ncol(df_plot) - 1 for(i in 1:N_plots){ if(double_yaxis[i] == 1){ ppout <- ppout %>% add_trace(y = df_plot[ , (i + 1)], name = legend_lab[i], type = 'scatter', mode = line_type[i], color = I(line_color[i]) ) } else if (double_yaxis[i] == 2){ ppout <- ppout %>% add_trace(y = df_plot[ , (i + 1)], name = legend_lab[i], type = 'scatter', mode = line_type[i], color = I(line_color[i]), yaxis = 'y2') } } ppout <- ppout %>% layout(title = title_lab, xaxis = list(title = x_lab), yaxis = list(title = y_lab[1]), yaxis2 = list(title = y_lab[2], overlaying = 'y', side = 'right') ) return(ppout) } } } ) setMethod(f = 'plot_hydroMet', signature = 'hydroMet_CR2', definition = function(obj, slot_name, col_number, interactive = FALSE, line_type = NULL, line_color = 'dodgerblue', x_lab = 'Date', y_lab = 'y', title_lab = NULL, legend_lab = NULL, double_yaxis = NULL, list_extra = NULL, from = NULL, to = NULL) { n_slot_name <- length(slot_name) if( is.character(slot_name) == FALSE ){ return('slot_name argument must be of class character') } aux <- match(x = slot_name, table = slotNames('hydroMet_CR2')[1:4]) if( is.na( sum(aux) ) == TRUE ){ return('Unless one of the slot_name arguments is incorrect') } rm(aux) col_position <- Reduce(f = c, x = col_number) n_col_number <- length( col_position ) if(n_slot_name == 1){ if( is.numeric(col_number) == FALSE ){ return('col_number argument must be of class numeric') } } else { if( is.list(col_number) == FALSE ){ return('col_number must be of list class') } if( is.numeric(Reduce(f = c, x = col_number) ) == FALSE ){ return('Each list element should contain numeric vectors') } } col_position <- as.integer(col_position) if(length( which(col_position <= 1) ) >= 1){ return('col_number arguments to plot must be >= 1') } if( is.logical(interactive) == FALSE){ return('interactive must be either TRUE or FALSE') } if( length(interactive) > 1 ){ return('interactive accepts a single value') } n_line_type <- length(line_type) if(n_line_type == 0) { if(interactive == FALSE){ line_type <- rep('solid', n_col_number) } else{ line_type <- rep('lines', n_col_number) } } else { if( n_line_type != n_col_number ){ return('line_type must have the same length as col_number') } if(interactive == FALSE){ valid_line_type <- c('solid', 'twodash', 'longdash', 'dotted', 'dotdash', 'dashed', 'blank') correspondencia <- match(x = line_type, table = valid_line_type) if( is.na( sum(correspondencia) ) == TRUE ){ aux_var <- line_type[ which(is.na(correspondencia) ) ] return( paste0(aux_var, ' ', 'is not a valid line_type for ggplot2 graph') ) } } else { valid_line_type <- c('lines', 'lines+markers', 'markers') correspondencia <- match(x = line_type, table = valid_line_type) if( is.na( sum(correspondencia) ) == TRUE ){ aux_var <- line_type[ which(is.na(correspondencia) ) ] return( paste0(aux_var, ' ', 'is not a valid line_type for plotly graph') ) } } } n_line_color <- length(line_color) if( n_line_color != n_col_number ){ return('line_color must be of the same length as col_number') } if( is.character(line_color) == FALSE ){ return('line_color must be of character class') } if( is.character(x_lab) == FALSE ){ return('x_lab must be of class character') } if( length(x_lab) != 1){ return('x_lab must be of length one') } if( is.character(y_lab) == FALSE ){ return('y_lab must be of class character') } if( is.null(double_yaxis) == TRUE){ if( length(y_lab) != 1){ return('y_lab must be of length one') } } else { if( length(y_lab) != 2){ return('y_lab must be of length two') } } if( is.null(title_lab) == FALSE){ if( is.character(title_lab) == FALSE ){ return('title_lab argument must be of character class') } if( length(title_lab) != 1 ){ return('title_lab length must be one') } } if( is.null(legend_lab) == FALSE ){ n_legend_lab <- length(legend_lab) if( is.character(legend_lab) == FALSE ){ return('legend_lab must be of class character') } if( n_col_number != n_legend_lab){ return('You must provide as many legend_lab strings as line plots') } } if( is.null(double_yaxis) == FALSE){ n_double_yaxis <- length(double_yaxis) if( is.numeric(double_yaxis) == FALSE){ return('double_axis argument must be of numeric class') } if( interactive == FALSE){ if( n_double_yaxis != 2 ){ return('In interactive = FALSE double_yaxis arguments only allows a numeric vector of length two') } } else { if(n_double_yaxis != n_col_number){ return('double_yaxis numeric vector argument must be of the same length as col_number') } } target_nums <- c(1, 2) match_nums <- match(x = double_yaxis, table = target_nums) if( is.na( sum(match_nums) ) == TRUE ){ return('Only 1 and 2 are allow as arguments in double_yaxis') } } if( is.null(list_extra) == FALSE ){ if( interactive == FALSE){ if( is.list(list_extra) == FALSE){ return('list_extra argument must be of list class') } } else { print('list_extra argument does not make sense if interactive = TRUE') } } if( is.null(from) == FALSE){ if( is.character(from) == FALSE ){ return('from must be of class character') } if( length(from) != 1){ return('from must be of length one') } } if( is.null(to) == FALSE){ if( is.character(to) == FALSE ){ return('to must be of class character') } if( length(to) != 1){ return('to must be of length one') } } Date <- value <- NULL all_slots <- get_hydroMet(obj = obj, name = slot_name) target_max_col <- sapply(X = all_slots, FUN = ncol) if(n_slot_name == 1){ if(max(col_number) > target_max_col){ return('Unless one of the col_number does not exist in the slot') } } else { for(i in 1:n_slot_name){ aux_col_num <- col_number[[i]] if(max(aux_col_num) > target_max_col[i]){ return( paste0('Unless one of the col_number (', slot_name[i], ') does not exist in the slot') ) } } } N_all_slots <- length(all_slots) if(N_all_slots > 1){ unidades <- rep(NA_character_, N_all_slots) paso_tpo <- rep(NA_character_, N_all_slots) for(i in 1:N_all_slots){ unidades[i] <- units( diff.Date( all_slots[[i]][ , 1] ) ) paso_tpo[i] <- length(unique( diff.Date( all_slots[[i]][ , 1] ) ) ) } if( length( unique(unidades)) != 1 ){ return('the variables must have the same temporal resolution') } if( unique(paso_tpo) != 1 ){ return('the variables must have the same temporal resolution') } } if(N_all_slots > 1){ df_plot <- all_slots[[1]][ , c(1, col_number[[1]] )] for(i in 2:N_all_slots){ df_aux <- all_slots[[i]][ , c(1, col_number[[i]] )] df_plot <- merge(df_plot, df_aux, all = TRUE) } } else { df_plot <- all_slots[[1]][ , c(1, col_number)] } if( is.null(from) == FALSE & is.null(to) == FALSE){ df_plot <- subset(df_plot, subset = Date >= from & Date <= to) } else if( is.null(from) == FALSE ) { df_plot <- subset(df_plot, subset = Date >= from) } else if( is.null(to) == FALSE) { df_plot <- subset(df_plot, subset = Date <= to) } if( interactive == FALSE ){ if( is.null(double_yaxis) == TRUE){ N_plot <- nrow(df_plot) N_var <- ncol(df_plot) - 1 if( is.null(legend_lab) == FALSE ){ tipo_linea <- list() color_linea <- list() leyen_linea <- list() for(i in 1:N_var){ tipo_linea[[i]] <- rep(line_type[i], N_plot) color_linea[[i]] <- rep(line_color[i], N_plot) leyen_linea[[i]] <- rep(legend_lab[i], N_plot) } linea <- c(sapply(X = tipo_linea, '[')) color <- c(sapply(X = color_linea, '[')) leyen <- c(sapply(X = leyen_linea, '[')) df_plot2 <- melt(data = df_plot, id.vars = 'Date') df_plot2 <- cbind(df_plot2, linea, color, leyen) } else { tipo_linea <- list() color_linea <- list() for(i in 1:N_var){ tipo_linea[[i]] <- rep(line_type[i], N_plot) color_linea[[i]] <- rep(line_color[i], N_plot) } linea <- c(sapply(X = tipo_linea, '[')) color <- c(sapply(X = color_linea, '[')) df_plot2 <- melt(data = df_plot, id.vars = 'Date') leyen <- df_plot2$variable df_plot2 <- cbind(df_plot2, linea, color, leyen) } ggout <- ggplot(data = df_plot2, aes(x = Date, y = value, color = leyen) ) + geom_line(aes(linetype = leyen) ) + scale_color_manual(values = line_color) + scale_linetype_manual(values = line_type) + theme(legend.title = element_blank()) + ggtitle(label = title_lab) + xlab(x_lab) + ylab(y_lab) if( is.null(list_extra) == FALSE){ ggout <- ggout + Reduce(f = c, x = list_extra) } return(ggout) } else { main_pos <- which(double_yaxis == 1) + 1 seco_pos <- which(double_yaxis == 2) + 1 y1 <- colnames(df_plot)[main_pos[1]] y2 <- colnames(df_plot)[seco_pos[1]] y1_plot <- colnames(df_plot)[main_pos] y2_plot <- colnames(df_plot)[seco_pos] m_plot <- as.matrix(x = df_plot[ , -1]) a <- range(df_plot[[y1]], na.rm = TRUE) b <- range(df_plot[[y2]], na.rm = TRUE) scale_factor <- diff(a)/diff(b) m_plot[ , (seco_pos - 1)] <- ( (m_plot[ , (seco_pos - 1)] - b[1]) * scale_factor) + a[1] trans <- ~ ((. - a[1]) / scale_factor) + b[1] df_plot2 <- data.frame(df_plot[ , 1], m_plot) colnames(df_plot2) <- colnames(df_plot) ggout <- ggplot(df_plot2) + geom_line(aes_string('Date', y1_plot), col = line_color[ (main_pos - 1) ], lty = line_type[ (main_pos - 1) ] ) + geom_line(aes_string('Date', y2_plot), col = line_color[ (seco_pos - 1) ], lty = line_type[ (seco_pos - 1) ] ) + ggtitle(label = title_lab) + xlab(x_lab) + ylab(y_lab[1]) + scale_y_continuous(sec.axis = sec_axis(trans = trans, name = y_lab[2])) if( is.null(list_extra) == FALSE){ ggout <- ggout + Reduce(f = c, x = list_extra) } return(ggout) } } else { if( is.null(double_yaxis) == TRUE ){ ppout <- plot_ly(df_plot, x = ~Date) N_plots <- ncol(df_plot) - 1 for(i in 1:N_plots){ ppout <- ppout %>% add_trace(y = df_plot[ , (i + 1)], name = legend_lab[i], type = 'scatter', mode = line_type[i], color = I(line_color[i]) ) } ppout <- ppout %>% layout(title = title_lab, xaxis = list(title = x_lab), yaxis = list(title = y_lab) ) return(ppout) } else { ppout <- plot_ly(df_plot, x = ~Date) N_plots <- ncol(df_plot) - 1 for(i in 1:N_plots){ if(double_yaxis[i] == 1){ ppout <- ppout %>% add_trace(y = df_plot[ , (i + 1)], name = legend_lab[i], type = 'scatter', mode = line_type[i], color = I(line_color[i]) ) } else if (double_yaxis[i] == 2){ ppout <- ppout %>% add_trace(y = df_plot[ , (i + 1)], name = legend_lab[i], type = 'scatter', mode = line_type[i], color = I(line_color[i]), yaxis = 'y2') } } ppout <- ppout %>% layout(title = title_lab, xaxis = list(title = x_lab), yaxis = list(title = y_lab[1]), yaxis2 = list(title = y_lab[2], overlaying = 'y', side = 'right') ) return(ppout) } } } ) setMethod(f = 'plot_hydroMet', signature = 'hydroMet_DGI', definition = function(obj, slot_name, col_number, interactive = FALSE, line_type = NULL, line_color = 'dodgerblue', x_lab = 'Date', y_lab = 'y', title_lab = NULL, legend_lab = NULL, double_yaxis = NULL, list_extra = NULL, from = NULL, to = NULL) { n_slot_name <- length(slot_name) if( is.character(slot_name) == FALSE ){ return('slot_name argument must be of class character') } aux <- match(x = slot_name, table = slotNames('hydroMet_DGI')[1:7]) if( is.na( sum(aux) ) == TRUE ){ return('Unless one of the slot_name arguments is incorrect') } rm(aux) col_position <- Reduce(f = c, x = col_number) n_col_number <- length( col_position ) if(n_slot_name == 1){ if( is.numeric(col_number) == FALSE ){ return('col_number argument must be of class numeric') } } else { if( is.list(col_number) == FALSE ){ return('col_number must be of list class') } if( is.numeric(Reduce(f = c, x = col_number) ) == FALSE ){ return('Each list element should contain numeric vectors') } } col_position <- as.integer(col_position) if(length( which(col_position <= 1) ) >= 1){ return('col_number arguments to plot must be >= 1') } if( is.logical(interactive) == FALSE){ return('interactive must be either TRUE or FALSE') } if( length(interactive) > 1 ){ return('interactive accepts a single value') } n_line_type <- length(line_type) if(n_line_type == 0) { if(interactive == FALSE){ line_type <- rep('solid', n_col_number) } else{ line_type <- rep('lines', n_col_number) } } else { if( n_line_type != n_col_number ){ return('line_type must have the same length as col_number') } if(interactive == FALSE){ valid_line_type <- c('solid', 'twodash', 'longdash', 'dotted', 'dotdash', 'dashed', 'blank') correspondencia <- match(x = line_type, table = valid_line_type) if( is.na( sum(correspondencia) ) == TRUE ){ aux_var <- line_type[ which(is.na(correspondencia) ) ] return( paste0(aux_var, ' ', 'is not a valid line_type for ggplot2 graph') ) } } else { valid_line_type <- c('lines', 'lines+markers', 'markers') correspondencia <- match(x = line_type, table = valid_line_type) if( is.na( sum(correspondencia) ) == TRUE ){ aux_var <- line_type[ which(is.na(correspondencia) ) ] return( paste0(aux_var, ' ', 'is not a valid line_type for plotly graph') ) } } } n_line_color <- length(line_color) if( n_line_color != n_col_number ){ return('line_color must be of the same length as col_number') } if( is.character(line_color) == FALSE ){ return('line_color must be of character class') } if( is.character(x_lab) == FALSE ){ return('x_lab must be of class character') } if( length(x_lab) != 1){ return('x_lab must be of length one') } if( is.character(y_lab) == FALSE ){ return('y_lab must be of class character') } if( is.null(double_yaxis) == TRUE){ if( length(y_lab) != 1){ return('y_lab must be of length one') } } else { if( length(y_lab) != 2){ return('y_lab must be of length two') } } if( is.null(title_lab) == FALSE){ if( is.character(title_lab) == FALSE ){ return('title_lab argument must be of character class') } if( length(title_lab) != 1 ){ return('title_lab length must be one') } } if( is.null(legend_lab) == FALSE ){ n_legend_lab <- length(legend_lab) if( is.character(legend_lab) == FALSE ){ return('legend_lab must be of class character') } if( n_col_number != n_legend_lab){ return('You must provide as many legend_lab strings as line plots') } } if( is.null(double_yaxis) == FALSE){ n_double_yaxis <- length(double_yaxis) if( is.numeric(double_yaxis) == FALSE){ return('double_axis argument must be of numeric class') } if( interactive == FALSE){ if( n_double_yaxis != 2 ){ return('In interactive = FALSE double_yaxis arguments only allows a numeric vector of length two') } } else { if(n_double_yaxis != n_col_number){ return('double_yaxis numeric vector argument must be of the same length as col_number') } } target_nums <- c(1, 2) match_nums <- match(x = double_yaxis, table = target_nums) if( is.na( sum(match_nums) ) == TRUE ){ return('Only 1 and 2 are allow as arguments in double_yaxis') } } if( is.null(list_extra) == FALSE ){ if( interactive == FALSE){ if( is.list(list_extra) == FALSE){ return('list_extra argument must be of list class') } } else { print('list_extra argument does not make sense if interactive = TRUE') } } if( is.null(from) == FALSE){ if( is.character(from) == FALSE ){ return('from must be of class character') } if( length(from) != 1){ return('from must be of length one') } } if( is.null(to) == FALSE){ if( is.character(to) == FALSE ){ return('to must be of class character') } if( length(to) != 1){ return('to must be of length one') } } Date <- value <- NULL all_slots <- get_hydroMet(obj = obj, name = slot_name) target_max_col <- sapply(X = all_slots, FUN = ncol) if(n_slot_name == 1){ if(max(col_number) > target_max_col){ return('Unless one of the col_number does not exist in the slot') } } else { for(i in 1:n_slot_name){ aux_col_num <- col_number[[i]] if(max(aux_col_num) > target_max_col[i]){ return( paste0('Unless one of the col_number (', slot_name[i], ') does not exist in the slot') ) } } } N_all_slots <- length(all_slots) if(N_all_slots > 1){ unidades <- rep(NA_character_, N_all_slots) paso_tpo <- rep(NA_character_, N_all_slots) for(i in 1:N_all_slots){ unidades[i] <- units( diff.Date( all_slots[[i]][ , 1] ) ) paso_tpo[i] <- length(unique( diff.Date( all_slots[[i]][ , 1] ) ) ) } if( length( unique(unidades)) != 1 ){ return('the variables must have the same temporal resolution') } if( unique(paso_tpo) != 1 ){ return('the variables must have the same temporal resolution') } } if(N_all_slots > 1){ df_plot <- all_slots[[1]][ , c(1, col_number[[1]] )] for(i in 2:N_all_slots){ df_aux <- all_slots[[i]][ , c(1, col_number[[i]] )] df_plot <- merge(df_plot, df_aux, all = TRUE) } } else { df_plot <- all_slots[[1]][ , c(1, col_number)] } if( is.null(from) == FALSE & is.null(to) == FALSE){ df_plot <- subset(df_plot, subset = Date >= from & Date <= to) } else if( is.null(from) == FALSE ) { df_plot <- subset(df_plot, subset = Date >= from) } else if( is.null(to) == FALSE) { df_plot <- subset(df_plot, subset = Date <= to) } if( interactive == FALSE ){ if( is.null(double_yaxis) == TRUE){ N_plot <- nrow(df_plot) N_var <- ncol(df_plot) - 1 if( is.null(legend_lab) == FALSE ){ tipo_linea <- list() color_linea <- list() leyen_linea <- list() for(i in 1:N_var){ tipo_linea[[i]] <- rep(line_type[i], N_plot) color_linea[[i]] <- rep(line_color[i], N_plot) leyen_linea[[i]] <- rep(legend_lab[i], N_plot) } linea <- c(sapply(X = tipo_linea, '[')) color <- c(sapply(X = color_linea, '[')) leyen <- c(sapply(X = leyen_linea, '[')) df_plot2 <- melt(data = df_plot, id.vars = 'Date') df_plot2 <- cbind(df_plot2, linea, color, leyen) } else { tipo_linea <- list() color_linea <- list() for(i in 1:N_var){ tipo_linea[[i]] <- rep(line_type[i], N_plot) color_linea[[i]] <- rep(line_color[i], N_plot) } linea <- c(sapply(X = tipo_linea, '[')) color <- c(sapply(X = color_linea, '[')) df_plot2 <- melt(data = df_plot, id.vars = 'Date') leyen <- df_plot2$variable df_plot2 <- cbind(df_plot2, linea, color, leyen) } ggout <- ggplot(data = df_plot2, aes(x = Date, y = value, color = leyen) ) + geom_line(aes(linetype = leyen) ) + scale_color_manual(values = line_color) + scale_linetype_manual(values = line_type) + theme(legend.title = element_blank()) + ggtitle(label = title_lab) + xlab(x_lab) + ylab(y_lab) if( is.null(list_extra) == FALSE){ ggout <- ggout + Reduce(f = c, x = list_extra) } return(ggout) } else { main_pos <- which(double_yaxis == 1) + 1 seco_pos <- which(double_yaxis == 2) + 1 y1 <- colnames(df_plot)[main_pos[1]] y2 <- colnames(df_plot)[seco_pos[1]] y1_plot <- colnames(df_plot)[main_pos] y2_plot <- colnames(df_plot)[seco_pos] m_plot <- as.matrix(x = df_plot[ , -1]) a <- range(df_plot[[y1]], na.rm = TRUE) b <- range(df_plot[[y2]], na.rm = TRUE) scale_factor <- diff(a)/diff(b) m_plot[ , (seco_pos - 1)] <- ( (m_plot[ , (seco_pos - 1)] - b[1]) * scale_factor) + a[1] trans <- ~ ((. - a[1]) / scale_factor) + b[1] df_plot2 <- data.frame(df_plot[ , 1], m_plot) colnames(df_plot2) <- colnames(df_plot) ggout <- ggplot(df_plot2) + geom_line(aes_string('Date', y1_plot), col = line_color[ (main_pos - 1) ], lty = line_type[ (main_pos - 1) ] ) + geom_line(aes_string('Date', y2_plot), col = line_color[ (seco_pos - 1) ], lty = line_type[ (seco_pos - 1) ] ) + ggtitle(label = title_lab) + xlab(x_lab) + ylab(y_lab[1]) + scale_y_continuous(sec.axis = sec_axis(trans = trans, name = y_lab[2])) if( is.null(list_extra) == FALSE){ ggout <- ggout + Reduce(f = c, x = list_extra) } return(ggout) } } else { if( is.null(double_yaxis) == TRUE ){ ppout <- plot_ly(df_plot, x = ~Date) N_plots <- ncol(df_plot) - 1 for(i in 1:N_plots){ ppout <- ppout %>% add_trace(y = df_plot[ , (i + 1)], name = legend_lab[i], type = 'scatter', mode = line_type[i], color = I(line_color[i]) ) } ppout <- ppout %>% layout(title = title_lab, xaxis = list(title = x_lab), yaxis = list(title = y_lab) ) return(ppout) } else { ppout <- plot_ly(df_plot, x = ~Date) N_plots <- ncol(df_plot) - 1 for(i in 1:N_plots){ if(double_yaxis[i] == 1){ ppout <- ppout %>% add_trace(y = df_plot[ , (i + 1)], name = legend_lab[i], type = 'scatter', mode = line_type[i], color = I(line_color[i]) ) } else if (double_yaxis[i] == 2){ ppout <- ppout %>% add_trace(y = df_plot[ , (i + 1)], name = legend_lab[i], type = 'scatter', mode = line_type[i], color = I(line_color[i]), yaxis = 'y2') } } ppout <- ppout %>% layout(title = title_lab, xaxis = list(title = x_lab), yaxis = list(title = y_lab[1]), yaxis2 = list(title = y_lab[2], overlaying = 'y', side = 'right') ) return(ppout) } } } ) setMethod(f = 'plot_hydroMet', signature = 'hydroMet_IANIGLA', definition = function(obj, slot_name, col_number, interactive = FALSE, line_type = NULL, line_color = 'dodgerblue', x_lab = 'Date', y_lab = 'y', title_lab = NULL, legend_lab = NULL, double_yaxis = NULL, list_extra = NULL, from = NULL, to = NULL) { n_slot_name <- length(slot_name) if( is.character(slot_name) == FALSE ){ return('slot_name argument must be of class character') } aux <- match(x = slot_name, table = slotNames('hydroMet_IANIGLA')[2:11]) if( is.na( sum(aux) ) == TRUE ){ return('Unless one of the slot_name arguments is incorrect') } rm(aux) col_position <- Reduce(f = c, x = col_number) n_col_number <- length( col_position ) if(n_slot_name == 1){ if( is.numeric(col_number) == FALSE ){ return('col_number argument must be of class numeric') } } else { if( is.list(col_number) == FALSE ){ return('col_number must be of list class') } if( is.numeric(Reduce(f = c, x = col_number) ) == FALSE ){ return('Each list element should contain numeric vectors') } } col_position <- as.integer(col_position) if(length( which(col_position < 1) ) >= 1){ return('col_number arguments to plot must be > 1') } if( is.logical(interactive) == FALSE){ return('interactive must be either TRUE or FALSE') } if( length(interactive) > 1 ){ return('interactive accepts a single value') } n_line_type <- length(line_type) if(n_line_type == 0) { if(interactive == FALSE){ line_type <- rep('solid', n_col_number) } else{ line_type <- rep('lines', n_col_number) } } else { if( n_line_type != n_col_number ){ return('line_type must have the same length as col_number') } if(interactive == FALSE){ valid_line_type <- c('solid', 'twodash', 'longdash', 'dotted', 'dotdash', 'dashed', 'blank') correspondencia <- match(x = line_type, table = valid_line_type) if( is.na( sum(correspondencia) ) == TRUE ){ aux_var <- line_type[ which(is.na(correspondencia) ) ] return( paste0(aux_var, ' ', 'is not a valid line_type for ggplot2 graph') ) } } else { valid_line_type <- c('lines', 'lines+markers', 'markers') correspondencia <- match(x = line_type, table = valid_line_type) if( is.na( sum(correspondencia) ) == TRUE ){ aux_var <- line_type[ which(is.na(correspondencia) ) ] return( paste0(aux_var, ' ', 'is not a valid line_type for plotly graph') ) } } } n_line_color <- length(line_color) if( n_line_color != n_col_number ){ return('line_color must be of the same length as col_number') } if( is.character(line_color) == FALSE ){ return('line_color must be of character class') } if( is.character(x_lab) == FALSE ){ return('x_lab must be of class character') } if( length(x_lab) != 1){ return('x_lab must be of length one') } if( is.character(y_lab) == FALSE ){ return('y_lab must be of class character') } if( is.null(double_yaxis) == TRUE){ if( length(y_lab) != 1){ return('y_lab must be of length one') } } else { if( length(y_lab) != 2){ return('y_lab must be of length two') } } if( is.null(title_lab) == FALSE){ if( is.character(title_lab) == FALSE ){ return('title_lab argument must be of character class') } if( length(title_lab) != 1 ){ return('title_lab length must be one') } } if( is.null(legend_lab) == FALSE ){ n_legend_lab <- length(legend_lab) if( is.character(legend_lab) == FALSE ){ return('legend_lab must be of class character') } if( n_col_number != n_legend_lab){ return('You must provide as many legend_lab strings as line plots') } } if( is.null(double_yaxis) == FALSE){ n_double_yaxis <- length(double_yaxis) if( is.numeric(double_yaxis) == FALSE){ return('double_axis argument must be of numeric class') } if( interactive == FALSE){ if( n_double_yaxis != 2 ){ return('In interactive = FALSE double_yaxis arguments only allows a numeric vector of length two') } } else { if(n_double_yaxis != n_col_number){ return('double_yaxis numeric vector argument must be of the same length as col_number') } } target_nums <- c(1, 2) match_nums <- match(x = double_yaxis, table = target_nums) if( is.na( sum(match_nums) ) == TRUE ){ return('Only 1 and 2 are allow as arguments in double_yaxis') } } if( is.null(list_extra) == FALSE ){ if( interactive == FALSE){ if( is.list(list_extra) == FALSE){ return('list_extra argument must be of list class') } } else { print('list_extra argument does not make sense if interactive = TRUE') } } if( is.null(from) == FALSE){ if( is.character(from) == FALSE & is.POSIXct(from) == FALSE){ return('from must be of class character or POSIXct') } if( length(from) != 1){ return('from must be of length one') } } if( is.null(to) == FALSE){ if( is.character(to) == FALSE & is.POSIXct(from) == FALSE){ return('to must be of class character or POSIXct') } if( length(to) != 1){ return('to must be of length one') } } Date <- value <- NULL all_slots <- get_hydroMet(obj = obj, name = slot_name) target_max_col <- sapply(X = all_slots, FUN = ncol) if(n_slot_name == 1){ if(max(col_number) > target_max_col){ return('Unless one of the col_number does not exist in the slot') } } else { for(i in 1:n_slot_name){ aux_col_num <- col_number[[i]] if(max(aux_col_num) > target_max_col[i]){ return( paste0('Unless one of the col_number (', slot_name[i], ') does not exist in the slot') ) } } } N_all_slots <- length(all_slots) date_serie <- get_hydroMet(obj = obj, name = 'date')[[1]] if(N_all_slots > 1){ aux_nom <- colnames(all_slots[[1]])[ c( col_number[[1]] ) ] df_plot <- data.frame(date_serie, all_slots[[1]][ , c(col_number[[1]] )] ) colnames(df_plot) <- c('Date', aux_nom) for(i in 2:N_all_slots){ aux_nom <- c('Date', aux_nom, colnames(all_slots[[i]])[ c( col_number[[i]] ) ] ) df_aux <- data.frame(Date = date_serie, all_slots[[i]][ , c(col_number[[i]] )] ) df_plot <- merge(df_plot, df_aux, all = TRUE) colnames(df_plot) <- aux_nom } } else { aux_nom <- colnames(all_slots[[1]])[ c(col_number) ] df_plot <- data.frame(date_serie, all_slots[[1]][ , c(col_number)] ) colnames(df_plot) <- c('Date', aux_nom) } if( is.null(from) == FALSE & is.null(to) == FALSE){ df_plot <- subset(df_plot, subset = Date >= from & Date <= to) } else if( is.null(from) == FALSE ) { df_plot <- subset(df_plot, subset = Date >= from) } else if( is.null(to) == FALSE) { df_plot <- subset(df_plot, subset = Date <= to) } if( interactive == FALSE ){ if( is.null(double_yaxis) == TRUE){ N_plot <- nrow(df_plot) N_var <- ncol(df_plot) - 1 if( is.null(legend_lab) == FALSE ){ tipo_linea <- list() color_linea <- list() leyen_linea <- list() for(i in 1:N_var){ tipo_linea[[i]] <- rep(line_type[i], N_plot) color_linea[[i]] <- rep(line_color[i], N_plot) leyen_linea[[i]] <- rep(legend_lab[i], N_plot) } linea <- c(sapply(X = tipo_linea, '[')) color <- c(sapply(X = color_linea, '[')) leyen <- c(sapply(X = leyen_linea, '[')) df_plot2 <- melt(data = df_plot, id.vars = 'Date') df_plot2 <- cbind(df_plot2, linea, color, leyen) } else { tipo_linea <- list() color_linea <- list() for(i in 1:N_var){ tipo_linea[[i]] <- rep(line_type[i], N_plot) color_linea[[i]] <- rep(line_color[i], N_plot) } linea <- c(sapply(X = tipo_linea, '[')) color <- c(sapply(X = color_linea, '[')) df_plot2 <- melt(data = df_plot, id.vars = 'Date') leyen <- df_plot2$variable df_plot2 <- cbind(df_plot2, linea, color, leyen) } ggout <- ggplot(data = df_plot2, aes(x = Date, y = value, color = leyen) ) + geom_line(aes(linetype = leyen) ) + scale_color_manual(values = line_color) + scale_linetype_manual(values = line_type) + theme(legend.title = element_blank()) + ggtitle(label = title_lab) + xlab(x_lab) + ylab(y_lab) if( is.null(list_extra) == FALSE){ ggout <- ggout + Reduce(f = c, x = list_extra) } return(ggout) } else { main_pos <- which(double_yaxis == 1) + 1 seco_pos <- which(double_yaxis == 2) + 1 y1 <- colnames(df_plot)[main_pos[1]] y2 <- colnames(df_plot)[seco_pos[1]] y1_plot <- colnames(df_plot)[main_pos] y2_plot <- colnames(df_plot)[seco_pos] m_plot <- as.matrix(x = df_plot[ , -1]) a <- range(df_plot[[y1]], na.rm = TRUE) b <- range(df_plot[[y2]], na.rm = TRUE) scale_factor <- diff(a)/diff(b) m_plot[ , (seco_pos - 1)] <- ( (m_plot[ , (seco_pos - 1)] - b[1]) * scale_factor) + a[1] trans <- ~ ((. - a[1]) / scale_factor) + b[1] df_plot2 <- data.frame(df_plot[ , 1], m_plot) colnames(df_plot2) <- colnames(df_plot) ggout <- ggplot(df_plot2) + geom_line(aes_string('Date', y1_plot), col = line_color[ (main_pos - 1) ], lty = line_type[ (main_pos - 1) ] ) + geom_line(aes_string('Date', y2_plot), col = line_color[ (seco_pos - 1) ], lty = line_type[ (seco_pos - 1) ] ) + ggtitle(label = title_lab) + xlab(x_lab) + ylab(y_lab[1]) + scale_y_continuous(sec.axis = sec_axis(trans = trans, name = y_lab[2])) if( is.null(list_extra) == FALSE){ ggout <- ggout + Reduce(f = c, x = list_extra) } return(ggout) } } else { if( is.null(double_yaxis) == TRUE ){ ppout <- plot_ly(df_plot, x = ~Date) N_plots <- ncol(df_plot) - 1 for(i in 1:N_plots){ ppout <- ppout %>% add_trace(y = df_plot[ , (i + 1)], name = legend_lab[i], type = 'scatter', mode = line_type[i], color = I(line_color[i]) ) } ppout <- ppout %>% layout(title = title_lab, xaxis = list(title = x_lab), yaxis = list(title = y_lab) ) return(ppout) } else { ppout <- plot_ly(df_plot, x = ~Date) N_plots <- ncol(df_plot) - 1 for(i in 1:N_plots){ if(double_yaxis[i] == 1){ ppout <- ppout %>% add_trace(y = df_plot[ , (i + 1)], name = legend_lab[i], type = 'scatter', mode = line_type[i], color = I(line_color[i]) ) } else if (double_yaxis[i] == 2){ ppout <- ppout %>% add_trace(y = df_plot[ , (i + 1)], name = legend_lab[i], type = 'scatter', mode = line_type[i], color = I(line_color[i]), yaxis = 'y2') } } ppout <- ppout %>% layout(title = title_lab, xaxis = list(title = x_lab), yaxis = list(title = y_lab[1]), yaxis2 = list(title = y_lab[2], overlaying = 'y', side = 'right') ) return(ppout) } } } ) setMethod(f = 'plot_hydroMet', signature = 'hydroMet_compact', definition = function(obj, slot_name, col_number, interactive = FALSE, line_type = NULL, line_color = 'dodgerblue', x_lab = 'x', y_lab = 'y', title_lab = NULL, legend_lab = NULL, double_yaxis = NULL, list_extra = NULL, from = NULL, to = NULL, scatter = NULL) { n_slot_name <- length(slot_name) if( is.character(slot_name) == FALSE ){ return('slot_name argument must be of class character') } aux <- match(x = slot_name, table = slotNames('hydroMet_compact')[1]) if( is.na( sum(aux) ) == TRUE ){ return('Unless one of the slot_name arguments is incorrect') } rm(aux) col_position <- Reduce(f = c, x = col_number) n_col_number <- length( col_position ) if(n_slot_name == 1){ if( is.numeric(col_number) == FALSE ){ return('col_number argument must be of class numeric') } } else { if( is.list(col_number) == FALSE ){ return('col_number must be of list class') } if( is.numeric(Reduce(f = c, x = col_number) ) == FALSE ){ return('Each list element should contain numeric vectors') } } col_position <- as.integer(col_position) if(length( which(col_position <= 1) ) >= 1){ return('col_number arguments to plot must be >= 1') } if( is.logical(interactive) == FALSE){ return('interactive must be either TRUE or FALSE') } if( length(interactive) > 1 ){ return('interactive accepts a single value') } n_line_type <- length(line_type) if(n_line_type == 0) { if(interactive == FALSE){ line_type <- rep('solid', n_col_number) } else{ line_type <- rep('lines', n_col_number) } } else { if( n_line_type != n_col_number ){ return('line_type must have the same length as col_number') } if(interactive == FALSE){ valid_line_type <- c('solid', 'twodash', 'longdash', 'dotted', 'dotdash', 'dashed', 'blank') correspondencia <- match(x = line_type, table = valid_line_type) if( is.na( sum(correspondencia) ) == TRUE ){ aux_var <- line_type[ which(is.na(correspondencia) ) ] return( paste0(aux_var, ' ', 'is not a valid line_type for ggplot2 graph') ) } } else { valid_line_type <- c('lines', 'lines+markers', 'markers') correspondencia <- match(x = line_type, table = valid_line_type) if( is.na( sum(correspondencia) ) == TRUE ){ aux_var <- line_type[ which(is.na(correspondencia) ) ] return( paste0(aux_var, ' ', 'is not a valid line_type for plotly graph') ) } } } n_line_color <- length(line_color) if( is.null(scatter) == TRUE ){ if( n_line_color != n_col_number ){ return('line_color must be of the same length as col_number') } if( is.character(line_color) == FALSE ){ return('line_color must be of character class') } } if( is.character(x_lab) == FALSE ){ return('x_lab must be of class character') } if( length(x_lab) != 1){ return('x_lab must be of length one') } if( is.character(y_lab) == FALSE ){ return('y_lab must be of class character') } if( is.null(double_yaxis) == TRUE){ if( length(y_lab) != 1){ return('y_lab must be of length one') } } else { if( length(y_lab) != 2){ return('y_lab must be of length two') } } if( is.null(title_lab) == FALSE){ if( is.character(title_lab) == FALSE ){ return('title_lab argument must be of character class') } if( length(title_lab) != 1 ){ return('title_lab length must be one') } } if( is.null(legend_lab) == FALSE ){ n_legend_lab <- length(legend_lab) if( is.character(legend_lab) == FALSE ){ return('legend_lab must be of class character') } if( n_col_number != n_legend_lab){ return('You must provide as many legend_lab strings as line plots') } } if( is.null(double_yaxis) == FALSE){ n_double_yaxis <- length(double_yaxis) if( is.numeric(double_yaxis) == FALSE){ return('double_axis argument must be of numeric class') } if( interactive == FALSE){ if( n_double_yaxis != 2 ){ return('In interactive = FALSE double_yaxis arguments only allows a numeric vector of length two') } } else { if(n_double_yaxis != n_col_number){ return('double_yaxis numeric vector argument must be of the same length as col_number') } } target_nums <- c(1, 2) match_nums <- match(x = double_yaxis, table = target_nums) if( is.na( sum(match_nums) ) == TRUE ){ return('Only 1 and 2 are allow as arguments in double_yaxis') } } if( is.null(list_extra) == FALSE ){ if( interactive == FALSE){ if( is.list(list_extra) == FALSE){ return('list_extra argument must be of list class') } } } if( is.null(from) == FALSE){ if( is.character(from) == FALSE ){ return('from must be of class character') } if( length(from) != 1){ return('from must be of length one') } } if( is.null(to) == FALSE){ if( is.character(to) == FALSE ){ return('to must be of class character') } if( length(to) != 1){ return('to must be of length one') } } if( is.null(scatter) == FALSE ){ if( is.numeric(scatter) == FALSE ){ return('scatter argument must be of class numeric') } if( length(scatter) != 2){ return('scatter supports just two variables. Please provide a numeric vector of length two.') } aux_sacatter <- match(x = scatter, table = col_number) if( is.na( sum(aux_sacatter) ) == TRUE ){ return('scatter numbers must be included in col_number argument.') } } Date <- value <- NULL all_slots <- get_hydroMet(obj = obj, name = slot_name) target_max_col <- sapply(X = all_slots, FUN = ncol) if(n_slot_name == 1){ if(max(col_number) > target_max_col){ return('Unless one of the col_number does not exist in the slot') } } else { for(i in 1:n_slot_name){ aux_col_num <- col_number[[i]] if(max(aux_col_num) > target_max_col[i]){ return( paste0('Unless one of the col_number (', slot_name[i], ') does not exist in the slot') ) } } } N_all_slots <- length(all_slots) if(N_all_slots > 1){ unidades <- rep(NA_character_, N_all_slots) paso_tpo <- rep(NA_character_, N_all_slots) for(i in 1:N_all_slots){ unidades[i] <- units( diff.Date( all_slots[[i]][ , 1] ) ) paso_tpo[i] <- length(unique( diff.Date( all_slots[[i]][ , 1] ) ) ) } if( length( unique(unidades)) != 1 ){ return('the variables must have the same temporal resolution') } if( unique(paso_tpo) != 1 ){ return('the variables must have the same temporal resolution') } } if(N_all_slots > 1){ df_plot <- all_slots[[1]][ , c(1, col_number[[1]] )] for(i in 2:N_all_slots){ df_aux <- all_slots[[i]][ , c(1, col_number[[i]] )] df_plot <- merge(df_plot, df_aux, all = TRUE) } } else { df_plot <- all_slots[[1]][ , c(1, col_number)] } if( is.null(from) == FALSE & is.null(to) == FALSE){ df_plot <- subset(df_plot, subset = Date >= from & Date <= to) } else if( is.null(from) == FALSE ) { df_plot <- subset(df_plot, subset = Date >= from) } else if( is.null(to) == FALSE) { df_plot <- subset(df_plot, subset = Date <= to) } if( is.null(scatter) == TRUE){ if( interactive == FALSE ){ if( is.null(double_yaxis) == TRUE){ N_plot <- nrow(df_plot) N_var <- ncol(df_plot) - 1 if( is.null(legend_lab) == FALSE ){ tipo_linea <- list() color_linea <- list() leyen_linea <- list() for(i in 1:N_var){ tipo_linea[[i]] <- rep(line_type[i], N_plot) color_linea[[i]] <- rep(line_color[i], N_plot) leyen_linea[[i]] <- rep(legend_lab[i], N_plot) } linea <- c(sapply(X = tipo_linea, '[')) color <- c(sapply(X = color_linea, '[')) leyen <- c(sapply(X = leyen_linea, '[')) df_plot2 <- melt(data = df_plot, id.vars = 'Date') df_plot2 <- cbind(df_plot2, linea, color, leyen) } else { tipo_linea <- list() color_linea <- list() for(i in 1:N_var){ tipo_linea[[i]] <- rep(line_type[i], N_plot) color_linea[[i]] <- rep(line_color[i], N_plot) } linea <- c(sapply(X = tipo_linea, '[')) color <- c(sapply(X = color_linea, '[')) df_plot2 <- melt(data = df_plot, id.vars = 'Date') leyen <- df_plot2$variable df_plot2 <- cbind(df_plot2, linea, color, leyen) } ggout <- ggplot(data = df_plot2, aes(x = Date, y = value, color = leyen) ) + geom_line(aes(linetype = leyen) ) + scale_color_manual(values = line_color) + scale_linetype_manual(values = line_type) + theme(legend.title = element_blank()) + ggtitle(label = title_lab) + xlab(x_lab) + ylab(y_lab) if( is.null(list_extra) == FALSE){ ggout <- ggout + Reduce(f = c, x = list_extra) } return(ggout) } else { main_pos <- which(double_yaxis == 1) + 1 seco_pos <- which(double_yaxis == 2) + 1 y1 <- colnames(df_plot)[main_pos[1]] y2 <- colnames(df_plot)[seco_pos[1]] y1_plot <- colnames(df_plot)[main_pos] y2_plot <- colnames(df_plot)[seco_pos] m_plot <- as.matrix(x = df_plot[ , -1]) a <- range(df_plot[[y1]], na.rm = TRUE) b <- range(df_plot[[y2]], na.rm = TRUE) scale_factor <- diff(a)/diff(b) m_plot[ , (seco_pos - 1)] <- ( (m_plot[ , (seco_pos - 1)] - b[1]) * scale_factor) + a[1] trans <- ~ ((. - a[1]) / scale_factor) + b[1] df_plot2 <- data.frame(df_plot[ , 1], m_plot) colnames(df_plot2) <- colnames(df_plot) ggout <- ggplot(df_plot2) + geom_line(aes_string('Date', y1_plot), col = line_color[ (main_pos - 1) ], lty = line_type[ (main_pos - 1) ] ) + geom_line(aes_string('Date', y2_plot), col = line_color[ (seco_pos - 1) ], lty = line_type[ (seco_pos - 1) ] ) + ggtitle(label = title_lab) + xlab(x_lab) + ylab(y_lab[1]) + scale_y_continuous(sec.axis = sec_axis(trans = trans, name = y_lab[2])) if( is.null(list_extra) == FALSE){ ggout <- ggout + Reduce(f = c, x = list_extra) } return(ggout) } } else { if( is.null(double_yaxis) == TRUE ){ ppout <- plot_ly(df_plot, x = ~Date) N_plots <- ncol(df_plot) - 1 for(i in 1:N_plots){ ppout <- ppout %>% add_trace(y = df_plot[ , (i + 1)], name = legend_lab[i], type = 'scatter', mode = line_type[i], color = I(line_color[i]) ) } ppout <- ppout %>% layout(title = title_lab, xaxis = list(title = x_lab), yaxis = list(title = y_lab) ) return(ppout) } else { ppout <- plot_ly(df_plot, x = ~Date) N_plots <- ncol(df_plot) - 1 for(i in 1:N_plots){ if(double_yaxis[i] == 1){ ppout <- ppout %>% add_trace(y = df_plot[ , (i + 1)], name = legend_lab[i], type = 'scatter', mode = line_type[i], color = I(line_color[i]) ) } else if (double_yaxis[i] == 2){ ppout <- ppout %>% add_trace(y = df_plot[ , (i + 1)], name = legend_lab[i], type = 'scatter', mode = line_type[i], color = I(line_color[i]), yaxis = 'y2') } } ppout <- ppout %>% layout(title = title_lab, xaxis = list(title = x_lab), yaxis = list(title = y_lab[1]), yaxis2 = list(title = y_lab[2], overlaying = 'y', side = 'right') ) return(ppout) } } } else { if( interactive == FALSE){ df_col <- c(1, scatter) pos_col <- match(x = scatter, table = df_col) if( is.null(list_extra) == TRUE){ ggout <- ggplot(data = df_plot, aes(x = df_plot[ , pos_col[1]], y = df_plot[ , pos_col[2]] ) ) + geom_point() + ggtitle(label = title_lab) + xlab(x_lab) + ylab(y_lab) } else { ggout <- ggplot(data = df_plot, aes(x = df_plot[ , pos_col[1]], y = df_plot[ , pos_col[2]] ) ) + Reduce(f = c, x = list_extra) + ggtitle(label = title_lab) + xlab(x_lab) + ylab(y_lab) } return(ggout) } else { df_col <- c(1, scatter) pos_col <- match(x = scatter, table = df_col) if( is.null(list_extra) == TRUE){ ggout <- ggplot(data = df_plot, aes(x = df_plot[ , pos_col[1]], y = df_plot[ , pos_col[2]] ) ) + geom_point() + ggtitle(label = title_lab) + xlab(x_lab) + ylab(y_lab) } else { ggout <- ggplot(data = df_plot, aes(x = df_plot[ , pos_col[1]], y = df_plot[ , pos_col[2]] ) ) + Reduce(f = c, x = list_extra) + ggtitle(label = title_lab) + xlab(x_lab) + ylab(y_lab) } plotly_out <- ggplotly( p = ggout ) return(plotly_out) } } } )
logRegOrdClass <- if (requireNamespace('jmvcore')) R6::R6Class( "logRegOrdClass", inherit = logRegOrdBase, private = list( terms = NULL, coefTerms = list(), thresTerms = list(), emMeans = list(), .init = function() { private$.modelTerms() private$.initModelFitTable() private$.initModelCompTable() private$.initModelSpec() private$.initLrtTables() private$.initCoefTables() private$.initThresTables() }, .run = function() { ready <- TRUE if (is.null(self$options$dep) || length(self$options$blocks) < 1 || length(self$options$blocks[[1]]) == 0) ready <- FALSE if (ready) { data <- private$.cleanData() private$.errorCheck(data) results <- private$.compute(data) private$.populateModelFitTable(results) private$.populateModelCompTable(results) private$.populateLrtTables(results) private$.populateCoefTables(results) private$.populateThresTables(results) } }, .compute = function(data) { formulas <- private$.formulas() globalContr <- options('contrasts')$contrasts options('contrasts' = c('contr.treatment', 'contr.poly')) on.exit(options('contrasts', substitute(globalContr)), add=TRUE) suppressWarnings({ suppressMessages({ models <- list(); modelTest <- list(); lrTestTerms <- list(); dev <- list(); AIC <- list(); BIC <- list(); pseudoR <- list(); CI <- list(); CIOR <- list() nullFormula <- as.formula(paste0(jmvcore::toB64(self$options$dep), '~ 1')) nullModel <- MASS::polr(nullFormula, data=data, model=TRUE, Hess=TRUE) null <- list(dev=nullModel$deviance, df=nullModel$edf) for (i in seq_along(formulas)) { models[[i]] <- MASS::polr(formulas[[i]], data=data, model=TRUE, Hess=TRUE) models[[i]]$call$formula <- formulas[[i]] lrTestTerms[[i]] <- car::Anova(models[[i]], test="LR", type=3, singular.ok=TRUE) modelTest[[i]] <- private$.modelTest(models[[i]], null) dev[[i]] <- models[[i]]$deviance AIC[[i]] <- stats::AIC(models[[i]]) BIC[[i]] <- stats::BIC(models[[i]]) pseudoR[[i]] <- private$.pseudoR2(models[[i]], null) CI[[i]] <- try(confint(models[[i]], level=self$options$ciWidth/100), silent=TRUE) CILO <- try(confint(models[[i]], level=self$options$ciWidthOR/100), silent=TRUE) CIOR[[i]] <- exp(CILO) } if (length(formulas) > 1) lrTest <- do.call(stats::anova, c(models, test="Chisq")) else lrTest <- NULL }) }) results <- list(models=models, modelTest=modelTest, lrTestTerms=lrTestTerms, dev=dev, AIC=AIC, BIC=BIC, pseudoR=pseudoR, lrTest=lrTest, CI=CI, CIOR=CIOR) return(results) }, .initModelFitTable = function() { table <- self$results$modelFit for (i in seq_along(self$options$blocks)) table$addRow(rowKey=i, values=list(model = i)) dep <- self$options$dep if ( ! is.null(dep) ) { depLevels <- levels(self$data[[dep]]) } else { return() } table$setNote("note", jmvcore::format("The dependent variable \'{}\' has the following order: {}", dep, paste(depLevels, collapse = ' | '))) }, .initModelCompTable = function() { table <- self$results$modelComp terms <- private$terms if (length(terms) <= 1) { table$setVisible(visible = FALSE) return() } for (i in 1:(length(terms)-1)) table$addRow(rowKey=i, values=list(model1 = i, model2 = as.integer(i+1))) }, .initModelSpec = function() { groups <- self$results$models for (i in seq_along(self$options$blocks)) { groups$addItem(key=i) group <- groups$get(key=i) group$setTitle(paste("Model",i)) } }, .initLrtTables = function() { groups <- self$results$models termsAll <- private$terms for (i in seq_along(termsAll)) { table <- groups$get(key=i)$lrt terms <- termsAll[[i]] for (j in seq_along(terms)) table$addRow(rowKey=paste0(terms[[j]]), values=list(term = jmvcore::stringifyTerm(terms[j]))) } }, .initCoefTables = function() { groups <- self$results$models termsAll <- private$terms data <- self$data factors <- self$options$factors dep <- self$options$dep if ( ! is.null(dep) ) { depLevels <- levels(self$data[[dep]]) } else { depLevels <- NULL } for (i in seq_along(termsAll)) { table <- groups$get(key=i)$coef ciWidth <- self$options$ciWidth table$getColumn('lower')$setSuperTitle(jmvcore::format('{}% Confidence Interval', ciWidth)) table$getColumn('upper')$setSuperTitle(jmvcore::format('{}% Confidence Interval', ciWidth)) ciWidthOR <- self$options$ciWidthOR table$getColumn('oddsLower')$setSuperTitle(jmvcore::format('{}% Confidence Interval', ciWidthOR)) table$getColumn('oddsUpper')$setSuperTitle(jmvcore::format('{}% Confidence Interval', ciWidthOR)) coefTerms <- list() terms <- termsAll[[i]] for (j in seq_along(terms)) { if (any(terms[[j]] %in% factors)) { table$addRow(rowKey=terms[[j]], values=list(term = paste0(jmvcore::stringifyTerm(terms[[j]]), ':'), est='', se='', odds='', z='', p='', lower='', upper='', oddsLower='', oddsUpper='')) coefs <- private$.coefTerms(terms[[j]]) coefNames <- coefs$coefNames for (k in seq_along(coefNames)) { rowKey <- jmvcore::composeTerm(coefs$coefTerms[[k]]) table$addRow(rowKey=rowKey, values=list(term = coefNames[[k]])) table$addFormat(rowKey=rowKey, col=1, Cell.INDENTED) } coefTerms <- c(coefTerms, coefs$coefTerms) } else { rowKey <- jmvcore::composeTerm(jmvcore::toB64(terms[[j]])) table$addRow(rowKey=rowKey, values=list(term = jmvcore::stringifyTerm(terms[[j]]))) coefTerms[[length(coefTerms) + 1]] <- jmvcore::toB64(terms[[j]]) } } private$coefTerms[[i]] <- coefTerms } }, .initThresTables = function() { groups <- self$results$models termsAll <- private$terms data <- self$data dep <- self$options$dep if ( ! is.null(dep) ) { depLevels <- levels(self$data[[dep]]) } else { return() } for (i in seq_along(termsAll)) { table <- groups$get(key=i)$thres thresTerms <- list() for ( k in 1:(length(depLevels) - 1) ) { rowKey <- paste0(jmvcore::toB64(depLevels[k]), '|', jmvcore::toB64(depLevels[k + 1])) rowName <- paste0(depLevels[k], ' | ', depLevels[k + 1]) table$addRow(rowKey=rowKey, values=list(term = rowName)) thresTerms[[k]] <- rowKey } private$thresTerms[[i]] <- thresTerms } }, .populateModelFitTable = function(results) { table <- self$results$modelFit AIC <- results$AIC BIC <- results$BIC pR2 <- results$pseudoR modelTest <- results$modelTest dev <- results$dev for (i in seq_along(AIC)) { row <- list() row[["r2mf"]] <- pR2[[i]]$r2mf row[["r2cs"]] <- pR2[[i]]$r2cs row[["r2n"]] <- pR2[[i]]$r2n row[["dev"]] <- dev[[i]] row[["aic"]] <- AIC[[i]] row[["bic"]] <- BIC[[i]] row[["chi"]] <- modelTest[[i]]$chi row[["df"]] <- modelTest[[i]]$df row[["p"]] <- modelTest[[i]]$p table$setRow(rowNo=i, values = row) } }, .populateModelCompTable = function(results) { table <- self$results$modelComp models <- results$models lrTest <- results$lrTest r <- lrTest[-1,] if (length(models) <= 1) return() for (i in 1:(length(models)-1)) { row <- list() row[["chi"]] <- r[['LR stat.']][i] row[["df"]] <- r[[' Df']][i] row[["p"]] <- r[['Pr(Chi)']][i] table$setRow(rowNo=i, values = row) } }, .populateLrtTables = function(results) { groups <- self$results$models termsAll <- private$terms lrTests <- results$lrTestTerms for (i in seq_along(termsAll)) { table <- groups$get(key=i)$lrt terms <- termsAll[[i]] termsB64 <- lapply(terms, jmvcore::toB64) lrt <- lrTests[[i]] rowTerms <- jmvcore::decomposeTerms(rownames(lrt)) for (j in seq_along(terms)) { term <- termsB64[[j]] index <- which(length(term) == sapply(rowTerms, length) & sapply(rowTerms, function(x) all(term %in% x))) row <- list() row[["chi"]] <- lrt[index, 'LR Chisq'] row[["df"]] <- lrt[index, 'Df'] row[["p"]] <- lrt[index, 'Pr(>Chisq)'] table$setRow(rowKey=paste0(terms[[j]]), values = row) } } }, .populateCoefTables = function(results) { groups <- self$results$models termsAll <- private$coefTerms models <- results$models for (i in seq_along(termsAll)) { table <- groups$get(key=i)$coef model <- summary(models[[i]]) CI <- results$CI[[i]] CIOR <- results$CIOR[[i]] coef<- model$coefficients[,1] se <- model$coefficients[,2] wald <- model$coefficients[,3] p <- (1 - pnorm(abs(wald), 0, 1)) * 2 terms <- termsAll[[i]] rowTerms <- jmvcore::decomposeTerms(names(coef)) for (k in seq_along(terms)) { term <- terms[[k]] index <- which(length(term) == sapply(rowTerms, length) & sapply(rowTerms, function(x) all(term %in% x))) row <- list() row[["est"]] <- coef[index] row[["se"]] <- se[index] row[["odds"]] <- exp(coef[index]) row[["z"]] <- wald[index] row[["p"]] <- p[index] if (length(terms) == 1) { row[["lower"]] <- CI[1] row[["upper"]] <- CI[2] row[["oddsLower"]] <- CIOR[1] row[["oddsUpper"]] <- CIOR[2] } else { row[["lower"]] <- CI[index, 1] row[["upper"]] <- CI[index, 2] row[["oddsLower"]] <- CIOR[index, 1] row[["oddsUpper"]] <- CIOR[index, 2] } table$setRow(rowKey=jmvcore::composeTerm(terms[[k]]), values = row) } } }, .populateThresTables = function(results) { groups <- self$results$models termsAll <- private$thresTerms models <- results$models for (i in seq_along(termsAll)) { table <- groups$get(key=i)$thres model <- summary(models[[i]]) coef<- model$coefficients[,1] se <- model$coefficients[,2] wald <- model$coefficients[,3] p <- (1 - pnorm(abs(wald), 0, 1)) * 2 terms <- termsAll[[i]] rowTerms <- names(coef) for (k in seq_along(terms)) { term <- terms[[k]] index <- which(term == rowTerms) row <- list() row[["est"]] <- coef[index] row[["se"]] <- se[index] row[["odds"]] <- exp(coef[index]) row[["z"]] <- wald[index] row[["p"]] <- p[index] table$setRow(rowKey=terms[[k]], values = row) } } }, .modelTerms = function() { blocks <- self$options$blocks terms <- list() if (is.null(blocks)) { terms[[1]] <- c(self$options$covs, self$options$factors) } else { for (i in seq_along(blocks)) { terms[[i]] <- unlist(blocks[1:i], recursive = FALSE) } } private$terms <- terms }, .coefTerms = function(terms) { covs <- self$options$covs factors <- self$options$factors refLevels <- self$options$refLevels refVars <- sapply(refLevels, function(x) x$var) levels <- list() for (factor in factors) levels[[factor]] <- levels(self$data[[factor]]) contrLevels <- list(); refLevel <- list(); contr <- list(); rContr <- list() for (term in terms) { if (term %in% factors) { ref <- refLevels[[which(term == refVars)]][['ref']] refNo <- which(ref == levels[[term]]) contrLevels[[term]] <- levels[[term]][-refNo] refLevel[[term]] <- levels[[term]][refNo] if (length(terms) > 1) contr[[term]] <- paste0('(', paste(contrLevels[[term]], refLevel[[term]], sep = ' \u2013 '), ')') else contr[[term]] <- paste(contrLevels[[term]], refLevel[[term]], sep = ' \u2013 ') rContr[[term]] <- paste0(jmvcore::toB64(term), jmvcore::toB64(contrLevels[[term]])) } else { contr[[term]] <- term rContr[[term]] <- jmvcore::toB64(term) } } grid <- expand.grid(contr) coefNames <- apply(grid, 1, jmvcore::stringifyTerm) grid2 <- expand.grid(rContr) coefTerms <- list() for (i in 1:nrow(grid2)) coefTerms[[i]] <- as.character(unlist(grid2[i,])) return(list(coefNames=coefNames, coefTerms=coefTerms)) }, .formulas = function() { dep <- self$options$dep depB64 <- jmvcore::toB64(dep) terms <- private$terms formulas <- list(); for (i in seq_along(terms)) { termsB64 <- lapply(terms[[i]], jmvcore::toB64) composedTerms <- jmvcore::composeTerms(termsB64) formulas[[i]] <- as.formula(paste(depB64, paste0(composedTerms, collapse ="+"), sep="~")) } return(formulas) }, .errorCheck = function(data) { dep <- self$options$dep column <- data[[jmvcore::toB64(dep)]] if (length(levels(column)) == 2) jmvcore::reject(jmvcore::format('The dependent variable \'{}\' has only two levels, consider doing a binomial logistic regression.', dep), code='') }, .cleanData = function() { dep <- self$options$dep covs <- self$options$covs factors <- self$options$factors refLevels <- self$options$refLevels dataRaw <- self$data data <- list() data[[jmvcore::toB64(dep)]] <- factor(jmvcore::toB64(as.character(dataRaw[[dep]])), levels=jmvcore::toB64(levels(dataRaw[[dep]]))) refVars <- sapply(refLevels, function(x) x$var) for (factor in factors) { ref <- refLevels[[which(factor == refVars)]][['ref']] rows <- jmvcore::toB64(as.character(dataRaw[[factor]])) levels <- jmvcore::toB64(levels(dataRaw[[factor]])) column <- factor(rows, levels=levels) column <- relevel(column, ref = jmvcore::toB64(ref)) data[[jmvcore::toB64(factor)]] <- column } for (cov in covs) data[[jmvcore::toB64(cov)]] <- jmvcore::toNumeric(dataRaw[[cov]]) attr(data, 'row.names') <- seq_len(length(data[[1]])) attr(data, 'class') <- 'data.frame' data <- jmvcore::naOmit(data) return(data) }, .createContrasts=function(levels) { nLevels <- length(levels) dummy <- contr.treatment(levels) dimnames(dummy) <- NULL coding <- matrix(rep(1/nLevels, prod(dim(dummy))), ncol=nLevels-1) contrast <- (dummy - coding) return(contrast) }, .pseudoR2 = function(model, null) { dev <- model$deviance n <- length(model$fitted.values) r2mf <- 1 - dev/null$dev r2cs <- 1 - exp(-(null$dev - dev) / n) r2n <- r2cs / (1 - exp(-null$dev / n)) return(list(r2mf=r2mf, r2cs=r2cs, r2n=r2n)) }, .modelTest = function(model, null) { chi <- null$dev - model$deviance df <- abs(null$df - model$edf) p <- 1 - pchisq(chi, df) return(list(chi=chi, df=df, p=p)) }) )
library(tfestimators) inputs <- input_fn( iris, response = "Species", features = c( "Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"), batch_size = 10 ) custom_model_fn <- function(features, labels, mode, params, config) { logits <- features %>% tf$contrib$layers$stack( tf$contrib$layers$fully_connected, c(10L, 20L, 10L), normalizer_fn = tf$contrib$layers$dropout, normalizer_params = list(keep_prob = 0.9)) %>% tf$contrib$layers$fully_connected(3L, activation_fn = NULL) predicted_classes <- tf$argmax(logits, 1L) if (mode == "infer") { predictions <- list( class = predicted_classes, prob = tf$nn$softmax(logits)) return(estimator_spec(mode = mode, predictions = predictions)) } onehot_labels <- tf$one_hot(labels, 3L, 1L, 0L) loss <- tf$losses$softmax_cross_entropy(onehot_labels, logits) if (mode == "train") { global_step <- tf$train$get_global_step() learning_rate <- tf$train$exponential_decay( learning_rate = 0.1, global_step = global_step, decay_steps = 100L, decay_rate = 0.001) optimizer <- tf$train$AdagradOptimizer(learning_rate = learning_rate) train_op <- optimizer$minimize(loss, global_step = global_step) return(estimator_spec(mode = mode, loss = loss, train_op = train_op)) } eval_metric_ops <- list( accuracy = tf$metrics$accuracy( labels = labels, predictions = predicted_classes )) return(estimator_spec(mode = mode, loss = loss, eval_metric_ops = eval_metric_ops)) } model_dir <- "/tmp/iris-custom-decay-cnn-model" classifier <- estimator( model_fn = custom_model_fn, model_dir = model_dir) classifier %>% train(input_fn = inputs, steps = 100) predictions <- predict(classifier, input_fn = inputs)
test_that("List of datasets makes sense", { expect_equivalent(unique(sp_datasets), sp_datasets) expect_equivalent(unique(sp_datasets$id), sp_datasets$id) expect_equivalent(unique(sp_datasets$name), sp_datasets$name) expect_equivalent(sort(sp_datasets$id), sp_datasets$id) expect_equivalent(dplyr::distinct(sp_datasets), sp_datasets) }) test_that("get_dataset breaks on nonsense", { expect_error(sp_get_dataset("blah", 2012, 10)) }) check_dataset_error <- function(dataset, year, month) { url <- sp_get_dataset_url(dataset, year, month) } test_that("select downloads exist", { skip_on_cran() expect_type(purrr::map_chr(sp_datasets$id[sp_datasets$id != "finu"], sp_get_dataset_url, year = 2015, month = 12), type = "character") expect_type(sp_get_dataset_url("finm", 2015, "12"), "character") expect_error(sp_get_dataset_url("finu")) expect_error(sp_get_dataset_url("x")) })
test.ConstFc=function(){ obj1=ConstFc(c(0,0),"Delta14C") obj2=ConstFc(c(0,0),"AbsoluteFractionModern") checkException( ConstFc(c(0,0),"foo-bar")) obj3=Delta14C(AbsoluteFractionModern(obj1)) checkEquals(getFormat(obj3),getFormat(obj1)) checkEquals(getValues(obj3),getValues(obj1)) obj4=AbsoluteFractionModern(Delta14C(obj2)) checkEquals(getFormat(obj4),getFormat(obj2)) checkEquals(getValues(obj4),getValues(obj2)) }
sobolmara <- function(model = NULL, X1, ...) { p <- ncol(X1) n <- nrow(X1) XX <- matrix(1:n,ncol=p,nrow=n) RP <- apply(XX,2,sample) X2 <- X1 for (j in 1:p) X2[,j] <- X1[RP[,j],j] X <- rbind(X1, X2) x <- list(model = model, X1 = X1, RP = RP, X = X, call = match.call()) class(x) <- "sobolmara" if (! is.null(x$model)) { response(x, ...) x=tell(x, ...) } return(x) } estim.sobolmara <- function(data, i = 1 : nrow(data), RP) { d <- as.matrix(data[i, ]) n <- nrow(d) p <- ncol(RP) V <- var(d[, 1]) m2 <- mean(d[,1])^2 VCE <- NULL for (j in 1:p){ hoy <- 0 hoy <- sum(d[RP[,j],1]*d[,2]) VCE <- cbind(VCE, hoy / (n - 1) - m2) } c(V, VCE) } tell.sobolmara <- function(x, y = NULL, return.var = NULL, ...) { id <- deparse(substitute(x)) if (! is.null(y)) { x$y <- y } else if (is.null(x$y)) { stop("y not found") } p <- ncol(x$X1) n <- nrow(x$X1) data <- matrix(x$y, nrow = n) V <- data.frame(original = estim.sobolmara(data,RP=x$RP)) rownames(V) <- c("global", colnames(x$X1)) S <- V[2:(p + 1), 1, drop = FALSE] / V[1,1] rownames(S) <- colnames(x$X1) x$V <- V x$S <- S for (i in return.var) { x[[i]] <- get(i) } assign(id, x, parent.frame()) } print.sobolmara <- function(x, ...) { cat("\nCall:\n", deparse(x$call), "\n", sep = "") if (! is.null(x$y)) { cat("\nModel runs:", length(x$y), "\n") if (! is.null(x$S)) { cat("\nSobol indices\n") print(x$S) } } else { cat("(empty)\n") } } plot.sobolmara <- function(x, ylim = c(0, 1), ...) { if (! is.null(x$y)) { nodeplot(x$S, ylim = ylim) } } ggplot.sobolmara <- function(x, ylim = c(0, 1), ...) { if (! is.null(x$y)) { nodeggplot(listx = list(x$S), xname="",ylim = ylim) } } plotMultOut.sobolmara <- function(x, ylim = c(0, 1), ...) { if (!is.null(x$y)) { p <- ncol(x$X1) if (!x$ubiquitous){ stop("Cannot plot functional indices since ubiquitous option was not activated") }else{ if (x$Tot == T) par(mfrow=c(2,1)) plot(0,ylim=ylim,xlim=c(1,x$q),main="First order Sobol indices",ylab="",xlab="",type="n") for (i in 1:p) lines(x$Sfct[,i],col=i) legend(x = "topright", legend = dimnames(x$X1)[[2]], lty=1, col=1:p, cex=0.6) if (x$Tot == T){ plot(0,ylim=ylim,xlim=c(1,x$q),main="Total Sobol indices",ylab="",xlab="",type="n") for (i in 1:p) lines(x$Tfct[,i],col=i) legend(x = "topright", legend = dimnames(x$X1)[[2]], lty=1, col=1:p, cex=0.6) } } } }
.isConnected <- function(site="https://www.google.com") { uoc <- function(site) { con <- url(site) open(con) close(con) } suppressWarnings(!inherits(try(uoc(site), silent=TRUE), "try-error")) }
InitErgmm.rsender<-function(model, var=1, var.df=3){ if (!is.directed(model[["Yg"]])) stop("Sender effects are not allowed with an undirected network; use 'sociality'", call.=FALSE) model[["sender"]]<-TRUE model[["prior"]][["sender.var"]]<-var model[["prior"]][["sender.var.df"]]<-var.df model } InitErgmm.rreceiver<-function(model, var=1, var.df=3){ if (!is.directed(model[["Yg"]])) stop("receiver effects are not allowed with an undirected network; use 'sociality'", call.=FALSE) model[["receiver"]]<-TRUE model[["prior"]][["receiver.var"]]<-var model[["prior"]][["receiver.var.df"]]<-var.df model } InitErgmm.rsociality<-function(model, var=1, var.df=3){ model[["sociality"]]<-TRUE model[["prior"]][["sociality.var"]]<-var model[["prior"]][["sociality.var.df"]]<-var.df model }
expected <- eval(parse(text="TRUE")); test(id=0, code={ argv <- eval(parse(text="list(logical(0))")); do.call(`all`, argv); }, o=expected);
CalmarRatio <- function (R, scale = NA) { R = checkData(R) if(is.na(scale)) { freq = periodicity(R) switch(freq$scale, minute = {stop("Data periodicity too high")}, hourly = {stop("Data periodicity too high")}, daily = {scale = 252}, weekly = {scale = 52}, monthly = {scale = 12}, quarterly = {scale = 4}, yearly = {scale = 1} ) } annualized_return = Return.annualized(R, scale=scale) drawdown = abs(maxDrawdown(R)) result = annualized_return/drawdown rownames(result) = "Calmar Ratio" return(result) } SterlingRatio <- function (R, scale=NA, excess=.1) { R = checkData(R) if(is.na(scale)) { freq = periodicity(R) switch(freq$scale, minute = {stop("Data periodicity too high")}, hourly = {stop("Data periodicity too high")}, daily = {scale = 252}, weekly = {scale = 52}, monthly = {scale = 12}, quarterly = {scale = 4}, yearly = {scale = 1} ) } annualized_return = Return.annualized(R, scale=scale) drawdown = abs(maxDrawdown(R)+excess) result = annualized_return/drawdown rownames(result) = paste("Sterling Ratio (Excess = ", round(excess*100,0), "%)", sep="") return(result) }
"IV_step1"
expected <- eval(parse(text="structure(c(-1e-05, 1e-05, -1e-04, 1e-04, -0.001, 0.001, -0.01, 0.01, -0.1, 0.1, -1, 1, -10, 10, -100, 100, -1000, 1000, -10000, 10000, -1e+05, 1e+05), .Dim = c(2L, 11L))")); test(id=0, code={ argv <- eval(parse(text="list(c(-1, 1), structure(c(1e-05, 1e-04, 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 1e+05), .Dim = c(1L, 11L)))")); do.call(`%*%`, argv); }, o=expected);
ggplot_pca <- function(x, choices = 1:2, scale = 1, pc.biplot = TRUE, labels = NULL, labels_textsize = 3, labels_text_placement = 1.5, groups = NULL, ellipse = TRUE, ellipse_prob = 0.68, ellipse_size = 0.5, ellipse_alpha = 0.5, points_size = 2, points_alpha = 0.25, arrows = TRUE, arrows_colour = "darkblue", arrows_size = 0.5, arrows_textsize = 3, arrows_textangled = TRUE, arrows_alpha = 0.75, base_textsize = 10, ...) { stop_ifnot_installed("ggplot2") meet_criteria(x, allow_class = c("prcomp", "princomp", "PCA", "lda")) meet_criteria(choices, allow_class = c("numeric", "integer"), has_length = 2, is_positive = TRUE, is_finite = TRUE) meet_criteria(scale, allow_class = c("numeric", "integer", "logical"), has_length = 1) meet_criteria(pc.biplot, allow_class = "logical", has_length = 1) meet_criteria(labels, allow_class = "character", allow_NULL = TRUE) meet_criteria(labels_textsize, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE) meet_criteria(labels_text_placement, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE) meet_criteria(groups, allow_class = "character", allow_NULL = TRUE) meet_criteria(ellipse, allow_class = "logical", has_length = 1) meet_criteria(ellipse_prob, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE) meet_criteria(ellipse_size, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE) meet_criteria(ellipse_alpha, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE) meet_criteria(points_size, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE) meet_criteria(points_alpha, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE) meet_criteria(arrows, allow_class = "logical", has_length = 1) meet_criteria(arrows_colour, allow_class = "character", has_length = 1) meet_criteria(arrows_size, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE) meet_criteria(arrows_textsize, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE) meet_criteria(arrows_textangled, allow_class = "logical", has_length = 1) meet_criteria(arrows_alpha, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE) meet_criteria(base_textsize, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE) calculations <- pca_calculations(pca_model = x, groups = groups, groups_missing = missing(groups), labels = labels, labels_missing = missing(labels), choices = choices, scale = scale, pc.biplot = pc.biplot, ellipse_prob = ellipse_prob, labels_text_placement = labels_text_placement) choices <- calculations$choices df.u <- calculations$df.u df.v <- calculations$df.v ell <- calculations$ell groups <- calculations$groups group_name <- calculations$group_name labels <- calculations$labels if ((1 - as.integer(scale)) == 0) { u.axis.labs <- paste0("Standardised PC", choices) } else { u.axis.labs <- paste0("PC", choices) } u.axis.labs <- paste0(u.axis.labs, paste0("\n(explained var: ", percentage(x$sdev[choices] ^ 2 / sum(x$sdev ^ 2)), ")")) if (!is.null(labels)) { df.u$labels <- labels } if (!is.null(groups)) { df.u$groups <- groups } g <- ggplot2::ggplot(data = df.u, ggplot2::aes(x = xvar, y = yvar)) + ggplot2::xlab(u.axis.labs[1]) + ggplot2::ylab(u.axis.labs[2]) + ggplot2::expand_limits(x = c(-1.15, 1.15), y = c(-1.15, 1.15)) if (!is.null(df.u$labels)) { if (!is.null(df.u$groups)) { g <- g + ggplot2::geom_point(ggplot2::aes(colour = groups), alpha = points_alpha, size = points_size) + ggplot2::geom_text(ggplot2::aes(label = labels, colour = groups), nudge_y = -0.05, size = labels_textsize) + ggplot2::labs(colour = group_name) } else { g <- g + ggplot2::geom_point(alpha = points_alpha, size = points_size) + ggplot2::geom_text(ggplot2::aes(label = labels), nudge_y = -0.05, size = labels_textsize) } } else { if (!is.null(df.u$groups)) { g <- g + ggplot2::geom_point(ggplot2::aes(colour = groups), alpha = points_alpha, size = points_size) + ggplot2::labs(colour = group_name) } else { g <- g + ggplot2::geom_point(alpha = points_alpha, size = points_size) } } if (!is.null(df.u$groups) & !is.null(ell) & isTRUE(ellipse)) { g <- g + ggplot2::geom_path(data = ell, ggplot2::aes(colour = groups, group = groups), size = ellipse_size, alpha = points_alpha) } if (arrows == TRUE) { g <- g + ggplot2::geom_segment(data = df.v, ggplot2::aes(x = 0, y = 0, xend = xvar, yend = yvar), arrow = ggplot2::arrow(length = ggplot2::unit(0.5, "picas"), angle = 20, ends = "last", type = "open"), colour = arrows_colour, size = arrows_size, alpha = arrows_alpha) if (arrows_textangled == TRUE) { g <- g + ggplot2::geom_text(data = df.v, ggplot2::aes(label = varname, x = xvar, y = yvar, angle = angle, hjust = hjust), colour = arrows_colour, size = arrows_textsize, alpha = arrows_alpha) } else { g <- g + ggplot2::geom_text(data = df.v, ggplot2::aes(label = varname, x = xvar, y = yvar, hjust = hjust), colour = arrows_colour, size = arrows_textsize, alpha = arrows_alpha) } } g <- g + ggplot2::labs(caption = paste0("Total explained variance: ", percentage(sum(x$sdev[choices] ^ 2 / sum(x$sdev ^ 2))))) g <- g + ggplot2::theme_minimal(base_size = base_textsize) + ggplot2::theme(panel.grid.major = ggplot2::element_line(colour = "grey85"), panel.grid.minor = ggplot2::element_blank(), plot.title = ggplot2::element_text(hjust = 0.5), plot.subtitle = ggplot2::element_text(hjust = 0.5)) g } pca_calculations <- function(pca_model, groups = NULL, groups_missing = TRUE, labels = NULL, labels_missing = TRUE, choices = 1:2, scale = 1, pc.biplot = TRUE, ellipse_prob = 0.68, labels_text_placement = 1.5) { non_numeric_cols <- attributes(pca_model)$non_numeric_cols if (groups_missing) { groups <- tryCatch(non_numeric_cols[[1]], error = function(e) NULL) group_name <- tryCatch(colnames(non_numeric_cols[1]), error = function(e) NULL) } if (labels_missing) { labels <- tryCatch(non_numeric_cols[[2]], error = function(e) NULL) } if (!is.null(groups) & is.null(labels)) { labels <- groups groups <- NULL group_name <- NULL } if (inherits(pca_model, "prcomp")) { nobs.factor <- sqrt(nrow(pca_model$x) - 1) d <- pca_model$sdev u <- sweep(pca_model$x, 2, 1 / (d * nobs.factor), FUN = "*") v <- pca_model$rotation } else if (inherits(pca_model, "princomp")) { nobs.factor <- sqrt(pca_model$n.obs) d <- pca_model$sdev u <- sweep(pca_model$scores, 2, 1 / (d * nobs.factor), FUN = "*") v <- pca_model$loadings } else if (inherits(pca_model, "PCA")) { nobs.factor <- sqrt(nrow(pca_model$call$X)) d <- unlist(sqrt(pca_model$eig)[1]) u <- sweep(pca_model$ind$coord, 2, 1 / (d * nobs.factor), FUN = "*") v <- sweep(pca_model$var$coord, 2, sqrt(pca_model$eig[seq_len(ncol(pca_model$var$coord)), 1]), FUN = "/") } else if (inherits(pca_model, "lda")) { nobs.factor <- sqrt(pca_model$N) d <- pca_model$svd u <- predict(pca_model)$x / nobs.factor v <- pca_model$scaling } else { stop("Expected an object of class prcomp, princomp, PCA, or lda") } choices <- pmin(choices, ncol(u)) obs.scale <- 1 - as.integer(scale) df.u <- as.data.frame(sweep(u[, choices], 2, d[choices] ^ obs.scale, FUN = "*"), stringsAsFactors = FALSE) v <- sweep(v, 2, d ^ as.integer(scale), FUN = "*") df.v <- as.data.frame(v[, choices], stringsAsFactors = FALSE) names(df.u) <- c("xvar", "yvar") names(df.v) <- names(df.u) if (isTRUE(pc.biplot)) { df.u <- df.u * nobs.factor } circle_prob <- 0.69 r <- sqrt(qchisq(circle_prob, df = 2)) * prod(colMeans(df.u ^ 2)) ^ (0.25) v.scale <- rowSums(v ^ 2) df.v <- r * df.v / sqrt(max(v.scale)) if (!is.null(groups)) { df.u$groups <- groups } df.v$varname <- rownames(v) df.v$angle <- with(df.v, (180 / pi) * atan(yvar / xvar)) df.v$hjust <- with(df.v, (1 - labels_text_placement * sign(xvar)) / 2) if (!is.null(df.u$groups)) { theta <- c(seq(-pi, pi, length = 50), seq(pi, -pi, length = 50)) circle <- cbind(cos(theta), sin(theta)) df.groups <- lapply(unique(df.u$groups), function(g, df = df.u) { x <- df[which(df$groups == g), , drop = FALSE] if (nrow(x) <= 2) { return(data.frame(X1 = numeric(0), X2 = numeric(0), groups = character(0), stringsAsFactors = FALSE)) } sigma <- var(cbind(x$xvar, x$yvar)) mu <- c(mean(x$xvar), mean(x$yvar)) ed <- sqrt(qchisq(ellipse_prob, df = 2)) data.frame(sweep(circle %*% chol(sigma) * ed, MARGIN = 2, STATS = mu, FUN = "+"), groups = x$groups[1], stringsAsFactors = FALSE) }) ell <- do.call(rbind, df.groups) if (NROW(ell) == 0) { ell <- NULL } else { names(ell)[1:2] <- c("xvar", "yvar") } } else { ell <- NULL } list(choices = choices, df.u = df.u, df.v = df.v, ell = ell, groups = groups, group_name = group_name, labels = labels ) }
library(testthat) if (T){ library(gRim) test_check("gRim") }
library(testthat) library(recipes) library(modeldata) data(biomass) biomass_tr <- biomass[biomass$dataset == "Training",] biomass_te <- biomass[biomass$dataset == "Testing",] rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur, data = biomass_tr) test_that('correct PCA values', { pca_extract <- rec %>% step_center(carbon, hydrogen, oxygen ,nitrogen, sulfur) %>% step_scale(carbon, hydrogen, oxygen ,nitrogen, sulfur) %>% step_pca(carbon, hydrogen, oxygen, nitrogen, sulfur, options = list(retx = TRUE), id = "") pca_extract_trained <- prep(pca_extract, training = biomass_tr, verbose = FALSE) pca_pred <- bake(pca_extract_trained, new_data = biomass_te, all_predictors()) pca_pred <- as.matrix(pca_pred) pca_exp <- prcomp(biomass_tr[, 3:7], center = TRUE, scale. = TRUE, retx = TRUE) pca_pred_exp <- predict(pca_exp, biomass_te[, 3:7])[, 1:pca_extract$steps[[3]]$num_comp] rownames(pca_pred) <- NULL rownames(pca_pred_exp) <- NULL expect_equal(pca_pred, pca_pred_exp) tidy_exp_un <- tibble( terms = c("carbon", "hydrogen", "oxygen" ,"nitrogen", "sulfur"), value = rep(NA_real_, 5), component = rep(NA_character_, 5), id = "" ) expect_equal(tidy_exp_un, tidy(pca_extract, number = 3)) pca_obj <- prcomp( x = biomass_tr[, c("carbon", "hydrogen", "oxygen" ,"nitrogen", "sulfur")], scale. = TRUE) variances <- pca_obj$sdev^2 pca_obj <- pca_obj$rotation pca_obj <- as.data.frame(pca_obj) pca_obj <- utils::stack(pca_obj) tidy_exp_tr <- tibble( terms = rep(tidy_exp_un$terms, pca_extract_trained$steps[[3]]$num_comp), value = pca_obj$values, component = as.character(pca_obj$ind), id = "" ) expect_equal( as.data.frame(tidy_exp_tr), as.data.frame(tidy(pca_extract_trained, number = 3)) ) var_obj <- tidy(pca_extract_trained, number = 3, type = "variance") expect_equal( var_obj$value[var_obj$terms == "variance"], variances ) expect_equal( var_obj$value[var_obj$terms == "cumulative variance"], cumsum(variances) ) expect_equal( var_obj$value[var_obj$terms == "percent variance"], variances / sum(variances) * 100 ) expect_equal( var_obj$value[var_obj$terms == "cumulative percent variance"], cumsum(variances) / sum(variances) * 100 ) expect_error(tidy(pca_extract_trained, number = 3, type = "variances"), "variance") }) test_that('correct PCA values with threshold', { pca_extract <- rec %>% step_center(carbon, hydrogen, oxygen ,nitrogen, sulfur) %>% step_scale(carbon, hydrogen, oxygen ,nitrogen, sulfur) %>% step_pca(carbon, hydrogen, oxygen, nitrogen, sulfur, threshold = .5) pca_extract_trained <- prep(pca_extract, training = biomass_tr, verbose = FALSE) pca_exp <- prcomp(biomass_tr[, 3:7], center = TRUE, scale. = TRUE, retx = TRUE) expect_equal(pca_extract_trained$steps[[3]]$num_comp, 2) }) test_that('Reduced rotation size', { pca_extract <- rec %>% step_center(carbon, hydrogen, oxygen ,nitrogen, sulfur) %>% step_scale(carbon, hydrogen, oxygen ,nitrogen, sulfur) %>% step_pca(carbon, hydrogen, oxygen, nitrogen, sulfur, num_comp = 3) pca_extract_trained <- prep(pca_extract, training = biomass_tr, verbose = FALSE) pca_pred <- bake(pca_extract_trained, new_data = biomass_te, all_predictors()) pca_pred <- as.matrix(pca_pred) pca_exp <- prcomp(biomass_tr[, 3:7], center = TRUE, scale. = TRUE, retx = TRUE) pca_pred_exp <- predict(pca_exp, biomass_te[, 3:7])[, 1:3] rownames(pca_pred_exp) <- NULL rownames(pca_pred) <- NULL rownames(pca_pred_exp) <- NULL expect_equal(pca_pred, pca_pred_exp) }) test_that('printing', { pca_extract <- rec %>% step_pca(carbon, hydrogen, oxygen, nitrogen, sulfur) expect_output(print(pca_extract)) expect_output(prep(pca_extract, training = biomass_tr, verbose = TRUE)) }) test_that('No PCA comps', { pca_extract <- rec %>% step_pca(carbon, hydrogen, oxygen, nitrogen, sulfur, num_comp = 0) pca_extract_trained <- prep(pca_extract, training = biomass_tr) expect_equal( names(juice(pca_extract_trained)), names(biomass_tr)[-(1:2)] ) expect_true(all(is.na(pca_extract_trained$steps[[1]]$res$rotation))) expect_output(print(pca_extract_trained), regexp = "No PCA components were extracted") expect_true(all(is.na(tidy(pca_extract_trained, 1)$value))) }) test_that('tunable', { rec <- recipe(~ ., data = iris) %>% step_pca(all_predictors()) rec_param <- tunable.step_pca(rec$steps[[1]]) expect_equal(rec_param$name, c("num_comp", "threshold")) expect_true(all(rec_param$source == "recipe")) expect_true(is.list(rec_param$call_info)) expect_equal(nrow(rec_param), 2) expect_equal( names(rec_param), c('name', 'call_info', 'source', 'component', 'component_id') ) }) test_that('keep_original_cols works', { pca_extract <- rec %>% step_center(carbon, hydrogen, oxygen ,nitrogen, sulfur) %>% step_scale(carbon, hydrogen, oxygen ,nitrogen, sulfur) %>% step_pca(carbon, hydrogen, oxygen, nitrogen, sulfur, options = list(retx = TRUE), id = "", keep_original_cols = TRUE) pca_extract_trained <- prep(pca_extract, training = biomass_tr, verbose = FALSE) pca_pred <- bake(pca_extract_trained, new_data = biomass_te, all_predictors()) expect_equal( colnames(pca_pred), c("carbon", "hydrogen", "oxygen", "nitrogen", "sulfur", "PC1", "PC2", "PC3", "PC4", "PC5") ) }) test_that('can prep recipes with no keep_original_cols', { pca_extract <- rec %>% step_center(carbon, hydrogen, oxygen ,nitrogen, sulfur) %>% step_scale(carbon, hydrogen, oxygen ,nitrogen, sulfur) %>% step_pca(carbon, hydrogen, oxygen, nitrogen, sulfur, num_comp = 3) pca_extract$steps[[3]]$keep_original_cols <- NULL expect_warning( pca_extract_trained <- prep(pca_extract, training = biomass_tr, verbose = FALSE), "'keep_original_cols' was added to" ) expect_error( pca_pred <- bake(pca_extract_trained, new_data = biomass_te, all_predictors()), NA ) })
mvrnormBase.svd <- function (n = 1, mu, Sigma, tol = 1e-06, empirical = FALSE) { p <- length(mu) if (!all(dim(Sigma) == c(p, p))) stop("incompatible arguments") eS <- svd(Sigma) ev <- eS$d if (!all(ev >= -tol * abs(ev[1L]))) stop("'Sigma' is not positive definite") X <- matrix(rnorm(p * n), n) if (empirical) { X <- scale(X, TRUE, FALSE) X <- X %*% svd(X, nu = 0)$v X <- scale(X, FALSE, TRUE) } X <- drop(mu) + eS$u %*% diag(sqrt(pmax(ev, 0)), p) %*% t(X) nm <- names(mu) if (is.null(nm) && !is.null(dn <- dimnames(Sigma))) nm <- dn[[1L]] dimnames(X) <- list(nm, NULL) if (n == 1) drop(X) else t(X) }
expected <- eval(parse(text="\"glm\"")); test(id=0, code={ argv <- eval(parse(text="list(\"glm\", 6, TRUE)")); .Internal(abbreviate(argv[[1]], argv[[2]], argv[[3]])); }, o=expected);
max_min_assoc.ma = function(target, dataset, test, threshold, statistic, max_k, selectedVars, pvalues , stats , remainingVars , univariateModels, selectedVarsOrder, hash, stat_hash, pvalue_hash) { selected_var = -1; selected_pvalue = 2; selected_stat = 0; varsToIterate = which(remainingVars==1); for (cvar in varsToIterate) { mma_res = min_assoc.ma(target, dataset, test, max_k, cvar, statistic, selectedVars , pvalues , stats , univariateModels , selectedVarsOrder, hash, stat_hash, pvalue_hash); pvalues = mma_res$pvalues; stats = mma_res$stats; stat_hash = mma_res$stat_hash; pvalue_hash = mma_res$pvalue_hash; if (mma_res$pvalue > threshold) { remainingVars[[cvar]] = 0; } if ( compare_p_values(mma_res$pvalue, selected_pvalue, mma_res$stat, selected_stat) ) { selected_var = cvar; selected_pvalue = mma_res$pvalue; selected_stat = mma_res$stat; } } results <- list(selected_var = selected_var , selected_pvalue = selected_pvalue , remainingVars = remainingVars , pvalues = pvalues , stats = stats, stat_hash=stat_hash, pvalue_hash = pvalue_hash); return(results); }
MCPModSurv <- function(model = c("coxph", "parametric"), dist = NULL, returnS = FALSE, dose, resp, status, data = NULL, models, placAdj = FALSE, selModel = c("AIC", "maxT", "aveAIC"), alpha = 0.025, df = NULL, critV = NULL, doseType = c("TD", "ED"), Delta, p, pVal = TRUE, alternative = c("one.sided", "two.sided"), na.action = na.fail, mvtcontrol = mvtnorm.control(), bnds, control = NULL, ...) { if (!is.null(data)) { if (class(data) != "data.frame") { stop("data must be of class \"data.frame\"") } if (class(dose) != "character" | class(resp) != "character" | class(status) != "character") { stop("dose, resp, and status must be of class \"character\" when supplying data") } dose.vec <- data[, dose] resp.vec <- data[, resp] status.vec <- data[, status] } else { if (class(dose) == "character" | class(resp) == "character" | class(status) == "character") { stop("Must supply data when dose and resp are of class \"character\"") } if ((length(dose) != length(resp)) | (length(dose) != length(status))) { stop("dose, resp, and status must be of equal length") } dose.vec <- dose resp.vec <- resp status.vec <- status } dat <- data.frame(dose = dose.vec, resp = resp.vec, status = status.vec) dat$dose <- as.factor(dat$dose) n.doses <- length(unique(dat$dose)) doses <- sort(unique(dose.vec)) model <- match.arg(model) if (model == "coxph") { cox.mod <- survival::coxph(survival::Surv(resp, status) ~ dose, data = dat, ...) mu.hat <- coef(cox.mod) S.hat <- vcov(cox.mod) doses <- doses[-1] mod.out <- MCPMod(doses, mu.hat, models = models, S = S.hat, type = "general", placAdj = TRUE, selModel = selModel, alpha = alpha, df = df, critV = critV, doseType = doseType, Delta = Delta, p = p, pVal = pVal, alternative = alternative, na.action = na.action, mvtcontrol = mvtcontrol, bnds = bnds, control = control, ...) } else { if (!(dist %in% c("weibull", "exponential", "gaussian", "logistic", "lognormal", "loglogistic"))) { stop("dist must be one of \"weibull\", \"exponential\", \"gaussian\", \"logistic\", \"lognormal\", \"loglogistic\".") } if (placAdj == FALSE) { surv.mod <- survival::survreg(survival::Surv(resp, status) ~ dose - 1, data = dat, dist = dist) mu.hat <- coef(surv.mod) S.hat <- vcov(surv.mod) mod.out <- MCPMod(doses, mu.hat, models = models, S = S.hat[1:n.doses, 1:n.doses], type = "general", placAdj = FALSE, selModel = selModel, alpha = alpha, df = df, critV = critV, doseType = doseType, Delta = Delta, p = p, pVal = pVal, alternative = alternative, na.action = na.action, mvtcontrol = mvtcontrol, bnds = bnds, ...) } else { surv.mod <- survival::survreg(survival::Surv(resp, status) ~ dose, data = dat, dist = dist) mu.hat <- coef(surv.mod) S.hat <- vcov(surv.mod) mod.out <- MCPMod(doses[-1], mu.hat[-1], models = models, S = S.hat[2:n.doses, 2:n.doses], type = "general", placAdj = FALSE, selModel = selModel, alpha = alpha, df = df, critV = critV, doseType = doseType, Delta = Delta, p = p, pVal = pVal, alternative = alternative, na.action = na.action, mvtcontrol = mvtcontrol, bnds = bnds, ...) } } if (returnS == FALSE) { return(mod.out) } else { data.df <- data.frame(dose = doses, resp = mu.hat) return.list <- list(MCPMod = mod.out, data = data.df, S = S.hat) return(return.list) } }
Genes_SimCal <- function(ExpMat_Test, ExpMat_Ref1, ExpMat_Ref2, RefIDs, TestClassIter, SampleIter){ rownames(ExpMat_Ref1) <- NULL colnames(ExpMat_Ref1) <- NULL if(TestClassIter == RefIDs[1]){ ExpMat_Ref1 <- ExpMat_Ref1[,-SampleIter] } rownames(ExpMat_Ref2) <- NULL colnames(ExpMat_Ref2) <- NULL if(TestClassIter == RefIDs[2]){ ExpMat_Ref2 <- ExpMat_Ref2[,-SampleIter] } GeneVarSortInd <- sort(apply(cbind(ExpMat_Ref1, ExpMat_Ref2), 1, function(X){ mad(na.omit(as.numeric(X)))}), decreasing = T, index.return = T)[[2]] BubbleSort_Vec1 <- c() BubbleSort_Vec2 <- c() Pearson_Vec1 <- c() Pearson_Vec2 <- c() NameVec <- c() for(GeneNum in c(1e3,nrow(ExpMat_Ref1))){ NameVec <- c(NameVec, paste(GeneNum,"genes", sep = "", collapse = "")) MostVarInd <- GeneVarSortInd[1:GeneNum] TargetGenes_RefMat1 <- ExpMat_Ref1[MostVarInd,] TargetGenes_RefMat2 <- ExpMat_Ref2[MostVarInd,] TargetGenes_TestMat <- ExpMat_Test[MostVarInd,] TargetGenes_Ref1Vec <- as.numeric(apply(TargetGenes_RefMat1,1,function(X){median(na.omit(as.numeric(X)))})) TargetGenes_Ref2Vec <- as.numeric(apply(TargetGenes_RefMat2,1,function(X){median(na.omit(as.numeric(X)))})) TargetGenes_TesTVec <- as.numeric(apply(TargetGenes_TestMat,1,function(X){median(na.omit(as.numeric(X)))})) BubbleSort_Vec1 <- c(BubbleSort_Vec1, as.numeric(BubbleSort(TargetGenes_Ref1Vec, TargetGenes_TesTVec))) Pearson_Vec1 <- c(Pearson_Vec1, as.numeric(cor.test(TargetGenes_Ref1Vec, TargetGenes_TesTVec)$estimate)) BubbleSort_Vec2 <- c(BubbleSort_Vec2, as.numeric(BubbleSort(TargetGenes_Ref2Vec, TargetGenes_TesTVec))) Pearson_Vec2 <- c(Pearson_Vec2, as.numeric(cor.test(TargetGenes_Ref2Vec, TargetGenes_TesTVec)$estimate)) } GeneSim_Out <- c(BubbleSort_Vec1, BubbleSort_Vec2, Pearson_Vec1, Pearson_Vec2) names(GeneSim_Out) <- c(paste(rep("BubbleSort1"), NameVec, sep = "_"), paste(rep("BubbleSort2"), NameVec, sep = "_"), paste(rep("Pearson1"), NameVec, sep = "_"), paste(rep("Pearson2"), NameVec, sep = "_")) return(GeneSim_Out) }
library(highcharter) library(quantmod) library(magrittr) options(highcharter.debug = TRUE) aapl <- quantmod::getSymbols("AAPL", src = "yahoo", from = "2020-01-01", auto.assign = FALSE ) plain <- function() { hc <- highcharter::highchart(type = "stock") %>% highcharter::hc_title(text = "yAxis test") %>% highcharter::hc_add_series(aapl, yAxis = 0, showInLegend = FALSE) message("yAxis title: ", hc$x$hc_opts$yAxis) return(hc) } with_yaxis <- function() { hc <- highcharter::highchart(type = "stock") %>% highcharter::hc_title(text = "yAxis test") %>% highcharter::hc_add_series(aapl, yAxis = 0, showInLegend = FALSE) %>% highcharter::hc_yAxis(title = list(text = "Prices")) message("yAxis title: ", hc$x$hc_opts$yAxis) return(hc) } with_both <- function() { hc <- try(highcharter::highchart(type = "stock") %>% highcharter::hc_title(text = "yAxis test") %>% highcharter::hc_add_series(aapl, yAxis = 0, showInLegend = FALSE) %>% highcharter::hc_yAxis(title = list(text = "Prices")) %>% highcharter::hc_add_yAxis(title = list(text = "Should stop")) ) message("yAxis 2: ", hc$x$hc_opts$yAxis) return(hc) } with_add_yaxis <- function() { hc <- highcharter::highchart(type = "stock") %>% highcharter::hc_title(text = "yAxis test") %>% highcharter::hc_add_series(aapl, yAxis = 0, showInLegend = FALSE) %>% highcharter::hc_add_yAxis(title = list(text = "Prices")) message("yAxis one: ", hc$x$hc_opts$yAxis) return(hc) } with_plotline <- function() { hc <- highcharter::highchart(type = "stock") %>% highcharter::hc_title(text = "yAxis test") %>% highcharter::hc_add_series(aapl, yAxis = 0, showInLegend = FALSE) %>% highcharter::hc_add_yAxis(title = list(text = "Prices"), plotLines = list(list(color = ' ) message("yAxis one: ", hc$x$hc_opts$yAxis) return(hc) } with_create_yaxis <- function() { hc <- highcharter::highchart(type = "stock") %>% highcharter::hc_title(text = "yAxis test") %>% highcharter::hc_add_series(aapl, yAxis = 0, showInLegend = FALSE) %>% highcharter::hc_add_series(aapl[, "AAPL.Volume"], yAxis = 1, type = "column", showInLegend = FALSE) %>% highcharter::hc_yAxis_multiples(create_yaxis(naxis = 2, lineWidth = 2, title = list(text = NULL), heights = c(2, 1))) message("yAxis one: ", hc$x$hc_opts$yAxis) return(hc) } with_vol_relative <- function() { hc <- highcharter::highchart(type = "stock") %>% highcharter::hc_title(text = "yAxis test") %>% highcharter::hc_add_series(aapl, yAxis = 0, showInLegend = FALSE) %>% highcharter::hc_add_series(aapl[, "AAPL.Volume"], yAxis = 1, type = "column", showInLegend = FALSE) %>% highcharter::hc_add_yAxis(nid = 1L, title = list(text = "Prices"), relative = 2, plotLines = list(list(color = ' ) %>% highcharter::hc_add_yAxis(nid = 2L, title = list(text = "Volume"), relative = 1) message("yAxis one: ", hc$x$hc_opts$yAxis) return(hc) }
print.frag.ma <- function(x, ...){ if(!inherits(x, "frag.ma")){ stop("The input must be an object of \"frag.ma\".") } cat(paste0("Original meta-analysis contains\n")) cat(paste0(" ", dim(x$data)[1], " studies;\n")) cat(paste0(" ", format(round(sum(x$data$e0)), scientific = FALSE, big.mark = ","), " total events and ", format(round(sum(x$data$n0)), scientific = FALSE, big.mark = ","), " total sample sizes in group 0;\n")) cat(paste0(" ", format(round(sum(x$data$e1)), scientific = FALSE, big.mark = ","), " total events and ", format(round(sum(x$data$n1)), scientific = FALSE, big.mark = ","), " total sample sizes in group 1\n")) cat(paste0("Significance level = ", x$alpha, "\n")) cat(paste0("The effect size is ", x$measure, ifelse(is.element(x$measure, c("OR", "RR")), " (on a logarithmic scale)", ""), "\n")) cat(paste0("The null value of is ", x$null, "\n")) cat(paste0("The estimated overall effect size is\n")) cat(paste0(" ", format(round(x$est.ori, 3), nsmall = 3), " with CI (", format(round(x$ci.ori[1], 3), nsmall = 3), ", ", format(round(x$ci.ori[2], 3), nsmall = 3), ") and p-value ", format(round(x$pval.ori, 3), nsmall = 3), "\n")) if(!is.na(x$FI)){ cat(paste0("Fragility index (FI) = ", x$FI, " and fragility quotient (FQ) = ", format(round(100*x$FQ, 1), nsmall = 1), "%\n")) cat(paste0(" for ", x$dir, "\n")) }else{ cat(paste0("FI = FQ = NA, i.e.,\n ", x$dir, "\n")) } }
is.DotProduct <- function(stat) { "StatDotProduct" %in% class(stat) } is_dotProduct <- function(plot, any = TRUE) { layers <- plot$layers if(length(layers) == 0) return(FALSE) dotProduct <- vapply(layers, function(layer) is.DotProduct(layer$stat), logical(1L)) if(any) any(dotProduct) else all(dotProduct) }
cronbach <- function(.data, ..., .ci = 0.95){ raw_alpha <- function(items) { total <- psych::alpha(items)$total z <- stats::qnorm(.ci + (1 - .ci)/2) c(alpha = total$raw_alpha, ci_lo = total$raw_alpha - z * total$ase, ci_hi = total$raw_alpha + z * total$ase) } selection_sets <- rlang::enquos(...) purrr::map_dfr(selection_sets, function(selection_set){ raw_alpha(select(.data, !!selection_set)) }, .id = 'scale' ) } total_scores <- function(.data, ..., .method = 'mean', .append = FALSE){ totalling_function <- function(.data_selection, .method){ switch(.method, mean = rowMeans(.data_selection, na.rm = T), sum = rowSums(.data_selection, na.rm = T), sum_like = rowMeans(.data_selection, na.rm = T) * ncol(.data_selection) ) } if (!(.method %in% c('mean', 'sum', 'sum_like'))) { stop('The function that calculates the total must be either "mean", "sum" or "sum_like".') } selection_sets <- rlang::enquos(...) results_df <- purrr::map_dfc(selection_sets, function(selection_set){ totalling_function(select(.data, !!selection_set), .method) } ) if (.append) { bind_cols(.data, results_df) } else { results_df } } re_code <- function(x, from, to){ plyr::mapvalues(x, from = from, to = to, warn_missing = F) }
homogen_power <- function (effect_size, study_size, k, i2, es_type, p =.05, con_table = NULL){ if(missing(effect_size)) effect_size = NULL homogen_power_integrity(effect_size, study_size, k, i2, es_type, p, con_table) df <- k-1 c_alpha <- qchisq(1-p,df,0, lower.tail = TRUE) range_factor <- 5 if(es_type == "d"){ variance <- compute_variance(study_size, effect_size, es_type, con_table) homogen_power_range_df <- data.frame(k_v = rep(seq(2,range_factor*k),times = 7), es_v = effect_size, n_v = study_size, i2 = i2, c_alpha = c_alpha) %>% mutate(variance = mapply(compute_variance, .data$n_v, .data$es_v, es_type)) }else if(es_type == "r"){ effect_size = .5*log((1 + effect_size)/(1 - effect_size)) variance <- compute_variance(study_size, effect_size, es_type, con_table) homogen_power_range_df <- data.frame(sd_v = rep(seq(0,6), each = (k*range_factor-1)), k_v = rep(seq(2,range_factor*k),times = 7), es_v = effect_size, n_v = study_size, i2 = i2, c_alpha = c_alpha) %>% mutate(variance = mapply(compute_variance, .data$n_v, .data$es_v, es_type)) }else if(es_type == "or") { effect_size <- round((con_table[1]*con_table[4])/(con_table[2]*con_table[3]),3) effect_size <- round(log(effect_size),3) variance <- round((1/con_table[1]) + (1/con_table[2]) + (1/con_table[3]) + (1/con_table[4]),3) homogen_power_range_df <- data.frame(sd_v = rep(seq(0,6), each = (k*range_factor-1)), k_v = rep(seq(2,range_factor*k),times = 7), es_v = effect_size, n_v = study_size, i2 = i2, c_alpha = c_alpha, variance = variance) } power_list <- list(variance = variance, homogen_power_range_df = homogen_power_range_df, homogen_power = compute_homogen_power(k, effect_size, variance, i2, c_alpha), homogen_power_range = compute_homogen_range(homogen_power_range_df), effect_size = effect_size, study_size = study_size, i2 = i2, k = k, es_type = es_type, p = p) attr(power_list, "class") <- "homogen_power" return(power_list) }
preprocess.octopus <- function( octopus.file, octopus.demogr=Octopus.demogr) { Mfile<- unlist(strsplit(octopus.file, split=';')) m1<-match( substring(octopus.file,1,5), octopus.demogr[,1]) id<- as.character(octopus.demogr[m1,1]) eye.side<-substring(as.character(octopus.demogr[ m1 , 2]),1,1) Mfile<- Mfile[-(1:32)] Mfile<- as.numeric(Mfile) pos.outliers<- (1:length(Mfile))[ abs(Mfile) > 100] num.outliers<- length(pos.outliers) outliers<-Mfile[pos.outliers] if(length(pos.outliers)>0) { Mfile<- Mfile[-pos.outliers] print(paste(num.outliers,' outliers removed', outliers, collapse='', sep=' : '),quote=FALSE) } Mfile<- matrix( Mfile, ncol=11, byrow=TRUE) Mfile<- as.data.frame(Mfile) names(Mfile)<- c('start1','start2','direction1','direction2', 'X', 'Y', 'null1','null2', 'intensity','size','speed') labels<- c('III4e', 'I4e', 'I2e', 'blind') n.rows<- dim( Mfile)[1] patterns.isopters<- apply(Mfile[,7:11],1, function( x){ paste(x, collapse='')}) num.isopters<- length( unique( patterns.isopters)) s1<- 2:n.rows pos.changes<- (1:n.rows)[ patterns.isopters[s1-1] != patterns.isopters[s1]] pos.changes<- c(0, pos.changes, n.rows) labels.isopters<- ifelse(patterns.isopters=='00015', 'I4e', ifelse(patterns.isopters=='00035', 'III4e', ifelse(patterns.isopters=='001015', 'I2e', 'blind'))) Mfile$labels.isopters<- labels.isopters list.output<- list() list.output[[1]]<- Mfile[,c('X','Y', 'labels.isopters')] names(list.output)[1]<- 'Subject' for( i in 1:num.isopters) { obj.name<- paste(id, eye.side, 'O',Mfile$labels.isopters[pos.changes[i]+1],sep='') s1<- (pos.changes[i]+1) : (pos.changes[i+1]) list.output[[i+1]]<- Mfile[s1, 5:6] names(list.output)[i+1]<- obj.name } invisible( list.output) }
scale_x_seconds <- function(name = "Time", breaks = waiver(), minor_breaks = waiver(), labels = waiver(), limits = NULL, expand = waiver(), oob = scales::censor, na.value = NA_real_, position = "bottom", time_wrap = NULL, unit = "s", log = FALSE) { name <- sprintf("%s (%s)", name, unit) scale_x_continuous( name = name, breaks = breaks, labels = labels, minor_breaks = minor_breaks, limits = limits, expand = expand, oob = oob, na.value = na.value, position = position, trans = seconds_trans(time_wrap, log_tr = log) ) } scale_y_seconds <- function(name = "Time", breaks = waiver(), minor_breaks = waiver(), labels = waiver(), limits = NULL, expand = waiver(), oob = scales::censor, na.value = NA_real_, position = "left", time_wrap = NULL, unit="s", log = FALSE) { name <- sprintf("%s (%s)", name, unit) scale_y_continuous( name = name, breaks = breaks, labels = labels, minor_breaks = minor_breaks, limits = limits, expand = expand, oob = oob, na.value = na.value, position = position, trans = seconds_trans(time_wrap, log_tr = log) ) } seconds_trans <- function(time_wrap = NULL, log_tr = FALSE) { if(is.null(time_wrap)) formater <- function(x)format(as.numeric(x)) else formater <- function(x)format((as.numeric(x) %% time_wrap)) foo <- ifelse(log_tr,log10, identity) foo_inv <- ifelse(log_tr,function(x){10^x}, identity) scales::trans_new( "seconds", transform = function(x){structure(foo(as.numeric(x)), names = names(x))}, inverse = function(x){foo_inv(as.numeric(x)) }, format = formater ) }
api_user <- function(RH) { url <- api_endpoints("user") token <- paste("Bearer", RH$tokens.access_token) dta <- GET(url, add_headers("Accept" = "application/json", "Authorization" = token)) dta <- mod_json(dta, "fromJSON") dta <- as.list(dta) return(dta) }
tess.likelihood.rateshift <- function( times, lambda, mu, rateChangeTimesLambda = c(), rateChangeTimesMu = c(), massExtinctionTimes = c(), massExtinctionSurvivalProbabilities = c(), missingSpecies = c(), timesMissingSpecies = c(), samplingStrategy = "uniform", samplingProbability = 1.0, MRCA=TRUE, CONDITION="survival", log=TRUE) { if ( length(lambda) != (length(rateChangeTimesLambda)+1) || length(mu) != (length(rateChangeTimesMu)+1) ) { stop("Number of rate-change times needs to be one less than the number of rates!") } if ( length(massExtinctionTimes) != length(massExtinctionSurvivalProbabilities) ) { stop("Number of mass-extinction times needs to equal the number of mass-extinction survival probabilities!") } if ( length(missingSpecies) != length(timesMissingSpecies) ) { stop("Vector holding the missing species must be of the same size as the intervals when the missing speciation events happend!") } if ( CONDITION != "time" && CONDITION != "survival" && CONDITION != "taxa" ) { stop("Wrong choice of argument for \"CONDITION\". Possible option are time|survival|taxa.") } if ( samplingStrategy != "uniform" && samplingStrategy != "diversified") { stop("Wrong choice of argument for \"samplingStrategy\". Possible option are uniform|diversified.") } if ( length(rateChangeTimesLambda) > 0 ) { sortedRateChangeTimesLambda <- sort( rateChangeTimesLambda ) lambda <- c(lambda[1], lambda[ match(sortedRateChangeTimesLambda,rateChangeTimesLambda)+1 ] ) rateChangeTimesLambda <- sortedRateChangeTimesLambda } if ( length(rateChangeTimesMu) > 0 ) { sortedRateChangeTimesMu <- sort( rateChangeTimesMu ) mu <- c(mu[1], mu[ match(sortedRateChangeTimesMu,rateChangeTimesMu)+1 ] ) rateChangeTimesMu <- sortedRateChangeTimesMu } if ( length(massExtinctionTimes) > 0 ) { sortedMassExtinctionTimes <- sort( massExtinctionTimes ) massExtinctionSurvivalProbabilities <- massExtinctionSurvivalProbabilities[ match(sortedMassExtinctionTimes,massExtinctionTimes) ] massExtinctionTimes <- sortedMassExtinctionTimes } if ( length( rateChangeTimesLambda ) > 0 || length( rateChangeTimesMu ) > 0 || length( massExtinctionTimes ) > 0 ) { changeTimes <- sort( unique( c( rateChangeTimesLambda, rateChangeTimesMu, massExtinctionTimes ) ) ) } else { changeTimes <- c() } speciation <- rep(NaN,length(changeTimes)+1) extinction <- rep(NaN,length(changeTimes)+1) mep <- rep(NaN,length(changeTimes)) speciation[1] <- lambda[1] if ( length(lambda) > 1 ) { speciation[ match(rateChangeTimesLambda,changeTimes)+1 ] <- lambda[ 2:length(lambda) ] } extinction[1] <- mu[1] if ( length(mu) > 1 ) { extinction[ match(rateChangeTimesMu,changeTimes)+1 ] <- mu[ 2:length(mu) ] } if ( length( massExtinctionSurvivalProbabilities ) > 0 ) { mep[ match(massExtinctionTimes,changeTimes) ] <- massExtinctionSurvivalProbabilities[ 1:length(massExtinctionSurvivalProbabilities) ] } for ( i in seq_len(length(changeTimes)) ) { if ( is.null(speciation[i+1]) || !is.finite(speciation[i+1]) ) { speciation[i+1] <- speciation[i] } if ( is.null(extinction[i+1]) || !is.finite(extinction[i+1]) ) { extinction[i+1] <- extinction[i] } if ( is.null(mep[i]) || !is.finite(mep[i]) ) { mep[i] <- 1.0 } } rateChangeTimes <- changeTimes massExtinctionTimes <- changeTimes lambda <- speciation mu <- extinction massExtinctionSurvivalProbabilities <- mep PRESENT <- max(times) nTaxa <- length(times) + 1 times <- PRESENT - sort(times,decreasing=TRUE) if ( MRCA == TRUE ) { times <- times[-1] } if (samplingStrategy == "uniform") { rho <- samplingProbability } else { rho <- 1.0 } lnl <- 0 if ( CONDITION == "survival" || CONDITION == "taxa" ) lnl <- - tess.equations.pSurvival.rateshift(lambda,mu,rateChangeTimes,massExtinctionSurvivalProbabilities,rho,0,PRESENT,PRESENT,log=TRUE) lnl <- lnl + tess.equations.p1.rateshift(lambda,mu,rateChangeTimes,massExtinctionSurvivalProbabilities,rho,0,PRESENT,log=TRUE) if ( MRCA == TRUE ) { lnl <- 2*lnl } if ( CONDITION == "taxa" ) lnl <- lnl + tess.equations.pN.rateshift(lambda,mu,rateChangeTimes,massExtinctionSurvivalProbabilities,rho,nTaxa,0,PRESENT,SURVIVAL=TRUE,MRCA,log=TRUE) if ( samplingStrategy == "diversified" ) { lastEvent <- times[length(times)] p_0_T <- 1.0 - tess.equations.pSurvival.rateshift(lambda,mu,rateChangeTimes,massExtinctionSurvivalProbabilities,1.0,0,PRESENT,PRESENT,log=FALSE) * exp((mu-lambda)*PRESENT) p_0_t <- 1.0 - tess.equations.pSurvival.rateshift(lambda,mu,rateChangeTimes,massExtinctionSurvivalProbabilities,1.0,lastEvent,PRESENT,PRESENT,log=FALSE)*exp((mu-lambda)*(PRESENT-lastEvent)) F_t <- p_0_t / p_0_T m <- round(nTaxa / samplingProbability) k <- 1 if ( MRCA == TRUE ) k <- 2 lnl <- lnl + (m-nTaxa) * log(F_t) + lchoose(m-k,nTaxa-k) } if ( length(missingSpecies) > 0 ) { prev_time <- 0 rate <- 0 for (j in seq_len(length(rateChangeTimes)) ) { rate <- rate + ifelse( PRESENT >= rateChangeTimes[j], (mu[j] - lambda[j])*(rateChangeTimes[j]-prev_time) - log(massExtinctionSurvivalProbabilities[j]), 0 ) prev_time <- ifelse( PRESENT >= rateChangeTimes[j], rateChangeTimes[j], 0) } rate <- rate + ifelse( PRESENT > prev_time, (mu[length(mu)] - lambda[length(lambda)])*(PRESENT-prev_time), 0 ) rate <- rate - log(samplingProbability) p_0_T <- 1.0 - exp( tess.equations.pSurvival.rateshift(lambda,mu,rateChangeTimes,massExtinctionSurvivalProbabilities,1.0,0,PRESENT,PRESENT,log=TRUE) + rate ) lastEvent <- timesMissingSpecies prev_time <- lastEvent rate <- 0 for (j in seq_len(length(rateChangeTimes)) ) { rate <- rate + ifelse( lastEvent < rateChangeTimes[j] & PRESENT >= rateChangeTimes[j], (mu[j] - lambda[j])*(rateChangeTimes[j]-prev_time) - log(massExtinctionSurvivalProbabilities[j]), 0 ) prev_time <- ifelse( lastEvent < rateChangeTimes[j] & PRESENT >= rateChangeTimes[j], rateChangeTimes[j], lastEvent) } rate <- rate + ifelse( PRESENT > prev_time, (mu[length(mu)] - lambda[length(lambda)])*(PRESENT-prev_time), 0 ) rate <- rate - log(samplingProbability) p_0_t <- 1.0 - exp( tess.equations.pSurvival.rateshift(lambda,mu,rateChangeTimes,massExtinctionSurvivalProbabilities,1.0,lastEvent,PRESENT,PRESENT,log=TRUE) + rate ) log_F_t <- log(p_0_t) - log(p_0_T) m <- missingSpecies lnl <- lnl + sum( m * log_F_t ) } if ( length(rateChangeTimes) > 0 ) { speciation <- function(times) { idx <- findInterval(times,rateChangeTimes)+1 idx[ idx > length(lambda) ] <- length(lambda) return ( lambda[idx] ) } } else { speciation <- function(times) rep(lambda[1],length(times)) } lnl <- lnl + sum( log(speciation(times) ) ) + sum(tess.equations.p1.rateshift(lambda,mu,rateChangeTimes,massExtinctionSurvivalProbabilities,rho,times,PRESENT,log=TRUE)) if (is.nan(lnl)) lnl <- -Inf if ( log == FALSE ) { lnl <- exp(lnl) } return (lnl) }
readTextGridFast<-function(File,Encoding){ File=file(File,encoding=Encoding) Data=readLines(File,-1) close(File) names=gsub("^[[:space:]]+name\\ =\\ |\"|[\\ ]+","",Data[grep("name\ =",Data)]) numberOfTiers=length(names) TierBorder=c(grep("IntervalTier|TextTier",Data),length(Data)) TierType=gsub("[[:space:]]+|class|\\=|\"|-","",Data[grep("IntervalTier|TextTier",Data)]) for(i in 1:numberOfTiers){ if(TierType[i]=="IntervalTier"){ Part=Data[TierBorder[i]:TierBorder[i+1]] Part=Part[-(1:5)] Part=gsub("^[[:space:]]+((text)|(xmin)|(xmax))\\ =\\ |\"|[\\ ]+$","",Part) Part=gsub("[\\ ]+$","",Part) if(length(grep("class\ =\ (IntervalTier)|(TextTier)",Part))>0){ Part=Part[-grep("class\ =\ (IntervalTier)|(TextTier)",Part)] } if(length(grep("item\ \\[[0-9]+\\]",Part))>0){ Part=Part[-grep("item\ \\[[0-9]+\\]",Part)] } PartDataFrame=data.frame(Outcomes=Part[seq(4,length(Part),4)], start=as.numeric(Part[seq(2,length(Part),4)]), end=as.numeric(Part[seq(3,length(Part),4)]), stringsAsFactors=F) } else{ Part=Data[TierBorder[i]:TierBorder[i+1]] Part=Part[-(1:5)] Part=gsub("^[[:space:]]+((mark)|(number))\\ =\\ |\"|[\\ ]+$","",Part) Part=gsub("[\\ ]+$","",Part) if(length(grep("class\ =\ (IntervalTier)|(TextTier)",Part))>0){ Part=Part[-grep("class\ =\ (IntervalTier)|(TextTier)",Part)] } if(length(grep("item\ \\[[0-9]+\\]",Part))>0){ Part=Part[-grep("item\ \\[[0-9]+\\]",Part)] } PartDataFrame=data.frame( Outcomes=Part[seq(3,length(Part),3)], point=as.numeric(Part[seq(2,length(Part),3)]), stringsAsFactors=F) } assign(names[i],PartDataFrame) } NewData=vector("list",length(names)+1) NewData[[1]]=names for(i in 2:length(NewData)){ NewData[[i]]=get(names[i-1]) } return(NewData) } readTextGridRobust<-function(File,Encoding){ Data=read.csv(file(File,encoding=Encoding),stringsAsFactors=F,header=F)$V1 names=gsub("^[[:space:]]+name\\ =\\ |\"|[\\ ]+","",Data[grep("name\ =",Data)]) numberOfTiers=length(names) TierBorder=c(grep("IntervalTier|TextTier",Data),length(Data)+1) TierType=gsub("[[:space:]]+|class|\\=|\"|-","",Data[grep("IntervalTier|TextTier",Data)]) for(i in 1:numberOfTiers){ if(TierType[i]=="IntervalTier"){ Part=Data[TierBorder[i]:(TierBorder[i+1]-1)] Part=Part[-(1:5)] Part=gsub("^[[:space:]]+((text)|(xmin)|(xmax))\\ =\\ |\"|[\\ ]+$","",Part) Part=gsub("[\\ ]+$","",Part) PartDataFrame=data.frame(Outcomes=character(),start=numeric(),end=numeric(),stringsAsFactors=F) for(j in 1:(length(Part)/4)){ PartDataFrame=rbind(PartDataFrame, data.frame(Outcomes=Part[(j*4)], start=as.numeric(Part[(j*4)-2]), end=as.numeric(Part[(j*4)-1]), stringsAsFactors=F), stringsAsFactors=F) } assign(names[i],PartDataFrame) } else{ Part=Data[TierBorder[i]:(TierBorder[i+1]-1)] Part=Part[-(1:5)] Part=gsub("^[[:space:]]+((mark)|(number))\\ =\\ |\"|[\\ ]+$","",Part) Part=gsub("[\\ ]+$","",Part) PartDataFrame=data.frame(Outcomes="",point=0,stringsAsFactors=F) for(j in 1:(length(Part)/3)){ PartDataFrame=rbind(PartDataFrame, data.frame(Outcomes=Part[(j*3)], point=as.numeric(Part[(j*3)-1]),stringsAsFactors=F), stringsAsFactors=F) } assign(names[i],PartDataFrame) } } NewData=vector("list",length(names)+1) NewData[[1]]=names for(i in 2:length(NewData)){ NewData[[i]]=get(names[i-1]) } return(NewData) } readESPSAnnotation<-function(File,Encoding){ File=file(File,encoding=Encoding) Data=readLines(File,-1) close(File) r=grep("^ if(r>0){ Data=Data[-(1:r)] } Data=unlist(strsplit(Data,"\ [0-9]+\ ")) End=as.numeric(Data[seq(1,length(Data),2)]) DataFrame=data.frame( Outcomes=Data[seq(2,length(Data),2)], start=as.numeric(c(0,End[-length(End)])), end=as.numeric(End), stringsAsFactors=F) return(DataFrame) } readWavesurfer<-function(File,Encoding){ File=file(File,encoding=Encoding) Data=readLines(File,-1) close(File) Data=gsub("^[\ ]+","",Data) Data=unlist(strsplit(Data,"\ ")) End=as.numeric(Data[seq(1,length(Data),3)]) DataFrame=data.frame( Outcomes=Data[seq(3,length(Data),3)], start=as.numeric(c(0,End[-length(End)])), end=as.numeric(End), stringsAsFactors=F) return(DataFrame) }
orcid_invited_positions <- function(orcid, put_code = NULL, format = "application/json", summary = FALSE, ...) { pth <- path_picker(put_code, summary, "invited-position") orcid_putcode_helper(pth, orcid, put_code, format, ...) }
animateCA = function(filename, out_type = c("html", "gif"), out_name = "aniCA"){ if (!requireNamespace("animation", quietly = TRUE)) { stop("You need to install the aniimation package.") } if (filename$expt != "CA" & filename$file_type != "full") { stop("This file is not from a chronoamperometry simulation created using caSim.") } out_type = match.arg(out_type) if (out_type == "html"){ old.ani = animation::ani.options(interval = 0.2, verbose = FALSE) } else { old.ani = animation::ani.options(interval = 0.2, loop = 1) } time_increment = round(length(filename$time)/40, digits = 0) if (out_type == "html"){ animation::saveHTML({ old.par = par(mfrow = c(2, 1)) for (i in seq(1, length(filename$time), time_increment)) { plot(x = filename$distance, y = filename$oxdata[i, ], type = "l", lwd = 3, col = "blue", ylim = c(0, 1050 * filename$conc.bulk), xlab = "distance from electrode (cm)", ylab = "concentration (mM)") grid() lines(x = filename$distance, y = filename$reddata[i, ], lwd = 3, col = "red") if (filename$mechanism != "E") { lines(x = filename$distance, y = filename$chemdata[i, ], lwd = 3, col = "green") legend(x = "right", legend = c("Ox", "Red", "Chem"), fill = c("blue", "red", "green"), bty = "n", inset = 0.05) } else { legend(x = "right", legend = c("Ox", "Red"), fill = c("blue", "red"), bty = "n", inset = 0.05) } plot(x = filename$time[1:i], y = filename$current[1:i], col = "blue", type = "l", lwd = 3, xlim = c(min(filename$time), max(filename$time)), ylim = c(min(filename$current), max(filename$current)), xlab = "time (s)",ylab = expression(paste("current (", mu, "A)"))) grid() } par(old.par) }, img.name = paste0(out_name,"_plot"), imgdir = paste0(out_name,"_dir"), htmlfile = paste0(out_name,".html"), navigator = FALSE ) } else { animation::saveGIF({ old.par = par(mfrow = c(2, 1)) for (i in seq(1, length(filename$time), time_increment)) { plot(x = filename$distance, y = filename$oxdata[i, ], type = "l", lwd = 3, col = "blue", ylim = c(0, 1050 * filename$conc.bulk), xlab = "distance from electrode (cm)", ylab = "concentration (mM)") grid() lines(x = filename$distance, y = filename$reddata[i, ], lwd = 3, col = "red") if (filename$mechanism != "E") { lines(x = filename$distance, y = filename$chemdata[i, ], lwd = 3, col = "green") legend(x = "right", legend = c("Ox", "Red", "Chem"), fill = c("blue", "red", "green"), bty = "n", inset = 0.05) } else { legend(x = "right", legend = c("Ox", "Red"), fill = c("blue", "red"), bty = "n", inset = 0.05) } plot(x = filename$time[1:i], y = filename$current[1:i], col = "blue", type = "l", lwd = 3, xlim = c(min(filename$time), max(filename$time)), ylim = c(min(filename$current), max(filename$current)), xlab = "time (s)", ylab = expression(paste("current (", mu, "A)"))) grid() } par(old.par)}, movie.name = paste0(out_name,".gif") ) } animation::ani.options(old.ani) }
print.dbmssEnvelope <- function(x, ...) { einfo <- attr(x, "einfo") type <- ifelse(einfo$global, "Global", "Local") cat(paste(type, "critical envelopes obtained from", einfo$nsim, "simulations of", deparse(attr(x, "ylab")))) cat(paste(" under the null hypothesis:", einfo$H0, "\n")) if (!is.null(attr(x, "simfuns"))) cat(paste("(All", einfo$nsim, "simulated function values are stored in attr(,", dQuote("simfuns"), ") )\n")) cat(paste("Significance level of Monte Carlo test:", einfo$Alpha, "\n")) cat(paste("Data:", einfo$Yname, "\n")) print.fv(x, ...) }
if (Sys.getenv("RunAllRcppTests") != "yes") exit_file("Set 'RunAllRcppTests' to 'yes' to run.") Rcpp::sourceCpp("cpp/String.cpp") expect_equal( String_replace_all("abcdbacdab", "ab", "AB"), "ABcdbacdAB") expect_equal( String_replace_first("abcdbacdab", "ab", "AB"), "ABcdbacdab") expect_equal( String_replace_last("abcdbacdab", "ab", "AB"), "abcdbacdAB") res <- test_sapply_string( "foobar", c("o", "a" ), c("*", "!" ) ) expect_equal( res, "f**b!r" ) res <- test_compare_Strings( "aaa", "aab" ) target <- list("a < b" = TRUE, "a > b" = FALSE, "a == b" = FALSE, "a == a" = TRUE) expect_equal( res, target ) v <- c("aab") res <- test_compare_String_string_proxy( "aaa", v ) target <- list("a == b" = FALSE, "a != b" = TRUE, "b == a" = FALSE, "b != a" = TRUE) expect_equal( res, target ) v <- c("aab") res <- test_compare_String_const_string_proxy( "aaa", v ) target <- list("a == b" = FALSE, "a != b" = TRUE, "b == a" = FALSE, "b != a" = TRUE) expect_equal( res, target ) res <- test_ctor("abc") expect_identical(res, "abc") res <- test_push_front("def") expect_identical(res, "abcdef") a <- b <- "å" Encoding(a) <- "unknown" Encoding(b) <- "UTF-8" expect_equal(test_String_encoding(a), 0) expect_equal(test_String_encoding(b), 1) expect_equal(Encoding(test_String_set_encoding(a)), "UTF-8") expect_equal(Encoding(test_String_ctor_encoding(a)), "UTF-8") expect_equal(Encoding(test_String_ctor_encoding2()), "UTF-8") expect_error(test_String_embeddedNul())
Mussel_pop_post<-function(userpath,output,times,Dates,N,CS) { cat('Data post-processing\n') cat('\n') ti=times[1] tf=times[2] Wb_stat=output[[1]] R_stat=output[[2]] Wd_stat=output[[3]] W_stat=output[[4]] L_stat=output[[5]] fecC_stat=output[[6]] fecN_stat=output[[7]] fecP_stat=output[[8]] psC_stat=output[[9]] psN_stat=output[[10]] psP_stat=output[[11]] Cmyt_stat=output[[12]] Nmyt_stat=output[[13]] Pmyt_stat=output[[14]] A_stat=output[[15]] C_stat=output[[16]] O2_stat=output[[17]] NH4_stat=output[[18]] fgT=output[[19]] frT=output[[20]] WbSave=Wb_stat[,ti:tf] RSave=R_stat[,ti:tf] WdSave=Wd_stat[,ti:tf] WSave=W_stat[,ti:tf] LSave=L_stat[,ti:tf] fecCSave=fecC_stat[,ti:tf] fecNSave=fecN_stat[,ti:tf] fecPSave=fecP_stat[,ti:tf] psCSave=psC_stat[,ti:tf] psNSave=psN_stat[,ti:tf] psPSave=psP_stat[,ti:tf] CmytSave=Cmyt_stat[,ti:tf] NmytSave=Nmyt_stat[,ti:tf] PmytSave=Pmyt_stat[,ti:tf] ASave=A_stat[,ti:tf] CSave=C_stat[,ti:tf] O2Save=O2_stat[,ti:tf] NH4Save=NH4_stat[,ti:tf] fgT=fgT[(ti+1):tf] frT=frT[(ti+1):tf] tfunSave=cbind(fgT,frT) N=N[ti:tf] foo <- function(w,S){which(w>S)[1]} arg=as.data.frame(LSave[1,]-LSave[2,]) days <- apply(arg,1,foo,S=CS) days_L <- as.data.frame(days) NonNAindex <- which(!is.na(days_L)) if (length(NonNAindex)==0) { Lb_daysToSize="Not reaching the commercial size" }else{ Lb_daysToSize <- min(NonNAindex) } foo <- function(w,S){which(w>S)[1]} arg=as.data.frame(LSave[1,]) days <- apply(arg,1,foo,S=CS) days_L <- as.data.frame(days) NonNAindex <- which(!is.na(days_L)) if (length(NonNAindex)==0) { Mean_daysToSize="Not reaching the commercial size" }else{ Mean_daysToSize <- min(NonNAindex) } foo <- function(w,S){which(w>S)[1]} arg=as.data.frame(LSave[1,]+LSave[2,]) days <- apply(arg,1,foo,S=CS) days_L <- as.data.frame(days) NonNAindex <- which(!is.na(days_L)) if (length(NonNAindex)==0) { Ub_daysToSize="Not reaching the commercial size" }else{ Ub_daysToSize <- min(NonNAindex) } daysToSize<-as.list(cbind(Ub_daysToSize,Mean_daysToSize,Lb_daysToSize)) output=list(WbSave,RSave,WdSave,WSave,LSave,fecCSave,fecNSave,fecPSave,psCSave,psNSave,psPSave,CmytSave,NmytSave,PmytSave,ASave,CSave,fgT,frT,N,daysToSize) days <- seq(as.Date(Dates[1], format = "%d/%m/%Y"), by = "days", length = tf-ti+1) filepath=paste0(userpath,"/Mussel_population/Outputs/Out_plots//Dry_weight.jpeg") jpeg(filepath,800,600) plot(days,WdSave[1,],ylab="Mean dry weight (g)", xlab=" ",xaxt = "n",type="l",lwd=2,cex.lab=1.4,col="red") lines(days,WbSave[1,],lwd=2,col="green") lines(days,RSave[1,],lwd=2,col="blue") labDates <- seq(as.Date(Dates[1], format = "%d/%m/%Y"), tail(days, 1), by = "months") axis.Date(side = 1, days, at = labDates, format = "%d %b %y", las = 2) legend("topleft",c("Total","Somatic tissue","Gonadic tissue"),fill=c("red","green","blue")) dev.off() filepath=paste0(userpath,"/Mussel_population/Outputs/Out_plots//Length.jpeg") jpeg(filepath,800,600) ub=LSave[1,]+LSave[2,] lb=as.matrix(matrix(0,nrow=length(ub),ncol=1)) for (i in 1:length(LSave[1,]-LSave[2,])){ lb[i]=max(LSave[1,i]-LSave[2,i],0) } maxub=max(LSave[1,]+LSave[2,]) plot(days,LSave[1,],ylab="Length (cm)", xlab=" ",xaxt = "n",type="l",cex.lab=1.4,col="red",ylim=c(0,maxub+0.05*maxub)) polygon(c(days,rev(days)),c(lb,rev(ub)),col="grey90",border=FALSE) lines(days,LSave[1,],lwd=2,col="red") lines(days,lb,col="blue") lines(days,ub,col="blue") labDates <- seq(as.Date(Dates[1], format = "%d/%m/%Y"), tail(days, 1), by = "months") axis.Date(side = 1, days, at = labDates, format = "%d %b %y", las = 2) dev.off() filepath=paste0(userpath,"/Mussel_population/Outputs/Out_plots//Total_weight.jpeg") jpeg(filepath,800,600) ub=WSave[1,]+WSave[2,] lb=as.matrix(matrix(0,nrow=length(ub),ncol=1)) for (i in 1:length(WSave[1,]-WSave[2,])){ lb[i]=max(WSave[1,i]-WSave[2,i],0) } maxub=max(WSave[1,]+WSave[2,]) plot(days,WSave[1,],ylab="Total weight - with shell (g)", xlab=" ",xaxt = "n",type="l",cex.lab=1.4,col="red",ylim=c(0,maxub+0.05*maxub)) polygon(c(days,rev(days)),c(lb,rev(ub)),col="grey90",border=FALSE) lines(days,WSave[1,],lwd=2,col="red") lines(days,lb,col="blue") lines(days,ub,col="blue") labDates <- seq(as.Date(Dates[1], format = "%d/%m/%Y"), tail(days, 1), by = "months") axis.Date(side = 1, days, at = labDates, format = "%d %b %y", las = 2) dev.off() filepath=paste0(userpath,"/Mussel_population/Outputs/Out_plots//pseudofaeces_C.jpeg") jpeg(filepath,800,600) ub=psCSave[1,]+psCSave[2,] lb=as.matrix(matrix(0,nrow=length(ub),ncol=1)) for (i in 1:length(psCSave[1,]-psCSave[2,])){ lb[i]=max(psCSave[1,i]-psCSave[2,i],0) } maxub=max(psCSave[1,]+psCSave[2,]) plot(days,psCSave[1,],ylab="C in pseudofaeces (kg/d)", xlab=" ",xaxt = "n",type="l",cex.lab=1.4,col="red",ylim=c(0,maxub+0.05*maxub)) polygon(c(days,rev(days)),c(lb,rev(ub)),col="grey90",border=FALSE) lines(days,psCSave[1,],lwd=2,col="red") lines(days,lb,col="blue") lines(days,ub,col="blue") labDates <- seq(as.Date(Dates[1], format = "%d/%m/%Y"), tail(days, 1), by = "months") axis.Date(side = 1, days, at = labDates, format = "%d %b %y", las = 2) dev.off() filepath=paste0(userpath,"/Mussel_population/Outputs/Out_plots//pseudofaeces_N.jpeg") jpeg(filepath,800,600) ub=psNSave[1,]+psNSave[2,] lb=as.matrix(matrix(0,nrow=length(ub),ncol=1)) for (i in 1:length(psNSave[1,]-psNSave[2,])){ lb[i]=max(psNSave[1,i]-psNSave[2,i],0) } maxub=max(psNSave[1,]+psNSave[2,]) plot(days,psNSave[1,],ylab="N in pseudofaeces (kg/d)", xlab=" ",xaxt = "n",type="l",cex.lab=1.4,col="red",ylim=c(0,maxub+0.05*maxub)) polygon(c(days,rev(days)),c(lb,rev(ub)),col="grey90",border=FALSE) lines(days,psNSave[1,],lwd=2,col="red") lines(days,lb,col="blue") lines(days,ub,col="blue") labDates <- seq(as.Date(Dates[1], format = "%d/%m/%Y"), tail(days, 1), by = "months") axis.Date(side = 1, days, at = labDates, format = "%d %b %y", las = 2) dev.off() filepath=paste0(userpath,"/Mussel_population/Outputs/Out_plots//pseudofaeces_P.jpeg") jpeg(filepath,800,600) ub=psPSave[1,]+psPSave[2,] lb=as.matrix(matrix(0,nrow=length(ub),ncol=1)) for (i in 1:length(psPSave[1,]-psPSave[2,])){ lb[i]=max(psPSave[1,i]-psPSave[2,i],0) } maxub=max(psPSave[1,]+psPSave[2,]) plot(days,psPSave[1,],ylab="P in pseudofaeces (kg/d)", xlab=" ",xaxt = "n",type="l",cex.lab=1.4,col="red",ylim=c(0,maxub+0.05*maxub)) polygon(c(days,rev(days)),c(lb,rev(ub)),col="grey90",border=FALSE) lines(days,psPSave[1,],lwd=2,col="red") lines(days,lb,col="blue") lines(days,ub,col="blue") labDates <- seq(as.Date(Dates[1], format = "%d/%m/%Y"), tail(days, 1), by = "months") axis.Date(side = 1, days, at = labDates, format = "%d %b %y", las = 2) dev.off() filepath=paste0(userpath,"/Mussel_population/Outputs/Out_plots//faeces_C.jpeg") jpeg(filepath,800,600) ub=fecCSave[1,]+fecCSave[2,] lb=as.matrix(matrix(0,nrow=length(ub),ncol=1)) for (i in 1:length(fecCSave[1,]-fecCSave[2,])){ lb[i]=max(fecCSave[1,i]-fecCSave[2,i],0) } maxub=max(fecCSave[1,]+fecCSave[2,]) plot(days,fecCSave[1,],ylab="C in faeces (kg/d)", xlab=" ",xaxt = "n",type="l",cex.lab=1.4,col="red",ylim=c(0,maxub+0.05*maxub)) polygon(c(days,rev(days)),c(lb,rev(ub)),col="grey90",border=FALSE) lines(days,fecCSave[1,],lwd=2,col="red") lines(days,lb,col="blue") lines(days,ub,col="blue") labDates <- seq(as.Date(Dates[1], format = "%d/%m/%Y"), tail(days, 1), by = "months") axis.Date(side = 1, days, at = labDates, format = "%d %b %y", las = 2) dev.off() filepath=paste0(userpath,"/Mussel_population/Outputs/Out_plots//faeces_N.jpeg") jpeg(filepath,800,600) ub=fecNSave[1,]+fecNSave[2,] lb=as.matrix(matrix(0,nrow=length(ub),ncol=1)) for (i in 1:length(fecNSave[1,]-fecNSave[2,])){ lb[i]=max(fecNSave[1,i]-fecNSave[2,i],0) } maxub=max(fecNSave[1,]+fecNSave[2,]) plot(days,fecNSave[1,],ylab="N in faeces (kg/d)", xlab=" ",xaxt = "n",type="l",cex.lab=1.4,col="red",ylim=c(0,maxub+0.05*maxub)) polygon(c(days,rev(days)),c(lb,rev(ub)),col="grey90",border=FALSE) lines(days,fecNSave[1,],lwd=2,col="red") lines(days,lb,col="blue") lines(days,ub,col="blue") labDates <- seq(as.Date(Dates[1], format = "%d/%m/%Y"), tail(days, 1), by = "months") axis.Date(side = 1, days, at = labDates, format = "%d %b %y", las = 2) dev.off() filepath=paste0(userpath,"/Mussel_population/Outputs/Out_plots//faeces_P.jpeg") jpeg(filepath,800,600) ub=fecPSave[1,]+fecPSave[2,] lb=as.matrix(matrix(0,nrow=length(ub),ncol=1)) for (i in 1:length(fecPSave[1,]-fecPSave[2,])){ lb[i]=max(fecPSave[1,i]-fecPSave[2,i],0) } maxub=max(fecPSave[1,]+fecPSave[2,]) plot(days,fecPSave[1,],ylab="P in faeces (kg/d)", xlab=" ",xaxt = "n",type="l",cex.lab=1.4,col="red",ylim=c(0,maxub+0.05*maxub)) polygon(c(days,rev(days)),c(lb,rev(ub)),col="grey90",border=FALSE) lines(days,fecPSave[1,],lwd=2,col="red") lines(days,lb,col="blue") lines(days,ub,col="blue") labDates <- seq(as.Date(Dates[1], format = "%d/%m/%Y"), tail(days, 1), by = "months") axis.Date(side = 1, days, at = labDates, format = "%d %b %y", las = 2) dev.off() filepath=paste0(userpath,"/Mussel_population/Outputs/Out_plots//C_content.jpeg") jpeg(filepath,800,600) ub=CmytSave[1,]+CmytSave[2,] lb=as.matrix(matrix(0,nrow=length(ub),ncol=1)) for (i in 1:length(CmytSave[1,]-CmytSave[2,])){ lb[i]=max(CmytSave[1,i]-CmytSave[2,i],0) } maxub=max(CmytSave[1,]+CmytSave[2,]) plot(days,CmytSave[1,],ylab="Mussel C content (g)", xlab=" ",xaxt = "n",type="l",cex.lab=1.4,col="red",ylim=c(0,maxub+0.05*maxub)) polygon(c(days,rev(days)),c(lb,rev(ub)),col="grey90",border=FALSE) lines(days,CmytSave[1,],lwd=2,col="red") lines(days,lb,col="blue") lines(days,ub,col="blue") labDates <- seq(as.Date(Dates[1], format = "%d/%m/%Y"), tail(days, 1), by = "months") axis.Date(side = 1, days, at = labDates, format = "%d %b %y", las = 2) dev.off() filepath=paste0(userpath,"/Mussel_population/Outputs/Out_plots//N_content.jpeg") jpeg(filepath,800,600) ub=NmytSave[1,]+NmytSave[2,] lb=as.matrix(matrix(0,nrow=length(ub),ncol=1)) for (i in 1:length(NmytSave[1,]-NmytSave[2,])){ lb[i]=max(NmytSave[1,i]-NmytSave[2,i],0) } maxub=max(NmytSave[1,]+NmytSave[2,]) plot(days,NmytSave[1,],ylab="Mussel N content (g)", xlab=" ",xaxt = "n",type="l",cex.lab=1.4,col="red",ylim=c(0,maxub+0.05*maxub)) polygon(c(days,rev(days)),c(lb,rev(ub)),col="grey90",border=FALSE) lines(days,NmytSave[1,],lwd=2,col="red") lines(days,lb,col="blue") lines(days,ub,col="blue") labDates <- seq(as.Date(Dates[1], format = "%d/%m/%Y"), tail(days, 1), by = "months") axis.Date(side = 1, days, at = labDates, format = "%d %b %y", las = 2) dev.off() filepath=paste0(userpath,"/Mussel_population/Outputs/Out_plots//P_content.jpeg") jpeg(filepath,800,600) ub=PmytSave[1,]+PmytSave[2,] lb=as.matrix(matrix(0,nrow=length(ub),ncol=1)) for (i in 1:length(PmytSave[1,]-PmytSave[2,])){ lb[i]=max(PmytSave[1,i]-PmytSave[2,i],0) } maxub=max(PmytSave[1,]+PmytSave[2,]) plot(days,PmytSave[1,],ylab="Mussel P content (g)", xlab=" ",xaxt = "n",type="l",cex.lab=1.4,col="red",ylim=c(0,maxub+0.05*maxub)) polygon(c(days,rev(days)),c(lb,rev(ub)),col="grey90",border=FALSE) lines(days,PmytSave[1,],lwd=2,col="red") lines(days,lb,col="blue") lines(days,ub,col="blue") labDates <- seq(as.Date(Dates[1], format = "%d/%m/%Y"), tail(days, 1), by = "months") axis.Date(side = 1, days, at = labDates, format = "%d %b %y", las = 2) dev.off() filepath=paste0(userpath,"/Mussel_population/Outputs/Out_plots//O2_consumption.jpeg") jpeg(filepath,800,600) ub=O2Save[1,]+O2Save[2,] lb=as.matrix(matrix(0,nrow=length(ub),ncol=1)) for (i in 1:length(O2Save[1,]-O2Save[2,])){ lb[i]=max(O2Save[1,i]-O2Save[2,i],0) } maxub=max(O2Save[1,]+O2Save[2,]) plot(days,O2Save[1,],ylab="Oxygen consumption (kg/d)", xlab=" ",xaxt = "n",type="l",cex.lab=1.4,col="red",ylim=c(0,maxub+0.05*maxub)) polygon(c(days,rev(days)),c(lb,rev(ub)),col="grey90",border=FALSE) lines(days,O2Save[1,],lwd=2,col="red") lines(days,lb,col="blue") lines(days,ub,col="blue") labDates <- seq(as.Date(Dates[1], format = "%d/%m/%Y"), tail(days, 1), by = "months") axis.Date(side = 1, days, at = labDates, format = "%d %b %y", las = 2) dev.off() filepath=paste0(userpath,"/Mussel_population/Outputs/Out_plots//NH4_release.jpeg") jpeg(filepath,800,600) ub=NH4Save[1,]+NH4Save[2,] lb=as.matrix(matrix(0,nrow=length(ub),ncol=1)) for (i in 1:length(NH4Save[1,]-NH4Save[2,])){ lb[i]=max(NH4Save[1,i]-NH4Save[2,i],0) } maxub=max(NH4Save[1,]+NH4Save[2,]) plot(days,NH4Save[1,],ylab="NH4 release (kg/d)", xlab=" ",xaxt = "n",type="l",cex.lab=1.4,col="red",ylim=c(0,maxub+0.05*maxub)) polygon(c(days,rev(days)),c(lb,rev(ub)),col="grey90",border=FALSE) lines(days,NH4Save[1,],lwd=2,col="red") lines(days,lb,col="blue") lines(days,ub,col="blue") labDates <- seq(as.Date(Dates[1], format = "%d/%m/%Y"), tail(days, 1), by = "months") axis.Date(side = 1, days, at = labDates, format = "%d %b %y", las = 2) dev.off() days2 <- seq(as.Date(Dates[1], format = "%d/%m/%Y"), by = "days", length = tf-ti) filepath=paste0(userpath,"/Mussel_population/Outputs/Out_plots//temperature_response.jpeg") jpeg(filepath,800,600) ub=max(max(fgT),max(frT)) plot(days2,fgT,ylab="Temperature response function",xlab=" ",xaxt = "n",cex.lab=1.4,col="red",type="l",ylim=c(0,ub+0.05*ub)) lines(days2,frT,col="blue") legend("topright",c("Anabolism limitation","Catabolism limitation"),fill=c("red","blue")) labDates <- seq(as.Date(Dates[1], format = "%d/%m/%Y"), tail(days, 1), by = "months") axis.Date(side = 1, days, at = labDates, format = "%d %b %y", las = 2) dev.off() filepath=paste0(userpath,"/Mussel_population/Outputs/Out_plots//metabolism.jpeg") jpeg(filepath,800,600) Aub=ASave[1,]+ASave[2,] Cub=CSave[1,]+CSave[2,] Alb=as.matrix(matrix(0,nrow=length(Aub),ncol=1)) Clb=as.matrix(matrix(0,nrow=length(Cub),ncol=1)) for (i in 1:length(ASave[1,]-ASave[2,])){ Alb[i]=max(ASave[1,i]-ASave[2,i],0) Clb[i]=max(CSave[1,i]-CSave[2,i],0) } maxub=max(Aub,Cub) plot(days,ASave[1,],ylab="Metabolic rates (J/d)", xlab=" ",xaxt = "n",type="l",cex.lab=1.4,col="red",ylim=c(0,maxub+0.05*maxub)) polygon(c(days,rev(days)),c(Alb,rev(Aub)),col="grey75",border=FALSE) lines(days,ASave[1,],lwd=2,col="red") polygon(c(days,rev(days)),c(Clb,rev(Cub)),col="grey75",border=FALSE) lines(days,CSave[1,],lwd=2,col="blue") labDates <- seq(as.Date(Dates[1], format = "%d/%m/%Y"), tail(days, 1), by = "months") axis.Date(side = 1, days, at = labDates, format = "%d %b %y", las = 2) legend("topleft",c("Anabolic rate","Catabolic rate"),fill=c("red","blue")) dev.off() filepath=paste0(userpath,"/Mussel_population/Outputs/Out_plots/Population.jpeg") jpeg(filepath,800,600) plot(days, N, ylab="Number of individuals", xlab="", xaxt = "n",type="l",cex.lab=1.4) labDates <- seq(as.Date(Dates[1], format = "%d/%m/%Y"), tail(days, 1), by = "months") axis.Date(side = 1, days, at = labDates, format = "%d %b %y", las = 2) dev.off() filepath=paste0(userpath,"/Mussel_population/Outputs/Out_csv//Dry_weight.csv") write.csv(t(WdSave),filepath) filepath=paste0(userpath,"/Mussel_population/Outputs/Out_csv//Total_weight.csv") write.csv(t(WSave),filepath) filepath=paste0(userpath,"/Mussel_population/Outputs/Out_csv//Length.csv") write.csv(t(LSave),filepath) filepath=paste0(userpath,"/Mussel_population/Outputs/Out_csv//faeces_C.csv") write.csv(t(fecCSave),filepath) filepath=paste0(userpath,"/Mussel_population/Outputs/Out_csv//faeces_N.csv") write.csv(t(fecNSave),filepath) filepath=paste0(userpath,"/Mussel_population/Outputs/Out_csv//faeces_P.csv") write.csv(t(fecPSave),filepath) filepath=paste0(userpath,"/Mussel_population/Outputs/Out_csv//pseudofaeces_C.csv") write.csv(t(psCSave),filepath) filepath=paste0(userpath,"/Mussel_population/Outputs/Out_csv//pseudofaeces_N.csv") write.csv(t(psNSave),filepath) filepath=paste0(userpath,"/Mussel_population/Outputs/Out_csv//pseudofaeces_P.csv") write.csv(t(psPSave),filepath) filepath=paste0(userpath,"/Mussel_population/Outputs/Out_csv//C_content.csv") write.csv(t(CmytSave),filepath) filepath=paste0(userpath,"/Mussel_population/Outputs/Out_csv//N_content.csv") write.csv(t(NmytSave),filepath) filepath=paste0(userpath,"/Mussel_population/Outputs/Out_csv//P_content.csv") write.csv(t(PmytSave),filepath) filepath=paste0(userpath,"/Mussel_population/Outputs/Out_csv//O2_consumption.csv") write.csv(t(O2Save),filepath) filepath=paste0(userpath,"/Mussel_population/Outputs/Out_csv//NH4_release.csv") write.csv(t(NH4Save),filepath) filepath=paste0(userpath,"/Mussel_population/Outputs/Out_csv//temperature_response.csv") write.csv(t(tfunSave),filepath) filepath=paste0(userpath,"/Mussel_population/Outputs/Out_csv//anabolic_rate.csv") write.csv(ASave,filepath) filepath=paste0(userpath,"/Mussel_population/Outputs/Out_csv//catabolic_rate.csv") write.csv(CSave,filepath) filepath=paste0(userpath,"/Mussel_population/Outputs/Out_csv//Days_to_commercial_size.csv") write.csv(daysToSize,filepath) return(output) }
dseries <- function(num.series, tag.group = FALSE, group = 0, ...) { my.list <- vector('list', num.series) for (i in 1:num.series) { my.list[[i]] <- dtrials(data.structure = "data.table", ...) } results <- do.call("rbind", my.list) if (tag.group == TRUE) { results$GROUP <- group } return(results) }
run_spm12_script <- function( script_name, jobvec = NULL, mvec = NULL, add_spm_dir = TRUE, spmdir = spm_dir(verbose = verbose), clean = TRUE, verbose = TRUE, single_thread = FALSE, ... ){ if (on_cran()) { single_thread = TRUE } scripts = build_spm12_script( script_name = script_name, jobvec = jobvec, mvec = mvec, add_spm_dir = add_spm_dir, spmdir = spmdir, verbose = verbose, ...) if (verbose) { message(paste0( " scripts["job"], "\n")) } res = run_matlab_script( scripts["script"], verbose = verbose, single_thread = single_thread) if (verbose) { message(paste0(" } if (clean) { file.remove(scripts) if (verbose) { message(paste0(" } } return(res) } build_spm12_script <- function( script_name, jobvec = NULL, mvec = NULL, add_spm_dir = TRUE, spmdir = spm_dir(verbose = verbose), verbose = TRUE, install_dir = NULL, ... ){ install_spm12(verbose = verbose, install_dir = install_dir) scripts = spm12_script(script_name, ...) job = readLines(scripts["job"]) njvec = names(jobvec) if (any(is.na(jobvec))) { print(jobvec) stop("There is an NA in jobvec") } for (ijob in seq_along(jobvec)) { job = gsub(njvec[ijob], jobvec[ijob], job) } m = readLines(scripts["script"]) nmvec = names(mvec) for (ijob in seq_along(mvec)) { m = gsub(nmvec[ijob], mvec[ijob], job) } m = gsub("%jobfile%", scripts['job'], m) if (add_spm_dir) { if (verbose) { message(paste0(" } m = c(paste0("addpath(genpath('", spmdir, "'));"), m) } writeLines(m, con = scripts['script']) writeLines(job, con = scripts['job']) return(scripts) }
with_debug <- function(code, CFLAGS = NULL, CXXFLAGS = NULL, FFLAGS = NULL, FCFLAGS = NULL, debug = TRUE) { defaults <- compiler_flags(debug = debug) flags <- c( CFLAGS = CFLAGS, CXXFLAGS = CXXFLAGS, FFLAGS = FFLAGS, FCFLAGS = FCFLAGS ) flags <- unlist(utils::modifyList(as.list(defaults), as.list(flags))) withr::with_makevars(flags, code) } without_compiler <- function(code) { flags <- c( CC = "test", CXX = "test", CXX11 = "test", FC = "test" ) if (is_windows()) { without_cache({ cache_set("rtools_path", "") withr::with_makevars(flags, code) }) } else { without_cache({ withr::with_makevars(flags, code) }) } } without_cache <- function(code) { cache_reset() on.exit(cache_reset()) code } without_latex <- function(code) { withr::with_options(list(PKGBUILD_TEST_FIXTURE_HAS_LATEX = FALSE), code) } with_latex <- function(code) { withr::with_options(list(PKGBUILD_TEST_FIXTURE_HAS_LATEX = TRUE), code) }
today.prizelist <- function(up_or_down) { if (up_or_down == "up") { link <- "https://www.bmcecapitalbourse.com/bkbbourse/lists/TK?q=AE31180F8E3BE20E762758E81EDC1204&t=list&f=1W_PERF_PR&s=false page <- rvest::read_html(link) page <- rvest::html_nodes(page, "table") page <- rvest::html_table(page) page[[7]] } else if (up_or_down == "down") { link <- "https://www.bmcecapitalbourse.com/bkbbourse/lists/TK?q=AE31180F8E3BE20E762758E81EDC1204&t=list&f=1W_PERF_PR&s=true page <- rvest::read_html(link) page <- rvest::html_nodes(page, "table") page <- rvest::html_table(page) page[[7]] } else { print("today.prizelist('up') or today.prizelist('down')") } }
.stackMatList <- function( matList, way, useMatrix = FALSE ){ if( way == "diag" ){ result <- matrix( 0, 0, 0 ) for( i in 1:length( matList ) ){ result <- rbind( cbind( result, matrix( 0, nrow( result ), ncol( matList[[ i ]] ) ) ), cbind( matrix( 0, nrow( matList[[ i ]] ), ncol( result ) ), as.matrix( matList[[ i ]] ) ) ) } } else if( way == "below" ) { result <- NULL for( i in 1:length( matList ) ){ result <- rbind( result, as.matrix( matList[[ i ]] ) ) } } if( useMatrix ){ result <- as( result, "dgCMatrix" ) } return( result ) } .prepareWmatrix <- function( upperleft, R.restr, useMatrix = FALSE ){ if( nrow( R.restr ) == 1 ){ lowerRows <- c( R.restr, 0 ) } else { lowerRows <- cbind2( R.restr, matrix( 0, nrow( R.restr ), nrow( R.restr ) ) ) } result <- rbind2( cbind2( as.matrix( upperleft ), t(R.restr) ), lowerRows ) if( useMatrix ){ result <- as( result, "dgeMatrix" ) } return( result ) }
racscovariance <- function(xi, obswin = NULL, setcov_boundarythresh = NULL, estimators = "all", drop = FALSE){ cvchat <- plugincvc(xi, obswin, setcov_boundarythresh = setcov_boundarythresh) cpp1 <- cppicka(xi, obswin, setcov_boundarythresh = setcov_boundarythresh) phat <- coverageprob(xi, obswin) cvchats <- racscovariance.cvchat(cvchat, cpp1, phat, estimators = estimators, drop = drop) return(cvchats) } racscovariance.cvchat <- function(cvchat, cpp1 = NULL, phat = NULL, estimators = "all", drop = FALSE){ harmonised <- harmonise.im(cvchat = cvchat, cpp1 = cpp1) cvchat <- harmonised$cvchat cpp1 <- harmonised$cpp1 fcns <- list( plugin = function(cvchat, cpp1 = NULL, phat = NULL) cvchat, mattfeldt = balancedracscovariance_mattfeldt_add, pickaint = balancedracscovariance_picka_int, pickaH = balancedracscovariance_picka_H ) if ((estimators == "all")[[1]]) {estimators <- names(fcns)} fcnstouse <- fcns[names(fcns) %in% estimators] isfunction <- unlist(lapply(estimators, function(x) "function" %in% class(x))) estimatorsnotused <- estimators[!( (estimators %in% names(fcns)) | isfunction)] fcnstouse <- c(fcnstouse, estimators[isfunction]) if(length(estimatorsnotused) > 0){stop( paste("The following estimators are not recognised as existing function names or as a function:", estimatorsnotused))} balancedcvchats <- lapply(fcnstouse, function(x) do.call(x, args = list(cvchat = cvchat, cpp1 = cpp1, phat = phat))) if (drop && (length(balancedcvchats) == 1)){ return(balancedcvchats[[1]]) } else {return(as.imlist(balancedcvchats)) } } balancedracscovariance_mattfeldt_add <- function(cvchat, cpp1, phat){ return(cvchat - ( (cpp1 + reflect.im(cpp1))/2 )^2 + phat^2) } balancedracscovariance_picka_int <- function(cvchat, cpp1, phat){ return(cvchat - cpp1*reflect.im(cpp1) + phat^2) } balancedracscovariance_picka_H <- function(cvchat, cpp1, phat){ return(cvchat - phat*(cpp1 + reflect.im(cpp1) - 2*phat)) }
mcdina_est_reduced_skillspace <- function(pi.k, Z) { G <- ncol(pi.k) for (gg in 1:G){ ntheta <- pi.k[,gg] res <- gdina_reduced_skillspace( ntheta=ntheta, Z=Z, reduced.skillspace.method=2 ) pi.k[,gg] <- res$attr.prob } return(pi.k) }
.Random.seed <- c(403L, 617L, -1535377062L, 1048656958L, 1232636983L, 1429367169L, 1367564279L, 2011257309L, 465368733L, 2145097362L, -1688392714L, 1242461871L, 903938454L, -1655899701L, -644462143L, -989546917L, 1490781404L, -1179938597L, 2096556006L, -1669069821L, -1235003168L, 4298126L, -1373383705L, -1094933586L, -1924522578L, -2130070116L, 1153772672L, 169286314L, 913582111L, -1823841886L, 319315797L, -512210604L, 669766238L, -629316167L, -879834542L, 53959630L, 1594997830L, -753761680L, 1202322861L, 1916245638L, 142481857L, -216356290L, 1474078510L, -243542309L, -1620436066L, -1561408156L, 1428759011L, -1153714240L, 304657431L, 1728000675L, 1216590580L, -1565440483L, -463280192L, 1830442404L, 67767486L, 1219697979L, -1648271L, -725890670L, 1423420271L, 1754885030L, -442461896L, -706649005L, 863429461L, 1488913684L, 1978534690L, 1990826630L, 723767363L, -613454991L, 1211470562L, 415604088L, 158816494L, 1820203055L, 1659553460L, -1989648371L, -3518529L, -868062475L, 2074554221L, -154628299L, 1014044586L, 1869558939L, 252432264L, -1533529280L, -1462224799L, -1223953643L, -965573803L, -953174629L, 181185641L, -1452347612L, 1065759463L, -1096166066L, -235805317L, 938652660L, -19725959L, -240747877L, 1924528925L, -923146788L, -1285635197L, 696524468L, -260874698L, -944173736L, -1182953536L, 1874121121L, 1265613439L, 596173114L, 1400346954L, 1157516706L, -1625717960L, -1931910401L, -1973619053L, 943053366L, 1679198816L, 1919589130L, 729903167L, 1163832394L, -1691030448L, -1867175160L, 345903030L, 1406882885L, 1507108860L, 661347892L, 960341830L, 401245988L, -1605082257L, -1026653935L, 1585328321L, -756697125L, -255489915L, -1213516766L, -1289212476L, -1519836608L, 1213647764L, -1338389500L, -1501294827L, -1113906120L, 351400248L, -1533569407L, 383727618L, 1020754390L, 1400347050L, -1358941374L, -1067869458L, 188098335L, -702548354L, 710881086L, 2055264945L, 2006544056L, 892689306L, 2079718624L, 1232993257L, -22498097L, -387462852L, 1462127628L, -679969546L, 923534363L, -788077496L, -779985691L, 101173785L, -697093273L, -1133406838L, 2100454052L, -353840372L, -410557519L, 483079703L, -924075670L, 983097212L, 1952301568L, 144895466L, -1538657072L, -65370561L, -1293604830L, 1062241736L, 911246047L, 1859856934L, -268652569L, 1131347255L, 1266330948L, 731739266L, -1181477807L, -1504478365L, 1883328231L, -1120345457L, 1946795693L, -553339244L, -1950008477L, -1445917719L, 1505133882L, 1035460554L, -469375767L, -56709339L, 1088907663L, -1078726056L, 1173374907L, -1054386700L, -1423492810L, -1815365534L, -442416936L, 260927395L, -1331731870L, 731704503L, 254622690L, 283228947L, -494378259L, 1411576571L, 1475522660L, -1301255523L, -595867743L, -1269971997L, -1385581520L, -1165939753L, 1888916157L, -2115289665L, 996914443L, -2019527756L, 1146421078L, 1965134172L, 307640608L, -1083947454L, 2103200985L, -280530656L, 1483706556L, 983983941L, -2085190021L, -1540213193L, 1334168425L, -1097665898L, 2072713262L, -1589878278L, 367012746L, 41199998L, -1820403973L, 1750789335L, -2003872465L, 113507878L, 650269950L, 1666820437L, 1398901920L, 1506854525L, 1739995248L, 1040507176L, -113461171L, 1419883725L, -257466723L, 1818424700L, -1665223186L, 1645150828L, 1903379953L, 1081010930L, 1029087128L, 1827754631L, 357244927L, 437580955L, 1890811775L, -148443801L, -101908920L, 695947908L, -972609378L, -113404462L, 951287537L, -911360099L, 433894598L, -1672061675L, -1302142616L, -269607577L, -1204799261L, 1293020681L, -1895871595L, 1120721091L, 406439333L, 945842377L, 1225935342L, -1598512143L, -2077800604L, 690975475L, -1310686809L, 855626915L, -1158928653L, -864096253L, 1669509358L, -1028976595L, -355650367L, 1845605833L, -33560273L, -1546319606L, 842454956L, -1432926241L, -1746913011L, 195691286L, -1959580477L, 78343367L, 32946669L, -1009625455L, -1439068578L, -1166750770L, 1347989198L, 1071286L, -1656879859L, 2129934488L, 1371002397L, 2094360309L, -1435951654L, 1061028614L, 1622190978L, -1968752171L, 1787082814L, -1043708656L, 1411079524L, -1086667995L, 1890751828L, -1145827206L, -1209111694L, 168062526L, -1634081619L, 1642144213L, -1871761313L, 1997592664L, -2045569505L, -1043054397L, -464836496L, 926340119L, -960779794L, -1311548065L, 271448754L, -1298105753L, 15742196L, 1223523191L, 1905599876L, -592564194L, 1905172032L, 863212315L, -609372815L, -397840219L, -763406687L, -730720090L, -1253771145L, 1944742507L, 2102083566L, 1242709371L, -648224406L, 666473508L, 2005432251L, 2039465297L, -1648221954L, 1310586594L, 1872831283L, 547436788L, 1490407070L, -2010661297L, -1170093747L, -1430247034L, -1110096644L, 26368424L, -1643599277L, -2093549864L, -1132294976L, 1716963520L, 1765059202L, -957594615L, 1279851940L, -1409091093L, 1754948243L, -1282006644L, 558015736L, 1783775108L, -1352703157L, -1412418181L, 1428444761L, 1788278608L, -832719795L, -1544239429L, 2009372146L, 595982736L, 226929191L, -1132345690L, 998313930L, -2016050912L, -1737636894L, -363453338L, 1498410772L, 496000327L, -1701215850L, -907239791L, 1039781340L, -1665209798L, -1109593876L, -1159213941L, 803075543L, 1971204313L, -534177708L, -990380124L, -1383750411L, -462205498L, 1384392456L, -964112266L, -1466964462L, 115341393L, 845279145L, 996272060L, -900586017L, -1879936832L, 376359205L, -652283725L, 2025728904L, 1380008006L, -1244481025L, 375424772L, 56448370L, 19775909L, -1215524017L, 1914891222L, -750964520L, 314637231L, 1832403685L, 1150617821L, -1285420509L, -403024028L, 21294443L, -1097765175L, 2061730362L, -1220815676L, -446219379L, -1418868197L, -1997804799L, 687389069L, 1134781544L, -1185101972L, 2130969188L, 416686891L, -425190152L, 1058360788L, -1709096420L, 979020380L, 2018700094L, 115617012L, 1690406152L, -120745897L, 1878759148L, -1148609190L, -116373502L, 1356281799L, -1388162865L, -1017188458L, -974632207L, 901262193L, -166391268L, -1444268734L, 689395679L, -214744715L, 1079626966L, 626249961L, 306852561L, -2111272080L, 1175790579L, -1952238987L, 1133045842L, 238012356L, -546654303L, -1914432245L, 897719360L, 2145466493L, -1618662470L, 1328986925L, -819622957L, -2114861141L, -428406757L, -597059260L, 1083860074L, -1001362639L, -58573466L, 798221867L, 1784989447L, 1059713834L, -511559046L, -195199812L, -1859005742L, -1433066940L, 813812312L, 607556345L, -72931799L, -636788508L, -1025926857L, 16828092L, 1128236436L, -1158994389L, 648984581L, -1883722753L, 88469849L, -1057634625L, -1340205670L, 992060661L, -582634023L, 1292516003L, -1180882410L, 1108234525L, 724304121L, -201717252L, -1784368911L, -2084967766L, -2114451266L, -1336465483L, -540740309L, -1191022646L, -974274381L, -1753027543L, 104519975L, 997135836L, -1003589431L, 1689163361L, -2088874233L, 1144591053L, -1489636804L, -1144112645L, -1760022433L, -591769544L, 607356513L, 13625789L, 176012613L, -1757221365L, -277625901L, 752122644L, -1926782531L, 650916386L, 451166744L, -1562666783L, 1949513791L, 1909258142L, 1277144671L, 531266904L, -518146858L, -392747796L, 1023525760L, 909674007L, -824639842L, 34754118L, -433135716L, 720762626L, 32266839L, -993211015L, 207746153L, 1776690042L, -1947332510L, -1467980279L, 438078228L, -2023497452L, 686456718L, -628123060L, -1179967292L, 1405065335L, -786723338L, -265143965L, 225828781L, -1196031283L, -1990356980L, -1486132463L, 132249676L, -828133403L, -1164877240L, -1855922573L, -352336243L, -971403923L, -1446625482L, 1621419690L, 1146081225L, -642309080L, 1079462342L, -307473886L, -1222820161L, 1399033680L, 1690981924L, -699167786L, -702820497L, 67055579L, -1044041019L, -325247231L, -144760069L, -2136831154L, -1392392430L, 604531050L, 1547769407L, -2013388589L, -237238573L, 1726740914L, -345186754L, -1355052837L, 1679797311L, -1733162625L, 1815262507L, -561029487L, 1432378845L, 727396677L, 1209824870L, 611130806L, -157624750L, 108946266L, -1951363443L, 993884829L, -359255096L, 1644264180L, 1795516182L, -1220943821L, -1443594326L, -1973823534L, 605241690L, -1365451596L, -700471898L, 1922705476L, -1252586055L, 925361148L, -275258531L, 35062795L, -1845868388L, 566109467L, 2116558243L, -736748735L, -1557261421L, -2135209754L, -5667991L, -1605223666L, -69079121L, 1576105079L, -1405868522L, -1031655305L, -1654475003L, -2113433872L, 306426039L, -187053244L, -1647546259L)
separateSequences <- function(in.file, filter_files, identity_threshold) { cat('Separating sequences according to the filter files...\n') tstart <- Sys.time() fid.in <- file(in.file,'rb') blockSize = 2^24 hNdx <- {} pos <- 0 cnt <- blockSize while(cnt == blockSize) { aux <- readChar(fid.in, nchars=blockSize, useBytes=T) cnt<- nchar(aux) hNdx <- c(hNdx, pos + gregexpr(aux, pattern='>')[[1]]) pos <- seek(fid.in) } hNdx <- c(hNdx, pos + cnt) seek(fid.in, where=0) numItems <- length(hNdx)-1 headers <- rep('', numItems); for(i in 1:numItems) { seek(fid.in, hNdx[i]); headers[i] = readLines(con = fid.in, n = 1) } label = rep(1, numItems) if(length(filter_files) > 0) { for(i in 1:length(filter_files)) { d <- tryCatch(read.table(filter_files[i], sep = ',', header = F), error = function(e) data.frame(), finally = function(e) data.frame()) if(nrow(d) > 0) { d <- d[d[[3]] > identity_threshold,] d <- d[order(d[[1]]),] label[is.element(headers, d[[1]])] <- i+1 } } } tstamp = Sys.time() out.files = {} for(i in unique(label)) { fid.out <- NA if(i == 1) { filename <- paste0(tstamp, '_filtered-unlabeled.fasta') fid.out <- file(filename, 'wb') cat(' - unlabeled: ', sum(label == 1), '\n') } else { filename <- basename(filter_files[[i]]) filename <- substr(filename, 1, nchar(filename)-4) filename <- paste0(tstamp, '_filtered-', filename, '.fasta') fid.out <- file(filename, 'wb') cat(' - ', filename, ': ', sum(label==i)) } out.files <- c(out.files, filename) for(j in which(label == i)) { chunkStart <- hNdx[j]-1 seek(fid.in, chunkStart) chunk <- "" if(j < numItems) { chunkEnd <- hNdx[j+1]-1 chunk <- readChar(fid.in, nchars = chunkEnd - chunkStart) } else chunk <- readChar(fid.in, nchars = 1e6) writeChar(chunk, con=fid.out, eos=NULL) } close(fid.out) } close(fid.in) cat(' - Elapsed time: ', Sys.time() - tstart, ' sec\n') return(out.files) }
trnd<- function(l,u) { x=rnorm(length(l)) I=which(x<l|x>u);d=length(I); while (d>0) { ly=l[I] uy=u[I] y=rnorm(length(ly)) idx=(y>ly)&(y<uy) x[I[idx]]=y[idx] I=I[!idx] d=length(I) } return(x) }
expected <- eval(parse(text="structure(2:3, .Label = c(\"C\", \"A\", \"B\"), class = \"factor\")")); test(id=0, code={ argv <- eval(parse(text="list(structure(1:2, .Label = c(\"a\", \"b\"), class = \"factor\"), value = structure(list(C = \"C\", A = \"a\", B = \"b\"), .Names = c(\"C\", \"A\", \"B\")))")); do.call(`levels<-`, argv); }, o=expected);
"PLcop" <- function(u, v, para=NULL, ...) { T <- para[1] if(is.null(para)) { warning("Empty para argument, need value on [0,Inf]") return() } if(T < 0) { warning("Theta < 0, invalid parameter") return() } if(T == 1) return( u*v) if(T == 0) return(W(u,v)) if(! is.finite(T)) return(M(u,v)) cop <- 1+(T-1)*(u+v) cop <- cop - sqrt(cop^2 - 4*u*v*T*(T-1)) cop <- cop / (2*(T-1)) return(cop) } "PLACKETTcop" <- function(u, v, para=NULL, ...) { PLcop(u, v, para=para, ...) }
unzip_all_files<-function(in_direc,out_direc){ zip_files<-list.files(path=in_direc,pattern= c("*\\.zip$" ),full.names=T) dir.create(out_direc,showWarnings = F) for(i in 1:length(zip_files)){ unzip(zip_files[i],exdir=out_direc) } message("Files Unzipped") }
NArray <- function( x, cells=NA ) { if( !is.list(x) ) stop("Argument must be a (named) list." ) array( cells, dimnames=x, dim=sapply( x, length ) ) } ZArray <- function( x, cells=0 ) NArray( x, cells=cells ) larray <- function( data=NA, dim, dimnames ) { if( is.list(data) ) return( array(data=NA,dim=sapply(data,length), dimnames=data) ) else if( is.list(dim) ) return( array(data=data,dim=sapply(dim,length), dimnames=dim) ) else if( is.list(dimnames) ) return( array(data=data,dim=sapply(dimnames,length), dimnames=dimnames) ) else if( !missing(dimnames) ) return( array(data=data,dim=length(data), dimnames=dimnames) ) else return( array(data=data,dim=length(data)) ) }
rm_sdt_create_partable_define_pargroups <- function(partable, pg1, pg2) { partable$pargroup <- 0 K <- max( partable$col, na.rm=TRUE) for (kk in 1:K){ m1 <- max(partable$pargroup) + 1 ind <- ( partable$type==pg1 ) & ( partable$col==kk) partable[ ind, "pargroup"] <- m1 * ( sum( partable[ind,"est"] ) > 0 ) } m1 <- max(partable$pargroup) + 1 ind <- ( partable$type==pg2 ) partable[ ind, "pargroup"] <- m1 * ( sum( partable[ind,"est"] ) > 0 ) return(partable) }
library(tidyverse) find_game_next_score_half <- function(pbp_dataset) { score_plays <- which(pbp_dataset$sp == 1 & pbp_dataset$play_type != "no_play") find_next_score <- function(play_i, score_plays_i,pbp_df) { next_score_i <- score_plays_i[which(score_plays_i >= play_i)[1]] if (is.na(next_score_i) | (pbp_df$qtr[play_i] %in% c(1, 2) & pbp_df$qtr[next_score_i] %in% c(3, 4, 5)) | (pbp_df$qtr[play_i] %in% c(3, 4) & pbp_df$qtr[next_score_i] == 5)) { score_type <- "No_Score" score_drive <- pbp_df$drive[play_i] } else { score_drive <- pbp_df$drive[next_score_i] if (pbp_df$touchdown[next_score_i] == 1 & (pbp_df$td_team[next_score_i] != pbp_df$posteam[next_score_i])) { if (identical(pbp_df$posteam[play_i], pbp_df$posteam[next_score_i])) { score_type <- "Opp_Touchdown" } else { score_type <- "Touchdown" } } else if (identical(pbp_df$field_goal_result[next_score_i], "made")) { if (identical(pbp_df$posteam[play_i], pbp_df$posteam[next_score_i])) { score_type <- "Field_Goal" } else { score_type <- "Opp_Field_Goal" } } else if (pbp_df$touchdown[next_score_i] == 1) { if (identical(pbp_df$posteam[play_i], pbp_df$posteam[next_score_i])) { score_type <- "Touchdown" } else { score_type <- "Opp_Touchdown" } } else if (pbp_df$safety[next_score_i] == 1) { if (identical(pbp_df$posteam[play_i],pbp_df$posteam[next_score_i])) { score_type <- "Opp_Safety" } else { score_type <- "Safety" } } else if (identical(pbp_df$extra_point_result[next_score_i], "good")) { if (identical(pbp_df$posteam[play_i], pbp_df$posteam[next_score_i])) { score_type <- "Extra_Point" } else { score_type <- "Opp_Extra_Point" } } else if (identical(pbp_df$two_point_conv_result[next_score_i], "success")) { if (identical(pbp_df$posteam[play_i], pbp_df$posteam[next_score_i])) { score_type <- "Two_Point_Conversion" } else { score_type <- "Opp_Two_Point_Conversion" } } else if (identical(pbp_df$defensive_two_point_conv[next_score_i], 1)) { if (identical(pbp_df$posteam[play_i], pbp_df$posteam[next_score_i])) { score_type <- "Opp_Defensive_Two_Point" } else { score_type <- "Defensive_Two_Point" } } else { score_type <- NA } } return(data.frame(Next_Score_Half = score_type, Drive_Score_Half = score_drive)) } lapply(c(1:nrow(pbp_dataset)), find_next_score, score_plays_i = score_plays, pbp_df = pbp_dataset) %>% bind_rows() %>% return } pbp_data <- purrr::map_df(1999 : 2019, function(x) { readRDS( glue::glue("data/play_by_play_{x}.rds") ) %>% filter(season_type == 'REG') }) %>% mutate( Winner = if_else(home_score > away_score, home_team, if_else(home_score < away_score, away_team, "TIE")) ) pbp_next_score_half <- map_dfr(unique(pbp_data$game_id), function(x) { pbp_data %>% filter(game_id == x) %>% find_game_next_score_half() }) pbp_data <- bind_cols(pbp_data, pbp_next_score_half) pbp_data <- pbp_data %>% filter(Next_Score_Half %in% c("Opp_Field_Goal", "Opp_Safety", "Opp_Touchdown", "Field_Goal", "No_Score", "Safety", "Touchdown") & play_type %in% c("field_goal", "no_play", "pass", "punt", "run", "qb_spike") & is.na(two_point_conv_result) & is.na(extra_point_result) & !is.na(down) & !is.na(game_seconds_remaining)) %>% select( game_id, Next_Score_Half, Drive_Score_Half, play_type, game_seconds_remaining, half_seconds_remaining, yardline_100, roof, posteam, defteam, home_team, ydstogo, season, qtr, down, week, drive, ep, score_differential, posteam_timeouts_remaining, defteam_timeouts_remaining, desc, receiver_player_name, pass_location, air_yards, yards_after_catch, complete_pass, incomplete_pass, interception, qb_hit, extra_point_result, field_goal_result, sp, Winner, spread_line, total_line ) saveRDS(pbp_data, 'models/cal_data.rds') pbp_data <- purrr::map_df(2000 : 2019, function(x) { readRDS( url( glue::glue("https://raw.githubusercontent.com/guga31bb/nflfastR-data/master/legacy-data/play_by_play_{x}.rds") ) ) %>% filter(season_type == 'REG') }) games <- readRDS(url("http://www.habitatring.com/games.rds")) %>% filter(!is.na(result)) %>% mutate( game_id = as.numeric(old_game_id), Winner = if_else(home_score > away_score, home_team, if_else(home_score < away_score, away_team, "TIE")) ) %>% select(game_id, Winner, result, roof) pbp_data <- pbp_data %>% left_join( games, by = c('game_id') ) pbp_next_score_half <- map_dfr(unique(pbp_data$game_id), function(x) { pbp_data %>% filter(game_id == x) %>% find_game_next_score_half() }) pbp_data <- bind_cols(pbp_data, pbp_next_score_half) pbp_data <- pbp_data %>% filter(Next_Score_Half %in% c("Opp_Field_Goal", "Opp_Safety", "Opp_Touchdown", "Field_Goal", "No_Score", "Safety", "Touchdown") & play_type %in% c("field_goal", "no_play", "pass", "punt", "run", "qb_spike") & is.na(two_point_conv_result) & is.na(extra_point_result) & !is.na(down) & !is.na(game_seconds_remaining)) %>% select(posteam, wp, qtr, Winner, td_prob, opp_td_prob, fg_prob, opp_fg_prob, safety_prob, opp_safety_prob, no_score_prob, Next_Score_Half) saveRDS(pbp_data, 'models/cal_data_nflscrapr.rds')
"fitted.bsad" <- function(object, alpha = 0.05, HPD = TRUE, ...) { smcmc <- object$mcmc$smcmc fparg <- object$fit.draws$fpar fsemig <- object$fit.draws$fsemi fsemiMaxKappag <- object$fit.draws$fsemiMaxKappa if (object$parametric != "none") { fpar <- list() fparm <- apply(fparg, 2, mean) fpar$mean <- fparm } fsemi <- list() fsemim <- apply(fsemig, 2, mean) fsemi$mean <- fsemim fsemiMaxKappa <- list() fsemiMaxKappam <- apply(fsemiMaxKappag, 2, mean) fsemiMaxKappa$mean <- fsemiMaxKappam if (HPD) { n <- object$nint prob <- 1 - alpha if (object$parametric != "none") { fparg.o <- apply(fparg, 2, sort) gap <- max(1, min(smcmc - 1, round(smcmc * prob))) init <- 1:(smcmc - gap) inds <- apply(fparg.o[init + gap, , drop = FALSE] - fparg.o[init, , drop = FALSE], 2, which.min) fpar$lower <- fparg.o[cbind(inds, 1:n)] fpar$upper <- fparg.o[cbind(inds + gap, 1:n)] } fsemig.o <- apply(fsemig, 2, sort) gap <- max(1, min(smcmc - 1, round(smcmc * prob))) init <- 1:(smcmc - gap) inds <- apply(fsemig.o[init + gap, , drop = FALSE] - fsemig.o[init, , drop = FALSE], 2, which.min) fsemi$lower <- fsemig.o[cbind(inds, 1:n)] fsemi$upper <- fsemig.o[cbind(inds + gap, 1:n)] fsemiMaxKappag.o <- apply(fsemiMaxKappag, 2, sort) gap <- max(1, min(smcmc - 1, round(smcmc * prob))) init <- 1:(smcmc - gap) inds <- apply(fsemiMaxKappag.o[init + gap, , drop = FALSE] - fsemiMaxKappag.o[init, , drop = FALSE], 2, which.min) fsemiMaxKappa$lower <- fsemiMaxKappag.o[cbind(inds, 1:n)] fsemiMaxKappa$upper <- fsemiMaxKappag.o[cbind(inds + gap, 1:n)] } else { if (object$parametric != "none") { fpar$lower <- apply(fparg, 2, function(x) quantile(x, probs = alpha/2)) fpar$upper <- apply(fparg, 2, function(x) quantile(x, probs = 1 - alpha/2)) } fsemi$lower <- apply(fsemig, 2, function(x) quantile(x, probs = alpha/2)) fsemi$upper <- apply(fsemig, 2, function(x) quantile(x, probs = 1 - alpha/2)) fsemiMaxKappa$lower <- apply(fsemiMaxKappag, 2, function(x) quantile(x, probs = alpha/2)) fsemiMaxKappa$upper <- apply(fsemiMaxKappag, 2, function(x) quantile(x, probs = 1 - alpha/2)) } out <- object out$alpha <- alpha out$HPD <- HPD out$parametric <- object$parametric if (object$parametric != "none") out$fpar <- fpar out$fsemi <- fsemi out$fsemiMaxKappa <- fsemiMaxKappa class(out) <- "fitted.bsad" out }
kimPossible_palette <- c( " " " " " " " " " " " " ) kimPossible_pal <- function(n, type = c("discrete", "continuous"), reverse = FALSE){ kimPossible <- kimPossible_palette if (reverse == TRUE) { kimPossible <- rev(kimPossible) } if (missing(n)) { n <- length(kimPossible) } type <- match.arg(type) if (type == "discrete" && n > length(kimPossible)) { stop(glue::glue("Palette does not have {n} colors, maximum is {length(kimPossible)}!")) } kimPossible <- switch(type, continuous = grDevices::colorRampPalette(kimPossible)(n), discrete = kimPossible[1:n]) kimPossible <- scales::manual_pal(kimPossible) return(kimPossible) } scale_color_kimPossible <- function(n, type = "discrete", reverse = FALSE, ...){ if (type == "discrete") { ggplot2::discrete_scale("color", "kimPossible", kimPossible_pal(), ...) } else { ggplot2::scale_color_gradientn(colors = kimPossible_pal(n = n, type = type, reverse = reverse)(8)) } } scale_colour_kimPossible <- scale_color_kimPossible scale_fill_kimPossible <- function(n, type = "discrete", reverse = FALSE, ...){ if (type == "discrete") { ggplot2::discrete_scale("fill", "kimPossible", kimPossible_pal(), ...) } else { ggplot2::scale_fill_gradientn(colors = kimPossible_pal(n = n, type = type, reverse = reverse)(8)) } }
label_significance_level <- function( values, levels, labels ){ ix <- sort( levels, index.return=TRUE)$ix levels <- levels[ix] labels <- labels[ix] NL <- length(levels) l1 <- "" values[ is.na(values) ] <- 1.2 for (ll in 1:NL){ l1 <- ifelse( values < levels[NL-ll+1], labels[NL-ll+1], l1) } return(l1) }
print.naive_bayes_tables <- function(x, ...) { symbol = ":::" n_char <- getOption("width") str_left_right <- paste0(rep("=", floor((n_char - 11) / 2)), collapse = "") str_full <- paste0(str_left_right, " Naive Bayes ", ifelse(n_char %% 2 != 0, "=", ""), str_left_right) len <- nchar(str_full) l <- paste0(rep("-", len), collapse = "") n <- length(x) cond_dists <- get_cond_dist(x) if (is.null(cond_dists)) { cond_dists <- recognize_cond_dist(x) } for (i in 1:n) { ith_tab <- x[[i]] ith_name <- names(x)[i] ith_dist <- cond_dists[i] if (ith_dist == "KDE") { for (ith_factor in names(ith_tab)) { cat("\n") cat(l, "\n") cat(paste0(" ", symbol, " ", ith_name, "::", ith_factor, " (", ith_dist, ")", "\n")) cat(l, "\n") print(ith_tab[[ith_factor]]) } } else { cat("\n") cat(l, "\n") cat(paste0(" ", symbol, " ", ith_name, " (", ith_dist, ") ", "\n")) cat(l, "\n") if (ith_dist == "Poisson") cat("\n") print(ith_tab) } } cat("\n") cat(l) } `[.naive_bayes_tables` <- function(x, i) { if (missing(i)) { return(x) } len_i <- length(i) len_x <- length(x) nam_x <- names(x) cond_dist <- attr(x, "cond_dist") class(x) <- "list" if (any(is.na(i))) { stop(paste0("`[`: NAs are not allowed for indexing of \"naive_bayes\" tables."), call. = FALSE) } if (!is.numeric(i) & !is.character(i) & !is.factor(i) & !is.logical(i)) stop("`[`: Indexing vector can only be \"character\", \"factor\", \"numeric\" or \"logical\".") if (is.numeric(i)) { if (any(i < 0) | any(i %% 1 != 0)) stop("`[`: Indexing vector should contain only positive integers.", call. = FALSE) if (any(i > len_x)) stop(paste0("`[`: There ", ifelse(len_x == 1, "is", "are"), " only ", len_x, ifelse(len_x == 1, " table.", " \"naive_bayes\" tables.")), call. = FALSE) } if (is.logical(i)) { if (length(i) > len_x) stop(paste0("`[`: There ", ifelse(len_x == 1, "is", "are"), " only ", len_x, ifelse(len_x == 1, " table.", " \"naive_bayes\" tables.")), call. = FALSE) if (all(i == FALSE)) { return(list()) } } if ((is.character(i) | is.factor(i)) & any(!i %in% nam_x)) stop("`[`: Undefined columns selected - indexing vector does not contain correct name(s) of feature(s).", call. = FALSE) res <- x[i] class(res) <- "naive_bayes_tables" attr(res, "cond_dist") <- cond_dist res } get_cond_dist <- function(object) { if (class(object) == "naive_bayes") { cond_dist <- attr(object$tables, "cond_dist") } else if (class(object) == "naive_bayes_tables") { cond_dist <- attr(object, "cond_dist") } else if (class(object) == "bernoulli_naive_bayes") { vars <- rownames(object$prob1) cond_dist <- stats::setNames(rep("Bernoulli", length(vars)), vars) } else if (class(object) == "gaussian_naive_bayes") { vars <- colnames(object$params$mu) cond_dist <- stats::setNames(rep("Gaussian", length(vars)), vars) } else if (class(object) == "poisson_naive_bayes") { vars <- rownames(object$params) cond_dist <- stats::setNames(rep("Poisson", length(vars)), vars) } else if (class(object) == "multinomial_naive_bayes") { vars <- rownames(object$params) cond_dist <- stats::setNames(rep("Multinomial", length(vars)), vars) } else if (class(object) == "nonparametric_naive_bayes") { cond_dist <- attr(object$dens, "cond_dist") } else { stop(paste0("get_cond_dist() expects ", paste0(models(), collapse = ", "), ", naive_bayes_tables objects."), call. = FALSE) } cond_dist } recognize_cond_dist <- function(tab) { sapply(tab, function(ith_tab) { if (class(ith_tab) == "array") { cond_dist <- "KDE" } else if (class(ith_tab) == "table") { rnames <- rownames(ith_tab) norm_par <- c("mean", "sd") if (any(rownames(ith_tab) == "lambda") & nrow(ith_tab) == 1) cond_dist <- "Poisson" if (nrow(ith_tab) == 2 & all(!rnames %in% norm_par)) cond_dist <- "Bernoulli" if (nrow(ith_tab) == 2 & all(rnames %in% norm_par)) cond_dist <- "Gaussian" if (nrow(ith_tab) > 2) cond_dist <- "Categorical" } else { cond_dist <- "" } cond_dist }) }
require(BETS) library(BETS)
plot_hairpin <- function(ctFile){ dot <- ct2dot(ctFile) ct <- makeCt(dot[[1]][1],dot[[2]][1]) co <- ct2coord(ct) loops <- hairpin_loop(ctFile) arr_min <- c() arr_max <- c() if(length(loops) != 0){ for (i in 1:length(loops)) { arr_min <- c(arr_min,loops[[i]][1]) if(length(loops[[i]]) > 1){ for (j in 2:length(loops[[i]])) { if(loops[[i]][j-1] == loops[[i]][j] - 1){ }else{ arr_max <- c(arr_max,loops[[i]][j-1]) arr_min <- c(arr_min,loops[[i]][j]) } } arr_max <- c(arr_max,loops[[i]][j]) }else{ arr_max <- c(arr_max,loops[[i]][1]) } } ranges=data.frame(min=arr_min,max=arr_max,col=2, desc="hairpin loop" ) RNAPlot(co,ranges) print("------------------------------------------------------") print("summary of hairpin loops:") print(paste("the number of hairpin loops is:",length(loops))) print(paste("the bases in hairpin loops are:",paste(unlist(loops),collapse = " ", sep = ""))) loops_name <- c() for (i in 1:length(loops)) { loops_name <- c(loops_name,paste("bases in hairpin loop ",i)) } names(loops) <- loops_name return(loops) } }
TaskSupervised = R6Class("TaskSupervised", inherit = Task, public = list( initialize = function(id, task_type, backend, target, extra_args = list()) { super$initialize(id = id, task_type = task_type, backend = backend, extra_args = extra_args) assert_subset(target, self$col_roles$feature) self$col_roles$target = target self$col_roles$feature = setdiff(self$col_roles$feature, target) }, truth = function(rows = NULL) { self$data(rows, cols = self$target_names) } ) )
theme_hdnom <- function(base_size = 14) { theme_bw(base_size = base_size) + theme( text = element_text(size = base_size), plot.title = element_text(face = "bold", size = base_size * 1.3, hjust = 0.5), axis.title = element_text(face = "plain"), axis.title.x = element_text(size = base_size * 1.25, vjust = -2), axis.title.y = element_text(size = base_size * 1.25, angle = 90, vjust = 4), axis.text = element_text(size = base_size, color = " axis.ticks = element_line(), axis.ticks.length = unit(2, "mm"), axis.line = element_line(colour = " legend.key = element_rect(colour = NA), legend.position = "bottom", legend.direction = "horizontal", legend.key.size = unit(2, "mm"), legend.margin = margin(t = 0, r = 0, b = 0, l = 0, unit = "pt"), legend.title = element_text(face = "plain", size = base_size), plot.background = element_rect(colour = NA), plot.margin = unit(c(10, 5, 5, 5), "mm"), panel.background = element_rect(colour = NA), panel.border = element_rect(colour = NA), panel.grid.major = element_line(colour = " panel.grid.minor = element_blank(), strip.background = element_rect(colour = " strip.text = element_text(face = "bold", size = base_size) ) }
`is.gp` <- function(x) { if (inherits(x, "gp")) return (TRUE) return (FALSE) }